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Preface
(with Important Information for the Reader)

This textbook reflects my personal views on how an “ideal” introductory course in ordinary differ-

ential equations should be taught, tempered by such practical constraints as the time available, and

the level and interests of the students. It also reflects my beliefs that a good text should (1) be a

useful resource beyond the course, and (2) back up its claims with solid and clear proofs (even if

some of those proofs are ignored by most readers). Moreover, I hope, it reflects the fact that such a

book should be written for those normally taking such a course; namely, students who are reasonably

acquainted with the differentiation and integration of functions of one variable, but who might not

yet be experts and may, on occasion, need to return to their elementary calculus texts for review.

Most of these students are not mathematicians and probably have no desire to become professional

mathematicians. Still, most are interested in fields of study where a fundamental understanding of

the mathematics and applications of differential equations is extremely useful. Some may have gone

beyond the basic single-variable calculus and be acquainted with multivariable calculus. If so, great.

They can delve into a few more topics. And those who’ve had a course in linear algebra or real

analysis are even luckier. They can be on the lookout for points where the theory from those more

advanced courses can be applied to and may even simplify some of the discussion.

If you are any one of these students, I hope you find this text readable and informative; after all,

I wrote it for you. And if you are an instructor of some of these students, then I hope you find this

text helpful as well. While I wrote this text mainly for students, the needs of the instructors were

kept firmly in mind. After all, this is the text my colleagues and I have been using for the last several

years.

Whether you are a student, instructor, or just a casual reader, there are a number of things you

should be aware of before starting the first chapter:

1. Extra material: There is more material in this text than can be reasonably covered in a

“standard” one-semester introductory course. In part, this is to provide the material for a

variety of “standard” courses which may or may not cover such topics as Laplace transforms,

series solutions, and systems. Beyond that, though, there are expanded discussions of topics

normally covered, as well as topics rarely covered, but which are still elementary enough

and potentially useful enough to merit discussion, as well as the proofs that are not simple

and illuminating enough to be included in the basic exposition, but should still be there to

keep the author honest and to serve as a reference for others. Because of this extra material,

there is an appendix, Author’s Guide to Using This Text, with advice on which sections must

be covered, which are optional, and which are best avoided by the first-time reader. It also

contains a few opinionated comments.

2. Computer math packages: At several points in the text, the use of a “computer math package”

is advised or, in exercises, required. By a “computer math package”, I mean one of those

powerful software packages such as Maple or Mathematica that can do symbolic calculations,

graphing and so forth. Unfortunately, software changes over time, new products emerge, and

companies providing this software can be bought and sold. In addition, you may be able to

find other computational resources on the Internet (but be aware that websites can be much

more fickle and untrustworthy than major software providers). For these reasons, details on

using such software are not included in this text. You will have to figure that out yourself (it’s

not that hard). I will tell you this: Extensive use of Maple was made in preparing this text.

In fact, most of the graphs were generated in Maple and then cleaned up using commercial

graphics software.

xiii
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xiv Preface (with Important Information)

On the subject of computer math packages: Please become reasonably proficient in at

least one. If you are reading this, you are probably working in or will be working in a field

in which this sort of knowledge is invaluable. But don’t think this software can replace a

basic understanding of the mathematics you are using. Even a simple calculator is useless to

someone who doesn’t understand just what + and × mean. Mindlessly using this software

can lead to serious and costly mistakes (as discussed in section 9.3).

3. Additional chapters: By the way, I do not consider this text as being complete. Additional

chapters on systems of differential equations, numerical methods beyond Euler’s method,

boundary-value problems and so on are being written, mainly for a follow-up text that I hope

to eventually have published. As these chapters become written (and rewritten), they will

become available at the website for this text (see below).

4. Text website: While this edition remains in publication, I intend to maintain a website for

this text containing at least the following:

• A lengthy solution manual

• The aforementioned chapters extending the material in this text

• A list of known errata discovered since the book’s publication

At the time I was writing this, the text’s website was at http://howellkb.uah.edu/DEtext/.
With luck, that will still be the website’s location when you need it. Unfortunately, I cannot

guarantee that my university will not change its website policies and conventions, forcing

you to search for the current location of the text’s website. If you must search for this site, I

would suggest starting with the website of the Department of Mathematical Sciences of the

University of Alabama in Huntsville.

Finally, I must thank the many students and fellow faculty who have used earlier versions of

this text and have provided the feedback that I have found invaluable in preparing this edition. Those

comments are very much appreciated. And, if you, the reader, should find any errors or would like

to make any suggestions or comments regarding this text, please let me know. That, too, would be

very much appreciated.

Dr. Kenneth B. Howell

(howellkb@uah.edu)
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The Starting Point:
Basic Concepts and Terminology

Let us begin our study of “differential equations” with a few basic questions — questions that any

beginner should ask:

What are “differential equations”?

What can we do with them? Solve them? If so, what do we solve for? And how?

and, of course,

What good are they, anyway?

In this chapter, we will try to answer these questions (along with a few you would not yet think

to ask), at least well enough to begin our studies. With luck we will even raise a few questions

that cannot be answered now, but which will justify continuing our study. In the process, we will

also introduce and examine some of the basic concepts, terminology and notation that will be used

throughout this book.

1.1 Differential Equations: Basic Definitions and
Classifications

A differential equation is an equation involving some function of interest along with a few of its

derivatives. Typically, the function is unknown, and the challenge is to determine what that function

could possibly be.

Differential equations can be classified either as “ordinary” or as “partial”. An ordinary differ-

ential equation is a differential equation in which the function in question is a function of only one

variable. Hence, its derivatives are the “ordinary” derivatives encountered early in calculus. For the

most part, these will be the sort of equations we’ll be examining in this text. For example,

dy

dx
= 4x3

dy

dx
+ 4

x
y = x2

d2 y

dx2
− 2

dy

dx
− 3y = 65 cos(2x)

3
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4 The Starting Point: Basic Concepts and Terminology

4x2 d2 y

dx2
+ 4x

dy

dx
+ [4x2 − 1]y = 0

and

d4 y

dx4
= 81y

are some differential equations that we will later deal with. In each, y denotes a function that is

given by some, yet unknown, formula of x . Of course, there is nothing sacred about our choice of

symbols. We will use whatever symbols are convenient for the variables and functions, especially if

the problem comes from an application and the symbols help remind us of what they denote (such

as when we use t for a measurement of time).1

A partial differential equation is a differential equation in which the function of interest depends

on two or more variables. Consequently, the derivatives of this function are the partial derivatives

developed in the later part of most calculus courses.2 Because the methods for studying partial

differential equations often involve solving ordinary differential equations, it is wise to first become

reasonably adept at dealing with ordinary differential equations before tackling partial differential

equations.

As already noted, this text is mainly concerned with ordinary differential equations. So let us

agree that, unless otherwise indicated, the phrase “differential equation” in this text means “ordinary

differential equation”. If you wish to further simplify the phrasing to “DE” or even to something like

“Diffy-Q”, go ahead. This author, however, will not be so informal.

Differential equations are also classified by their “order”. The order of a differential equation is

simply the order of the highest order derivative explicitly appearing in the equation. The equations

dy

dx
= 4x3 ,

dy

dx
+ 4

x
y = x2 and y

dy

dx
= −9.8x

are all first-order equations. So is

dy

dx
+ 3y2 = y

(
dy

dx

)4

,

despite the appearance of the higher powers — dy/dx is still the highest order derivative in this

equation, even if it is multiplied by itself a few times.

The equations

d2 y

dx2
− 2

dy

dx
− 3y = 65 cos(2x) and 4x2 d2 y

dx2
+ 4x

dy

dx
+ [4x2 − 1]y = 0

are second-order equations, while

d3 y

dx3
= e4x and

d3 y

dx3
− d2 y

dx2
+ dy

dx
− y = x2

are third-order equations.

?�Exercise 1.1: What is the order of each of the following equations?

d2 y

dx2
+ 3

dy

dx
− 7y = sin(x)

1 On occasion, we may write “ y = y(x) ” to explicitly indicate that, in some expression, y denotes a function given by

some formula of x with y(x) denoting that “formula of x ”. More often, it will simply be understood that y is a function

given by some formula of whatever variable appears in our expressions.
2 A brief introduction to partial derivatives is given in section 3.7 for those who are interested and haven’t yet seen partial

derivatives.
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Differential Equations: Basic Definitions and Classifications 5

d5 y

dx5
− cos(x)

d3 y

dx3
= y2

d5 y

dx5
− cos(x)

d3 y

dx3
= y6

d42 y

dx42
=

(
d3 y

dx3

)2

In practice, higher-order differential equations are usually more difficult to solve than lower-

order equations. This, of course, is not an absolute rule. There are some very difficult first-order

equations, as well as some very easily solved twenty-seventh-order equations.

Solutions: The Basic Notions
∗

Any function that satisfies a given differential equation is called a solution to that differential equation.

“Satisfies the equation”, means that, if you plug the function into the differential equation and compute

the derivatives, then the result is an equation that is true no matter what real value we replace the

variable with. And if that resulting equation is not true for some real values of the variable, then that

function is not a solution to that differential equation.

!�Example 1.1: Consider the differential equation

dy

dx
− 3y = 0 .

If, in this differential equation, we let y(x) = e3x (i.e., if we replace y with e3x ), we get

d

dx

[
e3x

]
− 3e3x = 0

↪→ 3e3x − 3e3x = 0

↪→ 0 = 0 ,

which certainly is true for every real value of x . So y(x) = e3x is a solution to our differential

equation.

On the other hand, if we let y(x) = x3 in this differential equation, we get

d

dx

[
x3
]

− 3x3 = 0

↪→ 3x2 − 3x3 = 0

↪→ 3x2(1 − x) = 0 ,

which is true only if x = 0 or x = 1 . But our interest is not in finding values of x that make

the equation true, but in finding functions of x (i.e., y(x) ) that make the equation true for all

values of x . So y(x) = x3 is not a solution to our differential equation. (And it makes no sense,

whatsoever, to refer to either x = 0 or x = 1 as solutions, here.)

∗ Warning: The discussion of “solutions” here is rather incomplete so that we can get to the basic, intuitive concepts quickly.

We will refine our notion of “solutions” in section 1.3 starting on page 14.
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Typically, a differential equation will have many different solutions. Any formula (or set of

formulas) that describes all possible solutions is called a general solution to the equation.

!�Example 1.2: Consider the differential equation

dy

dx
= 6x .

All possible solutions can be obtained by just taking the indefinite integral of both sides,∫
dy

dx
dx =

∫
6x dx

↪→ y(x) + c1 = 3x2 + c2

↪→ y(x) = 3x2 + c2 − c1

where c1 and c2 are arbitrary constants. Since the difference of two arbitrary constants is just

another arbitrary constant, we can replace the above c2 − c1 with a single arbitrary constant c

and rewrite our last equation more succinctly as

y(x) = 3x2 + c .

This formula for y describes all possible solutions to our original differential equation — it is a

general solution to the differential equation in this example. To obtain an individual solution to

our differential equation, just replace c with any particular number. For example, respectively

letting c = 1 , c = −3 , and c = 827 yield the following three solutions to our differential

equation:

3x2 + 1 , 3x2 − 3 and 3x2 + 827 .

As just illustrated, general solutions typically involve arbitrary constants. In many applications,

we will find that the values of these constants are not truly arbitrary but are fixed by additional

conditions imposed on the possible solutions (so, in these applications at least, it would be more

accurate to refer to the “arbitrary” constants in the general solutions of the differential equations as

“yet undetermined” constants).

Normally, when given a differential equation and no additional conditions, we will want to

determine all possible solutions to the given differential equation. Hence, “solving a differential

equation” often means “finding a general solution” to that differential equation. That will be the

default meaning of the phrase “solving a differential equation” in this text. Notice, however, that the

resulting “solution” is not a single function that satisfies the differential equation (which is what we

originally defined “a solution” to be), but is a formula describing all possible functions satisfying the

differential equation (i.e., a “general solution”). Such ambiguity often arises in everyday language,

and we’ll just have to live with it. Simply remember that, in practice, the phrase “a solution to a

differential equation” can refer either to

any single function that satisfies the differential equation,

or

any formula describing all the possible solutions (more correctly called a general solution).

In practice, it is usually clear from the context just which meaning of the word “solution” is being

used. On occasions where it might not be clear, or when we wish to be very precise, it is standard
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Differential Equations: Basic Definitions and Classifications 7

to call any single function satisfying the given differential equation a particular solution. So, in the

last example, the formulas

3x2 + 1 , 3x2 − 3 and 3x2 + 827

describe particular solutions to
dy

dx
= 6x .

Initial-Value Problems

One set of auxiliary conditions that often arises in applications is a set of “initial values” for the desired

solution. This is a specification of the values of the desired solution and some of its derivatives at

a single point. To be precise, an N th-order set of initial values for a solution y consists of an

assignment of values to

y(x0) , y′(x0) , y′′(x0) , y′′′(x0) , . . . and y(N−1)(x0)

where x0 is some fixed number (in practice, x0 is often 0 ) and N is some nonnegative integer.3

Note that there are exactly N values being assigned and that the highest derivative in this set is of

order N − 1 .

We will find that N th-order sets of initial values are especially appropriate for Nth-order differ-

ential equations. Accordingly, the term N th-order initial-value problem will always mean a problem

consisting of

1. an N th-order differential equation, and

2. an N th-order set of initial values.

For example,
dy

dx
− 3y = 0 with y(0) = 4

is a first-order initial-value problem. “ dy/dx − 3y = 0 ” is the first-order differential equation, and

“ y(0) = 4 ” is the first-order set of initial values. On the other hand, the third-order differential

equation

d3 y

dx3
+ dy

dx
= 0

along with the third-order set of initial conditions

y(1) = 3 , y′(1) = −4 and y′′(1) = 10

makes up a third-order initial-value problem.

A solution to an initial-value problem is a solution to the differential equation that also satisfies

the given initial values. The usual approach to solving such a problem is to first find the general

solution to the differential equation (via any of the methods we’ll develop later), and then determine

the values of the ‘arbitrary’ constants in the general solution so that the resulting function also satisfies

each of the given initial values.

3 Remember, if y = y(x) , then

y′ = dy

dx
, y′′ = d2 y

dx2
, y′′′ = d3 y

dx3
, . . . and y(k) = dk y

dxk
.

We will use the ‘prime’ notation for derivatives when the d/dx notation becomes cumbersome.
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!�Example 1.3: Consider the initial-value problem

dy

dx
= 6x with y(1) = 8 .

From example 1.2, we know that the general solution to the above differential equation is

y(x) = 3x2 + c

where c is an arbitrary constant. Combining this formula for y with the requirement that

y(1) = 8 , we have

8 = y(1) = 3 · 12 + c = 3 + c ,

which, in turn, requires that

c = 8 − 3 = 5 .

So the solution to the initial-value problem is given by

y(x) = 3x2 + c with c = 5 ;

that is,

y(x) = 3x2 + 5 .

By the way, the terms “initial values”, “initial conditions”, and “initial data” are essentially

synonymous and, in practice, are used interchangeably.

1.2 Why Care About Differential Equations? Some
Illustrative Examples

Perhaps the main reason to study differential equations is that they naturally arise when we attempt

to mathematically describe “real-world” processes that vary with, say, time or position. Let us look

at one well-known process: the falling of some object towards the earth. To illustrate some of the

issues involved, we’ll develop two different sets of mathematical descriptions for this process.

By the way, any collection of equations and formulas describing some process is called a

(mathematical) model of the process, and the process of developing a mathematical model is called,

unsurprisingly, modeling.

The Situation to Be Modeled:

Let us concern ourselves with the vertical position and motion of an object dropped from a plane at a

height of 1,000 meters. Since it’s just being dropped, we may assume its initial downward velocity is

0 meters per second. The precise nature of the object — whether it’s a falling marble, a frozen duck

(live, unfrozen ducks don’t usually fall) or some other familiar falling object — is not important at

this time. Visualize it as you will.

The first two things one should do when developing a model is to sketch the process (if possible)

and to assign symbols to quantities that may be relevant. A crude sketch of the process is in figure

1.1 (I’ve sketched the object as a ball since a ball is easy to sketch). Following ancient traditions,

let’s make the following symbolic assignments:

m = the mass (in grams) of the object

t = time (in seconds) since the object was dropped
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y(t)y(0) v(t) falling object of mass m

the ground (where y = 0)

initial height (1,000 meters)

Figure 1.1: Rough sketch of a falling object of mass m.

y(t) = vertical distance (in meters) between the object and the ground at time t

v(t) = vertical velocity (in meters/second) of the object at time t

a(t) = vertical acceleration (in meters/second2) of the object at time t

Where convenient, we will use y , v and a as shorthand for y(t) , v(t) and a(t) . Remember that,

by the definition of velocity and acceleration,

v = dy

dt
and a = dv

dt
= d2 y

dt2
.

From our assumptions regarding the object’s position and velocity at the instant it was dropped,

we have that

y(0) = 1,000 and
dy

dt

∣∣∣
t=0

= v(0) = 0 . (1.1)

These will be our initial values. (Notice how appropriate it is to call these the “initial values” —

y(0) and v(0) are, indeed, the initial position and velocity of the object.)

As time goes on, we expect the object to be falling faster and faster downwards, so we expect

both the position and velocity to vary with time. Precisely how these quantities vary with time might

be something we don’t yet know. However, from Newton’s laws, we do know

F = ma

where F is the sum of the (vertically acting) forces on the object. Replacing a with either the

corresponding derivative of velocity or position, this equation becomes

F = m
dv

dt
(1.2)

or, equivalently,

F = m
d2 y

dt2
. (1.2 ′)

If we can adequately describe the forces acting on the falling object (i.e., the F ), then the velocity,

v(t) , and vertical position, y(t) , can be found by solving the above differential equations, subject

to the initial conditions in line (1.1).
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The Simplest Falling Object Model

The Earth’s gravity is the most obvious force acting on our falling object. Checking a convenient

physics text, we find that the force of the Earth’s gravity acting on an object of mass m is given by

Fgrav = −gm where g = 9.8
(

meters/second2
)

.

Of course, the value for g is an approximation and assumes that the object is not too far above

the Earth’s surface. It also assumes that we’ve chosen “up” to be the positive direction (hence the

negative sign).

For this model, let us suppose the Earth’s gravity, Fgrav , is the only significant force involved.

Assuming this (and keeping in mind that we are measuring distance in meters and time in seconds),

we have

F = Fgrav = −9.8m

in the “ F = ma ” equation. In particular, equation (1.2 ′) becomes

−9.8m = m
d2 y

dt2
.

The mass conveniently divides out, leaving us with

d2 y

dt2
= −9.8 .

Taking the indefinite integral with respect to t of both sides of this equation yields∫
d2 y

dt2
dt =

∫
−9.8 dt

↪→
∫

d

dt

(
dy

dt

)
dt =

∫
−9.8 dt

↪→ dy

dt
+ c1 = −9.8t + c2

↪→ dy

dt
= −9.8t + c

where c1 and c2 are the “arbitrary constants of integration” and c = c2 − c1 . This gives us our

formula for dy/dt up to an unknown constant c . But recall that the initial velocity is zero,

dy

dt

∣∣∣
t=0

= v(0) = 0 .

On the other hand, setting t equal to zero in the formula just derived for dy/dt yields

dy

dt

∣∣∣
t=0

= −9.8 · 0 + c .

Combining these two expressions for y′(0) yields

0 = dy

dt

∣∣∣
t=0

= −9.8 · 0 + c .

Thus, c = 0 and our formula for dy/dt reduces to

dy

dt
= −9.8t .
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Again, we have a differential equation that is easily solved by simple integration,∫
dy

dt
dt =

∫
−9.8t dt

↪→ y(t) + C1 = −9.8
[

1

2
t2
]

+ C2

↪→ y(t) = −4.9t2 + C

where, again, C1 and C2 are the “arbitrary constants of integration” and C = C2−C1 .4 Combining

this last equation with the initial condition for y(t) (from line (1.1)), we get

1,000 = y(0) = −4.9 · 02 + C .

Thus, C = 1,000 and the vertical position (in meters) at time t is given by

y(t) = −4.9t2 + 1,000 .

A Better Falling Object Model

The above model does not take into account the resistance of the air to the falling object — a very

important force if the object is relatively light or has a parachute. Let us add this force to our model.

That is, for our “ F = ma ” equation, we’ll use

F = Fgrav + Fair

where Fgrav is the force of gravity discussed above, and Fair is the force due to the air resistance

acting on this particular falling body.

Part of our problem now is to determine a good way of describing Fair in terms relevant to

our problem. To do that, let us list a few basic properties of air resistance that should be obvious to

anyone who has stuck their hand out of a car window:

1. The force of air resistance does not depend on the position of the object, only on the relative

velocity between it and the surrounding air. So, for us, Fair will just be a function of v ,

Fair = Fair(v) . (This assumes, of course, that the air is still — no up- or downdrafts — and

that the density of the air remains fairly constant throughout the distance this object falls.)

2. This force is zero when the object is not moving, and its magnitude increases as the speed

increases (remember, speed is the magnitude of the velocity). Hence, Fair(v) = 0 when

v = 0 , and |Fair(v)| gets bigger as |v| gets bigger.

3. Air resistance acts against the direction of motion. This means that the direction of the force

of air resistance is opposite to the direction of motion. Thus, the sign of Fair(v) will be

opposite that of v .

While there are many formulas for Fair(v) that would satisfy the above conditions, common sense

suggests that we first use the simplest. That would be

Fair(v) = −γ v

4 Note that slightly different symbols are being used to denote the different constants. This is highly recommended to

prevent confusion when (and if) we ever review our computations.
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where γ is some positive value. The actual value of γ will depend on such parameters as the

object’s size, shape, and orientation, as well as the density of the air through which the object is

moving. For any given object, this value could be determined by experiment (with the aid of the

equations we will soon derive).

?�Exercise 1.2: Convince yourself that

a: this formula for Fair(v) does satisfy the above three conditions, and

b: no simpler formula would work.

We are now ready to derive the appropriate differential equations for our improved model of a

falling object. The total force is given by

F = Fgrav + Fair = −9.8m − γ v .

Since this formula explicitly involves v instead of dy/dt , let us use the equation (1.2) version of

“ F = ma ” from page 9,

F = m
dv

dt
.

Combining the last two equations,

m
dv

dt
= F = −9.8m − γ v .

Cutting out the middle and dividing through by the mass gives the slightly simpler equation

dv

dt
= −9.8 − κv where κ = γ

m
. (1.3)

Remember that γ , m and, hence, κ are positive constants, while v = v(t) is a yet unknown

function that satisfies the initial condition v(0) = 0 . After solving this initial-value problem for

v(t) , we could then find the corresponding formula for height at time t , y(t) , by solving the simple

initial-value problem
dy

dt
= v(t) with y(0) = 1,000 .

Unfortunately, we cannot solve equation (1.3) by simply integrating both sides with respect to

t , ∫
dv

dt
dt =

∫
[−9.8 − κv] dt .

The first integral is not a problem. By the relation between derivatives and integrals, we still have∫
dv

dt
dt = v(t) + c1

where c1 is an arbitrary constant. It’s the other side that is a problem. Since κ is a constant, but

v = v(t) is an unknown function of t , the best we can do with the righthand side is∫
[−9.8 − κv] dt = −

∫
9.8 dt − κ

∫
v(t) dt = −9.8t + c2 − κ

∫
v(t) dt .

Again, c2 is an arbitrary constant. However, since v(t) is an unknown function, its integral is

simply another unknown function of t . Thus, letting c = c2 − c1 and “integrating the equation”

simply gives us the rather unhelpful formula

v(t) = −9.8t + c − (κ · some unknown function of t ) .
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Fortunately, this is a text on differential equations, and methods for solving equations such as

equation (1.3) will be discussed in chapters 4 and 5. But there’s no need to rush things. The main

goal here is just to see how differential equations arise in applications. Of course, now that we have

equation (1.3), we also have a good reason to continue on and learn how to solve it.

By the way, if we replace v in equation (1.3) with dy/dt , we get the second-order differential

equation

d2 y

dt2
= −9.8 − κ

dy

dt
.

This can be integrated, yielding

dy

dt
= −9.8t − κy + c

where c is an arbitrary constant. Again, this is a first-order differential equation that we cannot

solve until we delve more deeply into the various methods for solving these equations. And if, in

this last equation, we again use the fact that v = dy/dt , all we get is

v = −9.8t − κy + c (1.4)

which is another not-very-helpful equation relating the unknown functions v(t) and y(t) .5

Summary of Our Models and the Related Initial Value Problems

For the first model of a falling body, we had the second-order differential equation

d2 y

dt2
= −9.8 .

along with the initial conditions

y(0) = 1,000 and y′(0) = 0 .

In other words, we had a second-order initial-value problem. This problem, as we saw, was rather

easy to solve.

For the second model, we still had the initial conditions

y(0) = 1,000 and y′(0) = 0 ,

but we found it a little more convenient to write the differential equation as

dv

dt
= −9.8 − κv where

dy

dt
= v

and κ was some positive constant. There are a couple of ways we can view this collection of

equations. First of all, we could simply replace the v with dy/dt and say we have the second-order

initial problem

d2 y

dt2
= −9.8 − κ

dy

dt

with

y(0) = 1, 000 and y′(0) = 0 .

5 well, not completely useless — see exercise 1.10 b on page 20.
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Alternatively, we could (as was actually suggested) view the problem as two successive first-order

problems:
dv

dt
= −9.8 − κv with v(0) = 0 ,

followed by
dy

dt
= v(t) with y(0) = 1,000 .

The first of these two problems can be solved using methods we’ll develop later. And once we have

the solution, v(t) , to that, the second can easily be solved by integration.

Though, ultimately, the two ways of viewing our second model are equivalent, there are advan-

tages to the second. It is conceptually simple, and it makes it a little easier to use solution methods

that will be developed relatively early in this text. It also leads us to finding v(t) before even

considering y(t) . Moreover, it is probably the velocity of landing, not the height of landing, that

most concerns a falling person with (or without) a parachute. Indeed, if we are lucky, the solution

to the first, v(t) , may tell us everything we are interested in, and we won’t have to deal with the

initial-value problem for y at all.

Finally, it should be mentioned that, together, the two equations

dv

dt
= −9.8 − κv and

dy

dt
= v

form a “system of differential equations”. That is, they comprise a set of differential equations

involving unknown functions that are related to each other. This is an especially simple system

since it can be solved by successively solving the individual equations in the system. Much more

complicated systems can arise that are not so easily solved, especially when modeling physical

systems consisting of many components, each of which can be modeled by a differential equation

involving several different functions (as in, say, a complex electronic circuit). Dealing with these

sorts of systems will have to wait until we’ve become reasonably adept at dealing with individual

differential equations.

1.3 More on Solutions
Intervals of Interest

When discussing a differential equation and its solutions, we should include a specification of an

interval (of nonzero length) over which the solution(s) is (are) to be valid. The choice of this interval,

which we may call the interval of solution, the interval of the solution’s validity, or, simply, the

interval of interest, may be based on the problem leading to the differential equation, on mathematical

considerations, or, to a certain extent, on the whim of the person presenting the differential equation.

One thing we will insist on, in this text at least, is that solutions must be continuous over this

interval.

!�Example 1.4: Consider the equation

dy

dx
= 1

(x − 1)2
.

Integrating this gives

y(x) = c − 1

x − 1
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where c is an arbitrary constant. No matter what value c is, however, this function cannot be

continuous over any interval containing x = 1 because (x − 1)−1 “blows up” at x = 1 . So

we will only claim that our solutions are valid over intervals that do not include x = 1 . In

particular, we have valid (continuous) solutions to this differential equation over the intervals

[0, 1) , (−∞, 1) , (1,∞) , and (2, 5) ; but not over (0, 2) or (0, 1] or (−∞,∞) .

Why should we make such an issue of continuity? Well consider, if a function is not continuous

at a point, then its derivatives do not exist at that point — and without the derivatives existing, how

can we claim that the function satisfies a particular differential equation?

Another reason for requiring continuity is that the differential equations most people are inter-

ested in are models for “real-world” phenomena, and real-world phenomena are normally continuous

processes while they occur — the temperature of an object does not instantaneously jump by fifty

degrees nor does the position of an object instantaneously change by three kilometers. If the solutions

do “blow up” at some point, then

1. some of the assumptions made in developing the model are probably not valid, or

2. a catastrophic event is occurring in our process at that point, or

3. both.

Whatever is the case, it would be foolish to use the solution derived to predict what is happening

beyond the point where “things blow up”. That should certainly be considered a point where the

validity of the solution ends.

Sometimes, it’s not the mathematics that restricts the interval of interest, but the problem leading

to the differential equation. Consider the simplest falling object model discussed earlier. There we

had an object start falling from an airplane at t = 0 from a height of 1,000 meters. Solving the

corresponding initial-value problem, we obtained

y(t) = −4.9t2 + 1,000

as the formula for the height above the earth at time t . Admittedly, this satisfies the differential

equation for all t , but, in fact, it only gives the height of the object from the time it starts falling,

t = 0 , to the time it hits the ground, Thit .6 So the above formula for y(t) is a valid description of

the position of the object only for 0 ≤ t ≤ Thit ; that is, [0, Thit] is the interval of interest for this

problem. Any use of this formula to predict the position of the object at a time outside the interval

[0, Thit] is just plain foolish.

In practice, the interval of interest is often not explicitly given. This may be because the interval

is implicitly described in the problem, or because determining this interval is part of the problem

(e.g., determining where the solutions must “blow up”). It may also be because the person giving

the differential equation is lazy or doesn’t care what interval is used because the issue at hand is to

find formulas that hold independently of the interval of interest.

In this text, if no interval of interest is given or hinted at, assume it to be any interval that makes

sense. Often, this will be the entire real line, (−∞,∞) .

Solutions Over Intervals

In introducing the concept of the “interval of interest”, we have implicitly refined our notion of “a

(particular) solution to a differential equation”. Let us make that refinement explicit: A solution to

a differential equation over an interval of interest is a function that is both continuous and satisfies

the differential equation over the given interval.

6 Thit is computed in exercise 1.9 on page 19.
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Recall that the domain of a function is the set of all numbers that can be plugged into the

function. Naturally, if a function is a solution to a differential equation over some interval, then that

function’s domain must include that interval.7

Since we’ve refined our definition of particular solutions, we should make the corresponding

refinement to our definition of a general solution. A general solution to a differential equation over

an interval of interest is a formula or set of formulas describing all possible particular solutions over

that interval.

Describing Particular Solutions

Let us get somewhat technical for a moment. Suppose we have a solution y to some differential

equation over some interval of interest. Remember, we’ve defined y to be a “function”. If you look

up the basic definition of “function” in your calculus text, you’ll find that, strictly speaking, y is a

mapping of one set of numbers (the domain of y ) onto another set of numbers (the range of y ). This

means that, for each value x in the function’s domain, y assigns a corresponding number which

we usually denote y(x) and call “the value of y at x ”. If we are lucky, the function y is described

by some formula, say, x2 . That is, the value of y(x) can be determined for each x in the domain

by the equation

y(x) = x2 .

Strictly speaking, the function y , its value at x (i.e., y(x)), and any formula describing how to

compute y(x) are different things. In everyday usage, however, the fine distinctions between these

concepts are often ignored, and we say things like

consider the function x2 or consider y = x2

instead of the more correct statement

consider the function y where y(x) = x2 for each x in the domain of y .

For our purposes, “everyday usage” will usually suffice, and we won’t worry that much about

the differences between y , y(x) , and a formula describing y . This will save ink and paper, simplify

the English, and, frankly, make it easier to follow many of our computations.

In particular, when we seek a particular solution to a differential equation, we will usually be

quite happy to find a convenient formula describing the solution. We will then probably mildly abuse

terminology by referring to that formula as “the solution”. Please keep in mind that, in fact, any such

formula is just one description of the solution — a very useful description since it tells you how to

compute y(x) for every x in the interval of interest. But other formulas can also describe the same

function. For example, you can easily verify that

x2 , (x + 3)(x − 3)+ 9 and

∫ x

t=0

2t dt

are all formulas describing the same function on the real line.

There will also be differential equations for which we simply cannot find a convenient formula

describing the desired solution (or solutions). On those occasions we will have to find some alternative

way to describe our solutions. Some of these will involve using the differential equations to sketch

approximations to the graphs of their solutions. Other alternative descriptions will involve formulas

that approximate the solutions and allow us to generate lists of values approximating a solution at

different points. These alternative descriptions may not be as convenient or as accurate as explicit

formulas for the solutions, but they will provide usable information about the solutions.

7 In theory, it makes sense to restrict the domain of a solution to the interval of interest so that irrelevant questions regarding

the behavior of the function off the interval have no chance of arising. At this point of our studies, let us just be sure that a

function serving as a solution makes sense at least over whatever interval we have interest in.
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Additional Exercises

1.3. For each differential equation given below, three choices for a possible solution y = y(x)

are given. Determine whether each choice is or is not a solution to the given differential equa-

tion. (In each case, assume the interval of interest is the entire real line (−∞,∞) .)

a.
dy

dx
= 3y

i. y(x) = e3x ii. y(x) = x3 iii. y(x) = sin(3x)

b. x
dy

dx
= 3y

i. y(x) = e3x ii. y(x) = x3 iii. y(x) = sin(3x)

c.
d2 y

dx2
= 9y

i. y(x) = e3x ii. y(x) = x3 iii. y(x) = sin(3x)

d.
d2 y

dx2
= −9y

i. y(x) = e3x ii. y(x) = x3 iii. y(x) = sin(3x)

e. x
dy

dx
− 2y = 6x4

i. y(x) = x4 ii. y(x) = 3x4 iii. y(x) = 3x4 + 5x2

f.
d2 y

dx2
− 2x

dy

dx
− 2y = 0

i. y(x) = sin(x) ii. y(x) = x3 iii. y(x) = ex2

g.
d2 y

dx2
+ 4y = 12x

i. y(x) = sin(2x) ii. y(x) = 3x iii. y(x) = sin(2x)+ 3x

h.
d2 y

dx2
− 6

dy

dx
+ 9y = 0

i. y(x) = e3x ii. y(x) = xe3x iii. y(x) = 7e3x − 4xe3x

1.4. For each initial-value problem given below, three choices for a possible solution y = y(x)

are given. Determine whether each choice is or is not a solution to the given initial-value

problem.

a.
dy

dx
= 4y with y(0) = 5

i. y(x) = e4x ii. y(x) = 5e4x iii. y(x) = e4x + 1

b. x
dy

dx
= 2y with y(2) = 20

i. y(x) = x2 ii. y(x) = 10x iii. y(x) = 5x2
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c.
d2 y

dx2
− 9y = 0 with y(0) = 1 and y′(0) = 9

i. y(x) = 2e3x − e−3x ii. y(x) = e3x iii. y(x) = e3x + 1

d. x2 d2 y

dx2
− 4x

dy

dx
+ 6y = 36x6 with y(1) = 1 and y′(1) = 12

i. y(x) = 10x3 − 9x2 ii. y(x) = 3x6 − 2x2 iii. y(x) = 3x6 − 2x3

1.5. For the following, let

y(x) =
√

x2 + c

where c is an arbitrary constant.

a. Verify that this y is a solution to
dy

dx
= x

y

no matter what value c is.

b. What value should c be so that the above y satisfies the initial condition

i. y(0) = 3 ? ii. y(2) = 3 ?

c. Using your results for the above, give a solution to each of the following initial-value

problems:

i.
dy

dx
= x

y
with y(0) = 3

ii.
dy

dx
= x

y
with y(2) = 3

1.6. For the following, let

y(x) = Aex2 − 3

where A is an arbitrary constant.

a. Verify that this y is a solution to

dy

dx
− 2xy = 6x

no matter what value A is.

b. In fact, it can be verified (using methods that will be developed later) that the above

formula for y is a general solution to the above differential equation. Using this fact,

finish solving each of the following initial-value problems:

i.
dy

dx
− 2xy = 6x with y(0) = 1

ii.
dy

dx
− 2xy = 6x with y(1) = 0

1.7. For the following, let

y(x) = A cos(2x) + B sin(2x)

where A and B are arbitrary constants.

a. Verify that this y is a solution to

d2 y

dx2
+ 4y = 0

no matter what values A and B are.
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b. Again, it can be verified that the above formula for y is a general solution to the above

differential equation. Using this fact, finish solving each of the following initial-value

problems:

i.
d2 y

dx2
+ 4y = 0 with y(0) = 3 and y′(0) = 8

ii.
d2 y

dx2
+ 4y = 0 with y(0) = 0 and y′(0) = 1

1.8. It was stated (on page 7) that “ N th-order sets of initial values are especially appropriate for

N th-order differential equations.” The following problems illustrate one reason this is true.

In particular, they demonstrate that, if y satisfies some N th-order initial-value problem,

then it automatically satisfies particular higher-order sets of initial values. Because of this,

specifying the initial values for y(m) with m ≥ N is unnecessary and may even lead to

problems with no solutions.

a. Assume y satisfies the first-order initial-value problem

dy

dx
= 3xy + x2 with y(1) = 2 .

i. Using the differential equation along with the given value for y(1) , determine what

value y′(1) must be.

ii. Is it possible to have a solution to

dy

dx
= 3xy + x2

that also satisfies both y(1) = 2 and y′(1) = 4 ? (Give a reason.)

iii. Differentiate the given differential equation to obtain a second-order differential equa-

tion. Using the equation obtained along with the now known values for y(1) and y′(1) ,

find the value of y′′(1) .

iv. Can we continue and find y′′′(1) , y(4)(1) , …?

b. Assume y satisfies the second-order initial-value problem

d2 y

dx2
+ 4

dy

dx
− 8y = 0 with y(0) = 3 and y′(0) = 5 .

i. Find the value of y′′(0) and of y′′′(0)

ii. Is it possible to have a solution to

d2 y

dx2
+ 4

dy

dx
− 8y = 0

that also satisfies all of the following:

y(0) = 3 , y′(0) = 5 and y′′′(0) = 0 ?

1.9. Consider the simplest model we developed for a falling object (see page 10). In that, we

derived

y(t) = −4.9t2 + 1,000

as the formula for the height y above ground of some falling object at time t .

a. Find Thit , the time the object hits the ground.

b. What is the velocity of the object when it hits the ground?
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c. Suppose that, instead of being dropped at t = 0 , the object is tossed up with an initial

velocity of 2 meters per second. If this is the only change to our problem, then:

i. How does the corresponding initial-value problem change?

ii. What is the solution y(t) to this initial value problem?

iii. What is the velocity of the object when it hits the ground?

1.10. Consider the “better” falling object model (see page 11), in which we derived the differential

equation
dv

dt
= −9.8 − κv (1.5)

for the velocity. In this, κ is some positive constant used to describe the air resistance felt

by the falling object.

a. This differential equation was derived assuming the air was still. What differential equa-

tion would we have derived if, instead, we had assumed there was a steady updraft of 2

meters per second?

b. Recall that, from equation (1.5) we derived the equation

v = −9.8t − κy + c

relating the velocity v to the distance above ground y and the time t (see page 13). In the

following, you will show that it, along with experimental data, can be used to determine

the value of κ .

i. Determine the value of the constant of integration, c , in the above equation using the

given initial values (i.e., y(0) = 1,000 and v(0) = 0 ).

ii. Suppose that, in an experiment, the object was found to hit the ground at t = Thit with

a speed of v = vhit . Use this, along with the above equation, to find κ in terms of Thit

and vhit .

1.11. For the following, let

y(x) = Ax + Bx ln |x |
where A and B are arbitrary constants.

a. Verify that this y is a solution to

x2 d2 y

dx2
− x

dy

dx
+ y = 0 on the intervals (0,∞) and (−∞, 0) ,

no matter what values A and B are.

b. Again, we will later be able to show that the above formula for y is a general solution

for the above differential equation. Given this, find the solution to the above differential

equation satisfying y(1) = 3 and y′(1) = 8 .

c. Why should your answer to 1.11 b not be considered a valid solution to

x2 d2 y

dx2
− x

dy

dx
+ y = 0

over the entire real line, (−∞,∞) ?
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Often, when attempting to solve a differential equation, we are naturally led to computing one or

more integrals — after all, integration is the inverse of differentiation. Indeed, we have already

solved one simple second-order differential equation by repeated integration (the one arising in the

simplest falling object model, starting on page 10). Let us now briefly consider the general case

where integration is immediately applicable, and also consider some practical aspects of using both

the indefinite integral and the definite integral.

2.1 Directly-Integrable Equations

We will say that a given first-order differential equation is directly integrable if (and only if) it can

be (re)written as
dy

dx
= f (x) (2.1)

where f (x) is some known function of just x (no y’s ). More generally, any N th-order differential

equation will be said to be directly integrable if and only if it can be (re)written as

d N y

dx N
= f (x) (2.1 ′)

where, again, f (x) is some known function of just x (no y’s or derivatives of y ).

!�Example 2.1: Consider the equation

x2 dy

dx
− 4x = 6 . (2.2)

Solving this equation for the derivative:

x2 dy

dx
= 4x + 6

↪→ dy

dx
= 4x + 6

x2
.

Since the right-hand side of the last equation depends only on x , we do have

dy

dx
= f (x)

(
with f (x) = 4x + 6

x2

)
.

So equation (2.2) is directly integrable.

21
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22 Integration and Differential Equations

!�Example 2.2: Consider the equation

x2 dy

dx
− 4xy = 6 . (2.3)

Solving this equation for the derivative:

x2 dy

dx
= 4xy + 6

↪→ dy

dx
= 4xy + 6

x2
.

Here, the right-hand side of the last equation depends on both x and y , not just x . So equation

(2.3) is not directly integrable.

Solving a directly-integrable equation is easy. First solve for the derivative to get the equation

into form (2.1) or (2.1 ′), then integrate both sides as many times as needed to eliminate the derivatives,

and, finally, do whatever simplification seems appropriate.

!�Example 2.3: Again, consider

x2 dy

dx
− 4x = 6 . (2.4)

In example 2.1, we saw that it is directly integrable and can be rewritten as

dy

dx
= 4x + 6

x2
.

Integrating both sides of this equation with respect to x (and doing a little algebra):∫
dy

dx
dx =

∫
4x + 6

x2
dx (2.5)

↪→ y(x)+ c1 =
∫ [

4

x
+ 6

x2

]
dx

= 4

∫
x−1 dx + 6

∫
x−2 dx

= 4 ln |x | + c2 − 6x−1 + c3

where c1 , c2 , and c3 are arbitrary constants. Rearranging things slightly and letting c =
c2 + c3 − c1 , this last equation simplifies to

y(x) = 4 ln |x | − 6x−1 + c . (2.6)

This is our general solution to differential equation (2.4). Since both ln |x | and x−1 are discon-

tinuous at x = 0 , the solution can be valid over any interval not containing x = 0 .

?�Exercise 2.1: Consider the differential equation in example 2.2 and explain why the y , which

is an unknown function of x , makes it impossible to completely integrate both sides of

dy

dx
= 4xy + 6

x2

with respect to x .
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2.2 On Using Indefinite Integrals

This is a good point to observe that, whenever we take the indefinite integrals of both sides of an

equation, we obtain a bunch of arbitrary constants — c1 , c2 , . . . (one constant for each integral)

— that can be combined into a single arbitrary constant c . In the future, rather than note all the

arbitrary constants that arise and how they combine into a single arbitrary constant c that is added to

the right-hand side in the end, let us agree to simply add that c at the end. Let’s not explicitly note

all the intermediate arbitrary constants. If, for example, we had agreed to this before doing the last

example, then we could have replaced all that material from equation (2.5) to equation (2.6) with∫
dy

dx
dx =

∫
4x + 6

x2
dx

↪→ y(x) =
∫ [

4

x
+ 6

x2

]
dx

= 4

∫
x−1 dx + 6

∫
x−2 dx

= 4 ln |x | − 6x−1 + c .

This should simplify our computations a little.

This convention of “implicitly combining all the arbitrary constants” also allows us to write

y(x) =
∫

dy

dx
dx (2.7)

instead of

y(x) + some arbitrary constant =
∫

dy

dx
dx .

By our new convention, that “some arbitrary constant” is still in equation (2.7) — it’s just been moved

to the right-hand side of the equation and combined with the constants arising from the integral there.

Finally, like you, this author will get tired of repeatedly saying “where c is an arbitrary constant”

when it is obvious that the c (or the c1 or the A or …) that just appeared in the previous line is,

indeed, some arbitrary constant. So let us not feel compelled to constantly repeat the obvious, and

agree that, when a new symbol suddenly appears in the computation of an indefinite integral, then,

yes, that is an arbitrary constant. Remember, though, to use different symbols for the different

constants that arise when integrating a function already involving an arbitrary constant.

!�Example 2.4: Consider solving

d2 y

dx2
= 18x2 . (2.8)

Clearly, this is directly integrable and will require two integrations. The first integration yields

dy

dx
=

∫
d2 y

dx2
dx =

∫
18x2 dx = 18

3
x3 + c1 .

Cutting out the middle leaves
dy

dx
= 6x3 + c1 .

Integrating this, we have

y(x) =
∫

dy

dx
dx =

∫ [
6x3 + c1

]
dx = 6

4
x4 + c1x + c2 .
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So the general solution to equation (2.8) is

y(x) = 3

2
x4 + c1x + c2 .

In practice, rather than use the same letter with different subscripts for different arbitrary con-

stants (as we did in the above example), you might just want to use different letters, say, writing

y(x) = 3

2
x4 + ax + b

instead of

y(x) = 3

2
x4 + c1x + c2 .

This sometimes prevents dumb mistakes due to bad handwriting.

2.3 On Using Definite Integrals
Basic Ideas

We have been using the indefinite integral to recover y(x) from dy/dx via the relation∫
dy

dx
dx = y(x) + c .

Here, c is some constant (which we’ve agreed to automatically combine with other constants from

other integrals).

We could just about as easily have used the corresponding definite integral relation∫ x

a

dy

ds
ds = y(x) − y(a) (2.9)

to recover y(x) from its derivative. Note that, here, we’ve used s instead of x to denote the variable

of integration. This prevents the confusion that can arise when using the same symbol for both the

variable of integration and the upper limit in the integral. The lower limit, a , can be chosen to be

any convenient value. In particular, if we are also dealing with initial values, then it makes sense to

set a equal to the point at which the initial values are given. That way (as we will soon see) we will

obtain a general solution in which the undetermined constant is simply the initial value.

Aside from getting it into the form

dy

dx
= f (x) ,

there are two simple steps that should be taken before using the definite integral to solve a first-order,

directly-integrable differential equation:

1. Pick a convenient value for the lower limit of integration a . In particular, if the value of

y(x0) is given for some point x0 , set a = x0 .

2. Rewrite the differential equation with s denoting the variable instead of x (i.e., replace x

with s ),
dy

ds
= f (s) . (2.10)
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After that, simply integrate both sides of equation (2.10) with respect to s from a to x :∫ x

a

dy

ds
ds =

∫ x

a

f (s) ds

↪→ y(x) − y(a) =
∫ x

a

f (s) ds .

Then solve for y(x) by adding y(a) to both sides,

y(x) =
∫ x

a

f (s) ds + y(a) . (2.11)

This is a general solution to the given differential equation. It should be noted that the integral here

is a definite integral. Its evaluation does not lead to any arbitrary constants. However, the value of

y(a) , until specified, can be anything; so y(a) is the “arbitrary constant” in this general solution.

!�Example 2.5: Consider solving the initial-value problem

dy

dx
= 3x2 with y(2) = 12 .

Since we know the value of y(2) , we will use 2 as the lower limit for our integrals. Rewriting

the differential equation with s replacing x gives

dy

ds
= 3s2 .

Integrating this with respect to s from 2 to x :∫ x

2

dy

ds
ds =

∫ x

2

3s2 ds

↪→ y(x) − y(2) = s3
∣∣∣x
2

= x3 − 23 .

Solving for y(x) (and computing 23 ) then gives us

y(x) = x3 − 8 + y(2) .

This is a general solution to our differential equation. To find the particular solution that also

satisfies y(2) = 12 , as desired, we simply replace the y(2) in the general solution with its given

value,

y(x) = x3 − 8 + y(2)

= x3 − 8 + 12 = x3 + 4 .

Of course, rather than go through the procedure just outlined to solve

dy

dx
= f (x) ,

we could, after determining a and f (s) , just plug these into equation (2.11),

y(x) =
∫ x

a

f (s) ds + y(a) ,

and compute the integral. That is, after all, what we derived for any choice of f .
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Advantages of Using Definite Integrals

By using definite integrals instead of indefinite integrals, we avoid dealing with arbitrary constants

and end up with expressions explicitly involving initial values. This is sometimes convenient.

A much more important advantage of using definite integrals is that they result in concrete,

computable formulas even when the corresponding indefinite integrals cannot be evaluated. Let us

look at a classic example.

!�Example 2.6: Consider solving the initial-value problem

dy

dx
= e−x2

with y(0) = 0 .

In particular, determine the value of y(x) when x = 10 .

Using indefinite integrals yields

y(x) =
∫

dy

dx
dx =

∫
e−x2

dx .

Unfortunately, this integral was not one you learned to evaluate in calculus.1 And if you check

the tables, you will discover that no one else has discovered a usable formula for this integral.

Consequently, the above formula for y(x) is not very usable. Heck, we can’t even isolate an

arbitrary constant or see how the solution depends on the initial value.

On the other hand, using definite integrals, we get∫ x

0

dy

ds
ds =

∫ x

0

e−s2

ds

↪→ y(x) − y(0) =
∫ x

0

e−s2

ds

↪→ y(x) =
∫ x

0

e−s2

ds + y(0) .

This last formula explicitly describes how y(x) depends on the initial value y(0) . Since we are

assuming y(0) = 0 , this reduces to

y(x) =
∫ x

0

e−s2

ds .

We still cannot find a computable formula for this integral, but, if we choose a specific value for

x , say, x = 10 , this expression becomes

y(10) =
∫ 10

0

e−s2

ds .

The value of this integral can be very accurately approximated using any of a number of numerical

integration methods such as the trapezoidal rule or Simpson’s rule. In practice, of course, we’ll

just use the numerical integration command in our favorite computer math package (Maple,

Mathematica, etc.). Using any such package, you will find that

y(10) =
∫ 10

0

e−s2

ds ≈ 0.886 .

1 Well, you could expand e−x2
in a Taylor series and integrate the series.
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In one sense,

y(x) =
∫

f (x) dx (2.12)

and

y(x) =
∫ x

a

f (s) ds + y(a) (2.13)

are completely equivalent mathematical expressions. In practice, either can be used just about as

easily, provided a reasonable formula for the indefinite integral in (2.12) can be found. If no such

formula can be found, however, then expression (2.13) is much more useful because it can still be

used, along with a numerical integration routine, to evaluate y(x) for specific values of x . Indeed,

one can compute y(x) for a large number of values of x , plot each of these values of y(x) against

x , and thereby construct a very accurate approximation of the graph of y .

There are other ways to approximate solutions to differential equations, and we will discuss

some of them. However, if you can express your solution in terms of definite integrals — even if the

integral must be computed approximately — then it is usually best to do so. The other approximation

methods for differential equations are typically more difficult to implement, and more likely to result

in poor approximations.

Important “Named” Definite Integrals with Variable Limits

You should be familiar with a number of “named” functions (such as the natural logarithm and the

arctangent) that can be given by definite integrals. For the two examples just cited,

ln(x) =
∫ x

1

1

s
ds for x > 0

and

arctan(x) =
∫ x

0

1

1 + s2
ds .

While ln(x) and arctan(x) can be defined independently of these integrals, their alternative defi-

nitions do not provide us with particularly useful ways to compute these functions by hand (unless

x is something special, such as 1 ). Indeed, if you need the value of ln(x) or arctan(x) for, say,

x = 18 , then you are most likely to “compute” these values by having your calculator or computer or

published tables2 tell you the (approximate) value of ln(18) or arctan(18) . Thus, for computational

purposes, we might as well just view ln(x) and arctan(x) as names for the above integrals, and be

glad that their values can easily be looked up electronically or in published tables.

It turns out that other integrals arise often enough in applications that workers dealing with

these applications have decided to “name” these integrals, and to have their values tabulated. Two

noteworthy “named integrals” are:

• The error function, denoted by erf and given by

erf(x) =
∫ x

0

2√
π

e−s2

ds .

• The sine-integral function, denoted by Si and given by3

Si(x) =
∫ x

0

sin(s)

s
ds .

2 if you are an old-timer
3 This integral is clearly mis-named since it is not the integral of the sine. In fact, the function being integrated, sin(x)/x , is

often called the “sinc” function (pronounced “sink”), so Si should really be called the “sinc-integral function”. But nobody

does.
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Both of these are considered to be well-known functions, at least among certain groups of mathe-

maticians, scientists and engineers. They (the functions, not the people) can be found in published

tables and standard mathematical software (e.g., Maple, Mathematica, and MathCad) alongside such

better-known functions as the natural logarithm and the trigonometric functions. Moreover, using

tables or software, the value of erf(x) and Si(x) for any real value of x can be accurately computed

just as easily as can the value of arctan(x) . For these reasons, and because “ erf(x) ” and “ Si(x) ”

take up less space than the integrals they represent, we will often follow the lead of others and use

these function names instead of writing out the integrals.

!�Example 2.7: In example 2.6, above, we saw that the solution to

dy

dx
= e−x2

with y(0) = 0

is

y(x) =
∫ x

0

e−s2

ds .

Since this integral is the same as the integral for the error function with 2/√π divided out, we can

also express our answer as

y(x) =
√
π

2
erf(x) .

2.4 Integrals of Piecewise-Defined Functions
Computing the Integrals

Be aware that the functions appearing in differential equations can be piecewise defined, as in

dy

dx
= f (x) where f (x) =

{
x2 if x < 2

1 if 2 ≤ x
.

Indeed, two such functions occur often enough that they have their own names: the step function,

given by

step(x) =
{

0 if x < 0

1 if 0 ≤ x
,

and the ramp function, given by

ramp(x) =
{

0 if x < 0

x if 0 ≤ x
.

The reasons for these names should be obvious from their graphs (see figure 2.1)

Such functions regularly arise when we attempt to model things reacting to discontinuous

influences. For example, if y(t) is the amount of energy produced up to time t by some light-

sensitive device, and the rate at which this energy is produced depends proportionally on the intensity

of the light received by the device, then

dy

dt
= step(t)
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models the energy production of this device when it’s kept in the dark until a light bulb (of unit

intensity) is suddenly switched on at t = 0 .

Computing the integrals of such functions is simply a matter of computing the integrals of the

various “pieces”, and then putting the integrated pieces together appropriately. Precisely how you do

that depends on whether you are using indefinite integrals or definite integrals. Either can be used,

but there is a good reason to prefer definite integrals: They automatically yield continuous solutions

(if such solutions exist). With indefinite integrals you must do extra work to ensure the necessary

continuity. To illustrate the basic ideas, let us solve the differential equation given at the start of this

section both ways: first using definite integrals, then using indefinite integrals.

!�Example 2.8 (using definite integrals): We seek a general solution to

dy

dx
= f (x) where f (x) =

{
x2 if x < 2

1 if 2 ≤ x
.

Taking the definite integral (starting, for no good reason, at 0 ), we have

y(x) =
∫ x

0

f (s) ds + y(0) where f (s) =
{

s2 if s < 2

1 if 2 ≤ s
.

Now, if x ≤ 2 , then f (s) = s2 for every value of s in the interval (0, x) . So, when

x ≤ 2 , ∫ x

0

f (s) ds =
∫ x

0

s2 ds = 1

3
s3
∣∣∣x
s=0

= 1

3
x3 .

(Notice that this integral is valid for x = 2 even though the formula used for f (s) , s2 , was only

valid for s < 2 .)

On the other hand, if 2 < x , we must break the integral into two pieces, the one over (0, 2)

and the one over (2, x) :∫ x

0

f (s) ds =
∫ 2

0

f (s) ds +
∫ x

2

f (s) ds

=
∫ 2

0

s2 ds +
∫ x

2

1 ds

= 1

3
s3
∣∣∣2
s=0

+ s
∣∣x
s=2

=
[

1

3
· 23 − 0

]
+ [x − 2] = x + 2

3
.

(a) (b) (c)
XXX

YYY

11

1

11

000 2

4

Figure 2.1: Three piecewise defined functions: (a) the step function, (b) the ramp function, (c)
f (x) from example 2.8.
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Thus, our general solution is

y(x) =
∫ x

0

f (s) ds + y(0) =

⎧⎪⎨⎪⎩
1

3
x3 + y(0) if x ≤ 2

x + 2

3
+ y(0) if 2 < x

.

Keep in mind that solutions to differential equations are required to be continuous. After

checking the above formulas, it should be obvious that the y(x) obtained in the last example is

continuous everywhere except, possibly, at x = 2 . With a little work we could also verify that, in

fact, we also have continuity at x = 2 . We simply have to recall the limit definition of continuity,

and verify that the appropriate requirements are satisfied. But we won’t bother because, in a little

bit, it will be seen that solutions so obtained via definite integration are guaranteed to be continuous,

provided the discontinuities in the function being integrated are not too bad.

On the other hand, as the next example illustrates, the continuity of the solution is an issue when

we use indefinite integrals.

!�Example 2.9 (using indefinite integrals): Again, our differential equation is

dy

dx
= f (x) where f (x) =

{
x2 if x < 2

1 if 2 ≤ x
.

The indefinite integral of f (x) is computed by simply finding the indefinite integral of each

“piece”, noting the values of the variable for which the integration is valid. Thus,

y(x) =
∫

f (x) dx =

⎧⎪⎨⎪⎩
∫

x2 dx if x < 2∫
1 dx if 2 ≤ x

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
1

3
x3 + c1 if x < 2

x + c2 if 2 ≤ x

.

Again, I remind you that solutions to differential equations are required to be continuous. And,

again, it should be obvious that the y(x) just obtained is continuous everywhere except, possibly,

at x = 2 . Now, recall what is means to say “ y(x) is continuous at x = 2 ” — it means

lim
x→2

y(x) = y(2) .

Here, however, y(x) is given by different formulas on either side of x = 2 . So we will have to

consider both the left- and the right-hand limits, and require that

lim
x→2−

y(x) = y(2) = lim
x→2+

y(x) .

Using the above set of formulas for y(x) , we see that

y(2) = 2 + c2 ,

lim
x→2−

y(x) = lim
x→2

[
1

3
x3 + c1

]
= 1

3
· 23 + c1 = 8

3
+ c1

and

lim
x→2+

y(x) = lim
x→2

[x + c2] = 2 + c2 .

So our requirement for continuity at x = 2 ,

lim
x→2−

y(x) = y(2) = lim
x→2+

y(x) ,
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becomes
8

3
+ c1 = 2 + c2 .

This, in turn, means that the “arbitrary constants” c1 and c2 are not completely arbitrary; they

must be related by
8

3
+ c1 = 2 + c2 .

Consequently, we must insist that

c1 = c2 + 2 − 8

3
= c2 − 2

3

or, equivalently, that

c2 = c1 + 2

3
.

Choosing the latter, we finally get a valid general solution to our differential equation, namely,

y(x) =

⎧⎪⎨⎪⎩
1

3
x3 + c1 if x < 2

x + c2 if 2 ≤ x

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
1

3
x3 + c1 if x < 2

x + 2

3
+ c1 if 2 ≤ x

.

In practice, a given piecewise defined function may have more than two “pieces”, and the

differential equation may have order higher than one. For example, you may be called upon to solve

d2 y

dx2
= f (x) where f (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 1

1 if 1 ≤ x < 2

0 if 2 ≤ x

or even something involving infinitely many pieces, such as

d4 y

dx4
= stair(x) where stair(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 0

1 if 0 ≤ x < 1

2 if 2 ≤ x < 3

3 if 3 ≤ x < 4

...

. (2.14)

The methods illustrated in the two examples can still be applied; you just have more integrals to keep

track of, and the accompanying bookkeeping becomes more involved. If you use indefinite integrals,

make sure to relate all the “arbitrary” constants to each other so that your solution is continuous. If

you use definite integrals, then any concerns about the continuity of your solutions can probably be

alleviated by the discussion in the next subsection.

Continuity of the Integrals

The continuity of g , where

g(x) =
∫ x

a

f (s) ds ,

follows from the fact that this integral is closely related to the area of the region enclosed by the

graph of f and the S–axis over the interval between a and x . In particular, if a < x and f is a
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positive function on (a, x) , then this integral is the area of the region bounded above by the graph

of f , below by the S–axis, and on the sides by the lines s = a and s = x . Changing x by just

a little changes the base of this region by just a little, and this changes g(x) , the area given by the

above integral, by only a little. That, essentially, is what continuity is all about — small changes in

x can only result in small changes in g(x) .

More generally, f might not be a positive function, and we may be concerned with the above

integral when x < a . Still, as long as f does not behave too badly, “area arguments” can assure

us that the above g is a continuous function of x . What would be bad and would make these

arguments impossible would be for the area to become infinite, as happens when we (foolishly) try

to integrate x−1 across x = 0 . This, of course, cannot happen unless the function being integrated

“blows up” at some point (as x−1 does at 0 ). In practice, this means that such a point cannot be

in the interval over which the differential equation can be solved. At best, it is an endpoint of our

interval of interest.

All this leads to the following theorem, which gives an easily applied condition under which

the continuity of

g(x) =
∫ x

a

f (s) ds

is guaranteed. It does not give the most general conditions, but it should cover all cases you are

likely to encounter in the foreseeable future.

Theorem 2.1

Let f be a function on an interval (α, β) and let a be a point in that interval. Suppose, further,

that f is continuous at all but, at most, a finite number of points in (α, β) , and that, at each such

point x0 of discontinuity, the left- and right-hand limits

lim
x→x−

0

f (x) and lim
x→x+

0

f (x)

exist (and are finite).4 Then the function given by

g(x) =
∫ x

a

f (s) ds

is continuous on (α, β) .

We will prove this theorem in a little bit. First, let’s apply it to verify that the solution obtained

in example 2.8 is continuous.

!�Example 2.10: In example 2.8, we integrated to get

y(x) =
∫ x

0

f (s) ds + y(0) =

⎧⎪⎨⎪⎩
1

3
x3 + y(0) if x ≤ 2

x + 2

3
+ y(0) if 2 < x

(2.15)

as a general solution to

dy

dx
= f (x) where f (x) =

{
x2 if x < 2

1 if 2 ≤ x
.

4 Such discontinuities are said to be finite-jump discontinuities.
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In this case, f (x) is continuous everywhere except at x = 2 . Attempting to compute the left-

and right-hand limits of f (x) at that point yields

lim
x→2−

f (x) = lim
x→2

x2 = 22 = 4

and

lim
x→2+

f (x) = lim
x→2

1 = 1 .

So the one-sided limits exist (as finite values). Theorem 2.1 then assures us that

g(x) =
∫ x

0

f (s) ds

is a continuous function on (−∞,∞) . Hence, so is y(x) in formula (2.15), above.

Theorem 2.1 can still be applied in those rare instances where the function being integrated has

infinitely many discontinuities (as with the “stair function”, defined above in line (2.14)), provided

the function only has finitely many discontinuities on each finite subinterval, and each of these

discontinuities is only a finite-jump discontinuity. For example, the stair function has “jumps” at

x = 0, 1, 2, 3, 4, 5, . . . .

However, on the finite interval (−N , N ) , where N is any positive integer, the only discontinuities

of stair(x) are at

x = 0, 1, 2, 3, 4, . . . , N − 1 .

So stair(x) has only a finite number of discontinuities on (−N , N ) , and each of these is a finite-jump

discontinuity. The theorem then tells us that

g(x) =
∫ x

0

stair(s) ds

is continuous at each x in (−N , N ) . Since N can be made as large as we wish, we can conclude

that, in fact, g(x) is continuous at every x in (−∞,∞) .

Now let’s prove our theorem. For the proof, we will use facts based on “area arguments” that

you should recall from your elementary calculus course.

PROOF (of theorem 2.1): First of all, note that the two requirements placed on f ensure

g(x) =
∫ x

a

f (s) ds

is well defined for any x in (α, β) using any of the definitions for the integral found in most

calculus texts (check this out yourself, using the definition in your calculus text). They also prevent

f (x) from “blowing up” on any closed subinterval [α′, β ′] of (α, β) . Thus, for each such closed

subinterval [α′, β ′] , there is a corresponding finite constant M such that5

| f (s)| ≤ M whenever α′ ≤ s ≤ β ′ .

Now, to verify the claimed continuity of g , we must show that

lim
x→x0

g(x) = g(x0) (2.16)

5 The constant M can be the maximum value of | f (s)| on [α′, β′] , provided that maximum exists. It may change if either

endpoint α′ or β′ is changed.
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for any x0 in (α, β) . But by the definition of g and well-known properties of integration,

lim
x→x0

g(x) = lim
x→x0

∫ x

a

f (s) ds

= lim
x→x0

[∫ x0

a

f (s) ds +
∫ x

x0

f (s) ds

]
= lim

x→x0

[
g(x0) +

∫ x

x0

f (s) ds

]
= g(x0) + lim

x→x0

∫ x

x0

f (s) ds .

So, to show equation (2.16) holds, it suffices to confirm that

lim
x→x0

∫ x

x0

f (s) ds = 0 ,

which, in turn, is equivalent to confirming that

lim
x→x0

+

∣∣∣∣∫ x

x0

f (s) ds

∣∣∣∣ = 0 and lim
x→x0

−

∣∣∣∣∫ x

x0

f (s) ds

∣∣∣∣ = 0 . (2.17)

To do this, pick any two finite values α′ and β ′ satisfying α < α′ < x0 < β ′ < β . As noted,

there is some finite constant M bigger than | f (s)| on [α′, β ′] . So, if x0 ≤ x ≤ β ′ ,

0 ≤
∣∣∣∣∫ x

x0

f (s) ds

∣∣∣∣ ≤
∫ x

x0

| f (s)| ds ≤
∫ x

x0

M ds = M[x − x0] .

Similarly, if α′ < x < x0 , then

0 ≤
∣∣∣∣∫ x

x0

f (s) ds

∣∣∣∣ =
∣∣∣∣− ∫ x0

x

f (s) ds

∣∣∣∣ =
∣∣∣∣∫ x0

x

f (s) ds

∣∣∣∣
≤

∫ x0

x

| f (s)| ds ≤
∫ x0

x

M ds = M[x0 − x] .

Hence,

0 ≤ lim
x→x0

+

∣∣∣∣∫ x

x0

f (s) ds

∣∣∣∣ ≤ lim
x→x0

+
M[x − x0] = M[x0 − x0] = 0

and

0 ≤ lim
x→x0

−

∣∣∣∣∫ x

x0

f (s) ds

∣∣∣∣ ≤ lim
x→x0

−
M[x0 − x] = M[x0 − x0] = 0 , (2.18)

which, of course, means that equation set (2.17) holds.

Additional Exercises

2.2. Determine whether each of the following differential equations is or is not directly inte-

grable:

a.
dy

dx
= 3 − sin(x) b.

dy

dx
= 3 − sin(y)
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c.
dy

dx
+ 4y = e2x d. x

dy

dx
= arcsin(x2)

e. y
dy

dx
= 2x f.

d2 y

dx2
= x + 1

x − 1

g. x2 d2 y

dx2
= 1 h. y2 d2 y

dx2
= 8x2

i.
d2 y

dx2
+ 3

dy

dx
+ 8y = e−x2

j. x2 d2 y

dx2
+ 3x

dy

dx
= 0

2.3. Find a general solution for each of the following directly integrable equations. (Use indef-

inite integrals on these.)

a.
dy

dx
= 4x3 b.

dy

dx
= 20e−4x

c. x
dy

dx
+ √

x = 2 d.
√

x + 4
dy

dx
= 1

e.
dy

dx
= x cos

(
x2
)

f.
dy

dx
= x cos(x)

g. x =
(

x2 − 9
)

dy

dx
h. 1 =

(
x2 − 9

)
dy

dx

i. 1 = x2 − 9
dy

dx
j.

d2 y

dx2
= sin(2x)

k.
d2 y

dx2
− 3 = x l.

d4 y

dx4
= 1

2.4. Solve each of the following initial-value problems (using the indefinite integral). Also, state

the largest interval over which the solution is valid (i.e., the maximal possible interval of

interest).

a.
dy

dx
= 4x + 10e2x with y(0) = 4

b. 3
√

x + 6
dy

dx
= 1 with y(2) = 10

c.
dy

dx
= x − 1

x + 1
with y(0) = 8

d. x
dy

dx
+ 2 = √

x with y(1) = 6

e. cos(x)
dy

dx
− sin(x) = 0 with y(0) = 3

f.
(
x2 + 1

) dy

dx
= 1 with y(0) = 3

g. x
d2 y

dx2
+ 2 = √

x with y(1) = 8 and y′(1) = 6

2.5 a. Using definite integrals (as in example 2.5 on page 25), find the general solution to

dy

dx
= sin

(
x

2

)
with y(0) acting as the arbitray constant.
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b. Using the formula just found for y(x) :

i. Find y(π) when y(0) = 0 . ii. Find y(π) when y(0) = 3 .

iii. Find y(2π) when y(0) = 3 .

2.6 a. Using definite integrals (as in example 2.5 on page 25), find the general solution to

dy

dx
= 3

√
x + 3

with y(1) acting as the arbitrary constant.

b. Using the formula just found for y(x) :

i. Find y(6) when y(1) = 16 . ii. Find y(6) when y(1) = 20 .

iii. Find y(−2) when y(1) = 0 .

2.7. Using definite integrals (as in example 2.5 on page 25), find the solution to each of the

following initial-value problems. (In some cases, you may want to use the error function

or the sine-integral function.)

a.
dy

dx
= x e−x2

with y(0) = 3 b.
dy

dx
= x√

x2 + 5
with y(2) = 7

c.
dy

dx
= 1

x2 + 1
with y(1) = 0 d.

dy

dx
= e−9x2

with y(0) = 1

e. x
dy

dx
= sin(x) with y(0) = 4 f. x

dy

dx
= sin

(
x2
)

with y(0) = 0

2.8. Using an appropriate computer math package (such as Maple or Mathematica), graph each

of the following over the interval 0 ≤ x ≤ 10 :

a. the error function, erf(x) . b. the sine integral function, Si(x) .

c. the solution to

dy

dx
= ln

∣∣∣2 + x2 sin(x)

∣∣∣ with y(0) = 0 .

2.9. Each of the following differential equations involves a function that is (or can be) piecewise

defined. Sketch the graph of each of these piecewise defined functions, and find the general

solution of each differential equation. If an initial value is also given, then also solve the

given initial-value problem:

a.
dy

dx
= step(x) with y(0) = 0 and step(x) as defined on page 28

b.
dy

dx
= f (x) with y(0) = 2 and f (x) =

{
0 if x < 1

1 if 1 ≤ x

c.
dy

dx
= f (x) with y(0) = 0 and f (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 1

1 if 1 ≤ x < 2

0 if 2 ≤ x

d.
dy

dx
= |x − 2|

e.
dy

dx
= stair(x) for x < 4 with y(0) = 0 and stair(x) as defined on page 31
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Some Basics about First-Order Equations

For the next few chapters, our attention will be focused on first-order differential equations. We will

discover that these equations can often be solved using methods developed directly from the tools

of elementary calculus. And even when these equations cannot be explicitly solved, we will still be

able to use fundamental concepts from elementary calculus to obtain good approximations to the

desired solutions.

But first, let us discuss a few basic ideas that will be relevant throughout our discussion of

first-order differential equations.

3.1 Algebraically Solving for the Derivative

Here are some of the first-order differential equations that we have seen or will see in the next few

chapters:

x2 dy

dx
− 4x = 6 ,

dy

dx
− x2 y2 = x2 ,

dy

dx
+ 4xy = 2xy2 ,

and

x
dy

dx
+ 4y = x3 .

One thing we can do with each of these equations is to algebraically solve for the derivative. Doing

this with the first equation:

x2 dy

dx
− 4x = 6

↪→ x2 dy

dx
= 6 + 4x

↪→ dy

dx
= 4x + 6

x2
.

For the second equation:
dy

dx
− x2 y2 = x2

↪→ dy

dx
= x2 + x2 y2 .

39
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40 Some Basics about First-Order Equations

Solving for the derivative is often a good first step towards solving a first-order differential equation.

For example, the first equation above is directly integrable — solving for the derivative yielded

dy

dx
= 4x + 6

x2
,

and y(x) can now be found by simply integrating both sides with respect to x .

Even when the equation is not directly integrable and we get

dy

dx
= “a formula of both x and y ” ,

— as in our second equation above,
dy

dx
= x2 + x2 y2

— that formula on the right can still give us useful information about the possible solutions and

can help us determine which method is appropriate for obtaining the general solution. Observe, for

example, that the right-hand side of the last equation can be factored into a formula of x and a

formula of y ,
dy

dx
= x2

(
1 + y2

)
.

In the next chapter, we will find that this means the equation is “separable” and can be solved by a

procedure developed for just such equations.

For convenience, let us say that a first-order differential equation is in derivative formula form

if it is written as
dy

dx
= F(x, y) (3.1)

where F(x, y) is some (known) formula of x and/or y . Remember, to convert a given first-order

differential equation to derivative form, simply use a little algebra to solve the differential equation

for the derivative.

?�Exercise 3.1: Verify that the derivative formula forms of

dy

dx
+ 4y = 3y3 and x

dy

dx
+ 4xy = 2y2

are
dy

dx
= 3y3 − 4y and

dy

dx
= 2y2 − 4xy

x
,

respectively.

Keep in mind that the right side of equation (3.1), F(x, y) , need not always be a formula of

both x and y . As we saw in an example above, the equation might be directly integrable. In this

case, the right side of the above derivative formula form reduces to some f (x) , a formula involving

only x ,
dy

dx
= f (x) .

Alternatively, the right side may end up being a formula involving only y , F(x, y) = g(y) . We

have a word for such differential equations; that word is “autonomous”. That is, an autonomous

first-order differential equation is a differential equation that can be written as

dy

dx
= g(y)
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where g(y) is some formula involving y but not x . The first equation in the last exercise is

an example of an autonomous differential equation. Autonomous equations arise fairly often in

applications, and the fact that dy/dx is given by a formula of just y will make an autonomous

equation easier to graphically analyze in chapter 8. But, as we’ll see in the next chapter, they are just

special cases of “separable” equations, and can be solved using the methods that will be developed

there.

You should also be aware that the derivative formula form is not the only way we will attempt to

rewrite our first-order differential equations. Frankly, much of the theory for first-order differential

equations involves determining how a given differential equation can be rewritten so that we can

cleverly apply tricks from calculus to further reduce the equation to something that can be easily

integrated. We’ve already seen this with directly-integrable differential equations (for which the

“derivative formula” form is ideal). In the next few chapters, we will see this with other equations

for which other forms are useful.

By the way, there are first-order differential equations that cannot be put in derivative formula

form. Consider
dy

dx
+ sin

(
dy

dx

)
= x .

It can be safely said that solving this equation for dy/dx is beyond the algebraic skills of most mortals.

Fortunately, first-order differential equations that cannot be rewritten in the derivative formula form

rarely arise in real-world applications.

3.2 Constant (or Equilibrium) Solutions

There is one type of particular solution that is easily determined for many first-order differential

equations using elementary algebra: the “constant” solution.

A constant solution to a given differential equation is simply a constant function that satisfies

that differential equation. Remember, y is a constant function if its value, y(x) , is some fixed

constant for all x ; that is, for some single number y0 ,

y(x) = y0 for all x .

Such solutions are also sometimes called equilibrium solutions. In an application involving some

process that can vary with x , these solutions describe situations in which the process does not vary

with x . This often means that all the factors influencing the process are “balancing out”, leaving the

process in a “state of equilibrium”. As we will later see, this sometimes means that these solutions

— whether you call them constant or equilibrium — are the most important solutions to a given

differential equation.1

!�Example 3.1: Consider the differential equation

dy

dx
= 2xy2 − 4xy

and the constant function

y(x) = 2 for all x .

1 According to mathematical tradition, one only refers to a constant solution as an “equilibrium solution” if the differential

equation is autonomous.
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Since the derivative of a constant function is zero, plugging in this function, y = 2 into

dy

dx
= 2xy2 − 4xy

gives

0 = 2x · 22 − 4x · 2 ,

which, after a little arithmetic and algebra, reduces further to

0 = 0 .

Hence, our constant function satisfies our differential equation, and, so, is a constant solution to

that differential equation.

On the other hand, plugging the constant function

y(x) = 3 for all x

into
dy

dx
= 2xy2 − 4xy

gives

0 = 2x · 32 − 4x · 3 .

This only reduces to

0 = 6x ,

which is not valid for all values of x on any nontrivial interval. Thus, y = 3 is not a constant

solution to our differential equation.

Admittedly, constant functions are not usually considered particularly exciting. The graph of a

constant function,

y(x) = y0 for all x

is just a horizontal line (at y = y0 ), and its derivative (as noted in the above example) is zero. But

the fact that its derivative is zero is what simplifies the task of finding all possible constant solutions

to a given differential equation, especially if the equation is in derivative formula form. After all, if

we plug a constant function

y(x) = y0 for all x

into an equation of the form
dy

dx
= F(x, y) ,

then, since the derivative of a constant is zero, this equation reduces to

0 = F(x, y0) .

We can then determine all values y0 that make y = y0 a constant solution for our differential

equation by simply determining every constant y0 that satisfies

F(x, y0) = 0 for all x .

!�Example 3.2: Suppose we have a differential equation that, after a bit of algebra, can be written

as
dy

dx
= (y − 2x)

(
y2 − 9

)
.



�

�

�

�

�

�

�

�

Constant (or Equilibrium) Solutions 43

If it has a constant solution,

y(x) = y0 for all x ,

then, after plugging this simple formula for y into the differential equation (and remembering

that the derivative of a constant is zero), we get

0 = (y0 − 2x)
(
y0

2 − 9
)

, (3.2)

which is possible if and only if either

y0 − 2x = 0 or y0
2 − 9 = 0 .

Now,

y0 − 2x = 0 ⇐⇒ y0 = 2x .

This gives us a value for y0 that varies with x , contradicting the original assumption that y0

was a constant. So this does not lead to any constant solutions (or any other solutions, either!).

If there is such a solution, y = y0 , it must satisfy the other equation,

y0
2 − 9 = 0 .

But

y0
2 − 9 = 0 ⇐⇒ y0

2 = 9 ⇐⇒ y0 = ±
√

9 = ±3 .

So there are exactly two constant values for y0 , 3 and −3 , that satisfy equation (3.2). And thus,

our differential equation has exactly two constant (or equilibrium) solutions,

y(x) = 3 for all x

and

y(x) = −3 for all x .

Keep in mind that, while the constant solutions to a given differential equation may be important,

they rarely are the only solutions. And in practice, the solution to a given initial-value problem will

typically not be one of the constant solutions. However, as we will see later, one of the constant

solutions may tell us something about the long-term behavior of the solution to that particular initial-

value problem. That is one of the reasons constant solutions are so important.

You should also realize that many differential equations have no constant solutions. Consider,

for example, the directly-integrable differential equation

dy

dx
= 2x .

Integrating this, we get the general solution

y(x) = x2 + c .

No matter what value we pick for c , this function varies as x varies. It cannot be a constant.

In fact, it is not hard to see that no directly-integrable differential equation,

dy

dx
= f (x) ,

can have a constant solution (unless f ≡ 0 ). Just consider what you get when you integrate

the f (x) . (That’s why we did not mention such solutions when we discussed directly-integrable

equations.)
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3.3 On the Existence and Uniqueness of Solutions

Unfortunately, not all problems are solvable, and those that are solvable sometimes have several

solutions. This is true in mathematics just as it is true in real life.

Before attempting to solve a problem involving some given differential equation and auxiliary

condition (such as an initial value), it would certainly be nice to know that the given differential

equation actually has a solution satisfying the given auxiliary condition. This would be especially

true if the given differential equation looks difficult and we expect that considerable effort will be

required in solving it (effort which would be wasted if that solution did not exist). And even if we

can find a solution, we normally would like some assurance that it is the only solution.

The following theorem is the standard theorem quoted in most elementary differential equation

texts addressing these issues for fairly general first-order initial-value problems.

Theorem 3.1 (on existence and uniqueness)

Consider a first-order initial-value problem

dy

dx
= F(x, y) with y(x0) = y0

in which both F and ∂F/∂y are continuous functions on some open region of the XY –plane con-

taining the point (x0, y0) .2 The initial-value problem then has exactly one solution over some open

interval (α, β) containing x0 . Moreover, this solution and its derivative are continuous over that

interval.

This theorem assures us that, if we can write a first-order differential equation in the derivative

formula form,
dy

dx
= F(x, y) ,

and that F(x, y) is a ‘reasonably well-behaved’ formula on some region of interest, then our differ-

ential equation has solutions — with luck and skill, we will be able to find them. Moreover, if we

can find a solution to this equation that also satisfies some initial value y(x0) = y0 corresponding

to a point at which F is ‘reasonably well-behaved,’ then that solution is unique (i.e., it is the only

solution) — there is no need to worry about alternative solutions — at least over some interval

(α, β) . Just what that interval (α, β) is, however, is not explicitly described in this theorem. It turns

out to depend in subtle ways on just how well behaved F(x, y) is. More will be said about this in

a few paragraphs.

!�Example 3.3: Consider the initial-value problem

dy

dx
− x2 y2 = x2 with y(0) = 3 .

As derived earlier, the derivative formula form for this equation is

dy

dx
= x2 + x2 y2 .

So

F(x, y) = x2 + x2 y2

2 The ∂F/∂y is a “partial derivative”. If you are not acquainted with partial derivatives see the appendix on page 61.
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and
∂F

∂y
= ∂

∂y

[
x2 + x2 y2

]
= 0 + x22y = 2x2 y .

It should be clear that these two functions are continuous everywhere on the XY –plane. Hence,

we can take the entire plane to be that “open region” in the above theorem, which then assures

us that the above initial-value problem has one (and only one) solution valid over some interval

(a, b) with a < 0 < b . Unfortunately, the theorem doesn’t tell us what that solution is nor what

that interval (a, b) might be. We will have to wait until we develop a method for solving this

differential equation.

The proof of the above theorem is nontrivial and can be safely skipped by most beginning

readers. In fact, despite the importance of the above theorem, we will rarely explicitly refer to it in

the chapters that follow. The main explicit references will be a “graphical” discussion of the theorem

in chapter 8 using methods developed there3, and to note that analogous theorems can be proven for

higher-order differential equations. Nonetheless, it is an important theorem whose proof should be

included in this text if only to assure you that I’m not making it up. Besides, the basic core of the

proof is fairly accessible to most readers and contains some clever and interesting ideas. We will

go over that basic core in the next section (section 3.4), leaving the more challenging details for the

section after that (section 3.5).

Part of the proof will be to identify the interval (α, β) mentioned in the above theorem. In fact,

the interval (α, β) can be easily determined if F and ∂F/∂y are sufficiently well behaved. That is

what the next theorem gives us. Its proof requires just a few modifications of the proof of the above,

and will be briefly discussed after that proof.

Theorem 3.2

Consider a first-order initial-value problem

dy

dx
= F(x, y) with y(x0) = y0

over an interval (α, β) containing x0 , and with F = F(x, y) being a continuous function on the

infinite strip

R = { (x, y) : α < x < β and − ∞ < y < ∞ } .

Further suppose that, on R , the partial derivative ∂F/∂y is continuous and is a function of x only.4

Then the initial-value problem has exactly one solution over (α, β) . Moreover, this solution and its

derivative are continuous on that interval.

In practice, many of our first-order differential equations will not satisfy the conditions described

in the last theorem. So this theorem is of relatively limited value for now. However, it leads to higher-

order analogs that will be used in developing the theory needed for important classes of higher-order

differential equations. That is why theorem 3.2 is mentioned here.

3 which you may find more illuminating than the proof given here
4 More generally, the theorem remains true if we replace the phrase “a function of x only” with “a bounded function on

R ”. Our future interest, however, will be with the theorem as stated.
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3.4 Confirming the Existence of Solutions (Core Ideas)

So let us consider the first-order initial-value problem

dy

dx
= F(x, y) with y(x0) = y0 ,

assuming that both F and ∂F/∂y are continuous on some open region in the XY –plane containing

the point (x0, y0) . Our goal is to verify that a solution y exists over some interval. (This is the

existence claim of theorem 3.1. The uniqueness claim of that theorem will be left as an exercise

using material developed in the next section — see exercise 3.2 on page 58.)

The gist of our proof consists of three steps:

1. Observe that the initial-value problem is equivalent to a corresponding integral equation.

2. Derive a sequence of functions — ψ0 , ψ1 , ψ2 , ψ3 , . . . — using a formula inspired by

that integral equation.

3. Show that this sequence of functions converges on some interval to a solution y of the

original initial-value problem.

The “hard” part of the proof is in the details of the last step. We can skip over these details initially,

returning to them in the next section.

Two comments should be made here:

1. The ψk’s end up being approximations to the solution y , and, in theory at least, the method

we are about to describe can be used to find approximate solutions to an initial-value problem.

Other methods, however, are often more practical.

2. This method was developed by the French mathematician Emile Picard and is often referred

to as the (Picard’s) method of successive approximations or as Picard’s iterative method

(because of the way the ψk’s are generated).

To simplify discussion let us assume x0 = 0 , so that our initial-value problem is

dy

dx
= F(x, y) with y(0) = y0 , (3.3)

There is no loss of generality here. After all, if x0 = 0 , we can apply the change of variable

s = x − x0 and convert our original problem into problem (3.3) (with x replaced by s ).

Converting to an Integral Equation

Suppose y = y(x) is a solution to initial-value problem (3.3) on some interval (α, β) with α <

0 < β . Renaming x as s , our differential equation becomes

dy

ds
= F(s, y(s)) for each s in (α, β) .

Integrating this from 0 to any x in (α, β) and remembering that y(0) = y0 , we get∫ x

0

dy

ds
ds =

∫ x

0

F(s, y(s)) ds

↪→ y(x) − y(0) =
∫ x

0

F(s, y(s)) ds

↪→ y(x) − y0 =
∫ x

0

F(s, y(s)) ds .
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That is, y satisfies the integral equation

y(x) = y0 +
∫ x

0

F(s, y(s)) ds whenever α < x < β .

On the other hand, if y is any continuous function on (α, β) satisfying this integral equation, then

basic calculus tells us that, on this interval, y is differentiable with

dy

dx
= d

dx

[
y0 +

∫ x

0

F(s, y(s)) ds

]
= 0 + d

dx

∫ x

0

F(s, y(s)) ds = F(x, y(x)) .

and

y(0) = y0 +
∫ 0

0

F(s, y(s)) ds︸ ︷︷ ︸
0

= y0 ,

Thus, y also satisfies our original initial-value problem.

We should note that, in the above, we implicitly assumed F(x, y) was a reasonably behaved

function at each point (x, y) where α < x < β and y = y(x) . In particular, if F is continuous at

each of these points, then this continuity, the continuity of y , and the fact that y′ = F(x, y) ensures

that y is not only differentiable on (α, β) but that y′ is continuous on (α, β) .

In summary, we have the following theorem:

Theorem 3.3

Let y be any continuous function on some interval (α, β) containing 0 , and assume F is a

function of two variables continuous at every (x, y) with α < x < β and y = y(x) . Then y has

a continuous derivative on (α, β) and satisfies the initial-value problem

dy

dx
= F(x, y) with y(0) = y0 on (α, β)

if and only if y satisfies the integral equation

y(x) = y0 +
∫ x

0

F(s, y(s)) ds whenever α < x < β .

Generating a Sequence of “Approximate Solutions”

Begin with any continuous function ψ0 . For example, we could simply choose ψ0 to be the constant

function

ψ0(x) = y0 for all x .

(Later, we will place some additional restrictions on ψ0 , but the above constant function will still

be a valid choice for ψ0 .)

Next, let ψ1 be the function constructed from ψ0 by

ψ1(x) = y0 +
∫ x

0

F(s, ψ0(s)) ds .

Then construct ψ2 from ψ1 via

ψ2(x) = y0 +
∫ x

0

F(s, ψ1(s)) ds .
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Continue the process, defining ψ3 , ψ4 , ψ5 , . . . by

ψ3(x) = y0 +
∫ x

0

F(s, ψ2(s)) ds ,

ψ4(x) = y0 +
∫ x

0

F(s, ψ3(s)) ds ,

...

In general, once ψk is defined, we define ψk+1 by

ψk+1(x) = y0 +
∫ x

0

F(s, ψk(s)) ds . (3.4)

Since we apparently can continue this iterative process forever, we have an infinite sequence of

functions

ψ0 , ψ1 , ψ2 , ψ3 , ψ4 , . . . .

In the future, we may refer to this sequence as the Picard sequence (based on ψ0 and F ). Note

that, for k = 1, 2, 3, . . . ,

ψk(0) = y0 +
∫ 0

0

F(s, ψk−1(s)) ds︸ ︷︷ ︸
0

= y0 .

So each of these ψk’s satisfies the initial condition in our initial-value problem. Moreover, since

each of these ψk’s is a constant added to an integral from 0 to x , each of these ψk’s should be

continuous at least over the interval of x’s on which the integral is finite.

(Naively) Taking the Limit

Now suppose there is an interval (α, β) containing 0 on which this sequence of ψk’s converges to

some continuous function. Let y denote this function,

y(x) = lim
k→∞

ψk(x) for α < x < β .

Now let x be any point in (a, b) . Blithely (and naively) taking the limit of both sides of equation

(3.4), we get

y(x) = lim
k→∞

ψk(x) = lim
k→∞

ψk+1(x)

= lim
k→∞

[
y0 +

∫ x

0

F(s, ψk(s)) ds

]
= y0 + lim

k→∞

∫ x

0

F(s, ψk(s)) ds

= y0 +
∫ x

0

lim
k→∞

F(s, ψk(s)) ds

= y0 +
∫ x

0

F(s, y(s)) ds .

Thus (assuming the above limits are valid) we see that y satisfies the integral equation

y(x) = y0 +
∫ x

0

F(s, y(s)) ds for a < x < b .
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As noted in theorem 3.3, this means the function y is a solution to our original initial-value problem,

thus verifying the claimed existence of such a solution.

That was the essence of Picard’s method of successive approximations.

3.5 Details in the Proof of Theorem 3.1
Confirming the Existence of Solutions
What are the Remaining Details?

Before proclaiming that we have rigorously verified the existence of a solution to our initial-value

problem via the Picard method, we need to rigorously verify the assumptions made in the last

subsection. If you check carefully, you will see that we still need to rigorously confirm the following

three statements involving the functions ψ1 , ψ2 , . . . generated by the Picard iteration method:

1. There is an interval (α, β) containing 0 such that

lim
k→∞

ψk(x)

exists for each x in (α, β) .

2. The function given by

y(x) = lim
k→∞

ψk(x)

is continuous on the interval (α, β) .

3. The above defined function y satisfies

y(x) = y0 +
∫ x

0

F(s, y(s)) ds whenever α < x < β .

Confirming these claims under the assumptions in theorem 3.1 on page 44 will be the main goal of

this section.5

Some Preliminary Bounds

In carrying out our analysis, we will make use of a number of facts normally discussed in standard

introductory calculus sequences. For example, we will use without comment that fact that, for any

summation, ∣∣∣∣∑
k

ck

∣∣∣∣ ≤
∑

k

|ck | .

This was called the triangle inequality. Recall, also, that “the absolute value of an integral is less

than or equal to the integral of the absolute value”. We will need to be a little careful about this

because the lower limits on our integrals will not always be less than our upper limits. If σ < τ ,

then we do have ∣∣∣∣∫ τ

σ

g(s) ds

∣∣∣∣ ≤
∫ τ

σ

|g(s)| ds .

5 Some of the analysis in this section can be shortened considerably using tools from advanced real analysis. Since the

typical reader is not expected to have yet had a such a course, we will not use those tools. However, if you have had such

a course and are acquainted with such terms as “uniform convergence” and “Cauchy sequences”, then you should look to

see how your more advanced mathematics can shorten the analysis given here.
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On the other hand, if τ < σ , then∣∣∣∣∫ τ

σ

g(s) ds

∣∣∣∣ =
∣∣∣∣− ∫ σ

τ

g(s) ds

∣∣∣∣ =
∣∣∣∣∫ σ

τ

g(s) ds

∣∣∣∣ ≤
∫ σ

τ

|g(s)| ds .

Suppose that, in addition, |g(s)| ≤ M for all s in some interval containing σ and τ . Then, if

σ < τ , ∣∣∣∣∫ τ

σ

g(s) ds

∣∣∣∣ ≤
∫ τ

σ

|g(s)| ds ≤
∫ τ

σ

M ds = M[τ − σ ] = M |τ − σ | ,

while, if τ < σ ,∣∣∣∣∫ τ

σ

g(s) ds

∣∣∣∣ ≤
∫ σ

τ

|g(s)| ds ≤
∫ σ

τ

M ds = M[−(τ − σ)] = M |τ − σ | .

So, in general, we have the following little lemma:

Lemma 3.4

If |g(s)| ≤ M for all s in some interval containing σ and τ , then∣∣∣∣∫ τ

σ

g(s) ds

∣∣∣∣ = M |τ − σ | .

Other facts from calculus will be used and slightly expanded as needed. These facts will include

stuff on the absolute convergence of summations and the Taylor series for the exponentials.

The next lemma establishes the interval (α, β) mentioned in the existence theorem (theorem

3.1) along with some function bounds that will be useful in our analysis.

Lemma 3.5

Assume both F(x, y) and ∂F/∂y are continuous on some open region R in the XY –plane containing

the point (0, y0) . Then there are positive constants M and B , a closed interval [α, β] , and a finite

distance �Y such that all the following hold:

1. α < 0 < β .

2. The open region R contains the closed rectangular region

R1 = { (x, y) : α ≤ x ≤ β and |y − y0| ≤ �Y } .

3. For each (x, y) in R1 ,

|F(x, y)| ≤ M and

∣∣∣∣∂F

∂y

∣∣∣
(x,y)

∣∣∣∣ ≤ B .

4. 0 < −αM ≤ �Y and 0 < βM ≤ �Y .

5. If φ is a continuous function on (α, β) satisfying

|φ(x)− y0| ≤ �Y for α ≤ x ≤ β ,

then

ψ(x) = y0 +
∫ x

0

F(s, φ(s)) ds

defines the function ψ on the interval [α, β] . Moreover, ψ is continuous on [α, β] and

satisfies

|ψ(x)− y0| ≤ �Y for α ≤ x ≤ β .
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Y

y0

X0

R

R1
R0

�X �X

�Y

�Y

α0 β0β

Figure 3.1: Rectangles contained in region R for the proof of lemma 3.5 (with |α0| < �X and

�X < β0 ).

PROOF: The goal is to find a rectangle R1 on which the above holds. We start by noting that,

because R is an open region containing the point (0, y0) , that point is not on the boundary of

R , and we can pick a negative value α0 and two positive values β0 and �Y so that the closed

rectangular region

R0 = { (x, y) : α0 ≤ x ≤ β0 and |y − y0| ≤ �Y }

is contained in R , as in figure 3.1.

Since F and ∂F/∂y are continuous on R , they (and their absolute values) must be continuous

on that portion of R which is R0 . But recall that a continuous function of one variable on a closed

finite interval will always have a maximum value on that interval. Likewise, a continuous function

of two variables will always have a maximum value over a closed finite rectangle. Let M and B

be, respectively, the maximum values of |F | and
∣∣∂F/∂y

∣∣ on R0 . Then, of course,

|F(x, y)| ≤ M and

∣∣∣∣∂F

∂y

∣∣∣
(x,y)

∣∣∣∣ ≤ B for each (x, y) in R0 .

Now let us further restrict the possible values of x by first setting

�X = �Y

M

(
so M = �Y

�X

)
,

and then defining the endpoints of the interval (α, β) by

α =
{
α0 if −�X < α0

−�X if α0 ≤ −�X

}
and β =

{
�X if �X < β0

β0 if β0 ≤ �X

}

(again, see figure 3.1).

By these choices,

α0 ≤ α < 0 < β ≤ β0 ,

|x | ≤ �X whenever α ≤ x ≤ β ,

0 < −αM ≤ �X M = �Y ,

0 < βM ≤ �X M = �Y ,
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and the closed rectangle

R1 = { (x, y) : α ≤ x ≤ β and |y − y0| ≤ �Y }

is contained in the closed rectangle R0 , ensuring that

|F(x, y)| ≤ M and

∣∣∣∣∂F

∂y

∣∣∣∣
(x,y)

∣∣∣∣ ≤ B for each (x, y) in R1 .

This takes care of the first four claims of the lemma.

To confirm the lemma’s final claim, let φ be a continuous function on (α, β) satisfying

|φ(x)− y0| ≤ �Y for α ≤ x ≤ β .

Then, (s, φ(s)) is a point in R1 for each s in the interval [α, β] . This, in turn, means that

F(s, φ(s)) exists and is bounded by M over the interval [α, β] . Moreover, it is easily verified

that the continuity of both F over R and φ over (α, β) ensures that F(s, φ(s)) is a bounded

continuous function of s over [α, β] . Consequently, the integral in

ψ(x) = y0 +
∫ x

0

F(s, φ(s)) ds

exists (and is finite) for each x in [α, β] .

To help confirm the claimed continuity of ψ , take any two points x and x1 in (α, β) . Using

lemma 3.4 and the fact that F is bounded by M on R1 , we have that

|ψ(x1)− ψ(x)| =
∣∣∣∣y0 +

∫ x1

0

F(s, φ(s)) ds − y0 −
∫ x

0

F(s, φ(s)) ds

∣∣∣∣
=

∣∣∣∣∫ x1

x

F(s, φ(s)) ds

∣∣∣∣
≤ M |x1 − x | .

Hence,

lim
x→x1

|ψ(x1)− ψ(x)| ≤ lim
x→x1

M |x1 − x | = M · 0 = 0 ,

which, in turn, means that

lim
x→x1

ψ(x) = ψ(x1) ,

confirming that ψ is continuous at each x1 in (α, β) . By almost identical arguments, we also have

lim
x→α+

ψ(x) = ψ(α) and lim
x→β−

ψ(x) = ψ(β) .

Altogether, these limits tell us that ψ is continuous on the closed interval [α, β] .

Finally, let α ≤ x ≤ β . Again using lemma 3.4 and the boundedness of F , along with the

definition of �X , we see that

|ψ(x)− y0| =
∣∣∣∣∫ x

0

F(s, φ(s)) ds

∣∣∣∣ ≤ M |x | ≤ M�X = M · �Y

M
= �Y .
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Convergence of the Picard Sequence

Let us now look more closely at the Picard sequence of functions,

ψ0 , ψ1 , ψ2 , ψ3 , . . .

with ψ0 being “some continuous function” and

ψk+1(x) = y0 +
∫ x

0

F(s, ψk(s)) ds for k = 0, 1, 2, 3, . . . .

Remember, F and ∂F/∂y are continuous on some open region containing the point (0, y0) . This

means lemma 3.5 applies. Let [α, β] , M , B , and �Y be the interval and constants from that

lemma. Let us also now impose an additional restriction on the choice for ψ0 : Let us insist that ψ0

be any continuous function on [α, β] such that

|ψ0(x)− y0| ≤ �Y for α < x < β .

In particular, we could let ψ0 be the constant function ψ0(x) = y0 for all x .

We now want to show that the sequence of ψk’s converges to a function y on [α, β] . Our first

step in this direction is to observe that, thanks to the additional requirement on ψ0 , lemma 3.5 can

be applied repeatedly to show that ψ1 , ψ2 , ψ3 , . . . are all well-defined, continuous functions on

the interval [α, β] with each satisfying

|ψk(x)− y0| ≤ �Y for α ≤ x ≤ β .

Next, we need to establish useful bounds on the sequence

|ψ1(x)− ψ0(x)| , |ψ2(x)− ψ1(x)| , |ψ3(x)− ψ2(x)| , . . .

when α ≤ x ≤ β . The first is easy:

|ψ1(x)− ψ0(x)| = |ψ1(x)− y0 − ψ0(x)+ y0|
= |[ψ1(x)− y0] + (−[ψ0(x)− y0])|
≤ |ψ1(x)− y0| + |ψ0(x)− y0| ≤ 2�Y .

To simplify the derivation of useful bounds on the others, let us observe that, if k ≥ 1 ,

|ψk+1(x)− ψk(x)| =
∣∣∣∣[y0 +

∫ x

0

F(s, ψk(s)) ds

]
−

[
y0 +

∫ x

0

F(s, ψk−1(s)) ds

]∣∣∣∣
=

∣∣∣∣∫ x

0

[F(s, ψk(s))− F(s, ψk−1(s))] ds

∣∣∣∣
≤

∫ x

0

|F(s, ψk(s))− F(s, ψk−1(s))| ds .

Now recall that, if f is any continuous and differentiable function on an interval I , and t1 and t2
are two points in I , then there is a point τ between t1 and t2 such that

f (t2) − f (t1) = f ′(τ ) [t2 − t1] .

This was the mean value theorem for derivatives. Consequently, if∣∣ f ′(t)
∣∣ ≤ B for each t in I ,
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then

| f (t2)− f (t1)| =
∣∣ f ′(τ ) [t2 − t1]

∣∣ =
∣∣ f ′(τ )

∣∣ |t2 − t1| ≤ B |t2 − t1| .

The same holds for partial derivatives. In particular, for each pair of points (x, y1) and (x, y2) in

the closed rectangle

R1 = { (x, y) : α ≤ x ≤ β and |y − y0| ≤ �Y } ,

we have a γ between y1 and y2 such that

|F(x, y2)− F(x, y1)| =
∣∣∣∣∂F

∂y

∣∣∣
(x,γ )

· [y2 − y1]

∣∣∣∣ ≤ B |y2 − y1| .

Thus, for 0 ≤ x ≤ β and k = 1, 2, 3, . . . ,

|ψk+1(x)− ψk(x)| ≤
∫ x

0

|F(s, ψk(s))− F(s, ψk−1(s))| ds

≤
∫ x

0

B |ψk(s)− ψk−1(s)| ds .

Repeatedly using this (with 0 ≤ x ≤ β ), we get

|ψ2(x)− ψ1(x)| ≤
∫ x

0

B |ψ1(s)− ψ0(s)| ds

≤
∫ x

0

B · 2�Y ds = 2�Y Bx ,

|ψ3(x)− ψ2(x)| ≤
∫ x

0

B |ψ2(s)− ψ1(s)| ds

≤
∫ x

0

B · 2�Y B s ds = 2�Y
(Bx)2

2
,

|ψ4(x)− ψ3(x)| ≤
∫ x

0

|ψ3(s)− ψ2(s)| ds

≤
∫ x

0

B · 2�Y B2 s2

2
ds ≤ 2�Y

(Bx)3

3 · 2
,

|ψ5(x)− ψ4(x)| ≤
∫ x

0

|ψ4(s)− ψ3(s)| ds

≤
∫ x

0

B · 2�Y B3 s3

3 · 2
ds ≤ 2�Y

(Bx)4

4! ,

...

Continuing, we get

|ψk+1(x)− ψk(x)| ≤ 2�Y
(Bx)k

k! for 0 ≤ x ≤ β and k = 1, 2, 3, . . . .

Virtually the same arguments give us

|ψk+1(x)− ψk(x)| ≤ 2�Y
(−Bx)k

k! for α ≤ x ≤ 0 and k = 1, 2, 3, . . . .
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More concisely, for α ≤ x ≤ β and k = 1, 2, 3, . . . ,

|ψk+1(x)− ψk(x)| ≤ 2�Y
(B |x |)k

k! . (3.5)

At this point it is worth recalling that the Taylor series for eX is

∞∑
k=0

Xk

k!

and that this series converges for each real value X . In particular, for any x ,

2�Y eB|x | =
∞∑

k=0

2�Y
(B |x |)k

k! .

Now consider the infinite series

S(x) =
∞∑

k=0

[
ψk+1(x)− ψk(x)

]
.

According to inequality (3.5), the absolute value of each term in this series is bounded by the

corresponding term in the Taylor series for 2�Y eB|x | . The comparison test then tells us that S(x)

converges absolutely for each x in [α, β] . And this means that the limit

S(x) = lim
N→∞

N∑
k=0

[
ψk+1(x)− ψk(x)

]
exists for each x in the interval [α, β] . But

N∑
k=0

[
ψk+1(x)− ψk(x)

] = [ψ1(x)− ψ0(x)] + [ψ2(x)− ψ1(x)] + [ψ3(x)− ψ2(x)]

+ · · · + [ψN (x)− ψN−1(x)] + [ψN+1(x)− ψN (x)]

= −ψ0(x) + ψ1(x) − ψ1(x) + ψ2(x) − ψ2(x) + ψ3(x)

+ · · · − ψN−1(x) + ψN (x) − ψN (x) + ψN+1(x) .

Most of the terms cancel out, leaving us with

N∑
k=0

[
ψk+1(x)− ψk(x)

] = ψN+1(x) − ψ0(x) . (3.6)

So

lim
k→∞

ψk(x) = lim
k→∞

[
ψ0(x) +

k−1∑
k=0

[
ψk+1(x)− ψk(x)

]] = ψ0(x) + S(x) .

This shows that the limit

y(x) = lim
N→∞

ψN (x)

exists for each x in [α, β] , confirming the first statement we wished to confirm at the beginning of

this section (see page 49).
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At this point, let us observe that, for α ≤ x ≤ β , we have the formulas

ψN (x) = ψ0(x) + S(x) = ψ0(x) +
N−1∑
k=0

[
ψk+1(x)− ψk(x)

]
, (3.7a)

and

y(x) = ψ0(x) + S(x) = ψ0(x) +
∞∑

k=0

[
ψk+1(x)− ψk(x)

]
, (3.7b)

Let us also observe what we get when we combine the above formula for ψN with inequality (3.5)

and the observations regarding the Taylor series of the exponential:

|ψN (x)| ≤ |ψ0(x)| +
N−1∑
k=0

|ψk+1(x)− ψk(x)|

≤ |ψ0(x)| +
N∑

k=0

2�Y
(B |x |)k

k! = |ψ0(x)| + �Y eB|x | .

(3.8a)

Likewise

|y(x)| ≤ |ψ0(x)| + �Y eB|x | . (3.8b)

These observations may later prove useful.

Continuity of the Limit

Now to confirm the continuity of y claimed by the second statement from the beginning of this

section. We start by picking any two points x1 and x in [α, β] , and any positive integer N , and

then observe that, because F is bounded by M ,

|ψN (x1) − ψN (x)| =
∣∣∣∣[y0 +

∫ x1

0

F(s, ψN−1(s)) ds

]
−

[
y0 +

∫ x

0

F(s, ψN−1(s) ds

]∣∣∣∣
=

∣∣∣∣∫ x1

x

F(s, ψN−1(s)) ds

∣∣∣∣
≤ M |x1 − x | .

Combined with the definition of y and some basic facts about limits, this gives us

|y(x1) − y(x)| = lim
N→∞

|ψN (x1) − ψN (x)| ≤ M |x1 − x | .

As demonstrated at the end of the proof of lemma 3.5, this immediately tells us that y is continuous

on [α, β] .

The Limit as a Solution

Finally, let us verify the third statement made at the beginning of this section, namely that the above

defined y satisfies

y(x) = y0 +
∫ x

0

F(s, y(s)) ds whenever α < x < β .

This, according to theorem 3.3 on page 47, is equivalent to showing that y satisfies the differential

equation in our initial-value problem over the interval (α, β) .6

6 Yes, we’ve already shown that y is defined and continuous on [α, β] , not just (α, β) . However, the derivative of a

function is ill-defined at the endpoints of the interval over which it is defined, and that is why we are now limiting x to

being in (α, β) .
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We start by assuming α ≤ x ≤ β . Using equation set (3.7) and inequality (3.5), we see that

|y(x)− ψN (x)| = |[y(x)− ψ0(x)] − [ψN (x)− ψ0(x)]|

=
∣∣∣∣∣

∞∑
k=0

[
ψk+1(x)− ψk(x)

] −
N−1∑
k=0

[
ψk+1(x)− ψk(x)

]∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=N

[
ψk+1(x)− ψk(x)

]∣∣∣∣∣
≤

∞∑
k=N

|ψk+1(x)− ψk(x)|

≤
∞∑

k=N

2�Y
(B |x |)k

k! .

Under the change of index k = N + n , this becomes

|y(x)− ψN (x)| ≤ 2�Y

∞∑
n=0

(B |x |)N+n

(N + n)! . (3.9)

But

(N + n)! = (N + n)︸ ︷︷ ︸
≥N

(N + n − 1)︸ ︷︷ ︸
≥N−1

(N + n − 2)︸ ︷︷ ︸
≥N−2

· · · (N + n − [N − 1])︸ ︷︷ ︸
≥1

n(n − 1) · · · 2 · 1︸ ︷︷ ︸
=n!

≥ N ! n! .

Thus,
1

(N + n)! ≤ 1

N ! n!
and ∞∑

n=0

(B |x |)N+n

(N + n)! ≤
∞∑

n=0

(B |x |)N+n

N ! n! ≤ (B |x |)N
N !

∞∑
n=0

(B |x |)n
n! = (B |x |)N

N ! eB|x | .

Combining this with inequality (3.9) yields

|y(x)− ψN (x)| ≤ 2�Y
(B |x |)N

N ! eB|x | .

Consequently,∣∣∣∣ψN+1(x) − y0 −
∫ x

0

F(s, y(s)) ds

∣∣∣∣
=

∣∣∣∣[y0 +
∫ x

0

F(s, ψN (s)) ds

]
− y0 −

∫ x

0

F(s, y(s)) ds

∣∣∣∣
≤

∫ x

0

|F(s, ψN (s))− F(s, y(s))| ds

≤
∫ x

0

B |ψN−1(s)− y(s)| ds



�

�

�

�

�

�

�

�

58 Some Basics about First-Order Equations

≤
∫ x

0

B · 2�Y
(B |s|)N−1

(N − 1)! eB|s| ds

= 2�Y
B N eB|x |
(N − 1)!

∫ x

0

|s|N−1 ds .

Computing the last integral leaves us with∣∣∣∣ψN+1(x) − y0 −
∫ x

0

F(s, y(s)) ds

∣∣∣∣ ≤ 2�Y
(B |x |)N

N ! eB|x | .

But, as is well known,
(B |x |)N

N ! → 0 as N → ∞
for any finite value B |x | . Hence∣∣∣∣ψN (x) − y0 −

∫ x

0

F(s, y(s)) ds

∣∣∣∣ → 0 as N → ∞ .

That is

0 = lim
N→∞

[
ψN (x) − y0 −

∫ x

0

F(s, y(s)) ds

]
= lim

N→∞
ψN (x) − y0 −

∫ x

0

F(s, y(s)) ds

= y(x) − y0 −
∫ x

0

F(s, y(s)) ds ,

verifying that

y(x) = y0 +
∫ x

0

F(s, y(s)) ds whenever α < x < β ,

as desired.

Where Are We?

Let’s stop for a moment and review what we have done. We have just spent several pages rigorously

verifying the three statements made at the beginning of this section under the assumptions made in

theorem 3.1 on page 44. By verifying these statements, we’ve rigorously justified the computations

made in the previous section showing that the limit of a Picard sequence is a solution to the initial-

value problem in theorem 3.1. Consequently, we have now rigorously verified the claim in theorem

3.1 that a solution to the given initial-value problem exists on at least some interval (α, β) .

We now need to show that this y is the only solution on that interval.

The Uniqueness Claim in Theorem 3.1

If you’ve made it through this section up to this point, then you should have little difficulty in finishing

the proof of theorem 3.1 by doing the following exercises. Do make use of the work we’ve done in

the previous several pages.

?�Exercise 3.2: Consider a first-order initial-value problem

dy

dx
= F(x, y) with y(0) = y0 ,
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and with both F and ∂F/∂y being continuous functions on some open region containing the point

(0, y0) . Since lemma 3.5 applies, we can let [α, β] be the interval, and M , B and �Y the

positive constants from that lemma. Using this interval and these constants:

a i: Verify that

0 ≤ M |x | ≤ �Y for α ≤ x ≤ β .

ii: Also verify that any solution y to the above initial-value problem satisfies

|y(x)− y0| ≤ M |x | for a < x < b .

Now observe that the last two inequalities yield

|y(x)− y0| ≤ M |x | ≤ �Y for α ≤ x ≤ β

whenever y is a solution to the above initial-value problem.

b: For the following, let y1 and y2 be any two solutions to the above initial-value problem on

(α, β) , and let

ψ0 , ψ1 , ψ2 , ψ3 , . . . and φ0 , φ1 , φ2 , φ3 , . . .

be the two Picard sequences of functions on (α, β) generated by setting

ψk+1(x) = y0 +
∫ x

0

F(s, ψk(s)) ds

and

φk+1(x) = y0 +
∫ x

0

F(s, φk(s)) ds

with

ψ0(x) = y1(x) and φ0(x) = y2(x) .

i: Using ideas similar to those used above to prove the convergence of the Picard sequence,

show that, for each x in (α, β) and each positive integer k ,

|ψk+1(x)− φk+1(x)| ≤
∫ x

0

B |ψk(s)− φk(s)| ds .

ii: Then verify that, for each x in (α, β) ,

|ψ0(x)− φ0(x)| ≤ 2�Y ,

and

lim
k→∞

|ψk+1(x)− φk+1(x)| = 0 .

(Hint: This is very similar to our showing that |ψk+1(x)− ψk+1(x)| → 0 as k → ∞ .)

iii: Verify that, for each x in (α, β) and positive integer k ,

ψk(x) = y1(x) and φk(x) = y2(x) .

iv: Combine the results of the last two parts to show that

y1(x) = y2(x) for α < x < β .

The end result of the above set of exercises is that there cannot be two different solutions on the

interval (α, β) to the initial-value problem. That was the uniqueness claim of theorem 3.1.
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3.6 On Proving Theorem 3.2

We could spend several more enjoyable pages redoing the work in the previous section, but under

the assumptions made in theorem 3.2 on page 45 instead of those in theorem 3.1. To avoid that, let

me just briefly describe how you can modify that work, and, thereby, prove theorem 3.2.

First of all, recall that much of the initial effort in proving the convergence of the Picard sequence,

ψ0 , ψ1 , ψ2 , ψ3 , . . .

with

ψk+1(x) = y0 +
∫ x

0

F(s, ψk(s)) ds for k = 0, 1, 2, 3, . . . ,

was in showing that there is an interval (α, β) such that, as long as α ≤ s ≤ β , then ψk(s) is never

so large or so small that (s, ψk(s)) is outside a rectangular region on which F is “well-behaved”

(this was the main result of lemma 3.5 on page 50). However, if (as in theorem 3.2) F = F(x, y)

is a continuous function on the infinite strip

R = { (x, y) : α < x < β and − ∞ < y < ∞ } ,

then, for any continuous function φ on (α, β) , F(s, φ(s)) is a well-defined, continuous function

of s over (α, β) , and the integral in

ψ(x) = y0 +
∫ x

0

F(s, φ(s)) ds

exists (and is finite) whenever α < x < β . Verifying that ψ is continuous requires a little more

thought than was needed in the proof of lemma 3.5, but is still pretty easy — simply appeal to the

continuity of F(s, φ(s)) as a function of s along with the fact that

ψ(x1)− ψ(x) =
∫ x1

x

F(s, φ(s)) ds

to show that

lim
x→x1

ψ(x) = ψ(x1) for each x1 in (α, β) .

Consequently, all the functions in the Picard sequence ψ0 , ψ1 , ψ2 , . . . are continuous on (α, β)

(provided, of course, that we started with ψ0 being continuous).

Now choose finite values α1 and β1 so that α < α1 < 0 < β1 < β ; let �Y be the maximum

value of
1

2
|ψ1(x)− ψ0(x)| for α1 ≤ x ≤ β1 ,

and let R0 be the infinite strip

R0 = { (x, y) : α1 < x < β1 and − ∞ < y < ∞ } .

By the assumptions in the theorem, we know that, on R , the continuous function ∂F/∂y depends

only on x . So we can treat it as a continuous function on the closed interval [α1, β1] . But such

functions are bounded. Thus, for some positive constant B and every point in R0 ,∣∣∣∣∂F

∂y

∣∣∣∣ ≤ B .

Using this, the bounds on

|ψk+1(x)− ψk(x)| for α1 ≤ x ≤ β1 and k = 1, 2, 3, . . .
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can now be rederived exactly as in the previous section (leading to inequality (3.5) on page 55 and

inequality set (3.8) on page 56), and we can then use arguments almost identical to those used in

the previous section to show that the Picard sequence converges on (α1, β1) to a solution y of the

given initial-value problem. The only notable modification is that the bound M used to show the

continuity of y must be rederived. For this proof, let M be the maximum value of F(x, y) on the

closed rectangle

{ (x, y) : α1 ≤ x ≤ β1 and |y| ≤ H }
where H is the maximum value of

|ψ0(x)| + �Y eB|x | for α1 ≤ x ≤ β1 .

Inequality set (3.8) then tells us that

|ψk(s)| ≤ H for α1 ≤ s ≤ β1 and k = 0, 1, 2, 3, . . . .

This, in turn, assures us that

|F(s, ψk(s))| ≤ M for α1 ≤ s ≤ β1 and k = 0, 1, 2, 3, . . . ,

which is what we used in the previous section to prove the continuity of y .

Finally, since every point x in the interval (α, β) is also in some such subinterval (α1, β1) , we

must have that the Picard sequence converges at every point x in (α, β) , and what it converges to,

y(x) , is a solution to the given initial-value problem. Straightforward modifications to the arguments

outlined in exercise 3.2 then show that this solution is the only solution.

3.7 Appendix: A Little Multivariable Calculus

There are a few places in our discussions where some knowledge of the calculus of functions of two

or more variables (i.e., “multivariable” calculus) is needed. These include the commentary about

existence and uniqueness in this chapter (theorems 3.1 and 3.2), and the use of the multivariable

version of the chain rule in chapter 7. This appendix is a brief introduction to those elements of

multivariable calculus that are needed for these discussions. It is for those who have not yet been

formally introduced to calculus of several variables, and contains just barely enough to get by.

Functions of Two Variables

At least while we are only concerned with first-order differential equations, the only multivariable

calculus we will need involves functions of just two variables, such as

f (x, y) = x2 + x2 y2 , g(x, y) = x3 + 4y

x
and h(x, y) =

√
x3 + y2 .

These functions will be defined on “regions” of the XY –plane.

Open and Closed Regions

Functions of one variable are typically defined on intervals of the X–axis. For functions of two

variables, we must replace the concept of an interval with that of a “region”. For our purposes, a

region (in the XY –plane) refers to the collection of all points enclosed by some curve or set of
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curves on the plane (with the understanding that this curve or set of curves actually does enclose

some collection of points in the plane). If we include the curves with the enclosed points, then we

say the region is closed; if the curves are all excluded, then we refer to the region as open. This

corresponds to the distinction between a closed interval [a, b] (which does contain the endpoints),

and an open interval (a, b) (which does not contain the endpoints).

!�Example 3.4: Consider the rectangular region R whose sides form the rectangle generated

from the vertical lines x = 1 and x = 4 along with the horizontal lines y = 2 and y = 6 . If

R is to be a closed region, then it must include this rectangle; that is,

R = { (x, y) : 1 ≤ x ≤ 4 and 2 ≤ y ≤ 6 } .

If R is to be an open region, then it must exclude this rectangle; that is,

R = { (x, y) : 1 < x < 4 and 2 < y < 6 } .

On the other hand, if R just includes one of its sides, say, its right side,

R = { (x, y) : 1 < x ≤ 4 and 2 < y < 6 } ,

then it is considered to be neither open or closed.

Limits

The concept of limits for functions of two variables is a natural extension of the concept of limits

for functions of one variable.

Given a function f (x, y) of two variables, a point (x0, y0) in the plane, and a finite value A ,

we say that

A is the limit of f (x, y) as (x, y) approaches (x0, y0) ,

equivalently,

lim
(x,y)→(x0,y0)

f (x, y) = A or f (x, y) → A as (x, y) → (x0, y0) ,

if and only if we can make the value of f (x, y) as close (but not necessarily equal) to A as we desire

by requiring (x, y) be sufficiently close (but not necessarily equal) to (x0, y0) . More formally,

lim
(x,y)→(x0,y0)

f (x, y) = A

if and only if, for every positive value ε there is a corresponding positive distance δε such that

f (x, y) is within ε of A whenever (x, y) is within δε of (x0, y0) . That is, (in mathematical

shorthand), for each ε > 0 there is a δε > 0 such that

distance from (x, y) to (x0, y0) < δε �⇒ | f (x, y)− A| < ε .

The rules for the existence and computation of these limits are straightforward extensions of

those for functions of one variable, and need not be discussed in detail here.

!�Example 3.5: “Obviously”, if

f (x, y) = x2 + x2 y2 ,
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then

lim
(x,y)→(2,3)

f (x, y) = lim
(x,y)→(2,3)

[
x2 + x2 y2

]
= 22 + (22)(32) = 40 .

On the other hand

lim
(x,y)→(0,3)

g(x, y)

does not exist if

g(x, y) = x3 + 4y

x

because (x, y) → (0, 3) leads to 12/0 .

Continuity

The only difference between “continuity for a function of one variable” and “continuity for a function

of two variables” is the number of variables involved.

Basically, a function f (x, y) is continuous at a point (x0, y0) if and only if we can legitimately

write

lim
(x,y)→(x0,y0)

f (x, y) = f (x0, y0) .

That function is then continuous on a region R if and only if it is continuous at every point in R .

Note that this does require f (x, y) to be defined at every point in the region.

Partial Derivatives

Recall that the derivative of a function of one variable f = f (t) is given by the limit formula

d f

dt
= lim

�t→0

f (t +�t)− f (t)

�t

provided the limit exists. The simplest extension of this for a function of two variables f = f (x, y)

is the “partial” derivatives with respect to each variable:

1. The (first) partial derivative with respect to x is denoted and defined by

∂ f

∂x
= lim

�x→0

f (x +�x, y)− f (x, y)

�x

provided the limit exists.

2. The (first) partial derivative with respect to y is denoted and defined by

∂ f

∂y
= lim

�y→0

f (x, y +�y)− f (x, y)

�y

provided the limit exists.

Note the notation, ∂ f/∂x and ∂ f/∂y , in which we use ∂ instead of d .7

An important thing to observe about the limit formula for ∂ f/∂x is that, in essence, x replaces the

variable t in the previous formula for d f/dt while y does not vary. Consequently, to compute ∂ f/∂x ,

simply take the derivative of f (x, y) using x as the variable while pretending y is a constant.

Likewise, to compute ∂ f/∂y simply take the derivative of f (x, y) using y as the variable while

pretending x is a constant. As a result, everything already learned about computing ordinary

derivatives applies to computing partial derivatives, provided we keep straight which variable is

being treated (temporarily) as a constant.

7 Some authors prefer using such notation as Dx f and fx instead of ∂ f/∂x , and Dy f and fy instead of ∂ f/∂y .
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!�Example 3.6: Let

f (x, y) = x2 + x2 y2 .

Then

∂ f

∂x
= ∂

∂x

[
x2 + x2 y2

]
= ∂

∂x

[
x2
]

+ ∂

∂x

[
x2 y2

]
= 2x + 2xy2 ,

while
∂ f

∂y
= ∂

∂y

[
x2 + x2 y2

]
= ∂

∂y

[
x2
]

+ ∂

∂y

[
x2 y2

]
= 0 + x22y .

?�Exercise 3.3: Let

g(x, y) = x2 y3 and h(x, y) = sin
(

x2 + y2
)

.

Verify that
∂g

∂x
= 2xy3 and

∂g

∂y
= 3x2 y2 ,

while
∂h

∂x
= 2x cos

(
x2 + y2

)
and

∂h

∂y
= 2y cos

(
x2 + y2

)
.

Functions of More than Two Variables

The notation can become a bit more cumbersome, and the pictures even harder to draw, but every-

thing discussed above for functions of two variables naturally extends to functions of three or more

variables. For example, we may have a function of three variables f = f (x, y, z) defined on, say,

an open box-like region

R = { (x, y, z) : xmin < x < xmax , ymin < y < ymax and zmin < z < zmax }
where xmin , xmax , ymin , ymax , zmin and zmax are finite numbers. We will then say that, for any

given point (x0, y0, z0) and value A ,

lim
(x,y,)→(x0,y0,z0)

f (x, y, z) = A

if and only if there is a corresponding positive distance δε for every positive value ε such that

f (x, y, z) is within ε of A whenever (x, y, z) is within δε of (x0, y0, z0) . We will also say that

this function is continuous on R if and only if we can legitimately write

lim
(x,y,)→(x0,y0,z0)

f (x, y, z) = f (x0, y0, z0)

for every point (x0, y0, z0) in R . Finally, the three (first) partial derivatives of this function are

given by
∂ f

∂x
= lim

�x→0

f (x +�x, y, z)− f (x, y, z)

�x
,

∂ f

∂y
= lim

�y→0

f (x, y +�y, z)− f (x, y, z)

�y

and
∂ f

∂z
= lim

�y→0

f (x, y, z +�z)− f (x, y, z)

�z
,

provided the limits exist. Again, in practice, the partial derivative with respect to any one of the three

variables is the derivative obtained by pretending the other variables are constants.
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Additional Exercises

3.4. Rewrite each of the following in derivative formula form, and then find all constant so-

lutions. (In some cases, you may have to use the quadratic formula to find any constant

solutions.)

a.
dy

dx
+ 3xy = 6x b. sin(x + y)− y

dy

dx
= 0

c.
dy

dx
− y3 = 8 d. x2 dy

dx
+ xy2 = x

e.
dy

dx
− y2 = x f. y3 − 25y + dy

dx
= 0

g. (x − 2)
dy

dx
= y + 3 h. (y − 2)

dy

dx
= x − 3

i.
dy

dx
+ 2y − y2 = −2 j.

dy

dx
+ (8 − x)y − y2 = −8x

3.5. Which of the equations in the above exercise set are autonomous?

3.6. Consider the first-order initial-value problem

dy

dx
= 2

√
y with y(1) = 0 .

a. Verify that each of the following is a solution on the interval (−∞,∞) , and graph that

solution:

i. y(x) = 0 for − ∞ < x < ∞ .

ii. y(x) =
{

0 if x < 1

(x − 1)2 if 1 ≤ x
.

iii. y(x) =
{

0 if x < 3

(x − 3)2 if 3 ≤ x
.

b. You’ve just verified three different functions as being solutions to the above initial-value

problem. Why does this not violate theorem 3.1?

3.7. Let ψ0 , ψ1 , ψ2 , ψ3 , . . . be the sequence of functions generated by the Picard iterative

method (as described in section 3.4) using the initial-value problem

dy

dx
= xy with y(0) = 2

along with

ψ0(x) = 2 for all x .

Using the formula for Picard’s method (formula (3.4) on page 48), compute the follow-

ing:

a. ψ1(x) b. ψ2(x) c. ψ3(x)
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3.8. Let ψ0 , ψ1 , ψ2 , ψ3 , . . . be the sequence of functions generated by the Picard iterative

method (as described in section 3.4) using the initial-value problem

dy

dx
= 2x + y2 with y(0) = 3

along with

ψ0(x) = 3 for all x .

Compute the following:

a. ψ1(x) b. ψ2(x)
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Separable First-Order Equations

As we will see below, the notion of a differential equation being “separable” is a natural generalization

of the notion of a first-order differential equation being directly integrable. What’s more, a fairly

natural modification of the method for solving directly integrable first-order equations gives us the

basic approach to solving “separable” differential equations. However, it cannot be said that the

theory of separable equations is just a trivial extension of the theory of directly integrable equations.

Certain issues can arise that do not arise in solving directly integrable equations. Some of these

issues are pertinent to even more general classes of first-order differential equations than those that

are just separable, and may play a role later on in this text.

In this chapter we will, of course, learn how to identify and solve separable first-order differential

equations. We will also see what sort of issues can arise, examine those issues, and discuss some

ways to deal with them. Since many of these issues involve graphing, we will also draw a bunch of

pictures.

4.1 Basic Notions
Separability

A first-order differential equation is said to be separable if, after solving it for the derivative,

dy

dx
= F(x, y) ,

the right-hand side can then be factored as “a formula of just x ” times “a formula of just y ”,

F(x, y) = f (x)g(y) .

If this factoring is not possible, the equation is not separable.

More concisely, a first-order differential equation is separable if and only if it can be written as

dy

dx
= f (x)g(y) (4.1)

where f and g are known functions.

!�Example 4.1: Consider the differential equation

dy

dx
− x2 y2 = x2 . (4.2)

67
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Solving for the derivative (by adding x2 y2 to both sides),

dy

dx
= x2 + x2 y2 ,

and then factoring out the x2 on the right-hand side gives

dy

dx
= x2

(
1 + y2

)
,

which is in form
dy

dx
= f (x)g(y)

with

f (x) = x2︸︷︷︸
no y’s

and g(y) =
(

1 + y2
)

︸ ︷︷ ︸
no x’s

.

So equation (4.2) is a separable differential equation.

!�Example 4.2: On the other hand, consider

dy

dx
− x2 y2 = 4 . (4.3)

Solving for the derivative here yields

dy

dx
= x2 y2 + 4 .

The right-hand side of this clearly cannot be factored into a function of just x times a function

of just y . Thus, equation (4.3) is not separable.

We should (briefly) note that any directly integrable first-order differential equation

dy

dx
= f (x)

can be viewed as also being the separable equation

dy

dx
= f (x)g(y)

with g(y) being the constant 1 . Likewise, a first-order autonomous differential equation

dy

dx
= g(y)

can also be viewed as being separable, this time with f (x) being 1 . Thus, both directly integrable

and autonomous differential equations are all special cases of separable differential equations.

Integrating Separable Equations

As just noted, a directly-integrable equation

dy

dx
= f (x)
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can be viewed as the separable equation

dy

dx
= f (x)g(y) with g(y) = 1 .

We point this out again because the method used to solve directly-integrable equations (integrating

both sides with respect to x ) is rather easily adapted to solving separable equations. Let us try to

figure out this adaptation using the differential equation from the first example. Then, if we are

successful, we can discuss its use more generally.

!�Example 4.3: Consider the differential equation

dy

dx
− x2 y2 = x2 .

In example 4.1, we saw that this is a separable equation, and can be written as

dy

dx
= x2

(
1 + y2

)
.

If we simply try to integrate both sides with respect to x , the right-hand side would become∫
x2
(

1 + y2
)

dx ,

Unfortunately, the y here is really y(x) , some unknown formula of x ; so the above is just

the integral of some unknown function of x — something we cannot effectively evaluate. To

eliminate the y’s on the right-hand side, we could, before attempting the integration, divide

through by 1 + y2 , obtaining
1

1 + y2

dy

dx
= x2 . (4.4)

The right-hand side can now be integrated with respect to x . What about the left-hand side? The

integral of that with respect to x is ∫
1

1 + y2

dy

dx
dx .

Tempting as it is to simply “cancel out the dx’s ”, let’s not (at least, not yet). After all, dy/dx is not

a fraction; it denotes the derivative y′(x) where y(x) is some unknown formula of x . But y is

also shorthand for that same unknown formula y(x) . So this integral is more precisely written

as ∫
1

1 + [y(x)]2 y′(x) dx .

Fortunately, this is just the right form for applying the generic substitution y = y(x) to convert

the integral with respect to x to an integral with respect to y . No matter what y(x) might be

(so long as it is differentiable), we know∫
1

1 + [y(x)]2︸ ︷︷ ︸
1

1 + y2

y′(x) dx︸ ︷︷ ︸
dy

=
∫

1

1 + y2
dy .

Combining all this, we get∫
1

1 + y2

dy

dx
dx =

∫
1

1 + [y(x)]2 y′(x) dx =
∫

1

1 + y2
dy ,
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which, after cutting out the middle, reduces to∫
1

1 + y2

dy

dx
dx =

∫
1

1 + y2
dy ,

the very equation we would have obtained if we had yielded to temptation and naively “cancelled

out the dx’s ”.

Consequently, the equation obtained by integrating both sides of equation (4.4) with respect

to x , ∫
1

1 + y2

dy

dx
dx =

∫
x2 dx ,

is the same as ∫
1

1 + y2
dy =

∫
x2 dx .

Doing the indicated integration on both sides then yields

arctan(y) = 1

3
x3 + c ,

which, in turn, tells us that

y = tan
(

1

3
x3 + c

)
.

This is the general solution to our differential equation.

Two generally useful ideas were illustrated in the last example. One is that, whenever we have

an integral of the form ∫
H(y)

dy

dx
dx

where y denotes some (differentiable) function of x , then this integral is more properly written as∫
H(y(x)) y′(x) dx ,

which reduces to ∫
H(y) dy

via the substitution y = y(x) (even though we don’t yet know what y(x) is). Thus, in general,∫
H(y)

dy

dx
dx =

∫
H(y) dy , (4.5)

This equation is true whether you derive it rigorously, as we have, or obtain it naively by mechanically

canceling out the dx’s.1

The other idea seen in the example was that, if we divide an equation of the form

dy

dx
= f (x)g(y)

by g(y) , then (with the help of equation (4.5)) we can compute the integral with respect to x of

each side of the resulting equation,
1

g(y)

dy

dx
= f (x) .

This leads us to a basic procedure for solving separable first-order differential equations:

1 One of the reasons our notation is so useful is that naive manipulations of the differentials often do lead to valid equations.

Just don’t be too naive and cancel out the d’s in dy/dx .
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1. Get the differential equation into the form

dy

dx
= f (x)g(y) .

2. Divide through by g(y) to get
1

g(y)

dy

dx
= f (x) .

(Note: At this point we’ve “separated the variables”, getting all the y’s and derivatives of y

on one side, and all the x’s on the other.)

3. Integrate both sides with respect to x , making use of the fact that∫
1

g(y)

dy

dx
dx =

∫
1

g(y)
dy .

4. Solve the resulting equation for y .

There are a few issues that can arise in some of these steps, and we will have to slightly refine this

procedure to address those issues. Before doing that, though, let us practice with another differential

equation for which the above approach can be applied without any difficulty.

!�Example 4.4: Consider solving the initial-value problem

dy

dx
= − x

y − 3
with y(0) = 1 .

Here,
dy

dx
= f (x)g(y) with f (x) = −x and g(y) = 1

y − 3
,

and “dividing through by g(y) ” is the same as multiplying through by y − 3 . Doing so, and

then integrating both sides with respect to x , we get the following:

[y − 3] dy

dx
= −x

↪→
∫

[y − 3] dy

dx
dx = −

∫
x dx

↪→
∫

[y − 3] dy = −
∫

x dx

↪→ 1

2
y2 − 3y = − 1

2
x2 + c .

Though hardly necessary, we can multiply through by 2 , obtaining the slightly simpler expression

y2 − 6y = −x2 + 2c .

We are now faced with the less-than-trivial task of solving the last equation for y in terms of x .

Since the left-hand side looks something like a quadratic for y , let us rewrite this equation as

y2 − 6y +
[
x2 − 2c

]
= 0

so that we can apply the quadratic formula to solve for y . Applying that venerable formula, we

get

y =
−(−6) ±

√
(−6)2 − 4

[
x2 − 2c

]
2

= 3 ±
√

9 − x2 + 2c ,
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which, since 9 + 2c is just another unknown constant, can be written a little more simply as

y = 3 ±
√

a − x2 . (4.6)

This is the general solution to our differential equation.

Now for the initial-value problem. Combining the general solution just derived with the

given initial value at x = 0 yields

1 = y(0) = 3 ±
√

a − 02 = 3 ± √
a .

So

±√
a = −2 .

This means that a = 4 , and that we must use the negative root in formula (4.6) for y . Thus, the

solution to our initial-value problem is

y = 3 −
√

4 − x2 .

4.2 Constant Solutions
Avoiding Division by Zero

In the above procedure for solving

dy

dx
= f (x)g(y) ,

we divided both sides by g(y) . This requires, of course, that g(y) not be zero — which is often

not the case.

!�Example 4.5: Consider solving
dy

dx
= 2x(y − 5) .

As long as y = 5 , we can divide through by y − 5 and follow our basic procedure:

1

y − 5

dy

dx
= 2x

↪→
∫

1

y − 5

dy

dx
dx =

∫
2x dx

↪→
∫

1

y − 5
dy =

∫
2x dx

↪→ ln |y − 5| = x2 + c

↪→ |y − 5| = ex2+c = ex2

ec

↪→ y − 5 = ±ex2

ec .
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So, assuming y = 5 , we get

y = 5 ± ecex2

.

Notice that, because ec = 0 for every real value c , this formula for y never gives us y = 5 for

any real choice of c and x .

But what about the case where y = 5 ?

Well, suppose y = 5 . To be more specific, let y be the constant function

y(x) = 5 for every x ,

and plug this constant function into our differential equation

dy

dx
= 2x(y − 5) .

Recalling (again) that derivatives of constants are zero, we get

0 = 2x(5 − 5) ,

which is certainly a true equation. So y = 5 is a solution. In fact, it is one of those “constant”

solutions we discussed in the previous chapter.

Combining all the above, we see that the “general solution” to the given differential equation

is actually the set consisting of the solutions

y(x) = 5 and y(x) = 5 ± ecex2

.

Now consider the general case, where we seek all possible solutions to

dy

dx
= f (x)g(y) .

If y0 is any single value for which

g(y0) = 0 ,

then plugging the corresponding constant function

y(x) = y0 for all x

into the differential equation gives, after a trivial bit of computation,

0 = 0 ,

showing that

y(x) = y0 is a constant solution to
dy

dx
= f (x)g(y) ,

just as we saw (in the above example) that

y(x) = 5 is a constant solution to
dy

dx
= 2x(y − 5) .

Conversely, suppose y = y0 is a constant solution to

dy

dx
= f (x)g(y)

(and f is not the zero function). Then the equation is valid with y replaced by the constant y0 ,

giving us

0 = f (x)g(y0) ,
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which, in turn, means that y0 must be a constant such that

g(y0) = 0 .

What all this shows is that our basic method for solving separable equations may miss the

constant solutions because those solutions correspond to a division by zero in our basic method.2

Because constant solutions are often important in understanding the physical process the dif-

ferential equation might be modeling, let us be careful to find them. Accordingly, we will insert the

following step into our procedure on page 70 for solving separable equations:

• Identify all constant solutions by finding all values y0 , y1 , y2 , … such that

g(yk) = 0 ,

and then write down

y(x) = y0 , y(x) = y1 , y(x) = y2 , . . . .

(These are the constant solutions.)

(And we will renumber the other steps as appropriate.)

Sometimes, the formula obtained by our basic procedure for solving can be ‘tweaked’ to also

account for the constant solutions. A standard ‘tweak’ can be seen by reconsidering the general

solution obtained in our last example.

!�Example 4.6: The general solution obtained in the previous example was the set containing

y(x) = 5 and y(x) = 5 ± ecex2

,

If we let A = ±ec , the second equation reduces to

y(x) = 5 + Aex2

.

Remember, though, A = ±ec can be any positive or negative number, but cannot be zero (because

of the nature of the exponential function). So, by our definition of A , our general solution is

y(x) = 5 (4.7a)

and

y(x) = 5 + Aex2

where A can be any nonzero real number . (4.7b)

However, if we allow A to be zero, then equation (4.7b) reduces to equation (4.7a),

y(x) = 5 + 0 · ex2 = 5 ,

which means the entire set of possible solutions can be expressed more simply as

y(x) = 5 + Aex2

where A is an arbitrary constant with no restrictions on its possible values.

2 Because g(y0) = 0 is a ‘singular’ value for division, many authors refer to constant solutions of separable equations as

singular solutions.
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In the future, we will usually express our general solutions as simply as practical, with the trick

of letting

A = ±ec or 0

often being used without comment. Keep in mind, though, that the sort of tweaking just described

is not always possible.

?�Exercise 4.1: Verify that the general solution to

dy

dx
= −y2

is given by the set consisting of

y(x) = 0 and y(x) = 1

x + c
.

Is there any way to rewrite these two formulas for y(x) as a single formula using just one arbitrary

constant?

The Importance of Constant Solutions

Even if we can use the same general formula to describe all the solutions (constant and otherwise),

it is often worthwhile to explicitly identify any constant solutions. To see this, let us now solve

the differential equation from chapter 1 describing a falling object when we take into account air

resistance.

!�Example 4.7: Let v = v(t) be the velocity (in meters per second) at time t of some object

of mass m plummeting towards the ground. In chapter 1, we decided that Fair , the force of air

resistance acting on the falling body, could be described by

Fair = −γ v

where γ was some positive constant dependent on the size and shape of the object (and probably

determined by experiment). Using this, we obtained the differential equation

dv

dt
= −9.8 − κv where κ = γ

m
.

This is a relatively simple separable equation. Assuming v equals a constant v0 yields

0 = −9.8 − κv0 �⇒ v0 = −9.8

κ
= −9.8m

γ
.

So, we have one constant solution,

v(t) = v0 for all t

where

v0 = −9.8

κ
= −9.8m

γ
.

For reasons that will soon become clear, v0 is called the terminal velocity of the object that is

falling.



�

�

�

�

�

�

�

�

76 Separable First-Order Equations

To find the other possible solutions, we assume v = v0 and proceed:

dv

dt
= −9.8 − κv

↪→ 1

9.8 + κv

dv

dt
= −1

↪→
∫

1

9.8 + κv

dv

dt
dt = −

∫
1 dt

↪→
∫

1

9.8 + κv
dv = −

∫
dt

↪→ 1

κ
ln |9.8 + κv| = −t + c

↪→ ln |9.8 + κv| = −κt + κc

↪→ 9.8 + κv = ±e−κt+κc

↪→ v(t) = 1

κ

[−9.8 ± eκce−κt
]

.

Since v0 = −9.8κ−1 , the last equation reduces to

v(t) = v0 + Ae−κt where A = ± 1

κ
eκc .

This formula for v(t) yields the constant solution, v = v0 , if we allow A = 0 . Thus, letting A

be a completely arbitrary constant, we have that

v(t) = v0 + Ae−κt (4.8a)

where

v0 = −9.8m

γ
and κ = γ

m
(4.8b)

describes all possible solutions to the differential equation of interest here. The graphs of some

possible solutions (assuming a terminal velocity of -10 meters/second) are sketched in figure 4.1.

Notice how the constant in the constant solution, v0 , appears in the general solution (equation

(4.8a)). More importantly, notice that the exponential term in this solution rapidly goes to zero

as t increases, so

v(t) = v0 + Ae−κt → v(t) = v0 as t → ∞ .

This is graphically obvious in figure 4.1. Consequently, no matter what the initial velocity and

initial height were, eventually the velocity of this falling object will be very close to v0 (provided

it doesn’t hit the ground first). That is why v0 is called the terminal velocity. That is also why that

constant solution is so important here (and is appropriately also called the equilibrium solution).

It accurately predicts the final velocity of any object falling from a sufficiently high height. And

if you are that falling object, then that velocity3 is probably a major concern.

3 between 120 and 150 miles per hour for a typical human body
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Figure 4.1: Graphs of the velocity of a falling object during the first 8 seconds of its fall assuming

a terminal velocity of −10 meters per second. Each graph corresponds to a different

initial velocity.

4.3 Explicit Versus Implicit Solutions

Thus far, we have been able to find explicit formulas for all of our solutions; that is, we have been

able to carry out the last step in our basic procedure — that of solving the resulting (integrated)

equation for y in terms of x — obtaining

y = y(x) where y(x) is some formula of x (with no y’s ).

For example, as the general solution to

dy

dx
− x2 y2 = x2 ,

we obtained (in example 4.3)

y = tan
(

1

3
x3 + c

)
︸ ︷︷ ︸

y(x)

.

Unfortunately, this is not always possible.

!�Example 4.8: Consider
dy

dx
= x + 1

8 + 2π sin(πy)
.

In this case,

g(y) = 1

8 + 2π sin(πy)
,

which can never be zero. So there are no constant solutions, and we can blithely proceed with

our procedure. Doing so:
dy

dx
= x + 1

8 + 2π sin(πy)

↪→ [8 + 2π sin(πy)] dy

dx
= x + 1
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↪→
∫

[8 + 2π sin(πy)] dy

dx
dx =

∫
x + 1 dx

↪→
∫

[8 + 2π sin(πy)] dy =
∫

x + 1 dx

↪→ 8y − 2 cos(πy) = 1

2
x2 + x + c .

The next step would be to solve the last equation for y in terms of x . But look at that last

equation. Can you solve it for y as a formula of x ? Neither can anyone else. So we are not able

to obtain an explicit formula for y . At best, we can say that y = y(x) satisfies the equation

8y − 2 cos(πy) = 1

2
x2 + x + c .

Still, this equation is not without value. It does implicitly describe the possible relations between

x and y . In particular, the graphs of this equation can be sketched for different values of c (we’ll

do this later on in this chapter). These graphs, in turn, give you the graphs you would obtain for

y(x) if you could actually find the formula for y(x) .

In practice, we must deal with both “explicit” and “implicit” solutions to differential equations.

When we have an explicit formula for the solution in terms of the variable, that is, we have something

of the form

y = y(x) where y(x) is some formula of x (with no y’s ) , (4.9)

then we say that we have an explicit solution to our differential equation. Technically, it is that

“formula of x ” in equation (4.9) which is the explicit solution. In practice, though, it is common to

refer to the entire equation as “an explicit solution”. For example, we found that the solution to

dy

dx
− x2 y2 = x2

is explicitly given by

y = tan
(

1

3
x3 + c

)
.

Strictly speaking, the explicit solution here is the formula

tan
(

1

3
x3 + c

)
.

That, of course, is what is really meant when someone answers the question

What is the explicit solution to
dy

dx
− x2 y2 = x2 ?

with the equation

y = tan
(

1

3
x3 + c

)
.

If, on the other hand, we have an equation (other than something like (4.9)) involving the solution

and the variable, then that equation is called an implicit solution. In trying to solve the differential

equation in example 4.8,
dy

dx
= x + 1

8 + 2π sin(πy)
,

we derived the equation

8y − 2 cos(πy) = 1

2
x2 + x + c .

This equation is an implicit solution for the given differential equation.4
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Differential equations — be they separable or not — can have both implicit and explicit solutions.

Indeed, implicit solutions often arise in the process of deriving an explicit solution. For example, in

solving
dy

dx
− x2 y2 = x2 ,

we first obtained

arctan(y) = 1

3
x3 + c .

This is an implicit solution. Fortunately, it could be easily solved for y , giving us the explicit

solution

y = tan
(

1

3
x3 + c

)
.

As a general rule, explicit solutions are preferred over implicit solutions. Explicit solutions

usually give more information about the solutions, and are easier to use than implicit solutions

(even when you have sophisticated computer math packages). So, whenever you solve a differential

equation,

FIND AN EXPLICIT SOLUTION IF AT ALL PRACTICAL.

Do not be surprised, however, if you encounter a differential equation for which an explicit solution

is not obtainable. This is not a disaster; it just means a little more work may be needed to extract

useful information about the possible solutions.

4.4 Full Procedure for Solving Separable Equations

In light of the possibility of singular solutions and the possibility of not finding explicit solutions,

we should refine our procedure for solving a separable differential equation to:

1. Get the differential equation into the form

dy

dx
= f (x)g(y) . (4.10)

2. Identify all constant solutions by finding all values y0 , y1 , y2 , … such that

g(yk) = 0 ,

and then write down

y(x) = y0 , y(x) = y1 , y(x) = y2 , . . . .

(These are the constant solutions.)

3a. Divide equation (4.10) through by g(y) to get

1

g(y)

dy

dx
= f (x)

(assuming y is not one of the constant solutions just found).

4 The fact that an explicit solution is a formula while an implicit solution is an equation may be a little confusing at first. If it

helps, think of the phrase “implicit solution” as being shorthand for “an equation implicitly defining the solution y = y(x) ”.
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b. Integrate both sides of the equation just obtained with respect to x .

c. Solve the resulting equation for y , if practical (thus obtaining an explicit solution). If

not practical, use that resulting equation as an implicit solution, possibly rearranged or

simplified if appropriate.

4. If constant solutions were found, see if the formulas obtained for the other solutions can be

tweaked to also describe the constant solutions. In any case, be sure to write out all solution(s)

obtained.

The above yields the general solution. If initial values are also given, then use those initial conditions

with the general solution just obtained to derive the particular solutions satisfying the given initial-

value problems.

4.5 Existence, Uniqueness, and False Solutions
On the Existence and Uniqueness of Solutions

Let’s consider a generic initial-value problem involving a separable differential equation,

dy

dx
= f (x)g(y) with y(x0) = y0 .

Letting F(x, y) = f (x)g(y) this is

dy

dx
= F(x, y) with y(x0) = y0 ,

which was the initial-value problem considered in theorem 3.1 on page 44. That theorem assures us

that there is exactly one solution to our initial-value problem on some interval (a, b) containing x0

provided

F(x, y) = f (x)g(y)

and
∂F

∂y
= ∂

∂y
[ f (x)g(y)] = f (x)g′(y)

are continuous in some open region containing the point (x0, y0) . This means our initial-value

problem will have exactly one solution on some interval (a, b) provided f (x) is continuous on

some open interval containing x0 , and both g(y) and g′(y) are continuous on some open interval

containing y0 . In practice, this is typically what we have.

Typically, also, one rarely worries about the existence and uniqueness of the solution to an

initial-value problem with a separable differential equation, at least not when one can carry out

the integration and algebra required by our procedure. After all, doesn’t our refined procedure for

solving separable differential equations always lead us to “the solution”? Well, here are two reasons

to have at least a little concern about existence and uniqueness:

1. After the integration in step 3, the resulting equation may involve a nontrivial formula of

y . After applying the initial condition and solving for y , it is possible to end up with more

than one formula for y(x) . But as long as f , g and g′ are sufficiently continuous, the

above tells us that there is only one solution. Thus, only one of these formulas for y(x) can

be correct. The others are “false solutions” that should be identified and eliminated. (An

example is given in the next subsection.)
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2. Suppose g(y0) = 0 . Our refined procedure tells us that the constant function y = y0 ,

which certainly satisfies the initial condition, is also a solution to the differential equation.

So y = y0 is immediately seen to be a solution to our initial-value problem. Do we then

need to go through the rest of our procedure to see if any other solutions to the differential

equation satisfy y(x0) = y0 ? The answer is No, not if f is continuous on an open interval

containing x0 , and both g and g′ are continuous on an open interval containing y0 . If

that continuity holds, then the above analysis assures us that there is only one solution. Thus,

if we find a solution, we have found the solution.

It is possible, to have an initial-value problem

dy

dx
= f (x)g(y) with y(x0) = y0 ,

in which the f or g or g′ is not suitably continuous. The problem in exercise 3.6 on page 65,

dy

dx
= 2

√
y with y(1) = 0 ,

is one such problem. Here,

y0 = 0 , f (x) = 1 , g(y) = 2
√

y and g′(y) = 1√
y

.

Clearly, g and, especially, g′ are not continuous in any open interval containing y0 = 0 . So the

above results on existence and uniqueness cannot be assumed. Indeed, in this case there is not just

the one constant solution y = 0 , but, as shown in that exercise, there are many different solutions,

including

y(x) =
{

0 if x < 1

(x − 1)2 if 1 ≤ x

}
and y(x) =

{
0 if x < 3

(x − 3)2 if 3 ≤ x

}
.

A Caution on False Solutions

It is always a good idea to verify that any ‘solution’ obtained in solving a differential equation really

is a solution. This is even more true when solving separable differential equations. Not only does

the extra algebra involved naturally increase the likelihood of human error, this algebra can, as noted

above, lead to ‘false solutions’ — formulas that are obtained as solutions but do not actually satisfy

the original problem.

!�Example 4.9: Consider the initial-value problem

dy

dx
= 2

√
y with y(0) = 4 .

The differential equation does have one constant solution, y = 0 , but since that doesn’t satisfy the

initial condition, it hardly seems relevant. To find the other solutions, let’s divide the differential

equation by
√

y and proceed with the basic procedure:

1√
y

dy

dx
= 2

↪→
∫

1√
y

dy

dx
dx =

∫
2 dx
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↪→
∫

y−1/2 dy =
∫

2 dx

↪→ 2y
1/2 = 2x + c .

Dividing by 2 and squaring (and letting a = c/2 ), we get

y = (x + a)2 . (4.11)

Plugging this into the initial condition, we obtain

4 = y(0) = (0 + a)2 = a2 ,

which means that

a = ±2 .

Hence, we have two formulas for the solution to our initial-value problem,

y+(x) = (x + 2)2 and y−(x) = (x − 2)2 .

Both satisfy the initial condition. Do both satisfy the differential equation

dy

dx
= 2

√
y ?

Well, plugging

y = y±(x) = (x ± 2)2

into the differential equation yields

d

dx
(x ± 2)2 = 2

√
(x ± 2)2

↪→ 2(x ± 2) = 2
√
(x ± 2)2 .

So, for y = y±(x) to be solutions to our differential equation, we must have

x ± 2 =
√
(x ± 2)2 (4.12)

for all values of x ‘of interest’. In particular, this equation must be valid at the initial point

x = 0 .

So, consider what happens to equation (4.12) at the initial point x = 0 . With y = y+(x)
and x = 0 equation (4.12) becomes

0 + 2 =
√
(0 + 2)2 =

√
4 ,

which, of course, simplifies to the perfectly acceptable equation

2 = 2 .

But with y = y−(x) and x = 0 we get

0 − 2 =
√
(0 − 2)2 =

√
4 = 2 ,

which, of course, simplifies to

−2 = 2 ,
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which is not acceptable. So we cannot accept y = y−(x) as a solution to our initial-value

problem. It was a false solution.

While we are at it, let’s look a little more closely at equation (4.12) with y = y+(x) ,

x + 2 =
√
(x + 2)2 .

Remember, if A is any real number, then√
A2 = |A| .

So equation (4.12) with y = y+ can be written as

x + 2 = |x + 2| ,

which is true if and only if x + 2 ≥ 0 (i.e., x ≥ −2 ). This means that our solution, y = y+(x) ,

is not valid for all values of x , only for those greater than or equal to −2 . Thus, the actual

solution that we have is

y = y+(x) = (x + 2)2 for − 2 ≤ x .

There was a lot of analysis done in the last example after obtaining the apparent solutions

y = (x ± 2)2 .

Don’t be alarmed. In most of the problems you will be given, verifying that your formula is a solution

should be fairly easy. Still, take the moral of this example to heart: It is a good idea to verify that

any formulas derived as solutions truly are solutions.

By the way, in a later chapter we will develop some graphical techniques that would have

simplified our work in the above example.

4.6 On the Nature of Solutions to Differential Equations

When we solve a first-order directly integrable differential equation,

dy

dx
= f (x) ,

we get something of the form

y = F(x) + c

where F is any antiderivative of f and c is an arbitrary constant. Computationally, all we have to

do is find a single antiderivative F for f and then add an arbitrary constant. Thus, also, the graph

of any possible solution is nothing more than the graph of F(x) shifted vertically by the value of c

(up if c > 0 , down if c < 0 ). What’s more, the interval for x over which

y = F(x) + c

is a valid solution depends only on the one function F . If F(x) is continuous for all x in an interval

(a, b) , then (a, b) is a valid interval for our solution. This interval does not depend on the choice

for c .
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(a) (b)

X X

Y Y

1 12 23 3−1 −1−2 −2−3 −3

10 10

5 5

−5 −5

−10 −10

Figure 4.2: The graph of y = tan
(

1
3

x3 + c
)

(a) when y(0) = 0 and (b) when y(0) = 2 .

The situation can be much more complicated if our differential equation is not directly integrable.

First of all, finding an explicit solution can be impossible. And consider those explicit general

solutions we have found,

y = tan
(

1

3
x3 + c

)
(from example 4.3 on page 69)

and

y = 3 ±
√

a − x2 (from example 4.4 on page 71) .

In both of these, the arbitrary constants are not simply “added on” to some formula of x . Instead,

each solution formula combines the variable, x , with the arbitrary constant, c or a , in a very

nontrivial manner. There are two immediate consequences of this:

1. The graphs of the solutions are no longer simply vertically shifted copies of some single

function.

2. The possible intervals over which any solution is valid may depend on the arbitrary constant.

And since the value of that constant can be determined by the initial condition, the interval

of validity for our solutions may depend on the initial condition.

Both of these consequences are illustrated in figure 4.2, in which the graphs of two solutions to the

differential equation in example 4.3 have been sketched corresponding to two different initial values

(namely, y(0) = 0 and y(0) = 2 ). In these figures you can see how changing the initial condition

from y(0) = 0 to y(0) = 2 changes the interval over which the solution exists. Even more apparent

is that the graph corresponding to y(0) = 2 is not merely a ‘shift’ of the graph corresponding to

y(0) = 0 ; there is also a small but clear distortion in the shape of the graph.

The possible dependence of a solution’s interval of validity is even better illustrated by the

solutions obtained in example 4.4. There, the differential equation was

dy

dx
= − x

y − 3

and the general solution was found to be

y = 3 ±
√

a − x2 .

The arbitrary constant here, a , occurs in the square root. For this square root to be real, we must

have

a − x2 ≥ 0 .



�

�

�

�

�

�

�

�

Using and Graphing Implicit Solutions 85

That is,

−√
a ≤ x ≤ √

a

is the maximal interval over which

y = 3 +
√

a − x2 and y = 3 −
√

a − x2

are valid solutions.

To properly indicate this dependence of the solution’s possible domain on the arbitrary constant

or the initial value, we should state the maximal interval of validity along with any formula or

equation describing our solution(s). For example 4.4, that would mean writing the general solution

as

y = 3 ±
√

a − x2 for all − √
a ≤ x ≤ √

a .

When this is particularly convenient or noteworthy, we will attempt to remember to do so. Even

when we don’t, keep in mind that there may be limits as to the possible values of x , and that these

limits may depend on the values assumed by the arbitrary constants.

By the way, notice also that the above a cannot be negative (otherwise,
√

a will not be a real

number). This points out that, in general, the ‘arbitrary’ constants appearing in general solutions are

not always completely arbitrary.

4.7 Using and Graphing Implicit Solutions

Outside of courses specifically geared towards learning about differential equations, the main reason

to solve an initial-value problem such as

dy

dx
= x + 1

8 + 2π sin(yπ)
with y(0) = 2

is so that we can predict what values y(x) will assume when x has values other than 0 . In practice,

of course, y(x) will represent something of interest (position, velocity, promises made, number of

ducks, etc.) that varies with whatever x represents (time, position, money invested, food available,

etc.). When the solution y is given explicitly by some formula y(x) , then those values are relatively

easily obtained by just computing that formula for different values of x , and a picture of how y(x)

varies with x is easily obtained by graphing y = y(x) . If, instead, the solution is given implicitly

by some equation, then the possible values of y(x) for different x’s , along with any graph of y(x) ,

must be extracted from that equation. It may be necessary to use advanced numerical methods to

extract the desired information, but that should not be a significant problem — these methods are

probably already incorporated into your favorite computer math package.

!�Example 4.10: Let’s consider the initial-value problem

dy

dx
= x + 1

8 + 2π sin(yπ)
with y(0) = 2 .

In example 4.8, we saw that the general solution to the differential equation is given implicitly by

8y − 2 cos(yπ) = 1

2
x2 + x + c . (4.13)

The initial condition y(0) = 2 tells us that y = 2 when x = 0 . With this assumed, our implicit

solution reduces to

8 · 2 − 2 cos(2π) = 1

2

[
02
]

+ 0 + c .
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8

8

X

Y

0
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y(8)

Figure 4.3: Graph of the implicit solution to the initial-value problem of example 4.10.

So

c = 8 · 2 − 2 cos(2π) − 1

2

[
02
]

− 0 = 16 − 2 = 14 .

Plugging this back into equation (4.13) gives

8y − 2 cos(yπ) = 1

2
x2 + x + 14 (4.14)

as an implicit solution for our initial-value problem.

Replacing c with 14 does not make it any easier for us to convert this equation relating y

and x into a formula y(x) for y . Still, y = y(x) must satisfy equation (4.14), and the graph of

that equation can be generated by invoking the appropriate command(s) in a suitable computer

math package. That is how the graph in figure 4.3 was created. From this graph, we see that the

value of y(8) is between 6 and 7 . For a more precise determination of y(8) , set x = 8 in

equation (4.14). This gives us

8y − 2 cos(yπ) = 1

2
82 + 8 + 14 ,

which, after a little arithmetic, reduces to

8y − 2 cos(yπ) = 54 .

Now apply some numerical method (such as the Newton-Raphson method for finding roots5)

to find, approximately, the corresponding value of y . Again, we need not do the tedious com-

putations ourselves; we can go to our favorite computer math package, look up the appropriate

commands, and let it compute that value for y . Doing so, we find that y(8) ≈ 6.642079594 .

Any curve that is at least part of the graph of an implicit solution for a differential equation is

called an integral curve for the differential equation. Remember, this is the graph of an equation.

If a function y(x) is a solution to that differential equation, then y = y(x) must also satisfy any

equation serving as an implicit solution, and, thus, the graph of that y(x) (which we will call a

solution curve) must be at least a portion of one of the integral curves for that differential equation.

Sometimes an integral curve will be a solution curve. That is “clearly” the case in figure 4.3, because

that curve is “clearly” the graph of a function (more on that later).

5 It should be in your calculus text.
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Sometimes though, there are two (or more) different functions y1 and y2 such that both

y = y1(x) and y = y2(x) satisfy the same equation for the same values of x . If that equation is

an implicit solution to some differential equation, then its graph (the integral curve) will contain the

graphs of both y = y1(x) and y = y2(x) . In such a case, the integral curve is not a solution curve

but contains two or more solution curves.

To illuminate these comments, let us look at the solution curves and integral curves for one

equation we’ve already solved. At the same time, we will discover that, at least occasionally, the use

of implicit solutions can simplify our work, even when explicit solutions are available.

!�Example 4.11: Consider graphing all the solutions to

dy

dx
= − x

y − 3

and the particular solution satisfying

y(0) = 1 .

In example 4.4 (starting on page 71), we “separated and integrated” this differential equation to

get the implicit solution

y2 − 6y = −x2 + c . (4.15)

We were then able to solve this equation for y in terms of x by using the quadratic formula.

This time, rather than attempting to solve for y , let’s simply move the x2 to the left,

obtaining

x2 + y2 − 6y = 2c .

This looks suspiciously like an equation for a circle. Writing 6 as 2 · 3 and adding 32 to both

sides (to complete the square in the y terms) make it look even more so:

x2 + y2 − 2 · 3y + 32︸ ︷︷ ︸
(y−3)2

= 2c + 32

↪→ (x − 0)2 + (y − 3)2 = 2c + 9 .

Since the left side is the sum of squares, it cannot be negative; hence, neither can the right side.

So we can let R = √
2c + 9 and write our equation as

(x − 0)2 + (y − 3)2 = R2 . (4.16)

You should recognize this implicit solution for our differential equation as also being the equation

for a circle of radius R centered at (0, 3) . One such circle (with R = 2 ) is sketched in figure

4.4a. These circles are integral curves for our differential equation. In this case, we can find the

solution curves by solving our last equation for the explicit solutions

y = 3 ±
√

R2 − x2 .

The solution curves, then, are the graphs of y = y−(x) and y = y+(x) where

y+(x) = 3 +
√

R2 − x2 and y−(x) = 3 −
√

R2 − x2 .

Since we must have R2 − x2 ≥ 0 for the square roots, each of these functions can only be defined

for

−R ≤ x ≤ R .



�

�

�

�

�

�

�

�

88 Separable First-Order Equations

(a) (b)
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Figure 4.4: (a) The integral curve and (b) the solution curve for the differential equation in

example 4.11 containing the point (x, y) = (0, 1) .

Observe that the graphs of these functions are not the entire circles of the integral curves, but are

semicircles, with the graph of

y = 3 +
√

R2 − x2 with − R ≤ x ≤ R

being the upper half of the circle of radius R about (0, 3) , and the graph of

y = 3 −
√

R2 − x2 with − R ≤ x ≤ R

being the lower half of that same circle.

If we further require that y(0) = 1 , then implicit solution (4.16) becomes

(0 − 0)2 + (1 − 3)2 = R2 .

So R = 2 , and y = y(x) must satisfy

(x − 0)2 + (y − 3)2 = 22 . (4.17)

Solving this for y in terms of x , we get the two functions

y+(x) = 3 +
√

22 − x2 with − 2 ≤ x ≤ 2

and

y−(x) = 3 −
√

22 − x2 with − 2 ≤ x ≤ 2 .

The graph of equation (4.17) (an integral curve) is a circle of radius 2 about (0, 3) (see figure

4.4a). It contains the point (x, y) = (0, 1) corresponding to the initial value y(0) = 1 . To

be specific, this point, (0, 1) , is on the lower half of that circle (the solution curve for y−(x) )

and not on the upper half (the solution curve for y+(x) ). Thus, the (explicit) solution to our

initial-value problem is

y = y−(x) = 3 −
√

22 − x2 with − 2 ≤ x ≤ 2 .

This is the solution curve sketched in figure 4.4b.

Let us now consider things more generally, and assume that we have any first-order differ-

ential equation that can be put into derivative formula form. Since what follows does not require

“separability”, let us simply assume we’ve managed to get the differential equation into the form

dy

dx
= F(x, y)
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Xx0

y0 (x0, y0)

(x1, y1)

y = y1(x)

y = y2(x)

Figure 4.5: An integral curve containing two solution curves, with the portion above y0 being

the graph of y2(x) and the portion below y0 being the graph of y1(x) .

where F(x, y) is some formula of x and y . This equation might be a separable differential equation

such as
dy

dx
= − x

y − 3
,

or it might be one like
dy

dx
= x2 y2 + 4 ,

which is not separable. Suppose further that, either using methods developed in this chapter or

methods that will be developed later, we have found an integral curve for this differential equation.

If no two distinct points on this integral curve have the same x-coordinate, then this curve is

the graph of a function y = y(x) that satisfies the differential equation (whether or not we can solve

for the formula y(x) ). So the entire integral curve is a solution curve.

On the other hand, if there are two points on this curve with the same x-coordinate, then the

curve has to ‘bend back’ on itself at some point (x0, y0) . At this point, the curve changes from being

the graph of one solution y = y1(x) to being the graph of another solution y = y2(x) . Also, at

this point, the tangent line to the integral curve must be vertical (i.e., have “infinite slope”), provided

that tangent line exists (see figure 4.5). But the slope of the tangent line to the graph of a differential

equation’s solution at any point (x, y) is simply the derivative dy/dx of the solution at that point,

and that value can be computed directly from the differential equation

dy

dx
= F(x, y) .

Thus, (x0, y0) , a point at which the integral curve ‘bends back on itself’, must be a point at which

F(x, y) becomes infinite (or, otherwise fails to exist).

Mind you, we cannot say that a curve ‘bends back on itself’ at a point just because the derivative

becomes infinite there. Many functions have isolated points at which their derivative becomes infinite

or otherwise fails to exist. Just look at point (x1, y1) in figure 4.5. Or consider

y(x) = 3x
1/3 .

This is a well-defined function on the entire real line whose derivative, y′(x) = x−2/3 , blows up at

x = 0 . So all we can say is that, if the curve does ‘bend back on itself’ then it can only do so at

points where its derivative either becomes infinite or otherwise fails to exist.

Here is a little theorem summarizing some what we have just discussed.

Theorem 4.1

Let C be a curve contained in the graph of an implicit solution for some first-order differential

equation
dy

dx
= F(x, y) .
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If F(x, y) is a finite number for each point (x, y) in C , then C is the graph of a function satisfying

the given differential equation (i.e., C is a solution curve).

?�Exercise 4.2: Explain why the integral curve graphed in figure 4.3 is “clearly” a solution curve.

4.8 On Using Definite Integrals with Separable Equations

Just as with any directly integrable differential equation, a separable differential equation

dy

dx
= f (x)g(y) ,

once separated to the form
1

g(y)

dy

dx
= f (x) ,

can be integrated using definite integrals instead of the indefinite integrals we’ve been using. The

basic ideas are pretty much the same as for directly integrable differential equations:

1. Pick a convenient value for the lower limit of integration, a . In particular, if the value of

y(x0) is given for some point x0 , set a = x0 .

2. Rewrite the differential equation with s denoting the variable instead of x . This means that

we rewrite our separable equation as

dy

ds
= f (s)g(y) ,

which ‘separates’ to
1

g(y)

dy

ds
= f (s) .

3. Then integrate each side with respect to s from s = a to s = x .

The integral on the left-hand side will be of the form∫ x

s=a

1

g(y)

dy

ds
ds .

Keep in mind that, here, y is some unknown function of s , and that the limits in the integral are

limits on s . Using the substitution y = y(s) , we see that∫ x

s=a

1

g(y)

dy

ds
ds =

∫ y(x)

y=y(a)

1

g(y)
dy .

Do not forget to convert the limits to being the corresponding limits on y , instead of s .

Once the integration is done, we attempt to solve the resulting equation for y(x) just as before.

!�Example 4.12: Let us solve

dy

dx
= 1

2y
e−x2

with y(0) = 3
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using definite integrals. Proceeding as described above:

dy

dx
= 1

2y
e−x2

↪→ 2y
dy

dx
= e−x2

↪→ 2y
dy

ds
= e−s2

↪→
∫ x

s=0

2y
dy

ds
ds =

∫ x

s=0

e−s2

ds .

Since y(0) = 3 , we can rewrite the last equation as∫ y(x)

y=3

2y dy =
∫ x

s=0

e−s2

ds .

The integral on the left is easily evaluated; the one on the right is not. Doing the easy integration

and solving for y , we get

y2
∣∣∣y(x)
y=3

=
∫ x

s=0

e−s2

ds

↪→ [y(x)]2 − 32 =
∫ x

s=0

e−s2

ds

↪→ [y(x)]2 = 9 +
∫ x

s=0

e−s2

ds .

So

y(x) = ±
[

9 +
∫ x

s=0

e−s2

ds

]1/2

.

Plugging in the initial value again,

3 = y(0) = ±
[

9 +
∫ 0

s=0

e−s2

ds

]1/2

= ± [9 + 0]
1/2 ,

we see that the ± really should be + , not − . Thus, the solution to our initial-value problem is

y =
[

9 +
∫ x

s=0

e−s2

ds

]1/2

.

Going back to the section on “named integrals” in chapter 2 (see page 27), we see that we can

also express this as

y =
[
9 +

√
π

2
erf(x)

]1/2
.

The advantages of using definite integrals in solving a separable differential equation

dy

dx
= f (x)g(y)

are the same as in solving a directly integrable differential equation:
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1. The solution directly involves the initial value instead of a constant to be determined from

the initial value, and

2. Even if a ‘nice’ formula for ∫ x

a

f (s) ds

cannot be found, the value of this integral can be closely approximated for specific values

of x using standard methods (which are already in many computer math packages). Using

these values for this integral, it is then often possible to find the corresponding values for

y(x) for specific values of x .

Unfortunately, we still have a serious problem if we cannot find a usable formula for∫ y(x)

y(a)

1

g(y)
dy

since the numerical methods for computing this integral require knowing the value of y(x) for the

desired choice of x , and that y(x) is exactly what we do not know.

Additional Exercises

4.3. Determine whether each of the following differential equations is or is not separable, and,

if it is separable, rewrite the equation in the form

dy

dx
= f (x)g(y) .

a.
dy

dx
= 3y2 − y2 sin(x) b.

dy

dx
= 3x − y sin(x)

c. x
dy

dx
= (x − y)2 d.

dy

dx
=

√
1 + x2

e.
dy

dx
+ 4y = 8 f.

dy

dx
+ xy = 4x

g.
dy

dx
+ 4y = x2 h.

dy

dx
= xy − 3x − 2y + 6

i.
dy

dx
= sin(x + y) j. y

dy

dx
= ex−3y2

4.4. Using the basic procedure, find the general solution to each of the following separable

equations:

a.
dy

dx
= x

y
b.

dy

dx
= y2 + 9

c. xy
dy

dx
= y2 + 9 d.

dy

dx
= y2 + 1

x2 + 1

e. cos(y)
dy

dx
= sin(x) f.

dy

dx
= e2x−3y
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4.5. Using the basic procedure, find the solution to each of the following initial-value prob-

lems:

a.
dy

dx
= x

y
with y(1) = 3

b.
dy

dx
= 2x − 1 + 2xy − y with y(0) = 2

c. y
dy

dx
= xy2 + x with y(0) = −2

d. y
dy

dx
= 3

√
xy2 + 9x with y(1) = 4

4.6. Find all the constant solutions — and only the constant solutions — to each of the following.

If no constant solution exists, say so.

a.
dy

dx
= xy − 4x b.

dy

dx
− 4y = 2

c. y
dy

dx
= xy2 − 9x d.

dy

dx
= sin(y)

e.
dy

dx
= ex+y2

f.
dy

dx
= 200y − 2y2

4.7. Find the general solution for each of the following. Where possible, write your answer as

an explicit solution.

a.
dy

dx
= xy − 4x b.

dy

dx
= xy − 3x − 2y + 6

c.
dy

dx
= 3y2 − y2 sin(x) d.

dy

dx
= tan(y)

e.
dy

dx
= y

x
f.

dy

dx
= 6x2 + 4

3y2 − 4y

g.
(
x2 + 1

) dy

dx
= y2 + 1 h.

(
y2 − 1

) dy

dx
= 4xy2

i.
dy

dx
= e−y j.

dy

dx
= e−y + 1

k.
dy

dx
= 3xy3 l.

dy

dx
= 2 + √

x

2 + √
y

m.
dy

dx
− 3x2 y2 = −3x2 n.

dy

dx
− 3x2 y2 = 3x2

o.
dy

dx
= 200y − 2y2

4.8. Solve each of the following initial-value problems. If possible, express each solution as an

explicit solution.

a.
dy

dx
− 2y = −10 with y(0) = 8

b. y
dy

dx
= sin(x) with y(0) = −4

c.
dy

dx
= 2x − 1 + 2xy − y with y(0) = −1
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d. x
dy

dx
= y2 − y with y(2) = 1

e. x
dy

dx
= y2 − y with y(1) = 2

f.
dy

dx
= y2 − 1

xy
with y(1) = −2

g.
(
y2 − 1

) dy

dx
= 4xy with y(0) = 1

4.9. In chapter 10, when studying population growth, we will obtain the “logistic equation”

dy

dx
= βy − γ y2

with β and γ being positive constants.

a. What are the constant solutions to this equation?

b. Find the general solution to this equation.

4.10. For each of the following initial-value problems, find the largest interval over which the

solution is valid. (Note: You’ve already solved these initial-value problems in exercise set

4.8 or at least found the general solution to the differential equation in 4.7.)

a.
dy

dx
− 2y = −10 with y(0) = 8

b. x
dy

dx
= y2 − y with y(1) = 0

c. x
dy

dx
= y2 − y with y(1) = 2

d.
dy

dx
= e−y with y(0) = 1

e.
dy

dx
= 3xy3 with y(0) = 1

2
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Linear First-Order Equations

“Linear” first-order differential equations make up another important class of differential equations

that commonly arise in applications and are relatively easy to solve (in theory). As with the notion of

‘separability’, the idea of ‘linearity’ for first-order equations can be viewed as a simple generalization

of the notion of direct integrability, and a relatively straightforward (though, perhaps, not so intuitively

obvious) method will allow us to put any first-order linear equation into a form that can be relatively

easily integrated. We will derive this method in a short while (after, of course, describing just what

it means for a first-order equation to be “linear”).

By the way, the criteria given here for a differential equation being linear will be extended later

to higher-order differential equations, and a rather extensive theory will be developed to handle linear

differential equations of any order. That theory is not needed here; in fact, it would be of very limited

value. And, to be honest, the basic techniques we’ll develop in this chapter are only of limited use

when it comes to solving higher-order linear equations. However, these basic techniques involve an

“integrating factor”, which is something we’ll be able to generalize a little bit later (in chapter 7) to

help solve much more general first-order differential equations.

5.1 Basic Notions
Definitions

A first-order differential equation is said to be linear if and only if it can be written as

dy

dx
= f (x) − p(x)y (5.1)

or, equivalently, as

dy

dx
+ p(x)y = f (x) (5.2)

where p(x) and f (x) are known functions of x only.

Equation (5.2) is normally considered to be the standard form for first-order linear equations.

Note that the only appearance of y in a linear equation (other than in the derivative) is in a term

where y alone is multiplied by some formula of x . If there are any other functions of y appearing

in the equation after you’ve isolated the derivative, then the equation is not linear.

!�Example 5.1: Consider the differential equation

x
dy

dx
+ 4y − x3 = 0 .

95
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96 Linear First-Order Equations

Solving for the derivative, we get

dy

dx
= x3 − 4y

x
= x2 − 4

x
y ,

which is
dy

dx
= f (x) − p(x)y

with

p(x) = 4

x
and f (x) = x2 .

So this first-order differential equation is linear. Adding 4/x · y to both sides, we then get the

equation in standard form,
dy

dx
+ 4

x
y = x2 .

On the other hand
dy

dx
+ 4

x
y2 = x2

is not linear because of the y2 .

In testing whether a given first-order differential equation is linear, it does not matter whether

you attempt to rewrite the equation as

dy

dx
= f (x) − p(x)y

or as
dy

dx
+ p(x)y = f (x) .

If you can put it into either form, the equation is linear. You may prefer the first, simply because it is

a natural form to look for after solving the equation for the derivative. However, because the second

form (the standard form) is more suited for the methods normally used for solving these equations,

more experienced workers typically prefer that form.

!�Example 5.2: Consider the equation

x2 dy

dx
+ x3 [y − sin(x))] = 0 .

Dividing through by x2 and doing a little multiplication and addition convert the equation to

dy

dx
+ xy = x sin(x) ,

which is the standard form for a linear equation. So this differential equation is linear.

It is possible for a linear equation

dy

dx
+ p(x)y = f (x)

to also be a type of equation we’ve already studied. For example, if p(x) = 0 then the equation is

dy

dx
= f (x) ,
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which is directly integrable. If, instead, f (x) = 0 , the equation can be rewritten as

dy

dx
= −p(x)y ,

showing that it is separable. In addition, you can easily verify that a linear equation is separable if

f (x) is any constant multiple of p(x) .

If a linear equation is also directly integrable or separable, then it can be solved using methods

already discussed. Otherwise, a small trick turns out to be very useful.

Deriving the Trick for Solving

Suppose we want to solve some first-order linear equation

dy

dx
+ py = f (5.3)

(for brevity, p = p(x) and f = f (x) ). To avoid triviality, let’s assume p(x) is not always 0 .

Whether f (x) vanishes or not will not be relevant.

The small trick to solving equation (5.3) comes from the product rule for derivatives: If μ and

y are two functions of x , then
d

dx
[μy] = dμ

dx
y + μ

dy

dx
.

Rearranging the terms on the right side, we get

d

dx
[μy] = μ

dy

dx
+ dμ

dx
y ,

and the right side of this equation looks a little like the left side of equation (5.3). To get a better

match, let’s multiply equation (5.3) by μ ,

μ
dy

dx
+ μpy = μ f .

With luck, the left side of this equation will match the right side of the last equation for the product

rule, and we will have
d

dx
[μy] = μ

dy

dx
+ dμ

dx
y

= μ
dy

dx
+ μpy = μ f .

(5.4)

This, of course, requires that
dμ

dx
= μp .

Assuming this requirement is met, the equations in (5.4) hold. Cutting out the middle of that (and

recalling that f and μ are functions of x only), we see that the differential equation reduces to

d

dx
[μy] = μ(x) f (x) . (5.5)

The advantage of having our differential equation in this form is that we can actually integrate both

sides with respect to x , with the left side being especially easy since it is just a derivative with

respect to x .

The function μ is called an integrating factor for the differential equation. As noted in the

derivation, it must satisfy
dμ

dx
= μp . (5.6)
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This is a simple separable differential equation for μ (remember, p = p(x) is a known function).

Any nonzero solution to this can be used as an integrating factor (the zero solution, μ = 0 , would

simplify matters too much!). Applying the approach we learned for separable differential equations,

we divide through by μ , integrate, and solve the resulting equation for μ :∫
1

μ

dμ

dx
dx =

∫
p(x) dx

↪→ ln |μ| =
∫

p(x) dx

↪→ μ = ±e
∫

p(x) dx

Since we only need one function μ(x) satisfying requirement (5.6), we can drop both the “±” and

any arbitrary constant arising from the integration of p(x) . This leaves us with a relatively simple

formula for our integrating factor, namely,

μ(x) = e
∫

p(x) dx (5.7)

where it is understood that we can let the constant of integration be zero.

5.2 Solving First-Order Linear Equations

As we just derived, the real ‘trick’ to solving a first-order linear equation is to reduce it to an easily

integrated form via the use of an integrating factor. Here is a procedure for actually carrying out the

necessary steps. To illustrate these steps, we will immediately use them to find the general solution

to the equation from example 5.1,

x
dy

dx
+ 4y = x3 .

The Procedure:

1. Get the equation into the standard form for first-order linear differential equations,

dy

dx
+ p(x)y = f (x) .

For our example, we just divide through by x , obtaining

dy

dx
+ 4

x
y = x2 .

As noted in example 5.1, this is the desired form with

p(x) = 4

x
and f (x) = x2 .

2. Compute an integrating factor

μ(x) = e
∫

p(x) dx .

Remember, since we only need one integrating factor, we can let the constant of integration

be zero here.
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For our example,

μ(x) = e
∫

p(x) dx = e

∫
4/x dx = e4 ln|x | .

Applying some basic identities for the natural logarithm, we can rewrite this last

expression in a much more convenient form:

μ(x) = e4 ln|x | = eln
∣∣x4

∣∣ =
∣∣∣x4

∣∣∣ = x4 .

3a. Multiply the differential equation (in standard form) by the integrating factor,

μ
[

dy

dx
+ p(x)y = f (x)

]
↪→ μ

dy

dx
+ μpy = μ f ,

b. and observe that, via the product rule and choice of μ , the left side can be written as the

derivative of the product of μ and y ,

μ
dy

dx
+ μpy︸ ︷︷ ︸

d
dx

[μy]

= μ f ,

c. and then rewrite the differential equation as

d

dx
[μy] = μ f ,

For our example, μ = x4 . Multiplying our equation by this and proceeding

through the three substeps above yields

x4
[

dy

dx
+ 4

x
y = x2

]
↪→ x4 dy

dx
+ 4x3 y︸ ︷︷ ︸

d
dx

[x4 y]

= x6

↪→ d

dx
[x4 y] = x6 .

4. Integrate with respect to x both sides of the last equation obtained,∫
d

dx
[μy] dx =

∫
μ(x) f (x) dx

↪→ μy =
∫
μ(x) f (x) dx .

Don’t forget the arbitrary constant here!

Integrating the last equation in our example,∫
d

dx
[x4 y] dx =

∫
x6 dx

↪→ x4 y = 1

7
x7 + c .
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5. Finally, solve for y by dividing through by μ .

For our example,

y = x−4
[

1

7
x7 + c

]
= 1

7
x3 + cx−4 .

Later, we will use the above procedure to derive an explicit formula for computing y from

p(x) and f (x) . Unfortunately, it is not a particularly simple formula, and those who attempt to

memorize it typically make more mistakes than those who simply remember the above procedure.

!�Example 5.3: Consider

ex dy

dx
= 20 + 3ex y , y(0) = 7

Subtracting 3ex y from both sides and then multiplying through by e−x puts this linear differential

equation into the desired form,
dy

dx
− 3y = 20e−x .

So p(x) = −3 , and our integrating factor is

μ = μ(x) = e
∫ −3 dx = e−3x .

Multiplying the differential equation by μ and following the rest of the steps in our procedure

gives us the following:

e−3x
[

dy

dx
− 3y = 20e−x

]
↪→ e−3x dy

dx
− 3e−3x y︸ ︷︷ ︸

d
dx

[e−3x y]

= 20e−4x

↪→ d

dx
[e−3x y] = 20e−4x

↪→
∫

d

dx
[e−3x y] dx =

∫
20e−4x dx

↪→ e−3x y = −5e−4x + c

↪→ y = e3x
[
−5e−4x + c

]
.

So the general solution to our differential equation is

y(x) = −5e−x + ce3x .

Using this formula for y(x) with the initial condition gives us

7 = y(0) = −5e−0 + ce3·0 = −5 + c

Thus,

c = 7 + 5 = 12 ,

and the solution to the given initial-value problem is

y(x) = −5e−x + 12e3x .
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Let us briefly get back to our requirement for μ = μ(x) being an integrating factor for

dy

dx
+ py = f .

That requirement was equation (5.6),
dμ

dx
= μp .

Now, in computing this μ , you will often get something like

μ(x) = |μ0(x)|

where μ0(x) is a relatively simple continuous function (e.g., μ(x) = |sin(x)| ). Consequently, on

any interval over which the graph of μ0(x) never crosses the X–axis,

μ0(x) = μ(x) or μ0(x) = −μ(x) .

Either way,
dμ0

dx
= d[±μ]

dx
= ±dμ

dx
= ±μp = μ0 p .

So μ0 also satisfies the requirement for being an integrating factor for the given differential equation.

This means that, if in computing μ you do get something like

μ(x) = |μ0(x)|

where μ0(x) is a relatively simple function, then you can ignore the absolute value brackets and

just use μ0 for your integrating factor.

!�Example 5.4: Consider solving the linear differential equation

dy

dx
+ cot(x)y = x csc(x) .

This equation is already in the desired form. In a case like this, it is often a good idea to see what

the equation looks like in terms of sines and cosines,

dy

dx
+

[
cos(x)

sin(x)

]
y = x

sin(x)
.

To find μ = e
∫

p dx , first observe that, ignoring the constant of integration,∫
p(x) dx =

∫
cos(x)

sin(x)
dx =

∫ d
dx

sin(x)

sin(x)
dx = ln |sin(x)| .

So

μ = μ(x) = e
∫

p(x) dx = eln|sin(x)| = |sin(x)| .

As discussed above, we can just drop the |·| and use sin(x) for the integrating factor. Doing so,

and stepping through the rest of our procedure, we have

sin(x)
[

dy

dx
+ cos(x)

sin(x)
y = x

sin(x)

]
↪→ sin(x)

dy

dx
+ cos(x)y︸ ︷︷ ︸

d
dx

[sin(x)y]

= x
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↪→
∫

d

dx
[sin(x)y] dx =

∫
x dx

↪→ sin(x)y = 1

2
x2 + c1

↪→ y = x2 + c

2 sin(x)
.

5.3 On Using Definite Integrals with Linear Equations

Integration arises twice in our method for solving

dy

dx
+ p(x)y = f (x) .

It first arises when we integrate p to get the integrating factor,

μ(x) = e
∫

p(x) dx .

It is needed again when we then integrate both sides of the corresponding equation

d

dx
[μy] = μ f .

At either point, of course, we could use definite integrals instead of indefinite integrals.

Let’s first look at what happens when we integrate both sides of the last equation using definite

integrals. Remember, everything is a function of x , so this equation can be written a bit more

explicitly as
d

dx
[μ(x)y(x)] = μ(x) f (x) .

As before, to avoid having x represent two different entities, we replace the x’s with another

variable, say, s , and rewrite our current differential equation as

d

ds
[μ(s)y(s)] = μ(s) f (s) .

Then we pick a convenient lower limit a for our integration and integrate each side of the above

with respect to s from s = a to s = x ,∫ x

a

d

ds
[μ(s)y(s)] ds =

∫ x

a

μ(s) f (s) ds . (5.8)

But ∫ x

a

d

ds
[μ(s)y(s)] ds = μ(s)y(s)

∣∣x
a

= μ(x)y(x) − μ(a)y(a) .

So equation (5.8) reduces to

μ(x)y(x) − μ(a)y(a) =
∫ x

a

μ(s) f (s) ds ,

Solving this for y(x) yields

y(x) = 1

μ(x)

[
μ(a)y(a) +

∫ x

a

μ(s) f (s) ds

]
. (5.9)
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This is not a simple enough formula to be worth memorizing (especially since you still have to

remember what μ is). Nonetheless, it is a formula worth knowing about for at least two good

reasons:

1. This formula can automatically take into account an initial value y(x0) = y0 . All we have

to do is to choose the lower limit a to be x0 . Then formula (5.9) tells us that the solution to

dy

dx
+ py = f with y(x0) = y0

is

y = 1

μ(x)

[
μ(x0)y0 +

∫ x

x0

μ(s) f (s) ds

]
. (5.10)

2. Even if we cannot determine a relatively nice formula for the integral of μ f (for a given

choice of μ and f ), the value of the integral in formula (5.9) can, in practice, still be

accurately computed for desired values of x using numerical integration routines found in

standard computer math packages. Indeed, using any of these packages and formula (5.9),

you could probably program a computer to accurately compute y(x) for a number of values

of x and use these values to produce a very accurate graph of y .

!�Example 5.5: Consider solving

dy

dx
− 2xy = 4 with y(0) = 3 .

The differential equation is clearly linear and in the desired form for the first step of our procedure.

Computing the integrating factor, we find that, here,

μ = e
∫

p(x) dx = e
∫ [−2x] dx = e−x2+c .

Choosing, as we may, c to be zero, we then get

μ(x) = e−x2

.

Plugging this into formula (5.9) (and choosing a = 0 since we have y(0) = 3 as the initial

condition) yields

y(x) = 1

μ(x)

[
μ(0)y(0) +

∫ x

0

μ(s) f (s) ds

]
= 1

e−x2

[
e−02 · 3 +

∫ x

0

e−s2

4 ds

]
= ex2

[
3 + 4

∫ x

0

e−s2

ds

]
.

This is the solution to our initial-value problem. The integral,∫ x

0

e−s2

ds ,

was left unevaluated because no one has yet found a “nice” formula for this integral. At best, we

can ‘hide’ this integral by using the error function (see page 27), rewriting our formula for y as

y(x) = ex2 [
3 + 2

√
π erf(x)

]
.
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Still, to find the value of, say, y(4) , we would have to either numerically approximate the integral

in

y(4) = e42

[
3 + 4

∫ 4

0

e−s2

ds

]
or look up the value of the error function in

y(4) = e42 [
3 + 2

√
π erf(4)

]
.

Either way, a decent computer math package could be helpful.

As already noted, we could also use a definite integral in determining the integrating factor.

This means μ would be given by

μ(x) = exp

(∫ x

a

p(s) ds

)
where a was any appropriate lower limit. Naturally, if we had an initial condition y(x0) = y0 , it

would make sense to let a = x0 . This would slightly simplify formula (5.10) to

y = 1

μ(x)

[
y0 +

∫ x

x0

μ(s) f (s) ds

]
(5.11)

since

μ(x0) = exp

(∫ x0

x0

p(s) ds

)
= e0 = 1 .

In practice, there is little to be gained in using a definite integral in the computation of μ unless

there is not a reasonable formula for the integral of p . Then we are pretty well forced into using a

definite integral to compute μ(x) and to computing this integral numerically for each value of x of

interest. That, in turn, would pretty well force us to compute y(x) for each x of interest by using

numerical computation of formula (5.10).

5.4 Integrability, Existence and Uniqueness

If you check, you will see that our derivation of the definite integral formula

y(x) = 1

μ(x)

[
y0 +

∫ x

x0

μ(s) f (s) ds

]
with μ(x) = exp

(∫ x

x0

p(s) ds

)
as a solution to the initial-value problem

dy

dx
+ p(x)y = f (x) with y(x0) = y0

merely required that y be any solution to this problem, and that p and f be ‘sufficiently integrable’

for the existence of the integrals involving them. That is, every solution to this initial-value problem

is given by this one formula. Conversely, as long as p and f are ‘sufficiently integrable’, you can

use elementary calculus to differentiate the above definite integral formula and verify that the y

defined by this formula is a solution to the above initial-value problem (see problem 5.5). Thus, the

above definite integral formula gives us the one and only solution to the above initial-value problem,

provided p and f are ‘sufficiently integrable’.
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Just what is ‘sufficiently integrable’? Basically, we want the integrals∫ x

x0

p(s) ds and

∫ x

x0

μ(s) f (s) ds

to be well-defined, continuous functions of x in whatever interval of interest (α, β) we have. (Note

that this ensures

μ(x) = exp

(∫ x

x0

p(s) ds

)
is never zero in this interval.) Certainly, p and f will be ‘sufficiently integrable’ if they are

continuous on (α, β) . But continuity is not necessary; p and f can have a few discontinuities

provided these discontinuities are not too bad. In particular, we can allow the same piecewise-defined

functions considered back in section 2.4. That (along with theorem 2.1 on page 32) gives us the

following existence and uniqueness theorem for initial-value problems involving first-order linear

differential equations.

Theorem 5.1 (existence and uniqueness)

Let p and f be functions that are continuous except for, at most, a finite number of finite-jump

discontinuities in an interval (α, β) . Also let x0 and y0 be any two numbers with α < x0 < β .

Then the initial-value problem

dy

dx
+ p(x)y = f (x) with y(x0) = y0

has exactly one solution over the interval (α, β) , and that solution is given by

y(x) = 1

μ(x)

[
y0 +

∫ x

x0

μ(s) f (s) ds

]
with μ(x) = exp

(∫ x

x0

p(s) ds

)
.

Additional Exercises

5.1. Determine whether each of the following differential equations is or is not linear, and, if it

is linear, rewrite the equation in standard form,

dy

dx
+ p(x)y = f (x) .

a. x2 dy

dx
+ 3x2 y = sin(x) b. y2 dy

dx
+ 3x2 y = sin(x)

c.
dy

dx
− xy2 = √

x d.
dy

dx
= 1 + (xy + 3y)2

e.
dy

dx
= 1 + xy + 3y f.

dy

dx
= 4y + 8

g.
dy

dx
− e2x = 0 h.

dy

dx
= sin(x) y

i.
dy

dx
+ 4y = y3 j. x

dy

dx
+ cos

(
x2
)

= 827y
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5.2. Using the methods developed in this chapter, find the general solution to each of the fol-

lowing first-order linear differential equations:

a.
dy

dx
+ 2y = 6 b.

dy

dx
+ 2y = 20e3x

c.
dy

dx
= 4y + 16x d.

dy

dx
− 2xy = x

e. x
dy

dx
+ 3y − 10x2 = 0 f. x2 dy

dx
+ 2xy = sin(x)

g. x
dy

dx
= √

x + 3y h. cos(x)
dy

dx
+ sin(x) y = cos2(x)

i. x
dy

dx
+ (5x + 2)y = 20

x
j. 2

√
x

dy

dx
+ y = 2xe−√

x

5.3. Find the solution to each of the following initial-value problems using the methods developed

in this chapter:

a.
dy

dx
− 3y = 6 with y(0) = 5

b.
dy

dx
− 3y = 6 with y(0) = −2

c.
dy

dx
+ 5y = e−3x with y(0) = 0

d. x
dy

dx
+ 3y = 20x2 with y(1) = 10

e. x
dy

dx
= y + x2 cos(x) with y

(
π

2

)
= 0

f. (1 + x2)
dy

dx
= x

[
3 + 3x2 − y

]
with y(2) = 8

5.4. Express the answer to each of the following initial-value problems in terms of definite

integrals:

a.
dy

dx
+ 6xy = sin(x) with y(0) = 4

b. x2 dy

dx
+ xy = √

x sin(x) with y(2) = 5

c. x
dy

dx
− y = x2e−x2

with y(3) = 8

5.5. Let (α, β) be an interval, and let x0 and y0 be any two numbers with α < x0 < β .

Assume p and f are functions continuous at all but, at most, a finite number of points in

(α, β) , and that each of these discontinuities is a finite-jump discontinuity. Define μ(x)

and y(x) by

μ(x) = exp

(∫ x

x0

p(s) ds

)
.

and

y(x) = 1

μ(x)

[
y0 +

∫ x

x0

μ(s) f (s) ds

]
Compute the first derivatives of μ and y , and then verify that y satisfies the initial condition

y(x0) = y0 as well as the differential equation

dy

dx
+ p(x)y = f (x) for α < x < β .
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Simplifying Through Substitution

In previous chapters, we saw how certain types of first-order differential equations (directly inte-

grable, separable, and linear equations) can be identified and put into forms that can be integrated

with relative ease. In this chapter, we will see that, sometimes, we can start with a differential equa-

tion that is not one of these desirable types and construct a corresponding separable or linear equation

whose solution can then be used to construct the solution to the original differential equation.

6.1 Basic Notions

There are many first-order differential equations, such as

dy

dx
= (x + y)2 ,

that are neither linear nor separable, and which do not yield up their solutions by direct application

of the methods developed thus far. One way of attempting to deal with such equations is to replace

y with a cleverly chosen formula of x and “ u ” where u denotes another unknown function of x .

This results in a new differential equation with u being the function of interest. If the substitution

truly is clever, then this new differential equation will be separable or linear (or, maybe, even directly

integrable), and can be be solved for u in terms of x using methods discussed in previous chapters.

Then the function of real interest, y , can be determined from the original ‘clever’ formula relating

u , y and x .

Here are the basic steps to this approach, described in a little more detail and illustrated by

being used to solve the above differential equation:

1. Identify what is hoped will be a good formula of x and u for y ,

y = F(x, u) .

This ‘good formula’ is our substitution for y . Here, u represents another unknown function

of x (so “ u = u(x) ”), and the above equation tells us how the two unknown functions y

and u are related. (Identifying that ‘good formula’ is the tricky part. We’ll discuss that

further in a little bit.)

Let’s try a substitution that reduces the right side of our differential equation,

dy

dx
= (x + y)2 ,

107
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108 Simplifying Through Substitution

to u2 . This means setting u = x + y . Solving this for y gives our substitution,‘

y = u − x .

2. Replace every occurrence of y in the given differential equation with that formula of x and

u , including the y in the derivative. Keep in mind that u is a function of x , so the dy/dx

will become a formula of x , u , and du/dx (it may be wise to first compute dy/dx separately).

Since we are using y = u − x (equivalently, u = x + y ), we have

(x + y)2 = u2 ,

and
dy

dx
= d

dx
[u − x] = du

dx
− dx

dx
= du

dx
− 1 .

So, under the substitution y = u − x ,

dy

dx
= (x + y)2

becomes
du

dx
− 1 = u2 .

3. Solve the resulting differential equation for u (don’t forget the constant solutions!). If

possible, get an explicit solution for u in terms of x . (This assumes, of course, that the

differential equation for u is one we can solve. If it isn’t, then our substitution wasn’t that

clever, and we may have to try something else.)

Adding 1 to both sides of the differential equation just derived for u yields

du

dx
= u2 + 1 ,

which we recognize as being a relatively easily solved separable equation with no

constant solutions. Dividing through by u2 + 1 and integrating,

1

u2 + 1

du

dx
= 1

↪→
∫

1

u2 + 1

du

dx
dx =

∫
1 dx

↪→ arctan(u) = x + c

↪→ u = tan(x + c) .

4. If you get an explicit solution u = u(x) , then just plug that formula u(x) into the original

substitution to get the explicit solution to the original equation,

y(x) = F(x, u(x)) .

If, instead, you only get an implicit solution for u , then go back to the original substitution,

y = F(x, u) , solve that to get a formula for u in terms of x and y (unless you already have

this formula for u ), and substitute that formula for u into the solution obtained to convert it

to the corresponding implicit solution for y .



�

�

�

�

�

�

�

�

Linear Substitutions 109

Our original substitution was y = u − x . Combining this with the formula for

u just obtained, we get

y = u − x = tan(x + c) − x

as a general solution to our original differential equation,

dy

dx
= (x + y)2 .

The key to this approach is, of course, in identifying a substitution, y = F(x, u) , that converts

the original differential equation for y to a differential equation for u that can be solved with

reasonable ease. Unfortunately, there is no single method for identifying such a substitution. At

best, we can look at certain equations and make good guesses at substitutions that are likely to work.

We will next look at three cases where good guesses can be made. In these cases the suggested

substitutions are guaranteed to lead to either separable or linear differential equations. As you may

suspect, though, they are not guaranteed to lead to simple separable or linear differential equations.

6.2 Linear Substitutions

If the given differential equation can be rewritten so that the derivative equals some formula of

Ax + By + C ,
dy

dx
= f (Ax + By + C) ,

where A , B , and C are known constants, then a good substitution comes from setting

u = Ax + By + C ,

and then solving for y . For convenience, we’ll call this a linear substitution1.

We’ve already seen one case where a linear substitution works — in the example above illus-

trating the general substitution method. Here is another example, one in which we end up with an

implicit solution.

!�Example 6.1: To solve
dy

dx
= 1

2x − 4y + 7
,

we use the substitution based on setting

u = 2x − 4y + 7 .

Solving this for y and then differentiating yields

y = 1

4
[2x − u + 7] = x

2
− u

4
+ 7

4

and
dy

dx
= d

dx

[
x

2
− u

4
− 7

4

]
= 1

2
− 1

4

du

dx
.

1 because Ax + By + C = 0 is the equation for a straight line
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So, the substitution based on u = 2x − 4y + 7 converts

dy

dx
= 1

2x − 4y + 7

to
1

2
− 1

4

du

dx
= 1

u
.

This differential equation for u looks manageable, especially since it contains no x’s . Solving

for the derivative in this equation, we get

du

dx
= −4

[
1

u
− 1

2

]
= −4

[
2

2u
− u

2u

]
= −4

[
2 − u

2u

]
,

which simplifies to
du

dx
= 2

[
u − 2

u

]
. (6.1)

Again, this is a separable equation. This time, though, the differential equation has a constant

solution,

u = 2 . (6.2)

To find the other solutions to our differential equation for u , we multiply both sides of equation

(6.1) by u and divide through by u − 2 , obtaining

u

u − 2

du

dx
= 2 .

After noticing that

u

u − 2
= u − 2 + 2

u − 2
= u − 2

u − 2
+ 2

u − 2
= 1 + 2

u − 2
,

we can integrate both sides of our last differential equation for u ,∫
u

u − 2

du

dx
dx =

∫
2 dx

↪→
∫ [

1 + 2

u − 2

]
du = 2x + c

↪→ u + 2 ln |u − 2| = 2x + c . (6.3)

Sadly, the last equation is not one we can solve to obtain an explicit formula for u in terms of x .

So we are stuck with using it as an implicit solution of our differential equation for u .

Together, formula (6.2) and equation (6.3) give us all the solutions to the differential equation

for u . To obtain all the solutions to our original differential equation for y , we must recall the

original (equivalent) relations between u and y ,

u = 2x − 4y + 7 and y = x

2
− u

4
+ 7

4
.

The latter with the constant solution u = 2 (formula (6.2)) yields

y = x

2
− 2

4
+ 7

4
= x

2
+ 5

4
.

On the other hand, it is easier to combine the first relation between u and y with the implicit

solution for u in equation (6.3),

u = 2x − 4y + 7 with u + 2 ln |u − 2| = 2x + c ,
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obtaining

[2x − 4y + 7] + 2 ln |[2x − 4y + 7] − 2| = 2x + c .

After a little algebra, this simplifies to

ln |2x − 4y + 5| = 4y + C .

which does not include the “constant u ” solution above. So, for y = y(x) to be a solution to

our original differential equation, it must either be given by

y = x

2
+ 5

4

or satisfy

ln |2x − 4y + 5| = 4y + C .

Let us see what happens whenever we have a differential equation of the form

dy

dx
= f (Ax + By + C)

(where A , B , and C are known constants), and we attempt the substitution based on setting

u = Ax + By + C .

Solving for y and then differentiating yields

y = 1

B
[u − Ax − C] and

dy

dx
= 1

B

[
du

dx
− A

]
.

Under these substitutions,
dy

dx
= f (Ax + By + C)

becomes
1

B

[
du

dx
− A

]
= f (u) .

After a little algebra, this can be rewritten as

du

dx
= A + B f (u) ,

which is clearly a separable equation. Thus, we will always get a separable differential equation for

u . Moreover, the ease with which this differential equation can be solved clearly depends only on

the ease with which we can evaluate ∫
1

A + B f (u)
du .
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6.3 Homogeneous Equations

We now consider first-order differential equations in which the derivative can be viewed as a formula

of the ratio y/x . In other words, we are now interested in any differential equation that can be

rewritten as
dy

dx
= f

(
y

x

)
(6.4)

where f is some function of a single variable. Such equations are sometimes said to be homoge-

neous.2 Unsurprisingly, the substitution based on setting

u = y

x
(i.e., y = xu )

is often useful in solving these equations. We will, in fact, discover that this substitution will always

transform an equation of the form (6.4) into a separable differential equation.

!�Example 6.2: Consider the differential equation

xy2 dy

dx
= x3 + y3 .

Dividing through by xy2 and doing a little factoring yields

dy

dx
= x3 + y3

xy2
=

x3

[
1 + y3

x3

]

x3

[
y2

x2

] ,

which simplifies to

dy

dx
=

1 +
[ y

x

]3

[ y

x

]2
. (6.5)

That is,
dy

dx
= f

(
y

x

)
with f (whatever) = 1 + whatever3

whatever2
.

So we should try letting

u = y

x

or, equivalently,

y = xu .

On the right side of equation (6.5), replacing y with xu is just the same as replacing each
y/x with u . Either way, the right side becomes

1 + u3

u2
.

On the left side of equation (6.5), the substitution y = xu is in the derivative. Keeping in mind

that u is also a function of x , we have

dy

dx
= d

dx
[xu] = dx

dx
u + x

du

dx
= u + x

du

dx
.

2 Warning: Later we will refer to a completely different type of differential equation as being “homogeneous”.
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So,

dy

dx
=

1 +
[ y

x

]3

[ y

x

]2

y=xu�⇒ u + x
du

dx
= 1 + u3

u2
.

Solving the last equation for du/dx and doing a little algebra, we see that

du

dx
= 1

x

[
1 + u3

u2
− u

]
= 1

x

[
1 + u3

u2
− u3

u2

]
= 1

x

[
1 + u3 − u3

u2

]
= 1

xu2
.

How nice! Our differential equation for u is the very simple separable equation

du

dx
= 1

xu2
.

Multiplying through by u2 , integrating, and doing a little more algebra:∫
u2 du

dx
dx =

∫
1

x
dx

↪→ 1

3
u3 = ln |x | + c

↪→ u3 = 3 ln |x | + 3c

↪→ u = 3
√

3 ln |x | + 3c .

Combining this with our substitution y = xu gives

y = xu = x
[

3
√

3 ln |x | + 3c
]

= x
3
√

3 ln |x | + C

as the general solution to our original differential equation.

In practice, it may not be immediately obvious if a given first-order differential equation can be

written in form (6.4), but it is usually fairly easy to find out. First, algebraically solve the differential

equation for the derivative to get

dy

dx
= “some formula of x and y ” .

With a little luck, you’ll be able to do a little algebra (as we did in the above example) to see if that

“formula of x and y ” can be written as just a formula of y/x , f (y/x) .

If it’s still not clear, then just go ahead and try the substitution y = xu in that “formula of x

and y ”. If all the x’s cancel out and you are left with a formula of u , then that formula, f (u) ,

is the right side of (6.4) (remember, u = y/x ). So the differential equation can be written in the

desired form. Moreover, half the work in plugging the substitution into the differential equation is

now done.

On the other hand, if the x’s do not cancel out when you substitute xu for y , then the differential

equation cannot be written in form (6.4), and there is only a small chance that this substitution will

yield an ‘easily solved’ differential equation for u .

!�Example 6.3: Again, consider the differential equation

xy2 dy

dx
= x3 + y3 ,
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which we had already studied in the previous example. Solving for the derivative again yields

dy

dx
= x3 + y3

xy2
.

Instead of factoring out x3 from the numerator and denominator of the right side, let’s go ahead

and try the substitution y = xu and see if the x’s cancel out:

x3 + y3

xy2
= x3 + [xu]3

x[xu]2 = x3 + x3u3

x3u2
=

x3
(

1 + u3
)

x3u2
.

The x’s clearly do cancel out, leaving us with

1 + u3

u2
.

Thus, (as we already knew), our differential equation can be put into form (6.4). What’s more,

getting our differential equation into that form and using y = xu will lead to

1 + u3

u2

for the right side, just as we saw in the previous example.

When employing the substitution y = xu to solve

dy

dx
= f

(
y

x

)
,

do not forget to treat u as a function of x ! Thus, when we differentiate y , we have

dy

dx
= d

dx
[xu] = dx

dx
u + x

du

dx
= u + x

du

dx
.

This is not a formula worth memorizing — you shouldn’t even bother memorizing y = xu — it

should be quite enough to remember that u = u(x) with u = y/x .

However, it is worth noting that, if we plug these substitutions into

dy

dx
= f

(
y

x

)
,

we always get

u + x
du

dx
= f (u) ,

which is the same as
du

dx
= f (u)− u

x
.

This confirms that we will always get a separable equation, just as with linear substitutions. This

time, the ease with which the differential equation for u can be solved depends on the ease with

which we can evaluate ∫
1

f (u)− u
du .
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6.4 Bernoulli Equations

A Bernoulli equation is a first-order differential equation that can be written in the form

dy

dx
+ p(x)y = f (x)yn (6.6)

where p(x) and f (x) are known functions of x only, and n is some real number. This looks

much like the standard form for linear equations. Indeed, a Bernoulli equation is linear if n = 0

or n = 1 (and is also separable if n = 1 ). Consequently, our main interest is in solving such an

equation when n is neither 0 nor 1 .

The above equation can be solved using a substitution, though good choice for that substitution

might not be immediately obvious. You might suspect that setting u = yn would help, but it doesn’t

— unless, that is, it leads you to try a substitution based on

u = yr

where r is some value yet to be determined. If you solve this for y in terms of u and plug the

resulting formula for y into the Bernoulli equation, you will then discover, after a bit of calculus

and algebra, that you have a linear differential equation for u if and only if r = 1 − n (see problem

6.8). So the substitution that does work is the one based on setting

u = y1−n .

In the future, you can either remember this, re-derive it as needed, or know where to look it up.

You should also observe that, if n > 0 , then the constant function

y(x) = 0 for all x

is a solution to equation (6.6). This particular solution is often overlooked when using the substitution

u = y1−n for a reason noted in the next example.

!�Example 6.4: Consider the differential equation

dy

dx
+ 6y = 30e3x y

2/3 .

This is in form (6.6), with n = 2/3 . Right off, let’s note that this Bernoulli equation has a constant

solution y = 0 .

Setting

u = y1−n = y1−2/3 = y
1/3 ,

we see that the substitution

y = u3

is called for. Plugging this into our original differential equation, we get

dy

dx
+ 6y = 30e3x y

2/3

↪→ d

dx

[
u3
] + 6

[
u3
] = 30e3x

[
u3
]2/3

↪→ 3u2 du

dx
+ 6u3 = 30e3x u2 .
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Dividing this last equation through by 3u2 gives

du

dx
+ 2u = 10e3x .

(This division assumes u = 0 , corresponding to an assumption that y = 0 . That is why the

y = 0 solution is often overlooked.)

The last equation is a relatively simple linear equation with integrating factor

μ = e
∫

2 dx = e2x .

Continuing as usual with such equations,

e2x
[

du

dx
+ 2u = 10e3x

]
↪→ e2x du

dx
+ 2e2x u = 10e5x

↪→ d

dx
[e2x u] = 10e5x .

Integrating both sides with respect to x then yields

e2x u =
∫

10e5x dx = 2e5x + c ,

which tells us that

u = e−2x
[
2e5x + c

]
= 2e3x + ce−2x .

Finally, after recalling the substitution that led to the differential equation for u (and the fact that

y = 0 is a solution, we obtain our general solution to the given Bernoulli equation,

y(x) = u3 =
[
2e3x + ce−2x

]3
and y(x) = 0 .

Additional Exercises

6.1. Use linear substitutions (as described in section 6.2) to find a general solution to each of

the following:

a.
dy

dx
= 1

(3x + 3y + 2)2
b.

dy

dx
= (3x − 2y)2 + 1

3x − 2y
+ 3

2

c. cos(4y − 8x + 3)
dy

dx
= 2 + 2 cos(4y − 8x + 3)

6.2. Using a linear substitution, solve the initial-value problem

dy

dx
= 1 + (y − x)2 with y(0) = 1

4
.
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6.3. Use substitutions appropriate to homogeneous first-order differential equations (as described

in section 6.3) to find a general solution to each of the following:

a. x2 dy

dx
− xy = y2 b.

dy

dx
= y

x
+ x

y

c. cos
(

y

x

) [
dy

dx
− y

x

]
= 1 + sin

(
y

x

)
6.4. Again, use a substitution appropriate to homogeneous first-order differential equations, this

time to solve the initial-value problem

dy

dx
= x − y

x + y
with y(0) = 3 .

6.5. Use substitutions appropriate to Bernoulli equations (as described in section 6.4) to find a

general solution to each of the following:

a.
dy

dx
+ 3y = 3y3 . b.

dy

dx
− 3

x
y =

(
y

x

)2

c.
dy

dx
+ 3 cot(x)y = 6 cos(x)y

2/3

6.6. Use a substitution appropriate to a Bernoulli equation to solve the initial-value problem

dy

dx
− 1

x
y = 1

y
with y(1) = 3 .

6.7. For each of the following, determine a substitution that simplifies the given differential

equation, and, using that substitution, find a general solution. (Warning: The substitutions

for some of the later equations will not be substitutions already discussed.)

a.
dy

dx
= y

x
+

(
x

y

)2

b. 3
dy

dx
= −2 +

√
2x + 3y + 4

c.
dy

dx
+ 2

x
y = 4

√
y d.

dy

dx
= 4 + 1

sin(4x − y)

e. (y − x)
dy

dx
= 1 f. (x + y)

dy

dx
= y

g.
(

2xy + 2x2
)

dy

dx
= x2 + 2xy + 2y2 h.

dy

dx
+ 1

x
y = x2 y3

i.
dy

dx
= 2

√
2x + y − 3 − 2 j.

dy

dx
= 2

√
2x + y − 3

k. x
dy

dx
− y =

√
xy + x2 l.

dy

dx
+ 3y = 28e2x y−3

m.
dy

dx
= (x − y + 3)2 n.

dy

dx
+ 2x = 2

√
y + x2

o. cos(y)
dy

dx
= e−x − sin(y) p.

dy

dx
= x

[
1 + 2

y

x2
+ y2

x4

]
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6.8. Consider a generic Bernoulli equation

dy

dx
+ p(x)y = f (x)yn

where p(x) and f (x) are known functions of x and n is any real number other than

0 or 1 . Use the substitution u = yr (equivalently, y = u
1/r ) and derive that the above

Bernoulli equation for y reduces to a linear equation for u if and only if r = 1 − n . In

the process, also derive the resulting linear equation for u .
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The Exact Form and General Integrating
Factors

In the previous chapters, we’ve seen how separable and linear differential equations can be solved

using methods for converting them to forms that can be easily integrated. In this chapter, we will

develop a more general approach to converting a differential equation to a form (the “exact form”) that

can be integrated through a relatively straightforward procedure. We will see just what it means for a

differential equation to be in exact form and how to solve differential equations in this form. Because

it is not always obvious when a given equation is in exact form, a practical “test for exactness” will

also be developed. Finally, we will generalize the notion of integrating factors to help us find exact

forms for a variety of differential equations.

The theory and methods we will develop here are more general than those developed earlier

for separable and linear equations. In fact, the procedures developed here can be used to solve any

separable or linear differential equation (though you’ll probably prefer using the methods developed

earlier). More importantly, the methods developed in this chapter can, in theory at least, be used

to solve a great number of other first-order differential equations. As we will see though, practical

issues will reduce the applicability of these methods to a somewhat smaller (but still significant)

number of differential equations.

By the way, the theory, the computational procedures, and even the notation that we will

develop for equations in exact form are all very similar to that often developed in the later part of

many calculus courses for two-dimensional conservative vector fields. If you’ve seen that theory,

look for the parallels between it and what follows.

7.1 The Chain Rule

The exact form for a differential equation comes from one of the chain rules for differentiating

a composite function of two variables. Because of this, it may be wise to briefly review these

differentiation rules.

First, suppose φ is a differentiable function of a single variable y (so φ = φ(y) ), and that y ,

itself, is a differentiable function of another variable t (so y = y(t) ). Then the composite function

φ(y(t)) is a differentiable function of t whose derivative is given by the (elementary) chain rule

d

dt
[φ(y(t))] = φ′(y(t)) y′(t) .

A less precise (but more suggestive) description of this chain rule is

d

dt
[φ(y(t))] = dφ

dy

dy

dt
.

119
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!�Example 7.1: Let

y(t) = t2 and φ(y) = sin(y) .

Then

φ(y(t)) = sin
(

t2
)

,

and

d

dt
sin
(

t2
)

= d

dt
[φ(y(t))] = dφ

dy

dy

dt

= d

dy
[sin(y)] · d

dt

[
t2
]

= cos(y) · 2t = cos
(

t2
)

2t .

(In practice, of course, you probably do not explicitly write out all the steps listed above.)

Now suppose φ is a differentiable function of two variables x and y (so φ = φ(x, y) ), while

both x and y are differentiable functions of a single variable t (so x = x(t) and y = y(t) ).

Then the composite function φ(x(t), y(t)) is a differentiable function of t , and its derivative can

be computed using a chain rule typically encountered later in the study of calculus, namely,

d

dt
[φ(x(t), y(t))] = ∂φ

∂x

dx

dt
+ ∂φ

∂y

dy

dt
. (7.1)

In practice, it is usually easier to compute this derivative by simply replacing the x and y in the

formula for φ(x, y) with the corresponding formulas x(t) and y(t) , and then computing that

formula of t to compute the above derivative. Still, this chain rule (and other chain rules involving

functions of several variables) can be quite useful in more advanced applications. Our particular

interest is in the corresponding chain rule for computing

d

dx
[φ(x, y(x))] ,

which we can obtain from equation (7.1) by simply letting x = t . Then

dx

dt
= 1 , y = y(t) = y(x) ,

dy

dt
= dy

dx
,

and equation (7.1) reduces to

d

dx
[φ(x, y(x))] = ∂φ

∂x
+ ∂φ

∂y

dy

dx
. (7.2)

For brevity, we will henceforth refer to this formula as chain rule (7.2) (not very original, but better

than constantly repeating “the chain rule described in equation (7.2)”).

Don’t forget the difference between d/dx and ∂/∂x . If φ = φ(x, y) , then

dφ

dx
= the derivative of φ(x, y) assuming x is the variable and y is a function of x .

while

∂φ

∂x
= the derivative of φ(x, y) assuming x is the variable and y is a constant.

!�Example 7.2: Assume y is some function of x (i.e., y = y(x) ) and

φ(x, y) = y2 + x2 y .
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Then

∂φ

∂x
= ∂

∂x

[
y2 + x2 y

]
= 2xy ,

∂φ

∂y
= ∂

∂y

[
y2 + x2 y

]
= 2y + x2 ,

and, by chain rule (7.2),

d

dx
[φ(x, y(x))] = ∂φ

∂x
+ ∂φ

∂y

dy

dx
= 2xy +

[
2y + x2

]
dy

dx
.

If, for example, y = sin(x) , then the above becomes

d

dx
[φ(x, y(x))] = 2x sin(x) +

[
2 sin(x)+ x2

]
cos(x) .

On the other hand, if y = y(x) is some unknown function, then, after replacing φ with its

formula, we simply have

d

dx

[
y2 + x2 y

]
= 2xy +

[
2y + x2

]
dy

dx
. (7.3)

In our use of chain rule (7.2), y will be an unknown function of x , and the right side of equation

(7.2) will correspond to one side of whatever differential equation is being considered.

7.2 The Exact Form, Defined

Let R be some region in the XY –plane. We will say that a first-order differential equation is in

exact form (on R ) if and only if both of the following hold:

1. The differential equation is written in the form

M(x, y) + N (x, y)
dy

dx
= 0 (7.4a)

where M(x, y) and N (x, y) are known functions of x and y .

and

2. There is a differentiable function φ = φ(x, y) on R such that

∂φ

∂x
= M(x, y) and

∂φ

∂y
= N (x, y) (7.4b)

at every point in R .

We will refer to the above φ(x, y) as a potential function for the differential equation.1

In practice, the region R is often either the entire XY –plane or a significant portion of it.

There are a few technical issues regarding this region, but we can deal with these issues later. In

the meantime, little harm will be done by not explicitly stating the region. Just keep in mind that if

we say an certain equation is in exact form, then it is in exact form on some region R , and that the

graph of any solution y = y(x) derived will be restricted being a curve in that region.

1 Referring to φ as a “potential function” comes from the theory of conservative vector fields. In fact, it is not common

terminology in other differential equation texts. Most other texts just refer to this function as “φ ”.
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!�Example 7.3: Consider the differential equation

2xy +
[
2y + x2

]
dy

dx
= 0 . (7.5)

This equation is in the form

M(x, y) + N (x, y)
dy

dx
= 0

with

M(x, y) = 2xy and N (x, y) = 2y + x2 .

Moreover, if we glance back at example 7.2, we immediately see that, letting

φ(x, y) = y2 + x2 y ,

we have
∂φ

∂x
= ∂

∂x

[
y2 + x2 y

]
= 2xy = M(x, y)

and
∂φ

∂y
= ∂

∂y

[
y2 + x2 y

]
= 2y + x2 = N (x, y)

everywhere in the XY –plane. So equation (7.5) is in exact form (and we can take R to be the

entire XY –plane).

In the next several sections, we will discuss how to determine when a differential equation is in

exact form, how to convert one not in exact form into exact form, how to find a potential function,

and how to solve the differential equation using a potential function. However, we will develop the

material backwards, starting with solving a differential equation given a known potential function,

and working our way towards dealing with equations not in exact form. This ends up being the

natural (and least confusing) way to develop the material.

But first, a few general comments regarding exact forms and potential functions:

1. Just being written as

M(x, y) + N (x, y)
dy

dx
= 0

does not guarantee that a differential equation is in exact form; there still might not be a

φ(x, y) with
∂φ

∂x
= M(x, y) and

∂φ

∂y
= N (x, y) .

For example, we will discover that there is no φ(x, y) satisfying

∂φ

∂x
= 3y + 3y3 and

∂φ

∂y
= xy2 − x .

So

3y + 3y3 +
[
xy2 − x

]
dy

dx
= 0

is not in exact form.

2. A single differential equation will have several potential functions. In particular, adding any

constant to a potential function yields another potential function. After all, if

∂φ0

∂x
= M(x, y) and

∂φ0

∂y
= N (x, y)
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and

φ1(x, y) = φ0(x, y) + c

for some constant c , then, since any derivative of any constant is zero,

∂φ0

∂x
= ∂φ1

∂x
= M(x, y) and

∂φ0

∂y
= ∂φ1

∂y
= N (x, y) .

Moreover, as you will verify in exercises 7.2and 7.3 (starting on page 143), any differential

equation that can be written in one exact form will actually have several exact forms, all

corresponding to different (but related) potential functions.

Because of the uniqueness results concerning solutions to first-order differential equa-

tions, it does not matter which of these potential functions is used to solve the equation.

Thus, in the following, we will only worry about finding a potential function for any given

differential equation.

3. Many authors refer to an equation in exact form as an exact equation. We are avoiding this

terminology because, unlike linear and separable differential equations, the “exactness” of

an equation can be destroyed by legitimate rearrangements of that equation. For example,

dy

dx
+ x2 y = e2x

is a linear differential equation whether it is written as above or written as

dy

dx
= e2x − x2 y .

Consider, on the other hand,

2xy +
[
2y + x2

]
dy

dx
= 0 .

As we saw in example 7.3, this differential equation is in exact form (i.e., is an “exact

equation”). However, if we rewrite it as

dy

dx
= − 2xy

2y + x2
,

we have an equation that is not in exact form (i.e., is not an “exact equation”).

7.3 Solving Equations in Exact Form
Using a Known Potential Function

Observe that, if φ = φ(x, y) is any sufficiently differentiable function of x and y , and

∂φ

∂x
= M(x, y) and

∂φ

∂y
= N (x, y) ,

then the differential equation

M(x, y) + N (x, y)
dy

dx
= 0
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can be rewritten as
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 .

Chain rule (7.2) then tells us that the left side of this equation is just the derivative of φ(x, y(x)) .

So this last equation can be written more concisely as

d

dx
[φ(x, y)] = 0

(with y = y(x) ). Not only is this concise, but it is easily integrated:∫
d

dx
[φ(x, y)] dx =

∫
0 dx

↪→ φ(x, y) = c .

Think about this last equation for a moment. It describes the relation between x and y = y(x)

assuming y satisfies the differential equation

M(x, y) + N (x, y)
dy

dx
= 0 .

In other words, the equation φ(x, y) = c is an implicit solution to the differential equation for which

it is a potential function.

All this is important enough to be restated as a theorem.

Theorem 7.1 (importance of a potential function)

Let φ(x, y) be a potential function for a given first-order differential equation. Then that differential

equation can be written as
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 .

This, in turn, can be rewritten as

d

dx
[φ(x, y)] = 0 with y = y(x) ,

which can be integrated, ∫
d

dx
[φ(x, y)] dx =

∫
0 dx ,

to obtain the implicit solution

φ(x, y) = c

where c is an arbitrary constant.

The above theorem contains all the steps for finding an implicit solution to a differential equation

that can be put in exact form, provided you have a corresponding potential function. Of course, you

have probably already noticed that this theorem can be shortened to the following:

Corollary 7.2

Let φ(x, y) be a potential function for a given first-order differential equation. Then

φ(x, y) = c

is an implicit solution to that differential equation.
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In solving at least the first few differential equations in the exercises at the end of this chapter,

you should use all the steps described in theorem 7.1 simply to reinforce your understanding of why

φ(x, y) = c . Then feel free to cut out the intermediate steps (i.e., use the corollary). And, of course,

don’t forget to see if the implicit solution can be solved for y in terms of x , yielding an explicit

solution.

!�Example 7.4: Consider the differential equation

2xy +
[
2y + x2

]
dy

dx
= 0 .

From example 7.3, we know this is in exact form and has corresponding potential function

φ(x, y) = y2 + x2 y .

Since
∂

∂x

[
y2 + x2 y

]
= 2xy and

∂

∂y

[
y2 + x2 y

]
= 2y + x2 ,

our differential equation can be rewritten as

∂

∂x

[
y2 + x2 y

]
+

(
∂

∂y

[
y2 + x2 y

])
dy

dx
= 0 .

By chain rule (7.2), this reduces to

d

dx

[
y2 + x2 y

]
= 0 with y = y(x) .

Integrating this, ∫
d

dx

[
y2 + x2 y

]
dx =

∫
0 dx ,

yields the implicit solution

y2 + x2 y = c .

Rewriting this as

y2 + x2 y − c = 0

and then solving for y via the quadratic formula provides the explicit solution

y = −x2 ±
√

x4 + 4c

2
.

Finding the Potential Function

Let use now consider a more difficult problem: Finding a potential function, φ(x, y) , for a given

differential equation that has been written in the form

M(x, y) + N (x, y)
dy

dx
= 0 .

This means finding a function φ(x, y) satisfying both

∂φ

∂x
= M(x, y) and

∂φ

∂y
= N (x, y) .

A relatively straightforward procedure for finding this φ will be outlined in a moment. But first, let

us make a few observations regarding this pair of partial differential equations:
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1. We are not assuming the given differential equation is in exact form, so there might not be

a solution to this above pair of partial differential equations. Our method will find φ if it

exists (i.e., if the equation is in exact form) and will lead to an obviously impossible equation

otherwise.

2. Because the above pair of equations are partial differential equations, we must treat x and

y as independent variables. Do not view y as a function of x in solving for φ .

3. If you are acquainted with methods for “recovering the potential for a conservative vector

field”, then you will recognize the following as one of those methods.

Now, here is the procedure:

Basic Procedure for Finding a Potential Function

Assume we have a differential equation in the form

M(x, y) + N (x, y)
dy

dx
= 0 .

For purposes of illustration, we will use the differential equation

2xy + 2 +
[
x2 + 4

]
dy

dx
= 0 .

To find a potential function φ(x, y) for this differential equation (if it exists), do the following:

1. Identify the formulas for M(x, y) and N (x, y) , and, using these formulas, write out the

pair of partial differential equations to be solved,

∂φ

∂x
= M(x, y) and

∂φ

∂y
= N (x, y) .

(In doing so, we are naively assuming the given differential equation is in exact form.)

For our example,

2xy + 2︸ ︷︷ ︸
M(x,y)

+ [
x2 + 4︸ ︷︷ ︸
N (x,y)

] dy

dx
= 0 .

So the pair of partial differential equations to be solved is

∂φ

∂x
= 2xy + 2 and

∂φ

∂y
= x2 + 4 .

2. Integrate the first equation in the pair with respect to x , treating y as a constant.∫
∂φ

∂x
dx =

∫
M(x, y) dx .

In computing the integral of M with respect to x , you get a “constant of integration”. Keep

in mind that this “constant” is based on y being a constant, and may thus depend on the value

of y . Consequently, this “constant of integration” is actually some yet unknown function of

y — call it h(y) .

For our example, ∫
∂φ

∂x
dx =

∫
[2xy + 2] dx

↪→ φ(x, y) = x2 y + 2x + h(y) .
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(Observe that this step yields a formula for φ(x, y) involving one yet unknown function of

y only. We now just have to determine h(y) to know the formula for φ(x, y) .)

3. Replace φ in the other partial differential equation,

∂φ

∂y
= N (x, y) ,

with the formula just derived for φ(x, y) , and compute the partial derivative. Keep in mind

that, because h(y) is a function of y only,

∂

∂y
[h(y)] = h′(y) .

Then algebraically solve the resulting equation for h′(y) .

For our example:
∂φ

∂y
= N (x, y)

↪→ ∂

∂y

[
x2 y + 2x + h(y)

]
= x2 + 4

↪→ x2 + h′(y) = x2 + 4

↪→ h′(y) = 2 .

4. Look at the formula just obtained for h′(y) . Because h′(y) is a function of y only, its

formula must involve only the variable y ; no x may appear.

If the x’s do not cancel out, then we have an impossible equation. This means the naive

assumption made in the first step was wrong; the given differential equation was not in exact

form, and there is no φ(x, y) satisfying the desired pair of partial differential equations. In

this case, Stop! Go no further in this procedure!

On the other hand, if the previous step yields

h′(y) = a formula of y only (no x’s ) ,

then integrate both sides of this equation with respect to y to obtain h(y) . (Because h(y)

does not depend on x , the constant of integration here will truly be a constant, not a function

of the other variable.)

For our example, the last step yielded

h′(y) = 2 .

The right side does not contain x , so we can continue and integrate to obtain

h(y) =
∫

h(y) dy =
∫

2 dy = 2y + c1 .

(We will later see that the constant c1 is not that important.)

5. Combine the formula just obtained for h with the formula obtained for φ in step 2.

In our example, combining the results from step 2 and the last step above yields

φ(x, y) = x2 y + 2x + h(y)

= x2 y + 2x + 2y + c1

where c1 is an arbitrary constant.
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(Because of the arbitrary constant from the integration of h′(y) , the formula obtained actually

describes all possible φ’s satisfying the desired pair of partial differential equations. If you

look at our discussion above, it should be clear that this formula will always be of the form

φ(x, y) = φ0(x, y) + c1

where φ0(x, y) is a particular formula and c1 is an arbitrary constant. But, as noted earlier,

we only need to find one potential function φ(x, y) . So you can set c1 equal to your favorite

constant, 0 , or keep it arbitrary and see what happens.)

If the above procedure does yield a formula φ(x, y) , then it immediately follows that the given

equation is in exact form and φ(x, y) is a potential function for the given differential equation. But

don’t forget that the goal is usually to solve the given differential equation,

M(x, y) + N (x, y)
dy

dx
= 0 .

The function φ = φ(x, y) is not that solution. It is a function such that the differential equation can

be rewritten as
d

dx
[φ(x, y)] = 0 .

Integrating this yields the implicit solution

φ(x, y) = c

from which, if the implicit solution is not too complicated, we can obtain an explicit solution

y = y(x) .

!�Example 7.5: Consider solving

2xy + 2 +
[
x2 + 4

]
dy

dx
= 0 .

As just illustrated, this equation is in exact form, and has a potential function

φ(x, y) = x2 y + 2x + 2y + c1

where c1 can be any constant. So the differential equation can be rewritten as

d

dx

[
x2 y + 2x + 2y + c1

]
= 0 ,

which integrates to

x2 y + 2x + 2y + c1 = c2 .

This is an implicit solution for the differential equation. Solving this for y is easy, and (after

letting c = c2 − c1 ) gives us the explicit solution

y = c − 2x

x2 + 2
.

Note that, in the last example, the constants arising from the integration of h′(y) and dφ/dx

were combined at the end. It is easy to see that this will always be possible.
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Other Ways to Find a Potential Function

There are other ways to find a function φ(x, y) satisfying both

∂φ

∂x
= M(x, y) and

∂φ

∂y
= N (x, y) .

Two, in particular, are worth mentioning:

1. The first is the obvious modification of the one already given in which the roles of ∂φ/∂x = M

and ∂φ/∂y = N are interchanged. That is, instead of

integrating ∂φ/∂x = M with respect to x , and then plugging the result into
∂φ/∂y = N ,

you

integrate ∂φ/∂y = N with respect to y , and then plug the result into ∂φ/∂x = M .

The integration of ∂φ/∂y = N will yield some formula involving x , y and an unknown func-

tion of x , g(x) . Plugging this formula into ∂φ/∂x = M should yield a ordinary differential

equation for g(x) which does not contain y . If the y’s do not cancel out, the desired φ

does not exist. Otherwise, g(x) can be obtained by integration and then combined with the

formula just obtained for φ(x, y) .

This is usually the preferred method when
∫

N (x, y) dy is much easier to compute than∫
M(x, y) dx . Indeed, it usually is a good idea to scan these two integrals and, if one looks

much easier to compute, compute that one, and plug the result into the partial differential

equation corresponding to the other integral. Don’t forget to check to see if the equation

resulting from that just involves the appropriate variable.

2. The other method is one often attempted by beginners who do not understand why it should

not be used: First independently integrate both ∂φ/∂x = M and ∂φ/∂y = N . Then stare at the

two different formulas obtained for φ(x, y) (each involving a different unknown function)

and try to guess what single formula for φ(x, y) (without unknown functions) matches the

results from the two integrations.

Fight any temptation to take this approach. Yes, with a little luck and skill, you can get

φ this way. But it is usually more work, it doesn’t easily warn you when φ(x, y) does not

exist, and is more likely to result in errors. Why use a method involving two integrations and

two unknown functions when you can use a method involving just one integration and one

unknown function with a straightforward way to determine that one function?

7.4 Testing for Exactness — Part I

The procedure just discussed for finding a potential function φ for

M(x, y) + N (x, y)
dy

dx
= 0 (7.6)

does not tell us whether such a φ even exists until step 4, after a possibly tricky integration. For-

tunately, there is a simple test that that can often tell us when seeking that φ would be futile. This

test is based on the fact that, for any sufficiently differentiable φ(x, y) ,

∂2φ

∂y ∂x
= ∂2φ

∂x ∂y
.
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Now let R be any region in the XY –plane on which φ is sufficiently differentiable and satisfies

∂φ

∂x
= M(x, y) and

∂φ

∂y
= N (x, y) .

Then, at every point in R ,

∂M

∂y
= ∂

∂y

[
∂φ

∂x

]
= ∂2φ

∂y ∂x
= ∂2φ

∂x ∂y
= ∂

∂x

[
∂φ

∂y

]
= ∂N

∂x
.

So, for equation (7.6) to be in exact form over R , we must have

∂M

∂y
= ∂N

∂x
(7.7)

at every point in R . If this equation does not hold, differential equation (7.6) is not in exact form

over that region — no corresponding potential function φ exists.

What we have not shown is that equality (7.7) necessarily implies that differential equation

(7.6) is in exact form. In fact, equality (7.7) does imply that, given any point in R , the equation

is in exact form over some subregion of R containing that point. Unfortunately, showing that and

describing those regions takes more development than is appropriate here. For now, let us just say

that, in practice, the equality (7.7) implies that differential equation (7.6) is “probably” in exact form

over the given region, and it is worthwhile to seek a corresponding potential function φ via the

method outlined earlier.

Let us summarize what has just been derived, accepting the term “suitably differentiable” as

simply meaning that the necessary partial derivatives can be computed:

Theorem 7.3 (test for probable exactness)

Let M(x, y) and N (x, y) be two suitably differentiable functions of two variables over a region

R in the XY –plane, and consider the differential equation

M(x, y) + N (x, y)
dy

dx
= 0 .

1. If
∂M

∂y
= ∂N

∂x
on R ,

then the above differential equation is not in exact form on R .

2. If
∂M

∂y
= ∂N

∂x
on R ,

then the above differential equation might be in exact form on R . It is worth seeking a

corresponding potential function.

!�Example 7.6: Consider the differential equation

3y + 3y3 +
[
xy2 − x

]
dy

dx
= 0 .

Here
∂M

∂y
= ∂

∂y

[
3y + 3y3

]
= 3 + 9y2



�

�

�

�

�

�

�

�

“Exact Equations”: A Summary 131

and
∂N

∂x
= ∂

∂x

[
xy2 − x

]
= y2 − 1 .

So
∂M

∂y
= ∂N

∂x
,

telling us that the given differential equation is not in exact form over any region.

!�Example 7.7: Consider the differential equation

− y

x2 + y2
+ x

x2 + y2

dy

dx
= 0 .

Here

M(x, y) = − y

x2 + y2
and N (x, y) = x

x2 + y2

are well defined and differentiable at every point on the XY –plane except (x, y) = (0, 0) .

So let’s take R to be the entire XY –plane with the origin removed. Computing the partial

derivatives, we get

∂M

∂y
= ∂

∂y

[
− y

x2 + y2

]
= −1(x2 + y2) − y(2y)

(x2 + y2)2
= y2 − x2

(x2 + y2)2

and

∂N

∂x
= ∂

∂x

[
x

x2 + y2

]
= 1(x2 + y2) − x(2x)

(x2 + y2)2
= y2 − x2

(x2 + y2)2
.

So these two partial derivatives are equal throughout R , and our test for probable exactness tells

us that the given differential equation might be in exact form on R — it is worthwhile to try to

find a corresponding potential function.

For many, the test described above in theorem 7.3 will suffice. Those who wish a more complete

test should jump to section 7.7 starting on page 139 (where we will also finish solving the differential

equation in example7.7).

7.5 “Exact Equations”: A Summary

To review:

If you suspect that a given differential equation,

M(x, y) + N (x, y)
dy

dx
= 0 ,

is in exact form, then you can quickly check for at least probable exactness by computing
∂M/∂y and ∂N/∂x and seeing if

∂M

∂y
= ∂N

∂x
.

If the two partial derivatives are equal, then follow the procedure for finding a potential

function φ(x, y) outlined on pages 126 to 128.
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If that procedure is successful and yields a φ(x, y) , then finish solving the given dif-

ferential equation using the fact that the differential equation can be rewritten as

d

dx
[φ(x, y)] = 0 ,

the integration of which yields the implicit solution

φ(x, y) = 0 .

If this equation can be solved for y in terms of x , do so.

If the given differential equation is not in exact form, then there is a possibility that it can be

put into an exact form using appropriate “integrating factors”. We will discuss these next.

By the way, don’t forget that these equations may be solvable by other means. For example, the

equation used to illustrate the procedure for finding φ was a linear differential equation, and could

have been solved a bit more quickly using the methods from chapter 5.

7.6 Converting Equations to Exact Form
Basic Notions

Obviously, the first step to converting a given first-order differential equation to exact form is to get

it into the form

M(x, y) + N (x, y)
dy

dx
= 0 .

Then apply the test for (probable) exactness. With luck, the test result will be positive. More likely,

it will not.

To see how we might further convert our equation to exact form, it may help to recall why we

want the exact form. It is so that the left side of the differential equation can be identified as an

ordinary derivative of some formula of x and y(x) ,

d

dx
φ(x, y(x)) .

We had a similar situation with linear equations. Given a linear equation

dy

dx
+ p(x)y = f (x) ,

we found that, after multiplying it by an integrating factor μ to get

μ
dy

dx
+ μpy = μ f ,

we could identify the equation’s left side as a complete derivative of a formula of x and y(x) ,

namely,

d

dx
[μ(x)y(x)] .

The same idea can be applied to convert an equation not in exact form to one that is in exact form.
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!�Example 7.8: Consider the differential equation

3y + 3y3 +
[
xy2 − x

]
dy

dx
= 0 .

In example 7.6, we saw that this equation is not in exact form. But look what happens after we

multiply through by μ = x2 y−2 ,

x2 y−2

(
3y + 3y3 +

[
xy2 − x

]
dy

dx
= 0

)
.

We get

3x2 y−1 + 3x2 y︸ ︷︷ ︸
Mnew(x,y)

+ [
x3 − x3 y−2︸ ︷︷ ︸

Nnew(x,y)

] dy

dx
= 0

with

∂Mnew

∂y
= ∂

∂y

[
3x2 y−1 + 3x2 y

]
= −3x2 y−2 + 3x2 = 3x2 − 3x2 y−2

and
∂Nnew

∂x
= ∂

∂x

[
x3 − x3 y−2

]
= 3x2 − 3x2 y−2 .

So
∂Mnew

∂y
= ∂Nnew

∂x
,

telling us that the equation is now (probably) in exact form (over any region where y never equals

0 ).

We will refer to any nonzero function μ = μ(x, y) as an integrating factor for a first-order

differential equation

M + N
dy

dx
= 0

if and only if multiplying that equation through by μ ,

μM + μN
dy

dx
= 0 ,

yields a differential equation in exact form.2 This integrating factor may be a function of x or of y

or of both x and y . Notice that, because

μM︸︷︷︸
“new” M

+ μN︸︷︷︸
“new” N

dy

dx
= 0

is exact, our test for exactness tells us that

∂

∂y
[μM] = ∂

∂x
[μN ] .

2 You can show that the integrating factors found for linear equations are just special cases of the integrating factors considered

here. If there is any danger of confusion, we’ll refer to the integrating factors now being discussed as the “more general”

integrating factors.
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Finding Integrating Factors
General Approach

Finding an integrating factor for an equation

M(x, y) + N (x, y)
dy

dx
= 0

starts with the requirement just derived,

∂

∂y
[μM] = ∂

∂x
[μN ] . (7.8)

Remember, M and N will be known formulas of x and y . So equation (7.8) is a differential

equation in which the unknown function is our integrating factor, μ . Unfortunately, it is a rather

nontrivial partial differential equation (unlike the partial differential equations in section 7.2), and

a complete discussion of how to solve it for μ is beyond the scope of any introductory differential

equations course. Fortunately, there are some common cases where this partial differential equation

reduces to an equation we can handle. The cases we will consider are where there is an integrating

factor μ that is either a function of x only, or a function of y only, or a ‘simple’ formula of x and

y . In all cases, the approach is basically the same:

1. Choose the case you think is appropriate, and make the corresponding assumptions on μ .

2. Expand equation (7.8) by computing out the derivatives as far as possible, taking into account

the assumptions made on μ .

3. See if the resulting equation can be solved for a μ satisfying the assumptions made. If so, do

so. If not, start over using different assumptions on μ (unless you’ve run out of reasonable

options).

We’ll illustrate the above approach in a moment. Before that, however, a few more comments

should be made:

1. Only one integrating factor is needed. So go ahead and assign convenient values to the

arbitrary constants that arise in solving for μ (just as in finding integrating factors for linear

equations).

2. Once you have found an integrating factor μ , remember why you wanted it. Use it to rewrite

your differential equation in exact form, and then solve the differential equation as described

earlier in this chapter.

3. There are tests to determine if there are integrating factors that are functions of just x or

just y . Moreover, there are formulas for μ that can be used if any of the tests are satisfied

(see exercise 7.6 on page 144). DO NOT WASTE YOUR TIME TRYING TO USE THESE

FORMULAS! They are hard to memorize correctly and are worth learning only if you expect

to compute many, many integrating factors over a relatively short time frame. Chances are,

you won’t have that need, just a need to understand the basic concepts and to compute the

occasional integrating factor.

Now, let’s look at the common cases:

First Case: μ Being a Function of x Only

If you think the integrating factor μ could be a function of x only, then assume it, and see what

happens when you compute out equation (7.8). Under this assumption,

μ = μ(x) ,
∂μ

∂x
= dμ

dx
and

∂μ

∂y
= 0 .
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Consequently, equation (7.8) should immediately reduce to an ordinary differential equation for μ .

Moreover, since μ is supposed to be just a function of x here, this differential equation for μ

should not contain any y’s . Thus, if the y’s do not cancel out, the assumption that μ could be

just a function of x is wrong — go to the next case. But if the y’s do cancel out, then solve the

differential equation just obtained for a μ = μ(x) .

!�Example 7.9: Consider the differential equation

1 + y3 + xy2 dy

dx
= 0 .

Here
∂M

∂y
= ∂

∂y

[
1 + y3

] = 3y2 and
∂N

∂x
= ∂

∂x

[
xy2

] = y2 .

So ∂M/∂y = ∂N/∂x . The equation is not exact, but, with luck, we can find a function μ so that

μ
[
1 + y3

] + μ
[
xy2

] dy

dx
= 0

is exact. This integrating factor μ must satisfy

∂

∂y

(
μ
[
1 + y3

]) = ∂

∂x

(
μ
[
xy2

])
.

Let’s see if μ could be a function of just x . Assume μ = μ(x) . Then

∂μ

∂x
= dμ

dx
and

∂μ

∂y
= 0 .

Using this, we have
∂

∂y

(
μ
[
1 + y3

]) = ∂

∂x

(
μ
[
xy2

])
↪→ ∂μ

∂y

[
1 + y3

] + μ
∂

∂y

[
1 + y3

] = ∂μ

∂x

[
xy2

] + μ
∂

∂x

[
xy2

]
↪→ 0 · [1 + y3

] + μ
[
0 + 3y2

] = dμ

dx

[
xy2

] + μ
[
y2
]

↪→ 3y2μ = xy2 dμ

dx
+ y2μ .

The y’s do cancel out, leaving us with

3μ = x
dμ

dx
+ μ ,

which simplies to
dμ

dx
= 2μ

x
.

So there is an integrating factor μ that is a function of x alone. Moreover, to find such an

integrating factor, we need only find one (nonzero) solution to the above simple, separable ordinary

differential equation. Proceding to do so, we get∫
1

μ

dμ

dx
dx =

∫
2

x
dx

↪→ ln |μ| = 2 ln |x | + c = ln |x |2 + c

↪→ μ = ±eln x2 + c = Ax2 .
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Since only one nonzero integrating factor is needed, we can take A = 1 , giving us

μ(x) = x2

as our integrating factor.

Unfortunately, there is always the possibility that the y’s will not cancel out.

!�Example 7.10: It is easily verified that

6xy + 5
[
x2 + y

] dy

dx
= 0

is not in exact form. To be a corresponding integrating factor, μ must satisfy

∂

∂y

(
μ[6xy]) = ∂

∂x

(
μ5
[
x2 + y

])
.

Assume μ is a function of x only. Then

∂μ

∂x
= dμ

dx
and

∂μ

∂y
= 0 ,

and, thus,
∂

∂y

(
μ[6xy]) = ∂

∂x

(
μ5
[
x2 + y

])
↪→ ∂μ

∂y
[6xy] + μ

∂

∂y
[6xy] = ∂μ

∂x
5
[
x2 + y

] + μ
∂

∂x

(
5
[
x2 + y

])
↪→ 0 · 6xy + μ[6x] = dμ

dx
5
[
x2 + 5

] + μ[10x]

↪→ dμ

dx
= 10xμ− 6xμ

4x2 + 5y
= 4xμ

4x2 + 5y
.

Here, the y’s do not cancel out, as they should if our assumption that μ depended only on x

were true. Hence, that assumption was wrong. This equation does not have an integrating factor

that is a function of x only. We will have to try something else.

Second Case: μ Being a Function of y Only

This is just like the first case, but with the roles of x and y switched. If you think the integrating

factor μ could be function of y only, then assume it, and see what happens when you compute out

equation (7.8). Under this assumption, μ = μ(y) ,

∂μ

∂x
= 0 and

∂μ

∂y
= dμ

dy
.

Again, equation (7.8) should immediately reduce to an ordinary differential equation for μ , only

this time the differential equation for μ should not contain any x’s . If the x’s do not cancel out, our

assumption that μ could be just a function of y is wrong and we can go no further with this hope.

But if the x’s do cancel out, then solving the differential equation just obtained for a μ = μ(y)

yields the desired integrating factor.
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!�Example 7.11: As just seen in example 7.10,

6xy + 5
[
x2 + y

] dy

dx
= 0

does not have an integrating factor depending only on x . So instead, let’s try to find one that

depends on just y . Assuming this,

μ = μ(y) ,
∂μ

∂x
= 0 and

∂μ

∂y
= dμ

dy
.

Combining this with equation (7.8):

∂

∂y

(
μ[6xy]) = ∂

∂x

(
μ
[
5x2 + 5y

])
↪→ ∂μ

∂y
[6xy] + μ

∂

∂y

[
6xy

] = ∂μ

∂x

[
5x2 + 5y

] + μ
∂

∂x

[
5x2 + 5y

]
↪→ dμ

dy
[6xy] + μ[6x] = 0 · [5x2 + 5y

] + μ[10x]

↪→ dμ

dx
= 10xμ− 6xμ

6xy
= 2μ

3y
.

The x’s cancel out, as hoped, and we have a simple differential equation for μ = μ(y) . Solving

it: ∫
1

μ

dμ

dy
dy =

∫
2

3y
dy

↪→ ln |μ| = 2

3
ln |y| + c = ln |y|2/3 + c

↪→ μ = Ay
2/3 .

Taking A = 1 gives the integrating factor

μ(y) = y
2/3 .

Third Case: μ Being a ‘Simple’ Function of Both Variables

Of course, it is quite possible that no function of just x or just y will be an integrating factor for a

given equation

M(x, y) + N (x, y)
dy

dx
= 0 .

In this case, the best we can usually hope for is that there is a relatively simple function of x and y

that will work as an integrating factor. This means making a ‘good guess’ at μ(x, y) and verifying

that it satisfies equation (7.8). One ‘guess’ sometimes worth trying is

μ(x, y) = xα yβ

where the exponents, α and β , are constants to be determined. To determine the values of the

constants so that the guess works (if such constants exist), just plug this formula for μ into equation

(7.8) and see if it reduces to an equation that can be solved for α and β . If so, find those values and

use μ(x, y) = xα yβ (with the values just found for α and β ) as your integrating factor. If not,

keep searching (or consider dealing with the differential equation using the graphical and numerical

methods we’ll discuss in chapters 8 and 9).
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!�Example 7.12: Consider the differential equation from example 7.6,

3y + 3y3 +
[
xy2 − x

]
dy

dx
= 0 .

Plugging

μ(x, y) = xα yβ

into equation (7.8) for our differential equation yields:

∂

∂y
(μM) = ∂

∂x
(μN )

↪→ ∂

∂y

(
xα yβ

[
3y + 3y3

]) = ∂

∂x

(
xα yβ

[
xy2 − x

])
↪→ ∂

∂y

(
3xα yβ+1 + 3xα yβ+3

)
= ∂

∂x

(
xα+1 yβ+2 − xα+1 yβ

)
↪→ 3(β + 1)xα yβ + 3(β + 3)xα yβ+2 = (α + 1)xα yβ+2 − (α + 1)xα yβ .

Combining like terms then gives

[3β + α + 4]xα yβ + [3β − α + 8]xα yβ+2 = 0 ,

which, in turn, holds if and only if

3β + α + 4 = 0 and 3β − α + 8 = 0 .

This last pair of equations constitute a simple system of linear equations,

3β + α + 4 = 0

3β − α + 8 = 0

which can be easily solved by any of a number of ways, yielding

α = 2 and β = −2 .

Thus, the differential equation we started with,

3y + 3y3 +
[
xy2 − x

]
dy

dx
= 0 ,

does have an integrating factor of the form μ(x, y) = xα yβ , and it is

μ(x, y) = x2 y−2

(just as was used in example 7.8 on page 133).
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7.7 Testing for Exactness — Part II
Simple Connectivity and the Complete Test for Exactness

A more complete test for exactness than given in theorem 7.3 can be described if we are more careful

about describing our situation. So suppose we have an equation

M(x, y) + N (x, y)
dy

dx
= 0 ,

and that, on some open region R of the XY –plane, all of the following hold:

1. The functions M(x, y) and N (x, y) , along with the derivatives ∂M/∂y and ∂N/∂x , are con-

tinuous everywhere in R .

2. At each point (x, y) in R ,
∂M

∂y
= ∂N

∂x
.

That region R will said to be simply connected if each and every simple closed curve (i.e.,

loop) in R encloses only points in R . If any simple closed curve in R encloses any point not in

R , then we will say that R is not simply connected. If you think about it, you will realize that

saying a region is simply connected is just a precise way of saying that the region has no “holes”.

And if you think a little more about the situation, you will realize that, if our open region R has

“holes” (i.e., is not simply connected), then it is probably because these are points where M(x, y)

or N (x, y) or their partial derivatives fail to exist.

!�Example 7.13: Again, consider the differential equation

− y

x2 + y2
+ x

x2 + y2

dy

dx
= 0 .

As noted in example 7.7,

M(x, y) = − y

x2 + y2
and N (x, y) = x

x2 + y2

are well defined and differentiable and satisfy

∂M

∂y
= ∂N

∂x

everywhere in the region R consisting of the XY –plane with the origin removed. Removing

this point (the origin) creates a “hole” in R . This point is also a point not in R but which is

enclosed by any loop in R around the origin.

Now we can state the full test for exactness. (Its proof will be briefly discussed at the end of

this section.)

Theorem 7.4 (complete test for exactness)

Let R be a simply-connected open region in the XY –plane, and let M(x, y) and N (x, y) be two

continuous functions on R whose partial derivatives are also continuous on R . Then

M(x, y) + N (x, y)
dy

dx
= 0



�

�

�

�

�

�

�

�

140 The Exact Form and General Integrating Factors

is in exact form on R if and only if
∂M

∂y
= ∂N

∂x

at every point in R .

This theorem assures us that, if our region R is simply connected, then we can (in theory at

least) use the procedure outlined on pages 126 to 128 to find the corresponding potential function

φ(x, y) on R , and from that, derive an implicit solution φ(x, y) = c to our differential equation.

Theorem 7.4 does not definitely say the differential equation is not in exact form if R is not

simply connected. Whether the equation is or is not in exact form over all of R is still uncertain.

What is certain, however, is the following immediate consequence of theorem 7.4.

Corollary 7.5

Assume M(x, y) and N (x, y) are two continuous functions on some open region R of the XY –

plane. Assume further that, on R , the partial derivatives of M and N are continuous and satisfy

∂M

∂y
= ∂N

∂x
.

Then

M(x, y) + N (x, y)
dy

dx
= 0

is in exact form on each simply-connected open subregion of R .

Thus, even if our original region is not simply connected, we can at least pick any open, simply

connected subregion R1 , and (in theory at least) use the procedure outlined in section 7.3 to find

a corresponding potential function φ1(x, y) on R1 , and from that, derive the implicit solution

φ1(x, y) = c to our differential equation, valid on subregion R1 .

But then, why might there not be a potential function φ(x, y) valid on the entire region R ?

Let’s go back to an example started earlier to see.

!�Example 7.14: Let us continue our consideration of the differential equation

− y

x2 + y2
+ x

x2 + y2

dy

dx
= 0

from example 7.7. As just noted in the previous example, the region R consisting of all the

XY –plane except for the origin (0, 0) is not simply connected. But we can partition it into the

left and right half-planes

R+ = {(x, y) : x > 0} and R− = {(x, y) : x < 0} ,

which are simply connected. Theorem 7.4 assures us that our differential equation is in exact

form over each of these half-planes, and, indeed, you can easily show that all the corresponding

potential functions on these regions for our differential equation are given by

φ+(x, y) = Arctan
(

y

x

)
+ c+ on R+

and

φ−(x, y) = Arctan
(

y

x

)
+ c− on R−

where c+ and c− are arbitrary constants.
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But could there be a potential function φ on all of R corresponding to our differential

equation? If so, then φ would also be a potential function over the left and right half-planes R+
and R− , and, as just noted, there would be constants c+ and c− such that

φ(x, y) = Arctan
(

y

x

)
+ c+ for x > 0

and

φ(x, y) = Arctan
(

y

x

)
+ c− for x < 0 .

Since φ must be continuous everywhere except at the origin, it must, in particular, be continuous

at any point on the positive Y –axis, (0, y) with y > 0 . So, letting x → 0 from the positive

side, we have

φ(0, y) = lim
x→0+

φ(x, y) = lim
x→0+

Arctan
(

y

x

)
+ c+ .

Using the substitution t = y/x and recalling the limiting values of the Arctangent function, we

can rewrite the above as

φ(0, y) = lim
t→+∞ Arctan(t) + c+ = π

2
+ c+ .

Likewise, letting x → 0 from the negative side, we have

φ(0, y) = lim
x→0−

φ(x, y)

= lim
x→0−

Arctan
(

y

x

)
+ c−

= lim
t→−∞ Arctan(t) + c− = −π

2
+ c− .

Together, the above tells us that

−π

2
+ c− = φ(0, 1) = π

2
+ c+ ,

which, of course, means that c− = π + c+ . Because of the arbitrariness of the constants added

to potential functions, we may, for simplicity, let c+ = 0 . Then

φ(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Arctan

(
y

x

)
if x > 0

Arctan
(

y

x

)
+ π if x < 0

π

2
if x = 0 and y > 0

.

But look at what must now happen at a point on the negative Y –axis, say, at (0,−1) .

lim
x→0+

φ(x,−1) = lim
x→0+

Arctan
(−1

x

)
= lim

t→−∞ Arctan(t) = −π

2

and

lim
x→0−

φ(x,−1) = lim
x→0−

Arctan
(−1

x

)
+ π = lim

t→+∞ Arctan(t) + π = 3π

2
.

So

lim
x→0+

φ(x,−1) = lim
x→0−

φ(x,−1) .

Thus, there are points in R at which φ(x, y) is not continuous, contrary to the fact that a

potential function on R must be continuous everywhere on R . And thus, the answer to our

question “Could there be a potential function φ on all of R corresponding to our differential

equation?” is “No”.
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The above example illustrates that, while we can partition a non-simply connected region

into simply-connected subregions and then find all possible potential functions for our differential

equation over each subregion, it may still be impossible to “paste together” these regions and potential

functions to obtain a potential function that is well defined across all the boundaries between the

partitions.

Is this truly a problem for us, whose main interest is in solving the differential equation? Not

really. We can still solve the given differential equation. All we need to do is to choose our simply-

connected partitions reasonably intelligently.

!�Example 7.15: Let’s solve the initial-value problem

− y

x2 + y2
+ x

x2 + y2

dy

dx
= 0 with y(1) = 3

using the potential functions from the last example.

Since (x, y) = (1, 3) is in the right half plane, it makes sense to use φ+ from the last

example. Letting c+ = 0 , this potential function is

φ+(x, y) = Arctan
(

y

x

)
for x > 0 .

So our differential equation has an implicit solution

Arctan
(

y

x

)
= C+ for x > 0 .

Taking the tangent of both sides, letting A = tan(C+) , and then solving for y yields the general

solution

y = Ax for x > 0 .

Combined with the initial condition, this is

3 = y(1) = A · 1 .

So A = 3 and the solution to our initial-value problem is

y = 3x for x > 0 .

(We will leave the issue of whether we truly need to restrict x to being positive as an exercise for

the interested.)

Proving Theorem 7.4

This is one theorem we will not attempt to prove. A good proof would require a review of “integrals

over curves in the plane” and “Green’s theorem”, both of which are subjects you may recall seeing

near the end of your calculus course. Moreover, if you replace the equation

M(x, y) + N (x, y)
dy

dx
= 0

with

F(x, y) = M(x .y)i + N (x, y)j

and replace the phrase “in exact form” with “a conservative vector field”, then theorem 7.4 becomes

the theorem describing when a two-dimensional vector field is conservative. The proofs of these

two theorems are virtually the same, and since the theorem about conservative vector fields is in

any good calculus text, this author will save space and writing by directing the interested student to

reviewing the relevant chapters in his/her old calculus book.
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Additional Exercises

7.1. For each choice of φ(x, y) given below, find a differential equation for which the given

φ is a potential function, and then solve the differential equation using the given potential

function.

a. φ(x, y) = 3xy b. φ(x, y) = y2 − 2x3 y

c. φ(x, y) = x2 y − xy3 d. φ(x, y) = x Arctan(y)

7.2. The following concern the differential equation

dy

dx
= 1

y
− y

2x
. (7.9)

a. Verify that the above differential equation can be rewritten as[
y2 − 2x

]
+ 2xy

dy

dx
= 0 ,

and then verify that this is an exact form for equation (7.9) by showing that

φ(x, y) = xy2 − x2

is a corresponding potential function.

b. Solve equation (7.9) using the above potential function.

c. Note that we can also rewrite equation (7.9) as

exy2−x2
[

y2 − 2x
]

+ exy2−x2

2xy
dy

dx
= 0 .

Show that this is also an exact form by showing that

ψ(x, y) = exy2−x2

is a corresponding potential function.

7.3. Assume φ(x, y) is a potential function corresponding to

M(x, y) + N (x, y)
dy

dx
= 0 .

Show that

ψ1(x, y) = eφ(x,y) and ψ2(x, y) = sin(φ(x, y))

are also potential functions for this differential equation, though corresponding to different

exact forms.

7.4. Each of the following differential equations is in exact form. Find a corresponding potential

function for each, and then find a general solution to the differential equation using that

potential function (even if it can be solved by simpler means).

a. 2xy + y2 + [
2xy + x2

] dy

dx
= 0 b. 2xy3 + 4x3 + 3x2 y2 dy

dx
= 0
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c. 2 − 2x + 3y2 dy

dx
= 0 d. 1 + 3x2 y2 + [

2x3 y + 6y
] dy

dx
= 0

e. 4x3 y + [
x4 − y4

] dy

dx
= 0 f. 1 + ln |xy| + x

y

dy

dx
= 0

g. 1 + ey + xey dy

dx
= 0 h. ey + [

xey + 1
] dy

dx
= 0

7.5. For each of the following differential equations,

i. verify that the equation is not in exact form,

ii. find an integrating factor, and

iii. solve the given differential equation (using the integrating factor just found).

a. 1 + y4 + xy3 dy

dx
= 0 b. y + [

y4 − 3x
] dy

dx
= 0

c. 2x−1 y + [
4x2 y − 3

] dy

dx
= 0 d. 1 + [1 − x tan(y)]

dy

dx
= 0

e. 3y + 3y2 + [
2x + 4xy

] dy

dx
= 0 f. 2x(y + 1) − dy

dx
= 0

g. 2y3 + [
4x3 y3 − 3xy2

] dy

dx
= 0

h. 4xy + [
3x2 + 5y

] dy

dx
= 0 for y > 0

i. 6 + 12x2 y2 + [
7x3 y + x

y

] dy

dx
= 0

7.6. The following problems concern the differential equation

M(x, y) + N (x, y)
dy

dx
= 0 . (7.10)

Assume M and N are continuous and have continuous partial derivatives over the entire

XY –plane, and let P and Q be the functions given by

P =
∂M

∂y
− ∂N

∂x

N
and Q =

∂N

∂x
− ∂M

∂y

M
.

a. Show that, if P is a function of x only (so all the y’s cancel out), then

μ(x) = e
∫

P(x) dx

is an integrating factor for equation (7.10).

b. Show that, if Q is a function of y only (so all the x’s cancel out), then

μ(y) = e
∫

Q(x) dx

is an integrating factor for equation (7.10).
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Slope Fields: Graphing Solutions Without
the Solutions

Up to now, our efforts have been directed mainly towards finding formulas or equations describing

solutions to given differential equations. Then, sometimes, we sketched the graphs of these solutions

using those formulas or equations. In this chapter, we will do something quite different. Instead

of solving the differential equations, we will use the differential equations, directly, to sketch the

graphs of their solutions. No other formulas or equations describing the solutions will be needed.

The graphic techniques and underlying ideas that will be developed here are, naturally, especially

useful when dealing with differential equations that cannot be readily solved using the methods

already discussed. But these methods can be valuable even when we can solve a given differential

equation because they yield “pictures” describing the general behavior of the possible solutions.

Sometimes, these pictures can be even more enlightening than formulas for the solutions.

8.1 Motivation and Basic Concepts

Suppose we have a first-order differential equation that, for motivational purposes, “just cannot be

solved” using the methods already discussed. For illustrative purposes, let’s pretend

16
dy

dx
+ xy2 = 9x

is that differential equation. (True, this is really a simple separable differential equation. But it is

also a good differential equation for illustrating the ideas being developed.)

For our purposes, we need to algebraically solve the differential equation to get it into the

derivative formula form, y′ = F(x, y) . Doing so with the above differential equation, we get

dy

dx
= x

16

(
9 − y2

)
. (8.1)

Remember, there are infinitely many particular solutions (with different particular solutions typically

corresponding to different values for the general solution’s ‘arbitrary’ constant). Let’s now pick some

point in the plane, say, (x, y) = (1, 2) , let y = y(x) be the particular solution to the differential

equation whose graph passes through that point, and consider sketching a short line tangent to this

graph at this point. From elementary calculus, we know the slope of this tangent line is given by

the derivative of y = y(x) at that point. And fortunately, equation (8.1) gives us a formula for

computing this very derivative without the bother of actually solving for y(x) ! So, for the graph of

145
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this particular y(x) ,

Slope of the tangent line at (1, 2) = dy

dx
at (x, y) = (1, 2)

= x

16

(
9 − y2

)
at (x, y) = (1, 2)

= 1

16

(
9 − 22

)
= 5

16
.

Thus, if we draw a short line with slope 5/16 through the point (1, 2) , that line will be tangent at

that point to the graph of a solution to our differential equation.

So what? Well, consider further: At each point (x, y) in the plane, we can draw a short line

whose slope is given by the right side of equation (8.1). For convenience, let’s call each of these

short lines the slope line for the differential equation at the given point. Now consider any curve

drawn so that, at each point (x, y) on the curve, the slope line there is tangent to the curve. If this

curve is the graph of some function y = y(x) , then, at each point (x, y) ,

dy

dx
= slope of the slope line at (x, y) .

But we constructed the slope lines so that

slope of the slope line at (x, y) = right side of equation (8.1) = x

16

(
9 − y2

)
.

So the curve drawn is the graph of a function y(x) satisfying

dy

dx
= x

16

(
9 − y2

)
.

That is, the curve drawn is the graph of a solution to our differential equation, and we’ve managed

to draw this curve without actually solving the differential equation.

In practice, of course, we cannot draw the slope line at every point in the plane. But we can

construct the slope lines at the points of any finite grid of points, and then sketch curves that “parallel”

these slope lines — that is, sketch curves so that, at each point on each curve, the slope of the tangent

line is closely approximated by the slopes of the nearby slope lines. Each of these curves would then

approximate the graph of a solution to the differential equation. These curves may not be perfect,

but, if we are careful, they should be close to the actual graphs, and, consequently, will give us a

good picture of what the solutions to our differential equation look like. Moreover, we can construct

these graphs without actually solving the differential equation.

By the way, the phrase “graph of a solution to the differential equation” is a bit long to constantly

repeat. For brevity, we will misuse terminology slightly and call these graphs solution curves (for

the given differential equation).1

1 If you recall the discussion on graphing implicit solutions (section 4.7 starting on page 85), you may realize that, strictly

speaking, the curves being sketched are “integral curves” containing “solution curves”. However, we will initially make an

assumption that makes the distinction between integral and solution curves irrelevant.
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8.2 The Basic Procedure

What follows is a procedure for systematically constructing approximate graphs of solutions to a

first-order differential equation using the ideas just developed. We assume that we have a first-order

differential equation, possibly with some initial condition y(x0) = y0 , and that we wish to sketch

some of the solution curves for this differential equation in some “region of interest” in the XY –

plane. To avoid a few complicating issues (which will be dealt with later), an additional requirement

will be imposed (in the first step) on the sort of differential equations being considered. Later, we’ll

discuss what can be done when this requirement is not met. These steps will be illustrated using the

initial-value problem

16
dy

dx
+ xy2 = 9x with y(0) = 1 . (8.2)

The Procedure:

1. Algebraically solve the differential equation for the derivative to get it into the form

dy

dx
= F(x, y)

where F(x, y) is some formula involving x and/or y .

For now, let us limit our discussion to differential equations for which F(x, y) is well

defined and continuous throughout the region of interest. In particular, then, we are requiring

F(x, y) to be a finite number for each (x, y) in the region we are trying to graph solutions.2

What may happen when this requirement is not satisfied will be discussed later (in section

8.4).

Solving equation (8.2) for the derivative, we get

dy

dx
= x

16

(
9 − y2

)
.

So here,

F(x, y) = x

16

(
9 − y2

)
.

There is certainly no problem with computing this for any pair of values x and y ;

so our differential equation meets the requirement that “ F(x, y) be well defined”

in whatever region we end up using.

2. Pick a grid of points

(x1, y1) , (x2, y1) , (x3, y1) , . . . , (xJ , y1) ,

(x1, y2) , (x2, y2) , (x3, y2) , . . . , (xJ , y2) ,

...

(x1, yK ) , (x2, yK ) , (x3, yK ) , . . . , (xJ , yK ) .

on which to plot the slope lines. Just which points are chosen is largely a matter of judgement.

If the problem involves an initial condition y(x0) = y0 , then the corresponding point,

(x0, y0) , should be one point in the grid. In addition, the grid should:

i. ‘cover’ the region over which you plan to graph the solutions, and

2 Since it prevents points with “infinite slope”, this requirement ensures that the curves will be “solution curves” in the strict

sense of the phrase.
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ii. have enough points so that the slope lines at those points will give a good idea of the

curves to be drawn.

(More points can always be added later.)

In our example, we have the initial condition y(0) = 1 , so we want our grid to

contain the point (0, 1) . For our grid let us pick the set of all points in the region

0 ≤ x ≤ 4 and 0 ≤ y ≤ 4 with integral coordinates:

(0, 4) , (1, 4) , (2, 4) , (3, 4) , (4, 4)

(0, 3) , (1, 3) , (2, 3) , (3, 3) , (4, 3) ,

(0, 2) , (1, 2) , (2, 2) , (3, 2) , (4, 2) ,

(0, 1) , (1, 1) , (2, 1) , (3, 1) , (4, 1) ,

(0, 0) , (1, 0) , (2, 0) , (3, 0) , (4, 0) .

Note that this does contain the point (0, 1) , as desired.

3. For each grid point (x j , yk) :

(a) Compute F(x j , yk) , the right side of the differential equation from step 1.

(b) Using the value F(x j , yk) just computed, carefully draw a short line at (x j , yk) with

slope F(x j , yk) . (As already stated, this short line is called the slope line for the

differential equation at (x j , yk) . Keep in mind that the slope line at each point is

tangent to the solution curve passing through this point.)

More Terminology: The collection of all the slope lines at all points on the grid is called a

slope field for the differential equation.3

Glancing back at our example from step 1, we see that

F(x, y) = x

16

(
9 − y2

)
.

Systematically computing this at each grid point (and noting that these values give

us the slopes of the slope lines at these points):

slope of slope line at (0, 0) = F(0, 0) = 0

16

(
9 − 02

)
= 0

slope of slope line at (1, 0) = F(1, 0) = 1

16

(
9 − 02

)
= 9

16

slope of slope line at (2, 0) = F(2, 0) = 2

16

(
9 − 02

)
= 9

8

...

slope of slope line at (1, 2) = F(1, 2) = 1

16

(
9 − 22

)
= 5

16

...

The results of all these slope computations are contained in the table in figure

8.1a. Sketching the corresponding slope line at each grid point then gives us the

slope field sketched in figure 8.1b.

3 Some texts also refer to a slope field as a “direction field”. We will use that term for something else in chapter 36.
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slope values at (x, y)

y = 4 0 −7/16 −7/8 −21/16 −7/4

y = 3 0 0 0 0 0

y = 2 0 5/16
5/8

15/16
5/4

y = 1 0 1/2 1 3/2 2

y = 0 0 9/16
9/8

27/16
9/4

x = 0 1 2 3 4

(a) (b)
X

Y

0
0

1

1

2

2

3

3

4

4

Figure 8.1: (a) The table of slopes of the slope lines at the grid points and (b) the corresponding

slope lines (and resulting slope field) for y′(x) = 1
16

x
(

9 − y2
)

.

4. Using the slope field just constructed, sketch curves that “parallel” the slope field. To be

precise:

(a) Pick a convenient grid point as a starting point. Then, as well as can be done freehanded,

sketch a curve through that point which “parallels” the slope field. This curve must

go through the starting point and must be tangent to the slope line there. Beyond that,

however, there is no reason to expect this curve to go through any other grid point —

simply draw this curve so that, at each point on the curve, the curve’s tangent there

closely matches the nearby slope lines. In other words, do not attempt to “connect the

dots”! Instead, “go with the flow” indicated by the slope field.

(b) If desired, repeat the previous step and sketch another curve using a different starting

point. Continue sketching curves with different starting points until you get as many

curves as seem appropriate.

If done carefully, the curves sketched will be reasonably good approximations of solution

curves for the differential equation. If your original problem involves an initial value, be sure

that one of your starting points corresponds to that initial value. The resulting curve will be

(approximately) the graph of the solution to that initial-value problem.

Figure 8.2 shows the slope field just constructed, along with four curves sketched

according to the instructions just given. The starting points for these curves were

chosen to be (0, 0) , (0, 1) , (0, 3) , and (0, 4) . Each of these curves approximates

the graph of one solution to our differential equation,

dy

dx
= x

16

(
9 − y2

)
,

with the one passing through (0, 1) being (approximately) the graph of the solu-

tion to the initial-value problem

dy

dx
= x

16

(
9 − y2

)
with y(0) = 1 .

5. At this point (or possibly some point in the previous step) decide whether there are enough

slope lines to accurately draw the desired curves. If not, add more points to the grid, repeat

step 3 with the new grid points, and redraw the curves with the improved slope field (but,

first, see some of the notes below on this procedure).
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X

Y

0
0

1

1

2

2

3

3

4

4

Figure 8.2: A slope field for y′(x) = 1
16

x
(

9 − y2
)

, along with four curves sketched “parallel”

to the field.

It must be admitted that the graphs obtained in figure 8.2 are somewhat crude and

limited. Clearly, we should have used a much bigger grid to cover more area,

and should have used more grid points per unit area so we can get better detail

(especially in the region where y ≈ 3 ). So let us try (sometime in the near future)

something like, say, a 19×16 grid covering the region where 0 ≤ x ≤ 6 and

0 ≤ y ≤ 5 . This will give us a field of 504 slope lines instead of the measly 25

used in figure 8.2.

Though the above procedure took several pages to describe and illustrate, it is really quite

simple, and, eventually, yields a picture that gives a fairly good idea of how the solutions of interest

behave. Just how good a picture depends on the slope field generated and how carefully the curves

are chosen and drawn. Here are a few observations that may help in generating this picture.

1. As indicated in the example, generating a good slope field can require a great deal of tedious

computations and careful drawing — if done by hand. But why do it by hand? This is just the

sort of tedious, mind-numbing work computers do so well. Program a computer to generate

the slope field. Better yet, check your favorite computer math package. There is a good

chance that it will already have commands to generate these fields. Use those commands (or

find a math package that has those commands). That is how the direction field in figure 8.3

was generated.

2. As long as F(x, y) is well defined at every point in the region being considered, solution

curves cannot cross each other at nonzero angles. This is because any solution curve through

any point (x, y) must be tangent to the one and only slope line there, whether or not that

slope line is drawn in. Thus, at worst, two solution curves can become tangent to each other

at a point. Even this, the merging of two or more solution curves with a common tangent, is

not something you should often expect.

3. Just which curves you choose to sketch depend on your goal. If your goal is to graph the

solution to an initial-value problem, then it may suffice to just draw that one curve passing

through the point corresponding to the initial condition. That curve approximates the graph

of the desired solution y(x) and, from it, you can find the approximate value of y(x) for

other values of x .

On the other hand, by drawing a collection of well chosen curves following the slope

field, you can get a fair idea of how all the solutions of interest generally behave and how

they depend on the initial condition. Choosing those curves is a matter of judgement, but do
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X

Y

0

0

1

1

2

2

3

3

4

4

5

5 6

Figure 8.3: A better slope field (based on a 19×16 grid) for y′(x) = 1
16

x
(

9 − y2
)

, along with

four curves sketched “parallel” to the field.

try to identify any curves that are horizontal lines. These are the graphs of constant solutions

and are likely to be particularly relevant. In fact, it’s often worthwhile to identify and sketch

the graphs of all constant solutions in the region, even if they do not pass through any of your

grid points.

Consider finding the values of y(4) and y(6) when y(x) is the solution to the

initial-value problem

dy

dx
= x

16

(
9 − y2

)
with y(0) = 1 .

Since this differential equation was the one used to generate the slope fields in

figures 8.2 and 8.3, we can use the curve drawn through (0, 1) in either of these

figures as an approximate graph for y(x) . On this curve in the better slope field

of figure 8.3, we see that y ≈ 2.6 when x = 4 , and that y ≈ 3 when x = 6 .

Thus, according to our sketch, if y(x) satisfies the above initial-value problem,

then

y(4) ≈ 2.6 and y(6) ≈ 3 .

More generally, after looking at figure 8.3, it should be apparent that any curve

in the sketched region that “parallels” the slope field will approach y = 3 when

x becomes large. This strongly suggests that, if y(x) is any solution to our

differential equation with 0 ≤ y(0) ≤ 5 , then

lim
x→∞ y(x) = 3 .

Do observe that y = 3 is a constant solution to our differential equation.
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Figure 8.4: (a) A slope field and some solutions for y′(x) = 1
4

x(3 − y) , and (b) a slope field

and some solutions for y′(x) = 1
3
(y − 3)1/3

8.3 Observing Long-Term Behavior in Slope Fields
Basic Notions

A slope field of a differential equation gives a picture of the general behavior of the possible solutions

to that differential equation, at least in the region covered by that slope field. In many cases, this

picture may even give you a good idea of the “long-term” behavior of the solutions.

!�Example 8.1: Consider the differential equation

dy

dx
= x

4
(3 − y) .

A slope field (and some solution curves) for this equation is sketched in figure 8.4a. Now let

y = y(x) be any solution to this differential equation, and look at the slope field. It clearly

suggests that

y(x) → 3 as x → ∞ .

On the other hand, the slope field sketched in figure 8.4b for

dy

dx
= 1

3
(y − 3)

1/3

suggests a rather different sort of behavior for this equation’s solutions as x gets large. Here, it

looks as if almost no solutions approach any constant value as x → ∞ . Instead, we appear to

have

lim
x→∞ y(x) = +∞ if y(0) > 3

and

lim
x→∞ y(x) = −∞ if y(0) < 3 .

Of course, one should be cautious about using a slope field to predict the value of y(x) when x

is outside the range of x-values used in the slope field. In general, a slope field for a given differential



�

�

�

�

�

�

�

�

Observing Long-Term Behavior in Slope Fields 153

equation sketched on one region of the XY –plane can be quite different from a slope field for that

differential equation over a different region. So it is important to be sure that the general pattern of

slope lines on which you are basing your prediction does not significantly change as you consider

points outside the region of your slope field.

!�Example 8.2: If you look at the differential equation for the slope field in figure 8.4a,

dy

dx
= x

4
(3 − y) ,

you can see that the magnitude of the right side∣∣∣ x

4
(3 − y)

∣∣∣
becomes larger as either |x | or |y − 3| becomes larger, but the sign of the right side remains

negative if x > 0 and y > 3 and positive if x > 0 and y < 3 .

Thus, the slope lines may become steeper as we increase x or as we go up or down with y , but

they continue to “direct” all sketched solution curves towards the line y = 3 as x → ∞ .

There is one class of differential equations whose slope fields are especially suited for mak-

ing long-term predictions: the autonomous first-order differential equations. Remember, such a

differential equation can be written as
dy

dx
= g(y)

where g(y) is a known formula of y only. The fact that the right side of this equation does not

depend on x means that the vertical column of slope lines at any one value of x is identically

repeated at every other value of x . So if the slope field tells you that the solution curve through,

say, the point (x, y) = (1, 4) has slope 1/2 , then you are certain that the solution curve through

any point (x, y) with y = 4 also has slope 1/2 . Moreover, if there is a horizontal slope line at a

point (x0, y0) , then there will be a horizontal slope line wherever y = y0 ; that is, y = y0 will be

a constant solution to the differential equation.

!�Example 8.3: The differential equation for the slope field sketched in figure 8.4b,

dy

dx
= 1

3
(y − 3)

1/3 ,

is autonomous since this formula for the derivative does not explicitly involve x . So the pattern

of slope lines in any vertical column in the given slope field will be repeated identically in every

vertical column in any slope field covering a larger region (provided we use the same y-values).

Moreover, from the right side of the equation, we can see that the slopes of the slope lines

1. remain positive and steadily increase as y increases above y = 3 ,

and

2. remain negative and steadily decrease as y decreases below y = 3 .

Consequently, no matter how large a region we choose for the slope field, we will see that

1. the slope lines at points above y = 3 will be “directing” the solution curves more and

more steeply upwards as y increases

and
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2. the slope lines at points above y = 3 will be “directing” the solution curves more and

more steeply upwards as y increases.

Thus, we can safely say that, if y = y(x) is any solution to this differential equation, then

lim
x→∞ y(x) =

{
+∞ if y(0) > 3

−∞ if y(0) < 3
.

Constant Solutions and Stability

The “long-term behavior” of a constant solution

y(x) = y0 for all x

is quite straightforward: the value of y(x) remains y0 as x → ∞ . What is more varied, and

often quite important, is the long-term behavior of the other solutions that are initially “close” to

this constant solution. The slope fields in figures 8.4a and 8.4b clearly illustrate how different this

behavior may be.

In figure 8.4a, the graph of every solution y = y(x) with y(0) ≈ 3 remains close to the

horizontal line y = 3 as x increases. Thus, if you know y(x) satisfies the given differential

equation, but only know that y(0) ≈ 3 , then it is still safe to expect that y(x) ≈ 3 for all x > 0 .

In fact, it appears that y(x) → 3 as x → ∞ .

In figure 8.4b, by contrast, the graph of every nonconstant solution y = y(x) with y(0) ≈ 3

diverges from the horizontal line y = 3 as x increases. Thus, if y(x) is a solution to the differential

equation for this slope field, but you only know that y(0) ≈ 3 , then you have very little idea what

y(x) is for large values of x . This could be a significant concern in real-world applications where,

often, initial values are only known approximately.

This leads to the notion of the “stability” of a given constant solution for a first-order differential

equation. This concerns the tendency of solutions having initial values close to that of that constant

solution to continue having values close to that constant as the variable increases. Whether or not

the initially nearby solutions remain nearby determines whether a constant solution is classified as

being “stable”, “asymptotically stable” or “unstable”. Basically, we will say that a constant solution

y = y0 to some given first-order differential equation is:

• stable if (and only if) every other solution y = y(x) having an initial value y(0) “sufficiently

close” to y0 remains reasonably close to y0 as x increases.4

• asymptotically stable if (and only if) it is stable and, in fact, any other solution y = y(x)

satisfies

lim
x→∞ y(x) = y0

whenever that solution’s initial value y(0) is “sufficiently close” to y0 .5 (Typically, this

means the horizontal line y = y0 is the horizontal asymptote for these solutions — that’s

where the term “asymptotically stable” comes from.)

• unstable whenever it is not a stable constant solution.

4 To be more precise: y = y0 is a stable constant solution if and only if, for every ε > 0 , there is a corresponding δ > 0

such that, whenever y = y(x) is a solution to the differential equation satisfying |y(0)− y0| < δ , then |y(x)− y0| < ε

for all x > 0 .
5 More precisely: y = y0 is an asymptotically stable constant solution if and only if there is a corresponding δ > 0 such

that, whenever y = y(x) is a solution to the differential equation satisfying |y(0)− y0| < δ , then limx→∞ y(x) = y0 .
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Of course, the above definitions assume the differential equation is “reasonably well-defined in a

region about the constant solution y = y0 ”.6

Often, the stability or instability of a constant solution is readily apparent from a given slope field,

with rigorous confirmation easily done by fairly simple analysis. Asymptotically stable constant

solutions are also often easily identified in slope fields, though rigorously verifying asymptotic

stability may require a bit more analysis.

!�Example 8.4: Recall that the slope field in figure 8.4a is for

dy

dx
= x

4
(3 − y) .

From our discussions in examples 8.1 and 8.2, we already know y = 3 is a constant solution to

this differential equation, and that, if y = y(x) is any other solution satisfying y(0) ≈ 3 , then

y(x) ≈ 3 for all x > 0 . In fact, because the slope lines are all angled towards y = 3 as x

increases, it should be clear that, for every x > 0 , y(x) will be closer to 3 than is y(0) . So

y = 3 is a stable constant solution to the above differential equation.

Is y = 3 an asymptotically stable solution? That is, do we have

lim
x→∞ y(x) = 3

whenever y = y(x) is a solution with y(0) is sufficiently close to 3 ? The slope field certainly

suggests so. Fortunately, this differential equation is a fairly simple separable equation which

you can easily solve to get

y(x) = 3 + Ae−x2/2

as a general solution. Taking the limit, we see that

lim
x→∞ y(x) = lim

x→∞ 3 + Ae−x2/2 = 3 + 0 ,

no matter what y(0) is. So, yes, y = 3 is not just a stable constant solution to the above

differential equation; it is an asymptotically stable constant solution.

!�Example 8.5: Now, again consider the slope field in figure 8.4b, which is for

dy

dx
= 1

3
(y − 3)

1/3 .

Again, we know y = 3 is a constant solution for this differential equation. However, from our

discussion in example 8.3, we also know that, if y = y(x) is any other solution, then

lim
x→∞ y(x) = ±∞ ,

Clearly, then, even if y(0) is very close (but not equal) to 3 , y(x) will not remain close to 3 as

x increases. Thus, y = 3 is an unstable constant solution to this differential equation.

In the two examples given so far, all the solutions starting near a stable constant solution

converged to that solution, while all nonconstant solutions starting near an unstable solution diverged

to ±∞ as x → ∞ . The next two examples show that somewhat different behavior can occur.

6 e.g., that the differential equation can be written as y′ = F(x, y) where F is continuous at every (x, y) with x ≥ 0 and

|y − y0| < δ for some δ > 0 .
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Figure 8.5: Slope fields (a) for example 8.6, and (b) for example 8.7.

!�Example 8.6: The slope field and solution curves sketched in figure 8.5a are for

dy

dx
= y − 2

6ex/2 − 2
.

Here, y = 2 is the only constant solution. Following the slope lines in this figure, it appears that,

although the graph of each nonconstant solution y = y(x) starts at x = 0 by moving away from

y = 2 as x increases, this graph quickly levels out so that y(x) approaches some constant as

x → ∞ . This behavior can be confirmed by solving the differential equation. With a little work,

you can solve this differential equation and show that, if y is any solution to this differential

equation, then

y(x)− 2 =
[
3 − e−x/2

]
[y(0)− 2] .

You can also easily verify that∣∣∣3 − e−x/2
∣∣∣ < 3 for x > 0 .

So,

|y(x)− 2| =
∣∣∣3 − e−x/2

∣∣∣ |y(0)− 2| < 3 |y(0)− 2| .

In other words, the distance between y(x) and y = 2 when x > 0 is never more than three

times the distance between y(x) and y = 2 when x = 0 . So, if we wish y(x) to stay within a

certain distance of y = 2 for all positive values of x , we merely need to be sure that y(0) is no

more than a third of that distance from 2 .

This confirms that y = 2 is a stable constant solution. However, it is not asymptotically

stable because

lim
x→∞ y(x) = 2 + 3[y(0)− 2] = 2 whenever y(0) = 2 .

?�Exercise 8.1: Let y(x) be a solution to the differential equation discussed in the last example.

Using the solution formula given above:

a: Show that

|y(x)− 2| < 1 for all x > 0



�

�

�

�

�

�

�

�

Observing Long-Term Behavior in Slope Fields 157

whenever

|y(0)− 2| < 1

3
.

b: How close should y(0) be to 2 so that

|y(x)− 2| < 1

2
for all x > 0 ?

In the next example, there are two constant solutions, and the analysis is done without the benefit

of having a general solution to the given differential equation.

!�Example 8.7: The slope field and solution curves sketched in figure 8.5b are for

dy

dx
= 1

2
(4 − y)(y − 2)

4/3 .

Technically, this separable equation can be solved for an implicit solution by the methods discussed

for separable equations, but the resulting equation is too complicated to be of much value here.

Fortunately, from a quick examination of the right side of this differential equation, we can see

that

1. There are two constant solutions, y = 2 and y = 4 .

2. The differential equation is autonomous. So the pattern of slope lines seen in figure 8.5b

continues unchanged throughout the entire horizontal strip with 0 ≤ y ≤ 5 .

Following the slope lines in figure 8.5b, it seems clear that y = 4 is a stable constant

solution. In fact, it appears that

lim
x→∞ y(x) = 4

whenever y is a solution satisfying

2 < y(0) < 5 .

This strongly suggests that y = 4 is an asymptotically stable constant solution.

On the other hand, if

lim
x→∞ y(x) = 4 whenever 2 < y(0) < 5 ,

then the constant solution y = 2 cannot be stable. True, it appears that

lim
x→∞ y(x) = 2 whenever 0 < y(0) ≤ 2 ,

but, if y(0) is just a tiny bit larger than 2 , then y(x) does not stay close to 2 as x increases —

it gets close to 4 . So we must consider this constant solution as being unstable. (We will later

see that this type of instability can cause serious problems when attempting to numerically solve

a differential equation.)

In the last example, we did not do the analysis to rigorously verify that y = 4 is an asymptoti-

cally stable constant solution, and that y = 2 is an unstable constant solution. Still, you are probably

pretty confident that more rigorous analysis will confirm this. If so, good — you are correct. We’ll

verify this in section 8.5 using the more rigorous tests developed there.

Finally, a few comments that should be made regarding, not stability, but our discussion of

“stability”:
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1. Strictly speaking, we’ve been discussing the stability of solutions to initial-value problems

when the initial value of y(x) is given at x = 0 . To convert our discussion to a discussion

of the stability of solutions to initial-value problems with the initial value of y(x) given at

some other point x = x0 , just repeat the above with x = 0 replaced by x = x0 . There will

be no surprises.

2. Traditionally, discussions of “stability” only involve autonomous differential equations. We

did not do so here because there seemed little reason to do so (provided we are careful

about taking into account how the differential equation depends on x ). Admittedly, limiting

discussion to autonomous equations would have simplified things since the slope fields of

autonomous differential equations do not depend on x . In addition, constant solutions to

autonomous equations are traditionally called equilibrium solutions, and, to this author at

least, “stable and unstable equilibriums” sounds more interesting than “stable and unstable

constant solutions”. Still, that did not justify limiting our discussion to just autonomous

equations.

8.4 Problem Points in Slope Fields, and Issues of
Existence and Uniqueness

In sketching and using a slope field for
dy

dx
= F(x, y)

we have, up to this point, assumed F(x, y) is well defined and continuous throughout the region

of interest. This will not always be the case. So let us look at what can happen when F is not so

well behaved at certain points. This, by the way, will naturally lead to a brief continuation of our

discussion of “existence” and “uniqueness” that we began in the later part of chapter 3.

Infinite Slopes

Often, a given F(x, y) becomes infinite at certain points in the XY –plane. This, in turn, means that

the corresponding slope lines have “infinite slope”, that is, they are vertical. One practical problem is

that the software you are using to create your slope fields might object to ‘division by zero’ and not

be able to deal with these points. On a more fundamental level, these infinite slopes may be warning

you that something very significant is occurring in the solutions whose graphs include or are near

these points.

In particular, these vertical slope lines may be telling you that solutions are, themselves, be-

coming infinite for finite values of x .

!�Example 8.8: A slope field for
dy

dx
= 1

3 − x

is sketched in figure 8.6a. Since

lim
x→3

1

3 − x
= ±∞ ,

there are vertical slope lines at every point (x, y) with x = 3 . This, along with the pattern of

the other nearby slope lines, suggests that the solutions to this differential equation are “blowing
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Figure 8.6: Slope fields (a) for y′(x) = (3 − x)−1 from example 8.8, and (b) for

y′(x) = 1
3
(x − 3)−2/3 from example 8.8.

up” as x approaches 3 . Fortunately, this differential equation is easily solved — just integrating

it yields

y = c − ln |3 − x | ,

which does, indeed, “blow up” at x = 3 for any choice of c .

Consequently, the vertical slope lines in figure 8.6a form a vertical asymptote for the graphs

of the solutions to the given differential equation. This further means that no solution to the

differential equation passes through a point (x, y) with x = 3 . In particular, if you are asked to

solve the initial-value problem

dy

dx
= 1

3 − x
with y(3) = 2 ,

you have every right to respond: “Nonsense, there is no solution to this initial-value problem.”

On the other hand, the vertical slope lines might not be harbingers of particularly bad behavior

in our solutions. Instead, the solutions may be fairly ordinary functions whose graphs just happen

to have vertical tangent lines at a few points.

!�Example 8.9: In figure 8.6b, we have a slope field for

dy

dx
= 1

3(x − 3)2/3
.

Again, “division by zero” when x = 3 gives us vertical slope lines at every (x, y) with x = 3 .

This time, however, integrating the differential equation yields

y = (x − 3)
1/3 + c .

For each value of c , this is a continuous function on the entire real line (including at x = 3 )

which just happens to have a vertical tangent when x = 3 .

In particular, as you can easily verify,

y = (x − 3)
1/3 + 2
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is the one and only solution on (−∞,∞) to the initial-value problem

dy

dx
= 1

3(x − 3)2/3
with y(3) = 2 .

Another possibility involving infinite slopes is illustrated in the next example.

!�Example 8.10: The slope field in figure 8.7a is for

dy

dx
= x − 2

2 − y
.

This time, the vertical slope lines occur wherever y = 2 (excluding the point (2, 2) , which we

will discuss later). It should be clear that these slope lines do not correspond to asymptotes of the

graphs of solutions that “blow up”, nor does it appear possible for a curve going from left to right

to pass through these points and still parallel the slope lines. Instead, if we carefully sketch the

curve that “follows the slope field” through, say, the point (x, y) = (0, 2) , then we end up with

the circle sketched in the figure (which also has a vertical tangent at (x, y) = (4, 2) ). But such

a circle cannot be the graph of a function y = y(x) since it corresponds to two different values

for y(x) for each x in the interval (0, 4) .

Fortunately, again, our differential equation is a simple separable equation. Solving it (as

you can easily do), yields

y = 2 ±
√

A − (x − 2)2 .

In particular, if we further require that y(0) = 2 , then we obtain exactly two solutions,

y = 2 +
√

4 − (x − 2)2 and y = 2 −
√

4 − (x − 2)2 ,

with each defined and continuous on the closed interval [0, 4] . The first satisfies the differential

equation on the interval (0, 4) , and its graph is the upper half of the sketched circle. The second

also satisfies the differential equation on the interval (0, 4) , but its graph is the lower half of the

sketched circle.

Undefined and Indeterminant Slopes

Let’s now look at two examples involving points at which slope lines simply cannot be drawn because

F(x, y) is neither finite nor infinite at those points.

!�Example 8.11: Again, consider the slope field in figure 8.7a for

dy

dx
= x − 2

2 − y
.

If (x, y) = (2, 2) , this becomes the indeterminant expression

dy

dx
= 0

0
.

Moreover, the slopes of the slope lines at points near (x, y) = (2, 2) range from 0 to ±∞ . In

fact, the point (x, y) = (2, 2) appears to be the center of the circles made up of the graphs of the

solutions to this differential equation— a fact that can be confirmed using the solution formulas
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Figure 8.7: Slope fields (a) for y′(x) = (x − 2)(2 − y)−1 from examples 8.10 and 8.11, and (b)
for y′(x) = (y − 2)(x − 2)−1 from example 8.12.

from example 8.10. Clearly, no real curve can pass through the point (x, y) = (2, 2) and remain

parallel to the slope lines near this point. So if we really wanted a solution to

dy

dx
= x − 2

2 − y
with y(2) = 2 ,

which is valid on some interval (α, β) , then we would be disappointed. There is no such solution.

!�Example 8.12: We also get
dy

dx
= 0

0

when we let (x, y) = (2, 2) in
dy

dx
= y − 2

x − 2
.

This time, however, the slope field (sketched in figure 8.7b) suggests that every solution curve

passes through this point. And, indeed, solving this simple separable equation yields the formula

y = 2 + A(x − 2)

where A is an arbitrary constant. This formula gives y = 2 when x = 2 no matter what A is.

Consequently, the initial-value problem

dy

dx
= y − 2

x − 2
with y(2) = 2

has infinitely many solutions.

In both of the above examples, the slope lines were all well defined (possibly with infinite slope)

at all but one point in the XY –plane. They are fairly representative examples of what can happen

when F(x, y) is undefined at isolated points. Of course, we can easily give examples in which

F(x, y) is undefined on vast regions of the XY –plane. There isn’t much to be said about these

cases, but we’ll provide one example for the sake of completeness.
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Figure 8.8: Slope fields (a) for y′(x) = 1
2
(y − 2)1/3 from example 8.14, and (b) for the

differential equation in example 8.15.

!�Example 8.13: Consider the differential equation

dy

dx
=

√
1 − (

x2 + y2
)

.

The right side only makes sense if x2 + y2 ≤ 1 . Obviously, there can be no “slope field” in any

region outside the circle x2 + y2 = 1 (that’s why we didn’t attempt to sketch it), and it is just

plain silly to ask for a solution to this differential equation satisfying, say, y(x0) = y0 whenever

(x0, y0) is a point outside the circle x2 + y2 = 1 .

Curves Diverging From or Converging To a Point

In example 8.12 (figure 8.7b), we have solution curves converging to and diverging from the point

(2, 2) . In that case, F(x, y) was indeterminant at that point. As the next example illustrates, we

can have solution curves converging to and diverging from a point even though F(x, y) is a nice

well-defined, finite number at that point. Fortunately, for reasons to be explained, this is not very

common.

!�Example 8.14: Consider
dy

dx
= 1

2
(y − 2)

1/3 .

A slope field and some solutions for this differential equation are sketched in figure 8.8a. Note

that we’ve sketched three curves diverging from the point (0, 2) . These curves are the graphs of

y = 2 , y = 2 +
(

x

3

)3/2
and y = 2 −

(
x

3

)3/2
,

all of which are solutions on [0,∞) to the initial-value problem

dy

dx
= 1

2
(y − 2)

1/3 with y(0) = 2 .
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What distinguishes this from example 8.12 (figure 8.7b) is that the right side of the above differ-

ential equation is not indeterminant at the point (0, 2) . Instead, at (x, y) = (0, 2) we have

dy

dx
= 1

2
(2 − 2)

1/3 = 0 ,

which is a perfectly reasonable finite value.

On Existence and Uniqueness

Let us return to the issues of the “existence” and “uniqueness” of the solutions to a generic initial-value

problem
dy

dx
= F(x, y) with y(x0) = y0 . (8.3)

We first discussed these issues in the later part of chapter 3. In particular, you may recall theorem

3.1 on page 44. That theorem assures us that:

If both F(x, y) and ∂F/∂y are continuous functions on some open region of the XY –

plane containing the point (x0, y0) , then:

1. (existence) The above initial-value problem has at least one solution y = y(x) .

2. (uniqueness) There is an open interval (a, b) containing x0 on which this y =
y(x) is the only solution to this initial-value problem.

Now consider every slope field for this differential equation in some region around (x0, y0) on

which F is continuous. The continuity of F ensures that the slope lines will be well defined with

finite slope at every point, and that these slopes will vary continuously as you move throughout the

region. Clearly, there is a curve through the point (x0, y0) that is “parallel” to every possible slope

field, and this curve will have to be the graph of a function satisfying

dy

dx
= F(x, y) with y(x0) = y0 .

This graphically verifies the “existence” part of theorem 3.1. In fact, a good mathematician can take

the above argument and construct a rigorous proof that

If F is a continuous function on some open region of the XY –plane containing the

point (x0, y0) , then

dy

dx
= F(x, y) with y(x0) = y0 .

has at least one solution on some interval (a, b) with a < x0 < b .

So we can use our slope fields to visually convince ourselves that initial-value problem (8.3)

has a solution whenever F is reasonably well behaved. But what about uniqueness? Will the curve

drawn be the only possible curve matching the slope fields? Well, in example 8.14 (figure 8.8a) we

had three different curves passing through the point (0, 2) , all of which matched the slope field.

Thus, we have (at least) three different solutions to the initial-value problem given in that example.

And this occurred even though the F(x, y) is a continuous function on all of the XY –plane.

This is where the second part of theorem 3.1 can help us in using slope fields. It assures us that

there is only one solution (over some interval containing x0 ) to

dy

dx
= F(x, y) with y(x0) = y0
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provided both F(x, y) and ∂F/∂y are continuous in a region around (x0, y0) . In example 8.14, we

had

F(x, y) = 1

2
(y − 2)

1/3 .

While this F is continuous throughout the XY –plane, the corresponding ∂F/∂y ,

∂F

∂y
= 1

2 · 3
(y − 2)−

2/3 = 1

6(y − 2)2/3
,

is not continuous at any (x, y) with y = 2 . Consequently, theorem 3.1 does not assure us that the

initial-value problem given in example 8.14 has only one solution. And, indeed, we discovered three

solutions.

So, what can we say about using slope fields to sketch solutions to

dy

dx
= F(x, y) with y(x0) = y0 ?

Based on the example we’ve seen and the discussion above, we can safely make the following three

statements:

1. If F(x, y) is reasonably well behaved in some region around the point (x0, y0) (i.e., F(x, y)

well defined, finite and continuous at each point (x, y) in this region), then we can use slope

fields to sketch a curve that will be a reasonable approximation to a solution to the initial-value

problem over some interval.

2. If F(x, y) is not reasonably well behaved in some region around the point (x0, y0) , in

particular, if F(x0, y0) is not a well-defined finite value, then we may or may not have a

solution to the given initial-value problem. The slope field will probably give us an idea of

the nature of solution curves passing through points near (x0, y0) , but more analysis may

be needed to determine if the given initial-value problem has a solution, and, if it exists, the

nature of that solution.

3. Even if F(x, y) is reasonably well behaved in some region around the point (x0, y0) , it

is worthwhile to see if ∂F/∂y is also well defined everywhere in that region. If so, then the

curve drawn using a decent slope field will be a reasonably good approximation of the graph

to the only solution to the initial-value problem. Otherwise, there is a possibility of multiple

solutions.

Finally, let us observe that we can have unique, reasonably well-behaved solutions even though

both F and ∂F/∂y have discontinuities. This was evident in example 8.9 on page 159 (figure 8.6b),

and is evident in the following example.

!�Example 8.15: The right side of

dy

dx
=

{
0 if x < 3

1 if 3 ≤ x

is discontinuous at every point (x, y) with x = 3 . This differential equation yields the simple,

yet striking, slope field in figure 8.8b. And from this slope field, it should be clear that there is

exactly one solution to this differential equation satisfying, say, y(3) = 2 . That is one of the

curves sketched, and (as you can verify) that curve is the graph of

y(x) =
{

2 if x < 3

x − 1 if 3 ≤ x
.
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00

y = y(x) L

xh xL

y0

yh

X

Y

Figure 8.9: A slope field on the strip y0 ≤ y ≤ yh for y′ = g(y) when g(y0) = 0 and g is an

increasing function on [y0, yh] .

8.5 Tests for Stability

In section 8.3, we discussed the stability of constant solutions, using slope fields to visually distinguish

between constant solutions that were stable, asymptotically stable or unstable. That was good for

developing a basic understanding of stability, but, as we saw in the examples, it is not always possible

to determine the stability of a given constant solution from just a slope field. So let us take a closer

look at the geometry of the solution curves to a first-order differential equation

dy

dx
= F(x, y)

which start out near the graph of a constant solution y = y0 , and see if we can derive some relatively

simple “computational” tests for verifying the stability or instability suggested by such slope fields

as in figures 8.9 and 8.10.

Throughout this section, we’ll assume we have three finite numbers y0 , yl and yh with

yl < y0 < yh .

The constant solution to our differential equation will be y = y0 , and the strips of interest will be

those strips bounded by the horizontal lines

y = y0 , y = yl and y = yh .

We will also assume F(x, y) is at least a continuous function of both x and y on these strips. This

ensures that we need not worry about any truly “bad” problem points in the strips and can safely

assume that no solution curve “ends” at a point in one of our strips.

Autonomous Equations

Since the analysis is much easier with autonomous equations, we will start with those. Accordingly,

we assume y = y0 is a constant solution to a differential equation of the form

dy

dx
= g(y)

where g is a continuous function on the closed interval [yl , yh] .
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00

y0

yh

Lε

yε

X

Y

ε

xε

Figure 8.10: Slope field for y′ = g(y) when g(y0) = 0 and g is a decreasing function on

[yl , yh] with yl < y0 < yh .

The Single Crossing Point Lemma

We start by observing that no solution curve can cross a horizontal line y = yc more than once

if g(yc) is a finite, nonzero value. In particular, suppose g(yc) > 0 (as we have for yc = yh in

figure 8.9), and suppose y = y(x) is a solution to our autonomous differential equation whose graph

crosses the horizontal line y = yc at the point (x, y) = (xc, yc) . At this point, the slope of the

solution curve is positive, telling us that the solution curve goes from below to above this horizontal

line as x goes from the left to the right of xc . And since g(y) > 0 at every point on the horizontal

line y = yc , there is no point where the solution curve can come back below this horizontal line as

x increases.

Likewise, if g(yc) < 0 (see figure 8.10), then each solution curve crossing y = yc goes from

above to below y = yc and can never “come back up” to cross y = yc a second time.

We’ll use this observation several times in what follows, so let us dignify it as a lemma:

Lemma 8.1

Let y = y(x) be a solution to
dy

dx
= g(y)

on some interval (0, xmax) whose graph crosses a horizontal line y = yc when x = xc . Suppose,

further, that g(yc) is a finite, nonzero value. Then,

g(yc) > 0 �⇒ y(x) > yc whenever xc < x < xmax ,

while

g(yc) < 0 �⇒ y(x) < yc whenever xc < x < xmax .

Instability

Consider the case illustrated in figure 8.9. Here, y = y0 is a constant solution to

dy

dx
= g(y) ,

and the slope of the slope line at (x, y) (i.e., the value of g(y) ) increases as y increases from

y = y0 to y = yh . So if

y0 < y1 < y2 < yh ,
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then

0 = g(y0) < g(y1) < g(y2) < g(yh) . (8.4)

Now take any solution y = y(x) to

dy

dx
= g(y) with y0 < y(0) < yh ,

and let L be the straight line tangent to the graph of this solution at the point where x = 0 (see

figure 8.9). From inequality set (8.4) (and figure 8.9), we see that:

1. The slope of tangent line L is positive. Hence, L crosses the horizontal line y = yh at

some point (xL , yh) with 0 < xL < ∞ .

2. At each point in the strip, the slope of the tangent to the graph of y = y(x) is at least as

large as the slope of L . So, as x increases, the graph of y = y(x) goes upward faster than

L . Consequently, this solution curve crosses the horizontal line y = yh at a point (xh, yh)

with 0 < xh < xL .

From this and lemma 8.1, it follows that, if x is a point in the domain of our solution y = y(x) ,

then

y(x) ≥ yh whenever x > xh .

That is,

y(x) − y0 > yh − y0

whenever x is a point in the domain of y = y(x) with xh < x .

This tells us that, no matter how close we pick y(0) to y0 (at least with y(0) > y0 ), the graph

of our solution will, as x increases, diverge to a distance of at least yh − y0 from y0 . This means

we cannot choose a distance ε with

ε < yh − y0 ,

and find a solution y = y(x) to

dy

dx
= g(y) with y(0) > y0

that remains within ε of y0 for all values of x . In other words, y = y0 is not a stable constant

solution.

This, along with analogous arguments when g(y) is an increasing function on [yl , y0] , gives

us:

Theorem 8.2

Let y = y0 be a constant solution to

dy

dx
= g(y) .

where g is a continuous function on some interval [yl , yh] with yl < y < yh . Then y = y0 is an

unstable constant solution if either of the following holds:

1. g(y) is an increasing function on [yl , y0] for some yl < y0 .

2. g(y) is an increasing function on [y0, yh] for some y0 < yh .
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Stability

Now consider the case illustrated in figure 8.10. Here, y = y0 is a constant solution to

dy

dx
= g(y)

when g(y) (the slope of the slope line at point (x, y) ) is a decreasing function on an interval

[yl , yh] . So, if

yl < y−2 < y−1 < y0 < y1 < y2 < yh ,

then

g(yl) > g(y−2) > g(y−1) > 0 > g(y1) > g(y2) > g(yh) .

Thus, the slope lines just below the horizontal line y = y0 have positive slope, those just above

y = y0 have negative slope, and the slopes become steeper as the distance from the horizontal line

y = y0 increases.

The fact that y = y0 is a stable constant solution should be obvious from the figure. After all,

the slope lines are all angled toward y = y0 as x increases, “directing” the solutions curves toward

y = y0 as x increases.

Figure 8.10 also suggests that, if y = y(x) is any solution to

dy

dx
= g(y) with yl < y(0) < yh ,

then

lim
x→∞ y(x) = y0 ,

suggesting that y = y0 is also asymptotically stable. To rigorously confirm this, it is convenient to

separately consider the three cases

y(0) = y0 , y0 < y(0) < yh and yl < y(0) < y0 .

The first case is easily taken care of. If y(0) = y0 , then our solution y = y(x) must be the

constant solution y = y0 (the already noted stability of this constant solution prevents any other

possible solutions). Hence,

lim
x→∞ y(x) = lim

x→∞ y0 = y0 .

Next, assume y = y(x) is a solution to

dy

dx
= g(y) with y0 < y(0) < yh .

To show

lim
x→∞ y(x) = y0 ,

it helps to remember that the above limit is equivalent to saying that we can make y(x) as close to

y0 as desired (say, within some small, positive distance ε ) by simply picking x large enough.

So let ε be any small, positive value, and let us show that there is a corresponding “large enough

value” xε so that y(x) is within a distance ε of y0 whenever x is bigger than xε . And since we

are only concerned with ε being “small”, let’s go ahead and assume

ε < yh − y0 .

Now, for notational convenience, let yε = y0 + ε , and let Lε be the straight line through the

point (x, y) = (0, yh) with the same slope as the slope lines along the horizontal line y = yε (see

figure 8.10). Because yh > yε > y0 , the slope lines along the line y = yε have negative slope.
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Hence, so does Lε . Consequently, the line Lε goes downward from point (0, yh) , intersecting the

horizontal line y = yε at some point to the right of the Y –axis. Let xε be the X–coordinate of that

point.

Next, consider the graph of our solution y = y(x) when 0 ≤ x ≤ xε . Observe that:

1. This part of this solution curve starts at the point (0, y(0)) , which is between the lines Lε
and y = y0 .

2. The slope at each point of this solution curve above y = yε is less than the slope of the line

Lε . Hence, this part of the solution curve must go downward faster than Lε as x increases.

3. If y(x) < yε for some value of x , then y(x) < yε for all larger values of x . (This is from

lemma 8.1.)

4. The graph of y = y(x) cannot go below the horizontal line y = y0 because the slope lines

at points just below y = y0 all have positive slope.

These observations tell us that, at least when 0 ≤ x ≤ xε , our solution curve must remain between

the lines Lε and y = y0 . In particular, since Lε crosses the horizontal line y = yε at x = xε ,

we must have

y0 ≤ y(xε) ≤ yε = y0 + ε .

From this along with lemma 8.1, it follows that

y0 ≤ y(x) ≤ y0 + ε for all x > xε .

Equivalently,

0 ≤ y(x) − y0 ≤ ε for all x > xε ,

which tells us that y(x) is within ε of y0 whenever x > xε . Hence, we can make y(x) as close

as desired to y0 by choosing x large enough. That is,

lim
x→∞ y(x) = y0 .

That leaves the verification of

lim
x→∞ y(x) = y0

when y = y(x) satisfies

dy

dx
= g(y) with yl < y(0) < y0 .

This will be left to the interested reader (just use straightforward modifications of the arguments in

the last few paragraphs — start by vertically flipping figure 8.10).

To summarize our results:

Theorem 8.3

Let y = y0 be a constant solution to an autonomous differential equation

dy

dx
= g(y) .

This constant solution is both stable and asymptotically stable if there is an interval [yl , yh] , with

yl < y0 < yh , on which g(y) is a decreasing continuous function.
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Differential Tests for Stability

Recall from elementary calculus that you can determine whether a function g is an increasing or

decreasing function by just checking to see if its derivative is positive or negative. To be precise,

g′(y) > 0 for a ≤ y ≤ b �⇒ g is an increasing function on [a, b]
and

g′(y) < 0 for a ≤ y ≤ b �⇒ g is a decreasing function on [a, b] .

Consequently, we can replace the lines in theorems 8.3 and 8.2 about g being increasing or

decreasing with corresponding conditions on g′ , obtaining the following:

Theorem 8.4

Let y = y0 be a constant solution to an autonomous differential equation

dy

dx
= g(y)

in which g is a differentiable function on some interval [yl , yh] with yl < y0 < yh . Then y = y0

is both a stable and asymptotically stable constant solution if

g′(y) < 0 for yl ≤ y ≤ yh .

Theorem 8.5

Let y = y0 be a constant solution to an autonomous differential equation

dy

dx
= g(y)

in which g is a differentiable function on some interval [yl , yh] with yl < y0 < yh . Then y = y0

is an unstable constant solution if either

g′(y) > 0 for yl < y < y0

or

g′(y) > 0 for y0 < y < yh .

But now recall that, if a function is sufficiently continuous and is positive (or negative) at some

point, then that function remains positive (or negative) over some interval surrounding that point.

With this we can reduce the above theorems to the following single theorem

Theorem 8.6

Let y = y0 be a constant solution to an autonomous differential equation

dy

dx
= g(y)

in which g is differentiable and g′ is continuous on some interval [yl , yh] with yl < y0 < yh .

Then:

1. y = y0 is a stable and asymptotically stable constant solution if g′(y0) < 0 .

2. y = y0 is an unstable constant solution if g′(y0) > 0 .
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!�Example 8.16: Let us again consider the autonomous differential equation considered earlier

in example 8.7 on page 157,

dy

dx
= 1

2
(4 − y)(y − 2)

4/3 ,

and whose slope field was sketched in figure 8.5b on page 156.

Because the right side,

g(y) = 1

2
(4 − y)(y − 2)

4/3

is zero when y is either 2 or 4 , this differential equation has constant solutions

y = 2 and y = 4 .

So as to apply any of the above theorems, we compute g′(y) :

g′(y) = d

dy

[
1

2
(4 − y)(y − 2)

4/3

]
= −1

2
(y − 2)

4/3 + 2

3
(4 − y)(y − 2)

1/3 .

After a bit of algebra, this simplifies to

g′(y) = 7

6

(
22

7
− y

)
(y − 2)

1/3 .

Plugging in y = 4 , we get

g′(4) = 7

6

(
22

7
− 4

)
(4 − 2)

1/3 = 7

6

(
22

7
− 28

7

)
3
√

2 = − 3
√

2 < 0 .

Theorem 8.6 then tells us that the constant solution y = 4 is stable and asymptotically stable,

just as we suspected from looking at the slope field in figure 8.5b.

Unfortunately, we cannot apply theorem 8.6 to determine the stability of the other constant

solution, y = 2 , since

g′(2) = 7

6

(
22

7
− 2

)
(2 − 2)

1/3 = 0 .

Instead, we must look a little more closely at the formula for g′(y) , and observe that, if

2 < y <
22

7
,

then

g′(y) = 7

6

(
22

7
− y

)
︸ ︷︷ ︸

>0

(y − 2)
1/3︸ ︷︷ ︸

>0

> 0 .

The test given in theorem 8.5 (with [y0, yh] = [
2, 22/7

]
) applies and assures us that y = 2 is an

unstable constant solution, just as we suspected from looking at figure 8.5b.

Nonautonomous Equations

Look again at figure 8.10, but now imagine that the slope lines are also becoming steeper as x

increases. With that picture in your mind, you will realize that the arguments leading to stability

theorems 8.3 and 8.4 remain valid even if these slope lines so depend on x . In particular, we have

the following analog of theorem 8.4:
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Theorem 8.7

Let y = y0 be a constant solution to a differential equation

dy

dx
= F(x, y)

in which F(x, y) is differentiable with respect to both x and y at every point in some strip

{(x, y) : 0 ≤ x and yl ≤ y ≤ yh}

with yl < y0 < yh . Further suppose that, at each point in this strip above the line y = y0 ,

∂F

∂y
< 0 and

∂F

∂x
≤ 0 ,

and that, at each point in this strip below the line y = y0 ,

∂F

∂y
< 0 and

∂F

∂x
≥ 0 .

Then y = y0 is both a stable and asymptotically stable constant solution.

We’ll leave it to the interested reader to come up with corresponding analogs of the other

theorems on stability and instability.

Additional Exercises

8.2. For each of the following, construct the slope field for the given differential equation on the

indicated 2×2 or 3×3 grid of listed points:

a.
dy

dx
= 1

2

(
x2 + y2

)
at (x, y) = (0, 0), (1, 0), (0, 1) and (1, 1)

b. 2
dy

dx
= x2 − y2 at (x, y) = (0, 0), (1, 0), (0, 1) and (1, 1)

c.
dy

dx
= y

x
at (x, y) = (1, 1),

(
3/2, 1

)
,
(
1, 3/2

)
and

(
3/2,

3/2

)
d. (2x + 1)

dy

dx
= x2 − 2y2 at (x, y) = (0, 1), (1, 1), (0, 2) and (1, 2)

e. 2
dy

dx
= (x − y)2

at (x, y) = (0, 0), (0, 1), (0, 2), (1, 0), (0, 1), (1, 2), (2, 0), (2, 1) and (2, 2)

f.
dy

dx
= (1 − y)3

at (x, y) = (0, 0), (0, 1), (0, 2), (1, 0), (0, 1), (1, 2), (2, 0), (2, 1) and (2, 2)

Several slope fields for unspecified first-order differential equations are given below. For sketch-

ing purposes, you may want to use an enlarged photocopy of each given slope field.
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8.3. On the right is a slope field for some first-

order differential equation.

a Letting y = y(x) be the solution to

this differential equation that satisfies

y(0) = 3 :

i. Sketch the graph of this solution.

ii. Using your sketch, find (approxi-

mately) the value of y(8) .

b. Sketch the graphs of two other so-

lutions to this unspecified differential

equation.
9

X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7

7

80

0

−1

8.4. On the right is a slope field for some first-

order differential equation.

a. Sketch the graphs of the solutions to

this differential equation that satisfy

i. y(0) = 2

ii. y(0) = 4

iii. y(0) = 4.5

b. What, approximately, is y(4) if y is

the solution to this unspecified differ-

ential equation satisfying

i. y(0) = 2 ?

ii. y(0) = 4 ?

iii. y(0) = 4.5 ?

9
X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7

7

80

0

−1

8.5. On the right is a slope field for some first-

order differential equation.

a. Let y(x) be the solution to the differ-

ential equation with y(0) = 5 .

i. Sketch the graph of this solution.

ii. What (approximately) is the maxi-

mum value of y(x) on the interval

(0, 9) , and where does it occur?

iii. What (approximately) is y(8) ?

b. Now let y(x) be the solution to the dif-

ferential equation with y(0) = 0 .

i. Sketch the graph of this solution.

ii. What (approximately) is y(8) ?
9

X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7

7

80

0

−1
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8.6. On the right is a slope field for some first-

order differential equation.

a. Let y(x) be the solution to the differ-

ential equation with y(0) = 2 .

i. Sketch the graph of this solution.

ii. What (approximately) is y(3) ?

b. Now let y(x) be the solution to the dif-

ferential equation with y(3) = 1 .

i. Sketch the graph of this solution.

ii. What (approximately) is y(0) ?
9

X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7

7

80

0

−1

8.7. On the right is a slope field for some first-

order differential equation.

a. Let y(x) be the solution to the differ-

ential equation with y(0) = 4 .

i. Sketch the graph of this solution.

ii. What (approximately) is the maxi-

mum value of y(x) on the interval

(0, 9) , and where does it occur?

b. Now let y(x) be the solution to the dif-

ferential equation with y(2) = 0 .

i. Sketch the graph of this solution.

ii. What (approximately) is the maxi-

mum value of y(x) on the interval

(0, 9) , and where does it occur?

9
X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7

7

80

0

−1

8.8. Look up the commands for generating slope fields for first-order differential equations in

your favorite computer math package (they may be the same commands for generating

“direction fields”). Then:

i. Use the computer math package to sketch the indicated slope field for each differ-

ential equation given below,

ii. and use the resulting slope field to sketch (by hand) some of the solution curves for

the given differential equation.

a.
dy

dx
= sin(x + y) using a 25×25 grid on the region −2 ≤ x ≤ 10 and −2 ≤ y ≤ 10

b. 10
dy

dx
= y(5 − y) using a 25×25 grid on the region −2 ≤ x ≤ 10 and −2 ≤ y ≤ 10
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c. 10
dy

dx
= y(y − 5) using a 25×25 grid on the region −2 ≤ x ≤ 10 and −2 ≤ y ≤ 10

d. 2
dy

dx
= y(y − 2)2 using a 25×17 grid on the region −2 ≤ x ≤ 10 and −1 ≤ y ≤ 3

e. 3
dy

dx
= (4 − y)(y − 1)

4/3 using a 19×16 grid on the region 0 ≤ x ≤ 6 and 0 ≤ y ≤ 5

f. 3
dy

dx
= 3

√
x − y using a 25×21 grid on the region −2 ≤ x ≤ 10 and −2 ≤ y ≤ 8

8.9. Slope fields for several (unspecified) first-order differential equations have be sketched be-

low. Assume that each horizontal line is the graph of a constant solution to the corresponding

differential equation. Identify each of these constant solutions, and, for each constant so-

lution, decide whether the slope field is indicating that it is a stable, asymptotically stable,

or unstable constant solution.

a.

X

Y

0
0

1

1

2

2

3

3

4

4

5

5

b.

X

Y

0
0

1

1

2

2

3

3

4

4

5

5

c.

X

Y

0
0

1

1

2

2

3

3

4

4

5

5

d.

X

Y

0
0

1

1

2

2

3

3

4

4

5

5
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e.
X

Y

0
0

1

1

2

2

3

3 4 5

−1

−2

−3

f.

X

Y

0
0

1

1

2

2

3

3

4

4

5

5
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Euler’s Numerical Method

In the last chapter, we saw that a computer can easily generate a slope field for a given first-order

differential equation. Using that slope field we can sketch a fair approximation to the graph of the

solution y to a given initial-value problem, and then, from that graph, we find an approximation to

y(x) for any desired x in the region of the sketched slope field. The obvious question now arises:

Why not let the computer do all the work and just tell us the approximate value of y(x) for the

desired x ?

Well, why not?

In this chapter, we will develop, use, and analyze one method for generating a “numerical

solution” to a first-order differential equation. This type of “solution” is not a formula or equation

for the actual solution y(x) , but two lists of numbers,

{ x0 , x1 , x2 , x3 , . . . , xN } and { y0 , y1 , y2 , y3 , . . . , yN }
with each yk approximating the value of y(xk) . Obviously, a nice formula or equation for y(x)

would usually be preferred over a list of approximate values, but, when obtaining that nice formula

or equation is not practical, a numerical solution is better than nothing.

The method we will study in this chapter is “Euler’s method”. It is but one of many methods for

generating numerical solutions to differential equations. We choose it as the first numerical method

to study because it is relatively simple, and, using it, you will be able to see many of the advantages

and the disadvantages of numerical solutions. Besides, most of the other methods that might be

discussed are refinements of Euler’s method, so we might as well learn this method first.

9.1 Deriving the Steps of the Method

Euler’s method is based on approximating the graph of a solution y(x) with a sequence of tangent

line approximations computed sequentially, in “steps”. Our first task, then, is to derive a useful

formula for the tangent line approximation in each step.

The Basic Step Approximation

Let y = y(x) be the desired solution to some first-order differential equation

dy

dx
= f (x, y) ,

and let xk be some value for x on the interval of interest. As illustrated in figure 9.1a, (xk, y(xk))

is a point on the graph of y = y(x) , and the nearby points on this graph can be approximated by

177
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(a) (b)

X

X

Y Yy(x)

Lk

xk �x xk +�x

�y

y(xk)

y(xk)+�y

y(xk +�x)

x0
y0

(x1, y1)
L1 (x2, y2)

L2 (x3, y3)
L3

(x4, y4)L4

(x5, y5)

L5

Figure 9.1: (a) A single tangent line approximation for the Euler method, and (b) the

approximation of the solution curve generated by five steps of Euler’s method.

corresponding points on the straight line tangent at point (xk, y(xk)) (line Lk in figure 9.1a). As

with the slope lines in the last chapter, the differential equation can give us the slope of this line:

the slope of the approximating line = dy

dx
at (xk, y(xk)) = f (xk, y(xk)) .

Now let �x be any positive distance in the X direction. Using our tangent line approximation

(again, see figure 9.1a), we have that

y(xk +�x) ≈ y(xk) + �y

where
�y

�x
= slope of the approximating line = f (xk, y(xk)) .

So,

�y = �x · f (xk, y(xk))

and

y(xk +�x) ≈ y(xk) + �x · f (xk, y(xk)) . (9.1)

Approximation (9.1) is the fundamental approximation underlying each basic step of Euler’s

method. However, in what follows, the value of y(xk) will usually only be known by some approx-

imation yk . With this approximation, we have

y(xk) + �x · f (xk, y(xk)) ≈ yk + �x · f (xk, yk) ,

which, combined with approximation (9.1), yields the approximation that will actually be used in

Euler’s method,

y(xk +�x) ≈ yk + �x · f (xk, yk) . (9.2)

The distance �x in the above approximations is called the step size. We will see that choosing

a good value for the step size is important.

Generating the Numerical Solution (Generalities)

Euler’s method is used to solve first-order initial-value problems. We start with the point (x0, y0)

where y0 = y(x0) is the initial data for the initial-value problem to be solved. Then, repeatedly

increasing x by some positive value �x , and computing corresponding values of y using a formula

based on approximation (9.2), we will obtain those two sequences

{ x0 , x1 , x2 , x3 , . . . , xN } and { y0 , y1 , y2 , y3 , . . . , yN }
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with yk ≈ y(xk) for each k . Plotting the (xk, yk) points and connecting the resulting dots with

short straight lines leads to a piecewise straight approximation to the graph of the solution y(x) as

illustrated in figure 9.1b. For convenience, let us denote this approximation generated by the Euler

method by yE,�x .

As already indicated, N will denote the number of steps taken. It must be chosen along with

�x to ensure that xN is the maximum value of x of interest. In theory, both N and the maximum

value of x can be infinite. In practice, they must be finite.

The precise steps of Euler’s method are outlined and illustrated in the next section.

9.2 Computing Via Euler’s Method (Illustrated)

Suppose we wish to find a numerical solution to some first-order differential equation with initial

data y(x0) = y0 , say,

5
dy

dx
− y2 = −x2 with y(0) = 1 . (9.3)

(As it turns out, this differential equation is not easily solved by any of the methods already discussed.

So if we want to find the value of, say, y(3) , then a numerical method may be our only choice.)

To use Euler’s method to find our numerical solution, we follow the steps given below. These

steps are grouped into two parts: the main part in which the values of the xk’s and yk’s are

iteratively computed, and the preliminary part in which the constants and formulas for those iterative

computations are determined.

The Steps in Euler’s Method
Part I (Preliminaries)

1. Get the differential equation into derivative formula form,

dy

dx
= f (x, y) .

For our example, solving for the derivative formula form yields

dy

dx
= 1

5

[
y2 − x2

]
.

2. Set x0 and y0 equal to the x and y values of the initial data.

In our example, the initial data is y(0) = 1 . So

x0 = 0 and y0 = 1 .

3. Pick a distance �x for the step size, a positive integer N for the maximum number of steps,

and a maximum value desired for x , xmax . These quantities should be chosen so that

xmax = x0 + N�x .

Of course, you only choose two of these values and compute the third. Which two are chosen

depends on the problem.
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For no good reason whatsoever, let us pick

�x = 1

2
and N = 6 .

Then

xmax = x0 + N�x = 0 + 6 · 1

2
= 3 .

4. Write out the equations

xk+1 = xk + �x (9.4a)

and

yk+1 = yk + �x · f (xk, yk) (9.4b)

using the information from the previous steps.

For our example,

f (x, y) = 1

5

[
y2 − x2

]
and �x = 1

2
.

So, for our example, equation set (9.4) becomes

xk+1 = xk + 1

2
(9.4a ′)

and

yk+1 = yk + 1

2
· 1

5

[
y2 − x2

]
= yk + 1

10

[
yk

2 − xk
2
]

. (9.4b ′)

Formula (9.4b) for yk+1 is based on approximation (9.2). According to that approximation, if

y(x) is the solution to our initial-value problem and yk ≈ y(xk) , then

y(xk+1) = y(xk +�x) ≈ yk + �x · f (xk, yk) = yk+1 .

Because of this, each yk generated by Euler’s method is an approximation of y(xk) .

Part II of Euler’s Method (Iterative Computations)

1. Compute x1 and y1 using equation set (9.4) with k = 0 and the values of x0 and y0 from

the initial data.

For our example, using equation set (9.4 ′) with k = 0 and the initial values

x0 = 0 and y0 = 1 gives us

x1 = x0+1 = x0 + �x = 0 + 1

2
= 1

2
,

and

y1 = y0+1 = y0 + �x · f (x0, y0)

= y0 + 1

10

[
y0

2 − x0
2
]

= 1 + 1

10

[
12 − 02

] = 11

10
.

2. Compute x2 and y2 using equation set (9.4) with k = 1 and the values of x1 and y1 from

the previous step.
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For our example, equation set (9.4 ′) with k = 1 and the above values for x1 and

y1 yields

x2 = x1+1 = x1 + �x = 1

2
+ 1

2
= 1 ,

and

y2 = y1+1 = y1 + �x · f (x1, y1)

= y1 + 1

10

[
y1

2 − x1
2
]

= 11

10
+ 1

10

[(
11

10

)2

−
(

1

2

)2
]

= 290

250
.

3. Compute x3 and y3 using equation set (9.4) with k = 2 and the values of x2 and y2 from

the previous step.

For our example, equation set (9.4 ′) with k = 2 and the above values for x2 and

y2 yields

x3 = x2+1 = x2 + �x = 1 + 1

2
= 3

2
,

and

y3 = y2+1 = y2 + 1

10

[
y2

2 − x2
2
]

= 29

250
+ 1

10

[(
29

250

)2

− 12

]
= 774,401

625,000
.

For future convenience, note that

y3 = 774,401

625,000
≈ 1.2390 .

(d), (e), … In each subsequent step, increase k by 1 , and compute xk+1 and yk+1 using equation

set (9.4) with the values of xk and yk from the previous step. Continue until xN and yN

are computed.

For our example (omitting many computational details):

With k + 1 = 4 ,

x4 = x3+1 = x3 + �x = 3

2
+ 1

2
= 2 ,

and

y4 = y3+1 = y2 + 1

10

[
y3

2 − x3
2
] = · · · ≈ 1.1676 .

With k + 1 = 5 ,

x5 = x4+1 = x4 + �x = 2 + 1

2
= 5

2
,

and

y5 = y4+1 = y4 + 1

10

[
y4

2 − x4
2
] = · · · ≈ 0.9039 .

With k + 1 = 6 ,

x6 = x5+1 = x5 + �x = 5

2
+ 1

2
= 6 ,

and

y6 = y5+1 = y5 + 1

10

[
y5

2 − x5
2
] = · · · ≈ 0.3606 .

Since we had earlier chosen N , the maximum number of steps, to be 6 , we can

stop computing.
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k xk yk

0 0 1

1 0.5 1.1000

2 1.0 1.1960

3 1.5 1.2390

4 2.0 1.1676

5 2.5 0.9039

6 3.0 0.3606

(a) (b)

X

Y

0 1.0 2.0 3.00.5 1.5 2.5
0

0.5

1.0

Figure 9.2: Results of Euler’s method to solve 5y′ − y2 = −x2 with y(0) = 1 using �x = 1/2

and N = 6 : (a) The numerical solution in which yk ≈ y(xk) (for k ≥ 3 , the values

of yk are to the nearest 0.0001 ). (b) The graph of the corresponding approximate

solution y = yE,�x (x) .

Using the Results of the Method

What you do with the results of your computations depends on why you are doing these computations.

If N is not too large, it is usually a good idea to write the obtained values of

{ x0 , x1 , x2 , x3 , . . . , xN } and { y0 , y1 , y2 , y3 , . . . , yN }

in a table for convenient reference (with a note that yk ≈ y(xk) for each k ) as done in figure 9.2a

for our example. And, whatever the size of N , it is always enlightening to graph — as done in figure

9.2b for our example — the corresponding piecewise straight approximation y = yE,�x (x) to the

graph of y = y(x) by drawing straight lines between each (xk, yk) and (xk+1, yk+1) .

On Doing the Computations

The first few times you use Euler’s method, attempt to do all the computations by hand. If the

numbers become too awkward to handle, use a simple calculator and decimal approximations. This

will help you understand and appreciate the method. It will also help you appreciate the tremendous

value of programming a computer to do the calculations in the second part of the method. That, of

course, is how one should really carry out the computations in the second part of Euler’s method.

In fact, Euler’s method may already be one of the standard procedures in your favorite computer

math package. Still, writing your own version is enlightening and is highly recommended for the

good of your soul.

9.3 What Can Go Wrong

Do not forget that Euler’s method does not yield exact answers. Instead, it yields values

{ x0 , x1 , x2 , x3 , . . . , xN } and { y0 , y1 , y2 , y3 , . . . , yN }

with

yk ≈ y(xk) for k > 0 .
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(a) (b)

X X

Y Y

0 01 12 23 34 4

−1 −1

0 0

2 2

3 3

1 1

4 4

approx. soln.

true soln.

Figure 9.3: Catastrophic failure of Euler’s method in solving y′ = (y − 1)2 with y(0) = −1.3 :

(a) Graphs of the true solution and the approximate solution. (b) Same graphs with a

slope field, the graph of the equilibrium solution, and the graph of the true solution to

y′ = (y − 1)2 with y(x1) = y1 .

What’s more, each yk+1 is based on the approximation

y(xk +�x) ≈ y(xk) + �x · f (xk, y(xk))

with y(xk) being replaced with approximation yk when k > 0 . So we are computing approxima-

tions based on previous approximations.

Because of this, the accuracy of the approximation yk ≈ y(xk) , especially for larger values of

k , is a serious issue. Consider the work done in the previous section: just how well can we trust the

approximation

y(3) ≈ 0.3606

obtained for the solution to initial-value problem (9.3)? In fact, it can be shown that

y(3) = −.23699 to the nearest 0.00001 .

So our approximation is not very good!

To get an idea of how the errors can build up, look back at figure 9.1a on page 177. You can

see that, if the graphs of the true solutions to the differential equation are generally concave up (as

in the figure), then the tangent line approximations used in Euler’s method lie below the true graphs

and yield underestimates for the approximations. Over several steps, these underestimates can build

up so that the yk’s are significantly below the actual values of the y(xk)’s .

Likewise, if the graphs of the true solutions are generally concave down, then the tangent line

approximations used in Euler’s method lie above the true graphs and yield overestimates for the

approximations.

Also keep in mind that most of the tangent line approximations used in Euler’s method are not

based on lines tangent to the true solution but on lines tangent to solution curves passing through the

(xk, yk)’s . This can lead to the “catastrophic failure” illustrated in figure 9.3a. In this figure, the

true solution to
dy

dx
= (y − 1)2 with y(0) = −13

10
,

is graphed along with the graph of the approximate solution generated from Euler’s method with
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(a) (b)

XX

YY

x0x0 xmaxxmax

y0

y(xmax)y(xmax)

yN

yN

y = y(x)y = y(x)

y = ŷ(x)

Figure 9.4: Two approximations yN of y(xmax) where y is the solution to y′ = f (x, y) with

y(x0) = y0 : (a) Using Euler’s method with �x equaling the distance from x0 to

xmax . (b) Using Euler’s method with �x equaling half the distance from x0 to

xmax (Note: ŷ is the solution to y′ = f (x, y) with y(x1) = y1 .)

�x = 1/2 . Exactly why the graphs appear so different becomes apparent when we superimpose the

slope field in figure 9.3b. The differential equation has an unstable equilibrium solution y = 1 . If

y(0) < 1 , as in the above initial-value problem, then the true solution y(x) should converge to 1

as x → ∞ . Here, however, one step of Euler’s method overestimated the value of y1 enough that

(x1, y1) ended up above equilibrium and in the region where the solutions diverge away from the

equilibrium. The tangent lines to these solutions led to higher and higher values for the subsequently

computed yk’s . Thus, instead of correctly telling us that

lim
x→∞ y(x) = 1 ,

this application of Euler’s method suggests that

lim
x→∞ y(x) = ∞ .

A few other situations where blindly applying Euler’s method can lead to misleading results

are illustrated in the exercises (see exercises 9.6, 9.7, and 9.8, 9.9). And these sorts of problems are

not unique to Euler’s method. Similar problems can occur with all numerical methods for solving

differential equations. Because of this, it is highly recommended that Euler’s method (or any other

numerical method) be used only as a last resort. Try the methods developed in the previous chapters

first. Use a numerical method only if the other methods fail to yield usable formulas or equations.

Unfortunately, the world is filled with first-order differential equations for which numerical

methods are the only practical choices. So be sure to skim the next section on improving the method.

Also, if you must use Euler’s method (or any other numerical method), be sure to do a reality check.

Graph the corresponding approximation on top of the slope field for the differential equation, and ask

yourself if the approximations are reasonable. In particular, watch out that your numerical solution

does not “jump” over an unstable equilibrium solution.

9.4 Reducing the Error
Smaller Step Sizes

Suppose we are applying Euler’s method to some initial-value problem over some interval [x0, xmax] .

The one parameter we can adjust is the step size, �x (or, equivalently, the number of steps, N , in
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X

Y

0 1.0 2.0 3.00.5 1.5 2.5

0

0.5

1.0
�x = 1

�x = 1

2

�x = 1

4

�x = 1

8

true solution

Figure 9.5: Graphs of the different piecewise straight line approximations of the solution to

5y′ − y2 = −x2 with y(0) = 1 obtained by using Euler’s method with different

values for the step size �x = 1/2 . Also graphed is the true solution.

going from x0 to xmax ). By shrinking �x (increasing N ), at least two good things are typically

accomplished:

1. The error in the underlying approximation

y(xk +�x) ≈ y(xk) + �x · f (xk, y(xk))

is reduced.

2. The slope in the piecewise straight approximation y = yE,�x (x) is recomputed at more

points, which means that this approximation can better match the bends in the slope field for

the differential equation.

Both of these are illustrated in figure 9.4.

Accordingly, we should expect that shrinking the step size in Euler’s method will yield numer-

ical solutions that more accurately approximate the true solution. We can experimentally test this

expectation by going back to our initial-value problem

5
dy

dx
− y2 = −x2 with y(0) = 1 ,

computing (as you’ll be doing for exercise 9.5) the numerical solutions arising from Euler’s method

using, say,

�x = 1 , �x = 1

2
, �x = 1

4
and �x = 1

8
,

and then graphing the corresponding piecewise straight approximations over the interval [0, 3] along

with the graph of the true solution. Do this, and you will get the graphs in figure 9.5.1 As expected,

the graphs of the approximate solutions steadily approach the graph of the true solution as �x

gets smaller. It’s even worth observing that the distance between the true value for y(3) and the

approximated value appears to be cut roughly in half each time �x is cut in half.

1 The graph of the “true solution” in figure 9.5 is actually the graph of a very accurate approximation. The difference

between this graph and the graph of the true solution is less than the thickness of the curve used to sketch it.
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In fact, our expectations can be rigorously confirmed. In the next section, we will analyze

the error in using Euler’s method to approximate y(xmax) where y is the solution to a first-order

initial-value problem
dy

dx
= f (x, y) with y(x0) = y0 .

Assuming f is a “reasonably smooth” function of x and y , we will discover that there is a

corresponding constant M such that

|y(xmax)− yN | < M ·�x (9.5)

where yN is the approximation to y(xmax) generated from Euler’s method with step size �x .

Inequality (9.5) is an error bound. It describes the worst theoretical error in using yN for

y(xmax) . In practice, the error may be much less than suggested by this bound, but it cannot be any

worse (unless there are other sources of error). Since this bound shrinks to zero as �x shrinks to

zero, we are assured that the approximations to y(xmax) obtained by Euler’s method will converge

to the correct value of y(xmax) if we repeatedly use the method with step sizes shrinking to zero. In

fact, if we know the value of M and wish to keep the error below some small positive value, we can

use error bound (9.5) to pick a step size, �x , that will ensure the error is below that desired value.

Unfortunately,

1. M can be fairly large.

2. In practice (as we will see), M can be difficult to determine.

3. Error bound (9.5) does not take into account the round-off errors that normally arise in

computations.

Let’s briefly consider the problem of round-off errors. Inequality (9.5) is only the error bound

arising from the theoretically best implementation of Euler’s method. In a sense, it is an “ideal error

bound” because it is based on all the computations being done with infinite precision. This is rarely

practical, even when using a computer math package that can do infinite precision arithmetic — the

expressions for the numbers rapidly become too complicated to be usable, even by the computer

math packages themselves. In practice, the numbers must be converted to approximations with finite

precision, say, decimal approximations accurate to the nearest 0.0001 as done in the table on page

181.

Don’t forget that the computations in each step involve numbers from previous steps, and these

computations are affected by the round-off errors from those previous steps. So the ultimate error due

to round-off will increase as the number of steps increases. With modern computers, the round-off

error resulting from each computation is usually very small. Consequently, as long as the number

of steps N remains relatively small, the total error due to round-off will usually be insignificant

compared to the basic error in Euler’s method. But if we attempt to reduce the error in Euler’s method

by making the step size very, very small, then we must take many, many more steps to go from x0

to the desired xmax . It is quite possible to reach a point where the accumulated round-off error will

negate the theoretic improvement in accuracy of the Euler method described by inequality (9.5).

Better Methods

Be aware that Euler’s method is a relatively primitive method for numerically solving first-order

initial-value problems. Refinements on the method can yield schemes in which the approximations

to y(xmax) converge to the true value much faster as the step size decreases. For example, instead

of using the tangent line approximation in each step,

yk+1 = yk + �x · f (xk, yk) ,
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we might employ a “tangent parabola” approximation that better accounts for the bend in the graphs.

(However, writing a program to determine this “tangent parabola” can be tricky.)

In other approaches, the f (xk, yk) in the above equation is replaced with a cleverly chosen

weighted average of values of f (x, y) computed at cleverly chosen points near (xk, yk) . The

idea is that this yields a straight a line approximation with the slope adjusted to reduce the over-

or undershooting noted a page or two ago. At least two of the more commonly used methods, the

“improved Euler method” and the “fourth-order Runge-Kutta method”, take this approach.

Numerous other methods may also worth learning if you are going to make extensive use of

numerical methods. However, an extensive discussion of numerical methods beyond Euler’s would

take us beyond the brief introduction to numerical methods intended by this author for this chapter.

So let us save a more complete discussion of these alternative methods for the future.

9.5 Error Analysis for Euler’s Method
∗

The Problem and Assumptions

Throughout this section, we will be concerned with the accuracy of numerical solutions to some

first-order initial-value problem

dy

dx
= f (x, y) with y(x0) = y0 . (9.6)

The precise results will be given in theorem 9.1, below. For this theorem, L is some finite length,

and we will assume there is a corresponding rectangle in the XY –plane

R = {(x, y) : x0 ≤ x ≤ x0 + L and ymin < y < ymax}

such that all of the following hold:

1. f and its first partial derivatives are continuous, bounded functions on R . This “bounded-

ness” means there are finite constants A , B and C such that, at each point in R ,

| f | ≤ A ,

∣∣∣∂ f

∂x

∣∣∣ ≤ B and

∣∣∣∣∂ f

∂y

∣∣∣∣ ≤ C . (9.7)

2. There is a unique solution, y = y(x) , to the given initial-value problem valid over the

interval [x0, x0 + L] . (We’ll refer to y = y(x) as the “true solution” in what follows.)

3. The rectangle R contains the graph over the interval [x0, x0 + L] of the true solution.

4. If x0 ≤ xk ≤ x0 + L and (xk, yk) is any point generated by any application of Euler’s

method to solve our problem, then (xk, yk) is in R .

The rectangle R may be the entire vertical strip

{(x, y) : x0 ≤ x ≤ x0 + L and − ∞ < y < ∞}

if f and its partial derivatives are bounded on this strip. If f and its partial derivatives are not

bounded on this strip, then finding the appropriate upper and lower limits for this rectangle is one of

the challenges in using the theorem.

∗ A somewhat advanced discussion for the “interested reader”.
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Theorem 9.1 (Error bound for Euler’s method)

Let f , x0 , y0 , L and R be as above, and let y = y(x) be the true solution to initial-value problem

(9.6). Then there is a finite constant M such that

|y(xN )− yN | < M ·�x (9.8)

whenever

{ x0 , x1 , x2 , x3 , . . . , xN } and { y0 , y1 , y2 , y3 , . . . , yN }

is a numerical solution to initial-value problem (9.6) obtained from Euler’s method with step spacing

�x and total number of steps N satisfying

0 < �x · N ≤ L . (9.9)

This theorem is only concerned with the error inherent in Euler’s method. Inequality (9.8) does

not take into account errors arising from rounding off numbers during computation. For a good

discussion of round-off errors in computations, the interested reader should consult a good text on

numerical analysis.

To prove this theorem, we will derive a constant M that makes inequality (9.8) true. (The

impatient can look ahead to equation (9.16) on page 192.) Accordingly, for the rest of this section,

y = y(x) will denote the true solution to our initial-value problem, and

{ x0 , x1 , x2 , x3 , . . . , xN } and { y0 , y1 , y2 , y3 , . . . , yN }
will be an arbitrary numerical solution to initial-value problem (9.6) obtained from Euler’s method

with step spacing �x and total number of steps N satisfying inequality (9.9).

Also, to simplify discussion, let us agree that, in all the following, k always denotes an arbitrary

nonnegative integer less than N .

Preliminary Bounds

Our derivation of a value for M will be based on several basic inequalities and facts from calculus.

These include the inequalities

|A + B| ≤ |A| + |B| and

∣∣∣∣∫ b

a

ψ(s) ds

∣∣∣∣ ≤
∫ b

a

|ψ(s)| ds

when a < b . Of course, if |ψ(s)| ≤ K for some constant K , then, whether or not a < b ,∫ b

a

|ψ(s)| ds ≤ K |b − a| .

Also remember that, if φ = φ(x) is continuous and differentiable, then

φ(a) − φ(b) =
∫ b

a

dφ

ds
ds .

Combining the above, we get

Corollary 9.2

Assume φ is a continuous differentiable function on some interval. Assume further that φ′ ≤ K

on this interval for some constant K . Then, for any two points a and b in this interval,

|φ(a) − φ(b)| ≤ K |b − a| .
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We will use this corollary twice.

First, we apply it with φ(x) = f (x, y(x)) . Recall that, by the chain rule in chapter 7,

d

dx
f (x, y(x)) = ∂ f

∂x
+ ∂ f

∂y

dy

dx
,

which we can rewrite as
d

dx
f (x, y(x)) = ∂ f

∂x
+ ∂ f

∂y
f (x, y)

whenever y = y(x) is a solution to y′ = f (x, y) . Applying bounds (9.7), this then yields∣∣∣d f

dx

∣∣∣ ≤
∣∣∣∂ f

∂x

∣∣∣ +
∣∣∣∣∂ f

∂y

∣∣∣∣ | f (x, y)| ≤ B + C A at every point in R .

The above corollary (with φ(x) = f (x, y(x)) and K = B + C A ) then tells us that

| f (a, y(a))− f (b, y(b))| ≤ (B + C A)(b − a) (9.10)

whenever x0 ≤ a ≤ b ≤ x0 + L .

The second application of the above corollary is with φ(y) = f (xk, y) . Here, y is the variable,

x remains constant, and φ′ = ∂ f/∂y . Along with the fact that
∣∣∂ f/∂y

∣∣ < C on rectangle R , this

corollary immediately gives us

| f (xk, b)− f (xk, a)| ≤ C |b − a| (9.11)

whenever a and b are any two points in the interval [x0, x0 + L] .

Maximum Error in the Underlying Approximation

Now consider the error in the underlying approximation

y(xk +�x) ≈ y(xk) + �x · f (xk, y(xk)) .

Let εk+1 be the difference between y(xk +�x) and the above approximation,

εk+1 = y(xk +�x) − [y(xk) − �x · f (xk, y(xk))] .

Note that this can be rewritten both as

y(xk+1) = y(xk) + �x · f (xk, y(xk)) + εk+1 (9.12)

and as

εk+1 = [y(xk +�x)− y(xk)] − f (xk, y(xk)) ·�x .

From basic calculus, we know that

f (xk, y(xk)) ·�x = f (xk, y(xk))

∫ xk+�x

xk

dx =
∫ xk+�x

xk

f (xk, y(xk)) dx .

We also know y = y(x) satisfies y′ = f (x, y) . Hence,

y(xk +�x)− y(xk) =
∫ xk+�x

xk

dy

dx
dx =

∫ xk+�x

xk

f (x, y(x)) dx .
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Taking the absolute value of εk+1 and applying the last three observations yields

|εk+1| = |[y(xk +�x)− y(xk)] − f (xk, y(xk)) ·�x |

=
∣∣∣∣∫ xk+�x

xk

f (x, y(x)) dx −
∫ xk+�x

xk

f (xk, y(xk)) dx

∣∣∣∣
=

∣∣∣∣∫ xk+�x

xk

f (x, y(x))− f (xk, y(xk)) dx

∣∣∣∣
≤

∫ xk+�x

xk

| f (x, y(x))− f (xk, y(xk))| dx .

Remarkably, we’ve already found an upper bound for the integrand in the last line (inequality (9.10),

with a = x and b = xk ). Replacing this integrand with this upper bound, and then doing a little

elementary integration, yields

|εk+1| ≤
∫ xk+�x

xk

(B + C A)(x − xk) dx = 1

2
(B + C A)(�x)2 .

This last inequality combined with equation (9.12) means that we can rewrite the underlying

approximation more precisely as

y(xk+1) = y(xk) + �x · f (xk, y(xk)) + εk+1 (9.13a)

where

|εk+1| ≤ 1

2
(B + C A)(�x)2 . (9.13b)

Ideal Maximum Error in Euler’s Method

Now let Ek be the difference between y(xk) and yk ,

Ek = y(xk) − yk .

Because y0 = y(x0) :

E0 = y(x0) − y0 = 0 .

More generally, using formula (9.13a) for y(xk +�x) and the formula for yk+1 from Euler’s

method, we have

Ek+1 = y(xk+1) − yk+1

= y(xk +�x) − yk+1

= [
y(xk) + �x · f (xk, y(xk)) + εk+1

] − [yk + �x · f (xk, yk)] .

Cleverly rearranging the last line and taking the absolute value lead to

|Ek+1| = |εk+1 + [y(xk)− yk] + �x · [ f (xk, y(xk))− f (xk, yk)]|
= |εk+1 + Ek + �x · [ f (xk, y(xk))− f (xk, yk)]|
≤ |εk+1| + |Ek | + |�x · [ f (xk, y(xk))− f (xk, yk)]| .

Fortunately, from inequality (9.13b), we know

|εk+1| ≤ 1

2
(B + C A)(�x)2 ,
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and from inequality (9.11) and the definition of Ek , we know

| f (xk, y(xk))− f (xk, yk)| ≤ C |y(xk)− yk | = C |Ek | .

Combining the last three inequalities, we get

|Ek+1| ≤ |εk+1| + |Ek | + |�x · [ f (xk, y(xk))− f (xk, yk)]|

≤ 1

2
(B + C A)(�x)2 + |Ek | + �x · C |Ek |

≤ 1

2
(B + C A)(�x)2 + (1 +�x · C) |Ek | .

This is starting to look ugly. So let

α = 1

2
(B + C A) and β = 1 + �x · C ,

just so that the above inequality can be written more simply as

|Ek+1| ≤ α(�x)2 + β |Ek | .

Remember, E0 = 0 . Repeatedly applying the last inequality, we then obtain the following:

|E1| = |E0+1| = α(�x)2 + β |E0| = α(�x)2 ,

|E2| = |E1+1| ≤ α(�x)2 + β |E1|
≤ α(�x)2 + βα(�x)2 ≤ (1 + β) α(�x)2 ,

|E3| = |E2+1| ≤ α(�x)2 + β |E2|
≤ α(�x)2 + β (1 + β) α(�x)2

≤ α(�x)2 +
(
β + β2

)
α(�x)2 ≤

(
1 + β + β2

)
α(�x)2 ,

...

.

Continuing, we eventually get

|EN | ≤ SN α(�x)2 where SN = 1 + β + β2 + · · · + βN−1 . (9.14)

You may recognize SN as a partial sum for a geometric series. Whether you do or not, we have

(β − 1)SN = βSN − SN

= β
[
1 + β + β2 + · · · + βN−1

]
−

[
1 + β + β2 + · · · + βN−1

]
=

[
β + β2 + · · · + βk

]
−

[
1 + β + β2 + · · · + βN−1

]
= βN − 1 .

Dividing through by β and recalling what α and β represent then give us

SNα = βN − 1

β − 1
α

= (1 +�x · C)N − 1

1 +�x · C − 1
· B + C A

2
=

[
(1 +�x · C)N − 1

]
(B + C A)

�x · 2C
.
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So inequality (9.14) can be rewritten as

|EN | ≤ (1 +�x · C)N − 1

�x · C
α(�x)2

Dividing out one �x leaves us with

|EN | ≤ MN ,�x ·�x where MN ,�x =
[
(1 +�x · C)N − 1

]
(B + C A)

2C
. (9.15)

The claim of theorem 9.1 is almost proven with inequality (9.15). All we need to do now is to

find a single constant M such that MN ,�x ≤ M for all possible choices of M and �x . To this

end, recall the Taylor series for the exponential,

eX =
∞∑

n=0

1

n! Xn = 1 + X + 1

2
X2 + 1

6
X3 + · · · .

If X > 0 then

1 + X < 1 + X + 1

2
X2 + 1

6
X3 + · · · = eX .

Cutting out the middle and letting X = �x · C , this becomes

1 + �x · C < e�x ·C .

Thus,

(1 +�x · C)N <
[
e�x ·C

]N

= eN�x ·C ≤ eLC

where L is that constant with N�x ≤ L . So

MN ,�x =
[
(1 +�x · C)N − 1

]
(B + C A)

2C
< M

where

M = (eLC − 1)(B + C A)

2C
. (9.16)

And this (finally) completes our proof of theorem 9.1 on page 188.

Additional Exercises

9.1. Several initial-value problems are given below, along with values for two of the three

parameters in Euler’s method: step size �x , number of steps N , and maximum vari-

able of interest xmax . For each, find the corresponding numerical solution using Euler’s

method with the indicated parameter values. Do these problems without a calculator or

computer.

a.
dy

dx
= y

x
with y(1) = −1 ; �x = 1

3
and N = 3

b.
dy

dx
= −8xy with y(0) = 10 ; xmax = 1 and N = 4
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c. 4x + dy

dx
= y2 with y(0) = 2 ; xmax = 2 and �x = 1

2

d.
dy

dx
+ y

x
= 4 with y(1) = 8 ; �x = 1

2
and N = 6

9.2. Again, several initial-value problems are given below, along with values for two of the

three parameters in Euler’s method: step size �x , number of steps N , and maximum

variable of interest xmax . For each, find the corresponding numerical solution using Euler’s

method with the indicated parameter values. Do these problems with a (nonprogrammable)

calculator.

a.
dy

dx
=

√
2x + y with y(0) = 0 ; �x = 1

2
and N = 6

b. (1 + y)
dy

dx
= x with y(0) = 1 ; N = 6 and xmax = 2

c.
dy

dx
= yx with y(1) = 2 ; �x = 0.1 and xmax = 1.5

d.
dy

dx
= cos(y) with y(0) = 0 ; �x = 1

5
and N = 5

9.3 a. Using your favorite computer language or computer math package, write a program or

worksheet for finding the numerical solution to an arbitrary first-order initial-value prob-

lem using Euler’s method. Make it easy to change the differential equation and the

computational parameters (step size, number of steps, etc.).2,3

b. Test your program/worksheet by using it to re-compute the numerical solutions for the

problems in exercise 9.2, above.

9.4. Using your program/worksheet from exercise 9.3 a with each of the following step sizes,

find an approximation for y(5) where y = y(x) is the solution to

dy

dx
= 3

√
x2 + y2 + 1 with y(0) = 0 .

a. �x = 1 b. �x = 0.1 c. �x = 0.01 d. �x = 0.001

9.5. Let y be the (true) solution to the initial-value problem considered in section 9.2,

5
dy

dx
− y2 = −x2 with y(0) = 1 .

For each step size �x given below, use your program/worksheet from exercise 9.3 a to

find an approximation to y(3) . Also, for each, find the magnitude of the error (to the

nearest 0.0001 ) in using the approximation for y(3) , assuming the correct value of y(3)

is −0.23699 .

a. �x = 1 b. �x = 1

2
c. �x = 1

4
d. �x = 1

8

e. �x = 0.01 f. �x = 0.001 g. �x = 0.0001

9.6. Consider the initial-value problem

dy

dx
= (y − 1)2 with y(0) = −13

10
.

2 If your computer math package uses infinite precision or symbolic arithmetic, you may have to include commands to

ensure your results are given as decimal approximations.
3 It may be easier to compute all the xk ’s first, and then compute the yk ’s .
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This is the problem discussed in section 9.3 in the illustration of a “catastrophic failure” of

Euler’s method.

a. Find the exact solution to this initial-value problem using methods developed in earlier

chapters. What, in particular, is the exact value of y(4) ?

b. Using your program/worksheet from exercise 9.3 a, find the numerical solution to the

above initial-value problem with xmax = 4 and step size �x = 1/2 . (Also, confirm that

this numerical solution has been properly plotted in figure 9.3 on page 182.)

c. Find the approximation to y(4) generated by Euler’s method with each of the following

step sizes (use your answer to the previous part or your program/worksheet from exercise

9.3 a). Also, compute the magnitude of the error in using this approximation for the exact

value found in the first part of this exercise.

i. �x = 1 ii. �x = 1

2
iii. �x = 1

4
iv. �x = 1

10

9.7. Consider the following initial-value problem

dy

dx
= −4y with y(0) = 3 .

The following will illustrate the importance of choosing appropriate step sizes.

a. Find the numerical solution using Euler’s method with �x = 1/2 and N being any large

integer (this will be more easily done by hand than using a calculator!). Then do the

following:

i. There will be a pattern to the yk’s . What is that pattern? What happens as k → ∞ ?

ii. Plot the piecewise straight approximation corresponding to your numerical solution

along with a slope field for the above differential equation. Using these plots, decide

whether your numerical solution accurately describes the true solution, especially as x

gets large.

iii. Solve the above initial-value problem exactly using methods developed in earlier chap-

ters. What happens to y(x) as x → ∞ ? Compare this behavior to that of your

numerical solution. In particular, what is the approximate error in using yk for y(xk)

when xk is large?

b. Now find the numerical solution to the above initial-value problem using Euler’s method

with �x = 1/10 and N being any large integer (do this by hand, looking for patterns in

the yk’s )). Then do the following:

i. Find a relatively simple formula describing the pattern in the yk’s .

ii. Plot the piecewise straight approximation corresponding to this numerical solution along

with a slope field for the above differential equation. Does this numerical solution appear

to be significantly better (more accurate) than the one found in part 9.7 a?

9.8. In this problem we’ll see one danger of blindly applying a numerical method to solve an

initial-value problem. The initial-value problem is

dy

dx
= 3

7 − 3x
with y(0) = 0 .

a. Find the numerical solution to this using Euler’s method with step size �x = 1/2 and

xmax = 5 . (Use your program/worksheet from exercise 9.3 a).
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b. Sketch the piecewise straight approximation corresponding to the numerical solution just

found.

c. Sketch the slope field for this differential equation, and find the exact solution to the above

initial-value problem by simple integration.

d. What happens in the true solution as x → 7/3 ?

e. What can be said about the approximations to y(xk) obtained in the first part when

xk >
7/3 ?

9.9. What goes wrong with attempting to find a numerical solution to

(2y − 1)2
dy

dx
= 1 with y(0) = 0

using Euler’s method with step size �x = 1/2 ?
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The Art and Science of Modeling with
First-Order Equations

For some, “modeling” is the building of small plastic replicas of famous ships; for others, “modeling”

means standing in front of cameras wearing silly clothing; for us, “modeling” is the process of

developing sets of equations and formulas describing some process of interest. This process may be

the falling of a frozen duck, the changes in a population over time, the consumption of fuel by a car

traveling various distances, the accumulation of wealth by one individual or company, the cooling of

a cup of coffee, the electronic transmission of sound and images from a television station to a home

television, or any of a huge number of other processes affecting us. A major goal of modeling, of

course, is to predict “how things will turn out” at some point of interest, be it a point of time in the

future or a position along the road. Along with this, naturally, is often a desire to use the model to

determine changes we can make to the process to force things to turn out as we desire.

Of course, some things are more easily modeled mathematically than others. For example, it will

certainly be easier to mathematically describe the number of rabbits in a field than to mathematically

describe the various emotions of these rabbits. Part of the art of modeling is the determination of

which quantities the model will deal with (e.g., “number of rabbits” instead of “emotional states”).

Another part of modeling is the balancing between developing as complete a model as possible

by taking into account all possible influences on the process as opposed to developing a simple and

easy to use model by the use of simplifying assumptions and simple approximations. Attempting

to accurately describe all possible influences usually leads to such a complicated set of equations

and formulas that the model (i.e., the set of equations and formulas we’ve developed) is unusable.

A model that is too simple, on the other hand, may lead to wildly inaccurate predictions, and, thus,

would also not be a useful model.

Here, we will examine various aspects of modeling using first-order differential equations. This

will be done mainly by looking at a few illustrative examples, though, in a few sections, we will also

discuss how to go about developing and using models with first-order differential equations more

generally.

10.1 Preliminaries

Suppose we have a situation in which some measurable quantity of interest (e.g.: velocity of a

falling duck, number of rabbits in a field, gallons of fuel in a vehicle, amount of money in a bank,

temperature of a cup of coffee) varies as some basic parameter (such as time or position) changes.

For convenience, let’s assume the parameter is time and denote that parameter by t , as is traditional.

197
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Recall that, if

Q(t) = the amount of that measurable quantity at time t ,

then
d Q

dt
= the rate at which Q varies as t varies .

If we can identify what controls this rate, and can come up with a formula F(t, Q) describing how

this rate depends on t and the Q , then

d Q

dt
= F(t, Q) .

gives us a first-order differential equation for Q which, with a little luck, can be solved to obtain a

general formula for Q in terms of t . At the very least, we will be able to construct this equation’s

slope field and sketch graphs of Q(t) .

Our development of the “improved falling object model” in chapter 1.2 is a good example of this

sort of modeling. Go back to page 11 and take a quick look at it. There, the ‘measurable quantity’ is

the velocity v (in meters/second); the rate at which it varies with time, dv/dt , is the acceleration, and

we were able to determine a formula F for this acceleration by determining and adding together the

accelerations due to gravity and air resistance,

F(t, v) = total acceleration

= acceleration due to gravity + acceleration due to air resistance

= (−9.8) + (−κv)

where κ is some positive constant that would have to be determined by experiment. This gave us

the first-order differential equation

dv

dt
= F(t, v) = −9.8 − κv ,

which we were later able to solve and analyze.

In what follows, we will develop models for several other situations. We will also, in section

10.5, give further advice on developing your own models with first-order differential equations. Be

sure to observe how we develop these models and to read the notes in section 10.5. You will be

developing more models in the exercises and, maybe later, in real life.

10.2 A Rabbit Ranch
The Situation to be Modeled

Pretend we’ve been given a breeding pair of rabbits along with acres and acres of prime rabbit range

with no predators. Let us further assume this rabbit range is fenced in so that no rabbits can escape

or come in, and so that no predators can come in. We release the rabbits, planning to return in a few

years (say, five) to harvest rabbits for the Easter trade.

An obvious question is How many rabbits will we have on our rabbit ranch in five years?
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Setting Up the Model

Experienced modelers typically begin by drawing a simple, enlightening picture of the process (if

appropriate) and identifying the relevant variables (as we did for the “falling object model” — see

page 8). Since the author could not think of a particularly appropriate and enlightening picture, we

will skip the picture and go straight to identifying the obvious variables of interest. They are ‘time’

and ‘the number of rabbits’, which we will naturally denote using the symbols t and R , respectively.

The time t can be measured in seconds, days, months, years, centuries, etc. We will use months,

with t = 0 being the time the rabbits were released. So,

t = number of months since the rabbits were released

and

R = R(t) = number of rabbits at time t .

Since we started with a pair of rabbits, the initial condition is

R(0) = 2 . (10.1)

Now, since t is being measured in months,

d R

dt
= rate R varies as t varies

= change in the number of rabbits per month .

Because the fence prevents rabbits escaping or coming in, the change in the number of rabbits is due

entirely to the number of births and deaths in our rabbit population. Thus,

d R

dt
= change in the number of rabbits per month

= number of births per month − number of deaths per month .

(10.2)

Now we need to model the “number of births per month” and the “number of deaths per month”.

Starting with the birth process, and assuming that half the population are females, we note that

number of births per month

= number of births per female rabbit per month

× number of female rabbits that month

= number of births per female rabbit per month × 1

2
R .

(We are also assuming that all the females are capable of having babies, no matter what their age.

Well, these are rabbits; they marry young.)

It seems reasonable to assume the average number of births per female rabbit per month is a

constant. For future convenience, let

β = 1

2
× number of births per female rabbit per month .

This is the “monthly birth rate per rabbit” and allows us to write

number of births per month = βR . (10.3)



�

�

�

�

�

�

�

�

200 The Art and Science of Modeling with First-Order Equations

Checking a reliable reference on rabbits (any decent encyclopedia will do), it can be found that,

on the average, each female rabbit has 6 litters per year with 5 bouncy baby bunnies in each litter.

Hence, since there are 12 months in a year,

β = 1

2
× number of births per female rabbit per month

= 1

2
× 1

12
× number of births per female rabbit per year

= 1

2
× 1

12
× 6 × 5 .

That is,

β = 5

4
. (10.4)

What about the death rate? Since there are no predators and plenty of food, it seems reasonable

to assume old age is the main cause of death. Again checking a reliable reference on rabbits, it can

be found that the average life span for a rabbit is 10 years. Clearly, then, the number of deaths per

month will be negligible compared to the number of births. So we will assume

number of deaths per month = 0 . (10.5)

Combining equations (10.2), (10.3) and (10.5), we obtain

d R

dt
= number of births per month − number of deaths per month

= βR − 0 .

That is,
d R

dt
= βR (10.6)

where β is the average monthly birth rate per rabbit.1

Of course, equation (10.6) does not just apply to the situation being considered here. The same

equation would have been obtained for the changing population of any creature having zero death

rate and a constant birth rate β per unit time per creature. But the problem at hand involves rabbits,

and for rabbits, we derived β = 5/4 . This, the above differential equation, and the fact that we started

with two rabbits means that R(t) must satisfy

d R

dt
= 5

4
R with R(0) = 2 .

This is our “model”.

Using Our Model

Our differential equation is
d R

dt
= βR with β = 5

4
.

This is a simple separable and linear differential equation. You can easily show that its general

solution is

R(t) = Aeβt .

1 In developing this equation, we equated an “instantaneous rate of change”, d R/dt , to a “change in the number of rabbits

per month”, and then found a formula for that “monthly change” based on the value of R “at time t ” instead of over the

entire month. If this bothers you, see appendix 10.8 on page 216.
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Applying the initial condition,

2 = Aeβ·0 = A .

So the number of rabbits after t months is given by

R(t) = 2eβt with β = 5

4
. (10.7)

Five years is 60 months. Using a calculator, we find that the number of rabbits after 5 years is

R(60) = 2e
5
4 ·60 = 2e75 ≈ 7.47 × 1032 .

That is a lot of rabbits. At about 3 kilograms each, the mass of all the rabbits on the ranch will then

be approximately

2.2 × 1033 kilograms .

By comparison:

the mass of the Earth ≈ 6 × 1024 kilograms

and

the mass of the Sun ≈ 2 × 1030 kilograms .

So our model predicts that, in five years, the total mass of our rabbits will be over a thousand times

that of our nearest star.

This does not seem like a very realistic prediction. Later in this chapter, we will derive a more

complete (but less simple) model.

But first, let us briefly discuss a few other modeling situations involving differential equations

similar to the one derived here (equation (10.6)).

10.3 Exponential Growth and Decay

Whenever the rate of change of some quantity Q(t) is directly proportional to that quantity, we

automatically have
d Q

dt
= βQ

with β being the constant of proportionality. Since this simple relationship is inherent in many

processes of interest, it, along with with its general solution

Q(t) = Aeβt ,

arises in a large number of important applications, most of which do not involve rabbits. If β > 0 ,

then Q(t) increases rapidly as t increases, and we typically say we have exponential growth. If

β < 0 , then Q(t) shrinks to 0 fairly rapidly as t increases, and we typically say we have exponential

decay. And if β = 0 , then Q(t) remains constant — we just have equilibrium solutions.

Simple Population Models

Suppose we are interested in how the population of some set of creatures or plants varies with time.

These may be rabbits on a ranch (as in our previous example) or yeast fermenting a vat of grape

juice or the people in some city or the algae growing in a pond. They may even be the people
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in some country that are infected with and are helping spread some contagious disease. Whatever

the individuals of this population happen to be, we can let P(t) denote the total number of these

individuals at time t , and ask how P(t) varies with time (as we did in our “rabbit ranch” example).

If we further assume (as we did in our previous “rabbit ranch” example) that

1. the change in P(t) over a unit of time depends only on the number of “births” and “deaths”

in the population;2

2. the “average birth rate per individual per unit of time” β0 is constant,

and

3. the “average death rate per individual per unit of time” δ0 is constant (i.e., a constant fraction

δ0 of the population dies off during each unit of time);

then
d P

dt
= change in the number of individuals per unit time

= number of births per unit time − number of deaths per unit time

= β0 P(t) − δ0 P(t) .

Letting β be the “net birth rate per individual per unit time”,

β = β0 − δ0 ,

this reduces to
d P

dt
= βP(t) , (10.8)

the solution of which, as we already know, is

P(t) = P0eβt = P0e(β0−δ0)t where P0 = P(0) .

If β0 > δ0 , then the model predicts that the population will grow exponentially. If β0 < δ0 , then

the model predicts that the population will decline exponentially. And if β0 = δ0 , then the model

predicts that the population remains static.

This is a simple model whose accuracy depends on the validity of the three basic assumptions

made above. In many cases, these assumptions are often reasonably acceptable during the early

stages of the process, and, initially, we do see exponential growth of populations, say, of yeast added

to grape juice or of a new species of plants or animals introduced to a region where it can thrive.

As illustrated in our “rabbit ranch” example, however, this is too simple a model to describe the

long-term growth of most biological populations.

Natural Radioactive Decay

The effect of radioactive decay on the amount of some radioactive isotope can be described by

a model completely analogous to the general population model just discussed. Assume we start

with some amount (say, a kilogram) of some radioactive isotope of interest (say, uranium–235).

During any given length of time, there is a certain probability that any given atom of that material

will spontaneously decay into a smaller atom along with associated radiation and other atomic and

subatomic particles. Thus, the amount we have of that particular radioactive isotope will decrease

2 Precisely what “birth” or “death” means may depend on the creatures/plants in the population. For a microbe, “birth”

may be when a parent cell divides into two copies of itself. If the population is the set of people infected with a particular

disease, then “birth” occurs when a person contracts the disease.
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as more and more of the atoms decay (provided there is not some other material that decays into the

isotope of interest.)

Let’s assume we have some radioactive isotope of interest, and that there is no other radioactive

material decaying into that isotope. For convenience, let A(t) denote the amount of that radioactive

material at time t , and let δ be the fraction of the material that decays per unit time. In essence, the

decay of an atom is the death of that atom, and this δ is essentially the same as the δ0 in the above

population growth discussion. Virtually the same analysis done to obtain equation (10.8) (but using

P instead of A , and noting that β0 = 0 since no new atoms of the isotope are being “born”) then

yields
d A

dt
= −δA(t) .

Solving this differential equation then gives us

A(t) = A0e−δt with A0 = A(0) . (10.9)

Because radioactive decay is a probabilistic event, and because there are typically huge numbers

of atoms in any sample of radioactive material, the laws of probability and statistics ensure that this is

usually a very accurate model over long periods of time (unlike the case with biological populations).

The positive constant δ , called the decay rate, is different for each different isotope. It is large

if the isotope is very unstable and a large fraction of the atoms decay in a given time period, and it

is small if the isotope is fairly stable and only a small fraction of the atoms decay in the same time

period. In practice, the decay rate δ is usually described indirectly through the half-life τ1/2 of the

isotope, which is the time it takes for half of the original amount to decay. Using the above formula

for A(t) , you can easily verify that τ1/2 and δ are related by the equation

δ × τ1/2 = ln 2 . (10.10)

?�Exercise 10.1: Derive equation (10.10). Use formula (10.9) for A(t) and the fact that, by the

definition of τ1/2 ,

A(τ1/2) = 1

2
A(0) .

!�Example 10.1: Cobalt-60 is a radioactive isotope of cobalt with a half-life of approximately

5.27 years.3 Using equation (10.10), we find that its (approximate) decay constant is given by

δ = ln 2

τ1/2
= ln 2

5.27 (years)
≈ 0.1315 (per year) .

Combining this with formula (10.9) gives us

A(t) ≈ A0e−0.1315t with A0 = A(0) .

as the formula for the amount of undecayed cobalt remaining after t years.

Suppose we initially have 10 grams of cobalt-60. At the end of one year, those 10 grams

would have decayed to approximately

(10 gm.)× e−0.1315×1 ≈ 8.77 grams of cobalt-60 .

At the end of two years, those 10 grams would have decayed to approximately

(10 gm.)× e−0.1315×2 ≈ 7.69 grams of cobalt-60 .

3 Cobalt-60 has numerous medical applications, as well as having the potential as an ingredient in some particularly nasty

nuclear weapons. It is produced by exposing cobalt-59 to “slow” neutrons, and decays to a stable nickel isotope after giving

off one electron and two gamma rays.
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And at the end of ten years, those 10 grams would have decayed to approximately

(10 gm.)× e−0.1315×10 ≈ 2.68 grams of cobalt-60 .

10.4 The Rabbit Ranch, Again

Back to wrangling rabbits.

The Situation (and Problem)

Recall that we imagined ourselves having a fenced-in ranch enclosing many acres of prime rabbit

range. We start with a breeding pair of rabbits, and plan to return in five years. The question is How

many rabbits will we have then?

In section 10.2, we attempted to answer this question using a fairly simple model we had just

developed. However, the predicted number of rabbits after five years (which had a corresponding

mass a thousand times greater than that of the Sun) was clearly absurd. That model did not account

for the problems arising when a population of rabbits grows too large. Let us now see if we can

derive a more realistic model.

A Better Model

Again, we let

R(t) = number of rabbits after t months

with R(0) = 2 . We still have

d R

dt
= change in the number of rabbits per month

= number of births per month − number of deaths per month .

(10.11)

However, the assumptions that

number of deaths per month = 0 ,

and

number of births per month = βR

where

β = monthly birth rate per rabbit = 5

4
.

are too simplistic. As the population increases, the amount of range land (and, hence, food) per

rabbit decreases. Eventually, the population may become too large for the available fields to support

all the rabbits. Some will starve to death, and those female rabbits that survive will be malnourished

and will give birth to fewer bunnies. In addition, overcrowding is conducive to the spread of diseases

which, in a population already weakened by hunger, can be devastating.
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Clearly, we at least need to correct our formula for the number of deaths per month, because,

once overcrowding begins, we can expect a certain fraction of the population to die each month.

Letting δ denote that fraction,

number of deaths per month = fraction of the population that dies each month

× number of rabbits

= δR .

Keep in mind that this fraction δ , which we can call the monthly death rate per rabbit, will not be

constant. It will depend on just how overcrowded the rabbits are. In other words, δ will vary with

R , and, thus, should be treated as a function of R , δ = δ(R) . Just how δ varies with R is yet

unknown, but it should be clear that

if R is small, then overcrowding is not a problem and δ(R) should be close to zero,

and

as R increases, then overcrowding increases and more rabbits start dying. So, δ(R)

should increase as R increases.

The simplest function of R for δ satisfying the two above conditions is

δ = δ(R) = γD R

where γD is some positive constant. This gives us

number of deaths per month = δR = [
γD R

]
R = γD R2 .

What sort of “correction” should we now consider for

number of births per month = βR ?

Well, as with the monthly death rate δ , above, we should expect the monthly birth rate per rabbit,

β , to be a function of the number of rabbits, β = β(R) . Moreover:

If R is small, then overcrowding is not a problem and β(R) should be close to its ideal

value β0 = 5/4 ,

and

as R increases, then more rabbits become malnourished, and females have fewer babies

each month. So, β(R) should decrease from its ideal value as R increases.

A simple formula describing this is obtained by subtracting from the ideal birth rate a simple cor-

rection term proportional to the number of rabbits,

β = β(R) = β0 − γB R

where β0 = 5/4 is the ideal monthly birth rate per rabbit and γB is some positive constant.4 This

then gives us

number of births per month = βR = [
β0 − γB R

]
R = β0 R − γB R2 .

4 Yes, the birth rate becomes negative if R becomes large enough, and negative birth rates are not realistic. But we still

trying for as simple a model as feasible — with luck R will not get large enough that the birth rate becomes negative.
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As with our simpler model, the one we are developing can be applied to populations of other

organisms by using the appropriate value for the ideal birth rate per organism, β0 . For rabbits, we

have β0 = 5/4 .

Combining the above formulas for the monthly number of births and deaths with the generic

differential equation (10.11) yields

d R

dt
= number of births per month − number of deaths per month

= βR − δR

= β0 R − γB R2 − γD R2 ,

which, letting γ = γB + γD , simplifies to

d R

dt
= β0 R − γ R2 (10.12)

where β0 = 5/4 is the ideal monthly birth rate per rabbit and γ is some positive constant. Presumably,

γ could be determined by observation (if this new model does accurately describe the situation).

Using the Better Model

Equation (10.12) is called the logistic equation and was an important development in the study of

population dynamics. It is a relatively simple separable equation that can be solved without too

much difficulty. But let’s not, at least, not yet. Instead, let us first rewrite this equation by factoring

out γ R ,
d R

dt
= γ R

(
β0

γ
− R

)
.

From this it is obvious that our differential equation has two constant solutions,

R = 0 and R = β0

γ
.

The first tells us that, if we start with no rabbits, then we get no rabbits in the future (no surprise

there). The second is more interesting. For convenience, let κ = β0/γ . Our differential equation can

then be written as
d R

dt
= γ R (κ − R) with γ = β0

κ
, (10.13)

and the two constant solutions are

R = 0 and R = κ .

(We probably should note that κ , as a ratio of positive constants, is a positive constant.)

While we are at it, let’s further observe that, if 0 < R < κ , then

d R

dt
= γ R︸︷︷︸

>0

(κ − R︸ ︷︷ ︸
>0

) > 0 .

In other words, if 0 < R < κ , then the population is increasing.

On the other hand, if κ < R , then

d R

dt
= γ R︸︷︷︸

>0

(κ − R︸ ︷︷ ︸
<0

) < 0 .
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Figure 10.1: Slope Fields for Logistic Equation (10.13): (a) A minimal field for a generic logistic

equation and (b) a slope field for the logistic equation with κ = 100 and β0 = 1/10 .

The graphs of a few solutions have been roughly sketched on each.

That is, the population will be decreasing if κ < R .

We can graphically represent these observations using the crude slope field sketched in figure

10.1a. This figure suggests that, over time, the number of rabbits will stabilize around κ . If there

are initially fewer than κ rabbits (but at least some), then the rabbit population will increase towards

a total of κ rabbits. If there are initially more than κ rabbits, then the population will decrease

towards a total of κ rabbits. This prediction is reflected in the more carefully constructed slope

field in figure 10.1b. Because κ is the maximum number of rabbits that can exist in the long term

given the resources available, κ is often called the carrying capacity of the ‘system’ consisting of

the rabbits and their environment. (Of course, if the carrying capacity is too low, say, κ ≈ 0.5 then,

realistically, all the rabbits will die.)

Finding the precise formula for R(t) will be left to you (exercise 10.7). What you will show

is that, in terms of the carrying capacity κ , ideal birth rate β0 , and initial population R0 = R(0) ,

R(t) = κR0

R0 + (κ − R0)e−β0t
. (10.14)

This formula reflects the fact that there are three basic parameters in our model: the ideal monthly

birth rate β0 , the initial number of rabbits R(0) , and the carrying capacity of the system κ . The

first two we know or can figure out from basic biology. The last, κ , will have to be determined “from

experiment”. For example, we might return a year after releasing the original pair (at t = 12 ), count

the number of rabbits on the ranch, R(12) , and then use this value along with the known values for

R0 and β0 in formula (10.14) to create an equation for κ . Solving that equation will then give us

κ . This, of course, assumes that the model is fairly accurate — an assumption that would require

further experiment to verify or disprove. But, at least the model’s prediction regarding the population

growth seems a good deal more reasonable than that made by the simpler model in section 10.2.
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10.5 Notes on the Art and Science of Modeling

Our current interest is in modeling situations in which the rate at which some quantity varies is fairly

well understood. In these sorts of problems, it is often “relatively easy” to develop a first-order

differential equation to serve as the basis for a mathematical model for the situation. We’ve seen

several examples already and will see more in the next few sections. But now, let us pause to discuss

some of the steps and issues in developing and using such models.

First Steps in the Modeling Process

Naturally, one of your very first steps in modeling something should be to learn whatever you believe

is needed for developing the model. Then identify and label the significant basic variables and decide

on the units associated with these variables. In our rabbit ranch problems, those variables were R

and t (with associated units rabbits and months, respectively); in the following, we’ll use Q for the

generic quantity of interest and assume it varies over time t .

Next, write out everything you know using these variables. This includes any initial values

you may have for any of the variables. In our rabbit ranch problem, we did not know much at first,

only the initial value for R , R(0) = 2 . If you can draw an illuminating picture representing the

situation, do so and label it for easy reference.

Then turn your attention to deriving a differential equation that accurately models the rate at

which Q varies with t , d Q/dt . Do not attempt to directly derive a formula for Q(t) , at least, not

with the sort of problems being considered here. We are now dealing with problems for which it is

much easier to first find a formula F(t, Q) for d Q/dt , and then find Q(t) by solving the resulting

differential equation.

Developing the Differential Equation for the Model

Coming up with a usable differential equation

d Q

dt
= F(t, Q)

that accurately models how Q’s rate of change depends on t and Q is the most important, and, for

many, the hardest part of the of the modeling process. After all, as you now know, anyone can solve

a first-order differential equation (or, at least, construct a slope field for one). Coming up with the

right differential equation can be much more challenging.

Here are a few things you can do to make it less challenging:

Identify and Describe the Processes Driving the Model

Keep in mind that d Q/dt is the rate at which Q(t) changes as t changes. This rate depends on

the processes driving the situation, not on the particular value of Q at some particular time. In

particular, the value of Q(0) is irrelevant in setting up the differential equation.

Once you’ve determined your variables and drawn your illuminating pictures, write out5

d Q

dt
= the change in Q per unit time

5 As noted in an earlier footnote, we are equating an “instantaneous rate of change”, d Q/dt , to a “change in Q per unit time”,

which, in turn, will be based on the values of Q and t at a specific time t instead of over the unit interval of time. For a

more detailed analysis justifying this, see appendix 10.8 on page 216.
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and then identify the different processes that cause that Q to change. In our examples with rabbits,

these processes were “birth” and “death”, and we initially observed that

d R

dt
= change in the number of rabbits per month

= number of births per month − number of deaths per month .

Then we worked out how many births and deaths should be expected each month given that we had

R rabbits that month.

In general, you want to identify the different processes that cause Q(t) to increase (e.g., births

and immigration into the region) and to decrease (e.g., deaths and emigration out of the region).

Each of these processes corresponds to a different term in F(t, Q) (remember to add those terms

corresponding to processes that increase Q , and subtract those terms corresponding to processes

that decrease Q ). For example, if Q(t) is the number of, say, people in a certain region at time t ,

we may have
d Q

dt
= F(t, Q)

where

F(t, Q) = Fbirth + Fimmig − Fdeath − Femig

with

Fbirth = number of births per unit time ,

Fimmig = number of number of people immigrating into the region per unit time ,

Fdeath = number of deaths per unit time ,

and

Femig = number of number of people emigrating out of the region per unit time .

Once you’ve identified the different terms making up F(t, Q) (e.g., the above Fbirth , Fimmig ,

etc.), take each term, consider the process it is supposed to describe, and try to come up with a

reasonable formula describing the change in Q during a unit time interval due to that process alone.

Often, that formula will involve just Q , itself. For example, in our first “rabbit ranch” example

(with R = Q ),

Fbirth = number of births per month

= number of births per female rabbit per month

× number of female rabbits that month

= · · ·

= βR with β = 5

4
.

Often, you will make ‘simplifications’ and ‘assumptions’ to keep the model from becoming too

complicated. In the above formula for Fbirth , for example, we did not attempt to account for seasonal

variations in birth rate, and we assumed that half the rabbit population were breeding females. We

also assumed a constant monthly birth rate and death rate per rabbit, no matter how many rabbits we

had.

Balance the Units

As already noted, one of the first steps in modeling a situation is to decide on the main variables and

to choose the units for measuring these variables. The subsequent computations and derivations are

all in terms of these units, and we can often avoid embarrassing mistakes by just keeping track of our
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units and being sure that their use is consistent. In particular, the units implicit in any equation must

remain balanced; that is, each term in any equation must have the same associated units as every

other term in that equation.

For example, the basic quantities in our rabbit ranch models are R and t . Even though we

treated these as numbers, we knew that

R = number of rabbits and t = time in months .

So the units associated with R and t are, respectively, rabbits and months. Consequently, the units

associated with

d R

dt
= lim

�t→0

R(t +�t)− R(t)

�t
= lim

�t→0

change in the number of rabbits

change in time as measured in months

are rabbits/month (i.e., rabbits per month), and every term in any formula for d R/dt must also have
rabbits/month as the associated units. If someone suggested a term that was not “rabbits per month”,

then that term would be wrong and should be immediately rejected. Thus, for example,

d R

dt
= Rt

is clearly wrong because the right side is describing rabbits × months, not rabbits/month .

The constants used in our derivations also have associated units. The monthly birth rate per

rabbit,

β = number of rabbits born per month per rabbit on the ranch

=
(

number of rabbits born

month

)
per rabbit on the ranch

= number of rabbits born

month × rabbit
,

has associated units 1/month (since the units of rabbits cancel out), and if we had wanted to be a bit

more explicit, we would have written equation (10.4) on page 200 as

β = 5

4

(
1

month

)
instead of just

β = 5

4
.

Often, you will not see the units being explicitly noted throughout the development and use of

a model. There are several possible reasons for this:

1. If the formulas and equations are correctly developed, then the units in these formulas and

equations naturally remain balanced. The modeler knows this and trusts his or her skill in

modeling.

2. The writer assumes the readers can keep track of the units themselves.

3. The writer is lazy or needs to save space.

There is much to be said in favor of explicitly giving the units associated with every element of every

formula and equation. It helps prevent stupid mistakes and may help clarify the meaning of some

of the formulas for the reader (and for the model builder). We will do this, somewhat, in the next

major example. Beginning modelers are strongly encouraged to keep track of the units in every step
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as they develop their own equations. At the very least, stop every so often and check that the units in

the equations balance. If not, you did something wrong — go back, find your error, and correct it.

Oh yes, one more thing about “units”: Be sure that anyone who is going to read your work or

use any model you’ve developed knows the units you are using.6

Testing and Using the Model

Once you’ve developed a differential equation modeling the way a quantity of interest Q(t) varies,

you will normally want to solve that differential equation or otherwise analyze it to see what it

says about Q(t) for various choices of t . If the situation being modeled is fairly simple and

straightforward, and your modeling skills are adequate, then your model can probably be trusted to

give fairly accurate predictions.

In practice, it is usually wise to check and see if predictions based on this model are reasonable

before announcing your new model to the world. After all, it is quite possible that some of your

‘simplifications’ and ‘assumptions’ overly simplified your model and caused important issues to be

ignored. That certainly happened with our first rabbit ranch model in which assuming constant the

birth and death rates resulted in a model predicting far more rabbits in five years than possible.

If your predictions are not reasonable, go back, revisit your derivations, and see where a more

careful modeling of the individual processes leads. If necessary, learn more about the processes

themselves.7 This should lead to a refined model for Q(t) that, in turn, leads to more reasonable

projections as to the behavior of Q(t) . The differential equation will probably be more complicated,

but that is the price you pay for a better, more accurate model.

Of course, you should not automatically assume that ‘apparently reasonable’ predictions are

accurate. If possible, compare results predicted by the model to real world data. You may need to do

this anyway to determine the values of some of the constants in your model. Hopefully, the results

predicted and the real world data will agree well enough that you can feel confident that your model

is sufficiently accurate for the desired applications. If not, refine your model further.

By the way, in using your model, keep in mind the simplifications and assumptions made in

deriving it so that you have some idea as to the limitations of this model.

10.6 Mixing Problems

In a “mixing problem”, some substance is continually being added to some container in which the

substance is mixed with some other material, and with the resulting mixture being constantly drained

off at some rate. This container may be a large tank, a lake, or the system of veins and arteries in a

body; and the substance being added may be some chemical, pollutant, or medicine being added to

the liquid in the tank, the water in the lake, or the blood in the body. These problems are favorites

of authors of differential equation texts because they can be modeled fairly easily using the basic

6 In 1999, the Mars Climate Orbiter crashed into Mars instead of orbiting the planet because the Orbiter’s software gave

instructions in terms of the imperial system (which measures force in pounds) while the hardware assumed the metric

system (which measures force in newtons – with 1 pound ≈ 4.45 newtons). This failure to communicate the units being

used caused an embarrassing end to a space project costing over 300 million dollars.
7 This author once read a paper describing a ‘new’ model for “laser interaction with a solid material”. Using this model, you

could then show that any solid can be chilled to absolute zero by suitably heating it with a laser — a rather dubious result.

That paper’s author should have better tested his model and learned more about thermodynamics.



�

�

�

�

�

�

�

�

212 The Art and Science of Modeling with First-Order Equations

Tank with 500 gallons of mix

90% alcohol-water mix flows in at 2 gallons/minute

Tank mixture flows

out at 2

gallons/minute

Figure 10.2: Figure illustrating a simple mixing problem.

observation that (usually)

the rate the amount of substance in the container changes

= the rate the substance is added − the rate the substance is drained off .

We will do one simple mixing problem, and then briefly mention some possible variations.

A Simple Mixing Problem
The Situation to Be Modeled

We start out with a large tank containing 500 gallons of pure water. Each minute thereafter, two

gallons of an alcohol-water mix are added, and two gallons of the mixture in the tank are drained.

The alcohol-water mix being added is 90 percent alcohol. Throughout this entire process, we assume

the mixture in the tank is thoroughly and uniformly mixed. The problem is to develop a formula

describing the amount of alcohol in the tank at any given time. In particular, let’s determine if and

when the mixture in the tank is 50 percent alcohol.

Setting Up the Model

In this case, a simple, illustrative picture for the process is easily drawn. Just see figure 10.2. We

will let

t = number of minutes since we started adding the alcohol-water mix

and

y = y(t) = gallons of pure alcohol in the tank at time t .

Since we started with a tank containing pure water (no alcohol), the initial condition is

y(0) = 0 .

Our derivation of the differential equation modeling the change in y starts with the observation

that

dy

dt
= change in the amount of alcohol in the tank per minute

= rate alcohol is added to the tank − rate alcohol is drained from the tank .
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Since we are adding 2 gallons per minute of a 90 percent alcohol mix,

rate alcohol is added to the tank = 2

(
gallons of input mix

minute

)
× 90

100

(
gallons of alcohol

gallons of input mix

)
= 9

5

(
gallons of alcohol

minute

)
.

In determining how much is being drained away, we must determine the concentration of alcohol in

the tank’s mixture at any given time, which is simply the total amount of alcohol in the tank at that

time (i.e., y(t) gallons) divided by the total amount of the mixture in the tank (which, because we

drain off as much as we add, remains constant at 500 gallons). So,

rate alcohol is drained from the tank = 2

(
gallons of tank mix

minute

)
× amount of alcohol per gallon of tank mix

= 2

(
gallons of tank mix

minute

)
× y(t) (gallons of alcohol)

500 (gallons of tank mix)

= y(t)

250

(
gallons of alcohol

minute

)
.

Combining the above gives us

dy

dt
= rate alcohol is added to the tank − rate alcohol is drained from the tank

= 9

5
− y(t)

250

(
gallons of alcohol

minute

)
.

Thus, the initial-value problem that y = y(t) must satisfy is

dy

dt
= 9

5
− y

250
with y(0) = 0 . (10.15)

Using the Model

Factoring out 1/250 on the right side of our differential equation yields

dy

dt
= 1

250
(450 − y) .

From this we see that

y = 450

is the only constant solution. Moreover,

dy

dt
= 1

250
(450 − y) > 0 if y < 450 ,

and
dy

dt
= 1

250
(450 − y) < 0 if y > 450 .

So, we should expect the graphs of the possible solutions to this differential equation to be something

like the curves in figure 10.3. In other words, no matter what the initial condition is, we should expect

y(t) to approach 450 as t → ∞ .
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T

450

Y

Region where
dy

dt
> 0

Region where
dy

dt
< 0

0
0

Figure 10.3: Crude graphs of solutions to the simple mixing problem from figure 10.2 based on

the sign of dy/dt .

Fortunately, the differential equation at hand is fairly simple. It (the differential equation in

initial-value problem (10.15)) is both separable and linear, and, using either the method we developed

for separable equations or the method we developed for linear equations, you can easily show that

y(t) = 450 − Ae−t/250

is the general solution. Note that, as t → ∞ ,

y(t) = 450 − Ae−t/250 → 450 − A · 0 = 450 ,

just as figure 10.3 suggests. Consequently, no matter how much alcohol is originally in the tank,

eventually there will be nearly 450 gallons of alcohol in the tank. Since the tank holds 500 gallons

of mix, the concentration of the alcohol in the mix will eventually be nearly 450/500 = 9/10 (i.e., 90

percent of the liquid in the tank will be alcohol).

For our particular problem, y(0) = 0 . So,

0 = y(0) = 450 − Ae−0/250 = 450 − A .

Hence, A = 450 and

y(t) = 450 − 450e−t/250 .

Finally, recall that we wanted to know when the mixture in the tank is 50 percent alcohol. This

will be the time when half the liquid in the tank (i.e., 250 gallons) is alcohol. Letting τ denote this

time, we must have

250 = y(τ ) = 450 − 450e−τ/250

↪→ 450e−τ/250 = 450 − 250

↪→ e−τ/250 = 200

450
= 4

9

↪→ − τ

250
= ln

(
4

9

)
= − ln

(
9

4

)
.

So the mixture in the tank will be half alcohol at time

τ = 250 ln
(

9

4

)
≈ 202.7 (minutes) .
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Other Mixing Problems

All sorts of variations of the problem just discussed can be visualized:

1. Instead of adding an alcohol-water mix, we may be adding a mixture of so many ounces of

some chemical (such as sugar or salt) dissolved in the water (or other solvent).

2. The flow rate into the tank may be different from the drainage flow rate. In this case, the

volume of the mixture in the tank will be changing, and that will affect how the concentration

in the tank is computed.

3. We may have the problem considered in our simple mixing problem, but with some of the

drained flow being diverted to a machine that magically converts a certain fraction of the

alcohol to water, and the flow from that machine being dumped back into the tank. (Think

of that machine as the tank’s ‘liver’.)

4. Instead of adding an alcohol-water mix, we may be adding a certain quantity of some microor-

ganism (yeast, e-coli bacteria, etc.) in a nutrient solution. Then we would have to consider a

mixture/population dynamics model to also account for the growth of the microorganism in

the tank, as well as the in-flow and drainage.

5. And so on … .

10.7 Simple Thermodynamics

Bring a hot cup of coffee into a cool room, and, in time, the coffee cools down to room temperature.

Put a similar hot cup of coffee into a refrigerator, and you will discover that the coffee cools down

faster. Let’s try to describe this cooling process a little more precisely.

To be a little more general, let us simply assume we have some object (such as a hot cup of

coffee or a cold glass of water) that we place in a room in which the air is at temperature Troom . To

keep matters simple, assume Troom remains constant. Let T = T (t) be the temperature at time t

of the object we placed in the room. As time t goes on, we expect T to approach Troom . Now

consider
dT

dt
= rate at which T approaches Troom as time t increases .

It should seem reasonable that this rate at any instant of time t depends just on the difference between

the temperature of the object and the temperature of the room, T − Troom ; that is

dT

dt
= F(T − Troom) . (10.16)

for some function F . Moreover,

1. If T − Troom = 0 , then the object is the same temperature as the room. In this case, we

do not expect the object’s temperature to change. Hence, we should have dT/dt = 0 when

T = Troom .

2. If T −Troom is a large positive value, then the object is much warmer than the room. We then

expect the object to be rapidly cooling; that is, T should be a rapidly decreasing function of

t . Hence dT/dt should be large and negative.
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3. If T − Troom is a large negative value, then the object is much cooler than the room. We then

expect the object to be rapidly warming; that is, T should be a rapidly increasing function

of t . Hence dT/dt should be large and positive.

In terms of the function F on the right side of equation (10.16), these three observations mean

T − Troom = 0 �⇒ F(T − Troom) = 0 ,

T − Troom is a large positive value �⇒ F(T − Troom) is a large negative value

and

T − Troom is a large negative value �⇒ F(T − Troom) is a large positive value .

The simplest choice of F satisfying these three conditions is

F(T − Troom) = −κ(T − Troom)

where κ is some positive constant. Plugging this into equation (10.16) yields

dT

dt
= −κ(T − Troom) . (10.17)

This equation is often known as Newton’s law of heating and cooling. The positive constant κ

describes how easily heat flows between the object and the air, and must be determined by experiment.

Equation (10.17) states that the change in the temperature of the object is proportional to the

difference in the temperatures of the object and the room. It’s not exactly the same as equation (10.8)

on page 202 (unless Troom = 0 ), but it is quite similar in spirit. We’ll leave its solution and further

discussion as exercises for the reader.

10.8 Appendix: Approximations That Are Not
Approximations

In our first rabbit ranch model, (after assuming a death rate of zero), our derivation of the model can,

essentially, be described by

d R

dt
= number of births per month = βR(t)

where

β = monthly birth rate per rabbit .

Those who are comfortable with calculations involving rates should be comfortable with this. Others,

however, may be concerned that we have two approximations here: The first is in approximating the

derivative d R/dt (an ’‘instantaneous rate of change at time t ”) by the monthly rate of change. The

second is in describing this monthly rate of change in terms of R(t) , the number of rabbits at the

instant of time t , even though the number of rabbits clearly changes over a month.

Let us reassure those concerned readers by looking at this derivation a little more carefully. We

start by recalling the definition of the derivative of R at time t :

d R

dt
= lim

�t→0

�R

�t
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where

�R = R(t +�t) − R(t) = change in R as time changes from t to t +�t .

Of course, the ‘ R(t +�t)− R(t) ’ formula for �R is pretty useless since we don’t have the formula

for R . However, we can approximate �R via

�R = bunnies born as time changes from t to t +�t

≤ monthly birth rate per rabbit

× maximum number of rabbits at any one time between t and t +�t

× length of time (in months) between t and t +�t

= βRmax�t

where

Rmax = maximum number of rabbits at any one time between t and t +�t .

Note that

lim
�t→0

Rmax = maximum number of rabbits at any one time between t and t + 0

= number of rabbits at time t

= R(t) .

Consequently,

d R

dt
= lim

�t→0

�R

�t
≤ lim

�t→0
βRmax = βR(t) .

Similar arguments with

Rmin = minimum number of rabbits at any one time between t and t +�t

yield

d R

dt
≥ lim

�t→0
βRmin = βR(t) .

Together the two above inequalities involving d R/dt tell us that

βR(t) ≤ d R

dt
≤ βR(t)

which, of course, means that
d R

dt
= βR(t) ,

just as we originally derived.

More generally, this sort of analysis can be used to justify letting

d Q

dt
= �Q

�t

where �t is the unit time interval in whatever units we are using, and then deriving a formula for
�Q/�t in terms of t and Q(t) , just as we do in our examples, and just as you should do in the

exercises.



�

�

�

�

�

�

�

�

218 The Art and Science of Modeling with First-Order Equations

Additional Exercises

10.2. Do the following using formula (10.7) on page 201 from the simple model for the rabbit

population on our rabbit ranch:

a. Find the approximate number of rabbits on the ranch after one year.

b. How long does it take for the number of rabbits to increase

i. from 2 to 4 ? ii. from 4 to 8 ? iii. from 8 to 16 ?

c. How long does it take for the number of rabbits to increase

i. from 2 to 20 ? ii. from 5 to 50 ? iii. from 10 to 100 ?

d. Approximately how long does it take for the mass of the rabbits on the ranch to equal the

mass of the Earth?

10.3. (Epidemiology) Imagine the following situation:

A stranger infected with a particularly contagious strain of the sniffles enters

a city. Let I (t) be the number of people in the city infected with the sniffles

t days after the stranger entered the city. Assume that only the stranger has

the sniffles on day 0, and that the number of people with the sniffles increases

exponentially thereafter (as derived in the simple population growth model in

section 10.3). Assume further that 50 people have the sniffles on the tenth day

after the stranger entered the city.

Let I (t) be the number of people in the city with sniffles on day t .

a. What is the formula for I (t) ?

b. How many people have the sniffles on day 20 ?

c. Approximately how long until 250,000 people in the city have the sniffles?

10.4. Assume that A(t) = A0e−δt is the amount of some radioactive substance at time t having

a half-life τ1/2 .

a. Verify that, for each value of t (not just t = 0 ),

A(t + τ1/2) = 1

2
A(t) .

b. Verify that the formula A(t) = A0e−δt can be rewritten as

A(t) = A0

(
1

2

)t/τ1/2
.

10.5. Cesium-137 is a radioactive isotope of cesium with a half-life of about 30 years.

a. Find the corresponding decay constant δ for cesium-137.

b. Suppose we have a bottle (which we never open) containing 20 grams of cesium-137.

Approximately how many grams of cesium-137 will still be in the bottle

i. after 10 years? ii. after 25 years? iii. after 100 years?
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10.6. (Carbon-14 dating) A little background:

Most of the carbon in living tissue comes, directly or indirectly, from the carbon

dioxide in the air. A tiny fraction (about one part per trillion) of this carbon

is the radioactive isotope carbon-14 (which has a half-life of approximately

5,730 years). The rest of the carbon is not radioactive. As a result, about one

trillionth of the carbon in the tissues of a living plant or animal is that radioactive

form of carbon. This ratio of carbon-14 to nonradioactive carbon in the air and

living tissue has remained fairly constant8 because the rate at which carbon-14

is created (through an interaction of cosmic radiation with the nitrogen in the

upper atmosphere) matches the rate at which it decays.

At death, however, the plant or animal stops absorbing carbon, and the tiny

amount of carbon-14 in its tissues begins to decrease due to radioactive decay.

By measuring the current ratio of carbon-14 to the nonradioactive carbon in a

tissue sample (say, a piece of old bone or wood), and then comparing this ratio to

the ratio in comparable living tissue, a good estimate of fraction of the carbon-14

that has decayed can be made. Using that and our model for radioactive decay,

the age of the bone or wood can then be approximated.

Using the above information:

a. Find the (approximate) decay constant δ for carbon-14.

b. Suppose a piece of wood came from a tree that died t years ago. Approximately what

percentage of the carbon-14 that was in the piece of wood when the tree died still remains

undecayed if

i. t = 10 years? ii. t = 100 years? iii. t = 1,000 years?

iv. t = 5,000 years? v. t = 10,000 years? vi. t = 50,000 years?

c. Suppose a skeleton of a person found in an ancient grave contains 30 percent of the

carbon-14 normally found in (equally sized) skeletons of living people. Approximately

how long ago did this person die?

d. The wood in the ornate funeral mask of the ancient fictional ruler Rootietootiekoomin is

found to contain 60 percent of the carbon-14 originally in the wood. Approximately how

long ago did Rootietootiekoomin die?

e. Let A be the amount of carbon-14 measured in a tissue sample (e.g., an old bone or piece

of wood), and let A0 be the amount of carbon-14 in the tissue when the plant or creature

died. Derive a formula for the approximate length of time since that plant’s or creature’s

demise in terms of the ratio A/A0 .

10.7. Consider the “better model” for the rabbit population in section 10.4.

a. Solve the logistic equation derived there (equation (10.13) on page 206), and verify that

the solution can be written as given in formula (10.14) on page 207.

b. Assume the same values for the initial number of rabbits and ideal birth rate as assumed

in section 10.4,

R(0) = 2 and β0 = 5

4
.

Also assume that our rabbit ranch has a carrying capacity κ of 10,000,000 rabbits (it’s

8 but not perfectly constant — see a good article on carbon-14 dating.
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a big ranch). How many rabbits (approximately) does our “better model” predict will be

on our ranch

i. at the end of the first 6 months?

ii. at the end of the first year? (Compare this to the number predicted by the simple model

in exercise 10.2 a, and to the carrying capacity.)

iii. at the end of the second year? (Compare this to the carrying capacity.)

c. Solve formula (10.14) on page 207 for the carrying capacity κ in terms of R0 , R(t) , β

and t .

d. Using the formula for the carrying capacity just derived (and assuming the ideal birth rate

β0 = 5/4 , as before), determine the approximate carrying capacity of a rabbit ranch under

each of the following conditions:

i. You have 1,000 rabbits 6 months after starting with a single breeding pair.

ii. You have 2,000 rabbits 6 months after starting with a single breeding pair.

10.8. Suppose we have a rabbit ranch and have begun harvesting rabbits. Let

R(t) = number of rabbits on the ranch t months after beginning harvesting

and assume the following:

1. The monthly birth rate per rabbit, β , is 5/4 (as we derived).

2. We have no problems with overpopulation (i.e., for all practical purposes, we can

assume the natural death rate is 0 ).

3. Each month we harvest 500 rabbits. (Assume this is done “over the month”, so the

rabbits are still reproducing as we are harvesting.)

a. Derive the differential equation for R(t) based on the above assumptions.

b. Find any equilibrium solutions to your differential equation (this may surprise you), and

analyze how the rabbit population varies over time based on how many we had when we

first began harvesting. (Feel free to use a crude slope field as done in section 10.4.)

c. Solve the differential equation. Get your final answer in terms of t and R0 = R(0) .

10.9. Repeat the previous problem, only, instead of harvesting 500 rabbits a month, assume we

harvest 50 percent of the rabbits on the ranch each month.

10.10. Again, assume we have a rabbit ranch, and let

R(t) = number of rabbits on the ranch after t months.

Taking into account the problems that arise when the population is too large, we obtained

the differential equation
d R

dt
= βR − γ R2

where β is the monthly birth rate per rabbit (which we figured was 5/4 ) and γ was some

positive constant that would have to be determined later.
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This differential equation was obtained assuming we were not harvesting rabbits.

Assume, instead, that we are harvesting h rabbits each month. How do we change the

above differential equation to reflect this if

a. we harvest a constant number h0 of rabbits each month?

b. we harvest one fourth of all the rabbits on the ranch each month?

10.11. Consider the following situation:

Mullock the Barbarian begins a campaign of self-enrichment with a horde of 200

vicious warriors. Each week he loses 5 percent of his horde to the unavoidable

accidents that occur while sacking and pillaging. Unfortunately, the horde’s

lifestyle of wanton violence and mindless destruction attracts 50 new warriors

to the horde each week.

Let y(t) be the number of warriors in Mullock’s horde t weeks after starting the cam-

paign.

a. Derive the differential equation describing how y(t) changes each week. Is there also an

initial value given?

b. To what size does the horde eventually grow? (Don’t solve the initial-value problem to

answer this question. Instead, use equilibrium solutions and graphical methods.)

c. Now solve the initial-value problem from the first part.

d. How long does it take Mullock’s horde to reach 90 percent of its final size?

10.12. (mixing) Consider the following mixing problem:

We have a large tank initially containing 1,000 gallons of pure water. We begin

adding an alcohol-water mix at a rate of 3 gallons per minute. This alcohol-water

mix being added is 75 percent alcohol. At the same time, the mixture in the tank

is drained at a rate of 3 gallons per minute. Throughout this entire process, the

mixture in the tank is thoroughly and uniformly mixed.

Let y(t) be the number of gallons of pure alcohol in the tank t minutes after we started

adding the alcohol-water mix.

a. Find the differential equation for y(t) .

b. Sketch a crude slope field for the differential equation just obtained, and find any equilib-

rium solutions.

c. Using the differential equation just obtained, find the formula for y(t) .

d. Approximately how many gallons of alcohol are in the tank at

i. t = 10 ? ii. t = 60 ? iii. t = 1000 ?

e. When will the mixture in the tank be half alcohol?

10.13. Redo exercise 10.12, but assume the tank initially contains 900 gallons of pure water and

100 gallons of alcohol.
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10.14. Consider the following mixing problem:

We have a tank initially containing 200 gallons of pure water, and start adding

saltwater (containing 3 ounces of salt per gallon of water) at the rate of 1/2 gallon

per minute. At the same time, the resulting mixture in the tank is drained at the

rate of 1/2 gallon per minute. As usual, the mixture in the tank is thoroughly

and uniformly mixed at all times.

Let y(t) be the number of ounces of salt in the tank at t minutes after we started adding

the saltwater.

a. Find the differential equation for y(t) .

b. Sketch a crude slope field for the differential equation just obtained, and find any equilib-

rium solutions.

c. Using the differential equation just obtained along with any given initial values, find the

formula for y(t) .

d. Approximately how many ounces of salt are in the tank at

i. t = 10 ? ii. t = 60 ? iii. t = 100 ?

e. What does the concentration of the salt in the tank approach as t → ∞ ?

f. When will the concentration of the salt in the tank be 2 ounces of salt per gallon of water?

10.15. Redo exercise 10.14, but assume that a device has been attached to the tank that, each minute,

filters out half the salt in a single gallon from the mixture in the tank.

10.16. Consider the following variation of the mixing problem in exercise 10.12:

We have a large tank initially containing 500 gallons of pure water, and start

adding saltwater (containing 2 ounces of salt per gallon of water) at the rate of 2

gallons per minute. At the same time, the resulting mixture in the tank is drained

at the rate of 3 gallons per minute. As usual, assume the mixture in the tank is

thoroughly and uniformly mixed at all times.

Note that the tank is being drained faster that it is being filled.

Let y(t) be the number of ounces of salt in the tank at t minutes after we started adding

the saltwater.

a. What is the formula for the volume of the liquid in the tank t minutes after we started

adding the saltwater?

b. Find the differential equation for y(t) . (Keep in mind that the concentration of salt in the

outflow at time t will depend on both the amount of salt and the volume of the liquid in

the tank at that time.)

c. Using the differential equation just obtained along with any given initial values, find the

formula for y(t) .

d. How many ounces of salt are in the tank at

i. t = 10 ? ii. t = 60 ? iii. t = 100 ?

e i. When will there be exactly 1 gallon of saltwater in the tank?

ii. How much salt will be in that gallon of saltwater?
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10.17. (heating/cooling) Consider the following situation:

At 2 o’clock in the afternoon, the butler reported discovering the dead body of

his master, Lord Hakky d’Sack, in the Lord’s personal wine cellar. The Lord had

apparently been bludgeoned to death with a bottle of Rip’le 04. At 4 o’clock,

the forensics expert arrived and measured the temperature of the body. It was 90

degrees at that time. One hour later, the body had cooled down to 80 degrees. It

was also noted that the wine cellar was maintained at a constant temperature of

50 degrees.

Should the butler be arrested for murder? (Base your answer on the time of death as

determined from the above information, Newton’s law of heating and cooling and the fact

that a reasonably healthy person’s body temperature is about 98.2 degrees.)
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Higher-Order Equations: Extending
First-Order Concepts

Let us switch our attention from first-order differential equations to differential equations of order

two or higher. Our main interest will be with second-order differential equations, both because it is

natural to look at second-order equations after studying first-order equations, and because second-

order equations arise in applications much more often than do third-, or fourth- or eighty-third-order

equations. Some examples of second-order differential equations are1

y′′ + y = 0 ,

y′′ + 2xy′ − 5 sin(x) y = 30e3x ,

and

(y + 1)y′′ = (y′)2 .

Still, even higher order differential equations, such as

8y′′′ + 4y′′ + 3y′ − 83y = 2e4x ,

x3 y(iv) + 6x2 y′′ + 3xy′ − 83 sin(x)y = 2e4x ,

and

y(83) + 2y3 y(53) − x2 y′′ = 18 ,

can arise in applications, at least on occasion. Fortunately, many of the ideas used in solving these

are straightforward extensions of those used to solve second-order equations. We will make use of

this fact extensively in the following chapters.

Unfortunately, though, the methods we developed to solve first-order differential equations

are of limited direct use in solving higher-order equations. Remember, most of those methods were

based on integrating the differential equation after rearranging it into a form that could be legitimately

integrated. This rarely is possible with higher-order equations, and that makes solving higher-order

equations more of a challenge. This does not mean that those ideas developed in previous chapters

are useless in solving higher-order equations, only that their use will tend to be subtle rather than

obvious.

Still, there are higher-order differential equations that, after the application of a simple substitu-

tion, can be treated and solved as first-order equations. While our knowledge of first-order equations

is still fresh, let us consider some of the more important situations in which this is possible. We will

also take a quick look at how the basic ideas regarding first-order initial-value problems extend to

1 For notational brevity, we will start using the ‘prime’ notation for derivatives a bit more. It is still recommended, however,

that you use the ‘ d/dx ’ notation when finding solutions just to help keep track of the variables involved.
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higher-order initial-value problems. And finally, to cap off this chapter, we will briefly discuss the

higher-order extensions of the existence and uniqueness theorems from section 3.3.

11.1 Treating Some Second-Order Equations as
First-Order

Suppose we have a second-order differential equation (with y being the yet unknown function and x

being the variable). With luck, it is possible to convert the given equation to a first-order differential

equation for another function v via the substitution v = y′ . With a little more luck, that first-order

equation can then be solved for v using methods discussed in previous chapters, and y can then be

obtained from v by solving the first-order differential equation given by the original substitution,

y′ = v .

This approach requires some luck because, typically, setting v = y′ does not lead to a dif-

ferential equation for just the one unknown function v . Instead, it usually results in a differential

equation with two unknown functions, y and v , along with the variable x . This does not simplify

our equation at all! So, being lucky here means that the conversion does yield a differential equation

just involving v and one variable.

It turns out that we get lucky with two types of second-order differential equations: those that

do not explicitly contain a y and those that do not explicitly contain an x . The first type will be

especially important to us since solving this type of equation is part of an important method for

solving more general differential equations (the “reduction of order” method in chapter 12). It is

also, typically, the easier type of equation to solve. So let’s now spend a few moments discussing

how to solve these equations. (We’ll say more about the second type in a few pages.)

Solving Second-Order Differential Equations Not Explicitly
Containing y

If the equation explicitly involves x , dy/dx , and d2 y/dx2 — but not y — then we can naturally view

the differential equation as a “first-order equation for dy/dx ”. For convenience, we usually set

dy

dx
= v .

Consequently,

d2 y

dx2
= d

dx

[
dy

dx

]
= d

dx
[v] = dv

dx
.

Under these substitutions, the equation becomes a first-order differential equation for v . And since

the original equation did not have a y , neither does the differential equation for v . This means

we have a reasonable chance of solving this equation for v = v(x) using methods developed in

previous chapters. Then, assuming v(x) can be so obtained,

y(x) =
∫

dy

dx
dx =

∫
v(x) dx .

When solving these equations, you normally end up with a formula involving two distinct

arbitrary constants: one from the general solution to the first-order differential equation for v and

the other arising from the integration of v to get y . Don’t forget them, and be sure to label them as

different arbitrary constants.
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!�Example 11.1: Consider the second-order differential equation

d2 y

dx2
+ 2

dy

dx
= 30e3x .

Setting

dy

dx
= v and

d2 y

dx2
= dv

dx
,

as suggested above, the differential equation becomes

dv

dx
+ 2v = 30e3x .

This is a linear first-order differential equation with integrating factor

μ = e
∫

2 dx = e2x .

Proceeding as normal with linear first-order equations,

e2x
[

dv

dx
+ 2v = 30e3x

]
↪→ e2x dv

dx
+ 2e2xv = 30e3x e2x

↪→ d

dx

[
e2xv

]
= 30e5x

↪→
∫

d

dx

[
e2xv

]
dx =

∫
30e5x dx

↪→ e2xv = 6e5x + c0 .

Hence,

v = e−2x
[
6e5x + c0

]
= 6e3x + c0e−2x .

But v = dy/dx , so the last equation can be rewritten as

dy

dx
= 6e3x + c0e−2x ,

which is easily integrated,

y =
∫ [

6e3x + c0e−2x
]

dx = 2e3x − c0

2
e−2x + c2 .

Thus (letting c1 = −c0/2 ), the solution to our original differential equation is

y(x) = 2e3x − c1e−2x + c2 .

If your differential equation for v is separable and you are solving as such, don’t forget to

check for the constant solutions to this differential equation and to take these “constant-v” solutions

into account when integrating y′ = v .
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!�Example 11.2: Consider the second-order differential equation

d2 y

dx2
= −

(
dy

dx
− 3

)2

. (11.1)

Letting

dy

dx
= v and

d2 y

dx2
= dv

dx
,

the differential equation becomes

dv

dx
= −(v − 3)2 . (11.2)

This equation has a constant solution,

v = 3 ,

which we can rewrite as
dy

dx
= 3 .

Integrating then gives us

y(x) = 3x + c0 .

This describes all the “constant-v” solutions to our original differential equation.

To find the nonconstant solutions to equation (11.2), divide through by (v − 3)2 and inte-

grate:
dv

dx
= −(v − 3)2

↪→ (v − 3)−2 dv

dx
= −1

↪→
∫
(v − 3)−2 dv

dx
dx = −

∫
1 dx

↪→ −(v − 3)−1 = −x + c1

↪→ v = 3 + 1

x − c1
.

But, since v = y′ , this last equation is the same as

dy

dx
= 3 + 1

x − c1
,

which is easily integrated, yielding

y(x) = 3x + ln |x − c1| + c2 .

Gathering all the solutions we’ve found gives us the set consisting of

y = 3x + ln |x − c1| + c2 and y(x) = 3x + c0 (11.3)

describing all possible solutions to our original differential equation.
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Equations of Even Higher Orders

With just a little imagination, the basic ideas discussed above can be applied to a few differential

equations of even higher order. Here is an example:

!�Example 11.3: Consider the third-order equation

3
d3 y

dx3
=

(
d2 y

dx2

)−2

.

Set

v = d2 y

dx2
.

Then
dv

dx
= d

dx

[
d2 y

dx2

]
= d3 y

dx3
,

and the original differential equation reduces to a simple separable first-order equation,

3
dv

dx
= v−2 .

Multiplying both sides by v2 and proceeding as usual with such equations:

3v2 dv

dx
= 1

↪→
∫

3v2 dv

dx
dx =

∫
1 dx

↪→ v3 = x + c1

↪→ v = (x + c1)
1/3 .

So
d2 y

dx2
= v = (x + c1)

1/3 .

Integrating once:

dy

dx
=

∫
d2 y

dx2
dx =

∫
(x + c1)

1/3 dx = 3

4
(x + c1)

4/3 + c2 .

And once again:

y =
∫

dy

dx
dx =

∫ [
3

4
(x + c1)

4/3 + c2

]
dx = 9

28
(x + c1)

7/3 + c2x + c3 .

Converting a Differential Equations to a System
∗

Consider what we actually have after taking a second-order differential equation (with y being

the yet unknown function and x being the variable) and converting it to a first-order equation for

∗ These comments relate the material in this chapter to more advanced concepts and methods that will be developed much

later in this text. This discussion won’t help you solve any differential equations now, but will give a little hint of an

approach to dealing with higher-order equations we could take (and will explore in the distant future). You might find them

interesting. Then, again, you may just want to ignore this discussion for now.
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v through the substitution v = y′ . We actually have a pair of first-order differential equations

involving the two unknown functions y and v . The first equation in the pair is simply the equation

for the substitution, y′ = v , and the second is what we obtain after using the substitution with the

original second-order equation. If we are lucky, we can directly solve the second equation of this

pair. But, as the next example illustrates, we have this pair whether or not either of the above cases

applies. Together, this pair forms a “system” of first-order differential equations” whose solution is

the pair y(x) and v(x) .

!�Example 11.4: Suppose our original differential equation is

d2 y

dx2
+ 2x

dy

dx
= 5 sin(x) y .

Setting

v = dy

dx
and

dv

dx
= d2 y

dx2
,

the original differential equation reduces to

dv

dx
+ 2xv = 5 sin(x) y .

Thus, v = v(x) and y = y(x) , together, must satisfy both

v = dy

dx
and

dv

dx
+ 2xv = 5 sin(x) y .

This is a system of two first-order equations. Traditionally, each equation is rewritten in derivative

formula form, and the system is then written as

dy

dx
= v

dv

dx
= 5 sin(x) y − 2xv

.

As just illustrated, almost any second-order differential equation encountered in practice can be

converted to a system of two first-order equations involving two unknown functions. In fact, almost

any N th-order differential equation can be converted using similar ideas to a system of N first-order

differential equations involving N unknown functions. This is significant because methods exist

for dealing with such systems. In many cases, these methods are analogous to methods we used with

first-order differential equations. We will discuss some of these methods in the future (the distant

future).

11.2 The Other Class of Second-Order Equations “Easily
Reduced” to First-Order

†

As noted a few pages ago, the substitution v = y′ can also be useful when no formulas of x explicitly

appear in the given second-order differential equation. Such second-order differential equations are

said to be autonomous (this extends the definition of “autonomous” given for first-order differential

equations in chapter 3).

† The material in this section is interesting and occasionally useful, but not essential to the rest of this text. At least give this

section a quick skim before going to the discussion of initial-value problems in the next section (and promise to return to

this section when convenient or necessary).
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Solving Second-Order Autonomous Equations

Unfortunately, if you have an autonomous differential equation (i.e., one possibly containing y ,
dy/dx , and d2 y/dx2 — but not x ), then simply letting

v = dy

dx

and proceeding as in the previous section leads to a differential equation involving three entities —

v , y and x . Unless that equation is very simple (say, dv/dx = 0 ), there won’t be much you can do

with it.

To avoid that impasse, take a second route: Eliminate all references to x by viewing the v as

a function of y instead of x . This works because our equation contains no explicit formulas of x .

This also means that the substitution for d2 y/dx2 must be converted, via the above substitution and

the chain rule, to a formula involving v and its derivative with respect to y as follows:

d2 y

dx2
= d

dx

[
dy

dx

]
= d

dx
[v] = dv

dx
=

chain
rule

dv

dy

dy

dx
= dv

dy
v .

The resulting equation will be a first-order differential equation for v(y) . Solving that equation,

and plugging the resulting formula for v(y) into our original substitution,

dy

dx
= v(y) ,

gives us another first-order differential equation, this time for y . Solving this yields y(x) .

Since this use of v = y′ is a little less natural than that in the previous section, let us outline

the steps more explicitly while doing an example. For our example, we will solve the apparently

simple equation

d2 y

dx2
+ y = 0 .

(By the way, this equation will turn out to be rather important to us. We will return to it several times

in the next few chapters.)

1. Set
dy

dx
= v

and remember that, by this and the chain rule,

d2 y

dx2
= dv

dx
= dv

dy

dy

dx
= dv

dy
v .

Using these substitutions with our example,

d2 y

dx2
+ y = 0

becomes

v
dv

dy
+ y = 0 .

2. Solve the resulting differential equation for v as a function of y .

For our example:

v
dv

dy
+ y = 0

↪→ v
dv

dy
= −y
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↪→
∫
v

dv

dy
dy = −

∫
y dy

↪→ 1

2
v2 = −1

2
y2 + c0

↪→ v = ±
√

2c0 − y2 .

3. Rewrite the original substitution,
dy

dx
= v ,

replacing the v with the formula just found for v . Then observe that this is another first-order

differential equation. In fact, you should notice that it is a separable first-order equation.

Replacing the v in
dy

dx
= v

with the formula just obtained in our example for v , we get

dy

dx
= ±

√
2c0 − y2 .

Why, yes, this is a separable first-order differential equation for y !

4. Solve the first-order differential equation just obtained. This gives the general solution to the

original second-order differential equation.

For our example,
dy

dx
= ±

√
2c0 − y2

↪→ 1√
2c0 − y2

dy

dx
= ±1

↪→
∫

1√
2c0 − y2

dy

dx
dx = ±

∫
1 dx .

Evaluating these integrals (after, perhaps, consulting our old calculus text or a

handy table of integrals) yields

arcsin
(

y

a

)
= ±x + b .

where a and b are arbitrary constants with a2 = 2c0 . (Note that c0 had to be

positive for square root to make sense.)

Taking the sine of both sides and recalling that sine is an odd function, we see

that
y

a
= sin(±x + b) = ± sin(x ± b) .

Thus, letting c1 = ±a and c2 = ±b , we have

y(x) = c1 sin(x + c2)

as a general solution to our original differential equation,

d2 y

dx2
+ y = 0 .

(Later, after developing more theory, we will find easier ways to solve this and

certain similar ‘linear’ equations.)
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A Few Comments

Most of these should be pretty obvious:

1. Again, remember to check for the “constant-v” solutions of any separable differential equation

for v .

2. It may be that the original differential equation does not explicitly contain either x or y . If so,

then the approach just described and the approach described in the previous section may both

be appropriate. Which one you choose is up to you. Often, it makes little difference (though

the first is usually at least a little more straightforward). But occasionally (as illustrated in

exercise 11.10) one approach may be much easier to carry out than the other.

3. To be honest, we won’t be using the method just outlined in later sections or chapters. Many

of the second-order autonomous equations arising in applications are also “linear”, and we

will develop better methods for dealing with these equations over the next few chapters

(where we will also learn just what it means to say that a differential equation is “linear”).

It should also be mentioned that, much later, we will develop clever ways to analyze the

possible solutions to fairly arbitrary autonomous differential equations after rewriting these

equations as systems.

Still, the method described here is invaluable for completely solving certain autonomous

differential equations that are not “linear”.

11.3 Initial-Value Problems
Initial Values with Higher-Order Equations

Remember, an N th-order initial-value problem consists of an N th-order differential equation along

with the set of assignments

y(x0) = y0 , y′(x0) = y1 , y′′(x0) = y2 , . . . and y(N−1)(x0) = yN−1

where x0 is some single fixed number and the yk’s are the desired values of the function and its

first few derivatives at position x0 .

In particular, a first-order initial-value problem consists of a first-order differential equation

with a y(x0) = y0 initial condition. For example,

x
dy

dx
+ 4y = x3 with y(1) = 3 .

A second-order initial-value problem consists of a second-order differential equation along with

y(x0) = y0 and y′(x0) = y1 initial conditions. For example,

d2 y

dx2
+ 2

dy

dx
= 30e3x with y(0) = 5 and y′(0) = 14 .

A third-order initial-value problem consists of a third-order differential equation along with y(x0) =
y0 , y′(x0) = y1 and y′′(x0) = y2 initial conditions. For example,

3
d3 y

dx3
=

(
d2 y

dx2

)−2

with y(0) = 4 , y′(0) = 6 and y′′(0) = 8 .

And so on.
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Solving Higher-Order Initial-Value Problems
The Basic Approach

The basic procedure for solving a typical higher-order initial-value problem is just about the same

as the procedure for solving a first-order initial-value problem. You just need to account for the

additional initial values.

First find the general solution to the differential equation. (Though we haven’t proven it, you

should expect the formula for the general solution to have as many arbitrary/undetermined constants

as you have initial conditions.) Use the formula found for the general solution with each initial

condition. This creates a system of algebraic equations for the yet-undetermined constants which

can be solved for those constants. Solve the system by whatever means you can, and use those

values for the constants in the formula for the differential equation’s general solution. The resulting

formula is the solution to the initial-value problem.

One example should suffice.

!�Example 11.5: Consider the second-order initial-value problem

d2 y

dx2
+ 2

dy

dx
= 30e3x with y(0) = 5 and y′(0) = 14 .

From example 11.1 we already know that

y(x) = 2e3x − c1e−2x + c2

is the general solution to the differential equation. Since the initial conditions include the value

of y′(x) at x = 0 , we will also need the formula for y′ ,

y′(x) = dy

dx
= 6e3x + 2c1e−2x ,

which we can obtain by either differentiating the above formula for y or copying the formula for

y′ from the work done in the example. Combining these formulas with the given initial conditions

yields

5 = y(0) = 2e3·0 − c1e−2·0 + c2 = 2 − c1 + c2

and

14 = y′(0) = 6e3·0 + 2c1e−2·0 = 6 + 2c1 .

That is,

5 = 2 − c1 + c2

and

14 = 6 + 2c1 .

Doing the obvious arithmetic, we get the system

−c1 + c2 = 3

2c1 = 8

of two equations and two unknowns. This is an easy system to solve. From the second equation

we immediately see that

c1 = 8

2
= 4 .

Then, solving the first equation for c2 and using the value just found for c1 , we see that

c2 = c1 + 3 = 4 + 3 = 7 .
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Thus, for y(x) to satisfy the given differential equation and the two given initial conditions, we

must have

y(x) = 2e3x − c1e−2x + c2 with c1 = 4 and c2 = 7 .

That is,

y(x) = 2e3x − 4e−2x + 7

is the solution to our initial-value problem.

An Alternative Approach

At times, it may be a little easier to determine the values of the arbitrary/undetermined constants

“as they arise” in solving the differential equation. This is especially true when using the methods

discussed in sections 11.1 and 11.2, where we used the substitution v = y′ to convert the differential

equation to a first-order differential equation for v . For the sort of equation considered in section

11.1, this substitution immediately gives a first-order initial-value problem with

v(x0) = y′(x0) = y1 .

For the type of equation considered in section 11.2 (the autonomous differential equations), the initial

condition for v = v(y) comes from combining v = y′ and the original initial conditions

y(x0) = y0 and y′(x0) = y1

into

v(y0) = y′(x0) = y1 .

Let’s do one simple example.

!�Example 11.6: Consider the initial-value problem

d2 y

dx2
+ 2

dy

dx
= 30e3x with y(0) = 9 and y′(0) = 2 .

The differential equation is the same as in example 11.1 on page 229. Letting v(x) = y′(x)
yields the first-order initial-value problem

dv

dx
+ 2v = 30e3x with v(0) = y′(0) = 2 .

As shown in example 11.1, the general solution to the differential equation for v is

v = 6e3x + c0e−2x .

Combining this with the initial value yields

2 = v(0) = 6e3·0 + c0e−·0 = 6 + c0 .

So, c0 = 2 − 6 = −4 , and

dy

dx
= v = 6e3x − 4e−2x .

Integrating this,

y(x) =
∫ [

6e3x − 4e−2x
]

dx = 2e3x + 2e−2x + c1 ,
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and using this formula for y with the initial condition y(0) = 9 gives us

9 = y(0) = 2e3·0 + 2e−2·0 + c1 = 2 + 2 + c1 = 4 + c1 .

Thus, c1 = 9 − 4 = 5 , and

y(x) = 2e3x + 2e−2x + 5

is the solution to our initial-value problem.

As the example illustrates, one advantage of this approach is that you only deal with one

unknown constant at a time. This approach also by-passes obtaining the general solution to the

original differential equation. Consequently, if the general solution is also desired, then the slight

advantages of this method are considerably reduced.

11.4 On the Existence and Uniqueness of Solutions
Second-Order Problems

When we were dealing with first-order differential equations, we often found it useful to rewrite a

given first-order equation in the derivative formula form,

dy

dx
= F(x, y) .

Extending this form to higher-order differential equations is straightforward. In particular, if we

algebraically solve a second-order differential equation for the second derivative, y′′ , in terms of

x , y and the first derivative, y′ , then we will have rewritten our differential equation in the form

y′′ = F
(
x, y, y′)

for some function F of three variables. We will call this the second-derivative formula form for the

second-order differential equation.

!�Example 11.7: Solving the equation

y′′ + 2xy′ = 5 sin(x) y

for the second derivative yields

y′′ = 5 sin(x) y − 2xy′︸ ︷︷ ︸
F(x,y,y′)

.

Replacing the derivative on the right with the symbol z , we see that the formula for F is

F(x, y, z) = 5 sin(x) y − 2xz .

To be honest, we won’t find the second-derivative formula form particularly useful in solv-

ing second-order differential equations until we seriously start dealing with systems of differential

equations. It is mentioned here because it is the form used in the following basic theorems on the

existence and uniqueness of solutions to second-order initial-value problems:
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Theorem 11.1 (existence and uniqueness for second-order initial-value problems)

Consider a second-order initial-value problem

y′′ = F
(
x, y, y′) with y(x0) = y0 and y′(x0) = z0

in which F = F(x, y, z) and the corresponding partial derivatives ∂F/∂y and ∂F/∂z are all continuous

in some open region containing the point (x0, y0, z0) . This initial-value problem then has exactly

one solution over some open interval (α, β) containing x0 . Moreover, this solution and its first and

second derivatives are continuous over that interval.

Theorem 11.2 (existence and uniqueness for second-order initial-value problems)

Consider a second-order initial-value problem

y′′ = F
(
x, y, y′) with y(x0) = y0 and y′(x0) = z0

over an interval (α, β) containing the point x0 , and with F = F(x, y, z) being a continuous

function on infinite slab

R = { (x, y, z) : α < x < β , − ∞ < y < ∞ and − ∞ < z < ∞ } .

Further suppose that, on R , the partial derivatives ∂F/∂y and ∂F/∂z are continuous and are functions

of x only. Then the initial-value problem has exactly one solution on (α, β) . Moreover, the solution

and its first and second derivatives are all continuous on this interval.

The above theorems are the second-order analogs of the theorems on existence and uniqueness

for first-order differential equations given in section 3.3, and are also special cases of the two theorems

we’ll discuss next. They assure us that most of the second-order initial-value problems encountered

in practice are, in theory, solvable. We will find the second theorem particularly important in

rigorously establishing some useful results concerning the general solutions to an important class of

second-order differential equations.

Problems of Any Order

The biggest difficulty in extending the above existence and uniqueness results for second-order

problems to problems of arbitrary order N is that we quickly run out of letters to denote the

variables and constants. So we will use subscripts.

Extending the idea of the “derivative formula form” for a first-order differential equation remains

trivial. If, given a N th-order differential equation, we can algebraically solve for the N th-order

derivative y(N ) in terms of x , y , and the other derivatives of y , then we will say that we’ve gotten

the differential equation into the derivative formula form!highest order for the differential equation,

y(N ) = F(x, y, y′, . . . , y(N−1)) .

Note that F will be a function of N + 1 variables, which we will denote by x , s1 , s2 ,…, sN .

!�Example 11.8: Solving the equation

y(4) − x2 y′′′ − yy′′ + 2xy3 y′ = 0

for the fourth derivative yields

y(4) = x2 y′′′ + yy′′ − 2xy3 y′︸ ︷︷ ︸
F(x,y,y′,y′′,y′′′)

.
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The formula for F is then

F(x, s1, s2, s3, s4) = x2s4 + s1s3 − 2x(s1)
3s2 .

Again, the main reason to mention this form is that it is used in the N th-order analogs of the

existence and uniqueness theorems given in section 3.3. These analogous theorems are

Theorem 11.3 (existence and uniqueness for N th-order initial-value problems)

Consider an N th-order initial-value problem

y(N ) = F
(

x, y, y′, . . . , y(N−1)
)

with

y(x0) = σ1 , y′(x0) = σ2 , . . . and y(N−1)(x0) = σN

in which F = F(x, s1, s2, . . . , sN ) and the corresponding partial derivatives

∂F

∂s1
,

∂F

∂s2
, . . . and

∂F

∂sn

are all continuous functions in some open region containing the point (x0, σ1, σ2, . . . , σN ) . This

initial-value problem then has exactly one solution over some open interval (α, β) containing x0 .

Moreover, this solution and its derivatives up to order N are continuous over that interval.

Theorem 11.4 (existence and uniqueness for Nth-order initial-value problems)

Consider an N th-order initial-value problem

y(N ) = F
(

x, y, y′, . . . , y(N−1)
)

with

y(x0) = σ1 , y′(x0) = σ2 , . . . and y(N−1)(x0) = σN

over an interval (α, β) containing the point x0 , and with F = F(x, s1, s2, . . . , sN+1) being a

continuous function on

R = { (x, s1, s2, . . . , sN ) : α < x < β and − ∞ < sk < ∞ for k = 1, 2, . . . , N } .

Further suppose that, on R , the partial derivatives

∂F

∂s1
,

∂F

∂s2
, . . . and

∂F

∂sN

are all continuous and are functions of x only. Then the initial-value problem has exactly one

solution on (α, β) . Moreover, the solution and its first and second derivatives are all continuous on

this interval.

A good way to prove the four theorems above is to use a “systems” approach. We’ll discuss

this further when we get to “systems of differential equations” in chapter 35.



�

�

�

�

�

�

�

�

Additional Exercises 241

Additional Exercises

11.1. None of the following second-order equations explicitly contains y . Solve each using the

substitution v = y′ as described in section 11.1.

a. xy′′ + 4y′ = 18x2 b. xy′′ = 2y′

c. y′′ = y′ d. y′′ + 2y′ = 8e2x

e. xy′′ = y′ − 2x2 y′ f. (x2 + 1)y′′ + 2xy′ = 0

11.2. For each of the following, determine if the given differential equation explicitly contains

y . If it does not, solve it using the substitution v = y′ as described in section 11.1.

a. y′′ = 4x
√

y′ b. y′y′′ = 1

c. yy′′ = −(y′)2 d. xy′′ = (y′)2 − y′

e. xy′′ − y′ = 6x5 f. yy′′ − (y′)2 = y′

g. y′′ = 2y′ − 6 h. (y − 3)y′′ = (y′)2

i. y′′ + 4y′ = 9e−3x j. y′′ = y′ (y′ − 2
)

11.3. Solve the following higher-order differential equations using the basic ideas from section

11.1 (as done in example 11.3 on page 231):

a. y′′′ = y′′ b. xy′′′ + 2y′′ = 6x

c. y′′′ = 2
√

y′′ d. y(4) = −2y′′′

11.4. The following second-order equations are all autonomous. Solve each using the substitution

v = y′ as described in section 11.2.

a. yy′′ = (y′)2 b. 3yy′′ = 2(y′)2

c. sin(y)y′′ + cos(y)(y′)2 = 0 d. y′′ = y′

e. (y′)2 + yy′′ = 2yy′ f. y2 y′′ + y′′ + 2y(y′)2 = 0

11.5. For each of the following, determine if the given differential equation is autonomous. If it

is, then solve it using the substitution v = y′ as described in section 11.2.

a. y′′ = 4x
√

y′ b. yy′′ = −(y′)2

c. y′y′′ = 1 d. xy′′ = (y′)2 − y′

e. xy′′ − y′ = 6x5 f. yy′′ − (y′)2 = y′

g. yy′′ = 2(y′)2 h. (y − 3)y′′ = (y′)2

i. y′′ + 4y′ = 9e−3x j. y′′ = y′ (y′ − 2
)

11.6. Solve the following initial-value problems. In several cases you can use the general solu-

tions already found for the corresponding differential equations in exercise sets 11.1 and

11.3:

a. xy′′ + 4y′ = 18x2 with y(1) = 8 and y′(1) = −3
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b. xy′′ = 2y′ with y(−1) = 4 and y′(−1) = 12

c. y′′ = y′ with y(0) = 8 and y′(0) = 5

d. y′′ + 2y′ = 8e2x with y(0) = 0 and y′(0) = 0

e. y′′′ = y′′ with y(0) = 10 , y′(0) = 5 and y′′(0) = 2

f. xy′′′ + 2y′′ = 6x with y(1) = 2 , y′(1) = 1 and y′′(1) = 4

g. xy′′ + 2y′ = 6 with y(1) = 4 and y′(1) = 5

h. 2xy′y′′ = (y′)2 − 1 with y(1) = 0 and y′(1) = √
3

11.7. Solve the following initial-value problems. In several cases you can use the general solutions

already found for the corresponding differential equations in exercise set 11.4:

a. yy′′ = (y′)2 with y(0) = 5 and y′(0) = 15

b. 3yy′′ = 2(y′)2 with y(0) = 8 and y′(0) = 6

c. 3yy′′ = 2(y′)2 with y(1) = 1 and y′(1) = 9

d. yy′′ + 2(y′)2 = 3yy′ with y(0) = 2 and y′(0) = 3

4

e. y′′ = −y′e−y with y(0) = 0 and y′(0) = 2

11.8. In solving a second-order differential equation using the methods described in this chapter,

we first solved a first-order differential equation for v = y′ , obtaining a formula for v = y′
involving an arbitrary constant. Sometimes the value of the first ‘arbitrary’ constant affects

how we solve v = y′ for y . You will illustrate this using

y′′ = −2x(y′)2 (11.4)

in the following set of problems.

a. Using the “alternative approach” to solving initial-value problems (as illustrated in exam-

ple 11.6 on page 237), find the solution to differential equation (11.4) satisfying each of

the following sets of initial values:

i. y(0) = 3 and y′(0) = 4 ii. y(0) = 3 and y′(0) = 0

iii. y(1) = 0 and y′(1) = 1 iv. y(0) = −1

4
and y′(1) = 5

(Observe how different the solutions to these different initial-value problems are, even

though they all involve the same differential equation.)

b. Find the set of all possible solutions to differential equation (11.4).

11.9. We will again illustrate the issue raised at the beginning of exercise 11.8, but using differ-

ential equation

y′′ = 2yy′ . (11.5)

a. Using the “alternative approach” to solving initial-value problems (as illustrated in exam-

ple 11.6 on page 237), find the solution to differential equation (11.5) satisfying each of

the following sets of initial values:

i. y(0) = 0 and y′(0) = 1 ii. y(0) = 1 and y′(0) = 1

iii. y(0) = 1 and y′(0) = 0 iv. y(0) = 0 and y′(0) = −1
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(Again, observe how different the solutions to these different initial-value problems are,

even though they all involve the same differential equation.)

b. Find the set of all possible solutions to differential equation (11.5).

11.10. In exercise 11.2 g, you showed that the the differential equation

y′′ = 2y′ − 6 .

is easily solved using the substitution

v = dy

dx
with

d2 y

dx2
= dv

dx
.

(If you didn’t do exercise 11.2 g, go back and do it.) Since the differential equation is also

autonomous, the other substitution discussed in this chapter,

v = dy

dx
with

d2 y

dx2
= dv

dy
v ,

should also be considered as appropriate. Try it and see what you get for v as a function of

y . Can you, personally, actually go further and replace v with dy/dx and solve the resulting

differential equation? What is the moral of this exercise?
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Higher-Order Linear Equations and the
Reduction of Order Method

We have just seen that some higher-order differential equations can be solved using methods for

first-order equations after applying the substitution v = dy/dx . Unfortunately, this approach has

its limitations. Moreover, as we will later see, many of those differential equations that can be so

solved can also be solved more easily using the theory and methods that will be developed in the

next few chapters. This theory and methodology apply to the class of “linear” differential equations.

This is a rather large class that includes a great many differential equations arising in applications.

In fact, this class of equations is so important and the theory for dealing with these equations is so

extensive that we will not again seriously consider higher-order nonlinear differential equations for

many, many chapters.

12.1 Linear Differential Equations of All Orders
The Equations

Recall that a first-order differential equation is said to be linear if and only it can be written as

dy

dx
+ py = f (12.1)

where p = p(x) and f = f (x) are known functions. Observe that this is the same as saying that

a first-order differential equation is linear if and only if it can be written as

a
dy

dx
+ by = g (12.2)

where a , b , and g are known functions of x . After all, the first equation is equation (12.2) with

a = 1 , b = p and f = g , and any equation in the form of equation (12.2) can be converted to one

looking like equation (12.1) by simply dividing through by a (so p = b/a and f = g/a ).

Higher order analogs of either equation (12.1) or equation (12.2) can be used to define when a

higher-order differential equation is “linear”. We will find it slightly more convenient to use analogs

of equation (12.2) (which was the reason for the above observations). Second- and third-order linear

equations will first be described so you can start seeing the pattern. Then the general definition will

be given. For convenience (and because there are only so many letters in the alphabet), we may start

denoting different functions with subscripts.

A second-order differential equation is said to be linear if and only if it can be written as

a0
d2 y

dx2
+ a1

dy

dx
+ a2 y = g (12.3)

245
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where a0 , a1 , a2 , and g are known functions of x . (In practice, generic second-order differential

equations are often denoted by

a
d2 y

dx2
+ b

dy

dx
+ cy = g ,

instead.) For example,

d2 y

dx2
+ x2 dy

dx
− 6x4 y =

√
x + 1 and 3

d2 y

dx2
+ 8

dy

dx
− 6y = 0

are second-order linear differential equations, while

d2 y

dx2
+ y2 dy

dx
=

√
x + 1 and

d2 y

dx2
=

(
dy

dx

)2

are not.

A third-order differential equation is said to be linear if and only if it can be written as

a0
d3 y

dx3
+ a1

d2 y

dx2
+ a2

dy

dx
+ a3 y = g

where a0 , a1 , a2 , a3 , and g are known functions of x . For example,

x3 d3 y

dx3
+ x2 d2 y

dx2
+ x

dy

dx
− 6y = ex and

d3 y

dx3
− y = 0

are third-order linear differential equations, while

d3 y

dx3
− y2 = 0 and

d3 y

dx3
+ y

dy

dx
= 0

are not.

Getting the idea?

In general, for any positive integer N , we refer to a N th-order differential equation as being

linear if and only if it can be written as

a0
d N y

dx N
+ a1

d N−1 y

dx N−1
+ · · · + aN−2

d2 y

dx2
+ aN−1

dy

dx
+ aN y = g (12.4)

where a0 , a1 , . . . , aN , and g are known functions of x . For convenience, this equation will often

be written using the prime notation for derivatives,

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = g .

The function g on the right side of the above equation is often called the forcing function for the

differential equation (because it often describes a force affecting whatever phenomenon the equation

is modeling). If g = 0 (i.e., g(x) = 0 for every x in the interval of interest), then the equation is

said to be homogeneous.1 Conversely, if g is nonzero somewhere on the interval of interest, then

we say the differential equation is nonhomogeneous.

As we will later see, solving a nonhomogeneous equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = g

1 You may recall the term “homogeneous” from chapter 6. If you compare what “homogeneous’ meant there with what it

means here, you will find absolutely no connection. The same term is being used for two completely different concepts.
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is usually best done after first solving the homogeneous equation generated from the original equation

by simply replacing g with 0 ,

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0 .

This corresponding homogeneous equation is officially called either the corresponding homogeneous

equation or the associated homogeneous equation, depending on the author (we will use whichever

phrase we feel like at the time). Do observe that the zero function,

y(x) = 0 for all x ,

is always a solution to a homogeneous linear differential equation (verify this for yourself). This is

called the trivial solution and is not a very exciting solution. Invariably, the interest is in finding the

nontrivial solutions.

Intervals of Interest for Linear Equations

When attempting to solve a linear differential equation, be it second order,

a0 y′′ + a1 y′ + a2 y = g , (12.5)

or of arbitrary order,

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = g , (12.6)

we should keep in mind that we are seeking a solution (or general solution) valid over some “interval

of interest”, (α, β) . To ensure that the solutions exist and are reasonably well behaved on the interval,

we will usually require that

the g and the ak’s in equation (12.5) or equation (12.6) (depending on the equation of

interest) must all be continuous functions on the interval (α, β) with a0 never being

zero at any point in this interval.

Often, in practice, this assumption is not explicitly stated, or the interval (α, β) is not explicitly

given. In these cases, you should usually assume that the interval of interest (α, β) is one over

which the above assumption holds for the given differential equation.

Why is this assumption important? It is because of the following two theorems:

Theorem 12.1 (existence and uniqueness for second-order linear initial-value problems)

Consider the initial-value problem

ay′′ + by′ + cy = g with y(x0) = A and y′(x0) = B

over an interval (α, β) containing the point x0 . Assume, further, that a , b , c and g are continuous

functions on (α, β) with a never being zero at any point in this interval.. Then the initial-value

problem has exactly one solution on (α, β) . Moreover, the solution and its first and second derivatives

are all continuous on this interval.

Theorem 12.2 (existence and uniqueness for Nth-order linear initial-value problems)

Consider the initial-value problem

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = g
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with

y(x0) = A1 , y′(x0) = A2 , . . . and y(N−1)(x0) = AN

over an interval (α, β) containing the point x0 . Assume, further, that g and the ak’s are continuous

functions on (α, β) with a0 never being zero at any point in this interval. Then the initial-value

problem has exactly one solution on (α, β) . Moreover, the solution and its derivatives up to order

N are all continuous on this interval.

These theorems assure us that the initial-value problems we’ll encounter are “completely solv-

able”, at least, in theory.

Both of the above theorems are actually corollaries of theorems from the previous chapter

(theorems 11.2 on page 239 and 11.4 on page 240). For those interested, here is the proof of one:

PROOF (of theorem 12.1): Start by rewriting the differential equation,

ay′′ + by′ + cy = g

as

y′′ = g

a
− b

a
y′ − c

a
y ,

and observe that this is

y′′ = F(x, y, y′) where F(x, y, z) = g(x)

a(x)
− b(x)

a(x)
z − c(x)

a(x)
y .

The partial derivatives ∂F/∂y and ∂F/∂z are easily computed:

∂F

∂y
= − c(x)

a(x)
and

∂F

∂z
= − b(x)

a(x)
.

Note that these partial derivatives are functions of x only. In addition, since a , b and c are

continuous on (α, β) and a is never being zero on (α, β) , it is easy to see that F , ∂F/∂y and ∂F/∂z

are all continuous on

R = { (x, y, z) : α < x < β , − ∞ < y < ∞ and − ∞ < z < ∞ } .

The claims of our theorem now follow immediately from theorem 11.2 (using y0 = A and z0 = B ).

12.2 Introduction to the Reduction of Order Method

The rest of this chapter is devoted to the reduction of order method. This is a method for converting any

linear differential equation to another linear differential equation of lower order, and then constructing

the general solution to the original differential equation using the general solution to the lower-order

equation. In general, to use this method with an N th-order linear differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = g ,
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we need to already have one known nontrivial solution y1 = y1(x) to the corresponding homoge-

neous differential equation. We then try a substitution of the form

y = y1 u

where u = u(x) is a yet unknown function (and y1 = y1(x) is the aforementioned known solution).

Plugging this substitution into the differential equation then leads to a linear differential equation for

u . As we will see, because y1 satisfies the corresponding homogeneous equation, the differential

equation for u ends up being of the form

A0u(N ) + A1u(N−1) + · · · + AN−2u′′ + AN−1u′ = g

— remarkably, there is no “ AN u ” term. This means we can use the substitution

v = u′ ,

as discussed in chapter 11, to rewrite the differential equation for u as a (N −1)th-order differential

equation for v ,

A0v
(N−1) + A1v

(N−2) + · · · + AN−2v
′ + AN−1v = g .

So we have reduced the order of the equation to be solved. If a general solution v = v(x) for this

equation can be found, then the most general formula for u can be obtained from v by integration

(since u′ = v ). Finally then, by going back to the original substitution formula y = y1u , we can

obtain a general solution to the original differential equation.

This method is especially useful for solving second-order, homogeneous linear differential

equations since (as we will see) it reduces the problem to one of solving relatively simple first-order

differential equations. Accordingly, we will first concentrate on its use in finding general solutions

to second-order, homogeneous linear differential equations. Then we will briefly discuss using

reduction of order with second-order, nonhomogeneous linear equations, and with both homogeneous

and nonhomogeneous linear differential equations of higher orders.

12.3 Reduction of Order for Homogeneous Linear
Second-Order Equations

The Method
Here we lay out the details of the reduction of order method for second-order, homogeneous linear

differential equations. To illustrate the method, we’ll use the differential equation

x2 y′′ − 3xy′ + 4y = 0 .

Note that the first coefficient, x2 , vanishes when x = 0 . From comments made earlier (see theorem

12.1 on page 247), we should suspect that x = 0 ought not be in any interval of interest for this

equation. So we will be solving over the intervals (0,∞) and (−∞, 0) .

Before starting the reduction of order method, we need one nontrivial solution y1 to our

differential equation. Ways for finding that first solution will be discussed in later chapters. For now

let us just observe that if

y1(x) = x2 ,



�

�

�

�

�

�

�

�

250 Higher-Order Linear Equation and the Reduction of Order Method

then

x2 y1
′′ − 3x y1

′ + 4y1 = x2 d2

dx2

[
x2
] − 3x

d

dx

[
x2
] + 4

[
x2
]

= x2[2 · 1] − 3x[2x] + 4x2

= x2 [2 − (3 · 2)+ 4]︸ ︷︷ ︸
0 !

= 0 .

Thus, one solution to the above differential equation is y1(x) = x2 .

As already stated, this method is for finding a general solution to some homogeneous linear

second-order differential equation

ay′′ + by′ + cy = 0

(where a , b , and c are known functions with a(x) never being zero on the interval of interest). We

will assume that we already have one nontrivial particular solution y1(x) to this generic differential

equation.

For our example (as already noted), we will seek a general solution to

x2 y′′ − 3xy′ + 4y = 0 . (12.7)

The one (nontrivial) solution we know is y1(x) = x2 .

Here are the details in using the reduction of order method to solve the above:

1. Let

y = y1 u

where u = u(x) is a function yet to be determined. To simplify “plugging into the differential

equation”, go ahead and compute the corresponding formulas for the derivatives y′ and y′′
using the product rule:

y′ = (y1u)′ = y1
′u + y1u′

and

y′′ = (
y′)′ = (

y1
′u + y1u′)′

= (
y1

′u
)′ + (

y1u′)′
= (

y1
′′u + y1

′u′) + (
y1

′u′ + y1u′′)
= y1

′′u + 2y1
′u′ + y1u′′ .

For our example,

y = y1 u = x2u

where u = u(x) is the function yet to be determined. The derivatives of y are

y′ = (
x2u

)′ = 2xu + x2u′

and

y′′ = (y′)′ = (
2xu + x2u′)′

= (2xu)′ + (
x2u′)′

= (
2u + 2xu′) + (

2xu′ + x2u′′)
= 2u + 4xu′ + x2u′′ .
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2. Plug the formulas just computed for y , y′ and y′′ into the differential equation, group

together the coefficients for u and each of its derivatives, and simplify as far as possible.

(We’ll do this with the example first and then look at the general case.)

Plugging the formulas just computed above for y , y′ and y′′ into equation (12.7),

we get

0 = x2 y′′ − 3xy′ + 4y

= x2
[
2u + 4xu′ + x2u′′] − 3x

[
2xu + x2u′] + 4

[
x2u

]
= 2x2u + 4x3u′ + x4u′′ − 6x2u − 3x3u′ + 4x2u

= x4u′′ + [
4x3 − 3x3

]
u′ + [

2x2 − 6x2 + 4x2
]
u

= x4u′′ + x3u′ + 0 · u .

Notice that the u term drops out! So the resulting differential equation for u is

simply

x4u′′ + x3u′ = 0 ,

which we can further simplify by dividing out x4 ,

u′′ + 1

x
u′ = 0

In general, plugging the formulas for y and its derivatives into the given differential

equation yields

0 = ay′′ + by′ + cy

= a
[
y1

′′u + 2y1
′u′ + y1u′′] + b

[
y1

′u + y1u′] + c
[
y1u

]
= ay1

′′u + 2ay1
′u′ + ay1u′′ + by1

′u + by1u′ + cy1u

= ay1u′′ + [
2ay1

′ + by1

]
u′ + [

ay1
′′ + by1

′ + cy1

]
u .

That is, the differential equation becomes

Au′′ + Bu′ + Cu = 0

where

A = ay1 , B = 2ay1
′ + by1 and C = ay1

′′ + by1
′ + cy1 .

But remember, y1 is a solution to the homogeneous equation

ay′′ + by′ + cy = 0 .

Consequently,

C = ay1
′′ + by1

′ + cy1 = 0 ,

and the differential equation for u automatically reduces to

Au′′ + Bu′ = 0 .

The u term always drops out!
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3. Now find the general solution to the second-order differential equation just obtained for u ,

Au′′ + Bu′ = 0 ,

via the substitution method discussed in section 11.1:

(a) Let u′ = v (and, thus, u′′ = v′ = dv/dx ) to convert the second-order differential

equation for u to the first-order differential equation for v ,

A
dv

dx
+ Bv = 0 .

(It is worth noting that this first-order differential equation is both linear and separable.)

(b) Find the general solution v(x) to this first-order equation. (Since it is both linear and

separable, you can solve it using either the procedure developed for first-order linear

equations or the approach developed for first-order separable equations.)

(c) Using the formula just found for v , integrate the substitution formula u′ = v to obtain

the formula for u ,

u(x) =
∫
v(x) dx .

Don’t forget all the arbitrary constants.

In our example, we obtained

u′′ + 1

x
u′ = 0 .

Letting v = u′ and, thus, v′ = u′′ this becomes

dv

dx
+ 1

x
v = 0 .

Equivalently,
dv

dx
= − 1

x
v .

This is a relatively simple separable first-order equation. It has one constant

solution, v = 0 . To find the others, we divide through by v and proceed as usual

with such equations:

1

v

dv

dx
= − 1

x

↪→
∫

1

v

dv

dx
dx = −

∫
1

x
dx

↪→ ln |v| = − ln |x | + c0

↪→ v = ±e− ln|x | + c0

↪→ v = ±ec0 x−1 .

Letting A = ±ec0 , this simplifies to

v = A

x
,

which also accounts for the constant solution (when A = 0 ).
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Since u′ = v , it then follows that

u(x) =
∫
v(x) dx =

∫
A

x
dx = A ln |x | + B .

4. Finally, plug the formula just obtained for u(x) into the first substitution,

y = y1u ,

used to convert the original differential equation for y to a differential equation for u . The

resulting formula for y(x) will be a general solution for that original differential equation.

(Sometimes that formula can be simplified a little. Feel free to do so.)

In our example, the solution we started with was y1(x) = x2 . Combined with

the u(x) just found, we have

y = y1u = x2[A ln |x | + B] .

That is,

y(x) = Ax2 ln |x | + Bx2

is the general solution to equation (12.7).

An Observation About the General Solution

In the above example, the general solution obtained was

y(x) = Ax2 ln |x | + Bx2 .

It will be worth noting that, after renaming the arbitrary constants A and B as c2 and c1 , respec-

tively, we can rewrite this as

y(x) = c1 y1(x) + c2 y2(x)

where

y1(x) = x2

is the one solution we already knew, and

y2(x) = x2 ln |x |

is another function that arose in the course of our procedure, and which, we should also note, can be

written as

y2(x) = y1(x)u0(x) with u0(x) = ln |x | .

Moreover:

1. Since y(x) = c1 y1(x) + c2 y2(x) is a solution to our differential equation for any choice of

constants c1 and c2 , it follows (by taking c1 = 0 and c2 = 1 ) that y2 is also a particular

solution to our differential equation.

2. Since u0(x) is NOT a constant, y2 is NOT a constant multiple of y1 .
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It turns out that the above observation does not just hold for this one example. If you look care-

fully at the reduction of order method for solving any second-order linear homogeneous differential

equation,

ay" + by′ + cy = 0 ,

you will find that this method always results in a general solution of the form

y(x) = c1 y1(x) + c2 y2(x)

where

1. c1 and c2 are arbitrary constants,

2. y1 is the one known particular solution needed to start the method, and

3. y2 is another particular solution to the given differential equation which is NOT a constant

multiple of y1 .

As noted, the above can be easily verified by looking at the general formulas that arise in using the

reduction of order method.2 For now though, let us take the above as something you should observe

in the solutions you obtain in doing the exercises for this section.

And why are the above observations important? Because they will serve as the starting point

for a more general discussion of “general solutions” in the next chapter, and which, in turn, will lead

to other methods for solving our differential equations, often (but not always) without the need to go

through the full reduction of order method.

12.4 Reduction of Order for Nonhomogeneous Linear
Second-Order Equations

If you look back over our discussion in section 12.3, you will see that the reduction of order method

applies almost as well in solving a nonhomogeneous equation

ay′′ + by′ + cy = g ,

provided that “one solution y1 ” is a solution to the corresponding homogeneous equation

ay′′ + by′ + cy = 0 .

Then, letting y = y1u in the nonhomogeneous equation and then replacing u′ with v leads to an

equation of the form

Av′ + Bv = g

instead of

Av′ + Bv = 0 .

So the resulting first-order equation for v is not both separable and linear; it is just linear. Still,

we know how to solve such equations. Solving that first-order linear differential equation for v

and continuing with the method already described finally yields the general solution to the desired

nonhomogeneous differential equation.

We will do one example. Then I’ll tell you why the method is rarely used in practice.

2 Actually, there are technical issues arising at points where y1 is zero.
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!�Example 12.1: Let us try to solve the second-order nonhomogeneous linear differential equation

x2 y′′ − 3xy′ + 4y = √
x (12.8)

over the interval (0,∞) .

As we saw in our main example in section 12.3, the corresponding homogeneous equation

x2 y′′ − 3xy′ + 4y = 0

has y1(x) = x2 as one solution (in fact, from that example, we know the entire general solution

to this homogeneous equation, but we only need this one particular solution for the method). Let

y = y1 u = x2u

where u = u(x) is the function yet to be determined. The derivatives of y are

y′ = (
x2u

)′ = 2xu + x2u′

and

y′′ = (y′)′ = (
2xu + x2u′)′

= 2u + 2xu′ + 2xu′ + x2u′′

= 2u + 4xu′ + x2u′′ .

Plugging these into equation (12.8) yields

√
x = x2 y′′ − 3xy′ + 4y

= x2
[
2u + 4xu′ + x2u′′] − 3x

[
2xu + x2u′] + 4

[
x2u

]
= 2x2u + 4x3u′ + x4u′′ − 6x2u − 3x3u′ + 4x2u

= x4u′′ + [
4x3 − 3x3

]
u′ + [

2x2 − 6x2 + 4x2
]
u

= x4u′′ + x3u′ + 0 · u .

As before, the u term drops out. In this case, we are left with

x4u′′ + x3u′ = √
x .

That is,

x4v′ + x3v = x
1/2 with v = u′ .

This is a relatively simple first-order linear equation. To help find the integrating factor, we now

divide through by x4 , obtaining

dv

dx
+ 1

x
v = x−7/2 .

So the integrating factor is

μ = e

∫
1/x dx = eln|x | = |x | .

Since we are just attempting to solve over the interval (0,∞) , we really just have

μ = x .
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Multiplying the last differential equation for v and proceeding as usual when solving first-order

linear differential equations:

x
[

dv

dx
+ 1

x
v
]

= x
[
x−7/2

]
↪→ x

dv

dx
+ v = x−5/2

↪→ d

dx

[
xv
] = x−5/2

↪→
∫

d

dx

[
xv
]

dx =
∫

x−5/2 dx

↪→ xv = −2

3
x−3/2 + c1

↪→ v = −2

3
x−5/2 + c1

x

Recalling that v = u′ , we can rewrite the last line as

du

dx
= −2

3
x−5/2 + c1

x
.

Thus,

u =
∫

du

dx
dx =

∫ [
−2

3
x−5/2 + c1

x

]
dx

=
(

2

3

)2

x−3/2 + c1 ln(x) + c2

= 4

9
x−3/2 + c1 ln(x) + c2 ,

and the general solution to our nonhomogeneous equation is

y(x) = x2u(x) = x2
[

4

9
x−3/2 + c1 ln(x) + c2

]
= 4

9
x

1/2 + c1x2 ln(x) + c2x2 .

For no obvious reason at this point, let’s observe that we can write this solution as

y(x) = c1x2 ln(x) + c2x2 + 4

9

√
x . (12.9)

It should be observed that, in the above example, we only used one particular solution, y1(x) =
x2 , to the homogeneous differential equation

x2 y′′ − 3xy′ + 4y = 0

even though we had already found the general solution

Ax2 ln |x | + Bx2 .

Later, in chapter 22, we will develop a refinement of the reduction of order method for solving second-

order, nonhomogeneous linear differential equations that makes use of the entire general solution to

the corresponding homogeneous equation. This refinement (the “variation of parameters” method)

has two distinct advantages over the reduction of order method when solving nonhomogeneous

differential equations:
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1. The computations required for the refined procedure tend to be simpler and more easily

carried out.

2. With a few straightforward modifications, the refined procedure readily extends to being a

useful method for dealing with nonhomogeneous linear differential equations of any order.

For the reasons discussed in the next section, the same cannot be said about the basic reduction

of order method.

That is why, in practice, the basic reduction of order method is rarely used with nonhomogeneous

equations.

12.5 Reduction of Order in General

In theory, reduction of order can be applied to any linear equation of any order, homogeneous or not.

Whether its application is useful is another issue.

!�Example 12.2: Consider the third-order homogeneous linear differential equation

y′′′ − 8y = 0 . (12.10)

If you rewrite this equation as

y′′′ = 8y ,

and think about what happens when you differentiate exponentials, you will realize that

y1(x) = e2x

is ‘obviously’ a solution to our differential equation (verify it yourself). Letting

y = y1 u = e2x u

and repeatedly using the product rule, we get

y′ =
(

e2x u
)′

= 2e2x u + e2x u′ ,

y′′ =
(

e2x u
)′′

=
(

2e2x u + e2x u′
)′

= 4e2x u + 2e2x u′ + 2e2x u′ + e2x u′′

= 4e2x u + 4e2x u′ + e2x u′′

and

y′′′ =
(

e2x u
)′′′

=
(

4e2x u + 4e2x u′ + e2x u′′
)′

= 8e2x u + 4e2x u′ + 8e2x u′ + 4e2x u′′ + 2e2x u′′ + e2x u′′′

= 8e2x u + 12e2x u′ + 6e2x u′′ + e2x u′′′ .
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So, using y = e2x u ,

y′′′ − 8y = 0

↪→ [
8e2x u + 12e2x u′ + 6e2x u′′ + e2x u′′′

]
− 8

[
e2x u

]
= 0

↪→ e2x u′′′ + 6e2x u′′ + 12e2x u′ +
[
8e2x − 8e2x

]
u = 0 .

Again, the u term vanishes, leaving us with

e2x u′′′ + 6e2x u′′ + 12e2x u′ = 0 .

Letting v = u′ and dividing out the exponential, this becomes the second-order differential

equation

v′′ + 6v′ + 12v = 0 . (12.11)

Thus we have changed the problem of solving the third-order differential equation to one of solving

a second-order differential equation. If we can now correctly guess a particular solution v1 to

that second-order differential equation, we could again use reduction of order to get the general

solution v(x) to that second-order equation, and then use that and the fact that y = e2x u with

v = u′ to obtain the general solution to our original differential equation. Unfortunately, even

though the order is less, “guessing” a solution to equation (12.11) is a good deal more difficult

than was guessing a particular solution to the original differential equation, equation (12.10).

As the example illustrates, even if we can, somehow, obtain one particular solution to a given

N th-order linear homogeneous linear differential equation, and then use it to reduce the problem to

solving an (N − 1)th-order differential equation, that lower order differential equation may be just

as hard to solve as the original differential equation (unless N = 2 ). In fact, we will learn how to

solve differential equations such as equation (12.11), but those methods can also be used to find the

general solution to the original differential equation, equation (12.10), as well.

Still it does no harm to know that the problem of solving an N th-order linear homogeneous

linear differential equation can be reduced to that of solving an (N −1)th-order differential equation,

at least when we have one solution to the original equation. For the record, here is a theorem to that

effect:

Theorem 12.3 (reduction of order in homogeneous equations)

Let y be any solution to some N th-order homogeneous differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = g (12.12)

where g and the ak’s are known functions on some interval (α, β) , and let y1 be a nontrivial

particular solution to the corresponding homogeneous equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0 .

Set

u = y

y1
(so that y = y1 u ) .

Then v = u′ satisfies an (N − 1)th-order differential equation

A0v
(N−1) + A1v

(N−2) + · · · + AN−2v
′ + AN−1v = g .
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where the Ak’s are functions on the interval (α, β) that can be determined from the ak’s along

with y1 and its derivatives.

The proof is relatively straightforward: You see what happens when you repeatedly use the

product rule with y = y1 u , and plug the results into the equation (12.12). You can fill in the

details yourself (see exercise 12.4).

Additional Exercises

12.1. For each of the following differential equations, identify

i. the order of the equation,

ii. whether the equation is linear or not, and,

iii. if it is linear, whether the equation is homogeneous or not.

a. y′′ + x2 y′ − 4y = x3 b. y′′ + x2 y′ − 4y = 0

c. y′′ + x2 y′ = 4y d. y′′ + x2 y′ + 4y = y3

e. xy′ + 3y = e2x f. y′′′ + y = 0

g. (y + 1)y′′ = (y′)3 h. y′′ = 2y′ − 5y + 30e3x

i. y(iv) + 6y′′ + 3y′ − 83y − 25 = 0 j. yy′′′ + 6y′′ + 3y′ = y

k. y′′′ + 3y′ = x2 y l. y(55) = sin(x)

12.2. For each of the following, first verify that the given y1 is a solution to the given differential

equation, and then find the general solution to the differential equation using the given y1

with the method of reduction of order.

a. y′′ − 5y′ + 6y = 0 , y1(x) = e2x

b. y′′ − 10y′ + 25y = 0 , y1(x) = e5x

c. x2 y′′ − 6xy′ + 12y = 0 on x > 0 , y1(x) = x3

d. 2x2 y′′ − xy′ + y = 0 on x > 0 , y1(x) = x

e. 4x2 y′′ + y = 0 on x > 0 , y1(x) = √
x

f. y′′ −
(

4 + 2

x

)
y′ +

(
4 + 4

x

)
y = 0 on x > 0 , y1(x) = e2x

g. (x + 1)y′′ + xy′ − y = 0 , y1 = e−x

h. y′′ − 1

x
y′ − 4x2 y = 0 , y1(x) = e−x2

i. y′′ + y = 0 , y1(x) = sin(x)

j. xy′′ + (2 + 2x)y′ + 2y = 0 on x > 0 , y1(x) = x−1

k. sin2(x)y′′ − 2 cos(x) sin(x)y′ +
(

1 + cos2(x)
)

y = 0 , y1(x) = sin(x)
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l. x2 y′′ − 2xy′ +
(

x2 + 2
)

y = 0 on x > 0 , y1(x) = x sin(x)

m. x2 y′′ + xy′ + y = 0 on x > 0 , y1(x) = sin(ln |x |)
n. x2 y′′ + xy′ +

(
x2 − 1

4

)
y = 0 on x > 0 , y1(x) = x−1/2 cos(x)

12.3. Several nonhomogeneous differential equations are given below. For each, first verify that

the given y1 is a solution to the corresponding homogeneous differential equation, and then

find the general solution to the given nonhomogeneous differential equation using reduction

of order with the given y1 .

a. y′′ − 4y′ + 3y = 9e2x , y1(x) = e3x

b. y′′ − 6y′ + 8y = e4x , y1(x) = e2x

c. x2 y′′ + xy′ − y = √
x on x > 0 , y1(x) = x

d. x2 y′′ − 20y = 27x5 on x > 0 , y1(x) = x5

e. xy′′ + (2 + 2x)y′ + 2y = 8e2x on x > 0 , y1 = x−1

f. (x + 1)y′′ + xy′ − y = (x + 1)2 , y1 = e−x

12.4. Prove the claims in theorem 12.3 assuming:

a. N = 3 b. N = 4 c. N is any positive integer

12.5. Each of the following is one of the relatively few third- and fourth-order differential equa-

tions that can be easily solved via reduction of order. For each, first verify that the given

y1 is a solution to the given differential equation or to the corresponding homogeneous

equation (as appropriate), and then find the general solution to the differential equation

using the given y1 with the method of reduction of order.

a. y′′′ − 9y′′ + 27y′ − 27y = 0 , y1 = e3x

b. y′′′ − 9y′′ + 27y′ − 27y = e3x sin(x) , y1 = e3x

c. y(4) − 8y′′′ + 24y′′ − 32y′ + 16y = 0 , y1 = e2x

d. x3 y′′′ − 4y′′ + 10y′ − 12y = 0 on x > 0 , y1 = x2
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General Solutions to Homogeneous Linear
Differential Equations

The reduction of order method is, admittedly, limited. First of all, you must already have one solution

to the given differential equation before you can start the method. Moreover, it’s just not that helpful

when the order of the equation is greater than two. We will be able to get around these limitations,

at least when dealing with certain important classes of differential equations, by using methods that

will be developed in later chapters. An important element of those methods is the construction of

general solutions from a “suitably chosen” collection of particular solutions. That element is the

topic of this chapter. We will discover how to choose that “suitably chosen” set and how to (easily)

construct a general solution from that set. Once you know that, you can proceed straight to chapter

15 (skipping, if you wish, chapter 14) and learn how to fully solve some of the more important

equations found in applications.

By the way, we will not abandon the reduction of order method. It will still be needed, and the

material in this chapter will help tell us when it is needed.

13.1 Second-Order Equations (Mainly)
The Problem and a Basic Question

Throughout this section, our interest will be in “finding” a general solution over some interval (α, β)

to a fairly arbitrary second-order, homogeneous linear differential equation

ay" + by′ + cy = 0 .

As suggested in the last chapter, we will limit the interval (α, β) to being one over which the

functions a , b and c are all continuous with a never being zero.

At the end of section 12.3, we observed that the reduction of order method always seemed to

yield a general solution to the above differential equation in the form

y(x) = c1 y1(x) + c2 y2(x)

where c1 and c2 are arbitrary constants, and y1 and y2 are a pair of particular solutions that are

not constant multiples of each other. Then, y1 was a previously known solution to the differential

equation, and y2 was a solution that arose from the order of reduction method. You were not,

however, given much advice on how to find that first particular solution. We will discover (in later

chapters) that there are relatively simple methods for finding “that one solution” at least for certain

261
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common types of differential equations. We will further discover that, while these methods do not,

themselves, yield general solutions, they often do yield sets of particular solutions. Here is a simple

example:

!�Example 13.1: Consider the homogeneous differential equation

y′′ + y = 0

over the entire real line, (−∞,∞) . We can find at least two solutions by rewriting this as

y′′ = −y ,

and then asking ourselves if we know of any basic functions (powers, exponentials, trigonometric

functions, etc.) that satisfy this. It should not take long to recall that

y(x) = cos(x) and y(x) = sin(x)

are two such functions: If y(x) = cos(x) , then

y′′(x) = d2

dx2
[cos(x)] = d

dx
[− sin(x)] = − cos(x) = −y(x) ,

and if y(x) = sin(x) , then

y′′(x) = d2

dx2
[sin(x)] = d

dx
[cos(x)] = − sin(x) = −y(x) .

Thus, both

y(x) = cos(x) and y(x) = sin(x)

are solutions to our differential equation. Moreover, it should be clear that neither is a constant

multiple of the other. So, to find the general solution of our differential equation, should we use

the reduction of order method with y1(x) = cos(x) as the known solution, or the reduction of

order method with y1(x) = sin(x) as the known solution, or can we simply say

y(x) = c1 cos(x) + c2 sin(x)

is the general solution, skipping the reduction of order method altogether?

Thus, we are led to the basic question:

Can the general solution to any second-order, homogeneous linear differential equation

ay′′ + by′ + cy = 0 ,

be given by

y(x) = c1 y1(x) + c2 y2(x)

where c1 and c2 are arbitrary constants, and y1 and y2 are any two solutions that

are not constant multiples of each other?

Our goal is to answer this question by the end of this section.
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Linear Combinations and the Principle of Superposition

Time to introduce a little terminology to simplify future discussion: Given any finite collection of

functions — y1 , y2 , . . . and yN — a linear combination of these yk’s is any expression of the

form

c1 y1 + c2 y2 + · · · + cN yN

where the ck’s are constants. If these constants are all arbitrary, then the expression is, unsurprisingly,

an arbitrary linear combination. In practice, we will often refer to some function y as a linear

combination of the yk’s (over some interval (α, β) ) to indicate there are constants c1 , c2 , . . . ,

and cN such that

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x) for all x in (α, β) .

!�Example 13.2: Here are some linear combinations of cos(x) and sin(x) :

4 cos(x) + 2 sin(x) ,

3 cos(x) − 5 sin(x)

and

sin(x) (i.e., 0 cos(x) + 1 sin(x)) .

And

c1 cos(x) + c2 sin(x) + c3ex

is an arbitrary linear combination of the three functions cos(x) , sin(x) and ex .

Let us now assume that we have found two solutions y1 and y2 to our homogeneous differential

equation

ay′′ + by′ + cy = 0

on (α, β) . This means that

ay1
′′ + by1

′ + cy1 = 0 and ay2
′′ + by2

′ + cy2 = 0 .

Let’s see what happens when we plug into our differential equation some linear combination

of these two solutions, say,

y = 2y1 + 6y2 .

By the fundamental properties of differentiation, we know that

y′ = [2y1 + 6y2]′ = [2y1]′ + [6y2]′ = 2y1
′ + 6y2

′

and

y′′ = [2y1 + 6y2]′′ = [2y1]′′ + [6y2]′′ = 2y1
′′ + 6y2

′′ .

So,

ay′′ + by′ + cy = a [2y1 + 6y2]′′ + b [2y1 + 6y2]′ + c [2y1 + 6y2]

= 2ay1
′′ + 6ay2

′′ + 2by1
′ + 6by2

′ + 2cy1 + 6cy2

= 2
[
ay1

′′ + by1
′ + cy1

] + 6
[
ay2

′′ + by2
′ + cy2

]
= 2 [0] + 6 [0]

= 0 .
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Thus, the linear combination 2y1 + 6y2 is another solution to our homogeneous linear differential

equation.

Of course, there was nothing special about the constants 2 and 6 . If we had used any linear

combination of y1 and y2

y = c1 y1 + c2 y2 ,

then the above computations would have yielded

ay′′ + by′ + cy

= a [c1 y1 + c2 y2]′′ + b [c1 y1 + c2 y2]′ + c [c1 y1 + c2 y2(x)]

= · · ·

= c1

[
ay1

′′ + by1
′ + cy1

] + c2

[
ay2

′′ + by2
′ + cy2

]
= c1 [0] + c2 [0]

= 0 .

Nor is there any reason to stop with two solutions. If y had been any linear combination

y = c1 y1 + c2 y2 + · · · + cK yK

with each yk being a solution to our homogeneous differential equation,

ayk
′′ + byk

′ + cyk = 0 ,

then the above computations — expanded to account for the N solutions — clearly would have

yielded

ay′′ + by′ + cy = c1[0] + c2[0] + · · · + cK [0] = 0 .

This is a major result, often called the “principle of superposition”.1 Being a major result, it deserves

its own theorem:

Theorem 13.1 (principle of superposition [for second-order equations])

Any linear combination of solutions to a second-order, homogeneous linear differential equation is,

itself, a solution to that homogeneous linear equation.

Note that this partially answers our basic question on page 262 by assuring us that

y = c1 y1 + c2 y2

is a solution to our differential equation for every choice of constants c1 and c2 . What remains is

to see whether this describes all possible solutions.

Linear Independence and Fundamental Sets

We now know that if we have, say, three solutions y1 , y2 and y3 to our homogeneous differential

equation, then any linear combination of these functions

y = c1 y1 + c2 y2 + c3 y3

1 The name comes from the fact that, geometrically, the graph of a linear combination of functions can be viewed as a

“superposition” of the graphs of the individual functions.
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is also a solution. But what if one of these yk’s is also a linear combination of the other yk’s , say,

y3 = 4y1 + 2y2 .

Then we can simplify our expression for y by noting that

y = c1 y1 + c2 y2 + c3 y3

= c1 y1 + c2 y2 + c3[4y1 + 2y2]
= [c1 + 4c3]y1 + [c2 + 2c3]y2 .

Since c1 + 4c3 and c2 + 2c3 are, themselves, just constants — call them a1 and a2 — our formula

for y reduces to

y = a1 y1 + a2 y2 .

Thus, our original formula for y did not require y3 at all. In fact, including this redundant function

gives us a formula with more constants than necessary. Not only is this a waste of ink, it will cause

difficulties when we use these formulas in solving initial-value problems.

This prompts even more terminology to simplify future discussion. Suppose

{ y1, y2, . . . , yM }

is a set of functions defined on some interval. We will say this set is linearly independent (over the

given interval) if none of the yk’s can be written as a linear combination of any of the others (over the

given interval). On the other hand, if at least one yk in the set can be written as a linear combination

of some of the others, then we will say the set is linearly dependent (over the given interval).

!�Example 13.3: The set of functions

{ y1(x), y2(x), y3(x) } = { cos(x), sin(x), 4 cos(x)+ 2 sin(x) } .

is linearly dependent (over any interval) since the last function is clearly a linear combination of

the first two.

By the way, we should observe the almost trivial fact that, whatever functions y1 , y2 , . . . and

yM may be,

0 = 0 · y1 + 0 · y2 + · · · + 0 · yM .

So the zero function can always be treated as a linear combination of other functions, and, hence,

cannot be one of the functions in any linearly independent set.

Linear Independence for Function Pairs

Matters simplify greatly when our set is just a pair of functions

{ y1, y2 } .

In this case, the statement that one of these yk’s is a linear combination of the other over the interval

(α, β) is just the statement that either y1 = c2 y2 for some constant c2 , that is,

y1(x) = c2 y2(x) for all x in (α, β) ,

or that y2 = c1 y1 for some constant c1 , that is,

y2(x) = c1 y1(x) for all x in (α, β) .
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Either way, one function is simply a constant multiple of the other over the interval of interest. In fact,

unless c1 = 0 or c2 = 0 , then each function is a constant multiple of the other with c1 · c2 = 1 .

Thus, for a pair of functions, the concepts of linear independence and dependence reduce to the

following:

The set { y1, y2 } is linearly independent.

⇐⇒ Neither y1 nor y2 is a constant multiple of the other.

and

The set { y1, y2 } is linearly dependent.

⇐⇒ Either y1 or y2 is a constant multiple of the other.

In practice, this makes it relatively easy to determine when a pair of functions is linearly independent.

!�Example 13.4: In example 13.3 we obtained

{ y1(x), y2(x) } = { cos(x), sin(x) }

as a pair of solutions for the homogeneous second-order linear differential equation

y′′ + y = 0 .

It should be clear that there is no constant c1 or c2 such that

cos(x) = c2 sin(x) for all x in (α, β)

or

sin(x) = c1 cos(x) for all x in (α, β) .

After all, if we were to believe, say, that sin(x) = c1 cos(x) , then we would have to believe that

there is a constant c1 such that

sin(x)

cos(x)
= c1 for all x in (α, β) ,

which, in turn, would require that we believe

0 = 0

1
= sin(0)

cos(0)
= c1 = sin(π/4)

cos(π/4)
=

√
2/2√
2/2

= 1 !

So, clearly, neither sin(x) nor cos(x) is a constant multiple of the other over the real line. Hence,

{cos(x), sin(x)} is a linearly independent set (over the entire real line), and

y(x) = c1 sin(x) + c2 sin(x)

not only describes many possible solutions to our differential equation, it cannot be simplified to

an expression with fewer arbitrary constants.
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Fundamental Solution Sets and General Solutions

One final bit of terminology: Given any homogeneous linear differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

(over an interval (α, β) ), a fundamental set of solutions (for the given differential equation) is simply

any linearly independent set of solutions

{y1, y2, . . . , yM }

such that the arbitrary linear combination of these solutions,

y = c1 y1 + c2 y2 + · · · + cM yM

is a general solution to the differential equation.

While the above definition holds for any homogeneous linear differential equation, our current

interest is focused on the case where N = 2 , and, at this point, you are probably suspecting that

any linearly independent pair {y1, y2} of solutions to our second-order differential equation is a

fundamental set. This suspicion can be confirmed by applying the principle of superposition and the

following lemma on the existence and uniqueness of solutions to the problems we are dealing with:

Lemma 13.2 (existence and uniqueness for second-order homogeneous linear equations)

Consider the initial-value problem

ay′′ + by′ + cy = 0 with y(x0) = A and y′(x0) = B

over an interval (α, β) containing the point x0 . Assume, further, that a , b , c and g are continuous

functions on (α, β) with a never being zero at any point in this interval.. Then the initial-value

problem has exactly one solution on (α, β) . Moreover, the solution and its first and second derivatives

are all continuous on this interval.

This lemma is nothing more than theorem 12.1 on page 247 with “ g = 0 ”. To see how it is

relevant to us, let’s go back to the differential equation in an earlier example.

!�Example 13.5: We know that one linearly independent pair of solutions to

y′′ + y = 0

on (−∞,∞) is

{y1, y2} = { cos(x) , sin(x) } .

In addition, the principle of superposition assures us that any linear combination of these solutions

y(x) = c1 cos(x) + c2 sin(x)

is also a solution to the differential equation. To go further and verify that this pair is a fundamental

set of solutions for the above differential equation, and that the above expression for y is a general

solution, we need to show that every solution to this differential equation can be written as the

above linear combination for some choice of constants c1 and c2 .

So let ŷ be any single solution to the above differential equation, and consider the problem

of solving the initial-value problem

y′′ + y = 0 with y(0) = A and y′(0) = B (13.1a)
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where

A = ŷ(0) and B = ŷ ′(0) . (13.1b)

Obviously, ŷ is a solution, but so is

y(x) = c1 cos(x) + c2 sin(x)

provided we can find constants c1 and c2 such that the above and its derivative,

y′(x) = d

dx
[c1 cos(x) + c2 sin(x)] = −c1 sin(x) + c2 cos(x) ,

equal A and B , respectively, when x = 0 . This means we want to find c1 and c2 so that

y(0) = c1 cos(0) + c2 sin(0) = A

and

y′(0) = −c1 sin(0) + c2 cos(0) = B .

Since cos(0) = 1 and sin(0) = 0 , this system reduces to

c1 · 1 + c2 · 0 = A

and

−c1 · 0 + c2 · 1 = B ,

immediately telling us that c1 = A and c2 = B . Thus, both

ŷ(x) and A cos(x) + B sin(x)

are solutions over (−∞,∞) to initial-value problem (13.1). But lemma 13.2 tells us that there

is only one solution. So our two solutions must be the same; that is, we must have

ŷ(x) = A cos(x) + B sin(x) for all x in (−∞,∞) .

Thus, not only is

y(x) = c1 cos(x) + c2 sin(x)

a solution to

y′′ + y = 0

for every pair of constants c1 and c2 , this arbitrary linear combination describes every possible

solution to this differential equation. In other words,

y(x) = c1 cos(x) + c2 sin(x)

is a general solution to

y′′ + y = 0 ,

and

{ cos(x) , sin(x) }
is a fundamental set of solutions to the above differential equation.

Before leaving this example, let us make one more observation; namely that, if x0 , A and

B are any three real numbers, then lemma 13.2 tells us that there is exactly one solution to the

initial-value problem

y′′ + y = 0 with y(x0) = A and y′(x0) = B .
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Moreover, by the above analysis, we know that a solution is given by

y(x) = c1 cos(x) + c2 sin(x)

for some single pair of constants c1 and c2 . Hence, there is one and only one choice of constants

c1 and c2 such that

A = y(x0) = c1 cos(x0) + c2 sin(x0)

and

B = y′(x0) = −c1 sin(x0) + c2 cos(x0) .

It turns out that much of the analysis just done in the last example for

y′′ + y = 0 on (−∞,∞)

can be repeated for any given

ay" + by′ + cy = 0 on (α, β)

provided a , b and c are all continuous functions on (α, β) with a never being zero. More

precisely, if you are given such a differential equation, along with a linearly independent pair of

solutions {y1, y2} , then by applying the principle of superposition and lemma 13.2 as done in the

above example, you can show:

1. The arbitrary linear combination

y(x) = c1 y1(x) + c2 y2(x) for all x in (α, β)

is a general solution to the differential equation (and, hence, {y1, y2} is a fundamental set of

solutions).

2. Given any point x0 in (α, β) , and any two real numbers A and B , then there is exactly

one choice of constants c1 and c2 such that

y(x) = c1 y1(x) + c2 y2(x) for all x in (α, β)

is the solution to the initial-value problem

ay" + by′ + cy = 0 with y(x0) = A and y′(x0) = B .

Try it yourself:

?�Exercise 13.1: Consider the homogeneous linear differential equation

y′′ − y = 0 .

a: Verify that {
ex , e−x

}
is a linearly independent pair of solutions to the above differential equation on (−∞,∞) .

b: Verify that

y(x) = c1ex + c2e−x

satisfies the given differential equation for any choice of constants c1 and c2 .
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c: Let A and B be any two real numbers, and find the values of c1 and c2 (in terms of A and

B such that

y(x) = c1ex + c2e−x

satisfies

y′′ − y = 0 with y(0) = A and y′(0) = B .

(Answer: c1 = (A + B)/2 and c2 = (A − B)/2 )

d: Let ŷ be any solution to the given differential equation, and, using lemma 13.2 and the results

from the last exercise (with A = ŷ(0) and B = ŷ ′(0) ), show that

ŷ(x) = c1ex + c2e−x for all x in (−∞,∞)

for some choice of constants c1 and c2 .

e: Note that, by the above, it follows that

y(x) = c1ex + c2e−x

is a general solution to

y′′ − y = 0 on (−∞,∞) .

Hence, {ex , e−x } is a fundamental set of solutions to this differential equation. Now convince

yourself (preferably using lemma 13.2) that every initial-value problem

y′′ − y = 0 with y(x0) = A and y′(x0) = B

has a solution of the form

y(x) = c1ex + c2e−x

(assuming, of course, that x0 , A and B are real numbers).

The Big Theorem on Second-Order Homogeneous Equations

With the principle of superposition and existence/uniqueness lemma 13.2, you should be able to verify

that any given linearly independent pair {y1, y2} of solutions to any given reasonable second-order,

homogeneous linear differential equation

ay′′ + by′ + cy = 0

is a fundamental set of solutions to the differential equation. In fact, it should seem reasonable that

we could prove a general theorem to this effect, allowing us to simply invoke that theorem without

going through the details we went through in the above example and exercise, and even without

knowing a particular set of solutions. That theorem would look something like the following:

Theorem 13.3 (general solutions to second-order, homogenous linear differential equations)

Let (α, β) be some open interval, and suppose we have a second-order homogeneous linear differ-

ential equation

ay′′ + by′ + cy = 0

where, on (α, β) , the functions a , b and c are continuous, and a is never zero. Then the following

statements all hold:

1. Fundamental sets of solutions for this differential equation (over (α, β) ) exist.
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2. Every fundamental solution set consists of a pair of solutions.

3. If {y1, y2} is any linearly independent pair of particular solutions over (α, β) , then:

(a) {y1, y2} is a fundamental set of solutions.

(b) A general solution to the differential equation is given by

y(x) = c1 y1(x) + c2 y2(x)

where c1 and c2 are arbitrary constants.

(c) Given any point x0 in (α, β) and any two fixed values A and B , there is exactly one

ordered pair of constants {c1, c2} such that

y(x) = c1 y1(x) + c2 y2(x)

also satisfies the initial conditions

y(x0) = A and y′(x0) = B .

This theorem can be considered as the “Big Theorem on Second-Order, Homogeneous Linear

Differential Equations”. It will be used repeatedly, often without comment, in the chapters that

follow. A full proof of this theorem is given in the next chapter for the dedicated reader. That proof

is, basically, an expansion of the discussion given in example 13.5.

By the way, the statement about “initial conditions” in the above theorem further assures us

that second-order sets of initial conditions are appropriate for second-order, homogeneous linear

differential equations. It also assures us that no linearly independent pair of solutions for a second-

order, homogeneous linear differential equation can become “degenerate” at any point in the interval

(α, β) . (To see why we might be worried about “degeneracy”, see exercises 13.3 and 13.4 at the end

of the chapter.)

!�Example 13.6: Consider the differential equation

x2 y′′ + xy′ − 4y = 0 .

This is

ay′′ + by′ + cy = 0

with

a(x) = x2 , b(x) = x and c = −4 .

These are all continuous functions everywhere, but

a(0) = 02 = 0 .

So, to apply the above theorem, our interval of interest (α, β) must not include x = 0 . Accord-

ingly, let’s consider solving

x2 y′′ + xy′ − 4y = 0 on (0,∞) .

You can easily verify that one pair of solutions2 is

y1(x) = x−2 and y2(x) = x2 .

2 We’ll discuss a method for finding these particular solutions in chapter 18.
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It should be obvious that neither is a constant multiple of the other. Theorem 13.3 now immediately

tells us that this linearly independent pair {
x−2, x2

}
is a fundamental set of solutions for our differential equation, and that

y(x) = c1x−2 + c2x2

is a general solution to this differential equation.

(By the way, note that one of the solutions, specifically y1(x) = x−2 , “blows up” at the

point where a(x) = x2 is zero. This is something that often happens with solutions of

ay′′ + by′ + cy = 0

at a point where a is zero.)

13.2 Homogeneous Linear Equations of Arbitrary Order

The discussion in the previous section can, naturally, be extended to an analogous discussion con-

cerning solutions to homogeneous linear equations of any order. Two results of this discussion that

should be noted are the generalizations of the principle of superposition and the big theorem on

second-order, homogeneous linear differential equations (theorem 13.3). Here are those generaliza-

tions:

Theorem 13.4 (principle of superposition)

Any linear combination of solutions to a homogeneous linear differential equation is, itself, a solution

to that homogeneous linear equation.

Theorem 13.5 (general solutions to homogenous linear differential equations)

Let (α, β) be some open interval, and suppose we have an N th-order homogeneous linear differential

equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

where, on (α, β) , the ak’s are all continuous functions with a0 never being zero. Then the following

statements all hold:

1. Fundamental sets of solutions for this differential equation (over (α, β) ) exist.

2. Every fundamental solution set consists of exactly N solutions.

3. If {y1, y2, . . . , yN } is any linearly independent set of N particular solutions over (α, β) ,

then:

(a) {y1, y2, . . . , yN } is a fundamental set of solutions.

(b) A general solution to the differential equation is given by

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x)

where c1 , c2 , . . . and cN are arbitrary constants.
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(c) Given any point x0 in (α, β) and any N fixed values A1 , A2 , . . . and AN , there is

exactly one ordered set of constants {c1, c2, . . . , cN } such that

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x)

also satisfies the initial conditions

y(x0) = A1 , y′(x0) = A2 ,

y′′(x0) = A3 , . . . and y(N−1)(x0) = AN .

The proof of the more general version of the principle of superposition is a straightforward

extension of the derivation of the original version. Proving theorem 13.5 is more challenging and

will be discussed in the next chapter after proving the theorem it generalizes.

13.3 Linear Independence and Wronskians

As we saw in section 13.1, determining whether a set of just two solutions {y1, y2} is linearly

independent or not is simply a matter of checking whether one function is a constant multiple of the

other. However, when the set has three or more solutions, {y1, y2, y3, . . .} , then the basic method of

determining linear independence requires checking to see if any of the yk’s is a linear combination

of the others. This can be a difficult task. Fortunately, this task can be simplified by the use of

“Wronskians”.

Definition of Wronskians

Let {y1, y2, . . . , yN } be a set of N sufficiently differentiable functions on an interval (α, β) . The

corresponding Wronskian, denoted by either W or W [y1, y2, . . . , , yN ] , is the function on (α, β)

generated by the following determinant of a matrix of derivatives of the yk’s :

W = W [y1, y2, . . . , , yN ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 · · · yN

y1
′ y2

′ y3
′ · · · yN

′

y1
′′ y2

′′ y3
′′ · · · yN

′′

...
...

...
...

...

y1
(N−1) y2

(N−1) y3
(N−1) · · · yN

(N−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In particular, if N = 2 ,

W = W [y1, y2] =
∣∣∣∣ y1 y2

y1
′ y2

′

∣∣∣∣ = y1 y2
′ − y1

′y2 .

!�Example 13.7: Let’s find W [y1, y2] on the real line when

y1(x) = x2 and y2(x) = x3 .

In this case,

y1
′(x) = 2x and y2

′(x) = 3x2 ,
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and

W [y1, y2] =
∣∣∣∣ y1(x) y2(x)

y1
′(x) y2

′(x)

∣∣∣∣ =
∣∣∣∣∣ x2 x3

2x 3x2

∣∣∣∣∣ = x23x2 − 2xx3 = x4 .

Applications of Wronskians

One reason for our interest in Wronskians is that they naturally arise when solving with initial-value

problems. For example, suppose we have a pair of functions y1 and y2 , and we want to find

constants c1 and c2 such that

y(x) = c1 y1(x) + c2 y2(x)

satisfies

y(x0) = 2 and y′(x0) = 5

for some given point x0 in our interval of interest. In solving for c1 and c2 , you can easily show

(and we will do it in section 14.1) that

c1W (x0) = 2y2
′(x0) − 5y2(x0) and c2W (x0) = 5y1(x0) − 2y1

′(x0) .

Thus, if W (x0) = 0 , then there is exactly one possible value for c1 and one possible value for c2 ,

namely,

c1 = 2y2
′(x0) − 5y2(x0)

W (x0)
and c2 = 5y1(x0) − 2y1

′(x0)

W (x0)
.

However, if W (x0) = 0 , then the system reduces to

0 = 2y2
′(x0) − 5y2(x0) and 0 = 5y1(x0) − 2y1

′(x0)

which cannot be solved for c1 and c2 . (In practice, you probably don’t even notice that your

formulas involve the Wronskian.)

Another reason for our interest — a possibly more important reason — is that the vanishing

of a Wronskian of a set of solutions signals that the given set is not a good choice in constructing

solutions to initial-value problems. The value of this fact is enhanced by the following remarkable

theorem:

Theorem 13.6 (Wronskians and fundamental solution sets)

Let W be the Wronskian of any set {y1, y2, . . . , yN } of N particular solutions to an N th-order,

homogeneous linear differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

on some open interval (α, β) . Assume further that the ak’s are continuous functions with a0 never

being zero on (α, β) . Then:

1. If W (x0) = 0 for any single point x0 in (α, β) , then W (x) = 0 for every point x in (α, β) ,

and the set {y1, y2, . . . , yN } is not linearly independent (and, hence, is not a fundamental

solution set) on (α, β) .

2. If W (x0) = 0 for any single point x0 in (α, β) , then W (x) = 0 for every point x in

(α, β) , and {y1, y2, . . . , yN } is a fundamental set of solutions for the given differential

equation on (α, β) .
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This theorem (whose proof will be discussed in the next chapter) gives us a relatively easy way

to determine if a set of solutions to a linear homogeneous differential equation is a fundamental set

of solutions. This test is especially useful when the order of the differential equation is 3 or higher.

!�Example 13.8: Consider the functions

y1(x) = 1 , y2(x) = cos(2x) and y3(x) = sin2(x) .

You can easily verify that all are solutions (over the entire real line) to the homogeneous third-order

linear differential equation

y′′′ + 4y′ = 0 .

So, is {
1, cos(2x) , sin2(x)

}
a fundamental set of solutions for this differential equation? To check we compute the first-order

derivatives

y1
′(x) = 0 , y2

′(x) = −2 sin(2x) and y3
′(x) = 2 sin(x) cos(x) ,

the second-order derivatives

y1
′′(x) = 0 , y2

′′(x) = −4 cos(2x) and y3
′′(x) = 2 cos2(x)− 2 sin2(x) ,

and form the corresponding Wronskian,

W (x) = W [1, cos(2x) , sin2(x)] =

∣∣∣∣∣∣∣
1 cos(2x) sin2(x)

0 −2 sin(2x) 2 sin(x) cos(x)

0 −4 cos(2x) 2 cos2(x)− 2 sin2(x)

∣∣∣∣∣∣∣ .

Rather than compute this determinant for all values of x (which would be very tedious), let us

simply pick a convenient value for x , say x = 0 , and compute the Wronskian at that point:

W (0) =

∣∣∣∣∣∣∣
1 cos(2 · 0) sin2(0)

0 −2 sin(2 · 0) 2 sin(0) cos(0)

0 −4 cos(2 · 0) 2 cos2(0)− 2 sin2(0)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 1 0

0 0 0

0 −4 2

∣∣∣∣∣∣∣ = 0 .

Theorem 13.6 now assures us that, because this Wronskian vanishes at that one point, it must

vanish everywhere. More importantly for us, this theorem also tells us that {1, cos(2x) , sin2(x)}
is not a fundamental set of solutions for our differential equation.

!�Example 13.9: Now consider the functions

y1(x) = 1 , y2(x) = cos(2x) and y3(x) = sin(2x) .

Again, you can easily verify that all are solutions (over the entire real line) to the homogeneous

third-order linear differential equation

y′′′ + 4y′ = 0 .

So, is

{ 1, cos(2x) , sin(2x)}
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a fundamental set of solutions for our differential equation, above? To check we compute the

appropriate derivatives and form the corresponding Wronskian,

W (x) = W [1, cos(2x) , sin(2x)]

=

∣∣∣∣∣∣∣
y1 y2 y3

y1
′ y2

′ y3
′

y1
′′ y2

′′ y3
′′

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 cos(2x) sin(2x)

0 −2 sin(2x) 2 cos(2x)

0 −4 cos(2x) −2 sin(2x)

∣∣∣∣∣∣∣ .

Letting x = 0 , we get

W (0) =

∣∣∣∣∣∣∣
1 cos(2 · 0) sin(2 · 0)

0 −2 sin(2 · 0) 2 cos(2 · 0)

0 −4 cos(2 · 0) −2 sin(2 · 0)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 1 0

0 0 2

0 −4 0

∣∣∣∣∣∣∣ = 8 = 0 .

Theorem 13.6 assures us that, since this Wronskian is nonzero at one point, it is nonzero ev-

erywhere, and that {1, cos(2x) , sin(2x)} is a fundamental set of solutions for our differential

equation. Hence,

y(x) = c1 · 1 + c2 cos(2x) + c3 sin(2x)

is a general solution to our third-order differential equation.

Additional Exercises

13.2. Several initial-value problems are given below, each involving a second-order homogeneous

linear differential equation, and each with a pair of functions y1(x) and y2(x) . Verify that

each pair {y1, y2} is a fundamental set of solutions to the given differential equation (verify

both that y1 and y2 are solutions and that the pair is linearly independent), and then find

a linear combination of these solutions that satisfies the given initial-value problem.

a. I.v. problem: y′′ + 4y = 0 with y(0) = 2 and y′(0) = 6 .

Functions: y1(x) = cos(2x) and y2(x) = sin(2x) .

b. I.v. problem: y′′ − 4y = 0 with y(0) = 0 and y′(0) = 12 .

Functions: y1(x) = e2x and y2(x) = e−2x .

c. I.v. problem: y′′ + y′ − 6y = 0 with y(0) = 8 and y′(0) = −9 .

Functions: y1(x) = e2x and y2(x) = e−3x .

d. I.v. problem: y′′ − 4y′ + 4y = 0 with y(0) = 1 and y′(0) = 6 .

Functions: y1(x) = e2x and y2(x) = xe2x .

e. I.v. problem: x2 y′′ − 4xy′ + 6y = 0 with y(1) = 0 and y′(1) = 4 .

Functions: y1(x) = x2 and y2(x) = x3 .

f. I.v. problem: 4x2 y′′ + 4xy′ − y = 0 with y(1) = 8 and y′(1) = 1 .

Functions: y1(x) = √
x and y2(x) = 1√

x
.
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g. I.v. problem: x2 y′′ − xy′ + y = 0 with y(1) = 5 and y′(1) = 3 .

Functions: y1(x) = x and y2(x) = x ln |x | .

h. I.v. problem: xy′′ − y′ + 4x3 y = 0

with y(
√
π) = 3 and y′(

√
π) = 4 .

Functions: y1(x) = cos
(

x2
)

and y2(x) = sin
(

x2
)

.

i. I.v. problem: (x + 1)2 y′′ − 2(x + 1)y′ + 2y = 0

with y(0) = 0 and y′(0) = 4 .

Functions: y1(x) = x2 − 1 and y2(x) = x + 1 .

13.3. In exercise 13.2 e, above, you found that {x2, x3} is a fundamental set of solutions to

x2 y′′ − 4xy′ + 6y = 0 ,

at least over some interval containing x0 = 1 .

a. What is the largest interval containing x0 = 1 for which theorem 13.3 on page 270 assures

us
{
x2, x3

}
is a fundamental set of solutions to the above differential equation?

b. Attempt to find constants c1 and c2 so that

y(x) = c1x2 + c2x3

satisfies the initial conditions

y(0) = 0 and y′(0) = −4 .

What goes wrong? Why does this not violate the claim in theorem 13.3 about initial-value

problems being solvable?

13.4. In exercise 13.2 h, above, you found that
{
cos

(
x2
)
, sin

(
x2
)}

is a fundamental set of solu-

tions to

xy′′ − y′ + 4x3 y = 0 ,

at least over some interval containing x0 = π .

a. What is the largest interval containing x0 = π that theorem 13.3 on page 270 assures us{
cos

(
x2
)
, sin

(
x2
)}

is a fundamental set of solutions to the above differential equation?

b. Attempt to find constants c1 and c2 so that

y(x) = c1 cos
(

x2
)

+ c2 sin
(

x2
)

satisfies the initial conditions

y(0) = 1 and y′(0) = 4 .

What goes wrong? Why does this not violate the claim in theorem 13.3 about initial-value

problems being solvable?

13.5. Some third- and fourth-order initial-value problems are given below, each involving a ho-

mogeneous linear differential equation, and each with a set of three or four functions y1(x) ,

y2(x) , . . . . Verify that these functions form a fundamental set of solutions to the given

differential equation, and then find a linear combination of these solutions that satisfies the

given initial-value problem.
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a. I.v. problem: y′′′ + 4y′ = 0

with y(0) = 3 , y′(0) = 8 and y′′(0) = 4 .

Functions: y1(x) = 1 , y2(x) = cos(2x) and y3(x) = sin(2x) .

b. I.v. problem: y′′′ + 4y′ = 0

with y(0) = 3 , y′(0) = 8 and y′′(0) = 4 .

Functions: y1(x) = 1 , y2(x) = sin2(x) and y3(x) = sin(x) cos(x) .

c. I.v. problem: y(4) − y = 0

with y(0) = 0 , y′(0) = 4 , y′′′(0) = 0 and y′′(0) = 0 .

Functions: y1(x) = cos(x) , y2(x) = sin(x) , y3(x) = cosh(x)

and y4(x) = sinh(x) .

13.6. Particular solutions to the differential equation in each of the following initial-value prob-

lems can found by assuming

y(x) = er x

where r is a constant to be determined. To determine these constants, plug this formula for

y into the differential equation, observe that the resulting equation miraculously simplifies

to a simple algebraic equation for r , and solve for the possible values of r .

Do that with each equation and use those solutions (with the big theorem on general

solutions to second order, homogeneous linear equations —theorem 13.3 on page 270)

to construct a general solution to the differential equation. Then, finally, solve the given

initial-value problem.

a. y′′ − 4y = 0 with y(0) = 1 and y′(0) = 0

b. y′′ + 2y′ − 3y = 0 with y(0) = 0 and y′(0) = 1

c. y′′ − 10y′ + 9y = 0 with y(0) = 8 and y′(0) = −24

d. y′′ + 5y′ = 0 with y(0) = 1 and y′(0) = 0

13.7. Find solutions of the form

y(x) = er x

where r is a constant (as in the previous exercise) and use the solutions found (along with

the results given in theorem 13.5 on page 272) to construct general solutions to the following

differential equations:

a. y′′′ − 9y′ = 0 b. y(4) − 10y′′ + 9y = 0

13.8. Thus far, we’ve derived two general solutions to

y′′ + y = 0 .

In chapter 11 we obtained

y(x) = A sin(x + B) ,

and in this chapter, we got

y(x) = c1 sin(x) + c2 cos(x) .

Using a well-known trigonometric identity, verify that these two solutions are equivalent,

and find how c1 and c2 are related to A and B .
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13.9. Let y1 and y2 be the following functions on the entire real line:

y1(x) =
{

−x2 if x < 0

x2 if 0 ≤ x
and y2(x) =

{
x2 if x < 0

3x2 if 0 ≤ x
.

a. Verify that

i. {y1, y2} is not linearly dependent on the entire real line, but

ii. the Wronskian for {y1, y2} is zero over the entire real line (even at x = 0 ).

b. Why do the results in the previous part not violate theorem 13.6 on page 274?

c. Is there an interval (α, β) on which {y1, y2} is linearly dependent?

13.10. Let {y1, y2} be a linearly independent pair of solutions over an interval (α, β) to some

second-order homogeneous linear differential equation

ay′′ + by′ + cy = 0 .

As usual, assume a , b and c are continuous functions on (α, β) with a never being zero

over that interval. Also, as usual, let

W = W [y1, y2] = y1 y2
′ − y1

′y2 .

Do the following, using the fact that W is never zero on (α, β) .

a. Show that, if y1(x0) = 0 for some x0 in (α, β) , then y1
′(x0) = 0 and y2(x0) = 0 .

b. Show that, if y1
′(x0) = 0 for some x0 in (α, β) , then y1(x0) = 0 and y2

′(x0) = 0 .

c. Why can we not have W (x) > 0 for some x in (α, β) and W (x) < 0 for other x in

(α, β) ? That is, explain (briefly) why we must have either

W (x) > 0 for all x in (α, β)

or

W (x) < 0 for all x in (α, β) .

d. For the following, assume W (x) > 0 for all x in (α, β) .3 Let [α0, β0] be a closed

subinterval of (α, β) such that

y1(α0) = 0 , y1(β0) = 0

and

y1(x) > 0 whenever α0 < x < β0 .

i. How do we know that neither y1
′(α0) nor y1

′(β0) are zero? Which one is positive?

Which one is negative? (It may help to draw a rough sketch of the graph of y1 based

on the above information.)

ii. Using the Wronskian, determine if y2(α0) is positive or negative. Then determine if

y2(β0) is positive or negative.

3 Similar results can be derived assuming W (x) < 0 for all x in (α, β) .
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iii. Now show that there must be a point x0 in the open interval (α0, β0) at which y2 is

zero.

(What you’ve just shown is that there must be a zero of y2 between any two zeroes α0 and

β0 of y1 . You can easily expand this to the following statement:

Between any two zeroes of y1 is a zero of y2 , and, likewise, between any two

zeroes of y2 is a zero of y1 .

This tells us something about the graphs of linearly independent pairs of solutions to second-

order homogeneous differential equations. It turns out to be an important property of these

solution pairs when considering a type of differential equation problem involving the values

of solutions at pairs of points, instead of at single points.)
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Verifying the Big Theorems and an
Introduction to Differential Operators

There are two parts to this chapter. The first (sections 14.1 and 14.2) is a discussion of the proofs of the

main theorems in the last chapter. To be precise, section 14.1 contains a fairly complete verification

of theorem 13.3 (the big theorem on second-order, homogeneous linear differential equations), along

with a partial verification of theorem 13.6 on Wronskians, while section 14.2 contains a rather brief

discussion on generalizing the results just verified in section 14.1.

The rest of the chapter is devoted to a fairly elementary development of “linear differential

operators”. This material provides a slightly different perspective on linear differential equations,

and can be enlightening to the careful reader (and confusing to the less careful reader). In addition,

this material will make it easier to prove a few more advanced results later on in this text.

To be honest, most beginning students of differential equations can probably skip this chapter

and go straight to the next chapter where we actually develop methods for completely solving a large

number of important differential equations. In fact, it may be better to do so, promising yourself to

return to this chapter as the need or interest arises.

14.1 Verifying the Big Theorem on Second-Order,
Homogeneous Equations

Our main goal is to verify theorem 13.3 on page 270. Accordingly, throughout this section we will

assume the basic assumptions of that theorem, namely, that we have an open interval (α, β) and

functions a , b and c that are continuous on (α, β) with a never being zero on this interval. With

these assumptions, we will explore what we can about solutions to the second-order homogeneous

linear differential equation

ay′′ + by′ + cy = 0 .

Incidentally, along the way, we will also verify the claim concerning Wronskians in theorem 13.6

for the case where N = 2 .

Linear Independence, Initial-Value Problems and Wronskians

Much of our analysis will reduce to being able to solve any initial-value problem

ay′′ + by′ + cy = 0 with y(x0) = A and y′(x0) = B (14.1)

281
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where x0 is some point in (α, β) , and A and B are any two real numbers. Recall that lemma 13.2

on page 267 assures us that any such initial-value problem has one and only one solution.

Solving Initial-Value Problems

Until further notice, we will assume that we have a pair of solutions over (α, β)

{ y1, y2 }
to our differential equation

ay′′ + by′ + cy = 0 .

By the principle of superposition (theorem 13.1 on page 264), we know that any linear combination

of these two solutions

y(x) = c1 y1(x) + c2 y2(x) for all x in (α, β)

is also a solution to our differential equation. Now let us consider solving initial-value problem

(14.1) using this linear combination.

As already noted, this linear combination satisfies our differential equation. So all we need to

do is to find constants c1 and c2 such that

A = y(x0) = c1 y1(x0) + c2 y2(x0)

and

B = y′(x0) = c1 y1
′(x0) + c2 y2

′(x0) .

That is, we need to solve the linear algebraic system of two equations

c1 y1(x0) + c2 y2(x0) = A

c1 y1
′(x0) + c2 y2

′(x0) = B

for c1 and c2 . But this is easy. Start by multiplying each equation by y2
′(x0) or y2(x0) , as

appropriate:[
c1 y1(x0)+ c2 y2(x0) = A

]
y2

′(x0)[
c1 y1

′(x0)+ c2 y2
′(x0) = B

]
y2(x0)

�⇒
c1 y1(x0)y2

′(x0) + c2 y2(x0)y2
′(x0) = Ay2

′(x0)

c1 y1
′(x0)y2(x0) + c2 y2

′(x0)y2(x0) = By2(x0)

Subtracting the second equation from the first (and looking carefully at the results) yields

c1

[
y1(x0)y2

′(x0)− y1
′(x0)y2(x0)︸ ︷︷ ︸

W (x0)

] + c2

[
y2(x0)y2

′(x0)− y2
′(x0)y2(x0)︸ ︷︷ ︸

0

]
= Ay2

′(x0) − By2(x0) .

That is,

c1W (x0) = Ay2
′(x0) − By2(x0) (14.2a)

where W is the Wronskian of function pair {y1, y2} , which (as you may recall from section 13.3),

is the function on (α, β) given by

W = W [y1, y2] = y1 y2
′ − y1

′y2 .

Similar computations yield

c2W (x0) = By1(x0) − Ay1
′(x0) . (14.2b)
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Observe that, if W (x0) = 0 , then there is exactly one possible value for c1 and one possible value

for c2 , namely,

c1 = Ay2
′(x0) − By2(x0)

W (x0)
and c2 = By1(x0) − Ay1

′(x0)

W (x0)
.

On the other hand, if W (x0) = 0 , then system (14.2) reduces to

0 = Ay2
′(x0) − By2(x0) and 0 = By1(x0) − Ay1

′(x0)

which cannot be solved for c1 and c2 . If the right sides of these last two equations just happen to

both be 0 , then the values of c1 and c2 are irrelevant — any values work. And if either right-hand

side is nonzero, then no values for c1 and c2 will work.

The fact that the solvability of the above initial-value problem depends entirely on whether

W (x0) is zero or not is an important fact. Let us enshrine this fact in a lemma for later reference.

Lemma 14.1 (Wronskians and initial-value problems)

Let x0 , A and B be any three fixed real values with x0 in (α, β) , and assume {y1, y2} is a pair

of functions differentiable at x0 . Also, let W be the Wronskian of {y1, y2} ,

W = y1 y2
′ − y1

′y2 .

Then the problem of finding constants c1 and c2 such that

y = c1 y1 + c2 y2

satisfies the system

y(x0) = A and y′(x0) = B

has exactly one solution (i.e., exactly one choice for c1 and exactly one choice for c2 ) if and only

if W (x0) = 0 .

Wronskians and Linear Independence

It turns out that the Wronskian of {y1, y2} provides an alternative test for determining whether this

pair of solutions is linearly dependent or linearly independent. To start, suppose {y1, y2} is linearly

dependent. Then either at least one of these functions, say, y1 , is a constant multiple of the other

function; that is, for some constant κ ,

y1(x) = κy2(x) for all x in (α, β) .

This, of course, means that

y1
′(x) = κ y2

′(x) for all x in (α, β) .

Thus,

W = y1 y2
′ − y1

′y2 = κy2 y2
′ − κ y2

′y2 = 0 .

So,
{y1, y2} is linearly dependent over (α, β)

�⇒ W = 0 everywhere on (α, β) .
(14.3a)

With a little thought, you’ll realize that this is equivalent to

W = 0 somewhere on (α, β)

�⇒ {y1, y2} is linearly independent over (α, β) .
(14.3b)
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Showing that the above implications still hold with the arrows reversed requires a bit more

work. To simplify that work, let’s first prove the following two corollaries of lemma 13.2 on page

267:

Corollary 14.2

Let x0 be a point in an interval (α, β) , and assume a , b and c are continuous functions on (α, β)

with a never being zero in (α, β) . Then the only solution to

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 0 .

is the trivial solution,

y(x) = 0 for all x in (α, β) .

PROOF: The trivial solution is certainly a solution to the given initial-value problem, and lemma

13.2 assures us that this solution is the only solution.

Corollary 14.3

Let x0 be a point in an interval (α, β) , and assume a , b and c are continuous functions on (α, β)

with a never being zero in (α, β) . Assume that {y1, y2} is a pair of solutions on (α, β) to

ay′′ + by′ + cy = 0 .

If there is a point x0 in (α, β) and a constant κ such that

y1(x0) = κy2(x0) and y1
′(x0) = κ y2

′(x0) ,

then

y1(x) = κy2(x) for all x in (α, β)

and, hence, the pair {y1, y2} is linearly dependent on (α, β) .

PROOF: Observe that both y = y1 and y = κy2 satisfy the same initial-value problem,

ay′′ + by′ + cy = 0 with y(x0) = A and y′(x0) = B

where

A = y1(x0) and B = y1
′(x0) .

Again, lemma 13.2 tells us that this initial-value problem only has one solution. Hence y = y1 and

y = κy2 must be the same, and the claims in the corollary follow immediately.

Now suppose the Wronskian of our pair {y1, y2} of solutions to our differential equation is

zero at some point x0 in (α, β) . That is,

W (x0) = y1(x0)y2
′(x0) − y2(x0)y1

′(x0) = 0 for some x0 in (α, β) .

This, of course, means that

y1(x0)y2
′(x0) = y2(x0)y1

′(x0) . (14.4)

Let us consider all the possibilities. For simplicity, we will start by assuming y2(x0) = 0 :
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1. If y2(x0) = 0 and y1
′(x0) = 0 , then equation (14.4) yields

y1(x0)y2
′(x0) = y2(x0)y1

′(x0) = 0 ,

implying that y1(x0) = 0 and y2
′(x0) = 0 . Consequently, we can divide both sides of this

equation by these two values and set

κ = y1(x0)

y2(x0)
= y1

′(x0)

y2
′(x0)

.

Thus, κ is a constant such that

y1(x0) = κy2(x0) and y1
′(x0) = κ y2

′(x0) ,

and corollary 14.3 tells us that {y1, y2} is linearly dependent.

2. If y2(x0) = 0 and y1
′(x0) = 0 , then equation (14.4) yields

y1(x0)y2
′(x0) = y2(x0)y1

′(x0) = y2(x0) · 0 = 0 ,

telling us that y1(x0) = 0 or y2
′(x0) = 0 .

(a) But if y1(x0) = 0 , then y1 is the solution to

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 0 ,

which, as noted in corollary 14.2 means that y1 is the trivial solution, automatically

making {y1, y2} linearly dependent.

(b) On the other hand, if y2
′(x0) = 0 , then we can set

κ = y1(x0)

y2(x0)
.

This, along with the fact that y1
′(x0) = 0 and y2

′(x0) = 0 gives us

y1(x0) = κy2(x0) and y1
′(x0) = κ y2

′(x0) ,

and corollary 14.3 tells us that {y1, y2} is linearly dependent.

From the above it follows that {y1, y2} must be linearly dependent if we have both W (x0) = 0 and

y2(x0) = 0 . Now let’s assume W (x0) = 0 and y2(x0) = 0 . Equation (14.4) still holds, but, this

time, yields

y1(x0)y2
′(x0) = y2(x0)y1

′(x0) = 0 · y1
′(x0) = 0 ,

which means that y1(x0) = 0 or y2
′(x0) = 0 .

1. If y2(x0) = 0 and y2
′(x0) = 0 , then y2 satisfies

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 0 .

Again, corollary 14.2 tells us that y1 is the trivial solution, automatically making {y1, y2}
linearly dependent.

2. On the other hand, if y2(x0) = 0 , y2
′(x0) = 0 and y1(x0) = 0 , then we can set

κ = y1
′(x0)

y2
′(x0)

and observe that, from this and the fact that y1(x0) = 0 = y2(x0) , we have

y1(x0) = κy2(x0) and y1
′(x0) = κ y2

′(x0) ,

which, according to corollary 14.3, means that {y1, y2} is linearly dependent.
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Thus, we have that {y1, y2} is linearly dependent whenever W (x0) = 0 whether or not y2(x0) = 0 .

That is,

W (x0) = 0 for some x0 in (α, β)

�⇒ {y1, y2} is linearly dependent over (α, β) .
(14.5a)

Equivalently,

{y1, y2} is linearly independent over (α, β)

�⇒ W (x) = 0 for every x in (α, β) .
(14.5b)

Linearly Independent Pairs and General Solutions

Now assume that our pair of solutions {y1, y2} is linearly independent over (α, β) , and let ŷ be any

single solution to our differential equation. Pick some x0 in (α, β) , and consider the initial-value

problem

ay′′ + by′ + cy = 0 with y(x0) = A and y′(x0) = B

where

A = ŷ(x0) and B = ŷ ′(x0) .

Clearly, y = ŷ is a solution to the initial-value problem.

On the other hand, implication (14.5b) tells us that, since {y1, y2} is linearly independent, the

corresponding Wronskian is nonzero at x0 , and lemma 14.1 and the principle of superposition then

assure us that there are constants c1 and c2 such that

y = c1 y1 + c2 y2

is also a solution to this same initial-value problem. So we have “two” solutions to our initial-value

problem,

ŷ and y = c1 y1 + c2 y2

But (by lemma 13.2 on page 267) we know this initial-value problem only has one solution. This

means our two solutions must be the same,

ŷ(x) = c1 y1(x) + c2 y2(x) for every x in (α, β) .

Hence, any solution to our differential equation can be written as a linear combination of y1 and

y2 . This shows that

{y1, y2} is linearly independent over (α, β)

�⇒ y = c1 y1 + c2 y2 is a general solution to our differential equation ,
(14.6)

which, incidentally, means that the linearly independent pair {y1, y2} is a fundament set of solutions

for our differential equation.

Summarizing the Results So Far

Combining the results given in lemma 14.1 and implications (14.3), (14.5) and (14.6) gives us the

following lemma.

Lemma 14.4

Assume a , b and c are continuous functions on an interval (α, β) with a never being zero in

(α, β) , and let {y1, y2} be a pair of solutions on (α, β) to

ay′′ + by′ + cy = 0 .

Then all of the following statements are equivalent (i.e., if one holds, they all hold):
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1. The pair {y1, y2} is linearly independent on (α, β) .

2. The Wronskian of {y1, y2} ,

W = y1 y2
′ − y2 y1

′ ,

is nonzero at one point in (α, β) .

3. The Wronskian of {y1, y2} ,

W = y1 y2
′ − y2 y1

′ ,

is nonzero at every point in (α, β) .

4. Given any point x0 in (α, β) and any two fixed values A and B , there is exactly one

ordered pair of constants {c1, c2} such that

y(x) = c1 y1(x) + c2 y2(x)

also satisfies the initial conditions

y(x0) = A and y′(x0) = B .

5. The arbitrary linear combination of y1 and y2 ,

y = c1 y1 + c2 y2 ,

is a general solution for the above differential equation.

6. The pair {y1, y2} is a fundamental set of solutions for the above differential equation.

If you check, you will see that most of our “big theorem”, theorem 13.3, follows immediately

from this lemma, as does the theorem on Wronskians, theorem 13.6, for the case where N = 2 .

Proving the Rest of Theorem 13.3

All that remains to achieving our goal of verifying theorem 13.3 is to verify that fundamental sets of

solutions exist, and that a fundamental set of solutions must contain exactly two solutions. Verifying

these two facts will be easy.

Existence of Fundamental Sets

Let x0 be some point in (α, β) , and let y1 and y2 be, respectively, the solutions to the initial-value

problems

ay′′ + by′ + cy = 0 with y(x0) = 1 and y′(x0) = 0

and

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 1 .

(By lemma 13.2, we know these solutions exist.) Computing their Wronskian at x0 , we get

W (x0) = y1(x0)y2
′(x0) − y2(x0)y1

′(x0) = 1 · 1 − 0 · 0 = 0 ,

which, according to lemma 14.4, means that {y1, y2} is a fundamental set of solutions to our

differential equation.
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Size of Fundamental Sets of Solutions

It should be clear that we cannot solve every initial-value problem

ay′′ + by′ + cy = 0 with y(x0) = A and y′(x0) = B

using a linear combination of a single particular solution y1 of the differential equation. After all,

just try finding a constant c1 so that

y(x) = c1 y1(x)

satisfies

ay′′ + by′ + cy = 0 with y(x0) = A and y′(x0) = B

when

A = y1(x0) and B = 1 + y1
′(x0) .

So a fundamental set of solutions for our differential equation must contain at least two solutions.

On the other hand, if anyone were to propose the existence of a fundamental solution set of

more than two solutions

{ y1, y2, y3, . . . } ,

then the required linear independence of the set (i.e., that no solution in this set is a linear combination

of the others) would automatically imply that the set of just the first two solutions,

{ y1, y2} ,

is also linearly independent. But then lemma 14.4 tells us that this smaller set is a fundamental

set of solutions for our differential equation, and that every other solution, including the y3 in the

set originally proposed, is a linear combination of y1 and y2 . Hence, the originally proposed set

of three or more solutions cannot be linearly independent, and, hence, is not a fundamental set of

solutions for our differential equation.

So, a fundamental set of solutions for a second-order, homogeneous linear differential equation

cannot contain less than two solutions or more than two solutions. It must contain exactly two

solutions.

And that completes our proof of theorem 13.3.

14.2 Proving the More General Theorems on General
Solutions and Wronskians

Extending the discussion in the previous section into proofs of the more general theorems in chapter

13 (theorem 13.5 on page 272 and theorem 13.6 on page 274) is relatively straightforward provided

you make use of some basic facts normally developed in a good introductory course on linear algebra.

We will discuss this further (and briefly) in section 35.6 in the context of “systems of differential

equations”.
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14.3 Linear Differential Operators
The Operator Associated with a Linear Differential Equation

Sometimes, when given some N th-order linear differential equation

a0
d N y

dx N
+ a1

d N−1 y

dx N−1
+ · · · + aN−2

d2 y

dx2
+ aN−1

dy

dx
+ aN y = g ,

it is convenient to let L[y] denote the expression on the left side, whether or not y is a solution to

the differential equation. That is, for any sufficiently differentiable function y ,

L[y] = a0
d N y

dx N
+ a1

d N−1 y

dx N−1
+ · · · + aN−2

d2 y

dx2
+ aN−1

dy

dx
+ aN y .

To emphasize that y is a function of x , we may also use L[y(x)] instead of L[y] . For much

of what follows, y need not be a solution to the given differential equation, but it does need to be

sufficiently differentiable on the interval of interest for all the derivatives in the formula for L[y] to

make sense.

While we defined L[y] as the left side of the above differential equation, the expression for

L[y] is completely independent of the equation’s right side. Because of this and the fact that the

choice of y is largely irrelevant to the basic definition, we will often just define “ L ” by stating

L = a0
d N

dx N
+ a1

d N−1

dx N−1
+ · · · + aN−2

d2

dx2
+ aN−1

d

dx
+ aN

where the ak’s are functions of x on the interval of interest.1

!�Example 14.1: If our differential equation is

d2 y

dx2
+ x2 dy

dx
− 6y =

√
x + 1 ,

then

L = d2

dx2
+ x2 d

dx
− 6 ,

and, for any twice-differentiable function y = y(x) ,

L[y(x)] = L[y] = d2 y

dx2
+ x2 dy

dx
− 6y .

In particular, if y = sin(2x) , then

L[y] = L
[

sin(2x)
] = d2

dx2

[
sin(2x)

] + x2 d

dx

[
sin(2x)

] − 6
[

sin(2x)
]

= −4 sin(2x) + x2 · 2 cos(2x) − 6 sin(2x)

= 2x2 cos(2x) − 10 sin(2x) .

1 If using “ L ” is just too much shorthand for you, observe that the formulas for L can be written in summation form:

L[y] =
N∑

k=0

ak
d N−k y

dx N−k
and L =

N∑
k=0

ak
d N−k

dx N−k
.

You can use these summation formulas instead of “ L ” if you wish.



�

�

�

�

�

�

�

�

290 Verifying the Big Theorems and an Introduction to Differential Operators

Observe that L is something into which we plug a function (such as the sin(2x) in the above

example) and out of which pops another function (which, in the above example, ended up being

2x2 cos(2x) − 10 sin(2x) ). Anything that so converts one function into another is often called

an operator (on functions), and since the general formula for computing L[y] looks like a linear

combination of differentiations up to order N ,

L[y] = a0
d N y

dx N
+ a1

d N−1 y

dx N−1
+ · · · + aN−2

d2 y

dx2
+ aN−1

dy

dx
+ aN y ,

it is standard to refer to L as a linear differential operator (of order N ).

We should also note that our linear differential operators are “linear” in the sense normally

defined in linear algebra:

Lemma 14.5

Assume L is a linear differentiable operator

L = a0
d N

dx N
+ a1

d N−1

dx N−1
+ · · · + aN−2

d2

dx2
+ aN−1

d

dx
+ aN

where the ak’s are functions on some interval (α, β) . If y1 and y2 are any two sufficiently

differentiable functions on (α, β) , and c1 and c2 are any two constants, then

L[c1 y1 + c2 y2] = c1L[y1] + c2L[y2] .

To prove this lemma, you basically go through the same computations as used to derive the

principle of superposition (see the derivations just before theorem 13.1 on page 264).

The Composition Product
Definition and Notation

The (composition) product L2L1 of two linear differential operators L1 and L2 is the differential

operator given by

L2L1[φ] = L2

[
L1[φ]]

for every sufficiently differentiable function φ = φ(x) .2

!�Example 14.2: Let

L1 = d

dx
+ x2 and L2 = d

dx
+ 4 .

For any twice-differentiable function φ = φ(x) , we have

L2L1[φ] = L2 [L1[φ]] = L2

[
dφ

dx
+ x2φ

]
= d

dx

[
dφ

dx
+ x2φ

]
+ 4

[
dφ

dx
+ x2φ

]
= d2φ

dx2
+ d

dx

[
x2φ

]
+ 4

dφ

dx
+ 4x2φ

= d2φ

dx2
+ 2xφ + x2 dφ

dx
+ 4

dφ

dx
+ 4x2φ

= d2φ

dx2
+

(
4 + x2

)
dφ

dx
+

(
2x + 4x2

)
φ .

2 The notation L2 � L1 , instead of L2 L1 would also be correct.
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Cutting out the middle yields

L2L1[φ] = d2φ

dx2
+

(
4 + x2

)
dφ

dx
+

(
2x + 4x2

)
φ

for every sufficiently differentiable function φ . Thus

L2L1 = d2

dx2
+

(
4 + x2

)
d

dx
+

(
2x + 4x2

)
.

When we have formulas for our operators L1 and L2 , it will often be convenient to replace

the symbols “ L1 ” and “ L2 ” with their formulas enclosed in parentheses. We will also enclose any

function φ being “plugged into” the operators with square brackets, “ [φ] ”. This will be called the

product notation.3

!�Example 14.3: Using the product notation, let us recompute L2L1 for

L1 = d

dx
+ x2 and L2 = d

dx
+ 4 .

Letting φ = φ(x) be any twice-differentiable function,(
d

dx
+ 4

) (
d

dx
+ x2

)
[φ] =

(
d

dx
+ 4

) [
dφ

dx
+ x2φ

]
= d

dx

[
dφ

dx
+ x2φ

]
+ 4

[
dφ

dx
+ x2φ

]
= d2φ

dx2
+ d

dx

[
x2φ

]
+ 4

dφ

dx
+ 4x2φ

= d2φ

dx2
+ 2xφ + x2 dφ

dx
+ 4

dφ

dx
+ 4x2φ

= d2φ

dx2
+

(
4 + x2

)
dφ

dx
+

(
2x + 4x2

)
φ .

So,

L2L1 =
(

d

dx
+ 4

) (
d

dx
+ x2

)
= d2

dx2
+

(
4 + x2

)
d

dx
+

(
2x + 4x2

)
,

just as derived in the previous example.

Algebra of the Composite Product

The notation L2L1[φ] is convenient, but it is important to remember that it is shorthand for

compute L1[φ] and plug the result into L2 .

3 Many authors do not enclose “the function being plugged in” in square brackets, and just write L2 L1φ . We are avoiding

that because it does not explicitly distinguish between “φ as a function being plugged in” and “φ as an operator, itself”. For

the first, L2 L1φ means the function you get from computing L2

[
L1[φ]] . For the second, L2 L1φ means the operator

such that, for any sufficiently differentiable function ψ ,

L2

[
L1 [φ[ψ]]] = L2

[
L1[φψ]] .

The two possible interpretations for L2 L1φ are not the same.
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The result of this can be quite different from

compute L2[φ] and plug the result into L1 ,

which is what L1L2[φ] means. Thus, in general,

L2L1 = L1L2 .

In other words, the composition product of differential operators is generally not commutative.

!�Example 14.4: In the previous two examples, we saw that(
d

dx
+ 4

) (
d

dx
+ x2

)
= d2

dx2
+

(
4 + x2

)
d

dx
+

(
2x + 4x2

)
.

On the other hand, switching the order of the two operators, and letting φ be any sufficiently

differentiable function gives(
d

dx
+ x2

) (
d

dx
+ 4

)
[φ] =

(
d

dx
+ x2

) [
dφ

dx
+ 4φ

]
= d

dx

[
dφ

dx
+ 4φ

]
+ x2

[
dφ

dx
+ 4φ

]
= d2φ

dx2
+ 4

dφ

dx
+ x2 dφ

dx
+ 4x2φ

= d2φ

dx2
+

(
4 + x2

)
dφ

dx
+ 4x2φ .

Thus, (
d

dx
+ x2

) (
d

dx
+ 4

)
= d2

dx2
+

(
4 + x2

)
d

dx
+ 4x2 .

After comparing this with the first equation in this example, we clearly see that(
d

dx
+ x2

) (
d

dx
+ 4

)
=

(
d

dx
+ 4

) (
d

dx
+ x2

)
.

?�Exercise 14.1: Let

L1 = d

dx
and L2 = x ,

and verify that

L2L1 = x
d

dx
while L1L2 = x

d

dx
+ 1 .

Later (in chapters 17 and 20) we will be dealing with special situations in which the composition

product is commutative. In fact, the material we are now developing will be most useful verifying

certain theorems involving those situations. In the meantime, just remember that, in general,

L2L1 = L1L2 .

Here are a few other short and easily verified notes about the composition product:

1. In the above examples, the operators L2 and L1 were all first order differential operators.

This was not necessary. We could have used, say,

L2 = x3 d3

dx3
+ sin(x)

d2

dx2
− xe3x d

dx
+ 87

√
x
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and

L1 = d26

dx26
− x3 d3

dx3
,

though we would have certainly needed many more pages for the calculations.

2. There is no need to limit ourselves to composition products of just two operators. Given any

number of linear differential operators — L1 , L2 , L3 , . . . — the composition products

L3L2L1 , L4L3L2L1 , etc. are defined to be the differential operators satisfying, for each

and every sufficiently differentiable function φ ,

L3L2L1[φ] = L3

[
L2

[
L1[φ]]] ,

L4L3L2L1[φ] = L4

[
L3

[
L2

[
L1[φ]]]] ,

...

Naturally, the order of the operators is still important.

3. Any composition product of linear differential operators is, itself, a linear differential operator.

Moreover, the order of the product

L K · · · L2L1

is the sum

(the order of L K ) + · · · + (the order of L2) + (the order of L1) .

4. Though not commutative, the composition product is associative. That is, if L1 , L2 and L3

are three linear differential operators, and we ‘precompute’ the products L2L1 and L3L2 ,

and then compute

(L3L2)L1 , L3(L2L1) and L3L2L1 ,

we will discover that

(L3L2)L1 = L3(L2L1) = L3L2L1 .

5. Keep in mind that we are dealing with linear differential operators and that their products are

linear differential operators. In particular, if α is some constant and φ is any sufficiently

differentiable function, then

L K · · · L2L1[αφ] = αL K · · · L2L1[φ] .

And, of course,

L K · · · L2L1[0] = 0 .

Factoring

Now suppose we have some linear differential operator L . If we can find other linear differential

operators L1 , L2 , L3 , . . . , and L K such that

L = L K · · · L2L1 ,
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then, in analogy with the classical concept of factoring, we will say that we have factored the operator

L . The product L N · · · L2L1 will be called a factoring of L , and we may even refer to the individual

operators L1 , L2 , L3 , . . . and L N as factors of L . Keep in mind that, because composition

multiplication is order dependent, it is not usually enough to simply specify the factors. The order

must also be given.

!�Example 14.5: In example 14.3, we saw that

d2

dx2
+

(
4 + x2

)
d

dx
+

(
2x + 4x2

)
=

(
d

dx
+ 4

) (
d

dx
+ x2

)
.

So (
d

dx
+ 4

) (
d

dx
+ x2

)
is a factoring of

d2

dx2
+

(
4 + x2

)
d

dx
+

(
2x + 4x2

)
with factors

d

dx
+ 4 and

d

dx
+ x2 .

In addition, from example 14.4 we know

d2

dx2
+

(
4 + x2

)
d

dx
+ 4x2 =

(
d

dx
+ x2

) (
d

dx
+ 4

)
.

Thus
d

dx
+ x2 and

d

dx
+ 4

are also factors for
d2

dx2
+

(
4 + x2

)
d

dx
+ 4x2 ,

but the factoring here is (
d

dx
+ x2

) (
d

dx
+ 4

)
.

Let’s make a simple observation. Assume a given linear differential operator L can be factored

as L = L K · · · L2L1 . Assume, also, that y1 = y1(x) is a function satisfying

L1[y1] = 0 .

Then

L[y1] = L K · · · L2L1[y1] = L K · · · L2

[
L1[y1]

] = L K · · · L2[0] = 0 .

This proves the following theorem:

Theorem 14.6

Let L be a linear differential operator with factoring L = L K · · · L2L1 . Then any solution to

L1[y] = 0

is also a solution to

L[y] = 0 .

Warning: On the other hand, if, say, L = L2L1 , then solutions to L2[y] = 0 will usually not

be solutions to L[y] = 0 .
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!�Example 14.6: Consider

d2 y

dx2
+

(
4 + x2

)
dy

dx
+ 4x2 y = 0 .

As derived in example 14.4,

d2

dx2
+

(
4 + x2

)
d

dx
+ 4x2 =

(
d

dx
+ x2

) (
d

dx
+ 4

)
.

So our differential equation can be written as

(
d

dx
+ x2

) (
d

dx
+ 4

)
[y] = 0 .

That is, (
d

dx
+ x2

) [
dy

dx
+ 4y

]
= 0 . (14.7)

Now consider

dy

dx
+ 4y = 0 .

This is a simple first-order linear and separable differential equation, whose general solution is

easily found to be y = c1e−4x . In particular, e−4x is a solution. According to the above theorem,

e−4x is also a solution to our original differential equation. Let’s check to be sure:

d2

dx2

[
e−4x

] +
(

4 + x2
)

d

dx

[
e−4x

] + 4x2 e−4x =
(

d

dx
+ x2

) (
d

dx
+ 4

) [
e−4x

]
=

(
d

dx
+ x2

) [
d

dx

[
e−4x

]
+ 4e−4x

]
=

(
d

dx
+ x2

) [
−4e−4x + 4e−4x

]
=

(
d

dx
+ x2

)
[0]

= d0

dx
+ x2 · 0

= 0 .

Keep in mind, though, that e−4x is simply one of the possible solutions, and that there will be

solutions not given by c1e−4x .

Unfortunately, unless it is of an exceptionally simple type (such as considered in chapter 17),

factoring a linear differential operator is a very nontrivial problem. And even with those simple types

that we will be able to factor, we will find the main value of the above to be in deriving even simpler

methods for finding solutions. Consequently, in practice, you should not expect to be solving many

differential equations via “factoring”.
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Additional Exercises

14.2 a. State the linear differential operator L corresponding to the left side of

d2 y

dx2
+ 5

dy

dx
+ 6y = 0 .

b. Using this L , compute each of the following:

i. L[sin(x)] ii. L
[
e4x

]
iii. L

[
e−3x

]
iv. L

[
x2
]

c. Based on the answers to the last part, what is one solution to the differential equation in

part a?

14.3 a. State the linear differential operator L corresponding to the left side of

d2 y

dx2
− 5

dy

dx
+ 9y = 0 .

b. Using this L , compute each of the following:

i. L[sin(x)] ii. L[sin(3x)] iii. L
[
e2x

]
iv. L

[
e2x sin(x)

]
14.4 a. State the linear differential operator L corresponding to the left side of

x2 d2 y

dx2
+ 5x

dy

dx
+ 6y = 0 .

b. Using this L , compute each of the following:

i. L[sin(x)] ii. L
[
e4x

]
iii. L

[
x3
]

14.5 a. State the linear differential operator L corresponding to the left side of

d3 y

dx3
− sin(x)

dy

dx
+ cos(x) y = x2 + 1 ,

b. and then, using this L , compute each of the following:

i. L[sin(x)] ii. L[cos(x)] iii. L
[
x2
]

14.6. Several choices for linear differential operators L1 and L2 are given below. For each

choice, compute L2L1 and L1L2 .

a. L1 = d

dx
+ x and L2 = d

dx
− x

b. L1 = d

dx
+ x2 and L2 = d

dx
+ x3

c. L1 = x
d

dx
+ 3 and L2 = d

dx
+ 2x

d. L1 = d2

dx2
and L2 = x

e. L1 = d2

dx2
and L2 = x3
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f. L1 = d2

dx2
and L2 = sin(x)

14.7. Compute the following composition products:

a.
(

d

dx
+ 2

) (
d

dx
+ 3

)
b.

(
x

d

dx
+ 2

) (
x

d

dx
+ 3

)
c.

(
x

d

dx
+ 4

) (
d

dx
+ 1

x

)
d.

(
d

dx
+ 4x

) (
d

dx
+ 1

x

)
e.

(
d

dx
+ 1

x

) (
d

dx
+ 4x

)
f.

(
d

dx
+ 5x2

)2

g.
(

d

dx
+ x2

)(
d2

dx2
+ d

dx

)
h.

(
d2

dx2
+ d

dx

)(
d

dx
+ x2

)
14.8. Verify that

d2

dx2
+ (

sin(x)− 3
)d

dx
− 3 sin(x) =

(
d

dx
+ sin(x)

) (
d

dx
− 3

)
,

and, using this factorization, find one solution to

d2 y

dx2
+ (

sin(x)− 3
) dy

dx
− 3 sin(x)y = 0 .

14.9. Verify that

d2

dx2
+ x

d

dx
+

(
2 − 2x2

)
=

(
d

dx
− x

) (
d

dx
+ 2x

)
,

and, using this factorization, find one solution to

d2 y

dx2
+ x

dy

dx
+

(
2 − 2x2

)
y = 0 .

14.10. Verify that

x2 d2

dx2
− 7x

d

dx
+ 16 =

(
x

d

dx
− 4

)2

,

and, using this factorization, find one solution to

x2 d2 y

dx2
− 7x

dy

dx
+ 16y = 0 .
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Second-Order Homogeneous Linear
Equations with Constant Coefficients

A very important class of second-order homogeneous linear equations consists of those with constant

coefficients; that is, those that can be written as

ay′′ + by′ + cy = 0

where a , b and c are real-valued constants (with a = 0 ). Some examples are

y′′ − 5y′ + 6y = 0 ,

y′′ − 6y′ + 9y = 0

and

y′′ − 6y′ + 13y = 0 .

There are two reasons these sorts of differential equations are important: First of all, they

often arise in applications. Secondly, as we will see, it is relatively easy to find fundamental sets of

solutions for these equations.

Do note that, because the coefficients are constants, they are, trivially, continuous functions on

the entire real line. Consequently, we can take the entire real line as the interval of interest, and be

confident that any solutions derived will be valid on all of (−∞,∞) .

IMPORTANT: What we will derive and define here (e.g., “the characteristic equation”) is based

on the assumption that the coefficients in our differential equation— the a , b and c above — are

constants. Some of the results will even require that these constants be real valued. Do not, later,

try to blindly apply what we develop here to differential equations in which the coefficients are not

real-valued constants.

15.1 Deriving the Basic Approach
Seeking Inspiration

Let us look for clues on how to solve our second-order equations by first looking at solving a

first-order, homogeneous linear differential equation with constant coefficients, say,

2
dy

dx
+ 6y = 0 .

299
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Since we are considering ‘linear’ equations, let’s solve it using the method developed for first-order

linear equations: First divide through by the first coefficient, 2 , to get

dy

dx
+ 3y = 0 .

The integrating factor is then

μ = e
∫

3 dx = e3x .

Multiplying through and proceeding as usual with first-order linear equations:

e3x
[

dy

dx
+ 3y

]
= e3x · 0

↪→ e3x dy

dx
+ 3e3x y = 0

↪→ d

dx

[
e3x y

]
= 0

↪→ e3x y = c

↪→ y = ce−3x .

So a general solution to

2
dy

dx
+ 6y = 0

is

y = ce−3x .

Clearly, there is nothing special about the numbers used here. Replacing 2 and 6 with constants a

and b in the above would just as easily have given us the fact that a general solution to

a
dy

dx
+ by = 0

is

y = cer x where r = − b

a
.

Thus we see that all solutions to first-order homogeneous linear equations with constant coefficients

are given by constant multiples of exponential functions.

Exponential Solutions with Second-Order Equations

Now consider the second-order case. For convenience, we will use

y′′ − 5y′ + 6y = 0

as an example, keeping in mind that our main interest is in finding all possible solutions to an arbitrary

second-order homogeneous differential equation

ay′′ + by′ + cy = 0

where a , b and c are constants.
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From our experience with the first-order case, it seems reasonable to expect at least some of the

solutions to be exponentials. So let us find all such solutions by setting

y = er x

where r is a constant to be determined, plugging this formula into our differential equation, and

seeing if a constant r can be determined.

For our example,

y′′ − 5y′ + 6y = 0 .

Letting y = er x yields

d2

dx2

[
er x

] − 5
d

dx

[
er x

] + 6
[
er x

] = 0

↪→ r2er x − 5rer x + 6er x = 0

↪→ er x
[
r2 − 5r + 6

]
= 0 .

Since er x can never be zero, we can divide it out, leaving the algebraic equation

r2 − 5r + 6 = 0 .

Before solving this for r , let us pause and consider the more general case.

More generally, letting y = er x in

ay′′ + by′ + cy = 0 (15.1)

yields

a
d2

dx2

[
er x

] + b
d

dx

[
er x

] + c
[
er x

] = 0

↪→ ar2er x + brer x + cer x = 0

↪→ er x
[
ar2 + br + c

]
= 0 .

Since er x can never be zero, we can divide it out, leaving us with the algebraic equation

ar2 + br + c = 0 (15.2)

(remember: a , b and c are constants). Equation (15.2) is called the characteristic equation for

differential equation (15.1). Note the similarity between the original differential equation and its

characteristic equation. The characteristic equation is nothing more that the algebraic equation

obtained by replacing the various derivatives of y with corresponding powers of r (treating y as

being the zeroth derivative of y ):

ay′′ + by′ + cy = 0 (original differential equation)

↪→ ar2 + br + c = 0 (characteristic equation)

The nice thing is that the characteristic equation is easily solved for r by either factoring the

polynomial or using the quadratic formula. These values for r must then be the values of r

for which y = er x are (particular) solutions to our original differential equation. Using what we

developed in previous chapters, we may then be able to construct a general solution to the differential

equation.
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In our example, letting y = er x in

y′′ − 5y′ + 6y = 0

led to the characteristic equation

r2 − 5r + 6 = 0 ,

which factors to

(r − 2)(r − 3) = 0 .

Hence,

r − 2 = 0 or r − 3 = 0 .

So the possible values of r are

r = 2 and r = 3 ,

which, in turn, means

y1 = e2x and y2 = e3x

are solutions to our original differential equation. Clearly, neither of these functions

is a constant multiple of the other; so, after recalling the big theorem on solutions to

second-order, homogeneous linear differential equations, theorem 13.3 on page 270, we

know that {
e2x , e3x

}
is a fundamental set of solutions and

y(x) = c1e2x + c2e3x

is a general solution to our differential equation.

We will discover that we can always construct a general solution to any given homogeneous

linear differential equation with constant coefficients using the solutions to its characteristic equation.

But first, let us restate what we have just derived in a somewhat more concise and authoritative form,

and briefly consider the nature of the possible solutions to the characteristic equation.

15.2 The Basic Approach, Summarized

To solve a second-order homogeneous linear differential equation

ay′′ + by′ + cy = 0

in which a , b and c are constants, start with the assumption that

y(x) = er x

where r is a constant to be determined. Plugging this formula for y into the differential equation

yields, after a little computation and simplification, the differential equation’s characteristic equation

for r ,

ar2 + br + c = 0 .
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Alternatively, the characteristic equation can simply be constructed by replacing the derivatives of

y in the original differential equation with the corresponding powers of r .

(By the way, the polynomial on the left side of the characteristic equation,

ar2 + br + c ,

is called the characteristic polynomial for the differential equation. Recall from algebra that a “root”

of a polynomial p(r) is the same as a solution to p(r) = 0 . So we can — and will — use the terms

“solution to the characteristic equation” and “root of the characteristic polynomial” interchangeably.)

Since the characteristic polynomial is only of degree two, solving the characteristic equation

for r should present no problem. If this equation is simple enough, we can factor the polynomial

and find the values of r by inspection. At worst, we must recall that the solution to the polynomial

equation

ar2 + br + c = 0

can always be obtained via the quadratic formula,

r = −b ±
√

b2 − 4ac

2a
.

Notice how the nature of the value r depends strongly on the value under the square root, b2 −4ac .

There are three possibilities:

1. If b2 − 4ac > 0 , then
√

b2 − 4ac is some positive value, and we have two distinct real

values for r ,

r− = −b −
√

b2 − 4ac

2a
and r+ = −b +

√
b2 − 4ac

2a
.

(In practice, we may denote these solutions by r1 and r2 , instead.)

2. If b2 − 4ac = 0 , then

r = −b ±
√

b2 − 4ac

2a
= −b ± √

0

2a
,

and we only have one real root for our characteristic equation, namely,

r = − b

2a
.

3. If b2 − 4ac < 0 , then the quantity under the square root is negative, and, thus, this square

root gives rise to an imaginary number. To be explicit,√
b2 − 4ac =

√
−1 ·

∣∣b2 − 4ac
∣∣ = i

√∣∣b2 − 4ac
∣∣

where “ i = √−1 ”.1 Thus, in this case, we will get two distinct complex roots, r+ and r−
with

r± = −b ±
√

b2 − 4ac

2a
= −b ± i

√
|b2 − 4ac|

2a
= − b

2a
± i

√
|b2 − 4ac|

2a
.

Whatever the case, if we find r0 to be a root of the characteristic polynomial, then, by the very

steps leading to the characteristic equation, it follows that

y0(x) = er0x

is a solution to our original differential equation. As you can imagine, though, the nature of the

corresponding general solution to this differential equation depends strongly on which of the above

three cases we are dealing with. Let us consider each case.

1 Some people prefer to use j instead of i for
√−1 . Clearly, these people don’t know how to spell ‘imaginary’.
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15.3 Case 1: Two Distinct Real Roots

Suppose the characteristic equation for

ay′′ + by′ + cy = 0

has two distinct (i.e., different) real solutions r1 and r2 . Then we have that both

y1 = er1x and y2 = er2x

are solutions to the differential equation. Since we are assuming r1 and r2 are not the same, it

should be clear that neither y1 nor y2 is a constant multiple of the other. Hence{
er1x , er2x

}
is a linearly independent set of solutions to our second-order, homogeneous linear differential equa-

tion. The big theorem on solutions to second-order, homogenous linear differential equations,

theorem 13.3 on page 270, then tells us that

y(x) = c1er1x + c2er2x

is a general solution to our differential equation.

We will later find it convenient to have a way to refer back to the results of the above observations.

That is why those results are now restated in the following lemma:

Lemma 15.1

Let a , b and c be constants with a = 0 . If the characteristic equation for

ay′′ + by′ + cy = 0

has two distinct real solutions r1 and r2 , then

y1(x) = er1x and y2(x) = er2x

are two solutions to this differential equation. Moreover, {er1x , er2x } is a fundamental set for the

differential equation, and

y(x) = c1er1x + c2er2x

is a general solution.

The example done while deriving the basic approach illustrated this case. Another example,

however, may not hurt.

!�Example 15.1: Consider the differential equation

y′′ + 7y′ = 0 .

Assuming y = er x in this equation gives

d2

dx2

[
er x

] + d

dx

[
er x

] = 0

↪→ r2er x + 7rer x = 0 .
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Dividing out er x gives us the characteristic equation

r2 + 7r = 0 .

In factored form, this is

r(r + 7) = 0 ,

which means that

r = 0 or r + 7 = 0 .

Consequently, the solutions to the characteristic equation are

r = 0 and r = −7 .

The two corresponding solutions to the differential equation are

y1 = e0·x = 1 and y2 = e−7x .

Thus, our fundamental set of solutions is{
1, e−7x

}
,

and the corresponding general solution to our differential equation is

y(x) = c1 · 1 + c2e−7x ,

which is slightly more simply written as

y(x) = c1 + c2e−7x .

15.4 Case 2: Only One Root
Using Reduction of Order

If the characteristic polynomial only has one root r , then

y1(x) = er x

is one solution to our differential equation. This, alone, is not enough for a general solution, but we

can use this one solution with the reduction of order method to get the full general solution. Let us

do one example this way.

!�Example 15.2: Consider the differential equation

y′′ − 6y′ + 9y = 0 .

The characteristic equation is

r2 − 6r + 9 = 0 ,

which factors nicely to

(r − 3)2 = 0 ,
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giving us r = 3 as the only root. Consequently, we have

y1(x) = e3x

as one solution to our differential equation.

To find the general solution, we start the reduction of order method as usual by letting

y(x) = y1(x)u(x) = e3x u(x) .

The derivatives are then computed,

y′(x) = [
e3x u

]′ = 3e3x u + e3x u′

and

y′′(x) = [
3e3x u + e3x u′]′

= 3 · 3e3x u + 3e3x u′ + 3e3x u′ + e3x u′′

= 9e3x u + 6e3x u′ + e3x u′′ ,

and plugged into the differential equation,

0 = y′′ − 6y′ + 9y

= [
9e3x u + 6e3x u′ + e3x u′′] − 6

[
3e3x u + e3x u′] + 9

[
e3x u

]
= e3x

{
9u + 6u′ + u′′ − 18u − 6u′ + 9u

}
.

Dividing out the exponential and grouping together the coefficients for u , u′ and u′′ yield

0 = u′′ + [6 − 6]u′ + [9 − 18 + 9]u = u′′ .

As expected, the “ u term” drops out. Even nicer, though, is that the “ u′ term” also drops out,

leaving us with u′′ = 0 ; that is, to be a little more explicit,

d2u

dx2
= 0 .

No need to do anything fancy here — just integrate twice. The first time yields

du

dx
=

∫
d2u

dx2
dx =

∫
0 dx = A .

Integrating again,

u(x) =
∫

du

dx
dx =

∫
A dx = Ax + B .

Thus,

y(x) = e3x u(x) = e3x [Ax + B] = Axe3x + Be3x

is the general solution to the differential equation being considered here.

Most of the labor in the last example was in carrying out the reduction of order method. That

labor was greatly simplified by the fact that the differential equation for u simplified to

u′′ = 0 ,
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which, in turn, meant that

u(x) = Ax + B ,

and so

y(x) = e3x u(x) = Axe3x + Be3x .

Will we always be this lucky? To see, let us consider the most general case where the characteristic

equation

ar2 + br + c = 0

has only one root. As noted when we discussed the possible solutions to the characteristic polynomial

(see page 303), this means

r = − b

2a
.

Let us go through the reduction of order method, keeping this fact in mind.

Start with the one known solution,

y1(x) = er x where r = − b

2a
.

Set

y(x) = y1(x)u(x) = er x u(x) ,

compute the derivatives,

y′(x) = [
er x u

]′ = rer x u + er x u′

and

y′′(x) = [
rer x u + er x u′]′

= r · rer x u + rer x u′ + rer x u′ + er x u′′

= r2er x u + 2rer x u′ + er x u′′ ,

and plug these into the differential equation,

0 = ay′′ + by′ + cy

= a
[
r2er x u + 2rer x u′ + er x u′′] + b

[
rer x u + er x u′] + c

[
er x u

]
= er x

{
ar2u + 2aru′ + au′′ + bru + bu′ + cu

}
.

Dividing out the exponential and grouping together the coefficients for u , u′ and u′′ , we get

0 = au′′ + [2ar + b]u′ + [ar2 + br + c]u .

Since r satisfies the characteristic equation,

ar2 + br + c = 0 ,

the “ u term” drops out, as it should. Moreover, because r = −b/2a ,

2ar + b = 2a
[
− b

2a

]
+ b = −b + b = 0 ,

and the “ u′ term” also drops out, just as in the example. Dividing out the a (which, remember, is

a nonzero constant), the differential equation for u simplifies to

u′′ = 0 .

Integrating twice yields

u(x) = Ax + B ,

and, thus,

y(x) = y1(x)u(x) = er x [Ax + B] = Axer x + Ber x . (15.3)
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Skipping Reduction of Order

Let us stop and reflect on what the last formula, equation (15.3), tells us. It tells us that, whenever the

characteristic polynomial has only one root r , then the general solution of the differential equation

is a linear combination of the two functions

er x and xer x .

If we remember this, we don’t need to go through the reduction of order method when solving

these sorts of equations. This is a nice shortcut for solving these differential equations. And since

these equations arise relatively often in applications, it is a shortcut worth remembering. To aid

remembrance, here is the summary of what we have derived:

Lemma 15.2

Let a , b and c be constants with a = 0 . If the characteristic equation for

ay′′ + by′ + cy = 0

has only one solution r , then

y1(x) = er x and y2(x) = xer x

are two solutions to this differential equation. Moreover, {er x , xer x } is a fundamental set for the

differential equation, and

y(x) = c1er x + c2xer x

is a general solution.

Let’s redo example 15.2 using this lemma:

!�Example 15.3: Consider the differential equation

y′′ − 6y′ + 9y = 0 .

The characteristic equation is

r2 − 6r + 9 = 0 ,

which factors nicely to

(r − 3)2 = 0 ,

giving us r = 3 as the only root. Consequently,

y1(x) = e3x

is one solution to our differential equation. By our work above, summarized in lemma 15.2, we

know a second solution is

y2(x) = xe3x ,

and a general solution is

y(x) = c1e3x + c2xe3x .
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15.5 Case 3: Complex Roots
Blindly Using Complex Roots

Let us start with an example.

!�Example 15.4: Consider solving

y′′ − 6y′ + 13y = 0 .

The characteristic equation is

r2 − 6r + 13 = 0 .

Factoring this is not easy for most, so we will resort to the quadratic formula for finding the

possible values of r :

r = −b ±
√

b2 − 4ac

2a

= −(−6) ±
√
(−6)2 − 4 · 1 · 13

2 · 1

= 6 ± √−16

2

= 6 ± i4

2
= 3 ± i2 .

So we get

y+(x) = e(3+i2)x and y−(x) = e(3−i2)x

as two solutions to the differential equation. Since the factors in the exponents are different, we

can reasonably conclude that neither e(3+i2)x nor e(3−i2)x is a constant multiple of the other,

and so

y(x) = c+e(3+i2)x + c−e(3−i2)x

should be a general solution to our differential equation.

In general, if the roots to the characteristic equation for

ay′′ + by′ + cy = 0

are not real valued, then, as noted at the beginning of these notes, we will get a pair of complex-valued

roots

r = −b ±
√

b2 − 4ac

2a
= −b ± i

√
|b2 − 4ac|

2a
= − b

2a
± i

√
|b2 − 4ac|

2a
.

For convenience, let’s write these roots generically as

r+ = λ + iω and r− = λ− iω

where λ and ω are the real numbers

λ = − b

2a
and ω =

√
|b2 − 4ac|

2a
.

Don’t bother memorizing these formulas for λ and ω , but do observe that these two values for r ,

λ+ iω and λ− iω , form a “conjugate pair;” that is, they differ only by the sign on the imaginary

part.
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It should also be noted that ω cannot be zero; otherwise we would be back in case 2 (one real

root). So r− = λ+ iω and r+ = λ− iω are two distinct roots. As we will verify, this means

y+(x) = er+x = e(λ+iω)x and y−(x) = er−x = e(λ−iω)x

are two independent solutions, and, from a purely mathematical point of view, there is nothing wrong

with using

y(x) = c+e(λ+iω)x + c−e(λ−iω)x

as a general solution to our differential equation.

There are problems, however, with using er x when r is a complex number. For one thing, it

introduces complex numbers into problems that, most likely, should be entirely describable using

just real-valued functions. More importantly, you might not yet know what er x means when r

is a complex number! (Quick, graph e(3+i2)x !) To deal with these problems, you have several

choices:

1. Pray you never have to deal with complex roots when solving differential equations. (A very

bad choice since such equations turn out to be among the most important ones in applications.)

2. Blindly use e(λ±iω)x , hoping that no one questions your results and that your results are never

used in a system the failure of which could result in death, injury, or the loss of substantial

sums of money and/or prestige.

3. Derive an alternative formula for the general solution, and hope that no one else ever springs

a e(λ±iω)x on you. (Another bad choice since these exponentials are used throughout the

sciences and engineering.)

4. Spend a little time learning what e(λ±iω)x means.

Guess which choice we take.

The Complex Exponential Function

Let us now consider the quantity ez where z is any complex value. We, like everyone else, will call

this the complex exponential function. In our work,

z = rx = (λ± iω)x = λx ± iωx .

where λ and ω are real constants. Keep in mind that our r value came from a characteristic

equation that, in turn, came from plugging y(x) = er x into a differential equation. In getting the

characteristic equation, we did our computations assuming the er x behaved just as it would behave

if r were a real value. So, in determining just what er x means when r is complex, we should

assume the complex exponential satisfies the rules satisfied by the exponential we already know. In

particular, we must have, for any constant r (real or complex),

d

dx

[
er x

] = rer x ,

And, for any two constants A and B ,

eA+B = eAeB .

Thus,

er x = e(λ±iω)x = eλx±iωx = eλx e±iωx .

The first factor, eλx is just the ordinary, ‘real’ exponential — a function you should be able to graph

in your sleep. It is the second factor, e±iωx , that we need to come to grips with.
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To better understand e±iωx , let us first examine

φ(t) = eit .

Later, we’ll replace t with ±ωx .

One thing we can do with this φ(t) is to compute it at t = 0 ,

φ(0) = ei ·0 = e0 = 1 .

We can also differentiate φ , getting

φ′(t) = d

dt
ei t = iei t .

Letting t = 0 here gives

φ′(0) = iei ·0 = ie0 = i .

Notice that the right side of the formula for φ′(t) is just i times φ . Differentiating φ′(t) again, we

get

φ′′(t) = d

dt

[
iei t

] = i2eit = −1 · φ(t) ,

giving us the differential equation

φ′′ = −φ ,

which is better written as

φ′′ + φ = 0

simply because we’ve seen this equation before (using y instead of φ for the unknown function).

What we have just derived is that φ(t) = eit satisfies the initial-value problem

φ′′ + φ = 0 with φ(0) = 1 and φ′(0) = i .

We can solve this! From example 13.5 on page 267, we know

φ(t) = A cos(t) + B sin(t)

is a general solution to the differential equation. Using this formula for φ we also have

φ′(t) = d

dt
[A cos(t) + B sin(t)] = −A sin(t) + B cos(t) .

Applying the initial conditions gives

1 = φ(0) = A cos(0) + B sin(0) = A · 1 + B · 0 = A

and

i = φ′(0) = −A sin(0) + B cos(0) = −a · 0 + B · 1 = B .

Thus,

eit = φ(t) = 1 · cos(t) + i · sin(t) = cos(t) + i sin(t) .

The last formula is so important that we should write it again with the middle cut out and give

it a reference number:

eit = cos(t) + i sin(t) . (15.4)

Before replacing t with ±ωx , it is worth noting what happens when t is replaced by −t in the

above formula. In doing this, remember that the cosine is an even function and that the sine is an

odd function, that is,

cos(−t) = cos(t) while sin(−t) = − sin(t) .
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So

e−i t = ei(−t) = cos(−t) + i sin(−t) = cos(t) − i sin(t) .

Cutting out the middle leaves us with

e−i t = cos(t) − i sin(t) . (15.5)

Formulas (15.4) and (15.5) are the (famous) Euler formulas for eit and e−i t . They really

should be written as a pair:

eit = cos(t) + i sin(t) (15.6a)

e−i t = cos(t) − i sin(t) (15.6b)

That way, it is clear that when you add these two equations together, the sines cancel out and we get

eit + e−i t = 2 cos(t) .

On the other hand, subtracting equation (15.6b) from equation (15.6a) yields

eit − e−i t = 2i sin(t) .

So, the sine and cosine functions can be rewritten in terms of complex exponentials,

cos(t) = ei t + e−i t

2
and sin(t) = ei t − e−i t

2i
. (15.7)

This is nice. This means that many computations involving trigonometric functions can be done

using exponentials instead, and this can greatly simplify those computations.

!�Example 15.5: Consider deriving the trigonometric identity involving the product of the sine

and the cosine functions. Using equation set (15.7) and basic algebra,

sin(t) cos(t) = ei t + e−i t

2
· ei t − e−i t

2i

=
(
ei t
)2 − (

e−i t
)2

2 · 2i

= ei2t − e−i2t

2 · 2i

= 1

2
· ei(2t) − e−i(2t)

2i
= 1

2
sin(2t) .

Thus, we have (re)derived the trigonometric identity

2 sin(t) cos(t) = sin(2t) .

(Compare this to the derivation you did years ago without complex exponentials!)

But we digress — our interest is not in rederiving trigonometric identities, but in figuring out

what to do when we get e(λ±iω)x as solutions to a differential equation. Using the law of exponents

and formulas (15.6a) and (15.6b) (with ωx replacing t ), we see that

e(λ+iω)x = eλx+iωx = eλx eiωx = eλx [cos(ωx) + i sin(ωx)]
and

e(λ−iω)x = eλx−iωx = eλx e−iωx = eλx [cos(ωx) − i sin(ωx)] .

So now we know how to interpret e(λ±iω)x , and now we can get back to solving our differential

equations.
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Intelligently Using Complex Roots

Recall, we are interested in solving

ay′′ + by′ + cy = 0

when a , b and c are real-valued constants, and the solutions to the corresponding characteristic

equation are complex. Remember, also, that these complex roots will form a conjugate pair,

r+ = λ + iω and r− = λ− iω

where λ and ω are real numbers with ω = 0 . This gave us

y+(x) = er+x = e(λ+iω)x and y−(x) = er−x = e(λ−iω)x

as two solutions to our differential equation. From our discussion of the complex exponential, we

now know that

y+(x) = e(λ+iω)x = eλx [cos(ωx) + i sin(ωx)] (15.8a)

and

y−(x) = e(λ−iω)x = eλx [cos(ωx) − i sin(ωx)] . (15.8b)

Clearly, neither y+ nor y− is a constant multiple of the other. So each of the equivalent formulas

y(x) = c+y+(x) + c−y−(x) ,

y(x) = c+e(λ+iω)x + c−e(λ−iω)x

and

y(x) = c+eλx [cos(ωx) + i sin(ωx)] + c−eλx [cos(ωx) − i sin(ωx)] ,

can, legitimately, be used as a general solution to our differential equation.

Still, however, these solutions introduce complex numbers into formulas that, in applications,

should probably just involve real numbers. To avoid that, let us derive an alternative fundamental

pair of solutions by choosing the constants c+ and c− appropriately. The basic idea is the same

as used to derive the formulas (15.7) for sin(t) and cos(t) in terms of complex exponentials. First

add equations (15.8a) and (15.8b) together, noting how the sine terms cancel out:

y+(x) = eλx [cos(ωx)+ i sin(ωx)]
+ {

y−(x) = eλx [cos(ωx)− i sin(ωx)]}
y+(x) + y−(x) = 2eλx cos(ωx)

.

So

y1(x) = 1

2
y+(x) + 1

2
y−(x) = eλx cos(ωx)

is a solution to our differential equation. On the other hand, the cosine terms cancel out when we

subtract equation (15.8b) from equation (15.8a), leaving us with

y+(x) − y−(x) = 2ieλx sin(ωx) .

So

y2(x) = 1

2i
y+(x) − 1

2i
y−(x) = eλx sin(ωx)

is another solution to our differential equation. Again, it should be clear that our latest solutions are

not constant multiples of each other. Consequently,

y1(x) = eλx cos(ωx) and y2(x) = eλx sin(ωx)
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form a fundamental set, and

y(x) = c1eλx cos(ωx) + c2eλx sin(ωx)

is a general solution to our differential equation.

All this work should be summarized so we won’t forget:

Lemma 15.3

Let a , b and c be real-valued constants with a = 0 . If the characteristic equation for

ay′′ + by′ + cy = 0

does not have one or two distinct real solutions, then it will have a conjugate pair of solutions

r+ = λ + iω and r− = λ − iω

where λ and ω are real numbers with ω = 0 .

Moreover, both{
e(λ+iω)x , e(λ−iω)x

}
and

{
eλx cos(ωx) , eλx sin(ωx)

}
are fundamental sets of solutions for the differential equation, and the general solution can be written

as either

y(x) = c+e(λ+iω)x + c−e(λ−iω)x (15.9a)

or

y(x) = c1eλx cos(ωx) + c2eλx sin(ωx) (15.9b)

as desired.

In practice, formula (15.9b) is often preferred since it is a formula entirely in terms of real-

valued functions. On the other hand, if you are going to do a bunch of calculations with y(x)

involving differentiation and/or integration, you may prefer using formula (15.9a), since calculus

with exponentials — even complex exponentials — is much easier that calculus with products of

exponentials and trigonometric functions.

By the way, instead of “memorizing” the above theorem, it may be better to just remember that

you can get the eλx cos(ωx) and eλx sin(ωx) solutions from the real and imaginary parts of

e(λ±iω)x = eλx e±iωx

= eλx [cos(ωx)± i sin(ωx)] = eλx cos(ωx) ± ieλx sin(ωx) .

!�Example 15.6: Again, consider solving

y′′ − 6y′ + 13y = 0 .

From example 15.4, we already know

r+ = 3 + i2 and r− = 3 − i2

are the two solutions to the characteristic equation,

r2 − 6r + 13 = 0 .

Thus, one fundamental set of solutions consists of

e(3+i2)x and e(3−i2)x
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with

e(3±i2)x = e3x e±i2x

= e3x [cos(2x)± i sin(2x)] = e3x cos(2x) ± ie3x sin(2x) .

Alternatively, we can use the pair of real-valued functions

e3x cos(2x) and e3x sin(2x)

as a fundamental set. Using this, we have

y(x) = c1e3x cos(2x) + c2e3x sin(2x)

as the general solution to the differential equation in terms of just real-valued functions.

15.6 Summary

Combining lemma 15.1 on page 304, lemma 15.2 on page 308, and lemma 15.3 on page 314, we get

the big theorem on solving second-order homogeneous linear differential equations with constant

coefficients:

Theorem 15.4

Let a , b and c be real-valued constants with a = 0 . Then the characteristic polynomial for

ay′′ + by′ + cy = 0

will have either one or two distinct real roots or will have two complex roots that are complex

conjugates of each other. Moreover:

1. If there are two distinct real roots r1 and r2 , then

{ er1x , er2x }

is a fundamental set of solutions to the differential equation, and

y(x) = c1er1x + c2er2x

is a general solution.

2. If there is only one real root r , then

{ er x , xer x }

is a fundamental set of solutions to the differential equation, and

y(x) = c1er x + c2xer x

is a general solution.
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3. If there is a conjugate pair of roots r = λ± iω , then both

{ e(λ+iω)x , e(λ−iω)x } and { eλx cos(ωx) , eλx sin(ωx) }

are fundamental sets of solutions to the differential equation, and either

y(x) = c+e(λ+iω)x + c−e(λ−iω)x

or

y(x) = c1eλx cos(ωx) + c2eλx sin(ωx)

can be used as a general solution.

Additional Exercises

15.1. Find the general solution to each of the following:

a. y′′ − 7y′ + 10y = 0 b. y′′ + 2y′ − 24y = 0

c. y′′ − 25y = 0 d. y′′ + 3y′ = 0

e. 4y′′ − y = 0 f. 3y′′ + 7y′ − 6y = 0

15.2. Solve the following initial-value problems:

a. y′′ − 8y′ + 15y = 0 with y(0) = 1 and y′(0) = 0

b. y′′ − 8y′ + 15y = 0 with y(0) = 0 and y′(0) = 1

c. y′′ − 8y′ + 15y = 0 with y(0) = 5 and y′(0) = 19

d. y′′ − 9y = 0 with y(0) = 1 and y′(0) = 0

e. y′′ − 9y = 0 with y(0) = 0 and y′(0) = 1

f. y′′ − 9y = 0 with y(0) = 3 and y′(0) = −3

15.3. Find the general solution to each of the following:

a. y′′ − 10y′ + 25y = 0 b. y′′ + 2y′ + y = 0

c. 4y′′ − 4y′ + y = 0 d. 9y′′ + 12y′ + 4y = 0

15.4. Solve the following initial-value problems:

a. y′′ − 8y′ + 16y = 0 with y(0) = 1 and y′(0) = 0

b. y′′ − 8y′ + 16y = 0 with y(0) = 0 and y′(0) = 1

c. y′′ − 8y′ + 16y = 0 with y(0) = 3 and y′(0) = 14

d. 4y′′ + 4y′ + y = 0 with y(0) = 1 and y′(0) = 0

e. 4y′′ + 4y′ + y = 0 with y(0) = 0 and y′(0) = 1

f. 4y′′ + 4y′ + y = 0 with y(0) = 6 and y′(0) = −5
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15.5. Find the general solution — expressed in terms of real-valued functions only — to each of

the following:

a. y′′ + 25y = 0 b. y′′ + 2y′ + 5y = 0

c. y′′ − 2y′ + 5y = 0 d. y′′ − 4y′ + 29y = 0

15.6. Solve the following initial-value problems (again, your final answers should be in terms of

real-valued functions only):

a. y′′ + 16y = 0 with y(0) = 1 and y′(0) = 0

b. y′′ + 16y = 0 with y(0) = 0 and y′(0) = 1

c. y′′ + 16y = 0 with y(0) = 4 and y′(0) = 12

d. y′′ − 4y′ + 13y = 0 with y(0) = 1 and y′(0) = 0

e. y′′ − 4y′ + 13y = 0 with y(0) = 0 and y′(0) = 1

f. y′′ − 4y′ + 13y = 0 with y(0) = 5 and y′(0) = 31

15.7. For each of the following initial-value problems, find the solution and then sketch the

solution’s graph over the interval
(
0, 41/2

)
:

a. y′′ − y′ +
(

1

4
+ 4π2

)
y = 0 with y(0) = 1 and y′(0) = 1

2

b. y′′ − y′ +
(

1

4
+ 4π2

)
y = 0 with y(0) = 1 and y′(0) = −1

2

15.8. Find the general solution to each of the following. Express your answers in terms of

real-valued functions only.

a. y′′ − 9y = 0 b. y′′ + 9y = 0

c. y′′ + 6y′ + 9y = 0 d. y′′ + 6y′ − 9y = 0

e. 9y′′ − 6y′ + y = 0 f. y′′ + 6y′ + 10y = 0

g. y′′ − 4y′ + 40y = 0 h. 2y′′ − 5y′ + 2y = 0

i. y′′ + 10y′ + 25y = 0 j. 9y′′ − y = 0

k. 9y′′ + y = 0 l. 9y′′ + y′ = 0

m. y′′ + 4y′ + 7y = 0 n. y′′ + 4y′ + 5y = 0

o. y′′ + 4y′ + 4y = 0 p. y′′ − 2y′ − 15y = 0

q. y′′ − 4y′ = 0 r. y′′ + 8y′ + 16y = 0

s. 4y′′ + 3y = 0 t. 4y′′ − 4y′ + 5y = 0

15.9. Use the complex exponential (as in example 15.5on page 312) to verify each of the following

trigonometric identities:

a. sin2(t) + cos2(t) = 1 b. sin2(t) = 1

2
− 1

2
cos(2t)

c. cos(A + B) = cos(A) cos(B) − sin(A) sin(B)

d. sin(A) sin(B) = cos(A − B) − cos(A + B)
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Springs: Part I

Second-order differential equations arise in a number of applications. We saw one involving a

falling object at the beginning of this text (the falling frozen duck example in section 1.2). In fact,

since acceleration is given by the second derivative of position, any application requiring Newton’s

equation F = ma has the potential to be modeled by a second-order differential equation.

In this chapter we will consider a class of applications involving masses bouncing up and down

at the ends of springs. This is a particularly good class of examples for us to examine. For one

thing, the basic model is relatively easy to derive and is given by a second-order differential equation

with constant coefficients. So we will be able to apply what we learned in the last chapter to derive

reasonably accurate descriptions of the motion under a variety of situations. Moreover, most of

us already have an intuitive idea of how these “mass/spring systems” behave. Hopefully, what we

derive will correspond to what we expect, and may even refine our intuitive understanding.

Another good point about the work we are about to begin is that many of the notions and

results we will develop here can carry over to the analysis of other applications involving things that

vibrate or oscillate in some manner. For example, the analysis of current in basic electric circuits is

completely analogous to the analysis we’ll carry out for masses on springs.

16.1 Modeling the Action
The Mass/Spring System

Imagine a horizontal spring with one end attached to an immobile wall and the other end attached to

some object of interest (say, a box of frozen ducks) which can slide along the floor, as in figure 16.1.

For brevity, this entire assemblage of spring, object, wall, etc. will be called a mass/spring system.

Let us assume that:

1. The object can only move back and forth in the one horizontal direction.

2. Newtonian physics apply.

3. The total force acting on the object is the sum of:

(a) The force from the spring responding to the spring being compressed and stretched.

(b) The forces resisting motion because of air resistance and friction between the box and

the floor.

(c) Any other forces acting on the object. (This term will usually be zero in this chapter.

We include it here for use in later chapters, so we don’t have to re-derive the equation

for the spring to include other forces.)

319
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(a) (b)
y(t)y(t) YY

mm

00

FspringFspring

Natural length of

the spring

Natural length of

the spring

Figure 16.1: The mass/spring system with the direction of the spring force Fspring on the mass

(a) when the spring is extended ( y(t) > 0 ), and (b) when the spring is compressed

( y(t) < 0 ).

(All forces are directed parallel to the direction of the object’s motion.)

4. The spring is an “ideal spring” with no mass. It has some natural length at which it is neither

compressed nor stretched, and it can be both stretched and compressed. (So the coils are not

so tightly wound that they are pressed against each other, making compression impossible.)

Our goal is to describe how the position of the object varies with time, and to see how this object’s

motion depends on the different parameters of our mass/spring system (the object’s mass, the strength

of the spring, the slipperiness of the floor, etc.).

To set up the general formulas and equations, we’ll first make the following traditional symbolic

assignments:

m = the mass (in kilograms) of the object ,

t = the time (in seconds) since the mass/spring system was set into motion ,

and

y = the position (in meters) of the object when the spring is at its natural length .

This means our Y –axis is horizontal (nontraditional, maybe, but convenient for this application), and

positioned so that y = 0 is the “equilibrium position” of the object. Let us also direct the Y –axis

so that the spring is stretched when y > 0 , and compressed when y < 0 (again, see figure 16.1).

Modeling the Forces

The motion of the object is governed by Newton’s law F = ma with F being the force acting on

the box and

a = a(t) = acceleration of the box at time t = d2 y

dt2
.

By our assumptions,

F = Fresist + Fspring + Fother

where

Fresist = force due to the air resistance and friction ,

Fspring = force from the spring due to it being compressed or stretched ,

and

Fother = any other forces acting on the object .
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Thus,

Fresist + Fspring + Fother = F = ma = m
d2 y

dt2
,

which, for convenient reference later, we will rewrite as

m
d2 y

dt2
− Fresist − Fspring = Fother . (16.1)

The resistive force, Fresist , is basically the same as the force due to air resistance discussed in

the Better Falling Object Model in chapter 1 (see page 11) — we are just including friction from the

floor along with the friction with the air (or whatever medium surrounds our mass/spring system).

So let us model the total resistive force here the same way we modeled the force of air resistance in

chapter 1:

Fresist = −γ × velocity of the box = −γ dy

dt
(16.2)

where γ is some nonnegative constant. Because of the role it will play in determining how much

the resistive forces “dampen” the motion, we call γ the damping constant. It will be large if the air

resistance is substantial (possibly because the mass/spring system is submerged in water instead of

air) or if the object does not slide easily on the floor. It will be small if there is little air resistance

and the floor is very slippery. And it will be zero if there is no air resistance and no friction with the

floor (a very idealized situation).

Now consider what we know about the spring force, Fspring . At any given time t , this force

depends only on how much the spring is stretched or compressed at that time, and that, in turn,

is completely described by y(t) . Hence, we can describe the spring force as a function of y ,

Fspring = Fspring(y) . Moreover:

1. If y = 0 , then the spring is at its natural length, neither stretched nor compressed, and exerts

no force on the box. So Fspring(0) = 0 .

2. If y > 0 , then the spring is stretched and exerts a force on the box pulling it backwards. So

Fspring(y) < 0 whenever y > 0 .

3. Conversely, if y < 0 , then the spring is compressed and exerts a force on the box pushing it

forwards. So Fspring(y) > 0 whenever y < 0 .

Knowing nothing more about the spring force, we might as well model it using the simplest mathe-

matical formula satisfying the above:

Fspring(y) = −κy (16.3)

where κ is some positive constant.

Formula (16.3) is the famous Hooke’s law for springs. Experiment has shown it to be a good

model for the spring force, provided the spring is not stretched or compressed too much. The constant

κ in this formula is called the spring constant. It describes the “stiffness” of the spring (i.e., how

strongly it resists being stretched), and can be determined by compressing or stretching the spring by

some amount y0 , and then measuring the corresponding force F0 at the end of the spring. Hooke’s

law then says that

κ = − F0

y0
.

And because κ is a positive constant, we can simplify things a little bit more to

κ = |F0|
|y0| . (16.4)
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!�Example 16.1: Assume that, when our spring is pulled out 2 meters beyond its natural length,

we measure that the spring is pulling back with a force F0 of magnitude

|F0| = 18

(
kg·meter

sec2

)
.

Then,

κ = |F0|
|y0| = 18

2

(
kg·meter/sec2

meter

)
.

That is,

κ = 9

(
kg

sec2

)
.

(This is a pretty weak spring.)

A Note on Units

We defined m , t , and y to be numerical values describing mass, position, and time in terms

of kilograms, seconds, and meters. Consequently, everything derived from these quantities —

velocity, acceleration, the resistance coefficient γ , and the spring constant κ — are numerical values

describing physical parameters in terms of corresponding units. Of course, velocity and acceleration

are in terms of meters/second and meters/second2, respectively. And, because “F = ma”, any value

for force should be interpreted as being in terms of kilogram·meter/second2 (also called newtons).

As indicated in the example above, the corresponding units associated with the spring constant

are kilogram/second2, and as you can readily verify, the resistance coefficient γ is in terms of

kilograms/second.

In the above example, the units involved in every calculation were explicitly given in parenthesis.

In the future, we will not explicitly state the units in every calculation and trust that you, the reader,

can determine the units appropriate for the final results from the information given.

Indeed, for our purposes, the actual choice of the units is not important. The formulas we

have developed and illustrated (along with those we will later develop and illustrate) remain just

as valid if m , t , and y are in terms of, say, grams, weeks, and miles, respectively, provided it

is understood that the values of the corresponding velocities, accelerations, etc. are in terms of

miles/week, miles/week2, etc.

!�Example 16.2: Pretend that, when our spring is pulled out 2 miles beyond its natural length,

we measure that the spring is pulling back with a force F0 of magnitude

|F0| = 18

(
gram·mile

week2

)
.

Then,

κ = |F0|
|y0| = 18

2

(
gram·mile/week2

meter

)
.

That is,

κ = 9

(
gram

week2

)
.
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16.2 The Mass/Spring Equation and Its Solutions
The Differential Equation

Replacing Fresist and Fspring in equation (16.1) with the formulas for these forces from equations

(16.2) and (16.3), we get

m
d2 y

dt2
+ γ

dy

dt
+ κy = Fother . (16.5)

This is the differential equation for y(t) , the position y of the object in the system at time t .

For the rest of this chapter, let us assume the object is moving “freely” under the influence of no

forces except those from friction and from the spring’s compression and expansion.1 Thus, for the

rest of this chapter, we will restrict our interest to the above differential equation with Fother = 0 ,

m
d2 y

dt2
+ γ

dy

dt
+ κy = 0 . (16.6)

This is a second-order, homogeneous, linear differential equation with constant coefficients; so we

can solve it by the methods discussed in the previous chapter. The precise functions in these solutions

(sine/cosines, exponentials, etc.) will depend on the coefficients. We will go through all the possible

cases soon.

Keep in mind that the mass, m , and the spring constant, κ , are positive constants for a real

spring. On the other hand, the damping constant, γ , can be positive or zero. This is significant.

Because γ = 0 when there is no resistive force to dampen the motion, we say the mass/spring

system is undamped when γ = 0 . We will see that the motion of the mass in this case is relatively

simple.

If, however, there is a nonzero resistive force to dampen the motion, then γ > 0 . Accordingly,

in this case, we say the mass/spring system is damped. We will see that there are three subcases to

consider, according to whether γ 2 − 4κm is negative, zero or positive.

Let’s now carefully examine, case by case, the solutions that can arise.

Undamped Systems

If γ = 0 , differential equation (16.6) reduces to

m
d2 y

dt2
+ κy = 0 . (16.7)

The corresponding characteristic equation,

mr2 + κ = 0 ,

has roots

r± = ±
√−κm

m
= ±iω0 where ω0 =

√
κ

m
.

From our discussions in the previous chapter, we know the general solution to our differential equation

is given by

y(t) = c1 cos(ω0t) + c2 sin(ω0t)

where c1 and c2 are arbitrary constants. However, for graphing purposes (and a few other purposes)

it is convenient to write our general solution in yet another form. To derive this form, plot (c1, c2) as

1 We will introduce other forces in later chapters.
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(a) (b)

Y

0 c1

c2
A

A

A cos(φ)

φ
A sin(φ)

p0

T

1

2

2 3

4

4 5 6 7 8 9 10 11

Figure 16.2: (a) Expressing c1 and c2 as A cos(φ) and A sin(φ) . (b) The graph of y(t) for the

undamped mass/spring system of example 16.3.

a point on a Cartesian coordinate system, and let A and φ be the corresponding polar coordinates

of this point (see figure 16.2a). That is, let

A =
√
(c1)2 + (c2)2

and let φ be the angle in the range [0, 2π) with

c1 = A cos(φ) and c2 = A sin(φ) .

Using this and the well-known trigonometric identity

cos(θ ± φ) = cos(θ) cos(φ) ∓ sin(θ) sin(φ) ,

we get

c1 cos(ω0t) + c2 sin(ω0t) = [A cos(φ)] cos(ω0t) + [A sin(φ)] sin(ω0t)

= A
[

cos(ω0t) cos(φ) + sin(ω0t) sin(φ)
]

= A cos(ω0t − φ) .

Thus, our general solution is given by either

y(t) = c1 cos(ω0t) + c2 sin(ω0t) (16.8a)

or, equivalently,

y(t) = A cos(ω0t − φ) (16.8b)

where

ω0 =
√
κ

m

and the other constants are related by

A =
√
(c1)2 + (c2)2 , cos(φ) = c1

A
and sin(φ) = c2

A
.

It is worth noting that ω0 depends only on the spring constant and the mass of the attached object.

The other constants are “arbitrary” and are determined by the initial position and velocity of the

attached object.

Either of the formulas from set (16.8) can be used for the position y of the box at time t .

One advantage of using formula (16.8a) is that the constants c1 and c2 are fairly easily determined

in many of initial-value problems involving this differential equation. However, formula (16.8b)

gives an even simpler description of how the position varies with time. It tells us that the position is
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completely described by a single shifted cosine function multiplied by the positive constant A and

shifted so that

y(0) = A cos(φ) .

You should be well acquainted with such functions. The graph of one is sketched in figure 16.2b.

Take a look at it, and then read on.

Formula (16.8b) tells us that the object is oscillating back and forth from y = A to y = −A .

Accordingly, we call A the amplitude of the oscillation. The (natural) period p0 of the oscillation

is the time it takes the mass to go through one complete “cycle” of oscillation. Using formula (16.8b),

rewritten as

y(t) = A cos(X) with X = ω0t − φ ,

we see that our system going through one cycle as t varies from t = t0 to t = t0 + p0 is the same

as cos(X) going through one complete cycle as X varies from

X = X0 = ω0t0 − φ

to

X = ω0(t0 + p0) − φ = X0 + ω0 p0 .

But, as we well know, cos(X) goes through one complete cycle as X goes from X = X0 to

X = X0 + 2π . Thus,

ω0 p0 = 2π , (16.9)

and the natural period of our system is

p0 = 2π

ω0
.

This is the “time per cycle” for the oscillations in the mass/spring system. Its reciprocal,

ν0 = 1

p0
= ω0

2π
,

then gives the “cycles per unit time” for the system (typically measured in terms of hertz, with

one hertz equaling one cycle per second). We call ν0 the (natural) frequency for the system. The

closely related quantity originally computed, ω0 (which can be viewed as describing “radians per unit

time”), will be called the (natural) angular frequency for the system.2 Because the natural frequency

ν0 is usually more easily measured than the natural circular frequency ω0 , it is sometimes more

convenient to express the formulas for position (formula set 16.8) with 2πν0 replacing ω0 ,

y(t) = c1 cos(2πν0t) + c2 sin(2πν0t) , (16.8a ′)
and, equivalently,

y(t) = A cos(2πν0t − φ) . (16.8b ′)

By the way, the angle φ in all the formulas above is called the phase angle of the oscillations,

and any motion described by these formulas is referred to as simple harmonic motion.

!�Example 16.3: Assume we have an undamped mass/spring system in which the spring’s spring

constant κ and the attached object’s mass m are

κ = 9

(
kg

sec2

)
and m = 4 (kg)

2 Many authors refer to ω0 as a circular frequency instead of an angular frequency.
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(as in example 16.1). Let us try to find and graph the position y at time t of the attached object,

assuming the object’s initial position and velocity are

y(0) = 2 and y′(0) = 3
√

3 .

With the above values for γ , m and κ , the differential equation for y , equation (16.6),

becomes

4
d2 y

dx2
+ 9y = 0 .

As noted in our discussion, the general solution can be given by either

y(t) = c1 cos(ω0t) + c2 sin(ω0t)

or

y(t) = A cos(ω0t − φ)

where the natural angular frequency is

ω0 =
√
κ

m
=

√
9

4
= 3

2
.

This means the natural period p0 and the natural frequency ν0 of the system are

p0 = 2π

ω0
= 2π

3/2
= 4π

3
and ν0 = 1

p0
= 3

4π
.

To determine the other constants in the above formulas for y(t) , we need to consider the

given initial conditions. Using the first formula for y , we have

y(t) = c1 cos
(

3

2
t
)

+ c2 sin
(

3

2
t
)

and

y′(t) = − 3

2
c1 sin

(
3

2
t
)

+ c2
3

2
cos

(
3

2
t
)

.

Plugging these into the initial conditions yields

2 = y(0) = c1 cos
(

3

2
· 0
)

+ c2 sin
(

3

2
· 0
)

= c1

and

3
√

3 = y′(0) = − 3

2
c1 sin

(
3

2
· 0
)

+ c2
3

2
cos

(
3

2
· 0
)

= 3

2
c2 .

So

c1 = 2 , c2 = 2

3
· 3

√
3 = 2

√
3 ,

and

A =
√
(c1)2 + (c2)2 =

√
(2)2 + (2

√
3)2 =

√
4 + 12 = 4 .

This gives us enough information to graph y(t) . From our computations, we know this

graph is a cosine shaped curve with amplitude A = 4 and period p0 = 4π/3 . It is shifted

horizontally so that the initial conditions

y(0) = 2 and y′(0) = 3
√

3 > 0

are satisfied. In other words, the graph must cross the Y –axis at y = 2 , and the graph’s slope at

that crossing point must be positive. That is how the graph in figure 16.2b was constructed.
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To find the phase angle φ , we must solve the pair of trigonometric equations

cos(φ) = c1

A
= 2

4
= 1

2
and sin(φ) = c2

A
= 2

√
3

4
=

√
3

2

for 0 ≤ φ < 2π . From our knowledge of trigonometry, we know the first of these equations is

satisfied if and only if

φ = π

3
or φ = 5π

3
,

while the second is satisfied if and only if

φ = π

3
or φ = 2π

3
.

Hence, for both of the above trigonometric equations to hold, we must have

φ = π

3
.

Finally, using the values just obtained, we can completely write out two equivalent formulas

for our solution:

y(t) = 2 cos
(

3

2
t
)

+ 2
√

3 sin
(

3

2
t
)

and

y(t) = 4 cos
(

3

2
t − π

3

)
.

Damped Systems

If γ > 0 , then all coefficients in our differential equation

m
d2 y

dt2
+ γ

dy

dt
+ κy = 0

are positive. The corresponding characteristic equation is

mr2 + γ r + κ = 0 ,

and its solutions are given by

r = r± = −γ ±
√
γ 2 − 4κm

2m
. (16.10)

As we saw in the last chapter, the nature of the differential equation’s solution, y = y(t) , depends on

whether γ 2 − 4κm is positive, negative or zero. And this, in turn, depends on the positive constants

γ , κ and mass m as follows:

γ < 2
√
κm ⇐⇒ γ 2 − 4κm < 0 ,

γ = 2
√
κm ⇐⇒ γ 2 − 4κm = 0 ,

and

2
√
κm < γ ⇐⇒ γ 2 − 4κm > 0 .
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For reasons that may (or may not) be clear by the end of this section, we say that a mass/spring

system is, respectively,

underdamped , critically damped or overdamped

if and only if

0 < γ < 2
√
κm , γ = 2

√
κm or 2

√
κm < γ .

Since we’ve already considered the case where γ = 0 , the first damped cases considered will

be the underdamped mass/spring systems (where 0 < γ < 2
√
κm ).

Underdamped Systems ( 0 < γ < 2
√

κm )

In this case,√
γ 2 − 4κm =

√
−
∣∣γ 2 − 4κm

∣∣ = i

√∣∣γ 2 − 4κm
∣∣ = i

√
4κm − γ 2 ,

and formula (16.10) for the r±’s can be written as

r± = −α ± iω where α = γ

2m
and ω =

√
4κm − γ 2

2m
.

Both α and ω are positive real values, and, from the discussion in the previous chapter, we know a

corresponding general solution to our differential equation is

y(t) = c1e−αt cos(ωt) + c2e−αt sin(ωt) .

Factoring out the exponential and applying the same analysis to the linear combination of sines and

cosines as was done for the undamped case, we get that the position y of the box at time t is given

by any of the following:

y(t) = e−αt [c1 cos(ωt) + c2 sin(ωt)] , (16.11a)

y(t) = Ae−αt cos(ωt − φ) (16.11b)

and even

y(t) = Ae−αt cos
(
ω
[
t − φ

ω

])
. (16.11c)

These three formulas are equivalent, and the arbitrary constants are related, as before, by

A =
√
(c1)2 + (c2)2 , cos(φ) = c1

A
and sin(φ) = c2

A
.

Note the similarities and differences in the motion of the undamped system and the underdamped

system. In both cases, a shifted cosine function plays a major role in describing the position of

the mass. In the underdamped system this cosine function has angular frequency ω and, hence,

corresponding period and frequency

p = 2π

ω
and ν = ω

2π
.

However, in the underdamped system, this shifted cosine function is also multiplied by a decreasing

exponential, reflecting the fact that the motion is being damped, but not so damped as to completely
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prevent oscillations in the box’s position. (You will further analyze how p and ν vary with γ in

exercise 16.7 b.)

Because the α in the formula set (16.11) determines the rate at which the maximum values of

y(t) are decreasing as t increases, let us call α the decay coefficent for our system. It is also tempting

to call ω , p and ν the angular frequency, period and frequency of the system, but, because y(t) is

not truly periodic, this terminology is not truly appropriate. Instead, let’s refer to these quantities the

angular quasi-frequency, quasi-period and quasi-frequency of the system.3 And, if you must give

them names, call A the quasi-amplitude and Ae−αt the time-varying amplitude of the system.

And, again, it is sometimes more convenient to express our formulas in terms of the quasi-

frequency ν instead of the angular quasi-frequency ω , with, for example, formulas (16.11a) and

(16.11b) being rewritten as

y(t) = e−αt [c1 cos(2πνt) + c2 sin(2πνt)] (16.11a ′)
and

y(t) = Ae−αt cos(2πνt − φ) . (16.11b ′)

!�Example 16.4: Again, assume the spring constant κ and the mass m in our mass/spring

system are

κ = 9

(
kg

sec2

)
and m = 4 (kg) .

For the system to be underdamped, the resistance coefficient γ must satisfy

0 < γ < 2
√
κm = 2

√
9 · 4 = 12 .

For this example, assume γ = 2 . Then the position y at time t of the object is given by

y(t) = Ae−αt cos(ωt − φ)

where

α = γ

2m
= 2

2 × 4
= 1

4

and

ω =
√

4κm − γ 2

2m
=

√
(4 · 9 · 3)− 22

2 · 4
=

√
35

4
.

The corresponding quasi-period for the system is

p = 2π

ω
= 2π√

35/4
= 8π√

35
≈ 4.25 .

To keep this example short, we won’t solve for A and φ from some set of initial conditions.

Instead, we’ll just set

A = 4 and φ = π

3
,

and note that the resulting graph of y(t) is sketched in figure 16.3.

3 Some authors prefer using “psuedo” instead “quasi”.
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Y

T

Ae−αt
y(t)

11

2

4

55

Figure 16.3: Graph of y(t) for the underdamped mass/spring system of example 16.4

Critically Damped Systems ( γ = 2
√

κm )

In this case, √
γ 2 − 4κm = 0

and

r± = −γ ±
√
γ 2 − 4κm

2m
= −2

√
κm ± √

0

2m
= −

√
κm

m
= −

√
κ

m
.

So the corresponding general solution to our differential equation is

y(t) = c1e−αt + c2te−αt where α =
√
κ

m
.

Factoring out the exponential yields

y(t) = [c1 + c2t]e−αt . (16.12)

The cosine factor in the underdamped case has now been replaced with a formula for a straight line,

c1 + c2t . If y′(0) is positive, then y(t) will initially increase as t increases. However, at some

point, the decaying exponential will force the graph of y(t) back down towards 0 as t → ∞ . This

is illustrated in figure 16.4a.

If, on the other hand, y(0) is positive and y′(0) is negative, then the slope of the straight line

is negative, and the graph will initially head downward as t increases. Eventually, c1 + c2t will be

negative. And, again, the decaying exponential will eventually force y(t) back (upward, this time)

towards 0 as t → ∞ . This is illustrated in figure 16.4b.

!�Example 16.5: Once again, assume the spring constant κ and the mass m in our mass/spring

system are

κ = 9

(
kg

sec2

)
and m = 4 (kg) .

For the system to be critically damped, the resistance coefficient γ must satisfy

γ = 2
√
κm = 2

√
9 · 4 = 12 .

Assuming this, the position y at time t of the object in this mass/spring system is given by

y(t) = [c1 + c2t]e−αt where α =
√
κ

m
=

√
9

4
= 3

2
.

The graph of this with (c1, c2) = (2, 8) is sketched in figure 16.4a; the graph of this with

(c1, c2) = (2,−4) is sketched in figure 16.4b.
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(a) (b)

Y Y

T T11 11

2 2

5 5
−0.5 −0.5

Figure 16.4: Graph of y(t) for the critically damped mass/spring system of example 16.5 (a)
with y(0) = 2 and y′(0) > 0 (b) with y(0) = 2 and y′(0) < 0 .

Overdamped Systems ( 2
√

κm < γ )

In this case, it is first worth observing that

γ >

√
γ 2 − 4κm > 0 .

Consequently, the formula for the r±’s (equation (16.10)),

r± = −γ ±
√
γ 2 − 4κm

2m

can be written as

r+ = α and r− = β

where α and β are the positive values

α = γ −
√
γ 2 − 4κm

2m
and β = γ +

√
γ 2 − 4κm

2m
.

Hence, the corresponding general solution to the differential equation is

y(t) = c1e−αt + c2e−βt ,

a linear combination of two decaying exponentials.

Some of the possible graphs for y are illustrated in figure 16.5.

!�Example 16.6: Once again, assume the spring constant and the mass in our mass/spring system

are, respectively,

κ = 9

(
kg

sec2

)
and m = 4 (kg) .

For the system to be overdamped, the resistance coefficient γ must satisfy

γ > 2
√
κm = 2

√
9 · 4 = 12 .

In particular, the system is overdamped if the resistance coefficient γ is 15 . Assuming this, the

general position y at time t of the object in our system is given by

y(t) = c1e−αt + c2e−βt
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(a) (b) (c)

Y
Y Y

T T T000
000

2 22

55 5

Figure 16.5: Graphs of y(t) (with y(0) = 2 ) for the overdamped mass/spring system of

example 16.6. In (a) y′(0) > 0 . In (b) and (c) y′(0) < 0 with the magnitude of

y′(0) in (c) being significantly larger than in (b).

where

α = γ −
√
γ 2 − 4κm

2m
= 15 −

√
152 − 4 · 9 · 4

2 · 4
= · · · = 3

4

and

β = γ +
√
γ 2 − 4κm

2m
= 15 +

√
152 − 4 · 9 · 4

2 · 4
= · · · = 3 .

Figures 16.5a, 16.5b, and 16.5c were drawn using this formula with, respectively,

(c1, c2) = (4,−2) , (c1, c2) = (1, 1) and (c1, c2) = (−2, 4) .

Additional Exercises

16.1. Assume we have a single undamped mass/spring system, and do the following:

a. Find the spring constant κ for the spring given that, when pulled out 1/2 meter beyond

its natural length, the spring pulls back with a force F0 of magnitude

|F0| = 2

(
kg·meter

sec2

)
.

b. Find the the natural angular frequency ω0 , the natural frequency ν0 , and the natural

period p0 of this system assuming the mass of the attached object is 16 kilograms.

c. Four different sets of initial conditions are given below for this mass/spring system. For

each, determine the corresponding amplitude A and phase angle φ for the system, and

sketch the graph of the position over time y = y(t) . (Use the values of κ and ω0 derived

above, and assume position and time are given in meters and seconds, respectively.):

i. y(0) = 2 and y′(0) = 0 ii. y(0) = 0 and y′(0) = 2

iii. y(0) = 0 and y′(0) = −2 iv. y(0) = 2 and y′(0) =
√

3
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16.2. Assume we have a single undamped mass/spring system, and do the following:

a. Find the spring constant κ for the spring given that, when pulled out 1/4 meter beyond

its natural length, the spring pulls back with a force F0 of magnitude

|F0| = 72

(
kg·meter

sec2

)
.

b. Find the the natural angular frequency ω0 , the natural frequency ν0 , and the natural

period p0 of this system when the mass of the attached object is 2 kilograms.

c. Three different sets of initial conditions are given below for this mass/spring system. For

each, determine the corresponding amplitude A , and sketch the graph of the position over

time y = y(t) :

i. y(0) = 1 and y′(0) = 0 ii. y(0) = 0 and y′(0) = 1

iii. y(0) = 1 and y′(0) = 3

16.3. Suppose we have an undamped mass/spring system with natural angular frequency ω0 .

Let y0 and v0 be, respectively, the position and velocity of the object at t = 0 . Show that

the corresponding amplitude A is given by

A =
√

y0
2 +

[
v0

ω0

]2

,

and that the phase angle satisfies

tan(φ) = v0

y0ω0
.

16.4. Suppose that a particular undamped mass/spring system has natural period p0 = 3 seconds.

What is the spring constant κ of the spring if the mass m of the object is (in kilograms)

a. m = 1 b. m = 2 c. m = 1

2

16.5. Suppose we have an underdamped mass/spring system with decay coefficient α and angular

quasi-frequency ω . Let y0 and v0 be, respectively, the position and velocity of the object

at t = 0 . Show that the corresponding amplitude A is given by

A =
√

y0
2 +

[
v0 + αy0

ω

]2
,

while the phase angle satisfies

tan(φ) = v0 + αy0

y0ω
.

16.6. Consider a damped mass/spring system with spring constant, mass and damping coefficient

being, respectively,

κ = 37 , m = 4 and γ = 4 .

a. Verify that this is an underdamped system.

b. Find the decay coefficient α , the angular quasi-frequency ω , the quasi-period p and the

quasi-frequency ν of this system.
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c. Three different sets of initial conditions are given below for this mass/spring system. For

each, determine the corresponding quasi-amplitude A for the system, and roughly sketch

the graph of the position over time y = y(t) .

i. y(0) = 1 and y′(0) = 0 ii. y(0) = 4 and y′(0) = −2

iii. y(0) = 0 and y′(0) = 1 iv. y(0) = 2 and y′(0) = 2

16.7 a. Let ω be the angular quasi-frequency of some underdamped mass/spring system. Show

that

ω =
√
(ω0)2 −

(
γ

2m

)2

where m is the mass of the object in the system, γ is the damping constant, and ω0 is

the natural frequency of the corresponding undamped system.

b. Suppose we have a mass/spring system in which we can adjust the damping coefficient

γ (the mass m and the spring constant κ remain constant). How do the quasi-frequency

ν and the quasi-period p vary as γ varies from γ = 0 up to γ = 2
√
κm ? (Compare

ν and p to the natural frequency and period of the corresponding undamped system, ν0

and p0 .)

16.8. Consider a damped mass/spring system with spring constant, mass and damping coefficient

being, respectively,

κ = 4 , m = 1 and γ = 4 .

a. Verify that this system is critically damped.

b. Find and roughly graph the position of the object over time, y(t) , assuming that

y(0) = 2 and y′(0) = 0 .

c. Find and roughly graph the position of the object over time, y(t) , assuming that

y(0) = 0 and y′(0) = 2 .

16.9. Consider a damped mass/spring system with spring constant, mass and damping coefficient

being, respectively,

κ = 4 , m = 1 and γ = 5 .

a. Verify that this system is overdamped.

b. Find and roughly graph the position of the object over time, y(t) , assuming that

y(0) = 2 and y′(0) = 0 .

c. Find and roughly graph the position of the object over time, y(t) , assuming that

y(0) = 0 and y′(0) = 2 .
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Arbitrary Homogeneous Linear Equations
with Constant Coefficients

In chapter 15, we saw how to solve any equation of the form

ay′′ + by′ + cy = 0

when a , b and c are real constants. Unsurprisingly, the same basic ideas apply when dealing with

any equation of the form

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

when N is some positive integer and the ak’s are all real constants. Assuming y = er x still leads

to the corresponding “characteristic equation”

a0r N + a1r N−1 + · · · + aN−2r2 + aN−1r + aN = 0 ,

and a general solution to the differential equation can then be obtained using the solutions to the

characteristic equation, much as we did in chapter 15. Computationally, the only significant difficulty

is in the algebra needed to find the roots of the characteristic polynomial.

So let us look at that algebra, first.

17.1 Some Algebra

A basic fact of algebra is that any second-degree polynomial

p(r) = ar2 + br + c

can be factored to

p(r) = a(r − r1)(r − r2)

where r1 and r2 are the roots of the polynomial (i.e., the solutions to p(r) = 0 ). These roots may

be complex, in which case r1 and r2 are complex conjugates of each other (assuming a , b and c

are real numbers). It is also possible that r1 = r2 , in which case the factored form of the polynomial

is more concisely written as

p(r) = a(r − r1)
2 .

335
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The idea of “factoring”, of course, extends to polynomials of higher degree. And to use this

idea with these polynomials, it will help to introduce the “completely factored form” for an arbitrary

N th-degree polynomial

p(r) = a0r N + a1r N−1 + · · · + aN−2r2 + aN−1r + aN .

We will say that we’ve (re)written this polynomial into its completely factored form if and only if

we’ve factored it to an expression of the form

p(r) = a0(r − r1)
m1(r − r2)

m2 · · · (r − rK )
mK (17.1)

where

{ r1, r2, . . . , rK }
is the set of all different (possibly complex) roots of the polynomial (i.e., values of r satisfying

p(r) = 0 ), and

{ m1, m2, . . . , mK }
is some corresponding set of positive integers.

Let’s make a few simple observations regarding the above, and then look at a few examples.

1. It will be important for our discussion that

{ r1, r2, . . . , rK }

is the set of all different roots of the polynomial. If j = k , then r j = rk .

2. Each mk is the largest integer such that (r −rk)
mk is a factor of the original polynomial. Con-

sequently, for each rk , there is only one possible value for mk . We call mk the multiplicity

of rk .

3. As shorthand, we often say that rk is a simple root if its multiplicity is 1 , a double root if

its multiplicity is 2 , a triple root if its multiplicity is 3 , and so on.

4. If you multiply out all the factors in the completely factored form in line (17.1), you get a

polynomial of degree

m1 + m2 + · · · + mK .

Since this polynomial is supposed to be p(r) , an N th-degree polynomial, we must have

m1 + m2 + · · · + mK = N .

!�Example 17.1: By straightforward multiplication, you can verify that

2(r − 4)3(r + 5) = 2r4 − 14r3 − 24r2 + 352r − 640 .

This means

p(r) = 2r4 − 14r3 − 24r2 + 352r − 640

can be written in completely factored form

p(r) = 2(r − 4)3(r − [−5]) .

This polynomial has two distinct real roots, 4 and −5 . The root 4 has multiplicity 3 , and −5

is a simple root.
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!�Example 17.2: Straightforward multiplication also verifies that

(r − 3)5 = r5 − 15r4 + 90r3 − 270r2 + 405r − 243 .

Thus,

r5 − 15r4 + 90r3 − 270r2 + 405r − 243

has the completely factored form

(r − 3)5 .

Here, 3 is the only distinct root, and this root has multiplicity 5 .

!�Example 17.3: As the last example, for now, you can show that(
r − [3 + 4i])2(

r − [3 − 4i])2 = r4 − 12r3 + 86r2 − 300r + 625 .

Hence, (
r − [3 + 4i])2(

r − [3 − 4i])2

is the completely factored form for

r4 − 12r3 + 86r2 − 300r + 625 .

This time we have two complex roots, 3 + 4i and 3 − 4i , with each being a double root.

Can every polynomial be written in completely factored form? The next theorem says “yes”.

Theorem 17.1 (complete factorization theorem)

Every polynomial can be written in completely factored form.

Note that we are not requiring the coefficients of the polynomial be real. This theorem is valid

for every polynomial with real or complex coefficients. Unfortunately, you will have to accept this

theorem on faith. Its proof requires developing more theory than is appropriate in this text.1

Unfortunately, also, this theorem does not tell us how to find the completely factored form. Of

course, if the polynomial is of degree 2 ,

ar2 + br + c ,

then we can find the roots via the quadratic formula,

r = r± = −b ±
√

b2 − 4ac

2a
.

Analogs of this formula do exist for polynomials of degrees 3 and 4 , but these analogs are rather

complicated and not often used unless the user is driven by great need. For polynomials of degrees

greater than 4 , it has been shown that no such analogs exist.

This means that finding the completely factored form may require some of those “tricks for

factoring” you learned long ago in your old algebra classes. We’ll review a few of those tricks later

in examples involving differential equations.

1 Those who are interested may want to look up the “Fundamental Theorem of Algebra” in a text on complex variables.

The complete factorization theorem given here is a corollary of that theorem.
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17.2 Solving the Differential Equation
The Characteristic Equation

Suppose we have some N th-order differential equation of the form

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0 (17.2)

where the ak’s are all constants (and a0 = 0 ). Since(
er x

)′ = rer x

(
er x

)′′ = (
rer x

)′ = r · rer x = r2er x

(
er x

)′′′ =
(

r2er x
)′

= r2 · rer x = r3er x

...

for any constant r , it is easy to see that plugging y = er x into the differential equation yields

a0r N er x + a1r N−1er x + · · · + aN−2r2er x + aN−1rer x + aN er x = 0 ,

which, after dividing out er x , gives us the corresponding characteristic equation

a0r N + a1r N−1 + · · · + aN−2r2 + aN−1r + aN = 0 . (17.3)

As before, we refer to the polynomial on the left,

p(r) = a0r N + a1r N−1 + · · · + aN−2r2 + aN−1r + aN ,

as the characteristic polynomial for the differential equation. Also, as in a previous chapter, it should

be observed that the characteristic equation can be obtained from the original differential equation

by simply replacing the derivatives of y with the corresponding powers of r .

According to the complete factorization theorem, the above characteristic equation can be

rewritten in completely factored form,

a0(r − r1)
m1(r − r2)

m2 · · · (r − rK )
mK = 0 (17.4)

where the rk’s are all the different roots of the characteristic polynomial, and the mk’s are the

multiplicities of the corresponding roots. It turns out that, for each root rk with multiplicity mk ,

we can identify a corresponding linearly independent set of mk particular solutions to the original

differential equation. It will be obvious (once you see them) that no solution generated from one

root can be written as a linear combination of solutions generated from the other roots. Hence, the

set of all these particular solutions generated from all the rk’s will be a linearly independent set

containing (according to our complete factorization theorem)

m1 + m2 + · · · + mK = N

solutions. From the big theorem on solutions to homogeneous equations (theorem 13.5 on page

272), we then know that this big set is a fundamental set of solutions for the differential equation,

and that the general solution is given by an arbitrary linear combination of these particular solutions.

Exactly which particular solutions are generated from each individual root depends on the

multiplicity and whether the root is real valued or not.
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Particular Solutions Corresponding to One Root

In the following, we will assume rk is a root of multiplicity mk to our characteristic polynomial.

That is,

(r − rk)
mk

is one factor in equation (17.4). However, since the choice of k will be irrelevant in this discussion,

we will, for simplicity, drop the subscripts.

The Basic Result

Assume r is a root of multiplicity m to our characteristic polynomial. Then, as before,

er x

is one particular solution to the differential equation, and if m = 1 , it is the only solution corre-

sponding to this root that we need to find.

So now assume m > 1 . In the previous chapter, we found that

x er x

is a second solution to the differential equation when r is a repeated root and N = 2 . This was

obtained via reduction of order. For the more general case being considered here, it can be shown

that x er x is still a solution. In fact, it can be shown that the m particular solutions to the differential

equation corresponding to root r can be generated one after the other by simply multiplying the

previously found solution by x . That is, we have the following theorem:

Theorem 17.2

Let r be a root of multiplicity m to the characteristic polynomial for

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

where the ak’s are all constants. Then{
er x , x er x , x2er x , . . . , xm−1er x

}
is a linearly independent set of m solutions to the differential equation.

The proof of this theorem will be discussed later, in section 17.4. (And it probably should be

noted that xmer x ends up not being a solution to the differential equation.)

Particular Solutions Corresponding to a Real Root

If r is a real root of multiplicity m to our characteristic polynomial, then theorem 17.2, above, tells

us that {
er x , x er x , x2er x , . . . , xm−1er x

}
is the linearly independent set of m solutions to the differential equation corresponding to that root.

No more need be said.

!�Example 17.4: Consider the homogeneous differential equation

y(5) − 15y(4) + 90y′′′ − 270y′′ + 405y′ − 243y = 0 .
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Its characteristic equation is

r5 − 15r4 + 90r3 − 270r2 + 405r − 243 = 0 .

The left side of this equation is the polynomial from example 17.2. Going back to that example,

we discover that this characteristic equation can be factored to

(r − 3)5 = 0 .

So 3 is the only root, and it has multiplicity 5 . Theorem 17.2 then tells us that the linearly

independent set of 5 corresponding particular solutions to the differential equation is{
e3x , xe3x , x2e3x , x3e3x , x4e3x

}
.

Since 5 is also the order of the differential equation, we know (via theorem 13.5 on page 272)

that the above set is a fundamental set of solutions to our homogeneous differential equation, and,

thus,

y(x) = c1e3x + c2xe3x + c3x2e3x + c4x3e3x + c5x4e3x

is a general solution for our differential equation.

Particular Solutions Corresponding to a Complex Root

In chapter, 15 we observed that complex roots to a second-degree polynomial always occur as a

conjugate pair when the coefficients of the polynomial are real. With a little bit of work (see section

17.5), we can extend that observation to:

Theorem 17.3

Consider a polynomial

p(r) = a0r N + a1r N−1 + · · · + aN−1r + aN

in which a0 , a1 , . . . , and aN are all real numbers. Let λ and ω be two real numbers, and let m

be some positive integer. Then

r0 = λ+ iω is a root of multiplicity m for polynomial p(r)

if and only if

r0
∗ = λ− iω is a root of multiplicity m for polynomial p(r) .

Now assume λ + iω is a complex root of multiplicity m to our characteristic polynomial.

Theorems 17.2 and 17.3, together, tell us that{
e(λ+iω)x , x e(λ+iω)x , x2e(λ+iω)x , . . . , xm−1e(λ+iω)x

}
and {

e(λ−iω)x , x e(λ−iω)x , x2e(λ−iω)x , . . . , xm−1e(λ−iω)x
}

are linearly independent sets of m solutions to the differential equation corresponding to roots λ+iω

and λ− iω .

For many problems, though, these are not particularly desirable sets of solutions because they

introduce complex values into computations we expect to yield real values. But recall how we dealt

with complex-exponential solutions for second-order equations, constructing alternative pairs of
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solutions via linear combinations. Unsurprisingly, the same idea works here, and we can construct

an alternative pair of solutions {yk,1, yk,2} from each pair{
xke(λ+iω)x , xke(λ−iω)x

}
via the linear combinations

yk,1(x) = 1

2
xke(λ+iω)x + 1

2
xke(λ−iω)x

and

yk,2(x) = 1

2i
xke(λ+iω)x − 1

2i
xke(λ−iω)x .

Since

e(λ±iω)x = eλx [cos(ωx)∓ i sin(ωx)] ,

you can easily verify that

yk,1 = xkeλx cos(ωx) and yk,2 = xkeλx sin(ωx) .

It is also “easily” verified that the set of these functions, with k = 0, 1, 2, . . . ,m − 1 , is linearly

independent.

Thus, instead of using{
e(λ+iω)x , x e(λ+iω)x , x2e(λ+iω)x , . . . , xm−1e(λ+iω)x

}
and {

e(λ−iω)x , x e(λ−iω)x , x2e(λ−iω)x , . . . , xm−1e(λ−iω)x
}

as the two linearly independent sets corresponding to roots λ+ iω and λ− iω , we can use the sets

of real-valued functions{
eλx cos(ωx) , x eλx cos(ωx) , x2eλx cos(ωx) , . . . , xm−1eλx cos(ωx)

}
and {

eλx sin(ωx) , x eλx sin(ωx) , x2eλx sin(ωx) , . . . , xm−1eλx sin(ωx)
}

.

!�Example 17.5: Consider the differential equation

y(4) − 12y(3) + 86y′′ − 300y′ + 625y = 0 .

Its characteristic equation is

r4 − 12r3 + 86r2 − 300r + 625 = 0 ,

which, as we saw in example 17.3, can be factored to(
r − [3 + 4i])2(

r − [3 − 4i])2 = 0 .

Here, we have a conjugate pair of roots, 3 + 4i and 3 − 4i , each with multiplicity 2 . So the

corresponding particular real-valued solutions to the differential equation are

e3x cos(4x) , xe3x cos(4x) , e3x sin(4x) and xe3x sin(4x) .

And since our homogeneous, linear differential equation is of order 4 , its general solution is

given by an arbitrary linear combination of these four solutions,

y(x) = c1e3x cos(4x) + c2xe3x cos(4x) + c3e3x sin(4x) + c4xe3x sin(4x) ,

which, to save space, might also be written as

y(x) = [c1 + c2x]e3x cos(4x) + [c3 + c4x]e3x sin(4x) .
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17.3 More Examples

The most difficult part of solving a high-order, homogeneous linear differential equation with constant

coefficients is the factoring of its characteristic polynomial. Unfortunately, the methods commonly

used to factor second-degree polynomials do not nicely generalize to methods for factoring polyno-

mials of higher degree. So we have to use whatever algebraic tricks we can think of. And if all else

fails, we can run to the computer and let our favorite math package attempt the factoring.

Here are a few examples to help you recall some of the useful tricks for factoring polynomials

of order three or above.

!�Example 17.6: Consider the seventh-order, homogeneous differential equation

y(7) − 625y(3) = 0 .

The characteristic equation is

r7 − 625r3 = 0 .

An obvious choice of action would be to first factor out r3 ,

r3
(

r4 − 625
)

= 0 .

Cleverly noting that r4 = [r2]2 and 625 = 252 , and then applying well-known algebraic

formulas, we have

r3
(

r4 − 625
)

= 0

↪→ r3
(
[r2]2 − [25]2

)
= 0

↪→ r3
(

r2 − 25
) (

r2 + 25
)

= 0

↪→ r3(r − 5)(r + 5)
(

r2 + 25
)

= 0 .

Now

r2 + 25 = 0 � r2 = −25 � r2 = ±
√

−25 = ±5i .

So our characteristic equation can be written as

r3(r − 5)(r + 5)(r − 5i)(r + 5i) = 0 .

To be a little more explicit,

(r − 0)3(r − 5)
(
r − [−5])(r − 5i)

(
r − [−5i]) = 0 .

Thus, our characteristic polynomial has 5 different roots:

0 , 5 , − 5 , 5i and − 5i .

The root 0 has multiplicity 3 , and the differential equation has corresponding particular solutions

e0·x , xe0·x and x2e0·x ,

which most of us would rather write as

1 , x and x2 .
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The roots 5 and −5 each have multiplicity 1 . So the differential equation has corresponding

particular solutions

e5x and e−5x .

Finally, we have a pair of complex roots 5i and −5i , each with multiplicity 1 . Since these are

of the form λ ± iω with λ = 0 and ω = 5 , the corresponding real-valued particular solutions

to our differential equation are

cos(5x) and sin(5x) .

Taking an arbitrary linear combination of the above seven particular solutions, we get

y(x) = c1 · 1 + c2x + c3x2 + c4e5x + c5e−5x + c6 cos(5x) + c7 sin(5x)

as a general solution to our differential equation.

!�Example 17.7: Consider

y′′′ − 19y′ + 30y = 0 .

The characteristic equation is

r3 − 19r + 30 = 0 .

Few people can find a first factoring of this characteristic polynomial,

p(r) = r3 − 19r + 30 ,

by inspection. But remember,

(r − r1) is a factor of p(r) ⇐⇒ p(r1) = 0 .

This means we can test candidates for r1 by just seeing if p(r1) = 0 . Good candidates here

would be the integer factors of 30 ( ±1 , ±2 , ±3 , ±5 , ±6 , ±10 and ±15 ).

Trying r1 = 1 , we get

p(1) = 13 − 19 · 1 + 30 = 12 = 0 .

So r1 = 1 .

Trying r1 = −1 , we get

p(−1) = (−1)3 − 19 · (−1) + 30 = −1 + 19 + 30 = 0 .

So r1 = −1 .

Trying r1 = 2 , we get

p(2) = (2)3 − 19 · (2) + 30 = 8 − 38 + 30 = 0 .

Success! One root is r1 = 2 and one factor of our characteristic polynomial is (r − 2) . To get

our first factoring, we then divide r − 2 into the characteristic polynomial:

r2 + 2r − 15

r − 2
)

r3 − 19r + 30

− r3 + 2r2

2r2 − 19r

− 2r2 + 4r

− 15r + 30

15r − 30

0
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Thus,

r3 − 19r + 30 = (r − 2)(r2 + 2r − 15) .

By inspection, we see that

r2 + 2r − 15 = (r + 5)(r − 3) .

So, our characteristic equation

r3 − 19r + 30 = 0

factors to

(r − 2)(r − [−5])(r − 3) = 0 ,

and, thus,

y(x) = c1e2x + c2e−5x + c3e3x

is a general solution to our differential equation.

17.4 On Verifying Theorem 17.2

Theorem 17.2 claims to give a linearly independent set of solutions to a linear homogeneous dif-

ferential equation with constant coefficients corresponding to a repeated root for the equation’s

characteristic polynomial. Our task of verifying this claim will be greatly simplified if we slightly

expand our discussion of “factoring” linear differential operators from section 14.3. (You may want

to go back and quickly review that section.)

Linear Differential Operators with Constant Coefficients

First, we need to expand our terminology a little. When we refer to L as being an N th-order

linear differential operator with constant coefficients, we just mean that L is an N th-order linear

differential operator

L = a0
d N

dx N
+ a1

d N−1

dx N−1
+ · · · + aN−2

d2

dx2
+ aN−1

d

dx
+ aN

in which all the ak’s are constants. Its characteristic polynomial p(r) is simply the polynomial

p(r) = a0r N + a1r N−1 + · · · + aN−2r2 + aN−1r + aN .

It turns out that factoring a linear differential operator with constant coefficients is remarkably easy

if you already have the factorization for its characteristic polynomial.

!�Example 17.8: Consider the linear differential operator

L = d2

dx2
− 5

d

dx
+ 6 .

Its characteristic polynomial is

r2 − 5r + 6 ,

which factors to

(r − 2)(r − 3) .
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Now, consider the analogous composition product(
d

dx
− 2

) (
d

dx
− 3

)
.

Letting φ be any suitably differentiable function, we see that(
d

dx
− 2

) (
d

dx
− 3

)
[φ] =

(
d

dx
− 2

) [
dφ

dx
− 3φ

]
= d

dx

[
dφ

dx
− 3φ

]
− 2

[
dφ

dx
− 3φ

]
= d2φ

dx2
− 3

dφ

dx
− 2

dφ

dx
+ 6φ

= d2φ

dx2
− 5

dφ

dx
+ 6φ

= L[φ] .

Thus,

L =
(

d

dx
− 2

) (
d

dx
− 3

)
.

Redoing this last example with the numbers 2 and 3 replaced by constants r1 and r2 leads

to the first result of this section:

Lemma 17.4

Let L be a second-order linear differential operator with constant coefficients,

L = a
d2

dx2
+ b

d

dx
+ c ,

and let

p(r) = a(r − r1)(r − r2)

be a factorization of the characteristic polynomial for L (the roots r1 and r2 need not be different,

nor must they be real). Then the operator L has factorization

L = a
(

d

dx
− r1

) (
d

dx
− r2

)
.

PROOF: First of all, by the definition of p and elementary algebra,

ar2 + br + c = p(r) = a(r − r1)(r − r2) = ar2 − a [r1 + r2] r + ar1r2 .

So,

b = −a [r1 + r2] and c = ar1r2 .

Now, let φ be any sufficiently differentiable function. By the above,

a
(

d

dx
− r1

) (
d

dx
− r2

)
[φ] = a

(
d

dx
− r1

) [
dφ

dx
− r2φ

]
= a

(
d

dx

[
dφ

dx
− r2φ

]
− r1

[
dφ

dx
− r2φ

])
= a

(
d2φ

dx2
− r2

dφ

dx
− r1

dφ

dx
+ r1r2φ

)
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= a
d2φ

dx2
− a [r1 + r2]

dφ

dx
+ ar1r2φ

= a
d2φ

dx2
+ b

dφ

dx
+ cφ

= L[φ] .

Clearly, straightforward extensions of these arguments will show that, for any factorization of

the characteristic polynomial of any linear differential operator with constant coefficients, there is

a corresponding factorization of that operator. To simplify writing the factors of the operator when

rk is a multiple root of the characteristic polynomial, let us agree that(
d

dx
− r1

)0

= 1 ,

(
d

dx
− r1

)1

=
(

d

dx
− r1

)
,

(
d

dx
− r1

)2

=
(

d

dx
− r1

) (
d

dx
− r1

)
,

(
d

dx
− r1

)3

=
(

d

dx
− r1

) (
d

dx
− r1

) (
d

dx
− r1

)
,

...

Using this notation along with the obvious extension of the above proof yields the next theorem.

Theorem 17.5 (factorization of constant coefficient operators)

Let L be a linear differential operator with constant coefficients, and let

p(r) = a(r − r1)
m1(r − r2)

m2 · · · (r − rK )
mK

be the completely factored form for the characteristic polynomial for L . Then

L = a
(

d

dx
− r1

)m1
(

d

dx
− r2

)m2 · · ·
(

d

dx
− rK

)mK

.

Let us make two observations regarding the polynomial p , one of the roots r j of this polyno-

mial, and the operator L from the last theorem:

1. Because the order in which we write the factors of a polynomial is irrelevant, we have

p(r) = a(r − r1)
m1(r − r2)

m2 · · · (r − rK )
mK = ap j (r)(r − r j )

m j

where p j (r) is the product of all the (r − rk)’s with rk = r j . Hence, L can be factored by

L = aL j

(
d

dx
− r j

)m j

where L j is the composition product of all the
(

d/dx − rk

)
’s with rk = r j .

2. If y is a solution to (
d

dx
− r j

)m j [y] = 0 ,

then

L[y] = aL j

(
d

dx
− r j

)m j [y] = aL j

[(
d

dx
− r j

)m j [y]
]

= aL j [0] = 0 .
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Together, these observations give us the actual result we will use.

Corollary 17.6

Let L be a linear differential operator with constant coefficients; let

p(r) = a(r − r1)
m1(r − r2)

m2 · · · (r − rK )
mK

be the completely factored form for the characteristic polynomial for L , and let r j be any one of

the roots of p . Suppose, further, that y is a solution to(
d

dx
− r j

)m j [y] = 0 .

Then y is also solution to

L[y] = 0 .

Proof of Theorem 17.2

Theorem 17.2 claims that, if r is a root of multiplicity m for the characteristic polynomial of some

linear homogeneous differential equation with constant coefficients, then{
er x , x er x , x2er x , . . . , xm−1er x

}
is a linearly independent set of solutions to that differential equation. First we will verify that each of

these xker x ’s is a solution to the differential equation. Then we will confirm the linear independence

of this set.

Verifying the Solutions

If you look back at corollary 17.6, you will see that we need only show that(
d

dx
− r

)m

[xker x ] = 0 (17.5)

whenever k is a nonnegative integer less than m . To expedite our main computations, we’ll do two

preliminary computations. And, since at least one may be useful in a later chapter, we’ll describe

the results in an easily referenced lemma.

Lemma 17.7

Let r , α and β be constants with α being a positive integer and β being real valued. Then(
d

dx
− r

)α [
er x

] = 0 and
(

d

dx
− r

)α [
xβer x

] = β
(

d

dx
− r

)α−1 [
xβ−1er x

]
.

PROOF: For the first:(
d

dx
− r

)α [
er x

] =
(

d

dx
− r

)α−1 (d

dx
− r

) [
er x

]
=

(
d

dx
− r

)α−1 [
rer x − rer x

] =
(

d

dx
− r

)α−1

[0] = 0 .
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For the second:(
d

dx
− r

)α [
xβer x

] =
(

d

dx
− r

)α−1 (d

dx
− r

) [
xβer x

]
=

(
d

dx
− r

)α−1 [d

dx

[
xβer x

]− rxβer x
]

=
(

d

dx
− r

)α−1 [
βxβ−1er x + xβrer x − rxβer x

]
= β

(
d

dx
− r

)α−1 [
xβ−1er x

]
.

Now let k be an positive integer less than m . Using the above lemma, we see that(
d

dx
− r

)m [
xker x

]
= k

(
d

dx
− r

)m−1 [
xk−1er x

]
= k(k − 1)

(
d

dx
− r

)m−2 [
xk−2er x

]
= k(k − 1)(k − 2)

(
d

dx
− r

)m−3 [
xk−3er x

]
...

= k(k − 1)(k − 2) · · · (k − [k − 1])
(

d

dx
− r

)m−k [
xk−ker x

]
= k!

(
d

dx
− r

)m−k [
er x

]
= 0 ,

verifying equation (17.5).

Verifying Linear Independence

To finish verifying the claim of theorem 17.2, we need only confirm that{
er x , x er x , x2er x , . . . , xm−1er x

}
is a linearly independent set of functions on the real line. Well, let’s ask if this set could be, instead, a

linearly dependent set of functions on the real line. Then one of these functions, say, xκer x , would

be a linear combination of the others,

xκer x = linear combination of the other xker x ’s .

Subtract xκer x from both sides, and you get

0 = linear combination of the other xker x ’s − 1 · xκer x ,

which we can rewrite as

0 = c0er x + c1x er x + c2x2er x + · · · + cm xm−1er x

where the ck’s are constants with

cκ = −1 .
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Dividing out er x reduces the above to

0 = c0 + c1x + c2x2 + · · · + cm−1xm−1 . (17.6)

Since this is supposed to hold for all x , it should hold for x = 0 , giving us

0 = c0 + c1 · 0 + c2 · 02 + · · · + cm−1 · 0m−1 = c0 .

Now differentiate both sides of equation (17.6) and plug in x = 0 :

d

dx
[0] = d

dx

[
c0 + c1x + c2x2 + · · · + cm−1xm−1

]
↪→ 0 = 0 + c1 + 2c2x + · · · + (m − 1)cm−1xm−2

↪→ 0 = 0 + c1 + 2c2 · 0 + · · · + (m − 1)cm−1 · 0m−2

↪→ 0 = c1 .

Differentiating both sides of equation (17.6) twice and plugging in x = 0 :

d2

dx2
[0] = d2

dx2

[
c0 + c1x + c2x2 + c3x3 · · · + cm−1xm−1

]
↪→ 0 = d

dx

[
0 + c1 + 2c2x + 3c3x2 · · · + (m − 1)cm−1xm−2

]
↪→ 0 = 0 + 0 + 2c2 + 6c3x · · · + (m − 1)cm−1(m − 2)xm−2

↪→ 0 = 0 + 0 + 2c2 + 6c3 · 0 + · · · + (m − 1)(m − 2)cm−1 · 0m−2

↪→ 0 = c2 .

Clearly, we can differentiate equation (17.6) again and again, plug in x = 0 , and, eventually,

obtain

0 = ck for k = 0, 1, 2, . . . , m − 1 .

But, one of these ck’s is cκ which we know is −1 (assuming our set of xker x ’s is linearly

dependent). In other words, for our set of xker x ’s to be linearly dependent, we must have

0 = cκ = −1 ,

which is impossible. So our set of xker x ’s cannot be linearly dependent. It must be linearly

independent, just as theorem 17.2 claimed.
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17.5 On Verifying Theorem 17.3

Theorem 17.3 is a theorem about complex conjugation in the algebra of complex numbers. So let’s

start with a brief discussion of that topic.

Algebra with Complex Conjugates

Recall that a complex number z is something that can be written as

z = x + iy

where x and y are real numbers, which we generally refer to as, respectively, the real and the

imaginary parts of z . Along these lines, we say z is real if and only if z = x (i.e., y = 0 ), and

we say z is imaginary if and only if z = iy (i.e., x = 0 ).

The corresponding complex conjugate of z — denoted z∗ — is z with the sign of its complex

part switched,

z = x + iy �⇒ z∗ = x + i(−y) = x − iy .

Note that (
z∗)∗ = (x − iy)∗ = x + iy = z ,

and that

z∗ = z if z is real .

We will use these facts in a moment. We will also use formulas involving the complex conjugates

of sums and products. To derive them, let

z = x + iy and c = a + ib

where x , y , a and b are all real, and compute out

(c + z)∗ , c∗ + z∗ , (cz)∗ and c∗z∗

in terms of a , b , x and y . You’ll quickly discover that

(c + z)∗ = c∗ + z∗ and (cz)∗ = c∗z∗ .

It then follows that(
z2
)∗

= (z · z)∗ = z∗ · z∗ = (
z∗)2

,(
z3
)∗

=
(

z2 · z
)∗

=
(

z2
)∗

· z∗ = (
z∗)2 · z∗ = (

z∗)3
,

...

.

Continuing along these lines, it is a straightforward exercise to confirm that, given any polynomial

c0zN + c1zN−1 + · · · + cN−1z + cN ,

then[
c0zN + c1zN−1 + · · · + cN−1z + cN

]∗
= c0

∗ (z∗)N + c1
∗ (z∗)N−1 + · · · + cN−1

∗z∗ + cN
∗ .
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If, in addition, each ck is a real number, then ck
∗ = ck and the above reduces even more.

Lemma 17.8

Let

c0zN + c1zN−1 + · · · + cN−1z + cN

be a polynomial in which each ck is a real number. Then, for any complex number z ,[
c0zN + c1zN−1 + · · · + cN−1z + cN

]∗
= c0

(
z∗)N + c1

(
z∗)N−1 + · · · + cN−1z∗ + cN .

Proof of Theorem 17.3

Let me remind you of the statement of theorem 17.3:

Consider a polynomial

p(r) = a0r N + a1r N−1 + · · · + aN−2r2 + aN−1r + aN

in which a0 , a1 , . . . , and aN are all real numbers. Let λ and ω be two real numbers,

and let m be some positive integer. Then

r0 = λ+ iω is a root of multiplicity m for polynomial p(r)

if and only if

r0
∗ = λ− iω is a root of multiplicity m for polynomial p(r) .

To start our proof of this theorem, assume r0 is a root of multiplicity m of p . Then

0 = a0 (r0)
N + a1 (r0)

N−1 + · · · + aN−2 (r0)
2 + aN−1r0 + aN .

But

0 = 0∗ =
[
a0 (r0)

N + a1 (r0)
N−1 + · · · + aN−2 (r0)

2 + aN−1r0 + aN

]∗
= a0

(
r0

∗)N + a1

(
r0

∗)N−1 + · · · + aN−2

(
r0

∗)2 + aN−1r0
∗ + aN ,

showing that r0
∗ is also a root of p . This also means that r − r0 and r − r0

∗ are both factors of

p(r) , and, hence,

p(r) = p1(r) (r − r0) (r − r0
∗)

where p1 is the polynomial of degree N − 2 that can be obtained by dividing these two factors out

of p ,

p1(r) = p(r)

(r − r0) (r − r0
∗)

.

Now

(r − r0)
(
r − r0

∗) = (r − [λ+ iω]) (r − [λ− iω]) = · · · = r2 − 2λr + ω2 .

So the coefficients of both the denominator and the numerator in the fraction defining p1(r) are

real-valued constants. If you think about how one actually computes this fraction (via, say, long

division), you will realize that all the coefficients of p1(r) must also be real.
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If m > 1 then (r − r0)
m−1 — but not (r − r0)

m — will be a factor of p1(r) . Thus, r0 will

be a root of multiplicity m − 1 for p1 . Repeating the above arguments with p1 replacing p leads

to the conclusions that

1. r0
∗ is also a root of p1

and

2. there is an (N − 4)th degree polynomial p2 with real coefficients such that

p(r) = p1(r) (r − r0)
(
r − r0

∗) = p2(r) (r − r0)
2 (r − r0

∗)2 .

Clearly, we can continue repeating these arguments, ultimately obtaining the formula

p(r) = pm(r) (r − r0)
m (r − r0

∗)m

where pm is a polynomial of degree N − 2m with just real coefficients and for which r0 is not a

root.

Could r0
∗ be a root of pm ? If so, then the argument given at the start of this proof would show

that (r0
∗)∗ is also a root of pm . But (r0

∗)∗ = r0 and we know r0 is not a root of pm . So it is not

possible for r0
∗ to be a root of pm .

All this shows that

r0 is a root of multiplicity m for p(r)

�⇒ r0
∗ is a root of multiplicity m for p(r) .

Replacing r0 with r0
∗ then gives us

r0
∗ is a root of multiplicity m for p(r)

�⇒ (
r0

∗)∗ is a root of multiplicity m for p(r) .

Together with the fact that (r0
∗)∗ = r0 , these two implications give us

r0 is a root of multiplicity m for p(r)

⇐⇒ r0
∗ is a root of multiplicity m for p(r) ,

completing our proof of theorem 17.3.

Additional Exercises

17.1. Using clever factoring of the characteristic polynomials (such as was done in example 17.6

on page 342), find the general solution to each of the following:

a. y(4) − 4y(3) = 0

b. y(4) + 4y′′ = 0

c. y(4) − 34y′′ + 225y = 0

d. y(4) − 81y = 0
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e. y(4) − 18y′′ + 81y = 0

f. y(5) + 18y(3) + 81y′ = 0

17.2. For each of the following differential equations, one or more roots to the corresponding

characteristic polynomial can be found by “testing candidates” (as illustrated in example

17.7 on page 343). Using this fact, find the general solution to each.

a. y′′′ − y′′ + y′ − y = 0

b. y′′′ − 6y′′ + 11y′ − 6y = 0

c. y′′′ − 8y′′ + 37y′ − 50y = 0

d. y(4) + 2y(3) + 10y′′ + 18y′ + 9y = 0

17.3. Find the solution to each of the following initial-value problems:

a. y′′′ + 4y′ = 0 with y(0) = 4 , y′(0) = 6 and y′′(0) = 8

b. y′′′ − 6y′′ + 12y′ − 8y = 0

with y(0) = 5 , y′(0) = 13 and y′′(0) = 86

c. y(4) + 26y′′ + 25y = 0

with y(0) = 6 , y′(0) = −28 , y′′(0) = −102 and y′′′(0) = 622

17.4. Find the general solution to each of the following:

a. y′′′ − 8y = 0

b. y(4) + 13y′′ + 36y = 0

c. y(6) − 3y(4) + 3y′′ − y = 0

d. y(6) − 2y(3) + y = 0
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Euler Equations

We now know how to completely solve any equation of the form

ay′′ + by′ + cy = 0

or even

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

in which the coefficients are all real-valued constants (provided we can completely factor the corre-

sponding characteristic polynomial).

Let us now consider some equations of the form

ay′′ + by′ + cy = 0

or even

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

when the coefficients are not all constants. In particular, let us consider the “Euler equations”,

described more completely in the next section, in which the coefficients happen to be particularly

simple polynomials.1

As with the constant-coefficient equations, we will discuss the second-order Euler equations

(and their solutions) first, and then note how those ideas extend to corresponding higher order Euler

equations.

18.1 Second-Order Euler Equations
Basics

A second-order differential equation is called an Euler equation if it can be written as

αx2 y′′ + βxy′ + γ y = 0

where α , β and γ are constants (in fact, we will assume they are real-valued constants). For

example,

x2 y′′ − 6xy′ + 10y = 0 ,

x2 y′′ − 9xy′ + 25y = 0

1 These differential equations are also called Cauchy–Euler equations, Euler–Cauchy equations and Cauchy equations. By

the way, “Euler” is pronounced “oi′ler”.

355
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and

x2 y′′ − 3xy′ + 20y = 0

are the Euler equations we’ll solve to illustrate the methods we’ll develop below. In these equations,

the coefficients are not constants but are constants times the variable raised to the power equaling

the order of the corresponding derivative. Notice, too, that the first coefficient, αx2 , vanishes at

x = 0 . This means we should not attempt to solve these equations over intervals containing 0 .

For convenience, we will use (0,∞) as the interval of interest. You can easily verify that the same

formulas derived using this interval also work using the interval (−∞, 0) after replacing the x in

these formulas with either −x or |x | .

Euler equations are important for two or three good reasons:

1. They are easily solved.

2. They occasionally arise in applications, though not nearly as often as equations with constant

coefficients.

3. They are especially simple cases of a broad class of differential equations for which infinite

series solutions can be obtained using the “method of Frobenius”.2

The basic approach to solving Euler equations is similar to the approach used to solve constant-

coefficient equations: Assume a simple formula for the solution y involving one constant “to be

determined”, plug that formula for y into the differential equation, simplify and solve the resulting

equation for the constant, and then construct the general solution using the constants found and the

basic theory already developed.

The appropriate form for the solution to an Euler equation is not the exponential assumed for a

constant-coefficient equation. Instead, it is

y(x) = xr

where r is a constant to be determined. This choice for y(x) can be motivated by either first

considering the solutions to the corresponding first-order Euler equations

αx
dy

dx
+ βy = 0 ,

or by just thinking about what happens when you compute

xm dm

dxm

[
xr
]

.

We will outline the details of the method in a moment. Do not, however, bother memorizing

anything except for the first assumption about the form of the solution and general outline of the

method. The precise formulas that arise are not as easily memorized as the corresponding formulas

for differential equations with constant coefficients. Moreover, you won’t probably be using them

enough later on to justify memorizing these formulas.

The Steps in Solving Second-Order Euler Equations

Here are the basic steps for finding a general solution to any second-order Euler equation

αx2 y′′ + βxy′ + γ y = 0 for x > 0 .

Remember α , β and γ are real-valued constants. To illustrate the basic method, we will solve

x2 y′′ − 6xy′ + 10y = 0 for x > 0 .

2 We won’t start discussing the method of Frobenius until chapter 32.
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1. Assume a solution of the form

y = y(x) = xr

where r is a constant to be determined.

2. Plug the assumed formula for y into the differential equation and simplify. Let’s do the

example first:

Replacing y with xr gives

0 = x2 y′′ − 6xy′ + 10y

= x2
[
xr
]′′ − 6x

[
xr
]′ + 10

[
xr
]

= x2
[
r(r − 1)xr−2

] − 6x
[
rxr−1

] + 10
[
xr
]

= (r2 − r)xr − 6rxr + 10xr

= [
r2 − r − 6r + 10

]
xr

= [
r2 − 7r + 10

]
xr .

Since we are solving on an interval where x = 0 , we can divide out the xr ,

leaving us with the algebraic equation

r2 − 7r + 10 = 0 .

In general, replacing y with xr gives

0 = αx2 y′′ + βxy′ + γ y

= αx2
[
xr
]′′ + βx

[
xr
]′ + γ

[
xr
]

= αx2
[
r(r − 1)xr−2

] + βx
[
rxr−1

] + γ
[
xr
]

= α(r2 − r)xr + βrxr + γ xr

= [
αr2 − αr + βr + γ

]
xr

= [
αr2 + (β − α)r + γ

]
xr .

Dividing out the xr leaves us with the second-degree polynomial equation

αr2 + (β − α)r + γ = 0 .

This equation, known as the indicial equation corresponding to the given Euler equation3, is

analogous to the characteristic equation for a second-order, homogeneous linear differential

equation with constant coefficients. (Don’t memorize this equation — it is easy enough to

simply rederive it each time. Besides, analogous equations for higher-order Euler equations

are significantly different.)4

3. Solve the polynomial equation for r .

In our example, we obtained the indicial equation

r2 − 7r + 10 = 0 ,

3 Often, though, it’s just called “the equation for r ”.
4 However, there is a shortcut for finding the indicial equations which may be useful if you are solving large numbers of

Euler equations of different orders. See exercise 18.5 at the end of this chapter.



�

�

�

�

�

�

�

�

358 Euler Equations

which factors to

(r − 2)(r − 5) = 0 .

So r = 2 and r = 5 are the possible values of r .

4. Remember that, for each value of r obtained, xr is a solution to the original Euler equation.

If there are two distinct real values r1 and r2 for r , then{
xr1 , xr2

}
is clearly a fundamental set of solutions to the differential equation, and

y(x) = c1xr1 + c2xr2

is a general solution. If there is only one value for r , then

y1(x) = xr

is one solution to the differential equation, and the general solution can be obtained via

reduction of order. (The cases where there is only one value of r and where the two values

of r are complex will be examined more closely in the next section.)

In our example, we obtained two values for r , 2 and 5 . So{
x2 , x5

}
is a fundamental set of solutions to the differential equation, and

y(x) = c1x2 + c2x5

is a general solution.

18.2 The Special Cases
A Single Value for r

Let’s do an example and then discuss what happens in general.

!�Example 18.1: Consider

x2 y′′ − 9xy′ + 25y = 0 for x > 0 .

Letting y = xr , we get

0 = x2 y′′ − 9xy′ + 25y

= x2
[
xr
]′′ − 9x

[
xr
]′ + 10

[
xr
]

= x2
[
r(r − 1)xr−2

] − 9x
[
rxr−1

] + 25
[
xr
]

= (r2 − r)xr − 9rxr + 25xr
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= [
r2 − r − 9r + 25

]
xr

= [
r2 − 10r + 25

]
xr .

Dividing out the xr , this becomes

r2 − 10r + 25 = 0 ,

which factors to

(r − 5)2 = 0 .

So r = 5 , and the corresponding solution to the differential equation is

y1(x) = x5 .

Since we only have one solution, we cannot just write out the general solution as we did in

the previous example. But we can still use the reduction of order method. So let

y(x) = x5u(x) .

Computing the derivatives,

y′(x) = [
x5u

]′ = 5x4u + x5u′

and

y′′(x) = [
5x4u + x5u′]′ = 20x3u + 10x4u′ + x5u′′ ,

and plugging into the differential equation yields

0 = x2 y′′ − 9xy′ + 25y

= x2
[
20x3u + 10x4u′ + x5u′′] − 9x

[
5x4u + x5u′] + 25

[
x5u

]
= 20x5u + 10x6u′ + x7u′′ − 45x5u − 9x6u′ + 25x5u

= x7u′′ + [
10x6 − 9x6

]
u′ + [

20x5 − 45x5 + 25x5
]
u

= x7u′′ + x6u′ .

Letting v = u′ , this becomes

x7v′ + x6v = 0 ,

a simple separable first-order equation. Solving it:

x7 dv

dx
+ x6v = 0

↪→ 1

v

dv

dx
= − x6

x7
= − 1

x

↪→
∫

1

v

dv

dx
dx = −

∫
1

x
dx

↪→ ln |v| = − ln |x | + c0

↪→ v = ±e− ln|x |+c0 = c2

x
.
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Thus,

u(x) =
∫

u′(x) dx =
∫
v(x) dx =

∫
c2

x
dx = c2 ln |x | + c1 ,

and the general solution to the differential equation is

y(x) = x5u(x) = x5[c2 ln |x | + c1] = c1x5 + c2x5 ln |x | .

While just using reduction of order is recommended, you can show that, if your indicial equation

only has one solution r , then

y1(x) = xr and y2(x) = xr ln |x |

will always be solutions to the differential equation. Since they are clearly not constant multiples of

each other, they form a fundamental set for the differential equation. Thus, in this case,

y(x) = c1xr + c2xr ln |x |

will always be a general solution to the given Euler equation. This may be worth remembering, if you

expect to be solving many Euler equations (which you probably won’t). Otherwise just remember

how to use reduction of order.

Verifying this claim is left to the interested reader (see exercise 18.3 on page 367).

Complex Values for r

Again, we start with an example.

!�Example 18.2: Consider

x2 y′′ − 3xy′ + 20y = 0 for x > 0 .

Using y = xr , we get

0 = x2 y′′ − 3xy′ + 20y

= x2
[
xr
]′′ − 3x

[
xr
]′ + 20

[
xr
]

= x2
[
r(r − 1)xr−2

] − 3x
[
rxr−1

] + 20
[
xr
]

= xr
[
r2 − r − 3r + 20

]
,

which simplifies to

r2 − 4r + 20 = 0 .

The solution to this is

r = −(−4)±
√
(−4)2 − 4(20)

2
= 4 ± √−64

2
= 2 ± i4 .

Thus, we have two distinct values for r , 2+ i4 and 2− i4 . Presumably, then, we could construct

a general solution from

x2+i4 and x2−i4 ,

provided we had some idea as to just what “ x to a complex power” meant.
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So let’s figure out what “ x to a complex power” means.

For exactly the same reasons as when we were solving constant coefficient equations, the

complex solutions to the indicial equation will occur as complex conjugate pairs

r+ = λ + iω and r− = λ − iω ,

which, formally at least, yield

y+(x) = xr+ = xλ + iω and y−(x) = xr− = xλ − iω

as solutions to the original Euler equation. Now, assuming the standard algebraic rules remain valid

for complex powers5,

xλ ± iω = xλx±iω ,

and, for x > 0 ,

x±iω = eln|x |±iω = e±iω ln|x | = cos(ω ln |x |) ± i sin(ω ln |x |) .

So our two solutions can be written as

y+(x) = xλ
[

cos(ω ln |x |) + i sin(ω ln |x |) ]
and

y−(x) = xλ
[

cos(ω ln |x |) − i sin(ω ln |x |) ] .

To get solutions in terms of only real-valued functions, essentially do what was done when we

had complex-valued roots to characteristic equations for constant-coefficient equations, namely, use

the fundamental set

{ y1, y2 }
where

y1(x) = 1

2
y+(x) + 1

2
y−(x) = · · · = xλ cos(ω ln |x |)

and

y2(x) = 1

2i
y+(x) − 1

2i
y−(x) = · · · = xλ sin(ω ln |x |) .

Note that these are just the real and the imaginary parts of the formulas for y± = xλ±iω .

If you really wish, you can memorize what we just derived, namely:

If you get

r = λ ± iω

when assuming y = xr is a solution to an Euler equation, then

y1(x) = xλ cos(ω ln |x |) and y2(x) = xλ sin(ω ln |x |)

form a corresponding linearly independent pair of real-valued solutions to the differential

equation, and

y(x) = c1xλ cos(ω ln |x |) + c2xλ sin(ω ln |x |)
is a general solution in terms of just real-valued functions.

Memorizing these formulas is not recommended. It’s easy enough (and safer) to simply re-

derive the formulas for xλ±iω as needed, and then just take the real and imaginary parts as our the

two real-valued solutions.

5 They do.
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!�Example 18.3: Let us finish solving

x2 y′′ − 3xy′ + 20y = 0 for x > 0 .

From above, we got the complex-power solutions

y±(x) = x2 ± i4 .

Rewriting this using the corresponding complex exponential, we get

y±(x) = x2x±i4 = x2eln|x |±i4

= x2e±i4 ln|x | = x2
[

cos(4 ln |x |) ± i sin(4 ln |x |) ] .

Taking the real and imaginary parts of this then yields the corresponding linearly independent

pair of real-valued solutions to the differential equation,

y1(x) = x2 cos(4 ln |x |) and y2(x) = x2 sin(4 ln |x |) .

Thus,

y(x) = c1x2 cos(4 ln |x |) + c2x2 sin(4 ln |x |)
is a general solution in terms of just real-valued functions.

18.3 Euler Equations of Any Order

The definitions and ideas just described for second-order Euler equations are easily extended to

analogous differential equations of any order. The natural extension of the concept of a second-order

Euler differential equation is that of an N th-order Euler equation, which is any differential equation

that can be written as

α0x N y(N ) + α1x N−1 y(N−1) + · · · + αN−2x2 y′′ + αN−1xy′ + αN y = 0

where the αk’s are all constants (and α0 = 0 ). We will further assume they are all real constants.

The basic ideas used to find the general solution to an N th-order Euler equation over (0,∞)

are pretty much the same as used to solve the second-order Euler equations:

1. Assume a solution of the form

y = y(x) = xr

where r is a constant to be determined.

2. Plug the assumed formula for y into the differential equation and simplify. The result will

be an N th degree polynomial equation

A0r N + A1r N−1 + · · · + AN−1r + AN = 0 .

We’ll call this the indicial equation for the given Euler equation, and the polynomial on

the left will be called the indicial polynomial. It is easily shown that the Ak’s are all real

(assuming the αk’s are real) and that A0 = α0 . However, the relation between the other

Ak’s and αk’s will depend on the order of the original differential equation.
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3. Solve the indicial equation. The same tricks used to help solve the characteristic equations

in chapter 17 can be used here. And, as with those characteristic equations, we will obtain a

list of all the different roots of the indicial polynomial,

r1 , r2 , r3 , . . . and rK ,

along with their corresponding multiplicities,

m1 , m2 , m3 , . . . and mK .

As noted in chapter 17,

m1 + m2 + m3 + · · · + mK = N .

What you do next with each rk depends on whether rk is real or complex, and on the

multiplicity mk of rk .

4. If r = rk is real, then there will be a corresponding linearly independent set of m = mk

solutions to the differential equation. One of these, of course, will be y = xr . If this root’s

multiplicity m is greater than 1 , then a second corresponding solution to the Euler equation

is obtained by multiplying the first, xr , by ln |x | , just as in the second-order case. This —

multiplying the last solution found by ln |x | — turns out to be the pattern for generating the

other solutions when m = mk > 2 . That is, the set of solutions to the differential equation

corresponding to r = rk is{
xr , xr ln |x | , xr (ln |x |)2 , . . . , xr (ln |x |)m−1

}
with m = mk . (We’ll verify this rigorously in the next section.)

5. If a root is complex, say, r = λ+ iω , and has multiplicity m , then we know that this root’s

complex conjugate r∗ = λ− iω is another root of multiplicity m . By the same arguments

given for real roots, we have that the functions

xλ+iω , xλ+iω ln |x | , xλ+iω(ln |x |)2 , . . . and xλ+iω(ln |x |)m−1

along with

xλ−iω , xλ−iω ln |x | , xλ−iω(ln |x |)2 , . . . and xλ−iω(ln |x |)m−1

make up a linearly independent set of 2m solutions to the Euler equation. To obtain the

corresponding set of real-valued solutions, we again use the fact that, for x > 0 ,

xλ±iω = xλx±iω = xλe±iω ln|x | = xλ
[

cos(ω ln |x |) ± i sin(ω ln |x |) ] (18.1)

to obtain the alternative set of 2m solutions{
xλ cos(ω ln |x |) , xλ sin(ω ln |x |) ,

xλ cos(ω ln |x |) ln |x | , xλ sin(ω ln |x |) ln |x | ,
xλ cos(ω ln |x |) (ln |x |)2 , xλ sin(ω ln |x |) (ln |x |)2 ,
. . . , xλ cos(ω ln |x |) (ln |x |)m−1 , xλ sin(ω ln |x |) (ln |x |)m−1

}
for the Euler equation.
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6. Now form the set of solutions to the Euler equation consisting of the mk solutions described

above for each real root rk , and the 2mk real-valued solutions described above for each con-

jugate pair of roots rk and rk
∗ . Since (as we saw in chapter 17) the sum of the multiplicities

equals N , and since the rk’s are distinct, it will follow that this set will be a fundamental

set of solutions for our Euler equation. Thus, finally, a general solution to the given Euler

equation can be written out as an arbitrary linear combination of the functions in this set.

We will do two examples (skipping some of the tedious algebra).

!�Example 18.4: Consider the third-order Euler equation

x3 y′′′ − 6x2 y′′ + 19xy′ − 27y = 0 for x > 0 .

Plugging in y = xr , we get

x3r(r − 1)(r − 2)xr−3 − 6x2r(r − 1)xr−2 + 19xrxr−1 − 27xr = 0 ,

which, after a bit of algebra, reduces to

r3 − 9r2 + 27r − 27 = 0 .

This is the indicial equation for our Euler equation. You can verify that its factored form is

(r − 3)3 = 0 .

So the only root to our indicial polynomial is r = 3 , and it has multiplicity 3 . As discussed

above, the corresponding fundamental set of solutions to the Euler equation is{
x3 , x3 ln |x | , x3(ln |x |)2

}
,

and the corresponding general solution is

y = c1x3 + c2x3 ln |x | + c3x3(ln |x |)2 .

!�Example 18.5: Consider the fourth-order Euler equation

x4 y(4) + 6x3 y′′′ + 25x2 y′′ + 19xy′ + 81y = 0 for x > 0 .

Plugging in y = xr , we get

x4r(r − 1)(r − 2)(r − 3)xr−4 + 6x3r(r − 1)(r − 2)xr−3

+ 25x2r(r − 1)xr−2 + 19xrxr−1 + 81xr = 0 ,

which simplifies to

r4 + 18r2 + 81 = 0 .

Solving this yields

r = ±3i with multiplicity 2 ,

and the four corresponding solutions to our Euler equation are

cos(3 ln |x |) , sin(3 ln |x |) , cos(3 ln |x |) ln |x | and sin(3 ln |x |) ln |x | .

The general solution, then, is

y = c1 cos(3 ln |x |) + c2 sin(3 ln |x |) + c4 cos(3 ln |x |) ln |x | + c4 sin(3 ln |x |) ln |x | .
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18.4 The Relation Between Euler and Constant
Coefficient Equations

Let us suppose that

A0r N + A1r N−1 + · · · + AN−1r + AN = 0 (18.2)

is the indicial equation for some N th-order Euler equation

α0x N d N y

dx N
+ α1x N−1 d N−1 y

dx N−1
+ · · · + αN−2x2 d2 y

dx2
+ αN y = 0 . (18.3)

Observe that polynomial equation (18.2) is also the characteristic equation for the N th-order constant

coefficient equation

A0
d N Y

dt N
+ A1

d N−1Y

dt N−1
+ · · · + AN−1

dY

dt
+ AN Y = 0 . (18.4)

This means that, if r is a solution to polynomial equation (18.2), then

xr and ert

are solutions, respectively, to the above Euler equation and the above constant coefficient equation.

This suggests that these two differential equations are related to each other, possibly through a

substitution of the form

xr = ert .

Taking the r th root of both sides, this simplifies to

x = et or, equivalently, ln |x | = t .

Exploring this possibility further eventually leads to the following lemma about the solutions to the

above differential equations:

Lemma 18.1

Assume that two homogeneous linear differential equations of equal order are given, with one being

an Euler equation and the other having constant coefficients. Assume, further that the indicial

equation of the Euler equation is the same as the characteristic equation of the other. Also, let y(x)

and Y (t) be two functions, with y defined on (0,∞) , and Y (t) defined on (−∞,∞) , and related

by the substitution x = et (equivalently, ln |x | = t ); that is,

y(x) = Y (t) where x = et and t = ln |x | .

Then y is a solution to the given Euler equation if and only if Y is a solution to the given constant-

coefficient equation.

The proof of this lemma involves repeated chain rule computations such as

dy

dx
= d

dx
Y (t) = dt

dx

d

dt
Y (t) = d ln |x |

dx

d

dt
Y (t) = 1

x

dY

dt
= e−t dY

dt
. (18.5)

We’ll leave the details to the adventurous (see exercises 18.6, 18.7 and 18.8).
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There are two noteworthy consequences of this lemma:

1. It gives us another way to solve Euler equations. To be specific: we can use the substitution

in the lemma to convert the Euler equation into a constant coefficient equation (with t as the

variable); solve that coefficient equation for its general solution (in terms of functions of t ),

and then use the substitution backwards to get the general solution to the Euler equation (in

terms of functions of x ).6

2. We can now confirm the claim made (and used) in the previous section about solutions to the

Euler equation corresponding to a root r of multiplicity m to the indicial equation. After

all, if r is a solution of multiplicity m to equation (18.2), then we know that{
ert , tert , t2ert , . . . , tm−1ert

}
is a set of solutions to constant coefficient equation (18.4). The lemma then assures us that

this set, with t = ln |x | , is the corresponding set of solutions to Euler equation (18.3). But,

using this substitution,

tkert = (
et
)r

tk = xr (ln |x |)k .

So the set of solutions obtained to the Euler equation is{
xr , xr ln |x | , xr (ln |x |)2 , . . . , xr (ln |x |)m−1

}
,

just as claimed in the previous section.

Additional Exercises

18.1. Find the general solution to each of the following Euler equations on (0,∞) :

a. x2 y′′ − 5xy′ + 8y = 0 b. x2 y′′ − 2y = 0

c. x2 y′′ − 2xy′ = 0 d. 2x2 y′′ − xy′ + y = 0

e. x2 y′′ − 5xy′ + 9y = 0 f. x2 y′′ + 5xy′ + 4y = 0

g. 4x2 y′′ + y = 0 h. x2 y′′ − xy′ + 10y = 0

i. x2 y′′ + 5xy′ + 29y = 0 j. x2 y′′ + xy′ + y = 0

k. 2x2 y′′ + 5xy′ + y = 0 l. 4x2 y′′ + 37y = 0

m. x2 y′′ + xy′ = 0 n. x2 y′′ + xy′ − 25y = 0

18.2. Solve the following initial-value problems:

a. x2 y′′ − 6xy′ + 10y = 0 with y(1) = −1 and y′(1) = 7

b. 4x2 y′′ + 4xy′ − y = 0 with y(4) = 0 and y′(4) = 2

c. x2 y′′ − 11xy′ + 36y = 0 with y(1) = 1/2 and y′(1) = 2

6 It may be argued that this method, requiring the repeated use of the chain rule, is more tedious and error-prone than the

one developed earlier, which only requires algebra and differentiation of xr . That would be a good argument.
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d. x2 y′′ − 3xy′ + 13y = 0 with y(1) = 9 and y′(1) = 3

18.3. Suppose that the indicial equation for a second-order Euler equation only has one solution

r . Using reduction of order (or any other approach you think appropriate) show that both

y1(x) = xr and y2(x) = xr ln |x |
are solutions to the differential equation on (0,∞) .

18.4. Find the general solution to each of the following third- and fourth-order Euler equations

on (0,∞) :

a. x3 y′′′ + 2x2 y′′ − 4xy′ + 4y = 0

b. x3 y′′′ + 2x2 y′′ + xy′ − y = 0

c. x3 y′′′ − 5x2 y′′ + 14xy′ − 18y = 0

d. x4 y(4) + 6x3 y′′′ − 3x2 y′′ − 9xy′ + 9y = 0

e. x4 y(4) + 2x3 y′′′ + x2 y′′ − xy′ + y = 0

f. x4 y(4) + 6x3 y′′′ + 7x2 y′′ + xy′ − y = 0

18.5. While memorizing the indicial equations is not recommended, it must be admitted that there

is a simple, easily derived shortcut to finding these equations.

a. Show that the indicial equation for the second-order Euler equation

αx2 y′′ + βxy′ + γ y = 0

is given by

αr(r − 1) + βr + γ = 0 .

b. Show that the indicial equation for the third-order Euler equation

α0x3 y′′′ + α1x2 y′′ + α2xy′ + α3 y = 0

is given by

α0r(r − 1)(r − 2) + α1r(r − 1) + α2r + α3 = 0 .

c. So what do you suspect is the general shortcut for finding the indicial equation of any

Euler equation?

18.6. Confirm that the claim of lemma 18.1 holds when N = 2 by considering the general

second-order Euler equation

αx2 y′′ + βxy′ + γ y = 0

and doing the following:

a. Find the corresponding indicial equation.

b. Using the substitution x = et , convert the above Euler equation to a second-order,

constant coefficient differential equation, and write out the corresponding characteristic

equation. Remember, x = et is equivalent to t = ln |x | . (You may want to glance back

at the chain rule computations in line (18.5).)

c. Confirm (by inspection!) that the characteristic equation for the constant coefficient

equation just obtained is identical to the indicial equation for the above Euler equation.
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18.7. Confirm that the claim of lemma 18.1 holds when N = 3 by considering the general

third-order Euler equation

α0x3 y′′′ + α1x2 y′′ + α2xy′ + α3 y = 0

and doing the following:

a. Find the corresponding indicial equation.

b. Convert the above Euler equation to a third-order, constant coefficient differential equation

using the substitution x = et .

c. Confirm that the characteristic equation for the constant coefficient equation just obtained

is identical to the indicial equation for the above Euler equation.

18.8. Confirm that the claim of lemma 18.1 holds when N is any positive integer.
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Nonhomogeneous Equations in General

Now that we are proficient at solving many homogeneous linear differential equations, including

y′′ − 4y = 0 ,

it is time to expand our skills to solving nonhomogeneous linear equations, such as

y′′ − 4y = 5e3x .

19.1 General Solutions to Nonhomogeneous Equations

In chapter 13, we saw that any linear combination

y = c1 y1 + c2 y2

of two solutions y1 and y2 to a second-order, homogeneous linear differential equation

ay′′ + by′ + cy = 0

(on some interval) is another solution to that differential equation. However, for a second-order,

nonhomogeneous linear differential equation

ay′′ + by′ + cy = g ,

the situation is not as simple. To see this, let us compute

ay′′ + by′ + cy

assuming y is some linear combination of any two sufficiently differentiable functions y1 and y2 ,

say,

y = 2y1 + 6y2 .

By the fundamental properties of differentiation, we know that1

y′ = [2y1 + 6y2]′ = [2y1]′ + [6y2]′ = 2y1
′ + 6y2

′

1 If the computations look familiar, it’s because we did very similar computations in deriving the principle of superposition

in chapter 13 (see page 263).

369
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and

y′′ = [2y1 + 6y2]′′ = [2y1]′′ + [6y2]′′ = 2y1
′′ + 6y2

′′ .

So,

ay′′ + by′ + cy

= a [2y1 + 6y2]′′ + b [2y1 + 6y2]′ + c [2y1 + 6y2(x)]

= 2ay1
′′ + 6ay2

′′ + 2by1
′ + 6by2

′ + 2cy1(x)+ 6cy2(x)

= 2
[
ay1

′′ + by1
′ + cy1

] + 6
[
ay2

′′ + by2
′ + cy2

]
.

Of course, there was nothing special about the constants 2 and 6 . If we had used any linear

combination of y1 and y2

y = c1 y1 + c2 y2 , (19.1a)

then the above computations would have yielded

ay′′ + by′ + cy = c1

[
ay1

′′ + by1
′ + cy1

] + c2

[
ay2

′′ + by2
′ + cy2

]
. (19.1b)

Now, suppose we have two particular solutions yp and yq to the nonhomogeneous equation

ay′′ + by′ + cy = g .

This means

ayp
′′ + byp

′ + cyp = g and ayq
′′ + byq

′ + cyq = g .

From equation set (19.1) we see that if

y = 2yp + 6yq ,

then

ay′′ + by′ + cy = 2
[
ayp

′′ + byp
′ + cyp

] + 6
[
ayq

′′ + byq
′ + cyq

]
= 2[g] + 6[g]
= 8g

= g ,

showing that this linear combination of solutions to our nonhomogeneous differential equation is

not a solution to our original nonhomogeneous equation. So it is NOT true that, in general, a

linear combination of solutions to a nonhomogeneous differential equation is another solution to that

nonhomogeneous differential equation.

Notice, however, what happens when we use the difference between these two particular solu-

tions

y = yq − yp = 1 · yq + (−1)yp .

Then

ay′′ + by′ + cy = 1
[
ayp

′′ + byp
′ + cyp

] + (−1)
[
ayq

′′ + byq
′ + cyq

]
= g − g

= 0 ,

which means that y = yq − yp is a solution to the corresponding homogeneous equation

ay′′ + by′ + cy = 0 .
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Let me rephrase this:

If yp and yq are any two solutions to a given second-order nonhomogeneous linear

differential equation, then

yq = yp + a solution to the corresponding homogeneous equation .

On the other hand, if

y = yp + yh

where yp is any particular solution to the nonhomogeneous equation and yh is any solution to the

corresponding homogeneous equation (so that

ayp
′′ + byp

′ + cyp = g and ayh
′′ + byh

′ + cyh = 0 ),

then equation set (19.1) yields

ay′′ + by′ + cy = [
ayp

′′ + byp
′ + cyp

] + [
ay0

′′ + by0
′ + cy0

]
= g + 0

= g .

Thus:

If yp is a particular solution to a given second-order, nonhomogeneous linear differential

equation, and

y = yp + any solution to the corresponding homogeneous equation ,

then y is also a solution to the nonhomogeneous differential equation.

If you think about it, you will realize that we’ve just derived the form for a general solution to

any nonhomogeneous linear differential equation order two; namely,

y = yp + yh

where yp is any one particular solution to that nonhomogeneous differential equation and yh a gen-

eral solution to the corresponding homogeneous linear differential equation. And if you think about

it a little more, you will realize that analogous computations can be done for any nonhomogeneous

linear differential equation, no matter what its order is. That gives us the following theorem:

Theorem 19.1 (general solutions to nonhomogeneous equations)

A general solution to any given nonhomogeneous linear differential equation is given by

y = yp + yh

where yp is any particular solution to the given nonhomogeneous equation, and yh is a general

solution to the corresponding homogeneous differential equation.2

2 Many texts refer to the general solution of the corresponding homogeneous differential equation as “the complementary

solution” and denote it by yc instead of yh . We are using yh to help remind us that this is the general solution to the

corresponding homogeneous differential equation.
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!�Example 19.1: Consider the nonhomogeneous differential equation

y′′ − 4y = 5e3x . (19.2)

Observe that [
e3x

]′′ − 4
[
e3x

] = 32e3x − 4e3x = 5e3x .

So one particular solution to our nonhomogeneous equation is

yp(x) = e3x .

The corresponding homogeneous equation is

y′′ − 4y = 0 ,

a linear equation with constant coefficients. Its characteristic equation,

r2 − 4 = 0 ,

has solutions r = 2 and r = −2 . So this homogeneous equation has{
y1(x) , y2(x)

} = {
e2x , e−2x

}
as a fundamental set of solutions, and

yh(x) = c1e2x + c2e−2x

as a general solution.

As we saw in deriving theorem 19.1, the general solution to nonhomogeneous equation (19.2)

is then

y(x) = yp(x) + yh(x)

= e3x + c1e2x + c2e−2x .

(Note that there are only two arbitrary constants, and that they are only in the formula for yh .

There is no arbitrary constant corresponding to yp !)

This last example illustrates what happens when we limit ourselves to second-order equations.

More generally, if we recall how we construct general solutions to the corresponding homogeneous

equations, then we get the following corollary of theorem 19.1:

Corollary 19.2 (general solutions to nonhomogeneous second-order equations)

A general solution to a second-order, nonhomogeneous linear differential equation

ay′′ + by′ + cy = g

is given by

y(x) = yp(x) + c1 y1(x) + c2 y2(x) (19.3)

where yp is any particular solution to the nonhomogeneous equation, and {y1, y2} is any funda-

mental set of solutions for the corresponding homogeneous equation

ay′′ + by′ + cy = 0 .

Do note that there are only two arbitrary constants c1 and c2 in formula (19.3), and that they

are multiplying only particular solutions to the corresponding homogeneous equation. The particular

solution to the nonhomogeneous equation, yp , is NOT multiplied by an arbitrary constant!

Of course, if we don’t limit ourselves to second-order equations, but still recall how to construct

general solutions to homogeneous equations from a fundamental set of solutions to that homogeneous

equation, then we get the N th-order analog of the last corollary:
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Corollary 19.3 (general solutions to nonhomogeneous N th-order equations)

A general solution to an N th-order, nonhomogeneous linear differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = g

is given by

y(x) = yp(x) + c1 y1(x) + c2 y2(x) + · · · + cN yN (x) (19.4)

where yp is any particular solution to the nonhomogeneous equation, and {y1, y2, . . . , yN } is any

fundamental set of solutions for the corresponding homogeneous equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0 .

19.2 Superposition for Nonhomogeneous Equations

Before discussing methods for finding particular solutions, we should note that equation (19.1) on

page 370 is describing a “principle of superposition for nonhomogeneous equations”; namely, that if

y1 , y2 , g1 and g2 are functions satisfying

ay1
′′ + by1

′ + cy1 = g1 and ay2
′′ + by2

′ + cy2 = g2

over some interval, and y is some linear combination of these two solutions

y = c1 y2 + c2 y2 ,

then, over that interval,

ay′′ + by′ + cy = c1

[
ay1

′′ + by1
′ + cy1

] + c2

[
ay2

′′ + by2
′ + cy2

]
= c1g1 + c2g2 ,

showing that y = c1 y2 + c2 y2 is a solution to

ay′′ + by′ + cy = c1g1 + c2g2

Obviously, similar computations will yield similar results involving any number of “ (y j , g j )

pairs”, and using comparable nonhomogeneous linear differential equations of any order. This gives

us the following theorem:3

Theorem 19.4 (principle of superposition for nonhomogeneous equations)

Let a0 , a1 , . . . and aN be functions on some interval (α, β) , and let K be a positive integer.

Assume {y1, y2, . . . , yK } and {g1, g2, . . . , gK } are two sets of K functions related over (α, β) by

a0 yk
(N ) + · · · + aN−2 yk

′′ + aN−1 yk
′ + aN yk = gk for k = 1, 2, . . . , K .

Then, for any set of K constants {c1, c2, . . . , cK } , a particular solution to

a0 yk
(N ) + · · · + aN−2 yk

′′ + aN−1 yk
′ + aN yk = G

3 You might want to compare this principle of superposition to the principle of superposition for homogeneous equations

that was described in theorem 13.1 on page 264.
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where

G = c1g1 + c2g2 + · · · + cK gK

is given by

yp = c1 y1 + c2 y2 + · · · + cK yK .

This principle gives us a means for constructing solutions to certain nonhomogeneous equations

as linear combinations of solutions to simpler nonhomogeneous equations, provided, of course, we

have the solutions to those simpler equations.

!�Example 19.2: From our last example, we know that

y1(x) = e3x satisfies y1
′′ − 4y1 = 5e3x .

The principle of superposition (with K = 1 ) then assures us that, for any constant a1 ,

yp(x) = a1 y1(x) = a1e3x satisfies y1
′′ − 4y1 = a1

[
5e3x

]
.

For example, a particular solution to

y′′ − 4y = e3x ,

which we will rewrite as

y′′ − 4y = 1

5

[
5e3x

]
is given by

yp(x) = 1

5
y1(x) = 1

5
e3x .

And for the general solution, we simply add the general solution to the corresponding ho-

mogeneous equation found in the previous example:

y(x) = yp(x) + yh(x) = 1

5
e3x + c1e2x + c2e−2x .

The basic use of superposition requires that we already know the appropriate “ yk’s ”. At times,

we may not already know them, but, with luck, we can make good “guesses” as to appropriate yk’s

and then, after computing the corresponding gk’s , use the principle of superposition.

!�Example 19.3: Consider solving

y′′ − 4y = 2x2 − 8x + 3 . (19.5)

Let us “guess” that a particular solution can be given by a linear combination of

y1(x) = x2 , y2(x) = x and y3(x) = 1 .

Plugging these into the lefthand side of equation (19.5), we get

g1(x) = y1
′′ − 4y1 = d2

dx2

[
x2
]

− 4
[
x2
]

= 2 − 4x2 ,

g2(x) = y2
′′ − 4y2 = d2

dx2
[x] − 4[x] = −4x ,
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and

g3(x) = y3
′′ − 4y3 = d2

dx2
[1] − 4[1] = −4 .

Now set

yp(x) = a1 y1(x) + a2 y2(x) + a3 y3(x) .

By the principle of superposition,

yp
′′ − 4yp = a1g1(x) + a2g2(x) + a3g3(x)

= a1

[
2 − 4x2

]
+ a2[−4x] + a3[−4]

= −4a1x2 − 4a2x + [2a1 − 4a3] .

This means yp is a solution to our differential equation,

y′′ − 4y = 2x2 − 8x + 3 ,

if and only if

−4a1 = 2 , − 4a2 = −8 and 2a1 − 4a3 = 3 .

Solving for the ak’s yields

a1 = − 1

2
, a2 = 2 and a1 = −1 .

Thus, a particular solution to our differential equation is given by

yp(x) = a1 y1(x) + a2 y2(x) + a3 y3(x) = − 1

2
x2 + 2x − 1 ,

and a general solution is

y(x) = yp(x) + yh(x) = −1

2
x2 + 2x − 1 + c1e2x + c2e−2x .

By the way, we’ll further discuss the “art of making good guesses” in the next chapter, and

develop a somewhat more systematic method that uses superposition in a slightly more subtle way.

Unfortunately, as we will see, “guessing” is only suitable for relatively simple problems.

19.3 Reduction of Order

In practice, finding a particular solution to a nonhomogeneous linear differential equation can be

a challenge. One method, the basic reduction of order method for second-order, nonhomogeneous

linear differential equations, was briefly discussed in section 12.4. If you haven’t already looked

at that section, or don’t remember the basic ideas discussed there, you can go back and skim that

section. Or not. Truth is, better methods will be developed in the next few sections.
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Additional Exercises

19.1. What should g(x) be so that y(x) = e3x is a solution to

a. y′′ + y = g(x) ?

b. x2 y′′ − 4y = g(x) ?

c. y(3) − 4y′ + 5y = g(x) ?

19.2. What should g(x) be so that y(x) = x3 is a solution to

a. y′′ + 4y′ + 4y = g(x) ?

b. x2 y′′ + 4xy′ + 4y = g(x) ?

c. y(4) + xy(3) + 4y′′ − 3

x
y′ = g(x) ?

19.3 a. Can y(x) = sin(x) be a solution to

y′′ + y = g(x)

for some nonzero function g ? (Give a reason for your answer.)

b. What should g(x) be so that y(x) = x sin(x) is a solution to

y′′ + y = g(x) ?

19.4 a. Can y(x) = x4 be a solution on (0,∞) to

x2 y′′ − 6xy′ + 12y = g(x)

for some nonzero function g ? (Give a reason for your answer.)

b. What should g(x) be so that y(x) = x4 ln |x | is a solution to

x2 y′′ − 6xy′ + 12y = g(x) for x > 0 ?

19.5. Consider the nonhomogeneous linear differential equation

y′′ + 4y = 24e2x .

a. Verify that one particular solution to this nonhomogeneous differential equation is

yp(x) = 3e2x .

b. What is yh , the general solution to the corresponding homogeneous equation?

c. What is the general solution to the above nonhomogeneous equation?

d. Find the solution to the above nonhomogeneous equation that also satisfies each of the

following sets of initial conditions:

i. y(0) = 6 and y′(0) = 6 ii. y(0) = −2 and y′(0) = 2
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19.6. Consider the nonhomogeneous linear differential equation

y′′ + 2y′ − 8y = 8x2 − 3 .

a. Verify that one particular solution to this equation is

yp(x) = −x2 − 1

2
x .

b. What is yh , the general solution to the corresponding homogeneous equation?

c. What is the general solution to the above nonhomogeneous equation?

d. Find the solution to the above nonhomogeneous equation that also satisfies each of the

following sets of initial conditions:

i. y(0) = 0 and y′(0) = 0 ii. y(0) = 1 and y′(0) = −3

19.7. Consider the nonhomogeneous linear differential equation

y′′ − 9y = 36 .

a. Verify that one particular solution to this equation is

yp(x) = −4 .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = 8 and y′(0) = 6 .

19.8. Consider the nonhomogeneous linear differential equation

y′′ − 3y′ − 10y = −6e4x .

a. Verify that one particular solution to this equation is

yp(x) = e4x .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = 6 and y′(0) = 8 .

19.9. Consider the nonhomogeneous linear differential equation

y′′ − 3y′ − 10y = 7e5x .

a. Verify that one particular solution to this equation is

yp(x) = xe5x .

b. Find the general solution to this nonhomogeneous equation.
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c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = 12 and y′(0) = −2 .

19.10. Consider the nonhomogeneous linear differential equation

y′′ + 6y′ + 9y = 169 sin(2x) .

a. Verify that one particular solution to this equation is

yp(x) = 5 sin(2x) − 12 cos(2x) .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = −10 and y′(0) = 9 .

19.11. Consider the nonhomogeneous linear differential equation

x2 y′′ − 4xy′ + 6y = 10x + 12 for x > 0 .

a. Verify that one particular solution to this equation is

yp(x) = 5x + 2 .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(1) = 6 and y′(1) = 8 .

19.12. Consider the nonhomogeneous linear differential equation

y(4) + y′′ = 1 .

a. Verify that one particular solution to this equation is

yp(x) = 1

2
x2 .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = 4 , y′(0) = 3 , y′′(0) = 0 and y(3)(0) = 2 .

19.13. In exercises 19.8 and 19.9, you saw that y1(x) = e4x is a particular solution to

y′′ − 3y′ − 10y = −6e4x ,

and that y2(x) = xe5x is a particular solution to

y′′ − 3y′ − 10y = 7e5x .

For convenience, let g1(x) = −6e4x and g2(x) = 7e5x . Then the above facts can be

written as

y1
′′ − 3y1

′ − 10y1 = −6e4x = g1(x)

and

y2
′′ − 3y2

′ − 10y2 = 7e5x = g2(x) .
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Using this and the principle of superposition, find a particular solution yp to each of the

following:

a. y′′ − 3y′ − 10y = e4x

b. y′′ − 3y′ − 10y = e5x

c. y′′ − 3y′ − 10y = −18e4x + 14e5x

d. y′′ − 3y′ − 10y = 35e5x + 12e4x

19.14. In exercise 19.11, you verified that y1(x) = 5x + 2 is a particular solution to

x2 y′′ − 4xy′ + 6y = 10x + 12 for x > 0 .

It should also be clear that y2(x) = 1 is a particular solution to

x2 y′′ − 4xy′ + 6y = 6 for x > 0 .

Using these facts and the principle of superposition, find a particular solution yp to each

of the following on (0,∞) :

a. x2 y′′ − 4xy′ + 6y = 1 b. x2 y′′ − 4xy′ + 6y = x

c. x2 y′′ − 4xy′ + 6y = 22x + 24

19.15 a. What should g(x) be so that y(x) is a solution to

x2 y′′ − 7xy′ + 15y = g(x) for x > 0

i. when y(x) = x2 ? ii. when y(x) = x ? iii. when y(x) = 1 ?

b. Using the results just derived and the principle of superposition, find a particular solution

yp to

x2 y′′ − 7xy′ + 15y = x2 for x > 0 .

c. Using the results derived above and the principle of superposition, find a particular solution

yp to

x2 y′′ − 7xy′ + 15y = 4x2 + 2x + 3 for x > 0 .

19.16 a. What should g(x) be so that y(x) is a solution to

y′′ − 2y′ + y = g(x)

i. when y(x) = cos(2x) ? ii. when y(x) = sin(2x) ?

b. Using the results just derived and the principle of superposition, find a particular solution

yp to

y′′ − 2y′ + y = cos(2x) .

c. Using the results just derived and the principle of superposition, find a particular solution

yp to

y′′ − 2y′ + y = sin(2x) .
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Method of Undetermined Coefficients
(aka: Method of Educated Guess)

In this chapter, we will discuss one particularly simple-minded, yet often effective, method for find-

ing particular solutions to nonhomogeneous differential equations. As the above title suggests, the

method is based on making “good guesses” regarding these particular solutions. And, as always,

“good guessing” is usually aided by a thorough understanding of the problem (being ‘educated’),

and usually works best if the problem is not too complicated. Fortunately, you have had the neces-

sary education, and a great many nonhomogeneous differential equations of interest are sufficiently

simple.

As usual, we will start with second-order equations, and then observe that everything developed

also applies, with little modification, to similar nonhomogeneous differential equations of any order.

20.1 Basic Ideas

Suppose we wish to find a particular solution to a nonhomogeneous second-order differential equation

ay′′ + by′ + cy = g .

If g is a relatively simple function and the coefficients — a , b and c — are constants, then, after

recalling what the derivatives of various basic functions look like, we might be able to make a good

guess as to what sort of function yp(x) yields g(x) after being plugged into the left side of the

above equation. Typically, we won’t be able to guess exactly what yp(x) should be, but we can

often guess a formula for yp(x) involving specific functions and some constants that can then be

determined by plugging the guessed formula for yp(x) into the differential equation and solving the

resulting algebraic equation(s) for those constants (provided the initial ‘guess’ was good).

!�Example 20.1: Consider

y′′ − 2y′ − 3y = 36e5x .

Since all derivatives of e5x equal some constant multiple of e5x , it should be clear that, if we let

y(x) = some multiple of e5x ,

then

y′′ − 2y′ − 3y = some other multiple of e5x .

381
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382 Method of Undetermined Coefficients

So let us let A be some constant “to be determined”, and try

yp(x) = Ae5x

as a particular solution to our differential equation:

yp
′′ − 2yp

′ − 3yp = 36e5x

↪→ [
Ae5x

]′′ − 2
[
Ae5x

]′ − 3
[
Ae5x

] = 36e5x

↪→ [
25Ae5x

] − 2
[
5Ae5x

] − 3
[
Ae5x

] = 36e5x

↪→ 25Ae5x − 10Ae5x − 3Ae5x = 36e5x

↪→ 12Ae5x = 36e5x

↪→ A = 3 .

So our “guess”, yp(x) = Ae5x , satisfies the differential equation only if A = 3 . Thus,

yp(x) = 3e5x

is a particular solution to our nonhomogeneous differential equation.

In the next section, we will determine the appropriate “first guesses” for particular solutions

corresponding to different choices of g in our differential equation. These guesses will involve

specific functions and initially unknown constants that can be determined as we determined A in

the last example. Unfortunately, as we will see, the first guesses will sometimes fail. So we will

discuss appropriate second (and, when necessary, third) guesses, as well as when to expect the first

(and second) guesses to fail.

Because all of the guesses will be linear combinations of functions in which the coefficients are

“constants to be determined”, this whole approach to finding particular solutions is formally called

the method of undetermined coefficients. Less formally, it is also called the method of (educated)

guess.

Keep in mind that this method only finds a particular solution for a differential equation. In

practice, we really need the general solution, which (as we know from our discussion in the pre-

vious chapter) can be constructed from any particular solution along the general solution to the

corresponding homogeneous equation (see theorem 19.1 and corollary 19.2 on page 371).

!�Example 20.2: Consider finding the general solution to

y′′ − 2y′ − 3y = 36e5x .

From the last example, we know

yp(x) = 3e5x

is a particular solution to the differential equation. The corresponding homogeneous equation is

y′′ − 2y′ − 3y = 0 .

Its characteristic equation is

r2 − 2r − 3 = 0 ,
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which factors as

(r + 1)(r − 3) = 0 .

So r = −1 and r = 3 are the possible values of r , and

yh(x) = c1e−x + c2e3x

is the general solution to the corresponding homogeneous differential equation.

As noted in corollary 19.2, it then follows that

y(x) = yp(x) + yh(x) = 3e5x + c1e−x + c2e3x .

is a general solution to our nonhomogeneous differential equation.

Also keep in mind that you may not just want the general solution but also the one solution that

satisfies some particular initial conditions.

!�Example 20.3: Consider the initial-value problem

y′′ − 2y′ − 3y = 36e5x with y(0) = 9 and y′(0) = 25 .

From above, we know the general solution to the differential equation is

y(x) = 3e5x + c1e−x + c2e3x .

Its derivative is

y′(x) = [
3e5x + c1e−x + c2e3x

]′ = 15e5x − c1e−x + 3c2e3x .

This, with our initial conditions, gives us

9 = y(0) = 3e5·0 + c1e−0 + c2e3·0 = 3 + c1 + c2

and

25 = y′(0) = 15e5·0 − c1e−0 + 3c2e3·0 = 15 − c1 + 3c2 ,

which, after a little arithmetic, becomes the system

c1 + c2 = 6

−c1 + 3c2 = 10
.

Solving this system by whatever means you prefer yields

c1 = 2 and c2 = 4 .

So the solution to the given differential equation that also satisfies the given initial conditions is

y(x) = 3e5x + c1e−x + c2e3x = 3e5x + 2e−x + 4e3x .
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20.2 Good First Guesses for Various Choices of g

In all of the following, we are interested in finding a particular solution yp(x) to

ay′′ + by′ + cy = g (20.1)

where a , b and c are constants and g is the indicated type of function. In each subsection, we

will describe a class of functions for g and the corresponding ‘first guess’ as to the formula for a

particular solution yp . In each case, the formula will involve constants “to be determined”. These

constants are then determined by plugging the guessed formula for yp into the differential equation

and solving the system of algebraic equations that results. Of course, if the resulting equations are

not solvable for those constants, then the first guess is not adequate, and you’ll have to read the next

section to learn a good ‘second guess’.

Exponentials

As illustrated in example 20.1,

If, for some constants C and α ,

g(x) = Ceαx

then a good first guess for a particular solution to differential equation (20.1) is

yp(x) = Aeαx

where A is a constant to be determined.

Sines and Cosines

!�Example 20.4: Consider

y′′ − 2y′ − 3y = 65 cos(2x) .

A naive first guess for a particular solution might be

yp(x) = A cos(2x) ,

where A is some constant to be determined. Unfortunately, here is what we get when we plug

this guess into the differential equation:

yp
′′ − 2yp

′ − 3yp = 65 cos(2x)

↪→ [A cos(2x)]′′ − 2[A cos(2x)]′ − 3[A cos(2x)] = 65 cos(2x)

↪→ −4A cos(2x) + 4A sin(2x) − 3A cos(2x) = 65 cos(2x)

↪→ A[−7 cos(2x) + 4 sin(2x)] = 65 cos(2x) .

But there is no constant A satisfying this last equation for all values of x . So our naive first

guess will not work.
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Since our naive first guess resulted in an equation involving both sines and cosines, let us

add a sine term to the guess and see if we can get all the resulting sines and cosines in the resulting

equation to balance. That is, assume

yp(x) = A cos(2x) + B sin(2x)

where A and B are constants to be determined. Plugging this into the differential equation:

yp
′′ − 2yp

′ − 3yp = 65 cos(2x)

↪→ [A cos(2x)+ B sin(2x)]′′ − 2[A cos(2x)+ B sin(2x)]′

− 3[A cos(2x)+ B sin(2x)] = 65 cos(2x)

↪→ −4A cos(2x) − 4B sin(2x) − 2[−2A sin(2x) + 2B cos(2x)]

− 3[A cos(2x) + B sin(2x)] = 65 cos(2x)

↪→ (−7A − 4B) cos(2x) + (4A − 7B) sin(2x) = 65 cos(2x) .

For the cosine terms on the two sides of the last equation to balance, we need

−7A − 4B = 65 ,

and for the sine terms to balance, we need

4A − 7B = 0 .

This gives us a relatively simple system of two equations in two unknowns. Its solution is easily

found. From the second equation, we have

B = 4

7
A .

Combining this with the first equation yields

65 = −7A − 4
[

4

7
A
]

=
[
− 49

7
− 16

7

]
A = −65

7
A .

Thus,

A = −7 and B = 4

7
A = 4

7
(−7) = −4 ,

and a particular solution to the differential equation is given by

yp(x) = A cos(2x) + B sin(2x) = −7 cos(2x) − 4 sin(2x) .

The last example illustrates the fact that, typically, if g(x) is a sine or cosine function (or a

linear combination of a sine and cosine function with the same frequency) then a linear combination

of both the sine and cosine can be used for yp(x) . Thus, we have the following rule:

If, for some constants Cc , Cs and ω ,

g(x) = Cc cos(ωx) + Cs sin(ωx)

then a good first guess for a particular solution to differential equation (20.1) is

yp(x) = A cos(ωx) + B sin(ωx)

where A and B are constants to be determined.
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Polynomials

!�Example 20.5: Let us find a particular solution to

y′′ − 2y′ − 3y = 9x2 + 1 .

Now consider, if y is any polynomial of degree N , then y , y′ and y′′ are also polynomials of

degree N or less. So the expression “ y′′ − 2y′ − 3y ” would then be a polynomial of degree N .

Since we want this to match the right side of the above differential equation, which is a polynomial

of degree 2 , it seems reasonable to try a polynomial of degree N with N = 2 . So we “guess”

yp(x) = Ax2 + Bx + C .

In this case

yp
′(x) = 2Ax + B and yp

′′(x) = 2A .

Plugging these into the differential equation:

yp
′′ − 2yp

′ − 3yp = 9x2 + 1

↪→ 2A − 2[2Ax + B] − 3[Ax2 + Bx + C] = 9x2 + 1

↪→ −3Ax2 + [−4A − 3B]x + [2A − 2B − 3C] = 9x2 + 1 .

For the last equation to hold, the corresponding coefficients to the polynomials on the two sides

must equal, giving us the following system:

x2 terms: −3A = 9

x terms: −4A − 3B = 0

constant terms: 2A − 2B − 3C = 1

So,

A = −9

3
= −3 ,

B = −4A

3
= −4(−3)

3
= 4

and

C = 1 − 2A + 2B

−3
= 1 − 2(−3)+ 2(4)

−3
= 15

−3
= −5 .

And the particular solution is

yp(x) = Ax2 + Bx + C = −3x2 + 4x − 5 .

Generalizing from this example, we can see that the rule for the first guess for yp(x) when g

is a polynomial is:

If

g(x) = a polynomial of degree K ,

then a good first guess for a particular solution to differential equation (20.1) is a K th-

degree polynomial

yp(x) = A0x K + A1x K−1 + · · · + AK−1x + AK

where the Ak’s are constants to be determined.
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Products of Exponentials, Polynomials, and Sines and Cosines

If g is a product of the simple functions discussed above, then the guess for yp must take into

account everything discussed above. That leads to the following rule:

If, for some pair of polynomials P(x) and Q(x) , and some pair of constants α and

ω ,

g(x) = P(x)eαx cos(ωx) + Q(x)eαx sin(ωx)

then a good first guess for a particular solution to differential equation (20.1) is

yp(x) = [
A0x K + A1x K−1 + · · · + AK−1x + AK

]
eαx cos(ωx)

+ [
B0x K + B1x K−1 + · · · + BK−1x + BK

]
eαx sin(ωx)

where the Ak’s and Bk’s are constants to be determined and K is the highest power

of x appearing in polynomial P(x) or Q(x) .

(Note that the above include the cases where α = 0 or ω = 0 . In these cases the

formula for yp simplifies a bit.)

!�Example 20.6: To find a particular solution to

y′′ − 2y′ − 3y = 65x cos(2x) ,

we should start by assuming it is of the form

yp(x) = [A0x + A1] cos(2x) + [B0x + B1] sin(2x) .

With a bit of work, you can verify yourself that, with y = yp(x) , the above differential equation

reduces to

[−2A0 − 7A1 + 4B0 − 4B1] cos(2x) + [−7A0 − 4B0]x cos(2x)

+ [−4A0 + 4A1 − 2B0 − 7B1] sin(2x) + [4A0 − 7B0]x sin(2x) = 65x cos(2x) .

Comparing the terms on either side of the last equation, we get the following system:

cos(2x) terms: −2A0 − 7A1 + 4B0 − 4B1 = 0

x cos(2x) terms: −7A0 − 4B0 = 65

sin(2x) terms: −4A0 + 4A1 − 2B0 − 7B1 = 0

x sin(2x) terms: 4A0 − 7B0 = 0

Solving this system yields

A0 = −7 , A1 = − 158

65
, B0 = −4 . and B1 = 244

65
.

So a particular solution to the differential equation is given by

yp(x) =
[
−7x − 158

65

]
cos(2x) +

[
−4x + 244

65

]
sin(2x) .
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20.3 When the First Guess Fails

!�Example 20.7: Consider

y′′ − 2y′ − 3y = 28e3x .

Our first guess is

yp(x) = Ae3x .

Plugging it into the differential equation:

yp
′′ − 2yp

′ − 3yp = 28e3x

↪→ [
Ae3x

]′′ − 2
[
Ae3x

]′ − 3
[
Ae3x

] = 28e3x

↪→ [
9Ae3x

] − 2
[
3Ae3x

] − 3
[
Ae3x

] = 28e3x

↪→ 9Ae3x − 6Ae3x − 3Ae3x = 28e3x .

But when we add up the left side of the last equation, we get the impossible equation

0 = 28e3x !

No value for A can make this equation true! So our first guess fails.

Why did it fail? Because the guess, Ae3x was already a solution to the corresponding

homogeneous equation

y′′ − 2y′ − 3y = 0 ,

which we would have realized if we had recalled the general solution to this homogeneous

differential equation. So the left side of our differential equation will have to vanish when we

plug in this guess, leaving us with an ‘impossible’ equation.

In general, whenever our first guess for a particular solution contains a term that is also a solution

to the corresponding homogeneous differential equation, then the contribution of that term to

ayp
′′ + byp

′ + cyp = g

vanishes, and we are left with an equation or a system of equations with no possible solution. In

these cases, we can still attempt to solve the problem using the first guess with the reduction of order

method mentioned in the previous chapter. To save time, though, I will tell you what would happen.

You would discover that, if the first guess fails, then there is a particular solution of the form

x × “the first guess”

unless this formula also contains a term satisfying the corresponding homogeneous differential

equation, in which case there is a particular solution of the form

x2 × “the first guess” .

Thus, instead of using reduction of order (or the method we’ll learn in the next chapter), we can

apply the following rules for generating the appropriate guess for the form for a particular solution

yp(x) (given that we’ve already figured out the first guess using the rules in the previous section):
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If the first guess for yp(x) contains a term that is also a solution to the corresponding

homogeneous differential equation, then consider

x × “the first guess”

as a “second guess”. If this (after multiplying through by the x ) does not contain a term

satisfying the corresponding homogeneous differential equation, then set

yp(x) = “second guess” = x × “the first guess” .

If, however, the second guess also contains a term satisfying the corresponding homo-

geneous differential equation, then set

yp(x) = “the third guess”

where

“third guess” = x × “the second guess” = x2 × “the first guess” .

It must be emphasized that the second guess is used only if the first fails (i.e., has a term that

satisfies the homogeneous equation). If the first guess works, then the second (and third) guesses

will not work. Likewise, if the second guess works, then the third guess is not only unnecessary, it

will not work. If, however the first and second guesses fail, you can be sure that the third guess will

work.

!�Example 20.8: Again, consider

y′′ − 2y′ − 3y = 28e3x .

Our first guess

Ae3x

was a solution to the corresponding homogeneous differential equation. So we try a second guess

of the form

x × “first guess” = x × Ae3x = Axe3x .

Comparing this (our second guess) to the general solution

yh(x) = c1e−x + c1e3x

of the corresponding homogeneous equation (see exercise 20.2), we see that our second guess

is not a solution to the corresponding homogeneous differential equation, and, so, we can find a

particular solution to our nonhomogeneous differential equation by setting

yp(x) = “second guess” = Axe3x .

The first two derivatives of this are

yp
′(x) = Ae3x + 3Axe3x

and

yp
′′(x) = 3Ae3x + 3Axe3x + 9Axe3x = 6Ae3x + 9Axe3x .

Using this:

yp
′′ − 2yp

′ − 3yp = 28e3x

↪→ [
Axe3x

]′′
− 2

[
Axe3x

]′
− 3

[
Axe3x

]
= 28e3x
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↪→ [
6Ae3x + 9Axe3x

]
− 2

[
Ae3x + 3Axe3x

]
− 3Axe3x = 28e3x

↪→ [9 − 2(3)− 3]︸ ︷︷ ︸
0

Axe3x + [6 − 2]Ae3x = 28e3x

↪→ 4Ae3x = 28e3x .

Thus,

A = 28

4
= 7

and

yp(x) = 7xe3x .

20.4 Method of Guess in General

If you think about why the method of (educated) guess works with second-order equations, you

will realize that this basic approach will work just as well with any linear differential equation with

constant coefficients,

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g ,

provided the g(x) is any of the types of functions already discussed. The appropriate first guesses

are exactly the same, and, if a term in one ‘guess’ happens to already satisfy the corresponding

homogeneous differential equation, then x times that guess will be an appropriate ‘next guess’. The

only modification in our method is that, with higher order equations, we may have to go to a fourth

guess or a fifth guess or . . . .

!�Example 20.9: Consider the seventh-order nonhomogeneous differential equation

y(7) − 625y(3) = 6e2x .

An appropriate first guess for a particular solution is still

yp(x) = Ae2x .

Plugging this guess into the differential equation:

yp
(7) − 625yp

(3) = 6e2x

↪→ [
Ae2x

](7)
− 625

[
Ae2x

](3)
= 6e2x

↪→ 27 Ae2x − 625 · 23 Ae2x = 6e2x

↪→ 128Ae2x − 5,000Ae2x = 6e2x

↪→ −4,872Ae2x = 6e2x

↪→ A = − 6

4,872
= − 1

812
.
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So a particular solution to our differential equation is

yp(x) = − 1

812
e2x .

Fortunately, we dealt with the corresponding homogeneous equation,

y(7) − 625y(3) = 0 ,

in example 17.6 on page 342. Looking back at that example, we see that the general solution to

this homogeneous differential equation is

yh(x) = c1 + c2x + c3x2 + c4e5x + c5e−5x + c6 cos(5x) + c7 sin(5x) . (20.2)

Thus, the general solution to our nonhomogeneous equation,

y(7) − 625y(3) = 6e2x ,

is

y(x) = yp(x) + yh(x)

= − 1

809
e2x + c1 + c2x + c3x2 + c4e5x + c5e−5x

+ c6 cos(5x) + c7 sin(5x) .

!�Example 20.10: Now consider the nonhomogeneous equation

y(7) − 625y(3) = 300x + 50 .

Since the right side is a polynomial of degree one, the appropriate first guess for a particular

solution is

yp(x) = Ax + B .

However, the general solution to the corresponding homogeneous equation (formula (20.2), above)

contains both a constant term and a cx term. So plugging this guess into the nonhomogeneous

differential equation will yield the impossible equation

0 = 300x + 50 .

Likewise, both terms of the second guess,

x × “first guess” = x × (Ax + B) = Ax2 + Bx ,

and the last term of the third guess,

x × “second guess” = x × (Ax2 + Bx) = Ax3 + Bx2 ,

satisfy the corresponding homogeneous differential equation, and, thus, would fail. The fourth

guess,

x × “third guess” = x × (Ax3 + Bx2) = Ax4 + Bx3 ,

has no terms in common with the general solution to the corresponding homogeneous equation

(formula (20.2), above). So the appropriate “guess” here is

yp(x) = “fourth guess” = Ax4 + Bx3 .
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Using this:

yp
(7) − 625yp

(3) = 300x + 50

↪→ [
Ax4 + Bx3

](7)
− 625

[
Ax4 + Bx3

](3)
= 300x + 50

↪→ 0 − 625[A · 4 · 3 · 2x + B · 3 · 2 · 1] = 300x + 50

↪→ −15,000Ax − 3,750B = 300x + 50 .

Thus,

A = − 300

15,000
= − 1

50
and B = − 50

3,750
= − 1

75
,

and a particular solution to our nonhomogeneous differential equation is given by

yp(x) = − x4

50
− x3

75
.

For the sake of completeness, let us end our development of the method of (educated) guess

(more properly called the method of undetermined coefficients) with a theorem that does two

things:

1. It concisely summarizes the rules we’ve developed in this chapter. (But its conciseness may

make it too dense to be easily used — so just remember the rules we’ve developed instead

of memorizing this theorem.)

2. It assures us that the method we’ve just developed will always work.

Theorem 20.1

Suppose we have a nonhomogeneous linear differential equation with constant coefficients

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g

where

g(x) = P(x)eαx cos(ωx) + Q(x)eαx sin(ωx)

for some pair of polynomials P(x) and Q(x) , and some pair of constants α and ω . Let K be

the highest power of x appearing in P(x) or Q(x) , and let M be the smallest nonnegative integer

such that

x M eαx cos(ωx)

is not a solution to the corresponding homogeneous differential equation.

Then there are constants A0 , A1 , . . . and AK , and constants B0 , B1 , . . . and BK such that

yp(x) = x M
[
A0x K + A1x K−1 + · · · + AK−1x + AK

]
eαx cos(ωx)

+ x M
[
B0x K + B1x K−1 + · · · + BK−1x + BK

]
eαx sin(ωx)

(20.3)

is a particular solution to the given nonhomogeneous differential equation.

Proving this theorem is not that difficult, provided you have the right tools. Those who are

interested can turn to section 20.7 for the details.
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20.5 Common Mistakes
A Bad Alternative to Formula (20.3)

One common mistake is to use

x M
[
A0x K + A1x K−1 + · · · + AK−1x + AK

]
eαx

[
C1 cos(ωx)+ C2 sin(ωx)

]
for yp(x) instead of formula (20.3). These two formulas are not equivalent.

!�Example 20.11: Let us suppose that the particular solution we are seeking is actually

yp(x) = [2x + 3] cos(2x) + [4x − 5] sin(2x) ,

and that we are (incorrectly) trying to use the “guess”

yp(x) = [A0x + A1] [C1 cos(2x)+ C2 sin(2x)]

to find it. Setting the guess equal to the correct answer, and multiplying things out, we get

[2x + 3] cos(2x) + [4x − 5] sin(2x)

= [A0x + A1] [C1 cos(2x)+ C2 sin(2x)]

= [A0C1x + A1C1] cos(2x)+ [A0C2x + A1C2] sin(2x)] .

Thus, we must have

A0C1 = 2 , A1C1 = 3 , A0C2 = 4 and A1C2 = −5 .

But then,
2

3
= A0C1

A1C1
= A0

A1
= A0C2

A1C2
= 4

−5
,

which is impossible. So we cannot find the correct formula for yp using

yp(x) = [A0x + A1] [C1 cos(2x)+ C2 sin(2x)]

instead of formula (20.3).

The problem here is that, while the products A0C1 , A1C1 , A0C2 and A1C2 do define

four constants

A0C1 = D1 , A1C1 = D2 , A0C2 = D3 and A1C2 = D4 ,

these constants are not independent constants — given any three of those constants, the fourth is

related to the other three by

D1

D2
= A0C1

A1C1
= A0C2

A1C2
= D3

D4
.
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Using Too Many Undetermined Coefficients

It may be argued that there is no harm in using expressions with extra undetermined coefficients,

say,

yp(x) = [
A0x3 + A1x2 + A2x + A0

]
cos(2x) + [

B0x3 + B1x2 + B2x + B3

]
sin(2x)

when theorem 20.1 assures you that

yp(x) = [
A0x + A1

]
cos(2x) + [

B0x + B1

]
sin(2x)

will suffice. After all, won’t the extra coefficients just end up being zero? Well, yes, IF you do

all your calculations correctly. But, by including those extra terms, you have greatly increased the

difficulty and length of your calculations, thereby increasing your chances of making errors in your

calculations. And why complicate your calculation so much when you should already know that

those extra terms will all be zero?

So, make sure your “guess” contains the right number of coefficients to be determined — not

too many, and not too few.

20.6 Using the Principle of Superposition

Suppose we have a nonhomogeneous linear differential equation with constant coefficients

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g

where g is the sum of functions

g(x) = g1(x) + g2(x) + · · ·

with each of the gk’s requiring a different ‘guess’ for yp . One approach to finding a particular

solution yp(x) to this is to construct a big guess by adding together all the guesses suggested

by the gk’s . This typically leads to rather lengthy formulas and requires keeping track of many

undetermined constants, and that often leads to errors in computations — errors that, themselves,

may be difficult to recognize or track down.

Another approach is to break down the differential equation to a collection of slightly simpler

differential equations,

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g1 ,

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g2 ,

...

and, for each gk , find a particular solution y = ypk to

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = gk .

By the principle of superposition for nonhomogeneous equations discussed in section 19.2, we know

that a particular solution to the differential equation of interest,

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g1 + g2 + · · · ,
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can then be constructed by simply adding up the ypk’s ,

yp(x) = yp1(x) + yp2(x) + · · · .

Typically, the total amount of computational work is essentially the same for either approach.

Still the approach of breaking the problem into simpler problems and using superposition is usually

considered to be easier to actually carry out since we are dealing with smaller formulas and fewer

variables at each step.

!�Example 20.12: Consider

y′′ − 2y′ − 3y = 65 cos(2x) + 9x2 + 1 .

Because

g1(x) = 65 cos(2x) and g2(x) = 9x2 + 1

lead to different initial guesses for yp(x) , we will break this problem into the separate problems

of finding particular solutions to

y′′ − 2y′ − 3y = 65 cos(2x)

and

y′′ − 2y′ − 3y = 9x2 + 1 .

Fortunately, these happen to be differential equations considered in previous examples. From

example 20.4 we know that a particular solution to the first of these two equations is

yp1(x) = −7 cos(2x) − 4 sin(2x) ,

and from example 20.5 we know that a particular solution to the second of these two equations is

yp2(x) = −3x2 + 4x − 5 .

So, by the principle of superposition, we have that a particular solution to

y′′ − 2y′ − 3y = 65 cos(2x) + 9x2 + 1

is given by

yp(x) = yp1(x) + yp2(x)

= −7 cos(2x) − 4 sin(2x) − 3x2 + 4x − 5 .

20.7 On Verifying Theorem 20.1

Theorem 20.1, which confirms our “method of guess”, is the main theorem of this chapter. Its proof

follows relatively easily using some of the ideas developed in sections 14.3 and 17.4 on multiplying

and factoring linear differential operators.
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A Useful Lemma

Rather than tackle the proof of theorem 20.1 directly, we will first prove the following lemma. This

lemma contains much of our theorem, and its proof nicely illustrates the main ideas in the proof of

the main theorem. After this lemma’s proof, we’ll see about proving our main theorem.

Lemma 20.2

Let L be a linear differential operator with constant coefficients, and assume yp is a function

satisfying

L[yp] = g

where, for some nonnegative integer K and constants ρ , b0 , b1 , . . . and bK ,

g(x) = b0x K eρx + b1x K−1eρx + · · · + bK−1xeρx + bK eρx .

Then there are constants A0 , A1 , . . . and AK such that

yp(x) = x M
[
A0x K + A1x K−1 + · · · + AK−1x + AK

]
eρx

where

M =
{

multiplicity of ρ if ρ is a root of L’s characteristic polynomial

0 if ρ is not a root of L’s characteristic polynomial
.

PROOF: Let yq be any function on the real line satisfying

L[yq ] = g .

(Theorem 11.4 on page 240 assures us that such a function exists.) Applying an equality from lemma

17.7 on page 347, you can easily verify that(
d

dx
− ρ

)K+1

[g] = 0 .

Hence, (
d

dx
− ρ

)K+1 [
L[yq ]] =

(
d

dx
− ρ

)K+1

[g] = 0 .

That is, yq is a solution to the homogeneous linear differential equation with constant coefficients(
d

dx
− ρ

)K+1

L[y] = 0 .

Letting r1 , r2 , . . . and rL be all the roots other than ρ to the characteristic polynomial for L , we

can factor the characteristic equation for the last differential equation above to

a(r − ρ)K+1(r − r1)
m1(r − r2)

m2 · · · (r − rL)
mL (r − ρ)M = 0 .

Equivalently,

a(r − r1)
m1(r − r2)

m2 · · · (r − rL)
mL (r − ρ)M+K+1 = 0 .

From what we learned about the general solutions to homogeneous linear differential equations with

constant coefficients in chapter 17, we know that

yq (x) = Y1(x) + Yρ(x)
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where Y1 is a linear combination of the xker x ’s arising from the roots other than ρ , and

Yρ(x) = C0eρx + C1xeρx + C2x2eρ + · · · + CM+K x M+K eρx .

Now let Yρ,0 consist of the first M terms of Yρ , and set

yp = yq − Y1 − Yρ,0

Observe that, while yq is a solution to the nonhomogeneous differential equation L[y] = g , every

term in Y1(x) and Yρ,0(x) is a solution to the corresponding homogeneous differential equation

L[y] = 0 . Hence,

L[yp] = L[yq − Y1 − Yρ,0] = L[yq ] − L[Y1] − L[Yρ,0] = g − 0 − 0 .

So yp is a solution to the nonhomogeneous differential equation in the lemma. Moreover,

yp(x) = yq − Y1 − Yρ,0

= Yρ(x) − the first M terms of Yρ(x)

= CM x M eρx + CM+1x M+1xeρx + CM+2x M+2eρ + · · · + CM+K x M+K eρx

= x M
[
CM + CM+1x + CM+2x2 + · · · + CM+K x K

]
eρx ,

which, except for minor cosmetic differences, is the formula for yp claimed in the lemma.

Proving the Main Theorem

Take a look at theorem 20.1 on page 392. Observe that, if you set ρ = α , then our lemma is just a

restatement of that theorem with the additional assumption that ω = 0 . So the claims of theorem

20.1 follow immediately from our lemma when ω = 0 .

Verifying the claims of theorem 20.1 when ω = 0 requires just a little more work. Simply let

ρ = α + iω

and redo the lemma’s proof (making the obvious modifications) with the double factor(
d

dx
− ρ

) (
d

dx
− ρ∗

)
replacing the single factor (

d

dx
− ρ

)
,

and keeping in mind what you know about the solutions to a homogeneous differential equation

with constant coefficients corresponding to the complex roots of the characteristic polynomial. The

details will be left to the interested reader.
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Additional Exercises

20.1. Find both a particular solution yp (via the method of educated guess) and a general solution

y to each of the following:

a. y′′ + 9y = 52e2x b. y′′ − 6y′ + 9y = 27e6x

c. y′′ + 4y′ − 5y = 30e−4x d. y′′ + 3y′ = ex/2

20.2. Solve the initial-value problem

y′′ − 3y′ − 10y = −5e3x with y(0) = 5 and y′(0) = 3 .

20.3. Find both a particular solution yp (via the method of educated guess) and a general solution

y to each of the following:

a. y′′ + 9y = 10 cos(2x) + 15 sin(2x) b. y′′ − 6y′ + 9y = 25 sin(6x)

c. y′′ + 3y′ = 26 cos
(

x

3

)
− 12 sin

(
x

3

)
d. y′′ + 4y′ − 5y = cos(x)

20.4. Solve the initial-value problem

y′′ − 3y′ − 10y = −4 cos(x) + 7 sin(x) with y(0) = 8 and y′(0) = −5 .

20.5. Find both a particular solution yp (via the method of educated guess) and a general solution

y to each of the following:

a. y′′ − 3y′ − 10y = −200 b. y′′ + 4y′ − 5y = x3

c. y′′ − 6y′ + 9y = 18x2 + 3x + 4 d. y′′ + 9y = 9x4 − 9

20.6. Solve the initial-value problem

y′′ + 9y = x3 with y(0) = 0 and y′(0) = 0 .

20.7. Find both a particular solution yp (via the method of educated guess) and a general solution

y to each of the following:

a. y′′ + 9y = 25x cos(2x) b. y′′ − 6y′ + 9y = e2x sin(x)

c. y′′ + 9y = 54x2e3x d. y′′ = 6xex sin(x)

e. y′′ − 2y′ + y = [−6x − 8] cos(2x) + [8x − 11] sin(2x)

f. y′′ − 2y′ + y = [12x − 4]e−5x

20.8. Solve the initial-value problem

y′′ + 9y = 39xe2x with y(0) = 1 and y′(0) = 0 .

20.9. Find both a particular solution yp (via the method of educated guess) and a general solution

y to each of the following:

a. y′′ − 3y′ − 10y = −3e−2x b. y′′ + 4y′ = 20
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c. y′′ + 4y′ = x2 d. y′′ + 9y = 3 sin(3x)

e. y′′ − 6y′ + 9y = 10e3x f. y′′ + 4y′ = 4xe−4x

20.10. Find a general solution to each of the following, using the method of educated guess to find

a particular solution.

a. y′′ − 3y′ − 10y =
[
72x2 − 1

]
e2x b. y′′ − 3y′ − 10y = 4xe6x

c. y′′ − 10y′ + 25y = 6e5x d. y′′ − 10y′ + 25y = 6e−5x

e. y′′ + 4y′ + 5y = 24 sin(3x) f. y′′ + 4y′ + 5y = 8e−3x

g. y′′ − 4y′ + 5y = e2x sin(x) h. y′′ − 4y′ + 5y = e−x sin(x)

i. y′′ − 4y′ + 5y = 100 j. y′′ − 4y′ + 5y = e−x

k. y′′ − 4y′ + 5y = 10x2 + 4x + 8 l. y′′ + 9y = e2x sin(x)

m. y′′ + y = 6 cos(x) − 3 sin(x) n. y′′ + y = 6 cos(2x) − 3 sin(2x)

20.11. For each of the following, state the appropriate guess for the form for a particular solution

yp(x) . This ‘guess’ should be the one that works, not necessarily the first. Leave the

coefficients ‘undetermined’; that is, do NOT actually determine the values of the coefficients.

a. y′′ − 4y′ + 5y = x3e−x sin(x) b. y′′ − 4y′ + 5y = x3e2x sin(x)

c. y′′ − 5y′ + 6y = x2e−7x + 2e−7x d. y′′ − 5y′ + 6y = x2

e. y′′ − 5y′ + 6y = 4e−8x f. y′′ − 5y′ + 6y = 4e3x

g. y′′ − 5y′ + 6y = x2e3x h. y′′ − 5y′ + 6y = x2 cos(2x)

i. y′′ − 5y′ + 6y = x2e3x sin(2x) j. y′′ − 4y′ + 20y = e4x sin(2x)

k. y′′ − 4y′ + 20y = e2x sin(4x) l. y′′ − 4y′ + 20y = x3 sin(4x)

m. y′′ − 10y′ + 25y = 3x2e5x n. y′′ − 10y′ + 25y = 3x4

20.12. Find particular solutions to the following differential equations. For your convenience, yh ,

the solution to the corresponding homogeneous equation (which you found in chapter 17)

is also given for each differential equation.

a. y(4) − 4y(3) = 12e−2x , yh(x) = c1 + c2x + c3x2 + c4e4x

b. y(4) − 4y(3) = 10 sin(2x) , yh(x) = c1 + c2x + c3x2 + c4e4x

c. y(4) − 4y(3) = 32e4x , yh(x) = c1 + c2x + c3x2 + c4e4x

d. y(4) − 4y(3) = 32x , yh(x) = c1 + c2x + c3x2 + c4e4x

e. y(3) − y′′ + y′ − y = x2 , yh(x) = c1ex + c2 cos(x) + c3 sin(x)

f. y(3) − y′′ + y′ − y = 30 cos(2x) , yh(x) = c1ex + c2 cos(x) + c3 sin(x)

g. y(3) − y′′ + y′ − y = 6ex , yh(x) = c1ex + c2 cos(x) + c3 sin(x)
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20.13. For each of the following, state the appropriate guess for the form for a particular solution

yp . Leave the coefficients undetermined; do NOT actually determine the values of the coef-

ficients. Again, for your convenience, yh , the solution to the corresponding homogeneous

equation (which you found in chapter 17) is also given for each differential equation.

a. y(5) + 18y(3) + 81y′ = x2e3x ,

yh(x) = c1 + [c2 + c3x] cos(3x) + [c4 + c5x] sin(3x)

b. y(5) + 18y(3) + 81y′ = x2 sin(3x) ,

yh(x) = c1 + [c2 + c3x] cos(3x) + [c4 + c5x] sin(3x)

c. y(5) + 18y(3) + 81y′ = x2e3x sin(3x) ,

yh(x) = c1 + [c2 + c3x] cos(3x) + [c4 + c5x] sin(3x)

d. y(3) − y′′ + y′ − y = 30x cos(2x) , yh(x) = c1ex + c2 cos(x) + c3 sin(x)

e. y(3) − y′′ + y′ − y = 3x cos(x) , yh(x) = c1ex + c2 cos(x) + c3 sin(x)

f. y(3) − y′′ + y′ − y = 3xex cos(x) , yh(x) = c1ex + c2 cos(x) + c3 sin(x)

g. y(3) − y′′ + y′ − y = 3x5e2x , yh(x) = c1ex + c2 cos(x) + c3 sin(x)

20.14. Find particular solutions to the following. Use superposition and/or answers to previous

exercises, if practical.

a. y′′ − 6y′ + 9y = 27e6x + 25 sin(6x)

b. y′′ + 9y = 25x cos(2x) + 3 sin(3x)

c. y′′ − 4y′ + 5y = 5 sin2(x) (Hint: Use a trig. identity to rewrite the sin2(x) in a form

we’ve already discussed.)

d. y′′ − 4y′ + 5y = 20 sinh(x)
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Springs: Part II (Forced Vibrations)

Let us, again, look at those mass/spring systems discussed in chapter 16. Remember, in such a system

we have a spring with one end attached to an immobile wall and the other end attached to some object

that can move back and forth under the influences of the spring and whatever friction may be in the

system. Now that we have methods for dealing with nonhomogeneous differential equations (in

particular, the method of educated guess), we can expand our investigations to mass/spring systems

that are under the influence of outside forces such as gravity or of someone pushing and pulling the

object. Of course, the limitations of the method of guess will limit the forces we can consider. Still,

these forces happen to be particularly relevant to mass/spring systems, and our analysis will lead

to some very interesting results — results that can be extremely useful not just when considering

springs but also when considering other systems in which things vibrate or oscillate.

21.1 The Mass/Spring System

In chapter 16, we derived

m
d2 y

dt2
+ γ

dy

dt
+ κy = F

to model the mass/spring system. In this differential equation:

1. y = y(t) is the position (in meters) at time t (in seconds) of the object attached to the spring.

As before, the Y –axis is positioned so that

(a) y = 0 is the location of the object when the spring is at its natural length. (This is the

“equilibrium point” of the object, at least when F = 0 .)

(b) y > 0 when the spring is stretched.

(c) y < 0 when the spring is compressed.

In chapter 16 we visualized the spring as laying horizontally as in figure 21.1a, but that was

just to keep us from thinking about the effect of gravity on this mass/spring system. Now,

we can allow the spring (and Y –axis) to be either horizontal or vertical or even at some other

angle. All that is important is that the motion of the object only be along the Y –axis. (Do

note, however, that if the spring is hanging vertically, as in figure 21.1c, then the Y –axis is

actually pointing downward.)

2. m is the mass (in kilograms) of the object attached to the spring (assumed to be positive, of

course).

401
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(a) (b) (c)

y(t)

y(t)

y(t)

Y

YY

m

mm

0

0

0

Natural length

of the spring

Figure 21.1: Three equivalent mass/spring systems with slightly different orientations.

3. κ is the spring constant, a positive quantity describing the “stiffness” of the spring (with

“stiffer” springs having larger values for κ ).

4. γ is the damping constant, a nonnegative quantity describing how much friction is in the

system resisting the motion (with γ = 0 corresponding to an ideal system with no friction

whatsoever).

5. F is the sum of all forces acting on the spring other than those due to the spring responding

to being compressed and stretched, and the frictional forces in the system resisting motion.

Since we are expanding on the results from chapter 16, let us recall some of the major results

derived there regarding the general solution yh to the corresponding homogeneous equation

m
d2 yh

dt2
+ γ

dyh

dt
+ κy = 0 . (21.1)

If there is no friction in the system, then we say the system is undamped, and the solution to

equation (21.1) is

yh(t) = c1 cos(ω0t) + c2 sin(ω0t)

or, equivalently,

yh(t) = A cos(ω0t − φ)

where

ω0 =
√
κ

m

is the natural angular frequency of the system, and the other constants are related by

A =
√
(c1)2 + (c2)2 , cos(φ) = c1

A
and sin(φ) = c2

A
.

When convenient, we can rewrite the above formulas for yh in terms of the system’s natural frequency

ν0 by simply replacing each ω0 with 2πν0 .

If there is friction resisting the object’s motion (i.e., if 0 < γ ), then we say the system

is damped, and we can further classify the system as being underdamped, critically damped and
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overdamped, according to the precise relation between γ , κ and m . In these cases, different

solutions to equation (21.1) arise, but in each of these cases, every term of the solution yh(t) has an

exponentially decreasing factor. This factor ensures that

yh(t) → 0 as t → ∞ .

That is what will be particularly relevant in this chapter.

(At this point, you may want to go back and quickly review chapter 16 yourself, verifying the

above and filling in some of the details glossed over. In particular, you may want to glance back over

the brief note on ‘units’ starting on page 322.)

21.2 Constant Force

Let us first consider the case where the external force is constant. For example, the spring might be

hanging vertically and the external force is the force of gravity on the object. Letting F0 be that

constant, the differential equation for y = y(t) is

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 .

From our development of the method of guess, we know the general solution is

y(t) = yh(t) + yp(t)

where yh is as described in the previous section, and the particular solution, yp , is some constant,

yp(t) = y0 for all t .

Plugging this constant solution into the differential equation, we get

m · 0 + γ · 0 + κy0 = F0 .

Hence,

y0 = F0

κ
. (21.2)

If the system is undamped, then

y(t) = yh(t) + y0 = c1 cos(ω0t) + c2 sin(ω0t) + y0 ,

which tells us that the object is oscillating about y = y0 . On the other hand, if the system is damped,

then

lim
t→∞ y(t) = lim

t→∞ [yh(t) + y0] = 0 + y0 .

In this case, y = y0 is where the object finally ends up. Either way, the effect of this constant force

is to change the object’s equilibrium point from y = 0 to y = y0 . Accordingly, if L is the natural

length of the spring, then we call L + y0 the equilibrium length of the spring in this mass/spring

system under the constant force F0 .

It’s worth noting that, in practice, y0 is a quantity that can often be measured. If we also know

the force, then relation (21.2) can be used to determine the spring constant κ .
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!�Example 21.1: Suppose we have a spring whose natural length is 1 meter. We attach a 2

kilogram mass to its end and hang it vertically (as in figure 21.1c), letting the force of gravity

(near the Earth’s surface) act on the mass. After the mass stops bobbing up and down, we measure

the spring and find that its length is now 1.4 meters, 0.4 meters longer than its natural length.

This gives us y0 (as defined above), and since we are near the Earth’s surface,

F0 = force of gravity on the mass = mg = 2 × 9.8

(
kg·meter

sec2

)
.

Solving equation (21.2) for the spring constant and plugging in the above values, we get

κ = F0

y0
= 2 × 9.8

.4
= 49

(
kg

sec2

)
.

We should note that the sign of F0 and y0 in the calculations can both be positive or negative,

depending on the orientation of the system relative to the positive direction of the Y –axis. Still,

κ must be positive. So, to simply avoid having to keep track of the signs, let us rewrite the above

relation between κ , F0 and y0 as

κ =
∣∣∣∣ F0

y0

∣∣∣∣ . (21.3)

21.3 Resonance and Sinusoidal Forces

The mass/spring systems being considered here are but a small subset of all the things that naturally

vibrate or oscillate at or around fixed frequencies — consider the swinging of a pendulum after being

pushed, the vibrations of a guitar string or a steel beam after being plucked or struck — even an

ordinary drinking glass may vibrate when lightly struck. And if these vibrating/oscillating systems

are somehow forced to move using a force that, itself, varies periodically, then we may see resonance.

This is the tendency of the system’s vibrations or oscillations to become very large when the force

periodically fluctuates at certain frequencies. Sometimes, these oscillations can be so large that the

system breaks. Because of resonance, bridges have collapsed, singers have shattered glass, and small

but vital parts of motors have broken off at inconvenient moments. (On the other hand, if you are

in a swing, you use resonance in pumping the swing to swing as high as possible, and if you are a

musician, your instrument may well use resonance to amplify the mellow tones you want amplified.

So resonance is not always destructive.)

We can investigate the phenomenon of resonance in our mass/spring system by looking at the

solutions to

m
d2 y

dt2
+ γ

dy

dt
+ κy = F(t)

when F(t) is a sinusoidal, that is,

F = F(t) = a cos(ηt) + b sin(ηt)

where a , b and η are constants with η > 0 . Naturally, we call η the forcing angular frequency,

and the corresponding frequency, μ = η/2π , the forcing frequency. To simplify our imagery, let us

use an appropriate trigonometric identity (see page 324), and rewrite this function as a shifted cosine

function,

F(t) = F0 cos(ηt − φ)
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where

F0 =
√

a2 + b2 , cos(φ) = a

F0
and sin(φ) = b

F0
.

(Such a force can be generated by an unbalanced flywheel on the object spinning with angular velocity

η about an axis perpendicular to the Y –axis. Alternatively, one could use a very well-trained flapping

bird.)

The value of φ is relatively unimportant to our investigations, so let’s set φ = 0 and just

consider the system modeled by

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 cos(ηt) . (21.4)

You can easily verify, at your leisure, that completely analogous results are obtained using φ = 0 .

The only change is that each particular solution yp will have a corresponding nonzero shift.

In all that follows, keep in mind that F0 and η are positive constants. You might even want to

observe that letting η → 0 leads to the constant force case just considered in the previous section.

It is convenient to consider the undamped and damped systems separately. We’ll start with an

ideal mass/spring system in which there is no friction to dampen the motion.

Sinusoidal Force in Undamped Systems

If the system is undamped, equation (21.4) reduces to

m
d2 y

dt2
+ κy = F0 cos(ηt) ,

and the general solution to the corresponding homogeneous equation is

yh(t) = c1 cos(ω0t) + c2 sin(ω0t) with ω0 =
√
κ

m
.

To save a little effort later, let’s observe that the equation for the natural angular frequency ω0 can

be rewritten as κ = m(ω0)
2 . This and a little algebra allow us to rewrite the above differential

equation as

d2 y

dt2
+ (ω0)

2 y = F0

m
cos(ηt) . (21.5)

As discussed in the previous two chapters, the general solution to this is

y(t) = yh(t) + yp(t) = c1 cos(ω0t) + c2 sin(ω0t) + yp(t)

where yp is of the form

yp(t) =
⎧⎨⎩ A cos(ηt) + B sin(ηt) if η = ω0

At cos(ω0t) + Bt sin(ω0t) if η = ω0

.

We now have two cases to consider: the case where η = ω0 , and the case where η = ω0 . Let’s

start with the most interesting of these two cases.

The Case Where η = ω0

If the forcing angular frequency η is the same as the natural angular frequency ω0 of our mass/spring

system, then

yp(t) = At cos(ω0t) + Bt sin(ω0t) .
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Y

T2π
ω0

Figure 21.2: Graph of a particular solution exhibiting the “runaway” resonance in an undamped

mass/spring system having natural angular frequency ω0 .

Right off, you can see that this is describing oscillations of larger and larger amplitude as time goes

on. To get a more precise picture of the motion, plug the above formula for y = yp into differential

equation (21.5). You can easily verify that the result is[
2Bω0 − At (ω0)

2
]

cos(ω0t) +
[
−2Aω0 − (Btω0)

2
]

sin(ω0t)

+ (ω0)
2 [At cos(ω0t) + Bt sin(ω0t)] = F0

m
cos(ω0t) ,

which simplifies to

2Bω0 cos(ω0t) − 2Aω0 sin(ω0t) = F0

m
cos(ω0t) .

Comparing the cosine terms and the sine terms on either side of this equation then gives us the pair

2Bω0 = F0

m
and − 2Aω0 = 0 .

Thus,

B = F0

2mω0
and A = 0 ,

the particular solution is

yp(t) = F0

2mω0
t sin(ω0t) , (21.6)

and the general solution is

y(t) = yh(t) + yp(t) = c1 cos(ω0t) + c2 sin(ω0t) + F0

2mω0
t sin(ω0t) . (21.7)

The graph of yp is sketched in figure 21.2. Clearly we have true, “runaway” resonance here.

As time increases, the size of the oscillations are becoming steadily larger, dwarfing those in the

yh term. With each oscillation, the object moves further and further from its equilibrium point,

stretching and compressing the spring more and more (try visualizing that motion!). Wait long

enough, and, according to our model, the magnitude of the oscillations will exceed any size desired

. . . unless the spring breaks.
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The Case Where η �= ω0

Plugging

yp(t) = A cos(ηt) + B sin(ηt)

into equation (21.5) yields

−η2 [A cos(ηt)+ B sin(ηt)] + (ω0)
2 [A cos(ηt)+ B sin(ηt)] = F0

m
cos(ηt) ,

which simplifies to[
(ω0)

2 − η2
]

A cos(ηt) +
[
(ω0)

2 − η2
]

B sin(ηt) = F0

m
cos(ηt) .

Comparing the cosine terms and the sine terms on either side of this equation then gives us the pair[
(ω0)

2 − η2
]

A = F0

m
and

[
(ω0)

2 − η2
]

B = 0 .

Thus,

A = F0

m
[
(ω0)

2 − η2
] and B = 0 ,

the particular solution is

yp(t) = F0

m
[
(ω0)

2 − η2
] cos(ηt) , (21.8)

and the general solution is

y(t) = yh(t) + yp(t)

= c1 cos(ω0t) + c2 sin(ω0t) + F0

m
[
(ω0)

2 − η2
] cos(ηt) .

(21.9)

Here, the oscillations in the yp term are not increasing with time. However, if the forcing

angular frequency η is close to the natural angular frequency ω0 of the system (and F0 = 0 ), then

(ω0)
2 − η2 ≈ 0

and, so, the amplitude of the oscillations in yp ,∣∣∣∣ F0

m
[
(ω0)

2 − η2
] ∣∣∣∣ ,

will be very large. If we can adjust the forcing angular frequency η (but keeping F0 constant),

then we can make the amplitude of the oscillations in yp as large as we could wish. So, again, our

solutions are exhibiting “resonance” (perhaps we should call this “near resonance”).

Some Comments About What We’ve Just Derived

1. Relevance of the yh term: Because the oscillations in the yp term are not increasing with

time when η = ω0 , every term in formula (21.9) can play a relatively significant role in

the long-term motion of the object in an undamped mass/spring system. In addition, the

oscillations in the yh term can “interfere” with the yp term to prevent y(t) from reaching

its maximum value within the first oscillation from when the object is initially still. In

fact, the interaction of the yh terms with the yp term can lead to some very interesting

motion. However, exploring how yh and yp can interact goes a little outside of our current

discussions of “resonance”. Accordingly, we will delay a more complete discussion of this

interaction to section 21.4, after finishing our discussion of resonance.
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2. The limit as near resonance approaches true resonance: The resonant frequency of a system

is the forcing frequency at which resonance is most pronounced for that system. The above

analysis tells us that the resonant frequency for an undamped mass/spring system is the same

as the system’s natural frequency. At least, it tells us that when the forcing function is given

by a cosine function. It turns out that, using more advanced tools, we can show that we get

those ever-increasing oscillations whenever the force is given by a periodic function having

the same frequency as the natural frequency of that undamped mass/spring system.

Something you might expect is that, as η gets closer and closer to the natural angular

frequency ω0 , the corresponding solution y of equation 21.5 satisfying some given initial

values will approach that obtained when η = ω0 . This is, indeed, the case, and its verification

will be left as an exercise (exercise 21.5 on page 414).

3. Limitations in our model: Keep in mind that our model for the mass/spring system was

based on certain assumptions regarding the behavior of springs. In particular, the κ term in

our differential equation came from Hooke’s law,

Fspring(y) = −κy ,

relating the spring’s force to the object’s position. As we noted after deriving Hooke’s law

(page 321), this is a good model for the spring force, provided the spring is not stretched

or compressed too much. So if our formulas for y(t) have |y(t)| becoming too large for

Hooke’s law to remain valid, then these formulas are probably are not that accurate after

|y(t)| becomes that large. Precisely what happens after the oscillations become so large that

our model is no longer valid will depend on the spring and the force.

Sinusoidal Force in Damped Systems

If the system is damped, then we need to consider equation (21.4),

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 cos(ηt) , (21.4 ′)

assuming 0 < γ . As noted a few pages ago, the terms in yh , the solution to the corresponding

homogeneous differential equation, all contain decaying exponential factors. Hence,

yh(t) → 0 as t → ∞ ,

and we can assume a particular solution of the form

yp(t) = A cos(ηt) + B sin(ηt) .

We can then write the general solution to our nonhomogeneous differential equation as

y(t) = yh(t) + yp(t) = yh(t) + A cos(ηt) + B sin(ηt) ,

and observe that, as t → ∞ ,

y(t) = yh(t) + yp(t) → 0 + yp(t) = A cos(ηt) + B sin(ηt) .

This tells us that any long-term behavior of y depends only on yp , and may explain why, in these

cases, we refer to yh(t) as the transient part of the solution and yp(t) as the steady-state part of the

solution.
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The analysis of the particular solution,

yp(t) = A cos(ηt) + B sin(ηt) ,

is relatively straightforward, but a little tedious. We’ll leave the computational details to the interested

reader (exercise 21.6 on page 414), and quickly summarize the high points.

Plugging in the above formula for yp into our differential equation and solving for A and B

yield

yp(t) = A cos(ηt) + B sin(ηt) (21.10a)

with

A = ηγ F0[
κ − mη2

]2 + η2γ 2
and B = −

[
κ − mη2

]
F0[

κ − mη2
]2 + η2γ 2

. (21.10b)

Using a little trigonometry, we can rewrite this as

yp(t) = C cos(ηt − φ) (21.11a)

where the amplitude of these forced vibrations is

C = F0√[
κ − mη2

]2 + η2γ 2

(21.11b)

and φ satisfies

cos(φ) = A

C
and sin(φ) = B

C
. (21.11c)

Note that the amplitude, C , does not blow up with time, nor does it become infinite for any

forcing angular frequency η . So we do not have the “runaway” resonance exhibited by an undamped

mass/spring system. Still this amplitude does vary with the forcing frequency. With a little work,

you can show that the amplitude of the forced vibrations has a maximum value provided the friction

is not too great. To be specific, if

γ <
√

2κm ,

then the maximum amplitude occurs when the forcing angular frequency is

η0 =
√
κ

m
− γ 2

2m2
. (21.12)

This is the resonant angular frequency for the given damped mass/spring system. Plugging this value

for η back into formula (21.11b) then yields (after a little algebra) the maximum amplitude

Cmax = 2m F0

γ
√

4κm − γ 2
. (21.13)

If, on the other hand, γ >
√

2κm , then there is no maximum value for the amplitude as η

varies over (0,∞) . Instead, the amplitude steadily decreases as η increases.

You might recall that a damped mass/spring system given by

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 cos(ηt)

is further classified, respectively, as

underdamped , critically damped or overdamped
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according to whether

0 < γ < 2
√
κm , γ = 2

√
κm or 2

√
κm < γ .

Since “resonance” can only occur if γ <
√

2κm (and since
√

2 < 2 ), it should be clear that it

makes no sense to talk about resonant frequencies for critically or overdamped systems. Indeed,

we can even further subdivide the underdamped systems into those having resonant frequencies and

those that do not.

Finally, let us also observe that the formula for η0 can be rewritten as

η0 =
√
(ω0)2 − 1

2

(
γ

m

)2

where, as you should recall,

ω0 =
√
κ

m

is the natural angular frequency of the corresponding undamped system. From this we see that the

resonant frequency of the damped system is always less than the natural frequency of the undamped

system. In fact, as γ increases from 0 to mω0

√
2 , the damped system’s resonant angular frequency

shrinks from ω0 to 0 .

21.4 More on Undamped Motion under Nonresonant
Sinusoidal Forces

When two or more sinusoidal functions of different frequencies are added together, they can alter-

natively amplify and interfere with each other to produce a graph that looks somewhat like a single

sinusoidal function whose amplitude varies in some regular fashion. This is illustrated in figure 21.3

in which graphs of

cos(ηt) − cos(ω0t)

have been sketched using one value for ω0 and two values for η . The first figure (figure 21.3a)

illustrates what is commonly called the beat phenomenon, in which we appear to have a fairly high

frequency sinusoidal whose amplitude seems to be given by another, more slowly varying sinusoidal.

This slowly varying sinusoidal gives us the individual “beats” in which the high frequency function

intensifies and fades (figure 21.3a shows three beats).

This beat phenomenon is typical of the sum (or difference) of two sinusoidal functions of almost

the same frequency, and can be analyzed somewhat using trigonometric identities. For the functions

graphed in figure 21.3a we can use basic trigonometric identities to show that

cos(ηt) − cos(ω0t) = −2 sin
(
η + ω0

2
t
)

sin
(
η − ω0

2
t
)

.

Thus, we have

cos(ηt) − cos(ω0t) = A(t) sin
(
ωhight

)
with ωhigh = η + ω0

2

where

A(t) = ±2 sin(ωlowt) with ωlow =
∣∣∣ω0 − η

2

∣∣∣ .
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(a) (b)

YY

TT

22

Figure 21.3: Graph of cos(ηt)− cos(ω0t) with ω0 = 2 and with (a) η = 0.9ω0 and (b)
η = 0.1ω0 . (Drawn using the same horizontal scales for both graphs).

The angular frequency of the high-frequency wiggles in figure 21.3a are approximately ωhigh , while

ωlow corresponds to the angular frequency of pairs of beats. (Visualizing A(t) as a slowly varying

amplitude only makes sense if A(t) varies much more slowly than sin
(
ωhight

)
. And, if you think

about it, you will realize that, if η ≈ ω0 , then

ωhigh = η + ω0

2
≈ ω0 and ωlow =

∣∣∣ω0 − η

2

∣∣∣ ≈ 0 .

So this analysis is justified if the forcing frequency is close, but not equal, to the resonant frequency.)

The general phenomenon just described (with or without “beats”) occurs whenever we have a

linear combination of sinusoidal functions. In particular, it becomes relevant whenever describing

the behavior of an undamped mass/spring system with a sinusoidal forcing function not at resonant

frequency. Let’s do one general example:

!�Example 21.2: Consider an undamped mass/spring system having resonant angular frequency

ω0 under the influence of a force given by

F(t) = F0 cos(ηt)

where η = ω0 . Assume further that the object in the system (with mass m ) is initially at rest.

In other words, we want to find the solution to the initial-value problem

d2 y

dt2
+ (ω0)

2 y = F0

m
cos(ηt) with y(0) = 0 and y′(0) = 0 .

From our work a few pages ago (see equation (21.9)), we know

y(t) = c1 cos(ω0t) + c2 sin(ω0t) + F0

m
[
(ω0)

2 − η2
] cos(ηt) .

To satisfy the initial conditions, we must then have

0 = y(0) = c1 cos(0) + c2 sin(0) + F0

m
[
(ω0)

2 − η2
] cos(0)

and

0 = y′(0) = −c1ω0 sin(0) + c2ω0 cos(0) − F0η

m
[
(ω0)

2 − η2
] sin(0) ,

which simplifies to the pair

0 = c1 + F0

m
[
(ω0)

2 − η2
] and 0 = c2ω0 .
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So

c1 = − F0

m
[
(ω0)

2 − η2
] , c2 = 0 ,

and

y(t) = − F0

m
[
(ω0)

2 − η2
] cos(ω0t) + F0

m
[
(ω0)

2 − η2
] cos(ηt)

= F0

m
[
(ω0)

2 − η2
] [ cos(ηt) − cos(ω0t)

]
.

If η = 0.9ω0 , the last formula for y reduces to

y(t) = 100

19
· F0

m(ω0)
2

[
cos(ηt) − cos(ω0t)

]
,

and the graph of the object’s position at time t is the same as the graph in figure 21.3a with the

amplitude multiplied by
100

19
· F0

m(ω0)
2

.

If η = 0.1ω0 , then

y(t) = 100

99
· F0

m(ω0)
2

[
cos(ηt) − cos(ω0t)

]
,

and the graph of the object’s position at time t is the same as the graph in figure 21.3b with the

amplitude multiplied by
100

99
· F0

m(ω0)
2

(which, it should be noted, is approximately 1/5 the amplitude when η = 0.9ω0 ).

?�Exercise 21.1: Consider the mass/spring system just discussed in the last example. Using the

graphs in figure 21.3, try to visualize the motion of the object in this system

a: when the forcing frequency is 0.9 the natural frequency.

b: when the forcing frequency is 0.1 the natural frequency.

Additional Exercises

21.2. A spring, whose natural length is 0.1 meter, is stretched to an equilibrium length of 0.12

meter when suspended vertically (near the Earth’s surface) with a 0.01 kilogram mass at

the end.

a. Find the spring constant κ for this spring.

b. Find the natural angular frequency ω0 and the natural frequency ν0 for this mass/spring

system, assuming the system is undamped.

21.3. All of the following concern a single spring of natural length 1 meter mounted vertically

with one end attached to the floor (as in figure 21.1b on page 401).
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a. Suppose we place a 25 kilogram box of frozen ducks on top of the spring, and, after

moving the box down to its equilibrium point, we find that the length of the spring is now

0.9 meter.

i. What is the spring constant for this spring?

ii. What is the natural angular frequency of the mass/spring system assuming the system

is undamped?

iii. Approximately how many times per second will this box bob up and down assuming

the system is undamped and the box is moved from its equilibrium point and released?

(In other words, what is the natural frequency, ν0 ?)

b. Suppose we replace the box of frozen ducks with a single 2 kilogram chicken.

i. Now what is the equilibrium length of the spring?

ii. What is the natural angular frequency of the undamped chicken/spring system?

iii. Assuming the system is undamped, not initially at equilibrium, and the chicken is not

flapping its wings, how many times per second does this bird bob up and down?

c. Next, the chicken is replaced with a box of imported fruit. After the box stops bobbing

up and down, we find that the length of the spring is 0.85 meter. What is the mass of this

box of fruit?

d. Finally, everything is taken off the spring, and a bunch of red, helium filled balloons is

tied onto the end of the spring, stretching it to an new equilibrium length of 1.02 meters.

What is the buoyant force of this bunch of balloons?

21.4. A live 2 kilogram chicken is securely attached to the top of the the floor-mounted spring

of natural length 1 meter (similar to that described in exercise 21.3, above). Nothing else

is on the spring. Knowing that the spring will break if it is stretched or compressed by half

its natural length, and hoping to use the resonance of the system to stretch or compress the

spring to its breaking point, the chicken starts flapping its wings. The force generated by

the chicken’s flapping wings t seconds after it starts to flap is

F(t) = F0 cos(2πμt)

where μ is the frequency of the wing flapping (flaps/second) and

F0 = 3

(
kg·meter

sec2

)
.

For the following exercises, also assume the following:

1. This chicken/spring system is undamped and has natural frequency ν0 = 6 (hertz).

2. The model given by differential equation (21.5) on page 405 is valid for this

chicken/spring system right up to the point where the spring breaks.

3. The chicken’s position at time t , y(t) is just given by the particular solution yp

found by the method of educated guess (formula (21.6) on page 406 or formula

(21.8) on page 407, depending on μ ).

a. Suppose the chicken flaps at the natural frequency of the system.

i. What is the formula for the chicken’s position at time t ?
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ii. When does does the amplitude of the oscillations become large enough to break the

spring?

b. Suppose that the chicken manages to consistently flap its wings 3 times per second.

i. What is the formula for the chicken’s position at time t ?

ii. Does the chicken break the spring? If so, when?

c. What is the range of values for μ , the flap frequency, that the chicken can flap at, eventually

breaking the spring? (That is, find the minimum and maximum values of μ so that the

corresponding near resonance will stretch or compress the spring enough to break it.)

21.5. For each η > 0 , let yη be the solution to

d2 yη

dt2
+ (ω0)

2 yη = F0

m
cos(ηt) with yη(0) = 0 and yη

′(0) = 0

where ω0 , m and F0 are all positive constants. (Note that this describes an undamped

mass/spring system in which the mass is initially at rest.)

a. Find yη(t) assuming η = ω0 .

b. Find yη(t) assuming η = ω0 .

c. Verify that, for each t ,

lim
η→ω0

yη(t) = yω0
(t) .

d. Using a computer math package, sketch the graph of yη from t = 0 to t = 100 when

ω0 = 5 , F0/m = 1 , and

i. η = 0.1ω0 ii. η = 0.5ω0 iii. η = 0.75ω0 iv. η = 0.9ω0

v. η = 0.99ω0 vi. η = ω0 vii. η = 1.1ω0 viii. η = 2ω0

In particular, observe what happens when η ≈ ω0 , and how these graphs illustrate the

result given in part c of this exercise.

21.6. Consider a damped mass/spring system given by

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 cos(ηt)

where m , γ , κ and F0 are all positive constants. (This is the same as equation (21.4).)

a. Using the method of educated guess, derive the particular solution given by equation set

(21.10) on page 409.

b. Then show that the solution in the previous part can be rewritten as described by equation

set (21.11) on page 409; that is, verify that the solution can be written as

yp(t) = C cos(ηt − φ)

where the amplitude of these forced vibrations is

C = F0√[
κ − mη2

]2 + η2γ 2
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and φ satisfies

cos(φ) = A

C
and sin(φ) = B

C
.

c. Next, by “finding the maximum of C with respect to η ”, show that the angular resonant

frequency of the system is

η0 =
√
κ

m
− γ 2

2m2
,

and that the corresponding maximum amplitude is

Cmax = 2m F0

γ
√

4κm − γ 2

provided γ <
√

2κm . What happens if, instead, γ ≥ √
2κm ?

d. Assume that γ <
√

2κm . Then the system is underdamped and, as noted in chapter 16,

the general solution to the corresponding homogeneous equation is

yh(t) = c1e−αt cos(ωt) + c2e−αt sin(ωt)

where α is the decay coefficient and ω is the angular quasi-frequency. Verify that this

ω , the resonant angular frequency η0 , and the natural angular frequency ω0 of the

corresponding undamped system are related by

(η0)
2 +

(
γ

2m

)2
= ω2 = (ω0)

2 −
(
γ

2m

)2
,

and, from this, conclude that η0 < ω < ω0 .
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Variation of Parameters
(A Better Reduction of Order Method)

“Variation of parameters” is another way to solve nonhomogeneous linear differential equations, be

they second order,

ay′′ + by′ + cy = g ,

or even higher order,

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g .

One advantage of this method over the method of undetermined coefficients from chapter 20 is

that the differential equation does not have to be simple enough that we can ‘guess’ the form for

a particular solution. In theory, the method of variation of parameters will work whenever g and

the coefficients are reasonably continuous functions. As you may expect, though, it is not quite as

simple a method as the method of guess. So, for ‘sufficiently simple’ differential equations, you

may still prefer using the guess method instead of what we’ll develop here.

We will first develop the variation of parameters method for second-order equations. Then we

will see how to extend it to deal with differential equations of even higher order.1 As you will see,

the method is really just a very clever improvement on the reduction of order method for solving

nonhomogeneous equations.

22.1 Second-Order Variation of Parameters
Derivation of the Method

Suppose we want to solve a second-order nonhomogeneous differential equation

ay′′ + by′ + cy = g

over some interval of interest, say,

x2 y′′ − 2xy′ + 2y = 3x2 for x > 0 .

Let us also assume that the corresponding homogeneous equation,

ay′′ + by′ + cy = 0 ,

1 It is possible to use a “variation of parameters” method to solve first-order nonhomogeneous linear equations, but that

would be just plain silly.

417
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has already been solved. That is, we already have an independent pair of functions y1 = y1(x) and

y2 = y2(x) for which

yh(x) = c1 y1(x) + c2 y2(x)

is a general solution to the homogeneous equation.

For our example,

x2 y′′ − 2xy′ + 2y = 3x2 ,

the corresponding homogeneous equation is the Euler equation

x2 y′′ − 2xy′ + 2y = 0 .

You can easily verify that this homogeneous equation is satisfied if y is either

y1 = x or y2 = x2 .

Clearly, the set {x, x2} is linearly independent, and, so, the general solution to the

corresponding homogeneous equation is

yh = c1x + c2x2 .

Now, in using reduction of order to solve our nonhomogeneous equation

ay′′ + by′ + cy = g ,

we would first assume a solution of the form

y = y0 u

where u = u(x) is an unknown function ‘to be determined’, and y0 = y0(x) is any single solution

to the corresponding homogeneous equation. However, we do not just have a single solution to the

corresponding homogeneous equation — we have two: y1 and y2 (along with all linear combina-

tions of these two). So why don’t we use both of these solutions and assume, instead, a solution of

the form

y = y1u + y2v

where y1 and y2 are the two solutions to the corresponding homogeneous equation already found,

and u = u(x) and v = v(x) are two unknown functions to be determined.

For our example,

x2 y′′ − 2xy′ + 2y = 3x2 ,

we already have that

y1 = x and y2 = x2

form a fundamental pair of solutions to the corresponding homogeneous differential

equation. So, in this case, the assumption that

y = y1u + y2v

is

y = xu + x2v

where u = u(x) and v = v(x) are two functions to be determined.
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To determine the two unknown functions u(x) and v(x) , we will need two equations. One, of

course, must be the original differential equation that we are trying to solve. The other equation can

be chosen at our convenience (provided it doesn’t contradict or simply repeat the original differential

equation). Here is a remarkably clever choice for that other equation:

y1u′ + y2v
′ = 0 . (22.1)

For our example,

y1 = x and y2 = x2 .

So we will require that

xu′ + x2v′ = 0 .

To see why this is such a clever choice, let us now compute y′ and y′′ , and see what the differential

equation becomes in terms of u and v . We’ll do this for the example first.

For our example,

y = xu + x2v ,

and we required that

xu′ + x2v′ = 0 .

Computing the first derivative, rearranging a little, and applying the above requirement:

y′ = [
xu + x2v

]′
= u + xu′ + 2xv + x2v′

= u + 2xv + xu′ + x2v′︸ ︷︷ ︸
0

.

So

y′ = u + 2xv ,

and

y′′ = [u + 2xv]′ = u′ + 2v + 2xv′ .

Notice that the formula for y′′ does not involve any second derivatives of u and v .

Plugging the above formulas for y , y′ and y′′ into the left side of our original differ-

ential equation, we see that

x2 y′′ − 2xy′ + 2y = 3x2

↪→ x2
[
u′ + 2v + 2xv′] − 2x

[
u + 2xv

] + 2
[
xu + x2v

] = 3x2

↪→ x2u′ + 2x2v + 2x3v′ − 2xu − 4x2v + 2xu + 2x2v = 3x2

↪→ x2u′ + 2x3v′ + [
2x2 − 4x2 + 2x2︸ ︷︷ ︸

0

]
v + [−2x + 2x︸ ︷︷ ︸

0

]
u = 3x2 .

Hence, our original differential equation,

x2 y′′ − 2xy′ + 2y = 3x2 ,

reduces to

x2u′ + 2x3v′ = 3x2 .
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For reasons that will be clear in by the end of this section, let us divide this equation

through by x2 , giving us

u′ + 2xv′ = 3 . (22.2)

Keep in mind that this is what our differential equation reduces to if we start by letting

y = xu + x2v

and requiring that

xu′ + x2v′ = 0 .

Now back to the general case, where our differential equation is

ay′′ + by′ + cy = g .

If we set

y = y1u + y2v

where y1 and y2 are solutions to the corresponding homogeneous equation, and require that

y1u′ + y2v
′ = 0 ,

then

y′ = [
y1u + y2v

]′
= [

y1u
]′ + [

y2v
]′

= y1
′u + y1u′ + y2

′v + y2v
′

= y1
′u + y2

′v + y1u′ + y2v
′︸ ︷︷ ︸

0

.

So

y′ = y1
′u + y2

′v ,

and

y′′ = [
y1

′u + y2
′v
]′

= y1
′′u + y1

′u′ + y2
′′v + y2

′v′

= y1
′u′ + y2

′v′ + y1
′′u + y2

′′v .

Remember, y1 and y2 , being solutions to the corresponding homogeneous equation, satisfy

ay1
′′ + by1

′ + cy1 = 0 and ay2
′′ + by2

′ + cy2 = 0 .

Using all the above, we have

ay′′ + by′ + cy = g

↪→ a
[
y1

′u′ + y2
′v′ + y1

′′u + y2
′′v
] + b

[
y1

′u + y2
′v
] + c

[
y1u + y2v

] = g

↪→ a
[
y1

′u′ + y2
′v′] + [

ay1
′′ + by1

′ + cy1︸ ︷︷ ︸
0

]
u + [

ay2
′′ + by2

′ + cy2︸ ︷︷ ︸
0

]
v = g .

The vanishing of the u and v terms should not be surprising. A similar vanishing occurred in the

original reduction of order method. What we also have here, thanks to the ‘other equation’ that



�

�

�

�

�

�

�

�

Second-Order Variation of Parameters 421

we chose, is that no second-order derivatives of u or v occur either. Consequently, our original

differential equation,

ay′′ + by′ + cy = g ,

reduces to

a
[
y1

′u′ + y2
′v′] = g .

Dividing this by a then yields

y1
′u′ + y2

′v′ = g

a
.

Keep in mind what the last equation is. It is what our original differential equation reduces to

after setting

y = y1u + y2v (22.3)

(where y1 and y2 are solutions to the corresponding homogeneous equation), and requiring that

y1u′ + y2v
′ = 0 .

This means that the derivatives u′ and v′ of the unknown functions in formula (22.3) must satisfy

the pair (or system) of equations

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a

.

This system can be easily solved for u′ and v′ . Integrating what we get for u′ and v′ then gives

us the formulas for u and v which we can plug back into formula (22.3) for y , the solution to our

nonhomogeneous differential equation.

Let’s finish our example:

We have

y = xu + x2v

where u′ and v′ satisfy the system

xu′ + x2v′ = 0

u′ + 2xv′ = 3
.

(The first was the equation we chose to require; the second was what the differential

equation reduced to.) From the first equation in this system, we have that

u′ = −xv′ .

Combining this with the second equation:

u′ + 2xv′ = 3

↪→ −xv′ + 2xv′ = 3

↪→ xv′ = 3

↪→ v′ = 3

x
.
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Hence, also,

u′ = −xv′ = −x · 3

x
= −3 .

Remember, the primes denote differentiation with respect to x . So we have

du

dx
= −3 and

dv

dx
= 3

x
.

Integrating yields

u =
∫

du

dx
dx =

∫
−3 dx = −3x + c1

and

v =
∫

dv

dx
dx =

∫
3

x
dx = 3 ln |x | + c2 .

Plugging these into the formula for y , we get

y = xu + x2v

= x
[− 3x + c1

] + x2
[
3 ln |x | + c2

]
= −3x2 + c1x + 3x2 ln |x | + c2x2

= 3x2 ln |x | + c1x + (c2 − 3)x2 ,

which simplifies a little to

y = 3x2 ln |x | + C1x + C2x2 .

This, at long last, is our solution to

x2 y′′ − 2xy′ + 2y = 3x2 .

Before summarizing our work (and reducing it to a fairly simple procedure) let us make two

observations based on the above:

1. If we keep the arbitrary constants arising from the indefinite integrals of u′ and v′ , then

the resulting formula for y is a general solution to the nonhomogeneous equation. If we

drop the arbitrary constants (or use definite integrals), then we will end up with a particular

solution.

2. After plugging the formulas for u and v into y = y1u + y2v , some of the resulting terms

can often be absorbed into other terms. (In the above, for example, we absorbed the −3x2

and c2x2 terms into one C2x2 term.)

Summary: How to Do It

If you look back over our derivation, you will see that we have the following:

To solve

ay′′ + by′ + cy = g ,

first find a fundamental pair {y1, y2} of solutions to the corresponding homogeneous

equation

ay′′ + by′ + cy = 0 .
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Then set

y = y1u + y2v (22.4)

assuming that u = u(x) and v = v(x) are unknown functions whose derivatives satisfy

the system

y1u′ + y2v
′ = 0 (22.5a)

y1
′u′ + y2

′v′ = g

a
(22.5b)

Solve the system for u′ and v′ ; integrate to get the formulas for u and v , and plug

the results back into (22.4). That formula for y is your solution.

The above procedure is what we call (the method of) variation of parameters (for solving a

second-order nonhomogeneous differential equation). Notice the similarity between the two equa-

tions in the system. That makes it relatively easy to remember the system of equations. This similarity

is carried over to problems with equations of even higher order.

It is possible to reduce the procedure further to a single (not-so-simple) formula. We will discuss

that in section 22.3. However, as noted in that section, it is probably best to use the above method

for most of your work, instead of that equation.

And remember:

1. To get a general solution to the nonhomogeneous equation, find u and v using indefinite

integrals and keep the arbitrary constants arising from that integration. Otherwise, you get a

particular solution.

2. After plugging the formulas for u and v into y = y1u + y2v , some of the resulting terms

can often be absorbed into other terms. Go ahead and do so; it simplifies your final result.

!�Example 22.1: Using the above procedure, let us find the general solution to

y′′ + y = tan(x) .

The corresponding homogeneous equation is

y′′ + y = 0 .

We’ve already solved this equation a couple of times; its general solution is

yh = c1 cos(x) + c2 sin(x) .

So we will take

y1 = cos(x) and y2 = sin(x)

as the independent pair of solutions to the corresponding homogeneous equation in the solution

formula

y = y1u + y2v .

That is, as the formula for the general solution to our nonhomogeneous differential equation, we

will use

y = cos(x)u + sin(x)v

where u = u(x) and v = v(x) are functions to be determined.

For our differential equation, a = 1 and g = tan(x) . Thus, with our choice of y1 and y2 ,

the system

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a
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is
cos(x)u′ + sin(x)v′ = 0

− sin(x)u′ + cos(x)v′ = tan(x)
.

This system can be solved several different ways. Why don’t we just observe that, if we solve the

first equation for v′ , we get

v′ = − cos(x)

sin(x)
u′ .

Combining this with the second equation (and recalling a little trigonometry) then yields

− sin(x)u′ + cos(x)

[
− cos(x)

sin(x)
u′
]

= tan(x)

↪→
(

− sin(x) − cos2(x)

sin(x)

)
u′ = tan(x)

↪→ −
(

sin2(x) + cos2(x)

sin(x)

)
u′ = tan(x)

↪→ −
(

1

sin(x)

)
u′ = tan(x) .

Thus,

u′ = − tan(x) sin(x) = − sin2(x)

cos(x)

and

v′ = − cos(x)

sin(x)
u′ = − cos(x)

sin(x)
×
[
− sin2(x)

cos(x)

]
= sin(x) .

To integrate the formula for u′ , it may help to first observe that

u′(x) = − sin2(x)

cos(x)
= −1 − cos2(x)

cos(x)
= − sec(x) + cos(x) .

It may also help to review the the integration of the secant function in your old calculus text. After

doing so, you’ll see that

u(x) =
∫

u′(x) dx

=
∫ [

cos(x)− sec(x)
]

dx

= sin(x) − ln |sec(x)+ tan(x)| + c1

and

v(x) =
∫

sin(x) dx = − cos(x) + c2 .

Plugging these formulas for u and v back into our solution formula

y = y1u + y2v = cos(x)u + sin(x)v ,

we get

y = cos(x)
[

sin(x) − ln |sec(x)+ tan(x)| + c1

] + sin(x)
[− cos(x) + c2

]
= − cos(x) ln |sec(x)+ tan(x)| + c1 cos(x) + c2 sin(x)
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as the general solution to the nonhomogeneous equation

y′′ + y = tan(x) .

Possible Difficulties

The main ‘work’ in carrying out the variation of parameters method to solve

ay′′ + by′ + cy = g

is in solving the system

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a

for u′ and v′ , and then integrating the results to get the formulas for u and v . One can foresee

two possible issues: (1) the ‘solvability’ of the system, and (2) the ‘integrability’ of the solutions to

the system (assuming the solutions can be obtained).

Remember, some systems of equations are “degenerate” and not truly solvable, either having

no solution or infinitely many solutions. For example,

u′ + 3v′ = 0

u′ + 3v′ = 1

clearly has no solution. Fortunately, this is not an issue in the variation of parameters method. As we

will see in section 22.3 (when discussing a formula for this method), the requirement that {y1, y2}
be a fundamental set for the corresponding homogeneous differential equation ensures that the above

system is nondegenerate and can be solved uniquely for u′ and v′ .

The issue of the “integrability” of the formulas obtained for u′ and v′ is much more significant.

In our discussion of a variation of parameters formula (again, in section 22.3), it will be noted that,

in theory, the functions obtained for u′ and v′ will be integrable for any reasonable choice of a , b ,

c and g . In practice, though, it might not be possible to find usable formulas for the integrals of u′
and v′ . In these cases it may be necessary to use definite integrals instead of indefinite, numerically

evaluating these integrals to obtain approximate values for specific choices of u(x) and v(x) . We

will discuss this further in section 22.3.

22.2 Variation of Parameters for Even Higher Order
Equations

Take another quick look at part of our derivation in the previous section. In setting

y = y1u + y2v

and then requiring

y1u′ + y2v
′ = 0 ,
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we ensured that the formula for y′ ,

y′ = [
y1u + y2v

]′ = y1
′u + y1u′ + y2

′v + y2v
′

= y1
′u + y2

′v + y1u′ + y2v
′ = y1

′u + y2
′v + 0 ,

contains no derivatives of the unknown functions u and v .

Suppose, instead, that we have three known functions y1 , y2 and y3 , and we set

y = y1u + y2v + y3w

where u , v and w are unknown functions. For the same reasons as before, requiring that

y1u′ + y2v
′ + y3w

′ = 0 (22.6)

will insure that the formula for y′ contains no derivative of u , v and w , but will simply be

y′ = y1
′u + y2

′v + y3
′w .

Differentiating this yields

y′′ = y1
′′u + y1

′u′ + y2
′′v + y2

′v′ + y3
′′w + y3

′w′

= [
y1

′′u + y2
′′v + y3

′′w
] + [

y1
′u′ + y2

′v′ + y3
′w′] ,

which reduces to

y′′ = y1
′′u + y2

′′v + y3
′′w

provided we require that

y1
′u′ + y2

′v′ + y3
′w′ = 0 . (22.7)

Thus, requiring equations (22.6) and (22.7) prevents derivatives of the unknown functions from

appearing in the formulas for either y′ or y′′ . As you can easily verify, differentiating the last

formula for y′′ and plugging the above formulas for y , y′ and y′′ into a third-order differential

equation

a0 y′′′ + a1 y′′ + a2 y′ + a3 y = g

then yield

a0

[
y1

′′u′ + y2
′′v′ + y3

′′w′] + [ · · · ]u + [ · · · ]v + [ · · · ]w = g (22.8)

where the coefficients in the u , v and w terms will vanish if y1 , y2 and y3 are solutions to the

corresponding homogeneous differential equation.

Together equations (22.6), (22.7) and (22.8) form a system of three equations in three unknown

functions. If you look at this system, and recall the original formula for y , you’ll see that we’ve de-

rived the variation of parameters method for solving third-order nonhomogeneous linear differential

equations:

To solve the nonhomogeneous differential equation

a0 y′′′ + a1 y′′ + a2 y′ + a3 y = g ,

first find a fundamental set of solutions {y1, y2, y3} to the corresponding homogeneous

equation

a0 y′′′ + a1 y′′ + a2 y′ + a3 y = 0 .

Then set

y = y1u + y2v + y3w (22.9)
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assuming that u = u(x) , v = v(x) and w = w(x) are unknown functions whose

derivatives satisfy the system

y1u′ + y2v
′ + y3w

′ = 0 (22.10a)

y1
′u′ + y2

′v′ + y3
′w′ = 0 . (22.10b)

y1
′′u′ + y2

′′v′ + y3
′′w′ = g

a0
(22.10c)

Solve the system for u′ , v′ and w′ ; integrate to get the formulas for u , v and w ,

and plug the results back into formula (22.9) for y . That formula is the solution to the

original nonhomogeneous differential equation.

Extending the method to nonhomogeneous linear equations of even higher order is straightfor-

ward. We simply continue to let y be given by formulas similar to formula (22.9) using fundamental

sets of solutions to the corresponding homogeneous equations. Repeatedly imposing requirements

patterned after equations (22.10a) and (22.10b) to ensure that no derivatives of unknown functions

remain until we compute the highest order derivative in the differential equation, we eventually get

the variation of parameters method for solving any nonhomogeneous linear differential equation:

To solve the N th-order nonhomogeneous differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g ,

first find a fundamental set of solutions {y1, y2, . . . , yN } to the corresponding homo-

geneous equation

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = 0 .

Then set

y = y1u1 + y2u2 + · · · + yN uN (22.11)

assuming that the uk’s are unknown functions whose derivatives satisfy the system

y1u1
′ + y2u2

′ + · · · + yN uN
′ = 0 (22.12a)

y1
′u1

′ + y2
′u2

′ + · · · + yN
′uN

′ = 0 (22.12b)

y1
′′u1

′ + y2
′′u2

′ + · · · + yN
′′uN

′ = 0 (22.12c)

... (22.12d)

y1
(N−2)u1

′ + y2
(N−2)u2

′ + · · · + yN
(N−2)uN

′ = 0 (22.12e)

y1
(N−1)u1

′ + y2
(N−1)u2

′ + · · · + yN
(N−1)uN

′ = g

a0
. (22.12f)

Solve the system for u1
′ , u2

′ , . . . and uN
′ ; integrate to get the formula for each uk ,

and then plug the results back into formula (22.11) for y . That formula is the solution

to the original nonhomogeneous differential equation.

As with the second-order case, the above system can be shown to be nondegenerate, and the

resulting formula for each uk
′ can be shown to be integrable, at least in some theoretical sense, as

long as g and the ak’s are continuous functions with a0 never being zero on the interval of interest.
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22.3 The Variation of Parameters Formula
Second-Order Version with Indefinite Integrals

By solving system (22.5) for u′ and v′ using generic y1 and y2 , integrating, and then plugging

the result back into formula (22.4)

y = y1u + y2v ,

you can show that the solution to

ay′′ + by′ + cy = g (22.13)

is given by

y(x) = −y1(x)

∫
y2(x) f (x)

W (x)
dx + y2(x)

∫
y1(x) f (x)

W (x)
dx (22.14)

where

f (x) = g(x)

a(x)
, W (x) = y1(x)y2

′(x) − y1
′(x)y2(x) .

and {y1, y2} is any fundamental set of solutions to the corresponding homogeneous equation. The

details will be left as an exercise (exercise 22.5 on page 431).

A few observations should be made about the elements in formula 22.14:

1. Back in section 12.1, we saw that solutions to second-order linear differential equations are

continuous and have continuous derivatives, at least over intervals on which a , b and c

are continuous functions and a is never zero. Consequently, the above W (x) will be a

continuous function on any such interval.

2. Moreover, if you recall the discussion about the “Wronskian” corresponding to the function

set {y1, y2} (see section 13.6), then you may have noticed that the W (x) in the above formula

is that very Wronskian. As noted in theorem 13.6 on page 274, W (x) will be nonzero at

every point in our interval of interest, provided a , b and c are continuous functions and a

is never zero on that interval.

Consequently, the integrands of the integrals in formula (22.14) will (theoretically at least) be nice

integrable functions over our interval of interest as long as a , b , c and g are continuous functions

and a is never zero over this interval.2 And this verifies that, in theory, the variation of parameters

method does always yield the solution to a nonhomogeneous linear second-order differential equation

over appropriate intervals.

In practice, this author discourages the use of formula (22.14), at least at first. For most, trying

to memorize and effectively use this formula is more difficult than remembering the basic system

from which it was derived. And the small savings in computational time gained by using this formula

is hardly worth the effort unless you are going to be solving many of equations of the form

ay′′ + by′ + cy = g

in which the left side remains the same, but you have several different choices for g .

2 In fact, f does not have to even be continuous. It just cannot have particularly bad discontinuities.
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Second-Order Version with Definite Integrals

If you fix a point x0 in the interval of interest and rederive formula (22.14) using definite integrals

instead of the indefinite ones used just above, you get that a particular solution to

ay′′ + by′ + cy = g

is given by

yp(x) = −y1(x)

∫ x

x0

y2(s) f (s)

W (s)
ds + y2(x)

∫ x

x0

y1(s) f (s)

W (s)
ds (22.15)

where, again,

f (s) = g(s)

a(s)
, W (s) = y1(s)y2

′(s) − y1
′(s)y2(s)

and {y1, y2} is any fundamental set of solutions to the corresponding homogeneous equation.

Then, of course,

y(x) = yp(x) + c1 y(x) + c2(x) . (22.16)

is the corresponding general solution to the original nonhomogeneous differential equation.

There are two practical advantages to using definite integral formula (22.15) instead of the

corresponding indefinite integral formula, formula (22.14):

1. Often, it is virtually impossible to find usable, explicit formulas for the integrals of

y2(x) f (x)

W (x)
and

y1(x) f (x)

W (x)
.

In these cases, formula (22.14), with its impossible to compute indefinite integrals, is of very

little practical value. However, the definite integrals in formula (22.15) can still be accurately

approximated for specific values of x using any decent numerical integration method. Thus,

while we may not be able to obtain a nice formula for yp(x) , we can still evaluate it at

desired points on any reasonable interval of interest, possibly using these values to generate

a table for yp(x) or to sketch its graph.

2. As you can easily show (exercise 22.6), the yp given by formula (22.15) satisfies the initial

conditions

y(x0) = 0 and y′(x0) = 0 .

This makes it a little easier to find the constants c1 and c2 such that

y(x) = yp(x) + c1 y(x) + c2(x)

satisfies initial conditions

y(x0) = A and y′(x0) = B

for some values A and B (especially, if we cannot explicitly compute the integrals in

formulas (22.14) and (22.15)).

For Arbitrary Orders

In using variation of parameters to solve the more general N th-order nonhomogeneous differential

equation

a0 y(N ) + a1 y(N−1) + · · · + aN−1 y′ + aN y = g ,
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we need to solve system (22.12) for u1
′ , u2

′ , . . . and uN
′ . If you carefully solve this system for

arbitrary yk’s , or simply apply the procedure known as “Cramer’s rule” (see almost any introductory

text in linear algebra), you will discover that

uk
′(x) = (−1)N+k Wk(x) f (x)

W (x)
for k = 1, 2, 3, . . . , n

where f = g/a0 , W is the determinant of the matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 · · · yN

y1
′ y2

′ y3
′ · · · yN

′

y1
′′ y2

′′ y3
′′ · · · yN

′′

...
...

...
. . .

...

y1
(N−1) y2

(N−1) y3
(N−1) · · · yN

(N−1)

⎤⎥⎥⎥⎥⎥⎥⎦
and Wk is the determinant of the submatrix of M obtained by deleting the last row and kth column.

Integrating and plugging into formula (22.11) for the differential equation’s solution y , we

obtain either

y(x) =
n∑

k=1

(−1)N+k yk(x)

∫
Wk (x) f (x)

W (x)
dx (22.17a)

or

yp(x) =
n∑

k=1

(−1)N+k yk(x)

∫ x

x0

Wk(s) f (s)

W (s)
ds (22.17b)

depending on whether indefinite or definite integrals are used.

Again, it should be noted that the W in these formulas is the Wronskian of the fundamental

set {y1, y2, . . . , yN } , and, from the corresponding theory developed for these Wronskians (see, in

particular, theorem 13.6 on page 274), it follows that the above integrands will (theoretically at least)

be nice integrable functions over our interval of interest as long as g and the ak’s are continuous

functions and a0 is never zero over this interval.3

Additional Exercises

22.1. Find the general solution to each of the following nonhomogeneous differential equations.

Use variation of parameters even if another method might seem easier. For your conve-

nience, each equation is accompanied by a general solution to the corresponding homoge-

neous equation.

a. x2 y′′ − 2xy′ + 2y = 3
√

x , yh = c1x + c2x2

b. y′′ + y = cot(x) , yh = c1 cos(x) + c2 sin(x)

c. y′′ + 4y = csc(2x) , yh = c1 cos(2x) + c2 sin(2x)

d. y′′ − 7y′ + 10y = 6e3x , yh = c1e2x + c2e5x

3 And, again, g does not have to even be continuous. It just cannot have particularly bad discontinuities.
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e. y′′ − 4y′ + 4y =
[
24x2 + 2

]
e2x , yh = c1e2x + c2xe2x

f. y′′ + 4y′ + 4y = e−2x

1 + x2
, yh = c1e−2x + c2xe−2x

g. x2 y′′ + xy′ − y = √
x , yh = c1x + c2x−1

h. x2 y′′ + xy′ − 9y = 12x3 , yh = c1x−3 + c2x3

i. x2 y′′ − 3xy′ + 4y = x2 , yh = c1x2 + c2x2 ln |x |
j. xy′′ − y′ − 4x3 y = x3ex2

, yh = c1ex2 + c2e−x2

k. xy′′ + (2 + 2x)y′ + 2y = 8e2x , yh = c1x−1 + c2x−1e−2x

l. (x + 1)y′′ + xy′ − y = (x + 1)2 , yh = c1x + c2e−x

22.2. Solve the following initial-value problems using variation of parameters to find the general

solution to the given differential equations.

a. x2 y′′ − 2xy′ − 4y = 10

x
with y(1) = 3 and y′(1) = −15

b. y′′ − y′ − 6y = 12e2x with y(0) = 0 and y′(0) = 8

22.3. Find the general solution to each of the following nonhomogeneous differential equations.

Use variation of parameters even if another method might seem easier. For your conve-

nience, each equation is accompanied by a general solution to the corresponding homoge-

neous equation.

a. y′′′ − 4y′ = 30e3x , yh = c1 + c2e2x + c3e−2x

b. x3 y′′′ − 3x2 y′′ + 6xy′ − 6y = x3 , yh = c1x + c2x2 + c3x3

22.4. For each of the following, set up the system of equations (corresponding to system 22.5,

22.10 or 22.12) arising in solving the equations via variation of parameters.

a. x3 y′′′ − 3x2 y′′ + 6xy′ − 6y = e−x2

, yh = c1x + c2x2 + c3x3

b. y′′′ − y′′ + y′ − y = tan(x) , yh = c1ex + c2 cos(x) + c3 sin(x)

c. y(4) − 81y = sinh(x) , yh = c1e3x + c2e−3x + c3 cos(3x) + c4 sin(3x)

d. x4 y(4) + 6x3 y′′′ − 3x2 y′′ − 9xy′ + 9y = 12x sin
(

x2
)

,

yh = c1x + c2x−1 + c3x3 + c4x−3

22.5. Derive integral formula (22.14) on page 428 for the solution y to

ay′′ + by′ + cy = g

from the fact that y = y1u + y2v where

y1u′ + y2v
′ = 0 and y1

′u′ + y2
′v′ = g

a
.

(Hint: Start by solving the system for u′ and v′ .)

22.6. Show that yp given by formula (22.15) on page 429 satisfies the initial conditions

y(x0) = 0 and y′(x0) = 0 .
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The Laplace Transform
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The Laplace Transform (Intro)

The Laplace transform is a mathematical tool based on integration that has a number of applications. It

particular, it can simplify the solving of many differential equations. We will find it particularly useful

when dealing with nonhomogeneous equations in which the forcing functions are not continuous.

This makes it a valuable tool for engineers and scientists dealing with “real-world” applications.

By the way, the Laplace transform is just one of many “integral transforms” in general use. Con-

ceptually and computationally, it is probably the simplest. If you understand the Laplace transform,

then you will find it much easier to pick up the other transforms as needed.

23.1 Basic Definition and Examples
Definition, Notation and Other Basics

Let f be a ‘suitable’ function (more on that later). The Laplace transform of f , denoted by either

F or L[ f ] , is the function given by

F(s) = L[ f ]|s =
∫ ∞

0

f (t)e−st dt . (23.1)

!�Example 23.1: For our first example, let us use

f (t) =
{

1 if t ≤ 2

0 if 2 < t
.

This is the relatively simple discontinuous function graphed in figure 23.1a. To compute the

Laplace transform of this function, we need to break the integral into two parts:

F(s) = L[ f ]|s =
∫ ∞

0

f (t)e−st dt

=
∫ 2

0

f (t)︸︷︷︸
1

e−st dt +
∫ ∞

2

f (t)︸︷︷︸
0

e−st dt

=
∫ 2

0

e−st dt +
∫ ∞

2

0 dt =
∫ 2

0

e−st dt .

So, if s = 0 ,

F(s) =
∫ 2

0

e−st dt = e−st

−s

∣∣∣∣2
t=0

= −1

s

[
e−s·2 − e−s·0

]
= 1

s

[
1 − e−2s

]
.

435
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(a) (b)

T S1 22

11

2

0

Figure 23.1: The graph of (a) the discontinuous function f (t) from example 23.1 and (b) its

Laplace transform F(s) .

And if s = 0 ,

F(s) = F(0) =
∫ 2

0

e−0·t dt =
∫ 2

0

1 dt = 2 .

This is the function sketched in figure 23.1b. (Using L’Hôpital’s rule, you can easily show that

F(s) → F(0) as s → 0 . So, despite our need to compute F(s) separately when s = 0 , F is

a continuous function.)

As the example just illustrated, we really are ‘transforming’ the function f (t) into another

function F(s) . This process of transforming f (t) to F(s) is also called the Laplace transform

and, unsurprisingly, is denoted by L . Thus, when we say “the Laplace transform”, we can be

referring to either the transformed function F(s) or to the process of computing F(s) from f (t) .

Some other quick notes:

1. There are standard notational conventions that simplify bookkeeping. The functions ‘to be

transformed’ are (almost) always denoted by lower case Roman letters — f , g , h , etc. —

and t is (almost) always used as the variable in the formulas for these functions (because, in

applications, these are typically functions of time). The corresponding ‘transformed func-

tions’ are (almost) always denoted by the corresponding upper case Roman letters — F , G ,

H , ETC. — and s is (almost) always used as the variable in the formulas for these functions.

Thus, if we happen to refer to functions f (t) and F(s) , it is a good bet that F = L[ f ] .

2. Observe that, in the integral for the Laplace transform, we are integrating the inputted function

f (t) multiplied by the exponential e−st over the positive T –axis. Because of the sign in

the exponential, this exponential is a rapidly decreasing function of t when s > 0 and is

a rapidly increasing function of t when s < 0 . This will help determine both the sort of

functions that are ‘suitable’ for the Laplace transform and the domains of the transformed

functions.

3. It is also worth noting that, because the lower limit in the integral for the Laplace transform

is t = 0 , the formula for f (t) when t < 0 is completely irrelevant. In fact, f (t) need

not even be defined for t < 0 . For this reason, some authors explicitly limit the values for

t to being nonnegative. We won’t do this explicitly, but do keep in mind that the Laplace

transform of a function f (t) is only based on the values/formula for f (t) with t ≥ 0 .

This will become a little more relevant when we discuss inverting the Laplace transform (in

chapter 25).
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4. As indicated by our discussion so far, we are treating the s in

F(s) =
∫ ∞

0

f (t)e−st dt

as a real variable; that is, we are assuming s denotes a relatively arbitrary real value. Be

aware, however, that in more advanced developments, s is often treated as a complex variable,

s = σ + iξ . This allows the use of results from the theory of analytic complex functions.

But we won’t need that theory (a theory which few readers of this text are likely to have

yet seen). So, in this text (with one very brief exception in chapter 25), s will always be

assumed to be real.

Transforms of Some Common Functions

Before we can make much use of the Laplace transform, we need to build a repertoire of common

functions whose transforms we know. It would also be a good idea to compute a number of transforms

simply to get a better grasp of this whole ‘Laplace transform’ idea.

So let’s get started.

!�Example 23.2 (transforms of favorite constants): Let f be the zero function, that is,

f (t) = 0 for all t .

Then its Laplace transform is

F(s) = L[0]|s =
∫ ∞

0

0 · e−st dt =
∫ ∞

0

0 dt = 0 . (23.2)

Now let h be the unit constant function, that is,

h(t) = 1 for all t .

Then

H(s) = L[1]|s =
∫ ∞

0

1 · e−st dt =
∫ ∞

0

e−st dt .

What comes out of this integral depends strongly on whether s is positive or not. If s < 0 , then

0 < −s = |s| and∫ ∞

0

e−st dt =
∫ ∞

0

e|s|t dt = 1

|s|e
|s|t
∣∣∣∣∞
t=0

= lim
t→∞

1

|s|e
|s|t − 1

|s|e
|s|·0 = ∞ − 1

|s| = ∞ .

If s = 0 , then ∫ ∞

0

e−st dt =
∫ ∞

0

e0·t dt =
∫ ∞

0

1 dt = t
∣∣∞
t=0

= ∞ .

Finally, if s > 0 , then∫ ∞

0

e−st dt = 1

−s
e−st

∣∣∣∞
t=0

= lim
t→∞

1

−s
e−st − 1

−s
e−s·0 = 0 + 1

s
= 1

s
.

So,

L[1]|s =
∫ ∞

0

1 · e−st dt =
⎧⎨⎩

1

s
if 0 < s

∞ if s ≤ 0

. (23.3)



�

�

�

�

�

�

�

�

438 The Laplace Transform

As illustrated in the last example, a Laplace transform F(s) is often a well-defined (finite)

function of s only when s is greater that some fixed number s0 ( s0 = 0 in the example). This is a

result of the fact that the larger s is, the faster e−st goes to zero as t → ∞ (provided s > 0 ). In

practice, we will only give the formulas for the transforms over the intervals where these formulas

are well-defined and finite. Thus, in place of equation (23.3), we will write

L[1]|s = 1

s
for s > 0 . (23.4)

As we compute Laplace transforms, we will note such restrictions on the values of s . To be honest,

however, these restrictions will usually not be that important in our work. What will be important is

that there is some finite value s0 such that our formulas are valid whenever s > s0 .

Keeping this in mind, let’s go back to computing transforms.

!�Example 23.3 (transforms of some powers of t ): We want to find

L
[
tn
]∣∣

s
=

∫ ∞

0

tne−st dt =
∫ ∞

0

tne−st dt for n = 1, 2, 3, . . . .

With a little thought, you will realize this integral will not be finite if s ≤ 0 . So we will assume

s > 0 in these computations. This, of course, means that

lim
t→∞ e−st = 0 .

It also means that, using L’Hôpital’s rule, you can easily verify that

lim
t→∞ tne−st = 0 for n ≥ 0 .

Keeping the above in mind, consider the case where n = 1 ,

L[t]|s =
∫ ∞

0

te−st dt .

This integral just cries out to be integrated “by parts”:

L[t]|s =
∫ ∞

0

t︸︷︷︸
u

e−st dt︸ ︷︷ ︸
dv

= uv
∣∣∞
t=0

−
∫ ∞

0

v du

= t
(

1

−s

)
e−st

∣∣∣∞
t=0

−
∫ ∞

0

(
1

−s

)
e−st dt

= −1

s

[
lim

t→∞ te−st︸ ︷︷ ︸
0

− 0 · e−s·0︸ ︷︷ ︸
0

−
∫ ∞

0

e−st dt
]

= 1

s

∫ ∞

0

e−st dt .

Admittedly, this last integral is easy to compute, but why bother since we computed it in the

previous example! In fact, it is worth noting that combining the last computations with the

computations for L[1] yields

L[t]|s = 1

s

∫ ∞

0

e−st dt = 1

s

∫ ∞

0

1 · e−st dt = 1

s
L[1]|s = 1

s

[
1

s

]
.
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So,

L[t]|s = 1

s2
for s > 0 . (23.5)

Now consider the case where n = 2 . Again, we start with an integration by parts:

L
[
t2
]∣∣

s
=

∫ ∞

0

t2e−st dt

=
∫ ∞

0

t2︸︷︷︸
u

e−st dt︸ ︷︷ ︸
dv

= uv
∣∣∞
t=0

−
∫ ∞

0

v du

= t2
(

1

−s

)
e−st

∣∣∣∞
t=0

−
∫ ∞

0

(
1

−s

)
e−st 2t dt

= 1

−s

[
lim

t→∞ t2e−st︸ ︷︷ ︸
0

− 02e−s·0︸ ︷︷ ︸
0

− 2

∫ ∞

0

te−st dt
]

= 2

s

∫ ∞

0

te−st dt .

But remember, ∫ ∞

0

te−st dt = L[t]|s .

Combining the above computations with this (and referring back to equation (23.5)), we end up

with

L
[
t2
]∣∣

s
= 2

s

∫ ∞

0

te−st dt = 2

s
L[t]|s = 2

s

[
1

s2

]
= 2

s3
. (23.6)

Clearly, a pattern is emerging. I’ll leave the computation of L
[
t3
]

to you.

?�Exercise 23.1: Assuming s > 0 , verify (using integration by parts) that

L
[
t3
]∣∣

s
= 3

s
L
[
t2
]∣∣

s
,

and from that and the formula for L
[
t2
]

computed above, conclude that

L
[
t3
]∣∣

s
= 3 · 2

s4
= 3!

s4
.

?�Exercise 23.2: More generally, use integration by parts to show that, whenever s > 0 and n

is a positive integer,

L
[
tn
]∣∣

s
= n

s
L
[
tn−1

]∣∣
s

.

Using the results from the last two exercises, we have, for s > 0 ,

L

[
t4
]∣∣∣

s
= 4

s
L
[
t3
]∣∣

s
= 4

s
· 3 · 2

s4
= 4 · 3 · 2

s5
= 4!

s5
,

L

[
t5
]∣∣∣

s
= 5

s
L
[
t4
]∣∣

s
= 5

s
· 4 · 3 · 2

s5
= 5 · 4 · 3 · 2

s6
= 5!

s6
,

...

.
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In general, for s > 0 and n = 1, 2, 3, . . . ,

L
[
tn
]∣∣

s
= n!

sn+1
. (23.7)

(If you check, you’ll see that it even holds for n = 0 .)

It turns out that a formula very similar to (23.7) also holds when n is not an integer. Of course,

there is then the issue of just what n! means if n is not an integer. Since the discussion of that issue

may distract our attention away from the main issue at hand — that of getting a basic understanding

of what the Laplace transform is by computing transforms of simple functions — let us hold off on

that discussion for a few pages.

Instead, let’s compute the transforms of some exponentials:

!�Example 23.4 (transform of a real exponential): Consider computing the Laplace transform

of e3t ,

L
[
e3t
]∣∣

s
=

∫ ∞

0

e3t e−st dt =
∫ ∞

0

e3t−st dt =
∫ ∞

0

e−(s−3)t dt .

If s − 3 is not positive, then e−(s−3)t is not a decreasing function of t , and, hence, the above

integral will not be finite. So we must require s − 3 to be positive (that is, s > 3 ). Assuming

this, we can continue our computations

L
[
e3t
]∣∣

s
=

∫ ∞

0

e−(s−3)t dt

= −1

s − 3
e−(s−3)t

∣∣∣∞
t=0

= −1

s − 3

[
lim

t→∞ e−(s−3)t − e−(s−3)0
]

= −1

s − 3
[0 − 1] .

So

L
[
e3t
]∣∣

s
= 1

s − 3
for 3 < s .

Replacing 3 with any other real number is trivial.

?�Exercise 23.3 (transforms of real exponentials): Let α be any real number and show that

L
[
eαt

]∣∣
s

= 1

s − α
for α < s . (23.8)

Complex exponentials are also easily done:

!�Example 23.5 (transform of a complex exponential): Computing the Laplace transform of

ei3t leads to

L
[
ei3t

]∣∣
s

=
∫ ∞

0

ei3t e−st dt

=
∫ ∞

0

e−(s−i3)t dt

= −1

s − i3
e−(s−i3)t

∣∣∣∞
t=0

= −1

s − i3

[
lim

t→∞ e−(s−i3)t − e−(s−i3)0
]

.

Now,

e−(s−i3)0 = e0 = 1
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and

lim
t→∞ e−(s−i3)t = lim

t→∞ e−st+i3t = lim
t→∞ e−st

[
cos(3t) + i sin(3t)

]
.

Since sines and cosines oscillate between 1 and −1 as t → ∞ , the last limit does not exist

unless

lim
t→∞ e−st = 0 ,

and this occurs if and only if s > 0 . In this case,

lim
t→∞ e−(s−i3)t = lim

t→∞ e−st
[

cos(3t) + i sin(3t)
] = 0 .

Thus, when s > 0 ,

L
[
ei3t

]∣∣
s

= −1

s − i3

[
lim

t→∞ e−(s−i3)t − e−(s−i3)0
]

= −1

s − i3
[0 − 1] = 1

s − i3
.

Again, replacing 3 with any real number is trivial.

?�Exercise 23.4 (transforms of complex exponentials): Let α be any real number and show

that

L
[
eiαt

]∣∣
s

= 1

s − iα
for 0 < s . (23.9)

23.2 Linearity and Some More Basic Transforms

Suppose we have already computed the Laplace transforms of two functions f (t) and g(t) , and,

thus, already know the formulas for

F(s) = L[ f ]|s and G(s) = L[g]|s .

Now look at what happens if we compute the transform of any linear combination of f and g .

Letting α and β be any two constants, we have

L[α f (t)+ βg(t)]|s =
∫ ∞

0

[α f (t)+ βg(t)]e−st dt

=
∫ ∞

0

[
α f (t)e−st + βg(t)e−st

]
dt

= α

∫ ∞

0

f (t)e−st dt + β

∫ ∞

0

g(t)e−st dt

= αL[ f (t)]|s + βL[g(t)]|s = αF(s) + βG(s) .

Thus, the Laplace transform is a linear transform; that is, for any two constants α and β , and any

two Laplace transformable functions f and g ,

L[α f (t)+ βg(t)] = αL[ f ] + βL[g] .

This fact will simplify many of our computations and is important enough to enshrine as a theorem.

While we are at it, let’s note that the above computations can be done with more functions than two,
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and that we, perhaps, should have noted the values of s for which the integrals are finite. Taking all

that into account, we can prove:

Theorem 23.1 (linearity of the Laplace transform)

The Laplace transform transform is linear. That is,

L[c1 f1(t)+ c2 f2(t)+ · · · + cn fn(t)] = c1L[ f1(t)] + c2L[ f2(t)] + · · · + cnL[ fn(t)]

where each ck is a constant and each fk is a “Laplace transformable” function.

Moreover, if, for each fk we have a value sk such that

Fk(s) = L[ fk(t)]|s for sk < s ,

then, letting smax be the largest of these sk’s ,

L[c1 f1(t)+ c2 f2(t)+ · · · + cn fn(t)]|s
= c1 F1(s) + c2 F2(s) + · · · + cn Fn(s) for smax < s .

!�Example 23.6 (transform of the sine function): Let us consider finding the Laplace transform

of sin(ωt) for any real value ω . There are several ways to compute this, but the easiest starts

with using Euler’s formula for the sine function along with the linearity of the Laplace transform:

L[sin(ωt)]|s = L

[
eiωt − e−iωt

2i

]∣∣∣∣
s

= 1

2i
L

[
eiωt − e−iωt

]∣∣∣
s

= 1

2i

[
L
[
eiωt

]∣∣
s

− L
[
e−iωt

]∣∣
s

]
.

From example 23.5 and exercise 23.4, we know

L
[
eiωt

]∣∣
s

= 1

s − iω
for s > 0 .

Thus, also,

L
[
e−iωt

]∣∣
s

= L
[
ei(−ω)t]∣∣

s
= 1

s − i(−ω) = 1

s + iω
for s > 0 .

Plugging these into the computations for L[sin(ωt)] (and doing a little algebra) yields, for s > 0 ,

L[sin(ωt)]|s = 1

2i

[
L
[
eiωt

]∣∣
s

− L
[
e−iωt

]∣∣
s

]
= 1

2i

[
1

s − iω
− 1

s + iω

]
= 1

2i

[
s + iω

(s − iω)(s + iω)
− s − iω

(s + iω)(s − iω)

]
= 1

2i

[
(s + iω)− (s − iω)

s2 − i2ω2

]
= 1

2i

[
2iω

s2 − i2ω2

]
,

which immediately simplifies to

L[sin(ωt)]|s = ω

s2 + ω2
for s > 0 . (23.10)
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?�Exercise 23.5 (transform of the cosine function): Show that, for any real value ω ,

L[cos(ωt)]|s = s

s2 + ω2
for s > 0 . (23.11)

23.3 Tables and a Few More Transforms

In practice, those using the Laplace transform in applications do not constantly recompute basic

transforms. Instead, they refer to tables of transforms (or use software) to look up commonly used

transforms, just as so many people use tables of integrals (or software) when computing integrals.

We, too, can use tables (or software) after

1. you have computed enough transforms on your own to understand the basic principles,

and

2. we have computed the transforms appearing in the table so we know our table is correct.

The table we will use is table 23.1, Laplace Transforms of Common Functions (Version 1), on page

444. Checking that table, we see that we have already verified all but two or three of the entries,

with those being the transforms of fairly arbitrary powers of t , tα , and the “shifted step function”,

step(t − α) . So let’s compute them now.

Arbitrary Powers (and the Gamma Function)

Earlier, we saw that

L
[
tn
]∣∣

s
=

∫ ∞

0

tne−st dt = n!
sn+1

for s > 0 (23.12)

when n is any nonnegative integer. Let us now consider computing

L
[
tα
]∣∣

s
=

∫ ∞

0

tαe−st dt for s > 0

when α is any real number greater than −1 . (When α ≤ −1 , you can show that tα ‘blows up’

too quickly near t = 0 for the integral to be finite.)

The method we used to find L
[
tn
]

becomes awkward when we try to apply it to find L[tα]

when α is not an integer. Instead, we will ‘cleverly’ simplify the above integral for L[tα] by using

the substitution u = st . Since t is the variable in the integral, this means

t = u

s
and dt = 1

s
du .

So, assuming s > 0 and α > −1 ,

L
[
tα
]∣∣

s
=

∫ ∞

0

tαe−st dt

=
∫ ∞

0

(
u

s

)α
e−u 1

s
du

=
∫ ∞

0

uα

sα+1
e−u du = 1

sα+1

∫ ∞

0

uαe−u du .
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Table 23.1: Laplace Transforms of Common Functions (Version 1)

In the following, α and ω are real-valued constants, and, unless otherwise noted, s > 0 .

f (t) F(s) = L[ f (t)]|s Restrictions

1
1

s

t
1

s2

tn n!
sn+1

n = 1, 2, 3, . . .

1√
t

√
π√
s

tα
�(α + 1)

sα+1
−1 < α

eαt 1

s − α
α < s

eiαt 1

s − iα

cos(ωt)
s

s2 + ω2

sin(ωt)
ω

s2 + ω2

stepα(t), step(t − α)
e−αs

s
0 ≤ α

Notice that the last integral depends only on the constant α — we’ve ‘factored out’ any dependence

on the variable s . Thus, we can treat this integral as a constant (for each value of α ) and write

L
[
tα
]∣∣

s
= Cα

sα+1
where Cα =

∫ ∞

0

uαe−u du .

It just so happens that the above formula for Cα is very similar to the formula for something

called the “Gamma function”. This is a function that crops up in various applications (such as this)

and, for x > 0 , is given by

�(x) =
∫ ∞

0

ux−1e−u du . (23.13)

Comparing this with the formula for Cα , we see that

Cα =
∫ ∞

0

uαe−u du =
∫ ∞

0

u(α+1)−1e−u du = �(α + 1) .

So our formula for the Laplace transform of tα (with α > −1 ) can be written as

L
[
tα
]∣∣

s
= �(α + 1)

sα+1
for s > 0 . (23.14)
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X1 2 3 4

2

4

6

0

8

0

Figure 23.2: The graph of the Gamma function over the interval (0, 4) . As x → 0+ or

x → +∞ , �(x) → +∞ very rapidly.

This is normally considered the preferred way to express L[tα] because the Gamma function is

considered to be a “well-known” function. Perhaps you don’t yet consider it “well known”, but you

can find tables for evaluating �(x) , and it is probably one of the functions already defined in your

favorite computer math package. That makes graphing �(x) , as done in figure 23.2, relatively easy.

As it is, we can readily determine the value of �(x) when x is a positive integer by comparing

our two formulas for L
[
tn
]

when n is a nonnegative integer — the one mentioned at the start of

our discussion (formula (23.12)), and the more general formula (formula (23.14)) just derived for

L[tα] with α = n :

n!
sn+1

= L
[
tn
]∣∣

s
= �(n + 1)

sn+1
when n = 0, 1, 2, 3, 4, . . . .

Thus,

�(n + 1) = n! when n = 0, 1, 2, 3, 4, . . . .

Letting x = n + 1 , this becomes

�(x) = (x − 1)! when x = 1, 2, 3, 4, . . . . (23.15)

In particular:

�(1) = (1 − 1)! = 0! = 1 ,

�(2) = (2 − 1)! = 1! = 1 ,

�(3) = (3 − 1)! = 2! = 2 ,

�(4) = (4 − 1)! = 3! = 6 ,

and

�(12) = (12 − 1)! = 11! = 39,916,800 .

This shows that the Gamma function can be viewed as a generalization of the factorial. Indeed, you

will find texts where the factorial is redefined for all positive numbers (not just integers) by

x ! = �(x + 1) .

We won’t do that.

Computing �(x) when x is not an integer is not so simple. It can be shown that

�
(

1

2

)
= √

π . (23.16)
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Also, using integration by parts (just as you did in exercise 23.2 on page 439), you can show that

�(x + 1) = x�(x) for x > 0 , (23.17)

which is analogous to the factorial identity (n + 1)! = (n + 1)n! . We will leave the verification of

these to the more adventurous (see exercise 23.13 on page 462), and go on to the computation of a

few more transforms.

!�Example 23.7: Consider finding the Laplace transforms of

1√
t

,
√

t and
3
√

t .

For the first, we use formulas (23.14) with α = −1/2 , along with equation (23.16):

L

[
1√
t

]∣∣∣∣
s

= L

[
t−

1/2

]∣∣∣
s

=
�
(
− 1

2
+ 1

)
s−1/2 +1

=
�
(

1

2

)
s

1/2

=
√
π√
s

.

For the second, formula (23.14) with α = 1/2 gives

L

[√
t
]∣∣∣

s
= L

[
t
1/2

]∣∣∣
s

=
�
(

1

2
+ 1

)
s

1/2 +1
=

�
(

3

2

)
s

3/2

.

Using formulas (23.17) and (23.16), we see that

�
(

3

2

)
= �

(
1

2
+ 1

)
= 1

2
�
(

1

2

)
= 1

2

√
π .

Thus

L

[√
t
]∣∣∣

s
= L

[
t
1/2

]∣∣∣
s

=
�
(

3

2

)
s

3/2

=
√
π

2s
3/2

.

For the transform of 3
√

t , we simply have

L

[
3
√

t
]∣∣∣

s
= L

[
t
1/3

]∣∣∣
s

=
�
(

1

3
+ 1

)
s

1/3 +1
=

�
(

4

3

)
s

4/3

.

Unfortunately, there is not a formula analogous to (23.16) for �
(

4/3

)
or �

(
1/3

)
. There is the

approximation

�
(

4

3

)
≈ .8929795121 ,

which can be found using either tables or a computer math package, but, since this is just an

approximation, we might as well leave our answer as

L

[
3
√

t
]∣∣∣

s
= L

[
t
1/3

]∣∣∣
s

=
�
(

4

3

)
s

4/3

.
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(a) (b)

α TT 00

11

Figure 23.3: The graphs of (a) the basic step function step(t) and (b) a shifted step function

stepα(t) with α > 0 .

The Shifted Unit Step Function

Step functions are the simplest discontinuous functions we can have. The (basic) unit step function,

which we will denote by step(t) , is defined by

step(t) =
{

0 if t < 0

1 if 0 < t
.

Its graph has been sketched in figure 23.3a.1

For any real value α , the corresponding shifted unit step function, which we will denote by

stepα , is given by

stepα(t) = step(t − α) =
{

0 if t − α < 0

1 if 0 < t − α

}
=

{
0 if t < α

1 if α < t
.

Its graph, with α > 0 , has been sketched in figure 23.3b. Do observe that the basic step function

and the step function at zero are the same, step(t) = step0(t) .

You may have noted that we’ve not defined the step functions at their points of discontinuity

( t = 0 for step(t) , and t = α for stepα(t) ). That is because the value of a step function right

at its single discontinuity will be completely irrelevant in any of our computations or applications.

Observe this fact as we compute the Laplace transform of stepα(t) when α ≥ 0 :

L
[
stepα(t)

]∣∣
s

=
∫ ∞

0

stepα(t)e
−st dt

=
∫ α

0

stepα(t)e
−st dt +

∫ ∞

α

stepα(t)e
−st dt

=
∫ α

0

0 · e−st dt +
∫ ∞

α

1 · e−st dt =
∫ ∞

α

e−st dt .

You can easily show that the above integral is infinite if s < 0 or s = 0 . But if s > 0 , then the

above becomes

L
[
stepα(t)

]∣∣
s

=
∫ ∞

α

e−st dt = 1

−s
e−st

∣∣∣∞
t=α

= lim
t→∞

1

−s
e−st − 1

−s
e−sα = 0 + 1

s
eαs .

1 The unit step function is also called the Heaviside step function, and, in other texts, is often denoted by u and, occasionally,

by h or H .
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Thus,

L
[
stepα(t)

]∣∣
s

= 1

s
e−αs for s > 0 and α ≥ 0 . (23.18)

23.4 The First Translation Identity (And More
Transforms)

The linearity of the Laplace transform allows us to construct transforms from linear combinations

of known transforms. Other identities allow us to construct new transforms from other formulas

involving known transforms. One particularly useful identity is the “first translation identity” (also

called the “translation along the S–axis identity” for reasons that will soon be obvious). The

derivation of this identity starts with the observation that, in the expression

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt for s > s0 ,

the s is simply a place holder. It can be replaced with any symbol, say, X , that does not involve the

integration variable, t ,

F(X) = L[ f (t)]|X =
∫ ∞

0

f (t)e−Xt dt for X > s0 .

In particular, let X = s − α where α is any real constant. Using this for X in the above gives us

F(s − α) = L[ f (t)]|s−α =
∫ ∞

0

f (t)e−(s−α)t dt for s − α > s0 .

But

s − α > s0 ⇐⇒ s > s0 + α

and ∫ ∞

0

f (t)e−(s−α)t dt =
∫ ∞

0

f (t)e−st eαt dt

=
∫ ∞

0

eαt f (t)e−st dt = L
[
eαt f (t)

]∣∣
s

.

So the expression above for F(s − α) can be written as

F(s − α) = L
[
eαt f (t)

]∣∣
s

for s > s0 + α .

This gives us the following identity:

Theorem 23.2 (first translation identity [translation along the S–axis])

If

L[ f (t)]|s = F(s) for s > s0 ,

then, for any real constant α ,

L
[
eαt f (t)

]∣∣
s

= F(s − α) for s > s0 + α . (23.19)
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This is called a ‘translation identity’ because the graph of the right side of the identity, equation

(23.19), is the graph of F(s) translated to the right by α .2,3 (The second translation identity, in

which f is the function shifted, will be developed later.)

!�Example 23.8: Let us use this translation identity to find the transform of t2e6t . First we must

identify the ‘ f (t) ’ and the ‘α ’ and then apply the identity:

L

[
t2e6t

]∣∣∣
s

= L
[
e6t t2︸︷︷︸

f (t)

]∣∣
s

= L
[
e6t f (t)

]∣∣
s

= F(s − 6) . (23.20)

Here, f (t) = t2 and α = 6 . From either formula (23.7) or table 23.1, we know

F(s) = L[ f (t)]|s = L

[
t2
]∣∣∣

s
= 2!

s2+1
= 2

s3
for s > 0 .

So, for any X > 0 ,

F(X) = 2

X3
.

Using this with X = s − 6 , the above computation of L
[
t2e6t

]
(equation set (23.20)) becomes

L
[
t2e6t

]∣∣
s

= · · · = F(s − 6︸ ︷︷ ︸
X

) = F(X) = 2

X3
= 2

(s − 6)3
for s − 6 > 0 .

That is,

L
[
t2e6t

]∣∣
s

= 2

(s − 6)3
for s > 6

Notice that, in the last example, we carefully rewrote the formula for F(s) as a formula of

another variable, X , and used that to get the formula for F(s − 3) ,

F(s) = 2

s3
�⇒ F(X) = 2

X3
�⇒ F(s − 6︸ ︷︷ ︸

X

) = 2

(s − 6)3
.

This helps to prevent dumb mistakes. It replaces the s with a generic placeholder X , which, in

turn, is replaced with some formula of s . So long as you remember that the s in the first equation

is, itself, simply a placeholder and can be replaced throughout the equation with another formula

of s , you can go straight from the formula for F(s) to the formula for F(s − 6) . Unfortunately,

this is often forgotten in the heat of computations, especially by those who are new to these sorts

of computations. So it is strongly recommend that you include this intermediate step of replacing

F(s) with F(X) , and then use the formula for F(X) with X = s − 6 (or X = “whatever formula

of s is appropriate”).

Let’s try another:

!�Example 23.9: Find L
[
e3t sin(2t)

]
. Here,

L

[
e3t sin(2t)

]∣∣∣
s

= L
[
e3t sin(2t)︸ ︷︷ ︸

f (t)

]∣∣
s

= L
[
e3t f (t)

]∣∣
s

= F(s − 3) .

2 More precisely, it’s shifted to the right by α if α > 0 , and is shifted to the left by |a| if α < 0 .
3 Some authors prefer to use the word “shifting” instead of “translation”.
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In this case, f (t) = sin(2t) . Recalling the formula for the transform of such a function (or

peeking back at formula (23.10) or table 23.1), we have

F(s) = L[ f (t)]|s = L[sin(2t)]|s = 2

s2 + 22
= 2

s2 + 4
for s > 0 .

So,

F(X) = 2

X2 + 4
for X > 0 .

In particular, using X = s − 3 ,

F(s − 3) = 2

(s − 3)2 + 4
for s − 3 > 0 ,

and the above computation of L
[
e3t sin(2t)

]
becomes

L
[
e3t sin(2t)

]∣∣
s

= · · · = F(s − 3) = 2

(s − 3)2 + 4
for s > 3 .

In the homework, you’ll derive the general formulas for

L
[
tneαt

]∣∣
s

, L
[
eαt sin(ωt)

]∣∣
s

and L
[
eαt cos(ωt)

]∣∣
s

.

These formulas are found in most tables of common transforms (but not ours).

23.5 What Is “Laplace Transformable”?
(and Some Standard Terminology)

When we say a function f is “Laplace transformable”, we simply mean that there is a finite value

s0 such that the integral for L[ f (t)]|s , ∫ ∞

0

f (t)e−st dt ,

exists and is finite for every value of s greater than s0 . Not every function is Laplace transformable.

For example, t−2 and et2
are not.

Unfortunately, further developing the theory of Laplace transforms assuming nothing more

than the “Laplace transformability of our functions” is a bit difficult, and would lead to some rather

ungainly wording in our theorems. To simplify our discussions, we will usually insist that our

functions are, instead, “piecewise continuous” and “of exponential order”. Together, these two

conditions will ensure that a function is Laplace transformable, and they will allow us to develop

some very general theory that can be applied using the functions that naturally arise in applications.

Moreover, these two conditions will be relatively easy to visualize.

So let’s find out just what these terms mean.

Jump Discontinuities and Piecewise Continuity

The phrase “piecewise continuity” suggests that we only require continuity on “pieces” of a function.

That is a little misleading. For one thing, we want to limit the discontinuities between the pieces to

“jump” discontinuities.
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(a) (b)
T T

Y Y

t0 t0 t1 t2

jump
midpoint

of jump

0 0

lim
t→t0

+ f (t)

lim
t→t0

−
f (t)

Figure 23.4: The graph of (a) a function with a jump dicontinuity at t0 and (b) a function with

several jump discontinuities.

Jump Discontinuities

A function f is said to have a jump discontinuity at a point t0 if the left- and right-hand limits

lim
t→t0

−
f (t) and lim

t→t0
+

f (t)

exist, but are different finite numbers. The jump at this discontinuity is the difference of the two

limits,

jump = lim
t→t0

+
f (t) − lim

t→t0
−

f (t) ,

and the average of the two limits is the Y-coordinate of the midpoint of the jump,

ymidpoint = 1

2

[
lim

t→t0
+

f (t) + lim
t→t0

−
f (t)

]
.

A generic example is sketched in figure 23.4a. And right beside that figure (in figure 23.4b) is the

graph of a function with multiple jump discontinuities.

The simplest example of a function with a jump discontinuity is the basic step function, step(t) .

Just looking at its graph (figure 23.3a on page 446) you can see that it has a jump discontinuity at

t = 0 with jump = 1 , and y = 1/2 as the Y -coordinate of the midpoint.

On the other hand, consider the functions

f (t) = 1

(t − 2)2
and g(t) =

⎧⎨⎩ 0 if t < 2

1

(t − 2)2
if 2 < t

,

sketched in figures 23.5a and 23.5b, respectively. Both have discontinuities as t = 2 . In each case,

however, the limit of the function as t → 2 from the right is infinite. Hence, we do not view these

discontinuities as “jump” discontinuities.

Piecewise Continuity

We say that a function f is piecewise continuous on an finite open interval (a, b) if and only if both

of the following hold:

1. f is continuous on the interval except for, at most, a finite number of jump discontinuities

in (a, b) .

2. The endpoint limits

lim
t→a+ f (t) and lim

t→b−
f (t)

exist and are finite.
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(a) (b) (c)

T TT

Y Y Y

2 2

Figure 23.5: Functions having at least one point with an infinite left- or right-hand limit at some

point.

We extend this concept to functions on infinite open intervals (such as (0,∞) ) by defining a

function f to be piecewise continuous on an infinite open interval if and only if f is piecewise

continuous on every finite open subinterval. In particular then, a function f being piecewise

continuous on (0,∞) means that

lim
t→0+

f (t)

is a finite value, and that, for every finite, positive value T , f (t) has at most a finite number of

discontinuities on the interval (0, T ) , with each of those being a jump discontinuity.

For some of our discussions, we will only need our function f to be piecewise continuous

on (0,∞) . Strictly speaking, this says nothing about the possible value of f (t) when t = 0 .

If, however, we are dealing with initial-value problems, then we may require our function f to

be piecewise continuous on [0,∞) , which simply means f is piecewise continuous on (0,∞) ,

defined at t = 0 , and

f (0) = lim
t→0+

f (t) .

Keep in mind that “a finite number” of jump discontinuities can be zero, in which case f has

no discontinuities and is, in fact, continuous on that interval. What is important is that a piecewise

continuous function cannot ‘blow up’ at any (finite) point in or at the ends of the interval. At worst,

it has only ‘a few’ jump discontinuities in each finite subinterval.

The functions sketched in figure 23.4 are piecewise continuous, at least over the intervals in the

figures. And any step function is piecewise continuous on (0,∞) . On the other hand, the functions

sketched in figures 23.5a and 23.5b, are not piecewise continuous on (0,∞) because they both

“blow up” at t = 2 . Consider even the function

f (t) = 1

t
,

sketched in figure 23.5c. Even though this function is continuous on the interval (0,∞) , we do not

consider it to be piecewise continuous on (0,∞) because

lim
t→0+

1

t
= ∞ .

Two simple observations will soon be important to us:

1. If f is piecewise continuous on (0,∞) , and T is any positive finite value, then the integral∫ T

0

f (t) dt

is well defined and evaluates to a finite number. Remember, geometrically, this integral is the

“net area” between the graph of f and the T –axis over the interval (0, T ) . The piecewise
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continuity of f assures us that f does not “blow up” at any point in (0, T ) , and that we

can divide the graph of f over (0, T ) into a finite number of fairly nicely behaved ‘pieces’

(see figure 23.4b) with each piece enclosing finite area.

2. The product of any two piecewise continuous functions f and g on (0,∞) will, itself, be

piecewise continuous on (0,∞) . You can easily verify this yourself using the fact that

lim
t→t0

±
f (t)g(t) = lim

t→t0
±

f (t)× lim
t→t0

±
g(t) .

Combining the above two observations with the obvious fact that, for any real value of s ,

g(t) = e−st is a piecewise continuous function of t on (0,∞) gives us:

Lemma 23.3

Let f be a piecewise continuous function on (0,∞) , and let T be any finite positive number. Then

the integral ∫ T

0

f (t)e−st dt

is a well-defined finite number for each real value s .

Because of our interest in the Laplace transform, we will want to ensure that the above integral

converges to a finite number as T → ∞ . That is the next issue we will address.

Exponential Order
∗

Let f be a function on (0,∞) , and let s0 be some real number. We say that f is of exponential

order s0 if and only if there are finite constants M and T such that

| f (t)| ≤ Mes0 t whenever T ≤ t . (23.21)

Often, the precise value of s0 is not particularly important. In these cases we may just say that f

is of exponential order to indicate that it is of exponential order s0 for some value s0 .

Saying that f is of exponential order is just saying that the graph of | f (t)| is bounded above

by the graph of some constant multiple of some exponential function on some interval of the form

[T,∞) . Note that, if this is the case and s is any real number, then∣∣ f (t)e−st
∣∣ = | f (t)| e−st ≤ Mes0 t e−st = Me−(s−s0)t whenever T ≤ t .

Moreover, if s > s0 , then s − s0 is positive, and∣∣ f (t)e−st
∣∣ ≤ Me−(s−s0)t → 0 as t → ∞ . (23.22)

Thus, in the future, we will automatically know that

lim
t→∞ f (t)e−st = 0

whenever f is of exponential order s0 and s > s0 .

∗ More precisely: Exponential Order as t → ∞ . One can have “exponential order as t → −∞ ” and even “as t → 3 ”).

However, we are not interested in those cases, and it is silly to keep repeating “as t → ∞ ”.
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Transforms of Piecewise Continuous Functions of Exponential
Order

Now, suppose f is a piecewise continuous function of exponential order s0 on the interval (0,∞) .

As already observed, the piecewise continuity of f assures us that∫ T

0

f (t)e−st dt

is a well-defined finite number for each T > 0 . And if s > s0 , then inequality (23.22), above,

tells us that f (t)e−st is shrinking to 0 as t → ∞ at least as fast as a constant multiple of some

decreasing exponential. It is easy to verify that this is fast enough to ensure that

lim
T →∞

∫ T

0

f (t)e−st dt

converges to some finite value. And that gives us the following theorem on conditions ensuring the

existence of Laplace transforms.

Theorem 23.4

If f is both piecewise continuous on (0,∞) and of exponential order s0 , then

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt

is a well-defined function for s > s0 .

In the next several chapters, we will often assume that our functions of t are both piecewise

continuous on (0,∞) and of exponential order. Mind you, not all Laplace transformable func-

tions satisfy these conditions. For example, we’ve already seen that tα with −1 < α is Laplace

transformable. But

lim
t→0+

tα = ∞ if α < 0 .

So those functions given by tα with −1 < α < 0 (such as t−1/2 ) are not piecewise continuous on

(0,∞) , even though they are certainly Laplace transformable. Still, all the other functions on the

left side of table 23.1 on page 444 are piecewise continuous on (0,∞) and are of exponential order.

More importantly, the functions that naturally arise in applications in which the Laplace transform

may be useful are usually piecewise continuous on (0,∞) and of exponential order.

By the way, since you’ve probably just glanced at table 23.1 on page 444, go back and look at

the functions on the right side of the table. Observe that

1. these functions have no discontinuities in the intervals on which they are defined,

and

2. they all shrink to 0 as s → ∞ .

It turns out that you can extend the work used to obtain the above theorem to show that the above

observations hold much more generally. More precisely, the above theorem can be extended to:

Theorem 23.5

If f is both piecewise continuous on (0,∞) and of exponential order s0 , then

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt
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is a continuous function on (s0,∞) and

lim
s→∞ F(s) = 0 .

We will verify this theorem at the end of the chapter.

23.6 Further Notes on Piecewise Continuity and
Exponential Order

Issues Regarding Piecewise Continuous Functions on (0, ∞)

In the next several chapters, we will be concerned mainly with functions that are piecewise continuous

on (0,∞) . There are a few small technical issues regarding these functions that could become

significant later if we don’t deal with them now. These issues concern the values of such functions

at jumps.

On the Value of a Function at a Jump

Take a look at figure 23.4b on page 450. Call the function sketched there f , and consider evaluating,

say, ∫ t2

0

f (t)e−st dt .

The obvious approach is to break up the integral into three pieces,∫ t2

0

f (t)e−st dt =
∫ t0

0

f (t)e−st dt +
∫ t1

t0

f (t)e−st dt +
∫ t2

t1

f (t)e−st dt ,

and use values/formulas for f over the intervals (0, t0) , (t0, t1) and (t1, t2) to compute the indi-

vidual integrals in the above sum. What you would not worry about would be the actual values of

f at the points of discontinuity, t0 , t1 and t2 . In particular, it would not matter if

f (t0) = lim
t→t0

−
f (t) or f (t0) = lim

t→t0
+

f (t)

or

f (t0) = the Y-coordinate of the midpoint of the jump .

This extends an observation made when we computed the Laplace transform of the shifted

step function. There, we found that the precise value of stepα(t) at t = α was irrelevant to the

computation of L
[
stepα(t)

]
. And the pseudo-computations in the previous paragraph point out

that, in general, the value of any piecewise continuous function at a point of discontinuity will be

irrelevant to the integral computations we will be doing with these functions.

Parallel to these observations are the observations of how we use functions with jump discon-

tinuities in applications. Typically, a function with a jump discontinuity at t = t0 is modeling

something that changes so quickly around t = t0 that we might as well pretend the change is in-

stantaneous. Consider, for example, the output of a one-lumen incandescent light bulb switched on

at t = 2 : Until is is switched on, the bulb’s light output is 0 lumen. For a brief period around

t = 2 the filament is warming up and the light output increases from 0 to 1 lumen, and remains at
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1 lumen thereafter. In practice, however, the warm-up time is so brief that we don’t notice it, and

we are content to describe the light output by

light output at time t =
{

0 lumen if t < 2

1 lumen if 2 < t

}
= step2(t) lumen

without giving any real thought as to the value of the light output the very instant we are turning on

the bulb.4

What all this is getting to is that, for our work involving piecewise continuous functions on

(0,∞) ,

the value of a function f at any point of discontinuity t0 in (0,∞) is irrelevant.

What is important is not f (t0) but the one-sided limits

lim
t→t0

−
f (t) and lim

t→t0
+

f (t) .

Because of this, we will not normally specify the value of a function at a discontinuity, at least

not while developing Laplace transforms. If this disturbs you, go ahead and assume that, unless

otherwise indicated, the value of a function at each jump discontinuity is given by the Y -coordinate

of the jump’s midpoint. It’s as good as any other value.

Equality of Piecewise Continuous Functions

Because of the irrelevance of the value of a function at a discontinuity, we need to slightly modify

what it means to say “ f = g on some interval”. Henceforth, let us say that

f = g on some interval (as piecewise continuous functions)

means

f (t) = g(t)

for every t in the interval at which f and g are continuous. We will not insist that f and g be

equal at the relatively few points of discontinuity in the functions. But do note that we will still have

lim
t→t0

±
f (t) = lim

t→t0
±

g(t)

for every t0 in the interval. Consequently, the graphs of f and g will have the same ‘jumps’ in the

interval.

By the way, the phrase “as piecewise continuous functions” in the above definition is recom-

mended but is often forgotten.

!�Example 23.10: The functions

step2(t) , f (t) =
{

0 if t ≤ 2

1 if 2 < t
and g(t) =

{
0 if t < 2

1 if 2 ≤ t

all satisfy

step2(t) = f (t) = g(t)

4 On the other hand, “What is the light output of a one-lumen light bulb the very instant the light is turned on?” may be a

nice question to meditate upon if you are studying Zen.
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for all values of t in (0,∞) except t = 2 , at which each has a jump. So, as piecewise continuous

functions,

step2 = f = g on (0,∞) .

Conversely, if we know h = step2 on (0,∞) (as piecewise continuous functions), then we

know

h(t) =
{

0 if 0 < t < 2

1 if 2 < t
.

We do not know (nor do we care about) the value of h(t) when t = 2 (or when t < 0 ).

Testing for Exponential Order

Before deriving this test for exponential order, it should be noted that the “order” is not unique. After

all, if

| f (t)| ≤ Mes0 t whenever T ≤ t ,

and s0 ≤ σ , then

| f (t)| ≤ Mes0t ≤ Meσ t whenever T ≤ t ,

proving the following little lemma:

Lemma 23.6

If f is of exponential order s0 , then f is of exponential order σ for every σ ≥ s0 .

Now here is the test:

Lemma 23.7 (test for exponential order)

Let f be a function on (0,∞) .

1. If there is a real value s0 such that

lim
t→∞ f (t)e−s0t = 0 ,

then f is of exponential order s0 .

2. If

lim
t→∞ f (t)e−st

does not converge to 0 for any real value s , then f is not of exponential order.

PROOF: First, assume

lim
t→∞ f (t)e−s0t = 0

for some real value s0 , and let M be any finite positive number you wish (it could be 1 , 1/2 ,

827 , whatever). By the definition of “limits”, the above assures us that, if t is large enough, then

f (t)e−s0t is within M of 0 . That is, whenever T is any single “large enough” value of t , then we

must have ∣∣ f (t)e−s0t − 0
∣∣ ≤ M whenever T ≤ t .

By elementary algebra, we can rewrite this as

| f (t)| ≤ Mes0 t whenever T ≤ t ,
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which is exactly what we mean when we say “ f is of exponential order s0 ”. That confirms the first

part of the lemma.

To verify the second part of the lemma, assume

lim
t→∞ f (t)e−st

does not converge to 0 for any real value s . If f were of exponential order, then it is of exponential

order s0 for some finite real number s0 , and, as noted in the discussion of expression (23.22) on

page 453, we would then have that

lim
t→∞ f (t)e−st = 0 for s > s0 .

But we’ve assumed this is not possible; thus, it is not possible for f to be of exponential order.

23.7 Proving Theorem 23.5
The Theorem and a Bad Proof

The basic premise of theorem 23.5 is that we have a piecewise continuous function f on (0,∞)

which is also of exponential order s0 . From the previous theorem, we know

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt

is a well-defined function on (s0,∞) . Theorem 23.5 further claims that

1. F(s) = L[ f (t)]|s is continuous on (s0,∞) . That is,

lim
s→s1

F(s) = F(s1) for each s1 > s0 .
and

2. lim
s→∞ F(s) = 0 .

In a naive attempt to verify these claims, you might try

lim
s→s1

F(s) = lim
s→s1

∫ ∞

0

f (t)e−st dt

=
∫ ∞

0

lim
s→s1

f (t)e−st dt =
∫ ∞

0

f (t)e−s1t dt = F(s1) ,

and

lim
s→∞ F(s) = lim

s→∞

∫ ∞

0

f (t)e−st dt

=
∫ ∞

0

lim
s→∞ f (t)e−st dt =

∫ ∞

0

f (t) · 0 dt = 0 .

Unfortunately, these computations assume

lim
s→α

∫ ∞

0

g(t, s) dt =
∫ ∞

0

lim
s→α

g(t, s) dt

which is NOT always true. Admittedly, it often is true, but there are exceptions (see, for example,

exercise 23.19 on page 464). And because there are exceptions, we cannot rely on this sort of

“switching of limits with integrals” to prove our claims.
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Preliminaries

There are two small observations that will prove helpful here and elsewhere.

The first concerns any function f which is piecewise continuous on (0,∞) and satisfies

| f (t)| ≤ MT es0t whenever T ≤ t ,

for two positive values MT and T . For convenience, let

g(t) = f (t)e−s0t for t > 0 .

This is another piecewise continuous function on (0,∞) , but it satisfies

|g(t)| =
∣∣ f (t)e−s0t

∣∣ = | f (t)| e−s0t ≤ Mes0 t e−s0t = M for T < t .

On the other hand, the piecewise continuity of g on (0,∞) means that g does not “blow up”

anywhere in or at the endpoints of (0, T ) . So it is easy to see (and to prove) that there is a constant

B such that

|g(t)| ≤ B for 0 < t < T .

Letting M0 be the larger of B and MT , we now have that

|g(t)| ≤ M0 if 0 < t < T or T ≤ t .

So,

| f (t)| e−s0t =
∣∣ f (t)e−s0t

∣∣ = |g(t)| ≤ M0 for all t > 0 .

Multiply through by the exponential, and you’ve got:

Lemma 23.8

Assume f is a piecewise continuous function on (0,∞) which is also of exponential order s0 .

Then there is a constant M0 such that

| f (t)| ≤ M0es0t for all t > 0 .

The above lemma will let us use the exponential bound M0es0t over all of (0,∞) , and not just

(T,∞) . The next lemma is one you should either already be acquainted with or can easily confirm

on your own.

Lemma 23.9

If g is an integrable function on the interval (a, b) , then∣∣∣∣∫ b

a

g(t) dt

∣∣∣∣ ≤
∫ b

a

|g(t)| dt .

Proof of Theorem 23.5

Now we will prove the two claims of theorem 23.5. Keep in mind that f is a piecewise continuous

function on (0,∞) of exponential order s0 , and that

F(s) =
∫ ∞

0

f (t)e−st dt for s > s0 .

We will make repeated use of the fact, stated in lemma 23.8 just above, that there is a constant M0

such that

| f (t)| ≤ M0es0t for 0 < t . (23.23)

Since the second claim is a little easier to verify, we will start with that.
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Proof of the Second Claim

The second claim is that

lim
s→∞ F(s) = 0 ,

which, of course, can be proven by showing

lim
s→∞ |F(s)| ≤ 0 .

Now let s > s0 . Using inequality (23.23) with the integral inequality from lemma 23.9, we

have

|F(s)| =
∣∣∣∣∫ ∞

0

f (t)e−st dt

∣∣∣∣ ≤
∫ ∞

0

∣∣ f (t)e−st
∣∣ dt

=
∫ ∞

0

| f (t)| e−st dt

≤
∫ ∞

0

M0es0t e−st dt = M0L
[
es0t

]∣∣
s

= M0

s − s0
.

Thus,

lim
s→∞ |F(s)| ≤ lim

s→∞
M0

s − s0
= 0 ,

confirming the claim.

Proof of the First Claim

The first claim is that F is continuous on (s0,∞) . To prove this, we need to show that, for each

s1 > s0 ,

lim
s→s1

F(s) = F(s1) .

Note that this limit can be verified by showing

lim
s→s1

|F(s)− F(s1)| ≤ 0 .

Now let s and s1 be two different points in (s0,∞) (Hence, s − s0 > 0 and s1 − s0 > 0 ).

Using the integral inequality from lemma 23.9, we get

|F(s)− F(s1)| =
∣∣∣∣∫ ∞

0

f (t)e−st dt −
∫ ∞

0

f (t)e−s1t dt

∣∣∣∣
=

∣∣∣∣∫ ∞

0

f (t)
[
e−st − e−s1t

]
dt

∣∣∣∣ ≤
∫ ∞

0

| f (t)|
∣∣e−st − e−s1t

∣∣ dt .

Applying inequality (23.23), we then have

|F(s)− F(s1)| ≤ M0

∫ ∞

0

es0t
∣∣e−st − e−s1t

∣∣ dt (23.24)

Now observe that, if s ≤ s1 and t ≥ 0 , then

es0t
∣∣e−st − e−s1t

∣∣ = es0t
[
e−st − e−s1t

] = e−(s−s0)t − e−(s1−s0)t .

Thus, when s ≤ s1 ,∫ ∞

0

es0t
∣∣e−st − e−s1t

∣∣ dt =
∫ ∞

0

[
e−(s−s0)t − e−(s1−s0)t

]
dt

=
[

1

s − s0
− 1

s1 − s0

]
=

∣∣∣∣ 1

s − s0
− 1

s1 − s0

∣∣∣∣ .
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Almost identical computations also show that, when s ≥ s1 ,∫ ∞

0

es0t
∣∣e−st − e−s1t

∣∣ dt = −
∫ ∞

0

[
e−(s−s0)t − e−(s1−s0)t

]
dt

= −
[

1

s − s0
− 1

s1 − s0

]
=

∣∣∣∣ 1

s − s0
− 1

s1 − s0

∣∣∣∣ .

Consequently, we can rewrite inequality (23.24) as

|F(s)− F(s1)| ≤ M0

∣∣∣∣ 1

s − s0
− 1

s1 − s0

∣∣∣∣ ,

and from this we have

lim
s→s1

|F(s)− F(s1)| ≤ lim
s→s1

M0

∣∣∣∣ 1

s − s0
− 1

s1 − s0

∣∣∣∣ = M0

∣∣∣∣ 1

s1 − s0
− 1

s1 − s0

∣∣∣∣ = 0 ,

which is all we needed to show to confirm the first claim.

Additional Exercises

23.6. Sketch the graph of each of the following choices of f (t) , and then find that function’s

Laplace transform by direct application of the definition, formula (23.1) on page 435 (i.e.,

compute the integral). Also, if there is a restriction on the values of s for which the formula

of the transform is valid, state that restriction.

a. f (t) = 4 b. f (t) = 3e2t

c. f (t) =
{

2 if t ≤ 3

0 if 3 < t
d. f (t) =

{
0 if t ≤ 3

2 if 3 < t

e. f (t) =
{

e2t if t ≤ 4

0 if 4 < t
f. f (t) =

{
e2t if 1 < t ≤ 4

0 otherwise

g. f (t) =
{

t if 0 < t ≤ 1

0 otherwise
h. f (t) =

{
0 if 0 < t ≤ 1

t otherwise

23.7. Find the Laplace transform of each, using either formula (23.7) on page 440, formula (23.8)

on page 440 or formula (23.9) on page 441, as appropriate:

a. t4 b. t9 c. e7t d. ei7t e. e−7t f. e−i7t

23.8. Find the Laplace transform of each of the following, using table 23.1 on page 444 (Trans-

forms of Common Functions) and the linearity of the Laplace transform:

a. sin(3t) b. cos(3t) c. 7

d. cosh(3t) e. sinh(4t) f. 3t2 − 8t + 47

g. 6e2t + 8e−3t h. 3 cos(2t) + 4 sin(6t) i. 3 cos(2t) − 4 sin(2t)
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23.9. Compute the following Laplace transforms using table 23.1 on page 444 (Transforms of

Common Functions) and, where appropriate, properties of the Gamma function:

a. t
3/2 b. t

5/2 c. t−
1/3 d.

4
√

t e. step2(t)

23.10. For the following, let

f (t) =
{

1 if t < 2

0 if 2 ≤ t
.

a. Verify that f (t) = 1 − step2(t) , and using this and linearity,

b. compute L[ f (t)]|s .

23.11. Find the Laplace transform of each of the following, using table 23.1 on page 444 (Trans-

forms of Common Functions) and the first translation identity:

a. te4t b. t4et c. e2t sin(3t)

d. e2t cos(3t) e. e3t
√

t f. e3t step2(t)

23.12. Verify each of the following using table 23.1 on page 444 (Transforms of Common Func-

tions) and the first translation identity (assume α and ω are real-valued constants and n

is a positive integer):

a. L
[
tneαt

]∣∣
s

= n!
(s − α)n+1

for s > α

b. L
[
eαt sin(ωt)

]∣∣
s

= ω

(s − α)2 + ω2
for s > α

c. L
[
eαt cos(ωt)

]∣∣
s

= s − α

(s − α)2 + ω2
for s > α

d. L
[
eαt stepω(t)

]∣∣
s

= 1

s − α
e−ω(s−α) for s > α and ω ≥ 0

23.13. The following problems all concern the Gamma function,

�(σ ) =
∫ ∞

0

e−uuσ−1 du .

a. Using integration by parts, show that �(σ + 1) = σ�(σ ) whenever σ > 0 .

b i. By using an appropriate change of variables and symmetry, verify that

�
(

1

2

)
=

∫ ∞

−∞
e−τ 2

dτ .

ii. Starting with the observation that, by the above,

�
(

1

2

)
�
(

1

2

)
=

(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2

dy

)
=

∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dx dy ,

show that

�
(

1

2

)
= √

π .

(Hint: Use polar coordinates to integrate the double integral.)
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23.14. Several functions are given below. Sketch the graph of each over an appropriate interval,

and decide whether each is or is not piecewise continuous on (0,∞) .

a. f (t) = 2 step3(t) b. g(t) = step2(t) − step3(t)

c. sin(t) d.
sin(t)

t

e. tan(t) f.
√

t

g.
1√
t

h. t2 − 1

i.
1

t2 − 1
j.

1

t2 + 1

k. The “ever increasing stair” function,

stair(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t < 0

1 if 0 < t < 1

2 if 2 < t < 3

3 if 3 < t < 4

4 if 4 < t < 5

...
...

23.15. Assume f and g are two piecewise continuous functions on an interval (a, b) containing

the point t0 . Assume further that f has a jump discontinuity at t0 while g is continuous

at t0 . Verify that the jump in the product f g at t0 is given by

“the jump in f at t0 ” × g(t0) .

23.16. Using either the basic definition or the test for exponential order (lemma 23.7 on page

457), determine which of the following are of exponential order, and, for each which is of

exponential order, determine the possible values for the order.

a. e3t b. t2 c. te3t

d. et2

e. sin(t)

23.17. For the following, let α and σ be any two positive numbers.

a. Using basic calculus, show that tαe−σ t has a maximum value Mα,σ on the interval

[0,∞) . Also, find both where this maximum occurs and the value of Mα,σ .

b. Explain why this confirms that

i. tα ≤ Mα,σ eσ t whenever t > 0 , and that

ii. tα is of exponential order σ for any σ > 0 .

23.18. Assume f is a piecewise continuous function on (0,∞) of exponential order s0 , and let

α and σ be any two positive numbers. Using the results of the last exercise, show that

tα f (t) is piecewise continuous on (0,∞) and of exponential order s0 + σ .
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23.19. For this problem, let

g(t, s) = 2ste−st2

.

Your goal, in the following, is to show that

lim
s→∞

∫ ∞

0

g(t, s) dt =
∫ ∞

0

lim
s→∞ g(t, s) dt .

a. By simply computing the integral and then taking the limit, show that

lim
s→∞

∫ ∞

0

g(t, s) dt = 1 .

b. Then, using L’Hôpital’s rule, verify that, for each t ≥ 0 ,

lim
s→∞ g(t, s) = 0 ,

and observe that this means∫ ∞

0

lim
s→∞ g(t, s) dt = 0 = 1 = lim

s→∞

∫ ∞

0

g(t, s) dt .
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Differentiation and the Laplace
Transform

In this chapter, we will explore how the Laplace transform interacts with the basic operators of

calculus: differentiation and integration. The greatest interest will be in the first identity that we

will derive. This relates the transform of a derivative of a function to the transform of the original

function, and will allow us to convert many initial-value problems to easily solved algebraic equations.

But there are other useful relations involving the Laplace transform and either differentiation or

integration. So we’ll look at them, too.

24.1 Transforms of Derivatives
The Main Identity

To see how the Laplace transform can convert a differential equation to a simple algebraic equation,

let us examine how the transform of a function’s derivative,

L
[

f ′(t)
]∣∣

s
= L

[
d f

dt

]∣∣∣
s

=
∫ ∞

0

d f

dt
e−st dt =

∫ ∞

0

e−st d f

dt
dt ,

is related to the corresponding transform of the original function,

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt .

The last formula above for L
[

f ′(t)
]

clearly suggests using integration by parts, and to ensure that

this integration by parts is valid, we need to assume f is continuous on [0,∞) and f ′ is at least

piecewise continuous on (0,∞) . Assuming this,

L
[

f ′(t)
]∣∣

s
=

∫ ∞

0

e−st︸︷︷︸
u

d f

dt
dt︸ ︷︷ ︸

dv

= uv
∣∣∞
t=0

−
∫ ∞

0

v du

= e−st f (t)
∣∣∞
t=0

−
∫ ∞

0

f (t)
[− se−st

]
dt

465
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= lim
t→∞ e−st f (t) − e−s·0 f (0) −

∫ ∞

0

[− se−st
]

f (t) dt

= lim
t→∞ e−st f (t) − f (0) + s

∫ ∞

0

f (t)e−st dt .

Now, if f is of exponential order s0 , then

lim
t→∞ e−st f (t) = 0 whenever s > s0

and

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt exists for s > s0 .

Thus, continuing the above computations for L
[

f ′(t)
]

with s > s0 , we find that

L
[

f ′(t)
]∣∣

s
= lim

t→∞ e−st f (t) − f (0) + s

∫ ∞

0

f (t)e−st dt

= 0 − f (0) + sL[ f (t)]|s ,

which is a little more conveniently written as

L
[

f ′(t)
]∣∣

s
= sL[ f (t)]|s − f (0) (24.1a)

or even as

L
[

f ′(t)
]∣∣

s
= s F(s) − f (0) . (24.1b)

This will be a very useful result, well worth preserving in a theorem.

Theorem 24.1 (transform of a derivative)

Let F = L[ f ] where f is a continuous function of exponential order s0 on [0,∞) . If f ′ is at

least piecewise continuous on (0,∞) , then

L
[

f ′(t)
]∣∣

s
= s F(s) − f (0) for s > s0 .

Extending these identities to formulas for the transforms of higher derivatives is easy. First, for

convenience, rewrite equation (24.1a) as

L
[
g′(t)

]∣∣
s

= sL[g(t)]|s − g(0)

or, equivalently, as

L

[
dg

dt

]∣∣∣
s

= sL[g(t)]|s − g(0) .

(Keep in mind that this assumes g is a continuous function of exponential order, g′ is piecewise

continuous and s is larger than the order of g .) Now we simply apply this equation with g = f ′ ,

g = f ′′ , etc. Assuming all the functions are sufficiently continuous and are of exponential order,

we see that

L
[

f ′′(t)
]∣∣

s
= L

[
d f ′
dt

]∣∣∣∣
s

= sL
[

f ′(t)
]∣∣

s
− f ′(0)

= s [s F(s) − f (0)] − f ′(0)

= s2 F(s)− s f (0) − f ′(0) .
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Using this, we then see that

L
[

f ′′′(t)
]∣∣

s
= L

[
d f ′′
dt

]∣∣∣∣
s

= sL
[

f ′′(t)
]∣∣

s
− f ′′(0)

= s
[
s2 F(s)− s f (0)− f ′(0)

] − f ′′(0)

= s3 F(s) − s2 f (0) − s f ′(0) − f ′′(0) .

Clearly, if we continue, we will end up with the following corollary to theorem 24.1:

Corollary 24.2 (transforms of derivatives)

Let F = L[ f ] where f is a continuous function of exponential order s0 on [0,∞) . If f ′ is at

least piecewise continuous on (0,∞) , then

L
[

f ′(t)
]∣∣

s
= s F(s) − f (0) for s > s0 .

If, in addition, f ′ is a continuous function of exponential order s0 , and f ′′ is at least piecewise

continuous, then

L
[

f ′′(t)
]∣∣

s
= s2 F(s) − s f (0) − f ′(0) for s > s0 .

More generally, if f , f ′ , f ′′ , …, and f (n−1) are all continuous functions of exponential order s0

on [0,∞) for some positive integer n , and f (n) is at least piecewise continuous on (0,∞) , then,

for s > s0 ,

L

[
f (n)(t)

]∣∣∣
s

= sn F(s) − sn−1 f (0) − sn−2 f ′(0)

− sn−3 f ′′(0) − · · · − s f (n−2)(0) − f (n−1)(0) .

Using the Main Identity

Let us now see how these identities can be used in solving initial-value problems. We’ll start with

something simple:

!�Example 24.1: Consider the initial-value problem

dy

dt
− 3y = 0 with y(0) = 4 .

Observe what happens when we take the Laplace transform of the differential equation (i.e., we

take the transform of both sides). Initially, we just have

L

[
dy

dt
− 3y

]∣∣∣
s

= L[0]|s .

By the linearity of the transform and fact that L[0] = 0 , this is the same as

L

[
dy

dt

]∣∣∣
s

− 3L[y]|s = 0 .

Letting Y = L[y] and applying the “transform of the derivative identity” (theorem 24.1, above),

our equation becomes [
sY (s)− y(0)

] − 3Y (s) = 0 ,
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which, since the initial condition is y(0) = 4 , can be rewritten as

sY (s) − 4 − 3Y (s) = 0 .

This is a simple algebraic equation that we can easily solve for Y (s) . First, gather the Y (s)

terms together and add 4 to both sides,

[s − 3]Y (s) = 4 ,

and then divide through by s − 3 ,

Y (s) = 4

s − 3
.

Thus, we have the Laplace transform Y of the solution y to the original initial-value problem.

Of course, it would be nice if we can recover the formula for y(t) from Y (s) . And this is fairly

easy done, provided we remember that

4

s − 3
= 4 · 1

s − 3
= 4L

[
e3t
]∣∣

s
= L

[
4e3t

]∣∣
s

.

Combining the last two equations with the definition of Y , we now have

L[y(t)]|s = Y (s) = 4

s − 3
= L

[
4e3t

]∣∣
s

.

That is,

L[y(t)] = L
[
4e3t

]
,

from which it seems reasonable to expect

y(t) = 4e3t .

We will confirm that this is valid reasoning when we discuss the “inverse Laplace transform” in

the next chapter.

In general, it is fairly easy to find the Laplace transform of the solution to an initial-value

problem involving a linear differential equation with constant coefficients and a ‘reasonable’ forcing

function1. Simply take the transform of both sides of the differential equation involved, apply

the basic identities, avoid getting lost in the bookkeeping, and solve the resulting simple algebraic

equation for the unknown function of s . But keep in mind that this is just the Laplace transform

Y (s) of the solution y(t) to the original problem. Recovering y(t) from the Y (s) found will

usually not be as simple as in the last example. We’ll discuss this (the recovering of y(t) from

Y (s) ) in greater detail in the next chapter. For now, let us just practice finding the “ Y (s) ”.

!�Example 24.2: Let’s find the Laplace transform Y (s) = L[y(t)]|s when y is the solution to

the initial-value problem

y′′ − 7y′ + 12y = 16e2t with y(0) = 6 and y′(0) = 4 .

Taking the transform of the equation and proceeding as in the last example:

L
[
y′′ − 7y′ + 12y

]∣∣
s

= L
[
16e2t

]∣∣
s

↪→ L
[
y′′]∣∣

s
− 7L

[
y′]∣∣

s
+ 12L[y]|s = 16L

[
e2t
]∣∣

s

1 i.e., a forcing function whose transform is easily computed
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↪→ [
s2Y (s)− sy(0)− y′(0)

]
− 7

[
sY (s)− y(0)

] + 12Y (s) = 16

s − 2

↪→ [
s2Y (s)− s6 − 4

]
− 7

[
sY (s)− 6

] + 12Y (s) = 16

s − 2

↪→ s2Y (s) − 6s − 4

− 7sY (s) + 7 · 6 + 12Y (s) = 16

s − 2

↪→ [
s2 − 7s + 12

]
Y (s) − 6s + 38 = 16

s − 2

↪→ [
s2 − 7s + 12

]
Y (s) = 16

s − 2
+ 6s − 38 .

Thus,

Y (s) = 16

(s − 2)(s2 − 7s + 12)
+ 6s − 38

s2 − 7s + 12
. (24.2)

If desired, we can obtain a slightly more concise expression for Y (s) by finding the common

denominator and adding the two terms on the right,

Y (s) = 16

(s − 2)(s2 − 7s + 12)
+ (s − 2)(6s − 38)

(s − 2)
(
s2 − 7s + 12

) ,

obtaining

Y (s) = 6s2 − 50s + 92

(s − 2)
(
s2 − 7s + 12

) . (24.3)

We will finish solving the above initial-value problem in example 25.6 on page 488. At that time,

we will find the later expression for Y (s) to be more convenient. At this point, though, there

is no significant advantage gained by reducing expression (24.2) to (24.3). When doing similar

problems in the exercises, go ahead and “find the common denominator and add” if the algebra

is relatively simple. Otherwise, leave your answers as the sum of two terms.

However, do observe that we did NOT multiply out the factors in the denominator, but left

them as

(s − 2)
(

s2 − 7s + 12
)

.

Do the same in your own work. In the next chapter, we will see that leaving the denominator in

factored form will simplify the task of recovering y(t) from Y (s) .
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24.2 Derivatives of Transforms

In addition to the “transforms of derivatives” identities just discussed, there are some “derivatives

of transforms” identities worth discussing. To derive the basic identity, we start with a generic

transform,

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt ,

and (naively) look at its derivative,

F ′(s) = d F

ds
= d

ds

∫ ∞

0

f (t)e−st dt

=
∫ ∞

0

∂

∂s
e−st f (t) dt

=
∫ ∞

0

(−t)e−st f (t) dt = −
∫ ∞

0

t f (t)e−st dt︸ ︷︷ ︸
L[t f (t)]|s

.

Cutting out the middle of the above set of equalities gives us the identity

d F

ds
= −L[t f (t)]|s .

Since we will often use this identity to compute transforms of functions multiplied by t , let’s move

the negative sign to the other side and rewrite this identity as

L[t f (t)]|s = −d F

ds

or, equivalently, as

L[t f (t)]|s = −d

ds
L[ f (t)]|s .

The cautious reader may be concerned about the validity of

d

ds

∫ ∞

0

g(t, s) dt =
∫ ∞

0

∂

∂s
[g(t, s)] dt ,

blithely used (with g(t, s) = e−st f (t) ) in the above derivation This is a legitimate concern, and

is why we must consider the above a somewhat “naive” derivation, instead of a truly rigorous one.

Fortunately, the above derivations can be rigorously verified whenever f is of exponential order s0

and we restrict s to being greater than s0 . This gives the following theorem:

Theorem 24.3 (derivatives of transforms)

Let F = L[ f ] where f is a piecewise continuous function of exponential order s0 on (0,∞) .

Then F(s) is differentiable on s > s0 , and

L[t f (t)]|s = −d F

ds
for s > s0 . (24.5)

A rigorous proof of this theorem is not hard, but is a bit longer than our naive derivation. The

interested reader can find it in the appendix starting on page 477.

Now let’s try using our new identity.
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!�Example 24.3: Find the Laplace transform of t sin(3t) . Here, we have

L[t sin(3t)]|s = L[t f (t)]|s = −d F

ds

with f (t) = sin(3t) . From the tables (or memory), we find that

F(s) = L[ f (t)]|s = L[sin(3t)]|s = 3

s2 + 9
.

Applying the identity just derived (identity (24.5)) yields

L[t sin(3t)]|s = L[t f (t)]|s = −d F

ds

= −d

ds

[
3

s2 + 9

]
= − −3 · 2s(

s2 + 9
)2 = 6s(

s2 + 9
)2 .

Deriving corresponding identities involving higher order derivatives and higher powers of t

is straightforward. Simply use the identity in theorem 24.3 repeatedly, replacing f (t) with t f (t) ,

t2 f (t) , etc.:

L
[
t2 f (t)

]∣∣
s

= L
[
t[t f (t)]]∣∣

s
= −d

ds
L[t f (t)]|s

= −d

ds

[
−d F

ds

]
= (−1)2

d2 F

ds2
,

L
[
t3 f (t)

]∣∣
s

= L
[
t[t2 f (t)]]∣∣

s
= −d

ds
L

[
t2 f (t)

]∣∣∣
s

= −d

ds

[
(−1)2

d2 F

ds2

]
= (−1)3

d3 F

ds3
,

L
[
t4 f (t)

]∣∣
s

= L
[
t[t3 f (t)]]∣∣

s
= −d

ds
L

[
t3 f (t)

]∣∣∣
s

= −d

ds

[
(−1)3

d3 F

ds3

]
= (−1)4

d4 F

ds4
,

and so on. Clearly, then, as a corollary to theorem 24.3, we have:

Corollary 24.4 (derivatives of transforms)

Let F = L[ f ] where f is a piecewise continuous function of exponential order s0 . Then F(s) is

infinitely differentiable for s > s0 , and

L
[
tn f (t)

]∣∣
s

= (−1)n
dn F

dsn
for n = 1, 2, 3, . . . .

For easy reference, all the Laplace transform identities we’ve derived so far are listed in table

24.1. Also in the table are two identities that will be derived in the next section.
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Table 24.1: Commonly Used Identities (Version 1)

In the following, F(s) = L[ f (t)]|s .

h(t) H(s) = L[h(t)]|s Restrictions

f (t)

∫ ∞

0
f (t)e−st dt

eαt f (t) F(s − α) α is real

d f

dt
s F(s) − f (0)

d2 f

dt2
s2 F(s) − s f (0) − f ′(0)

dn f

dtn

sn F(s) − sn−1 f (0) − sn−2 f ′(0)
− sn−3 f ′′(0) − · · · − f (n−1)(0)

n = 1, 2, 3, . . .

t f (t) −d F

ds

tn f (t) (−1)n
dn F

dsn
n = 1, 2, 3, . . .

∫ t

0
f (τ ) dτ

F(s)

s

f (t)

t

∫ ∞

s
F(σ ) dσ

24.3 Transforms of Integrals and Integrals of Transforms

Analogous to the differentiation identities

L
[

f ′(t)
]∣∣

s
= s F(s) − f (0) and L[t f (t)]|s = −F ′(s)

are a pair of identities concerning transforms of integrals and integrals of transforms. These identities

will not be nearly as important to us as the differentiation identities, but they do have their uses and

are considered to be part of the standard set of identities for the Laplace transform.

Before we start, however, take another look at the above differentiation identities. They show

that, under the Laplace transform, the differentiation of one of the functions, f (t) or F(s) , corre-

sponds to the multiplication of the other by the appropriate variable. This may lead you to suspect

that the analogous integration identities show that, under the Laplace transform, integration of one

of the functions, f (t) or F(s) , corresponds to the division of the other by the appropriate variable.

Be suspicious. We will confirm (and use) this suspicion.
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Transform of an Integral

Let

g(t) =
∫ t

0

f (τ ) dτ

where f is piecewise continuous function on (0,∞) and of exponential order s0 . From calculus,

we (should) know the following:

1. g is continuous on [0,∞) .2

2. g is differentiable at every point in (0,∞) at which f is continuous, and

dg

dt
= d

dt

∫ t

0

f (τ ) dτ = f (t)

3. g(0) =
∫ 0

0

f (τ ) dτ = 0 .

In addition, it is not that difficult to show (see lemma 24.7 on page 476) that g is also of exponential

order s1 where s1 is any positive value greater than or equal to s0 . So both f and g have Laplace

transforms, which, as usual, will be denoted by F and G , respectively. Letting s > s1 , and using

the second and third facts listed above, along with our first differentiation identity, we have

dg

dt
= f (t)

↪→ L

[
dg

dt

]∣∣∣
s

= L[ f (t)]|s

↪→ sG(s) − g(0)︸︷︷︸
0

= F(s)

↪→ sG(s) = F(s)

Dividing through by s and recalling what G and g represent then give us the following theorem:

Theorem 24.5 (transform of an integral)

Let F = L[ f ] where f is any piecewise continuous function on (0,∞) of exponential order s0 ,

and let s1 be any positive value greater than or equal to s0 . Then∫ t

0

f (τ ) dτ

is a continuous function of t on [0,∞) of exponential order s1 , and

L

[∫ t

0

f (τ ) dτ

]∣∣∣∣
s

= F(s)

s
for s > s1 .

!�Example 24.4: Let α be any nonnegative real number. The “ramp at α function” can be

defined by

rampα(t) =
∫ t

0

stepα(τ ) dτ .

2 If the continuity of g is not obvious, take a look at the discussion of theorem 2.1 on page 32.
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(a) (b)

T T

Y Y
1

2π 4πα

Figure 24.1: The graphs of (a) the ramp function at α from example 24.4 and (b) the sinc

function from example 24.5.

If t ≥ α ,

rampα(t) =
∫ t

0

stepα(τ ) dτ

=
∫ α

0

stepα(τ ) dτ +
∫ t

α

stepα(τ ) dτ

=
∫ α

0

0 dτ +
∫ t

α

1 dτ = 0 + t − α .

If t < α ,

rampα(t) =
∫ t

0

stepα(τ ) dτ =
∫ t

0

0 dτ = 0 .

So

rampα(t) =
{

0 if t < α

t − α if α ≤ t
,

which is the function sketched in figure 24.1a.

By the integral formula we gave for rampα(t) and the identity in theorem 24.5,

L
[
rampα(t)

]∣∣
s

= L

[∫ t

0

stepα(τ ) dτ

]∣∣∣∣
s

= L

[∫ t

0

f (τ ) dτ

]∣∣∣∣
s

= F(s)

s

where f (t) = stepα(t) , s0 = 0 , and

F(s) = L[ f (t)]|s = L
[
stepα(t)

]∣∣
s

= e−αs

s
for s > 0 .

So,

L
[
rampα(t)

]∣∣
s

= F(s)

s
= e−αs

s · s
= e−αs

s2
for s > 0 .

Integral of a Transform

The identity just derived should reinforce our suspicion that, under the Laplace transform, the division

of f (t) by t should correspond to some integral of F . To confirm this suspicion and derive that

integral, let’s assume

g(t) = f (t)

t
.
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where f is some piecewise continuous function on (0,∞) of exponential order s0 . Let us further

assume that

lim
t→0+

g(t) = lim
t→0+

f (t)

t

converges to some finite value. Clearly then, g is also piecewise continuous on (0,∞) and of

exponential order s0 .

Using an old trick along with the “derivative of a transform” identity (in theorem 24.3), we have

F(s) = L[ f (t)]|s = L

[
t · f (t)

t

]∣∣∣
s

= L[tg(t)]|s = −dG

ds
.

Cutting out the middle and renaming the variable as σ ,

F(σ ) = −dG

dσ
,

allows us to use s as a limit when we integrate both sides,∫ s

a

F(σ ) dσ = −
∫ s

a

dG

dσ
dσ = −G(s) + G(a) ,

which we can then solve for G(s) :

G(s) = G(a) −
∫ s

a

F(σ ) dσ = G(a) +
∫ a

s

F(σ ) dσ .

All this, of course, assumes a and s are any two real numbers greater than s0 . Since we are trying

to get a formula for G , we don’t know G(a) . What we do know (from theorem 23.5 on page 454)

is that G(a) → 0 as a → ∞ . This, along with the fact that s and a are independent of each other,

means that

G(s) = lim
a→∞ G(s) = lim

a→∞

[
G(a)+

∫ a

s

F(σ ) dσ

]
= 0 +

∫ ∞

s

F(σ ) dσ .

After recalling what G and g originally denoted, we discover that we have verified:

Theorem 24.6 (integral of a transform)

Let F = L[ f ] where f is piecewise continuous on (0,∞) and of exponential order s0 . Assume

further that

lim
t→0+

f (t)

t

converges to some finite value. Then
f (t)

t

is also piecewise continuous on (0,∞) and of exponential order s0 . Moreover,

L

[
f (t)

t

]∣∣∣
s

=
∫ ∞

s

F(σ ) dσ for s > s0 .

!�Example 24.5: The sinc function (pronounced “sink”) is defined by

sinc(t) = sin(t)

t
for t = 0 .

Its limit as t → 0 is easily computed using L’Hôpital’s rule, and defines the value of sinc(t)

when t = 0 ,

sinc(0) = lim
t→0

sinc(t) = lim
t→0

sin(t)

t
= lim

t→0

d

dt
[sin(t)]
d

dt
[t]

= lim
t→0

cos(t)

1
= 1 .
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The graph of the sinc function is sketched in figure 24.1b.

Now, by definition,

sinc(t) = f (t)

t
with f (t) = sin(t) for t > 0 .

Clearly, this f satisfies all the requirements for f given in theorem 24.6 (with s0 = 0 ). Thus,

for s > 0 , we have

L[sinc(t)]|s = L

[
f (t)

t

]∣∣∣
s

=
∫ ∞

s

F(σ ) dσ

with

F(σ ) = L[ f (t)]|σ = L[sin(t)]|σ = 1

σ 2 + 1
.

So, for s > 0 ,

L[sinc(t)]|s =
∫ ∞

s

1

σ 2 + 1
dσ

= arctan(σ )
∣∣∞
s

= lim
σ→∞ arctan(σ ) − arctan(s) = π

2
− arctan(s) .

(By the way, you can derive the equivalent formula

L[sinc(t)]|s = arctan
(

1

s

)
using either arctangent identities or the substitution σ = 1/u in the last integral above.)

Addendum

Here’s a little fact used in deriving the “transform of an integral” identity in theorem 24.5. We prove

it here because the proof could distract from the more important part of that derivation.

Lemma 24.7

Let f be any piecewise continuous function on (0,∞) of exponential order s0 . Then the function

g , given by

g(t) =
∫ t

0

f (τ ) dτ ,

is of exponential order s1 where s1 is any positive value greater than or equal to s0 .

PROOF: Since f is piecewise continuous on (0,∞) and of exponential order s0 , lemma 23.8

on page 459 assures us that there is a constant M such that

| f (t)| ≤ Mes0t whenever 0 < t .

Now let s1 be any positive value greater than or equal to s0 , and let t > 0 . Using the above and

the integral inequality from lemma 23.9 on page 459, we have

|g(t)| =
∣∣∣∣∫ t

0

f (τ ) dτ

∣∣∣∣ ≤
∫ t

0

| f (τ )| dτ

≤
∫ t

0

Mes0τ dτ

≤
∫ t

0

Mes1τ dτ = M

s1

[
es1t − es1·0

]
≤ M

s1
es1t .
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T

s

t1 t2 t3 t4 t5 t6

A1

A2

A3

A4

A5

A6
t0 = 0

Figure 24.2: The graph of
sin(st)

t for some s > 0 with tk = kπ/s .

So, letting M1 = M/s1 ,

|g(t)| < M1es1t for t > 0 ,

verifying that g is of exponential order s1 .

24.4 Appendix: Differentiating the Transform
The Main Issue

On page 470, we derived the “derivative of a transform” identity, F ′ = −L[t f (t)] , naively using

the “fact” that
d

ds

∫ ∞

0

g(t, s) dt =
∫ ∞

0

∂

∂s
[g(t, s)] dt . (24.6)

The problem is that this “fact”, while often true, is not always true.

!�Example 24.6: Let

g(t, s) = sin(st)

t
for t > 0 and s > 0 .

(Compare this function to the sinc function in example 24.5 on page 475.) It is easily verified

that the graph of this function over the positive T –axis is as sketched in figure 24.2. Recalling

the relation between integration and area, we also see that, for each s > 0 ,∫ ∞

0

g(t, s) dt = lim
T →∞

∫ T

0

sin(st)

t
dt

= A1 − A2 + A3 − A4 + A5 − A6 + · · · =
∞∑

k=1

(−1)k+1
Ak .

where each Ak is the area enclosed by the graph of g and the T –axis interval (tk−1, tk) described

in figure 24.2. Notice that this last summation is an alternating series whose terms are steadily

decreasing to zero. As you surely recall from your calculus course, any such summation is

convergent. Hence, so is the above integral of g . That is, this integral is well defined and finite
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for each s > 0 . Unfortunately, this integral cannot by evaluated by elementary means. Still,

using the substitution t = τ/s , we can reduce this integral to a slightly simpler form:∫ ∞

0

g(t, s) dt =
∫ ∞

0

sin(st)

t
dt =

∫ ∞

0

sin(τ )

τ/s

dτ

s
=

∫ ∞

0

sin(τ )

τ
dτ .

Thus, in fact, this integral does not depend on s . Consequently,

d

ds

∫ ∞

0

g(t, s) dt = d

ds

∫ ∞

0

sin(τ )

τ
dτ = 0 .

On the other hand,∫ ∞

0

∂

∂s
[g(t, s)] dt =

∫ ∞

0

∂

∂s

[
sin(st)

t

]
dt

=
∫ ∞

0

cos(st) · t

t
dt

=
∫ ∞

0

cos(st) dt = lim
t→∞

sin(st)

s
,

which is not 0 — it does not even converge! Thus, at least for this choice of g(t, s) ,

d

ds

∫ ∞

0

g(t, s) dt =
∫ ∞

0

∂

∂s
[g(t, s)] dt .

There are fairly reasonable conditions ensuring that equation (24.6) holds, and our use of it on

page 470 in deriving the “derivative of the transform” identity can be justified once we know those

“reasonable conditions”. But instead, let’s see if we can rigorously verify our identity just using basic

facts from elementary calculus.

The Rigorous Derivation

Our goal is to prove theorem 24.3 on page 470. That is, we want to rigorously derive the identity

F ′(s) = −L[t f (t)]|s (24.7)

assuming F = L[ f ] with f being a piecewise continuous function of exponential order s0 . We

will also assume s > s0 .

First, you should verify that the results of exercise 23.18 on page 463 and lemma 23.8 on page

459 give us:

Lemma 24.8

If f (t) is of exponential order s0 , and n is any positive integer, then tn f (t) is a piecewise

continuous function on (0,∞) of exponential order s0 + σ for any σ > 0 . Moreover, there is a

constant Mσ such that ∣∣tn f (t)
∣∣ ≤ Mσ e(s0+σ)t for all t > 0 .

Since we can always find a positive σ such that s0 < s0 + σ < s , this lemma assures us that

L
[
tn f (t)

]∣∣
s

is well defined for s > s0 .

Now let’s consider F ′(s) . By definition

F ′(s) = lim
�s→0

F(s +�s)− F(s)

�s
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provided the limit exists. Taking |�s| small enough so that s +�s is also greater that s0 (even if

�s < 0 ), we have

F(s +�s)− F(s)

�s
= 1

�s
[F(s +�s) − F(s)]

= 1

�s

⎡⎣∫ ∞

0

f (t) e−(s+�s)t︸ ︷︷ ︸
e−st e−�st

dt −
∫ ∞

0

f (t)e−st dt

⎤⎦ ,

which simplifies to

F(s +�s)− F(s)

�s
=

∫ ∞

0

f (t)
(

1

�s

) [
e−(�s)t − 1

]
e−st dt . (24.8)

To deal with the integral in the last equation, we will use the fact that, for any value x , the

exponential of x is given by its Taylor series,

ex =
∞∑

k=0

1

k! x
k = 1 + x + 1

2! x
2 + 1

3! x
3 + 1

4! x
4 + · · · .

So

ex − 1 = x + 1

2! x
2 + 1

3! x
3 + 1

4! x
4 + · · ·

= x + x2 E(x)

where

E(x) = 1

2! + 1

3! x + 1

4! x
2 + · · · .

Consequently (using x = −(�s)t ),

1

�s

[
e−(�s)t − 1

]
= 1

�s

[
−(�s)t + [−(�s)t]2 E(−(�s)t)

]
= −t + (�s)t2 E(−(�s)t) .

Combined with equation (24.8), this yields

F(s +�s)− F(s)

�s
=

∫ ∞

0

f (t)
[
−t + (�s)t2 E(−(�s)t)

]
e−st dt

=
∫ ∞

0

f (t) [−t] e−st dt +
∫ ∞

0

f (t)
[
(�s)t2 E(−(�s)t)

]
e−st dt .

That is,

F(s +�s)− F(s)

�s
= −L[t f (t)]|s + �s

∫ ∞

0

t2 f (t)E(−(�s)t)e−st dt . (24.9)

Obviously, the question now is What happens to the second term on the right when �s → 0 ?

To help answer that, let us observe that, for all x ,

|E(x)| =
∣∣∣ 1

2! + 1

3! x + 1

4! x
2 + 1

5! x
3 + · · ·

∣∣∣
≤ 1

2! + 1

3! |x | + 1

4! |x |2 + 1

5! |x |3 + · · ·

< 1 + |x | + 1

2! |x |2 + 1

3! |x |3 + · · · = e|x | .
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480 Differentiation and the Laplace Transform

Moreover, as noted in lemma 24.8, for each σ > 0 , there is a positive constant Mσ such that∣∣∣t2 f (t)

∣∣∣ ≤ Mσ e(s0+σ)t for all t > 0 .

Remember, s > s0 . And since σ can be chosen as close to 0 as desired, and we are taking the

limit as �s → 0 , we may assume that s + [σ + |�s|] > s0 . Doing so and applying the above then

yields ∣∣∣∣�s

∫ ∞

0

t2 f (t)E(−(�s)t)e−st dt

∣∣∣∣ ≤ |�s|
∫ ∞

0

∣∣∣t2 f (t)

∣∣∣ |E(−(�s)t)| e−st dt

≤ |�s|
∫ ∞

0

Mσ e(s0+σ)t e|−(�s)t |e−st dt

= |�s| Mσ

∫ ∞

0

e−(s−s0−σ−|�s|)t dt

≤ |�s| Mσ

s − s0 − σ − |�s| .

Thus,

lim
�s→0

∣∣∣∣�s

∫ ∞

0

t2 f (t)E(−(�s)t)e−st dt

∣∣∣∣ = 0 · Mσ

s − s0 − σ − 0
= 0 .

Combining this with equation (24.9), we finally obtain

lim
�s→0

F(s +�s)− F(s)

�s
= −L[t f (t)]|s + 0 ,

verifying both the differentiability of F at s , and equation (24.7).

Additional Exercises

24.1. Find the Laplace transform Y (s) of the solution to each of the following initial-value

problems. Just find Y (s) using the ideas illustrated in examples 24.1 and 24.2. Do NOT

solve the problem using methods developed before we started discussing Laplace transforms

and then computing the transform! Also, do not attempt to recover y(t) from each Y (s)

you obtain.

a. y′ + 4y = 0 with y(0) = 3

b. y′ − 2y = t3 with y(0) = 4

c. y′ + 3y = step4(t) with y(0) = 0

d. y′′ − 4y = t3 with y(0) = 1 and y′(0) = 3

e. y′′ + 4y = 20e4t with y(0) = 3 and y′(0) = 12

f. y′′ + 4y = sin(2t) with y(0) = 3 and y′(0) = 5

g. y′′ + 4y = 3 step2(t) with y(0) = 0 and y′(0) = 5
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h. y′′ + 5y′ + 6y = e4t with y(0) = 1 and y′(0) = 0

i. y′′ − 5y′ + 6y = t2e4t with y(0) = 0 and y′(0) = 2

j. y′′ − 5y′ + 6y = 7 with y(0) = 2 and y′(0) = 4

k. y′′ − 4y′ + 13y = e2t sin(3t) with y(0) = 4 and y′(0) = 3

l. y′′ + 4y′ + 13y = 4t + 2e2t sin(3t) with y(0) = 4 and y′(0) = 3

m. y′′′ − 27y = e−3t with y(0) = 2 , y′(0) = 3 and y′′(0) = 4

24.2. Compute the Laplace transforms of the following functions using the given tables and the

‘derivative of the transforms identities’ from theorem 24.3 (and its corollary).

a. t cos(3t) b. t2 sin(3t) c. te−7t

d. t3e−7t e. t step(t − 3) f. t2 step4(t)

24.3. Verify the following identities using the ‘derivative of the transforms identities’ from theo-

rem 24.3.

a. L[t sin(ωt)]|s = 2ωs(
s2 + ω2

)2 b. L[t cos(ωt)]|s = s2 − ω2(
s2 + ω2

)2
24.4. For the following, let y be the solution to

t
d2 y

dt2
+ dy

dt
+ t y = 0 with y(0) = 1 and y′(0) = 0 .

The above differential equation, known as Bessel’s equation of order zero, is important in

many two-dimensional problems involving circular symmetry. The solution to this equation

with the above initial values turns out to be particularly important. It is called the Bessel

function (of the first kind) of order zero, and is universally denoted by J0 . Thus, in the

following,

y(t) = J0(t) and Y (s) = L[y(t)]|s = L[J0(t)]|s .

a. Using the differentiation identities from this chapter, show that(
s2 + 1

)
dY

ds
+ sY = 0 .

b. The above differential equation for Y is a simple first-order differential equation. Find

its general solution.

c. It can be shown (trust the author on this) that∫ ∞

0

J0(t) = 1 .

What does this tell you about Y (0) ?

d. Using what you now know about Y (s) , find = L[J0(t)]|s .

24.5. Compute the Laplace transforms using the tables provided. You will have to apply two

different identities.

a. te4t sin(3t) b. te4t cos(3t) c. te4t step(t − 3) d. e3t t2 step1(t)
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482 Differentiation and the Laplace Transform

24.6. The following concern the ramp at α function whose transform was computed in example

24.4 on page 473. Assume α > 0 .

a. Verify that the “ramp-squared at α ” function,

ramp2
α(t) = (

rampα(t)
)2

,

satisfies

ramp2
α(t) =

∫ t

0

2 rampα(τ ) dτ .

b. Using the above and the “transform of an integral” identity, find L
[
ramp2

α(t)
]∣∣

s
.

24.7. The sine-integral function, Si , is given by

Si(t) =
∫ t

0

sin(τ )

τ
dτ .

In example 24.5, it is shown that

L

[
sin(t)

t

]∣∣∣
s

= arctan
(

1

s

)
.

What is L[Si(t)]|s ?

24.8. Verify that the limit of each of the following functions as t → 0 is a finite number, and then

find the Laplace transform of that function using the “integral of a transform” identity.

a.
1 − e−t

t
b.

e2t − 1

t
c.

e−2t − e3t

t

d.
1 − cos(t)

t
e.

1 − cosh(t)

t
f.

sin(3t)

t
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The Inverse Laplace Transform

In the last chapter, we saw how to find Laplace transforms of “unknown” functions satisfying various

initial-value problems. Of course, it’s not the transforms of those unknown functions which are

usually of interest. It’s the functions, themselves, that are of interest. So let us turn to the general

issue of finding a function y(t) when all we know is its Laplace transform Y (s) .

25.1 Basic Notions
On Recovering a Function from Its Transform

In attempting to solve the differential equation in example 24.1, we got

Y (s) = 4

s − 3
,

which, since

Y (s) = L[y(t)]|s and
4

s − 3
= L

[
4e3t

]∣∣
s

,

we rewrote as

L[y(t)] = L
[
4e3t

]
.

From this, it seemed reasonable to conclude that

y(t) = 4e3t .

But, what if there were another function f (t) with the same transform as 4e3t ? Then we could not

be sure whether the above y(t) should be 4e3t or that other function f (t) . Fortunately, someone

has managed to prove the following:

Theorem 25.1 (uniqueness of the transforms)

Suppose f and g are any two piecewise continuous functions on [0,∞) of exponential order and

having the same Laplace transforms,

L[ f ] = L[g] .

Then, as piecewise continuous functions,

f (t) = g(t) on [0,∞) .

483
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484 The Inverse Laplace Transform

(You may want to quickly review the discussion of “equality of piecewise continuous functions”

on page 456.)

This theorem actually follows from another result that will be briefly discussed at the end of

this section. What is important, now, is that this theorem assures us that, if

L[y(t)]|s = L
[
4e3t

]∣∣
s

,

then

y(t) = 4e3t ,

at least for t ≥ 0 .

What about for t < 0 ? Well, keep in mind that the Laplace transform of any function f ,

F(s) = L[ f ]|s =
∫ ∞

0

f (t)e−st dt ,

involves integration only over the positive T –axis. The behavior of f on the negative T –axis has

no effect on the formula for F(s) . In fact, f (t) need not even be defined for t < 0 . So, even if they

exist, there can be no way to recover the values of f (t) on the negative T –axis from F(s) . But that

is not a real concern because we will just use the Laplace transform for problems over the positive

T –axis — problems in which we have initial values at t = 0 and want to know what happens later.

What all this means is that we are only interested in functions of t with t ≥ 0 . That was

hinted at when we began our discussions of the Laplace transform (see note 3 on page 436), but we

did not make an issue of it to avoid getting too distracted by technical details. Now, with the inverse

transform, requiring t ≥ 0 becomes more of an issue. Still, there is no need to obsess about this

any more than necessary, or to suddenly start including “ for t ≥ 0 ” with every formula of t . Let

us just agree that the negative T –axis is irrelevant to our discussions, and that

in all formulas involving t , it is assumed that t ≥ 0 .

!�Example 25.1: Somewhere above, we have

y(t) = 4e3t .

What we really mean is that

y(t) = 4e3t for t ≥ 0 .

We have no idea what y(t) is for t < 0 . We don’t even know whether, in whatever application

this may have arisen, it makes sense to talk about y(t) for t < 0 , nor do we care.1

The Inverse Laplace Transform Defined

We can now officially define the inverse Laplace transform:

Given a function F(s) , the inverse Laplace transform of F , denoted by L
−1[F] , is

that function f whose Laplace transform is F .

More succinctly:

f (t) = L
−1[F(s)]|t ⇐⇒ L[ f (t)]|s = F(s) .

Our theorem on uniqueness (theorem 25.1) (along with our understanding about “always assuming

t ≥ 0 ”) assures us that the above definition for L
−1[F] is unambiguous. In this definition, of

course, we assume F(s) can be given as L[ f (t)] for some function f .

1 For example: What if y(t) denoted the temperature in a cup of coffee t minutes after being poured? Does it make sense

to consider the temperature of the coffee before it exists? (Answer this assuming you are not a Zen master.)



�

�

�

�

�

�

�

�

Linearity and Using Partial Fractions 485

!�Example 25.2: We have

L
−1
[

4

s − 3

]∣∣∣
t

= 4e3t

because
4

s − 3
= L

[
4e3t

]∣∣
s

.

Likewise, since

L
[
t3
]∣∣

s
= 6

s4
,

we have

t3 = L
−1
[

6

s4

]∣∣∣
t

.

The fact that

f (t) = L
−1[F(s)]|t ⇐⇒ L[ f (t)]|s = F(s)

means that any table of Laplace transforms (such as table 23.1 on page 444) is also a table of inverse

Laplace transforms. Instead of reading off the F(s) for each f (t) found, read off the f (t) for

each F(s) .

As you may have already noticed, we take inverse transforms of “functions of s that are denoted

by upper case Roman letters” and obtain “functions of t that are denoted by the corresponding lower

case Roman letter”. These notational conventions are consistent with the notational conventions laid

down for the Laplace transform early in chapter 23.

We should also note that the phrase “inverse Laplace transform” can refer to either the ‘inverse

transformed function’ f or to the process of computing f from F .

By the way, there is a formula for computing inverse Laplace transforms. If you must know, it

is

L
−1[F(s)]|t = 1

2π
lim

Y→+∞

∫ Y

−Y

et (σ+iξ)F(σ + iξ) dξ .

The integral here is over a line in the complex plane, and σ is a suitably chosen positive value.

In deriving this formula, you actually verify uniqueness theorem 25.1. Unfortunately, deriving and

verifying this formula go beyond our current abilities.2

Don’t pretend to understand this formula, and don’t try to use it until you’ve had a course in

complex variables. Besides, it is not nearly as useful as a good table of transforms.

25.2 Linearity and Using Partial Fractions
Linearity of the Inverse Transform

The fact that the inverse Laplace transform is linear follows immediately from the linearity of the

Laplace transform. To see that, let us consider L
−1[αF(s)+ βG(s)] where α and β are any two

constants and F and G are any two functions for which inverse Laplace transforms exist. Following

our conventions, we’ll denote those inverse transforms by f and g . That is,

f (t) = L
−1[F(s)]|t and g(t) = L

−1[G(s)]|t .

2 Two derivations can be found in the third edition of Transforms and Applications Handbook (Ed: A. Poularikas, CRC

Press). One, using Fourier transforms, is in section 2.4.6 of the chapter on Fourier transforms by Howell. The other, using

results from the theory of complex analytic functions, is in section 5.6 of the chapter on Laplace transforms by Poularikas

and Seely.
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Remember, this is completely the same as stating that

L[ f (t)]|s = F(s) and L[g(t)]|s = G(s) .

Because we already know the Laplace transform is linear, we know

L[α f (t)+ βg(t)]|s = αL[ f (t)]|s + βL[g(t)]|s = αF(s) + βG(s) .

This, along the definition of the inverse transform and the above definitions of f and g , yields

L
−1[αF(s)+ βG(s)]|t = α f (t) + βg(t) = αL−1[F(s)]|t + βL−1[G(s)]|t .

Redoing these little computations with as many functions and constants as desired then gives us the

next theorem:

Theorem 25.2 (linearity of the inverse Laplace transform)

The inverse Laplace transform is linear. That is,

L
−1[c1 F1(s)+ c2 F2(s)+ · · · + cn Fn(s)]

= c1L
−1[F1(s)] + c2L[F2(s)] + · · · + cnL[Fn(s)]

when each ck is a constant and each Fk is a function having an inverse Laplace transform.

Let’s now use the linearity to compute a few inverse transforms.

!�Example 25.3: Let’s find

L
−1

[
1

s2 + 9

]∣∣∣∣
t

.

We know (or found in table 23.1 on page 444) that

L
−1

[
3

s2 + 9

]∣∣∣∣
t

= sin(3t) ,

which is almost what we want. To use this in computing our desired inverse transform, we will

combine linearity with one of mathematics’ oldest tricks — multiplying by 1 — with, in this

case, 1 = 3/3 ):

L
−1

[
1

s2 + 9

]∣∣∣∣
t

= L
−1

[
1

3
· 3

s2 + 9

]∣∣∣∣
t

= 1

3
L

−1

[
3

s2 + 9

]∣∣∣∣
t

= 1

3
sin(3t) .

The use of linearity along with ‘multiplying by 1 ’ will be used again and again. Get used to it.

!�Example 25.4: Let’s find the inverse Laplace transform of

30

s7
+ 8

s − 4
.

We know

L
−1
[

6!
s7

]∣∣∣
t

= t6 and L
−1
[

1

s − 4

]∣∣∣
t

= e4t .
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So,

L
−1
[

30

s7
+ 8

s − 4

]∣∣∣
t

= 30L−1
[

1

s7

]∣∣∣
t

+ 8L−1
[

1

s − 4

]∣∣∣
t

= 30L−1
[

1

6! · 6!
s7

]∣∣∣
t

+ 8e4t

= 30

6! L
−1
[

6!
s7

]∣∣∣
t

+ 8e4t = 30

6 · 5 · 4 · 3 · 2
t6 + 8e4t ,

which, after a little arithmetic, reduces to

L
−1
[

30

s7
+ 8

s − 4

]∣∣∣
t

= 1

24
t6 + 8e4t .

Partial Fractions

When using the Laplace transform with differential equations, we often get transforms that can

be converted via ‘partial fractions’ to forms that are easily inverse transformed using the tables

and linearity, as above. This means that the general method(s) of partial fractions are particularly

important. By now, you should be well-acquainted with using partial fractions — remember, the

basic idea is that, if we have a fraction of two polynomials

Q(s)

P(s)

and P(s) can be factored into two smaller polynomials

P(s) = P1(s)P2(s) ,

then two other polynomials Q1(s) and Q2(s) can be found so that

Q(s)

P(s)
= Q(s)

P1(s)P2(s)
= Q1(s)

P1(s)
+ Q2(s)

P2(s)
.

Moreover, if (as will usually be the case for us) the degree of Q(s) is less than the degree of P(s) ,

then the degree of each Qk(s) will be less than the degree of the corresponding Pk(s) .

You probably used partial fractions to compute some of the integrals in the earlier chapters of

this text. We’ll go through a few examples to both refresh our memories of this technique and to see

how it naturally arises in using the Laplace transform to solve differential equations.

!�Example 25.5: In exercise 24.1 e on page 480, you found that the Laplace transform of the

solution to

y′′ + 4y = 20e4t with y(0) = 3 and y′(0) = 12

is

Y (s) = 3s2 − 28

(s − 4)
(
s2 + 4

) .

The partial fraction expansion of this is

Y (s) = 3s2 − 28

(s − 4)
(
s2 + 4

) = A

s − 4
+ Bs + C

s2 + 4
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for some constants A , B and C . There are many ways to find these constants. The basic method

is to “undo” the partial fraction expansion by getting a common denominator and adding up the

fractions on the right:

3s2 − 28

(s − 4)
(
s2 + 4

) = A

s − 4
+ Bs + C

s2 + 4

=
A
(

s2 + 4
)

(s − 4)
(
s2 + 4

) + (s − 4)(Bs + C)

(s − 4)
(
s2 + 4

)
= · · ·

= (A + B)s2 + (C − 4B)s + 4(A − C)

(s − 4)
(
s2 + 4

) .

Cutting out the middle and canceling out the common denominator lead to the equation

3 · s2 + 0 · s − 28 = (A + B)s2 + (C − 4B)s + 4(A − C) ,

which, in turn, means that our constants satisfy the three by three system

3 = A + B

0 = C − 4B

−28 = 4A − 4C

.

This is a relatively simple system. Solving it however you wish, you obtain

A = 1 and B = 2 and C = 8 .

Hence

Y (s) = A

s − 4
+ Bs + C

s2 + 4
= 1

s − 4
+ 2s + 8

s2 + 4
,

and

y(t) = L
−1[Y (s)]|t = L

−1

[
1

s − 4
+ 2s + 8

s2 + 4

]∣∣∣∣
t

= L
−1
[

1

s − 4

]∣∣∣
t
+ 2L−1

[
s

s2 + 4

]∣∣∣∣
t

+ 8L−1

[
1

s2 + 4

]∣∣∣∣
t

= e4t + 2L−1

[
s

s2 + 22

]∣∣∣∣
t

+ 8 · 1

2
L

−1

[
2

s2 + 22

]∣∣∣∣
t

= e4t + 2 cos(2t) + 4 sin(2t) .

!�Example 25.6: In example 24.2 on page 468 we obtained

Y (s) = 16

(s − 2)(s2 − 7s + 12)
+ 6s − 38

s2 − 7s + 12

and, equivalently,

Y (s) = 6s2 − 50s + 92

(s − 2)
(
s2 − 7s + 12

)
as the Laplace transform of the solution to some initial-value problem. While we could find partial

fraction expansions for each term of the first expression above, it will certainly be more convenient
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to simply find the single partial fraction expansion for the second expression for Y (s) . But before

attempting that, we should note that one factor in the denominator can be further factored,

s2 − 7s + 12 = (s − 3)(s − 4) ,

giving us

Y (s) = 6s2 − 50s + 92

(s − 2)(s − 3)(s − 4)
.

Now we can seek the partial fraction expansion of Y (s) :

6s2 − 50s + 92

(s − 2)(s − 3)(s − 4)
= A

s − 2
+ B

s − 3
+ C

s − 4

= · · ·

= A(s − 3)(s − 4) + B(s − 2)(s − 4) + C(s − 2)(s − 3)

(s − 2)(s − 3)(s − 4)
.

Cutting out the middle and canceling out the common denominator leave

6s2 − 50s + 92

= A(s − 3)(s − 4) + B(s − 2)(s − 4) + C(s − 2)(s − 3) .
(25.1)

Rather than multiplying out the right side of this equation and setting up the system that A , B

and C must satisfy for this equation to hold (as we did in the previous example), let’s find these

constants after making clever choices for the value of s in this last equation.

Letting s = 2 in equation (25.1):

6
(

22
)

− 50 · 2 + 92

= A(2 − 3)(2 − 4) + B(2 − 2)(2 − 4) + C(2 − 2)(2 − 3)

↪→ 16 = 2A + 0B + 0C � A = 8 .

Letting s = 3 in equation (25.1):

6
(

32
)

− 50 · 3 + 92

= A(3 − 3)(3 − 4) + B(3 − 2)(3 − 4) + C(3 − 2)(3 − 3)

↪→ −4 = 0A − B + 0C � B = 4 .

Letting s = 4 in equation (25.1):

6
(

42
)

− 50 · 4 + 92

= A(4 − 3)(4 − 4) + B(4 − 2)(4 − 4) + C(4 − 2)(4 − 3)

↪→ −12 = 0A + 0B + 2C � C = −6 .
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Combining the above results, we have

Y (s) = 6s2 − 50s + 76

(s − 2)(s − 3)(s − 4)

= A

s − 2
+ B

s − 3
+ C

s − 4
= 8

s − 2
+ 4

s − 3
− 6

s − 4
.

Hence,

y(t) = L
−1[Y (s)]|t = L

−1

[
8

s − 2
+ 4

s − 3
− 6

s − 4

]∣∣∣∣
t

= 8L−1
[

1

s − 2

]∣∣∣
t

+ 4L−1
[

1

s − 3

]∣∣∣
t

− 6L−1
[

1

s − 4

]∣∣∣
t

= 8e2t + 4e3t − 6e4t .

Do recall how to deal with repeated factors in the denominator. In particular, if your denominator

has factors of the form

(s + c)n or
(

s2 + bs + c
)n

for some positive integer n and constants b and c , then the corresponding partial fraction expansions

are
A1

(s + c)n
+ A2

(s + c)n−1
+ A3

(s + c)n−2
+ · · · + An

s + c

and

A1s + B1(
s2 + bs + c

)n + A2s + B2(
s2 + bs + c

)n−1
+ A3s + B3(

s2 + bs + c
)n−2

+ · · · + Ans + Bn

s2 + bs + c
,

respectively.

!�Example 25.7: The partial fraction expansion of

Y (s) = 2s2

(s − 6)3

is of the form
A

(s − 6)3
+ B

(s − 6)2
+ C

s − 6
.

To find the constants A , B and C , we proceed as in the previous examples:

2s2

(s − 6)3
= A

(s − 6)3
+ B

(s − 6)2
+ C

s − 6

= A

(s − 6)3
+ B(s − 6)

(s − 6)2(s − 6)
+ C(s − 6)2

(s − 6)(s − 6)2

= A + B(s − 6) + C(s − 6)2

(s − 6)3
.

So we must have

2s2 = A + B(s − 6) + C(s − 6)2 .

The value of A can be easily found by letting s = 6 in this equation, and the values of B and

C can be found by letting s = 6 after taking derivatives of both sides of this equation. Or we

can multiply out the right side and rewrite the left side more explicitly, obtaining

2s2 + 0s + 0 = Cs2 + (B − 12C)s + (A − 6B + 36C) .
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This tells us that the constants can be obtained by solving the system

C = 2

B − 12C = 0

A − 6B + 36C = 0 .

In either case, you will discover that

A = 72 , B = 24 and C = 2 .

Thus,

Y (s) = 2s2

(s − 6)3

= A

(s − 6)3
+ B

(s − 6)2
+ C

s − 6

= 72

(s − 6)3
+ 24

(s − 6)2
+ 2

s − 6
.

In the next section, we will discuss an easy way to find the inverse transform of each of the terms

in this partial fraction expansion.

25.3 Inverse Transforms of Shifted Functions

All the identities derived for the Laplace transform can be rewritten in terms of the inverse Laplace

transform. Of particular value to us is the first shifting identity

L
[
eat f (t)

]∣∣
s

= F(s − a)

where F = L[ f (t)] and a is any fixed real number. In terms of the inverse transform, this is

L
−1[F(s − a)]|t = eat f (t) .

where f = L
−1[F(s)] and a is any fixed real number. Viewed this way, we have a nice way to

find inverse transforms of functions that can be written as “shifts” of functions in our tables.

!�Example 25.8: Consider

L
−1
[

1

(s − 6)3

]∣∣∣
t

.

Here, the ‘shift’ is clearly by a = 6 , and we have, by the above identity,

L
−1
[

1

(s − 6)3

]∣∣∣
t

= F
−1[F(s − 6)]|t = e6t f (t) . (25.2)

We now need to figure out the f (t) from the fact that

F(s − 6) = 1

(s − 6)3
.

Letting X = s − 6 in this equation, we have

F(X) = 1

X3
.
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Thus,

F(s) = 1

s3
,

and

f (t) = L
−1[F(s)]|t = L

−1
[

1

s3

]∣∣∣
t

= L
−1
[

1

2! · 2!
s2+1

]∣∣∣
t

= 1

2!L
−1
[

· 2!
s2+1

]∣∣∣
t

= 1

2
t2 .

Plugging this back into equation (25.2), we obtain

L
−1
[

1

(s − 6)3

]∣∣∣
t

= · · · = e6t f (t) = e6t 1

2
t2 = 1

2
t2e6t .

In many cases, determining the shift is part of the problem.

!�Example 25.9: Consider finding the inverse Laplace transform of

1

s2 − 8s + 25
.

If the denominator could be factored nicely, we would use partial fractions. This denominator

does not factor nicely (unless we use complex numbers). When that happens, try “completing

the square” to rewrite the denominator in terms of “ s − a ” for some constant a . Here,

s2 − 8s + 25 = s2 − 2 · 4s + [
42 − 42

] + 25

= s2 − 2 · 4s + 42︸ ︷︷ ︸
(s−4)2

− 42 + 25 = (s − 4)2 + 9 .

Hence,

L
−1

[
1

s2 − 8s + 25

]∣∣∣∣
t

= L
−1

[
1

(s − 4)2 + 9

]∣∣∣∣
t

= L
−1[F(s − 4)]|t = e4t f (t) .

(25.3)

Again, we need to find f (t) from a shifted version of its transform. Here,

F(s − 4) = 1

(s − 4)2 + 9
.

Letting X = s − 4 in this equation, we have

F(X) = 1

X2 + 9
,

which means the formula for F(s) is

F(s) = 1

s2 + 9
.

Thus,

f (t) = L
−1[F(s)]|t = L

−1
[

1

s2 + 9

]∣∣∣
t

= L
−1
[

1

3
· 3

s2 + 9

]∣∣∣
t

= 1

3
L

−1
[

3

s2 + 32

]∣∣∣
t

= 1

3
sin(3t) .

Plugging this back into equation (25.3), we get

L
−1
[

1

s2 − 8s + 25

]∣∣∣
t

= · · · = e4t f (t) = e4t 1

3
sin(3t) = 1

3
e4t sin(3t) .
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Additional Exercises

25.1. Using the tables (mainly, table 23.1 on page 444) or your own memory, find the inverse

Laplace transform for each of the following:

a.
1

s − 6
b.

1

s + 2
c.

1

s2

d.
6

s4
e.

5

s2 + 25
f.

s

s2 + 3π2

25.2. Using the tables and linearity, find the inverse Laplace transform for each of the follow-

ing:

a.
6

s + 2
b.

1

s4
c.

3√
s

− 8

s − 4

d.
4s2 − 4

s5
e.

3s + 1

s2 + 25
f.

1 − e−4s

s

25.3. In exercise 24.3 on page 481, you found the transform of t sin(ωt) and t cos(ωt) . Now

verify the following inverse Laplace transforms assuming ω is any real constant:

a. L
−1

[
s(

s2 + ω2
)2
]∣∣∣∣∣

t

= t

2ω
sin(ωt)

b. L
−1

[
1(

s2 + ω2
)2
]∣∣∣∣∣

t

= 1

2ω3
[sin(ωt)− ωt cos(ωt)]

25.4. Solve each of the following initial-value problems using the Laplace transform:

a. y′ + 9y = 0 with y(0) = 4

b. y′′ + 9y = 0 with y(0) = 4 and y′(0) = 6

25.5. Using the tables and partial fractions, find the inverse Laplace transform for each of the

following:

a.
7s + 5

(s + 2)(s − 1)
b.

s − 1

s2 − 7s + 12
c.

1

s2 − 4

d.
3s2 + 6s + 27

s3 + 9s
e.

1

s3 − 4s2
f.

8s3

s4 − 81

g.
5s2 + 6s − 40

(s + 6)
(
s2 + 16

) h.
2s3 + 3s2 + 2s + 27(

s2 + 9
) (

s2 + 1
) i.

6s2 + 62s + 92

(s + 1)
(
s2 + 10s + 21

)
25.6. Solve each of the following initial-value problems using the Laplace transform (and partial

fractions):

a. y′′ − 9y = 0 with y(0) = 4 and y′(0) = 9

b. y′′ + 9y = 27t3 with y(0) = 0 and y′(0) = 0

c. y′′ + 8y′ + 7y = 165e4t with y(0) = 8 and y′(0) = 1
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25.7. Using the translation identity (and the tables), find the inverse Laplace transform for each

of the following:

a.
1

(s − 7)5
b.

1

s2 − 6s + 45
c.

s

s2 − 6s + 45
d.

1√
s + 2

e.
1

s2 + 8s + 16
f.

s

s2 − 12s + 40
g.

1

s2 + 12s + 40
h.

s2

(s − 3)5

25.8. Using the Laplace transform with the translation identity, solve the following initial-value

problems:

a. y′′ − 8y′ + 17y = 0 with y(0) = 3 and y′(0) = 12

b. y′′ − 6y′ + 9y = e3t t2 with y(0) = 0 and y′(0) = 0

c. y′′ + 6y′ + 13y = 0 with y(0) = 2 and y′(0) = 8

d. y′′ + 8y′ + 17y = 0 with y(0) = 3 and y′(0) = −12

25.9. Using the Laplace transform, solve the following initial-value problems:

a. y′′ = et sin(t) with y(0) = 0 and y′(0) = 0

b. y′′ − 4y′ + 40y = 122e−3t with y(0) = 0 and y′(0) = 8

c. y′′ − 9y = 24e−3t with y(0) = 6 and y′(0) = 2

d. y′′ − 4y′ + 13y = e2t sin(3t) with y(0) = 4 and y′(0) = 3

25.10. The inverse transforms of the following could be computed using partial fractions. Instead,

find the inverse transform of each using the appropriate integration identity from section

24.3.

a.
1

s
(
s2 + 9

) b.
1

s(s − 4)
c.

1

s(s − 3)2
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Convolution

“Convolution” is an operation involving two functions that turns out to be rather useful in many

applications. We have two reasons for introducing it here. First of all, convolution will give us a

way to deal with inverse transforms of fairly arbitrary products of functions. Secondly, it will be a

major element in some relatively simple formulas for solving a number of differential equations.

Let us start with just seeing what “convolution” is. After that, we’ll discuss using it with the

Laplace transform and in solving differential equations.

26.1 Convolution: The Basics
Definition and Notation

Let f (t) and g(t) be two functions. The convolution of f and g , denoted by f ∗g , is the function

on t ≥ 0 given by

f ∗ g(t) =
∫ t

0

f (x)g(t − x) dx .

!�Example 26.1: Let

f (t) = e3t and g(t) = e7t .

Since we will use f (x) and g(t − x) in computing the convolution, let us note that

f (x) = e3x and g(t − x) = e7(t−x) .

So,

f ∗ g(t) =
∫ t

0

f (x)g(t − x) dx

=
∫ t

0

e3x e7(t−x) dx

=
∫ t

0

e3x e7t e−7x dx

= e7t

∫ t

0

e−4x dx

= e7t · −1

4
e−4x

∣∣∣t
x=0

= −1

4
e7t e−4t − −1

4
e7t e−4·0 = −1

4
e3t + 1

4
e7t .

495
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Simplifying this slightly, we have

f ∗ g(t) = 1

4

[
e7t − e3t

]
when f (t) = e3t and g(t) = e7t .

It is common practice to also denote the convolution f ∗g(t) by f (t)∗g(t) where, here, f (t)

and g(t) denote the formulas for f and g . Thus, instead of writing

f ∗ g(t) = 1

4

[
e7t − e3t

]
when f (t) = e3t and g(t) = e7t ,

we may just write

e3t ∗ e7t = 1

4

[
e7t − e3t

]
.

This simplifies notation a little, but be careful — t is being used for two different things in this

equation. On the left side, t is used to describe f and g ; on the right side, t is the variable in the

formula for the convolution. By convention, if we assign t a value, say, t = 2 , then we are setting

t = 2 in the final formula for the convolution. That is,

e3t ∗ e7t with t = 2

means compute the convolution and replace the t in the resulting formula with 2 , which, by the

above computations, is
1

4

[
e7·2 − e3·2

]
= 1

4

[
e14 − e6

]
.

It does NOT mean to compute

e3·2 ∗ e7·2 ,

which would give you a completely different result, namely,

e6 ∗ e14 =
∫ t

0

e6e14 dx = e20t .

!�Example 26.2: Let us find
1√
t

∗ t2 when t = 4 .

Here,

f (t) = 1√
t

and g(t) = t2 .

So

f (x) = 1√
x

and g(t − x) = (t − x)2 ,

and
1√
t

∗ t2 = f ∗ g(t) =
∫ t

0

1√
x
(t − x)2 dx

=
∫ t

0

x−1/2
[
t2 − 2t x + x2

]
dx

=
∫ t

0

[
t2x−1/2 − 2t x

1/2 + x
3/2

]
dx

= t22x
1/2 − 2t

2

3
x

3/2 + 2

5
x

5/2

∣∣∣t
x=0

= 2t2 · t
1/2 − 4

3
t · t

3/2 + 2

5
t
5/2 .
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After a little algebra and arithmetic, this reduces to

1√
t

∗ t2 = 16

15
t
5/2 . (26.1)

Thus, to compute
1√
t

∗ t2 when t = 4 ,

we actually compute
16

15
t
5/2 with t = 4 ,

obtaining
16

15
· 4

5/2 = 16

15
· 25 = 512

15
.

Basic Identities

Let us quickly note a few easily verified identities that can simplify the computation of some convo-

lutions.

The first identity is trivial to derive. Let α be a constant, and let f and g be two functions.

Then, of course,∫ t

0

[α f (x)]g(t − x) dx =
∫ t

0

f (x)[αg(t − x)] dx = α

∫ t

0

f (x)g(t − x) dx ,

which we can rewrite as

[α f ] ∗ g = f ∗ [αg] = α[ f ∗ g] .

In other words, we can “factor out constants”.

A more substantial identity comes from looking at how switching the roles of f and g changes

the convolution. That is, how does the result of computing

g ∗ f (t) =
∫ t

0

g(x) f (t − x) dx

compare to what we get by computing

f ∗ g(t) =
∫ t

0

f (x)g(t − x) dx ?

Well, in the last integral, let’s use the substitution y = t − x . Then x = t − y , dx = −dy and

f ∗ g(t) =
∫ t

x=0

f (x)g(t − x) dx

=
∫ t−t

y=t−0

f (t − y)g(y)(−1) dy

= −
∫ 0

t

g(y) f (t − y) dy =
∫ t

0

g(y) f (t − y) dy .

The last integral is exactly the same as the integral for computing g ∗ f (t) , except for the cosmetic

change of denoting the variable of integration by y instead of x . So that integral is the formula for

g ∗ f (t) , and our computations just above reduce to

f ∗ g(t) = g ∗ f (t) . (26.2)

Thus we see that convolution is “commutative”.
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!�Example 26.3: Let’s consider the convolution

t2 ∗ 1√
t

.

Since we just showed that convolution is commutative, we know that

t2 ∗ 1√
t

= 1√
t

∗ t2 .

What an incredible stroke of luck! We’ve already computed the convolution on the right in

example 26.2. Checking back to equation (26.1), we find

1√
t

∗ t2 = 16

15
t
5/2 .

Hence,

t2 ∗ 1√
t

= 1√
t

∗ t2 = 16

15
t
5/2 .

In addition to being commutative, convolution is “distributive” and “associative”. That is, given

three functions f , g and h ,

[ f + g] ∗ h = [ f ∗ h] + [g ∗ h] , (26.3)

f ∗ [g + h] = [ f ∗ g] + [ f ∗ h] (26.4)

and

f ∗ [g ∗ h] = [ f ∗ g] ∗ h . (26.5)

The first and second equations are that “addition distributes over convolution”. They are easily

confirmed using the basic definition of convolution. For the first:

[ f + g] ∗ h(t) =
∫ t

0

[ f (x)+ g(x)]h(t − x) dx

=
∫ t

0

[ f (x)h(t − x)+ g(x)h(t − x)] dx

=
∫ t

0

f (x)h(t − x) dx +
∫ t

0

g(x)h(t − x)] dx

= [ f ∗ g] + [g ∗ h] .

The second, equation (26.4) follows in a similar manner or by combining (26.3) with the commu-

tativity of the convolution. The last equation in the list, equation (26.5), states that convolution is

“associative”; that is, when convolving three functions together, it does not matter which two you

convolve first. Its verification requires showing that the two double integrals defining

f ∗ [g ∗ h] and [ f ∗ g] ∗ h

are equivalent. This is a relatively straightforward exercise in substitution, and will be left as a

challenge for the interested student (exercise 26.3 on page 507).
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Finally, just for fun, let’s make three more simple observations:

0 ∗ g(t) = g ∗ 0(t) =
∫ t

0

0 · g(t − x) dx = 0 .

f ∗ 1(t) = 1 ∗ f (t) =
∫ t

0

f (s) · 1 dx =
∫ t

0

f (s) dx .

f ∗ g(0) =
∫ 0

0

f (x)g(0 − x) dx = 0 .

Observations on the Existence of the Convolution

The observant reader will have noted that, if f and g are at least piecewise continuous on (0,∞) ,

then, for any positive value t , the product f (x)g(t − x) is a piecewise continuous function of x

on (0, t) . It then follows that the integral in

f ∗ g(t) =
∫ t

0

f (x)g(t − x) dx

is well defined and finite for every positive value of t . In other words, f ∗ g is a well-defined

function on (0,∞) , at least whenever f and g are both piecewise continuous on (0,∞) . (In fact,

it can then even be shown that f ∗ g(t) is a continuous function on [0,∞) .)

But now observe that one of the functions in example 26.2, namely t−1/2 , ‘blows up’ at

t = 0 and, thus, is not piecewise continuous on (0,∞) . So that example also demonstrates that,

sometimes, f ∗ g is well defined on (0,∞) even though f or g is not piecewise continuous.

26.2 Convolution and Products of Transforms

To see one reason convolution is important in the study of Laplace transforms, let us examine the

Laplace transform of the convolution of two functions f (t) and g(t) . Our goal is a surprisingly

simple formula of the corresponding transforms,

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt

and

G(s) = L[g(t)]|s =
∫ ∞

0

g(t)e−st dt .

(The impatient can turn to theorem 26.1 on page 501 for that formula.)

Keep in mind that we can rename the variable of integration in each of the above integrals. In

particular, note (for future reference) that

F(s) =
∫ ∞

0

e−sx f (x) dx and G(s) =
∫ ∞

0

e−sy g(y) dy .
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T

X

t = t0

x = x0

t = x0

x = t0

(x0, t0)

(x0, x0)

(t0, t0)

t
= xR

Figure 26.1: The region R for the transform of the convolution. Note that the coordinates of any

point (x0, t0) in R must satisfy 0 < x0 < t0 < ∞ .

Now, simply writing out the integral formulas for the Laplace transform and for the convolution

yields

L[ f ∗ g(t)]|s =
∫ ∞

0

e−st f ∗ g(t) dt

=
∫ ∞

t=0

e−st

∫ t

x=0

f (x)g(t − x) dx dt

=
∫ ∞

t=0

∫ t

x=0

e−st f (x)g(t − x) dx dt .

Combined with the observation that

e−st = e−st+sx−sx = e−s(t−x)e−sx ,

the above sequence becomes

L[ f ∗ g(t)]|s =
∫ ∞

t=0

∫ t

x=0

e−sx f (x) e−s(t−x)g(t − x) dx dt

=
∫ ∞

t=0

∫ t

x=0

K (x, t) dx dt

(26.6)

where, simply to simplify expressions in the next few lines, we’ve set

K (x, t) = e−sx f (x) e−s(t−x)g(t − x) .

It is now convenient to switch the order of integration in the last double integral. According to

the limits in that double integral, we are integrating over the region R in the XT –plane consisting

of all (x, t) for which

0 < t < ∞
and, for each of these values of t ,

0 < x < t .

As illustrated in figure 26.1, region R is the portion of the first quadrant of the XT –plane to the

left of the line t = x . Equivalently, as can also be seen in this figure, R is the portion of the first

quadrant above the line t = x . So R can also be described as the set of all (x, t) for which

0 < x < ∞
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and, for each of these values of x ,

x < t < ∞ .

Thus, ∫ ∞

t=0

∫ t

x=0

K (x, t) dx dt =
∫ ∫

R

K (x, t) d A =
∫ ∞

x=0

∫ ∞

t=x

K (x, t) dt dx .

Combining this with equation (26.6), and then continuing, we have

L[ f ∗ g(t)]|s =
∫ ∞

x=0

∫ ∞

t=x

K (x, t) dt dx

=
∫ ∞

x=0

∫ ∞

t=x

e−sx f (x) e−s(t−x)g(t − x) dt dx

=
∫ ∞

x=0

e−sx f (x)

[∫ ∞

t=x

e−s(t−x)g(t − x) dt

]
dx .

Let us simplify the inner integral with the substitution y = t − x (remembering that t is the variable

of integration in this integral):∫ ∞

t=x

e−s(t−x)g(t − x) dt =
∫ ∞−x

y=x−x

e−sy g(y) dy =
∫ ∞

0

e−sy g(y) dy = G(s) !

Combining this with our last formula for L[ f ∗ g] then yields

L[ f ∗ g(t)]|s =
∫ ∞

0

f (x)e−sx G(s) dx

=
∫ ∞

0

e−sx f (x) dx · G(s) = F(s) · G(s) !

Thus,

L[ f ∗ g(t)]|s = F(s)G(s) .

Equivalently,

f ∗ g(t) = L
−1[F(s)G(s)]|t .

If we had been a little more complete in our computations, we would have kept track of the

exponential order of all the functions involved (see exercise 26.9), and obtained all of the following

theorem.

Theorem 26.1 (Laplace convolution identities)

Assume f (t) and g(t) are two functions of exponential order s0 , and with Laplace transforms

F(s) = L[ f (t)]|s and G(s) = L[g(t)]|s .

Then the convolution f ∗ g(t) is of exponential order s1 for any s1 > s0 . Moreover,

L[ f ∗ g(t)]|s = F(s)G(s) for s > s0 (26.7)

and

L
−1[F(s)G(s)]|t = f ∗ g(t) . (26.8)

Do remember that identities (26.7) and (26.8) are equivalent. It is also worthwhile to rewrite

these identities as

L[ f ∗ g(t)]|s = L[ f ]|s · L[g(t)]|s (26.7 ′)
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and

L
−1[F(s)G(s)]|t = L

−1[F(s)]|t ∗ L
−1[G(s)]|t , (26.8 ′)

respectively. These forms, especially the latter, are sometimes a little more convenient in practice.

!�Example 26.4: Consider finding the inverse Laplace transform of

1

s2 − 10s + 21
.

Factoring the denominator and applying the above, we get

L
−1

[
1

s2 − 10s + 21

]∣∣∣∣
t

= L
−1

[
1

(s − 3)(s − 7)

]∣∣∣∣
t

= L
−1
[

1

s − 3
· 1

s − 7

]∣∣∣
t

= L
−1
[

1

s − 3

]∣∣∣
t
∗ L

−1
[

1

s − 7

]∣∣∣
t

= e3t ∗ e7t .

As luck would have it, this convolution was computed in example 26.1 on page 495),

e3t ∗ e7t = 1

4

[
e7t − e3t

]
.

Thus,

L
−1

[
1

s2 − 10s + 21

]∣∣∣∣
t

= e3t ∗ e7t = 1

4

[
e7t − e3t

]
.

The inverse transform in the last example could also have been computed using partial fractions.

Indeed, many of the inverse transforms we computed using partial fractions can also be computed

using convolution. Whether one approach or the other is preferred depends on the opinion of the

person doing the computing. However, as the next example shows, there are cases where convolution

can be applied, but not partial fractions. We will also use this example to demonstrate how convolution

naturally arises when solving differential equations.

!�Example 26.5: Consider solving the initial-value problem

y′′ + 9y = 1√
t

with y(0) = 0 and y′(0) = 0 .

Taking the Laplace transform of both sides:

L
[
y′′ + 9y

]∣∣
s

= L

[
1√
t

]∣∣∣∣
s

↪→ L
[
y′′]∣∣

s
+ 9L[y]|s =

√
π√
s

↪→ s2Y (s)− s y(0)︸︷︷︸
0

− y′(0)︸ ︷︷ ︸
0

+ 9Y (s) =
√
π√
s

↪→ [
s2 + 9

]
Y (s) =

√
π√
s

↪→ Y (s) =
√
π√

s
(
s2 + 9

) .
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Thus, y(t) is the inverse Laplace transform of

√
π√

s
(
s2 + 9

) .

Because the denominator does not factor into two polynomials, we cannot use partial fractions

— we must use convolution,

L
−1

[ √
π√

s
(
s2 + 9

)]∣∣∣∣
t

= L
−1

[√
π√
s

· 1

s2 + 9

]∣∣∣∣
t

= L
−1

[√
π√
s

]∣∣∣∣
t

∗ L
−1

[
1

s2 + 9

]∣∣∣∣
t

.

Reversing the transform made on the right side of the above equations, we have

L
−1

[√
π√
s

]∣∣∣∣
t

= 1√
t

.

Using our tables, we find that

L
−1

[
1

s2 + 9

]∣∣∣∣
t

= 1

3
L

−1

[
3

s2 + 32

]∣∣∣∣
t

= 1

3
sin(3t) .

Combining the above and recalling that “constants factor out”, we then obtain

y(t) = L
−1

[ √
π√

s
(
s2 + 9

)]∣∣∣∣
t

= L
−1

[√
π√
s

]∣∣∣∣
t

∗ L
−1

[
1

s2 + 9

]∣∣∣∣
t

=
[

1√
t

]
∗
[

1

3
sin(3t)

]
= 1

3

1√
t

∗ sin(3t) .

That is,

y(t) = 1

3

∫ t

0

1√
x

sin(3[t − x]) dx .

Admittedly, this last integral is not easily evaluated by hand. But it is something that can be

accurately approximated for any specific (nonnegative) value of t using routines found in many

computer math packages. So it is still a usable formula.

26.3 Convolution and Differential Equations (Duhamel’s
Principle)

As illustrated in our last example, convolution has a natural role in solving differential equations

when using the Laplace transform. However, if we look a little more carefully at the process of

solving differential equations using the Laplace transform, we will find that convolution can play an

even more significant role.

!�Example 26.6: Let’s consider solving the nonhomogeneous initial-value problem

y′′ − 10y′ + 21y = f (t) with y(0) = 0 and y′(0) = 0
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where f = f (t) is any Laplace transformable function. Naturally, we will use the Laplace

transform. So let

Y (s) = L[y(t)]|s and F(s) = L[ f (t)]|s .

Because of our initial conditions, the “transform of the derivatives” identities simplify consider-

ably:

L
[
y′′]∣∣

s
= s2Y (s) − s y(0)︸︷︷︸

0

− y′(0)︸ ︷︷ ︸
0

= s2Y (s)

and

L
[
y′]∣∣

s
= sY (s)− y(0)︸︷︷︸

0

= sY (s) .

Consequently,

L
[
y′′ − 10y′ + 21y

]∣∣
s

= L[ f (t)]|s

↪→ L
[
y′′]∣∣

s
− 10L

[
y′]∣∣

s
+ 21L[y]|s = F(s)

↪→ s2Y (s) − 10sY (s) + 21Y (s) = F(s)

↪→ [
s2 − 10s + 21

]
Y (s) = F(s) .

Dividing through by the polynomial, we get

Y (s) = H(s)F(s) where H(s) = 1

s2 − 10s + 21
.

Thus,

y(t) = L
−1[Y (s)]|t = L

−1[H(s)F(s)]|t .

Applying the convolution identity then yields

y(t) = h ∗ f (t) (26.9a)

where

h(x) = L
−1[H(s)]|x = L

−1

[
1

s2 − 10s + 21

]∣∣∣∣
t

. (26.9b)

The convolution h ∗ f can be computed using either∫ t

0

h(x) f (t − x) dx or

∫ t

0

h(t − x) f (x) dx .

For no particular reason, we will choose the first integral formula.

To compute h(x) , we can use partial fractions or convolution. Or we can glance at example

26.4 on page 502, discover that we’ve already computed h(t) , and just replace the t in that

formula with x ,

h(x) = 1

4

[
e7x − e3x

]
.

With this and our chosen integral formula for h ∗ f , formula (26.9a), the solution to our initial-

value problem, becomes

y(t) =
∫ t

0

1

4

[
e7x − e3x

]
f (t − x) dx . (26.10)
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Formula (26.10) is a convenient way to describe the solutions to our initial-value problem,

especially if we want to solve this problem for a number of different choices of f (t) . Using it,

we can quickly write out a relatively simple integral formula for the solution corresponding to

each f (t) . For example:

If f (t) = e4t , then f (t − x) = e4(t−x) and formula (26.10) yields

y(t) =
∫ t

0

1

4

[
e7x − e3x

]
e4(t−x) dx .

If f (t) = 1 , then f (t − x) = 1 and and formula (26.10) yields

y(t) = 1

4

∫ t

0

[
e7x − e3x

]
· 1 dx .

And finally, if f (t) = 3
√

t , then f (t − x) = 3
√

t − x and formula (26.10) yields

y(t) = 1

4

∫ t

0

[
e7x − e3x

]
3
√

t − x dx .

The first two integrals are easily evaluated, giving us

y(t) = 1

2
e7t + 1

4
e3t − 1

3
e4t and y(t) = 1

28
e7t − 1

12
e3t − 1

21
,

respectively. The last integral,

y(t) = 1

4

∫ t

0

[
e7x − e3x

]
3
√

t − x dx ,

is not easily evaluated by hand but can be accurately approximated for any value of t using

routines found in our favorite computer math package.

?�Exercise 26.1: Using the formula (26.10), find the solution to

y′′ − 10y′ + 21y = e3t with y(0) = 0 and y′(0) = 0 .

Generalizing what we just derived in the last example is easy. Suppose we have any second-order

initial-value problem of the form

ay′′ + by′ + cy = f (t) with y(0) = 0 and y′(0) = 0

where a , b and c are constants, and f is any Laplace transformable function. Then, taking the

Laplace transform of both sides of the differential equation, letting

Y (s) = L[y(t)]|s and F(s) = L[ f (t)]|s ,

and noting that, because of our initial conditions, the “transform of the derivatives” identities simplify

to

L
[
y′′]∣∣

s
= s2Y (s) − s y(0)︸︷︷︸

0

− y′(0)︸ ︷︷ ︸
0

= s2Y (s)

and

L
[
y′]∣∣

s
= sY (s)− y(0)︸︷︷︸

0

= sY (s) ,
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we see that

L
[
ay′′ + by′ + cy

]∣∣
s

= L[ f (t)]|s

↪→ aL
[
y′′]∣∣

s
+ bL

[
y′]∣∣

s
+ cL[y]|s = F(s)

↪→ as2Y (s) + bsY (s) + cY (s) = F(s)

↪→ [
as2 + bs + c

]
Y (s) = F(s) .

Dividing through by the polynomial, we get

Y (s) = H(s)F(s) where H(s) = 1

as2 + bs + c
.

So,

y(t) = L
−1[Y (s)]|t = L

−1[H(s)F(s)]|t ,

and the convolution identity tells us that

y(t) = h ∗ f (t) (26.11a)

where

h(x) = L
−1[H(s)]|x = L

−1

[
1

as2 + bs + c

]∣∣∣∣
t

. (26.11b)

The fact that the formula for y in equation set (26.11) is the solution to

ay′′ + by′ + cy = f (t) with y(0) = 0 and y′(0) = 0

is often called Duhamel’s principle. The function H(s) is usually referred to as the transfer function,

and its inverse transform, h(t) , is usually called the impulse response function.1 Keep in mind that

a , b and c are constants, and that we assumed f is Laplace transformable.

As illustrated in our example, Duhamel’s principle makes it easy to write down solutions to

the given initial-value problem once we have found h . This is especially useful if we need to find

solutions to

ay′′ + by′ + cy = f (t) with y(0) = 0 and y′(0) = 0

for a number of different choices of f .

Bur why stop at second-order problems? It should be clear that the above differential equation

did not have to be second order. A completely analogous derivation can be done starting with any

nonhomogeneous linear differential equation with constant coefficients, provided all the appropriate

initial values are zero. Doing so leads to the following theorem:

Theorem 26.2 (Duhamel’s principle)

Let N be any positive integer, let a0 , a1 , . . . and aN be any collection of real-valued constants,

and let f (t) be any Laplace transformable function. Then, the solution to

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = f (t)

satisfying the N th-order “zero” initial conditions,

y(0) = 0 , y′(0) = 0 , y′′(0) = 0 , . . . and yN−1(0) = 0 ,

1 The reason why h is called the “impulse response function” will be revealed in chapter 28. A few authors also refer to h

as a “weight” function.
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is given by

y(t) = h ∗ f (t)

where

h(x) = L
−1[H(s)]|x and H(s) = 1

a0sn + a1sn−1 + · · · + an
.

Three quick notes:

1. As noted a few pages ago, the convolution h ∗ f can be computed using either∫ t

0

h(x) f (t − x) dx or

∫ t

0

h(t − x) f (x) dx .

In practice, use whichever appears easier to compute given the h and f involved. In the

examples here, we used the first. Later, when we re-examine “resonance” in mass/spring

systems (section 27.7), we will use the other integral formula.

2. It turns out that the f (t) in Duhamel’s principle (as described above) does not have to be

Laplace transformable. By applying the above theorem with

fT (t) =
{

f (t) if t < T

0 if t ≥ T
,

and then letting T → ∞ , you can show that y = h ∗ f is well defined and satisfies the

initial-value problem even when f is merely piecewise continuous on (0,∞) .

3. It is not hard to show that, if you want the solution to

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = f (t) ,

but satisfying nonzero initial conditions, then you simply need to add the solution obtained by

Duhamel’s principle to the solution to the corresponding homogeneous differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

that satisfies the desired initial conditions.

Additional Exercises

26.2. Compute the convolution f ∗ g(t) of each of the following pairs of functions:

a. f (t) = e3t and g(t) = e5t b. f (t) = 1√
t

and g(t) = t2

c. f (t) = √
t and g(t) = 6 d. f (t) = t and g(t) = e3t

e. f (t) = t2 and g(t) = t2 f. f (t) = sin(t) and g(t) = t

g. f (t) = sin(t) and g(t) = sin(t) h. f (t) = sin(t) and g(t) = e−3t

26.3. Verify the associative property of convolution. That is, verify equation (26.5) on page 498.
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26.4. Using convolution, compute the inverse Laplace transform of each of the following:

a.
1

(s − 4)(s − 3)
b.

1

s(s − 3)
c.

1

s(s2 + 4)

d.
1

(s − 3)(s2 + 1)
e.

1

(s2 + 9)2
f.

s2

(s2 + 4)2

g.
1√

s(s − 3)
(leave in integral form) h.

1√
s
(
s2 + 4

) (leave in integral form)

26.5. For each of the following initial-value problems, find the corresponding transfer function

H and the impulse response function h , and write down the corresponding convolution

integral formula for the solution:

a. y′′ + 4y = f (t) with y(0) = 0 and y′(0) = 0

b. y′′ − 4y = f (t) with y(0) = 0 and y′(0) = 0

c. y′′ − 6y′ + 9y = f (t) with y(0) = 0 and y′(0) = 0

d. y′′ − 6y′ + 18y = f (t) with y(0) = 0 and y′(0) = 0

e. y′′′ + 16y′ = f (t) with y(0) = 0 and y′(0) = 0

26.6. Using the results from exercise 26.5 a, find the solution to

y′′ + 4y = f (t) with y(0) = 0 and y′(0) = 0

for each of the following choices of f :

a. f (t) = 1 b. f (t) = t c. f (t) = e3t

d. f (t) = sin(2t) e. f (t) = sin(αt) where α = 2

26.7. Using the results from exercise 26.5 c, find the solution to

y′′ − 6y′ + 9y = f (t) with y(0) = 0 and y′(0) = 0

for each of the following choices of f :

a. f (t) = 1 b. f (t) = t c. f (t) = e3t

d. f (t) = e−3t e. f (t) = eαt where α = 3

26.8. Using the results from exercise 26.5 e, find the solution to

y′′′ + 16y′ = f (t) with y(0) = 0 and y′(0) = 0

for each of the following choices of f :

a. f (t) = 1 b. f (t) = t c. f (t) = e3t

d. f (t) = sin(4t) e. f (t) = sin(at) where α = 4

26.9. Let f and g be two piecewise continuous functions on the positive real line satisfying, for

all t > 0 ,

| f (t)| < M f es0t and |g(t)| < Mges0t

for some constants M f , Mg and s0 .

a. Show that | f ∗ g(t)| < M f Mges0t t whenever t > 0 .

b. Why does this tell us that f ∗ g is of exponential order s1 for any s1 > s0 ?
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Piecewise-Defined Functions and Periodic
Functions

At the start of our study of the Laplace transform, it was claimed that the Laplace transform is

“particularly useful when dealing with nonhomogeneous equations in which the forcing functions

are not continuous”. Thus far, however, we’ve done precious little with any discontinuous functions

other than step functions. Let us now rectify the situation by looking at the sort of discontinuous

functions (and, more generally, “piecewise-defined” functions) that often arise in applications, and

develop tools and skills for dealing with these functions.

We will also take a brief look at transforms of periodic functions other than sines and cosines.

As you will see, many of these functions are, themselves, piecewise defined. And finally, we will use

some of the material we’ve recently developed to re-examine the issue of resonance in mass/spring

systems.

27.1 Piecewise-Defined Functions
Piecewise-Defined Functions, Defined

When we talk about a “discontinuous function f ” in the context of Laplace transforms, we usually

mean f is a piecewise continuous function that is not continuous on the interval (0,∞) . Such a

function will have jump discontinuities at isolated points in this interval. Computationally, however,

the real issue is often not so much whether there is a nonzero jump in the graph of f at a point

t0 , but whether the formula for computing f (t) is the same on either side of t0 . So we really

should be looking at the more general class of “piecewise-defined” functions that, at worst, have

jump discontinuities.

Just what is a piecewise-defined function? It is any function given by different formulas on

different intervals. For example,

f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < 1

1 if 1 < t < 2

0 if 2 < t

and g(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ 1

t − 1 if 1 < t < 2

1 if 2 ≤ t

are two relatively simple piecewise-defined functions. The first (sketched in figure 27.1a) is discon-

tinuous because it has nontrivial jumps at t = 1 and t = 2 . However, the second function (sketched

in figure 27.1b) is continuous because t − 1 goes from 0 to 1 as t goes from 1 to 2 . There are

no jumps in the graph of g .

509
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(a) (b)

TT

11

11 22 00

Figure 27.1: The graphs of two piecewise-defined functions.

By the way, we may occasionally refer to the sort of lists used above to define f (t) and g(t) as

sets of conditional formulas for f and g , simply because these are sets of formulas with conditions

stating when each formula is to be used.

Do note that, in the above formula set for f , we did not specify the values of f (t) when t = 1

or t = 2 . This was because f has jump discontinuities at these points and, as we agreed in chapter

23 (see page 455), we are not concerned with the precise value of a function at its discontinuities.

On the other hand, using the formula set given above for g , you can easily verify that

lim
t→1−

g(t) = 0 = lim
t→2+

g(t) and lim
t→1−

g(t) = 1 = lim
t→2+

g(t) ;

so there is not a true jump in g at these points. That is why we went ahead and specified that

g(1) = 0 and g(2) = 1 .

In the future, let us agree that, even if the value of a particular function f or g is not explicitly

specified at a particular point t0 , as long as the left- and right-hand limits of the function at t0 are

defined and equal, then the function is defined at t0 and is equal to those limits. That is, we’ll assume

f (t0) = lim
t→t0

−
f (t) = lim

t→t0
+

f (t)

whenever

lim
t→t0

−
f (t) = lim

t→t0
+

f (t) .

This will simplify notation a little and may keep us from worrying about issues of continuity when

those issues are not important.

Step Functions, Again

Most people would probably consider the step functions to be the simplest piecewise-defined func-

tions. These include the basic step function,

step(t) =
{

0 if t < 0

1 if 0 ≤ t

(sketched in figure 27.2a), as well as the step function at a point α ,

stepα(t) = step(t − α) =
{

0 if t < α

1 if α < t

(sketched in figure 27.2b).
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(a) (b)

α TT 00

11

Figure 27.2: The graphs of (a) the basic step function step(t) and (b) a shifted step function

stepα(t) with α > 0 .

We will be dealing with other piecewise-defined functions, but, even with these other functions,

we will find step functions useful. Step functions can be used as ‘switches’ — turning on and off the

different formulas in our piecewise-defined functions. In this regard, let us quickly observe what we

get when we multiply the step function by any function/formula g(t) :

g(t) stepα(t) =
{

g(t) · 0 if t < α

g(t) · 1 if α < t

}
=

{
0 if t < α

g(t) if α < t
.

Here, the step function at α ‘switches on’ g(t) at t = α . For example,

t2 step3(t) =
{

0 if t < 3

t2 if 3 < t

and

sin(t − 4) step4(t) =
{

0 if t < 4

sin(t − 4) if 4 < t
.

This fact will be very useful when applying Laplace transforms in problems involving piecewise-

defined functions, and we will find ourselves especially interested in cases where the formula being

multiplied by stepα(t) describes a function that is also translated by α (as in sin(t − 4) step4(t) ).

The Laplace transform of stepα(t) was computed in chapter 23. If you don’t recall how to

compute this transform, it would be worth your while to go back to review that discussion. It is also

worthwhile for us to look at a differential equation involving a step function.

!�Example 27.1: Consider finding the solution to

y′′ + y = step3 with y(0) = 0 and y′(0) = 0 .

Taking the Laplace transform of both sides:

L
[
y′′ + y

]∣∣
s

= L
[
step3

]∣∣
s

↪→ L
[
y′′]∣∣

s
+ L[y]|s = 1

s
e−3s

↪→ [
s2Y (s)− sy(0)− y′(0)

] + Y (s) = 1

s
e−3s

↪→ [
s2 + 1

]
Y (s) = 1

s
e−3s

↪→ Y (s) = 1

s(s2 + 1)
e−3s .
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Thus,

y(t) = L
−1

[
1

s(s2 + 1)
e−3s

]∣∣∣∣
t

.

Here, we have the inverse transform of an exponential multiplied by a function whose inverse

transform can easily be computed using, say, partial fractions. This would be a good point to

pause and discuss, in general, what can be done in such situations.1

27.2 The “Translation Along the T -Axis” Identity
The Identity

As illustrated in the above example, we may often find ourselves with

L
−1
[
e−αs F(s)

]∣∣
t

where α is some positive number and F(s) is some function whose inverse Laplace transform,

f = L
−1[F] , is either known or can be found with relative ease. Remember, this means

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt .

Consequently,

e−αs F(s) = e−αs

∫ ∞

0

f (t)e−st dt =
∫ ∞

0

f (t)e−αse−st dt =
∫ ∞

0

f (t)e−s(t+α) dt .

Using the change of variables τ = t + α (thus, t = τ − α ), and being careful with the limits of

integration, we see that

e−αs F(s) = · · · =
∫ ∞

t=0

f (t)e−s(t+α) dt =
∫ ∞

τ=α
f (τ − α)e−sτ dτ . (27.1)

This last integral is almost, but not quite, the integral for the Laplace transform of f (τ − α) (using

τ instead of t as the symbol for the variable of integration). And the reason it is not is that this

integral’s limits start at α instead of 0 . But that is where the limits would start if the function being

transformed were 0 for τ < α . This, along with observations made a page or so ago, suggests

viewing this integral as the transform of

f (t − α) stepα(t) =
{

0 if t < α

f (t − α) if α ≤ t
.

After all,∫ ∞

τ=α
f (τ − α)e−sτ dτ =

∫ ∞

t=α
f (t − α)e−st dt

=
∫ α

t=0

f (t − α) · 0 · e−st dt +
∫ ∞

t=α
f (t − α) · 1 · e−st dt

1 The observant reader will note that y can be found directly using convolution. However, beginners may find the compu-

tation of the needed convolution, sin(t) ∗ step3(t) , a little tricky. The approach being developed here reduces the need

for such convolutions and can be applied when convolution cannot be used. Still, convolutions with piecewise-defined

functions can be useful and will be discussed in section 27.4.
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=
∫ α

t=0

f (t − α) stepα(t)e
−st dt +

∫ ∞

t=α
f (t − α) stepα(t)e

−st dt

=
∫ ∞

t=0

f (t − α) stepα(t)e
−st dt

= L
[

f (t − α) stepα(t)
]∣∣

s
.

Combining the above computations with equation set (27.1) then gives us

e−αs F(s) = · · · =
∫ ∞

τ=α
f (τ − α)e−sτ dτ = · · · = L

[
f (t − α) stepα(t)

]∣∣
s

.

Cutting out the middle, we get our second translation identity:

Theorem 27.1 (second translation identity [translation along the T–axis])

Let

F(s) = L[ f (t)]|s
where f is any Laplace transformable function. Then, for any positive constant α ,

L
[

f (t − α) stepα(t)
]∣∣

s
= e−αs F(s) . (27.2a)

Equivalently,

L
−1
[
e−αs F(s)

]∣∣
t

= f (t − α) stepα(t) . (27.2b)

Computing Inverse Transforms
The Basic Computations

Computing inverse transforms using the translation along the T –axis identity is usually straightfor-

ward.

!�Example 27.2: Consider finding the inverse Laplace transform of

e−2s

s2 + 1
.

Applying the identity, we have

L
−1

[
e−2s

s2 + 1

]∣∣∣∣
t

= L
−1
[
e−2s 1

s2 + 1︸ ︷︷ ︸
F(s)

]∣∣∣
t

= L
−1
[
e−2s F(s)

]∣∣∣
t

= f (t − 2) step2(t) .

Here the inverse transform of F is easily read off the tables:

f (t) = L
−1[F(s)]|t = L

−1

[
1

s2 + 1

]∣∣∣∣
t

= sin(t) .

So, for any X ,

f (X) = sin(X) .

Using this with X = t − 2 in the above inverse transform computation then yields

L
−1

[
e−2s

s2 + 1

]∣∣∣∣
t

= f (t − 2) step2(t) = sin(t − 2) step2(t) .
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1

2 T2 + π 2 + 2π

Figure 27.3: The graph of sin(t − 2) step(t − 2) .

Keep in mind that

sin(t − 2) step2(t) =
{

0 if t < 2

sin(t − 2) if 2 < t
.

The graph of this function is sketched in figure 27.3.

Observe that, as illustrated in figure 27.3, the graph of

L
−1
[
e−αs F(s)

]∣∣
t

= f (t − α) stepα(t)

is always zero for t < α , and is the graph of f (t) on [0,∞) shifted by α for α ≤ t . Remembering

this can simplify graphing these types of functions.

Describing Piecewise-Defined Functions Arising From Inverse
Transforms

Let us start with a simple, but illustrative, example.

!�Example 27.3: Consider computing the inverse Laplace transform of

F(s) = 1

s2
e−s − 1

s2
e−2s .

Going to the tables, we see that

G(s) = 1

s2
�⇒ g(t) = t .

Using this, along with linearity and the second translation identity, we get

f (t) = L
−1[F(s)]|t = L

−1
[

1

s2
e−s − 1

s2
e−2s

]∣∣∣
t

= L
−1
[

1

s2
e−1s

]∣∣∣
t

− L
−1
[

1

s2
e−2s

]∣∣∣
t

= (t − 1) step1(t) − (t − 2) step2(t) .

Note that the step functions tell us that ‘significant changes’ occur in f (t) at the points t = 1

and t = 2 .

While the above is a valid answer, it is not a particularly convenient answer. It would be

much easier to graph and see what f really is if we go further and completely compute f (t) on

the intervals having t = 1 and t = 2 as endpoints:

For t < 1 ,

f (t) = (t − 1) step1(t)︸ ︷︷ ︸
0

− (t − 2) step2(t)︸ ︷︷ ︸
0

= 0 − 0 = 0 .
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For 1 < t < 2 ,

f (t) = (t − 1) step1(t)︸ ︷︷ ︸
1

− (t − 2) step2(t)︸ ︷︷ ︸
0

= (t − 1) − 0 = t − 1 .

For 2 < t ,

f (t) = (t − 1) step1(t)︸ ︷︷ ︸
1

− (t − 2) step2(t)︸ ︷︷ ︸
1

= (t − 1) − (t − 2) = 1 .

Thus,

f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < 1

t − 1 if 1 < t < 2

1 if 2 < t

.

(This is the function sketched in figure 27.1b on page 509.)

As just illustrated, piecewise-defined functions naturally arise when computing inverse Laplace

transforms using the second translation identity. Typically, use of this identity leads to an expression

of the form

f (t) = g0(t) + g1(t) stepα1
(t) + g2(t) stepα2

(t) + g3(t) stepα3
(t) + · · · (27.3)

where f is the function of interest, the gk(t)’s are various formulas, and the αk’s are positive

constants. This expression is a valid formula for f , and the step functions tell us that ‘significant

changes’ occur in f (t) at the points t = α1 , t = α2 , t = α3 , . . . . Still, to get a better picture of

the function f (t) , we will want to obtain the formulas for f (t) over each of the intervals bounded

by the αk’s . Assuming we were reasonably intelligent and indexed the αk’s so that

0 < α1 < α2 < α3 < · · · ,

we would have

For t < α1 ,

f (t) = g0(t) + g1(t) stepα1
(t)︸ ︷︷ ︸

0

+ g2(t) stepα2
(t)︸ ︷︷ ︸

0

+ g3(t) stepα3
(t)︸ ︷︷ ︸

0

+ · · ·

= g0(t) + 0 + 0 + 0 + · · · = g0(t) .

For α1 < t < α2 ,

f (t) = g0(t) + g1(t) stepα1
(t)︸ ︷︷ ︸

1

+ g2(t) stepα2
(t)︸ ︷︷ ︸

0

+ g3(t) stepα3
(t)︸ ︷︷ ︸

0

+ · · ·

= g0(t) + g1(t) + 0 + 0 + · · · = g0(t) + g1(t) .

For α2 < t < α3 ,

f (t) = g0(t) + g1(t) stepα1
(t)︸ ︷︷ ︸

1

+ g2(t) stepα2
(t)︸ ︷︷ ︸

1

+ g3(t) stepα3
(t)︸ ︷︷ ︸

0

+ · · ·

= g0(t) + g1(t) + g2(t) + 0 + · · · = g0(t) + g1(t) + g2(t) .

And so on.
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Thus, the function f described by formula (27.3), above, is also given by the conditional set of

formulas

f (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f0(t) if t < α1

f1(t) if α1 < t < α2

f2(t) if α2 < t < α3

...

where

f0(t) = g0(t) ,

f1(t) = g0(t) + g1(t) ,

f2(t) = g0(t) + g1(t) + g2(t) ,

...

.

Computing Transforms with the Identity

The translation along the T –axis identity is also helpful in computing the transforms of piecewise-

defined functions. Here, though, the computations typically require a little more care. We’ll deal

with fairly simple cases here, and develop this topic further in the next section.

!�Example 27.4: Consider finding L[g(t)]|s where

g(t) =
{

0 if t < 3

t2 if 3 < t
.

Remember, this function can also be written as

g(t) = t2 step3(t) .

Plugging this into the transform and applying our new translation identity gives

L[g(t)]|s = L

[
t2 step3(t)

]∣∣∣
s

= L
[

f (t − 3) step3(t)
]∣∣

s
= e−3s F(s)

where

f (t − 3) = t2 .

But we need the formula for f (t) , not f (t − 3) , to compute F(s) . To find that formula, let

X = t − 3 (hence, t = X + 3 ) in the formula for f (t − 3) . This gives

f (X) = (X + 3)2 .

Thus,

f (t) = (t + 3)2 = t2 + 6t + 9 ,

and

F(s) = L[ f (t)]|s = L

[
t2 + 6t + 9

]∣∣∣
s

= L

[
t2
]∣∣∣

s
+ 6L[t]|s + 9L[1]|s = 2

s3
+ 6

s2
+ 9

s
.
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α β T

1

Figure 27.4: Graph of the rectangle function rect(α,β)(t) with −∞ < α < β < ∞ .

Plugging this back into the above formula for L[g(t)]|s gives us

L[g(t)]|s = e−3s F(s) = e−3s

[
2

s3
+ 6

s2
+ 9

s

]
.

27.3 Rectangle Functions and Transforms of More
Piecewise-Defined Functions

Rectangle Functions

“Rectangle functions” are slight generalizations of step functions. Given any interval (α, β) , the

rectangle function on (α, β) , denoted rect(α,β) , is the function given by

rect(α,β)(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < α

1 if α < t < β

0 if β < t

.

The graph of rect(α,β) with −∞ < α < β < ∞ has been sketched in figure 27.4. You can see

why it is called a rectangle function — it’s graph looks rather “rectangular”, at least when α and β

are finite. If α = −∞ or β = ∞ , the corresponding rectangle functions simplify to

rect(−∞,β)(t) =
{

1 if t < β

0 if β < t

and

rect(α,∞)(t) =
{

0 if t < α

1 if α < t
.

And if both a = −∞ and b = ∞ , then we have

rect(−∞,∞)(t) = 1 for all t .

All of these rectangle functions can be written as simple linear combinations of 1 and step

functions at α and/or β , with, again, the step functions acting as ‘switches’ — switching the

rectangle function ‘on’ (from 0 to 1 at α ), and switching it ‘off’ (from 1 back to 0 at β ). In

particular, we clearly have

rect(−∞,∞)(t) = 1 and rect(α,∞)(t) = stepα(t) .
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Somewhat more importantly (for us), we should observe that, for −∞ < α < β < ∞ ,

1 − stepβ(t) =
{

1 − 0 if t < β

1 − 1 if β < t

}
=

{
1 if t < β

0 if β < t

}
= rect(−∞,β)(t) ,

and

stepα(t) − stepβ(t) =

⎧⎪⎪⎨⎪⎪⎩
0 − 0 if t < α

1 − 0 if α < t < β

1 − 1 if β < t

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩
0 if t < a

1 if α < t < β

0 if β < t

⎫⎪⎪⎬⎪⎪⎭ = rect(α,β)(t) .

In summary, for −∞ < α < β < ∞ ,

rect(α,β)(t) = stepα(t) − stepβ(t) , (27.4a)

rect(−∞,β)(t) = 1 − stepβ(t) (27.4b)

and

rect(α,∞)(t) = stepα(t) . (27.4c)

These formulas allow us to quickly compute the Laplace transforms of rectangle functions using

the known transforms of 1 and the step functions.

!�Example 27.5:

L
[
rect(3,4)(t)

]∣∣
s

= L
[
rect(3,4)(t)

]∣∣
s

= L
[
step3(t) − step4(t)

]∣∣
s

= L
[
step3(t)

]∣∣
s

− L
[
step4(t)

]∣∣
s

= 1

s
e−3s − 1

s
e−4s .

Transforming More General Piecewise-Defined Functions

To help us deal with more general piecewise-defined functions, let us make the simple observations

that

g(t) rect(a,b)(t) =

⎧⎪⎪⎨⎪⎪⎩
g(t) · 0 if t < a

g(t) · 1 if a < t < b

g(t) · 0 if b < t

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
0 if t < a

g(t) if a < t < b

0 if b < t

,

and

g(t) rect(−∞,b)(t) =
{

g(t) · 1 if t < b

g(t) · 0 if b < t

}
=

{
g(t) if t < b

0 if b < t
.

So functions of the form

f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < a

g(t) if a < t < b

0 if b < t

and h(t) =
{

g(t) if t < b

0 if b < t
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can be rewritten, respectively, as

f (t) = g(t) rect(a,b)(t) and h(t) = g(t) rect(−∞,b)(t) .

More generally, it should now be clear that anything of the form

f (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g0(t) if t < α1

g1(t) if α1 < t < α2

g2(t) if α2 < t < α3

...

(27.5a)

can be rewritten as

f (t) = g0(t) rect(−∞,α1)(t) + g1(t) rect(α1,α2)(t) + g2(t) rect(α2,α3)(t) + · · · . (27.5b)

The second form (with the rectangle functions) is a bit more concise than the “conditional set of

formulas” used in form (27.5a), and is generally preferred by typesetters. Of course, there is a more

important advantage of form (27.5b): Assuming f is piecewise continuous and of exponential order,

its Laplace transform can now be taken by expressing the rectangle functions in formula (27.5b) as

the linear combinations of 1 and step functions given in equation set (27.4), and then using linearity

and what we learned in the previous section about taking transforms of functions multiplied by step

functions.

!�Example 27.6: Consider finding F(s) = L[ f (t)]|s when

f (t) =
{

t2 if t < 3

0 if 3 < t
.

From the above, we see that

f (t) = t2 rect(−∞,3)(t)

= t2
[
1 − step3(t)

] = t2 − t2 step3(t) .

So

F(s) = L[ f (t)]|s = L

[
t2 − t2 step3(t)

]∣∣∣
s

= L

[
t2
]∣∣∣

s
− L

[
t2 step3(t)

]∣∣∣
s

.

The Laplace transform of t2 is in the tables, while the transform of t2 step3(t) just happened to

have been computed in example 27.4 a few pages ago. Using these transforms, the above formula

for F becomes

F(s) = 2

s3
− e−3s

[
2

s3
+ 6

s2
+ 9

s

]
.

!�Example 27.7: Consider finding F(s) = L[ f (t)]|s when

f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < 2

e3t if 2 < t < 4

0 if 4 < t

.

From the above, we see that

f (t) = e3t rect(2,4)(t)

= e3t
[
step2(t)− step4(t)

] = e3t step2(t) − e3t step4(t) .
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Thus,

L[ f (t)]|s = L

[
e3t step2(t)

]∣∣∣
s

− L

[
e3t step4(t)

]∣∣∣
s

. (27.6)

Both of the transforms on the right side of our last equation are easily computed via the

translation identity developed in this chapter. For the first, we have

L

[
e3t step2(t)

]∣∣∣
s

= L
[
g(t − 2) step2(t)

]∣∣
s

= e−2s G(s)

where

g(t − 2) = e3t .

Letting X = t − 2 (so t = X + 2 ), the last expression becomes

g(X) = e3(X+2) = e3X+6 = e6e3X .

So

g(t) = e6e3t

and

G(s) = L[g(t)]|s = L

[
e6e3t

]∣∣∣
s

= e6
L

[
e3t
]∣∣∣

s
= e6 1

s − 3
.

This, along with the first equation in this paragraph, gives us

L

[
e3t step2(t)

]∣∣∣
s

= e−2s G(s) = e−2se6 1

s − 3
= e−2(s−3)

s − 3
.

The transform of e3t step4(t) can be computed in the same manner, yielding

L

[
e3t step4(t)

]∣∣∣
s

= e−4(s−3)

s − 3
.

(The details of this computation are left to you.)

Finally, by combining the formulas we just obtained for the transforms of e3t step2(t) and

e3t step4(t) with equation (27.6), we have

L[ f (t)]|s = L

[
e3t step2(t)

]∣∣∣
s

− L

[
e3t step4(t)

]∣∣∣
s

= e−2(s−3)

s − 3
− e−4(s−3)

s − 3
.

!�Example 27.8: Let’s find the Laplace transform F(s) of

f (t) =

⎧⎪⎪⎨⎪⎪⎩
2 if t < 1

e3t if 1 < t < 3

t2 if 3 < t

.

To apply the Laplace transform, we first convert the above to an equivalent expression involving

step functions:

f (t) = 2 rect(−∞,1)(t) + e3t rect(1,3)(t) + t2 rect(3,∞)(t)

= 2
[
1 − step1(t)

] + e3t
[
step1(t)− step3(t)

] + t2 step3(t)

= 2 − 2 step1(t) + e3t step1(t) − e3t step3(t) + t2 step3(t) .
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Using the tables and methods already discussed earlier in this chapter (as in examples 27.7 and

27.4), we discover that

L[2]|s = 2

s
, L

[
2 step1(t)

]∣∣
s

= 2e−s

s
,

L

[
e3t step1(t)

]∣∣∣
s

= e−(s−3)

s − 3
, L

[
e3t step3(t)

]∣∣∣
s

= e−3(s−3)

s − 3

and

L

[
t2 step3(t)

]∣∣∣
s

= e−3s

[
2

s3
+ 6

s2
+ 9

s

]
.

Combining the above and using the linearity of the Laplace transform, we obtain

F(s) = L[ f (t)]|s
= L

[
2 − 2 step1(t)+ e3t step1(t)− e3t step3(t)+ t2 step3(t)

]∣∣∣
s

= 2

s
− 2e−s

s
+ e−(s−3)

s − 3
− e−3(s−3)

s − 3
+ e−3s

[
2

s3
+ 6

s2
+ 9

s

]
.

27.4 Convolution with Piecewise-Defined Functions

Take another look at example 27.1 on page 511. As noted in the footnote, we could have by-passed

much of the Laplace transform computation by simply observing that

y(t) = sin(t) ∗ step3(t)

and computing that convolution. But in the footnote, it was claimed that computing such convolutions

can be “a little tricky”. Well, to be honest, it’s not all that tricky. It’s more an issue of careful

bookkeeping.

When computing a convolution h ∗ f in which f is piecewise defined and h is not, you

need to realize that the resulting convolution will also be piecewise defined, with (as you will see

in the examples) the formula for h ∗ f changing at the same points where the formula for f

changes. Hence, you should compute h ∗ f separately over the different intervals bounded by these

points. Moreover, in computing the corresponding integrals, you will also need to account for the

piecewise-defined nature of f , and break up the integral appropriately. To simplify all this, it is

strongly recommended that you compute the convolution h ∗ f using the integral formula

h ∗ f (t) = f ∗ h(t)

∫ t

0

f (x)h(t − x) dx

(and not with the integrand h(x) f (t − x) ).

One or two examples should clarify matters.

!�Example 27.9: Let’s compute sin(t) ∗ step3(t) . Since step3 is piecewise defined, we will, as

suggested, use the integral formula

sin(t) ∗ step3(t) =
∫ t

0

step3(x) sin(t − x) dx
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First, we compute the integral assuming t < 3 . This one is easy:

sin(t) ∗ step3(t) =
∫ t

0

step3(x)︸ ︷︷ ︸
0

since x<t<3

sin(t − x) dx =
∫ t

0

0 · sin(t − x) dx = 0 .

So,

sin(t) ∗ step3(t) = 0 if t < 3 . (27.7)

On the other hand, if 3 < t , then the interval of integration includes x = 3 , the point at

which the value of step3(x) radically changes from 0 to 1. Thus, we must break up our integral

at the point x = 3 in computing h ∗ f :

sin(t) ∗ step3(t) =
∫ t

0

step3(x) sin(t − x) dx

=
∫ 3

0

step3(x)︸ ︷︷ ︸
0

since x<3

sin(t − x) dx +
∫ t

3

step3(x)︸ ︷︷ ︸
1

since 3<x

sin(t − x) dx

=
∫ 3

0

0 · sin(t − x) dx +
∫ t

3

1 · sin(t − x) dx

= 0 + cos(t − t) − cos(t − 3)

= 1 − cos(t − 3) .

Thus,

sin(t) ∗ step3(t) = 1 − cos(t − 3) if 3 < t . (27.8)

Combining our two results (formulas (27.7) and (27.8)), we have the complete set of condi-

tional formulas for our convolution,

sin(t) ∗ step3(t) =
{

0 if t < 3

1 − cos(t − 3) if 3 < t
.

Glance back at the above example and observe that, immediately after the computation of

sin(t)∗ step3(t) for each different case ( t < 3 and 3 < t ), the resulting formula for the convolution

was rewritten along with the values assumed for t (formulas (27.7) and (27.8), respectively). Do

the same in your own computations! Always rewrite any derived formula for your convolution along

with the values assumed for t . And write this someplace safe where you can easily find it. This is

part of the bookkeeping, and helps ensure that you do not lose parts of your work when you compose

the full set of conditional formulas for the convolution.

One more example should be quite enough.

!�Example 27.10: Let’s compute e−3t ∗ f (t) where

f (t) =

⎧⎪⎪⎨⎪⎪⎩
t if t < 2

2 if 2 < t < 4

0 if 4 < t

.
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For this convolution, we can do a little “pre-computing” to simplify later steps:

e−3t ∗ f (t) =
∫ t

0

f (x)e−3(t−x) dx

=
∫ t

0

f (x)e−3t+3x dx = e−3t

∫ t

0

f (x)e3x dx .

Now, if t < 2 ,

e−3t ∗ f (t) = e−3t

∫ t

0

f (x)︸︷︷︸
x

(since x < t < 2 )

e3x dx = e−3t

∫ t

0

xe3x dx .

This integral is easily computed using integration by parts, yielding

e−3t ∗ f (t) = e−3t
[

t

3
e3t − 1

9
e3t + 1

9

]
= 1

9

[
3t − 1 + e−3t

]
.

Thus,

e−3t ∗ f (t) = 1

9

[
3t − 1 + e−3t

]
if t < 2 . (27.9)

On the other hand, when 2 < t < 4 ,

e−3t ∗ f (t) = e−3t

∫ t

0

f (x)e3x dx

= e−3t

[ ∫ 2

0

f (x)︸︷︷︸
x

(since x < 2 )

e3x dx +
∫ t

2

f (x)︸︷︷︸
2

(since 2 < x < t < 4 )

e3x dx

]

= e−3t

[ ∫ 2

0

xe3x dx +
∫ t

2

2 · e3x dx

]
= · · ·
= e−3t

[
1

9

(
5e6 + 1

)
+ 2

3

(
e3t − e6

)]
= · · ·

= 2

3
+ 1

9

[
1 − e6

]
e−3t .

Thus,

e−3t ∗ f (t) = 2

3
+ 1

9

[
1 − e6

]
e−3t for 2 < t < 4 . (27.10)

Finally, when 6 < t ,

e−3t ∗ f (t) = e−3t

∫ t

0

e3x f (x) dx

= e−3t

[ ∫ 2

0

f (x)︸︷︷︸
x

(since x < 2 )

e3x dx +
∫ 4

2

f (x)︸︷︷︸
2

(since 2 < x < 4 )

e3x dx +
∫ t

4

f (x)︸︷︷︸
0

(since 4 < x )

e3x dx

]

= e−3t

[ ∫ 2

0

xe3x dx +
∫ 4

2

2 · e3x dx +
∫ t

4

0 · e3x dx

]
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= · · ·
= e−3t

[
1

9

(
5e6 + 1

)
+ 2

3

(
e12 − e6

)
+ 0

]
= · · ·

= 1

9

[
6e12 + 1 − e6

]
e−3t .

Thus,

e−3t ∗ f (t) = 1

9

[
6e12 + 1 − e6

]
e−3t for 4 < t . (27.11)

Putting it all together, equations (27.9), (27.10) and (27.11) give us

e−3t ∗ f (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

9

[
3t − 1 + e−3t

]
if t < 2

2

3
+ 1

9

[
1 − e6

]
e−3t if 2 < t < 4

1

9

[
6e12 + 1 − e6

]
e−3t if 4 < t

.

And what if both f and g are piecewise defined? Then you must keep track of where formulas

of both f (t) and h(t−x) change. Fortunately, we will have little need to deal with such convolutions

at this time.

27.5 Periodic Functions
Basics

Often, a function of interest f is periodic with period p for some positive value p . This means

that the graph of the function remains unchanged when shifted to the left or right by p . This is

equivalent to saying

f (t + p) = f (t) for all t . (27.12)

You are well-acquainted with several periodic functions — the trigonometric functions, for example.

In particular, the basic sine and cosine functions

sin(t) and cos(t)

are periodic with period p = 2π . But other periodic functions, such as the “saw” function sketched

in figure 27.5a and the “square-wave” function sketched in figure 27.5b, can arise in applications.

Strictly speaking, a truly periodic function is defined on the entire real line, (−∞,∞) . For

our purposes, though, it will suffice to have f “periodic on (0,∞) ” with period p . This simply

means that f is that part of a periodic function along the positive T –axis. What f (t) is for t < 0

is irrelevant. Accordingly, for functions periodic on (0,∞) , we modify requirement (27.12) to

f (t + p) = f (t) for all t > 0 . (27.13)

In what follows, however, it will usually be irrelevant as to whether a given function is truly periodic

or merely periodic on (0,∞) , In either case, we will refer to the function as “periodic”, and specify

whether it is defined on all of (−∞,∞) or just (0,−∞) only if necessary.
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(a) (b)
TT 11

11

22 33 44

Figure 27.5: Two periodic functions: (a) a basic saw function, and (b) a basic square wave

function.

A convenient way to describe a periodic function f with period p is by

f (t) =
{

f0(t) if 0 < t < p

f (t + p) in general
.

The f0(t) is the formula for f over the base period interval (0, p) . The second line is simply telling

us that the function is periodic and that equation (27.12) or (27.13) holds and can be used to compute

the function at points outside of the base period interval. (The value of f (t) at t = 0 and integral

multiples of p are determined — or ignored — following the conventions for piecewise-defined

functions discussed in section 27.1.)

!�Example 27.11: Let saw(t) denote the basic saw function sketched in figure 27.5a. It clearly

has period p = 1 , has jump discontinuities at integer values of t , and is given on (0,∞) by

saw(t) =
{

t if 0 < t < 1

saw(t + 1) in general
.

In this case, the formula for computing saw(τ ) when 0 < τ < 1 is

saw0(τ ) = τ .

So, for example, saw
(

3/4

) = 3/4 .

On the other hand, to compute saw(τ ) when τ > 1 (and not an integer), we must use

saw(t + 1) = saw(t)

repeatedly until we finally reach a value t in the base period interval (0, 1) . For example,

saw
(

8

3

)
= saw

(
5

3
+ 1

)
= saw

(
5

3

)
= saw

(
2

3
+ 1

)
= saw

(
2

3

)
= 2

3
.

Often, the formula for the function over the base period interval is, itself, piecewise defined.

!�Example 27.12: Let sqwave(t) denote the square-wave function in figure 27.5b. This function

has period p = 2 , and, over its base period interval (0, 2) , is given by

sqwave(t) =
{

1 if 0 < t < 1

0 if 1 < t < 2
.



�

�

�

�

�

�

�

�

526 Piecewise-Defined Functions and Periodic Functions

So,

sqwave(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 < t < 1

0 if 1 < t < 2

sqwave(t − 2) in general

.

Before discussing Laplace transforms of periodic functions, let’s make a couple of observations

concerning a function f which is periodic with period p over (0,∞) . We won’t prove them.

Instead, you should think about why these statements are “obviously true”.

1. If f is piecewise continuous over (0, p) , then f is piecewise continuous over (0,∞) .

2. If f is piecewise continuous over (0, p) , then f is of exponential order s0 = 0 .

Transforms of Periodic Functions

Suppose we want to find the Laplace transform

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt

when f is piecewise continuous and periodic with period p . Because f (t) satisfies

f (t) = f (t + p) for t > 0 ,

we should expect to (possibly) simplify our computations by partitioning the integral of the transform

into integrals over subintervals of length p ,

F(s) =
∫ ∞

0

f (t)e−st dt

=
∫ p

0

f (t)e−st dt +
∫ 2 p

p

f (t)e−st dt +
∫ 3p

2 p

f (t)e−st dt

+
∫ 4p

3p

f (t)e−st dt +
∫ 5p

4p

f (t)e−st dt + · · · .

For brevity, let’s rewrite this as

F(s) =
∞∑

k=0

∫ (k+1)p

kp

f (t)e−st dt . (27.14)

Now consider using the substitution τ = t −kp in the kth term of this summation. Then t = τ+kp ,

e−st = e−s(τ+kp) = e−kpse−sτ ,

and, by the periodicity of f ,

f (τ + p) = f (τ )

f (τ + 2p) = f ([τ + p] + p) = f (τ + p) = f (τ )

f (τ + 3p) = f ([τ + 2p] + p) = f (τ + 2p) = f (τ )

...

f (τ + kp) = · · · = f (τ ) .
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So, ∫ (k+1)p

t=kp

f (t)e−st dt =
∫ (k+1)p−kp

τ=kp−kp

f (τ + kp)e−s(τ+kp) dt

=
∫ p

0

f (τ )e−kpse−sτ dt = e−kps

∫ p

0

f (τ )e−sτ dt .

Note that the last integral does not depend on k . Consequently, combining the last result with

equation (27.14), we have

F(s) =
∞∑

k=0

e−kps

∫ p

0

f (τ )e−sτ dt =
[ ∞∑

k=0

e−kps

]∫ p

0

f (τ )e−sτ dτ .

Here we have an incredible stroke of luck, at least if you recall what a geometric series is and

how to compute its sum. Assuming you do recall this, we have

∞∑
k=0

e−kps =
∞∑

k=0

[
e−ps

]k = 1

1 − e−ps
. (27.15)

We also have this if you do not recall about geometric series, but then you will certainly want to go

to the brief review of geometric series in section 29.1 to see how we get this equation.

Whether or not you recall about geometric series, equation (27.15) combined with the last

formula for F (along with the observations made earlier regarding piecewise continuity and periodic

functions) gives us the following theorem.

Theorem 27.2

Let f be a piecewise continuous and periodic function with period p . Then its Laplace transform

F is given by

F(s) = F0(s)

1 − e−ps
for s > 0

where

F0(s) =
∫ p

0

f (t)e−st dt .

There are at least two alternative ways of describing F0 in the above theorem. First of all, if

f is given by

f (t) =
{

f0(t) if 0 < t < p

f (t + p) in general
,

then, of course,

F0(s) =
∫ p

0

f0(t)e
−st dt .

Also, using the fact that∫ p

0

f0(t)e
−st dt =

∫ ∞

0

f0(t) rect(0,p)(t) e−st dt ,

we see that

F0(s) = L
[

f0(t) rect(0,p)(t)
]∣∣

s

or, equivalently, that

F0(s) = L
[

f (t) rect(0,p)(t)
]∣∣

s
.

Whether any of the alternative descriptions of F0(s) is useful may depend on what transforms you

have already computed.
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!�Example 27.13: Let’s find the Laplace transform of the saw function from example 27.11 and

sketched in figure 27.5a,

saw(t) =
{

t if 0 < t < 1

saw(t + 1) in general
.

Here, p = 1 , and the last theorem tells us that

L[saw(t)]|s = F0(s)

1 − e−1·s = F0(s)

1 − e−s
for s > 0

where (using each of the formulas discussed for F0 )

F0(s) =
∫ 1

0

saw(t)e−st dt (27.16a)

=
∫ 1

0

te−st dt (27.16b)

= L
[
t rect(0,1)(t)

]∣∣
s

. (27.16c)

Had the author been sufficiently clever, L
[
t rect(0,1)(t)

]
would have already been computed in a

previous example, and we could write out the final result using formula (27.16c). But he wasn’t,

so let’s just compute F0(s) using formula (27.16b) and integration by parts:

F0(s) =
∫ 1

0

te−st dt

= − t

s
e−st

∣∣∣1
t=0

−
∫ 1

0

(
−1

s

)
e−st dt

= −1

s
e−s·1 + 0 − 1

s2

[
e−s·1 − e−s·0

]
= 1

s2

[
1 − e−s − se−s

]
.

Hence,

L[saw(t)]|s = F0(s)

1 − e−s

= 1

s2
· 1 − e−s − se−s

1 − e−s

= 1

s2

[
1 − se−s

1 − e−s

]
= 1

s2
− 1

s
· e−s

1 − e−s
.

This is our transform. If you wish, you can apply a little algebra and ‘simplify’ it to

L[saw(t)]|s = 1

s2
− 1

s
· 1

es − 1
,

though you may prefer to keep the formula with 1 − e−ps in the denominator to remind you that

this transform came from a periodic function with period p .

Just for fun, let’s go even further using the fact that

e−s

1 − e−s
= e−s

1 − e−s
· 2es/2

2es/2
= 1

2
· 2e−s/2

es/2 − e−s/2
= 1

2
· e−s/2

sinh(s/2)
.

Thus, the above formula for the Laplace transform of the saw function can also be written as

L[saw(t)]|s = 1

s2
− 1

2s
· e−s/2

sinh(s/2)
.

This is significant only in that it demonstrates why hyperbolic trigonometric functions are some-

times found in tables of transforms.
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Table 27.1: Commonly Used Identities (Version 2)

In the following, F(s) = L[ f (t)]|s .

h(t) H(s) = L[h(t)]|s Restrictions

f (t)

∫ ∞

0
f (t)e−st dt

eαt f (t) F(s − α) α is real

f (t − α) stepα(t) e−αs F(s) α > 0

d f

dt
s F(s) − f (0)

d2 f

dt2
s2 F(s) − s f (0) − f ′(0)

dn f

dtn

sn F(s) − sn−1 f (0) − sn−2 f ′(0)
− sn−3 f ′′(0) − · · · − f (n−1)(0)

n = 1, 2, 3, . . .

t f (t) −d F

ds

tn f (t) (−1)n
dn F

dsn
n = 1, 2, 3, . . .

∫ t

0
f (τ ) dτ

F(s)

s

f (t)

t

∫ ∞

s
F(σ ) dσ

f ∗ g(t) F(s)G(s)

f is periodic with period p

∫ p
0

f (t)e−st dt

1 − e−ps

27.6 An Expanded Table of Identities

For reference, let us write out a new table of Laplace transform identities containing the identities

listed in our first table of Laplace transform identities, table 24.1 on page 472, along with some of

the more important identities derived after making that table. Our new table is table 27.1.
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y(t) Y

m

0

f

Figure 27.6: A mass/spring system with mass m and an outside force f acting on the mass.

27.7 Duhamel’s Principle and Resonance
The Problem

Now is a good time to re-examine some of those “forced” mass/spring systems originally discussed

in chapter 21, and diagrammed in figure 27.6. Recall that this system is modeled by

m
d2 y

dt2
+ γ

dy

dt
+ κy = f

where y = y(t) is the position of the mass at time t (with y = 0 being the “equilibrium” position of

the mass when f = 0 ), m is the mass of the object attached to the spring, κ is the spring constant,

γ is the damping constant, and f = f (t) is the sum of all forces acting on the spring other than the

damping friction and the spring’s reaction to being stretched and compressed ( f was called Fother

in chapter 16 and F in chapter 21). Remember, also, that m and κ are positive constants.

Our main interest will be in the phenomenon of resonance in an undamped system. Accordingly,

we will assume γ = 0 , and restrict our attention to solving

m
d2 y

dt2
+ κy = f . (27.17)

Ultimately, we will further restrict our attention to cases in which f is periodic. But let’s wait on

that, and derive some basic formulas without assuming this periodicity.

Solutions Using Arbitrary f
The General Solution

As you know quite well by now, the general solution to our differential equation, equation (27.17),

is

y(t) = yp(t) + yh(t)

where yh is the general solution to the corresponding homogeneous differential equation, and yp

is any particular solution to the given nonhomogeneous differential equation.

The formula for yh is already known. In chapter 16, we found that

yh(t) = c1 cos(ω0t) + c2 sin(ω0t) where ω0 =
√
κ

m
.

Recall that ω0 is the natural angular frequency of the mass/spring system, and is related to the

system’s natural frequency ν0 and natural period p0 via

ν0 = ω0

2π
and p0 = 1

ν0
= 2π

ω0
.
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For future use, note that yh is a periodic function with period p0 ; hence

yh(t + p0) − yh(t) = 0 for all t .

That leaves finding a particular solution yp . Let’s take this to be the solution to the initial-value

problem

m
d2 y

dt2
+ κy = f with y(0) = 0 and y′(0) = 0 .

This is easily found by either applying the Laplace transform and using the convolution identity in

taking the inverse transform, or by appealing directly to Duhamel’s principle. Either way, we get

yp(t) = h ∗ f (t) =
∫ t

0

h(t − x) f (x) dx

where

h(τ ) = L
−1

[
1

ms2 + κ

]∣∣∣∣
τ

= 1

m
L

−1

[
1

s2 + κ/m

]∣∣∣∣
τ

.

Since ω0 = √
κ/m ,

h(τ ) = 1

m
L

−1

[
1

s2 + (ω0)
2

]∣∣∣∣
τ

= 1

ω0m
sin(ω0τ ) .

Thus, the above integral formula for yp can be written as

yp(t) = 1

ω0m

∫ t

0

sin(ω0[t − x]) f (x) dx . (27.18)

The Difference Formula and First Theorem

For our studies, we will want to see how any solution y varies “over a cycle” (i.e., as t increases

by p0 ). This variance in y over a cycle is given by the difference y(t + p0) − y(t) , and will be

especially meaningful when the forcing function is periodic with period p0 .

For now, let’s consider the difference y(t + p0)− y(t) assuming y = yp + yh is any solution

to our differential equation. Of course, the yh term is irrelevant because of its periodicity,

y(t + p0) − y(t) = [
yp(t + p0)+ yh(t + p0)

] − [
yp(t)+ yh(t)

]
= yp(t + p0) − yp(t) + yh(t + p0)− yh(t)︸ ︷︷ ︸

0

.

Now, using formula (27.18) for yp , we see that

yp(t + p0) = 1

ω0m

∫ t+p0

0

sin(ω0[(t + p0)− x]) f (x) dx

= 1

ω0m

∫ t+p0

0

sin(ω0[t − x] + ω0 p0︸ ︷︷ ︸
2π

) f (x) dx

= 1

ω0m

∫ t+p0

0

sin(ω0[t − x]) f (x) dx

= 1

ω0m

∫ t

0

sin(ω0[t − x]) f (x) dx + 1

ω0m

∫ t+p0

t

sin(ω0[t − x]) f (x) dx .
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But the first integral in the last line is simply the integral formula for yp(t) given in equation (27.18).

So the above reduces to

y(t + p0) = y(t) + 1

ω0m

∫ t+p0

t

sin(ω0[t − x]) f (x) dx . (27.19)

To further “reduce” our difference formula, let us use a well-known trigonometric identity:∫ t+p0

t

sin(ω0[t − x]) f (x) dx

=
∫ t+p0

t

sin(ω0t − ω0x) f (x) dx

=
∫ t+p0

t

[sin(ω0t) cos(ω0x) − cos(ω0t) sin(ω0x)] f (x) dx

= sin(ω0t)

∫ t+p0

t

cos(ω0x) f (x) dx − cos(ω0t)

∫ t+p0

t

sin(ω0x) f (x) dx .

Combining this result with the last equation for y(t + p0) and recalling the previous results derived

in this section then yield:

Theorem 27.3

Let m and κ be positive constants, and let f be any piecewise continuous function of exponential

order. Then, the general solution to

m
d2 y

dt2
+ κy = f

is

y(t) = yp(t) + c1 cos(ω0t) + c2 sin(ω0t)

where

ω0 =
√
κ

m
and yp(t) = 1

ω0m

∫ t

0

sin(ω0[t − x]) f (x) dx .

Moreover,

y(t + p0) − y(t) = 1

ω0m
[IS(t) sin(ω0t) + IC (t) cos(ωt)] for t ≥ 0

where

IS(t) =
∫ t+p0

t

cos(ω0x) f (x) dx and IC (t) = −
∫ t+p0

t

sin(ω0x) f (x) dx .

Resonance from Periodic Forcing Functions
A Useful Fact

Take a look at figure 27.7. It shows the graph of some periodic function g with period p0 , and

with two regions of width p0 “greyed in” in two shades of grey. The darker grey region is between

the graph and the T –axis with 0 < t < p0 . The lighter grey region is between the graph and the

T –axis with a < t < a + p0 for some real number a . Note the similarity in the shapes of the

regions. In particular, note how the pieces of the lighter grey region can be rearranged to perfectly

match the darker grey region. Consequently, the areas in each of these two regions, both above and
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T0

p0p0

p0 a a + p0

Figure 27.7: Illustration for lemma 27.4.

below the T –axis, are the same. Add to this the relationship between “integrals” and “area”, and you

get the useful fact stated in the next lemma.

Lemma 27.4

Let g be a periodic, piecewise continuous function with period p0 . Then, for any t ,∫ t+p0

t

g(x) dx =
∫ p0

0

g(x) dx .

If you wish, you can rigorously prove this lemma using some basic theory from elementary

calculus.

?�Exercise 27.1: Prove lemma 27.4. A good start would be to show that

d

dt

∫ t+p0

t

g(x) dx = 0 .

Resonance

Now consider the formulas for IS(t) and IC (t) from theorem 27.3,

IS(t) =
∫ t+p0

t

cos(ω0x) f (x) dx and IC (t) = −
∫ t+p0

t

sin(ω0x) f (x) dx .

If f is also periodic with period p0 , then the products in these integrals are also periodic, each with

period p0 . Lemma 27.4 then tells us that

IS(t) =
∫ t+p0

t

cos(ω0x) f (x) dx =
∫ p0

0

cos(ω0x) f (x) dx

and

IC (t) = −
∫ t+p0

t

sin(ω0x) f (x) dx = −
∫ p0

0

sin(ω0x) f (x) dx .

Thus, if f is periodic with period p0 , the difference formula in theorem 27.3 reduces to

y(t + p0) − y(t) = 1

ω0m
[IS sin(ω0t) + IC cos(ωt)]

where IS and IC are the constants

IS =
∫ p0

0

cos(ω0x) f (x) dx and IC = −
∫ p0

0

sin(ω0x) f (x) dx .
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Using a little more trigonometry (see the derivation of formula (16.8b) on page 324), we can reduce

this to the even more convenient form given in the the next theorem.

Theorem 27.5 (resonance in undamped systems)

Let m and p be positive constants, and f a periodic piecewise continuous function. Assume

further that f has period p0 , the natural period of the mass/spring system modeled by

m
d2 y

dt2
+ κy = f .

That is,

period of f = p0 = 2π

ω0
with ω0 =

√
κ

m
.

Also let

IS =
∫ p0

0

cos(ω0x) f (x) dx and IC = −
∫ p0

0

sin(ω0x) f (x) dx .

Then, for any solution y to the above differential equation, and any t > 0 ,

y(t + p0) − y(t) = A cos(ω0t − φ) (27.20)

where

A = 1

ω0m

√
(IS)

2 + (IC )
2

and with φ being the constant satisfying 0 ≤ φ < 2π ,

cos(φ) = IC√
(IS)

2 + (IC )
2

and sin(φ) = IS√
(IS)

2 + (IC )
2

.

To see what all this implies, assume f , y , etc. are as in the theorem, and look at what the

difference formula tells us about y(tn) when τ is any fixed value in [0, p0) , and

tn = τ + np0 for n = 1, 2, 3, . . . .

The value of y(τ ) can be computed using the integral formula for yp in theorem 27.3. To compute

each y(tn) , however, it is easier to use this computed value for y(τ ) along with difference formula

(27.20) and the fact that, for any integer k ,

cos(ω0tk − φ) = cos(ω0[τ + kp0] − φ) = cos(ω0τ − φ + k ω0 p0︸ ︷︷ ︸
2π

) = cos(ω0τ − φ) .

Doing so, we get

y(t1) = y(τ + p0) = y(τ ) + A cos(ω0τ − φ) ,

y(t2) = y(τ + 2p0) = y(τ + p0) + A cos(ω0[τ + p0] − φ)

= [y(τ )+ A cos(ω0t − φ)] + A cos(ω0τ − φ)

= y(τ ) + 2A cos(ω0τ − φ) ,

y(t3) = y(τ + 3p0) = y(τ + 2p0) + A cos(ω0[τ + 2p0] − φ)

= [y(τ )+ 2A cos(ω0t − φ)] + A cos(ω0τ − φ)

= y(τ ) + 3A cos(ω0τ − φ) ,
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(a) (b)

T
T

1
1

1

2
2

3
3

4
4

5

Y

Figure 27.8: (a) A basic saw function, and (b) the corresponding response of an undamped

mass/spring system with natural period 1 over 6 cycles.

and so on. In general,

y(tn) = y(τ ) + n A cos(ω0τ − φ) . (27.21)

Clearly, if A = 0 and ω0τ − φ is neither π/2 or 3π/2 , then

y(tn) → ±∞ as n → ∞ .

This is clearly “runaway resonance”.

Thus, it is the A in difference formula (27.20) that determines if we have “runaway resonance”.

If A = 0 , the solution contains an oscillating term with a steadily increasing amplitude. On the

other hand, if A = 0 , then the solution y is periodic and does not “blow up”.

By the way, for graphing purposes it may be convenient to use the periodicity of the cosine term

and rewrite equation (27.21) as

y(tn) = y(τ ) + n A cos(ω0tn − φ) .

Replacing tn with t , and recalling what n and τ represent, we see that this is the same as saying

y(t) = y(τ ) + n A cos(ω0τ − φ) (27.22)

where n is the largest integer such that np0 ≤ t and τ = t − np0 .

!�Example 27.14: Let us use the theorems in this section to analyze the response of an undamped

mass/spring system with natural period p0 = 1 to a force f given by the basic saw function

sketched in figure 27.8a,

f (t) = saw(t) =
{

t if 0 < t < 1

saw(t − 1) if 1 < t
.

The corresponding natural angular frequency is

ω0 = 2π

p0
= 2π .

The actual values of the mass m and spring constant κ are irrelevant provided they satisfy

2π = ω0 =
√
κ

m
.

Also, since the solution to the corresponding homogeneous differential equation was pretty much

irrelevant in the discussion leading to our last theorem, let’s assume our solution satisfies

y(0) = 0 and y′(0) = 0 ,
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so that the solution formula described in theorem 27.3 becomes

y(t) = yp(t) = 1

2πm

∫ t

0

sin(ω0[t − x]) saw(x) dx .

In particular, if 0 ≤ x ≤ t < 1 , then saw(x) = x , and we can complete our computations

of y(t) using integration by parts:

y(t) = 1

2πm

∫ t

0

sin(2π [t − x]) x dx

= 1

2πm

[
x

2π
cos(2π [t − x])

∣∣∣t
x=0

−
∫ t

0

1

2π
cos(2π [t − x]) dx

]
= 1

2πm

[
t

2π
cos(2π [t − t]) − 0

2π
cos(2π [t − 0])

+ 1

(2π)2
sin(2π [t − t]) − 1

(2π)2
sin(2π [t − 0])

]
.

This simplifies to

y(t) = 1

8π3m
[2π t − sin(2π t)] when 0 ≤ t < 1 . (27.23)

In a similar manner, we find that

IS =
∫ p0

0

cos(ω0x) f (x) dx =
∫ 1

0

cos(2πx) x dx = · · · = 0

and

IC = −
∫ p0

0

sin(ω0x) f (x) dx = −
∫ 1

0

sin(2πx) x dx = · · · = 1

2π
.

Thus,

A = 1

2πm

√
(IS)

2 + (IC )
2 = 1

4π2m
.

Since A = 0 , we have resonance. There is an oscillatory term whose amplitude steadily increases

as t increases.

To actually graph our solution, we still need to find the phase, φ , which (according to our

last theorem) is the value in [0, 2π) such that

cos(φ) = IC√
(IS)

2 + (IC )
2

= 1 and sin(φ) = IS√
(IS)

2 + (IC )
2

= 0 .

Clearly φ = 0 .

So let t ≥ 0 . Then, employing formula (27.22) (derived just before this example),

y(t) = y(τ ) + n A cos(ω0t − φ)

= 1

8π3m
[2πτ − sin(2πτ)] + n

4π2m
cos(2π t)

where (since p0 = 1 ) n is the largest integer with n ≤ t and τ = t − n . This is the function

graphed in figure 27.8b.
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Additional Exercises

27.2. Using the first translation identity or one of the differentiation identities, compute each of

the following:

a. L

[
e4t step6(t)

]∣∣∣
s

b. L
[
t step6(t)

]∣∣
s

27.3. Compute (using the translation along the T –axis identity) and then graph the inverse trans-

forms of the following functions:

a.
e−4s

s3
b.

e−3s

s + 2
c.

√
πs−3/2e−s

d.
π

s2 + π2
e−2s e.

e−4s

(s − 5)3
f.

(s + 2)e−5s

(s + 2)2 + 16

27.4. Finish solving the differential equation in example 27.1.

27.5. Compute and then graph the inverse transforms of the following functions (express your

answers as sets of conditional formulas):

a.
1 − e−s

s2
b.

e−s + e−3s

s
c.

2

s3
− 2 + 4s

s3
e−2s

d.
π
(
1 + e−s

)
s2 + π2

e.
(s + 4)e−12 − 8e−3s

s2 − 16
f.

e−2s − 2e−4s + e−6s

s2

27.6. Find and graph the solution to each of the following initial-value problems:

a. y′ = step3(t) with y(0) = 0

b. y′ = step3(t) with y(0) = 4

c. y′′ = step2(t) with y(0) = 0 and y′(0) = 0

d. y′′ = step2(t) with y(0) = 4 and y′(0) = 6

e. y′′ + 9y = step10(t) with y(0) = 0 and y′(0) = 0

27.7. Compute the Laplace transforms of the following functions using the translation along the

T –axis identity. (Trigonometric identities may also be useful for some of these.)

a. f (t) =
{

0 if t < 6

e4t if 6 < t
b. g(t) =

⎧⎨⎩ 0 if t < 4

1√
t − 4

if 4 < t

c. t step6(t) d. te3t step2(t)

e. t2 step6(t) f. sin(2(t − 1)) step1(t)

g. sin(2t) stepπ/2(t) h. sin(2t) stepπ/4(t)

i. sin(2t) stepπ/6(t)
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27.8. For each of the following choices of f :

i. Graph the given function over the positive T –axis.

ii. Rewrite the function in terms of appropriate rectangle functions, and then rewrite

that in terms of appropriate step functions.

iii. Then find the Laplace transform F(s) = L[ f (t)]|s .

a. f (t) =
{

e−4t if t < 6

0 if 6 < t
b. f (t) =

{
2t − t2 if t < 2

0 if 2 < t

c. f (t) =
{

2 if t < 3

2e−4(t−3) if 3 < t
d. f (t) =

{
sin(π t) if t < 1

0 if 1 < t

e. f (t) =
{

t2 if t < 3

9 if 3 < t
f. f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < 2

3 if 2 < t < 4

0 if 4 < t

g. f (t) =

⎧⎪⎪⎨⎪⎪⎩
1 if t < 1

2 if 2 < t < 3

4 if 3 < t

h. f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < 1

sin(π t) if 1 < t < 2

0 if 2 < t

i. f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ 1

(t − 1)2 if 1 < t < 3

4 if 3 ≤ t

j. f (t) =

⎧⎪⎪⎨⎪⎪⎩
t if t ≤ 2

4 − t if 2 < t < 4

0 if 3 ≤ t

27.9. The infinite stair function, stair(t) , can be described in terms of rectangle functions by

stair(t) =
∞∑

n=0

(n + 1) rect(n,n+1)(t)

= 1 rect(0,1)(t) + 2 rect(1,2)(t) + 3 rect(2,3)(t) + 4 rect(3,4)(t) + · · · .

Using this:

a. Sketch the graph of stair(t) over the positive T –axis, and rewrite the formula for stair(t)

in terms of step functions.

b. Assuming the linearity of the Laplace transform holds for infinite sums as well as finite

sums, find an infinite sum formula for L[stair(t)]|s .

c. Recall the formula for the sum of a geometric series,

∞∑
n=0

Xn = 1

1 − X
when |X | < 1 .

Using this, simplify the infinite sum formula for L[stair(t)]|s which you obtained in the

previous part of this exercise.
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27.10. Find and graph the solution to each of the following initial-value problems:

a. y′ = rect(1,3)(t) with y(0) = 0

b. y′′ = rect(1,3)(t) with y(0) = 0 and y′(0) = 0

c. y′′ + 9y = rect(1,3)(t) with y(0) = 0 and y′(0) = 0

27.11. Compute each of the following convolutions (assuming, in all, that t ≥ 0 ):

a. t2 ∗ step3(t) b. 1 ∗ step4(t)

c. cos(t) ∗ rect(0,π)(t) d. 2e−2t ∗ rect(1,3)(t)

e. e−2t ∗
[
e5t rect(1,3)(t)

]
f. sin(t) ∗ [sin(t) rect(2π,3π)(t)

]
g. t ∗ f (t) where f (t) =

{ √
t if 0 ≤ t < 4

2 if 4 < t

h. sin(t) ∗ f (t) where f (t) =

⎧⎪⎪⎨⎪⎪⎩
1 if t < 2π

cos(t) if 2π < t < 3π

−1 if 3π < t

27.12. Each function listed below is at least periodic on (0,∞) . Sketch graph of each, and then

find its Laplace transform using the methods developed in section 27.5.

a. f (t) =
{

e−2t if 0 < t < 3

f (t − 3) if t > 3

b. f (t) = sqwave(t) (from example 27.12)

c. f (t) =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 < t < 1

−1 if 1 < t < 2

f (t − 2) if t > 2

d. f (t) =
{

2t − t2 if t < 2

f (t − 2) if 2 < t
(see exercise 27.8 b)

e. f (t) =

⎧⎪⎪⎨⎪⎪⎩
t if 0 < t < 2

4 − t if 2 < t < 4

f (t − 4) if t > 4

(see exercise 27.8 j)

f. f (t) = |sin(t)|
27.13. In each of the following exercises, you are given the natural period p0 and a forcing function

f for an undamped mass/spring system modeled by

m
d2 y

dt2
+ κy = f .

Analyze the corresponding resonance occurring in each system. In particular, let y be any

solution to the modeling differential equation and:

i. Compute the difference y(t + p0)− y(t) .
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(a) (b)
TT

1

11

1

22 03 4

Figure 27.9: (a) The square wave function for exercise 27.13 a, and (b) the rectified sine function

for exercise 27.13 b.

ii. Compute the formula for y(t) assuming y(0) = 0 and y′(0) = 0 . (Express

your answer using τ and n where n is the largest integer such that np0 ≤ t and

τ = t − np0 .)

iii. Using the formula just computed for part ii along with your favorite computer math

package, sketch the graph of y over several cycles. (For convenience, assume m

is a unit mass.)

a. p0 = 2 and f is the basic square-wave sketched in figure 27.9a. That is,

f (t) =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 < t < 1

0 if 1 < t < 2

f (t + 2) in general

.

b. p0 = 1 and f (t) = |sin(π t)| , the “rectified sine function” sketched in figure 27.9b.

c. p0 = 1 and f (t) = sin(4π t) .
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Delta Functions

This chapter introduces mathematical entities commonly known as “delta functions”. As we will

see, delta functions are not really functions, at least not in the classical sense. Nonetheless, with

a modicum of care, they can be treated like functions. More importantly, they are useful. They

are valuable in modeling both “strong forces of brief duration” (such as the force of a baseball bat

striking a ball) and ”point masses”. Moreover, their mathematical properties turn out to be remarkable,

making them some of the simplest “functions” to deal with. After a little practice, you may rank

them with the constant functions as some of your favorite functions to deal with. Indeed, the basic

delta function has a relation with the constant function f = 1 that will allow us to expand our

discussion of Duhamel’s principle.

28.1 Visualizing Delta Functions

What is commonly called “the delta function”— traditionally denoted by δ(t)— is best thought of

as shorthand for a particular limiting process. One standard way to visualize δ(t) is as the limit

δ(t) = lim
ε→0+

1

ε
rect(0,ε)(t) .

Look at the function we are taking the limit of,

1

ε
rect(0,ε)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < 0

1

ε
if 0 < t < ε

0 if ε < t

.

Graphs of this for various small positive values of ε have been sketched in figure 28.1a. Notice that,

for each ε , the nonzero part of the graph forms a rectangle of width ε and height 1/ε . Consequently,

the area of this rectangle is ε · 1/ε = 1 . Keep in mind that we are taking a limit as ε → 0 ; so ε

is “small”, which means that this rectangle is very narrow and very high, starts at t = 0 , and is of

unit area. As we let ε → 0 this “very narrow and very high rectangle starting at t = 0 and of unit

area” becomes (loosely speaking) an “infinitesimally narrow and infinitely high ‘spike’ at t = 0

enclosing unit area”.

Strictly speaking, no function has such a spike as its graph. The closest we can come is the

function that is zero everywhere except at t = 0 , where we pretend the function is infinite. This sort

of gives the infinite spike, but the “area enclosed” is not at all well defined. Still, the visualization

541
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(a) (b)

00 1 α α + ε
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ε = 1
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4

Figure 28.1: The graphs of (a) 1
ε rect(0,ε)(t) and (b) 1

ε rect(0,ε)(t − α) (equivalently
1
ε rect(α,α+ε)(t) ) for ε = 1 , ε = 1/2 and ε = 1/4 .

of the delta function as “an infinite spike enclosing unit area” is useful, just as it is useful in physics

to sometimes pretend that we can have a “point mass” (an infinitesimally small particle of nonzero

mass).

The above describes “the” delta function. For any real number α , the delta function at α ,

δα(t) , is simply “the” delta function shifted by α ,

δα(t) = δ(t − α) = lim
ε→0

1

ε
rect(0,ε)(t − α) .

With a little thought (or a glance at figure 28.1b), you can see that the nonzero part of rect(0,ε)(t − α)

starts at t = α and ends at t = α + ε , and that

δα(t) = δ(t − α) = lim
ε→0

1

ε
rect(α,α+ε)(t) .

Do notice that

δ0(t) = δ(t − 0) = δ(t) .

This means that anything we derive concerning δα also holds for δ — just let α = 0 .

28.2 Delta Functions in Modeling

There are at least two general situations in which delta functions naturally arise when we attempt to

describe “real world” phenomena. One is when we attempt to model brief but strong forces. The

other is when we imagine physical objects as “point masses”. In both, the delta functions appear in

integrals. This will be significant and is well worth observing in the models described below.

Since it will be especially useful to see how delta functions model “strong forces of brief

duration”, we’ll start with that.
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Strong Forces of Brief Duration

Consider the motion of some object under a force that varies with time. We will assume the object’s

motion is one dimensional (say, along some X–axis), and, as usual, we’ll let

m = the mass (in kilograms) of the object (assumed constant) ,

t = time (in seconds) ,

v(t) = velocity (in meters/second) of the object at time t ,

and

F(t) = force (in kilogram·meters/second2) acting on the object at time t .

(Of course, any units for time, mass and distance can be used, as long as we are consistent.)

Newton’s famous law of force gives

F(t) = m × acceleration = m
dv

dt
.

If we integrate this over an interval (t0, t1) , we get∫ t1

t0

F(t) dt =
∫ t1

t0

m
dv

dt
dt = m [v(t1) − v(t0)] .

So the integral of F(t) from t = t0 to t = t1 is the object’s mass times the change in the

object’s velocity over that period of time. This integral of F is sometimes called the impulse of

the force over the interval (t0, t1) (with the total impulse being this integral with t0 = −∞ and

t1 = ∞ ).1 Note that, following our above conventions for units, the units associated with the impulse

is kilogram·meters/second.

Let’s now restrict ourselves to situations in which the force is zero except for a very short period

of time, during which the force is strong enough to significantly change the velocity of the object

under question. We may be talking about the force of a baseball bat striking a baseball, or the force

of some propellent (gunpowder, compressed air, etc.) forcing a bullet out of a gun, or even the force

of a baseball in flight striking some unfortunate bat that fluttered out over the field to catch flies.

For concreteness, let’s pretend we are studying the force of a baseball bat hitting a baseball at “time

t = α ”. If we are very precise, we may let t = α be the first instant the bat comes into contact with

the ball, and ε the length of time the bat remains in contact with the ball. Considering the situation,

this length of time, ε , must be positive, but very small.

Before and after the bat touches the ball, this force is zero. So our F(t) must be some function,

such as,
1

ε
rect(α,α+ε)(t) ,

that satisfies

F(t) = 0 if t < α and if α + ε < t .

Thus, if t0 < α and α + ε < t1 , then

m [v(α) − v(t0)] =
∫ α

t0

F(t) dt =
∫ α

t0

0 dt = 0

and

m [v(t1) − v(α + ε)] =
∫ t1

α+ε
F(t) dt =

∫ t1

α+ε
0 dt = 0 .

1 Students of physics will observe that the impulse is actually equal to the change in the momentum, mv .
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Since t0 can be any value less than α , and t1 can be any value greater than α + ε , the last two

equations tell us that the velocity is one constant vbefore before the bat hits the ball, and another

constant vafter afterwards, with

vbefore = v(α) and vafter = v(α + ε) .

(We are using vbefore and vafter because the expressions v(α) and v(α+ε) will become problematic

when we let ε → 0 .)

The precise formula for F(t) while the bat is in contact with the ball is typically both difficult

to determine and of little interest. All we usually care about is describing F(t) well enough to get

the correct change in the velocity of the ball, vafter − vbefore . So let us pick

F(t) = 1

ε
rect(α,α+ε)(t) ,

and see what the resulting change of velocity is as t changes from t0 to t1 (with t0 < α and

α + ε < t1 ):

m [vafter − vbefore] = m [v(t1)− v(t0)]

=
∫ t1

t0

F(t) dt

=
∫ t1

t0

1

ε
rect(α,α+ε)(t) dt = 1

ε

∫ α+ε

α

dt = 1 .

In other words,

F(t) = 1

ε
rect(α,α+ε)(t)

describes a force of duration ε starting at t = α with a total impulse of 1 . Obviously, if we, instead,

wanted a force of duration ε starting at t = α with a total impulse of I , we could just multiply the

above by I . The corresponding velocity of the ball is then given by

v(t) =
{
vbefore if t < α

vafter if α + ε < t
.

where

m [vafter − vbefore] =
∫ t1

t0

I · 1

ε
rect(α,α+ε)(t) dt = I .

There is just one little complication: Determining the length of time, ε , the bat is in contact

with the ball. And, naturally, because this length of time is so close to being zero, we will simplify

our computations by letting ε → 0 . Thus, for some constant I , we model the force by a delta

function force

F(t) = lim
ε→0+

I · 1

ε
rect(α,α+ε)(t) = I δα(t) .

The resulting velocity of the ball v(t) is then given by two constants vbefore and vafter , with

v(t) =
{
vbefore if t < α

vafter if α < t
.

where

m [vafter − vbefore] = total impulse of F = I .

Observe that using a delta function force leads to the velocity changing instantly from one constant

to another. The velocity is no longer continuous, and the velocity right at t = α is no longer well

defined. This is not physically possible but is still a very good approximation of what really happens.
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We should also note that F(t) = δα(t) corresponds to a force acting instantaneously at t = α

with total impulse of 1 . For that reason, δα is also known as the (instantaneous) unit impulse

function at α .

!�Example 28.1: A baseball of mass 0.145 kilograms is thrown with a speed of 35 meters per

second (about 78 miles per hour) towards a batter, who then hits the ball (with his bat), sending it

back to the batter with a speed of 42 meters per second (about 94 miles per hour). We’ll simplify

matters slightly by assuming the ball travels along an X–axis both before and after it is hit, with

the initial direction of travel in the negative direction and the final direction of travel in the positive

direction along the X–axis. So, (in meters/second)

vbefore = −35 and vafter = 42 .

Letting α be the time the bat hits the ball, we can model the force of the bat on the ball by

F(t) = I δα(t)

(
kg·meter

second2

)
where the impulse of the force is

I = m [vafter − vbefore] = 0.145 [42 + 35] = 11.165

(
kg·meter

second

)
.

As Density Functions for Point Masses

Suppose we have some material spread out along the X–axis. Recall that the linear density of the

material at position x , ρ(x) , is the “mass per unit length” of the material at point x . More precisely,

it is the function such that, if x0 < x1 , then∫ x1

x0

ρ(x) dx

gives the mass of the material between positions x = x0 and x = x1 .

Now think about what it means to have a density function

ρ(x) = m

ε
rect(α,α+ε)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < 0

m

ε
if 0 < t < ε

0 if ε < t

where α , m and ε are real numbers with m and ε being positive. Here, all the mass is uniformly

spread out in some object located between x = α and x = α+ε . Picking x0 < α and α+ε < x1 ,

we see that

total mass of the object =
∫ x1

x0

ρ(x) dx

=
∫ x1

x0

m

ε
rect(α,α+ε)(x) dx = m

ε

∫ α+ε

α

1 dx = m .

So we have an object of mass m occupying the X–axis from x = α to x = α + ε .

In many applications, the width of the object, ε , is much smaller than the other dimensions

involved, and taking account of this width complicates computations without significantly affecting
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the results of the computations. In these cases, it is common to simplify the mathematics by letting

ε → 0 and thereby converting

our object of mass m occupying the region between x = α and x = α + ε

to

an object of mass m occupying the point x = α .

In doing so, we see that

ρ(x) = lim
ε→0+

m

ε
rect(α,α+ε)(x) = m lim

ε→0+
1

ε
rect(α,α+ε)(x) = mδα(x) .

Thus, the delta function at α multiplied by m describes the linear density of a “point mass” at α

of mass m .

28.3 The Mathematics of Delta Functions
Integrals with Delta Functions

While we used

δα(t) = δ(t − α) = lim
ε→0+

1

ε
rect(α,α+ε)(t) (28.1)

to visualize the delta function at α , it is mathematically better to view δα through the integral

equation ∫ t1

t0

g(t)δα(t) dt = lim
ε→0+

∫ t1

t0

g(t)
1

ε
rect(α,α+ε)(t) dt (28.2)

where (t0, t1) can be any interval and g can be any function on (t0, t1) continuous at α . This

means we are really viewing “ δα(t) ” as notation indicating a certain limiting process involving

integration. Remember, that’s how we actually used delta functions in modeling strong brief forces

and point masses.

Since our interest is mainly in using delta functions with the Laplace transform, let us simplify

matters a little and just consider the integral∫ ∞

0

g(t) δα(t) dt

when α ≥ 0 and g is any function continuous at α and piecewise continuous on [0,∞) . Before

applying equation (28.2), observe that, because 0 ≤ α and

g(t) rect(α,α+ε)(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < α

g(t) if α < t < α + ε

0 if α + ε < t ,

we have ∫ ∞

0

g(t) · 1

ε
rect(α,α+ε)(t) dt = 1

ε

∫ α+ε

α

g(t) dt .



�

�

�

�

�

�

�

�

The Mathematics of Delta Functions 547

g(tε)

α α + εtε

Figure 28.2: The rectangle with area equal to
∫ α+ε
α g(t) dt .

Because we will be taking the limit of the above as ε → 0 , we can assume ε is small enough that

g is continuous on the closed interval [a, α + ε] , and then apply the fact (illustrated in figure 28.2)

that∫ α+ε

α

g(t) dt = “(net) area between T –axis and graph of y = g(t) with α ≤ t ≤ α + ε ”

= “(net) area of rectangle with base [α, α + ε] and (signed) height g(tε)

for some tε in the interval [a, α + ε] ”

= ε × g(tε) for some tε in [α, α + ε] .

Combining the above and applying equation (28.2), we obtain∫ ∞

0

g(t) δα(t) dt = lim
ε→0

∫ ∞

0

g(t) · 1

ε
rect(α,α+ε)(t) dt

= lim
ε→0

1

ε

∫ α+ε

α

g(t) dt

= lim
ε→0

1

ε
× ε × {

g(tε) for some tε in [α, α + ε]}
= lim

ε→0

{
g(tε) for some tε in [α, α + ε]}

= g(tε) for some tε in [α, α + 0] .

But, of course, the only tε in [α, α + 0] is tε = α . So the above reduces to a simple result that is

important enough to place in a theorem.

Theorem 28.1

Let α ≥ 0 and let g be any piecewise continuous function on [0,∞) which is continuous at t = α .

Then ∫ ∞

0

g(t) δα(t) dt = g(α) . (28.3)

In particular, since δ = δ0 , ∫ ∞

0

g(t) δ(t) dt = g(0) . (28.4)

!�Example 28.2: Actually, two examples:∫ ∞

0

t2 δ3(t) dt = 32 = 9 ,
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and ∫ ∞

0

(5 − t)3 δ(t) dt = (5 − 0)3 = 125 .

We derived the above theorem because it covers the cases of greatest interest to us. Still, it is

worth noting that with just a little more work, you can verify that∫ t1

t0

g(t) δα(t) dt =
{

g(α) if t0 ≤ α < t1

0 if α < t0 or t1 ≤ α
(28.5)

whenever g is a function continuous at α and piecewise continuous on [t0, t1) .

Equations (28.3) and (28.4) (and, more generally, equation (28.5)) are often used instead of

equation (28.2) “fundamental descriptions” of the delta functions. Their simplicity belies their

significance.

Laplace Transforms of Delta Functions

Finding the Laplace transform of a delta function is easy. Just use the integral formula for the Laplace

transform along with an equation from theorem 28.1. Assuming α ≥ 0 , we have

L[δα(t)]|s =
∫ ∞

0

δα(t)e
−st dt = e−sα ,

which we usually prefer to write as

L[δα(t)]|s = e−αs .

In particular,

L[δ(t)]|s = L[δ0(t)]|s = e−0s = 1 .

These transforms are important enough to add to our table of common transforms, giving us

table 28.1.

Differential Equations with Delta functions

Using the Laplace transform, it is relatively easy to solve many differential equations in which delta

functions act as forcing functions. Let us look at two examples.

!�Example 28.3: Let’s find the solution to

dy

dt
= δα(t) with y(0) = 0

where α is any positive real number.

Taking the Laplace transform of both sides:

L

[
dy

dt

]∣∣∣
s

= L[δα(t)]|s

↪→ sY (s)− y(0) = e−αs

↪→ sY (s)− 0 = e−αs

↪→ Y (s) = e−αs

s
.
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Table 28.1: Laplace Transforms of Common Functions (Version 2)

In the following, α and ω are real-valued constants, and, unless otherwise noted, s > 0 .

f (t) F(s) = L[ f (t)]|s Restrictions

1
1

s

t
1

s2

tn n!
sn+1

n = 1, 2, 3, . . .

1√
t

√
π√
s

tα
�(α + 1)

sα+1
−1 < α

eαt 1

s − α
α < s

eiαt 1

s − iα

cos(ωt)
s

s2 + ω2

sin(ωt)
ω

s2 + ω2

stepα(t), step(t − α)
e−αs

s
0 ≤ α

δ(t) 1

δα(t), δ(t − α) e−αs 0 ≤ α

Thus, the solution to our differential equation is

y(t) = L
−1[Y (s)]|t = L

−1

[
e−αs

s

]∣∣∣∣
t

= stepα(t) .

According to the last example, y(t) = stepα(t) is a solution to y′(t) = δα(t) . In other words,

d

dt
stepα(t) = δα(t) .

This interesting fact may also be a disturbing fact for those of you who realize that step functions

are not differentiable, at least not in the sense normally taught in calculus courses. The truth is that

delta functions are somewhat exotic entities that are outside the classical theory of calculus. They

are really examples of things better referred to as “generalized functions”, and the above equation

about the derivative of the step function, while not valid in a strict classical sense, is valid using a



�

�

�

�

�

�

�

�

550 Delta Functions

definition of differentiation appropriate for these generalized functions. (We will discuss this a little

further in section 28.5.)

But enough worrying about technicalities. Let’s solve another differential equation with a delta

function.

!�Example 28.4: Now consider

y′′ − 10y′ + 21y = δ(t) with y(0) = 0 and y′(0) = 0 .

Taking the Laplace transform of both sides:

L
[
y′′ − 10y′ + 21y

]∣∣
s

= L[δ(t)]|s

↪→ L
[
y′′]∣∣

s
− 10L

[
y′]∣∣

s
+ 21L[y]|s = 1

↪→ s2Y (s) − 10sY (s) + 21Y (s) = 1

↪→ [
s2 − 10s + 21

]
Y (s) = 1 .

So,

Y (s) = 1

s2 − 10s + 21
,

which just happens to be the function whose inverse transform was found in example 26.4 on

page 502. Using the result of that example, we can just write out

y(t) = L
−1[Y (s)]|t = 1

4

[
e7t − e3t

]
.

28.4 Delta Functions and Duhamel’s Principle

If you compare the results of the last example with the results of example 26.6 on page 503, you’ll

notice that the solution y(t) to

y′′ − 10y′ + 21y = δ(t) with y(0) = 0 and y′(0) = 0

and the impulse response function h(t) for

y′′ − 10y′ + 21y = f (t)

are one and the same. Is this an amazing coincidence?

No.

In section 26.3 we saw that, for any real constants a , b and c , and any Laplace transformable

function f , the solution on (0,∞) to the generic initial-value problem

ay′′ + by′ + cy = f (t) with y(0) = 0 and y′(0) = 0

is given by

y(t) = h ∗ f (t)
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where

h = L
−1[H ] and H(s) = 1

as2 + bs + c
.

Now consider the corresponding initial-value problem

ay′′ + by′ + cy = δ(t) with y(0) = 0 and y′(0) = 0 ,

which is just the generic initial-value problem above with f = δ . Taking the Laplace transform,

we get

L
[
ay′′ + by′ + cy

]∣∣
s

= L[δ(t)]|s

↪→ aL
[
y′′]∣∣

s
+ bL

[
y′]∣∣

s
+ cL[y]|s = 1

↪→ as2Y (s) + bsY (s) + cY (s) = 1

↪→ [
as2 + bs + c

]
Y (s) = 1 .

Dividing by the polynomial and comparing the result with the above formula for H , we see that

Y (s) = 1

as2 + bs + c
= H(s) .

Thus,

y(t) = L
−1[Y (s)]|t = L

−1[H(s)]|t = h(t) .

In other words, h(t) is the solution to the particular initial-value problem

ah′′ + bh′ + ch = δ(t) with y(0) = 0 and y′(0) = 0 .

This explains why h is commonly referred to as the “impulse response function” — well,

almost explains. Here’s a little background: In many applications, the solution to the initial-value

problem

ay′′ + by′ + cy = f (t) with y(0) = 0 and y′(0) = 0

describes how some physical system responds to an applied “force” f (actually, f might not be

an actual force). With this interpretation, h does give the response of the system to a delta function

force, and, as noted earlier, the delta function is also known as a unit impulse function. Hence the

term “impulse response function” for h .

Of course, the generic computations just done can be done with higher-order differential equa-

tions. Combining this with theorem 26.2 on page 506 yields

Theorem 28.2 (Duhamel’s principle, version 2)

Let N be any positive integer, let a0 , a1 , . . . and aN be any collection of real-valued constants,

and let f (t) be any Laplace transformable function. Then, the solution to

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = f (t)

satisfying the N th-order “zero” initial conditions,

y(0) = 0 , y′(0) = 0 , y′′(0) = 0 , . . . and yN−1(0) = 0 ,

is given by

y(t) = h ∗ f (t) =
∫ t

0

h(x) f (t − x) dx
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where h(t) is the solution to

a0h(N ) + a1h(N−1) + · · · + aN−2h′′ + aN−1h′ + aN h = δ(t)

with

h(0) = 0 , h′(0) = 0 , h′′(0) = 0 , . . . and hN−1(0) = 0 .

There is a practical consequence to h being the impulse response function. Suppose you have

a physical system in which you know the ‘output’ y(t) is related to an ‘input’ f (t) through a

differential equation of the form given in the above theorem. Suppose, further, that you do not know

exactly what that differential equation is. Maybe, for example, you have a mass/spring system some

of whose basic parameters — mass, spring constant or damping constant — are unknown and cannot

be easily measured. The above theorem tells us that, if we input the physical equivalent of a delta

function (say, we provide a unit impulse to the mass/spring system by carefully hitting the mass with

a hammer), then measuring the output over time will yield a description of the impulse response

function, h(t) . Save those values for h(t) over time in a computer, and you can then numerically

evaluate the output y(t) corresponding to any other input f (t) through the formula

y(t) = f ∗ h(t) .

In practice, generating and inputting the physical equivalent of δ(t) is usually impossible. What

is often possible is to generate and input a good approximation to the delta function, say,

1

ε
rect(0,ε)(t)

for some small value of ε . The resulting measured output will not be h(t) exactly, but, if the errors

in measurement aren’t too bad, it will be a close approximation.

28.5 Some “Issues” with Delta Functions

The astute reader may have noticed that we’ve glossed over a few troublesome issues in our discussion

of delta functions. Let’s deal with a few of these now.

Defining the Delta Functions

You may have noticed that we have not yet defined the delta function. In particular, I’ve not given

you any formula for computing the values of δ(t) or δα(t) for different values of t . Instead, you’ve

only been told to visualize δα(t) in terms of either the limit

δα(t) = δ(t − α) = lim
ε→0

1

ε
rect(α,α+ε)(t) , (28.6)

or the limit ∫ t1

t0

g(t)δα(t) dt = lim
ε→0+

∫ t1

t0

g(t)
1

ε
rect(α,α+ε)(t) dt . (28.7)

If you check other texts, you’ll often find δa (with α ≥ 0 ) “defined” either as the limit in

(28.6) or as the ‘function’ such that ∫ ∞

0

g(t) δα(t) dt = g(α) (28.8)



�

�

�

�

�

�

�

�

Some “Issues” with Delta Functions 553

whenever g is a function continuous at α . (This, recall, was something we derived from equation

(28.7).) Both of these are good ‘working’ definitions in that, properly interpreted, they tell you how

you should use the symbol δα in computations (provided you interpret the limit in (28.6) as really

meaning the limit in (28.7)).

Unfortunately, if you treat either as a rigorous definition for a classical function δα , then you

can then rigorously derive

δα(t) = 0 whenever t = α .

Rigorously applying the classical theory of integration normally developed in undergraduate math-

ematics, you then find that∫ ∞

0

g(t) δα(t) dt =
∫ α

0

g(t) δα(t) dt +
∫ ∞

α

g(t) δα(t) dt

=
∫ α

0

g(t) · 0 dt +
∫ ∞

α

g(t) · 0 dt = 0 .

In particular, using g(t) = t2 , α = 1 and both equation (28.7) and the last equation above, we get

1 = 12 =
∫ ∞

0

t2 δ2(t) dt = 0 !

The problem is that there is no classical function that satisfies either definition. Fortunately, there

is a way to ‘generalize’ the classical notion of ‘functions’ yielding a class of things called “generalized

functions”. Delta functions are members of this class. Unfortunately, a proper development of

“generalized functions” goes beyond the scope of this text. What can be said is that, if f is a

generalized function, then, for every sufficiently smooth and integrable function g and suitable

interval (t0, t1) , then ∫ t1

t0

g(t) f (t) dt

“makes sense” in some generalized sense. For f = δα , this integral can be defined by equation

(28.7).2 Using the theory of generalized functions, along with the corresponding generalization of

the theory of calculus, everything developed in this chapter can be rigorously defined or derived,

including the observation that, “in a generalized sense”,

δα(t) = d

dt
stepα(t) .

For now, however, it may best to view the computations we are doing with δα as shorthand for doing

the same computations with
1

ε
rect(α,α+ε) ,

and then letting ε → 0+ in the final result.

!�Example 28.5: Let’s reconsider solving

dyε

dt
= δα(t) with y(0) = 0

2 If you must know, “generalized functions” are actually ”continuous linear functionals on a suitable space of test functions”,

and if you want to find out what that means, see part IV of the author’s Principles of Fourier Analysis, or go to the library

and look up books on either generalized functions or distributional theory, or, possibly, do an internet search for these

terms.
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(a) (b)

αα α + εa α + εb

11

TT

Figure 28.3: The graph of the solution yε to initial-value problem (28.9) (a) when ε = εa and

(b) when ε = εb with 0 < εb < εa .

where α is any positive real number. Doing the replacement suggested above, we’ll first solve

dyε

dt
= 1

ε
rect(α,α+ε) with y(0) = 0 , (28.9)

assuming ε > 0 , and then take the limit of the result as ε → 0 .

Taking the Laplace transform of both sides of the last equation:

L

[
dyε

dt

]∣∣∣
s

= L

[
1

ε
rect(α,α+ε)

]∣∣∣
s

↪→ sY (s)− y(0) = 1

ε
L
[
rect(α,α+ε)

]∣∣
s

↪→ sYε(s)− 0 = 1

ε

[
1

s
e−αs − 1

s
e−(α+ε)s

]
↪→ Yε(s) = 1

ε

[
1

s2
e−αs − 1

s2
e−(α+ε)s

]
.

So,

yε(t) = L
−1
[

1

ε

[
1

s2
e−αs − 1

s2
e−(α+ε)s

]]∣∣∣
t

= 1

ε

{
L

−1
[

1

s2
e−αs

]∣∣∣
t

− L
−1
[

1

s2
e−(α+ε)

]∣∣∣
t

}
= 1

ε

{[t − α] stepα(t)− [t − (α + ε)] stepα+ε(t)
}

= 1

ε

⎧⎪⎪⎨⎪⎪⎩
0 − 0 if t < α

[t − α] − 0 if α < t < α + ε

[t − α] − [t − (α + ε)] if α + ε < t

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < α

t − α

ε
if α < t < α + ε

1 if α + ε < t

.

Graphs of yε for two different values of ε are sketched in figure 28.3.

Finally, taking the limit, we get

y(t) = lim
ε→0+

yε(t) = lim
ε→0+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < α

t − α

ε
if α < t < α + ε

1 if α + ε < t

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
{

0 if t < α

1 if α < t
.
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That is,

y(t) = stepα(t) ,

just as obtained (with much less work!) in example 28.3.

Continuity of Solutions and Problems with Initial Values

Early in this text, it was stated that solutions to first-order differential equations had to be continu-

ous, and solutions to second-order differential equations had to be continuous and have continuous

derivatives. But y = stepα(t) , the solution to

dy

dt
= δα(t) with y(0) = 0

obtained in exercises 28.3 and 28.5, is clearly not continuous. If you think about it, this may not

be so surprising. Our original insistence on the continuity of solutions assumed we were using

classical functions. The exotic nature of the delta functions takes us outside the classical theory to

the idealized cases where instantaneous change can occur.

Normally, this is not a problem. Indeed, it can desirable, especially if you are modeling “brief

strong forces”. One place where this can cause some confusion is when the discontinuities occur

where initial data is given. In these cases, the confusion can be somewhat abated by remembering

that a delta function really indicates a limiting process.

!�Example 28.6: Letting α = 0 , we see that the solution to

dy

dt
= δ(t) with y(0) = 0

is

y(t) = step(t) .

However, step(t) has a jump at t = 0 , and its limit from the right at this point is 1 . So how

can we say this step function satisfies the given initial condition, y(0) = 0 ? By going back to

exercise 28.5, which showed that the above solution should be viewed as the limit as ε → 0 of

the function yε(t) graphed in figure 28.3 with α = 0 . For each ε > 0 , yε(t) is continuous at

t = 0 and satisfies yε(0) = 0 . As ε becomes smaller, the values of yε(t) increase more rapidly

to 1 for positive values of t . So what we end up with after taking ε → 0 is that the left-hand

limit of y(t) at t = 0 is 0 , but y(t) “immediately” increases from 0 to 1 as t switches from

negative values to positive values.

What this last example demonstrates is that, when the differential equation has a δ(t) in its

forcing function, then initial conditions naively written as

y(0) = y0 , y′(0) = y1 , . . .

are, well, naive. What is really meant is that these values give the left-hand limits,

lim
t→0−

y(t) = y0 , lim
t→0−

y′(0) = y1 , . . . .
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Additional Exercises

28.1. The speeds of the pitched and batted baseball given in example 28.1 are close to ‘typical’

speeds. However, a really good professional pitcher can throw a fastball at a speed of 45

meters per second (a little over 100 miles per second), and a good batter can hit the ball

back at 49 meters per second (almost 110 miles per hour). Assuming these values (and a

0.145 kilogram baseball):

a. Find the magnitude of the impulse the pitcher initially imparts to the thrown ball.

b. Find the magnitude of the impulse the batter imparts to the ball.

28.2. For the following, assume an object of mass m kilograms is initially moving along the

X–axis with constant velocity vbefore meters/second until its velocity is changed to vafter

meters/second by a delta function force with impulse I kilogram·meters/second at time

t = α seconds.

a. Find vafter assuming m = 2 , vbefore = −10 and

i. I = 60 ii. I = 100 iii. I = 20

b. Assume m = 0.2 and vbefore = −40 . What impulse I is needed to obtain

i. vafter = 50 ii. vafter = 100 iii. vafter = 0

c. Assume I = 30 , and that the velocity of the object before and after t = α is determined

by radar. What is the mass of the object if

i. vbefore = −10 and vafter = 50 ii. vbefore = 0 and vafter = 15

28.3. Using the results given in theorem 28.1, compute the following integrals

a.

∫ ∞

0

t2δ4(t) dt b.

∫ ∞

0

t2δ(t) dt

c.

∫ ∞

0

cos(t) δ(t) dt d.

∫ ∞

0

sin(t) δπ/6(t) dt

e.

∫ ∞

0

t2 rect(1,4)(t)δ3(t) dt f.

∫ ∞

0

t2 rect(1,4)(t)δ6(t) dt

28.4. Prove/derive equation (28.5) on page 548.

28.5. Show that

g ∗ δα(t) = g(t − α) stepα(t)

whenever α ≥ 0 , t > 0 and g is a piecewise continuous function on (0,∞) .

28.6. Find and sketch the solution over [0,∞) to each of the following:

a. y′ = 3δ2(t) with y(0) = 0

b. y′ = δ2(t) − δ4(t) with y(0) = 0

c. y′′ = δ3(t) with y(0) = 0 and y′(0) = 0

d. y′′ = δ1(t)− δ4(t) with y(0) = 0 and y′(0) = 0
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e. y′ + 2y = 4δ1(t) with y(0) = 0

f. y′′ + y = δ(t) + δπ (t) with y(0) = 0 and y′(0) = 0

g. y′′ + y = −2δπ/2(t) with y(0) = 0 and y′(0) = 0

28.7. Find the solution on t > 0 to each of the following initial-value problems:

a. y′ + 3y = δ2(t) with y(0) = 2

b. y′′ + 3y′ = δ(t) with y(0) = 0 and y′(0) = 0

c. y′′ + 3y′ = δ1(t) with y(0) = 0 and y′(0) = 1

d. y′′ + 16y = δ2(t) with y(0) = 0 and y′(0) = 0

e. y′′ − 16y = δ10(t) with y(0) = 0 and y′(0) = 0

f. y′′ + y = δ(t) with y(0) = 0 and y′(0) = −1

g. y′′ + 4y′ − 12y = δ(t) with y(0) = 0 and y′(0) = 0

h. y′′ + 4y′ − 12y = δ3(t) with y(0) = 0 and y′(0) = 0

i. y′′ + 6y′ + 9y = δ4(t) with y(0) = 0 and y′(0) = 0

j. y′′ − 12y′ + 45y = δ(t) with y(0) = 0 and y′(0) = 0

k. y′′′ + 9y′ = δ1(t) with y(0) = 0 , y′(0) = 0 and y′′(0) = 0

l. y(4) − 16y = δ(t) with y(0) = y′(0) = y′′(0) = y′′′(0) = 0
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Series Solutions: Preliminaries
(A Brief Review of Infinite Series, Power
Series and a Little Complex Variables)

At this point, you should have no problem in solving any differential equation of the form

a
d2 y

dx2
+ b

dy

dx
+ cy = 0 or ax2 d2 y

dx2
+ bx

dy

dx
+ cy = 0

when a , b and c are all constants. You’ve even solved a few (in chapters 11 and 12) in which a ,

b and/or c were not constants. Unfortunately, the methods used in those chapters are somewhat

limited. More general methods do exist, and, in the next few chapters, we will discuss some of the

more important of these in which solutions are described in terms of “power series” and “modified

power series”.

Ideally, you are already well-enough acquainted with infinite series and power series to jump

right into the discussion of the next chapter. As a precaution, though, you may want to skim through

this chapter. It is a brief review of infinite series with an emphasis on power series, along with a

brief discussion of using complex variables in these series. As much as possible, we’ll limit our

discussion to topics that will be needed in the next few chapters, including a few that probably were

not emphasized during your first exposure to power series.

29.1 Infinite Series
Basic Basics

Recall that, in the language of mathematics, an infinite series is a summation with infinitely many

terms. For example,
∞∑

k=1

1

k
= 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · ·

is the infamous harmonic series. More generally, an infinite series is anything of the form

∞∑
k=γ

αk or (equivalently) αγ + αγ+1 + αγ+2 + αγ+3 + αγ+4 + · · ·

where γ , the starting index, is some integer (often, it’s 0 or 1 ), and the αk’s are things that can be

added together. These αk’s may be numbers, functions or even matrices. For the moment, we will

assume them to be numbers (as in the harmonic series, above).

561
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Given an arbitrary infinite series

∞∑
k=γ

αk = αγ + αγ+1 + αγ+2 + αγ+3 + αγ+4 + · · ·

and any integer N ≥ γ , we define the corresponding N th partial sum SN by1

SN = sum of all terms from aγ to aN

=
N∑

k=γ
αk = αγ + αγ+1 + αγ+2 + · · · + αN .

Observe that

lim
N→∞

SN = lim
N→∞

N∑
k=γ

αk =
∞∑

k=γ
αk = αγ + αγ+1 + αγ+2 + αγ+3 + αγ+4 + · · · .

Naturally, the usefulness of an infinite series usually depends on whether it actually adds up to

some finite value; that is, whether

lim
N→∞

N∑
k=γ

αk

is some finite value. If the above limit does exist as a finite value, then we say our series converges,

and call that value the sum of that series (freely using
∑∞

k=γ αk to denote both the series and its

sum). On the other hand, if this limit does not exist as a finite value, then we say the series diverges.

Recall the following simple facts:

1. If
∑∞

k=γ αk converges, then we can closely approximate its sum by any N th partial sum,

provided we choose N large enough.

2. If
∑∞

k=γ αk converges, then its terms must shrink to zero as k gets large,

αk → 0 as k → ∞ .

Consequently,
∑∞

k=γ αk cannot converge (i.e., must diverge) if the terms do not shrink to

zero as k gets large.

However, it is quite possible to have a series
∑∞

k=γ αk that diverges even though

αk → 0 as k → ∞ .

The harmonic series, above, is one example. Even though

αk = 1

k
→ 0 as k → ∞ ,

you can easily show that the series diverges (to infinity) using the integral test.

3. If
∑∞

k=γ αk and
∑∞

k=γ βk are both convergent series, and A and B are any two finite num-

bers, then the series
∑∞

k=γ [Aαk] and
∑∞

k=γ [Aαk + Bβk] are also convergent. Moreover,

∞∑
k=γ

[Aαk] = A

∞∑
k=γ

αk and

∞∑
k=γ

[Aαk + Bβk] = A

∞∑
k=γ

αk + B

∞∑
k=γ

βk .

To illustrate some of the above concepts, and to give us a first glimpse of “power series”, let’s

look at the “geometric series”.

1 It’s also standard to define SN to be the sum of the first N terms. Our choice will be slightly more convenient.
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The Geometric Series

Let x be any finite value and let γ be any nonnegative integer. The corresponding geometric series

is ∞∑
k=γ

xk = xγ + xγ+1 + xγ+2 + xγ+3 + xγ+4 + · · · .

If γ = 0 , we may refer to this as a basic geometric series.2

Letting γ = 0 and using, respectively, x = 0 , 1/2 , −1/2 , 1 , −1 , 2 , and −2 gives us the

following geometric series:

∞∑
k=0

0k = 1 + 0 + 0 + 0 + 0 + · · · ,

∞∑
k=0

(
1

2

)k

= 1 + 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · ,

∞∑
k=0

(
− 1

2

)k

= 1 − 1

2
+ 1

4
− 1

8
+ 1

16
− · · · ,

∞∑
k=0

1k = 1 + 1 + 1 + 1 + 1 + · · · ,

∞∑
k=0

(−1)k = 1 − 1 + 1 − 1 + 1 − · · · ,

∞∑
k=0

2k = 1 + 2 + 4 + 8 + 16 + · · · ,

and
∞∑

k=0

(−2)k = 1 − 2 + 4 − 8 + 16 − · · · .

It should be obvious that a geometric series
∑∞

k=0 xk converges if x = 0 and diverges whenever

|x | ≥ 1 . It will also be worth noting that

∞∑
k=γ

xk = xγ + xγ+1 + xγ+2 + xγ+3 + xγ+4 + · · ·

=
∞∑

k=0

xγ+k =
∞∑

k=0

xγ xk = xγ
∞∑

k=0

xk .

That is,
∞∑

k=γ
xk = xγ

∞∑
k=0

xk . (29.1)

2 Since 00 is an indeterminant form, it may be argued that there is a problem with the x0 term when x = 0 . However, in

every geometric series with x = 0 , x0 = 1 . So, to be consistent, we automatically assume x0 = 1 in a geometric series

when x = 0 .
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Geometric series are unusual in that rather simple formulas can be derived for their partial sums.

To see this, let

SN =
N∑

k=0

xk = x0 + x1 + x2 + · · · + x N .

If x = 1 , then

SN =
N∑

k=0

1k = 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸
N+1 terms

= N + 1 .

If x = 1 , then

(1 − x)SN = SN − x SN

=
[
x0 + x1 + x2 + · · · + x N

]
− x

[
x0 + x1 + x2 + · · · + x N

]
=

[
1 + x1 + x2 + · · · + x N

]
−

[
x1 + x2 + x3 + · · · + x N+1

]
= 1 − x N+1 .

Dividing by 1 − x then gives us

N∑
k=0

xk = SN = 1 − x N+1

1 − x
for x = 1 . (29.2)

!�Example 29.1: With x = 1/2 , the above formula for SN becomes

SN =
1 −

(
1

2

)N+1

1 − 1

2

= 2

[
1 −

(
1

2

)N+1
]

.

In particular,

S4 = 2

[
1 −

(
1

2

)4+1
]

= 2
[
1 − 1

32

]
= 31

16
.

Of greater interest is that

lim
N→∞

SN = lim
N→∞

2

[
1 −

(
1

2

)N+1
]

= 2

[
1 − lim

N→∞

(
1

2

)N+1
]

= 2[1 − 0] = 2 .

Thus, the geometric series with x = 1/2 converges, and

∞∑
k=0

(
1

2

)k

= lim
N→∞

SN = 2 .

?�Exercise 29.1: Repeat the computations done in the last example, but using x = −1/2 . Show

that the corresponding geometric series converges with

∞∑
k=0

(
− 1

2

)k

= 2

3
.
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As you can easily verify for yourself (and as illustrated in the above example and exercise),

lim
N→∞

x N+1 = 0 whenever |x | < 1 .

This, along with equations (29.2) and (29.1) (and some of the other comments above), leads to the

following:

Theorem 29.1 (geometric series)

The basic geometric series
∑∞

k=0 xk converges if |x | < 1 and diverges if |x | ≥ 1 . Moreover,

∞∑
k=0

xk = 1

1 − x
for |x | < 1 .

More generally, for any nonnegative integer γ , the geometric series
∑∞

k=γ xk converges if and only

if |x | < 1 . Moreover,
∞∑

k=γ
xk = xγ

1 − x
for |x | < 1 .

Absolute Convergence and Convergence Tests
Absolute and Conditional Convergence

Recall that a series
∑∞

k=γ αk can converge “absolutely” or “conditionally”. It converges absolutely

if and only if the corresponding series of absolute values

∞∑
k=γ

|αk |

converges. Basically, as the index increases in an absolutely convergent series, the terms shrink

towards zero fast enough to ensure convergence. Consequently, it’s easily verified that an absolutely

convergent series is, as the terminology suggests, convergent. Moreover, by repeatedly using the

triangle inequality,

|a + b| ≤ |a| + |b| ,

you can easily verify that ∣∣∣∣ ∞∑
k=γ

αk

∣∣∣∣ ≤
∞∑

k=γ
|αk | .

If a series converges but is not absolutely convergent, then it is converging because each term

“cancels out” some of the previous terms, and the series is said to be conditionally convergent. Such

a convergence is somewhat unstable and can be upset by, say, rearranging the terms of the series in

a clever way. Because of this, we will much prefer series that converge absolutely.

Tests for Convergence and Divergence

In practice, it is rarely possible to determine the convergence of an infinite series by using its partial

sums, simply because it is rarely possible to find usable formulas for these partial sums. That is why,

in your calculus course, you were exposed to several “tests” for determining whether a given series

converges or diverges. One, of course, is the basic comparison test.
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Theorem 29.2 (the comparison test)

Let
∑∞

k=γ αk and
∑∞

k=μ βk be two infinite series of real numbers, and suppose that, for some

integer K ,

0 ≤ αk ≤ βk whenever K ≤ k .

Then ∞∑
k=μ

βk converges �⇒
∞∑

k=γ
αk converges absolutely ,

while
∞∑

k=γ
αk diverges �⇒

∞∑
k=μ

βk diverges .

We’ll be using the above test in a few pages, and will briefly discuss two other well-known tests

(the limit comparison and the limit ratio tests) later.

There are, of course, many other “tests for convergence”, including the alternating series test,

the integral test, the basic ratio test, and the root test. I’m sure you remember them all fondly and

will be disappointed to learn that we will find little use for these other tests.

29.2 Power Series and Analytic Functions
Definition and Examples

A power series is any series of the form

∞∑
k=γ

ak(x − x0)
k

where x is a variable, x0 and the ak’s are constants, and the starting index, γ , is some nonnegative

integer. We’ll often refer to x0 as the center of the series, and say that the above power series is

centered at or about x0 . We will also refer to the term ak(x − x0)
k as the kth-order term of the

series.3

In theory, γ can be any nonnegative integer; in practice, γ is often 0 . Even when γ = 0 , we

can assume ∞∑
k=γ

ak(x − x0)
k =

∞∑
k=0

ak(x − x0)
k

by simply setting

ak = 0 when k < γ .

Also, in practice, many power series are centered at 0 . And even if one isn’t, we can convert it to

one centered at 0 via a simple change of variables:

∞∑
k=γ

ak(x − x0)
k =

∞∑
k=γ

ak Xk with X = x − x0 .

3 Again, there is a minor issue with the 0th-order term appearing to be ‘indeterminant’ when x = x0 . But since

a0(x − x0)
0 = a0 whenever x = x0 ,

we will, for consistency, automatically interpret a0(x − x0)
0 as a0 even when x = x0 .
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It is also worth noting that the same sort of computations leading to equation (29.1) also yield

∞∑
k=γ

ak(x − x0)
k = (x − x0)

γ

∞∑
k=0

aγ+k(x − x0)
k . (29.3)

The basic geometric series
∑∞

k=0 xk is a power series. From theorem 29.1, we know

1

1 − x
=

∞∑
k=0

xk for |x | < 1 . (29.4a)

Thus, the function (1 − x)−1 can be represented by the above power series when |x | < 1 . You

may recall that many other functions can be represented by power series. Here are a few:

ex =
∞∑

k=0

1

k! xk for − ∞ < x < ∞ , (29.4b)

cos(x) =
∞∑

k=0

(−1)k

(2k)! x2k for − ∞ < x < ∞ , (29.4c)

sin(x) =
∞∑

k=0

(−1)k

(2k + 1)! x2k+1 for − ∞ < x < ∞ , (29.4d)

and

ln |x | =
∞∑

k=1

(−1)k−1

k
(x − 1)k for 0 < x < 2 . (29.4e)

Any function that can be represented on an open interval by a power series at a point x0 in that

interval is said to be analytic at x0 . It turns out that many functions of interest are analytic at most

points in their domains. This fact will be vital in the next several chapters.

Convergence and the Radius of Convergence

If we are going to use a power series
∑∞

k=γ ak(x − x0)
k as the formula for a function, it will be

important to know the values of x for which this series is “makes sense” (i.e., is convergent). This

set of x-values turns out to be an interval with x0 as the midpoint. To see this, let us consider the

series ∞∑
k=γ

ak Xk .

First of all, we clearly have convergence if X = 0 since every term with k > 0 is ak0k = 0 .

Now suppose we know
∑∞

k=γ akrk converges for some nonzero value r , and let X be any

real value with |X | < |r | . Then
∣∣X/r∣∣ < 1 and, as noted in theorem 29.3, the geometric series

∞∑
k=0

∣∣∣ X

r

∣∣∣k
converges. Moreover, since

∑∞
k=γ akrk converges, we must have

∣∣akrk
∣∣ → 0 as k → ∞ , which

means there must be an integer K such that
∣∣akrk

∣∣ < 1 whenever k > K . And that means∣∣∣ak Xk
∣∣∣ =

∣∣∣∣akrk Xk

rk

∣∣∣∣ =
∣∣∣akrk

∣∣∣ · ∣∣∣ X

r

∣∣∣k <

∣∣∣ X

r

∣∣∣k for k > K .
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It then follows from the comparison test (theorem 29.2) using the above convergent geometric series

that
∑∞

k=γ
∣∣ak Xk

∣∣ converges for this choice of X . In other words,

|X | < |r | and

∞∑
k=γ

akrk converges �⇒
∞∑

k=γ
ak Xk converges absolutely .

On the other hand,

0 < |ρ| < |X | and

∞∑
k=γ

akρ
k diverges �⇒

∞∑
k=γ

ak Xk diverges ,

because if
∑∞

k=γ ak Xk did not diverge, then the very arguments just used in the previous paragraph

would falsely imply that
∑∞

k=γ akρ
k converges.

Letting X = x − x0 , and taking r as large as possible and/or ρ as small as possible then gives

the existence of the value R (which may be 0 or +∞ ) in the next theorem.

Theorem 29.3

For each power series
∑∞

k=γ ak(x − x0)
k , there is a R — which is either 0 , a finite positive value

or +∞ — such that

|x − x0| < R �⇒
∞∑

k=γ
ak(x − x0)

k converges absolutely ,

while

R < |x − x0| �⇒
∞∑

k=γ
ak(x − x0)

k diverges .

The R in the above theorem is called the radius of convergence for the given power series. If

R = 0 , the power series only converges for x = x0 (which means the series won’t be of much

use); if R = +∞ , the power series converges for all values of x (which is very nice). Otherwise,

the series converges absolutely at every point in the interval (x0 − R, x0 + R) . Whether we have

convergence when x = x0 ± R depends on the particular series, and, frankly, will usually not be of

great concern to us.

The radius of convergence for a given power series can sometimes be determined through careful

use of the formulas in either the limit ratio test or the limit root test. You may recall doing this.

We, however, will discover that the radii of convergence for the power series of interest to us can be

determined much more easily from the “singularities” of whatever differential equation we will be

trying to solve.

Algebra with Power Series and Analytic Functions
Addition

Adding two power series with the same center and starting index is trivial:

∞∑
k=γ

ak(x − x0)
k +

∞∑
k=γ

bk(x − x0)
k =

∞∑
k=γ

[
ak(x − x0)

k + bk(x − x0)
k
]

=
∞∑

k=γ
[ak + bk] (x − x0)

k .
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However, if (as will often happen in the next chapter) they have different starting indices,

∞∑
k=γ

ak(x − x0)
k +

∞∑
k=μ

bk(x − x0)
k with γ = μ ,

then we will first convert the series with extra low-order terms to a finite sum with those extra terms

added to an infinite series with the same starting index as the other.

!�Example 29.2: Consider
∞∑

k=0

ak Xk +
∞∑

k=2

bk Xk .

Now,
∞∑

k=0

ak Xk = a0 + a1 X + a2 X2 + a3 X3 + a4 X4 + · · ·

= a0 + a1 X +
∞∑

k=2

ak Xk .

So,
∞∑

k=0

ak Xk +
∞∑

k=2

bk Xk =
[

a0 + a1 X +
∞∑

k=2

ak Xk

]
+

∞∑
k=2

bk Xk

= a0 + a1 X +
[ ∞∑

k=2

ak Xk +
∞∑

k=2

bk Xk

]

= a0 + a1 X +
∞∑

k=2

[ak + bk]Xk .

Changing the Index

In the next few chapters, we will often find ourselves with expressions of the form

∞∑
k=γ

ak Xk+ω

where ω is some fixed integer. On those occasions, we will want to convert this summation formula

involving Xk+ω to an equivalent formula involving Xn . We will do this using the index substitution

n = k + ω (equivalently, k = n − ω ),

∞∑
k=γ

ak Xk+ω =
∞∑

n−ω=γ
an−ωXn =

∞∑
n=γ+ω

an−ωXn .

The goal is to end up with a power series in which each term is a constant times Xn .

This sort of index manipulation is called a change of index, and is analogous to the “change of

variables” often used to simplify integrals. Keep in mind that the index is an “internal variable” for

each series. This means we can use different index substitutions on different summations.
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!�Example 29.3: Consider the sum of summations

∞∑
k=0

(k + 1)ak Xk+2 +
∞∑

k=0

ak Xk .

Using n = k + 2 (i.e., k = n − 2 ) in the first summation,

∞∑
k=0

(k + 1)ak Xk+2 =
∞∑

n−2=0

([n − 2] + 1)an−2 Xn =
∞∑

n=2

(n − 1)an−2 Xn .

For the second, we use n = k and pull out the first two terms,

∞∑
k=0

ak Xk =
∞∑

n=0

an Xn = a0 X0 + a1 X1 +
∞∑

n=2

an Xn .

Thus,

∞∑
k=0

(k + 1)ak Xk+2 +
∞∑

k=0

ak Xk =
∞∑

n=2

(n − 1)an−2 Xn +
[

a0 + a1 X +
∞∑

n=2

an Xn

]

= a0 + a1 X +
[ ∞∑

n=2

(n − 1)an−2 Xn +
∞∑

n=2

an Xn

]

= a0 + a1 X +
∞∑

n=2

[
(n − 1)an−2 + an

]
Xn .

A Basic Equation

We will often find ourselves with the equation

∞∑
k=0

ak(x − x0)
k = 0 for |x − x0| < R ,

which, in more explicit form (with X = x − x0 ), is

a0 + a1 X + a2 X2 + a3 X3 + · · · = 0 for − R < X < R .

Plugging in X = 0 gives

a0 + a10 + a202 + a303 + · · ·︸ ︷︷ ︸
0

= 0 .

Hence,

a0 = 0 ,

and, for |X | < R ,

a0 + a1 X + a2 X2 + a3 X3 + · · · = 0

↪→ 0 + a1 X + a2 X2 + a3 X3 + · · · = 0

↪→ X
(

a1 + a2 X + a3 X2 + · · ·
)

= 0 .



�

�

�

�

�

�

�

�

Power Series and Analytic Functions 571

Assuming R > 0 , the X factor can be divided out, leaving us with

a1 + a2 X + a3 X2 + · · · = 0 whenever − R < X < R .

Plugging X = 0 into this last equation then gives

a1 = 0 .

Continuing this process, we can show all the ak’s are 0 , thus confirming the following:

Theorem 29.4

Let
∑∞

k=0 ak(x − x0)
k be a power series with a nonzero radius of convergence R . If

∞∑
k=0

ak(x − x0)
k = 0 for |x − x0| < R ,

then

ak = 0 for k = 0, 1, 2, 3, . . . .

This simple theorem will be of fundamental importance for us.

By the way, we will refer to any power series
∑∞

k=0 ak(x − x0)
k as a trivial power series if and

only if all the ak’s are zero. Along the same lines, we will say that a function f analytic at a point

x0 is trivial if and only if it is given by a trivial power series about x0 . An immediate corollary of

the above is the following unsurprising result.

Corollary 29.5

Let f be a function analytic at x0 . Then f is trivial if and only if there is an open interval (a, b)

containing x0 such that

f (x) = 0 whenever a < x < b .

Naturally, our main interest will be with nontrivial analytic functions; that is, analytic functions

that are not trivial.

Calculus with Power Series and Analytic Functions
Differentiating Power Series

Suppose we have a function f given by some power series with a nonzero radius of convergence

R ,

f (x) =
∞∑

k=0

ak(x − x0)
k for |x − x0| < R .

To differentiate this, it seems reasonable to use the

derivative of a sum = sum of the derivatives

rule from elementary calculus:

f ′(x) = d

dx

∞∑
k=0

ak(x − x0)
k

= d

dx

[
a0 + a1(x − x0) + a2(x − x0)

2 + a3(x − x0)
3 + · · ·

+ ak(x − x0)
k + · · · ]
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= d

dx
a0 + d

dx
a1(x − x0) + d

dx
a2(x − x0)

2 + d

dx
a3(x − x0)

3 + · · ·

+ d

dx
ak(x − x0)

k + · · ·

= 0 + a1 + 2a2(x − x0) + 3a3(x − x0)
2 + · · · + kak(x − x0)

k−1 + · · ·

=
∞∑

k=1

k ak(x − x0)
k−1 .

Note that the derivative of the “ k = 0 term for f (x) ” is 0 . That is why, in the last series above,

we dropped the k = 0 term and started with k = 1 . Strictly speaking, this is not necessary. Since

kak(x − x0)
k−1 = 0 when k = 0 ,

the above series formula for f ′ would still be valid if it started at k = 0 instead of k = 1 . Still,

dropping the k = 0 term in the above can help prevent some embarrassing mistakes in the sort of

computations we’ll be doing in the next chapter.

Repeating the above (in abbreviated form) with the series obtained for f ′(x) , we get

f ′′(x) = d

dx

∞∑
k=1

k ak(x − x0)
k−1

=
∞∑

k=1

d

dx

[
k ak(x − x0)

k−1
]

=
∞∑

k=2

k(k − 1) ak(x − x0)
k−2 .

Using this, we then have

f ′′′(x) = d

dx

∞∑
k=2

k(k − 1) ak(x − x0)
k−2

=
∞∑

k=2

d

dx

[
k(k − 1) ak(x − x0)

k−2
]

=
∞∑

k=3

k(k − 1)(k − 2) ak(x − x0)
k−3 .

Continuing these computations, you end up getting

f (n)(x) =
∞∑

k=n

k(k − 1)(k − 2) · · · (k − n + 1) ak(x − x0)
k−n

for any nonnegative integer n .

There is a technical issue with the above computations. The

derivative of a sum = sum of the derivatives

rule from elementary calculus was only shown to be true when the sum had finitely many terms.

Here we have infinitely many terms. In fact, there are infinite series of functions for which this rule

fails. Fortunately, it does not fail for power series, and the following theorem can be rigorously

confirmed (see any good calculus text).

Theorem 29.6 (differentiation of power series)

Suppose f is a function given by a power series with a nonzero radius of convergence R ,

f (x) =
∞∑

k=0

ak(x − x0)
k for |x − x0| < R .
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Then, for any positive integer n , the nth derivative of f exists. Moreover, R is also the radius of

convergence of the differentiated series, with

f (n)(x) =
∞∑

k=n

k(k − 1)(k − 2) · · · (k − n + 1) ak(x − x0)
k−n for |x − x0| < R .

In particular,

f ′(x) =
∞∑

k=1

k ak(x − x0)
k−1 for |x − x0| < R ,

and

f ′′(x) =
∞∑

k=2

k(k − 1) ak(x − x0)
k−2 for |x − x0| < R .

Integral analogs to the above theorem also hold. In particular, if

f (x) =
∞∑

k=0

ak(x − x0)
k for |x − x0| < R ,

then it can be verified that∫ x

x0

f (t) dt =
∞∑

k=0

∫ x

x0

ak(t − x0)
k dt =

∞∑
k=0

ak

k + 1
(x − x0)

k+1

whenever |x − x0| < R . This can be a useful fact, though we won’t have much need for it.

Power Series for Analytic Functions

As already noted, any function f given by a power series centered at x0 in some open interval

containing x0 is said to be analytic at x0 . If, in addition, f is analytic at every point in some

interval, then we say f is analytic on that interval.

So suppose we have a function f analytic at x0 with

f (x) =
∞∑

k=0

ak(x − x0)
k for |x − x0| < R

for some R > 0 . Our ‘differentiation of power series’ theorem (theorem 29.6) tells us that f is, in

fact, “infinitely differentiable” on the interval (x0 − R, x0 + R) .4 That theorem also allows us to

derive a simple relationship between the ak’s in the series and the derivatives of f at x0 .

Let’s derive that relation. First, plugging x = x0 into the above, we get

f (x0) =
∞∑

k=0

ak(x0 − x0)
k

= a0 + a1(x0 − x0) + a2(x0 − x0)
2 + a3(x0 − x0)

3 + · · ·
= a0 + a1 · 0 + a2 · 02 + a3 · 03 + · · ·
= a0 .

4 We say that a function f is infinitely differentiable at a point x if and only if f (n)(x) exists for every positive integer

n , and is infinitely differentiable on a given interval if and only if it is infinitely differentiable at each point in the interval.



�

�

�

�

�

�

�

�

574 Brief Review of Infinite Series and Power Series

Then, using formulas from theorem 29.6, we see that

f ′(x0) =
∞∑

k=1

k ak(x0 − x0)
k−1

= 1 a1 + 2 a2 · 0 + 3 a3 · 02 + 4 a4 · 03 + · · ·
= 1 a1 ,

and

f ′′(x0) =
∞∑

k=2

k(k − 1) ak(x0 − x0)
k−2

= 2 · 1 a2 + 3 · 2 a3 · 0 + 4 · 3 a4 · 02 + 5 · 4 a5 · 03 + · · ·
= (2 · 1)a2 .

More generally, for any positive integer n ,

f (n)(x0) =
∞∑

k=n

k(k − 1)(k − 2) · · · (k − n + 1) ak(x0 − x0)
k−n

= n(n − 1)(n − 2) · · · 1 an

+ (n + 1)(n)(n − 1) · · · 2 an+1 · 0 + (n + 2)(n + 1)(n) · · · 3 an+2 · 02

+ · · ·
= n! an .

Dividing the last relation through by n! and observing that the result also holds when n = 0

(interpreting f (0) as f ) gives us the next theorem.

Theorem 29.7

Let f be analytic at x0 . Then, for every x in some open interval containing x0 ,

f (x) =
∞∑

k=0

ak(x − x0)
k with ak = f (k)(x0)

k! .

As an immediate corollary, we have the following (which will be important when discussing

“power series solutions to initial-value problems”):

Corollary 29.8

Assume

f (x) =
∞∑

k=0

ak(x − x0)
k for |x − x0| < R

with R > 0 . Then,

a0 = f (x0) and a1 = f ′(x0) .

You may recognize the series in theorem 29.7, written a little more simply as

∞∑
k=0

f (k)(x0)

k! (x − x0)
k ,
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as the Taylor’s series (formula) for f (x) about x0 , and you may recall having once computed Taylor

series for such functions as ex , sin(x) , cos(x) and ln |x | . In fact, the Taylor series about any point

x0 can be computed for any function f which is infinitely differentiable at that point. However, a

function can be infinitely differentiable at a point x0 without being analytic there — its Taylor series

exists, but does not equal the function at any point other than x0 . With luck you saw an example,

say,

f (x) =
{

0 if x = 0

e−1/x2

if x = 0
,

which can be shown to be infinitely differentiable but not analytic at x0 = 0 (see exercise 29.10).

Still, you probably saw that many functions are analytic at many points. You may well have

already verified that such functions as

ex , e−2x2

, sin(x) and cos(x)

are analytic at every point on the real line, and that functions such as

√
x and ln x

are analytic at any point x0 > 0 . You may have even been given the impression that most functions

typically encountered in “real life” are analytic at every point at which they are infinitely differen-

tiable. In a sense, this is true, though very difficult to confirm using the methods normally developed

in elementary calculus courses. (We’ll return to this issue in chapter 31.)

29.3 Elementary Complex Analysis

Up to now, we’ve acted as if we were only dealing with real numbers in our infinite series. In fact,

just about everything said so far, up to the discussion of Calculus with Power Series, holds even if

the numbers are complex, provided we make some obvious changes in notation and phrasing.5 In

fact, we will later have particular interest in power series in which the variables are complex.

The Complex Plane

Recall that a complex number z is simply something that can be written as

z = x + iy

where x and y are real numbers, and i is a constant satisfying i2 = −1 . Because we’ll be using

such expressions so often, let us agree that, unless otherwise noted, in any expression of the form

z = x + iy , both x and y are real numbers.

As you are probably aware, each complex number z = x + iy can be identified with the point

(x, y) in the XY –plane. When we do so, we generally refer to the plane as the complex plane and

denote it by � . The distance between any two points

z1 = x1 + iy1 and z2 = x2 + iy2

5 And, after discussing “complex calculus” in chapter 31, we’ll discover that what was said in Calculus with Power Series

also holds for power series with a complex variable.
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0

x0

(a) (b)

X

X

YY

z1

z2

z1 + z2

|z 1
|

|z2|

|z 1
+ z 2

|

R

x0 − R x0 + R

Figure 29.1: (a) The disk of radius R about x0 in � with the interval (x0 − R, x0 + R) on the

X–axis, and (b) an illustration of the triangle inequality.

in the complex plane is simply their distance as points in the XY –plane,

|z2 − z1| =
√
(x2 − x1)2 + (y2 − y1)2 .

Note that, for any z0 in � and R > 0 , the set of all z satisfying |z − z0| < R is the disk of radius

R centered at z0 . For comparison, recall that, when we were just considering real numbers, the set

of x satisfying |x − x0| < R was the interval (x0 − R, x0 + R) (see figure 29.1a).

Power Series and Analytic Functions

If you look at the triangle having vertices 0 , z1 , z2 and z1 + z2 (as in figure 29.1b), you’ll realize

that the triangle inequality,

|z1 + z2| ≤ |z1| + |z2| ,

holds for complex as well as real values. Using this fact, everything already stated regarding “absolute

convergence” is easily shown to apply whether a series involves real or complex values. In particular,

theorem 29.3 on page 568 can be automatically expanded to

Theorem 29.9

For each power series
∑∞

k=γ ak(z − z0)
k , there is a R — which is either 0 , a finite positive value

or +∞ — such that

|z − z0| < R �⇒
∞∑

k=γ
ak(z − z0)

k converges absolutely ,

while

R < |z − z0| �⇒
∞∑

k=γ
ak(z − z0)

k diverges .

As before, we call the R in this theorem the radius of convergence for the power series, and we

can refer to the point z0 as the center for our series. This time, the terminology is truly appropriate,

since the given power series does converge inside the disk of radius R about z0 , and diverges outside

that disk.

Along these same lines, we extend the definition of analyticity to functions of complex variables

by saying that a function f of a complex variable z is analytic at a point z0 in the complex plane
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if and only if there is a power series
∑∞

k=0 ak(z − z0)
k and a R > 0 (possibly with R = ∞ ), such

that

f (z) =
∞∑

k=0

ak(z − z0)
k for |z − z0| < R .

Naturally, we say that the function is analytic on a region in the complex plane if and only if it is

analytic at each point in that plane.6

Let us note that, if f is a function of a real variable x given by, say,

f (x) =
∞∑

k=0

ak(x − x0)
k for |x − x0| < R ,

then f can be extended to a function of the complex variable by simply replacing x in the series

with z ,

f (z) =
∞∑

k=0

ak(z − x0)
k whenever |z − x0| < R .

What is more, it follows directly from theorem 29.9 that the radii of convergence for both of the

two series above are the same. In particular, the corresponding complex variable versions of the

functions given by formulas 29.4 on page 567 are

1

1 − z
=

∞∑
k=0

zk for |z| < 1 , (29.5a)

ez =
∞∑

k=0

1

k! zk for |z| < ∞ , (29.5b)

cos(z) =
∞∑

k=0

(−1)k

(2k)! z2k for |z| < ∞ , (29.5c)

sin(z) =
∞∑

k=0

(−1)k

(2k + 1)! z
2k+1 for |z| < ∞ , (29.5d)

and

ln |z| =
∞∑

k=1

(−1)k−1

k
(z − 1)k for |z − 1| < 1 . (29.5e)

There is a issue here that may concern the thoughtful reader: some of the above functions

have formulas other than the above power series for computing their values at complex points. For

example, in chapter 15, we learned of another formula for ez when z = x + iy , namely,

ez = ex+iy = ex [cos(y)+ i sin(y)] .

Can we be sure that this formula will give the same result as using the above power series for ez ,

∞∑
k=0

1

k! zk =
∞∑

k=0

1

k! (x + iy)k ?

Yes, we can. Trust the author on this. And if you don’t feel that trust, turn ahead to section 31.7

(starting on page 647) where we discuss the calculus of functions of a complex variable.

6 If you’ve had a course in complex analysis, you may have seen a different definition for “analyticity”. In section 31.7, we

will find that the two definitions are equivalent.
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29.4 Additional Basic Material That May Be Useful

The material in the previous sections will be needed in the next chapter. But there are some additional

facts about series and power series that will be useful later, especially when we get deeper into the

rigorous theory behind the computations that we will be developing. For convenience, we’ll provide

some the more basic general facts here, and develop the more advanced material as needed. It won’t

hurt to skip this material initially, provided you return to it as needed.

Two More General Tests for Convergence

The well-known basic comparison test for determining if a given series converges or diverges was

described in theorem 29.2 on page 566 and was used in developing the radius of convergence for

power series. In chapter 31, we will find the next test, a clever refinement of the basic comparison

test, to be useful.

Theorem 29.10 (the limit comparison test)

Let
∑∞

k=γ αk and
∑∞

k=μ βk be two infinite series, and suppose

lim
k→∞

∣∣∣∣αk

βk

∣∣∣∣
exists as either a finite number or as +∞ . Then

lim
k→∞

∣∣∣∣αk

βk

∣∣∣∣ < ∞ and

∞∑
k=μ

|βk | converges �⇒
∞∑

k=γ
|αk | converges ,

while

lim
k→∞

∣∣∣∣αk

βk

∣∣∣∣ > 0 and

∞∑
k=μ

|βk | diverges �⇒
∞∑

k=γ
|αk | diverges .

Under certain conditions, you can use the limit of the ratio of the consecutive terms of a single

series to construct a geometric series that can serve as a second series in the above limit comparison

test. That leads to a third test, which will be used near the end of chapter 34.

Theorem 29.11 (the limit ratio test)

Let
∑∞

k=γ αk be an infinite series, and suppose

lim
k→∞

∣∣∣∣αk+1

αk

∣∣∣∣
exists as either a finite number or as +∞ . Then

lim
k→∞

∣∣∣∣αk+1

αk

∣∣∣∣ < 1 �⇒
∞∑

k=γ
αk converges absolutely ,

while

lim
k→∞

∣∣∣∣αk+1

αk

∣∣∣∣ > 1 �⇒
∞∑

k=γ
αk diverges .

(If the limit is 1 , there is no conclusion.)
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The derivations of the above tests can be found in any reasonable elementary calculus text.

More on Algebra with Power Series and Analytic Functions
Multiplication

The following — a straightforward extension of a basic formula for computing products of polyno-

mials — is worth a brief mention, especially since we will need it in chapter 31.

Theorem 29.12

The product of two power series centered at the same point is another power series whose radius

of convergence is at least as large as the smallest radius of convergence of the original two series.

Moreover, ( ∞∑
k=0

ak(z − z0)
k

)( ∞∑
k=0

bk(z − z0)
k

)
=

∞∑
k=0

ck(z − z0)
k

with

ck = a0bk + a1bk−1 + · · · + akb0 =
k∑

j=0

a j bk− j .

Factoring a Power Series/Analytic Function

On occasion, it will be convenient to “factor out” factors of the form (z − z0)
m from a function f

analytic at z0 . Our ability to do this follows immediately from the fact that, being analytic at z0 ,

f is given by some power series with a nonzero radius of convergence R ,

f (z) =
∞∑

k=0

ak(z − z0)
k for |z − z0| < R .

Note that

f (z0) = a0 + a1(z0 − z0) + a2(z0 − z0)
2 + · · · = a0 ,

telling us that f (z0) = 0 if and only if a0 = 0 .

Let’s go a little further and assume f (z0) = 0 , Then, as just noted, a0 = 0 . Moreover,

f (z) = a0 + a1(z − z0) + a2(z − z0)
2 + a3(z − z0)

3 + · · ·

= 0 + (z − z0)
[
a1 + a2(z − z0) + a3(z − z0)

2 + · · ·
]

= (z − z0)

∞∑
k=1

ak(z − z0)
k−1 for |z − z0| < R .

Of course, we could also have a1 = 0 , in which case we can repeat the above to obtain

f (z) = (z − z0)
2

∞∑
k=2

ak(z − z0)
k−2 for |z − z0| < R .

Continuing until we finally reach a nonzero coefficient (assuming f in nontrivial), we get, for some

positive integer m ,

f (z) = (z − z0)
m

∞∑
k=m

ak(z − z0)
k−m with am = 0 ,
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which, after letting bn = an+m , can be written as

f (z) = (z − z0)
m

∞∑
n=0

bn(z − z0)
n with b0 = 0 .

Thus, setting

f0(z) =
∞∑

n=0

bn(z − z0)
n

and noting that, even if a0 = 0 , it is trivially true that

f (z) = (z − z0)
0 f (z) ,

we get

Lemma 29.13

Let f be a nontrivial function analytic at z0 . Then there is a nonnegative integer m such that

f (z) = (z − z0)
m f0(z0)

where f0 is a function analytic at z0 with f (z0) = 0 . Moreover:

1. f (z0) = 0 if and only if m > 0 .

2. The power series for f and f0 about z0 have the same radii of convergence.

It is standard to refer to any point z0 as a zero for an analytic function if f (z0) = 0 . It is also

standard to refer to the m described in the last lemma as the multiplicity of the zero z0 .

Quotients of Analytic Functions

There is a technical issue that may arise when defining a function h as the quotient of two functions

analytic at a given point.

!�Example 29.4: Consider defining h = f/g when f and g are the polynomials

f (z) = z2 − 1 and g(z) = z − 1 .

For any value of z other than z = 1 , we simply have

h(z) = f (z)

g(z)
= z2 − 1

z − 1
,

which we can rewrite more simply by dividing out the common factor,

h(z) = z2 − 1

z − 1
= (z − 1)(z + 1)

z − 1
= z + 1 .

These two formulas for h(z) give identical results whenever z = 1 . However, we get two

different results if we plug in z = 1 :

h(1) = 12 − 1

1 − 1
= 0

0
and h(1) = 1 + 1 = 2 .

The first expression is indeterminant, and is problematic in practical applications. The second is

an finite number, and is clearly what we want to use for h(1) , especially since:
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1. It comes from a simpler formula for h(z) when z = 1 .

2. It is the same as the value we would obtain using the obvious limit,

lim
z→1

h(z) = lim
z→1

h(z) = lim
z→1

f (z)

g(z)
= lim

z→1

z2 − 1

z − 1
= · · · = 2 ,

computed either using L’Hôpital’s rule or the formula obtained by dividing out the common

factors. Hence, h is continuous at z = 1 .

More generally, when we define a function h as the quotient of two other continuous functions,

h = f/g , we automatically mean the function given by

h(z0) = f (z0)

g(z0)

at each point z0 in the common domain of f and g at which g(z0) = 0 ; and, provided the limit

exists as a finite number, by

h(z0) = lim
z→z0

f (z)

g(z)

at each point z0 in the common domain of f and g at which g(z0) = 0 . (If the above limit does

not exist, we simply accept that h is not defined at that z0 .)

We should note that using the limit when f and g are analytic and zero at z0 yields exactly

the same as if we were to divide out any common factors of z − z0 in the quotient. After all, if f

and g are analytic, then (as shown in the previous subsection) we can rewrite f (z) and g(z) as

f (z) = (z − z0)
m f0(z) and g(z) = (z − z0)

ng0(z)

where m and n are nonnegative integers, and f0 and g0 are functions analytic at z0 with f0(z0) =
0 and g0(z0) = 0 . Hence,

f (z)

g(z)
= (z − z0)

m f0(z)

(z − z0)
ng0(z)

= (z − z0)
m−n f0(z)

g0(z)
, (29.6)

and

lim
z→z0

f (z)

g(z)
= lim

z→z0

(z − z0)
m−n f0(z0)

g0(z0)
,

which is finite if and only if m ≥ n . Since this observation will later be used, let us make it a lemma.

Lemma 29.14

Let f and g be two functions analytic at z0 . Then

lim
z→z0

f (z)

g(z)

exists and is finite if and only if there is a nonnegative integer N and a R > 0 such that

f (z)

g(z)
= (z − z0)

N f0(z)

g0(z)

where f0 and g0 are functions analytic at z0 with f0(z0) = 0 and g0(z0) = 0 .
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Partial Sum Approximations with Taylor Series

Another approach to deriving the Taylor series formula for function f analytic at a point x0 starts

with the well-known equality

f (x) − f (x0) =
∫ x

x0

f ′(s) ds .

Solving for f (x) and using a “clever” integration by parts yields

f (x) = f (x0) +
∫ x

x0

f ′(s)︸ ︷︷ ︸
u

ds︸︷︷︸
dv

= f (x0) +
[

f ′(s)︸ ︷︷ ︸
u

(s − x0︸ ︷︷ ︸
v

)

∣∣∣x
s=x0

−
∫ x

x0

(s − x0︸ ︷︷ ︸
v

) f ′′(s) ds︸ ︷︷ ︸
du

]

= f (x0) + f ′(x)(x − x) − f ′(x0)(x0 − x) −
∫ x

x0

(s − x0) f ′′(s) ds

= f (x0) + 0 + f ′(x0)(x − x0) −
∫ x

x0

(s − x0) f ′′(s) ds .

Repeating this again and again with similar “clever” uses of integration by parts ultimately leads to

f (x) = PN (x) + EN (x) for N = 1, 2, 3, . . . (29.7a)

where PN (x) is the N th degree Taylor polynomial,

PN (x) =
N∑

k=0

f (k)(x0)

k! (x − x0)
k , (29.7b)

and EN (x) is the corresponding remainder term,

EN (x) = (−1)N 1

N !

∫ x

x0

f (N+1)(s)(s − x)N ds . (29.7c)

Note that PN (x) is the N th partial sum for the power series for f about x0 , and EN (x) is the

error in using this partial sum in place of f (x) .

Since we are assuming f is analytic at x0 , we know that

f (x) =
∞∑

k=0

f (k)(x0)

k! (x − x0)
k = lim

N→∞
PN (x) whenever |x − x0| < R ,

where R is the radius of convergence for the Taylor series. This, in turn, means that

lim
N→∞

EN (x) = lim
N→∞

[ f (x)− PN (x)] = 0 whenever |x − x0| < R .

Conversely, in theory, you can verify that f truly is analytic at x0 and that its power series at that

point has a radius of convergence of at least R by verifying that EN (x) → 0 as N → ∞ whenever

x0 − R < x < x0 + R .

In practice, computing EN (x) is rarely practical. Because of this, a slightly more usable error

estimate in terms of upper bounds on the derivatives of f is often described in textbooks. For our

purposes, let [a, b] be some closed subinterval with

x0 − R < a < x0 < b < x0 + R .
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By the analyticity of f , we know
∣∣ f (N+1)

∣∣ is continuous and, thus, has an upper bound on [a, b] ;

that is, there is a finite value MN such that∣∣∣ f (N+1)(x)

∣∣∣ ≤ MN for a < x < b .

Then, as you can easily verify,

|EN (x)| =
∣∣∣∣ 1

N !

∫ x

x0

f (N+1)(s)(s − x)N ds

∣∣∣∣
≤

∣∣∣∣ 1

N !

∫ x

x0

MN (s − x)N ds

∣∣∣∣ = MN

(N + 1)! |x − x0|N+1 .

The value of this estimate in showing that limN→∞ EN (x) → 0 depends on being able to find

the appropriate upper bound MN for each positive integer N . Unfortunately for us, finding these

MN ’s will not be practical. So we will not be using EN (x) to determine the analyticity of f or the

radius of convergence for its power series.

So why go through this discussion of EN ? It is for this simple observation regarding a function

f analytic at x0 : For any given positive integer N ,

MN

(N + 1)! |x − x0|N+1 → 0 “quickly” as x → x0 .

Hence, for any given positive integer N ,

EN (x) → 0 “quickly” as x → x0 ,

assuring us that the N th partial sum

N∑
k=0

f (k)(x0)

k! (x − x0)
k

is a very good approximation to f (x) on some (possibly small) open interval about x0 .

Additional Exercises

29.2. Several expressions involving geometric series are given below. If the given expression is

a partial sum or a convergent infinite series, compute its sum using the formulas developed

for geometric series and their partial sums. If the given expression is a divergent series, say

so.

a.

4∑
k=0

(
1

3

)k

b.

8∑
k=0

(
1

3

)k

c.

∞∑
k=0

(
1

3

)k

d.

∞∑
k=5

(
1

3

)k

e.

∞∑
k=0

(
−2

3

)k

f.

5∑
k=0

(
3

2

)k

g.

∞∑
k=0

(
3

2

)k

h.

∞∑
k=0

8
(

3

7

)k

i.

∞∑
k=0

[
3
(

2

5

)k

− 4
(

3

5

)k
]

j.

∞∑
k=0

[
3
(

1

10

)k

+ 2

3

(
−3

5

)k
]
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29.3. Verify each of the following equations:

a.

∞∑
k=0

1

k + 1
xk +

∞∑
k=2

1

k − 1
xk = 1 + 1

2
x +

∞∑
k=2

2k

k2 − 1
xk

b.

∞∑
k=0

(
k2 + 9

)
xk − 6

∞∑
k=1

kxk = 9 +
∞∑

k=1

(k − 3)2xk

c.

∞∑
k=2

(k − 1)xk−2 =
∞∑

n=0

(n + 1)xn

d. x

∞∑
k=2

(k − 1)xk−2 =
∞∑

n=1

nxn

e.

∞∑
k=0

(k + 1)xk+1 −
∞∑

k=4

(k − 1)xk−1 = x + 2x2

f. x3
∞∑

k=0

ak xk =
∞∑

n=3

an−3xn

g.
(

x2 + 5
) ∞∑

k=0

ak xk = 5a0 + 5a1x +
∞∑

n=2

[an−2 + 5an]xn

h.

∞∑
k=2

k(k − 1)ak xk−2 − 3

∞∑
k=0

ak xk =
∞∑

n=0

[
(n + 2)(n + 1)an+2 − 3an

]
xn

29.4. Rewrite each of the following expressions as a single power series centered at a point x0 ,

with the index being the order of each term. That is, if n is the index, then each term should

be of the form

[formula not involving x] × (x − x0)
n .

In most cases, x0 = 0 . And, in some cases, the first few terms will have to be written

separately. Simplify your expressions as much as practical.

a.

∞∑
k=0

1

k + 1
xk −

∞∑
k=1

1

k
xk b. x + 1

2
x2 + 1

3
x3 +

∞∑
k=1

(−1)k

k
xk

c.

∞∑
k=1

3k2(x − 5)k+3 d. x

∞∑
k=2

k(k − 1)xk−2

e. (x − 3)

∞∑
k=2

k(k − 1)xk−2 f. x

∞∑
k=2

k(k − 1)(x − 3)k−2

g.

∞∑
k=1

k2ak xk+3 h. (x − 1)2
∞∑

k=0

ak(x − 1)k

i.

∞∑
k=0

(k + 1)ak xk+1 −
∞∑

k=4

(k − 1)ak xk−1 j.

∞∑
k=1

kak xk−1 + 5

∞∑
k=0

ak xk
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k. x2
∞∑

k=2

k(k − 1)ak xk−2 − 4

∞∑
k=0

ak xk l.

∞∑
k=2

k(k − 1)ak xk−2 − 3x2
∞∑

k=0

ak xk

29.5. On page 565, we saw that

1

1 − x
=

∞∑
k=0

xk for |x | < 1 .

By differentiating this, find the power series about 0 for each of the following:

a.
1

(1 − x)2
b.

1

(1 − x)3

29.6. Find the Taylor series about x0 for each of the following:

a. ex with x0 = 0 b. cos(x) with x0 = 0

c. sin(x) with x0 = 0 d. ln |x | with x0 = 1

29.7 a. Using the Taylor series formula from theorem 29.7, find the fourth partial sum of the

power series about 0 for

f (x) =
√

1 + x .

b. Using the results from the previous part along with a simple substitution, find the first five

terms of the power series about 0 for

g(x) =
√

1 − x2 .

c. Let

g(x) =
√

1 − x2 and h(x) = 1

1 − x2
.

Verify that

h(x) = − g′(x)
x

,

and using this along with the results from the previous part, find the first four terms of the

power series about 0 for h(x) .

29.8 a. Using your favorite computer mathematics package (e.g., Maple or Mathematica), along

with the Taylor series formula from theorem 29.7, write a program/worksheet that will find

the first N coefficients in the power series about x0 for f where x0 is any given point

on the real line, f is any function analytic at x0 , and N is any given positive integer.

Also, have your program/worksheet write out the corresponding N th-degree partial sum

of this power series. Be sure to write your program/worksheet so that N , x0 and f are

easily changed.

b. Use your program/worksheet with each of the following choices of f , x0 and N to find

the N th-degree polynomial about x0 for f .

i. f (x) = e2x with x0 = 0 and N = 9

ii. f (x) = 1

cos(x)
with x0 = 0 and N = 11

iii. f (x) =
√

2x2 + 1 with x0 = 2 and N = 7
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29.9. We saw that

1

1 − x
=

∞∑
k=0

xk for |x | < 1 .

Replacing x with −x ,

1

1 − (−x)
=

∞∑
k=0

(−x)k for |−x | < 1 ,

gives us a power series formula for (1 + x)−1 ,

1

1 + x
=

∞∑
k=0

(−x)k for |x | < 1 .

Find a power series representation (and its radius of convergence R ) for the each of the

following by replacing the x in some of the “known” power series from exercises 29.5 and

29.6, above, with a suitable formula of x , as just done above.

a.
1

1 − 2x
b.

1

1 + x2
c.

2

2 − x
d.

2

(2 − x)2

e. e−x2

f. sin
(

x2
)

29.10. Let

f (x) =
{

0 if x = 0

e−1/x2

if x = 0
.

a. Verify that

f ′(x) =
⎧⎨⎩ 0 if x = 0

e−1/x2 2

x3
if x = 0

.

Note: The derivative at x = 0 should be computed using the basic definition

f ′(0) = lim
�x→0

f (0 +�x)− f (0)

�x
.

b. Verify that

f ′′(x) =
⎧⎨⎩ 0 if x = 0

e−1/x2 1

x6

[
4 − 6x2

]
if x = 0

.

c. Continuing, it can be shown that, for any positive integer k ,

f (k)(x) =
⎧⎨⎩ 0 if x = 0

e−1/x2 1

x3k
pk(x) if x = 0

where pk(x) is some nonzero polynomial. Using this fact, write out the Taylor series for

f about 0 .

d. Why is f not analytic at 0 even though it is infinitely differentiable at 0 ?
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Power Series Solutions I: Basic
Computational Methods

When a solution to a differential equation is analytic at a point, then that solution can be represented

by a power series about that point. In this and the next chapter, we will discuss when this can be

expected, and how we might employ this fact to obtain usable power series formulas for the solutions

to various differential equations. In this chapter, we will concentrate on two basic methods — an

“algebraic method” and a “Taylor series method” — for computing our power series. Our main

interest will be in the algebraic method. It is more commonly used and is the method we will extend

in chapter 32 to obtain “modified” power series solutions when we do not quite have the desired

analyticity. But the algebraic method is not well suited for solving all types of differential equations,

especially when the differential equations in question are not linear. For that reason (and others) we

will also introduce the Taylor series method near the end of this chapter.

30.1 Basics
General Power Series Solutions

If it exists, a power series solution for a differential equation is just a power series formula

y(x) =
∞∑

k=0

ak(x − x0)
k

for a solution y to the given differential equation in some open interval containing x0 . The series

is a general power series solution if it describes all possible solutions in that interval.

As noted in the last chapter (corollary 29.8 on page 574), if y(x) is given by the above power

series, then

a0 = y(x0) and a1 = y′(x0) .

Because a general solution to a first-order differential equation normally has one arbitrary constant,

we should expect a general power series solution to a first-order differential equation to also have a

single arbitrary constant. And since that arbitrary constant can be determined by a given initial value

y(x0) , it makes sense to use a0 as that arbitrary constant.

On the other hand, a general solution to a second-order differential equation usually has two

arbitrary constants, and they are normally determined by initial values y(x0) and y′(x0) . Conse-

quently, we should expect the first two coefficients, a0 and a1 , to assume the roles of the arbitrary

constants in our general power series solutions for second-order differential equations.

587
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The Two Methods, Briefly

The basic ideas of both the “algebraic method” and the “Taylor series method” are fairly simple.

The Algebraic Method

The algebraic method starts by assuming the solution y can be written as a power series

y(x) =
∞∑

k=0

ak(x − x0)
k

with the ak’s being constants to be determined. This formula for y is then plugged into the

differential equation. By using a lot of algebra and only a little calculus, we then “simplify” the

resulting equation until it looks something like

∞∑
n=0

[
nth formula of the ak’s

]
xn = 0 .

As we saw in the last chapter, this means

nth formula of ak’s = 0 for n = 0, 1, 2, 3, . . . ,

which (as we will see) can be used to determine all the ak’s in terms of one or two arbitrary

constants. Plugging these ak’s back into the series then gives the power series solution to our

differential equation about the point x0 .

We will outline the details for this method in the next two sections for first- and second-order

homogeneous linear differential equations

a(x)y′ + b(x)y = 0 and a(x)y′′ + b(x)y′ + c(x)y = 0

in which the coefficients are rational functions. These are the equations for which the method is

especially well suited.1 For pedagogic reasons, we will deal with first-order equations first, and then

expand our discussion to include second-order equations. It should then be clear that this approach

can easily be extended to solve higher-order analogs of the equations discussed here.

The Taylor Series Method

The basic ideas behind the Taylor series method are even easier to describe. We simply use the given

differential equation to find the values of all the derivatives of the solution y(x) when x = x0 , and

then plug these values into the formula for the Taylor series for y about x0 (see corollary 29.7 on

page 574). Details will be laid out in section 30.6.

1 Recall that a rational function is a function that can be written as one polynomial divided by another polynomial. Actually,

in theory at least, the algebraic method is “well suited” for a somewhat larger class of first- and second-order linear

differential equations. We’ll discuss this in the next chapter.
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30.2 The Algebraic Method with First-Order Equations
Details of the Method

Here are the detailed steps of our algebraic method for finding a general power series solution to

a(x)y′ + b(x)y = 0

assuming a(x) and b(x) are rational functions. To illustrate these steps, we’ll find a general power

series solution to

y′ + 2

x − 2
y = 0 . (30.1)

Admittedly you could solve this differential equation easier using methods from either chapter 4 or

5, but it is a good equation for our first example.2

Before actually starting the method, there are two preliminary steps:

Pre-step 1: Rewrite your differential equation in preferred form, which is

A(x)y′ + B(x)y = 0

where A and B are polynomials, preferably without common factors.

To get differential equation (30.1) into the form desired, we multiply the equation

by x − 2 . That gives us

(x − 2)y′ + 2y = 0 . (30.2)

Pre-step 2: If not already specified, choose a value for x0 . For reasons we will discuss later, x0

should be chosen so that A(x0) = 0 . If initial conditions are given for y(x) at some point,

then use that point for x0 (provided A(x0) = 0 ). Otherwise, choose x0 as convenient —

which usually means choosing x0 = 0 .3

For our example, we have no initial values at any point, and the first coefficient,

x − 2 , is zero only if x0 = 2 . So let us choose x0 as simply as possible; namely,

x0 = 0 .

Now for the basic method:

Step 1: Assume a power series solution

y = y(x) =
∞∑

k=0

ak(x − x0)
k (30.3)

with a0 being arbitrary and the other ak’s “to be determined”, and then compute/write out

the corresponding first derivative

y′ = d

dx

∞∑
k=0

ak(x − x0)
k

=
∞∑

k=0

d

dx

[
ak(x − x0)

k
]

=
∞∑

k=1

kak(x − x0)
k−1 .

2 Truth is, power series are rarely used to solve first-order differential equations because these equations are often more

easily solved using the more direct methods developed earlier in this text. In fact, many texts don’t even mention using

power series with first-order equations. We’re doing first-order equations here because this author likes to start as simple

as possible.
3 The requirement that A(x0) = 0 is a slight simplification of requirements we’ll develop in the next section. But

“A(x0) = 0” will suffice for now, especially if A and B are polynomials with no common factors.
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(Remember that the derivative of the a0 term is zero. Explicitly dropping this zero term in

the series for y′ is not necessary, but can simplify bookkeeping, later.)

Since we’ve already decided x0 = 0 , we assume

y = y(x) =
∞∑

k=0

ak xk , (30.4)

and compute

y′ = d

dx

∞∑
k=0

ak xk =
∞∑

k=0

d

dx

[
ak xk

]
=

∞∑
k=1

kak xk−1 .

Step 2: Plug the series for y and y′ back into the differential equation and “multiply things out”.

(If x0 = 0 , see the comments on page 597.)

Some notes:

i. Absorb any x’s from A(x) and B(x) into the series.

ii. Your goal is to get an equation in which zero equals the sum of a few power series

about x0 .

Using the above series with the given differential equation, we get

0 = (x − 2)y′ + 2y

= (x − 2)

∞∑
k=1

kak xk−1 + 2

∞∑
k=0

ak xk

=
[

x

∞∑
k=1

kak xk−1 − 2

∞∑
k=1

kak xk−1

]
+ 2

∞∑
k=0

ak xk

=
∞∑

k=1

kak xk +
∞∑

k=1

(−2)kak xk−1 +
∞∑

k=0

2ak xk .

Step 3: For each series in your last equation, do a change of index4 so that each series looks like

∞∑
n=something

[
something not involving x

]
(x − x0)

n .

Be sure to appropriately adjust the lower limit in each series.

4 see Changing the Index on page 569
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In all but the second series in the example, the “change of index” is trivial ( n = k ).

In the second series, we set n = k − 1 (equivalently, k = n + 1 ):

0 =
∞∑

k=1

kak xk

︸ ︷︷ ︸
n = k

+
∞∑

k=1

(−2)kak xk−1

︸ ︷︷ ︸
n = k−1

+
∞∑

k=0

2ak xk

︸ ︷︷ ︸
n = k

=
∞∑

n=1

nanxn +
∞∑

n+1=1

(−2)(n + 1)an+1xn +
∞∑

n=0

2anxn

=
∞∑

n=1

nanxn +
∞∑

n=0

(−2)(n + 1)an+1xn +
∞∑

n=0

2anxn .

Step 4: Convert the sum of series in your last equation into one big series. The first few terms will

probably have to be written separately. Go ahead and simplify what can be simplified.

Since one of the series in the last equation begins with n = 1 , we need to separate

out the terms corresponding to n = 0 in the other series before combining series:

0 =
∞∑

n=1

nanxn +
∞∑

n=0

(−2)(n + 1)an+1xn +
∞∑

n=0

2anxn

=
∞∑

n=1

nanxn +
[
(−2)(0 + 1)a0+1x0 +

∞∑
n=1

(−2)(n + 1)an+1xn

]

+
[

2a0x0 +
∞∑

n=1

2anxn

]

= [−2a1 + 2a0]x0 +
∞∑

n=1

[nan − 2(n + 1)an+1 + 2an]xn

= 2[a0 − a1]x0 +
∞∑

n=1

[
(n + 2)an − 2(n + 1)an+1

]
xn .

Step 5: At this point, you have an equation basically of the form

∞∑
n=0

[
nth formula of the ak’s

]
(x − x0)

n = 0 ,

which is possible only if

nth formula of the ak’s = 0 for n = 0, 1, 2, 3, . . . .

Using this last equation:

(a) Solve for the ak with the highest index, obtaining

ahighest index = formula of n and lower-indexed coefficients .

A few of these equations may need to be treated separately, but you should obtain one

relatively simple formula that holds for all indices above some fixed value. This formula

is a recursion formula for computing each coefficient from the previously computed

coefficients.
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(b) To simplify things just a little, do another change of index so that the recursion formula

just derived is rewritten as

ak = formula of k and lower-indexed coefficients .

From the last step in our example, we have

2[a0 − a1]x0 +
∞∑

n=1

[
(n + 2)an − 2(n + 1)an+1

]
xn = 0 .

So,

2[a0 − a1] = 0 , (30.5a)

and, for n = 1, 2, 3, 4, . . . ,

(n + 2)an − 2(n + 1)an+1 = 0 . (30.5b)

In equation (30.5a), a1 is the highest indexed ak ; solving for it in terms of the

lower-indexed ak’s (i.e., a0 ) yields

a1 = a0 .

Equation (30.5b) also just contains two ak’s : an and an+1 . Since n + 1 > n ,

we solve for an+1 ,

an+1 = n + 2

2(n + 1)
an for n = 1, 2, 3, 4, . . . .

Letting k = n + 1 (equivalently, n = k − 1 ), this becomes

ak = k + 1

2k
ak−1 for k = 2, 3, 4, 5, . . . . (30.6)

This is the recursion formula we will use.

Step 6: Use the recursion formula (and any corresponding formulas for the lower-order terms) to

find all the ak’s in terms of a0 . Look for patterns!

In the last step, we saw that

a1 = a0 .

Using this and recursion formula (30.6) with k = 2, 3, 4, . . . (and looking for

patterns), we obtain the following:

a2 = 2 + 1

2 · 2
a2−1 = 3

2 · 2
a1 = 3

2 · 2
a0 ,

a3 = 3 + 1

2 · 3
a3−1 = 4

2 · 3
a2 = 4

2 · 3
· 3

2 · 2
a0 = 4

23
a0 ,

a4 = 4 + 1

2 · 4
a4−1 = 5

2 · 4
a3 = 5

2 · 4
· 4

23
a0 = 5

24
a0 ,

a5 = 5 + 1

2 · 5
a5−1 = 6

2 · 5
a4 = 6

2 · 5
· 5

25
a0 = 6

25
a0 ,

...
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The pattern here is obvious:

ak = k + 1

2k
a0 for k = 2, 3, 4, . . . .

Note that this formula even gives us our a1 = a0 equation,

a1 = 1 + 1

21
a0 = 2

2
a0 = a0 ,

and is even valid with k = 0 ,

a0 = 0 + 1

22
a0 = a0 .

So, in fact,

ak = k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . . . (30.7)

Step 7: Using the formulas just derived for the coefficients, write out the resulting series for y(x) .

Try to simplify it and factor out a0 .

Plugging the formula just derived for the ak’s into the power series assumed for

y yields

y(x) =
∞∑

k=0

ak xk =
∞∑

k=0

k + 1

2k
a0xk = a0

∞∑
k=0

k + 1

2k
xk .

So we have

y(x) = a0

∞∑
k=0

k + 1

2k
xk

= a0

[
0 + 1

20
x0 + 1 + 1

21
x1 + 2 + 1

22
x2 + 3 + 1

23
x3 + · · ·

]
= a0

[
1 + x + 3

4
x2 + 1

2
x3 + · · ·

]
as the series solution for our first-order differential equation (assuming it con-

verges).

Last Step: See if you recognize the series derived as the series for some well-known function (you

probably won’t!).

By an amazing stroke of luck, in exercise 29.9 d on page 586 we saw that

2

(2 − x)2
= 1

2

∞∑
k=0

k + 1

2k
xk .

So our formula for y simplifies considerably:

y(x) = a0

∞∑
k=0

k + 1

2k
xk = a0

[
2 · 2

(2 − x)2

]
= 4a0

(2 − x)2
.
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Practical Advice on Using the Method
General Comments

The method just described is a fairly straightforward procedure, at least up to the point where you are

trying to “find a pattern” for the ak’s . The individual steps are, for the most part, simple and only

involve elementary calculus and algebraic computations — but there are a lot of these elementary

computations, and an error in just one can throw off the subsequent computations with disastrous

consequences for your final answer. So be careful, write neatly, and avoid shortcuts and doing too

many computations in your head. It may also be a good idea to do your work with your paper turned

sideways, just to have enough room for each line of formulas.

On Finding Patterns

In computing the ak’s , we usually want to find some “pattern” described by some reasonably simple

formula. In our above example, we found formula (30.7),

ak = k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . . .

Using this formula, it was easy to write out the power series solution.

More generally, we will soon verify that the ak’s obtained by this method can all be simply

related to a0 by an expression of the form

ak = αka0 for k = 0, 1, 2, 3, 4, . . .

where α0 = 1 and the other αk’s are fixed numbers (hopefully given by some simple formula of

k ). In the example cited just above,

αk = k + 1

2k
for k = 0, 1, 2, 3, 4, . . . .

Finding that pattern and its formula (i.e., the above mentioned αk’s ) is something of an art

and requires a skill that improves with practice. One suggestion is to avoid multiplying factors out.

It was the author’s experience that, in deriving formula (30.7), led him to leave 22 and 23 as 22

and 23 , instead of as 4 and 8 — he suspected a pattern would emerge. Another suggestion is to

compute “many” of the ak’s using the recursion formula before trying to identify the pattern. And

once you believe you’ve found that pattern and derived that formula, say,

ak = k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . . ,

test it by computing a few more ak’s using both the recursion formula directly and using your newly

found formula. If the values computed using both methods don’t agree, your formula is wrong.

Better yet, if you are acquainted with the method of induction, use that to rigorously confirm your

formula.5

Unfortunately, in practice, it may not be so easy to find such a pattern for your ak’s . In fact, it

is quite possible to end up with a three (or more) term recursion formula, say,

an = 1

n2 + 1
an−1 + 2

3n(n + 3)
an−2 ,

which can make “finding patterns” quite difficult.

Even if you do see a pattern, it might be difficult to describe. In these cases, writing out a

relatively simple formula for all the terms in the power series solution may not be practical. What

we can still do, though, is to use the recursion formula to compute (or have a computer compute) as

many terms as we think are needed for a reasonably accurate partial sum approximation.

5 And to learn about using induction, see section 30.7.
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Terminating Series

It’s worth checking your recursion formula

ak = formula of k and lower-indexed coefficients

to see if the right side becomes zero for some value K of k . Then

aK = 0

and the computation of the subsequent ak’s may become especially simple. In fact, you may well

have

ak = 0 for all k ≥ K .

This, essentially, “terminates” the series and gives you a polynomial solution — something that’s

usually easier to handle than a true infinite series solution.

!�Example 30.1: Consider finding the power series solution about x0 = 0 to(
x2 + 1

)
y′ − 4xy = 0 .

It is already in the right form. So, following the procedure, we let

y(x) =
∞∑

k=0

ak(x − x0)
k =

∞∑
k=0

ak xk ,

and ‘compute’

y′(x) = d

dx

∞∑
k=0

ak xk =
∞∑

k=0

d

dx

[
ak xk

]
=

∞∑
k=1

akkxk−1 .

Plugging this into the differential equation and carrying out the index manipulation and algebra

of our method:

0 =
(

x2 + 1
)

y′ − 4xy

=
(

x2 + 1
) ∞∑

k=1

akkxk−1 − 4x

∞∑
k=0

ak xk

= x2
∞∑

k=1

akkxk−1 + 1

∞∑
k=1

akkxk−1 − 4x

∞∑
k=0

ak xk

=
∞∑

k=1

akkxk+1

︸ ︷︷ ︸
n = k+1

+
∞∑

k=1

akkxk−1

︸ ︷︷ ︸
n = k−1

−
∞∑

k=0

4ak xk+1

︸ ︷︷ ︸
n = k+1

=
∞∑

n=2

an−1(n − 1)xn +
∞∑

n=0

an+1(n + 1)xn −
∞∑

n=1

4an−1xn
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=
∞∑

n=2

an−1(n − 1)xn +
[

a0+1(0 + 1)x0 + a1+1(1 + 1)x1 +
∞∑

n=2

an+1(n + 1)xn

]

−
[

4a1−1x1 +
∞∑

n=2

4an−1xn

]

= a1x0 + [2a2 − 4a0] x1 +
∞∑

n=2

[
an−1(n − 1)+ an+1(n + 1)− 4an−1

]
xn

= a1x0 + [2a2 − 4a0] x1 +
∞∑

n=2

[
(n + 1)an+1 + (n − 5)an−1

]
xn .

Remember, the coefficient in each term must be zero. From the x0 term, we get

a1 = 0 .

From the x1 term, we get

2a2 − 4a0 = 0 .

And for n ≥ 2 , we have

(n + 1)an+1 + (n − 5)an−1 = 0 .

Solving each of the above for the ak with the highest index, we get

a1 = 0 ,

a2 = 2a0

and

an+1 = 5 − n

n + 1
an−1 for n = 2, 3, 4, . . . .

Letting k = n + 1 then converts the last equation to the recursion formula

ak = 6 − k

k
ak−2 for k = 3, 4, 5, . . . .

Now, using our recursion formula, we see that

a3 = 6 − 3

3
a3−2 = 3

3
a1 = 1

2
· 0 = 0 ,

a4 = 6 − 4

4
a4−2 = 2

4
a2 = 1

2
· 2a0 = a0 ,

a5 = 6 − 5

5
a5−2 = 1

5
a3 = 1

5
· 0 = 0 ,

a6 = 6 − 6

6
a6−2 = 0

6
a4 = 0 ,

a7 = 6 − 7

7
a7−2 = −1

7
a5 = −1

7
· 0 = 0 ,

a8 = 6 − 8

8
a8−2 = −2

8
a6 = −1

4
· 0 = 0 ,

...
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Clearly, the vanishing of both a5 and a6 means that the recursion formula will give us

ak = 0 whenever k > 4 .

Thus,

y(x) =
∞∑

k=0

ak xk

= a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + · · ·
= a0 + 0x + 2a0x2 + 0x3 + a0x4 + 0x5 + 0x6 + 0x7 + · · ·
= a0 + 2a0x2 + a0x4 .

That is, the power series for y reduces to the polynomial

y(x) = a0

[
1 + 2x2 + x4

]
.

If x0 �= 0

The computations in our procedure (and the others we’ll develop) tend to get a little messier when

x0 = 0 , and greater care needs to be taken. In particular, before you ”multiply things out” in step 2,

you should rewrite your polynomials A(x) and B(x) in terms of (x − x0) instead of x to better

match the terms in the series. For example, if

A(x) = x2 + 2 and x0 = 1 ,

then rewrite A(x) as follows:

A(x) = [(x − 1)+ 1]2 + 2

=
[
(x − 1)2 + 2(x − 1)+ 1

]
+ 2 = (x − 1)2 + 2(x − 1) + 3 .

Alternatively (and probably better), you can just convert the differential equation

A(x)y′ + B(x)y = 0 (30.8a)

using the change of variables X = x − x0 . That is, first set

Y (X) = y(x) with X = x − x0

and then rewrite the differential equation for y(x) in terms of Y and X . After noting that x = X+x0

and that (via the chain rule)

y′(x) = d

dx
[y(x)] = d

dx
[Y (X)] = dY

d X

d X

dx
= dY

d X

d

dx
[x − x0] = dY

d X
= Y ′(X) ,

we see that this converted differential equation is simply

A(X + x0)Y
′ + B(X + x0)Y = 0 . (30.8b)

Consequently, if we can find a general power series solution

Y (X) =
∞∑

k=0

ak Xk
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to the converted differential equation (equation (30.8b)), we can then generate the corresponding

general power series to the original equation (equation (30.8a)) by rewriting X in terms of x ,

y(x) = Y (X) = Y (x − x0) =
∞∑

k=0

ak(x − x0)
k .

!�Example 30.2: Consider the problem of finding the power series solution about x0 = 3 for(
x2 − 6x + 10

)
y′ + (12 − 4x)y = 0 .

Proceeding as suggested, we let

Y (X) = y(x) with X = x − 3 .

Then x = X + 3 , and (
x2 − 6x + 10

)
y′ + (12 − 4x)y = 0

↪→ (
[X + 3]2 − 6[X + 3] + 10

)
Y ′ + (12 − 4[X + 3])Y = 0

After a bit of simple algebra, this last equation simplifies to(
X2 + 1

)
Y ′ − 4XY = 0 ,

which, by an amazing stroke of luck, is the differential equation we just dealt with in example

30.1 (only now written using capital letters). From that example, we know

Y (X) = a0

[
1 + 2X2 + X4

]
.

Thus,

y(x) = Y (X) = Y (x − 3) = a0

[
1 + 2(x − 3)2 + (x − 3)4

]
.

Initial-Value Problems (and Finding Patterns, Again)

The method just described yields a power series solution

y(x) =
∞∑

k=0

ak(x − x0)
k = a0 + a1(x − x0) + a2(x − x0)

2 + a3(x − x0)
3 + · · ·

in which a0 is an arbitrary constant. Remember,

y(x0) = a0 .

So the above general series solution for

A(x)y′ + B(x)y = 0

becomes the solution to the initial-value problem

A(x)y′ + B(x)y = 0 with y(x0) = y0

if we simply replace the arbitrary constant a0 with the value y0 .
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Along these lines, it is worth recalling that we are dealing with first-order, homogeneous linear

differential equations, and that the general solution to any such equation can be given as an arbitrary

constant times any nontrivial solution. In particular, we can write the general solution y to any

given first-order, homogeneous linear differential equation as

y(x) = a0 y1(x)

where a0 is an arbitrary constant and y1 is the particular solution satisfying the initial condition

y(x0) = 1 . So if our solutions can be written as power series about x0 , then there is a particular

power series solution

y1(x) =
∞∑

k=0

αk(x − x0)
k

where α0 = y1(x0) = 1 and the other αk’s are fixed numbers (hopefully given by some simple

formula of k ). It then follows that the general solution y is given by

y(x) = a0 y1(x0) = a0

∞∑
k=0

αk(x − x0)
k =

∞∑
k=0

ak(x − x0)
k

where

ak = αka0 for k = 0, 1, 2, 3, . . . ,

just as was claimed a few pages ago when we discussed “finding patterns”. (This also confirms that

we will always be able to factor out the a0 in our series solutions.)

One consequence of these observations is that, instead of assuming a solution of the form

∞∑
k=0

ak(x − x0)
k with a0 arbitrary

in the first step of our method, we could assume a solution of the form

∞∑
k=0

αk(x − x0)
k with α0 = 1 ,

and then just multiply the series obtained by an arbitrary constant a0 . In practice, though, this

approach is no simpler than that already outlined in the steps of our algebraic method.

30.3 Validity of of the Algebraic Method for First-Order
Equations

Our algebraic method will certainly lead to a general solution of the form

y(x) =
∞∑

k=0

ak(x − x0)
k with a0 arbitrary ,

provided such a general solution exists. But what assurance do we have that such solutions exist?

And what about the radius of convergence? What good is a formula for a solution if we don’t know

the interval over which that formula is valid? And while we are asking these sorts of questions, why

do we insist that A(x0) = 0 in pre-step 2?

Let’s see if we can at least partially answer these questions.
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Non-Existence of Power Series Solutions

Let a and b be functions on an interval (α, β) containing some point x0 , and let y be any function

on that interval satisfying

a(x)y′ + b(x)y = 0 with y(x0) = 0 .

For the moment, assume this differential equation has a general power series solution about x0 valid

on (α, β) . This means there are finite numbers a0 , a1 , a2 , . . . such that

y(x) =
∞∑

k=0

ak(x − x0)
k for α < x < β .

In particular, there are finite numbers a0 and a1 with

a0 = y(x0) = 0 and a1 = y′(x0) .

Also observe that we can algebraically solve our differential equation for y′ , obtaining

y′(x) = − b(x)

a(x)
y(x) .

Thus,

a1 = y′(x0) = − b(x0)

a(x0)
y(x0) = − b(x0)

a(x0)
a0 , (30.9)

provided the above fraction is a finite number — which will certainly be the case if a(x) and b(x)

are polynomials with a(x0) = 0 .

More generally, the fraction in equation (30.9) might be indeterminant. To get around this

minor issue, we’ll take limits:

a1 = y′(x0) = lim
x→x0

y′(x) = lim
x→x0

[
− b(x)

a(x)
y(x)

]
= − lim

x→x0

[
b(x)

a(x)

]
y(x0) = − lim

x→x0

[
b(x)

a(x)

]
a0 .

Solving for the limit, we then have

lim
x→x0

b(x)

a(x)
= −a1

a0
.

This means the above limit must exist and be a well-defined finite number whenever the solution y

can be given by the above power series. And if you think about what this means when the above

limit does not exist as a finite number, you get:

Lemma 30.1 (nonexistence of a power series solution)

Let a and b be two functions on some interval containing a point x0 . If

lim
x→x0

b(x)

a(x)

does not exist as a finite number, then

a(x)y′ + b(x)y = 0

does not have a general power series solution about x0 with an arbitrary constant term.
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!�Example 30.3: Consider the differential equation

(x − 2)y′ + 2y = 0 .

This equation is

a(x)y′ + b(x)y = 0

with

a(x) = (x − 2) and b(x) = 2 .

Note that these are polynomials without common factors but with a(2) = 0 . Consequently,

lim
x→2

b(x)

a(x)
= lim

x→2

2

(x − 2)
= 2

0
,

which is certainly not a finite number. Lemma 30.1 then tells us not to bother looking for a

solution of the form

y(x) =
∞∑

k=0

ak(x − 2)k with a0 arbitrary .

No such solution exists.

Singular and Ordinary Points, and the Radius of Analyticity

Because of the ‘singular’ behavior just noted, we refer to any point z0 for which

lim
z→z0

b(z)

a(z)

is not a well-defined finite number as a singular point for the differential equation

a(x)y′ + b(x)y = 0 .

Note that we used “ z ” in this definition, suggesting that we may be considering points on the complex

plane as well. This can certainly be the case when a and b are rational functions. And if a and

b are rational functions, then the nonsingular points (i.e., the points that are not singular points) are

traditionally referred to as ordinary points for the above differential equation.

A related concept is that of the “radius of analyticity”. If the differential equation has at least one

singular point, then the radius of analyticity (for the differential equation about z0 ) is the distance

between z0 and the singular point zs closest to z0 (which could be z0 , itself). If the equation has

no singular points, then we define the equation’s radius of analyticity (about z0 ) to be +∞ .

In using the above terminology, keep in mind that the singular point zs of most interest (i.e.,

the one closest to z0 ) might not be on the real line but some point in the complex plane off of the

real line.

Validity of the Algebraic Method

We just saw that our algebraic method for finding power series solutions about x0 will fail if x0 is a

singular point. On the other hand, there is a theorem assuring us that the method will succeed when

x0 is an ordinary point for our differential equation and even giving us a good idea of the interval

over which the general power series solution is valid. Here is that theorem:
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Theorem 30.2 (existence of power series solutions)

Let x0 be an ordinary point on the real line for

a(x)y′ + b(x)y = 0

where a and b are rational functions. Then this differential equation has a general power series

solution

y(x) =
∞∑

k=0

ak(x − x0)
k

with a0 being the arbitrary constant. Moreover, this solution is valid at least on the interval (x0 −
R, x0 + R) where R is the radius of analyticity about x0 for the differential equation.

The proof of this theorem requires a good deal more work than did our derivation of the previous

lemma. We will save that labor for the next chapter.

Identifying Singular and Ordinary Points

The basic approach to identifying a point z0 as being either a singular or ordinary point for

a(x)y′ + b(x)y = 0

is to look at the limit

lim
z→z0

b(z)

a(z)
.

If the limit is a finite number, x0 is an ordinary point; otherwise x0 is a singular point. And if you

think about how this limit is determined by the values of a(z) and b(z) as z → z0 , you’ll derive

the shortcuts listed in the next lemma.

Lemma 30.3 (tests for ordinary/singular points)

Let z0 be a point in the complex plane, and consider the differential equation

a(x)y′ + b(x)y = 0

where a and b are rational functions. Then

1. If a(z0) and b(z0) are both finite numbers with a(z0) = 0 , then z0 is an ordinary point

for the differential equation.

2. If a(z0) and b(z0) are both finite numbers with a(z0) = 0 and b(z0) = 0 , then z0 is a

singular point for the differential equation.

3. If a(z0) is a finite nonzero number, and

lim
z→z0

|b(z)| = ∞ ,

then z0 is a singular point for the differential equation.

4. If b(z0) is a finite number, and

lim
z→z0

|a(z)| = ∞ ,

then z0 is an ordinary point for the differential equation.
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Applying the above to the differential equations of interest here (rewritten in the form recom-

mended for the algebraic method) yields the following corollary.

Corollary 30.4

Let A(x) and B(x) be polynomials having no factors in common. Then a point z0 on the complex

plane is a singular point for

A(x)y′ + B(x)y = 0

if and only if A(z0) = 0 .

!�Example 30.4: To first illustrate the algebraic method, we used

y′ + 2

x − 2
y = 0 ,

which we rewrote as

(x − 2)y′ + 2y = 0 .

Now

A(zs) = zs − 2 = 0 ⇐⇒ zs = 2 .

So this differential equation has just one singular point, zs = 2 . Any x0 = 2 is then an ordinary

point for the differential equation, and the corresponding radius of analyticity is

Rx0
= distance from x0 to zs = |zs − x0| = |2 − x0| .

Theorem 30.2 then assures us that, about any x0 = 2 , the general solution to our differential

equation has a power series formula, and its radius of convergence is at least equal to |2 − x0| .

In particular, the power series we found,

y = a0

∞∑
k=0

k + 1

2k
xk ,

is centered at x0 = 0 . So the corresponding radius of analyticity is

R = |2 − 0| = 2

and our theorems assure us that our series solution is valid at least on the interval (x0−R, x0+R) =
(−2, 2) .

In this regard, let us note the following:

1. If |x | ≥ 2 , then the terms of our power series solution

y = a0

∞∑
k=0

k + 1

2k
xk = a0

∞∑
k=0

(k + 1)
(

x

2

)k

,

clearly increase in magnitude as k increases. Hence, this series diverges whenever |x | ≥
2 . So, in fact, the radius of convergence is 2 , and our power series solution is only valid

on (−2, 2) .

2. As we observed on page 593, the above power series is the power series about x0 for

y(x) = 4a0

(2 − x)2
.

But you can easily verify that this simple formula gives us a valid general solution to our

differential equation on any interval not containing the singular point x = 2 , not just

(−2, 2) .
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The last example shows that a power series for a solution may be valid over a smaller interval

than the interval of validity for another formula for that solution. Of course, finding that more general

formula may not be so easy, especially after we start dealing with higher-order differential equations.

The next example illustrates something slightly different, namely that the radius of convergence

for a power series solution can, sometimes, be much larger than the corresponding radius of analyticity

for the differential equation.

!�Example 30.5: In example 30.2, we considered the problem of finding the power series solution

about x0 = 3 for (
x2 − 6x + 10

)
y′ + (12 − 4x)y = 0 .

Any singular point z for this differential equation is given by

z2 − 6z + 10 = 0 .

Using the quadratic formula, we see that we have two singular points z+ and z− given by

z± = 6 ±
√
(−6)2 − 4 · 10

2
= 3 ± 1i .

The radius of analyticity about x0 = 3 for our differential equation is the distance between each

of these singular points and x0 = 3 ,

|z± − x0| = |[3 ± 1i] − 3| = |±i | = 1 .

So the radius of convergence for our series is at least 1 , which means that our series solution is

valid on at least the interval

(x0 − R, x0 + R) = (3 − 1, 3 + 1) = (2, 4) .

Recall, however, that example 30.2 demonstrated the possibility of a “terminating series”,

and that our series solution to the above differential equation actually reduced to the polynomial

y(x) = a0

[
1 + 2x2 + x4

]
,

which is easily verified to be a valid solution on the entire real line (−∞,∞) , not just (2, 4) .

30.4 The Algebraic Method with Second-Order Equations

Extending the algebraic method to deal with second-order differential equations is straightforward.

The only real complication (aside from the extra computations required) comes from the fact that

our solutions will now involve two arbitrary constants instead of one, and that complication won’t

be particularly troublesome.
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Details of the Method

Our goal, now, is to find a general power series solution to

a(x)y′′ + b(x)y′ + c(x)u = 0

assuming a(x) , b(x) and c(x) are rational functions. As hinted above, the procedure given here

is very similar to that given in the previous section. Because of this, some of the steps will not be

given in the same detail as before.

To illustrate the method, we will find a power series solution to

y′′ − xy = 0 . (30.10)

This happens to be Airy’s equation. It is a famous equation and cannot be easily solved by any

method we’ve discussed earlier in this text.

Again, we have two preliminary steps:

Pre-step 1: Get the differential equation into preferred form, which is

A(x)y′′ + B(x)y′ + C(x)y = 0

where A(x) , B(x) and C(x) are polynomials, preferably with no factors shared by all

three.

Our example is already in the desired form.

Pre-step 2: If not already specified, choose a value for x0 such that that A(x0) = 0 . If initial

conditions are given for y(x) at some point, then use that point for x0 (provided A(x0) = 0 ).

Otherwise, choose x0 as convenient — which usually means choosing x0 = 0 .6

For our example, we have no initial values at any point, so we choose x0 as simply

as possible; namely, x0 = 0 .

Now for the basic method:

Step 1: Assume

y = y(x) =
∞∑

k=0

ak(x − x0)
k (30.11)

with a0 and a1 being arbitrary and the other ak’s “to be determined”, and then compute/write

out the corresponding series for the first two derivatives,

y′ =
∞∑

k=0

d

dx

[
ak(x − x0)

k
]

=
∞∑

k=1

kak(x − x0)
k−1

and

y′′ =
∞∑

k=1

d

dx

[
kak(x − x0)

k−1
]

=
∞∑

k=2

k(k − 1)ak(x − x0)
k−2 .

Step 2: Plug these series for y , y′ , and y′′ back into the differential equation and “multiply things

out” to get zero equalling the sum of a few power series about x0 .

6 Again, the requirement that A(x0) = 0 is a simplification of requirements we’ll develop in the next section. But

“A(x0) = 0” will suffice for now, especially if A , B and C are polynomials with no factors shared by all three.
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Step 3: For each series in your last equation, do a change of index so that each series looks like

∞∑
n=something

[
something not involving x

]
(x − x0)

n .

Step 4: Convert the sum of series in your last equation into one big series. The first few terms may

have to be written separately. Simplify what can be simplified.

Since we’ve already decided x0 = 0 in our example, we let

y = y(x) =
∞∑

k=0

ak xk , (30.12)

and “compute”

y′ =
∞∑

k=0

d

dx

[
ak xk

]
=

∞∑
k=1

kak xk−1

and

y′′ =
∞∑

k=1

d

dx

[
kak xk−1

]
=

∞∑
k=2

k(k − 1)ak xk−2 .

Plugging these into the given differential equation and carrying out the other steps

stated above then yield the following sequence of equalities:

0 = y′′ − xy

=
∞∑

k=2

k(k − 1)ak xk−2 − x

∞∑
k=0

ak xk

=
∞∑

k=2

k(k − 1)ak xk−2

︸ ︷︷ ︸
n = k−2

+
∞∑

k=0

(−1)ak xk+1

︸ ︷︷ ︸
n = k+1

=
∞∑

n=0

(n + 2)(n + 1)an+2xn +
∞∑

n=1

(−1)an−1xn

= (0 + 2)(0 + 1)a0+2x0 +
∞∑

n=1

(n + 2)(n + 1)an+2xn +
∞∑

n=1

(−1)an−1xn

= 2a2x0 +
∞∑

n=1

[(n + 2)(n + 1)an+2 − an−1]xn .

Step 5: At this point, you will have an equation of the basic form

∞∑
n=0

[
nth formula of the ak’s

]
(x − x0)

n = 0 .

Now:
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(a) Solve

nth formula of the ak’s = 0 for n = 0, 1, 2, 3, 4, . . . .

for the ak with the highest index,

ahighest index = formula of n and lower-indexed coefficients .

Again, a few of these equations may need to be treated separately, but you will also

obtain a relatively simple formula that holds for all indices above some fixed value.

This is a recursion formula for computing each coefficient from previously computed

coefficients.

(b) Using another change of index, rewrite the recursion formula just derived so that it

looks like

ak = formula of k and lower-indexed coefficients .

From the previous step in our example, we have

2a2x0 +
∞∑

n=1

[(n + 2)(n + 1)an+2 − an−1]xn = 0 .

So

2a2 = 0 ,

and, for n = 1, 2, 3, 4, . . . ,

(n + 2)(n + 1)an+2 − an−1 = 0 .

The first tells us that

a2 = 0 .

Solving the second for an+2 yields the recursion formula

an+2 = 1

(n + 2)(n + 1)
an−1 for n = 1, 2, 3, 4, . . . .

Letting k = n + 2 (equivalently, n = k − 2 ), this becomes

ak = 1

k(k − 1)
ak−3 for k = 3, 4, 5, 6, . . . . (30.13)

This is the recursion formula we will use.

Step 6: Use the recursion formula (and any corresponding formulas for the lower-order terms) to

find all the ak’s in terms of a0 and a1 . Look for patterns!

We already saw that

a2 = 0 .

Using this and recursion formula (30.13) with k = 3, 4, . . . (and looking for

patterns), we see that

a3 = 1

3(3 − 1)
a3−3 = 1

3 · 2
a0 ,

a4 = 1

4(4 − 1)
a4−3 = 1

4 · 3
a1 ,
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a5 = 1

5(5 − 1)
a5−3 = 1

5 · 4
a2 = 1

5 · 4
· 0 = 0 ,

a6 = 1

6(6 − 1)
a6−3 = 1

6 · 5
a3 = 1

6 · 5
· 1

3 · 2
a0 ,

a7 = 1

7(7 − 1)
a7−3 = 1

7 · 6
a4 = 1

7 · 6
· 1

4 · 3
a1 ,

a8 = 1

8(8 − 1)
a8−3 = 1

8 · 7
a5 = 1

8 · 7
· 1

5 · 4
· 0 = 0 ,

a9 = 1

9(9 − 1)
a9−3 = 1

9 · 8
a6 = 1

9 · 8
· 1

6 · 5
· 1

3 · 2
a0 ,

a10 = 1

10(10 − 1)
a10−3 = 1

10 · 9
a7 = 1

10 · 9
· 1

7 · 6
· 1

4 · 3
a1 ,

...

There are three patterns here. The simplest is

ak = 0 when k = 2, 5, 8, 11, . . .

The other two are more difficult to describe. Look carefully and you’ll see that

the denominators are basically k! with every third factor removed. If k = 3, 6,

9, . . . , then

ak = 1

(2 · 3)(5 · 6)(8 · 9) · · · ([k − 1] · k)
a0 .

If k = 4, 7, 10, . . . , then

ak = 1

(3 · 4)(6 · 7)(9 · 10) · · · ([k − 1] · k)
a1 .

Let us observe that we can use the change of indices k = 3n and k = 3n + 1

to rewrite the last two expressions as

a3n = 1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
a0 for n = 1, 2, 3, . . .

and

a3n+1 = 1

(3 · 4)(6 · 7) · · · (3n · [3n + 1])a1 for n = 1, 2, 3, . . . .

Step 7: Using the formulas just derived for the coefficients, write out the resulting series for y(x) .

Try to simplify it to a linear combination of two power series, y1(x) and y2(x) , with y1(x)

multiplied by a0 and y2(x) multiplied by a1 .

Plugging the formulas just derived for the ak’s into the power series assumed for

y , we get

y(x) =
∞∑

k=0

ak xk

= a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + · · ·
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=
[
a0 + a3x3 + a6x6 + a9x9 + · · ·

]
+

[
a1 + a4x4 + a7x7 + a10x10 + · · ·

]
+

[
a2 + a5x5 + a8x8 + a11x11 + · · ·

]
=

[
a0 + a3x3 + a6x6 + · · · + a3nx3n + · · ·

]
+

[
a1 + a4x4 + a7x7 + · · · + a3n+1x3n+1 + · · ·

]
+

[
a2 + a5x5 + a8x8 + · · · + a3n+2x3n+2 + · · ·

]

=
[

a0 + 1

3 · 2
a0x3 + · · · + 1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
a0x3n + · · ·

]
+

[
a1x + 1

4 · 3
a1x4 + · · ·

+ 1

(3 · 4)(6 · 7) · · · (3n · [3n + 1])a1x3n+1 + · · ·
]

+
[
0 + 0x5 + 0x8 + 0x11 + · · ·

]

= a0

[
1 + 1

3 · 2
x3 + · · · + 1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
x3n + · · ·

]
+ a1

[
x + 1

4 · 3
x4 + · · · + 1

(3 · 4)(6 · 7) · · · (3n · [3n + 1]) x3n+1 + · · ·
]

So,

y(x) = a0 y1(x) + a1 y2(x) (30.14a)

where

y1(x) = 1 +
∞∑

n=1

1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
x3n (30.14b)

and

y2(x) = x +
∞∑

n=1

1

(3 · 4)(6 · 7) · · · (3n · [3n + 1]) x3n+1 . (30.14c)

Last Step: See if you recognize either of the series derived as the series for some well-known

function (you probably won’t!).

It is unlikely that you have ever seen the above series before. So we cannot rewrite

our power series solutions more simply in terms of better-known functions.
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Practical Advice on Using the Method

The advice given for using this method with first-order equations certainly applies when using this

method for second-order equations. All that can be added is that even greater diligence is needed

in the individual computations. Typically, you have to deal with more power series terms when

solving second-order differential equations, and that, naturally, provides more opportunities for

error. That also leads to a greater probability that you will not succeed in finding “nice” formulas

for the coefficients and may have to simply use the recursion formula to compute as many terms as

you think necessary for a reasonably accurate partial sum approximation.

Initial-Value Problems (and Finding Patterns)

Observe that the solution obtained in our example (formula set 30.14) can be written as

y(x) = a0 y1(x) + a1 y2(x)

where y1(x) and y2(x) are power series about x0 = 0 with

y1(x) = 1 + a summation of terms of order 2 or more

and

y2(x) = 1 · (x − x0) + a summation of terms of order 2 or more .

In fact, we can derive this observation more generally after recalling that the general solution

to a second-order, homogeneous linear differential equation is given by

y(x) = a0 y1(x) + a1 y2(x)

where a0 and a1 are arbitrary constants, and y1 and y2 form a linearly independent pair of particular

solutions to the given differential equation. In particular, we can take y1 to be the solution satisfying

initial conditions

y1(x0) = 1 and y1
′(x0) = 0 ,

while y2 is the solution satisfying initial conditions

y2(x0) = 0 and y2
′(x0) = 1 .

If our solutions can be written as power series about x0 , then y1 and y2 can be written as particular

power series

y1(x0) =
∞∑

k=0

αk(x − x0)
k and y2(x0) =

∞∑
k=0

βk(x − x0)
k

where

α0 = y1(x0) = 1 , α1 = y1
′(x0) = 0 ,

β0 = y2(x0) = 0 and β1 = y2
′(x0) = 1 ,

and the other αk’s and βk’s are fixed numbers (hopefully given by relatively simple formulas of

k ). Thus,

y1(x) = α0 + α1(x − x0) + α2(x − x0)
2 + α3(x − x0)

3 + · · ·
= 1 + 0 · (x − x0) + α2(x − x0)

2 + α3(x − x0)
3 + · · ·

= 1 +
∞∑

k=2

αk(x − x0)
k ,
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while

y2(x) = β0 + β1(x − x0) + β2(x − x0)
2 + β3(x − x0)

3 + · · ·
= 0 + 1 · (x − x0) + β2(x − x0)

2 + β3(x − x0)
3 + · · ·

= 1 · (x − x0) +
∞∑

k=2

βk(x − x0)
k ,

verifying that the observation made at the start of this subsection holds in general.

With regard to initial-value problems, we should note that, with these power series for y1 and

y2 ,

y(x) = a0 y1(x) + a1 y2(x)

automatically satisfies the initial conditions

y(x0) = a0 and y′(x0) = a1

for any choice of constants a0 and a1

Even and Odd Solutions (a Common Pattern)

Things simplify slightly when your recursion formula is of the form

ak = ρ(k) ak−2 for k = 2, 3, 4, . . .

where ρ(k) is some formula of k . This turns out to be a relatively common situation. When this

happens,

a2 = ρ(2) a0 a3 = ρ(3) a1

a4 = ρ(4) a2 = ρ(4)ρ(2) a0 a5 = ρ(5) a3 = ρ(5)ρ(3) a1

a6 = ρ(6) a4 = ρ(6)ρ(4)ρ(2) a0 a7 = ρ(7) a5 = ρ(7)ρ(5)ρ(3) a1

a8 = ρ(8) a6 = ρ(8)ρ(6)ρ(4)ρ(2) a0 a9 = ρ(9) a7 = ρ(9)ρ(7)ρ(5)ρ(3) a1

...
...

Clearly then, each even-indexed coefficient ak = a2m with k ≥ 2 is given by

a2m = c2ma0 where c2m = ρ(2m) c2m−2 ,

while each odd-indexed coefficient ak = a2m+1 with k ≥ 3 is given by

a2m+1 = c2m+1a1 where c2m+1 = ρ(2m + 1) c2m−1 .

If we further define c0 = c1 = 1 (simply so that a0 = c0a0 and a1 = c1a1 ), and let x0 = 0 , then

y(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + · · ·

= c0a0 + c1a1x + c2a0x2 + c3a1x3 + c4a0x4 + c5a1x5 + c6a0x6 + · · ·

= a0

[
c0 + c2x2 + c4x4 + c6x6 + · · ·

]
+ a1

[
c1x + c3x3 + c5x5 + c7x7 + · · ·

]
= a0

∞∑
m=0

c2m x2m + a1

∞∑
m=0

c2m+1x2m+1 .

In other words, our power series solution is a linear combination of an even power series with an odd

power series. Since these observations may prove useful in a few situations (and in a few exercises

at the end of this chapter) let us summarize them in a little theorem (with x − x0 replacing x ).
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Theorem 30.5

Let

y(x) =
∞∑

k=0

ak(x − x0)
k

be a power series whose coefficients are related via a recursion formula

ak = ρ(k) ak−2 for k = 2, 3, 4, . . .

in which ρ(k) is some formula of k . Then

y(x) = a0 yE (x) + a1 yO(x)

where yE and yO are, respectively, the even- and odd-termed series

yE (x) =
∞∑

m=0

c2m(x − x0)
2m and yO(x) =

∞∑
m=0

c2m+1(x − x0)
2m+1

with c0 = c1 = 1 and

ck = ρ(k) ck−2 for for k = 2, 3, 4, . . . .

30.5 Validity of the Algebraic Method for Second-Order
Equations

Let’s start by defining “ordinary” and “singular” points.

Ordinary and Singular Points, and the Radius of Analyticity

Given a differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0 (30.15)

we classify any point z0 as a singular point if either of the limits

lim
z→z0

b(z)

a(z)
or lim

z→z0

c(z)

a(z)

fails to exist as a finite number. Note that (just as with our definition of singular points for first-order

differential equations) we used “ z ” in this definition, indicating that we may be considering points

on the complex plane as well. This can certainly be the case when a , b and c are rational functions.

And if a , b and c are rational functions, then the nonsingular points (i.e., the points that are not

singular points) are traditionally referred to as ordinary points for the above differential equation.

The radius of analyticity for the above differential equation about any given point z0 is defined

just as before. It is the distance between z0 and the singular point zs closest to z0 , provided the

differential equation has at least one singular point. If the equation has no singular points, then we

define the equation’s radius of analyticity (about z0 ) to be +∞ .

Again, it will be important to remember that the singular point zs of most interest in a particular

situtation (i.e., the one closest to z0 ) might not be on the real line, but some point in the complex

plane off of the real line.
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Nonexistence of Power Series Solutions

The above definitions are inspired by the same sort of computations as led to the analogous definitions

for first-order differential equations in section 30.3. I’ll leave those computations to you. In particular,

rewriting differential equation (30.15) as

y′′(x) = − b(x)

a(x)
y′(x) − c(x)

a(x)
y(x) ,

and using the relations between the values y(x0) , y′(x0) and y′′(x0) , and the first three coefficients

in

y(x) =
∞∑

k=0

ak(x − x0)
k ,

you should be able to prove the second-order analog to lemma 30.1:

Lemma 30.6 (nonexistence of a power series solution)

If x0 is a singular point for

a(x)y′′ + b(x)y′ + c(x)y = 0 ,

then this differential equation does not have a power series solution y(x) = ∑∞
k=0 ak(x − x0)

k with

a0 and a1 being arbitrary constants.

?�Exercise 30.1: Verify lemma 30.6.

(By the way, a differential equation might have a “modified” power series solution about a

singular point. We’ll consider this possibility starting in chapter 32.)

Validity of the Algebraic Method

Once again, we have a lemma telling us that our algebraic method for finding power series solutions

about x0 will fail if x0 is a singular point (only now we are considering second-order equations).

And, unsurprisingly, we also have a second-order analog of theorem 30.7 assuring us that the method

will succeed when x0 is an ordinary point for our second-order differential equation, and even giving

us a good idea of the interval over which the general power series solution is valid. That theorem is

Theorem 30.7 (existence of power series solutions)

Let x0 be an ordinary point on the real line for

a(x)y′′ + b(x)y′ + c(x)y = 0

where a , b and c are rational functions. Then this differential equation has a general power series

solution

y(x) =
∞∑

k=0

ak(x − x0)
k

with a0 and a1 being the arbitrary constants. Moreover, this solution is valid at least on the interval

(x0 − R, x0 + R) where R is the radius of analyticity about x0 for the differential equation.

And again, we will wait until the next chapter to prove this theorem (or a slightly more general

version of this theorem).
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Identifying Singular and Ordinary Points

The basic approach to identifying a point z0 as being either a singular or ordinary point for

a(x)y′′ + b(x)y′ + c(x)y = 0

is to look at the limits

lim
z→z0

b(z)

a(z)
and lim

z→z0

c(z)

a(z)
.

If the limits are both finite numbers, x0 is an ordinary point; otherwise x0 is a singular point. And if

you think about how these limits are determined by the values of a(z) and b(z) as z → z0 , you’ll

derive the shortcuts listed in the next lemma.

Lemma 30.8 (tests for ordinary/singular points)

Let z0 be a point on the complex plane, and consider a differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

in which a , b and c are all rational functions. Then:

1. If a(z0) , b(z0) and c(z0) are all finite values with a(z0) = 0 , then z0 is an ordinary point

for the differential equation.

2. If a(z0) , b(z0) and c(z0) are all finite values with a(z0) = 0 , and either b(z0) = 0 or

c(z0) = 0 , then z0 is a singular point for the differential equation.

3. If a(z0) is a finite value but either

lim
z→z0

|b(z)| = ∞ or lim
z→z0

|c(z)| = ∞ ,

then z0 is a singular point for the differential equation.

4. If b(z0) and c(z0) are finite numbers, and

lim
z→z0

|a(z)| = ∞ ,

then z0 is an ordinary point for the differential equation.

Applying the above to the differential equations of interest here (rewritten in the form recom-

mended for the algebraic method) gives us:

Corollary 30.9

Let A , B , and C be polynomials with no factors shared by all three. Then a point z0 on the

complex plane is a singular point for

A(x)y′′ + B(x)y′ + C(x)y = 0

if and only if A(z0) = 0 .

!�Example 30.6: The coefficients in Airy’s equation

y′′ − xy = 0
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are polynomials with the first coefficient being

A(x) = 1 .

Since there is no zs in the complex plane such that A(zs) = 0 , Airy’s equation has no singular

point, and theorem 30.7 assures us that the power series solution we obtained in solving Airy’s

equation (formula set (30.14) on page 609) is valid for all x .

30.6 The Taylor Series Method
The Basic Idea (Expanded)

In this approach to finding power series solutions, we compute the terms in the Taylor series for the

solution,

y(x) =
∞∑

k=0

y(k)(x0)

k! (x − x0)
k ,

in a manner reminiscent of the way you probably computed Taylor series in elementary calculus.

Unfortunately, this approach often fails to yield a useful general formula for the coefficients of the

power series solution (unless the original differential equation is very simple). Consequently, you

typically end up with a partial sum of the power series solutions consisting of however many terms

you’ve had the time or desire to compute. But there are two big advantages to this method over the

general basic method:

1. The computation of the individual coefficients of the power series solution is a little more

direct and may require a little less work than when using the algebraic method, at least for the

first few terms (provided you are proficient with product and chain rules of differentiation).

2. The method can be used on a much more general class of differential equations than described

so far. In fact, it can be used to formally find the Taylor series solution for any differential

equation that can be rewritten in the form

y′ = F1(x, y) or y′′ = F2(x, y, y′)

where F1 and F2 are known functions that are sufficiently differentiable with respect to all

variables.

With regard to the last comment, observe that

a(x)y′ + b(x)y = 0 and a(x)y′′ + b(x)y′ + c(x)y = 0

can be rewritten, respectively, as

y′ = − b(x)

a(x)
y︸ ︷︷ ︸

F1(x,y)

and y′′ = − b(x)

a(x)
y′ − c(x)

a(x)
y︸ ︷︷ ︸

F2(x,y,y
′)

.

So this method can be used on the same differential equations we used the algebraic method on in

the previous sections. Whether you would want to is a different matter.
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The Steps in the Taylor Series Method

Here are the steps in our procedure for finding at least a partial sum for the Taylor series about a point

x0 for the solution to a fairly arbitrary first- or second-order differential equation. As an example,

let us use the differential equation

y′′ + cos(x)y = 0 .

As before we have two preliminary steps:

Pre-step 1: Depending on whether the original differential equation is first order or second order,

respectively, rewrite it as

y′ = F1(x, y) or y′′ = F2(x, y, y′) .

For our example, we simply subtract cos(x)y from both sides, obtaining

y′′ = − cos(x)y .

Pre-step 2: Choose a value for x0 . It should be an ordinary point if the differential equation

is linear. (More generally, F1 or F2 must be “differentiable enough” to carry out all the

subsequent steps in this procedure.) If initial values are given for y(x) at some point, then

use that point for x0 . Otherwise, choose x0 as convenient — which usually means choosing

x0 = 0 .

For our example, we choose x0 = 0 .

Now for the steps in the Taylor series method. In going through this method, note that the last

step and some of the first few steps depend on whether your original differential equation is first or

second order.

Step 1: Set

y(x0) = a0 .

If an initial value for y at x0 has already been given, you can use that value for a0 . Otherwise,

treat a0 as an arbitrary constant. It will be the first term in the power series solution.

For our example, we chose x0 = 0 , and have no given initial values. So we set

y(0) = a0

with a0 being an arbitrary constant.

Step 2: (a) If the original differential equation is first order, then compute y′(x0) by plugging

x0 and the initial value set above into the differential equation from the first pre-step,

y′ = F1(x, y) .

Remember, to take into account the fact that y is shorthand for y(x) . Thus,

y′(x0) = F1(x0, y(x0)) = F1(x0, a0) .

Our sample differential equation is second order. So we do nothing here.
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(b) If the original differential equation is second order, then just set

y′(x0) = a1 .

If an initial value for y′ at x0 has already been given, then use that value for a1 .

Otherwise, treat a1 as an arbitrary constant.

Since our sample differential equation is second order, we set

y′(0) = a1

with a1 being an arbitrary constant.

Step 3 (a) If the original differential equation is first order, then differentiate both sides of

y′ = F1(x, y)

to obtain an expression of the form

y′′ = F2

(
x, y, y′) .

Our sample differential equation is second order. So we do nothing here.

(b) Whether the original differential equation is first or second order, you now have a

formula for y′′ ,

y′′ = F2

(
x, y, y′) .

Use this formula, along with the previous set of computed values for y(x0) and y′(x0) ,

to compute y′′(x0) . Remember to take into account the fact that y and y′ are shorthand

for y(x) and y′(x) . Thus,

y′′(x0) = F2

(
x0, y(x0), y′(x0)

)
.

Save this newly computed value for future use.

For our example,

y′′ = − cos(x)y , x0 = 0 , y(0) = a0 and y′(0) = a1 .

So,

y′′(0) = − cos(0)y(0) = −1 · a0 = −a0 .

Step 4: Using the formula for y′′ from the previous step, and the values for y(x0) , y′(x0) and

y′′(x0) determined in the previous steps:

(a) Differentiate both sides of

y′′ = F2

(
x, y, y′)

to obtain an expression of the form

y′′′ = F3

(
x, y, y′, y′′) .

For our example,

y′′ = − cos(x)y .

So, using the product rule,

y′′′ = d

dx
[− cos(x)y] = sin(x)y − cos(x)y′︸ ︷︷ ︸

F3(x,y,y
′,y′′)

.
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(b) Then compute y′′′(x0) by plugging x0 into the formula for y′′′(x) just derived,

y′′′(x0) = F3

(
x0, y(x0), y′(x0), y′′(x0)

)
.

Save this newly computed value for future use.

For our example,

y′′′(0) = sin(0)y(0) − cos(0)y′(0) = 0 · a0 − 1 · a1 = −a1 .

For steps 5, 6 and so on, simply repeat step 4 with derivatives of increasing order. In general:

Step k : Using the formula

y(k−1) = Fk−1

(
x, y, y′, y′′, . . . , y(k−2)

)
,

obtained in the previous step, and values for y(x0) , y′(x0) , y′′(x0) , . . . and y(k−1)(x0)

determined in the previous steps:

(a) Differentiate both sides of this formula for y(k−1) to obtain a corresponding formula

for y(k) ,

y(k) = Fk

(
x, y, y′, y′′, . . . , y(k−1)

)
.

(b) Then compute y(k)(x0) by plugging x0 into the formula for y(k)(x) just derived,

y(k)(x0) = Fk

(
x0, y(x0), y′(x0), . . . , y(k−1)(x0)

)
.

Save this newly computed value for future use.

Finally, you need to stop. Assuming you’ve computed y(k)(x0) for k up to N , where N is either

some predetermined integer or the order of the last derivative computed before you decided you’ve

done enough:

Last Step: If you can determine a general formula for y(k)(x0) in terms of a0 or in terms of a0

and a1 (depending on whether the original differential equation is first or second order), then

use that formula to write out the Taylor series for the solution,

y(x) =
∞∑

k=0

y(k)(x0)

k! (x − x0)
k .

Otherwise, just use the computed values of the y(k)(x0)’s to write out the N th partial sum

for this Taylor series, obtaining the solution’s N th partial sum approximation

y(x) ≈
N∑

k=0

y(k)(x0)

k! (x − x0)
k .

In either case, try to simplify your result by gathering terms involving the arbitrary

constants and, if possible, factoring out these constants.

Frankly, this method is easier to carry out than it is to describe.
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!�Example 30.7: Let use finish finding the sixth partial sum for the Taylor series about 0 for the

solution to

y′′ + cos(x)y = 0 .

From the above, we already have

y(0) = a0 , y′(0) = a1 , y′′(0) = −a0 , y′′′(0) = −a1 ,

and

y′′′(x) = sin(x)y − cos(x)y′ .

Continuing:

y(4)(x) = d

dx

[
y(3)(x)

]
= d

dx

[
sin(x)y − cos(x)y′] = cos(x)y + 2 sin(x)y′ − cos(x)y′′ .

And so,

y(4)(0) = cos(0)y(0) + 2 sin(0)y′(0) − cos(0)y′′(0)

= 1 · a0 + 2 · 0 · a1 − 1 · [−a0] = 2a0 .

Differentiating again:

y(5)(x) = d

dx

[
y(4)(x)

]
= d

dx

[
cos(x)y + 2 sin(x)y′ − cos(x)y′′]

= − sin(x)y + cos(x)y′ + 2 cos(x)y′ + 2 sin(x)y′′ + sin(x)y′′ − cos(x)y′′′

= − sin(x)y + 3 cos(x)y′ + 3 sin(x)y′′ − cos(x)y′′′ .

Hence,

y(5)(0) = − sin(0)y(0) + 3 cos(0)y′(0) + 3 sin(0)y′′(0) − cos(0)y′′′(0)

= −0 · a0 + 3 · 1 · a1 + 3 · 0 · [−a0] − 1 · [−a1]
= 4a1 .

And again:

y(6)(x) = d

dx

[
y(5)(x)

]
= d

dx

[− sin(x)y + 3 cos(x)y′ + 3 sin(x)y′′ − cos(x)y′′′]
= · · ·
= − cos(x)y − 4 sin(x)y′ + 6 cos(x)y′′ + 4 sin(x)y′′′ − cos(x)y(4) .

So,

y(6)(0) = − cos(0)y(0) − 4 sin(0)y′(0) + 6 cos(0)y′′(0)

+ 4 sin(0)y′′′(0) − cos(0)y(4)(0)

= −1 · a0 − 4 · 0 · a1 + 6 · 1 · [−a0] + 4 · 0 · [−a1] − 1 · [2a0]
= −9a0 .
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Thus, the sixth partial sum of the Taylor series for y about 0 is

S6(x) =
6∑

k=0

y(k)(0)

k! xk

= y(0) + y′(0)x + y′′(0)
2! x2 + y′′′(0)

3! x3 + y(4)(0)

4! x4 + y(5)(0)

5! x5 + y(6)(0)

6! x6

= a0 + a1x + −a0

2
x2 + −a1

3! x3 + 2a0

4! x4 + 4a1

5! x5 + −9a0

6! x6

= a0

[
1 − 1

2
x2 + 1

12
x4 − 1

80
x6
]

+ a1

[
x − 1

6
x3 + 1

30
x5
]

.

Validity of the Solutions

If the solutions to a given differential equation are analytic at a point x0 , then the above method will

clearly find the Taylor series (i.e., the power series) for these solutions about x0 . Hence any valid

theorem stating the existence and radius of convergence of power series solutions to a given type of

differential equation about a point x0 also assures us of the validity of the Taylor series method with

these equations. In particular, we can appeal to theorems 30.2 on page 602 and 30.7 on page 613,

or even to the more general versions of these theorems in the next chapter (theorems 31.9 and 31.10

starting on page 639). In particular, theorem 31.9 will assure us that our above use of the Taylor

series method in attempting to solve

y′′ + cos(x)y = 0

is valid. Hence, it will assure us that, at least when x ≈ 0 ,

y(x) ≈ a0

[
1 − 1

2
x2 + 1

12
x4 − 1

80
x6
]

+ a1

[
x − 1

6
x3 + 1

30
x5
]

.

30.7 Appendix: Using Induction
The Basic Ideas

Suppose we have some sequence of numbers — A0 , A1 , A2 , A3 , . . . — with each of these

numbers (other than A0 ) related by some recursion formula to the previous number in the sequence.

Further suppose we have some other formula F(k) , and we suspect that

Ak = F(k) for k = 0, 1, 2, 3, . . . .

The obvious question is whether our suspicions are justified. Can we confirm that the above equality

holds for every nonnegative integer k ?

Well, let’s make two more assumptions:

1. That we know

A0 = F(0) .
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2. That we also know that, for every nonnegative integer N , we can rigorously derive the

equality

AN+1 = F(N + 1)

from

AN = F(N )

using the recursion formula for the Ak’s . For brevity, let’s express this assumption as

AN = F(N ) �⇒ AN+1 = F(N + 1) for N = 0, 1, 2, . . . . (30.16)

These two assumptions are the “steps” in the basic principle of induction with a numeric

sequence. The first — that A0 = F(0) — is the base step or anchor, and the second — implication

(30.16) — is the inductive step. It is important to realize that, in implication (30.16), we are not

assuming AN = F(N ) is actually true, only that we could derive AN+1 = F(N + 1) provided

AN = F(N ) .

However, if these assumptions hold, then we do know A0 = F(0) , which is AN = F(N ) with

N = 0 . That, combined with implication (30.16), assures us that we could then derive the equality

A0+1 = F(0 + 1) .

So, in fact, we also know that

A1 = F(1) .

But this last equation, along with implication (30.16) (using N = 1 ) assures us that we could then

obtain

A1+1 = F(1 + 1) ,

assuring us that

A2 = F(2) .

And this, with implication (30.16) (this time using N = 2 ) tells us that we could then derive

A2+1 = F(2 + 1) ,

thus confirming that

A3 = F(3) .

And, clearly, we can continue, successively confirming that

A4 = F(4) , A5 = F(5) , A6 = F(6) , A7 = F(7) , . . . .

Ultimately, we could confirm that

Ak = F(k)

for any given positive integer k , thus assuring us that our original suspicions were justified.

To summarize:

Theorem 30.10 (basic principle of induction for numeric sequences)

Let A0 , A1 , A2 , A3 , . . . be a sequence of numbers related to each other via some recursion

formula, and let F be some function with F(k) being defined and finite for each nonnegative

integer k . Assume further that

1. (base step) A0 = F(0) ,

and that
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2. (inductive step) for each nonnegative integer N , the equality

AN+1 = F(N + 1)

can be obtained from the equality

AN = F(N )

using the recursion formula for the Ak’s .

Then

Ak = F(k) for k = 0, 1, 2, 3, . . . .

To use the above, we must first verify that the two assumptions in the theorem actually hold for

the case at hand. That is, we must verify both that

1. A0 = F(0)

and that

2. for each positive integer N , AN+1 = F(N + 1) can be derived from AN = F(N ) using

the recursion formula.

In practice, the formula F(k) comes from noting a “pattern” in computing the first few Ak’s using

a recursion formula. Consequently, the verification of the base step is typically contained in those

computations. It is the verification of the inductive step that is most important. That step is where

we confirm that the “pattern” observed in computing the first few Ak’s continues and can be used

to compute the rest of the Ak’s .

!�Example 30.8: For our Ak’s , let us use the coefficients of the power series solution obtained

in our first example of the algebraic method,

Ak = ak

where a0 is an arbitrary constant, and the other ak’s are generated via recursion formula (30.6)

on page 5927,

ak = k + 1

2k
ak−1 for k = 1, 2, 3, 4, . . . . (30.17)

In particular, we obtained:

a1 = 2

2
a0 , a2 = 3

22
a0 , a3 = 4

23
a0 , a4 = 5

24
a0 , a5 = 6

25
a0 ,

and “speculated” that, in general,

ak = k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . . . (30.18)

So, we want to show that, indeed,

ak = F(k) with F(k) = k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . . .

To apply the principle of induction, we first must verify that

a0 = F(0) .

7 Originally, recursion formula (30.6) was derived for k ≥ 2 . However, with k = 1 , this recursion formula reduces to

a1 = a0 which is true for this power series solution. So this formula is valid for all nonnegative integers.



�

�

�

�

�

�

�

�

Appendix: Using Induction 623

But this is easily done by just computing F(0) ,

F(0) = 0 + 1

20
a0 = a0 .

Next comes the verification of the inductive step; that is, the verification that for any non-

negative integer N , the recursion formula for the ak’s yields the implication

aN = F(N ) �⇒ aN+1 = F(N + 1) .

Now,

F(N ) = N + 1

2N
a0 and F(N + 1) = [N + 1] + 1

2[N+1] a0 = N + 2

2N+1
a0 .

So what we really need to show is that the implication

aN = N + 1

2N
a0 �⇒ aN+1 = N + 2

2N+1
a0 . (30.19)

holds because of recursion formula (30.17), which, with k = N + 1 , becomes

aN+1 = [N + 1] + 1

2[N + 1] a[N+1]−1 = N + 2

2[N + 1]aN .

Combining this with the first equation in implication (30.19) gives us

aN+1 = N + 2

2[N + 1]aN = N + 2

2[N + 1] · N + 1

2N
a0 = N + 2

2N+1
a0 ,

which is the second equation in implication (30.19). This confirms that implication (30.19) holds

for every nonnegative integer N .

With both steps of the inductive process successfully verified, the principle of induction

(theorem 30.10) assures us that yes, indeed,

ak = k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . .

just as we originally speculated.

Usage Notes

In the above example, the Ak’s were all the coefficients in a particular power series. In other ex-

amples, especially examples involving second-order equations, you may have to separately consider

different subsequences of the coefficients.

!�Example 30.9: In deriving the power series solution
∑∞

k=0 ak xk to Airy’s equation, we

obtained three patterns:

a3n = 1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
a0 for n = 1, 2, 3, . . . ,

a3n+1 = 1

(3 · 4)(6 · 7) · · · (3n · [3n + 1])a1 for n = 1, 2, 3, . . .

and

a3n+1 = 0 for n = 1, 2, 3, . . . .
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To verify each of these formulas, we would need to apply the method of induction three times:

1. once with An = a3n and F(n) = 1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
a0 ,

2. once with An = a3n+1 and F(n) = 1

(3 · 4)(6 · 7) · · · (3n · [3n + 1])a1 , and

3. once with An = a3n+2 and F(n) = 0 .

It probably should be noted that there are slight variations on the method of induction. In

particular, it should be clear that, in the inductive step, we need not base our derivation of aN+1 =
F(N + 1) on just aN = F(N ) — we could base it on any or all equations ak = F(k) with

k ≤ N . To be precise, a slight variation in our development of theorem 30.10 would have given us

the following:

Theorem 30.11 (alternative principle of induction for numeric sequences)

Let A0 , A1 , A2 , A3 , . . . be a sequence of numbers related to each other via some set of recursion

formulas, and let F be some function with F(k) being defined and finite for each nonnegative

integer k . Assume further that

1. (base step) A0 = F(0) ,

and that

2. (inductive step) for each nonnegative integer N , the equality

AN+1 = F(N + 1)

can be obtained from the equalities

Ak = F(k) for k = 0, 1, 2, . . . , N

using the given set of recursion formulas.

Then

Ak = F(k) for k = 0, 1, 2, 3, . . . .

This would be the version used with recursion formulas having two or more terms.

The General Principle of Induction

For the sake of completeness, it should be mentioned that the general principle of induction is a

fundamental principle of logic. Here’s the basic version:

Theorem 30.12 (basic general principle of induction)

Let S0 , S1 , S2 , S3 , . . . be a sequence of logical statements. Assume further that

1. S0 is true,

and that

2. for each nonnegative integer N , it can be shown that SN+1 is true provided SN is true.

Then all the Sk’s are true.

You can find discussions of this principle in just about any “introduction to mathematical logic”

or “introduction to abstract mathematics” textbook.

?�Exercise 30.2: What is the logical statement Sk in theorem 30.10?
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Additional Exercises

30.3. Using the algebraic method from section 30.2, find a general power series solution about

x0 to each of the first-order differential equations given below. In particular:

i Identify the recursion formula for the coefficients.

ii Use the recursion formula to find the corresponding series solution with at least

four nonzero terms explicitly given (if the series terminates, just write out the cor-

responding polynomial solution).

iii Unless otherwise instructed, find a general formula for the coefficients and write

out the resulting series.

Also, then solve each of these equations using more elementary methods.

a. y′ − 2y = 0 with x0 = 0

b. y′ − 2xy = 0 with x0 = 0

c. y′ + 2

2x − 1
y = 0 with x0 = 0

d. (x − 3)y′ − 2y = 0 with x0 = 0

e.
(

1 + x2
)

y′ − 2xy = 0 with x0 = 0

f. y′ + 1

x − 1
y = 0 with x0 = 0

g. y′ + 1

x − 1
y = 0 with x0 = 3

h. (1 − x)y′ − 2y = 0 with x0 = 5

i. (2 − x3)y′ − 3x2 y = 0 with x0 = 0

j. (2 − x3)y′ + 3x2 y = 0 with x0 = 0

k. (1 + x) y′ − xy = 0 with x0 = 0

(Do not attempt finding a general formula for the coefficients.)

l. (1 + x)y′ + (1 − x)y = 0 with x0 = 0

(Do not attempt finding a general formula for the coefficients.)

30.4. For each of the equations in the previous set, find each singular point zs , the radius of

analyticity R about the given x0 , and the interval I over which the power series solution

is guaranteed to be valid according to theorem 30.2.

30.5. Find the general power series solution about the given x0 for each of the differential

equations given below. In your work and answers:

i Identify the recursion formula for the coefficients.
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ii Express your final answer as a linear combination of a linearly independent pair of

power series solutions. If a series terminates, write out the resulting polynomial.

Otherwise write out the series with at least four nonzero terms explicitly given.

iii Unless otherwise instructed, find a formula for the coefficients of each series, and

write out the resulting series.

a.
(

1 + x2
)

y′′ − 2y = 0 with x0 = 0

b. y′′ + xy′ + y = 0 with x0 = 0

c.
(

4 + x2
)

y′′ + 2xy′ = 0 with x0 = 0

d. y′′ − 3x2 y = 0 with x0 = 0

(Do not attempt finding a general formula for the coefficients.)

e.
(

4 − x2
)

y′′ − 5xy′ − 3y = 0 with x0 = 0

(Do not attempt finding a general formula for the coefficients.)

f.
(

1 − x2
)

y′′ − xy′ + 4y = 0 with x0 = 0 (a Chebyshev equation)

(Do not attempt finding a general formula for the coefficients.)

g. y′′ − 2xy′ + 6y = 0 with x0 = 0 (a Hermite equation)

(Do not attempt finding a general formula for the coefficients.)

h.
(

x2 − 6x
)

y′′ + 4(x − 3)y′ + 2y = 0 with x0 = 3

i. y′′ + (x + 2)y′ + 2y = 0 with x0 = −2

j. (x2 − 2x + 2)y′′ + (1 − x)y′ − 3y = 0 with x0 = 1

(Do not attempt finding a general formula for the coefficients.)

k. y′′ − 2y′ − xy = 0 with x0 = 0

(Do not attempt finding a general formula for the coefficients.)

l. y′′ − xy′ − 2xy = 0 = 0 with x0 = 0

(Do not attempt finding a general formula for the coefficients.)

30.6. For each of the equations in the previous set, find each singular point zs , the radius of

analyticity R about the given x0 , and the interval I over which the power series solution

is guaranteed to be valid according to theorem 30.7.

30.7. In describing the coefficients of power series solutions, experienced mathematicians often

condense lengthy formulas through clever use of the factorial. Develop some of that ex-

perience by deriving the following expressions for the indicated products. Do not simply

multiple all the factors and compare the two sides of each equation. Instead, use clever

algebra to convert one side of the equation to the other.

a. Products of the first m even integers:

i. 6 · 4 · 2 = 233! (Hint: 6 · 4 · 2 = (2 · 3)(2 · 2)(2 · 1) )

ii. 8 · 6 · 4 · 2 = 244!
iii. (2m)(2m − 2)(2m − 4) · · · 6 · 4 · 2 = 2mm!
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b. Products of the first m odd integers:

i. 5 · 3 · 1 = 5!
222!

ii. 7 · 5 · 3 · 1 = 7!
233!

iii. (2m − 1)(2m − 3)(2m − 5) · · · 5 · 3 · 1 = (2m − 1)!
2m−1(m − 1)!

30.8. The following exercises concern the Hermite equation, which is

y′′ − 2xy′ + λy = 0

where λ is a constant (as in exercise 30.5 g, above).

a. Using the algebraic method, derive the general recursion formula (in terms of λ ) for the

general power series solution yλ(x) = ∑∞
k=0 ak xk to the above Hermite equation.

b. Over what interval are these power series solutions guaranteed to be valid according to

theorem 30.7?

c. Using the recursion formula just found, along with theorem 30.5 on page 612, verify that

the general power series solution yλ can be written as

yλ(x) = a0 yλ,E (x) + a1 yλ,O(x)

where yλ,E and yλ,O are, respectively, even- and odd-termed series

yλ,E (x) =
∞∑

m=0

c2m x2m and yλ,O (x) =
∞∑

m=0

c2m+1x2m+1

with c0 = c1 = 1 and the other ck’s satisfying some recursion formula. Write out that

recursion formula.

d. Assume N is an nonnegative integer, and find the one value λN for λ such that the

above-found recursion formula yields aN+2 = 0 · aN .

e. Using the above, show that,

i. If λ = λN for some nonnegative integer N , then exactly one of the two power series

yλ,E (x) or yλ,O(x) reduces to an even or odd N th degree polynomial pN , with

pN (x) =
{

yλ,E (x) if N is even

yλ,O(x) if N is odd
,

and with the other power series not reducing to a polynomial. (The polynomials, mul-

tiplied by suitable constants, are called the Hermite polynomials.)

ii. If λ = λN for any nonnegative integer N , then neither of the two power series yλ,E (x)

or yλ,O (x) reduces to polynomial.

f. Find the polynomial solution pN (x) when

i. N = 0 ii. N = 1 iii. N = 2 iv. N = 3

v. N = 4 vi. N = 5
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30.9. The following exercises concern the Chebyshev8 equation with parameter λ(
1 − x2

)
y′′ − xy′ + λy = 0

(as in exercise 30.5 f, above). The parameter λ may be any constant.

a. Using the algebraic method, derive the general recursion formula (in terms of λ ) for the

general power series solution yλ(x) = ∑∞
k=0 ak xk to the above Chebyshev equation.

b. Using the recursion formula just found, along with theorem 30.5 on page 612, verify that

the general power series solution yλ can be written as

yλ(x) = a0 yλ,E (x) + a1 yλ,O(x)

where yλ,E and yλ,O are, respectively, even- and odd-termed series

yλ,E (x) =
∞∑

m=0

c2m x2m and yλ,O (x) =
∞∑

m=0

c2m+1x2m+1

with c0 = c1 = 1 and the other ck’s satisfying some recursion formula. Write out that

recursion formula.

c. Assume N is an nonnegative integer, and find the one value λN for λ such that the

above-found recursion formula yields aN+2 = 0 · aN .

d. Using the above, show that:

i. If λ = λN for some nonnegative integer N , then exactly one of the two power series

yλ,E (x) or yλ,O(x) reduces to an even or odd N th degree polynomial pN , with

pN (x) =
{

yλ,E (x) if N is even

yλ,O(x) if N is odd
,

and with the other power series not reducing to a polynomial. (The polynomials, mul-

tiplied by suitable constants, are the Chebyshev polynomials of the first type.)

ii. If λ = λN for any nonnegative integer N , then neither of the two power series yλ,E (x)

or yλ,O (x) reduces to polynomial.

e. Now, find the following:

i. λ0 and p0(x) ii. λ1 and p1(x) iii. λ2 and p2(x)

iv. λ3 and p3(x) v. λ4 and p4(x) vi. λ5 and p5(x)

f. Now let λ be any constant (not necessarily λN ).

i. What is the largest interval over which these power series solutions to the Chebyshev

equation are guaranteed to be valid according to theorem 30.7?

ii. Use the recursion formula along with the ratio test or limit ratio test to find the radius of

convergence and largest interval of convergence for yλ,E (x) and for yλ,O(x) , provided

the series does not terminate as polynomials.

g. Verify each of the following using work already done above:

i. If λ = N 2 for some nonnegative integer N , then the Chebyshev equation with param-

eter λ has polynomial solutions, all of which are all constant multiples of pN (x) .

8 also spelled Tschebyscheff.
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ii. If λ = N 2 for every nonnegative integer N , then the Chebyshev equation with param-

eter λ has no polynomial solutions (other than y = 0 ).

iii. If yλ is a nonpolynomial solution to a Chebyshev equation on (−1, 1) , then it is given

by a power series about x0 = 0 with a radius of convergence of exactly 1 .

30.10. For any constant λ , the Legendre equation9 with parameter λ is

(1 − x2)y′′ − 2xy′ + λy = 0 .

This equation is the object of study in the following exercises.

a. Using the algebraic method, derive the general recursion formula (in terms of λ ) for the

general power series solution yλ(x) = ∑∞
k=0 ak xk to the above Legendre equation.

b. Using the recursion formula just found, along with theorem 30.5 on page 612, verify that

the general power series solution yλ can be written as

yλ(x) = a0 yλ,E (x) + a1 yλ,O(x)

where yλ,E and yλ,O are, respectively, even- and odd-termed series

yλ,E (x) =
∞∑

m=0

c2m x2m and yλ,O (x) =
∞∑

m=0

c2m+1x2m+1

with c0 = c1 = 1 and the other ck’s satisfying some recursion formula. Write out that

recursion formula.

c. Assume N is an nonnegative integer, and find the one value λN for λ such that the

above-found recursion formula yields aN+2 = 0 · aN .

d. Using the above, show that:

i. If λ = λN for some nonnegative integer N , then exactly one of the two power series

yλ,E (x) or yλ,O(x) reduces to an even or odd N th degree polynomial pN , with

pN (x) =
{

yλ,E (x) if N is even

yλ,O(x) if N is odd
,

and with the other power series not reducing to a polynomial. (The polynomials, mul-

tiplied by suitable constants, are called the Legendre polynomials.)

ii. If λ = λN for any nonnegative integer N , then neither of the two power series yλ,E (x)

or yλ,O (x) reduces to polynomial.

e. Based on the above, find the following:

i. λ0 , p0(x) , and y0,O(x) ii. λ1 , p1(x) , and y1,E (x)

iii. λ2 and p2(x) iv. λ3 and p3(x)

v. λ4 and p4(x) vi. λ5 and p5(x)

9 The Legendre equations arise in problems involving three-dimensional spherical objects (such as the Earth). In section

33.5, we will continue the analysis begun in this exercise, discovering that the “polynomial solutions” found here are of

particular importance.
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f. Now let λ be any constant (not necessarily λN ).

i. What is the largest interval over which these power series solutions to the Legendre

equation are guaranteed to be valid according to theorem 30.7?

ii. Use the recursion formula along with the ratio test or limit ratio test to find the radius of

convergence and largest interval of convergence for yλ,E (x) and for yλ,O(x) , provided

the series does not terminate as polynomials.

g. Verify each of the following using work already done above:

i. If λ = N (N + 1) for some nonnegative integer N , then the Legendre equation with

parameter λ has polynomial solutions, and they are all constant multiples of pN (x) .

ii. If λ = N (N + 1) for every nonnegative integer N , then yλ is not a polynomial.

iii. If yλ is not a polynomial, then it is given by a power series about x0 = 0 with a radius

of convergence of exactly 1 .

30.11. For each of the following, use the Taylor series method to find the N th-degree partial sum

of the power series solution about x0 to the given differential equation. If either applies,

use theorems 30.2 on page 602 or 30.7 on page 613 to determine an interval I over which

the power series solutions are valid.

a. y′′ + 4y = 0 with x0 = 0 and N = 5

b. y′′ − x2 y = 0 with x0 = 0 and N = 5

c. y′′ + e2x y = 0 with x0 = 0 and N = 4

d. sin(x) y′′ − y = 0 with x0 = π

2
and N = 4

e. y′′ + xy = sin(x) with x0 = 0 and N = 5

f. y′′ − sin(x) y′ − xy = 0 with x0 = 0 and N = 4

g. y′′ − y2 = 0 with x0 = 0 and N = 5

h. y′ + cos(y) = 0 with x0 = 0 and N = 3
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Power Series Solutions II: Generalizations
and Theory

A major goal in this chapter is to confirm the claims made in theorems 30.2 and 30.7 regarding the

validity of the algebraic method. Along the way, we will also expand both the set of differential equa-

tions for which this method can be considered and our definitions of “regular” and “singular” points.

As a bonus, we’ll also obtain formulas that, at least in some cases, can simplify the computation of

the terms of the power series solutions.

31.1 Equations with Analytic Coefficients

In the previous chapter, we discussed an algebraic method for finding a general power series solution

about a point x0 to any differential equation of the form

A(x)y′ + B(x)y = 0 or A(x)y′′ + B(x)y′ + C(x)y = 0

where A(x) , B(x) and C(x) are polynomials with A(x0) = 0 . Observe that these polynomials

can be written as

A(x) =
N∑

k=0

ak(x − x0)
k with a0 = 0 ,

B(x) =
N∑

k=0

bk(x − x0)
k and C(x) =

N∑
k=0

ck(x − x0)
k

where N is the highest power appearing in these polynomials. Surely, you are now wondering:

Must N be finite? Or will our algebraic method still work if N = ∞ ? That is, can we use our

algebraic method to find power series solutions about x0 to

A(x)y′ + B(x)y = 0 and A(x)y′′ + B(x)y′ + C(x)y = 0

when A(x) , B(x) and C(x) are functions expressible as power series about x0 (i.e., when A , B

and C are functions analytic at x0 ) and with A(x0) = 0 ?

And the answer to this question is yes, at least in theory. Simply replace the coefficients in

the differential equations with their power series about x0 , and follow the steps already outlined in

sections 30.2 and 30.4 (possibly using the formula from theorem 29.12 on page 579 for multiplying

infinite series).

631
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There are, of course, some further questions you are bound to be asking regarding these power

series solutions and the finding of them. In particular:

1. What about the radii of convergence for the resulting power series solutions?

and

2. Are there any shortcuts to what could clearly be a rather lengthy and tedious set of calcula-

tions?

For the answers, read on.

31.2 Ordinary and Singular Points, the Radius of
Analyticity, and the Reduced Form

Introducing Complex Variables

To properly address at least one of our questions, and to simplify the statements of our theorems,

it will help to start viewing the coefficients of our differential equations as functions of a complex

variable z . We actually did this in the last chapter when we referred to a point zs in the complex

plane for which A(zs) = 0 . But A was a polynomial then, and viewing a polynomial as a function

of a complex variable is so easy that we hardly noted doing so. Viewing other functions (such as

exponentials, logarithms and trigonometric functions) as functions of a complex variable may be a

bit more challenging.

Analyticity and Power Series

Let us start by recalling that we need not restrict the variable or the center in a power series to real

values — they can be complex,

∞∑
k=0

ak(z − z0)
k for |z − z0| < R ,

in which case the radius of convergence R is the radius of the largest open disk in the complex plane

centered at z0 on which the power series is convergent.1

Also recall that our definition of analyticity also applies to functions of a complex variable; that

is, any function f of a complex variable is analytic at a point z0 in the complex plane if and only

if f (z) can be expressed as a power series about z0 ,

f (z) =
∞∑

k=0

ak(z − z0)
k for |z − z0| < R

for some R > 0 . Moreover, as also noted in section 29.3, if f is any function of a real variable

given by a power series on the interval (x0 − R, x0 + R) ,

f (x) =
∞∑

k=0

ak(x − x0)
k ,

1 If you don’t recall this, quickly review section 29.3.
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then we can view this function as a function of the complex variable z = x + iy on a disk of radius

R about x0 by simply replacing the real variable x with the complex variable z ,

f (z) =
∞∑

k=0

ak(z − x0)
k .

We will do this automatically in all that follows.

By the way, do observe that, if

lim
z→z0

| f (z)| = ∞ ,

then f certainly is not analytic at z0 !

Some Results from Complex Analysis

Useful insights regarding analytic functions can be gained from the theory normally developed in

an introductory course on “complex analysis”. Sadly, we do not have the time or space to properly

develop that theory here. As an alternative, a brief overview of the relevant parts of that theory is

given for the interested reader in an appendix near the end of this chapter (section 31.7). From that

appendix, we get the following two lemmas (both of which should seem reasonable):

Lemma 31.1

Assume F is a function analytic at z0 with corresponding power series
∑∞

k=0 fk(z − z0)
k , and let

R be either some positive value or +∞ . Then

F(z) =
∞∑

k=0

fk(z − z0)
k whenever |z − z0| < R

if and only if F is analytic at every complex point z satisfying

|z − z0| < R .

Lemma 31.2

Assume F(z) and A(z) are two functions analytic at a point z0 . Then the quotient F/A is also

analytic at z0 if and only if

lim
z→z0

F(z)

A(z)

is finite.

Let us note the following immediate corollary of the first lemma:

Corollary 31.3

Assume F(x) is some function on the real line, and
∑∞

k=0 fk(x − x0)
k is a power series with a

infinite radius of convergence . If

F(x) =
∞∑

k=0

fk(x − x0)
k for − ∞ < x < ∞ ,

then F(z) is analytic at every point in the complex plane.
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From this corollary and the series in set (29.4) on page 567, it immediately follows that the

sine and cosine functions, as well as the exponential functions, are all analytic on the entire complex

plane.

Let us also note that the second lemma extends some observations regarding quotients of

functions made in section 29.4.2

Ordinary and Singular Points

Let z0 be a point on the complex plane, and let a , b and c be functions on the complex plane. We

will say that z0 is an ordinary point for the first-order differential equation

a(x)y′ + b(x)y = 0

if and only if the quotient
b(z)

a(z)

is analytic at z0 . And we will say that z0 is an ordinary point for the second-order differential

equation

a(x)y′′ + b(x)y′ + c(x)y = 0

if and only if the quotients
b(z)

a(z)
and

c(z)

a(z)

are both analytic at z0 .

Any point that is not an ordinary point (that is, any point at which the above quotients are not

analytic) is called a singular point for the differential equation.

Using lemma 31.2, you can easily verify the following shortcuts for determining whether a

point is a singular or ordinary point for a given differential equation. You can then use these lemmas

to verify that our new definitions reduce to those given in the last chapter when the coefficients of

our differential equation are rational functions.

Lemma 31.4

Let z0 be a point in the complex plane, and consider the differential equation

a(x)y′ + b(x)y = 0

where a and b are functions analytic at z0 . Then:

1. If a(z0) = 0 , then z0 is an ordinary point for the differential equation.

2. If a(z0) = 0 and b(z0) = 0 , then z0 is a singular point for the differential equation.

3. The point z0 is an ordinary point for this differential equation if and only if

lim
z→z0

b(z)

a(z)

is finite.

2 If you haven’t already done so, now might be a good time to at least skim over the material in the subsection More on

Algebra with Power Series and Analytic Functions starting on page 579.
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Lemma 31.5

Let z0 be a point in the complex plane, and consider the differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

where a , b and c are functions analytic at z0 . Then:

1. If a(z0) = 0 , then z0 is an ordinary point for the differential equation.

2. If a(z0) = 0 , and either b(z0) = 0 or c(z0) = 0 , then z0 is a singular point for the

differential equation.

3. The point z0 is an ordinary point for this differential equation if and only if

lim
z→z0

b(z)

a(z)
and lim

z→z0

c(z)

a(z)

are both finite.

!�Example 31.1: Consider the two differential equations

y′′ + sin(x) y = 0 and sin(x) y′′ + y = 0 .

From corollary 31.3, we know that the sine function is analytic at every point on the complex

plane, and that

sin(z) = 0 if z = nπ with n = 0, ±1, ±2, . . . .

Moreover, it’s not hard to show (see exercise 31.4) that the above points are the only points in the

complex plane at which the sine is zero.

What this means is that both coefficients of

y′′ + sin(x) y = 0

are analytic everywhere, with the first coefficient (which is simply the constant 1 ) never being

zero. Thus, lemma 31.5 assures us that every point in the complex plane is an ordinary point for

this differential equation. It has no singular points.

On the other hand, while both coefficients of

sin(x) y′′ + 5y = 0

are analytic everywhere, the first coefficient is zero at z0 = 0 (and at every other integral multiple

of π ). Since the second coefficient (again, the constant 1 ) is not zero at z0 = 0 , lemma 31.5

tells us that z0 = 0 (and every other integral multiple of π ) is a singular point for this differential

equation.

Radius of Analyticity
The Definition, Recycled

Why waste a perfectly good definition? Given

a(x)y′ + b(x)y = 0 or a(x)y′′ + b(x)y′ + c(x)y = 0

we define the radius of analyticity (for the differential equation) about any given point z0 to be the

distance between z0 and the singular point closest to z0 , unless the differential equation has no

singular points, in which case we define the radius of analyticity to be +∞ .

This is precisely the same definition as given (twice) in the previous chapter.
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Is the Radius Well Defined?

When the coefficients of our differential equations were just polynomials, it should have been obvious

that there really was a “singular point closest to z0 ” (provided the equation had singular points). But

a cynical reader — especially one who has seen some advanced analysis — may wonder if such a

singular point always exists with our more general equations, or if, instead, a devious mathematician

could construct a differential equation with an infinite set of singular points, none of which are closest

to the given ordinary point. Don’t worry, no mathematician is devious enough.

Lemma 31.6

Let z0 be an ordinary point for some first- or second-order linear homogeneous differential equation.

Then, if the differential equation has singular points, there is at least one singular point zs such that

no other singular point is closer to z0 than zs .

The zs in this lemma is a “singular point closest to z0 ”. There may, in fact, be other singular

points at the same distance from z0 , but none closer. Anyway, this ensures that “the radius of

analyticity” for a given differential equation about a given point is well defined.

The proof of lemma 31.6 is subtle, and is discussed in an appendix (section 31.8).

31.3 The Reduced Forms
A Standard Way to Rewrite Our Equations

There is some benefit in dividing a given differential equation

ay′ + by = 0 or ay′′ + by′ + cy = 0

by the equation’s leading coefficient, obtaining the equation’s corresponding reduced form3

y′ + Py = 0 or y′′ + Py′ + Qy = 0

(with P = b/a and Q = c/a ). For one thing, it may reduce the number of products of infinite series

to be computed. In addition, it will allow us to use the generic recursion formulas that we will be

deriving in a little bit. However, the advantages of using the reduced form depend somewhat on

the ease in finding and using the power series for P (and, in the second-order case, for Q ). If the

differential equation can be written as

Ay′ + By = 0 or Ay′′ + By′ + Cy = 0

where the coefficients are given by relatively simple known power series, then the extra effort in

finding and using the power series for the coefficients of the corresponding reduced equations

y′ + Py = 0 or y′′ + Py′ + Qy = 0

may out-weigh any supposed advantages of using these reduced forms. In particular, if A , B and

C are all relatively simple polynomials (with A not being a constant), then dividing

Ay′′ + By′ + Cy = 0

by A is unlikely to simplify your computations — don’t do it unless ordered to do so in an exercise.

3 also called the normal form by some authors
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Ordinary Points and the Reduced Form

The next two lemmas will be important in deriving the general formulas for power series solutions.

However, they follow almost immediately from lemmas 31.1 and 31.2, along with the definitions of

“reduced form”, “regular and singular points”, “radius of convergence” and “analyticity at z0 ”.

Lemma 31.7

Let

ay′ + by = 0

have reduced form

y′ + Py = 0 .

Then z0 is an ordinary point for this differential equation if and only if P is analytic at z0 . Moreover,

if z0 is an ordinary point, then P has a power series representation

P(z) =
∞∑

k=0

pk(z − z0)
k for |z − z0| < R

where R is the radius of analyticity for this differential equation about z0 .

Lemma 31.8

Let

ay′′ + by′ + cy = 0

have reduced form

y′′ + Py′ + Qy = 0 .

Then z0 is an ordinary point for this differential equation if and only if both P and Q are analytic

at z0 . Moreover, if z0 is an ordinary point, then P and Q have power series representations

P(z) =
∞∑

k=0

pk(z − z0)
k for |z − z0| < R

and

Q(z) =
∞∑

k=0

qk(z − z0)
k for |z − z0| < R

where R is the radius of analyticity for this differential equation about z0 .

31.4 Existence of Power Series Solutions
Deriving the Generic Recursion Formulas
First-Order Case

Let us try to find the general power series solution to

y′ + Py = 0
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about x0 = 0 when P is any function analytic at x0 = 0 . This analyticity means P has a power

series representation

P(x) =
∞∑

k=0

pk xk for |x | < R

for some R > 0 . We’ll assume that this series and a value for R are known.

Our approach is to follow the method described in section 30.2 as far as possible. We assume

y is given by a yet unknown power series about x0 = 0 ,

y(x) =
∞∑

k=0

ak xk ,

compute the corresponding series for y′ , plug that into the differential equation, and “compute”

(using the above series for P and the formula for series multiplication from theorem 29.12 on page

579):

y′ + Py = 0

↪→
∞∑

k=1

kak xk−1 +
( ∞∑

k=0

ak xk

)( ∞∑
k=0

pk xk

)
= 0

↪→
∞∑

k=1

kak xk−1

︸ ︷︷ ︸
n = k−1

+
∞∑

k=0

[ k∑
j=0

a j pk− j

]
xk

︸ ︷︷ ︸
n = k

= 0

↪→
∞∑

n=0

(n + 1)an+1xn +
∞∑

n=0

[ n∑
j=0

a j pn− j

]
xn = 0

↪→
∞∑

n=0

[
(n + 1)an+1 +

n∑
j=0

a j pn− j

]
xn = 0 .

Thus,

(n + 1)an+1 +
n∑

j=0

a j pn− j = 0 for n = 0, 1, 2, . . . .

Solving for an+1 and letting k = n + 1 gives us

ak = −1

k

k−1∑
j=0

a j pk−1− j for k = 1, 2, 3, . . . . (31.1)

Of course, we would have obtained the same recursion formula with x0 being any ordinary point

for the given differential equation (just replace x in the above computations with X = x − x0 ).

Second-Order Case

We will leave this derivation as an exercise.
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?�Exercise 31.1: Assume that, over some interval containing the point x0 , P and Q are

functions given by power series

P(x) =
∞∑

k=0

pk(x − x0)
k and Q(x) =

∞∑
k=0

qk(x − x0)
k ,

and derive the recursion formula

ak = − 1

k(k − 1)

k−2∑
j=0

[
( j + 1)a j+1 pk−2− j + a j qk−2− j

]
(31.2)

for the series solution

y(x) =
∞∑

k=0

ak(x − x0)
k

to

y′′ + Py′ + Qy = 0 .

(For simplicity, start with the case in which x0 = 0 .)

Validity of the Power Series Solutions

Here are the big theorems on the existence of power series solutions. They are also theorems on the

computation of these solutions since they contain the recursion formulas just derived.

Theorem 31.9 (first-order series solutions)

Suppose x0 is an ordinary point for a first-order homogeneous differential equation whose reduced

form is

y′ + Py = 0 .

Then P has a power series representation

P(x) =
∞∑

k=0

pk(x − x0)
k for |x − x0| < R

where R is the radius of analyticity about x0 for this differential equation.

Moreover, a general solution to the differential equation is given by

y(x) =
∞∑

k=0

ak(x − x0)
k for |x − x0| < R

where a0 is arbitrary, and the other ak’s satisfy the recursion formula

ak = −1

k

k−1∑
j=0

a j pk−1− j . (31.3)

Theorem 31.10 (second-order series solutions)

Suppose x0 is an ordinary point for a second-order homogeneous differential equation whose reduced

form is

y′′ + Py′ + Qy = 0 .
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Then P and Q have power series representations

P(x) =
∞∑

k=0

pk(x − x0)
k for |x − x0| < R

and

Q(x) =
∞∑

k=0

qk(x − x0)
k for |x − x0| < R

where R is the radius of analyticity about x0 for this differential equation.

Moreover, a general solution to the differential equation is given by

y(x) =
∞∑

k=0

ak(x − x0)
k for |x − x0| < R

where a0 and a1 are arbitrary, and the other ak’s satisfy the recursion formula

ak = − 1

k(k − 1)

k−2∑
j=0

[
( j + 1)a j+1 pk−2− j + a j qk−2− j

]
. (31.4)

There are four major parts to the proof of each of these theorems:

1. Deriving the recursion formula. (Done!)

2. Assuring ourselves that the coefficient functions in the reduced forms have the stated power

series representations. (Done! See lemmas 31.7 and 31.8.)

3. Verifying that the radius of convergence for the power series generated from the given recur-

sion formula is at least R .

4. Noting that the calculations used to obtain each recursion formula also confirm that the

resulting series is the solution to the given differential equation over the interval (x0 −
R, x0 + R) . (So noted!)

Thus, all that remains to proving these two major theorems is the verification of the claimed radii of

convergence for the given series solutions. This verification is not difficult, but is a bit lengthy and

technical, and may not be as exciting to the reader as was the derivation of the recursion formulas.

Those who are interested should proceed to section 31.5.

But now, let us try using our new theorems.

!�Example 31.2: Consider, again, the differential equation from example 30.7 on page 619,

y′′ + cos(x)y = 0 .

Again, let us try to find at least a partial sum of the general power series solution about x0 = 0 .

This time, however, we will use the results from theorem 31.10.

The equation is already in reduced form

y′′ + Py′ + Qy = 0

with P(x) = 0 and Q(x) = cos(x) . Since both of these functions are analytic on the entire

complex plane, the theorem assures us that there is a general power series solution

y(x) =
∞∑

k=0

ak xk for |x | < ∞
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with a0 and a1 being arbitrary, and with the other ak’s being given through recursion formula

(31.4). And to use this recursion formula, we need the corresponding power series representations

for P and Q . The series for P , of course, is trivial,

P(x) = 0 ⇐⇒ P(x) =
∞∑

k=0

pk xk with pk = 0 for all k .

Fortunately, the power series for Q is well-known and only needs to be slightly rewritten for use

in our recursion formula:

Q(x) = cos(x)

=
∞∑

m=0

(−1)m
1

(2m)! x
2m

= 1 − 1

2! x
2 + 1

4! x4 − 1

6! x6 + · · ·

= (−1)
0/2x0 + 0x1 + (−1)

2/2
1

2! x2 + 0x3

+ (−1)
4/2

1

4! x4 + 0x5 + (−1)
6/2

1

6! x6 + 0x7 + · · · .

So,

q0 = 1 , q1 = 0 , q2 = − 1

2! , q3 = 0 , q4 = 1

4! , . . . .

In general,

Q(x) =
∞∑

k=0

qk xk with qk =
{
(−1)

k/2
1

k! if k is even

0 if k is odd
,

and recursion formula (31.4) becomes, for k ≥ 2 ,

ak = − 1

k(k − 1)

k−2∑
j=0

[
( j + 1)a j+1 pk−2− j︸ ︷︷ ︸

0

+ a j qk−2− j

]

= − 1

k(k − 1)

k−2∑
j=0

a j

⎧⎨⎩(−1)
(k−2− j)/2

1

(k − 2 − j)! if k − 2 − j is even

0 if k − 2 − j is odd

⎫⎬⎭ . (31.5)

However, since we are only attempting to find a partial sum and not the entire series, let us simply

use the recursion formula

ak = − 1

k(k − 1)

k−2∑
j=0

[
( j + 1)a j+1 pk−2− j︸ ︷︷ ︸

0

+ a j qk−2− j

]

= − 1

k(k − 1)

k−2∑
j=0

a j qk−2− j ,

with the particular qn’s given above, and with the factorials computed:

q0 = 1 , q1 = 0 , q2 = −1

2
, q3 = 0 , q4 = 1

24
.
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Doing so, we get

a2 = − 1

2(2 − 1)

2−2∑
j=0

a j q2−2− j

= −1

2

0∑
j=0

a j q− j = −1

2
a0q0 = −1

2
a0 · 1 = −1

2
a0 ,

a3 = − 1

3(3 − 1)

3−2∑
j=0

a j q3−2− j

= −1

6

1∑
j=0

a j q1− j

= −1

6
[a0q1 + a1q0] = −1

6
[a0 · 0 + a1 · 1] = −1

6
a1 ,

a4 = − 1

4(4 − 1)

4−2∑
j=0

a j q4−2− j

= − 1

12

2∑
j=0

a j q2− j

= − 1

12
[a0q2 + a1q1 + a2q0]

= − 1

12

[
a0

(
−1

2

)
+ a1 · 0 +

(
−1

2
a0

)
· 1
]

= 1

12
a0 ,

a5 = − 1

5(5 − 1)

5−2∑
j=0

a j q5−2− j

= − 1

20

3∑
j=0

a j q3− j

= − 1

20
[a0q3 + a1q2 + a2q1 + a3q0]

= − 1

20

[
a0 · 0 + a1

(
−1

2

)
+ a2 · 0 +

(
−1

6
a1

)
· 1
]

= 1

30
a1

and

a6 = − 1

6(6 − 1)

6−2∑
j=0

a j q6−2− j

= − 1

30

4∑
j=0

a j q4− j

= − 1

30
[a0q4 + a1q3 + a2q2 + a3q1 + a4q0]

= − 1

30

[
a0

(
1

24

)
+ a1 · 0 +

(
−1

2
a0

) (
−1

2

)
+ a3 · 0 +

(
1

12
a0

)
· 1
]

= − 1

80
a0 .
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Thus, the sixth partial sum of the power series for y about 0 is

S6(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6

= a0 + a1x − 1

2
a0x2 − 1

6
a1x3 + 1

12
a0x4 + 1

30
a1x5 − 1

80
a0x6

= a0

[
1 − 1

2
x2 + 1

12
x4 − 1

80
x6
]

+ a1

[
x − 1

6
x3 + 1

30
x5
]

,

just as we had found, using the Taylor series method, in example 30.7 on page 619.

If you compare the work done in the last example with the work done in example 30.7, it

may appear that, while we obtained identical results, we may have expended more work in using

the recursion formula from theorem 31.10 than in using the Taylor series method. On the other

hand, all the computations done in the last example were fairly simple arithmetic computations —

computations we could easily program a computer to do, especially if we use recursion formula

(31.5). So there can be computational advantages to using our new results.

31.5 Radius of Convergence for the Solution Series

To finish our proofs of theorems 31.10 and 31.9, we need to verify that the radius of convergence for

each of the given series solutions is at least the given value for R . We will do this for the solution

series in theorem 31.10, and leave the corresponding verification for theorem 31.9 (which will be

slightly easier) as an exercise.

What We Have, and What We Need to Show

Recall: We have a positive value R and two power series

∞∑
k=0

pk Xk and

∞∑
k=0

qk Xk

that we know converge when |X | < R (for simplicity, we’re letting X = x − x0 ). We also have a

corresponding power series
∞∑

k=0

ak Xk

where a0 and a1 are arbitrary, and the other coefficients are given by the recursion formula

ak = − 1

k(k − 1)

k−2∑
j=0

[
( j + 1)a j+1 pk−2− j + a j qk−2− j

]
for k = 2, 3, 4, . . . .

We now only need to show that
∑∞

k=0 ak Xk converges whenever |X | < R , and to do that, we

will produce another power series
∑∞

k=0 bk Xk whose convergence is “easily” shown using the limit

ratio test, and which is related to our first series by

|ak | ≤ bk for k = 0, 1, 2, 3, . . . .

By the comparison test, it then immediately follows that
∑∞

k=0

∣∣ak Xk
∣∣ , and hence also

∑∞
k=0 ak Xk ,

converges.

So let X be any value with |X | < R .
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Constructing the Series for Comparison

Our first step in constructing
∑∞

k=0 bk Xk is to pick some value r between |X | and R ,

0 ≤ |X | < r < R .

Since |r | < R , we know the series

∞∑
k=0

pkrk and

∞∑
k=0

qkrk

both converge. But a series cannot converge if the terms in the series become arbitrarily large in

magnitude. So the magnitudes of these terms — the
∣∣pkrk

∣∣’s and
∣∣qkrk

∣∣’s — must be bounded; that

is, there must be a finite number M such that∣∣∣pkrk
∣∣∣ < M and

∣∣∣qkrk
∣∣∣ < M for k = 0, 1, 2, 3, . . . .

Equivalently (since r > 0 ),

|pk | < M

rk
and |qk | < M

rk
for k = 0, 1, 2, 3, . . . .

These inequalities, the triangle inequality and the recursion formula combine to give us, for k =
2, 3, 4, . . . ,

|ak | =
∣∣∣∣− 1

k(k − 1)

k−2∑
j=0

[
( j + 1)a j+1 pk−2− j + a j qk−2− j

]∣∣∣∣
≤ 1

k(k − 1)

k−2∑
j=0

[
( j + 1)

∣∣a j+1

∣∣ ∣∣pk−2− j

∣∣ +
∣∣a j

∣∣ ∣∣qk−2− j

∣∣]

≤ 1

k(k − 1)

k−2∑
j=0

[
( j + 1)

∣∣a j+1

∣∣ M

rk−2− j
+

∣∣a j

∣∣ M

rk−2− j

]
,

which we will rewrite as

|ak | ≤ 1

k(k − 1)

k−2∑
j=0

M
[
( j + 1)

∣∣a j+1

∣∣+ ∣∣a j

∣∣]
rk−2− j

.

Now let b0 = |a0| , b1 = |a1| and

bk =
k−2∑
j=0

M
[
( j + 1)

∣∣a j+1

∣∣+ ∣∣a j

∣∣]
rk−2− j

for k = 2, 3, 4, . . . .

From the preceding inequality, it is clear that we’ve chosen the bk’s so that

|ak | ≤ bk for k = 0, 1, 2, 3, . . . .

In fact, we even have

|ak | ≤ 1

k(k − 1)
bk for k = 2, 3, . . . . (31.6)

Thus, ∣∣∣ak Xk
∣∣∣ ≤ bk |X |k for k = 2, 3, . . . ,

and (by the comparison test) we can confirm the convergence of
∑∞

k=0 ak Xk by simply verifying

the convergence of
∑∞

k=0 bk |X |k .
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Convergence of the Comparison Series

According to the limit convergence test (theorem 29.2 on page 566),
∑∞

k=0 bk |X |k converges if

lim
k→∞

∣∣∣∣bk+1 Xk+1

bk Xk

∣∣∣∣ < 1 .

Well, let k > 2 . Using the formula for the bk’s with k replaced with k + 1 , we get

bk+1 =
[k+1]−2∑

j=0

M
[
( j + 1)

∣∣a j+1

∣∣+ ∣∣a j

∣∣]
r [k+1]−2− j

=
k−1∑
j=0

M
[
( j + 1)

∣∣a j+1

∣∣+ ∣∣a j

∣∣]
rk−1− j

=
k−2∑
j=0

M
[
( j + 1)

∣∣a j+1

∣∣+ ∣∣a j

∣∣]
rk−1− j

+ M
[
([k − 1] + 1)

∣∣a[k−1]+1

∣∣+ ∣∣a[k−1]
∣∣]

rk−1−[k−1]

= 1

r

k−2∑
j=0

M
[
( j + 1)

∣∣a j+1

∣∣+ ∣∣a j

∣∣]
rk−2− j

+ M
[
k |ak | + |ak−1|

]
= 1

r
bk + k M |ak | + M |ak−1| .

But, by inequality (31.6),

k M |ak | ≤ k M
1

k(k − 1)
bk = M

k − 1
bk . (31.7)

Moreover, because the terms in the summation for bk are all nonnegative real numbers,

bk =
k−2∑
j=0

M
[
( j + 1)

∣∣a j+1

∣∣+ ∣∣a j

∣∣]
rk−2− j

≥ the last term in the summation

= M( j + 1)
∣∣a j+1

∣∣
rk−2− j

with j = k − 2

= M([k − 2] + 1)
∣∣a[k−2]+1

∣∣
rk−2−[k−2]

= M(k − 1) |ak−1| .

Thus,

M |ak−1| ≤ 1

(k − 1)
bk . (31.8)

Combining inequalities (31.7) and (31.8) with the last formula above for bk+1 gives us

bk+1 = 1

r
bk + k M |ak | + M |ak−1|

≤ 1

r
bk + M

(k − 1)
bk + 1

(k − 1)
bk =

[
1

r
+ M + 1

k − 1

]
bk .

That is,
bk+1

bk
≤ 1

r
+ M + 1

k − 1
.
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From this and the fact that |X | < r , we see that

lim
k→∞

∣∣∣∣bk+1 Xk+1

bk Xk

∣∣∣∣ = lim
k→∞

[
1

r
+ M + 1

k − 1

]
|X | =

[
1

r
+ 0

]
|X | = |X |

r
< 1 ,

confirming (by the limit ratio test) that
∑∞

k=0 bk Xk converges, and, thus, completing our proof of

theorem 31.10.

To finish the proof of theorem 31.9, do the following exercise:

?�Exercise 31.2: Let
∑∞

k=0 pk Xk be a power series that converges for |X | < R , and let∑∞
k=0 ak Xk be a power series where a0 is arbitrary, and the other coefficients are given by the

recursion formula

ak = −1

k

k−1∑
j=0

a j pk−1− j for k = 1, 2, 3, . . . .

Show that
∑∞

k=0 ak Xk converges also for |X | < R .

(Suggestion: Go back to the start of this section and “redo” the computations step by step,

making the obvious modifications to deal with the given recursion formula.)

31.6 Singular Points and the Radius of Convergence

In the last section, we verified that the power series solutions obtained in this chapter are valid at

least over (x0 − R, x0 + R) where R is the distance from x0 to the nearest singular point, provided

the differential equation has singular points. This fact can be refined by the following theorem:

Theorem 31.11

Let

y(x) =
∞∑

k=0

ck(x − x0)
k for |x − x0| < R

be a power series solution for some first- or second-order homogeneous linear differential equation.

Assume, further, that R is finite and is the radius of convergence for the above power series. Then

this differential equation has a singular point zs with |zs − x0| = R .

The proof of this theorem, unfortunately, is nontrivial. The adventurous can read about it in

an appendix, section 31.9 (after reading sections 31.7 and 31.8). By the way, the above theorem

is actually a consequence of more general results obtained in the appendix, some of which will be

useful in some of our more advanced work in chapter 33.
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31.7 Appendix: A Brief Overview of Complex Calculus

To properly address issues regarding the analyticity of our functions and the regions of convergence of

their power series, we need to delve deeper into the theory of analytic functions — much deeper than

normally presented in elementary calculus courses. Instead, we want the theory normally developed

in introductory courses in complex analysis. That’s because the complex-variable theory exposes a

much closer relation between “differentiability” and “analyticity” than does the real-variable theory

developed in elementary calculus. If you’ve had such a course, good; the following will be a review.

If you’ve not had such a course, think about taking one, and read on. What follows is a brief synopsis

of the relevant concepts and results from such a course, written assuming you have not had such a

course (but have, at least, skimmed the introductory section on complex variables in section 29.3,

starting on page 575).

Functions of a Complex Variable

In “complex analysis”, the basic concepts and theories developed in elementary calculus are extended

so that they apply to complex-valued functions of a complex variable. Thus, for example, where we

may have considered the “real” polynomial and “real” exponential

p(x) = 3x2 + 4x − 5 and h(x) = ex for all x in �

in elementary calculus, in complex analysis we consider the “complex” polynomial and “complex”

exponential

p(z) = 3z2 + 4z − 5 and h(z) = ez for all z = x + iy in � .

Note that we treat z as a single entity. Still, the complex variable z is just x + iy . Consequently,

much of complex analysis follows from what you already know about the calculus of functions of

two variables. In particular, the partial derivatives with respect to x and y are defined just as they

were defined back in your calculus course (and section 3.7 of this text), and when we say f is

continuous at z0 , we mean that

f (z0) = lim
z→z0

f (z)

with the understanding that

lim
z→z0

f (z) = lim
x→x0
y→y0

f (x + iy) with z0 = x0 + iy0 .

Along these lines, you should be aware that, in complex variables, we normally assume that

functions are defined over subregions of the complex plane, instead of subintervals of the real line.

In what follows, we will often require our region of interest to be open (as discussed in section 3.7).

For example, we will often refer to the disk of all z satisfying |z − z0| < R for some complex point

z0 and positive value R . Any such disk is an open region.

Complex Differentiability

Given a function f and a point z0 = x0 + iy0 in the complex plane, the complex derivative of f

at z0 — denoted by f ′(z0) or d f/dz

∣∣
z0

— is given by

f ′(z0) = d f

dz

∣∣∣
z0

= lim
z→z0

f (z)− f (z0)

z − z0
.



�

�

�

�

�

�

�

�

648 Power Series Solutions II: Generalizations and Theory

If this limit exists as a finite complex number, we will say that f is differentiable with respect to

the complex variable at z0 (complex differentiable for short). Remember, z = x + iy ; so, for the

above limit to make sense, the formula for f must be such that f (x + iy) makes sense for every

x + iy in some open region about z0 .

We further say that f is complex differentiable on a region of the complex plane if and only if

it is complex differentiable at every point in the region.

Naturally, we can extend the complex derivative to higher orders:

f ′′ = d2 f

dz2
= d

dz

d f

dz
, f ′′′ = d3 f

dz3
= d

dz

d2 f

dz2
, · · · .

As with functions of a real variable, if f (k) exists for every positive integer k (at a point or in a

region), then we say f is infinitely differentiable (at the point or in the region).

In many ways, the complex derivative is analogous to the derivative you learned in elementary

calculus (the real-variable derivative). The same basic basic computational formulas apply, giving

us, for example,

d

dz
zk = kzk−1 ,

d

dz
eαz = αeαz and

d

dz
[α f (z)+ βg(z)] = α f ′(z) + βg′(z) .

In addition, the well-known product and quotient rules can easily be verified, and, in verifying these

rules, you automatically verify the following:

Theorem 31.12

Assume f and g are complex differentiable on some open region of the complex plane. Then

their product f g is also complex differentiable on that region. Moreover, so is their quotient f/g ,

provided g(z) = 0 for every z in this region.

Testing for Complex Diffentiability

If f is complex differentiable in some open region of the complex plane, then, unsurprisingly, the

chain rule can be shown to hold. In particular,

∂

∂x
f (x + iy) = f ′(x + iy) · ∂

∂x
[x + iy] = f ′(x + iy) · 1 = f ′(x + iy)

and
∂

∂y
f (x + iy) = f ′(x + iy) · ∂

∂y
[x + iy] = f ′(x + iy) · i = i f ′(x + iy) .

Combining these two equations, we get

∂

∂y
f (x + iy) = i f ′(x + iy) = i

∂

∂x
f (x + iy) .

Thus, if f is complex differentiable in some open region, then

∂

∂y
f (x + iy) = i

∂

∂x
f (x + iy) (31.9)

at every point z = x + iy in that region.4 Right off, this gives us a test for “nondifferentiability”:

If equation (31.9) does not hold throughout some region, then f is not complex differentiable on

4 The two equations you get by splitting equation (31.9) into its real and imaginary parts are the famous Cauchy-Riemann

equations.
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that region. Remarkably, it can be shown that equation (31.9) can also be used to verify complex

differentiability. More precisely, the following theorem can be verified using tools developed in a

typical course in complex analysis.

Theorem 31.13

A function f is complex differentiable on an open region if and only if

∂

∂y
f (x + iy) = i

∂

∂x
f (x + iy)

at every point z = x + iy in the region. Moreover, in any open region on which f is complex

differentiable,

f ′(z) = d

dz
f (z) = ∂

∂x
f (x + iy) .

Differentiability of an Analytic Function

In the subsection starting on page 571 of section 29.2, we discussed differentiating power series

and analytic functions when the variable is real. That discussion remains true if we replace the real

variable x with the complex variable z and use the complex derivative. In particular, we have

Theorem 31.14 (differentiation of power series)

Suppose f is a function given by a power series,

f (z) =
∞∑

k=0

ak(z − z0)
k for |z − z0| < R

for some R > 0 . Then, for any positive integer n , the nth derivative of f exists. Moreover,

f (n)(x) =
∞∑

k=n

k(k − 1)(k − 2) · · · (k − n + 1) ak(z − z0)
k−n for |z − z0| < R .

As an immediate corollary, we have:

Corollary 31.15

Let f be analytic at z0 with power series representation

f (z) =
∞∑

k=0

ak(z − z0)
k whenever |z − z0| < R .

Then f is infinitely complex differentiable on the disk of all z with |z − z0| < R . Moreover

ak = f (k)(z0)

k! for k = 0, 1, 2, . . . .
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Complex Differentiability and Analyticity

Despite the similarity between complex differentiation and real-variable differentiation, complex

differentiability is a much stronger condition on functions than is real-variable differentiability. The

next theorem illustrates this.

Theorem 31.16

Assume f (z) is complex differentiable in some open region R . Then f is analytic at each point

z0 in R , and is given by its Taylor series

f (z) =
∞∑

k=0

f (k)(z0)

k! (z − z0)
k whenever |z − z0| < R

where R is the radius of any open disk centered at z0 and contained in region R .

This remarkable theorem tells us that complex differentiability on an open region automatically

implies analyticity on that region, and tells us the region over which a function’s Taylor series

converges and equals the function. Proving this theorem is beyond this text. It is, in fact, a summary

of results normally derived over the course of many chapters of a typical text in complex variables.

Keep in mind that we already saw that analyticity implied complex differentiability (corollary

31.15). So as immediate corollaries to the above, we have:

Corollary 31.17

A function f is analytic at every point in an open region of the complex plane if and only if it is

complex differentiable at every point in that region.

Corollary 31.18

Assume F is a function analytic at z0 with corresponding power series
∑∞

k=0 fk(z − z0)
k , and let

R be either some positive value or +∞ . Then

F(z) =
∞∑

k=0

fk(z − z0)
k whenever |z − z0| < R

if and only if F is analytic at every complex point z satisfying

|z − z0| < R .

The second corollary is especially of interest to us because it is the same as lemma 31.1 on page

633, which we used extensively in this chapter. And the other lemma that we used, lemma 31.2 on

page 633? Well, using, in order,

1. corollary 29.14 on page 581 on quotients of analytic functions,

2. theorem 31.12 on page 648 on the differentiation of products and quotients

and

3. corollary 31.17, above,

you can easily verify the following (which is the same as lemma 31.2):
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Corollary 31.19

Assume F(z) and A(z) are two functions analytic at a point z0 . Then the quotient F/A is also

analytic at z0 if and only if

lim
z→z0

F(z)

A(x)

is finite.

The details are left to you.

?�Exercise 31.3: Prove corollary 31.19.

31.8 Appendix: The “Closest Singular Point”

Here we want to answer a subtle question: Is it possible to have a first- or second-order linear

homogeneous differential equation whose singular points are arranged in such a manner that none

of them is the closest to some given ordinary point?

For example, could there be a differential equation having z0 = 0 as an ordinary point, but

whose singular points form an infinite sequence

z1, z2, z3, . . . with |zk | = 1 + 1

k
,

possibly located in the complex plane so that they “spiral around” the circle of radius 1 about z0 = 0

without converging to some single point? Each of these singular points is closer to z0 = 0 than the

previous ones in the sequence, so not one of them can be called “a closest singular point”.

Lemma 31.6 on page 636 claims that this situation cannot happen. Let us see why we should

believe this lemma.

The Problem and Fundamental Theorem

We are assuming that we have some first- or second-order linear homogeneous differential equation

having singular points. We also assume z0 is not one of these singular points — it is an ordinary

point. Our goal is to show that

there is a singular point zs such that no other singular point is closer to z0 .

If we can confirm such a zs exists, then we’ve shown that the answer to this section’s opening

question is No (and proven lemma 31.6).

We start our search for this zs by rewriting our differential equation in reduced form

y′ + P(x)y = 0 or y′′ + P(x)y′ + Q(x)y = 0

and recalling that a point z is an ordinary point for our differential equation if and only if the

coefficient(s) ( P for the first-order equation, and both P and Q for the second-order equation) are

all analytic at z (see lemmas 31.7 and 31.8). Consequently,

1. zs is a closest singular point to z0 for the first-order differential equation if and only if zs

is a point closest to z0 at which P is not analytic,

and
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2. zs is a closest singular point to z0 for the second-order differential equation if and only if

zs is a point closest to z0 at which either P or Q is not analytic.

Either way, our problem of verifying the existence of a singular point zs “closest to z0 ” is

reduced to the problem of verifying the existence of a point zs “closest to z0 ” at which a given

function F is not analytic while still being analytic at z0 . That is, to prove lemma 31.6, it will

suffice to prove the following:

Theorem 31.20

Let F be a function that is analytic at some but not all points in the complex plane, and let z0 be

one of the points at which F is analytic. Then there is a positive value R0 and a point zs in the

complex plane such that all the following hold:

1. R0 = |zs − z0| .

2. F is not analytic at zs .

3. F is analytic at every z with |z − z0| < R0 .

The point zs in the above theorem is a point closest to z0 at which F is not analytic. There

may be other points the same distance from z0 at which F is not analytic, but the last statement in

the theorem tells us that there is no point closer to z0 than zs at which F is not analytic.

Verifying Theorem 31.20
The Radius of Analyticity Function

Our proof of theorem 31.20 will rely on properties of the radius of analyticity function RA for F ,

which we define at each point z in the complex plane as follows:

• If F is not analytic at z , then RA(z) = 0 .

• If F is analytic at z , then RA(z) is the largest value of R such that

F is analytic on the open disk of radius R about z . (31.10)

(To see that this “largest value of R ” exists when f is analytic at z , first note that the set of all

positive values of R for which (31.10) holds forms an interval with 0 as the lower endpoint. Since

we are assuming there are points at which F is not analytic, this interval must be finite, and, hence,

has a finite upper endpoint. That endpoint is RA(z) .)5

The properties of this function that will be used in our proof of theorem 31.20 are summarized

in the following lemmas.

Lemma 31.21

Let RA be the radius of analyticity function corresponding to a function F analytic at some, but

not all, points of the complex plane, and let z0 be a point at which F is analytic. Then:

1. If |ζ − z| < RA(z) , then F is analytic at ζ .

2. If F is not analytic at a point ζ , then |ζ − z| ≥ RA(z) .

5 In practice, RA(z) is usually the radius of convergence R for the Taylor series for F about z . In theory, though, one

can define F to not equal its Taylor series at some points in the disk of radius R about z . RA(z) is then the radius of the

largest open disk about z on which F is given by its Taylor series about z .
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3. If R > RA(z) then there is a point in the open disk about z of radius R at which F is not

analytic.

Lemma 31.22

Let F be a function which is analytic at some but not all points of the complex plane, and let RA

be the radius of analyticity function corresponding to F . Then, for each complex point z ,

F is analytic at z ⇐⇒ RA(z) > 0 .

Equivalently,

F is not analytic at z ⇐⇒ RA(z) = 0 .

Lemma 31.23

If F is a function analytic at some but not all points of the complex plane, then RA , the radius of

analyticity function corresponding to F , is a continuous function on the complex plane.

The claims in the first lemma follow immediately from the definition of RA ; so let us concentrate

on proving the other two lemmas.

PROOF (lemma 31.22): First of all, by definition

F is not analytic at z �⇒ RA(z) = 0 .

Hence, we also have

RA(z) > 0 �⇒ F is analytic at z .

On the other hand, if F is analytic at z , then there is a power series
∑∞

k=0 ak(ζ − z)k and a

R > 0 such that

F(ζ ) =
∞∑

k=0

ak(ζ − z)k whenever |ζ − z| < R .

Corollary 31.18 immediately tells us that F is analytic on the open disk of radius R about z . Since

RA(z) is the largest such R , R ≤ RA(z) . And since 0 < R , we now have

F is analytic at z �⇒ RA(z) > 0 .

This also means

RA = 0 �⇒ F is not analytic at z .

Combining all the implications just listed yields the claims in the lemma.

PROOF (lemma 31.23): To verify the continuity of RA , we need to show that

lim
z→z1

RA(z) = RA(z1) for each complex value z1 .

There are two cases: the easy case with F not being analytic at z1 , and the less-easy case with F

being analytic at z1 . For the second case, we will use pictures.

Consider the first case, where F is not analytic at z1 (hence, RA(z1) = 0 ). Then, as noted in

lemma 31.21,

0 ≤ RA(z) ≤ |z1 − z| for any z in � .

Taking limits, we see that

0 ≤ lim
z→z1

RA(z) ≤ lim
z→z1

|z1 − z| = 0 ,
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z1z
δ R1

D1

Rm

Dm

RM

DM

Figure 31.1: Limits on the radius of analyticity at z based on the radius of analyticity R1 at z1 .

Here δ = |z − z1| RM = R1 + 2δ and Rm = R1 − δ .

which, since RA(z1) = 0 , gives us

lim
z→z1

RA(z) = RA(z1) .

Next, assume F is analytic at z1 (so that RA(z1) > 0 ), and let z be a point “close” to z1 .

For notational convenience, let

R1 = RA(z1)

and let D1 be the open disk centered at z1 of radius R1 , as sketched in figure 31.1. Note that, by

the definition of R1 ,

1. F is analytic at every point in D1 , but

2. any open disk centered at z1 larger than D1 (such as the one enclosed by the dashed-line

circle in figure 31.1) must contain a point at which F is not analytic.

Because we are just interested in limits as z → z1 , we can assume z is close enough to z1 that

|z − z1| < R1 . Let Dm and DM be the open disks about z with radii

Rm = R1 − |z − z1| and RM = R1 + 2 |z − z1| ,

as also illustrated in figure 31.1. Now since Dm is contained in D1 , F is analytic at every point

in Dm . Hence,

Rm ≤ RA(z) .

On the other hand, inside DM is another open disk that we had already noted contains a point at

which F is not analytic. So F is not analytic at every point in DM . Thus,

RA(z) < RM .

Combining the two inequalities above (and recalling what the notation means) gives us

RA(z1) − |z − z1| ≤ RA(z) ≤ RA(z1) + 2 |z − z1|
which, after letting z → z1 , becomes

RA(z1) − 0 ≤ lim
z→z1

RA(z) ≤ RA(z1) + 2 · 0 ,
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clearly implying that

lim
z→z1

RA(z) = RA(z1) .

Proof of Theorem 31.20

Remember: F is a function analytic at some but not all points in the complex plane, and z0 is a

point at which f is analytic.

Let

R0 = RA(z0) .

Because of the definition and properties of RA , and the analyticity of F at z0 , we automatically

have that R0 > 0 and that F is analytic at every z with |z − z0| < R0 . All that remains to

proving our theorem is to show that there is a zs at which F is not analytic and which satisfies

|zs − z0| = R0 .

Now consider the possible values of RA(z) on the circle |z − z0| = R0 . Since RA is con-

tinuous, it must have a minimum value ρ at some point zs in this circle. Since this is a minimum

value for RA on the circle, we then have

0 ≥ ρ ≥ RA(z) whenever |z − z0| = R0 .

If ρ > 0 , then the above implies that F is analytic at every point closer than ρ to the circle

|z − z0| = R0 , as well at every point inside the disk enclosed by this circle. That is, FA is analytic

at every z on the open disk about z0 of radius R0 + ρ . And by the definition of RA and R0 and

ρ , we must then have

RA(z0) = R0 ≤ R0 + ρ ≤ RA(z0) ,

which is only possible if ρ = 0 . But ρ = RA(zs) . So RA(zs) = 0 , which, as lemma 31.22 tells

us, means that F is not analytic at zs .

31.9 Appendix: Singular Points and the Radius of
Convergence for Solutions

Our goal in this section is to prove theorem 31.11, which directly relates the radius of convergence

for a power series solution for a given differential equation to a singular point for that differential

equation. To do this, we must first expand on some of our discussion from the last few sections.

Analytic Continuation

Analytic continuation is any procedure that “continues” an analytic function defined on one region

so that it becomes defined on a larger region. Perhaps it would be better to call it “analytic extension”

because what we are really doing is extending the domain of our original function by creating an

analytic function with a larger domain that equals the original function over the original domain.

We will “analytically extend” a power series solution to our differential equation on one disk to

a solution on a larger disk using Taylor series. And to justify this, we will use the following theorem:
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z1

z2

z3

DA
DBD0

D1

D2

D3

ζ

Figure 31.2: Disks in the complex plane for theorem 31.24 and its proof.

Theorem 31.24

Let DA and DB be two open disks in the complex plane that intersect each other. Assume that fA

is a function analytic on DA , and that fB is a function analytic on DB . Further assume that there

is an open disk D0 contained in both DA and DB (see figure 31.2) such that

f A(z) = fB(z) for every z ∈ D0 .

Then

fA(z) = fB(z) for every z ∈ DA ∩ DB .

Think of f A as being the original function defined on DA , and fB as some other analytic

function that we constructed on DB to match f A on D0 . This theorem tells us that we can define

a “new” function f on DA ∪ DB by

f (z) =
{

f A(z) if z is in DA

fB(z) if z is in DB

.

On the intersection, f is given both by f A and fB , but that is okay because the theorem assures us

that fA and fB are the same on that intersection. And since fA and fB are, respectively, analytic

at every point in DA and DB , it follows that f is analytic on the union of DA and DB , and

satisfies

f (z) = fA(z) for each z in DA .

That is, f is an “analytic extension” of f A from the domain DA to the domain DA ∪ DB .

The proof of the above theorem is not difficult and is somewhat instructive.

PROOF (theorem 31.24): We need to show that f A(ζ ) = fB(ζ ) for every ζ in DA ∩ DB . So

let ζ be any point in DA ∩ DB .

If ζ ∈ D0 then, by our assumptions, we automatically have fA(ζ ) = fB(ζ ) .

On the other hand, if ζ in not in D0 , then, as illustrated in figure 31.2, we can clearly find a

finite sequence of open disks D1 , D2 , . . . and DM with respective centers z1 , z2 , . . . and zM

such that

1. each zk is also in Dk−1 ,

2. each Dk is in DA ∩ DB , and

3. the last disk, DM , contains ζ .
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Now, because fA and fB are the same on D0 , so are all their derivatives. Consequently, the

Taylor series for fA and fB about the point z1 in D0 will be the same. And since D1 is a disk

centered at z1 and contained in both DA and DB , we have

fA(z) =
∞∑

k=0

f A
(k)(z1)

k! (z − z1)
k

=
∞∑

k=0

fB
(k)(z1)

k! (z − z1)
k = fB(z) for every z in D1 .

Repeating these arguments using the Taylor series for f A and fB at the points z2 , z3 , and so

on, we eventually get

fA(z) = fB(z) for every z in DM .

In particular then,

fA(ζ ) = fB(ζ ) ,

just as we wished to show.

Ordinary and Singular Points for Power-Series Functions

It will help if we expand our notions of ordinary and singular points to any function given by a power

series,

f (z) =
∞∑

k=0

ck(z − z0)
k for |z − z0| < R ,

assuming, of course, that R > 0 . For convenience, let D be the open disk about z0 of radius R .

Then for each z1 either in D or on its boundary, we will say:

1. z1 an ordinary point for f if and only if there is a function f1 analytic on a disk D1 of

positive radius about z1 and which equals f on the region where D and D1 overlap.

2. z1 an singular point for f if and only if it is not an ordinary point for f .

Do note that theorem 31.16 on page 650 assures us that every point in D is an ordinary point

for f . So the only singular points must be on the boundary. And the next theorem tells us that there

must be a singular point on the boundary of D when R is finite and the radius of convergence for

the above power series.

Theorem 31.25

Let R be a positive finite number, and assume it is the radius of convergence for

f (z) =
∞∑

k=0

ck(z − z0)
k .

Then f must have a singular point on the circle |z − z0| = R .

PROOF: For convenience, let D be the open disk of radius R about z0 ,

D = {z : |z − z0| < R} ,
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and let �D be the union of D and its boundary,

�D = {z : |z − z0| ≤ R} .

Now, let’s define a function RC on �D as follows:

1. For each ordinary point ζ , there is a function f1 analytic on a disk D1 of positive radius

about ζ and which equals f on the region where D and D1 overlap. Since f1 is analytic,

it can be given by a power series about ζ . Let RC (ζ ) be the radius of convergence for that

power series.

2. For each singular point ζ , let RC (ζ ) = 0 .

By definition, RC (ζ ) ≥ 0 for each ζ in �D . We should also note that RC (ζ ) cannot be infinite

for any ζ in �D because there would then be a function f1 analytic on all of the complex plane and

equaling f on the disk D . And since f1 is analytic everywhere, theorem 31.16 assures us that the

radius of convergence R1 of the Taylor series of f1 about z0 would be infinite. But that Taylor

series for f1 about z0 would have to be the same as the Taylor series for f about z0 since f = f1

on D . And that, in turn, would mean the two power series have the same radius of convergence,

giving us

∞ = R1 = R < ∞ ,

which is impossible. Thus, it is not possible for RC (ζ ) to be infinite at any point ζ in �D . In other

words, RC is a well-defined function on D with

0 ≤ RC (z) < ∞ for each z in �D .

The function RC is very similar to the “radius of analyticity function” RA discussed in section

31.8, and, using arguments very similar to those used in that section for RA , you can verify all the

following:

1. RC (z) > 0 if and only if z is an ordinary point for the differential equation.

2. RC (z) = 0 if and only if z is a singular point for the differential equation.

3. RC is a continuous function on the circle |z − z0| = R .

4. RC (z) has a minimum value ρ at some point zs on the circle |z − z0| = R .

Now, if we can show ρ = 0 , then the above tells us that the corresponding point zs is a singular

point for the given power series, and our theorem is proven. And to show that, it will suffice to show

that ρ > 0 is impossible.

So, for the moment, assume ρ > 0 . Then (as illustrated in figure 31.3) we can choose a finite

sequence of points ζ1 , ζ2 , . . . , and ζN about the circle |z − z0| = R such that |ζN − ζ1| < ρ

and

|ζn+1 − ζn | < ρ for n = 1, 2, 3, . . . , n .

For each ζn , let Dn be the open disk of radius ρ about ζn , and observe that, by basic geometry,

the union of all the disks D1 , D2 , . . . , and DN contains not just the boundary of our original disk

D but the annulus of all z satisfying

R ≤ |z − z0| ≤ R + ε

for some positive value ε .
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D1

D2

D3

D4

D5

DN

R

R + ε
ζ1

ζ2

ζ3

z0z0

ζ4

ζN

ζ5

Figure 31.3: Disks for the proof of theorem 31.25. The darker disk is the disk of radius R on

which y is originally defined.

By our choice of ζn’s and D’s , we know that, for each integer n from 1 to N , there is a

power series function

fn(z) =
∞∑

k=0

cn,k(z − ζn)
k

defined on all of Dn and which equals our original function f in the overlap of D and Dn .

Repeated use of theorem 31.24 then shows that any two functions from the set

{ f, f1, f2, . . . , fN }

equal each other wherever both are defined. This allows us to define a “new” analytic function F

on the union of all of our disks via

F(z) =
{

f (z) if |z − z0| < R

fn(z) if z ∈ Dn for n = 1, 2, . . . , N
.

Now, because the union of all of the disks contains the disk of radius R + ε about 0 , theorem 31.16

on page 650 on the radius of convergence for Taylor series assures us that the Taylor series for F

about z0 must have a radius of convergence of at least R + ε . But, f (z) = F(z) when |z| < R .

So f and F have the same Taylor series at z0 , and, hence, these two power series share the same

radius of convergence.

That is, if ρ > 0 , then

R = radius of convergence for the power series of f about z0

= radius of convergence for the power series of F about z0 > R ,

which is clearly impossible. So, it is not possible to have ρ > 0 .
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Complex Power Series Solutions

Throughout most of these chapters, we’ve been tacitly assuming that the derivatives in our differential

equations are derivatives with respect to a real variable x ,

y′ = dy

dx
and y′′ = d2 y

dx2
,

as in elementary calculus. In fact, we can also have derivatives with respect to the complex variable

z ,

y′ = dy

dz
and y′′ = d2 y

dz2
,

as described on page 647. Remember that, computationally, differentiation with respect to z is

completely analogous to the differentiation with respect to x learned in basic calculus. In particular,

if

y(z) =
∞∑

k=0

ak(z − z0)
k for |z − z0| < R

for some point z0 in the complex plane and some R > 0 , then

y′(z) = d

dz

∞∑
k=0

ak(z − z0)
k

=
∞∑

k=0

d

dz

[
ak(z − z0)

k
]

=
∞∑

k=1

kak(z − z0)
k−1 for |z − z0| < R .

Consequently, all of our computations in chapters 30 and 31 can be carried out using the complex

variable z instead of the real variable x , and using a point z0 in the complex plane instead of a

point x0 on the real line. In particular, we have the following complex-variable analogs of theorems

31.9 and 31.10:

Theorem 31.26 (first-order series solutions)

Suppose z0 is an ordinary point for a first-order homogeneous differential equation whose reduced

form is

y′ + Py = 0 .

Then P has a power series representation

P(z) =
∞∑

k=0

pk(z − z0)
k for |z − z0| < R

where R is the radius of analyticity about z0 for this differential equation.

Moreover, a general solution to the differential equation is given by

y(z) =
∞∑

k=0

ak(z − z0)
k for |z − z0| < R

where a0 is arbitrary, and the other ak’s satisfy the recursion formula

ak = −1

k

k−1∑
j=0

a j pk−1− j . (31.11)
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Theorem 31.27 (second-order series solutions)

Suppose z0 is an ordinary point for a second-order homogeneous differential equation whose reduced

form is
d2 y

dz2
+ P

dy

dz
+ Qy = 0 .

Then P and Q have power series representations

P(z) =
∞∑

k=0

pk(z − z0)
k for |z − z0| < R

and

Q(z) =
∞∑

k=0

qk(z − z0)
k for |z − z0| < R

where R is the radius of analyticity about z0 for this differential equation.

Moreover, a general solution to the differential equation is given by

y(z) =
∞∑

k=0

ak(z − z0)
k for |z − z0| < R

where a0 and a1 are arbitrary, and the other ak’s satisfy the recursion formula

ak = − 1

k(k − 1)

k−2∑
j=0

[
( j + 1)a j+1 pk−2− j + a j qk−2− j

]
. (31.12)

By the way, it should also be noted that, if

y(x) =
∞∑

k=0

ck(x − x0)
k

is a solution to the real-variable differential equation for |x − x0| < R , then

y(z) =
∞∑

k=0

ck(z − x0)
k

is a solution to the corresponding complex-variable differential equation for |z − x0| < R . This fol-

lows immediately from the last theorem and the relation between dy/dx and dy/dz (see the discussion

of the complex derivative in section 31.7).

Singular Points of Differential Equations and Solutions

So, let’s suppose we have a power series solution

y(z) =
∞∑

k=0

ck(z − z0)
k for |z − x0| < R

to some first- or second-order linear homogenous differential equation, and, as before, let D and
�D be, respectively, the open and closed disks of radius R about z0 ,

D = {z : |z − z0| < R} and �D = {z : |z − z0| ≤ R} .



�

�

�

�

�

�

�

�

662 Power Series Solutions II: Generalizations and Theory

Now consider any single point z1 in �D . If z1 is an ordinary point for the given differential equation,

then there is a disk D1 of some positive radius R1 about z1 such that, on that disk, general solutions

to the differential equation exist and are given by power series about z1 . Using the material already

developed in this section, it’s easy to verify that, in particular, the above power series solution y is

given by a power series about z1 at least on the overlap of disks D and D1 . And that means z1

is also an ordinary point for the above power series solution. And, of course, this also means that

a point z1 in �D cannot be both an ordinary point for the differential equation and a singular point

for y .

To summarize:

Lemma 31.28

Let R be a positive finite number, and assume that, on the disk |z − z0| < R ,

y(z) =
∞∑

k=0

ck(z − z0)
k

is a power series solution to some first- or second-order linear homogeneous differential equation.

Then, for each point ζ in the closed disk given by |z − z0| ≤ R :

1. If ζ is an ordinary point for the differential equation, then it is an ordinary point for the

above power series solution.

2. If ζ is a singular point for the above power series solution, then it is a singular point for the

differential equation.

Combining the last lemma with theorem 31.25 on singular points for power series functions,

we get the main result of this appendix:

Theorem 31.29

Let

y(z) =
∞∑

k=0

ck(z − z0)
k for |z − z0| < R

be a power series solution for some first- or second-order homogeneous linear differential equation.

Assume, further, that R is finite and is the radius of convergence for the above power series. Then

there is a point zs with |zs − z0| = R which is a singular point for both the above power series

solution and the given differential equation.

Theorem 31.11 now follows as a corollary of the last theorem.

Additional Exercises

31.4. In the following, you will determine all the points in the complex plane at which certain

common functions are zero. It may help to remember that, for a complex value Z = X +iY

to be zero, both its real part X and its imaginary part Y must be zero.
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a. Using the fact that

ex+iy = ex [cos(y)+ i sin(y)] ,

show that ez can never equal zero for any z in the complex plane.

b. In chapter 15 we saw that

sin(z) = eiz − e−i z

2i
and cos(z) = eiz + e−i z

2
,

at least when z was a real value (see page 312). In fact, these formulas (along with

the definition of the complex exponential) can define the sine and cosine functions at all

values of z , real and complex. Using these formulas

i. Verify that

sin(x + iy) = ey + e−y

2
sin(x) + i

ey − e−y

2
cos(x)

and

cos(x + iy) = ey + e−y

2
sin(x) − i

ey − e−y

2
cos(x) .

ii. Using the above formulas, verify that

sin(z) = 0 ⇐⇒ z = nπ with n = 0, ±1, ±2, . . .

and

cos(z) = 0 ⇐⇒ z =
[
n + 1

2

]
π with n = 0, ±1, ±2, . . . .

c. The hyperbolic sine and cosine are defined on the complex plane by

sinh(z) = ez − e−z

2
and cosh(z) = ez + e−z

2
.

Show that

sinh(z) = 0 ⇐⇒ z = inπ with n = 0, ±1, ±2, . . .

and

cosh(z) = 0 ⇐⇒ z = i
[
n + 1

2

]
π with n = 0, ±1, ±2, . . . .

31.5. For each of the following differential equations, find all singular points, as well as the radius

of analyticity R about the given point x0 . You may have to use results from the previous

problem. You may even have to expand on some of those results. And you may certainly

need to rearrange a few equations.

a. y′ − ex y = 0 with x0 = 0

b. y′ − tan(x)y = 0 with x0 = 0

c. sin(x) y′′ + x2 y′ − ex y = 0 with x0 = 2

d. sinh(x) y′′ + x2 y′ − ex y = 0 with x0 = 2

e. sinh(x) y′′ + x2 y′ − sin(x) y = 0 with x0 = 2

f. e3x y′′ + sin(x) y′ + 2(
x2 + 4

) y = 0 with x0 = 0

g. y′′ + 1 + ex

(1 − ex )
y = 0 with x0 = 3
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h.
[
x2 − 4

]
y′′ +

[
x2 + x − 6

]
y = 0 with x0 = 2

i. xy′′ + [
1 − ex

]
y = 0

j. sin
(
πx2

)
y′′ + x2 y = 0 with x0 = 0

31.6. Using recursion formula (31.3) on page 639, find the 4th-degree partial sum of the general

power series solution for each of the following about the given point x0 . Also state the

interval I over which you can be sure the full power series solution is valid.

a. y′ − ex y = 0 with x0 = 0

b. y′ + e2x y = 0 with x0 = 0

c. y′ + cos(x) y = 0 with x0 = 0

d. y′ + ln |x | y = 0 with x0 = 1

31.7. Using the recursion formula (31.4) on page 640, find the 4th-degree partial sum of the

general power series solution for each of the following about the given point x0 . Also state

the interval I over which you can be sure the full power series solution is valid.

a. y′′ − ex y = 0 with x0 = 0

b. y′′ + 3xy′ − ex y = 0 with x0 = 0

c. xy′′ − 3xy′ + sin(x) y = 0 with x0 = 0 and N = 4

d. y′′ + ln |x | y = 0 with x0 = 1

e.
√

x y′′ + y = 0 with x0 = 1

f. y′′ +
[
1 + 2x + 6x2

]
y′ + [2 + 12x] y = 0 with x0 = 0

31.8 a. Using your favorite computer mathematics package, along with recursion formula (31.3)

on page 639, write a program/worksheet that will find the N th partial sum of the power

series solution about x0 to

y′ + P(x)y = 0

for any given positive integer N , point x0 and function P(x) analytic at x0 . Finding the

appropriate partial sum of the corresponding power series for P should be part of the pro-

gram/worksheet (see exercise 29.8 on page 585). Be sure to write your program/worksheet

so that N , x0 and P are easily changed.

b. Use your program/worksheet to find the N th-degree partial sum of the general power

series solution about x0 for each of the following differential equations and choices for

N and x0 .

i. y′ − ex y = 0 with x0 = 0 and N = 10

ii. y′ +
√

x2 + 1y = 0 with x0 = 0 and N = 8

iii. cos(x)y′ + y = 0 with x0 = 0 and N = 8

iv. y′ +
√

2x2 + 1y = 0 with x0 = 2 and N = 5

31.9 a. Using your favorite computer mathematics package, along with recursion formula (31.4)

on page 640, write a program/worksheet that will find the N th partial sum of the power

series solution about x0 to

y′′ + P(x)y′ + Q(x)y = 0
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for any given positive integer N , point x0 , and functions P(x) and Q(x) analytic at

x0 . Finding the appropriate partial sum of the corresponding power series for P and Q

should be part of the program/worksheet (see exercise 29.8 on page 585). Be sure to write

your program/worksheet so that N , x0 , P and Q are easily changed.

b. Use your program/worksheet to find the N th-degree partial sum of the general power

series solution about x0 for each of the following differential equations and choices for

N and x0 .

i. y′′ − ex y = 0 with x0 = 0 and N = 8

ii. y′′ + cos(x)y = 0 with x0 = 0 and N = 10

iii. y′′ + sin(x)y′ + cos(x)y = 0 with x0 = 0 and N = 7

iv.
√

x y′′ + y′ + xy = 0 with x0 = 1 and N = 5
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Modified Power Series Solutions and the
Basic Method of Frobenius

The partial sums of a power series solution about an ordinary point x0 of a differential equation

provide fairly accurate approximations to the equation’s solutions at any point x near x0 . This

is true even if relatively low-order partial sums are used (provided you are just interested in the

solutions at points very near x0 ). However, these power series typically converge slower and slower

as x moves away from x0 towards a singular point, with more and more terms then being needed

to obtain reasonably accurate partial sum approximations. As a result, the power series solutions

derived in the previous two chapters usually tell us very little about the solutions near singular points.

This is unfortunate because, in some applications, the behavior of the solutions near certain singular

points can be a rather important issue.

Fortunately, in many of these applications, the singular point in question is not that “bad” a

singular point. In these applications, the differential equation “is similar to” an easily solved Euler

equation (which we discussed in chapter 18), at least in some interval about that singular point.

This fact will allow us to modify the algebraic method discussed in the previous chapters so as to

obtain “modified” power series solutions about these points. The basic process for generating these

modified power series solutions is typically called the method of Frobenius, and is what we will

develop and use in this and the next two chapters.

By the way, we will only consider second-order homogeneous linear differential equations.

One can extend the discussion here to first- and higher-order equations, but the important examples

are second-order.

32.1 Euler Equations and Their Solutions

As already indicated, the Euler equations from chapter 18 will play an fundamental role in our

discussions and are, in fact, the simplest examples of the sort of equations of interest in this chapter.

Let us quickly review them and their solutions, and take a look at what happens to their solutions

about their singular points.

Recall that a standard second-order Euler equation is a differential equation that can be written

as

α0x2 y′′ + β0xy′ + γ0 y = 0

where α0 , β0 and γ0 are real constants with α0 = 0 . Recall, also, that the basic method for solving

such an equation begins with attempting a solution of the form y = xr where r is a constant to be

667
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determined. Plugging y = xr into the differential equation, we get

α0x2
[
xr
]′′ + β0x

[
xr
]′ + γ0

[
xr
] = 0

↪→ α0x2
[
r(r − 1)xr−2

]
+ β0x

[
rxr−1

]
+ γ0

[
xr
] = 0

↪→ xr
[
α0r(r − 1) + β0r + γ0

] = 0

↪→ α0r(r − 1) + β0r + γ0 = 0 .

The last equation above is the indicial equation, which we typically rewrite as

α0r2 + (β0 − α0)r + γ0 = 0 ,

and, from which, we can easily determine the possible values of r using basic algebra.

Generalizing slightly, we have the shifted Euler equation

α0(x − x0)
2 y′′ + β0(x − x0)y

′ + γ0 y = 0

where x0 , α0 , β0 and γ0 are real constants with α0 = 0 . Notice that x0 is the one and only

singular point of this equation. (Notice, also, that a standard Euler equation is a shifted Euler equation

with x0 = 0 .)

To solve this slight generalization of a standard Euler equation, use the obvious slight general-

ization of the basic method for solving a standard Euler equation. First set

y = (x − x0)
r ,

where r is a yet unknown constant. Then plug this into the differential equation, compute, and

simplify. Unsurprisingly, you end up with the corresponding indicial equation

α0r(r − 1) + β0r + γ0 = 0 ,

which you can rewrite as

α0r2 + (β0 − α0)r + γ0 = 0 ,

and then solve for r , just as with the standard Euler equation. And, as with a standard Euler equation,

there are then only three basic possibilities regarding the roots r1 and r2 to the indicial equation

and the corresponding solutions to the Euler equations:

1. The two roots can be two different real numbers, r1 = r2 .

In this case, the general solution to the differential equation is

y(x) = c1 y1(x) + c2 y2(x)

with, at least when x > x0 ,1

y1(x) = (x − x0)
r1 and y2(x) = (x − x0)

r2 .

Observe that, for j = 1 or j = 2 ,

lim
x→x+

0

∣∣y j (x)
∣∣ = lim

x→x0

|x − x0|r j =

⎧⎪⎪⎨⎪⎪⎩
0 if r j > 0

1 if r j = 0

+∞ if r j < 0

.

1 In all of these cases, the formulas and observations also hold when x < x0 , though we may wish to replace x − x0 with

|x − x0| to avoid minor issues with (x − x0)
r for certain values of r (such as r = 1/2 ).
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2. The two roots can be the same real number, r2 = r1 .

In this case, we can use reduction of order and find that the general solution to the

differential equation is (when x > x0 )

y(x) = c1 y1(x) + c2 y2(x)

with

y1(x) = (x − x0)
r1 and y2(x) = (x − x0)

r1 ln |x − x0| .

After recalling how ln |x − x0| behaves when x ≈ x0 , we see that

lim
x→x+

0

|y2(x)| = lim
x→x0

∣∣(x − x0)
r1 ln |x − x0|

∣∣ =
{

0 if ri > 0

+∞ if ri ≤ 0
.

3. Finally, the two roots can be complex conjugates of each other

r1 = λ+ iω and r2 = λ− iω with ω > 0 .

After recalling that

Xλ±iω = Xλ [cos(ω ln |X |) ± i sin(ω ln |X |)] for X > 0

(see the discussion of complex exponents in section 18.2), we find that the general solution

to the differential equation for x > x0 can be given by

y(x) = c1 y1(x) + c2 y2(x)

where y1 and y2 are the real-valued functions

y1(x) = (x − x0)
λ cos(ω ln |x − x0|)

and

y2(x) = (x − x0)
λ sin(ω ln |x − x0|) .

The behavior of these solutions as x → x0 is a bit more complicated. First observe that,

as X goes from 1 to 0 , ln |X | goes from 0 to −∞ , which means that sin(ω ln |X |) and

cos(ω ln |X |) then must oscillate infinitely many times between their maximum and minimum

values of 1 and −1 , as illustrated in figure 32.1a. So sin(ω ln |X |) and cos(ω ln |X |) are

bounded, but do not approach any single value as X → 0 . Taking into account how Xλ

behaves (and replacing X with x − x0 ), we see that

lim
x→x+

0

|yi (x)| = 0 if λ > 0 ,

and

lim
x→x+

0

|yi (x)| does not exist if λ ≤ 0 .

Notice that the behavior of these solutions as x → x0 depends strongly on the values of r1

and r2 . Notice, also, that you can rarely arbitrarily assign the initial values y(x0) and y′(x0) for

these solutions.

!�Example 32.1: Consider the shifted Euler equation

(x − 3)2 y′′ − 2y = 0 .
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(a) (b)

11

11

−1−1

XX

Figure 32.1: Graphs of (a) sin(ω ln |X |) , and (b) Xλ sin(ω ln |X |) (with ω = 10 and

λ = 11/10
)
.

If y = (x − 3)r for any constant r , then

(x − 3)2 y′′ − 2y = 0

↪→ (x − 3)2
[
(x − 3)r

]′′ − 2
[
(x − 3)r

] = 0

↪→ (x − 3)2r(r − 1)(x − 3)r−2 − 2(x − 3)r = 0

↪→ (x − 3)r [r(r − 1) − 2] = 0 .

Thus, for y = (x − 3)r to be a solution to our differential equation, r must satisfy the indicial

equation

r(r − 1) − 2 = 0 .

After rewriting this as

r2 − r − 2 = 0 ,

and factoring,

(r − 2)(r + 1) = 0 ,

we see that the two solutions to the indicial equation are r = 2 and r = −1 . Thus, the general

solution to our differential equation is

y = c1(x − 3)2 + c2(x − 3)−1 .

This has one term that vanishes as x → 3 and another that blows up as x → 3 . In particular,

we cannot insist that y(3) be any particular nonzero number, say, “ y(3) = 2 ”.

!�Example 32.2: Now consider

x2 y′′ + xy′ + y = 0 ,

which is a shifted Euler equation, but with “shift” x0 = 0 .

The indicial equation for this is

r(r − 1) + r + 1 = 0 ,
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which simplifies to

r2 + 1 = 0 .

So,

r = ±
√

−1 = ±i .

In other words, r = λ± iω with λ = 0 and ω = 1 . Consequently, the general solution to the

differential equation in this example is given by

y = c1x0 cos(1 ln |x |) + c2x0 sin(1 ln |x |) .

which we naturally would prefer to write more simply as

y = c1 cos(ln |x |) + c2 sin(ln |x |) .

Here, neither term vanishes or blows up. Instead, as x goes from 1 to 0 , we have ln |x | going

from 0 to −∞ . This means that the sine and cosine terms oscillate infinitely many times as x

goes from 1 to 0 , similar to the function illustrated in figure 32.1a. Again, there is no way we

can require that “ y(0) = 2 ”.

The “blowing up” or “vanishing” of solutions illustrated above is typical behavior of solutions

about the singular points of their differential equations. Sometimes it is important to know just how

the solutions to a differential equation behave near a singular point x0 . For example, if you know

a solution describes some process that does not blow up as x → x0 , then you know that those

solutions that do blow up are irrelevant to your problem (this will become very important when we

study boundary-value problems).

The tools we will develop in this chapter will yield “modified power series solutions” around

singular points for at least some differential equations. The behavior of the solutions near these

singular points can then be deduced from these modified power series. For which equations will

this analysis be appropriate? Before answering that, I must first tell you the difference between a

“regular” and an “irregular” singular point.

32.2 Regular and Irregular Singular Points (and the
Frobenius Radius of Convergence)

Basic Terminology

Assume x0 is singular point on the real line for some given homogeneous linear second-order

differential equation

ay′′ + by′ + cy = 0 . (32.1)

We will say that x0 is a regular singular point for this differential equation if and only if that

differential equation can be rewritten as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0 (32.2)

where α , β and γ are ‘suitable, well-behaved’ functions about x0 with α(x0) = 0 . The above

form will be called a quasi-Euler form about x0 for the given differential equation, and the shifted

Euler equation

(x − x0)
2α0 y′′ + (x − x0)β0 y′ + γ0 y = 0 (32.3a)



�

�

�

�

�

�

�

�

672 Modified Power Series Solutions and the Basic Method of Frobenius

where

α0 = α(x0) , β0 = β(x0) and γ0 = γ (x0) . (32.3b)

will be called the associated (shifted) Euler equation (about x0 ).

Precisely what we mean above by “ ‘suitable, well-behaved’ functions about x0 ” depends,

in practice, on the coefficients of the original differential equation. In general, it means that the

functions α , β and γ in equation (32.2) are all analytic at x0 . However, if the coefficients of the

original equation (the a , b and c in equation (32.1)) are rational functions, then we will be able to

further insist that the α , β and γ in the quasi-Euler form be polynomials.

It is quite possible that our differential equation cannot be written in quasi-Euler form about x0 .

Then we will say x0 is an irregular singular point for our differential equation. Thus, every singular

point on the real line for our differential equation is classified as being regular or irregular depending

on whether the differential equation can be rewritten in quasi-Euler form about that singular point.

While we are at it, let’s also define the Frobenius radius of analyticity about any point z0 for

our differential equation. It is simply the distance between z0 and the closest singular point zs other

than z0 , provided such a point exists. If no such zs exists, then the Frobenius radius of analyticity

is ∞ . The Frobenius radius of analyticity will play almost the same role as played by the radius of

analyticity in the previous two chapters. In fact, it is the radius of analyticity if z0 happens to be an

ordinary point.

!�Example 32.3 (Bessel equations): Let ν be any positive real constant. Bessel’s equation of

order ν is the differential equation 2

y′′ + 1

x
y′ +

[
1 −

(
ν

x

)2
]

y = 0 .

The coefficients of this,

a(x) = 1 , b(x) = 1

x
and c(x) = 1 −

(
ν

x

)2

= x2 − ν2

x2
,

are rational functions. Multiplying through by x2 then gives us

x2 y′′ + xy′ +
[
x2 − ν2

]
y = 0 . (32.4)

Clearly, x0 = 0 is the one and only singular point for this differential equation. This, in turn,

means that the Frobenius radius of analyticity about x0 = 0 is ∞ (though the radius of analyticity,

as defined in chapter 30, is 0 since x0 = 0 is a singular point.)

Now observe that the last differential equation is

(x − 0)2α(x)y′′ + (x − 0)β(x)y′ + γ (x)y = 0 . (32.5a)

where α , β and γ are the simple polynomials

α(x) = 1 , β(x) = 1 and γ (x) = x2 − ν2 , (32.5b)

which are certainly analytic about x0 = 0 (and every other point on the complex plane). Moreover,

since

α(0) = 1 = 0 , β(0) = 1 and γ (0) = −ν2 ,

we now have that:

2 Bessel’s equations and their solutions often arise in two-dimensional problems involving circular objects.
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1. The Bessel equation of order ν can be written in quasi-Euler form about x0 = 0 .

2. The singular point x0 = 0 is a regular singular point.

and

3. The associated Euler equation about x0 = 0 is

(x − 0)2 · 1y′′ + (x − 0) · 1y′ − ν2 y = 0 ,

which, of course, is normally written

x2 y′′ + xy′ − ν2 y = 0 .

Two quick notes before going on:

1. Often, the point of interest is x0 = 0 , in which case we will write equation (32.2) more

simply as

x2α(x)y′′ + xβ(x)y′ + γ (x)y = 0 (32.6)

with the associated Euler equation being

x2α0 y′′ + xβ0 y′ + γ0 y = 0 (32.7a)

where

α0 = α(0) , β0 = β(0) and γ0 = γ (0) . (32.7b)

2. In fact, any singular point on the complex plane can be classified as regular or irregular.

However, this won’t be particularly relevant to us. Our interest will only be in whether given

singular points on the real line are regular or not.

Testing for Regularity

As illustrated in our last example, if the coefficients in our original differential equation are relatively

simple rational functions, then it can be relatively straightforward to show that a given singular point

x0 is or is not regular by seeing if we can or cannot rewrite the equation in quasi-Euler form about

x0 . An advantage of deriving this quasi-Euler form (if possible) is that we will want this quasi-Euler

form in solving our differential equation. However, there are possible difficulties. If we cannot

rewrite our equation in quasi-Euler form, then we may be left with the question of whether x0 truly

is an irregular singular point, or whether we just weren’t clever enough to get the equation into

quasi-Euler form. Also, if the coefficients in our original equation are not so simple, then the process

of attempting to convert it to quasi-Euler form may be quite challenging.

A useful test for regularity is easily derived by first assuming that x0 is a regular singular point

for

a(x)y′′ + b(x)y′ + c(x)y = 0 . (32.8)

By definition, this means that this differential equation can be rewritten as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0 (32.9)

where α , β and γ are functions analytic at x0 with α(x0) = 0 . Dividing each of these two

equations by its first coefficient converts our differential equation, respectively, to the two forms

y′′ + b(x)

a(x)
y′ + c(x)

a(x)
y = 0
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and

y′′ + β(x)

(x − x0)α(x)
y′ + γ (x)

(x − x0)
2α(x)

y = 0 .

But these last two equations describe the same differential equation, and have the same first coeffi-

cients. Clearly, the other coefficients must also be the same, giving us

b(x)

a(x)
= β(x)

(x − x0)α(x)
and

c(x)

a(x)
= γ (x)

(x − x0)
2α(x)

.

Equivalently,

(x − x0)
b(x)

a(x)
= β(x)

α(x)
and (x − x0)

2 c(x)

a(x)
= γ (x)

α(x)
.

From this and the fact that α , β and γ are analytic at x0 with α(x0) = 0 we get that the two

limits

lim
x→x0

(x − x0)
b(x)

a(x)
= lim

x→x0

β(x)

α(x)
= β(x0)

α(x0)

and

lim
x→x0

(x − x0)
2 c(x)

a(x)
= lim

x→x0

γ (x)

α(x)
= γ (x0)

α(x0)

are finite.

So, x0 being a regular singular point assures us that the above limits are finite. Consequently,

if those limits are not finite, then x0 cannot be a regular singular point for our differential equation.

That gives us

Lemma 32.1 (test for irregularity)

Assume x0 is a singular point on the real line for

a(x)y′′ + b(x)y′ + c(x)y = 0 .

If either of the two limits

lim
x→x0

(x − x0)
b(x)

a(x)
and lim

x→x0

(x − x0)
2 c(x)

a(x)

is not finite, then x0 is an irregular singular point for the differential equation.

This lemma is just a test for irregularity. It can be expanded to a more complete test if we

make mild restrictions on the coefficients of the original differential equation. In particular, using

properties of polynomials and rational functions, we can verify the following:

Theorem 32.2 (testing for regular singular points (ver.1))

Assume x0 is a singular point on the real line for

a(x)y′′ + b(x)y′ + c(x)y = 0

where a , b and c are rational functions. Then x0 is a regular singular point for this differential

equation if and only if the two limits

lim
x→x0

(x − x0)
b(x)

a(x)
and lim

x→x0

(x − x0)
2 c(x)

a(x)
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are both finite values. Moreover, if x0 is a regular singular point for the differential equation, then

this differential equation can be written in quasi-Euler form

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are polynomials with α(x0) = 0 .

The full proof of this (along with a similar theorem applicable when the coefficients are merely

quotients of analytic functions) is discussed in an appendix, section 32.7.

!�Example 32.4: Consider the differential equation

y′′ + 1

x2
y′ +

[
1 − 1

x2

]
y = 0 .

Clearly, x0 = 0 is a singular point for this equation. Writing out the limits given in the above

theorem (with x0 = 0 ) yields

lim
x→0

(x − 0)
b(x)

a(x)
= lim

x→ x · x−2

1
= lim

x→0

1

x

and

lim
x→0

(x − 0)2
c(x)

a(x)
= lim

x→ x2 · 1 − x−2

1
= lim

x→0

[
x2 − 1

]
,

The first limit is certainly not finite. So our test for regularity tells us that x0 = 0 is an irregular

singular point for this differential equation.

!�Example 32.5: Consider

2xy′′ − 4y′ − y = 0 .

Again, x0 = 0 is clearly the only singular point. Now,

lim
x→0

(x − 0)
b(x)

a(x)
= lim

x→0
x · −4

2x
= −2

and

lim
x→0

(x − 0)2
c(x)

a(x)
= lim

x→0
x2 · −1

2x
= 0 ,

both of which are finite. So x0 = 0 is a regular singular point for our equation, and the given

differential equation can be written in quasi-Euler form about 0 . In fact, that form is obtained

by simply multiplying the original differential equation by x ,

2x2 y′′ − 4xy′ − xy = 0 .



�

�

�

�

�

�

�

�

676 Modified Power Series Solutions and the Basic Method of Frobenius

32.3 The (Basic) Method of Frobenius
Motivation and Preliminary Notes

Let’s suppose we have a second-order differential equation with x0 as a regular singular point. Then,

as we just discussed, this differential equation can be written as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are analytic at x0 with α(x0) = 0 . By continuity, when x ≈ x0 , we have

α(x) ≈ α0 , β(x) ≈ β0 and γ (x) ≈ γ0

where

α0 = α(x0) , β0 = β(x0) and γ0 = γ (x0) .

It should then seem reasonable that any solution y = y(x) to

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

can be approximated, at least when x ≈ x0 , by a corresponding solution to the associated shifted

Euler equation

(x − x0)
2α0 y′′ + (x − x0)β0 y′ + γ0 y = 0 .

And since some solutions to this shifted Euler equation are of the form a0(x − x0)
r where a0 is an

arbitrary constant and r is a solution to the corresponding indicial equation,

α0r(r − 1) + β0r + γ0 = 0 ,

it seems reasonable to expect at least some solutions to our original differential equation to be

approximated by this a0(x − x0)
r ,

y(x) ≈ a0(x − x0)
r at least when x ≈ x0 .

Now, this is equivalent to saying

y(x)

(x − x0)
r

≈ a0 when x ≈ x0 ,

which is more precisely stated as

lim
x→x0

y(x)

(x − x0)
r

= a0 . (32.10)

At this point, there are a number of ways we might ‘guess’ at solutions satisfying the last

approximation. Let us try a trick similar to one we’ve used before; namely, let’s assume that y is

the known approximate solution (x − x0)
r multiplied by some yet unknown function a(x) ,

y(x) = (x − x0)
r a(x) .

To satisfy equation (32.10), we must have

a(x0) = lim
x→x0

a(x) = lim
x→x0

y(x)

(x − x0)
r

= a0 ,
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telling us that a(x) is reasonably well-behaved near x0 , perhaps even analytic. Well, let’s hope it

is analytic, because that means we can express a(x) as a power series about x0 with the arbitrary

constant a0 as the constant term,

a(x) =
∞∑

k=0

ak(x − x0)
k .

Then, with luck and skill, we might be able to use the methods developed in the previous chapters

to find the ak’s in terms of a0 .

That is the starting point for what follows. We will assume a solution of the form

y(x) = (x − x0)
r

∞∑
k=0

ak(x − x0)
k

where r and the ak’s are constants to be determined, with a0 being arbitrary. This will yield the

“modified power series” solutions alluded to in the title of this chapter.

In the next subsection, we will describe a series of steps, generally called the (basic) method

of Frobenius, for finding such solutions. You will discover that much of it is very similar to the

algebraic method for finding power series solutions in chapter 30.

Before we start that, however, there are a few things worth mentioning about this method:

1. We will see that the method of Frobenius always yields at least one solution of the form

y(x) = (x − x0)
r

∞∑
k=0

ak(x − x0)
k

where r is a solution to the appropriate indicial equation. If the indicial equation for the

corresponding Euler equation

(x − x0)
2α0 y′′ + (x − x0)β0 y′ + γ0 y = 0

has two distinct solutions, then we will see that the method often (but not always) leads to an

independent pair of such solutions.

2. If, however, that indicial equation has only one solution r , then the fact that the corresponding

shifted Euler equation has a ‘second solution’ in the form

(x − x0)
r ln |x − x0|

may lead you to suspect that a ‘second solution’ to our original equation is of the form

(x − x0)
r ln |x − x0|

∞∑
k=0

ak(x − x0)
k .

That turns out to be almost the case.

Just what can be done when the basic Frobenius method does not yield an independent pair of

solutions will be discussed in the next chapter.
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The (Basic) Method of Frobenius

Suppose we wish to find the solutions about some regular singular point x0 to some second-order

homogeneous linear differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

with a(x) , b(x) , and c(x) being rational functions.3 In particular, let us seek solutions to Bessel’s

equation of order 1/2 ,

y′′ + 1

x
y′ +

[
1 − 1

4x2

]
y = 0 (32.11)

near the regular singular point x0 = 0 .

As with the algebraic method for finding power series solutions, there are two preliminary

steps:

Pre-Step 1. If not already specified, choose the regular singular point x0 .

For our example, we choose x0 = 0 , which we know is the only regular singular

point from the discussion in the previous section.

Pre-Step 2. Get the differential equation into quasi-Euler form; that is, into the form

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0 (32.12)

where α , β and γ are polynomials, with α(x0) = 0 , and with no factors shared by all

three.4

To get the given differential equation into the form desired, we multiply equation

(32.11) by 4x2 . That gives us the differential equation

4x2 y′′ + 4xy′ + [4x2 − 1]y = 0 . (32.13)

(Yes, we could have just multiplied by x2 , but getting rid of any fractions will

simplify computation.)

Now for the basic method of Frobenius:

Step 1. (a) Assume a solution of the form

y = y(x) = (x − x0)
r

∞∑
k=0

ak(x − x0)
k (32.14a)

with a0 being an arbitrary nonzero constant.5,6

(b) Simplify this formula for the following computations by bringing the (x − x0)
r factor

into the summation,

y = y(x) =
∞∑

k=0

ak(x − x0)
k+r . (32.14b)

3 The “Frobenius method” for the more general equations is developed in chapter 34.
4 For computations, it is not necessary to explicitly factor out x − x0 from the coefficients of the differential equation, only

that the coefficients be polynomials that could be factored as in equation (32.12). Using this form will slightly simplify

bookkeeping, and will be convenient for discussions later.
5 Insisting that a0 = 0 will be important in determining the possible values of r .
6 This procedure is valid whether or not x − x0 is positive or negative. However, a few readers may have concerns about

(x − x0)
r being imaginary if x < x0 and r is, say, 1/2 . If you are one of those readers, go ahead and assume x > x0

for now, and later read the short discussion of solutions on intervals with x < x0 on page 688.
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Step 2. Compute the corresponding modified power series for y′ and y′′ from the assumed series

for y by differentiating “term-by-term”.7 This time, you cannot drop the “k = 0” term in

the summations because this term is not necessarily a constant.

Since we’ve already decided x0 = 0 , we assume

y = y(x) = xr

∞∑
k=0

ak xk =
∞∑

k=0

ak xk+r (32.15)

with a0 = 0 . Differentiating this term-by-term, we see that

y′ = d

dx

∞∑
k=0

ak xk+r

=
∞∑

k=0

d

dx

[
ak xk+r

]
=

∞∑
k=0

ak(k + r)xk+r−1

and

y′′ = d

dx

∞∑
k=0

ak(k + r)xk+r−1

=
∞∑

k=0

d

dx

[
ak(k + r)xk+r−1

]
=

∞∑
k=0

ak(k + r)(k + r − 1)xk+r−2 .

Step 3. Plug these series for y , y′ , and y′′ back into the differential equation, “multiply things

out”, and divide out the (x − x0)
r to get the left side of your equation in the form of the sum

of a few power series about x0 .8,9

Combining the above series formulas for y , y′ and y′′ with our differential

equation (equation (32.13)), we get

0 = 4x2 y′′ + 4xy′ + [4x2 − 1]y

= 4x2
∞∑

k=0

ak(k + r)(k + r − 1)xk+r−2 + 4x

∞∑
k=0

ak(k + r)xk+r−1

+ [4x2 − 1]
∞∑

k=0

ak xk+r

= 4x2
∞∑

k=0

ak(k + r)(k + r − 1)xk+r−2 + 4x

∞∑
k=0

ak(k + r)xk+r−1

+ 4x2
∞∑

k=0

ak xk+r − 1

∞∑
k=0

ak xk+r

7 If you have any qualms about “term-by-term” differentiation here, see exercise 32.6 at the end of the chapter.
8 Dividing out the (x − x0)

r isn’t necessary, but it simplifies the expressions slightly and reduces the chances of silly errors

later.
9 You may want to turn your paper sideways for more room!
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=
∞∑

k=0

ak4(k + r)(k + r − 1)xk+r +
∞∑

k=0

ak4(k + r)xk+r

+
∞∑

k=0

ak4xk+2+r +
∞∑

k=0

ak(−1)xk+r .

Dividing out the xr from each term then yields

0 =
∞∑

k=0

ak4(k + r)(k + r − 1)xk +
∞∑

k=0

ak4(k + r)xk

+
∞∑

k=0

ak4xk+2 +
∞∑

k=0

ak(−1)xk .

Step 4. For each series in your last equation, do a change of index so that each series looks like

∞∑
n=something

[
something not involving x

]
(x − x0)

n .

Be sure to appropriately adjust the lower limit in each series.

In all but the third series in the example, the change of index is trivial, n = k .

In the third series, we will set n = k + 2 (equivalently, n − 2 = k ). This

means, in the third series, replacing k with n − 2 , and replacing k = 0 with

n = 0 + 2 = 2 :

0 =
∞∑

k=0

ak4(k + r)(k + r − 1)xk

︸ ︷︷ ︸
n = k

+
∞∑

k=0

ak4(k + r)xk

︸ ︷︷ ︸
n = k

+
∞∑

k=0

ak4xk+2

︸ ︷︷ ︸
n = k+2

+
∞∑

k=0

ak(−1)xk

︸ ︷︷ ︸
n = k

=
∞∑

n=0

an4(n + r)(n + r − 1)xn +
∞∑

n=0

an4(n + r)xn

+
∞∑

n=2

an−24xn +
∞∑

n=0

an(−1)xn .

Step 5. Convert the sum of series in your last equation into one big series. The first few terms will

probably have to be written separately. Simplify what can be simplified.

Since one of the series in the last equation begins with n = 2 , we need to

separate out the terms corresponding to n = 0 and n = 1 in the other series
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before combining the series:

0 =
∞∑

n=0

an4(n + r)(n + r − 1)xn +
∞∑

n=0

an4(n + r)xn

+
∞∑

n=2

an−24xn +
∞∑

n=0

an(−1)xn

=
[

a0 4(0 + r)(0 + r − 1)︸ ︷︷ ︸
4r(r−1)

x0 + a1 4(1 + r)(1 + r − 1)︸ ︷︷ ︸
4(1+r)r

x1

+
∞∑

n=2

an4(n + r)(n + r − 1)xn

]

+
[

a0 4(0 + r)︸ ︷︷ ︸
4r

x0 + a1 4(1 + r)︸ ︷︷ ︸
4(1+r)

x1 +
∞∑

n=2

an4(n + r)xn

]

+
∞∑

n=2

an−24xn +
[

− a0x0 − a1x1 +
∞∑

n=2

an(−1)xn

]

= a0

[
4r(r − 1) + 4r − 1︸ ︷︷ ︸

4r2 − 4r + 4r−1

]
x0 + a1

[
4(1 + r)r + 4(1 + r) − 1︸ ︷︷ ︸

4r + 4r2 + 4 + 4r − 1

]
x1

+
∞∑

n=2

[
an4(n + r)(n + r − 1) + an4(n + r) + an−24 + an(−1)︸ ︷︷ ︸

an [4(n+r)(n+r−1) + 4(n+r) − 1] + 4an−2

]
xn

= a0

[
4r2 − 1

]
x0 + a1

[
4r2 + 8r + 3

]
x1

+
∞∑

n=2

[
an

[
4(n + r)(n + r) − 1

] + 4an−2

]
xn .

So our differential equation reduces to

a0

[
4r2 − 1

]
x0 + a1

[
4r2 + 8r + 3

]
x1

+
∞∑

n=2

[
an

[
4(n + r)2 − 1

] + 4an−2

]
xn = 0 .

(32.16)

Step 6. The first term in the last equation just derived will be of the form10

a0

[
formula of r

]
(x − x0)

0 .

Since each term in the series must vanish, we must have

a0

[
formula of r

] = 0 .

10 If you did not originally get the differential equation into quasi-Euler form, the exponent on (x − x0) might not be zero.

That’s not important; the coefficient still must be zero.
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Moreover, since a0 = 0 (by assumption), the above must reduce to

formula of r = 0 .

This is the indicial equation for the differential equation. It will be a quadratic equation (we’ll

see why later). Solve this equation for r . You will get two solutions (sometimes called either

the exponents of the solution or the exponents of the singularity). Denote them by r1 and

r2 . If the exponents are real (which is common in applications), label the exponents so that

r1 ≥ r2 . If the exponents are not real, then it does not matter which is labeled as r1 .11

In our example, the first term in the “big series” is the first term in equation (32.16),

a0

[
4r2 − 1

]
x0 .

Since this must be zero (and a0 = 0 by assumption) the indicial equation is

4r2 − 1 = 0 . (32.17)

Thus,

r = ±
√

1

4
= ± 1

2
.

Following the convention given above (that r1 ≥ r2 ),

r1 = 1

2
and r2 = − 1

2
.

Step 7. Using r1 (the largest r if the exponents are real):

(a) Plug r1 into the last series equation (and simplify, if possible). This will give you an

equation of the form

∞∑
n=n0

[
nth formula of a j ’s

]
(x − x0)

n = 0 .

Since each term must vanish, we must have

nth formula of a j ’s = 0 for n0 ≤ n .

(b) Solve this last set of equations for12

ahighest index = formula of n and lower indexed a j ’s .

A few of these equations may need to be treated separately, but you will also obtain

a relatively simple formula that holds for all indices above some fixed value. This

formula is the recursion formula for computing each coefficient an from the previously

computed coefficients.

11 We are assuming the coefficients of our differential equation— α , β and γ — are real-valued functions on the real line. In

the very unlikely case they are not, then a more general convention should be used: If the solutions to the indicial equation

differ by an integer, then label them so that r1 − r2 ≥ 0 . Otherwise, it does not matter which you call r1 and which you

call r2 . The reason for this convention will become apparent later (in section 32.5) after we further discuss the formulas

arising from the Frobenius method.
12 If you did as suggested earlier and put the differential equation into quasi-Euler form, then n will be the “highest index”

in this equation.
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(c) (Optional) To simplify things just a little, do another change of indices so that the

recursion formula just derived is rewritten as

ak = formula of k and lower-indexed coefficients .

Letting r = r1 = 1/2 in equation (32.16) yields

0 = a0

[
4r2 − 1

]
x0 + a1

[
4r2 + 8r + 3

]
x1

+
∞∑

n=2

[
an

[
4(n + r)2 − 1

] + 4an−2

]
xn

= a0

[
4
(

1

2

)2
− 1

]
x0 + a1

[
4
(

1

2

)2
+ 8

(
1

2

)
+ 3

]
x1

+
∞∑

n=2

[
an

[
4
(

n + 1

2

)2
− 1

]
+ 4an−2

]
xn

= a0[0]x0 + a18x1 +
∞∑

n=2

[
an

[
4n2 + 4n

]
+ 4an−2

]
xn .

The first term vanishes (as it should since r = 1/2 satisfies the indicial equation,

which came from making the first term vanish). Doing a little more simple

algebra, we see that, with r = 1/2 , equation (32.16) reduces to

0a0x0 + 8a1x1 +
∞∑

n=2

4
[
n(n + 1)an + an−2

]
xn = 0 . (32.18)

Since the individual terms in this series must vanish, we have

0a0 = 0 , 8a1 = 0

and

n(n + 1)an + an−2 = 0 for n = 2, 3, 4 . . . .

Solving for an gives us the recursion formula

an = −1

n(n + 1)
an−2 for n = 2, 3, 4 . . . .

Using the trivial change of index, k = n , this is

ak = −1

k(k + 1)
ak−2 for k = 2, 3, 4 . . . . (32.19)

(d) Use the recursion formula (and any corresponding formulas for the lower-order terms)

to find all the ak’s in terms of a0 and, possibly, one other am . Look for patterns!

From the first two terms in equation (32.18),

0a0 = 0 �⇒ a0 is arbitrary.

8a1 = 0 �⇒ a1 = 0 .
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Using these values and recursion formula (32.19) with k = 2, 3, 4, . . . (and

looking for patterns):

a2 = −1

2(2 + 1)
a2−2 = −1

2 · 3
a0 = −1

3 · 2
a0 ,

a3 = −1

3(3 + 1)
a3−2 = −1

3 · 4
a1 = −1

3 · 4
· 0 = 0 ,

a4 = −1

4(4 + 1)
a4−2 = −1

4 · 5
a2 = −1

5 · 4
· −1

3 · 2
a0 = (−1)2

5! a0 ,

a5 = −1

5(5 + 1)
a5−2 = −1

5 · 6
· 0 = 0 ,

a6 = −1

6(6 + 1)
a6−2 = −1

6 · 7
a4 = −1

7 · 6
· (−1)2

5! a0 = (−1)3

7! a0 ,

...

The patterns should be obvious here:

ak = 0 for k = 1, 3, 5, 7, . . . ,

and

ak = (−1)k/2

(k + 1)! a0 for k = 2, 4, 6, 8, . . . .

Using k = 2m , this can be written more conveniently as

a2m = (−1)m
a0

(2m + 1)! for m = 1, 2, 3, 4, . . . .

Moreover, this last equation reduces to the trivially true statement “ a0 = a0 ”

if m = 0 . So, in fact, it gives all the even-indexed coefficients,

a2m = (−1)m
a0

(2m + 1)! for m = 0, 1, 2, 3, 4, . . . .

(e) Using r = r1 along with the formulas just derived for the coefficients, write out the

resulting series for y . Try to simplify it and factor out the arbitrary constant(s).

Plugging r = 1/2 and the formulas just derived for the ak’s into the formula

originally assumed for y (equation (32.15) on page 679), we get

y = xr

∞∑
k=0

ak xk

= xr

[ ∞∑
k=0
k odd

ak xk +
∞∑

k=0
k even

ak xk

]

= x
1/2

[ ∞∑
k=0
k odd

0 · xk +
∞∑

m=0

(−1)m
a0

(2m + 1)! x2m

]

= x
1/2

[
0 + a0

∞∑
m=0

(−1)m
1

(2m + 1)! x2m

]
.
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So one set of solutions to Bessel’s equation of order 1/2 (equation (32.11) on

page 678) is given by

y = a0 x
1/2

∞∑
m=0

(−1)m

(2m + 1)! x2m (32.20)

with a0 being an arbitrary constant.

Step 8. If r2 = r1 , skip this step and just go to the next. If the exponents are complex (which

is unlikely), see Dealing with Complex Exponents starting on page 698. But if the indical

equation has two distinct real solutions, now try to repeat step 7 with the other exponent, r2 ,

replacing r1 .

Before starting, however, you should be warned that, in attempting to redo step 7 with

r = r2 , one of three things will happen:

i. With luck, this step will lead to a solution of the form

(x − x0)
r2

∞∑
k=0

ak(x − x0)
k

with a0 being the only arbitrary constant.

ii. This step can also lead to a series having two arbitrary constants, a0 and one other

coefficient aM (our example will illustrate this). If you keep this second arbitrary

constant, you will then end up with two particular series solutions — one multiplied

by a0 and one multiplied by aM . However, it is easily shown (see exercise 32.8)

that the one multiplied by aM is simply the series solution already obtained at the

end of the previous step. Thus, in keeping aM arbitrary, you will rederive the one

solution you already have. Why bother? Go ahead and set aM = 0 and continue. It

will save you a lot of needless work.

iii. Finally, this step can lead to a contradiction. More precisely, the recursion formula

might “blow up” for one of the coefficients. This tells you that there is no solution of

the form

(x − x0)
r2

∞∑
k=0

ak(x − x0)
k with a0 = 0 .

If this happens, make note of it, and skip to the next step.

(Why we have these three possibilities will be further discussed in Problems Possibly Arising

in Step 8 starting on page 693.)

Letting r = r2 = −1/2 in equation (32.16) yields

0 = a0

[
4r2 − 1

]
x0 + a1

[
4r2 + 8r + 3

]
x1

+
∞∑

n=2

[
an

[
4(n + r)2 − 1

] + 4an−2

]
xn
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= a0

[
4
(
− 1

2

)2

− 1

]
x0 + a1

[
4
(
− 1

2

)2

+ 8
(
− 1

2

)
+ 3

]
x1

+
∞∑

n=2

[
an

[
4
(

n − 1

2

)2
− 1

]
+ 4an−2

]
xn

= a00x0 + a10x1 +
∞∑

n=2

[
an

[
4n2 − 4n

]
+ 4an−2

]
xn .

That is,

0a0x0 + 0a1x1 +
∞∑

n=2

4
[
ann(n − 1) + an−2

]
xn = 0 ,

which means that

0a0 = 0 , 0a1 = 0 (32.21a)

and

ann(n − 1) + an−2 = 0 for n = 2, 3, 4, . . . . (32.21b)

The first two equations hold for any values of a0 and a1 . So, strictly speaking,

both a0 and a1 are arbitrary constants. But, as noted above, keeping a1 arbitrary

in these calculations will simply lead to solution (32.20) with a1 replacing a0 .

Since we don’t need to rederive this solution, we will simplify our work by setting

a1 = 0 .

From equation (32.21b) we get

an = −1

n(n − 1)
an−2 for n = 2, 3, 4, . . . .

That is,

ak = −1

k(k − 1)
ak−2 for k = 2, 3, 4, . . . . (32.22)

This is the recursion formula for finding all the other ak’s in terms of a0 (which

is arbitrary) and a0 (which we’ve set to 0 ).

Why don’t you finish these computations as an exercise? You should have no

trouble in obtaining

y = a0x−1/2

∞∑
m=0

(−1)m

(2m)! x2m . (32.23)

?�Exercise 32.1: Do the computations left “as an exercise” in the last statement.

Step 9. If the last step yielded a series solution, then the general solution to the original differential

equation is the linear combination of the two series obtained at the end of steps 7 and 8. Write

down this general solution (using different symbols for the two different arbitrary constants!).

If step 8 did not yield a new series solution, then at least write down the one solution previously

derived, noting that a second solution is still needed for the general solution to the differential

equation. (Finding that second solution will be discussed in the next chapter.)
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We are in luck. In the last step, we obtained series solution (32.23). Combining

that with solution (32.20) (and renaming the two arbitrary constants as c1 and

c2 ), gives us the general solution

y(x) = c1 x
1/2

∞∑
m=0

(−1)m

(2m + 1)! x
2m + c2 x−1/2

∞∑
m=0

(−1)m

(2m)! x2m ,

for our original differential equation (equation (32.11) — Bessel’s equation of

order 1/2 ).

Last Step. See if you recognize either of the series as the series for some well-known function.

(This is possible occasionally, but not often.)

Our luck continues! Looking at the last formula above for y and recalling the

power series for the sine and cosine, we see that

y(x) = c1 y1(x) + c2 y2(x)

where

y2(x) = x−1/2

∞∑
m=0

(−1)m

(2m)! x2m = x−1/2 sin(x)

and

y1(x) = x
1/2

∞∑
m=0

(−1)m

(2m + 1)! x2m

= x
1/2x−1

∞∑
m=0

(−1)m

(2m + 1)! x2m+1 = x−1/2 cos(x) .

That is, we can also write the general solution to Bessel’s equation of order 1/2 as

y = c1
cos(x)√

x
+ c2

sin(x)√
x

. (32.24)

“First” and “Second” Solutions

For purposes of discussion, it is convenient to refer to the first solution found in the basic method of

Frobenius,

y(x) = (x − x0)
r1

∞∑
k=0

ak(x − x0)
k ,

as the first solution. If we then pick a particular nonzero value for a0 , then we have a first particular

solution. In the above, our first solution was

y(x) = a0 x
1/2

∞∑
m=0

(−1)m

(2m + 1)! x2m ,

Taking a0 = 1 , we then have a first particular solution

y1(x) = x
1/2

∞∑
m=0

(−1)m

(2m + 1)! x2m .
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Naturally, if we also obtain a solution corresponding to r2 in step 8,

y(x) = (x − x0)
r2

∞∑
k=0

ak(x − x0)
k ,

then we will refer to that as our second solution, with a second particular solution being this with a

specific nonzero value chosen for a0 and any specific value chosen for any other arbitrary constant.

For example, in illustrating the basic method of Frobenius, we obtained

y(x) = a0x−1/2

∞∑
m=0

(−1)m

(2m)! x2m + a1x−1/2

∞∑
m=0

(−1)m

(2m + 1)! x2m+1

as our second solution. Choosing a0 = 1 and a1 = 0 , we get the second particular solution

y2(x) = x−1/2

∞∑
m=0

(−1)m

(2m)! x2m .

While we are at it, let us agree that, for the rest of this chapter, x0 always denotes a regular

singular point for some differential equation of interest, and that r1 and r2 always denote the

corresponding exponents; that is, the solutions to the corresponding indicial equation. Let us further

agree that these exponents are indexed according to the convention given in the basic Frobenius,

with r1 ≥ r2 if they are real.

32.4 Basic Notes on Using the Frobenius Method
The Obvious

One thing should be obvious: The method we’ve just outlined is even longer and more tedious than

the algebraic method used in chapter 30 to find power series solutions to similar equations about

ordinary points. On the other hand, much of this method is based on that algebraic method, which,

by now, you have surely mastered.

Naturally, all the ‘practical advice’ given regarding the algebraic method in chapter 30 still

holds, including the recommendation that you use

Y (X) = y(x) with X = x − x0

to simplify your calculations when x0 = 0 .

But there are a number of other things you should be aware of:

Solutions on Intervals with x < x0

On an interval with x < x0 , (x − x0)
r might be complex-valued (or even ambiguous) if r is not

an integer. For example,

(x − x0)
1/2 = (− |x − x0|)1/2 = (−1)

1/2 |x − x0|1/2 = ±i |x − x0|1/2 .

More generally, we will have

(x − x0)
r = (− |x − x0|)r = (−1)r |x − x0|r when x < x0 .
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But this is not a significant issue because (−1)r can be viewed as a constant (possibly complex)

and can be divided out of the final formula (or incorporated in the arbitrary constants). Thus, in our

final formulas for y(x) , we can replace

(x − x0)
r with |x − x0|r

to avoid having any explicitly complex-valued expressions (at least when r is not complex). Keep

in mind that there is no reason to do this if r is an integer.

Convergence of the Series

It probably won’t surprise you to learn that the Frobenius radius of analyticity serves as a lower bound

on the radius of convergence for the power series found in the Frobenius method. To be precise, we

have the following theorem:

Theorem 32.3

Let x0 be a regular singular point for some second-order homogeneous linear differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

and let

y(x) = |x − x0|r
∞∑

k=0

ak(x − x0)
k

be a modified power series solution to the differential equation found by the basic method of Frobe-

nius. Then the radius of convergence for
∑∞

k=0 ak(x − x0)
k is at least equal to the Frobenius radius

of convergence about x0 for this differential equation.

We will verify this claim in chapter 34. For now, let us simply note that this theorem assures

us that the given solution y is valid at least on the intervals

(x0 − R, x0) and (x0, x0 + R)

where R is that Frobenius radius of convergence. Whether or not we can include the point x0

depends on the value of the exponent r .

!�Example 32.6: To illustrate the Frobenius method, we found modified power series solutions

about x0 = 0

y1(x) = x
1/2

∞∑
m=0

(−1)m

(2m + 1)! x2m and y2(x) = x−1/2

∞∑
m=0

(−1)m

(2m)! x2m

for Bessel’s equation of order 1/2 ,

y′′ + 1

x
y′ +

[
1 − 1

4x2

]
y = 0 .

Since there are no singular points for this differential equation other than x0 = 0 , the Frobenius

radius of convergence for this differential equation about x0 = 0 is R = ∞ . That means the

power series in the above formulas for y1 and y2 converge everywhere.

However, the x1/2 and x−1/2 factors multiplying these power series are not “well behaved”

at x0 = 0 — neither is differentiable there, and one becomes infinite as x → 0 . So, the above

formulas for y1 and y2 are valid only on intervals not containing x = 0 , the largest of which
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are (0,∞) and (−∞, 0) . Of course, on (−∞, 0) the square roots yield imaginary values, and

we would prefer using the solutions

y1(x) = |x |1/2
∞∑

m=0

(−1)m

(2m + 1)! x2m and y2(x) = |x |−1/2

∞∑
m=0

(−1)m

(2m)! x2m .

Variations of the Method

Naturally, there are several variations of “the basic method of Frobenius”. The one just given is

merely one the author finds convenient for initial discussion.

One variation you may want to consider is to find particular solutions without arbitrary constants

by setting a0 = 1 . That is, in step 1, assume

y(x) = (x − x0)
r

∞∑
k=0

ak(x − x0)
k with a0 = 1 .

Assuming a0 is 1 , instead of an arbitrary nonzero constant, leads to a first particular solution

y1(x) = (x − x0)
r1

∞∑
k=0

ak(x − x0)
k with a0 = 1 .

With a little thought, you will realize that this is exactly the same as you would have obtained at the

end of step 7, only not multiplied by an arbitrary constant. In particular, had we done this with the

Bessel’s equation used to illustrate the method, we would have obtained

y1(x) = x
1/2

∞∑
m=0

(−1)m

(2m + 1)! x2m

instead of formula (32.20) on page 685.

If r2 = r1 , then, with luck, doing step 8 with a0 = 1 will yield a second particular solution

y2(x) = (x − x0)
r2

∞∑
k=0

ak(x − x0)
k with a0 = 1 .

In particular, doing this with the illustrating example would have yielded

y2(x) = x−1/2

∞∑
m=0

(−1)m

(2m)! x2m ,

instead of formula (32.23) on page 686.

Assuming the second particular solution can be found, this variant of the method yields a pair

of particular solutions {y1, y2} that, because r1 = r1 , is easily seen to be linearly independent over

any interval on which the formulas are valid. Thus,

y(x) = c1 y1(x) + c2 y2(x)

is the general solution to the differential equation over this interval.
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Using the Method When x0 is an Ordinary Point

It should be noted that we can also find the power series solutions of a differential equation about an

ordinary point x0 using the basic Frobenius method (ignoring, of course, the first preliminary step).

In practice, though, it would be silly to go through the extra work in the Frobenius method when

you can use the shorter algebraic method from chapter 30. After all, if x0 is an ordinary point for

our differential equation, then we already know the solution y can be written as

y(x) = a0 y1(x) + a1 y2(x)

where y1(x) and y2(x) are power series about x0 with

y1(x) = 1 + a summation of terms of order 2 or more

= (x − x0)
0

∞∑
k=0

bk(x − x0)
k with bk = 1

and

y2(x) = 1 · (x − x0) + a summation of terms of order 2 or more

= (x − x0)
1

∞∑
k=0

ck(x − x0)
k with ck = 1

(see Initial-Value Problems on page 610). Clearly then, r2 = 0 and r1 = 1 , and the indicial

equation that would arise in using the Frobenius method would just be r(r − 1) = 0 .

So why bother solving for the exponents r1 and r2 of a differential equation at a point x0

when you don’t need to? It’s easy enough to determine whether a point x0 is an ordinary point or

a regular singular point for your differential equation. Do so, and don’t waste your time using the

Frobenius method unless the point in question is a regular singular point.

32.5 About the Indicial and Recursion Formulas

In chapter 34, we will closely examine the formulas involved in the basic Frobenius method. Here

are a few things regarding the indicial equation and the recursion formulas that we will verify then

(and which you should observe in your own computations now).

The Indicial Equation and the Exponents

Remember that one of the preliminary steps has us rewriting the differential equation as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are polynomials, with α(x0) = 0 , and with no factors shared by all three. In

practice, these polynomials are almost always real (i.e., their coefficients are real numbers). Let us

assume this.

If you carefully follow the subsequent computations in the basic Frobenius method, you will

discover that the indicial equation is just as we suspected at the start of section 32.3, namely,

α0r(r − 1) + β0r + γ0 = 0 ,
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where

α0 = α(x0) , β0 = β(x0) and γ0 = γ (x0) .

The exponents for our differential equation (i.e., the solutions to the indicial equation) can then be

found by rewriting the indicial equation as

α0r2 + (β0 − α0)r + γ0 = 0

and using basic algebra.

!�Example 32.7: In describing the Frobenius method, we used Bessel’s equation of order 1/2

with x0 = 0 . That equation was (on page 678) rewritten as

4x2 y′′ + 4xy′ + [4x2 − 1]y = 0 ,

which is

(x − 0)2α(x)y′′ + (x − 0)β(x)y′ + γ (x)y = 0

with

α(x) = 4 , β(x) = 4 and γ (x) = 4x2 − 1 .

So

α0 = α(0) = 4 , β0 = β(0) = 4 and γ0 = γ (0) = −1 .

According to the above, the corresponding indicial equation should be

4r(r − 1) + 4r − 1 = 0 ,

which simplifies to

4r2 − 1 = 0 ,

and which, indeed, is what we obtained (equation (32.17) on page 682) as the indicial equation

for Bessel’s equation of order 1/2 .

From basic algebra, we know that, if the coefficients of the indicial equation

α0r2 + (β0 − α0)r + γ0 = 0

are all real numbers, then the two solutions to the indicial equation are either both real numbers

(possibly the same real numbers) or are complex conjugates of each other. This is usually the case

in practice (and will always be the case in the examples and exercises of this chapter).

The Recursion Formulas

After finding the solutions r1 and r2 to the indicial equation, the basic method of Frobenius has us

deriving the recursion formula corresponding to each of these r’s . In chapter 34, we’ll discover that

each of these recursion formulas can always be written as

ak = F(k, r, a0, a1, . . . , ak−1)

(k + r − r1) (k + r − r2)
for k ≥ κ (32.25a)

where κ is some positive integer, and r is either r1 or r2 , depending on whether this is the recursion

formula corresponding to r1 or r2 , respectively. It also turns out that this formula is derived from

the seemingly equivalent relation

(k + r − r1) (k + r − r2) ak = F(k, r, a0, a1, . . . , ak−1) , (32.25b)
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which holds for every integer k greater than or equal to κ . (This later equation will be useful when

we discuss possible “degeneracies” in the recursion formula).

At this point, all you need to know about F(k, r, a0, a1, . . . , ak−1) is that it is a formula that

yields a finite value for every possible choice of its variables. The actual formula is not that easily

described and would not be all that useful for the differential equations being considered here.

Of greater interest is the fact that the denominator in the recursion formula factors so simply

and predicably. The recursion formula obtained using r = r1 will be

ak = F(k, r1, a0, a1, . . . , ak−1)

(k + r1 − r1)(k + r1 − r2)
= F(k, r1, a0, a1, . . . , ak−1)

k(k + r1 − r2)
,

while the recursion formula obtained using r = r2 will be

ak = F(k, r2, a0, a1, . . . , ak−1)

(k + r2 − r1)(k + r2 − r2)
= F(k, r2, a0, a1, . . . , ak−1)

(k − [r1 − r2])k .

!�Example 32.8: In solving Bessel’s equation of order 1/2 we obtained

r1 = 1

2
and r2 = −1

2
.

The recursion formulas corresponding to each of these were found to be

ak = −1

k(k + 1)
ak−2 and ak = −1

k(k − 1)
ak−2 for k = 2, 3, 4, . . . ,

respectively (see formulas (32.19) and (32.22)). Looking at the recursion formula corresponding

to r = 1/2 we see that, indeed,

ak = −1

k(k + 1)
ak−2 = −1

k
(

k + 1

2
−
[
− 1

2

])ak−2 = −1

k (k + r1 − r2)
ak−2 .

Likewise, looking at the recursion formula corresponding to r = 1/2 we see that

ak = −1

(k − 1)k
ak−2 = −1(

k +
[
− 1

2

]
− 1

2

)
k

ak−2 = −1

(k + r2 − r1)k
ak−2 .

Knowing that the denominator in your recursion formulas should factor into either

k(k + r1 − r2) or (k + r2 − r1)k

should certainly simplify your factoring of that denominator. And if your denominator does not so

factor, then you know you made an error in your computations. So it provides a partial error check.

It also leads us to our next topic.

Problems Possibly Arising in Step 8

In discussing step 8 of the basic Frobenius method, we indicated that there may be “problems” in

finding a modified series solution corresponding to r2 . Well, take a careful look at the recursion

formula obtained using r2 :

ak = F(k, r2, a0, a1, . . . , ak−1)

(k − [r1 − r2])k for k ≥ κ
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(remember, κ is some positive integer). See the problem? That’s correct, the denominator may be

zero for one of the k’s . And it occurs if (and only if) r1 and r2 differ by some integer K greater

than or equal to κ ,

r1 − r2 = K .

Then, when we attempt to compute aK , we get

aK = F(K , r2, a0, a1, . . . , ak−1)

(K − [r1 − r2])K

= F(K , r2, a0, a1, . . . , ak−1)

(K − K )K
= F(K , r2, a0, a1, . . . , ak−1)

0
!

Precisely what we can say about aK when this happens depends on whether the numerator in this

expression is zero or not. To clarify matters slightly, let’s rewrite the above using recursion relation

(32.25b) which, in this case, reduces to

0 · aK = F(K , r2, a0, a1, . . . , ak−1) . (32.26)

Now:

1. If F(K , r2, a0, a1, . . . , ak−1) = 0 , then the recursion formula “blows up” at k = K ,

aK = F(K , r2, a0, a1, . . . , ak−1)

0
.

More precisely, aK must satisfy

0 · aK = F(K , r2, a0, a1, . . . , ak−1) = 0 ,

which is impossible. Hence, it is impossible for our differential equation to have a solution

of the form (x − x0)
r2
∑∞

k=0 ak(x − x0)
k with a0 = 0 .

2. If F(K , r2, a0, a1, . . . , ak−1) = 0 , then the recursion equation for aK reduces to

aK = 0

0
,

an indeterminant expression telling us nothing about aK . More precisely, (32.26) reduces

to

0 · aK = 0 ,

which is valid for any value of aK ; that is, aK is another arbitrary constant (in addition

to a0 ). Moreover, a careful analysis will confirm that, in this case, we will re-derive the

modified power series solution corresponding to r1 with aK being the arbitrary constant in

that series solution (see exercise 32.8).

But why don’t we worry about the denominator in the recursion formula obtained using r1 ,

ak = F(k, r1, a0, a1, . . . , ak−1)

k(k + r1 − r2)
for k ≥ κ ?

Because this denominator is zero only if r1 − r2 is some negative integer, contrary to our labeling

convention of r1 ≥ r2 .

!�Example 32.9: Consider

2xy′′ − 4y′ − y = 0 .
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Multiplying this by x , we get it into the form

2x2 y′′ − 4xy′ − xy = 0 .

As noted in example 32.5 on page 675, this equation has one regular singular point, x0 = 0 .

Setting

y = y(x) = xr

∞∑
k=0

ak xk =
∞∑

k=0

ak xk+r

and differentiating, we get (as before)

y′ = d

dx

∞∑
k=0

ak xk+r =
∞∑

k=0

ak(k + r)xk+r−1

and

y′′ = d2

dx2

∞∑
k=0

ak xk+r =
∞∑

k=0

ak(k + r)(k + r − 1)xk+r−2 .

Plugging these into our differential equation:

0 = 2x2 y′′ − 4xy′ − xy

= 2x2
∞∑

k=0

ak(k + r)(k + r − 1)xk+r−2 − 4

∞∑
k=0

ak(k + r)xk+r−1 − x

∞∑
k=0

ak xk+r

=
∞∑

k=0

2ak(k + r)(k + r − 1)xk+r −
∞∑

k=0

4ak(k + r)xk+r −
∞∑

k=0

ak xk+r+1 .

Dividing out the xr , reindexing, and grouping like terms:

0 =
∞∑

k=0

2ak(k + r)(k + r − 1)xk

︸ ︷︷ ︸
n = k

−
∞∑

k=0

4ak(k + r)xk

︸ ︷︷ ︸
n = k

−
∞∑

k=0

ak xk+1

︸ ︷︷ ︸
n = k+1

=
∞∑

n=0

2an(n + r)(n + r − 1)xn −
∞∑

n=0

4an(n + r)xn −
∞∑

n=1

anxn

= 2a0(0 + r)(0 + r − 1)x0 +
∞∑

n=1

2an(n + r)(n + r − 1)xn

− 4a0(0 + r)x0 −
∞∑

n=1

4an−1(n + r)xn −
∞∑

n=1

an−1xn

= a0[2r(r − 1)− 4r︸ ︷︷ ︸
2r2−2r−4r

]x0 +
∞∑

n=1

{an[2(n + r)(n + r − 1)− 4(n + r)︸ ︷︷ ︸
2(n+r)(n+r−1−2)

] − an−1}xn .
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Thus, our differential equation reduces to

a0

[
2
(

r2 − 3r
)]

x0 +
∞∑

n=1

{an [2(n + r)(n + r − 3)] − an−1} xn = 0 . (32.27)

From the first term, we get the indicial equation:

2
(

r2 − 3r
)

︸ ︷︷ ︸
2r(r−3)

= 0 .

So r can equal 0 or 3 . Since 3 > 0 , our convention has us identifying these solutions to the

indicial equation as

r1 = 3 and r2 = 0 .

Letting r = r1 = 3 in equation (32.27), we see that

0 = a0

[
2
(

32 − 3 · 3
)]

x0 +
∞∑

n=1

{an [2(n + 3)(n + 3 − 3)] − an−1} xn

= a0 [0] x0 +
∞∑

n=1

{an [2(n + 3)n] − an−1} xn .

So, for n ≥ 1 ,

an [2(n + 3)n] − an−1 = 0 .

Solving for an , we obtain the recursion formula

an = 1

2n(n + 3)
an−1 for n = 1, 2, 3, . . . .

Equivalently13,

ak = 1

2k(k + 3)
ak−1 for k = 1, 2, 3, . . . .

Applying this recursion formula:

a1 = 1

2 · 1(1 + 3)
a0 = 1

2 · 1(4)
a0 ,

a2 = 1

2 · 2(2 + 3)
a1 = 1

2 · 2(5)
· 1

2 · 1(4)
a0 = 1

22(2 · 1)(5 · 4)
a0

= 3 · 2 · 1

22(2 · 1)(5 · 4 · 3 · 2 · 1)
a0 = 6

22(2 · 1)(5 · 4 · 3 · 2 · 1)
a0 ,

a3 = 1

2 · 3(3 + 3)
a2 = 1

2 · 3(6)
· 6

22(2 · 1)(5 · 4 · 3 · 2 · 1)
a0

= 6

23(3 · 2 · 1)(6 · 5 · 4 · 3 · 2 · 1)
a0 ,

...

ak = 6

2k k!(k + 3)!a0 .

13 Observe that this is formula (32.25a) with κ = 1 and F(k, r1, a0, a1, . . . , ak−1) = 1
2

ak−1 .
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Notice that this last formula even holds for k = 0 and k = 1 . So

ak = 6

2k k!(k + 3)!a0 for k = 0, 1, 2, 3, . . . ,

and the corresponding modified power series solution is

y(x) = xr1

∞∑
k=0

ak xk = a0x3
∞∑

k=0

6

2k k!(k + 3)! xk .

Now let’s try to find a similar solution corresponding to r2 = 0 . Letting r = r2 = 0 in

equation (32.27) yields

0 = a0

[
2
(

02 − 3 · 0
)]

x0 +
∞∑

n=1

{an [2(n + 0)(n + 0 − 3)] − an−1} xn

= a0 [0] x0 +
∞∑

n=1

{an [2n(n − 3)] − an−1} xn .

So, for n ≥ 1 ,

an [2n(n − 3)] − an−1 = 0 .

Solving for an , we obtain the recursion formula

an = 1

2n(n − 3)
an−1 for n = 1, 2, 3, . . . .

Applying this, we get

a1 = 1

2 · 1(1 − 3)
a0 = 1

2 · 1(−2)
a0 ,

a2 = 1

2 · 2(2 − 3)
a1 = 1

2 · 2(−1)
· 1

2 · 1(−2)
a0 = 1

222 · 1(−1)(−2)
a0 ,

a3 = 1

2 · 3(3 − 3)
a1 = 1

2 · 2(0)
· 1

222 · 1(−1)(−2)
a0 = 1

0
a0 !

In this case, the a3 “blows up” if a0 = 0 . In other words, for this last equation to be true, we

must have

0 · a3 = a0 ,

contrary to our requirement that a0 = 0 . So, for this differential equation, our search for a

solution of the form

xr

∞∑
k=0

ak xk with a0 = 0

is doomed to failure when r = r2 . There is no such solution.

This leaves us with just the solutions found corresponding to r = r1 ,

y(x) = a0x3
∞∑

k=0

6

2k k!(k + 3)! x
k .

In the next chapter, we will discuss how to find the complete general solution when, as in the last

example, the basic method of Frobenius does not yield a second solution. We’ll also finish solving

the differential equation in the last example.
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32.6 Dealing with Complex Exponents

In practice, the exponents r1 and r2 are usually real numbers. Still, complex exponents are possible.

Fortunately, the differential equations arising from “real-world” problems usually have real-valued

coefficients, which means that, if r1 and r2 are not real valued, they will probably be a conjugate

pair

r1 = r+ = λ + iω and r2 = r− = λ − iω

with ω = 0 . In this case, step 7 of the Frobenius method (with r1 = r+ , and renaming a0 as c+ )

leads to a solution of the form

y(x) = c+y+(x)
where

y+(x) = (x − x0)
λ+iω

∞∑
k=0

αk(x − x0)
k

with α0 = 1 . The other αk’s will be determined from the recursion formula and will simply be the

ak’s described in the method with a0 factored out. And they may well be complex valued since the

recursion formula probably involves r+ = λ+ iω .

We could then continue with step 8 and compute the general series solution corresponding to

r2 = r− . Fortunately, this lengthy set of computations is completely unnecessary because you can

easily confirm that the complex conjugate y∗ of any solution y to our differential equation is another

solution to our differential equation (see exercise 32.7 on page 704). Thus, as a second solution, we

can just use

y−(x) = [
y+(x)

]∗ =
[
(x − x0)

λ+iω
∞∑

k=0

αk(x − x0)
k

]∗

= (x − x0)
λ−iω

∞∑
k=0

αk
∗(x − x0)

k .

It is also easy to verify that {y+(x), y−(x)} is linearly independent. Hence,

y(x) = c+y+(x) + c−y−(x)

is a general solution to our differential equation.

However, the two solutions y+ and y− will be complex valued. To avoid complex-valued

solutions, we can employ the trick used before to derive a corresponding linearly independent pair

{y1, y2} of real-valued solutions to our differential equation by setting

y1(x) = 1

2

[
y+(x) + y−(x)

]
and y2(x) = 1

2i

[
y+(x) − y−(x)

]
.

If the need arises, you can, with a little algebra, derive formulas for y1 and y2 in terms of the real

and imaginary parts of (x − x0)
λ+iω and the αk’s . To be honest, though, that need is unlikely to

ever arise.
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32.7 Appendix: On Tests for Regular Singular Points
Proof of Theorem 32.2

The validity of theorem 32.2 follows immediately from lemma 32.1 (which we’ve already proven)

and the next lemma.

Lemma 32.4

Let a , b and c be rational functions, and assume x0 is a singular point on the real line for

a(x)y′′ + b(x)y′ + c(x)y = 0 . (32.28)

If the two limits

lim
x→x0

(x − x0)
b(x)

a(x)
and lim

x→x0

(x − x0)
2 c(x)

a(x)

are both finite, then the differential equation can be written in quasi-Euler form

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are polynomials with α(x0) = 0 .

PROOF: Because a , b and c are rational functions (i.e., quotients of polynomials), we can

multiply equation (32.28) through by the common denominators, obtaining a differential equation

in which all the coefficients are polynomials. Then factoring out the (x − x0)-factors, and dividing

out the factors common to all terms, we obtain

(x − x0)
k A(x)y′′ + (x − x0)

m B(x)y′ + (x − x0)
nC(x)y = 0 (32.29)

where A , B and C are polynomials with

A(x0) = 0 , B(x0) = 0 and C(x0) = 0 ,

and k , m and n are nonnegative integers, one of which must be zero. Moreover, since this is just a

rewrite of equation (32.28), and x0 is, by assumption, a singular point for this differential equation,

we must have that k ≥ 1 . Hence m = 0 or n = 0 .

Dividing equations (32.28) and (32.29) by their leading terms then yields, respectively,

y′′ + b(x)

a(x)
y′ + c(x)

a(x)
y = 0

and

y′′ + (x − x0)
m−k B(x)

A(x)
y′ + (x − x0)

n−k C(x)

A(x)
y = 0 .

But these last two equations describe the same differential equation, and have the same first coeffi-

cients. Consequently, the other coefficients must be the same, giving us

b(x)

a(x)
= (x − x0)

m−k B(x)

A(x)
and

c(x)

a(x)
= (x − x0)

n−k C(x)

A(x)
.

Thus,

lim
x→x0

(x − x0)
b(x)

a(x)
= lim

x→x0

(x − x0)
m+1−k B(x)

A(x)
= lim

x→x0

(x − x0)
m+1−k B(x0)

A(x0)
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and

lim
x→x0

(x − x0)
2 c(x)

a(x)
= lim

x→x0

(x − x0)
n+2−k C(x)

A(x)
= lim

x→x0

(x − x0)
n+2−k C(x0)

A(x0)
.

By assumption, though, these limits are finite, and for the limits on the right to be finite, the exponents

must be zero or larger. This, combined with the fact that k ≥ 1 means that k , m and l must satisfy

m + 1 ≥ k ≥ 1 and n + 2 ≥ k ≥ 1 . (32.30)

But remember, m , n and k are nonnegative integers with m = 0 or n = 0 . That leaves us with

only three possibilities:

1. If m = 0 , then the first inequality in set (32.30) reduces to

1 ≥ k ≥ 1

telling us that k = 1 . Equation (32.29) then becomes

(x − x0)
1 A(x)y′′ + B(x)y′ + (x − x0)

nC(x)y = 0 .

Muliplying through by x − x0 , this becomes

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are the polynomials

α(x) = A(x) , β(x) = B(x) and γ (x) = (x − x0)
n+1C(x) .

2. If n = 0 , then the second inequality in set (32.30) reduces to

2 ≥ k ≥ 1 .

So k = 1 or k = 2 , giving us two options:

(a) If k = 1 , then equation (32.29) becomes

(x − x0)
1 A(x)y′′ + (x − x0)

m B(x)y′ + C(x)y = 0 ,

which can be rewritten as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are the polynomials

α(x) = A(x) , β(x) = (x − x0)
m B(x) and γ (x) = (x − x0)C(x) .

(b) If k = 2 , then the other inequality in set (32.30) becomes

m + 1 ≥ 2 .

Hence m ≥ 1 . In this case, equation (32.29) becomes

(x − x0)
2 A(x)y′′ + (x − x0)

m B(x)y′ + C(x)y = 0

which is the same as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are the polynomials

α(x) = A(x) , β(x) = (x − x0)
m−1 B(x) and γ (x) = C(x) .
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Note that, in each case, we can rewrite our differential equation as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are polynomials with

α(x0) = α0(x0) = 0 .

So, in each case, we have rewritten our differential equation in quasi-Euler form, as claimed in the

lemma.

Testing for Regularity When the Coefficients Are Not Rational

By using lemma 29.13 on page 580 on factoring analytic functions, or lemma 29.14 on page 581 on

factoring quotients of analytic functions, you can easily modify the arguments in the last proof to

obtain an analog of the above lemma appropriate to differential equations whose coefficients are not

rational. Basically, just replace

“rational functions” with “quotients of functions analytic at x0 ” ,

and replace

“polynomials” with “functions analytic at x0 ” .

The resulting lemma, along with lemma 32.1, then yields the following analog to theorem 32.2.

Theorem 32.5 (testing for regular singular points (ver.2))

Assume x0 is a singular point on the real line for the differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

where a , b and c are quotients of functions analytic at x0 . Then x0 is a regular singular point for

this differential equation if and only if the two limits

lim
x→x0

(x − x0)
b(x)

a(x)
and lim

x→x0

(x − x0)
2 c(x)

a(x)

are both finite.

Additional Exercises

32.2. Find a fundamental set of solutions {y1, y2} for each of the following shifted Euler equa-

tions, and sketch the graphs of y1 and y2 near the singular point.

a. (x − 3)2 y′′ − 2(x − 3)y′ + 2y = 0

b. 2x2 y′′ + 5xy′ + 1y = 0

c. (x − 1)2 y′′ − 5(x − 1)y′ + 9y = 0
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d. (x + 2)2 y′′ + (x + 2)y′ = 0

e. 3(x − 5)2 y′′ − 4(x − 5)y′ + 2y = 0

f. (x − 5)2 y′′ + (x − 5)y′ + 4y = 0

32.3. Identify all of the singular points for each of the following differential equations, and

determine which of those on the real line are regular singular points, and which are irregular

singular points. Also, find the Frobenius radius of convergence R for the given differential

equation about the given x0 .

a. x2 y′′ + x

x − 2
y′ + 2

x + 2
y = 0 , x0 = 0

b. x3 y′′ + x2 y′ + y = 0 , x0 = 2

c.
(

x3 − x4
)

y′′ + (3x − 1)y′ + 827y = 0 , x0 = 1

d. y′′ + 1

x − 3
y′ + 1

x − 4
y = 0 , x0 = 3

e. y′′ + 1

(x − 3)2
y′ + 1

(x − 4)2
y = 0 , x0 = 4

f. y′′ +
(

1

x
− 1

3

)
y′ +

(
1

x
− 1

4

)
y = 0 , x0 = 0

g.
(

4x2 − 1
)

y′′ +
(

4 − 2

x

)
y′ + 1 − x2

1 + x2
y = 0 , x0 = 0

h.
(

4 + x2
)2

y′′ + y = 0 , x0 = 0

32.4. Use the basic method of Frobenius to find modified power series solutions about x0 = 0

for each of the following differential equations. In particular:

i Find, identify and solve the corresponding indicial equation for the equation’s ex-

ponents r1 and r2 .

ii Find the recursion formula corresponding to each exponent.

iii Find and explicitly write out at least the first four nonzero terms of all series solutions

about x0 = 0 that can be found by the basic Frobenius method (if a series terminates,

find all the nonzero terms).

iv Try to find a general formula for all the coefficients in each series.

v Finally, either state the general solution or, when a second particular solution cannot

be found by the basic method, give a reason that second solution cannot be found.

(Note: x0 = 0 is a regular singular point for each equation. You need not verify it.)

a. x2 y′′ − 2xy′ +
(

x2 + 2
)

y = 0

b. 4x2 y′′ + (1 − 4x)y = 0

c. x2 y′′ + xy′ + (4x − 4)y = 0

d.
(

x2 − 9x4
)

y′′ − 6xy′ + 10y = 0
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e. x2 y′′ − xy′ + 1

1 − x
y = 0

f. y′′ + 1

x
y′ + y = 0 (Bessel’s equation of order 0 )

g. y′′ + 1

x
y′ +

[
1 − 1

x2

]
y = 0 (Bessel’s equation of order 1 )

h. 2x2 y′′ +
(

5x − 2x3
)

y′ + (1 − x2)y = 0

i. x2 y′′ −
(

5x + 2x2
)

y′ + (9 + 4x) y = 0

j.
(

3x2 − 3x3
)

y′′ −
(

4x + 5x2
)

y′ + 2y = 0

k. x2 y′′ −
(

x + x2
)

y′ + 4xy = 0

l. 4x2 y′′ + 8x2 y′ + y = 0

m. x2 y′′ +
(

x − x4
)

y′ + 3x3 y = 0

n.
(

9x2 + 9x3
)

y′′ +
(

9x + 27x2
)

y′ + (8x − 1)y = 0

32.5. For each of the following, verify that the given x0 is a regular singular point for the given

differential equation, and then use the basic method of Frobenius to find modified power

series solutions to that differential equation. In particular:

i Find and solve the corresponding indicial equation for the equation’s exponents r1

and r2 .

ii Find the recursion formula corresponding to each exponent.

iii Find and explicitly write out at least the first four nonzero terms of all series solutions

about x0 = 0 that can be found by the basic Frobenius method (if a series terminates,

find all the nonzero terms).

iv Try to find a general formula for all the coefficients in each series.

v Finally, either state the general solution or, when a second particular solution cannot

be found by the basic method, give a reason that second solution cannot be found.

a. (x − 3)y′′ + (x − 3)y′ + y = 0 , x0 = 3

b. y′′ + 2

x + 2
y′ + y = 0 , x0 = −2

c. 4y′′ + 4x − 3

(x − 1)2
y = 0 , x0 = 1

d. (x − 3)2 y′′ +
(

x2 − 3x
)

y′ − 3y = 0 , x0 = 3

32.6. Let
∑∞

k=0 ak xk be a power series convergent on (−R, R) for some R > 0 . We already

know that, on (−R, R) ,

d

dx

∞∑
k=0

ak xk =
∞∑

k=0

d

dx

[
ak xk

]
.
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a. Using the above and the product rule confirm that, on (−R, R) ,

d

dx

[
xr

∞∑
k=0

ak xk

]
=

∞∑
k=0

ak(k + r)xk+r−1 .

for any real value r .

b. How does this justify the term-by-term differentiation used in step 2 of the basic Frobenius

method?

32.7. For the following, assume u and v are real-valued functions on some interval I , and let

y = u + iv .

a. Verify that

dy∗
dx

=
(

dy

dx

)∗
and

d2 y∗

dx2
=

(
d2 y

dx2

)∗

where y∗ is the complex conjugate of y .

b. Further assume that, on some interval I , y satisfies

a(x)
d2 y

dx2
+ b(x)

dy

dx
+ c(x)y = 0

where a , b and c are all real-valued functions. Using the results from the previous part

of this exercise, show that

a(x)
d2 y∗

dx2
+ b(x)

dy∗
dx

+ c(x)y∗ = 0 .

32.8. Let R , r1 and r2 be real numbers with R > 0 and r1 > r2 , and let M be some positive

integer. Suppose, further, that we have three modified power series solutions over (−R, R)

y1(x) = xr1

∞∑
k=0

αk xk with α0 = 1 ,

y2(x) = xr2

∞∑
k=0

βk xk with β0 = 1

and

y3(x) = xr2

∞∑
k=M

γk xk with γM = 1

to a single homogeneous, second-order, linear differential equation.

a. Using the fact that r1 > r2 , show that y1 and y2 cannot be constant multiples of each

other, and, from this, conclude that {y1, y2} must be a fundamental set of solutions to

that one differential equation.

b. What does this say about solution y3 ?

c. Show that, in fact, y3 = y1 and that r1 = r2 + M .

d. Why does the above verify the claim in step 8 on page 685 that we can set aM = 0 ?
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The Big Theorem on the Frobenius
Method, with Applications

At this point, you may have a number of questions, including:

1. What do we do when the basic method does not yield the necessary linearly independent pair

of solutions?

2. Are there any shortcuts?

To properly answer these questions requires a good bit of analysis — some straightforward and some,

perhaps, not so straightforward. We will do that in the next chapter. Here, instead, we will present

a few theorems summarizing the results of that analysis, and we will see how those results can,

in turn, be applied to solve and otherwise gain useful information about solutions to some notable

differential equations.

By the way, in the following, it does not matter whether we are restricting ourselves to differential

equations with rational coefficients or are considering the more general case. The discussion holds

for either.

33.1 The Big Theorems
The Theorems

The first theorem simply restates the definition of a “regular singular point”, along with some results

discussed earlier in section 32.5.

Theorem 33.1 (the indicial equation and corresponding exponents)

Let x0 be a point on the real line. Then x0 is a regular singular point for a given second-order,

linear homogeneous differential equation if and only if that differential equation can be written as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are all analytic at x0 with α(x0) = 0 . Moreover:

1. The indicial equation arising in the method of Frobenius to solve this differential equation is

α0r(r − 1) + β0r + γ0 = 0

where

α0 = α(x0) , β0 = β(x0) and γ0 = γ (x0) .

705
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2. The indicial equation has exactly two solutions r1 and r2 (possibly identical). And, if

α(x0) , β(x0) and γ (x0) are all real valued, then r1 and r2 are either both real valued or

are complex conjugates of each other.

The next theorem is “the big theorem” of the Frobenius method. It describes generic formulas

for solutions about regular singular points and gives the intervals over which these formulas are valid.

Proving it will be the major goal in the next chapter.

Theorem 33.2 (general solutions about regular singular points)

Assume x0 is a regular singular point on the real line for some given second-order homogeneous

linear differential equation with real coefficients. Let R be the corresponding Frobenius radius of

convergence, and let r1 and r2 be the two solutions to the corresponding indicial equation, with

r1 ≥ r2 if they are real. Then, on the intervals (x0, x0 + R) and (x0 − R, x0) , general solutions to

the differential equation are given by

y(x) = c1 y1(x) + c2 y2(x)

where c1 and c2 are arbitrary constants, and y1 and y2 are solutions that can be written as

follows1:

1. In general,

y1(x) = |x − x0|r1

∞∑
k=0

ak(x − x0)
k with a0 = 1 . (33.1)

2. If r1 − r2 is not an integer, then

y2(x) = |x − x0|r2

∞∑
k=0

bk(x − x0)
k with b0 = 1 . (33.2)

3. If r1 − r2 = 0 (i.e., r1 = r2 ), then

y2(x) = y1(x) ln |x − x0| + |x − x0|1+r1

∞∑
k=0

bk(x − x0)
k . (33.3)

4. If r1 − r2 = K for some positive integer K , then

y2(x) = μy1(x) ln |x − x0| + |x − x0|r2

∞∑
k=0

bk(x − x0)
k (33.4)

where b0 = 1 , bK is arbitrary and μ is some (nonarbitrary) constant (possibly zero).

Moreover,

y2(x) = y2,0(x) + bK y1(x)

where y2,0(x) is given by formula (33.4) with bK = 0 .

1 In this theorem, we are assigning convenient values to the coefficients, such as a0 and b0 , that could, in fact, be considered

as arbitrary nonzero constants. Any coefficient not explicitly mentioned is not arbitrary.



�

�

�

�

�

�

�

�

The Big Theorems 707

Alternate Formulas
Solutions Corresponding to Integral Exponents

Remember that in developing the basic method of Frobenius, the first solution we obtained was

actually of the form

y1(x) = (x − x0)
r1

∞∑
k=0

ak(x − x0)
k

and not

y1(x) = |x − x0|r1

∞∑
k=0

ak(x − x0)
k

As noted on page 688, either solution is valid on both (x0, x0 + R) and on (x0 − R, x0) . It’s just

that the second formula yields a real-valued solution even when x < x0 and r1 is a real number

other than an integer.

Still, if r1 is an integer — be it 8 , 0 , −2 or any other integer — then replacing

(x − x0)
r1 with |x − x0|r1

is completely unnecessary, and is usually undesirable. This is especially true if r1 = n for some

nonnegative integer n , because then

y1(x) = (x − x0)
n

∞∑
k=0

ak(x − x0)
k =

∞∑
k=0

ak(x − x0)
k+n

is actually a power series about x0 , and the proof of theorem 33.2 will show that this is a solution

on the entire interval (x0 − R, x0 + R) . It might also be noted that, in this case, y1 is analytic at

x0 , a fact that might be useful in some applications.

Similar comments hold if the other exponent, r2 , is an integer. So let us make official:

Corollary 33.3 (solutions corresponding to integral exponents)

Let r1 and r2 be as in theorem 33.2.

1. If r1 is an integer, then the solution given by formula (33.1) can be replaced by the solution

given by

y1(x) = (x − x0)
r1

∞∑
k=0

ak(x − x0)
k with a0 = 1 . (33.5)

2. If r2 is an integer while r1 is not, then the solution given by formula (33.2) can be replaced

by the solution given by

y2(x) = (x − x0)
r2

∞∑
k=0

bk(x − x0)
k with b0 = 1 . (33.6)

3. If r1 = r2 and are integers, then the solution given by formula (33.3) can be replaced by the

solution given by

y2(x) = y1(x) ln |x − x0| + (x − x0)
1+r1

∞∑
k=0

bk(x − x0)
k . (33.7)

4. If r1 and r2 are two different integers, then the solution given by formula (33.4) can be

replaced by the solution given by

y2(x) = μy1(x) ln |x − x0| + (x − x0)
r2

∞∑
k=0

bk(x − x0)
k . (33.8)
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Other Alternate Solutions Formulas

It should also be noted that alternative versions of formulas (33.3) and (33.4) can be found by simply

factoring out y1(x) from both terms, giving us

y2(x) = y1(x)

[
ln |x − x0| + (x − x0)

1
∞∑

k=0

ck(x − x0)
k

]
(33.3 ′)

when r2 = r1 , and

y2(x) = y1(x)

[
μ ln |x − x0| + (x − x0)

−K

∞∑
k=0

ck(x − x0)
k

]
(33.4 ′)

when r1 − r2 = K for some positive integer K . In both cases, c0 = b0 .

Theorem 33.2 and the Method of Frobenius

Remember that, using the basic method of Frobenius, we can find every solution of the form

y(x) = |x − x0|r
∞∑

k=0

ak(x − x0)
k with a0 = 0 ,

provided, of course, such solutions exist. Fortunately for us, statement 1 in the above theorem assures

us that such solutions will exist corresponding to r1 . This means our basic method of Frobenius will

successfully lead to a valid first solution (at least when the coefficients of the differential equation

are rational). Whether there is a second solution y2 of this form depends:

1. If r1 − r2 is not an integer, then statement 2 of the theorem states that there is such a second

solution. Consequently, step 8 of the method will successfully lead to the desired result.

2. If r1 − r2 is a positive integer, then there might be such a second solution, depending on

whether or not μ = 0 in formula (33.4). If μ = 0 , then formula (33.4) for y2 reduces to the

sort of modified power series we are seeking, and step 8 in the Frobenius method will give us

this solution. What’s more, as indicated in statement 4 of the above theorem, in carrying out

step 8, we will also rederive the solution already obtained in steps 7 (unless we set bK = 0 )!

On the other hand, if μ = 0 , then it follows from the above theorem that no such second

solution exists. As a result, all the work carried out in step 8 of the basic Frobenius method

will lead only to a disappointing end, namely, that the terms “blow up” (as discussed in the

subsection Problems Possibly Arising in Step 8 starting on page 693).2

3. Of course, if r2 = r1 , then the basic method of Frobenius cannot yield a second solution

different from the first. But our theorem does assure us that we can use formula (33.3) for

y2 (once we figure out the values of the bk’s ).

So what can we do if the basic method of Frobenius does not lead to the second solution y2(x) ?

At this point, we have two choices, both using the formula for y1(x) already found by the basic

Frobenius method:

1. Use the reduction of order method.

2 We will find a formula for μ in the next chapter. Unfortunately, it is not a simple formula and is not of much help in

preventing us from attempting step 8 of the basic Frobenius method when that step does not lead to y2 .
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2. Plug formula (33.3) or (33.4), as appropriate, into the differential equation, and solve for the

bk’s (and, if appropriate, μ ).

In practice — especially if all you have for y1(x) is the modified power series solution from the

basic method of Frobenius — you will probably find the second of the above choices to be the better

choice. It at least leads to a usable recursion formula for the bk’s . We will discuss this further in

section 33.6.

However, as we’ll discuss in the next few sections, you might not need to find that y2 .

33.2 Local Behavior of Solutions: Issues

In many situations, we are interested in knowing something about the general behavior of a solution

y(x) to a given differential equation when x is at or near some point x0 . Certainly, for example,

we were interested in what y(x) and y′(x) became as x → x0 when considering initial value

problems.

In other problems (which we will see later), x0 may be an endpoint of an interval of interest,

and we may be interested in a solution y only if y(x) and its derivatives remain well behaved (e.g.,

finite) as x → x0 . This can become a very significant issue when x0 is a singular point for the

differential equation in question.

In fact, there are two closely related issues that will be of concern:

1. What does y(x) approach as x → x0 ? Must it be zero? Can it be some nonzero finite

value? Or does y(x) “blow up” as x → x0 ? (And what about the derivatives of y(x) as

x → x0 ?)

2. Can we treat y as being analytic at x0 ?

Of course, if y is analytic at x0 , then, for some R > 0 , it can be represented by a power series

y(x) =
∞∑

k=0

ck(x − x0)
k for |x − x0| < R ,

and, as we already know,

lim
x→x0

y(x) = y(x0) = c0 and lim
x→x0

y′(x) = y′(x0) = c1 .

Thus, when y is analytic at x0 , the limits in question are “well behaved”, and the question of whether

y(x0) must be zero or can be some nonzero value reduces to the question of whether c0 is or is not

zero.

In the next two sections, we will examine the possible behavior of solutions to a differential

equation near a regular singular point for that equation. Our ultimate interest will be in determining

when the solutions are “well behaved” and when they are not. Then, in section 33.5, we will apply

our results to an important set of equations from mathematical physics, the Legendre equations.
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33.3 Local Behavior of Solutions: Limits at Regular
Singular Points

As just noted, a major concern in many applications is the behavior of a solution y(x) as x

approaches a regular singular point x0 . In particular, it may be important to know whether

lim
x→x0

y(x)

is zero, some finite nonzero value, infinite, or completely undefined.

We discussed this issue at the beginning of chapter 30 for the shifted Euler equation

(x − x0)
2α0 y′′ + (x − x0)β0 y′ + γ0 y = 0 . (33.9)

Let us try using what we know about those solutions after comparing them with the solutions given

in our big theorem for

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0 (33.10)

assuming

α0 = α(x0) , β0 = β(x0) and γ0 = γ (x0) .

Remember, these two differential equations have the same indicial equation

α0r(r − 1) + β0r + γ0 = 0 .

Naturally, we’ll further assume α , β and γ are analytic at x0 with α(x0) = 0 so we can

use our theorems. Also, in the following, we will let r1 and r2 be the two solutions to the indicial

equation, with r1 ≥ r2 if they are real.

Preliminary Approximations

Observe that each of the solutions described in theorem 33.2 involves one or more power series

∞∑
k=0

ck(x − x0)
k = c0 + c1(x − x0) + c2(x − x0)

2 + c3(x − x0)
3 + · · ·

where c0 = 0 . As we’ve noted in earlier chapters,

lim
x→x0

∞∑
k=0

ck(x − x0)
k = lim

x→x0

[
c0 + c1(x − x0) + c2(x − x0)

2 + · · ·
]

= c0 .

This means ∞∑
k=0

ck(x − x0)
k ≈ c0 when x ≈ x0 .

Solutions Corresponding to r1

Now, recall that the solutions corresponding to r1 for the shifted Euler equation are constant multiples

of

yEuler,1(x) = |x − x0|r1 ,
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while the corresponding solutions to equation (33.10) are constant multiples of something of the

form

y1(x) = |x − x0|r1

∞∑
k=0

ak(x − x0)
k with a0 = 1 .

Using the approximation just noted for the power series, we immediately have

y1(x) ≈ |x − x0|r1 a0 = |x − x0|r1 = yEuler,1(x) when x ≈ x0 .

which is exactly what we suspected back the beginning of section 32.3. In particular, if r1 is real,

then

lim
x→x0

|y1(x)| = lim
x→x0

|x − x0|r1 =

⎧⎪⎪⎨⎪⎪⎩
0 if r1 > 0

1 if r1 = 0

+∞ if r1 < 0

.

(For the case where r1 is not real, see exercise 33.3.)

Solutions Corresponding to r2 when r2 �= r1

In this case, all the corresponding solutions to the shifted Euler equation are given by constant

multiples of

yEuler,2 = |x − x0|r2 .

If r1 and r2 do not differ by an integer, then the corresponding solutions to equation (33.10) are

constant multiples of something of the form

y2(x) = |x − x0|r2

∞∑
k=0

ak(x − x0)
k with a0 = 1 ,

and the same arguments given above with r = r1 apply and confirm that

y2(x) ≈ |x − x0|r2 a0 = |x − x0|r2 = yEuler,2(x) when x ≈ x0 .

On the other hand, if r1 − r2 = K for some positive integer K , then the corresponding solutions

to (33.10) are constant multiples of something of the form

y2(x) = μy1(x) ln |x − x0| + |x − x0|r2

∞∑
k=0

bk(x − x0)
k with b1 = 1 .

Using approximations already discussed, we have, when x ≈ x0 ,

y2(x) ≈ μ |x − x0|r1 ln |x − x0| + |x − x0|r2 b0

= μ |x − x0|r2+K ln |x − x0| + |x − x0|r2

= |x − x0|r2

[
μ |x − x0|K ln |x − x0| + 1

]
.

But K is a positive integer, and you can easily show, via L’Hôpital’s rule, that

lim
x→x0

(x − x0)
K ln |x − x0| = 0 .

Thus, when x ≈ x0 ,

y2(x) ≈ |x − x0|r2 [μ · 0 + 1] = |x − x0|r2 ,
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confirming that, whenever r2 = r1

y2(x) ≈ yEuler,2(x) when x ≈ x0 .

In particular, if r2 is real, then

lim
x→x0

|y2(x)| = lim
x→x0

|x − x0|r1 =

⎧⎪⎪⎨⎪⎪⎩
0 if r2 > 0

1 if r2 = 0

+∞ if r2 < 0

.

Solutions Corresponding to r2 when r2 = r1

In this case, all the second solutions to the shifted Euler equation are constant multiples of

yEuler,2 = |x − x0|r2 ln |x − x0| ,

and the corresponding solutions to our original differential equation are constant multiples of

y2(x) = y1(x) ln |x − x0| + |x − x0|1+r1

∞∑
k=0

bk(x − x0)
k .

If x ≈ x0 , then

y2(x) ≈ |x − x0|r1 ln |x − x0| + |x − x0|1+r1 b0

= |x − x0|r1 ln |x − x0|
[

1 + |x − x0|
ln |x − x0|b0

]
.

But

lim
x→x0

|x − x0|
ln |x − x0| = 0 .

Consequently, when x ≈ x0 ,

y2(x) ≈ |x − x0|r1 ln |x − x0| [1 + 0 · b0] = |x − x0|r1 ln |x − x0| ,

confirming that, again, we have

y2(x) ≈ yEuler,2(x) when x ≈ x0 .

Taking the limit (possibly using L’Hôpital’s rule), you can then easily show that

lim
x→x0

|y2(x)| = lim
x→x0

|a0| |x − x0|r1 |ln |x − x0|| =
{

0 if r1 > 0

+∞ if r1 ≤ 0
.

!�Example 33.1 (Bessel’s equation of order 1): Suppose we are only interested in those solutions

on (0,∞) to Bessel’s equation of order 1 ,

x2 y′′ + xy′ +
(

x2 − 1
)

y = 0 ,

that do not “blow up” as x → 0 .

First of all, observe that this equation is already in the form

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0
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with x0 = 0 , α(x) = 1 , β(x) = 1 and γ (x) = x2 − 1 . So x0 = 0 is a regular singular point

for this differential equation, and the indicial equation,

α0r(r − 1) + β0r + γ0 = 0 ,

is

1 · r(r − 1) + 1 · r − 1 = 0 .

This simplifies to

r2 − 1 = 0 ,

and has solutions r = ±1 . Thus, the exponents for our differential equation are

r1 = 1 and r2 = −1 .

By the analysis given above, we know that all solutions corresponding to r1 are constant

multiples of one particular solution y1 satisfying

lim
x→x0

|y1(x)| = lim
x→x0

|x − x0|1 = 0 .

So none of the solutions corresponding to r = 1 blow up as x → 0 .

On the other hand, the analysis given above for solutions corresponding to r2 when r2 = r1

tells us that all the (nontrivial) second solutions are (nonzero) constant multiples of one particular

solution y2 satisfying

lim
x→x0

|y2(x)| = lim
x→x0

|x − x0|−1 = ∞ .

So these do “blow up” as x → 0 .

Thus, since we are only interested in the solutions that do not blow up as x → 0 , we need

only concern ourselves with those solutions corresponding to r1 = 1 . Those corresponding to

r2 = −1 are not relevant, and we need not spend time and effort finding their formulas.

Derivatives

To analyze the behavior of the derivative y′(x) as x → x0 , you simply differentiate the modified

power series for y(x) , and then apply the ideas described above. Doing this is left for you (exercise

33.4 at the end of the chapter).

33.4 Local Behavior: Analyticity and Singularities in
Solutions

It is certainly easier to analyze how y(x) or any of its derivatives behave as x → x0 when y(x) is

given by a basic power series about x0

y(x) =
∞∑

k=0

ck(x − x0)
k .

Then, in fact, y is infinitely differentiable at x0 , and we know

lim
x→x0

y(x) = y(x0) = c0
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and

lim
x→x0

y(x) = y(k) (x0) = k! ck for k = 1, 2, 3, . . . .

On the other hand, if y(x) is given by one of those modified power series described in the big

theorem, then, as we partly saw in the last section, computing the limits of y(x) and its derivatives

as x → x0 is much more of a challenge. Indeed, unless that series is of the form

(x − x0)
r

∞∑
k=0

αk(x − x0)
k

with r being zero or some postive integer, then limx→x0
y(x) may blow up or otherwise fail to

exist. And even if that limit does exist, you can easily show that the corresponding limit of the nth

derivative, y(n)(x) , will either blow up or fail to exist if n > r .

To simplify our discussion, let’s slightly expand our “ordinary/singular point” terminology so

that it applies to any function y . Basically, we want to refer to a point x0 as an ordinary point for

a function y if y is analytic at x0 , and we want to refer to x0 as a singular point for y if y is not

analytic at x0 .

There are, however, small technical issues that must be taken into account. Typically, our

function y is defined on some interval (α, β) , possibly by some power series or modified power

series. So, initially at least, we must confine our definitions of ordinary and singular points for y to

points in or at the ends of this interval. To be precise, for any such point x0 , we will say that x0

is an ordinary point for y if and only if there is a power series
∑∞

k=0 ak(x − x0)
k with a nonzero

radius of convergence R such that,

y(x) =
∞∑

k=0

ak(x − x0)
k

for all x in (α, β) with |x − x0| < R . If no such power series exists, then we’ll say x0 is a singular

point for y .3

A rather general (and moderately advanced) treatment of ‘singular points’ for functions and

solutions to differential equations was given in section 31.9. One corollary of a result derived there

(lemma 31.28 on page 662) is the following unsurprising lemma:

Lemma 33.4

Let y be a solution on an interval (α, β) to some second-order homogeneous differential equation,

and let x0 be either in (α, β) or be one of the endpoints. Then

x0 is an ordinary point for the differential equation �⇒ x0 is an ordinary point for y .

Equivalently,

x0 is a singular point for y �⇒ x0 is a singular point for the differential equation .

This lemma does not say that y must have a singularity at each singular point of the differential

equation. After all, if x0 is a regular singular point, and the first solution r1 of the indicial equation

3 If x0 is actually in (α, β) , not an endpoint of (α, β) , then

x0 is an ordinary point for y ⇐⇒ y is analytic at x0 ⇐⇒ x0 is point of analyticity for y .
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is a nonnegative integer, say, r1 = 3 , then our big theorem assures us of a solution y1 given by

y1(x) = (x − x0)
3

∞∑
k=0

ak(x − x0)
k ,

which is a true power series since

(x − x0)
3

∞∑
k=0

ak(x − x0)
k =

∞∑
k=0

ak(x − x0)
k+3 =

∞∑
n=0

ck(x − x0)
n

where

cn =
{

0 if n < 3

an−3 if n ≥ 3
.

Still, there are cases where one can be sure that a solution y has at least one singular point. In

particular, consider the situation in which y is given by a power series

y(x) =
∞∑

k=0

ck(x − x0)
k for |x − x0| < R

when R is the radius of convergence and is finite. Replacing x with the complex variable z ,

y(z) =
∞∑

k=0

ck(z − x0)
k

yields a power series with radius of convergence R for a complex-variable function y(z) analytic

at least on the disk of radius R about z0 . Now, it can be shown that there must then be a point zs

on the edge of this disk at which y(z) is not “well behaved”. Unsurprisingly, it can also be shown

that this zs is a singular point for the differential equation. And if all the singular points of this

differential equation happen to lie on the real line, then this singular point zs must be one of the two

points on the real line satisfying |zs − x0| = R , namely,

zs = x0 − R or zs = x0 + R .

That gives us the following theorem (which will be useful in the following section and some exercises).

Theorem 33.5

Let x0 be a point on the real line, and assume

y(x) =
∞∑

k=0

ck(x − x0)
k for |x − x0| < R

is a power series solution to some first- or second-order homogeneous linear differential equation.

Suppose further, that both of the following hold:

1. R is the radius of convergence for the above power series and is finite.

2. All the singular points for the differential equation are on the real axis.

Then at least one of the two points x0 − R or x0 + R is a singular point for y .

Admittedly, our derivation of the above theorem was rather sketchy and involved claims that

“can be shown”. If that isn’t good enough for you, then turn back to section 31.9 for a more satisfying

development of a more general version of the above theorem (theorem 31.29 on page 662). You will

even find pictures there.
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33.5 Case Study: The Legendre Equations

As an application of what we have just developed, let us analyze the behavior of the solutions to the

set of Legendre equations. These equations often arise in physical problems in which some spherical

symmetry can be expected, and in many applications, only those solutions that are “bounded” on

(−1, 1) are of interest. Our analysis here will allow us to readily find those solutions, and will save

us from a lot of needless work dealing with those solutions that, ultimately, will not be of interest.

Let me remind you that a Legendre equation is any differential equation that can be written as

(1 − x2)y′′ − 2xy′ + λy = 0 (33.11)

where λ , the equation’s parameter, is some real constant. You may recall these equations from

exercise 30.10 on page 629, and we will begin our analysis here by recalling what we learned in that

rather lengthy exercise.

What We Already Know

In that exercise 30.10 on page 629, you discovered the following:

1. The only singular points for each Legendre equation are x = −1 and x = 1 .

2. For each λ , a general solution on (−1, 1) of Legendre equation (33.11) is

yλ(x) = a0 yλ,E (x) + a1 yλ,O(x)

where yλ,E (x) is a power series about 0 having just even-powered terms and whose first

term is 1 , and yλ,O(x) is a power series about 0 having just odd-powered terms and whose

first term is x ,

3. If λ = m(m + 1) for some nonnegative integer m , and pm is defined by

pm(x) =
{

yλ,E (x) if m is even

yλ,O(x) if m is odd
,

then this pm(x) is a polynomial of degree m . In particular,

p0(x) = y0,E (x) = 1 ,

p1(x) = y2,O(x) = x ,

p2(x) = y6,E (x) = 1 − 3x2 ,

p3(x) = y12,O(x) = x − 5

3
x3 ,

p4(x) = y20,E (x) = 1 − 10x2 + 35

3
x4

and

p5(x) = y30,O(x) = x − 14

3
x3 + 21

5
x5 .

Moreover, any other polynomial solution to Legendre’s equation of order λ is a constant

multiple of pm(x) .
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4. The Legendre equation with parameter λ has no polynomial solution on (−1, 1) if λ =
m(m + 1) for every nonnegative integer m

5. If y is a nonpolynomial solution to a Legendre equation on (−1, 1) , then it is given by a

power series about x0 = 0 with a radius of convergence of exactly 1 .

Let us now see what more we can determine about the solutions to the Legendre equations on

(−1, 1) using the material developed in the last few sections. For convenience, we will record the

noteworthy results as we derive them in a series of lemmas which, ultimately, will be summarized

in a major theorem on Legendre equations, theorem 33.11.

The Singular Points of the Solutions

First of all, we should note that, because polynomials are analytic everywhere, the polynomial

solutions to Legendre’s equation have no singular points.

Now, suppose y is a solution to a Legendre equation but is not a polynomial. As noted above,

y(x) can be given by a power series about x0 = 0 with radius of convergence 1 . This, and the fact

that the only singular points for Legendre’s equation are the points x = −1 and x = 1 on the real

line, means that lemma 33.5 applies and immediately gives us the following:

Lemma 33.6

Let y be a nonpolynomial solution to a Legendre equation on (−1, 1) . Then y must have a

singularity at either x = −1 or at x = 1 (or both).

Solution Limits at x = 1

To determine the limits of the solutions at x = 1 , we will first find the exponents of the Legendre

equation at x = 1 by solving the appropriate indicial equation. To do this, it is convenient to first

multiply the Legendre equation by −1 and factor the first coefficient, giving us

(x − 1)(x + 1)y′′ + 2xy′ − λy = 0 .

Multiplying this by x − 1 converts the equation into quasi-Euler form

(x − 1)2α(x)y′′ + (x − 1)β(x)y′ + γ (x)y = 0

where

α(x) = x + 1 , β(x) = 2x and γ (x) = −(x − 1)λ .

Thus, the corresponding indicial equation is

r(r − 1)α0 + rβ0 + γ0 = 0

with

α0 = α(1) = 2 , β0 = β(1) = 2 and γ0 = γ (1) = 0 .

That is, the exponents r = r1 and r = r2 must satisfy

r(r − 1)2 + 2r = 0 ,

which simplifies to r2 = 0 . So,

r1 = r2 = 0 ,
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and our big theorem on the Frobenius method, theorem 33.2 on page 706, tells us that any solution

y to a Legendre equation on (−1, 1) can be written as

y(x) = c+
1 y+

1 (x) + c+
2 y+

2

where

y+
1 (x) = |x − 1|0

∞∑
k=0

a+
k (x − 1)k =

∞∑
k=0

a+
k (x − 1)k with a+

0 = 1 ,

and

y+
2 (x) = y+

1 (x) ln |x − 1| + (x − 1)

∞∑
k=0

b+
k (x − 1)k .

Now, let’s make some simple observations using these formulas:

1. Solution y+
1 is analytic at x = 1 (i.e., x = 1 is an ordinary point for y+

1 ). Moreover

lim
x→1

y+
1 (x) = a+

0 = 1 .

2. On the other hand, because of the logarithmic factor in y+
2 ,

lim
x→1

y+
2 (x) = 1 · lim

x→1
ln |x − 1| + (1 − 1)b+

0 = −∞ .

Hence, x = 1 is a singular point for solution y+
2 .

3. More generally, if y(x) = c+
1 y+

1 (x) + c+
2 y+

2 (x) is any nontrivial solution to Legendre’s

equation on (−1, 1) , then the following must hold:

(a) If c+
2 = 0 , then x = 1 is a singular point for y , and

lim
x→1

|y(x)| =
∣∣∣ c+

1 lim
x→1

y+
1 (x)︸ ︷︷ ︸

1

+ c+
2 lim

x→1
y+

2 (x)︸ ︷︷ ︸
−∞

∣∣∣ = ∞ .

(b) If c+
2 = 0 , then c+

1 = 0 , and x = 1 is an ordinary point for y . Moreover,

lim
x→1

y(x) = c+
1 lim

x→1
y+

1 (x) = c+
1 = 0 .

(Hence, x = 1 is a singular point for y if and only if c+
2 = 0 .)

All together, these observations give us:

Lemma 33.7

Let y be a nontrivial solution on (−1, 1) to Legendre’s equation. Then x = 1 is a singular point

for y if and only if

lim
x→1−

|y(x)| = ∞ .

Moreover, if x = 1 is not a singular point for y , then

lim
x→1−

y(x)

exists and is a finite nonzero value.
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Solution Limits at x = −1

A very similar analysis using x = −1 instead of x = 1 leads to:

Lemma 33.8

Let y be a nontrivial solution on (−1, 1) to Legendre’s equation. Then x = −1 is a singular point

for y if and only if

lim
x→−1+

|y(x)| = ∞ .

Moreover, if x = −1 is not a singular point for y , then

lim
x→−1+

y(x)

exists and is a finite nonzero value.

?�Exercise 33.1: Verify the above lemma by redoing the analysis done in the previous subsection

using x = −1 in place of x = 1 .

The Unboundedness of the Nonpolynomial Solutions

Recall that a function y is said to be bounded on an interval (a, b) if there is a finite number M

which “bounds” the absolute value of y(x) when x is in (a, b) ; that is,

|y(x)| ≤ M whenever a < x < b .

Naturally, if a function is not bounded on the interval of interest, we say it is unbounded.

Now, if y happens to be one of those nonpolynomial solutions to a Legendre equation on

(−1, 1) , then we know y has a singularity at either x = −1 or at x = 1 or at both (lemma 33.6).

Lemmas 33.7 and 33.8 then tell us that

lim
x→1−

|y(x)| = ∞ or lim
x→−1+

|y(x)| = ∞ ,

clearly telling us that y(x) is not bounded on (−1, 1) !

Lemma 33.9

Let y be a nonzero solution to a Legendre equation on (−1, 1) . If y is not a polynomial, then it is

not bounded on (−1, 1) .

The Polynomial Solutions and Legendre Polynomials

Now assume y is a nonzero polynomial solution to a Legendre eqaution.

First of all, because each polynomial is a continuous function on the real line, we know from a

classic theorem of calculus that the polynomial has maximum and minimum values over any given

closed subinterval. Thus, in particular, our polynomial solution y has a maximum and a minimum

value over [−1, 1] , and, hence, is bounded on (−1, 1) . So

Lemma 33.10

Each polynomial solution to a Legendre equation is bounded on (−1, 1) .
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But now remember that the Legendre equation with parameter λ has polynomial solutions if

and only if λ = m(m + 1) for some nonnegative integer m , and those solutions are all constant

multiples of

pm(x) =
{

yλ,E (x) if m is even

yλ,O(x) if m is odd
.

Since x = 1 is not a singular point for pm , lemma 33.7 tells us that

pm(1) = lim
x→1

pm(x) = 0 .

This allows us to define the mth Legendre polynomial Pm by

Pm(x) = 1

pm(1)
pm(x) for m = 0, 1, 2, 3, . . . .

Clearly, any constant multiple of pm is also a constant multiple of Pm . So we can use the Pm’s

instead of the pm’s to describe all polynomial solutions to the Legendre equations.

In practice, it is more common to use the Legendre polynomials than the pm’s . In part, this is

because

Pm(1) = 1

pm(1)
pm(1) = 1 for m = 0, 1, 2, 3, . . . .

With a little thought, you’ll realize that this means that, for each nonnegative integer m , Pm is the

polynomial solution to the Legendre equation with parameter λ = m(m + 1) that equals 1 when

x = 1 .

Summary

This is a good time to skim the lemmas in this section, along with the discussion of the Legendre

polynomials, and verify for yourself that these results can be condensed into the following:

Theorem 33.11 (bounded solutions of the Legendre equations)

There are bounded, nontrivial solutions on (−1, 1) to the Legendre equation

(1 − x2)y′′ − 2xy′ + λy = 0

if and only if λ = m(m + 1) for some nonnegative integer m . Moreover, y is such a solution if

and only if y is a constant multiple of the mth Legendre polynomial.

We may find a use for this theorem later (much later).

33.6 Finding Second Solutions Using Theorem 33.2

Let’s return to actually solving differential equations.

When the basic method of Frobenius fails to deliver a second solution, we can turn to the

appropriate formulas given in theorem 33.2 on page 706, namely, formula (33.3),

y2(x) = y1(x) ln |x − x0| + |x − x0|1+r1

∞∑
k=0

bk(x − x0)
k
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or formula (33.4),

y2(x) = μy1(x) ln |x − x0| + |x − x0|r2

∞∑
k=0

bk(x − x0)
k ,

depending, respectively, on whether the exponents r1 and r2 are equal or differ by a nonzero integer

(the only cases for which the basic method might fail). The unknown constants in these formulas

can then be found by fairly straightforward variations of the methods we’ve already developed. Plug

formula (33.3) or (33.4) (as appropriate) into the differential equation, derive the recursion formula

for the bk’s (and the value of μ if using formula (33.4)), and compute as many of the bk’s as

desired.

Because the procedures are straightforward modifications of what we’ve already done many

times in the last few chapters, we won’t describe the steps in detail. Instead, we’ll illustrate the basic

ideas with an example, and then comment on those basic ideas. As you’ve come to expect in these

last few chapters, the computations are simple but lengthy. But do note how the linearity of the

equations is used to break the computations into more digestible pieces.

The Second Solution When r1 − r2 Is a Positive Integer

!�Example 33.2: In example 32.9, starting on page 694, we attempted to find modified power

series solutions about x0 = 0 to

2xy′′ − 4y′ − y = 0 ,

which we rewrote as

2x2 y′′ − 4xy′ − xy = 0 .

We found the exponents of this equation to be

r1 = 3 and r2 = 0 ,

and obtained

y(x) = c x3
∞∑

k=0

6

2k k!(k + 3)! xk (33.12)

as the solutions to the differential equation corresponding to r1 . Unfortunately, we found that

there was not a similar solution corresponding to r2 .

To apply theorem 33.2, we first need the particular solution corresponding to r1

y1(x) = x3
∞∑

k=0

ak xk with a0 = 1 .

So we use formula (33.12) with c chosen so that

a0 = c · 6

20 0!(0 + 3)! = 1 .

Simple computations show that c = 1 and, so,

y1(x) = x3
∞∑

k=0

6

2k k!(k + 3)! xk =
∞∑

k=0

6

2k k!(k + 3)! xk+3 .

According to theorem 33.2, the general solution to our differential equation is

y(x) = c1 y1(x) + c2 y2(x)
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where y1 is as above, and (since r2 = 0 and K = r1 − r2 = 3 )

y2(x) = μy1(x) ln |x − x0| +
∞∑

k=0

bk xk .

where b0 = 1 , b3 is arbitrary (we’ll take it to be zero), and μ is some constant. To simplify

matters, let us rewrite the last formula as

y2(x) = μY1(x) + Y2(x)

where

Y1(x) = y1(x) ln |x | and Y2(x) =
∞∑

k=0

bk xk .

Thus,

0 = 2x2 y1
′′ − 4x y1

′ − xy1

= 2x2[μY1 + Y2]′′ − 4x[μY1 + Y2]′ − x[μY1 + Y2] .

By the linearity of the derivatives, this can be rewritten as

0 = μ
{

2x2Y1
′′ − 4xY1

′ − xY1

}
+

{
2x2Y2

′′ − 4xY2
′ − xY2

}
. (33.13)

Now, because y1 is a solution to our differential equation, you can easily verify that

2x2Y1
′′ − 4xY1

′ − xY1

= 2x2 d2

dx2
[y1(x) ln |x |] − 4x

d

dx
[y1(x) ln |x |] − x [y1(x) ln |x |]

= · · ·
= 4x y1

′ − 6y1 .

Replacing the y1 in the last line with its series formula then gives us

2x2Y1
′′ − 4xY1

′ − xY1 = 4x
d

dx

∞∑
k=0

6

2k k!(k + 3)! xk+3 − 6

∞∑
k=0

6

2k k!(k + 3)! xk+3 ,

which, after suitable computation and reindexing (you do it), becomes

2x2Y1
′′ − 4xY1

′ − xY1 =
∞∑

n=3

12(2n − 3)

2n−3(n − 3)!n! xn . (33.14)

Next, using the series formula for Y2 we have

2x2Y2
′′ − 4xY2

′ − xY2 = 2x2 d2

dx2

∞∑
k=0

bk xk − 4x
d

dx

∞∑
k=0

bk xk − x

∞∑
k=0

bk xk ,

which, after suitable computations and changes of indices (again, you do it!), reduces to

2x2Y2
′′ − 4xY2

′ − xY2 =
∞∑

n=1

{2n(n − 3)bn − bn−1} xn . (33.15)
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Combining equations (33.13), (33.14) and (33.15):

0 = μ
{

2x2Y1
′′ − 4xY1

′ − xY1

}
+

{
2x2Y2

′′ − 4xY2
′ − xY2

}
= μ

∞∑
n=3

12(2n − 3)

2n−3(n − 3)!n! xn +
∞∑

n=1

{2n(n − 3)bn − bn−1} xn

= μ

∞∑
n=3

12(2n − 3)

2n−3(n − 3)!n! xn +
{
[−4b1 − b0]x1 + [−4b2 − b1]x2

+
∞∑

n=3

{2n(n − 3)bn − bn−1} xn

}

= −[4b1 + b0]x1 − [4b2 + b1]x2

+
∞∑

n=3

[
2n(n − 3)bn − bn−1 + μ

12(2n − 3)

2n−3(n − 3)!n!
]
xn .

Since each term in this last power series must be zero, we must have

−[4b1 + b0] = 0 , − [4b2 + b1] = 0

and

2n(n − 3)bn − bn−1 + μ
12(2n − 3)

2n−3(n − 3)!n! = 0 for n = 3, 4, 5, . . . .

This (and the fact that we’ve set b0 = 1 ) means that

b1 = −1

4
b0 = −1

4
· 1 = −1

4
, b2 = −1

4
b1 = −1

4

(−1

4

)
= 1

16

and

2n(n − 3)bn = bn−1 − μ
12(2n − 3)

2n−3(n − 3)!n! for n = 3, 4, 5, . . . . (33.16)

Because of the n − 3 factor in front of bn , dividing the last equation by 2n(n − 3) to get a

recursion formula for the bn’s would result in a recursion formula that ”blow ups” for n = 3 .

So we need to treat that case separately.

With n = 3 in equation (33.16), we get

2 · 3(3 − 3)b3 = b2 − μ
12(2 · 3 − 3)

23−3(3 − 3)!3!

↪→ 0 = 1

16
− μ6

↪→ μ = 1

96
.

Notice that we obtained the value for μ instead of b3 . As claimed in the theorem, b3 is arbitrary.

Because of this, and because we only need one second solution, let us set

b3 = 0 .

Now we can divide equation (33.16) by 2n(n − 3) and use the value for μ just derived

(with a little arithmetic) to obtain the recursion formula

bn = 1

2n(n − 3)

[
bn−1 − (2n − 3)

2n(n − 3)!n!

]
for n = 4, 5, 6, . . . .
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So,

b4 = 1

2 · 4(4 − 3)

[
b3 − (2 · 4 − 3)

24(4 − 3)!4!

]
= 1

8

[
0 − 5

384

]
= − 5

3,072
,

b5 = 1

2 · 5(5 − 3)

[
b4 + (2 · 5 − 3)

25(5 − 3)!5!

]
= 1

20

[
−5

3,072
+ 7

7,680

]
= − 11

307,200
,

...

We won’t attempt to find a general formula for the bn’s here!

Thus, a second particular solution to our differential equation is

y2(x) = μy1(x) ln |x − x0| +
∞∑

k=0

bk xk

= 1

96
y1(x) ln |x | +

{
1 − 1

4
x + 1

16
x2 + 0x3 − 5

3,072
x4 − 11

307,200
x5 + · · ·

}
where y1 is our first particular solution,

y1(x) =
∞∑

k=0

6

2k k!(k + 3)! xk+3 .

In general, when

r1 − r2 = K

for some positive integer K , the computations illustrated in the above example will yield a second

particular solution. It will turn out that b1 , b2 , . . . and bK−1 are all “easily computed” from b0 ,

just as in the example. You will also obtain a recursion relation for bn in terms of lower-indexed

bk’s and the coefficients from the series formula for y1 . This recursion formula (formula (33.16) in

our example) will hold for n ≥ K , but be degenerate when n = K (just as in our example, where

K = 3 ). From that degenerate case, the value of μ in formula (33.4) can be determined. The rest

of the bn’s can then be computed using the recursion relation. Unfortunately, it is highly unlikely

that you will be able to find a general formula for these bn’s in terms of just the index, n . So just

compute as many as seem reasonable.

The Second Solution When r1 = r2

The basic ideas illustrated in the last example also apply when the exponents of the differential

equation, r1 and r2 , are equal. Of course, instead of using the formula used in the example for y2 ,

use formula (33.3),

y2(x) = y1(x) ln |x − x0| + |x − x0|1+r1

∞∑
k=0

bk(x − x0)
k .

In this case, there is no “μ ” to determine and none of the bk’s will be arbitrary. In some ways,

that makes this a simpler case than considered in our example. You can work out the details in the

exercises.
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Additional Exercises

33.2. For each differential equation and singular point x0 given below, let r1 and r2 be the

corresponding exponents (with r1 ≥ r2 if they are real), and let y1 and y2 be the two

modified power series solutions about the given x0 described in the “big theorem on the

Frobenius method”, theorem 33.2 on page 706, and do the following:

i If not already in the form

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where α , β and γ are all analytic at x0 with α(x0) = 0 , then rewrite the

differential equation in this form.

ii Determine the corresponding indicial equation, and find r1 and r2 .

iii Write out the corresponding shifted Euler equation

(x − x0)
2α(x0)y

′′ + (x − x0)β(x0)y
′ + γ (x0)y = 0 ,

and find the solutions yEuler,1 and yEuler,2 which approximate, respectively, y1(x)

and y2(x) when x ≈ x0 .

iv Determine the limits limx→x0
|y1(x)| and limx→x0

|y2(x)| .

Do not attempt to find the modified power series formulas for y1 and y2 .

a. x2 y′′ − 2xy′ +
(

2 − x2
)

y = 0 , x0 = 0

b. x2 y′′ − 2x2 y′ +
(

x2 − 2
)

y = 0 , x0 = 0

c. y′′ + 1

x
y′ + y = 0 , x0 = 0 (Bessel’s equation of order 0)

d. x2
(

2 − x2
)

y′′ +
(

5x + 4x2
)

y′ + (1 + x2)y = 0 , x0 = 0

e. x2 y′′ −
(

5x + 2x2
)

y′ + 9y = 0 , x0 = 0

f. x2(1 + 2x)y′′ + xy′ + (4x3 − 4)y = 0 , x0 = 0

g. 4x2 y′′ + 8xy′ + (1 − 4x)y = 0 , x0 = 0

h. x2 y′′ + xy′ − (1 + 2x)y = 0 , x0 = 0

i. xy′′ + 4y′ + 12

(x + 2)2
y = 0 , x0 = 0

j. xy′′ + 4y′ + 12

(x + 2)2
y = 0 , x0 = −2

k. (x − 3)y′′ + (x − 3)y′ + y = 0 , x0 = 3

l. (1 − x2)y′′ − xy′ + 3y = 0 , x0 = 1 (Chebyshev equation with parameter 3)
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33.3. Suppose x0 is a regular singular point for some second-order homogeneous linear differ-

ential equation, and that the corresponding exponents are complex

r+ = λ + iω and r− = λ − iω

(with ω = 0 ). Let y be any nontrivial solution to this differential equation on an interval

having x0 as the left endpoint. Show that

lim
x→x0

+
y(x)

is zero if λ > 0 , and does not exist if λ ≤ 0 .

33.4. Assume x0 is a regular singular point on the real line for

(x − x0)
2α(x)y′′ + (x − x0)β(x)y

′ + γ (x)y = 0

where, as usual, α , β and γ are all analytic at x0 with α(x0) = 0 . Assume the solutions

r1 and r2 to the corresponding indicial equation are real, with r1 ≥ r2 . Let y1(x) and

y2(x) be the corresponding solutions to the differential equation as described in the big

theorem on the Frobenius method, theorem 33.2.

a. Compute the derivatives of y1 and y2 and show that, for i = 1 and i = 2 ,

lim
x→x0

∣∣yi
′(x)

∣∣ =

⎧⎪⎪⎨⎪⎪⎩
0 if 1 < ri

∞ if 0 < ri < 1

∞ if ri < 0

.

Be sure to consider all cases.

b. Compute limx→x0

∣∣y2
′(x)

∣∣ when r1 = 1 and when r1 = 0 .

c. What can be said about limx→x0

∣∣y2
′(x)

∣∣ when r1 = 1 and when r1 = 0 ?

33.5. Recall that the Chebyshev equation with parameter λ is

(1 − x2)y′′ − xy′ + λy = 0 , (33.17)

where λ can be any constant. In exercise 30.9 on page 628 you discovered that:

1. The only singular points for each Chebyshev equation are x = 1 and x = −1 .

2. For each λ , the general solution on (−1, 1) to equation (33.17) is given by

yλ(x) = a0 yλ,E (x) + a1 yλ,O(x)

where yλ,E and yλ,O are, respectively, even- and odd-termed series

yλ,E (x) =
∞∑

k=0
k is even

ck xk and yλ,O(x) =
∞∑

k=0
k is odd

ck xk

with c0 = 1 , c1 = 1 and the other ck’s determined from c0 or c1 via the recursion

formula.
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3. Equation (33.17) has nontrivial polynomial solutions if and only if λ = m2 for some

nonnegative integer m . Moreover, for each such m , all the polynomial solutions

are constant multiples of an mth degree polynomial pm given by

pm(x) =
{

yλ,E (x) if m is even

yλ,O (x) if m is odd
.

In particular,

p0(x) = 1 , p1(x) = x , p2(x) = 1 − 2x2 ,

p3(x) = x − 4

3
x3 , p4(x) = 1 − 8x2 + 8x4

and

p5(x) = x − 4x3 + 16

5
x5 .

4. Each nonpolynomial solution to a Chebyshev equation on (−1, 1) is given by a

power series about x0 = 0 whose radius of convergence is exactly 1 .

In the following, you will continue the analysis of the solutions to the Chebyshev equations

in a manner analogous to our continuation of the analysis of the solutions to the Legendre

equations in section 33.5.

a. Verify that x = 1 and x = −1 are regular singular points for each Chebyshev equation.

b. Find the exponents r1 and r2 at x = 1 and x = −1 of each Chebyshev equation.

c. Let y be a nonpolynomial solution to a Chebyshev equation on (−1, 1) , and show that

either

lim
x→1−

∣∣y′(x)
∣∣ = ∞ or lim

x→−1+

∣∣y′(x)
∣∣ = ∞

(or both limits are infinite).

d. Verify that pm(1) = 0 for each nonnegative integer m .

e. For each nonnegative integer m , the mth Chebyshev polynomial Tm(x) is the polynomial

solution to the Chebyshev equation with parameter λ = m2 satisfying Tm(1) = 1 . Find

Tm(x) for m = 0, 1, 2, . . . , 5 .

f. Finish verifying that the Chebyshev equation

(1 − x2)y′′ − 2xy′ + λy = 0

has nontrivial solutions with bounded first derivatives on (−1, 1) if and only if λ = m2

for some nonnegative integer. Moreover, y is such a solution if and only if y is a constant

multiple of the mth Chebyshev polynomial.

33.6. The following differential equations all have x0 = 0 as a regular singular point. For each,

the corresponding exponents r1 and r2 are given, along with the solution y1(x) on x > 0

corresponding to r1 , as described in theorem 33.2 on page 706. This solution can be found

by the basic method of Frobenius. The second solution, y2 , cannot be found by the basic

method, but, as stated in theorem 33.2, it is of the form

y2(x) = y1(x) ln |x | + |x |1+r1

∞∑
k=0

bk xk



�

�

�

�

�

�

�

�

728 The Big Theorem on the Frobenius Method, with Applications

or

y2(x) = μy1(x) ln |x | + |x |r2

∞∑
k=0

bk xk ,

depending, respectively, on whether the exponents r1 and r2 are equal or differ by a

nonzero integer. Do recall that, in the second formula, b0 = 1 , and bK is arbitrary for

K = r1 − r2 .

“Find y2(x) for x > 0 ” for each of the following. More precisely, determine which

of the above two formulas hold, and find at least the values of b0 , b1 , b2 , b3 and b4 ,

along with the value for μ if appropriate. You may set any arbitrary constant equal to 0 ,

and assume x > 0 .

a. 4x2 y′′ + (1 − 4x)y = 0 : r1 = r2 = 1

2
, y1(x) = √

x

∞∑
k=0

1

(k!)2 xk

b. y′′ + 1

x
y′ + y = 0 (Bessel’s equation of order 0) : r1 = r2 = 0 ,

y1(x) =
∞∑

m=0

(−1)m

(2mm!)2 x2m

c. x2 y′′ −
(

x + x2
)

y′ + 4xy = 0 ; r1 = 2 , r2 = 0 ,

y1(x) = x2 − 2

3
x3 + 1

12
x4

d. x2 y′′ + xy′ + (4x − 4)y = 0 ; r1 = 2 , r2 = −2 ,

y1(x) = x2
∞∑

k=0

(−4)k4!
k!(k + 4)! x

k
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Validating the Method of Frobenius

Let us now focus on verifying the claims made in the big theorems of section 33.1: theorem 33.1 on

the indicial equation and theorem 33.2 on solutions about regular singular points.

We will begin our work in a rather obvious manner — by applying the basic Frobenius method to

a generic differential equation with a regular singular point (after rewriting the equation in a “reduced

form”) and then closely looking at the results of these computations. This, along with a theorem

on convergence that we’ll discuss, will tell us precisely when the basic method succeeds and why it

fails for certain cases. After that, we will derive the alternative solution formulas (formulas (33.3)

and (33.4) in theorem 33.2 on page 706) and verify that they truly are valid solutions. Dealing with

these later cases will be the challenging part.

34.1 Basic Assumptions and Symbology

Throughout this chapter, we are assuming that we have a second-order linear homogeneous differen-

tial equation having a point x0 on the real line as a regular singular point, and having R > 0 as the

Frobenius radius of convergence about x0 . For simplicity, we will further assume x0 = 0 , keeping

in mind that corresponding results can be obtained when the regular singular point is nonzero by

using the substitution X = x − x0 . Also, (after recalling the comments made on page 688 about

solutions when x < x0 ), let us agree that we can restrict ourselves to analyzing the possible solutions

on the interval (0, R) .

Since we are assuming x0 = 0 is a regular singular point, our differential equation can be

written as

x2α(x)y′′ + xβ(x)y′ + γ (x)y = 0 , (34.1)

where α , β and γ are functions analytic at x0 = 0 and with α(0) = 0 . Dividing through by α ,

we get the corresponding reduced form for our original differential equation

x2 y′′ + x P(x)y′ + Q(x)y = 0 (34.2)

where

P(x) = β(x)

α(x)
and Q(x) = γ (x)

α(x)
.

From lemmas 31.1 and 31.2 on page 633, we know that we can express P and Q as power series

P(x) =
∞∑

k=0

pk xk for |x | < R (34.3a)

729
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and

Q(x) =
∞∑

k=0

qk xk for |x | < R . (34.3b)

For the rest of this chapter, we will be doing computations involving the above pk ’s and qk ’s .

Don’t forget this. And don’t forget the relation between P and Q , and the coefficients of the first

version of our differential equation. In particular, we might as well note here that

p0 = P(0) = β(0)

α(0)
and q0 = Q(0) = γ (0)

α(0)
.

Finally, throughout this chapter, we will let L be the linear differential operator

L[y] = x2 y′′ + x P(x)y′ + Q(x)y ,

so that we can write the differential equation we wish to solve, equation (34.2), in the very abbreviated

form

L[y] = 0 .

This will make it easier to describe some of our computations.

34.2 The Indicial Equation and Basic Recursion Formula
Basic Derivations

First, let’s see what we get from plugging the arbitrary modified power series

y(x) = xr

∞∑
k=0

ck xk =
∞∑

k=0

ck xk+r

into L (using the formula from theorem 29.12 on multiplying power series):

L[y] = x2 y′′ + x P(x)y′ + Q(x)y

= x2
∞∑

k=0

ck(k + r)(k + r − 1)xk+r−2

+ x

( ∞∑
k=0

pk xk

)( ∞∑
k=0

ck(k + r)xk+r−1

)
+

( ∞∑
k=0

qk xk

)( ∞∑
k=0

ck xk+r

)

=
∞∑

k=0

ck(k + r)(k + r − 1)xk+r

+
∞∑

k=0

k∑
j=0

c j pk− j ( j + r)xk+r +
∞∑

k=0

k∑
j=0

c j qk− j xk+r

= xr

∞∑
k=0

[
ck(k + r)(k + r − 1) +

k∑
j=0

c j

[
pk− j ( j + r)+ qk− j

] ]
xk .
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That is,

L

[
xr

∞∑
k=0

ck xk

]
= xr

∞∑
k=0

Lk xk

where

Lk = ck(k + r)(k + r − 1) +
k∑

j=0

c j

[
pk− j ( j + r)+ qk− j

]
.

Let’s now look at the individual Lk’s .

For k = 0 ,

L0 = c0(0 + r)(0 + r − 1) +
0∑

j=0

c j

[
p0− j ( j + r)+ q0− j

]
= c0r(r − 1) + c0 [p0r + q0]

= c0

[
r(r − 1)+ p0r + q0

]
.

The expression in the last bracket will arise several more times in our computations. For convenience,

we will let I be the corresponding polynomial function

I (ρ) = ρ(ρ − 1) + p0ρ + q0 .

Then

L0 = c0 I (r) .

For k > 0 ,

Lk = ck(k + r)(k + r − 1) +
k∑

j=0

c j

[
pk− j ( j + r)+ qk− j

]

= ck(k + r)(k + r − 1) +
k−1∑
j=0

c j

[
pk− j ( j + r)+ qk− j

] + ck

[
pk−k(k + r)qk−k

]

= ck

[
(k + r)(k + r − 1)+ p0(k + r)+ q0︸ ︷︷ ︸

I (k+r) !

] +
k−1∑
j=0

c j

[
pk− j ( j + r)+ qk− j

]
.

We’ll be repeating the above computations at least two more times in this chapter. To save time,

let’s summarize what we have.

Lemma 34.1

Let L be the differential operator

L[y] = x2 y′′ + x P(x)y′ + Q(x)y

where

P(x) =
∞∑

k=0

pk xk and Q(x) =
∞∑

k=0

qk xk .

Then, for any modified power series xr
∑∞

k ck xk ,

L

[
xr

∞∑
k=0

ck xk

]
= xr

[
c0 I (r) +

∞∑
k=1

(
ck I (k + r) +

k−1∑
j=0

c j

[
pk− j ( j + r)+ qk− j

] )
xk

]
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where

I (ρ) = ρ(ρ − 1) + p0ρ + q0 .

Our immediate interest is in finding a modified power series

y(x) = xr
∞∑

k=0

ck xk with c0 = 0

that satisfies our differential equation,

L[y] = 0 .

Applying the above lemma, we see that we must have

xr

[
c0 I (r) +

∞∑
k=1

(
ck I (k + r) +

k−1∑
j=0

c j

[
pk− j ( j + r)+ qk− j

] )
xk

]
= 0 ,

which means that each term in the above power series must be zero. That is,

I (r) = 0 (34.4a)

and

ck I (k + r) +
k−1∑
j=0

c j

[
pk− j ( j + r)+ qk− j

] = 0 for k = 1, 2, 3, . . . . (34.4b)

The Indicial Equation
The Equation and Its Solutions

You probably already recognized equation (34.4a) as the indicial equation from the basic method of

Frobenius. In more explicit form, it’s the polynomial equation

r(r − 1) + p0r + q0 = 0 . (34.5a)

Equivalently, we can write this equation as

r2 + (p0 − 1)r + q0 = 0 , (34.5b)

or even

(r − r1)(r − r2) = 0 (34.5c)

or

r2 − (r1 + r2)r + r1r2 = 0 (34.5d)

where r1 and r2 are the solutions to the indicial equation,

r1 = 1 − p0 +
√
(p0 − 1)2 − 4q0

2
and r2 = 1 − p0 −

√
(p0 − 1)2 − 4q0

2
.

This, of course, also means that we can write the formula for I in four different ways:

I (ρ) = ρ(ρ − 1) + p0ρ + q0 , (34.6a)

I (ρ) = ρ2 + (p0 − 1)ρ + q0 , (34.6b)
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I (ρ) = (ρ − r1)(ρ − r2) (34.6c)

and

I (ρ) = ρ2 − (r1 + r2)ρ + r1r2 . (34.6d)

For the rest of this chapter, we will use whichever of the above formulas for I seems most convenient

at the time. Also, r1 and r2 will always denote the two values given above. Do note that if both

are real, then r1 ≥ r2 .

By the way, if you compare the second and last of the above formulas for I (ρ) , you’ll see that

p0 = 1 − (r1 + r2) and q0 = r1r2 .

Later, we may find these observations useful.

Proof of Theorem 33.1

Recall that p0 and q0 are related to the coefficients in the equation we first started with,

x2α(x)y′′ + xβ(x)y′ + γ (x)y = 0 ,

via

p0 = P(0) = β0

α0
and q0 = Q(0) = γ0

α0

where

α0 = α(0) , β0 = β(0) and γ0 = γ (0) .

Using these relations, we can rewrite the first version of the indicial equation (equation (34.5a)) as

r(r − 1) + β0

α0
r + γ0

α0
= 0 ,

which, after multiplying through by α0 is

α0r(r − 1) + β0r + γ0 = 0 .

This, along with the formulas for r1 and r2 , completes the proof of theorem 33.1 on page 705.

Recursion Formulas
The Basic Recursion Formula
You probably also recognized that equation (34.4b) is, essentially, a recursion formula for any given

value of r . Let us first rewrite it as

ck I (k + r) = −
k−1∑
j=0

c j

[
pk− j ( j + r)+ qk− j

]
for k = 1, 2, 3, . . . . (34.7)

If

I (k + r) = 0 for k = 1, 2, 3, . . . ,

then we can solve the above for ck , obtaining the generic recursion formula

ck = −1

I (k + r)

k−1∑
j=0

c j

[
pk− j ( j + r)+ qk− j

]
for k = 1, 2, 3, . . . . (34.8)

It will be worth noting that p0 and q0 do not explicitly appear in this recursion formula except

in the formula for I (k + r) .
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More General Recursion Formulas and a Convergence Theorem

Later, we will have to deal with recursion formulas of the form

ck = 1

I (k + r)

(
fk −

k−1∑
j=0

c j

[
pk− j ( j + r)+ qk− j

] )
where the fk’s are coefficients of some power series convergent on (−R, R) . (Note that this reduces

to recursion formula (34.8) if each fk is 0 .) To deal with the convergence of any power series based

on any such a recursion formula, we have the following theorem:

Theorem 34.2

Let R > 0 . Assume
∞∑

k=0

pk xk ,

∞∑
k=0

qk xk and

∞∑
k=0

fk xk

are power series convergent for |x | < R , and

∞∑
k=0

ck xk

is a power series such that, for some value ω and some integer K0 ,

ck = 1

J (k)

(
fk −

k−1∑
j=0

c j

[
pk− j ( j + ω)+ qk− j

] )
for k ≥ K0

where J is some second-degree polynomial function satisfying

J (k) = 0 for k = K0, K0 + 1, K0 + 2, . . . .

Then
∑∞

k ck xk is also convergent for |x | < R .

The proof of this convergence theorem will be given in section 34.6. It is very similar to the

convergence proofs developed in chapter 31 for power series solutions.

34.3 The Easily Obtained Series Solutions

Now let r j be either of the two solutions r1 and r2 to the indicial equation,

I (r) = 0 .

To use recursion formula (34.8) with r = r j , it suffices to have

I (k + r j ) = 0 for k = 1, 2, 3, . . . .

But r1 and r2 are the only solutions to I (r) = 0 , so the last line tells us that, to use recursion

formula (34.8) with r = r j , it suffices to have

k + r j = r1 and k + r j = r2 for k = 1, 2, 3, . . . ;
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that is, it suffices to have

r1 − r j = k and r2 − r j = k for k = 1, 2, 3, . . . .

As long as this holds, we can start with any nonzero constant c0 and generate subsequent ck’s via

the basic recursion formula (34.8) to create a power series

∞∑
k=0

ck xk .

Moreover, theorem 34.2 assures us that this series is convergent for |x | < R . Consequently,

y(x) = xr j

∞∑
k=0

ck xk

is a well-defined function, at least on (0, R) (just what happens at x = 0 depends on the xr j factor

in this formula). Plugging this formula back into our differential equation and basically repeating

the computations leading to the indicial equation and the recursion formula would then confirm that

this y is, indeed, a solution on (0, R) to our differential equation. Let’s record this:

Lemma 34.3

If r j is either of the two solutions r1 and r2 to the indicial equation for the problem considered in

this chapter, and

r1 − r j = k and r2 − r j = k for k = 1, 2, 3, . . . , (34.9)

then a solution on (0, R) to the original differential equation is given by

y(x) = xr j

∞∑
k=0

ck xk

where c0 is any nonzero constant, and c1 , c2 , c3 , . . . are given by recursion formula (34.8) with

r = r j .

Now let us consider the r j = r1 and r j = r2 cases separately, adding the assumption that the

coefficients of our original differential equation are all real-valued in some interval about x0 = 0 .

This means that the coefficients in the indicial equation are all real. Hence, we may assume that

either both r1 and r2 are real with r1 ≥ r2 , or that r1 and r2 are complex conjugates of each other.

Solutions Corresponding to r1

With r j = r1 , condition (34.9) in the above lemma becomes

r1 − r1 = k and r2 − r1 = k for k = 1, 2, 3, . . . ,

Clearly, the only way this cannot be satisfied is if

r2 − r1 = K for some positive integer K .

But, using the formulas for r1 and r2 from page 732, you can easily verify that

r2 − r1 = = −
√
(p0 − 1)2 − 4q0 ,

which cannot equal some positive integer. Thus, the above lemma assures us of the following:
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One solution on (0, R) to our differential equation is given by

y(x) = xr1

∞∑
k=0

ck xk

where c0 is any nonzero constant, and c1 , c2 , c3 , . . . are given by recursion formula

(34.8) with r = r1 .

This confirms statement 1 in theorem 33.2.

In particular, for the rest of our discussion, let us let y1 be the solution

y1(x) = xr1

∞∑
k=0

ak xk (34.10)

where a0 = 1 and

ak = −1

I (k + r1)

k−1∑
j=0

a j

[
pk− j ( j + r1)+ qk− j

]
for k = 1, 2, 3, . . . .

On occasion, we may call this our “first” solution.

“Unexceptional” Solutions Corresponding to r2

With r j = r2 , condition (34.9) in lemma 34.3 becomes

r1 − r2 = k and r2 − r2 = k for k = 1, 2, 3, . . . ,

which, obviously, is the same as

r1 − r2 = K for each positive integer K .

Unfortunately, this requirement does not automatically hold. It is certainly possible that

r1 − r2 = K for some positive integer K .

This is an “exceptional” case which we will have examine further. For now, the lemma above simply

assures us that:

If r1 − r2 is not a positive integer, then a solution on (0, R) to our differential equation

is given by

y(x) = xr2

∞∑
k=0

ck xk

where c0 is any nonzero constant, and the other ck’s are given by recursion formula

(34.8) with r = r2 .

Of course, the solutions just described corresponding to r2 will be the same as those corre-

sponding to r1 if r2 = r1 (i.e., r1 − r2 = 0 ). This is another exceptional case that we will have to

examine later.

For the rest of this chapter, let us say that, if r1 and r2 are not equal and do not differ by an

integer, then the “second solution” to our differential equation on (0, R) is

y2(x) = xr2

∞∑
k=0

bk xk
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where b0 = 1 and

bk = −1

I (k + r2)

k−1∑
j=0

b j

[
pk− j ( j + r2)+ qk− j

]
for k = 1, 2, 3, . . . .

We should note that, if r1 and r2 are two different values not differing by an integer, then the

above y1 and y2 are clearly not constant multiples of each other (at least, it should be clear once

you realize that the first terms of y1(x) and y2(x) are, respectively, xr1 and xr2 ). Consequently

{y1, y2} is a fundamental set of solutions to our differential equation on (0, R) , and

y(x) = c1 y1(x) + c2 y2(x)

is a general solution to our differential equation over (0, R) . That finishes the proof of theorem 33.2

up through statement 2.

Deriving the “Exceptional” Solutions

In the next two sections, we will derive formulas for the solutions corresponding to r = r2 when

r1 and r2 are equal or differ by a nonzero integer. In deriving these solutions, we could use the first

solution, y1 , with the reduction of order method from chapter 12. Unfortunately, that gets somewhat

messy and does not directly lead to useful recursion formulas. So, instead, we will take somewhat

different approaches.

Since the approach we’ll take when r2 = r1 is a bit more elementary (but still tedious) and

somewhat less “clever” than the approach we’ll take when r1 − r2 is a positive integer, we will

consider the case where r2 = r1 first.

34.4 Second Solutions When r2 = r1

Recall that, based on what we learned from studying Euler equations, we suspected that a second

solution to our differential equation when r2 = r1 will be of the form

y(x) = ln |x | Y (x) with Y (x) = xr1

∞∑
k=0

bk xk .

Unfortunately, this turns out not to be generally true. But since it seemed so reasonable at the time,

let us still try using this, but with an added “error term”. That is, let’s try something of the form

y(x) = ln |x | Y (x) + ε(x) . (34.11)

Plugging this into the differential equation:

0 = L[y]

= x2 y′′ + x Py′ + Qy

= x2
[
ln |x | Y ′′ + 2

x
Y ′ − 1

x2
Y + ε′′

]
+ x P

[
ln |x | Y ′ + 1

x
Y + ε′

]
+ Q [ln |x | Y (x) + ε(x)]

= ln |x | [ x2Y ′′ + x PY ′ + QY︸ ︷︷ ︸
L[Y ]

] + 2xY ′ − Y + PY + x2ε′′ + x Pε′ + Qε︸ ︷︷ ︸
L[ε]

.
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Choosing Y to be our first solution,

Y (x) = y1(x) = xr1

∞∑
k=0

ak xk ,

causes the natural log term to vanish, leaving us with

0 = 2x y1
′ − y1 + Py1 + L[ε] ,

which we can rewrite as

L[ε] = F(x) (34.12a)

with

F(x) = y1(x) − 2x y1
′(x) − P(x)y1(x) . (34.12b)

It turns out that we will be seeing both the above differential equation and the function F when

we deal with the case where r2 and r1 differ by a nonzero integer. So, for now, let’s expand F(x)

using the series formulas for y1 and P without assuming r2 = r1 :

F(x) = y1(x) − 2x y1
′(x) − P(x)y1(x)

= xr1

∞∑
n=0

anxn − 2x

(
xr1

∞∑
n=0

an(r1 + n)xn−1

)
−

( ∞∑
n=0

pnxn

)(
xr1

∞∑
m=0

am xm

)

= xr1

[ ∞∑
n=0

an xn −
∞∑

n=0

an(2r1 + 2n)xn −
( ∞∑

n=0

pnxn

)( ∞∑
m=0

am xm

)]

= xr1

∞∑
n=0

(
an [1 − 2r1 − 2n] −

n∑
j=0

a j pn− j

)
xn .

Recalling that a0 = 1 and that, in general p0 = 1 − r1 − r2 , we see that the first term in the series

simplifies somewhat to

a0 [1 − 2r1 − 2 · 0)] −
0∑

j=0

a j p0− j = a0[1 − 2r1 − p0] = r2 − r1 .

For the other terms, we have

an [1 − 2r1 − 2n] −
n∑

j=0

a j pn− j = an [1 − 2r1 − 2n] −
n−1∑
j=0

a j pn− j − an p0

= an [1 − 2r1 − p0 − 2n] −
n−1∑
j=0

a j pn− j

= an [r2 − r1 − 2n] −
n−1∑
j=0

a j pn− j .

So, in general,

F(x) = xr1

[
r2 − r1 +

∞∑
n=1

(
an [r2 − r1 − 2n] −

n−1∑
j=0

a j pn− j

)
xn

]
. (34.13)
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We should also note that, because of the way F was constructed from power series convergent

for |x | < R , we automatically have that the power series factor in the above formula for F(x) is

convergent for |x | < R .

Now, let’s again assume r2 = r1 . With this assumption and the change of index k = n − 1 ,

the above formula for F(x) reduces further,

F(x) = xr1

[
0 +

∞∑
n=1

(
− 2nan −

n−1∑
j=0

a j pn− j

)
xn

]

= xr1

∞∑
k=0

(
− 2(k + 1)ak+1 −

k∑
j=0

a j pk+1− j

)
xk+1

]
,

which we can write more succinctly as

F(x) = xr1+1
∞∑

k=0

fk xk (34.14a)

with

fk = −2(k + 1)ak+1 −
k∑

j=0

a j pk+1− j . (34.14b)

Let us now consider a modified power series formula for our error term

ε(x) = xρ
∞∑

k=0

εk xk .

From lemma 34.2, we know that

L[ε(x)] = xρ
[
ε0 I (ρ) +

∞∑
k=1

(
εk I (k + ρ) +

k−1∑
j=0

ε j

[
pk− j ( j + ρ)+ qk− j

] )
xk

]
.

Thus, the differential equation L[ε] = F becomes

xρ
[
ε0 I (ρ) +

∞∑
k=1

(
εk I (k + ρ) +

k−1∑
j=0

ε j

[
pk− j ( j + ρ)+ qk− j

] )
xk

]
= xr1+1

∞∑
k=0

fk xk

which is satisfied when

ρ = r1 + 1 , (34.15a)

ε0 I (ρ) = f0 (34.15b)

and, for k = 1, 2, 3, . . . ,

εk I (k + ρ) +
k−1∑
j=0

ε j

[
pk− j ( j + r1 + 1)+ qk− j

] = fk . (34.15c)

So let ρ = r1 + 1 and observe that because r1 is a double root of I (r) ,

I (k + ρ) = I (k + r1 + 1) = ([r1 + k + 1] − r1)
2 = (k + 1)2 .

System (34.15) now reduces to

ε0 = f0
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and, for k = 1, 2, 3, . . . ,

εk(k + 1)2 +
k−1∑
j=0

ε j

[
pk− j ( j + r1 + 1)+ qk− j

] = fk .

That is,

ε0 = f0 (34.16a)

and, for k = 1, 2, 3, . . . ,

εk = 1

(k + 1)2

(
fk −

k−1∑
j=0

ε j

[
pk− j ( j + r1 + 1)+ qk− j

] )
(34.16b)

where the fk’s are given by formula (34.14b).

Now recall just what we are looking for, namely, a function ε(x) such that

y2(x) = y1(x) ln |x | + ε(x)

is a solution to our original differential equation. We have obtained

ε(x) = xρ
∞∑

k=0

εk xk

where ρ = r1 +1 and the εk’s are given by formula set (34.16). Plugging this formula back into the

original differential equation and repeating the computations used to derive the above will confirm

that y2 is, indeed, a solution over (0, R) , provided the series for ε converges. Fortunately, using

theorem 34.2 on page 734 this convergence is easily confirmed.

Thus, the above y2 is a solution to our original differential equation on the interval (0, R) .

Moreover, y2 is clearly not a constant multiple of y1 . So {y1, y2} is a fundamental set of solutions,

y(x) = c1 y1(x) + c2 y2(x)

is a general solution to our differential equation over (0, R) , and we have verified statement 3 in

theorem 33.2 (with bk = εk ).

34.5 Second Solutions When r1 − r2 = K
Preliminaries

Let’s now assume r1 and r2 differ by some positive integer K , r1 − r2 = K . Setting

y(x) = xr2

∞∑
k=0

bk xk

with bk = 1 and using recursion formula (34.8) gives us

bk = −1

I (r2 + k)

k−1∑
j=0

b j

[
pk− j ( j + r)+ qk− j

]
for k = 1, 2, 3, . . . , K − 1 .
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Unfortunately, I (r2 + K ) = I (r1) = 0 , giving us a “division by zero” when we attempt to compute

bK . This is the complication we will deal with for the rest of this section. It turns out that there are

two subcases, depending on whether

ΓK =
K−1∑
j=0

b j

[
pK− j ( j + r2)+ qK− j

]
is zero or not. If it is zero, we get lucky.

The Case Where We Get Lucky

Recall that we actually derived our recursion formula from the requirement that, for

y(x) = xr2

∞∑
k=0

bk xk

to be a solution to our differential equation, it suffices to have

bk I (r2 + k) = −
k−1∑
j=0

b j

[
pk− j ( j + r)+ qk− j

]
for k = 1, 2, 3, . . . , . (34.17)

As noted above, we can use this to find bk for k < K . For k = K , we have I (r2+K ) = I (r1) = 0 ,

and the above equation becomes

bK · 0 = ΓK .

If we are lucky, then ΓK = 0 and the above equation is trivially true for any value of bK . So bK is

arbitrary if ΓK = 0 . Pick any value you wish (say, bK = 0 ), and use equation (34.17) to compute

the rest of the bk’s for

y2(x) = xr2

∞∑
k=0

bk xk .

Convergence theorem 34.2 on page 734 now applies and assures us that the above power series

converges for |x | < R . And then, again, the very computations leading to the indicial equation

and recursion formulas verify that this y(x) is a solution to our differential equation. Moreover,

the leading term is xr2 . Consequently, y1(x) and y2(x) are not constant multiples of each other.

Hence, {y1, y2} is a fundamental set of solutions, and

y(x) = c1 y1(x) + c2 y2(x)

is a general solution to our differential equation over (0, R) .

If you go back and check, you will see that the above y2 is the solution claimed to exist in

statement 4 of theorem 33.2 when μ = 0 . Hence we’ve confirmed that part of the claim.

?�Exercise 34.1: Show that, if we took b0 = 0 and bK = 1 in the above (instead of b0 = 1 and

bK = 0 ), we would have obtained the first solution, y1(x) . (Thus, if r1 − r2 = K and Γk = 0 ,

the Frobenius method will generate the complete general solution when using r = r2 .)
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The Other Case

Let us now assume

ΓK =
K−1∑
j=0

b j

[
pK− j ( j + r2)+ qK− j

] = 0 .

Ultimately, we want to confirm that formula (33.4) in theorem 33.2 does describe a solution to our

differential equation. Before doing that, however, let us see how anyone could have come up with

formula (33.4) in the first place.

Deriving a Solution as the Limit of Other Second Solutions

Suppose we have two differential equations that are very similar to each other. Does it not seem

reasonable to expect one solution of one of these equations to also be very similar to some solution

to the other differential equation? Of course it does, and this is what we will use to derive the second

solution to our differential equation,

x2 y′′ + x Py′ + Qy = 0 . (34.18)

Remember, this has the corresponding indicial equation

I (r) = 0 with I (ρ) = (ρ − r2)(ρ − r1) .

Also remember that we are assuming r1 = r2 + K for some positive integer K , and that ΓK (as

defined above) is nonzero.

Now let r be any real value close to r2 (say, |r − r2| < 1 ) and consider

x2 y′′ + x Pr y′ + Qr y = 0

where Pr and Qr differ from P and Q only in having the first coefficients in their power series

about 0 adjusted so that the corresponding indicial equation is

Ir (r) = 0 with Ir (ρ) = (ρ − r)(ρ − r1) .

If r = r2 , this is our original equation. If r = r2 , this is our “approximating differential equation”.

From our discussion in section 34.3 on the “easily obtained solutions”, we know that, when r = r2 ,

a second solution to this equation is given by

y(x, r) = xr

∞∑
k=0

bk(r)x
k

with b0(r) = 1 and

bk(r) = − 1

Ir (r + k)

k−1∑
j=0

b j (r)[Pk− j ( j + r)+ Qk− j ] for k = 1, 2, . . . .

This, presumably, will approximate some second solution y(x, r1) to equation (34.18),

y(x, r2) ≈ y(x, r) .

Presumably, also, this approximation improves as r → r1 . So, let us go further and seek the

y(x, r2) given by

y(x, r2) = lim
r→r2

y(x, r) .
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Before going further, let us observe that

Ir (r + k) = (r + k − r)(r + k − r1)

= k(k + r − [r2 + K ]) = k(k − K + r − r2) .

Thus,

bk(r) = −1

k(k − K + r − r2)

k−1∑
j=0

b j (r)[Pk− j ( j + r)+ Qk− j ] for k = 1, 2, . . . .

In particular,

bK (r) = −1

K (r − r2)

K−1∑
j=0

b j (r)[PK− j ( j + r)+ QK− j ] .

So, while we have

bk(r2) = lim
r→r2

bk(r) when k < K

being well-defined finite values, we also have

lim
r→r2

|bK (r)| = ∞ ,

suggesting that

lim
r→r2

|bk(r)| = ∞ for k > K

since the recursion formula for these bk(r)’s all contain bK (r) .

It must be noted, however, that we are assuming limr→r2
y(x, r) exists despite the fact that

individual terms in y(x, r) behave badly as r → r2 . Let’s hold to this hope. Assuming this,

lim
r→r2

xr

∞∑
k=K

bk(r)x
k = lim

r→r2

[
xr

∞∑
k=0

bk(r)x
k − xr

K−1∑
k=0

bk(r)x
k

]

= lim
r→r2

[
y(x, r) − xr

K−1∑
k=0

bk(r)x
k

]
= y(x, r2) − xr2

K−1∑
k=0

bk(r2)x
k ,

which is finite for each x in the interval of convergence. Consequently,

lim
r→r2

(r − r2)x
r

∞∑
k=K

bk(r)x
k = 0 ,

which we will rewrite as

lim
r→r2

xr

∞∑
k=K

βk(r)x
k = 0 (34.19)

by letting

βk(r) = (r − r2)bk(r) for r = r2 .

Now, let’s start computing y(x, r2) as a limit using a simple, cheap trick:

y(x, r2) = lim
r→r2

y(x, r)

= lim
r→r2

xr
∞∑

k=0

bk(r)x
k
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= lim
r→r2

xr

K−1∑
k=0

bk(r)x
k + lim

r→r2

xr

∞∑
k=K

bk(r)x
k

= xr2

K−1∑
k=0

bk(r2)x
k + lim

r→r2

r − r2

r − r2
xr

∞∑
k=K

bk(r)x
k

= xr2

K−1∑
k=0

bk(r2)x
k + lim

r→r2

xr
∑∞

k=K βk(r)x
k

r − r2
.

Using L’Hôpital’s rule, we see that

lim
r→r2

xr
∑∞

k=K βk (r)x
k

r − r2
= lim

r→r2

∂

∂r

[
xr
∑∞

k=K βk(r)x
k
]

∂

∂r
[r − r2]

= lim
r→r2

xr ln |x |∑∞
k=K βk(r)x

k + xr
∑∞

k=K βk
′(r)xk

1

= xr2 ln |x |
∞∑

k=K

βk(r2)x
k + xr2

∞∑
k=K

βk
′(r2)x

k .

Combining the last two results gives

y(x, r2) = xr2 ln |x |
∞∑

k=K

βk(r2)x
k + xr2

∞∑
k=0

{
bk(r2) if k < K

βk
′(r2) if K ≤ k

}
xk .

This is not a very “pretty” expression. To simplify it, let

εk =
{

bk(r2) if k < K

βk
′(r2) if K ≤ k

,

and observe that, letting αk = βk+K (r2) ,

xr2

∞∑
k=K

βk(r2)x
k = xr1−K

[
α0x K + α1x K+1 + α2x K+2 + · · ·

]
= xr1

∞∑
k=0

αk xk .

Then

y(x, r2) = ln |x | Y (x) + ε(x) (34.20a)

where

Y (x) = xr1

∞∑
k=0

αk xk and ε(x) = xr2

∞∑
k=0

εk xk . (34.20b)

Admittedly, part of the derivation of formula (34.20) was based on “hope” and assumptions that

seemed reasonable but were not rigorously justified. So we are not yet certain this formula does yield

the desired solution. Moreover, the methods given in this derivation for computing the αk’s and εk’s

certainly appear to be rather difficult to carry out in practice. These are valid concerns that we will

deal with by now ignoring just how we derived this formula. Instead, we will see about validating

this formula and obtaining more usable recursion formulas for the αk’s and εk’s via methods that,

by now, should be familiar to the reader.
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Verifying Our Solution

Notice how similar formula (34.20a) for y(x, r2) is to formula (34.11) on page 737 from which we

derived the second solution y(x) when r1 − r2 = 0 in section 34.4. Let us be inspired by the work

done in that section (and reuse as much of that work as possible) and try to find a solution of the

form

y(x) = ln |x | Y (x) + ε(x)

where

ε(x) = xr2

∞∑
k=0

εk xk .

Glancing back at the work near the beginning of section 34.4, it should be clear that

y(x) = ln |x | Y (x) + ε(x)

will satisfy our differential equation L[y] = 0 if

Y (x) = y1(x) and L[ε] = F(x)

where, taking into account the facts that I (r2) = 0 and r1 − r2 = K ,

L[ε] = xr2

[
ε0 I (r2) +

∞∑
k=1

(
εk I (r2 + k) +

k−1∑
j=0

ε j

[
pk− j (r2 + j)+ qk− j

] )
xk

]

= xr2

∞∑
k=1

(
εk I (r2 + k) +

k−1∑
j=0

ε j

[
pk− j (r2 + j)+ qk− j

] )
xk

and

F(x) = xr1

[
r2 − r1 +

∞∑
n=1

(
an [r2 − r1 − 2n] −

n−1∑
j=0

a j pn− j

)
xn

]

= xr2+K

[
− K +

∞∑
n=1

(
an [−K − 2n] −

n−1∑
j=0

a j pn− j

)
xn

]

= xr2

[
− K x K +

∞∑
n=1

(
an [−K − 2n] −

n−1∑
j=0

a j pn− j

)
x K+n

]
.

Using k = n + K , we can rewrite our last formula as

F(x) = xr2

[
− K x K +

∞∑
k=K+1

fk xk

]
with

fk = ak−K [K − 2k] −
k−K−1∑

j=0

a j pk−K− j .

As in the previous section, we know the power series in the formula for F(x) converges for |x | < R

because of the way it was constructed from power series already known to be convergent for these

values of x .
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So the differential equation, L[ε] = F , expands to

xr2

∞∑
k=1

(
εk I (r2 + k) +

k−1∑
j=0

ε j

[
pk− j (r2 + j)+ qk− j

] )
xk

= xr2

[
− K x K +

∞∑
k=K+1

fk xk

]
,

which means that we are seeking εk’s satisfying the system

εk I (r2 + k) +
k−1∑
j=0

ε j

[
pk− j (r2 + j)+ qk− j

] =

⎧⎪⎪⎨⎪⎪⎩
0 if 1 ≤ k < K

−K if k = K

fk if k > K

. (34.21)

Solving for εk in the first few equations of this set yields

εk = −1

I (r2 + k)

k−1∑
j=0

ε j

[
pk− j (r2 + j)+ qk− j

]
for k = 1, 2, . . . , K − 1 .

To simplify matters, let’s recall that, at the start of this section, we had already obtained a set

{b0, b1, . . . , bK−1} satisfying b0 = 1 and

bk = −1

I (r2 + k)

k−1∑
j=0

b j

[
pk− j (r2 + j)+ qk− j

]
for k = 1, 2, . . . , K − 1 .

It is then easily verified that, whatever value we have for ε0 ,

εk = ε0bk for k = 1, 2, . . . , K − 1 .

Now, also recall that

ΓK =
K−1∑
j=0

b j

[
pK− j (r2 + j)+ qK− j

] = 0 ,

and take a look at the K th equation in system (34.21):

εK I (r2 + K ) +
K−1∑
j=0

ε j

[
pK− j (r2 + j)+ qK− j

] = −K

↪→ εK I (r1) +
K−1∑
j=0

ε0b j

[
pK− j (r2 + j)+ qK− j

] = −K

↪→ εK · 0 + ε0ΓK = −K .

So εK can be any value, while

ε0 = − K

ΓK
,

and

εk = ε0 · bk = − K bk

ΓK
for k = 1, 2, . . . , K − 1 .
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For the remaining εk’s , we simply solve each of the remaining equations in system (34.21) for

εk (using whatever value of εK we choose), obtaining

εk = 1

I (r2 + k)

[
fk −

k−1∑
j=0

ε j

[
pk− j (r2 + j)+ qk− j

] ]
for k > K .

Theorem 34.2 tells us that the resulting
∑∞

k=0 εk xk converges for |x | < R , and that, along

with all the computations above, tells us that

y(x) = y1(x) ln |x | + xr2

∞∑
k=0

εk xk

is a solution to our original differential equation on (0, R) . Clearly, it is not a constant multiple of

y1 , and so {y1, μy} is a fundamental set of solutions for any nonzero constant μ . In particular, the

solution mentioned in theorem 33.2 is the one with

μ = 1

ε0
= −ΓK

K
.

And that, except for verifying convergence theorem 34.2, confirms statement 4 of theorem 33.2,

and completes the proof of theorem 33.2, itself.

34.6 Convergence of the Solution Series

Finally, let’s verify theorem 34.2 on page 734 on the convergence of our series. As you will see, the

proof is very similar to (and a bit simpler than) the proofs of convergence in chapter 31.

Assumptions and Claim

We are assuming that ω is some constant,

∞∑
k=0

fk xk ,

∞∑
k=0

pk xk and

∞∑
k=0

qk xk

are power series convergent for |x | < R , J is a second-degree polynomial function, and K0 is

some nonnegative integer such that

J (k) = 0 for k = K0, K0 + 1, K0 + 2, . . . .

We are also assuming that we have a power series

∞∑
k=0

ck xk

whose coefficients satisfy

ck = 1

J (k)

[
fk −

k−1∑
j=0

c j

[
pk− j ( j + ω) + qk− j

] ]
for k ≥ K0 .

The claim of the theorem is that
∑∞

k ck xk converges for all x satisfying |x | < R . This, of

course, can be verified by showing
∑∞

k |ck | |x |k converges for each x in (−R, R) .
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The Proof

We start by letting x be any single value in (−R, R) . We then can (and do) choose X to be some

value with |x | < X < R . Also, by the convergence of the series, we can (and do) choose M to be

a positive value such that, for k = 0, 1, 2, . . . ,∣∣∣ fk Xk
∣∣∣ < M ,

∣∣∣pk Xk
∣∣∣ < M and

∣∣∣qk Xk
∣∣∣ < M .

Now consider the power series
∑∞

k=0 Ck xk with

Ck = |ck | for k < K0

and

Ck =
∣∣∣∣ 1

J (k)

∣∣∣∣ [M X−k +
k−1∑
j=0

C j

[
M X−[k− j]( j + |ω|) + M X−[k− j]

] ]
for k ≥ K0 .

Comparing the recursion formulas for ck and Ck , it is obvious that

|ck | |x |k ≤ Ck |x |k for k = 0, 1, 2, . . . .

Consequently, the convergence of
∑∞

k ck xk can be confirmed by showing
∑∞

k Ck |x |k converges,

and, by the limit ratio test (theorem 29.11 on page 578) that can be shown by verifying that

lim
k→∞

∣∣∣∣Ck+1xk+1

Ck xk

∣∣∣∣ ≤ 1 .

Fortunately, for k > K0 ,

Ck+1 =
∣∣∣∣ 1

J (k + 1)

∣∣∣∣ [M X−(k+1) +
k∑

j=0

C j

[
M X−[k+1− j]( j + |ω|) + M X−[k+1− j]

] ]

=
∣∣∣∣ X−1

J (k + 1)

∣∣∣∣ [(M X−k +
k−1∑
j=0

C j

[
M X−[k− j]( j + |ω|) + M X−[k− j]

])

+ Ck

[
M X−[k−k](k + |ω|) + M X−[k−k]

] ]

=
∣∣∣∣ X−1

J (k + 1)

∣∣∣∣ (|J (k)| Ck + Ck M[k + ω + 1])

=
∣∣∣∣ |J (k)| + M[k + ω + 1]

J (k + 1)

∣∣∣∣ · Ck

X
.

Thus, ∣∣∣∣Ck+1xk+1

Ck xk

∣∣∣∣ = Ck+1

Ck
|x | =

∣∣∣∣ |J (k)| + M[k + ω + 1]
J (k + 1)

∣∣∣∣ · |x |
X

.

Since J is a second-degree polynomial, you can easily verify that

lim
k→∞

∣∣∣∣ |J (k)| + M[k + ω + 1]
J (k + 1)

∣∣∣∣ = 1 .

Hence, since |x | < X ,

lim
k→∞

∣∣∣∣Ck+1xk+1

Ck xk

∣∣∣∣ = lim
k→∞

∣∣∣∣ |J (k)| + M[k + ω + 1]
J (k + 1)

∣∣∣∣ · |x |
X

= 1 · |x |
X

< 1 .
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Systems of Differential
Equations

(A Brief Introduction)
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35

Systems of Differential Equations:
A Starting Point

Thus far, we have been dealing with individual differential equations. But there are many applications

that lead to sets of differential equations sharing common solutions. These sets are generally referred

to as “systems of differential equations”.

In this chapter we will begin a brief discussion of these systems. Unfortunately, a complete

discussion goes beyond the scope of this text and requires that the reader has had a decent course

on linear algebra. So our discussion will be somewhat limited in scope and in the types of systems

considered. The goal is for the reader to begin understanding the basics, including why these

systems are important, and how some of the methods for analyzing their solutions can be especially

illuminating, even when the system comes from a single differential equation. In fact, these methods

are especially important in analyzing those differential equations that are not linear.

35.1 Basic Terminology and Notions

In general, a kth-order system of M differential equations with N unknowns is simply a collection

of M differential equations involving N unknown functions with k being the highest order of the

derivatives explicitly appearing in the equations. For brevity, we may refer to such a system as a

“kth-order M×N system”.

Our primary interest, however, will be in in first-order N×N systems of differential equations

that can be written as
x1

′ = f1(t, x1, x2, . . . , xN )

x2
′ = f2(t, x1, x2, . . . , xN )

...

xN
′ = fN (t, x1, x2, . . . , xN )

(35.1)

where the x j ’s are (initially unknown) real-valued functions of t (hence x ′ = dx/dt ), and the

fk(t, x1, x2, . . . , xN )’s — the component functions of the system — are known functions of N + 1

variables. Note that each equation is a first-order differential equation in which only one of the

unknown functions is differentiated.1 We will refer to such systems of differential equations as

either standard first-order systems or, when extreme brevity is desired, as standard systems.

1 Also note that we have gone back to using t as the main variable.

751
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While we will be consistent in using t as the variable in the initially unknown functions, we will

feel free to use whatever symbols seem convenient for these functions of t . In fact, when N = 2

or N = 3 (which will be the case for almost all of our examples), we will abandon subscripts and

denote our functions of t by x , y and, if needed, z , and we will write our generic systems as

x ′ = f (t, x, y)

y′ = g(t, x, y)
or

x ′ = f (t, x, y, z)

y′ = g(t, x, y, z)

z′ = h(t, x, y, z)

, (35.2)

as appropriate.

!�Example 35.1: Here is a simple standard first-order system:

x ′ = x + 2y

y′ = 5x − 2y
.

Now suppose we have a standard first-order N×N system with unknown functions x1 , x2 , . . .

and xN , along with some interval of interest (α, β) . A solution to this system over this interval is

any ordered set of N specific real-valued functions x̂1 , x̂2 , . . . and x̂N such that all the equations

in the system are satisfied for all values of t in the interval (α, β) when we let2

x1(t) = x̂1(t) , x2(t) = x̂2(t) , . . . and xN (t) = x̂N (t) .

A general solution to our system of differential equations (over (α, β) ) is any ordered set of N for-

mulas describing all possible such solutions. Typically, these formulas include arbitrary constants.3

!�Example 35.2: Consider the system

x ′ = x + 2y

y′ = 5x − 2y

over the entire real line, (−∞,∞) . If we let

x(t) = e3t + 2e−4t and y(t) = e3t − 5e−4t ,

and plug these formulas for x and y into the first differential equation in our system,

x ′ = x + 2y ,

we get
d

dt

[
e3t + 2e−4t

]
=

[
e3t + 2e−4t

]
+ 2

[
e3t − 5e−4t

]
↪→ 3e3t − 2 · 4e−4t = [1 + 2]e3t + [2 − 2 · 5]e−4t

↪→ 3e3t − 8e−3t = 3e3t − 8e−3t ,

which is an equation valid for all values of t . So these two functions, x and y , satisfy the first

differential equation in the system over (−∞,∞) .

2 We could allow the xk (t)’s to be complex valued, but this will not gain us anything with the systems of interest to us and

would complicate the “graphing” techniques we’ll later develop and employ.
3 And it is also typical that the precise interval of interest, (α, β) , is not explicitly stated, and may not even be precisely

known.
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Likewise, it is easily seen that these two functions also satisfy the second equation:

y′ = 5x − 2y

↪→ d

dt

[
e3t − 5e−4t

]
= 5

[
e3t + 2e−4t

]
− 2

[
e3t − 5e−4t

]
↪→ 3e3t − 5(−4)e−4t = [5 − 2]e3t + [5 · 22(−5)]e−4t

↪→ 3e3t + 20e−4t = 3e3t + 20e−4t .

Thus, the pair

x(t) = e3t + 2e−4t and y(t) = e3t − 5e−4t

is a solution to our system over (−∞,∞) .

More generally, you can easily verify that, for any choice of constants c1 and c2 ,

x(t) = c1e3t + 2c2e−4t and y(t) = c1e3t − 5c2e−4t

satisfies the given system (see exercise 35.4). In fact, we will later verify that the above is a

general solution to the system. (Note that the two formulas in the above general solution share

arbitrary constants. This will be typical.)

On the other hand, plugging the pair

x(t) = e3t + 2e4t and y(t) = 2e3t + e4t

into the first equation of our system yields

x ′ = x + 2y

↪→ d

dt

[
e3t + 2e4t

]
=

[
e3t + 2e4t

]
+ 2

[
2e3t + e4t

]
↪→ 3e3t + 8e4t = 5e3t + 4e4t

↪→ 4e4t = 2e3t ,

which is not true for every real value t . So this last pair of functions is not a solution to our

system.

If, in addition to our stanadard first-order system, we have the value of every xk specified at

some single point t0 , then we have an initial-value problem, a solution of which is any solution to

the system that also satisfies the given initial values. Unsurprisingly, we usually solve initial-value

problems by first finding the general solution to the system, and then applying the initial conditions

to the general solution to determine the values of the ‘arbitrary’ constants.

!�Example 35.3: Consider the initial-value problem consisting of the system from the previous

example,

x ′ = x + 2y

y′ = 5x − 2y
,
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along with the initial conditions

x(0) = 0 and y(0) = 1 .

In the previous example, it was asserted that the pair

x(t) = c1e3t + 2c2e−4t and y(t) = c1e3t − 5c2e−4t (35.3)

is a solution to our system for any choice of constants c1 and c2 . Using these formulas with the

initial conditions, we get

0 = x(0) = c1e3·0 + 2c2e−4·0 = c1 + 2c2

and

1 = y(0) = c1e3·0 − 5c2e−4·0 = c1 − 5c2 .

So, to find c1 and c2 , we solve the simple algebraic linear system

c1 + 2c2 = 0

c1 − 5c2 = 1
.

Doing so however you wish, you should easily discover that

c1 = 2

7
and c2 = −1

7
,

which, after plugging these values back into the general formulas for x(t) and y(t) given in

equation set (35.3), yields the solution to the given initial-value problem,

x(t) = 2

7
e3t − 2

7
e−4t and y(t) = 2

7
e3t + 5

7
e−4t .

By the way, you will occasionally hear the term “coupling” in describing the extent in which

each equation of the system contains different unknown functions. A system is completely uncoupled

if each equation involves just one of the unknown functions, as in

x ′ = 5x + sin(x)

y′′ = 4y
,

and is weakly coupled or only partially coupled if at least one of the equations just involves only one

unknown function, as in
x ′ = 5x + 2y

y′′ = 4y
.

Such systems can be solved in the obvious manner. First solve each equation involving a single

unknown function, and then plug those solutions into the other equations, and deal with them.

!�Example 35.4: Consider the system

x ′ = 5x + 2y

y′ = 4y
.

The second equation, y′ = 4y is a simple linear and separable equation whose general solution

you can readily find to be

y(t) = c1e4t .
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With this, the first equation in the system becomes

x ′ = 5x + 2c1e4t ,

another first-order linear equation that you should have little trouble solving (see chapter 5). Its

general solution is

x(t) = 1

2
c1e4t + c2e5t .

So, the general solution to our system is the pair

x(t) = 1

2
c1e4t + c2e5t and y(t) = c1e4t .

For the most part, our interest will be in systems that are neither uncoupled nor weakly coupled.

35.2 A Few Illustrative Applications

Let us look at a few applications that naturally lead to standard 2×2 first-order systems.

A Falling Object

Way back in section 1.2, we considered an object of mass m plummeting towards the ground under

the influence of gravity. As we did there, let us set

t = time (in seconds) since the object was dropped ,

y(t) = vertical distance (in meters) between the object and the ground at time t ,

and

v(t) = vertical velocity (in meters/second) of the object at time t .

We can view y and v as two unknown functions related by

dy

dt
= v .

Now, in developing a “better model” describing the fall (see the discussion starting on page 11), we

took into account air resistance and obtained

dv

dt
= −9.8 − κv

where κ is a positive constant describing how strongly air resistance acts on the falling object. This

gives us a system of two differential equations with two unknown functions,

y′ = v

v′ = −9.8 − κv
.

Fortunately, this is a very weakly coupled system whose second equation is a simple first-order

equation involving only the function v . We’ve already solved it (in example 4.7 on page 75),

obtaining

v(t) = v0 + c1e−κt where v0 = −9.8

κ
.
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TTank A

(500 gal.)

Tank B

(1,000 gal.)

2 gal./min.

2 gal./min.

6 gal./min. (50% alcohol)

6 gal./min.

6 gal./min. (0% alcohol)

6 gal./min.

Figure 35.1: A simple system of two tanks containing water/alcohol mixtures.

Plugging this back into the first equation of the system yields

dy

dt
= v0 + c1e−κt ,

which is easily integrated:

y(t) =
∫

dy

dt
dt =

∫ [
v0 + c1e−κt

]
dt = v0t − c1

κ
e−κt + c2 .

So, the general solution to this system is the pair

y(t) = v0t − c1

κ
e−κt + c2 and v(t) = v0 + c1e−κt .

Mixing Problems with Multiple Tanks

Let us expand, slightly, our discussion of “mixing” from section 10.6 on page 211 by considering

the situation illustrated in figure 35.1. Here we have two tanks, A and B. Each minute 6 gallons

of a water/alcohol mix consisting of 50% alcohol is added to tank A, and 6 gallons of the mix in

tank A is drained out of the tank. At the same time, 6 gallons of pure water is added to tank B and

6 gallons of the mix in tank B is drained out of the tank. Meanwhile, the mix from each tank is

pumped into the other tank at the rate of 2 gallons per minute.

Following standard conventions, we will let

t = number of minutes since we started the mixing process ,

x = x(t) = amount (in gallons) of alcohol in tank A at time t ,

and

y = y(t) = amount (in gallons) of alcohol in tank B at time t .

Let us assume that tank A initially contains 500 gallons of pure water, while tank B initially contains

1,000 gallons of an alcohol-water mix with 90 percent of that mix being alcohol. Note that the input

and output flows for each tank cancel out, leaving the total amount of mix in each tank constant. So,

our initial conditions are

x(0) = 0 and y(0) = 90

100
× 1000 = 900 ,

and the concentrations of the alcohol at time t in tanks A and B are, respectively,

x

500
and

y

1000
.
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In this system we have six “flows” affecting the rate the amount of alcohol varies in each tank over

time, each corresponding to one of the pipes in figure 35.1. In each case the rate at which alcohol is

flowing is simply the total flow rate of the mix in the pipe times the concentration of alcohol in that

mix. Thus,

x ′ = dx

dt
= change in the amount of alcohol in tank A per minute

= rate alcohol is pumped into tank A from the outside

+ rate alcohol is pumped into tank A from tank B

− rate alcohol is pumped from tank A into tank B

− rate alcohol is drained from tank A

=
(

6 × 50

100

)
+

(
2 × y

1000

)
−

(
2 × x

500

)
−

(
6 × x

500

)
= 3 + 2

1000
y − 8

500
x ,

and

y′ = dy

dt
= change in the amount of alcohol in tank B per minute

= rate alcohol is pumped into tank B from the outside

+ rate alcohol is pumped into tank B from tank A

− rate alcohol is pumped from tank B into tank A

− rate alcohol is drained from tank B

= (6 × 0) +
(

2 × x

500

)
−

(
2 × y

1000

)
−

(
6 × y

1000

)
= 2

500
x − 8

1000
y .

Thus, we have the system

x ′ = − 8

500
x + 2

1000
y + 3

y′ = 2

500
x − 8

1000
y

. (35.4)

Rabbits and Gerbils: A Competing Species Model
A Single Species Competing with Itself

Back in chapter 10, we developed two models for population growth. Let us briefly review the

“better” model, still assuming our population is a bunch of rabbits in an enclosed field. In that model

R(t) = number of rabbits in the field after t months

and

R′ = d R

dt
= change in the number of rabbits per month = βR(t)

where β is the “net birth rate” (that is,‘the number of new rabbits normally born each month per

rabbit’ minus ‘the fraction of the population that dies each month’). Under ideal conditions, β is a

constant β0 , which can be determined from the natural reproductive rate for rabbits and the natural

lifetime of a rabbit (see section 10.2). But assuming β is constant led to a model that predicted an
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unrealistic number of rabbits in a short time. To take into account the decrease in the net birth rate

that occurs when the number of rabbits increases, we added a correction term that decreases the net

birth rate as the number of rabbits increases. Using the simplest practical correction term gave us

β = β0 − γ R

where γ is some positive constant. Our differential equation for R , R′ = βR , is then

R′ = (β0 − γ R)R

or, equivalently,

R′ = γ (κ − R)R where κ = “the carrying capacity” = β0

γ
.

This is the “logistic equation”, and we discussed it and its solutions in section 10.4. In particular, we

discovered that it has a stable equilibrium solution

R(t) = κ for all t .

Two Competing Species

Now suppose our field contains both rabbits and gerbils, all eating the same food and competing for

the same holes in the ground. Then we should include an additional correction term to the net birth

rate β to take into account the additional decrease in net birth rate for the rabbits that occurs as the

number of gerbils increases, and the simplest way to add such a correction term is to simply subtract

some positive constant times the number of gerbils. This gives us

β = β0 − γ R − αG

where α is some positive constant and

G = G(t) = number of gerbils in the field at time t .

This means that our basic differential equation for the number of rabbits, R′ = βR , becomes

R′ = (β0 − γ R − αG)R .

But, of course, there must be a similar differential equation describing the rate at which the

gerbil population varies. So we actually have the system

R′ = (β1 − γ1 R − α1G)R

G ′ = (β2 − γ2G − α2 R)G
(35.5)

where β1 and β2 are the net birth rates per creature under ideal conditions for rabbits and gerbils,

respectively, and the γk ’s and αk’s are positive constants that would probably have to be deterimined

by experiment and measurement.

First-order system (35.5) is the classic competing species model. From our previous study of

rabbit populations in chapter 10, we know that

β1 = 5

4
.

Making somewhat uneducated but vaguely reasonable guesses for β2 and the γk’s and αk’s yields

the system

R′ =
(

5

4
− 1

160
R − 3

1000
G

)
R

G ′ =
(

3 − 3

500
G − 3

160
R
)

G

. (35.6)
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35.3 Converting Differential Equations to First-Order
Systems

Converting a Single Second-Order Differential Equation

Let’s start with an example.

!�Example 35.5: Consider the second-order nonlinear differential equation

y′′ − 3y′ + 8 cos(y) = 0 ,

which we will rewrite as

y′′ = 3y′ − 8 cos(y) .

Let us now introduce a second “unknown” function x related to y by setting

y′ = x .

Differentiating this and then applying the last two equations yields

x ′ = y′′ = 3y′ − 8 cos(y) = 3x − 8 cos(y) .

This (with the middle cut out), along with the definition of x , then gives us the 2×2 standard

first-order system

x ′ = 3x − 8 cos(y)

y′ = x
.

Thus, we have converted the single second-order differential equation

y′′ − 3y′ + 8 cos(y) = 0

to the above 2×2 standard first-order system. If we can solve this system, then we would also

have the solution to the original single second-order differential equation. And even if we cannot

truly solve the system, we may be able to use methods that we will later develop for systems to

gain useful information about the desired solution y .

In general, any second-order differential equation that can be written as

y′′ = F
(
t, y, y′)

can be converted to a standard 2×2 first-order system by introducing a new unknown function x

related to y via

y′ = x ,

and then observing that

x ′ = y′′ = F
(
t, y, y′) = F (t, y, x) .

This gives us the system

x ′ = F(t, y, x)

y′ = x
.

Let us cleverly call this system the first-order system corresponding to the original differential

equation. If we can solve this system, then we automatically have the solution to our original
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differential equation. And even if we cannot easily solve the system, we will find that some of the

tools we’ll later develop for first-order systems will greatly aid us in analyzing the possible solutions,

especially when the original equation is not linear.

Do note that, using this procedure, any second-order set of initial values

y(t0) = a1 and y′(t0) = a2

is converted to initial values

x(t0) = a2 and y(t0) = a1 .

!�Example 35.6: Consider the second-order initial-value problem

y′′ − sin(y) y′ = 0 with y(0) = 2 and y′(0) = 3 .

Rewriting the differential equation as

y′′ = sin(y) y′

and letting x = y′ (so that x ′ = y′′ ) lead to

x ′ = y′′ = sin(y) y′ = sin(y) x = x sin(y) ,

giving us the standard first-order system

x ′ = x sin(y)

y′ = x

with initial conditions

x(0) = y′(0) = 3 and y(0) = 2 .

Converting Higher-Order Differential Equations and Systems

What we just did with a second-order differential equation can easily be extended to convert a

third-order differential equation

y′′′ = F(t, y, y′, y′′)

to a standard first-order system with three differential equations. All we do is introduce two new

functions x and z that are related to y and each other by

x = y′ and z = x ′ = y′′ .

Then we have

z′ = y′′′ = F(t, y, y′, y′′) = F(t, y, x, z) ,

giving us the standard system

x ′ = z

y′ = x

z′ = F(t, y, x, z)

.

!�Example 35.7: Consider the third-order differential equation

y′′′ − 3y′′ + sin(y) y′ = 0 ,
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which we will rewrite as

y′′′ = 3y′′ − sin(y) y′ .

Introducing the functions x and z related to each other and to y by

x = y′ and z = x ′ = y′′

and observing that

z′ = y′′′ = 3y′′ − sin(y) y′ = 3z − sin(y) x ,

we see that the first-order system of three equations corresponding to our original third-order

equation is

x ′ = z

y′ = x

z′ = 3z − sin(y) x

.

Needless to say, the above can be extended to a simple process for converting any N th-order

differential equation that can be written as

y(N ) = F
(

t, y, y′, y′′, . . . , y(N−1)
)

to an N×N standard first-order system. The biggest difficulty is that, if N > 3 , you will probably

want to start using subscripted functions. We’ll see this later in section 35.5.

It should also be clear that this process can be applied to convert higher-order systems of

differential equations to standard first-order systems. The details are easy enough to figure out if

you ever need to do so.

Why Do It?

It turns out that some of the useful methods we developed to deal with first-order differential equa-

tions can be modified to being useful methods for dealing with standard first-order systems. These

methods include the use of slope fields (see chapter 8) and Euler’s numerical method (see chapter

9). Consequently, the above process for converting a single second-order differential equation to

a first-order system can be an important tool in analyzing solutions to second-order equations that

cannot be easily handled by the methods previously discussed in this text. In particular, this conver-

sion process is a particularly important element in the study of nonlinear second-order differential

equations.

Another Example: The Pendulum

There is one more system that we will want for future use. This is the system describing the motion

of the pendulum illustrated in figure 35.2. This pendulum consists of a small weight of mass m

attached at one end of a massless rigid rod, with the other end of the rod attached to a pivot so that

the weight can swing around in a circle of radius L in a vertical plane. The forces acting on this

pendulum are the downward force of gravity and, possibly, a frictional force from either friction at

the pivot point or air resistance.

Let us describe the motion of this pendulum using the angle θ from the vertical downward line

through the pivot to the rod, measured (in radians) in the counterclockwise direction. This means that
dθ/dt is positive when the pendulum is moving counterclockwise, and is negative when the pendulum

is moving clockwise.
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T

θ

θ

mg

L

Fgrav,tan

Figure 35.2: The pendulum system with a weight of mass m attached to a massless rod of length

L swinging about a pivot point under the influence of gravity.

Since the motion is circular, and the ‘positive’ direction is counterclockwise, our interest is in

the components of velocity, acceleration and force in the direction of vector T illustrated in figure

35.2. This is the unit vector tangent to the circle of motion pointing in the counterclockwise direction

from the current location of the weight. From basic physics and geometry, we know these tangential

components of the weight’s velocity and acceleration are

vtan = L
dθ

dt
= Lθ ′ and atan = L

d2θ

dt2
= Lθ ′′ .

Using basic physics and trigonometry (and figure 35.2), we see that the corresponding component

of gravitational force is

Fgrav,tan = −mg sin(θ) .

For the frictional force, we’ll use what we’ve used several times before,

Ffric,tan = −γ vtan = −γ Lθ ′

where γ is some nonnegative constant — either zero if this is an ideal pendulum having no friction,

or a small to large positive value corresponding to a small to large frictional force acting on the

pendulum.

Writing out the classic “ ma = F ” equation, we have

mLθ ′′ = matan = Fgrav,tan + Ffric,tan = −mg sin(θ) − γ Lθ ′ .

Cutting out the middle and dividing through by mL then gives us the slightly simpler equation

θ ′′ = − g

L
sin(θ) − κθ ′ where κ = γ

m
. (35.7)

Observe that, because of the sin(θ) term, this second-order differential equation is nonlinear.

To convert this equation to a first-order system, let ω be the angular velocity, dθ/dt . So

θ ′ = dθ

dt
= ω

and

ω′ = θ ′′ = − g

L
sin(θ) − κθ ′ = − g

L
sin(θ) − κω ,

giving us the system
θ ′ = ω

ω′ = − g

L
sin(θ) − κω

. (35.8)
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35.4 Using Laplace Transforms to Solve Systems

If this were a slightly more advanced treatment of systems (and if we had more space), we would

discuss solving certain simple systems using “eigenvalues” and “eigenvectors”. But that takes us

beyond the scope of this text (in which an understanding of such terms is not assumed). So, as an

alternative, let us observe that, if a system can be written as

x ′ = ax + by + f (t)

y′ = cx + dy + g(t)

where a , b , c and d are constants, and f and g are ‘reasonable’ functions on (0,∞) , then we

can find the solutions to this system by taking the Laplace transform of each equation, solving the

resulting algebraic system for

X = L[x] and Y = L[y]

and then taking the inverse Laplace transform of each. If initial conditions x(0) and y(0) are

known, then use them when taking the transforms of the derivatives. Otherwise, just view x(0) and

y(0) as arbitrary constants, possibly renaming them x0 and y0 for convenience.

One example should suffice.

!�Example 35.8: Consider solving the system

x ′ = x + 2y + 10e4t

y′ = 2x + y

with initial conditions

x(0) = 0 and y(0) = 2 .

Taking the Laplace transform of the first equation:

L
[
x ′]∣∣

s
= L[x]|s + 2L[y]|s + 10L

[
e4t
]∣∣∣

s

↪→ s X (s) − x(0) = X (s) + 2Y (s) + 10

s − 4

↪→ s X (s) − 0 = X (s) + 2Y (s) + 10

s − 4

↪→ [s − 1]X (s)− 2Y (s) = 10

s − 4
.

Doing the same with the second equation:

L
[
y′]∣∣

s
= 2L[x]|s + L[y]|s

↪→ sY (s)− y(0) = 2X (s) + Y (s)

↪→ sY (s)− 2 = 2X (s) + Y (s)

↪→ −2X (s) + [s − 1]Y (s) = 2 .
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So the transforms X = L[x] and Y = L[y] must satisfy the algebraic system

[s − 1]X (s)− 2Y (s) = 10

s − 4

−2X (s) + [s − 1]Y (s) = 2

. (35.9)

It is relatively easy to solve the above system. To find X (s) we can first add s − 1 times

the first equation to 2 times the second, and then apply a bit more algebra, to obtain

[s − 1]2 X (s) − 4X (s) = 10(s − 1)

s − 4
+ 4

↪→ (
s2 − 2s − 3

)
X (s) = 10(s − 1)+ 4(s − 4)

s − 4

↪→ (s + 1)(s − 3)X (s) = 14s − 26

s − 4

↪→ X (s) = 14s − 26

(s + 1)(s − 3)(s − 4)
. (35.10)

Similarly, to find Y (s) , we can add 2 times the first equation in system (35.9) to s − 1

times the second equation, obtaining

−4Y (s) + [s − 1]2Y (s) = 20

s − 4
+ 2(s − 1) .

Solving this for Y (s) then, eventually, yields

Y (s) = 2s2 − 10s + 28

(s + 1)(s − 3)(s − 4)
. (35.11)

Finding the formulas for X and Y was easy. Now we need to compute the formulas for

x = L
−1[X] and y = L

−1[Y ] from formulas (35.10) and (35.11) using the theory, techniques

and tricks for finding inverse Laplace transforms developed in Part IV of this text:

x(t) = L
−1[X (s)]|t = L

−1

[
14s − 26

(s + 1)(s − 3)(s − 4)

]∣∣∣∣
t

= · · · = 6e4t − 2e−t − 4e3t

and

y(t) = L
−1[Y (s)]|t = L

−1

[
2s2 − 10s + 28

(s + 1)(s − 3)(s − 4)

]∣∣∣∣
t

= · · · = 4e4t + 2e−t − 4e3t .

This is less easy, and, as you may have noted, the details are left to the reader “as a review of

Laplace transforms” (and to save space here).
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35.5 Existence, Uniqueness and General Solutions for
Systems

Existence and Uniqueness of Solutions

In section 3.3, two theorems were given — theorems 3.1 and 3.2 — describing conditions ensuring

the existence and uniqueness of solutions to first-order differential equations. Here are the “systems

versions” of those theorems:

Theorem 35.1 (existence and uniqueness for general systems)

Consider an N ×N standard first-order initial-value problem

x1
′ = f1(t, x1, x2, . . . , xN )

x2
′ = f2(t, x1, x2, . . . , xN )

...

xN
′ = fN (t, x1, x2, . . . , xN )

with

( x1(t0) , x2(t0) , . . . , xN (t0) ) = ( a1 , a2 , . . . , aN ) .

Suppose each f j and ∂ f j/∂xk are continuous functions on an open region of the T X1 X2 · · · X N–space

containing the point (t0, a1, a2, . . . , aN ) . This initial-value problem then has exactly one solution

( x1 , x2 , . . . , xN ) = ( x1(t) , x2(t) , . . . , xN (t) )

over some open interval (α, β) containing t0 . Moreover, each xk and its derivative are continuous

over that interval.

Theorem 35.2

Consider an N ×N standard first-order initial-value problem

x1
′ = f1(t, x1, x2, . . . , xN )

x2
′ = f2(t, x1, x2, . . . , xN )

...

xN
′ = fN (t, x1, x2, . . . , xN )

with

( x1(t0) , x2(t0) , . . . , xN (t0) ) = ( a1 , a2 , . . . , aN )

over an interval (α, β) containing t0 , and with each f j being a continuous function on the infinite

strip

R = { (t, x1, x2, . . . , xN ) : α < t < β and − ∞ < xk < ∞ for k = 1, 2, . . . , N } .

Further suppose that, on R , each ∂ f j/∂xk is continuous and is a function of t only. Then the

initial-value problem has exactly one solution

( x1 , x2 , . . . , xN ) = ( x1(t) , x2(t) , . . . , xN (t) )

over (α, β) . Moreover, each xk and its derivative are continuous on that interval.

The proofs of the above two theorems are simply multidimensional versions of the proofs

already discussed in sections 3.4, 3.5 and 3.6 for theorems 3.1 and 3.2.
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General Solutions

In exercise 35.4, you either have verified or will verify that, for any choice of constants c1 and c2 ,

the pair

x(t) = c1e3t + 2c2e−4t and y(t) = c1e3t − 5c2e−4t

is a solution to the system

x ′ = x + 2y

y′ = 5x − 2y
.

But is the above a general solution, or could there be other solutions not described by the above?

Well, let us consider a more general situation; namely, let us consider “finding” the general

solution to a 2×2 standard system

x ′ = f (t, x, y)

y′ = g(t, x, y)

over some interval (α, β) containing a point t0 . Let us further assume that the component functions

are “reasonable”. To be specific, we’ll assume that f , g and their partial derivatives with respect

to x and y are continuous on the entire XY –plane when α < t < β . (This will allow us to apply

theorem 35.1 without getting bogged down in technicalities. Besides, all the 2×2 systems we’ll see

satisfy these conditions.)

Now suppose (as in the case we first started with) that we have found two formulas of t , c1

and c2

x̂(t, c1, c2) and ŷ(t, c1, c2)

such that both of the following hold:

1. For each choice of real constants c1 and c2 , the pair

x(t) = x̂(t, c1, c2) and y(t) = ŷ(t, c1, c2)

is a solution to our standard system over (α, β) .

2. For each ordered pair of real numbers A and B , there is a corresponding pair of real constants

C1 and C2 such that

x̂(t0,C1,C2) = A and ŷ(t0,C1,C2) = B .

Now, let x1(t) and y1(t) be any particular solution pair to our system on (α, β) , and let

A = x1(t0) and B = y1(t) . Then, of course, x1 and y1 , together, satisfy the initial-value problem

x ′ = f (t, x, y)

y′ = g(t, x, y)

with

(x(t0), y(t0)) = (A, B) .

In addition, by our assumptions, we can also find constants C1 and C2 such that

x(t) = x̂(t,C1,C2) and y(t) = ŷ(t,C1,C2)

is a solution to our standard system over (α, β) with

x(t0) = x̂(t0,C1,C2) = A and y(t0) = ŷ(t0,C1,C2) = B .
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So, we have two solution pairs for the above initial-value problem, the pair

x1(t) and y1(t)

and the pair

x(t) = x̂(t,C1,C2) and y(t) = ŷ(t,C1,C2) .

But theorem 35.1 tells us that there can only be one solution to the above initial-value problem. So

our two solutions must be the same; that is, we must have

x1(t) = x̂(t,C1,C2) and y1(t) = ŷ(t,C1,C2) for α < t < β .

This means that every solution to our 2×2 standard system is given by

x(t) = x̂(t, c1, c2) and y(t) = ŷ(t, c1, c2)

for some choice of constants c1 and c2 . In other words, we have the following theorem:

Theorem 35.3

Let (α, β) be an interval containing a point t0 , and consider a 2×2 standard first-order initial-value

problem

x ′ = f (t, x, y)

y′ = g(t, x, y)

in which f , g and their partial derivatives with respect to x and y are continuous functions of all

variables when t is in (α, β) . Assume, further, that

x̂(t, c1, c2) and ŷ(t, c1, c2)

are formulas of three variables satisfying both of the following:

1. For each choice of real constants c1 and c2 , the pair

x(t) = x̂(t, c1, c2) and y(t) = ŷ(t, c1, c2)

satisfies the above first-order system over (α, β) .

2. For each ordered pair of real numbers (A, B) , there is a corresponding ordered pair of real

numbers (C1,C2) such that

x̂(t0,C1,C2) = A and ŷ(t0,C1,C2) = B .

Then, treating c1 and c2 as arbitrary constants, the pair

x̂(t, c1, c2) and ŷ(t, c1, c2, . . . , cN )

is a general solution to the above system over (α, β) .

!�Example 35.9: As already noted, the pair

x(t) = c1e3t + 2c2e−4t︸ ︷︷ ︸
x̂(t,c1,c1)

and y(t) = c1e3t − 5c2e−4t︸ ︷︷ ︸
ŷ(t,c1,c1)

satisfies
x ′ = x + 2y

y′ = 5x − 2y
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over the entire real line, (−∞,∞) for any choice of constants c1 and c2 . Moreover, it is

easily seen that this first-order system satisfies the conditions required in the last theorem with

(α, β) = (−∞,∞) . Hence, this theorem will assure us that the formula pair (x̂, ŷ) is a general

solution if, for each ordered pair of real numbers (A, B) , there is a corresponding ordered pair

of real numbers (C1,C2) such that

x̂(t0,C1,C2) = A and ŷ(t0,C1,C2) = B (35.12)

where t0 is some fixed point, say, t0 = 0 . That is easily confirmed by simply solving this system

for C1 and C2 in terms of A and B . Using our formulas for x̂ and ŷ with t0 = 0 , we see

that system (35.12) reduces to the simple algebraic system

C1 + 2C2 = A

C1 − 5C2 = B
.

Subtracting the second equation from the first yields

7C2 = A − B � C2 = A − B

7
.

Plugging this back into the first equation gives

C1 + 2
[

A − B

7

]
= A � C1 = 5A + 2B

7
.

Thus, for any pair A and B , we can clearly find C1 and C2 such that system (35.12) holds

when t0 = 0 . Theorem 35.3 then assures us that the pair

x(t) = c1e3t + 2c2e−4t and y(t) = c1e3t − 5c2e−4t

is, in fact, a general solution. That is, every solution is given by the above for some choice of c1

and c2 .

The derivation leading to theorem 35.3 can be easily redone starting with an N ×N standard

system, and using K arbitrary constants (where N and K are positive integers), giving us:

Theorem 35.4

Let (α, β) be an interval containing a point t0 , and consider an N ×N standard first-order initial-

value problem

x1
′ = f1(t, x1, x2, . . . , xN )

x2
′ = f2(t, x1, x2, . . . , xN )

...

xN
′ = fN (t, x1, x2, . . . , xN )

in which each f j and ∂ f j/∂xk is a continuous function of all variables when t is in (α, β) . Assume,

further, that

x̂1(t, c1, c2, . . . , cK ) , x̂2(t, c1, c2, . . . , cK ) , . . . and x̂N (t, c1, c2, . . . , cK )

are N formulas of K + 1 variables satisfying both of the following:
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1. For each choice of real constants c1 , c2 , . . . and cK , the ordered set of N functions x1 ,

x2 , . . . and xN given by

xn(t) = x̂n(t, c1, c2, . . . , cK ) for n = 1, 2, . . . , N

satisfies the above first-order system over (α, β) .

2. For each ordered N -tuple of real numbers (A1, A2, . . . , AN ) , there is a corresponding K -

tuple of real numbers (C1,C2, . . . ,CK ) such that

x̂n(t,C1,C2, . . . ,CK ) = An for n = 1, 2, . . . , N .

Then, treating the ck’s as arbitrary constants,

x̂1(t, c1, c2, . . . , cK ) , x̂2(t, c1, c2, . . . , cK ) , . . . and x̂N (t, c1, c2, . . . , cK )

forms a general solution to the above system over (α, β) .

It should be noted that, using linear algebra, it can easily be shown that we must have K ≥ N

for condition 2 in the last theorem to hold (with K = N in most cases of interest).

35.6 Single Nth-Order Differential Equations

Several theorems regarding the existence and uniqueness of solutions to a single second- or higher-

order differential equation were given near the end of chapter 11. It is worth noting that all of these

theorems can be derived from the results in the last section. To see this, let us consider a single

N th-order initial-value problem

y(N ) = F
(

t, y, y′, . . . , y(N−1)
)

(35.13a)

with

y(t0) = a1 , y′(t0) = a2 , . . . and y(n−1)(t0) = aN . (35.13b)

In this:

1. We are using t as the basic variable (so y = y(t) and y(k) = dk y/dtk ).

2. t0 , a1 , a1 , . . . and aN are fixed real values.

3. F(t, x1, x2, . . . , xN ) is a function of N + 1 variables on some open region R of N + 1-

dimensional space containing the point (t0, a1, a2, . . . , aN ) .

Our goal will be to derive theorem 11.3 on page 240. So assume, as in the theorem, that F and each
∂F/∂xk is continuous on the region R .

Let us now convert this single differential equation to a standard first-order system by introducing

N new unknown functions x1 , x2 , . . . and xN related to y via

x1 = y , x2 = y′ , x3 = y′′ , . . . and xN = y(N−1) .
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Then we have

x1
′ = y′ = x2 ,

x2
′ = (

y′)′ = y′′ = x3 ,

...

xN−1
′ =

(
y(N−2)

)′
= y(N−1) = xN ,

and, finally,

xN
′ =

(
y(N−1)

)′
= y(N ) = F

(
t, y, y′, . . . , y(n−1)

)
= F(t, x1, x2, x3, . . . , xN ) .

Thus, our original initial-value problem can be rewritten as

x1
′(t) = f1(t, x1, x2, . . . , xN )

x2
′(t) = f2(t, x1, x2, . . . , xN )

...

xN
′(t) = fN (t, x1, x2, . . . , xN )

with

( x1(t0) , x2(t0) , . . . , xN (t0) ) = ( a1 , a2 , . . . , aN ) ,

where

f1(t, x1, x2, . . . , xN ) = x2 ,

f2(t, x1, x2, . . . , xN ) = x3 ,

...

and

fN−1(t, x1, x2, . . . , xN ) = xN ,

while

fN (t, x1, x2, . . . , xN ) = F(t, x1, x2, x3, . . . , xN ) .

It is almost trivial to verify that each f j and each ∂ f j/∂xk with j = N is a continuous function

on the region R . Moreover, the assumptions made on F ensure that fN and the ∂ fN/∂xk’s are also

continuous functions on R . This means theorem 35.1 on page 765 applies, telling us that

1. the above N×N initial-value problem has exactly one solution (x1, x2, . . . , xN ) over some

open interval (α, β) containing t0 ,

and, moreover,

2. each xk and its derivative are continuous over the interval (α, β) .

But, since ⎡⎢⎢⎢⎢⎣
x1

x2

...

xN

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
y

y′

...

y(N−1)

⎤⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎣
x1

′

x2
′

...

xN
′

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
y′

y′′

...

y(N )

⎤⎥⎥⎥⎥⎦ ,
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the above results concerning the xk’s tell us that there is exactly one y and that it and its derivatives

up to order N are continuous over the interval (α, β) . In other words, we’ve verified the following

theorem:

Theorem 35.5 (existence and uniqueness for N th-order initial-value problems)

Consider an N th-order initial-value problem

y(N ) = F
(

t, y, y′, . . . , y(N−1)
)

with

y(t0) = a1 , y′(t0) = a2 , . . . and y(N−1)(t0) = aN

in which F = F(t, x1, x2, . . . , xN ) and the corresponding partial derivatives

∂F

∂x1
,

∂F

∂x2
, . . . and

∂F

∂xN

are all continuous functions in some open region containing the point (t0, a1, a2, . . . , aN ) . This

initial-value problem then has exactly one solution y over some open interval (α, β) containing t0 .

Moreover, this solution and its derivatives up to order N are continuous over that interval.

If you now go back and compare the above theorem with theorem 11.3 on page 240, you will

find that (except for cosmetic differences in notation) the two theorems are the same.

While we are at it, we should note that the above certainly applies if our differential equation is

a homogeneous N th-order linear differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

on an interval (α, β) on which the ak’s are all continuous functions with a0 never being zero. In

fact, it’s easily verified that theorem 35.2 applies after rewriting the differential equation as

y(N ) = −1

a0

[
a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y

]
.

Moreover, if {y1, y2, . . . , yK } is a linearly independent set of solutions to this differential equation

on (α, β) , then we can use theorem 35.4 and the principle of superposition to show that

y(t) = c1 y1(t) + c2 y2(t) + · · · + cK yK (t)

is a general solution if and only if, for each N -tuple of real numbers (A1, A2, . . . , AN ) , there is a

corresponding K -tuple of real numbers (C1,C2, . . . ,CK ) such that, for n = 1, 2, . . . , N ,

C1 y1
(n−1)(t0) + C2 y2

(n−1)(t0) + · · · + CK yK
(n−1)(t0) = An

where t0 is some fixed point in (α, β) . Then, using theorem 35.4 and basic results from linear alge-

bra, you can, eventually, verify all the results regarding general solutions to N th-order homogeneous

equations described in theorem 13.5 on page 272 and all the results on Wronskians in theorem 13.6

on page 274.
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Additional Exercises

35.1. Determine which of the following function pairs are solutions to the first-order system

x ′ = 2y

y′ = 1 − 2x
.

a. x(t) = sin(2t) + 1

2
and y(t) = cos(2t)

b. x(t) = e2t − 1 and y(t) = e2t

c. x(t) = 3 cos(2t) + 1

2
and y(t) = −3 sin(2t)

35.2. Determine which of the following function pairs are solutions to the first-order system

x ′ = 4x − 3y

y′ = 6x − 7y
.

a. x(t) = 6e3t and y(t) = 2e3t

b. x(t) = 3e2t − e−5t and y(t) = 2e2t − 3e−5t

c. x(t) = 3e2t + e−5t and y(t) = 2e2t − 3e−5t

35.3. Determine which of the following function pairs are solutions on (0,∞) to the first-order

system

t x ′ + 2x = 15y

ty′ = x
.

a. x(t) = 3t3 and y(t) = −t3

b. x(t) = 3t3 and y(t) = t3

c. x(t) = −5t−5 and y(t) = t−5

35.4 a. Verify that, for any choice of constants c1 and c2 ,

x(t) = c1e3t + 2c2e−4t and y(t) = c1e3t − 5c2e−4t

satisfies the system

x ′ = x + 2y

y′ = 5x − 2y
.

b. Then find the solution to this system that satisfies

x(0) = 7 and y(0) = −7 .

35.5 a. Verify that, for any choice of constants c1 and c2 ,

x(t) = c1e9t − c2e−3t and y(t) = c1e9t + 2c2e−3t

satisfies the system

x ′ = 5x + 4y

y′ = 8x + y
.
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T

Tank A

(1200 gal.)
Tank B

(600 gal.)

γ1 gal./min.

γ2 gal./min.

IB gal./min. (CB% alcohol)

OB gal./min.

IA gal./min. (CA% alcohol)

OA gal./min.

Figure 35.3: A simple system of two tanks containing water/alcohol mixtures for exercise 35.8 .

b. Then find the solution to this system that satisfies

x(0) = 0 and y(0) = 9 .

35.6 a. Verify that, for any choice of constants c1 and c2 ,

x(t) = c1e−2t + 2c2e5t and y(t) = −3c1e−2t + c2e5t

satisfies the system

x ′ = 4x + 2y

y′ = 3x − y
.

b. Then find the solution to this system that satisfies

x(0) = 0 and y(0) = −21 .

35.7. Solve each of the following weakly coupled systems:

a.
x ′′ + x = 0

y′ = x
b.

x ′ = 2yx

ty′ = y
c.

x ′ + 2x = 10z

zy′ + 5zy = 15x

z′ − 3z = 0

35.8. Consider the tank system illustrated in figure 35.3. Let x and y be, respectively, the amount

of alcohol (measured in gallons) in tanks A and B at time t (measured in minutes), and

find the standard first-order system describing how x and y vary over time when:

a. IA = 5 , CA = 0 , OA = 5 , IB = 3 , CB = 100 ,

OB = 3 , γ1 = 1 and γ2 = 1

b. IA = 8 , CA = 25 , OA = 6 , IB = 2 , CB = 50 ,

OB = 4 , γ1 = 1 and γ2 = 3

35.9. Rewrite each of the following differential equations as a standard first-order system.

a. y′′ + 4y′ + 2y = 0 b. y′′ − 8t2 y′ − 32y = sin(t)

c. y′′ = 4 − y2 d. t2 y′′ − 5t y′ + 8y = 0

e. t2 y′′ − t y′ + 10y = 0 f. y′′ = 4t2 − sin
(
y′) y

g. y′′′ + 2y′′ − 3y′ − 4y = 0 h. y′′′ + y′
(

t2 + y2
)

= 0
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35.10. Solve each of the following initial-value problems using the Laplace transform.

a.
x ′ = x + 2y

y′ = 5x − 2y
with

x(0) = 1

y(0) = 15

b.
x ′ = 2y

y′ = 2x
with

x(0) = x0

y(0) = y0

c.
x ′ = 2y

y′ = −2x
with

x(0) = x0

y(0) = y0

d.
x ′ = −2y

y′ = 8x
with

x(0) = x0

y(0) = y0

e.
x ′ = 4x − 13y

y′ = x
with

x(0) = 2

y(0) = 1

f.
x ′ = 3x + 2y

y′ = −2x + 3y
with

x(0) = x0 = a1

y(0) = y0 = a2

g.
x ′ = 8x + 2y − 17

y′ = 4x + y − 13
with

x(0) = 0

y(0) = 0

h.
x ′ = 8x + 2y + 7e2t

y′ = 4x + y − 7e2t
with

x(0) = −1

y(0) = 1

i.
x ′ = 4x + 3y − 6e3t

y′ = x + 6y + 2e3t
with

x(0) = 4

y(0) = 0

j.
x ′ = −y

y′ = 4x + 24t
with

x(0) = 0

y(0) = 0

k.
x ′ = 4x − 13y

y′ = x + 19 cos(4t) − 13 sin(4t)
with

x(0) = 13

y(0) = 0

l.
x ′ = 4x + 3y + 5 step2(t)

y′ = x + 6y + 17 step2(t)
with

x(0) = 0

y(0) = 0

35.11. Using theorem 35.3 and results from exercise 35.5, verify that

x(t) = c1e9t − c2e−3t and y(t) = c1e9t + 2c2e−3t

is a general solution to

x ′ = 5x + 4y

y′ = 8x + y
.

35.12. Using theorem 35.3 and results from exercise 35.6, verify that

x(t) = c1e−2t + 2c2e5t and y(t) = −3c1e−2t + c2e5t

is a general solution to

x ′ = 4x + 2y

y′ = 3x − y
.
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Critical Points, Direction Fields and
Trajectories

In this chapter, we will restrict our attention to certain standard first-order systems consisting of only

two differential equations. Admittedly, just about everything we will discuss can be extended to

larger systems, but, by staying with the smaller systems, we will be able to keep the notation and

discussion more simple, and develop the main concepts more clearly. This will largely be because

it is much easier to draw pictures with solutions consisting of just two functions, x = x(t) and

y = y(t) . And that will be important. Our goal is to find a way to “graphically represent” solutions

in a useful manner. What we will develop, called “phase plane analysis”, turns out to be a fundamental

tool in the study of systems, especially for those many systems we cannot explicitly solve.

36.1 The Systems of Interest and Some Basic Notation
The Systems of Interest

As just noted above, the focus of this chapter concerns the standard 2×2 first-order system

x ′ = f (t, x, y)

y′ = f (t, x, y)
(36.1)

(though we may replace the symbols x and y with other symbols in some of the applications). In

addition, we will often also require that our system be “regular” and/or “autonomous ”. So let us

define these terms:

• System (36.1) is “regular” if the component functions, f and g , are “reasonably nice”. More

precisely, the system is regular if f , g and all their first partial derivatives exist and are

continuous for all real values of their variables. Most of the systems we have seen are regular.

• System (36.1) is autonomous if and only if no component function explicitly depends on t .

In this case, we should leave out any reference to t and rewrite system (36.1) as

x ′ = f (x, y)

y′ = f (x, y)
. (36.2)

Autonomous systems naturally arise in applications. If you check, all the first-order systems

derived in the previous chapter from applications are autonomous.

775
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Some Convenient Notation

Remember that a solution over an interval (α, β) to a system

x ′ = f (t, x, y)

y′ = f (t, x, y)
(36.3)

consists of a pair of functions x = x(t) and y = y(t) that, together, satisfy the system for all t in

the interval (α, β) . In the last chapter, we occasionally wrote this pair explicitly as an ordered pair,

(x, y) = (x(t), y(t)) .

We will find it even more convenient to do so in this chapter, especially when discussing generic

systems. Let us also observe that we can write the above system, as well as the initial conditions

x(t0) = x0 and y(t0) = y0 ,

in “vector form”, [
x ′

y′

]
=

[
f (t, x, y)

g(t, x, y)

]
with

[
x(t0)

y(t0)

]
=

[
x0

y0

]
.

When convenient, we will further reduce the above line to

x′ = F(t, x) with x(t0) = x0

with the understanding that

x = x(t) =
[

x(t)

y(t)

]
, x′ =

[
x ′

y′

]
, x0 =

[
x0

y0

]
and

F(t, x) =
[

f (t, x, y)

g(t, x, y)

]
.

Of course, if the system is autonomous, we will simply denote the system by x′ = F(x) with the

understanding that

F(x) =
[

f (x, y)

g(x, y)

]
.

Along these same lines, we will occasionally let 0 denote the “zero vector”

0 =
[

0

0

]
.

!�Example 36.1: Consider the system

x ′ = x + 2y

y′ = 5x − 2y

along with the initial conditions

x(0) = 0 and y(0) = 1 .

In example 35.3 we saw that a solution to this initial-value problem is (x, y) where

x = x(t) = 2

7
e3t − 2

7
e−4t and y = y(t) = 2

7
e3t + 5

7
e−4t .
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In matrix/vector form, this initial-value problem can be written as either[
x ′

y′

]
=

[
x + 2y

5x − 2y

]
with

[
x(0)

y(0)

]
=

[
0

1

]
or even as

x′ = F(x) with x(0) = x0

where

x =
[

x

y

]
, F(x) =

[
x + 2y

5x − 2y

]
and x0 =

[
0

1

]
.

In the future, we will use, or not use, vector notation as is convenient.

36.2 Constant/Equilibrium Solutions

A solution (x, y) to a system x′ = F(t, x) is a constant solution if both x and y are constant

functions; that is, for some pair of real numbers x0 and y0 ,

(x(t), y(t)) = (x0, y0) for all t .

But remember,

(x(t), y(t)) = (x0, y0) for all t ⇐⇒ (
x ′(t), y′(t)

) = (0, 0) for all t .

Thus, (x, y) is a constant solution if and only if

x′(t) =
[

x ′(t)
y′(t)

]
=

[
0

0

]
= 0 for all t .

Combining this with x′ = F(t, x) , we get

0 = x′ = F(t, x) .

Clearly then, for any pair of constants (x0, y0) , we have that (x(t), y(t)) = (x0, y0) is a constant

solution of our system if and only if

0 = F(t, x0) for all t where x0 =
[

x0

y0

]
.

From this, you can find the constant solutions for a given system. (Do remember that we are insisting

our solutions be real valued. So the constants must be real numbers.)

Constant solutions are especially important for autonomous systems. And, when the system is

autonomous, it is traditional to call any constant solution an equilibrium solution. We will follow

tradition.

!�Example 36.2: Let’s try to find every equilibrium solution for the autonomous system

x ′ = x(y2 − 9)

y′ = (x − 1)(y2 + 1)
.
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The constant/equilibrium solutions are all obtained by setting x ′ and y′ both equal to 0 , and

then solving the resulting algebraic system,

0 = x(y2 − 9)

0 = (x − 1)(y2 + 1)
. (36.4)

Consider the first equation, first:

0 = x(y2 − 9)

↪→ x = 0 or y2 = 9

↪→ x = 0 or y = 3 or y = −3 .

If x = 0 , then the second equation in system (36.4) reduces to

0 = (0 − 1)(y2 + 1) ,

which means that y2 = −1 , and, hence, y = ±i . But these are not real numbers, as required.

So we do not have an equilibrium solution

(x(t), y(t)) = (x0, y0) with x0 = 0 .

On the other hand, if the first equation in system (36.4) is satisfied because y = 3 , then the

second equation in that system reduces to

0 = (x − 1)
(

32 + 1
)

= (x − 1) · 10 ,

telling us that x = 1 . Thus, one equilibrium solution for our system of differential equations is

(x(t), y(t)) = (1, 3) .

Finally, if the first equation in system (36.4) holds because y = −3 , then the second equation in

that system becomes

0 = (x − 1) · 10 .

Hence, again, x = 1 , and the corresponding equilibrium solution is

(x(t), y(t)) = (1,−3) for all t .

In summary, then, our system of differential equations has two equilibrium solutions,

(x(t), y(t)) = (1, 3) and (x(t), y(t)) = (1,−3) .
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(a) (b)

X

X

Y
Y

T

t = 0

t = 0

t = 1
2

t = 1
2

t = − 1
2

t = − 1
2

− 1
2

1
2

− 1
4 1

4

(t, x(t), y(t))

(x(t), y(t))

0 1

1

1

1

2

2

2

2 3
3

Figure 36.1: Two graphical representations of the solution from example 36.3 with

−1/2 ≤ t ≤ 1/2 : (a) The actual graph, and (b) The curve traced out by (x(t), y(t))

in the XY –plane.

36.3 “Graphing” Standard Systems
True Graphs and Trajectories

Let us briefly discuss two ways of graphically representing solutions to standard first-order systems,

starting with a simple example.

!�Example 36.3: Consider “graphically representing” the solution to the initial-value problem[
x ′

y′

]
=

[
x + 2y

5x − 2y

]
with

[
x(0)

y(0)

]
=

[
0

1

]
.

From example 35.3 we know that a solution to this initial-value problem is (x, y) with

x = x(t) = 2

7
e3t − 2

7
e−4t and y = y(t) = 2

7
e3t + 5

7
e−4t .

To construct the actual graph of this solution, we need to plot each point (t, x(t), y(t)) in

T XY–space, using the above formulas for x(t) and y(t) . This results in a curve in T XY–space.

Part of this curve has been sketched in figure 36.1a.

As an alternative to constructing the graph, we can sketch the curve in the XY –plane that is

traced out by (x(t), y(t)) as t varies. That is what what was sketched in figure 36.1b.

Take a look at the two figures. Both were easily done using a computer math package.

In general, the graph of a solution to a standard 2×2 first-order system requires a coordinate

system with 3 axes. Sketching such a graph is do-able, as in the above example, especially if you

have a decent computer math package. Then you can even rotate the image to see the graph from
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different views. Unfortunately, when you are limited to just one view, as in figure 36.1a, it may be

somewhat difficult to properly interpret the figure. Because of this, we will rarely, if ever again,

actually attempt to sketch true graphs of our solutions.

On the other hand, we will find the approach illustrated by figure 36.1b quite useful. Moreover,

the sketches that we will generate for 2×2 systems can give us insight as to the behavior of solutions

to larger systems.

Observe that the curve in figure 36.1b has a natural “direction of travel” corresponding to the

way the curve is traced out as t increases. If you start at the point where t = −1/2 and travel the

curve “in the positive direction” (that is, in the direction in which (x(t), y(t)) travels along the curve

as t increases), then you would pass through the point where t = 0 and then through the point

where t = +1/2 . That makes this an oriented curve. We will call this oriented curve a trajectory for

our system.

Just to be a bit more complete, suppose we have a solution

(x, y) = (x(t), y(t))

to a standard 2×2 first-order system x′ = F(t, x) . For each t , we will view (x(t), y(t)) as a point

on the XY –plane, and we will refer to the oriented curve traced out by this point as t increases

as this solution’s trajectory, with the orientation being the direction of travel along the curve as t

increases. We will also refer to this oriented curve as a trajectory for the system x′ = F(t, x) .

Velocity Vectors and the Direction of Travel

Do recall that

v(t) = x′(t) =
[

x ′(t)
y′(t)

]
is the velocity vector v at time t of an object whose position at time t is (x(t), y(t) .1 As you

should recall from elementary multivariable calculus, this vector v(t) is an ‘arrow’ pointing in the

direction the object is traveling at time t . So, if we pick some value t0 for t and draw v0 = v(t0)

at position (x(t0), y(t0)) , then v0 will be tangent to and pointing in the direction of travel of the

trajectory of the object at (x(t0), y(t0)) , thus giving us some idea of what that trajectory looks like

near that point. And if (x(t), y(t) is known to be a solution to

x′(t) = F(t, x) ,

then we can actually compute v0 = x′(t0) for each choice of t0 and x0 without even solving the

system for x(t) . All we need to do is to compute F(t0, x0) .

!�Example 36.4: Consider the trajectories of two objects both of whose positions (x, y) at time

t satisfy the nonautonomous system[
x ′

y′

]
=

[
t (x + y)

y − t x

]
.

Assume the first object passes through the point (x, y) = (1, 2) at time t = 0 . At that time, its

velocity is

v =
[

x ′

y′

]
=

[
0(1 + 2)

2 − 0 · 1

]
=

[
0

2

]
.

1 This assumes we are using a Cartesian coordinate system. If the coordinate system is, say, polar, then the velocity is not

so simply computed.
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However, if the other object also passes through the point (x, y) = (1, 2) , but at time t = 2 ,

then its velocity at that time is

v =
[

x ′

y′

]
=

[
2(1 + 2)

2 − 2 · 1

]
=

[
6

0

]
.

Note the directions of travel for each of these objects as they pass through the point (x, y) =
(1, 2) : The first is moving parallel to the Y –axis, while the second in moving parallel to the

X–axis.

As the last example illustrates, the direction of travel for a solution’s trajectory through a given

point may depend on “when” it passes through the point. However, this is only for nonautonomous

systems. If our first-order system x′ = F is autonomous, then F does not depend on t , only on the

components of x . Consequently, the “velocities” of

x′ = F(x)

depend only on position, not t . We will use this fact for the rest of this chapter.

36.4 Sketching Trajectories for Autonomous Systems
Direction Fields

Suppose we are given a regular 2×2 autonomous first-order system of differential equations

x ′ = f (x, y)

y′ = g(x, y)
.

Now, pick a point (x0, y0) on the XY –plane, and, using the given system, compute the ‘velocity’

at that point for the trajectory through that point,

v =
[

x ′

y′

]
=

[
f (x0, y0)

g(x0, x0)

]
.

This gives us a vector tangent at the point (x0, x0) to any trajectory passing through this point, and

pointing in the direction of travel along the trajectory as t increases. So, if we draw a short arrow

at (x0, y0) in the same direction as this velocity vector, we then have a short arrow tangent to the

trajectory through this point and pointing in the “direction of travel” along this curve. We will call

this short arrow a direction arrow. (This assumes x′ is nonzero at the point. If it is zero, we have

a “critical point”. We’ll discuss critical points in just a little bit.) In figure 36.2a, we’ve sketched a

few of these direction arrows at points along one particular trajectory.

If we sketch a corresponding direction arrow at every point (x j , yk) in a grid of points, then we

have a direction field, as illustrated (along with a few trajectories) in figure 36.2b. This direction field

tells us the general behavior of the system’s trajectories. To sketch a trajectory using a direction field,

simply start at any chosen point in the plane, and sketch a curve following the directions indicated

by the nearby direction arrows. “Go with the flow”, and do not attempt to “connect the dots”. The

goal is to draw, as well as practical, a curve whose tangent at each point on the curve is lined up with

the direction arrow that would be sketched at that point. That curve (if perfectly drawn), oriented

in the direction given by the tangent direction arrows, is a trajectory of the system. (In practice, of

course, it’s as good an approximation to a trajectory as our drafting skills allow.)
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1 2 3

2

1

1 2 3

2

1

P

(a) (b)

X X

Y Y

−1 −1

Figure 36.2: Direction arrows for trajectories for the system in example 36.5, with (a) being a

few direction arrows tangent to the trajectory passing through (0, 1) (drawn

oversized for clarity), and (b) being a more complete direction field, along with a

few more trajectories.

The construction and use of a direction field for a 2×2 first-order autonomous system of

differential equations is analogous to the construction and use of a slope field for a first-order

differential equation (see chapter 8). It’s not exactly the same — we are now sketching trajectories

instead of true graphs of solutions (which would require a T –axis), but the mechanics are very much

the same. And, just as with slope lines for slope fields, it is good for your understanding to practice

sketching the direction arrows for a few small direction fields, and, for the sake of your sanity, it is

a good idea to learn how to construct direction fields (and trajectories) using a good computer math

package.

Critical Points

When constructing a direction field, it is important to note each point (x0, y0) for which[
f (x0, y0)

g(x0, y0)

]
=

[
0

0

]
.

Any such point (x0, y0) is said to be a critical point for the system. Since the zero vector has no

well-defined direction, we cannot sketch a direction arrow at a critical point. Instead, plot a clearly

visible dot at this point. After all, if (x0, y0) is a critical point for our system, then[
x ′

y′

]
=

[
f (x0, y0)

g(x0, y0)

]
=

[
0

0

]
,

which, in turn, means we have the constant/equilibrium solution

(x(t), y(t)) = (x0, y0) for all t ,

and, if you think about it for a moment, you’ll realize that the point (x0, y0) is the entire trajectory

of this solution.

In fact, this gives us an alternate definition for critical point, namely, that a critical point for

an autonomous system of differential equations is the trajectory of an equilibrium solution for that

system.
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Finding critical points and determining the behavior of the trajectories in regions around them

can be rather important. The mechanics of finding critical points is identical to the mechanics of

finding equilibrium solutions (as illustrated in example 36.2 on page 777). Issues regarding the

behavior of near-by trajectories will be discussed in the next section.

!�Example 36.5: Consider, once again, the system[
x ′

y′

]
=

[
x + 2y

5x − 2y

]
.

Plugging in (x, y) = (0, 1) , we get[
x ′

y′

]
=

[
0 + 2 · 1

5 · 0 − 2 · 1

]
=

[
2

−2

]
.

Thus, the direction arrow sketched at position (x, y) = (0, 1) should be a short arrow (which

we center at the point) parallel to and pointing in the same direction as the vector from the origin

(0, 0) to position (2,−2) . That is what was sketched at point (0, 1) in figure 36.2a, along with

the trajectory through that point.

A more detailed direction field, along with three other trajectories, is illustrated in figure

36.2b. Note the dot at (0, 0) . This is the critical point for the system and is the trajectory of the

one equilibrium solution

(x(t), y(t)) = (0, 0) for all t .

Trajectories and Solutions

Keep in mind that a trajectory through a point (a, b) for a regular autonomous system[
x ′

y′

]
=

[
f (x, y)

g(x, y)

]
is not a solution to the system; it is the path traced out by a solution to the initial-value problem[

x ′

y′

]
=

[
f (x, y)

g(x, y)

]
with

[
x(t0)

y(t0)

]
=

[
a

b

]
for any choice of t0 in (−∞,∞) . And since there are infinitely many possible values of t0 , we

should expect infinitely many solutions tracing out that one trajectory.

However, all the different solutions corresponding to a single trajectory are simply ‘shifted’

versions of each other. To see this, let
(
x̂(t), ŷ(t)

)
be a solution to[

x ′

y′

]
=

[
f (x, y)

g(x, y)

]
with

[
x(0)

y(0)

]
=

[
a

b

]
.

You can then easily verify for yourself (see exercise 36.11) that, for any real value t0 ,

(x(t), y(t)) = (
x̂(t − t0), ŷ(t − t0)

)
is a solution to [

x ′

y′

]
=

[
f (x, y)

g(x, y)

]
with

[
x(t0)

y(t0)

]
=

[
a

b

]
.
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The uniqueness theorems briefly discussed in the last chapter then assure us that there are no other

solutions to this initial-value problem.

This, by the way, leads to a minor technical point that should be discussed briefly. When

specifying a solution (x(t), y(t)) , we should also specify the domain of this solution, that is, the

interval (α, β) over which t varies. In practice, we often don’t mention that interval, simply

assuming it to be “as large as possible” (which often means (α, β) = (−∞,∞) ). On the few

occasions when it is particularly relevant, we will refer to a trajectory as being complete if it is the

trajectory of a solution

x(t) =
[

x(t)

y(t)

]
with α < t < β

where the interval (α, β) is “as large as possible”. (That was the implicit assumption in the previous

paragraph.)

Of course, while we may be most interested in the complete trajectories of our systems, in

practice, the trajectories we sketch are often merely portions of complete trajectories simply because

the complete trajectories often extend beyond the region over which we are making our drawings.

One obvious exception, of course, is that a critical point (x0, y0) is a complete trajectory since it is

the trajectory of the equilibrium solution

(x(t), y(t)) = (x0, y0) for − ∞ < t < ∞ ,

and there certainly is no larger interval than (−∞,∞) .

Properties of Trajectories

It should be noted that the ‘existence and uniqueness of solutions’ implies a corresponding ‘existence

and uniqueness of (complete) trajectories’, allowing us to say that “through each point there is one and

only one (complete) trajectory”. We’ll say more about this in section 36.7. Also in that section, we will

verify the following facts concerning trajectories of any regular autonomous standard system:

1. If a trajectory contains a critical point, then that critical point is the entire trajectory. Con-

versely, if a trajectory has nonzero length, then it does not contain a critical point of the system.

(Hence, in sketching trajectories other than critical points, make sure your trajectories do not

pass through any critical points.)

2. If a complete trajectory has an endpoint, then that endpoint must be a critical point for the

system.

3. Any oriented curve not containing a critical point that “follows” the system’s direction field

(i.e., any oriented curve whose tangent vector at each point is in the same direction as the

system’s direction arrow at that point) is the trajectory of some solution to the system. (This

is what we intuitively expect when “sketching trajectories” on a direction field.)

4. Any trajectory that is not a critical point is “smooth” in that no trajectory can have a “kink”

or “corner” (as in figure 36.3a).

5. No trajectory can “split” into two or more trajectories (as in figure 36.3b), nor can two or

more trajectories “merge” into one trajectory (as in figure 36.3b with the arrows reversed).

Keeping the above in mind will help in both sketching trajectories from a direction field and in

interpreting your results.
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(a) (b)

aa

bb

XX

YY

Figure 36.3: Two impossibilities for a trajectory of a regular autonomous system: (a) A sharp

“kink” at some point, and (b) a “splitting” into two different trajectories at some

point.

Phase Portraits and Planes

A little more terminology: When dealing with direction fields and trajectories for a standard 2×2

autonomous system, we refer to the plane on which we sketch the direction field and/or trajectories

as the phase plane (as opposed to the “ XY –plane” or “ X1 X2–plane” plane or …). If we sketch an

‘enlightening’ representative sample of trajectories on the phase plane, then this sketch is said to be

a phase portrait of the system. At this point, we are using direction fields to sketch phase portraits,

so we are getting phase portraits superimposed on direction fields. If a phase portrait does not have

an accompanying direction field to indicate direction of travel along the trajectories, then you should

have little arrows on the trajectories to indicate the direction of travel for each trajectory.

Higher-Order Cases

The fundamental ideas just discussed and developed for any 2×2 regular autonomous standard

system extend naturally to analogous ideas for any N ×N regular autonomous standad system

x′ =

⎡⎢⎢⎢⎢⎣
x1

′

x2
′

...

xN
′

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
f1(x1, x2, . . . , xN )

f2(x1, x2, . . . , xN )

...

fN (x1, x2, . . . , xN )

⎤⎥⎥⎥⎥⎦ = F(x) .

As before, we define a critical point to be any point
(
x0

1 , x0
2 , . . . , x0

N

)
in N -dimensional space for

which ⎡⎢⎢⎢⎢⎣
f1

(
x0

1 , x0
2 , . . . , x0

N

)
f2

(
x0

1 , x0
2 , . . . , x0

N

)
...

fN

(
x0

1 , x0
2 , . . . , x0

N

)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

0

...

0

⎤⎥⎥⎥⎥⎦
and, as before, any such point is the complete trajectory of the corresponding equilibrium solution

( x1(t) , x2(t) , . . . xN (t) ) =
(

x0
1 , x0

2 , . . . , x0
N

)
for all t

for our system x′ = F(x) .

Likewise, at any point other than a critical point, we can, in theory, find a short vector pointing

in the direction of travel of any trajectory through that point by just taking any short vector pointing

in the same direction as F computed at that point. This gives a direction arrow at that point. Plotting
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these direction arrows on a suitable grid of points in N -dimensional space then gives us a direction

field for the system.

Admittedly, few of us can actually sketch and use a direction field when N > 2 (especially if

N > 3 !). Still, we can find the critical points, and it turns out that much of what we will learn about

the behavior of trajectories near critical points for 2×2 systems can apply when our systems are

larger.

By the way, it is traditional to refer to the N -dimensional space in which the trajectories would,

in theory, be drawn as the phase space (phase plane if N = 2 ), with any enlightening representative

sample of trajectories in this space being called a phase portrait. Of course, visualizing a phase

portrait when N > 2 requires a certain imagination (especially if N > 3 !).

36.5 Critical Points, Stability and Long-Term Behavior

A useful feature of a direction field for an autonomous system of differential equations is that it can

give us some notion of the long-term behavior of the solutions to that system. All we need to do is

to follow the sketched trajectories.

Critical Points and Stability
Stability of Equilibrium Solutions

Of particular interest will be the long-term behavior of solutions whose trajectories pass close to a

critical point (x0, y0) of the system, and we will use this behavior to classify the ‘stability’ of that

critical point and the corresponding equilibrium solution

(x(t), y(t)) = (x0, y0) for all t .

Loosely speaking we will classify this critical point and the corresponding equilibrium solution as

being

• stable if and only if each trajectory that gets close to (x0, y0) stays close to (x0, y0) af-

terwards. That is, this critical point and equilibrium solution are stable if and only if each

solution (x, y) to the system satisfying (x(t0), y(t0)) ≈ (x0, y0) for some t0 also satisfies

(x(t), y(t)) ≈ (x0, y0) for all t > t0 ,

as illustrated in figures 36.4a and 36.4b.

• asymptotically stable if and only if each trajectory that gets close to (x0, y0) doesn’t just

stay close but converges to (x0, y0) as t → +∞ . That is, this critical point and equilibrium

solution are asymptotically stable if and only if each solution (x, y) to the system satisfying

(x(t0), y(t0)) ≈ (x0, y0) for some t0 also satisfies

lim
t→+∞(x(t), y(t)) = (x0, y0) ,

as illustrated in figure 36.4b. (Obviously, an asymptotically stable critical point is automati-

cally stable.)

• unstable if and only if the equilibrium solution is not stable. Examples of unstable equilibrium

solutions are illustrated in figure 36.4c (in which the nearby trajectories all diverge away from

the critical point) and in figure 36.2b (in which trajectories approach the critical point (0, 0)

and then diverge away).
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(a) (b) (c)

Figure 36.4: Two-dimensional direction fields and trajectories about critical points corresponding

to equilibrium solutions that are (a) stable, but not asymptotically stable, (b)
asymptotically stable and (c) unstable.

Be warned that the stability of an equilibrium solution is not always clear from just the direction

field. The field may suggest that the nearby trajectories are loops circling the critical point (indi-

cating that the equilibrium solution is stable) when, in fact, the nearby trajectories are either slowly

spiraling into or away from the critical point (in which case the equilibrium solution is actually either

asymptotically stable or is unstable).

Precise Definitions

Of course, precise mathematics requires precise definitions. So, to be precise, we classify our

equilibrium solution

(x(t), y(t)) = (x0, y0) for all t

and the corresponding critical point as being

• stable if and only if, for each ε > 0 , there is a corresponding δ > 0 such that, if (x, y) is

any solution to the system satisfying√
(x(t)− x0)2 + (y(t)− y0)2 < δ for some t0 ,

then √
(x(t)− x0)2 + (y(t)− y0)2 < ε for all t > t0 .

• asymptotically stable if and only if there is a δ > 0 such that, if (x, y) is any solution to the

system satisfying√
(x(t)− x0)2 + (y(t)− y0)2 < δ for some t0 ,

then

lim
t→+∞

√
(x(t)− x0)2 + (y(t)− y0)2 = 0 .

• unstable if the equilibrium solution is not stable.

While we are at it, we should give precise meanings to the ‘convergence/divergence’ of a

trajectory to/from a critical point (x0, y0) . So assume we have a trajectory and any solution (x, y)

to the system that generates that trajectory. We’ll say the trajectory

• converges to critical point (x0, y0) if and only if limt→+∞(x(t), y(t)) = (x0, y0) ,

and

• diverges from critical point (x0, y0) if and only if limt→−∞(x(t), y(t)) = (x0, y0) .
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TTank A

(500 gal.)

Tank B

(1,000 gal.)

2 gal./min.

2 gal./min.

6 gal./min. (50% alcohol)

6 gal./min.

6 gal./min. (0% alcohol)

6 gal./min.

Figure 36.5: A simple system of two tanks containing water/alcohol mixtures.

Long-Term Behavior

A direction field may also give us some idea of the long-term behavior of the solutions to the given

system at points far away from the critical points. Of course, this supposes that any patterns that

appear to be evident in the direction field actually continue outside the region on which the direction

field is drawn.

!�Example 36.6: Consider the direction field and sample trajectories sketched in figure 36.2b on

page 781. In particular, look at the trajectory passing through the point (1, 0) , and follow it in the

direction indicated by the direction field. The last part of this curve seems to be straightening out

to a straight line proceeding further into the first quadrant at, very roughly, a 45 degree angle to

both the positive X–axis and positive Y –axis. This suggests that, if (x(t), y(t)) is any solution

to the direction field’s system satisfying (x(t0), y(t0)) = (1, 0) for some t0 , then

lim
t→∞(x(t), y(t)) = (∞,∞)

with

y(t) ≈ x(t) when t is “large” .

On the other hand, if you follow the trajectory passing through position (−1, 0) , then you

probably get the impression that, as t increases, the trajectory is heading deeper into the third

quadrant of the XY –plane, suggesting that if (x(t), y(t)) is any solution to the direction field’s

system satisfying (x(t0), y(t0)) = (−1, 0) for some t0 , then

lim
t→∞(x(t), y(t)) = (−∞,−∞) .

You may even suspect that, for such a solution,

y(t) ≈ x(t) when t is “large” ,

though there is hardly enough of the trajectory sketched to be too confident of this suspicion.
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36.6 Applications

Let us try to apply the above to three applications from the previous chapter; namely, the applications

involving two-tank mixing, competing species, and a swinging pendulum. In each case, we will find

the critical points, attempt to use a (computer-generated) direction field to determine the stability of

these points, and see what conclusions we can then derive.

A Mixing Problem

Our mixing problem is illustrated in figure 36.5. In it, we have two tanks A and B containing, re-

spectively, 500 and 1,000 gallons of a water/alcohol mix. Each minute 6 gallons of a water/alcohol

mix containing 50% alcohol is added to tank A, while 6 gallons of the mix is drained from that

tank. At the same time, 6 gallons of pure water is added to tank B, and 6 gallons of the mix in tank

B is drained out. In addition, the two tanks are connected by two pipes, with one pumping liquid

from tank A to tank B at a rate of 2 gallons per minute, and with the other pumping liquid in the

opposite direction, from tank B to tank A, at a rate of 2 gallons per minute.

In the previous chapter, we found that the system describing this mixing process is

x ′ = − 8

500
x + 2

1000
y + 3

y′ = 2

500
x − 8

1000
y

. (36.5)

where

t = number of minutes since we started the mixing process ,

x = x(t) = amount (in gallons) of alcohol in tank A at time t ,

and

y = y(t) = amount (in gallons) of alcohol in tank B at time t .

To find any critical points of the system we first replace each derivative in system (36.5) with

0 , obtaining

0 = − 8

500
x + 2

1000
y + 3

0 = 2

500
x − 8

1000
y

.

Then we solve this algebraic system. That is easily done. From the last equation we have

x = 500

2
· 8

1000
y = 2y .

Using this with the first equation, we get

0 = − 8

500
· 2y + 2

1000
y + 3 = 3 − 15

500
y

↪→ y = 3 · 500

15
= 100 and x = 2y = 2 · 100 = 200 .

So the one critical point for this system is

(x0, y0) = (200, 100) .
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X

Y

0 100 200 300 400

200

150

100

5050

0

Figure 36.6: Direction field for the system of two tanks from figure 36.5.

Considering the physical process being modeled, it should seem reasonable for this critical point to

describe the long-term equilibrium of the system. That is, we should expect (200, 100) to be an

asymptotically stable equilibrium, and that

lim
t→∞(x(t), y(t)) = (200, 100) .

Checking the computer-generated direction field in figure 36.6, we see that this is clearly the case.

Around critical point (200, 100) , the direction arrows are all pointing toward this point. Thus, as

t → ∞ the concentrations of alcohol in tanks A and B, respectively, approach

200

500
(i.e., 40%) and

100

1000
(i.e., 10%) .

Competing Species
The Model and Analysis

In our competing species example, we assumed that we have a large field containing rabbits and

gerbils that are competing with each other for the resources in the field. Letting

R = R(t) = number of rabbits in the field at time t

and

G = G(t) = number of gerbils in the field at time t ,

we derived the following system describing how the two populations vary over time:

R′ = (β1 − γ1 R − α1G)R

G ′ = (β2 − γ2G − α2 R)G
. (36.6)

In this, β1 and β2 are the net birth rates per creature under ideal conditions for rabbits and gerbils,

respectively, and the γk ’s and αk’s are positive constants that would probably have to be deterimined

by experiment and measurement. In particular, the values we chose yielded the system

R′ =
(

5

4
− 1

160
R − 3

1000
G

)
R

G ′ =
(

3 − 3

500
G − 3

160
R
)

G

. (36.7)
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Setting R′ = G ′ = 0 in equation set (36.7) gives us the algebraic system we need to solve to

find the critical points:

0 =
(

5

4
− 1

160
R − 3

1000
G

)
R

0 =
(

3 − 3

500
G − 3

160
R
)

G

. (36.8)

The first equation in this algebraic system tells us that either

R = 0 or
1

160
R + 3

1000
G = 5

4
.

If R = 0 , the second equation reduces to

0 =
(

3 − 3

500
G
)

G ,

which means that either

G = 0 or G = 500 .

So two critical points are (R,G) = (0, 0) and (R,G) = (0, 500) .

If, on the other hand, the first equation in algebraic system (36.8) holds because

1

160
R + 3

1000
G = 5

4
,

then the system’s second equation can only hold if either

G = 0 or
3

500
G + 3

160
R = 3 .

If G = 0 , then we can solve the first equation in the system, obtaining

R = 5

4
· 160 = 200 .

So (R,G) = (200, 0) is one critical point. Looking at what remains, we see that there is one more

critical point, and it satisfies the simple algebraic linear system

1

160
R + 3

1000
G = 5

4

3

160
R + 3

500
G = 3

.

You can easily verify that the solution to this is (R,G) = (80, 250) .

So the critical points for our system are (R,G) equaling

(0, 0) , (0, 500) , (200, 0) and (80, 250) .

The first tells us that, if we start with no rabbits and no gerbils, then the populations remain at 0

rabbits and 0 gerbils — no big surprise. The next tells us that our populations can remain constant if

either we have no rabbits with 500 gerbils, or we have 200 rabbits and no gerbils. The last critical

point says that the two populations can coexist at 80 rabbits and 250 gerbils.
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(a)(a) (b) (c)

R

G

G

500

250

0
0

80 200

Figure 36.7: (a) A direction field and some trajectories for the competing species example with

system (36.7), and detailed direction fields over very small regions about critical

points (b) (0, 500) and (c) (80, 250) .

But look at the direction field in figure 36.7a for this system. From that, it is clear that critical

point (0, 0) is unstable. If we have at least a few rabbits and/or gerbils, then those populations do

not, together, die out. We will always have at least some rabbits or gerbils.

On the other hand, critical point (200, 0) certainly appears to be an asymptotically stable critical

point. In fact, from the direction field it appears that, if we have, say R(0) > 150 and G(0) < 250 ,

then the direction of the direction arrows “near” (200, 0) indicate that

lim
t→∞(R(t),G(t)) = (200, 0) .

In other words, the gerbils die out and the number of rabbits stabilizes at 200 .

Likewise, critical point (500, 0) also appears to be asymptotically stable. Admittedly, a some-

what more detailed direction field about (500, 0) , such as in figure 36.7b, may be desired to clarify

this. Thus, if we start with enough gerbils and too few rabbits (say, G(0) > 250 and R(0) < 80 ),

then

lim
t→∞(R(t),G(t)) = (0, 500) .

In other words, the rabbits die out and the number of gerbils approaches 500 .

Finally, what about critical point (80, 250) ? In the region about this critical point, we can see

that a few direction arrows point towards this critical point, while others seem to lead the trajectories

past the critical point. That suggests that (80, 250) is an unstable critical point. Again, a more

detailed direction field in a small area about critical point (80, 250) , such as in figure 36.7c, is called

for. This direction field shows more clearly that critical point (80, 250) is unstable. Thus, while it is

possible for the populations to stabilize at 80 rabbits and 250 gerbils, it is also extremely unlikely.

To summarize: It is possible for the two competing species to coexist, but, in the long run, it

is much more likely that one or the other dies out, leaving us with either a field of 200 rabbits or a

field of 500 gerbils, depending on the initial number of each.
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T

θ

θ

mg

L

Fgrav,tan

Figure 36.8: The pendulum system with a weight of mass m attached to a massless rod of length

L swinging about a pivot point under the influence of gravity.

Some Notes

It turns out that different choices for the parameters in system (36.6) can lead to very different

outcomes. For example, the system

R′ = (120 − 2R − 2G)R

G ′ = (320 − 8G − 3R)G

also has four critical points; namely,

(0, 0) , (60, 0) , (0, 40) and (32, 28) .

In this case, however, the first three are unstable, and the last is asymptotically stable. Thus, if we

start out with at least a few rabbits and a few gerbils, then

lim
t→∞(R(t),G(t)) = (32, 28) .

So neither population dies out. The rabbits and gerbils in this field are able to coexist, and there will

eventually be approximately 32 rabbits and 28 gerbils.

It should also be noted that, sometimes, it can be difficult to determine the stability of a critical

point from a given direction field. When this happens, a more detailed direction field about the

critical point may be tried. A better approach involves a method using the eigenvalues of a certain

matrix associated with the system and critical point. Unfortunately, this approach goes beyond the

scope of this text (but not very much beyond). The reader is strongly encouraged to explore this

method in the future.

The (Damped) Pendulum

In the last chapter, we derived the system

θ ′ = ω

ω′ = −γ sin(θ) − κω
(36.9)

to describe the angular motion of the pendulum in figure 36.8. Here

θ(t) = the angular position of pendulum at time t measured counterclockwise

from the vertical line “below” the pivot point
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θ

ω

π 3π−π−3π

Figure 36.9: A phase portrait (with direction field) for pendulum system (36.10).

and

ω(t) = θ ′ = the angular velocity of the pendulum at time t .

In addition, γ is the positive constant given by γ = g/L where L is the length of the pendulum and

g is the acceleration of gravity, and κ is the “drag coefficient”, a nonnegative constant describing the

effect friction has on the motion of the pendulum. The greater the effect of friction on the system,

the larger the value of κ , with κ = 0 when there is no friction slowing down the pendulum. We

will restrict our attention to the damped pendulum in which friction plays a role (i.e., κ > 0 ).2 For

simplicity, we will assume

γ = 8 and κ = 2 ,

though the precise values for γ and κ will not play much of a role in our analysis. This gives us

the system

θ ′ = ω

ω′ = −8 sin(θ) − 2ω
. (36.10)

Before going any further, observe that the right side of our system is periodic with period 2π

with respect to θ . This means that, on the θω–plane, the pattern of the trajectories in any vertical

strip of width 2π will be repeated in the next vertical strip of width 2π .

Setting θ ′ = 0 and ω′ = 0 in system (36.10) yields the algebraic system

0 = ω

0 = −8 sin(θ) − 2ω

for the critical points. From this we get that there are infinitely many critical points, and they are

given by

(θ, ω) = (nπ, 0) with n = 0, ±1, ±2, . . . .

A direction field with a few trajectories for this system is given in figure 36.9. From it, we can

see that the behavior of the trajectories near a critical point (θ, ω) = (nπ, 0) depends strongly on

whether n is an even integer or an odd integer.

If n is an even integer, then the nearby trajectories are clearly spirals “spiraling” in towards the

critical point (θ, ω) = (nπ, 0) . Hence, every critical point (nπ, 0) with n even is asymptotically

2 It turns out that the undamped pendulum, in which κ = 0 , is more difficult to analyze.
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stable. That is, if n is an even integer and

(θ(t0), ω(t0)) ≈ (nπ, 0)

for some t0 , then

(θ(t), ω(t)) → (nπ, 0) as t → ∞ .

This makes sense. After all, if n is even, then (θ, ω) = (nπ, 0) describes a pendulum hanging

straight down and not moving — certainly what most of us would call a ‘stable equilibrium’ position

for the pendulum, and certainly the position we would expect a real-world pendulum (in which there

is inevitably some friction slowing the pendulum) to eventually assume.

Now consider any critical point (θ, ω) = (nπ, 0) when n is an odd integer. From figure 36.9

it is apparent that these critical points are unstable. This also makes sense. With n being an odd

integer, (θ, ω) = (nπ, 0) describes a stationary pendulum balanced straight up from its pivot point,

which is a physically unstable equilibrium. It may be possible to start the pendulum moving in such

a manner that it approaches this configuration. But if the initial conditions are not just right, then

the motion will be given by a trajectory that approaches and then goes away from that critical point.

In particular, the trajectories near this critical point that pass through the horizontal axis (where

the angular velocity ω is zero) are describing the pendulum slowing to a stop before reaching the

upright position and then falling back down, while the trajectories near this critical point that pass

over or below this point describe the pendulum traveling fast enough to reach and continue through

the upright position.

From figure 36.9, it is apparent that every trajectory eventually converges to one of the critical

points, with most spiraling into one of the stable critical points. This tells us that, while the pendulum

may initially have enough energy to spin in complete circles about the pivot point, it eventually stops

spinning about the pivot and begins rocking back and forth in smaller and smaller arcs about its

stable downward vertical position. Eventually, the arcs are so small that, for all practical purposes,

the pendulum is motionless and hanging straight down.

By the way, it’s fairly easy to redo the above using fairly arbitrary positive choices of γ and

κ in pendulum system (36.9). As long as the friction is not too strong (i.e., as long as κ is not too

large compared to γ ), the resulting phase portrait will be quite similar to what we just obtained.

However, if κ is too large compared to γ (to be precise, if κ ≥ 2
√
γ ), then, while the critical points

and their stability remain the same as above, the trajectories no longer spiral about the stable critical

points but approach them more directly. The interested reader is encouraged to redo the above with

a relatively large κ to see for themself.

36.7 Existence and Uniqueness of Trajectories

The existence and uniqueness of solutions to standard systems of differential equations were dis-

cussed in the last chapter. It is worth noting that the assumption of a system being regular immediately

implies that the component functions all satisfy the conditions required in theorem 35.1. So we au-

tomatically have:

Corollary 36.1

Suppose x′ = F(t, x) is a regular 2×2 system. Then any initial-value problem involving this

system,

x′ = F(t, x) with x(t0) = a ,
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has exactly one solution on some open interval (α, β) containing t0 . Moreover, the component

functions of this solution and their first derivatives are continuous over that interval.

As almost immediate corollaries of corollary 36.1 (along with a few observations made in section

36.4), we have the following facts concerning trajectories of any given 2×2 standard first-order

system that is both regular and autonomous:

1. Through each point of the plane there is exactly one complete trajectory.

2. If a trajectory contains a critical point for that system, then that entire trajectory is that single

critical point. Conversely, if a trajectory for a regular autonomous system has nonzero length,

then that trajectory does not contain a critical point.

3. Any trajectory that is not a critical point is “smooth” in that no trajectory can have a “kink”

or “corner”.

The other properties of trajectories that were claimed earlier all follow from the following

theorem and its corollaries.

Theorem 36.2

Assume x′ = F(x) is an 2×2 standard first-order system that is both regular and autonomous, and

let C be any oriented curve of nonzero length such that all the following hold at each point (x, y)

in C :

1. The point (x, y) is not a critical point for the system.

2. The curve C has a unique tangent line at (x, y) , and that line is parallel to the vector F(x) .

3. The direction of travel of C through (x, y) is in the same direction as given by the vector

F(x) .

Then C (excluding any endpoints) is the trajectory for some solution to the system x′ = F(x) .

This theorem assures us that, in theory, the curves drawn “following” a direction field will be

trajectories of our system (in practice, of course, the curves we actually draw will be approximations).

Combining this thoerem with the existence and uniqueness results of corollary 36.1 leads to the next

two corollaries regarding complete trajectories.

Corollary 36.3

Two different complete trajectories of a regular autonomous system cannot intersect each other.

Corollary 36.4

If a complete trajectory of a regular autonomous system has an endpoint, that endpoint must be a

critical point.

We’ll discuss the proof of the above theorem in the next section for those who are interested.

Verifying the two corollaries will be left as exercises (see exercise 36.12).
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36.8 Proving Theorem 36.2
The Assumptions

In all the following, let us assume we have some regular autonomous 2×2 standard system of

differential equations

x′ = F(x) ,

along with an oriented curve C of nonzero length such that all the following hold at each point

(x, y) in C :

1. The point (x, y) is not a critical point for the system.

2. The curve C has a unique tangent line at (x, y) , and that line is parallel to the vector F(x) .

3. The direction of travel of C through (x, y) is in the same direction as given by the vector

F(x) .

Note that the requirement that C has a tangent line at each point in C means that we are excluding

any endpoints of this curve.

Preliminaries

To verify our theorem, we will need some material concerning “parametric curves” that you should

recall from your calculus course.

Norms and Normalizations

The norm (or length) of a column vector or vector-valued function

v =
[
v1

v2

]
is

‖v‖ =
√

[v1]2 + [v2]2 .

If v is a nonzero vector, then we can normalize it by dividing it by its norm, obtaining a vector

n = v

‖v‖ = 1√[
v1

]2 + [
v2

]2
[
v1

v2

]

of unit length (i.e., ‖n‖ = 1 ) and pointing in the same direction as v .

Oriented Curves and Unit Tangents

If (x, y) is any point on any oriented curve at which the curve has a well-defined tangent line, then

this curve has a unit tangent vector at (x, y) , denoted by T(x, y) , which is simply a unit vector

tangent to the curve at that point, and pointing in the direction of travel along the curve at that point.

For our oriented curve, C , that tangent line is parallel to F(x) , and the direction of travel is given

by F(x) . So the unit tangent at (x, y) must be the normalization of F(x) . That is

T(x, y) = F(x)

‖F(x)‖ for each (x, y) in C . (36.11)
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Curve Parameterizations

A parametrization of an oriented curve C is an ordered pair of functions on some interval

(x(t), y(t)) for tS < t < tE

that traces out the curve in the direction of travel along C as t varies from tS to tE . Given any

such parametrization, we will automatically let

x = x(t) =
[

x(t)

y(t)

]
and x′ = x′(t) =

[
x ′(t)
y′(t)

]
.

If we view our parametrization (x(t), y(t)) as giving the position at time t of some object

traveling along C , then, provided the functions are suitably differentiable,

x′(t) =
[

x ′(t)
y′(t)

]
is the corresponding “velocity”, of the object at time t . This is a vector pointing in the direction of

travel of the object at time t , and whose length,

∥∥x′(t)
∥∥ =

√
[x ′(t)]2 + [y′(t)]2 ,

is the speed of the object at time t (i.e., as it goes through position (x(t), y(t)) ). Recall that the

integral of this speed from t = t1 to t = t2 ,∫ t2

t1

∥∥x′(t)
∥∥ dt , (36.12)

gives the signed distance one would travel along the curve in going from position (x(t1), y(t1)) to

position (x(t2), y(t2)) . This value is positive if t1 < t2 and negative if t1 > t2 . Recall, also, that

this distance (the arclength) is traditionally denoted by s .

The most fundamental parametrizations are the arclength parametrizations. To define one for

our oriented curve C , first pick some point (x0, y0) on C . Then let sS and sE be, respectively,

the negative and positive values such that sE is the “maximal distance” that can be traveled in the

positive direction along C from (x0, y0) , and |sS| is the “maximal distance” that can be traveled

in the negative direction along C from (x0, y0) . These distances may be infinite.3 Finally, define

the arclength parametrization

(x̃(s), ỹ(s)) for sS < s < sE

as follows (and as indicated in figure 36.10):

1. For 0 ≤ s < sE set (x̃(s), ỹ(s)) equal to the point on C arrived at by traveling in the

positive direction along C by a distance of s from (x0, y0) .

2. For sS < s ≤ 0 set (x̃(s), ỹ(s)) equal to the point on C arrived at by traveling in the

negative direction along C by a distance of |s| from (x0, y0) .

We should note that if the curve intersects itself, then the same point (x̃(s), ỹ(s)) may be given

by more than one value of s . In particular, if C is a loop of length L , then (x̃(s), ỹ(s)) will be

periodic with (x̃(s + L), ỹ(s + L)) = (x̃(s), ỹ(s)) for every real value s .

3 Better definitions for sS and sE are discussed in the ‘technical note’ at the end of this subsection



�

�

�

�

�

�

�

�

Proving Theorem 36.2 799

X

Y

s = 2

(x̃(2), ỹ(2))

s = −3

(x̃(−3), ỹ(−3))

(x0, y0)

Figure 36.10: Two points given by an arclength parameterization x̃(s) of an oriented curve.

It should also be noted that, from arclength integral (36.12) and the fact that, by definition, s

is the signed distance one would travel along the curve to go from (x̃(0), ỹ(0)) to (x̃(s), ỹ(s)) , we

automatically have ∫ s

0

∥∥x̃′(σ )
∥∥ dσ = s .

Differentiating this yields∥∥x̃′(s)
∥∥ = d

ds

∫ s

0

∥∥x̃′(σ )
∥∥ dσ = ds

ds
= 1 .

Hence, each x̃′(s) is a unit vector pointing in the direction of travel on C at x̃(s) — that is, x̃′(s)
is the unit tangent vector for C at (x̃(s), ỹ(s)) . Combining this with equation (36.11) yields

x̃ ′(s) = T(x̃(s), ỹ(s)) = F(x̃(s))∥∥F(x̃(s))
∥∥ for sS < s < sE . (36.13)

Technical Note on “Maximal Distances”

We set sE equal to “the ‘maximal distance’ that can be traveled in the positive direction along C

from (x0, y0) ”. Technically, this “maximal distance” may not exist because, technically, an endpoint

of a trajectory need not actually be part of that trajectory.

To be more precise, let us define a subset S of the positive real numbers by specifying that

s is in S

if and only

there is a point on C arrived at by traveling a distance of s in the positive direction

along C from (x0, y0) .

With a little thought, it should be clear that S must be a subinterval of (0,∞) (assuming some

‘obvious facts’ about the nature of curves). One end point of S must clearly be 0 . The other

endpoint gives us the value sE . In particular, letting C
+ be that part of C containing all the points

arrived at by traveling in the positive direction along C from (x0, y0) :

1. If C+ is a closed loop, then sE = ∞ (because we keep going around the loop as s increases).

2. If C
+ is a curve that does not intersect itself, then sE is the length of C

+ (which may be

infinite).

Obviously, similar comments can be made regarding the definition of sS .
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Finishing the Proof of Theorem 36.2

Let us now use the arclength parameterization (x̃, ỹ) to define a function t̃ of s by

t̃(s) =
∫ s

0

1∥∥F(x̃(σ ))
∥∥ dσ for sS < s < sE .

Since C contains no critical points, the integrand is always finite and positive, and the above function

is a differentiable steadily increasing function with

t̃ ′(s) = 1∥∥F(x̃(s))
∥∥ for sS < s < sE .

Consequently, for each s in (sE , sE) , there is exactly one corresponding t with t = t̃(s) . Thus,

we can invert this relationship, defining a function s̃ by

s̃(t) = s ⇐⇒ t = t̃(s) .

The function s̃ is defined on the interval (tS, tE ) where

tS = lim
s→sS

+
t̃(s) and tE = lim

s→sE
−

t̃(s) .

By definition,

s = s̃
(
t̃(s)

)
for sS < s < sE .

From this, the chain rule and the above formula for t̃ ′ , we get

1 = ds

ds
= d

ds

[
s̃
(
t̃(s)

)] = s̃ ′ (t̃(s)) t̃ ′(s) = s̃ ′ (t̃(s)) · 1∥∥F(x̃(s))
∥∥ .

Hence,

s̃ ′ (t̃(s)) =
∥∥F(x̃(s))

∥∥ . (36.14)

Now let

(x(t), y(t)) = ( x̃(s̃(t)) , ỹ(s̃(t) ) for tS < t < tE .

Observe that (x(t), y(t)) will trace out C as t varies from tS to tE , and that

F(x(t)) = F
(
x̃(s̃(t))

)
where

x(t) =
[

x(t)

y(t)

]
=

[
x̃(s̃(t))

ỹ(s̃(t))

]
= x̃(s̃(t)) .

The differentiation of this (using the chain rule applied to the components), along with equations

(36.13) and (36.14), then yields

x′(t) = d

dt

[
x̃(s̃(t))

] = x̃ ′ (s̃(t)) · s̃ ′(t) = F(x(t))

‖F(x(t))‖ · ‖F(x(t)‖ = F(x(t)) ,

completing our proof of theorem 36.2.
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Additional Exercises

36.1. Find all the constant/equilibrium solutions to each of the following systems:

a.

[
x ′

y′

]
=

[
2x − 5y

3x − 7y

]
b.

[
x ′

y′

]
=

[
2x − 5y + 4

3x − 7y + 5

]

c.

[
x ′

y′

]
=

[
3x + y

6x + 2y

]
d.

[
x ′

y′

]
=

[
xy − 6y

x − y − 5

]

e.

[
x ′

y′

]
=

[
x2 − y2

x2 − 6x + 8

]
f.

[
x ′

y′

]
=

[
x sin(y)

x2 − 6x + 9

]

g.

[
x ′

y′

]
=

[
4x − xy

x2 y + y3 − x2 − y2

]
h.

[
x ′

y′

]
=

[
x2 + y2 + 4

2x − 6y

]
36.2. Sketch the direction field for the system[

x ′

y′

]
=

[−x + 2y

2x − y

]

a. on the 2×2 grid with (x, y) = (0, 0) , (2, 0) , (0, 2) and (2, 2) .

b. on the 3×3 grid with x = −1 , 0 and 1 , and with y = −1 , 0 and 1 .

36.3. Sketch the direction field for the system[
x ′

y′

]
=

[
(1 − 2x)(y + 1)

x − y

]
on the 3×3 grid with x = 0 , 1/2 and 1 , and with y = 0 , 1/2 and 1 .

36.4. A direction field for[
x ′

y′

]
=

[−x + 2y

2x − y

]
has been sketched to the right. Using

this system and direction field:

a. Find and plot all the critical points.

b. Sketch the trajectories that go through

points (1, 0) and (0, 1) .

c. Sketch a phase portrait for this system.

d. Suppose (x(t), y(t)) is the solution to

this system satisfying (x(0), y(0)) =
(1, 0) . What apparently happens to

x(t) and y(t) as t gets large?

e. As well as you can, decide whether the

critical point found above is asymptot-

ically stable, stable but not asymptoti-

cally stable, or unstable.

X

Y

1

1

2

2

3

−1

−1
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36.5. A direction field for[
x ′

y′

]
=

[−x + 2y

−2x + 2

]
has been sketched to the right. Using

this system and direction field:

a. Find and plot all the critical points.

b. Sketch the trajectories that go through

points (−1, 0) and (0, 2) .

c. Sketch a phase portrait for this system.

d. Suppose (x(t), y(t)) is the solution to

this system satisfying (x(0), y(0)) =
(−1, 0) . What apparently happens to

x(t) and y(t) as t gets large?

e. As well as you can, decide whether the

critical point found in part a is asymp-

totically stable, stable but not asymp-

totically stable, or unstable.

X

Y

1

1

2

2

3

−1

−1

36.6. A direction field for[
x ′

y′

]
=

[
y

− sin(2x)

]
has been sketched to the right. Using

this system and direction field:

a. Find and plot all the critical points.

b. All the critical points of this system are

either stable (but not asymptotically

stable) or unstable. Using this direc-

tion field, determine which are stable

and which are unstable.

c. Sketch the trajectories that go through

points (1, 0) and (0, 2) .

d. Sketch a phase portrait for this system.

e. Suppose (x(t), y(t)) is the solution to

this system satisfying (x(0), y(0)) =
(1, 0) . What apparently happens to

x(t) and y(t) as t gets large?

X

Y

1

1 2

2

3

−1

−1
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36.7. The system[
x ′

y′

]
=

[
x − 2y − 1

2x − y − 2

]
has one critical point and that point is

stable, but not asymptotically stable. A

direction field for this system has been

sketched to the right. Using this infor-

mation:

a. Find and plot the critical point.

b. Sketch the trajectories that go through

points (0, 0) and (0, 1) .

c. Sketch a phase portrait for this system.

d. Suppose (x(t), y(t)) is the solution to

this system satisfying (x(0), y(0)) =
(0, 0) . What apparently happens to

x(t) and y(t) as t gets large?

X

Y

1

1

2

2

3

3

−1

36.8. A direction field for[
x ′

y′

]
=

[−2x + y + 1

−x − 4y + 5

]
has been sketched to the right. Using

this system and direction field:

a. Find and plot the one critical point of

this system.

b. Decide whether this critical point is

asymptotically stable, stable but not

asymptotically stable, or unstable.

c. Sketch the trajectories that go through

points (2, 0) and (0, 2) .

d. Sketch a phase portrait for this system.

e. Suppose (x(t), y(t)) is the solution to

this system satisfying (x(0), y(0)) =
(1, 0) . What apparently happens to

x(t) and y(t) as t gets large?

X

Y

1

1 2

2

3

3

−1
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36.9. A direction field for[
x ′

y′

]
=

[
x + 4y2 − 1

2x − y − 2

]
has been sketched to the right. Using

this system and direction field:

a. Find and plot all the critical points.

b. Sketch the trajectories that go through

the points (0, 0) and (1, 1) .

c. Sketch a phase portrait for this system.

X

Y

1

1

2

2

3

3

−1

36.10. Look up the commands for generating direction fields for systems of differential equations

in your favorite computer math package. Then, use these commands to do the following

for each problem below:

i. Sketch the indicated direction field for the given system.

ii. Use the resulting direction field to sketch (by hand) a phase portrait for the system.

a. The system is [
x ′

y′

]
=

[−x + 2y

2x − y

]
.

Use a 25×25 grid on the region −1 ≤ x ≤ 3 and −1 ≤ y ≤ 3 . (Compare the resulting

direction field to the direction arrows computed in exercise 36.2.)

b. The system is [
x ′

y′

]
=

[
(2x − 1)(y + 1)

y − x

]
.

Use a 25×25 grid on the region −1 ≤ x ≤ 3 and −1 ≤ y ≤ 3 . (Compare the resulting

direction field to the direction field found in exercise 36.3.)

c. The system is [
x ′

y′

]
=

[
x + 4y2 − 1

2x − y − 2

]
.

Use a 25×25 grid on the region 0 ≤ x ≤ 2 and −1 ≤ y ≤ 1 . (This gives a ‘close up’

view of the critical points of the system in exercise 36.9.)

d. The system is [
x ′

y′

]
=

[
x + 4y2 − 1

2x − y − 2

]
.

Use a 25×25 grid on the region 3/4 ≤ x ≤ 5/4 and −1/4 ≤ y ≤ 1/4 . (This gives an even

‘closer up’ view of the critical points of the system in exercise 36.9.)
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36.11. Consider the initial-value problem[
x ′

y′

]
=

[
f (x, y)

g(x, y)

]
with

[
x(0)

y(0)

]
=

[
a

b

]
.

Assume the system is regular and autonomous, and that (x̃, ỹ) is a solution to the above on

an interval (α, β) containing 0 . Now let t0 be any other point on the real line, and show

that a solution to [
x ′

y′

]
=

[
f (x, y)

g(x, y)

]
with

[
x(t0)

y(t0)

]
=

[
a

b

]
.

is then given by

(x(t), y(t)) = (x̃(t − t0), ỹ(t − t0)) for α + t0 < t < β + t0 .

(Hint: Showing that the first-order system is satisfied is a simple chain rule problem.)

36.12. Using corollary 36.1 on page 795 on the existence and uniqueness of solutions to regular

systems and theorem 36.2 on page 796 on curves being trajectories, along with (possibly)

the results of exercise 36.11, verify the following:

a. Corollary 36.3 on page 796. (Hint: Start by assuming the two trajectories do intersect.)

b. Corollary 36.4 on page 796. (Hint: Start by assuming an endpoint of a given maximal

trajectory is not a critical point.)
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Appendix

Author’s Guide to Using This Text

The following comments are mainly directed to the instructors of introductory courses in dif-

ferential equations. That said, the students in these courses and independent readers may also profit

from this discussion.

This text was written to be as complete and rigorous as is practical for an introductory text on

differential equations. Unfortunately, it is rarely practical for an instructor of an introductory course

on differential equations to be as complete and rigorous as they would would like. Constraints due

to the time available, the mathematical background of the students, the imposed requirements on the

topics to be covered, and, sometimes, meddling administrators all force us to focus our instruction,

abbreviate the development of some topics and even sacrifice interesting material. To a great extent

that is why this text contains much more material than you, the instructor, can realistically cover —

so that the interested student can, on their own time, go back and pick up some of the material that

they will later find useful and/or interesting.

So let me, the author, tell you, the instructor, my opinion of what material in this text should be

covered, what is optional, and what should probably be skipped in your course.

A.1 Overview

This text is divided into six parts:

I. The Basics

II. First-Order Equations

III. Second- and Higher-Order Equations

IV. The Laplace Transform

V. Power Series and Modified Power Series Solutions

VI. Systems of Differential Equations (A Brief Introduction)

The first three parts should be viewed as the core of your course and should be covered as completely

as practical (subject to the further advice given in the chapter-by-chapter commentary that follows).

The material in these three parts is needed for the next three parts. However, the next three parts are

independent of each other (excluding one optional section in part VI on the use of Laplace transforms
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to solve systems), and can be covered in any order. Feel free to choose whichever of these parts you

want to cover, subject, of course, to the constraints of your situation.

One typical constraint is that “Laplace transforms” must be covered. Then I would suggest

covering part IV as completely as practical. Admittedly, most of the differential equations solved

in this part using Laplace transforms can be solved just as easily by the more basic methods already

covered in the previous parts. Still, I feel that the introduction to integral transform methods,

convolution, Duhamel’s principle and delta functions more than justifies the time spent on a decent

development of “Laplace transforms”. This is all material that should in the repertoire of anyone

doing applied mathematics in science or engineering. (A good example of the value of Duhamel’s

principle is in the more advanced development of resonance given in section 27.7.)

If you do cover part IV, you will probably have little or no time for anything else. If you do

have a little time, you can start on an abbreviated development of power series solutions based on the

material in chapter 30, or you can introduce your students to systems of differential equations using

as much of part VI as you have time for. Given the antipathy towards “series” that so many students

seem to develop in their calculus course, you and your students may prefer to end the course with

“systems”.

If you have time to cover part V, possibly because you skipped all or much of part IV on

Laplace transforms, great! Part V is a fairly complete development of power series solutions and

the modified power series solutions arising from the method of Frobenius. With luck, covering this

material may counteract that antipathy towards series. Your students may even find the development

of the Frobenius method as a natural extension and combination of methods they already knew to

be illuminating. And don’t neglect discussing the role of singularities in the behavior of the series

solutions, especially when those solutions came from the Frobenius method. This oft overlooked

topic is of singular importance in solving many of the boundary value problems arising from the

separation of variables approach to solving partial differential equations.

As the title suggests, part VI is only a brief introduction to systems of differential equations.

It is not a complete development; it is, in fact, fairly elementary. For one thing, because this text

is to be accessible by students who have not had a course in linear algebra, the use of eigenvalues

and eigenvectors has been completely avoided. What is done is to introduce the concept of systems

of differential equations, show how they can arise in applications (including applications involving

a single nonlinear differential equation), develop the basics of phase plane analysis, and show how

that analysis can yield useful information about the solutions to these systems, even though we might

not be able to explicitly solve them. It may be a good way to end your course. There are lots of nice

pictures.

A.2 Chapter-by-Chapter Guide

What follows are the author’s suggestions of the chapters and sections to be covered (and not covered)

in a “typical” introductory course on differential equations, along with some commentary on the

material. These suggestions, of course, are subject to your choice of the general topics to be covered.

Keep in mind that these are merely suggestions. Each instructor should use their own good judgement

and adjust this schedule as appropriate so that their course best suits the backgrounds and needs of

their students, the time available, and the instructor’s own vision of how the course should be taught.
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Part I: The Basics

1. The Starting Point

Cover all of sections 1.1 and 1.2. Section 1.3 should be covered quickly, with the understanding that

your students’ understanding of and respect for this material will develop as they learn more about

differential equations.

2. Integration and Differential Equations

Cover sections 2.1 and 2.2 fairly quickly, emphasizing that this is stuff the students should have

already seen and be familiar with. Let them know that much of homework is a review of the basic

integration methods they will be using extensively for the rest of the course. Do not, however, skip

these sections or skip on the homework. Many of your students will probably need the review.

It seems that the material in sections 2.3 and 2.4 (on using definite integrals) is rarely part of

introductory differential equation courses. It can be skipped. Still, it would not hurt to mention

that using definite integrals makes it much easier to numerically solve those directly-integrable

differential equations such as
dy

dx
= e−x2

,

which require integrating integrals that are not easily integrated.

Part II: First-Order Equations

3. Some Basics about First-Order Equations

Sections 3.1 and 3.2 are fundamental and should not be skipped.

Section 3.3 (on existence and uniqueness) should only be briefly discussed, and that discussion

should probably be limited to theorem 3.1. Most instructors will want to skip the rest of chapter 3.

(Still, you might tell the more mathematically inquisitive that the Picard iteration method developed

in section 3.4 is pretty cool, and that the discussion is fairly easy to follow since the boring parts

have been removed and stuck in the sections 3.5 and 3.6.)

4. Separable First-Order Equations

Cover sections 4.1, 4.2, 4.3 and 4.4.

You can skip sections 4.5 (Existence, Uniqueness and False Solutions), 4.6 (On the Nature of

Solutions to DEs) and 4.7 (Using and Graphing Implicit Solutions). In an ideal world, the material

in these sections would be recognized as important for understanding “solutions”. But this is not the

ideal world, and there isn’t enough time to cover everything. Tell your students that they can read it

on their own, and that understanding this material will help lead them to enlightenment.

You can also skip section 4.8. It’s on using definite integrals.

5. Linear First-Order Equations

Cover sections 5.1 and 5.2. Sections 5.3 (on using definite integrals) and 5.4 (a bit of theory) can be

ignored by most.

6. Simplifying Through Substitution

Cover the whole thing. Students should be able to recognize and use the “obvious” substitutions in

sections 6.2 and 6.3. They should also be able to use any other reasonable substitution suggested to

them. On the other hand, I see little value in memorizing the substitution for the Bernoulli equations

— being able to derive it (exercise 6.8), however, is of great value.
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7. Exact Equations and General Integrating Factors

Whether or not this chapter is covered depends on the background of your students. If they have

had a course covering calculus of several variables — in particular, if they are acquainted with the

multidimensional chain rule — then all of this chapter should be covered. After all, the methods for

dealing with first-order differential equations discussed in chapters 4 and 5 are all just special cases

of the general methods discussed in this chapter.

On the other hand, many introductory courses in differential equations do not have multivariable

calculus as a prerequisite, and the students in those courses cannot be expected to know the multidi-

mensional chain rule on which almost everything in this chapter is based. That makes covering this

material problematic. For that reason, this chapter and the rest of the text were written so that this

chapter could be omitted. (But students in these courses should realize that they will want to read

this chapter on their own after learning about the multidimensional chain rule.)

8. Slope Fields: Graphing Solutions Without the Solutions

Cover sections 8.1 and 8.2. These sections describe what slope fields are, why they can be useful,

and how to construct and use them. I’ve also tried to make the exercises more meaningful than just

“sketch a bunch of solution curves”. If you want a computer assignment (highly recommended),

require exercise 8.8.

Sections 8.3, 8.4 and 8.5 cover useful stuff regarding slope fields that is rarely discussed in intro-

ductory differential equation courses. If time permits, a brief discussion of stability as approached

in section 8.3 may be enlightening, as might a discussion of “problem points”, as done in section 8.4,

just to illustrate how solutions can go bad.

9. Euler’s Numerical Method

This development of Euler’s numerical method for first-order differential equations follows naturally

from the discussion of slope fields in the previous chapter. Cover sections 9.1 and 9.2, and then briefly

comment on the material in sections 9.3 and 9.4 regarding the errors that can arise in using Euler’s

method. The detailed error analysis in section 9.5 is only for the most dedicated.

(By the way, you can go straight from chapter 8 to chapter 10, and cover chapter 9 later. If

a chapter must be sacrificed because of time limitations, this would probably be one of the better

candidates for the sacrifice.)

10. The Art and Science of Modeling with First-Order Equations

Cover sections 10.1 through 10.6. Consider section 10.7 on thermodynamics (Newton’s law of

heating and cooling) as optional. Section 10.8 is extremely optional; it covers technical issues that

only mathematicians worry about.

Add few applications of your own if you want.

By the way, my approach to “applications” is a bit different from that found in many other texts.

I prefer working on the reader’s ability to derive and use the differential equations modeling any

given situation, rather just than flashing a big list of applications.

Part III: Second- and Higher-Order Equations

11. Higher-Order Equations: Extending First-Order Concepts

Cover section 11.1. That material is needed for future development. I’ll leave it to you to decide

whether the solution method in section 11.2 is worth covering; it can be safely skipped.

Cover section 11.3 on initial-value problems.
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Section 11.4 is on the existence and uniqueness of solutions to higher-order differential equa-

tions, and should only be briefly discussed, if at all. At most, mention that the existence and

uniqueness results for first-order equations have higher-order analogs.

12. Higher-Order Linear Equations and the Reduction of Order
Method

Cover sections 12.1, 12.2 and 12.3. All of this is needed for later development.

Extensions of the reduction of order method are discussed in sections 12.4 and 12.5, along

with explanations as to why these extensions are rarely used in practice. Consider these sections as

very optional, but, to hint at future developments, you might mention that the variation of parameters

method for solving nonhomogeneous equations, which will be developed later, is just an improvement

on the reduction of order method for nonhomogeneous equations discussed in section 12.4.

13. General Solutions to Homogeneous Linear Differential Equations

Cover sections 13.1 and 13.2. This material is fundamental. However, if you want to concentrate on

second-order equations at first, you can cover section 13.1 now (which just concerns second-order

equations), and then go on to chapters 15 and 16 (and maybe the first two sections of chapter 18 on

Euler equations). You can then go back and cover section 13.2 just before discussing the higher-order

equations in chapter 17.

Section 13.3 concerns Wronskians. Consider it optional. This section was written assuming

the students had not yet taken a course in linear algebra. Under this assumption, I do not feel that

Wronskians are worth any more than a brief mention here. It’s later that Wronskians become truly

of interest.

14. Verifying the Big Theorems and an Introduction to Differential
Operators

You can, and probably should, completely skip this chapter.

The first two sections are there just to assure readers that I didn’t make up the big theorems in

the previous chapter. Of course, you can read it for your own personal enjoyment and so that you

can tell me of all the typos in this chapter.

Section 14.3 can help the students better understand “differential operators” in the context of

differential equations, but the material in this section is only used later in the text to prove a few

theorems. Since you are not likely to be discussing these particular proofs, you can safely skip this

section. Suggest this section as enrichment for your more inquisitive students.

15. Second-Order Homogeneous Linear Equations with Constant
Coefficients

This may be the most important chapter for many of your students. By the end of the term, they

should be able to solve these equations in their sleep. I also consider the introduction of the complex

exponential as a practical tool for doing trigonometric function computations to be important.

Cover everything in this chapter except, possibly, example 15.5 on page 312 (that example

concerns using the complex exponential to derive trigonometric identities — a really nice thing,

but you’ll probably be a little pressed for time and will want to concentrate on solving differential

equations.)
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16. Springs: Part I

This is a fairly standard discussion of unforced springs (maybe with more emphasis than usual on

the modeling process). Cover all of it quickly.

17. Arbitrary Homogeneous Linear Equations with Constant
Coefficients

Cover all of sections 17.1, 17.2 and 17.3.

Don’t cover sections 17.4 and 17.5. They contain rigorous proofs of theorems naively justified

earlier in the chapter. Besides, you will need the material from section 14.3 (which you probably

skipped).

18. Euler Equations

Cover sections 18.1 and 18.2. Section 18.3 is optional. Don’t bother covering section 18.4, though

you may want to briefly comment on that material (which relates Euler equations to equations with

constant coefficients via a substitution).

By the way, the approach to Euler equations taken here is taken to help reinforce the students’

grasp of the theory developed for general linear equations. It will also help prepare them for the

series methods (especially the method of Frobenius) that some of them will later see. That is why I

downplay the substitution method commonly used by others.

19. Nonhomogeneous Equations in General

Cover sections 19.1 and 19.2. Briefly mention that reduction of order can be used to solve nonho-

mogeneous equations (that’s really all that’s done in section 19.3).

20. Method of Undetermined Coefficients

Cover everything in this chapter except section 20.7 (verifying a theorem).

If you are running short on time, you might incorporate a brief discussion of resonance with

the development of the material in section 20.3, and then skip the next chapter.

21. Springs: Part II

This is the material on forced oscillations in mass/spring systems. If you have time, cover sections

21.1, 21.2 and 21.3. Consider 21.4 (on the ‘beat phenomenon’) as very optional.

22. Variation of Parameters

Cover sections 22.1 and 22.2. Do not cover section 22.3 unless you really feel that the variation of

parameters formula is worth memorizing (I don’t).

Part IV: The Laplace Transform

23. The Laplace Transform (Intro)

Cover sections 23.1, 23.2, 23.3, 23.4 and 23.5. (Don’t waste much time on the gamma function —

just about everything else in this chapter is much more important).

The students should at least skim the first part of section 23.6. This discusses some issues

regarding piecewise continuous functions. In this text, I’ve adopted the view that “the value of a

function at a point of discontinuity is ‘irrelevant’ ”. Basically, I’m introducing the idea of functions

being equal “almost everywhere” in the sense normally encountered in more advanced analysis
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courses. This is a practical and philosophical decision explained in the first part of section 23.6.

Point this out in class, but don’t make a big deal of it.

Section 23.7 concerns two proofs — one bad and one good – on the existence of the Laplace

transform for piecewise continuous functions of exponential order. Go ahead and skip it.

24. Differentiation and the Laplace Transform

Cover the material in sections 24.1 and 24.2

Section 24.3 is optional. It covers the integration identities for the Laplace transform. If you

have time, do it; otherwise, just mention the existence of such identities as a counterpoint to the

differentiation identities.

Section 24.4, which is mainly concerned with a rigorous derivation of the “derivative of a

transform” identity, is very optional, though some may be intrigued by example 24.6 on page 477,

which illustrates that, sometimes, that which seems obviously true is not always true.

25. The Inverse Laplace Transform

Cover all of this chapter. And, yes, I really do wait until here to introduce the inverse transform.

Trust me, it works.

26. Convolution

At least cover sections 26.1 and 26.2. If time allows, cover 26.3 on Duhamel’s principle — this is

an introduction to a very important concept in a wide range of applications (including ordinary and

partial differential equations, and the generic modeling of systems in physics, optics and engineering).

Ultimately, it more justifies the development of convolution than does the formula L
−1[FG] = f ∗g .

27. Piecewise-Defined Functions and Periodic Functions

At least cover the material in sections 27.1 and 27.2. The material in section 27.3 is the natural

extension of that in the previous sections — at least discuss the rectangle function since it is used in

the next chapter. Cover the rest of section 27.3 if you have time. You might also suggest that your

students at least skim section 27.4 if they suspect that they might ever have to compute convolutions

with piecewise-defined functions.

Section 27.5 is on periodic functions. Consider it optional.

Section 27.6 is just a table of identities for the Laplace transform.

Section 27.7 generalizes the discussion of resonance from chapter 21. It is a nice application of

Duhamel’s principle which you certainly will not have time to cover. Maybe you will want to read

it for yourself, or recommend it as enrichment for an interested student.

28. Delta Functions

Cover sections 28.1, 28.2 (at least the material on “strong forces of brief duration”) and 28.3. If you

covered Duhamel’s principle, you will want to discuss section 28.4. Don’t bother with section 28.5

(on technical issues), other than to recommend it to the interested students.

Part V: Power Series and Modified Power Series Solutions

29. Series Solutions: Preliminaries

Much (but not all) of this chapter is a review of infinite series. Resist the temptation to simply tell

your students to read it on their own. Quickly cover sections 29.1, 29.2 and 29.3. Section 29.4,

however, can be skipped initially and returned to if needed.
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30. Power Series Solutions I: Basic Computational Methods

Cover all of sections 30.1, 30.2, 30.3, 30.4 and 30.5. These cover the finding of basic power series

solutions (and their radii of convergence) for first- and second-order linear equations with rational

coefficients.

Section 30.6, on using Taylor series, can be enlightening. It can also be considered optional.

Section 30.7 is an appendix on using induction when deriving the formulas for the coefficients

in a power series solutions. Theoretically, it should be covered. As a practical matter, it’s probably

best to simply tell your more mathematically mature students that this is a section they may want to

read on their own.

32. Power Series Solutions II: Generalizations and Theory

In this chapter:

1. The ideas and solution methods discussed in the previous chapter are extended to correspond-

ing ideas and solution methods for for first- and second-order linear equations with analytic

coefficients.

2. The validity of these methods and the claims of the relation between singular points and the

radii of convergence for the power series solutions are rigorously verified.

It may be a good idea to quickly go through sections 31.1 and 31.2 since some of the basic notions

developed here will apply later in the next two chapters. However, the extension of solution method

and the rigorous verification of the validity of the methods, no matter how skillfully done, may be

something you would not want to deal with in an introductory course. I certainly wouldn’t. So feel

free to skip the rest of the chapter, telling your students that they can return to it if the need ever

arises.

32. Modified Power Series Solutions and the Basic Method of
Frobenius

Cover sections 32.1, 32.2. 32.3, 32.4 and 32.5. This covers the development of the basic method

of Frobenius as a natural extension of the power series method from chapter 30 and the approach to

solving Euler equations given in chapter 18.

Section 32.6 discusses the case in which the exponents are complex. Skip it. It’s included for

the sake of completeness, but this case never arises in practice.

Section 32.7 is an appendix containing a proof and a generalization. It can be safely skipped.

33. The Big Theorem on the Frobenius Method, with Applications

Definitely cover section 33.1. It contains the “Big Theorem” describing when the basic Frobenius

method works, and describes the sort of modified power series solutions that arise in the ‘exceptional

cases’ in which the basic method only works partially.

Sections 33.2, 33.3 and 33.4 contain a discussion of the behavior of modified power series

solutions near singular points. While this seems to be rarely discussed, I consider knowing this

behavior to be very important in many applications of the Frobenius method. For some solutions,

this behavior near singularities is all you need to know. So I suggest covering these sections. If

time allows, it may also be worthwhile to illustrate this material with the application in section 33.5

concerning the Legendre equation and Legendre polynomials.

Adapting the basic Frobenius method to handle the ‘exceptional cases’ is discussed in section

33.6. With any luck, your students will never need this. Let them read it if ever the need arises.
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34. Validating the Method of Frobenius

You can, and probably should, completely skip this chapter.

Pity. I spent a lot of time and effort on this chapter, and I am rather proud of the result. It’s

straightforward, rigorous, and understandable by students (and instructors). As far as I am aware,

this chapter contains the only intelligible explanation of why you get the modified power series

solutions that you do get for the ‘exceptional cases.’ But the chapter is mainly on rigorously proving

the “Big Theorem” in the previous chapter and is intended to serve as a reference for those few who

really would like to see a good proof of that theorem.

Part VI: Systems of Differential Equations (A Brief
Introduction)

35. Systems of Differential Equations: A Starting Point

Cover sections 35.1, 35.2 and 35.3. In these sections, the student is introduced to systems of

differential equation and some interesting applications, one of which involves a single second-order

nonlinear differential equation.

Section 35.4 discusses the use of Laplace transforms to solve certain systems. It’s hardly the

best way to solve these systems but is pretty well the only way that could be discussed within the

parameters of this text. I would consider this section to be optional.

Section 35.5 on the existence and uniqueness of solutions and on identifying general solutions

should also be considered optional.

In section 35.6, some existence and uniqueness results for single N th-order equations are

discussed in context of the results given in section 35.5 — very optional for most classes.

36. Critical Points, Direction Fields and Trajectories

Cover sections 36.1, 36.2, 36.3, 36.4 and 36.5. The rudiments of phase plane analysis are developed

in these sections.

Also cover section 36.6, in which phase plane analysis is used to extract useful information

regarding three applications (mixing in multiple tanks, two competing species, and the motion of

a pendulum). This would be a nice place to end the course, so consider the rest of the chapter (on

verifying some properties of trajectories) as very optional.
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Chapter 1

1. Second, fifth, fifth, forty-second 3a i. Yes, it is 3a ii. No, it is not 3a iii. No

3b i. No 3b ii. Yes 3b iii. No 3c i. Yes 3c ii. No 3c iii. No 3d i. No

3d ii. No 3d iii. Yes 3e i. No 3e ii. Yes 3e iii. Yes 3f i. No 3f ii. No

3f iii. Yes 3g i. No 3g ii. Yes 3g iii. Yes 3h i. Yes 3h ii. Yes

3h iii. Yes 4a i. No 4a ii. Yes 4a iii. No 4b i. No 4b ii. No

4b iii. Yes 4c i. Yes 4c ii. No 4c iii. No 4d i. No 4d ii. No

4d iii. Yes 5b i. 9 5b ii. 5 5c i. y(x) =
√

x2 + 9 5c ii. y(x) =
√

x2 + 5

6b i. y(x) = 4ex2 − 3 6b ii. y(x) = 3ex2−1 − 3 7b i. y(x) = 3 cos(2x) + 4 sin(2x)

7b ii. y(x) = 1

2
sin(2x) 8a i. 7 8a ii. No, because then 7 = y′(1) = 4 .

8a iii.
d2 y

dx2
= 3x

dy

dx
+ 3y + 2x , y′′(1) = 29 8a iv. Of course.

8b i. y′′(0) = 4 and y′′′(0) = 24 8b ii. No. 9a. 100/7 sec.

9b. −140 meters/second 9c i. y′(0) = 0 is replaced with y′(0) = 2

9c ii. −4.9t2 + 2t + 1000 9c iii. −2
√

4901 meters/second 10a.
dv

dt
= −9.8 − κ(v − 2)

10b i. 1000κ 10b ii. (vhit + 9.8thit) /1000 11b. y(x) = 3x + 5x ln |x |
11c. Because y(x) is not continuous at x = 0 .

Chapter 2

2a. Yes, it is directly integrable. 2b. No, it is not directly integrable. 2c. No

2d. Yes 2e. No 2f. Yes 2g. Yes 2h. No 2i. No 2j. No

3a. y(x) = x4 + c 3b. y(x) = −5e−4x + c 3c. y(x) = 2 ln |x | − 2
√

x + c

3d. y(x) = 2
√

x + 4 + c 3e. y(x) = 1

2
sin
(

x2
)

+ c 3f. y(x) = x sin(x)+ cos(x)+ c

3g. y(x) = 1

2
ln

∣∣∣x2 − 9

∣∣∣+ c 3h. y(x) = 1

6
ln

∣∣∣ x − 3

x + 3

∣∣∣+ c 3i. y(x) = 1

27
x3 − 1

9
x + c

3j. y(x) = − 1

4
sin(2x)+ c1x + c2 3k. y(x) = 1

6
x3 + 3

2
x2 + c1x + c2

3l. y(x) = 1

24
x4 + c1x3 + c2x2 + c3x + c4 4a. y(x) = 2x2 + 5e2x − 1 for −∞ < x < ∞

4b. y(x) = 3

2
(x + 6)

2/3 + 4 for − ∞ < x < ∞
4c. y(x) = x − 2 ln |x + 1| + 8 for − 1 < x < ∞
4d. y(x) = 2

√
x − 2 ln |x | + 4 for 0 < x < ∞

4e. y(x) = − ln |cos(x)| + 3 for − π

2
< x <

π

2
4f. y(x) = arctan(x)+ 3 for − ∞ < x < ∞
4g. y(x) = 4

3
x

3/2 − 2x ln |x | + 6x + 2

3
for 0 < x < ∞

5a. y(x) = −2 cos
(

x

2

)
+ 2 + y(0) 5b i. 2 5b ii. 5 5b iii. 7

817



�

�

�

�

�

�

�

�

818 Answers to Selected Exercises

6a. y(x) = 2(x + 3)
3/2 − 16 + y(1) 6b i. 54 6b ii. 58 6b iii. −14

7a. y(x) = 7

2
− 1

2
e−x2

7b. y(x) = 4 +
√

x2 + 5 7c. y(x) = arctan x − π

2

7d. y(x) = π

6
erf(3x)+ 1 7e. y(x) = Si(x)+ 4 7f. y(x) = 1

2
Si
(

x2
)

9a. y =
{

0 if x < 0

x if 0 ≤ x

}
(or ramp(x) ) 9b. y(x) =

{
2 if x < 1

x + 1 if 1 ≤ x

}

9c. y(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 1

x − 1 if 1 ≤ x ≤ 2

1 if 2 < x

⎫⎪⎪⎬⎪⎪⎭ 9d. y(x) =
⎧⎨⎩ 2x − 1

2
x2 + c if x ≤ 2

1

2
x2 − 2s + 4 + c if 2 < xs

⎫⎬⎭

9e. y(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 0

x if 0 ≤ x < 1

2
(
x − 1/2

)
if 1 ≤ x < 2

3
(
x − 2/2

)
if 2 ≤ x < 3

4
(
x − 3/2

)
if 3 ≤ x < 4

x

Chapter 3

4a.
dy

dx
= 6x − 3xy , const. solns.: y = 2 4b.

dy

dx
= sin(x + y)

y
, const. solns.: none

4c.
dy

dx
= y3 + 8 , const. solns.: y = −2

4d.
dy

dx
= 1 − y2

x
, const. solns.: y = 1 and y = −1

4e.
dy

dx
= x + y2 , const. solns.: none

4f.
dy

dx
= 25y2 − y3 , const. solns.: y = 0 , y = 5 and y = −5

4g.
dy

dx
= y + 3

x − 2
, const. solns.: y = −3

4h.
dy

dx
= x − 3

y − 2
, const. solns.: none

4i.
dy

dx
= y2 − 2y − 2 , const. solns.: y = 1 + √

3 and y = 1 − √
3

4j.
dy

dx
= y2 + (x − 8)y − 8x , const. solns.: y = 8

5. The equations in exercises 3.4 c, 3.4 f and 3.4 i

6b. Because ∂F/∂y with F(x, y) = 2
√

y is not continuous at the point (1, 0) .

7a. ψ1(x) = 2 + x2 7b. ψ2(x) = 2 + x2 + 1

4
x4 7c. ψ3(x) = 2 + x2 + 1

4
x4 + 1

24
x6

8a. ψ1(x) = 3 + 9x + 3x2 8b. ψ2(x) = 3 + 9x + 28x2 + 29x3 + 9

2
x4 + 1

5
x5

Chapter 4

3a.
dy

dx
= (3 − sin(x))y2 3b. Not separable 3c. Not separable 3d. Separable

3e.
dy

dx
= 4(2 − y) 3f.

dy

dx
= x(4 − y) 3g. Not separable 3h.

dy

dx
= (x − 2)(y − 3)

3i. Not separable 3j.
dy

dx
= ex y−1e−3y2

4a. y(x) = ±
√

x2 + c

4b. y(x) = 3 tan(3x + c) 4c. y(x) = ±
√

Ax2 − 9 4d. y(x) = tan(c + arctan(x))

4e. y(x) = arcsin(c − cos(x)) 4f. y(x) = 1

3
ln

∣∣∣ 3

2
e2x + c

∣∣∣ 5a. y(x) =
√

x2 + 8

5b. y(x) = 3ex2−x − 1 5c. y(x) = −
√

5ex2 − 1 5d. y(x) =
√(

2x
3/2 + 3

)2 − 9
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6a. y = 4 6b. y = −1/2 6c. y = 3 and y = −3 6d. y = 0,±π,±2π,±3π, . . .

6e. No constant solution 6f. y = 0 and y = 100 7a. y(x) = 4 + A exp
(

1

2
x2
)

7b. y(x) = 3 + A exp
(

1

2
x2 − 2x

)
7c. y(x) = (

c − 3x − cos(x)
)−1

and y = 0

7d. y(x) = arcsin
(
Aex

)
7e. y(x) = Ax 7f. y3 − 2y2 = 2x3 + 4x + c

7g. y(x) = tan(arctan(x)+ c)

7h. implicit: y + y−1 = 2x2 + c1 , explicit: y(x) = x2 − c2 ±
√(

c2 − x2
)2 − 1 ; also y = 0

7i. y(x) = ln(x + c) 7j. y(x) = ln
∣∣Aex − 1

∣∣ 7k. y(x) = ±
(

c − 3x2
)−1/2

and y = 0

7l. 3y + y
3/2 = 3x + x

3/2 + c 7m. y(x) = 1 + Ae2x3

1 − Ae2x3
and y = −1

7n. y(x) = tan
(

x3 + c
)

7o. y(x) = 100Ae200x

1 + Ae200x
and y = 100 8a. y(x) = 5 + 3e2x

8b. y(x) = −
√

18 − 2 cos(x) 8c. y = −1 8d. y = 0 8e. y(x) = 2(2 − x)−1

8f. y(x) = −
√

1 + 3x2 8g. y2 − 2 ln |y| = 4x2 − 15 9a. y = 0 and y = β/γ

9b. y(x) = β

γ − Ae−βx
and y = 0 10a. (−∞,∞) 10b. (−∞,∞) 10c. (−∞, 2)

10d. (−e,∞) 10e.

(
− 2√

3
,

2√
3

)
Chapter 5

1a. Linear;
dy

dx
+ 3y = x−2 sin(x) 1b. Not linear 1c. Not Linear 1d. Not Linear

1e. Linear;
dy

dx
− (3 + x)y = 1 1f. Linear;

dy

dx
− 4y = 8 1g. Linear;

dy

dx
+ 0 · y = e2x

1h. Linear;
dy

dx
− sin(x) y = 0 1i. Not linear

1j. Linear;
dy

dx
− 827x−1 y = −x−1 cos

(
x2
)

2a. y(x) = 3 + ce−2x

2b. y(x) = 4e3x + ce−2x 2c. y(x) = ce4x − 4x − 1 2d. y(x) = cex2 − 1

2

2e. y(x) = 2x2 + cx−3 2f. y(x) = [c − cos x]x−2 2g. y(x) = cx3 − 2

5

√
x

2h. y(x) = [x + c] cos(x) 2i. y(x) = x−2
[
4 + ce−5x

]
2j. y(x) = 2

3
x3/2 + ce−√

x

3a. y(x) = 7e3x − 2 3b. y(x) = −2 3c. y(x) = 1

2

[
e−3x − e−5x

]
3d. y(x) = 4x2 + 6x−3 3e. y(x) = x[sin(x)− 1]
3f. y(x) = 1 + x2 + 3

√
5
(

1 + x2
)−1/2

4a. y(x) = e−3x2

[
4 +

∫ x

0

e3s2

sin(s) ds

]
4b. y(x) = 1

x

[
10 +

∫ x

2

sin(s)√
s

ds

]
4c. y(x) = x

[
8

3
+
∫ x

3

e−s2

ds

]
5. μ′(x) = μ(x)p(x) and y′(x) = f (x)− p(x)

μ(x)

[
μ(x0)y0 +

∫ x

x0

μ(s) f (s) ds

]
Chapter 6

1a. 3x + 3y + 2 = tan(3y + C) 1b. y(x) = 3

2
x ± 1

2

√
Ae−4x − 1

1c. y(x) = 2x − 3

4
+ 1

4
arcsin(8x + c) 2. y(x) = x − 1

x − 4

3a. y(x) = −x(ln |x | + c)−1 and y = 0 3b. y = ±x
√

c + 2 ln |x |
3c. y(x) = x arcsin(Ax − 1) 4. y(x) = −x +

√
2x2 + 9
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5a. y(x) = ±
(

1 + ce6x
)−1/2

and y = 0 5b. y(x) = 2x3
(

C − x2
)−1

and y = 0

5c. y(x) =
(

sin(x)+ c

sin(x)

)3
and y = 0 6. y(x) =

√
11x2 − 2x

7a. u = y

x
; y(x) = x (3 ln |x | + c)

1/3

7b. u = 2x + 3y + 4 ; y(x) = 1

3

(
1

2
x + c

)2
− 2

3
x − 4

3
and y(x) = − 1

3
(2x + 4)

7c. u = y
1/2 ; y(x) =

(
x + c

x

)2
and y = 0 7d. u = 4x − y ; y(x) = 4x − arccos(x + c)

7e. u = y − x ; y(x) = 1 + x − Ae−y 7f. u = y

x
; y ln |y| − cy = x and y = 0

7g. u = y

x
; y(x) = −x ± x

√
ln |x | + c

7h. u = y−2 ; y(x) = ±
(

cx2 − 2x3
)−1/2

and y = 0

7i. u = 2x + y − 3 ; y(x) = (x + c)2 − 2x + 3 and y(x) = 3 − 2x

7j. u = 2x + y − 3 ;
√

2x + y − 3 − ln
(

1 +
√

2x + y − 3
)

= x + c

7k. u = y

x
; y(x) = x

(
1

2
ln |x | + c

)2
− x and y = −x

7l. u = y4 ; y(x) = ±
(

8e2x + ce−12x
)1/4

7m. u = x − y + 3 ; y(x) = 3 + x +
(

Ae2x − 1
) (

Ae2x + 1
)−1

and y = x + 4

7n. u = y + x2 ; y(x) = c2 + 2cx and y = −x2

7o. u = sin(y) ; y(x) = arcsin
(
(c + x)e−x

)
7p. u = yx−2 ; y(x) = x2 tan(c + ln |x |)

8.
du

dx
+ (1 − n)p(x)u = (1 − n) f (x)

Chapter 7

1a. 3y + 3x
dy

dx
= 0 , y(x) = c

x
1b. −6x2 y +

[
2y − 2x3

]
dy

dx
= 0 , y(x) = x3 ±

√
c + x6

1c.
[
2xy − y3

]
+
[
x2 − 3xy2

]
dy

dx
= 0 , x2 y − xy3 = c

1d. Arctan(y)+ x

1 + y2

dy

dx
= 0 , y(x) = tan

(
c

x

)
2b. y(x) = ±

√
x + c

x

4a. φ(x, y) = x2 y + xy2 + c1 , y(x) = − x

2
± 1

2x

√
x2 + C

4b. φ(x, y) = x2 y3 + x4 + c1 , y(x) = (
cx−2 − x2

)1/3

4c. φ(x, y) = 2x − x2 + y3 + c1 , y(x) = (
c + x3 − 2x

)1/3

4d. φ(x, y) = x3 y2 + x + 3y2 + c1 , y(x) = ±
√

c − x

x3 + 3

4e. φ(x, y) = x4 y − 1

5
y5 + c1 , x4 y − 1

5
y5 = c 4f. φ(x, y) = x ln |xy| + c1 , y(x) = 1

x
ec/x

4g. φ(x, y) = x + xey + c1 , y(x) = ln

∣∣∣ c − x

x

∣∣∣ 4h. φ(x, y) = xey + y + c1 , xey + y = c

5a. μ = x3 , y(x) = ± (
Cx−4 − 1

)1/4 5b. μ = y−4 , xy−3 + y = c

5c. μ = x−2 y2 , y4 − x−2 y3 = c 5d. μ = cos(y) , x cos(y)+ sin(y) = c

5e. μ = √
x , y(x) = − 1

2
± 1

2

√
1 + Cx−3/2 5f. μ = e−x2

, y(x) = Cex2 − 1

5g. μ = x−3 , y4 − x−2 y3 = c 5h. μ = √
y , y

5/2 + x2 y
3/2 = c

5i. μ = xy
1/3 , x2 y

1/3 + x4 y
7/3 = c
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Chapter 8

1b. y(0) should be within 1/6 of 2. 2a.

1

1

0
0

2b.

1

1

0
0

2c.

1

1

0
0 3/2

3/2

2d.

1

1

0
0

2

2

2e.

1

1

0
0

2

2

2f.

1

1

0
0

2

2

3. a.

9
X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7 80

0

3b. y(8) ≈ 2

4. a.

9
X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7

7

80

0

bi. y(4) ≈ 31/2 bii. y(4) = 4

biii. y(4) ≈ 61/3
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5. ai. & bi.

9
X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7

7

80

0

−1

aii. The max. is approximately 61/2

and is at x ≈ 3 .

aiii. y(8) ≈ 31/2 , bii. y(8) ≈ 1

6. ai. & bi.

9
X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7

7

80

0

−1

aii. y(3) ≈ 31/2 bii. y(0) ≈ −1

7. ai. & bi.

9
X

Y

1

1

2

2

3

3

4

4

5

5

6

6

7 80

0

−1

aii. The max. is approximately 5

and is at x ≈ 2 .

bii. The max. is approximately 3

and is at x ≈ 61/2 .

9a. y = 2 appears to be an asymptotically stable constant solution.

9b. y = 2 appears to be an unstable constant solution.

9c. y = 2 appears to be a stable (but maybe not asymptotically stable) constant solution.

9d. y = 3 appears to be an unstable constant solution.

9e. y = 2 appears to be an unstable constant solution, and y = −2 appears to be an

asymptotically stable constant solution.

9f. y = 1 appears to be a stable (but not asymptotically stable) constant solution.
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Chapter 9

1a.

k xk yk

0 1 −1

1 4/3 −4/3

2 5/3 −5/3

3 2 −2

1b.

k xk yk

0 0 10

1 1/4 10

2 1/2 5

3 3/4 0

4 1 0

1c.

k xk yk

0 0 2

1 1/2 4

2 1 11

3 3/2
139/2

4 2 19853/8

1d.

k xk yk

0 1 8

1 3/2 6

2 2 6

3 5/2
13/2

4 3 36/5

5 7/2 8

6 4 62/7

2a.

k xk yk

0 0 0.0000

1 .5 0.0000

2 1.0 0.5000

3 1.5 1.2906

4 2.0 2.3263

5 2.5 3.5839

6 3.0 5.0488

2b.

k xk yk

0 0 1.0000

1 .3333 1.0000

2 0.6667 1.0556

3 1.0000 1.1637

4 1.3333 1.3178

5 1.6667 1.5095

6 2.0000 1.7309

2c.

k xk yk

0 1.0 2.0000

1 1.1 2.2000

2 1.2 2.4380

3 1.3 2.7294

4 1.4 3.0984

5 1.5 3.5855

2d.

k xk yk

0 0.0 0.0000

1 0.2 0.2000

2 0.4 0.3960

3 0.6 0.5805

4 0.8 0.7478

5 2.0 0.8944

4a. y(5) ≈ 12.1088

4b. y(5) ≈ 15.7725 4c. y(5) ≈ 16.2525 4d. y(5) ≈ 16.3019

5a. y(3) ≈ 0.81979 with error = 1.0568 ± 0.00005

5b. y(3) ≈ 0.36059 with error = .5976 ± 0.00005

5c. y(3) ≈ 0.07273 with error = .03097 ± 0.00005

5d. y(3) ≈ −0.08088 with error = .1561 ± 0.00005

5e. y(3) ≈ −0.22449 with error = .0125 ± 0.00005

5f. y(3) ≈ −0.23574 with error = .0013 ± 0.00005

5g. y(3) ≈ −0.23687 with error = .0001 ± 0.00005 6a. y(x) = 1 − 23

23x + 10
, y(4) = 79

102
6c i. y(4) ≈ 23950.5985 with error = 23949.824 ± 0.0005

6c ii. y(4) ≈ 4.1432 with error = 3.369 ± 0.0005

6c iii. y(4) ≈ 0.8081 with error = 0.03 ± 0.0005

6c iv. y(4) ≈ 0.7866 with error = 0.001 ± 0.0005 7a i. yk = (−1)k3 7a ii. It does not.

7a iii. y(x) → 0 as x → ∞ ; |yk − y(xk)| ≈ 3 7b i. yk = 3
(

3

5

)k
7b ii. yes

8d. The solution becomes infinite.

8e. They are nonsense. The solution to the initial-value problem is not valid for x > 7/3 .

9. It “blows up” at k = 2 .

Chapter 10

2a. 6,538,035 2b. For each, the answer is 0.8 × ln 2(≈ 0.55) month

2c. For each, the answer is 0.8 × ln 10(≈ 1.84) months 2d. 44.21 months

3a. I (t) = eβt with β = 1

10
ln(50) 3b. 2,500 3c. 31.78 days 5a. 0.023/year

5b i. 15.87 grams 5b ii. 11.22 grams 5b iii. 1.98 grams 6a. δ ≈ 0.00012/year

6b i. 99.88 % 6b ii. 98.8 % 6b iii. 88.60 % 6b iv. 54.61 % 6b v. 29.82 %

6b vi. 0.24 % 6c. 9,950 years ago 6d. 4,222 years ago 6e. − 5730

ln 2
ln
(

A

A0

)
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7b i. 3,614.8 rabbits 7b ii. 3,953,332.8 rabbits 7b iii. 9,999,995.3 rabbits

7c. κ = R0 R(t)
1 − e−βt

R0 − R(t)e−βt
7d i. 1,381.5 rabbits 7d ii. 4,472.6 rabbits

8a.
d R

dt
= 5

4
R − 500

8b. y = 400 is the equilibrium solution. If we start with more, the population increases. If we

start with less, the population rapidly decreases. (In fact, since R′ = −500 when R = 0 , this

model has the number of rabbit becoming negative if we start with fewer than 400 rabbits!)

8c. R(t) = 400 + (R0 − 400)e5t/4 9a.
d R

dt
= 3

4
R

9b. There is no equilibrium solution; if we start with a positive number of rabbits, the population

constantly increases. 9c. R(t) = R0e3t/4 10a.
d R

dt
= βR − γ R2 − h0

10b.
d R

dt
=

(
β − 1

4

)
R − γ R2 11a.

dy

dt
= 50 − 1

20
y (initial condition: y(0) = 200 )

11b. 1000 warriors 11c. y(t) = 1000 − 800e−t/20

11d. 20 ln 8 weeks (about 41.5 weeks) 12a.
dy

dt
= 9

4
− 3

1000
y

12c. y(t) = 750 − 750e−3t/1000 12d i. 22.2 12d ii. 123.6 12d iii. 712.7

12e. When t = 1000

3
ln 3 ≈ 366.2 13a.

dy

dt
= 9

4
− 3y

1000
13c. y(t) = 750 − 650e−3t/1000

13d i. 119.2 gallons 13d ii. 207.1 gallons 13d iii. 717.6 gallons

13e. When t = 1000

3
ln

13

5
≈ 318.5 14a.

dy

dt
= 3

2
− 1

400
y 14c. y(t) = 600 − 600e−t/400

14d i. 14.8 14d ii. 83.6 14d iii. 132.7 14e. 3 oz. salt/gal. water

14f. When t = 400 ln 3 ≈ 439.4 15a i.
dy

dt
= 3

2
− 1

200
y

15a iii. y(t) = 300 − 300e−t/200 15b i. 14.6 15b ii. 77.8 15b iii. 118.0

15c. 3/2 oz. salt/gal. water 15d. Never 16a. 500 − t 16b.
dy

dt
= 4 − 3

500 − t
y

16c. y(t) = 2(500 − t)−
(

10 − t

50

)3
16d i. 38.808 16d ii. 198.528 16d iii. 288

16e i. t = 499 16e ii.
249,999

125,000
= 1.999992 ounces

17. Arrest the butler. The time of death was only about about 3:20, over an hour after the butler

reported finding the body. Besides, his fingerprints were on the bottle.

Chapter 11

1a. y(x) = x3 + c1

x3
+ c2 1b. y(x) = Ax3 + c 1c. y(x) = Aex + c

1d. y(x) = e2x + c1e−2x + c2 1e. y(x) = Ae−x2 + c 1f. y(x) = C1 arctan(x)+ C2

2a. y(x) = 1

5
x5 + 2

3
c1x3 + c1

2x + c2 and y = C 2b. y(x) = c2 ± 1

3
(2x + c1)

3/2

2c. Equation contains y. 2d. y(x) = 1

A
ln |1 + Ax | + C , y = c and y(x) = x + c

2e. y(x) = 1

4
x6 + c1x2 + c2 2f. Equation contains y. 2g. y(x) = 3x + Ae2x + C

2h. Equation contains y. 2i. y(x) = Ae−4x − 3e−3x + B 2j. y(x) = B − ln

∣∣∣A + e−2x
∣∣∣

3a. y(x) = Aex + Bx + C 3b. y(x) = 1

3
x3 − A ln |x | + Bx + C

3c. y(x) = 1

12
(x + A)4 + Bx + C and y(x) = Bx + C

3d. y(x) = Ae−2x + Bx2 + Cx + D 4a. y(x) = Beax 4b. y(x) = (Ax + c)3

4c. y(x) = arccos(a − cx) 4d. y(x) = Aex + c 4e. y(x) = ±
√

Ae2x + C

4f. y3 + 3y = Ax + C 5a. Not autonomous 5b. y(x) = ±
√

Ax + c

5c. y(x) = c2 ± 1

3
(2x + c1)

3/2 5d. Not autonomous 5e. Not autonomous

5f. y(x) = BeAx + 1

A
and y = c 5g. y(x) = 1

Bx + C
5h. y(x) = 3 + BeAx
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5i. Not autonomous 5j. y(x) = − ln

∣∣∣A + Be−2x
∣∣∣ 6a. y(x) = x3 + 2

x3
+ 5

6b. y(x) = 4x3 + 8 6c. y(x) = 5ex + 3 6d. y(x) = e2x + e−2x − 2

6e. y(x) = 2ex + 3x + 8 6f. y(x) = 1

3
x3 − 2 ln |x | + 2x + 1

3
6g. y(x) = 3x − 2

x
+ 3

6h. y(x) = 1

3
(2x + 1)

3/2 −
√

3 7a. y(x) = 5e3x 7b. y(x) = 1

8
(x + 4)3

7c. y(x) = (3x − 2)3 7d. y(x) = 3
√

3e3x + 5 7e. y(x) = ln
(
2ex − 1

)
8a i. y(x) = 2 arctan(2x)+ 3 8a ii. y = 3 8a iii. y(x) = 1 − 1

x

8a iv. y(x) = 1

4
ln

∣∣∣ x − 2

x + 2

∣∣∣+ 5

8b. y(x) = A arctan(Ax)+ c , y(x) = c − 1

x
and y(x) = 1

2a
ln

∣∣∣ x − a

x + a

∣∣∣+ c

9a i. y(x) = tan(x) 9a ii. y(x) = 1

1 − x
9a iii. y = 1 9a iv. y(x) = 1 − e2x

1 + e2x

9b. y(x) = A tan(Ax + B) , y(x) = 1

c − x
and y(x) = c

1 + Be2cx

1 − Be2cx

Chapter 12

1a. Second-order, linear, nonhomogeneous 1b. Second-order, linear, homogeneous

1c. Second-order, linear, homogeneous 1d. Second-order, nonlinear

1e. First-order, linear, nonhomogeneous 1f. Third-order, linear, homogeneous

1g. Second-order, nonlinear 1h. Second-order, linear, nonhomogeneous

1i. Fourth-order, linear, nonhomogeneous 1j. Third-order, nonlinear

1k. Third-order, linear, homogeneous 1l. Fifty-fifth-order, linear, nonhomogeneous

2a. y(x) = Ae3x + Be2x 2b. y(x) = Axe5x + Be5x 2c. y(x) = Ax4 + Bx3

2d. y(x) = A
√

x + Bx 2e. y(x) = A
√

x ln |x | + B
√

x 2f. y(x) = Ax3e2x + Be2x

2g. y(x) = Ax + Be−x 2h. y(x) = Aex2 + Be−x2

2i. y(x) = A cos(x) + B sin(x)

2j. y(x) = Ax−1e−2x + Bx−1 2k. y(x) = Ax sin(x)+ B sin(x)

2l. y(x) = Ax cos(x)+ Bx sin(x) 2m. y(x) = A cos(ln |x |) + B sin(ln |x |)
2n. y(x) = Ax−1/2 cos(x) + Bx−1/2 sin(x) 3a. y(x) = Ae3x + Bex − 9e2x

3b. y(x) = Ae4x + Be2x − 1

2
xe2x 3c. y(x) = Ax + Bx−1 − 4

3

√
x

3d. y(x) = Ax5 + Bx−4 + 3x5 ln |x | 3e. y(x) = x−1
[
e2x + A + Be−2x

]
3f. y(x) = x2 + 1 + Bx + Ae−x 5a. y(x) =

[
A + Bx + Cx2

]
e3x

5b. y(x) = e3x cos(x)+ Ae3x + Bxe3x + Cx2e3x 5c. y(x) =
[

A + Bx + Cx2 + Dx3
]

e2x

5d. y(x) = Ax2 ln |x | + Bx2 + Cx3

Chapter 13

2a. y(x) = 2 cos(2x)+ 3 sin(2x) 2b. y(x) = 3e2x − 3e−2x 2c. y(x) = 3e2x + 5e−3x

2d. y(x) = e2x + 4xe2x 2e. y(x) = 4x3 − 4x2 2f. y(x) = 5x
1/2 + 3x−1/2

2g. y(x) = 5x − 2x ln |x | 2h. y(x) = −3 cos
(

x2
)

− 2√
π

sin
(

x2
)

2i. y(x) = 4x2 + 4x

3a. (0,∞) 4a. (0,∞) 5a. y(x) = 4 − cos(2x)+ 4 sin(2x)

5b. y(x) = 3 + 2 sin2(x)+ 8 sin(x) cos(x) 5c. y(x) = 2 sin(x)+ 2 sinh(x)

6a. gen. soln.: y(x) = c1e2x + c2e−2x , i.v. soln.: y(x) = 1

2
e2x + 1

2
e−2x

6b. gen. soln.: y(x) = c1ex + c2e−3x , i.v. soln.: y(x) = 1

4
ex − 1

4
e−3x

6c. gen. soln.: y(x) = c1ex + c2e9x , i.v. soln.: y(x) = 12ex − 4e9x

6d. gen. soln.: y(x) = c1 + c2e−5x , i.v. soln.: y = 1 7a. y(x) = c1 + c2e3x + c3e−3x
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7b. y(x) = c1e3x + c2e−3x + c3ex + c4e−x 8. c1 = A cos(B) and c2 = A sin(B)

9c. Yes, {y1, y2} is linearly dependent on any subinterval of either (0,∞) or (−∞, 0) .

Chapter 14

2a. L = d2

dx2
+ 5

d

dx
+ 6 2b i. 5 sin(x)+ 5 cos(x) 2b ii. 42e4x 2b iii. 0

2b iv. 6x2 + 10x + 2 2c. y(x) = e−3x 3a. L = d2

dx2
− 5

d

dx
+ 9

3b i. 8 sin(x)− 5 cos(x) 3b ii. −15 cos(3x) 3b iii. 3e2x

3b iv. [2 sin(x)− cos(x)] e2x 4a. L = x2 d2

dx2
+ 5x

d

dx
+ 6

4b i. 6 sin(x)+ 5x cos(x)− x2 sin(x) 4b ii.
[
16x2 + 20x + 6

]
e4x 4b iii. 27x3

5a. L = d3

dx3
− sin(x)

d

dx
+ cos(x) 5b i. − cos(x) 5b ii. 1 + sin(x)

5b iii. x2 cos(x)− 2x sin(x) 6a. L2L1 = d2

dx2
+
(

1 − x2
)

, L1L2 = d2

dx2
− (

x2 + 1
)

6b. L2L1 = d2

dx2
+
(

x2 + x3
)

d

dx
+
(

2x + x5
)

, L1L2 = d2

dx2
+ (

x2 + x3
) d

dx
+ (

3x2 + x5
)

6c. L2L1 = x
d2

dx2
+
(

4 + 2x2
)

d

dx
+ 6x , L1L2 = x

d2

dx2
+ (

3 + 2x2
) d

dx
+ 8x

6d. L2L1 = x
d2

dx2
, L1L2 = x

d2

dx2
+ 2

d

dx

6e. L2L1 = x2 d2

dx2
, L1L2 = x3 d2

dx2
+ 6x2 d

dx
+ 6x

6f. L2L1 = sin(x)
d2

dx2
, L1L2 = sin(x)

d2

dx2
+ 2 cos(x)

d

dx
− sin(x) 7a.

d2

dx2
+ 5

d

dx
+ 6

7b. x2 d2

dx2
+ 6x

d

dx
+ 6 7c. x

d2

dx2
+ 5

d

dx
+ 3

x
7d.

d2

dx2
+
(

4x + 1

x

)
d

dx
+

(
4 − 1

x2

)
7e.

d2

dx2
+
(

4x + 1

x

)
d

dx
+ 8 7f.

d2

dx2
+ 10x2 d

dx
+

(
10x + 25x4

)
7g.

d3

dx3
+
(

1 + x2
)

d2

dx2
+ x2 d

dx
7h.

d3

dx3
+
(

1 + x2
)

d2

dx2
+
(

4x + x2
)

d

dx
+ [2 + 2x]

8. y(x) = ce3x 9. y(x) = ce−x2

10. y(x) = cx4

Chapter 15

1a. y(x) = c1e2x + c2e5x 1b. y(x) = c1e4x + c2e−6x 1c. y(x) = c1e5x + c2e−5x

1d. y(x) = c1 + c2e−3x 1e. y(x) = c1ex/2 + c2e−x/2 1f. y(x) = c1e2x/3 + c2e−3x

2a. y(x) = 5

2
e3x − 3

2
e5x 2b. y(x) = − 1

2
e3x + 1

2
e5x 2c. y(x) = 3e3x + 2e5x

2d. y(x) = 1

2
e3x + 1

2
e−3x 2e. y(x) = 1

6
e3x − 1

6
e−3x 2f. y(x) = e3x + 2e−3x

3a. y(x) = Ae5x + Bxe5x 3b. y(x) = Ae−x + Bxe−x 3c. y(x) = Aex/2 + Bxex/2

3d. y(x) = Ae−2x/3 + Bxe−2x/3 4a. y(x) = e4x − 4xe4x 4b. y(x) = xe4x

4c. y(x) = 3e4x + 2xe4x 4d. y(x) = e−x/2 + 1

2
xe−x/2 4e. y(x) = xe−x/2

4f. y(x) = 6e−x/2 − 2xe−x/2 5a. y(x) = A cos(5x) + B sin(5x)

5b. y(x) = Ae−x cos(2x) + Be−x sin(2x) 5c. y(x) = Aex cos(2x) + Be−x sin(2x)

5d. y(x) = Ae2x cos(5x) + Be2x sin(5x) 6a. y(x) = cos(4x) 6b. y(x) = 1

4
sin(4x)

6c. y(x) = 4 cos(4x)+ 3 sin(4x) 6d. y(x) = e2x cos(3x)− 2

3
e2x sin(3x)

6e. y(x) = 1

3
e2x sin(3x) 6f. y(x) = 5e2x cos(3x) + 7e2x sin(3x)
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7a. y(x) = ex/2 cos(2πx) X

Y

1
0

2

2

3

4

4

6

−2

−4

−6

8

ex/2

−ex/2

7b. y(x) = ex/2 cos(2πx) X

Y1

1
0

2 3 4

−1

e−x/2

−e−x/2

8a. y(x) = c1e3x + c2e−3x 8b. y(x) = c1 cos(3x) + c2 sin(3x)

8c. y(x) = c1e−3x + c2xe−3x 8d. y(x) = c1e(−3+3
√

2)x + c2e(−3−3
√

2)x

8e. y(x) = c1ex/3 + c2xex/3 8f. y(x) = c1e−3x cos(x) + c2e−3x sin(x)

8g. y(x) = c1e2x cos(6x) + c2e2x sin(6x) 8h. y(x) = c1e2x + c2ex/2

8i. y(x) = c1e−5x + c2xe−5x 8j. y(x) = c1ex/3 + c2e−x/3

8k. y(x) = c1 cos
(

x

3

)
+ c2 sin

(
x

3

)
8l. y(x) = c1 + c2e−x/9

8m. y(x) = c1e−2x cos
(√

3x
)

+ c2e−2x sin
(√

3x
)

8n. y(x) = c1e−2x cos(x) + c2e−2x sin(x) 8o. y(x) = c1e−2x + c2xe−2x

8p. y(x) = c1e−3x + c2e5x 8q. y(x) = c1 + c2e4x 8r. y(x) = c1e−4x + c2xe−4x

8s. y(x) = c1 cos

(√
3

2
x

)
+ c2 sin

(√
3

2
x

)
8t. y(x) = c1ex/2 cos(x) + c2ex/2 sin(x)

Chapter 16

1a. κ = 4 (kg/sec2) 1b. ω0 = 1

2
(sec−1) , ν0 = 1

4π
(sec−1) , p0 = 4π (sec)

1c i. A = 2 , φ = 0 1c ii. A = 4 , φ = π

2
1c iii. A = 4 , φ = 3π

2

1c iv. A = 4 , φ = π

3
2a. κ = 288 (kg/sec2)

2b. ω0 = 12 (sec−1) , ν0 = 6

π
(sec−1) , p0 = π

6
(sec) 2c i. A = 1 2c ii. A = 1

12

2c iii. A =
√

17

4
4a. κ = 4π2

9
4b. κ = 8π2

9
4c. κ = 2π2

9

6b. α = 1

2
, ω = 3 , p = 2π

3
, ν = 3

2π
6c i. A = 1

6

√
37 6c ii. A = 4 6c iii. A = 1

3

6c iv. A = 2

3

√
10

7b. ν decreases from the natural frequency of the undamped system, ν0 , down to zero.

p increases from the natural period of the undamped system, p0 , up to ∞ .

8b. y(t) = [2 + 4t]e−2t

T

Y

1

1

0
0 2

2

3
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8c. y(t) = 2te−2t

T

Y

1
0

0 2 3

0.2

9b. y(t) = 8

3
e−t − 2

3
e−4t

T

Y

1

1
0

0

2

2 3

9c. y(t) = 2

3
e−t − 2

3
e−4t

T

Y

1
0

0 2 3

0.2

Chapter 17

1a. y(x) = c1 + c2x + c3x2 + c4e4x 1b. y(x) = c1 + c2x + c3 cos(2x)+ c4 sin(2x)

1c. y(x) = c1e3x + c2e−3x + c3e5x + c4e−5x

1d. y(x) = c1e3x + c2e−3x + c3 cos(3x)+ c4 sin(3x)

1e. y(x) = [c1 + c2x]e3x + [c3 + c4x]e−3x

1f. y(x) = c1 + [c2 + c3x] cos(3x)+ [c4 + c5x] sin(3x)

2a. y(x) = c1ex + c2 cos(x)+ c3 sin(x) 2b. y(x) = c1ex + c2e2x + c3e3x

2c. y(x) = c1e2x + c2e3x cos(4x)+ c3e3x sin(4x)

2d. y(x) = [c1 + c2x]e−x + c3 cos(3x)+ c4 sin(3x) 3a. y(x) = 6 − 2 cos(2x)+ 3 sin(2x)

3b. y(x) = [
5 + 3x + 27x2

]
e2x 3c. y(x) = 2 cos(x)− 3 sin(x)+ 4 cos(5x)− 5 sin(5x)

4a. y(x) = c1e2x + c2e−x cos
(√

3x
)

+ c3e−x sin
(√

3x
)

4b. y(x) = c1 cos(2x)+ c2 sin(2x)+ c3 cos(3x)+ c4 sin(3x)

4c. y(x) = [
c1 + c2x + c3x2

]
e−x + [

c4 + c5x + c6x2
]
ex

4d. y(x) = [c1 + c2x]ex + [c3 + c4x]e−x/2 cos

(√
3

2
x

)
+ [c5 + c6x]e−x/2 sin

(√
3

2
x

)
Chapter 18

1a. y(x) = c1x2 + c2x4 1b. y(x) = c1x2 + c2x−1 1c. y(x) = c1 + c2x3

1d. y(x) = c1x + c2

√
x 1e. y(x) = c1x3 + c2x3 ln |x | 1f. y(x) = c1x−2 + c2x−2 ln |x |

1g. y(x) = c1

√
x + c2

√
x ln |x | 1h. y(x) = c1x cos(3 ln |x |)+ c2x sin(3 ln |x |)

1i. y(x) = c1x−2 cos(5 ln |x |)+ c2x−2 sin(5 ln |x |) 1j. y(x) = c1 cos(ln |x |)+ c2 sin(ln |x |)
1k. y(x) = c1x−1/2 + c2x−1 1l. y(x) = c1

√
x cos(3 ln |x |)+ c2

√
x cos(3 ln |x |)

1m. y(x) = c1 + c2 ln |x | 1n. y(x) = c1x5 + c2x−5 2a. y(x) = 3x5 − 4x2

2b. y(x) = 4x1/2 − 16x−1/2 2c. y(x) = 1

2
x6 − x6 ln |x |

2d. y(x) = 9x2 cos(3 ln |x |)− 5x2 sin(3 ln |x |) 4a. y(x) = c1x + c2x2 + c3x−2

4b. y(x) = c1x + c2 cos(ln |x |)+ c3 sin(ln |x |) 4c. y(x) = c1x2 + c2x3 + c3x3 ln |x |
4d. y(x) = c1x + c2x−1 + c3x3 + c4x−3

4e. y(x) = c1x + c2x ln |x | + c3x(ln |x |)2 + c4x(ln |x |)3
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4f. y(x) = c1x + c2x−1 + c3 cos(ln |x |)+ c4 sin(ln |x |) 5c. Replace each xk y(k) in the

differential equation with r(r − 1)(r − 2) · · · (r − [k − 1])

Chapter 19

1a. g(x) = 10e3x 1b. g(x) =
(

9x2 − 4
)

e3x 1c. g(x) = 20e3x

2a. g(x) = 6x + 12x2 + 4x3 2b. g(x) = 22x3 2c. g(x) = 21x

3a. No, because y′′ + y = 0 when y(x) = sin(x) . 3b. g(x) = 2 cos(x)

4a. No, because x2 y′′ − 6xy′ + 12y = 0 when y(x) = x4 . 4b. g(x) = x4

5b. yh(x) = c1 cos(2x)+ c2 sin(2x) 5c. y(x) = 3e2x + c1 cos(2x)+ c2 sin(2x)

5d i. y(x) = 3e2x + 3 cos(2x) 5d ii. y(x) = 3e2x − 5 cos(2x)− 2 sin(2x)

6b. yh(x) = c1e2x + c2e−4x 6c. y(x) = −x2 − 1

2
x + c1e2x + c2e−4x

6d i. y(x) = −x2 − 1

2
x + 1

12
e2x − 1

12
e−4x 6d ii. y(x) = −x2 − 1

2
x + 1

4
e2x + 3

4
e−4x

7b. y(x) = −4 + c1e3x + c2e−3x 7c. y(x) = −4 + 7e3x + 5e−3x

8b. y(x) = e4x + c1e5x + c2e−2x 8c. y(x) = e4x + 2e5x + 3e−2x

9b. y(x) = xe5x + c1e5x + c2e−2x 9c. y(x) = xe5x + 3e5x + 9e−2x

10b. y(x) = 5 sin(2x)− 12 cos(2x)+ c1e−3x + c2xe−3x

10c. y(x) = 5 sin(2x)− 12 cos(2x)+ 2e−3x + 5xe−3x 11b. y(x) = 5x + 2 + c1x2 + c2x3

11c. y(x) = 5x + 2 − 6x2 + 5x3 12b. y(x) = 1

2
x2 + c1 + c2x + c3 cos(x)+ c4 sin(x)

12c. y(x) = 1

2
x2 + 3 + 5x + cos(x)− 2 sin(x) 13a. yp(x) = 1

7
xe5x

13b. yp(x) = 1

7
xe5x 13c. yp(x) = 3e4x + 2xe5x 13d. yp(x) = 5xe5x − 2e4x

14a. yp(x) = 1

6
14b. yp(x) = 1

2
x 14c. yp(x) = 11x + 4 15a i. g(x) = 3x2

15a ii. g(x) = 8x 15a iii. g(x) = 15 15b. yp(x) = 1

3
x2

15c. yp(x) = 4

3
x2 + 1

4
x + 1

5
16a i. g(x) = −3 cos(2x)+ 4 sin(2x)

16a ii. g(x) = −4 cos(2x)− 3 sin(2x) 16b. yp(x) = − 3

25
cos(2x)− 4

25
sin(2x)

16c. yp(x) = 4

25
cos(2x)− 3

25
sin(2x)

Chapter 20

1a. yp(x) = 4e2x , y(x) = 4e2x + c1 cos(3x)+ c2 sin(3x)

1b. yp(x) = 3e6x , y(x) = 3e6x + c1e3x + c2xe3x

1c. yp(x) = −6e−4x , y(x) = −6e−4x + c1ex + c2e−5x

1d. yp(x) = 4

7
ex/2 , y(x) = 4

7
ex/2 + c1 + c2e−3x 2. y(x) = 1

2
e3x + 3e−2x + 3

2
e5x

3a. yp(x) = 2 cos(2x)+ 3 sin(2x) , y(x) = 2 cos(2x)+ 3 sin(2x)+ c1 cos(3x)+ c2 sin(3x)

3b. yp(x) = 4

9
cos(6x)− 1

3
sin(6x) , y(x) = 4

9
cos(6x)− 1

3
sin(6x)+ c1e3x + c2xe3x

3c. yp(x) = 9 cos
(

x

3

)
+ 27 sin

(
x

3

)
, y(x) = 9 cos

(
x

3

)
+ 27 sin

(
x

3

)
+ c1 + c2e−3x

3d. yp(x) = 1

13
sin(x)− 3

26
cos(x) , y(x) = 1

13
sin(x)− 3

26
cos(x)+ c1ex + c2e−5x

4. y(x) = 1

2
cos(x) − 1

2
sin(x) + 6e−2x + 3

2
e5x

5a. yp(x) = 20 , y(x) = 20 + c1e−2x + c2e5x

5b. yp(x) = − 1

5
x3 − 12

25
x2 − 126

125
x − 624

625
, y(x) = − 1

5
x3 − 12

25
x2 − 126

125
x − 624

625
+ c1ex + c2e−5x

5c. yp(x) = 2x2 + 3x + 2 , y(x) = 2x2 + 3x + 2 + c1e3x + c2xe3x

5d. yp(x) = x4 − 4

3
x2 − 19

27
, y(x) = x4 − 4

3
x2 − 19

27
+ c1 cos(3x)+ c2 sin(3x)
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6. y(x) = 1

9
x3 − 2

27
x + 2

81
sin(3x)

7a. yp(x) = 5x cos(2x)+ 4 sin(2x) , y(x) = 5x cos(2x)+ 4 sin(2x)+ c1 cos(3x)+ c2 sin(3x)

7b. yp(x) = 1

2
e2x cos(x) , y(x) = 1

2
e2x cos(x)+ c1e3x + c2xe3x

7c. yp(x) =
[
3x2 − 2x + 1

3

]
e3x , y(x) =

[
3x2 − 2x + 1

3

]
e3x + c1 cos(3x)+ c2 sin(3x)

7d. yp(x) = [3 sin(x)− 3x cos(x)+ 3 cos(x)]ex ,

y(x) = [3 sin(x)− 3x cos(x)+ 3 cos(x)]ex + c1x + c2

7e. yp(x) = 2x cos(2x)+ sin(2x) , y(x) = 2x cos(2x)+ sin(2x)+ c1ex + c2xex

7f. yp(x) = 1

3
xe5x , y(x) = 1

3
xe5x + c1ex + c2xex

8. y(x) = 3xe2x − 12

13
e2x + 25

13
cos(3x)− 5

13
sin(3x)

9a. yp(x) = 3

7
xe−2x , y(x) = 3

7
xe−2x + c1e−2x + c2e5x

9b. yp(x) = 5x , y(x) = 5x + c1 + c2e−4x

9c. yp(x) = 1

12
x3 − 1

16
x2 + 1

32
x , y(x) = 1

12
x3 − 1

16
x2 + 1

32
x + c1 + c2e−4x

9d. yp(x) = − 1

2
x cos(3x) , y(x) = − 1

2
x cos(3x)+ c1 cos(3x)+ c2 sin(3x)

9e. yp(x) = 5x2e3x , y(x) = 5x2e3x + c1e3x + c2xe3x

9f. yp(x) = − 1

2
x2e−4x − 1

4
xe−4x , y(x) = − 1

2
x2e−4x − 1

4
xe−4x + c1 + c2e−4x

10a. y(x) =
(
−6x2 − x − 1

)
e2x + c1e−2x + c2e5x

10b. y(x) =
(

1

2
x − 9

16

)
e6x + c1e−2x + c2e5x 10c. y(x) = 3x2e5x + c1e5x + c2xe5x

10d. y(x) = 3

50
e−5x + c1e5x + c2xe5x

10e. y(x) = − 9

5
cos(3x)− 3

5
sin(3x)+ c1e−2x cos(x)+ c2e−2x sin(x)

10f. y(x) = 4e−3x + c1e−2x cos(x)+ c2e−2x sin(x)

10g. y(x) = − 1

2
xe2x cos(x)+ c1e2x cos(x)+ c2e2x sin(x)

10h. y(x) = 2

39
e−x cos(x)+ 1

13
e−x sin(x)+ c1e2x cos(x)+ c2e2x sin(x)

10i. y(x) = 20 + c1e2x cos(x)+ c2e2x sin(x)

10j. y(x) = 1

10
e−x + c1e2x cos(x)+ c2e2x sin(x)

10k. y(x) = 2x2 + 4x + 4 + c1e2x cos(x)+ c2e2x sin(x)

10l. y(x) = 3

40
e2x sin(x)− 1

40
e2x cos(x)+ c1 cos(3x)+ c2 sin(3x)

10m. y(x) = 3

2
x cos(x)+ 3x sin(x)+ c1 cos(x)+ c2 sin(x)

10n. y(x) = −2 cos(x)+ sin(x)+ c1 cos(x)+ c2 sin(x)

11a. yp(x) =
[

A0x3 + A1x2 + A2x + A3

]
e−x sin(x)+

[
B0x3 + B1x2 + B2x + B3

]
e−x cos(x)

11b. yp(x) =
[

A0x4 + A1x3 + A2x2 + A3x
]

e2x sin(x)

+
[

B0x4 + B1x3 + B2x2 + B3x
]

e2x cos(x)

11c. yp(x) =
[

Ax2 + Bx + C
]

e−7x 11d. yp(x) = Ax2 + Bx + C

11e. yp(x) = Ae−8x 11f. yp(x) = Axe3x 11g. yp(x) =
[

Ax3 + Bx2 + Cx
]

e3x

11h. yp(x) =
[

Ax2 + Bx + C
]

cos(2x)+
[

Dx2 + Ex + F
]

sin(2x)

11i. yp(x) =
[

Ax2 + Bx + C
]

e3x cos(2x)+
[

Dx2 + Ex + F
]

e3x sin(2x)

11j. yp(x) = Ae4x sin(2x)+ Be4x sin(2x) 11k. yp(x) = Axe2x sin(4x)+ Bxe2x cos(4x)

11l. yp(x) =
[

Ax3 + Bx2 + Cx + D
]

sin(4x)+
[

Ex3 + Fx2 + Gx + H
]

cos(4x)
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11m. yp(x) =
[

Ax4 + Bx3 + Cx2
]

e5x 11n. yp(x) = Ax4 + Bx3 + Cx2 + Dx + C

12a. yp(x) = 1

4
e−2x 12b. yp(x) = 1

8
sin(2x)− 1

4
cos(2x) 12c. yp(x) = 1

2
xe4x

12d. yp(x) = − 1

3
x4 − 1

3
x3 12e. yp(x) = −x2 − 2x 12f. yp(x) = 2 cos(2x)− 4 sin(2x)

12g. yp(x) = 3xex 13a. yp(x) =
[

Ax2 + Bx + C
]

e3x

13b. yp(x) =
[

Ax5 + Bx3 + Cx2
]

cos(3x)+
[

Dx5 + Ex3 + Fx2
]

sin(3x)

13c. yp(x) =
[

Ax2 + Bx + C
]

e3x cos(3x)+
[

Dx2 + Ex + F
]

e3x sin(3x)

13d. yp(x) = [Ax + B] cos(2x)+ [Cx + D] sin(2x)

13e. yp(x) =
[

Ax2 + Bx
]

cos(x)+
[
Cx2 + Dx

]
sin(x)

13f. yp(x) = [Ax + B] ex cos(x)+ [Cx + D] ex sin(x)

13g. yp(x) =
[

Ax5 + Bx4 + Cx3 + Dx2 + Ex + F
]

e2x

14a. yp(x) = 3e6x + 4

9
cos(6x)− 1

3
sin(6x)

14b. yp(x) = 5x cos(2x)+ 4 sin(2x)− 1

2
x cos(3x)

14c. yp(x) = 1

2
− 1

26
cos(2x)+ 4

13
sin(2x)

14d. yp(x) = 5ex − e−x (equiv., yp(x) = 6 sinh(x)+ 4 cosh(x) )

Chapter 21

2a. κ = 4.9 kg/sec2 2b. ω0 = 7
√

10 /sec , ν0 = 7
√

10

2π
hertz 3a i. κ = 2450 kg/sec2

3a ii. ω0 = 7
√

2 /sec) 3a iii.
7
√

2

2π
≈ 1.576 times per second 3b i. .992 meter

3b ii. ω0 = 35 /sec 3b iii.
35

2π
≈ 5.6 times per second 3c. 37.5 kg

3d. 49 kg·meter/sec2 , 4a i.
1

16π
t sin(12π t) 4a ii. t = 8π (≈ 25.1 seconds)

4b i.
1

72π2
cos(6π t) 4b ii. No. The amplitude of the oscillations is less than .002 meter.

4c.
√

36 − δ ≤ μ ≤
√

36 + δ where δ = 3

4π2

5a. yη(t) = F0

m
[
(ω0)

2 − η2
] [ cos(ηt) − cos(ω0t)

]
5b. yη(t) = F0

2mω0
t sin(ω0t)

Chapter 22

1a. y(x) = 4
√

x + c1x + c2x2 1b. y(x) = sin(x) ln |csc(x)− cot(x)| + c1 cos(x)+ c2 sin(x)

1c. y(x) = − 1

2
x cos(2x)+ 1

4
sin(2x) ln |sin(2x)| + c1 cos(2x)+ c2 sin(2x)

1d. y(x) = −3e3x + c1e2x + c2e5x 1e. y(x) =
[
2x4 + x2 + c1 + c2x

]
e2x

1f. y(x) =
[
x Arctan(x)− 1

2
ln

∣∣∣1 + x2
∣∣∣+ c1 + c2x

]
e−2x 1g. y(x) = c1x + c2x−1 − 4

3

√
x

1h. y(x) = 2x3 ln |x | + c1x−3 + c2x3 1i. y(x) = 1

2
x2(ln |x |)2 + c1x2 + c2x2 ln |x |

1j. y(x) = 1

8
x2ex2 + c1ex2 + c2e−x2

1k. y(x) = x−1
[
e2x + c1 + c2e−2x

]
1l. y(x) = x2 + 1 + c1x + c2e−x 2a. y(x) = 5x−1 − 2x4 − 2x−1 ln |x |
2b. y(x) = −3e2x − e−2x + 4e3x 3a. y(x) = 2e3x + c2e2x + c3e−2x

3b. y(x) = 1

2
x3 ln |x | + c1x + c2x2 + c3x3 4a. xu′ + x2v′ + x3w′ = 0

u′ + 2xv′ + 3x2w′ = 0

2v′ + 6xw′ = x−3e−x2
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4b. ex u′ + cos(x)v′ + sin(x)w′ = 0

ex u′ − sin(x)v′ + cos(x)w′ = 0

ex u′ − cos(x)v′ − sin(x)w′ = tan(x)

4c. e3x u1
′ + e−3x u2

′ + cos(3x)u3
′ + sin(3x)u4

′ = 0

e3x u1
′ − e−3x u2

′ − sin(3x)u3
′ + cos(3x)u4

′ = 0

e3x u1
′ + e−3x u2

′ − cos(3x)u3
′ − sin(3x)u4

′ = 0

e3x u1
′ − e−3x u2

′ + sin(3x)u3
′ − cos(3x)u4

′ = 1

27
sinh(x)

4d. xu1
′ + x−1u2

′ + x3u3
′ + x−3u4

′ = 0

u1
′ − x−2u2

′ + 3x2u3
′ − 3x−4u4

′ = 0

x−3u2
′ + 3xu3

′ + 6x−5u4
′ = 0

−x−4u2
′ + u3

′ − 10x−6u4
′ = 2x−3 sin

(
x2
)

Chapter 23

6a. F(s) = 4

s
for s > 0 6b. F(s) = 3

s − 2
for s > 2 6c. F(s) = 2

s

[
1 − e−3s

]
6d. F(s) = 2

s
e−3s for s > 0 6e. F(s) = 1

s − 2

[
1 − e4(2−s)

]
6f. F(s) = 1

s − 2

[
e2−s − e4(2−s)

]
6g. F(s) = 1

s2

[
1 − e−s

]− 1

s
e−s

6h. F(s) =
[

1

s
+ 1

s2

]
e−s for s > 0 7a.

24

s5
for s > 0 7b.

9!
s10

for s > 0

7c.
1

s − 7
for s > 7 7d.

1

s − i7
for s > 0 7e.

1

s + 7
for s > −7

7f.
1

s + i7
for s > −7 8a.

3

s2 + 9
for s > 0 8b.

s

s2 + 9
for s > 0 8c.

7

s
for s > 0

8d.
s

s2 − 9
for s > 3 8e.

4

s2 − 16
for s > 4 8f.

6

s3
− 8

s2
+ 47

s
for s > 0

8g.
6

s − 2
+ 8

s + 3
for s > 2 8h.

3s

s2 + 4
+ 24

s2 + 36
for s > 0 8i.

3s − 8

s2 + 4
for s > 0

9a.
3
√
π

4
s−5/2 for s > 0 9b.

15
√
π

8
s−7/2 for s > 0 9c. �

(
2

3

)
s−2/3 for s > 0

9d. �
(

5

4

)
s−5/4 for s > 0 9e.

1

s
e−2s 10b.

1

s

[
1 − e−2s

]
11a.

1

(s − 4)2
for s > 4

11b.
24

(s − 1)5
for s > 1 11c.

3

(s − 2)2 + 9
for s > 2 11d.

s − 2

(s − 2)2 + 9
for s > 2

11e.

√
π

2
(s − 3)−

3/2 for s > 3 11f.
1

s − 3
e−2(s−3) for s > 3 14a. Piecewise continuous

14b. Piecewise continuous 14c. Piecewise continuous 14d. Piecewise continuous

14e. Not piecewise continuous 14f. Piecewise continuous

14g. Not piecewise continuous 14h. Piecewise continuous

14i. Not piecewise continuous 14j. Piecewise continuous 14k. Piecewise continuous

16a. Of exponential order s0 ≥ 3 16b. Of exponential order s0 > 0

16c. Of exponential order s0 > 3 16d. Not of exponential order

16e. Of exponential order s0 ≥ 0

17a. The maximum occurs at t = α

σ
and is Mα,σ =

(
α

σ

)α
e−α .

Chapter 24

1a. Y (s) = 3

s + 4
1b. Y (s) = 4

s − 2
+ 6

s4(s − 2)
1c. Y (s) = e−4s

s(s + 3)

1d. Y (s) = s + 3

s2 − 4
+ 6

s4
(
s2 − 4

) 1e. Y (s) = 3s2 − 28

(s − 4)
(
s2 + 4

)
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1f. Y (s) = 3s + 5

s2 + 4
+ 2(

s2 + 4
)2 1g. Y (s) = 5

s2 + 4
+ 3e−2s

s
(
s2 + 4

)
1h. Y (s) = s + 5

s2 + 5s + 6
+ 1

(s − 4)
(
s2 + 5s + 6

) 1i. Y (s) = 2

s2 − 5s + 6
+ 2

(s − 4)3
(
s2 − 5s + 6

)
1j. Y (s) = 2s − 6

s2 − 5s + 6
+ 7

s
(
s2 − 5s + 6

) 1k. Y (s) = 4s − 13

s2 − 4s + 13
+ 3(

s2 − 4s + 13
)2

1l. Y (s) = 4s + 19

s2 + 4s + 13
+ 4

s2
(
s2 + 4s + 13

) + 6(
s2 − 4s + 13

)(
s2 + 4s + 13

)
1m. Y (s) = 2s2 + 3s + 4

s3 − 27
+ 1

(s + 3)
(
s3 − 27

) 2a.
s2 − 9(
s2 + 9

)2 2b.
18s2 − 54(

s2 + 9
)3

2c.
1

(s + 7)2
2d.

6

(s + 7)4
2e.

1 + 3s

s2
e−3s 2f.

1 + 8s + 16s2

s3
e−4s

4b. Y (s) = C√
s2 + 1

4c. Y (0) = 1 4d. Y (s) = 1√
s2 + 1

5a.
6(s − 4)([s − 4]2 + 9

)2
5b.

(s − 4)2 − 9([s − 4]2 + 9
)2 5c.

3s − 11

(s − 4)2
e−3(s−4) 5d.

2 + 2(s − 3)+ (s − 3)2

(s − 3)3
e−(s−3)

6b.
2

s3
e−αs for s > 0 7.

1

s
arctan

(
1

s

)
8a. ln

(
1 + 1

s

)
for s > 0

8b. ln
(

s

s − 2

)
for s > 2 8c. ln

(
s − 3

s + 2

)
for s > 3 8d.

1

2
ln
(

1 + 1

s2

)
for s > 0

8e.
1

2
ln
(

1 − 1

s2

)
for s > 1 8f. arctan

(
3

s

)
for s > 0

Chapter 25

1a. e6t 1b. e−2t 1c. t 1d. t3 1e. sin(5t) 1f. cos
(√

3π t
)

2a. 6e−2t

2b.
1

6
t3 2c.

3√
π t

− 8e4t 2d. 2t2 − 1

6
t4 2e. 3 cos(5t)+ 1

5
sin(5t)

2f. 1 − step4(t) 4a. y(t) = 4e−9t 4b. y(t) = 4 cos(3t) + 2 sin(3t) 5a. 3e−2t + 4et

5b. 3e4t − 2e3t 5c.
1

4
e2t − 1

4
e−2t 5d. 3 + 2 sin(3t) 5e.

1

16
e4t − 1

4
t − 1

16

5f. 4 cos(3t)+ 2e3t + 2e−3t 5g. 2e−6t + 3 cos(4t)− 3 sin(4t) 5h. 2 cos(3t)+ 3 sin(t)

5i. 3e−t + 5e−3t − 2e−7t 6a. y(t) = 7

2
e3t + 1

2
e−3t 6b. y(t) = 3t3 − 2t + 2

3
sin(3t)

6c. y(t) = 3e4t + e−7t + 4e−t 7a.
1

24
t4e7t 7b.

1

6
e3t sin(6t)

7c. e3t
[
cos(6t)+ 1

2
sin(6t)

]
7d.

1√
π t

e−2t 7e. te−4t 7f. [cos(2t)+ 3 sin(2t)]e6t

7g.
1

2
sin(2t)e−6t 7h.

[
1

2
t2 + t3 + 3

8
t4
]

e3t 8a. y(t) = 3e4t cos(t)

8b. y(t) = 1

12
e3t t4 8c. y(t) = e−3t [2 cos(2t)+ 7 sin(2t)] 8d. y(t) = 3e−4t cos(t)

9a. y(t) = 1

2

(
1 + t − cos(t)et

)
9b. y(t) = 2e−3t + [3 sin(6t)− 2 cos(6t)] e2t

9c. y(t) = 2e−3t − 4te−3t + 4e3t 9d. y(t) =
([

4 − t

6

]
cos(3t)− 29

18
sin(3t)

)
e2t

10a.
1

9
[1 − cos(3t)] 10b.

1

4

[
e4t − 1

]
10c.

1

9

[
1 + (3t − 1)e3t

]
Chapter 26

1.
1

16
e7t + 1

4
te3t − 1

16
e3t 2a.

1

2

[
e5t − e3t

]
2b.

16

15
t
5/2 2c. 4t

3/2

2d.
1

9

[
e3t − 1 − 3t

]
2e.

1

30
t5 2f. t − sin(t) 2g.

1

2
[sin(t)− t cos(t)]

2h.
1

10

[
e−3t + 3 sin(t)− cos(t)

]
4a. e4t − e3t 4b.

1

3

[
e3t − 1

]
4c.

1

4
[1 − cos(2t)]
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4d.
1

10

[
e3t − 3 sin(t)− cos(t)

]
4e.

1

54
[sin(3t)− 3t cos(3t)] 4f.

1

4
[sin(2t)+ 2t cos(2t)]

4g.
1√
π

e3t

∫ t

0

1√
x

e−3x dx 4h.
1

2
√
π

∫ t

0

1√
x

sin(2[t − x]) dx

5a. h(x) = 1

2
sin(2x) , y(t) = 1

2

∫ t

0

sin(2x) f (t − x) dx

5b. h(x) = 1

4

[
e2x − e−2x

]
, y(t) = 1

4

∫ t

0

[
e2x − e−2x

]
f (t − x) dx

5c. h(x) = xe3x , y(t) =
∫ t

0

xe3x f (t − x) dx

5d. h(x) = 1

3
e3x sin(3x) , y(t) = 1

3

∫ t

0

e3x sin(3x) f (t − x) dx

5e. h(x) = 1

16
[1 − cos(4x)] , y(t) = 1

16

∫ t

0

[1 − cos(4x)] f (t − x) dx

6a. y(t) = 1

4
[1 − cos(2t)] 6b. y(t) = 1

8
[2 − sin(2t)]

6c. y(t) = 1

13

[
e3t − cos(2t)− 3

2
sin(2t)

]
6d. y(t) = 1

8
[sin(2t)− 2t cos(2t)]

6e. y(t) = (2α2 − 8)−1 [α sin(2t)− 2 sin(αt)] 7a. y(t) = 1

9

[
3te3t − e3t + 1

]
7b. y(t) = 1

27

[
3te3t − 2e3t + 3t + 2

]
7c. y = 1

2
t2e3t 7d. y = 1

36

[
6te3t − e3t + e−3t

]
7e. y(t) = (3 − α)−2

[
(3 − α)te3t − e3t + eαt

]
8a. y(t) = 1

64
[4t − sin(4t)]

8b. y(t) = 1

256

[
8t2 − 1 + cos(4t)

]
8c. y(t) = 1

1200

[
16e3t − 25 + 9 cos(4t)− 12 sin(4t)

]
8d. y(t) = 1

64
[1 − 2t sin(4t)− cos(4t)]

8e. y(t) =
[
16α

(
α2 − 16

)]−1 [
16 cos(αt)+ α2 − 16 − α2 cos(4t)

]
Chapter 27

2a.
1

s − 4
e−6(s−4) 2b.

1

s2
e−6s + 6

s
e−6s 3a.

1

2
(t − 4)2 step4(t) 3b. e−2(t−3) step3(t)

3c. 2
√

t − 1 step1(t) 3d. sin(π t) step2(t) 3e.
1

2
(t − 4)2e5(t−4) step4(t)

3f. e−2(t−5) cos(4(t − 5)) step5(t) 4. [1 − cos(t − 3)] step3(t) 5a.

{
t if t < 1

1 if 1 < t

}

5b.

⎧⎪⎪⎨⎪⎪⎩
0 if t < 1

1 if 1 < t < 3

2 if 3 < t

⎫⎪⎪⎬⎪⎪⎭ 5c.

{
t2 if t < 2

4 if 2 < t

}
5d.

{
sin(π t) if t < 1

0 if 1 < t

}

5e.

{
e4(t−3) if t < 3

e−4(t−3) if 3 < t

}
5f.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t < 2

t − 2 if 2 < t < 4

6 − t if 4 < t < 6

0 if 6 < t

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ 6a. y(t) = (t − 3) step3(t)

6b. y(t) = 4 + (t − 3) step3(t) 6c. y(t) = 1

2
(t − 2)2 step2(t)

6d. y(t) = 6t + 4 + 1

2
(t − 2)2 step2(t) 6e. y(t) = 1

9

[
1 − cos(3[t − 10])] step10(t)

7a.
1

s − 4
e−6(s−4) 7b.

√
π

s
e−4s 7c.

1

s2
e−6s + 6

s
e−6s 7d.

[
2

s − 3
+ 1

(s − 3)2

]
e6−2s

7e. e−3s

[
2

s3
+ 12

s2
+ 36

s

]
7f.

2e−s

s2 + 4
7g. − 2

s2 + 4
e−πs/2 7h. e−πs/4 s

s2 + 4
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7i.
1

2

[
2

s2 + 4
+ s

√
3

s2 + 4

]
e−πs/6 8a. F(s) = 1

s + 4

[
1 − e−24−6s

]
8b. F(s) = 2

s2

[
1 + e−2s

]
− 2

s3

[
1 − e−2s

]
8c. F(s) = 2

s

[
1 − e−3s

]
+ 2

s + 4
e−3s

8d. F(s) = π

s2 + π2

[
1 + e−s

]
8e. F(s) = 2

s3
−
[

2

s3
+ 6

s2

]
e−3s

8f. F(s) = 3

s

[
e−2s − e−4s

]
8g. F(s) = 1

s

[
1 + e−2s + 2e−3s

]
8h. F(s) = − π

s2 + π2

[
e−s + e−2s

]
8i. F(s) = 2

s3
e−s −

[
2

s3
+ 4

s2

]
e−3s

8j. F(s) = 1

s2

[
1 − 2e−2s + e−4s

]
9a.

∞∑
n=0

stepn(t) 9b.
1

s

∞∑
n=0

e−ns 9c.
1

s
[
1 − e−s

]
10a. y(t) = (t − 1) rect(1,3)(t)+ 2 step3(t) 10b. y(t) = 1

2
(t − 1)2 rect(1,3)+[2t − 4] step3(t)

10c. y(t) = 1

9

[
rect(1,3)(t)+ cos(3[t − 3]) step3(t)− cos(3[t − 1]) step1(t)

]
11a.

⎧⎨⎩ 0 if t < 3

1

3
t3 − 3t2 + 9t − 9 if 3 < t

⎫⎬⎭ 11b.

{
0 if t < 4

t − 4 if 4 < t

}

11c.

{
sin(t) if 0 ≤ t < π

0 if π < t

}
11d.

⎧⎪⎪⎨⎪⎪⎩
0 if 0 ≤ t < 1

1 − e2−2t if 1 < t < 3

e6−2t − e2−2t if 3 < t

⎫⎪⎪⎬⎪⎪⎭
11e.

1

7

⎧⎪⎪⎨⎪⎪⎩
0 if t < 1

e5t − e7−2t if 1 < t < 3

e21−2t − e7−2t if 3 < t

⎫⎪⎪⎬⎪⎪⎭
11f.

1

2

⎧⎪⎪⎨⎪⎪⎩
0 if t < 2π

sin(t)+ (2π − t) cos(t) if 2π < t < 3π

−π cos(t) if 3� < t

⎫⎪⎪⎬⎪⎪⎭
11g.

1

15

{
4t5/2 if t < 4

128 + 15(t − 4)2 if 4 < t

}

11h.
1

2

⎧⎪⎪⎨⎪⎪⎩
2 − 2 cos(t) if t < 2π

(t − 2π) sin(t) if 2π < t < 3π

π sin(t)− 2 − 2 cos(t) if 3π < t

⎫⎪⎪⎬⎪⎪⎭ 12a.
1 − e−3(s+2)

(s + 2)
(
1 − e−3s

)
12b.

1 − e−s

s
(
1 − e−2s

) (
equivalently,

1

s
(
1 + e−s

))
12c.

1 − 2e−s + e−2s

s
(
1 − e−2s

) (
equivalently,

1 − e−s

s
(
1 + e−s

) or
1

s
tanh

(
s

2

))
12d.

2
(

1 + e−2s
)

s2
(
1 − e−2s

) − 2

s3

(
equivalently,

2

s2
coth(s)− 2

s3

)
12e.

1 − 2e−2s + e−4s

s2
(
1 − e−4s

) (
equivalently,

1 − e−2s

s2
(
1 + e−2s

) or
1

s2
tanh(s)

)
12f.

1 + e−πs(
s2 + 1

) (
1 − e−πs

) (
equivalently,

1

s2 + 1
coth

(
πs

2

))
13a. (i) y(t + 2π)− y(t) = −2

π2m
cos(π t)



�

�

�

�

�

�

�

�

836 Answers to Selected Exercises

13a. (ii) y(t) = 1

π2m

{
1 − (2n + 1) cos(πτ) if 0 ≤ τ < 1

−2(n + 1) cos(πτ) if 1 ≤ τ < 2

13a. (iii)

Y

2 4 6 8 T
13b. (i) y(t + π)− y(t) = 1

3π2m
cos

(
2π t − 3π

2

)

13b. (ii) y(t) = 1

3π2m
sin(πτ) [1 − cos(πτ)] − n

3π2m
sin(2π t)

13b. (iii)

Y

1 2 3 4 5 T

13c. (i) y(t + π)− y(t) = 0 (No resonance!)

13c. (ii) y(t) = 1

12π2m
[2 sin(2π t)− sin(4π t)] 13c. (iii)

Y

1 2 3 4 5

T

Chapter 28

1a. 6.525 kg·meter/sec 1b. 13.63 kg·meter/sec 2a i. 20 meter/sec

2a ii. 40 meter/sec 2a iii. 0 meter/sec 2b i. 18 kg·meter/sec 2b ii. 28 kg·meter/sec

2b iii. 8 kg·meter/sec 2c i. 0.5 kg 2c ii. 2 kg 3a. 16 3b. 0 3c. 1

3d.
1

2
3e. 9 3f. 0 6a. y(t) = 3 step2(t) 6b. y(t) = rect(2,4)(t)

6c. y(t) = (t − 3) step3(t) 6d. y(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < 1

t − 1 if 1 < t < 4

3 if 4 < t

6e. y(t) = 4e−2(t−1) step(t − 1) 6f. y(t) =
{

sin(t) if t < π

0 if t < π

6g. y(t) = 2 cos(t) step
(

t − π

2

)
7a. y(t) = 2e−3t + e−3(t−2) step(t − 2)

7b. y(t) = 1

3

[
1 − e−3t

]
7c. y(t) = 2

3

[
1 − e−3t

]
+ 1

3

[
1 − e−3(t−1)

]
step1(t)

7d. y(t) = 1

4
sin(4(t − 2)) step2(t) 7e. y(t) = 1

8

[
e4(t−10) − e−4(t−10)

]
step10(t)

7f. y(t) = 0 7g. y(t) = 1

8

[
e2t − e−6t

]
7h. y(t) = 1

8

[
e2(t−3) − e−6(t−3)

]
step3(t)

7i. y(t) = (t − 4)e−3(t−4) step4(t) 7j. y(t) = 1

3
e6t sin(3t)

7k. y(t) = 1

9

[
1 − cos(3(t − 1))

]
step1(t)

7l. y(t) = 1

4

[
e2(t−1) − e−2(t−1) + 3

2
sin(2(t − 1))

]
step1(t)
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Chapter 29

2a.
121

81
2b.

9,841

6,561
2c.

3

2
2d.

1

162
2e.

3

5
2f.

665

32
2g. Diverges

2h. 14 2i. −5 2j.
15

4
4a. 1 +

∞∑
k=1

−1

k(k + 1)
xk 4b. x2 +

∞∑
k=4

(−1)k

k
xk

4c.

∞∑
n=4

3(n − 3)2(x − 5)n 4d.

∞∑
n=1

(n + 1)nxn 4e. −6 +
∞∑

n=1

[−2(n + 1)(n + 3)]xn

4f. 6 +
∞∑

n=1

[2(n + 1)(2n + 3)]xn 4g.

∞∑
n=4

(n − 3)2an−3xn 4h.

∞∑
n=2

an−2(x − 1)n

4i. a0x + 2a1x2 +
∞∑

n=3

n
[
an−1 − an+1

]
xn 4j.

∞∑
n=0

[
(n + 1)an+1 + 5an

]
xn

4k. −4a0 − 4a1x +
∞∑

k=2

[
k2 − k − 4

]
ak xk

4l. 2a2 + 6a3x +
∞∑

n=2

[
(n + 2)(n + 1)an+2 − 3an−2

]
xn 5a.

∞∑
k=0

(k + 1)xk for |x | < 1

5b.

∞∑
k=0

1

2
(k + 2)(k + 1)xk for |x | < 1 6a.

∞∑
k=0

1

k! x
k 6b.

∞∑
k=0

(−1)k

(2k)! x2k

6c.

∞∑
k=0

(−1)k

(2k + 1)! x
2k+1 6d.

∞∑
k=1

(−1)k−1

k
(x − 1)k 7a. 1 + 1

2
x − 1

8
x2 + 1

16
x3 − 5

128
x4

7b. 1 − 1

2
x2 − 1

8
x4 − 1

16
x6 − 5

128
x8 7c. 1 + 1

2
x2 + 3

8
x4 + 5

16
x6

8b i. 1 + 2x + 2x2 + 4

3
x4 + 4

15
x5 + 4

45
x6 + 8

315
x7 + 2

315
x8 + 4

2835
x9

8b ii. 1 + 1

2
x2 + 5

24
x4 + 61

720
x6 + 277

8064
x8 + 50521

3628800
x10

8b iii. 3 − 4

3
(x − 2)+ 1

27
(x − 2)2 − 4

243
(x − 2)3 + 31

4374
(x − 2)4

− 58

19683
(x − 2)5 + 139

118098
(x − 2)6 − 238

531441
(x − 2)7

9a.

∞∑
k=0

2k xk with R = 1

2
9b.

∞∑
k=0

(−1)k x2k with R = 1 9c.

∞∑
k=0

1

2k
xk with R = 2

9d.

∞∑
k=0

k + 1

2k+1
xk with R = 2 9e.

∞∑
k=0

(−1)k

k! x2k with R = ∞

9f.

∞∑
k=0

(−1)k

(2k + 1)! x
4k+2 with R = ∞ 10c. Taylor series = 0

10d. Because f (x) does not equal its Taylor series about 0 except right at x = 0 .

Chapter 30

2. Sk is the statement: ak = F(k) for a given function F and a given sequence A0, A1, A2, . . . .

3a. ak = 2

k
ak−1 for k ≥ 1 , y(x) = a0

∞∑
k=0

2k

k! xk = a0

∞∑
k=0

1

k! (2x)k

3b. ak = 2

k
ak−2 for k ≥ 2 (with a1 = 0) , y(x) = a0

∞∑
m=0

1

m! x
2m = a0ex2
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3c. ak = 2ak−1 for k ≥ 1 , y(x) = a0

∞∑
k=0

2k xk = a0

1 − 2x

3d. ak = k − 3

3k
ak−1 for k ≥ 1 , y(x) = a0

[
1 − 2

3
x + 1

9
x2
]

3e. ak = 4 − k

k
ak−2 for k ≥ 2 (with a1 = 0) , y(x) = a0

[
1 + x2

]
3f. ak = ak−1 for k ≥ 1 , y(x) = a0

∞∑
k=0

xk = a0

1 − x

3g. ak = − 1

2
ak−1 for k ≥ 1 , y(x) = a0

∞∑
k=0

(−1

2

)k

(x − 3)k

3h. ak = − 1 + k

4k
ak−1 for k ≥ 1 , y(x) = a0

∞∑
k=0

(k + 1)
(−1

4

)k

(x − 5)k

3i. ak = 1

2
ak−3 for k ≥ 3 (with a1 = a2 = 0) , y(x) = a0

∞∑
m=0

1

2m
x3m

3j. ak = k − 6

2k
ak−3 for k ≥ 3 (with a1 = a2 = 0) , y(x) = a0

[
1 − 1

2
x3
]

3k. ak = 1

k
ak−2 − k − 1

k
ak−1 for k ≥ 2 (with a1 = 0) ,

y(x) = a0

[
1 + 1

2
x2 − 1

3
x3 + 3

8
x4 − 11

30
x5 + · · ·

]
3l. ak = 1

k
ak−2 − ak−1 for k ≥ 2 (with a1 = −a0) ,

y(x) = a0

[
1 − x + 3

2
x2 − 11

6
x3 + 53

24
x4 + · · ·

]
4a. No singular points, R = ∞, I = (−∞,∞)

4b. No singular points, R = ∞, I = (−∞,∞) 4c. zs = 1

2
, R = 1

2
, I =

(
− 1

2
,

1

2

)
4d. zs = 3, R = 3, I = (−3, 3) 4e. zs = ±i, R = 1, I = (−1, 1)

4f. zs = 1, R = 1, I = (−1, 1) 4g. zs = 1, R = 2, I = (1, 5)

4h. zs = 1, R = 4, I = (1, 9)

4i. zs = 3
√

2, 2−2/3
(
−1 ± i

√
3
)

; R = 3
√

2, I =
(
− 3

√
2,

3
√

2
)

4j. zs = 3
√

2, 2−2/3
(
−1 ± i

√
3
)

; R = 3
√

2, I =
(
− 3

√
2,

3
√

2
)

4k. zs = −1, R = 1, I = (−1, 1) 4l. zs = −1, R = 1, I = (−1, 1)

5a. ak = 4 − k

k
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where y1(x) = 1 + x2 and

y2(x) = x + 1

3
x3 − 1

5 · 3
x5 + 1

7 · 5
x7 − 1

9 · 7
x9 + · · · =

∞∑
m=0

(−1)m+1

(1 + 2m)(2m − 1)
x2m+1

5b. ak = − 1

k
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where

y1(x) = 1 − 1

2
x2 + 1

22 · 2
x4 − 1

23(3!) x
6 + · · · =

∞∑
m=0

(−1)m
1

2mm! x
2m and

y2(x) = x − 1

3
x3 + 1

5 · 3
x5 − 1

7 · 5 · 3
x7 + · · · =

∞∑
m=0

(−1)m
2m m!

(2m + 1)! x
2m+1

5c. ak = − k − 2

4k
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where y1(x) = 1 and

y2(x) = x − 1

4 · 3
x3 + 1

42 · 5
x5 − 1

43 · 7
x7 + · · · =

∞∑
m=0

(−1)m
1

4m (2m + 1)
x2m+1

5d. ak = 3

k(k − 1)
ak−4 for k ≥ 4 (with a2 = a3 = 0) , y(x) = a0 y1(x)+ a1 y2(x) where
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y1 = 1 + 3

4 · 3
x4 + 32

(8 · 7)(4 · 3)
x8 + 33

(12 · 11)(8 · 7)(4 · 3)
x12 + · · · and

y2 = x + 3

5 · 4
x5 + 32

(9 · 8)(5 · 4)
x9 + 33

(13 · 12)(9 · 8)(5 · 4)
x13 + · · ·

5e. ak = k + 1

4k
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where

y1 = 1 + 3

4 · 2
x2 + 5 · 3

42(4 · 2)
x4 + 7 · 5 · 3

43(6 · 4 · 2)
x6 + · · ·

(
=

∞∑
m=0

(2m + 1)!
42m (m!)2 x2m

)
and

y2 = x + 4

4 · 3
x3 + 6 · 4

42(5 · 3)
x5 + 8 · 6 · 4

43(7 · 5 · 3)
x7 + · · ·

(
=

∞∑
m=0

(m + 1)!m!
(2m + 1)! x2m+1

)
5f. ak = k − 4

k − 1
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where y1 = 1 − 2x2 and

y2 = x − 1

2
x3 − 1

4 · 2
x5 − 3

6 · 4 · 2
x7 − 5 · 3

8 · 6 · 4 · 2
x7 + · · ·

5g. ak = 2(k − 5)

k(k − 1)
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where

y1(x) = 1 + 2(−3)

2! x2 + 22[(−1)(−3)]
4! x4 + 23[(1)(−1)(−3)]

6! x6 + 23[(3)(1)(−1)(−3)]
8! x8 + · · ·

and y2(x) = x − 2

3
x3

5h. ak = 1

9
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where

y1(x) =
∞∑

m=0

1

9m
(x − 3)2m and y2(x) =

∞∑
m=0

1

9m
(x − 3)2m+1

5i. ak = − 1

k − 1
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where

y1(x) = 1 − (x + 2)2 + 1

3
(x + 2)4 − 1

5 · 3
(x + 2)6 + 1

7 · 5 · 3
(x + 2)8 + · · ·(

=
∞∑

m=0

(−1)m
2mm!
(2m)!(x + 2)2m

)
and y2 = (x + 2)− 1

2
(x + 2)3 + 1

4 · 2
(x + 2)5 − 1

6 · 4 · 2
(x + 2)7 + · · ·(

=
∞∑

m=0

(−1)m
1

2mm! (x + 2)2m+1

)
5j. ak = − k − 5

k
ak−2 for k ≥ 2 , y(x) = a0 y1(x)+ a1 y2(x) where

y1(x) = 1 − −3

2
(x − 1)2 + (−1)(−3)

4 · 2
(x − 1)4 − (1)(−1)(−3)

6 · 4 · 2
(x − 1)6 − (3)(1)(−1)(−3)

8 · 6 · 4 · 2
(x − 1)8

and y2(x) = x − 1

3

5k. ak = 2

k
ak−1 + 1

k(k − 1)
ak−3 for k ≥ 3 (with a2 = a1) , y(x) = a0 y1(x)+ a1 y2(x) where

y1(x) = 1 + 1

6
x3 + 1

12
x4 + 1

30
x5 + · · · and y2(x) = x + x2 + 2

3
x3 + 5

12
x4 + 13

60
x5 + · · ·

5l. ak = 1

k(k − 1)

[
(k − 2)ak−2 + 2ak−3

]
for k ≥ 3 (with a2 = 0) , y(x) = a0 y1(x)+ a1 y2(x)

where y1(x) = 1 + 1

3
x3 + 1

20
x5 + 1

45
x6 + · · ·

and y2(x) = x + 1

6
x3 + 1

6
x4 + 1

40
x5 + 1

30
x6 + · · ·

6a. zs = ±i, R = 1, I = (−1, 1) 6b. No singular points, R = ∞, I = (−∞,∞)

6c. zs = ±2i, R = 2, I = (−2, 2) 6d. No singular points, R = ∞, I = (−∞,∞)

6e. zs = ±2, R = 2, (−2, 2) 6f. zs = ±1, R = 1, I = (−1, 1)

6g. No singular points, R = ∞, I = (−∞,∞) 6h. zs = 0, 6; R = 3, I = (0, 6)

6i. No singular points, R = ∞, I = (−∞,∞) 6j. zs = 1 ± i, R = 1, I = (0, 2)

6k. No singular points, R = ∞, I = (−∞,∞)
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6l. No singular points, R = ∞, I = (−∞,∞) 8a. ak = 2k − 4 − λ

k(k − 1)
ak−2 8b. (−∞,∞)

8c. ck = 2k − 4 − λ

k(k − 1)
ck−2 8d. λN = 2N 8f i. p0(x) = 1 8f ii. p1(x) = x

8f iii. p2(x) = 1 − 2x2 8f iv. p3(x) = x − 2

3
x3 8f v. p4(x) = 1 − 4x2 + 4

3
x4

8f vi. p5(x) = x − 4

3
x3 + 4

15
x5 9a. ak = (k − 2)2 − λ

k(k − 1)
ak−2

9b. ck = (k − 2)2 − λ

k(k − 1)
ck−2 for k ≥ 2 9c. λN = N 2 9e i. λ0 = 0 , p0(x) = 1

9e ii. λ1 = 1 , p1(x) = x 9e iii. λ2 = 4 and p2(x) = 1 − 2x2

9e iv. λ3 = 9 and p3(x) = x − 4

3
x3 9e v. λ4 = 16 and p4(x) = 1 − 8x2 + 8x4

9e vi. λ5 = 25 and p5(x) = x − 4x3 + 16

5
x5 9f i. (−1, 1)

9f ii. For both, R = 1 and (−1, 1) 10a. ak = k2 − 3k − λ+ 2

k(k − 1)
ak−2

10b. ck = k2 − 3k − λ+ 2

k(k − 1)
ck−2 for k ≥ 2 10c. λ = N (N + 1)

10e i. λ0 = 0 , p0(x) = 1 , and y0,O(x) = ∑∞
n=0

1

2n + 1
x2n+1

10e ii. λ1 = 2 , p1(x) = x , and y1,E (x) = ∑∞
n=0

1

1 − 2n
x2n

10e iii. λ2 = 6 and p2(x) = 1 − 3x2 10e iv. λ3 = 12 and p3(x) = x − 5

3
x3

10e v. λ4 = 20 and p4(x) = 1 − 10x2 + 35

3
x4

10e vi. λ5 = 30 and p5(x) = x − 14

3
x3 + 21

5
x5 10f i. (−1, 1)

10f ii. For both, R = 1 and (−1, 1) 11a. a0

[
1 − 22

2! x2 + 24

4! x4

]
+ a1

[
x − 22

3! x3 + 24

5! x5

]
11b. a0

[
1 + 2

4! x
4
]

+ a1

[
x + 6

5! x
5
]

11c. a0

[
1 − 1

2! x
2 − 2

3! x
3 − 3

4! x
4
]

+ a1

[
x − 1

3! x
3 − 4

4! x
4
]

11d. a0

[
1 + 1

2!
(

x − π

2

)2
+ 2

4!
(

x − π

2

)4
]

+ a1

[(
x − π

2

)
+ 1

3!
(

x − π

2

)3
]

11e. a0 + a1x + 1 − a0

3! x3 − 2a1

4! x4 − 1

5! x
5 11f. a0

[
1 + 1

3
x3
]

+ a1

[
x + 1

3! x
3 + 2

4! x
4
]

11g. a0 + a1x + a0
2

2! x2 + 2a0a1

3! x3 + 2
[
a0

3 + a1
2
]

4! x4 + 10a0
2a1

5! x5

11h. a0 − cos(a0) x − sin(a0) cos(a0)

2! x2 − cos(a0) [1 − 2 cos2(a0)]
3! x3

Chapter 31

5a. No singular points , R = ∞ 5b. zs =
[
n + 1

2

]
π with n = 0, ±1, ±2, . . . , R = 0

5c. zs = 0, ±π, ±2π, ±3π, . . . , R = π − 2

5d. zs = inπ with n = 0, ±1, ±2, . . . , R = 2

5e. zs = inπ with n = ±1, ±2, . . . , R =
√

4 + π2 5f. zs = ±2i , R = 2

5g. zs = ik2π with k = 0, ±1, ±2, . . . , R = 3 5h. zs = −2 , R = 4

5i. No singular points , R = ∞ 5j. zs = ±√
n with n = 1, 2, 3, . . . , R = 1

6a. a0

[
1 + x + x2 + 5

6
x3 + 5

8
x4
]

, I = (−∞,∞)

6b. a0

[
1 − x − 1

2
x2 + 1

6
x3 + 3

8
x4
]

, I = (−∞,∞)

6c. a0

[
1 − x − 1

2
x2 + 1

8
x4
]

, I = (−∞,∞)

6d. a0

[
1 − 1

2
(x − 1)2 + 1

6
(x − 1)3 + 1

24
(x − 1)4

]
, I = (0, 2)
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7a. a0

[
1 + 1

2
x2 + 1

6
x3 + 1

12
x4
]

+ a1

[
x + 1

6
x3 + 1

12
x4
]

, I = (−∞,∞)

7b. a0

[
1 + 1

2
x2 + 1

6
x3 − 1

6
x4
]

+ a1

[
x − 1

3
x3 + 1

12
x4
]

, (−∞,∞)

7d. a0

[
1 − 1

6
(x − 1)3 + 1

24
(x − 1)4

]
+ a1

[
(x − 1)− 1

12
(x − 1)4

]
, I = (0, 2)

7e. a0

[
1 − 1

2
(x − 1)2 + 1

12
(x − 1)3 + 1

96
(x − 1)4

]
+ a1

[
(x − 1)− 1

6
(x − 1)3 + 1

24
(x − 1)4

]
, I = (0, 2)

7f. a0

[
1 − x2 − 5

3
x3 + 11

12
x4
]

+ a1

[
x − 1

2
x2 − 1

2
x3 − 9

8
x4
]

, I = (−∞,∞)

8b i. a0

[
1 + x + x2 + 5

6
x3 + 5

8
x4 + 13

30
x5 + 203

720
x6 + 877

5040
x7 + 23

224
x8 + 1007

17280
x9 + 4639

145152
x10

]
8b ii. a0

[
1 − x + 1

2
x2 − 1

3
x3 + 5

24
x4 − 1

15
x5 + 13

720
x6 − 11

630
x7 + 361

40320
x8
]

8b iii. a0

[
1 − x + 1

2
x2 − 1

3
x3 + 5

24
x4 − 2

15
x5 + 61

720
x6 − 17

315
x7 + 277

8064
x8
]

8b iv. a0

[
1 − 3(x − 2)+ 23

6
(x − 2)2 − 407

162
(x − 2)3 + 1241

1944
(x − 2)4 + 21629

87480
(x − 2)5

]
9b i. a0

[
1 + 1

2
x2 + 1

6
x3 + 1

12
x4 + 1

24
x5 + 13

720
x6 + 1

140
x7 + 109

40320
x8
]

+ a1

[
x + 1

6
x3 + 1

12
x4 + 1

30
x5 + 1

72
x6 + 29

5040
x7 + 1

448
x8
]

9b ii. a0

[
1 − 1

2
x2 + 1

12
x4 − 1

80
x6 + 11

8064
x8 − 17

129600
x10

]
+ a1

[
x − 1

6
x3 + 1

30
x5 − 19

5040
x7 + 29

72576
x9
]

9b iii. a0

[
1 − 1

2
x2 + 1

6
x4 − 31

720
x6
]

+ a1

[
x − 1

3
x3 + 1

10
x5 − 59

2520
x7
]

9b iv. a0

[
1 − 1

2
(x − 1)2 + 1

12
(x − 1)3 − 1

96
(x − 1)4 + 31

960
(x − 1)5

]
+ a1

[
(x − 1)− 1

2
(x − 1)2 + 1

12
(x − 2)3 − 3

32
(x − 1)4 + 71

960
(x − 4)5

]
Chapter 32

2a. y1(x) = (x − 3)2 , y2(x) = x − 3 2b. y1(x) = x−1/2 , y2(x) = x−1

2c. y1(x) = (x − 1)3 , y2(x) = (x − 1)3 ln |x − 1| 2d. y1(x) = 1 , y2(x) = ln |x + 2|
2e. y1(x) = (x − 5)2 , y1(x) = 3

√
x − 5

2f. y1(x) = cos(2 ln |x − 5|) , y1(x) = sin(2 ln |x − 5|)
3a. Reg. sing. pts.: 0, 2, −2 ; No irreg. sing. pt. ; R = 2

3b. No Reg. sing. pt. ; Irreg. sing. pt.: 0 ; R = 2

3c. Reg. sing. pt.: 1 ; Irreg. sing. pt.: 0 ; R = 1

3d. Reg. sing. pt.: 3, 4 ; No irreg. sing. pt. ; R = 1

3e. Reg. sing. pt.: 4 ; Irreg. sing. pt.: 3 ; R = 1

3f. Reg. sing. pt.: 0 ; No irreg. sing. pt. ; R = ∞
3g. Reg. sing. pts.: 0,

1

2
, −1

2
, i, −i ; No irreg. sing. pts. ; R = 1

2
3h. Reg. sing. pts.: 2i, −2i ; No irreg. sing. pt. ; R = 2

4a. r2 − 3r + 2 = 0 ; r1 = 2 , r2 = 1 .

For r = r1 : a1 = 0 , ak = −1

(k + 1)k
ak−2 ; y(x) = ay1(x) with

y1(x) = x2
[
1 − 1

3! x
2 + 1

5! x
4 − 1

7! x
6 − · · ·

]
= x2

∞∑
m=0

(−1)m

(2m + 1)! x
2m = x sin(x) .

For r = r2 , a1 = 0; ak = −1

k(k − 1)
ak−2 ; y(x) = ay2(x) with

y2(x) = x
[
1 − 1

2! x
2 + 1

4! x
4 − 1

6! x
6 + · · ·

]
= x

∞∑
m=0

(−1)m

(2m)! x2m = x cos(x) .
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Gen. Soln.: y(x) = c1 y1(x)+ c2 y2(x)

4b. 4r2 − 4r + 1 = 0 ; r1 = r2 = 1

2
; For r = r1 : ak = 1

k2
ak−1 ;

y(x) = ay1(x) with y1(x) = √
x

∞∑
k=0

1

(k!)2 xk . No “second” value of r .

4c. r2 − 4 = 0 ; r1 = 2 , r2 = −2 . For r = r1 : ak = −4

k(k + 4)
ak−1 ; y(x) = ay1(x) with

y1(x) = x2

[
1 − 4

5
x + 42

(2)(6 · 5)
x2 − 43

(3 · 2)(7 · 6 · 5)
x3 + · · ·

]
= x2

∞∑
k=0

(−4)k4!
k!(k + 4)! x

k .

For r = r2 , the recursion formula blows up.

4d. r2 − 7r + 10 = 0 ; r1 = 5 , r2 = 2 .

For r = r1 : a1 = 0 , ak = 9(k + 2)

k
ak−2 ; y(x) = ay1(x) with

y1(x) = x2

[
1 + 9 · 4

2
x2 + 92 · 6

2
x4 + 93 · 8

2
x6 − · · ·

]
= x5

∞∑
m=0

9m(m + 1)x2m .

For r = r2 : a1 = 0; ak = 9(k − 1)

k − 3
ak−2 ; y(x) = ay2(x) with

y2(x) = x2
[
1 − 9x2 − 3 · 92x4 − 5 · 93x6 + · · ·

]
= x2

∞∑
m=0

9m(1 − 2m)x2m .

Gen. Soln.: y(x) = c1 y1(x)+ c2 y2(x)

4e. r2 − 2r + 1 = 0 ; r1 = r2 = 1 . For r = r1 : ak = k − 2

k
ak−1 ;

y(x) = ay1(x) with y1(x) = x − x2 . No “second” value of r .

4f. r2 = 0 ; r1 = r2 = 0 . For r = r1 : a1 = 0 , ak = −1

k2
ak−2 ; y(x) = ay1(x) with

y1(x) = 1 − 1

22
x2 + 1

(2 · 4)2
x4 − 1

(6 · 4 · 2)2
x6 + · · · =

∞∑
m=0

(−1)m

(2mm!)2 x2m .

No “second value” for r .

4g. r2 − 1 = 0 ; r1 = 1 , r2 = −1 . For r = r1 : a1 = 0 , ak = −1

k(k + 2)
ak−2 ;

y(x) = ay1(x) with y1(x) = x
[
1 − 1

2 · 4
x2 + 1

(4 · 2)(6 · 4)
x4 − 1

(6 · 4 · 2)(8 · 6 · 4)
x6 + · · ·

]
= x

∞∑
m=0

(−1)m

22m m!(m + 1)! x
2m . For r = r2 , the recursion formula blows up.

4h. 2r2 + 3r + 1 = 0 ; r1 = −1/2 , r2 = −1 .

For r = r1 : a1 = 0 , ak = 2(k − 2)

k(2k + 1)
ak−2 ; y(x) = ay1(x) with y1(x) = x−1/2 .

For r = r2 : a1 = 0 , ak = 2k − 5

k(2k − 1)
ak−2 ; y(x) = ay2(x) with

y2(x) = x−1
[
1 − 1

2 · 3
x2 − 1

4 · 2 · 7
x4 − 1

6 · 4 · 2 · 11
x6 + · · ·

]
= x−1

∞∑
m=0

−1

2m m!(4m − 1)
x2m .

Gen. Soln.: y(x) = c1 y1(x)+ c2 y2(x)

4i. r2 − 6r + 9 = 0 ; r1 = r2 = 3 . For r = r1 : ak = 2

k
ak−1 ; y(x) = ay1(x) with

y1(x) = x3

[
1 + 2

1
x + 22

2
x2 + 23

3 · 2
x3 + · · ·

]
= x3

∞∑
k=0

2k

k! xk = x3e2x .

No “second” value of r .

4j. 3r2 − 7r + 2 = 0 ; r1 = 2 , r2 = 1/3 . For r = r1 : ak = k + 1

k
ak−1 ; y(x) = ay1(x) with

y1(x) = x2
[
1 + 2x + 3x2 + 4x3 + · · ·

]
= x2

∞∑
k=0

(k + 1)xk .
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For r = r2 : ak = 3k − 2

3k − 5
ak−1 ; y(x) = ay1(x) with

y1(x) = 3
√

x
[
1 − 1

2
x − 4

2
x2 − 7

2
x3 + · · ·

]
= 3

√
x

∞∑
k=0

2 − 3k

2
xk .

Gen. Soln.: y(x) = c1 y1(x)+ c2 y2(x)

4k. r2 − 2r = 0 ; r1 = 2 , r2 = 0 . For r = r1 : ak = k − 3

k(k + 2)
ak−1 ;

y(x) = ay1(x) with y1(x) = x2 − 2

3
x3 + 1

12
x4 .

For r = r2 , the recursion formula blows up.

4l. 4r2 − 4r + 1 = 0 ; r1 = r2 = 1/2 . For r = r1 : ak = − 2k − 1

k2
ak−1 ;

y(x) = ay1(x) with y1(x) = √
x
[
1 − x + 3

4
x2 − 5 · 3

9 · 4
x3 + · · ·

]
.

= √
x

[
1 +

∞∑
k=1

(−1)k
(2k − 1)(2k − 3) · · · 5 · 3 · 1

(k!)2 xk

]
. No “second” value of r .

4m. r2 = 0 ; r1 = r2 = 0 .

For r = r1 : a1 = 0 , a2 = 0 , ak = k − 6

k2
ak−3 ; y(x) = ay1(x) with

y1(x) = 1 − 1

3
x3 . No “second” value of r .

4n. 9r2 − 1 = 0 ; r1 = 1/3 , r2 = −1/3 .

For r = r1 : ak = −ak−1 ; y(x) = ay1(x) with

y1(x) = x
1/3

[
1 − x + x2 − x3 + · · ·

]
= x

1/3

∞∑
k=0

(−1)k xk = x
1/3(1 + x)−1 .

For r = r2 : ak = −ak−1 ; y(x) = ay2(x) with

y2(x) = x−1/3

[
1 − x + x2 − x3 + · · ·

]
= x−1/3

∞∑
k=0

(−1)k xk = x−1/3(1 + x)−1 .

Gen. Soln.: y(x) = c1 y1(x)+ c2 y2(x)

5a. r2 − r = 0 ; r1 = 1 , r2 = 0 . For r = r1 : ak = − 1

k
ak−1 ; y(x) = ay1(x) with

y1(x) = (x − 3)
[
1 − 1

2
(x − 3)+ 1

2 · 1
(x − 3)2 − 1

3 · 2 · 1
(x − 3)3 + · · ·

]
= (x − 3)

∞∑
k=0

(−1)k
1

k! (x − 3)k = (x − 3)e−(x−3) .

For r = r2 , the recursion formula blows up.

5b. r2 + r = 0 ; r1 = 0 , r2 = −1 .

For r = r1 : ak = − 1

(k + 1)k
ak−2 ; y(x) = ay1(x) with

y1(x) = 1 − 1

3! (x + 2)2 + 1

5! (x + 2)4 − 1

7! (x + 2)6 + · · · = sin(x + 2)

x + 2
.

For r = r2 : ak = − 1

k(k − 1)
ak−2 ; y(x) = ay2(x) with

y2(x) = 1

x + 2

[
1 − 1

2! (x + 2)2 + 1

4! (x + 2)4 − 1

6! (x + 2)6 + · · ·
]

= cos(x + 2)

x + 2
.

Gen. Soln.: y(x) = c1 y1(x)+ c2 y2(x)

5c. 4r2 − 4r + 1 = 0 ; r1 = r2 = 1

2
. For r = r1 : ak = − 1

k2
ak−1 ;

y(x) = ay1(x) with y1(x) =
√

x − 1

∞∑
k=0

(−1)k
1

(k!)2 (x − 1)k .

No “second” value of r .

5d. r2 + 2r − 3 = 0 ; r1 = 1 , r2 = −3 .

For r = r1 : ak = −1

k + 4
ak−1 ; y(x) = ay1(x) with
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y1(x) = (x − 3)
[
1 − 1

5
(x − 3)+ 1

6 · 5
(x − 3)2 − 1

7 · 6 · 5
(x − 3)3 + · · ·

]
= (x − 3)

∞∑
k=0

(−1)k4!
(k + 4)! (x − 3)k .

For r = r2 : ak = − 1

k
ak−1 ; y(x) = ay2(x) with

y2(x) = (x − 3)−3
[
1 − (x − 3)+ 1

2
(x − 3)2 − 1

3 · 2
(x − 3)3 + · · ·

]
= (x − 3)−3

∞∑
k=0

(−1)k

k! (x − 3)k = (x − 3)−3e−(x−3) .

Gen. Soln.: y(x) = c1 y1(x)+ c2 y2(x)

8b. y3 must be a linear combination of y1 and y2.

Chapter 33

2a. r2 − 3r + 2 = 0 ; r1 = 2 , r2 = 1 ;

yEuler,1(x) = x2 , yEuler,2(x) = x ; lim
x→0

|y1(x)| = 0 , lim
x→0

|y2(x)| = 0

2b. r2 − r − 2 = 0 ; r1 = 2 , r2 = −1 ;

yEuler,1(x) = x2 , yEuler,2(x) = x−1 ; lim
x→0

|y1(x)| = 0 , lim
x→0

|y2(x)| = ∞
2c. r2 = 0 ; r1 = r2 = 0 ;

yEuler,1(x) = 1 , yEuler,2(x) = ln |x | ; lim
x→0

|y1(x)| = 1 , lim
x→0

|y2(x)| = ∞
2d. 2r2 + 3r + 1 = 0 ; r1 = −1/2 , r2 = −1 ;

yEuler,1(x) = |x |−1/2 , yEuler,2(x) = x−1 ; lim
x→0

|y1(x)| = ∞ , lim
x→0

|y2(x)| = ∞
2e. r2 − 6r + 9 = 0 ; r1 = r2 = 3 ;

yEuler,1(x) = x3 , yEuler,2(x) = x3 ln |x | ; lim
x→0

|y1(x)| = 0 , lim
x→0

|y2(x)| = 0

2f. r2 − 4 = 0 ; r1 = 2 , r2 = −2 ;

yEuler,1(x) = x2 , yEuler,2(x) = x−2 ; lim
x→0

|y1(x)| = 0 , lim
x→0

|y2(x)| = ∞
2g. 4r2 + 4r + 1 = 0 ; r1 = r2 = − 1

2
;

yEuler,1(x) = |x |−1/2 , yEuler,2(x) = |x |−1/2 ln |x | ; lim
x→0

|y1(x)| = ∞ , lim
x→0

|y2(x)| = ∞
2h. r2 − 1 = 0 ; r1 = 1 , r2 = −1 ;

yEuler,1(x) = x , yEuler,2(x) = x−1 ; lim
x→0

|y1(x)| = 0 , lim
x→0

|y2(x)| = ∞
2i. r2 + 3r = 0 ; r1 = 0 , r2 = −3 ;

yEuler,1(x) = 1 , yEuler,2(x) = x−3 ; lim
x→0

|y1(x)| = 1 , lim
x→0

|y2(x)| = ∞
2j. r2 − r − 6 = 0 ; r1 = 3 , r2 = −2 ;

yEuler,1(x) = (x + 2)3 , yEuler,2(x) = (x + 2)−2 ; lim
x→0

|y1(x)| = 0 , lim
x→0

|y2(x)| = ∞
2k. r2 − r = 0 ; r1 = 1 , r2 = 0 ;

yEuler,1(x) = x − 3 , yEuler,2(x) = 1 ; lim
x→3

|y1(x)| = 0 , lim
x→3

|y2(x)| = 1

2l. 2r2 − r = 0 ; r1 = 1

2
, r2 = 0 ;

yEuler,1(x) =
√

|x − 1| , yEuler,2(x) = 1 ; lim
x→1

|y1(x)| = 0 , lim
x→1

|y2(x)| = 1

4b. lim
x→x0

∣∣y1
′(x)

∣∣ = 1 when r1 = 1 ; lim
x→x0

∣∣y1
′(x)

∣∣ = a1 when r1 = 0 5b. r1 = 1/2 , r2 = 0

5e. T0(x) = 1 , T1(x) = x , T2(x) = 2x2 − 1 , T3(x) = 4x3 − 3x , T4(x) = 8x4 − 8x2 + 1 ,

T5(x) = 16x5 − 20x3 + 5x

6a. y2(x) = y1(x) ln |x | + x
3/2

[
−2 − 3

4
x − 11

108
x2 − 25

3,456
x3 − 137

432,000
x4 + · · ·

]
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6b. y2(x) = y1(x) ln |x | + x
[
0 + 1

4
x + 0x2 − 3

128
x3 + 0x4 + · · ·

]
6c. y2(x) = −6y1(x) ln |x | + 1 + 4x + 0x2 − 22

3
x3 + 43

24
x4 + · · ·

6d. y2(x) = − 16

9
y1(x) ln |x | + 1

x2

[
1 + 4

3
x + 4

3
x2 + 16

9
x3 + 0x4 + · · ·

]
Chapter 35

1a. Yes, it is 1b. No, it is not 1c. Yes, it is 2a. No, it is not 2b. Yes, it is

2c. No, it is not 3a. No, it is not 3b. Yes, it is 3c. Yes, it is

4b. x(t) = 3e3t + 4e−4t and y(t) = 3e3t − 10e−4t

5b. x(t) = 3e9t − 3e−3t and y(t) = 3e9t + 6e−3t

6b. x(t) = 6e−2t − 6e5t and y(t) = −18e−2t − 3e5t

7a. x(t) = c1 cos(t)+ c2 sin(t) and y(t) = c1 sin(t)− c2 cos(t)+ c3

7b. x(t) = Aec1t2

and y(t) = c1t

7c. x(t) = 2Ae3t + Be−2t , y(t) = 6 +
[

15B

A
t + C

]
e−5t and z(t) = Ae3t

8a. x ′ = − 6

1200
x + 1

600
y

y′ = 3 + 1

1200
x − 4

600
y

8. x ′ = 2 − 9

1200
x + 1

600
y

y′ = 1 + 3

1200
x − 5

600
y

9a. x ′ = −2y − 4x

y′ = x

9b. x ′ = 32y + 8t2x + sin(t)

y′ = x

9c. x ′ = 4 − y2

y′ = x

9d. x ′ = 5t−1x − 8t−2 y

y′ = x

9e. x ′ = t−1x − 10t−2 y

y′ = x

9f. x ′ = 4t2 − sin(x) y

y′ = x

9g. x ′ = z

y′ = x

z′ = 3x + 4y − 2z

9h. x ′ = z

y′ = x

z′ = −x
(
t2 + y2

) 10a. x(t) = −4e−4t + 5e3t and y(t) = 10e−4t + 5e3t

10b. x(t) = Ae2t + Be−2t and y(t) = Ae2t − Be−2t where

A = 1

2
(x0 + y0) and B = 1

2
(x0 − y0)

10c. x(t) = x0 cos(2t)+ y0 sin(2t) and y(t) = y0 cos(2t)− x0 sin(2t)

10d. x(t) = x0 cos(4t)− y0

2
sin(4t) and y(t) = y0 cos(4t)+ 2x0 sin(4t)

10e. x(t) = e2t [2 cos(3t)− 3 sin(3t)] and y(t) = e2t cos(3t)

10f. x(t) = e3t [x0 cos(2t)+ y0 sin(2t)] and y(t) = e3t [y0 cos(2t)− x0 sin(2t)]

10g. x(t) = −2e9t + t + 2 and y(t) = −e9t − 4t + 1

10h. x(t) = 1

2

[
e2t − 3

]
and y(t) = −5e2t + 6

10i. x(t) = e7t + 3e3t − 6te3t and y(t) = e7t − e3t + 2te3t

10j. x(t) = 3 sin(2t)− 6t and y(t) = −6 cos(2t)+ 6

10k. x(t) = 13[cos(4t)+ sin(4t)] and y(t) = 8 sin(4t)

10l. x(t) =
[
2e7(t−2) − 3e3(t−2) + 1

]
step2(t) and y(t) = [

2e7(t−2) + e3(t−2) − 3
]

step2(t)

Chapter 36

1a. (0, 0) 1b. (3, 2) 1c. Every (x0, y0) with y0 = −3x0 1d. (6, 1) and (5, 0)

1e. (2, 2) , (2,−2) , (4, 4) and (4,−4) 1f. (3, nπ) for n = 0,±1,±2,±3, . . .
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1g. (0, 0) and (0, 1) 1h. No constant solutions. 2a.

X

Y

0
0

1

1

2

2

2b.
X

Y

1

1

−1

−1

3.
3

X

Y

0
0

1

1

1
2

1
2

4. a. (0, 0)

4b.

X

Y

1

1

2

2

3

−1

−1

4c.

X

Y

1

1

2

2

3

−1

−1

4d. They become large and nearly equal. 4e. Unstable 5. a. (1, 1/2)

5b.

X

Y

1

1

2

2

3

−1

−1

5c.

X

Y

1

1

2

2

3

−1

−1

5d. (x, y) → (1, 1/2) 5e. Asymptotically stable

6. a. (nπ/2, 0) for n = 0,±1,±2, . . .

6b. Stable: (nπ, 0) for n = 0,±1,±2, . . . ; unstable: (nπ/2, 0) for n = 1,±3,±5, . . .
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6c.

X

Y

1

1 2

2

3

−1

−1

6d.

X

Y

1

1 2

2

3

−1

−1

6e. (x, y) “orbits” about (0, 0) clockwise. 7. a. (1, 0)

7b.

X

Y

1

1

2

2

3

3

−1

7c.

X

Y

1

1

2

2

3

3

−1

7d. (x, y) “orbits” about (1, 0) counterclockwise. 8. a. (1, 1) 8b. Asymptotically stable

8c.

X

Y

1

1 2

2

3

3

−1

8d.

X

Y

1

1 2

2

3

3

−1

8e. (x, y) → (1, 1) 9. a. (1, 0) and
(

15/16,−1/8

)
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9b.

X

Y

1

1

2

2

3

3

−1

9b.

X

Y

1

1

2

2

3

3

−1

10a.

X

Y

1

1

2

3

3

−1

−1

10b.

X

Y

1

1

2

2

3

3

−1

−1

10c.
X

Y
1

10 2

−1

10d. X

Y

1

1
4

− 1
4

3
4

5
4
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