


Partial Differential Equations

The subject of partial differential equations (PDE) has undergone great change during the last
70 years or so, after the development of modern functional analysis; in particular, distribution
theory and Sobolev spaces. In themodern concept, the PDE is visualized in amore general setup
of functional analysis, where we look for solutions in a sense weaker than the usual classical
sense to address the more physically relevant solutions. Though the aim of the present book is
to introduce the fundamental topics in a classical way as in any first book on PDE, the authors
have demonstrated the basic topics in a way that opens the doors to the modern theory. Readers
can immediately and naturally sense the importance of studying these topics in a modern
approach. As a lead, after introducing method of characteristics for first order equations, the
authors have immediately discussed the importance of introducing the notion of weak solutions
to two important classes of first order equations, namely conservation laws andHamilton–Jacobi
equations. The implication is that physically relevant solutions cannot be obtained within the
realm of classical solutions. Almost all the chapters cover something about modern topics. Also
included are many exercises in most chapters, which help students get better insight. Hints or
answers are provided to some selected exercises.
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Preface

We ventured into writing this book Partial Differential Equations knowing very well that writing
a textbook on a very old discipline, that too for beginners, is indeed a formidable task. This
exercise was partly due to the good response we received for our first book,Ordinary Differential
Equations, co-authored with Raju K. George, whose contents were also classical. The venture
was also partly due to the suggestions we have received during our interactions with students
and teachers from various institutions in the country. The choice of the contents for this book
are largely based on such interactions and also on our training in the subject. It is our wish
that such a course on partial differential equations (PDE) should seriously be taught at senior
undergraduate or beginning graduate level at various institutions in the country, so as to prepare
a student for a more serious study of the advanced topics.

This book should be accessible to anyone with sound knowledge in several variable calculus,
save for a couple of chapters where the reader is expected to have knowledge of the modern
integration theory. The book essentially deals with first-order equations, the classical Laplace
and Poisson equations, heat or diffusion equation and the wave equation. The full generality
was never on our minds. Numerical analysis and computations are not considered here.
Nevertheless, students and researchers working on these aspects of the subject can also gain
something from the book. Almost all the topics considered here, of course, arise from the real-
world applications in physics, engineering, biology, and so on. Though there is no discussion on
the applications in the book, the community of students and researchers from these applied fields
can also benefit from the book.We have also presented a detailed description of the classification
of PDE, including a motivation behind classification.

A few words about the title. The subject of PDE has undergone great change during the last
70 years or so after the development of modern functional analysis, in particular distribution
theory and Sobolev spaces. In the modern concept, the PDE is visualized in a more general setup
of functional analysis, where we look for solutions in a sense weaker than the usual classical
sense to address the more physically relevant solutions. Though the aim of the present book
is to introduce the fundamental topics in a classical way as in any first book on PDE, we have
demonstrated the basic topics in such a way that the doors of the modern theory are open to
interested readers. They can, immediately and naturally, sense the importance of studying these
topics in amodern approach. For example, after introducing themethod of characteristics for the
first-order equations, we have immediately discussed the importance of introducing the notion
of weak solutions to two important class of first-order equations, namely conservation laws and
Hamilton–Jacobi equations.These examples suggest that the physically relevant solutions cannot
be obtained within the realm of classical solutions. Also in almost all the chapters, we have

xiii



xiv PREFACE

written something about the modern topics. This is the modern touch we have envisaged and
decided to put in the title.

We have included many exercises in most of the chapters. Students should work on them to
get better insight into the subject. Hints or answers are provided to some selected exercises.

Bangalore, India A. K. Nandakumaran
November 2019 P. S. Datti
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Notations

The notations used in the book are the standard ones extensively used in the literature.
Below is a list of these notations.

• Abbreviation PDE means partial differential equation(s) and PDO means partial
differential operator(s).

• Points in the Euclidean space ℝn are denoted by x = (x1,… , xn).

• For x, y ∈ ℝn, their dot product or scalar product or inner product is defined by
x ⋅ y =

∑n
i=1 xiyi. We also write (x, y) = x ⋅ y. The standard norm in ℝn is denoted by|x| = √

(x, x).

• If A and B are subsets of ℝn, we write A ⊂⊂ B if Ā ⊂ B, where Ā denotes the closure of A.

• For x ∈ ℝn and r > 0, the open ball with centre at x and radius r is denoted by Br(x); the
sphere with centre at x and radius r is denoted by Sr(x) or 𝜕Br(x), which is the boundary of
Br(x). Thus,

Br(x) = {y ∈ ℝn ∶ |x − y| < r}

and

Sr(x) = {y ∈ ℝn ∶ |x − y| = r}.

• The volume of the unit ball B1(0) in ℝn is denoted by 𝜔n and the surface area of the unit
sphere S1(0) in ℝn is denoted by 𝜎n. Thus, 𝜎n = 2𝜋n∕2

Γ(n∕2)
and 𝜔n = 𝜎n

n
, where Γ is the Euler

gamma function. The volume of Br(x) and the surface area of Sr(x) are denoted by |Br(x)|
and |Sr(x)| respectively. Thus, |Br(x)| = 𝜔nrn and |Sr(x)| = 𝜎nrn−1.

• The closure of the open ball Br(x) is denoted by B̄r(x) (also Br(x)).

• The partial derivatives are denoted by

Dj = 𝜕j =
𝜕
𝜕xj

, j = 1, 2,… , n.

• A multi-index is an n-tuple 𝛼 = (𝛼1,… , 𝛼n) with 𝛼j all non-negative integers. The order of
𝛼 is the non-negative integer |𝛼| = 𝛼1 +⋯ + 𝛼n.
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xviii NOTATIONS

• If 𝛼 is a multi-index, we write

D𝛼 = D𝛼1
1 ⋯D𝛼n

n = 𝜕|𝛼|
𝜕x𝛼1

1 ⋯ 𝜕x𝛼nn
.

• If 𝛼 is a multi-index and x ∈ ℝn, we write x𝛼 = x𝛼1
1 ⋯ x𝛼nn .

• Unless otherwise stated, Ω denotes a bounded open set in ℝn with smooth boundary.

• The space Ck(Ω) denotes the set of all real valued functions defined on Ω which have
continuous partial derivatives of order up to k, for a non-negative integer k. We also write
C = C0 when k = 0.

• The set Ck(Ω) ⊂ Ck(Ω) denotes the set of all real valued functions defined on Ω whose
partial derivatives up to order k, are continuous in Ω.

• For 0 < 𝛼 ≤ 1, The set Ck,𝛼(Ω) denotes the subset of Ck(Ω) consisting of all those u such
that D𝛽u, |𝛽| = k are Hölder continuous of order 𝛼 in Ω (Lipschitz continuous if 𝛼 = 1).

• For a function f ∶ Ω → ℝ, its support is defined as the closure of the set {x ∈ Ω ∶ f(x) ≠ 0}
and is denoted by supp f.

• The set of functions in Ck(Ω) having compact support in Ω is denoted by Ck
c (Ω).

• The set of all infinitely differentiable functions defined on Ω and having compact support
in Ω is denoted by C∞

c (Ω). The space of test functions (Ω) is the set C∞
c (Ω), with a

specified topology.

• IfΩ is an open subset (or more generally, a Lebesgue measurable subset) ofℝn, the class of
all the real or complex valuedmeasurable functions f defined onΩ satisfying the condition

∫
Ω

| f(x)|p dx < ∞,

where 1 ≤ p < ∞ is denoted by Lp(Ω). When p = ∞, the class of all the real or complex
valued measurable functions f defined on Ω which are essentially bounded is denoted by
L∞(Ω). The norm in Lp(Ω), 1 ≤ p ≤ ∞ is denoted by ‖ ⋅ ‖Lp(Ω):

‖ f ‖pLp(Ω) = ∫
Ω

| f(x)|p dx (p < ∞) and ‖ f ‖L∞(Ω) = esssupΩ| f |.
• If u ∶ Ω → ℝ, we write uij = DiDju for i, j = 1, 2,… , n. The Hessian of u is the real

symmetric matrix [uij] and is denoted by D2u.

• For functions of (x, t) ∈ ℝ × ℝ, we use the notation Dx = 𝜕x =
𝜕
𝜕x

and Dt = 𝜕t =
𝜕
𝜕t

and
similarly for mixed derivatives.



NOTATIONS xix

• The operator ∇ denotes the grad operator: ∇u = (𝜕1u,… , 𝜕nu). When needed, we also
stress the variable, as in ∇x, ∇y.

• For a vector valued function u = (u1,… , un), its divergence is defined by divu =
∇ ⋅ u = 𝜕1u1 +⋯ + 𝜕nun.

• The Laplace operator or the Laplacian in ℝn is the PDO defined by

Δ = ∇ ⋅ ∇ = D2
1 +⋯ + D2

n =
𝜕2

𝜕x2
1
+⋯

𝜕2

𝜕x2
n
.

• The wave operator or the D’Alembertian in ℝn+1 is the PDO defined by

□c = 𝜕2
t − c2Δx = 𝜕tt − c2Δx

where c > 0 is a constant, t ∈ ℝ and x ∈ ℝn; Δx denotes the Laplacian with respect to the
x variables.

• The heat operator is 𝜕t − a2Δx.

• For an m × n real matrix A, its transpose is denoted by AT, which is an n ×m matrix.





CHAPTER 1

Introduction

1.1 GENERAL NATURE OF PDE

It is no exaggeration to state that partial differential equations (PDE) have played a vital
role in the development of science and technology, primarily since the beginning of
the twentieth century. In the earlier stage, PDE were mainly used to describe physical
phenomena, like vibrations of strings, heat conduction in solids, transport phenomena, to
mention a few. Later, with the advantage of mathematical modelling, the scope of using
PDE for the description of phenomena occurring in biology, economics and even sociology
became prominent.

Since the days of Newton or even earlier, many have attempted to describe physical
processes using mathematics.1 Such a mathematical description often leads to linear
differential, integral and even integro-differential equations. Thus, a large number of PDE
naturally come from mathematical physics. The initial developments in PDE, though, were
mainly geared towards obtaining solutions to a particular physical or engineering problem,
it was soon realized that many of the problems will have common features and similarities.
This naturally led to the grouping of PDE that can be tackled in a single framework. This
automatically leads to the abstraction of the subject and the theoretical analysis that follows,
hence, becomes more important. This is one of the features we try to follow in the present
book. Indeed, unlike ordinary differential equations (ODE), all PDE including the linear
ones cannot be treated in a single theoretical framework, leading to the necessity of a
classification. In fact, due to the diverse nature of physical phenomena, we remark that
we cannot classify all the PDE. Nevertheless, a fairly good classification is available for the
second-order equations and interestingly a large number of physical and other problems
lead to second-order equations. Also, for the three important classes of equations, namely
elliptic, hyperbolic and parabolic, general theories have been developed.

As mentioned above, a wide class of physical problems is described by second-order
linear differential equations of the form

n∑
i,j=1

aij(x)uxixj +
n∑
i=1

bi(x)uxi + c(x)u = f(x). (1.1)

1It is a historical fact that the calculus was born during such a process.

1



2 INTRODUCTION

Here the variable x varies in an open set in the physical space ℝn, n = 1, 2, 3 and the
coefficients aij, bi and c are known from the physical process; u is the unknown function
and f denotes an external quantity, if any, influencing the physical process.

We only mention a few real-world situations where PDE occur. For more examples and
their detailed discussion, the reader is referred to Barták et al. (1991), Markowitz (2005),
Murray (2003), Rhee et al. (1986), and Vladimirov (1984).

Many problems in mechanics like vibrations of strings, rods, membranes and three-
dimensional objects and also themathematical description of electromagnetic waves lead to
the equation of vibrations, which is the wave equation in one more space dimension. If the
mean free path of the particles is much larger than their dimensions, then the propagation
of a particle may be more accurately described by an equation, in comparison with the
diffusion equation, called the transport or kinetic equation. This is also called the Boltzmann
equation. This is an integro-differential equation.

The Heisenberg principle states that the position of a particle and its momentum
cannot be simultaneously described, according to the laws of quantum mechanics. Thus, for
example, the position of a quantum particle can be confirmed only with certain probability.
The Schrödinger’s equation is an attempt to describe the dynamics of a quantum particle of
a given mass moving in an external force field with a given potential. Reaction–Diffusion
equations describe the interaction of two or more chemical concentrations of distinct
diffusivity coefficients, in a chemical or biological process. These equations are also used
in the modelling of pattern formation and form an important part ofMathematical Biology
and constitute a system of non-linear diffusion equations.

The equation of heat diffusion in a medium and the diffusion of a chemical species are
described by the heat or diffusion equation. Euler’s equations of gas dynamics describe the
dynamics of an ideal fluid, that is, a fluid with no or negligible viscosity. These equations
form a system of first-order hyperbolic equations. In a particular situation where liquid
is incompressible and has a potential, these equations reduce to the Poisson’s equation
for the potential function. The system of Maxwell’s equations describe the dynamics of a
charged particle in amediumwith varying electromagnetic field, invokingAmpere’s law and
Faraday’s law. In some particular cases, each component of the electric and magnetic fields
satisfies the telegraph equation.

1.2 TWO EXAMPLES

The following two situations perhaps describe a general nature in the analysis of solutions
to PDE. These are quite simple to state and involve second-order equations in two variables.
The equations are the Laplace equation, the heat or diffusion equation and the wave
equation: Liu = 0, i = 1, 2, 3, where

L1 = 𝜕2
t + 𝜕2

x , L2 = 𝜕t − 𝜕2
x and L3 = 𝜕2

t − 𝜕2
x .
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The first situation involves the determination of solutions of Liu = 0, i = 1, 2, 3 with
prescribed data on the boundary of a rectangle ABCD with the side AB situated on the
x-axis in the x−t plane.Withoutmuch concern whether to prescribe u or its first derivatives
on the sides of ABCD, let us dwell on the number of conditions required for each of the
operators Li, in order to determine a solution of Liu = 0. It turns out that L1 requires four
conditions one each on the four sides of the rectangle ABCD; L2 requires three conditions
one each on the sides AB, BC and AD of the rectangle ABCD; L3 requires four conditions –
two on AB and one each on BC and AD of the rectangle ABCD.

Note that all the three operators are linear and of second order. Yet, the number of data to
be prescribed and the part of the boundary where to be placed become important in order to
determine a solution. Apparently, there is no simple explanation for this anomaly. Perhaps
the reader will find an answer after studying the relevant chapters in the book. This is quite
different from the analysis of an initial value problem (IVP) of a system of linear ODE; here
the problem can be studied for a system of any order in a single framework. However, in
the case of PDE, as the above examples exhibit, it is not possible to do an analysis even for
second-order linear equations in two dimensions, in a single framework. This leads to the
notion of a classification of PDE, and a particular condition on the data like initial values or
boundary values depends on the type of PDE under consideration.

The second situation also concerns the operators Li, but nowwith regard toweak solutions
of them. A continuous or a locally integrable function u defined in an open set Ω in ℝ2 is
said to be a weak solution of Liu = 0 for i = 1, 2, 3, if ∬ u(x, t)Li𝜑(x, t) dxdt = 0 for all
𝜑 ∈ C∞

c (Ω).
It is shown in Chapter 9 that any continuous or locally integrable function u of the form

𝜐(x ± t) is a weak solution for L3 and thus it can admit discontinuous (weak) solutions.
For the operators L1 and L2, it turns out that any weak solution is in fact a C∞ function,
may be after making corrections in a set of measure zero. The apparently strange behavior of
the operators L1 and L2 cannot be explained in simple terms and the reader will not find a
complete answer in this book!Theoperators L1 and L3 are quite different, but the operator L2
may share some properties with L1 (regularity) and some other properties with L3 (energy
estimates).

The above two situations describe, we hope, the complexities that are involved in the
analysis of PDE.There is indeed constant evolution of the subject as andwhen some peculiar
phenomenon is observed through an example or otherwise. In this connection, it is an
interesting fact that a somewhat true picture of linear operators started emerging only after
the work of Peetre (1960), even though there were already quite many advancements in the
modern theory of PDEwhich had emerged through the works of Leray, Petrowski, Schwartz
and others. With appropriate domain and range of the operator, what Peetre showed was
that the linear operators are precisely the local operators. This means that suppPu ⊂ suppu,
where P is linear and u is in its domain. This then led to the discovery of pseudo-differential
operators and Fourier integral operators. Roughly speaking, the inverse of an elliptic operator
is a pseudo-differential operator and the inverse of a wave operator is a Fourier integral
operator (see Nirenberg, 1976).
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1.3 DESCRIPTION OF THE CONTENTS

This then sets the stage for the present book, with a modest list of contents.

• The first chapter briefly discusses certain general notions of PDE, their occurrence in
physical and other sciences and engineering. It also describes the contents of the book,
chapter-wise.

• The theory2 of modern PDE is quite vast and demands a great amount of prerequisites
such as Lebesgue integration theory, functional analysis, distributions and Sobolev
spaces. Since we are discussing mostly classical theory in the present book, the
prerequisites are minimal – a good understanding of multivariable calculus should
suffice for studying this book. Exceptions do occur in Chapters 4 and 5, where the
reader is expected to have a good knowledge of the modern theory of integration,
especially in the proofs of uniqueness of solutions. In Chapter 2, we collect a good
number of results from multivariable calculus, ODE and related topics that are used
in the book. To make the book as self-contained as possible, we have also provided the
proofs when they are not too lengthy.

• Chapter 3 is about the first-order equations.Herewe study the general Cauchy problem
(IVP) for such equations. The (local) theory is fairly complete as the problem is
reduced to an IVP for a system of ODE. The geometry, however, does get complicated
as we move from linear to quasilinear to general first-order equations. Because of
their importance in applications, we mention two classes of first-order equations,
namely the conservations laws and the Hamilton–Jacobi equations. These two classes
are studied in detail in further chapters.

• In Chapters 4 and 5, we consider certain important class of first-order equations –
Hamilton–Jacobi Equation (HJE) and Conservation Laws (CL) – which have been
topics of great interest among researchers owing to their importance in many
applications.Though these equations have beenmentioned in Chapter 3, the emphasis
here is on a new concept of a solution of these equations. A beginner perhaps
encounters for the first time the concept of a weak solution to a PDE, which is in
general a non-differentiable function! Furthermore, to obtain uniqueness of a solution,
additional condition(s) need to be imposed. Since the theory of modern PDE largely
deals with weak solutions, we thought it is a good idea to introduce this concept of
solution to a beginner in the context of HJE and CL. However, these chapters may
be skipped for the first reading as the uniqueness results require a good knowledge of
modern theory of integration.

• In the context ofODE, the theory dealingwith theCauchy problemof a single equation
or that of a system of first-order equations is essentially the same. In particular, the

2This is not to suggest there is a single theory of PDE, like theory ofODE or theory of functions of real or complex
variable. In fact, we see in the literature different theories of PDE owing to the sheer vastness of the subject.
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analysis is the same for both the first-order equations and higher-order equations,
in the study of ODE. In contrast, such is not the situation about PDE. This makes
the subject of PDE more complicated and also interesting. In Chapter 6, we explain
how the data in a Cauchy problem for a second-order equation cannot in general be
arbitrary. This naturally leads to the concept of classification of second- and higher-
order equations. The main discussion in this chapter is about second-order equations
and their solutions.

It should, however, be noted that some important developments in science
in nineteenth and twentieth centuries, especially quantum mechanics and fluid
dynamics, resulted in new types of PDE – the Schrödinger equation, Navier–Stokes
equations and Kortweg-de Vries (K-dV) equation, for example. These equations and
many more equations do not fall in the ambit of the above-mentioned classification.
Thus, there were attempts to make the subject of PDE a unified subject without
mentioning the class to which a PDE belongs. However, such attempts have not been
that successful. This is one of the reasons we see a great number of books written on a
particular equation or on a particular class of equations.

• Undoubtedly, the three major equations of mathematical physics – the Laplace
equation (Poisson equation), the heat or diffusion equation, and the wave equation
– have had great impact on the development of much of the modern theory of PDE.
These equations are the topics of discussion in Chapters 7 through 10, respectively.

• The Laplace operator is a prototype of uniformly elliptic operators. Some important
properties – mean value property, maximum (minimum) principle, Harnack’s
inequalities – enjoyed by a solution of the Laplace’s equation are discussed at length
in Chapter 7. We have also indicated that the maximum (minimum) principle is
also enjoyed by a solution of a general uniformly elliptic equation. The existence and
uniqueness of the solutions are also discussed via Perron’s method and Newtonian
potential.

• In Chapter 8, the heat equation and its solutions are studied in great detail. This
equation is a prototype of parabolic equations. In a way this equation sits between
the Laplace’s equation and the wave equation. Therefore, its solution enjoys certain
properties from both sides. For example, maximum (minimum) principle from
Laplace’s equation and energy estimate from thewave equation. Its solution also enjoys
a mean value property and backward uniqueness property.

• The study of Laplace’s equation and the heat equation largely does not depend on the
dimension. However, the analysis of the wave equation does depend on the dimension
and this is the reason to consider the study of the wave equation in one dimension and
higher dimensions separately. These are dealt with in Chapters 9 and 10, respectively.
The wave equation is a prototype of hyperbolic equations.

• The Cauchy–Kovalevsky theorem is, historically, an important result in the subject
field of PDE. It is one of the first results proving the existence and uniqueness of
solution to a Cauchy problem for a general equation, though in a restricted class of



6 INTRODUCTION

equations with analytic coefficients. Nevertheless, the contents of its proof are full of a
priori estimates, a hallmark of the modern theory of PDE. In Chapter 11, we present
the details of this theorem and a generalization.We also briefly discuss the Holmgren’s
uniqueness result.

• We also briefly mention some aspects of the modern theory without going into details
in Chapter 12. An existence result of L2 weak solution is discussed here, to give a
general flavor of a modern theory.



CHAPTER 2

Preliminaries

2.1 MULTIVARIABLE CALCULUS

2.1.1 Introduction

We plan to briefly introduce the calculus on ℝn, namely the concept of total derivative of
multivalued function, f = (f1,⋯ , fm) ∶ ℝn → ℝm. We are indeed familiar with the notion
of partial derivatives 𝜕ifj =

𝜕fj
𝜕xi

, 1 ≤ i ≤ n, 1 ≤ j ≤ m. In the sequel, we will introduce the
important concept of total derivative and discuss its connection to the partial derivatives.
We remark that the total derivative (known also as Frechét derivative) can be extended to
infinite dimensional normed linear spaces, which is used in the analysis ofmore complicated
problems especially arising from optimal control problems, calculus of variations, partial
differential equations, and so on.

Motivation: One of the fundamental problems in mathematics (and hence in applications
as well) is the following: Let f ∶ ℝn → ℝn. Given y ∈ ℝn, solve the system of equations

f(x) = y (2.1)

and represent the solution as x = g(y) and if possible find good properties of g, namely its
smoothness. More generally, if f ∶ ℝn+m → ℝn, x ∈ ℝn, y ∈ ℝm, solve the implicit system
of equations

f(x, y) = 0 (2.2)

and represent the solution as x = g(y). Consider the one-dimensional case, where
f ∶ ℝ → ℝ which is C1. Suppose that f ′(a) ≠ 0 for some a. Then, by the continuity of f ′,
we see that f ′(x) ≠ 0 in a neighborhood interval I of a. Hence f ′ preserves the sign in I, f is
monotonic in I and f(I) is an interval. Thus, if f(a) = b, then the above argument shows that
f(x) = y is solvable for all y in f(I), a neighborhood of b. This is the local solvability that is
obtained by the non-vanishing property of the derivative of f at a. This immediately shows
the importance of understanding the derivatives in the solvability of algebraic equations.
We remark that the mere existence of all partial derivatives does not guarantee the local
solvability. We need the stronger concept of total derivative.

7
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Linear Systems: Let us look at the well-known linear system

Ax = y, (2.3)

where A = [aij] is a given n × n matrix. That is f(x) = Ax. The system (2.3) can be
rewritten as

n∑
j=1

aijxj = yi, 1 ≤ i ≤ n. (2.4)

The system (2.3) or (2.4) is uniquely solvable for x in terms of y if and only if detA ≠ 0
(global solvability). In this case

x = A−1y

and A−1 is also an n × n matrix. We would like to address the solvability of (2.1) and (2.2)
giving appropriate conditions similar to non-vanishing determinant as in the case of a linear
system.

Example 2.1. Define f ∶ ℝ → ℝ by f(x) = x2. Clearly f(0) = 0. For y > 0, the equation
x2 = y has two solutions x1 = +

√
y and x2 = −

√
y (non-uniqueness) and y < 0, the

equation has no solution. Thus, we sense a difficulty around x = 0. Note that
𝜕f
𝜕x

|||x=0
=

2x|x=0 = 0. This shows that we cannot decide the sign of
𝜕f
𝜕x

around 0. If we take any
a ≠ 0, and b = a2 = f(a), then, for any y ∈ (b − 𝜀, b + 𝜀), 𝜀 small, there exists unique
x ∈ (a − 𝛿, a + 𝛿) for some 𝛿 such that f(x) = y. That is, the equation is solvable in a

neighborhood of the point b = f(a). Here, observe that
𝜕f
𝜕x

|||x=a = 2x|x=a = 2a ≠ 0 and

thus the sign of
𝜕f
𝜕x

(a) is known.

Example 2.2. Consider the function f ∶ ℝ×ℝ → ℝ defined by f(x, y) = x2+y2−1. Indeed,
the solutions (x, y) of the equation f(x, y) = 0 are points on the unit circle. Consider the
solvability of x in terms of y near the solution (0, 1) of x2+y2−1 = 0, that is x2 = 1−y2.

For y near 1, y < 1, we have two solutions x1 = +
√

1 − y2, x2 = −
√

1 − y2. Similarly

the case near the point (0,−1). Again observe that
𝜕f
𝜕x

|(0,±1) = 2x|(0,±1) = 0.

On the other hand, consider the point (+1, 0). For y near 0, there exists unique
solution x = +

√
1 − y2; and for the point (−1, 0) and y near 0, there exists unique

solution x = −
√

1 − y2. In fact, for any (a, b) with a2 + b2 − 1 = 0 and a ≠ 0, we get
𝜕f
𝜕x

|||(a,b) ≠ 0 and the system is uniquely solvable for x in terms of y in a neighborhood
of b. The situation is reversed if we look at the possibility of solving y in terms of x.
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Thus, we see the impact of non-vanishing of the derivative on the solvability as in the linear
systems. In higher dimensions, we have many partial derivatives and we need a systematic
procedure to deal with such a complicated case. In other words, wewould like to understand
the solvability of a system of non-linear equations in several unknowns. This is given via
inverse and implicit function theorems. We also remark that in general, it is only possible
to obtain a local solvability result and not a global result as in linear systems.

2.1.2 Partial, Directional and Frechét Derivatives

Let f ∶ ℝ → ℝ and x0 ∈ ℝ. Then f ′(x0) is normally defined as

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

, (2.5)

when the limit exists.We are also aware of the fact that f ′(x0) is the slope of the tangent to the
curve y = f(x) at the point (x0, f(x0)). This allows for another interpretation of the derivative
via linear transformation, which is at the heart of the concept of Frechét derivative. Let U
be an open subset of ℝn and f ∶ U → ℝm be a vector-valued map represented by f =
(f1,⋯ , fm)T, where fi ∶ U → ℝ are real-valued maps. The limit definition can easily be used
to define the directional derivatives in any direction and in particular partial derivatives are
nothing but the directional derivatives along the co-ordinate axes.

Directional and Partial Derivatives: Recall that the derivative in (2.5) is the instantaneous
rate of change of the output f(x) with respect to the input x. Thus, if we consider f(x) at x0 ∈
ℝn, there are infinitely many radial directions emanating from x0. Any given vector 𝜐 ∈ ℝn

determines a direction given by its position vector.Thus, for x0 ∈ ℝn, f(x0+h𝜐)−f(x0), h ∈ ℝ
is the change in f in the direction 𝜐. This motivates us to define the derivative of f at x0 ∈ ℝn

in the direction 𝜐, denoted by D𝜐f(x0), as

D𝜐f(x0) = lim
h→0

f(x0 + h𝜐) − f(x0)
h

(2.6)

whenever the limit exists. Note that if f = (f1,⋯ , fm)T, then

D𝜐f(x0) = (D𝜐f1(x0),… ,D𝜐fm(x0))T.

If 𝜐 is a unit vector, then D𝜐f(x0) is called the directional derivative of f at x0 in the direction
𝜐. If 𝜐 = ei = (0,⋯ , 0, 1, 0,⋯ , 0) is the co-ordinate axis vector, then clearly

Dei f(x0) =
𝜕f
𝜕xi

(x0) =
(
𝜕f1
𝜕xi

(x0),⋯ ,
𝜕fm
𝜕xi

)T

.
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Example 2.3. Define f ∶ ℝn → ℝ by f(x) = |x|2. Then
𝜕f
𝜕xi

(x0) = 2x0i. Now, for 𝜐 ∈ ℝn,

f(x0 + h𝜐) =
n∑
i=1

(x0i + h𝜐i)2

= f(x0) + 2h(x0, 𝜐) + h2|𝜐|2.
It follows that

D𝜐f(x0) = 2(x0, 𝜐).

As seen earlier the existence of all directional derivatives implies the existence of partial
derivatives. But, the converse is not true.

Example 2.4. Let f ∶ ℝ2 → ℝ be defined by

f(x, y) =

{
x + y if x = 0 or y = 0
1 otherwise.

Then, D(1,0)f(0, 0) = D(0,1)f(0, 0) = 1, but D(a,b)f(0, 0), a ≠ 0, b ≠ 0 does not exist.

Normally, we expect differentiable functions to be continuous, which is true in one
dimension. But the existence of all directional derivatives at a point does not imply the
continuity at that point. This is a serious drawback and prompts us to look for a stronger
concept of derivative, namely the notion of total derivative.

Example 2.5. Consider the function f ∶ ℝ2 → ℝ defined by

f(x, y) =

{ xy2

x2+y4
, if x ≠ 0

0 if x = 0.

It is easily seen that D𝜐f(0, 0) exists for all 𝜐 ∈ ℝ2, but f is not continuous at (0, 0).

Example 2.6. Let the function f ∶ ℝ2 → ℝ be defined by

f(x, y) =
⎧⎪⎨⎪⎩
xy(x2 − y2)
x2 + y2

, if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0).
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Again, it is easily checked that
𝜕2f
𝜕x𝜕y

(0, 0) = 1 and
𝜕2f
𝜕y𝜕x

(0, 0) = −1. This shows that,

in general, the order of the mixed partial derivatives cannot be interchanged.

Total (Frechét) Derivative: Recall that if f ∶ ℝ → ℝ, then f ′(x0) = 𝛼 represents the slope
of the tangent to the curve y = f(x) at the point (x0, f(x0)). In this case, a linear equation
is associated, namely the line y − f(x0) = 𝛼(x − x0) = f ′(x0)(x − x0). In other words, the
derivative can be viewed as a linear mapping, T𝛼 ∶ ℝ → ℝ defined by

T𝛼x = 𝛼x = f ′(x0)x.

Thus, interpreting any differentiation concept as a linearization is the crux of the matter
not only in finite dimension, but in infinite dimensions as well. Once again recall f ′(x0) in
dimension one can be recast as

f(x0 + h) = f(x0) + f ′(x0)h + r(h)

where the reminder (or error) term satisfies

lim
h→0

r(h)
h

= 0.

Definition 2.7 (Frechét Derivative). LetU be an open subset ofℝn and x0 ∈ U. We say that
a function f ∶ U → ℝm is differentiable (or Frechét differentiable) at x0, if there is a
linear operator T = T(x0) ∶ ℝn → ℝm such that1

lim
h→0

|f(x0 + h) − f(x0) − Th||h| = 0. (2.7)

Of course, it is understood that the norm in the numerator of (2.7) is the norm in ℝm

whereas the one in the denominator is the norm inℝn. It is easy to see that T is unique, if it
exists. We denote it by T = f ′(x0) and call it the Frechét derivative or the total derivative of
f at x0. Furthermore, it is also easy to see that if f is differentiable at x0, then f is continuous
at x0. If f is differentiable at all points in U, we say f is differentiable in U.

1This notion is extended to a mapping f ∶ X → Y, where X,Y are Banach spaces. Here the requirement is that
T ∶ X → Y is a bounded linear operator.
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Equivalently, (2.7) can be written as

f(x0 + h) = f(x0) + f ′(x0)h + r(h)

with r(h) = o(h).

Example 2.8. Suppose A ∈ L(ℝn,ℝm) be an m × n matrix. Define f ∶ ℝn → ℝm by
f(x) = Ax. Then, clearly f(x0+h)− f(x0) = A(x0+h)−Ax0 = Ah by linearity. Therefore
r(h) = 0 and f ′(x0) = A for any x0.

Example 2.9. Let f ∶ ℝn → ℝ by f(x) = |x|2 = (x, x). Then, f ′(x0)h = 2(x0, h) or
f ′(x0) = 2x0.

Proposition 2.10 (Chain Rule). SupposeU,V are open subsets ofℝn, ℝm, respectively. Let
f ∶ U → ℝm and g ∶ V → ℝk bemappings such that f(U) ⊂ V. Assume f is differentiable
at x0 and g is differentiable at y0 = f(x0). Then, the composite function F(x) = g ◦ f(x) =
g(f(x)), defined on U, is differentiable at x0 and

F ′(x0) = g ′(f(x0))f ′(x0). (2.8)

We have to interpret the product g ′(f(x0))f ′(x0) as the product or composition of linear
operators.

The example given earlier indicates that the existence of all directional derivatives is not
sufficient to guarantee the existence of the total derivative. But if the total derivative exists,
then all the directional derivatives exist and in fact we can compute the total derivative using
the partial derivatives.

Let {e1,… , en} and {ẽ1,… , ẽm} be the standard bases of ℝn and ℝm respectively and
f ∶ ℝn → ℝm. If f ′(x0) exists, then for 1 ≤ j ≤ n, we get

f(x0 + hej) − f(x0) = f ′(x0)(hej) + r(hej),

= hf ′(x0)ej + r(hej)

where h ∈ ℝ and
|r(hej)|

h
→ 0 as h → 0. Dividing by h and taking the limit as h → 0, we get

𝜕f
𝜕xj

= f ′(x0)ej =

(
𝜕f1
𝜕xj

,⋯ ,
𝜕fm
𝜕xj

)T

. (2.9)
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Thus, each partial derivative 𝜕fi
𝜕xj
(x0) exists for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and 𝜕f

𝜕xj
(x0) =

f ′(x0)ej, 1 ≤ j ≤ n. More generally, if 𝜐 ∈ ℝn, 𝜐 =
n∑
i=1

𝜐iei, then, D𝜐f(x0) exists and equals

n∑
i=1

𝜐i
𝜕f
𝜕xi

.

Thus, the matrix representation of f ′(x0) is given by

f ′(x0) =

[
𝜕fi
𝜕xj

]
1≤i≤m
1≤j≤n

. (2.10)

The above results can be consolidated in the following theorem:

Theorem 2.11. Let f ∶ U ⊂ ℝn → ℝm be differentiable at x0 ∈ U. Then,
𝜕fi
𝜕xj

, exists for all

1 ≤ i ≤ m, 1 ≤ j ≤ n and f ′(x0) is given as in (2.10). That is,

f ′(x0)ei =
m∑
j=1

𝜕fj
𝜕xi

ẽj.

In other words the matrix representation of f ′(x0) in the standard bases of ℝn and ℝm

is given by the m × n matrix

[
𝜕fj
𝜕xi

]
which is the Jacobian of f.

2.1.3 Inverse Function Theorem

In this section, we address the solvability of a system of non-linear algebraic equations in
explicit form:

f(x) = y, (2.11)

where f ∶ U ⊂ ℝn → ℝn and y ∈ ℝn is given and U is open. These are a set of n non-linear
equations in n unknowns: ⎧⎪⎨⎪⎩

f1(x1,⋯ xn) = y1
⋮

fn(x1,⋯ xn) = yn.

Given a ∈ U, let b = f(a), then (a, b) is a solution to (2.11). We want to give conditions
under which (2.11) can be solved for x for all y in a neighborhood of b.
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Theorem 2.12 (Inverse Function Theorem). Suppose E ⊂ ℝn is open and f ∶ E → ℝn is
a C1 map, that is, f ′(x) exists for all x ∈ E and the mapping x ↦ f ′(x) from E into
L(ℝn,ℝn) is continuous. Furthermore, assume that the matrix f ′(a) is invertible. Then,
there exist open sets U and V in ℝn containing a and b, respectively, such that

(1) f ∶ U → V is 1-1 and onto.
(2) g = f−1 ∶ V → U given by g(f(x)) = x for all x ∈ U is also a C1 map.

The above theorem tells us that y = f(x) can be uniquely solved for x in terms of y in a
neighborhood of b. Furthermore, the inversemap is also smooth.Wewill not present a proof
of the above theorem, but it is based on the contraction mapping theorem from functional
analysis. Also observe that the space L(ℝn,ℝn) is equipped with the operator norm and it
is a Banach space.

Theorem 2.13 (Banach Contraction Mapping Theorem). Let (X, d) be a complete metric
space. Assume 𝜙 ∶ X → X is a contraction map, that is there exists 0 ≤ 𝛼 < 1 such
that d(𝜙(x), 𝜙(y)) ≤ 𝛼d(x, y) for all x, y ∈ X. Then, there exists a unique solution to the
problem

𝜙(x) = x.

The proof is easy and constructive. Take any arbitrary point x0 ∈ X. Construct xn
inductively: xn+1 = 𝜙(xn), n = 0, 1, 2,⋯. Then, for n > m ≥ 1, using the definition of
xn and contraction inequality, we get

d(xn, xm) ≤ (
𝛼n−1 +⋯ + 𝛼m−1) d(x1, x0) = 𝛼m−1 1 − 𝛼n−m

1 − 𝛼
d(x1, x0) → 0

asm, n → ∞ as 𝛼 < 1.This shows that {xn} is a Cauchy sequence and hence converges,
say, to x ∈ X. Since 𝜙 is continuous, it follows that 𝜙(xn) → 𝜙(x). But, 𝜙(xn+1) =
xn+1 → x. This proves 𝜙(x) = x. Uniqueness follows again from contraction.

Proof (of Inverse Function Theorem): We only sketch the proof. Given that A = f ′(a)
is invertible. Since f ′ is continuous, given 𝜀 > 0, there is an open set U ⊂ E such that‖f ′(x) − A‖L(ℝn,ℝn) ≤ 𝜀 for all x ∈ U. Now, for y ∈ ℝn, define 𝜙(x) = x + A−1(y − f(x)).
Then f(x) = y if and only if 𝜙(x) = x has a solution. The proof follows by establishing 𝜙 is a
contraction and the inverse map thus obtained is a C1 function.

Corollary 2.14 (Open Mapping Theorem). Let f ∶ U ⊂ ℝn → ℝn be C1 and det f ′(x) ≠ 0
for all x ∈ U. Then f is an open map.

The matrix of f ′(x) is also known as the Jacobian matrix.
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2.1.4 Implicit Function Theorem

Quite often, we do not expect to get equations in explicit form y = f(x) like in x2+y2−1 = 0.
Rather, we may get a relation connecting the variables x and y. To consider such a general
situation, let f ∶ E ⊂ ℝn ×ℝm → ℝn be a C1 map. We wish to solve for x in terms of y of the
system of equations

f(x, y) = 0. (2.12)

This is a system of n equations in n +m variables:

⎧⎪⎨⎪⎩
f1(x1,… xn, y1,… ym) = 0

⋮
fn(x1,… xn, y1 … ym) = 0.

(2.13)

First consider the linear system

Ax + By = 0, (2.14)

whereA is an n× nmatrix andB is an n×mmatrix. IfA is invertible, then x can be solved as

x = −A−1By.

Let T ∈ L(ℝn+m,ℝn) be a linear transformation from ℝn+m into ℝn. Indeed T can be
represented as an n×(n+m)matrix like [A B], whereA is an n×nmatrix and B is an n×m
matrix. For (h, k) ∈ ℝn+m, we write (h, k) = (h, 0) + (0, k), h ∈ ℝn, k ∈ ℝm and by linearity
of T, we get

T(h, k) = T(h, 0) + T(0, k).

Define Tx ∶ ℝn → ℝn,Ty ∶ ℝm → ℝn by

Txh = T(h, 0), Tyk = T(0, k)

and thus

T(h, k) = Txh + Tyk

We will write this as

T = Tx + Ty

with Tx ∈ L(ℝn,ℝn) and Ty ∈ L(ℝm,ℝn).

Theorem 2.15 (Implicit Function Theorem: Linear Version). Assume T ∈ L(ℝn+m,ℝn)
and Tx is invertible. Then, for any k ∈ ℝm, there exists a unique h ∈ ℝn such that
T(h, k) = 0 and the solution is given by h = −T−1

x Ty(k).
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Theorem 2.16 (Implicit Function Theorem: Non-linear Version). Let E be open in ℝn+m

and f ∶ E → ℝn be a C1 map such that f(a, b) = 0 for some (a, b) ∈ E. Put
T = f ′(a, b) ∈ L(ℝn+m,ℝn) and write T = Tx + Ty as above and assume Tx is
invertible.2 Then, there are open setsU ⊂ E,W ⊂ ℝm with b ∈ W, (a, b) ∈ U satisfying

(1) for every y ∈ W, there exists unique x such that (x, y) ∈ U and f(x, y) = 0.
(2) define g ∶ W → ℝn by g(y) = x, then g is a C1 map such that g(b) = a, and

f(g(y), y) = 0. Further

g ′(b) = −T−1
x Ty.

The proof follows by an application of inverse function theorem applied to the function
F ∶ E → ℝn+m defined by

F(x, y) = (f(x, y), y).

We will not go into the details. We also remark that the implicit function theorem can also
be proved directly and the inverse function theorem can be deduced from it. For the system
(2.13), we have T = [Tx Ty], where

Tx =

⎡⎢⎢⎢⎢⎣
Dx1

f1 ⋯Dxn f1
⋯⋯⋯

⋯⋯⋯

Dx1
fn⋯Dxn fn

⎤⎥⎥⎥⎥⎦
and Ty =

⎡⎢⎢⎢⎢⎣
Dy1 f1 ⋯Dym f1

⋯⋯⋯

⋯⋯⋯

Dy1 fn⋯Dym fn

⎤⎥⎥⎥⎥⎦
.

Example 2.17. Define f ∶ ℝ5 → ℝ2, n = 2,m = 3, by

f1(x1, x2, y1, y2, y3) = 2ex1 + x2y1 − 4y2 + 3

f2(x1, x2, y1, y2, y3) = x2 cos x1 − 6x1 + 2y1 − y3.

Let a = (0, 1), b = (3, 2, 7). Then f(a, b) = 0. Compute T = (Tx,Ty) where

Tx =
[

2 3
−6 1

]
and Ty =

[
1 −4 0
2 0 −1

]
.

2This amounts to assuming that T has maximum rank n. We can then write T = Tx + Ty with Tx invertible,
perhaps after multiplying T by a permutation matrix.
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Clearly the matrix Tx is invertible and

T−1
x = 1

20

[
1 −3
6 2

]
.

Hence we can solve for x = g(y) in a neighborhood of (a, b).

For an extensive discussion of the topics presented here, we refer to Apostol (2011),
Munkres (1991), Rudin (1976), and Spivak (1965).

2.2 MULTIPLE INTEGRALS AND DIVERGENCE THEOREM

In this section, we state two important results, namely, the Green’s theorem and the
divergence theorem. These are extensively used in the analysis of PDE. In a sense these
theorems are the higher dimensional versions of the familiar fundamental theorem of
calculus and integration by parts formula in one dimension. Hence they are also important
by themselves and are particular cases of a general result called Stokes theorem on smooth
manifolds. However, even for the statements of these theorems, we need a lot of machinery
from differential geometry; some of these are the concept of a smooth domain, smooth
surface (curve in two dimensions), integration over these objects, tangent space and
smoothly varying unit normal to a surface. In this brief introduction to the subject, it will
not be possible to present all these concepts in a rigorous manner. The reader should refer
to the cited references for much deeper treatment of these topics. Our discussion here is just
explaining these important theorems in some simple geometric situations.

2.2.1 Multiple Integrals

In this sub-section, we briefly discuss the notion of multiple integrals, iterated integrals
and integration by parts in multiple integrals leading to Green’s theorem in two dimensions
and divergence theorem (called Gauss-Ostrogadskii formula) in more than two variables.
The general references for multiple integrals and their applications are Rund (1973), Spivak
(1965), Apostol (2002), Taylor and Mann (1983), and Widder (1961).

TheRiemann integral of a bounded function in a rectangular domain inℝn is very similar
to the one-dimensional integral. However, for a general domain on which we wish to define
the concept of integral, certain restrictions apply, especially in relation to the boundary of the
domain. A very general description of these restrictions is indeed a difficult task, requiring
the tools from differential geometry. Our presentation here will be simple, requiring the
domains we consider have some specific geometric properties.

If ai < bi for i = 1, 2,… , n, then the set  defined by

 = [a1, b1] ×⋯ × [an, bn]
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is termed as a rectangle in ℝn or an n-dimensional rectangle. The volume of , denoted by||, is defined by

|| = n∏
i=1

(bi − ai).

In one dimension, it is simply the length of the interval; it is the area of the rectangle in two
dimensions and volume in three and more dimensions. If Pi is a partition of [ai, bi], that is

Pi ∶ ai = a0
i < a1

i < ⋯ < akii = bi

for i = 1, 2,… , n, then the Cartesian product P = P1 ×⋯ × Pn is termed as a partition of. These partitions divide the rectangle  into finitely many sub-rectangles, denoted by Ij,
j = 1, 2… , k, where k = k1 ⋯ kn. The largest of all |Ij| is called the norm of the partition P
and is denoted by ‖P‖. A partition P is said to be finer than another partition P̃ if P̃ ⊂ P.

Definition 2.18. Let f ∶  → ℝ be a bounded function and P be a partition of  with
sub-rectangles Ij. A Riemann sum of f with respect to the partition P is defined by

S(P, f) =
k∑
j=1

f(tj)|Ij|, (2.15)

where tj ∈ Ij. The function f is said to be Riemann integrable or simply integrable
over  if a number A can be found with the property: given any 𝜀 > 0, there exists
a partition P𝜀 such that for all partitions P finer than P𝜀, there holds the inequality|A − S(P, f)| < 𝜀.

We may also write the condition in the definition as

lim‖P‖→0
S(P, f) = A

for all possible choices of tj ∈ Ij. This number A is unique when exists, and is denoted
by ∫


f(x) dx. The notations ∬


f(x, y) dxdy and∭


f(x, y, z) dxdydz are often used in two and

three dimensions respectively. Similar to the one-dimensional integral, we may also define
the notion of multiple integrals using the upper and lower Riemann sums and integrals.

Definition 2.19. Let f, and P be as in Definition 2.18. The numbers

U(P, f) =
k∑
j=1

Mj|Ij| and L(P, f) =
k∑
j=1

mj|Ij|
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are respectively called the upper Riemann sum and the lower Riemann sum of f with
respect to the partition P; here

mj = inf{f(tj) ∶ tj ∈ Ij} and Mj = sup{f(tj) ∶ tj ∈ Ij}.

The upper Riemann integral and the lower Riemann integral of f are respectively
defined by

∫
f(x) dx = inf

P
U(P, f) and ∫

f(x) dx = sup
P

L(P, f)

where inf and sup are taken over all the partitions of .
The function f is said to satisfy the Riemann condition if, for any given 𝜀 > 0 there

exists a partition P𝜀 such that for any partition P finer than P𝜀 there holds the inequality

U(P, f) − L(P, f) < 𝜀.

Theorem 2.20. Let f ∶  → ℝ be a bounded function defined on a rectangle in ℝn. Then,
the following conditions are equivalent:

1. f is Riemann integrable over .
2. f satisfies the Riemann’s condition in .

3. ∫
f(x)dx = ∫

f(x)dx.

As in the case of one dimension, we can easily deduce that f is Riemann integrable over 
if f is continuous. In one dimension, it is known that a bounded function f defined on
an interval [a, b] is Riemann integrable if and only if f is continuous almost everywhere
(a.e.), that is f is continuous in [a, b] except on a subset of measure zero. This result has a
straightforward extension to multi-dimensions.

A subset S ⊂ ℝn is said to be ofmeasure zero if, given any 𝜀 > 0, the set S can be covered
by a countable number of n-dimensional rectangles, the sum of whose volumes is less than
𝜀. Any countable set, for example, is a set of measure zero. We can now state the following
result analogous to the one-dimensional case.

Theorem 2.21. Let f ∶  → ℝ be a bounded function defined on a rectangle  in ℝn.
Then, f is Riemann integrable over  if and only if f is continuous a.e. in .

Iterated Integrals: We will consider the case of n = 2, as it is much simpler to explain the
underlying procedure. Let = [a, b]×[c, d] be a two-dimensional rectangle and we use x, y
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to denote the variables inℝ2.The one-dimensional intervals [a, b] and [c, d] are respectively
the projections of onto the lines y = 0 and x = 0. For any partitions P1 of [a, b] and P2 of
[c, d], the Riemann sum defined in (2.15) can be written as an iterated sum:

S(P, f) =
k∑
j=1

f(tj)|Ij| = ∑
P1

|I1j |∑
P2

f(tj)|I2j | = ∑
P2

|I2j |∑
P1

f(tj)|I1j |,
where Ij = I1j × I2j . Thus, if f is continuous in , we easily deduce the following result:

Theorem 2.22. Suppose = [a, b] × [c, d] be a two-dimensional rectangle and f ∶  → ℝ
be a continuous function. Then,

∫
f(x, y) dxdy =

b

∫
a

dx
d

∫
c

f(x, y) dy =
d

∫
c

dy
b

∫
a

f(x, y) dx. (2.16)

The left most integral in (2.16) is called the double integral of f and is also written
as ∬


f(x, y) dxdy. The other two integrals are called iterated integrals, which are one-

dimensional integrals in this case. The above formula is called Fubini theorem and is very
useful in the computation of multiple integrals. Analogous result can be written down in
higher dimensions. Thus, the computation of a multiple integral of a continuous function
over an n-dimensional rectangle may be reduced to those of n one-dimensional integrals.

Integral over an Arbitrary Set: Our next task is to extend the definition of the multiple
integrals over suitable subsets of ℝn. We have in mind the examples of circular disk in ℝ2,
balls and solid cylinders inℝ3. Any bounded set S inℝn can be enclosed in a rectangle and,
by suitably extending a given continuous function f on S, we may define the integral over S,
without much difficulty. However, when it comes to the computation of the integral using
the iterated integrals or while deriving formula for integration by parts, a more closer look
at the set S is essential.This leads to the analysis of the boundary of S and certain restrictions
need be put in order to derive some useful formulas.

Let S be a bounded set inℝn. Choose a rectangle inℝn containing S. The (topological)
boundary of the set S is the closed set S̄ ∩ S̄c, where Sc is the complement of S in ℝn. The
boundary of S is denoted by 𝜕S. The elements of 𝜕S are called the boundary points of S and
the points of S ⧵ 𝜕S are called the interior points of S. For a partition P of, define J̄(P, S) to
be the sum of all the volumes of sub-rectangles arising from the partition P, which contain
the points of S ∪ 𝜕S and J(P, S) to be the sum of all the volumes of sub-rectangles arising
from the partition P, which contain only the interior points of S. Next, define the numbers

c(S) = sup J(P, S) and c̄(S) = inf J̄(P, S),
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where inf and sup are taken over all the partitions of  as described above. These numbers
are respectively called the inner and outer Jordan content of S. It is further evident that 0 ≤
c(S) ≤ c̄(S) and that the definitions do not depend on . The set S is said to be Jordan
measurable if c(S) = c̄(S) and the common number is called the Jordan content of S. In
general, we may not be able to include any rectangle inside a set and hence may not be able
to define its inner content. In such a situation, the outer content is termed as content.

Lemma 2.23. If S is a bounded subset of ℝn, then c̄(𝜕S) = c̄(S) − c(S). Thus, the set S is
Jordan measurable if and only if its boundary 𝜕S has zero content.

Apparently, only the outer Jordan content of 𝜕S makes sense.

Definition 2.24. Let S be a bounded Jordan measurable set in ℝn and f ∶ S → ℝ
be a bounded function. For any n-dimensional rectangle  containing S, define
f̃ ∶  → ℝ by

f̃ (x) =

{
f(x) if x ∈ S
0 if x ∈  ⧵ S.

We say that f is (Riemann) integrable if ∫

f̃ (x) dx exists. In this case, we write

∫
S

f(x) dx = ∫
f̃ (x) dx.

It is not difficult to see that the definition is independent of the rectangle . We have the
following result:

Theorem 2.25. Let S and f be as in Definition 2.24. Then, f is integrable over S if and only
if the discontinuities of f form a set of measure zero. In particular, f is integrable over S
if it is continuous on S.

For unbounded domains and/or unbounded functions, we may use partition of unity to
define the integral. For details, we refer to Spivak (1965). Though the above discussion
regarding the multiple integrals over a bounded Jordan measurable set is satisfactory from
a theoretical point of view, it is not so from a computational point of view. Ultimately, we
wish to reduce the computation of a multiple integral to that of one-dimensional integral, as
we did in the case of a rectangle.This forces us to consider a set with some special properties.
We begin with a set in two dimensions.

Consider the set S in ℝ2 defined by

S = {(x, y) ∈ ℝ2 ∶ x ∈ [a, b], 𝜑(x) ≤ y ≤ 𝜓(x)},
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where 𝜑,𝜓 ∶ [a, b] → ℝ are continuous functions, such that 𝜑(x) ≤ 𝜓(x) for all x ∈ [a, b].
The set S is contained in the rectangle [a, b] × [c, d] with c = min𝜑 and d = max𝜓 and
is Jordan measurable. The set S is called a x-simple set. The boundary 𝜕S is part of the lines
x = a, x = b and the curves y = 𝜑(x), y = 𝜓(x). We have the following result:

Theorem 2.26. Suppose S is an x-simple set, as above, and f ∶ S → ℝ is continuous. Then,
f is integrable over S and

∬
S

f(x, y) dxdy =
b

∫
a

dx
𝜓(x)

∫
𝜑(x)

f(x, y) dy. (2.17)

The formula (2.17) is quite satisfactory from a computational point of view and is a version
of Fubini theorem.The extension of this result to y-simple sets (defined in a similarmanner)
and to higher dimensions is obvious. In general, a x-simple set need not be y-simple and
vice-versa. Also there are many subsets that are neither x-simple nor y-simple. In practice,
we encounter many sets that can be decomposed into a finite number of subsets that are
either x-simple or y-simple or both. For such sets, we can easily extend the results discussed
above.

Change of Variables in Multiple Integrals: Often a change of variables is desired in the
computation of integrals, including those in several variables. We begin with the following
definition:

Definition 2.27 (Co-ordinate transformation). LetΩ be an open set inℝn. A vector-valued
function g ∶ Ω → ℝn is called a co-ordinate transformation if the following conditions
are satisfied:

1. g one-one.
2. If we write g = (g1,… , gn), then each gi ∈ C1(Ω).

3. The Jacobian det J(x) ≠ 0 for all x ∈ Ω, where J(x) = Jg(x) =
[
𝜕gi
𝜕xj
(x)

]
is the Jacobian

matrix of the function g.

It follows that g−1 defined in g(Ω) is also a C1 function.

Theorem 2.28 (Change of Variables). Let Ω be a bounded open set and g ∶ Ω → ℝn be a
co-ordinate transformation. Let Ω̃ = g(Ω). If f ∈ C(g(Ω)), then3

∫̃
Ω

f(y) dy = ∫
Ω

f(g(x))|J(x)| dx. (2.18)

3This formula also holds for Lebesgue integral.
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Using the inverse g−1 in place of g, we can also write the formula (2.18) as

∫
Ω

f(x) dx = ∫̃
Ω

f(g−1(y))|J(g−1(y))|−1 dy (2.19)

for f ∈ C(Ω).

A familiar and quite useful co-ordinate transformation is that of polar co-ordinates (also
called spherical co-ordinates in three and higher dimensions). Using familiar notations, this
transformation in ℝn is described by

x1 = r cos 𝜃1 sin 𝜃2 ⋯ sin 𝜃n−1

x2 = r sin 𝜃1 sin 𝜃2 ⋯ sin 𝜃n−1

x3 = r cos 𝜃2 sin 𝜃3 ⋯ sin 𝜃n−1

……
xn = r cos 𝜃n−1.

Here r > 0 and 𝜃1 ∈ (0, 2𝜋), 𝜃j ∈ (0, 𝜋) for j > 1. We have

r2 = x2
1 +⋯ + x2

n.

A lengthy calculation shows that the Jacobian (determinant) of this transformation is
given by

rn−1 sinn−2 𝜃2 ⋯ sin 𝜃n−1.

Thus, by taking Ω = BR(a) for any fixed a ∈ ℝn and R > 0, we can write (2.18) for
f ∈ C(BR(a)),

∫
BR(a)

f(x) dx =

R

∫
0

dr ∫
𝜕Br(a)

f dS

where the integral ∫
𝜕Br(a)

f dS on the right-hand side is a surface integral (see the discussion

below). If, as R → ∞, the above integrals remain finite, then we have

∫
ℝn

f(x) dx =

∞

∫
0

dr ∫
𝜕Br(a)

f dS

for any fixed a ∈ ℝn.
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In ℝ2, we write the polar co-ordinates as x = r cos 𝜃, y = r sin 𝜃, with the Jacobian r and
in ℝ3 the transformation is given by

x = r cos 𝜃 sin𝜑, y = r sin 𝜃 sin𝜑, z = r cos𝜑

with the Jacobian r2 sin𝜙.

Curves in the Space: A curve is a one-dimensional object in space. We are all familiar with
conic curves – circle, ellipse, parabola and hyperbola – studied in elementary geometry. A
most efficient way of describing a curve is through its parametric representation. A curve in ℝn is described by n continuous functions fi, 1 ≤ i ≤ n defined on some (finite or
infinite) interval I ⊂ ℝ. Thus,

 = {(x1,… , xn) ∈ ℝn ∶ xi = fi(t), t ∈ I, 1 ≤ i ≤ n}. (2.20)

Without further restrictions on fi, a curve can be chaotic; think of Brownian motion of a
particle. Also, the same curve can have different parametric representations.

The curve  is called simple if the mapping t ↦ (f1(t),… , fn(t)) from I into ℝn is one-
one. If, in addition, I = [a, b] and (f1(a),… , fn(a)) = (f1(b),… , fn(b)) , the curve is said to
be a simple closed curve or a Jordan curve. A curve is called a smooth curve if it is simple
and has a tangent at every point. The latter condition is satisfied if we assume that all fi are
C1 functions such that the derivatives f ′i (t) do not vanish simultaneously, for all t ∈ I. In this
case, the direction of the tangent is specified by the direction cosines:

cos 𝛾i =
f ′i (t)√
n∑
j=1

|f ′j (t)|2
with 𝛾i being the angle the tangent makes with the ith co-ordinate axis.

In what follows we consider either smooth curves or piecewise smooth curves, that is,
a finite number of smooth curves joined end to end and call them, for simplicity, smooth
curves. Such a curve may have corners at junction points as in the case of a rectangle
or a triangle. We also encounter at times smooth curves that are intersections of two
surfaces. For example, a circle in ℝ2 is the intersection of a sphere and a hyperplane in ℝ3.
Though a parametric representation is not readily evident, we can obtain local parametric
representation by the implicit function arguments.

Definition 2.29 (Regular Domains or Regions in Two Dimensions). Let Ω be a bounded
open arc-wise connected subset of ℝ2 such that its boundary 𝜕Ω consists of finitely
many simple closed smooth curves that do not intersect each other. Such an Ω will be
called a regular domain or region.
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In the above definition, arc-wise connected means the following: any two points in Ω are
connected by a finite number of line segments lying in Ω.

Examples of regular domains include an open ball, an annulus among others. In practice,
many regular domains are described as the interior of their boundaries. We will discuss a
similar domain in higher dimensions after introducing the concept of a surface.

Line Integral: Suppose  is a simple curve having a parametric representation (2.20) with
I = [a, b]. The length or the arc-length L of the curve  is given by

L = L() =
b

∫
a

( n∑
j=1

|f ′j (t)|2
)1∕2

dt. (2.21)

The above formula is derived as follows: if P is a partition of [a, b] and t1, t2 ∈ P, then the
distance between the corresponding points on the curve is given by( n∑

j=1
(fj(t1) − fj(t2))2

)1∕2

≈

( n∑
j=1

|f ′j (𝜏)|2
)1∕2 |t1 − t2|.

Then, forming the Riemann sums, taking the appropriate limit, the formula (2.21) results.4
If the curve  has a different parametric representation

𝜏 ↦ (f̃ 1(𝜏),… , f̃ n(𝜏)),

for 𝜏 ∈ [c, d] and the mapping t ↦ 𝜏 from [a, b] to [c, d] satisfies the condition d𝜏∕dt > 0
for all t ∈ [a, b], it is easy to verify that L does not depend on a particular parametric
representation. If we replace b by t ∈ [a, b] in (2.21), then the variable s = s(t) defined by

s =
t

∫
a

( n∑
j=1

|f ′j (t)|2
)1∕2

dt (2.22)

is called the arc-length variable; it is symbolically written as

ds2 =
n∑
j=1

|f ′j (t)|2 dt2 = n∑
j=1

dx2
i

4The length of a curve can be defined as the appropriate Riemann integral, even if the functions fi are not C1

functions. In this situation, a curve is said to be rectifiable if L < ∞.
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in the differential geometric notation. If h ∶  → ℝ is a continuous function, then the line
integral of h is defined by

∫
h ds =

b

∫
a

(h◦f)(t)

( n∑
i=1

|f ′i (t)|2
)1∕2

dt (2.23)

where f(t) = (f1(t),… , fn(t)).We call ds the linemeasure along . A few comments regarding
the definition of the line integral. In the definition given by (2.23), we have inherently fixed a
direction of the curve, namely the parameter t defining the curve  increases from a to b. In
the evaluation of a line integral, it is necessary that a direction of the curve  is mentioned.
Generally, there are two directions along a curve; we may choose one of them and call it the
positive direction, and the other one the negative direction. When this choice is made, the
curve is said to be an oriented curve. An oriented curve has an initial point and a terminal
point. If a simple closed curve is oriented, it has neither an initial point nor a terminal point.
However, it is often convenient to identify some point on such a curve and call it initial point
and terminal point. As we will see in the Green’s theorem later, orientation of the curve is
important. If we reverse the orientation, the sign will change; remember the convention:
b∫
a
= −

a∫
b
.

In two dimensions, a line integral is commonly written as

∫
P dx + Qdy, (2.24)

where P,Q are continuous functions defined on . The interpretation of (2.24) is the
following: there is a parametric representation of the curve  given by x = f(t), y = g(t)
with C1 functions f, g ∶ [a, b] → ℝ and the line integral in (2.24) is given by

b

∫
a

[
P(f(t), g(t))f ′(t) + Q(f(t), g(t))g ′(t)

]
dt.

Similar remarks apply in three and higher dimensions.

Hypersurface: A hypersurface or simply a surface is an (n − 1)-dimensional object in ℝn.
A sphere, the surface of a cylinder are examples of surfaces in ℝ3. There are three common
ways of describing a surface.

1. A surface can be described by an equation xn = F(x1,… , xn−1), where F ∶
Ω̃ → ℝ is a smooth function, with Ω̃ ⊂ ℝn−1 (precise description of Ω̃ will
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be done as and when required). The surface itself is described by the set of points
(x1,… , xn−1, F(x1,… , xn−1)) inℝn. Here a surface is viewed as the graph of a function.

2. A surface inℝn may also be described by an equation of the form F(x1,… , xn−1, xn) =
0. Locally this representation may be reduced to a similar representation as in (1)
by invoking implicit function theorem, under appropriate assumptions on F. More
precisely, every point in the zero set of F has a neighborhood, which is the graph of a
function.

3. From more of a theoretical point of view, a surface is defined through a parametric
representation as:

xi = fi(s1,… , sn−1), 1 ≤ i ≤ n, (2.25)

where s = (s1,… , sn−1) vary in a domain in ℝn−1 and fi are smooth functions.

A surface is called a smooth surface if it possesses a tangent plane at each of its points,
and if the direction of the normal to this tangent plane varies continuously. See a discussion
below for the case of n = 3.

Surface Integral inℝ3: In analogywith a line integral, we now consider the surface integral
inℝ3; the extension to higher dimensions can be carried out on similar lines. This is similar
to a double integral. However, as we will see, so many restrictions need be imposed even to
have a workable notion of the area of a surface. The analogy is similar to that of a curve in
ℝ2; merely assuming that a curve is described parametrically by continuous functions, does
not assure that the curve is rectifiable.

Let S be a smooth surface in ℝ3 described parametrically by

x = f(u, 𝜐), y = g(u, 𝜐), z = h(u, 𝜐), (2.26)

where f, g, h are C1 functions defined in a domain V in ℝ2; here we have used (x, y, z) to
denote the points in ℝ3. To make the surface S a genuine two-dimensional object,5 certain
restrictions on the functions f, g, h apply. Here is a brief discussion. Fix (u0, 𝜐0) ∈ V and let

x0 = f(u0, 𝜐0), y0 = g(u0, 𝜐0), z0 = h(u0, 𝜐0).

The mapping (u, 𝜐0) ↦ (f(u, 𝜐0), g(u, 𝜐0), h(u, 𝜐0)) defines a space curve in S as (u, 𝜐0) varies
in V. Its tangent vector at (u0, 𝜐0) is the vector (fu(u0, 𝜐0), gu(u0, 𝜐0), hu(u0, 𝜐0)). Similarly,
the tangent vector for the curve (u0, 𝜐) ↦ (f(u0, 𝜐), g(u0, 𝜐), h(u0, 𝜐)) at (u0, 𝜐0) is the vector
(f𝜐(u0, 𝜐0), g𝜐(u0, 𝜐0), h𝜐(u0, 𝜐0)). The two-dimensional nature of the surface S is indicated by
the requirement that these two tangent vectors are linearly independent for all the points
(u0, 𝜐0) ∈ V, and hence they span a two-dimensional subspace. This is the tangent space

5Otherwise S may degenerate to lines or points or combination of a genuine surface with lines or points.
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at (u0, 𝜐0) or more precisely at (x0, y0, z0) to the surface S. Since f, g, h are assumed to be
C1, we have a continuously varying family of tangent planes to the surface S. The linear
independence of the tangent vectors at (u0, 𝜐0) is equivalent to saying that the rank of the
3 × 2 Jacobian matrix ⎡⎢⎢⎣

fu(u0, 𝜐0) f𝜐(u0, 𝜐0)
gu(u0, 𝜐0) g𝜐(u0, 𝜐0)
hu(u0, 𝜐0) h𝜐(u0, 𝜐0)

⎤⎥⎥⎦
is 2. This means that the Jacobians j1, j2, j3 do not vanish simultaneously, where j1, j2, j3 are
given by

j1 = guh𝜐 − g𝜐hu, j2 = f𝜐hu − fuh𝜐, j3 = fug𝜐 − f𝜐gu.

In three dimensions, it is easy to describe the normal to this tangent plane: the normal is in
the direction of the cross product

(fu(u0, 𝜐0), gu(u0, 𝜐0), hu(u0, 𝜐0)) × (f𝜐(u0, 𝜐0), g𝜐(u0, 𝜐0), h𝜐(u0, 𝜐0)).

If we denote by 𝜈 = 𝜈(u0, 𝜐0), the unit normal to the tangent plane, we can assign a
direction to this normalwith regard to the domain that the surface S bounds. In the statement
of the divergence theorem, we speak of outward normal. For example, ifΩ = {|x| < 1}, the
open unit ball centered at the origin, then its boundary 𝜕Ω is the unit sphere {|x| = 1}. If|x0| = 1, then the outward unit normal (with respect to Ω) is in the direction of x0, as for
t > 0, |x0 + tx0| = 1 + t > 1. On the other hand, if Ω is the annulus {1 < |x − a| < 2},
where a is fixed, its boundary consists of two disjoint spheres, namely, {|x − a| = 1} and
{|x − a| = 2}. The outward unit normal to the outer sphere is (x − a)∕2 and for the inner
sphere it is a − x.

Let 𝛼, 𝛽 and 𝛾 be the angles the normal to Smakes with the positive axes, with designating
the positive direction (or outward direction) of the normal by choosing 𝛾 acute. Our first
task is to obtain a formula for the area of S.The arguments below are very intuitive in nature.

Consider a small rectangle in V with sides 𝛿u and 𝛿𝜐. The image of this rectangle on S
will be intuitively a parallelogram whose area is approximately given by6√

j21 + j22 + j23 𝛿u𝛿𝜐.

It follows that the area of S is given by the double integral

area(S) = ∬
V

√
j21 + j22 + j23 dud𝜐. (2.27)

6This computation requires arguments from vector algebra.
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When the surface S is described by the equation z = f(x, y), where f is a C1 function defined
in a domain V in ℝ2, formula (2.27) reduces to

area(S) = ∬
√

1 + f 2x + f 2y dxdy = ∬
V

cos 𝛾 dxdy. (2.28)

(Depending on the choice of the direction of the normal, we may replace cos 𝛾 by | cos 𝛾|.)
Equation (2.27) will be used to define the surface integral on S. Let F ∶ S → ℝ be a
continuous function, where the surface S has the parametric representation given by (2.26).
The surface integral of F over S is defined by

∬
S

F dS = ∬
V

F(u, 𝜐)
√

j21 + j22 + j23 dud𝜐, (2.29)

where F(u, 𝜐) = F(f(u, 𝜐), g(u, 𝜐), h(u, 𝜐)). The measure dS is called the surface measure on S.
Using the formula for change of variables in a double integral, it is not difficult to see that
dS does not depend on a particular choice of parameterization used to define the surface S.
Again, when the surface is described by a single equation z = f(x, y), we may write (2.29) as

∬
S

F dS = ∬
V

F(x, y, f(x, y))
√

1 + f2x + f2y dxdy. (2.30)

Let 𝛼, 𝛽, 𝛾 be the angles the normal makes to the positive x, y, z axes, respectively, the
positive direction of the normal is so chosen that 𝛾 is acute. Since cos 𝛼, cos 𝛽 and cos 𝛾 are
the direction cosines of the normal, we have

cos 𝛼 ∶ cos 𝛽 ∶ cos 𝛾 = fx ∶ fy ∶ −1.

Hence, sec2 𝛾 = 1 + f2x + f2y and the formula (2.30) may also be written as

∬
S

F dS = ∬
V

F(x, y, f(x, y)) sec 𝛾 dxdy. (2.31)

This formula is also applicable when the surface S is obtained by joining a finite number of
surfaces, each of which is described by a function, using the usual properties of a double
integral.
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2.2.2 Green’s Theorem

This theorem deals with a version of integration by parts in two dimensions. Recall the
integration by parts in one dimension. If u, 𝜐 ∈ C1([a, b]), then

b

∫
a

u𝜐 ′ = u(b)𝜐(b) − u(a)𝜐(b) −
b

∫
a

u ′𝜐.

In this case, the boundary of the interval consists of just two points, namely a and b. We
assign unit normal at these boundary points, pointing outward to the interval. Thus, at b
we assign +1 and at a we assign −1 as the unit normals. We can then rewrite the above
integration by parts formula as

b

∫
a

u𝜐 ′ = ∫
{a,b}

u𝜐𝜈 −
b

∫
a

u ′𝜐

where 𝜈 is the outward unit normal to the boundary of [a, b] and we interpret the boundary
integral ∫

{a,b}
u𝜐𝜈 as the integral on the boundary with counting measure.

Now move to higher dimensions. Let Ω be an open bounded set in ℝn and u ∈ C1(Ω).
Similar to one-dimensional case, the task now is to express the integral ∫

Ω

𝜕u
𝜕xi

dx, 1 ≤ i ≤ n,

as a boundary integral over the boundary 𝜕Ω.This is where we need to put sufficient smooth
assumptions on the boundary so that a boundary integral is well-defined. This analysis
leads to the Green’s theorem in two dimensions and divergence theorem in more than two
dimensions.

Theorem 2.30 (Green’s Theorem). Let Ω be a regular domain in ℝ2 (see Definition 2.29).
Let denote the union of curves forming 𝜕Ω, each oriented in suchway that the interior
of Ω lies on the left as one advances along the curve in the positive direction. If P,Q ∈
C1(Ω), then

∫
P dx + Qdy = ∬

Ω

(
𝜕Q
𝜕x

− 𝜕P
𝜕y

)
dxdy. (2.32)

The left-hand side in (2.32) is the line integral over the curve  taken in the positive
direction as described in the theorem. The formula (2.32) can also be written as

∮
F ⋅ 𝜈 ds = ∬

Ω

divF(x, y) dxdy
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in tune with the statement of the divergence theorem, discussed as in (2.35) below.
Here F = (Q,−P) is the two-dimensional vector field, 𝜈 is the outward unit normal to
the curve  and div is the two-dimensional divergence operator, namely divF(x, y) =
𝜕Q
𝜕x

− 𝜕P
𝜕y

.
A word about the positive direction of the boundary curve. If the boundary consists

of a single closed Jordan curve, like a circle, ellipse or rectangle, then the positive
direction is the counter-clockwise direction. If on the other hand, the boundary consists
of two disjoint closed Jordan curves (e.g. an annulus), then the positive directionmeans
the counter-clockwise direction for the outer curve and the clockwise direction for the
inner curve.

It is indeed a big task to prove the Green’s theorem in its full generality. We will
only sketch a proof assuming that Ω is x-simple. Suppose that Ω is bounded by the
lines x = a, x = b and the curves y = 𝜑(x), y = 𝜓(x), where 𝜑,𝜓 ∶ [a, b] → ℝ are
continuous functions such that 𝜑(x) ≤ 𝜓(x) for all x ∈ [a, b]. Then, using Theorem
2.26, we have

∬
Ω

𝜕P
𝜕y

(x, y) dxdy =
b

∫
a

dx
𝜓(x)

∫
𝜑(x)

𝜕P
𝜕y

(x, y) dy

=

b

∫
a

P(x, 𝜓(x)) dx −
b

∫
a

P(x, 𝜑(x)) dx

= − ∫
P dx, (2.33)

as the positive direction of the line integral is counter-clockwise.
Similarly, if Ω is also y-simple, we obtain

∬
Ω

𝜕Q
𝜕x

(x, y) dxdy = ∫
Qdy. (2.34)

Combining equations (2.33) and (2.34), we arrive at (2.32).

The domain Ω or rather its boundary  is called simple if it is both x-simple and y-simple.
In general, a domain Ω can usually be divided into a finite number of smaller domains Ωi,
by introducing some new boundary curves, which are simple. The Green’s theorem then
follows by summing over all Ωi; the line integrals over new curves that are created by the
division occur twice and cancel each other as their positive directions have opposite signs.
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Divergence Theorem7: This is the analogue of the Green’s theorem in more than two
dimensions. The assumptions on the domain become more technical here and it is indeed
a difficult task to consider very general domains.

Let Ω̂j be an open bounded set in the hyperplane xj = 0 inℝn for some j, 1 ≤ j ≤ n. The
points in Ω̂j will be denoted by x̂j = (x1,… , xj−1, 0, xj+1,… , xn). Let S be the surface in ℝn,
whose points are prescribed by the points

(x1,… , xj−1, 𝜑(x̂j), xj+1,… , xn) ∈ ℝn

as the point x̂j varies over Ω̂j, where 𝜑 ∶ Ω̂j → ℝ is a C1 function. Such a surface will be
called a simple piece.

Let Ω be an open bounded set such that its boundary 𝜕Ω is a finite union of non-
overlapping simple pieces as described above. For such an Ω, we are now going to state the
divergence theorem.

Theorem 2.31 (Divergence Theorem). Let Ω be as above and u ∶ Ω → ℝn be a vector-
valued function, whose components ui ∈ C1(Ω), 1 ≤ i ≤ n. Then,

∫
Ω

divu dx = ∫
𝜕Ω

u ⋅ 𝜈 dS, (2.35)

where 𝜈 is the outward unit normal to 𝜕Ω.

The formula (2.35) is known as Gauss–Ostrogadskii formula. In (2.35) divu =
n∑
i=1

𝜕ui
𝜕xi

denotes the divergence of the vector field u, 𝜈(x) denotes the outward unit normal to the
boundary at x ∈ 𝜕Ω and dS is the surface measure on 𝜕Ω. We are not going to present a
proof here with this generality. Instead, we sketch a proof in three dimensions.

Let V be a regular domain in the xy−plane in ℝ3 and 𝜑,𝜓 ∈ C1(V) such that 𝜑(x, y) ≤
𝜓(x, y) for all (x, y) ∈ V. Consider the cylindrical surface (in ℝ3) formed by drawing lines
parallel to the z-axis at all the points of 𝜕V. Let S3 be the part of this surface that is cut-
off between the surfaces S1, represented by the equation z = 𝜑(x, y) and the surface S2
represented by z = 𝜓(x, y) (S3 may be empty). Consider now the region Ω bounded above
by S2, bounded below by S1 and bounded laterally by S3. The region Ω is called a z-simple
region.

7This theorem or rather the formula is attributed to two mathematicians – Gauss and Ostrogadskii – in the
literature.
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Lemma 2.32. Let Ω be a z-simple region and F ∈ C1(Ω). Then,

∭
Ω

𝜕F
𝜕z

dxdydz = ∬
𝜕Ω

F cos 𝛾 dS (2.36)

where 𝛾 is the angle between the positive z-axis and the outward unit normal to 𝜕Ω.

Proof Wemaywrite F cos 𝛾 = F𝜈z, where 𝜈z is the z-component of the outward unit normal
𝜈. Using iterated integrals, we can write

∭
Ω

𝜕F
𝜕z

dxdydz =∬
V

dxdy

𝜓(x,y)

∫
𝜑(x,y)

𝜕F
𝜕z

dz

=∬
V

(F(x, y, 𝜓(x, y)) − F(x, y, 𝜑(x, y)) dxdy. (2.37)

Now as the boundary 𝜕Ω is the union of Si, i = 1, 2, 3, the surface integral on the right-
hand side of (2.36) can be written as the sum of three surface integrals. There is, however,
no contribution from the surface integral over S3 as 𝛾 = 𝜋∕2 here and hence cos 𝛾 = 0.
At a point on S1, the outward unit normal extends downward so that 𝛾 is obtuse and hence
cos 𝛾 < 0. On the other hand, 𝛾 is acute on S2 and cos 𝛾 > 0. Now the surface integrals over
S1 and S2 can be written as double integral overV, using the formula (2.31). In this formula,
𝛾 represents the acute angle between the positive z-axis and the undirected unit normal to
the surface. Hence, for the surface S1 we should replace 𝛾 by 𝜋 − 𝛾 while using formula
(2.31). Therefore, we have

∬
S1

F(x, y, z) dS =∬
V

F(x, y, 𝜑(x, y)) cos 𝛾 sec(𝜋 − 𝛾) dxdy

= −∬
V

F(x, y, 𝜑(x, y)) dxdy. (2.38)

Similarly, we have

∬
S2

F(x, y, z) dS =∬
V

F(x, y, 𝜓(x, y)) cos 𝛾 sec 𝛾 dxdy

=∬
V

F(x, y, 𝜓(x, y)) dxdy. (2.39)
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Finally, adding (2.38) and (2.39), the formula (2.36) follows from (2.37). The proof of the
lemma is complete.

Similar formulas hold for x-simple and y-simple regions. Thus, the proof of the divergence
theorem, in three dimensions, follows if a region is simultaneously x-simple, y-simple and
z-simple. For a domain, which is not simple, the remarks made at the end of the Green’s
theorem apply. The divergence theorem has several important consequences, which are
collectively known as Green’s identities. We now state them, whose proofs are left to the
reader as exercises (see Exercise 1).

Theorem 2.33 (Green’s Identities). Let u, 𝜐 ∈ C2(Ω). The following formulae hold:

1. ∫
Ω

Δu dx = ∫
𝜕Ω

𝜕u
𝜕𝜈

dS(x).

2. ∫
Ω

𝜐Δu dx = −∫
Ω

∇u ⋅ ∇𝜐 dx + ∫
𝜕Ω

𝜕u
𝜕𝜈

𝜐 dS(x).

3. ∫
Ω

(𝜐Δu − uΔ𝜐)dx = ∫
𝜕Ω

(
𝜐𝜕u
𝜕𝜈

− u𝜕𝜐
𝜕𝜈

)
dS(x).

Here, 𝜕u
𝜕𝜈

= ∇u ⋅ 𝜈 is the normal derivative and ∇ =
(

𝜕
𝜕x1

,⋯ 𝜕
𝜕xn

)
is the grad

operator.

2.3 SYSTEMS OF FIRST-ORDER ORDINARY DIFFERENTIAL
EQUATIONS: EXISTENCE AND UNIQUENESS RESULTS

In Chapter 3 on first-order equations, the questions related to existence and uniqueness of
the solution to a Cauchy problem are tackled by the method of characteristics, which turn
out to be the solutions of a system of first-order ordinary differential equations. We collect
here some essential existence and uniqueness results for the system of ODE from the book
Nandakumaran et al. (2017). For more details the reader can look into Nandakumaran et al.
(2017) and the references therein.

Consider a system of n first-order equations:

ẏ = f(t, y), (2.40)

or, explicitly written

ẏj = fj(t, y1, y2,⋯ yn), j = 1, 2,⋯ , n.
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Here yj’s, the unknowns, which are real-valued functions and fj are real-valued functions
defined onℝ×ℝn. The positive integer n is referred to as the dimension of the system. Since
an ODE of any given order can be written in the form of a system of first-order equations,
the above consideration is more general. System (2.40) is called an autonomous system if the
right-hand side function f does not depend on t explicitly. When f depends on t explicitly as
well, the system is referred to as non-autonomous. For example, the equation ẏ = y + t (1D
or one-dimensional equation) is non-autonomous; the equation ẏ = sin y is autonomous.
A non-autonomous system may be converted into an autonomous system by increasing the
dimension of the systemby 1 and by introducing a newunknown variable 𝜏 satisfying �̇� = 1.
However, even after this reduction, the study of a non-autonomous system is not easier. One
reason for this is that since �̇� = 1, the reduced system does not have any equilibrium points;
a point y0 ∈ ℝn is called an equilibrium point for (2.40) if f(t, y0) = 0 for all t. For example,
if we consider the linear system ẋ = A(t)x(t), then x = 0 ∈ ℝn is an equilibrium point for
the unreduced system, but 0 ∈ ℝn+1 is not an equilibrium point for the enlarged system,
namely ẋ = A(t)x(t), �̇� = 1.

We introduce the following norm in ℝn. For x ∈ ℝn, define

‖x‖ = |x1| + |x2| +⋯ |xn|,
where x = (x1, x2,⋯ , xn). This norm is referred to as 𝓁1 norm. It is easy to verify the
following properties of the norm:

1. ‖x + y‖ ≤ ‖x‖ + ‖y‖,
2. ‖ax‖ = |a|‖x‖,
3. ‖x‖ ≥ 0 and = 0 if and only if x = 0,

for all x, y ∈ ℝn and a ∈ ℝ.
Suppose Ω is an open subset of ℝn and 𝜙 ∶ Ω → ℝn. Then, 𝜙 is said to be Lipschitz

continuous on Ω if there is a positive constant L such that ‖𝜙(x) − 𝜙(y)‖ ≤ L‖x − y‖, for
all x, y ∈ Ω. The smallest such an L is called the Lipschitz constant of 𝜙. Equivalently, we
can define the Lipschitz continuity through each component of 𝜙. The class of Lipschitz
continuous functions is huge. It includes in particular all the differentiable functions whose
first derivatives are all bounded. We will now state the following theorem for the existence
and uniqueness of solutions to the IVP for n-dimensional systems. As remarked earlier,
since an nth-order equation may be written as an n-dimensional first-order system, we also
have existence and uniqueness result for the solutions of an IVP for nth-order equation.

LetΩ be an open set inℝn+1, whose pointsmay bewritten as (t, y)with t ∈ ℝ and y ∈ ℝn.
Suppose f ∶ Ω → ℝn is a continuous function and is Lipschitz continuous with respect to y
variables, that is, there is a positive constant L such that

‖f(t, y1) − f(t, y2)‖ ≤ L‖y1 − y2‖,
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for all (t, y1) and (t, y2) in Ω and L does not depend on t. Here ‖ ⋅ ‖ denotes the norm
introduced above. Suppose (t0, y0) ∈ Ω. Choose a, b > 0 such that the rectangle 
defined by

 = {(t, y) ∶ |t − t0| ≤ a, ‖y − y0‖ ≤ b}

is a subset of Ω. Let M be the maximum of ‖f(t, y)‖ on  and 𝛼 = min{a, b∕M}. We can
now state the following:

Theorem 2.34. The IVP for the n dimensional system

ẏ = f(t, y), y(t0) = y0, (2.41)

has a unique solution in the interval [t0 − 𝛼, t0 + 𝛼].

Continuous Dependence of Solution on Initial Data and Dynamics: The initial data
includes the given initial value y0 and the dynamics f. In practical applications, it is
important to know that how small errors in the initial data affect the solution. In other
words, we would like to know that if the initial data is close to another initial data in
appropriate norm, then the corresponding solutions are also close to each other. This is
known as the continuous dependence of the solution on the initial condition and dynamics.

Theorem 2.35. Let  be as in Theorem 2.34. Suppose f, f̃ ∈ C() and be Lipschitz
continuous with respect to y on with Lipschitz constants 𝛼, �̃�, respectively. Let y and
ỹ be, respectively, the solutions of the IVP ẏ = f(t, y), y(t0) = y0 and ̇̃y = f̃ (t, ỹ), ỹ(t̃0) =
ỹ0 in some closed intervals I1, I2 containing t0 and t̃0. For small |t0 − t̃0|, let I any finite
interval containing t0 and t̃0, where both y and ỹ are defined. Then,

max
t∈I

‖y(t) − ỹ(t)‖ ≤ (‖y0 − ỹ0‖ + |I|max ‖f(t, y) − f̃ (t, y)‖ +M|t0 − t̃0|) e𝛼0|I|,
where |I| is the length of the interval I, M = max

(
max ‖f‖,max ‖f̃ ‖) and 𝛼0 =

min(𝛼, �̃�).

Proof We give a proof when t0 = t̃0. Observe that the solutions y and ỹ satisfy the following
integral equations:

y(t) = y0 +
t

∫
t0

f(𝜏, y(𝜏)) dt, ỹ(t) = ỹ0 +
t

∫
t0

f̃ (𝜏, ỹ(𝜏)) d𝜏,

for all t ∈ I. Subtracting the second equation from the first, we get

y(t) − ỹ(t) = y0 − ỹ0 +
t

∫
t0

(f(𝜏, y(𝜏)) − f̃ (𝜏, ỹ(𝜏))) d𝜏.
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When t0 ≠ t̃0, an extra integral appears in the above equation, which can be estimated
easily. Now add and subtract the term f(𝜏, ỹ(𝜏)) in the above integral. We then obtain

‖y(t) − ỹ(t)‖ ≤ ‖y0 − ỹ0‖ + t

∫
t0

‖f(𝜏, y(𝜏)) − f(𝜏, ỹ(𝜏))‖ + t

∫
t0

‖f(𝜏, ỹ(𝜏)) − f̃ (𝜏, ỹ(𝜏))‖ d𝜏.
Using the Lipschitz continuity of f with respect to y , the above inequality can be

estimated as

‖y(t) − ỹ(t) ≤ ‖y0 − ỹ0‖ + 𝛼

t

∫
t0

‖y(𝜏) − ỹ(𝜏)‖ dt + |I|max ‖f(t, y) − f̃ (t, y)‖.
Applying Gronwall’s inequality, we get

‖y(t) − ỹ(t)‖ ≤ (‖y0 − ỹ0‖ + |I|max ‖f(t, y) − f̃ (t, y)‖) exp(𝛼|I|).
The same inequality is true when 𝛼 is replaced by �̃� as well if we add and subtract f̃ (𝜏, y(𝜏))
instead of f(𝜏, ỹ(𝜏)). This completes the proof.

Continuation of Solution into Larger Intervals and Maximal Interval of Existence:
Observe that the existence result, Theorem 2.34, is local in nature, that is, we could only
claim the existence of a solution in a small interval containing the initial time t0. However,
when the differential equation is linear, that is f(t, y) = A(t)y + b(t), where A(t) and
b(t) are respectively, matrix-valued and vector-valued continuous functions defined on
[t0 − a, t0 + a], then f is defined on  = [t0 − a, t0 + a] × ℝ. In this case, the solution is
defined on the entire interval [t0 − a, t0 + a], that is, h can be taken as a itself. But, this is not
true when f is not linear, that is, the solution may not exist in the interval where f is defined.
At the same time, it is possible that [t0 − h, t0 + h]may not be the largest possible interval of
existence. This leads to the following question: Can we enlarge the domain of the solution
y further? More generally, what is the largest possible interval of existence?

Example 2.36. Consider the IVP for the one-dimensional equation

ẏ = y2, y(1) = −1.

Let  =
{
(t, y) ∶ |t − 1| ≤ 1, |y + 1| ≤ 1

}
. Here, f(t, y) = y2 satisfies continuity and

Lipschitz continuity assumptions on , t0 = 1, y0 = −1 and let |t − 1| ≤ h, be the
interval on which existence is guaranteed, which can be computed as h = 1∕4. Hence
by Theorem 2.34, the IVP has a solution on the interval [3∕4, 5∕4].

Now by themethod of separation of variables, we can integrate the differential equation and
use the initial condition to obtain the solution as y(t) = −1∕t. Thus, the solution exists for
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0 < t < ∞. In other words, we can continue the solution outside the interval [3∕4, 5∕4]. At
the same time, since |y(t)| → ∞ as t → 0+, it ceases to exist to the left of 0, even though f is
a differentiable function defined everywhere. This is the typical non-linear phenomena and
f is not Lipschitz in the entire ℝ, but it is Lipschitz in any bounded interval.

Continuation of the Solution Outside the Interval |t − t0| ≤ h: The existence theorem
(Theorem 2.34) guarantees that IVP (2.41) has a solution 𝜙0 on the interval [t0 − h, t0 + h].
Consider the right end point of [t0−h, t0+h]. Let t1 = t0+h, y1 = 𝜙0(t1). The point (t1, y1)
is inside , which is inside D. Now consider the IVP ẏ = f(t, y), y(t1) = 𝜙0(t1) = y1. Now
appealing to the existence theorem with this new initial condition, we obtain a solution 𝜙1
in the interval t1 − h1 ≤ t ≤ t1 + h1 for some h1 > 0. Define

y(t) =

{
𝜙0(t), t0 − h ≤ t ≤ t0 + h = t1
𝜙1(t), t1 ≤ t ≤ t1 + h1.

Then,

𝜙0(t) = y0 +
t

∫
t0

f(𝜏, 𝜙0(𝜏)) d𝜏, for t0 − h ≤ t ≤ t1

𝜙1(t) = 𝜙0(t1) +
t

∫
t1

f(𝜏, 𝜙1(𝜏)) d𝜏, for t1 ≤ t ≤ t1 + h1.

Thus, we have

y(t) = y0 + ∫
t

t0
f(𝜏, y(𝜏)) d𝜏

for t ∈ [t0−h, t1+h1] = [t0−h, t0+h+h1]. It is easy to see from these two expressions that
y is differentiable at t = t1 also, and verify that y indeed satisfies the DE in question. This
solution y(t) is called a continuation of the solution 𝜙0 to the interval [t0 − h, t1 + h1]. Now
repeating this process at the new end point t1+h1, we obtain a solution on [t0−h, t1+h1+h2].
In this manner, we may get longer intervals [t0−h, tn+hn].Unfortunately, this still may not
lead to the maximum interval of existence.

In Example 2.36, the function f is not Lipschitz in ℝ. When f is not globally Lipschitz,
the bounds on the Picard’s iterates may become larger and larger, thus reducing the interval
of existence. This is really due to the bad non-linearity even though the function is very
smooth as in Example 2.36. If f is Lipschitz globally, then we get the existence in the entire
interval of definition as in the following theorem. The proof will follow along the same lines
as in the Picard’s existence theorem and we leave the details as an exercise to the reader. In
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fact, due to fact that f is defined on the entire real line in the second variable, we need not
have to check the validity of the Picard’s iterates as they are always defined.

Theorem 2.37. Let f(t, y) be a bounded continuous vector-valued function defined in the
unbounded domain  =

{
(t, y) ∶ a < t < b, y ∈ ℝn}. Let f be Lipschitz in y on .

Then, a solution y of ẏ = f(t, y), y(t0) = y0, t0 ∈ (a, b) is defined on the entire open
interval a < t < b. In particular, if a = −∞, and b = +∞, then y is defined for all
t in ℝ.

Theorem 2.38. Suppose f ∶ D → ℝn is bounded and y is the solution of the IVP (2.41)
in some interval (a, b) containing t0. If b < ∞, then, y(b−) = lim

t→b−
y(t) exists. If

(b, y(b−)) ∈ D, then, the solution y may be continued to an interval (a, b̄] with b̄ > b.
Similar statements hold at the left end point a.

Proof Let M be the bound on ‖f‖ on D and t0 < t1 < t2 < b. Then,

‖y(t2) − y(t1)‖ ≤
t2

∫
t1

‖f(s, y(s))‖ds ≤ M|t2 − t1|.
Thus, if t1, t2 → b from the left, it follows that

‖y(t2) − y(t1)‖ → 0

which is the Cauchy criterion for the existence of the above said limit. Since (b, y(b−)) ∈ D,
we can now consider the IVP with the initial condition at b as y(b−) and the solution can
be continued beyond b as asserted in the theorem.

Maximal Interval of Existence: Consider the IVP (2.41). Assume the existence of a unique
solution in a neighborhood t0. Call such a neighborhood an interval of existence. Suppose
I1 and I2 are intervals of existence containing t0, then their union is an interval of existence
(why?).

Definition 2.39. Let J be the union of all possible intervals of unique existence of (2.41).
Then, J is an interval and, is called themaximal interval of existence. More precisely, let
{I𝛼}, be the collection of all intervals of unique existence, containing t0. This collection
is non-empty and J =

⋃
𝛼
I𝛼 .

Indeed, we can define a unique solution y in J as follows: for any t ∈ J, t is in some interval
I of existence and y(t) is the value given by the solution in I. This is well defined by the
uniqueness.

Proposition 2.40. The maximal interval J of existence is an open interval (𝛼, 𝛽), where 𝛼
can be −∞ and 𝛽 can be +∞.
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Proof If not, suppose J = (𝛼, 𝛽]. In this case, 𝛽 < ∞. Then, one can consider the IVP for
the same ODE with initial condition at 𝛽, to get a solution in [𝛽, 𝛽 + h] for some h > 0. This
will produce a solution in (𝛼, 𝛽+h] contradicting the maximality of J. Similar contradiction
can be arrived if 𝛼 is a point in J.

Theorem 2.41. Let J = (𝛼, 𝛽) be the maximal interval of existence and y be the solution to
the IVP in J. Assume 𝛽 < ∞. If K is any compact subset ofℝ such that [t0, 𝛽] ×K ⊂ D,
then there exists a t1 ∈ (𝛼, 𝛽) such that y(t1) does not belong to K. Similar statements
hold at the end point 𝛼.

We infer the following from the conclusion of the theorem. Only one of the following
statements is true:

• If y(𝛽−) = lim
t→𝛽−

y(t) exists, then (𝛽, y(𝛽−)) ∈ D̄ ⧵ D, the boundary of D.
• The solution y becomes unbounded near 𝛽, that is, given any large positive number C,

there exists t1 < 𝛽 such that ‖y(t1)‖ ≥ C.

The proof of the theorem follows immediately from Theorem 2.38. The examples below
illustrate both these situations.

Example 2.42. Consider the one-dimensional equation ẏ = 1
ty

.

Here, the function f(t, y) = 1
ty

is defined in the entire (t, y)− plane, except the t-axis

and y-axis. We will consider the IVP in the first quadrant in the (t, y)− plane: y(t0) =
y0 where both t0, y0 are positive. The solution is given by y = [2 log(t∕t0) + y20]

1∕2.
Therefore, the maximal interval of existence is (𝛼,∞), where 𝛼 = t0e−y

2
0∕2 and as t →

𝛼+, y(t) → 0 with (𝛼, 0) belonging to the boundary of the domain in question.

Example 2.43. Consider the one-dimensional equation ẏ = 1
t + y

.

In this case, we take the domain as {(t, y) ∶ t + y > 0} and impose the initial
condition as y(t0) = y0 with t0 + y0 > 0. By introducing a new variable u(t) = t + y(t),

we see that the solution is implicitly given by eu(t)
1 + u(t)

= ey0
1 + t0 + y0

et. We notice that

the maximal interval of existence in this case is given by (𝛼,∞), where 𝛼 = t0 + log(1+
t0 + y0) − (t0 + y0) < t0. Again, it is not hard to see that as t → 𝛼+, (t, y(t)) approaches
the boundary of the domain in question, that is, t + y(t) → 0.

Example 2.44. Consider the one-dimensional IVP: ẏ = 𝜋
2
(1 + y2), y(0) = 0.

We now see that the solution y(t) = tan
(
𝜋
2
t
)

cannot be extended beyond the
interval (−1, 1). Note that if we take any rectangle {(t, y) ∶ |t| ≤ a, |y| ≤ b} around
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the origin (0, 0), then as in the local existence theorem, we get the existence of a unique

solution in an interval [−h, h], where h = min
(
a, 2

𝜋
b

1 + b2

)
, which is always less

than 1
𝜋
.

Autonomous Systems: We now discuss autonomous systems. Such systems occur in many
situations including the characteristic equations arising in the study of first-order PDE.
Consider an autonomous system of n first-order equations:

ẋ = f(x), (2.42)

or, explicitly written

ẋj = fj(x1, x2,… , xn), j = 1, 2,… , n.

Usual assumptions on f are made so that the system (2.42) has unique solution defined
in its maximal interval of existence. As the system is autonomous, this maximal interval
essentially depend on the initial condition; see Theorem 2.34. The solution x(t) has a
geometrical meaning of a curve inℝn and equation (2.42) gives its tangent vector at every t.
For this reason, (2.42) is also referred to as a vector field and the corresponding solution as
an integral curve of the vector field. If x is a solution of (2.42), we say that x passes through
x0 ∈ ℝn if x(t0) = x0, for some t0 ∈ ℝ.

Definition 2.45. Given a solution x of (2.42) passing through x0 ∈ ℝn with x(t0) = x0, for
some t0 ∈ ℝ, the orbit through x0, is the set (x0) defined by

(x0) = {x(t) ∈ ℝn ∶ t ∈ I(x0)},

where I(x0) denotes the maximal interval of existence of the solution x and the positive
orbit through x0, is the set +(x0) defined by

+(x0) = {x(t) ∈ ℝn ∶ t ≥ t0, t ∈ I(x0)}.

Lemma 2.47 below shows that any solution passing through x0 may be used to define(x0) or +(x0) unambiguously. Generally speaking, the phase space (plane) analysis is
about describing all the (positive) orbits of (2.42). The other terminologies used for orbit
are trajectory and path. We will now discuss some important properties of solutions of
autonomous systems. Below the statements regarding t refer to all t in the maximal interval
of existence of the appropriate solution.

Lemma 2.46. If x is a solution of (2.42), define xc by xc(t) = x(t + c) for any fixed
c and for all t. Then xc is also a solution of (2.42).
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Proof Direct differentiation.

We remark that the above lemma is not true for a non-autonomous system.

Lemma 2.47. If x and y are solutions of (2.42) passing through x0 ∈ ℝn with x(t0) =
y(t1) = x0, for some t0 , t1 ∈ ℝ, then,

y(t) = x(t + t0 − t1) and x(t) = y(t + t1 − t0), for all t.

Thus, (x0) or +(x0) is the same set whether x or y is used in its definition.

Proof Define z(t) = x(t + t0 − t1) for all t. By Lemma 2.46, z is a solution of (2.42) and
z(t1) = x(t0) = y(t1). By uniqueness, z ≡ y. This completes one part of the proof and the
other part is similar.

Corollary 2.48. If x0 , x1 ∈ ℝn and x1 ∈ (x0) (respectively +(x0)), then (x0) = (x1)
(respectively +(x0) ⊃ +(x1)).

Lemma 2.49. If x0 , x1 ∈ ℝn, then either(x0) = (x1) or(x0) ∩(x1) = 𝜙, the empty
set. Similar statements may be made regarding the positive orbits.

Proof If x̃ ∈ (x0) ∩ (x1), then by Corollary 2.48, it follows that (x0) = (x̃) = (x1)
and the proof is complete.

Lemma 2.50. Suppose x is a solution of (2.42) and there exist t0 and T > 0 such that
x(t0 + T) = x(t0). Then x(t + T) = x(t) for all t.

Proof Define xT by xT(t) = x(t+T).Then xT is a solution and by hypothesis, xT(t0) = x(t0).
The proof is complete by uniqueness.

Remark 2.51. The solution in Lemma 2.50 is termed as a periodic solution, with a period
T.The smallest such a T > 0 is called the period of x. The orbit of a periodic solution is
called a periodic orbitor closed orbit. If a periodic orbit is isolated in the sense that there is
no other periodic orbit in its immediate neighborhood, then the periodic orbit is called
a limit cycle. For example, the orbits of the one-dimensional equation ẍ + x = 0 are all
periodic orbits but, none of them is a limit cycle. Limit cycles can only occur in non-
linear systems. The existence of periodic solutions to (2.42) is an important aspect of
the qualitative theory and two important results, namely Poincarè–Bendixon Theorem
and Leinard’s Theorem give sufficient conditions for the existence of periodic solutions
in 2D systems. See Nandakumaran et al. (2017) and references therein.
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2.4 FOURIER TRANSFORM, CONVOLUTION AND MOLLIFIERS

In this section, we briefly introduce some important topics, namely Fourier transform (FT),
convolution andmollifiers and their properties. These concepts will be used in the main text,
especially in chapters on Conservation Laws and Laplace equation. The reader wishing to
have amore detailed exposition to these topics may consult Kesavan (1989), Folland (1992),
and Rund (1973) among others.

Given a function f ∶ ℝn → ℝ or ℂ, the formal definition of FT is given by

 f(𝜉) = f̂ (𝜉) = 1
(2𝜋)n∕2 ∫

ℝn

e−ix⋅𝜉f(x) dx, (2.43)

where x, 𝜉 ∈ ℝn, x ⋅ 𝜉 =
n∑
i=1

xi𝜉i. The choice of the constant (2𝜋)−n∕2 is for the reason of

symmetry. The same constant appears in the inverse FT, defined subsequently. If we omit
the constant in (2.43), then the constant (2𝜋)−n appears in the inverse transform.

It is formal in the sense that the integral on the right-hand side may not make sense for
general f, even if f is smooth. But, if f is continuous with compact support, then f̂ (𝜉) is well
defined. Our intention is to define the FT for general integrable functions, namely in L1(ℝn)
and L2(ℝn). Indeed, if f ∈ L1(ℝn), then

|f̂ (𝜉)| ≤ (2𝜋)−n∕2‖ f ‖1

for 𝜉 ∈ ℝn. In fact, we have the following lemma:

Lemma 2.52 (Riemann–Lebesgue Lemma). Assume f ∈ L1(ℝn), then f̂ is a uniformly
continuous function which vanishes at ∞; that is f̂ (𝜉) → 0 as |𝜉| → ∞. Furthermore,
we have ‖f̂‖∞ ≤ (2𝜋)−n∕2‖f‖1.

Description of Lp(Ω) Spaces: LetΩ be an open subset ofℝn. The space Lp(Ω), 1 ≤ p < ∞
is the space of all real or complex-valued (Lebesgue) measurable functions f defined on Ω
such that

‖f‖p = ⎛⎜⎜⎝∫Ω |f(x)|p dx⎞⎟⎟⎠
1∕p

< ∞.

For p = ∞, the space L∞(Ω) consists of all the measurable functions f which are essentially
bounded. A function f is said to be essentially bounded on Ω if there is a finite M > 0 such
that the set ΩM = {x ∈ Ω ∶ |f(x)| > M} has measure zero. The essential supremum of f is
then defined by ‖f‖∞ = inf{M ∶ ΩM has measure zero}.
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Description of (Ω) Space: The space (Ω) consists of all C∞(Ω) functions having
compact support. The topology is the following:

A sequence 𝜑k converges to 𝜑 in (Ω), if there is compact set K ⊂ Ω such that
supp𝜑k, supp𝜑 ⊂ K for all k and D𝛼𝜑k → D𝛼𝜑 uniformly on K, for every multi-index 𝛼.
This makes (Ω) a locally convex complete topological vector space, hence has a rich dual
space. This dual space  ′(Ω) is the space of distributions. The only inconvenience about(Ω) is that it is not metrizable. That is, there is no metric that can be defined on(Ω) that
is compatible with the convergence criterion defined above.

It is known that (Ω) is dense in Lp(Ω) for all 1 ≤ p < ∞. See also the discussion on
mollifiers. A nice property of FT is the recovery of the function from its FT through an
inversion formula. This makes its application very useful, especially in obtaining solutions
to differential equations. If we work in the space L1(ℝn) or (ℝn), this inverse process is
not possible. In fact, the FT of an L1 function need not be an L1 function. To see this, take
the characteristic function f = 𝜒(−1,1) in ℝ, then its FT is given by f̂ (𝜉) = 1

𝜋
sin 𝜉
𝜉

which is
not in L1(ℝn). The case of (ℝn) is more serious in the sense that f̂ is not in (ℝn) for any
f ∈ (ℝn). This is part of the well-known Paley–Wiener theorem.

On the other hand, if we wish to work with the space L2, the integral in (2.43) may not be
finite. However, it is possible to interpret the integral in (2.43) in a different way. In fact, we
can give interpretation in two different ways; either through the Schwartz class of functions or through the space L1 ∩ L2. Both the approaches need density arguments. There is an
advantage working in the space  as the FT will be a continuous isomorphism of  onto  .
Also  happens to be the space of smooth functions that is dense in Lp for all 1 ≤ p < ∞.
Thus, it may be possible to extend many arguments that hold true in  to Lp spaces by
density arguments. The Schwartz space (ℝn) is defined by

 = (ℝn) =
{
f ∈ C∞(ℝn) ∶ sup

x∈ℝn

|||x𝛼D𝛽 f||| < ∞ for all multi-indices 𝛼, 𝛽
}

.

A metric can be introduced in  via the following family of semi-norms:

‖f‖k,m = sup|𝛼|≤k,|𝛽|≤m sup
x∈ℝn

|||x𝛼D𝛽 f||| ,
for k,m = 0, 1,…. The dual  ′ of  is called the space of tempered distributions. Trivially(ℝn) ⊂  . Using the fact that ∫

ℝn
(1+ |x|)−k dx < ∞ when k > n∕2, it is easily verified that

f ∈ Lp(ℝn) for all 1 ≤ p ≤ ∞. Moreover, if p is a polynomial and 𝛼 is a multi-index, then
the mappings f ↦ pf and f ↦ D𝛼f are linear continuous from  into  . Also,  is dense
in Lp(ℝn) for 1 ≤ p < ∞. That is, if f ∈ Lp(ℝn), then there is a sequence fk in  such that‖fk − f‖p → 0 as k → ∞.
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Proposition 2.53. For any p ∈ [1,∞], the inclusion map

(ℝn) ↪ Lp(ℝn)

is a continuous linear mapping. Thus,  is continuously embedded into Lp(ℝn) for any
p ≥ 1.

For f ∈ (ℝn), its inverse transformation f̌ is defined by

f̌ (x) = 1
(2𝜋)n∕2 ∫

ℝn

ei𝜉⋅x f̂ (𝜉) d𝜉 (2.44)

for x ∈ ℝn. We have the following main result regarding the FT:

Theorem 2.54. The Fourier transform  ∶ (ℝn) → (ℝn) is a continuous linear
isomorphism with −1( f ) = f̌ , for f ∈  . Furthermore, for f, g ∈ (ℝn), the following
properties hold:

1. (weak Parseval relation):

∫
ℝn

f̂ (𝜉)g(𝜉) d𝜉 = ∫
ℝn

f(x)ĝ(x) dx. (2.45)

2. (strong Parseval relation):

∫
ℝn

f̂ (𝜉) ̂̄g(𝜉) d𝜉 = ∫
ℝn

f(x)ḡ(x) dx, (2.46)

where ḡ is the complex conjugate of g. The strong Parseval relation is equivalent to
the L2 isometry in (ℝn), that is ‖f‖2 = ‖f̂‖2.

3. (Relation between differentiation and FT):

(x𝛽D𝛼
x f )

∧(𝜉) = i|𝛼|+|𝛽|D𝛽
𝜉

(
𝜉𝛼 f̂ (𝜉)

)
𝜉𝛽D𝛼

𝜉 f̂ (𝜉) = i|𝛼|+|𝛽| (
D𝛽

x
(
x𝛼f

))
(𝜉).

(2.47)

Thus, FT takes the multiplication operator by polynomials to linear differential
operators with constant coefficients and vice versa.

We now state the, following, Plancherel theorem:

Theorem 2.55 (Plancherel). There exists a unique isometry P ∶ L2(ℝn) → L2(ℝn) that is
onto such that P(f) = f̂ if f ∈ (ℝn).
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Interpretation of f̂ if f ∈ L2(ℝn): For f ∈ L2(ℝn), choose a sequence fk ∈ (ℝn) such that
fk → f in L2(ℝn). Since ‖fk‖2 = ‖f̂k‖2, it is easy to see that f̂k converges in L2(ℝn). Denote the
limit by Pf.That is ‖Pf− f̂ k‖2 → 0.This is taken as the definition of FT of an L2(ℝn) function,
which does not depend on a particular choice of fk. Keeping this inmind, the formula (2.43)
is interpreted as limit in mean if f ∈ L2(ℝn).

2.4.1 Convolution

This is another important operation between two functions. The fantastic combination of
FT and convolution is a powerful tool in many direct applications including the analysis of
PDE. For two measurable functions f, g ∶ ℝn → ℝ, the convolution of f and g is denoted by
f ∗ g that is formally defined as

f ∗ g(x) = ∫
ℝn

f(x − y)g(y) dy. (2.48)

Indeed, the above integral is finite for any x ∈ ℝn, if f, g are continuous and one of them
has compact support. Moreover supp (f ∗ g) ⊂ supp f + supp g. In fact, if f, g ∈ L1(ℝn),
then using the translation invariance property of the Lebesgue measure, it is easy to see that
f ∗ g ∈ L1(ℝn) and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. (2.49)

Note that f ∗ g = g ∗ f. Thus L1(ℝn) becomes a commutative normed algebra with ∗ as the
multiplication.

Theorem 2.56 (Young’s Inequality). Assume f ∈ Lp(ℝn), g ∈ Lq(ℝn) with 1 ≤ p, q ≤ ∞
and 1

p
+ 1

q
≥ 1. Let r be such that 1

p
+ 1

q
= 1 + 1

r
. Then, f ∗ g ∈ Lr(ℝn) and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q. (2.50)

The convolution is useful to smoothen the functions that are not smooth and it can be used
to approximate Lp(Ω) functions by (Ω) functions. See the following proposition:

Proposition 2.57. For f, g ∈ (ℝn), the convolution f ∗ g ∈ (ℝn) and

D𝛼(f ∗ g) = D𝛼 f ∗ g = f ∗ D𝛼g

for any multi-index 𝛼. More generally, if f ∈ Ck(ℝn), g ∈ C(ℝn) and one of them has
compact support, then f ∗ g ∈ Ck(ℝn) and

D𝛼(f ∗ g) = (D𝛼 f ) ∗ g (2.51)

for all 𝛼 with |𝛼| ≤ k.
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2.4.2 Mollifiers

These are a special class of smooth functions with compact support, which is also known as
Friedrichs mollifiers. These are used to convolve with functions that need not be smooth to
produce smooth approximations. Consider the function 𝜌 ∶ ℝn → ℝ defined by

𝜌(x) =

{
c exp

(
−1

1−|x|2
)

if |x| < 1
0 if |x| ≥ 1.

(2.52)

Then, 𝜌 ∈ (ℝn) with supp𝜌 = B1(0). Here the constant c is chosen so that ∫
ℝn

𝜌(x) dx = 1.

Now, the mollifiers 𝜌𝜀 ∶ ℝn → ℝ is defined by

𝜌𝜀(x) = 𝜀−n𝜌
(x
𝜀

)
(2.53)

for x ∈ ℝn, 𝜀 > 0. Then, 𝜌𝜀 ∈ (ℝn), supp 𝜌𝜀 = B𝜀(0) and ∫
ℝn

𝜌𝜀(x) dx = 1, for all 𝜀 > 0.

We also have the following main results:

Theorem 2.58. Let f be continuous with compact support K. Then, there is a compact set
K1 ⊃ K, a sequence fk ∈ (ℝn) with supp fk ⊂ K1 and fk → f uniformly in K1 and
hence in ℝn.

The proof follows by taking fk = 𝜌1∕k ∗ f. Indeed, supp fk ⊂ supp 𝜌1∕k + supp f ⊂
B1(0) + K.

In the integrable case, we have

Theorem 2.59. For 1 ≤ p < ∞, the space (ℝn) is dense in Lp(ℝn). More generally, (Ω)
is dense in Lp(Ω) for any open set Ω ⊂ ℝn.

The proof involves the use of cut-off functions to make it a compactly supported functions
and then convolve with mollifiers to smoothen the functions. We end this sub-section with
the following result:

Theorem 2.60 (Product Formula). Let f, g ∈ L1(ℝn). Then, f ∗ g ∈ L1(ℝn) and

(f ∗ g)∧ = f̂ ĝ. (2.54)

Furthermore, by taking the inverse FT, we can recover f ∗ g as

f ∗ g = −1( f̂ ĝ)

whenever both the sides make sense.



CHAPTER 3

First-Order Partial Differential
Equations: Method of
Characteristics

3.1 INTRODUCTION

Thefirst-order equations with real coefficients are particularly simple to handle.Themethod
of characteristics reduces the given first-order partial differential equation (PDE) to a system
of first-order ordinary differential equations (ODE) along some special curves called the
characteristics of the given PDE. This will, in turn, help us to prove the existence of a
solution to the Cauchy problem or initial value problem (IVP) associated with the PDE.
Complications do arise in case of quasilinear or non-linear equations resulting only in
local existence; the geometry of the characteristics also becomes more involved and non-
uniqueness of (smooth) solutionsmay also result. Tomotivate the ideaswe begin by a simple
example.

Example 3.1. Consider the transport equation in two independent variables t and x,
namely

ut(x, t) + cux(x, t) = 0, (3.1)

for t > 0, x ∈ ℝ, where c > 0 is a given constant. This is a linear, first-order PDE.
Consider the curve x = x(t) in the (x, t) plane given by the slope condition ẋ = dx

dt
= c, t ≥ 0. These are straight lines with slope 1∕c and are represented by the equation
x − ct = x0, where x0 is the point at which the curve meets the line t = 0 (see Figure
3.1(a)). These curves, straight lines in this case, are called the characteristic curves or
simply the characteristics of (3.1). When c is a function of t and x, the characteristic
curves need not be straight lines.

Now restrict the solution u(x, t) to a characteristic x(t) = ct + x0, that is, consider
the function of one variable U(t) = u(x(t), t). By the chain rule, it is easy to see that

d
dt
U(t) = d

dt
(u(x(t), t)) = uxẋ(t) + ut ⋅ 1 = ux ⋅ c + ut = 0, (3.2)

48
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x

(a)

t

x0

x(t) = ct + x0

(x(t), t)

x
x0 = (x − ct, 0)

slope c−1

(x, t)

x

u

t = 0
(b)

x

u(⋅, t0) = u0(⋅ − ct0)

t = t0

Figure 3.1 (a) Characteristic curves, (b) Solution curves

using (3.1). Therefore, U ≡ constant and thus u is constant along the characteristic
x− ct = x0. This observation can be used to solve the IVP for the PDE (3.1) as follows:

Suppose the initial values of u are given on the line t = 0, that is, u(x, 0) = u0(x) is
given and u0 is a C1 function. Now, for any point (x, t), t > 0 in the upper half plane,
draw the characteristic passing through the point1 (x, t). It is easy to see that this is given
by the line with slope 1∕cmeeting the line t = 0 at the point (x−ct, 0). As shown above,
we have u(x, t) = u(x − ct, 0) = u0(x − ct).

It is easy to verify that this indeed is a solution of the PDE (3.1) satisfying the
prescribed initial condition u(x, 0) = u0(x) on the line t = 0.

We observe that the solution of the PDE was obtained by solving two ODEs. The initial
curve, where initial value u0 is assigned, namely the x-axis in this case, can be a smooth
curve. However, it cannot be arbitrarily chosen. For example, the curve Γ shown in Figure
3.2(a) can be chosen as an initial curve, as it intersects all the characteristics, whereas the
curve shown in Figure 3.2(b) cannot be considered as an initial curve as it coincides, locally,
with a characteristic curve, thus becoming ambiguous with the fact that u is a constant along
the characteristics. So, the initial curve will have to satisfy certain transversality condition,
which we will discuss later.

1If c is a function of x and t, it may not be possible to draw a characteristic through every point (x, t), t > 0,
thus obtaining the solution only in a subset of the upper half plane. If c is a function of u, then there may be two
distinct characteristics passing through the same point.



50 FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

x
(a)

t

Characteristic curves

Initial curve Γ

x
(b)

t

Characteristic curves

Initial curve Γ

Figure 3.2 Characteristic and initial curves

Ω
Γ0:Initial curve

Characteristic curves

Figure 3.3 Characteristic and initial curves

3.2 LINEAR EQUATIONS

In Example 3.1, the way we constructed the characteristic curves, which were straight lines,
may look bit ad-hoc or artificial.Wewill now explain the geometry behind this construction
and see how it gets extended to general first-order equations. Thus, consider the general
first-order linear PDE in two variables:

a(x, y)ux + b(x, y)uy = c(x, y)u + d(x, y), (3.3)

where we have used x and y to denote the independent variables. Here (x, y) ∈ Ω, a smooth
bounded domain in ℝ2; a, b, c, d are given smooth functions defined on Ω and u = u(x, y)
is the unknown function. Let Γ0 ⊂ Ω be an initial curve, which is given in a parametric
form (see Figure 3.3):

Γ0 = {(x0(s), y0(s)) ∶ 0 ≤ s ≤ 1},

where x0 and y0 are C1 functions defined on [0, 1]. Let u0 = u0(s) be a given function
defined on [0, 1], which will be served as an initial condition. The Cauchy problem or IVP
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for PDE (3.3) is as follows: Find u = u(x, y) satisfying the PDE (3.3) together with the initial
condition

u(x0(s), y0(s)) = u0(s), s ∈ [0, 1]. (3.4)

The problem of local solvability of IVP is to find u in a neighborhood of Γ0 in Ω,
satisfying (3.3) and (3.4).

We now give the geometric idea behind introducing the characteristics. First observe that
for a fixed point (x, y) ∈ Ω, the term on the left side of (3.3) is the directional derivative
of u at (x, y) in the direction of the vector (a(x, y), b(x, y)). Thus, if we consider any curve
(x(t), y(t)), parameterized by the t variable, in the (x, y) plane, such that the tangent at each
point on this curve is the vector (a(x, y), b(x, y)) (see Figure 3.4), then the term on the left
side of (3.3) will become the total derivative of u along this curve. Such curves are easy to
construct by the requirement of the tangent vector at each of its points. These curves are the
solutions of the following system of ODE

dx
a(x, y)

=
dy

b(x, y)
or

dy
dx

=
b(x, y)
a(x, y)

(3.5)

or in the parametric form

dx
dt

(t) = a(x(t), y(t)),
dy
dt
(t) = b(x(t), y(t)), (3.6)

with different initial conditions for x(0) and y(0). Along any such curve, u will satisfy the
ODE

d
dt
u(x(t), y(t)) = c(x(t), y(t)) u(x(t), y(t)) + d(x(t), y(t)). (3.7)

Note that t here is the parameter defining these curves. The one parameter family of curves
defined by (3.6) are called the characteristic curves of the PDE (3.3).

x

y

(x0, y0)
(a(x, y), b(x, y))

(x(t), y(t))

Figure 3.4 A characteristic curve
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Let s ∈ [0, 1] be fixed and consider the characteristic curve passing through the point
(x0(s), y0(s)) ∈ Γ0. This characteristic curve is obtained by solving the system of first-order
ODE (3.6) with the initial values given by

x(0) = x0(s), y(0) = y0(s).

Under appropriate assumptions on a and b, for example, a, b are C1 functions, the existence
and uniqueness result from the ODE theory (see Chapter 2), there is a unique characteristic
curve in a neighborhood of t = 0 (local existence). To emphasize the dependence of
the solution on s, we denote it by (x(t, s), y(t, s)). More precisely, for fixed s the points
(x(t, s), y(t, s)) moves along the characteristic curve for t small around t = 0. As we change
s ∈ [0, 1], we get different characteristic curves.

Now by restricting u along a characteristic curve (that is, fixing an s), we get an equation
for u as

d
dt
u(x(t, s), y(t, s)) = c(x(t, s), y(t, s))u(x(t, s), y(t, s)) + d(x(t, s), y(t, s)) (3.8)

with the initial values

u(x(0, s), y(0, s)) = u0(s). (3.9)

Note that in the above ODE, s is merely a parameter, whereas t is the independent variable.
Thus, we have obtained u along the fixed characteristic curve. By changing s, we obtain
u along different characteristic curves. However, we still need to answer the question that
whether this procedure indeed gives u in a neighborhood Ω1 in Ω, containing the initial
curveΓ0, and then verify that u is a solution of the Cauchy problem. To achieve this, we need
to assure that the family of characteristics {(x(t, s), y(t, s))} obtained by taking all s ∈ [0, 1],
covers such an Ω1. In other words, we need to solve the following inverse problem:

Given an arbitrary point (x, y) ∈ Ω1, find a characteristic curve passing through (x, y)
and meeting the initial curve; more precisely, given (x, y) ∈ Ω1, find (t, s) and a solution of
(3.6) such that (see Figure 3.5)

x(t, s) = x, y(t, s) = y. (3.10)

A positive answer to this inverse problem imposes certain condition on the initial curve
known as transversality condition. This condition will be discussed in a more general
situation in the next section, where we take up the study of the quasilinear equations. Here
are some examples.

Example 3.2. Consider the transport equation uy(x, y) + kux(x, y) = 0 with the initial
condition u(x, 0) = u0(x) on Γ0 ∶ y = 0. Here k is a real constant. Comparing with
(3.3), we have a = k, b = 1 and c = d = 0. Thus, the characteristics are the solutions

of
dy
dx

= 1
k
. This shows that the straight lines given by x − ky = constant, are the

characteristics. This has already been seen in Example 3.1.
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Ω
Γ0:initial curve

(x0(s), y0(s))

(x, y)

Figure 3.5 Characteristic through (x, y)

Example 3.3. Consider the PDE, xux + yuy = 𝛼u and u = 𝜙(x) on the initial curve y = 1.
It is easy to see that y = cx, c constant, are the characteristic curves and along any of
these curves, u satisfies

d
dx

u(x, cx) = ux(x, cx) + uy(x, cx) ⋅ c = ux +
y
x
uy =

𝛼
x
u(x, cx),

whose solution is given by u(x, cx) = kx𝛼. As k = k(c), depends on c it may differ from
characteristic to characteristic. Thus, we have the general solution u(x, y) = k

(
y
x

)
x𝛼,

where k is an arbitrary function. Now applying the condition u = 𝜙(x) at y = 1, we get

𝜙(x) = k
(1
x

)
x𝛼 or k(x) = 𝜙

(1
x

)
x𝛼

and hence the required solution is

u(x, y) = 𝜙
(
x
y

)
y𝛼.

There will be difficulties if, instead, we prescribe initial condition on the x-axis
(why?).

3.3 QUASILINEAR EQUATIONS

The general quasi-linear equation in two independent variables x and y, can be written as

a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0, (3.11)
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where u is the unknown function and the functions a, b and c are given smooth
functions, now defined in a three-dimensional domain. Having seen the usefulness of the
characteristics in the linear case, in reducing the PDE to a systemofODE,wewish to employ
a similar procedure by considering the characteristic curves of (3.11). However, if we try to
imitate the procedure of the linear case, we immediately observe the difficulty in solving the
ODE system (3.6), as now the functions a, b are the functions of three variables – x, y and
u, but with only two equations having three unknowns. Later we will show that one more
equation can be adjoined to the system (3.6) using (3.11), thus obtaining a complete system.
But, the solution will then define a space curve rather than a plane curve as in the case of
(3.6). Let us begin a heuristic discussion with an example.

Example 3.4 (Burgers’ Equation). Consider the quasilinear problem

ut + uux = 0, x ∈ ℝ, t > 0 and u(x, 0) = u0(x), x ∈ ℝ. (3.12)

Though this equation looks simple, it poses non-trivial problems in the analysis and
leads to a new phenomenon. Proceeding as in the linear case, we formally introduce the
characteristic curve  ∶ x = x(t) through the equation dx

dt
(t) = u(x(t), t). Since u itself is

unknown, the curve  cannot be determined as such. However, assuming such a  exists
and restricting u to  and considering the function U(t) = u(x(t), t), we immediately see
that dU

dt
= 0. Thus, the functionU is a constant. Therefore, the solution u is a constant along.The conclusion is that the characteristics of (3.12) are straight lines, perhaps with varying

slopes (see Figure 3.6(a)). This is an important information we have obtained regarding the
solution, though we are not able to solve the characteristic equation a priori. On the other
hand, if two characteristics meet at a point P, each characteristic may carry different values
from the initial values u0(x1), u0(x2) as in Figure 3.6(b), thus creating discontinuity of the
solution at P. Thus, in this situation the classical analysis fails. A discussion for equation
(3.12) will be made below with specific initial values.

Now consider a point (x, t), t > 0 in the upper half plane. Assume that there is a unique
characteristic passing through this point and meeting the initial axis t = 0 at x0. From the

x

t

x0

Slope (u0(x0))−1

(a)

xx1 x2

P

(b)
Figure 3.6 (a) A characteristic, (b) Meeting of two characteristics
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discussion we just now had, we see that the following relations hold:

x = tu0(x0) + x0
u(x, t) = u0(x0),

(3.13)

where u0 is the initial function. Unlike the linear case, it is not evident how to obtain the
initial point x0 from the first equation in (3.13). By the implicit function theorem, there is a
unique x0, depending on x and t, satisfying the first equation in (3.13), provided that

1 + tu ′
0(x0) ≠ 0. (3.14)

Assuming the condition (3.14), it is now straightforward to verify that u as defined by the
second equation in (3.13) is indeed a solution of the problem (3.12). If 𝜐 is any other solution,
then on the characteristic x = tu0(x0) + x0, we have

𝜐(x, t) = u0(x0) = u(x, t).

Thus, we have established the following theorem:

Theorem 3.5. Assume u0 ∈ C1(ℝ).

1. If u ′
0(𝜉) ≥ 0 for all 𝜉, that is u0 is a non-decreasing function, then the Cauchy

problem (3.12) has a unique solution u ∈ C1(ℝ × [0,∞)).
2. If either u0 is non-increasing or u ′

0 changes sign and if

sup
u ′
0(𝜉)<0

|u ′
0(𝜉)| < ∞,

then the Cauchy problem (3.12) has a unique solution u ∈ C1(ℝ × [0,T)), where

T−1 = sup
u ′
0(𝜉)<0

|u ′
0(𝜉)|.

In either of the cases, the solution is given in the parametric form as

x = tu0(x0) + x0, u(x, t) = u0(x0).

Some Comments on the Hypothesis in the above Theorem: First observe that the
characteristic emanating from a point x0 on the line t = 0 is the straight line having slope
1∕u0(x0).Thus, if u0 is non-decreasing, then the characteristics emanating from two distinct
points on the line t = 0 will never meet for all t > 0 and thus have diverging slopes. An
illustration is shown in Figure 3.7. For example, if we take u0(𝜉) = 𝜉 or u0(𝜉) = 𝜉3 for 𝜉 ∈ ℝ,
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x

t

Figure 3.7 Diverging characteristics

it is not difficult to write down the solution of the Cauchy problem explicitly; the details are
left as exercises.

On the other hand, if u ′
0 < 0 in an interval J, then the characteristics emanating from

any two distinct points of J are going to intersect at a point (x, t) with t > 0. This is depicted
in Figure 3.6(b). The second equation in (3.13) implies that the value u(x, t) is ambiguous,
that is, not uniquely defined. This is what that restricts the time of existence T in the above
theorem, when we seek for C1 solution. The reader should consider the examples of u0(𝜉) =
𝜉2 and u0(𝜉) = −𝜉|𝜉| and analyze the situation.

SpecificDiscontinuous Initial Values: As discussed above, if the initial function u0 is non-
decreasing and smooth, the characteristics emanating from distinct points on the x-axis do
not intersect as depicted in Figure 3.7 and the IVP could be solved. In this scenario, for any
point (x, t) in the upper half plane, there is a unique characteristic curve passing through
(x, t) and meeting the x-axis at a point x0. This line will have the slope u0(x0)−1 and the
solution at (x, t) is given by u(x, t) = u0(x0). Let us take the specific example

u0(x) =
{

0 if x ≤ 0
1 if x ≥ 1

and for 0 ≤ x ≤ 1, u0 is non-decreasing and smooth. Here the characteristics are as shown
in Figure 3.8(a). But if u0 is not smooth, there may be a region with no characteristics, as
shown in the following example. Let

u0(x) =
{

0 if x < 0
1 if x ≥ 0

In this case, there is a region in the upper half plane without any characteristic (see Figure
3.8(b)).This region is known as rarefaction, andwe need to define the solution here, perhaps
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in a non-classical way. The more serious situation is given by the following example. Let

u0(x) =
{

1 if x < 0
0 if x ≥ 1

and for 0 ≤ x ≤ 1, u0 is non-increasing and smooth. As the time evolves, the higher value of
u0 will result in higher speed (inverse of the slope) of the characteristic, eventually leading
to the intersection of characteristics and we see the formation of a shock (see Figure 3.8(c)).
More details are given in the chapter on conservation laws. It is to be noted that the concept
of a classical solution fails, we may need to interpret the solution in a different way. This
is the situation where the characteristics meet, resulting in the creation of discontinuities
known as shocks. The evolution of u(x, t) for various values of t are depicted in Figure 3.9.
This can be interpreted as the evolution of waves coming from behind with high speeds,
thus causing the discontinuity later.

x

t

(a)
x

t

(b)

Rarefaction

x

t

(c)
Figure 3.8 Rarefaction and shock formation
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x
At time t = 0

u0

x
At time t = t1 > 0

x
At time t2 > t1 > 0

x

Shock discontinuity

Figure 3.9 Shock formation

Formal Discussion on the More General Equation: The Burgers’ equation (3.12) is a
special case of a general class of first-order equations of the form ut + (f(u))x = 0, known as
conservation laws. If f is a smooth function, the equation reduces to ut + f ′(u)ux = 0. Note

that taking f(u) = u2

2
, we obtain the Burgers’ equation (3.12). Proceeding as in the case

of the Burgers’ equation, we find that the characteristics for the general f are also straight
lines with varying slopes. If a particular characteristic meets the line t = 0 at x0, then its
slope is the inverse of f ′(u0(x0)). Owing to their applications in many physical situations, it
is required to find a solution for all t > 0. As seen above, this may not be possible, in general,
if we wish to remain in the realm of classical solutions. Thus, there is a need to modify the
notion of a solution. This issue is taken up for a detailed discussion in Chapter 5.

We now return to a general discussion of the quasilinear equations.

Definition 3.6 (Integral Surface). For a C1 solution u(x, y) of (3.11) in some domain ofℝ2,
the surface given by z = u(x, y) in the three-dimensional (x, y, z) space, is known as an
integral surface of (3.11).

Using the scalar product in ℝ3, equation (3.11) can be written as

(a, b, c) ⋅ (ux, uy,−1) = 0. (3.15)
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Since the vector (ux, uy,−1) is normal to the integral surface z = u(x, y) at the point
(x, y, z) on the surface, equation (3.11) or (3.15) can be interpreted as the condition that
at each point on the integral surface, the vector (a, b, c) is tangent to the surface. Also, the
PDE (3.11) defines a vector (direction) field (a, b, c) in ℝ3, called the characteristic
directions. Furthermore, a surface z = u(x, y) is an integral surface of (3.11) if and only if at
each point on the surface, the tangent plane contains the characteristic directions.

This motivates us to look at an integral surface as a family of space curves, whose tangent
at any point on the curve coincides with the characteristic directions. These curves are
known as characteristic curves. In other words, the tangential direction of the characteristic
curve is given by the vector (a, b, c). Thus, introduce the family of space curves given by the
system of ODE

dx
a(x, y, z)

=
dy

b(x, y, z)
= dz

c(x, y, z)
. (3.16)

In the parametric form, the above equations can be written as

dx
dt

(t) = a(x(t), y(t), z(t))

dy
dt
(t) = b(x(t), y(t), z(t))

dz
dt
(t) = c(x(t), y(t), z(t)).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.17)

Note that in the linear case, a and bwere independent of z and hence the solution (x(t), y(t))
of (3.6) defined plane curves in the x–y plane. In relation to (3.17), when a and b were
independent of z, these plane curves are nothing but the projection of the space curves
given by the solutions of (3.17). Using the existence and uniqueness result for ODE, under
suitable conditions on a, b, c, we see that through each point (x0, y0, z0), there passes a unique
characteristic curve (integral curve)

x(t) = x(x0, y0, z0, t), y = y(x0, y0, z0, t), z = z(x0, y0, z0, t),

defined for small t. Now, it is trivial to see that if a surface is generated by a family
of characteristic curves, then, it is an integral surface as both have the same tangential
directions. Conversely, if z = u(x, y) is an integral surface  and (x0, y0, z0 = u(x0, y0)) is a
point on  , then, the integral curve through (x0, y0, z0) will lie completely on  and thus, 
is generated by a family of characteristic curves. To see this, consider the solution of

dx
dt

= a(x, y, u(x, y)),
dy
dt

= b(x, y, u(x, y))
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with x = x0, y = y0 at t = 0. Then, the corresponding curve

x = x(t), y = y(t), z = z(t) = u(x(t), y(t))

satisfies
dz
dt

= ux
dx
dt

+ uy
dy
dt

= aux + buy = c.

Thus, the curve (x(t), y(t), z(t)) = (x(t), y(t), u(x(t), y(t))) satisfies the system (3.17) and
hence it is the characteristic through (x0, y0, z0). Moreover, it lies on  by definition.
Furthermore, if two integral surfaces intersect at a point, then the characteristic curve
through the point would lie on both the surfaces and hence they intersect along the whole
characteristic through this common point. With this detailed discussion, we can now
formulate the IVP as follows:

IVP: As in the case of the linear equation, the IVP or the Cauchy problem consists of
finding a solution u of (3.11), in a neighborhood of a given an initial curve Γ0, in some two-
dimensional domain, represented in the parametric form:

Γ0 = {(x0(s), y0(s)) ∶ 0 ≤ s ≤ 1},

where x0 and y0 are C1 functions defined on [0, 1] and satisfying the initial condition
u(x0(s), y0(s)) = u0(s), 0 ≤ s ≤ 1 on Γ0, where u0 is a given C1 function2 on [0, 1]. Since the
given data is insufficient to solve (3.17), we lift the initial curve Γ0 to a space curve Γ0 by
adjoining the initial values as

Γ0 = {(x0(s), y0(s), u0(s)) ∶ 0 ≤ s ≤ 1}. (3.18)

We call Γ0 the initial space curve (Figure 3.10)

Theorem 3.7 (Existence and Uniqueness). Consider the PDE (3.11) and assume the
functions a, b and c are C1 functions of the variables x, y, u, in a domain ofℝ3. Suppose
that along the initial curveΓ0, the initial values u = u0(s) are prescribed, where x0, y0, u0
are continuously differentiable functions in the interval [0, 1]. Further assume that the
transversality condition holds:

a(x0(s), y0(s), u0(s))
dy0
ds

(s) − b(x0(s), y0(s), u0(s))
dx0

ds
(s) ≠ 0, (3.19)

2If we replace the interval [0, 1] by any other interval in ℝ, we only need to use a different parameterization
for Γ0.
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initial plane curve Γ0

y

u

x

initial space curve Γ̄0

Figure 3.10 Initial plane and space curves

for all 0 ≤ s ≤ 1. Then, there exists a unique solution u(x, y) defined in some
neighborhood of the initial curve Γ0, which satisfies the PDE (3.11) and the initial
condition

u(x0(s), y0(s)) = u0(s), 0 ≤ s ≤ 1. (3.20)

The theorem thus asserts that there is an integral surface through the space curveΓ0 in some
neighborhood. It should also be noted that the transversality condition (3.19) only depends
on the coefficients a, b, c and the Cauchy data (3.20).

Proof Consider the system of ODE

dx
dt

= a(x, y, u),
dy
dt

= b(x, y, u), du
dt

= c(x, y, u).

It follows then that through any fixed point (x0(s), y0(s), u0(s)) ≡ (x0, y0, z0) for s ∈ [0, 1],
on the initial space curve, there is a unique family of characteristics

x = x(x0, y0, u0, t) ≡ X(t, s)
y = y(x0, y0, u0, t) ≡ Y(t, s)
u = u(x0, y0, u0, t) ≡ U(t, s)

(3.21)

for small t in an interval around 0. Note that the variable s is a parameter on the initial curve
and t, the parameter on the characteristics. Actually, the characteristics are the orbits of the
above autonomous system of ODE. Therefore, the characteristics passing through distinct
points on Γ0 never intersect. Note also that the functions X,Y and U are C1 functions of s
and t for s ∈ [0, 1] and t small. These observations follow from ODE theory; see Chapter 2.
Furthermore, note that
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X(0, s) = x0(s),Y(0, s) = y0(s) and U(0, s) = u(x0(s), y0(s)) = u0(s)

and there is no need to solve for u along the characteristic curve separately, as u is also a
part of the above ODE system. In the linear or semi-linear case (this is the case when the
coefficients a and b in (3.11) do not depend onu), the characteristic equations are first solved
and then u is solved along a characteristic.

Thus, the characteristics occupy a subset containing Γ0, in ℝ3. In order to complete the
proof, we now construct the required solution u(x, y), for (x, y) in a small neighborhood of
Γ0, using the characteristics. In other words, it suffices to show that for given (x, y) in a small
neighborhood of Γ0, there exist t small and s ∈ [0, 1] such that

x = X(t, s), y = Y(t, s).

Writing the solutions t and s of these non-linear algebraic equations as t = t(x, y) and s =
s(x, y), we can then define u by

u(x, y) = U(t(x, y), s(x, y)).

Thus, there is a characteristic curve emanating from (x0(s), y0(s), u0(s)) and reaching
(x, y, u(x, y)) at time t. The procedure used to construct the characteristics proves that the
function u defined as above, is the required solution.

Since the Jacobian of X,Y with respect s and t

𝜕(X,Y)
𝜕(s, t)

||||t=0
=

|||||||||
𝜕X
𝜕s

𝜕X
𝜕t

𝜕Y
𝜕s

𝜕Y
𝜕t

|||||||||t=0

= b
dx0

ds
− a

dy0
ds

does not vanish for all s ∈ [0, 1], by the transversality condition, we can invoke the implicit
function theorem to obtain t, s in terms of x, y, with t small and s ∈ [0, 1]. This completes
the proof.

The above proof actually gives a procedure to construct the solution explicitly, by solving a
system of ODE and some non-linear algebraic equations. We illustrate this in the following
example:

Example 3.8. Consider the PDE: uux + uy = 1 with initial conditions x = s, y = s,
u = 1

2
s, 0 ≤ s ≤ 1, that is, the initial value is given on a diagonal of the unit square in

ℝ2. Here a = u, b = 1, c = 1. Since

a(x0(s), y0(s), u0(s))
dy0
ds

− b(x0(s), y0(s), u0(s))
dx0

ds
= s

2
⋅ 1 − 1 ⋅ 1 = s

2
− 1



3.4 General First-Order Equation in Two Variables 63

never vanishes for all 0 ≤ s ≤ 1, the transversality condition (3.19) is satisfied. Solving
the following ODE with the initial conditions:

dx
dt

= u,
dy
dt

= 1, du
dt

= 1, x(0, s) = s, y(0, s) = s, u(0, s) = s
2
,

we obtain the family of characteristic curves

x(t, s) = t2
2
+ st

2
+ s, y(t, s) = t + s, u(t, s) = t + s

2

Now solving the first two algebraic equations for s and t in terms of x and y, we get

s =
x − y2∕2
1 − y∕2

, t =
y − x

1 − y∕2
. Finally, the solution is given by

u(x, y) =
2(y − x) + (x − y2∕2)

2 − y
,

for 0 ≤ x, y ≤ 1.

3.4 GENERAL FIRST-ORDER EQUATION IN TWO VARIABLES

We now consider the IVP for the general first order equation in two variables x, y:

F(x, y, u, ux, uy) = 0.

It is customary to use the notation z = u(x, y), p = ux = zx and q = uy = zy. Thus, the
general first order equation in two variables can be written as

F(x, y, z, p, q) = 0, (3.22)

where we assume that the function F is a C2 function in all its arguments in a domain in
ℝ5. The statement regarding the IVP remains the same as in the case of linear or quasilinear
equations. The interesting and surprising fact is that, once again, we can reduce the study
of IVP for (3.22) to that of a system of ODE. But the geometry is more involved now and
requires much more intricate geometrical objects known as strips and cones.

As we are seeking real valued solutions (as a rule!), the equation

p2 + q2 + 1 = 0
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does not have a solution. In the general case, there may be non-uniqueness as well. It
is possible to get two integral surfaces passing through the same initial space curve. See
Exercise 15.We are going to derive some sufficient conditions on F so that the IVP for (3.22)
has a local solution. To proceed further, it is instructive to write the quasilinear equation
(3.11) in the form (3.22) as

F(x, y, z, p, q) = a(x, y, z)p + b(x, y, z)q − c(x, y, z)

as we might be guided how to write the ODE system governing the characteristics in the
present situation. First geometric interpretation of (3.22). Let u = u(x, y) be a solution of
(3.22) and (x0, y0, z0) be a point in space. Consider an integral surface z = u(x, y) through
(x0, y0, z0).Thedirection numbers (p, q,−1) define the normal direction to the tangent plane
at (x0, y0, z0) of the integral surface. Then, equation (3.22) states that there is a relation

F(x0, y0, z0, p, q) = 0 (3.23)

between the direction numbers p and q. Thus, the differential equation (one relation with
two numbers) will restrict its solutions to those surfaces having tangent planes belonging to
a one-parameter family.

In general, this one-parameter family of planes will envelop a cone called theMonge cone
(see Figure 3.11). Thus, the differential equation (3.22) describes a field of cones having the
property that a surface will be an integral surface if and only if it is tangent to a cone at each
point.

Remark 3.9. In the quasilinear case, the cone degenerates into a straight line whose
direction is given by (a, b, c).

Figure 3.11 Monge cone
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At each point, the surface will be tangent to a Monge cone. The line of contact of the surface
and the cones define a field of directions on the surface called the characteristic directions and
the integral curves of this field define a family of characteristic curves. The Monge cone at
(x0, y0, z0) is the envelope of the one-parameter family of planes (whose normal is (p, q,−1))
can be written as

z − z0 = p(x − x0) + q(y − y0), (3.24)

where p, q satisfy (3.23). By solving (3.23) for q in terms of p as q = q(x0, y0, z0, p), equation
(3.24) can be written as

z − z0 = p(x − x0) + q(x0, y0, z0, p)(y − y0).

This is a one-parameter family of planes describing the Monge cone. By differentiating this
equation with respect to p, we get

0 = (x − x0) + (y − y0)
dq
dp

.

On the other hand, a similar differentiation of (3.23) gives

0 = dF
dp

= Fp + Fq
dq
dp

. (3.25)

Eliminating
dq
dp

from the above two equations, we obtain the following equations describing

the Monge cone:

F(x0, y0, z0, p, q) = 0

z − z0 = p(x − x0) + q(y − y0)
x − x0

Fp
=

y − y0
Fq

.

⎫⎪⎪⎬⎪⎪⎭
(3.26)

Given p and q, the last two equations in (3.26) give the line of contact between the tangent
plane and the cone. These two equations can be written as

x − x0

Fp
=

y − y0
Fq

=
z − z0

pFp + qFq
. (3.27)

Thus, on the given integral surface, at each point p0 = p(x0, y0), q0 = q(x0, y0) are known,
the tangent plane

z − z0 = p0(x − x0) + q0(y − y0)
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together with the third equation in (3.26) determines the line of contact with the Monge
cone given by (3.27) or the characteristic direction. Thus, the characteristic curves are given
as the solutions of the system of ODE

dx
Fp

=
dy
Fq

= dz
pFp + qFq

or

dx
dt

= Fp,
dy
dt

= Fq,
dz
dt

= pFp + qFq. (3.28)

As there are five unknowns x(t), y(t), z(t) and p(t) = p(x(t), y(t)) = zx(x(t), y(t)), q(t) =
q(x(t), y(t)) = zy(x(t), y(t)), we need two more equations to make the system (3.28) a
complete system. But along a characteristic curve on the given integral surface, we have

dp
dt

= px
dx
dt

+ py
dy
dt

= pxFp + pyFq
dq
dt

= qxFp + qyFq.

⎫⎪⎬⎪⎭ (3.29)

As the functions px, py, qx, qy involve the second derivatives of the unknown function u,
these are undesirable. In order to eliminate them from the above equations, we proceed as
follows. By differentiating the given PDE (3.22) with respect to x and y, we obtain

Fx + Fzp + Fppx + Fqqx = 0,
Fy + Fzq + Fppy + Fqqy = 0.

Using these relations, equation (3.29) reduces to

dp
dt

= −Fx − Fzp
dq
dt

= −Fy − Fzq,

⎫⎪⎪⎬⎪⎪⎭
(3.30)

where we have used the relation py =
𝜕2u
𝜕y𝜕x

= qx. Thus, on the integral surface z =

u(x, y), we have a family of characteristic curves with co-ordinates x(t), y(t), z(t) along
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with the numbers p(t), q(t) and are given by the system (3.28), (3.30). Moreover along the
characteristic curve, we have

dF
dt

= Fx
dx
dt

+ Fy
dy
dt

+ Fz
dz
dt

+ Fp
dp
dt

+ Fq
dq
dt

and we readily see that dF
dt

= 0 using (3.28) and (3.30). Thus, F is constant along the
characteristics. Thus, if F = 0 is satisfied at an initial point x0, y0, z0, p0, q0 for t = 0, then
(3.28), (3.30) will determine a unique solution x(t), y(t), z(t), p(t), q(t) passing through this
point and along which F = 0 will be satisfied for all t.

Hence, a solution can be interpreted using these five numbers and is called a strip. That
is, the strip is a space curve x = x(t), y = y(t), z = z(t) along with a family of tangent planes
whose normal directions are (p(t), q(t),−1). See Figure 3.12. For fixed t0, the five numbers
x0, y0, z0, p0, q0 are said to define an element of the strip.That is, a point on the curve together
with the tangent plane whose normal direction is (p0, q0,−1). From (3.28), we get

dz
dt
(t) = p(t)dx

dt
(t) + q(t)

dy
dt
(t). (3.31)

This is the condition that the planes are tangent to the curve and is called the strip condition.
The strips that are solutions to (3.28), (3.30) are respectively called characteristic strips and
the curves, characteristic curves.

(x(t), y(t), z(t))
(p, q,−1)

Figure 3.12 Characteristic strips



68 FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

Furthermore, as in the case of quasilinear equations, if a characteristic strip has one
element (x0, y0, z0, p0, q0) in common with an integral surface z = u(x, y), then it lies
completely on the surface. To see this, solve the ODE system

dx
dt

= Fp(x, y, u(x, y), ux(x, y), uy(x, y))

dy
dt

= Fq(x, y, u(x, y), ux(x, y), uy(x, y))

to obtain a curve x = x(t), y = y(t) satisfying the initial conditions x(0) = x0, y(0) = y0.
Then, by defining

z(t) = u(x(t), y(t)), p(t) = ux(x(t), y(t)), q(t) = uy(x(t), y(t)),

we see that

dz
dt
(t) = p(t)Fp + q(t)Fq,

dp
dt

(t) = −Fx − Fzux,
dq
dt

(t) = −Fy − Fzuy.

Therefore, x(t), y(t), z(t), p(t), q(t) determine a characteristic strip and by definition, they
lie on the surface. But, by uniqueness of the characteristic strip with the initial element
x0, y0, z0, p0, q0, this coincides with the given strip.

IVP: Suppose now an initial curve Γ ∶ x = x0(s), y = y0(s), z = z0(s) be given.
Furthermore, assume that we can assign functions p0(s) and q0(s) such that they together
form an appropriate initial strip.3 That is, they satisfy the equation

F(x0(s), y0(s), z0(s), p0(s), q0(s)) = 0 (3.32)

and the strip condition
dz0
ds

= p0
dx0

ds
+ q0

dy0
ds

. (3.33)

So, by fixing s and taking an initial element, the idea is to construct the characteristic strip
starting from the given initial strip. As s varies, we get a family of characteristic strips (see
Figure 3.13). This, in turn, will give the integral surface satisfying the initial conditions.
Again, this requires the initial curve Γ0 to be a non-characteristic curve; see Theorem 3.10,
which we state now.

3The arbitrariness of picking the functions p0(s) and q0(s) may result in non-uniqueness. It is also a condition
that is required on F in order to have a solution.
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Initial element

Characteristic elements

Figure 3.13 Characteristic and initial strips

Theorem 3.10. Let x0, y0, z0, p0, q0 be as in (3.32) and (3.33). Assume x0, y0, z0 have
continuous derivatives and p0, q0 are continuously differentiable. Moreover, assume
the following non-characteristic condition4 along the initial curve:

dx0

ds
Fq(x0, y0, z0, p0, q0) −

dy0
ds

Fp(x0, y0, z0, p0, q0) ≠ 0.

Then, in some neighborhood of the initial curve there exists a solution z = u(x, y) of
(3.22) containing the initial strip. That is,

z(x0(s), y0(s)) = z0(s), zx(x0(s), y0(s)) = p0(s), zy(x0(s), y0(s)) = q0(s).

Having given a detailed description, we omit the proof and ask the reader to fill in the details.
In general, there is no uniqueness. See the following example:

Example 3.11. Consider the equation p2 + q2 = 1 with initial condition u(x, y) = 0 on the
line x + y = 1. Then, there are two solutions given by u(x, y) = ± 1√

2
(x + y − 1). The

details are left as an exercise.

Remark 3.12. In the quasilinear case, we have

F(x, y, z, p, q) = a(x, y, z)p + b(x, y, z)q − c(x, y, z) = 0.

4This terminology coincides with earlier transversality condition in the quasilinear case.
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Thus, Fp = a, Fq = b and pFp + qFq = c and hence the three equations in (3.28) are
independent of p and q and they can be solved to determine the characteristic curves
(x(t), y(t), z(t)). But, in the non-linear case we have to solve for (x(t), y(t), z(t)) together
with the direction numbers p(t) and q(t). Moreover, in the quasilinear case, the Monge
cone equations (3.27) reduce to

x − x0

a
=

y − y0
b

=
z − z0
c

.

These are the equations of a line in the space, showing that the Monge cone
degenerates to a line. In the linear case, a and b are independent of z as well, so
that the first two equations in (3.28) form a complete system for x and y, so that
the characteristic curves are plane curves, that is, the curves lie on the (x, y) plane.
Moreover, the third equation reduces to

du
dt

(x(t), y(t)) = dz
dt
(t) = c(x(t), y(t))

and is used to obtain u.

3.5 FIRST-ORDER EQUATION IN SEVERAL VARIABLES

We can extend the theory of characteristics to the first-order equations in n variables,
namely

F(x, z, p) = F(x1,… xn, z, p1,… , pn) = 0, (3.34)

where z = u(x1,… , xn) is the unknown and pi =
𝜕u
𝜕xi

, 1 ≤ i ≤ n, p = (p1,… , pn). Here, the

characteristic equations are given by

dxi
dt

= Fpi ,
dz
dt

=
n∑
i=1

piFpi ,
dpi
dt

= −Fxi − piFz, 1 ≤ i ≤ n

which is a system of 2n + 1 equations in 2n + 1 unknowns. We do not have the kind
of geometry, that is available in the two variable case. Nevertheless, the theory can be
developed in a similar fashion with new terminologies like hyper-surface, characteristic and
non-characteristic surfaces. The Cauchy problem can be defined as follows: Given the PDE
(3.34), a hyper-surface S ⊂ ℝn and a real-valued function g defined on S, find u satisfying
the PDE (3.34) in a neighborhood of S and satisfying u = g on S. We now proceed step by
step starting from the linear equations to quasilinear to fully non-linear equations to make
the ideas clear.
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A hyper-surface S is a subset of ℝn given by the zero set of a C1 function: S = {x ∈ ℝn ∶
𝜓(x) = 0}, where 𝜓 is a C1 function with ∇𝜓(x) ≠ 0 for all x ∈ S. Thus the unit normal
given by 𝜈(x) = ∇𝜓(x)|∇𝜓(x)| , x ∈ S is well defined.

3.5.1 Linear First-Order Equation in Several Variables

A general first-order linear equation can be written as

Lu ≡ a ⋅ ∇u + a0u = f, (3.35)

in an open subset Ω of ℝn, a = a(x) = (a1(x),… , an(x)) is a given vector field, a ⋅ ∇u(x) =
n∑
i=1

ai(x)
𝜕u
𝜕xi

and ai, a0, f ∈ C1(Ω), 1 ≤ i ≤ n. The characteristic form of the operator L is

defined by

𝜒L(x, 𝜉) = a(x) ⋅ 𝜉, 𝜉 ∈ ℝn, x ∈ Ω

and the characteristic variety of L is defined as

charx(L) = {𝜉 ≠ 0 ∶ a(x) ⋅ 𝜉 = 0}.

Thus, charx(L) ∪ {0} is a hyper-surface (in fact, a hyper-plane), orthogonal to the vector
field a(x).

Definition 3.13. A hyper-surface S is called a characteristic surface for L at x ∈ S if 𝜈(x) ∈
charx(L), where 𝜈(x) is the normal to S at x. This is equivalent to the fact that the vector
field a is tangent to S at x. A hyper-surface S is called non-characteristic for L if it is not
characteristic for L at every point x ∈ S.

Remark 3.14. The transversality condition given for the two variables in the previous
section is same as the non-characteristic condition.

With these terminologies, the analysis follows exactly as in the two-dimensional linear
case. First introduce the characteristic curves x(t) = (x1(t),… , xn(t)) in Ω given by the
system of ODEs

dx
dt

= a(x). (3.36)

Along the characteristic curves, define a solution u of (3.35) as

du
dt

(x(t)) = a(x(t)) ⋅ ∇u(x(t)) = f − a0(x(t))u(x(t)). (3.37)
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Now solve (3.36) with the initial condition x(0) = x0 for fixed x0 ∈ S. A unique solution
exists for small |t|. Then solve (3.37) with u(0) = g(x0). Since S is non-characteristic,
x(t) ∉ S, for t ≠ 0. Furthermore, the inverse function theorem guarantees that for any x in
a neighborhood of S, there is an x0 ∈ S such that the corresponding solution x(t) starting
at x0 satisfies x(t) = x. Thus, all characteristic curves through S fill out a neighborhood of S
and we have the following theorem:

Theorem 3.15 (Existence and Uniqueness). Let S be a non-characteristic hyper-surface for
L of class C1; ai, a0, f, g are real valued C1 functions. Then, for a sufficiently small
neighborhoodΩ0 of S inΩ, there is a unique solution u ∈ C1(Ω0) of (3.35) that satisfies
u = g on S.

3.5.2 Quasilinear Equation in Several Variables

We next consider the quasilinear equation given by

Lu(x) ≡ a(x, u(x)) ⋅ ∇u(x) = a0(x, u(x)) (3.38)

for x ∈ Ω, a domain inℝn. Here a(x, z) = (a1(x, z),… , an(x, z)) and a0(x, z)not only depend
on x, but also on the unknown u(x). If u is a solution to (3.38), then z = u is an integral
surface that is sitting in ℝn+1. Thus, formally, introduce the curves x(t) by

dx
dt

(t) = a(x(t), u(x(t))). (3.39)

Notice that the above ODE system is not complete as u is unknown.

IVP for (3.38): Let S ⊂ Ω be a given hyper-surface and g be a function defined on S. Then,
the IVP is to find a C1 function defined in a neighborhoodΩ0 of S inΩ such that u satisfies
(3.38) in Ω0 with

u(x) = g(x), for all x ∈ S. (3.40)

We suppose that the hyper-surface is given in a parametric form S = {h(s) ∶ s ∈ V}, where
V is a connected open set in ℝn−1 and h ∶ V ⊂ ℝn−1 → Ω is a (at least) C1 function.
Now, we lift the initial surface S to an initial surface (also called a manifold in ℝn+1) S̃ by
adjoining the initial values as

S̃ = {(x, g(x)) ∶ x ∈ S} = {(h(s), g(h(s))) ∶ s ∈ V}.

Note that S̃ is an n − 1 dimensional manifold in the space ℝn+1. The parameterization is
possible because of the non-vanishing condition of the gradient describing the surface, at
least locally.
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Definition 3.16 (Non-characteristic). Thehyper-surface S as described above is called non-
characteristic to the differential operator L if for any s ∈ V, we have

det

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕h1

𝜕s1
… …

𝜕h1

𝜕sn−1
a1(h(s), g(h(s)))

… … … …
… … … …

𝜕hn
𝜕s1

… …
𝜕hn
𝜕sn−1

an(h(s), g(h(s)))

⎤⎥⎥⎥⎥⎥⎥⎦
≠ 0. (3.41)

Here h = (h1,… , hn) and s = (s1,… , sn−1). Thus a solution to IVP (3.38), (3.40) is an
integral surface z = u(x) in ℝn+1 that passes through the lifted manifold S̃. Now the system
of ODE (3.39) can be completed by adjoining the equation for z. Since z(t) = u(x(t)), we get

dz
dt
(t) =

n∑
i=1

𝜕u
𝜕xi

dxi
dt

=
n∑
i=1

ai(x(t), u(x(t)))
𝜕u(x(t))
𝜕xi

= a0(x(t), u(x(t))). (3.42)

The IVP (3.38), (3.40) can be solved as follows: For any point in S̃ that is given by
(h(s), g(h(s))) for some s ∈ V, solve the complete ODE system (3.39), (3.42) with initial
values x(0) = h(s), z(0) = g(h(s)). A unique solution x = x(t; s), z(t) = z(t; s) for small
t is guaranteed by the unique existence theorem for ODE systems (see Chapter 2). To
complete the analysis, we need to invert an algebraic system as in two-dimensional case.
That is, for x ∈ Ω0, a neighborhood close to S, we have to find a time t and s ∈ V such
that

x(t; s) = x. (3.43)

The non-characteristic condition (3.41) together with inverse function theorem ensures the
above claim. Let t(x), s(x) solve (3.43), then u(x) = z(t(x); s(x)) solves the IVP (3.38), (3.40).
Thus, we have the following theorem.

Theorem 3.17 (Existence and Uniqueness). Consider the IVP (3.38), (3.40), where a, a0, g
are real-valued C1 functions. Let S be a hyper-surface of class C1 inℝn that satisfies the
condition (3.41). Then, for a sufficiently small neighborhood Ω0 of S, there is a unique
solution u ∈ C1(Ω0) of (3.38), (3.40).
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3.5.3 General Non-linear Equation in Several Variables

Recall that the general first-order non-linear equation in n variables is given by

F(x, z, p) = F(x1,… , xn, z, p1,… , pn) = 0, (3.44)

where z = u is the unknown function and pi =
𝜕u
𝜕xi

, 1 ≤ i ≤ n. In the linear case, we have

F(x, z, p) = a(x) ⋅p+a0(x)z− f(x) and in the quasilinear case F(x, z, p) = a(x, z) ⋅p−a0(x, z).
Thus, in the either of the cases a = ∇pF. This together with the analysis of the general case
in two variables, motivates us to define the characteristic curves x(t) as the integral curves
of the vector field ∇pF. That is, define x = x(t) as

dx
dt

= ∇pF. (3.45)

Now, adjoin the equation for z as

dz
dt

=
n∑
i=1

𝜕u
𝜕xi

dxi
dt

= p ⋅ ∇pF. (3.46)

Notice that in the linear case ∇pF = a(x) does not depend on the unknown u and hence
(3.45) is a complete system. In the quasilinear case ∇pF = a(x, z) and thus (3.45) together
with (3.46) is a complete system. In the general case∇pF and p⋅∇pFmay depend not only on
the unknown z, but also on the n derivatives p = ∇u. Hence, we need to derive n equations

for
dpi
dt

. Now, pi(t) = pi(x(t)) and compute

dpi
dt

=
n∑
i=1

𝜕pi
𝜕xj

dxj
dt

=
n∑
i=1

𝜕2u
𝜕xj𝜕xi

𝜕F
𝜕pj

=
n∑
i=1

𝜕pj
𝜕xi

𝜕F
𝜕pj

. (3.47)

On the right hand side, we have the undesired second derivatives
𝜕pj
𝜕xi

. We need to eliminate

them. Differentiating (3.44) with respect to xi, we get

𝜕F
𝜕xi

+ 𝜕F
𝜕z

𝜕z
𝜕xi

+
n∑
i=1

𝜕F
𝜕pj

𝜕pj
𝜕xi

= 0.
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Thus, we arrive at
dpi
dt

= − 𝜕F
𝜕xi

− pi
𝜕F
𝜕z

(3.48)

for 1 ≤ i ≤ n. Hence, we have a system of 2n+ 1 equations given by (3.45), (3.46), (3.48) for
x(t), z(t), p(t). Thus, we are solving not only for the unknown, but for the derivatives 𝜕u

𝜕xi
as

well, exactly what we have done in the two-dimensional case.
The setup is similar for IVP as in the quasilinear case like defining S where the initial

values are defined and then lift it to the initial surface S̃. Now important issue is the
identification of n initial conditions for p(0) for the system (3.48). This is done as follows:
Recall x(0) = x(0; s) = h(s), z(0) = z(0; s) = g(h(s)). Further on S, we have

𝜕z
𝜕si

=
n∑
i=1

𝜕z
𝜕xj

𝜕(hj(s))
𝜕si

=
n∑
i=1

pj
𝜕hj
𝜕si

(3.49)

for 1 ≤ i ≤ n − 1 and

F(h(s), g(h(s)), p(h(s))) = 0. (3.50)

The above system of n equations determines the initial conditions for p on S and should
be thought as a requirement on F in order to have a solution. This may also lead to non-
uniqueness of solutions as there may be more than one solution p to (3.50) as in PDE p2 +
q2 − 1 = 0; lack of existence as in PDE p2 + q2 + 1 = 0

Unfortunately, these are non-linear equations that may or may not be solvable uniquely.
In the quasilinear case, it was not necessary as (3.45), (3.46) was a complete system.
Nevertheless, (3.49), (3.50) is indeed solvable uniquely in the quasilinear case as they are
linear and S is non-characteristic. However, if (3.49), (3.50) is solvable for p1(0),… pn(0),
we have 2n + 1 system of ODEs for x(t), z(t), p(t) together with initial conditions x(0) =
x(0; s), z(0) = z(0; s), p(0) = p(0; s) for any s ∈ V, that is for any point on S̃. Now the
procedure is similar to the discussion as in the previous section. Of course S has to be non-
characteristic to apply inverse function theorem in the sense that

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕h1

𝜕s1
… …

𝜕h1

𝜕sn−1

𝜕F
𝜕p1

(h(s), g(h(s)), p(h(s)))

… … … …

… … … …
𝜕hn
𝜕s1

… …
𝜕hn
𝜕sn−1

𝜕F
𝜕pn

(h(s), g(h(s)), p(h(s)))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≠ 0. (3.51)
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We can also state a similar theorem as in the quasilinear case, of course with the assumption
of solvability of (3.49), (3.50). However, we confine ourselves to an example, which clearly
explains a general procedure.

Example 3.18. Consider the Cauchy problem for the PDE

ux1
−
(
u2
x2
+ u2

x3

)1∕2
= 0.

Let x10 be a fixed real number and consider the initial condition

u(x10, x2, x3) = u0(x2
2 + x2

3), x2, x3 ∈ ℝ,

where u0 ∈ C1(0,∞) with u ′
0 > 0.

Heren = 3.Thoughwe canworkwith the variables x2 and x3 to describe the initialmanifold,
we prefer to work with the notations introduced in the text. The initial manifold S in the
present case is the affine plane x1 = x10 in the three-dimensional space that is described by
the C1 functions:

x10(s1, s2) ≡ x10, x20(s1, s2) = s1, x30(s1, s2) = s2
and s1, s2 vary over ℝ. The initial condition satisfied on S takes the form

u(x10, s1, s2) = u0(s21 + s22).

We first try to find the functions pi0, i = 1, 2, 3 satisfying the conditions (3.36). We find that

𝜕u0

𝜕s1
= p20,

𝜕u0

𝜕s2
= p30

and

p10 =
(
p2
20 + p2

30
)1∕2 .

Therefore,

p20 = 2s1u ′
0, p30 = 2s2u ′

0 and p10 = 2
(
s21 + s22

)1∕2 u ′
0.

The characteristic equations (3.38) become

dx1
dt

= 1, dxi
dt

= − pi
p1
, i = 2, 3

dpi
dt

= 0, i = 1, 2, 3 and dz
dt
= 0.
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Solving this system of ODE with appropriate initial conditions, we obtain that

x1 = t + x10, x2 = −
s1t√
s21 + s22

+ s1 and x3 = −
s2t√
s21 + s22

+ s2

with z = u0(s21 + s22). Our next task is to express t, s1 and s2 from the first three non-linear
algebraic equations in terms of x1, x2, x3. Trivially, t = x1 − x10. To solve for s1, s2, we use
polar co-ordinates: s1 = r cos 𝜃, s2 = r sin 𝜃 with r2 = s21 + s22. Therefore,

x2 = (r − (x1 − x10)) cos 𝜃 and x3 = (r − (x1 − x10)) sin 𝜃.

Thus,
tan 𝜃 = x2

x1
, r = x2

cos 𝜃
+ x1 − x10 =

x3
sin 𝜃

+ x1 − x10,
s1 = r cos 𝜃 = x2 + (x1 − x10) cos 𝜃,
s2 = r sin 𝜃 = x3 + (x1 − x10) sin 𝜃.

Furthermore, it is not difficult to see that

cos 𝜃 =
x2√
x2
2 + x2

3

and sin 𝜃 =
x3√
x2
2 + x2

3

.

Hence,

s1 = x2

⎛⎜⎜⎜⎝1 +
x1 − x10√
x2
2 + x2

3

⎞⎟⎟⎟⎠ , s2 = x3

⎛⎜⎜⎜⎝1 +
x1 − x10√
x2
2 + x2

3

⎞⎟⎟⎟⎠ .
Substituting these in the expression for z, we finally obtain the required solution in the
explicit form:

u(x1, x2, x3) = u0(s21 + s22) = u0(𝜉) with 𝜉 =
[
x1 − x10 + (x2

2 + x2
3)

1∕2]2 .
Observe that this is a solution of the given PDE inℝ3 except for the line x2 = 0 and x3 = 0,
that is, the x1-axis.

3.6 HAMILTON–JACOBI EQUATION

In the previous sections of this chapter, we have seen a class of first-order equations that are
quasilinear, known as conservation laws.We also saw that quite often, these equations do not
admit smooth (classical) solutions. In fact, the physical solutions can develop discontinuities
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over time. In this section, we introduce the reader to another important class of equations,
namely theHamilton–Jacobi equation (HJE) that is a classical subject ofmore than 200 years
old. These equations are relevant both in classical and non-classical way. Furthermore, they
have very important applications. In fact, there is amore general equation in themodern era,
namely, the Hamilton–Jacobi–Bellman (HJB) equation. These equations are non-linear and
even simple equations do not admit classical solutions. Consider the following examples:

Example 3.19. Consider the ODE

|u̇|2 − 1 = 0 in (−1, 1),

with the boundary conditions

u(−1) = u(1) = 0.

This equation has no classical solution u ∈ C1(−1, 1) ∩ C[−1, 1]. For, by continuity
either u̇(t) = 1 for all t or u̇(t) = −1 for all t. In either case, both the boundary conditions
cannot be satisfied.

However, the functions u(x) = 1− |x| and u(x) = |x|− 1 satisfy the equation except
at the origin, along with the boundary conditions. Moreover, u is Lipschitz continuous
as well. In fact, using the function |x|, it is possible to construct infinitely many such
solutions satisfying the equation along with the boundary conditions, except at finitely
many points.

Example 3.20. Consider the one-dimensional Hamilton–Jacobi equation

ut + u2
x = 0, t > 0, x ∈ ℝ, u(x, 0) = 0.

It is easy to see that the function

𝜐(x, t) =
{

0, 0 < t < |x|
−t + |x|, |x| ≥ t

is continuous and satisfies the initial condition. It is also smooth and satisfies the
equation off the lines x = 0 and t = |x| . Thus, 𝜐 is completely distinct from the trivial
classical solution u ≡ 0.

We consider the first-order HJE given by

ut +H(x,Du) = 0. (3.52)
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More generally, the term H(x,Du) may be replaced by H(t, x, u,Du), to include the t
and u variables as well. The function H is referred to as a Hamiltonian function or
simply a Hamiltonian, which is a real-valued smooth function. Our presentation here
is deliberately vague, essentially because even the explanation of various terminologies
involved is difficult and we will consider this equation like the conservation law in another
chapter and present more details. However, because of the importance of the HJE in
numerous applications, including optimal control problems, where it is referred to as HJB
equation, we have included this brief introduction here to show the importance of the
method of characteristics.

In the HJE, u = u(t, x) is the unknown function of n + 1 variables, t > 0 and x ∈ ℝn,
and Du = (ux1

,… uxn) is the spatial gradient vector of u. Time-dependent HJE, that isH =
H(t, x,Du)has also been studied in the literature.This equation arises in the classical calculus
of variations. In a smooth setup, the minimum value of an associated cost functional or
energy functional, namely the value function is known to satisfy the HJ or HJB equation.We
elaborate on this point a little later. Equation (3.52) is a first-order PDE in n+1 dimensions,
and thus, its characteristic equations form a system of 2n + 3 equations. But, due to the
special structure of (3.52), the system of characteristic equations can be decoupled to get 2n
equations known as Hamilton’s ODE System

dx
dt

= DpH(x, p)
dp
dt

= −DxH(x, p)

⎫⎪⎬⎪⎭ (3.53)

together with an ODE for the unknown u. Furthermore, the variable t itself can be used
as a parameter. For a particular H, the above system is indeed the Hamiltonian formalism
corresponding to the Newton’s law of motion in classical mechanics. We will see this soon.
First, we will see an example from calculus of variations.

Example 3.21. Consider the rectangular region Q = [0, 1] × [−1, 1]. For t ∈ [0, 1], let
x ∶ [t, 1] → ℝ be a Lipschitz function. Thus, the points (s, x(s)) trace a curve as s varies
over [t, 1], starting at (t, x(t)). Let 𝜏 be the exit time of x(s) from Q, that is,

𝜏 =

{
1 if x(s) ∈ (−1, 1) for all s ∈ [t, 1]
T if x(T) = ±1 for some T ∈ [t, 1] and x(s) ∈ (−1, 1) for all s ∈ (t,T).

More precisely, 𝜏 = 1 if the curve lies in Q for all s ∈ [t, 1], otherwise it is the first time
the curve reaches the boundary of Q (see Figure 3.14).

LetX denote the class of Lipschitz functions described above and consider theminimization
problem from calculus of variations:
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t

x

Q

0 1
t

(t, x(t))

𝜏
𝜏

𝜏

Figure 3.14 Exit times

min
𝜏

∫
t

(
1 + 1

4
ẋ(s)2

)
ds, t ∈ [0, 1], (3.54)

where the minimization sought over the space X and 𝜏 is the exit time of the function x(s)
described above. Define L(𝜐) ≡ L(t, x, 𝜐) = 1 + 1

4
𝜐2, where 𝜐 is any scalar.

The value function V(t, x), for t ∈ [0, 1] and x ∈ [−1, 1], is defined as

V(t, x) = min
⎧⎪⎨⎪⎩

𝜏

∫
t

L(t, x(s), ẋ(s)) ds
⎫⎪⎬⎪⎭ ,

where the minimum is taken over all x(⋅) ∈ X with the initial value x(t) = x. Given any
x(⋅) ∈ X, x(t) = x, consider the linear function (line segment) x̃(⋅) defined by

x̃(s) = x + 𝜐(s − t),
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where 𝜐 = 1
𝜏 − t

𝜏

∫
t

ẋ(s) ds with 𝜏 as the exit time of x(⋅). It is then easy to verify that x̃(⋅) ∈

X, x̃(t) = x and 𝜏 is also the exit time of x̃(⋅). Also, ̇̃x(s) = 𝜐. Moreover, it is also easy to see
that

𝜏

∫
t

L( ̇̃x(s)) ds ≤
𝜏

∫
t

L(ẋ(s)) ds.

Thus, for the definition of the value function V, it suffices to consider only linear functions
for minimization. Therefore, V is given by

V(t, x) = min
𝜐
{(𝜏 − t)L(𝜐)},

where 𝜐 varies over all the real numbers. An elementary computation shows that

𝜐∗ =

⎧⎪⎨⎪⎩
2 if x ≥ t
0 if |x| < t

−2 if x ≤ −t
,

gives rise to a minimizer for V, equivalently, the corresponding x̃ is a minimizer for (3.54)
and is known as optimal solution. Furthermore, we have

V(t, x) =
{

1 − |x| if |x| ≥ t
1 − t if |x| ≤ t

Note that V is differentiable everywhere in the interior of Q, except on the lines t = |x| and
V satisfies the following HJE:

− Vt(t, x) + (Vx(t, x))2 − 1 = 0, (3.55)

for all (t, x) ∈ (0, 1) × (−1, 1) except when t = |x| and also satisfies conditions

V(t, 1) = V(t,−1) = 0, t ∈ [0, 1] (3.56)

and

V(1, x) = 0, x ∈ [−1, 1]. (3.57)

Thus, V is a Lipschitz solution of (3.55), (3.56), (3.57). Thus, if we look for a solution of
the above HJE in the classical sense, we will not get the actual physical solution as it is not
differentiable. Hence, we need to interpret the solution in a generalized sense. One possible
way is to look for a Lipschitz continuous function as a solution, requiring that the equation
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need be satisfied only a.e. But, in this enlarged class of solutions, the uniqueness of the
solutionmay be lost. To achieve uniqueness, wemay have to impose additional condition(s).
For example, there are infinitely many Lipschitz continuous functions, which are solutions
to (3.55), (3.56), (3.57). To see this, define

Wk(t, x) = min{hk(x), 1 − t},

where hk(x) = 1
2k + 1

−
||||x − 2i

2k + 1
||||, if x ∈

[ 2i − 1
2k + 1

, 2i + 1
2k + 1

]
. It is easy to see that Wk

satisfies (3.55), (3.56), (3.57) at all the points of differentiability. Thus, we need a more
robust notion of the solution and this is provided by the concept of viscosity solution whose
discussion is beyond the scope of this book. Nevertheless, we will discuss more on the
Lipschitz solution of HJE in Chapter 4.

We now briefly discuss the general problem of calculus of variations and the
corresponding value function associated with the minimization problem gives rise to HJE.

Calculus of Variations: Given a Lagrangian L = L(x, q), x, q ∈ ℝn, introduce the
functional

J(w) ∶=
T

∫
0

L(w(s), ẇ(s)) ds, (3.58)

where w ∈ , the space of admissible trajectories. For instance, we may take

 =
{
w ∈ C2([0,T];ℝn) ∶ w(0) = a, w(T) = b

}
.

Here T > 0 is the terminal time, a and b are the given vectors in ℝn. The basic problem is
to find a curve x ∈ , which solves the minimization problem

J(x) = min
w∈ J(w). (3.59)

It is possible to extend the elementary result of the finite-dimensional optimization that
extremal points occur at critical points, to the present minimization problem that is infinite
dimensional, since we are working for trajectories belonging to the infinite dimensional
space . If x ∈  is a solution to the problem (3.59), known as optimal trajectory, then, x
satisfies the Euler–Lagrange(EL) equations

d
ds

(
DqL(x(s), ẋ(s))

)
+ DxL(x(s), ẋ(s)) = 0. (3.60)

This is a system of n second-order equations. Thus, any minimizer x ∈  of (3.59) solves
EL equation, but the converse need not be true. A solution to the EL equations is called a
critical point of the functional J.
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Since EL is a system of n second-order equations, we can convert it into a system of
2n first-order system as follows: Introduce, p(s) = DqL(x(s), ẋ(s)), called the generalized
momentum corresponding to the position x(⋅) and velocity ẋ(⋅). These terminologies come
from the classical mechanics. We need an important hypothesis to obtain the Hamiltonian
formalism (ODE system), which we have obtained earlier with appropriate H.

Assumption: Suppose that, for given x, p ∈ ℝn, the equationDqL(x, q) = p can be uniquely
and smoothly solvable for q as q = q(x, p).

Now introduce the Hamiltonian

H(x, p) = p ⋅ q(x, p) + L(x, q(x, p)). (3.61)

Theorem 3.22. Let x solve the EL equations and p be the corresponding generalized
momentum. Then, under the above assumption, the functions x and p satisfy the
Hamilton’s ODE system (3.53) with the Hamiltonian defined as in (3.61). Furthermore,
the mapping s ↦ H(x(s), p(s)) is constant.

The main aim here was to show the application of characteristic curves in physical
problems. In the next chapter, we present some more details on HJE including the Hopf–
Lax formula. We remark that we can associate a value function and a Hamiltonian
corresponding to the minimization problem and we expect the value function to satisfy a
PDE associated to the Hamiltonian, which is highly non-linear. The examples suggest that
we have to find a solution outside the realm of smooth solutions. The analysis for HJB is
not a direct generalization of classical HJ equations and took almost two centuries to come
up with a theory. Two theories emerged after 1950s; one due to Pontryagin in USSR and
the other due to Bellman in the United States. The former one is based Hamiltonian ODE
whereas the Bellman’s theory is based on PDE. We now give the classical example from the
Newtonian mechanics.

Example 3.23. Consider the motion of a particle of mass m under the influence of a force
field f given by a potential V, that is f = ∇V. Define the Lagrangian L(x, q) = m

2
|q|2 −

V(x), the difference in kinetic energy and potential energy. Then, the corresponding
EL equations describe the Newton’s second law of motion, namely mẍ(s) = f(x(s)) =
∇V(s). Here, the assumption that p = DqL(x, q) = mq holds trivially. It is easy to
see that the Hamiltonian is the total energy H(x, p) = 1

2m
|p|2 + V(x). In Newton’s

theory, the position and the velocity formulation is given (i.e. Lagrangian formulation),
whereas position and momentum (Hamiltonian formulation) are the unknowns given
through the Hamiltonian system. It is possible to go from one formulation to the other
in classical mechanics, whereas with general Lagrangian, this may not be possible due
to the solvability issue as in the assumption.
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3.7 NOTES

The main aim of this chapter was to introduce the method characteristics which, in turn,
imply the local solvability. The theory is very geometrical and general for first-order
equations, which is demonstrated in this chapter. Such a general theory is not available for
higher-order equations. The method can quite often be used to obtain explicit solutions.
This statement has to be taken with a pinch of salt as we have seen very simple looking
examples of first-order equations from conservation laws and HJE. We have also seen that
we will not be able to reside in the comfortable zone of smooth functions, and move toward
modern theories to understand such equations. Two of them are the theory of distributions
and solutions in the sense of viscosity. These theories are beyond the scope of this first book
on PDE. However, in the chapters that follow, we do indicate the notions of weak solutions
to motivate the reader for future study.

For the present chapter, the reader can refer to Evans (1998), John (1978), Renardy and
Rogers (2004), Prasad and Ravindran (1996), Smoller (1994), and Lax (1973) for further
discussion and more details.

3.8 EXERCISES

1. Describe the characteristic curves of the PDE

(x + 2)ux + 2yuy = 2u

in the (x, y)-plane and sketch few of them. Write the ODE for u along a characteristic curve
with x as the parameter and then, solve the PDE with the initial condition u(−1, y) =

√|y|.
2. Consider the PDE

xux + yuy = 2u,

in the region x > 0, y > 0. Determine the characteristic curves. Solve the equation in the
following domains, with the initial conditions given on the prescribed initial curve

a. u = 1 on the hyperbola xy = 1; domain xy > 1.
b. u = 1 on the circle x2 + y2 = 1; domain x2 + y2 > 1.

Is it possible to solve the equation if the initial data is prescribed on the initial curve y = ex?
Justify.

3. Solve the IVP ut + ux = 1 with the initial condition u = 𝜙(x) when y = 2x.
4. Find the general solution of aux + buy + cu = 0, where a, b, c are constants by the method of

characteristics.
5. Discuss the PDE (x + 1)2ux + (y − 1)2uy = (x + y)u with the initial condition u(x, 0) =

−1 − x for −1 < x < ∞.
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6. Write down the characteristic equations, verify the transversality condition and solve the
following PDEs:

a. uy = u3
x, u(x, 0) = 2x3∕2, x > 0.

b. xux + yuy =
1
2

(
u2
x + u2

y

)
, u(x, 0) = 1

2
(1 − x2).

7. In the following, sketch the characteristic curves, the initial curve, verify the transversality
condition and solve the Cauchy problem:

a. xux + yuy = ku, x ∈ ℝ, y ≥ 𝛼 > 0; u(x, 𝛼) = F(x), where k, 𝛼 are fixed constants and
F is a given smooth function.

b. (x + 2)ux + 2yuy = 𝛼u; u(−1, y) =
√
y.

c. yux − xuy = 0; u(x, 0) = x2.
d. x2ux − y2uy = 0; u(1, y) = F(y).

8. Find the characteristic curves of the following PDE:

a. (x2 − y2 + 1)ux + 2xyuy = 0.
b. 2xyux − (x2 + y2)uy = 0.

9. Solve the following IVP:

a. ut + (x cos t)ux = 0, u(x, 0) = 1
1 + x2 x ∈ ℝ, t > 0.

b. ut + x2ux = 0, u(x, 0) = 𝜙(x), x ∈ ℝ, t > 0.
c. ut +

1
1 + |x|ux = 0, u(x, 0) = 𝜙(x), x ∈ ℝ, t > 0.

d. ut + (x + t)ux + t(x + 1)u = 0, u(x, 0) = 𝜙(x), x ∈ ℝ, t > 0.

10. Solve the following quasilinear problems and verify the transversality condition in each case:

a. uux + uy = 0, u(x, 0) = x.
b. uux + uy = 1, u(x, x) = x∕2, x ∈ (0, 1].

11. Sketch the characteristic curves of uux + uy = 0 with the following initial conditions:5

a. u(x, 0) =
{

0 if x < 0
1 if x ≥ 0

b. u(x, 0) =
{

1 if x < 0
0 if x ≥ 0

c. u(x, 0) =
{

0 if x < 0
1 if x ≥ 1 and u(x, 0) is smooth and increasing.

5The initial conditions given here are not continuous functions. Nevertheless, there is no difficulty in sketching
the characteristics in the smooth regions. A little care is needed only at the point of discontinuity.
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12. Find the integral surface of the equation xu2
x + yuy = u passing through the line y = 1,

x + z = 0.
13. Solve the IVP for the Burgers’ equation ut + uux = 0, with the initial condition u(x, 0) = x3,

in the upper half plane t > 0. (Hint: Use (3.13). The mapping x0 → tx3
0+x0, t ≥ 0, is one-one

from ℝ onto ℝ. Thus, for each x ∈ ℝ, there is a unique x0 such that tx3
0 + x0 = x. For t > 0,

x0 = q1∕3
1 + q1∕3

2 , where q1 =
x
√
t +

√
x2t + 4∕27

2t
√
t

, q2 =
x
√
t −

√
x2t + 4∕27

2t
√
t

. The solution

is given by u(x, t) = x3
0 =

x − x0

t
, x ∈ ℝ, t > 0.)

14. Solve the IVP

ut + u2ux = 0, u(x, 0) = x, x ∈ ℝ, t > 0.

15. Consider the equation p2 + q2 = 1 with initial condition u(x, y) = 0 on the line x + y = 1.
Show that there are two solutions given by u(x, y) = ± 1√

2
(x + y − 1) using the method of

characteristics.
16. Consider the PDE x2ux + y2uy = (x + y)u. Show that there are general solutions of the

following forms:

(i) F
(x − y

u
,
xy
u

)
= 0,

(ii) u = xyf
(x − y

u

)
,

(iii) u = xyg
(x − y

xy

)
,

where F, f, g are arbitrary functions.
17. Obtain the decoupled system (3.53).
18. Derive the Euler–Lagrange equations (3.60).



CHAPTER 4

Hamilton–Jacobi Equation

In Chapter 3, we have briefly introduced the Hamilton–Jacobi equation (HJE)

ut(x, t) +H(x, u(x, t),Du(x, t)) = 0

as an example of a first-order equation to derive the characteristic curves, which form the
well-known system of Hamilton’s ordinary differential equations (ODE). We also have seen
there an example of a minimization problem, where the minimum value (known as the
value function) need not be differentiable at some points. However, at the points where it is
differentiable, the value function does satisfy HJE. Hence, it is essential to look for functions
outside the class of smooth functions, while attempting to solve the HJE and interpret the
solution in a generalized sense. Uniqueness is also an added issue here.

The modern theory of distributions and Sobolev spaces provides a way to interpret the
derivatives in a weak sense. The distribution theory is essentially a linear theory though it
can also be applied to certain non-linear problems where the equation is in the conservation
form like, in conservation laws, or in a variational form. There is also an attempt to
extend the calculus of distributions to handle non-linear problems using the paradifferential
calculus developed by Bony; see Hörmander (1988, 1997) and the references therein. In
general, fully non-linear partial differential equations (PDE) quite often cannot be handled
via distribution theory. See the sample problems in examples (3.19), (3.20). Crandall,
Lions and Evans (see Crandall and Lions, 1981, 1983; Crandall et al., 1984, Lions, 1982)
have initiated the theory of viscosity solutions in 1980s to study non-linear PDE in a
general framework for dealing with non-smooth value functions arising in the dynamic
optimization problems, like optimal control and differential games. Even a brief discussion
of viscosity solutions is not included here because of technicalities involved.

In this chapter, we consider a very particular case of HJE, where an explicit formula for
the solution will be derived. This is known as Hopf–Lax formula for the value function. Of
course, the value function need not be smooth, but it satisfies certain special properties.
Using these special properties, we define a weaker notion of a solution. We also present a
uniqueness result under this new notion of a solution, to capture the physically relevant
non-smooth solution.

The examples studied in Chapter 3, suggest that a possible way to define solution is
as follows: Recall that a function 𝜙 ∶ (X, d)→ (Y, 𝜌) is said to be Lipschitz continuous or

87
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simply Lipschitz if 𝜌(𝜙(x), 𝜙(y)) ≤ Cd(x, y) for all x, y ∈ X, for some constant C > 0; here
(X, d) and (Y, 𝜌) are two metric spaces. If X = ℝn or an open set in ℝn and Y = ℝ, it is
an important theorem due to Rademacher (see Evans, 1998), which asserts that a Lipschitz
function is differentiable everywhere except on a set of measure zero. A set of measure zero,
for example in ℝ2, can be any countable set or union of finite number of lines. We may
thus allow a Lipschitz function to be a solution of HJE at all the points where the function
is differentiable. There could be many Lipschitz functions satisfying the HJE. The special
properties enjoyed by the value function given by the Hopf–Lax formula, provide us with a
uniqueness result. We will derive Hopf–Lax formula in the special case when H = H(Du)
and show the additional properties enjoyed by the value function, like convexity. To treat
the case of general H, we need to enter the realm of viscosity solutions, but as mentioned
earlier, we do not get into this topic.

4.1 HAMILTON–JACOBI EQUATION

Thegeneral HJE ormore generallyHamilton–Jacobi–Bellman (HJB) equation fromoptimal
control theory is a first-order non-linear equation of the form

ut +H(x, u,Du) = 0, (4.1)

where x ∈ ℝn, t > 0. Here u ∶ ℝn × [0,∞) → ℝ is the unknown function and Du =

∇u =
(

𝜕u
𝜕x1

,… 𝜕u
𝜕xn

)
is its gradient. The non-linear function H is called the Hamiltonian,

a terminology borrowed from Hamiltonian mechanics. The unknown u can be thought
of as the minimum value of a cost functional or energy functional as the case may be. In
optimization, u is also known as the value function. In mechanics, the HamiltonianH is the
total energy of the system. We restrict our study to a special case, whereH depends only on
Du, that is,H ∶ ℝn → ℝ, though some of the discussion is also applicable forH = H(x,Du).
We begin by considering the following initial value problem (IVP){

ut +H(Du) = 0 in ℝn × (0,∞)

u(x, 0) = g(x) in ℝn.
(4.2)

Here g ∶ ℝn → ℝ is the given initial condition. Consider the more general PDE

F(x, t, u, ut,Du) ≡ ut(x, t) +H(x,Du(x, t)) = 0.

Since there are n + 1 variables, the characteristic equations consist of an ODE system of
2(n + 1) + 1 = 2n + 3 equations. Due to the special form of the above system, it is straight
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forward to decouple the characteristic equations into the following Hamiltonian system of
2n equations: ⎧⎪⎨⎪⎩

dx
dt

= DpH(x, p)
dp
dt

= −DxH(x, p),
(4.3)

where p = Dxu. The aim of this chapter is as follows.

• An explicit formula will be derived for u via the value function of an associated
minimization problem of an integral functional as in (3.58). This is known as Hopf–
Lax formula.

• The minimal solution u will be shown to satisfy special properties, namely u is semi-
concave and Lipschtiz. Furthermore, u satisfies HJE a.e. Uniqueness will be established
in the class of semi-concave Lipschitz functions.

• We will identify the relation between the characteristic curves and minimization
problem and also obtain the necessary condition for optimal solution of the
minimization problem.

• The integrand L in the integral functional is known as Lagrangian and we show the
Lagrangian L and Hamiltonian H are connected via the Legendre transformation.

4.2 HOPF–LAX FORMULA

Consider the following minimization problem: Find w ∈ t such that

J(w) = mint
J(w), (4.4)

where the functional J(w) is defined by

J(w) =
t

∫
0

L(ẇ(s))ds + g(w(0)). (4.5)

Here ẇ = dw
ds

. The Lagrangian L ∶ ℝn → ℝ is a given function and the admissible class t

of functions, for fixed t and x, y ∈ ℝn, is defined by

t =
{
w ∈ C2([0, t];ℝn) ∶ w(0) = y,w(t) = x

}
. (4.6)
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Thus,t consists of all trajectories connecting two points y and x inℝn. In theminimization
problem, we fix x, t and vary y. Finally, g ∶ ℝn → ℝ is a given function that eventually will be
the initial data for IVP.Theminimizing term can be interpreted as follows:The integral term
is the running cost and g(w(0)) is the initial cost.1 The solution w, when exists, is called the
optimal solution and J(w), the minimum or optimal cost. The minimum cost J(w), depends
on x and t, which we denote by u(x, t), the value function. That is

u(x, t) ∶= inft

⎧⎪⎨⎪⎩
t

∫
0

L(ẇ(s))ds + g(w(0))
⎫⎪⎬⎪⎭ . (4.7)

The above infimum is taken over a class of functions which, in general, is infinite-
dimensional. This can be transformed to an infimum problem over the Euclidean space,
under certain assumptions on L:

Assumption 4.1. Assume that the Lagrangian L satisfies the following:

• The mapping q ↦ L(q) is continuous and convex.

• The mapping L is coercive in the sense that lim|q|→∞

L(q)|q| = ∞.

The second conditionmeans L has super-linear growth, that is, L roughly behaves like |q|1+𝜀
for some 𝜀 > 0 and for large |q|.
Theorem 4.2 (Hopf–Lax Formula). Assume that L ∶ ℝn → ℝ satisfies the Assumption 4.1

and u be defined by (4.7). If g is continuous, then, u can be represented as

u(x, t) ≡ inf
y∈ℝn

{
tL

(x − y
t

)
+ g(y)

}
. (4.8)

Proof For y ∈ ℝn, consider the linear trajectory w(s) = y + s
t
(x − y) ∈ t. Thus, by

definition, we get

u(x, t) ≤
t

∫
0

L(ẇ(s))ds + g(y) = tL
(x − y

t

)
+ g(y).

1If g(w(0)) is replaced by g(w(t)), it will be termed as terminal cost. These terminologies come from optimal
control problems.
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By taking infimum on right-hand side over y ∈ ℝn, we get the one-way inequality in (4.8).
To prove the reverse inequality, let w ∈ t. Applying Jensen’s inequality for L, we arrive at

L
⎛⎜⎜⎝1t

t

∫
0

ẇ(s)ds
⎞⎟⎟⎠ ≤ 1

t

t

∫
0

L(ẇ(s))ds.

Since y = w(0) and x = w(t), we get

tL
(x − y

t

)
+ g(y) = tL

⎛⎜⎜⎝1t
t

∫
0

ẇ(s)ds
⎞⎟⎟⎠ + g(y) ≤

t

∫
0

L(ẇ(s))ds + g(w(0)).

First take the infimum over w ∈ t, and then over y ∈ ℝn, to get the reverse inequality in
(4.8). This completes the proof.

We now derive a functional identity satisfied by u that is an important idea from Dynamic
Programming Principle (DPP) in optimal control/optimization theory. If wewant to compute
u(⋅, t) at time t, first compute u(⋅, s) for any s < t and then use u(⋅, s) as the initial condition
in the interval [s, t] and compute u(⋅, t). This is stated as follows:2

Theorem 4.3 (Functional Identity). The function u given by the Hopf–Lax formula (4.8)
satisfies the functional identity

u(x, t) = inf
y∈ℝn

{
(t − s)L

(x − y
t − s

)
+ u(y, s)

}
(4.9)

for any 0 < s ≤ t.

Proof The convexity of L is crucial in the proof. We fix 0 < s ≤ t and y ∈ ℝn. From the
Hopf–Lax formula, we can choose a y∗ ∈ ℝn such that

u(y, s) = sL
(y − y∗

s

)
+ g(y∗).

Again, by Hopf–Lax formula,

u(x, t) ≤ tL
(x − y∗

t

)
+ g(y∗).

2Compare this with the (semi) group property enjoyed by an ODE system. More generally, this property is a
part of the definition of an abstract dynamical system.
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Writing
x − y∗

t
as

x − y∗

t
=
(
1 − s

t

)(x − y
t − s

)
+ s
t

(y − y∗

s

)
and applying the convexity

of L, we obtain

u(x, t) ≤ (t − s)L
(x − y
t − s

)
+ u(y, s).

Taking the infimum over y on the right-hand side, we get the one-way inequality

u(x, t) ≤ inf
y∈ℝn

{
(t − s)L

(x − y
t − s

)
+ u(y, s)

}
.

To get other way inequality, we choose x∗ satisfying

u(x, t) = tL
(x − x∗

t

)
+ g(x∗).

If we choose y = s
t
x +

(
1 − s

t

)
x∗, we see that

x − y
t − s

= x − x∗
t

=
y − x∗

s
and thus

(t − s)L
(x − y
t − s

)
+ u(y, s) ≤ (t − s)L

(x − x∗
t

)
+ sL

(y − x∗

s

)
+ g(x∗)

= tL
(x − x∗

t

)
+ g(x∗) = u(x, t).

Thus the infimum in (4.9) is also ≤ u(x, t) and this completes the proof.

Theorem 4.4 (Lipschitz Continuity). Assume g is Lipschitz continuous with Lipschitz
constant k. Then, the function u(⋅, t) given by the Hopf–Lax formula is Lipschitz
continuous in ℝn with Lipschitz constant k, that is,

|u(x1, t) − u(x2, t)| ≤ k|x1 − x2| (4.10)

for all x1, x2 ∈ ℝn. Further, u satisfies the initial condition u(x, 0) = g(x).

Proof The Lipschitz continuity proof is not difficult. Given x1 ∈ ℝn, let x∗1 be minimizing
point in Hope–Lax formula. Then,

u(x2, t) − u(x1, t) = inf
y∈ℝn

{
tL

(x2 − y
t

)
+ g(y)

}
− tL

(x1 − x∗1
t

)
− g(x∗1)

≤ g(x2 − x1 + x∗1) − g(x∗1) ≤ k|x1 − x2|
by the choice of y = x2 − x1 + x∗1 . Reversing the role of x1 and x2, we get the Lipschitz
inequality.
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To get the value at t = 0, we proceed as follows: Using the Lipschitz property of g, we have

tL
(x − y

t

)
+ g(y) ≥ tL

(x − y
t

)
− k|x − y| + g(x)

= g(x) − t(k|z| − L(z)),

where z =
x − y
t

. Taking infimum over y ∈ ℝn, which is equivalent to taking infimum over
z, we see that

u(x, t) ≥ g(x) + inf
z∈ℝn

[−t(k|z| − L(z))] ≥ g(x) − t sup
z∈ℝn

(k|z| − L(z)) = g(x) − tL(k).

Using coercivity of L, we see that

sup
z∈ℝn

(k|z| − L(z)) ≤ sup|z|≤R(k|z| − L(z)) ∶= C1

for R large enough. This implies

u(x, t) − g(x) ≥ −C1t.

Since u(x, t) ≤ tL(0) + g(x), we see that

|u(x, t) − g(x)| ≤ Ct,

where C = max{|L(0)|,C1}. This proves that g is the limiting value of u as t → 0.

We now proceed to show that u satisfies HJE. For this purpose, we need to connect
the Hamiltonian H in HJE and the Lagrangian L. This is achieved by the Legendre
transformation. Before proceeding to define Legendre transformation, we derive necessary
conditions for the optimality of the optimal solution w. This is given by the Euler–Lagrange
(E–L) equations.

4.3 EULER–LAGRANGE EQUATIONS

In this section, we consider more general Lagrangian L ∶ ℝn × ℝn → ℝ and recall the
minimization problem (4.4) with the functional given by

J(w) =
t

∫
0

L(w(s), ẇ(s))ds. (4.11)

We write L = L(x, q) and use the notation DqL ∶=
(
Lq1

,… Lqn
)
and DxL ∶=

(
Lx1

,… Lxn
)
.
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The derivation of E–L equations is similar to the elementary result in one variable
calculus, namely, if f ∈ C1(a, b) and f(x0) = min

x∈(a,b)
f(x), then f ′(x0) = 0. However, the analysis

is now in a function space. Let w be a minimal solution for the functional in (4.11). Let
𝜐 ∶ [0, t] → ℝn be C2 such that 𝜐(0) = 𝜐(t) = 0. Then for any 𝜏 ∈ ℝ, the function
w = w + 𝜏𝜐 is a test function in t. Thus

J(w) ≤ J(w + 𝜏𝜐).

Now for 𝜐 fixed, define f ∶ ℝ → ℝ by f(𝜏) = J(w + 𝜏𝜐). Then, clearly f(0) ≤ f(𝜏) for all 𝜏
and hence 0 is a minimum point for f. Thus, if f is differentiable, then f ′(0) = 0. We now
compute f ′(𝜏), assuming L differentiable. We have

f(𝜏) =
t

∫
0

L(w(s) + 𝜏𝜐(s), ẇ(s) + 𝜏�̇�(s))ds.

Hence,

f ′(𝜏) =
t

∫
0

DxL(w(s) + 𝜏𝜐(s), ẇ(s) + 𝜏�̇�(s)) ⋅ 𝜐(s)ds

+

t

∫
0

DqL(w(s) + 𝜏𝜐(s), ẇ(s) + 𝜏�̇�(s)) ⋅ �̇�(s)ds.

Consequently

f ′(0) =
t

∫
0

DxL(w(s), ẇ(s)) ⋅ 𝜐(s)ds +
t

∫
0

DqL(w(s), ẇ(s)) ⋅ �̇�(s)ds.

Integrating the second term on the right-hand side by parts, we arrive at

f ′(0) =
t

∫
0

[(
− d
ds
DqL + DxL

)
(w(s), ẇ(s))

]
⋅ 𝜐(s)ds.

We write this as f ′(0) = J ′(w)𝜐 and J ′(w) is termed as the Frechét derivative of J at w. Since
f ′(0) = 0 and 𝜐 is arbitrary, we get the Euler–Lagrange equations

J ′(w) =
(
− d
ds
DqL + DxL

)
(w(s), ẇ(s)) = 0. (4.12)

This is a system of n second-order ODE and we have the following theorem:
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Theorem 4.5. Let L ∶ ℝn ×ℝn → ℝ be a smooth Lagrangian and J be defined as in (4.11).
If w is an optimal solution, that is,

J(w) = min
w∈t

J(w),

then, w satisfies the Euler–Lagrange system of ODEs (4.12).

Remark 4.6. Any w that satisfies the E–L system (4.12) or equivalently J ′(w) = 0 is called a
critical point of J. The above theorem tells us that every minimizer of J is a critical point
of J, but the converse is not true in general. In fact, the converse is also not true even in
one-dimensional calculus (see also the Exercise 5.).

Example 4.7. The Newtonian mechanics provides the important example. Consider a
particle of mass m moving under the force filed F generated by a potential 𝜙, that is
F(x) = D𝜙(x). Define the Lagrangian L(x, q) = m

2
|q|2 − 𝜙(x), which is the difference

in kinetic and potential energy. It can be easily seen that the corresponding E–L system
is given by

mẅ(s) = F(w(s)) = D𝜙(w(s)).
This is the Newton’s second law of motion. Here w is the trajectory that minimizes the

action potential
t

∫
0

[m
2
|ẇ(s)|2 − 𝜙(w(s)

]
ds among all possible trajectories.

Example 4.8 (Brachistochrone Problem). This well-known and famous problem, is due to
JohannBernoulli. A frictionless bead located in a vertical plane at a pointA(x0, y0) slides
along a wire under the force of gravity alone whose other end is fixed in the vertical
plane at B(xf, yf). The problem is to find the shape of the curve (wire) so that the bead
slides from A to B in shortest possible time interval (Greek: brachistos means shortest
and chronos means time).

Wewill now convert this problem to aminimization problemusing the conservation
of energy. Let the positive y-axis point downwards and let A and B be placed at (a, 0)
and (xf, yf), respectively with a < xf, yf > 0 (see Figure 4.1). Since the total energy
initially is zero, we have at any point of time

m𝜐2

2
−mgy = 0,

where y = y(x) is a curve such that y(a) = 0, y(xf) = yf and 𝜐 = y ′.
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A(a, 0)
x

y

B(xf, yf)

Figure 4.1 Brachistochrone

Normalizing with suitable units, we may assume m = 1, g = 1∕2. Then, we get
𝜐 =

√
y. Thus, our problem reduces to that of minimizing the functional

J(y) =
b

∫
a

1 + y′(s)2√
y(s)

ds,

where b = yf. Johann Bernoulli in 1696 posed this problem to his contemporaries
including IsaacNewton and correct solutions were obtained by Leibnitz, Newton, Jacob
Bernoulli and others including Johann Bernoulli himself. The optimal curves are the
cycloids (see Exercise 3.) given in parametric form by x(t) = a + c(t − sin t), y(t) =
c(1− cos t). This is the locus of a fixed point on a circle (e.g., the wheel of a cycle; hence
the name cycloid) when it rolls without slipping on the horizontal axis. It is interesting
to remark that the first solution by Johann Bernoulli was based on Snell’s law of light
refraction (see Simmons, 1991).

Example 4.9 (Catenary). Consider a chain with a uniform mass density of given length
hanging freely (under gravity) between two fixed points.What is the shape of the chain?
This problem was posed by Galileo in 1630 and his anticipated answer that the shape is
a parabola was proved to be wrong (see Figure 4.2).

How do we describe this as an optimization problem and what is to be minimized? Let
y ∶ [a, b] → (0,∞) with y(a) = A, y(b) = B as the end points of the possible shape of the
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A B

Figure 4.2 Catenary

chain. The only force acting on the chain is the potential energy and the chain will take the
shape of minimal potential energy. The potential energy functional is given by

J(y) = ∫
b

a
y(x)

√
1 + y′(x)2dx.

The catenary curve was obtained by Johann Bernoulli in 1670 and is given by y(x) =
c cos h(x∕c), c > 0 (see Exercise 4.) unless the chain touches the ground.The name catenary
is derived from the Latin word Catena meaning chain.

Hamiltonian and Hamilton’s ODE: Let w solve the E–L system (4.12). Introduce
p = p(s) by

p(s) = DqL(w(s), ẇ(s)) (4.13)

for 0 ≤ s ≤ t. In Newtonian mechanics (see Example 4.7), we have p(s) = mẇ(s), the
momentum vector. In analogy, we call p defined by (4.13), the generalized momentum
vector. Recall that in classical mechanics, the Lagrangian formulation is the dynamics
described in terms of the position w and velocity ẇ, whereas the Hamiltonian formalism is
the description using positionw and momentum p = mẇ. Since, we can obtain momentum
p from the velocity ẇ and vice versa, we can easily go from one formalism to another.

To obtain a similar transformationwith general Lagrangian L in calculus of variations, we
have the difficult task (perhaps impossible) of obtaining ẇ in terms of p and w from (4.13).
This leads to the solvability issue of the non-linear algebraic equation p = DqL(w, q). Thus,
we make the following assumption:

Assumption 4.10. Given p, x ∈ ℝn, assume that the equation p = DqL(x, q) can be
uniquely solved for q = q(x, p) as a smooth function.

Definition 4.11. Under the Assumption 4.10, define theHamiltonianH ∶ ℝn×ℝn → ℝ by

H(x, p) = p ⋅ q(x, p) − L(x, q(x, p)). (4.14)



98 HAMILTON–JACOBI EQUATION

In the case of Newtonian mechanics, q(x, p) =
p
m

and thus H(x, p) =
|p|2
m

+ 𝜙(x), the total

energy of the system. Now, we rewrite the second-order E–L system for w and ẇ as a first-
order system of dimension 2n.

Theorem 4.12 (Hamilton’s ODE). Assume w satisfies the E–L system (4.12) and
Assumption 4.10 is satisfied. Define the Hamiltonian H as in (4.14). Then, w, p satisfy
the Hamiltonian system {

ẇ(s) = DpH(w(s), p(s))

ṗ(s) = −DxH(w(s), p(s)).
(4.15)

Moreover, the mapping s ↦ H(w(s), p(s)) is a constant.

Proof From the Assumption 4.10 and equation (4.13), we get

q = q(w(s), p(s)) = ẇ(s).

Thus, we have

H(w(s), p(s)) = p(s) ⋅ ẇ(s) − L(w(s), ẇ(s)).

Now

ṗ(s) = d
ds
DqL(w(s), ẇ(s)) = DxL(w(s), ẇ(s)) = −DxH(w(s), ṗ(s)).

On the other hand, 𝜕H
𝜕pi

= ẇi(s). It is also easy to see that d
ds
H(w(s), p(s)) = 0, which proves

the theorem.

We remark that the Hamiltonian is constant along the optimal trajectories that are the
characteristic curves of the HJE. In the special case of classical mechanics, the characteristic
curves are the constant energy curves.

4.4 LEGENDRE TRANSFORMATION

In this section, we give a connection between L and H via the so-called Legendre
transformation. Here, we assume L = L(p) is a function p alone. We further make
Assumption 4.10. Recall the wayH is defined from L using equation (4.14), where q = q(p)
solves p = DqL(q). Observe that the latter equation corresponds to a critical point of the
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functional F(q) = p ⋅ q − L(q), q ∈ ℝn. In other words, q = q(p) is an extremal point of the
functional F and H(p) = F(q(p)). This motivates the following definition:

Definition 4.13 (Legendre Transformation). The Legendre transformation of L, denoted
by L∗, is defined by

L∗(p) = sup
q∈ℝn

{p ⋅ q − L(q)} = sup
q∈ℝn

F(q), p ∈ ℝn. (4.16)

Using the coercivity assumption, it is easy to see that (Exercise 7) the supremum is attained
at some point q∗ = q∗(p), that is

L∗(p) = p ⋅ q∗ − L(q∗) = F(q∗).

Since q∗ is a maximum of F(q), we have DqF(q∗) = 0 whenever F is differentiable. In other
words, DqF(q∗) = p − DqL(q∗) = 0 is solvable for q∗ = q∗(p). Hence

H(p) = p ⋅ q∗ − L(q∗) = F(q∗) = L∗(p).

The converse is also true and we have the following theorem:

Theorem 4.14 (Convex Duality Between L and H). Suppose L satisfiesAssumption 4.1 and
Assumption 4.10. DefineH(p) = p⋅q(p)−L(q(p)), where q = q(p) solves p−DqL(q) = 0.
Then, H is also convex and coercive. Further, H = L∗ and H∗ = L.

Proof We have

H(p) = L∗(p) = sup
q∈ℝn

{p ⋅ q − L(q)}

and the convexity is trivial to check. To see coercivity, let 𝜆 > 0. For p ≠ 0, consider q =
𝜆p|p| .

Then, we get

H(p) ≥ p ⋅
𝜆p|p| − L

(
𝜆p|p|

)
≥ 𝜆|p| −M,

where M is the supremum of L(q) over the ball of radius 𝜆. Now dividing by |p| and taking|p| → ∞, we see that lim inf|p|→∞

H(p)|p| ≥ 𝜆. Since 𝜆 is arbitrary, we see that lim|p|→∞

H(p)|p| = ∞.
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It remains to prove that L = H∗. For any p, q ∈ ℝn, we have H(p) ≥ p ⋅ q − L(q),
equivalently L(q) ≥ p ⋅ q−H(p). Taking supremum over p, we get L(q) ≥ H∗(q). Conversely

H∗(q) = sup
p

{
p ⋅ q −H(p)

}
= sup

p

{
p ⋅ q − sup

r

{
p ⋅ r − L(r)

}}
= sup

p
inf
r

{
p ⋅ (q − r) + L(r)

}
≥ inf

r

{
p ⋅ (q − r) + L(r)

}
for all p ∈ ℝn. Using convexity of L, we see that there is an s ∈ ℝn such that (by Hahn–
Banach separation theorem)

L(r) − L(q) ≥ s ⋅ (r − q).

Indeed, if L is differentiable, then s = Dq(q). Taking p = s in the previous inequality, we get

H∗(q) ≥ L(q).

The proof of the theorem is complete.

Next, we will show that the value function u provided by the Hopf–Lax formula satisfies
HJE wherever it is differentiable.

Theorem 4.15. Assume that the Lagrangian L satisfies Assumption 4.1 and u, g be as in
Theorem 4.2. Then u is differentiable a.e. and solves the IVP

ut +H(Du) = 0 a.e. in ℝn × (0,∞)
u = g in ℝn. (4.17)

Proof Assume u is differentiable at (x, t). Now, fix q ∈ ℝn and let h > 0. Applying the
functional identity (4.9) and Hopf–Lax formula (4.8), we get

u(x + hq, t + h) ≤ inf
y∈ℝn

{
hL

(x + hq − y
h

)
+ u(y, t)

}
≤ hL(q) + u(x, t)

by taking y = x. Thus,
u(x + hq, t + h) − u(x, t)

h
≤ L(q).
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As h → 0+, we get

ut(x, t) + q ⋅ Du(x, t) − L(q) ≤ 0.

Now, by taking maximum over q ∈ ℝn, we have

ut(x, t) +H(Du(x, t)) ≤ 0.

To get the reverse inequality, choose z ∈ ℝn thatminimizes u(x, t) in theHopf–Lax formula;
that is,

u(x, t) = tL
(x − z

t

)
+ g(z).

Again applying Hopf–Lax formula, for fixed y ∈ ℝn, s > 0, we get

u(x, t) − u(y, s) ≥ [
tL

(x − z
t

)
+ g(z)

]
−
[
sL

(y − r
s

)
+ g(r)

]
for any r ∈ ℝn. Choose r = z, s = t − h, h > 0 small and finally choose y ∈ ℝn such that
y − r
s

=
y − z
s

= x − z
t

. This gives y =
y
s
x +

(
1 −

y
s

)
z. Thus, we have

1
h

[
u(x, t) − u

((
1 − h

t

)
x + z

t
h
)]

≥ L
(x − z

t

)
.

As h → 0+, we get
x − z
t

⋅ Du(x, t) + ut(x, t) ≥ L
(x − z

t

)
.

Hence
ut +H(Du) = ut + max

q
{q ⋅ Du − L(q)}

≥ ut +
x − z
t

⋅ Du − L
(x − z

t

) ≥ 0.

This proves that u satisfies HJE in (4.17) wherever u is differentiable and the statement
u(x, 0) = g(x) has been proved in Theorem 4.4.

In view of the above theorem, it seems reasonable to define a solution in a generalized sense
as a Lipschitz continuous function satisfying the initial condition and satisfying the HJE
a.e. However, this turns out to be inadequate as such solutions in the generalized sense
need not be unique and thus we may not be able to recover the correct physical solution.
Recall Example 3.19 and Example 3.20, where we have infinitely many solutions to very
simple HJEs. These examples suggest that we need some additional assumptions to capture
the correct solutions. As we expect the Hopf–Lax formula is a good representation via the
Lagrangian, we should analyze the formula more closely. In fact, u given by the Hopf–Lax
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formula inherits a kind of second derivative estimate. This notion turns out to be semi-
concavity (see Bardi and Capuzzo Dolcetta, 1997; Evans, 1998).

Definition 4.16 (Semi-concavity). A function f ∶ ℝn → ℝ is said to be semi-concave if
f(x) − C|x|2 is concave for some constant C > 0.

Proposition 4.17. Assume f ∶ ℝn → ℝ is continuous. Then, f is semi-concave if and only
if f satisfies the one-sided regularity estimate:

f(x − h) − 2f(x) + f(x + h) ≤ C|h|2 (4.18)

for some constant C > 0 and for all x, h ∈ ℝn.

Proof If f is semi-concave, that is, g(x) = f(x) − C|x|2 is concave for some constant C > 0,
then

g
(z + y

2

)
≥ 1

2
(g(z) + g(y)), (4.19)

that is

−2f
(z + y

2

)
+ f(z) + f(y) ≤ C

(|z|2 + |y|2 − 2
||||z + y

2
||||2
)
.

If x, h ∈ ℝn, then by taking y = x+ h, z = x− h, we get the inequality (4.18). Conversely, if
f satisfies (4.18), it is easy to see that g satisfies (4.19) with g as before. By continuity of f, the
concavity of g follows.

For a C2 function, the following is a sufficient condition for convexity.

Definition 4.18 (Uniform Convexity). Let Ω ⊂ ℝn be a open set and H ∈ C2(Ω).
Then, H is said to be uniformly convex in Ω if there is a constant 𝜃 > 0 such that
(D2H(x)𝜉, 𝜉) ≥ 𝜃|𝜉|2 for all x ∈ Ω, 𝜉 ∈ ℝn. Here D2H(x) denotes the Hessian[

𝜕2H
𝜕xi𝜕xj

(x)

]
of H at x.

The semi-concavity of u is proved in the following theorem:

Theorem 4.19. Assume that either g ∶ ℝn → ℝ is semi-concave or H ∶ ℝn → ℝ is
uniformly convex. Then, the solution u(⋅, t) of HJE with initial data g given by Hopf–
Lax formula is semi-concave for each t > 0.

Proof Case 1: Assume g is semi-concave. Let x∗ be the minimizer for u(x, t). That is,
u(x, t) = tL

(x − x∗
t

)
+ g(x∗). Then by taking y = h + x∗ and y = h − x∗, respectively, in
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Hopf–Lax formula, we get

u(x + h, t) = tL
(x − x∗

t

)
+ g(h + x∗)

and

u(x − h, t) = tL
(x − x∗

t

)
+ g(h − x∗).

Thus, we have

u(x − h, t) − 2u(x, t) + u(x + h, t) ≤ g(h − x∗) − 2g(x∗) + g(h − x∗) ≤ C|h|2
The later inequality follows from the semi-concavity of g.
Case 2: Now, we consider the case when H is uniformly convex. Let p0 =

p1 + p2

2
. Apply

Taylor’s theorem to get

H(p1) = H(p0) +
1
2
DH(p0) ⋅ (p1 − p2) +

1
8
(D2H(𝜉1)(p1 − p2), p1 − p2)

and

H(p2) = H(p0) +
1
2
DH(p0) ⋅ (p2 − p1) +

1
8
(D2H(𝜉2)(p1 − p2), p1 − p2)

for some 𝜉1, 𝜉2 ∈ ℝn. Adding these equations and using the uniform convexity ofH, we get
the inequality3

H
(p1 + p2

2

)
≤ 1

2
H(p1) +

1
2
H(p2) −

𝜃
8
|p1 − p2|2.

The continuity of H then proves that H is convex. Since H and L are dual to each other, we
prove a reverse inequality for L. For given q1, q2, from the definition of L = H∗, there are
p1, p2 such that

1
2
L(q1) +

1
2
L(q2) =

1
2
(p1 ⋅ q1 + p2 ⋅ q2) −

1
2
(H(p1) +H(p2))

≤ 1
2
(p1 ⋅ q1 + p2 ⋅ q2) −H

(p1 + p2

2

)
− 𝜃

8
|p1 − p2|2

3Note that this is a stronger estimate than just convexity.



104 HAMILTON–JACOBI EQUATION

≤ 1
2
(p1 ⋅ q1 + p2 ⋅ q2) − (p1 + p2)

(q1 + q2

2

)
+L

(q1 + q2

2

)
− 𝜃

8
|p1 − p2|2

≤ L
(q1 + q2

2

)
+ 1

4
(p1 ⋅ q1 + p2 ⋅ q2) −

1
4
(p1 ⋅ q2 + p2 ⋅ q1)

−𝜃
8
|p1 − p2|2

≤ L
(q1 + q2

2

)
+ 1

8𝜃
|q1 − q2|2.

The last inequality follows by expanding the expression:

|||||| 1√
8𝜃

(q1 − q2) −
𝜃√
8
(p1 − p2)

||||||
2

≥ 0.

Let x∗ be as in Case 1. Then

u(x − h, t) − 2u(x, t) + u(x + h, t) ≤
(
tL

(
x − h − x∗

t

)
+ g(x∗)

)
−2

(
tL

(x − x∗
t

)
+ g(x∗)

)
+
(
tL

(
x + h − x∗

t

)
+ g(x∗)

)
≤ 1

𝜃t
|h|2.

The last inequality follows from the earlier inequality derived for L choosing q1, q2
suitably.

Generalized Solution and Uniqueness

Definition 4.20 (Generalized Solution). Wesay that a Lipschitz functionu ∶ ℝn×[0,∞) →
ℝ is a generalized solution of the IVP (4.2) if u satisfies

1. u(x, 0) = g(x) for all x ∈ ℝn.

2. ut(x, t) +H(Du(x, t)) = 0 a.e. x in ℝn, t > 0

3. u(x − h, t) − 2u(x) + u(x + h) ≤ C(t)|h|2, for all x, h ∈ ℝn and t > 0, where
C(t) = C

(
1 + 1

t

)
for some C > 0.
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Theorem 4.21 (Existence and Uniqueness). Consider the IVP (4.2), where the
HamiltonianH ∶ ℝn → ℝ is convex and coercive. Assume the initial data g is Lipschitz
continuous. Further, assume that either g is semi-concave or H is uniformly convex.
Then, the function u defined by the Hopf–Lax formula

u(x, t) = inf
y∈ℝn

{
tL

(x − y
t

)
+ g(y)

}
is the unique generalized solution of the IVP (4.2). Here the Lagrangian L is given by

L(q) = H∗(q) = sup
p∈ℝn

{p ⋅ q −H(p)}.

Proof In view of Theorem 4.15, only uniqueness need to be proved. Let u1, u2 be two
generalized solutions and let w = u1 − u2. Then, w satisfies

wt + a(x, t)Dw = 0 a.e., (4.20)

where

a(x, t) =
1

∫
0

DH(rDu1 + (1 − r)Du2)dr.

Indeed w is differentiable a.e. and at a differentiable point (x, t), where u1, u2 are
differentiable, we get from the HJEs for u1, u2:

wt = −H(Du1) +H(Du2) =

1

∫
0

d
dr
H(rDu1 + (1 − r)Du2)dr

which in turn gives (4.20). Now, we choose a smooth function 𝜙 ∶ ℝ → [0,∞) such that
𝜙 = 0 in a neighborhood of 0 and𝜙 is positive outside this neighborhood.Then, 𝜐 = 𝜙(w) ≥
0. Since 𝜐t = 𝜙 ′(w)wt and D𝜐 = 𝜙 ′(w)Dw, we see from (4.20) that 𝜐 satisfies

𝜐t + a(x, t)D𝜐 = 0, a.e. (4.21)

Since u1, u2 and hence a need not be C2, we smoothen these functions via mollifiers (see
Chapter 2).Thus, we define u𝜀i = 𝜌𝜀 ∗ ui, for i = 1, 2, where 𝜌𝜀 is themollifier in x, t variable.
We can also deduce that

u𝜀i → ui, Du𝜀i → Dui, a.e. (4.22)

Further, Du𝜀i ’s are bounded by the Lipschitz constants ki of ui, that is

|Du𝜀i | ≤ ki, i = 1, 2. (4.23)
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Moreover, the one-sided estimate (4.18) implies that

|D2u𝜀i | ≤ C
(
1 + 1

t

)
. (4.24)

Now define a𝜀 as

a𝜀(x, t) =
1

∫
0

DH(rDu𝜀1 + (1 − r)Du𝜀2)dr.

Fix a point (x0, t0) and M = max{DH(p) ∶ |p| ≤ max{k1, k2}}. Define

z(t) = ∫
B

𝜐(x, t)dx,

where B is the ball BM(t0−t)(x0) for t < t0. We derive an IVP for z. We have

ż = ∫
B

𝜐tdx −M∫
𝜕B

𝜐dS.

From equation (4.21) for 𝜐, we have

𝜐t + a𝜀(x, t) ⋅ D𝜐 = (a𝜀 − a) ⋅ D𝜐, a.e.

Thus

𝜐t + div(𝜐a𝜀) = 𝜐diva𝜀 + (a𝜀 − a) ⋅ D𝜐.

Hence, replacing 𝜐t from the above expression and integrating by parts, we arrive at

ż = −∫
𝜕B

𝜐(a𝜀 ⋅ 𝜈 +M)dS + ∫
B

(diva𝜀 ⋅ 𝜐 + (a𝜀 − a) ⋅ D𝜐)dx.

Thefirst term−∫
𝜕B

𝜐(a𝜀.𝜈+M)dS is negative by the choice ofM and (4.23). By differentiating

a𝜀, we get the estimate

diva𝜀 ≤ C
(
1 + 1

t

)
.

Thus,

ż ≤ C
(
1 + 1

t

)
z(t) + ∫

B

(diva𝜀 ⋅ 𝜐 + (a𝜀 − a) ⋅ D𝜐)dx.
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As 𝜀 → 0, we finally get the differential inequality

ż ≤ C
(
1 + 1

t

)
z(t)

a.e., 0 < t < t0. Now let 0 < 𝜀 < t0. Since u1(x, 0) = u2(x, 0), we have

|w(x, t)||u1(x, t) − u2(x, t)| ≤ |u1(x, t) − u1(x, 0)| + |u2(x, t) − ut(x, 0)| ≤ 𝜀(k1 + k2)

for |t| = 𝜀.Thus, if we choose𝜙 such that𝜙 vanishes in the interval [−𝜀(k1+k2), 𝜀(k1+k2)],
we get 𝜐(x, 𝜀) = 𝜙(w(x, 𝜀)) = 0. Consequently, we get z(𝜀) = 0. Now applying Gronwall’s
inequality over the interval [𝜀, t], we see that

z(t) ≤ z(𝜀) exp
⎛⎜⎜⎝C

t

∫
𝜀

(
1 + 1

t

)
dt
⎞⎟⎟⎠ = 0.

This gives 𝜐 = 0 and hence

|u1 − u2| = |w| ≤ 𝜀(k1 + k2)

by the choice of 𝜙. As 𝜀 is arbitrary, we get u1 = u2. This completes the proof.

4.5 NOTES

In this chapter, we have studied a very special case of HJE when the Hamiltonian is a
function of Du only. Further, we have assumed that H is convex. In general H can be a
function of x, u,Du and theremay not be any convexity.The study on such general equations
is beyond the scope of this first book on PDE. Most of the material covered in this chapter
is available in Evans (1998) and further references are Lions (1982), Rund (1973), Benton
(1977), Lax (1973), and Morawetz (1981).

The perception of PDE has completely changed after the introduction of distribution
theory in the middle of the last century. It was quite apparent in the first half of the last
century that a new theory was inevitable to understand PDE and hence physical problems.
Many physical quantities appearing as unknowns in PDE need not be differentiable or
smooth. Hence it is important to give an appropriate interpretation of solution of PDEs,
where it is possible to accommodate non-smooth functions as solutions. The distribution
theory allows us to differentiate functions in aweak sense, which are not differentiable in the
usual sense and look for solutions in appropriate space after giving suitable interpretations
that are physically meaningful. This together with the modern functional analysis and
operator theorymade the study of PDEs in a wider perspective and it became extremely rich
in the last 50 years. Loosely speaking distribution theory is a linear theory and in general, it
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is not applicable to highly non-linear PDEs. Another concept of weak solutions, which was
developed in the late 1970s in the context of HJB equations connected with optimal control
problems.

The theory of viscosity solutions for HJEs was initiated in the early 1980s by Crandall
and Lions (1981, 1983). The HJE or HJB equations arise in the study of optimal control
problems. The dynamic programming became a standard topic in deterministic optimal
control theory as early as 1960s. Dynamic programming is a functional relation of the value
function associated with an optimal control problem from which it is possible to derive
various other results. The infinitesimal version of theDPP was derived formally in the form
of a (first- or second-order) non-linear PDE satisfied by the value function. Indeed, it is
easy to prove that if the value function is smooth, then it is the unique solution of HJB
equation (smooth unique existence). However, the lack of smoothness of the value function
in optimal control and differential game problems of continuous time processes, creates
considerable restriction to the applicability of the classical Hamilton–Jacobi theory in the
setup of calculus of variations, which was recognized as early as 1930s by C. Carathèodory.
What is required is an appropriate interpretation of a weak concept of the solution of HJB
equations. Thus realizing the non-smooth values as the solution of (viscosity sense) HJB
equation. This was reasonably well handled after the introduction of viscosity solutions.

Later the theory of viscosity solutions was extended to a unified treatment of first- and
second-order degenerate elliptic equations and scope of applications increased considerably.
The survey paper by Crandall et al. (1992) and the book by Bardi and Capuzzo Dolcetta
(1997) is very good for the study of viscosity solution. The beginner can also look into the
book by Daniel Liberzon (2012). It gives excellent introduction to optimization, calculus of
variations and optimal control.

4.6 EXERCISES

1. Consider the minimization problem from calculus of variation:

min
𝜏

∫
t

(
1 + 1

4
ẋ(s)2

)
ds, t ∈ [0, 1],

over a suitable class of functions, say Lipschitz functions. Here 𝜏 is the exit time of (s, x(s))
from the region [0, 1] × [−1, 1]. Define L(𝜐) ∶= L(t, x, 𝜐) = 1+ 1

4
𝜐2, where 𝜐 is any scalar. Let

x(⋅) be the trajectory with the initial value x(t) = x, then the value function is defined as

u(t, x) = min
⎧⎪⎨⎪⎩

𝜏

∫
t

L(t, x(s), ẋ(s))ds ∶ x(⋅) Lipschitz continuous
⎫⎪⎬⎪⎭ .
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Show that u is given by

u(t, x) = min
𝜐
{(𝜏 − t)L(t, x, 𝜐)},

where the minimization over the real numbers. Further show that

𝜐∗ =

⎧⎪⎨⎪⎩
2 if x ≥ t
0 if |x| < t

−2 if x ≤ −t
,

is a minimizing solution and the corresponding value function is given by

u(t, x) =
{

1 − |x| if |x| ≥ t
1 − t if |x| ≤ t

Find the differentiable region and show that u satisfies the following HJE wherever it is
differentiable:

−ut(t, x) + (ux(t, x))2 − 1 = 0,

and satisfies conditions

u(t, 1) = u(t,−1) = 0, t ∈ [0, 1]; u(1, x) = 0, x ∈ [−1, 1].

2. a. Consider the Lagrangian L(q) = 1 + 1
4
|q|2, q ∈ ℝn and derive the Hamiltonian via the

Legendre transformation.

b. Now define the minimal value

u(x, t) = min
⎡⎢⎢⎣

t

∫
0

(
1 + 1

4
ẇ(s)2

)
ds + 1

2
w(0)2

⎤⎥⎥⎦ ,
where the minimum is taken over all smooth trajectories w satisfying w(t) = x. Using
Hopf–Lax formula find u explicitly, write down HJE, show that u satisfies HJE and find
the initial condition.

3. Recall the brachistochrone problem in Example 4.8. Show that the minimizing solution is a
cycloid, using E–L equations.

4. In Catenary Example 4.9, derive the optimal trajectory.

5. Consider J(y) = ∫
1

0
yẏ2dx subject to y(0) = y(1) = 0. Show that the E–L equation is ẏ2 =

d
dx

(2yẏ) and y = 0 is, in fact, a solution, that is, y = 0 is a critical point. But conclude that
y = 0 is neither a minimum nor a maximum.
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6. The following example is known as the Dirichlet Principle:
The optimization problem involves finding a surface that minimizes a given integral

functional J(y) = ∫
Ω

∇y(x) ⋅ ∇y(x)dx over surfaces y satisfying y(x) = y(x) on 𝜕Ω. Here Ω is

a given open bounded set in ℝ2, 𝜕Ω is the boundary of Ω and y are given. If y is an optimal
solution, show that y satisfies the Laplace equation Δy(x) = 0 in Ω, y = y on 𝜕Ω. This is
also given as the equation satisfied by the electric potential in which a static two-dimensional

electric field is distributed. The functional of the form 1
2 ∫ ∇y ⋅ ∇y − ∫ f𝜐 also represents

the strain energy functional.
7. Assume that L ∶ ℝn → ℝ is continuous and satisfies the coercivity condition in Assumption

4.1. Consider the maximization problem

H(p) ∶= sup
q∈ℝn

{
p ⋅ q − L

(
q
)}

.

Given p ∈ ℝn, show that there exists a q = q(p) ∈ ℝn such that

H(p) = p ⋅ q(p) − L(q(p)).

8. Let E be a closed subset ofℝn. ApplyingHopf–Lax formula, show that the solution of theHJE

ut + |Du|2 = 0, inℝn × (0,∞)
u(x, 0) = g(x) inℝn,

is given by u(x, t) = d(x)
4t
. Here g is the indicator function that is zero in E and ∞ otherwise

and d(x) = d(x,E) is the distance function.



CHAPTER 5

Conservation Laws

5.1 INTRODUCTION

Many physical laws, for example, conservation of mass, momentum and energy, occur as
conservation laws. Dynamics of compressible fluids, both in one and three dimensions,
is a rich source of conservation laws and offers many problems that are challenging;
see, for example, Courant and Friedrichs (1976), Morawetz (1981), Whitham (1974), and
Majda (1985). This subject has been one of the most active research fields, both in the
theoretical and computational aspects, for the past more than six decades. Because of its
important applications in the aerospace engineering, the interest in this field is only growing.
Yet, certain theoretical aspects in the study of systems of conservation laws (e.g., Euler’s
equations of gas dynamics) have not been resolved satisfactorily and remain a challenge.
The interested reader will find some advanced topics in Smoller (1994), Majda (1985), and
Lax (1973), and the references therein.

A conservation law asserts that the rate of change of the total amount of a substance (e.g.,
a fluid) in a domain Ω in space (an interval in the one-dimensional case) is equal to its flux
across the boundary 𝜕Ω of the domainΩ. If u = u(x, t) denotes the density of the substance
at time t and f the flux, the conservation law is expressed as

d
dt ∫

Ω

u dx = −∫
𝜕Ω

f ⋅ 𝜈 dS, (5.1)

where 𝜈 denotes the outward unit normal on 𝜕Ω and dS is the surface measure on 𝜕Ω. The
integral on the right-hand side is the total amount of the outflow of the substance across 𝜕Ω,
hence the negative sign. Assuming that u and f are smooth, we obtain using the divergence
theorem that

∫
Ω

(ut + divf) dx = 0.

SinceΩ is an arbitrary domain, by shrinking it to a point, we obtain the following first-order
PDE

ut + divf = 0, (5.2)

111
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satisfied by the density u and the flux f. Equation (5.2) is the conservation law expressed in
the differentiated form and equation (5.1) in the integral form.

Note that (5.1) is equivalent to

∫
Ω

(u(x, t2) − u(x, t1)) dx = −

t2

∫
t1

∫
𝜕Ω

f ⋅ 𝜈 dSdt, (5.3)

for all t1 and t2 with t1 < t2.
In the present chapter, we consider only a single conservation law in one (space)

dimension. In the differentiated form, this is a first-order quasilinear equation of the form

ut + fx = 0, (5.4)

where f = f(u) is assumed to be a non-linear function of u. Our main plan is to derive an
explicit formula for the generalized or weak solution of (5.4) (defined in the next section)
using the Hopf–Lax formula for the solution of Hamilton–Jacobi equation (HJE), derived
in Chapter 4. This is the well-known Lax–Oleinik formula. As we have seen in Chapter 3,
smooth solutions may not exist for all t > 0 for the Burgers’ equation ut + uux = 0, or more
generally for ut + f(u)x = 0, and hence the need to look for generalized or weak solutions.

Equation (5.4) being a quasilinear first-order equation, it can be solved using the method
of characteristics, described in Chapter 3. The following observations easily follow as in the
case of Burgers’ equation, discussed earlier in the same chapter.The characteristic equations
are given by

dx
dt

= c(u), du
dt

= 0,

where1 c(u) = f ′(u). If we prescribe an initial condition u(x, 0) = u0(x), x ∈ ℝ with u0
being a C1 function, then the solution of (5.4) is given in the following parametric form:

x = c(u0(x0))t + x0, u(x, t) = u0(x0), (5.5)

where x0 is the point on the line t = 0 at which the characteristic through (x, t), t > 0
meets the line t = 0. Note that the characteristics are straight lines, with varying slopes. We
recall that by implicit function theorem, a sufficient condition for solving for x0 in terms of
x and t is

1 + u ′
0ct ≠ 0.

1As a convention, we use ′ to denote the differentiation of any function of a single variable. If f is a linear function
of u, then c will be a constant function.
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Thus, we are able to obtain the solution u, at least for t > 0 small enough. Observe that we,
then have

ut = −
u ′

0c
1 + u ′

0ct
, and ux =

u ′
0

1 + u ′
0ct

. (5.6)

This immediately shows that u defined by (5.5) is indeed a solution of (5.4), at least for small
t > 0, satisfying the initial condition u(x, 0) = u0(x). Now let us assume that equation (5.4)
is genuinely non-linear, that is, c(u) is not zero for all u. We may assume that2

c(u) > 0, for all u. (5.7)

Then, if u ′
0 ≥ 0, we have a solution defined for all t > 0. On the other hand, if u ′

0 < 0, then
the solution cannot be defined beyond a certain T, by the method of characteristics. If we
choose the initial values u0 from the important class of functions having compact supports,
they inevitably satisfy the condition u ′

0 < 0 in an interval. Thus, in this case, if we wish
to define a solution for all t > 0, we need to move outside the class of smooth functions.
But then, such a function cannot satisfy equation (5.4) point-wise. This issue will be taken
up in the next section. Before proceeding further, we discuss an interesting example. We
shall now formulate the traffic flow problem, leading to a conservation law, first proposed
by Lighthill and Whitham (see Lighthill and Whitham, 1955; Morawetz, 1981; Whitham,
1974).

Example 5.1 (Traffic Flow Problem). Imagine a long road, identified as the x-axis, crowded
by vehicles. Let u(x, t) denote the density, namely the number of vehicles passing
through the position x at time t along the road. Let 𝜐(x, t) be the average local velocity
of the vehicles. Assuming that in any section [x1, x2] of the road, the total number of
vehicles is preserved (conservation), we get the equation (see (5.3))

x2

∫
x1

u(x, t2)dx −

x2

∫
x1

u(x, t1)dx =

t2

∫
t1

u(x1, t)𝜐(x1, t)dt −

t2

∫
t1

u(x2, t)𝜐(x2, t)dt.

Assume u, 𝜐 are smooth. Then, dividing the above equation by t2 − t1 and letting t1, t2 → t,
we get the integral equation

x2

∫
x1

ut(x, t)dx = (𝜐u)(x1, t) − (𝜐u)(x2, t).

2If c has isolated zeros or vanishes on an interval, then additional difficulties arise in the analysis.
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u

𝜐

umax

𝜐max

(a)

u

f(u)

(b)
Figure 5.1 (a) Density–velocity curve, (b) Density–flux curve

Comparing this with equation (5.1), we see that the expression 𝜐u represents the flux. This
is the integral form of the conservation law equation. Now, divide the above equation by
x2 − x1 and let x1, x2 → x, to get

ut + (𝜐u)x = 0. (5.8)

If we assume 𝜐 is a function of u, say, 𝜐 = 𝜐(u), which is a reasonable assumption as the
drivers are supposed to increase or decrease the vehicle speed according as the density
decreases or increases, respectively, then equation (5.8) can be written in the form of
equation (5.2), with f(u) = u𝜐(u). Observe that the maximum of 𝜐(u) (maximum means
maximum speed allowed) is attained when the density u = 0. And, when the density u
is maximum, the drivers need to stop their vehicles (travelling with almost zero speed).
Consequently 𝜐 is zero. Thus, f(u) = 0 when both u = 0 or u is maximum (since, in this case
𝜐 = 0.). The density–velocity and density–flux curves schematically depicted in Figure 5.1.

5.2 GENERALIZED SOLUTION AND RANKINE–HUGONIOT (R–H)
CONDITION

For the conservation law (5.4), the method of characteristics provides a smooth solution,
under the transversality condition on the initial curve, at least for small t > 0. It is evident
from the discussion in the previous section and Chapter 3 that there may not exist a
smooth solution for all time t > 0. This forces us to look for a different concept of the
solution, admitting non-differentiable functions as solutions. Obviously, such a solution
cannot satisfy (5.4) point-wise. To get a better feeling of this new concept of solution, let us
begin first with a weak differentiation concept.
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Let h ∈ C1[a, b] and 𝜓 ∈ C1[a, b] such that 𝜓(a) = 𝜓(b) = 0 be an arbitrary function.
All such 𝜓 are referred to as test functions. Then, an integration by parts yields

b

∫
a

h ′(t)𝜓(t)dt = −

b

∫
a

h(t)𝜓 ′(t)dt.

There are no boundary terms as 𝜓(a) = 𝜓(b) = 0. In other words, the function h ′ can be
interpreted by its action on all test functions 𝜓 , namely by the integral ∫ b

a h ′(t)𝜓(t)dt that
is the same as − ∫ b

a h(t)𝜓 ′(t)dt. The advantage of the representation ∫ b
a h(t)𝜓 ′(t)dt is that

we do not require h to be differentiable. Thus, we interpret the function h ′ by its actions
− ∫ b

a h(t)𝜓 ′(t)dt for all test functions 𝜓 . Of course, when h is differentiable in the usual
sense, it is possible to recover h ′ by this interpretation, that is, the two notions are the same
if h is differentiable. We use this idea to obtain a weak formulation of the conservation law
(5.4). Consider the initial value problem (IVP) for the conservation law{

ut + (f(u))x = 0 in ℝ × (0,∞)
u(x, 0) = u0(x), x ∈ ℝ. (5.9)

Here f ∶ ℝ → ℝ is a smooth function and u0 is a given C1 function. Let 𝜐 ∶ ℝ×[0,∞) → ℝ
be a smooth function with compact support in ℝ × [0,∞). Such functions are referred to
as test functions. It is to be remarked that the support of the test functions is in the closed
set ℝ × [0,∞) and not in the open set ℝ × (0,∞). This is important to retrieve the initial
condition, when the solution is smooth.

Let u be a C1 solution of (5.9). Multiplying equation (5.9) by 𝜐 and integrating by parts,
we arrive at the integral equation

∞

∫
0

∞

∫
−∞

(
u𝜐t + f(u)𝜐x

)
dxdt +

∞

∫
−∞

g(x)𝜐(x, 0) dx = 0. (5.10)

Note that the integral equation (5.10) does not require u or f to be differentiable. In fact,
we can even admit discontinuous u, only requiring that all the integrals in (5.10) are well-
defined. This leads to the following definition:

Definition 5.2 (Generalized or Weak Solution). A function u ∈ L∞(ℝ × (0,∞)) is a
generalized solution or weak solution of (5.9) if the integral equation (5.10) is satisfied,
for all the test functions 𝜐.

Thus, if u is a classical solution (that is u is smooth and satisfies (5.9) point-wise), then u
is a generalized solution. Conversely, if u is a generalized solution and u is a C1 function,
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it is not difficult to show that u indeed satisfies (5.9) (see Exercise 5). However, there are
generalized solutions that are not differentiable, as we will see the examples below. These
solutions cannot therefore satisfy (5.9) at all points.

Before proceeding toward existence and uniqueness of generalized solutions, we discuss
a simple class of generalized solutions: these solutions are differentiable everywhere except
on a curve in the (x, t) plane.

Rankine–Hugoniot (R–H) Condition: Let V ⊂ ℝ× (0,∞) be an open region and let 𝛾 be
a smooth curve inV as shown in Figure 5.2, dividing the regionV into two open setsV𝓁 and
Vr. Assume that u is a generalized solution of (5.9). Assume further that u is C1 in both the
regions V𝓁 and Vr and has jump discontinuity across 𝛾 . It follows, by taking 𝜐 with support
in V𝓁 and Vr, respectively that

ut + (f(u))x = 0 both in V𝓁 and Vr. (5.11)

Let 𝜐 be a test function having support in V. Using (5.10), we have

0 = ∬
V

(
u𝜐t + f(u)𝜐x

)
dxdt

= ∬
V𝓁

(
u𝜐t + f(u)𝜐x

)
dxdt +∬

Vr

(
u𝜐t + f(u)𝜐x

)
dxdt.

x

t

V

V𝓁 Vr

(𝜈x, 𝜈t)

𝛾

Figure 5.2 Rankine–Hugoniot condition



5.2 Generalized Solution and R–H Condition 117

Since u is smooth in V𝓁 and Vr, we can integrate by parts in the two integrals on the right-
hand side. Thus,

∬
V𝓁

(
u𝜐t + f(u)𝜐x

)
dxdt = −∬

V𝓁

(
ut𝜐 + (f(u))x𝜐

)
dxdt

+ ∫
𝛾

(u𝓁𝜈t + f(u𝓁)𝜈x)𝜐 dS.

Here u𝓁 and ur denote the limits of the function u on 𝛾 , when approached through the points
from V𝓁 and Vr, respectively; 𝜈 = (𝜈x, 𝜈t) is the unit normal on 𝛾 , which is outward to the
domainV𝓁 , and hence inward to the domainVr. The second integral on the right-hand side
is the line integral along the curve 𝛾 . Using the equation on the domain V𝓁 in (5.11), we
therefore have

∬
V𝓁

(
u𝜐t + f(u)𝜐x

)
dxdt = ∫

𝛾

(u𝓁𝜈t + f(u𝓁)𝜈x)𝜐 dS.

Similarly, we have

∬
Vr

(
u𝜐t + f(u)𝜐x

)
dxdt = −∫

𝛾

(ur𝜈t + f(ur)𝜈x)𝜐 dS.

Adding these two equations, we arrive at

∫
𝛾

(
[u]𝛾𝜈t + [f(u)]𝛾𝜈x

)
𝜐 dS = 0, (5.12)

where [u]𝛾 = u𝓁 − ur and [f(u)]𝛾 = f(u𝓁) − f(ur) denote the jumps of u and f(u) across 𝛾 ,
respectively. Since (5.12) holds for all the test functions 𝜐, we conclude that

[u]𝛾𝜈t + [f(u)]𝛾𝜈x = 0

along the curve 𝛾 . If the curve 𝛾 has a parametric representation x = s(t)where s ∶ [0,∞) →
ℝ is a smooth function, then

𝜈x =
1√

1 + ṡ2
and 𝜈t = − ṡ√

1 + ṡ2
.

Consequently,
𝜈t
𝜈x

= −ṡ and the jump condition becomes

[f(u)]𝛾 = 𝜎[u]𝛾 . (5.13)
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This is referred to as the Rankine–Hugoniot (R–H) condition3 and 𝜎 = ṡ is referred to as
the speed with which the discontinuity (of u) propagates. Thus, for a piece-wise smooth
solution of (5.4), possibly having jump discontinuities along a curve in the (x, t) plane, R–H
condition is a necessary condition.

Remark 5.3. For the conservation law

ut + f(u)x = 0,

the R–H condition or the jump condition is given by

−𝜎[u] + [f(u)] = 0,

where 𝜎 is the speed of the shock discontinuity and [⋅] denotes the jump across the
shock discontinuity. There is a nice correspondence between the PDE and the R–H
condition:

𝜕
𝜕t

↔ −𝜎[⋅], 𝜕
𝜕x

↔ [⋅].

The R–H condition can also be written as

𝜎 =
f(ur) − f(ul)
ur − ul

.

It is important to note that the direct association of the R–H condition with the PDE in
conservation form is not unique. For example, consider the Burgers’ equation

ut + uux = 0.

This can be written in conservation form as

ut +
(1
2
u2
)
x
= 0

and also as (1
2
u2
)
t
+
(1
3
u3
)
x
= 0.

Obviously, the R–H conditions of these two PDE are different. Thus, we have to choose
the appropriate R–H condition only from the physical considerations of the problem
and the original integrated form of the conservation law.

3This terminology is derived from gas dynamics.
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Since we do expect the discontinuous solution to (5.4), possibly at a later time T > 0, we
may as well start with a discontinuous initial condition and analyze a generalized solution.
For this purpose, we consider the example of Burgers’ equation (f(u) = u2∕2) with different
discontinuous initial conditions.

Example 5.4 (Rarefaction). Consider the initial condition (see Figure 3.8(b))

u0(x) =
{

0 if x < 0
1 if x > 0.

Using the method of characteristics, we obtain that

u(x, t) =
{

0 when x < 0, t > 0
1 when x > t > 0.

But, the region 0 < x < t in the (x, t) plane is not covered by any characteristic and thus
u is not defined there. Now, define the function

u1(x, t) =
⎧⎪⎨⎪⎩

0 if x < t
2
, t > 0

1 if x > t
2
, t > 0

and

u2(x, t) =
⎧⎪⎨⎪⎩

0 if x < 0, t > 0
x
t

if 0 < x < t, t > 0

1 if x > t > 0.

It is easy to see that u1 is a generalized solution; the line x = t
2

is its discontinuity
curve and u1 satisfies R–H condition across this discontinuity curve. The function u2
is a continuous generalized solution. But u2 is not differentiable across the lines x = 0
and x = t (see Figure 5.3).

Laterwewill see that the solutionu1 is not a physically relevant solution as the characteristics
emanating from either side of the discontinuity curve move away from the discontinuity
curve. In other words, the discontinuity is not formed by the intersection of two different
characteristics. The second solution u2 is called a rarefaction wave. Later, this will be shown
to be the physically relevant solution.

The above example also exhibits non-uniqueness of a generalized solution. To pick a
physically relevant solution and perhaps to prove uniqueness, we thus need to impose
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x

t x = t∕2

u ≡ 0
u ≡ 0

u ≡ 1

(a)

x

t

x = t
u ≡ 0

u = x
t

u ≡ 1

(b)
Figure 5.3 (a) Line of discontinuity, (b) Rarefaction wave

additional condition(s). This turns out to be the entropy condition, a terminology borrowed
from thermodynamics.

Example 5.5 (Shock Discontinuity). The initial condition here is the non-decreasing
function u0 given by

u0(x) =
⎧⎪⎨⎪⎩

1 if x ≤ 0
1 − x if 0 ≤ x ≤ 1
0 if x ≥ 1.

See Figure 5.4. As shown in Chapter 3, the characteristics emanating from any two distinct
points in the interval where u0 is decreasing bound to intersect in the region t > 0,
thus making the definition of the solution u after some time ambiguous. Drawing various
characteristics, it is easy to show that the characteristics do not intersect till t = 1. Thus,
using themethod of characteristics, we can construct the solution u up to t = 1; it is given by

u(x, t) =
⎧⎪⎨⎪⎩

1 if x < t
1 − x
1 − t

if t < x < 1

0 if x > 1,

for 0 ≤ t < 1. This procedure breaks down for t ≥ 1. We now construct a curve of
discontinuity s(t) for t ≥ 1 satisfying s(1) = 1. Define u = 1 on the left side of s(t) and
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x

u0

1
Figure 5.4 Shock discontinuity

x

t

t = 1

u = 1

x = t

u = 1

u = 1−x
1−t

u = 0

x

t

1

s(t) = 1+t
2
, t ≥ 1

Figure 5.5 Solution and line of discontinuity

u = 0 on the right side of s(t). For u to be a generalized solution, the R–H condition need
be satisfied and this immediately shows that s(t) = 1 + t

2
. Thus, we define u, for t ≥ 1 as

u(x, t) =

{
1 if x < s(t)
0 if x > s(t).

It can be easily verified that u defined by the above two expressions for t ∈ [0, 1) and t ≥ 1,
is a generalized solution, satisfying the R–H condition (see Figure 5.5). The curve s(t) is
known as shock discontinuity.
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A similar analysis can be done if we take the initial condition u0 as

u0(x) =

{
1 if x < 0
0 if x > 0.

In this case, the line of discontinuity is the line x = t; u = 1 on its left and u = 0 on its
right. We remark that both the cases of rarefaction wave and shock wave can be observed
in a shock tube experiment, where u represents the pressure of the gas in the shock tube.

Entropy Condition. A heuristic argument: Consider a smooth flux f and initial condition
u0. Then, from any point (x0, 0) on the initial line t = 0, the characteristic curve (of (5.4)) is
a straight line with slope (c(u0(x0)))−1 with c = f ′. Now consider a curve 𝛾 of discontinuity
of the solution u and two characteristics coming from the left and right of 𝛾 , denoted by l1
and l2 (see Figure 5.6) and meeting at P on 𝛾 . Indeed, u ≡ u0(x1) on l1 and u ≡ u0(x2) on
l2. Also, it is clear that the slopes of l1, 𝛾 and l2 should be in increasing order. Thus, we have
the inequality

c(ul) = c(u0(x1)) > 𝜎 > c(u0(x2)) = c(ur), (5.14)

where ul = u0(x1), the value u at P coming from l1 and ur = u0(x2), the value u at P coming
from l2. Further, 𝜎−1 is the slope of 𝛾 at P. The inequality (5.14) is sometimes referred to
as the entropy inequality. We will soon see the entropy condition in the form of a regularity
estimate, which will uniquely capture the physically relevant solution and thus leading to
the uniqueness of IVP.

If we further assume that f is uniformly convex, that is there is a constant 𝜅 > 0 such that
f ′ ′ ≥ 𝜅 > 0, then, c is a strictly increasing function and thus (5.14) is equivalent to

ul > ur (5.15)

x

t

x1

P

x2

𝓁1

slope−1 = f ′(u0(x1))
𝓁2

slope−1 = f ′(u0(x2))

𝛾

Figure 5.6 Entropy condition
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along the curve of discontinuity. this is also a necessary condition that we will use in another
form to define a weak solution and prove uniqueness.

We now obtain a formula, known as Lax–Oleinik formula, for a generalized solution of
the IVP (5.10). This is obtained using Hopf–Lax formula, derived in Chapter 4.

5.3 LAX–OLEINIK FORMULA

Consider the IVP (5.10), where we assume that the flux function f is uniformly convex,
f(0) = 0 and u0 is aC1 function. First we will connect the conservation law and the following
HJE with f as the Hamiltonian:{

wt + f(wx) = 0 in ℝ × (0,∞)
w(x, 0) = w0(x) for x ∈ ℝ, (5.16)

with a given smooth initial function w0. To get an idea about the connection, assume that f
is a C2 function and w is the unique smooth C2 solution of the HJE (5.16). Differentiating
the HJE with respect to x, we get{

(wx)t + (f(wx))x = 0 in ℝ × (0,∞)
wx(x, 0) = w0x(x) on ℝ. (5.17)

Therefore, if we take w0(x) = ∫ x
0 u0(y)dy and if w is the corresponding solution of (5.16),

then, u(x, t) = wx(x, t) would be a solution of the IVP (5.10).
We know from the results of Chapter 4 that the solution w has a representation given by

the Hopf–Lax formula (4.9):

w(x, t) = inf
y∈ℝ

{
tL

(x − y
t

)
+ w0(y)

}
, (5.18)

where L is the Legendre transformation of f, given by

L(y) = f ∗(y) = sup
x∈ℝ

{
xy − f(x)

}
. (5.19)

As a consequence, we formally have

u(x, t) = 𝜕
𝜕x

[
inf
y∈ℝ

{
tL

(x − y
t

)
+ w0(y)

}]
. (5.20)

The difficulty arises as the solution of the HJE need not be differentiable everywhere. Thus,
we expect the expression on the right side of (5.20) tomake sense only a.e. (x) and hope that
the function u thus defined is going to be a possible candidate for a generalized solution of
the IVP (5.10).
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Let y = y(x, t) be the minimizer of the right-hand side in (5.18). That is

w(x, t) = tL
(x − y(x, t)

t

)
+ w0(y(x, t)).

Claim: For fixed t > 0, the mapping x ↦ y(x, t) is a non-decreasing function.
By a theorem of Lebesgue, it then follows that the function y(⋅, t) is differentiable a.e. (x).
To see the claim, let x1 < x2 and y1 = y(x1, t), y2 = y(x2, t), respectively, be theminimizers

corresponding to x1 and x2. We need to prove y1 ≤ y2. In fact, we prove the following
inequality

tL
(x2 − y1

t

)
+ w0(y1) < tL

(x2 − y
t

)
+ w0(y) (5.21)

valid for all y < y1, which in turn proves the claim. Using the convexity of L and by writing

x2 − y1 = 𝛼(x1 − y1) + (1 − 𝛼)(x2 − y) and x1 − y = (1 − 𝛼)(x1 − y1) + 𝛼(x2 − y),

with 𝛼 =
y1 − y

x2 − x1 + y1 − y
∈ (0, 1), we get

L
(x2 − y1

t

) ≤ 𝛼L
(x1 − y1

t

)
+ (1 − 𝛼)L

(x2 − y
t

)
.

and
L
(x1 − y

t

) ≤ (1 − 𝛼)L
(x1 − y1

t

)
+ 𝛼L

(x2 − y
t

)
.

Adding these two inequalities, we have

L
(x2 − y1

t

)
+ L

(x1 − y
t

) ≤ L
(x1 − y1

t

)
+ L

(x2 − y
t

)
.

A simple manipulation then gives[
tL

(x2 − y1
t

)
+ w0(y1)

]
+
[
tL

(x1 − y
t

)
+ w0(y)

]
≤ [

tL
(x1 − y1

t

)
+ w0(y1)

]
+
[
tL

(x2 − y
t

)
+ w0(y)

]
.

Since y1 is the minimizer for tL
(x1 − y

t

)
+ w0(y), we get the required inequality (5.21).

Since y2 = y(x2, t) is the minimizer, the inequality (5.21) cannot be satisfied if we take
y = y2. Thus, y2 < y1 is not possible and consequently, y1 ≤ y2.



5.3 Lax–Oleinik Formula 125

Further, for t > 0 fixed, the mappings

x ↦ L
(x − y(x, t)

t

)
and x ↦ w0(y(x, t))

are also differentiable a.e. (x). Hence, a.e. (x) we get

u(x, t) = 𝜕
𝜕x

[
tL

(x − y(x, t)
t

)
+ w0(y(x, t))

]
= L ′

(x − y(x, t)
t

)(
1 −

𝜕y
𝜕x

(x, t)
)
+ 𝜕

𝜕x
w0(y(x, t))

= L ′
(x − y(x, t)

t

)
+
[
−L ′

(x − y(x, t)
t

)
+ w ′

0(y(x, t))
]
𝜕y
𝜕x

(x, t).

Next, for x, t fixed, since y(x, t) is minimizer for tL
(x − y

t

)
+ w0(y), we have

𝜕
𝜕y

[
tL

(x − y
t

)
+ w0(y)

]
= 0

at y = y(x, t). That is,

−L ′
(x − y(x, t)

t

)
+ w ′

0(y(x, t)) = 0.

Thus, we have

u(x, t) = L ′
(x − y(x, t)

t

)
.

Now, for a given y ∈ ℝ, let x∗ ∈ ℝ be such that the supremum is achieved in (5.19), that
is, L(y) = f ∗(y) = x∗y − f(x∗). It is evident that y = f ′(x∗), since x∗ is a maximizer. Since f
is assumed to be uniformly convex, it follows that f ′ is strictly increasing and onto. Thus, if
we put G =

(
f ′
)−1 (the functional inverse), it follows that x∗ =

(
f ′
)−1 (y) = G(y). Hence,

L(y) = yG(y) − f(G(y)).

Thus,

L ′(y) = G(y) + yG ′(y) − f ′(G(y))G ′(y) = G(y)
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as f ′(G(y)) = y. Thus, we have

u(x, t) = G
(x − y(x, t)

t

)
. (5.22)

This is known as the Lax–Oleinik formula for the solution u of the conservation law. The
foregoing discussion is consolidated in the form of the following theorem:

Theorem 5.6 (Lax–Olenik formula). Assume the flux function f is a C2, uniformly convex
function and u0 ∈ L∞(ℝ). Definew0(x) = ∫ x

0 u0(x) dx. For x ∈ ℝ, t > 0 fixed, let y(x, t)
be the minimizer in (5.18) that exists a.e. (x, t > 0). Then, the following hold:

1. The mappings

x ↦ y(x, t), x ↦ w0(y(x, t)) and x ↦ tL
(x − y(x, t)

t

)
are all differentiable a.e. ( x, t > 0).

2. The function u defined by (5.20) can be written as

u(x, t) = G
(x − y(x, t)

t

)
=
(
f ′
)−1

(x − y(x, t)
t

)
. (5.23)

We next verify that the function u given in the above theorem is indeed a generalized
solution of the IVP (5.10).

Theorem 5.7 (Existence). Assume the hypotheses of Theorem 5.6. Then, the function u
given by the Lax–Oleinik formula (5.23) is a generalized solution of the IVP (5.10).

Proof Weneed to show that u satisfies the integral equation (5.10) for all the test functions 𝜐
described there. Letwbe the solution of theHJE (5.16).Then, fromHJE theory (seeTheorem
4.4), we know that w is a Lipschitz function and hence differentiable a.e. (x, t > 0).

Let 𝜐 be a test function. Multiplying equation (5.16) by 𝜐x, we get

∞

∫
0

∞

∫
−∞

(
wt𝜐x + f(wx)𝜐x

)
dx dt = 0. (5.24)
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Integrating by parts with respect to the t variable, we get

∞

∫
0

∞

∫
−∞

wt𝜐x dx dt = −

∞

∫
0

∞

∫
−∞

w𝜐tx dx dt −
∞

∫
−∞

w0(x)𝜐x(x, 0) dx.

Note that the mapping x ↦ w(x, t) is Lipschitz continuous for each t > 0 and hence
absolutely continuous. Thus, wx exist a.e., w(x, 0) = w0(x) and wx(x, 0) = u0(x). This
justifies the above-performed integration by parts. Next, performing an integration by parts
of the second and third terms on the right-hand side of the above equation with respect to
x and using (5.24), we see that w satisfies

∞

∫
0

∞

∫
−∞

(
wx𝜐t + f(wx)𝜐x

)
dx dt −

∞

∫
−∞

u0(x)𝜐(x, 0) dx = 0.

Since u = wx, we conclude that u satisfies the integral equation (5.10). This completes the
proof of the theorem.

Example 5.8 (Rarefaction). Consider the Burgers’ equation ut+uux = 0. Here f(u) = u2∕2.

It is easy to calculate that L(y) = f ∗(y) = y2∕2. Thus, u(x, t) =
x − y(x, t)

t
, where y(x, t)

is the minimizer of

tL
(x − y

t

)
+ w0(y) =

(x − y)2

t
+ w0(y).

If we take the rarefaction case,

u0(x) =
{

0 if x < 0
1 if x > 0,

then

w0(x) =
{

0 if x ≤ 0
y if x > 0.

Indeed, there is a lack of differentiability of w0 at y = 0. Nevertheless, we can compute
the minimizer y(x, t) as

y(x, t) =
⎧⎪⎨⎪⎩
x if x < 0, t > 0
0 if t > x ≥ 0
x − t if x ≥ t > 0.

Thus, we get the rarefaction solution as in Example 5.4.
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5.4 GENERALIZED SOLUTION AND UNIQUENESS

In the previous section, we have established the existence of a generalized solution for IVP
(5.10) via the explicit Lax–Oleinik formula for the solution. But, we have seen examples
that the generalized solutions are not unique, wemay end up having non-physical solutions.
However, we may expect the Lax–Oleinik formula provides the correct solution and hence
we must deduce certain necessary conditions from such a solution to rule out other
non-physical solutions.

In Hamilton–Jacobi theory, the Hopf–Lax formula provided a one-sided second
derivative estimate for the solution. But, since the solution u for the conservation law is
obtained as the derivative of the solution for HJE, we expect a one-sided first derivative
estimate for u. This estimate is called the entropy condition and is given in the following
proposition:

Proposition 5.9 (One-Sided Derivative Estimate-Entropy Condition). Under the
hypotheses of Theorem 5.6, the solution u given by the Lax–Oleinik formula satisfies
the inequality: there is a constant C > 0 such that

u(x2, t) − u(x1, t) ≤ C
t
(x2 − x1), (5.25)

for all x1 < x2 and t > 0.

Proof The proof is almost trivial. We use the monotonicity of y(x, t) and G(x, t) to get

G
(x2 − y(x2, t)

t

)
− G

(x1 − y(x2, t)
t

)
≤ k

t
(x2 − x1),

where k is the Lipschitz constant ofG; it is easily checked that k ≤ C−1, where C satisfies the
estimate f ′ ′ ≥ C. Thus,

G
(x2 − y(x2, t)

t

)
≤ G

(x1 − y(x2, t)
t

)
+ k

t
(x2 − x1)

≤ G
(x1 − y(x1, t)

t

)
+ k

t
(x2 − x1),

Hence,

G
(x2 − y(x2, t)

t

)
− G

(x1 − y(x1, t)
t

)
≤ k

t
(x2 − x1).

This proves the proposition, using the Lax–Oleinik formula.
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Definition 5.10 (Entropy Solution). A function u ∈ L∞(ℝ×[0,∞)) is said to be an entropy
solution of the IVP (5.9) with the initial condition u(x, 0) = u0(x), where u0 is an
integrable function, if it satisfies the integral equation (5.10) for all the test functions 𝜐
and satisfies the entropy condition (5.25).

In what follows wemake the convention that a test function is aC1 function having compact
support either in ℝ × [0,∞) or ℝ × (0,∞).

Theorem 5.11 (Existence and Uniqueness). Assume the hypotheses as in Theorem 5.6.
Then the function u given by the Lax–Oleinik formula (5.23) is the unique entropy
solution of the IVP (5.9).

Proof Weonly need to prove the uniqueness.This lengthy proof will be divided into several
steps.

Step 1: Let u1, u2 be two generalized solutions satisfying the entropy condition and
satisfying the same initial condition. Put w = u1 − u2. We have to show that w = 0 a.e. in
t > 0, or equivalently, to show that ∫ ∞

0 ∫ ∞
−∞ w𝜙 dxdt = 0 for all the test functions 𝜙; here

the support of 𝜙 is a compact subset of ℝ × (0,∞).
For brevity, we write

∬
t≥𝛼

dxdt =
∞

∫
𝛼

∞

∫
−∞

dxdt and ∬
t≤𝛼

dxdt =
𝛼

∫
0

∞

∫
−∞

dxdt,

for 𝛼 ≥ 0 and for 𝛼 > 0, respectively. Since both u1 and u2 satisfy the integral relation (5.10),
upon subtraction we get

∬
t≥0

w𝜐t + (f(u1) − f(u2))𝜐xdxdt = 0

for all test functions 𝜐 having compact support in ℝ × [0,∞). Now,

f(u1(x, t)) − f(u2(x, t)) =
1

∫
0

f ′(𝜎u1(x, t) + (1 − 𝜎)u2(x, t))w(x, t) d𝜎.

Define 𝜃(x, t) = ∫ 1
0 f ′(𝜎u1(x, t) + (1 − 𝜎)u2(x, t)) d𝜎, so that we get

∬
t≥0

w(𝜐t + 𝜃𝜐x) dxdt = 0 (5.26)
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for all test functions 𝜐. Thus, for a given test function 𝜙, if we could solve the equation
𝜐t + 𝜃𝜐x = 𝜙, to get a test function 𝜐, then we are done and the uniqueness is proved.

Step 2: The difficulty is that the function 𝜃 is not even continuous. To overcome this
difficulty, we need to beginwith smooth approximations to u1 and u2, which in turnwill give
a smooth approximation to 𝜃.This is accomplished bymaking use of the standardmollifiers
𝜂𝜀 in ℝ2 (in x, t variables). The arguments are quite technical.

Define u𝜀i = 𝜂𝜀 ∗ ui for i = 1, 2. The well-known properties of the mollifiers give the
following:

u𝜀i → ui a.e. as 𝜀 → 0 and ‖u𝜀i ‖L∞ ≤ ‖ui‖L∞ . (5.27)

Now, consider the smooth approximation to 𝜃 defined by

𝜃𝜀(x, t) =
1

∫
0

f ′(𝜎u𝜀1(x, t) + (1 − 𝜎)u𝜀2(x, t))d𝜎.

Suppose, for a given test function 𝜙, we are able to solve the first-order equation 𝜐𝜀t +𝜃𝜀𝜐𝜀x =
𝜙, to get a test function 𝜐𝜀, then

∬
t≥0

w𝜙 dxdt =∬
t≥0

w𝜐𝜀t dxdt +∬
t≥0

w𝜃𝜀𝜐𝜀x dxdt

= −∬
t≥0

(f(u1) − f(u2))𝜐𝜀x dxdt +∬
t≥0

w𝜃𝜀𝜐𝜀x dxdt

=∬
t≥0

w(𝜃𝜀 − 𝜃)𝜐𝜀x dxdt.

The second equality holds as u1 and u2 satisfy the integral relation (5.10).
If 𝜃𝜀 → 𝜃 in L1

loc(ℝ
2) as 𝜀 → 0 and 𝜐𝜀x is bounded, independent of 𝜀, then we can pass to

the limit as 𝜀 → 0 on the right-hand side and obtain the required relation that

∬
t≥0

w𝜙 dxdt = 0

for all the test functions 𝜙.
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Step 3: First, we prove 𝜃𝜀 → 𝜃 in L1
loc(ℝ

2). This is not very difficult.
Suppose |ui|L∞ ≤ M for i = 1, 2. It follows from the definition of the mollifiers that

|u𝜀i (x, t)| = |||||||∬ℝ2

𝜂𝜀(x − y, t − s)ui(y, s) dyds
|||||||

≤M∬
ℝ2

𝜂𝜀(y, s) dyds = M, i = 1, 2.

Next, we have

𝜃𝜀(x, t) =
1

∫
0

[f ′(𝜎u𝜀1(x, t) + (1 − 𝜎)u𝜀2(x, t)) − f ′(0)] d𝜎 + f ′(0)

=

1

∫
0

f ′ ′(𝜉)(𝜎u𝜀1(x, t) + (1 − 𝜎)u𝜀2(x, t)) d𝜎 + f ′(0),

for 𝜉 = 𝜏(𝜎u𝜀1(x, t) + (1 − 𝜎)u𝜀2(x, t)) for some 𝜏 ∈ [0, 1]. Therefore, we have the estimate

|𝜃𝜀(x, t)| ≤ M1 ≡ cM + |f ′(0)|, (5.28)

where c = sup{f ′ ′(u) ∶ |u| ≤ M}. In particular, 𝜃𝜀 is bounded independent of 𝜀. Similarly,
𝜃 is also bounded. Now consider

|𝜃𝜀(x, t) − 𝜃(x, t)| =|||||
1∫

0
[f ′(𝜎u𝜀1(x, t) + (1 − 𝜎)u𝜀2(x, t)) − f ′(𝜎u1(x, t) + (1 − 𝜎)u2(x, t))] d𝜎

|||||
=
|||||

1∫
0
f ′ ′(𝜉)[𝜎(u𝜀1 − u1) + (1 − 𝜎)(u𝜀2 − u2)] d𝜎

|||||
≤ 1∫

0
|f ′ ′(𝜉)|[𝜎|u𝜀1 − u1| + (1 − 𝜎)|u𝜀2 − u2|] d𝜎

≤ c
2

(|u𝜀1(x, t) − u1(x, t)| + |u𝜀2(x, t) − u2(x, t)|).
It therefore follows that

∬
K

|𝜃𝜀 − 𝜃| → 0 as 𝜀 → 0 (5.29)

for any compact subset K of ℝ2.
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We next analyze 𝜐𝜀 and its derivative. Recall that the requirements on 𝜐𝜀 are that it is a
test function having support in ℝ × [0,∞) and satisfies the first-order linear PDE

𝜐𝜀t + 𝜃𝜀𝜐
𝜀
x = 𝜙, (5.30)

for a given test function𝜙 having compact support inℝ×(0,∞).This requiresmore delicate
arguments, since we have to prove the uniform boundedness of the derivative of 𝜐𝜀. First,
we prove that indeed 𝜐𝜀 is a test function having support in ℝ × [0,∞).

Step 4: Let S be the support of 𝜙 and assume that

S ⊂ (a, b) × (𝛿,T)

for some finite a < b and 0 < 𝛿 < T. If we impose the terminal condition 𝜐𝜀(x,T) = 0
for x ∈ ℝ on the line t = T, then by the method of characteristics, we find that the unique
solution to (5.30) is given by

𝜐𝜀(x, t) = −

T

∫
t

𝜙(x𝜀(s), s) ds, (5.31)

where x𝜀 is the characteristic curve passing through (x, t), given by

ẋ𝜀(s) ≡ dx𝜀
ds

(s) = 𝜃𝜀(x𝜀(s), s), x𝜀(t) = x.

To emphasize the dependence on x, t and for later analysis, we denote this characteristic by
x𝜀(s; x, t). In order to show that 𝜐𝜀 has compact support, let R be the domain bounded by
the lines t = 0, t = T and the lines 𝓁1, 𝓁2, as shown in Figure 5.7. Here, 𝓁1 is the line given
by x = A + M1t and 𝓁2 is the line given by x = B − M1t in the upper half plane, where A
and B are chosen on the line t = 0 such that A +M1T < a and B −M1T > b. Thus, S lies in
the interior of R. Recall that M1 is the bound on 𝜃𝜀 and is independent of 𝜀. We show that
the support of 𝜐𝜀 lies in R, which is also independent of 𝜀.

Since 𝜙(x, t) = 0 for t ≥ T, it is immediate that 𝜐𝜀(x, t) also vanishes for t ≥ T. Suppose
(x, t) ∉ R and t < T. For definiteness, assume x > B. Then, the characteristic curve given
by x𝜀(s; x, t) lies to the right of the line 𝓁2 and crosses the line t = T at a point outside R.
Thus, 𝜙 vanishes along this characteristic and thereby proving, using the formula (5.31),
that 𝜐𝜀(x, t) = 0.

We now move to the delicate analysis of boundedness of 𝜐𝜀x. We divide the region of
integration t ≥ 0 into two parts: t ≥ 𝛼, 𝛼 > 0 and 0 ≤ t < 𝛼. We deal with the first part
using entropy inequality and we use a bound on the total variation of 𝜐𝜀 for the second part.
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Step 5: We consider the case t ≥ 𝛼, 𝛼 > 0. If u denotes either of ui, i = 1, 2, recall the
entropy condition:

u(x + a, t) − u(x, a) ≤ Ca
t
,

for all x and a > 0, t > 0, for some constant C > 0. Let 𝛼 > 0 be arbitrary. We claim that
for fixed t ≥ 𝛼, the function x ↦ u(x, t) − Cx

𝛼
is non-increasing. For, if a > 0 and t ≥ 𝛼,

u(x + a, t) − C(x + a)
𝛼

−
(
u(x, t) − Cx

𝛼

)
= u(x + a, t) − u(x, t) − Ca

𝛼
≤ Ca

(1
t
− 1

𝛼

) ≤ 0,

using the entropy condition. Since themollifiers 𝜂𝜀 are non-negative functions, the function
(of x)

𝜂𝜀 ∗
(
u(x, t) − Cx

𝛼

)
= u𝜀 − C

𝛼
(𝜂𝜀 ∗ x)

is also non-increasing. Since the latter function is differentiable, we see that

𝜕u𝜀
𝜕x

≤ C
𝛼

for t ≥ 𝛼. Replacing u by u1 and u2, we obtain the bounds on 𝜕u𝜀i
𝜕x
, i = 1, 2. Next, using the

definition of 𝜃𝜀, we obtain that

𝜕𝜃𝜀
𝜕x

=

1

∫
0

f ′ ′(𝜎u𝜀1(x, t) + (1 − 𝜎)u𝜀2(x, t))
[
𝜎
𝜕u𝜀1
𝜕x

+ (1 − 𝜎)
𝜕u𝜀2
𝜕x

]
d𝜎

≤ C
𝛼
c, using f ′ ′ > 0

≤ K𝛼

for all t ≥ 𝛼 and K𝛼 is independent of 𝜀.

t = 0

t = T

t

A

R

B

𝓁1 𝓁2S
(x, t)

characteristic

Figure 5.7 Support of 𝜐𝜀
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To estimate 𝜕𝜐𝜀

𝜕x
, we need to analyze 𝜕x𝜀

𝜕x
for the characteristic curve x𝜀(s; x, t); see (5.31).

Now let

a𝜀(s) =
𝜕x𝜀
𝜕x

(s; x̄, t̄)

where (x̄, t̄) is a point in the upper half plane. Note that

dx𝜀
ds

= 𝜃𝜀(x𝜀(s), s)) and x𝜀(t̄; x̄, t̄) = x̄.

This implies that

a𝜀(t̄) = 1. (5.32)

Thus,

𝜕a𝜀
𝜕s

= 𝜕
𝜕s

𝜕x𝜀
𝜕x

= 𝜕
𝜕x

𝜕x𝜀
𝜕s

= 𝜕
𝜕x

𝜃𝜀(x𝜀(s; x̄, t̄), s)) =
𝜕𝜃𝜀
𝜕x

𝜕x𝜀
𝜕x

=
𝜕𝜃𝜀
𝜕x

a𝜀.

Using (5.32), we obtain the formula

a𝜀(s) = exp
⎛⎜⎜⎝

s

∫̄
t

𝜕𝜃𝜀
𝜕x

(x𝜀(𝜏), 𝜏) d𝜏
⎞⎟⎟⎠ . (5.33)

If we take 𝛼 ≤ t̄ ≤ s ≤ T, then using the bound on 𝜕𝜃𝜀
𝜕x

, we have

|a𝜀(s)| = a𝜀(s) ≤ exp(K𝛼(T − 𝛼)).

Using the formula (5.31), we have

𝜕𝜐𝜀

𝜕x
=

t

∫
T

𝜕𝜙
𝜕x𝜀

𝜕x𝜀
𝜕x

=

t

∫
T

𝜕𝜙
𝜕x𝜀

a𝜀.

Using the bound on a𝜀, we finally conclude that

||||𝜕𝜐𝜀𝜕x
|||| ≤ K̄𝛼 (5.34)

for t ≥ 𝛼, where K̄𝛼 is independent of 𝜀.
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Step 6: Now, we take up the case of t near 0. We adopt a different strategy, namely, we
estimate the total variation of 𝜐𝜀 near the line t = 0. Define

Vt(𝜐𝜀) =

∞

∫
−∞

||||𝜕𝜐𝜀𝜕x
|||| dx (5.35)

which is the total variation of 𝜐𝜀 as a function of x, for each fixed t > 0. Using the estimate
(5.34) and the fact that supp(𝜐𝜀) ⊂ R (which is independent of 𝜀), we see that

Vt(𝜐𝜀) ≤ C𝛼, for t ≥ 𝛼, (5.36)

where the constant C𝛼 is independent of 𝜀. We need one more estimate, namely: There is a
positive integer N such that for all n > N, we have

Vt(𝜐𝜀) ≤ C1∕n, for all t satisfying 0 < t ≤ 1
n
< 1

N
. (5.37)

To see this, choose N such that 1
N
< 𝛿 so that 𝜙(x, t) = 0 if t < 1

N
. This is possible since, by

assumption, supp(𝜙) ⊂ (a, b) × (𝛿,T). Therefore

𝜕𝜐𝜀

𝜕t
+ 𝜃𝜀

𝜕𝜐𝜀

𝜕x
= 0, if t < 1

N
. (5.38)

Let n > N, so that (5.38) holds for t ≤ 1
n
. Let 𝜎t ∶ ℝ → ℝ be the bijection map defined

for t < 1
n

by the solution of the characteristic equation, that is, 𝜎t(x) = x𝜀
(

1
n
; x, t

)
; see

Figure 5.8.
Now let 0 < t ≤ 1

n
< 1

N
. For any finite sequence x1 < x2 < ⋯ < xp, we have

p−1∑
k=1

||𝜐𝜀(xk+1, t) − 𝜐𝜀(xk, t)|| = p−1∑
k=1

||||𝜐𝜀 (𝜎t(xk+1),
1
n

)
− 𝜐𝜀

(
𝜎t(xk),

1
n

)||||

t = 0

t = 1
n

t

(x, t)
Characteristic

(𝜎t(x), 1∕n)

Figure 5.8 Bijective map 𝜎t
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using the constancy of 𝜐𝜀 along a characteristic (see (5.38)). Using (5.38) and (5.36), we
therefore conclude that

p−1∑
k=1

|||𝜐𝜀(xk+1, t) − 𝜐𝜀(xk, t)
||| ≤ V1∕n(𝜐𝜀) ≤ C1∕n,

proving the estimate (5.37).
Step 7: We can now complete the proof of the theorem, namely the uniqueness of an

entropy solution. Let �̃� > 0 be arbitrarily small. With N and n > N as chosen above, choose
𝛼 > 0 such that 𝛼 < 1∕n < 1∕N and 4MM1C1∕n𝛼 < �̃�∕2. For this 𝛼, choose 𝜀0 small, so that

∬t≥𝛼
|w||𝜃𝜀 − 𝜃||𝜐𝜀x| dxdt < �̃�∕2 (5.39)

for 𝜀 < 𝜀0. This is possible since |w| ≤ 2M, 𝜃𝜀 → 𝜃 in L1
loc and 𝜐𝜀 have compact support in

R with |𝜐𝜀x| ≤ C𝛼 , independent of 𝜀. Next, we write

|||∬t≥0
w𝜙 dxdt||| ≤ ∬t≥𝛼

|w||𝜃𝜀 − 𝜃||𝜐𝜀x| dxdt +∬t<𝛼
|w||𝜃𝜀 − 𝜃||𝜐𝜀x| dxdt.

The first integral on the right-hand side is estimated using (5.39). For the second integral,
we have, since 𝛼 < 1∕n < 1∕N,

∬t<𝛼
|w||𝜃𝜀 − 𝜃||𝜐𝜀x| dxdt ≤ 2M ⋅ 2M1 ∬

t<𝛼

|𝜐𝜀x| dxdt
= 4MM1

𝛼

∫
0

∞

∫
−∞

|𝜐𝜀x| dxdt
= 4MM1

𝛼

∫
0

Vt(𝜐𝜀) dt

≤ 4MM1C1∕n𝛼 < �̃�∕2

by our choice of 𝛼. Here we have made use of the estimate (5.37). Thus, we conclude that

|||||||∬t≥0

w𝜙 dxdt
||||||| < �̃�.
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Since �̃� > 0 is arbitrary, we conclude that ∬
t≥0

w𝜙 dxdt = 0 for all test functions 𝜙, which are

C1 and have compact supports in ℝ × (0,∞). Thus, w = u1 − u2 = 0 a.e. in t > 0, proving
the uniqueness.

5.5 RIEMANN PROBLEM

The classical Riemann problem is the IVP with initial function consisting of only two
constant states u𝓁 and ur, with one jump discontinuity. Solutions of the Riemann problem
may, in turn, be used as building blocks for constructing solutions of the IVP in the class BV
of functions of bounded variations. The main limitation of this approach is that it generally
applies only when the initial data have sufficiently small total variation; see Glimm (1965)
(for the deterministic version, see Liu 1977). Till date, it has remained a challenge to extend
the result in Glimm (1965) to higher dimensions.

In the previous sections, we have analyzed the Burgers’ equation with different initial
conditions; in particular, discontinuous initial values u0 taking only two constant values,
namely 1 on the left of the origin, 0 on the right of the origin and vice-versa. In the first
case where u0 is decreasing, we obtained a discontinuous entropy solution with a shock
discontinuity, and in the second case, the rarefaction phenomena appears. In the latter
case, we could define a continuous solution satisfying the R–H condition and entropy
condition. In this section, we will see that the phenomena is the same if we consider the
general conservation laws with any two constants. It is also possible to construct solutions
where the initial value takes finitely many constants (see for instance, Exercise 2). Consider
the IVP (5.9), with u0 given by

u0(x) =
{

u𝓁 if x < 0
ur if x > 0.

Here u𝓁, ur ∈ ℝ are two constants. Assume that f ∈ C2(ℝ) and uniformly convex. Now, we
consider the two cases separately, namely ul > ur and ul < ur.

Case u𝓁 > ur (discontinuous solution – shock discontinuity): The R–H condition
immediately suggests that the discontinuity curve is the line x = 𝜎t, where 𝜎 is the speed
given by (see Figure 5.9)

𝜎 =
f(u𝓁) − f(ur)
u𝓁 − ur

.
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x

t

x = 𝜎t

u = u𝓁 u = ur

Figure 5.9 Solution of Riemann’s problem when u𝓁 > ur
It is easy to verify that the function u defined by

u(x, t) =

{
u𝓁 if x

t
< 𝜎

ur if
x
t
> 𝜎

(5.40)

is the discontinuous solution satisfying the entropy condition and hence unique. In fact,
we have f ′(ur) < 𝜎 < f ′(u𝓁) that is the entropy inequality. The above solution can also be
obtained from Lax–Oleinik formula.

Case u𝓁 < ur (continuous solution – rarefaction): In this case, we have f ′(ur) > f ′(u𝓁)
and thus, we get the diverging characteristics at the origin with slopes G(u𝓁) = f ′(u𝓁)−1

and G(ur) = f ′(ur)−1 (see Figure 5.10). These two characteristics will divide the upper half
x − t plane into 3 regions, namely I, II, III. Exactly as in the case of Burgers’ equation, the
solutions are constants u𝓁 and ur, respectively in regions I and III. Indeed, if we define u in
region II as

u(x, t) = G
(x
t

)
,

then,

ut + f ′(u)ux = G ′
(x
t

)(−x
t2

)
+ f ′

(
G
(x
t

))
G ′

(x
t

) 1
t
= 0

since f ′
(
G
(
x
t

))
= x

t
. Further, on the separating line x = f ′(u𝓁)t, we have u(x, t) =

G
(
x
t

)
= G

(
f ′(u𝓁)

)
= u𝓁 . Similarly, on the line x = f ′(ur)t, we get u(x, t) = ur that proves

the continuity across the regions. Thus, we have the following theorem:



5.6 Notes 139

x

t

u = ul
I

u = ur
III

Rarefaction:u = G(x∕t)
II

Figure 5.10 Solution of Riemann’s problem when u𝓁 < ur

Theorem 5.12. Consider the Riemann problemwith the conditions on f as above.Then, the
following hold:

i. If u𝓁 > ur, the function u defined by (5.40) is the unique entropy solution with
shock discontinuity curve x = 𝜎t.

ii. If u𝓁 < ur, consider the function u defined by

u(x, t) =
⎧⎪⎨⎪⎩
ul if x < f ′(u𝓁)t, t > 0

G
(
x
t

)
if f ′(u𝓁)t < x < f ′(ur)t, t > 0

ur if x > f ′(ur)t, t > 0.

(5.41)

Then, u is the unique (continuous) entropy solution to the Riemann problem.

Proof We have already established the statement (1). For the statement (2), it is easy to
verify, from the discussion prior to the statement of the theorem, that u defined by (5.41)
is a continuous integral solution satisfying the R–H condition. It remains to show that u
satisfies the entropy condition (5.25). We have already seen from Proposition 5.9 that G is
Lipschitz continuous. Thus, for x, x + z in region II, z > 0, we get

u(x + z, t) − u(x, t) = G
(x + z

t

)
− G

(x
t

) ≤ kz
t
,

where k is the Lipschitz constant of G. Thus, u satisfies the entropy inequality and hence is
the unique solution.

5.6 NOTES

The second-order PDE

ut + uux = 𝜈uxx, 𝜈 > 0 (5.42)
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is called viscous Burgers’ equation. Its counterpart, that is equation (5.42) with 𝜈 = 0, is
also called inviscid Burgers’ equation. The latter has been discussed in great detail in this
chapter and also in Chapter 3. The viscous Burgers’ equation has smooth solution whereas
the limiting (as 𝜈 → 0) inviscid equation can have discontinuous solution as we have seen
earlier.

Though equation (5.42) was introduced by Bateman in 1935, it was Burgers, in 1940,
who stressed its importance to understand the turbulence phenomenon. It is somewhat
surprising that this equation (of course, without the name Burgers’ equation), in a more
general form, has been discussed including its reduction to linear heat equation in a book by
Forsyth in 1906. See Forsyth (1906),4 Chapter XV, §229. The viscous Burgers’ equation can
be seen as one-dimensional approximation of the Navier–Stokes equations. Equation (5.42)
was independently studied by Cole and Hopf, in 1950– (see Cole, 1951; Hopf, 1950). Using
a non-linear change of variables, they succeeded in transforming the non-linear second-
order equation (5.42) to the linear heat or diffusion equation:

𝜙t = 𝜈𝜙xx. (5.43)

This transformation is called the Cole–Hopf transformation. We now briefly discuss this
transformation and the solution of IVP associated with (5.42).

Let u = 𝜐x. Then, (5.42) becomes

𝜐xt + 𝜐x𝜐xx = 𝜈𝜐xxx.

Writing 𝜐x𝜐xx =
1
2
(𝜐2

x)x, an integration with respect to x gives

𝜐t +
1
2
𝜐2
x = 𝜈𝜐xx.

Now put 𝜐 = −2𝜈 log𝜙, 𝜙 > 0. A simple computation then shows that 𝜙 satisfies the linear
equation (5.43). If we impose an initial condition u(x, 0) = u0(x), this transforms to an
initial condition for 𝜙: 𝜙0(x) ≡ 𝜙(x, 0) = exp

(
− 1

2𝜈
∫ x
0 u0(𝜉) d𝜉

)
. Therefore (see Chapter 8

on Heat Equation), the solution 𝜙 is given by

𝜙(x, t) = (4𝜋𝜈t)−1∕2

∞

∫
−∞

𝜙0(y) exp
(
−
(x − y)2

4𝜈t

)
dy, t > 0. (5.44)

4This reference was brought to our attention by our colleague K. T. Joseph. These volumes of Forsyth were
reprinted by Dover Publications, New York, in a three-volume set in 1950.



5.6 Notes 141

This, in turn, gives the solution u of (5.42):

u(x, t) =

∞

∫
−∞

x − y
t

𝜙0(y) exp
(
−
(x − y)2

4𝜈t

)
dy

∞

∫
−∞

𝜙0(y) exp
(
−
(x − y)2

4𝜈t

)
dy

, t > 0. (5.45)

The limiting5 case 𝜈 → 0 has been studied by Cole, Hopf and Burgers. These earlier works
have been recorded in the book by Burgers (1974).The counterparts of the various solutions
in the discontinuous theory (i.e., 𝜈 = 0) discussed in this chapter can also be studied in the
present improved theory. Except for very weak shocks (small 𝜈 > 0), the only significant
change is the smoothing of the shock into a thin transition layer. See Whitham (1974) for a
detailed account.

We now briefly discuss the limiting case of 𝜈 → 0 in the work of Hopf. For the case of
f(u) = u2

2
, we can trace the origins of the Lax–Oleinik formula and the entropy inequality

here. To emphasize the dependence on 𝜈, we write the solution u given in (5.45) as u(x, t; 𝜈).
Define the function F by

F(x, y, t) =
(x − y)2

2t
+

y

∫
0

u0(𝜂) d𝜂

for x, y ∈ ℝ and t > 0 with u0, an integrable function, as initial value. Then, F satisfies

F
y2

→
1
2t

> 0 as |y| → ∞.

Hence, F attains its minimum value for one or more values of y. Denote the smallest and
largest such y by y∗ and y∗, respectively. Of course these are functions of x and t and y∗(x, t) ≤
y∗(x, t). The following important inequality

x − y∗(x, t)
t

≤ lim inf
𝜈→0
𝜉→x
𝜏→t

u(𝜉, 𝜏; 𝜈) ≤ lim sup
𝜈→0
𝜉→x
𝜏→t

u(𝜉, 𝜏; 𝜈) ≤ x − y∗(x, t)
t

. (5.46)

5This procedure since then has been known as vanishing viscosity method.
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is derived in Hopf (1950). In particular, if y∗ = y∗, we get the important result that

lim
𝜈→0
𝜉→x
𝜏→t

u(𝜉, 𝜏; 𝜈) =
x − y∗(x, t)

t
.

Compare the above limit with Lax–Oleinik formula (5.22).
An extension of the works of Cole and Hopf, by Lax in 1957, to include strictly convex

functions in place of 1
2
u2 was a significant step in the theory of conservation laws. Here

the important Lax entropy condition is introduced, which is an essential condition for the
uniqueness of solutions. Further, Lax also derives the formula for a generalized solution, by
converting the conservation law to a HJE; however, Lax does not mention the terminology
of HJE. He also derives the entropy inequality for the case of strictly convex f.

Important results on the uniqueness and stability of solutions, due toOleinik (1959), were
followed. The uniqueness of a generalized solution for the conservation law

ut + f(u)x = 0

with f non-convex, still holds provided the Lax entropy condition is replaced by the
following:

i. If ur < u𝓁 , then

f(𝛼ur + (1 − 𝛼)u𝓁) ≤ 𝛼f(ur) + (1 − 𝛼)f(u𝓁), 0 ≤ 𝛼 ≤ 1.

See Figure 5.11. Geometrically, the requirement is that the graph of the curve f(u) lies
below the chord joining the points (ur, f(ur)) and (u𝓁, f(u𝓁)) over the interval [ur, u𝓁].

ii. If ur > u𝓁 , then

f(𝛼ur + (1 − 𝛼)u𝓁) ≥ 𝛼f(ur) + (1 − 𝛼)f(u𝓁), 0 ≤ 𝛼 ≤ 1.

u

f(u)

ur u𝓁
Figure 5.11 Oleinik entropy condition for u𝓁 > ur
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u

f(u)

u𝓁 ur
Figure 5.12 Oleinik entropy condition for u𝓁 < ur

See Figure 5.12. In this case, the graph of the curve f(u) is required to lie above the
chord joining the points (u𝓁, f(u𝓁)) and (ur, f(ur)) over the interval [u𝓁, ur].

These entropy conditions are due to Oleinik. But, now the Lax–Oleinik formula cannot be
used for obtaining a solution, as f need not be convex. In this scenario, an existence result
can be obtained by the vanishing viscosity method, by approximating the solution of the
given conservation law by a second-order parabolic equation

ut + f(u)x = 𝜈uxx,

with 𝜈 > 0, similar to the Burgers’ equation. Unlike the Burgers’ equation, we may not be
able to reduce the above equation to a linear diffusion equation for a general f.
However, it is possible to prove the existence of a solution and also, the existence of a limit as
𝜈 → 0. These are quite advanced topics and we refer the interested reader to a vast number
of books on the subject (see, e.g., Dafermos, 2009; Lax, 1973; Morawetz, 1981; Smoller,
1994).

5.7 EXERCISES

1. Consider the Burgers’ equation ut + uux = 0 for x ∈ ℝ, t > 0 with the initial condition
u(x, 0) = u0(x), where u0 is given by

u0(x) =
⎧⎪⎨⎪⎩

1 if x ≤ 0
1 − x if 0 ≤ x ≤ 1
0 if x ≥ 1
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a. Show that the characteristic curves do not meet till t = 1 and hence find the solution
u(x, t) for all x ∈ ℝ and 0 < t < 1.

b. Construct a curve of discontinuity s(t) for t ≥ 1 satisfying s(1) = 1. Construct a
generalized solution that is smooth in the regions x < s(t) and x > s(t) for t ≥ 1, and
satisfying the Rankine–Hugoniot condition across the curve x = s(t).

2. Consider the Burgers’ equation ut + uux = 0 for x ∈ ℝ, t > 0 with the initial condition
u(x, 0) = u0(x), where is u0 is given by

u0(x) =
⎧⎪⎨⎪⎩

0 if x ≤ 0
1 if 0 ≤ x ≤ 1
0 if x ≥ 1

Construct a generalized solution.
3. Construct the characteristics of the generalized Burgers’ equation

ut + (f(u))x = 0, x ∈ ℝ, t > 0,

satisfying the initial condition u(x, 0) = u0(x) for x ∈ ℝ, where u0 is a C1 function and
f(u) = |u|p−2u2, p ≥ 2. Find a C1 solution in a region in the upper half plane t > 0.

4. Consider the Burgers’ equation in the upper half plane t > 0. Find the solution using the
method of characteristics, in the appropriate regions in the upper half plane, satisfying the
following initial conditions:

(a) u0(x) = x2 and (b) u0(x) = −x|x|, x ∈ ℝ.

(see Exercise 13 of Chapter 3).
5. Workout the details in Example 5.8, especially find the minimizer.
6. Consider the Burger’s equation and find the solution using Lax–Olenik formula with the

initial values as in Exercise 1, Exercise 2 and also with the initial value

u0(x) =
{

0 if x ≤ 0
1 if x ≥ 1

In the last case 0 ≤ u0 ≤ 1 for 0 < x < 1 and u0 is strictly increasing.
7. Assume that the generalized solution of conservation law ut + (f(u))x = 0 has only shock

discontinuities satisfying the entropy condition f ′(ul) > f ′(ur), then any point in the upper
half x − t plane is connected by a backward characteristic.



CHAPTER 6

Classification of Second-Order
Equations

6.1 INTRODUCTION

In this chapter, we discuss the classification of partial differential equations (PDE),
concentrating mostly on linear equations or equations with linear principal part. In the
modern theory of the subject, especially since the middle of the last century, the question
of classification has taken altogether new directions, which we only mention very briefly
in the section on Notes. Also, the classification of PDEs is in general not complete. The
second-order equations in two variables have a fairly complete classification, which is our
main topic of discussion in this chapter.We begin by a discussion on a Cauchy problem for a
second-order linear PDE and highlighting certain subtle differences with a Cauchy problem
for an ordinary differential equation (ODE). This naturally motivates towards the study of
the classification of PDE. The general references for this chapter are Courant and Hilbert
(1989), Rubinstein and Rubinstein (1998), Koshlyakov et al. (1964), John (1978), Mikhailov
(1978), Ladyzhenskaya (1985), McOwen (2005), Renardy and Rogers (2004), Prasad and
Ravindran (1996), Vladimirov (1979, 1984), and Hörmander (1976, 1984), among many
others.

6.2 CAUCHY PROBLEM

We begin by describing a Cauchy problem or an initial value problem (IVP) for a linear PDE
and comparing it with an IVP associated to a linear ODE. For simplicity of the exposition,
we consider the second-order linear equation in a region Ω in ℝn:

n∑
i,j=1

aij(x)
𝜕2u

𝜕xi𝜕xj
+

n∑
i=1

ai(x)
𝜕u
𝜕xi

+ a(x)u = f, (6.1)

where the coefficients aij, ai, a and the function f are given real (smooth) valued functions
defined in Ω. The Cauchy problem for a second-order linear ODE

u ′ ′ + b(x)u ′ + c(x)u = g(x), (6.2)

145
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where the coefficients b, c and the function g are smooth functions defined in an interval in
ℝ, consists in finding a solutionu satisfying the initial conditionsu(x0) = u0 andu ′(x0) = u1
for some x0 and arbitrary u0, u1.

A Cauchy problem (or an IVP) associated with the PDE (6.1), in which initial conditions
for u and its normal derivative 𝜕u

𝜕𝜈
are assigned on an (n − 1)-dimensional surface Γ in Ω.

We will see that, in general, this may lead to a lack of existence or uniqueness depending on
the nature of Γ. Thus consider an (n − 1)-dimensional surface Γ of class Ck, k ≥ 2 lying in
Ω, given by the equation

F(x) = 0, (6.3)

where F is a real valued Ck(Ω), k ≥ 2, function such that |∇F(x)| ≠ 0 for all x ∈ Γ. Let
x0 ∈ Γ and choose r > 0 such that the ball B = Br(x0) ⊂ Ω. Put Γ0 = Γ ∩ B. Let u ∈ C2(B)
be a solution of (6.1). Define

u0(x) = u(x), u1(x) =
𝜕u
𝜕𝜈

(x), x ∈ Γ0. (6.4)

In contrast with the Cauchy problem for an ODE, we will now show that the functions u0
and u1 cannot, in general, be arbitrary smooth functions.

Since |∇F(x0)| ≠ 0, we may assume that 𝜕F
𝜕xn

(x) ≠ 0 for all x ∈ B (choose r > 0 smaller if
necessary). By implicit function theorem, we may write (6.3) as

xn = 𝜙(x ′), x ′ = (x1,… , xn−1),

where 𝜙 is a smooth function. Consider the change of variables x ↦ y = y(x) given by

yi = Fi(x), i = 1, 2,… , n, (6.5)

where Fi(x) = xi − x0i for i = 1, 2,… , n − 1 and Fn(x) = F(x). This is a one-one mapping
of the region B onto a neighborhood B̃ of the origin; origin being the image point of x0. The
inverse of this function is denoted by x = x(y). Let

Σ = B̃ ∩ {(y ′, 0) ∶ y ′ ∈ ℝn−1}

and consider the function 𝜐(y) = u(x) = u(x(y)) defined on B̃, where y = y(x) is given by
(6.5). Note that Σ lies in the hyper plane yn = 0 and is referred to as a flat surface.1 By chain
rule, we have

𝜕u
𝜕xi

=
n∑

k=1

𝜕𝜐
𝜕yk

𝜕Fk
𝜕xi

1This procedure is referred to as flattening the surface Γ, locally.
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𝜕2u
𝜕xi𝜕xj

=
n∑

k,m=1

𝜕2𝜐
𝜕yk𝜕ym

𝜕Fk
𝜕xi

𝜕Fm
𝜕xj

+
n∑

k=1

𝜕𝜐
𝜕yk

𝜕2Fk
𝜕xi𝜕xj

.

Thus, equation (6.1) in B may be transformed to an equation in B̃, in the new variables as

n∑
i,j=1

bij(y)
𝜕2𝜐

𝜕yi𝜕yj
+

n∑
i=1

bi(y)
𝜕𝜐
𝜕yi

+ b(y)𝜐 = f1(y), (6.6)

where bij(y) are the elements of thematrix
[
A(x(y))∇Fi(x(y)) ⋅ ∇Fj(x(y))

]
withA(x) denoting

the matrix [aij(x)]. In particular,

bnn(y(x)) = A(x)∇F(x) ⋅ ∇F(x). (6.7)

The initial conditions (6.4) respectively become

𝜐 = 𝜐0(y ′), ∇y𝜐 ⋅ 𝜆(y) = �̃�1(y ′), on Σ, (6.8)

where

𝜐0(y ′) = u0(y ′, 𝜙(y ′)) and �̃�1(y ′) = u1(y ′, 𝜙(y ′)).

The vector 𝜆 is given by

𝜆(y(x)) =
(
𝜕F1

𝜕𝜈
(x),⋯ ,

𝜕Fn
𝜕𝜈

(x)
)
, x ∈ Γ0.

We note that
𝜕Fn
𝜕𝜈

= 𝜕F
𝜕𝜈

≠ 0 on Γ0.

The normal derivative prescribed in (6.4), may be replaced by a directional derivative
along a direction 𝓁, which need to satisfy the following condition: Suppose that 𝓁(x) =
(𝓁1(x),… ,𝓁n(x)) is a non-vanishing C1 vector field defined in Ω, which is nowhere tangent
to Γ. This means, |𝓁(x)| ≠ 0 for all x ∈ Ω and

𝜕F
𝜕𝓁

||||Γ ≡ 𝓁 ⋅ ∇F|𝓁| ||||Γ ≠ 0.

In particular 𝜕F
𝜕l

≠ 0 on Γ0. For example, ifΩ = ℝn and Γ is given by the hyperplane xn = 0,
we may take 𝓁 in the direction of the xn co-ordinate.

We next show that the value of the vector ∇𝜐 at any point on the surface Σ is uniquely
determined by 𝜐0 and �̃�1. Indeed, the values of the derivatives 𝜕𝜐

𝜕yi
on Σ for i < n are
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determined by the first relation in (6.8):

𝜕𝜐
𝜕yi

=
𝜕𝜐0

𝜕yi
for i < n, on Σ.

The second relation in (6.8) gives

𝜕𝜐
𝜕yn

= 𝜐1(y ′) on Σ, (6.9)

where

𝜐1(y ′) =
(𝜕F
𝜕𝜈

)−1
(
�̃�1(y ′) −

n−1∑
i=1

𝜕𝜐0

𝜕yi
𝜕Fi
𝜕𝜈

)
.

Clearly the first condition in (6.4) and the condition (6.9) are equivalent to the conditions
in (6.4).

We next proceed to determine the values of the second derivatives of 𝜐(y) on Σ. We note
that the first condition (6.8) and the condition in (6.9) uniquely determine the values of all
second derivatives of 𝜐, except 𝜕2𝜐

𝜕y2n
, on Σ. Using (6.6) and (6.7), we obtain that

A(x(y))∇xF(x(y)) ⋅ ∇xF(x(y))
𝜕2𝜐
𝜕y2n

=

= f1(y) −
n−1∑
i,j=1

bij
𝜕2𝜐

𝜕yi𝜕yj
−

n−1∑
i=1

bin
𝜕2𝜐

𝜕yi𝜕yn
−

n−1∑
i=1

bi
𝜕𝜐
𝜕yi

− b𝜐. (6.10)

If the function A(x)∇F ⋅ ∇F ≠ 0 on the surface Γ0, then the function A(x(y))∇xF(x(y)) ⋅
∇xF(x(y)) does not vanish onΣ and therefore in B̃ (choosing r > 0 small enough).Therefore,
dividing by this non-vanishing coefficient through in (6.10) and setting yn = 0, we obtain
the value of 𝜕2𝜐

𝜕y2n
on Σ.

We therefore conclude that if A(x)∇F ⋅ ∇F ≠ 0 on the surface Γ0, all the derivatives of
the solution u up to the second order are uniquely determined on Γ0.

If on the other hand, A(x̄)∇F(x̄) ⋅ ∇F(x̄) = 0 for some x̄ ∈ Γ0, then at the corresponding
point ȳ in Σ, we have

A(x(ȳ))∇xF(x(ȳ)) ⋅ ∇xF(x(ȳ)) = 0.

Then, at this point ȳ, (6.10) connects the known values of 𝜐(ȳ), 𝜕𝜐
𝜕yi
(ȳ) and 𝜕2𝜐

𝜕yi𝜕yj
(ȳ). This,

in turn, implies that at the point x̄, the functions u0 and u1 along with the corresponding
derivatives are also connected, that is they cannot in general be arbitrary.

This leads to the following definition and, eventually, to a classification of PDE.
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Definition 6.1. A point x̄ on the surface Γ of classC1, given by the equation F(x) = 0 (recall
that F is aC1 function with non-vanishing gradient on Γ), is called a characteristic point
for the PDE (6.1) if

A(x̄)∇F(x̄) ⋅ ∇F(x̄) = 0.

The surface Γ is a characteristic surface for (6.1) if each of its points is a characteristic
point of (6.1). The surface Γ is a non-characteristic surface of (6.1), if none of its points
is a characteristic point of (6.1).

Similar definitions for equations of higher order will be introduced in the next section.

Characteristic Cauchy Problem: We remark that if the surface Γ contains characteristic
point(s), the Cauchy problem becomes more difficult. As was observed above, if the point
x0 ∈ Γ is a characteristic point, then there are smooth functions u0 and u1 such that (6.1)
may have no C2(B) solution in any neighborhood of this point satisfying the conditions in
(6.4) on Γ0 = Γ ∩ B; see (6.10). It is further easy to see that if B+ denotes one of the parts
into which Γ0 divides B, then there is no solution in C2(B+ ∪ Γ0) also, which satisfies the
conditions in (6.4) on Γ0. If still a smooth solution exists, it may not be unique.

Here are some examples. Suppose n = 2 and consider the equation

𝜕2u
𝜕x1𝜕x2

= f(x),

in B = Br(0). This is the wave equation in the characteristic variables, which is studied in
detail in Chapter 9. The line x2 = 0 is a characteristic. It is easy to see that for the existence
of a C2(B) solution of the above equation satisfying the conditions

u(x1, 0) = u0(x1) and ux2
(x1, 0) = u1(x1),

it is necessary and sufficient that u ′
1(x1) = f(x1, 0). If this condition is satisfied, then the

solution can be expressed as

u(x1, x2) =

x1

∫
0

d𝜉1

x2

∫
0

f(𝜉1, 𝜉2) d𝜉2 + u0(x1) + g(x2),

where g is any C2 function satisfying the conditions g(0) = 0 and g ′(0) = u1(0). Clearly, the
uniqueness is lost. The details are left as an exercise.

If Γ is a characteristic surface, then there may also be situations where equation (6.1)
should be posed in analogy with the Cauchy problem for ODE, not of the second order but
first order. For example, the heat equation (see Chapter 8 for its detailed study)

ux1x2
− ux2

= f(x), n = 2
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has the line x2 = 0 as the characteristic. Later we study the Cauchy problem in which the
condition u(x1, 0) = u0(x1) is imposed on the characteristic and the solution is sought in
the half-space x2 > 0.

6.2.1 Non-characteristic Cauchy Problem

We now consider the Cauchy problem for (6.1) with the functions u0 and u1 (see (6.4))
given on a non-characteristic surface Γ. Consider equation (6.1) in the region Ω of ℝn,
which contains the initial surface Γ given by (6.3). We assume that Γ is non-characteristic
for (6.1), that is,

A(x)∇F ⋅ ∇F ≠ 0 on Γ. (6.11)

It was shown above that all the derivatives of the solution u of (6.1) up to second order
are uniquely determined on Γ in terms of u0, u1 and the coefficients in equation (6.1). We
shall now assume that the data, namely the coefficients in (6.1), u0, u1, F, 𝜈, and so on,
are infinitely differentiable in their respective domains. Assuming that the Cauchy problem
(6.1) and (6.4) has a C∞ solution in B containing the point x0 ∈ Γ, we will show that all the
derivatives of u are uniquely determined on Γ in terms of the data.

To achieve this, we again use the transferred equation (6.6) via the change of variables
given by (6.5). Since the functions Fi in (6.5) areC∞, it suffices to show that all the derivatives
of the function 𝜐(y) = u(x(y)) are uniquely determined on Σ in terms of the data. This is
shown using an induction argument.

For any multi-index 𝛽 = (𝛽1,… , 𝛽n−1), the values of the derivatives D(𝛽,0)𝜐(y) and
D(𝛽,1)𝜐(y) are directly determined by (6.8) and (6.9):

D(𝛽,0)𝜐|||Σ = D𝛽𝜐0, D(𝛽,1)𝜐|||Σ = D𝛽𝜐1.

Put

𝜐𝛼 = 1
𝛼!

D𝛼𝜐(0), |𝛼| ≥ 0. (6.12)

Then, 𝜐(𝛽,0) and 𝜐(𝛽,1) are uniquely determined in terms of 𝜐0 and 𝜐1:

𝜐(𝛽,0) =
1
𝛽!
D𝛽𝜐0

|||y ′=0
, 𝜐(𝛽,1) =

1
𝛽!
D𝛽𝜐1

|||y ′=0
. (6.13)

Since Γ is assumed to be non-characteristic, equation (6.10) can be written as

𝜕2𝜐
𝜕y2n

=
n−1∑
i,j=1

cij
𝜕2𝜐

𝜕yi𝜕yj
−

n−1∑
i=1

cin
𝜕2𝜐

𝜕yi𝜕yn
−

n−1∑
i=1

ci
𝜕𝜐
𝜕yi

+ c𝜐 + h, (6.14)
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where the coefficients and the function h are C∞. Denote by H1(y), the sums on the right
hand side in (6.14). To compute the values of D(𝛽,2)𝜐(y) on Σ, we use (6.14). Differentiating
(6.14) with respect yj, j < n and setting yn = 0, we obtain

D(𝛽,2)𝜐|||Σ = D(𝛽,0)H1
|||Σ.

NowD(𝛽,0)H1
|||Σ is a (linear) function (with known coefficients) of known quantitiesD(�̄�,0)𝜐|||Σ

and D(𝛽,1)𝜐|||Σ with multi-indices �̄� and 𝛽 satisfying the conditions 0 ≤ |�̄�| ≤ |𝛽| + 2, 0 ≤|𝛽| ≤ |𝛽|+1.Therefore, onΣ, all the derivativesD(𝛽,2)𝜐(y) are uniquely determined in terms
of the data of the problem. In particular,

𝜐(𝛽,2) = (2!𝛽!)−1 D(𝛽,0)H1(y)
|||y=0

.

Now assume that all the derivatives D(𝛽,k−1)𝜐(y) have been uniquely determined by the data
on Σ for some k ≥ 2. We show that the same conclusion holds for D(𝛽,k)𝜐(y). For this,
differentiate (6.14) 𝛽i times with respect to yi, i < n and k − 2 times with respect to yn, to
obtain

D(𝛽,k)𝜐|||Σ = D(𝛽,k−2)H1
|||Σ.

As before, the term D(𝛽,k−2)H1
|||Σ is a (linear) function (with known coefficients) of known

quantities D(�̄�,i)𝜐|||Σ with i < k and �̄� satisfying 0 ≤ |�̄�| ≤ |𝛽| + 2 if i < k − 1 and 0 ≤ |�̄�| ≤|𝛽| + 1 if i = k − 1. Thus, all the derivatives D(𝛽,k)𝜐 are uniquely determined on Σ in terms
of the data. In particular,

𝜐(𝛽,k) = (k!𝛽!)−1 D(𝛽,k−2)H1(y)
|||y=0

. (6.15)

This proves the assertion and completes the induction argument.
Conclusion: If the initial surface Γ is non-characteristic for equation (6.1), then the data of
the problem uniquely determine all the derivatives of the infinitely differentiable solution
u of (6.1) and (6.4), on Γ. Hence, the values of a function together with its derivatives
along the curve Γ determine the function in a neighborhood of Γ, then the solution of
the problem (6.1) and (6.4) is determined uniquely. One such class of functions is that of
analytic functions. Later, in Chapter 11, we will show in detail the existence of a solution
with analytic data. This is the celebrated Cauchy–Kovalevsky Theorem.

In contrast with the case of ODE, it should however be noted that mere C∞

assumption on the data may not yield a solution. Hans Lewy (1957) produced the
following example, with C∞ coefficients, which has no solution in the class of C∞

functions:
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Example 6.2 (Han Lewy). The PDE

ux1x3
+ iux2x3

+ 2i(x1 + ix2)ux3x3
= f(x3)

does not have twice continuously differentiable solution in any neighborhood of the
origin inℝ3 if the real-valued function f is not analytic. The details will be discussed in
Chapter 8.

6.3 CLASSIFICATION OF LINEAR EQUATIONS

Most of the linear PDE are classified based on the solvability of the Cauchy problem
associated with it, by providing the Cauchy data on an initial surface. As discussed in the
previous section, this, in general, depends on the notion of the surface being characteristic
or non-characteristic with respect to the given PDE. However, in the modern treatment
of the subject, especially after 1950s, the classification of linear PDE has undergone a
major change; new concepts like, evolution and non-evolution PDE, hypo-elliptic and non-
hypoelliptic equations have emerged.

In contrast, the linear ODE of arbitrary order (or systems) have a nice general theory and
the related IVP is well-posed.

For second-order linear PDE in two dimensions with real coefficients, the classification
is fairly complete. However, if we allow complex coefficients or go beyond two dimensions,
a complete classification is not available. The traditional classification of PDE is based on
the notion of what is known as characteristics. In some sense, the notion of characteristics
is a measure of strength or weakness of a differential operator in certain directions. For the
linear operator L =

∑
|𝛼|≤k a𝛼(x)D

𝛼 , we define the characteristic form2 𝜒L(x, 𝜉) at a point x as

a homogeneous polynomial in 𝜉:

𝜒L(x, 𝜉) =
∑
|𝛼|=k a𝛼(x)𝜉

𝛼, 𝜉 ∈ ℝn, (6.16)

where 𝜉𝛼 = 𝜉𝛼1
1 ⋯ 𝜉𝛼nn .

A non-zero vector 𝜉 is called a characteristic for L if 𝜒L(x, 𝜉) = 0 and the characteristic
variety is defined as

charx(L) = {𝜉 ∈ ℝn ∶ 𝜉 ≠ 0, 𝜒L(x, 𝜉) = 0}.

Thecharacteristic variety has the following interesting property: Suppose, wemake a change
of variable by a smooth invertible transformation, say y = g(x). For a fixed x ∈ Ω, if the

2This is also called the principal symbol of L.
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Jacobian matrix J(x) =
[
𝜕yi
𝜕xj

]
is non-singular, then Dx = J(x)TDy, where the superscript T

denotes the matrix transpose. Therefore, the operator L transforms into

L ′ =
∑
|𝛼|≤k a𝛼(g

−1(y))
(
J(g−1(y))TDy

)𝛼
and

𝜒L ′(y, 𝜂) =
∑
|𝛼|=k a𝛼(g

−1(y))
(
J(g−1(y))T𝜂

)𝛼 .
Consequently, the characteristic variety charx(L) is the image of the characteristic variety
charx(L ′) under the Jacobian of the transformation J(x)T. Thus the nature of the PDE does
not change.

Now suppose 𝜉 = (0,⋯ , 0, 𝜉j, 0,⋯ , 0) ≠ 0 is a coordinate vector. Then it is easy to
see that 𝜉 ∈ charx(L) if and only if the coefficient of 𝜕kj in L vanishes at x. Moreover, for
any 𝜉 ≠ 0, by a rotation of coordinates, we can arrange 𝜉 to lie in a coordinate direction.
Combining the above remarks, we see that a vector 𝜉 ∈ charx(L) means in some sense,
weakening the nature of kth (highest) order of the PDE; that is L fails to be genuinely kth
order in the 𝜉 direction at x. In other words, a lack of information. This suggests that the
PDE with empty characteristic variety may be easier to tackle as there is full information.
However, as we will see later, the Cauchy problem associated with the Laplace’s equation is
not well-posed.

We say that L is elliptic at x if charx(L) = 𝜙, the empty set, and it is elliptic in a domain if
it is elliptic at all the points of that domain. We now give some examples.

i. L = D1 =
𝜕
𝜕x1

, charx(L) = {𝜉 ∈ ℝn ∶ 𝜉 ≠ 0, 𝜉1 = 0}.

ii. L = D12 =
𝜕2

𝜕x1𝜕x2
, charx(L) = {𝜉 ∈ ℝn ∶ 𝜉 ≠ 0, 𝜉1 = 0 or 𝜉2 = 0}.

iii. Let n = 2.TheCauchy–Riemann operator, L = 1
2

(
𝜕
𝜕x1

+ i 𝜕
𝜕x2

)
, i =

√
−1 is elliptic.

This has complex coefficients, but similar definition may be made.

iv. The Laplace operator, L = Δ =
n∑
i=1

𝜕2

𝜕x2
i
is elliptic.

v. For the heat operator, L = 𝜕
𝜕x1

−
n∑
i=2

𝜕2

𝜕x2
i
,

charx(L) = {𝜉 ∈ ℝn ∶ 𝜉 ≠ 0, 𝜉j = 0 for j ≥ 2}.

vi. For the wave operator, L = 𝜕2

𝜕x2
1
−

n∑
i=2

𝜕2

𝜕x2
i
,

charx(L) = {𝜉 ∈ ℝn ∶ 𝜉 ≠ 0, 𝜉2
1 =

∑n
i=2 𝜉

2
j }.
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Further Discussion and Reduction to Canonical Form: The classical theory of PDEs is
concerned with the simplest and the most typical equations, such as Laplace and Poisson,
heat or diffusion, and wave equations. These equations describe physical processes arising
in very different contexts. For example, Laplace and Poisson equations appear in the
theories of gravimetry, electrostatics and inviscid, incompressible fluid flow. The heat or
diffusion equation arises in the theories of thermal conductivity, diffusion and percolation
of elastic liquid through a porous medium. The wave equation describes the transversal and
longitudinal vibrations in solids and liquids, and field propagation in electrodynamics. (See,
e.g., Courant and Hilbert, 1989; Koshlyakov et al., 1964; Rubinstein and Rubinstein, 1998).

Even from purely mathematical point view, the diversity of phenomena described by
the same type of second-order equation is not accidental; it reflects the essential properties
of these equations. We will now demonstrate this statement through consideration of the
possible classification of these equations and their reduction to canonical forms.

Consider a second-order equation with linear principal part (terms containing highest
order derivatives):

n∑
i,j=1

aij(x)uxixj + F(x, u, ux1
,… , uxn) = 0, (6.17)

in a region in ℝn, where aij = aji are given functions. The term F contains at most
first-order derivatives of the unknown function u; for most part of the discussion, it is
immaterial whether F is linear in u and its first derivatives. As was done above with the
characteristic variety, we begin with an approach towards the classification of (6.17) based
on consideration of all possible non-singular change of co-ordinates:

yj = 𝜙j(x), j = 1, 2,… , n. (6.18)

Here non-singular means the Jacobian matrix
[
𝜕𝜙i
𝜕xj

]
is non-singular at the points of the

region under consideration. We have

𝜕
𝜕xj

=
n∑

k=1

𝜕𝜙k
𝜕xj

𝜕
𝜕yk

𝜕2

𝜕xi𝜕xj
=

n∑
k,m=1

𝜕𝜙k
𝜕xj

𝜕𝜙m
𝜕xi

𝜕2

𝜕yk𝜕ym
+

n∑
k=1

𝜕2𝜙k
𝜕xi𝜕xj

𝜕
𝜕yk

.

Therefore, equation (6.17) may be written as

n∑
i,j=1

ãij(y)uyiyj + F̃(y, u, uy1 ,… , uyn) = 0, (6.19)
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where

ãij =
n∑

k,m=1
akm

𝜕𝜙i
𝜕xk

𝜕𝜙j

𝜕xm

F̃ = F +
n∑

i,j=1
aij

( n∑
k=1

𝜕2𝜙k
𝜕xi𝜕xj

𝜕u
𝜕xk

) (6.20)

The principal part associated with equation (6.17) is the operator

L =
n∑

i,j=1
aij(x)

𝜕2

𝜕xi𝜕xj
(6.21)

and the characteristic form associated with L is the quadratic form

Q(x, 𝜉) =
n∑

i,j=1
aij(x)𝜉i𝜉j, (6.22)

where 𝜉 = (𝜉1,… , 𝜉n) ∈ ℝn. Consequently, at a fixed point x in the region, the quadratic
form associated with the transformed equation (6.19) is given by

Q̂(𝜂) =
n∑

i,j=1
ãij(x)𝜂i𝜂j, (6.23)

where ãij are given by (6.20). This suggests that the classification of the quadratic forms may
be used for the classification of PDEs with principal linear part.

Quadratic forms are classified by reducing them to canonical forms and using the so-
called law of inertia. Thus, the quadratic form (remember x is fixed) Q can be reduced by a
non-singular (linear) transformation to

Q̂(𝜂) =
p∑
i=1

𝜆i𝜂
2
i +

p+q∑
i=p+1

𝜆i𝜂
2
i , (6.24)

where

𝜆k =

⎧⎪⎨⎪⎩
+1, for k = 1, 2,… , p
−1, for k = p + 1,… , p + q
0, for k = p + q + 1,… , p + q + r = n.

Here the non-negative integers p, q, r are invariants of the transformations. That is, they are
independent of the choice of the transformation reducing the given quadratic form to its
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canonical form. We may also assume p ≥ q. The numbers p, q, r also indicate the number
of positive, negative, zero eigenvalues of the associated matrix, respectively.

Therefore, the PDE (6.17) reduces to its canonical form, namely

p∑
i=1

𝜕2u
𝜕y2i

−
p+q∑
i=p+1

𝜕2u
𝜕y2i

+ F̃ = 0. (6.25)

In what follows we consider only three simple cases:

(1) p = n, q = 0, r = 0.
(2) p = n − 1, q = 1, r = 0.
(3) p = n − 1, q = 0, r = 1.

In ℝ3, the quadratic surface given by the equation

𝜆1x2
1 + 𝜆2x2

2 + 𝜆3x2
3 = 1

with 𝜆i = ±1 or 0, is called an ellipsoid in case (1), a hyperboloid in case (2) and a paraboloid
in case (3). This terminology is extended to the quadratic forms and then to the second-
order PDEwith linear principal part they represent. Accordingly, we say that equation (6.17)
is elliptic, hyperbolic and parabolic if case (1), (2) and (3) holds, respectively.3

In the passing, we also mention that in case p ≥ q ≥ 2 and r = 0, thus requiring n ≥ 4,
equation (6.17) is termed as ultrahyperbolic. For example, the equation

ux1x1
+ ux2x2

= ux3x3
+ ux4x4

in ℝ4 is ultrahyperbolic. There is a good discussion on constant coefficient ultrahyperbolic
equations in Courant and Hilbert (1989), somewhat parallel to that of wave equation. Since
these equations perhaps do not describe any physical process, we do not find their mention
in any subsequent literature.
Global Transformation: We have seen that equation (6.17) may be reduced to canonical
form at any fixed point of the region, where the PDE is considered. We now look at the
possibility of reducing an equation to canonical form not at a fixed point, but everywhere
in the region under consideration. This means, we seek a non-singular change of variables
so that the matrix [ãij], where ãij are as in (6.20), becomes a diagonal matrix with ±1 and
0 as the only elements on the diagonal. Thus, the n functions 𝜙k, 1 ≤ k ≤ n must satisfy
n(n − 1) differential equations; see (6.20). Even if we consider the symmetry of [aij], which
implies the symmetry of ãij as well, there are n(n − 1)∕2 equations to be satisfied by 𝜙k.
If n > 3, then n(n − 1)∕2 > n and the system of equations is overdetermined. If n = 3,
we have n(n − 1)∕2 = n and there may be a possibility to find such a transformation.

3However, a word of caution with regard to parabolicity; see the discussion in the case of two variables below.
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However, it will be impossible to make p + q diagonal elements of this matrix equal to ±1,
so we cannot expect the equation to be reducible to canonical form, in a whole region ofℝ3,
except when the equation has constant coefficients. If the equation has constant coefficients
in its principal part, a suitable scaling of the independent variables does this job of reducing
the given equation to canonical form. This implies that the problem of reducing the given
equation to canonical form in a whole region must be restricted to two dimensions, which
we discuss next.

6.3.1 Second-Order Equations in Two Variables

The most general form of linear second order PDE in two variables is given by

uxx + 2buxy + cuyy + dux + euy + fu = g, (6.26)

where we are using x and y to denote the independent variables. Here a, b, c, d, e, f, g are
smooth functions of x, y and a, b, c do not vanish simultaneously, in a domain Ω in ℝ2. If
g = 0, we say equation (6.26) is homogeneous, otherwise it is non-homogeneous. Consider
the operator L, the principal part of (6.26):

L = aD2
x + 2bDxDy + cD2

y,

so that equation (6.26) can be written as

L(u) + lower order terms = g. (6.27)

The corresponding quadratic form is given by

Q(𝜉, 𝜂) = a𝜉2 + 2b𝜉𝜂 + c𝜂2 = 𝜂2q(𝜁 ), (6.28)

where

q(𝜁 ) = a𝜁2 + 2b𝜁 + c, 𝜁 = 𝜉∕𝜂.

It is simpler to classify the quadratic forms in twodimensions.The classification just depends
on the discriminant 𝛿 defined by

𝛿 = ac − b2.

Of course 𝛿 varies inΩ. However, when 𝛿 is either positive or negative at a point inΩ, then
by continuity it retains its sign in a neighborhood of that point.

Definition 6.3. The quadratic form Q is said to be definite, semi-definite or indefinite
according as 𝛿 > 0, = 0 or < 0, respectively.
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Using the procedure described in the previous section, we transform L to

L̃ = ã 𝜕2

𝜕x̃2 + 2b̃ 𝜕2

𝜕x̃𝜕ỹ
+ c̃ 𝜕

2

𝜕ỹ2
, (6.29)

using a non-singular change of variables:

x̃ = 𝜙(x, y), ỹ = 𝜓(x, y). (6.30)

The coefficients in (6.29) are given by (see (6.20))

ã = a𝜙2
x + 2b𝜙x𝜙y + c𝜙2

y
b̃ = a𝜙x𝜓x + b(𝜙x𝜓y + 𝜙y𝜓x) + c𝜙y𝜓y
c̃ = a𝜓2

x + 2b𝜓x𝜓y + c𝜓2
y

⎫⎪⎬⎪⎭ (6.31)

A simple calculation shows that

ãc̃ − b̃2 = (ac − b2)(𝜙x𝜓y − 𝜙y𝜓x)2. (6.32)

Also at a fixed point (x, y) in Ω, the quadratic form Q in (6.28) transforms into

Q̃(𝜉, �̃�) = ã𝜉2 + 2b̃𝜉�̃� + c̃�̃�2, (6.33)

where 𝜉, 𝜂 and 𝜉, �̃� are connected by

𝜉 = 𝜉𝜙x + �̃�𝜙y, 𝜂 = 𝜉𝜓x + �̃�𝜓y.

Thus, the quadratic formQ and Q̃ are of the same type, as their discriminants have the same
sign under a non-singular change of variables (6.30).

Next, we wish to transform L to L̃ with the following choices:

• Case 1. ã = c̃ and b̃ = 0.
• Case 2. ã = −c̃ and b̃ = 0.
• Case 3. b̃ = c̃ = 0.

The possibility of choosing 𝜙,𝜓 to obtain the required canonical form depends on the
form Q, or geometrically speaking on the character of the quadratic curve Q(𝜉, 𝜂) = 1 in
the 𝜉, 𝜂 plane, for fixed x, y. This curve is

(1) an ellipse if ac − b2 > 0.
(2) a hyperbola if ac − b2 < 0.
(3) a parabola if ac − b2 = 0.
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The corresponding canonical forms of the principal parts of the PDE are given by

L̃u =ux̃x̃ + uỹỹ
L̃u =ux̃x̃ − uỹỹ
L̃u =ux̃x̃.

Definition 6.4. The operator L or the PDE (6.26) is called elliptic, hyperbolic and parabolic
in Ω according as 𝛿 > 0, 𝛿 < 0 and 𝛿 = 0, respectively.

For a fixed (x, y) in Ω, such a transformation can always be obtained simply by the
linear transformation that takes the formQ to the corresponding canonical form. However,
assuming that the operator L is of the same type everywhere inΩ, we would like to find𝜙,𝜓
transforming L to canonical form.

First Consider the Hyperbolic Case: ac − b2 < 0 in Ω. In this case, we want ã = c̃ = 0.
Thus b̃ is non-zero. From (6.31), we are led to the quadratic equation

Q = a𝜉2 + 2b𝜉𝜂 + c𝜂2 = 0 (6.34)

for the ratio 𝜁 = 𝜉∕𝜂 of the derivatives 𝜙x∕𝜙y and 𝜓x∕𝜓y. If a and c are identically 0 in Ω,
the operator L is already in canonical form. We may therefore assume that a or c is non-
zero. In this case we may also assume that 𝜂 = 1. The distinct real roots 𝜁1 and 𝜁2 of (6.34)
are continuously differentiable functions of x, y. Thus, the functions 𝜙,𝜓 are determined by
the first-order PDEs:

𝜙x − 𝜁1𝜙y = 0, 𝜓x − 𝜁2𝜓y = 0.

Using the method of characteristics, these equations produce two families of curves
𝜙(x, y) = constant and 𝜓(x, y) = constant, whose characteristics are given by the ODEs

y ′ + 𝜁1 = 0, y ′ + 𝜁2 = 0

where y is considered as a function along the characteristics. Since 𝜁1 − 𝜁2 =
2
a

√
b2 − ac ≠

0, the curves of these families cannot be tangent at any point of Ω and therefore 𝜙x𝜓y −
𝜙y𝜓x ≠ 0.

The curves x̃ = 𝜙(x, y) = constant and ỹ = 𝜓(x, y) = constant are called the characteristic
curves of the linear hyperbolic operator L.

We Next Consider the Parabolic Case4 b2 − ac = 0. Here we wish to obtain b̃ = c̃ = 0.
Note that a and c cannot vanish simultaneously, as then b = 0, which is contrary to our

4This case is in a way a sensitive case. If b2 − ac = 0 holds at a point in Ω, it may not be true that the condition
holds in a neighborhood of that point. See the example and the comment below.
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assumption. Suppose a ≠ 0 inΩ. Again from (6.31), we are led to the first-order PDE for 𝜙:

a𝜙x + b𝜙y = 0,

as there is a real double root 𝜁 = −b∕a of the corresponding quadratic equation (6.34) in this
case. This also implies that 𝜙 satisfies the equation b𝜙x+ c𝜙y = 0 as well as b2 − ac = 0. The
function 𝜓 is now to be chosen such that the non-singularity condition is satisfied. It is not
difficult to see that the choice of 𝜓(x, y) = x will do the job. Therefore, the transformation
x̃ = 𝜙(x, y), ỹ = x transforms L to canonical form L̃u = ux̃x̃.

Finally, We Consider the Elliptic Case: ac − b2 > 0. In this case, the quadratic equation
(6.34) does not have any real root, but has complex conjugate roots. Assuming that the
coefficients a, b, c are analytic,5 and denoting the roots by 𝜁, 𝜁 , we obtain complex-valued
analytic functions 𝜙, 𝜓 = �̄� satisfying the first-order PDE: 𝜙x − 𝜁𝜙y = 0. Let x̃ = 𝜙(x, y)
and ỹ = 𝜓(x, y) = �̄�(x, y) = ̄̃x. Thus, x̃ and ỹ are complex conjugates.

Now put

X =
x̃ + ỹ

2
, Y =

x̃ − ỹ
2i

, i =
√
−1.

Then, X,Y are real variables and we wish to show that they are the required change of
variables. Thus

x̃ = 𝜙(x, y) = X + iY.

From (6.31), equating b̃ to zero, we obtain

a|𝜙x|2 + b(𝜙x�̄�y + 𝜙y�̄�x) + c|𝜙y|2 = 0

as 𝜓 = �̄�. Writing 𝜙x =
𝜕X
𝜕x

+ i 𝜕Y
𝜕x

and so on, we obtain the following equation

a
(𝜕X
𝜕x

)2
+ 2b𝜕X

𝜕x
𝜕X
𝜕y

+ c
(
𝜕X
𝜕y

)2

− a
(𝜕Y
𝜕x

)2
− 2b𝜕Y

𝜕x
𝜕Y
𝜕y

− c
(
𝜕Y
𝜕y

)2

+

+ 2i
(
a𝜕X
𝜕x

𝜕Y
𝜕x

+ b
(
𝜕X
𝜕y

𝜕Y
𝜕x

+ 𝜕X
𝜕y

𝜕Y
𝜕x

)
+ c𝜕X

𝜕y
𝜕Y
𝜕y

)
= 0

Equating the real and imaginary parts in the above equation, we see from (6.31) (X,Y in
place of 𝜙,𝜓) that ã = c̃ and b̃ = 0, thus accomplishing the reduction to canonical form in
the elliptic case. The canonical form is given by

L̃u = uXX + uYY.

5For this reduction to canonical form, we need this assumption. It is also possible to work with only real-valued
functions, but the procedure is complicated. The interested reader may refer to Courant and Hilbert (1989).
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Comment on the Condition b2−ac = 0: If b2−ac = 0, the PDE (6.26) is usually referred to
as parabolic, in the literature. However, we wish to elaborate on certain subtle issues present
here. First of all, if a = 0 or c = 0, then b = 0 and hence the PDE (6.26) may degenerate
into an ODE, which we certainly do not wish to classify as parabolic. Secondly, the PDE

uxx + 2uxy + uyy = 0

satisfies the condition b2−ac = 0 and reduces to anODE uXX = 0, which certainly not in the
form of the standard heat equation. Hence, the above PDE cannot be called parabolic. This
equation is referred to as weakly hyperbolic. Thus, apart from the condition b2 − ac = 0, the
presence of certain lower-order term is essential to designate the PDE (6.26) as parabolic.
See the notes at the end of the chapter. Also see Hörmander (1976).

Example 6.5. The Laplace equation uxx + uyy = 0 is elliptic, the heat equation 𝜕u
𝜕y
− 𝜕2u

𝜕x2 = 0

is parabolic and the wave equation 𝜕2u
𝜕x2 −

𝜕2u
𝜕y2

= 0 is hyperbolic.

Example 6.6. Consider the equation x2uxx − y2uyy = 0 in the first quadrant x > 0, y > 0.
Let us discuss its type and reduction to canonical form. In this case, we have b = 0, a =
x2 and c = y2. Therefore, b2 − ac = x2y2 > 0 and the equation is hyperbolic. The roots
of the corresponding quadratic are ±y∕x. The characteristic equations are given by

xy ′ + y = 0, xy ′ − y = 0.

Therefore, we find that x̃ = 𝜙(x, y) = xy and ỹ = 𝜓(x, y) = y∕x. With these change of
variables, the given equation reduces to its canonical form and is given by

ux̃ỹ −
1
2x̃

uỹ = 0, x̃ > 0, ỹ > 0.

6.4 HIGHER-ORDER LINEAR EQUATIONS

Here we barely discuss the question of classification of higher-order PDE. A linear partial
differential operator of order m is the expression

L(x,D) =
∑
|𝛼|≤m a𝛼(x)D𝛼, (6.35)

where a𝛼 are given smooth functions defined in a domain Ω in ℝn and
∑
|𝛼|=m |a𝛼| ≠ 0

in Ω. If a𝛼 are all constants, we write L(D) in place of L(x,D). The principal part of L
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is defined by

Lm(x,D) =
∑
|𝛼|=m a𝛼(x)D𝛼, (6.36)

consisting of only the highest order terms in L. The characteristic form or the principal
symbol of L is the homogeneous polynomial of order m given by

Qm(x, 𝜉) =
∑
|𝛼|=m a𝛼(x)𝜉𝛼 (6.37)

and the full symbol of L is the polynomial defined by

Q(x, 𝜉) =
∑
|𝛼|≤m a𝛼(x)𝜉𝛼 (6.38)

for x ∈ Ω and 𝜉 ∈ ℝn. The classification problem for m ≥ 3 is no longer simple. The only
thing that is similar to the case of m = 2 is the following:

Definition 6.7. The operator L is called elliptic if Qm(x, 𝜉) ≠ 0 for all x ∈ Ω and 𝜉 ≠ 0.

In particular, if L has constant coefficients and L is elliptic, it follows that m is even and

|Qm(𝜉)| ≥ c|𝜉|m
for some c > 0 and for all 𝜉 ∈ ℝn.

On the other hand, the definitions of hyperbolicity and parabolicity, even in the case
of constant coefficients are in no way can be explained simply in terms of Qm or Q.
These definitions require a reference to a hyperspace in ℝn (essentially a direction) and the
solvability of a Cauchy problem. (See, e.g., Hörmander, 1976).

However, when there is a special variable (the time variable) t, the definition of
hyperbolicity may be made somewhat easily, not only for higher-order equations, but also
for systems of such equations. (See, e.g., Benzoni-Gavage and Serre, 2007; Kreiss and Lorenz,
2004). We will consider some simple definitions in Chapter 9 and Chapter 10.

Non-linear Equations: As we have classified the equations by analyzing the highest-order
terms, the semi-linear equations (second order) of the form

(4.23) a(x, y)uxx + 2b(x, y)uxy + c(x, y)yyy + f(x, y, u, ux, uy) = 0

can be classified in the same way.
But in the quasilinear case, where a, b and c depend on u, ux, uy as well, then the

determinant b2 − ac also depends on u, ux, uy as well. Thus the classification, in general,
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depends upon the particular solution. For some solutions, it may be elliptic; parabolic and
hyperbolic for some other. The type in general cannot be determined a-priori.

Example 6.8. Consider the PDE

u2uxx + 3uxuyuxy − u2uyy = 0.

This is hyperbolic for every solution as ac−b2 = −
(

3
2
uxuy

)2
−u2u2 < 0.On the other

hand, the equation

(1 − u2
x)uxx − 2uxuyuxy + (1 − u2

y)uyy = 0

is hyperbolic (respectively, elliptic) for those solutions u satisfying u2
x + u2

y > 1
(respectively, u2

x + u2
y < 1).

6.5 NOTES

It was observed that the procedure of reducing to the canonical form of a given second-
order linear equationwith variable coefficients, is cumbersome andmay also be not possible,
except for the case n = 2. There is also a possibility of the type change of a given equation
from one region to another, as was observed in the case of Tricomi equation. This makes it
very difficult to develop a general existence and uniqueness theory for a general equation.
However, in many applications, especially in mathematical physics, the equations do come
with a special variable called the time variable and is denoted by t. Such equations (second-
order linear) usually come in two forms:

utt −
n∑

i,j=1
aij(x, t)uxixj +

n∑
i=1

ai(x, t)uxi + a0(x, t)ut =f(x, t) (6.39)

ut −
n∑

i,j=1
aij(x, t)uxixj +

n∑
i=1

ai(x, t)uxi =f(x, t). (6.40)

Here the coefficients aij = aji satisfy the ellipticity condition:

n∑
i,j=1

aij(x, t)𝜉i𝜉j ≥ c|𝜉|2
for some constant c > 0, all 𝜉 ∈ ℝn and all (x, t) in a region in ℝn × ℝ. Equation (6.39) is
hyperbolic and equation (6.40) is parabolic.
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Complete theories of existence and uniqueness have been developed for both these
equations. (See, e.g., Benzoni-Gavage and Serre, 2007; Evans, 1998; Kreiss and Lorenz, 2004;
Ladyzhenskaya, 1985; Ladyzhenskaya et al., 1968; Trèves, 2006; Vladimirov, 1979, 1984).
These equations and many other evolution equations (e.g., Schrödinger’s equation) can be
put in the framework of an ODE:

ut = Au

where A is a linear operator, possibly unbounded, in a Banach space. The theory has its
origins in the development of semi-group of linear operators and the celebrated Hille–
Yosida theorem (Brezis, 2011; Goldstein, 1985; Pazy, 1983; Yosida, 1974). The theory has
been extended by Kato and others to include the case of variable coefficients A = A(t) and
also the non-linear equations ut = A(t, u). There are many excellent books written on the
subject.

6.6 EXERCISES

1. Determine the types of the following equations, and reduce them to canonical form.

a. uxx + 2ex+yuxy + e2yuyy = 0.
b. uxx + 2uxy + 4uxz + 5uzz + ux + 2uy = 0 (in ℝ3).
c. uxx − 2 sin xuxy − cos2 xuyy − cos xuy = 0.
d. y2uxx + x2uyy = 0 (x > 0, y > 0).
e. x2uxx + 2xyuxy + y2uyy = 0 (x > 0).

f. 𝜕
𝜕x

(
(1 − x)2 𝜕u

𝜕x

)
= 1

a2 (1 − x)2 𝜕
2u
𝜕t2

(a ≠ 0).

g. sin4(2x)uxx + 4 sin4(2x)u = 𝜕2u
𝜕t2

.

2. Consider the Cauchy problem

𝜕2u
𝜕x1𝜕x2

= f(x1, x2),

with initial conditions

u(x1, 0) = u0(x1), ux2
(x1, 0) = u1(x1).

Note that x2 = 0 is a characteristic for the given equation. Observing that the general solution
of the equation is of the form

u(x1, x2) = F(x1) + G(x2),

where F,G are arbitrary C2 functions, show that the Cauchy problem has a solution if and
only if u ′

1(x1) = f(x1, 0) for all x1. In this case, write down the solution and conclude that
there is non-uniqueness.
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3. Consider the wave equation utt − uxx = 0 with prescribed initial and normal derivative
condition on the characteristic x = t. Use the characteristic variables x1 = x+ t and x2 = x− t
to reduce the problem to that in (2) above. Derive necessary and sufficient conditions on
the initial data so that the Cauchy problem has a solution. Conclude that the solution is not
unique.6

6It is in general true that for a constant coefficient hyperbolic equation of any order, there is always non-
uniqueness to a characteristic Cauchy problem. (See Hörmander, 1976).



CHAPTER 7

Laplace and Poisson
Equations

7.1 INTRODUCTION

The reasons for studying Laplace and Poisson equations are twofold. Primarily, these
equations arise in a wide variety of physical contexts. Secondly, as mentioned earlier,
Laplace operator is a prototype of a very general class of linear elliptic operators. In fact, the
Laplace operator possesses many features of the general class of elliptic operators. Recall
that the most general form of second-order linear partial differential equations (PDE) in
n variables is given by

Lu ≡ n∑
i,j=1

aij(x)Diju +
n∑
i=1

bi(x)Diu + c(x)u + d(x) = 0, (7.1)

where x ∈ Ω, an open set in ℝn, aij = aji. The operator L is said to be uniformly elliptic if
there exists an 𝛼 > 0 such that

∑n
i,j=1 aij(x)𝜉i𝜉j ≥ 𝛼

∑n
i=1 |𝜉|2, for all x ∈ Ω and 𝜉 ∈ ℝn. Recall

that 𝜒L(x, 𝜉) =
∑n

i,j=1 aij(x)𝜉i𝜉j is the characteristic form associated with the operator L. The
ellipticity condition here implies that the characteristic variety is an empty set at all points
in Ω.

Thus, the condition requires the uniform positive definiteness of the symmetric matrix
[aij(x)]. If we take bi = ci = d = 0 and

aij(x) = 𝛿ij =
{

1 if i = j
0 if i ≠ j,

there results the Laplace operator Δ. The ultimate interest is to study the classical solutions
of the equation Lu= f for a given data f. The study of Laplace equation Δu= 0 and Poisson
equation Δu = f (potential theory) gives a starting point for the general theory of Lu =
f. The Schauder theory provides a general theory for Lu = f when the coefficients are
smooth, that is, Hölder continuous and it is essentially an extension of the potential theory.
The crucial result is the derivation of estimates (known as a-priori estimates), say, of the

166
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form: Any u ∈ C2(Ω), a solution ofΔu = f in a domainΩ ⊂ ℝn satisfies a uniform estimate:

‖u‖C2,𝛼(Ω ′) ≤ C
(
sup
Ω

|u| + ‖ f ‖C0,𝛼(Ω)

)
(7.2)

where Ω ′ ⊂⊂ Ω, 0 < 𝛼 < 1 and C is a constant depending only on 𝛼. Here Ck,𝛼(Ω) is the
standard Hölder space.

Such estimates eventually (with delicate analysis) lead to the solvability of the equation.
The above estimate is an interior estimate andwe also require boundary/global estimates that
depend on the smoothness of the boundary as well. The Schauder theory is not applicable
for equations with non-smooth coefficients. An alternate and more general approach (and
physically meaningful) is that the solutions can be obtained byHilbert spacemethods based
on weak solutions (generalized functions/distribution theory/Sobolev spaces).

7.1.1 Physical Interpretation

As remarked earlier, the Laplace and Poisson equations appear in a variety of physical
problems. In particular, it is well known that the real and imaginary parts of an analytic
function of one complex variable are harmonic; that is, they satisfy the (two-dimensional)
Laplace equation. Below, we mention a few physical situations where these equations
appear.

1. A very general interpretation is as follows: Suppose u denotes the density of certain
quantity in equilibrium. SupposeΩ is a smooth domain inℝn. IfV ⊂ Ω is an arbitrary
smooth region in Ω, then, the net flux through the boundary 𝜕V is zero; that is,

∫
𝜕V

F ⋅ 𝜈d𝜎 = 0,

where F is the flux density. By divergence theorem, we get ∫V divF = 0. Since V is an
arbitrary sub-domain of Ω, we obtain divF = 0 in Ω. In many physical situations, the
flux density is proportional to the gradient of a scalar function u so that F = −a∇u,
a > 0. Consequently, div∇u = Δu = 0 in Ω.

2. As a specific case, let 𝜙 be the electric potential. Then, the electric field is given by

e = −∇𝜙 = −
(

𝜕𝜙
𝜕x1

,⋯ , 𝜕𝜙
𝜕xn

)
. By Ohm’s law, the electric current vector j satisfies

j = C e, where C = [Cij] is the general conductivity coefficient (matrix tensor).
Substituting this in the continuity equation div j = ∇ ⋅ j = 0, we obtain, the second-
order equation

n∑
i,j=1

𝜕
𝜕xi

(
Cij(x)

𝜕𝜙
𝜕xj

)
= 0.
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In particular, if the medium is isotropic, then, C = 𝛾I, where 𝛾 is the conductivity and
we see that 𝜙 satisfies the Laplace equation.

3. The Laplace/Poisson equation appears in many other situations as well. Some
examples are indicated in the following table. In the presence of charges or external
force, the Laplace equation becomes Poisson equation.

j e 𝝓 C

Thermal
conduction

Heat current Temperature
gradient

Temperature Thermal
conductivity

.......................................................................................................................................................................................................................
Electrical
conduction

Electrical current Electrical field Electric potential Conductivity
.......................................................................................................................................................................................................................
Di-electrics Displacement

field
Electric field Potential Permittivity

.......................................................................................................................................................................................................................
Diffusion Particle current Gradient of

concentration
Concentration Diffusivity

.......................................................................................................................................................................................................................
Magnetism Magnetic

induction
Magnetic field
intensity

Potential Permeability

.......................................................................................................................................................................................................................
Stokes flow Particle current Pressure gradient Pressure Viscosity

7.2 FUNDAMENTAL SOLUTION, MEAN VALUE FORMULA AND
MAXIMUM PRINCIPLES

The main idea of the study of these special concepts is that the general solution for the
Dirichlet problem can be given by an integral representation via a specific or particular
(singular) solution known as fundamental solution/Green’s function.This is known asGreen’s
representation formula and later, it can be used in the solvability of the equation. In
the process, we also deduce some interesting properties – mean value property (MVP),
minimum andmaximum principles. Interestingly, the fundamental solution is not a solution
of the Laplace equation as it has a singularity, but very useful in the construction of solutions.

One of the important features of Laplace equationΔu = 0 is its spherical symmetry; that
is the equation is invariant under rotations about any point. This means in particular that if
u(x) is a solution of Δu = 0 and R is a rotation matrix, then 𝜐(x) ≡ u(Rx) is also a solution
of the Laplace equation (see Exercise 3). This suggests that we look for radial solutions u,
that is u satisfying u(x) = u(|x|). Putting r = |x| = (∑n

i=1 x
2
i
)1∕2, it is easy to derive that the

function 𝜐 = 𝜐(r) ∶= u(|x|) satisfies
Δu ≡ �̈�(r) + n − 1

r
�̇�(r) = 0, (7.3)
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where ⋅ denotes the differentiation with respect to r. This ordinary differential equation
(ODE) can easily be solved for r > 0 and we obtain

𝜐(r) =

{
b log r + C if n = 2
b

rn−2 + C if n ≥ 3. (7.4)

for arbitrary constants b,C. We define the fundamental solution for −Δ as1

𝜙(x) =
⎧⎪⎨⎪⎩
− 1

2𝜋
log |x|, if n = 2

1
n(n − 2)𝜔n|x|n−2 , if n ≥ 3,

(7.5)

where 𝜔n, is the volume of the unit ball in ℝn.
It is readily verified that Δ𝜙(x) = 0 for all x ∈ ℝn⧵{0} and 0 is a singularity for 𝜙.

The functions satisfying Δu= 0 in a domain Ω are called harmonic functions. Thus, 𝜙
is harmonic in ℝn⧵{0}. This singular solution plays a vital role in the future analysis.
More generally, the singularity can be shifted to any other point y ∈ ℝn. That is, the
function x↦𝜙(x − y) is harmonic in ℝn⧵{y}. Further, for f ∶ ℝn→ℝ, the function
x ↦ 𝜙(x− y)f(y) is also harmonic inℝn⧵{y} and so are their finite sums. This motivates us
to define the infinite sum or integral and look for a solution u of the Laplace equation of the
form:

u(x) = ∫
ℝn

𝜙(x − y)f(y)dy = 𝜙 ∗ f(x). (7.6)

The term on the right-hand side is the convolution of 𝜙 and f. Indeed, if it were true
that Δu(x) = ∫ℝn Δx𝜙(x − y)f(y)dy, then Δu = 0 and we obtain a solution. To take the Δ
inside the integral sign, we need the local integrability of the second derivatives of𝜙. But the
function D2𝜙(x − y) is not locally integrable in any neighborhood of y. However, 𝜙(x − y)
and D𝜙(x − y) are locally integrable (see Exercise 6).

Proposition 7.1. There exists a constant C > 0 such that

|D𝜙(x)| ≤ C|x|n−1 ,
||D2𝜙(x)|| ≤ C|x|n , x ≠ 0. (7.7)

1The choice of the constants will be clear from the analysis that follows.
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Here D𝜙(x) is the gradient vector of 𝜙 and D2𝜙(x) is the Hessian. In fact, D𝜙(x) and
D2𝜙(x) behave like 1|x|n−1 and 1|x|n near the origin, respectively. Further, 𝜙 and D𝜙 are
locally integrable, but D2(𝜙) is not.

Proof Proof follows by direct differentiation and the fact that the function 1|x|𝛼 is integrable
in a neighborhood of the origin inℝn if and only if 𝛼 < n. The details are left as an exercise
(see Exercise 6).

Under certain assumptions, u defined by (7.6), in fact, solves Poisson equation.
Equation (7.6), by changing variables: y → x − y, can also be written as

u(x) = ∫
ℝn

𝜙(x − y)f(y)dy = ∫
ℝn

𝜙(y)f(x − y)dy.

Now assume f ∈ C2
c (ℝ

n). Then,

𝜕u
𝜕xi

(x) = ∫
ℝn

𝜙(y)
𝜕f
𝜕xi

(x − y)dy = 𝜙 ∗
𝜕f
𝜕xi

(x)

and similarly

𝜕2u
𝜕xi𝜕xj

= 𝜙 ∗
𝜕2f

𝜕xi𝜕xj
.

In the above computations, there is no problem of taking the differentiation inside the
integral due to the smoothness of f and local integrability of 𝜙. In particular,

Δu = 𝜙 ∗ Δf. (7.8)

The convolution has this special property. To find the derivative of the convolution, it
is enough to take the derivative of any one of the component functions and convolute it
with the other.This is extremely useful for approximating non-smooth functions by smooth
functions.

Now under the assumption that f ∈ C2
c (ℝ

n), we will show that −Δu = −𝜙 ∗ Δf = f in
ℝn. Note that the integrand in

(𝜙 ∗ Δf)(x) = ∫
ℝn

𝜙(y)(Δf)(x − y)dy
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has a singularity at the origin. Thus, we write

Δu(x) = I𝜀 + J𝜀,

where 𝜀 > 0 and

I𝜀 = ∫
B𝜀(0)

𝜙(y)(Δf)(x − y)dy, J𝜀 = ∫
ℝn∖B𝜀(0)

𝜙(y)(Δf)(x − y)dy

It is easy to see, using the boundedness of Δf that |I𝜀| ⟶ 0 as 𝜀 ⟶ 0. In fact, we can
derive the following estimate (see Exercise 7): there exists a constant C > 0 such that

||I𝜀|| ≤ {C𝜀2| log 𝜀|, if n = 2
C𝜀2 if n ≥ 3.

An integration by parts gives

J𝜀 = − ∫
ℝn∖B𝜀(0)

∇𝜙(y) ⋅ ∇f(x − y)dy − ∫
𝜕B𝜀(0)

𝜙(y)
𝜕f
𝜕𝜈

(x − y)d𝜎

= K𝜀 + L𝜀.

Here, 𝜈 is the unit outward normal to B𝜀(0). Estimating L𝜀 is similar to that of I𝜀, and we
get

||L𝜀|| ≤ {C𝜀| log 𝜀|, if n = 2
C𝜀, if n ≥ 3

for some constant C. Thus, ||L𝜀|| ⟶ 0 as 𝜀 ⟶ 0. To estimate K𝜀, we do one more
integration by parts to get

K𝜀 = ∫
ℝn∖B𝜀(0)

Δ𝜙(y)f(x − y)dy + ∫
𝜕B𝜀(0)

𝜕𝜙
𝜕𝜈

(y)f(x − y)d𝜎(y)

= ∫
𝜕B𝜀(0)

𝜕𝜙
𝜕𝜈

(y)f(x − y)d𝜎(y),

since Δ𝜙(y) = 0 for y ≠ 0. On 𝜕B𝜀(0), 𝜈 =
y|y| = y

𝜀
and so

𝜕𝜙
𝜕𝜈

(y) = 𝜈 ⋅ ∇𝜙 = − 1
n𝜔n𝜀n−1 = − 1|𝜕B𝜀(0)| .
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Therefore

K𝜀 = − 1|𝜕B𝜀(0)| ∫
𝜕B𝜀(0)

f(x − y)d𝜎(y)

= − 1|𝜕B𝜀(x)| ∫
𝜕B𝜀(x)

f(y)d𝜎(y)

→ −f(x) as 𝜀 → 0.

Thus, we have proved the following result:

Theorem 7.2. Let f ∈ C2
c (ℝ

n) and define u by

u(x) = 𝜙 ∗ f(x), (7.9)

where 𝜙 is the fundamental solution of−Δ.Then, u ∈ C2(ℝn) and u solves the Poisson
equation −Δu = f in ℝn.

In the language of distributions, the function𝜙 satisfies the equation−Δ𝜙 = 𝛿0 in the sense
of distributions,2 from which comes its nomenclature the fundamental solution of −Δ.

Later, we show that the above theorem holds good when f ∈ C1(Ω), but not for arbitrary
f ∈ C(Ω). This is an important point to be noted that the continuity of f is not enough for
the existence of a solution.

We now derive an important result for harmonic functions; more generally, for sub-
harmonic and super-harmonic functions. A function u ∈ C2(Ω) is said to be sub-
harmonic ifΔu≥ 0 inΩ and super-harmonic ifΔu≤ 0 inΩ. These notions are fundamental
in the study of uniqueness and existence results for Laplace equation via the Perron’s
Method.

7.2.1 Mean Value Formula

We now state and prove the following theorem:

Theorem 7.3. Let u ∈ C2(Ω) be sub-harmonic. Then, for any ball B = BR(y) ⊂⊂ Ω, we
have

u(y) ≤ 1
n𝜔nRn−1 ∫

𝜕B

u(x) d𝜎(x) = 1|𝜕B| ∫
𝜕B

u d𝜎(x) (7.10)

2The precise meaning of this is: ∫ 𝜙(x)Δ𝜓(x)dx = −𝜓(0) for every C∞
c function 𝜓 .
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and

u(y) ≤ 1
𝜔nRn ∫

B

u(x) dx = 1|B| ∫
B

u(x) dx. (7.11)

The above inequalities are reversed if u is super-harmonic. Finally, if u is harmonic,
then, we have

u(y) = 1|𝜕B| ∫
𝜕B

u d𝜎 = 1|B| ∫
B

u(x) dx. (7.12)

Equation (7.12) is referred to as themean value formula and the harmonic function u is said
to satisfy the MVP.

Proof Assume u ∈ C2(Ω) is sub-harmonic. We have, by divergence theorem, for
0 < 𝜌 < R,

∫
𝜕B𝜌(y)

𝜕u
𝜕𝜈

(x) d𝜎(x) = ∫
B𝜌(y)

Δu(x) dx ≥ 0.

Let g(𝜌) = ∫
𝜕B𝜌(y)

𝜕u
𝜕𝜈
(x) d𝜎(x). Then,

g(𝜌) = 𝜌n−1 ∫
𝜕B1(0)

𝜕u
𝜕𝜌

(y + 𝜌s) d𝜎(s) = 𝜌n−1 𝜕
𝜕𝜌 ∫

𝜕B1(0)

u(y + 𝜌s) d𝜎(s),

where 𝜌 = |x − y|, s = x−y
𝜌

are the radial and angular co-ordinates. Thus

g(𝜌) = 𝜌n−1 𝜕
𝜕𝜌

⎛⎜⎜⎜⎝𝜌
1−n ∫

𝜕B𝜌(y)

u d𝜎
⎞⎟⎟⎟⎠ ≥ 0,

which implies that

𝜕
𝜕𝜌

⎛⎜⎜⎜⎝𝜌
1−n ∫

𝜕B𝜌(y)

u d𝜎
⎞⎟⎟⎟⎠ ≥ 0.
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Fix 𝜌1, 𝜌2 such that 0 < 𝜌1 < 𝜌2 ≤ R and integrate the above inequality from 𝜌1 to 𝜌2 to
obtain

𝜌1−n
1 ∫

𝜕B𝜌1 (y)

u d𝜎 ≤ 𝜌1−n
2 ∫

𝜕B𝜌2 (y)

u d𝜎.

But

lim
𝜌1→0

1
n𝜔n𝜌n−1

1
∫

𝜕B𝜌1 (y)

u(x) d𝜎(x) = u(y)

since the term inside the limit is the average of u on the sphere 𝜕B𝜌1
(y). Now taking 𝜌2 = R,

we get the first inequality (7.10). We also have, by taking 𝜌2 = 𝜌,

u(y) ≤ 1|𝜕B𝜌(y)| ∫
𝜕B𝜌(y)

u d𝜎.

This implies that

n𝜔n𝜌
n−1u(y) ≤ ∫

𝜕B𝜌(y)

u d𝜎

which is true for any 𝜌 ≤ R. Now integrate with respect to 𝜌 from 0 to R, to get the inequality
(7.11).

If u is super-harmonic, observe that −u is sub-harmonic. If u is harmonic, then both u
and−u are sub-harmonic.The other conclusions in the theoremwill now readily follow.

Remark 7.4. The proof above contains the following interesting result: If u ∈ C1(Ω) and

∫
𝜕B

𝜕u
𝜕𝜈

d𝜎 = 0 for every ball B ⊂⊂ Ω, then u satisfies MVP in Ω.

Theorem 7.5 (Converse of MVP). Let u ∈ C2(Ω) satisfy

u(x) = 1|𝜕B| ∫
𝜕B

u d𝜎 = 1|B| ∫
B

u dx (7.13)

for each ball B = Br(x) ⊂⊂ Ω, then u is harmonic.

Proof First, we remark that the above theorem is also true with the assumption that u ∈
C(Ω). The present proof requires that u ∈ C2(Ω). Let h(r) = 1|𝜕Br(x)| ∫𝜕Br(x)

u(y)d𝜎(y) = u(x),
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then on one hand h ′(r) = 0 as h is independent of r using (7.13). On the other hand,

h(r) = 1|𝜕B1(0)| ∫
𝜕B1(0)

u(x + rz)d𝜎(z).

Therefore,

h ′(r) = 1|𝜕B1(0)| ∫
𝜕B1(0)

∇u(x + rz) ⋅ z d𝜎(z)

= 1|𝜕Br(x)| ∫
𝜕Br(x)

∇u(y).
y − x
r

d𝜎(y)

= 1|𝜕Br(x)| ∫
𝜕Br(x)

𝜕u
𝜕r

d𝜎(y)

= 1|𝜕Br(x)| ∫
Br(x)

Δu(y) dy, using divergence theorem

= r
n|Br(x)| ∫

Br(x)

Δu(y) dy

Thus, if Δu(x) ≠ 0, say Δu(x) > 0, we can choose r small enough, so that Δu(y) > 0 in
Br(x), leading to a contradiction.

7.2.2 Maximum and Minimum Principles

Maximum and minimum principles are trademarks of second-order elliptic differential
operators. Consider a C2 function f defined on an interval (a, b). Suppose f has an interior
strict local maximum. That is, there is a point c ∈ (a, b) such that f(c) is the maximum
value of f in a neighborhood of c. Then, we know that f ′(c) = 0 and f ′ ′(c) < 0. In other
words, if f ′ ′ ≥ 0 in a neighborhood of c, then f cannot have a strict local maximum at c. The
operatorΔ replaces the second derivative f ′ ′ in higher dimensions.More generally, it would
be interesting to derive maximum principles for general second-order operators. This has
far-reaching consequences in the study of uniqueness of solution, comparison principle, and
so on, of differential operators. The maximum (minimum) principle, is useful in comparing
a solution of, for example, Δu = u2 in a domain Ω with the solution of 𝜐 of Δ𝜐 = 0 in Ω
satisfying 𝜐 = u on 𝜕Ω. The above discussion also indicates that the maximum principle
is generally obtained for second-order elliptic operators, though some other operators also
enjoy this property.
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Theorem 7.6 (Strong Maximum Principle). Assume Ω is a bounded region and u is a
bounded sub-harmonic function inΩ. If there is a y ∈ Ω such that u(y) = supΩ u, then
u is a constant.

That is, a bounded sub-harmonic function cannot assume an interior maximum unless it is
a constant.

Proof Let M = supΩ u and ΩM = {x ∈ Ω ∶ u(x) = M}. Then Ω is non-empty since y ∈
ΩM. By continuity of u, the set ΩM is closed in Ω. Now u − M is also sub-harmonic. Let
z ∈ ΩM. Then by MVP, we get

0 = u(z) −M ≤ 1
𝜔nRn ∫

BR(z)

(u(x) −M)dx ≤ 0

for BR(z) ⊂⊂ Ω. Since u ≤ M in Ω, we conclude that u ≡ M in BR(z). Hence, BR(z) ⊂ ΩM
and so ΩM is open as well. Thus, by connectedness, ΩM ≡ Ω as ΩM is non-empty.

If u is super-harmonic, then by applying the above theorem to −u, we see that a non-
constant super-harmonic function cannot assume an interiorminimum and a non-constant
harmonic function cannot assume both interior minimum and maximum. We state these
observations in the following theorem:

Theorem 7.7. Assume Ω is a bounded region in ℝn. For u ∈ C2(Ω) ∩ C(Ω), the following
statements hold:

1. if u is sub-harmonic in Ω, then sup
Ω

u = max
Ω

u = max
𝜕Ω

u.

2. if u is super-harmonic in Ω, then, inf
Ω
u = min

Ω
u = min

𝜕Ω
u.

3. if u is harmonic in Ω, then, min
𝜕Ω

u ≤ u(x) ≤ max
𝜕Ω

u, for all x ∈ Ω.

The conclusions in Theorem 7.7 are referred as weak maximum and minimum principles.
Themaximumandminimumprinciples are also valid formore general second-order elliptic
equations. We present a case here. Consider a second-order partial differential operator L
of the form

L =
n∑

i,j=1
aij

𝜕2

𝜕xi𝜕xj
+

n∑
i=1

bi
𝜕
𝜕xi

+ c, (7.14)

where aij = aji, bi, c are real-valued functions defined onΩ and are assumed to be smooth. If
x0 ∈ Ω, we say L is elliptic at x0 if the matrix [aij(x0)] is non-negative definite. The operator
L is elliptic in Ω if it is elliptic at every point in Ω.
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Theorem 7.8. Suppose L is elliptic in Ω and u ∈ C2(Ω) takes its supremum at some point
x0 ∈ Ω. Then, Lu(x0) ≤ c(x0)u(x0).

Proof We recall the following result from Linear Algebra. Suppose C = [cij] and D = [dij]
are symmetric, non-negative definite matrices, then

∑n
i,j=1 cijdij ≥ 0. In fact, this follows

since the above sum is the trace of the matrix CD and trace of a matrix is invariant under
similarity transformations.

At the interior supremum point x0, we have 𝜕u
𝜕xi
(x0) = 0 for i = 1,… n and the Hessian[ 𝜕2u

𝜕xi𝜕xj
(x0)

]
of u is non-positive definite. Hence, it follows from the above observation that

n∑
i,j=1

aij(x0)
𝜕2u

𝜕xi𝜕xj
(x0) ≤ 0.

This completes the proof.

Thus, we have the following maximum principle for L:

Theorem 7.9. Let L be given by (7.14) be elliptic inΩ. Assume that either Lu ≥ 0 and c < 0
or Lu > 0 and c ≤ 0 in Ω. Then, u cannot take an interior maximum in Ω.

Analogous statements can be made for the case of minimum as well. In general, the
maximumprinciple is not true for higher-order operators.Themaximumprinciplemay not
also hold in unbounded domains. However, with some additional hypothesis on u, we do
obtain certain maximum principle for unbounded domains, as we see below.

Example 7.10. Consider the function u(x) = x(x− 1)(x+ 1) for x ∈ (0, 1). Then, u satisfies
the fourth-order equation d4u

dx4 = 0. But u has a positive strict minimum at x = 1∕2.

Example 7.11. Consider the upper half plane Ω = {(x1, x2) ∈ ℝ2 ∶ x2 > 0} and let
u(x1, x2) = x2 in Ω. Then, u is harmonic in Ω. Clearly u is zero on the boundary
{x2 = 0} and hence the maximum principle does not hold.

But, we have the following theorem:

Theorem 7.12. Let Ω = {(x1, x2) ∈ ℝ2 ∶ x2 > 0} and suppose u ∈ C2(Ω) is a bounded
harmonic function. Then,

sup
Ω

|u| = sup
𝜕Ω

|u|.
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Proof For a given 𝜀 > 0, consider the function 𝜐(x) = u(x) − 𝜀
2
log

(
x2
1 + (x2 + 1)2

)
for

x ∈ Ω. Then, 𝜐 is harmonic inΩ, since the second term on the right-hand side is essentially
the fundamental solution. Now, we apply the maximum principle (Theorem 7.7) to 𝜐 on the
bounded domain

Ωa = {(x1, x2) ∈ Ω ∶ x2
1 + (x2 + 1)2 ≤ a2}

to get

max
Ωa

|𝜐| = max
𝜕Ωa

|𝜐|.
Theboundary 𝜕Ωa consists of two parts, namely the flat partΓ1 = {(x1, x2) ∈ 𝜕Ωa ∶ x2 = 0}
and the curved part Γ2 = {(x1, x2) ∈ 𝜕Ωa ∶ x2 > 0}.

Claim: The maximum of 𝜐 on 𝜕Ωa cannot be achieved on Γ2.
If not, let (x0

1, x
0
2) ∈ Γ2 where 𝜐 assumes its maximum, that is

𝜐(x1, x2) ≤ 𝜐(x0
1, x

0
2)

for all (x1, x2) ∈ Ωa. In particular, taking (x1, x2) ∈ Γ1, we have

u(x1, 0) −
𝜀
2
log

(
x2
1 + 1

) ≤ u(x0
1, x

0
2) −

𝜀
2
log a2

for all |x1| ≤ a. This implies, for all a large,

𝜀 log a ≤ 2C,

where |u| ≤ C. Taking a sufficiently large, we get a contradiction and hence the claim. Now
letting 𝜀 → 0, we see that the maximum for u in Ω is achieved on the x1 axis. Hence the
theorem.

7.2.3 Uniqueness and Regularity of the Dirichlet Problem

The maximum principle can be used to prove the following uniqueness result:

Theorem 7.13 (Uniqueness). The Dirichlet problem for Poisson equation

−Δu = f in Ω
u = g on 𝜕Ω (7.15)

has at most one solution u ∈ C2(Ω) ∩ C(Ω).

Proof If u1 and u2 are solutions of (7.15), apply the third conclusion in the Theorem 7.7 to
the harmonic function u = u1 − u2.
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For the existence of a classical solution u of (7.15), we only ask for u ∈ C2(Ω) ∩C(Ω) under
certain minimum smoothness assumption on f, g and 𝜕Ω, collectively referred to as data.
If the data possess more smoothness, then it is natural to expect more smoothness for the
solution u. Such results are called regularity results. The regularity results are particularly
useful in a general situation. In many instances, it may be difficult or even not possible
to prove the existence of a classical solution to a given PDE, working with only spaces of
smooth functions. However, it is possible to prove the existence of aweak solution, using the
techniques of Hilbert space ormore generally Functional Analysis.The regularity results (in
a weak sense) will then show, under suitable conditions on the data, when a weak solution
is actually a classical solution using Sobolev embedding theorems and so on.

Theorem 7.14 (Regularity). If u ∈ C(Ω) satisfies MVP (7.13) for each ball Br(x) ⊂⊂ Ω,
then u ∈ C∞(Ω).

Proof Proof is simple, but it is based on the concept ofmollifiers 𝜌𝜀, 𝜀 > 0 and convolution.
If x ∈ Ω𝜀 = {x ∈ Ω ∶ d(x, 𝜕Ω) > 𝜀} , then the convolution u𝜀(x) = 𝜌𝜀 ∗ u(x) is in
C∞ (

Ω𝜀
)
as 𝜌𝜀 ∈ C∞ (ℝn). (see Chapter 2).

Claim: u𝜀(x) = u(x) for x ∈ Ω𝜀.
The above claim shows that u ∈ C∞(Ω𝜀). Since any x ∈ Ω is in some Ω𝜀 for 𝜀 > 0 small,

we conclude that u ∈ C∞(Ω).

Proof of the Claim: We use the special properties of mollifier 𝜌𝜀 namely, it is radial with
compact support contained in B𝜀(0). Recall the mollifier

𝜌𝜀(y) = 𝜌𝜀(|y|) = 1
𝜀n

𝜌
(|y|

𝜀

)
for y ∈ ℝn. For x ∈ Ω𝜀, the ball B𝜀(x) ⊂⊂ Ω. Then, we have

u𝜀(x) =
1
𝜀n ∫

B𝜀(x)

𝜌
(|x − y|

𝜀

)
u(y) dy

= 1
𝜀n

𝜀

∫
0

∫
𝜕Br(x)

𝜌
( r
𝜀

)
u(y)d𝜎(y) dr

= 1
𝜀n

𝜀

∫
0

𝜌
( r
𝜀

)
n𝜔nrn−1u(x) dr, applying MVP for u

= u(x) 1
𝜀n

𝜀

∫
0

𝜌
( r
𝜀

)
n𝜔nrn−1 dr,
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= u(x) 1
𝜀n ∫

Br(x)

𝜌
(x − y

𝜀

)
dy

= u(x).
This proves the claim and the proof of the theorem is complete.

The above Theorem 7.14 together with the Theorem 7.5 shows that a continuous function
satisfying the MVP is C∞ and harmonic. To prove this, we have used the concept of
mollifiers, but we can also give a direct proof of this fact (seeTheorem 7.24 and Exercise 35).

In fact, a harmonic function u is analytic. This is proved by establishing finer estimates
on u and its derivatives.

Estimates on theDerivatives: Let x0 ∈ Ω, u be harmonic inΩ and r be such thatBr(x0) ⊂⊂
Ω. Observe that Δu = 0 implies Δ

( 𝜕u
𝜕xi

)
= 0 in Ω, so that 𝜕u

𝜕xi
is also harmonic. Now, apply

MVP (7.13) to 𝜕u
𝜕xi

in the ball Br∕2(x0) to deduce that

|||| 𝜕u𝜕xi (x0)
|||| ≤ 2n

r
‖u‖L∞(𝜕Br∕2(x0)) . (7.16)

To derive the above estimate, use the fact ∫Br∕2(x0)
𝜕u
𝜕xi
dx = − ∫𝜕Br∕2(x0)

u𝜈id𝜎. The MVP
(7.13) applied to u in Br∕2(x) ⊂ Br(x0), we get

|u(x)| ≤ 1
𝜔n

(2
r

)n ‖u‖L1(Br(x0))

for all x ∈ Br∕2(x0). Combining, we get

|||| 𝜕u𝜕xi (x0)
|||| ≤ (2

r

)n+1 n
𝜔n

‖u‖L1(Br(x0)) .

This, in turn, implies (7.16). Using an induction argument, we deduce that

||D𝛼u(x0)|| ≤ (2n+1nk)k

𝜔nrn+k
‖u‖L1(Br(x0)) (7.17)

if |𝛼| = k.This estimate immediately establishes the analyticity of harmonic functions, that
is, for each x0 ∈ Ω, there exists r > 0 such that u(x) is represented as a convergent power
series
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u(x) =
∑
𝛼

D𝛼u(x0)
𝛼!

(x − x0)𝛼,

for |x − x0| < r. Further, we have the following Liouville’s Theorem:

Theorem 7.15 (Liouville’s Theorem). Suppose u is a bounded harmonic function in ℝn.
Then, u is a constant.

Proof From the estimate (7.16), we have ||| 𝜕u𝜕xi ||| ≤ C
r
‖u‖L∞(ℝn) that tends to 0 as r → ∞.

Hence, 𝜕u
𝜕xi

= 0 for all i = 1,⋯ , n. Thus, u is a constant.

We have seen that if f ∈ C2
c (ℝ

n), then u defined using the fundamental solution, namely
u(x) = ∫ 𝜙(x − y)f(y)dy solves the Poisson equation −Δu = f in ℝn. In some sense the
converse is also true and we have the following result:

Theorem 7.16 (Representation Formula). Let f ∈ C2
c (ℝ

n) and u be a bounded solution of
−Δu = f in ℝn, n ≥ 3. Then, u is represented as

u(x) = ∫
ℝn

𝜙(x − y)f(y)dy + C, (7.18)

where C is a constant.

Remark 7.17. The above result need not be true when n= 2, since 𝜙(x) = − 1
2𝜋

log |x|
is unbounded as |x|→∞, it may happen that ∫ 𝜙(x− y)f(y)dy is unbounded. See
Exercise 34.

Proof By Theorem 7.2,

ũ = ∫
ℝn

𝜙(x − y)f(y)dy

is a solution of −Δũ = f. Now, for n ≥ 3, 𝜙(x) → 0 as |x| → ∞, we see that ũ is a bounded
solution. Thus, if u is any other bounded solution, then u − ũ is harmonic and bounded.
Hence, u − ũ ≡ constant, by Liouville’s theorem.

Point-wise comparison of a non-negative harmonic function away from the boundary is the
theme of the Harnack’s inequality, which we now discuss.

Theorem 7.18 (Harnack’s Inequality). Let V ⊂⊂ Ω be a region and u ≥ 0 be harmonic in
Ω. Then, there exists a constant C > 0 depending only on V and n such that

sup
V

u ≤ C inf
V
u. (7.19)
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In particular,
1
C
u(y) ≤ u(x) ≤ Cu(y), for all x, y ∈ V.

Proof Let r = d(V, 𝜕Ω), which is positive by assumption on V and x, y ∈ V be such that|x − y| ≤ r∕4. Then, by MVP (7.13),

u(x) = 1|Br∕2(x)| ∫
Br∕2(x)

u(z) dz

≥ 2n
𝜔nrn ∫

Br∕4(y)

u(z) dz

= 1
2n|Br∕4(y)| ∫

Br∕4(y)

u(z) dz

= 1
2n

u(y).

By interchanging x and y, we also get 2nu(y) ≥ u(x). Hence for all x, y ∈ V, |x− y| ≤ r∕4,
we have

2nu(y) ≥ u(x) ≥ 1
2n

u(y).

By compactness of V, we can cover V by finitely many balls, say N balls of radius r∕4. This
yields

2nNu(y) ≥ u(x) ≥ 1
2nN

u(y), for all x, y ∈ V.

This completes the proof of the theorem.

As an application, we prove the following result,Hopf ’s Lemma, for the ball, which gives an
estimate for the normal derivative of the solution at the boundary:

Lemma 7.19 (Hopf ’s Lemma). Let u ∈ C2(BR(x0)) ∩ C(BR(x0)) be harmonic in BR(x0) and
x∗ ∈ 𝜕BR(x0) be a strict minimum point of u in BR(x0). Then,

−𝜕u
𝜕𝜈

(x∗) ≥ 21−n
(u(x0) − u(x∗)

R

)
> 0,

provided that the one-sided normal derivative

𝜕u
𝜕𝜈

(x∗) = lim
t→0+

u(x∗ − t𝜈) − u(x∗)
t

exists.
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Proof Observe that the inward unit normal to 𝜕BR(x0) at x∗ is 𝜈 = x0−x∗|x0−x∗| .Thenon-negative
function u − u(x∗) is harmonic in BR(x0). Therefore, by Harnack’s inequality, we have

u(x) − u(x∗)
R − 𝜌

≥
(

R
R + 𝜌

)n−2 u(x0) − u(x∗)
R + 𝜌

≥ 21−nu(x0) − u(x∗)
R

,

with 𝜌 = |x−x0| < R; here the simple estimate (R+𝜌)−1 ≥ (2R)−1 is used.Now, let x = x∗−t𝜈
for 0 < t < R. Then, we have R − 𝜌 = t. Letting t → 0, the required estimate follows.

7.2.4 Green’s Function and Representation Formula

In Theorem 7.16, we have seen that if u is a solution to the Poisson equation in ℝn, then
u is represented as in (7.18). We have then used this representation formula to show that
u is indeed a solution to the Laplace equation. Thus, it is important to get a representation
formula for the solutionwhenever it exists, whichwewill do it in this section. In the process,
we will introduce the concept of a Green’s function. Consider the Dirichlet problem{

−Δu = f in Ω,
u = g on 𝜕Ω. (7.20)

Our aim in this section, towards solvability, is to obtain a representation formula for u in
terms of the given data f, g and the fundamental solution. Now fix x ∈ Ω.Then, the function
y ↦ 𝜙(y − x) is harmonic except at y = x and in particular, it is so in V𝜀 = Ω∖B𝜀(x), where
B𝜀(x) ⊂⊂ Ω. Applying Green’s Formula to u(⋅) and 𝜙(x − ⋅) in V𝜀, we get

∫
V𝜀

[
u(y)Δ𝜙(y − x) − 𝜙(y − x)Δu(y)

]
dy

= ∫
𝜕V𝜀

[
u(y)𝜕𝜙

𝜕𝜈
(y − x) − 𝜙(y − x)𝜕u

𝜕𝜈
(y)

]
d𝜎(y),

where 𝜕V𝜀 = 𝜕Ω ∪ 𝜕B𝜀(x). We have

|||||∫𝜕B𝜀(x)
𝜙(y − x)𝜕u

𝜕𝜈
d𝜎(y)

||||| ≤
{

C𝜀 if n ≥ 3
C𝜀| log 𝜀| if n = 2
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which tends to 0 as 𝜀 → 0 and

∫
𝜕B𝜀(x)

u(y)𝜕𝜙
𝜕𝜈

d𝜎(y) = 1||𝜕B𝜀(x)|| ∫
𝜕B𝜀(x)

u(y) d𝜎(y) ⟶ u(x)

as 𝜀 → 0. Since 𝜙 is locally integrable, we have

∫
V𝜀

𝜙(y − x)Δu(y) dy = −∫
V𝜀

𝜙(y − x)f(y) dy → −∫
Ω

𝜙(y − x)f(y) dy

and using Δ𝜙(y − x) = 0 in V𝜀, we arrive at the formula

u(x) = ∫
Ω

f(y)𝜙(y − x) dy − ∫
𝜕Ω

g(y)𝜕𝜙
𝜕𝜈

(y − x) d𝜎(y) + ∫
𝜕Ω

𝜙(y − x)𝜕u
𝜕𝜈

d𝜎(y). (7.21)

On the right-hand side, the normal derivative 𝜕u
𝜕𝜈

on 𝜕Ω is unknown. Hence, we would
like to get rid of this term. This is achieved by a suitable corrector function. Fix x ∈ Ω, the
last term suggests that we look for a harmonic function whose boundary value is 𝜙(⋅ − x).
So introduce, 𝜙x = 𝜙x(y) as the solution of{

−Δy𝜙x = 0 in Ω
𝜙x(y) = 𝜙(y − x) on 𝜕Ω. (7.22)

Apply the Green’s formula to the functions u and 𝜙x in Ω to arrive at

0 = ∫
Ω

f(y)𝜙x(y) dy − ∫
𝜕Ω

g(y)𝜕𝜙
x

𝜕𝜈
(y) d𝜎(y) + ∫

𝜕Ω

𝜙(y − x)𝜕u
𝜕𝜈

d𝜎(y). (7.23)

Define, the Green’s function

G(x, y) = 𝜙(x − y) − 𝜙x(y), x ≠ y, x, y ∈ Ω. (7.24)

Now, subtracting equation (7.23) from (7.21), we get the following Green’s representation
formula for u as

u(x) = ∫
Ω

f(y)G(x, y) dy − ∫
𝜕Ω

g(y)𝜕G
𝜕𝜈

(x, y) d𝜎(y), x ∈ Ω. (7.25)
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IndeedG(x, ⋅) is harmonic inΩ⧵{y} like𝜙(⋅−x) and both have the same singularity.The
difference is that G satisfies a boundary condition. Symbolically, G(x, ⋅) solves the measure
valued PDE

ΔyG = 𝛿x in Ω
G = 0 on 𝜕Ω,

where 𝛿x is the Dirac-delta function concentrated at x. We will not go into a discussion of
this topic here.

We will show that G is symmetric, that is G(x, y) = G(y, x), which is not apparent in
(7.24). To see this, fix x, y ∈ Ω, x ≠ y, define 𝜐(z) = G(x, z), w(z) = G(y, z). Apply Green’s
identity to 𝜐 and w in Ω∖

(
B(x, 𝜀) ∪ B(y, 𝜀)

)
, with 𝜀 small. Then, it is easy to deduce that

𝜐(y) = G(y, x) and w(x) = G(x, y). See Exercise 31. Thus G(x, y) = 𝜐(y) = w(x) = G(y, x).
If we can construct a Green’s function for a given domain, there is a hope of answering the

solvability question via the representation formula. But finding Green’s function, in general,
is as difficult as the solvability itself. However, there are some specific domains where this
is possible, taking into account the geometrical structures enjoyed by these domains. Here,
we present two cases, namely the upper half plane Ω = ℝn

+ and the ball Ω = Br(0). The
corresponding Green’s functions for the upper half plane and balls, are very important in
the analysis of Poisson equation and it is presented below.

Due to the linearity of the problem (7.20), we can write u as u = 𝜐 + w, where 𝜐 solves
the Poisson equation as in (7.20) with zero boundary condition, whereasw is harmonic and
satisfiesw = g on 𝜕Ω. We study these problems separately. The existence ofw is obtained by
the Perron’s method that we will do it in the next section. For the existence of 𝜐, we need to
analyze the Newtonian potential. This will be carried in the sections to follow.

Green’s Function for the Upper Half Space: Consider the upper half space

ℝn
+ =

{
x = (x1,⋯ xn) ∈ ℝn ∶ xn > 0

}
.

Our goal is to obtain the corrector function 𝜙x = 𝜙x(y) that solves

Δ𝜙x = 0 in ℝn
+

𝜙x = 𝜙(y − x) on 𝜕ℝn
+.

The function 𝜙(y − x) is singular only at y = x and hence it satisfies the Laplace
equation except at y = x. The geometry of ℝn

+ suggest to consider the reflection point
x̃ = (x1,⋯ xn−1,−xn) ∈ ℝn

− and hence 𝜙(y − x̃) is smooth in ℝn
+. Thus, 𝜙x(y) = 𝜙(y − x̃) is

harmonic in upper half space. Further, if y = (y1,… , yn−1, 0) = (y ′, 0) is on the boundary
of the upper half space, then 𝜙(y − x̃) = 𝜙(y − x). Thus, the required corrector function is
𝜙x and we have the Green’s function
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G(x, y) = 𝜙(y − x) − 𝜙(y − x̃),

x, y ∈ ℝn
+, x ≠ y. A short calculation leads to

𝜕G
𝜕𝜈

(x, y) = − 𝜕G
𝜕yn

= −
2xn

n𝜔n|x − y|n ,
for y ∈ 𝜕ℝn

+. Thus, if u ∈ C2(Ω) solves

Δu = 0 in ℝn
+, u = g on 𝜕ℝn

+, (7.26)

then, the representation formula is

u(x) =
2xn
n𝜔n ∫

𝜕ℝn
+

g(y)|x − y|n d𝜎(y), x ∈ ℝn
+. (7.27)

Note that d𝜎(y) = dy ′. The function

K(x, y) =
2xn

n𝜔n|x − y|n , x ∈ ℝn
+, y ∈ ℝn

+

is known as Poisson kernel for −Δ in ℝn
+ and (7.27) is the Poisson formula for the upper half

space. We, now verify that u defined by (7.27) indeed is the required solution, under the
assumption g is a bounded continuous function in ℝn−1. Further, ΔxK = 0 for x ≠ y and∫𝜕ℝn

+
K(x, y)d𝜎(y) = 1 for all x ∈ ℝn

+.
For y ∈ 𝜕ℝn

+, x ∈ ℝn
+, observe that K is a C∞ function and if g is bounded, then we can

differentiate u in (7.27) as many times as we wish by taking the differentiation under the
integral sign. That is

D𝛼u(x) = ∫
𝜕ℝn

+

D𝛼
xK(x, y)g(y)d𝜎(y).

Further, Δu = 0 in ℝn
+ as ΔxK = 0 in ℝn

+. Thus, we have the following theorem:

Theorem 7.20. Assume g ∈ Cb(ℝn−1), the space of continuous bounded functions, and
define u by (7.27). Then, u satisfies the following:

1. u ∈ C∞
b (ℝ

n
+).

2. Δu = 0 in ℝn
+.

3. lim
x→x0
x∈ℝn+

u(x) = g(x0) for x0 ∈ 𝜕ℝn
+ = ℝn−1.
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Proof Only part (3) need to be proved. Fix x0 ∈ 𝜕ℝn
+. By continuity of g, given 𝜀 > 0, there

is a 𝛿 > 0 such that |g(y) − g(x0)| ≤ 𝜀

provided |y − x0| < 𝛿 and y ∈ 𝜕ℝn
+. Now consider the ball B𝛿(x0) in ℝn and let A =

𝜕ℝn
+ ∩ B𝛿(x0), B = 𝜕ℝn

+ ⧵ B𝛿(x0). Then, for x ∈ B𝛿∕2(x0), we have

|u(x) − g(x0)| ≤ I + J,

where I = ∫A K(x − y)|g(y) − g(x0)|d𝜎(y) and J = ∫B K(x − y)|g(y) − g(x0)|d𝜎(y). Clearly,
I ≤ 𝜀 as ∫𝜕ℝn

+
K(x − y)d𝜎(y) = 1. Now, if y ∈ B, x ∈ B𝛿∕2(x0), then

|y − x0| ≤ |y − x| + |x − x0| ≤ |y − x| + 𝛿
2
≤ |y − x| + 1

2
|y − x0|.

Thus, |y − x0| ≤ 2|y − x|. Hence

J ≤ 2n+1xn‖g‖0

n𝜔n ∫B

1|y − x0|n d𝜎(y)
which tends to zero as x → x0, that is as xn → 0. This completes the proof of the
theorem.

Green’s Function for a Ball: First consider the unit ball B = B1(0). The idea is again to
use the symmetry of B, to construct a corrector. Given x ∈ ℝn∖ {0}, we take the inversion
point x̃ = x|x|2 so that if x ∈ B1(0), then x̃ is outside the ball.3 Thus, the function 𝜙(y − x̃) is
harmonic in B1(0). We need a certain normalization to fix the boundary values. We define,
𝜙x(y) = 𝜙(|x|(y − x̃)). It is easy to check that

Δ𝜙x = 0 in B1(0)
𝜙x = 𝜙(y − x) on 𝜕B1(0).

As before, define G(x, y) = 𝜙(x − y) − 𝜙(|x|(y − x̃)), x, y ∈ B1(0), x ≠ y. With a little
further computation, we can see that, for y ∈ 𝜕B1(0),

𝜕G
𝜕𝜈

(x, y) = − 1
n𝜔n

1 − |x|2|x − y|n .

3This is called the Kelvin’s transform. For the ball BR(0), x̃ = R2x|x|2 .
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Hence, if u solves the boundary value problem

Δu = 0 in B1(0)
u = g on 𝜕B1(0),

then, we get the Poisson formula

u(x) = 1 − |x|2
n𝜔n ∫

𝜕B1(0)

g(y)|x − y|n d𝜎(y). (7.28)

If we consider the ball Br(0), r > 0, then, we get

u(x) = r2 − |x|2
n𝜔nr ∫

𝜕Br(0)

g(y)|x − y|n d𝜎(y) (7.29)

for x ∈ Br(0). The function

K(x, y) = r2 − |x|2
n𝜔nr

1|x − y|n
is known as the Poisson kernel for −Δ in the ball Br(0). We have the following theorem
similar to Theorem 7.20, whose proof is also similar:

Theorem 7.21. Assume g ∈ C(𝜕Br(0)) and define u by (7.29). Then,

1. u ∈ C∞(Br(0)).
2. Δu = 0 in Br(0).
3. limx→x0

x∈Br(0)

u(x) = g(x0) for any x0 ∈ 𝜕Br(0).

7.2.5 MVP Implies Harmonicity

We have earlier seen in Theorem 7.5 that a C2 function satisfying MVP is harmonic and
in Theorem 7.14, the same result was proved with just continuity assumption, making use
of the mollifiers. Here we give a direct proof. We begin with a definition and an auxiliary
result.

Definition 7.22. Let Ω be an open set in ℝn. A function u ∈ C(Ω) is said to be sub-
harmonic if

u(x) ≤ 1|Br(x)| ∫
Br(x)

u(y) dy
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for all x ∈ Ω and r > 0 such that Br(x) ⊂⊂ Ω. A function u ∈ C(Ω) is said to be super-
harmonic if−u is sub-harmonic. A function u ∈ C(Ω) is said to satisfy theMVP if both
u and −u are sub-harmonic.

Note that the above definition is weaker than the one defined earlier.

Proposition 7.23. Suppose Ω is a bounded open and connected subset of ℝn. If u ∈ C(Ω)
is sub-harmonic, then the weak maximum principle holds for u, that is, maxΩ u =
max𝜕Ω u.

Similarly, if u is super-harmonic, then the weak minimum principle holds for u. Finally,
if u satisfies the MVP, then

min
𝜕Ω

u ≤ u(x) ≤ max
𝜕Ω

u

for all x ∈ Ω.
The proof is exactly the same as in Theorem 7.7 and is left as an exercise. We now come

to the main result, namely the converse of the mean value theorem.

Theorem 7.24. Let Ω be an open set in ℝn and u ∈ C(Ω) satisfies the MVP in Ω. Then, u
is harmonic in Ω, that is Δu(x) = 0 for all x ∈ Ω. Further, u ∈ C∞(Ω).

Proof We only sketch a proof. The details are left as an exercise. Let x0 ∈ Ω. Choose
r > 0 such that Br(x0) ⊂⊂ Ω. Let 𝜐 be a harmonic function in Br(x0) such that 𝜐 = u on
𝜕Br(x0); such a 𝜐 is given by the Poisson formula (7.29), by shifting the origin to x0. Now
apply Proposition 7.23 to ±(u − 𝜐) to conclude that u ≡ 𝜐 in Br(x0). This completes the
proof.

7.3 EXISTENCE OF SOLUTION OF DIRICHLET PROBLEM
(PERRON’S METHOD)

We now want to address the question of existence of a solution to Dirichlet problem for
the Laplace equation, in arbitrary bounded domains with prescribed boundary values. The
method that we present here is known as Perron’s method of sub-harmonic functions and
requires certain assumptions on the regularity of the boundary of the domain. We sketch
some of the ideas.Themethod is mainly based on themaximum principle and the solvability
of the Dirichlet problem in a ball. This somewhat restricts the application of the method
to general second order equations Another feature of this method is the separation of the
interior existence from that of the boundary behavior.

Continuous Sub-harmonic and Super-harmonic Functions: Suppose u ∈ C2(Ω) ∩ C(Ω)
is sub-harmonic, that is Δu ≥ 0 in Ω. If 𝜐 ∈ C2(Ω) ∩ C(Ω) is harmonic such that u ≤ 𝜐 in
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𝜕Ω, then, by maximum principle u ≤ 𝜐 in Ω. More generally, for any ball B ⊂⊂ Ω, if u ≤ 𝜐
on 𝜕B, then u ≤ 𝜐 in B. This, in fact, is a defining property of the sub-harmonic functions
and hence the name sub-harmonic. This motivates us to define sub-harmonic and super-
harmonic functions for continuous functions in a different way.

Definition 7.25. A function u ∈ C(Ω) is called sub-harmonic if the following condition
holds: For any ball B ⊂⊂ Ω and for any harmonic function 𝜐 in B satisfying u ≤ 𝜐 on
𝜕B, the inequality u ≤ 𝜐 is true in B. A function u ∈ C(Ω) is said to be super-harmonic
if −u is sub-harmonic. A continuous function u is harmonic if it is both sub-harmonic
and super-harmonic.

This definition of sub (super) harmonicity is due to F. Riesz and can be defined for upper
(lower) semi-continuous functions. For continuous function, it coincideswith the definition
above. See DiBenedetto (2010) for an example. It is easy to check that the above definition
of harmonicity coincides with the earlier definition via MVP.

Some properties of these functions are listed in the following theorem. Proof is not
difficult; See Exercise 32.

Theorem 7.26. The following statements hold:

1. (Comparison Principle): If u is sub-harmonic in a connected bounded domain
Ω, then, u satisfies the strong maximum principle; that is, if 𝜐 is a super-harmonic
function satisfying u ≤ 𝜐 on 𝜕Ω, then either u < 𝜐 in Ω or u ≡ 𝜐 in Ω.

2. (Harmonic Lifting): Suppose u is sub-harmonic in Ω and consider any ball Br ⊂⊂
Ω. Then, we can define ũ in Br via the Poisson integral using the boundary values of
u on 𝜕Br (see (7.27)). That is,

ũ(x) = r2 − |x|2
n𝜔nr ∫

𝜕Br

u(y)|x − y|n d𝜎(y) = ∫
𝜕Br

K(x, y)u(y)d𝜎(y). (7.30)

Thus, ũ is harmonic in Br and ũ = u on 𝜕Br. We define the harmonic lifting of u in
Br by

U(x) =

{
ũ(x) in Br
u(x) in Ω∖B̄r

(7.31)

The function U is sub-harmonic in Ω.
3. Let u1, u2,… uk be sub-harmonic in Ω. Then, maxi ui is sub-harmonic in Ω. For

super-harmonic functions, mini ui is super-harmonic.

Now, given a continuous function g on 𝜕Ω, the idea behindPerron’smethod in the solvability
of Δu = 0 in Ω, u = g on 𝜕Ω is to look for all continuous sub-harmonic functions 𝜐 such
that 𝜐 ≤ g on 𝜕Ω. Such a function 𝜐 is called a sub-function relative to g. Then, hope that the
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maximizing sub-function will, in fact, be harmonic and will satisfy the boundary condition.
Let Sg denote the set of all sub-functions relative to g. The set Sg is non-empty since any
constant function c ≤ inf𝜕Ω g is in Sg. A super harmonic function is a super-function relative
to g if 𝜐 ≥ g on 𝜕Ω. The maximum principle shows that every sub-function is less than or
equal to every super-function relative to g. We have the following theorem:

Theorem 7.27. Let g ∈ C(𝜕Ω) and Sg be as above. Then, the function

u(x) = sup
𝜐∈Sg

𝜐(x) (7.32)

is harmonic in Ω.

Proof If 𝜐 ∈ Sg, then, by maximum principle, 𝜐(x) ≤ sup𝜕Ω g for all x ∈ Ω. Thus, u is
well-defined and u(x) ≤ sup𝜕Ω g, x ∈ Ω. The proof that u harmonic is delicate. Indeed u is
sub-harmonic by Theorem 7.26(3). Let B be an arbitrary ball inΩ, where any 𝜐 ∈ Sg can be
harmonically lifted to B. Let m = inf𝜕Ω g and M = sup𝜕Ω g. Clearly u ≤ M by maximum
principle. Let x1, x2,… be any sequence of points in B.

Claim: There is a sequence 𝜐j in Sg such that m ≤ 𝜐j(x) ≤ M for all x ∈ Ω and 𝜐j(xk)
converges to u(xk) as j → ∞ for all k.

Indeed by the definition of supremum, for each xk, there exists a sequence 𝜐j,k ∈ Sg, such
that 𝜐j,k(xk) converges to u(xk) as j → ∞ for all k. Now define

𝜐j(x) = max
{
𝜐j,1(x),… 𝜐j,j(x)

}
.

Observe that 𝜐j ∈ Sg and 𝜐j,k(x) ≤ �̄�j(x) ≤ u(x). Thus 𝜐j(xk) converges to u(xk). Finally, take
𝜐j = max{𝜐j,m}. Then, 𝜐j ∈ Sg and satisfies the required properties in the claim.

Now consider the lifting Vj of 𝜐j as given in Theorem 7.26. Thus Vj is harmonic in B,
m ≤ Vj(x) ≤ M and Vj(xk) converges to u(xk). Since Vj is bounded, we see that Vj(x)
converges to V(x) for some V that is harmonic in B, m ≤ V(x) ≤ M and V(xk) = u(xk) for
all k. The delicate point is that the harmonic function V may depend on the choice of xk.

For any arbitrary sequence xk as above converging to a point x in B, without loss of
generality, take x1 = x. Then, V(xk) converges to V(x) since V is continuous. Thus u(xk) →
V(x) = V(x1) = u(x1) = u(x). Thus u is continuous. Finally, choosing the sequence {xk} as
a dense subset of B, we conclude that u = V on a dense subset. By continuity of u, we now
conclude that u is harmonic in a ball. Since the ball is arbitrary, we see that u is harmonic
in Ω.

Thus, we have shown the existence of a harmonic function in Ω. To complete the
solvability, we need to study the boundary behavior of u. This requires the regularity of
the boundary that is introduced via the barrier function. It eventually reduces to the local
solvability of sub-harmonic functions at the boundary points, which preserves the negative
sign.
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Definition 7.28. Let 𝜉 ∈ 𝜕Ω. A continuous function w ∈ C(Ω) is called a barrier at 𝜉
relative to Ω if w is sub-harmonic, w < 0 in Ω∖{𝜉} and w(𝜉) = 0.

Though w is defined in Ω, it is actually a local concept. In this direction, we define the
concept of a local barrier.Oncewe get a local barrier, we can always produce a barrier relative
to Ω. A function w is called a local barrier at 𝜉 ∈ 𝜕Ω if there exists a neighborhood N of 𝜉
such thatw is a barrier at 𝜉 relative toΩ∩N. We can, then, construct a barrier at 𝜉 relative to
Ω. Let B be a ball such that 𝜉 ∈ B ⊂⊂ N andm = supN∖B w, then the function w defined by

w(x) =

{
max{m,w}, x ∈ Ω ∩ B
m, x ∈ Ω∖B

is a barrier at 𝜉 relative to Ω.

Definition 7.29 (Barrier Function). A boundary point is called regular if there exists
a barrier at that point. A domain is called regular if all the boundary points are
regular.

Theorem 7.30. Let g ∈ C(𝜕Ω) and u be the harmonic function constructed in Theorem
7.32. Then, u(x) → g(𝜉) as x → 𝜉 at every regular point 𝜉 ∈ 𝜕Ω.

Proof Let M = sup𝜕Ω |g| and w be a barrier at 𝜉. Given 𝜀 > 0, there exists 𝛿 > 0 such that

|w(x)| < 𝜀, |g(x) − g(𝜉)| < 𝜀 if |x − 𝜉| < 𝛿

for x ∈ 𝜕Ω. Further, we can find k > 0 such that

−kw(x) ≥ 2M for |x − 𝜉| ≥ 𝛿.

The function g(𝜉) + 𝜀 − kw is a super-function and g(𝜉) − 𝜀 + kw is a sub-function and
we have

g(𝜉) − 𝜀 + kw(x) ≤ u(x) ≤ g(𝜉) + 𝜀 − kw(x0.

Hence, we have |u(x) − g(𝜉)| ≤ 𝜀 − kw(x).

Thus, u(x) → g(𝜉) as x → 𝜉 since w(𝜉) = 0.

This immediately gives the following existence theorem:

Theorem 7.31 (Existence and Uniqueness). Let Ω be a bounded domain with regular
boundary 𝜕Ω and g ∈ C(𝜕Ω). Then, there exists a unique solution u to the Dirichlet
boundary value problem
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Δu = 0 in Ω
u = g on 𝜕Ω. (7.33)

Conversely, if the classical Dirichlet problem (7.33) is solvable for every continuous g,
then the domain is regular.

Proof Only the converse statement needs to be proved. For 𝜉 ∈ 𝜕Ω, consider the function
g(x) = −|x − 𝜉| that is continuous on 𝜕Ω. Then, the solution of the Dirichlet problem with
this g as the boundary values will be a barrier at 𝜉.

The existence thus reduces to that of the geometric condition, namely local existence of sub-
harmonic functions at the boundary. Therefore, we look for some sufficient conditions on
the domain to guarantee the regularity of its boundary.

Example 7.32. The two-dimensional case n = 2 is simple.

Let z0 ∈ 𝜕Ω and assume without loss of generality that z0 = 0. Now, use the polar
coordinates r, 𝜃 and suppose, there is a neighborhood N of z0 such that a single-valued
branch of 𝜃 is defined on Ω ∩ N. Then, it can be verified that

w(z) = −ℜ
(

1
log z

)
=

log r
log2 r + 𝜃2

, z ≠ 0, w(0) = lim
z→0

w(z)

is a barrier at 0. Here ℜ(z) is the real part of a complex number z.
For example, the boundary value problem in a domain in the plane is always solvable if

its boundary values are accessible from the exterior of Ω by a simple arc. For example, the
unit disk with a slit along an arc.

Example 7.33. In higher dimensions, the Dirichlet problem cannot be solved in such
general domains, for example, domains with very sharp inward directed cusp. A simple
sufficient condition can be given by exterior sphere condition; that is, there exists R > 0
such that for every 𝜉 ∈ 𝜕Ω, a ball B of radius R touches Ω at 𝜉, that is B ∩ Ω = {𝜉}. In
this case,

w(x) =

{
R2−n − |x − 𝜉|2−n, n ≥ 3
log |x−𝜉|

R
, n = 2,

will be a barrier at 𝜉.

7.4 POISSON EQUATION AND NEWTONIAN POTENTIAL

We now consider the general Poisson equation (7.20). Since, we have already studied
the case with f = 0 and arbitrary g via Perron’s method, we need to analyze the case
when f is non-zero. Looking at the representation formula (7.25), the study reduces to
that of understanding the first term on the right-hand side of (7.25). This is equivalent to
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understanding the first term with G replaced by the fundamental solution 𝜙 because G and
𝜙 have the same singularity. The difference between G and 𝜙 is the boundary values and we
have already studied the problem with non-homogeneous boundary data. Thus, given an
integrable function f in Ω, we define the Newtonian potential 𝜐 of f by

𝜐(x) = ∫
Ω

𝜙(x − y)f(y)dy, x ∈ ℝn. (7.34)

Essentially, the study of Laplace equation reduces to the derivation of estimates on 𝜐
and its derivatives. This involves a bit of regularization due to the singularity of 𝜙. We will
only do the bare minimum in this book to establish the unique existence of (7.20). More
details are available in Gilberg and Trudinger (2001). The most important point to be made
at this stage is that the Newtonian potential 𝜐 need not be twice differentiable even for
continuous f. Stated differently, we cannot expect, in general, to get solution ofΔu = f if f is
just continuous. We need higher regularity of f. This is provided by the Hölder continuous
functions. In some sense, Hölder continuity provides a quantitative measure of continuity.
We will soon elaborate on this point.

First, we provide a counter-example to show that the continuity of f is not sufficient to
obtain a classical solution. In this regard, we need the following proposition:

Proposition 7.34 (Removable Singularity). Suppose Ω is an open set in ℝn and u be
harmonic in Ω ⧵ {x0}, x0 ∈ Ω. If u(x) = o(𝜙(x − x0)) as x → x0, where 𝜙 is the
fundamental solution for −Δ in ℝn, then, u may be suitably defined at x0 so that u
becomes harmonic in Ω.

Proof Choose R > 0 so that the closed ball BR(x0) ⊂ Ω. Let 𝜐 be harmonic in BR(x0) with
boundary values 𝜐 = u on 𝜕BR(x0); the existence of 𝜐 follows from (7.29).Then, the function
w = u − 𝜐 is harmonic in BR(x0)⧵{x0} and w = 0 on 𝜕BR(x0).

Claim: w = 0 in BR(x0)⧵{x0}.
Assuming the claim, we define u(x0) = 𝜐(x0). Thus u = 𝜐 in BR(x0). Since 𝜐 is harmonic

in BR(x0), so is u. Thus, u is harmonic in Ω.

Proof of the Claim:We consider the case n ≥ 3 and the arguments are similar for n = 2. For
𝜀 > 0, small, consider the functions z+ and z− defined by4

z±(x) = 𝜀|x − x0|2−n ± w(x).

Then, z± are harmonic in BR(x0)⧵{x0} and

z± = 𝜀R2−n > 0

4If n = 2, use the corresponding fundamental solution.
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on 𝜕BR(x0). By hypothesis u(x) = o(𝜙(x − x0)) as x → x0 and 𝜐 is continuous in BR(x0).
Therefore, on 𝜕B𝜌(x0), we have

z±(x) = 𝜀𝜌2−n ± w = 𝜀𝜌2−n + o(𝜌2−n),

where R > 𝜌 > 0 is sufficiently small. This implies that

z± > 0

on 𝜕B𝜌(x0). Hence by maximum principle, z± > 0 in the annulus R > |x − x0| > 𝜌. Now,
for any x1 ∈ BR(x0)⧵{x0}, choose 𝜌 small enough so that x1 belongs to this annulus. Thus,

|w(x1)| = ±w(x1) < 𝜀|x1 − x0|2−n.
As 𝜀 is arbitrary, we see that w(x1) = 0 and thus w = 0 in BR(x0)⧵{x0}. This proves the

claim and hence the proposition.

Example 7.35. Consider the ball BR(0) in ℝ2, where 0 < R < 1. Define u by

u(x) = u(x1, x2) =
(
x2
1 − x2

2
) (

− log |x|)1∕2 .

Then, u ∈ C∞
(
BR(0)⧵{0}

)
∩ C

(
BR(0)

)
and satisfies

Δu(x) =
x2
2 − x2

1

2|x|2
(

n + 2(
− log |x|)1∕2 + 1

2
(
− log |x|)1∕2

)

in BR(0)⧵{0}. Let us denote the right-hand side by f(x). Then, f can be extended as a
continuous function by defining f(0, 0) = 0. Clearly u, is not a classical solution of
Δu = f in BR(0), as lim|x|→0

ux1x1
= ∞.

Claim: The equation Δ𝜐 = f with f given above, has no classical solution.
If not, assume 𝜐 ∈ C2(BR(0)) is a classical solution, then w = u − 𝜐 is harmonic in

BR(0)⧵{0} with a possible singularity at the origin and w(x) = o(𝜙(x − x0)). In fact w is
bounded. But, then w can be suitably redefined at the origin to make w harmonic in BR(0)
by the above proposition. This shows that u = w − 𝜐 ∈ C2(BR(0)) that is a contradiction.

But if we assume C1 smoothness on f, then the existence of the solution is easy to prove
and is given in the following theorem:
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Theorem 7.36. Let f ∈ C1(Ω) and define

𝜐(x) = ∫
Ω

𝜙(x − y)f(y)dy,

where 𝜙 is the fundamental solution for −Δ. Then, 𝜐 ∈ C1(Ω) ∩ C2(Ω) and satisfies
−Δ𝜐 = f in Ω.

Proof We have

𝜕𝜐
𝜕xi

(x) = ∫
Ω

𝜕𝜙
𝜕xi

(x − y)f(y) dy = −∫
Ω

𝜕𝜙
𝜕yi

(x − y)f(y) dy

= ∫
Ω

𝜙(x − y)
𝜕f
𝜕yi

(y) dy − ∫
𝜕Ω

𝜙(x − y)f(y)𝜈i(y) d𝜎(y).

Since 𝜕f
𝜕xi

∈ C(Ω), the first term on the right-hand side of the above expression is
differentiable. The second integral on the right-hand side is known as single-layer potential
that is inC∞(ℝn⧵𝜕Ω) and it is harmonic inℝn⧵𝜕Ω. See Exercise 36.Thus 𝜕𝜐

𝜕xi
is differentiable

and hence 𝜐 ∈ C1(Ω) ∩ C2(Ω). To see 𝜐 satisfies the Poisson equation, let 𝜓 ∈ C2
c (Ω). Then,

we know that 𝜙 ∗ 𝜓 satisfies −Δ(𝜙 ∗ 𝜓) = 𝜓 , that is, − ∫Ω 𝜙(x − y)Δ𝜓(y)dy = 𝜓(x) (see
Theorem 7.2). Now applying Green’s formula to 𝜐 and 𝜓 , we get

∫
Ω

Δ𝜐(x)𝜓(x)dx = ∫
Ω

Δ𝜓(x)𝜐(x)dx

= ∫
Ω

Δ𝜓(x)
⎛⎜⎜⎝∫Ω 𝜙(x − y)f(y)dy

⎞⎟⎟⎠ dx
= −∫

Ω

f(y)
⎛⎜⎜⎝∫Ω 𝜙(x − y)Δ𝜓(x)dx

⎞⎟⎟⎠ dy, by Fubini’s Theorem

= −∫
Ω

f(y)𝜓(y)dy.

Since 𝜓 is arbitrary, this shows that −Δ𝜐 = f in Ω. This completes the proof.
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We remark that the assumption f ∈ C1(Ω) is restrictive and on the other hand, continuity
of f is not sufficient for existence. Thus, we look for a condition that is stronger than
continuity, but weaker than differentiability. This is provided by the notion of Hölder
continuity that is the topic of discussion in the section that follows.

7.4.1 Hölder Continuous Functions

Let x0 ∈ Ω, where Ω is a bounded domain in ℝn and 0 < 𝛼 < 1.

Definition 7.37 (Hölder Continuity). A function f ∶ Ω → ℝ is said to beHölder continuous
of order 𝛼 at x0 if there exists a constant C > 0 such that5

|f(x) − f(x0)| ≤ C|x − x0|𝛼 (7.35)

for all x ∈ Ω. If 𝛼 = 1 in (7.35), then the function f is said to be Lipschitz continuous.

The standard example is f(x) = |x|𝛼 , 0 < 𝛼 < 1 that is Hölder continuous of order 𝛼.

Definition 7.38 (Uniform and Local Hölder continuity). A function f ∶ Ω → ℝ is said to
be uniformly Hölder continuous of order 𝛼 inΩ if there exists a constantC > 0 such that

|f(x) − f(y)| ≤ C|x − y|𝛼 (7.36)

for all x, y ∈ Ω. The function f is locally Hölder continuous if f is uniformly Hölder
continuous in every compact subset of Ω. When 𝛼 = 1, the function f is said to
be uniformly Lipschitz continuous. It is also clear that a uniformly Hölder continuous
function is also uniformly continuous.

We denote by C0,𝛼(Ω) the space of all uniformly Hölder continuous functions of order 𝛼
in Ω and define

‖f‖0,𝛼 = ‖f‖0 + sup
x,y∈Ω, x≠y

|f(x) − f(y)||x − y|𝛼 , (7.37)

for f ∈ C0,𝛼(Ω), where ‖f‖0 = supx∈Ω |f(x)| is the sup-norm. It is not difficult to verify that
C0,𝛼(Ω) is a Banach space equipped with the norm (7.37). We can also define the spaces
Ck,𝛼(Ω), where k ∈ ℕ as the space of all Ck(Ω) functions such that D𝛽 f ∈ C0,𝛼(Ω) for all|𝛽| = k and the norm is given by

‖f‖k,𝛼 = ‖f‖k + ∑
|𝛽|=k ‖D𝛽 f‖0,𝛼 (7.38)

5If 𝛼 > 1 and satisfies (7.35), it is an interesting exercise to show that f is a constant function.
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with ‖f‖k = supx∈Ω,|𝛼|≤k |D𝛼f(x)|. We now prove the following result that paves the way for
solvability of the Poisson equation.

Proposition 7.39. Let Ω be a bounded domain in ℝn and f ∶ Ω → ℝ be bounded and
integrable. Consider the Newtonian potential 𝜐 defined by (7.34).Then 𝜐 ∈ C1(ℝn) and
for x ∈ Ω, we have

𝜕𝜐
𝜕xi

(x) = ∫
Ω

𝜕𝜙
𝜕xi

(x − y)f(y) dy. (7.39)

Proof Denote the integral on the right-hand side of (7.39) bywi(x). Recall that 𝜕𝜙
𝜕xi

is locally

integrable and satisfies ||| 𝜕𝜙𝜕xi ||| ≤ 1
𝜔n|x−y|n−1 . It follows that the integral is well-defined, that is|wi(x)| < ∞ for x ∈ Ω. To show that 𝜐 is differentiable and the equality in (7.39) holds, we

proceed as follows: Choose h ∈ C1(ℝ) be such that h(t) = 0 for t ≤ 1; h(t) = 1 for t ≥ 2;
0 ≤ h(t) ≤ 1 and 0 ≤ h ′(t) ≤ a for some a > 0. For 𝜀 > 0, define h𝜀(x) = h (|x|∕𝜀) and let

𝜐𝜀(x) = ∫
Ω

𝜙(x − y)h𝜀(x − y)f(y)dy.

Note that the integration domain is actually Ω ∩ {y ∶ |x − y| > 𝜀} and the integrand is
smooth in this domain. Thus, we can differentiate under the integral sign to obtain

𝜕𝜐𝜀
𝜕xi

(x) = ∫
Ω

𝜕
𝜕xi

(
h𝜀(x − y)𝜙(x − y)

)
f(y)dy.

Now, compute

wi(x) −
𝜕𝜐𝜀
𝜕xi

(x) = ∫|x−y|≤2𝜀

𝜕
𝜕xi

([
1 − h𝜀(x − y)

]
𝜙(x − y)

)
f(y)dy

= ∫|x−y|≤2𝜀

(
−
𝜕h𝜀
𝜕xi

(x − y)𝜙(x − y) +
[
1 − h𝜀(x − y)

] 𝜕𝜙
𝜕xi

)
f(y)dy

Now use the estimates on h, h ′ and f to get

||||wi(x) −
𝜕𝜐𝜀
𝜕xi

(x)
|||| ≤ ‖f‖0 ∫|x−y|≤2𝜀

(
a
𝜀
|𝜙(x − y)| + ||||𝜕𝜙𝜕xi (x − y)

||||
)
dy

≤
{

C𝜀 if n > 2

C𝜀(1 + | log a𝜀|) for n = 2.
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The last estimate follows from the estimates on the fundamental solution and its derivatives.
Hence, 𝜐𝜀 → 𝜐 and 𝜕𝜐𝜀

𝜕xi
→ wi uniformly on compact subsets of ℝn. Thus 𝜐 ∈ C1(ℝn) and

𝜕𝜐
𝜕xi

= wi. This completes the proof of the proposition.

Why Hölder Continuity? Heuristic Argument: Now we also need to consider the second
derivatives of the fundamental solution and the corresponding integral. More precisely, we
need to consider the integral of the form

∫
Ω

𝜕2𝜙
𝜕xi𝜕xj

(x − y)f(y)dy.

Recall that for fixed x, 𝜕2𝜙
𝜕xi𝜕xj

(x − y) is not locally integrable and hence the above integral
is not meaningful. However, the second derivative satisfies the estimate

||||| 𝜕2𝜙
𝜕xi𝜕xj

(x − y)
||||| ≤ 1

𝜔n|x − y|n .
If we have a slightly less singularity of the form 1|x−y|n−𝛼 with 𝛼 > 0 on the right-hand

side of the above expression, then there is local integrability. This is the 𝛼 we are looking for,
through the Hölder continuity of f by considering an expression of the form

𝜕2𝜙
𝜕xi𝜕xj

(x − y)(f(y) − f(x)).

Suppose f is locally Hölder continuous of order 𝛼, 0 < 𝛼 < 1. Then

|f(x) − f(y)| ≤ C|x − y|𝛼
for all x, y ∈ Ω0 ⊂⊂ Ω. Thus, for x fixed, we get

||||| 𝜕2𝜙
𝜕xi𝜕xj

(x − y)(f(y) − f(x))
||||| ≤ C

𝜔n|x − y|n−𝛼 .
That is, 𝜕2𝜙

𝜕xi𝜕xj
(x − y)(f(y) − f(x)) is locally integrable. Thus

∫
Ω0

𝜕2𝜙
𝜕xi𝜕xj

(x − y)(f(y) − f(x)) dy
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is well-defined. By incorporating a boundary integral, we now define the function uij for all
i, j = 1,… n, by

uij(x) = ∫
BR(x)

𝜕2𝜙
𝜕xi𝜕xj

(x − y)(f(y) − f(x)) dy

− f(x) ∫
𝜕BR(x)

𝜕𝜙
𝜕xi

(x − y)𝜈j(y) d𝜎(y) (7.40)

which is well-defined for any R > 0 such that BR(x) ⊂⊂ Ω. Now, we can state the main
theorem.

Theorem 7.40. Let f be bounded and locally Hölder continuous of order 𝛼 ≤ 1 in Ω and 𝜐
be the Newtonian potential defined as in (7.34).Then, 𝜐 ∈ C2(Ω) and satisfies−Δ𝜐 = f.
In fact, for any x ∈ Ω, we have

𝜕2𝜐
𝜕xi𝜕xj

(x) = uij(x). (7.41)

Here uij is defined as in (7.40) with R = 2𝜀, with B2𝜀(x) ⊂⊂ Ω.

Proof By (7.39), we have wi(x) =
𝜕𝜐
𝜕xi
(x). With h as in Proposition 7.39, let

wi,𝜀(x) = ∫
Ω

𝜕𝜙
𝜕xi

(x − y)h𝜀(x − y)f(y) dy.

Then, wi,𝜀 ∈ C1(Ω) and for 𝜀 small so that B2𝜀(x) ⊂⊂ Ω, we get

𝜕wi,𝜀

𝜕xj
(x) = ∫

Ω

𝜕
𝜕xj

(
𝜕𝜙
𝜕xi

(x − y)h𝜀(x − y)
)
f(y) dy

= ∫
B2𝜀(x)

𝜕
𝜕xj

(
𝜕𝜙
𝜕xi

(x − y)h𝜀(x − y)
)
(f(y) − f(x)) dy

+ f(x) ∫
B2𝜀(x)

𝜕
𝜕xj

(
𝜕𝜙
𝜕xi

(x − y)h𝜀(x − y)
)

dy.
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By divergence theorem, we have

𝜕wi,𝜀

𝜕xj
(x) = ∫

B2𝜀(x)

𝜕
𝜕xj

(
𝜕𝜙
𝜕xi

(x − y)h𝜀(x − y)
)
(f(y) − f(x)) dy

− f(x) ∫
𝜕B2𝜀(x)

𝜕𝜙
𝜕xi

(x − y)𝜈j(y) d𝜎(y).

Thus, we get

uij(x) −
𝜕wi,𝜀

𝜕xj
(x) = ∫|x−y|≤2𝜀

𝜕
𝜕xj

([
1 − h𝜀(x − y)

] 𝜕𝜙
𝜕xi

(x − y)
)
(f(y) − f(x)) dy.

Now, use the Hölder continuity of f and estimates on the fundamental solution and its
derivatives to obtain the estimate|||||uij(x) − 𝜕wi,𝜀

𝜕xj
(x)

||||| ≤ C𝜀𝛼‖f‖0,𝛼

for some constant C > 0 and 2𝜀 < d(x, 𝜕Ω). Hence 𝜕wi,𝜀

𝜕xj
converges to uij uniformly on

compact subsets of Ω. This together with the fact that wi,𝜀 converges to 𝜕𝜐
𝜕xi

, we arrive at

uij =
𝜕2𝜐

𝜕xj𝜕xi
. Using the fact that 𝜙 is harmonic except at x = y (this is taken care of by the

factor f(x) − f(y)), taking j = i in (7.41) and summing over i, we get

Δ𝜐 =
n∑
i=1

uii = −f(x) ∫
𝜕B2𝜀

𝜕𝜙
𝜕𝜈

d𝜎(y) = −f(x).

This completes the proof.

Now, to solve the Poisson equation (7.20), consider w = u− 𝜐, where 𝜐 is the Newtonian
potential. Thus, u solves (7.20) if and only if w solves the harmonic equation with the
boundary data w = g − 𝜐 on 𝜕Ω. This proves the existence and uniqueness of the Poisson
equation. We state this in the following theorem:

Theorem 7.41 (Existence and Uniqueness). Let Ω be a regular bounded domain. Let f be
bounded and locally Hölder continuous of order 𝛼 ∈ (0, 1] inΩ and g is continuous on
the boundary 𝜕Ω. Then the Poisson equation (7.20) has a unique classical solution.
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7.5 HILBERT SPACE METHOD: WEAK SOLUTIONS

In Chapter 3 on first-order equations, we have seen that the conservation laws that do not
admit smooth solutions even if we start with smooth initial data. We have observed the
development of discontinuities or shocks as time evolves. This may be due to the physical
nature of the problem. Thus, the lack of existence of smooth solutions does not give us
freedom to neglect the problem, rather it is revealing interesting phenomena of physical
problem via non-smooth functions as solutions. But our basic calculus will not allow us to
differentiate non-smooth functions and hence we need to interpret non-smooth functions,
but physically relevant, as solutions to a given PDE in a different sense. In fact, this is true
with many PDE and we need to have new theory or theories. Though this discussion goes
beyond the scope of the present book, we nevertheless, would like to present a few basic
concepts of this theory in the context of Laplace operator.

Here, the basic step in finding the solution of the Dirichlet problem is that of putting
it as an abstract problem in a suitable Hilbert space of functions. Then, use the powerful
functional theoretic approach and the general available theorems. The Hilbert space would
be a much bigger class than the space of smooth functions. This will immediately create
the difficulty of understanding the concept of differentiation in such a class of functions. In
this modern approach, we need to understand/introduce a weak notion of differentiability
and this is achieved after the introduction of generalized functions/distributions.TheHilbert
spaces introduced initially are known as Sobolev spaces.Themethod consists of the following
steps:

i. Introduce appropriate Hilbert space.
ii. Give a suitable formulation of PDE so that the Hilbert space theory can be applied;

this in literature is known as weak formulation.
iii. A solution to the weak formulation is known as weak solution; make sure that a weak

solution that is smooth is indeed a classical solution and conversely, a classical solution
is a weak solution as well.

iv. Prove the existence and uniqueness of a weak solution via the Hilbert space theory.
v. Prove then that the weak solution, thus obtained is smooth/regular and hence a

classical solution by (iii). These are known as regularity results.

Even if the regularity results are unavailable, the weak solutions can be quite physical. In
fact, in many physical situations the weak solutions are the actual physical solutions and we
cannot expect the physical quantities to be always smooth. In such situations, the PDE may
not be the right physical modelling and the PDE is the Euler equation arising from other
problems like optimization with the additional assumption that the solution is smooth.
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To elaborate further, consider an applied force f in an elastic body Ω and if 𝜐 is
the unknown displacement vector, associate the corresponding energy functional (for
simplicity, we take n = 2):

F(𝜐) = 1
2 ∫

Ω

[(𝜕𝜐
𝜕x

)2
+
(
𝜕𝜐
𝜕y

)2
]
− ∫

Ω

f𝜐

= 1
2 ∫

Ω

∇𝜐 ⋅ ∇𝜐 − ∫
Ω

f𝜐

(7.42)

At an equilibrium state, we look for a solution u that minimizes the energy functional.
Thus, we consider the following problem: find u such that

F(u) = min
𝜐

F(𝜐). (7.43)

Recall an elementary result from analysis. If g ∶ [a, b] → 𝕀ℝ isC1, then at extremal points,
we know that g ′ = 0. In (7.43), we are in fact looking for extremal (minimal) points, but the
situation is that u is in a function space that is infinite-dimensional. The one-dimensional
situation has a beautiful counterpart and can be achieved (with appropriate delicate analysis)
similar results via the concept of Fréchét derivative of functions defined in a normed linear
space.

Indeed, the problem (7.43) is a little vague as we have not specified theminimizing space.
We have no intention to get into the finer details, but the aim is to project certain ideas in
themodern theory of PDEs. Let us take the zero boundary condition and consider the space

C1
0 = {𝜐 ∈ C1(Ω) ∶ 𝜐 = 0 on 𝜕Ω},

where we are looking for solutions. In other words, we minimize F over C1
0. The space is

reasonable as we need differentiability of u to define F. Assuming u ∈ C1
0 is a solution to

(7.43), we can derive the following necessary condition: Take an arbitrary 𝜐 ∈ C1
0, then it is

easy to see that

F ′(u)𝜐 ≡ lim
t→0

F(u + t𝜐) − F(u)
t

= ∫
Ω

∇u ⋅ ∇𝜐 − ∫
Ω

f𝜐. (7.44)
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In this novice approach, solving (7.43) reduces to that of finding extremal points. That is,
we look for u ∈ C1

0 such that F ′(u) = 0 in the dual space. Equivalently

⎧⎪⎨⎪⎩
find u ∈ C1

0(Ω) such that

∫
Ω

∇u.∇𝜐 − ∫
Ω

f𝜐 = 0 for all 𝜐 ∈ C1
0(Ω).

(7.45)

Connection to Dirichlet Problem: Recall the Poisson problem. Find u ∈ C2(Ω) ∩ C(Ω)
such that {

−Δu = f in Ω
u = 0 on 𝜕Ω. (7.46)

Take 𝜐 ∈ C1
0(Ω), multiply (7.46) by 𝜐 and integrate by parts, we can easily get

∫
Ω

∇u ⋅ ∇𝜐 = ∫
Ω

f𝜐, for all 𝜐 ∈ C1
0(Ω).

Thus a classical solution of (7.46) indeed satisfies (7.45). A solution to the problem
(7.45) is called a weak solution of the problem (7.46). This is justified by the following
converse:

Conversely, if u is a weak solution and suppose that u is C2(Ω), f ∈ C(Ω). Then, one can
reverse the process of integration by parts in the above equation to get

∫
Ω

(−Δu − f)𝜐 = 0 for all 𝜐 ∈ C1
0(Ω).

Since the above equation is true for all 𝜐, we deduce that −Δu − f = 0. Hence u is a
classical solution.

Understanding the Problem (7.45): Recall the Cauchy–Schwarz inequality: if g and h are
square integrable functions, then, the product gh is integrable and

∫
Ω

|gh| ≤ ⎛⎜⎜⎝∫Ω |g|2⎞⎟⎟⎠
1
2 ⎛⎜⎜⎝∫Ω |h|2⎞⎟⎟⎠

1
2

= ‖‖g‖‖L2 ‖h‖L2 .

Here ‖h‖L2 is the L2 norm of the function h. Thus, the terms in (7.45) are all well-defined
if u, 𝜐, f, 𝜕u

𝜕xi
, 𝜕𝜐
𝜕xi

are all square integrable. That is, they are in L2(Ω). This is true since, u, 𝜐 ∈

C1
0(Ω). The integral formulation (7.45) is called the weak formulation of the problem (7.46).
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The existence of the weak formulation can be obtained using the Riesz representation
theorem; namely, for every bounded linear functional L ∶ H ⟶ 𝕀ℝ, there exists a unique
u ∈ H such that ⟨u, 𝜐⟩ = L(𝜐), for all 𝜐 ∈ H, where H is a Hilbert space with the inner
product ⟨⋅, ⋅⟩. We have the following situation: find u such that

∫
Ω

∇u ⋅ ∇𝜐 = ∫
Ω

f𝜐

for all 𝜐 ∈ C1
0(Ω).To apply Riesz representation theorem, left-hand side has to be interpreted

as an inner product in C1
0(Ω). If it is complete, then show that right-hand side defines

a bounded linear functional. Indeed, left-hand side is an inner product, but the major
difficulty is that C1

0(Ω) is not complete under this inner product. We have to take the
completion X of C1

0(Ω) with respect to the inner product

⟨u, 𝜐⟩ ∶= ∫
Ω

∇u ⋅ ∇𝜐 = ∫
Ω

n∑
i=1

𝜕u
𝜕xi

𝜕𝜐
𝜕xi

and the norm is given by ‖𝜐‖X = ⟨𝜐, 𝜐⟩ 1
2 = ‖∇𝜐‖L2 . But the biggest question is: what is X?

Recall that the completion is defined in an abstract way via equivalence classes of Cauchy
sequences and hence the elements in X are equivalence classes. But the bigger picture tells
us that X can be identified with a class of functions, but they need not be differentiable and
we are in a very delicate situation. This is the modern theory of distributions and Sobolev
spaces: In a weak sense of differentiation, we can see that

X =
{
𝜐 ∈ L2(Ω) ∶ 𝜕𝜐

𝜕xi
∈ L2(Ω), 1 ≤ i ≤ n, 𝜐 = 0 on 𝜕Ω

}
. (7.47)

The second step is to see that the linear functional L ∶ X ⟶ 𝕀ℝ defined by L(𝜐) = ∫ f𝜐
is bounded. We have |L(𝜐)| ≤ ‖‖f‖‖L2(Ω) ‖𝜐‖L2(Ω) .

If we can show that

‖𝜐‖L2(Ω) ≤ C ‖𝜐‖X = ‖∇𝜐‖L2(Ω) , for all 𝜐 ∈ X (7.48)

for some constant C > 0, we are in the setup of Riesz representation theorem; that is, there
exists u ∈ X such that

∫
Ω

∇u.∇𝜐 = ∫
Ω

f𝜐, for all 𝜐 ∈ X. (7.49)
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Poincarè’s Inequality: There is a constant C > 0 such that

‖𝜐‖L2 ≤ C ‖∇𝜐‖L2 ,

for all 𝜐 ∈ C1
0(Ω).

The proof is simple. Let n = 2 and Ω ⊂ K ∶= [−a, a] × [−a, a] for some a > 0 as Ω is
bounded. For, 𝜐 ∈ C1

0(Ω), extend 𝜐 to K by zero outside Ω. Then,

𝜐(x, y) = ∫
x

−a

𝜕𝜐
𝜕t

(t, y)dt.

Apply Cauchy–Schwarz inequality, square it and integrate both sides with respect to x
and y to show that ‖𝜐‖L2 ≤ 2a ‖∇𝜐‖L2 .

The proof is similar in any dimension.
Thus, in the Hilbert space approach, we have established the unique existence of a weak

solution. To prove the weak solution is a classical solution, we need to establish smoothness
of the solution and this is achieved by regularity results. In general, regularity may not be
available and all these results can be part of a second course in PDE. Finally, we end this
section by remarking that there are other concepts of weak solutions like viscosity solution,
transposition solution, and so on.

However, we should bear in mind that the Dirichlet problem cannot be solved for all
continuous boundary values by the Hilbert space approach.

Example 7.42. Let Ω = B1(0) be the unit ball in ℝ2 and Δu = 0 in Ω and u = g on 𝜕Ω.
Introduce polar coordinates r, 𝜃. Let g(𝜃) =

∑∞
0 (ak cos k𝜃 + bk sin k𝜃). Then, u(r, 𝜃) =∑∞

0 (ak cos k𝜃 + bk sin k𝜃)rk, r < 1. Now ∫Ω |∇u|2 = 𝜋
∑∞

0 k(a2
k + b2

k). In particular, if
we take g(𝜃) =

∑∞
1

cos(k3𝜃)
k2 , then, ∫Ω |∇u|2 = +∞. Thus, the energy term that defines

the norm in the Hilbert space is infinite.

7.5.1 Fourier Method

Here, we consider the Laplace equation in two dimensions in either rectangular or
circular domains and discuss the representation of its solution satisfying a given boundary
condition, in Fourier series. In this method, also known as the method of separation of
variables, the Laplace equation is reduced to a couple of ODE.

Denoting the independent variables by x, y, we consider the Laplace equation

Δu = uxx + uyy = 0. (7.50)
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In the proposed method, the solution u is sought in the form

u(x, y) = X(x)Y(y).

Using (7.50), we then see that
X ′ ′

X
= −Y ′ ′

Y
,

and thus the terms on the two sides must be a constant. The boundary condition that will
be imposed on u now transfers to both X and Y and makes the possible constants to form
a countable set, say {𝜆n}. Since we are interested in non-trivial solutions X and Y, the
boundary condition further imposes sign condition on these {𝜆n}. Denoting the solutions
corresponding to 𝜆n by Xn and Yn, we then obtain the solution formally as

u(x, y) =
∑
n
Xn(x)Yn(y),

using the linear superposition principle.Wenowdiscuss themethod in detail by considering
different boundary conditions.

1. Consider the Laplace equation (7.50) in a strip

{(x, y) ∶ x ∈ [0, a], y ∈ [0,∞)}, a > 0

with boundary conditions:

u(0, y) = u(a, y) = 0, 0 ≤ y < ∞

u(x, 0) = A
(
1 − x

a

)
, lim
y→∞

u(x, y) = 0, 0 ≤ x ≤ a. (7.51)

If we put u(x, y) = X(x)Y(y), then the boundary conditions (7.51) imply that X(0) =
X(a) = 0 and limy→∞ Y(y) = 0. We have X ′ ′

X
= −Y ′ ′

Y
= 𝜆, where 𝜆 is a constant.

Therefore,
X ′ ′ − 𝜆X = 0
Y ′ ′ + 𝜆Y = 0. (7.52)

Since X(0) = X(a) = 0, it is straightforward to check that a non-zero solution X is
possible only if 𝜆 < 0. In this case, the general solution is given by

X(x) = c1 cos(
√
−𝜆x) + c2 sin(

√
−𝜆x),

for arbitrary constants c1 and c2. The boundary condition X(0) = 0 gives c1 = 0. And,
for c2 ≠ 0, the other boundary condition implies that 𝜆 = −n2𝜋2

a2 , for n = 1, 2,….
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Thus, we get

Xn(x) = cn sin
(n𝜋x

a

)
and Yn(x) = dn exp

(
−
n𝜋y
a

)
as the relevant solutions, where cn and dn are appropriate constants. Thus, we have

u(x, y) =
∞∑
n=1

cndnXn(x)Yn(y) =
∞∑
n=1

cndn exp
(
−
n𝜋y
a

)
sin

(n𝜋x
a

)
.

Using the boundary condition u(x, 0) = A
(
1 − x

a

)
, we get

A
(
1 − x

a

)
=

∞∑
n=1

cndn sin
(n𝜋x

a

)
.

Now making the function A
(
1 − x

a

)
as an odd periodic function of period 2a and

expanding it in a Fourier sine series, we may choose cn = 2A
n𝜋

and dn = 1. Thus, the
required solution is given by

u(x, y) = 2A
𝜋

∞∑
n=1

1
n

exp
(
−
n𝜋y
a

)
sin

(n𝜋x
a

)
.

2. Consider the Laplace equation (7.50) in an annulus

{(x, y) ∶ R2
1 < x2 + y2 < R2

2}

with boundary conditions:

𝜕u
𝜕r

= u1 for r = R1

u = u2 for r = R2.
(7.53)

Here 0 < R1 < R2 and u1, u2 are given constants; r2 = x2 + y2.
Write equation (7.50) in polar co-ordinates (r, 𝜃); x = r cos 𝜃 and y = r sin 𝜃:

𝜕2u
𝜕r2

+ 1
r
𝜕u
𝜕r

+ 1
r2
𝜕2u
𝜕𝜃2 = 0 (7.54)

or

r2 𝜕
2u
𝜕r2

+ r𝜕u
𝜕r

+ 𝜕2u
𝜕𝜃2 = 0.
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We seek the solution in the separation of variables form:

u(r, 𝜃) = R(r)Θ(𝜃).

Proceeding as in the above example, we find that

r2Θ(𝜃)R ′ ′(r) + rΘ(𝜃)R ′(r) + Θ ′ ′(𝜃)R(r) = 0

or
Θ ′ ′(𝜃)
Θ(𝜃)

= −r2R ′ ′(r) + rR ′(r)
R(r)

= 𝜆,

where 𝜆 is a constant. The boundary conditions (7.53) imply that Θ is a constant
function and thus, u is a radial function. We may take Θ ≡ 1. Using the boundary
conditions (7.53), we see that R satisfies the boundary conditions

R ′(r) = u1 for r = R1 and R(r) = u2 for r = R2.

Thus, it follows that 𝜆 = 0 and R satisfies the second-order equation

r2R ′ ′(r) + rR ′(r) = 0.

Thegeneral solution of this equation is given by R(r) = c1+c2 log r, r > 0 for arbitrary
constants c1 and c2. Using the given boundary conditions, we can easily determine the
constants c1 and c2, and the solution is given by

u(x, y) = u2 − u1R1 log
(
R2

r

)
, for R2

1 < r2 = x2 + y2 < R2
2.

7.6 NOTES

1. Well-Posedness and Ill-Posedness: From applications, we understand that a PDE is
always attached with a set of conditions in the form of boundary and/or initial conditions
or both. The well-posedness to be defined soon, has to be understood in this setup. The
initial or boundary conditions arise from physical situations andmathematically, it is not an
easy task to give proper or appropriate conditions so that the problem is well-posed. Some
type of conditions may be suitable for certain class of equations, whereas the same set of
conditions may not work for other type of equations. In this direction, Jacques Hadamard
(1902) proposed the following notion of well-posedness:

Definition 7.43. We say a PDE together with a set of conditions known as data from a
certain class Y is said to be well-posed in a class X in the sense of Hadamard if the PDE
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has a unique solution in X satisfying the data and the solution depends continuously
on the data. Here X and Ymay be provided with suitable topologies. Problems that are
not well-posed in the sense of Hadamard are termed as ill-posed.

We remark that the last condition of continuous dependence is related to physical problems.
Usually PDE are modelled by experimental data and physical laws. They are prone to errors
and generally the data will also be an approximation. Thus, the solution obtained will
be for an approximate data and we should like to know the solution obtained is also an
approximation in the relevant topologies.The continuous dependence guarantees it. Inverse
problems are often ill-posed. For example, the backward heat equation.

In Chapter 3, we have studied the initial value problem (IVP) for general first order
equations, where the data, namely the initial values defined on a non-characteristic hyper-
surface. In the present chapter on Poisson and Laplace equations (more generally, elliptic
equations), we have studied the problem with boundary data. We have indeed established
the well-posedness of the boundary value problem, of course with the smoothness
assumption on the domain with appropriate spaces like Hölder spaces. We now establish
through an example that the IVP for Δ is ill-posed.

Example 7.44 (Ill-Posedness of IVP for Δ). Consider the problem

𝜕2u
𝜕x2

1
+ 𝜕2u

𝜕x2
2
= 0

with the initial data

u(x1, 0) = 0, 𝜕u
𝜕x2

(x1, 0) = ke−
√
k sin(kx1),

where k is a positive integer. Since the operator is elliptic, the x1-axis is indeed non-
characteristic and the solution is given by

u(x1, x2) = e−
√
k sin(kx1) sinh(kx2).

Now, observe that the Cauchy data 𝜕u
𝜕x2

(x1, 0) = ke−
√
k sin(kx1) → 0 as k → ∞, whereas,

for any x2 ≠ 0, we see that the solution u(x1, x2) → ∞ as k → ∞. That is the solution
blows-up showing that it does not depend continuously on the data.

2. Schauder Theory: The study in the present chapter on Poisson and Laplace equations,
known as potential theory, is the natural starting point for the study of general second-order
uniformly elliptic operators. This classical study is termed as Schauder theory. Then, we
can of course go on to study non-uniformly elliptic operators as well. One of the classical
example is the minimal surface equation given by
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n∑
i,j=1

Dj

( Diu
(1 + |Du|2)1∕2

)
= 0,

which is a quasilinear non-uniformly elliptic operator. The Schauder theory essentially is
an extension of the potential theory. One of the important observation is that the equation
with Hölder coefficients can be locally treated as a perturbation of equations with constant
coefficients by fixing the leading coefficient at a single value.Thus, as far as the highest order
terms are concerned it is like a Laplacian locally. This allows us to derive the local (interior)
estimates of the form

‖u‖C2,𝛼(Ω ′) ≤ C
(
sup
Ω

|u| + ‖f‖C0,𝛼(Ω)

)
as discussed in the beginning of the chapter. In addition to the interior estimates, we also
require to obtain boundary and global estimates. We will not pursue this matter further
in this book and the interested reader can refer to Gilberg and Trudinger (2001) and the
references therein. The modern and general non-classical approach is based on suitable
Hilbert spaces andwe have briefly discussed this in Section 7.5. In thismethodology, general
data and coefficients can also be treated. This requires much more machinery like modern
functional analysis, distribution theory, Sobolev spaces and so on. (see Brezis, 2001; Evans,
1998; Kesavan, 1989).

7.7 EXERCISES

1. Let u, 𝜐 ∈ C2(Ω). Using the divergence theorem, prove the following identities:

a. ∫Ω Δu = ∫𝜕Ω 𝜕u
𝜕𝜈
.

b. ∫Ω 𝜐Δu = − ∫Ω ∇u ⋅ ∇𝜐 + ∫𝜕Ω 𝜕u
𝜕𝜈
𝜐.

c. ∫Ω(𝜐Δu − uΔ) = ∫𝜕Ω
(

𝜕u
𝜕𝜈
𝜐 − u 𝜕𝜐

𝜕𝜈

)
.

Here, 𝜕u
𝜕𝜈

= ∇u ⋅ 𝜈 is the normal derivative and ∇ =
( 𝜕
𝜕x1

,⋯ 𝜕
𝜕xn

)
is the grad operator. The

above are known as Green’s identities.
2. For the case n = 2, write the Laplace operator Δ in polar coordinates.
3. (Spherical Symmetry) Let R is a rotation matrix, that is RRt = I and u be harmonic in ℝn.

Define 𝜐 by 𝜐(x) = u(Rx). Show that 𝜐 is also harmonic in ℝn.
4. Let 𝜐(r) = u(|x|) where r = |x|. Show that

Δu ≡ �̈�(r) + n − 1
r

�̇�.

Solve the equation to obtain the fundamental solution 𝜙.
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5. Let 𝜙 be the fundamental solution of −Δ. Show that there exists a constant C > 0 such that

|D𝜙(x)| ≤ C|x|n−1 , |D2𝜙(x)| ≤ C|x|n , x ≠ 0.

6. Prove Proposition 7.1.
7. Let f ∈ C2

c (ℝ
n) and 𝜙 be the fundamental solution of −Δ. Define I𝜀 = ∫B𝜀(0)

𝜙(y)(Δf)
(x − y) dy 𝜀 > 0. Show that there exists a constant C > 0 such that

||I𝜀|| ≤ ⎧⎪⎨⎪⎩
C𝜀2| log 𝜀|, if n = 2

C𝜀2 if n ≥ 3.

Also compute 𝜕𝜙
𝜕𝜈

on 𝜕B𝜀(0).
8. Let Ω be a domain in ℝ2 symmetric about the x-axis and let Ω+ = {(x, y) ∶ y > 0} be the

upper part of Ω. Assume u ∈ C(Ω+) is harmonic in Ω+ with u = 0 on 𝜕Ω+ ∩ {y = 0}.
Define for (x, y) ∈ Ω,

𝜐(x, y) =

{
u(x, y) if y ≥ 0,
−u(x,−y) if y < 0.

Show that 𝜐 is harmonic.
9. Let u ∈ C2(Ω) ∩ C0(Ω) be a solution of

Δu +
n∑

k=1
ak(x)

𝜕u
𝜕xk

+ c(x)u = 0 in Ω

with c(x) < 0 in Ω, u = 0 on 𝜕Ω and ak’s are smooth. Show that u ≡ 0.
10. Consider the PDE, −Δu = 𝜆u in Ω, u = 0 on 𝜕Ω where 𝜆 is a scalar and Ω is a bounded

open set. If 𝜆 ≤ 0, prove that u ≡ 0.
11. Let u ∈ C2(B1(0)) solves −Δu = f in B1(0), u = 0 on 𝜕B1(0). Show that there exists C > 0

such that

max
x∈B1(0)

|u(x)| ≤ C max
x∈B1(0)

|f|.
(Hint: Consider the problem with f = 1 and f = M where M = maxx∈B1(0) |f|.)
More generally, if u solves −Δu = f in B1(0), u = g on 𝜕B1(0), then

max
x∈B1(0)

|u(x)| ≤ C
(

max
x∈𝜕B1(0)

|g| + max
x∈B1(0)

|f|) .
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12. Let u be a non-negative harmonic function in ℝn.

a. By using the Poisson’s formula (7.29) for the ball and MVP, show that

Rn−2(R2 − |x|2)
(R + |x|)n u(0) ≤ u(x) ≤ Rn−2(R2 − |x|2)

(R − |x|)n u(0)

for any R > 0 and |x| < R.
b. By letting R → ∞ in (a) above, conclude that u is a constant.

This gives the stronger form of the Liouville’s theorem: If u is harmonic inℝn and bounded
below (or above), then u is a constant function.

13. Let A = [aij] be a real n × n matrix with zero trace and a ∈ ℝn. What can be said about a
harmonic function in ℝn that satisfies

u(x) ≤ n∑
i,j=1

aijxixj + a ⋅ x, for all x ∈ ℝn?

Justify your answer. (Hint: Use Exercise 12.)
14. Let u be a harmonic function in ℝn. Describe the range of u.(Hint: Write y ∈ ℝn+1 as

y = (x, xn+1) with x ∈ ℝn. Define U(y) = xn+1 − u(x). Suppose y0 = (x0, x0
n+1) be such that

U(y0) = 0.What happens ifU(y) ≤ xn+1−x0
n+1+∇u(x0) ⋅ (x−x0) for all y? Use Exercise 12.)

15. If u is a harmonic function inℝn satisfying |u(x)| ≤ C(1+ |x|s), for some non-negative real
s and all x ∈ ℝn, show that u is a polynomial of degree at most [s], where [s] denotes the
integer part of s.

16. Let Ω be an open, bounded set in ℝn. Suppose u ∈ C2(Ω) ∩ C0(Ω) satisfies Δu = −1 in
Ω, u = 0 on 𝜕Ω. Show that for x ∈ Ω, u(x) ≥ 1

2n
(d(x, 𝜕Ω))2. (Suggestion: For fixed x0 ∈ Ω,

consider the harmonic function u(x) + 1
2n
|x − x0|2, x ∈ Ω.)

17. If x ∈ ℝn, write x = (x ′, xn), x ′ ∈ ℝn−1. Let u be the unique solution of Δu = 0 in
B1(0) and u = 𝜙 ∈ C(𝜕B1(0)), on 𝜕B1. If 𝜙 satisfies 𝜙(x ′, xn) = −𝜙(x ′, xn), show that
u(x ′, xn) = −u(x ′, xn). (Suggestion: Uniqueness is the key word.)

18. Let u be harmonic inB+
1 = x ∈ B1(0) ∶ xn > 0 and u = 0 on xn = 0. Extend u to a harmonic

function in B1(0). [Hint: Define u(x ′,−xn) = −u(x ′, xn), xn > 0. Then u is continuous in
B1(0) and harmonic in B+

1 , B
−
1 . Let x

0 ∈ B1(0) with x0
n = 0 and 0 < r < 1. Then

∫|x−x0|=r
u(x) dS(x) = ∫

xn>0

+ ∫
xn<0

= 0.

Thus, u satisfies the MVP.]
19. Prove that u ∈ C(Ω) is sub-harmonic if and only if for every open Ω ′ ⊂ Ω and every

harmonic function 𝜐 in Ω ′ with 𝜐 = u on 𝜕Ω ′, the inequality 𝜐 ≤ u holds.
20. Let Ω be an open connected (bounded or unbounded) set in ℝn. Suppose u ≥ 0 is a

harmonic function in Ω. Show that either u ≡ 0 in Ω or u > 0 in Ω.
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21. Let Q be the rectangle with vertices (0, 0), (kr, 0), (kr, 2r), (0, 2r) for some r > 0 and k ∈ ℕ.
Let P0 = (r, r) and P∗ = ((k − 1)r, r). If u ≥ 0 is harmonic in Q, show that

2−2ku(P0) ≤ u(P∗) ≤ 22ku(P0).

22. Consider the Neumann problem Δu = 0 in Ω, 𝜕u
𝜕𝜈

= 0 on 𝜕Ω. If u ∈ C2(Ω) ∩ C1(Ω) is a
solution, show that u is identically a constant. (Hint: Apply Hopf ’s lemma to u and −u, if u
were non-constant.)

23. If u is a smooth, non-negative solution of Δu = u3 + f with f ≤ 0 in Ω and u ≥ 0 on 𝜕Ω,
show that u > 0 in Ω.

24. Suppose Ω is a bounded, open subset of ℝn and u ∈ C1(Ω). If ∫𝜕B 𝜕u
𝜕𝜈

dS = 0 for every ball
B with B̄ ⊂ Ω, show that u is harmonic in Ω. (Hint: Consider the spherical mean of u:

Mu(x, r) =
1

𝜔nrn ∫
Br(x)

u(y) dy, r > 0

and prove that u has the MVP.)
25. Let u ∈ C2(B1(0)) ∩ C1(B1(0)) be the unique solution of the mixed problem

Δu = −1 in B1(0),
u = 0 on 𝜕B1(0) ∩ {xn > 0},

𝜕u
𝜕𝜈

= −u on 𝜕B1(0) ∩ {xn < 0}.

Show that u ≥ 0 in B1(0) and u > 0 on 𝜕B1(0) ∩ {xn < 0}.
26. Give an example of a C2 function u in ℝn such that u > 0 and Δu − u ≥ 0 in ℝn. Can such

a function be bounded? Justify your answer. (Hint: If u has a (local) maximum at x0, then
u(x0) > 0 and Δu(x0) ≤ 0, a contradiction. If u is bounded (above) and does not attain a
maximum, consider the function u∕ cosh(𝜀|x|) for small 𝜀.)

27. Let Ω be a bounded or unbounded domain in ℝn and u ∈ C(Ω) ∩ C2(Ω) be bounded and
satisfy Δu − 𝜆u ≥ 0 for some 𝜆 > 0. Prove that u ≤ sup

𝜕Ω
u+ in Ω. By convention, the sup is

zero if 𝜕Ω is empty. Here and in the next exercise, u+ = max{u, 0}.
28. LetΩ = ℝn

+, u ∈ C(Ω)∩C2(Ω)be bounded andΔu−𝜆u ≥ 0 inΩ for some𝜆 > 0. If x0 ∈ 𝜕Ω

is such that u(x0) = sup
𝜕Ω

u+ > 0 and 𝜕u
𝜕𝜈

(x0) exists, show that 𝜕u
𝜕𝜈

(x0) ≤ −
√
𝜆u(x0) < 0.

(Hint: Consider 𝜐(x) = u(x) − u(x0) exp(−
√
𝜆xn).)

29. Let u be harmonic in BR(0) ⊂ ℝn, n ≥ 3. For x ∈ ℝn, |x| > R, define

U(x) =
(

R|x|
)n−2

u
(

R2|x|2 x
)
.
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The function U is called the Kelvin transform of u. Show that U is harmonic in the region|x| > R and that U(x) → 0 as |x| → ∞. Further, write down u in terms U.
30. Consider the ball Br(x0) in ℝ3. If y ∉ B̄r(x0), compute ∫Br(x0)

dx|x−y| . (Hint: The function x ↦|x − y|−1 is harmonic in Br(x0).)
31. Let G = G(x, y) be the Green’s function for the −Δ in Ω. Show that G is symmetric in the

sense that G(x, y) = G(y, x).
32. Verify the statements in Theorem 7.26.
33. Let u be a C2 function in a domainΩ inℝ2. Let (x, y) ∈ Ω. Let A(x− h, y− k),B(x+ h, y−

k),C(x+h, y+k),D(x−h, y+k) be four points. Supposeu(x, y) = 1
4
[u(A)+u(B)+u(C)+u(D)]

for all h, k > 0 such that the rectangular region formed by A,B,C,D is in Ω. Then, show
that u is harmonic in Ω. The converse need not be true.

34. If f ∈ C∞
c (ℝ

n). Show that the convolution 𝜙 ∗ f is an unbounded function in dimension
n = 2 and is a bounded function for n ≥ 3.

35. Provide the details of the proofs of Proposition 7.23 and Theorem 7.24.
36. LetΩ be a bounded open set inℝn with smooth boundary 𝜕Ω and 𝜌1, 𝜌2 ∈ C(𝜕Ω). Define

the functions u1, u2 by

u1(x) = ∫
𝜕Ω

𝜙(x − 𝜉)𝜌1(𝜉) dS(𝜉) and u2(x) = ∫
𝜕Ω

𝜌2(𝜉)
𝜕𝜙
𝜕𝜈𝜉

(x − 𝜉) dS(𝜉)

for x ∈ ℝn ⧵ 𝜕Ω. Here 𝜈𝜉 denotes the outward unit normal at 𝜉 ∈ 𝜕Ω. The functions u1 and
u2 are referred to as single-layer potential and double-layer potentialwith densities 𝜌1 and 𝜌2,
respectively. Show that u1, u2 ∈ C∞(ℝn ⧵ 𝜕Ω) and harmonic in ℝn⧵𝜕Ω.



CHAPTER 8

Heat Equation

8.1 INTRODUCTION

The heat or diffusion equation

ut = a2Δu, t > 0, x ∈ ℝn, (8.1)

models the heat flow in solids and fluids. It also describes the diffusion of chemical particles.
It is also one of the fundamental equations that have influenced the development of the
subject of partial differential equations (PDE) since the middle of the last century.Heat and
fluid flow problems are important topics in fluid dynamics. Here the heat flow is combined
with a fluid flow problem and the resulting equation is termed as energy equation. We begin
with a derivation of one-dimensional heat equation, arising from the analysis of heat flow
in a thin rod. Further, equation (8.1) is also a prototype in the class of parabolic equations
and hence the importance of studying this equation.

8.1.1 Derivation of One-Dimensional Heat Equation

Consider a thin rod of length L and place it along the x-axis on the interval [0, L].We assume
that the rod is insulated so that its lateral surface is impenetrable to heat transfer. We also
assume that the temperature is the same at all points of any cross-sectional area of the rod.
Let 𝜌, c, kdenote, respectively, themass density, heat capacity and the coefficient of (internal)
thermal conductivity, of the rod.1 Let us analyze the heat balance in an arbitrary segment
[x1, x2] of the rod, with 𝛿x = x2 − x1 very small, over a time interval [t, t+ 𝛿t], 𝛿t small (see
Figure 8.1).

Let u(x, t) denote the temperature in the cross-sectionwith abscissa x, at time t. According
to Fourier’s law of heat conduction, the rate of heat propagation q is proportional to 𝜕u

𝜕x
S, with

1Unless the rod is homogeneous, these quantities are functions of x and may also depend on the temperature.
The dependence on temperaturemay be neglected if the variation of temperature is not too significant. However,
in certain heat and mass transfer problems, these quantities are considered as functions of the temperature,
in which case the resulting equation may become non-linear. The interested reader should consult books on
Thermodynamics and Heat and Mass Transfer, for more details.

216



8.1 Introduction 217

0 Lx1 x2

Figure 8.1 Temperature distribution in a rod

S denoting the area of the cross-section. Here,

q = lim
𝛿t→0

𝛿Q
𝛿t

,

where 𝛿Q is the quantity of heat that has passed through a cross-section S during a time 𝛿t.
Thus,

q = −k𝜕u
𝜕x

S.

Applying Fourier’s law at x1 and x2, we obtain

𝛿Q1 =
(
−k𝜕u

𝜕x

)
x=x1

S𝛿t and 𝛿Q2 =
(
−k𝜕u

𝜕x

)
x=x2

S𝛿t.

Thus, the quantity of heat that has passed through the small segment [x1, x2] of the rod,
during time 𝛿t is given by

𝛿Q1 − 𝛿Q2 =
(
−k𝜕u

𝜕x

)
x=x1

S𝛿t −
(
−k𝜕u

𝜕x

)
x=x2

S𝛿t

≈ 𝜕
𝜕x

(
k𝜕u
𝜕x

)
𝛿x S𝛿t. (8.2)

This influx of heat during time 𝛿t was spent in raising or lowering the temperature of the
rod by 𝛿u, say. According to the law of thermodynamics, this is expressed by

𝛿Q1 − 𝛿Q2 = c𝜌𝛿x S𝛿u ≈ c𝜌𝛿x S𝜕u
𝜕t

𝛿t. (8.3)

Note that the quantity 𝜌𝛿x S is the mass of the element [x1, x2] of the rod. Comparing
equations (8.2) and (8.3), in which the left sides represent the same quantity, we obtain

𝜕
𝜕x

(
k𝜕u
𝜕x

)
𝛿x S𝛿t = c𝜌𝛿x S𝜕u

𝜕t
𝛿t.

Or,
𝜕u
𝜕t

= 1
c𝜌

𝜕
𝜕x

(
k𝜕u
𝜕x

)
= k

c𝜌
𝜕2u
𝜕x2 ,

assuming k is a constant. This is precisely equation (8.1) with a2 = k
c𝜌
.



218 HEAT EQUATION

Initial and Boundary Conditions: To determine the solution of (8.1) uniquely, the
solution need to satisfy initial and boundary conditions. The initial condition

u(x, 0) = g(x), 0 < x < L, (8.4)

representing the initial temperature distribution at all points of the rod at the initial instant
of time t = 0. At the end points, x = 0 and x = L, different boundary conditions may be
given. For example, consider the following conditions:

u(0, t) = h1(t), u(L, t) = h2(t) (8.5)

for t > 0. These conditions represent that the rod is maintained at the prescribed
temperatures at the end points. The resulting initial-boundary value problem is termed as
the Dirichlet problem. If, instead, the heat flux at the end points are supplied, then u is
replaced by 𝜕u

𝜕x
in (8.5). The resulting problem is termed as the Neumann problem. If at one

end of the rod temperature is prescribed and at the other end temperature flux, we arrive at
a situation where the resulting problem is known as a mixed problem.

In three dimensions, the derivation of the heat equation is similar. In this case we only
need to replace the operation of 𝜕

𝜕x
in (8.2) by the gradient operator ∇. Similarly, in a

boundary value problem, the Neumann condition is provided in terms of normal derivative
in the direction of the outward unit normal to the boundary. In a diffusion problem, Fick’s
law of diffusion needs to be applied in place of Fourier’s law of heat conduction.

8.2 HEAT TRANSFER IN AN UNBOUNDED ROD

Consider the case of an infinite rod in which the temperature is prescribed at all points of
the rod at an initial instant of time t = 0. It is then required to determine the temperature
distribution in the rod at instants of time t > 0. Physical problems reduce to that of heat
transfer in an unbounded rod when the rod is so long that the conditions prescribed at the
ends of the rod do not significantly influence the temperature in the interior points of the
rod. Thus, an initial condition (8.4), now prescribed for all x ∈ ℝ, should suffice. Therefore,
we consider the following initial value problem (IVP):

ut = a2uxx, x ∈ ℝ, t > 0,
u(x, 0) = g(x), x ∈ ℝ. (8.6)

We apply themethod of separation of variables, to find a solution of (8.6), that is, we assume
that the solution u has the form

u(x, t) = X(x)T(t). (8.7)
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Substituting this into (8.6), we have X(x)T ′(t) = a2X ′ ′(x)T(t) or

T ′

a2T
= X ′ ′

X
. (8.8)

Here we have used ′, as a convention, the derivative of any function of a single variable.
Since neither of the quantities in (8.8) can be a function of x and/or t, both must be equal
to a constant, say, −𝜆2 with 𝜆 > 0.2 Hence from (8.8) we obtain the following two ordinary
differential equations (ODE):

T ′ + a2𝜆2T = 0, (8.9)
X ′ ′ + a2𝜆2X = 0, (8.10)

whose general solutions are given by

T(t) = Ce−a2𝜆2t,
X(x) = A cos 𝜆x + B sin 𝜆x.

Substituting these expressions into (8.7), we therefore obtain a solution u𝜆 of (8.6) given by

u𝜆(x, t) = e−a2𝜆2t[A(𝜆) cos 𝜆x + B(𝜆) sin 𝜆x], (8.11)

for each 𝜆 > 0. Since equation (8.6) is linear, by superposition, we see that

u(x, t) =
∞

∫
0

e−a2𝜆2t[A(𝜆) cos 𝜆x + B(𝜆) sin 𝜆x] d𝜆 (8.12)

is a solution of (8.6), provided that the integral in (8.12), its derivative with respect to t and
its second derivative with respect to x all exist.

In order to determine the coefficientsA(𝜆) and B(𝜆) in (8.12), we use the initial condition
in (8.6):

u(x, 0) = g(x) =
∞

∫
0

[A(𝜆) cos 𝜆x + B(𝜆) sin 𝜆x] d𝜆. (8.13)

2If the initial temperature g is bounded, we can expect the solution to be bounded, from physical considerations;
hence the negative sign.
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Suppose that the function3 g(x) satisfies the following integral identity:

g(x) = 1
𝜋

∞

∫
0

⎛⎜⎜⎝
∞

∫
−∞

g(y) cos 𝜆(y − x) dy
⎞⎟⎟⎠ d𝜆,

or

g(x) = 1
𝜋

∞

∫
0

⎡⎢⎢⎣
⎛⎜⎜⎝

∞

∫
−∞

g(y) cos 𝜆y dy
⎞⎟⎟⎠ cos 𝜆x

+
⎛⎜⎜⎝

∞

∫
−∞

g(y) sin 𝜆y dy
⎞⎟⎟⎠ sin 𝜆x

⎤⎥⎥⎦ d𝜆. (8.14)

Comparing the terms on the right-hand sides in (8.13) and (8.14), we obtain

A(𝜆) = 1
𝜋

∞

∫
−∞

g(y) cos 𝜆y dy and B(𝜆) = 1
𝜋

∞

∫
−∞

g(y) sin 𝜆y dy. (8.15)

Substituting these expressions into (8.12), we obtain the following expression for the
solution:

u(x, t) = 1
𝜋

∞

∫
0

e−a2𝜆2t
⎡⎢⎢⎣
⎛⎜⎜⎝

∞

∫
−∞

g(y) cos 𝜆y dy
⎞⎟⎟⎠ cos 𝜆x

+
⎛⎜⎜⎝

∞

∫
−∞

g(y) sin 𝜆y dy
⎞⎟⎟⎠ sin 𝜆x

⎤⎥⎥⎦ d𝜆

= 1
𝜋

∞

∫
0

e−a2𝜆2t
⎡⎢⎢⎣

∞

∫
−∞

g(y)(cos 𝜆y cos 𝜆x + sin 𝜆y sin 𝜆x) dy
⎤⎥⎥⎦ d𝜆

= 1
𝜋

∞

∫
0

e−a2𝜆2t
⎛⎜⎜⎝

∞

∫
−∞

g(y) cos 𝜆(y − x) dy
⎞⎟⎟⎠ d𝜆.

3This condition appears to be very restrictive. However, the final formula we derive for the solution will remove
this restriction.
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If we interchange the order of integration in the last integral, we finally get

u(x, t) = 1
𝜋

∞

∫
−∞

⎡⎢⎢⎣g(y)
⎛⎜⎜⎝

∞

∫
0

e−a2𝜆2t cos 𝜆(y − x) d𝜆
⎞⎟⎟⎠
⎤⎥⎥⎦ dy. (8.16)

Let us analyze the inner integral in (8.16). By making the substitutions a𝜆
√
t = z and

𝜂 = y−x
a
√
t
, we obtain that

∞

∫
0

e−a2𝜆2t cos 𝜆(y − x) d𝜆 = 1
a
√
t
K(𝜂),

where

K(𝜂) =
∞

∫
0

e−z2 cos 𝜂z dz. (8.17)

Differentiating with respect to 𝜂 inside the integral sign (which is easy to justify), we get

K ′(𝜂) = −

∞

∫
0

e−z2z sin 𝜂z dz,

which, upon an integration by parts, gives

K ′(𝜂) = −
𝜂
2

∞

∫
0

e−z2 cos 𝜂z dz = −
𝜂
2
K(𝜂).

Solving this ODE, we get K(𝜂) = Ce−𝜂2∕4 for some constant C. But,

K(0) =
∞

∫
0

e−z2 dz =
√
𝜋

2
.

Hence C =
√
𝜋

2
and

K(𝜂) =
√
𝜋

2
e−𝜂2∕4. (8.18)
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Reverting back to the original variables, we find that

∞

∫
0

e−a2𝜆2t cos 𝜆(y − x) d𝜆 = 1
2a

√
𝜋
t
e−

(y−x)2

4a2t . (8.19)

Putting back this expression into (8.16), we finally obtain the following expression for the
solution:

u(x, t) = 1
2a
√
𝜋t

∞

∫
−∞

g(y)e−
(y−x)2

4a2t dy. (8.20)

This formula, valid for t > 0, is called the Fourier–Poisson integral or Fourier–Poisson
formula. We note that the integral in (8.20) is well-defined for any function g, which is
continuous (or even piece-wise continuous) and bounded.4

Physical Meaning of (8.20): Consider the initial function g defined by

g(x) =
⎧⎪⎨⎪⎩
0, if −∞ < x < x0,
g0(x), if x0 ≤ x ≤ x0 + 𝛿x0,
0, if x0 + 𝛿x0 < x < ∞,

(8.21)

for some x0 and small 𝛿x0 and continuous g0; the discontinuity of g, if any, will not affect the
integral in (8.20). Then, the function u0 defined by

u0(x, t) =
1

2a
√
𝜋t

∞

∫
−∞

g(y)e−
(y−x)2

4a2t dy, (8.22)

is a solution of the heat equation (8.6) satisfying the initial condition therein. We have

u0(x, t) =
1

2a
√
𝜋t

x0+𝛿x0

∫
x0

g0(y)e
− (y−x)2

4a2t dy.

Applying mean-value theorem, we see that

u0(x, t) =
g0(𝜉)𝛿x0

2a
√
𝜋t

e−
(𝜉−x)2

4a2t , (8.23)

4The readers who are familiar with Lebesgue integration will recognize that the assumption that g is a bounded
measurable function will do.
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for some 𝜉 ∈ (x0, x0 + 𝛿x0). If for t = 0, the temperature is 0 everywhere except in a small
interval [x0, x0 + 𝛿x0], where it is g0(x), then this formula gives the temperature at a point
in the rod at any time t > 0 . The “sum” of temperatures of form (8.23) is what yields the
solution (8.22). We also notice that the heat in the element [x0, x0 + 𝛿x0] of the rod at t = 0
will be

𝛿Q ≈ g0(𝜉)c𝜌𝛿x0, (8.24)

where c is the specific heat and 𝜌 is the density of the material. Now consider the expression

1
2a
√
𝜋t

e−
(𝜉−x)2

4a2t . (8.25)

Comparing this with the right side of (8.23) and taking into account (8.24), we may say that
the term in (8.25) yields the temperature at any point of the rod at any instant of time t > 0
if, for t = 0 there was an instantaneous heat source with amountQ = c𝜌 in the cross-section
𝜉 (the limiting case of 𝛿x0 → 0).

8.2.1 Solution in Higher Dimensions

We now consider the IVP for the heat equation in arbitrary space dimension n ≥ 1:

ut = a2Δu, t > 0, x ∈ ℝn,
u(x, 0) = g(x), x ∈ ℝn. (8.26)

If we try to imitate the above procedure to obtain an expression for the proposed solution of
the heat equationwhen n > 1, it is not immediately clear how to proceedwith the separation
of the variables. However, if we look at the Fourier–Poisson formula (8.20), we observe that
it readily extends to higher dimensions. Thus, we consider the function

u(x, t) = 1
(4𝜋a2t)n∕2 ∫

ℝn

g(y)e−
|y−x|2
4a2t dy, (8.27)

for x ∈ ℝn and t > 0, where g is as in (8.26). Another way to arrive at (8.27) is via certain
invariant property the heat equation enjoys, resulting in some special solution of the heat
equation.

The heat equation (8.26) is invariant under the dilation: x↦ 𝜆x and t↦ 𝜆2t, for arbitrary
𝜆 > 0. This change of variables leaves the quotient |x|2∕t, t > 0 unchanged. This suggests to
look for a solution of the heat equation5 of the form u(x, t) = 𝜐(|x|2∕t). A still more general
approach is to look for a solution in separation of variables form:

u(x, t) = w(t)𝜐(|x|2∕t),
5Recall the case of Laplace equation, where we looked for radial solutions using the rotational symmetry of Δ.
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where the functions w and 𝜐 are to be determined. Plugging this expression into the heat
equation, we get

w ′(t)𝜐(|x|2∕t) =w(t)
[(

4a2𝜐 ′ ′(|x|2∕t) + 𝜐 ′(|x|2∕t)) |x|2
t

+ 𝜐 ′(|x|2∕t)2na2

t

]
. (8.28)

Choose 𝜐 such that 4a2𝜐 ′ ′ + 𝜐 ′ = 0. This yields a choice of 𝜐 as 𝜐(z) = exp(−z∕(4a2)). It
then follows from (8.28) that w ′ + n

2t
w = 0 and we choose w(t) = t−n∕2, t > 0 as a solution.

Thus, we see that the function

t−n∕2 exp
(
−
|x|2
4a2t

)
is a solution of the heat equation for x ∈ ℝn and t > 0. A suitable constant multiple of this
function will be the fundamental solution of the heat equation, as we will see. The proposed
solution u in (8.27) of IVP (8.26) is nothing but the convolution of this function (with a
constant multiple) with the initial condition g, similar to the case of Laplace’s equation. Yet
another observation through the Fourier transform will also lead to the consideration of
(8.27). This will be discussed in Section 8.5.

We now proceed to verify that the function u given by the Fourier–Poisson integral (8.27)
indeed is a solution of (8.26). For this purpose, we define the heat kernel or fundamental
solution of the heat equation by

K(x, t) =

{
(4𝜋a2t)−n∕2e−

|x|2
4a2t , for x ∈ ℝn, t > 0

= 0, for x ∈ ℝn, t < 0.
(8.29)

See (8.18). With this notation, we can write the Fourier–Poisson integral (8.27) as the
convolution ofK and g: u(x, t) = (K(⋅, t) ∗ g)(x); see (8.30). For n = 1, some profiles ofK(⋅, t)
are shown in Figure 8.2, for different values of t. We can observe from these profiles that
as t becomes smaller and smaller, the profile of K concentrates more and more near x = 0
and in order to maintain the integral overℝ for all t, the value of K(0, t) becomes larger and
larger as t becomes smaller and smaller. The family {K(⋅, t), t > 0} is also an example of an
approximate identity.

Theorem 8.1. Let g be a continuous and bounded function defined on ℝn. Then, the
function u defined by

u(x, t) = (K(⋅, t) ∗ g)(x) = (4𝜋a2t)−n∕2 ∫
ℝn

e−
|x−y|2
4a2t g(y) dy, (8.30)
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x

K(x, t)

t = 2
t = 1

t = 1∕4

t = 1∕16

t = 1∕9

Figure 8.2 Profiles of the fundamental solution in one dimension

for x ∈ ℝn and t > 0 is a C∞ function and satisfies the heat equation (8.26) in the
following sense: If we extend the function u to include t = 0 by u(x, 0) = g(x), then u
is continuous for x ∈ ℝn and t ≥ 0.

The proof depends on the following properties of the heat kernel. For x ∈ ℝn and t > 0, K
satisfies:

1. K(x, t) > 0 and K is symmetric, that is K(x, t) = K(−x, t).
2. K(x, t) is a C∞ function.
3.

(
𝜕t − a2Δx

)
K(x − y, t) = 0, for all y ∈ ℝn.

4. ∫ℝn K(x − y, t) dy = 1.
5. For any 𝛿 > 0, we have

lim
t→0+ ∫|x−y|≥𝛿

K(x − y, t) dy = 0,

uniformly in x ∈ ℝn.

Properties (1)–(3) are easily verified from the definition of K. Property (4) follows from
the fact that

∞

∫
0

e−z2 dz =
√
𝜋

2
.
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Next, by the substitution x − y = 2a
√
tz, we have

∫|x−y|≥𝛿
K(x − y, t) dy = ∫|z|≥ 𝛿

2a
√
t

e−|z|2 dz.

Note that the second integral does not depend on x and is estimated as follows: since{
z ∈ ℝn ∶ |z| ≥ 𝛿

2a
√
t

}
⊂

n⋃
j=1

{
z ∈ ℝn ∶ |zj| ≥ 𝛿

2a
√
nt

}
we get

∫|z|≥ 𝛿
2a
√
t

e−|z|2 dz ≤ n𝜋
n−1
2 ⋅ 2

∞

∫
𝛿

2a
√
nt

e−𝜂2 d𝜂

≤ n𝜋
n−1
2

2a
√
nt

𝛿

∞

∫
0

(2𝜂)e−𝜂2 d𝜂

≤ n𝜋
n−1
2

2a
√
nt

𝛿
→ 0 as t → 0.

This proves Property (5).
It is also to be noted that for any fixed T > 0, the function K(ix+ iy,T− t), i =

√
−1 or a

constant multiple of it, also satisfies Property (3) for t < T. This property will be used later
to establish the uniqueness of solutions. Now to the proof of Theorem 8.1.

Proof (of Theorem 8.1) By repeated integrations under the integral sign,6 it follows that
u ∈ C∞ using Property (2) of K. Property (3) then proves that u satisfies (8.26) for x ∈ ℝn

and t > 0. For the stated continuity property of u, pick an 𝜂 ∈ ℝn and let 𝜀 > 0 be arbitrary.
Using the continuity of g, we can find a 𝛿 > 0 such that

|g(y) − g(𝜂)| < 𝜀 for |y − 𝜂| < 2 𝛿.

6Since the domain of integration is unbounded, a little care should be exercised in interchanging the limit
and integral signs. Here the exponential factor in the integrand, which decays to 0 faster than any polynomial
helps.
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Denoting by M = supy∈ℝ |g(y)|, we have for |x − 𝜂| < 𝛿 (which implies that |y − 𝜂| < 2𝛿 if|x − y| < 𝛿),

|u(x, t) − g(𝜂)| = |||||||∫ℝn

K(x − y, t)(g(y) − g(𝜂)) dy
|||||||

≤ ∫|x−y|<𝛿
K(x − y, t)|g(y) − g(𝜂)| dy

+ ∫|x−y|≥𝛿
K(x − y, t)|g(y) − g(𝜂)| dy

≤ ∫|y−𝜂|<2𝛿

K(x − y, t)|g(y) − g(𝜂)| dy + 2M ∫|x−y|≥𝛿
K(x − y, t) dy

≤ 𝜀∫
ℝn

K(x − y, t)|g(y) − g(𝜂)| dy + 2M ∫|x−y|≥𝛿
K(x − y, t) dy

< 𝜀 + 2M 𝜀
2M

< 2𝜀, if t is sufficiently small.

This completes the proof.

Instead of the boundedness of g, if we assume that the initial function has exponential
growth: |g(x)| ≤ Mebx2 for some M > 0 and b > 0, the same proof shows that u given by
the Fourier–Poisson integral is still a solution of the heat equation, but for a short duration
of time: 0 < t < (4ba2)−1. This restriction is to make the integral convergent.

Ir-reversibility, Infinite Speed of Propagation, Smoothing Effects: Before proceeding
with uniqueness and other questions, we make some observations of the heat equation.

1. Unlike equations in mechanics, including the wave equation, the heat equation is not
preserved under time reversal, that is the heat equation is not preserved under the
transformation t ↦ −t, as can be easily observed. This also explains the insolvability
of the heat equation for t < 0, when the initial condition is prescribed at t = 0. This
situation is the ir-reversibility of the physical problem. For example, we will not be
able to predict the temperature in a rod some time back, given its temperature now.
Such processes make distinction between the future and the past. This is a typical
phenomenon of the parabolic problems.

2. Another observation of the heat equation is the propagation with infinite speed. If
we look at the solution formula (8.30), we observe that any change in the initial
condition g at a point x0 or a small neighborhood around it, instantly felt at
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any x for any t> 0. This makes the heat equation somewhat physically unrealistic.
There have been attempts to rectify this shortcoming of the model. One such
model is the so-called equation of the porous media. However, this is a non-linear
equation.

3. The heat equation sits between the steady-state equation (Laplace’s equation) and
physically realistic wave equation. As such, mathematically, it enjoys good properties
from both the sides. For example, the solution of the heat equation enjoys the
maximum and minimum principles and a sort of mean value property, which are
enjoyed by the solution of the Laplace’s equation; it enjoys certain energy estimates
similar to the solution of the wave equation. Some of these will be discussed in the
following sections.

4. Another interesting property of the heat kernel is its smoothing effect. The function
u(x, t), t > 0 given by (8.30) is C∞ even though the initial function g is merely
continuous; it may even be not continuous. In fact, it can be shown that for t> 0, the
function x ↦ u(x, t) is analytic when extended to complex space, that is x is replaced
by the complex variable z.

8.2.2 Uniqueness

Though the Fourier–Poisson integral gives us a solution for the IVP for the heat equation in
the spaceℝn, it is not immediately clear that whether the solution is unique. In fact, there is
non-uniqueness unless u satisfies certain growth condition. Below we will give an example,
following Tychonov, exhibiting non-uniqueness. We wish to mention here that there is a
result due to Widder (1975), which states that there is at most one solution u to the heat
equation such that u(x, t) ≥ 0 for all t ≥ 0 and for all x.

Consider the one-dimensional heat equation (8.6) with zero initial condition, that is
g ≡ 0. Let

𝜓(z) =

{
exp

(
−1∕z2

)
, for z ∈ ℂ, z ≠ 0,

0, for z = 0,

and define u by

u(x, t) =
⎧⎪⎨⎪⎩

∞∑
k=0

𝜓 (k)(t) x2k

(2k)!
, for x ∈ ℝ, t > 0,

0, for x ∈ ℝ, t = 0.
(8.31)

Here 𝜓 (k)(t) = dk𝜓
dtk

(t). Assuming that the following formal arguments are valid, we show
that u is a solution of the heat equation (8.6) satisfying u(x, 0) = 0 for all x ∈ ℝ. Since u ≠ 0
for t > 0 and identically zero function is also a solution, this proves non-uniqueness of the
solution.
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We have

lim
t→0+

u(x, t) =
∞∑
k=0

𝜓 (k)(0) x2k

(2k)!
= 0, (8.32)

𝜕2u
𝜕x2 =

∞∑
k=1

𝜓 (k)(t)(2k)(2k − 1)x
2k−2

(2k)!

=
∞∑
k=1

𝜓 (k)(t) x2(k−1)

(2(k − 1))!

=
∞∑
k=0

𝜓 (k+1)(t) x2k

(2k)!
= 𝜕u

𝜕t
. (8.33)

We now show that the series in (8.31), (8.32) and (8.33) are uniformly convergent in a
neighborhood of every point (x, t), x ∈ ℝ, t > 0. This justifies the above arguments of
interchange of limit and summation and term-by-term differentiation in the infinite series,
performed above.

The function 𝜓(z) is analytic in ℂ⧵{0}. Identify the t-axis as the real axis of the complex
plane. For fixed t > 0, the circle

Γ = {z ∈ ℂ ∶ z = t + t
2
ei𝜃}, 0 < 𝜃 ≤ 2𝜋

does not meet the origin. Hence by Cauchy formula,

𝜓 (k)(t) = k!
2𝜋i ∫

Γ

𝜓(z)
(z − t)k+1

dz, k = 0, 1, 2,… .

From this it follows that

|𝜓 (k)(t)| ≤ k!
2𝜋 ∫

Γ

exp(−ℜ(z−2))|z − t|k+1
|dz| = k!

2𝜋

(2
t

)k
2𝜋

∫
0

exp(−ℜ(z−2)) d𝜃,

whereℜ(z)denotes the real part of a complex number z ∈ ℂ. For z ∈ Γ, we have |z−t| = t∕2
and therefore,

z2 = t2
(
1 + t

2
ei𝜃

)2
.
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It follows that

ℜ(z−2) = 1
t2

1
4
+ 1

2
(1 + cos 𝜃)2(

1
4
+ (1 + cos 𝜃)

)2 .

Taking the minimum of the expression on the right, we get ℜ(z−2) ≥ 1
4t2

and therefore

|𝜓 (k)(t)| ≤ k!
(2
t

)k
exp

(
− 1

4t2
)
, k = 0, 1, 2,… .

Fix a > 0. Then for |x| < a, the series in (8.31) is majorized by the series

exp
(
− 1

4t2
) ∞∑

k=0

(1
t

)k a2k

k!
,

and the latter is uniformly convergent. Here use has been made of the inequality

2kk!
(2k)!

≤ 1
k!
.

Similar arguments hold for series in (8.32) and (8.33).

8.2.3 Inhomogeneous Equation

We now consider the inhomogeneous heat equation:

ut − a2Δu = f(x, t), x ∈ ℝn, t > 0
u(x, 0) = g(x), x ∈ ℝn. (8.34)

Assume that the function f and its partial derivatives fxj are continuous in x ∈
ℝn, t > 0 and the function g is continuous and bounded. Owing to the linearity in the
problem, the required solution can be written as some of two functions: one the solution
of the homogeneous equation with initial condition g and another the solution of the
inhomogeneous equation with zero initial condition. Thus it suffices to consider equation
(8.34) with g ≡ 0 therein. A solution of this problem can be obtained via the Duhamel’s
principle. The idea is to solve the homogeneous equation at each level t = s > 0 and
sum (integrate) all these solutions as follows: Fix s ≥ 0 and consider the IVP for the heat
equation:

ut − a2Δu = 0, x ∈ ℝn, t > s
u(x, s) = f(x, s), x ∈ ℝn. (8.35)
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Denoting the solution by 𝜐(x, t; s), we get

𝜐(x, t; s) = ∫
ℝn

K(x − y, t − s)f(y, s) dy, t > s, (8.36)

using (8.30) and the change of variable t ↦ t − s. We can now write down the expression
for a solution to (8.35) as:

u(x, t) =
t

∫
0

𝜐(x, t; s) ds =
t

∫
0

∫
ℝn

K(x − y, t − s)f(y, s) dyds. (8.37)

Uniqueness of this solution is proved under the additional assumption that the solution
u has certain restricted growth. However, care should be exercised in asserting that u is
indeed the solution of the inhomogeneous equation, since K has a singularity at t = 0. The
verification is left as an exercise.

8.3 MAXIMUM AND MINIMUM PRINCIPLES

We now consider the heat equation in a smooth bounded domain Ω in ℝn:

ut − a2Δu = f(x, t), x ∈ Ω, t > 0 (8.38)

with initial and boundary conditions

u(x, 0) = g(x), x ∈ Ω
u(x, t) = h(x, t), x ∈ 𝜕Ω, t > 0. (8.39)

Here 𝜕Ω is the boundary of Ω, f, g and h are given source functions.
In the physical problem of the heat conduction in a rod, if the sources are not present,

the temperature in the rod can neither exceed the maximum of the initial and boundary
temperatures nor can go below those temperatures. This is the content of the maximum
(minimum) principle.

Fix any T > 0 and consider the domain

ΩT = Ω × (0,T]

and

𝜕pΩT = ΩT ⧵ΩT = {Ω × {0}} ∪ {𝜕Ω × [0,T]}.

The partial boundary 𝜕pΩT is called the parabolic boundary (see Figure 8.3).
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t = 0
Ω

𝜕pΩ

t = T

𝜕pΩ 𝜕pΩΩT

Figure 8.3 Parabolic boundary

Theorem 8.2 (Weak Maximum and Minimum Principles). Suppose the function u is
continuous in ΩT such that the partial derivatives ut and uxjxk , 1 ≤ j, k ≤ n exist and
are continuous in ΩT. Then, the following statements hold:

1. If ut − a2Δu ≤ 0 in ΩT, then maxΩT
u = max𝜕pΩT

u.
2. If ut − a2Δu ≥ 0 in ΩT, then minΩT

u = min𝜕pΩT
u.

3. If ut − a2Δu = 0 in ΩT, then maxΩT
|u| = max𝜕pΩT

|u|.
Proof It suffices to prove the first statement. The second statement follows from the first
one, by applying it to−u in place of u and the third statement follows by combining the first
and second statements.

For 𝜀 > 0 small, consider the function

𝜐(x, t) = u(x, t) − 𝜀|x|2.
Then,

𝜐t − a2Δ𝜐 = ut − a2Δu − 2𝜀 ≤ −2𝜀 < 0. (8.40)

If (x0, t0) is an interior point, x0 ∈ Ω, 0 < t0 ≤ T, where 𝜐 assumes a maximum, then, it
follows that

Δ𝜐(x0, t0) ≤ 0 and 𝜐t(x0, t0) ≥ 0.
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(If t0 < T, then 𝜐t(x0, t0) = 0.) But this contradicts (8.40) and shows that 𝜐 can achieve
its maximum only on 𝜕pΩT.

Since

u ≤ 𝜐 ≤ u + C𝜀, in ΩT,

for some constant C > 0, which depends onΩ, the conclusion follows by letting 𝜀 → 0.

Remark 8.3. If u as in the above theorem satisfies condition (1) and attains its maximum
at an interior point (x0, t0), then u is constant for all t < t0, provided that we assume
constant initial and boundary conditions. However, the solution may change for
t > t0 if we change the boundary condition for t > t0, thus indicating that the solution
responds to changes in the boundary condition only after the changes are made. This is
in agreement with the view of taking the t variable as time variable. Similar conclusions
can be made when u satisfies condition (2) or (3) in the above theorem.

We have the following immediate consequences:

Corollary 8.4 (Comparison Theorem). Let u, 𝜐 satisfy the heat equation (8.38). If u ≤ 𝜐
on the parabolic boundary 𝜕pΩT, T > 0, then u ≤ 𝜐 on ΩT.

Corollary 8.5 (Uniqueness Theorem). Let f(x, t) be a continuous function onΩ×{t ≥ 0},
g be a continuous function on Ω and h be a continuous function on 𝜕Ω × {t ≥ 0}.
Assume that the compatibility condition

g(x) = h(x, 0), x ∈ 𝜕Ω (8.41)

is satisfied. Then, the initial boundary value problem (8.38)–(8.39) has at most one
solution.

The compatibility condition is essential for the required continuity.

Proof Suppose u, 𝜐 are two solutions of (8.38)–(8.39). Then, the difference w = u − 𝜐 is
continuous for x ∈ Ω, t ≥ 0 and satisfies (8.38)–(8.39) with f, g, h all identically zero.
Theorem 8.2 then implies thatw = 0 onΩT for T > 0 arbitrary.This proves uniqueness.

BackwardUniqueness forHeat Equation: At this point, we also discuss a curious property
of the heat equation, namely the backward in time uniqueness result. This is somewhat
surprising as the heat equation obeys irreversibility with respect to time, as discussed
earlier. This is also an incident where we see that the heat equation enjoying an energy
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estimate, a property that is in the domain of wave equation (more generally, hyperbolic
equation).

Theorem 8.6 (Backward Uniqueness for Heat Equation). Suppose u, ũ ∈ C2(ΩT) solve
the following:

ut = Δu in ΩT
u = g on 𝜕Ω × [0,T] (8.42)

and
ũt = Δũ in ΩT
ũ = g on 𝜕Ω × [0,T] (8.43)

If u(x,T) = ũ(x,T) for all x ∈ Ω, then u ≡ ũ in ΩT.

Here T > 0 is fixed. Note that no assumption has beenmade regarding the initial conditions
of u and ũ.

Proof Let w = u − ũ. Then, w solves

wt = Δw in ΩT
w = 0 on 𝜕Ω × [0,T] (8.44)

Consider the total energy of w at time t defined by

E(t) = ∫
Ω

w2(x, t) dx, t ∈ [0,T].

The conclusion of the theorem gets established once we prove that E(t) = 0 for all t ∈ [0,T);
by hypothesis, E(T) = 0.

Using (8.44) and integrating by parts once, we get

dE
dt

= 2∫
Ω

wwt dx = 2∫
Ω

wΔwdx = −2∫
Ω

|∇w|2 dx. (8.45)

There is no boundary term here as w = 0 on 𝜕Ω. Similar computation gives

d2E
dt2

= −4∫
Ω

∇w ⋅ ∇wt dx = 4∫
Ω

wtΔwdx = 4∫
Ω

(Δw)2 dx. (8.46)
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Using (8.45) and Cauchy–Schwarz–Bunyakowski inequality, we get

(
dE
dt

)2

= 4
⎛⎜⎜⎝∫Ω |∇w|2 dx⎞⎟⎟⎠

2

=
⎛⎜⎜⎝−2∫

Ω

|∇w|2 dx⎞⎟⎟⎠
2

=
⎛⎜⎜⎝2∫Ω wΔwdx

⎞⎟⎟⎠
2

≤ ⎛⎜⎜⎝∫Ω w2 dx
⎞⎟⎟⎠
⎛⎜⎜⎝4∫Ω (Δw)2 dx

⎞⎟⎟⎠
= E(t)d

2E
dt2

. (8.47)

Suppose, on the contrary, E(t) ≠ 0 for some t ∈ [0,T]. Since E(T) = 0, by hypothesis, we see
by continuity that there is a sub-interval [t1, t2] ⊂ [0,T] such that E(t) > 0 for all t ∈ [t1, t2)
and E(t2) = 0. Put F(t) = logE(t) for t ∈ [t1, t2). Then,

d2F
dt2

=
Ed

2E
dt2

−
(
dE
dt

)2

E2

≥ 0, using (8.47).

This shows that the function F is a convex function on the interval [t1, t2). Therefore, for
each 𝛼 ∈ (0, 1) and a fixed t ∈ (t1, t2), we have

F(𝛼t1 + (1 − 𝛼)t) ≤ 𝛼F(t1) + (1 − 𝛼)F(t).

Or, in terms of E, we get

E(𝛼t1 + (1 − 𝛼)t) ≤ E(t1)𝛼 E(t)(1−𝛼).

Letting t → t2 in the last inequality and using E(t2) = 0, we see that E(t) = 0 for all
t ∈ [t1, t2), a contradiction. This completes the proof.
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(x, t)

E(x, t; r)
Figure 8.4 Heat ball

Heat Ball and Mean Value Property: Apart from sharing the maximum and minimum
principles with the Laplace’s equation, the heat equation also shares a mean value property,
which we discuss now.

Fix x ∈ ℝn, t > 0 and r > 0. Define the space-time region E(x, t; r) by

E(x, t; r) =
{
(y, s) ∈ ℝn+1 ∶ s ≤ t, K(x − y, t − s) ≥ 1

rn
}
, (8.48)

where K is the fundamental solution of the heat equation. The boundary of E(x, t; r)
is a level set of K. It is to be noted that the point (x, t) is at the centre of the top
of E(x, t; r). See Figure 8.4. The region E(x, t; r) is sometimes referred to as the heat
ball.

Theorem 8.7 (Mean Value Property). Let u be a smooth solution of the heat equation
(with a = 1) in ΩT. Then,

u(x, t) = 1
4rn ∬

E(x,t;r)

u(y, s)
|y|2
s2

dyds (8.49)

for every E(x, t; r) ⊂ ΩT.

The right side term in the above equation involves only the values of s that are below
t. This is reasonable since u(x, t) should not depend on future times. The condition that
K(x − y, t − s) ≥ 1

rn
determines the domain of integration with respect to the y-

variable and further restricts the s-interval of integration. Since ∬E(x,t;r)
|y|2
s2

dyds = 4rn (see
(8.51)), the right-hand side term in (8.49) indeed describes the mean value of u(y, s) over
E(x, t; r).
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Proof By translating the variables, we may assume that x = 0 and t = 0. We write E(r) =
E(0, 0; r), r > 0. Set

𝜒(r) = 1
rn ∬

E(r)

u(y, s)
|y|2
s2

dyds

=∬
E(1)

u(ry, r2s)
|y|2
s2

dyds.

The idea is to show that 𝜒 is a constant function of r. For this, consider

d𝜒
dr

= ∬
E(1)

( n∑
i=1

𝜕u
𝜕yi

(ry, r2s)yi + 2rs𝜕u
𝜕s

(ry, r2s)

) |y|2
s2

dyds

= 1
rn+1 ∬

E(r)

( n∑
i=1

𝜕u
𝜕yi

(y, s)yi
|y|2
s2

+ 2𝜕u
𝜕s

(y, s)
|y|2
s

)
dyds

= A + B, say.

Consider the function 𝜓 defined by

𝜓(y, s) = −n
2

log(−4𝜋s) +
|y|2
4s

+ n log r, (8.50)

which arises as a result of determining the domain of integration of the function 𝜒 , namely
s ≤ 0 and K(y,−s) ≥ 1

rn
. Note that 𝜓 = 0 on the boundary 𝜕E(r), on which K(y,−s) = 1

rn
.

We use 𝜓 in writing B as

B = 2 1
rn+1 ∬

E(r)

𝜕u
𝜕s

|y|2
s

dyds

= 4 1
rn+1 ∬

E(r)

𝜕u
𝜕s

n∑
i=1

𝜕𝜓
𝜕yi

yi dyds

= −4 1
rn+1 ∬

E(r)

(
n𝜕u
𝜕s

𝜓 +
n∑
i=1

𝜕2u
𝜕s𝜕yi

yi𝜓

)
dyds.

The last line follows by an integration by parts (with respect to the y- variable) and there are
no boundary terms as 𝜓 = 0 there. Now another integration by parts, with respect to the
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s-variable this time, gives us

B = 4 1
rn+1 ∬

E(r)

(
−n𝜕u

𝜕s
𝜓 +

n∑
i=1

𝜕u
𝜕yi

yi
𝜕𝜓
𝜕s

)
dyds

= 4 1
rn+1 ∬

E(r)

(
−n𝜕u

𝜕s
𝜓 +

n∑
i=1

𝜕u
𝜕yi

yi
[
− n

2s
−

|y|2
4s2

])
dyds

= − 1
rn+1 ∬

E(r)

(
4n𝜕u

𝜕s
𝜓 + 2n

s

n∑
i=1

𝜕u
𝜕yi

yi

)
dyds − A.

Using the hypothesis that u solves the heat equation, we therefore obtain

d𝜒
dr

=A + B

= − 1
rn+1 ∬

E(r)

(
4n𝜓Δu + 2n

s

n∑
i=1

𝜕u
𝜕yi

yi

)
dyds

= 2n 1
rn+1

n∑
i=1 ∬E(r)

(
2 𝜕u
𝜕yi

𝜕𝜓
𝜕yi

− 1
s
𝜕u
𝜕yi

yi
)

dyds

= 0, as 𝜕𝜓
𝜕yi

=
yi
2s

(see (8.50)).

Therefore, we conclude that 𝜒 is a constant function of r. Thus,

𝜒(r) = lim
𝜌→0

𝜒(𝜌) = u(0, 0) lim
𝜌→0

1
𝜌n ∬

E(𝜌)

|y|2
s2

dyds.

Now
1
𝜌n ∬

E(𝜌)

|y|2
s2

dyds = ∬
E(1)

|y|2
s2

dyds.

In the integral on the right-hand side, we first determine the domain of integration of the
y-variable using K(y,−s) ≥ 1, and determine the s-interval of integration. It can then be
shown that

∬
E(1)

|y|2
s2

dyds = 4. (8.51)
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This is left as an exercise. The proof is complete.

Uniqueness Result: Using the weakmaximumprinciple, we now prove a uniqueness result
for the solution of the heat equation in ℝn, provided we assume a restricted growth on the
solution.

Theorem 8.8. Let T > 0 be fixed and u be a continuous function on ℝn × [0,T] such that
the functions ut andΔu exist and are continuous inℝn×(0,T) and satisfy the following:

ut − a2Δu ≤ 0, x ∈ ℝn, t ∈ (0,T)
u(x, 0) = g(x), x ∈ ℝn,
u(x, t) ≤ Meb|x|2 , x ∈ ℝn, t ∈ (0,T),

(8.52)

for some positive constants b and M. Then,

u(x, t) ≤ sup
z

g(z), x ∈ ℝn, t ∈ (0,T). (8.53)

The theorem in particular applies to the solution of the heat equation. For bounded g,
therefore, the function given by the Fourier–Poisson integral is the only solution of the heat
equation. We state this as a corollary.

Corollary 8.9 (Uniqueness). For bounded g, the functionudefined by the Fourier–Poisson
integral (8.30) is the only solution of (8.26).

However, the assumption on the growth in (8.52) is essential in view of the Tychonov
example discussed earlier.

Proof (of Theorem 8.8) Suffices to prove the theorem for T satisfying 4ba2T < 1. For the
general case, we can divide the interval [0,T] into subintervals of equal length < 1

4ba2 and
repeat the arguments. Choose an 𝜀 > 0 such that 4ba2(T + 𝜀) < 1.

For fixed y ∈ ℝn, consider the function

𝜐𝜇(x, t) = u(x, t) − 𝜇 1
(4𝜋a2(T + 𝜀 − t))n∕2

exp
(

(x − y)2

4a2(T + 𝜀 − t)

)
= u(x, t) − 𝜇K(i(x − y),T + 𝜀 − t). (8.54)

Here 𝜇 > 0, i =
√
−1 and t ∈ [0,T]. As noted earlier, the second function on the right

satisfies the heat equation. Thus, for any t > 0, we have( 𝜕
𝜕t

− Δ
)
𝜐𝜇 =

( 𝜕
𝜕t

− Δ
)
u ≤ 0.
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Applying the weak maximum principle with the domain ΩT = {|x − y| < 𝜌} × (0,T), with
𝜌 > 0 to be chosen, we obtain that

𝜐𝜇(y, t) ≤ max
𝜕pΩT

𝜐𝜇,

where the parabolic boundary is now given by

𝜕pΩT = {(x, 0) ∶ |x − y| ≤ 𝜌} ∪ {(x, t) ∶ |x − y| = 𝜌, t ∈ [0,T]}.

On the bottom part of this boundary, namely t = 0, we have

𝜐𝜇(x, 0) ≤ u(x, 0) ≤ sup
z

g(z),

as K > 0. On the other part of the parabolic boundary, we have |x − y| = 𝜌, t ∈ [0,T] and
therefore,

𝜐𝜇(x, t) ≤ Meb|x|2 − 𝜇
(
4𝜋a2(T + 𝜀 − t)

)−n∕2 exp
(

𝜌2

4a2(T + 𝜀 − t)

)
≤ Meb(|y|+𝜌)2 − 𝜇

(
4𝜋a2(T + 𝜀)

)−n∕2 exp
(

𝜌2

4a2(T + 𝜀)

)
.

Here we have used the hypothesis on the growth condition of u. We now show that the last
term becomes negative and tends to−∞ as 𝜌 → ∞, using the assumption that 4ba2(T+𝜀) <
1. To see this, take out the term eb𝜌2 from the first term, as a common factor. This makes the
exponential in the second term as

exp
(
𝜌2(1 − 4ba2(T + 𝜀))

4a2(T + 𝜀)

)
.

Since 1−4ba2(T+𝜀) > 0 by assumption, this exponential can be made as large as we please
by choosing 𝜌 large. Therefore, the second term dominates and since 𝜇 > 0, the entire term
becomes negative for sufficiently large 𝜌. In particular, this term is bounded by supz g(z), by
letting 𝜌 → ∞. Thus,

max
𝜕pΩ

𝜐𝜇 ≤ sup
z

g(z).

Hence,

𝜐𝜇(y, t) = u(y, t) − 𝜇 1
2a
√
𝜋(T + 𝜀 − t)

≤ sup
z

g(z).

Finally letting 𝜇 → 0, we arrive at the inequality u(y, t) ≤ supz g(z). Since y is arbitrary,
(8.53) follows. This completes the proof.
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8.4 HEAT EQUATION ON A FINITE INTERVAL: FOURIER
METHOD

In this section, we see how the Fourier method can be used to obtain the solution of the IVP
for the heat equation

ut − a2uxx = 0, 0 < x < L, t > 0
u(x, 0) = g(x), 0 < x < L (8.55)

under different boundary conditions. First consider the following simplest boundary
conditions:

u(0, t) = 0, u(L, t) = 0, t > 0. (8.56)

We seek a solution u of (8.55) in the variable separation form, similar to the procedure
adapted in Section 8.2:

u(x, t) = X(x)T(t). (8.57)

Using (8.55), we then get
T ′

a2T
= X ′ ′

X
= −𝜆2,

with 𝜆 ≥ 0. Thus, X satisfies the equation

X ′ ′ + 𝜆2X = 0

whose general solution is given by

X(x) = c1 cos 𝜆x + c2 sin 𝜆x.

But X needs to satisfy the boundary conditions X(0) =X(L) = 0. Thus, in order to obtain
non-trivial X, that is X is not an identically zero function, 𝜆 must be equal to n𝜋

L
, for

n = 1, 2,…. Thus, we have

Xn(x) = sin
(n𝜋

L
x
)
,

for n = 1, 2,… and consequently

Tn(t) = Cn exp
(
−n2𝜋2a2

L2 t
)
,

for some arbitrary constant Cn. Owing to the linearity of equation (8.55), we thus formally
obtain the solution as (see (8.57))

u(x, t) =
∞∑
n=1

Cn exp
(
−n2𝜋2a2

L2 t
)

sin
(n𝜋

L
x
)
. (8.58)
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We will now determine the constants Cn using the initial condition in (8.55). We assume
that the function g is continuous in [0, L], has piece-wise continuous derivative in (0, L) and
g(0) = g(L) = 0. Then, from the theory of Fourier series (Dirichlet theorem), it is known
that

g(x) =
∞∑
n=1

gn sin
(n𝜋

L
x
)
,

where the series converges absolutely and uniformly. The Fourier coefficients gn of g are
given by

gn =
2
L

L

∫
0

g(x) sin
(n𝜋

L
x
)
dx, (8.59)

for7 n = 1, 2,…. Therefore, we have

u(x, 0) = g(x) =
∞∑
n=1

Cn sin
(n𝜋

L
x
)

implying that Cn = gn. Therefore, the function u is given by

u(x, t) =
∞∑
n=1

gn exp
(
−n2𝜋2a2

L2 t
)

sin
(n𝜋

L
x
)
, (8.60)

where gn are defined as in (8.59). We will now verify that u given by (8.60) indeed is the
required solution.

Since 0 < exp
(
−n2𝜋2a2

L2 t
) ≤ 1 for all t ≥ 0, it readily follows that the series in (8.60)

converges absolutely and uniformly. Also, we have for t > 0,

nk exp
(
−n2𝜋2a2

L2 t
)

is bounded by a constant for k = 0, 1, 2,… if we choose n large enough. This shows that the
series obtained from (8.60) by differentiating term-by-term both with respect to x and t is
also absolutely and uniformly convergent.This, in turn, proves that u is in fact aC∞ function
for 0 < x < L and t > 0. It is now straightforward to verify that u satisfies the IVP (8.55)
and the boundary conditions (8.56).

7If g is assumed to be a C2 function, then it immediately follows that n2gn are bounded.
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8.4.1 Prescribed Non-zero Boundary Conditions

We now change the boundary conditions and impose the following

u(0, t) = u1, u(L, t) = u2, t > 0, (8.61)

where u1 and u2 are given constants. Physically, these conditions represent that the ends of
the rod are maintained at given temperatures.

Let u(x, t) = w(x) + 𝜐(x, t), where

w(x) = u1

(
1 − x

L

)
+ u2

x
L
.

Then, 𝜐 satisfies the IVP (8.55) with the homogeneous boundary conditions (8.56). This
implies that the solution u we are now seeking satisfies the inhomogeneous boundary
conditions (8.61). From (8.60), we get that

𝜐(x, t) =
∞∑
n=1

gn exp
(
−n2𝜋2a2

L2 t
)

sin
(n𝜋

L
x
)
.

Thus, we obtain the following representation for the solution u:

u(x, t) = u1

(
1 − x

L

)
+ u2

x
L
+

∞∑
n=1

gn exp
(
−n2𝜋2a2

L2 t
)

sin
(n𝜋

L
x
)
. (8.62)

It is possible to write down the functions x∕L and 1 − x∕L, 0 ≤ x ≤ L in the form of a sine
series and cosine series, by suitably extending these functions toℝ, periodically, as odd and
even functions, respectively. However, care should be exercised to see that the resulting sine
or cosine series converges absolutely and uniformly on [0, L]. We leave the details to the
reader.

Remark 8.10. When u1 and u2 are not constants, but functions of t, we can still look for
a solution of the form u(x, t) = w(x, t) + 𝜐(x, t), where w satisfies the inhomogeneous
boundary conditions. However, the function 𝜐 now satisfies an inhomogeneous heat
equation, with homogeneous boundary conditions. Under suitable conditions on the
functionsu1(t) andu2(t), it is possible to obtain a representation of the solutionu similar
to (8.62).

8.4.2 Free Exchange of Heat at the Ends

We now discuss the situation of mixed boundary conditions and replace the conditions
(8.61) by

ux(0, t) − hu(0, t) = 0, ux(L, t) + hu(L, t) = 0, t > 0, (8.63)
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for some h ≥ 0. Physically these boundary conditions represent free exchange of heat in
the rod-taking place with the surrounding medium. When h = 0, we get the Neumann
boundary conditions.

Again, seeking a solution in the variable separable form u(x, t) = X(x)T(t), we now find
that the function X satisfies the ODE

X ′ ′ + 𝜆2X = 0

and the boundary conditions

X ′(0) − hX(0) = 0, X ′(L) + hX(L) = 0.

The solution is then given by

X(x) = c1 cos 𝜆x + c2 sin 𝜆x,

with c1 and c2 satisfying the algebraic equations{
−hc1 + 𝜆c2 = 0,
(−𝜆 sin 𝜆L + h cos 𝜆L)c1 + (𝜆 cos 𝜆L + h sin 𝜆L)c2 = 0. (8.64)

For X to be non-trivial, that is c1 and c2 are not both zero, the coefficient matrix in (8.64)
must be singular. Thus, 𝜆 satisfies the equation

2h cos 𝜆L = (𝜆 − h2) sin 𝜆L.

For h = 0, we then have 𝜆 = n𝜋
L

for n = 0, 1, 2,…. For h > 0, put 𝜇 = 𝜆L and b = hL. Then,
the above equation reduces to

2 cot𝜇 =
𝜇
b
− b

𝜇
.

Looking at the graphs of the functions 𝜇 ↦ 2 cot𝜇 and 𝜇 ↦ 𝜇
b
− b

𝜇
(see Figure 8.5), we see

that this trigonometric equation has infinitely many roots.
Denote the roots by 𝜇n, n = 1, 2,…, and thus 𝜆n =

𝜇n
L
, and the corresponding solutions

by Xn(x). It is not difficult to see that these solutions are mutually orthogonal, that is

L

∫
0

Xn(x)Xm(x) dx = 0, if n ≠ m.

This is owing to the fact that the boundary value problem satisfied byXn’s is a regular Sturm–
Liouville problem (see for instance Nandakumaran et al., 2017). We also have that for the
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𝜇
𝜋 2𝜋 3𝜋 4𝜋

Figure 8.5 Graphs of 2 cot𝜇 and 𝜇
b
− b

𝜇
, b > 0

initial function g with stated assumptions,

g(x) =
∞∑
n=1

gnXn(x),

where the series converges absolutely and uniformly. The coefficients gn, which are called
the Fourier coefficients with respect to the orthogonal family {Xn}, suitably normalized, are
given by

gn =
L

∫
0

g(x)Xn(x) dx.

The corresponding Tn’s are now given by

Tn(t) = cn exp

(
−
a2𝜆2

n
L2 t

)
,

with cn = Tn(0) = gn, the Fourier coefficients of the initial function g. Finally, the solution
u is given by

u(x, t) =
∞∑
n=1

Tn(t)Xn(x) =
∞∑
n=1

gn exp

(
−
a2𝜆2

n
L2 t

)
Xn(x). (8.65)
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We leave it to reader to verify that u is indeed a solution to the initial-boundary value
problem under consideration.

8.5 NOTES

The transform techniques, especially the Fourier transform and Laplace transform, play
important roles in obtaining solutions to differential equations, by converting the ODE into
algebraic equations and PDE intoODE. Another way to obtain the Fourier–Laplace formula
is making use of (partial) Fourier transform. Let u be a solution of (8.26). The Fourier
transform of u with respect to the x variable, denoted by ũ, is defined as

ũ(𝜉, t) = ∫
ℝn

u(x, t)e−ix⋅𝜉 dx.

Using the properties of the Fourier transform we have,

ũt(𝜉, t) =∫
ℝn

ut(x, t)e−ix⋅𝜉 dx

= a2 ∫
ℝn

Δu(x, t)e−ix⋅𝜉 dx, since u satisfies the heat equation

= − a2|𝜉|2ũ(𝜉, t).
Thus, ũ satisfies the ODE

dũ
dt

(𝜉, t) + a2|𝜉|2ũ(𝜉, t) = 0,

with 𝜉 playing the role of a parameter. Further ũ(𝜉, 0) = ĝ(𝜉), where ĝ is the Fourier
transform of g. Therefore,

ũ(𝜉, t) = exp(−a2|𝜉|2t)ĝ(𝜉). (8.66)

In order to recover u from ũ, we need to use the inverse Fourier transform:

u(x, t) = (2𝜋)−n ∫
ℝn

ũ(𝜉, t)eix⋅𝜉 d𝜉. (8.67)

It is well known that the Fourier transformof the function e−|x|2∕2 is the function𝜋n∕2e−|𝜉|2∕2.
Therefore, using appropriate scaling, we see that the Fourier transform of the function

f𝜆(x) = e−𝜆|x|2∕2, 𝜆 > 0,
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is given by

f̂ 𝜆(𝜉) = 𝜆−n𝜋n∕2e−
|𝜉|2
2𝜆 , 𝜆 > 0.

Therefore, if we take

K(x, t) = 𝜆n𝜋−n∕2e−
|x|2
4a2t , 𝜆 = 1

2a2t
then,

K̃(𝜉, t) = 𝜆n𝜋−n∕2e−a2|𝜉|2t, 𝜆 = 1
2a2t

.

Thus, using (8.66) and (8.67), we get

u(x, t) = (2𝜋)−n ∫
ℝn

K̃(𝜉, t)ĝ(𝜉)eix⋅𝜉 d𝜉. (8.68)

It is another important property of the Fourier transform that the Fourier transform of the
convolution of two functions is the product of their Fourier transforms:

f̂ ∗ g = f̂ ĝ.

This gives that the inverse Fourier transform of the product of the Fourier transform of two
functions is their convolution. Therefore, using (8.68), we get

u(x, t) = (K ∗ g)(x, t),

which is precisely the Fourier–Laplace formula derived earlier.
In fact, this (inverse Fourier transform) is the procedure used for proving that every

constant coefficient partial differential operator (PDO) possesses a fundamental solution.
This is the celebrated Malgrange–Ehrenpreis Theorem.

Let Ω ⊂ ℝn be an open domain and P(D) =
∑|𝛼|≤m a𝛼D𝛼 be a constant coefficient PDO

of order m; the coefficients a𝛼 are assumed to be real. The (formal) adjoint of P(D) is the
PDO given by P ′(D) =

∑|𝛼|≤m(−1)|𝛼|a𝛼D𝛼 . Let

p(𝜉) =
∑
|𝛼|≤m a𝛼𝜉𝛼 and pm(𝜉) =

∑
|𝛼|=m a𝛼𝜉𝛼,

𝜉 ∈ ℝn be, respectively the full symbol and principal symbol of P(D); see Chapter 6.
A fundamental solution of P(D) inΩ is a (tempered) distribution E satisfying P(D)E = 𝛿,

where 𝛿 is the Dirac distribution. More precisely,⟨
E, P ′(D)g

⟩
= g(0),
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for all C∞ functions g with compact support in Ω; here ⟨E, g⟩ is the action of E on a test
function g. If E is a fundamental solution of P(D), it follows that p(𝜉)Ê(𝜉) = 1, where Ê is the
Fourier transform of E; this is quite technical as the definition of Fourier transform needs
to be extended to tempered distributions. The major difficulty in the proof of Malgrange–
Ehrenpreis theorem is the Fourier inversion of the inverse of a polynomial, which may have
complex roots (see Nirenberg, 1976; Vladimirov, 1979, 1984).

The main advantage of knowing a fundamental solution is the following: If f is a suitable
function or distribution, then a solution of the inhomogeneous equation P(D)u = f is
given by the convolution: u = E ∗ f, where E is a fundamental solution. It is possible to
include initial or boundary conditions in the inhomogeneous term. This is the reason why
the solutions of Laplace, heat and wave equations are all given in terms of convolution. The
fundamental solutions for Laplace and heat equations have been discussed; for the wave
equation it is more complicated.

For a long time, there was no success story for the case of linear operators with
variable coefficients. Then there was a surprising shock when Hans Lewy (1957)
produced an example of a PDE with variable coefficients with no solution. This
example eventually led Hörmander to systematically classify operators that have no
solutions.

Example 8.11 (H. Lewy). The PDE, considered in ℝ3,

ux1x3
+ iux2x3

+ 2i(x1 + ix2)ux3x3
= f(x3) (8.69)

does not have C2 solutions in any neighborhood of the origin in ℝ3, unless the real-
valued function f(x3) is analytic.

Note that the above equation has variable complex coefficients. To prove the statement
made in the example, it suffices to prove that the following equation (obtained from the
above through an integration with respect to x3 variable) ux1

+ iux2
+ 2i(x1 + ix2)ux3

=
f(x3) does not possess any C1 solution in any neighborhood of the origin. Suppose, on the
contrary, that in the cylinder

Ω = {(x1, x2, x3) ∶ x2
1 + x2

2 < R2, |x3| < H},

for some positive R and H, there is a solution u ∈ C1(Ω̄) with a real-valued function f(x3)
being non-analytic in the interval (−H,H). Then, using the polar co-ordinates, we see that
the function

u1(𝜌, 𝜃, x3) = u(𝜌 cos 𝜃, 𝜌 sin 𝜃, x3)

satisfies the equation

u1𝜌ei𝜃 + i
u1𝜃

𝜌
ei𝜃 + 2i𝜌ei𝜃u1x3

= f(x3),
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in D = {(𝜌, 𝜃, x3) ∶ 𝜌 ∈ (0,R), 𝜃 ∈ (0, 2𝜋), |x3| < H}. Further, u1 ∈ C1(D) satisfies
u1(𝜌, 0, x3) = u1(𝜌, 2𝜋, x3). Keeping 𝜌 and x3 fixed, an integration with respect to 𝜃 shows
that the function

u2(𝜌, x3) =

2𝜋

∫
0

u1(𝜌, 𝜃, x3)ei𝜃 d𝜃

lies in C1(D1) and satisfies the equation

u2𝜌 +
u2

𝜌
+ 2i𝜌u2x3

= 2𝜋f(x3),

where D1 = {(𝜌, x3) ∶ 𝜌 ∈ (0,R), |x3| < H}. Hence, the function

𝜐(r, x3) =
√
ru2(

√
r, x3)

belonging to C1(D2) ∩ C(D2) is a solution of the equation

𝜐r + i𝜐x3
= 𝜋f(x3),

where D2 = {(r, x3) ∶ r ∈ (0,R2), |x3| < H}. Thus, if we put

w(r, x3) = 𝜐(r, x3) + i𝜋

x3

∫
0

f(𝜉) d𝜉

we see that w satisfies the Cauchy-Riemann equation wr + iwx3
= 0 in the complex variable

r+ ix3. Therefore,w(r, x3) = g(r+ ix3), where g is an analytic function inD2 and continuous
inD2. Sinceℜg = 0 for r = 0, by the principle of symmetry, the function g can be continued
analytically into the rectangleD3 = {(r, x3) ∶ |r| < R2), |x3| < H}. In particular, g is analytic
on the line segment {r = 0, |x3| < H}. But, g = i𝜋 ∫ x3

0 f(𝜉) d𝜉 for r = 0. Consequently, the
function f(x3) is also analytic in |x3| < H, contradicting the assumption.

Weak Solution: A continuous function u ∈ C(Ω) is called a weak solution8 of P(D)u = f,
where f is a given function, if

∫
Ω

u(x)P ′(D)g(x) dx = ∫
Ω

f(x)g(x) dx

for all test functions g, that is functions which are in C∞(Ω), having compact support in Ω.
An operator P(D) is said to be hypoelliptic in Ω if, whenever f ∈ C∞(Ω) and u is a weak

8The notion of a weak solution may be defined for a much larger class; for example u may be a locally square
integrable function or even a distribution. However, we are not introducing these concepts in this book.
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solution of P(D)u = f, then u ∈ C∞(Ω). The hypoellipticity of the Laplace operator Δ was
established by H. Weyl and this result is known as Weyl’s lemma, which plays an important
role in themodern treatment of potential theory.There aremany extensions ofWeyl’s lemma
and the following result due to Hörmander is very far-reaching:

Theorem 8.12 (Hörmander). An operator P(D) is hypoelliptic if and only if

p(𝛼)(−i𝜉)
p(−i𝜉)

→ 0 as |𝜉| → ∞,

for all 𝛼, |𝛼| ≥ 1, where

p(𝛼)(𝜉) = D𝛼
𝜉p(𝜉).

It is interesting to note that the hypoellipticity of a constant coefficient operator is given by
an algebraic condition in terms of its symbol. It is readily verified that the Laplace operator
Δ and the heat operator 𝜕t − Δ are hypoelliptic in any open domain of ℝn and ℝn+1,
respectively.

The necessary and sufficient condition for hypoellipticity of P(D) can also be given in
terms of a fundamental solution of P(D). If P(D) possesses a fundamental solution that isC∞

except at the origin, then P(D) is hypoelliptic and conversely. We have seen thatΔ possesses
a fundamental solution 𝜙(x) = c|x|−n+2, n ≥ 3, which is C∞ except at the origin. Similarly,
the heat operator 𝜕t − Δ possesses a fundamental solution K(x, t) = (4𝜋a2t)−n∕2e−

|x|2
4a2t , x ∈

ℝn, t > 0 and = 0 for t < 0, which is C∞ except at the origin.
The heat kernel also plays an important role in the index theorem (Gilkey, 1984) and in

the study of diffusion processes (see Strook and Varadhan, 1979).

8.6 EXERCISES

1. Let u ∈ C2(ℝ × (0,∞)) be a solution of the equation ut = a2uxx + bux + cu + f(x, t),
where a, b, c are real constants and f is a given function. Define the function 𝜐 by 𝜐(x, t) =
e−ctu(x − bt, t) for x ∈ ℝ and t > 0. Show that 𝜐 satisfies the non-homogeneous equation
𝜐t = a2𝜐xx + e−ctf(x, t).

2. Solve the IVP

ut = a2uxx + bux + cu + f(x, t), x ∈ ℝ, t > 0 and u(x, 0) = u0(x), x ∈ ℝ

with the following data:

a. f(x, t) = t sin x, u0 ≡ 1, a = c > 0, b = 0.
b. f(x, t) = h(t) ∈ C1([0,∞)) and u0 is a bounded continuous function.
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3. For an arbitrary s ≥ 0, let u(x, t; s) be a C2 solution the IVP

ut = a2Δu, x ∈ ℝn, t > s and u(x, s; s) = f(x, s), x ∈ ℝn.

Define 𝜐 by 𝜐(x, t; s) = ∫ t
s u(x, t; 𝜏) d𝜏 . Show that 𝜐 satisfies the IVP

𝜐t = a2Δ𝜐 + f(x, t), x ∈ ℝn, t > s and 𝜐(x, s; s) = 0, x ∈ ℝn.

Further, show that the converse also holds.
Thus, the homogeneous problem with non-homogeneous initial data can be transformed
into a non-homogeneous problem with zero initial data and vice-versa.

4. Let u0 ∶ ℝn → ℝ be such that u0(x) =
∏n

j=1 u0j(xj), where for each j = 1, 2,… , n, u0j ∶
ℝ → ℝ is a bounded continuous function. If uj solves the one-dimensional heat equation
𝜕uj
𝜕t

= a2 𝜕
2uj
𝜕x2

j
with initial condition uj(xj, 0) = u0j(xj) for j = 1, 2,…, show that the solution

u of the IVP ut = a2Δu, u(x, 0) = u0(x) is given by u(x, t) =
∏n

j=1 uj(xj, t).
5. Verify that the function u given by the expression in (8.37) satisfies the inhomogeneous

equation (8.34).
6. Prove the formula (8.52).
7. Verify that the functions u given by the expressions (8.62) and (8.65) satisfy the respective

initial-boundary value problems cited in the text.
8. Suppose u0 ∈ C(ℝn) satisfies the condition that |u0(x)| ≤ Me−𝛿|x|2 for all x ∈ ℝn and for

some constants M > 0, 𝛿 ≥ 0. Show that the solution u of the heat equation ut = a2Δu
with initial data u0 satisfies the estimate

|u(x, t)| ≤ M
(
1 + 4a2𝛿t

)−n∕2 exp
(
−

𝛿|x|2
1 + 4a2𝛿t

)
for all x ∈ ℝn and t ≥ 0.



CHAPTER 9

One-Dimensional Wave
Equation

9.1 INTRODUCTION

The wave equation

□cu ≡ utt − c2uxx = 0, t > 0, x ∈ ℝ, (9.1)

models many real-world problems: small transversal vibrations of a string, the longitudinal
vibrations of a rod, electrical oscillations in a wire, the torsional oscillations of shafts,
oscillations in gases, and so on. It is one of the fundamental equations, the others being
the equation of heat conduction and Laplace (Poisson) equation, which have influenced the
development of the subject of partial differential equations (PDE) since the middle of the
last century.

We shall now derive equation (9.1) in the case of transverse vibrations of a string.
Physically, a string is a flexible and elastic thread. The tensions that arise in a string are
directed along a tangent to its profile. We assume that the string is placed on the x-axis, with
its end points at x = 0 and x = L (not shown in the figure); see Figure 9.1.

We consider small transversal vibrations of the string, so that the motion of the points
of the string is described by a function u(x, t), which gives the amount that a point of the
string with abscissa x has moved at time t. We also assume that the length of element MM ′

of the string corresponding to x and x + Δx, Δx being very small, is equal to1 Δx. We also
assume that the tension of the string is uniform and denote it by T.

Consider a small element of the string corresponding to the abscissa points x and x+Δx.
ForcesT act at the end points of this element along the tangents to the string. Let the tangents
make angles 𝜙 and 𝜙 + Δ𝜙 with x-axis, at M and M ′, respectively. Then, the projection on
the u-axis of the forces acting on this element will be equal to

T sin(𝜙 + Δ𝜙) − T sin𝜙.

1This amounts to assuming u2
x is very small and may be neglected. For, the length of elementMM ′ of the string

equals
x+Δx

∫
x

√
1 + u2

x dx ≈

x+Δx

∫
x

dx = Δx.

252
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x

u

x x + Δx

M
M ′

T

T

Figure 9.1 The forces acting on elementMM ′ of a vibrating string under uniform tension T

Since we are assuming 𝜙 is small, we use the approximation sin𝜙 = tan𝜙 and obtain

T sin(𝜙 + Δ𝜙) − T sin𝜙 ≈ T tan(𝜙 + Δ𝜙) − T tan𝜙

= T
[𝜕u
𝜕x

(x + Δx, t) − 𝜕u
𝜕x

(x, t)
]

= T𝜕
2u
𝜕x2 (x + 𝜃Δx, t) Δx, 0 < 𝜃 < 1

≈ T𝜕
2u
𝜕x2 (x, t) Δx.

Next, let 𝜌 be the linear density, that is, mass per unit length, of the string. Applying the
Newton’s second law of motion, to the small element of the string under consideration, we
obtain

𝜌Δx𝜕
2u
𝜕t2

(x, t) = T𝜕
2u
𝜕x2 (x, t) Δx.

Dividing by Δx throughout and putting c2 = T
𝜌
, results in (9.1).

9.2 CAUCHY PROBLEM ON THE LINE

We begin with the wave equation in one (space) dimension and discuss its solution by two
different methods. Consider the homogeneous wave equation

□cu ≡ utt − c2uxx = 0, t > 0, x ∈ ℝ, (9.2)
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with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ ℝ. (9.3)

Here the constant c, called the speed of propagation, is a positive real number. The operator
□c is called the D’Alembertian or the wave operator, u0, u1 are given functions and u is the
unknown function. Probably this is the first PDE in the literature derived by D’Alembert
in 1747. We now describe two methods to find the solution of (9.2) satisfying the initial
conditions (9.3).

Method 1. The first method invokes the characteristic variables

𝜉 = x + ct, 𝜂 = x − ct.

These variables arise out of the real characteristics of the equation (9.2) possesses. Recall the
analysis discussed in Chapter 6. It is straightforward to verify that utt− c2uxx = −4c2u𝜉𝜂 and
so, (9.2) becomes u𝜉𝜂 = 0. It is readily verified that the general solution of the latter equation
is given by

u = F(𝜉) + G(𝜂) = F(x + ct) + G(x − ct), (9.4)

where F,G are arbitrary C2 functions defined on ℝ. We use the initial conditions (9.3) to
determine F and G. We have

F(x) + G(x) = u0(x),
cF ′(x) − cG ′(x) = u1(x).

Integrating the second equation and then solving the resulting equations, we obtain

F(x) = 1
2
u0(x) +

1
2c

x

∫
0

u1(s) ds + k,

G(x) = 1
2
u0(x) −

1
2c

x

∫
0

u1(s) ds − k,

where k is a constant of integration. Substituting these expressions into (9.4), we see that the
solution u is given by

u(x, t) = 1
2
(
u0(x + ct) + u0(x − ct)

)
+ 1

2c

x+ct

∫
x−ct

u1(s) ds. (9.5)
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x

t

x − ct

(x, t)

x + ct
x

(y, 0)

y − ct y + ct

Figure 9.2 Domain of dependence and range of influence

This is called the D’Alembert’s formula. We have thus proved the following theorem:

Theorem 9.1. Suppose the initial conditions in (9.3) satisfy that u0 ∈ C2(ℝ) and u1 ∈
C1(ℝ). Then, (9.2) has a unique C2 solution u satisfying the initial conditions in (9.3).
Further, u is given by the D’Alembert’s formula (9.5).

We remark that when the initial data u0 and u1 are less smooth than stated in Theorem 9.1,
we will not get a classical solution of (9.2). In this case we need to search for a weak solution
of the wave equation. We briefly discuss this concept of solution in Section 9.5.

DomainofDependence,Rangeof Influence andDomainofDeterminacy: Wenowmake
the following observations based on theD’Alembert’s formula (9.5).The value of the solution
u at (x, t), t > 0 depends on the values of the initial data only in the interval [x − ct, x + ct]
on the initial line t = 0, that is the x-axis. This is referred to as the domain of dependence (of
the solution) at (x, t). Similarly, a point y on the initial line can influence the value of u for
some t > 0, only in a line segment {(x, t) ∶ x ∈ [y − ct, y + ct]}. This is referred to as the
range of influence of the point (y, 0). These are illustrated in Figure 9.2.

Thus, the initial values in an interval [a, b]on t = 0will influence the values of the solution
u in the region

{(x, t) ∶ x ∈ [a − ct, b + ct], t > 0}.

This is the region between the diverging characteristics x + ct = a and x − ct = b drawn
from the points (a, 0) and (b, 0), a < b, respectively (see Figure 9.3). On the other hand,
the converging characteristics emanating from (a, 0) and (b, 0) meet when t = 1

2c
(b − a).

Thus, the values of the solution u in the triangle with vertices at (a, 0), (b, 0) and
( a+b

2
, b−a

2c

)
are determined by the initial values within the interval [a, b] at t = 0 (see Figure 9.4). This
triangular region is referred to as the domain of determinacy of the interval [a, b].

Method 2: This is similar to the method of characteristics. Here, we factorize the wave
operator into two first-order operators:

□c = (𝜕t − c𝜕x)(𝜕t + c𝜕x).



256 ONE-DIMENSIONAL WAVE EQUATION

x

t

a b

x + ct = a x − ct = b

Figure 9.3 Range of influence of [a, b]

x

t

a

(
a+b
2
, b−a

2c

)

b
Figure 9.4 Domain of determinacy of [a, b]

Let 𝜐 = (𝜕t + c𝜕x)u. Then, solving (9.2) is equivalent to solving the following two first-order
equations:

(𝜕t + c𝜕x)u = 𝜐 and (𝜕t − c𝜕x)𝜐 = 0. (9.6)

The first-order homogeneous equation (𝜕t − c𝜕x)𝜐 = 0 is solved by the method of
characteristics and is given by 𝜐(x, t) = V(x+ ct), for an arbitrary C1 function V. Obviously,
𝜐(x, 0) = V(x), soV comes from the initial condition. Next, we consider the inhomogeneous
equation (𝜕t−c𝜕x)u = 𝜐(x, t).The following procedure, calledDuhamel’s principle, describes
a way to obtain the solution of the inhomogeneous equation by reducing the problem to a
homogeneous equation. Fix s ∈ [0, t] and consider the homogeneous equation (𝜕t−c𝜕x)w =
0 in the region t > s with the initial condition w(x, t) = 𝜐(x, s) for t = s. Let us denote the
solution by w(x, t; s) to emphasize the dependence on s. By using the translation invariance
of the wave equation, we at once obtain

w(x, t; s) = 𝜐(x + c(t − s), s), for t ≥ s.

Now let

u(x, t) = ũ(x + ct) +
t

∫
0

w(x, t; s) ds = ũ(x + ct) +
t

∫
0

𝜐(x + c(t − s), s) ds. (9.7)
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Here ũ is an arbitraryC1 function defined inℝ.The easy verification thatu above satisfies the
inhomogeneous equation (𝜕t − c𝜕x)u = 𝜐(x, t) is left as an exercise and the initial condition
u(x, 0) = ũ(x) for x ∈ ℝ. Formula (9.7) is called Duhamel’s formula.

We now use these observations to solve any general kth order equation, in which the
operator factors into linear factors. More precisely, consider the initial value problem (IVP):

(𝜕t − c1𝜕x)⋯ (𝜕t − ck𝜕x)u = 0,
𝜕jtu(x, 0) = u0j(x), j = 0, 1,… , k − 1.

Here the real constants ci may or may not be distinct and k ≥ 2. Since the general case
follows from an induction argument, suffices to consider the case k = 2. Thus, we consider
the following IVP:

(𝜕t − c1𝜕x)(𝜕t − c2𝜕x)u = 0, x ∈ ℝ, t > 0 (9.8)
u(x, 0) = u0(x), 𝜕tu(x, 0) = u1(x), x ∈ ℝ. (9.9)

Putting 𝜐 = (𝜕t − c2𝜕x)u, we see that (𝜕t − c1𝜕x)𝜐 = 0 and therefore,

𝜐(x, t) = u1(x + c1t) − c2u ′
0(x + c1t).

Then, since u satisfies the inhomogeneous equation (𝜕t − c2𝜕x)u = 𝜐, we obtain, using the
Duhamel’s formula (9.7), that

u(x, t) = u0(x + c2t) +
t

∫
0

𝜐(x + c2(t − s), s) ds

= u0(x + c2t) +
t

∫
0

u1(x + c2(t − s) + c1s) ds

− c2

t

∫
0

u ′
0(x + c2(t − s) + c1s) ds

= u0(x + c2t) +
t

∫
0

u1(x + c2t + (c1 − c2)s) ds

− c2

t

∫
0

u ′
0(x + c2t + (c1 − c2)s) ds. (9.10)
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Looking at the variable of integration, we consider the following two cases:

(1) Case c1 ≠ c2: In this case, by changing the variable of integration, we obtain

u(x, t) =
[

c1
c1 − c2

u0(x + c2t) −
c2

c1 − c2
u0(x + c1t)

]
+ 1

c1 − c2

x+c2t

∫
x+c1t

u1(𝜉) d𝜉. (9.11)

Taking c2 = −c1 = c in (9.11), we obtain the D’Alembert’s formula (9.5).
(2) Case c1 = c2 = c, say. Then, the integration variable s is absent in both the integrals

on the right side of (9.10) and we obtain

u(x, t) = u0(x + ct) − ctu ′
0(x + ct) + tu1(x + ct). (9.12)

Looking at the solution given in (9.12), we see that the initial conditions u0 and u1 should
satisfy that u0 ∈ C3(ℝ) and u1 ∈ C2(ℝ) in order that the solution u is C2. Thus, there is
loss of regularity in the problem: more smoothness of the initial data is required in order to
get less smooth solution. The operator (𝜕t − c𝜕x)2 is said to be weakly hyperbolic.2 In higher
dimensions, such operators do cause difficulties in proving existence and regularity results.

The general case of k speeds c1,… , ck, distinct or otherwise, follows by an induction
argument and the above discussion of the two cases. This is left as an exercise.

First-Order System: The above procedure also extends to a system of first-order equations
in one (space) variable. Consider the first-order system

ut + Aux = 0, (9.13)

with initial conditions u(x, 0) = u0(x), x ∈ ℝ. Here, A is a given realN×Nmatrix, u, u0 are
ℝN valued functions and N is a positive integer. The system (9.13) is said to be

(1) Hyperbolic,3 if all the eigenvalues of A are real; in some textbooks the terminology
weakly hyperbolic is also used.

(2) Strictly hyperbolic if the eigenvalues of A are real and distinct.
(3) Strongly hyperbolic if the eigenvalues of A are real and A is diagonalizable.
(4) Symmetric hyperbolic if the matrix A is symmetric.

By the Jordan decomposition theorem, there is non-singularmatrixC such thatC−1AC = Λ.
The matrix Λ would be a diagonal matrix if the matrix A is diagonalizable; otherwise, it

2Though there is only one real characteristic here, this equation is not parabolic.
3We will not go into the motivation of this definition, as it is bit complicated.
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would be a block diagonal matrix, with Jordan blocks on its diagonal. A typical Jordan block
is a square matrix of the form ⎡⎢⎢⎢⎣

𝜆 1 0 ⋯ 0
0 𝜆 1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 0 𝜆.

⎤⎥⎥⎥⎦
If we put 𝜐 = C−1u, then each component 𝜐i of 𝜐 satisfies either a homogeneous or
inhomogeneous first-order equation, whose solution may be explicitly written down by
using the above-described procedure. Note that the eigenvalues ofA play the roles of speeds
of propagation for different components of u.

9.2.1 Inhomogeneous Equation: Duhamel’s Principle

Similar to the first-order inhomogeneous equation considered above, we obtain the solution
of second-order inhomogeneous equation by using the Duhamel’s principle.4 Consider the
inhomogeneous wave equation

utt − c2uxx = f(x, t), x ∈ ℝ, t > 0, (9.14)

with initial conditions (9.3). Because of the linearity of the equation (the superposition
principle holds), the required solution is sum of two solutions: one is the solution of the
inhomogeneous equation (9.14) with zero initial conditions and another, solution of the
homogeneous equation (9.2) satisfying the initial conditions (9.3). Since we already know
that the solution to the latter problem is given by the D’Alembert’s formula, it suffices to
consider the inhomogeneous equation with zero initial conditions.TheDuhamel’s principle
converts this problem to solving a homogeneous equation with a suitable initial data.

Fix s ≥ 0 and consider the following IVP:

𝜐tt − c2𝜐xx = 0, x ∈ ℝ, t > s
𝜐(x, s) = 0, 𝜐t(x, s) = f(x, s).

}
(9.15)

Since the wave operator is translation invariant (change the variable t to 𝜏 = t−s), we readily
see that the solution of (9.15) is given by the D’Alembert’s formula

𝜐(x, t; s) = 1
2c

x+c(t−s)

∫
x−c(t−s)

f(𝜉, s) d𝜉. (9.16)

4This principle applies more generally to any linear equation or system of the form ut + Lu = f, where the
differential operator L does not involve the time variable t.
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The notation on the left side of (9.16) is to stress the dependence on s. We now claim that
the solution u of the inhomogeneous equation (9.14) with zero initial conditions is given by

u(x, t) =
t

∫
0

𝜐(x, t; s) ds = 1
2c

t

∫
0

x+c(t−s)

∫
x−c(t−s)

f(𝜉, s) d𝜉 ds, (9.17)

provided that the forcing term f is a C1 function. Note that the right-most double integral
in (9.17) is the integral over the characteristic triangle with vertices at (x, t), (x − ct, 0) and
(x + ct, 0).

It is readily seen that u(x, 0) = 0 for all x. By the familiar formula of differentiation under
the integral sign, we obtain

ut(x, t) =
1
2

t

∫
0

(
f(x + c(t − s), s) + f(x − c(t − s), s)

)
ds

utt(x, t) = f(x, t) + c
2

t

∫
0

(
𝜕f
𝜕x

(x + c(t − s), s) −
𝜕f
𝜕x

(x − c(t − s), s)
)

ds

uxx(x, t) =
1
2c

t

∫
0

(
𝜕f
𝜕x

(x + c(t − s), s) −
𝜕f
𝜕x

(x − c(t − s), s)
)

ds.

The first equation gives that ut(x, 0) = 0 for all x and the other two equations show that u
satisfies the inhomogeneous equation (9.14). We can now write down the solution of the
inhomogeneous equation (9.14), satisfying the initial conditions (9.3):

u(x, t) = 1
2
(
u0(x + ct) + u0(x − ct)

)
+ 1

2c

x+ct

∫
x−ct

u1(𝜉) d𝜉

+ 1
2c

t

∫
0

x+c(t−s)

∫
x−c(t−s)

f(𝜉, s) d𝜉ds. (9.18)

Using the above representation, it is now straightforward to derive continuous dependence
of the solution u on the data. For this purpose, assume, in addition, that the functions u0
and u1 are bounded functions on ℝ and that for any fixed T > 0, the function f has the
following finite norm: ‖f‖T = max

t∈[0,T]
sup
x∈ℝ

|f(x, t)| < ∞.



9.2 Cauchy Problem on the Line 261

We also introduce the following norms:|u0|∞ = sup
x∈ℝ

|u0(x)|
with a similar definition for u1 and|u(⋅, t)|∞ = sup

x∈ℝ
|u(x, t)|, for t > 0.

We have

Theorem 9.2. Let T > 0 be fixed.Then, the solution u given by (9.18) satisfies the following
estimate: for any t ∈ [0,T],

|u(⋅, t)|∞ ≤ |u0|∞ + T|u1|∞ + T2

2
‖f‖T. (9.19)

Proof From (9.18), it follows that

|u(x, t)| ≤ |u0|∞ + t|u1|∞ + ‖f‖T t

∫
0

(t − s) ds,

for any 0 < t ≤ T. The estimate (9.19) immediately follows from the above inequality.

Similar estimates may be obtained for ux, ut with appropriate assumptions on the initial
conditions. Though the estimate (9.19) is adequate in the present scenario, it is not a useful
estimate when we move to equations with variable coefficients or non-linear equations.
The more appropriate estimates for the solution of a general hyperbolic equation or
system, are the so-called energy estimates. Such estimates are quite useful in establishing
existence, uniqueness and regularity results for hyperbolic equations or systems. In the
analysis, we obtained the estimate using the representation of the solution. However, such
a representation in general is not available and we need to derive the estimate(s) of the
unknown solution (assuming its existence) using the PDE under consideration and some
integration tools. Such estimates are known as a priori estimates and play a crucial role in
establishing existence and uniqueness of solutions to PDE.Derivation of a priori estimates is
the trademark of themodern PDE analysis. In the present case, we obtain one such estimate.

Let u be the solution of the homogeneous equation (9.2) satisfying the initial conditions
(9.3). Multiply (9.2) by ut and integrate the resulting equation5 over ℝ:

∞

∫
−∞

ututt dx − c2
∞

∫
−∞

utuxx dx = 0.

5Do the integration over the interval (−R,R) and let R → ∞.
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We can write ututt =
1
2
𝜕
𝜕t
(u2

t ). Next, integrate by parts in the second integral and assume
that the boundary terms vanish. After this, the integrand becomes

utxux =
1
2
𝜕
𝜕t
(u2

x).

We therefore obtain that

1
2
d
dt

∞

∫
−∞

(
u2
t + c2u2

x
)
dx = 0.

If we denote by E(t), called the total energy at time t,

E(t) =
∞

∫
−∞

(
u2
t (x, t) + c2u2

x(x, t)
)
dx,

it immediately follows that E(t) = E(0), which is the statement that the total energy is
conserved. In the situation of the variable coefficients, the total energymay not be conserved,
but it is possible to estimate E(t) in terms of the initial energy E(0), which proves to be quite
useful.

With the aid of the D’Alembert’s solution, we can readily obtain the expression for ux and
ut. Using these expressions, we invite the reader to come up with appropriate assumptions
on the initial conditions u0 and u1, so that the computations done in the previous paragraph
become valid statements.

9.2.2 Characteristic Parallelogram

We now describe another characterization of the solution of the homogeneous wave
equation. Consider a parallelogram in the upper half x − t plane t > 0, formed by the
characteristics of the wave operator, namely the straight lines x ± ct = constant. If (x, t) is a
point in the upper half plane, then for h, k small, the parallelogram with vertices as shown
in Figure 9.5 will be one such parallelogram. If u is a solution of the homogeneous equation
(9.2), it is readily seen that

u(A) + u(C) = u(B) + u(D), (9.20)

using the D’Alembert’s formula, where A,B,C and D are the vertices of the parallelogram
shown in Figure 9.5. In fact, (9.20) characterizes the solutions of the homogeneous
equation.

Theorem 9.3. Let u be any C2 function satisfying the identity (9.20) for all characteristic
parallelograms. Then, u satisfies the homogeneous equation (9.2).
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x

t

(x, t)

A(x − ch, t − k)

B(x + ck, t + h)

D(x − ck, t − h)

C(x + ch, t + k)

Figure 9.5 A characteristic parallelogram

Proof If we apply Taylor’s formula at each of the verticesA,B,C,D and use (9.20), the result
follows by letting h, k → 0.

9.3 CAUCHY PROBLEM IN A QUADRANT (SEMI-INFINITE
STRING)

We now consider the wave equation in the first quadrant of the x, t plane:

utt − c2uxx = 0, x > 0, t > 0. (9.21)

In addition to the initial conditions at t = 0, we also need to provide boundary conditions
on the boundary x = 0 of the quadrant under consideration. The boundary conditions are
usually of three types:

(1) Dirichlet boundary condition: Hereu(0, t), t > 0 is prescribed.This is almost equivalent
to prescribing the tangential derivative ut along the t-axis.

(2) Neumann boundary condition: Here the normal derivative ux is prescribed on the
boundary x = 0, where

ux(0, t) = lim
h→0+

u(h, t) − u(0, t)
h

, t > 0.

(3) Since the vectors along the tangent and the normal are linearly independent, the
derivative along any other direction can be prescribed by a suitable linear combination
of conditions in (1) and (2) above.This type of boundary condition is termed asmixed
or Robin boundary condition. In this case either 𝛼u + 𝛽ux or 𝛼ut + 𝛽ux is prescribed
on x = 0 for suitable real 𝛼 and 𝛽.
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Equation (9.21) models the vibrations in a semi-infinite string placed along the positive real
axis [0,∞). The above boundary conditions imposed at x = 0 describe different physical
situations. For example, the condition u(0, t) = 0 indicates that the string is tied at x = 0.

Case 1: We begin with Dirichlet boundary condition. The initial and boundary conditions
are of the form

u(x, 0) = u0(x), ut(x, 0) = u1(x), x > 0,
u(0, t) = h(t), t > 0.

}
(9.22)

The general solution of (9.21) is still of the form

u(x, t) = F(x + ct) + G(x − ct),

for suitable functions F andG. Let (x, t) be a point in the first quadrant satisfying x > ct (see
Figure 9.6). Then, since the domain of dependence of (x, t) is the interval [x − ct, x + ct] on
the positive x-axis, as x > ct, we obtain

u(x, t) = 1
2
(
u0(x + ct) + u0(x − ct)

)
+ 1

2c

x+ct

∫
x−ct

u1(s) ds, x > ct (9.23)

given by theD’Alembert’s formula. Next, consider the case x < ct. Using the general solution

u(x, t) = F(x + ct) + G(x − ct),

we obtain, making use of the boundary condition on x = 0,

h(t) = F(ct) + G(−ct), t > 0.

As before, we have

F(x) = 1
2
u0(x) +

1
2c

x

∫
0

u1(𝜉) d𝜉 + k,

x

t
x = ct

(x, t)
x > ct

(x − ct, 0) (x + ct, 0)
x

t
x = ct

(x, t)
x < ct

(0, (ct − x)∕c)

(ct − x, 0) (ct + x, 0)
Figure 9.6 Characteristics of the wave equation in the first quadrant
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where k is a constant. Therefore,

G(−t) = h
( t
c

)
− 1

2
u0(t) −

1
2c

t

∫
0

u1(𝜉) d𝜉 − k, t > 0.

Therefore, at the point (x, t) with x < ct,

u(x, t) = F(x + ct) + G(x − ct)

=
⎡⎢⎢⎣12u0(x + ct) + 1

2c

x+ct

∫
0

u1(𝜉) d𝜉 + k
⎤⎥⎥⎦+

+
⎡⎢⎢⎣h

(ct − x
c

)
− 1

2
u0(ct − x) − 1

2c

ct−x

∫
0

u1(𝜉) d𝜉 − k
⎤⎥⎥⎦

= h
(ct − x

c

)
+ 1

2
[
u0(ct + x) − u0(ct − x)

]
− 1

2c

ct+x

∫
ct−x

u1(𝜉) d𝜉. (9.24)

A schematic diagram showing the characteristics in the two cases x > ct and x < ct are
depicted in Figure 9.6.

Remark 9.4. When h ≡ 0, the solution can also be obtained by a simple reflection. Define
the function ũ by

ũ(x, t) =

{
u(x, t), for x > 0,
−u(−x, t), for x < 0,

and similar definitions for ũ0 and ũ1. Then, it is straightforward to check that ũ satisfies
the wave equation in ℝ with initial conditions ũ0 and ũ1. Once ũ is determined using
D’Alembert’s formula, we can obtain u. The details are left as an exercise.

We now determine the values of the solution u(x, t) on the characteristic line x = ct by
requiring it to be a C2 function in the first quadrant x > 0, t > 0. By examining the
expressions in (9.23) and (9.24), we see that u(x, t) is continuous across x = ct provided
that u0(0) = h(0). This is called a compatibility condition. We leave it as an exercise to show
that the following compatibility conditions must be satisfied in order that u is C2 in the first
quadrant:

u0(0) = h(0), u1(0) = h ′(0), c2u ′ ′
0 (0) = h ′ ′(0). (9.25)
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Case 2: We now consider the Neumann boundary problem, namely

utt − c2uxx = 0, x > 0, t > 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x > 0,
ux(0, t) = h(t), t > 0,

where h is a given smooth function. The procedure for determining the solution essentially
remains the same. Again, in the region x > ct (see Figure 9.6) there is no change and the
solution is given by the D’Alembert’s formula. In the region x < ct, the condition

h(t) = F ′(ct) + G ′(−ct), t > 0,

needs to be satisfied, assuming that the general form of the solution is

u(x, t) = F(x + ct) + G(x − ct).

As before,

F(x) = 1
2
u0(x) +

1
2c

x

∫
0

u1(𝜉) d𝜉 + k1, x > 0,

with k1 an arbitrary constant. We have

G ′(−t) = h
( t
c

)
− F ′(t), t > 0.

Upon integration and using the expression for F in terms of the initial data, we obtain

G(−t) = −∫
t

0
h
( s
c

)
ds + 1

2
u0(t) +

1
2c

t

∫
0

u1(𝜉) d𝜉 + k2, t > 0,

with k2 an arbitrary constant. Thus, we have in the region x < ct,

u(x, t) = −

ct−x

∫
0

h
( s
c

)
ds + 1

2
(
u0(ct + x) + u0(ct − x)

)
+ 1

2c

ct+x

∫
ct−x

u1(𝜉) d𝜉 + k, (9.26)

where k is an arbitrary constant. As in the previous case of theDirichlet boundary condition,
it is easily checked that the constant k = 0 for the solution u to be continuous on the
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characteristic line x = ct. The compatibility conditions that need to be satisfied by the initial
and boundary conditions for u to be C2 in the first quadrant, including the line x = ct, are
now given by

u ′
0(0) = h(0), u ′

1(0) = h ′(0).

A somewhat lengthy verification of these conditions is left as an exercise to the reader.
Case 3: The case of mixed boundary conditions is treated in the exercises.

9.4 WAVE EQUATION IN A FINITE INTERVAL

We now consider the wave equation in a finite interval (0, L):

utt − c2uxx = 0, 0 < x < L, t > 0, (9.27)

with initial conditions prescribed in (9.3) and any one of the three boundary conditions
prescribed on the boundary lines x = 0 and x = L. As in the case of the problem in
the first quadrant, the initial and boundary conditions need to satisfy certain compatibility
conditions in order that the solution u be C2 in the region (0, L) × {t > 0}. The solution will
be determined depending on the position of the point (x, t), t > 0 as schematically shown
in Figure 9.7. The straight line segments that are drawn in this figure are respectively the
characteristic lines x − ct = constant originating on the line x = 0, and the characteristic
lines x + ct =constant originating from the line x = L. Referring to Figure 9.7, we see
that the points (x, t) in region I are not influenced by the boundary conditions at x = 0
and x = L. Thus, the D’Alembert’s formula applies for the solution. In region II, the points
(x, t) are influenced by the boundary condition on the line x = 0. By constructing suitable
characteristic parallelogram with one vertex at (x, t), we use the parallelogram property to

x

t

0 L

I
II

IV

III

Figure 9.7 Characteristics of the wave equation in a finite interval
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obtain the value u(x, t). Similar arguments apply for the region III, where the values of the
solution will be influenced by the boundary condition on the line x = L. We continue with
similar arguments to find u(x, t) for any x ∈ (0, L) and t > 0. We ask the reader to write
down formulas in different regions and for different boundary conditions.

9.5 NOTION OF A WEAK SOLUTION

When the speed of propagation c is a function of x, it is no longer possible to obtain the
solution of the wave equation in explicit form. The same remark also applies when, for
example, the inhomogeneous term f is a non-linear function of u also. In such situations, it is
in general not possible to prove an existence result in the class ofC2 functions. In themodern
development of PDEs, which began sometime in the middle of last century, powerful tools
were discovered to tackle the problemof existence and uniqueness of solutions to PDEs.One
such tool is the notion of a weak solution to a PDE. Roughly speaking, a weak solution of a
PDE satisfies an integral relation involving the given partial differential operator, whereas
the usual solution, which we call a strong or classical solution satisfies the given PDE point-
wise, at all the points where the solution is defined. Below, we shall explain the concept of a
weak solution in the context of the wave equation (9.2).

Suppose u is a strong solution of (9.2). This means that u is a C2 function that satisfies
equation (9.2) for all x ∈ ℝ and t > 0. Then, by multiplying this equation by a C2 (or a C∞

function) 𝜙 and by integrating, we obtain

0 =

∞

∫
0

∫
ℝ

𝜙(x, t)
(
utt − c2uxx

)
dxdt.

In what follows we omit the limits in the integral signs, for brevity. If we now integrate by
parts, then

∬ u(x, t)
(
𝜙tt − c2𝜙xx

)
dxdt = 0.

There will be no boundary terms when for example 𝜙 and its derivatives vanish outside a
bounded set.That is,𝜙 is aC∞ function with compact support and we call all such functions
as test functions.

Definition 9.5 (Weak Solution). Let u(x, t) be any continuous function6 defined inℝ×ℝ+.
Then, u is called a weak solution of the wave equation (9.2) if the following integral

6If Lebesgue integration is used, then suffices to assume that u is locally integrable.
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relation

∬ u(x, t)
(
𝜙tt − c2𝜙xx

)
dxdt = 0, (9.28)

holds for all the test functions 𝜙.

It is possible to include the initial conditions in the definition of a weak solution, but will
not do it here to keep the presentation simple. It is readily seen that any strong solution
is a weak solution. Conversely, any weak solution that possesses second-order continuous
derivatives is a strong solution.This follows by integration by parts and the following simple
observation:

If g(x, t) is a continuous function and ∬ g(x, t)𝜙(x, t) dxdt = 0 for all test functions 𝜙,
then g ≡ 0.

However, we shall now see that there aremany continuous functions, not even possessing
first-order derivatives, which are weak solutions of the wave equation. Obviously, these are
not strong solutions.

Let 𝜐 ∶ ℝ → ℝ be any continuous function. Define u by u(x, t) = 𝜐(x + ct) (similarly,
𝜐(x− ct)) for (x, t) ∈ ℝ×ℝ. In order to show that u satisfies (9.28), consider the integral on
the left side of (9.28) andmake the (non-singular) change of variables: 𝜉 = x+ct, 𝜏 = x−ct.
Then,

∬ u(x, t)
(
𝜙tt − c2𝜙xx

)
dxdt = k∬ 𝜐(𝜉)𝜙𝜉𝜏 d𝜉d𝜏,

where k is a constant, resulting from the change of variables. By Fubini’s theorem, we can
write the second integral as an iterated integral:

∫ 𝜐(𝜉) d𝜉 ∫ 𝜙𝜉𝜏 d𝜏.

It is easy to check that if 𝜙 and its derivatives vanish outside a bounded set as a function of x
and t, the same holds when we consider it as a function of 𝜉 and 𝜏 . The integral with respect
to 𝜏 vanishes as 𝜙 and its derivatives vanish outside a bounded set. This shows that u is a
weak solution of the wave equation (9.2).

9.6 GENERAL SECOND-ORDER EQUATIONS

In the previous sections, we have discussed the derivation of solutions to the wave equation
in different situations. In all these cases, the initial conditions were imposed on the non-
characteristic initial curve, namely the line t = 0. A natural question that arises is
the possibility of prescribing the initial conditions on a general non-characteristic curve
prescribed by the equation t = 𝜙(x). In such a situation, the solution is sought at all points
(x, t) with t > 𝜙(x). Assume that u is a C2 solution of the inhomogeneous wave equation
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(x2, t2)

(x, t)

(x1, t1)

C1
C2

C

Initial curvet = 𝜙(x)

Figure 9.8 A characteristic triangle

(9.14) in the region t > 𝜙(x) with prescribed conditions on the initial curve t = 𝜙(x).
Consider a point (x, t) with t > 𝜙(x) and draw the characteristics C1 and C2 through it to
meet the initial curve at (x1, t1) and (x2, t2), respectively (see Figure 9.8). Let C be the part of
the initial curve between (x1, t1) and (x2, t2) and consider the domain D bounded by C1,C2
and C. Writing utt − c2uxx = (ut)t − (c2ux)x and using the Green’s identity in the domain D,
we obtain

∫̂
C

−c2u𝜉 d𝜏 − u𝜏 d𝜉 = ∬
D

f(𝜉, 𝜏) d𝜉d𝜏, (9.29)

where the integral on the left is a line integral with Ĉ denoting the union of the curvesC1,C2
and C. Since we wish to find a formula for u(x, t), we have used the notations 𝜉 and 𝜏 for the
running variables.

The curve C1 is described by the equation 𝜉 = x + c(t − s), 𝜏 = s, s ∈ [t1, t], with 𝜉 = x1
when 𝜏 = t1. Therefore, we have

−∫
C1

c2u𝜉 d𝜏 + u𝜏 d𝜉 =

t

∫
t1

(
cu𝜏(x + c(t − s), s) − c2u𝜉(x + c(t − s), s)

)
ds.

We observe that the integrand in the integral on the right can be written as

c d
ds
u(x + c(t − s), s), s ∈ [t1, t].

Therefore,

−∫
C1

c2u𝜉 d𝜏 + u𝜏 d𝜉 = c
t

∫
t1

d
ds
u(x + c(t − s), s) ds = c

(
u(x, t) − u(x1, t1)

)
.
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Similarly, we have

−∫
C2

c2u𝜉 d𝜏 + u𝜏 d𝜉 = c
(
u(x, t) − u(x2, t2)

)
.

Therefore, from (9.29), we conclude that

u(x, t) = 1
2
(
u(x1, t1) + u(x2, t2)

)
+ 1

2c ∫
C

(u𝜉 d𝜏 + u𝜏 d𝜉) +
1
2c ∬

D

f(𝜉, 𝜏) d𝜉d𝜏. (9.30)

For the formula (9.30) to be valid, certain restrictions on the initial curve apply. Our
basic assumption is that the two characteristics from any point (x, t) intersect the initial
curve exactly at two points; this is the transversal condition. Another way to see this is the
following: as the point (x, t) approaches the initial curve, we want the points (x1, t1) and
(x2, t2) approach the point (x, t). In otherwords, the characteristic triangle should collapse to
a point. It is not difficult to see that if the initial curve t = 𝜙(x)has the property that𝜙 ′ > 1∕c
at any point, then the above-mentioned property does not hold and so, the formula (9.30)
does not describe a solution of the wave equation. This leads to the following definition:

Definition 9.6. A smooth curve t = 𝜙(x) is said to be space-like if |𝜙 ′(x)| < 1∕c for all x
and time-like if |𝜙 ′(x)| > 1∕c for all x.

Thus, space-like curves have the absolute values of their slopes < 1∕c. For example, when
c = 1, the functions 𝜙 defined by

𝜙(x) =

{
exp

(
− 1

x2

)
, for x ≠ 0,

0, for x = 0,

gives a space-like curve. It is now clear that the formula (9.30) for the solution is valid for
space-like curves, but not for time-like curves.

Riemann’s Method and Goursat’s Problem: We now consider a general second-order
linear hyperbolic equation and describe a method, due to Riemann, to obtain the solution
for a Cauchy problem with initial conditions prescribed on a general curve. Using the
characteristic variables (if necessary), it suffices to consider the equation in the following
normal form:

L(u) ≡ uxy + aux + buy + cu = f, (9.31)

where a, b, c are C1 functions defined in a domain in x, y plane. Note that the lines x =
constant and y = constant are the characteristic curves for (9.31). The Cauchy problem for
(9.31) consists in finding a solution u satisfying the prescribed initial condition for u, ux
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and uy on a non-characteristic curve C in D, at least locally in a neighborhood of the initial
curve C.

We remark that when the coefficients a, b and c are constants, it is possible to absorb the
terms aux and buy in the term uxy, but not possible to do so for the term cu. A change of
variable of the form

u(x, y) = 𝜐(x, y) exp(ãx + b̃y),

for appropriate constants ã and b̃ can be used to absorb the term aux + buy.
The idea is to multiply (9.31) by a suitable function 𝜐, integrate the resulting equation

over a characteristic triangle in D and apply the Green’s theorem to find a formula for the
solution. We now turn to the details.

Fix a point P = (x0, y0) ∈ D⧵C. We wish to derive, following Riemann, a formula for
u(P). Let PAB be the characteristic triangle as shown in Figure 9.9, where PA is part of the
characteristic y = y0,BP part of the characteristic x = x0 andAB is part of the initial curveC.

Let

L∗𝜐 = 𝜐xy − a𝜐x − b𝜐y + (c − ax − by)𝜐,

be the adjoint of L, operating on C2 functions 𝜐. The form of L∗ is derived from the
requirement that 𝜐Lu − uL∗𝜐 is in divergence form, for all C2 functions u and 𝜐. We have

𝜐Lu − uL∗𝜐 = 𝜐(uxy + aux + buy + cu)
− u(𝜐xy − a𝜐x − b𝜐y + (c − ax − by)𝜐)
= (𝜐ux)y − (u𝜐y)x + (au𝜐)x + (bu𝜐)y.

We also can write

(𝜐ux)y − (u𝜐y)x = (𝜐uy)x − (u𝜐x)y.

A P(x0, y0)

B

D

C

Figure 9.9 A characteristic triangle
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Therefore,

𝜐Lu − uL∗𝜐 = 𝜕H
𝜕x

+ 𝜕K
𝜕y

(9.32)

with

H = 1
2
(
𝜐uy − u𝜐y

)
+ au𝜐 and K = 1

2
(
𝜐ux − u𝜐x

)
+ bu𝜐 (9.33)

Hence, if D denotes the region bounded by the characteristic triangle PAB, applying the
Green’s theorem, we obtain that

∬
D

(𝜐Lu − uL∗𝜐) dxdy = ∫
PAB

Hdy − Kdx. (9.34)

We have, performing an integration by parts,

A

∫
P

𝜐ux dx = 𝜐(A)u(A) − 𝜐(P)u(P) −
A

∫
P

u𝜐x dx.

Similarly,
P

∫
B

𝜐uy dy = 𝜐(P)u(P) − 𝜐(B)u(B) −
P

∫
B

u𝜐y dy.

Substituting these expressions into (9.34), we obtain after some simplification that

∬
D

𝜐f dxdy = 𝜐(P)u(P) − 1
2
(𝜐(A)u(A) + 𝜐(B)u(B))

+

P

∫
B

u(a𝜐 − 𝜐y) dy +
A

∫
P

u(𝜐x − b𝜐) dx

+ ∫
AB

(1
2
(𝜐uy − u𝜐y) + au𝜐

)
dy −

(1
2
(𝜐ux − u𝜐x) + bu𝜐

)
dx

+∬
D

uL∗𝜐 dxdy. (9.35)
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Here we have used the relation Lu = f. We now make the following assumptions on the C2

function 𝜐, that is 𝜐 solves the adjoint system:

L∗𝜐 = 0, in D,
𝜐y = a𝜐, on x = x0,
𝜐x = b𝜐, on y = y0,
𝜐(x0, y0) = 𝜐(P) = 1.

(9.36)

Assuming that such a function 𝜐 exists, which is called the Riemann function7 for the given
equation, it follows from (9.35) that

u(P) = 1
2
(𝜐(A)u(A) + 𝜐(B)u(B))

+ ∫
AB

(1
2
(𝜐uy − u𝜐y) + au𝜐

)
dy −

(1
2
(𝜐ux − u𝜐x) + bu𝜐

)
dx

+∬
D

𝜐f dxdy. (9.37)

Note that every term on the right of (9.37) is known in terms of the initial conditions
prescribed on the initial curve and the inhomogeneous term f. Thus, (9.37) gives a formula
for the solution u.

Existence ofRiemannFunction: It remains to prove the existence of the Riemann function
satisfying (9.36). This is not a Cauchy problem, as the data is prescribed on characteristics.
This is called Goursat problem. The equations in (9.36), except the first one, immediately
give that

𝜐(x0, y) = exp
⎛⎜⎜⎝

y

∫
y0

b(x0, s) ds
⎞⎟⎟⎠ and 𝜐(x, y0) = exp

⎛⎜⎜⎝
x

∫
x0

a(s, y0) ds
⎞⎟⎟⎠ . (9.38)

The existence of a Riemann function will be proved by converting the differential
equation in (9.36) into an integral equation. For this, we again use Green’s theorem, by
choosing u ≡ 1 that implies Lu = c. Now integrate over the domain Ω enclosed by the
rectangle as shown in Figure 9.10. With u ≡ 1 and L∗𝜐 = 0, we have

c𝜐 = 𝜐Lu − uL∗𝜐 = 𝜕
𝜕x

(
−1

2
𝜐y + a𝜐

)
+ 𝜕

𝜕y

(
−1

2
𝜐x + b𝜐

)
;

7This is called Riemann–Green function in Copson (1975). But Riemann function differs from a Green function
as it is not dependent on the initial curve (see John, 1971, 1975).
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A P(x0, y0)

BQ

Ω

Figure 9.10 Domain for Goursat problem

compare this with (9.32). Therefore, integrating over Ω (see Figure 9.10) and using the
Green’s theorem, we have

∬
Ω

c𝜐 dxdy = ∫
𝜕Ω

(
−1

2
𝜐y + a𝜐

)
dy −

(
−1

2
𝜐x + b𝜐

)
dx,

where 𝜕Ω is taken in counter-clockwise direction. Since 𝜕Ω is the union of four lines
PA,AQ,QB and BP, the line integral on the right-hand side in the above expression is
written as the sum of four integrals:

A

∫
P

(1
2
𝜐x − b𝜐

)
dx +

B

∫
Q

(1
2
𝜐x − b𝜐

)
dx

+

P

∫
B

(
−1

2
𝜐y + a𝜐

)
dy +

Q

∫
A

(
−1

2
𝜐y + a𝜐

)
dy.

Using the boundary conditions in (9.36), the first and third integrals can be simplified and
we see that the above sum of four integrals simplifies to

− 1
2

A

∫
P

𝜐x dx +
B

∫
Q

(1
2
𝜐x − b𝜐

)
dx + 1

2

P

∫
B

𝜐y dy +
Q

∫
A

(
−1

2
𝜐y + a𝜐

)
dy.
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Finally, upon integration, the last sum of four integrals equals

−𝜐(Q) + 1 −
B

∫
Q

b𝜐 dx +
Q

∫
A

a𝜐 dy.

Therefore,

𝜐(Q) = ∬
Ω

c𝜐 dxdy −
B

∫
Q

b𝜐 dx +
Q

∫
A

a𝜐 dy + 1, (9.39)

which is the required integral equation for 𝜐. Thus, if 𝜐 is a solution of the Goursat problem
(9.36), then 𝜐 satisfies the integral equation (9.39).

Conversely, it is not difficult to see that if 𝜐 is a continuous solution of the integral equation
(9.39), then 𝜐 is a solution of the Goursat problem (9.36). We leave this as an exercise. Thus,
solving the integral equation (9.39) is equivalent to solving the Goursat problem, which
gives the required Riemann function.

We write the integral equation (9.39) as

𝜐 = T𝜐 + 1,

with

T𝜐 = ∬
Ω

c𝜐 dxdy −
B

∫
Q

b𝜐 dx +
Q

∫
A

a𝜐 dy.

We think of T as a linear operator acting on continuous functions 𝜐 defined in a
neighborhood of the point P(x0, y0). We wish to invoke the classical Banach fixed-point
theorem in order to prove the existence and uniqueness of a solution 𝜐 to the equation
𝜐 = T𝜐+ 1. For this purpose, consider the closed rectangleΩ in which the point P(x0, y0) is
fixed, the point A is on the line y = y0, the point B is on the line x = x0 and the pointQ(x, y)
is varying. Let C(Ω) be the space of all continuous functions 𝜐 defined on Ω. Then, C(Ω)
becomes a Banach space with the usual sup norm and T is a linear operator from C(Ω) into
itself. Since the coefficients a, b, c are assumed to be continuous, we see that

|T𝜐|∞ ≤ 1
2
|𝜐|∞,

provided that |x − x0| + |y − y0| is sufficiently small. Thus, we choose A and B close to the
point P(x0, y0) so that |x− x0|+ |y− y0| is sufficiently small for all (x, y) ∈ Ω, which in turn
gives the above estimate. Here |𝜐|∞ denotes the sup norm of 𝜐 taken over Ω. Thus, T is a
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contraction and therefore the integral equation (9.39) has a unique solution. We have thus
proved the following:

Theorem 9.7. For |x − x0| + |y − y0| is sufficiently small, the integral equation (9.39) has a
unique continuous solution defined on Ω.

9.6.1 An Example

We now consider an example to illustrate the Riemann’s method. Consider the following
general linear hyperbolic equation in two variables x and t:

utt − a2uxx + cut + dux + eu = f

where a > 0 is a constant and the coefficients c, d, e are constants and f is a given function.
It is a simple exercise to see that by a suitable change of variables, the terms cut and dux may
be absorbed in the terms involving second-order derivatives.

Example 9.8. Consider the following IVP for the homogeneous equation:

utt − a2uxx + 𝛼u = 0, x ∈ ℝ, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ ℝ. (9.40)

Equation (9.40) is referred to as the telegraph equation. Here 𝛼 is a real constant.
We will obtain the solution of the IVP (9.40) by constructing a Riemann function. First

some simplifications. If 𝛼 > 0, then by the change of variables x ↦
√
𝛼x∕a and t ↦

√
𝛼t,

reduces equation (9.40) to
utt − uxx + u = 0.

If 𝛼 < 0, the equation may be reduced to

utt − uxx − u = 0.

Thus, wewill assume that a = 1 and 𝛼 = ±1 in (9.40). First consider the case of positive sign.
Suppose (x0, t0), t0 > 0 is an arbitrary point where we wish to find the solution. Suppose

u, 𝜐 are two C2 functions satisfying the equation L(u) ≡ utt−uxx+u = 0. Using the identity

𝜐L(u) − 𝜐L(u) = 𝜕
𝜕t
(𝜐ut − u𝜐t) −

𝜕
𝜕x

(𝜐ux − u𝜐x)

and using the Green’s theorem for the domain V bounded by the characteristic triangle Γ
with vertices P(x0, t0), Q(x0 − t0, 0) and R(x0 + t0, 0), we obtain

∫
Γ

(𝜐ut − u𝜐t) dx + ∫
Γ

(𝜐ux − u𝜐x) dt = 0,
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where Γ is taken in the counter-clockwise direction. On the characteristic line RP, we have
x = x0+ t0− t, 0 ≤ t ≤ t0 and dx = −dt. Similarly, on PQ, we have x = x0− t0+ t, t0 ≥ t ≥ 0
and dx = dt. Using this in the above line integral and imposing the condition that 𝜐 = 1 on
the lines RP and PQ, we obtain, after doing some algebra,

u(x0, t0) =
1
2
(u(x0 + t0, 0) + u(x0 − t0, 0)) +

1
2

x0+t0

∫
x0−t0

(𝜐ut − u𝜐t) dx (9.41)

In order to complete the procedure, it remains to find a solution of the Goursat problem
L(𝜐) = 0 in V, satisfying the condition 𝜐 = 1 on the lines RP and PQ. This is going to be the
Riemann function 𝜐(x, t; x0, t0) of the problem under consideration.

We look for 𝜐 in the form of a power series:

𝜐(x, t) =
∞∑
j=0

𝜐j𝛾
j

with 𝛾 = (t − t0)2 − (x − x0)2; here 𝜐j are functions of x, t to be determined. Note that
𝛾 ≥ 0 in V and = 0 on the lines RP and PQ. Thus, if we take 𝜐0 ≡ 1, then 𝜐 satisfies
the required condition on the lines RP and PQ. Next, the requirement L(𝜐) = 0 gives the
following recursion relations for 𝜐j:

L(𝜐j) + 4(j + 1)
[
(t − t0)

𝜕𝜐j+1

𝜕t
+ (x − x0)

𝜕𝜐j+1

𝜕x

]
+ 4(j + 1)2𝜐j+1 = 0, (9.42)

for j = 0, 1,…. The above equations are certainly satisfied if we take all 𝜐j to be constants
satisfying the recursion relations

𝜐j+1 = −
L(𝜐j)

4(j + 1)2
= −

𝜐j
4(j + 1)2

.

Since 𝜐0 = 1, these relations give that 𝜐j = (−1)j

4j(j!)2
for j = 0, 1, 2,…. Thus, we have the

Riemann function

𝜐(x, t; x0, t0) =
∞∑
j=0

(−1)j𝛾 j

4j(j!)2
= J0(

√
𝛾), (9.43)

where J0 is the Bessel’s function of the first kind of order zero (see, for instance, Abramowitz
and Stegun, 1972). Plugging this expression of the Riemann function 𝜐 into (9.41), we finally
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obtain the expression for the solution of the IVP (9.40) (with a = 1 and 𝛼 = 1):

u(x0, t0) =
1
2
(u0(x0 + t0) + u0(x0 − t0)) +

1
2

x0+t0

∫
x0−t0

(
u1(x)J0(s) + u0(x)

𝜕J0
𝜕t0

(s)
)

dx (9.44)

with s =
√

t20 − (x − x0)2. If we take 𝛼 = −1, then we only need to change J0 to I0 in the
representation (9.44), where I0 is the Bessel’s function of the second kind of order zero:

I0(
√
𝛾) =

∞∑
j=0

𝛾 j

4j(j!)2
, 𝛾 ≥ 0.

In the next chapter, we derive the same formula using the solution of the wave equation
in two dimensions and Hadamard’s method of descent.

9.7 NOTES

In this chapter, we have dealt with one-dimensional wave equation in detail, by considering
the Cauchy (initial value) problem, initial-boundary value problems in a quarter plane and
a bounded interval. The importance of characteristics, characteristic variables is stressed
throughout. The continuous dependence of the solution on the data is shown in a restricted
sense. In general, the hyperbolic problems the useful estimates for a solution are the so-
called energy estimates, which are part and parcel of general existence, uniqueness and other
related results. As we see later, the methods discussed in this chapter do not readily extend
to equations in higher (space) dimensions; nevertheless, they play an important role in
problemswith some symmetry, where the number of variablesmay be brought down to one.
We have also considered general second-order linear equations in two variables. A formula
for the solution, in a small neighborhood of the initial curve, is obtained using the Riemann
function. Of course, we cannot expect the solution to be in a neat form as in D’Alembert’s
formula, owing to the variable coefficients and lower-order terms.

The material covered here is quite standard. Some references are Prasad and Ravindran
(1996), Koshlyakov et al. (1964), Rubinstein and Rubinstein (1998), Renardy and Rogers
(2004), and John (1971, 1975, 1978).

9.8 EXERCISES

1. Let u be a C2 solution of the wave equation utt − c2uxx = f(x, t) in the upper half plane
x ∈ ℝ, t > 0 satisfying the initial conditions u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ ℝ. By
integrating the wave equation over the characteristic triangle with vertices (x, t), (x− ct, 0)



280 ONE-DIMENSIONAL WAVE EQUATION

and (x+ ct, 0), and using Green’s theorem. (Hint: Write utt− c2uxx = (ut)t− c2(ux)x), derive
the formula for the solution and compare the same with one given in the text.)

This gives one more proof of the uniqueness of the solution to the IVP.
2. If c1,… , ck are distinct real numbers, show that the general solution of the one-dimensional

equation
k∏
j=1

(𝜕t − cj𝜕x)u = 0 is given by u(x, t) =
k∑
j=1

Fj(x + cjt) where Fj are smooth

functions. (Hint: Use an induction argument.)
3. If c is a real number and k ≥ 1 is an integer, show that the general solution of the one-

dimensional equation (𝜕t − c𝜕x)ku = 0 is given by u(x, t) =
k∑
j=1

tj−1Fj(x + cjt) where Fj are

smooth functions. (Hint: Use an induction argument.)
4. Derive the formula (9.24) using the characteristic parallelogram property.
5. Provide the details of the statement made in Remark 9.4 and the statements made after that

regarding initial-boundary value problems in the first quadrant.
6. (Mixed boundary value problem) Consider the wave equation (9.21) in the first quadrant

and impose the following mixed boundary condition on the boundary x = 0:

ut + 𝛼ux = 0, x = 0, t > 0,

and the initial conditions at t = 0, x > 0.

a. If 𝛼 ≠ c, derive a formula for the solution.
b. If 𝛼 = c, show that a solution in general does not exist, but exists if the initial

conditions satisfy some additional conditions. Interpret the boundary condition in this
case geometrically.

7. Prove the equivalence statement made in the text regarding the solutions of the integral
equation (9.39) and the Goursat problem (9.36).



CHAPTER 10

Wave Equation in Higher
Dimensions

10.1 INTRODUCTION

In this chapter, we study the wave equation in higher (space) dimensions and analyze
different problems associated with it: the Cauchy problem (initial value problem [IVP]),
initial-boundary value problem in half-space, and so on. As noted in the introductory
chapter, the wave equation arises inmany physical contexts and it is a fundamental equation
that has influenced the analysis of solutions of general hyperbolic equations and systems.
Unlike the heat equation, the nature of solution of the wave equation depends on being the
(space) dimension odd or even, except for one-dimensional case. This is also the reason to
take up separately the study of the wave equation in higher dimensions. We also learn that
the solution of the wave equation in even dimensions may be obtained from the solution in
odd dimensions, by themethod of descent. We begin with the following Cauchy problem for
the homogeneous wave equation in the free space ℝn:

□cu ≡ utt − c2Δu = 0, x ∈ ℝn, t > 0, (10.1)
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ ℝn. (10.2)

Here n ≥ 2 is an integer, the (spatial) dimension, c > 0 is a constant, the speed of propagation
and u0, u1 are given smooth functions, the initial values. We describe two methods to find
a formula for the solution of (10.1) and (10.2).

The general references for this chapter are Ladyzhenskaya (1985), Rauch (1992), Mitrea
(2013), Pinchover and Rubinstein (2005), McOwen (2005), Trèves (2006), Courant and
Hilbert (1989), John (1971, 1975, 1978), DiBenedetto (2010), Renardy and Rogers (2004),
Prasad and Ravindran (1996), Salsa (2008), Mikhailov (1978), Benzoni-Gavage and Serre
(2007), Evans (1998), Kreiss and Lorenz (2004), and Vladimirov (1979, 1984).
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10.2 THREE-DIMENSIONAL WAVE EQUATION: METHOD OF
SPHERICAL MEANS

To get an idea how thismethodworks, we first consider a special case. Suppose the functions
u0 and u1 are radial functions, that is,

u0(x) = u0(|x|) and u1(x) = u1(|x|),
where r2 ≡ |x|2 = x2

1 +⋯+ x2
n. Also, extend u0 and u1 for r < 0 by defining u0(−r) = u0(r)

and u1(−r) = u1(r). In this situation, we can expect a solution u of (10.1) also to be radial
in x, that is u(x, t) = u(r, t). For such a function u, we have

Δu = 𝜕2

𝜕r2
+ n − 1

r
𝜕
𝜕r
.

Therefore, (10.1) reduces to

𝜕2u
𝜕t2

− c2
(

𝜕2

𝜕r2
+ n − 1

r
𝜕
𝜕r

)
u = 0. (10.3)

Consider the case n = 3. Then, the function 𝜐 = ru satisfies the one-dimensional equation

𝜐tt − c2𝜐rr = 0,

with initial conditions 𝜐(r, 0) = ru0(r) and 𝜐t(r, 0) = ru1(r), as follows from (10.3). Thus, 𝜐
can be easily determined using the D’Alembert’s formula and, so is u.

In general, therefore, our strategy would be to find a suitable function from u, which
satisfies (10.3). Then, from the one-dimensional case, treating r as the space variable, we
will be able to derive an expression for the solution u, at least in the case n = 3. The suitable
function we are looking for turns out to be the spherical mean function of u, namely the
averages of u over the spheres around a given point x. We have already encountered this
object in the discussion ofMVP for harmonic functions. As we see below, it is easy to obtain
u from its spherical mean function.

Spherical Mean Function: Given a C2 function h defined on ℝn, define its spherical mean
function, denoted by Mh, by

Mh(x, r) =
1

𝜎nrn−1 ∫|x−y|=r
h(y) dS(y), (10.4)

for x ∈ ℝn and r > 0. The integration is over the sphere of radius r, centred at x and 𝜎nrn−1

is the surface measure of this sphere with 𝜎n = 2𝜋n∕2∕Γ(n∕2) denoting the surface measure
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of the unit sphere in ℝn; Γ is the Euler gamma function. By a change of variable, (10.4) can
be written as

Mh(x, r) =
1
𝜎n ∫|𝜉|=1

h(x + r𝜉) dS(𝜉). (10.5)

It is to be noted that we are keeping x fixed and varying r; that is, we consider all the averages
around x. The form of (10.5) enables us to define Mh for all real r and it is readily seen that
Mh(x,−r) = Mh(x, r), that isMh is an even function of r. Next we compute 𝜕

𝜕r
Mh(x, r). Using

(10.5) and (10.4), We have,

𝜕
𝜕r
Mh(x, r) =

1
𝜎n ∫|𝜉|=1

n∑
i=1

𝜕h
𝜕xi

(x + r𝜉)𝜉i dS(𝜉)

= r
𝜎n ∫|𝜉|<1

Δxh(x + r𝜉) d𝜉, using divergence theorem,

= 1
𝜎nrn−1Δx ∫|y−x|<r

h(y) dy, by the change of variables,

= 1
𝜎nrn−1Δx

r

∫
0

d𝜌 ∫|y−x|=𝜌
h(y) dS(y), by using spherical coordinates,

= 1
rn−1Δx

r

∫
0

𝜌n−1Mh(x, 𝜌) d𝜌, using (10.4).

This immediately gives

𝜕
𝜕r

(
rn−1 𝜕

𝜕r
Mh(x, r)

)
= rn−1ΔxMh(x, r).

The above equation can be written as(
𝜕2

𝜕r2
+ n − 1

r
𝜕
𝜕r

)
Mh(x, r) = ΔxMh(x, r). (10.6)

This is called the Darboux equation (The notation Δx in the above expressions means the
Laplacian taken with respect to the x variables). We also have

Mh(x, 0) = h(x) and 𝜕
𝜕r
Mh(x, 0) = 0.
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Case n= 3 (Euler–Poisson–Darboux Equation): Though the equation (10.6) is valid for
all n ≥ 2, the analysis is simpler when n = 3. In fact, it is now straightforward to obtain an
expression for a C2 solution u(x, t) of (10.1) and (10.2) for general smooth initial data when
n = 3. The spherical mean function Mu(x, r, t) of u satisfies the equation1

𝜕2

𝜕t2
Mu(x, r, t) = c2

(
𝜕2

𝜕r2
+ 2

r
𝜕
𝜕r

)
Mu(x, r, t), (10.7)

in view of (10.6) and (10.1). This is a partial differential equation (PDE) in r and t variables
and the variable x plays the role of a parameter. Equation (10.7) is called the Euler–Poisson–
Darboux equation. As seen earlier, the function 𝜐 defined by 𝜐(x, r, t) = rMu(x, r, t) satisfies
the one-dimensional wave equation

𝜐tt − c2𝜐rr = 0,

with initial conditions

𝜐(x, r, 0) = rMu(x, r, 0) = rMu0
(x, r)

and
𝜕
𝜕t
𝜐(x, r, 0) = r 𝜕

𝜕t
Mu(x, r, 0) = rMu1

(x, r).

Hence, by D’Alembert’s formula, we get

𝜐(x, r, t) =1
2
[
(r + ct)Mu0

(x, r + ct) + (r − ct)Mu0
(x, r − ct)

]
+ 1

2c

r+ct

∫
r−ct

sMu1
(x, s) ds.

Since Mu0
(x, r) and Mu1

(x, r) are even functions of r, we obtain

Mu(x, r, t) =
1
2r

[
(ct + r)Mu0

(x, r + ct) − (ct − r)Mu0
(x, ct − r)

]
+ 1

2rc

ct+r

∫
ct−r

sMu1
(x, s) ds,

1For general n, the function Mu satisfies the Euler–Poisson–Darboux equation

𝜕2

𝜕t2
Mu(x, r, t) = c2

(
𝜕2

𝜕r2
+ n − 1

r
𝜕
𝜕r

)
Mu(x, r, t).
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for r ≠ 0. Letting r → 0, the left side tends to u(x, t). The second term on the right tends to
tMu1

(x, ct) as r → 0. We convert the limit of the first term on the right as r → 0 to that of a
derivative2 to see that it tends to 𝜕

𝜕t
(tMu0

(x, ct)). Thus,

u(x, t) = tMu1
(x, ct) + 𝜕

𝜕t
(tMu0

(x, ct))

= 1
4𝜋c2t ∫|y−x|=ct

u1(y) dS(y) +
𝜕
𝜕t

⎛⎜⎜⎝ 1
4𝜋c2t ∫|y−x|=ct

u0(y) dS(y)
⎞⎟⎟⎠ . (10.8)

The representation (10.8) is known as Kirchhoff ’s formula. By carrying out the t
differentiation, we can also write Kirchoff ’s formula as follows: We have

𝜕
𝜕t

(
tMu0

(x, ct)
)
= Mu0

(x, ct) + t 𝜕
𝜕t
Mu0

(x, ct)

and
𝜕
𝜕t
Mu0

(x, ct) = 1
4𝜋c2t2 ∫|y−x|=ct

∇u0(y) ⋅ (y − x) dS(y).

Thus, Kirchoff ’s formula (10.8) is rewritten as

u(x, t) = 1
4𝜋c2t2 ∫|y−x|=ct

[
tu1(y) + u0(y) + ∇u0(y) ⋅ (y − x)

]
dS(y). (10.9)

The above formula brings out the essential features of the solution in the case n = 3. Thus,
anyC2 solution of theCauchy problem (10.1) and (10.2) is given by (10.8) and hence unique.
We state the foregoing discussion as a theorem:

Theorem 10.1. Suppose u0 ∈ C3(ℝ3) and u1 ∈ C2(ℝ3), then the function u given by
Kirchoff ’s formula (10.8) or (10.9) is the C2 solution of the Cauchy problem (10.1) and
(10.2) for the wave equation in the case n = 3.

Notice that the solution u is less regular than the initial data, due to the presence of ∇u0 in
(10.9). This is known as the focusing effect, present when n = 3 (more generally for n > 1).
Earlier, we have observed that for n = 1, the solution is as smooth as the initial data. In
contrast to this point-wise behavior of u, the energy of u for any time t > 0 is the same as

2Let 𝜙(t) = ctMu0
(x, ct). Then,

d𝜙
dt

= lim
r→0

𝜙(t + r) − 𝜙(t − r)
2r

.
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the initial energy. The energy of u at time t is defined by

E(t) = 1
2 ∫
ℝ3

(
u2
t (x, t) + c2|∇u(x, t)|2) dx, (10.10)

where the integration is overℝ3 and∇u denotes the gradient vector of uwith respect to the
x variables. The integral in (10.10) is assumed to be finite and represents the sum of kinetic
energy and potential energy.

Differentiating (10.10) with respect to t and integrating by parts in the second term of the
integral, we see that dE

dt
= 0, provided that u(x, t) vanishes for sufficiently large |x|. Thus,

E(t) = E(0) = 1
2 ∫
ℝ3

(
u2

1(x, t) + c2|∇u0(x)|2) , dx
the initial energy.

Remark 10.2. Thus, while studying the existence and uniqueness of solutions to general
hyperbolic equations, it is natural to seek solutions with finite energy, which is defined
by an expression similar to (10.10).

Huyghens’ Principle: We now analyze (10.8) in more detail. At a point (x, t), t > 0, the
value of u(x, t) depends on the values of the initial data only on the sphere S(x, ct) ≡ {y ∶|y − x| = ct}, of radius ct centred at x. This is the domain of dependence (see Figure 10.1).
Similarly, the values of the initial data at a point y on the initial space t = 0 influence the
value u(x, t), t > 0, only if |x− y| = ct, that is x lies on the sphere3 S(y, ct). This is termed as
range of influence of the point y (see Figure 10.2).

Suppose the initial data u0 and u1 have support in the closed ballB𝜌(0) ≡ {x ∶ |x| ≤ 𝜌} in
the space t = 0. At a time t > 0, u0 and u1 can influence the value of u(x, t) if x ∈ ∪{S(y, ct) ∶
y ∈ B𝜌(0)}, which is the union of all the spheres of radius ct, centred at y ∈ B𝜌(0). More
precisely, if |x − y| = ct and |y| > 𝜌, then u(x, t) = 0. This will happen if |x| > 𝜌 + ct and|x − y| = ct as

|y| = |y − x + x| ≥ |x| − |y − x| > (𝜌 + ct) − ct = 𝜌.

Also, for any x, if we choose t large enough, then any y satisfying |y − x| = ct lies outside
B𝜌(0). For, |y| ≥ |y − x| − |x| = ct − |x| > 𝜌,

3The name speed of propagation for c comes from this observation.
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(x, 0)
ct

(x, t)

t = 0

Figure 10.1 Domain of dependence

(y, t)
ct

(y, 0) t = 0

Figure 10.2 Range of influence

provided that t > (|x| + 𝜌)∕c. Thus, the support of u(x, t), as a function of x, lies in
the spherical shell bounded by the spheres S(0, ct + 𝜌) and S(0, ct − 𝜌), provided that t is
sufficiently large. Thus, physically, the disturbance originating from a source situated in
B𝜌(0) at t = 0, will only spread to a shell of thickness 2𝜌 expanding with velocity c. More
precisely, the disturbance occurred in B𝜌(0) at t = 0, is felt at some point x at a later time t
only if x is situated in the spherical shell bounded by the spheres S(0, ct+𝜌) and S(0, ct−𝜌).
Thus, the disturbance felt at x disappears completely in a finite time. This is termed as the
Huyghens’ principle in the strong form (see Figure 10.3).

This phenomenon is due to the fact that the domain of dependence for the solution
u(x, t) is a surface in x-space rather than a solid region. Later, when we derive a formula for
the solution of the wave equation in arbitrary dimensions, we will see that the Huyghens’
principle in the strong form persists in all odd dimensions larger or equal to 3. On the other
hand, we will see that this principle is not true in even dimensions and we have already seen
that for n = 1 this principle is not true.Thismeans that in even dimensions, the disturbances
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u = 0
u = 0

u0 = u1 = 0 t = 0

t > 0

Figure 10.3 Huyghens’ principle (strong form)

propagate with finite speed but after having reached a point never die out completely in a
finite time, as in the case of surface waves arising from throwing a pebble into a water pond.
On the other hand in three-dimensional space, if a person flashes a light at an observer, the
observer sees the light at some time and the light disappears immediately.

10.2.1 Characteristic Cone: Second Method

We now describe another method to represent the solution of the wave equation in three
dimensions. This method is similar to the one used for one-dimensional wave equation,
where we integrated the wave equation over a characteristic triangle to obtain the formula
for the solution. For the wave equation (10.1), a characteristic surface or simply characteristic
is described as follows:

A smooth surface𝜙(x, t) = 0 in the x−t space is called a characteristic surface (of thewave
equation (10.1)) if𝜔(𝜙) ≡ 𝜙2

t −c2|∇x𝜙|2 = 0 on the surface𝜙(x, t) = 0; this surface is called
a space-like surface (respectively, a time-like surface) if 𝜔(𝜙) > 0 (respectively, 𝜔(𝜙) < 0).
The surface

c2(t − t0)2 − |x − x0|2 = 0, (10.11)

is a characteristic surface of the wave equation and it is called a characteristic cone, with
vertex at the point (x0, t0). The characteristic cone (10.11) is the boundary of the cones

Γ+(x0, t0) = {(x, t) ∶ c(t − t0) > |x − x0|} and
Γ−(x0, t0) = {(x, t) ∶ −c(t − t0) > |x − x0|}.
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t

Γ+(x0, t0)

(x0, t0) t = t0

Γ−(x0, t0)

Figure 10.4 Past and future cones

The cones Γ+ and Γ− are respectively called the future and past cones with vertex at (x0, t0);
(see Figure 10.4).Thewave equation has another family of characteristic surfaces, the family
of tangent planes to the characteristic cones, namely

ct + b ⋅ x = C, (10.12)

where the vector b and the constant C are arbitrary with |b| = 1.
We now proceed to find a formula for the solution of the Cauchy problem for the

inhomogeneous wave equation:

utt − Δu = f(x, t), x ∈ ℝn, t > 0, (10.13)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ ℝn. (10.14)

Here we have taken the constant c = 1, which can always be done by changing the variable
t to ct. The functions f, u0 and u1 are smooth functions. The procedure below can also be
used to derive energy estimates for solutions of general second-order hyperbolic equations
(see, for instance, Ladyzhenskaya, 1985).

First we look for some special solution of the homogeneous wave equation (10.13) (that
is, f ≡ 0) of the form u(x, t) = 𝜐(t∕|x|), x ≠ 0. Note that the wave equation (10.1) is
invariant under the change of variables: t ↦ kt and x ↦ kx for any k > 0. Thus, it is but
natural to look for a solution in the form of the function 𝜐, which would be a constant on the
characteristic cone with vertex at (0, 0); see (10.11).Then, 𝜐 satisfies the ordinary differential
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equation (ODE)

(𝜂2 − 1)d
2𝜐

d𝜂2 + (3 − n)d𝜐
d𝜂

= 0, 𝜂 = t∕|x|.
The general solution of this ODE is given by

𝜐(𝜂) = c1 ∫ |𝜂2 − 1| n−3
2 d𝜂 + c2,

in the intervals (−∞,−1), (−1, 1) and (1,∞), for arbitrary constants c1, c2. In particular, for
0 < |x| < −t, t < 0, the solution 𝜐, which we now write as a function 𝜐(x, t) of x and t
(though it is a function of t∕|x| only) has the form

𝜐(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1 log
|||| t − |x|
t + |x| |||| + c2, for n = 1,

c1 log
|t +√

t2 − |x|2||x| + c2, for n = 2,

c1
t|x| + c2, for n = 3.

Representation of the Solution when n = 3: Let u be a C2 solution of (10.13) and (10.14).
Let K be the open cone

K = {(x, t) ∶ x ∈ ℝ3, |x − x1| < t1 − t, t0 < t < t1}.

Here (x1, t1) is a fixed point and 0 ≤ t0 < t1. Thus, K is part of the past cone with vertex at
(x1, t1). Denote by Γ the lateral surface of K, that is,

Γ = {(x, t) ∶ |x − x1| = t1 − t, t0 ≤ t ≤ t1}

and by D its bottom, that is,

D = {(x, t) ∶ |x − x1| < t1 − t, t = t0}.

Assume f ∈ C(K ∪ D). For (𝜉, 𝜏) ∈ K and 0 < 𝜀 < 𝜏 − t0, put

K𝜀 = {(x, t) ∶ 𝜀 < |x − 𝜉| < 𝜏 − t, t0 < t < 𝜏},

Γ𝜀 = {(x, t) ∶ 𝜀 < |x − 𝜉| = 𝜏 − t, t0 ≤ t ≤ 𝜏 − 𝜀},

D𝜀 = {(x, t) ∶ 𝜀 < |x − 𝜉| < 𝜏 − t0, t = t0} and

𝛾𝜀 = {(x, t) ∶ |x − 𝜉| = 𝜀, t0 ≤ t ≤ 𝜏 − 𝜀}.
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D

K

Γ

D𝜀

𝛾𝜀

Γ𝜀

t

(x1, t1)

(𝜉, 𝜏)

𝜀

t = t0

Figure 10.5 Domain of integration

See Figure 10.5. The initial time is t0 and an expression for u(𝜉, 𝜏) is sought. Consider the
function

𝜐(x, t) = t − 𝜏|x − 𝜉| + 1.

Then, u, 𝜐 ∈ C2(K𝜀) and by Green’s identity, we have (□ = □1)

𝜐□u − u□𝜐 = −
3∑
i=1

𝜕i(𝜐𝜕iu − u𝜕i𝜐) + 𝜕t(𝜐𝜕tu − u𝜕t𝜐).

Note that□𝜐 = 0 inK𝜀.Therefore, integrating this identity overK𝜀 and using the divergence
theorem, we obtain that

∫
K𝜀

𝜐□u dxdt = ∫
𝜕K𝜀

[
−

3∑
i=1

(𝜐𝜕iu − u𝜕i𝜐)𝜈i + (𝜐𝜕tu − u𝜕t𝜐)𝜈4

]
dS

= I(Γ𝜀) + I(D𝜀) + I(𝛾𝜀), say. (10.15)

Here 𝜈 = (𝜈1, 𝜈2, 𝜈3, 𝜈4) is the outward unit normal to the boundary 𝜕K𝜀 = Γ𝜀 ∪ D𝜀 ∪ 𝛾𝜀
and dS is the surface measure on this boundary. We now analyze each of these three surface
integrals.
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On Γ𝜀, we have 𝜐 = 0, ∇x𝜐 = (t − 𝜏) 𝜉−x|𝜉−x|3 , 𝜐t = 1|x−𝜉| and the unit outward normal
on Γ𝜀 is

𝜈 = 1√
2

(
x − 𝜉
𝜏 − t

, 1
)
.

Consequently, on Γ𝜀,

3∑
i=1

𝜐xi𝜈i − 𝜐t𝜈4 =
1√
2

(|x − 𝜉|2|x − 𝜉|3 − 1|x − 𝜉|
)

= 0.

Therefore,

I(Γ𝜀) = 0. (a)

Next, on D𝜀, we have 𝜈 = (0, 0, 0,−1). Therefore,

I(D𝜀) = ∫
𝜀<|x−𝜉|<𝜏−t0

u(x, t0)|x − 𝜉| dx + ∫
𝜀<|x−𝜉|<𝜏−t0

(
𝜏 − t0|x − 𝜉| − 1

)
ut(x, t0) dx.

Since 1|x| is locally integrable in ℝ3 and u is continuous, we obtain that

lim
𝜀→0

I(D𝜀) = ∫|x−𝜉|<𝜏−t0
u(x, t0)|x − 𝜉| dx (b)

+ ∫|x−𝜉|<𝜏−t0
(

𝜏 − t0|x − 𝜉| − 1
)
ut(x, t0) dx.

Finally, on 𝛾𝜀, 𝜈 =
( 𝜉−x|x−𝜉| , 0). Therefore,

I(𝛾𝜀) = −

𝜏−𝜀

∫
t0

dt ∫|x−𝜉|=𝜀
𝜕u
𝜕𝜈

𝜐 dSx +
𝜏−𝜀

∫
t0

dt ∫|x−𝜉|=𝜀
𝜕𝜐
𝜕𝜈

u dSx

= −

𝜏−𝜀

∫
t0

( t − 𝜏
𝜀

+ 1
)
dt ∫|x−𝜉|=𝜀

𝜕u
𝜕𝜈

dSx +
𝜏−𝜀

∫
t0

t − 𝜏
𝜀2 dt ∫|x−𝜉|=𝜀

u dSx.

On 𝛾𝜀, we have ||| 𝜕u𝜕𝜈 ||| ≤ M and therefore, by mean value theorem,

|u(x, t) − u(𝜉, t)| ≤ M𝜀,
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where
M = max{|∇u| ∶ |x − 𝜉| ≤ 𝜏 − t, t0 ≤ t ≤ 𝜏}.

Hence, |||||∫|x−𝜉|=𝜀 u dSx
||||| ≤ 4𝜋M𝜀2

and |||||||∫|x−𝜉|=𝜀 u(x, t) dSx − ∫|x−𝜉|=𝜀
u(𝜉, t) dSx

||||||| ≤ 4𝜋M𝜀3.

Therefore,

lim
𝜀→0

I(𝛾𝜀) = 4𝜋
𝜏

∫
t0

(t − 𝜏)u(𝜉, t) dt. (c)

Substituting the expressions in (a), (b) and (c) into (10.15), we obtain, by letting 𝜀 → 0, that

4𝜋
𝜏

∫
t0

(t − 𝜏)u(𝜉, t) dt = − ∫|x−𝜉|<𝜏−t0
u(x, t0)|x − 𝜉| dx

− ∫|x−𝜉|<𝜏−t0
(

𝜏 − t0|x − 𝜉| − 1
)
ut(x, t0) dx

+

𝜏

∫
t0

dt ∫|x−𝜉|<𝜏−t
(

t − 𝜏|x − 𝜉| + 1
)
f(x, t) dx,

where we have used □u = f. Differentiating this identity with respect to 𝜏 , we get

4𝜋
𝜏

∫
t0

u(𝜉, t) dt = (𝜏 − t0)−1 ∫|x−𝜉|=𝜏−t0
u(x, t0) dSx

+ ∫|x−𝜉|<𝜏−t0
(ut(x, t0)|x − 𝜉| − 1

)
ut(x, t0) dx

+

𝜏

∫
t0

dt ∫|x−𝜉|<𝜏−t
( f(x, t)|x − 𝜉| + 1

)
dx.
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One more differentiation with respect to 𝜏 gives

u(𝜉, 𝜏) = 𝜕
𝜕𝜏

⎛⎜⎜⎝ 1
4𝜋(𝜏 − t0) ∫|x−𝜉|=𝜏−t0

u(x, t0) dSx
⎞⎟⎟⎠

+ 1
4𝜋(𝜏 − t0) ∫|x−𝜉|=𝜏−t0

ut(x, t0) dSx

+ 1
4𝜋

𝜏

∫
t0

dt ∫|x−𝜉|=𝜏−t
f(x, t)|x − 𝜉| dSx.

Thus, we arrive at the Kirchhoff ’s formula (replace (𝜉, 𝜏) by (x, t)):

u(x, t) = 1
4𝜋(t − t0) ∫|x−𝜉|=t−t0

ut(𝜉, t0) dS𝜉

+ 𝜕
𝜕t

⎛⎜⎜⎝ 1
4𝜋(t − t0) ∫|x−𝜉|=t−t0

u(𝜉, t0) dS𝜉
⎞⎟⎟⎠

+ 1
4𝜋 ∫|x−𝜉|<t−t0

f(𝜉, t − t0 − |x − 𝜉|)|x − 𝜉| d𝜉. (10.16)

This is precisely (10.8) if we take t0 = 0, f ≡ 0 and c = 1.

10.3 TWO-DIMENSIONAL WAVE EQUATION: METHOD
OF DESCENT

We are now going to discuss the method of descent, due to Hadamard, which enables us
to obtain the solution of two-dimensional wave equation using that of three-dimensional
equation (descending from n = 3 to n = 2). In fact, the procedure can easily be extended to
n-dimensional situation.

Consider the Cauchy problem for the homogeneous two-dimensional wave equation and
let u ∈ C2(ℝ2 × [0,∞)) be the solution of

utt − Δu = 0, x ∈ ℝ2, t > 0, (10.17)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ ℝ2. (10.18)
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Define ũ(x̃, t) = u(x, t), where x̃ = (x1, x2, x3) ∈ ℝ3 and x = (x1, x2) ∈ ℝ2 and similarly for
ũ0 and ũ1. Then, ũ solves the Cauchy problem for the three-dimensional wave equation:

ũtt − Δũ = 0, x̃ ∈ ℝ3, t > 0,
ũ(x̃, 0) = ũ0(x̃), ũt(x̃, 0) = ũ1(x̃), x̃ ∈ ℝ3. (10.19)

Therefore, from (10.8) with c = 1, we obtain that

u(x, t) = ũ(x, 0, t) = 1
4𝜋t ∫|ỹ−x̃|=t

ũ1(ỹ) dS(ỹ)

+ 𝜕
𝜕t

⎛⎜⎜⎝ 1
4𝜋t ∫|ỹ−x̃|=t

ũ0(ỹ) dS(ỹ).
⎞⎟⎟⎠ (10.20)

Note that in the above expression, the variable ỹ = (y1, y2, y3) and x̃ = (x1, x2, 0).
Furthermore, dSỹ is the surface measure of the three-dimensional sphere |ỹ − x̃| = t.
Therefore, |ỹ − x̃|2 = (y1 − x1)2 + (y2 − x2)2 + y23
and so4 dS(ỹ) = t|y3|dy1dy2. Since the regions {y3 > 0} and {y3 < 0} make the same
contribution to the integral in (10.20), we get (discard the 0 in the arguments)

u(x1, x2, t) =
1
2𝜋 ∬

Bt(x)

u1(y1, y2)√
t2 − r2

dy1dy2

+ 𝜕
𝜕t

⎛⎜⎜⎝ 1
2𝜋 ∬

Bt(x)

u0(y1, y2)√
t2 − r2

dy1dy2
⎞⎟⎟⎠ , (10.21)

where Bt(x) denotes the two-dimensional open ball centred at x = (x1, x2) and radius t:
Bt(x) = {y = (y1, y2) ∶ (x1 − y1)2 + (x2 − y2)2 < t2} and r = |y − x|.

Looking at the expressions in (10.21), we see that the domain of dependence of the
solution u at (x, t), t > 0 in two-dimensional case is the disk B(x, t) and not the circle S(x, t).
This is one of themain differences between the cases n = 3 and n = 2. In fact, this difference
persists between any odd and even dimensions. We say that the Huyghens’ principle holds
in the weak form for n = 2 (more generally for any even dimension). See the observations
made at the end of Section 10.2.

4Writing the surface |ỹ− x̃| = t as y23 = t2 −(x1 − y1)2 −(x2 − y2)2, we have dS(ỹ) =
(
1 +

(
𝜕y3
𝜕y1

)2
+
(

𝜕y3
𝜕y2

)2
)1∕2

.
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10.3.1 Telegraph Equation

Consider the one-dimensional wave equation with lower-order terms present:

wtt − wxx + 𝛼wt + 𝛽wx + 𝛾w = 0, x ∈ ℝ, t > 0. (10.22)

Here the coefficients 𝛼, 𝛽 and 𝛾 are real constants. It is always possible to absorb the terms
containingwt andwx by a simple change of variable: changew(x, t) tow(x, t) exp

(
𝛼
2
t − 𝛽

2
x
)
.

However, it is not possible to absorb the term containing w. This is the case we want to
analyze now. The telegraph equation is given by

wtt − wxx − 𝜆2w = 0, x ∈ ℝ, t > 0. (10.23)

Here the constant 𝜆 > 0. We impose the initial conditions

w(x, 0) = 0, wt(x, 0) = 𝜓(x), x ∈ ℝ. (10.24)

Put x1 = x and consider the function u(x1, x2, t) defined by

u(x1, x2, t) = w(x1, t) cos(𝜆x2).

Using (10.23), we see that u satisfies the two-dimensional wave equation

utt − ux1x1
− ux2x2

= 0,

with initial conditions

u(x1, x2, 0) = 0, ut(x1, x2, 0) = 𝜓(x1) cos(𝜆x2).

Using (10.21) for u(x1, x2, t) and taking x2 = 0 (descending from n = 2 to n = 1), we get

w(x, t) = w(x1, t) = u(x1, 0, t) =
1
2𝜋 ∬

Bt(x)

cos(𝜆y2)𝜓(y1)√
t2 − r2

dy1dy2,

where Bt(x) is the two-dimensional open ball centred at (x1, 0) and radius t: Bt(x) = {y =
(y1, y2) ∶ (x1 − y1)2 + y22 < t2}. Performing the integration with respect to y2 first, we obtain

w(x, t) = w(x1, t) =
1
2

x1+t

∫
x1−t

J0(𝜆s)𝜓(y1) dy1, (10.25)



10.4 Wave Equation for General n 297

where s2 = t2 − (x1 − y1)2 and J0 is the Bessel’s function of the first kind of order 0 and is
given by (see, for example, Abramowitz and Stegun, 1972)

J0(z) =
2
𝜋

𝜋∕2

∫
0

cos(z sin 𝜃) d𝜃.

We state the foregoing in the following theorem:

Theorem 10.3. Any C2 solution of the one-dimensional Cauchy problem (10.23) satisfying
the initial conditions (10.24) has the representation (10.25).

From Theorem 10.3, it is not difficult to write down a formula for the solution of the
inhomogeneous equation satisfying more general initial conditions:

wtt − wxx − 𝜆2w = f(x, t), x ∈ ℝ, t > 0. (10.26)

with the initial conditions

w(x, 0) = 𝜙(x), wt(x, 0) = 𝜓(x), x ∈ ℝ. (10.27)

This is left as an exercise.

Remark 10.4. In (10.23), if we replace the term −𝜆2w by 𝜆2w, we then use the hyperbolic
cosine function in place of the cosine function. This change will then produce, in place
J0, the function I0, the Bessel’s function of the second kind, of order 0, in the solution
(see Chapter 9).

Remark 10.5. If we add 𝛿(x), the Dirac delta function at the origin, to the right side of
(10.23), we can write down the solution to this inhomogeneous problem with zero
initial data (that is 𝜓 = 0), as

w(x, t) =

(t−|x|)+
∫
0

J0(𝜆𝜉) d𝜉,

where 𝜉2 = (t − s)2 − x2 and a+ = max{a, 0} for a ∈ ℝ.

10.4 WAVE EQUATION FOR GENERAL n
Wenowdescribe twomethods to obtain the representation for the solution of wave equation
in arbitrary dimensions n ≥ 3. The first method exploits the Euler–Poisson–Darboux
equation satisfied by the spherical mean function of the solution, which we have already
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utilized in Section 10.2. More precisely, we consider only odd n ≥ 3; for even n, we can then
use the method of descent.

In the second method, following Courant and Hilbert (1989), the solution formula
is obtained by an inversion formula in an Abel type integral equation. This method is
applicable to all n, even or odd, but the nature of solutions will differ from odd n to even n.
In what follows, repeated reference will be made to the Darboux equation (10.6) and Euler–
Poisson–Darboux equation (10.7) (with 2∕r replaced by (n− 1)∕r); u is a C2 solution of the
wave equation (10.1) and Mu is its spherical mean function.

10.4.1 Solution Formula via Euler–Poisson–Darboux Equation

Motivated by the Euler–Poisson–Darboux equation,we look for a lineardifferential operator
L such that the following commutation relation is satisfied:

[𝜕2
r , L] ≡ 𝜕2

r L − L𝜕2
r = (n − 1)L

(1
r
𝜕r
)
, (10.28)

where 𝜕r =
𝜕
𝜕r
. Define the function N(x, r, t) by

N(x, r, t) = LMu(x, r, t).

Then, using (10.28), we get

𝜕2
rN(x, r, t) =L

(
𝜕2
r +

n − 1
r

𝜕r
)
Mu(x, r, t)

=L
(

1
c2

𝜕2

𝜕t2
Mu(x, r, t)

)
, using (10.7)

= 1
c2

𝜕2

𝜕t2
LMu(x, r, t)

= 1
c2

𝜕2

𝜕t2
N(x, r, t).

Thus, N satisfies the one-dimensional wave equation

Ntt − c2Nrr = 0

in r and t variables and the variable x playing the role of a parameter. The initial conditions
at t = 0 for u give initial conditions for N via Mu. Once we obtain N using the D’Alembert’s
formula, the formula for u will be obtained using

u(x, t) = lim
r→0

Mu(x, r, t).
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Thus, we are led to find a differential operator L so that the commutation relation (10.28) is
satisfied.

Letm be a non-negative integer and define D̃r = r−1𝜕r, r ∈ ℝ, r ≠ 0. Define the operator
Lm by

Lm = D̃m
r r

2m+1, (10.29)

that is, Lm𝜐 = D̃m
r (r

2m+1𝜐) for smooth function 𝜐 of r.

Lemma 10.6. For a smooth function 𝜐 defined on ℝ, the following relations hold:

(1) [𝜕2
r , Lm]𝜐 = 2(m + 1)LmD̃r𝜐 (2) Lm𝜐(r) =

m∑
k=0

cm,krk+1𝜕kr 𝜐(r),

where the constants cm,k do not depend on 𝜐 and

cm,0 = 1 ⋅ 3⋯ (2m + 1) =
m∏
j=0

(2j + 1).

Proof The statement in (1) will be proved by induction. For m = 0, a direct computation
shows that the commutation relation is true. Assume that (1) is true for some m.

Observe that D̃r is a derivation, that is,

D̃r(u𝜐) = uD̃r𝜐 + 𝜐D̃ru.

Consider

Lm+1𝜐 = D̃m+1
r (r2m+3𝜐)

= D̃m
r D̃r(r2m+3𝜐)

= D̃m
r [(2m + 3)r2m+1𝜐 + r2m+3D̃r𝜐]

= (2m + 3)Lm𝜐 + Lm(r𝜕r𝜐). (10.30)

Therefore,

𝜕2
r Lm+1𝜐 = (2m + 3)𝜕2

r Lm𝜐 + 𝜕2
r Lm(r𝜕r𝜐)

= (2m + 3)
[
Lm𝜕2

r 𝜐 + 2(m + 1)Lm(D̃r𝜐)
]
+ Lm

(
r𝜕3

r 𝜐 + 2𝜕2
r 𝜐
)

+ 2(m + 1)
[
Lm(𝜕2

r 𝜐) + Lm(D̃r𝜐)
]
. (10.31)
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The induction hypothesis is used in the last line. On the other hand, using (10.30), we get

Lm+1𝜕
2
r 𝜐 = (2m + 3)Lm(𝜕2

r 𝜐) + Lm(r𝜕3
r 𝜐). (10.32)

Next, using (10.31) and (10.32), we get

[𝜕2
r , Lm+1]𝜐 = 𝜕2

r Lm+1𝜐 − Lm+1𝜕
2
r 𝜐

= 2(m + 2)Lm𝜕2
r 𝜐 + 4(m + 1)(m + 2)LmD̃r𝜐

= 2(m + 2)Lm(𝜕2
r 𝜐 + 2(m + 1)D̃r𝜐).

But, using again (10.30), we get

Lm+1D̃r𝜐 = (2m + 3)LmD̃r𝜐 + Lm(r𝜕rD̃r𝜐)
= Lm(𝜕2

r 𝜐 + 2(m + 1)D̃r𝜐).

Therefore, (1) holds true with m replaced by m + 1 and the induction is complete.
To prove (2), we use Leibnitz’s rule. We have

Lm𝜐 = D̃m
r (r

2m+1𝜐) =
m∑
k=0

(
m
k

)
D̃m−k

r (r2m+1)D̃k
r𝜐.

Now
D̃m−k

r (r2m+1) = (2m + 1) ⋅ (2m − 1)⋯ (2k + 3)r2k+1

and

D̃k
r𝜐 =

k−1∑
j=0

ak,j
rk+j

𝜕k−jr 𝜐,

for some constants ak,j which do not depend on 𝜐. Therefore, we get

Lm𝜐 =
m∑
k=0

cm,krk+1D̃k
r𝜐,

where the constants cm,k do not depend on 𝜐. To determine cm,0, observe that

D̃m
r (r

2m+1) = cm,0r.

This immediately gives
cm,0 = 1 ⋅ 3⋯ (2m + 1)

as required. This completes the proof of the lemma.
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Some examples are:

• For n = 3, m = 0 and L0𝜐 = r𝜐. This was seen in Section 10.2.
• For n = 5, m = 1 and L1𝜐 = r2𝜕r𝜐 + 3r𝜐. This has been mentioned in John (1978) as

an exercise on page 109.
• For n = 7, m = 2 and L2𝜐 = r3𝜕r2𝜐 + 9r2𝜕r𝜐 + 15r𝜐.

With this preparation, we now proceed to obtain a formula for the solution of the wave
equation in odd (space) dimensions, using the Euler–Poisson–Darboux equation. Recall the
Cauchy problem stated at the beginning of this chapter:

□cu ≡ utt − c2Δu = 0, x ∈ ℝn, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ ℝn. (10.33)

Let n ≥ 3 be odd and u be a C2 solution of (10.33). Let m = n−3
2

and consider the operator
Lm introduced in Lemma 10.6. Put

N(x, r, t) = LmMu(x, r, t).

Lemma 10.6 (1) and the discussion preceding it immediately yield the following theorem:

Theorem 10.7. The function N satisfies the one-dimensional wave equation

Ntt − c2Nrr = 0

along with the initial conditions

N(x, r, 0) = LmMu0
(x, r), Nt(x, r, 0) = LmMu1

(x, r).

By D’Alembert’s formula, we have

N(x, r, t) = 1
2
(
LmMu0

(x, r + ct) + LmMu0
(x, r − ct)

)
+

+ 1
2c

r+ct

∫
r−ct

LmMu1
(x, s) ds

Next, from Lemma 10.6 (2), it follows that

lim
r→0

N(x, r, t)
cm,0r

= lim
r→0

Mu(x, r, t) = u(x, t).
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Therefore, we get (see the explanation preceding and leading to (10.8))

u(x, t) = lim
r→0

N(x, r, t)
cm,0r

= 1
cm,0

𝜕
𝜕t

(
LmMu0

(x, ct)
)
+ 1

cm,0
LmMu1

(x, ct).

Of course, for u to be C2, the initial functions u0 and u1 need to be sufficiently smooth.
Using the definition of Lm, we rewrite the above formula as (remember n ≥ 3 is odd and
m = (n − 3)∕2):

u(x, t) = 1
cn

[( 𝜕
𝜕t

)(1
t
𝜕
𝜕t

) n−3
2 (

tn−2Mu0
(x, ct)

)
+

+
(1
t
𝜕
𝜕t

) n−3
2 (

tn−2Mu1
(x, ct)

)]
, (10.34)

where cn = cm,0 = 1 ⋅ 3⋯ (n − 2). Of course, the spherical means Mu0
and Mu1

may be
written in terms of surface integrals of the functions u0 and u1 respectively. Since c3 = 1,
we can easily verify that the formula given in (10.34) coincides with one given in (10.8). We
now summarize the foregoing in the form of a theorem:

Theorem 10.8. Assume thatn≥ 3 is odd, the initial valuesu0 ∈C
n+3
2 (ℝn) andu1 ∈C

n+1
2 (ℝn).

Define u by (10.34). Then, u is a C2 solution of the Cauchy problem (10.33).

For the sake of completeness, we also state the result for n even, which is derived using
the method of descent, from the known result for n odd. For n ≥ 2 even, define u by

u(x, t) =
cn+1

2Γ(n∕2)

⎡⎢⎢⎣
( 𝜕
𝜕t

)( 1
2t

𝜕
𝜕t

) n−2
2

t

∫
0

r√
t2 − r2

(
rn−2Mu0

(x, cr)
)
dr +

+
(1
t
𝜕
𝜕t

) n−2
2

t

∫
0

r√
t2 − r2

(
tn−2Mu1

(x, cr)
)
dr
⎤⎥⎥⎦ , (10.35)

where Γ is the Euler’s gamma function.

Theorem 10.9. Assume that n ≥ 2 is even and u0 ∈ C
n+4
2 (ℝn) and u1 ∈ C

n+2
2 (ℝn). Then, u,

defined in (10.34), is a C2 solution of the Cauchy problem (10.33).
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In the above theorem, the initial conditions at t = 0 are satisfied in the sense of limiting
values: For any x0 ∈ ℝn,

lim
(x,t)→(x0,0+)

u(x, t) = u0(x0)

and

lim
(x,t)→(x0,0+)

ut(x, t) = u1(x0).

A somewhat lengthy verification is left as an exercise.We also invite the reader to compare
the above formulas with the ones that will be derived in the next subsection.

Remark 10.10. (Loss of Regularity) When n ≥ 3 and odd, we need u0 ∈ C
n+3
2 (ℝn) in order

for u to be a C2 solution, thus losing a regularity of order n−1
2

. Whereas, for n ≥ 2 and
even, we need u0 ∈ C

n+4
2 (ℝn) in order for u to be a C2 solution, losing a regularity of

order n
2
.Thus, there ismore loss in the order of regularity in even dimensions. However,

the case of n = 1 is different, where the solution is as smooth as the initial data.

10.4.2 An Inversion Method

Following Courant and Hilbert (1989), we now describe a method of obtaining a
representation for the solution of the wave equation in any dimension n ≥ 3.

We begin with a discussion of the spherical mean function of certain specific function.
Recall that for an arbitrary function h ∈ C2(ℝn), its spherical mean function 𝜐(x, r) =
Mh(x, r) is defined by

𝜐(x, r) = 1
𝜎n ∫|𝜉|=1

h(x + r𝜉) dS(𝜉), r ∈ ℝ, (10.36)

satisfies the Darboux equation

𝜐rr +
n − 1
r

𝜐r = Δx𝜐, (10.37)

and the initial conditions 𝜐(x, 0) = h(x) and 𝜐r(x, 0) = 0 (𝜐 is an even function of r). Suppose
now that h is a function of only one variable, say x1: h = h(x1). Then, integrating with
respect to the variables x2,… , xn in the integral in (10.36), it may be written as (replacing x1
by x)

𝜐(x, r) =
𝜎n−1

𝜎n

1

∫
−1

h(x + r𝜇)
(
1 − 𝜇2) n−3

2 d𝜇, x, r ∈ ℝ, (10.38)
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and satisfies the equation

𝜐rr +
n − 1
r

𝜐r = 𝜐xx. (10.39)

The integral in (10.36) transforms into the integral in (10.38) by writing 𝜉 = (𝜉1, 𝜉 ′) and
performing the surface integral first with 𝜉 ′ variables. Now differentiate (10.38) twice with
respect to x to obtain

𝜐xx =
𝜎n−1

𝜎n

1

∫
−1

h ′ ′(x + r𝜇)
(
1 − 𝜇2) n−3

2 d𝜇,

which may be used to replace the right-hand side in (10.39). Since x plays only the role of a
parameter, the above analysis may be summarized as follows:

If a function 𝜐 defined on ℝ and a function h ∈ C2(ℝ) are connected by the relation

𝜐(r) =
1

∫
−1

h(r𝜇)
(
1 − 𝜇2) n−3

2 d𝜇,

then,

𝜐rr +
n − 1
r

𝜐r =

1

∫
−1

h ′ ′(r𝜇)
(
1 − 𝜇2) n−3

2 d𝜇.

We now extend the above idea to study the n-dimensional wave equation. In this regard,
we may now consider h to depend on x ∈ ℝn, which will be treated as a parameter, that is,
we consider h = h(x, r𝜇). Accordingly, we write 𝜐 = 𝜐(x, r). To see the connection of this
analysis to the solution of the wave equation, let u to be a C2 solution of the wave equation

utt = Δu, x ∈ ℝn, t > 0,

satisfying the initial conditions

u(x, 0) = 𝜓(x), ut(x, 0) = 0, x ∈ ℝn.

The function u may then be extended to t < 0 by setting u(x, t) = u(x,−t). Now consider
the function (temporarily we use r in place of t)

𝜐(x, r) =
𝜎n−1

𝜎n

1

∫
−1

u(x, r𝜇)
(
1 − 𝜇2) n−3

2 d𝜇
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corresponding to the function u(x, r𝜇). Then,

𝜐(x, 0) = u(x, 0) = 𝜓(x), 𝜐r(x, 0) = 0.

Also,

Δx𝜐 = 𝜐rr +
n − 1
r

𝜐r.

Theprevious analysis shows that this equation is satisfied by 𝜐(x, r) = M𝜓 (x, r) and therefore,
the solution of the wave equation u must satisfy

2𝜎n−1

𝜎n

1

∫
0

u(x, r𝜇)
(
1 − 𝜇2) n−3

2 d𝜇 = M𝜓 (x, r), (10.40)

where we have used that u is an even function of t ∈ ℝ. Conversely, if u satisfies the above
relation, then we obtain a solution of the wave equation, even in t, in a unique manner. If
we can somehow invert the relation in (10.40), then we would have obtained u in terms of
𝜓 . We now proceed to do this.

Lemma 10.11. Let n ≥ 3. Suppose 𝜐(r) and 𝜙(r) are continuous functions defined on
ℝ, 𝜙(−r) = 𝜙(r) and are connected by the relation

𝜐(r) =
1

∫
0

𝜙(r𝜇)
(
1 − 𝜇2) n−3

2 d𝜇.

Then,

• For n = 2k + 1, k ≥ 1, we have

𝜙(r) = 2r
(k − 1)!

(
d
dr2

)k (
r2k−1𝜐(r)

)
.

• For n = 2k, k ≥ 2, we have

𝜙(r) = 2r√
𝜋 Γ

(
2k−1

2

) (
d
dr2

)k r

∫
0

𝜌√
r2 − 𝜌2

(
𝜌2k−2𝜐(𝜌)

)
d𝜌.

Here the notation d
dr2

denotes the derivation with respect to the variable r2; of course, d
dr2

=
1
2r

d
dr
.
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Proof Make the change of variables: r =
√
s, r𝜇 =

√
𝜎. Then, the given relation in the

lemma is rewritten as

2𝜐(
√
s)s

n−2
2 =

s

∫
0

𝜙
(√

𝜎
)

√
𝜎

(s − 𝜎)
n−3
2 d𝜎.

Set w(s) = 2𝜐
(√

s
)
s
n−2
2 and 𝜒(𝜎) =

𝜙
(√

𝜎
)

√
𝜎

. Thus,

w(s) =
s

∫
0

𝜒(𝜎) (s − 𝜎)
n−3
2 d𝜎. (10.41)

If n = 2k + 1, then by differentiating k times the relation (10.41), we obtain

(k − 1)!𝜒(s) = 2
(

d
ds

)k

w(s),

or in terms of r, 𝜐 and 𝜙,

𝜙(r) = 2
(k − 1)!

r
(

d
dr2

)k (
r2k−1𝜐(r)

)
.

If n = 2k, we write n−3
2

= k−1− 1
2
and differentiate k−1 times the relation (10.41) to obtain

(
d
ds

)k−1

w(s) = n − 3
2

⋅
n − 5

2
⋯

1
2

s

∫
0

𝜒(𝜎)√
s − 𝜎

d𝜎.

Therefore,5

n − 3
2

⋅
n − 5

2
⋯

1
2
𝜒(s) = 1

𝜋
d
ds

s

∫
0

w(k−1)(𝜎)(s − 𝜎)−1∕2 d𝜎.

5Liouville transformation: Let 0 < 𝛼 < 1 and the functions f and g defined on [0,∞) are connected by the relation

g(t) = 1
Γ(𝛼)

t

∫
0

f(s)(t − s)−𝛼 ds,

then

f(t) = d
dt

⎛⎜⎜⎝ 1
Γ(1 − 𝛼)

t

∫
0

g(s)(t − s)1−𝛼 ds
⎞⎟⎟⎠ .
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Using the fact that
(

d
ds

)j
w(0) = 0 for j = 1, 2,… , n−2

2
and some simple manipulation, the

above relation can be written as

𝜒(s) = 1√
𝜋 Γ

(
2k−1

2

) (
d
ds

)k s

∫
0

w(𝜎)√
s − 𝜎

d𝜎,

or, in terms of the original variables

𝜙(r) = 2r√
𝜋 Γ

(
2k−1

2

) (
d
dr2

)k r

∫
0

𝜌√
r2 − 𝜌2

(
𝜌2k−2𝜐(𝜌)

)
d𝜌.

This completes the proof of the lemma.

Returning to the discussion on the solution u of the wave equation

utt − Δu = 0

satisfying the initial conditions u(x, 0) = 𝜓(x) and ut(x, 0) = 0 for x ∈ ℝn, we take 𝜐(r) =
M𝜓 (x, r) and 𝜙(r) = 2𝜎n−1

𝜎n
u(x, r) (r and t are interchangeably used) in the Lemma 10.11.

Then, using (10.40), we obtain the following:
∙ For n = 2k, k ≥ 2,

u(x, t) = t
Γ(k)

( 𝜕
𝜕t2

)k
t

∫
0

r√
t2 − r2

(
r2k−2M𝜓 (x, r)

)
dr

∙ For n = 2k + 1, k ≥ 1,

u(x, t) =
√
𝜋t

Γ(k + 1
2
)

( 𝜕
𝜕t2

)(n−1)∕2 (
tn−2M𝜓 (x, t)

)
.

Representation Formula for the Solution u: We are now in a position to write down the
solution formula for the general IVP for the wave equation in arbitrary dimensions. For this,
we introduce the following notation: For sufficiently smooth function h defined on ℝn, set

Qh(x, t) =
1

2Γ(k)

( 1
2t

𝜕
𝜕t

)k−1
t

∫
0

r√
t2 − r2

(
r2k−2Mh(x, r)

)
dr
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for n = 2k, k ≥ 2 and

Qh(x, t) =
√
𝜋

2Γ(k + 1
2
)

( 1
2t

𝜕
𝜕t

)k−1 (
t2k−1Mh(x, t)

)
for n = 2k + 1, k ≥ 1. We have

Theorem 10.12. Consider the IVP for the homogeneous wave equation

utt − Δu = 0, x ∈ ℝn, t > 0
u(x, 0) = 𝜓(x), ut(x, 0) = 𝜙(x), x ∈ ℝn.

Then, the solution u has the following representation:

u(x, t) = 𝜕
𝜕t
Q𝜓 (x, t) + Q𝜙(x, t).

Conversely, suppose 𝜓 ∈ C
n+3
2 (ℝn) and 𝜙 ∈ C

n+1
2 (ℝn), for n ≥ 3, odd; and 𝜓 ∈

C
n+4
2 (ℝn) and 𝜙 ∈ C

n+2
2 (ℝn), for n ≥ 3, even. Then the function u as given above is a C2

solution of the wave equation satisfying the initial conditions stated in the theorem.

A somewhat lengthy verification of the converse statement is left as an exercise.

10.5 MIXED OR INITIAL BOUNDARY VALUE PROBLEM

We now consider the wave equation in a bounded or unbounded region Ω in ℝn:

□cu = utt − c2Δu = f(x, t), x ∈ Ω, t > 0, (10.42)

with the prescribed initial and boundary conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω
u(x, t) = 0, x ∈ 𝜕Ω, t > 0.

}
(10.43)

The zero Dirichlet condition may be replaced by a non-zero Dirichlet condition.
Neumann or mixed boundary conditions may also be prescribed. More generally, the
boundary 𝜕Ω may be divided into two parts and different kinds of boundary conditions
may be prescribed on these two parts of the boundary.
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Solutions with Finite Energy: For a solution u of (10.42), the associated energy is
defined by

E(t) = 1
2 ∫

Ω

(
ut(x, t)2 + c2|∇xu(x, t)|2) dx (10.44)

andwe consider only solutions with finite energy, that is E(t) < ∞ for all t ≥ 0.The solutions
with finite energy are also physically meaningful. Using divergence theorem and (10.42), we
have,

dE
dt

= ∫
Ω

(
ututt + c2

n∑
i=1

uxiuxit

)
dx

= ∫
Ω

ut
(
c2Δu + f

)
dx − c2 ∫

Ω

Δuut dx + c2 ∫
𝜕Ω

ut
𝜕u
𝜕𝜈

d𝜎

= ∫
Ω

fut dx + c2 ∫
𝜕Ω

ut
𝜕u
𝜕𝜈

d𝜎.

Here 𝜈 denotes the outward unit normal to the boundary 𝜕Ω. If, initially, u, ut vanish for all
x ∈ Ω and t = 0, and u = 0 or 𝜕u

𝜕𝜈
= 0 for all x ∈ 𝜕Ω, t ≥ 0, then, with f ≡ 0, we see that

dE
dt

= 0 or E is a constant. Since E(0) = 0, it follows that E(t) = 0 for all t ≥ 0. But then ut
and all uxi are zero, so that u is a constant. Since u = 0 for t = 0, it follows that u ≡ 0. Thus,
under suitable regularity assumption, we have obtained the following uniqueness result for
solutions with finite energy:

Theorem 10.13 (Uniqueness). Assume that Ω is a region in ℝn with smooth boundary
𝜕Ω. Then, any solution of (10.42) with finite energy and satisfying the initial-boundary
conditions (10.43), is unique.

The above uniqueness result easily extends to equations with Δ replaced by a second-
order uniformly elliptic operators. Proving the existence of solutions with finite energy,
however, is not at all simple and demands heavy machinery from functional analysis, such
as Sobolev spaces and operator theory. These topics are not part of the present book. This
of course compels us to make mere statements regarding the existence of solutions with
finite energy, without much explanation and/or proofs. The interested reader can certainly
look into more advanced books or research articles for understanding the deeper analysis
involved.Herewemention a book by Ladyzhenskaya (1985) and an article byWilcox (1962).

Galerkin Method: There are different methods found in the literature to establish the
existence of a solution with finite energy. Below we describe the Galerkin method to obtain
such solutions for (10.42). This method requires the knowledge of existence of a sequence
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of real numbers {𝜆n}, the eigenvalues, and the associated sequence of functions {𝜙n}, the
eigenfunctions, satisfying

Δ𝜙n + 𝜆n𝜙n = 0, (10.45)

for n = 1, 2,…. Further, each 𝜙n satisfies the appropriate boundary condition. We remark
that to prove the existence of 𝜆n and the associated 𝜙n for a general domain with smooth
boundary, again requires tools from functional analysis. Such problems are categorized as
spectral problems for uniformly elliptic operators. The existence of eigenvalues and the
associated eigenfunctions are obtained using the spectral theory for compact operators in
suitable Hilbert spaces.

We remark that under fairly general conditions on the regularity of the domain and for
a general uniformly elliptic operator, in place of Δ, it is possible to prove the existence
of eigenvalues and the associated eigenfunctions, for Dirichlet and Neumann boundary
conditions. In case ofΔ, for example, and domains with specific geometry – a square, a ball
– it is possible to explicitly determine the eigenvalues and the associated eigenfunctions.
Further, it may be shown that the eigenfunctions are complete. This means that the closure
of the linear span of the set of eigenfunctions is the space of all square-integrable functions
defined on Ω. This enables us to expand any square-integrable function defined in Ω in
terms of the eigenfunctions.

We assume that the eigenfunctions 𝜙n also satisfy the zero Dirichlet condition and are
orthonormal:

∫
Ω

𝜙k(x)𝜙l(x) dx = 𝛿kl,

where 𝛿kl is the Kronecker delta function. The Galerkin method then seeks a solution u of
(10.42) in the form of an infinite series

u(x, t) =
∞∑
k=1

ak(t)𝜙k(x). (10.46)

Formally, plugging the series into the equation in (10.42), we see that the unknown
coefficient ak satisfies the ODE:

a ′ ′
k (t) + c2𝜆kak(t) = 0, (10.47)

for k = 1, 2,…. Using the initial conditions in (10.43) (the boundary condition is
automatically satisfied because of the choice of 𝜙k), we obtain the initial conditions for ak,
as the Fourier coefficients of u0 and u1:

ak(0) = ∫
Ω

u0(x)𝜙k(x) dx, a ′
k(0) = ∫

Ω

u1(x)𝜙k(x) dx. (10.48)



10.6 General Hyperbolic Equations and Systems 311

Thus solving (10.47) with initial conditions given in (10.48), we get

ak(t) = ∫
Ω

[
u0(x) cos(c𝜆kt) +

u1(x) sin(c𝜆kt)
c𝜆k

]
𝜙k(x) dx. (10.49)

We still have the task of proving the convergence of the series in (10.46) in some appropriate
space, but we will not go into details. See, for example, the paper by Wilcox (1962) and the
book by Ladyzhenskaya (1985).

We remark that this procedure also works for parabolic operators 𝜕t − L, where L is a
uniformly elliptic operator with coefficients depending only on x.

10.6 GENERAL HYPERBOLIC EQUATIONS AND SYSTEMS

In this section, we merely introduce the notion of hyperbolicity for general linear equations
of any order and for systems of first-order equations. We will not venture into any question
regarding the existence and/or uniqueness of solutions, as these topics require advanced
tools from functional analysis.

An mth-order linear partial differential operator is given by

A =
∑

j+|𝛼|≤m a𝛼j(x, t)D𝛼
xD

j
t, x ∈ ℝn, t ∈ ℝ,

where the coefficients a𝛼j are all real.

Definition 10.14 (Hyperbolicity). The operator A is said to be hyperbolic at the point (x, t)
if a0m(x, t) ≠ 0 (that is, the direction of the t-axis is non-characteristic at (x, t)) and for
any vector 𝜉 ∈ ℝn, all the roots 𝜆 of the equation

Am(x, t, 𝜉, 𝜆) ≡ ∑
j+|𝛼|=m a𝛼j(x, t)𝜉𝛼𝜆j = 0

are real.

The polynomial Am is called the principal symbol of A.

Definition 10.15 (Strict Hyperbolicity). TheoperatorA is said to be strictly hyperbolic if the
roots of the polynomial Am are real and distinct for all non-zero vectors 𝜉. This case is
also referred to as the case of simple characteristics.

In case of systems, the coefficients a𝛼j will be real square matrices. For systems, A is
called hyperbolic at (x, t) if a0m(x, t) is non-singular and the roots 𝜆 of the characteristic
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equation

det
∑

j+|𝛼|=m a𝛼j(x, t)𝜉𝛼𝜆j = 0

are all real for any 𝜉 ∈ ℝn. If, in addition, these roots are distinct for all non-zero 𝜉, then A
is said to strictly hyperbolic at (x, t).

The simplest hyperbolic operators of first order are

𝜕
𝜕t

+
n∑
j=1

aj(x, t)
𝜕
𝜕xj

+ b(x, t)

with real aj and b. The second order-operator of the form

𝜕2

𝜕t2
−

n∑
i,j=1

aij(x, t)
𝜕2

𝜕xixj
+

n∑
j=1

bj(x, t)
𝜕
𝜕xj

+ c(x, t)

with real coefficients is hyperbolic if the matrix [aij] is symmetric and positive definite. In
particular, the D’Alembertian □c is strictly hyperbolic.

Of particular interest are the first-order systems, sincemany examples of practical interest
belong to this class. Consider a first-order system of equations

ut +
n∑
j=1

Aj(x, t)uxj + B(x, t)u = f(x, t), (10.50)

or, more generally

A0(x, t)ut +
n∑
j=1

Aj(x, t)uxj + B(x, t)u = f(x, t). (10.51)

Here x ∈ ℝn, t ∈ ℝ; u, f are real N-vectors and A0,Aj and B are real square
matrices of order N. We rephrase earlier definitions in the context of (10.50) and
(10.51).

Definition 10.16. The system (10.50) is said to be hyperbolic if the matrix
n∑
j=1

𝜉jAj has only

real eigenvalues for all real 𝜉 ∈ ℝn. If, in addition, these eigenvalues are also distinct

for all non-zero 𝜉, then (10.50) is said to be strictly hyperbolic. If the matrix
n∑
j=1

𝜉jAj has

only real eigenvalues and is diagonalizable for all 𝜉, then (10.50) is said to be strongly
hyperbolic. It is symmetric hyperbolic if all the matrices Aj are symmetric.
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We now make similar definitions with regard to the system (10.51). This system is
hyperbolic if the matrix A0 is non-singular and all the roots 𝜆 of the characteristic equation

det

(
𝜆A0 +

n∑
j=1

𝜉jAj

)
= 0

are real, for all 𝜉. The definitions of strict hyperbolicity and strong hyperbolicity are similar.
This system is called symmetric hyperbolic if the matrices A0 and Aj are all symmetric and
A0 is positive definite.

Remark 10.17. Suppose the matrices in (10.50) are all constant matrices. For the system to
be strictly hyperbolic a certain relation should be satisfied between n and N. This was
discovered by Lax (1982) and Friedland et al. (1984), in the early 1980s. For example,
when n = 3, the case is of physical interest, the smallest N for which the system may
be a strictly hyperbolic is 7. However, for 2 × 2 systems, that is n = 2, there are strictly
hyperbolic systems for arbitrary N. A simple example is the following:

Take A1 to be a diagonal matrix with distinct real numbers on the diagonal and A2 to
be a tridiagonal symmetric matrix with all non-zero sub-diagonal elements. Then, it is not
difficult to see that the matrix 𝜉1A1 + 𝜉2A2 has real and distinct eigenvalues for all non-zero
real 𝜉. This easy verification is left as an exercise.

10.7 NOTES: QUASILINEAR EQUATIONS

Wehave seen that the solution of a first-order non-linear equation such as Burgers’ equation,
ceases to be smooth after a finite time, in spite of the initial data being very smooth. A similar
question may be posed for a quasilinear hyperbolic equation of the form

utt − Δu =
n∑

i,j=1
aij(Dt,xu)uxixj ,

which is a perturbation of the n-dimensional wave equation. Here Dt,xu denotes
(ut, ux1

,… , uxn) and aij = aji are smooth functions satisfying aij(0) = 0 for all i, j and

n∑
i,j=1

|aij(Dt,xu)| ≤ 1∕2, for |Dt,xu| small.

We impose the initial conditions

u(x, 0) = 𝜀f(x), ut(x, 0) = 𝜀g(x),
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where f, g are smooth functions with compact support; thus 𝜀 measures the strength of the
initial data. It is necessary to restrict to small 𝜀 if we expect a global solution, that is a solution
which exists for all t > 0. The following example, suggested by L. Nirenberg, illustrates this.

Consider the semi-linear equation

utt − Δu = u2
t − |∇xu|2

in ℝ3 with initial data

u(x, 0) = 0, ut(x, 0) = 𝜀g(x), x ∈ ℝ3,

where g is a smooth function of compact support. The substitution 𝜐 = e−u shows that 𝜐
satisfies the homogeneous wave equation 𝜐tt − Δ𝜐 = 0 with initial data 𝜐(x, 0) = 1 and
𝜐t(x, 0) = −𝜀g(x). Therefore,

𝜐(x, t) = 1 − 𝜀
4𝜋t ∫|y−x|=t

g(y) dS(y), t > 0.

Since then u = log(1∕𝜐), the solution u is defined for those t that makes 𝜐 > 0. Suppose g
has compact support and bounded below by some 𝛿 > 0. From the explicit expression for 𝜐,
it is clear that 𝜐 ≤ 1−𝜀𝛿t. Therefore, 𝜐 remains positive as long as t = O(1∕𝜀). This example
also suggests that in general we cannot expect global existence of solutions.

Returning to the second-order quasilinear equation, when we try to establish the
existence of a solution by the method of iterations, there is an immediate difficulty of
the iterates not falling into the same function class. Klainerman (1980) overcomes this
difficulty by adapting a Nash–Moser–Hörmander type scheme. With this complicated and
highly technical procedure of obtaining estimates, Klainerman was able to prove the global
existence of a solution for small 𝜀, provided that n ≥ 6. This left open, in particular, the
physically relevant case of n = 3.

Using the explicit representation of the solution of the homogeneous wave equation
described above, von Wahl (1971) derived Lp − Lq estimates for the solution, for suitable
positive exponents p, q. Using the short time existence of the solution to the quasilinear
equation (which in itself is non-trivial), the Lp − Lq estimates were used to obtain a priori
estimates for the solution, so that the method of continuation of existence of solution may
be extended to larger time intervals. This programme was successful and is reported in
Klainerman and Ponce (1983), again requiring n ≥ 6.

Fritz John, considering the case of n = 3, introduced some new ideas by obtaining
estimates on the solution of the homogeneous/ inhomogeneous wave equation, using the
generators of the Poincarè group and Lorentz group, instead of just using the usual first-
order differential operators, being the generators of the translation group. Using these hard
estimates, John (1983) was able to obtain almost global existence of solutions to quasilinear
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equation for small 𝜀. The terminology of almost global existence introduced here is to
indicate that the time of existence is exponentially large, depending on 𝜀.

Using the ideas in John (1983) and John and Klainerman (1983), Klainerman was
successful in deriving L2 − L∞ for a general class of functions including the solution of
the homogeneous wave equation. These estimates resemble the usual Sobolev estimates,
but also involve the generators of the Poincarè and Lorentz groups. Using these estimates,
Klainerman succeeded in settling the question of global existence of solutions to quasilinear
equation for all dimensions (see Klainerman, 1985). In particular, it was shown that there
is global existence for n ≥ 4 and almost global existence for n = 3.

It is perhaps oversimplification of the long and hard work that went into the question
of estimating the time of existence of solutions to quasilinear equations, to state that
this question boils down to estimating the time of existence T by the finiteness of the
integral

𝜀

t

∫
0

(1 + s)−
n−1
2 ds

for all t < T. We immediately see that T = ∞ if n ≥ 4, indicating global existence;
T = exp(O(1∕𝜀)) if n = 3, indicating almost global existence. Also, T = O(1∕𝜀2) for n = 2
and T = O(1∕𝜀) for n = 1.

Some of these results can also be found in the Lecture Notes by Hörmander (1988, 1997).
This reference also contains an example for the casen = 3 exhibiting almost global existence.
In this example, by a substitution, the problem is reduced to a Burgers’ type equation. Using
the explicit information of the timeof existence of smooth solutions to theBurgers’ equation,
almost global existence is established.

10.8 EXERCISES

1. Let c1,… , ck be positive and distinct real numbers. Show that the solution of the equation

k∏
j=1

□cju =
k∏
j=1

(
𝜕2
t − c2jΔ

)
u = 0

can be written as

u(x, t) =
k∑
j=1

uj(x, t),

where uj satisfies the equation □cju = 0.
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(Hint: Let n = 3 and k = 2. Then, using Darboux equation (10.6), verify that the function
𝜐 = rMu satisfies the one-dimensional equation(

𝜕2
t − c21𝜕

2
r
) (

𝜕2
t − c22𝜕

2
r
)
𝜐 = 0.

As c1 ≠ c2, the general solution of the above equation is given by

𝜐(x, r, t) = F1(r − c1t) + F2(r + c1t) + F3(r − c2t) + F4(r + c2t)

for smooth functions Fi.)
2. Let n = 3 and consider the equation □2

cu = 0, where c > 0. Taking sufficiently smooth
initial data 𝜕jtu for j = 0, 1, 2, 3 at t = 0, write down the solution explicitly.
(Hint: As in the previous exercise, the function 𝜐 now satisfies the equation(

𝜕2
t − c2𝜕2

r
)2 𝜐 = 0.

The general solution of the above equation is given by

𝜐(x, r, t) = F1(r − ct) + tF2(r − ct) + F3(r + ct) + tF4(r + ct)

for smooth functions Fi.)
3. From the formula for the solution of the homogeneous wave equation for general n given

in the text, derive the formula for the solution of the inhomogeneous wave equation using
Duhamel’s principle.

4. Consider the IVP for the wave equation

utt − Δu = 0, x ∈ ℝn, t > 0
u(x, 0) = 𝜙(x), ut(x, 0) = 𝜓(x), x ∈ ℝn.

a. Let V(𝜙) denote the solution of the above IVP for 𝜓 = 0. Verify that the solution of the
IVP is given by

u(x, t) = V(𝜙)(x, t) +
t

∫
0

V(𝜓)(x, s) ds.

b. Let U(𝜓) denote the solution of the IVP with 𝜙 = 0. Verify that the solution of the IVP
is given by

u(x, t) = 𝜕
𝜕t
U(𝜙)(x, t) + U(𝜓)(x, t).
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5. Let L be linear partial differential operator defined by

L =
m∑
k=0

akrk+1𝜕kr ,

where m is a non-negative integer and a0,… , am are real numbers with am = 1. Assume
that L satisfies the following commutator relation:

[𝜕2
r , L] ≡ 𝜕2

r L − L𝜕2
r = (n − 1)L

(1
r
𝜕r
)
,

where n ≥ 3 is an integer.

a. Show that the integer n is necessarily odd and m = (n − 3)∕2.
b. Write down the recursive relations to determine the coefficients ak.
c. Show that the operator L can be written as

L = 1
rm

𝜕mr r
2m+1, r > 0.

6. Write down the formula for the solution of the inhomogeneous problem (10.26) and
(10.27).

7. Prove Theorem 10.12.
8. IfA is a tridiagonalmatrixwith allnon-zero sub-diagonal elements, show that the geometric

multiplicity of any eigenvalue ofA is 1. Use this result to establish the statementmade in the
second paragraph of Remark 10.17. (Hint: Consider the minor of the element in the first
row and last column.)



CHAPTER 11

Cauchy–Kovalevsky Theorem
and Its Generalization

11.1 INTRODUCTION

In this chapter, we consider equations with analytic coefficients and discuss the existence
and uniqueness of their solutions. Historically, the Cauchy–Kovalevsky Theorem (CKT) is
one of the first results in the theory of partial differential equations (PDE) that addressed
the question of existence and uniqueness of solutions. Its proof introduced the concepts of
estimates that are at the heart of the modern PDE techniques. In fact, these estimates are
known as a priori estimates for the solution and its derivatives, derived before establishing
the existence of a solution. More precisely, assuming the existence of a solution, such
estimates are derived. Thus, a priori estimates are necessary conditions for the existence of
a solution. The strategy is to use a priori estimates to define a suitable class of functions in
which a solution is sought. The rapid development of modern functional analysis provided
impetus to the study of PDE and in the current scenario, the study of PDE may be termed
as advanced or applied functional analysis.

We first discuss the CKT for linear equations and then its generalization to a system of
linear equations. Many of the books on the subject deal with this classical theorem. We cite
here John (1978), Hörmander (1976), Trèves (2006), and Folland (1995), among others.
We follow the procedure in Hörmander (1976) very closely for linear equations and Trèves
(2006), Caflisch (1990), for linear systems.

We begin with a discussion of analytic functions u(z) of n complex variables z = (z1,
… , zn) ∈ ℂn. We use the following notations throughout this chapter: Let z0 ∈ ℂn and let
u be a complex-valued function defined in a neighborhood of z0. The function u is said to
be analytic at z0 if u has the power series representation

u(z) =
∑
𝛼

a𝛼(z − z0)𝛼, (11.1)

where the power series converges absolutely in a neighborhood of z0. Here 𝛼 = (𝛼1,… , 𝛼n)
denotes amulti-indexwith 𝛼i non-negative integers and z𝛼 = z𝛼1

1 ⋯ z𝛼nn for z ∈ ℂn. It follows

318
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immediately from (11.1) that u is infinitely differentiable in a neighborhood of z0 and

a𝛼 = 1
𝛼!

D𝛼u(z0). (11.2)

Here D𝛼 denotes the differential operator D𝛼 = D𝛼1
1 ⋯D𝛼n

n of order |𝛼| = 𝛼1 +⋯ + 𝛼n and

Dj =
𝜕
𝜕zj

, j = 1, 2,… , n. In particular, for each j = 1, 2,… , n, the function of one complex

variable

𝜁 ↦ u(z1,… , zj−1, 𝜁 , zj+1,… , zn),

where zj’s are held fixed, is analytic in a neighborhood of z0j. It is not difficult to see that the
converse statement is also true. We denote by Ω the unit polydisc in ℂn:

Ω = {z ∈ ℂn ∶ |zj| < 1, j = 1, 2,… , n}.

11.2 CAUCHY–KOVALEVSKY THEOREM

We study here the Cauchy or initial value problem (IVP) for themth-order linear PDE with
complex coefficients: ∑

|𝛼|≤m a𝛼(z)D𝛼u(z) = f(z),

with initial conditions

Dk
j (u − 𝜑) = 0, for zj = 0 if 0 ≤ k < m, j = 1, 2,… , n,

where the coefficients a𝛼(z), the function f(z) and the data 𝜑(z) are all analytic in a
neighborhood of the origin andm is a positive integer.We begin with a version of CKTwith
smallness assumption on the coefficients a𝛼(z).

Theorem 11.1. For 𝛽 > 0, consider a differential equation

D𝛽u =
∑

|𝛼|≤|𝛽| a𝛼D
𝛼u + f, (11.3)

along with the initial conditions

Dk
j (u − 𝜑) = 0, for zj = 0 if 0 ≤ k < 𝛽j, j = 1, 2,… , n, (11.4)

where the coefficients a𝛼(z), the function f and 𝜑 are given analytic functions in a
neighborhood of the origin 0 in ℂn. If

∑
|𝛼|=|𝛽| |a𝛼(0)| is sufficiently small, then the
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Cauchy problem (11.3) and (11.4) has a unique analytic solution in a neighborhood
of 0.

The smallness condition stated in the theorem depends only on |𝛽|. The theorem will be
proved by the method of iterations. As a preparation, we first prove some basic results.

Lemma 11.2. Suppose g is an analytic function in the polydisc Ω. Then, the equation
D𝛽u = g, 𝛽 > 0 has a unique solution, analytic inΩ and satisfying the initial conditions

Dk
j u(z) = 0, when zj = 0, z ∈ Ω, 0 ≤ k < 𝛽j, j = 1, 2,… , n.

Proof If g(z) =
∑
𝛼
g𝛼z𝛼, z ∈ Ω, where the power series converges absolutely in Ω, then the

required unique solution is given by the power series representation

u(z) =
∑
𝛼

g𝛼
𝛼!

(𝛼 + 𝛽)!
z𝛼+𝛽 .

Lemma 11.3. Let 𝜐(𝜁 ) be an analytic function of one complex variable in {|𝜁 | < 1} ⊂ ℂ
such that 𝜐(0) = 0 and |𝜐 ′(𝜁 )| ≤ C(1− |𝜁 |)−a−1 for |𝜁 | < 1 and some positive constants
C and a. Then, |𝜐(𝜁 )| ≤ Ca−1(1 − |𝜁 |)−a−1, |𝜁 | < 1.

Proof The proof follows from the fundamental theorem of calculus. For |𝜁 | < 1, we have

𝜐(𝜁 ) = ∫
1

0

d
dt
(𝜐(t𝜁 )) dt = ∫

1

0
𝜁𝜐 ′(t𝜁 ) dt.

Therefore,

|𝜐(𝜁 )| ≤ |𝜁 |∫ 1

0
|𝜐 ′(t𝜁 )| dt ≤ C|𝜁 |∫ 1

0
(1 − t|𝜁 |)−a−1 dt

≤ Ca−1[(1 − |𝜁 |)−a − 1] ≤ Ca−1(1 − |𝜁 |)−a−1.

The above Lemma 11.3 easily gets extended to the case when bounds on the higher-order
derivatives are given. It also extends to multi-variable case by working with one variable at
a time, to obtain the following corollary:
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Corollary 11.4. Suppose 𝜐(z) is an analytic function in Ω satisfying

|D𝛽𝜐(z)| ≤ C
n∏
i=1

(1 − |zi|)−a−1

for z ∈ Ω and some positive constants C, a and a multi-index 𝛽 > 0 and the initial
conditions

Dk
j 𝜐 = 0, for zj = 0 if 0 ≤ k < 𝛽j, j = 1, 2,… , n.

Then,

|𝜐(z)| ≤ Ca−|𝛽| n∏
i=1

(1 − |zi|)−a−1

for z ∈ Ω.

Lemma 11.5. Let 𝜐(𝜁 ) be an analytic function of one complex variable in {|𝜁 | < 1} ⊂ ℂ
such that |𝜐(𝜁 )| ≤ C(1 − |𝜁 |)−a for |𝜁 | < 1 and some positive constants C and a. Then,
for k = 1, 2,…, we have

|𝜐(k)(𝜁 )| ≤ C(e(k + a))k(1 − |𝜁 |)−a−k, |𝜁 | < 1.

Here 𝜐(k) denotes the kth derivative of 𝜐.

Proof Let 0 < 𝜀 < 𝜌 ≡ 1 − |𝜁 |, |𝜁 | < 1. If |𝜁 − 𝜁 | ≤ 𝜀, then |𝜁 | ≤ |𝜁 | + 𝜀 < 1. Hence,|𝜐(𝜁 )| ≤ C(1 − |𝜁 | − 𝜀)−a = (𝜌 − 𝜀)−a. Next, by Cauchy formula, we have

𝜐(k)(𝜁 ) = (k − 1)!
2𝜋i ∫|𝜁−𝜁 |=𝜀

𝜐(𝜁 )
(𝜁 − 𝜁 )k+1

d𝜁.

Therefore, |𝜐(k)(𝜁 )| ≤ C(k − 1)!𝜀−k(𝜌 − 𝜀)−a.

Minimizing the right-hand side expression over 𝜀, occurring at 𝜀 = k𝜌
a+ k

, we obtain the
estimate

|𝜐(k)(𝜁 )| ≤ C(k − 1)! (a + k)k

kk

(
1 + k

a

)a

𝜌−a−k.

Using the trivial estimates

(k − 1)!
kk

≤ 1 and
(
1 + k

a

)a ≤ ek,

the required estimate follows and the proof is complete.
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As in the case of Lemma 11.3, the multi-variable version of Lemma 11.5 is the following
corollary:

Corollary 11.6. Suppose 𝜐(z) is an analytic function in the polydisc Ω satisfying

|𝜐(z)| ≤ C
n∏
i=1

(1 − |zi|)−a,
for z ∈ Ω and some positive constantsC and a.Then, for anymulti-index 𝛽 the estimate

|D𝛽𝜐(z)| ≤ C(e(a + |𝛽|))|𝛽| n∏
i=1

(1 − |zi|)−a−|𝛽|,
holds for z ∈ Ω.

Proof of Theorem 11.1 Replacing u by u − 𝜑 reduces the proof to the case 𝜑 = 0, with a
possible change in the right-hand side term. We may thus assume 𝜑 = 0. We then solve
equation (11.3) by iteration, using the recursion formula

D𝛽um+1 =
∑

|𝛼|≤|𝛽| a𝛼D
𝛼um + f, (11.5)

for m = 0, 1,…, with each um satisfying the initial conditions

Dk
j u = 0, when zj = 0, 0 ≤ k < 𝛽j, j = 1, 2,… , n. (11.6)

We take u0 to be any analytic function satisfying conditions (11.6), for example u0 = 0.
The existence of the functions um, m = 1, 2,… then follows from Lemma 11.2. Now define
𝜐m = um+1 − um for m = 0, 1,…. Then, 𝜐m’s satisfy the recursion relations

D𝛽𝜐m+1 =
∑

|𝛼|≤|𝛽| a𝛼D
𝛼𝜐m. (11.7)

We need to establish the convergence of um and 𝜐m. We proceed as follows: First assume
that the functions a𝛼, f and u0 are analytic in a neighborhood of Ω and let∑

|𝛼|≤|𝛽| |a𝛼| ≤ A and |𝜐0| ≤ M, in Ω.

We claim that

|𝜐m(z)| ≤ CmM
n∏
i=1

(1 − |zi|)−m|𝛽| (11.8)
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form = 0, 1,… and z ∈ Ω. Form = 0, this is just the assumption on 𝜐0. Assume that (11.8)
holds for some m. Then, using (11.7) and applying Corollary 11.6, we obtain that

|D𝛽𝜐m+1(z)| ≤ ACmM(e|𝛽|(m + 1))|𝛽| n∏
i=1

(1 − |zi|)−(m+1)|𝛽|, z ∈ Ω.

Since 𝜐m+1 satisfies the initial conditions in (11.6), it follows from Corollary 11.4 that

|𝜐m+1(z)| ≤ ACmM(e|𝛽|(m + 1)∕m|𝛽|)|𝛽| n∏
i=1

(1 − |zi|)−(m+1)|𝛽|, z ∈ Ω.

Hence, (11.8) is valid with C = A(2e)|𝛽|.
Next we establish the existence of a solution to (11.3).

Step 1: Assume first that C < 1 and choose 𝛾 such that C < 𝛾 < 1. It follows from (11.8)

that the series
∞∑

m=1
|𝜐m(z)| is uniformly convergent in the neighborhood Ω̃ of 0 defined by

Ω̃ =

{
z ∈ Ω ∶

n∏
j=1

(1 − |zj|)|𝛽| > 𝛾

}
.

Since um = 𝜐1 +⋯ + 𝜐m−1, it follows that limm→∞ um exists and call the limit u. Then u is
analytic in Ω̃. Since D𝛼u = limm→∞D𝛼um for every multi-index 𝛼, lettingm → ∞ in (11.5)
and (11.6), proves that u is a required solution in Ω̃.

To prove uniqueness, let u be an analytic solution of (11.1) with f = 0 and satisfying the
conditions (11.2)(with 𝜑 = 0), in a neighborhood Ω1 of 0. If we set 𝜐m = u for every m,
then we have a solution of the recursive formula (11.7) satisfying the conditions (11.6). Now
um+1 − um = 𝜐m = u and since um converges as shown above, we see that u = 0 and
uniqueness follows.

Step 2: We now prove the theorem removing the restriction on C introduced in Step 1. For
this purpose, let r > 0 be a parameter and consider the following functions

U(z) = u(rz), F(z) = r|𝛽|f(rz).
If u and f satisfy (11.1) in a neighborhood of 0, then U satisfies

D𝛽U(z) =
∑

|𝛼|≤|𝛽| r
|𝛽|−|𝛼|a𝛼(rz)D𝛼U(z) + F(z)
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in a neighborhood of 0, while the conditions in (11.4) are the same for both u and U. Now
writing ∑

|𝛼|≤|𝛽| r
|𝛽|−|𝛼||a𝛼(rz)| = ∑

|𝛼|=|𝛽| a𝛼(rz) +
∑

|𝛼|<|𝛽| r
|𝛽|−|𝛼||a𝛼(rz)|,

we see that the second term on the right-hand side can be made small by choosing r small.
Thus, the restrictionsmade in the first part of the proof are fulfilled if we choose r sufficiently
small and assume that ∑

|𝛼|=|𝛽| |a𝛼(0)| < (2e)−|𝛽|. (11.9)

This proves the existence of U using Step 1 and thus we obtain u.

We now remove the restriction in (11.9) and prove the following:

Theorem 11.7. Let K be the set of all the multi-indices 𝛼 in the sum on the right-hand
side of (11.3) for which a𝛼 ≢ 0 and assume that the multi-index 𝛽 is not in the
convex hull of K. Then, the conclusion of Theorem 11.1 is still valid without the
assumption (11.9).

Note that the assumption on the multi-index 𝛽 is automatically satisfied if the sum on the
right-hand side of (11.1) contains onlymulti-indices 𝛼 with |𝛼| < |𝛽| and in this case (11.9)
is trivially satisfied.

Proof For 𝜌 = (𝜌1,⋯ , 𝜌n) ∈ ℝn, let 𝜌(𝛼) =
n∑
i=1

𝜌i𝛼i, for any multi-index 𝛼. Using the

hypothesis, it follows from Hahn–Banach separation theorem that there is a 𝜌 ∈ ℝn such
that 𝜌(𝛼) < 𝜌(𝛽) for all 𝛼 ∈ K. By replacing 𝜌(𝛼) by 𝜌(𝛼) + t|𝛼|, t > 0, we may assume that
𝜌j > 0 for j = 1, 2,… , n.

Next consider the change of variables

z ↦ z̃ = (e−𝜆𝜌1z1,… , e−𝜆𝜌nzn),

where 𝜆 > 0 is a parameter and the functions

U(z) = u(z̃) and F(z) = e−𝜆𝜌(𝛽)f(z̃).

If u and f satisfy (11.3), then U satisfies

D𝛽U(z) =
∑
𝛼∈K

a𝛼(z̃) exp (𝜆(𝜌(𝛼) − 𝜌(𝛽)))D𝛼U(z) + F(z),

and the conditions (11.3) are the same for both u and U. For 𝜆 sufficiently large, the
hypothesis of Theorem 11.1 is satisfied by the just derived equation satisfied by U and this
completes the proof.
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We now come to the main result.

Theorem 11.8 (Cauchy–Kovalevsky). Consider a linear differential equation∑
|𝛼|≤m a𝛼(z)D𝛼u(z) = f(z), (11.10)

of order m, where the coefficients a𝛼(z) and f(z) are analytic in a neighborhood of the
origin 0 and the coefficient of Dm

n is non-zero when z = 0. Then, for every analytic
function 𝜑 in a neighborhood of 0, there exists a unique solution u of (11.10) that is
analytic in a neighborhood of 0 and satisfies the initial conditions

Dj
n(u − 𝜑) = 0 when zn = 0, and 0 ≤ j < n.

Proof By the assumption that the coefficient of Dm
n is non-zero in a neighborhood of 0.

Dividing (11.10) throughout by this coefficient and transferring the remaining terms to the
right-hand side, equation (11.10) reduces to (11.1) with 𝛽 = (0,… , 0,m). Then, we have
𝛼n < m = 𝛽n for all 𝛼 occurring in the right-hand side of (the reduced equation)(11.1).
Therefore, the theorem follows from Theorem 11.7.

11.2.1 Real Analytic Functions

Much of the above discussion can also be done with real analytic functions in place of
complex analytic functions.

LetΩ be an open set inℝn. A function f ∶ Ω → ℝ is said to be real analytic at x0 ∈ Ω, if there
exists r > 0 such that Br(x0) ⊂ Ω and f has the (convergent) power series representation

f(x) =
∑
𝛼

a𝛼(x − x0)𝛼, (11.11)

for all x ∈ Br(x0), where the sum extends over all multi-indices 𝛼 and a𝛼 are real constants.
By the elementary properties of convergent power series, it follows that f ∈ C∞(Ω) and

D𝛽 f(x) =
∑
𝛼

(𝛽 + 𝛼)!
𝛼!

a𝛽+𝛼(x − x0)𝛼,

for all multi-indices 𝛽; here 𝛼! = 𝛼1!⋯ 𝛼n! for amulti-index 𝛼. In particular,D𝛽 f(x0) = 𝛽!a𝛽
for all multi-indices 𝛽.

Remark 11.9. As the radius of convergence of the power series (11.11) is determined by
the coefficients a𝛼 , we can replace the real variable x by a complex variable z. Thus,
we infer that a real analytic function is also complex analytic. However, this is only a
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local result. For example, it is possible to construct a real analytic function on ℝ that
cannot be extended as a complex analytic function to the strip {z ∈ ℂ ∶ |ℑz| < 𝛿} for
any 𝛿 > 0.

Remark 11.10. Consider the function f ∶ ℝ → ℝ defined by

f(x) =

{
exp(−1∕x2) if x > 0,
0 if x ≤ 0.

It is easily verified that f ∈ C∞(ℝ) and that f (k)(0) = 0 for all k ≥ 0. Thus, f cannot be
analytic at x = 0.

A natural question thus arises is that, which C∞ functions are real analytic. We state the
following theorem without proof:

Theorem 11.11. Let Ω be an open set in ℝn and f ∶ Ω → ℝ be a C∞ function. Then, f is
real analytic at x0 ∈ Ω, if and only if there exist r > 0, M > 0 such that Br(x0) ⊂ Ω and
the estimates

|D𝛽 f(x)| ≤ M 𝛽!
rn|𝛽| (11.12)

are satisfied for all x ∈ Br(x0) and all multi-indices 𝛽.

11.2.2 Non-characteristic Cauchy Problem

In Cauchy–Kovalevsky Theorem 11.8, the Cauchy data was prescribed on the hypersurface
zn = 0, assuming it is non-characteristic with respect to equation (11.10). This result can
be extended by prescribing the Cauchy data on a smooth hypersurface, which is non-
characteristic with respect to the given differential equation. By a change of variables,
this general case can be reduced to the one considered above, by flattening the given
hypersurface to one of the co-ordinate hypersurface. This procedure has already been
described in detail for a second-order linear equation in Chapter 6. Here we just describe
the problem and the reader can consult the references cited at the beginning for details.

Thus, we consider a general quasilinear equation of order m:∑
|𝛼|≤m a𝛼D𝛼u + a0 = 0 (11.13)

in an open set Ω in ℝn, where the coefficients

a𝛼 = a𝛼(x,D𝛽u, |𝛽| < m)

for 𝛼 ≥ 0, are in general functions of x and the derivatives of u up to order m − 1.
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Consider a smooth n−1-dimensional hypersurface Γ ⊂ Ω, with a smoothly varying normal
𝜈(x) = (𝜈1(x),… , 𝜈n(x)), x ∈ Γ. The jth normal derivative of u at x ∈ Γ is defined by

𝜕ju
𝜕𝜈j

(x) =
∑
|𝛼|=j 𝜈

𝛼(x)D𝛼u(x), (11.14)

for j = 0, 1,… ,m− 1. Suppose gj ∶ Γ → ℝ, j = 0, 1,… ,m− 1 are given smooth functions.
The Cauchy problem for equation (11.13) consists of finding a function u satisfying (11.13)
and the boundary conditions

𝜕ju
𝜕𝜈j

(x) = gj(x), x ∈ Γ for j = 0, 1,… ,m − 1. (11.15)

The set of functions {g0,… , gm−1} is referred to as a Cauchy data on Γ. We say the surface
Γ is a non-characteristic surface with respect to equation (11.13) if

A(x) ≡ ∑
|𝛼|=m a𝛼𝜈𝛼(x) ≠ 0 for all x ∈ Γ. (11.16)

Note that from our assumption on the coefficients a𝛼 , the right-hand side in (11.16) only
depends on the Cauchy data on Γ. In seeking a solution u of (11.13), which is an analytic
function in a neighborhood of Γ, first we need to find all derivatives of u on Γ. This is
accomplished using the Cauchy data, equation (11.13) and the non-characteristic condition
(11.16).

11.3 A GENERALIZATION: APPLICATION TO FIRST-ORDER
SYSTEMS

Consider the Cauchy problem for a linear system of first-order equations:

𝜕u
𝜕t

=
n∑
j=1

Bj(t, z)
𝜕u
𝜕zj

+ B0(t, z)u + f(t, z)

u(0, z) = u0(z).
(11.17)

Here u and f areN vectors, B0,Bj areN×Nmatrices. Assuming that the coefficientmatrices,
f and the initial function u0 lie in a certain class of analytic functions of z in a strip of width
𝜌1 in ℂn for each t ∈ [0,T], we seek a solution of (11.17) in the same class. Actually, the
solutionwewill be obtaining is going to be analytic in a smaller strip of width 𝜌0 <𝜌1. Before
stating the main theorem, let us introduce some notations and function spaces we are going
to work with. Fix 𝜌1 > 0 and let 0 < 𝜌0 < 𝜌1. Put 𝛿 = 𝜌1 − 𝜌0 > 0. For 𝜌 ∈ [𝜌0, 𝜌1], we
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write 𝜌 = 𝜌0 + 𝜎(𝜌1 − 𝜌0) with 𝜎 ∈ [0, 1]. We write 𝜌 = 𝜌(𝜎) and it is convenient to use 𝜎
for labelling the domains and the function spaces. Note that if 𝜌(𝜎) and 𝜌(𝜎 ′) are in [𝜌0, 𝜌1],
then 𝜌(𝜎 ′) < 𝜌(𝜎) if and only if 𝜎 ′ < 𝜎 and we have 𝜌(𝜎) − 𝜌(𝜎 ′) = 𝛿(𝜎 − 𝜎 ′). Next, for
𝜎 ∈ [0, 1], denote by Ω𝜎 the strip in ℂn:

Ω𝜎 = {z = (z1,… , zn) ∈ ℂn ∶ |ℑzj| < 𝜌(𝜎), j = 1,… , n}.

Here ℑz denotes the imaginary part of a complex number z ∈ ℂ. The Banach space of all
the bounded analytic functions in Ω𝜎 is denoted by 𝜎 , with the norm‖u‖𝜎 = sup

z∈Ω𝜎

|u(z)|.
We next introduce the function space X𝜎 = C1([0,T];𝜎) defined by1

C1([0,T];𝜎) =
{
u = u(t, z) ∶ u(t, ⋅), 𝜕u

𝜕t
(t, ⋅) ∈ 𝜎 for all t ∈ [0,T] and are continuous

}
.

For brevity, we say that a vector-valued function or a matrix-valued function is in X𝜎 when
each component of the vector or matrix is in X𝜎 . Assume that the coefficients B0,Bj and f all
lie in X𝜎 and let

M = max
t∈[0,T]

{‖B0(t, ⋅)‖1, ‖Bj(t, ⋅)‖1, ‖f(t, ⋅)‖1}.

Note that Bj, j = 0, 1,… , n are N × N matrix-valued functions and f is a vector-valued
(ℂN valued) function.

Observe that the inclusion map 𝜎 → 𝜎 ′ is a continuous linear map with norm ≤ 1 for
all 𝜎 ′ < 𝜎. Further, if u ∈ X𝜎 and ‖u‖𝜎 ′ = 0, it follows from analyticity that ‖u‖𝜎 = 0. On
the other hand, the derivative map Dj ∶ 𝜎 → 𝜎 ′ is a linear continuous map satisfying‖Dju‖𝜎 ′ ≤ 𝛿−1(𝜎 − 𝜎 ′)−1‖u‖𝜎 , (11.18)

for all 𝜎 ′ < 𝜎 and u ∈ 𝜎 . See the proof of Lemma 11.5. In particular, the map Dj ∶ 1 →0 is a continuous linear map with norm ≤ 𝛿−1. If we now put

B(t) =
n∑
j=1

Bj(t, z)
𝜕
𝜕zj

+ B0(t, z),

it follows from (11.18) and the assumptions we have made on Bj that B(t) ∶ 𝜎 → 𝜎 ′ is a
linear continuous map with norm ≤ (n𝛿−1(𝜎 − 𝜎 ′)−1 + 1)M, for all 𝜎 ′ < 𝜎. If we put

C = (n𝛿−1 + 1)M,

1In general, for a function u ∶ [0,T] → X, where X is a Banach space, its Fréchet derivative u ′(t) at t ∈ [0,T]
can be identified with an element in X.
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then the norm of B(t) is ≤ C∕(𝜎 − 𝜎 ′) for all 0 ≤ 𝜎 ′ < 𝜎 ≤ 1, where C is independent of
t, 𝜎. By takingM larger, if necessary, we also assume that (Ce)−1 < T. We have the following
theorem:

Theorem 11.12 (Cauchy–Kovalevsky). Let u0 ∈ 1. Then, there exists T0 ∈ (0,T] such
that the following statement is true: there is a unique u ∈ C1([0,T0);0) satisfying the
equation and the initial condition in (11.17), for all z ∈ Ω0 and t ∈ [0,T0).

It is easy to deduce that if the data is provided in a time interval [−T,T] around the origin,
then the solution also exists in an interval (−T0,T0) for some T0 > 0.
Proof The proof is carried out by writing (11.17) as an integral equation and then using the
Picard iterations. Consider the system of integral equation

u(t, z) = u0(z) + ∫
t

0
(Bu(s, z) + f(s, z)) ds, (11.19)

where

Bu(t, z) =
n∑
j=1

Bj(t, z)Dju(t, z) + B0(t, z)u(t, z).

If u ∈ C([0,T];0) is a solution of (11.19), then a differentiation with respect to t shows
that u ∈ C1([0,T];0) and satisfies the equation and the initial condition in (11.17), for
z ∈ Ω0. The converse statement is also easy to verify. Thus, it suffices to prove the existence
of a solution to (11.19) and this is done using Picard’s iterations.

Existence: We will show that there exists a function u in C1([0, (Ce)−1);0) satisfying
(11.17). We further show that, for any 0 ≤ 𝜎 < 1, this function u is also a C1 function of
t ∈ [0, (Ce)−1(1 − 𝜎)), valued in 𝜎 .

Let u1(t, z) = u0(z) + ∫ t
0 (Bu0(z) + f(s, z)) ds for t ∈ [0,T] with the initial function u0 ∈ 1.

Define, inductively

uk+1(t, z) = u0(z) + ∫
t

0
(Buk(s, z) + f(s, z)) ds, (11.20)

for k = 1,…, t ∈ [0,T] and z ∈ Ω𝜎 , 𝜎 < 1. It follows, from the observation we made
above regarding the operator B, that for each k = 1, 2,…, the function uk is a continuous
function of t ∈ [0,T], valued in 𝜎 , 𝜎 < 1.

Now, set 𝜐1 = u1 and 𝜐k(t, z) = uk+1(t, z) − uk(t, z) for k = 1, 2,… and z ∈ Ω𝜎 . By linearity
of B, we have

𝜐k+1(t, z) = ∫
t

0
B𝜐k(s, z) ds,

for k = 1, 2,….
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We now claim that

‖𝜐k(t, ⋅)‖𝜎 ≤ M1

( Cet
1 − 𝜎

)k
, t ∈ [0,T], (11.21)

where

M1 = ‖u0‖0 + max
t∈[0,T]∫

t

0
‖ f(s, ⋅)‖0 ds.

The estimate (11.21) trivially holds for k = 1. Assume it holds for some k ≥ 1. Choose any
�̃� > 𝜎. Then, using the estimate of the norm of the operator B, we see that

‖𝜐k+1(t)‖𝜎 ≤ C
�̃� − 𝜎 ∫

t

0
‖𝜐k(s)‖�̃� ds

≤ M1
C

�̃� − 𝜎

( Ce
1 − �̃�

)k tk+1

k + 1
, using (11.21).

Now choose �̃� = 𝜎 + (1 − 𝜎)∕(k + 1), so that 1 − �̃� = k
k+1

(1 − 𝜎).
Therefore,

‖𝜐k+1(t)‖𝜎 ≤ M1

( Ct
1 − 𝜎

)k+1
ek
(
1 + 1

k

)k
.

Observing that
(
1 + 1

k

)k ≤ e, we complete the induction argument and thus proving the
claim for all k = 1, 2,… . From (11.21), we derive that the series

∞∑
k=1

𝜐k(t)

converges absolutely in 𝜎 , uniformly in every closed interval of [0, (Ce)−1(1 − 𝜎)). The
sum u of the above series is therefore the solution of the integral equation (11.19) and
hence that of (11.17). Of course u is also the limit of the sequence uk as k → ∞.

Uniqueness: We prove the statement: If u, 𝜐 are two solutions of (11.17) in some interval
[0,T ′), valued in 𝜎 , 𝜎 ∈ (0, 1], then they must be equal.

Put w = u − 𝜐. Then, by linearity w satisfies

w(t) = ∫
t

0
Bw(s) ds.
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By hypothesis, w(0) = 0 and by continuity, the set of t at which w vanishes is closed in
[0,T ′). To complete the proof, we show that this set is also open in [0,T ′). To this end, let
t0 ∈ (0,T ′) and w(t0) = 0.

Now take the initial time as t = t0. Thus, we have

w(t) = ∫
t

t0
Bw(s) ds. (11.22)

Let 0 ≤ 𝜎 ′ < 𝜎. We claim that equation (11.22) implies the following estimate for w:

‖w(t)‖𝜎 ′ ≤ M2(t)(𝜎 − 𝜎 ′)−k(Ce)k|t − t0|k, (11.23)

for k = 0, 1, 2,…, where

M2(t) = sup ‖w(s)‖𝜎
with sup taken over all s over the line segment joining t and t0. Here we are taking the values
of t on both the sides of t0. The estimate (11.23) trivially holds for k = 0. If it holds for some
k ≥ 0, then using the estimate of the norm of the operator B and (11.22), we have

‖w(t)‖𝜎 ′ ≤ M2(t)C𝜀−1(Ce)k(𝜎 − 𝜎 ′ − 𝜀)−k
|t − t0|k+1

k + 1
,

where 𝜀 = (𝜎 − 𝜎 ′)∕(k + 1). This immediately shows that (11.23) holds with k replaced by
k+1. Now choose t in a small open interval around t0 such that |t− t0| < (Ce)−1(𝜎−𝜎 ′)∕2.
Then, the estimate (11.23) implies that

‖w(t)‖𝜎 ′ ≤ M2(t)∕2k

for k = 0, 1, 2,…. Letting k → ∞, we conclude that ‖w(t)‖𝜎 ′ = 0 for such t. But since the
inclusion map from𝜎 to𝜎 ′ is continuous, we infer from analyticity that ‖w(t)‖𝜎 = 0 for
such t. This completes the proof.

Remark 11.13. The CKT proved for the complex analytic case is equally valid for operators
with real analytic coefficients with real analytic data prescribed on real analytic non-
characteristic surface. This can be proved directly by using the method of majorants
(see John, 1978; Folland, 1995). We may also use the fact that any real analytic function
is also complex analytic in a small neighborhood of the real space and appeal to the
theorem proved in the complex analytic case.
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11.4 HOLMGREN’S UNIQUENESS THEOREM

The CKT gives the existence and uniqueness result for a linear PDE (also for a system of
PDE) with analytic coefficients, in the class of analytic solutions. This result, however, does
not rule out the possibility of existence and/or uniqueness of a solution in the class of non-
analytic functions. The Holmgren’s uniqueness theorem therefore assumes significance as it
asserts the uniqueness of any smooth solution to linear PDE with analytic coefficients; the
assumption that the PDE has analytic coefficients is required to apply the CKT. We remark
that the problem of existence of a solution, in the non-analytic class, of a non-characteristic
Cauchy problem of a hyperbolic PDE or a system, is quite difficult. The interested reader
may consult Courant and Hilbert (1989), Hörmander (1976, 1984), Benzoni-Gavage and
Serre (2007).

The Holmgren’s uniqueness theorem is more generally true if we assume the existence of
a solution in the class of distributions with compact support (see Hörmander, 1976, 1984;
Trèves, 2006). Here wemerely sketch a proof of this theorem, for smooth solutions, based on
the approach inCourant andHilbert (1989) and John (1978). For amore detailed discussion,
see Rauch (1992), Renardy and Rogers (2004), and Smoller (1994).

Theorem 11.14 (Holmgren’s Uniqueness Theorem). Let Ω be an open set in ℝn and
P(x,D) =

∑
|𝛼|≤m a𝛼(x)D𝛼 be a linear PDO of orderm, with analytic coefficients. Suppose

S is an analytic non-characteristic surface with respect to P. Then, the Cauchy problem

P(x,D)u = f(x), x ∈ Ω
D𝛽u(x) = g𝛽(x), |𝛽| ≤ m − 1, x ∈ S (11.24)

has at most one smooth solution in a neighborhood on S.

Note that f and g𝛽 are assumed to be smooth, but not necessarily analytic.

Proof Weonly sketch a proof. First note that by linearity it suffices to prove that any smooth
solution of P(x,D)u = 0 with vanishing Cauchy data on S vanishes in a neighborhood
of S. The idea of the proof is very simple: A linear operator T in a Hilbert space (or a
Banach space) is one-one if and only if the adjoint T ′ of T has dense image or range. In
the present case, it is still simpler. If, for a bounded open set G ⊂ Ω, we can show that∫
G
uwdx = 0 for a dense set of functions w, it follows that u = 0 in G, completing the proof.

We now explain how this can be achieved without going to technicalities. The (formal)
adjoint of P is given by P ′(x,D)𝜐 =

∑
|𝛼|≤m(−1)|𝛼|D𝛼(a𝛼𝜐). Note that the principal symbols of

P and P ′ differ by a factor of ±1. Thus, they have the same characteristic surfaces. Suppose
S0 is a compact subset of S. Assume that an analytic non-characteristic surface S1 can be
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chosen so that the boundary of S0 and S1, which lie in n−2-dimensional space, are the same;
in case of two dimensions, this means that the end points of S0 and S1 are the same. Thus,
S0 and S1 are non-characteristic surfaces for both P and P ′. Consider the non-characteristic
Cauchy problem

P ′(x,D)𝜐 = w(x), x ∈ Ω
D𝛽𝜐(x) = 0, |𝛽| ≤ m − 1, x ∈ S1,

(11.25)

where w is an arbitrary polynomial. Let G be the region whose boundary 𝜕G = S0 ∪ S1 and
assume that a solution 𝜐 of (11.25) exists in G. Then, we have

∫
G

uwdx = ∫
G

uP ′𝜐 dx = ∫
G

(Pu)𝜐 dx = 0.

Here the second equality follows by performing integration by parts; there are no boundary
terms as D𝛽u = 0 on S0 and D𝛽𝜐 = 0 on S1 for all |𝛽| ≤ m − 1. Therefore, we have
accomplished the required statement on u, modulo some assumptions made above.

The first question is how to construct the surface S1. This is done by continuously deforming
the surface S0. This is the first technicality. The second question is how to ensure that a
solution 𝜐 of (11.25) exists in G, that too for all polynomials w. The CKT certainly gives a
solution in a neighborhood of S1, but not necessarily in G. This is the second technicality.
Here the linearity of P ′ comes into play and the existence of the solution 𝜐 inG is done step-
by-step. For a detailed discussion, we refer to Rauch (1992), Renardy and Rogers (2004),
and Smoller (1994).

11.5 NOTES

There are many interesting questions regarding the uniqueness of solutions in the non-
analytic class of equations considered in Section 3.2. The result of Section 11.3 can be used
to prove the existence and uniqueness of solutions to symmetric hyperbolic systems in
some suitable class of Sobolev spaces, using smoothing operator techniques that are quite
technical in nature.



CHAPTER 12

A Peep into Weak Derivatives,
Sobolev Spaces and Weak
Formulation

Throughout the earlier chapters, we have seen the necessity of defining solutions in a sense
other than the well-known classical solutions. In other words, we need to go out of the realm
of smooth solutions to capture the physically relevant solutions. In fact, we have established
the existence of certain types of weak solutions in the context of Hamilton–Jacobi equations
and Conservation Laws. Further, we have also indicated in Chapter 7, the existence of
an integral formulation corresponding to a minimization problem given by the Dirichlet
functional. Generically, we term such solutions as weak solutions. In fact, there are different
concepts of weak solutions that have been developed in the last 100 years or so; like
distribution solutions, transposition solutions, entropy solutions, viscosity solutions, and so on.
Among them the notion of weak solutions in the sense of distributions, weak formulation
and Sobolev spaces took centre stage in the first half of the last century, and subsequently
changed the scenario of the study of partial differential equations. As remarked earlier,
the necessity of introducing the above concepts was evident from the study of Dirichlet
functionals from the second half of the eighteenth century and early part of the nineteenth
century. Sobolev was quite successful in defining appropriate function spaces (the so-called
Sobolev spaces) using generalized functions. A stable foundation was given later by the
introduction of distributions by L. Schwartz in the 1940s (see Brezis, 2011; Kesavan, 1989;
Schwartz, 1966).This newdevelopmentwas not only useful in the study of PDEs, but it could
also rigorously establish the notions of Dirac 𝛿 function, its derivatives and the symbolic
calculus developed by the physicists including Paul Dirac.

Without going much into the details, we would like to introduce here the notion of
weak derivative of functions that are, otherwise, not classically differentiable and certain
associated spaces, which are required to study solutions of weak formulation. In the process,
we see some ideas about the modern theory of PDEs.

334



12.1 Weak Derivatives 335

12.1 WEAK DERIVATIVES

Quite often, given a function f, the value f(x) represents a physical quantity at the point x,
say, temperature at x. Point being a mathematical concept, physically (or experimentally),
it cannot determine any physical quantity exactly at a point, rather we can only obtain
the average quantity in a neighborhood of the point. Thus, we actually measure ∫ f𝜑
by taking all possible functions 𝜑 having compact support. This is an idea that is
behind the introduction of distributions: T(𝜑), which are more general than the integral,
requiring linearity and continuity of T (coming from the integral). Does this average, a
good approximation to the exact quantity f(x)? Mathematically, we need to know that
1
2h
∫ x+h
x−h f(t) dt → f(x) as h → 0. This is true if f is continuous. Thus, if f is not continuous,

we need to work with the averages (actual experimental data) 1
2h
∫ x+h
x−h f(t) dt for all h > 0

rather than the point-wise information of the function f. In other words, we need to go out
of the comfort zone of the class of functions. The above localization procedure can be dealt
with using the compactly supported functions that we describe now.

Localization and Linear Functionals: Recall the following result from basic analysis; If
f ∶ (a, b) → ℝ is continuous and ∫ b

a f(t)𝜙(t) dt = 0 for all continuous 𝜙, then f(t) = 0 for all
t ∈ (a, b). in other words f ≡ 0 if and only if ∫ b

a f(t)𝜙(t) dt = 0 for all continuous 𝜙. More
generally

f ≡ g if and only if ∫
b

a
f(t)𝜙(t) dt = ∫

b

a
g(t)𝜙(t) dt

for all 𝜙 ∈ (a, b), which is a smaller class than the class of continuous functions. The class(a, b) is known as the class of test functions. This has the following localization effect; that
is if ∫ b

a f(t)𝜙(t) dt = 0 for all 𝜙 ∈ (a, b) with supp 𝜙 ⊂ (c, d) ⊂ (a, b), then f ≡ 0 in (c, d)
if f is continuous. If f is any locally integrable function, then we get f = 0 a.e. in (c, d).

Thus, instead of viewing a function f as point-wise association x → f(x), it can also be
viewed as a mapping 𝜙 → ∫ f𝜙 from  → ℝ. This is more general in the sense that every
locally integrable function can be viewed in the above sense, but converse need not be true
that we will see later and thus providing a bigger class of objects. The impact of the above
general viewing is more relevant when we consider the derivative of functions. Consider
f ∶ (a, b) → ℝ that is C1. Then, f ′ can be interpreted as 𝜙 → ∫ f ′𝜙. But

∫
b

a
f ′(t)𝜙(t) dt = −∫

b

a
f(t)𝜙 ′(t) dt. (12.1)

The equality implies that f ′ can be realized from 𝜙 → − ∫ f𝜙 ′ and this does not require
the (classical) differentiability of f. This motivates us to define a notion of derivative in a
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generalized or weak sense of locally integrable function f, denoted by Df as

Df(𝜙) = −∫
b

a
f(t)𝜙 ′(t) dt.

Difficulties and New Objects: Indeed (12.1) holds if f is C1, but if f is not differentiable,
the association𝜙 → − ∫ f𝜙 ′ may not represent a function leading to unknown new objects.
Understanding these new objects, developing an analysis around them and putting the
whole thing in a correct framework is essentially the study of distributions.

Example 12.1. Let f(x) = |x| in (−1, 1) which is not C1. Now, for 𝜙 ∈ (−1, 1), we have

−∫
1

−1
f(t)𝜙 ′(t) dt = ∫

0

−1
x𝜙 ′ − ∫

1

0
x𝜙 ′ = −∫

0

−1
𝜙 + ∫

1

0
𝜙

since 𝜙(−1) = 𝜙(1) = 0. Now, define

g(x) =
{

−1 if x ∈ (−1, 0)
1 if x ∈ (0, 1).

Then the weak derivative of f is Df = g a.e.

Example 12.2. Consider the Heaviside function

H(x) =
{

0 if x ∈ (−∞, 0)
1 if x ∈ [0,∞).

Then

−∫
∞

−∞
H(t)𝜙 ′(t) dt = −∫

∞

0
𝜙 ′(t) dt = 𝜙(0)

for any 𝜙 ∈ (ℝ). Thus

Df(𝜙) = 𝜙(0).

Can we get a locally integrable function g so that

Df(𝜙) = 𝜙(0) = ∫
∞

−∞
g(t)𝜙(t) dt, for all 𝜙 ∈ (ℝ)?

If so, we get Df = g a.e. But such a g does not exist and can be seen as follows:
Suppose such a g exists. Choose a sequence of test functions 𝜙k ∈ (ℝ), supp(𝜙k) ⊂
(−1∕k, 1∕k), 𝜙k(0) = 1, |𝜙k(x)| ≤ 1. We can use the mollifiers to construct such
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a sequence. Then, clearly 1 ≤ ∫ 1∕k
−1∕k |g(t)| dt for any k. This is a contradiction as the

integral goes to 0 as k → ∞ since g is locally integrable.

For an open set Ω ⊂ ℝn, denote by (Ω) the set of all real or complex-valued functions
defined on Ω, having compact supports in Ω. The above examples indicate that we need
to consider more general mappings T ∶ (Ω) → ℝ than the ones given by the locally
integrable functions of the form 𝜙 → ∫ f𝜙. An important observation of the earlier
association is the linearity of the mappings that we retain for T. The major hurdle is
the introduction of a suitable topology on (Ω), which is the real breakthrough in the
development of distributions. We define the topology in terms of convergence. It is actually
given by an inductive limit topology.

Definition 12.3 (Topology). A sequence {𝜙k} ⊂ (Ω) is said to converge to 𝜙 ∈ (Ω), if
there is a compact set K ⊂ Ω such that supp(𝜙k), supp(𝜙) ⊂ K for all k and D𝛼𝜙k →
D𝛼𝜙, uniformly on K, for all multi-indices 𝛼.

The above-defined notion of convergence comes from introducing a locally convex
topology in C∞

c (Ω). For details, see Rund (1973) and Kesavan (1989). The linear space
C∞
c (Ω) with this topology is usually denoted by (Ω). If Ω = ℝn, we write  = (ℝn), for

convenience. It is not difficult to see that (Ω) is complete, that is, every Cauchy sequence
in (Ω) converges to some function in (Ω). The only minor inconvenience is that (Ω)
is not metrizable. The space (Ω) is referred to as the space of test functions. The mollifiers
defined in Chapter 2 are interesting examples of test functions.

Definition 12.4 (Distributions). The space (Ω) being a locally convex space, possesses a
topological vector space structure. Its dual space, denoted by ′(Ω), is called the space
of distributions.1 To be more specific, if T is a distribution, that is, if T ∈  ′(Ω), then

1. T ∶ (Ω) → ℝ or ℂ is a linear map.
2. T is continuous: whenever 𝜙k ∈ (Ω) and 𝜙k → 𝜙 in (Ω), then the numerical

sequence T(𝜙k) → T(𝜙).

Observe that ′(Ω) has a linear structure and inherits the topology from that in(Ω). This
means that Tk,T ∈  ′(Ω), then Tk → T in  ′(Ω), if Tk(𝜙) → T(𝜙) for every 𝜙 ∈ (Ω).

Lemma 12.5. Suppose Tk ∈  ′(Ω) is a sequence such that Tk(𝜙) converges for every 𝜙 ∈(Ω). Define T by

T(𝜙) = lim
k→∞

Tk(𝜙),

for every 𝜙 ∈ (Ω). Then, T ∈  ′(Ω).

1Distributions are also called generalized functions, more so in the Russian literature.
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This lemma shows that the space  ′(Ω) is also complete. The following result is of some
interest:

Lemma 12.6. Suppose Tk ∈  ′(Ω) is a sequence converging to 0 in ′(Ω) and 𝜙k ∈ (Ω)
is a sequence converging to 0 in (Ω). Then,

Tk(𝜙k) → 0 as k → ∞.

Example 12.7.

1. For any locally integrable function f defined on Ω, define Tf(𝜙) = ∫Ω f𝜙, then Tf ∈ ′(Ω). In particular, all Lp(Ω) functions can be viewed as distributions. From now
onwards if a distribution is given by a function f, we use the notation f itself.

2. Define 𝛿(𝜙) = 𝜙(0), then 𝛿 is a distribution. This is known as the Dirac 𝛿 function,
thus giving a rigorous interpretation to 𝛿 function. As already seen Dirac 𝛿 cannot be
realized through a function.

3. More generally, for any Radon measure 𝜇, define T𝜇(𝜙) = ∫Ω 𝜙 d𝜇, then T𝜇 ∈  ′(Ω).
4. Thus the class (Ω) of Radon measures is a subspace of  ′(Ω). However, the

distribution T defined by T(𝜙) = 𝜙 ′(0), is not realized from any Radon measure.

Definition 12.8 (Weak Derivative). For any T ∈  ′(Ω), multi-index 𝛼 = (𝛼1,… 𝛼n),
define the 𝛼th weak derivative denoted by D𝛼T of T as

(D𝛼T) (𝜙) = (−1)|𝛼| T (D𝛼𝜙) . (12.2)

It is trivial to verify that D𝛼T ∈  ′(Ω). We have D(|x|) = g, where g is defined as in
Example 12.1 and DH = 𝛿 from Example 12.2. Further, D𝛿(𝜙) = −𝜙 ′(0) that is not even
given by ameasure.The distribution 𝛿,D𝛿 are objects developed byDirac in physics, but not
with proper mathematical foundation and the introduction of distribution theory gave the
mathematical rigor in the analysis of Dirac 𝛿 and other objects.This theory now can be used
to define weak notions of solutions to PDEs. Proving existence, uniqueness, and so on, are
a different issue and more sophisticated tools need be developed using functional analysis.

We remark that when a locally integrable function (of one variable) possesses the usual
derivative f ′ a.e., this need not be its weak derivative. That is, it may not be true that∫ f𝜙 ′ = − ∫ f ′𝜙 for all test functions 𝜙. The Heaviside function H (H ′ = 0 a.e.) provides
an example. An important result due to Lebesgue asserts that every monotonic function
is differentiable a.e. The Cantor function provides another example of the assertion made
above.
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Example 12.9. We know that if f ′ = 0 in (a, b) in the classical sense, then f is a constant.
This result holds in the sense of distributions as well, that is, if Df = 0, equivalently
∫ b
a f𝜓 ′ = 0 for all test functions 𝜓 , then f is constant a.e. To see this, let 𝜙 be any test

function. Choose a non-negative test function 𝜂 such that ∫ b
a 𝜂 = 1. We have already

constructed such a 𝜂 in Chapter 2. Define

𝜓(x) = ∫
x

a
(𝜙(y) − c𝜂(y)) dy,

where c = ∫ b
a 𝜙. It is straightforward to check that 𝜓 is also a test function and that

𝜓 ′ = 𝜙 − c𝜂. Therefore, it follows that

0 = ∫
b

a
f𝜓 ′ = ∫

b

a
(f𝜙 − c∫

b

a
f𝜂).

We rewrite this as

∫
b

a
(f − k)𝜙 = 0,

where the constant k = ∫ b
a f𝜂. Since 𝜙 is any arbitrary test function, it follows that f is

the constant function k a.e.

Example 12.10. As was shown in Chapter 9, Section 9.5, any continuous or even locally
integrable function u(x, t) of the form u(x, t) = 𝜐(x ± ct) is a weak solution of the 1D
wave equation: utt − c2uxx = 0.

12.2 EXISTENCE OF AN L2 WEAK SOLUTION

Here, we establish an existence result of an L2 weak solution of a linear partial differential
operator. This result requires only the Riesz representation theorem in the L2 space and the
Hahn–Banach theorem.

Consider an mth-order linear partial differential operator

P(x,D) ≡ ∑
|𝛼|≤m a𝛼(x)D𝛼, (12.3)

defined in an open setΩ ⊂ ℝn. Here the coefficients a𝛼 are smooth (real or complex-valued)
functions defined in Ω and a𝛼 ≠ 0 for at least one multi-index 𝛼 with |𝛼| = m.



340 A PEEP INTO WEAK DERIVATIVES, SOBOLEV SPACES AND WEAK FORMULATION

We have, for a function u defined in Ω

P(x,D)u =
∑
|𝛼|≤m a𝛼(x)D𝛼u. (12.4)

Recall that the polynomials in 𝜉 ∈ ℝn:

p(x, 𝜉) =
∑
|𝛼|≤m a𝛼(x)𝜉𝛼 and pm(x, 𝜉) =

∑
|𝛼|=m a𝛼(x)𝜉𝛼 (12.5)

are, respectively, the complete or full symbol and principal symbol of P.
The (formal) adjoint of P in (12.3) is the operator

P ′(x,D) =
∑
|𝛼|≤mD𝛼ā𝛼(x), (12.6)

that is,

P ′(x,D)u =
∑
|𝛼|≤mD𝛼(ā𝛼(x)u(x)). (12.7)

Given f ∈ L2(Ω), by a weak solution u of P(x,D)u = f, we mean that u ∈ L2(Ω) satisfying
the condition

(u, P ′𝜙) = (f, 𝜙), for all 𝜙 ∈ (Ω). (12.8)

Here (⋅, ⋅) denotes the inner product in L2(Ω). The corresponding norm is denoted by ‖ ⋅ ‖.
We first derive a necessary and sufficient condition for the existence of a weak solution.

Theorem 12.11. The equation P(x,D)u = f with f ∈ L2(Ω), has a weak solution u ∈ L2(Ω)
if and only if |(f, 𝜙)| ≤ C‖P ′𝜙)‖, (12.9)

for all 𝜙 ∈ (Ω), for some positive constant C.

Proof Suppose there is a weak solution u. Then, we have

|(f, 𝜙)| = |(u, P ′𝜙)| ≤ ‖u‖ ‖P ′𝜙)‖ = C‖P ′𝜙)‖,
for all 𝜙 ∈ (Ω). Thus, (12.9) holds. Conversely, suppose the condition in (12.9) holds. Let

W = {P ′𝜙 ∶ 𝜙 ∈ (Ω)}.

It is easy to check thatW is a subspace of L2(Ω). Now define T ∶ W → ℂ by T(P ′𝜙) = (f, 𝜙).
We will first verify that T is well-defined. Suppose P ′𝜙1 = P ′𝜙2 for 𝜙1, 𝜙2 ∈ (Ω). Then,
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by the assumed necessary condition, we have

|(f, 𝜙1 − 𝜙2)| ≤ C‖P ′𝜙1 − P ′𝜙2‖ = 0,

using linearity. Hence, (f, 𝜙1) = (f, 𝜙2).
Clearly T is linear and bounded:

|T(P ′𝜙)| = |(f, 𝜙)| ≤ C‖P ′𝜙‖,
for all 𝜙 ∈ (Ω), again, by the assumed necessary condition. By Hahn-Banach theorem,
T can be extended to a bounded linear functional on L2(Ω). Then, by Riesz representation
theorem, there is a u ∈ L2(Ω) satisfying (u, P ′𝜙) = (f, 𝜙), for all 𝜙 ∈ (Ω). Thus, u is a
weak solution of (12.3).

Before proceeding further, we make the following observations:

(1) The above resultmerely gives that a weak solution u ∈ L2(Ω).Wemay ask the question
whether u is a classical solution. That is, whether u is differentiable m times and the
equation is satisfied at all the points in Ω. We may also ask the uniqueness question,
both for weak and classical solutions. These are some of the deeper questions and the
answers are not easy. Some of the answers are given by the regularity results.

(2) The next question concerns about operators satisfying the necessary and sufficient
condition (12.9). There is one particularly simple class of operators, namely the
constant-coefficient operators, that satisfy condition (12.9).

12.2.1 Constant Coefficient Operators

We assume that the coefficients a𝛼 of the operator P in (12.3) are constants. Then, P ′ is also
a constant coefficient operator. We have the following:

Theorem 12.12. Suppose P = P(D) be a constant coefficient differential operator of order
m in a bounded domain Ω. Then, there exists a positive constant C such that

‖𝜙‖ ≤ C‖P𝜙‖,
for all 𝜙 ∈ (Ω).

This immediately gives the existence of a weak solution.

Proof Let p(𝜉) =
∑|𝛼|≤m a𝛼𝜉𝛼 be the full symbol of P. We write the differentiation of a

product as follows:

Dk(u𝜐) = uDk𝜐 + 𝜐Dku ≡ (
u
Dk +

𝜐
Dk)u𝜐,
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where
u
Dk means that u is considered as a constant during the differentiation. Hence,

P(D)(u𝜐) = P(
u
D +

𝜐
D)u𝜐.

By Taylor’s formula, we have

p(𝜂 + 𝜉) =
∑
|𝛼|≤m

1
𝛼!

p(𝛼)(𝜂)𝜉𝛼,

where p(𝛼)(𝜂) = 𝜕|𝛼|p(𝜂)
𝜕𝜂𝛼11 ⋯𝜂𝛼nn

, with p(0)(𝜂) = p(𝜂). Therefore,

P(u𝜐) = P(D)(u𝜐) =
∑
|𝛼|≤m

1
𝛼!

(P(𝛼)(D)u)D𝛼𝜐. (12.10)

If p̄(𝜉) =
∑|𝛼|≤m ā𝛼𝜉𝛼 denotes the full symbol of the adjoint operator P ′, it is easy to check

that

‖P𝜙‖ = ‖P ′𝜙‖, for all 𝜙 ∈ (Ω),

The theorem now follows from the following lemma and its corollary:

Lemma 12.13. Fix k, 1 ≤ k ≤ n and suppose that

Ω ⊂ {x ∶ |xk − a| ≤ M∕2}.

Let p(k)(𝜉) =
𝜕p(𝜉)
𝜕𝜉k

. Then,

‖P(k)(D)𝜙‖ ≤ mM‖P(D)𝜙‖, for all 𝜙 ∈ (Ω).

Proof By induction on m, the order of the given differential operator. Suppose

‖Q(k)(D)𝜙‖ ≤ mM‖Q(D)𝜙‖, for all 𝜙 ∈ (Ω),

where Q(D) =
∑|𝛼|<m c𝛼D𝛼 . By a translation, we may assume that a = 0. Then, using

(12.10), we have

P(D)(xk𝜙) = xkP(D)𝜙 + P(k)(D)𝜙.
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Hence, using the induction hypothesis, we have

‖P(k)(D)𝜙‖2 = (P(k)(D)𝜙, P(k)(D)𝜙)
= (P(D)(xk𝜙) − xkP(D)𝜙, P(k)(D)𝜙)
= (P(D)(xk𝜙), P(k)(D)𝜙) − (xkP(D)𝜙, P(k)(D)𝜙)

= (P(k)(D)(xk𝜙), P(D)𝜙) − (P(D)𝜙, xkP(k)(D)𝜙)

= (xkP(k)(D)𝜙 + P(kk)(D)𝜙, P(D)𝜙) − (P(D)𝜙, xkP(k)(D)𝜙)
≤ ‖P(D)𝜙‖ (M‖P(k)(D)𝜙‖ + ‖P(kk)(D)𝜙‖) ,

where we have used |xk| ≤ M and ‖P̄(D)𝜙‖ = ‖P(D)𝜙‖ and

p(kk)(𝜉) = 𝜕2

𝜕𝜉2
k
p(𝜉).

Since, p(k)(𝜉) is of degree < m, we have

‖P(kk)(D)𝜙‖ ≤ (m − 1)M‖P(k)(D)𝜙‖.
This completes the proof of the induction step. Form = 1, p(kk)(𝜉) = 0, so the lemma holds
true for m = 1. This completes the proof.

Corollary 12.14. Suppose

Ω ⊂ {x ∶ |xk − ak| ≤ 1
2
Mk, 1 ≤ k ≤ n}.

Then, for any multi-index 𝛼, we have

‖P𝛼(D)𝜙‖ ≤ m!
(m − |𝛼|)!M𝛼‖P(D)𝜙‖,

where M𝛼 = M𝛼1
1 ⋯M𝛼n

n .

To see how Theorem 12.12 follows from Corollary 12.14, choose a multi-index 𝛼 such that
p(𝛼)(𝜉) = constant ≠ 0. Necessarily |𝛼| = m and such an 𝛼 always exists.

We now make a few remarks regarding the case of variable coefficients. The analysis
is much harder and deeper. Hörmander (1976) has given a necessary condition for the
existence of a solution; a strengthened version of this condition is also sufficient provided
that there are no multiple characteristics. Nirenberg and Trèves have given a much more
complete analysis of the first-order case.
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Consider the operator P given by (12.3) with smooth coefficients and let pm(x, 𝜉) be its
principle symbol. Put p̄m(x, 𝜉) =

∑|𝛼|=m ā𝛼𝜉𝛼 . Let

p(j)m (x, 𝜉) =
𝜕
𝜕𝜉j

pm(x, 𝜉), pm,j(x, 𝜉) =
𝜕
𝜕xj

pm(x, 𝜉).

Set

C2m−1(x, 𝜉) =
n∑
j=1

i
(
p(j)m (x, 𝜉)p̄m,j(x, 𝜉) − pm,j(x, 𝜉)p̄

(j)
m (x, 𝜉)

)
.

Note that C2m−1 is a polynomial (in 𝜉) of degree 2m − 1. Further, if the coefficients in P are
real or constants, then C2m−1 ≡ 0. Here is the necessary condition given by Hörmander.

Theorem 12.15. Suppose P(x,D)u = f has a solution u ∈  ′(Ω) for every f ∈ (Ω), then

C2m−1(x, 𝜉) = 0 if pm(x, 𝜉) = 0. (12.11)

12.3 SOBOLEV SPACES

Recall Section 7.5 of Chapter 7 of the Laplace equation −Δu = f on the discussion on weak
formulation. There, we encountered the problem of identifying the completion X of the
space C1(Ω) with respect to the norm

‖u‖2 ∶= ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω). (12.12)

This is due to the consequence of the fact that we had to take minimizing sequences with
respect to the above norm and it may happen that the limits need not differentiable or not
even continuous.

For the PDE

−Δu + u = f in Ω u = 0 on 𝜕Ω, (12.13)

we have an integral formulation

∫ ∇u ⋅ ∇𝜐 + ∫ u 𝜐 = ∫ f𝜐. (12.14)

We have included lower-order term in (12.13) to avoid certain other technicalities. The
relation (12.14) is referred to as aweak formulation of (12.13) and is obtained bymultiplying
(12.13) by 𝜐 ∈ C1

0(Ω) and performing an integration by parts. However, if u ∈ C2(Ω) with
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zero condition on the boundary, and (12.14) holds for 𝜐 ∈ C1
0(Ω), then (12.13) can be

recovered, that is u is a solution of (12.13).
In order to show the existence of u satisfying (12.14) for all 𝜐, we need to work in a

complete space as we can then apply the Riesz representation theorem in a Hilbert space.
Thus,we need to know the completion ofC1(Ω) and/orC1

0(Ω)with respect to the normgiven
by (12.12). Observe that all the terms in the integral formulation hold if u, 𝜐 and its first-
order derivatives are L2 functions. In fact, it is sufficient to have weak derivatives, but the
weak derivatives should exist as functions. This motivates the introduction of the following
function spaces:

Let u ∈ L2(Ω), where Ω ⊂ ℝn is a smooth domain. As we have seen earlier, this may
not imply that the weak derivative Diu with respect to xi is given by a function; it is simply
an element in  ′(Ω). We say u has an ith weak derivative in L2(Ω) if there is a function
𝜐i ∈ L2(Ω) such that

Diu(𝜙) = −∫Ω
u(x)𝜕𝜙

𝜕xi
= ∫Ω

𝜐i(x)𝜙(x)dx.

Now, define

H1(Ω) = {u ∈ L2(Ω) ∶ Diu ∈ L2(Ω), 1 ≤ i ≤ m} (12.15)

and

H1
0(Ω) = {u ∈ H1(Ω) ∶ u = 0 on 𝜕Ω}. (12.16)

Interpretation: The above spaces are Hilbert spaces with respect to the norm

‖u‖2 ≡ ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω). (12.17)

The space H1
0(Ω) is introduced to take care of the boundary condition. The definition of

H1
0(Ω) is much more delicate due to the following reason: Given a smooth domainΩ ⊂ ℝn,

its boundary 𝜕Ω is a measure zero set. Hence a function in L2(Ω), which is defined a.e. does
not have any meaning on sets of measure zero. This statement in particular applies to the
functions inH1(Ω). But, we can rigorously interpret through delicate analysis, the boundary
values (known as traces) ofH1(Ω) functions.This is a non-trivial result and is known as trace
theorem. Interpreting boundary values of non-smooth functions has paramount importance
in the study of boundary value problems.

Together with trace results, the other important issues are prolongation, density and
compactness results. These four issues constitute the initial study of Sobolev spaces before
undertaking the study of existence, uniqueness and regularity results of weak formulation.
We are not planning to elaborate on these points, but quickly explain what it means.
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Prolongation: Given u ∈ L2(Ω), we know that the trivial extension ũ ∈ L2(ℝn), where

ũ(x) =
{

u(x) if x ∈ Ω
0 if x ∈ ℝn ⧵Ω.

But u ∈ H1(Ω) does not necessarily imply that ũ ∈ H1(ℝn) as can be seen from the following
example: Take u as the constant function 1 in (0, 1). Then, dũ

dx
= 𝛿0 − 𝛿1, where 𝛿0 and 𝛿1 are

theDirac delta concentrated at 0 and 1 respectively given by 𝛿0(𝜙) = 𝜙(0) and 𝛿1(𝜙) = 𝜙(1).
However, it may be possible to have non-trivial extensions of u so that the extended function
is in H1(ℝn). It is important to have such space-preserving extensions in the analysis of
PDE, since working with full space has several advantages like applying Fourier transform,
convolution, and so on.We remark that the smoothness of the boundary plays an important
role in the analysis of such an extension.

Density: Weknow that the test function space(Ω) is dense in L2(Ω), However, in general,(Ω) is not dense in H1(Ω). It holds true if Ω = ℝn and further, (Ω) is dense in H1
0(Ω).

Again approximating H1(Ω) functions via smooth functions is important in proving many
results as quite often, such results are first proved for smooth functions and derive those
results for non-smooth functions via density arguments. There are many density results for
H1(Ω) functions.

Compactness Theorem: This is heavily used in a-postori analysis. After obtaining a weak
solution of a PDE in an appropriate Sobolev space, we might ask: Is the weak solution,
a classical solution? More precisely, this leads to the abstract question of imbedding
(continuous, compact) of a Sobolev space into a classical space. We remark at this stage
that we can also define higher-order Hk spaces requiring that all the weak derivatives up to
order k are L2 functions. We state that higher-order Sobolev spaces are always imbedded
compactly in a lower-order Sobolev space. Further, it is possible to imbed a higher-order
Hk space into a lower-order smooth space Cl with certain relations connecting k, l and the
dimension n. The regularity results play an important role here. After obtaining a solution
in a suitable Hm space, we try to establish the weak solution is in a higher-order Hk space
(these are called regularity results). If k is sufficiently large, wemay use imbedding theorems
to establish that the weak solution is also a classical solution.

Sobolev Spaces via Fourier Transform (FT): In ℝn, we can define H1(ℝn) or more
generally Hs(ℝn) for any2 s > 0 without appealing to the theory of distributions and weak
derivatives. Observe that u ∈ L2(ℝn) if and only if the FT, û ∈ L2(ℝn) and the norm equality
holds. Thus, u ∈ H1(ℝn) if and only if û, D̂iu ∈ L2(ℝn). Hence, we can recast H1(ℝn) as

H1(ℝn) = {u ∈ L2(ℝn) ∶
(
1 + |𝜉|2)1∕2 û(𝜉) ∈ L2(ℝn)}

2The definition may also be made for s < 0, using the tempered distributions in place of L2 functions.
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and the norm is given by

‖u‖H1(ℝn) = ‖ (1 + |𝜉|2)1∕2 û‖L2(ℝn).

Interestingly,H1(ℝn) = H1
0(ℝ

n) and henceH1(ℝn) functions can be approximated by(ℝn)
functions.

If s is not an integer, the spaces Hs(ℝn) are known as Sobolev spaces of fractional order.
Defining Hs(Ω) for proper subsets Ω of ℝn is more delicate and, in fact, there is no unique
way of defining these spaces. It is also possible to define negative-order Sobolev spaces
H−s(Ω), s > 0 as the dual space of Hs

0(Ω). Here, we remark that H−s(Ω), s > 0 are not
function spaces. Further, there are extensions using Lp(Ω) in place of L2(Ω) for p ≠ 2.
Indeed, all these spaces are extremely useful in the study of different classes of PDE.

12.4 NOTES

The presentation in this chapter is just like scratching a surface without going anywhere
deep. A good understanding requires advanced topics from modern functional analysis. A
second course in PDE begins from here. There are many books in this direction, see for
example, Kesavan (1989), Brezis (2011), Hörmander (1976, 1984), and Trèves (2006).
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barrier function, 190
boundary condition

Dirichlet, 261
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Neumann, 261

brachistochrone, 94, 108

catenary, 95
change of variables, 22
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curve, 48, 51, 52, 59, 67
direction, 59, 64
parallelogram, 260
point, 148
strip, 63, 67
surface, 70, 71, 148, 286
variable, 252

characteristic form, 70
characteristic variety, 70
classical solution, 266
coercive, 89
Cole–Hopf transformation, 139
cones, 63
conservation law, 57, 110
convolution, 43, 46, 168
critical point, 82, 94

D’Alembert’s formula, 253, 282
D’Alembertian, 252
derivative

directional, 9
Frechét, 7, 11
total, 7, 11

diffusion equation, 214
Dirac distribution, 245
Dirichlet principle, 109
Dirichlet problem, 167
distribution, 44, 332
domain of dependence, 253, 284
domain of determinacy, 253
double layer potential, 213

energy equation, 214
energy estimate, 259
entropy condition, 119, 127
entropy inequality, 121
entropy solution, 128
equation

Boltzmann, 2
Burgers’, 54, 111

inviscid, 139
viscous, 139

Darboux, 281
elliptic, 158
Euler–Lagrange, 82, 92, 93
Euler–Poisson–Darboux, 282
Hamilton–Jacobi, 78, 86
Hamilton–Jacobi–Bellman, 78, 107
hyperbolic, 158
K-dV, 5
kinetic, 2
parabolic, 158
Schrödinger, 2
transport, 2

equations
Euler’s, 2
Maxwell’s, 2
reaction-diffusion, 2

exit time, 78
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finite speed of propagation, 252
focusing effect, 283
Fourier transform, 43
Fourier–Poisson formula, 220, 221
Fourier–Poisson integral, 220
functional identity, 90
fundamental solution, 245

Gauss–Ostrogadskii formula, 17
generalized solution, 103, 114, 127
Goursat’s problem, 269, 272
Green’s function, 167, 183, 184

ball, 186
unit ball, 186
upper half space, 184

Green’s identities, 34, 209
Green’s representation formula, 167, 183

Hölder continuous, 195
Hamilton’s ODE, 86
Hamiltonian, 78, 87, 88
Hamiltonian system, 78
harmonic function, 168, 188
Harnack’s inequality, 180
heat ball, 234
heat equation, 214

backward uniqueness, 231–232
comparison theorem, 231
Dirichlet problem, 216
Duhamel’s principle, 228
fundamental solution, 222
inhomogeneous, 228
ir-reversibility, 225
maximum principle, 229
mean value property, 234
minimum principle, 229
mixed problem, 216
Neumann problem, 216
weak maximum principle, 230
weak minimum principle, 230

heat kernel, 222
Hopf ’s Lemma, 181
Hopf–Lax Formula, 86–89

Huyghens’ principle, 284
strong form, 285
weak, 293

hyper-surface, 70
hyperbolic, 256, 309

strictly, 256, 309, 310
strongly, 256, 310
symmetric, 256, 311
weakly, 256

hypoelliptic, 248

ill-posed problem, 207
initial value problem, 48
integral surface, 58, 59

Jordan content, 21
Jordan measurable, 21

Kelvin’s transform, 186
Kirchhoff ’s formula, 283, 292

Lagrangian, 88
Laplace equation, 165

fundamental solution, 167, 168
maximum principle, 167, 176

strong, 174
weak, 175

mean value formula, 167, 172
minimum principle

weak, 175
regularity, 178
representation formula, 180
uniqueness, 177

Lax–Oleinik formula, 111, 122, 125
Legendre transformation, 88, 92, 97, 98
Lewy example, 150, 246
limit cycle, 42
line measure, 26
Liouville transformation, 304
Lipschitz continuous, 195, 196

method of characteristics, 48
method of descent, 279, 292, 300
method of spherical means, 280
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minimum principle
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mollifiers, 43, 47
Monge cone, 64

Newtonian potential, 184, 192
non-autonomous system, 35
non-characteristic surface, 70, 72, 148, 325

operator
Fourier integral, 3
local, 3
pseudo-differential, 3

optimal trajectory, 81
oriented curve, 26

parabolic boundary, 229
periodic orbit, closed orbit, 42
Perron’s method, 184, 188
Poisson equation, 165
Poisson formula

unit ball, 186
upper half space, 185

Poisson kernel
ball, 186
upper half space, 185

potential theory, 165, 208
principal part, 156
principal symbol, 309
propagation, infinite speed, 225

range of influence, 253, 284
Rankine–Hugoniot condition, 115, 117
rarefaction, 56
rarefaction wave, 118
real analytic, 323
regular boundary point, 191
regular domain, 24, 190
Riemann function, 272
Riemann’s method, 269
Riemann–Green function, 272

Schauder theory, 165, 208
semi-concave, 101
shock, 57

shock discontinuity, 119, 120
single layer potential, 194, 213
smooth curve, 24
smooth surface, 27
smoothing effect, 226
Sobolev space, 332, 342
space-like curve, 269
space-like surface, 286
spherical mean function, 280
strip condition, 67
strong Parseval relation, 45
strong solution, 266
sub-function, 189
sub-harmonic function, 171, 188

continuous, 188
super-function, 189
super-harmonic function, 171, 188

continuous, 188
surface measure, 29

telegraph equation, 275, 294
tempered distribution, 245
test function, 335
theorem

Banach contraction mapping, 14
Cauchy–Kovalevsky, 150, 316, 327
divergence, 17, 32
Green’s, 17, 30
Holmgren’s uniqueness, 330
implicit function, 15
inverse function , 13
Liouville’s, 179

stronger form, 211
Malgrange–Ehrenpreis, 245
open mapping, 14
Plancherel, 45

time-like curve, 269
time-like surface, 286
trace theorems, 343
traffic flow problem, 112
transversality condition, 49, 52, 60

uniformly convex, 101
uniformly elliptic, 165
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value function, 79, 80, 86, 87, 89
viscosity solution, 81

wave equation
Duhamel’s formula, 255
Duhamel’s principle, 254
multi-dimensional, 302
one-dimensional, 250
three-dimensional, 280
two-dimensional, 292

wave operator, 252
weak derivative, 332, 336
weak formulation, 200
weak Parseval relation, 45
weak solution, 114, 200,

247, 266
well-posed problem, 207
Weyl’s lemma, 248

Young’s inequality, 46
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