[image: PayPal Hacks]
PayPal Hacks

Shannon Sofield

Dave Nielsen

Dave Burchell

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596007515/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.
Credits

About the Authors

Shannon Sofield is the personification of a hack: he takes anything that
 is supposed to do one thing and manipulates it to serve his own
 purposes, in both his life as a developer and his life in general. If it
 was originally supposed to do one thing, he probably has it doing
 something entirely different. Shannon began creating PayPal solutions
 more than three years ago using his original database-driven PayPal
 purchase system that integrated with Macromedia Dreamweaver UltraDev.
 Since then, he has gone on to implement unique fixes for common
 eCommerce problems using PayPal. He has written several tutorials and
 articles and has spoken on the topic of using PayPal in new ways. One of
 the first members of the PayPal Developer Network, he was added to the
 PayPal Developer Network Advisory Boards on its inception. He also
 served several terms as a member of Team Macromedia for their web
 development program Dreamweaver, which he uses in his daily PayPal
 development. His technical background extends back to the initial
 Internet boom, when he began picking up simple web design that evolved
 into web planning and programming using a variety of technologies,
 languages, and databases. Currently, he manages the PayLoadz Digital
 Goods eCommerce system that allows merchants to sell digital goods
 securely with PayPal. One of the first and most successful third-party
 solutions for PayPal, this system made headlines when it launched
 Madonna’s “American Life” single higher on the Billboard music charts
 than any previous digital single (and he did it before selling digital
 music was cool). In addition, he continually contributes to the PayPal
 Developer Network Message Boards (http://www.paypaldev.org), which his company,
 Superfreaker Studios, hosts and maintains. When he’s not slogging
 through code at his computer in a caffeinated, sleep-deprived state,
 Shannon enjoys outdoor activities that fit the time of year. In the
 summer, he surfs and volunteers for the surfboard manufacturer Wave
 Riding Vehicles; in the winter, he can be found on the slopes, working
 on his kicker spins. Year-round, he can be found reliving his BMX days
 on his 24” GT cruiser. In his undergraduate studies, Shannon majored in
 Finance and Accounting, while his Masters in Business Administration
 includes a concentration in Finance. Ctrl-C is his best friend.
Dave Nielsen is a Technical Evangelist within the PayPal Developer
 Network, a member of SDForum’s Executive Council, and the founder of the
 Web Services SIG of Silicon Valley. Dave has a Bachelor of Science
 degree in Business from Cal Poly, San Luis Obispo and is armed with an
 education in engineering and marketing, as well as many technical
 certifications. As a technical trainer in the early ’90s, Dave taught
 classes in languages such as Visual Basic, SQL and ASP. Dave was an
 early Internet programming enthusiast and found himself hounding
 Microsoft for data-driven web developer tools. After taking a chance on
 early beta versions of IIS and Active Server Pages, Dave became one of
 the first technical trainers certified to teach the now popular ASP
 technology. At PayPal, Dave focuses his efforts on creating tools that
 help developers create great eCommerce web sites. These projects include
 the Payment Request Wizard, the JavaScript Button Factory, the PayPal
 SDK for ASP.NET and the PayPal Commerce Starter Kit. Dave can be found
 online at http://www.paypalhacks.com, at
 conferences, and “competing” in an occasional triathlon. At home,his
 girlfriend tries to stop him from selling everything he owns on
 eBay.
Dave Burchell got his start with computers by programming the Radio
 Shack TRS-80 in BASIC and the Commodore 64 in 6510 assembly. Currently,
 Dave’s favorite programming languages are Perl and XSLT. A fervent
 proponent of XML, Dave enjoys solving content management problems with
 markup and open source software. His other interests include American
 history and Hellenistic philosophy. Dave lives with his wife, Renee, and
 children, Max, Gus, and Samantha Grace, in Lincoln, Nebraska.

Contributors

The following people contributed their writing, code, and
 inspiration to PayPal Hacks:
	Paulam Baldwin is a PayPal Developer Technical Support Agent.
 She started at PayPal in July 2003. Paulam holds a B.S. in Computer
 Science. She got her start with computers by creating an intranet
 workflow module, written in JavaScript and server-side JavaScript,
 for students reapplying to the Central University of Venezuela.
 Paulam enjoys origami and learning about the world’s cultures. She
 believes that making people happy is the best way to live
 life.

	Loyal Bassett is one of the many content programmers in the
 PayPal Fraud Engineering group. He has been diligently working at
 PayPal for over two years. He enjoys cycling and his friendly cat,
 Mr. Kitty.

	Michael Blanton is a Technical Integrations Manager for
 PayPal, where he has helped integrate PayPal into such sites as
 B&H Photo/Video (http://www.bhphotovideo.com) and NewEgg.com (http://www.newegg.com). Prior to joining PayPal,
 Michael was an Architect/Developer for CyberSource Professional
 Services. At PayPal, Michael not only helps integrate the PayPal
 Payment Solution into their largest merchants, but he also helps
 develop new product ideas that work for enterprise-class customers.
 At home, he focuses all of his efforts on his wife, son, and his
 son’s LEGO.

	Patrick Breitenbach, a Bay Area native, spent over four years
 as a UCSB Gaucho and over six years at American Express in New York
 before returning to San Francisco five years ago to work at X.com
 (now known as PayPal). Patrick is a manager of the PayPal Developer
 Network (http://www.paypal.com/pdn). He enjoys
 mountain biking, magazines, gadgets, and all things Apple.

	May Chen is a Product Manager within the Consumer
 Protections Product team. May has a Bachelor of Science degree in
 Business from Washington University in St. Louis, MO. Prior to
 PayPal, May worked for a financial services company and also for an
 online payment processing company. At PayPal, May previously was a
 part of the Customer Service and Operations Product Team, primarily
 focusing on internal customer service tools for PayPal’s contact
 centers. Now on the Consumer Protections team, May focuses on
 products to improve dispute resolution processes.

	Rob Conery is a Microsoft Certified Trainer and Solutions
 Developer who has been using Microsoft technologies for the last 14
 years, architecting and building enterprise applications for Fortune
 500 companies such as SBC, KLA-Tencor, and WekeRoad. Rob has been
 described by his clients as both innovative and color-blind; one
 client likened his skill set to that of a homeless person’s shopping
 cart, which he is still trying to understand. Prior to spinning the
 twirly on his nerd hat, Rob pretended to be a geologist while
 hogging VAX time in the computer lab at his alma mater, UC Santa
 Barbara. It is believed that his final for his Pascal class is still
 compiling.

	Souvik Das has a Master’s degree in Computer Science. He
 started his engineering career in a company doing research on
 security policies. He has worked in various engineering positions at
 Netscape, AOL, and PayPal. His interests lie in building highly
 scalable, available, and reliable Internet applications. Outside of
 work, he loves to spend time with his son and listen to Hindustani
 classical music.

	Glenn Ellingson is a bold, strapping young man who spends a
 disturbing amount of time playing with cars. To fund this rather
 unfortunate habit, he also plays with computers. He has contributed
 to financial applications in Vermont, multiplayer gaming in
 Massachusetts, document management software in Illinois, telephony
 in Florida, and now online payments in California. He reports mixed
 feelings that Googling his name reveals he has “killed billions of
 sentient beings and should be treated with utmost caution.”

	Gina Han is a product manager at PayPal, specializing in
 consumer protections programs for buyers and sellers. This involves
 online dispute resolution to help the community resolve issues
 around merchandise transactions. Gina has a long history of helping
 people, developing an e-mentoring program for science students,
 giving teens a way to shop online (okay, maybe this wasn’t exactly
 altruistic), and building software that enabled people to trace
 their family trees. Her hobbies do not include karaoke, taxidermy,
 or participating in hotdog-eating contests.

	Stephen Ivaskevicius is the PayPal Developer Technical Support
 Supervisor who started at PayPal in January of 2001 and currently
 supports PayPal Web Services. Stephen has contributed to the
 enhancements of many PayPal features over the years. He has a strong
 inclination for eating cheeseburgers in paradise, searching for lost
 shakers of salt on his motorcycle, and shouting “Fins up!” at the
 top of his lungs.

	David A. Karp just likes to see his name in print. In addition
 to being the editor for this book, David is the author of
 eBay Hacks, the upcoming eBay
 PowerSeller: The Missing Manual, and the best-selling
 Windows Annoyances series (the latest installment of which is
 Windows XP Annoyances). His books are currently
 available in ten different languages, and his online help site,
 Annoyances.org, is one of the most popular of its kind. He has also
 written for a number of magazines—including PC
 Magazine, Windows Sources Magazine,
 Windows Pro Magazine, and New Media
 Magazine—and he is a contributing editor for
 ZTrack Magazine. Noted recognition includes
 PC Computing magazine, Windows
 Magazine, the San Francisco
 Examiner, and The New York Times. He
 uses PayPal as a means to acquire more junk on eBay.

	Sarah Livnat is a PayPal Product Manager who has worked with
 Limited Account Access and many of PayPal’s compliance and risk
 products. Prior to joining PayPal, Sarah was a Product Manager at
 Chemdex/Ventro, a B2B marketplace application service provider.
 Sarah is an avid world traveler, just having returned from a
 year-long expedition to Southern Africa, Nepal, Southeast Asia, and
 the Oceana.

	Joseph Lowery’s books on the Web and web-building tools are
 international bestsellers, having sold more than 300,000 copies
 worldwide in nine different languages. He is the author of the
 Dreamweaver Bible and the Fireworks
 Bible series (both from Wiley Publishing), and he
 coauthored Dreamweaver MX 2004 Web Application
 Recipes (New Rider Publishing) with Eric Ott, president
 of WebAssist (http://www.webassist.com).
 WebAssist is the leading provider of extensions (software add-ons)
 for the Macromedia platform. WebAssist hosts a self-service
 developer community with over 100,000 members registered.
 WebAssist’s partners include Macromedia, PayPal, Affinity, Yahoo!,
 and Google.

	Dave Lundvall is a Senior Sales Consultant for Oracle,
 specializing in Oracle’s Application Server
 10g. He has a Bachelor of Science degree in
 Computer Science from the University at Buffalo. Dave began
 programming soon after his family purchased a Commodore 64 in the
 mid `80s. Now Dave has experience building everything from mobile
 phone applications to enterprise portals. Before Dave moved into the
 J2EE world, he was even once a Microsoft Certified Solutions
 Developer (MCSD). A couple of Dave’s interests outside of software
 are competing in triathlons and volunteering for Team in Training,
 which raises funds for the Leukemia and Lymphoma Society. Dave can
 be reached at davidlundvall@yahoo.com.

	Dave McClure is Director of the PayPal Developer Network
 (http://www.paypal.com/pdn), and also a
 current geek and former entrepreneur (http://www.500hats.com). His interests and hobbies
 include finance and economics, entrepreneurship and venture capital,
 jazz and baroque music, politics and business, numerous sports and
 games, ultimate Frisbee, cartoons and animation, and an ever-growing
 collection of funny-looking hats. Dave is a huge fan of Dr. Seuss,
 The Economist, and the Muppets, and lives in
 the San Francisco Bay Area with his wife, Saya, a talented jazz
 pianist and composer (http://www.saya.com).

	Jeffrey McManus is a Senior Manager of Developer Relations at
 eBay and has over 15 years of experience as a developer, technology
 manager and technical writer. He is proficient in many development
 technologies and has written six books, including the C#
 Developer’s Guide to ASP.NET, XML, and ADO.NET and the
 VB.NET Developer’s Guide to ASP.NET, XML and
 ADO.NET (both from Addison-Wesley). In his spare time,
 Jeffrey enjoys helping high school kids build robots for
 competitions.

	Evan McPhillips is a Product Integration Specialist for
 PayPal and has worked with PayPal for almost two years. He started
 in Member Services, then moved to Resolution Services as a Customer
 Service Representative, then moved to Protection Services as a
 Seller Protection Agent, and has been in his current position for
 the last couple of months. He has over 10 years in the customer
 service industry. Evan has a Bachelor of Arts degree in Religious
 Studies and is an avid reader of science fiction and fantasy novels
 and an Everquest junkie.

	Hugo Olliphant is a PayPal Product Manager who has worked
 with eBay Gift Certificates, Merchant-Initiated Payment, and many of
 PayPal’s reporting tools. Prior to joining PayPal, Hugo was the CEO
 of gMoney Corp, a company that provides financial management
 solutions for groups involving roommates, ski houses, car pools, and
 the like. Hugo has a penchant for polar exploration literature and
 dinosaur origami.

	Patrick O’Neal is a PayPal Technical Support Senior Agent who
 has worked primarily with supporting PayPal’s Merchant Features
 (e.g., web site payment buttons, IPN, and PDT). Before working at
 PayPal, Patrick was a Customer Service Analyst with Ameritrade.
 Patrick holds an Associate’s degree in Computer Network Systems and
 a Bachelor of Science degree in Computer Science with an emphasis on
 Web Programming. In his free time, Patrick enjoys writing and
 producing hip-hop music and learning new programming
 languages.

	Ray Tanaka is the Technical Architect for the PayPal
 Sandbox and Web Services APIs. Prior to joining PayPal, Ray was with
 SkyGo, Inc. (now known as Enpocket), working on wireless marketing
 solutions. His hobbies include sleeping, foosball, racquetball, and
 spending time with his girlfriend.

	Alan Tien is a PayPal Global Product Manager. His primary
 claim to fame is releasing PayPal’s Web Services. Prior to PayPal,
 Alan was a Senior Product Manager at the ASP aggregator Jamcracker,
 a $140M dot com flameout. Before the Internet era, Alan was a
 consultant at WESTT and Accenture (then known as Andersen
 Consulting). He graduated from Stanford with a Bachelor of Science
 degree in Electrical Engineering but carefully avoided any career
 that would actually use his education.

	Katherine Woo is a Director of Product Management at PayPal,
 where she manages the Merchant Features Product Team. Her prior
 experience includes product management at Netscape (AOL), strategy
 consulting at Mercer Management Consulting, and an MBA from
 Stanford. She dreams one day of making a line of greeting cards or
 designing wine labels.

	Mike Yeung, a Development Architect, is responsible for
 providing technical leadership and project management for major
 integration projects at Grand Central. Mike has over 12 years of
 experience in software development and technical management. He has
 previously worked at companies such as Chinadotcom, Netscape, and
 Oracle in various technical and management positions. Mike holds a
 Master of Science degree from Stanford University and a Bachelor of
 Science degree from UC, Berkeley, both in Computer Science.

Acknowledgments

The authors and contributors wish to thank Rael Dornfest, Kyle
 Hart, and Dan Woods. Jamie Peppard, Brian Sawyer and Darren Kelly were
 instrumental in cleaning up our work for this book.
Shannon Sofield

I’d like to thank the PayPal team for creating a great service
 and for their support throughout this process. I also would like to
 thank the “Daves” that helped get this book written: Dave McClure, for
 being there from the beginning, David A. Karp for putting up with my
 writing habits, Dave Nielsen for his expertise and management, and
 Dave Burchell for stepping up and helping us get this out the door.
 Also, thanks to my parents and friends for their motivation.

Dave Nielsen

I’d like to thank PayPalians, past and present, for creating
 this awesome payment platform; Dave McClure, my PDN mentor, for taking
 me under his wing; PB, for his mastery of the multitude of PayPal’s
 intricate features; David A. Karp, cat-wrangler extraordinaire, for
 his encouragement and perseverance; Mom and brother Mark for putting
 up with my quest for answers to life’s persistent questions; Dad for
 leaving me his wacky inventiveness; and Erika, my inspiration, who
 makes me smile every day. Erika, I feel so lucky to have found you.
 With you, every day is beautiful and new. Nothing would make me
 happier than to spend the rest of my life with you...Erika Anderson,
 will you marry me?

Dave Burchell

I wish to extend my thanks to the many coworkers who assisted me
 while working on this book, including Paulam Chang, Debbie Becker,
 Claudia Erickson, Stephen Ivaskevicius, Warren Lynch, Patrick O’Neal,
 Michelle Taylor, Patricia Truit, and Kim Weiss. My thanks also to
 marketing maven Evelyn Schlaphoff of SourceLink/Los Angeles, guru Mike
 Lewis of The World Book, and to our masterful, patient, and dedicated
 editor, David A. Karp.

Preface

PayPal wasn’t the first company to build an online payment system,
 but it might as well be the last. With over 50 million registered
 accounts, PayPal is rapidly becoming a household name. But, as indicated,
 there have been others; PayPal’s predecessors attempted to capitalize on
 the Internet boom by building new forms of money. But whether this new
 currency was called Flooz, Beanz, or eCash, it didn’t matter, because
 people didn’t buy it. PayPal based its system on plain old dollar bills
 (not to mention yen, euros, and pounds sterling), which, in the end,
 turned out to be more valuable than Internet gold.
PayPal’s next brilliant move was to identify each account by an
 email address. That way, anyone with an email account could send money to
 anyone else just by knowing the recipient’s email address. The email
 proclaiming “You’ve got cash” turned out to be extremely
 motivating.
From its beginning, PayPal empowered the little guy to compete in
 the big world. It made doing business over the Internet easy for
 individuals, who could attach their bank accounts to their PayPal accounts
 without requiring a CFO’s signature. And the little guy returned the
 favor. After all, it was the little guys who paved the way for PayPal to
 become the number one payment system on eBay.
PayPal also removed the technical challenges. PayPal made it
 possible for an HTML developer to accept online credit card payments from
 any web page without requiring the years of programming skills necessary
 to install credit card processing software on a web server. A simple Pay
 Now button in an eBay auction page became as empowering as the most
 expensive eCommerce site on the Internet.
For developers, it didn’t stop there. Buy Now, Donate, Add to Cart,
 and Subscription buttons make Internet commerce in all flavors possible.
 And with innovations such as Website Payments, Instant Payment
 Notification, and PayPal Web Services, all the power of this eCommerce
 giant is only a few lines of code away. It’s not surprising that PayPal is
 being touted as the payment platform of the future. But for those who
 learn what it can already do, it may mean making profits today!
Why PayPal Hacks?

The term hacking has a bad reputation in the press. They use it to refer to
 someone who breaks into systems or wreaks havoc with computers as their
 weapon. Among people who write code, though, the term
 hack refers to a “quick-and-dirty” solution to a
 problem, or a clever way to get something done. And the term
 hacker is taken very much as a compliment,
 referring to someone as being creative and having the technical chops to
 get things done. The Hacks series is an attempt to reclaim the word,
 document the good ways people are hacking, and pass the hacker ethic of
 creative participation on to the uninitiated. Seeing how others approach
 systems and problems is often the quickest way to learn about a new
 technology.
As any experienced merchant will tell you, there are plenty of
 tasks involved in accepting payments on the Internet, and anything that
 can be done to make those tasks easier, faster, or more effective will
 improve your profits and give you more time to grow your business. But
 despite the title PayPal Hacks, this book is also
 not about “hacking into a system” or anything so nefarious—quite the
 contrary. In fact, you’ll find in this book a very real emphasis on
 trading responsibly and ethically, as well as extensive tools and tips
 for protecting yourself as both a buyer and a seller.
PayPal, on the surface, seems like a simple system allowing you to
 send and receive payments. But there’s a whole lot more under the hood;
 there are many tips and tricks you can use to save time and improve
 sales with PayPal. The hacks in this book address the technological and
 diplomatic challenges faced by all PayPal members, and are written from
 the perspectives of both PayPal insiders and experienced solution
 providers. Essentially, you’ll find the tools to help you buy and sell
 smarter and safer, make more money, and have fun doing it.

Getting Started with the Code in This Book

The sample code in this book should serve as a good jumping-off
 point for however you want to use each hack in the real world. To that
 end, PayPal Hacks provides real code you can type
 in and run yourself.
PayPal’s home is the Web, a heterogeneous place governed by
 well-defined standards. The concepts presented in this book work with
 any programming language or platform you might be using with your web
 site. However, the example code is primarily kept to three language and
 platform combinations, each inhabiting its own niche of the Internet
 ecology: server-side scripting, client-side (browser) scripting, and
 desktop applications.
Server-Side Scripting

Server-side scripts are installed on a web server. When a user
 requests a web page that contains a server-side script, the script is
 processed on the web server and its output is converted to HTML and
 delivered to the end user’s web browser.
Most of the hacks in this book that involve server-side
 scripting are written in VBScript (Visual Basic Script), which runs on a web
 server with support for Microsoft Active Server Pages (ASP). The
 ASP/VBScript combination is one of the most popular platforms among
 webmasters and developers using Microsoft systems. Microsoft’s newest
 web platform, ASP.NET, is growing rapidly; it is backward-compatible
 and will also run ASP/VBScript code.
You can host the VBScript examples using a modern Microsoft
 operating system, such as Microsoft Windows XP Professional, Microsoft
 Windows 2000 Professional, or Microsoft Windows 2003 Server. Each of
 these products comes with Microsoft’s Internet Information Server
 (IIS), an ASP-capable web server. In practice, you might not have (or
 desire to set up) your own web server; many ISPs offer affordable (or
 free) space on preconfigured web servers that are capable of hosting
 ASP/VBScript.
To create ASP/VBScript pages, simply type them into your
 favorite text editor, whether you’re using Microsoft’s default Notepad
 or the powerful Vim editor, which is popular amongst Unix jocks. If
 you’re already using an ASP-compatible web site editor, such as
 Dreamweaver or Microsoft Visual Studio, you can use that instead. Once
 you have created your ASP/VBScript pages, upload them to your web
 server (typically via FTP) and view them with your web browser. (The
 steps to do this vary; check with your ISP for specific
 instructions.)
To browse ASP/VBScript pages, you (or your customers) need only
 an ordinary web browser, such as Internet Explorer, Netscape
 Navigator, Mozilla, Opera, or even Lynx. You will, however, need to
 know the URLs of your ASP/VBScript pages (e.g.,
 http://www.yourdomain.com/pagename.asp). If you host the
 pages on the same computer as your web browser, the URL will likely
 start with http://localhost/. Because the
 VBScript is processed on the web server that turns it into HTML, your
 (or your customer’s) web browser does not need any VBScript
 capabilities.
Tip
Although many of the hacks in this book are written in
 ASP/VBScript, Perl, Python, PHP, Java, and Cold Fusion are all good
 choices for developing eCommerce web pages that use PayPal as a
 payment method. No exotic features unique to VBScript are used, so
 the concepts and examples should readily translate to your favorite
 platform.

Client-Side (Browser) Scripting

Browser, or client-side, scripts are embedded in the HTML of the
 web page and are executed by the browser. The first and still most
 popular browser scripting technology is JavaScript. Since its introduction, JavaScript has been
 cloned by Microsoft (their offering is called JScript) and
 standardized by an international standards organization (resulting in
 ECMAScript). The bland flavor of
 JavaScript/JScript/ECMAScript used in the examples should be palatable
 to all modern JavaScript-capable browsers.
To try the JavaScript examples, you need only a text editor,
 such as Microsoft Notepad or VIM, or some other HTML authoring tool,
 such as Microsoft FrontPage, Macromedia Dreamweaver, NetObjects
 Fusion, or Adobe GoLive. Save your JavaScript-laden HTML pages to your
 computer’s hard drive and view them in any modern browser with
 JavaScript support enabled.

Desktop Applications

The examples provided with PayPal’s API hacks involve the
 building of desktop applications. Although they use the Internet and
 HTTP to access the PayPal API, these are standalone applications
 designed to work on your Windows desktop (as opposed to working from
 within a web browser).
While you can access the PayPal API from within any programming
 language that supports SOAP (.NET, Java, Perl, PHP), the examples in
 this book are all written in C# and require the Microsoft .NET Framework. To try these examples yourself, you need
 to first compile them with a C# development environment, such as
 Microsoft Visual Studio .NET or Borland C#Builder. (You can’t use an
 older version of Visual Studio, because it won’t support SOAP or
 .NET). To run the examples, you (and your employees or customers) need
 Microsoft’s .NET Framework 1.1 installed on each computer on which
 your application is to run. The .NET framework is installed by default
 on Microsoft Windows XP and is freely available for previous versions
 of Windows, such as Windows 2000, from http://windowsupdate.microsoft.com.

Database Coding and Platform Choices

Many of the hacks in this book rely on your ability to set up a
 database and connect to it with code. A database table
 looks something like an Excel spreadsheet, with rows (records) and
 columns (fields). Table
 P-1 shows a simple products database
 table.
Table P-1. An extremely simple table with three fields (columns) and as
 many records (products) as you wish to store in it
	ID
	Description
	Price

	0001
	Acme Widget
	$37.94

	0002
	Industrial, Co. Wicket
	$12.88

	0003
	Krusty Brand Tongue Depressor
	$0.40

Here, each record corresponds to a single product. The data is
 divided into three fields: a unique numeric ID (ID), a product description (Description), and the unit price (Price). You’ll not only need to choose a
 database application with which to create your tables and manage your
 data, you’ll need to include code (specific to the platform you choose)
 to connect to your database.
Most of the database-enabled hacks in this book cite a Structured
 Query Language (SQL) query to retrieve data from a database or store data
 back into it. In order to put these hacks to use, you’ll have to
 customize the code for use with your server and database
 platform.
There are two general platforms commonly used to host web sites: Windows and
 Unix/Linux. These two systems can provide similar functionality, but
 they do so in completely different ways. The problem is that some of the
 more advanced code, especially code that accesses databases, might work
 on one platform but not the other. For instance, Windows servers have a
 built-in web server capable of interpreting VBScript or JavaScript that
 is executed in Active Server Pages (ASP). On the other hand, Unix/Linux
 platforms typically use the Apache web server, which can understand
 Hypertext Preprocessor (PHP) code (i.e., code with a
 .php extension). Of course, you can run ASP pages
 on Unix/Linux platforms using ChiliSoft ASP, and you can run PHP scripted pages on a
 Windows machine by installing the Windows version of the Apache web
 server.
Once you’ve chosen a server platform, you’ll need to choose a
 database technology that works with that system. For instance, Windows
 servers will likely be integrated with a Microsoft Access, MSDE, or
 Microsoft SQL database, whereas Unix/Linux servers will likely be using
 MySQL, Postgres, or Oracle.
Tip
It almost goes without saying that a dynamic web site (dynamic
 in that the content is created on the fly) will be much more powerful
 with the benefit of a relational database management system (RDBMS).
 The examples that require a database were tested against Microsoft’s
 SQL Server 2000 or better, but with some small modifications the
 examples will work with any popular RDBMS, such as MySQL or
 Oracle.

Many of the advanced hacks in this book reference a
 recordset in their instructions, so you’ll need to
 do something like the following to deploy those hacks. This code creates
 a recordset named rsProducts using VBScript for ASP:
1. connStore="DRIVER={Microsoft Access Driver (*.mdb)};DBQ="C:/InetPub/wwwroot/
database/dbPayPal.mdb")
2. set rsProducts = Server.CreateObject("ADODB.Recordset")
3. rsProducts.ActiveConnection = connStore
4. rsProducts.Source = "SELECT item_name FROM tblProducts"
5. rsProducts.Open()
6. Response.Write(rsProducts.Fields.Item("item_name").Value)
Line 1 defines the location of the database and specifies the
 database driver. Line 2 initiates a new recordset named rsProducts. Line 5 actually executes the
 database query, and line 6 sends the contents of a field to the output
 (in this case, the item_name column
 returned from the database is displayed).
To put this code to use, replace the SQL statement on line 4 with
 the SQL query shown in the hack you wish to use.

Further Study

To learn more about some of the aforementioned technologies used
 in this book, check out the following O’Reilly books:
	ASP
	 Programming ASP.NET by Jesse
 Liberty and Dan Hurwitz

	Access (Database)
	 Access Database Design &
 Programming by Steven Roman, Ph.D.

	JavaScript
	 JavaScript: The Definitive
 Guide by David Flanagan

	MySQL (Database)
	 Managing & Using MySQL by
 George Reese, Randy Jay Yarger, and Tim King

	PHP
	PHP Cookbook by David Sklar and Adam Trachtenberg

	SQL
	 SQL Pocket Guide by Jonathan
 Gennick

	VB.NET
	 VB.NET Language in a Nutshell
 by Steven Roman, Ph.D., Ron Petrusha, and Paul Lomax

How to Use This Book

You can read this book from cover to cover if you like, but you’ll
 probably be better off picking an interesting item from the table of
 contents and just diving in. Each hack stands on its own, so feel free
 to browse and jump to the different sections that interest you most. If
 there’s a prerequisite you need to know about, a cross-reference will
 guide you to the right hack.

How This Book Is Organized

Each hack has been designed to show you how to complete a specific
 task, streamline a common practice, or overcome a PayPal limitation.
 Some hacks point to obscure features on the web site, while others
 present code to solve problems or unlock hidden features.
The 100 hacks in this book are distributed into eight
 chapters:
	Chapter 1,
 Account Management
	Use the hacks in this chapter to set up a PayPal account and
 keep it in good standing. If you’re new to PayPal, make sure to
 verify your account [Hack #2] and confirm your address
 [Hack
 #3] .

	Chapter 2,
 Making Payments
	PayPal’s all about sending payments. This chapter covers the
 basics of buying with PayPal and protecting yourself when you
 do.

	Chapter 3,
 Selling with PayPal
	The real fun of PayPal starts when you begin accepting
 payments. Upgrade to a Business or Premier account and then hook
 up your PayPal account with your eBay auctions or eCommerce web
 site and watch the money roll in. Make sure you take steps to
 protect yourself from buyer fraud [Hack
 #24] and chargebacks [Hack
 #25] .

	Chapter 4,
 Payment Buttons
	Integrate PayPal with your web site and begin accepting
 PayPal payments for goods and services in minutes. Although adding
 the most basic PayPal Buy Now button [Hack
 #28] to your site involves little more than
 copying and pasting a simple HTML form onto a web page, there are
 dozens of ways to extend and customize your online storefront and
 fine-tune your customer’s purchase experience.

	Chapter 5,
 Storefronts and Shopping Carts
	Take payment buttons a step further and allow customers to
 purchase multiple items in a single transaction. PayPal provides
 everything you need to set up a simple shopping cart interface
 with your web site; just add a few buttons [Hack
 #45] to your pages to get started.

	Chapter 6,
 Managing Subscriptions
	Accept recurring payments from other PayPal members and
 provide paid access to online content and other membership-based
 products.

	Chapter 7, IPN
 & PDT
	Automate your business by setting up PayPal to notify your
 server whenever you receive a payment, allowing you to
 automatically record all transactions into a local database, offer
 instant fulfillment of digital goods, and provide instant access
 to online content.

	Chapter 8, The
 PayPal Web Services API
	Leave the PayPal web site behind and build applications and
 web sites using the PayPal Web Services API as a development
 platform.

Conventions Used in This Book

The following is a list of the typographical conventions used in
 this book:
	Italics
	Used to indicate URLs, filenames, filename extensions, and
 directory/folder names. For example, a path in the filesystem
 appears as /Developer/Applications.

	Constant width
	Used to show code examples, the contents of files, and
 console output, as well as the names of variables, commands, and
 other code excerpts.

	Constant width
 bold
	Used to highlight portions of code, typically new additions
 to old code.

	Constant width italic
	Used in code examples and tables to show sample text to be
 replaced with your own values.

You should pay special attention to notes set apart from the text
 with the following icons:
Tip
This is a tip, suggestion, or general note. It contains useful
 supplementary information about the topic at hand.

Warning
This is a warning or note of caution, often indicating that your
 money or your privacy might be at risk.

The thermometer icons, found next to each hack, indicate the
 relative complexity of the hack:
		[image:] beginner

		[image:] moderate

		[image:] expert

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "PayPal Hacks by Shannon Sofield, Dave Nielsen, and
 Dave Burchell. Copyright 2004 O’Reilly Media, Inc.,
 0-596-00751-5.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the
 best of our ability, but you may find that features have changed (or
 even that we have made mistakes!). As a reader of this book, you can
 help us to improve future editions by sending us your feedback. Please
 let us know about any errors, inaccuracies, bugs, misleading or
 confusing statements, and typos that you find anywhere in this
 book.
Please also let us know what we can do to make this book more
 useful to you. We take your comments seriously and will try to
 incorporate reasonable suggestions into future editions. You can write
 to us at:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the U.S. or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send email
 to:
	bookquestions@oreilly.com

The web site for PayPal Hacks lists examples,
 errata, and plans for future editions. You can find this page at:
	http://www.oreilly.com/catalog/payhks/

Download sample code from:
	http://www.paypalhacks.com

For more information about this book and others, see the O’Reilly
 web site:
	http://www.oreilly.com

Got a Hack?

To explore Hacks books online or to contribute a hack for future
 titles, visit:
	http://hacks.oreilly.com

Chapter 1. Account Management

Introduction: Hacks #1-9

You can use PayPal to send and receive money, but you need a
 PayPal account to manage your
 payments and your business. There’s something comforting about having
 your own account. Sure, it’s yet another password to remember, but it’s
 all yours. You can visit a site like PayPal, log in, and see your
 settings, your name, and your history—proof that you’ve been there
 before and that someone (er, something) remembers you. But a PayPal
 account [Hack
 #1] , in particular, has the added bonus of being able
 to store cold, hard cash. You can’t really touch it, but it’s there, and
 it’s yours.
You can use your PayPal balance to pay for stuff [Hack
 #11] , or you can withdraw it [Hack
 #20] and add it to the shoebox under your mattress.
 You can also watch it grow, as your eBay bidders pay for your stuff, web
 site customers buy your products, or friends pay you back for sushi
 dinners.
But it’s not about sending and receiving money; it’s about finding
 new ways to handle transactions so that you can spend more time eating
 sushi (or curly fries, or whatever). The real power of PayPal is its
 invisibility; you can have strangers send you money and still keep your
 account all to yourself. Whether you’re selling a single product [Hack
 #28] , or a cart full of products [Hack
 #45] , PayPal can be as slick as you need it to be. If
 you take things even further, you can have PayPal notify your server
 [Hack
 #65] when you receive money, or even write a
 standalone application [Hack #88] to manage your sales without
 ever having to log into your account.
But it all begins with learning the ins and outs of your PayPal
 account, and that’s what this chapter is about. Chow down, and have fun,
 but don’t linger; there’s code to be written.
Tip
If you want to get anywhere in this business, make sure you
 verify your account [Hack #2] and confirm your address
 [Hack
 #3] , and then make sure you never forget your
 password [Hack #4] .

Get to PayPal in Five Keystrokes or Fewer
“How many licks does it take to get the center of a Tootsie Roll
 Tootsie Pop? One, Two, Three?” The world may never know, but it takes
 exactly five keystrokes to get to http://www.paypal.com. But how can this be? There are
 10 keystrokes in paypal.com (not
 including the Enter key), not 5!
The clues leading to the answer can be found only by examining
 the history of PayPal. PayPal was not always named PayPal. It was
 founded in January 1999 under then name FieldLink and renamed
 Confinity later that same year. In May 2000, Confinity merged with
 another company and the combined entities renamed themselves
 PayPal.
Can you name the company that merged with Confinity? The answer
 is the third-to-last letter in the alphabet:
 X.com, to be exact. X.com and Confinity were competitors who merged to form
 PayPal. The URL http://www.x.com now points to
 http://www.paypal.com. So, if you’re in a real
 hurry, just type x.com and you’ll
 get to PayPal (paypal.com) in half
 the keystrokes!
Internet Explorer users can get to PayPal even quicker by typing
 x into the address bar, then
 pressing Ctrl-Enter.

Create a PayPal Account

Sign up for your own PayPal account, which
 is necessary if you’ll be receiving payments or using just about any
 other hack in this book.
Although you can send money without creating a PayPal account [Hack
 #15] , there are advantages to having an account,
 including PayPal Buyer Protection, receiving payments, and viewing account
 history. And since there is no cost to create or maintain an account,
 the benefits easily outweigh the costs.
Here’s what you’ll need to get started:
	Your email address

	Your postal mailing address

	Your phone number

You’ll also be asked to provide two of the following four pieces
 of personal information, which will be used to verify your identity if
 you ever forget your account password:
	Your mother’s maiden name

	The last four digits of your driver’s license

	The last four digits of your Social Security number

	Your city of birth

To sign up for a Personal PayPal account (see the introduction to
 Chapter 3 for information on
 Business accounts), follow these steps:
	Go to http://www.paypal.com and click
 Sign Up.

	Select the Personal Account option, select your country, and
 then click Continue.

	On the Account Signup page, enter your postal mailing address.
 PayPal will double-check the city, state, and Zip Code, so they must
 be valid. The address you provide should be the same as the billing
 address of the credit card you plan on adding to your account,
 although you will be given the opportunity to change it
 later.

	Enter your telephone number, email address, and password. The
 email address must correspond to a valid email account to which you
 have immediate access, because you won’t be able to use your PayPal
 account until you respond to the verification email that PayPal
 sends you.
Warning
For security reasons, do not use the same password for your
 PayPal account and your email account. Otherwise, anyone who has
 access to your email account will also have access to your PayPal
 account and the money within.

You should also enter a real phone number, since it’s one of
 the ways PayPal allows you to regain access to your account if you
 forget your password [Hack #4] .

	Enter your Security Question answers. If you’re concerned
 about divulging real information here, then don’t enter it! You can
 put any secret words or phrases into these fields, provided that
 you’ll be able to remember them later on.

	When asked if you’d like this to be a Premier Account, select
 No.
Tip
If anyone sends you a payment funded with a credit card, PayPal will require that you upgrade to
 a Premier (or Business) account at that time to accept the
 payment. Although there are advantages to these account types,
 you’ll be charged a small fee for each subsequent payment you
 receive, regardless of the funding source. See the introduction to
 Chapter 3 for further
 details.

	Select Yes to indicate that you agree with the User Agreement
 and Privacy Policy, and check Yes again to indicate that you’ve read
 the Legal Disputes section. Enter the Security Measure characters as
 shown in the box [Hack #15] .

	Click Signup when you’re done.

	The next page instructs you how to confirm your email address,
 which involves nothing more than opening the email message PayPal
 has just sent you and clicking the link inside.

After you confirm your email address, you will be able to use your
 account. However, you will have limited abilities until you verify your PayPal
 account [Hack
 #2] .

Verify Your PayPal Account

Provide PayPal with your necessary account
 information without waiting for your monthly bank
 statements.
Federal banking regulations require financial institutions to
 obtain proof of your identity before allowing you to open a bank
 account, and PayPal uses this fact to add security to their system. If
 you have a bank account, it proves you are a real person, at least in
 the eyes of PayPal. To unlock all the features of a new PayPal account,
 you’ll have to attach a bank account and confirm it.
Once you do this, your account will be
 verified and the following will happen:
	You’ll become eligible for Seller Protection [Hack
 #25] .

	You’ll be able to send as much money as you like. Unverified
 accounts are otherwise limited in the total amount of money that can
 be sent ($2,000 for U.S. accounts, for instance).

	You’ll be able to pay instantly from your checking account,
 rather than having to wait for eChecks to clear [Hack
 #11] .

	You’ll be able to withdraw money to your bank account [Hack
 #20] .

Add a Bank Account

Here’s how to become verified:
	Log into your PayPal account, click the My Account tab and
 then click Profile.

	Click the Bank Accounts link under the Financial Information
 heading.

	Type the name of the bank that holds your checking account,
 and choose either Checking or Savings to indicate the type of
 account you’re adding.

	Grab one of the checks from your checkbook and type your
 bank’s routing number and your account number, as illustrated in
 Figure 1-1.
	[image: Adding a bank account]

Figure 1-1. Adding a bank account

	Retype the account number in the next field to ensure there
 are no typos.

	Click Add Bank Account when you’re finished here.

The next page that appears will inform you that your bank
 account was successfully added, but you’re not done yet; you still
 need to confirm your bank account.

Confirm an Account and Get Free Cash

PayPal makes two small deposits into your bank account, each in an amount between $.01 and $.99.
 Because you alone have access to your bank statement, only you and
 PayPal have access to the exact amounts deposited. When you receive
 your bank statement, return to PayPal and confirm your account by
 typing the respective amounts of the two deposits made to your
 account.
Tip
These two random deposits are yours to keep, so you can earn
 between two cents and $1.98 just by confirming your bank
 account.

Now, if you’re the patient type, waiting up to a month for your
 paper bank statement to arrive in the mail should be no problem.
 However, in most cases, you won’t have to. If your bank provides
 online access to your account (most do), all you need to do is log in
 and retrieve the two deposit amounts.
Tip
PayPal initiates these two small deposits into your bank
 account right away, but the banking system typically requires three
 to four business days to process them. So, even if you have online
 banking, you won’t be able to confirm a bank account the same day
 you add it to PayPal. Instead, give it a few days and log into your
 bank’s web site on the third or fourth day.

Once you have the amounts of the two deposits, log into your
 PayPal account. Click the My Account tab, click Profile, and then
 click Bank Accounts (under the Financial Information heading). Your
 newly added bank account should be listed here; select the account (if
 there’s more than one), and then click Confirm. Enter the amounts of
 the deposits into the Confirm Bank Account page (as shown in Figure 1-2), and click Submit when
 you’re done.
	[image: Entering the random deposit amounts]

Figure 1-2. Entering the random deposit amounts

Your account is now verified, and you’re ready to start sending
 as much money as you
 like.

Confirm Your Mailing Address

Add a credit card and a confirmed shipping
 address to your PayPal account to have your payments accepted by more
 sellers.
Whenever you buy something online using a credit card, the store
 from which you made the purchase checks that the address you provided
 matches the address on file with your credit card company. Retailers do
 this as a security precaution to guard against payments made with stolen
 credit cards; otherwise, a thief could use your credit card number to
 purchase something and have it shipped anywhere.
Address matching is done through a standard system called
 Address Verification System/Service (AVS), which is set up
 by all the credit card companies. PayPal does the same thing when you
 add a credit card to your PayPal account:
	Log into PayPal, click the My Account tab, and then click
 Profile.

	Select Credit Cards under Financial Information.

	Any credit cards currently attached to your account will be
 shown here. Click Add to attach a new card.

	Fill in your credit card number and mailing address; make sure
 the address matches the one on file with your credit card company as
 precisely as possible.

	Click Add Card when you’re done.

If PayPal is able to match the address through AVS, it will
 designate your address as Confirmed and you’ll be able to use your
 credit card to fund payments right away. Plus, your payments will be
 eligible for PayPal’s Seller Protection Policy [Hack
 #25] , and sellers (especially on eBay) will be much
 more likely to accept your payments.
Tip
If you’re an online seller, you’ll need to decide if and when
 you’ll consider shipping items to an unconfirmed address. See the
 introduction to Chapter 3 and
 [Hack
 #25] for account settings related to accepting
 payments from unconfirmed addresses.

Expanded Use Enrollment

If PayPal is unable to confirm your address through AVS, it will
 remain Unconfirmed and you won’t be able to make credit card payments
 until you complete the Expanded Use Enrollment. Essentially, PayPal initiates
 the process by charging your credit card US$1.95 (don’t worry; you’ll
 get it back). When you receive your next credit card statement, a
 unique, randomly generated four-digit Expanded Use Number will
 accompany the charge.
Tip
If you have online access to your credit card account, check
 your statement online after three to four business days to view the
 Expanded Use Number. Otherwise, you’ll have to wait for your credit
 card statement to arrive in the mail.

Once you obtain the Expanded Use Number, enter it into PayPal.
 Your address will be confirmed and you’ll be able to make payments
 with your credit card. Plus, you’ll get your $1.95 back in the form of
 a credit to your PayPal account.
Tip
If you can’t complete the Expanded Use Enrollment, you’ll have
 to complete Alternate Address Confirmation, which involves faxing
 several documents to PayPal. To qualify, you must be verified [Hack
 #2] , a PayPal member for more than 90 days, and a
 U.S. member in good standing. You also must have a Buyer
 Participation buyer number
 [Hack #7] of more than
 10.

Confirming a Second Address

Although some sellers ship anywhere you ask them to, most want
 to abide by PayPal’s Seller Protection Policy [Hack
 #25] and thus will ship only to a confirmed
 address. Naturally, you might want to have more than one confirmed
 mailing address on your PayPal account.
There are two ways to go about this. The best way is to contact
 your credit card company and request that a second address be added to
 your credit card account. Most credit card banks will add an address
 to your credit card account for this purpose. You usually need to call
 your bank directly and provide them with the address. Some banks
 require you to fax or mail the request.
Once you have worked with your bank to have the new address
 added to your credit card account, you’ll need to have it confirmed by
 PayPal:
	Log into PayPal, click the My Account tab, and then click
 Profile.

	Select Street Address under Account Information.

	Click Add, fill in the new address, and click Save when
 you’re done.

	Select the address you just entered and click
 Confirm.

	Fill in your credit card information and click
 Continue.

If everything goes smoothly, PayPal will now designate that
 address as Confirmed and you’ll get all the benefits of using a
 confirmed address.
Alternatively, if the need arises, you can use the Alternative Address Confirmation (AAC) process described
 on the PayPal web site.
—Patrick Breitenbach

Pay When You’ve Forgotten Your Password

Use an extra credit card to pay when you
 can’t get into your account and don’t have time to recover a forgotten
 password
If you find you have forgotten your password, PayPal can
 help. But if you need to make a payment now and don’t have time to
 recover your password (a process that can take from a minute to over a
 week, depending on how much you know about your own account and how
 current that information is), there is a shortcut: use a credit card
 that is not already attached to a PayPal account to make your
 purchase.
Warning
You can’t use a credit card already attached to an existing
 PayPal account; the system won’t allow it. If you have only one credit
 card, you’re out of luck and will need to recover your password before
 you can make another payment.
Note that if your debit card doubles as a credit card, you can
 use it with PayPal, either for a one-time purchase or, more
 permanently, by attaching it to your PayPal account.

Here’s how to do it:
	Clear the cookies in your web browser.

	Click the appropriate button to make the payment, such as a
 Buy Now button on a seller’s web site or an eBay checkout
 flow.

	Choose the option for paying with a credit card if you do not
 have a PayPal account (“If you don’t have a PayPal account and want
 to pay with a credit card...”).

	You will be prompted to complete your payment.

Now that you have made your purchase, don’t forget to recover
 your password! You have several choices at this point, depending on how
 much you know about your account and how current your account
 information is:
Security Questions and Answers
A forgotten password is a prime example of how PayPal uses
 the security questions you set up when you opened your PayPal account
 to protect you. Personal information (stuff that only you would know),
 such as your city of birth, your mother’s maiden name, or the last
 four digits of your Social Security number, is used by PayPal to make
 sure you are who you say you are.
Make sure your security questions (and corresponding answers)
 are current and sufficiently private. To review your security
 questions or change your answers, open PayPal’s Profile Summary page (My Account→Profile) and click Password. Choose the
 security questions from the list and click Edit.

	Password reset by email
	If one of your current email addresses is registered with your
 PayPal account, start the process by clicking the “Forget your
 password?” link in the Member Log In box on the PayPal home page.
 Type in your email address (one to which you currently have
 access), click Submit, and follow the further instructions in the
 email message you’ll receive shortly. Click the link in the email
 to go to a page where you can answer questions about the bank and
 credit card accounts listed on your account or your personalized
 security questions (see the “Security Questions and Answers”
 sidebar). Once your identity has been verified, you’ll be given
 the opportunity to choose a new password.

Tip
If you don’t receive the email message, you might have an overly
 aggressive spam filter. Make sure to check your incoming spam folder
 or temporarily disable your spam filter (or your ISP’s filter) and try
 again if you suspect that PayPal’s confirmation email was
 deleted.

	Telephone password recovery process
	If you no longer use any of the email addresses registered
 with your PayPal account, but you do know the answer to your
 security questions and still use a telephone number registered
 with your account, you can use the telephone password recovery
 process:
	First, click the “Forget your password?” link and enter
 your old email address as though you were still using
 it.

	Next, click “I no longer have access to this email
 address.” The system then verifies your identity by asking you
 to fill in some personal information. Provide this information
 and then click Submit.

	On the Password Recovery by Phone page, select the
 telephone number where you would like to be called and provide
 a current email address. Click Continue. A PayPal Confirmation
 PIN will be shown.

	Next, PayPal places an automated telephone call to the
 phone number associated with your account. Assuming you’re
 able to answer, you’ll be asked to enter the PIN provided by
 PayPal into the telephone keypad, followed by the pound key
 (#).

	Once you have done so, hang up and click Continue. You
 will be prompted to enter (and reenter) a new password and
 select and answer two security questions. Remember this
 password. Use it with the email address you just added to log
 in to your PayPal account.

	If all else fails
	If neither of these solutions works, you can recover your
 password by postal mail and other means. At this point, it’s best
 to contact PayPal directly and have customer service help you
 recover your password.

Obviously, it’s best to keep all your information (email
 addresses, postal addresses, and phone numbers) current, so that if you
 ever need to recover an inaccessible account, you can do so in minutes
 rather than

 days.

Restore Your Account if It Has Been Limited

In the event that PayPal limits your account
 as a result of suspected fraud or other problem, you can restore it to
 its original, unrestricted state.
If PayPal determines that you have been engaging in fraudulent or
 high-risk activity (such as selling fake merchandise or using stolen credit cards) or that you have not been abiding by
 the terms of the user agreement (e.g., you’ve been using PayPal to sell
 pornographic material or weapons), PayPal will impose
 limits on your account. Your account might also be limited if you
 initiate a bank transfer that then fails due to insufficient funds or if
 you accept a payment that is later disputed by its sender.
PayPal often limits the account’s access to certain features, such
 as sending, withdrawing, or even receiving money. This helps protect any
 other PayPal users with whom you’ve been dealing and helps reduce
 subsequent losses that PayPal would otherwise have to incur.
Tip
You know that PayPal has limited your account when your Account
 Overview page has a pink box that says Account Access Limited. As you might expect, click the
 “Click here for details” link for an explanation.

PayPal prides itself on being good at spotting high-risk behavior,
 but they also recognize that not all high-risk transactions are
 necessarily fraudulent or bad and not all disputes are the seller’s
 fault. Thus, PayPal has an appeals process for those who have had their
 accounts limited.
Filing an Appeal

Needless to say, the best thing you can do if your account has
 been limited is to precisely follow the instructions on the web site
 and in the notification email you receive. Often, this entails
 completing a sequence of steps to provide PayPal with evidence of
 ownership of the PayPal account, ownership of the financials attached
 to the account, and verification of your own identity and
 address.
Warning
Only after you have completed all the
 required steps will a PayPal Account Review Representative review
 your account. For instance, if PayPal asks you to fax several
 documents, your account will not be reviewed until you submit all
 requested documents and have completed all the remaining
 steps.

In addition, make sure to double-check the email you received
 notifying you of your account’s limited access, because the PayPal
 Account Review Representative might have added extra steps for you to
 complete that are not listed on the web site. For instance, if you are
 a seller on eBay, PayPal will likely request tracking information for
 items you’ve delivered and proof of inventory for additional items
 you’re currently selling.
Tip
If you lose the email, you might not necessarily be able to
 find all the steps to complete on the PayPal web site; in this case,
 your best bet is to call PayPal [Hack
 #9] . However, if you no longer have access to
 your email account [Hack #4] , you might have bigger fish
 to fry.

A Last Resort

If you’re really in a bind and cannot complete the steps
 requested of you for legitimate reasons, you can always escalate your
 issue by writing a letter to a PayPal executive, contacting the Better
 Business Bureau, or working with a legal representative.
Escalation in itself is not a guarantee that your issue will be
 resolved, but if your issue is legitimate, it is likely that a new
 pair of eyes, perhaps with more experience and background, will look
 at your issue and help reach a fair resolution.

Avoiding Suspicion

To prevent your account from being limited in the first place, keep
 your account in order by following these guidelines:
	Treat your PayPal account as you would your bank account:
 use secret passwords and keep them to yourself!

	Make sure your true name is on your PayPal account and that
 it matches the name on your bank and credit card accounts. If you
 are a business, make sure the bank account and credit card on your
 account are also in your business name.

	Use accurate addresses and phone numbers that match those on
 your credit card and bank account, and keep them current. False
 contact information can raise suspicion on your account and make
 it more difficult to regain access.

	Delete old or obsolete bank accounts and credit cards from
 your account. If you do not keep your account up-to-date, you
 might find yourself in a bind when your account is limited and
 PayPal asks you to prove ownership of a bank account with an old
 address.

	If you are a seller, always use electronically trackable
 shipping methods [Hack #24] so that if the shipment
 or receipt of a physical good is in doubt, you can easily prove
 your case. Also make sure to keep proof of inventory or
 merchandise, such as receipts, invoices, or proof of authenticity
 for older, collectible items. Maintain good relationships with
 your suppliers so that you can easily access this information when
 you need it.

	If you have any old or abandoned PayPal accounts, make sure
 to resolve your issues with those accounts and then close them. If
 your account has been limited and PayPal sees linked accounts with
 issues, such as a negative balance or outstanding buyer
 complaints, PayPal will probably ask you to resolve those issues
 as well before they’ll be willing to lift the limitation on your
 active account.

See Also

There are lots of things you can do to protect yourself and your
 account, both before and after you encounter a problem. See the
 following hacks for more details:
	 [Hack #16]

	 [Hack #24]

	 [Hack #25]

 Sarah Livnet

Create a Separate Login for Each Employee

Use PayPal’s Multi-User Access feature to
 provide a separate login for each employee in your
 organization.
Even though you might trust your employees to take care of your
 kids for the weekend, you might have second thoughts about giving them
 full access your organization’s PayPal account. To that end, the
 Multi-User Access system enables you to add up to 200
 different users to a single account, each with
 configurable account privileges. Each user is assigned a separate login
 ID and password.
Adding a New User

PayPal first has you establish an Administrative email address.
 PayPal will send all email notifications related to your account
 Profile to this email address. This is a security precaution so that
 PayPal can alert you at a different email address if someone tries to
 change the primary email address on your account.
PayPal steers you in this direction the first time you try to
 create a new user. Even before that, you should make sure you have at
 least two email addresses registered and confirmed in your account
 [Hack
 #8] .
Once you have your two email addresses, you are ready:
	Log in to PayPal, and go to Profile→Multi-User Access.

	Select an address from the list; note that you won’t be able
 to select your Primary address.

	To create your first login, click Add and type in the user’s
 name when prompted. It’s best to use the person’s actual name, but
 you could also consider using a job function or other nickname
 (e.g., Customer Service 1).

	Choose a User ID (must be 10-16 characters).
Tip
The length requirement and restriction against special
 characters make choosing a user ID is less than optimal. Further
 compounding the problem, these user IDs need to be unique for
 all of PayPal, not just for your account (e.g.,
 customerservice and
 jennifersmith were taken a long time ago).
 A good approach is to think up a short prefix to append to the
 front of each user ID, perhaps something related to your
 business name—for example, abcJohnSmith and
 abcMaryJones. User IDs are not case
 sensitive, so you’ll be able to log in with
 abcJohnSmith and
 abcjohnsmith.

	Choose a password (must be eight characters or
 longer).

	Check off the boxes that correspond to the privileges you
 want to grant this user. A good rule of thumb is to initially
 grant the fewest privileges possible when setting up a new user.
 You can always add more privileges later. But you can’t undo
 mishaps!

	Click Save when you’re done.

You should now see something like Figure 1-3.
	[image: Adding new users to your account]

Figure 1-3. Adding new users to your account

You can add up to 200 users to your account, each with different
 login privileges.

Setting Privileges

You have a lot of flexibility in setting up different
 privileges for different users, as shown in Figure 1-4. To allow read-only
 access, leave all boxes unchecked.
	[image: Selecting any combination of privileges for each user]

Figure 1-4. Selecting any combination of privileges for each user

Obviously, the users and privileges you assign depends on how
 many employees you have and how you run your business. A typical
 medium-sized business might use the following setup:
	Customer Service Rep
	Leave all boxes unchecked for read-only access.

	Refund Rep
	Check the Refunds option.

	Financial Reconciliation
	Turn on the View Balance and Settlement File
 options.

	Head of Finance
	Check View Balance and Withdraw Funds.

If your employees or partners used to log in with your password,
 it’s a good idea to change it once you get everyone set up.

Adding an Administrative Account

An additional benefit of Multi-User Access is that you can
 create a username-based login for yourself. Traditionally, a user logs
 into PayPal with an email address and a password. I don’t know about
 you, but my email address is pretty lengthy, and having to type the
 ampersand (@) and dot (.) characters gets annoying.
Just add a new user to your account, and check all the boxes to
 give yourself full access.
Tip
You’ll probably want to leave API Activation unchecked; that
 setting is needed only for using the PayPal API [Hack
 #88] .

Responding if Something Goes Wrong

If you spot unexpected account activity, it’s best to do some
 research before starting to point fingers. Review all the users and
 their privileges. If none appear to have the privilege to perform the
 activity you discovered, someone else might have used your
 login.
Protect Your Account Against Phishing
Phishing, the act of sending out bogus emails and creating fake
 web sites to trick users into giving up their
 passwords, has become a major problem on the internet. Phishers have
 become so adept at their profession that they have even managed to
 secure passwords from the most savvy of web users.
Creating PayPal logins for your employees with limited
 privileges can minimize the consequences if one of your employees
 yields to a phisher. If you suspect that you or one of your
 employees has unknowingly given their password to a phisher, you
 should first attempt to change your administrative password. Then,
 contact PayPal Customer Service to let them know what might have
 happened. They usually can shut down any nefarious activity before
 it happens, provided that you contact them promptly.

Unfortunately, the PayPal site doesn’t indicate the name of the
 person who performed any given activity on your account. If you really
 get into a bind, you can contact PayPal’s Customer Service and they
 will be able to pull up a list of user activity. PayPal usually also
 has the IP address of the computer that was used, so you might be able
 to match it to one of your company’s PCs or determine that the
 activity was performed from outside your company.
—Patrick Breitenbach

Access Member Information

Use the information PayPal publishes about
 members to scope out sellers and buyers, and see what they can learn
 about you.
While all human relationships are built on trust, you might not
 want to rely on blind faith alone when your money is at stake. To help
 you determine which vendors and customers to trust and which to avoid,
 PayPal offers information about its members’ standing with
 PayPal.
Looking Up a User’s Status

You can check any PayPal account’s User Status by initiating (but not necessarily
 completing) a transaction with that user:
	Log in to your PayPal account.

	Click the Request Money tab.

	Enter the email address of your prospective buyer, enter an
 amount to request (a single penny will do), and select the type
 Goods (other).

	Click Continue.

	The Request Money—Confirm page that appears (shown in Figure 1-5) will tell you the
 account type, Seller Reputation Number, and verification status of
 your buyer. Click the reputation link after Recipient Status: for
 information on the age of the account.

	[image: Checking a buyer’s User Status]

Figure 1-5. Checking a buyer’s User Status

	Because you are just making an inquiry here and don’t
 actually intend to request money, click Cancel.

If you don’t complete the transaction, the would-be recipient
 will not be notified.

Understanding the User Status

Here are some of the things you’ll see in the Member Information
 box:
	Seller Reputation
	Although PayPal refers to these scores as reputation numbers, they are
 based solely on the number of transactions completed. Unlike
 feedback scores at eBay and other community-oriented sites,
 PayPal reputation numbers are not in any way based on ratings
 from other PayPal members.
Tip
PayPal’s calculation of reputation numbers is delayed,
 such that any transaction in which you’re involved won’t be
 counted until 30 days after the transaction completes
 successfully. Also, only transactions $5.00 or greater in
 value with verified members are counted.

	Account Status
	This field shows whether or not the account is verified
 [Hack
 #2] .

	Account Type
	This shows the country in which the account is registered
 and whether it is a Personal, Premier, or Business account (the
 differences between these account types are described in the
 introduction to Chapter
 3).

	Account Creation Date
	This field is self-explanatory: the date that the PayPal
 account was created. (This information is restated in the PayPal
 Member For field.)

Checking Your Reputation as a Seller

Before conducting business or making payments with your PayPal
 account, you’d be wise to know what others can learn about
 you through PayPal.
If you have a Premier or Business account, a number will appear
 in parentheses after the word Verified or Unverified in the Account
 Overview page. Click the number to display your Member Information
 Box, the same box others see when they use the procedure in the
 beginning of this hack.
To find the Member Information Box for your Personal account,
 you’ll need to use another PayPal account (either your own or a
 friend’s) and follow the same procedure.

Checking Your Reputation as a Buyer

To find out your Buyer Reputation Number, go to https://www.paypal.com/REPNUM. If you have not logged
 in, you will be prompted to do so. Click “View your Buyer and Seller
 Reputation Numbers” near the bottom of the page to display your Buyer
 and Seller Reputation Numbers.
As confusing as it might be, your Buyer Reputation Number is not the same as your Seller
 Reputation Number. See the “Why Is My Seller Reputation Zero?” sidebar
 for more

 information.
Why Is My Seller Reputation Zero?
If you have used PayPal for some time as a buyer but are
 accepting payments for goods for the first time, you might be
 surprised to find your Seller Reputation Number is 0. The
 explanation lies with two numbers PayPal maintains for every
 account: a Seller Reputation Number and a Buyer Reputation
 Number.
Your Buyer Reputation Number measures the number of unique
 verified PayPal members you have paid, while your Seller Reputation
 Number tells you how many unique verified PayPal members have paid
 you.
Purchasing goods and services with PayPal can, over time,
 drive your Buyer Reputation Number into the stratosphere. But until
 you rack up qualifying sales, your Seller
 Reputation Number will languish.

Manage PayPal Email

Set up multiple email accounts and filtering
 to manage PayPal email notifications more efficiently.
PayPal sends a lot of email to its members, ranging from payment
 notifications to PayPal news and account updates. It’s not uncommon for
 important emails to get lost in the shuffle. But there are several
 things you can do to make PayPal emails more manageable.
There are two primary strategies to make email more
 manageable:
	Set up multiple email accounts for different purposes.

	Use the routing and filtering capabilities of your email
 reader to segregate the different types of email.

Setting Up Multiple Email Addresses

As you’ve probably figured out, email addresses are very important
 at PayPal. You log in with an email address, send money to other email
 addresses, and receive “You’ve got cash” emails (the most-read email
 messages on the Internet, by the way!) in your own email inbox.
But PayPal doesn’t limit you to one email address, and with good
 reason: by associating multiple email addresses with a single account,
 it can be easier to deal with incoming payments and the associated
 orders that need to be filled.
The first thing you can do is register a second email address to
 be used to notify you of changes to your account Profile. If you are
 using PayPal’s Multi-User Access feature [Hack
 #6] , you’ve already set up an administrative email
 address. But if not, consider doing so anyway, even if you don’t
 intend to use the Multi-User Access feature.
PayPal uses the administrative email address to send notices
 when you make changes to your Profile. This is primarily a security
 measure intended to make it more difficult for a thief or phisher to
 gain access to your account and change your primary email
 address.
Before setting up an administrative email address, you should
 have access to at least two email accounts. Many ISPs allow single
 users to hold multiple email accounts, and if you have your own domain
 name, so much the better. Otherwise, you can use one of the free
 providers, such as Yahoo, Hotmail or Gmail.
	Log into PayPal and click Profile.

	Go to Email under Account Information.

	Make sure you have at least two confirmed email addresses
 listed (there’s no indicator that an email address is confirmed,
 but an Unconfirmed label will appear next to unconfirmed
 addresses). If you need to confirm an address, do so now by
 selecting an address and clicking Confirm. Or, click Add to enter
 a new address, and then confirm it.

	PayPal sends an email to the new account; open it, click the
 link inside, and enter your password at the PayPal web site when
 prompted.

	Next, set up your administrative email by returning to the
 Profile page and clicking Multi-User Access.

	Select the email address that you want to use as the
 administrative email address and click Save.

Using Different Email Addresses

Probably the most beneficial aspect to using more than one email
 address is that you can more easily separate payments made for
 different purposes. For instance, you might have both
 website@paypalhacks.com and ebay@paypalhacks.com
 registered to a single PayPal account, one for web site
 payments and the other for eBay auction payments.
Tip
Not only does PayPal send the “You’ve got cash” notification
 to the email address to which the payment was sent, but PayPal also
 keeps track of that address for future reference. For example, in
 PayPal’s downloadable logs, one of the columns lists which email
 address received the payment that was sent, making it easy to sort
 and group payments.

You can type either email address into your web site payment
 buttons [Hack #28] , into eBay’s Sell Your Item
 form, or even in text links
 [Hack #17] .
Regardless of how you end up using them, you’ll most likely want
 to filter your email so that different payment notifications are sent
 to different places.

Filtering Your Incoming Email

After setting up a second address, you’ll still receive a lot
 of email from PayPal; it’ll just be divided across both addresses.
 Most email applications, as well as many web-based email services,
 offer ways to filter, route, and automatically file emails in
 different folders.
A basic filter in Outlook Express, shown in Figure 1-6, sorts messages into
 different folders depending on the email address to which the payment
 was sent.
	[image: Setting up Outlook to automatically route emails to folders based on the From address or Subject line]

Figure 1-6. Setting up Outlook to automatically route emails to folders
 based on the From address or Subject line

Here’s how to set up a Mail Rule in Outlook Express for Windows
 to separate your PayPal email:
	Start Outlook Express

	Right-click on Local Folders and select New Folder.

	Type PayPal for eBay and
 press Enter to create a new mail folder.

	Go to Tools→Message Rules→Mail.

	Turn on both the “Where the From line contains people” and
 “Where the To line contains people” option in box 1.

	Turn on the “Move it to the specified folder” option in box
 2.

	In box 3, next to “Where the From line,” click “contains
 people” and type @paypal.com.
 Click Add and then OK when you’re done here.

	In box 3, next to “Where the To line,” click “contains
 people” and type the first of your email addresses on file with
 PayPal (e.g., ebay@paypalhacks.com). Click Add and
 then OK when you’re done here, too.

	Click “specified” in box 3, and select the new PayPal folder
 you created in step 3.

	Name the rule something like PayPal in
 box 4, click OK, and then click OK again when you’re done.

	Repeat these steps for each additional email address you
 have on file for PayPal, specifying a different folder for each
 address.

That’s just a start; you can be creative, doing such things as
 automatically sending “Thank you for your purchase” emails to all your
 eBay customers, for instance.
You can also prioritize your mail by severity: set up a mail
 rule that looks for “Notification of Reversed Transaction” in the
 Subject line and route it to a Reversals
 folder.

Setting Notification Preferences

PayPal sends out a lot of email to its members, but luckily,
 most of it can be turned off by using the Notifications settings in
 your account Profile, as shown in Figure 1-7.
	[image: Choosing which emails you want to receive from PayPal]

Figure 1-7. Choosing which emails you want to receive from PayPal

Tip
As desirable as it might be, you won’t be able to turn off
 every single notification. PayPal will still send the occasional
 email describing changes to the Terms of Use and major product
 changes.

Some PayPal users actually prefer to receive every email that
 PayPal sends, and given the sensitive nature of the business, this is
 understandable. Since you can automatically filter the various email
 messages PayPal sends you, you might be more inclined to sign up for
 all of PayPal’s emails. Of course, if a message subsequently sneaks
 through the Mail Rule, you can easily modify the rule or create a new
 filter to catch it the next time. That way, you’ll always have an
 archive of messages relating to your account, without having them
 clutter up your Inbox.
—Patrick Breitenbach

Get Help from PayPal

When things go wrong, don’t run screaming
 for the hills. Use PayPal’s various forms and phone numbers to get help
 fast.
Even if you aren’t much of a fan of online help systems, it’s
 probably the best place to start if you run into a problem with your
 account. PayPal Help is especially useful when it comes to PayPal’s vast
 assortment of policies and procedures.
You’ll find a link to Help in the upper-right corner of every page
 of the PayPal site. There are two main ways to use PayPal Help:
	Browse by category (e.g., Making Payments, Seller Tools,
 etc.)

	Search using natural language questions (e.g., “how do I earn
 interest?”)

As with most search engines, you don’t have to type a whole
 question to get good results. “add email” works just as well as “Can I
 add another email address?”
Tip
If the answer you find is particularly good or bad, you can do
 your good deed for the PayPal community by pressing the “Was the
 answer helpful?” buttons. We’re told that PayPal actually does modify
 the Help system based on this feedback. In fact, PayPal performed a
 large-scale redesign of the Help system in early 2004.

Unfortunately PayPal’s Help URLs do not remain constant, so don’t
 try to bookmark specific pages for future reference. If you need to
 refer a friend or customer to a PayPal Help page, it’s best to indicate
 a search term that brings up the article in question.
Email Support

Like many companies, PayPal doesn’t let you send a regular
 email directly to Customer Service. You must navigate through some web
 forms and give the web site the chance to answer your question. But
 eventually, you can write an open-ended question to PayPal. PayPal has
 a large support staff in Omaha, Nebraska, as well as in Omaha’s
 unofficial sister city, Dublin, Ireland, to answer your questions and
 process your requests.
Tip
If you have a PayPal account (and are able to log in), you
 should always log in before sending your message. Doing so makes it
 much easier for PayPal to locate and reference your account.

As with any email inquiry, it’s crucial that you provide as
 specific and clear information about your situation as you can.
 Instead of paraphrasing error messages or web page text, copy and
 paste the exact passage. PayPal gives you up to 1,000 characters with
 which to write your question, which should cover most
 situations.
Warning
You should never type your password or complete credit card
 number in a web form or email, even when sending it to
 PayPal.

Telephone Support

Let’s be honest; some situations require talking to an actual
 person on the phone:
	If you’re in the U.S., call PayPal toll-free at
 888-221-1161.

	If you are outside the U.S. or for any reason need to use a
 non-toll-free number, call 402-935-2050. European customers can
 call 0870-730-7191.

PayPal Customer Service representatives can talk only to the
 primary contact listed on the account. To verify this, they will
 likely ask you for your telephone number, email address, or last four
 digits from your credit card or bank account number, so make sure to
 have these on hand when you call.
If you don’t have access to a live Internet connection while
 calling, try to prepare for the call ahead of time by collecting all
 the specific information about your inquiry. This information might
 include such details as the PayPal transaction ID, payment date and
 amount, payment recipient, eBay auction number and username, online
 store web site address, and so on.

Support Forums

There are several online support forums that can also be good places to
 ask questions and get answers. PayPal has two official forums:
	The PayPal forum at the eBay Discussion Boards (http://forums.ebay.com/db2/forum.jsp?forum=97)

	The PayPal Developer Forums (http://developer.paypal.com)

Good independent forums include:
	Fatwallet (http://www.fatwallet.com)
	For general information about a variety of online
 commerce topics.

	Vendio Community (http://www.vendio.com/mesg/)
	For discussions about online auctions. See the eBay
 boards, as well as the PayPal board under Vendio Partner
 Services.

	PayPalDev.org (http://www.paypaldev.org)
	An independently operated board for PayPal
 programmers.

eBay University

Finally, eBay offers hands-on courses in which you can learn a
 lot about trading on eBay from expert instructors. While eBay
 University is heavily focused on eBay, PayPal is becoming an
 increasingly popular topic. Furthermore, instructors usually stick
 around after the course to answer any PayPal questions you might have.
 To find out when eBay University will be in your area, check the
 eBay site (http://www.ebay.com/university/).
—Patrick Breitenbach

Chapter 2. Making Payments

Introduction: Hacks #10-16

So, you’ve just bought a genuine Zapp Brannigan Atomic Ray Gun on
 eBay, and now it’s time to pony up the dough. You might be able to mail
 a personal check, but most sellers won’t take them (and when they do,
 there’s an extra week to wait for them to clear). Money orders and
 cashier’s checks usually cost money and take several days to arrive, and
 then there’s still no protection if the seller takes the ray gun and
 runs. Some sellers accept credit cards directly, but few provide online
 ordering or other safe means of sending your payment information.
This is where many buyers are introduced to PayPal. With a few
 clicks and usually no typing, you can send large or small sums of money
 across the country or around the world almost instantaneously and get
 fraud protection while doing it.
The first thing to remember when making a payment with PayPal is
 to be certain you’ve got it right. Review the details of the payment
 you’re about to make on the Check Payment Details page, because once you
 hit the Pay button, there is no going back. You won’t be able to rescind
 the payment, change the recipient in the case of a typo, or change the
 way the payment is funded [Hack #11] .
Warning
Keep a close eye on the source of funds [Hack
 #11] ; if you don’t have enough money in your
 checking account and would prefer to use your credit card instead,
 you’ll need to make that selection before you pay. Even if you r
 recipient were to refund the payment immediately [Hack
 #21] , the funds would still be pulled from your
 bank account or charged on your credit card.

Now, none of this means that PayPal doesn’t have policies in place
 to protect you. If the recipient doesn’t claim a pending payment within
 30 days, for example, you’ll get it back automatically. And you’ll be
 able to dispute payments made for merchandise [Hack
 #16] in the event of fraud. But the person in the
 best position to protect your money is you, so use that position
 wisely.

Send Money to Anyone

Use PayPal’s most basic feature to send
 money to anyone with an email address, even if the recipient doesn’t
 have a PayPal account.
It’s a little-known fact that you can send money to anyone who
 has an email address: the person to whom you send money doesn’t need a
 PayPal account! The only information you need is the recipient’s email
 address and, of course, the amount of money you would like to
 send.
Back in the days when PayPal was giving away $10 for each new
 account referred, some entrepreneurial students would send $.20 payments
 to every kid in their school in hopes that the recipient would create an
 account. If no one claimed the payment, the money would eventually go
 back to the sender. Not a bad moneymaking scheme, even if only 1 in 20
 recipients signed up! Today, with over 50,000 new users each day, PayPal
 doesn’t offer such a bounty for referral. However, you can still enjoy
 the fun of surprising someone with a “You’ve got cash” email.
Sending a Payment via Email

 To send money to someone (whether they have a PayPal
 account or not):
	Log into your PayPal account.

	Click the Send Money tab, and then click the Pay Anyone
 subtab.

	Enter the recipient’s email address.

	Enter the amount to send and select the currency you wish to
 use.

	For Type, select Goods or Service if you are paying someone
 back for a good or service they provided you.
Warning
If you select Quasi-Cash and pay with a credit card or debit
 card, your card issuer might treat the transaction as a cash
 advance and charge you a cash advance fee.

	Enter a Subject and a Note (both are optional). The Subject
 is important, because it appears as the subject of the email sent
 to the recipient of your payment. The note, however, is less
 likely to be seen, because it appears buried in the email. If you
 need to include important details, it is best to send them in a
 separate email.

	Click Continue when you’re finished with this page. The next
 page shows a summary of the payment.
Tip
At this point, if the recipient does not have a PayPal
 account, you’ll see, “This recipient is not yet registered.
 PayPal will send an email to the recipient explaining how to
 open an account and receive your transaction.” See the next
 section of this hack for details on what to do if your recipient
 doesn’t open an account.

	Click More Funding Options to choose how to fund your
 payment [Hack #11] .

	If you are just sending money to a friend, select “No
 shipping address required” in the Shipping Information section.
 Otherwise, if you are paying for an item that will be shipped to
 you, you’ll most likely want to provide your address. Note that
 some sellers will refuse your payment if you don’t include a
 confirmed address [Hack #3] .

	Click Send Money when you’re done.

To confirm that everything has gone as planned, PayPal will send
 you a “Receipt of your payment” email to notify you that you have
 indeed sent the money. If the recipient has a PayPal account, she will
 receive a similar email letting her know that she has received money.
 If the recipient doesn’t have an account, PayPal will send a “You’ve
 got cash” email, along with instructions to sign up for a PayPal
 account. Only after signing up for an account will the recipient be
 able to access your payment.
If you pay with a credit card and the recipient has a Premier or
 Business account, the money will be deposited directly into the
 account. If you’re sending money to a friend, you might want to send
 it to her personal account to avoid the PayPal fees, although this
 means you won’t be able to fund the payment with a credit card [Hack
 #11] .

What If They Don’t Sign Up?

If you send money to someone without a PayPal account, it’s
 possible that the recipient won’t sign up and claim the money. This
 can happen, for instance, if the recipient confuses PayPal’s “You’ve
 got cash” email with unsolicited spam. Also, many people feel uneasy
 about signing up for a service like PayPal, thinking that they might
 be charged a bunch of fees or that they’ll be victimized if they share
 their financial information over the Internet. For this reason, you
 might need to reassure skittish payees before sending them money with
 PayPal.
If, for whatever reason, the recipient doesn’t sign up and claim
 the payment within 30 days, PayPal will return the funds to
 your account (or refund your credit card, if that’s how you funded the
 payment). PayPal will also reverse the payment if you try to send a
 credit card-funded payment to a Personal account and the recipient
 doesn’t upgrade to a Business or Premier account within 30 days to
 accept the payment. Either way, you can try to resend the money, but
 your best bet is to contact the recipient separately via email to
 ensure you have the right email address and that they understand what
 they need to do to get the money.
Warning
Just as you would look someone in the face before handing over
 a fistful of cash, be sure to double-check the email address of the
 recipient before you send money, because there isn’t any easy way to
 get your money back if you send it to the wrong person. See [Hack
 #16] if this happens to you.

If you decide to cancel an unclaimed payment for any reason, you
 can reverse the transaction before the 30-day automatic reversal
 period only if the recipient has not signed up
 and claimed the money. To cancel a pending payment, log into your
 PayPal account and click the History tab to view your transaction
 history. Find the payment you’d like to reverse and click the Cancel

 button.

Choose How to Fund Payments

Select your preferred payment funding source
 each time you make a payment, a necessary step if you want to pay with a
 credit card or alternate bank account.
While a primary reason so many people use PayPal (PayPal reports
 over 45 million users as of March 31, 2004) is to send and receive
 credit card payments, there are several other ways to make a payment
 without using a credit card at all.
Each time you make a payment
 [Hack #10] , PayPal displays the
 Source of Funds (as shown in Figure
 2-1) that will be used to make the payment on the Check Payment
 Details page and gives you an opportunity to switch sources if you so
 desire. Always review how you’re making your payment and switch payment
 sources if necessary.
	[image: Choosing a source of funds]

Figure 2-1. Choosing a source of funds

Click More Funding Options to display the Funding Options page, as
 shown in Figure 2-2. Each time
 you make a payment, you can select a funding source among several
 choices.
	[image: Selecting funding options]

Figure 2-2. Selecting funding options

PayPal offers several different ways to fund your payment:
	PayPal Balance
	If you have funds sitting in your PayPal account, they
 are always used first when making a payment. Only if the amount of
 your payment exceeds your balance will you be able to choose the
 source for the remaining funds. The exception is the eCheck
 option, which can be used whether or not you have funds in your
 PayPal account. See the next section of this hack for a
 workaround.

	Instant Transfer
	The funds necessary to make the payment will be drawn
 from your bank account. Although PayPal does not actually get the
 funds from your bank for several days (thus, the transfer is not
 technically instant), the payment recipient
 will have immediate access to the funds you have sent.
Because of this, PayPal requires that you set up a backup
 funding source to be used in the event that the bank transfer
 fails (i.e., the transfer bounces). Your credit card is normally
 used as the backup funding source; if you don’t have a credit card
 on file with your PayPal account, you might have to send an eCheck
 instead.

	Credit Card
	An immediate charge to your credit card or debit card
 will be made. In the U.S., PayPal supports Visa, MasterCard,
 American Express, and Discover. In the UK, Switch and Solo are
 also supported.
Tip
One reason people like to pay with a credit card is the
 added protection afforded by credit card issuers. Fortunately,
 if you use PayPal to pay for an eBay auction (and some other
 terms are met), you might be eligible for the Buyer Protection
 Policy [Hack #16] , regardless of the
 funding source you choose for the payment.

	eCheck
	An eCheck is a noninstant bank transfer, in which your
 payment will remain pending until PayPal receives the funds from
 your bank. When the bank transfer clears, PayPal switches the
 payment status to Completed and deposits the money in the
 recipient’s account. This usually takes two to four business days.
 eChecks are useful for large payments (greater than $1,000), since
 they can be used when other payment options aren’t available (if,
 for example, you have maxed out your credit card).

Tip
The maximum fee assessed to an eCheck recipient is $5.00.
 This means that eChecks are a good way to lower your seller fees [Hack
 #23] , at least for any payment of US$162.07 or
 more. Although you, as the buyer, will not directly benefit from this
 price advantage, you might be able to negotiate a discount on the
 purchase, since the seller will be saving quite a bit on PayPal
 transaction fees. For example, on a $1,000 purchase, the seller could
 stand to save $17.90 to $24.30 in transaction fees.

Overriding the Funding Source Hierarchy

As mentioned in the previous section, if you have a balance
 in your PayPal account, it will be used to fund all your payments.
 Only if the amount of a payment exceeds your balance will you be able
 to fund your payment with a credit card or checking account transfer.
 (An eCheck can be sent regardless of your PayPal balance,
 however.)
To work around this limitation, bring your account balance down
 to zero before making your payment. Here’s how to do it:
	Make a payment to an email address that you control but that
 isn’t registered with PayPal. Set the amount of the payment equal
 to the balance in your PayPal account.
Tip
As described in
 [Hack #10] , the status
 of the payment will be pending, because it
 was sent to an email address that is not registered with
 PayPal.

	Make the payment you were originally intending, and fund it
 with a credit card or Instant Transfer.

	Once you’ve completed the payment, go to your payment
 history and cancel the pending payment you made to yourself. The
 funds will then be moved back into your PayPal account.

This is a quick and effective way to use a credit card or
 Instant Transfer, without having to withdraw any funds in your account
 [Hack
 #20] .

eBay-only Payment Methods

eBay buyers have the benefit of three additional PayPal
 payment methods not available elsewhere:
	eBay Anything Points
	 eBay Anything Points is a loyalty program, similar
 to airline frequent flyer miles, introduced by eBay in 2003. You
 can earn points from:
	Companies who have partnered with eBay to offer points
 for joining their service (for example, Hilton, American
 Airlines, and Earthlink)

	Individual eBay sellers who offer points to the
 winning bidders of their auctions

	Every purchase made with the eBay Credit Card

Once you’ve saved up enough Anything Points, you can use
 them with PayPal to make purchases for eBay auctions. When you
 go through the eBay checkout process, before you get to the
 PayPal payment screen, you have the option of using eBay
 Anything Points to pay the entire amount or just a portion of
 it. For more information, visit http://anythingpoints.ebay.com.

	eBay Gift Certificates
	If someone emails you an eBay Gift Certificate, it shows up in your PayPal
 account, just like an ordinary payment. You can apply it to any
 auction you win, provided that you go through the eBay checkout
 process. For more information, visit https://certificates.ebay.com.

	PayPal Buyer Credit
	 PayPal Buyer Credit is basically a personal loan
 extended to you by PayPal (actually, by PayPal’s lending
 partner, GE Credit), that can be paid down over time. As with
 most forms of credit, not everyone gets approved, and if you
 don’t pay your bill on time, you will pay penalties. PayPal
 Buyer Credit can be used only on eBay listings in which the
 seller explicitly offers the Buyer Credit option.

Buying from Outside the USA

The funding sources available to non-U.S. users is more
 limited. For most countries, credit/debit cards and PayPal balances
 are the only methods available. Visa, MasterCard, American Express,
 and Discover can generally be used in any country, and UK users also
 have the option of Switch and Solo.
While the Instant Transfer and eCheck payment methods are not
 available outside the U.S., it is possible for German and Dutch users
 to load up their PayPal accounts from a bank account. You must prepare
 ahead of time, however, because this takes several days. PayPal
 provides all the bank account information needed to use the standard
 interbank transferring systems of Germany and the Netherlands.
PayPal expects to be able to offer an Instant Transfer-like
 payment method in Germany sometime in 2004.

Use Your PayPal Funds Anywhere

Use the PayPal Virtual Debit Bar to pay for
 goods or services at web sites that don’t normally accept
 PayPal.
It’s possible for you to pay someone via PayPal even if the recipient
 doesn’t have a PayPal account
 [Hack #15] , but only if you
 know the email address of the person or business to whom you wish to
 send money and only if the recipient is willing to sign up and accept
 your payment. But what do you do if you want to buy something from an
 online retailer that doesn’t accept PayPal?
There is, as it turns out, a way to pay with PayPal as though your
 account were a debit or credit card. There’s a hard-to-find page at
 PayPal that allows you to set up and use the virtual Debit Bar to turn
 your PayPal email address into a virtual MasterCard debit card number.
 To get a virtual debit card number, you’ll need to do all of the
 following:
	Have a PayPal balance of at least one U.S. dollar

	Add and confirm control of a checking account [Hack
 #2]

	Add a credit card to your PayPal account and complete your
 Expanded Use Enrollment
 [Hack #3]

To use the virtual debit card, start by opening the virtual Debit
 Bar:
	Log in to your PayPal account.

	Visit the PayPal virtual Debit Bar web page (shown in Figure 2-3) at https://www.paypal.com/us/cgi-bin/webscr?cmd=p/shop/vdebit.
Tip
PayPal has removed most links to the virtual debit card from
 its web site, but you might still find it at this URL.

	[image: Choosing an online retailer at which to shop with PayPal’s virtual Debit Bar]

Figure 2-3. Choosing an online retailer at which to shop with PayPal’s
 virtual Debit Bar

	From the drop-down list, pick an online store from which you
 want to make a purchase; or, in the second box, enter the URL of the
 store (as shown in Figure
 2-3). Either way, you can switch web sites at any time
 without affecting your virtual debit card.

	Click the appropriate Go button. The online store you
 specified then opens in a new browser window and the virtual Debit
 Bar appears at the bottom of your screen in another browser window
 (as shown in Figure 2-4)
 and remains visible while you shop.
	[image: The virtual Debit Bar]

Figure 2-4. The virtual Debit Bar

	When you’re ready to make a purchase, use the debit card
 information in the virtual Debit Bar just as you would any
 MasterCard debit card.

	You will find all the debit card information on the Debit Bar.
 Fill out the billing information (name, billing address, debit card
 type, debit cart number, and expiration date) on the web site, just
 as you would with any other debit card. You can copy and paste the
 debit card information in the virtual Debit Bar to save time.

	For the security of your PayPal Account, close the PayPal
 virtual Debit Bar browser window when you are finished shopping.
 Close the bar the same way you would any other web browser.

Keep the following in mind while using the virtual Debit
 Bar:
	You’ll need at least one U.S. dollar in your PayPal account to
 activate the virtual Debit Bar, and you’ll need sufficient funds in
 your account to cover any purchase you make. If you try to spend
 more than your current balance, your card will be declined.

	The spending limit for the virtual debit card is $150 per
 day.

	The virtual debit card does not have a three-digit Card Verification Value (CVV), so it won’t be accepted
 by online retailers that require one.

	For those retailers that will ship only to your credit card
 billing address, your virtual debit card billing address is the same
 as the address listed with the primary credit card registered to
 your PayPal Account.

	The expiration date for your virtual debit card (displayed
 on the upper-right corner of the virtual Debit Bar window) is set
 for two years from the date the card number was issued.

Tip
If you need a plastic debit card that is linked to your PayPal
 account, you can apply for a PayPal ATM/debit card [Hack
 #20] . You can also apply for a PayPal Providian
 credit card (http://www.paypalcreditcard.com),
 although it won’t be linked to your PayPal account balance. Both
 plastic cards are available only to U.S. members.

Pay from a Cell Phone

Send a payment or request a payment with a
 WAP-enabled cell phone.
Imagine rummaging through items at a garage sale and finding a
 priceless antique. Now imagine checking in your wallet only to discover
 that you don’t have the $19.00 to pay for it. What do you do? Hide the
 antique behind a box, run to the nearest ATM, and hope the item is still
 there when you return? No, you use your head, the power of PayPal, and
 the wonder of technology: pull out your web-enabled cell phone and use
 it to send a PayPal payment on the spot!
To navigate to PayPal’s Wireless Application Protocol (WAP) site, open your
 phone’s browser, choose “Go to URL” (or something similar), enter
 paypal.com, and click OK.
Tip
PayPal’s WAP site is shown automatically to anyone accessing
 http://www.paypal.com from a WAP-enabled cell
 phone or PDA. It’s a secure (https) connection,
 but must already have a PayPal account before you can use it.

Sending Money

After you have successfully logged in, you can select the Send
 Money link from the main menu, as shown in Figure 2-5. Next, enter the
 recipient’s email address, the amount in dollars, and the amount in
 cents.
	[image: Sending a PayPal payment from a WAP-enabled cell phone]

Figure 2-5. Sending a PayPal payment from a WAP-enabled cell
 phone

When you’re done, click Submit. This brings you to a screen
 where you can confirm the payment by selecting Yes, as shown in Figure 2-6.
	[image: Select Yes to confirm your payment]

Figure 2-6. Select Yes to confirm your payment

Checking the Payment

After you have made the payment, the recipient might want to
 verify that the transaction has completed.
Tip
If you’re feeling charitable and the recipient is standing
 next to you, you can simply log out on your phone, hand it over, and
 let her verify your payment.

To check the status of a payment, log into PayPal on your phone
 and select the History link to display a transaction log that lists transaction amounts (debit or
 credit) and transaction dates in chronological order (newest to
 oldest). Select a transaction to view more details, such as who sent
 the money and whether the transaction has completed
 successfully.

Requesting Payment with a Text Message

You can send an SMS message directly from your own cell phone, from the
 web site of your recipient’s carrier, or from email. Each cell phone
 and carrier has a slightly different procedure; refer to your phone or
 calling plan documentation for details.
When you enter the text message, make sure to include paypal.com. If the recipient is using a
 WAP-enabled phone, he simply clicks the Go option button that appears
 and is taken to the PayPal WAP site to complete the transaction.

Pay Seller Fees when Buying

Send a payment along with the respective
 seller fees using the Mass Pay feature, so that your recipient gets
 precisely what you promised.
Whether a product is sold or a service is performed, most people
 generally accept that the product or service provider is responsible for
 paying any applicable processing fees. But there are plenty of scenarios
 in which the recipient of your payment is not expecting or willing to
 pay any fees:
	Someone who has loaned you money should not have to pay a fee
 to get paid back.

	Members of your web site’s affiliate program [Hack
 #77] are not likely to expect to lose 2.9% of
 their referral fees.

	Those new to selling on eBay often don’t realize that
 accepting PayPal for their auctions generates enough additional
 business to be worth the applicable PayPal fees. If you’re buying
 something from an eBay seller who is unwilling to accept PayPal
 because of the fees, you can often grease the wheels by offering to
 cover the fees yourself.

Of course, PayPal doesn’t charge seller fees for payments received
 into Personal accounts, but these accounts have their own limitations
 (described in the introduction to Chapter
 3), rendering them useless for this purpose. If you need to make
 a payment to a recipient’s Premier or Business account for a specific
 amount without generating fees for him, you have two options: calculate
 the seller fees yourself or use Mass Pay.
Calculating the Fees Yourself

The first solution is to include the applicable fees with
 your payment, so that when PayPal deducts the fees, the recipient ends
 up with the intended amount. The equation (yes, there’s some math
 involved) to calculate the total amount received is as follows:
	Amount Received = Amount Sent - PayPal Fees

Seller fees for Business and Premier accounts are typically 30
 cents plus 2.9% of the amount sent. If you send someone $40, PayPal
 takes $1.46 (2.9% x $40 + $.30), leaving $38.54 for the recipient.
Tip
Non-U.S. account holders and those doing business with
 non-U.S. account holders might be subject to additional fees or a
 different fee rate. See
 [Hack #7] for a way to
 determine whether your recipient has a Personal account, in which
 case, no seller fees at all will be incurred.

If you’re having trouble remembering your high-school algebra,
 you might think that all you’d have to do is pay an extra $1.46 for
 the recipient to get the correct payment, but it doesn’t turn out that
 way:
	Amount Received = Amount Sent - PayPal Fees
	Amount Received = $41.46 - (2.9% x $41.46 + $.30)
	Amount Received = $41.46 - $1.50
	Amount Received = $39.96

It’s close, but you’ve still underpaid by 4 cents. The reason is
 that the goal, $40 in this case, was plugged into the wrong part of
 the equation. Here’s the correct calculation:
	Amount Received = Amount Sent - PayPal Fees
	$40 = Amount Sent - (2.9% x Amount Sent + $.30)
	$40 + $.30 = Amount Sent - (2.9% x Amount Sent)
	$40 + $.30 = Amount Sent x (1 - 2.9%)
	($40 + $.30) / (1 - 2.9%) = Amount Sent
	$41.50 = Amount Sent

Plugging $41.50 back into the original equation, you can see
 that it does indeed work:
	Amount Received = $41.50 - (2.9% x $41.50 + $.30)
	Amount Received = $41.50 - $1.5035
	Amount Received = $39.9965 or $40.00

Tip
When dealing with fractions, PayPal rounds to the nearest
 penny.

Here’s a general equation you can use to calculate seller
 fees:
	Amount to Send = (Amount to be Received + $.30) / (1 -
 2.9%)

Covering the Recipient’s Fees Using Mass Pay

Another, more direct way to cover the seller fees is to use an
 underused PayPal tool called Mass Pay [Hack
 #77] . With Mass Pay, PayPal deducts the fees from
 the sender’s account rather than the recipient’s account. In addition
 to being a simpler method than the arithmetic above, using Mass Pay in
 this way can make your bookkeeping easier, because the fees appear in
 your transaction history more clearly.
But the best part about Mass Pay is that the fee is a flat 2%
 and is capped at $1.00 per transaction (e.g., per recipient). In the
 scenario described earlier in this hack, the recipient would get the
 full $40 and you’d be charged only $0.80 instead of $1.50.
See [Hack #23] for other ways to reduce

 PayPal’s seller
 fees.

Send Money Without Creating a PayPal Account

Pay someone quickly without going to the
 trouble of setting up an account.
If you don’t have a PayPal account and you want to see what
 the fuss is about, send someone money using PayPal. After all, everyone
 owes someone for something. Perhaps you owe a coworker for lunch, a
 friend who bought you a ticket to the big game, or another friend who
 sold you his old DVD player. Why not pay them via PayPal?
But to send someone money, you’ll have to sign up for an account.
 Or will you? The answer is no, as long as the recipient has a PayPal
 account!
Tip
Using this procedure, you can also request and accept payments
 without requiring the customer to sign up for a PayPal account. Just
 fill in your own email address into the URL discussed here and send it
 to your customers.

To send money without creating a PayPal account, open up any web
 browser, and type this address (URL):
	http://paypal.com/xclick/business=

Add the email address of the recipient of the money to the end of
 the URL, like this:
	http://paypal.com/xclick/business=reg@paypalhacks.com

After pressing the Enter key (or Return on the Mac), the email
 address (reg@paypalhacks.com, in this case) will be sent
 to the PayPal web site, which will look up the user’s account. If the
 email address refers to an existing PayPal account, you will see the
 Payment Details page (shown in Figure 2-7) with the following
 information:
	Pay To
	The email address of the recipient of your payment.

	Payment For
	An optional field, into which you can enter a note
 describing what the payment is for.

	Currency
	The currency it expects you to use; the default is U.S.
 dollars.

	Amount
	In this example, you will be required to enter the amount
 you wish to pay, since you didn’t put the amount in the URL

	[image: Payment Details screen for customers sending money to registered PayPal sellers]

Figure 2-7. Payment Details screen for customers sending money to
 registered PayPal sellers

If, on the other hand, the email address of the recipient does not
 refer to an existing PayPal account, you will see a slightly different
 Payment Details page, as shown in Figure 2-8. In this case, you’ll be
 required to sign up for a PayPal account as a part of the payment
 process.
	[image: Payment Details screen for customers sending money to unregistered users]

Figure 2-8. Payment Details screen for customers sending money to
 unregistered users

At this point, you’ll have two choices:
	If you have a PayPal account, you can type your email address
 and password here and click Login to pay with your account.

	Otherwise, click the Continue Checkout button. Use this option
 if you don’t want to pay with your PayPal account, or if you don’t
 have a PayPal account and want to pay with a credit card.

If you or someone else has previously accessed a PayPal account on
 your computer, the Payment Details page might look a little different,
 as shown in Figure 2-9. You
 will see the email address of the PayPal customer who previously used
 your computer, and you’ll be prompted for a password. But you can still
 get to the new user page shown earlier in this hack
 by clicking the Click Here button, at which point you’ll be able to pay
 without logging in.
	[image: Payment Details screen with cookies enabled]

Figure 2-9. Payment Details screen with cookies enabled

Cookies and Personal Information
Cookies are tidbits of information that web sites store on your
 computer for future reference; they typically contain just enough
 information for the web site to identify your login or user ID.
A good example of how cookies can work to your advantage is the
 way both eBay and PayPal use cookies to keep you signed in and
 remember you the next time you visit.
To experience PayPal as a new PayPal user would, find and delete your
 PayPal cookie. If you’re using Internet Explorer, look for a text file
 containing the characters @paypal.com in your Cookies folder (or Temporary Internet Files if you’re using
 Windows 2000). If you’re using Netscape or Mozilla, go to Tools
 → Cookie Manager. In
 either case, deleting this cookie is harmless, so give it a try and
 see what happens when you return to the PayPal web site.

Next comes the Shipping Information page; for purchases that do not
 require shipping (e.g., for repaying a friend or for a digital
 download), select the No Shipping Required option and click Continue
 Checkout.
Tip
If PayPal skips the Shipping Information page and instead shows
 you the Billing Information page, then the person you are trying
 to pay does not have a PayPal account. You will be asked to create an
 account before sending the money.

Otherwise, if you’re purchasing a physical product that must be
 shipped, enter your shipping address here. Select Yes at the bottom if
 this address is the same as your credit card billing address, and click
 Continue Checkout when you’re done.
On the Billing Information page, enter your credit card
 information and email address. (If you indicated that your billing and
 shipping addresses are the same on the previous page, your billing
 address will appear here; otherwise, you’ll need to fill it in.) You’ll
 also need to fill in your phone number and security code.
Tip
The security code, typically a word embedded in a pattern,
 is an extra step that PayPal requires to ensure that you are a real
 person and not a computer trying to gain automated access to PayPal.
 In theory, only human beings have the patience to read the code and
 enter it.

You’ll also have another chance (in addition to the aforementioned
 Payment For field) to leave a message to the seller in the Message to Seller field.
When you’re done, click Continue Checkout. On the Review
 Information page, review the details of your payment and click Pay to
 complete the transaction. Assuming your credit card is accepted, you
 have just made a payment!
When you are finished making your payment, one of two things will
 happen:
	If the email address to which you sent the money is registered
 with PayPal, the money will be deposited directly into the email
 owner’s PayPal account.

	If the email address is not registered with PayPal, a
 “You’ve got cash” email will be sent to the owner of
 the email address. The recipient will then need to follow the
 instructions in the email to sign up for a PayPal account and accept
 the money. Note that your email address will be used as the return
 address, suggesting its origin and allowing the recipient to reply
 to the message and easily email you.

Either way, after accepting the money, the recipient will be able
 to use your payment to pay someone else, transfer the money into her
 bank account, or even have a check sent to her from PayPal [Hack
 #20] .
Truth be told, this process isn’t all that easy. In fact, it’s
 more involved than paying with an existing PayPal account. It is,
 however, easier (in the short term, anyway) for those who don’t yet have
 PayPal accounts, and this fact might be enough to attract customers who
 otherwise might be scared off by PayPal.
On the last page of the payment process, you will be invited to
 create a PayPal account using the credit card information you have just
 provided. If you plan on using PayPal to pay again or perhaps to even
 accept payments yourself, go ahead and accept the invitation. There is
 no easier way to create a PayPal account than at this moment. And the
 next time you need to make a payment, the process will be even easier,
 because you won’t have to enter all your payment information again.

Dispute Merchandise Payments

Know your rights! Use PayPal’s Buyer
 Protection policy to get your money back in the event that a seller has
 defrauded you.
Let’s say you just found an unbelievable deal for a plasma screen TV on
 eBay and you pay for it with PayPal. But it’s been two weeks and still
 no TV has been delivered, and the seller doesn’t respond to any of your
 emails.
Or you buy a high-end coffee grinder from eBay, pay with PayPal,
 and it’s shipped to you quickly. But when you plug it in, nothing
 happens. In fact, upon closer inspection, there is nothing inside the
 grinder at all: it’s just a shell with no parts. You get ahold of the
 seller, but he is uncooperative.
Fortunately, PayPal can help resolve merchandise disputes. The key
 is to understand the delicate processes and etiquette involved so that
 your dispute can be handled quickly and painlessly.
Tip
If you’re a seller, see
 [Hack #27] for ways to defend
 yourself against disputes filed against you.

PayPal Buyer Protection

PayPal Buyer Protection uses online dispute resolution to address transaction-related
 disputes between buyers and sellers. For transactions that are
 eligible for PayPal Buyer Protection (look for the blue and white
 shield on the eBay listing), buyers can report a problem with a
 purchase as long as it’s tangible merchandise that has been shipped by
 a courier that uses online package tracking.
Warning
What isn’t covered? Vehicles (e.g., cars and boats),
 intangible goods such as online subscriptions, and anything in
 violation of PayPal’s Acceptable Use Policy are not covered.

There are two kinds of claims you can file as a buyer:
	You did not receive a package.

	You received a package, but it is not as described (which
 includes getting an empty box).

Tip
A bunch of rules and conditions apply; see the “PayPal Buyer
 Protection Fine Print” sidebar for details. Buyers don’t do anything
 to qualify, but there are rules that must be followed to retain
 coverage.

PayPal Buyer Protection Fine Print
	Look for the blue and white shield in the Seller
 Information box. Those are the only listings eligible
 for PayPal Buyer Protection.

	Covers up to $500 USD. If your
 transaction is over $500, you might still get all your money
 back if the seller has it in his PayPal balance. If he doesn’t,
 you’ll get $500 and then PayPal limits the seller’s account
 until he pays you back.

	File within 30 days. PayPal counts
 down to the very second. If you miss the window, they won’t help
 you.

	Limit of one claim per payment. Even
 if there are multiple listings within a single payment, you can
 file only once for the entire order.

	Limit of two refunds per calendar
 year. You can file as many claims as you want, but only
 two listings will be refunded up to $500. The others will fall
 under the standard Buyer Complaint Process where recovery is not
 guaranteed (although PayPal will make a best effort to get your
 money back from the seller when appropriate).

	Pay the seller’s PayPal account under which he
 listed the item. As long as you use any of the
 eBay/PayPal checkout processes, the funds automatically go to
 the right account. If you send money, make sure you send it to
 the PayPal account associated with the listing and not to some
 other account the seller asks you to use.

To file a PayPal Buyer Protection claim, log in to your PaypPal
 account, click the Resolution Center tab, and read the instructions. When
 you’re ready, click File a Claim and fill in the information as
 prompted.
The first thing you’ll be asked for is the PayPal Transaction ID, a unique 17-digit code that
 corresponds to the transaction you’re disputing. To find the code,
 click Get PayPal Transaction ID and then wade through your PayPal
 history until you’ve found the transaction. Simply click the code in
 the Transaction ID column, and PayPal will automatically insert it
 into the claim form.
Tip
You might have a stack of proof you think PayPal should
 review, but hold onto it for now; PayPal might never even ask for
 it. PayPal typically cares only about objective evidence that they
 can verify with a third party.

Each claim opens a case at PayPal and notifies the seller to
 respond. Once you have filed a claim, click the Resolution Center tab
 to check the status of your claim.

Buyer Protection Etiquette

Before you transact with a seller, make sure you read the
 merchandise description carefully for details and disclaimers. If the
 deal seems too good to be true, beware! A brand new iPod for half the
 price you’d normally pay should raise a big red flag. (You can also
 buy a plasma screen TV off the back of a truck in a dim alley.) Great
 deals can be found online, but don’t ignore your common sense.
Always contact the seller before filing a claim; sellers
 appreciate this and might be willing to work things out to avert the
 claim going on their PayPal record. (If your neighbor’s dog is barking
 all night, try talking to your neighbor before calling animal control
 about a rabid dog.) A lot of issues can be resolved with simple
 communication, leaving both the buyer and seller on good terms.
Allow the seller time to ship the merchandise to you. Sellers
 are required to ship within seven days to qualify for the Seller
 Protection Policy, that this does not include the time it might take
 for the courier to deliver the package. International shipments might
 take longer, due to customs and fundamental shipping delays.
 Obviously, filing a claim an hour after you pay makes you appear
 irrational and only angers your seller. An angry seller will be less
 likely to be reasonable and responsive to your claim.
Tip
Buyers must file a claim under PayPal Buyer Protection within
 30 days from the date of the PayPal transaction. Sellers might have
 legitimate reasons for not immediately responding to emails or for
 delaying your shipment, but beware of sellers who repeatedly put off
 your inquiries about when the merchandise will be shipped.

Finally, be patient. Instead of contacting PayPal in multiple
 ways at multiple times, allow the claim process to work. Multiple
 contacts just add clutter to your case and might actually delay
 it.

Can I Get My Money Back?

Filing a claim does not necessarily mean that you’ll get your
 money back. As with any online dispute resolution forum, both parties
 involved in the dispute tell their sides of the story and are asked to
 submit information to substantiate their statements. Most claims are
 resolved without any intervention from PayPal at all; for instance,
 you might cancel your claim after receiving a tracking number from the
 seller.
Does PayPal just take the buyer’s word?

PayPal uses a variety of checks and balances to vet the
 buyer’s claims. This might include requiring you to fax a letter of
 inauthenticity from a third-party dealer on claims for counterfeit
 goods or fax a police report for higher-priced merchandise.
Warning
Buyers who abuse PayPal Buyer Protection are investigated by
 fraud specialists and are dealt with appropriately (which might
 include escalation to law enforcement), so don’t file reports
 frivolously.

What does significantly “not as described” mean?

“Not as described” claims are handled on a
 case-by-case basis because there are millions of items that change
 hands every day, and it’s impossible to generalize about the
 meaning: a scratch on a priceless violin cannot be compared to a
 scratch on a Frisbee©.
If it’s an eBay item, the original eBay listing is the main
 decision factor: what exactly did the seller advertise? Only claims
 for significantly “not as described” merchandise will be granted.
 (If a shirt is light blue instead of dark blue, you’ll probably be
 denied a refund.)
In almost all cases, a buyer has to return (at her own
 expense) the significantly not-as-described merchandise to the
 seller before getting a refund. Buyers do not get to keep both the
 item and the money.

Where does the refund come from?

Although PayPal might find that you’re due a refund, PayPal
 never draws money from a seller’s bank account or credit card
 without the seller’s permission (this would be considered an
 unauthorized transaction and is therefore illegal). PayPal might not
 be perfect (in some people’s opinions), but they’re not stupid. For
 this reason, don’t dawdle when it comes to filing Buyer Protection
 claims.
Tip
PayPal Buyer Protection ensures that buyers are refunded up
 to $500 no matter how much sellers have in their PayPal
 balances.

If a seller’s PayPal balance has insufficient funds to
 complete a refund, the PayPal account balance will become negative
 as soon as the buyer has been refunded and the acouunt might be
 limited. See [Hack #5] for more information on
 what you can do if your account has been limited.

What happens to bad sellers? I want justice!

Even if a buyer’s claim is denied, there is a record of
 every claim on the seller’s account. Sellers with a high claim rate
 quickly trigger investigation by PayPal. Fraudulent sellers have
 been taken to court, convicted, heavily fined, put in jail, and
 blacklisted. Every now and then, you’ll read about these cases in
 the newspaper.
Tip
Unfortunately, due to privacy concerns, PayPal never reveals
 what actions have been taken against a seller (if any). You can,
 however, subsequently check the status of the seller’s PayPal
 account [Hack #7] .

If you made your purchase on eBay, you can also check out
 eBay’s Security Center to read about ways to protect
 yourself. In 2003 or earlier, eBay might have paid you under their
 $200 ($25 processing fee) purchase protection program, but now that
 eBay and PayPal are one company, there is sufficient coordination
 such that you’ll be directed to the right place to file a claim. If
 your purchase was paid for with PayPal, eBay will ask you to work
 with PayPal to get your money back. For other issues, you will find
 various forms in the Security Center to report sellers asking for
 additional money after the listing ends, suspended sellers selling
 under another ID, sellers abusing feedback, and so on. In addition
 to getting your money back from PayPal, you can alert eBay to problem
 sellers.

Chapter 3. Selling with PayPal

Introduction: Hacks #17-27

From accepting occasional donations to receiving payments from
 thousands of customers, PayPal provides the tools and support you need
 to build your business. Rather than having to complete a complicated and
 costly application for a merchant account so that you can accept
 payments, all you have to do is fill out a form at http://www.paypal.com, and PayPal will handle all the
 dirty work. To get started, all you have to do is to set up your PayPal
 account for accepting payments.
PayPal offers three types of accounts. All of them can be used for making and accepting
 payments, but each has its own unique features:
	Personal
	Personal accounts
 [Hack #1] are the most common, because they are what most new
 PayPal members choose by default. Most buyers who use PayPal to
 make payments have a Personal account.
There is no fee for sending or receiving payments with a
 Personal account, but there are limitations. Personal accounts
 cannot receive payments funded by credit cards; since many PayPal buyers like to fund
 their payments with a credit card, a Personal account severely
 limits a seller’s customer base. Also, Personal accounts are
 limited to receiving $1,000 in payments per month.

	Premier
	Premier accounts can accept payments funded with credit
 cards. There is no fee for sending payments with a Premier
 account, but there is a fee for accepting payments, no matter how
 they are funded. Premier accounts also include a host of features
 to help make your business successful and efficient, such as the
 Seller Protection Policy, the PayPal Shopping Cart, Subscriptions,
 Recurring Payments, and a listing in PayPal Shops.

	Business
	Business accounts are nearly identical to Premier accounts,
 but they offer a few added features of interest to businesses. For
 instance, your PayPal account is identified to your customers as
 your business name instead of your personal name (as it is with
 both Personal and Premier accounts). The fee structure for
 Business accounts is the same as for Premier accounts.

Tip
Choosing a Business account over a Premier account can be a good
 way to protect your privacy and reinforce your business presence. If
 you’re an eBay seller, for instance, you can set your PayPal business
 name to be the same as your eBay user ID.

If you’re serious about making it easy for your customers to pay
 you, you will want to hold a Premier or Business account.
Warning
PayPal’s policies allow each person to hold no more than two
 accounts. If you do hold two accounts, one must be Personal and one
 must be Business or Premier. See
 [Hack #23] for reasons you
 might want to hold a separate Personal account.

Upgrade to Business Class

If you have only a Personal account, you can easily upgrade it:
	Log into your PayPal Personal account.

	Click Upgrade Account.

	On the Upgrade Your Account screen, click Upgrade Now.

	On the Choose a Name to Do Business As page, choose either
 Premier or Business. Choosing Business allows you to enter business
 information, such as customer service contact information for your
 business, on the next screen.

When you’re done, your account will immediately be capable of
 accepting payments funded by credit cards .
Warning
Should you change your mind, you can downgrade a Premier or Business account to a Personal account only
 once. If you think you might want to use a Personal account after
 upgrading, it’s best to open a separate account.

Set Your Payment Receiving Preferences

Before using your account, you might want to take a moment to
 review your Payment Receiving Preferences, as shown in Figure 3-1. You can set your PayPal
 account to accept or reject payments based on your business
 needs.
	[image: Using the Payment Receiving Preferences page to choose which types of payments to accept]

Figure 3-1. Using the Payment Receiving Preferences page to choose which
 types of payments to accept

Here’s how to access these settings:
	Log into your PayPal Premier or Business account.

	Click the My Account tab, and then click the Profile
 subtab.

	Click the Payment Receiving Preferences tab under the Selling
 Preferences heading.

Here you can make your choices about whether to accept
 payments:
	From unconfirmed addresses
	 You might choose to accept, block, or decide on a
 case-by-case basis whether to accept payments from members without
 confirmed addresses [Hack #3] . If you intend to accept
 payment only for goods covered by the Seller Protection Policy,
 this is a good option.

	In a foreign currency
	 You can block payments in currencies you do not
 currently hold, automatically convert them to your primary
 currency, or decide on a case-by-case basis. You might not want to
 automatically accept payments in foreign currencies if you might
 want your customers, rather than yourself, to pay the fee for
 converting money from one currency to another.
For example, suppose you are a U.S. account holder and a
 customer wants to pay you in pounds sterling. The newspaper
 reports the current exchange rate as 1.8 USD to 1 GBP, which
 prompts you to sell $18 worth of coffee for ≥£10. You now have a
 balance of £10 in your PayPal account. When you withdraw that
 money from your PayPal account to your U.S. bank account, you need
 to convert the money to dollars. PayPal will do this for you, but
 you won’t get the exchange rate listed in the newspaper. You will
 get a rate, determined by PayPal, that might be considered a
 retail rate; for example, you might see your £10 converted into
 only $17.

Tip
If you choose the Ask Me option for either the “From unconfirmed
 addresses” or “In a foreign currency” settings, you will get an email
 from PayPal each time you receive such a payment, allowing you to
 accept or deny the payment. This allows you to choose on a
 case-by-case basis or simply gives you the time to learn more about
 the buyer before you accept the payment.

	From non-U.S. account holders
	 You might want to avoid the cross-border fee by
 refusing payments from non-U.S. accounts (this fee applies to U.S.
 PayPal accounts only).
The cross-border payment fee, assessed on payments made
 to Business and Premier accounts receiving a payment from someone
 in a different country, is an additional 1% for payments in U.S.
 dollars and .5% for payments in Canadian dollars, euros, pounds
 sterling, and yen. (This cross-border fee is waived for Canadian
 sellers receiving payments from U.S. buyers.)
Another reason to restrict foreign payments is that most
 non-U.S. PayPal members cannot confirm their addresses, which
 means that payments from these customers will not be covered by
 PayPal’s Seller Protection Policy [Hack
 #24] .

	Made from the Pay Anyone subtab of the Send Money tab
	 This option forestalls payments made directly from
 your customers’ PayPal accounts, allowing you to require that all
 payments you receive come through, say, your online shop or
 directly through eBay checkout. This can be useful if, for
 instance, you need special information from the customer to
 accompany each order.
Fill in the Alternate Payment URL if you want customers who
 try to pay through the PayPal interface redirected to your web
 site.

	Funded by a credit card when the sender has a bank
 account
	 You can force customers who have a bank account
 attached to their PayPal account to use it when paying you. This
 discourages customers from paying with credit cards unless it’s
 their only choice. Doing so might reduce the risk of chargebacks
 [Hack
 #25] , a possible problem when accepting
 payments funded by credit cards.

	Funded by an eCheck for Website and Smart Logo payments
	Instant Transfer payments are instant payments funded with a
 bank account; they appear in your PayPal account immediately.
 However, processing payments through the banking system usually
 takes three to four business days, and PayPal can’t be assured of
 receiving the money until the bank transfer is complete. Because
 PayPal is opening itself up to some risk with this policy, PayPal
 allows a buyer to send an Instant Transfer payment only if the
 sender’s account has a backup funding source, such as a valid
 credit card or second bank account.
An eCheck is also an electronic bank transfer, but it
 requires no backup funding source and is therefore not credited
 instantly to your account. Instead, during the waiting period of
 three to four business days, the payment is listed in your PayPal
 account as Pending. The payment will not be credited to your
 PayPal balance (achieving a status of Completed) until the buyer’s
 funds have been transferred to PayPal.

Warning
If you receive an eCheck and the buyer’s bank account lacks
 sufficient funds for the transaction or has been closed, the
 transaction might never be completed and you might never receive those
 funds. For this reason, you should never ship your product until an
 eCheck payment has cleared and its status is listed as
 Completed.

If you would prefer to receive only payments that will be
 completed immediately, you might want to block eChecks. This setting applies to payments sent
 through your web site, such as with Buy Now buttons, as well as
 Smart Logo payments, such as those sent through eBay
 checkout. Customers will still be able to send eChecks through the
 PayPal interface, unless you also check the “Made from the Pay
 Anyone subtab of the Send Money tab” setting.

Identify Yourself to Your Customers

Building a relationship with your customers translates into
 satisfied buyers who return to your site (or eBay auctions) again and
 again. A basic step in building a relationship is establishing your
 identity; your customers need to know who you are and what you are
 about. Here are some ways PayPal can help you establish your
 identity:
	Set the string that appears on credit card
 statements. When a buyer who funded her payment with a credit card opens
 her monthly statement, she will see a payment to PayPal.
 Unfortunately, some consumers have a notoriously short memory and
 might not recall using PayPal and a credit card to make a payment to
 your eCommerce site a month ago. To jog their memories, PayPal
 allows you to choose an 11-character string to be displayed on your
 customers’ credit card statements. To edit this string, go to the
 Payment Receiving Preferences page (shown earlier in
 Figure 3-1) and enter up
 to 11 letters and numbers that will identify your business to your
 buyers.

	Add appropriate email addresses. Your
 PayPal account can have up to eight email addresses listed, all of which can be used to
 receive payments. If you are running two or more separate
 businesses, each with its own identity or branding, you might want
 to add an email address for each one.
If you import both organic coffee and hand-rolled cigars from
 Bolivia and would rather not be known to your coffee customers as a
 cigar outlet (or vice versa), you can set up two email addresses,
 such as sales@bolivian-cigars-4u.biz and
 sales@bolivian-coffee-4u.biz. Each address can be
 used to receive payments to your single PayPal account, but without
 confusing your two brands to your probably mutually exclusive sets
 of customers. See [Hack #8] for more information on
 adding multiple email addresses to your account.

	Customize PayPal’s checkout process. See
 [Hack
 #51] for ways to customize PayPal’s payment pages to match the
 look and feel of your web site.

Tip
If you’re an eBay seller, see Chapter 4 for eBay-specific
 hacks.

Request Money the PayPal Way

Use PayPal’s Request Money feature to ask
 someone for a payment, whether you need to invoice a customer or collect
 money from a friend.
Anyone who goes to lunch with friends regularly knows the
 uncomfortable feeling of not having enough cash to cover your portion of
 the meal. One solution is to offer to pay for everyone with a credit
 card and then ask the others for cash to cover their portions. This
 works out well, because the card holder doesn’t have to borrow money and
 it saves a trip to the bank.
But what if there are two or even three of you with the same cash
 flow problem? Then it becomes tricky. That’s when you can say, “I’ll pay
 with my credit card and the rest of you can PayPal me.” This way, no one
 has to worry about having the right amount of cash. The only problem is
 having to remember to send the money requests, but PayPal makes this
 easy.
Tip
When requesting money from friends, use your Personal PayPal
 account to avoid paying the associated fees. If the payment is
 optional, send the request via email [Hack
 #18] so that the request doesn’t show up in your
 PayPal history.

Use these steps to request money from anyone with an email
 address:
	Log into your PayPal account, and click the Request Money
 tab.

	Enter a subject and a note (both are optional).
Tip
The subject is more important than the note, because it is
 used as the subject for the email your recipient gets. The note,
 however, is less likely to be seen, because it appears buried
 within the email. If you need to include important details, it is
 best to send them in a separate email.

	For the Payment Type, select Goods (other), Service, or
 Quasi-Cash. You can also select eBay Items or Auction Goods
 (non-eBay) if you want to bill someone for an auction.

	Click Continue to view the confirmation page. Double-check the
 email address to make sure you have the correct email
 address.

	Click Request Money.

PayPal generates a payment transaction record in its database and
 sends a custom email (shown in Figure
 3-2) with a link that will enable the recipient to pay the amount
 requested.
	[image: Request Money email]

Figure 3-2. Request Money email

Requesting Money from Multiple People

Sending single money requests to several people can be
 repetitive and time-consuming; not only do you have to enter the email
 address, amount, currency, and payment type for each person, you might
 also need to personalize each request.
To make this process easier, PayPal provides a feature called
 Request Money—Group, which lets you request money from
 multiple people all at once. This is most useful when you are
 requesting money from people for a specific occasion, such as a group
 lunch or group movie tickets, wherein the email subject and note are
 the same. The Request Money—Group feature also lets you specify
 additional details, such as an event name, event date, and a different
 amount, if necessary, for each person on your list.
To use Request Money—Group, follow these steps:
	Begin the standard Request Money procedure, as explained
 earlier in this hack.

	After entering the first email address, enter a comma,
 followed by a second email address. Continue this process until
 you have entered the email address for each of the individuals
 from whom you want to request money.
Tip
If you’ve requested money from any of these people
 previously, their email addresses might already be listed in the
 drop-down listbox. If so, you can save time by selecting the
 applicable recipients from the list (one by one) and inserting
 them into the email address field instead of having to type them
 all in.

	After you have entered all the email addresses, enter the
 amount that each person should pay and select the currency. If
 each recipient is to pay a different amount, don’t worry about
 that here; just type any amount. You’ll have a chance to specify
 individual amounts on the next page.

	Enter the optional email subject and note, and click
 Continue when you’re done.

	The next page, Request Money—Group, differs from the
 standard Request Money confirmation page. Here, you can type an
 Event Name and Event Date, along with the standard Email Subject
 and Note fields.
Tip
Keep in mind that everyone gets the same message, so make
 the details (event name, event date, subject, and note)
 appropriate for everyone.

	In the bottom half of the page, you’ll see the total number
 of recipients of the email, followed by a total amount you will
 receive from the group (provided that everybody pays!). The total
 amount is initially calculated by multiplying the amount from the
 last page by the number of recipient emails, but you can change it
 freely and click Calculate to update the individual amounts.
 Alternatively, you can enter the individual amounts of the money
 requests and then click Calculate Total Cost to update the Total
 Amount field. Either way, make sure that everything adds up before
 you continue.

	Click Continue to view the Request Money—Confirm page. Be sure to confirm that
 each email address and corresponding request amount is correct. If
 you’re sure that the information on the page is correct, press
 Request Money.

Each recipient in your group will receive an email requesting
 payment, complete with all the information you’ve entered here. You
 can confirm that each individual email has been sent by clicking the
 Overview tab.

Sending Custom Requests to Multiple Recipients

While the Request Money—Group feature can make multiple requests
 easier, it allows for only a single note and email subject for all
 recipients. To send a custom note to each person from whom you are
 requesting money, you’ll need to send separate requests. Here’s a way
 to make this process easier:
	Use the Request Money feature as described in the beginning
 of this hack. After sending the first Money Request, you’ll find
 yourself on the Money Request Sent page.

	Click your web browser’s Back button to return to the
 Request Money—Confirm page, as shown in Figure 3-3.
Warning
If you’re using Microsoft’s Internet Explorer, you will
 see a “Warning: Page has Expired” message. Click Refresh, and
 you’ll see a Retry/Cancel dialog box that reads, “This page
 cannot be refreshed without resending the information...”. Click
 Retry to continue.

Warning
If you’re using Netscape/Mozilla, you’ll see an OK/Cancel
 dialog box that reads, “The page you are trying to view contains
 POSTDATA that has expired from cache...”. Click OK to
 continue.

	[image: Returning to the Request Money—Confirm page to send another money request]

Figure 3-3. Returning to the Request Money—Confirm page to send
 another money request

	Click the Edit button to modify the details of the previous
 money request. Simply replace the email address, make any other
 changes, and click the Continue button to send another
 request.

Warning
For security reasons, PayPal has a five-minute timeout, which
 means that if you wait more than five minutes before viewing another
 page at PayPal, you’ll be required to log in again. If this happens
 while you are sending multiple money requests, you’ll lose the data
 from the last money request.

Ask for Money in Your Own Way

Generate your own PayPal payment links for
 use in email or your web site, and get a little more flexibility in how
 to ask people for payments. There are more ways available than using the
 Request Money feature.
Using Request Money [Hack #17] is a useful technique if you’re sending invoices to
 customers for items already sold or services already rendered,
 especially when PayPal is the likely form of payment. (For example, an
 eBay seller who accepts PayPal might use Request Money to send a payment
 request to a customer who has just won an auction.)
However, Request Money isn’t a good idea when you’re uncertain
 whether a payment will take place at all. For example, recipients might
 find it presumptive and uncomfortable if a fundraising volunteer used
 Request Money to send donation requests. Likewise, it would be
 inappropriate to use Request Money to send a customer a product brochure
 or other advertising. Instead, use a more passive payment link.
The simplest way to ask for money is to send a PayPal payment link
 with the payment details inside, but without registering the request at
 the PayPal site. When the recipient sees the link, he can click it and
 be whisked to http://www.paypal.com to make the
 payment, or he can simply delete the email and be rid of it.
Creating a Request URL

Here’s an example of a request URL to pay $10.00 for a baseball jersey, where
 me@mysite.com is your PayPal email address
 and the account into which the payment will be deposited:
http://paypal.com/xclick/business=me@mysite.com&amount=10.00&
item_name=baseball_jersey
Sending a link like this, along with some instructions, is easy
 to do and can be used almost anywhere, such as in an email message
 body:
Here is your last chance to get your own Cubs 2003 pennant race jerseys. On sale
while supplies last:

Cubs 2003 Jersey Size Small: http://paypal.com/xclick/business=me@mysite.com
&amount=10.00&item_name=smalljersey

Cubs 2003 Jersey Size Medium
http://paypal.com/xclick/business=me@mysite.com&amount=10.00
&item_name=mediumjersey

Cubs 2003 Jersey Size Large http://paypal.com/xclick/business=me@mysite.com
&amount=10.00&item_name=largejersey

Choosing the Best Approach

So, between requesting money the PayPal way [Hack
 #17] and requesting money via email, which is the
 best way to request money?
Here are the benefits of using PayPal’s Request Money feature over sending custom payment
 requests:
	PayPal sends a PayPal-branded email to the recipient with
 one tamper-proof PayPal payment link.

	The money request shows up as Unpaid in the recipient’s and
 sender’s accounts until the recipient denies the request, the
 sender cancels the request, or the money request is paid.

	The recipient gets the payment request just by logging into
 PayPal, even if the email gets lost or deleted.

And here are the benefits of creating your own PayPal payment
 links over using the Request Money feature:
	You’re able to send a customized email directly to the
 recipient.

	You can send a single email to multiple recipients as easily
 as to one.

	You have the option to include multiple payment links in a
 single email, including one or more custom payment buttons [Hack
 #38] .

	The request does not show up in the recipient’s account (or
 yours) until it has been paid.

	The recipient might feel less obliged to pay, which is
 useful for advertising or collecting donations.

Probably the most compelling difference between these two
 methods involves the record keeping. Unless you want PayPal to record
 your money requests, you’ll probably want to create your own custom
 payment links. In the end, you might want to use both methods, either
 in unison or individually on a case-by-case
 basis.

Request Money Without an Account

Send a PayPal payment request without having
 to create a PayPal account, and send payment requests on behalf of other
 PayPal users.
Collecting small debts can be tricky, and most of us aren’t good at
 it. It’s easy to sound petty when asking for small amounts of money, so
 many people often don’t. And borrowers often forget to pay. But if the
 subject comes up, it can be an awkward moment as the two individuals try
 to decide what’s worse, being petty or being a deadbeat. Then there’s
 the issue of exact change. If you remind them of the debt and they don’t
 have enough money on hand, it means you have to go through the
 uncomfortable scenario all over again.
No one wants to be a debt collector, so wouldn’t it be great if
 there were a service that would ask for money on your behalf? PayPal’s
 Request Money feature will send an email to someone and politely request
 money on your behalf. Asking for money via email is a great way to get
 paid, because it allows you to make your request without requiring them
 to respond immediately. Offering PayPal as the payment method is even
 better, because others don’t have to pay you in person and can make
 their payment for the exact amount they owe, using whatever means is
 most convenient (PayPal balance, credit card, electronic bank transfer,
 etc.).
However, to use Request Money you must have and log into your
 PayPal account. Or must you? Few people know that you can create your
 own payment request by adding a special link in your own email. And you
 don’t even have to have a PayPal account.
To request money without using the PayPal web site, open any email
 program and start a new message.
Type this URL somewhere in the body of your email:
http://www.paypal.com/xclick/business=
Add the email address to which the money should be sent (e.g.,
 your email address):
http://www.paypal.com/xclick/business=yourname@paypalhacks.com

You’ll probably want to specify an amount by adding the optional
 amount parameter, like this, where
 17.00 is the dollar amount you’d like the
 recipient to send you:
http://www.paypal.com/xclick/business=yourname@paypalhacks.com&amount=17.00

Finally, add text to your email, explaining why you are asking for
 money, and include a note that makes PayPal sound like the greatest
 thing since sliced bread (be careful not to sound like a spammer,
 however):
Hi Joe,
Thought I'd send you a friendly reminder to pay me the $17 you
owe me for that book I picked up for you last week. If you'd like,
you can pay me via PayPal by clicking this link and following the
instructions:
http://www.paypal.com/xclick/business=yourname@aol.com&amount=17.00
When you’re done, send the email!
When the recipient opens your message, he will read your note and
 (hopefully) click the PayPal link. Most people will be thankful that you
 have offered them an easy way to pay, or at the very least, you’ll know
 that they know that you haven’t forgotten.
See Also

	For a taste of what your recipient will see, see [Hack
 #15] .

	To send a payment request from the PayPal site, see [Hack
 #17] .

	See [Hack #38] for another way to
 request money via email.

Get Your Money

Retrieve the money in your PayPal account
 with an electronic bank account transfer or other
 means.
PayPal makes sending money a cinch. But getting your money out of
 PayPal is also pretty easy. You might have money in your PayPal account
 if anyone has sent you cash or a payment for an item you sold on eBay or
 your own web site. Money is also deposited to your account when you
 receive a refund for a payment you made with a PayPal balance, when you
 transfer funds from your bank account into PayPal, or when you receive a
 bonus for referring a new user to PayPal.
Your balance (or balances, if you have multiple currencies) is
 always displayed prominently, under the My Account tab, whenever you log
 into PayPal. Click Withdraw to reveal the range of money retrieval
 options at your disposal.
Withdraw Without Withdrawing

Of course, you can always use the money in your PayPal account
 to fund a payment to someone else, such as to pay for an item you won
 on eBay or to shop at an online store. In fact, your PayPal balance
 will be the default funding source the next time you send
 money.
This is popular among eBay users who do a lot of both buying and
 selling, yet don’t want their checking account or credit card
 statements cluttered with lots of transactions. In fact, some of the
 best-selling items on eBay are seller supplies such as boxes and
 bubble wrap! You can send and receive all the payments you want
 (subject to PayPal limits), instantaneously and without
 clutter.
Warning
Be careful when using PayPal funds to pay for high-risk
 purchases on eBay, because you won’t have the extra purchase
 protection afforded by other means. See [Hack
 #16] for details.

Transfer to a Bank Account

Certainly, a common means of retrieving money from PayPal is to
 withdraw it to a bank account. Once you’ve registered a bank account
 with PayPal, you’ll be able to ask PayPal to transfer your funds to
 the bank account.
First, you’ll need to attach a bank account to your PayPal
 account [Hack #2] , if you haven’t done so
 already.
Once you’ve registered a bank account, you can immediately
 request a withdrawal to it. Click the My Account tab, and then click
 Withdraw to display the Withdraw Funds by Electronic Transfer page, as
 shown in Figure 3-4.
	[image: Withdraw Funds by Electronic Transfer]

Figure 3-4. Withdraw Funds by Electronic Transfer

Your current balance is shown at the center of the page;
 immediately underneath, type the amount you’d like to withdraw. Choose
 the bank account to which the funds should be sent, and click
 Continue
Warning
.
Your account will be subject to a withdrawal limit of $500 per
 month until you do at least two of the following three tasks [Hack
 #2] :
	Verify your PayPal account.

	Enter your Expanded Use Number.

	Confirm your social security number

Withdrawals take a few days to show up in your bank account, a
 delay that can be caused by any of the following:
	PayPal initiates bank transfers several times throughout the
 day. If you miss the last cutoff (about 5:00 p.m. Pacific time),
 your request won’t be processed until the next business
 day.

	The transfer is made over the standard bank Automated
 Clearing House (ACH) network that all U.S. banks use to transfer
 funds between bank accounts. These transfers take two to four
 business days on average and sometimes take longer.

	After transfers are made, they can then take a few hours or
 even a day or two for your bank to post the funds to your account
 and make them available to you. This varies by bank and is usually
 explained in your account details.

PayPal currently can processes bank withdrawals to accounts in
 the following countries: Australia, Austria, Belgium, Canada, Denmark,
 Finland, France, Germany, Hong Kong, Italy, Korea, Mexico, Japan, the
 Netherlands, New Zealand, Norway, Singapore, Spain, Sweden,
 Switzerland, Taiwan, the United Kingdom, and the United States.
Each transfer typically must be performed in the native currency
 of the country in which your PayPal account has been established. This
 means that you won’t be able to make a withdrawal in U.S. dollars to a
 Canadian bank account, even if the bank account is denominated in U.S.
 dollars. Avoid currency conversion as much as possible, since PayPal’s rates are
 not favorable for large amounts.
Warning
Unlike withdrawals to U.S. bank accounts (which are free),
 PayPal assesses a fee on withdrawals to non-U.S. accounts. For a
 complete listing of these fees, see https://www.paypal.com/us/cgi-bin/webscr?cmd=_display-withdrawal-fees.
Another option for sellers outside the U.S. is to use the
 PayPal debit card (provided that you have a U.S.-based PayPal
 account), as described later in this hack.

Auto-Sweep

You can have PayPal transfer funds into your bank account
 automatically every business day using PayPal’s Auto-Sweep feature.
You must contact Customer Service to activate Auto-Sweep.
 Thereafter, an Auto-Sweep option will appear in your Profile. Once
 activated, PayPal tallies your balance once each business day (usually
 early in the morning) and initiates a transfer for the entire amount.
 The transfer happens over the same ACH network as ordinary transfers
 and thus is subject to the same delays and limitations.
Tip
Auto-Sweep is free. Once you have it set up, it continues to
 operate until you log in and switch it off.

Auto-Sweep is a good option if you primarily receive payments
 and do little or no spending through PayPal. Plus, you’ll consistently
 have one funds transfer per day, which might make subsequent
 bookkeeping easier.
PayPal also offers an automatic withdrawal option designed for
 large sellers who need precise reconciliation details. To find out
 more about this option, contact PayPal and ask about Automatic Settlement Withdrawal.

Just Send Me a Check

As a last resort, PayPal can mail U.S.-based sellers a
 paper check through postal mail. You won’t want to do this too often,
 because PayPal charges $1.50 per check. The check will be made payable
 to the name listed on your account (or your business name if you have
 a Business account). Further, PayPal will mail the check only to a
 confirmed mailing address listed on your account, so make sure to
 confirm a shipping address
 [Hack #3] .
PayPal can send checks only within the United States, drawn on a
 U.S. bank, and made out in U.S. dollars. If you are outside the U.S.,
 you should make sure that one of the other withdrawal methods
 discussed in this hack works for you before you start receiving a lot
 of payments. Otherwise, the only thing you’ll be able to do with the
 money is use it to fund PayPal payments to other people.

Get Paid to Use the PayPal Debit Card

The most profitable and flexible way to retrieve your PayPal
 balance is to use the PayPal MasterCard debit card. PayPal pays you up
 to 1.5% cash back (in the form of credits to your account) every time
 you use your card to make a purchase. The money comes from MasterCard
 every time you use your card, and PayPal passes these bonuses on to
 you when you follow certain guidelines.
The card works just like a MasterCard credit card, except that
 instead of getting billed each month for all your charges, the funds
 will come right out of your PayPal account immediately every time you
 make the purchase.
Tip
Since there’s no delay, the PayPal debit card is the fastest
 way to retrieve your PayPal balance. Another option is to use the
 virtual Debit Bar [Hack #12] , which allows you to use
 your PayPal funds at web sites that don’t accept PayPal.

To be eligible for the PayPal debit card, you must meet these
 conditions:
	You need to have a U.S.-based PayPal account, and the
 account needs to be active and in good standing for at least 60
 days.

	You need a Premier or Business account, as described in the
 beginning of this chapter.

	You must attach a credit card that has its monthly statement
 sent to a physical street address (not a P.O. box).

	You must be verified
 [Hack #2] .

To apply for the card, log into PayPal, click the My Account
 tab, and then click Withdraw. Click “Shop with a PayPal debit card”
 and then click Continue. The next page displays your name and
 confirmed address, as listed with the aforementioned credit card.
 Double-check your information here, check the box to indicate that you
 have read and agree to the user agreement, and click Submit when
 you’re done. PayPal then processes your application and sends you a
 physical card in the mail.
Now, to get cash back from PayPal when you make debit card
 purchases, you have to become PayPal Preferred. To qualify, you must be an eBay seller
 and agree to choose only PayPal when specifying the payment methods in
 eBay’s Sell Your Item form. You can still accept checks and money
 orders, and you can even mention other online payment services in your
 end-of-listing email to buyers, but you need to advertise PayPal
 exclusively in your actual eBay listing. To get started, click PayPal
 Preferred in the Enhance Account box to the left of your Account
 Overview page.
The PayPal debit card can also be used like an ATM card to withdraw money at automated cash machines
 that display the Cirrus or MasterCard logo; this covers most ATMs,
 including many outside the U.S. However, you won’t earn any cash back
 when you use the ATM card to make cash withdrawals. And since PayPal
 charges $1.00 for each ATM withdrawal (regardless of the amount), it’s
 best to make cash withdrawals only in emergencies.
Tip
PayPal sets a daily limit on debit card usage. The limit
 typically falls between $1,000 to $3,000 per day for debit purchases
 and $300 to $400 per day for ATM withdrawals. You can view your
 limits by logging into PayPal and selecting View Limits on the
 Overview page.

Some users have found the debit card to be a good way to
 transfer money to other parts of the world. While PayPal issues debit
 cards to U.S.-based PayPal members only, it’s possible for someone
 outside the U.S. to make ATM withdrawals or debit card
 purchases.
If you already have one debit card, you will most likely be
 eligible to receive a second debit card, which can be used by your
 partner, spouse, child, or whomever you allow to access your PayPal
 account funds. All the same cash back credits and charge limits will
 apply. If eligible, PayPal will provide a Request a Second Debit Card
 link on your account Overview page in the What’s New section.

Refund a Payment

Return payments to your customers without
 doubling up PayPal’s fees.
No one likes to have to return a payment; the fact that
 keeping money is better for business isn’t rocket science. Sometimes,
 however, refunds are unavoidable: a buyer might need to cancel an order,
 a seller can run low on inventory, or a purchased item might not work
 out as planned. Fortunately, PayPal makes refunding payments
 easy.
PayPal also allows you to make partial refunds. This can be handy
 when a dispute with your buyer is just about the item’s price. If a
 buyer believes the condition of a used item is not as good as expected,
 you might offer to refund 20% of the purchase price as compensation. Your
 buyer will have the option to accept or decline your refund
 offer.
To refund a payment:
	Log in to your PayPal account and click History.

	Scroll through or search your account history and find the
 payment you need to refund, and click the corresponding Details
 link.

	Near the bottom of the Transaction Details page, click the
 Refund Payment link.

	On the Refund Offer page, fill in the amount of the refund you
 want to make, or leave the default amount to make a full refund.
 Fill in a note to your buyer if necessary, and then click
 Submit.

	On the Confirm Refund Offer page, check the details of the
 transaction and click Process Refund when you’re done.

The payment will then show up in your account history with the
 status Refunded.
Why Not Just Make Another Payment?
PayPal lets you make and receive payments, so you might wonder
 why you would want to bother issuing a refund when you can simply make
 another payment back to the person who paid you originally.
First, if you refund a payment, the person who originally paid
 you will see the status of that payment as Refunded rather than
 Completed. This might prevent the confusion that otherwise might arise
 if the buyer has to reconcile the original sent
 payment with a separate received payment.
Second, when you refund a payment, you’ll get all the PayPal
 seller fees back. If you refund a $10 payment, for which
 59 cents in fees were incurred, your customer will get a refund of $10
 and you’ll get a credit to your account for 59 cents. If you were to
 send a separate payment for that same $10, PayPal would charge each of
 you the 59 cents in fees.

When working with refunds, keep this in mind:
	You may offer a refund only for a limited time, usually 60
 days. If you need to make a refund after that time, you will need to
 initiate a new PayPal payment to your buyer.

	If you offer the buyer a partial refund, she has 10 days to
 decline it if she wishes. (Full refunds are automatically
 processed.) As with most eCommerce, good communication with your
 customer can be especially helpful here; discuss the partial refund
 with your buyer to make sure she will be satisfied and will not
 decline it.

	Be sure you know where the funds are coming from; the Refund
 Offer page provides information about this. If the money will be
 transferred from your bank account, be sure there are sufficient
 funds there to cover the refund.

Quick-Link to Transaction Details

View the details of past purchases and sales
 without having to wade through the PayPal history
 listings.
If you buy and sell a lot with PayPal, you undoubtedly often need
 to look up past transactions in order to get the payment status,
 shipping address, customer notes, and other details, as well as issue
 refunds. Unfortunately, getting to the details of past transactions can
 be laborious, requiring that you click through three or four screens
 before you can search for a payment by transaction ID.
The good news is that there’s a better way. PayPal provides a
 special URL that takes you directly to a payment’s details page. You might have seen links like this in
 confirmation emails, where xxxxxxxxxxxxx is
 the transaction ID:
https://www.paypal.com/vst/id=xxxxxxxxxxxxx

For example:
https://www.paypal.com/vst/id=4WC420852U475861R
Click the link in the email or type it into your browser’s address
 bar, and you’ll be sent straight to the payment details for the
 specified transaction ID (after logging in, if necessary).
Warning
Whenever you click on a link that takes you to a PayPal page,
 you should make sure that https://www.paypal.com/ is then displayed in your web
 browser’s address box (the s in
 https is especially important). Otherwise, you
 might unwittingly try to log into a spoof
 site—one that looks like PayPal, but exists only to divert your login
 information to an unauthroized third party.

Where to Get Transaction IDs

Since transaction IDs are the definitive way to reference a
 payment on PayPal, you’ll see them in a lot of places at
 PayPal:
	The Payment Details page, shown immediately after making a
 payment or in both PayPal History logs (for both buyers and
 sellers)

	Downloaded logs obtained from the PayPal History page

	Payment confirmation emails, such as “Receipt for your
 Payment” emails (for buyers) and “Notification of an Instant
 Payment Received” emails for eBay sellers

	Instant Payment Notifications (IPNs) [Hack
 #65]

	Payment Data Transfers (PDTs) [Hack
 #85]

Tip
If you’re developing with the PayPal Web Services API, see
 Chapter 8 for several ways to
 obtain and use PayPal transaction IDs.

This technique works for both the sender and the recipient who
 are looking up the payment details by either transaction ID. It’s also
 common for the other person involved in a payment to reference the
 transaction ID when emailing or calling you to inquire about an
 order.
One thing to watch out for is that PayPal assigns a different
 transaction ID to the sender and recipient of a transaction. This can
 sometimes be confusing when, for example, you look up a transaction
 using an ID given to you by the payment sender and you see a different
 transaction ID on the Payment Details page.
You will, of course, not be able to see the details for a
 payment that you weren’t involved in!

Making a Web Interface

Once you have the transaction ID or a list of IDs, you can
 write a script to output a list of links that you (or your customers)
 can use to easily get to the transaction details page for each
 payment:
<html>
<body>
4WC420852U475861R
93H8WR41HAV710IU9
</body>
</html>
Or, create a simple web-based tool that includes an ID field and
 a Submit button, allowing you to look up a single transaction without
 having to remember the aforementioned URL:
<html><body>
<form action="https://www.paypal.com/cgi-bin/webscr">
<input type="hidden" name="cmd" value="_vst">
Transaction ID: <input type="text" name="id" value="">
<input type="submit" value="Get Details">
</form>
</body></html>
See [Hack #52] for a way to obtain the
 transaction ID programmatically (necessary to create a web interface
 like this one). Of course, the slickest way to do it is with the PayPal Web Services
 API [Hack
 #94] .

Lower Your Seller Fees

Here are five ways to lower the commissions
 PayPal charges you when you receive money.
Many sellers using PayPal don’t sell enough to really care
 about an extra 0.7% transaction fee. For them, the convenience of PayPal
 is enough. With no startup fees, no monthly fees, and no long-term
 commitment, PayPal is a no-brainer. However, when you start doing $5,000
 per month in sales, those fees start to add up. Many merchants don’t
 realize there are extra steps they can take to reduce or offset their
 transaction fees.
Apply for the Merchant Rate

The standard rate (known as the
 discount rate by credit card merchants) for
 accepting a payment with a PayPal Premier or Business account is 2.9%
 plus $0.30 per transaction. (This rate applies to transactions between
 U.S. accounts; fees vary for oversees or international transactions.)
 You can reduce your rate to 2.5%, 2.2%, or even 1.9% (plus US$0.30 per
 transaction) by qualifying for the PayPal merchant
 rate. Table 3-1
 illustrates this new tiered fee structure.
Table 3-1. Tiered structure for the PayPal merchant rate (in
 USD)
	Tier
	Rate

	$0.00-$3,000.00
	2.9% + $0.30

	$3,000.01-$10,000.00
	2.5% + $0.30

	$10,000.01-$100,000.00
	2.2% + $0.30

	>$100,000.00
	1.9% + $0.30

Tip
The rates in Table
 3-1 apply to payments from U.S. buyers. Payments from
 non-U.S. buyers are assessed an additional 1%.

To qualify for the lower rates, you must have a Premier or Business account in good standing that has
 been open for at least 90 days and you must have received at least
 $3,000 in payments in a single calendar month. (Note that these
 criteria apply to U.S. account holders only; international accounts
 might need to meet other requirements.)
To apply, follow these steps:
	Log in to your PayPal Premier or Business account (if you’re
 still using a Personal Account, refer to the introduction to this
 chapter for upgrade details).

	Click Fees at the bottom of the page.

	On the Receive Funds row, click the rate link in the
 Premier/Business Account column (for U.S. sellers, this link reads
 “1.9% + $0.30 USD to 2.9% + $0.30 USD”). Click Merchant Rate at
 the top of the next page, and then click Apply Now on the page
 that appears.

	Fill out the Merchant Rate Application, as shown in Figure 3-5.
	[image: Using the Merchant Rate Application form to lower your discount rate]

Figure 3-5. Using the Merchant Rate Application form to lower your
 discount rate

	Click Submit when you’re done.

The confirmation screen will tell you if your request was
 accepted, denied, or queued for review. If all goes well, the new,
 lower rate should go into effect immediately!
Tip
Receiving fees are determined at the beginning of every month,
 based on your receiving volume in the previous calendar month. Once
 you complete the aforementioned one-time merchant rate application,
 PayPal automatically assigns the appropriate rate for each
 month.

Ask for eChecks

There is a maximum fee of US$5.00 for each eCheck payment you receive. To put this in perspective,
 the standard fee to accept a US$1,000 payment funded by a credit card
 is $29.30, nearly six times the measly $5 fee for a $1,000 eCheck. If
 you use eChecks for all your large payments, you will enjoy
 significant savings. See the beginning of this chapter for more
 information on eChecks.

Receive Money into Your Personal Account

If you hold both a Personal and a Premier or Business account, you can ask
 any customers who prefer to make payments funded by their bank account
 or PayPal balance to send payments to your Personal PayPal account.
 Receiving a payment into your Personal account incurs no fee, but you
 won’t be able to accept payments funded by credit cards.
Personal accounts are also limited to receiving US$1,000 (or the
 equivalent in other currencies) per month. This limit is reset each
 month on the anniversary of the account’s opening. To view your
 Personal account’s limit:
	Log into your PayPal account.

	Click the My Account tab, and then click the Overview
 subtab.

	Click View Limits.

Enroll in the PayPal Money Market

The PayPal Money Market Fund allows you to earn returns on
 your PayPal balance by turning your PayPal account into an investment
 from which you can earn dividends. To enroll in the PayPal Money
 Market, click the Money Market link in the Enhance Account section of
 your account overview page and follow the directions.
At the time of this writing, the current yield is 0.99%. There
 is no limit on withdrawals and no minimum investment.
Warning
Be advised that rates of return fluctuate and enrolling in any
 money market account carries risk. The money market account is not
 insured and might lose value. Read the prospectus carefully (it is
 available on the PayPal site) and consider consulting a qualified
 financial advisor.

Use the PayPal ATM/Debit Card

PayPal pays you a 1.5% cash-back bonus for every purchase made with
 the PayPal ATM/debit card when you use it as a MasterCard. The bonus
 does not apply to ATM withdrawals or point-of-sale purchases when you
 use your ATM card PIN. To take advantage of this offer, you need to
 have a Business or Premier account, add a credit card, and add (and
 confirm) a bank account [Hack #2] .
Tip
If you use your PayPal debit card to pay your eBay seller
 fees, you’ll effectively lower your eBay fees by 1.5%!

Let Your Customers Pay

Naturally, if your customers pay your seller fees for you [Hack
 #14] , you won’t pay any fees at all. Among other
 things, a buyer can use PayPal’s Mass Pay feature to not only cover
 the seller’s fees, but to do so at only 2% (as opposed to the 2.9%
 plus $.30
 normally
 charged).

Protect Yourself from Buyer Fraud

Use PayPal’s Seller Protection Policy to
 ensure that you don’t lose money to fraudulent
 payments.
Whether you use PayPal as a buyer or a seller, you need to be on the
 lookout for fraud. If you don’t take the proper steps to protect
 yourself, PayPal might need to retract a payment from your account, even
 after you’ve filled the customer’s order.
For instance, a credit card holder can dispute any credit card
 payment, even after you’ve received the payment and delivered the goods
 or service the customer agreed to buy. This is the customer’s right and
 it can be an effective means of buyer protection, but dishonest buyers
 can also abuse this service to intimidate or cheat honest
 sellers.
Furthermore, a person using a PayPal account to pay you might have
 hijacked the account from its rightful owner, or someone
 might have funded a PayPal payment with a stolen credit card. Either
 way, the rightful owner will, understandably, dispute any such charges
 once she has discovered them.
PayPal’s Seller Protection Policy can mitigate the risk, often to
 the point of allowing you to keep disputed funds, but the best way to
 avoid fraud is to spot it going in. Here are some ways to minimize your
 risk as a seller.
Qualifying for Seller Protection

If you are a U.S. or Canadian seller dealing with U.S. buyers or
 a UK seller transacting with UK or U.S. buyers, you might qualify for
 PayPal’s Seller Protection Policy, which covers up to $5,000 per year
 of reversals. To qualify, you must do all of the following:
	Ship a tangible product. (See [Hack
 #26] for a cute workaround.)

	Ship only to a confirmed shipping address [Hack
 #3] .

	Ship promptly and use some form of package tracking.

	Respond quickly to any complaints, either from the customer
 or from PayPal.

	Meet additional requirements discussed at https://www.paypal.com/sellerprotection and http://www.paypal.com/cgi-bin/webscr?cmd=p/gen/ua/policy_spp-outside.

If you follow these guidelines diligently, you might be able to
 avoid losses to buyer fraud completely.

Checking the Buyer’s User Status

Use the information resources that PayPal provides to learn
 about your prospective buyer. The Seller Reputation Number [Hack
 #7] gives you a feel for how much selling your
 buyer has been doing with this PayPal account. Because many PayPal
 users do only selling or only buying with any given PayPal account, a
 buyer’s reputation as a seller might not be the most useful
 information.
As a seller, you will be more interested in your customer’s
 Buyer Reputation Number. However, this score is not
 readily available; PayPal makes this information available to you only
 when you are asked to accept or deny a payment sent without a
 confirmed address.
Tip
See the beginning of this chapter for more information on the
 settings that affect whether you’re asked to accept or deny
 payments.

Possibly the best indicator of a buyer’s reputability is his
 accounts Status. Holders of verified [Hack
 #2] accounts have shown PayPal that they are in
 fact in control of the email addresses on file with PayPal and have
 legitimate bank accounts. PayPal trusts these members more than
 unverified account holders, so it makes sense for you to trust them as
 well.
Your prospective buyer’s account creation date tells you how
 long the buyer has been a PayPal member. Buyers using relatively new
 PayPal accounts or accounts with low reputation numbers have a short
 track record as PayPal members, but this doesn’t mean they can’t be
 trusted. However, you might want to avoid doing business with buyers
 until they become better established. A long-standing account is less
 likely to have been set up with the commission of fraud in mind. On
 the other hand, accounts of any age can, and sometimes are, hijacked
 by phishers and crackers.

Conducting a Little Reconnaissance

Here are some tips to help you decide whether to do business
 with any particular person:
	Consider the buyer’s reputation. In
 addition to the user status information provided by
 PayPal, do you have other sources you can use to gather
 information? If you’re conducting business via eBay or another
 auction site, check your buyer’s feedback rating or community
 reputation. Also, look for a history of fraud or payment disputes
 in the recent comments from other sellers.
Tip
If you’re at all suspicious, take it one step further and
 look for any recent purchasing activity that appears out of the
 ordinary (such as numerous high-value items). At the eBay site,
 go to Search→By
 Bidder, type the customer’s user ID, indicate that you want to
 include completed items, and click Search.

	Contact the buyer. For any item, especially one that is expensive and
 easily resold, it makes sense to contact the buyer directly. Email
 to confirm purchase details or on the premise of confirming that
 the product will really suit the buyer’s needs. Be particularly
 wary if the buyer takes little interest in your questions. Some
 social engineering and a nose for fraud can save major
 headaches.

	Use common sense. If you sell only
 Beanie Babies, ball bearings, and body oil on your eCommerce web
 site and a single buyer suddenly orders ten boxes, bushels, and
 bottles of each, ask a few questions before shipping.

In the end, you will probably choose to do business with most of
 the customers you encounter. But a little common sense and awareness
 can protect you from most types of fraud.

Protect Yourself from Chargebacks

Reduce or eliminate the risk of having
 disputed payments reversed from your PayPal account.
A chargeback is the result of a credit card charge being rejected by the credit card holder,
 typically in cases where the credit card was stolen and used
 fraudulently. But such charges can also be disputed by customers who
 feel that they’ve been defrauded by sellers.
If you accept credit cards, in person or through PayPal, you might
 encounter a chargeback from a buyer, just as a seller accepting personal
 checks might receive an occasional bad check. Chargebacks are an
 unfortunate but realistic cost of doing business, so most sellers factor
 this cost into their business plans.
When a customer initiates a chargeback with his or her credit
 card company, PayPal may deduct the amount of the transaction from your
 account if you’re not covered under PayPal’s Seller Protection Policy
 [Hack
 #24] . All sellers who accept credit card payments
 run this risk and might be liable for chargebacks.
Warning
Even if you have a low-volume online business, you cannot avoid
 the risk of chargebacks. According to a study by the Gartner Group, approximately 1.1% of online transactions
 are estimated to result in fraudulent buyer chargebacks. That’s like
 paying an extra 1.1% fee for each and every transaction! Of course,
 chargeback risk varies a good deal depending on the type of goods you
 sell, but nearly everyone who accepts credit card payments faces some
 chargeback risk.

Of course, none of this applies to non-credit card transactions,
 such as payments funded by a bank account transfer or PayPal
 balance.
Protecting Yourself

Whereas most merchant account providers and payment companies
 simply pass all of the chargeback risks and associated fees and
 liabilities on to sellers, PayPal is different. As long as you follow
 PayPal’s guidelines (the Seller Protection Policy outlines these
 guidelines), PayPal helps protect you against fraudulent
 chargebacks.
Be sure to familiarize yourself with this policy; click the User
 Agreement link on the bottom of any page on the PayPal web site, and
 then click Seller Protection Policy. When you follow the policy’s
 guidelines strictly, PayPal protects you from chargeback liability on
 all qualified transactions. In addition, PayPal takes chargeback
 claims seriously and, when appropriate, investigates and vigorously
 contests chargebacks on your behalf.
Warning
PayPal is able to guarantee protection against reversal of
 funds only if a chargeback occurs for nonreceipt of the product or
 in the event of an unauthorized charge (resulting from a stolen
 credit card or account takeover). Even then, you’re entitled to this
 protection only if you have followed the terms of the Seller
 Protection Policy.

Here are some best practices you should follow to prevent
 chargebacks from occurring:
	Make sure the item you’re selling is described (on your
 site or in your eBay listing) in as much detail and as accurately
 as possible. You should not assume that simply providing a picture
 in your listing will sufficiently answer any quality questions
 that your customers might have. Avoid merely stating that the
 merchandise is being sold “as-is.” This won’t protect you as much
 as you might expect. A detailed item description will help your
 defense in the event that a buyer claims that your item was not as
 described.

	Get to know your customers. Although selling in an online environment
 doesn’t make it easy to build a face-to-face rapport, it doesn’t
 have to keep you from learning about your customers. While the
 volume of your business might prevent you from contacting all your
 buyers, you should make every effort to respond to any customer
 inquiries regarding the transaction or the purchased items, both
 before and after the transaction. Plus, this practice will help
 get you more repeat customers.

	Keep any and all records and correspondence with your
 customers. This allows you to provide further evidence that you
 adequately described the item to the customer or responded to the
 customer’s inquiries.

	Take some time to review the online resources listed at the
 PayPal web site. Click Security Center at the bottom of any page
 for further help. For more tips on how to avoid fraudulent
 transactions, see [Hack #24] .

Shipping Products

When a customer disputes a transaction (e.g., files a
 chargeback) with her credit card company for an unauthorized charge or
 undelivered item, the first item of information the credit card
 company will expect from PayPal (and you) when disputing the
 chargeback is proof that the customer received the merchandise.
Providing verifiable proof that the customer received the item
 in question does not mean simply being able to prove that you shipped
 the merchandise. You must also prove that the package was delivered
 and, if applicable, signed for. To that end, you should always use a
 shipping service that provides some type of online package tracking.
Tip
To further protect yourself, make a habit of requiring a
 signature for delivery, a feature required for items
 worth US$250 (or the equivalent in the currency of the transaction)
 or more. Checking the box on the shipping form that indicates that a
 signature must be obtained overrides any waiver of signature that
 the customer might have on file with that shipping company.

Use the PayPal Shipping Tool by clicking the Ship button in your
 transaction history, as shown in Figure 3-6.
	[image: Using the PayPal Shipping Tool]

Figure 3-6. Using the PayPal Shipping Tool

This way, your customer’s shipping information is automatically
 inserted into the shipping label (saving you time), and the resulting
 shipment tracking information is automatically stored along with the
 transaction details (streamlining any subsequent chargeback defense),
 as shown in Figure
 3-7.
	[image: Tracking any package shipped with the PayPal Shipping Tool]

Figure 3-7. Tracking any package shipped with the PayPal Shipping
 Tool

If you don’t use the PayPal Shipping Tool, you can still provide
 PayPal (and your customers) with your tracking information. Just open
 the transaction in your account history and click the Add button next
 to Shipment Tracking Information. Among other things, this feature
 will also eliminate a large portion of customer complaints and
 possible disputes filed prematurely by impatient or otherwise confused
 customers for nondelivery of items.
For eBay auctions, use PayPal’s Post Sale Manager (located under the Auction Tools tab
 of your account) to help manage shipments, as shown in Figure 3-8.
	[image: Using PayPal’s Post-Sale Manager to manage shipments for eBay sales]

Figure 3-8. Using PayPal’s Post-Sale Manager to manage shipments for eBay
 sales

Responding When You Receive a Chargeback

Unfortunately, no matter what steps you take during the transaction
 process, you still might receive a chargeback. Whether it is due to
 nonreceipt of an item, an item not as described, or a transaction that
 was reported as unauthorized, it can happen to you.
The first step when you receive a chargeback notification is
 to make sure that you respond with accurate information and do so
 within the requested timeframe. This allows PayPal to effectively
 dispute the chargeback case on your behalf. Keeping good records of
 transactions and shipment of goods and communications, as described
 earlier in this hack, will make this an easy task.
Warning
Keep in mind that the rules governing a chargeback resolution
 are not the same as policies for PayPal’s buyer-protection process.
 Credit card companies provide their customers with different
 timeframes in which to dispute transactions (and thus initiate
 chargebacks), and each card association (Visa, MasterCard, American
 Express, Discover, etc.) has different chargeback processing
 rules.

When a chargeback is first received, PayPal places a temporary
 hold on the associated funds in your account until PayPal is able to
 investigate the transaction and determine whether you’re covered under
 the Seller Protection Policy. This does not mean your PayPal account
 will be debited; rather, it means the funds are, in essence, frozen and
 that a reversal is pending, which means that you
 cannot withdraw or otherwise use those funds. Upon review of your case
 (which can take up to 30 days), either of the following can
 happen:
	If PayPal determines that you are protected under the
 Seller Protection Policy, the temporary hold of
 funds will be cancelled (the funds will be
 unfrozen) and released back to your PayPal
 account. You will not be held liable for the chargeback
 case.

	If it turns out that you (and the transaction) are not
 protected under the Seller Protection Policy, PayPal might still
 dispute the chargeback on your behalf. (Obviously, providing as
 much information to help PayPal support the dispute on your behalf
 is crucial.) If this is the case, PayPal will, unfortunately, have
 to recover these funds from you while the chargeback is being
 disputed with the buyer’s credit card company. If PayPal
 ultimately wins the chargeback dispute, the credit card company
 will reimburse PayPal for the chargeback and PayPal will reverse
 the recovered funds back to your account. This process may take up
 to 75 days, depending on the card type in the chargeback
 dispute.

As soon as PayPal notifies you of a chargeback, open the
 Transaction Disputes page by logging into your PayPal
 account and clicking the Resolution Center tab (or by going to https://www.paypal.com/SRVCTR). Next, select Open
 Disputes to go to the transaction in question, and click the Resolve
 button in the action column. Read the status details of the complaint
 and click the Resolve Chargeback Now button. At this point, you’ll
 have three options:
	Provide valid tracking information in order to dispute the
 chargeback.

	Provide valid proof of a refund (either within or outside of
 PayPal) in order to dispute the chargeback.

	Accept liability for the chargeback.

Click Continue and follow the instructions provided.

Providing Additional Information About Your Case

PayPal welcomes any additional information that might aid the
 dispute process; the information that might be helpful depends on the
 type of chargeback you’re fighting:
	Nonreceipt of merchandise
	The information that PayPal needs to successfully
 dispute this type of chargeback is proof of delivery to the
 buyer’s confirmed address. In most cases, this proof will be in
 the form of a tracking number that can be entered into your
 courier’s web site. (You did use a courier with online tracking,
 right?) Many larger couriers also provide a copy of the
 recipient’s signature online, evidence that can you use to prove
 that your customer actually received the product in
 question.

	Unauthorized credit card transaction
	If you can provide proof of delivery of the item to the
 customer’s confirmed address [Hack
 #3] , plus any records of correspondence,
 PayPal will have a higher chance of successfully disputing the
 chargeback. In short, do your best to prove that the transaction
 was indeed legitimate and not “unauthorized” as the customer
 might be contending.

	Merchandise not as described (quality of merchandise
 disputes)
	PayPal needs any description or details of the
 merchandise in question. If you sent a replacement item for the
 original item being disputed, you should provide tracking for
 that replacement item. If you already provided a refund for the disputed transaction, you should
 provide proof of the refund. If the original merchandise has
 been returned to you from the customer, provide the details
 regarding that return.

	Duplicate processing
	If the customer has indicated that he was charged
 twice for the same transaction, you’ll need to provide a
 separate tracking number for each transaction or item, such that
 you can correlate each charge with a distinct, tangible product
 that you’ve shipped. Or, if the second PayPal transaction ID
 number is indeed a duplicate transaction, you’ll need to provide
 proof that you have refunded the duplicate transaction.

If, at any time, you discover additional information pertinent
 to an open case, you should send it through PayPal’s secure web
 server. Simply log in to the PayPal web site, click Contact Us at the
 bottom of any PayPal page, and then click Contact Customer Service.
 When completing the Ask Your Question web form, make sure to include
 the chargeback case ID number (e.g., PP -xxx-xxx-xxx) in the
 subject line of the Transaction Disputes page. This allows PayPal’s
 Chargeback Department to quickly associate the response
 with the appropriate case. If you are unable to provide all of the
 information you have through the PayPal web site, you can send an
 email to chargeback-response@paypal.com. Again, be sure
 to include the PayPal chargeback case ID in the subject line.
Timing and Chargebacks
Because chargebacks usually happen in response to a claim or
 discovery that occurs well after the initial transaction, it can be
 weeks or even months before you learn that a chargeback has been
 initiated by the issuer (on the buyer’s behalf) and that the
 transaction is going to be reversed.
Although there might be a delay before a chargeback is
 initiated, you (and PayPal) typically do not have the same luxury.
 PayPal is limited by the timeframe provided to PayPal by the buyer’s
 credit card company, so they attempt to work toward the quickest
 possible resolution of the issue.
In general, upon initial notification of a chargeback case,
 you should provide all supporting documentation to assist in the
 chargeback dispute within three business days. Under certain
 circumstances during the processing of chargeback disputes, PayPal
 might ask for additional information from you to support the
 dispute. Any additional information should be supplied within the
 same timeframe of three business days.

When sending emails to PayPal, keep in mind that you will not be
 able to include attachments. However, if you need to provide
 additional documentation that cannot be described easily in an email,
 you can fax additional chargeback dispute information to PayPal’s
 Chargeback Department at (402) 537-5755. Of course, you should always
 include your PayPal Case ID as a
 reference.

Avoid Chargebacks on Digital Goods

Make purchases of digital goods eligible for
 PayPal’s Seller Protection by mailing physical goods.
 PayPal’s Seller Protection Policy [Hack
 #25] limits your exposure to fraud, provided that you
 follow its guidelines to the letter. The problem is that the policy
 applies “only to the sale of physical goods, and not to any services,
 intangible goods or sales or licenses of digital content.” So what’s a
 digital-goods merchant to do?
Shipping a Physical Version

The solution is to sell physical goods. Ship media, such as a
 CD-ROM, containing your software or e-book. You can still grant your
 customers immediate download privileges for the material they will be
 receiving on CD or floppy, but ship a physical product as well. Be
 sure to offer tracking of the package.

Thinking Outside the Disk

If you want to avoid the cost of a disk, mailer, and added
 postage every time you ship a CD, use paper instead. Encode your
 digital item with base64,[1] and then print it with a small font on both sides of
 plain letter-sized paper. Half a megabyte of data can easily be stored
 on 15 pages, which should weigh no more than three ounces.
Your customer can then scan the sheets with a scanner, convert
 them back into digital data with OCR software, and then decode the
 base64 code to recreate the original product. Obviously, it’s unlikely
 that any customer will bother doing this, but since it’s technically
 possible, your shipment will qualify for the Seller Protection
 Policy.
Warning
Be careful what you end up shipping. For instance, the User
 Agreement specifically states that “this protection applies only to
 the sale of physical goods, and not to any services, intangible
 goods or sales or licenses of digital content.” This means that
 sending only a paper license or certificate of
 ownership would be insufficient for eligibility.

Handle Merchandise Disputes Effectively

Here’s what to do when a buyer disputes a
 payment sent to you.
If you’re a seller and a buyer has filed a claim against you
 [Hack
 #16] or initiated a chargeback [Hack
 #25] , you should respond online through PayPal’s
 Resolution Center within 10 days. If you don’t, you’ll forfeit your
 defense and PayPal will refund the buyer.
First Response

When you respond, you’ll be able to choose how to resolve the
 dispute from a menu of options, including disagreeing with the buyer’s
 claim.
Most claims involve nonreceipt of merchandise. Nervous buyers sometimes file
 claims before sellers have had a chance to ship merchandise. The most
 effective way to respond to such a claim is to promptly provide an
 online tracking number for your shipment. This allows the customer
 (and PayPal) to confirm that the merchandise was not only shipped, but
 also delivered to an address attached to the buyer’s PayPal
 account.
Warning
Never ship to a gift address, a friend’s address, or any
 address in a country different than the one listed on the customer’s
 PayPal account.

Without verifiable proof (e.g., a tracking number) that your
 package was shipped, you’ll lose the dispute and forfeit the
 payment.

Preventive Maintenance

Overcommunicate with your buyers, especially newbies. Email
 them when you expect to ship, and email them again when you actually
 do ship (include a tracking number whenever possible). This allows
 your customer to check delivery status, which helps to reduce buyer
 anxiety about transacting with a stranger and thus reduces the
 likelihood that a dispute will ever be filed.
Also, be compulsive when writing your product or eBay listing
 descriptions. (Good descriptions often garner more buyer interest
 anyway.) If the item is used, say so, and exhaustively describe all
 wear and tear. Include actual photos you took yourself (e.g., a
 picture of the actual iPod you’re selling rather than one you grabbed
 from Apple’s web site).
Finally, to protect yourself against fraudulent chargebacks,
 ship to your customer’s address as listed on the Transaction Details
 page, and ship only if you see that the transaction is eligible for
 the Seller Protection Policy
 [Hack #25] .
Tip
Unfortunately, there is no way to automatically refuse
 payments that are ineligible for the Seller Protection Policy. Keep
 in mind that such transactions are not necessarily bad or risky. For
 instance, the buyer might simply live in a country in which some of
 the eligibility requirements are not available.

As a seller, you can pick and choose with whom you do business.
 If someone makes a payment you subsequently decide is not worth the
 risk, you can always issue a refund [Hack
 #21] and make other arrangements.

[1] Go to http://www.fourmilab.ch/webtools/base64/ for one of
 many publicly available base64 encoder/decoder utilities.

Chapter 4. Payment Buttons

Introduction: Hacks #28-44

The most common question of PayPal’s merchant support staff might
 be, “How do I start using PayPal as a seller?”
For a buyer, PayPal is straightforward: sign up for an account and
 start using it to pay for goods and services on the Internet. But for
 merchants, PayPal offers so many options to fit each seller’s needs that
 it can seem overwhelming when you first endeavor to sell online. Unless
 you plan to sell only on eBay (in which case you should see eBay Hacks by David A. Karp), here
 is the basic information you need to get started.
PayPal is an online payment processor; it allows buyers and
 sellers to make monetary transactions easily and securely. PayPal is
 not, however, a credit card gateway; to accept payments with PayPal you
 do not have to pass a rigorous credit check, install any equipment or
 special software, make agreements with a bank, or send in signed
 documents. You also do not need to gather credit card numbers from your
 buyers or subsequently safeguard such sensitive financial
 information.
Buyers using PayPal can either open PayPal accounts (which is
 recommended, especially if you use PayPal often) or just enter their
 credit cards for each purchase. Sellers who accept PayPal must have
 PayPal accounts, and merchants who are doing serious business with
 PayPal will want to have a Business account, which allows acceptance of
 payments funded by credit cards. There is no fee for opening or holding
 a Business account—only a per-transaction fee of 2.9% plus $0.30 on each
 payment received.
Non-U.S. account holders, and those doing business with non-U.S.
 account holders, might be subject to additional fees or a different fee
 rate.
The best way to start using PayPal to sell merchandise online is
 to add one or more PayPal buttons to your web site. You can do this by
 logging into your PayPal account (create one now [Hack
 #1] if you don’t have one yet), generating a button
 with the Merchant Tools PayPal provides, and copying it to a page
 on your site. You can literally start offering items for sale in 10
 minutes.
PayPal buttons are nothing more than HTML forms. They live on your
 web pages, but they direct your customers to PayPal for processing
 payments. All the software and complexity of processing those payments
 is done for you.
PayPal offers four types of payment buttons to meet the various
 needs of online enterprises, all at no additional charge:
	Buy Now
	The most basic payment button is the Buy Now button. It
 lets your customers easily buy a single item from your site. One
 click directs a buyer to the PayPal system, where they can make
 their payment. See [Hack #28] to start hacking Buy Now
 buttons.

	Add To Cart
	The Add To Cart button lets a buyer accumulate a group
 of items in a shopping basket and then pay for them all at once.
 You should add an individual Add To Cart button for each item you
 sell. When they are ready, customers click the Checkout button (also on your site) to go PayPal and
 complete their payment. See
 [Hack #45] and all of
 Chapter 5 to get
 started.

	Subscribe
	A PayPal subscription button lets your customer easily
 set up a subscription (a recurring payment)
 from the customer’s PayPal account to yours. You can set the terms
 of the subscription to fit your business model, and you or your
 customer can cancel the subscription at any time without further
 obligation. See Chapter 6 for
 more details on subscription buttons.

	Donate Now
	The PayPal donation button is nearly identical to a Buy
 Now button. The wording of the payment screens, however, indicates
 the processing of a donation rather than the purchase of a product
 or service. See [Hack #40] for an introduction and
 [Hack
 #79] and
 [Hack #80] for ways to
 take donation buttons further.

PayPal is a flexible system. With your own software, you can use
 it to accommodate just about any business process, such as delivering
 digital goods instantly, collecting conference registration fees, or
 cooperating with an extant shopping cart system. If you are just getting
 started, PayPal’s buttons are the way to do it. The rest of this book
 should fire your imagination with ideas of where to go from
 there.

Create a Buy Now Button

Accept payments on your web site with a
 simple button that sends the customer, along with all necessary payment
 information, to PayPal.
The most basic way to accept payments on your web site is to
 deploy a Buy Now button, which essentially consists of an HTML
 form.
In order to use the Buy Now system, you need to have a Business or
 Premier account at PayPal.
Use the Merchant Tools section of the PayPal web site to generate
 the necessary code to sell goods from your web site. Once you have the
 code for one item, you can modify that code for any of your other
 products by changing a few variable values.
The Code

To generate a simple block of button code, follow these
 steps:
	Go to http://www.paypal.com, log into
 your account, and click the Merchant Tools tab.

	Click the Buy Now link under the Website Payments section to
 open the PayPal Button Factory, as shown in Figure 4-1.
	[image: Using the PayPal Button Factory to create generic button code you can modify later]

Figure 4-1. Using the PayPal Button Factory to create generic button
 code you can modify later

	Create a basic button by entering the item name and item
 number. Leave the Buyer Country as is, and enter 1 for the amount. Skip the rest of the
 settings, but make sure to change the Encrypt Button option to
 No.

	When you’re done, click Create Button Now to generate the
 code.

The resulting code should look like this:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <input type="hidden" name="cmd" value="_xclick">
 <input type="hidden" name="business" value="sales@payloadz.com">
1. <input type="hidden" name="item_name" value="Widget">
2. <input type="hidden" name="item_number" value="Wid-001">
3. <input type="hidden" name="amount" value="1.00">
 <input type="hidden" name="no_note" value="1">
 <input type="hidden" name="currency_code" value="USD">
 <input type="image" src=
"https://www.paypal.com/en_US/i/btn/x-click-but23.gif" border="0"
 name="submit">
</form>
Most of the variables will not change, regardless of the item you’re
 selling. The variables on lines 1 ,2 , and 3 are the only ones you’ll
 need to customize for each particular product.
Modifications to the variables are straightforward and can be
 done directly in the HTML. For instance, to specify a price, replace
 1.00 with the price of your item,
 in dollars and cents (but no dollar sign). Likewise, set the
 item_name variable
 to the name of the product, and set the item_number variable
 to a unique product number or SKU code that makes sense for your
 store.

Hacking the Hack

In addition to the aforementioned variables, there are also
 other PayPal-supported options you can add to your purchase buttons.
 For example, the return and
 cancel_return
 variables define the addresses of web pages to which the user should
 be taken after the payment process has been completed or if the
 process is cancelled, respectively:
<input type="hidden" name="return" value="http://yoursite.com/thankyou.html">
<input type="hidden" name="cancel_return" value=
 "http://yoursite.com/cancel.html">
Simply insert additional variables anywhere in your button code,
 so long as they appear between the opening <form> and closing </form> tags. Other variables
 include:
	cn
	The text label to appear above the note field
 (maximum of 40 characters).

	cs
	Sets the background color of your payment pages to
 black (1); the default is
 white (0).

	currency_code
	The three-digit code indicating the currency in
 which the payment is to be made.

	custom and invoice
	 Both custom and
 invoice are pass-through
 variables, never shown to customers, to be returned to you when
 the payment process is complete.

	handling
	The shipping surcharge, applied regardless of the
 number of items ordered.

	image_url
	The address (URL) of your company logo. The image
 can be up to 150x50 pixels. If this variable is omitted, the
 customer will see your business name if you have a Business
 account or your email address if you have a Premier
 account.

	no_note
	If this variable is set to 1, the customer will not be allowed to
 include a note. It’s probably best to specify the no_note option (as in the example
 earlier in this hack) if you’ll be automating your operation and
 are unlikely to see any notes your customers would enter
 here.

	no_shipping
	See [Hack #34] for more information
 on this setting.

	on0, on1, os0, and os1
	 See [Hack #33] for more information
 on these four settings.

	page_style
	Sets the Custom Payment Page style for payment
 pages. This variable should be the name of one of the styles
 listed on the Custom Payment Page Styles page. To add or edit
 custom payment pages, click the My Account tab, click Profile,
 and click the Custom Payment Pages link. See [Hack
 #51] for further details.

	return
	The URL of the page on your web site to which the
 customer will be sent when the transaction is complete.

	rm
	Specifies the behavior of the return URL (see the
 return option). If this
 variable is set to 1, the
 buyer will be sent back to the return URL using a GET method,
 and no transaction variables will be submitted. If rm is set to 2, the buyer will be sent back to the
 return URL using a POST
 method, to which all available transaction variables will also
 be posted. If rm is omitted
 or set to 0, GET methods will be used for all
 Shopping Cart transactions in which IPN is not enabled and
 POST methods with variables
 will be used for the rest.

	shipping, shipping2
	 The amount to charge the customer for shipping,
 per item. If you specify an amount for shipping2, the shipping amount will be charged only
 for the first item ordered and shipping2 amount will be charged for
 each additional item (all of which applies only if the customer
 orders a quantity of more than one).

	tax
	If this variable is omitted, the sales tax
 specified in your account preferences will take effect.
 Otherwise, use tax to specify
 a flat tax (in dollars and cents, rather than a percentage) to
 apply to the order.

Use a Custom Button Image

Customize the appearance of the Buy Now
 button with a few changes to the Button Factory code
The PayPal Button Factory generates HTML code that you insert into your payment pages to
 facilitate sales. The code you initially get depends on the values you
 type into the form, but you can subsequently edit it manually before you
 install it onto your site. This simple hack walks you through the
 modification of your button code to use your own custom Buy Now button
 images.
Preparing the Image and Code

First, you’ll need to prepare another button image for use in
 the form. It can be either a GIF or JPG image file, but it must be
 located somewhere on your web site or elsewhere on the Internet so
 that you can reference its location in your code. See the next section
 for button design tips.
Start by generating the code for an ordinary Buy Now button
 [Hack
 #28] . Copy the HTML code and paste it into your
 favorite HTML editor, such as Dreamweaver, FrontPage, or any
 plain-text editor (e.g., Notepad). Find the piece of code that
 references the image:
<input type="image" src="https://www.paypal.com/images/x-click-but23.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's
 fast, free and secure!">
The src parameter contains
 the location (URL) of the image to be used:
 src="https://www.paypal.com/images/x-click-but23.gif"
Simply change this source to the address (URL) of your button
 image:
src="http://www.anothersite.com/yournewimage.gif"
Or, if the image is located on the same site as your button
 code, it could be as simple as this:
src="/images/ournewimage.gif"
So, the final code should look like this:
<input type="image" ="http://www.anothersite.com/ournewimage.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's
 fast, free and secure!">

Button Design 101

The PayPal Button Factory provides some options for button
 appearance, though most of the supplied images are branded with the
 PayPal look and might not integrate cleanly with your web site’s
 design. The previous section shows how to use any image you like,
 provided that you have one at the ready. With a simple web search, you
 can find images of buttons at web sites that specialize in shopping
 cart buttons. But for even more seamless integration, you can create
 your own image in an image-editing program, such as Photoshop or Paint
 Shop Pro.
The ideal sizes for your buttons, based on the sizes PayPal uses
 for their buttons, are 68x23 pixels for Buy Now buttons and 87x23
 pixels for Shopping Cart buttons. You do not have to use these exact
 sizes for your own buttons, but do use them as guidelines when
 choosing appropriate sizes for your buttons.
You can also add interaction to your buttons by providing
 different variations of your images so that they look lit up or pushed
 in when your customers click them or move over them with their mice.
 This visual feedback and interactivity makes your buttons look and act
 more clickable, and it is a good way to get more customers to click
 them. To give your image a slightly different appearance on mouseover
 or when clicked, you need to have two button images: one to act as the
 normal, unactivated state and another to replace the original image
 with activated. Figure 4-2
 shows two such images.
	[image: Normal and activated images for one button]

Figure 4-2. Normal and activated images for one button

The images in Figure
 4-2 are identical, except that the activated image has been
 tinted gray. You might prefer a little more color or perhaps a
 highlighted border; to make the image look pushed in, replace the
 shadow pixels with the button foreground color (in this case,
 white).
Simply include this JavaScript code to swap one image for
 another upon mouseover:
<input type="image" name="submit" src="yourbutton_up.gif" onmouseover=
 "this.src='yourbutton_over.gif'" onmouseout=
 "this.src='yourbutton_up.gif'">
The two images for normal and activated states are yourbutton_up.gif and yourbutton_over.gif, respectively, in the
 preceding code. To have the button change when it is clicked (as
 opposed to responding to a mouseover), use this code instead:
<input type="image" name="submit" src="yourbutton_up.gif" onMouseDown=
 "this.src='yourbutton_over.gif'">
This just scratches the surface of what you can do. The more you
 do to polish the appearance and behavior of your buttons, the more
 customized (and hopefully professional) your site will appear to your
 customers.

Create a Purchase Button for Services

Streamline your purchase buttons for selling
 intangible goods and services by removing unnecessary fields. By
 removing certain shipping requirements, you can accept payments from all
 buyers, regardless of whether they can provide confirmed
 addresses.
PayPal allows you to accept payment for almost any kind of
 tangible product or intangible service. When you’re selling services,
 much of the information PayPal gathers is superfluous. You might not
 always need the customer’s address, for instance, and you most likely
 will not need to charge any shipping or handling fees. By eliminating
 these options in your purchase buttons, you can simplify the checkout
 process for your customers, thus making it easier to sell your
 services.
Here’s the code for a service button, adapted from [Hack
 #28] :
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <input type="hidden" name="cmd" value="_xclick">
 <input type="hidden" name="business" value="sales@payloadz.com">
 <input type="hidden" name="item_name" value="Service">
 <input type="hidden" name="item_number" value="Serv-001">
 <input type="hidden" name="amount" value="1.00">
1. <input type="hidden" name="shipping" value="0.00">
2. <input type="hidden" name="handling" value="0.00">
3. <input type="hidden" name="no_shipping" value="1">
4. <input type="hidden" name="no_note" value="1">
 <input type="hidden" name="currency_code" value="USD">
 <input type="image" src=
 "https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
 border="0" name="submit">
</form>
The difference between this code and an ordinary Buy Now button is the addition of two variables, shipping and handling (lines 1 and 2, respectively), both
 of which are set to 0.00. This trumps
 any shipping charges you might have in your PayPal profile. Also, the
 no_shipping variable
 (line 3) instructs PayPal not to ask for a shipping address, and the
 no_note variable (line
 4) turns off the note field during checkout. All of this makes a simple
 and streamlined checkout process.

Create an Auction Payment Button

Create payment buttons for auctions, such
 that the completed transaction updates the payment status on the auction
 web site automatically.
Merchants that sell using auction sites such as eBay often have to
 collect payment for their goods after the auction has ended. Sometimes,
 it can be confusing to the winning bidder how to complete payment, and
 you’ll want to make it as easy as possible for your customers to send
 you money. Using some simple HTML, you can construct a payment button
 much like the payment buttons generated by PayPal for Shopping Cart and
 Web Accept purchases. You then present this button to the winning bidder
 in an email or on your web site to supplement the payment buttons
 already on the auction site.
The Easy Way

Since PayPal is an eBay company, it shouldn’t be surprising that PayPal is
 well integrated with the eBay web site. For instance, if you indicate
 that you accept PayPal payments when constructing an eBay listing, a
 PayPal button will automatically appear for the winning bidder when
 the listing ends. Here’s how to build the link between your eBay
 account and your PayPal account:
	Go to the eBay web site and log into your eBay
 account.

	Go to My eBay and click the eBay Preferences link under the
 My Account heading.

	Click the Change link next to the Payment Preferences
 heading, and turn on all the PayPal-related settings here.

	When you sell your next item, check the PayPal option in the
 “Seller-accepted payment methods” section and enter the email
 address of the PayPal account to which you’d like auction payments
 to be sent.

That’s it! When your auction ends, a PayPal payment button will
 automatically appear at the top of the auction page, but for the
 winning bidder only.
Furthermore, you can configure PayPal to automatically insert a
 Pay Now button into each of your running
 auctions:
	Log into your PayPal account.

	Click the Profile tab and then click Auctions.

	If your eBay account isn’t listed here, click Add, and then
 enter your eBay user ID and password.

	Otherwise, simply turn on the features you’d like to employ.
 The changes will take effect immediately.

The PayPal Auction options include the following:
	Automatic Logo Insertion
	PayPal automatically inserts a PayPal logo into the
 description of each of your running auctions (using eBay’s Add
 to Description feature). This not only advertises the fact that
 you accept PayPal, it also gives your winning bidder a shortcut
 to the payment process.

	Winning Buyer Notification
	This instructs PayPal to automatically send an email to
 all your winning bidders, complete with payment instructions and
 a Pay Now button. This email is sent independently
 of eBay’s “Congratulations! You are the buyer for...”
 email.

	PayPal Preferred on eBay
	This inserts the PayPal logo into the “Payment methods
 accepted” section of your auction page, as shown in Figure 4-3. The PayPal logo
 appears in addition to the logo that might already be there and
 suggests to your customers that you not only accept PayPal, but
 you whole-heartedly prefer it as a means of payment.

	[image: Buttons indicating that you prefer PayPal in an eBay listing]

Figure 4-3. Buttons indicating that you prefer PayPal in an eBay
 listing

Making Your Own Button

Although eBay provides payment buttons for high bidders, you might
 want to supplement these buttons with your own. Plus, you might want
 to add eBay-like functionality to other auction sites, such as Yahoo!,
 uBid, Amazon.com, MSN, and Bidville auctions.
This code displays a simple Pay Now button that sends your
 customers to the PayPal web site and guides them through the payment
 process. The system automatically tracks the payment for this
 particular auction, so your customer will not have to enter any
 additional auction-related information. Plus, the auction site,
 provided that it’s linked up with PayPal, will be notified
 automatically so that it can update the payment status of the auction
 for you and your bidder.
The goal of providing an extra payment button like this one is
 to reduce the chances that your customer (bidder) will use PayPal’s
 Send Money function to pay for an auction; in that case,
 you would receive a payment not linked to its corresponding
 auction.
Warning
Among other difficulties, PayPal’s Send Money tab makes it
 possible for your customer to “forget” to include the shipping
 charge or sales tax, you might have to process the order manually
 (or simply refund the payment), and the auction site might not
 reflect that the customer has paid. To automatically reject all
 payments sent this way, configure your PayPal account to “Block
 Payments from users who initiate payments from the Pay Anyone subtab
 of the Send Money tab,” as described in Chapter 3.

Here is the HTML code for an auction payment button, linked to a
 particular auction:
<form method="get" action="https://www.paypal.com/cgi-bin/webscr">
<input type="hidden" name="cmd" value=_cart>
<input type="hidden" name="business" value="youremail@paypalhacks.com">
<input type="hidden" name="item_name_1" value="Widget">
<input type="hidden" name="amount_1" value="1.00">
<input type="hidden" name="quantity_1" value="1">
<input type="hidden" name="site_1" value="eBay">
<input type="hidden" name="ai_1" value="2540252652">
<input type="hidden" name="ab_1" value="your_ebay_id">
<input type="submit" name="upload" value="Pay Now">
</form>
This code is similar to the code used in [Hack
 #50] , with the exception of a few new variables:
 site_
 n, ai_
 n, and ab_ n, where
 n is a number representing the item in
 multiple item payments, starting with 1 (for example, include ab_1, ab_2, and ab_3 if you’re requesting payment for three
 different auctions).
The site_
 n variable defines the site on which the
 auction was listed, and it should be set to eBay for eBay auctions or Yahoo for Yahoo! Auctions. This value is
 case sensitive, so for other auction sites, you’d type uBid, Amazon, MSN, or Bidville. The second variable, ai_ n, should be
 set to the auction (or listing) number at the auction site. Finally,
 ab_ n,
 is your user ID at the auction site
 (your_ebay_id in this example). Naturally,
 you’ll need to replace all italicized text in the code with the
 details of your transaction.
The other variables, such as item_name_ n and
 amount_
 n, can be modified as described in [Hack
 #28] .

Hacking the Hack

This hack demonstrates how you can create buttons that
 facilitate auction-specific payments. Naturally, creating a button for
 each auction manually would be a time-consuming process, but you can
 use the eBay API to automate this process. Start by sending a query to
 obtain the information for each of your completed auctions using a
 GetTransactionDetails call, and
 then assemble your buttons and email them to the high bidders. The
 technical procedures involved with implementing this type of system go
 beyond the scope of this book, but extensive information can be found
 in David A. Karp’s eBay Hacks
 (O’Reilly).
If you use an off-site listing tool or a third-party listing
 service to build your auctions, you might be able to tie your
 application into the application’s local database. However, you will
 also need a means of obtaining completed-item details (such as the
 final price and high-bidder contact information). For an example that
 shows how to build payment buttons dynamically, see [Hack
 #54] .

Provide Purchase Options with Drop-Down Listboxes

Change a few lines of the PayPal Button
 Factory code to restrict purchase options to a distinct list of
 choices.
By default, the item_name variable
 created by the PayPal Button Factory [Hack
 #28] is a hidden field containing a single string of
 text, which means that a single payment button corresponds to a single
 product. So, if you sell three products, you’ll need three payment
 buttons, right?
Not so, thanks to drop-down listboxes.
Since many of the products you’re selling probably come in a
 combination of styles or sizes, you can merge those variations into a
 single purchase button. For instance, if you’re selling clothing,
 a Size option might contain three choices: Small, Medium, and Large.
 Fortunately, PayPal doesn’t distinguish between text strings sent from
 text boxes and list elements selected from drop-down listboxes, so you
 can easily replace any <input>
 field with a <select> drop-down
 list. For instance, take:
<input type="hidden" name="item_name" value="T-Shirt">
and replace it with:
<select name="item_name" id="item_name">
 <option>T-Shirt</option>
</select>
The problem here is that we still provide the customer with only
 one option. To add more options, simply insert additional <option> tags, one for each variation,
 like this:
<select name="item_name" id="item_name">
 <option>T-Shirt, Small</option>
 <option>T-Shirt, Medium</option>
 <option>T-Shirt, Large</option>
</select>
Figure 4-4 shows the
 completed drop-down listbox.
	[image: Taking advantage of PayPal’s option fields with a simple drop-down listbox.]

Figure 4-4. Taking advantage of PayPal’s option fields with a simple
 drop-down listbox.

With this simple change, your customers choose a size, click the
 Buy Now button, and pay for your item. PayPal then sends the customer’s
 selection back to you in the “You’ve got cash” email.
If you need to provide your customers with more than one option,
 you can include up to two additional option fields [Hack
 #33] and convert both of them to drop-down lists with
 this same procedure. Thus, you can have up to three different options
 with a single payment button.
Hacking the Hack

You can take this hack a step further by changing the values of
 other fields based on selection. For instance, you can change the
 price based on the shirt size your customer chooses and send the
 correct price to PayPal along with the corresponding options. You need
 to add a few pieces of code to your payment button form for this to
 work.
First, place this JavaScript code in the section of your page between the
 <head> and </head> tags:
<script type="text/javascript">
<!-- Update Price Change
function UpdateForm (object1) { // process change selects
var i,item_amt,object,position,val;
 item_amt = object1.amount.value; // default amount
 for (i=0; i<object1.length; i++) { // check options
 object = object1.elements[i];
 if (object.type == "select-one" &&
 object.name == "cng") { // must be named cng
 position = object.selectedIndex; // option selected
 val = object.options[position].value; // selected value
 position = val.indexOf ("$"); // set new price
 if (position >= 0) item_amt = val.substring (position + 1)*1.0;
 }
 }
 object1.amount.value = item_amt;
 if (object1.item_total) object1.item_total.value = "$" + item_amt;
}
//-->
</script>
Next, change the <form>
 tag for your payment button code so the JavaScript function is
 executed when the form is submitted, like this:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post"
onsubmit="this.target='paypal';UpdateForm(this);">
Finally, modify the <select> tag so that it, too, is
 linked to the JavaScript code:
<select name="cng" onchange="UpdateForm(this.form);">
 <option value="Small $1.00">Size: Small $1.00</option>
 <option value="Medium $2.00">Size: Medium $2.00</option>
 <option value="Large $3.00">Size: Large $3.00</option>
</select>
You can edit the amount charged to your customer by changing the
 value="Small $1.00" section of the
 form field. You can also change the text displayed to your customer by
 changing the value between the <option> and </option> sections.
Make sure the amount tag in
 your form is set to the same value as the default
 value of the drop-down menu. That way, if the form is submitted
 without changing the values, the amount has the correct default
 value.
When this code is in place, the price is updated automatically
 whenever a new size is selected.
Warning
Since this solution relies on JavaScript to update the price
 according to a customer action, it will fail if the customer has
 disabled JavaScript. Although PayPal doesn’t do price checking, you
 can effectively prevent this problem by checking for JavaScript
 before displaying order pages to your customers.

Include More Than Two Option Fields

Give your customers a large selection of
 options when purchasing their items, despite the limitations of payment
 buttons.
PayPal buttons enable you to easily offer fixed products to your
 customers. Although some flexibility is provided in the form of option
 fields [Hack
 #32] , PayPal currently supports only two such fields.
 If your product has more than two options (e.g., Size, Color, and
 Material), you can employ a little JavaScript code and a hidden field to create as many
 option fields as you need.
Start with the basic Buy Now button code [Hack
 #28] for a single item, although this works with
 Shopping Cart, Subscription, and Donation buttons as well:
<form action="https://www.paypal.com/cgi-bin/youbscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@payloadz.com">
<input type="hidden" name="item_name" value="Widget One">
<input type="hidden" name="item_number" value="Wid-001">
<input type="hidden" name="amount" value="1.00">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src=
 "https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
 border="0" name="submit>
</form>
Suppose the item you’re selling has three options: Color, Size,
 and Material. You can provide three drop-down lists [Hack
 #32] , one for each option, with which your customers
 can customize their purchases. To keep things simple, name your
 drop-down elements custom1, custom2, and custom3.
This code joins all three of the selected options into a single
 variable, custom, to be
 passed to PayPal. You’ll need to add the custom form element to your
 button as a hidden variable with no value specified. The value will be
 populated by the JavaScript code when the form is submitted. Here’s an
 HTML form with form options and the custom field:
Color
<select name="custom1">
 <option value="White" selected>White</option>
 <option value="Grey">Grey</option>
 <option value="Black">Black</option>
</select>

Size
<select name="custom2">
 <option value="Small">Small</option>
 <option value="Medium">Medium</option>
 <option value="Large" selected>Large</option>
 <option value="X-Large">X-Large</option>
</select>

Material
<select name="custom3">
 <option value="Spandex" selected>Spandex</option>
 <option value="Cotton">Cotton</option>
</select>
<input type="hidden" name="custom" value="">
Figure 4-5 shows the
 additional custom fields in action. You can include as many option
 fields as you can fit on your page.
	[image: Including additional option fields]

Figure 4-5. Including additional option fields

You can continue adding as many option fields as you need,
 provided that you use the same custom
 # naming format. Just be sure that the total
 character count for the labels and their possible
 variable values does not exceed 256 characters, the size limit of
 PayPal’s custom variable.
Add the HTML code to your PayPal button form between the opening
 and closing <form> tags. Then
 add the following JavaScript code to the head of the web page:
<script language="JavaScript">
<!--
 function joinFields(){
 fmBuy.custom.value = 'Color:' + fmBuy.custom1.value + ' Size:' +
 fmBuy.custom2.value + ' Material:' + fmBuy.custom3.value
 }
// -->
</script>
If you add additional fields, you’ll need to modify this code to
 accommodate them.
Finally, add a call to the joinFields routine by inserting the name and onSubmit attributes to the existing <form> tag (the values for the action and method attributes remain unchanged):
<form action="https://www.paypal.com/cgi-bin/youbscr" method="post"
name="fmBuy" onSubmit="joinFields()">
Here is the final code for the example form:
<form action="https://www.paypal.com/cgi-bin/youbscr" method="post" name="fmBuy"
onSubmit="joinFields()">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@payloadz.com">
<input type="hidden" name="item_name" value="Widget One">
<input type="hidden" name="item_number" value="Wid-001">
<input type="hidden" name="amount" value="1.00">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
 Color
 <select name="custom1">
 <option value="White" selected>White</option>
 <option value="Grey">Grey</option>
 <option value="Black">Black</option>
 </select>

Size
<select name="custom2">
 <option value="Small">Small</option>
 <option value="Medium">Medium</option>
 <option value="Large" selected>Large</option>
 <option value="X-Large">X-Large</option>
 </select>

Material
<select name="custom3">
 <option value="Spandex" selected>Spandex</option>
 <option value="Cotton">Cotton</option>
 </select>
 <input type="hidden" name="custom" value="">

<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
 border="0" name="submit">
</form>
When the complete page is loaded (with the button code in the page
 body and the JavaScript in the page head), the customer-selected option
 fields will be concatenated into one string and passed through to PayPal
 in the custom variable. For instance, if the form is submitted with its
 default values, the custom variable will be set to Color:White Size:Large Material:Spandex. The
 string will appear in details of the transaction in your PayPal account;
 your customers will never see it. If necessary, you can also parse this field out
 in the IPN page [Hack #65] .

Override Shipping and Handling Preferences

Modify purchase buttons to override your
 Profile settings, allowing you to set shipping and handling fees to zero
 for digital goods.
Certain goods, such as software or other downloadable products,
 should not incur any shipping charges. By default, PayPal calculates the
 applicable shipping fees and applies them to every order. To configure
 your shipping calculation preferences, log into PayPal, click Profile,
 and then click Shipping Calculations.
The problem is that PayPal applies your shipping preferences to
 all purchases placed through your PayPal buttons. If you sell both
 tangible and digital products, you might need to charge different
 shipping amounts for different products.
To override your shipping and handling preferences, turn on the
 “Allow transaction-based shipping values to override the profile
 shipping settings” options in your Shipping Calculations profile page. Then, add two
 additional variables to applicable buttons and set each of them to
 zero (or any values you wish) for digital goods purchases, like
 this:
<input type="hidden" name="shipping" value="0.00">
<input type="hidden" name="handling" value="0.00">
If you were to omit these two new variables, the shipping fees
 applied to that product would default to the values in your PayPal
 profile. You can add these two new form variables anywhere in your
 button code, as long as they appear between the opening <form> and closing </form> tags.
When you override your Profile’s Shipping Preferences for a single
 item in your PayPal Shopping Cart, the override applies only to that
 item. All other items are charged shipping according to your Profile’s
 Shipping Preferences.

Build Notification Tracking

Track how your PayPal applications are used
 by including the Build Notification (BN) tag with all your payment
 buttons and resulting transactions.
PayPal originally introduced the Build Notification (BN) tag as a way to
 track developers’ projects, allowing them to, for example, include
 version numbers to gauge application performance. The BN tag is a field
 for your payment buttons into which you place an identifier string you
 choose.
An unexpected benefit of the BN tag is that, by demonstrating that
 your site or application generates a significant amount of transactions,
 you can receive the benefits of a high-volume merchant. While there is
 no official disclosure of any specific application rewards, developers
 can often expect to receive specialized technical support if they ever
 have problems that affect their applications or sites. High-volume
 merchants are also invited to participate in testing new features of the
 PayPal system and receive advance notice of upcoming releases of new
 product features.
To use the BN system, PayPal suggests assigning a unique, readable
 value to the BN tag, including the version (and build) number of your
 application as well as your company name. The suggested format of the BN
 value is company.product.version,
 like this:
<input type="hidden" name="bn" value="GeekSoft.Cart.1.0">
Insert the bn variable into
 your PayPal form buttons just as you would any other values [Hack
 #28] :
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="bn" value="GeekSoft.Cart.1.0">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="bn@paypalhacks.com">
<input type="hidden" name="item_name" value="Widget">
<input type="hidden" name="amount" value="1">
<input type="image" src=http://images.paypal.com/images/x-click-butcc.gif
 border="0" name="submit">
</form>
Once you deploy the BN tag in
 your form buttons, make sure you register your application with PayPal
 so that they can begin tracking your usage. Send an email to
 developer@paypal.com with the BN ID text you use in each of your solutions,
 along with the name of your company, the title of your application or
 web site, and your contact information. For further information, see
 http://www.paypal.com/pdn-submit.
Hacking the Hack

The BN tag only allows PayPal to track your sales internally; you won’t have access to
 any usage statistics connected with your use of the BN tag on your web
 site.
However, you can track your sales by including the custom variable in your purchase buttons. Set the value of the
 custom variable to some unique
 identifier for the application or web site in which the button
 appears:
<input type="hidden" name="custom" value="GeekSoft.Cart.1.3">
Every time a payment is made with this button, PayPal records
 the custom value in your
 transaction history. Next, use the Download My History feature to generate a tab- or
 comma-delimited text file, as shown in Figure 4-6. Finally, import the
 file into your spreadsheet or database and use the tools at your
 disposal to plot sales trends, run reports, or perform statistical
 analysis.
	[image: Pulling a comma-delimited file from your PayPal history for use in spreadsheets and statistical analysis applications]

Figure 4-6. Pulling a comma-delimited file from your PayPal history for
 use in spreadsheets and statistical analysis applications

You can also export your PayPal history into files that Quicken
 and Quickbooks can understand, allowing you to integrate PayPal sales
 with your accounting software.

See Also

 [Hack #77] shows another way to track
 sales through your PayPal payment buttons.

Hack-Proof Your Payment

Prevent code-tampering and price-spoofing
 with a hidden form post.
When deploying PayPal buttons on your web site, you should consider the
 risk of spoofed payments. PayPal buttons are normally created in plain
 HTML, with the variables and their values available for anyone to see
 (select View→Source in your
 browser to see for yourself). This means that anyone can view your
 button source code, copy the HTML to her own system, make changes to the
 variables (such as the price), and make a payment with the modified
 button. You can manually review purchases to make sure no tampering has
 taken place, but in high-volume or automated systems, this might be a
 difficult or even impossible task.
Tip
PayPal offers a button encryption system that allows you to
 encrypt your purchase buttons, provided that you’re not using buttons
 modified with custom variables. Button encryption is also not
 supported with Shopping Cart buttons.

This hack uses techniques covered in some of the other hacks in
 this book to create a hidden form post that sends the button information to
 PayPal without allowing the customer to see it. To use this technique to
 its fullest, you should already have deployed [Hack
 #54] .
The Code

The hack consists of two pages: link.asp and
 jump.asp. First, link.asp
 contains the product and selling information, as well as a link to the
 second page:
<html>
<body>
Widget

Click here to buy
</body>
</html>
This first page mimics the Buy Now button, but instead of
 sending the customer to PayPal, it links to the jump page. Next,
 jump.asp queries your database for the product
 info and sends the purchase information to PayPal. This code is
 written in ASP:
<%
'Connect to database and create recordset
1. connStore = "DRIVER={Microsoft Access Driver (*.mdb)};DBQ="C:/InetPub/wwwroot/database/
dbPayPal.mdb")
set rsJump= Server.CreateObject("ADODB.Recordset")
rsJump.ActiveConnection = connStore
2. rsJump.Source = "SELECT tblProducts FROM tblProducts WHERE Id = " & Request("id")
3. rsJump.Open()
%>
<html>
4. <body onLoad="document.fmPost.submit()">
<form action="https://www.paypal.com/cgi-bin/webscr" method="post" name="fmPost">
 <input type="hidden" name="cmd" value="_xclick">
 <input type="hidden" name="business" value="youremail@yourisp.com">
 <input type="hidden" name="item_name" value=
 "<%=(rsJump("ItemName").Value)%>">
 <input type="hidden" name="item_number" value=
 "<%=(rsJump("ItemID").Value)%>">
 <input type="hidden" name="amount" value=
 "<%=(rsJump("ItemPrice").Value)%>">
</form>
</body>
</html>
<%
rsJump.Close()
%>
The jump page queries the database (line 2) for the
 requested product information (based on the URL embedded in the link
 page) and then dynamically builds a PayPal form from this information.
 Finally, the page uses an onLoad
 function (line 4) to automatically submit the form as
 soon as the page loads, without the customer ever seeing the
 page.
Tip
Depending on your platform, you might need to change the code
 that connects to your database (lines 1 to 3) and creates the
 rsJump recordset from the query
 results. See “Database Coding and Platform Choices” in the Preface
 for more information.

Hacking the Hack

You don’t necessarily have to use the database method described
 here. Instead, you can simply create a static jump page for each
 product, complete with all of the product information (name, price,
 etc.) embedded right in the code. Although this approach wouldn’t make
 any sense for an online store that sells hundreds or thousands of
 items, it would ultimately be easier to implement than a full database
 if you sell only one or two products on your site.

Plan B: Obfuscate Your Button Code

If all this seems like too much trouble to guard against a
 remote possibility, there is an easier way to keep casual observers
 from seeing exactly what your button code contains and spoofing your
 button. (Isn’t it handy that the word obfuscate
 is, itself, a rather cryptic term?)
	Create a Buy Now, Add to Cart, Subscription, or Donation button using PayPal’s Merchant Tools.

	Go to http://www.dynamicdrive.com/dynamicindex9/encrypter.htm.
 Copy and paste your button code into the text area window.

	Click Encrypt. The HTML will be replaced with encoded text
 that is much harder for mere mortals to read, but the encoded text
 will easily be parsed and displayed by your customers’
 browsers.

	Copy and paste this scrambled code into your web
 page.

This quick and easy obfuscator makes it harder for casual
 viewers to see how your button is coded and thus helps protect it from
 tampering. Additionally, it foils most web spiders looking for fresh
 email addresses to spam.
Warning
This trick is no substitute for real encryption [Hack
 #37] . The material is all there, just in a form
 that is hard for a person to read. Anyone with some time, patience,
 and an understanding of common encoding methods (or anyone with
 access to this book) will crack the obfuscation in no time. Also,
 even if the HTML is not obvious, all the information critical to the
 consumers’ buying decision will be echoed by PayPal once your
 customer clicks the button.

To illustrate, here’s an ordinary payment button:
<h1>Plain button</h1>

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@wwjcd.biz">
<input type="hidden" name="item_name" value="Jackie Chan bobble head">
<input type="hidden" name="item_number" value="jc-bh">
<input type="hidden" name="amount" value="9.99">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src=
 "https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's
 fast, free and secure!">
</form>
And here’s the obfuscated version of the same code:
<h1>Button obfuscated</h1>

<script>
<!--
document.write(unescape("%3Cform%20action%3D%22https%3A//www.paypal.com/cgi-bin/webscr%22%
20method%3D%22post%22%3E%0D%0A%3Cinput%20type%3D%22hidden%22%20
name%3D%22cmd%22%20value%3D%22_xclick%22%3E%0D%0A%3Cinput%20type%3D%22hidden
%22%20name%3D%22business%22%20value%3D%22sales@wwjcd.biz%22%3E%0D%0A%3Cinpu
%20type%3D%22hidden%22%20name%3D%22item_name%22%20value%3D%22Jackie%20Chan
%20bobble%20head%22%3E%0D%0A%3Cinput%20type%3D%22hidden%22%20name%3D%22item_number%22
%20value%3D%22jc-bh%22%3E%0D%0A%3Cinput%20type%3D%22hidden%22%20name
%3D%22amount%22%20value%3D%229.99%22%3E%0D%0A%3Cinput%20type%3D%22hidden
%22%20name%3D%22currency_code%22%20value%3D%22USD%22%3E%0D%0A%3Cinput
%20type%3D%22image%22%20src%3D%22https%3A//www.paypal.com/en_US/i/btn/x-click-but23.gif%22
%20border%3D%220%22%20name%3D%22submit%22%20alt%3D%22Make%20
payments%20with%20PayPal%20-%20it%27s%20fast%2C%20free%20and%20secure%21%22%
3E%0D%0A%3C/form%3E"));
//-->
</script>
While this hack can indeed be applied to an already-encrypted
 button (as detailed in [Hack #37] , encrypted buttons hardly
 need the added protection of obfuscation.

Hack-Proof Your Buttons with Encryption

Add yet another layer of security to a Buy
 Now Button by encrypting its contents with OpenSSL and
 C/C++.
Now that you’ve created a complete Buy Now button [Hack
 #28] , how can you prevent potential hackers from seeing (and
 possibly changing) the information you’re passing to PayPal? PayPal’s
 button encryption enables you to hide the exact contents of your HTML
 form in a PKCS7-encrypted blob.
While it is not necessary to integrate button encryption into
 every web site, it does allow you to provide another layer of security
 without affecting your customers’ buying experience.
Tip
This hack shows how to secure the contents of a button using
 OpenSSL and C/C++. For a simpler solution, see [Hack
 #36] .

OpenSSL and Keys

Button encryption is done using a cryptography library, such as
 OpenSSL, and a pair of cryptographic keys. OpenSSL is nice, because it allows
 you to both sign and envelope the message in one action. The first
 thing to do is install OpenSSL, which is available for download at
 http://www.openssl.org.
Note that some knowledge of compiling programs is required for
 the installation of OpenSSL on Unix. Instructions for compiling and
 installation on various platforms can be found in the OpenSSL
 download. A precompiled Windows version is available at http://www.slproweb.com/products/Win32OpenSSL.html.
 Simply follow the installation instructions for your particular
 environment.
Cryptographic keys must be exchanged in order for button
 encryption to work. You’ll need to contact PayPal to obtain PayPal’s
 public key, and you must provide your public key to
 PayPal. You should generate your keys in PEM format; consult the OpenSSL documentation (http://www.openssl.org/docs/HOWTO/keys.txt) for
 details.

Basic Button Encryption Using OpenSSL

Start with an unencrypted HTML form tag in your HTML
 page:
<form method="post" action="https://www. paypal.com/cgi-bin/webscr">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@company.com">
<input type="hidden" name="amount" value="1.00">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
 name="submit" alt="Make payments with PayPal - it's fast, free
 and secure!">
</form>
The first thing you need to do is convert all the hidden field
 name/value pairs from this form into a single string, like
 this:
cmd=_xclick
business=sales@company.com
amount=1.00
currency_code=USD
Warning
Keep in mind that the line feeds required are Unix line feeds
 (\n), not Windows line feeds
 (\r\n). Ensure that your program
 is creating the string correctly or you will get decryption errors
 when posting your encrypted form.

Next, load the PayPal public key from the paypal_cert.pem file:
BIO *bio;
X509 *gPPx509;
char* payPalCertPath = "/opt/keys/paypal_cert.pem";
if ((bio = BIO_new_file(payPalCertPath, "rt")) == NULL) {
 printf("Fatal Error: Failed to open (%s)\n", payPalCertPath);
 goto end;
}

if ((gPPx509 = PEM_read_bio_X509(bio, NULL, NULL, NULL)) == NULL) {
 printf("Fatal Error: Failed to read Paypal certificate from
 (%s)\n", payPalCertPath);
 return "";
}

BIO_free(bio);
Then, load your public and private keys:
X509 *x509 = NULL;
RSA *rsa = NULL;

char* certPath = "/opt/keys/my_cert.pem";
char* keyPath = "/opt/keys/my_key.pem";

if ((bio = BIO_new_file(certPath, "rt")) == NULL) {
 printf("Fatal Error: Failed to open (%s)\n", certPath);
 goto end;
}

if ((x509 = PEM_read_bio_X509(bio, NULL, NULL, NULL)) == NULL) {
 printf("Fatal Error: Failed to read certificate from (%s)\n", certPath);
 goto end;
}

BIO_free(bio);

if ((bio = BIO_new_file(keyPath, "rt")) == NULL) {
 printf("Fatal Error: Failed to open (%s)\n", keyPath);
 goto end;
}

if ((rsa = PEM_read_bio_RSAPrivateKey(bio, NULL, NULL, NULL)) == NULL) {
 printf("Fatal Error: Unable to read RSA key (%s).\n", keyPath);
 goto end;
}

BIO_free(bio);

' Create an EVP_PKEY instance from the private key you just loaded:
EVP_PKEY *pkey = EVP_PKEY_new();

if (EVP_PKEY_set1_RSA(pkey, rsa) == 0) {
 printf("Fatal Error: Unable to create EVP_KEY from RSA key\n");
 goto end;
}

' create the PKCS7 instance so you can create the PKCS7 Blob:
PKCS7 *p7 = PKCS7_new();
PKCS7_set_type(p7, NID_pkcs7_signedAndEnveloped);

PKCS7_SIGNER_INFO* si = PKCS7_add_signature(p7, x509, pkey, EVP_sha1());

if (si) {
 if (PKCS7_add_signed_attribute(si, NID_pkcs9_contentType, V_ASN1_OBJECT,
 OBJ_nid2obj(NID_pkcs7_data)) <= 0) {
 printf("OpenSSL Error: %s\n", ERR_error_string(ERR_get_error(), NULL));
 goto end;
 }
} else {
 printf("Fatal Error: Failed to sign PKCS7\n");
 goto end;
}

//Encryption
if (PKCS7_set_cipher(p7, EVP_des_ede3_cbc()) <= 0) {
 printf("OpenSSL Error: %s\n", ERR_error_string(ERR_get_error(), NULL));
 goto end;
}

if (PKCS7_add_recipient(p7, gPPx509) <= 0) {
 printf("OpenSSL Error: %s\n", ERR_error_string(ERR_get_error(), NULL));
 goto end;
}

if (PKCS7_add_certificate(p7, x509) <= 0) {
 printf("OpenSSL Error: %s\n", ERR_error_string(ERR_get_error(), NULL));
 goto end;
}

BIO *p7bio = PKCS7_dataInit(p7, NULL);

if (!p7bio) {
 printf("OpenSSL Error: %s\n", ERR_error_string(ERR_get_error(), NULL));
 goto end;
}

//Pump data to special PKCS7 BIO. This encrypts and signs it.
BIO_write(p7bio, data, strlen(data));
BIO_flush(p7bio);
PKCS7_dataFinal(p7, p7bio);

//Write PEM encoded PKCS7
BIO *bio = BIO_new(BIO_s_mem());

if (!bio || (PEM_write_bio_PKCS7(bio, p7) == 0)) {
 printf("Fatal Error: Failed to create PKCS7 PEM\n");
}

BIO_flush(bio);

char *str;
int len = BIO_get_mem_data(bio, &str);

char *ret = new char [len + 1];
memcpy(ret, str, len);
ret[len] = 0;

' free the resources:
PKCS7_free(p7);
BIO_free_all(bio);
BIO_free_all(p7bio);
The
 last step to enable
 button encryption is to change the value of the cmd form tag to _s-xclick and add the PKCS7 blob as a form
 value of encrypted..
When you’re done, you’ll end up with something like this:
<form method="post" action="https://www.sandbox.paypal.com/cgi-bin/webscr">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
name="submit" alt="Make payments with PayPal - it's fast, free and secure!">
<input type="hidden" name="cmd" value="_s-xclick">
<input type="hidden" id="encrypted" name="encrypted" value="-----BEGIN PKCS7-----
MIIEvQYJKoZIhvcNAQcEoIIErjCCBKoCAQExggE0MIIBMAIBADCBmDCBkjELMAkG
A1UEBhMCVVMxCzAJBgNVBAgTAkNBMRYwFAYDVQQHEw1Nb3VudGFpbiBWaWV3MRQw
EgYDVQQKEwtQYXlQYWwgSW5jLjEVMBMGA1UECxQMc3RhZ2UyX2NlcnRzMRMwEQYD
VQQDFApzdGFnZTJfYXBpMRwwGgYJKoZIhvcNAQkBFg1yZUBwYXlwYWwuY29tAgEA
MA0GCSqGSIb3DQEBAQUABIGACgshgqbB147NFGZlK23kRLaQ3EkGnFmnRWn8euqN
Ecm12daiK57CaU/L36dhc4PtkigXI2TQ/alWglyerZkOhl+qb6ZRTqEq2+7fhvsB
T32Yph/usVQEj5j0njtFmo9smOyEJuHcNYY5bn3gUsiM6FxIZq8qRlI5W9yh7hTc
1/kxCzAJBgUrDgMCGgUAMGsGCSqGSIb3DQEHATAUBggqhkiG9w0DBwQINNLmCVHP
OUWASIMAdhSkOjW5qKb98fpT1yLCByYMjvE0U39fuG3pSOXv8tKzKEz3v1sKDUOR
PRy0ekPFI6nEdp+dDJLBy3acM3DGrHk7KdYSLqCCAdIwggHOMIIBN6ADAgECAgEC
MA0GCSqGSIb3DQEBBQUAMBExDzANBgNVBAMTBlBheXBhbDAeFw0wNDAzMjkyMTU3
NDdaFw0xNDAzMjcyMTU3NDdaMBExDzANBgNVBAMTBlBheXBhbDCBnzANBgkqhkiG
9w0BAQEFAAOBjQAwgYkCgYEArdX6/kaw/9JWyxedVUBf1hLQ0nE3Z8HZTOAb8tTj
tH3anE8lxoA84NBKgsnAfsWSivWZA149NcpNrVgk7aPiCpIlxxLD7dv30zSqrXUA
kzVZ3xDfxILN42Xe8JZiM7MieixlKL/2RlnqHv6RyfAJyXH7cMlbLQJCBR3g4XnF
7I0CAwEAAaM2MDQwDgYDVR0PAQH/BAQDAgGmMA8GA1UdEwEB/wQFMAMBAf8wEQYJ
YIZIAYb4QgEBBAQDAgIEMA0GCSqGSIb3DQEBBQUAA4GBAD0CbksayWCC0yqZSn3c
6J65Yvmi/KrObGX7EzHcB1N0/YbfYkisw5qvZnGUhMj00DL3cvNOnPxXNBIUdHT3
UF1O8MzLlv8fTAjnS8Zd83vZfSyi6TMSPJlXbx8p+P2IbRNKdQaIHz2tR6tCnUNC
JYYKim3Nkz48sk0/jGtjiJPVMYIBGzCCARcCAQEwFjARMQ8wDQYDVQQDEwZQYXlw
YWwCAQIwCQYFKw4DAhoFAKBdMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJ
KoZIhvcNAQkFMQ8XDTA0MDQyMjIxMDkyMVowIwYJKoZIhvcNAQkEMRYEFO1Oou9z
6VXvxn6wow7yZXlP6vqeMA0GCSqGSIb3DQEBAQUABIGAoNU5uAeD+pp2bROOfhHh
6oTPZDjhUvKLrhVaHmpHzz1aZTtIdqYcwZ6vEVai6fGG43hqoZYAh97xWDiwW9Ie
X/RtAzc38Yk2vch6ocPF8MjsEMVne3J9iy0rN6A0Cby5IgkKFrrYee9eWNIec/6d
3koVvLSCBZvZV+RFYCKhA/0=
-----END PKCS7-----
">
</form>
Obviously, this code is nearly impossible to decipher or tamper
 with, making it sufficiently obfuscated.
—Michael Blanton

Include Payment Buttons in Email Messages

Use the PayPal Payment Request Wizard to
 send Pay Now buttons from Microsoft Outlook.
Sending invoices via email with PayPal’s Request Money feature
 [Hack
 #17] is a quick and effective way to ask someone to
 pay you. The Pay Now buttons PayPal includes in the resulting email
 make it easy for your customers to pay you; after two clicks and a
 login, customers with PayPal accounts can send you money in less than a
 minute.
But the Request Money feature has its limitations. While the email
 appears to come from you, it’s actually sent from PayPal, which means
 that you won’t be able to customize it fully. If you need to include
 pictures, files, hyperlinks, custom HTML, or multiple purchase buttons,
 you’ll have to send the email yourself.
Creating PayPal Payment Hyperlinks

Adding a PayPal payment hyperlink to your own email involves
 nothing more than typing a simple URL [Hack
 #18] . The required parameters to create a basic
 hyperlink are email address, payment amount, and item name.
However, there are many optional parameters you can include in
 the hyperlink to help you provide a more complete payment record, such
 as the currency, item number, quantity, shipping, and request for
 shipping address. For example:
https://www.paypal.com/cgi-bin/webscr?cmd=_xclick&business=
 email%40paypalhacks%2Ecom&amount=10%2E00¤cy_code=USD&item_name=
 jersey&item_number=1001&quantity=1&shipping=3%2E00&no_shipping=0
As you can see, the hyperlink begins to become unwieldy.
 Hyperlinks this long or longer cause problems because email programs
 chop them up into smaller pieces when they wrap the text. More than
 likely, only the first piece will be hyperlinked and a customer will
 not think twice about clicking it and attempting to complete the
 transaction with incomplete information.
The simplest solution is to run the address through TinyURL[1] (http://tinyurl.com), which will
 convert it to something that looks like this:
http://tinyurl.com/2tqz8
The resulting link is always short enough to be spared the
 aforementioned word wrap. Unfortunately, the https://www.paypal.com/ prefix will be lost,
 and your more diligent customers might avoid it.
Tip
See [Hack #39] for another, more official
 way to get shortened payment URLs, and protect your email from
 spammers in the process.

Using the PayPal Payment Wizard

Want something more professional-looking than a bare URL in
 your emails? Nearly all modern email programs support HTML (much to
 the bane of the minimalists among us), which means that you can
 replace ordinary URLs with hyperlinked, graphical buttons right in
 your email messages.
Simply use your email software’s formatting tools to insert an
 image and then link it to a payment URL you construct. In fact, URLs
 in hyperlinks can be as long as 1024 bytes (characters), which is
 plenty for PayPal’s payment URLs. Of course, there’s a cost: these
 payment buttons can be time-consuming to create...until now.
Enter the PayPal Payment Wizard, a free add-in toolbar for
 Microsoft Outlook and Microsoft Outlook Express that
 allows you to painlessly insert payment buttons into your
 emails.
You can create five different types of PayPal payment buttons, each with six different button
 designs:
	Payment Button (Basic)
	This type of button is easiest to use, because it
 requires only your email address and payment amount, but it
 offers the fewest options.

	Product Button
	This type allows you to enter product details and
 request a shipping address
 [Hack #28] .

	Service Button
	This type allows you to enter a service description
 [Hack
 #30] .

	Auction Payment Button
	Use this to request payment for an auction item [Hack
 #31] .

	Donate Button
	Use this to allow the donor to specify the donation
 amount [Hack #40] .

To use the Payment Wizard toolbar, start by downloading it from
 http://www.paypal.com/outlook and installing it
 on your computer. You might be asked to close Microsoft Outlook if
 it’s open.
Warning
The PayPal Payment Wizard currently supports only Microsoft
 Outlook and Outlook Express on Windows. If you’re using Eudora or
 some other email software, or if you are using a Mac or Linux,
 you’ll have to create payment buttons manually.

To insert a button with the Payment Wizard, follow these
 steps:
	Open Outlook or Outlook Express.

	Click the Payment Request Wizard icon on the toolbar (shown
 in Figure 4-7).
	[image: Payment Wizard toolbar in Microsoft Outlook Express]

Figure 4-7. Payment Wizard toolbar in Microsoft Outlook
 Express

	When you see the first page of the wizard, click
 Next.

	On the Payment Button Type screen, choose one of the five
 aforementioned payment button types. For this example, select the
 second option, Product Button, and click Next.

	The Product Button requires only the email address to which
 payment should be sent, and the payment amount, as shown in Figure 4-8.
	[image: Creating a Product Button]

Figure 4-8. Creating a Product Button

There are several optional fields. You can specify the
 subject of the payment email you’ll receive if the recipient pays.
 The First Name and Last Name fields are not currently used, so you
 can leave them blank. You can leave the Buyer’s Email, Subject,
 First Name, and Last Name empty, because they are not
 required.

	If your product requires shipping, turn on the Solicit
 Shipping Address option. PayPal will ask the buyer to specify a
 shipping address.

	In the Product Details area, enter the name of the product
 and its ID number, if you have it.

	In the Sale Details area, enter the price of the product. If
 you are selling multiple identical products, change the quantity
 to the reflect the quantity you are going to sell. If you are
 selling two toy trucks for the same price of $15 each, enter $15
 and change the quantity to 2. You will see the Total Payment
 update to $30.
Warning
The Payment Wizard does not support multiple products. If
 you are collecting payment for more than one product, you will
 have to summarize the products in the Name field and enter a
 quantity of 1. See the next section of this hack for another
 solution.

	In the S&H field, enter the amount to charge for
 shipping and handling. If you change this field, you will see the
 Total Payment update to reflect the new amount.

	Select the currency, confirm that the Total Payment is
 correct, and click Next when you’re done.

	On the Button screen, select the button you would like to
 put into your email. The wizard provides six payment button
 images, all hosted on the PayPal web site (they might not appear
 if you or your recipient are not connected to the
 Internet).

	If you would like to use another image for your button,
 select the URL option and enter the URL of your image file
 (presumably hosted on your own site). The button must be on a web
 server that can be accessed by anyone via the Internet. You can
 also choose the Text option to put the PayPal payment URL behind a
 text link instead of an image.

	Click Next to view the You’re Almost Done screen, where
 you’ll see a summary of the values selected for your Payment
 Button. Verify that the information is correct and press the Test
 button to see the button in action.

	If you are planning on sending many similar buttons, check
 the Save settings box. The wizard will save your settings for the
 next time.

	Click Insert, and the fully configured button will be
 inserted into a blank email. (You won’t be able to click on the
 button, because you’re in edit mode.)

	At this point, complete the email. Type one or more email
 addresses into the To field, enter a subject, and include a note
 or instructions to accompany the button, as illustrated in Figure 4-9.
	[image: Payment Button ready to send from your own email]

Figure 4-9. Payment Button ready to send from your own email

	Click Send when you’re finished.

When your customer opens the email, he will be able to click the
 button and pay you after logging into his PayPal account. To test this
 experience firsthand, send the email to your own email address.

Including More than One Button in an Email

Since the PayPal Payment Wizard creates a new email message with
 each button, there is no way to use it to insert more than one button
 into a single email message. However, overcoming this limitation is
 easy enough:
	Insert a payment button with the Payment Wizard, as
 described in the previous section.

	Using your mouse, select the area around the new button,
 making sure to include the lines above and below the new button,
 as shown in Figure
 4-10.
	[image: Selected Payment Button including line above and below the button]

Figure 4-10. Selected Payment Button including line above and below
 the button

Warning
If you select only the button and not the lines above and
 below, you’ll get only the image without the hyperlink.

	Copy the selection to the clipboard by pressing Ctrl-C or by
 selecting Copy from Outlook’s Edit menu.

	Click to place the insertion point (text cursor) where you’d
 like the new button to appear, and paste the button into the
 existing email by pressing Ctrl-V or by selecting Paste from
 Outlook’s Edit menu. You can paste the button into any email,
 including one that already contains a payment button.

Repeat the process for each additional payment button you would
 like to insert. To verify that the image and corresponding hyperlink
 have been pasted correctly, as well as to make any changes to the URL,
 right-click the button and select Properties.

Hide Your Email Address from Spammers

Use your PayPal referral ID to prevent your
 email address from being harvested by spammers.
Spam (unsolicited bulk email) is a growing problem for Internet
 users, especially for those who have web sites that can be spidered by
 spambots looking for email addresses. The HTML generated by the PayPal Button
 Factory contains the email address listed in your PayPal account, making
 it available to address harvesters. Prevent this potential misuse by
 replacing your email address with your referral ID (also known as the
 affiliate ID).
Warning
This hack does not work with the HTML code generated for the
 PayPal Shopping Cart [Hack #45] . It also doesn’t support
 encrypted buttons [Hack #37] , although buttons protected
 by encryption are already well-protected from spammers.

To implement this fix, you need to obtain your referral ID from
 the PayPal web site and then edit your HTML button code, substituting
 the referral ID for your email address.
To obtain your referral ID from PayPal, click the Referrals link
 at the bottom of any PayPal page. You will see a text box with a
 URL in it, which will look something like https://www.paypal.com/mrb/pal=
 ABC1DEF2GHIJK. Your referral ID is the part
 of the URL after pal=; in this case,
 the referral ID is ABC1DEF2GHIJK.
To put the referral ID in place of your email address, open the
 web page that contains the button in a text or HTML editor and find the
 all sections of code that look like this:
<input type="hidden" name="business" value="youremail@yourisp.com">
Replace your email address with your referral ID, like
 this:
<input type="hidden" name="business" value="ABC1DEF2GHIJK">
You will need to do this for each button on your site. Your
 buttons will operate normally, and your customers won’t know the
 difference.
Warning
Keep in mind that this hack does not provide anonymity. Buyers
 will still see your email address in the process of making a
 payment.

Accept Donations

Accept PayPal donations to fill your
 nonprofit’s coffers, and tweak the Donate Now button to suit your
 needs.
The Internet has long been a tool for bringing together like-minded
 activists in a common cause. After Howard Dean’s campaign for the 2004
 Democratic presidential nomination, however, fundraisers working in the
 mainstream learned that the power of the Net could not only get out the
 word, but bring in the green as well.
PayPal has long understood the value of making donations quick and
 easy. The Make a Donation button lets you start accepting contributions
 immediately. To create a button follow these steps:
	Log into your PayPal account.

	Click the Merchant Tools tab, and then click Donations (under
 Website Payments).

	Fill in a name and ID number, if you wish. A Donate Now
 button’s name and ID number, like the Item Name/Service and Item
 ID/Number in a Buy Now button, let you and your contributors
 identify payments. By using different numbers and descriptions, you
 can place a number of buttons on your site, each soliciting
 donations to different programs.

	Enter an amount or leave blank if you want your donors to
 enter an amount themselves. Either way, you’ll need to select a
 currency in which donations will be made.

	Choose from the selection of PayPal donation buttons, or
 specify the URL of your own button image.

	Choose the encrypted or unencrypted version of the button. If
 you’re not sure which one to use, choose the unencrypted version;
 you can replace it later with an encrypted one once your button is
 functioning. Unencrypted buttons are plain HTML forms—easy to read,
 understand, and modify. An encrypted button, on the other hand, is
 inscrutable to anyone but the PayPal system and impossible to modify
 or customize. While unencrypted buttons can be created with any
 software tool, encrypted buttons can, at the time of this writing,
 be created only with the PayPal system’s Merchant Tools. Encrypted
 buttons can be useful in some situations, such as to protect your
 email address from spammers. Openness, however, is usually best. See
 [Hack
 #36] to learn more about button
 encryption.
Tip
The encryption of buttons is a relatively new feature to the
 PayPal system. The unencrypted button, open to be read and
 understood by all, might have its roots in PayPal’s corporate
 culture, which holds “open and honest communication” as a core
 value.

	Click Create Button Now when you’re done.

The HTML code generated for your button is found in a textarea box on the next page. Just select its
 contents, press Ctrl-C to copy the text to the clipboard, and then paste
 the text into your web page.
Establishing Suggested Giving Levels

Your donors might be more comfortable giving at one of
 several suggested donation levels than having to
 fill in a blank box with a dollar amount.
Tip
Include a catchy name for each donation level. For instance,
 the California State Railroad Museum Foundation (http://www.csrmf.org) offers six suggested donation
 levels: become a Brakeman for $25, a Fireman for $35, a Conductor
 for $50, an Engineer for $100, a Trainmaster for $250, or a Silver
 Spike/Railroad Patron for $1,000.

Provide a drop-down list (shown here) or a radio button group to
 allow your donors to easily choose an amount:
<blockquote>
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <p>Please contribute to XHTML Promotion Society, "Diamond" Dave Burchell,
 DocBook Outreach Officer.</p>
<input type="hidden" name="cmd" value="_xclick"/>
<input type="hidden" name="business" value="burchell@inebraska.com"/>
<input type="hidden" name="item_name" value="General Fund Contribution"/>
<input type="hidden" name="item_number" value="GF-1"/>
<!-- <input type="hidden" name="amount" value="3.00"/> -->
<p>Contribution amount:
<select name="amount">
 <option value="200"/>$200
 <option selected value="100"/>$100
 <option value="75"/>$75
 <option value="50"/>$50
 <option value="25"/>$25
</select>
</p>
<input type="hidden" name="no_note" value="1"/>
<input type="hidden" name="currency_code" value="USD"/>
<input type="hidden" name="tax" value="0"/>
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but21.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's fast,
 free and secure!"/>
</form>
</blockquote>
Among other things, a page like the one shown in Figure 4-11 will give your donors
 some idea how much others might be donating.
	[image: Suggesting a range of donation levels to encourage your contributors to donate fistfuls of cash]

Figure 4-11. Suggesting a range of donation levels to encourage your
 contributors to donate fistfuls of cash

Tip
You’ll collect more money by setting the default donation
 level (marked with the selected
 parameter in the code)one notch higher than the
 amount most donors actually give. This will encourage your more
 generous supporters to stretch just a bit, while raising the bar for
 those who might otherwise choose the lowest level.

Requiring Information from Your Donors

In some situations, such as the collecting of contributions to a political campaign, you’ll require
 information about your donors. For example, your local election laws
 might require you to record the occupation and employer of each
 contributor.
You could simply ask contributors to include this information in
 the note field (answer Yes to the Collect Additional Information From
 Your Customers question on the Add More Options page), but when was
 the last time you saw a customer ever follow directions? Instead,
 include a little JavaScript to virtually insure that your donors provide
 the information you need:
<script language="javascript">
<!--
function noEntry() {
if (document.contribution_form.os0.value.length<1) {
 alert("Please fill in your Employer.");
 return false; }
else if (document.contribution_form.os1.value.length<1) {
 alert("Please fill in your Occupation.");
 return false; }
if (document.contribution_form.amount.value.length<1) {
 alert("Please fill in the amount to donate.");
 return false; }
else if (document.contribution_form.amount.value<1) {
 alert("No pennies please.");
 return false; }
else if ((document.contribution_form.q1.checked==false) ||
 (document.contribution_form.q2.checked==false) ||
 (document.contribution_form.q3.checked==false) ||
 (document.contribution_form.q4.checked==false)) {
 alert("You must agree to all four certifications.");
 return false; }
else { return true; }
}
// -->
</script>

<blockquote>
 <h4 align="center">Please show your support for "Diamond" Dave Burchell's
 run for the position of city dogcatcher with a generous donation.</h4>

<form name="contribution_form" onsubmit="return noEntry()" action=
 "https://www.paypal.com/cgi-bin/webscr" method="post" target="_blank">
 <input type="hidden" value="Occupation" name="on1"/>
 <input type="hidden" value="Employer" name="on0"/>
 <input type="hidden" value="Dogcatcher Campaign Contribution" name=
 "item_name"/>
 <input type="hidden" value="PayPalTech" name="bn"/>
 <!-- enter the email address on your PayPal account below -->
 <input type="hidden" value="burchell@paypalhacks.com" name="business"/>
 <input type="hidden" value="_xclick" name="redirect_cmd"/>
 <input type="hidden" value="_ext-enter" name="cmd"/>
 <center>
 <table border="0" width="100%">
 <tbody>
 <tr>
 <td width="37%" align="right">First Name: </td>
 <td width="63%"><input name="first_name" size="15"/> </td>
 </tr>
 <tr>
 <td width="37%" align="right">Last Name: </td>
 <td width="63%"><input name="last_name" size="15"/> </td>
 </tr>
 <tr>
 <td width="37%" align="right">Employer:</td>
 <td width="63%"><input name="os0"/> (required)</td>
 </tr>
 <tr>
 <td width="37%" align="right">Occupation: </td>
 <td width="63%"><input name="os1"/> (required)</td>
 </tr>
 <tr>
 <td width="37%" align="right">Phone Number: </td>
 <td width="63%"><input name="item_number" size="12"/> </td>
 </tr>
 <tr>
 <td width="37%" align="right">Amount: </td>
 <td width="63%">$ <input name="amount" size="7"/> (limit
$1000)</td>
 </tr>
 </tbody>
 </table>
 <table border="0" width="90%">
 <tbody>
 <tr>
 <td width="305">

You must check each of the boxes below to meet federal contribution
requirements:

 <input type="checkbox" value="1" name="q1"/>This
contribution is made from my own funds, and not from those of another.

 <input type="checkbox" value="1" name="q2"/>
This contribution is not made from general treasury fund of a
corporation, labor organization, or national bank.

 <input type="checkbox" value="1" name="q3"/>
I am not a Federal Government Contractor, nor am I a Foreign National
who lacks permanent resident status in the United States.

 <input type="checkbox" value="1" name="q4"/>
This contribution is made on a personal credit card or debit card for
which I have a legal obligation to pay, and is made neither on a
corporate or business entity card nor on the card of another.
 </td>
 </tr>
 </tbody>
 </table>
 <p align="center"><input type="submit" value="Contribute" name="button"/></p>
 </center>
</form>
Here, the noEntry()
 JavaScript routine, executed when the contributor
 submits the form, displays an error if the Employer or Occupation fields are blank, or if the donor
 enters a donation that’s too low, as shown in Figure 4-12.
	[image: A little JavaScript prevents donors from sending you donations you can’t use]

Figure 4-12. A little JavaScript prevents donors from sending you
 donations you can’t use

Warning
This client-side validation script will fail if the
 contributor’s JavaScript option is disabled in the browser settings.
 You should always supplement this script with server-side validation
 to ensure that improper submissions aren’t let through.

PayPal-Enable Your Flash

Add PayPal Buy Now or Subscription
 functionality to your Flash-powered online store using the WebAssist
 PayPal eCommerce Snap-ins.
Increasingly, Flash has been putting the sizzle in the online shopping experience
 by adding cool interactivity and fancy special effects to otherwise
 bland web pages. Over the last couple years, Macromedia has added
 several full-fledged software architectures to support Flash-based
 transactions. Flash forms take advantage of the enhanced interactive
 capabilities of the vector-based client and allow all manner of special
 effects, including visual sorting and drag-and-drop shopping options.
 The latest versions of Flash also provide standard components for
 commonly used form elements, such as text fields, checkboxes, radio
 buttons, and lists, which means that you can accept PayPal payments from
 within Flash elements on your web site.
Snap in the PayPal Connection

So, what does it take to make the Flash connection to
 PayPal? In truth, the back-end ActionScript required to make the
 necessary PayPal connection is extremely complex. The good news,
 however, is that a Flash extension, developed by PayPal and WebAssist,
 provides the core functionality while leaving a great deal of room for
 programmatic customization.
Get the extension—known as the WA PayPal eCommerce Snap-ins for
 Flash MX—from http://webassist.com/Products/ProductDetails.asp?PID=24.
 The extension is free; you just need to register with WebAssist.
 Install the extension into Flash MX by double-clicking the downloaded
 file, or into Flash MX 2004 via Macromedia’s Extension Manager. If you have Flash open, you’ll need
 to quit and relaunch the program for the snap-in to appear.
Once the extension is installed, you can straightforwardly
 handle the basics for adding a Buy Now or Subscription button to your
 page. If the item you’re selling has no options or other
 complications, you don’t even have to touch the ActionScript.
Start by building your basic product page. Make sure there is at
 least one clickable element (such as a button) on the Flash stage, and
 give it a name in the Property inspector.
Tip
Typically, Flash buttons are used for such an interactive
 event. If you’re design-challenged, the installed extension includes
 a number of Buy Now or Subscription buttons, located in the PayPal
 Buttons folder of the Common Libraries window. You can drag these to
 any location on the stage.

Open the Components panel and look in the WA PayPal eCommerce
 category. Drag either the Buy Now or Subscription object (these are
 the actual snap-ins) anywhere onto the stage.
Tip
Although the snap-in appears as a visual element at
 design-time, you won’t see it when the movie is published. All of
 its power is behind the scenes.

To complete the simple Flash PayPal configuration, you’ll need
 to establish the details to be sent. While you can set these values in
 ActionScript, as explained later in this hack, you can also use the
 snap-in’s Component inspector. Select the snap-in and, in the Property
 inspector, click the Launch Component Inspector button.
In the Parameters tab of the Component Inspector panel, you’ll
 see a custom dialog box for the snap-ins, as shown in Figure 4-13. Each of the snap-in
 parameter dialogs is a specialized multitabbed affair.
	[image: Setting the properties of the PayPal extension in Macromedia’s Component Inspector]

Figure 4-13. Setting the properties of the PayPal extension in
 Macromedia’s Component Inspector

Take a look at the Component Inspector for the Buy Now snap-in, in which the following parameters are
 separated into three tabs (General, Item Details, and
 Shipping):
	General tab
		PayPal Account
	The PayPal recipient’s email address
 (required)

	Company Logo
	The web address (URL) of your logo graphic (such as
 a .jpg file), which will be
 incorporated into the PayPal page

	Success URL
	A fully formed URL to the web page you want your
 customers to see after a successful PayPal
 transaction

	Cancel URL
	The web address of the page to which customers who
 cancel are sent

	Item Details tab
		Item Name/Service
	The name of the item being sold

	Item ID Number
	The product SKU or other ID number passed through to
 you (not seen by the customer)

	Price
	The base price of the item

	Currency
	The type of currency to be used (choices are U.S.
 dollars, Canadian dollars, euros, British pounds and
 Japanese yen)

	Multiple Units Option
	A checkbox that controls whether customers can order
 a quantity of more than one

	Shipping tab
		Base Shipping
	The shipping cost for a single item

	Extra Shipping
	Shipping charges added, per additional item, if more
 than one unit is ordered

	Handling
	The handling charge, over and above the
 aforementioned shipping charges, applied to the entire
 order

	Shipping Information Option
	A checkbox that determines whether PayPal will
 request the customer’s shipping information

	Note Option
	An option that allows customers to add a note with
 their PayPal order

Tip
The Subscription Component Inspector parameter dialog is
 similar to the one for the Buy Now snap-in, but it offers special
 fields for specifying one-time or recurring billing, as well as
 trial offers.

For items with properties that are completely covered by the
 options in the Component Inspector panel, no additional ActionScript
 is required to complete the PayPal order. All you need do is publish
 the .swf file and put it in an HTML page on the
 Web; the rest is automatic. But, of course, you want more, don’t you?

Hacking the Hack

So, what’s underneath the hood of the WebAssist PayPal eCommerce Snap-ins for Flash MX? Quite
 a bit, as it turns out. There are 31 different methods embedded in the
 Buy Now snap-in and 38 in the Subscribe snap-in. Of these, about half
 are used to set values, and the other half are used to pass those
 values to PayPal. The setting methods are of prime interest to the
 Flash/PayPal hacker.
Take a look at a typical example that ties additional options
 (and their related prices) to a PayPal item. Imagine a fictional
 online T-shirt emporium that offers a fancy-dancy item available in
 five different colors and four different sizes. There’s no difference
 in price for the various colors available. However, Flash can
 represent the different colors quite easily, thus adding a nice visual
 flair to our product page. T-shirt size, on the other hand, goes up
 with price: $10.99 for small, $13.99 for medium, $15.99 for large, and
 $18.99 for extra large.
Again, representing this in the .swf is
 trivial for Flash MX or Flash MX 2004. The values in the drop-down
 size list are displayed in a dynamic text variable as the current
 price. But how do you send the correct item cost and order details to
 PayPal? Short answer: use the set
 methods. Here’s the longer, code-oriented answer—just place this
 ActionScript code into your project:
function setPrice() {
 // Get the price (based on size list)
 var newPrice = sizeList.getValue();
1. BN.setAmount(newPrice);
2. BN.setItemName(sizeList.getSelectedItem().label+" "+colorList.getSelectedItem().
label+" WebAssist.com T-Shirt");
3. BN.setItemNumber(String(sizeList.getSelectedIndex()) + String
(colorList.getSelectedIndex()));
}
The function setPrice() is called
 when the page is first loaded and each time any option changes. Both
 options (color and size) are selected from drop-down lists, colorList and sizeList, respectively. The first line of
 the code picks up the price from the sizeList. The user sees the labels in the
 list (Small, Medium, Large, and X-Large), but the values are set to
 prices of 10.99, 13.99, 15.99, and 18.99. The current item price is established
 as amount to send to PayPal on line 1.
The Buy Now snap-in instance placed on the stage is named BN,
 and any methods that relate to that instance are named with the BN
 prefix. Two more functions are used to set the item name (which is
 what the customer sees on the Payment For line of the PayPal page) and
 the item number (a SKU number that is sent to the online store owner
 for order processing) on lines 2 and 3, respectively.
Any value that you can set in the Component Parameter dialog can
 be set programmatically in ActionScript. Table 4-1 shows all Buy Now methods that set values.
Table 4-1. Buy Now Button methods that set values
	Buy Now method
	Argument
	Description

	 setAllowNote(" allow")
	Boolean; true
 or false
	Sets whether the buyer can include a note with
 the payment. If set to false, your customer will not be
 prompted to include a note.

	 setAmount(" amount")
	String
	Sets the base amount of the item.

	 setBusinessID(" business")
	String
	Specifies the PayPal ID, or email address, where
 payments will be sent. This email address must be confirmed
 and linked to your verified Business or Premier
 account.

	 setCancelURL(" url")
	String; fully formed URL
	Sets the URL of the page viewed when the Cancel
 button is clicked. This item is optional; if omitted, users
 will be taken to the PayPal site.

	 setCurrency(" currency")
	String; valid values are USD, GBP, EUR, CAD, or JPY
	Sets the currency to be used for payment. For
 example, to use the euro instead of the U.S. dollar, change
 the currency from USD to
 EUR. Other available
 currencies include pounds sterling (GBP), the Canadian dollar (CAD), and Japanese yen (JPY).

	 setExtraShipping(" amount")
	String
	Sets the extra shipping cost per item after the
 first item. If this optional value is omitted, and your
 Profile-based shipping is enabled, your customer will be
 charged the amount or percentage defined in your
 Profile.

	 setHandling(" amount")
	String
	Sets the handling charge. This is not
 quantity-specific. The same handling will be charged
 regardless of the number of items purchased.

	 setItemName(" name")
	String
	Specifies the name or description of the item
 (maximum 127 characters).

	 setItemNumber(" itemNumber")
	String
	Sets the item number, SKU, or unique key; this is
 the pass-through variable with which you can track payments.
 It will not be displayed to your customer but will get passed
 back to you at the completion of payment (maximum 127
 characters).

	 setLogoURL(" url")
	String; fully formed URL
	Sets the URL to your company logo, an image up to
 150 by 50 pixels. This is optional; if omitted, your customer
 will see your business name (if you have a Business account)
 or email address (if you have a Premier
 account).

	 setNoShipping(" bNoShipping")
	Boolean; true
 or false
	Sets whether shipping information is necessary
 for checkout. If set to true, your customer will not be
 asked for a shipping address.

	 setShipping(" amount")
	String
	Sets the shipping charge. If shipping is used and
 shipping_extra is not
 defined, this flat amount will be charged regardless of the
 quantity of items purchased. If you are using item-based
 shipping, make sure the Override checkbox is checked in your
 Profile.

	 setReturnURL(" url")
	String; fully formed URL
	Sets the URL of the page to which the customer is
 sent when the order is complete. This item is optional, if
 omitted, customers will be taken to the PayPal
 site.

	 setTarget(" window")
	String; default value is _self
	Sets the target window where the payment
 processing information will be displayed. The constant
 _self can be used for the
 current window, _blank will
 always open a new window, and _parent will replace the parent
 frameset. You can also specify another frame in your frameset,
 such as content.

	 setUpdateableQuantity
 (" updateable")
	Boolean; true
 or false
	Sets whether the buyer can change the quantity on
 the PayPal site. If set to true, the customer will be able to
 edit the quantity. If this optional value is omitted or set to
 false, the quantity will
 default to 1.

The Subscription methods are, for the most part, the same as
 the methods that set values; all methods listed in Table 4-1, with the exception of
 setAmount, setExtraShipping, setHandling, setShipping, and setUpdateableQuery, can also be used with an
 instance of a Subscription snap-in. Table 4-2 lists the additional
 Subscription set methods available.
Table 4-2. Subscription Button methods that set values
	Subscription method
	Argument
	Description

	 setBillContinuous("
 billContinuously")
	Boolean; true
 or false
	Specifies whether this is a recurring payment. If
 set to true, the payment
 will recur unless your customer cancels the subscription
 before the end of the billing cycle. If omitted, the
 subscription payment will not recur at the end of the billing
 cycle.

	 setBillingAmount(" amount")
	String
	Sets the price of the purchase at the standard
 rate.

	 setBillingPeriod(" period")
	String
	Specifies the length of the billing cycle. The
 number is modified by the regular billing cycle units, set by
 setBillingTime("timeUnit").

	 setBillingTime("
 timeUnit"
	String; valid values are D, W, M or Y
	Sets the unit of time that the billing period is
 measured in (D=days,
 W=weeks, M=months, Y=years).

	 setReattempt(" reattempt")
	Boolean; either true or false
	Sets whether to reattempt billing if the payment
 is declined. If set to true
 and the payment fails, the payment will be reattempted two
 more times. After the third failure, the subscription will be
 canceled. If omitted and the payment fails, payment will not
 be reattempted and the subscription will be immediately
 canceled.

	 setStopAfterBilling(" number")
	String
	Specifies the number of payments to occur at the
 regular rate. If omitted, payment will recur at the regular
 rate until the subscription is cancelled.

	 setTrialAmount(" amount")
	String
	Sets the trial price. For a free trial, use a
 value of 0.

	 getTrialPeriod(" period")
	String
	Sets the length of the trial period. This number
 is modified by the trial period units, set by setTrialTime("timeUnit").

	 getTrialTime(" timeUnit ")
	String: valid values are D, W, M or Y
	Sets the unit of time in which the trial is
 measured (D=days, W=weeks, M=months, Y=years).

Combine Flash’s interactive flair with the ActionScript methods
 to put your customers in the driver’s seat and still get all the
 information you need to process your PayPal order correctly.
—Joe Lowery

Get More Out of Dreamweaver and PayPal

Use the WebAssist PayPal eCommerce Toolkit
 to enable fast, easy, and flexible PayPal transactions with
 Dreamweaver.
If you use Macromedia Dreamweaver to design and produce web pages, you can use
 the WebAssist PayPal eCommerce Toolkit (an extension to Dreamweaver) to
 integrate PayPal with your web site. Naturally, you can use
 Dreamweaver’s code editor to insert any PayPal transaction you want, but
 why hand-code when you can point and click? The results are the same as
 hand-coding; it’s just quicker, less error prone, and requires almost no
 technical savvy: what’s not to love?
Drag and Drop eCommerce

With WebAssist PayPal eCommerce Toolkit (available for free at
 http://www.webassist.com), you can insert
 Add to Cart, View Cart, Subscription, and Buy Now buttons. Insert any of these objects and a
 multistep wizard walks you through the particulars of the process.
 Each wizard offers a nice library of button designs to choose from, so
 you don’t have to create any artwork from scratch. However, if you do
 have your own button, you can enter the URL of its web-based location
 and that button will be used.
Other available options depend on which button type is being
 inserted. The Buy Now button, for example, lets you specify the base
 shipping, any extra shipping to be added for each additional item
 ordered, and overall handling charges. If you enter these additional
 values, they override your general account settings on a per-item
 basis. Adding a Subscription button, on the other hand, gives you the
 ability to establish periodic billing values (i.e., how much for how
 long) and trial-offer settings, such as the length of the trial offer.
 You can even determine a setup fee for a subscription.

Hacking the Hack

By itself, the WebAssist PayPal eCommerce Toolkit is great for
 items with no options or variations. However, by doing a little work
 on the form that contains the PayPal buttons, you can greatly extend
 the toolkit’s functionality. Most of the following techniques center
 on two concepts: naming form elements properly and using hidden form
 fields. These concepts work together to pass the correct information
 to PayPal when the transaction is initiated.
Say your your item is available in several sizes or
 configurations at varying prices. You can pass the right price to
 PayPal in two ways: using drop-down lists or radio buttons. To offer multiple prices with a list,
 follow these steps:
	Insert a list/menu form element from Dreamweaver’s Insert
 bar, found in the Forms category.

	Select the list element and, in the Property inspector,
 enter amount in the (ironically
 unlabeled) name field on the top left.

	Choose List Values to open the List Values dialog
 box.

	In the dialog, enter the first item you want the user to see
 in the Label column.

	Press Tab and, in the Value column, enter the corresponding
 amount you want passed to PayPal when this item is chosen. Enter
 just the raw number without dollar signs. For the first item, it’s
 common to use a directive like “Choose From This List” rather than
 an item. If you use basic text like this, be sure to leave the
 corresponding Value empty.

	Press Tab again to enter another Label/Value pair.

	When you’re done, click OK.

When the user makes a selection from the list, the related value
 is assigned as the amount and sent to PayPal at transaction time. If
 you’d prefer to display all options on-screen rather than contain them
 in a list, use radio buttons to vary the price. Here’s how:
	Insert a radio button from the Insert bar, in the Forms
 category.

	In the Property inspector, enter amount in the name field.

	In the Checked Value field, enter the number value you want
 to send to PayPal when this option is selected.

	Repeat steps 1-3 for each additional option and price point
 you’d like.

Keep the name of each button in the radio group the same
 (amount) and vary the Checked Value
 numbers. You can use as many radio buttons as needed.
What about other types of options? PayPal allows two additional
 options per item. Using the following technique, you can pass two
 pairs of name and associated information to be included in the order
 sent to the store owner for fulfillment. If this technique is used to
 pass color choices, for example, the string passed to PayPal (and on
 to the owner) might be color="Cream“.
Let’s say that you have a list of colors for the customer to
 choose from in your product page. Set up the color list with
 name/value pairs as described in the previous steps for establishing
 the amount. This time, however, name the list/menu form object
 os0 , which stands for Object String 0,
 the first of the two PayPal option values allowed.
Of course, you can’t send a value without identifying it. To
 tell PayPal and, eventually, the fulfillment folks, what this value is
 for, insert a hidden form field from Dreamweaver’s Insert bar, in the
 Forms category. With the hidden form field selected, enter its name in
 the Property inspector: on0 (short
 for Object Name 0). Complete the operation by
 entering color in the Value field
 of the Property inspector. Your first option is ready to go. You can
 enter another option (perhaps setting the item’s size) by following
 same procedure and substituting os1
 and on1 for the new option’s value
 and name, respectively.
—Joe Lowery

Provide Options with ASP.NET Web Controls

Create custom web controls in ASP.NET to
 allow customers to specify product options with their
 orders.
As described in
 [Hack #28] , you can send option
 information to PayPal so that it appears as part of the transaction
 along with other item details, such as quantity and price. This
 information is vital to order fulfillment and also allows customers to
 review fully what they are buying.
Sending this information to PayPal is simple. You can do it in one
 of two ways:
	Send the information through the URL as parameters.

	Send the information through form submission using HTTP
 POST.

PayPal looks for four parameters when information is passed to it
 by its payment controls: option name one, option value one, option name
 two, and option value two. Geeks came up with the naming here, and to us
 geeks (you might be one and find comfort in this), traditional base-10
 numeric series start with the number 0 and end with the number
 9.[2] So, the first option is called option 0 and the second is
 called option 1, and when you pass this information to PayPal, it looks
 something like this:
on0="Size"
os0="Large"
on1="Color"
os1="Blue"
This information can be passed to PayPal through a URL, like
 this:
http://please.include.a/complete/url?on0=Size&os0=Large
or through an HTTP form POST:
<input type=hidden name="on0" value="Size">
<input type=hidden name="os0" value="Large">
PayPal will include this information in the description section of
 the item, so your user can view it at the time of the sale.
Using the .NET Payment Controls

Collecting order details is fairly straightforward with traditional
 scripting languages (e.g., ASP or PERL). Simply display the
 information for each product, with relevant options, in a single form
 for each product (this example uses Active Server Pages with
 VBScript):
<% while not rs.eof%>
<form action="https://www.paypal.com/cgi-bin/webscr" method=POST>

<!-- The product name and description go here -->

<input type=hidden name="on0" value="Size">
<select name=os0>
 <option value="Large">Large</option>
 <option value="Medium"> Medium </option>
 <option value="Small">Small </option>
</select>
<input type=hidden name="on1" value="Color">
<select name=os1>
 <option value="Yellow"> Yellow </option>
 <option value="Blue"> Blue </option>
 <option value="Gold"> Gold </option>
</select>

<input type=submit value="Add To Basket">

<form>
<%
rs.movenext
wend
%>
Tip
This code provides purchase options with drop-down
 listboxes [Hack #32] to restrict the inputs on
 the form.

Using product options with the .NET payment controls, however,
 offers a bit of a challenge, given that an ASP.NET page only lets you
 have one <form> tag per
 ASP.NET web page, thus allowing it to maintain page state
 properly.
To get around the single-form limitation, you can use the
 Click event of the
 Payment Controls to add the option controls at runtime. The first
 thing you must do is set the control to use the postback routine (UseFormGet=false) and disallow the pop-up
 command (UsePopUp=false), so that
 PayPal can glean the options from the postback.
This is a delicate process, especially when using the
 .NET-native data controls (e.g., DataList, Repeater, or DataGrid). You
 need to understand which events fire and in what order, because this
 can affect how your option controls are populated. You will be dealing
 with the Click event of the PayPal
 control, not one of the events of the data controls, which can get a
 little confusing. Thus, it’s best to skip ahead to the good part: how
 to do it!

Creating Your Own PayPal Control

If you are a serious geek, you’ve probably already created
 your own Custom Server Control to handle the intricacies of gathering
 option information from the ViewState. Or, at the very least, you have
 something mapped out in your head. However, there might be something
 simpler in the following approach, and I appeal to you to quell your
 ADD for another five minutes. Custom Server Controls can be useful,
 but they can also (and often do) add a layer of complication (a.k.a.
 lots of code) to an otherwise simple task.
This approach starts with a user control and then populates
 its options from the product information you pass to it. User controls
 allow you to encapsulate functionality for individual UI components,
 which this is, so you don’t need to write the same code twice or
 create spaghetti code in order to find the control you want hidden
 within your page.
Tip
This example uses PayPal’s Shopping Cart and the Add to Cart Button, and it is written in C# using
 ASP.NET.

Create a user control called
 AddToCartOptions.ascx, and add the PayPal
 AddToCart server control, along
 with a RadioButtonList called
 radColors and a DropDownList called ddSize:
<table>
 <tr>
 <td><asp:dropdownlist id="ddSize" runat="server">
 <asp:ListItem Value="Small" Selected="True">Small</asp:ListItem>
 <asp:ListItem Value="Medium">Medium</asp:ListItem>
 <asp:ListItem Value="Large">Large</asp:ListItem>
 </asp:dropdownlist>
 </td>
 <td width="290">
 <asp:radiobuttonlist id="radColors"
 runat="server" RepeatDirection="Horizontal" Width="280px"
 Height="24px">
 <asp:ListItem Value="Black">Black</asp:ListItem>
 <asp:ListItem Value="Blue">Blue</asp:ListItem>
 <asp:ListItem Value="Paisley">Paisley</asp:ListItem>
 <asp:ListItem Value="Polka Dots">Polka Dots</asp:ListItem>
 </asp:radiobuttonlist>
 </td>
 <td>
 <cc1:addtocartbutton id="AddToCartButton1" runat="server"
 BusinessEmail="mybusinessemail" ItemNumber="xxxx" ItemName="Small Army Men"
 Amount="1.02" ReturnUrl="http://myserver/myhandler.aspx"
 CancelPurchaseUrl="http://myserver/mycancelhandler.aspx"
 Shipping=".01" Tax=".01" UsePopup="false" UseFormGet="false"
 </cc1:addtocartbutton>
 </td>
 </tr>
</table>
Make sure to set the UseFormGet and UsePopup values to false, which will force a postback to the
 server. Next, in the code behind the page, add the properties or
 fields that will be set by the calling page:
public string ItemName;
public string ItemNumber;
public string Amount;
In the Page_Load event of the ASP.NET page, populate these values, as
 well as those of your options (in case you need to populate the option
 controls from the database):
//expose the properties as needed
AddToCartButton1.ItemName=ItemName;
AddToCartButton1.ItemNumber=ItemNumber;
try{
 AddToCartButton1.Amount=Convert.ToDouble(Amount);
}catch{
 throw new Exception("Invalid value for a double: " +Amount.ToString());
}
Add the event handler for the button Click event in the InitializeComponent() method:
this.AddToCartButton1.Click+=new System.EventHandler(this.AddClicked);
Finally, add the method to handle the PayPal button Click event, which reads the values of the
 controls and populates the AddToCartButton1 options accordingly:
private void AddClicked(object sender, System.EventArgs e) {
 AddToCartButton1.Option1FieldName="Size";
 AddToCartButton1.Option1Values=ddSize.SelectedValue;
 AddToCartButton1.Option2FieldName="Color";
 AddToCartButton1.Option2Values=radColors.SelectedValue;
}
This method populates the
 control just before the output is rendered to the browser, which
 redirects the user to PayPal for the purchase.
Warning
It should be noted at this point that the geeks who created
 this control appear not to be the same geeks who created the
 aforementioned naming convention at PayPal: the geeks who created
 this control are not Zeroians but nonbelievers in the primary status
 of the Almighty Zero. Thus, Option1FieldName represents option number
 1, which, in turn, corresponds to
 on0.

To reward those of you who are patient enough to have made it
 this far, here is a final piece of wisdom: .NET is notoriously tricky
 when it comes to marrying the concept of events to a stateless medium
 such as a web page. There is a mess of events that goes into every
 request and every object; adding more objects to a page only
 complicates matters, especially when those objects have event sets of
 their own.
If you have ever tried to run logic using the events in a user
 control—which is, itself, part of a DataList or Repeater—you have
 undoubtedly run into the Event Freak
 ShowTM, wherein you cannot get your events
 to work properly or fire in the correct order, despite using all the
 Page.Postback tests in existence.
 If not done properly, the options selected by your customer will be
 overwritten by the initialization routine of the page, and the same
 meaningless information will be passed to PayPal.
The solution to this problem lies in setting the DataSource property, not the DataBind(
) method, of your Repeater or DataList. Consider that the
 user control, discussed earlier in this hack, is in a Repeater called
 MyRepeater:
<asp:Repeater id=MyRepeater Runat="server">
 <ItemTemplate>
 <uc1:_AddToCartOptions'
 id=_AddToCartOptions1
 runat="server" ItemName='<%#DataBinder.Eval(Container.DataItem, "ModelName")%>'
 ItemNumber='<%#DataBinder.Eval(Container.DataItem, "ModelNumber")%>' Amount=
'<%#DataBinder.Eval(Container.DataItem, "UnitCost")%>' >
 </uc1:_AddToCartOptions>
 </ItemTemplate>
</asp:Repeater>
To preserve the ViewState of the user control, be sure to DataBind the
 Repeater:
MyRepeater.DataSource = MyDataSource;
if(!Page.IsPostBack){
 MyRepeater.DataBind();
}
The DataBind() method overwrites whatever state the user control was
 in when submitted by the customer, so you need to handle the
 population of this control and test for the postback. Setting the
 DataSource at runtime apparently helps the control remember the
 ViewState of its child controls.
Thus, your Repeater (or DataList) and all of its controls will
 maintain their ViewState, and your customer’s option selections will be passed properly.
—Rob Conery

Try Accepting Payments in a Bogus Currency

Weird out your pals and amuse your customers
 with PayPal’s devilishly clever error message.
PayPal allows you to send and receive payments in five
 currencies: U.S. dollars (USD),
 Canadian dollars (CAD), pounds
 sterling (GBP), euros (EUR), and Japanese yen (JPY). If you are creating your own PayPal
 buttons, you’ll need to indicate one of these five currencies in the
 button’s markup. If you make a mistake here, your prospective buyers
 will be greeted with a confusing error message.
However, you might want to turn this error on its ear by working
 it into the storyline of your web site. If you offer products to Harry
 Potter fans, for example, you might want to put up a button like
 this:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="burchell@inebraska.com">
<input type="hidden" name="item_name" value="The Monster Book of Monsters">
<input type="hidden" name="item_number" value="MboM">
<input type="hidden" name="amount" value="49.00">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code"
 value="sickles">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but23.gif" border="0"
 name="submit" alt="Make payments with PayPal - it's fast, free and secure!">
</form>
Your customers will see this message:
This recipient does not accept payments denominated in sickles.
 Please contact the seller and ask him to update his payment receiving
 preferences to accept this currency.

The useful lesson: if your customers contact you asking you to
 change your payment preferences to accept CAN, CND,
 or YEN (none of which are valid),
 check your button code.

[1] SnipURL (http://snipurl.com)
 also works and takes it a bit further with tracking features. For
 a similar, yet far less useful URL-processing tool, try HugeURL (http://hugeurl.com).

[2] Actually, there are many numeric patterns that start at zero,
 such as the way we track the minutes in an hour.

Chapter 5. Storefronts and Shopping Carts

Introduction: Hacks #45-50

Payment buttons are the means by which you can connect PayPal to
 your site and start collecting payments for your products in minutes. If
 you expect customers to come along and purchase only single products
 from your site, single payment buttons (discussed in Chapter 4) are perfectly adequate.
As your online business grows, however, your product offering will
 begin to increase and diversify and you’ll have to start thinking about
 ways to increase sales. A good place to start is with some sort of
 system to allow customers to purchase more than one product at a time, a
 system commonly known as a shopping cart.
PayPal provides a complete Shopping Cart system, built with the same PayPal buttons
 you’ve come to know and love. All you need to do to get started is place
 Add to Cart and View Cart buttons on your product pages [Hack
 #45] , and PayPal does the rest.
The hacks in this chapter help you manage your online inventory,
 fulfill orders, customize your customers’ experience, promote your
 online store, and sell more products with the PayPal Shopping Cart
 system.

Hack Shopping Cart Buttons

Change code from the PayPal Button Factory
 to provide flexibility for your Shopping Cart.
PayPal’s Shopping Cart allows merchants to provide the ability for
 customers to purchase a basket of goods rather than buy one item at a
 time with Buy Now buttons. The Shopping Cart system is ideal for stores
 with many items, but it doesn’t make sense to use the PayPal Button
 Factory to create each and every button for your store. Instead, you can
 create a single generic Shopping Cart button and then use the HTML code
 as a template for all your items.
To generate the code for a simple Shopping Cart button,
 follow these steps:
	Go to http://www.paypal.com, log into
 your account, and click the Merchant Tools tab.

	Click on the Shopping Cart link under the Website Payments
 section to open the PayPal Shopping Cart Button Factory, as shown in
 Figure 5-1.
	[image: Using the PayPal Button Factory to create Shopping Cart buttons]

Figure 5-1. Using the PayPal Button Factory to create Shopping Cart
 buttons

	Create a basic Shopping Cart button by entering any
 information for the item name and item number.

	When you’re done, click Create Button Now to generate the
 code.

The resulting code for the Add to Cart button should look like this:
<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's
 fast, free and secure!">
<input type="hidden" name="add" value="1">
<input type="hidden" name="cmd" value="_cart">
1. <input type="hidden" name="business" value="sales@paypalhacks.com">
2. <input type="hidden" name="item_name" value="Widget">
3. <input type="hidden" name="item_number" value="Wid-001">
4. <input type="hidden" name="amount" value="1.00">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
</form>
Lines 2-4 contain the three variables that define the details of
 the individual product, such as the product name, item number, and
 price. All the other variables remain the same for all of your products.
 Make sure to specify the email address for the account you want to use
 on line 1, although any button you create with the PayPal Button Factory
 includes your email address by default.
The Button Factory also provides code for a View Cart button:
<form target="paypal" action=
 "https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_cart">
<input type="hidden" name="business" value="sales@paypalhacks.com">
<input type="image" src="https://www.paypal.com/en_US/i/btn/view_cart_02.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's
 fast, free and secure!">
<input type="hidden" name="display" value="1">
</form>
Place this second block of code, as is, on all the pages of your
 web store to allow your customers to display the items they have added
 to their cart, as well as initiate the checkout process when they have
 finished shopping. The only variable you’ll need to customize in this
 example is business, in which you
 specify your email address. Figure
 5-2 shows the resulting page.
	[image: The Add to Cart and View Cart buttons: all you need to implement PayPal’s Shopping Cart interface on your web site]

Figure 5-2. The Add to Cart and View Cart buttons: all you need to
 implement PayPal’s Shopping Cart interface on your web site

Hacking the Hack

The PayPal Shopping Cart allows extensive customization using
 the additional variables supported by regular Buy Now buttons [Hack
 #28] . For example, the handling_cart
 variable allows you to define a cart-wide handling charge to be
 applied to the entire order, regardless of any individual handling
 charges you might have specified:
<input type="hidden" name="handling_cart" value="4.00">
The handling_cart charge
 takes effect when the first item is added to the cart.

Create Shopping Cart Links

Convert Shopping Cart button code to
 single-line URLs that can be emailed or linked to
 images.
Although you can create Shopping Cart buttons [Hack
 #45] at the PayPal web site, you can also create
 buttons off-site. This gives web page designers more flexibility and
 gives programmers the ability to create buttons dynamically with
 programming code. One of the simplest and most flexible approaches
 involves creating URLs instead of HTML forms.
The Code

The HTML code for a simple Add to Cart button looks like
 this:
<form method="post" action="https://www.paypal.com/cgi-bin/webscr"
 target="paypal">
<input type="hidden" name="cmd" value="_cart">
<input type="hidden" name="business" value="pay@paypalhacks.com">
<input type="hidden" name="item_name" value="PayPal Hacks">
<input type="hidden" name="amount" value="24.95">
<input type="submit" name="add" value="Add to Cart">
</form>
The equivalent button in the form of an Add to Cart hyperlink
 looks like this:
<a href=https://www.paypal.com/cgi-bin/webscr?cmd=_cart&add=1&business=
 pay@paypalhacks.com&item_name=PayPal+Hacks&amount=24.95
 target="paypal">Add to Cart
This link opens a window and displays the PayPal Shopping Cart
 with one item in it: PayPal Hacks for
 $24.95.
In both examples, note the presence of the important target="paypal" attribute, which causes the Shopping Cart to open in a new browser window. Without
 it, the cart will not display a Continue Shopping button. Always include this attribute
 in your Add to Cart buttons and also make sure paypal is all in lowercase.

Shortening the Link

Many PayPal URLs can be shortened, which can be useful (and
 sometimes necessary) when sending links in emails, because it prevents
 them from getting cut at the end of a line. The short link for the
 Shopping Cart begins with https://www.paypal.com/cart/. Just append all the
 fields you want to use to the end, as in this payment link:
https://www.paypal.com/cart/add=1&business=pay@paypalhacks.com&amount=20
This works for displaying the Shopping Cart as well:
https://www.paypal.com/cart/display=1&business=pay@paypalhacks.com
—Patrick Breitenbach

Specify the Size of the Shopping Cart Window

Control the size and other aspects of PayPal
 Shopping Cart pop-up window.
PayPal’s Button Factory generates Buy Now and Shopping Cart button
 code based on form inputs. In the case of the Shopping Cart, the target
 for the form defaults to a new window named paypal. Because this is submitted by a form,
 the size of the window defaults to the customer’s browser’s default.
 This default size can be too large and take up the customer’s entire
 screen, obscuring your store’s pages. Or, even worse, the window can be
 too small, forcing your customer to scroll around to see all the
 information for his cart.
With some simple HTML and JavaScript, you can specify the size of
 the Shopping Cart window PayPal opens.
The Code

Here’s the code for form buttons:
<form method="post" action=
 https://www.paypal.com/cgi-bin/webscr target="paypal">
<input type="hidden" name="cmd" value="_cart">
<input type="hidden" name="business" value="pay@paypalhacks.com">
<input type="hidden" name="item_name" value="PayPal Hacks">
<input type="hidden" name="amount" value="19.95">
<input type="submit" name="add" value="Add to Cart" onClick=
 "window.open('','paypal','width=780,height=500,scrollbars=yes,
 resizable=yes,status=yes')">
</form>
And here’s the equivalent as a hyperlink [Hack
 #46] :
<a href=# onClick="window.open('https://www.paypal.com/cgi-bin/webscr?cmd=
 _cart&add=1&business=pay@paypalhacks.com&item_name=PayPal+Hacks&
 amount=19.95','paypal','width=780,height=500,scrollbars=yes,
 resizable=yes,status=yes')">Add to Cart

Hacking the Hack

While you can experiment with the height and width to get the window size that works best
 for you, 780x500 is a good size, because it accommodates the size of
 PayPal’s web pages fairly well and works with most customers’ screens.
 Note some of the other attributes in this code:
	resizable
	No preset window size will be right for all your
 customers, so you’ll most likely want to allow them to resize
 the window. Set the resizable
 attribute to no only if you
 want the window to be a static size. This option can be useful
 if the window is to accompany a static-sized web site or if it
 will be used with some sort of kiosk system.

	scrollbars
	Set this attribute to yes if you want scrollbars to be
 displayed in the window (when appropriate), or set it to
 no to disable scrolling and
 really frustrate your customers. Be careful not to disable
 scrollbars if the window is not resizable.

	status
	Use this setting to turn on or off the window’s
 status bar. Turn it off for a more tidy look, or enable it if
 you want your customers to see the little yellow padlock that
 tells them the site is secure.

Deal with Design and Layout Issues

Embed the Button Factory code in a table to
 maintain the appearance of your web page’s layout.
 Browsers interpret HTML forms in different ways that can
 affect the appearance of your web page. Most browsers create unwanted
 spacing where HTML forms are inserted, similar to the effect of a line
 break tag (
). If your web
 page’s design and layout is very precise, it can be negatively affected
 by PayPal’s code, throwing your layout off by a few pixels. Avoid this
 effect by embedding the button code in an otherwise empty table.
Warning
Make a backup of your original file before trying this hack. It
 is easier to start from the original if you make a mistake.

Here is the familiar button code, generated at the PayPal site,
 surrounded by the table markup. The width, border, cellspacing, and cellpadding variables are all set to
 zero:
<table width="0" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td>
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="youremail@yourisp.com">
<!-- Other input elements here -->
</form>
 </td>
 </tr>
</table>
However, this code will still cause shifting in the design. Avoid
 this shift by moving the opening and closing form tags outside of the
 opening and closing table data tags:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<table width="0" border="0" cellspacing="0" cellpadding="0">
 <tr>
1. <td>
2. <input type="hidden" name="cmd" value="_xclick">
3. <input type="hidden" name="business" value="youremail@yourisp.com">
4. <!-- Other input elements here -->
5. </td>
 </tr>
</table>
</form>
Now, when the page is viewed in a browser, no shifting appears
 where the form has been inserted, as shown in Figure 5-3.
	[image: Cleaning up alignment problems]

Figure 5-3. Cleaning up alignment problems

To perfect your table spacing, make sure to eliminate any
 extraneous spaces or line breaks between the <td> and </td> tags. For instance, if you put
 lines 1 through 5 all on one line, removing all spaces between the tags,
 you’ll remove the last of the unsightly gaps from your tables.

Put Both Cart Buttons in One Form

Overcome the limitations of some web
 development tools by combining the Add to Cart and View Cart buttons
 into a single HTML form.
If you’re using a web page editor that prefers or allows
 pages to contain only one form (such as some versions of Dreamweaver),
 or if you’re a Microsoft .NET programmer, you might need to combine both
 Shopping Cart buttons into a single web form.
Fortunately, PayPal relies on the names of the buttons, not on the
 post URL or other details of the HTML form, to correctly interpret the
 buttons.
The Code

To implement this single-form design, simply include two submit
 buttons in the PayPal cart form. Name one button add and the other button display, like this:
<form method="post" action="https://www.paypal.com/cgi-bin/webscr"
 target="paypal">
<input type="hidden" name="cmd" value="_cart">
<input type="hidden" name="business" value="pay@biz.com">
<input type="hidden" name="item_name" value="Teddy Bear">
<input type="hidden" name="amount" value="19.95">
<input type="submit" name="add" value="Add to Cart">
<input type="submit" name="display" value="Display Cart">
</form>
Naturally, this form accepts the additional fields and other
 customization afforded by the other hacks in this chapter.

The Right Tools for the Right Job

If you use an HTML editor such as Microsoft FrontPage or
 Macromedia Dreamweaver to create your web pages, you should consider
 trying out one of the PayPal plug-ins available for those tools. These
 plug-ins integrate right into the tool and can be called up while
 you’re editing your pages. They step you through creating the button
 and then automatically insert the HTML into your web page.
Here are some links to plug-ins for popular page editors. Most
 of them are offered by third parties who have worked closely with
 PayPal to make sure they work properly:
	Macromedia Dreamweaver
	http://www.webassist.com/Products/ProductDetails.asp?PID=18

	Microsoft FrontPage
	http://www.auctionmessenger.net/paypal

	Adobe GoLive
	http://www.transmitmedia.com/golive/paypal

	NetObjects Fusion 7.0 and higher (with built-in
 PayPal module)
	http://www.netobjects.com

Integrate a Third-Party Shopping Cart with PayPal

Pass the contents of a non-PayPal shopping
 cart to PayPal using the Aggregate Cart and Upload Complete Cart
 features.
Shopping carts have proven to be effective online selling tools and
 have become a standard on many eCommerce web sites. PayPal makes it
 extremely easy to add a shopping cart to your web site, because PayPal
 hosts all the functionality. All you need to do is add the Add to Cart
 button code to your pages [Hack #45] .
In many cases, however, the PayPal Shopping Cart is insufficient
 for merchants who might need a more customized design, more
 sophisticated tax and shipping calculations, or other features that the
 PayPal Shopping Cart system doesn’t offer. Fortunately, using a
 non-PayPal shopping cart system doesn’t mean that you can’t still accept
 PayPal as a payment option.
PayPal offers two ways to integrate your shopping cart: Aggregate
 Cart and Upload Complete Cart.
Aggregating Your Cart

Of the two systems, PayPal’s Aggregate Cart has the advantage of being easier to
 integrate. Although your shopping cart system might save your
 customers’ cart contents into a database, you don’t need to send all
 this information to PayPal. All you need to do is send PayPal the
 order ID associated with your customer’s shopping cart, along with the
 total dollar amount for your customer to pay in the amount field.
Since there is no dedicated order_ID parameter, pass the order ID to
 PayPal in the item_name field for
 the purpose of Aggregate Cart payments.
You can also add shipping, handling, and tax parameters. Here is the most
 basic code to do all this:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post"
 name="form1"> <input type="hidden" name="cmd" value="_xclick">
1. <input type="hidden" name="business" value="you@paypalhacks.com">
2. <input type="hidden" name="item_name" value="Order#21874">
3. <input type="hidden" name="amount" value="151.80">
<input type="image" src="http://images.paypal.com/images/x-click- but01.gif"
 name="submit" alt="Pay Now with PayPal">
</form>
Specify the email address to which the payment should be sent on
 line 1, a reference to your order on line 2, and the total amount of
 the items in the customer’s cart on line 3.
There are plenty of optional parameters you can include here,
 all of which are documented in
 [Hack #28] . Here are some of
 the most useful:
<input type="hidden" name="shipping" value="9.00">
<input type="hidden" name="handling" value="3.00">
<input type="hidden" name="tax" value="21.92">
<input type="hidden" name="invoice" value="442">
<input type="hidden" name="custom" value="paypalhacks">
PayPal hides the invoice and
 custom fields from the buyer, so
 make sure not to use them to pass your order ID or any other
 information you want your customers to see during the checkout
 process. Instead, use item_name
 for this purpose. Also, don’t use any parameters
 normally used to specify quantity with Aggregate Cart, because there
 will likely be multiple items in the cart and the quantity parameter
 would apply to only one of them.
You might have noticed that these parameters are the same as
 those used in a regular Buy Now button. The Aggregate Cart feature is
 essentially a glorified Buy Now button that processes the data for
 your entire Shopping Cart. It’s not terribly sophisticated, but if
 that’s all the functionality you need, this is all the code you
 need.

Uploading Shopping Cart Details to PayPal

Although Aggregate Cart is easy to implement, it sends only a
 total dollar amount to PayPal. By contrast, the Upload Complete Cart feature has the distinct ability to
 send a listing of all the items in the customer’s shopping cart to
 PayPal. This means that PayPal will display a summary of the cart
 contents on the PayPal site (as shown in Figure 5-4) and record those
 details within the customer’s payment history and in your seller
 history logs and notifications.
	[image: Displaying the contents of your customer’s shopping cart during the checkout process]

Figure 5-4. Displaying the contents of your customer’s shopping cart
 during the checkout process

To create an Upload Complete Cart button, start with the same
 HTML code used earlier in this hack with the Aggregate Cart button.
 Then, for the cmd input value,
 replace _xclick with _cart, and add a new hidden field called
 upload and set its value to
 1. (You can remove the item_name and amount fields, because they aren’t needed
 for Update Complete Cart.) You’ll then end up with something like
 this:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post"
 name="form1">
<input type="hidden" name="cmd" value="_cart">
<input type="hidden" name="upload" value="1">
<input type="hidden" name="business" value="you@paypalhacks.com">
<input type="image" src="http://images.paypal.com/images/x-click-but01.gif"
 name="submit" alt="Pay Now with PayPal">
</form>
Next, insert the details of the contents of the shopping cart.
 To add the first item, insert the following code somewhere inside the
 <form></form>
 structure:
1. <input type="hidden" name="item_name_1" value="PayPal Hacks Book">
2. <input type="hidden" name="item_number_1" value="Item#PPHKS">
3. <input type="hidden" name="quantity_1" value="1">
4. <input type="hidden" name="amount_1" value="24.95">
5. <input type="hidden" name="shipping_1" value="3.00">
6. <input type="hidden" name="shipping2_1" value="2.00">
7. <input type="hidden" name="handling_1" value="1.00">
The _1 suffix after each
 variable name gives every tag an item reference. So, these parameters
 describe the first item as a single copy of the PayPal
 Hacks book (line 1) with a product code set to PPHKS (line 2) and a per-item price of
 $24.95 (line 4).
The cost of shipping, $3.00, is specified on line 5. This is a
 per-quantity charge: if the quantity (line 3) is more than one, the
 same $3.00 shipping charge will be applied to each copy of the book
 ordered. The exception to this rule is when you specify a shipping2 amount (as line 6 does in this example), this shipping
 amount will be used only for the first item and the shipping2 amount will be charged for each
 additional book ordered (e.g., three books would cost $3.00 + $2.00 +
 $2.00, or $7.00, to ship).
The handling cost, $1.00, is specified on line 7 and is applied
 only once, regardless of the number of items ordered.
Notice that the form method is POST (as opposed to GET). This allows you to post your data to
 PayPal without the size limit imposed by the fact that GET places all the form data in the
 URL.

Adding Additional Items

For every additional item you have in your shopping cart, add another set of parameters. For each
 parameter, append _n to the
 variable name, where n is the item
 number, starting with 1. Here’s a
 second book thrown into the shopping cart:
<input type="hidden" name="item_name_2" value="eBay Hacks Book">
<input type="hidden" name="item_number_2" value="Item#EBHKS">
<input type="hidden" name="quantity_2" value="1">
<input type="hidden" name="amount_2" value="24.95">
<input type="hidden" name="shipping_2" value="3.00">
<input type="hidden" name="shipping2_2" value="2.00">
<input type="hidden" name="handling_2" value="1.00">
You should always verify that the amount paid matches the order
 total. You can automate this verification by using IPN [Hack
 #73] and by using the item_name and amount fields to verify that the amount paid
 to your PayPal account was the same as the total order amount.

Hacking the Hack

Presumably, you’ll need to store the contents of a customer’s
 shopping cart in your database before sending the data (and the
 customer) to PayPal. This means that the Add to Cart buttons on your
 site will need to submit data to your own server, and then, at
 checkout, your server will generate the HTML code for the Upload
 Complete Cart feature. Unfortunately, this means that you have to
 include an intermediate page, on which your customer will have to
 click another button to submit the cart to PayPal.
The solution is to add a little JavaScript to the <body> tag, so that the customer’s
 browser submits the form automatically when the form loads:
<body onload="document.form1.submit();">
Here is a complete example of the code:
<html>
<body onload="document.form1.submit();">

<form name="form1" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="cmd" value="_cart">
<input type="hidden" name="upload" value="1">
<input type="hidden" name="business" value="you@paypalhacks.com">

<input type="hidden" name="item_name_1" value="PayPal Hacks Book">
<input type="hidden" name="item_number_1" value="Item#PPHKS">
<input type="hidden" name="quantity_1" value="1">
<input type="hidden" name="amount_1" value="24.95">
<input type="hidden" name="shipping_1" value="3.00">
<input type="hidden" name="shipping2_1" value="2.00">
<input type="hidden" name="handling_1" value="1.00">

<input type="hidden" name="item_name_2" value="eBay Hacks Book">
<input type="hidden" name="item_number_2" value="Item#EBHKS">
<input type="hidden" name="quantity_2" value="1">
<input type="hidden" name="amount_2" value="24.95">
<input type="hidden" name="shipping_2" value="3.00">
<input type="hidden" name="shipping2_2" value="2.00">
<input type="hidden" name="handling_2" value="1.00">

<input type="image" src="http://images.paypal.com/images/x-click-but01.gif"
 name="submit" alt="Pay Now with PayPal">
</form>
</body>
</html>
Depending on the speed of your customer’s Internet connection
 and the traffic at the PayPal server, the page might redirect almost
 instantly or it might display momentarily for a second or two before
 the next page is displayed. For this reason, you might want to include
 some kind of “Please wait...” message on the page so that your
 customers don’t interrupt the process out of confusion. Plus, you
 still need to include a real Submit button and a sentence of
 instruction just in case your customer has disabled the browser’s
 support

 for JavaScript.

Customize Checkout Pages

Give your customers a smooth buying
 experience by changing the look and feel of PayPal payment pages to
 match your web site.
When you sell online using PayPal, you are selling to PayPal
 veterans and newbies alike. While PayPal represents online transaction
 safety to tens of millions of satisfied users, some less experienced
 buyers might find being sent off to another site to pay for their
 purchases rather jarring. And since you have gone to the trouble of
 creating your beautiful web site, why send people away from it when they
 are ready to buy?
Well, you send customers to PayPal so that Paypal can run the
 secure transaction and you don’t have to. But your customers don’t have
 to feel like they are being sent off to a foreign country when they go
 to the PayPal payment flow. By customizing the PayPal pages so they
 function more like your own web site, you can make all your customers
 happy.
PayPal’s Custom Payment Pages feature lets you control key parts of
 the user experience on PayPal’s web site. You can place a 750x90-pixel
 banner at the top of PayPal’s pages and carry your site’s color scheme
 through the payment process. Did you know PayPal could look like Figure 5-5?
	[image: A customized checkout page]

Figure 5-5. A customized checkout page

Here’s how to get started:
	Log into your PayPal account.

	Click the Profile link and select Custom Payment Pages from
 the right column.

	Click on the Add button to add a page style. Give the style a
 name (you can store up to five named styles), add the URL to your
 banner, and select appropriate colors for the page background and
 the header, as shown in Figure
 5-6.
	[image: Creating a custom page style]

Figure 5-6. Creating a custom page style

	Press the Preview button to see what PayPal’s pages will look
 like for your buyers. When you like the result, save the
 style.

	Press the Make Primary button, and all your customers will be
 treated to this new style.

Presto! You’re done.
Using Multiple Custom Page Styles

Setting a primary style makes that style the default for all the existing
 payment buttons on your web site. However, you can save up to five
 different custom page styles on your PayPal account and apply any of
 those page styles to a particular payment flow. This is particularly
 helpful if you have more than one web site or if you use visual cues
 to distinguish particular areas of your web site.
Simply name your styles appropriately (e.g., electronics or marys_crafts) and then select which page
 style to associate with each button on your site by including the
 style’s name in the button HTML, like this:
<input type=hidden name="page_style" value="marys_crafts">
Specifying a page style in a GET link is easier; add &page_style=marys_crafts to the end of
 the PayPal URL.

Getting the Most from Custom Page Style Banners

Header banners allow you to continue your site’s look and feel
 through the payment process, so PayPal has ceded you a 750x90-pixel
 area at the top of all their payment pages. That’s great for brand
 awareness and all, but what else could you do with 67,500
 pixels?
How about presenting your site’s message of the day? Or
 advertising your best-selling accessories? No problem. Create a custom
 page style and point the image URL to a location on your site (e.g.,
 https://www.mysite.com/motd.jpg). Then, you can
 put any image (as long as it fits in the banner space; PayPal clips
 oversized images) in that location. In today’s banner, you can push
 overstocked product: “scratching posts—Frisky loves them!” When the
 posts are sold out, you can fire up Photoshop and replace the banner
 with an advertisement for catnip mice.
Change as often as you like without logging into PayPal at all.
 If you want to get fancy, you can write a script that rotates through
 a set of banners so that customers always see a fresh message.
PayPal Etiquette
PayPal has the ability to review the contents of custom page
 styles and can remove styles that violate the company’s guidelines.
 Repeated violations might bring other sanctions too. Sorry, no
 nekkid ladies or gents on your banners. You can’t sell
 already-detonated airbags either.
For a full list of the company’s guidelines for appropriate content (not to mention some good laughs),
 see http://www.paypal.com/cgi-bin/webscr?cmd=p/gen/ua/use/index_frame-outside.

Here are a few more tips to remember when you are customizing
 your payment pages:
	Host your banner image on a secure
 (https) site so that your customers will not
 see warnings about mixing secure and insecure context.

	Before PayPal offered Custom Payment Pages, it offered more
 limited functionality in the form of two optional button
 variables: image_url and cs. The old and new features are not
 compatible, so if you are using Custom Payment Pages, do not use
 the image_url or cs variables in your buttons.

	PayPal selects white or black foreground text based on your
 background color. On light backgrounds such as #FFFFFF (pure white) PayPal uses black
 text. If you select a dark background such as #000033 (dark blue), PayPal uses white
 foreground text. This ensures that your payment pages have
 sufficient contrast to be legible, regardless of which background
 color you select.

	There are a few colors that PayPal does not allow you to select as
 background colors because they are too similar to the bright red
 (FF0000) that PayPal uses to
 alert users to errors. If you run into this restriction, try a
 similar or complementary color. You might also be able to stay in
 the desired color family by selecting a color that has a different
 total brightness.

—Glenn Ellingson

Display the Merchant Transaction ID on Your Return Page

Because the transaction numbers issued to
 merchants and buyers are different, you need to provide the merchant ID
 to customers.
As a merchant on PayPal, you will undoubtedly have occasional
 post-sale questions from your customers. If your customers give you the
 transaction IDs they see in their PayPal account history, you will
 quickly realize they don’t match the transaction IDs you see. This is
 because PayPal generates two unique transaction IDs: one for the
 merchant and one for the customer. This makes it difficult to track
 orders for your customers because they do not have the transaction ID
 you are using. Some simple scripting can head off this problem by giving
 your transaction ID to your customer.
The PayPal Button Code

To enable this hack, you’ll need to employ the return variable in your purchase buttons. This variable
 specifies the URL of the page to which customers should be sent when
 they complete payment. Insert it into the standard PayPal-generated
 button code between the opening and closing <form> tags. Set the variable to the
 URL of the return page on your web site:
<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="business" value="youremail@yourisp.com">
<input type="hidden" name="item_name" value="Widget">
<input type="hidden" name="item_number" value="Wid-001">
<input type="hidden" name="amount" value="1.00">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit">
<input type="hidden" name="add" value="1">
<input type="hidden" name="return" value=
"http://yoursite.com/returnpage.asp">
</form>
Your customer sees a Continue button on the Payment Sent confirmation page
 after making the payment. Clicking the button takes the buyer to the
 return page.

Creating Your Return Page

The return page is where you display the merchant’s
 transaction ID to the customer. You want to display
 your ID; if your customer needs to contact you,
 he can give you this ID, and you can use it to look up the transaction
 in your transaction history. This is the easiest way to know for
 certain which order the customer is talking about.
Your transaction ID is passed as the txn_id variable. Access it in the same way you access the
 values passed to any CGI. You can do this with whatever method works
 best with your server’s operating system and scripting languages. Here
 is the ASP way:
<body>
Here is your transaction Id. Keep it for all future order questions: <%=Request.Form("txn_id")%>
</body>
And here’s the PHP way:
<body>
Here is your transaction Id. Keep it for all future order questions:
<?php
echo $_GET['txn_id'];
?>
</body>

Remember Your Customers

Track your site visitors, regardless of
 whether they made a purchase with PayPal.
As your eCommerce site becomes more advanced, you might want
 to begin tracking visitors as they move through your site. For example,
 you could create a membership system, encouraging users to register and
 then log in during each subsequent visit. Once acknowledged, your users
 might have access to special insider deals or premium content. Or, you
 could address your customers by name on your site’s pages.
However, there’s a downside. Designing, building, and maintaining
 a membership database for customers can be a lot of work, and some
 customers might balk at being asked for a username and password each
 time they visit. Using the techniques in this hack, you can identify
 your users by name and offer buyers-only content in minutes—no login
 required.
Tracking Buyers with Cookies

A popular way to remember your visitors is by using
 cookies. Cookies are small chunks of information
 that a user’s browser remembers on behalf of your web site. They are
 handed back to your web site (if it asks) on a subsequent visit. By
 setting, then reading back, personal information for a visitor, your
 web site can remember your customers.
This hack sets a cookie when your buyer has returned to your
 site after making a payment to you with PayPal. Your site will look
 for this information whenever someone visits and, if found, use it to
 personalize the site by using the buyer’s name and granting access to
 customer-only content.
You can implement this hack with any web scripting technology;
 the example code uses ASP with VBScript.

The Return Page

The return page is a page on your site that is activated
 after a payment has been made, when the buyer clicks the “Click here
 to continue” link on the You Made A Payment page. Set the return variable in your Buy Now button to
 the URL you want to use.
Use the return page to create cookies that record the user’s
 name and the fact that the user is a buyer. You should also set the
 cookies’ expiration times; if you don’t set the cookies to expire in a
 set amount of time (such as about an hour, as in the following code),
 the settings will be lost at the end of the session (such as when your
 customer closes the browser).
Here’s a simple ASP implementation of this:
<%
'Set cookie expiration
'If this is a completed payment, set "paid" to "yes"
If Request.Form("payment_status") = "Completed" Then
 Response.Cookies("paid") = "Yes"
 'Set the expiration time of the cookie
 Response.Cookies("paid").Expires = Now() + 0.042 'About 1 hour
End
Response.Cookies("user") = Request.Form("first_name")
'Set the expiration time of the cookie
Response.Cookies("user").Expires = Now() + 0.042 'About 1 hour
%>
The user is identified by the first name provided by PayPal via
 the first_name variable.
 The paid cookie remembers that this
 user is a paying customer; user
 stores the buyer’s name.
In addition to the cookie-handling code in this example, you’ll
 want to have links to other portions of your site, such as your home
 page.

Cookies at Work

You can use the cookies you created on the other pages of your
 site. For example, you can greet your customer by name:
Welcome
<%= Request.Cookies("user")%>

Or you can reward your loyal customers with inside
 information:
<%
If Request.Cookies("paid") = "Yes" Then
'They have paid, show secret text
%>
We'll be having a big sale on all our exclusive monkey toys this
Thursday! (Preferred customers only.)
<%
End If
%>
This code shows the secret text only to people who have
 completed a purchase using PayPal.

Hacking the Hack

PayPal provides more information to your return page than just
 the payment status and the buyer’s name. For example, you can also get
 the name of the item purchased. Try this addition to your return page
 to record the item name:
<%
'Set cookie expiration
'If this is a completed payment, set "paid" to "yes"
If Request.Form("payment_status") = "Completed" Then
 Response.Cookies("paid") = "Yes"
 'Set the expiration time of the cookie
 Response.Cookies("paid").Expires = Now() + 0.042 'About 1 hour
 Response.Cookies("item_name") = Request.Form("item_name")
 Response.Cookies("item_name").Expires = Now() + 0.042 'About 1 hour
End
Response.Cookies("user") = Request.Form("first_name")
'Set the expiration time of the cookie
Response.Cookies("user").Expires = Now() + 0.042 'About 1 hour
%>
Then, use the item name in your content pages:
Welcome
<%= Request.Cookies("user")%>

<%
If Request.Cookies("paid") = "Yes" Then
%>
Thank you for your recent purchase of
<%= Request.Cookies("item_name")%>.
<%
End If
%>
Tip
You will need to modify this code for shopping cart
 applications, because there will likely be more than one item
 name.

Also, remembering your customer for an hour might not be as long
 as you would like. Try setting the value to a year:
Response.Cookies("paid").Expires = Now() + 365 'About a year

See Also

The “HTML and Hyperlink Variables” section in the PayPal Buy Now
 Buttons Manual offers important information about using the return and rm parameters.

Create a Dynamic Storefront

Produce a powerful storefront with a simple
 database and dynamic server scripting.
PayPal’s Button Factory makes managing a small web store easy,
 provided that you have a small number of products. But if your store has
 hundreds or thousands of products, generating the necessary HTML code
 through the Button Factory (not to mention later changing that code)
 would be a daunting task. Therefore, you’ll need a method to quickly
 generate generic shopping cart HTML button code for all your store’s
 products.
This hack provides an ideal situation for a database-driven page
 that can use a single page as a template for an arbitrary number of
 products contained in a database. The example illustrates the techniques
 using Microsoft Active Server Pages written in VBScript with an Access
 database, though the principles described here can be applied to any
 server platform/database combination.
Creating the Storefront Database

The first step in building your dynamic site is to create a
 database table that holds your PayPal button values for all your
 products. You’ll need one column for each unique aspect of the button
 for each product: item_name,
 item_number, item_price, and Id. Both item_name and item_number should be text fields, while
 item_price should be a money (or
 currency) field. Finally, include the Id field as the primary key and set it to
 increment automatically.
Save this new database table as tblProducts, as shown in Figure 5-7. Your table can have
 more rows, including shipping information, return URLs, or tax data,
 depending on the variables you are using for your buttons.
	[image: The database table containing your product information]

Figure 5-7. The database table containing your product
 information

Tip
See the “Database Coding and Platform Choices” section of the
 Preface for database considerations.

Once the table is built and saved, populate it with your product
 data. You can enter the information into the table like a spreadsheet
 or import the data from another source. After the data is entered,
 your database is ready for use in your dynamic page.

Building the Template

The second step in creating your storefront is to generate
 generic HTML Button Factory code
 [Hack #28] to serve as your
 template for your database-driven store. Your button code should look
 something like this:
<form target="paypal" action=
 "https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="yyouremail@yyourisp.com">
<input type="hidden" name="item_name" value="Widget">
<input type="hidden" name="item_number" value="Wid-001">
<input type="hidden" name="amount" value="1.00">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src=
 "https://www.paypal.com/en_US/i/btn/x-click-but22.gif" border="0"
 name="submit">
<input type="hidden" name="add" value="1">
</form>
The storefront page displays all the items for sale by taking
 the information in your tblProducts
 database table and dynamically inserting it into the generic PayPal
 Button Factory code you just created. To get started, use a SQL query
 to retrieve the product information. Depending on the server platform,
 languages supported, and database technology used, the syntax to
 connect to the database and return the data will vary. The SQL query
 to create your recordset should look like this:
SELECT item_name, item_number, item_price, Id FROM tblProducts
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

Your database then returns all of the products in the table,
 which you’ll need to place into a recordset called rsProducts.
Next, take the generic button code from the previous step and
 replace the field values with references to fields in your database.
 For instance, change this line:
<input type="hidden" name="item_name" value="Widget">
to this (assuming you’re using VBScript for ASP, as discussed in
 the Preface):
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
Your final code should look something like this:
<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="business" value="yyouremail@yyourisp.com">
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
<input type="hidden" name="item_number" value="<%=rsProducts
 ("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProducts("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit">
<input type="hidden" name="add" value="1">
</form>
When this page is loaded into a web browser, your server
 executes the SQL query before it is presented to the customer. The
 code then pulls the first item from the recordset and generates the
 button code for the corresponding product dynamically. The next step
 is to generate a whole page of buttons, one for each item in your
 database:
'While recordset still has products, loop code
While NOT rsProducts.EOF

<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="business" value="yyouremail@yyourisp.com">
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
<input type="hidden" name="item_number"
 value="<%=rsProducts("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProducts("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit">
<input type="hidden" name="add" value="1">
</form>

'Move to next record
rsProducts.MoveNext()
Wend
Figure 5-8 shows the
 finished product listing, complete with multiple dynamically generated
 payment
 buttons.
	[image: The finished web page, loaded into a browser]

Figure 5-8. The finished web page, loaded into a browser

Including Product Details

Not only can you use the values returned from the database to
 populate your button code, you can also display the item name and
 price (and perhaps a photo) of the product alongside each button. Add
 a little spacing to the buttons to keep the site organized:
'While recordset still has products, loop code
While NOT rsProducts.EOF

Product: <%=rsProduct("item_name"%>

Price: <%=rsProduct("item_price"%>

Click the button below to Buy

<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="business" value="yyouremail@yyourisp.com">
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
<input type="hidden" name="item_number"
 value="<%=rsProducts("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProducts("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit">
<input type="hidden" name="add" value="1">
</form>

'Move to next record
rsProducts.MoveNext()
Yound
This simple technique can serve as the foundation for a powerful
 eCommerce web site. Simply by managing this one template page and a
 database table, you can build a site that supports an arbitrary number
 of products, without needing to manually create and edit individual

 product pages.

Add Dynamic Storefront Details

Extend a dynamic storefront by creating a
 product details page for each product you sell.
The product details page allows you to provide detailed information on
 a specific product, such as a description, weight, availability, or
 other tidbits to educate customers and increase sales.
Start with the code from
 [Hack #54] , which loops through
 all the products you have in your database table and displays them on
 your web page. For each product, the code displays the product name,
 price, and a corresponding purchase button.
First, add a line to display a link to another web page on which detailed product
 information for the item is displayed. In the link, pass the unique
 identifying field for that product to the details page in the id query string parameter, like this:
<a href="detail.asp?id=<%=rsProducts("Id")%>>Product details, click here
The finished code looks like this:
'While recordset still has products, loop code
While NOT rsProducts.EOF

Product: <%=rsProduct("item_name"%>

Price: <%=rsProduct("item_price"%>

<a href="detail.asp?id=<%=rsProducts("Id")%>>Product details, click here

Click the button below to Buy

<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="business" value="youremail@yourisp.com">
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
<input type="hidden" name="item_number"
 value="<%=rsProducts("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProducts("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit">
<input type="hidden" name="add" value="1">
</form>

'Move to next record
rsProducts.MoveNext()
Wend
Adding More Product Information to Your Table

In order to provide more information on your product, you have
 to add at least one more field to your database table. You can have as many fields as you like,
 including a weight field for shipping purposes, or even an item color
 field. Open the tblProducts
 database table and add a new column named description. Set the data type of this field
 to long text, ntext, or memo, depending on your database platform.
 Save the change to the database, and then open the table and begin
 entering product descriptions for each of your products. Descriptions
 should educate the customer on specific information related to this
 particular product and contain any information they should know before
 making a purchase.

Product Details Page

The product details page makes a call to your tblProducts database table for one specific
 record, determined by the id
 QueryString parameter passed from
 the storefront page:
'Create and populate id variable for product
Dim Id
Id = Request.QueryString("id")
Next, ask the database for the specific record for that item,
 based on the product’s Id field,
 with an SQL query like this:
"SELECT item_name, item_number, item_price, Id, description FROM tblProducts WHERE Id =
" & Id
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

That query returns one record from your database table. Pull the
 returned record into a recordset named rsProducts. Keep the same recordset name you
 used on the storefront page, even though you are pulling in only one
 record. This provides consistency across your pages, so you can copy
 and paste code back and forth between pages. This means that since the
 recordsets share the same name, you can reuse the same code on both
 pages that reference recordset variables.
Giving your recordsets different names can be confusing and does
 not allow the two pages to share their code with one another. For
 instance, if you take the product name reference tag found in the
 storefront page (<%=rsProduct("item_name")%>) and paste
 it directly into the product detail page, it works properly without
 any editing.
You can now begin populating your page with the dynamic data
 used with the storefront page, as shown in Figure 5-9.
	[image: Adding details to a dynamic product page to present a more complete storefront]

Figure 5-9. Adding details to a dynamic product page to present a more
 complete storefront

Take the code from your storefront and remove the While loop, because you have only one item
 to display. Then add the description field value for that item just
 below the button:
Product: <%=rsProduct("item_name")%>

Price: <%=rsProduct("item_price")%>

<a href="detail.asp?id=<%=rsProducts("Id")%>>Product details, click here

Click the button below to Buy

<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="business" value="youremail@yourisp.com">
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
<input type="hidden" name="item_number"
 value="<%=rsProducts("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProducts("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 order="0" name="submit">
<input type="hidden" name="add" value="1">
</form>

<%=rsProducts("description")%>

Hacking the Hack

This hack shows how to add a product description. However, the
 concept can be applied to any product-specific functionality you add
 to the page. For instance, you can add a function that allows the site
 visitor to send a link directly to the product details page to an
 email address. This is commonly referred to as a Send to Friend feature.
To implement this feature, you need to do two things. The first
 is to add a simple form that contains a text box in which to enter an
 email address of where to send the link to in the product details
 page. The second is to add a piece of code that actually performs the
 sending of the email and is located in a separate file named
 sendtofriend.asp. This example uses VBScript
 written for ASP pages. Here is the code to insert into the product
 details page:
<form action="sendtofriend.asp" method="post">
Send this page to a friend. Enter the recipient's email address below:
Recipient: <input type="text" name="email" value="">
<input type="hidden" name="Id" value = "<%=Request.QueryString("Id")%>">
<input name="" type="submit">
</form>
And here’s the sendtofriend.asp page
 code:
<%
Set objCDO = Server.CreateObject("CDONTS.NewMail")
objCDO.From = "youremail@paypalhacks.com"
objCDO.To = Request.Form("email")
objCDO.Subject = "Link from web site"
objCDO.Body ="Click the link to visit the web page
 http://yoursite.com/details.asp?Id=" & Request.Form("Id")
objCDO.Send()
%>
<html>
The link has been sent.
</html>
The first block of code allows the site visitor to enter the
 email address she wants to send the link to. It also places the
 product’s unique identifier value into a hidden variable. The form
 posts itself to the second block of code found on another web page.
 This page simply sends a link to the specified recipient and includes
 a link to the product details page based on the product Id passed. The recipient can then click on
 the link in her email message to go directly to this product’s details
 page.
Using this type of procedure, you add product-specific
 functionality to your product details page that can help you increase
 sales and
 provide customized information.

Insert Dynamic Images

Include product images with your dynamic
 storefront and use it to activate the PayPal payment
 process.
Once you’ve added dynamic storefront details [Hack
 #55] to your site, you can include a product image
 that can be used as a PayPal button, as shown in Figure 5-10. The idea is that
 customers typically look for the most obvious object to click when
 they’re interested in a product, and turning the product image into a
 PayPal button is an effective way to get more customers to complete
 purchases.
	[image: Displaying an image with your product information]

Figure 5-10. Displaying an image with your product information

Inserting the Image

Start by adding another database table column, image_file, to the tblProducts table created in [Hack
 #54] and populating it with the location (filename)
 of the image file to be displayed. So, for your widget, you might
 enter widget.jpg.
Next, take the code from
 [Hack #55] and add the
 image_file column to your SQL
 query:
"SELECT item_name, item_number, item_price, Id, description, image_file
 FROM tblProducts WHERE Id = " & Id
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

Then add your image file reference code to display the image on
 your product details page using the following line:
<img src="images/products/<%=rsProducts("image_field")%>">
In this example, the product images are stored in
 /images/products. Insert this code in your page
 to include the dynamic image, just above the item name:
<img src="images/products/<%=rsProducts("image_field")%>">
Product: <%=rsProduct("item_name")%>

Price: <%=rsProduct("item_price")%>

<a href="detail.asp?id=<%=rsProducts("Id")%>>Product details, click here

Click the button below to Buy

<form target="paypal" action=
 "https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="youremail@yourisp.com">
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
<input type="hidden" name="item_number"
 value="<%=rsProducts("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProducts("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit">
<input type="hidden" name="add" value="1">
</form>

<%=rsProducts("description")%>

Link the Image to PayPal

To use the product image as a PayPal payment button,
 duplicate the purchase button code and replace the Buy Now image with
 the location of your product image [Hack
 #29] . The resulting code should look something
 like this:
<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="business" value="youremail@yourisp.com">
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
<input type="hidden" name="item_number"
 value="<%=rsProducts("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProducts("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="images/products/<%=rsProducts("image_field")%>""
 border="0" name="submit">
<input type="hidden" name="add" value="1">
</form>

Product: <%=rsProduct("item_name"%>

Price: <%=rsProduct("item_price"%>

<a href="detail.asp?id=<%=rsProducts("Id")%>>Product details, click here

Click the button below to Buy

<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
<input type="hidden" name="business" value="youremail@yourisp.com">
<input type="hidden" name="item_name" value="<%=rsProducts("item_name")%>">
<input type="hidden" name="item_number"
 value="<%=rsProducts("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProducts("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit">
<input type="hidden" name="add" value="1">
</form>

<%=rsProducts("description")%>
Of course, you might want to link the product image to a larger
 version of the image, a list of other products by the same
 manufacturer, or a page containing further details of the product.
 However, be careful not to discount the power of a big fat payment
 button on every product page: the easier it is for your customers to
 pay, the more likely they’ll give you their business.

Build an Order-Tracking Page

Keep your customers informed of order status
 using an automated system.
The Internet sped up everything, including your customers’
 expectations. Once you have the code in place to display the merchant
 transaction ID on your return page
 [Hack #52] and insert payment
 details into a database [Hack #82] , it’s easy to create a page
 that enables customers to check on the status of an order. You need to
 place two new pages on your system: a query page that allows your customers to ask the question
 and a results page that gives them the answer. Figure 5-11 shows a completed
 results page.
	[image: A completed order-tracking page]

Figure 5-11. A completed order-tracking page

An order-tracking page like this one is easy to implement and goes
 a long way in placating customers.
Asking the Question

The query page can be quite simple. All you need is a form that
 allows your customer to enter the transaction ID you previously
 provided. Once the customer clicks Submit, the results page takes
 over.
<html><body>
Enter the transaction ID corresponding to the order you wish to look up:
<form action="order_tracking.asp" method="post">
<input type="text" name="txn_id">
<input type="button" value="submit" name="submit">
</form>
</body></html>
The form is only the beginning. Obviously, the preferred method
 is to display a list of all relevant transaction IDs, from which the
 customer can select one to view the transaction details. See [Hack
 #22] for more information, as well as [Hack
 #94] for a way to get this information using the
 PayPal API.

Getting the Answer

This example (especially the tblOrders table) assumes a database
 structure similar to the structure used in [Hack
 #82] . Any web scripting language will work for
 this task. This example uses ASP:
<%
'Read back customers input
Dim txn_id
Txn_id = Request ("txn_id")

'Connect to database and create recordset
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};DBQ=
 "C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsOrder = Server.CreateObject("ADODB.Recordset")
rsOrder.ActiveConnection = connStore
rsOrder.Source = SELECT payer_email, payer_id, payment_status, txn_id,
 mc_gross, mc_fee, payment_date FROM tblOrders WHERE txn_id = '" &
 txn_id &"'"
rsOrder.Open()
%>

<!-- Check to see if the order information can be found; if so, display it.-->
<% If NOT rsOrder.EOF OR NOT rsOrder.BOF Then %>
Here are the details of your order:
<p>
Customer Email: <%=rsOrder("payer_email")%>

Customer ID: <%=rsOrder("payer_id") %>

Payment Status: <%=rsOrder("payment_status") %>

Transaction ID: <%=rsOrder("txn_id") %>

Payment Gross: <%=rsOrder("mc_gross") %>

Payment Date: <%=rsOrder("payment_date") %>
<% Else %>
No matching Record Found. Please search again.
<% End If %>

Hacking the Hack

Here are a few ways you can extend this hack:
	Place another copy of the query form on the results page.
 This way, if your customers need to query for more than one
 transaction ID, they won’t have to use their browser’s Back button
 to enter another.

	Change the query page to accept a list of transaction IDs in
 a textarea box. Then modify the
 results page to display the results of searching for each.

	 Use Instant Payment
 Notifications (IPN) to send an email with a tracking link [Hack
 #67] .

Offer Discount Coupons

Reward good customers and entice new buyers
 with electronic coupons.
Everyone loves a sale. Customers like them because they get a
 bargain, and merchants like them because they increase sales. For
 instance, Amazon.com uses their Share the Love system to entice customers to advertise the
 products they’ve just purchased, in exchange for 10% off future
 purchases.
PayPal doesn’t offer a built-in mechanism to process discounts,
 but you can set up electronic coupons for your customers with your own
 code. This hack provides two ways to pull it off: at the browser (a.k.a.
 client-side) with JavaScript, and at the server using Microsoft’s Active
 Server Pages.
Accepting Coupons on the Client Side

While traditional coupons consist of slips of paper presented
 at the checkout counter of your local grocery store, electronic
 coupons are nothing more than distinct strings of numbers and
 letters.
This JavaScript-powered example allows a customer to specify a
 coupon code and then purchase an item at a discounted price:
<html>
<head>
<!-- -->
<script language = "JavaScript">
function on1Verify()
{
1. var orderTotal=7.95;
 var on1Value=window.document.form1.on1.value;
 window.document.form1.on1.value="";
2. if((on1Value < 990) && (on1Value > 988))
 {
 var newTotal=orderTotal-2;
 if(newTotal < 2)newTotal = 0;
3. window.document.form1.on1.value="$2.00";
 window.document.form1.amount.value="$" + newTotal;
 }
4. if((on1Value) < 989 || (on1Value > 989))
 {
 window.document.WEB_ORDER_FORM.on1.value=" -";
 }
}
</script>
</head>
<body>

<form name="form1" action="https://www.paypal.com/cgi-bin/webscr"
 method="post" target="paypal">
<input type="hidden" name="cmd" value="_cart">
<input type="hidden" name="add" value="1">
<input type="hidden" value="seller@example-domain.com" name="business">
<input type="hidden" name="item_name" value="Coupon Code 1">
<input type="hidden" name="item_number" value="001">
<input type="hidden" value="Selected" name="on0">Select

<select name="os0">
<option value="Option 1" selected>Option 1
<option value="Option 2">Option 2
<option value="Option 3">Option 3
</option>
</select>

Enter Coupon number:

<input type="text" name="on1" size="10" onChange="on1Verify()">

<input type="hidden" value="DISCOUNT" name="os1">
Total amount due:

5. <input type="text" name="amount" value="7.95" size="10">
<input type="hidden" value="http://www.example-domain.com" name="return">
<input type="hidden" value="http://www.example-domain.com"
 name="cancel_return">

Shipping:
 <SELECT name="shipping">
<OPTION value="5.00" >Standard
<OPTION value="10.00" >Next Day
<OPTION value="15.00" >Over Night
</SELECT>
<input type="hidden" select_name="shipping" value="">
<input type="hidden" name="shipping2" value="5.00">

Handling:

<input type="text" name="handling" value="2.00" size="10">
<p><input type="submit" value="Submit" name="B1">
</form>
</body>
</html>
Warning
Anyone who views the source of this page will be able to
 discover the code needed to obtain the discount. To avoid this
 problem, you might want to obfuscate your code [Hack
 #36] or use server-side coupon verification, as
 described later in this hack.

The normal price of the item is $7.95, as specified on lines 1
 and 5. The customer enters a valid coupon code (here, the code
 989 is tested on lines 2 and 4, the
 purchase price drops by $2.00 (line 3). Figure 5-12 shows what the form
 looks like.
	[image: Processing coupons with a simple HTML form and some client-side JavaScript]

Figure 5-12. Processing coupons with a simple HTML form and some
 client-side JavaScript

Hacking the Hack

The code in the previous section is designed to accommodate a
 specific range of coupon codes. As shown, the range only allows
 989, but you can increase this by
 changing line 2 to:
if((on1Value > 5381)&&(on1Value < 5478))
and line 4 to:
if((on1Value < 5382) || (on1Value > 5477))
Doing so instructs the script to accept any coupon code between
 5382 and 5473, inclusive.

Verifying Coupons on the Server Side

The previous solution shows how to use the browser for
 simple coupon processing, but for better security and more
 flexibility, you’ll want to enable the discount at the server.
This example uses a special (presumably secret) URL to enable
 the discount. The URL itself serves as the coupon, and once your
 customer has visited this page, a discount of your choice will apply.
 From your customer’s perspective, getting the discount price is
 simple:
	The customer receives a promotional email from you that
 contains the coupon.
Warning
Never send unsolicited email messages (also known as
 spam) to your customers. Let customers who
 want to hear about your specials opt in by
 adding their email addresses to your mailing list.

	The customer clicks the coupon link, and the resulting page
 shows a “Thank You” or some other confirmation, followed by links
 to your shopping pages.

	All applicable prices on your site subsequently reflect the
 discount for this customer.

Behind the scenes, the coupon page contains a script that sets a
 session variable for the customer’s visit. Session
 variables are available with many scripting languages and are easy to
 implement with ASP, as in this example.
First, create the coupon page, the page shown to customers when
 they click your coupon links. This is also where the session variable
 is set:
<%
'Set the session variable
 Session("discount") = "true"
%>
<h1 align="center">Thanks for using your coupon</h1>
<p>Your discount has been enabled.</p>
<%
'Redirect to storefront
Response.Redirect("http://www.wwjcd.biz/shopping/")
%>
Give the script a particularly obscure URL to prevent customers
 from accidentally discovering it, such as:
http://www.wwjcd.biz/discount/farcvuznutz/discount.asp
Next, modify your PayPal buttons to check for the discount
 session variable:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@wwjcd.biz">
<input type="hidden" name="item_name" value="Jackie Chan Bobble Head">
<input type="hidden" name="item_number" value="BH-JC1">

<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's fast,
 free and secure!">
<% If Session("discount") = "true" Then %>
 <input type="hidden" name="amount" value=".90">
<% Else %>
 <input type="hidden" name="amount" value="1.00">
<% End If %>
</form>
Although you can see the code that checks for the discount
 setting (and the setting that is being checked), your buyers will
 never see it. Everything between the code markers (<% and %>) is processed and subsequently removed
 by your web server by the time your customers view the page.

Increase Search Engine Exposure

Modify the PayPal button code on your
 selling pages to make search engines spider them more effectively
 .
The most difficult part of selling your products on the Web is
 getting people to find them. If enough people visit your web page,
 sooner or later you will make a sale, regardless of what you are
 selling. It is just a matter of how many people need to see it before
 someone buys.
One of the most popular ways people find their ways to web sites
 is through search engines such as Yahoo!, Google, and MSN. These search engines create indexes that
 categorize and rank web pages based on their content. Most web page
 developers focus on the web page’s text and metadata (such as its
 description and keywords).
However, there is one powerful, though often overlooked, tool that
 search engines weigh heavily: the web page’s alt tags. Alt tags are used by nongraphical browsers and
 browsers for the visually impaired to help navigate through web pages
 easily. They can be used for a variety of HTML objects, but they are
 most commonly used in place of an image. This hack shows you how to use
 the alt tag in your PayPal buttons to increase search engine
 exposure.
Modifying the PayPal Button Factory Code

By default, the PayPal Button Factory creates the button code with the image’s
 alt tag information populated with PayPal’s own message: “Make
 payments with PayPal—it’s fast, free and secure!” That could be useful
 in search engine ranking if a buyer is searching for sites that sell
 your item through PayPal. However, you can refine this text to
 increase the effectiveness of the tag. You can change many aspects of
 the PayPal form code [Hack #28] and still have the button
 function properly.
The item in this example is a widget that you are selling for
 one dollar. Combining that information with a few keywords increases
 the chances of having your web page spidered correctly. A better use
 for the alt content might be: “Buy a Thompson’s widget here using
 PayPal for just $1.” Here’s an example in which the standard PayPal
 “Make payments...” message has been replaced with your own
 advertising:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@payloadz.com">
<input type="hidden" name="item_name" value="Widget">
<input type="hidden" name="item_number" value="Wid-001">
<input type="hidden" name="amount" value="1.00">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
 border="0" name="submit" alt="Buy a Thompson's widget here
using PayPal for just $1">
</form>
Applying the modified form code to your page increases the
 likelihood that when a person uses a search engine to look for a
 widget using a search engine, she is presented with your web
 page.

Hacking the Hack

You should also try to include keywords and description tags in
 your web page head that use the same keywords as you use in the
 alt attribute. This will give you a
 higher chance of being ranked for that text. You can also create
 duplicate form buttons, or even duplicate web pages, that use
 different sets of keywords in the document data and for the image
 alt tag values.

Sell Digital Goods with PayLoadz

Deliver your digital goods automatically and
 securely without having to write your own application that relies on
 Instant Payment Notifications (IPN).
Using PayPal to sell goods from your web site allows your
 customers to make purchases without having to type all their financial
 information. Selling digital goods (documents, music, video, pictures,
 programs, etc.) affords the additional convenience of delivering your
 products over the Internet, rather than having to ship them, and comes
 as close to an ideal eCommerce scenario as you’re going to get.
To sell digital goods online effectively with PayPal, you’ll have
 to think about security and prompt fulfillment, both of which can be
 achieved with PayPal’s Instant Payment Notification (IPN) system [Hack
 #73] . The problem is that IPN requires not only an
 ability to write code, but full access to a dedicated web server on
 which to run that code. This is where a third-party digital delivery
 provider such as PayLoadz (http://www.payloadz.com) comes in.
PayLoadz is a web-based service that allows you to sell digital
 goods securely, without user intervention, and—most importantly—without
 having to develop your own IPN system. Much like the way PayPal provides
 the back end for a pretty slick shopping cart system, PayLoadz provides
 the back end for IPN.
Tip
Before you get started with PayLoadz, you’ll need a PayPal
 Business or Premiere account, as described in the introduction to
 Chapter 3.

Set up your free PayLoadz account by going to http://payloadz.com and clicking Sign Up. When the Edit
 Profile page appears, enter your business name and your PayPal email
 address (you won’t need to provide your PayPal password). Specify URLs
 for your logo and for your cancel page, and customize the purchase email
 text.
With the Enable Price Checking feature, PayLoadz can check the
 amounts your customers pay to make sure they match the prices listed for
 your products. This works for mixed carts with your tangible goods [Hack
 #73] as well.
Turn on the IPN feature
 [Hack #65] in your PayPal
 account and insert the Payloadz IPN script URL (provided for you when
 you sign up).
Then set up your digital goods on the PayLoadz web site so that it
 can handle fulfillment and track your sales, as shown in Figure 5-13.
	[image: Setting up your digital goods at the PayLoadz web site]

Figure 5-13. Setting up your digital goods at the PayLoadz web site

The PayLoadz system generates PayPal-compliant code that you add
 to your web pages, just like the code from the PayPal Button Factory
 [Hack
 #28] .
While you can use your existing purchase buttons as generated by
 PayPal, the ones created by the PayLoadz system contain a customized
 return variable that allows your customers to download your products
 immediately after paying, which adds another level of redundancy to
 ensure proper delivery.
Finally, your customers click your special Pay Now buttons and are
 sent directly to PayPal to complete their transactions, as shown in
 Figure 5-14.
	[image: An email directing the customer to the download]

Figure 5-14. An email directing the customer to the download

PayPal then contacts PayLoadz using IPN, and PayLoadz delivers
 your digital goods to your paying customers automatically, as shown in
 Figure 5-15).
	[image: Downloading files immediately after purchase]

Figure 5-15. Downloading files immediately after purchase

Basic PayLoadz accounts are free, but for a monthly subscription
 fee (paid via PayPal, of course), you can store your files on the
 PayLoadz servers. This provides an enhanced level of security and means
 that you don’t need to serve downloads from your own site. You can
 upgrade to the more robust paid version at any time.
See Also

To sell and deliver digital products on your own site, using
 your own code exclusively, see [Hack
 #65] .

Chapter 6. Managing Subscriptions

Introduction: Hacks #61-64

Being paid once is a fine thing, but being paid repeatedly is
 fabulous. With a PayPal subscription button, you can offer your
 customers the chance to pay you again and again without any further
 human intervention. Subscription buttons allow you to collect
 automatically recurring payments easily for such things as club
 membership dues and monthly access to online content.
As mentioned in the introduction to Chapter 4, PayPal provides a tool to
 create subscription buttons for your site. Like ordinary Buy Now
 buttons, these are nothing more than HTML forms that can be placed on
 your pages. A customer clicks a Subscribe Now button to go to the PayPal
 site to confirm the new subscription, and the recurring payments
 begin.
For complete information about subscriptions and subscription
 buttons, see PayPal’s Subscriptions and Recurring Payments Manual, available
 from within your PayPal account under the Merchant Tools tab. For now,
 keep a few facts in mind as you read this chapter:
	PayPal offers no facility for storing your content or for
 digital rights management (DRM) of your electronic resources. PayPal
 simply triggers regular payments from your buyers to you.

	Subscriptions can be canceled at any time by either you or your buyer. Use
 this as a selling point when asking customers to sign up. They will
 not require your cooperation if they decide to end the recurring
 payment.

Tip
If you turn on Instant Payment Notification (IPN) [Hack
 #65] , notice of any changes to your active
 subscriptions, such as cancellations, payments, or new subscriptions,
 will be sent to the IPN script you specify, and your server can take
 immediate action as necessary.

Sell Subscriptions to Your Online Content

Combine a database, PayPal subscriptions,
 and the IPN system to manage subscriber accounts.
If your web site offers something special that people are
 willing to pay for, such as access to a technical information database
 or specialized business-to-business commerce site, you might want to
 offer subscriptions. PayPal makes it easy. Using IPN, your web server,
 and your online database, you can easily create an entirely automated
 system.
Warning
Many adult sites on the Internet are available on a
 subscription basis. Don’t offer subscriptions to these sorts of sites
 with PayPal. Your site’s content must be allowed under PayPal’s
 Acceptable Use Policy; otherwise, you might find that
 your account has been limited
 [Hack #5] .

For the purposes of this example, let’s say you offer access to a
 Rhesus monkey marketing database for the low, low price of $30 per
 month. This opt-in database contains the monkey name, monkey age,
 caregiver name, and mailing address of over 10,000 monkeys across North
 America. You offer your subscribers, typically Rhesus monkey supply
 vendors, access to this information for marketing purposes.
You’ll need four things to implement your subscription business
 model:
	A Subscribe button on your web site

	An online database that includes a subscribers table

	An IPN script to keep tabs on new, renewed, and expired
 subscriptions

	Dynamic pages that check a visitor’s status before allowing
 access

Creating a Subscribe Button

The Subscribe button for your site can come straight from
 PayPal’s button generator on the Merchant Tools page (log into PayPal
 and click the Merchant Tools tab). This example (created without
 encryption) should look familiar if you have created any unencrypted
 Buy Now or Donate Now buttons. The variables a3, p3,
 and t3 set the amount, period, and
 time unit of the subscription, respectively:
<html>
<head><title>Monkey Market Database</title></head>
<body>

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but20.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's fast,
 free and secure!">
<input type="hidden" name="cmd" value="_xclick-subscriptions">
<input type="hidden" name="business" value="burchell@inebraska.com">
<input type="hidden" name="item_name" value="Monkey Market">
<input type="hidden" name="item_number" value="mm-1">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="hidden" name="a3" value="30.00">
<input type="hidden" name="p3" value="1">
<input type="hidden" name="t3" value="M">
<input type="hidden" name="src" value="1">
</form>

</body>
</html>

Setting Up Your Database

Your access control database can be simple. A single table, shown in Table 6-1, containing the email
 address and the password of your subscriber is all you need. For this
 example, the table subscribers
 contains two alphanumeric fields: email and password. You could issue customer usernames
 to your subscribers, but you might be better served if you follow
 PayPal’s example and use email addresses to identify users. Passwords
 can be stored as plain text.
Table 6-1. A database to keep track of your subscribers
	 ID

	 email

	 password

	4005
	shannon@paypalhacks.com
	sR3Du4#m77ca

	4006
	dave@paypalhacks.com
	go3@c23-dad43

	4007
	david@paypalhacks.com
	fae0v32c&ewf2

Processing Subscriber Notifications

You need to handle two kinds of notifications from PayPal:
 the addition of new subscribers to your database when they sign up and
 removal of subscribers whose subscriptions lapse or are cancelled.
 Here’s a snippet of ASP that does this (see the “Database Coding and
 Platform Choices” section of the Preface for database
 considerations):
<!-- Standard IPN processing here -->

<%

if Request.Form("txn_type") == "subscr_signup" then

 ' Add this subscriber to the database
 ' Use SQL like this:
 set cInsSubscr = Server.CreateObject("ADODB.Command")
 cInsSubscr.ActiveConnection = "DRIVER={Microsoft Access Driver
 (*.mdb)};DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
 cInsSubscr.CommandText = "INSERT INTO subscriber (email, password) VALUES
 ('" & Request.Form("payer_email") & "', 'drowssap')"
 cInsSubscr.CommandType = 1
 cInsSubscr.CommandTimeout = 0
 cInsSubscr.Prepared = true
 cInsSubscr.Execute()

 ' Email the password to the new subscriber
elsif
 Request.form("txn_type") == "subscr_cancel" then

 ' Remove a subscriber from the database
 ' Use SQL like this:
 set cDelSubscr = Server.CreateObject("ADODB.Command")
 cDelSubscr.ActiveConnection = "DRIVER={Microsoft Access Driver
 (*.mdb)};DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
 cDelSubscr.CommandText = "DELETE * FROM subscriber WHERE email =
 '" & Request.Form("payer_email") & "'"
 cDelSubscr.CommandType = 1
 cDelSubscr.CommandTimeout = 0
 cDelSubscr.Prepared = true
 cDelSubscr.Execute()

end

%>
Warning
Don’t really give every one of your subscribers the same
 password (drowssap in this
 example). Instead, use an algorithm for generating a password or let
 them choose a password for themselves in the subscription
 process.

Don’t forget to turn on IPN in your PayPal account and point it
 at your IPN processing script
 [Hack #65] .

Controlling Access to Your Valued Content

Now you have a list of valid subscribers that is
 automatically updated by PayPal and your IPN script. Next, you’ll need
 to make use of this information by ensuring that visitors to your site
 are on the current subscriber list. In this example, all the
 members-only pages are dynamic ASP pages. The first thing the code
 does is check that the user is properly logged in. If not, the premium
 content is not displayed and the user is redirected to a Sign In page. You know the user is signed in if
 the magic cookie has been
 set.
<%
'content.asp
'Check for the magic cookie.
'If not found, redirect
if Response.Cookies("MagicMonkey) != "swordfish" then
 Response.Print("Please log in before accessing this page.")
 Response.Redirect("login.asp")
end
%>

<!-- Put your content here -->
The Sign In page simply asks for the user’s email address and
 password. If this information shows the visitor is a valid subscriber,
 a cookie is set on the user’s browser. The cookie contains the magic
 word that allows your subscribers access. Without this cookie, set to
 the proper magic word, no one can access subscriber-only
 content.
<%
'Sign in page: sign_in.asp
'Database connection code goes here
'Connect to database and create recordset
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsCookies = Server.CreateObject("ADODB.Recordset")
rsCookies.ActiveConnection = connStore
rsCookies.Source = "SELECT * from subscribers WHERE email =
 '" & Request.Form("email") & "' AND password =
 '" & Request.Form("password") & "'"
rsCookies.Open()

'IF the query turns up a match, execute this code:

'Set new cookie session in MagicMonkey
' "swordfish" happens to be today's magic cookie word
Response.Cookies("MagicMonkey") = "swordfish"

'Set cookie expiration
Response.Cookies("MagicMonkey").Expires = Now() + 1 'one day

Response.Print("Thank you for logging in. Click
 here to start selling stuff to a bunch of monkey lovers.")

'ELSE do this:

Response.Redirect("login.asp")
%>
Your page, login.asp, should contain an
 HTML form that asks for each customer’s email address and password.
 Its data is posted to sign_in.asp.

Hacking the Hack

This example is purposefully simplistic. If the cookie is always
 the same, all a nonsubscriber needs to do to gain access is manually
 set the browser’s cookies to include your magic word. In practice, you
 will want to change your magic cookie daily. Users will need to visit
 the Sign In screen each day and provide their email address and
 password to get that
 day’s magic cookie. Better yet, use a one-way encryption algorithm to
 create a unique cookie each day for each subscriber.

Offer Tiered Subscriptions

Enhance simple subscription management to
 accommodate different levels of users.
Offering something of value for a small amount of money, and then
 selling your customer an upgrade to something of even greater value for
 a larger amount of money, is a great marketing plan. PayPal does this
 itself in a way; you can get some nice features for a low price (free)
 with a Personal account, and when you want more features you can upgrade
 to a Premier or Business account.
This hack shows you how to add tiers (or
 service levels) to your subscribers’ accounts. You
 can create Subscribe buttons for each of your subscription levels, add a
 field to your database to indicate the subscriber’s tier, check the tier
 of subscribers when users access pages, and give your customers an easy
 upgrade option.
Creating a Premium Subscription Button

Who knew the opportunities in marketing to lower primates?
 Thanks to a new partnership, you now own exclusive North American
 distribution rights to the customer data of Rhesus Research
 International, a leading monkey marketing firm in Europe and Asia
 (this example was introduced in
 [Hack #61]). You want to
 keep offering access to your North American data at the usual low
 price, but you want to add an option for buyers of your data who want
 to market to the rest of the world as well. Solve this problem by
 adding another subscription option at a higher price.
The following code includes the Subscribe button from [Hack
 #61] along with a new addition. Differences between
 the buttons are highlighted in bold:
<html>
<head><title>Monkey Market Database</title></head>
<body>

North American data only:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but20.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's fast,
 free and secure!">
<input type="hidden" name="cmd" value="_xclick-subscriptions">
<input type="hidden" name="business" value="burchell@inebraska.com">
<input type="hidden" name="item_name" value="Monkey Market">
<input type="hidden" name="item_number" value="mm-1">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="hidden" name="a3" value="30.00">
<input type="hidden" name="p3" value="1">
<input type="hidden" name="t3" value="M">
<input type="hidden" name="src" value="1">
</form>

International option; includes Asia and Europe
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but20.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's fast,
 free and secure!">
<input type="hidden" name="cmd" value="_xclick-subscriptions">
<input type="hidden" name="business" value="burchell@inebraska.com">
<input type="hidden" name="item_name" value="Monkey Market with International option">
<input type="hidden" name="item_number" value="mm-2">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="hidden" name="a3" value="60.00">
<input type="hidden" name="p3" value="1">
<input type="hidden" name="t3" value="M">
<input type="hidden" name="src" value="1">
</form>

</body>
</html>
When subscriptions roll in, you (and your IPN script [Hack
 #65]) will be able to tell if they are standard or
 International by looking at the item_number.

Adding a Tier Field to Your Database

Modify your database (as shown in Table 6-2) to include a column
 called tier. This, along with the
 previously discussed [Hack #61] email and password, allows your system to keep track
 of the tier level for which your subscribers have paid.
Table 6-2. Adding a tier field to your database to keep track of
 subscriber levels
	 ID

	 email

	 password

	 tier

	4005
	shannon@paypalhacks.com
	sR3Du4#m77ca
	0

	4006
	dave@paypalhacks.com
	go3@c23-dad43
	1

	4007
	david@paypalhacks.com
	fae0v32c&ewf2
	2

Inserting Tier Information with Each New Subscription

Recall the approach to recording subscriptions [Hack
 #61] and modify the code to insert a value in the
 tier field based on the item_number reported:
<!-- Standard IPN processing here -->

<%

if Request.Form("txn_type") == "subscr_signup" then
 ' Add this subscriber to the database
 ' Is it an mm-1 or an mm-2 subscriber?
 If Request.Form("item_number") == "mm-1" then
 ' Use SQL like this:
 set cInsSubscr = Server.CreateObject("ADODB.Command")
 cInsSubscr.ActiveConnection = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
 cInsSubscr.CommandText = "INSERT INTO subscriber (email, password, tier)
 VALUES ('" & Request.Form("payer_email") & "', 'drowssap', 1)"
 cInsSubscr.CommandType = 1
 cInsSubscr.CommandTimeout = 0
 cInsSubscr.Prepared = true
 cInsSubscr.Execute()

 elsif Request.Form("item_number") == "mm-2" then

 set cInsSubscr = Server.CreateObject("ADODB.Command")
 cInsSubscr.ActiveConnection = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
 cInsSubscr.CommandText = "INSERT INTO subscriber (email, password, tier)
 VALUES ('" & Request.Form("payer_email") & "', 'drowssap', 2)"
 cInsSubscr.CommandType = 1
 cInsSubscr.CommandTimeout = 0
 cInsSubscr.Prepared = true
 cInsSubscr.Execute()

 end
 ' Email the password to the new subscriber
elsif
 Request.form("txn_type") == "subscr_cancel" then
 ' Remove a subscriber from the database
 ' Use SQL like this:

 set cInsPayment = Server.CreateObject("ADODB.Command")
 cInsPayment.ActiveConnection = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
 cInsPayment.CommandText = "DELETE * FROM subscriber WHERE email =
 '" & Request.Form("payer_email") & "'"
 cInsPayment.CommandType = 1
 cInsPayment.CommandTimeout = 0
 cInsPayment.Prepared = true
 cInsPayment.Execute()

end

%>

Restricting Access Based on Tier

You will want to check for the magic cookie [Hack
 #61] before giving access to pages. You will also
 want to set a cookie with its own secret word for the tier. This page
 contains International content:
<%
'content_intl.asp
'Check for the magic cookie.
'If not found, redirect
if Response.Cookies("MagicMonkey") != "swordfish"
 or Response.Cookies("MagicMonkeyTier") != "lowtide" then
 Response.Print("Please log in before accessing this page.")
 Response.Redirect("login.asp")
end
%>

<!-- Put your content here -->
Don’t forget to set the tier magic cookie word when subscribers
 log in:
<%
'Sign in page: sign_in.asp

'Connect to database and create recordset
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsTier = Server.CreateObject("ADODB.Recordset")
rsTier.ActiveConnection = connStore
rsTier.Source = "SELECT tier FROM subscribers WHERE email =
 '" & Request.Form("email") & "' AND password =
 '" & Request.Form("password") & "'"
rsTier.Open()

'Assign the result to tier
Dim tier
Tier = rsTier("tier")

'IF the query turns up a match, execute this code:

'Set new cookie session in MagicMonkey
'"swordfish" happens to be today's magic cookie word
Response.Cookies("MagicMonkey") = "swordfish"

'Set cookie expiration
Response.Cookies("MagicMonkey").Expires = Now() + 1 'one day

If tier > 1 then
 'Set International magic cookie
 Response.Cookies("MagicMonkeyTier") = "lowtide"

 'Set cookie expiration
 Response.Cookies("MagicMonkeyTier").Expires = Now() + 1 'one day
end

Response.Print("Thank you for logging in. Click
 here to start selling stuff to an International bunch of monkey
 lovers.")

'ELSE do this:

Response.Redirect("login.asp")
%>

Encouraging Subscribers to Upgrade

You can allow your current subscribers to upgrade to a better subscription by giving them a Modify
 Subscription button. Take the HTML code for your top-tier
 subscription and add a modify line.
 For example, the following code lets your original subscribers get on
 board with the new International offering:
Upgrade now to the new International option; includes Asia and Europe
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but20.gif"
 border="0" name="submit" alt="Make payments with PayPal - it's fast,
 free and secure!">
<input type="hidden" name="cmd" value="_xclick-subscriptions">
<input type="hidden" name="business" value="burchell@inebraska.com">
<input type="hidden" name="item_name" value="Monkey Market with International option">
<input type="hidden" name="item_number" value="mm-2">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="hidden" name="a3" value="60.00">
<input type="hidden" name="p3" value="1">
<input type="hidden" name="t3" value="M">
<input type="hidden" name="src" value="1">
<input type="hidden" name="modify" value="2">
</form>
This can be a better solution than asking your customers to
 cancel one subscription and add another. Your records will also be
 simpler as a result, because PayPal will continue to use the same
 subscription ID in your records.
In your IPN script, add checking for a txn_type of subscr_modify. If you see that value, you
 need to change your database to reflect the new service tier. For
 example, your SQL might look like this:
"UPDATE subscriber SET tier =
 2 WHERE email = '" & Resquest.Form("email") & "'"

Time Your Subscriptions to End on Specific Dates

Use some simple JavaScript and PayPal’s
 trial period to calculate the lengths of new subscriptions, assuring
 they all expire at the same time.
Imagine you own a diaper service for Rhesus monkeys. Your customers
 subscribe by the month, and every month some customers allow their
 subscriptions to lapse. You need to get these customers back on board so
 you get some help from your brother-in-law Leon, a guy with a knack for
 bringing monkey owners around. Market research suggests lapsed
 subscribers are best contacted seven to nine days after dropping the
 service, just when the smell has started to get the attention of local
 law enforcement. But Leon doesn’t want to call two or three people a
 day. He’d rather make 60 or 90 calls all at once.
PayPal doesn’t offer a feature to set the date a subscription will
 expire; the subscription expires at a time that corresponds to the date
 the customer signed up. For example, a monthly subscription started on
 the 12th will run until the 12th of the next
 month. But you can use this hack to ensure that every new subscription
 will be billed on the first of the month, keeping Leon as happy as a
 Rhesus monkey in a fresh nappy.[1]
Hacking the Trial Period

One handy feature of PayPal’s subscriptions is the trial period. It allows you to set an introductory price for new subscribers that changes to
 the standard rate when the trial period expires. For example, you
 might offer access to your online information service for $1 during a
 three-day trial period, after which the price jumps to $100 a
 month.
To time your subscriptions to expire on the same day, bend the
 terms of the trial period so that each customer is charged a prorated
 amount for the balance of the month, after which the standard monthly
 rate kicks in. The JavaScript code makes this easy by completing these
 tasks:
	Calculate how many days are left in the current
 month.

	Find the prorated price by dividing the monthly subscription
 fee by the number of days in a month (31 days in this example) and
 multiplying by the number of days left.

	Stuff the calculated values into the subscription button
 when the buyer clicks Subscribe.

Just use this for your subscription sign-up page:
<html>
<head>
<title>Prorated Subscription</title>
</head>
<body>
<script language="JavaScript">
function CalcDate() {

var subend

//Set the start day to today
today=new Date()

//Set the end date
//If it is December now, then the ending date needs to be January 1 of
 next year
if (today.getMonth == 12) {
 subend=new Date(today.getFullYear()+1, 1, 1)
} else {
 subend=new Date(today.getFullYear(), today.getMonth()+1, 1)
}

//Set 1 day in milliseconds
var one_day=1000*60*60*24

//Calculate the difference between the two dates, convert to days, and put
 it in the day_count variable
var day_count = (Math.ceil((subend.getTime()-today.getTime())/(one_day)))

//Set the subscription fee, then calculate the prorated value
var sub_fee = 10
var prorated_fee = Math.floor(((sub_fee/31)*day_count)*100)/100

//Write the values to the form on click
document.fmSubscribe.p1.value = day_count
document.fmSubscribe.a1.value = prorated_fee
}
</script>

<form action="https://www.paypal.com/cgi-bin/webscr"
 method="post" name="fmSubscribe">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but20.gif"
 onClick="CalcDate()" border="0" name="submit">
<input type="hidden" name="cmd" value="_xclick-subscriptions">
<input type="hidden" name="business" value="burchell@inebraska.com">
<input type="hidden" name="item_name" value="Monkey Nappy Service">
<input type="hidden" name="item_number" value="Sub-001">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="hidden" name="a3" value="10.00">
<input type="hidden" name="p3" value="1">
<input type="hidden" name="t3" value="M">
<input type="hidden" name="src" value="1">
<input type="hidden" name="sra" value="1">

<!-- Values for the "trial period" -->
<input type="hidden" name="a1" value="">
<input type="hidden" name="p1" value="">
<input type="hidden" name="t1" value="D">
</form>

</body>
</html>

Hacking the Hack

PayPal allows you to have two subscription trial periods. If
 you’d like to offer new subscribers a special rate and also have them
 all expire on the same schedule, use the first trial period for the
 discount (or even free) trial and the second trial period to prorate
 the balance of the month. Set the second trial period to the number of
 days left in the month after accounting for the days in the first
 trial.
For a three-day free trial, for instance, the trial period
 section of the button might look like this:
<!-- Values for the "trial period" -->
<input type="hidden" name="a1" value="0">
<input type="hidden" name="p1" value="3">
<input type="hidden" name="t1" value="D">
<input type="hidden" name="a2" value="">
<input type="hidden" name="p2" value="">
<input type="hidden" name="t2" value="D">
Tip
Don’t forget to modify the JavaScript code to figure the end
 date of the second (prorated) trial period, which may fall at the
 end of next month.

Manage Subscription Passwords the Easy Way

Use PayPal’s Password Management feature and
 a PayPal-provided Perl script to get a subscription service up and
 running quickly.
PayPal offers a subscription service [Hack
 #61] that enables you to set up your customers to pay
 you on a recurring basis. But if you offer access to an online resource,
 it can be a pain to manage all the subscribers manually. You’ll have to
 monitor your PayPal account or email notifications, activate service
 each time you get a new subscriber, email customers their usernames and
 passwords, and deactivate the accounts of canceled subscribers precisely
 at each subscription’s end of term. It goes on and on. That ain’t any
 kind of fun.
If you are an experienced programmer, you can take advantage of
 Instant Payment Notifications (IPN)
 [Hack #65] to update subscriber
 lists and send out passwords automatically, but that requires a fair
 amount of knowledge, expertise, and patience. To help online merchants,
 PayPal offers a Password Management feature, including a complementary
 Perl script, that makes things much easier.
The Password Management feature takes PayPal’s standard
 subscriptions service one step further by automatically generating
 usernames and passwords for your subscribers. PayPal
 displays the newly created username and password to each new subscriber
 upon signup. Subscribers should probably write them down, because they
 aren’t memorable. For example, a username might be pp-cookankle with the password saga!glint. Occasionally, you’ll get even
 stranger combinations!
Shortcut to the Subscription Page
Subscribers can always find their usernames and passwords in the
 subscription details page at the PayPal web site. You can provide your
 customers with a shortcut to this page with this link (where
 merchant_email is the email address of the
 merchant—in this case, you):
	https://www.paypal.com/cgi-bin/webscr?cmd=_subscr-find&alias=merchant_email

The link takes each subscriber to his own History page at PayPal
 and shows a list of any and all subscriptions purchased from you.
 Merchants can also pull down a list of subscribers, including
 usernames and passwords, in a downloadable log.

.htpasswd and .htaccess

To use Password Management, you must run your own Apache web server on Unix or Linux (or use a hosting
 provider that offers it; the vast majority of hosts do). Password
 Management works with the .htpasswd and
 .htaccess files used by Linux/Unix and Apache, as
 described at http://httpd.apache.org/docs/howto/auth.html. Apache
 consults these password files before it allows (or denies) access to
 your premium content directories.
The Perl script in this hack works in conjunction with the
 Password Management option on the PayPal system, IPN, and your web
 server to automatically add and remove users from your
 .htpasswd and .htaccess
 files and thus provide immediate password-protected access to new
 subscribers.
Tip
PerlDiver is a useful tool when deploying Perl
 scripts. It tells you the path to your home directory, the path to
 your sendmail program, and which Perl modules are installed on your
 server. All three are pertinent to Password Management installation.
 PerlDiver is available for free at http://www.scriptsolutions.com/programs/free/perldiver/.

Getting the Code

Even though Perl is a programming language, you don’t need to
 know how to program in order to install this script successfully.
 Familiarity with Perl is, of course, helpful, as is some experience in
 creating and editing files and directories on Unix or Linux
 systems.
It’s usually possible to perform a complete installation using
 File Transfer Protocol (FTP)—a method of transferring files between
 computers—to upload the file to your server. If not, you might need to
 connect to your server with Telnet or SSH (or with some other server
 access program provided by your hosting provider). In any event, use
 the method with which you are most comfortable.
First, obtain the PayPal Perl script from the PayPal web
 site:
	Log into PayPal and click the Merchant Tools tab.

	Click Subscriptions and Recurring Payments.
Tip
While you’re here, make note of the Subscriptions Password
 Management checkbox. To use Password Management for a
 subscription, you’ll need to enable this feature.

	Click the “IPN and server modifications” link.

	Click the “Download Perl script” link and save the Manual
 and Script to your hard drive.

Tip
The script is packed into a gzipped TAR file. Windows users
 can use WinZip (http://www.winzip.com) to
 decompress this file. Unix and Mac OS X users should go to the
 command line and type gunzip
 paypal.tar.gz and then tar
 xvf paypal.tar to
 extract the script and README file.

The complete installation instructions are too lengthy to
 discuss here, but the manual provided by PayPal does a decent job.
 Among other things, the manual covers the setup of basic
 authentication with Apache, installation and configuration of the
 script, and updates you’ll need to make your PayPal account configure
 IPN.
Warning
The PayPal manual sometimes refers to the password file as .htpassword (as opposed
 to the more standard .htpasswd). This is okay;
 the file can be named anything you choose, so long as it is
 referenced properly in your Perl script and Apache configuration
 files.

For your reference, Figure
 6-1 shows a typical directory structure for a web site.
 Unfortunately, every hosting provider seems to have a different naming
 convention and organizational structure, so this hierarchy will
 probably be slightly different from what you find on your web
 server.
	[image: A typical hierarchy of directories and files that make up a web server]

Figure 6-1. A typical hierarchy of directories and files that make up a
 web server

Tip
If you encounter any problems, make sure your files are
 installed to the correct locations, that you’ve set the file
 privileges with chmod, and that
 the file location of your .htaccess file is
 specified in your paypal.pl Perl script.

Once you have everything set up, you should give it a thorough
 testing and then roll it out to your customers. The script will handle
 incoming Instant Payment Notifications and make updates to your
 password
 files automatically.

Adding Users Manually

In order to manage users on your web site manually, open
 your .htpasswd file for editing (any plain-text
 editor will do). You’ll notice that it is made up of a long list of
 text strings that look like this: pp-oaktunnel:8fusre9fhs. The first part is
 the PayPal-generated username, the second part is a scrambled version
 of the password, and the two are separated by a colon (:). The PayPal
 Perl script automatically inserts and deletes lines in this
 file.
To remove a user, simply delete the corresponding line from the
 file. Or, to temporarily disable a subscriber’s access without
 deleting the line altogether, just add the word OFF in front of the user’s password. You can
 reinstate access by removing the OFF prefix at any time.
Tip
When you are just getting started with a Password Management
 installation, you’ll probably want to set up some temporary user
 accounts for testing purposes. Adding a few test accounts here means
 that you don’t have to set up secondary PayPal accounts and purchase
 subscriptions from yourself just to test the system.

Adding users is a little more complicated, because the passwords
 are scrambled with the Unix crypt()
 function. The easiest way to generate an encrypted password is to use a web-based tool such as
 the one at http://www.earthlink.net/cgi-bin/pwgenerator.pl. Next,
 insert the username:password combo
 just as you would edit any other file on your web server. If you add a
 username:password combination to
 the end of the list, make sure to press Return or Enter so that your
 cursor moves to the next line before you save the file.
If you want to add a user from the Unix command line (and
 without having to edit the .htpasswd file
 manually), use the htpasswd utility
 that comes with Apache, like this:
htpasswd -b -d /usr/web/mysite.com/.htpasswd newuser newpass

In this command, /usr/web/mysite.com
 is the full path of your
 .htpasswd file, and
 newuser and
 newpass are the username and password of
 the new user, respectively.

Hacking the Hack

There are some commonly requested enhancements to the
 paypal.pl Perl script that are reasonably easy
 and safe to perform:
	Multiple currencies
	The paypal.pl Perl script supports
 subscriptions funded by U.S. dollars (USD) only,
 but you can modify it to support the other currencies that
 PayPal uses (GBP, CAD, JPY, and EUR).

	Multiple subscription terms
	PayPal’s Perl script handles only one set of subscription terms. However, you can add support
 for a more complicated pricing structure, such as discounts for
 longer-term commitments.

Consider the following hypothetical subscription. You’d like to
 charge your customers 10 euros per month, or 100 euros annually for
 subscribers who sign on for a full year (the annual rate provides a
 savings of 20 euros).
The PayPal signup button for 10 euros per month would then look
 like this:
<form method="post" action="https://www.paypal.com/cgi-bin/webscr">
<input type="hidden" name="cmd" value="_xclik-subscriptions">
<input type="hidden" name="business" value="pay@paypalhacks.com">
<input type="hidden" name="a3" value="10.00">
<input type="hidden" name="p3" value="M">
<input type="hidden" name="t3" value="1">
<input type="hidden" name="currency_code" value="EUR">
<input type="hidden" name="src" value="1">
<input type="submit" value="10.00 Euros per Month">
</form>
And the button for 100 euros per year would look like
 this:
<form method="post" action="https://www.paypal.com/cgi-bin/webscr">
<input type="hidden" name="cmd" value="_xclik-subscriptions">
<input type="hidden" name="business" value="pay@paypalhacks.com">
<input type="hidden" name="a3" value="100.00">
<input type="hidden" name="p3" value="Y">
<input type="hidden" name="t3" value="1">
<input type="hidden" name="currency_code" value="EUR">
<input type="hidden" name="src" value="1">
<input type="submit" value="100.00 Euros per Year">
</form>
To enable both of these scenarios, make the following edits to
 the paypal.pl script. First, replace these lines
 from the paypal.pl script:
If you have an initial trial period set it here. For example one
month would be '1 M'
my $PERIOD1 = '';

If you have a second trial period set it here. For example one
month would be '1 M'
my $PERIOD2 = '';

Set this to your recurring or normal period. For example one
month would be '1 M'
my $PERIOD3 = '1 M';

Set this to the dollar amount for your initial trial period. For
example a free trial would be '0.00'
my $AMOUNT1 = '';

Set this to the dollar amount for your second trial period. For
example a $1.00 trial would be '1.00'
my $AMOUNT2 = '';

Set this to the dollar amount for your recurring or normal period.
For example $1.00 would be '1.00'
my $AMOUNT3 = '10.00';
with this code:
Join button a
my $PERIOD1a = '';
my $AMOUNT1a = '';
my $PERIOD3a = '1 M';
my $AMOUNT3a = '10.00';

Join button b
my $PERIOD1b = '';
my $AMOUNT1b = '';
my $PERIOD3b = '1 Y';
my $AMOUNT3b = '100.00';

Join button c
my $PERIOD1c = '';
my $AMOUNT1c = '';
my $PERIOD3c = '';
my $AMOUNT3c = '';

my $CURRENCY = 'EUR';
This example allows you to configure up to three subscription
 tiers; just fill in the details of your subscriptions here.
Tip
This modification doesn’t support the middle subscription
 period, PERIOD2, which is seldom
 used.

Next, replace these lines:
sub validate_signup {
 # validate the terms and amounts
 if ((param("period1") ne $PERIOD1)
 || (param("period2") ne $PERIOD2)
 || (param("period3") ne $PERIOD3)
 || (param("amount1") ne $AMOUNT1)
 || (param("amount2") ne $AMOUNT2)
 || (param("amount3") ne $AMOUNT3)) {
 error_notify("This customer did not sign-up according to your payment
 terms. Although payment was accepted the account was not activated.",
 "validate subscription terms", 0, 1);
 return undef;
 }
}
with this code:
sub match_terms {
 # validate the terms and amounts
 my $p1 = shift;
 my $a1 = shift;
 my $p3 = shift;
 my $a3 = shift;

 if (($p1 eq param("period1") && $a1 eq param("mc_amount1")) &&
 ($PERIOD2 eq param("period2") && $AMOUNT2 eq param("mc_amount2"))&&
 ($p3 eq param("period3") && $a3 eq param("mc_amount3")) &&
 ($CURRENCY eq param("$mc_currency"))) {
 return 1;
 } else {
 return undef;
 }
}

sub validate_signup {
 # validate the terms and amounts
 if (match_terms($PERIOD1a, $AMOUNT1a, $PERIOD3a, $AMOUNT3a) ||
 match_terms($PERIOD1b, $AMOUNT1b, $PERIOD3b, $AMOUNT3b) ||
 match_terms($PERIOD1c, $AMOUNT1c, $PERIOD3c, $AMOUNT3c)) {
 } else {
 error_notify("Although payment was accepted the account
was not activated.",
 "validate subscription terms", 0, 1);
 return undef;
 }

See Also

For information on Apache’s password protection for directories and

 tools to modify the
 .htpasswd file, see Apache: The Definitive Guide by
 Ben Laurie and Peter Laurie (O’Reilly).
—Patrick Breitenbach and Dave
 Burchell

[1] No simians were harmed in the writing of this hack, with the
 possible exception of the author.

Chapter 7. IPN and PDT

Introduction: Hacks #65-86

One of the questions asked most often by merchants considering
 PayPal as a payment processor is, “How will I know when the customer
 pays?” If a merchant is employing any sort of automation or digital
 fulfillment, the question becomes, “How will my site know when the
 customer pays?” Obviously, since customers must leave your site to
 complete payment at the PayPal web site, your site (or its database)
 won’t know when your customer has paid until it has been notified by
 PayPal.
To that end, PayPal has developed two technologies for developers:
 Instant Payment Notification (IPN) and Payment Data Transfer (PDT).
 These technologies notify the merchant’s web server when payment has
 been attempted, whether or not it was successful, and details about the
 sale.

What IPN and PDT Are

 Instant Payment
 Notification (IPN) is a means by which PayPal contacts your server
 directly every time a transaction completes; in other words, IPN is a
 call-back routine and part of an asynchronous process (in that the
 notification can happen any time after the transaction). This design has
 its benefits, such as accommodating eChecks that can take three to four
 days to process.
 Payment Data
 Transfer (PDT), on the other hand, is fueled directly by your
 customer’s actions. First, you enable PayPal’s Auto Return feature, such
 that when a payment is completed, the customer is immediately returned
 to your site, along with some transaction information. Restricting the
 navigation options in this way drives the payment process in a linear
 (and thus synchronous) fashion, making the PayPal transaction virtually
 seamless to your customer. The site is notified of the payment
 immediately, and your more impatient customers might not head for the
 complaint box so quickly.
Tip
The big advantage of IPN over PDT is that the PayPal server
 keeps trying until it successfully notifies your server of a
 transaction (if the customer closes the browser window or clicks the
 browser’s Stop button, a PDT will be interrupted). The big advantage of PDT, on the other hand, is that the
 customer doesn’t have to wait for the asynchronous IPN transaction to
 take place (IPN usually happens within a few seconds, but it can take
 up to four days in extreme cases).

IPN and PDT aren’t necessarily mutually exclusive; in fact, there
 are times when you’d want to use both technologies. For instance, say
 you’re selling downloadable software (known in the trade as digital fulfillment). You might
 choose to employ PDT so that a customer could pay and be immediately
 sent to a download page, without having to wait for a confirmation
 email. But you might also employ IPN so that you could be certain that
 any and all transactions were recorded automatically by your server and
 that your customer could return to your site days later and still
 retrieve your product.

How IPN Works

Simply put, IPN is the means by which PayPal can inform your
 server of a payment, a change in payment status, or other, possibly more
 urgent information. IPN differs from nearly every other way merchants
 use PayPal, because the IPN transaction is initiated by PayPal. Except
 for IPN (and PDT), all parts of the PayPal system are user
 initiated: nothing happens unless you, as the account holder,
 take action. IPN, on the other hand, can be triggered at any time (even
 when you are not at your computer), hours or even days after the last
 payment was made to your account.
IPN carries out this communication using HTTP, the same protocol
 used when you access the PayPal system with your web browser. In the
 case of IPN, however, roles are reversed: PayPal acts as an automated
 browser, making a request of your web site, which acts as the web
 server. This swapping of traditional positions can be confusing, but
 once you know that IPN posts originate at PayPal and request the IPN
 script on your site just like any other web browser on the Internet
 might, IPN becomes much easier to grok.[1]
Tip
To get started with IPN, see [Hack
 #65] .

Advantages of PDT

The advantage of using PDT over IPN is that it enables you to
 track orders more efficiently. The best way to think about PDT is to
 consider where it fits in the three steps of a customer purchase:
	Your customer selects what he wants to buy on your web site,
 and during the checkout process, all the order items are handed to
 PayPal.

	PayPal processes the payment and confirms the sale to the user
 on the PayPal web site and via email.

	Your site receives the order information via PDT, records the
 sale in your site’s database (if you so choose), and shows the user
 a nice receipt, tailored to the order.

This is a much cleaner transaction experience for your customers
 than the process afforded by IPN, because they can see their order
 results immediately on your site. It also allows you to track only those
 orders that have been completed.
Tip
To get started with PDT, see [Hack
 #85] .

—Rob Conery and Dave Burchell

Receive Instant Payment Notifications

Set up the IPN system to have PayPal
 automatically send transaction details to your server to process
 immediately after receiving a payment.
PayPal makes it easy for merchants to accept payments by placing
 payment buttons on their web sites. While this system can be sufficient
 to initiate transactions, it does nothing to help process payments once
 they’re made. IPN fills this gap.
PayPal’s IPN feature sends a behind-the-scenes server-to-server
 post to a page of your choice, almost instantly after a customer clicks
 the Pay button and completes the transaction at the PayPal web
 site.
To begin using IPN, log into PayPal, click Profile, and then click
 Instant Payment Notification Preferences to see the screen shown in
 Figure 7-1. Turn on the
 feature by checking the box, and then specify the URL of the script on
 your server that you would like to receive the transaction
 details.
	[image: Using the Instant Payment Notification Preferences page to enable IPN and specify the location of your transaction-processing script]

Figure 7-1. Using the Instant Payment Notification Preferences page to
 enable IPN and specify the location of your transaction-processing
 script

Tip
The address you specify will never be seen by your customers and
 should contain only Common Gateway Interface (CGI) code or dynamic
 server technology, such as PHP, JSP, Perl, or ASP (explained later in
 this hack).

The Code

Here is the sample IPN code, which is available from the
 PayPal web site. It’s written in VBScript for Active Server Pages (ASP), which means you
 need a server capable of handling Microsoft Active Server Pages. If
 you’d rather develop your IPN script in Perl, PHP, or JSP, you can get
 the corresponding sample code at http://www.paypal.com, but the concepts discussed here
 will be the same, regardless of the platform you’re using (see the
 “Database Coding and Platform Choices” section of the Preface for
 further information).
<%@LANGUAGE="VBScript"%>
<%
Dim Item_name, Item_number, Payment_status, Payment_amount
Dim Txn_id, Receiver_email, Payer_email
Dim objHttp, str

' read post from PayPal system and add 'cmd'
str = Request.Form & "&cmd=_notify-validate"

' post back to PayPal system to validate
set objHttp = Server.CreateObject("Msxml2.ServerXMLHTTP")
objHttp.open "POST", "https://www.paypal.com/cgi-bin/webscr", false
objHttp.setRequestHeader "Content-type", "application/x-www-form-urlencoded"
objHttp.Send str

' assign posted variables to local variables1.

1. Item_name = Request.Form("item_name")
Item_number = Request.Form("item_number")
Payment_status = Request.Form("payment_status")
Payment_amount = Request.Form("mc_gross")
Payment_currency = Request.Form("mc_currency")
Txn_id = Request.Form("txn_id")
Receiver_email = Request.Form("receiver_email")
2. Payer_email = Request.Form("payer_email")

' Check notification validation
if (objHttp.status <> 200) then
 ' HTTP error handling
elseif (objHttp.responseText = "VERIFIED") then
3. if Payment_status = "Completed" Then
4. ' check that Txn_id has not been previously processed
 ' check that Receiver_email is your Primary PayPal email
5. if Receiver_email = "youremail@yourisp.com" Then 'Email is correct
 ' check that Payment_amount/Payment_currency are correct
6. ' process payment
 end If
7. end If
elseif (objHttp.responseText = "INVALID") then
 ' log for manual investigation
else
 ' error
end if
set objHttp = nothing
%>

Running the Code

The first section of code with which to be concerned, from line
 1 to line 2, retrieves the values passed to you by PayPal and assigns
 them to variables. Field formats and descriptions for the 50 supported
 variables can be found in the Integration Guide, available at https://www.paypal.com/ipn.
The next section, from line 3 to 7, contains code to check the
 transaction and process the order. Simply replace the commented lines
 of pseudocode with your own code.
Now, you’ll need to complete several steps to process a
 transaction. The first If/Then statement (line 3) checks to see if the
 Payment_status variable has a value
 of Completed.
Next, you’ll need to check that the transaction ID has not been previously processed (line
 4). One way to accomplish this is to record the txn_id value into a database [Hack
 #54] . Then, query the table, pull the results into
 a recordset named rsCheck, and then
 check to see whether the record exists:
' check that Txn_id has not been previously processed:
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsCheck = Server.CreateObject("ADODB.Recordset")
rsCheck.ActiveConnection = connStore
rsCheck.Source = "SELECT txn_id FROM tblOrders WHERE txn_id =
 '" & txn_id & "'"
rsCheck.Open()

If rsCheck.EOF And rsCheck.BOF Then 'Not a duplicate, continue processing
 ' check that Receiver_email is your Primary PayPal email
 ' check that Payment_amount/Payment_currency are correct
 ' process payment
End If
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

You might want to process pending payments (typically from eChecks) so that you
 can automatically notify customers that there will be a delay in
 fulfilling the order. If the payment_status value is Pending, you can record the pending payment
 into your database table, but you will also need to adjust your
 duplicate transaction query to ignore the pending transactions you
 would otherwise be recording. Pending payments ultimately post two
 notifications to your IPN script: one when the purchase is made (with
 a status of Pending) and a second
 when the payment has cleared (with a status of Completed).
Finally, the check on line 5 compares the recipient’s email
 address with your address to ensure that the IPN was not spoofed. You
 also want to make sure that the price has not been tampered with [Hack
 #73] When all is said and done, replace line 6 with
 your own server logic to process the order.

Troubleshoot Instant Payment Notifications

Effectively diagnose processing problems and
 overcome some of IPN’s stumbling blocks.
The IPN system is one of the most powerful features of the
 PayPal system. Deploying it requires a certain level of programming
 skill, but even with perfect programming, there can be issues that arise
 in deploying any new system for the first time. In the case of
 implementing IPN, there are several things you can do to help diagnose
 any issues that arise.
The first step in testing your IPN system is to make a live
 purchase on the system so that the script gets called by PayPal [Hack
 #65] .
Adding Email to IPN

A good way to help diagnose problems is to have your IPN
 processing page send you all the variables and their values as they
 were posted to the PayPal site. You can do this by inserting a server
 mail component function that emails you the complete form post from
 PayPal when your IPN page is called. You can add the code to send an
 email and also to include a switch to turn this function on and off
 with the following code, written in VBScript for Active Server Pages:
Dim vTesting
vTesting = 1 'Uncomment for test mode on
'vTesting = 0 'Uncomment for test mode off
If vTesting = 1 Then 'Send test email
 Dim TestCDO
 Set TestCDO = Server.CreateObject("CDONTS.NewMail")
 TestCDO.From = "youremail@yourisp.com"
 TestCDO.To = "youremail@yourisp.com"
 TestCDO.Subject = "IPN Variables"
 TestCDO.Body = Request.Form()
 TestCDO.Send()
 Set TestCDO = Nothing
End If
With this code added to the basic IPN processing code [Hack
 #65] , the IPN page sends you an email with all the
 transaction data as posted by PayPal. This can help you determine
 whether the problems are with the data being passed back.

Using a Return URL

The next way to test your IPN script is to check to see if
 your IPN page is throwing any errors. You can do this easily by
 redirecting to your IPN page after payment (using the return variable) and having the IPN
 information sent when you hit the page. This provides the same
 functionality that normally occurs behind the scenes, except you are
 able to see it firsthand. You need to add the following code to your
 test purchase button to accomplish this:
<input type="hidden" name="rm" value="2">
<input type="hidden" name="return" value="http://yoursite.com/ipn.asp">
When this code is added to your purchase button, PayPal
 redirects you back to your IPN script after payment and a form
 post is sent that allows you to see
 if the page has an error on it.
Tip
If you’re using Internet Explorer, you should also configure
 your browser to show descriptive server errors by disabling the
 “Show friendly HTTP error messages” option, found in Tools→Internet Options→Advanced. Now, when a page
 with an error is loaded, you’ll get a descriptive message regarding
 the error and the line on which it occurred.

Capturing Errors

One way to find out if your IPN script is causing an error
 is to insert error-capturing code within your IPN page. When a page
 error occurs, you can get an email letting you know that an error has occurred and
 what the error was. This example uses ASP written in VBScript. First,
 you have to add the following piece of code to the top of your IPN
 page:
<% On Error Resume Next %>
That line makes sure that the page continues to process if an
 error is detected. Then, at the bottom of your IPN page, insert the
 following:
<%
ErrorCheck()
Function ErrorCheck()
 If Err.Number <> 0 then 'if there is an error then the html table will be
 written out
 Dim ErrorCDO
 Set ErrorCDO = Server.CreateObject("CDONTS.NewMail")
 ErrorCDO.From = "youremail@yourisp.com"
 ErrorCDO.To = "youremail@yourisp.com"
 ErrorCDO.Subject = "IPN Error"
 ErrorCDO.Body = "Error: " & Err.Number & " " & VbCrLf & "Description: " &
 Err.Description & ""
 ErrorCDO.Send()
 Set ErrorCDO = Nothing
 End If
End Function
%>
Once you add this code to your IPN script, you’ll be notified
 via email when an error has occurred.
Warning
Since the page uses an On Error Resume
 Next statement, it assumes that the post worked properly
 and does not send an error back to the PayPal system or try again.
 Without this statement, PayPal would continue to repost the
 information back to your IPN script until it was successful.
 Therefore, you should use this technique only during testing phases
 and not in a live implementation.

Using a Third-Party Testing Script

Another easy way to test your IPN page is to use a third-party
 testing script that simulates a PayPal purchase to your IPN script
 without having to make an actual purchase. The best third-party
 testing script is located at http://www.eliteweaver.co.uk/testing/ipntest.php. Test
 your script by simply entering your IPN page’s web address. You also
 have to change the following line in your IPN page (the postback line) so your script does not try to send the
 posted data back to PayPal as it causes an Invalid response from their
 system:
objHttp.open "POST", "https://www.paypal.com/cgi-bin/webscr", false
Change it like so:
objHttp.open "POST", "http://www.eliteweaver.co.uk/cgi-bin/webscr", false
Then, you can fill in the script form with any information you
 like and submit it to simulate the post to your IPN script. You can
 find a list of all available testing scripts at http://www.paypal.com/cgi-bin/webscr?cmd=p/pdn/3p-solutions-ipntools-outside.

Send a Purchase Confirmation Email with IPN

Automate communication with customers by
 sending simple order-confirmation emails.
In this hack, your web server uses IPN to learn about purchases a
 customer makes and sends the customer an email confirming her purchase.
 To use this hack, you need to have an environment that allows you to
 execute server-side scripts that can send email. This example uses
 Microsoft’s Active Server Pages (ASP), but the concepts apply to any
 scripting language you choose.
Before using this example, set up and test the basic IPN script
 described in [Hack #65] . You’ll add the code
 presented here to that basic script, giving your system the ability to
 send email messages to customers after each purchase.
All popular web scripting environments provide a tool for sending
 electronic mail. Microsoft Windows server environments, for example,
 have a Common Data Objects (CDO) mail component preinstalled. Regardless
 of the platform, the email messages require a subject, a message body,
 the recipient’s address, and the sender’s address. You can find the
 recipient’s address and other information about the sale in the IPN
 posting, such as the payer_email
 variable:
Payer_email = Request.Form("payer_email")
The Code

Place this code in your IPN script after the IPN information has
 been verified. In PayPal’s sample scripts, the following code should
 appear at the 'process payment
 comment:
'Get the customer's email address
Dim payer_email
Payer_email = Request.Form("payer_email")

'Get information about the purchase the customer made
Dim item_name, item_number
Item_name = Request.Form("item_name")
Item_number = Request.Form("item_number")

'Create the body of the email
Dim mail_body
Mail_body = "Thank you for your order. Below are the details." & VbCrLf
 & "Item Name: " & item_name & VbCrLf & "Item Number: "
 & item_number & ""

'Create an email object and send the message
Dim MailCDO
Set MailCDO = Server.CreateObject("CDONTS.NewMail")
MailCDO.From = "sales@yoursite.com"
MailCDO.To = payer_email
MailCDO.Subject = "Order Information"
MailCDO.Body = mail_body
MailCDO.Send()
Set MailCDO = Nothing
When your site makes a sale, the code is executed and an email
 is sent to the customer verifying her order information. Keeping your
 customer informed in this way is a good practice, because it assures
 the customer that she made the purchase she intended to, and builds
 your reputation as a responsive merchant.

Process Shopping Carts with IPN

Modify your IPN code to handle multiple
 products purchased through PayPal’s Shopping Cart
 system.
When a payment is made for a good on the PayPal system through
 Single Item Purchase or Web Accept buttons, the product information is passed back
 to your IPN page in the same format as that in which it was submitted.
 This means your IPN processing page has to handle only one set of values
 in order to process the order. In the case of Shopping Cart purchases,
 your IPN page can expect to receive product information for one or more
 items. It needs to be able to handle this scenario effectively in order
 to process orders without errors.
In order for your page to be able to work with both Web Accept and
 Shopping Cart orders, you need to check which type of payment is being
 made, to see how many items are being ordered (if the order is a
 Shopping Cart), and finally, to populate the variable values accordingly
 for each item in the cart.
The Code

Here is a block of ASP VBScript code written in two sections. The first
 handles orders from Shopping Carts and the second handles orders for
 Single Item Purchases. They are used together in a single IPN
 page:
If txn_type = "cart" Then 'Shopping cart purchase

 Dim num_cart_items, i
 num_cart_items = Request.Form("num_cart_items")

 For i=1 to num_cart_items
 Request.Form("item_name" & i)
 Request.Form("item_number" & i)
 Request.Form("option_name1_" & i)
 Request.Form("option_selection1_" & i)
 Next

Else 'Not a shopping cart purchase

 Request.Form("item_name")
 Request.Form("item_number")
 Request.Form("option_name1")
 Request.Form("option_selection1")

End If

The Results

When the block of code is executed on your IPN page (place it
 after the code from [Hack #65]) after a payment has been
 made, it uses the txn_type variable to
 determine whether the payment is being made for a Shopping Cart
 purchase. If txn_type is set to
 cart, the payment is for a Shopping
 Cart and the first block of code in the If/Then
 statement will be executed.
Within the If/Then statement, you initially pull into the
 num_cart_items the number of items
 that have been purchased. Using that value, you then perform a
 For/Next loop that takes the number of items in
 the cart and executes a block of code that number of times. In this
 case, the block of code simply requests the values of the variables as
 they have been passed back. Your code can perform other functions, but
 in order to use the values for the items in the cart, they must be
 called using this format.
If the purchase is not for a Shopping Cart, but for a Single
 Item Purchase or Web Accept, the second block of code runs and creates
 only one set of product variables. In this case, you can call the
 variable values using the same form element names that were posted to
 the PayPal system initially.

Use IPN with eBay Listings

Include additional variables with auction
 payments to help fortify the connection between eBay and your PayPal
 transaction history.
When the IPN system is activated for auction payments, your IPN
 script receives a form post with the transaction information. If you
 have your IPN profile preferences set to On, your processing script
 always gets hit when a payment is made, even for auction
 payments.
In order to process posts for auctions, your IPN script needs to
 be able to recognize that the payment is being made for an auction and
 adjust accordingly. In some cases, you might want to process only
 certain sections of code for auctions, or you might want to omit certain
 sections of your IPN page in the case of auction payments. There are
 five additional variables you need to watch for while dealing with IPN
 pages that can potentially receive posts for auction payments:
 item_number, auction_buyer_id, auction_closing_date, and auction_multi_item, and for_auction.
The item_number variable, which
 is normally populated with your user-defined unique ID-tracking value,
 is sent populated with the auction number. If these new variables are
 not accounted for, or you do not have a way of dealing with the item_number value as passed back by auctions,
 you might have a problem with your entire system.
The Code

This hack shows you how to set up your IPN script to look for an
 auction payment, process one block of code for an auction payment, and
 process another section of code for nonauction payments. This example
 illustrates how to insert the auction buyer ID, the auction number,
 the auction closing date, and the multi-item counter variable for the
 auction into the separate database table tblAuctions.
'Process payment
If Request.Form(for_auction) = "true" then 'Auction payment received
 'Insert into tblAuctions table
 'Create and populate auction variables
 Dim auction_id, auction_buyer_id, auction_closing_date, auction_multi_item
 auction_id = Request.Form("item_number")
 auction_buyer_id = Request.Form("auction_buyer_id")
 auction_closing_date = Request.Form("auction_closing_date")
 auction_multi_item = Request.Form("auction_multi_item")

 'Database connection info here
 set cInsAuction = Server.CreateObject("ADODB.Command")
 cInsAuction.ActiveConnection = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
 cInsAuction.CommandText = "INSERT INTO tblAuctions (auction_id,
 auction_buyer_id, auction_closing_date, auction_multi_item) VALUES
 ('" & auction_id & "', '" & auction_buyer_id & "', '" &
 auction_closing_date & "', '" & auction_multi_item & "')"
 cInsAuction.CommandType = 1
 cInsAuction.CommandTimeout = 0
 cInsAuction.Prepared = true
 cInsAuction.Execute()

End If
If for_auction <> "true" Then 'Normal payment
 'Create and populate normal variables
 Dim item_number
 Item_number = Request.Form("item_number")
 'Normal payment code here
End If

The Results

When you place the code in your IPN processing page, it enables
 your script to handle payment calls for both auctions and normal
 Web Accept payments. If
 you did not build this type of functionality into your script, your
 system might not function properly, because the item_number variable is populated with
 different information in the case of an auction.
The first section uses an If/Then
 statement to determine whether the post is being made for an auction.
 The for_auction variable lets your page determine whether this is the
 case. If the variable has a value of 1, the payment is for an auction, and the
 code uses the aforementioned additional variables (including the
 modified item_number variable) to
 make a database insertion into a table created to track auction
 payments. If the payment is not for an auction, the for_auction variable has a value of 0 and the section of code is not
 activated.
The second block of code does the exact opposite of the first
 section. It checks to see if the for_auction variable has a value other than
 1 (true). If it has a value other
 than 1, the code block that handles
 the processing of your normal payments is activated. You should place
 all of your normal transaction processing code in this section.

Track Your eBay Products with IPN

Easily process eBay sales easily by
 automatically storing completed transactions in a
 database.
The eBay and PayPal combination is hard to beat. It gives
 anyone who wants to sell unique items the ability to market goods and
 accept payment for that item without any programming expertise or an
 expensive merchant account. Since eBay purchased PayPal, their efforts
 to integrate the two have made the process of doing business on eBay
 with PayPal almost seamless. This improvement includes PayPal’s IPN
 system. When an auction is completed and it has been paid for through
 PayPal, an IPN call is made to your IPN script (listed in your PayPal
 account’s Profile settings, if you have enabled IPN). This POST contains a lot of the same information as
 the IPN generated by a normal web purchases. However, because of the
 nature of an auction, the notification lacks some values we normally
 rely upon. Fortunately, this hack provides a workaround.
The main issue is that the item_number value supplied by IPN after
 payment for an auction item is actually the auction number generated by
 eBay, not the unique identifier you assigned to the product for internal
 use. This means that when an item is purchased through eBay, you have no
 way of determining (with your IPN script) which item that is. The
 workaround is to tack your internal identifier for the item to the end
 of the auction title, allowing our database and IPN script to process the order
 normally.
Preparing Your Database

This example pulls up product details from your database after
 receiving an IPN that tells you your item sold and has been paid for
 with PayPal. This could be useful if you like to send an automated
 confirmation email to your buyers with complete details about the
 product. To store this information, your database requires the
 item_number,
 item_name, and description fields, as shown in Table 7-1.
Tip
You might also want a count_inventory field for keeping track of
 how many of an item have been sold.

Table 7-1. A database table to track the stuff you sell on eBay
	 item_number

	 item_name

	 description

	6001
	Vitamins
	Some children may develop a
 rapid...

	6002
	Sulfuric Acid
	As seen on boxcar
 advertisements...

	6004
	Calculator
	Now with a 7 and an 8!

	7001
	Imitation Gruel
	Favored by camp counselors

Listing the Item Number on eBay

Have the item’s unique internal identifier on hand as you
 list it on eBay. The length of the item numbers you use must be
 consistent for all the items you are selling on eBay. For instance,
 suppose the item we are selling is a Widget with
 an item number of WID-01 stored in
 our database. The item number is six characters long. If you list
 another item called Gidget on eBay, you can
 choose GID-02 (which is also six
 characters long) as its item number.
The eBay auction title field accepts 55 characters. However,
 since you will be using your item number in the auction title (with a
 space), you have only 48 characters left for your auction title. Type
 up to 48 characters for the auction’s title, and then enter a space
 and the item number. For example, when you list your Widget for sale
 on eBay, the auction title will look like this: Widget WID-01. It might look a bit strange
 at first, but it should not throw your customers off too much. When a
 payment for this item is made through PayPal at the auction’s end, the
 IPN page will have the item’s unique internal identifier passed back
 to it in the auction title.
Warning
When listing items, be sure not to add any trailing spaces
 after the item number as you type the auction title. You rely on the
 last six characters of the auction title to identify the item
 properly, so a trailing space will throw off your processing.

The Code

In your IPN script, pull out the appended item number from the
 auction title. The auction title is passed back in the item_name field as with normal web payment
 IPNs. So, for the example auction in the previous section, you would
 receive a value of Widget WID-01 in
 the item_name field. Copy that
 value to a variable and then assign its last six characters to a
 variable for the item number:
Dim Auction_title
Dim Item_number
Auction_title = Request.Form("auction_title")
Item_number = Right(auction_title, 6)
Your IPN script can now query your database using that item
 number. For instance, here’s a SQL query to get this product’s
 information:
SELECT * FROM tblProducts WHERE Item_number = '" & item_number & "'"
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

That query pulls from the database the description of the item
 you just sold. You could modify it to update the inventory count or
 perform other functions usually associated with web site payments,
 such as automatically delivering digital goods. As it stands, the
 query gives you all the information you need to email your customers
 your full description of the item they just purchased.

Deliver Digital Goods with IPN

Use IPN to have your server automatically
 send digital goods to customers as soon as they purchase them from your
 web site.
The Internet revolution allows instant gratification when
 purchasing an item. You can purchase digital goods—eBooks, digital
 music, video files, software, and anything else that can be delivered
 via the Internet—from the comfort of your customer’s home and use them
 almost instantly.
This hack shows you how to leverage PayPal’s ease of use,
 security, and brand name to sell digital goods with large margins and
 low overhead. PayPal’s IPN system
 [Hack #65] lets you deliver
 those goods without any interaction as a seller.
The Code

The code in this hack uses Microsoft VBScript, but the same
 process can be implemented with any web scripting language.
Warning
Since this solution employs IPN to deliver a product without
 any action on your part, you should take steps to ensure that the
 payment is legitimate (e.g., no price tampering has taken place)
 [Hack
 #73] .

This script, when used in conjunction with the IPN script from
 [Hack
 #73] , sends your customer an email with your digital product as an attachment:
'Declare and populate email address for delivery
Dim payer_email
Payer_email = Request.Form("payer_email")

'Create file variable and set path to file
Dim file_location
1. file_location = "C:\InetPub\wwwroot\yoursite\filestore\file.zip"

'Send an email to customer and attach file
Dim objCDO
Set objCDO = Server.CreateObject("CDOSYS.NewMail")
2. objCDO.From = "sales@paypalhacks.com"
'Add customer email address
objCDO.To = payer_email
'Add file attachement
objCDO.AttachFile(file_location)
3. objCDO.Subject = "PayPal Hacks Software Exo"
4. objCDO.Body = "Thank you for your order. Your file is attached to this email."
objCDO.Send()
Set objCDO = Nothing
Place your digital product in a file (presumably zipped up) on
 your server, and specify the full path and filename in the file_location variable (line 1). Include your email address as the
 return address (line 2); in most cases, this should be the same as the
 email address used for your PayPal account. Finally, you’ll want to
 customize the subject and message body text (lines 3 and 4,
 respectively) to suit your needs.
Warning
When delivering files via email, be sure to keep the file size
 relatively small (less than 500 KB). Otherwise, you run the risk of
 overfilling your customer’s email inbox or having the message
 rejected by the customer’s ISP.

See Also

This hack shows the most simplistic way to implement digital
 goods sales for your site. For an improved method, see [Hack
 #72] .

Deliver Digital Goods with a Return Page

Instead of forcing customers to wait for an
 email, present an instant download link to customers as soon as they
 complete the checkout process.
Although you can deliver digital goods with IPN [Hack
 #71] , there might be times you want to allow
 customers instant access to their purchases with a return
 page (via PDT). Email messages can be lost, might bounce, or
 might not be desired at the same address used in the buyer’s PayPal
 account. PayPal provides a way to redirect your customers back to your
 web page after they have completed a purchase with PayPal. This return
 page can be used as another means to provide a data file to your
 customers and can be quicker than waiting for the email to
 arrive.
However, if you simply have the digital goods waiting for the
 customers once they reach the return page, they could avoid the payment
 step altogether. For example, a quick inspection of the Buy Now button
 code shows exactly where the return URL is. Someone who wants the
 product but doesn’t want to pay for it could just type that URL into a
 browser.
You can prevent this by recording verified transactions with IPN,
 then checking against the list with a dynamic return page. To implement
 this hack, add form variables to your purchase buttons, create a
 database table, add a database update to the IPN page, and
 create a return page that checks the database for an appropriate
 transaction status before providing the file for download.
Augmenting the PayPal Button Code

You need to add two new variables, return and rm, to your button code. The first variable,
 return, defines the page to which
 your customers should be returned when they click Continue after
 making a payment. The second variable, rm, tells the PayPal system to send
 transaction data to that page using the POST method. Your return page uses that
 information to consult your database and determine whether to make the
 download available.
Add the return and rm variables between the button’s opening
 and closing <form> tags. The
 new button should look like this:
<form target="paypal" action=
 "https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="youremail@yourisp.com">
<input type="hidden" name="item_name" value="Widget">
<input type="hidden" name="item_number" value="Wid-001">
<input type="hidden" name="amount" value="1.00">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but22.gif"
 border="0" name="submit">
<input type="hidden" name="add" value="1">
<input type="hidden" name="return" value="http://yoursite.com/return.asp">
<input type="hidden" name="rm" value ="2">
</form>
PayPal prompts the customer to return to your
 return.asp page after making the payment.

Creating an IPN Page

Use the IPN page created in [Hack
 #71] , which introduced the concept of selling
 digital goods and delivering the file via email. Modify it to insert
 information about the purchase into the database when a purchase
 transaction has been completed. Insert the new code just below the
 code that sends the email to the customer.
We first need a way to uniquely identify the order. PayPal gives
 us a unique transaction ID with each order.
Tip
The merchant and customer each get a different unique
 transaction ID. Neither party can see the other’s transaction ID.
 See [Hack
 #52] for details.

In this simple system, the transaction ID is the only
 identifying piece of information that is required. A simple SQL call
 to the database stores the transaction ID in a list of completed
 orders. Create a new variable and populate it with this value:
'Create and populate transaction id variable
Dim txn_id
txn_id = Request.Form("txn_id")
Insert the transaction ID into the database with a SQL
 statement, like this:
INSERT INTO tblOrders (txn_id) VALUES ('" & txn_id &'")
Finally, create a table in your database called tblOrders with just one field, txn_id, of a text type.

Building the Return Page

The final component in this system is the return page, the
 page the customers will see after they finish making payment and click
 Continue. Because the rm variable
 in the Buy Now button is set to 2,
 this page will receive a POST from
 PayPal that contains all of the transaction details. The return page
 looks up the transaction ID (txn_id) received in the tblOrders table of the database. If the
 transaction is there, you know the customer has paid and you can give
 access to the data file.
The IPN script is called when the buyer clicks the Pay button at
 PayPal, so a matching transaction ID should be present in the system
 by this time. However, the transaction ID might not be in your system
 yet, because the IPN script might not have finished processing the
 order. If you don’t have the transaction ID yet, the return page
 displays a message that lets the buyer know he will get the file via
 email.
Tip
Some customers will not click on the Continue link that
 returns them to your page, but will instead either close their
 browser or remain on the PayPal web site. In such a case, the return
 system will not be activated and we must rely on the file delivery
 via email.

Here’s the code for the return page:
<%@LANGUAGE="VBSCRIPT"%>
<%
'Process information

'Create and populate transaction id variable
Dim txn_id
txn_id = Request.Form("txn_id")

'Query the database for the txn_id
'Connect to database and create recordset
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsOrderCheck = Server.CreateObject("ADODB.Recordset")
rsOrderCheck.ActiveConnection = connStore
rsOrderCheck.Source = "SELECT txn_id FROM tblOrders WHERE
 txn_id = '" & txn_id & "'"
rsOrderCheck.Open()
%>
<html>
<body>
<%
If Not rsOrderCheck.EOF Or Not rsOrderCheck.BOF Then
'Order is valid, display download link
%>
Click here to downlaod your file
<%
Else
'Order is invalid or not yet complete; display message
%>
Your order is being processed. Please check your email for the
 file delivery.
<%
End If
%>
</body>
</html>
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

When this page is loaded after payment is made, it will provide
 the download for the customer. It will also guard against people who
 might fraudulently try to get a free download by going directly to
 your return page without paying.
Warning
Providing a direct link to the file can be dangerous because
 the customer can copy the link loca tion (/filestore/file.zip in this example) and
 pass it along to others.

Implement Price Checking with IPN

Prevent fraudulent transactions by comparing
 the value of the goods purchased with the amount
 received.
PayPal has taken many steps to ensure that their system is
 secured against fraudulent transactions. However, just like any online
 eCommerce system, there are always ways for an unscrupulous person to
 attempt to cheat you. The PayPal Buy Now and Shopping Cart buttons, for
 example, are normally displayed as plain text in your web page’s source
 code, which means that anyone can view your HTML code or—more
 importantly—copy and modify the code, and then submit a spoof payment (presumably with a lower price) to PayPal. And since
 PayPal doesn’t maintain an active database of all the current prices of
 your products, it’s up to you to engage in some proactive price
 checking.
Tip
See [Hack #36] for ways to hide your
 payment button code from customers and reduce the possibility of
 spoofed payments.

Obviously, the primary concern is the price, given how easily it
 can be changed from, say, $18.00 to $.18. While a merchant who is able
 to view each and every transaction will likely notice when a $100 item
 was purchased for $.01, but it can, of course, be easy to miss this kind
 of thing, especially for high-volume merchants. And if you have a fully
 automated fulfillment system, such as for digital goods [Hack
 #71] , you’ll need to employ some sort of price
 checking.
The following solution employs the trusty IPN system to check
 whether a customer has paid the correct amount.
Simple Price Checking with Single Item Purchases

The PayPal IPN system posts the variables as they were originally
 submitted to PayPal, so a spoofed price will be reflected in our IPN
 postback from PayPal. Because PayPal does not store any
 of your product information on their servers, you have to query your
 product information to ensure it matches the price the customer
 paid.
To use a price-checking system on your site, you need to be able
 to run a dynamic server page technology (e.g., ASP, as is used in this
 example) and a simple database (e.g., Microsoft Access). The table in
 this example, tblProducts, has only
 two columns: item_number,
 containing a list of all of the unique product numbers, and item_price, in which the corresponding
 prices are stored. Naturally, your product database will be more
 sophisticated, but it will likely have analogous fields.
Here is some skeleton code, written in ASP, that does
 rudimentary price checking for items purchased with Buy Now
 buttons:
'Declare and populate our price checking variables
Dim item_number, item_amount
item_number = Request.Form("item_number")
item_amount = "Request.Form("mc_gross")

'Connect to database and create recordset
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};DBQ=
 "C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsPriceCheck = Server.CreateObject("ADODB.Recordset")
rsPriceCheck.ActiveConnection = connStore
rsPriceCheck.Source = "SELECT item_price FROM tblProducts
 WHERE item_number = 'item_number'"
rsPriceCheck.Open()

'Compare the values to see if amount paid is equal to or
 greater than required

If rsPriceCheck("item_amount") >= item_amount Then
 'Price paid is at least as much as required, process order
 'Order processing code here
Else
 'Price paid is less than required, stop order processing
 'Send alert to purchaser and merchant
End If
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

This code relies on the mc_gross variable, which is equal to the purchase price plus any
 shipping, handling, or tax charges applied to the order (note that
 mc_gross does not include the
 deduction of any applicable PayPal fees).
Warning
This code merely checks to see if the price paid is equal to
 or higher than the price in your database. You’ll want to account
 for shipping and sales tax, because these values can also be spoofed
 by customers.

Price Checking for Shopping Cart Purchases

PayPal does not pass back individual item prices in Shopping
 Cart transactions. If a customer buys three items worth $1.00, $2.00,
 and $5.00, respectively (and agrees to pay $3.50 for shipping), you
 don’t get any of those individual values in the IPN data. Rather, the
 mc_gross variable will have a value
 of the total amount paid (in this case, $11.50). Thankfully, PayPal
 does pass back the individual item_number fields, which means that you can
 still look up the individual prices in your database.
Tip
In the long run, however, it might be easier to keep a running
 total on file for each customer’s Shopping Cart so that you can
 easily cross-check this value with the amount paid.

As described in [Hack #45] and [Hack
 #50] , the PayPal Shopping Cart system returns an
 item number for each item in the cart. The variables are in the form
 item_number
 n, where n is
 the cart number for that item, starting with 1. PayPal also provides the num_cart_items variable to indicate the
 number of items in the cart. To verify the order, add the values of
 each item as listed in your database and compare the total to the
 gross amount paid:
Dim item_number, mc_gross, I, num_cart_items, price_check
mc_gross = Request.Form("mc_gross")
num_cart_items = Request.Form("num_cart_items")
price_check = 0

For i=1 to num_cart_items

 'Populate variable with value
 item_number = Request.Form("item_number" & i)

 'Execute SQL query on database with item_number value
 'Connect to database and create recordset
 connStore = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
 set rsPriceCheck = Server.CreateObject("ADODB.Recordset")
 rsPriceCheck.ActiveConnection = connStore
 rsPriceCheck.Source = "SELECT item_price FROM tblProducts
 WHERE item_number = 'item_number'"
 rsPriceCheck.Open()

 'Add value from database to our running count
 price_check = price_check + rsPriceCheck("item_price")

Next

If price_check = mc_gross OR price_check > mc_gross Then
 'Price paid is at least as much as required, process order
 'Order processing code here
Else
 'Price paid is less than required, stop order processing
 'Send alert to purchaser and merchant
End If
Warning
This ASP code assumes a quantity of 1 for each cart item. If you offer
 multiple quantities of items, you will need to take the item_quantity value into account by
 multiplying the database price value by the price of the
 item.

Sending a Price Check Alert

Once you see a problem with an order, it’s up to you to send
 an alert. Use any simple mail component available to you and your
 server technology. In ASP, you can use the Common Data Objects (CDO)
 mail component with the following code:
Dim PriceErrorCDO
Set PriceErrorCDO = Server.CreateObject("CDOSYS.NewMail")
PriceErrorCDO.From = Request.Form("receiver_email")
PriceErrorCDO.To = Request.Form("receiver_email")
PriceErrorCDO.CC = Request.Form("payer_email")
PriceErrorCDO.Subject = "IPN Price Checking Error"
PriceErrorCDO.Body = "There has been a price-checking error
 on the following transaction: " & Request.Form("txn_id") & ""
PriceErrorCDO.Send()
Set PriceErrorCDO = Nothing
This email alert code sends an email to the recipient of the
 payment (you), but you might also want to send an automatic email to
 the customer to indicate that there will be a delay in processing the order.
Tip
If you want a truly automated system, you can simply refund
 any irregular payments using the PayPal API [Hack
 #91] .

Provide an Order Summary with IPN

Present order-specific information on the
 return page after the customer makes payment.
The return URL and the IPN processing script are two pages on
 your site that can receive posts containing details of a purchase. Used
 separately, these two pages can enable you to create a more robust
 eCommerce system by providing order-specific customization.
Using the return page, for instance, you can display the order
 number [Hack
 #52] to the customer for later use. Using the IPN
 system, on the other hand, you can send a customized email to the
 customer [Hack #71] , giving her that same order
 number for tracking purposes. When these two features are used together,
 they can be even more powerful in terms of their ability to present your
 customer with valuable information.
This hack uses the return page to show the buyer whether the order
 has been processed successfully by the IPN system. By itself, this
 feature might not be worth much, but the functionality is called on for
 more advanced functions, such as delivering digital goods [Hack
 #72] .
When a customer reviews the payment information at PayPal and
 clicks the Pay button, PayPal sends a POST to your IPN page with the purchase
 information. The customer is directed to a PayPal page that shows them
 the payment confirmation message. There, the buyer sees a Continue
 button that, when pressed, returns the user back to the return page at
 your site. Order-specific information is also sent to this page.
In almost all cases, the IPN page will already have been hit and
 have processed the information, so you have the transaction information
 in your local system. With that information, you can customize the
 return page to give your customer order-specific information.
Warning
Exactly when your IPN page is hit by the PayPal system—and,
 therefore, the exact time the customer’s order information is made
 available to your system—is not defined by PayPal. While it usually
 occurs quite quickly (the I in IPN stands for
 Instant), the possibility exists for IPN postings
 to be queued up at PayPal and delayed for minutes or longer. For best
 results, build your software to be tolerant of this
 possibility.

In this example, you simply display a message that notifies the
 customer of whether the order has been completed in your system. While
 this hack only displays a message, you can include other things as well.
 You might also want to display any error information, such as a
 price-checking error [Hack #73] .
This hack relies on an IPN page that inserts payment details into
 your database [Hack #82] which checks the database
 table to determine whether the order has been processed.
The Code

The return page receives purchase details from PayPal through a
 form POST (if enabled; see “Using a
 Return URL” in [Hack #66] for more information).
 Included in the purchase details is the order transaction ID, passed
 as txn_id. Compare this unique
 variable to your database to see if the order has been inserted into
 the table, which indicates whether it has been processed by your
 system.
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

First, you need to pass the value as presented by PayPal into a
 local variable using the following code:
<%
'Create local transaction id variable and populate
Dim txn_id
Txn_id = Request.Form("txn_id")
%>

'Query the database table and find the record (if it is there yet).
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsOrder = Server.CreateObject("ADODB.Recordset")
rsOrder.ActiveConnection = connStore
rsOrder.Source = "SELECT payment_status FROM tblOrders
 WHERE txn_id = '" & txn_id & "'"
rsOrder.Open()
%>
<% If Not rsOrder.EOF Or Not rsOrder.BOF Then 'order exists %>
Your order has been processed successfully. The payment status for
 this order is: <%=rsOrder("payment_status")%>
<% End If %>

<!-- Tell the customer if the order information has not yet been processed -->
<% If rsOrder.EOF Or rsOrder.BOF Then 'order does not exist %>
Your order is still being processed.
<% End If %>
As this hack illustrates, the return page and the IPN page are
 more powerful when used in conjunction with one another.
Warning
Ideally, you don’t want to use your return page to process any
 of the payment information. You want to use the return page only to
 read the values from PayPal or read the information created by your
 IPN page. The return page is not completely reliable, because
 customers might close their browsers when they see the payment
 confirmation screen at PayPal, rather than follow the Continue
 link.

Upsell Your Customers

Use the return variable to provide a list of
 items in which a customer might also be interested.
Although you can use IPN to provide an order summary [Hack
 #74] , you’re missing a sales opportunity if you don’t
 use this page to advertise your other products, a technique known as
 upselling. For instance, say you’re selling bicycle
 parts and someone comes along and buys a bottom bracket from your web
 site. Using this technique, your web site would then present this
 customer with a small ad listing some of the cranksets, pedals, and
 derailleurs you sell. It’s easy to do, and it works better than you
 might expect.
The Return Page’s Job

The return page is the page you show your customers once they
 are done paying for an item. To help you upsell your customers, this
 page has several jobs to do:
	Retrieve information about the
 products purchased. In order to use this hack, you also
 need to insert cart details into a database [Hack
 #83] (or something like it) to keep a running
 record of purchases your customers have made.

	Consult your sales database to find
 out what other buyers of this item have purchased. The
 heavy lifting in this hack comes from a single database query that
 is used to search the contents of the database table [Hack
 #74] to find a list of products that have been
 purchased by other customers.

	Display a link and brief description
 for each.
 [Hack #55] shows how to
 link directly to the other product’s details page so that
 customers can continue shopping if they choose.

The Code

Here’s the ASP code that does it all:
<% 'Find the number of the item just purchased
Dim item_number
Item_number = Request.Form("item_number") %>

'Find products purchased by other buyers
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};DBQ=
 "C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsProducts = Server.CreateObject("ADODB.Recordset")
rsProducts.ActiveConnection = connStore
rsProducts.Source = "SELECT DISTINCT item_number FROM tblOrderDetails
 WHERE (payer_email IN (SELECT payer_email FROM tblOrderDetails WHERE
(txtItemNumber = 'item_number')))"
rsProducts.Open()
%>

<% If Not rsProducts.EOF Or Not rsProducts.BOF Then 'it exists %>
<%
'While recordset still has products, loop code
While NOT rsProducts.EOF
%>
<a href="http://yoursite.com/product_detail.asp?item_number=<%=rsProducts
("item_number)%">Link Text Here

<%
'Move to next record
rsProducts.MoveNext()
Wend
%>
<% End If %>
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

Running the Code

Simply save this file in a public folder on your web server, and
 then set your return page to the URL of the page [Hack
 #85] . When a customer pays, this code looks up the
 product that was just purchased and uses a SQL statement to look up
 past purchases of this product to see what other products those
 customers purchased along with it.

Enable Multiple IPN Pages

Use a multiplexer script inspired by
 PayPal’s code samples to duplicate the IPN posting to multiple
 scripts.
PayPal’s IPN facility enables you to process your orders in real
 time. By specifying a script on your site, you can automatically update
 your database, add a name to your subscriber list, or email a custom
 order confirmation. PayPal’s system is capable of making a call to only
 one IPN page per transaction, but with some code and tweaking, we can
 call more than one script.
The IPN Multiplexer

Any IPN script [Hack #65] accepts data from PayPal, verifies it, then goes about its business.
 The following multiplexer script is no different, but its mission is
 simply to pass the information on to your secondary scripts.
' read post from PayPal system and add 'cmd'
str = Request.Form & "&cmd=_notify-validate"

' post back to PayPal system to validate
set objHttp = Server.CreateObject("Msxml2.ServerXMLHTTP")

objHttp.open "POST", "https://www.paypal.com/cgi-bin/webscr", false
objHttp.setRequestHeader "Content-type", "application/x-www-form-urlencoded"
objHttp.Send str

' assign posted variables to local variables

' Check notification validation
if (objHttp.status <> 200) then

' HTTP error handling
elseif (objHttp.responseText = "VERIFIED") then
' PayPal says the posting is good; post the data to the secondary scripts.

objHttp.open "POST", "http://othersite1.com/ipnpage.asp", false
objHttp.setRequestHeader "Content-type", "application/x-www-form-urlencoded"
objHttp.Send str

objHttp.open "POST", "http://othersite2.com/ipnpage.asp", false
objHttp.setRequestHeader "Content-type", "application/x-www-form-urlencoded"
objHttp.Send str

objHttp.open "POST", "http://othersite3.com/ipnpage.asp", false
objHttp.setRequestHeader "Content-type", "application/x-www-form-urlencoded"
objHttp.Send str
When this IPN script is called, it performs the PayPal
 verification process to ensure the transaction is a real
 one. It then posts the information to your secondary IPN scripts. Each
 script you use should follow the form of a typical IPN processor
 script [Hack #65] .

Turning off Secondary Verification to Eliminate Extra
 Postings

The multiplexer in the previous section does the job of assuring
 the posting data is genuinely from PayPal [Hack
 #65] Once its authenticity is verified, the data is
 passed along to the secondary scripts.
If your secondary IPN scripts do what they’re supposed to do,
 they will each reverify this information for themselves. There is
 nothing wrong with this, but if you would like to cut down on the
 bandwidth your site uses, you might want to remove any redundant
 verification by eliminating the lines in the subordinate scripts that
 post data back to PayPal.
Warning
If you decide to turn off IPN validation in the secondary
 scripts and their location is known to spoofers, you potentially
 open up your system to falsified data. Ensure that security is
 adequate before taking this step.

Hacking the Hack

Here are a couple tips for working with this hack:
	Embrace code
 multiculturalism. Because the scripts communicate with
 each other—and with the PayPal system—using the standard,
 documented HTTP protocol, you need not stay with one programming
 language for the multiplexer and the secondary scripts it serves.
 You can use the multiplexer in ASP/VBScript, while deploying a
 secondary one in Perl, and another in Python.

	Test off-site. Who says
 your IPN script’s data needs to originate with PayPal? Build a
 system tester that simply posts data to your IPN script. You can
 see exactly what will happen when your customer tries to buy an
 odd item from your site or how your system will handle a payment
 from a hacked button. Be sure to comment out the verification step
 before testing and reenable it before putting your system back
 into production. See
 [Hack #99] for other testing
 methods.

Use Mass Pay to Create an Affiliate System

Automate payout incentives to affiliates and
 resellers with PayPal’s Mass Pay feature.
A great way to increase your sales is to provide incentives
 for other people to promote your products and services. This is
 typically done with an affiliate program, in which
 you reward those who send traffic to your site by paying them a small
 fee, usually either a fixed amount per sale or a percentage of the items
 sold as a result of the affiliate’s efforts.
Managing an affiliate system involves tracking all the successful sales from referrals by your
 affiliates and then paying the affiliates their due on a regular basis.
 This hack uses IPN [Hack #65] to track affiliate referrals
 and PayPal’s Mass Pay feature to pay all your affiliates at once.
Tip
When you use Mass Pay, you (the sender) pay the PayPal fees
 [Hack
 #14] .

Creating Your Business Model

The following code employs a simple business model, in which
 each affiliate gets one dollar for each sale you receive as a result
 of their referral, regardless of the amount of the sale.
Here’s how it works:
	Create a sign-up system on your web site, in which
 prospective affiliates enter their email addresses. Instruct each
 affiliate to open a PayPal account with that email address.

	Generate a custom button [Hack
 #28] for each affiliate, as described in the
 next section.

	Instruct the affiliate to place the button on his site. If
 you want to be creative, supply some custom payment button images
 [Hack
 #29] to spruce up the button appearance and
 help attract attention.

	Visitors to your affiliate’s site see your product
 advertisement, crave it instantly, and click the Buy Now button.
 The payment is sent to you and you deliver the product.

	Use IPN to record the affiliate’s email address (and any
 other relevant information) into a database.

	Use Mass Pay to send a buck per sale to the affiliate
 responsible.

Building a Button for Your Affiliate

Each affiliate’s button should be like any other Buy Now
 button [Hack #28] , with two important
 exceptions.
First, include the email address of your affiliate in the
 custom variable of the button (make
 sure the payment still goes to you, however). Second, specify the
 location of your IPN script for handling affiliate program payments in
 the notify_URL variable:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@superfreaker.com">
<input type="hidden" name="item_name" value="Widget">
<input type="hidden" name="item_number" value="Item-123">
<input type="hidden" name="amount" value="10">
<input type="image" name="Submit" value="Submit" src="buynow.gif">
<input type="hidden" name="notify_url"
 value="http://yoursite/affiliate_ipn.asp">
 <input type="hidden" name="custom"
 value="affiliate@theirisp.com">
</form>
Save this button code into a text file and email it to each
 affiliate. Better yet, create a script on your server that does this
 automatically, and take yourself out of the loop entirely.

Recording Referred Purchases

The IPN script specified in the notify_url variable receives a post of the transaction details from
 PayPal when a sale is made from the affiliate’s site. The script
 writes the affiliate tracking information to a tab-delimited text
 file, along with the amount of the reseller incentive. This example is
 written in Microsoft VBScript and uses a Windows File System Object to
 manipulate the file.
Use the following VBScript code in conjunction with a standard
 IPN validation script, such as the one in [Hack
 #65] :
Const fsoForWriting = 2
Dim objFSO
Dim objTextStream

Set objFSO = Server.CreateObject("Scripting.FileSystemObject")

'Open the text file
1. vFilePath = "C:\InetPub\yoursite\affiliates\output\MassPay.txt"
Set objTextStream = objFSO.OpenTextFile(vFilePath, fsoForWriting, True)

'Write the new line to the file
2. objTextStream.WriteLine custom & " " &
 (rsAffiliateFees.Fields.Item("AffiliateFee").Value)

'Close the file and clean up
objTextStream.Close
Set objTextStream = Nothing
Set objFSO = Nothing
Replace the example filename on line 1 with the full path of the
 file in which to save your affiliate data. Make sure you have the
 proper permissions to write to the file on your server. When using IIS
 on Windows, for example, you’ll probably need to set IUSER (Internet
 guest) write permissions.
Tip
The long space in quotation marks, used to separate the
 custom variable (here, the
 affiliate’s email address) from the dollar amount paid to the
 affiliate, is really a tab (ASCII code 9). See http://www.paypal.com/cgi-bin/webscr?cmd=p/ema/batch_format-outside
 for the latest updates to the specification.

Notifying Your Affiliates

You might want to let your affiliates know whenever you’ve
 received a payment as a result of an affiliate referral. They’ll be
 more likely to stay enthusiastic about your affiliate program if they
 can see it working. Add the following code to your IPN script, after
 the main IPN processing code
 [Hack #65] :
Dim InvCDO
Set InvCDO = Server.CreateObject("CDONTS.NewMail")
InvCDO.From = receiver_email
InvCDO.To = custom
InvCDO.Subject = "Affiliate Sale"
InvCDO.Body = "You have an affiliate sale. Your affiliate account has
 been credited and will be paid according to the schedule
 in the affiliate program aggreement."
InvCDO.Send()
Set InvCDO = Nothing

Paying Your Affiliates en Mass

Making a Mass Payment is easy, especially since the file in which
 you’ve recorded your affiliate sales,
 MassPay.txt, already contains the information in
 the proper format.
Warning
Because sales sometimes fall through (due to customer returns,
 problems with payments, etc.), you might prefer to wait a good
 period of time (e.g., 30 days) after the sale before paying your
 affiliates. And for bookkeeping purposes, you might want to schedule
 affiliate payments to occur quarterly.

To make the affiliate payments, upload your data file, and
 PayPal does the rest:
	Download the MassPay.txt file from your
 server and save it on your local hard disk.

	Log into your PayPal account, and click the Mass Pay link
 near the bottom of the page.

	On the Mass Payment Overview page, click Make a Mass
 Payment.

	Click Browse to locate the MassPay.txt
 file, or type the full path of the file in the box, and then click
 Continue when you’re done.

	Review the details of the transaction and the first few
 lines of the MassPay.txt file you just
 uploaded, and then send your payment. You and your affiliates will
 be notified by PayPal that the payments have been made.

Hacking the Hack

You can further enhance this system with the following:
	Create a statistics page on the fly so that affiliates can
 see their sales figures and possibly fine-tune their earnings (and
 thus boost your sales).

	Use a task scheduler (or a Unix cron job) on your server to
 mail the MassPay.txt file to yourself each
 week.

	This hack is only the beginning; you can use Mass Pay for
 customer rebates, pay-to-surf rewards, employee benefits, survey
 incentives,
 and more.

Manage Your Inventory with IPN

Indicate whether the products on your web
 site are in stock using up-to-date inventory data maintained by some
 add-ons to your IPN processing script.
Merchants who sell tangible goods typically don’t have an unlimited
 supply of any item. When you sell out of something, you might no longer
 want it to appear on your web site: you can’t sell what you don’t have.
 Managing inventory counts for each order and updating your web pages
 accordingly can be a time-consuming and tedious process, but it can be
 mostly automated with PayPal’s IPN system.
This hack consists of a database table, tblProducts, that holds our inventory count,
 an IPN processing page that manages the count, a web page that displays
 an out-of-stock message when appropriate, and an email notification to
 alert you when the inventory count for a particular item is running low
 (or has been depleted).
Updating the Inventory Count

Create a database table, tblProducts, that contains fields for the
 product’s unique item number, item_number, and the
 initial inventory count, count_inventory, as
 shown in Table 7-2.
Table 7-2. A database table to manage your store inventory
	 item_number

	 item_name

	 count_inventory

	6001
	Vitamins
	6

	6002
	Sulfuric Acid
	5612

	6004
	Calculator
	0

	7001
	Imitation Gruel
	77

When a payment is made, PayPal will post the transaction details
 to your IPN processing page. Included in these details is the unique
 item number, for which you’ll need to query your database for the
 in-stock inventory. Finally, decrement the value by the number of
 products purchased:
Dim item_number
Dim count_inventory_new

item_number = Request.Form("item_number")
quantity = Request.Form("quantity")

'Retrieve the current inventory count from the database
'Connect to database and create recordset
connStore = "DRIVER={Microsoft Access Driver (*.mdb)};
 DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
set rsInventoryCount = Server.CreateObject("ADODB.Recordset")
rsInventoryCount.ActiveConnection = connStore
rsInventoryCount.Source = "SELECT count_inventory FROM tblProducts
 WHERE item_number = " & item_number
rsInventoryCount.Open()

count_inventory_new = rsInventoryCount("count_inventory") - quantity

'Store the reduced inventory count in the database
set cInsPayment = Server.CreateObject("ADODB.Command")
cInsPayment.ActiveConnection = "DRIVER={Microsoft Access Driver
 (*.mdb)};DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
cInsPayment.CommandText = "UPDATE tblProducts SET count_inventory =
 " & count_inventory_new & " WHERE item_number = " & item_number & ""
cInsPayment.CommandType = 1
cInsPayment.CommandTimeout = 0
cInsPayment.Prepared = true
cInsPayment.Execute()
This code only handles the inventory count; see [Hack
 #65] for the complete code necessary to implement
 IPN.

Creating the Selling Page

An inventory count will not do much good if the web store
 allows people to purchase items that are no longer available. You can
 remove the Buy Now button for an out-of-stock item with a simple
 conditional statement on a dynamic page.
Start by placing the current inventory count into the rsInventoryCount
 variable, using a SQL statement something like this:
SELECT count_inventory FROM tblProducts WHERE item_number = 'Wid-001'
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

Next, compare that value to zero, and display the button only if
 the item is available:
<%
If rsInventoryCount("count_inventory") > 0 Then
 'We have it in stock, display PayPal purchase button
%>
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">

<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="business@paypalhacks.com">
<input type="hidden" name="item_name" value="<%=rsProduct("item_name")%>">
<input type="hidden" name="item_number" value="<%=rsProduct("item_number")%>">
<input type="hidden" name="amount" value="<%=rsProduct("item_price")%>">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but23.gif"
 border="0" name="submit">

</form>
<% Else
 'We do not have any left, show OoS message %>
%>

We're sorry, this item is out of stock.

<% End If %>
Tip
You might not want to use a value of zero as your threshold,
 especially if it is a high-volume item. Real-world values might be
 different than the electronic inventory count, due to defective
 merchandise from your supplier or offline transactions. Try setting
 the number to, say, three instead. Or, display a message to your
 customers that inventories are low and they should contact you
 directly to assure quick fulfillment.

Alerting Yourself if Inventory Is Low

Finally, set up a script to email yourself or let your staff know when inventory is
 low or has become depleted. Insert this code into your IPN processing
 script:
If count_inventory_new < 5 Then
 'Low count, send email
 Dim InvCDO
 Set InvCDO = Server.CreateObject("CDONTS.NewMail")
 InvCDO.From = "sales@paypalhacks.com"
 InvCDO.To ="sales@paypalhacks.com"
 InvCDO.Subject = "Order More Inventory"
 InvCDO.Body = "We need to order more of item # " & item_number
 InvCDO.Send()
 Set InvCDO = Nothing
End If
If, immediately after a purchase, you have fewer than five of
 the item left in your inventory, you’ll get an email that contains a
 warning, along with the product’s item_number.
Warning
There will be some lag time between the instant your customer
 hits the Buy Now or Checkout button and the time that that
 transaction is complete. Since this means it might be possible for
 two customers to be in the process of purchasing a single remaining
 item, you’ll want to keep the threshold sufficiently high (five, in
 this case) sufficiently high so that this doesn’t happen.

Display Donation Goals on Your Web Site

Use donation buttons and IPN to display
 actively updated donation goals.
As a web site owner, you might want to provide information or
 entertainment to your visitors without charging for the service or
 cluttering up your site with advertising. However, you might also need
 funds to pay site expenses or to support a worthy cause. The PayPal
 Donate Now button enables webmasters to collect payments
 from willing donors.
Donation buttons on web sites do not give visitors much
 information apart from the cause to which they are donating.
 Contributors have no idea how many other people have donated or how much
 has been raised already. Visitors might be more inclined to donate once
 they know others have, or if they believe their donation will make a
 difference in achieving a goal for a fund drive. Providing donation
 goals and a tally of the amount collected to date can induce potential
 donors to contribute—and contribute in larger amounts.
Tip
Another way to entice donors is to offer several suggested
 donation levels [Hack #40] .

This hack illustrates how to use your donation button to display a
 donation goal and the current amount collected. To implement this hack,
 you need to set up your site to receive Instant Payment Notifications
 [Hack
 #65] and connect the notifications to a local
 database using dynamic server page technology. This example uses
 VBScript for ASP, but it could as easily be done with PHP, Perl, Python,
 or Java.
Recording Donations

To keep a record of donations as they are made, first install a script to
 process PayPal’s IPN feature and add a record to your database for
 each transaction [Hack #82] .
Next, use a SQL query such as this one to get the sum of all
 donations in your database:
SELECT SUM(mc_gross) AS TotalDonated FROM tblOrders
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

For instance, if you have a table that looks like Table 7-3, the SUM(mc_gross) function returns the sum of
 the mc_gross column ($323.10 in this case).
Table 7-3. A database table to track the donations
	 ShowName

	 mc_gross

	 date

	Monty
	$0.05
	12/7/1943

	Barney
	$300.00
	5/6/2004

	Seymour
	$23.05
	7/10/2004

Put the result into the rsDonationGoal("TotalDonated") variable. If
 you’ve received three donations for $3, $5, and $7, respectively, the
 value for rsDonationGoal("TotalDonated") will be
 $15.
Tip
Naturally, if you’re accepting donations for more than one
 cause, you’ll need to narrow the SQL query so that it returns only
 donations that relate to the donation goal at hand.

Building the Donation Page

The donation page consists of three items: your donation
 goal (in dollars) as static text, the total amount collected thus far
 (drawn from your database), and the PayPal donation button (displayed
 somewhere prominently, of course):
<p>Please help us achieve our donation goal of $10,000.</p>
Total Amount collected so far: <%=rsDonationGoal("TotalDonated")%>

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@paypalhacks.com">
<input type="hidden" name="item_name" value="Donation">
<input type="hidden" name="item_number" value="Donation-001">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="hidden" name="tax" value="0">
<input type="image" src=
 "https://www.paypal.com/en_US/i/btn/x-click-but21.gif"
 border="0" name="submit">
</form>

Hacking the Hack

You might also want to display the number of donations you have
 already received. Start by adding another SQL query to calculate the
 count of donations table:
SELECT COUNT(Id) AS CountDonated FROM tblOrders
Then, use this new CountDonated
 variable in your ASP page:
Total number of donations collected so far: <%=rsDonationGoal("CountDonated")%>
Or, calculate the average donation with this bit of SQL:
SELECT AVG(mc_gross) AS AverageDonated FROM tblOrders
and display it on your ASP page:
Average Donation Amount: <%=rsDonationGoal("AverageDonated")%>
All this extra information makes your cause appear more credible
 and helps donors pony up the dough. If you really want to make it
 fancy, you can display a recent donor list [Hack
 #80] on the same page.

Display a Recent Donor List

Extend your donation system by allowing
 users to be recognized for their contributions.
 [Hack
 #79] shows how to display donation goals for your web site with
 the intention of encouraging more and larger contributions. This hack
 shows how to recognize your donors for their contributions by displaying
 a list of the five most recent donors, the amount they donated, and a
 small note if the donor chooses.
The Donation Button

The donation button needs to be modified to present donors with
 two fields. The first asks whether the donor would like to have her
 name displayed on the web page. The second allows her to enter a short
 note if she wishes. As with a Buy Now button, the optional button
 variables on0, os0, on1,
 and os1 are used to pass the
 donor’s answers along to PayPal.
Tip
As explained in PayPal’s Integration Guide (https://www.paypal.com/en_US/pdf/integration_guide.pdf),
 the optional fields on0, os0, on1, and os1 work for donations in the same way
 they do for the Buy Now button. (You also won’t see these options in
 the donation button generator under PayPal’s Merchant Tools
 tab.)

This donation button collects the information we need. (Note the
 similarity to the button code in
 [Hack #79] .)
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_xclick">
<input type="hidden" name="business" value="sales@payloadz.com">
<input type="hidden" name="item_name" value="Donation">
<input type="hidden" name="item_number" value="Donation-001">
<input type="hidden" name="no_note" value="1">
<input type="hidden" name="currency_code" value="USD">
<input type="hidden" name="tax" value="0">
<input type="hidden" name="on0" value="Display name on donors page">
Do you want your name displayed on the "recent donors" page?
<select name="os0">
 <option value="Yes" selected>Yes</option>
 <option value="No">No</option>
</select>

<input type="hidden" name="on1" value="Public note for donors' page">
Note for "recent donors" page (optional):
<input type="text" name="os1" maxlength="255">
<input type="image" src=
 "https://www.paypal.com/en_US/i/btn/x-click-but21.gif"
 border="0" name="submit">
</form>
When this form is submitted to PayPal by your donor, it passes
 the values for the optional fields along to PayPal, where the choices
 are displayed on the Confirm Your Payment page. This gives your donors
 a chance to reread the choices and use the Cancel button if they made
 a mistake.

The Database Table

The database schema for this hack is based on [Hack
 #82] and
 [Hack #83] . Those hacks
 cover recording the payment information and the payment detail
 information.
To store the donors’ recognition choices, you need to add two
 fields to your database. You could create a new table for this
 information, but for simplicity, this example assumes you have added
 two fields—named ShowName and
 DonorNote, of types integer and
 text, respectively—to the tblPayments table, as shown in Table 7-4.
Table 7-4. A database table to track the donations you receive
	 ShowName

	 mc_gross

	 DonorNote

	1
	$0.05
	Give ‘til it hurts

	0
	$300.00
	Why not?

	1
	$23.05
	This is our entire annual budget

Warning
To make the Confirm Your Payment page look friendly and
 readable to your donors, set os0
 to either Yes or No. When reading option_selection1 (the value sent by the
 donor’s browser as os0), remember
 to look for a Yes or a No and populate your database table with a
 value of 1 or 0, respectively. (By the way, why does
 PayPal accept a variable called os0 and send you back its value in a
 variable called option_selection1? Why indeed....)

The IPN Page

Your IPN page functions much like the IPN page described in
 [Hack
 #82] . However, you need to insert two new field
 values, one that indicates the donor’s choice whether to display her
 name and one to hold the donor’s note:
'Create new variables and populate them
Dim ShowName
Dim DonorNote
If Request.Form("os0") = "Yes" Then
 ShowName = 1
Else
 ShowName = 0
End
DonorNote = Request.Form("os1")
Include these values in the SQL statement to insert the values
 into the database.
INSERT INTO tblPayments (payer_email, payer_id, payment_status, txn_id,
 mc_gross, mc_fee, payment_date, first_name, last_name) VALUES ('"
 & payer_email & "', "' & payer_id & "', '" & payment_status & "', '"
 & txn_id & "', " & mc_gross & ", " & mc_fee & ", '" & payment_date
 & "', '" & first_name & "', '" & last_name & "', " & ShowName
 & ", '" & DonorNote & "')

The Donation Page

Now that you have the donation data flowing into your database,
 you can use it on your Donations page. Query the database table for
 the five most recent entries:
SELECT TOP 5 first_name, last_name, mc_gross, ShowName, DonorNote
 FROM tblPaymnets ORDER BY Id DESC
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

Once the query has been made, iterate over the five records and
 display each one, substituting Anonymous for any donors who choose not to
 be acknowledged publicly:
<%
While NOT rsDonation.EOF
%>

Donor:
<% If rsDonation("ShowName") = 1 Then 'Show the name %>
<%=rsDonation("first_name")%> <%=rsDOnation("last_name")%>
<% Else 'Do not show the name %>
Anonymous
<% End If %>
Amount: <%=rsDonation("mc_gross")%>
<% If rsDonation("DonorNote") <> "" Then 'Note is not empty, show note %>
Note: <% rsDonation("DonorNoate")%>
<% End If %>

<%
 rsDonation.MoveNext()
End
%>

Hacking the Hack

You can encourage more donations—and donations of higher
 values—by displaying lists of the most generous and the most recent
 donors.
Query the database for the top five donations by amount, sorted
 with the largest donation first:
SELECT TOP 5 first_name, last_name, mc_gross, ShowName, DonorNote
 FROM tblPaymnets ORDER BY mc_gross DESC
The code to display this information is identical to the code
 used in the previous section of this hack.

Capture Customer Information with IPN

Use the data passed back from PayPal to keep
 a record of your customers and their information.
One of the key benefits of using PayPal is that customers do
 not have to enter information repeatedly whenever they buy something. As
 a merchant, you sometimes need to obtain the information on file at
 PayPal so that you can fulfill orders without having to contact your
 customers directly. You can capture the customer’s information as it is
 stored at PayPal by using the IPN system whenever he makes a purchase
 from you; that way, you have it on hand in your local system for later
 use.
One such set of values that PayPal manages is the customer’s
 shipping information. You can take the information passed back to you by
 PayPal and populate your local database so that you’ll have that
 customer’s information on file for later use. For instance, you might
 want to send a promotional mailing to all your customers’ shipping addresses. You can also use the information to
 fulfill orders by printing shipping labels from your database or
 integrating with a shipping service such as UPS.
There are many other reasons why you would want to have a local
 copy of the customer’s information, such as for site personalization,
 customer profile maintenance, and sales performance evaluations. This
 hack allows you to insert into a local database all the available
 information for a customer that PayPal passes back to you.
The following script is highly valuable when you are building an
 online eCommerce system. It helps with customer support issues, shipping
 information, and marketing and sales evaluation. It also serves as the
 procedural basis on which to insert other sets of data passed back to
 you by PayPal [Hack #83] .
The Database Table

Create a new database table named tblCustomers to store your customers’
 information. This table contains all of the available fields: first_name, last_name, payer_business_name, address_name, address_street, address_city, address_state, address_zip, address_country, address_status, payer_id, and payer_email. Each of the fields should be
 entered into your database defined as text values.
Next, add a field named Id
 and set it as the table’s primary key with an auto increment of one
 and no duplicates allowed. This additional field enables you to work
 with unique records in your advanced store functionality [Hack
 #54] . Once the table is ready, simply save it, and
 you can begin creating your script that populates the table with
 data.

The IPN Page

Your IPN page is passed your customer’s information as soon as
 the transaction completes. This hack uses VBScript for Microsoft Active Server Pages (ASP) and SQL
 queries to interact with the database. First, retrieve the values that
 are posted from PayPal and place them in temporary variables so you
 can work with them inside your VBScript code:
Dim first_name, last_name, payer_business_name, address_name,
 address_street,
address_city, address_state, address_zip, address_country,
 address_status, payer_id, payer_email

first_name = Request.Form("first_name")
last_name = Request.Form("last_name")
payer_business_name = Request.Form("payer_business_name")
address_name = Request.Form("address_name")
address_street = Request.Form("address_street")
address_city = Request.Form("address_city")
address_state = Request.Form("address_state")
address_zip = Request.Form("address_zip")
address_country = Request.Form("address_country")
address_status = Request.Form("address_status")
payer_id = Request.Form("payer_id")
payer_email = Request.Form("payer_email")
Once you have the variables populated with values, you are ready
 to insert them into your database table. The following SQL query adds
 the items to the database:
INSERT INTO tblCustomers (first_name, last_name, payer_business_name,
 address_name, address_street, &_address_city, address_state,
 address_zip, address_country, address_status, &_ payer_id,
 payer_email) VALUES ('" & first_name & "', "' & last_name & "', '" &
 payer_business_name & "', '" & address_name & "', '" & address_street
 & "', '" & address_city & "', '" & address_state & "', '" & & "', '"
 & address_zip & "', '" & address_country & "', '" & address_status
 & "', '" & payer_id & "', '" & payer_email & "')
Tip
See the “Database Coding and Platform Choices” section of the
 Preface for the additional information needed to put this SQL
 statement to work with this and the other hacks in this book.

Each time a new record is added to the table, a unique ID number
 is automatically generated for that record in the Id column. Uploading this page to your
 server and setting your IPN preferences to use this page as your IPN
 script causes the code to execute whenever a transaction is made in
 your account. When the page is called in the server-side post by
 PayPal, the transaction details are passed to this page, including the
 variable values. They are then recorded into your local database,
 creating a record on your own system.

Insert Payment Details into a Database with IPN

Record the data from IPN into a database to
 facilitate simple bookkeeping.
Capturing transaction-specific information is a vital part of
 expanding an online store, because it provides a platform of information
 on which to build value-added services and upselling techniques. For
 example, [Hack #75] provides a list of similar
 products purchased by other customers.
Tip
This functionality is required for complete security against
 spoofing in some vending applications. It allows you to check whether
 a transaction has already been processed.

The Database Table

Create a new database table, tblOrders, in which to store your order
 information. This table contains information about your customers’
 orders, but not any information related to the products your customers
 actually ordered.
Your database table should consist of the fields and data types
 shown in Table 7-5.
Table 7-5. A table to store order information retrieved with IPN
	Variable
	Data type

	Id
	An autonumber type, set as the primary
 key

	Payer_email
	Text field

	Payer_id
	Text field

	Payment_status
	Text field

	Txn_id
	Text field

	Mc_gross
	Money, or a floating point type with 2 places of
 precision

	Mc_fee
	Money

The IPN Page

Once the table has been created, install your IPN script to
 populate it with information posted by PayPal’s IPN facility. Start by
 creating new local variables and capturing the posted values into your
 IPN page:
Dim payer_email, payer_id, payment_status, txn_id, mc_gross, mc_fee,
 payment_date

payer_email = Request.Form("payer_email")
payer_id = Request.Form("payer_id")
payment_status = Request.Form("payment_status")
txn_id = Request.Form("txn_id")
mc_gross = Request.Form("mc_gross")
mc_fee = Request.Form("mc_fee")
payment_date = Request.Form("payment_date")
Now that you have the values temporarily placed in your page,
 you can perform the database insert using the following SQL
 query:
INSERT INTO tblOrders (payer_email, payer_id, payment_status, txn_id,
 mc_gross, mc_fee, payment_date) VALUES ('" & payer_email & "', "' &
 payer_id & "', '" & payment_status & "', '" & txn_id & "', " &
 mc_gross & ", " & mc_fee & ", '" & payment_date & "')
When the values are inserted into the tblOrders database table, a unique ID number
 will be generated by the database for the Id field. Note that the mc_gross and mc_fee variables are not surrounded by single quotes; they are
 inserted into your database as numeric values.

Insert Cart Details into a Database

Record the contents of customers’ Shopping
 Carts into a database to build a complete order-tracking
 subsystem.
This hack records a list of products a customer has purchased,
 in addition to the corresponding payment and customer information. There
 are two situations in which you’ll record purchase information:
 purchases of a single item (with the Buy Now button) and Shopping Cart
 transactions.
The first is fairly straightforward and serves as a primer for the
 more complex Shopping Cart insertion into your database. This hack is
 necessary for many merchants, because the PayPal history does not keep
 track of the individual items purchased in Shopping Cart transactions.
 For Shopping Cart purchases, the history provides only transaction
 information without any product detail. However, the PayPal IPN system
 does POST the individual cart values
 back to us in real time, so we can use that information to create our
 own payment history with full details.
The Database Table

Create a new database table to hold only the product detail
 information, as shown in Table
 7-6.
Table 7-6. A database table that stores a customer’s purchases
	 item_number

	 item_name

	 txn_id

	6001
	Vitamins
	349857340958734958

	6002
	Sulfuric Acid
	459384579348754343

	6004
	Calculator
	345312023123246896

	7001
	Imitation Gruel
	234982134201309323

This table will be used later with the transaction table to give
 a complete view of any specific transaction.
Tip
You will not record any of the payment information in this
 table, because you have already captured it in [Hack
 #82] .

You can join the tables using the transaction ID as the key; it
 will be the same in both tables for any one transaction. The minimal
 information you’ll capture for each product purchased will be the
 product’s name and item number, so create two fields named item_name and item_number with text data types.
Tip
The PayPal system does not provide individual product price
 information via IPN. To overcome this limitation, you must query an
 item’s price from another table [Hack
 #73] and calculate the price for the item based
 on the item_number passed by the
 IPN system.

Name the new table tblOrderDetails and save the database. It is
 now ready to have information inserted into it by your IPN
 script.

Single-Item Purchases IPN Page

Because you’re looking for the item_name and item_number variables, you need to create
 two new temporary variables to hold these values. Also, you need to
 capture the transaction ID so that you can query your database later
 for the information regarding a specific transaction. Create and
 populate the variables with the following code:
Dim item_name, item_number, txn_id
Item_name = Request.Form("item_name")
Item_Number = Request.Form("item_number")
Txn_id = Request.Form("txn_id")
Next, execute this SQL statement to insert these values into the
 database:
INSERT INTO tblOrderDetails (item_name, item_number, txn_id) VALUES
 ('" & item_name & "', '" & item_number & "', '" & txn_id & "')
Once the script is activated, the values passed back for any
 transaction are inserted into your tblOrderDetails database table.

A Shopping Cart IPN

Since Shopping Carts pass one or more products for any single
 transaction, you need to check the IPN data for the item name and
 number of each product. First, use the num_cart_items
 variable to find out how many items the customer purchased. Create a
 local variable to hold the number of cart items and populate it with
 the following code:
'Get number of cart items purchased
Dim num_cart_items
Num_car_items = Request.Form("num_cart_items")
For Shopping Cart transactions, the item_name and item_number variables are appended with
 their corresponding cart item count. To get the value of the first
 item in the cart, examine item_name1; the name of the third item in
 the cart (if it exists) is stored in item_name3. Using the item_name i or
 item_number
 i format, where the
 i is the cart item count, you can get the
 values for all the items in the cart.
Use a For loop in your IPN
 script to iterate through all the products your customer purchased,
 inserting the information about each into your database as you
 go.
'Get number of cart items purchased
Dim num_cart_items
Num_car_items = Request.Form("num_cart_items")

'Create new count variable
Dim i

For i=1 to num_cart_items

 set cInsDetails = Server.CreateObject("ADODB.Command")
 cInsDetails.ActiveConnection = "DRIVER={Microsoft Access Driver
 (*.mdb)};DBQ="C:/InetPub/wwwroot/database/dbPayPal.mdb")
 cInsDetails.CommandText = "INSERT INTO tblOrderDetails (item_name,
 item_number, txn_id) VALUES ('" & Request.Form(item_name & i) &
 "', '" & Request.Form(item_number & i) & "', '" & txn_id & "')"
 cInsDetails.CommandType = 1
 cInsDetails.CommandTimeout = 0
 cInsDetails.Prepared = true
 cInsDetails.Execute()

Next
Note that the transaction ID variable remains the same,
 regardless of what cart item you are on, because all the items were
 purchased as part of the same transaction.

Track Google Referrals

Use Google’s AdWord Conversion Tracking
 system and PayPal’s IPN system to track sales made from Google
 advertising.
Google has emerged from the search engine wars as the clear winner to
 date. Its fast, accurate search results are presented in a way that
 enables users to get search results quickly without the tool getting in
 the way, unlike many other search engine portals. It is the most widely
 used search engine on the Internet, and its builders continue to
 innovate.
Among those innovations is a self-service advertising system that
 enables small merchants to get wide exposure in a cost-effective,
 pay-per-click arrangement. When a web surfer looking for an item—a
 widget, say—goes to Google and types the name of the product into the
 search box, not only are the search results from the Google Page Ranking
 system displayed, but so are small, text-based ads related to widgets.
 As a widget vendor, you can target your AdWords ads to be displayed when
 a surfer enters certain widget-centric combinations of keywords.
 However, Google charges you only when a person actually clicks on your
 ad.
In the field of marketing, the effectiveness of an advertising
 effort is measured by its conversion rate. The conversion rate
 can be measured in a variety of ways, but generally it is the sales
 generated by advertising, divided by the number of
 impressions (times a consumer sees the ad). For
 AdWords, Google defines a conversion as “when a click on your ad leads
 directly to user behavior you deem valuable, such as a purchase, signup,
 page view, or lead.” This corresponds to the marketing industry’s
 response to purchase conversion
 rate: the number of purchases divided by the number of clicks-through.
 Understanding the conversion rate of a given ad can help you refine your
 AdWords ad copy and decide if the campaign is bringing the return on
 investment you expect.
Google provides a mechanism to help you tally purchases that come
 from customers clicking AdWords ads. This mechanism is triggered by a
 small piece of code you place in your transaction processing system.
 This hack shows how to enable a Google AdWords ad in your PayPal
 eCommerce system and track sales from that ad’s referrals. The system
 consists of three parts:
	A tracking-enabled Google AdWords placement

	A PayPal-enabled selling page

	An IPN page with the Conversion Tracking Code

Modifying Your Google AdWord Placement

You need to have one or more Google AdWord placements that refer
 people to your PayPal selling page. You can have as many ad placements
 as you like.
Log into the Google AdWord system (http://adwords.google.com), go to your campaign
 summary, and click the Conversion Tracking tab to display the screen
 in Figure 7-2.
	[image: Obtaining the AdWord code from Google’s Conversion Tracking page]

Figure 7-2. Obtaining the AdWord code from Google’s Conversion Tracking
 page

You will see an option to select Basic Tracking or Customized
 Tracking; select the Customized Tracking option. Select the
 Purchase/Sale option from the tracking options, which brings you to a
 page that has a generated a snippet of tracking code. Copy and paste
 the code into a text editor. It should look something like
 this:
<!-- Google Conversion Code -->
<script language="JavaScript">
<!--
google_conversion_id = 1234567890;
google_conversion_language = "en_US";
if (1) {
 google_conversion_value = 1;
}
google_conversion_label = "Purchase";
-->
</script>
<script language="JavaScript" src=
 "https://www.googleadservices.com/pagead/conversion.js">
</script>
<noscript>

<img height=27 width=135 src=
 "https://www.googleadservices.com/pagead/conversion/1234567890/?value=1&
label=Purchase&hl=en">

</noscript>
You’ll place this code in your IPN processing page. But first,
 copy the Google conversion ID from this code (on the fourth line, in
 this example) for use in your AdWord placement. Use the Edit function
 from the Ad Group detail page to change the Destination URL. This URL
 is not displayed to the visitor, but when the ad is clicked, this is
 the URL to which visitors are sent. Visitors are directed to the
 PayPal-enabled sales page named widget.asp, and
 the URL includes a parameter, convid, set to the value of your Google
 conversion ID:
http://www.yoursite.com/widget.asp?convid=1234567890

Setting up Your Selling Page

To enable the selling page widget.asp to
 track ad referrals, it needs to include a PayPal button that passes
 the conversion ID provided by Google to the PayPal system. Do this by
 putting a standard Buy Now button on the
 widget.asp page, then adding the PayPal-defined
 custom variable to the button code.
 This tag should be added between the opening and closing <form> tags. The custom variable will
 be hidden from the site visitor and will be populated with the
 convid variable that was passed as
 a querystring. Populating the
 custom variable with this value can be done in a variety of ways,
 including with JavaScript, but since this example uses ASP for the IPN
 processing anyway, put it to use here as well:
<input type="hidden" name="custom" value="<%=Request.QueryString("convid")%>">
Now, the PayPal button is able to pass on the Google conversion
 ID to PayPal. When the transaction is processed, PayPal sends the
 conversion ID on to your IPN processing page.

Creating Your IPN Processing Page

The IPN page finishes the job of tracking conversions. Take
 the code you copied from Google in the preceding section and paste it
 into your IPN page after the standard IPN processing chores (the
 section that begins with process
 payment in PayPal’s example scripts). Since the code is
 meant for client-side interpretation, you need to temporarily
 interrupt the server-side code processing by escaping the processor
 and adding your script. In ASP, stop the server-side processing with a
 %> tag and start it again with a
 <% tag:
'process payment
'stop server-side processing scripts and add conv code
%>
<!-- Google Conversion Code -->
<script language="JavaScript">
<!--
google_conversion_id = <%=Request.Form("custom")%>;
google_conversion_language = "en_US";
if (1) {
 google_conversion_value = 1;
}
google_conversion_label = "Purchase";
-->
</script>
<script language="JavaScript" src=
 "https://www.googleadservices.com/pagead/conversion.js">
</script>
<noscript>

<img height=27 width=135 src=
 "https://www.googleadservices.com/pagead/conversion/<%=
 Request.Form("custom")%>/?value=1&label=Purchase&hl=en">

</noscript>
<%
'continue processing server-side processing scripts
When an order is placed at your web site from a Google AdWord
 referral, the Google Conversion tracking system is activated. You can
 log into your Google AdWords account and evaluate your campaign’s
 effectiveness in Google’s conversion tracking system, as shown in
 Figure 7-3.
	[image: Measuring your campaign’s effectiveness with Google’s conversion tracking system]

Figure 7-3. Measuring your campaign’s effectiveness with Google’s
 conversion tracking system

See Also

	For practical ways to calculate and use conversion rates in
 your marketing
 campaigns, see Strategic Database Marketing : The
 Master Plan for Starting and Managing a Profitable, Customer-Based
 Marketing Program by Arthur M. Hughes (McGraw-Hill).

	For the nitty-gritty details on AdWords and conversion
 tracking, see Chapter 9,
 “Making Money with Google,” of Google: The Missing Manual
 by Sarah Milstein and Rael Dornfest (O’Reilly).

Process Payments like a Credit Card with PDT

Use PDT to transact payments synchronously
 and deliver your product or confirmation screen immediately—and without
 waiting for the IPN postback.
As explained in the introduction to this chapter, PDT is one
 of two technologies (along with IPN) that are used to send transaction
 information back to your server. PDT has the distinct advantage of
 allowing you to provide a seamless transition from payment to delivery
 of goods.
To use PDT with your web site, you must first configure some
 options in your PayPal Profile:
	Log into PayPal and click the My Account tab.

	Click Profile and then click the Website Payment Preferences link.

	Change the Auto Return option to On.
Warning
It’s vital that you turn on the Auto Return option. Without
 it, PDT won’t work at all.

	Enter a return URL: the address of a page (or more
 specifically, a script) on your site that can process the
 information sent back to it from PayPal and display an order summary
 to each customer. Details of this page follow.

	Change the Payment Data Transfer option to On.

Your site is now configured for use with PDT.
Tip
When you save your PDT preferences, an identity token is generated and appears with a message
 at the top of the Website Payment Preferences page. In future visits,
 your identity token appears in the Payment Data Transfer section,
 below the On and Off options. Eventually, you will need to pass this
 identity token, along with the transaction token, to PayPal in order
 to confirm that a payment is complete.

When a transaction has completed, PayPal redirects the customer
 to the URL you specify, with the following transaction parameters (among
 others) appended to the URL:
	Transaction number (tx)
	The most important of the parameters sent back by PayPal. Use this in the next
 section to get the full set of transaction information.

	Status (st)
	The status of the transaction, normally set to Completed.

	Amount of sale (amt)
	The dollar (or whatever currency used) amount of the
 sale.

	Currency (cc)
	The three-digit currency code indicating the currency used for the
 sale.

Once PayPal has sent this information to your site (e.g., the URL
 supplied in the return URL parameter), the rest is up to you and your
 web site in terms of how to record the transaction and fulfill the
 order. In the next section, you’ll see how this is done.
PDT in Action

At this point, all that’s left is to make sure you have a PDT
 handling page for the return trip. This example is
 written in C# for Microsoft ASP.NET.
The first order of business for the handling page
 (PDTHandler.aspx) is to grab the transaction
 number from the URL:
String strTransactionID=Request.QueryString["tx"].ToString();
This is where the identity token comes into play. You’ll need to
 POST a form request and send the
 identity token and the transaction ID back to PayPal, as well as set a
 command parameter (cmd) to notify-synch. The result of this exchange
 will be the full PDT suite of information. To do this programmatically
 using C#, open a request against PayPal’s server, and then place the
 response into a string variable:
string sOut = "";
string MyIDToken = "MyIdentityToken";
string transactionID = Request.QueryString["tx"].ToString();
string sCmd = "_notify-synch";

string serverURL = "https://www.paypal.com/cgi-bin/webscr";

try{
 string strFormValues = Request.Form.ToString();
 string strPassValue;
 string strResponse;

 // Create the request back
 HttpWebRequest req = (HttpWebRequest) WebRequest.Create(serverURL);

 // Set values for the request back
 req.Method = "POST";
 req.ContentType = "application/x-www-form-urlencoded";

 //Append the transaction ID, ID Token, and command
 //to the form
 strPassValue = strFormValues +
 "&cmd = _notify-synch&at = "+MyIDToken+"&tx = "+transactionID;

 req.ContentLength = strPassValue.Length;

 // Write the request back IPN strings
 StreamWriter stOut = new StreamWriter (req.GetRequestStream(),
 System.Text.Encoding.ASCII);

 stOut.Write(strPassValue);
 stOut.Close();

 // Do the request to PayPal and get the response
 StreamReader stIn = new StreamReader(req.GetResponse().GetResponseStream());

 strResponse = stIn.ReadToEnd();

 stIn.Close();
 sOut= Server.UrlDecode(strResponse);

} catch(Exception x){
 //if there is an error with the PDT response,
 //you will need to handle it here, making sure you trap
 //the raw PDT (if received) as well as the transactionID
 //etc so you can query PayPal again should anything go
 //wrong
}
Warning
You can only query PayPal for the PDT response a limited number of times
 per transaction. After five unsuccessful responses from PayPal, you
 will no longer be able to query for the transaction details. This
 limit has been imposed for PayPal performance and security reasons.
 For more mission-critical applications, or if your server’s
 connection to the Internet is flaky, you might want to employ IPN as
 well.

The data you receive in the PDT response is a grouping of
 name=value pairs, with the first
 parameter set to either SUCCESS or
 FAILURE.
Tip
To see the full output of the PDT, refer to the Payment Data Transfer Manual, available at https://www.paypal.com/pdt.

Once the PDT response is placed into a string variable, loop
 through the string and pull out the data you need to record the
 order:
string GetPDTValue(string key){
 1. String [] PDTbits=PDT.Split('\n');

 string theField="";
 string theValue="";
 string thisLine="";
 string sOut="";

2. for(int i=0;i< PDTbits.Length;i++){
 thisLine=PDTbits[i].ToString();

3. if(thisLine.IndexOf("=")>-1){
 theField=thisLine.Substring(0,thisLine.IndexOf("="));
 theValue=thisLine.Remove(0,thisLine.IndexOf("=")+1);

4. if(theField==key){
 sOut = theValue;
 }
 }
 }
 return sOut;
}
The PDT data is sent back in a single string using a linefeed as
 the record delimiter. On line 1, the split routine is used to assemble
 an array from these records. Then, the script loops (line 2) through
 the array, looking for the key=value pairs (line 3). When the specified
 key is found (line 4), the return variable, sOut, is set with the key name.
Using this GetPDTValue
 function, you can pull out any individual values you need to record
 the order into your database and prepare a nice receipt page for the
 customer (one of the tasks you must perform when you use PDT). For the
 full list of PDT parameters, refer to the Payment Data Transfer
 Manual.

Tracking Your Users: Before and After

If you decide to personalize the shopping experience for
 each customer, it is important to know who is buying what from your
 site. If you have any kind of customer login, you need to pass this
 information to PayPal so that you’ll know who your customers are when
 they return to your site.
A great way to track your user before and after the PayPal
 transaction is to send along the user’s identifier in the custom
 parameter [Hack #28] . To do so, use the
 following code, where user_ID is some
 identifying number or string assigned to the particular customer
 (usually an integer key from a database):
<input type=hidden name="custom" value="user_ID">
When this value is returned to you in the PDT response, you can
 retrieve it using the GetPDTValue
 from the previous section:
string strCustomerID=GetPDTValue("custom");
You could also use HTTP cookies to do this, but the custom field is more reliable, because it
 won’t break if the customer has configured her browser to reject
 cookies.

Retrieving the Order

PayPal sends the items purchased in a simple numbered sequence.
 For a single-item purchase, PayPal returns a simple parameter
 called item_number :
item_number=HTHTKEPO
When a customer purchases more than one item, PayPal adds an
 integer value to the end of each parameter to identify the item
 number, like this:
item_number1=HTHTKEPO
item_number2=DREGFEF
item_number3=ERTRTDFD
The values to the right of the equals signs correspond to the
 product IDs you send PayPal, presumably taken from your database
 (these could be SKU codes, product names, or whatever). See [Hack
 #45] to use PDT with PayPal’s Shopping Cart, or
 check out [Hack #50] if you’re using your own
 shopping cart system.
The following code retrieves the details of an order:
string productNumber=GetPDTValue("item_number");
1. if(productNumber!=""){
 //only one item purchased

2. //process order here

}else{
 string itemTag="item_number";
 string thisItem="";

3. for(int i =0; i < 1000; i++){
 thisItem = itemTag + i.ToString();
 productNumber = GetPDTValue(thisItem);

 if(productNumber!=""){

4. //process shopping cart item here

 }else{

 //no more items found; exit the loop
 break;

 }
 }
}
Since the item_number field
 is present if only a single item was ordered, the first check (line 1)
 redirects the code if the field exists. Otherwise, the code proceeds
 to the next section, which begins a loop (line 3) to look for multiple
 items in the Shopping Cart. Either way, you must add code (on lines 2
 and 4 to retrieve the quantity and other details from the PDT data
 string using the same GetPDTValue
 function.
—Rob Conery

Synchronizing PDT and IPN

Ensure that your product is delivered, even
 when PDT fails and the return page never shows, by introducing
 redundancy with IPN.
PayPal’s PDT system
 [Hack #85] automatically redirects your customers back to your web page after they pay and
 sends the transaction information along with them. While this is an
 effective way to deliver products and services to your customers without
 forcing them to wait for IPN to contact your server, it’s certainly not
 infallible. If you care about record keeping, you’ll want to use IPN to
 record payment details into a database [Hack
 #82] so that you don’t miss any payments.
This hack shows how to coordinate PDT with IPN to ensure that
 every transaction is processed by your server. The potential problem
 here is that when using PDT, or even the return variable feature, your customer can be
 redirected back to your web site before the IPN system has finished
 processing. You can address this issue by checking your local database
 to see whether or not the transaction details have been inserted yet;
 this refreshes the return page until the order has been
 processed and the IPN data has been received.
Warning
The reason you still need to use the IPN system is that the PDT
 is intended to be used only for a one-time query when the transaction
 takes place. If that query fails, the data for that transaction is
 lost forever. The IPN system has a high level of redundancy; it
 continues to call your IPN processing script for up to four days until
 it processes successfully.

The Code

The following ASP code simply reads the transaction data passed
 from PDT and then checks your local database to see if the IPN has
 finished processing the transaction. If not, it repeatedly refreshes
 the page (every five seconds) until it finds the corresponding
 transaction in the database. Use this as your PDT return page:
<%
1. Response.AddHeader "Pragma","no-cache"
Response.Expires = 0
Response.buffer = true
Response.clear

2. 'Create transaction id variable
Dim txn_id
txn_id = Request("txn_id")

3. 'Check if IPN has been processed with database query and recordset
Dim rsOrderCheck
Set rsOrderCheck = Server.CreateObject("ADODB.Recordset")
rsOrderCheck.ActiveConnection = MM_connPayloadz_STRING
rsOrderCheck.Source = "SELECT tblOrderDetails.* FROM tblOrderDetails
 WHERE tblOrderDetails.txn_id = '" & txn_id & "'"
rsOrderCheck.Open()

4. 'Count how many times you refresh the browser
Dim vRCount
If Request("rcount") = "" Then
 vRCount = 1
Else
 vRCount = cInt(Request("rcount")) + 1
End If
%>
<html>
<head>
<% If rsOrderCheck.EOF And rsOrderCheck.BOF Then 'ipn not processed yet %>
5. <meta http-equiv="refresh" content="5;URL=
 http://paypalhacks.com/pdtpage.asp?txn_id=<%=Request("txn_id")%
 &rcount=<%=vRCount%>">
<% End If %>
</head>
<body>
<% If rsOrderCheck.EOF And rsOrderCheck.BOF Then 'ipn not processed yet %>
6. Please wait while we locate your order.
This may take up to 30 seconds.
<% Else 'ipn has been processed %>
7. IPN has been processed, insert content here.
<% End If %>
</body>
</html>
Line 1 tells the browser and server not to cache the page
 content, but rather to expire it immediately; this makes sure that new
 content appears when it is available. Then, line 2 initializes the
 transaction ID, and line 3 checks it against the database. Line 5
 contains the meta refresh tag,
 which refreshes the page automatically if the recordset is empty
 (e.g., if IPN has not processed the order yet).
Place your own messages on lines 6 and 7 to inform the customer
 that the order is still being processed and that the order is ready,
 respectively.
Tip
This example illustrates synchronizing the PDT and IPN system,
 but you can also use the same technique presented here for your
 return page if you are not using the PDT system. For information on
 using the return page for order processing, see [Hack
 #85] .

Hacking the Hack

Normally, the IPN system contacts your server and completes the
 process in a matter of seconds after the customer pays. However, there
 are times when the IPN system can take longer (up to several minutes
 or even hours). This can be caused by load on the PayPal system, on
 your site, or any number of other possibilities. In the event of such
 a delay, the repeated refreshing of the page is likely to induce
 seizure in your customer or, at the very least, try his
 patience.
To address this issue, you might want to limit the number of
 times the browser is refreshed and display a message to the customer
 if that limit is reached (something to the effect that his order is
 still being processed and he should contact you or get a cup of coffee
 or something). Simply add the following snippet of code before the
 opening <html> tag:
<%
'Redirect customer to order search timeout page
If vRCount => 5 Then
 Response.Redirect("ordertimeout.asp")
End If
%>
This code simply checks the number of times the browser has been
 refreshed (vRCount, set in the
 original code) and interrupts the process after five unsuccessful
 tries (this means that at least 30 seconds have passed since the
 customer was first sent to your PDT page).

[1] To make full use of IPN, it’s helpful to profoundly understand
 the process. To grok the concepts involved (as
 opposed to merely grasping them), helps elevate you to the status of
 Geek. (The term grok was coined by Robert A.
 Heinlein in his novel Stranger in a Strange
 Land.)

Chapter 8. The PayPal Web Services API

Introduction: Hacks #87-100

PayPal’s Web Services application programming interface (API) is
 the means by which you can interface directly with the PayPal platform
 to build applications and web sites that leverage features on the PayPal
 web site. Essentially, this means that you can integrate your
 order-processing and customer-service systems with the payment
 information stored on the PayPal web site.
No longer are you bound by the patchwork services afforded by
 services like Instant Payment Notification (IPN) [Hack
 #65] and Payment Data Transfer (PDT) [Hack
 #85] . Instead, the API provides a more seamless link
 between your application and the PayPal engine, allowing you to write
 slick, robust order-processing applications to help grow your
 business.
Warning
Currently, you cannot use PayPal’s API to process credit card
 payments directly from your site. Your customers must still visit the
 PayPal web site to send payments to you, but you can subsequently use
 the API to retrieve the details about such payments, including those
 funded by credit cards.

The geek-impaired might not immediately see the benefit of writing
 more code to essentially duplicate the functionality that exists on the
 PayPal web site, but here are some specific benefits to consider:
	Individual merchants can automate administrative tasks they do
 repeatedly.

	Large merchants who conduct thousands of transactions a day no
 longer have to log into PayPal to review their transactions, view
 specific transaction details, or perform refunds [Hack
 #91] . This allows customer care representatives
 to work more efficiently.

	Third parties can provide solutions to small or large
 businesses. Some solutions require customers to pay via the PayPal
 web site, but you can provide some services in which PayPal is never
 seen by the user. Therefore, you can make it appear as if you are
 providing the payment service (e.g., Mass Pay [Hack
 #96] . In addition, most of the administrative
 PayPal functionality can remain on your site.

Tip
You might be wondering at this point exactly how API, IPN, and
 PDT differ. In simplest terms, IPN and PDT are notifications initiated
 by PayPal (in the form of web requests) that let your server know when
 a transaction has completed. The API, on the other hand, is initiated
 by you and allows you to execute core PayPal functions from your
 application, whenever and however you like. These technologies can be
 used together for further automation.

Due to security concerns, the API is limited to a subset of the
 things you can do on the PayPal site. Specifically, you can do the
 following things:
	Search for a transaction with the date, name, email, and other
 parameters [Hack #94] .

	Retrieve the details of a single transaction [Hack
 #93] , given the PayPal transaction ID.

	Refund a payment
 [Hack #91] (in full, or
 partially).

	Make payments from your account to other accounts using
 PayPal’s Mass Pay service
 [Hack #96] .

Tip
A little programming experience will be extremely helpful in
 making use of the hacks in this chapter, most of which were written
 for Visual Studio .NET. See the “Database Coding and Platform Choices”
 section of the Preface for more details.

Most of the API functionality is usable by merchants as is, but
 there are ways to extend the basic functionality to do wonderful things
 that will make people mumble your name as you walk valiantly by—which is
 the point of this book anyway, isn’t it?

Create a Developer Account

The first thing you need to do to access the PayPal API is set
 up a developer account at PayPal Developer Central. It’s simple, and best of all, it’s
 free. There is a wealth of information on the Developer Central site,
 including:
	Sample code provided by PayPal that demonstrates most of the
 API

	A moderated forum where you can ask (and receive answers to)
 common or obscure API-related questions

	The PayPal Sandbox
 [Hack #87] , a test area in
 which you can run merchant transactions without using actual
 funds

PayPal Developer Central is located at https://developer.paypal.com. To create a developer
 account, click the registration link and enter basic information about
 yourself, such as your name, company, email address, as well as some
 optional profile questions.
Warning
After completing the sign-up form, an email will be sent only
 once to the email account you specify. Click the email link to
 activate your account. Make sure you don’t lose this email, because if
 you do, you will not be able to register again with the same email
 address.

When you’re finished, you will be registered as a developer, at
 which point you’ll be able to log into PayPal Developer Central, as
 shown in Figure 8-1.
	[image: PayPal Developer Central]

Figure 8-1. PayPal Developer Central

Developer Central is divided into five areas:
	The Sandbox
	Create test user accounts and test your code [Hack #87] .

	Test Certificates
	Create and keep track of your SSL certificates [Hack #87] .

	Email
	Manage pseudo-email messages sent from the Sandbox.

	Forums
	Ask questions and discuss the API with other developers in a
 user-to-user forum moderated by PayPal developers.

	Help Center
	How-tos, sample code, and links to other forums (e.g., eBay
 and PayPal general forums).

Now that your developer account is set up, it’s time to have some
 fun in the Sandbox.
—Rob Conery and Dave Nielsen

Set up the Sandbox

Create phony accounts and use phony money to
 test your API code, all without spending a dime.
Tip
Go to http://paypalhacks.com for downloadable code and API
 updates.

PayPal Developer Central includes an environment called the PayPal Sandbox, in
 which you can test your PayPal Web Services applications, as well as IPN
 and PDT features (discussed in Chapter
 7). The Sandbox looks and behaves like the PayPal web site, with
 one important exception: no real money is transacted. You can create and
 access multiple test accounts in the Sandbox, which means that you can
 create both a business and a buyer account without the hassle of setting
 up real email, credit card, and bank accounts.
Before PayPal created its Sandbox, you would have had to create
 two real PayPal accounts and use real money to test your code. There was
 no way to get around this, but you could send test payments in
 pennies—$0.01 for a widget or $0.02 for a gumball—and then refund the
 transactions immediately thereafter. As you can imagine, this process
 quickly became burdensome. Although some companies (such as Eliteweaver)
 offered good IPN-testing solutions, ultimately nothing was able to
 replace the comfort of knowing that your code worked against the real
 thing.
Creating a Sandbox Account

Creating a Sandbox PayPal account is similar to creating a live
 PayPal account. The web pages look and behave almost identically.
 Here’s how to do it:
	Log into Developer Central with your new developer account
 and click the Sandbox tab.

	Click the Create Account link, at which point a familiar
 page appears: the PayPal sign-up page.
Tip
It might be a little jarring to see the PayPal account
 sign-up page, but if you look to the top-left corner, you’ll see
 a PayPal Sandbox logo, verifying that you did swallow the blue
 pill and are indeed working within a simulated PayPal
 environment.

	To create a business account, select the Business Account option. Select your country and
 click the Continue button.

	On the next page, enter any existing address and phone
 number. This information never leaves the Sandbox, so the
 information you enter here makes little difference. Click the
 Continue button when you’re done.

	On the Enter Your Information page, type an email address
 and password. To make it easy on yourself, use a simple email
 address such as business@mysite.com and an
 easy-to-remember password such as qwertyui. You don’t have to use a real
 email account, because the Sandbox emails never leave the
 Sandbox.
Tip
Real currency is not involved when using the Sandbox, so
 there isn’t much of a security issue. You might choose to use
 the same password for every Sandbox account you create. Having
 to manage multiple passwords is pointless and can slow down your
 development team.

	You also need to provide answers to two security questions.
 Again, this information never leaves the Sandbox. Enter something
 obvious, such as your own last name, for Mother’s Maiden Name and
 the city you work in for City of Birth. Finally, enter the
 Security Measure characters and click the Sign-up button.

	Next, you will be asked to confirm your email address. But
 before you do, repeat steps 1 through 6 to create a second Sandbox
 account, from which you can send test payments. To create a buyer
 account, select Personal Account (instead of Business Account) in
 step 3. You’ll be asked fewer questions this time.
Tip
You might want to create both types of personal accounts
 (Standard and Premier) to mimic the different types of PayPal
 users who will be buying things from your site. To create a
 Premier account, answer Yes when asked “Would you like this to
 be a Premier Account?”

	Once both your Business and Personal accounts are set up,
 they will appear under the Sandbox tab, as shown in Figure 8-2. For each account
 you create, you will see the email address, the account type, the
 country in which the account is registered, the account balance
 and currency, and whether the account is confirmed and
 verified.

	[image: Buyer and Seller accounts in the Sandbox]

Figure 8-2. Buyer and Seller accounts in the Sandbox

Confirming Your Sandbox Email Addresses

Just as you would on the live PayPal site, you must confirm
 your newly created PayPal Sandbox accounts before you use them.
 Normally, PayPal would send a real email to a newly added email
 address for confirmation, but email sent on behalf of pseudo-accounts
 would be confusing, to the say the least. So, for security and other
 reasons, PayPal’s Developer Central web site includes a self-contained
 pseudo-email-messaging system to catch and display emails generated by
 the PayPal Sandbox.
To view these emails, log into the Developer Central web site
 and click the Email tab. A list of emails from PayPal to your various
 accounts will be displayed here. Click the subject link of any email
 to open the email message, as shown in Figure 8-3.
	[image: The PayPal Sandbox account verification process]

Figure 8-3. The PayPal Sandbox account verification process

To confirm your Sandbox account:
	Copy the URL from the Activate Your PayPal Account
 email.

	Open a new browser window, paste the URL into your browser’s
 address bar, and press Enter.

	Enter the password for your account and click Submit.

You will need to follow this process for every new Sandbox
 account you’ve created.

Verifying Bank Accounts in the Sandbox

PayPal uses bank accounts to verify [Hack
 #2] that their members are who they say they
 are.
Tip
Bank accounts are also used to add and withdraw funds [Hack
 #20] .

Adding a bank account to a Sandbox account is relatively
 straightforward and has the added bonus of instantly making you
 rich—at least in the world of the PayPal Sandbox.
To add a bank account to your PayPal Sandbox account:
	Log into the Sandbox with your business account and click Add Bank Account on the
 My Account/Overview page.

	The Add Bank Account page will be conveniently pre-populated
 with a fake bank account number. Add a name for the account and
 click Add Account. Be sure to make note of the account numbers
 used for the bank account, because you will need them in the
 future to add multiple users or enable other features.
Tip
At the time of this writing, the Sandbox displays this
 account number only once: at the moment of its creation. So,
 write it down somewhere, because you won’t see it again. One way
 to remind yourself of this bank account information is to use
 the routing number and bank account as part of the account name
 (e.g., BofA-325272157_10448249836185934481).
 If you do forget the account numbers, you might want to abandon
 this Sandbox account and open another.

	At this point, PayPal would normally make two small deposits
 into your pseudo-account and then ask you to confirm the amounts
 that were deposited. However, since the account numbers and the
 corresponding accounts are fake, you won’t be able to visit your
 bank’s web site to get the information [Hack
 #2] . Instead, PayPal provides an easy way to
 accomplish this step right on the site. Click the Get Verified
 link on the My Account/Overview page to view the Get Verified
 page.

	On the Get Verified page, click “Add and confirm a checking
 account” to be taken to the Confirm Bank Account page. Select the
 bank account you would like to confirm and click Submit. Click
 Continue when you see “Your U.S. Bank Account Has Been
 Confirmed.”

Repeat this process for your buyer account.

Adding Funds (and Getting Rich Quick)

When you’ve verified all your accounts, the last step is to put
 some money in your Personal (buyer) account.
Tip
You do not have to add funds to your account before making a
 payment, because PayPal will let you fund payments from your fake
 bank account or fake credit card, just as in real life.

To add funds, log into the Sandbox with your Sandbox buyer
 account, and from the My Account tab, click Add Funds. Click the
 Transfer Funds from a Bank Account link and follow the instructions.
 You need to put some money into your Personal account only, since
 that’s the account from which you’ll be making your
 pseudopayments.
Tip
The transaction will be held as Pending until you actually
 view the details of the transaction and click Clear Transaction or
 Fail Transaction. For the purposes of this hack, select Clear
 Transaction here.

This might be the most fun of all the things mentioned in this
 book, because you can, on a whim, transfer any amount of money into
 your account and become a pseudomillionaire in seconds! (And you
 thought this was going to be about the coding!)
--Rob Conery and Dave Nielsen

Make Your First API Call

Make your first API call by issuing a refund
 from the command line.
As a programmer, you know that web services are the “next big
 thing.” They’re supposed to make it easy for two computers to exchange
 information. PayPal Web Services, however, handle money and therefore
 require an extra level of security. The extra layers are quite easy to
 implement, but you’ll need to take the following configuration steps
 prior to executing your first call:
	Set up an SSL certificate issued by PayPal.

	Install Simple Object Access Protocol (SOAP) libraries or set
 up a web reference to SOAP-enable your application

Setting Up the SSL Certificate

Your web site might already have an SSL certificate that it uses
 for secure communication, but at the time of this writing, PayPal does
 not support using certificates from other certificate authorities
 (CAs). This means that you’ll need to generate an SSL certificate from
 the PayPal Sandbox [Hack #87] , and then later, the PayPal
 live site when your application goes live [Hack
 #100] . Here’s how to request an API
 certificate:
	Log into your PayPal Sandbox Business account and click the Profile
 tab.

	Click the API Access link and then click the API Certificate
 Request link.

	In the Certificate Profile section, enter your merchant
 information (First Name, Last Name, Company, Volume, and Expected
 Use are required fields). While the Volume and Expected Use fields
 are required, they are mainly for PayPal informational purposes
 only.

	In the Account Name and Password section, enter a
 password.
Tip
Make sure to write down your account name and password, because there will be no way to get a
 reminder later on. This account name and password, along with a
 certificate file, will be required when you connect to the
 PayPal API. If you do forget your password, you will need to
 create a new SSL certificate request.

	In the Terms of Use section, check Yes and click Continue.
 Review your Certificate Profile and click Generate Certificate.
 Your API Certificate file will be created and made available for
 you to download.

	Once the API certificate file is generated, click Download
 and save the text file (cert_key_pem.txt) to your
 local hard drive.

This API certificate file is a text file, but it is not yet in
 the format required to connect to the PayPal API. You’ll need to
 convert it into a PKCS12 (.cer) file using a
 cryptographic tool such as OpenSSL (http://www.openssl.org).
 To avoid having to compile the OpenSSL source code yourself, you can
 download a precompiled Windows version, as described in Installing OpenSSL for
 Windows.
Installing OpenSSL for Windows
Download and install Shining Light Productions’ Win32 OpenSSL from http://www.slproweb.com (at the time of this writing,
 v0.9.7d is the recommended version).
To convert the text certificate file into SSL (PKCS12) format using
 OpenSSL, open the Windows command prompt (cmd.exe in Windows XP/2000, or command.com in Windows 9x/Me). Start
 OpenSSL by typing c:\openssl\bin\openssl at the prompt (the
 pathname may be different on your system). At the OpenSSL prompt,
 type the following command, where
 c:\cert_key_pem.txt is the location of
 your text certificate file and
 c:\mycert.p12 is the location of your new
 SSL (PKCS12) file to create:
pkcs12 -export -in c:\cert_key_pem.txt -out c:\mycert.p12

The next step involves installing the certification and is
 dependent upon the type of application you’re creating (e.g., a
 desktop application or a web application) and the development tool
 you’re using to create it. This hack connects to the PayPal API from
 a desktop application created from within the Microsoft Visual
 Studio .NET development environment. If, however, you are using
 another development environment such as Java, or if you are
 developing a web application under Apache, you’ll need to see the
 developer tool documentation at http://www.paypalhacks.com/resources.

Installing Certificates into IE
To access PayPal’s API using Visual Studio .NET, you need to
 import the .p12 certificate file you
 created into Internet Explorer to register the certificate in the
 computer’s registry.
Before you access the secure PayPal API with Microsoft
 development tools, Microsoft requires that you create a valid
 security certificate. To do this, import the
 .p12 certificate file into Internet Explorer
 and then export the certificate as a .cer file,
 all from within Windows.
To import the .p12 certificate,
 double-click the .p12 file (e.g.,
 mycert.p12) to open the Windows Import
 Certificate Wizard. Follow the prompts and accept the defaults. You
 will be required to enter the password you provided when you created
 the PayPal API certificate file earlier in this hack. When finished,
 you will see a confirmation message that the import was successful.
 Click OK.
To export the certificate as a .cer
 file, open the Tools menu in Internet Explorer and select Internet
 Options. Choose the Content tab and then click the Certificates
 button to display the Certificates screen. The Certificates screen
 lists the certificates currently installed on your computer; select
 the certificate you just imported (it’s under the Personal tab) and
 click Export. Accept the default options. When prompted to select a
 File Format, select “DER encoded binary X.509 (.CER)” and click
 Next. Enter the filename and location, click Next, and then click
 Finish. You’ll see a message that the export was successful. Click
 OK, then Close, and then OK again to close the Internet Options
 screen. Later, you’ll refer to this .cer file
 from your code to access the PayPal API.

SOAP-Enabling Your Application

In order for your application to access PayPal’s Web
 Services, you’ll need to install a module or code library that can
 call a SOAP-based web service. Some development tools, such as Visual
 Studio .NET, are set up to support web services out of the box.
Tip
For the sake of simplicity and consistency, the rest of this
 chapter uses code written in C# using Visual Studio .NET. If you are
 using another language, such as Java, VB, C++, PHP, or Perl, review
 the PayPal Web Services page (http://www.paypalhacks.com/resources/).

To access a web service from within a development environment
 such as Visual Studio .NET, you need the URL of the Web Service Description Language (WSDL) file that
 describes the web service and, possibly, a valid security certificate.
 Typically, you would set up a web reference to abstract the SOAP-specific details of
 the web service, allowing you to access the web service as you would
 any other class or function call. Once you validated a web service
 using its WSDL file in the Visual Studio .NET Web Reference Wizard, a
 web reference would be added to your project and you’d be able to
 access its methods just like any other class in your project.
Currently, PayPal does things differently. For security reasons, PayPal requires that you not only
 install a security certificate, but also provide your digital
 certificate account name and password to access the PayPal API.
To set up a proxy web reference in Visual Studio .NET, open your
 Visual C# Windows Application. In your project’s Solution Explorer,
 right-click the References folder and select Add Web Reference. In the
 Add Web Reference box, type the URL of the appropriate PayPal
 Sandbox WSDL file:
	Sandbox: http://api.sandbox.paypal.com/wsdl/PayPalSvc.wsdl
	Sandbox (alternate): http://www.paypalhacks.com/wsdl/PayPalSvc.wsdl
	Live PayPal site: http://api.paypal.com/wsdl/PayPalSvc.wsdl

Then click Go. (The wizard does not work well with https, so use
 http.) If successful, the Web Reference wizard displays the
 description of the PayPalAPIInterface and the methods it
 contains. As of this writing, the methods are BillAgreementUpdate(), BillUser(), GetTransactionDetails(), MassPay(), RefundTransaction(), and TransactionSearch(). (BillAgreementUpdate() and BillUser() are not publicly available and
 are not discussed in this book.)
Change the Web reference name from com.paypal.sandbox.api to PayPalSvc and then click Add Reference.
 Verify that a new folder named Web References has been created and
 that it contains a reference named PayPalSvc.
You are now ready to use your PayPalSvc web reference. Using the digital
 certificate, certificate account name, and password, you can access
 the PayPal Web Service’s methods via this PayPalSvc object.

Getting Started with PayPal’s APIClient Tool

PayPal offers immediate gratification for users who can’t wait
 to use the PayPal API. The APIClient application is downloadable from the Help
 Center tab at Developer Central.
Tip
The APIClient was created using Microsoft Visual Studio .NET
 and is written in C#. The application is a .NET project you’ll need
 to modify and build before you can use it.

Here’s how to set up the APIClient application:
	Download the .NET Code Samples and unzip the
 APIClient.zip file into a folder on your hard
 drive.

	Double-click the APIClient.csproj file
 to open the APIClient project in Visual Studio .NET.

	Expand the Web References folder, right-click on the
 PayPalSvc reference, and select Properties, as shown in Figure 8-4.
	[image: Specifying the location of the WSDL file in the properties sheet of the PayPalSvc web reference]

Figure 8-4. Specifying the location of the WSDL file in the
 properties sheet of the PayPalSvc web reference

	Point the Web Reference URL to the PayPal Sandbox WSDL
 file.

	Right-click the APIClient project name in Visual Studio .NET
 and select Properties.

	Select Configuration Properties, and then select
 Build.

	In the Properties pane, set the Output Path to
 C:\ (or whatever drive you are comfortable
 with; you are going to run this program from the command line, so
 using something like C:\ is easy on the
 fingers). Click OK.

	From the Build menu, select Build APIClient. Visual Studio
 .NET will build the executable and save it into your Output path;
 make sure you place it in the same folder as your
 certificate.cer file.

The APIClient is ready to go. All you need now is a transaction
 to play with.

Setting up a Test Transaction

Before you start using the APIClient, send some money from your
 Sandbox Personal account to your Sandbox Business account:
	Log into Developer Central, click the Sandbox tab, click the
 Launch Sandbox button, and log in with your Personal Sandbox
 account.

	Click Send Money and then send some cash (e.g., $10) to your
 Business account.

	Next, log out of your Personal account and log back into
 your Sandbox Business account.

	The payment you made from your Personal account will appear
 on the Overview page. Your balance will have increased by the
 amount you sent (minus the simulated transaction fee).

	Click the Details link to bring up the Transaction Details.
 Record the Transaction ID number for use in the next step.

Making Your First Call

That’s it for the prep work. Now, it’s time to call the Refund
 Web Service. The APIClient is a .NET console application, so you need to
 open up a command prompt (cmd.exe in Windows
 XP/2000, or command.com in Windows 9x/Me).
Use cd to navigate to the directory where the
 APIClient.exe executable is located (e.g.,
 cd c:\), and execute the client
 program:
APIClient RefundTransaction -t transaction_number -u your_api_username
 -p your_api_password -c certificate_file

Tip
For a full description of the arguments for the test tool,
 please see the APIClient documentation or type APIClient help at the prompt.

If all goes as planned, you will see some output text in your
 console, as shown in Figure
 8-5. Among other things, Ack
 will be set to Success to confirm
 that the transaction has been refunded. Also note the number of errors
 reported by the call (which, in this case, happens to be zero.)
	[image: Using the APIClient to issue refunds]

Figure 8-5. Using the APIClient to issue refunds

Log into your Sandbox Business account, click History, and look
 at your transaction log to verify that the payment was refunded
 successfully.
The APIClient is a nice introduction to the use of the PayPal
 API, but it demonstrates only a fraction of what the PayPal API can
 do. In addition, the APIClient was written solely for command-line use
 and will not scale to other applications. Use the next few hacks to
 extend the PayPal API into a standalone .NET assembly that any client
 can use.
--Rob Conery and Dave Nielsen

Create a Wrapper Class for Your API Calls

Create a Windows DLL to call the API and
 eliminate need for the console application.
Using the API from a console application [Hack
 #88] is nice for testing, but for real-world
 applications, you’ll want to use an encapsulated module to handle calls
 to the API. That way, you can reuse the functionality in multiple
 applications.
Tip
This wrapper class DLL is written in C# and assembled in Visual
 Studio .NET.

The underlying architecture of the PayPal API is the same for each
 API method, all of which use four basic classes to complete a
 call:
	Type
	This is a generic term for a class that holds information.
 You fill out the properties in the type and add the type to the
 request object.

	Request
	This object is responsible for creating and sending the SOAP
 package to the API. It hands the type to the API that contains
 information specific to the call (the TransactionID for example, in the
 GetTransactionDetail()
 method).

	Response
	This object holds the API’s response to the call, including
 whether the call was successful. It also returns a type object,
 with specifics (transaction details, for example, in the GetTransactionDetail() method).

	API service
	This object executes the call using the request object as an
 argument and returns a response object.

Handling the Basics

The API wrapper class makes it easier for you to access the
 PayPal API, and you can reuse it in multiple applications. The wrapper
 class has four properties (APIPassword, APIPassword, CertLocation, and APIUrl) set by the class constructor method,
 as well as some additional methods to simplify security setup and
 formatting.
	Open Visual Studio .NET and go to File→New→Project.

	On the New Project screen, select Visual C# Projects and
 Class Library.

	Name your project PayPalAPI and click OK.

	Add a PayPal web reference [Hack
 #88] . Name it PayPalSvc and click Add
 Reference.

	Add a new class file to the project and name it APIWrapper.cs.

	Copy the following code into APIWrapper.cs, and save the project when
 you’re done:

using System;
using System.Net;
using System.Security.Cryptography.X509Certificates;
using System.Text;
using PayPalAPI.PayPalSvc;
using System.Data;
using System.Collections;

namespace PayPalAPI
{
 /// <summary>
 /// Summary description for APIWrapper.
 /// </summary>

 public class APIWrapper
 {
 string _APIUserName="";
 string _APIPassword="";
 string _CertLocation="";
 string _APIUrl="";

 public string APIUserName
 {
 get{return _APIUserName;}
 }
 public string APIPassword
 {
 get{return _APIPassword;}
 }
 public string CertLocation
 {
 get{return _CertLocation;}
 }
 public string APIUrl
 {
 get{return _APIUrl;}
 }
 PayPalAPIInterfaceService service;
 public APIWrapper(String APIUserName, string APIPassword,
 string CertLocation, string APIUrl)
 {
 _APIUserName=APIUserName;
 _APIPassword=APIPassword;
 _CertLocation=CertLocation;
 _APIUrl=APIUrl;

 // Add the CertificatePolicy so we can post to an untrusted
 site
 ServicePointManager.CertificatePolicy = new
 MyCertificateValidation();

 service = new PayPalAPIInterfaceService();
 service.Url = _APIUrl;

 // Add the X509 Cert to the service for authentication
 X509Certificate certificate =
 X509Certificate.CreateFromCertFile(_CertLocation);
 service.ClientCertificates.Add(certificate);
 SetHeaderCredentials(service);

 }
 void SetHeaderCredentials(PayPalAPIInterfaceService service)
 {
 CustomSecurityHeaderType securityHeader =
 new CustomSecurityHeaderType();
 UserIdPasswordType userIdPassword = new UserIdPasswordType();
 userIdPassword.Username = _APIUserName;
 userIdPassword.Password = _APIPassword;
 //userIdPassword.Subject = subject;
 securityHeader.Credentials = userIdPassword;
 securityHeader.MustUnderstand = true;

 service.RequesterCredentials = securityHeader;

 }

 string GetAmountValue(BasicAmountType amount)
 {
 string sOut="";
 try
 {
 sOut="$"+amount.Value.ToString();
 amount.currencyID = CurrencyCodeType.USD;
 }
 catch
 {
 sOut="--";
 }
 return sOut;
 }

 }

}

Creating Your Own Certificate Handler

If you have trouble accessing the PayPal API, it might be
 because your .NET code does not trust the PayPal digital certificate. But you know that you’re talking to PayPal,
 so it’s not that important. Adding the following code to your API
 wrapper overrides .NET’s default certificate policy, which is to
 challenge certificates issued by untrusted certificate
 authorities:
class MyCertificateValidation : ICertificatePolicy {

// Default policy for certificate validation.
public static bool DefaultValidate = false;

public bool CheckValidationResult(ServicePoint sp, X509Certificate cert, WebRequest
request, int problem) {
 //implement your custom code here
 return true;
 }
}
Eventually, you’ll need to implement your own code for this
 class, but for development purposes, you can simply tell your server
 to trust every certificate
 issuer.
--Rob Conery and Dave Nielsen

Use the PayPal API Wrapper Class

Create a simple transaction-lookup form and
 make an API call with the API wrapper class.
Now that you’ve created a wrapper class for your API calls
 [Hack
 #89] , it’s time to put it to use. This hack adds one
 GetTransactionDetail function to your
 wrapper class. It then creates a user interface for the wrapper class
 from which you can look up the corresponding transaction details.
The first thing to do is log into Developer Central, open up your
 Personal Sandbox account [Hack #87] , and send some money to your
 Sandbox merchant account.
Tip
Sending and receiving money works identically in the Sandbox and
 on the live PayPal site, except that the money in the Sandbox is not
 real and you will not receive any email messages from PayPal.

Once you have sent the money, log out of your Personal account and
 log into your Sandbox merchant account. You should see the money you
 just sent from your Personal account. Click Details next to the payment
 and make note of the transaction ID; you will need it later in this
 hack.
To use the API wrapper class to look up details of a transaction,
 start by adding the following GetTransactionDetail code your wrapper class by appending it to the existing
 code in the class:
public string GetTransactionDetail(string transactionID, string delimiter)
{
 string sReturn="";

 GetTransactionDetailsRequestType detailRequest=
 new GetTransactionDetailsRequestType();
 detailRequest.TransactionID=transactionID;
 GetTransactionDetailsReq request=new GetTransactionDetailsReq();
 request.GetTransactionDetailsRequest=detailRequest;
 GetTransactionDetailsResponseType
 response=service.GetTransactionDetails(request);

 sReturn=response.Ack.ToString()+"\n";

 //build out the response
 StringBuilder sb=new StringBuilder();
 sb.Append("************** Payment Information ******************"+delimiter);
 //payment info
 PaymentInfoType payment=response.PaymentTransactionDetails.PaymentInfo;
 sb.Append("ReceiptID: "+payment.ReceiptID+delimiter);
 sb.Append("TransactionID: "+payment.TransactionID+delimiter);
 sb.Append("PaymentDate: "+payment.PaymentDate+delimiter);
 sb.Append("GrossAmount: "+GetAmountValue(payment.GrossAmount)+delimiter);
 sb.Append("SettleAmount: "+GetAmountValue(payment.SettleAmount)+delimiter);
 sb.Append("FeeAmount: "+GetAmountValue(payment.FeeAmount)+delimiter);
 sb.Append("TaxAmount: "+GetAmountValue(payment.TaxAmount)+delimiter);
 sb.Append("PaymentStatus: "+payment.PaymentStatus+delimiter);
 sb.Append("PaymentType: "+payment.PaymentType+delimiter);
 sb.Append("TransactionType: "+payment.TransactionType+delimiter);
 sb.Append(delimiter);
 //sReturn+=response.PaymentTransactionDetails.PaymentInfo.ToString();
 sb.Append("************** Buyer Information ******************"+delimiter);

 //receiver info
 ReceiverInfoType receiver=response.PaymentTransactionDetails.ReceiverInfo;
 sb.Append("Business: "+receiver.Business+delimiter);
 sb.Append("Receiver: "+receiver.Receiver+delimiter);
 sb.Append("ReceiverID: "+receiver.ReceiverID+delimiter);

 //item info
 PaymentItemInfoType item=
 response.PaymentTransactionDetails.PaymentItemInfo;
 //PaymentItemType itm=new PaymentItemType();
 sb.Append(delimiter);
 int i=1;
 sb.Append("************** Item Information ******************"+delimiter);
 sb.Append("Custom: "+item.Custom+delimiter);
 sb.Append("InvoiceID: "+item.InvoiceID+delimiter);
 sb.Append("Memo: "+item.Memo+delimiter);
 sb.Append("SalesTax: "+item.SalesTax+delimiter);
 if(item.PaymentItem!=null)
 {
 foreach(PaymentItemType itm in item.PaymentItem)
 {
 //itm=(PaymentItemType)PaymentItem[i];
 sb.Append(delimiter);
 sb.Append("Item "+i.ToString()+":"+delimiter);
 sb.Append("Name: "+itm.Name+delimiter);
 sb.Append("Number: "+itm.Number+delimiter);
 sb.Append("Options: "+itm.Options+delimiter);
 sb.Append("Quantity: "+itm.Quantity+delimiter);
 sb.Append("SalesTax: "+itm.SalesTax+delimiter);
 sb.Append(delimiter);
 i++;
 }
 }

 sReturn=sb.ToString();
 return sReturn;
 }
}
Next, create a Windows form in Visual Studio .NET that uses the
 API wrapper class to call the GetTransactionDetails API function:
	With the PayPal API solution opened, right-click the solution
 and select Add→New
 Project.

	Select Visual Studio C#/Windows Application.

	Name your project PayPalTestApp and click OK.

	Right-click the References entry in the
 PayPalTestApp project and select Add
 Reference.

	On the Add Reference screen, select the Project tab and select
 the PayPalAPI project. Click Select, and then click OK to add a
 reference to the PayPal API wrapper.

Tip
Check out Mastering Visual Studio .NET
 by Ian Griffiths, Jon Flanders, and Chris Sells (O’Reilly) for
 help with creating forms in .NET.

When that’s finished, create a .NET form (Form1.cs) with text boxes and code to look up
 the details of a PayPal transaction. The form accepts the API username
 (txtUserName), password (txtPassword), and transaction ID (txtTransactionID) as inputs and submits them
 to PayPal via the click of a button (cmdDetails).
 Add a label control (lblResponse) to
 output the results to. Your form should look something like the one in
 Figure 8-6.
	[image: Finding transaction details quickly at PayPal]

Figure 8-6. Finding transaction details quickly at PayPal

Double-click the cmdDetails
 button and add the following code to its click event:
private void cmdDetails_Click(object sender, System.EventArgs e) {
 string username=txtUserName.Text;
 string password=txtPassword.Text;
 string transactionID=txtTransactionID.Text;
 string certPath="C:\\certificate.cer";
 string url = "https://api.sandbox.paypal.com/2.0/";

 lblResponse.Text="Contacting PayPal....";
 PayPalAPI.APIWrapper api=new
 PayPalAPI.APIWrapper(username,password,certPath,url);
 lblResponse.Text=api.GetTransactionDetail(transactionID,"\n");
}
Set PayPalTestApp, fill out the
 text boxes with your API username and password, as well as the TransactionID copied from the preceding
 transaction, and click the Get Details button. The information supplied
 on the form will be passed to the wrapper class, which will prepare the
 request and then call GetTransactionDetail. Assuming it’s
 successful, the transaction details will appear in the label control, as
 shown in Figure 8-7.
	[image: The results of your transaction details request]

Figure 8-7. The results of your transaction details request

Now that you have a reusable class to access the API, you can
 easily add code to your projects to process refunds [Hack
 #91] , retrieve transaction details [Hack
 #93] , and search your transaction history [Hack
 #94] .
—Rob Conery and Dave Nielsen

Refund Payments with the API

Use the API wrapper class to call the
 RefundTransaction API and refund a payment without logging into the
 PayPal web site.
Of several things you can do with the API (discussed in the introduction to
 this chapter), one of the most useful for PayPal’s larger businesses
 is RefundTransaction,
 especially for customer service reps who have to process refunds
 routinely. Requiring your customer service reps to log into PayPal to
 process a refund requires a lot of time and unnecessary access to your
 account. With PayPal’s new Refund API, however, you can create an
 application that retrieves payment transaction data and processes
 refunds directly from your own custom application. And just like
 GetTransactionDetails [Hack
 #90] , you can use the API wrapper to handle the
 basics and just add the refund-specific code.
The refund function call involves the use of three objects:
	 RefundTransactionRequestType

	 RefundTransactionReq

	 RefundTransactionResponseType

The two Type objects are
 holders for information, while the Request object is used by the API service to
 send the information to PayPal. Here’s an example of the code you need
 to add to your API wrapper:
public string RefundTransaction(string TransactionID){
 //the variable that will hold the return string
 string sReturn="";

 // Create the Refund Request
 RefundTransactionRequestType refundRequest = new RefundTransactionRequestType();

 //set the memo so you know why you are refunding
 refundRequest.Memo = "test via API";
1. //refund a full or partial amount

 refundRequest.RefundType = RefundPurposeTypeCodeType.Full;
 refundRequest.TransactionID = TransactionID;
 refundRequest.Version = "1.0";

 RefundTransactionReq request = new RefundTransactionReq();
 request.RefundTransactionRequest = refundRequest;

try{
 RefundTransactionResponseType response = service.RefundTransaction(request);

2. string ErrorCheck=CheckErrors(response);
 //See Hack 92 for Transaction Error Handling
 if (ErrorCheck!="") {
 sReturn=("The transaction was not successful: " + ErrorCheck);
 }
 else {
 sReturn=("Response: " + response.Ack.ToString()+"\n Correlation ID
 "+response.CorrelationID+"\nTimestamp: "+response.Timestamp.ToString());
 }
}catch(Exception x){
 sReturn="SSL Failure, the transaction did not go through. Error: "+
 x.Message;

}return sReturn;
}
You have a choice of how much money you would like to refund your
 customer. The preceding code refunds the full amount, but if you want to
 issue only a partial refund, specify the amount using PayPal’s BasicAmountType by replacing line 1 with this
 code:
refundRequest.RefundType = RefundPurposeTypeCodeType.Partial;
BasicAmountType amount=new BasicAmountType();
amount.Value=10.00;
refundRequest.amount=amount;
Running the Hack

To use the API wrapper
 [Hack #89] to process a
 refund, you must first create a transaction by using your Personal
 Sandbox account to send money to your Business Sandbox
 account. First, retrieve the transaction number from your Business
 Sandbox account [Hack #88] .
Next, add the RefundTransaction code to your API wrapper
 class in the same way that GetTransactionDetail is added to the API
 wrapper class in [Hack #90] . Then, create a button
 called cmdRefund on your form and
 add the following code to its OnClick event:
private void cmdRefund_Click(object sender, System.EventArgs e)
{
 string username = txtUserName.Text;
 string password = txtPassword.Text;
 string transactionID = txtTransactionID.Text;
 string certPath = "C:\\certificate.cer";
 string url = "https://api.sandbox.paypal.com/2.0/";
 lblResponse.Text="Contacting PayPal...";

 PayPalAPI.APIWrapper api = new
 PayPalAPI.APIWrapper(username,password,certPath,url);
 lblResponse.Text = api.RefundTransaction(transactionID);
}
Tip
The form should look something like the one in [Hack
 #90] .

Finally, to run the hack, run your
 PayPalTestApp application, enter the transaction
 number into the transaction ID field and press the GetDetails button. When you’ve successfully
 retrieved the details, press the Refund button to complete the refund.
Tip
Confirm that your transaction has been refunded by logging
 into your Sandbox Personal account.

The Results

The only response you really need from PayPal once you’ve
 executed the refund is one that tells you whether it was successful.
 The Ack property (which indicates
 acknowledgement, not a shriek of pain) contains
 the status of the refund and is set to Success if all went well. If the refund did
 not go through, you likely violated a PayPal rule, such as issuing a
 partial refund greater than the purchase price or trying to refund a
 payment more than 30 days after the payment.
The CheckErrors() function on line 2 handles this task (see [Hack
 #92] for details). For rules governing PayPal
 refunds, open your Sandbox Business account and search the online help
 for refunds. See [Hack
 #9] for more information on using PayPal’s help system.
--Rob Conery, Michael Blanton, and Dave
 Nielsen

Handle Transaction Errors within the API Wrapper

Write one function to handle all transaction
 errors and simplify your API code.
If you were to take a close look at the objects created by your
 web reference in Visual Studio .NET (double-click the PayPal API web
 reference in your project and navigate to the web reference classes),
 you’d notice that the ResponseType
 classes (RefundTransactionResponseType, TransactionSearchResponseType, and GetTransactionDetailsResponseType) extend the
 same AbstractResponseType class. This
 unified error-handling approach provides you the same response object,
 regardless of which transactional class was called. This means you can
 write one error-checking routine that displays the correct message if an
 error occurs in any of these API transactions.
Warning
These errors are not application exceptions that you should
 handle as you normally would. Rather, they are PayPal processing
 errors that deal with invalid attempts to perform a transaction (such
 as refunding a payment that’s already been refunded).

Just add this code to any of your transaction API calls:
string CheckErrors(AbstractResponseType abstractResponse) {
 bool errorsExist = false;
 string errorList="";
 // First, check the Obvious. Make sure Ack is not Success
 if (!abstractResponse.Ack.Equals(AckCodeType.Success)) {
 errorsExist = true;
 }
 // Check to make sure there is nothing in the Errors Collection
 if (abstractResponse.Errors.Length > 0) {
 errorsExist = true;
 // Do something with the errors
 foreach(ErrorType error in abstractResponse.Errors) {
 errorList+=("ERROR: "
 + error.LongMessage
 + " ("
 + error.ErrorCode
 + ")"
);
 }
 }
 return errorList;
}
This method lets you (or your users) know if anything gets in the
 way of a successful transaction, even if the code otherwise completes
 successfully. That way, if something does go wrong, you can pass on
 information that is needed to enable your user to rectify the
 problem.
Using the Error Handler

To use the error handler, you must add code in two places.
 First, add a routine to your PayPalTestApp project that checks for
 errors and handles them appropriately. Second, add the following code
 to your API wrapper:
try{
 RefundTransactionResponseType response = service.RefundTransaction(request);
 string ErrorCheck=CheckErrors(response);
 if (ErrorCheck!="") {
 sReturn=("PayPal Says: The transaction was not successful:
 " + ErrorCheck);
 }
 else {
 sReturn=("PayPal Says: Response: " + response.Ack.ToString());
 }
}catch(Exception x){
 sReturn="SSL Failure, the transaction did not go through. Error: "+x.Message;
}
For instance, try updating the code from [Hack
 #91] with this error handler and running the code
 again. Since you’ve already run a refund against this transaction
 [Hack
 #91] , an error is returned, letting the user know
 that the type of transaction cannot be refunded, as shown in Figure 8-8.
	[image: An error message generated by the generic error handler]

Figure 8-8. An error message generated by the generic error
 handler

Naturally, you’ll want to supplement this error handler with
 your own messages and additional error traps, but this should help you
 build more fault-tolerant API applications.
—Rob Conery and Dave Nielsen

Retrieve Transaction Details with the API

Given only a transaction ID, use the
 GetTransactionDetail API call with the API wrapper DLL to retrieve the
 details of the transaction.
The GetTransactionDetail
 API call is a more detailed in terms of the data it returns than
 the RefundTransaction call [Hack
 #91] . The initiating call is made in the same
 fashion, but the response object holds many types
 that you need to access to get the transaction details. These types are
 designed to hold information pertaining to the myriad of PayPal
 transaction types, so if you use PayPal only to process sales from your
 Shopping Cart (as opposed to eBay auctions or digital subscriptions),
 you might not need all the information it returns.
But since retrieving information is so important (not to mention
 loads of fun), this example puts the call through its paces and
 retrieves all the available transaction details. The response object has
 a few Type objects that are of
 interest, because they hold the details of the entire
 transaction:
	PaymentInfoType
	Information about the payment, including gross
 payment amount, fee amount, date of payment, and so on.

	ReceiverInfoType
	Information about the person or entity who sent the
 payment.

	PaymentItemInfoType
	If you sold items, their details are captured in the
 PaymentItemInfoType.

	AuctionInfoType
	Returns information about the auction (if the
 payment came from an auction).

	SubscriptionInfoType
	Subscription information, including interval, start
 date, and so on.

The PayPal API uses its BasicAmountType object
 to store monetary values (e.g., dollar amounts), such as any property of
 a Type object with the word amount in it. If there is no amount, the
 property will be null, which can trip up your routines. To return safe
 values from these fields, the following code makes use of the GetAmountValue()
 function [Hack #89] to return a string
 value.
The Code

Here’s the GetTransactionDetail() method that retrieves
 the transaction details for a given PayPal transaction ID:
public string GetTransactionDetail(string transactionID, string delimiter){
string sOut="";

//Create the request type, which holds information about the transaction you //want more
information about
GetTransactionDetailsRequestType detailRequest=new GetTransactionDetailsRequestType();
detailRequest.TransactionID=transactionID;

//Set the request type of the request object
GetTransactionDetailsReq request=new GetTransactionDetailsReq();
request.GetTransactionDetailsRequest=detailRequest;

//send the request to PayPal
GetTransactionDetailsResponseType
response=service.GetTransactionDetails(request);

//make sure there is a response
if(response!=null){

//use a StringBuilder as this return uses a lot of resources if you just
//just append a regular string value
1. StringBuilder sb=new StringBuilder();

sb.Append("************ Payment Information "+ **************"+delimiter);

//access each response type, gathering the information
//payment info
PaymentInfoType payment=response.PaymentTransactionDetails.PaymentInfo;
sb.Append("ReceiptID: "+payment.ReceiptID+delimiter);
sb.Append("TransactionID: "+payment.TransactionID+delimiter);
sb.Append("PaymentDate: "+payment.PaymentDate+delimiter);
sb.Append("GrossAmount: "+GetAmountValue(payment.GrossAmount)+delimiter);
sb.Append("SettleAmount: " +
 GetAmountValue(payment.SettleAmount)+delimiter);

sb.Append("FeeAmount: "+GetAmountValue(payment.FeeAmount)+delimiter);
sb.Append("TaxAmount: "+GetAmountValue(payment.TaxAmount)+delimiter);
sb.Append("PaymentStatus: "+payment.PaymentStatus+delimiter);
sb.Append("PaymentType: "+payment.PaymentType+delimiter);
sb.Append("TransactionType: "+payment.TransactionType+delimiter);

2. //item info

PaymentItemInfoType item=response.PaymentTransactionDetails.PaymentItemInfo;
int i=1;
sb.Append("************** Item Information ******************"+delimiter);
sb.Append("Custom: "+item.Custom+delimiter);
sb.Append("InvoiceID: "+item.InvoiceID+delimiter);
sb.Append("Memo: "+item.Memo+delimiter);
sb.Append("SalesTax: "+item.SalesTax+delimiter);

//The items are returned in an array of PaymentItemType
//loop through the items array, accessing item information
foreach(PaymentItemType itm in item.PaymentItem){
sb.Append(delimiter);
sb.Append("Item "+i.ToString()+":"+delimiter);
sb.Append("Name: "+itm.Name+delimiter);
sb.Append("Number: "+itm.Number+delimiter);
sb.Append("Options: "+itm.Options+delimiter);
sb.Append("Quantity: "+itm.Quantity+delimiter);
sb.Append("SalesTax: "+itm.SalesTax+delimiter);
sb.Append(delimiter);
i++;
}

//if you are dealing in auctions, the information about
//the auction will be in the AuctionInfoType
sb.Append("************ Auction Information *************"+delimiter);

AuctionInfoType auction=new AuctionInfoType();
sb.Append("BuyerID: "+auction.BuyerID+delimiter);
sb.Append("ClosingDate: "+auction.ClosingDate+delimiter);
sb.Append("ClosingDateSpecified: "+auction.ClosingDateSpecified+delimiter);
sb.Append("multiItem: "+auction.multiItem+delimiter);

//Same with Subscriptions
sb.Append("********** Subscription Information ***********"+delimiter);

SubscriptionInfoType sub=new SubscriptionInfoType();

sb.Append("EffectiveDate: "+sub.EffectiveDate+delimiter);
sb.Append("EffectiveDateSpecified: "+sub.EffectiveDateSpecified+delimiter);
sb.Append("Password: "+sub.Password+delimiter);
sb.Append("reattempt: "+sub.reattempt+delimiter);
sb.Append("Recurrences: "+sub.Recurrences+delimiter);
sb.Append("recurring: "+sub.recurring+delimiter);
sb.Append("RetryTime: "+sub.RetryTime+delimiter);
sb.Append("RetryTimeSpecified: "+sub.RetryTimeSpecified+delimiter);
sb.Append("SubscriptionDate: "+sub.SubscriptionDate+delimiter);
sb.Append("SubscriptionDateSpecified: "+sub.SubscriptionDateSpecified+delimiter);
sb.Append("SubscriptionID: "+sub.SubscriptionID+delimiter);
sb.Append("Terms: "+sub.Terms+delimiter);
sb.Append("Username: "+sub.Username+delimiter);
sReturn=sb.ToString();
}
return sReturn;
PayPal does not know the type of the transaction for which you
 are requesting details, so the web service returns every possible bit
 of information it can. In this example, all this information is
 appended to a single string so that it can be displayed easily. Since
 the string can be long, you’ll need a StringBuilder object (line 1). A more
 practical approach might be to add tables to a DataSet object (if you are using .NET) or
 perhaps to create your own class to handle this information.
If you are developing a typical commerce site, in which items
 are sold using PayPal as the payment processor, the section beginning
 on line 2 will interest you the most. Each item sold is handed back to
 you in the PaymentTransactionDetails.PaymentItemInfo.PaymentItem
 array. Each item in the transaction is represented by a PaymentItemType that has pertinent
 information, such as item number (a.k.a. SKU), price, quantity, and so
 on.

Running the Hack

To use the API wrapper class to look up details of a
 transaction, you need to add the Auction and Subscription code to the
 GetTransactionDetail() method in
 your API wrapper class and run your PayPalTestApp
 application. See [Hack #90] for further details.
--Rob Conery and Dave Nielsen

Search for PayPal Transactions

Use the TransactionSearch API call to find a
 transaction based on several different criteria.
The ability to search for transactions is another powerful
 PayPal API function. You can find transactions by using several
 different criteria:
	Start and end dates
	The bounding time frame of the search, down to the
 second.

	Amount
	 The payment amount (e.g., 54.00).

	Currency type
	The three-letter currency code (e.g., USD).

	Item number
	The item number of a sale item. This item number is
 the same as the product code you might have specified for your
 product when it was sold (a SKU, for example).

	Payer email, last name, first name, salutation
	The name and email address of the person or entity who
 sent the payment.

	Receipt ID
	PayPal issues a receipt ID for each transaction,
 much like the transaction ID. If a customer has a question or an
 issue about her order, she might offer this number to you.

	Payment status
	 This can be pending, completed, failed, denied, refunded, or canceled_reversal. For instance, specify
 completed here to show only
 completed transactions.

	Payment type
	 This can be payment, bill, refund, and so on (see the
 PayPal API Developer’s Guide, available at
 PayPal Developer Central, for the full list). Using the payment
 type as a search parameter, you can show only those payments that
 were refunds, or perhaps those received by billing.

The search is an inclusive search: the more
 parameters you specify, the more limited your result set will be. At the
 time of this writing, partial values, Boolean, wild card, and regular
 expression terms are not supported, although PayPal might add support
 for these types of searches in the future. Figure 8-9 shows an example of the
 output.
	[image: The results of the TransactionSearch API call]

Figure 8-9. The results of the TransactionSearch API call

The Code

The following code sets up a separate class for holding search
 parameters to be passed. The results of the search are put into an
 array object, through which you can loop to view the return
 information:
1. public class TransactionSearchParam
{
public DateTime EndDate=DateTime.Now;
public string TransactionID="";
public string Amount="";
public string Currency="";
public string ItemNumber="";
public string PayerEmail="";
public string LastName="";
public string FirstName="";
public string Receiver="";
public string ReceiptID="";
public string PaymentStatus="";
public string PaymentType="";
}

//the search wrapper method; the StartDate is required so pass
//it in as an argument
public DataTable RunTransactionSearch(DateTime StartDate,
 TransactionSearchParam param, string delimiter){

//setup the return string object
string sReturn="";

//create the Type object, which will hold the search parameters
TransactionSearchRequestType transSearch=new TransactionSearchRequestType();

// Set up the TransactionSearch
TransactionSearchReq request=new TransactionSearchReq();
transSearch.StartDate=StartDate;

//set the params
transSearch.StartDate=StartDate;
transSearch.EndDate = param.EndDate;

//count the number of arguments to be passed in
//you may want to have some mininum logic involved
int args=0;
if(param.TransactionID!=""){
transSearch.TransactionID = param.TransactionID;
args++;
}

2. if(param.Amount!=""){
transSearch.Amount = new BasicAmountType();
transSearch.Amount.Value = param.Amount;
args++;
}
if(param.PayerEmail!=""){
transSearch.Payer = param.PayerEmail;
args++;
}

if(param.Currency!=""){
transSearch.CurrencyCodeSpecified = true;
args++;
}

if(param.ItemNumber!=""){
transSearch.AuctionItemNumber = param.ItemNumber;
args++;
}

if(param.LastName!=""){
transSearch.PayerName = new PersonNameType();
transSearch.PayerName.LastName = param.LastName;
args++;
}

if(param.FirstName!=""){
transSearch.PayerName = new PersonNameType();
transSearch.PayerName.FirstName = param.FirstName;
args++;
}

if(param.PaymentStatus!=""){
transSearch.StatusSpecified = true;
args++;
}
if(param.PaymentType!=""){
transSearch.TransactionClassSpecified = true;
args++;
3. }
//set the request type object with the one
//filled out with params
request.TransactionSearchRequest=transSearch;

//run the transactioon
TransactionSearchResponseType response = service.TransactionSearch(request);

//make sure the response was created
if(response!=null){
StringBuilder sb=new StringBuilder();
sb.Append("Status: "+response.Ack.ToString()+delimiter);

sb.Append("*********** Results ***************"+delimiter);

4. sb.Append("Ack"+response.Ack +delimiter);
5
. if(response.PaymentTransactions!=null){
// Loop through and return the values
 foreach(PaymentTransactionSearchResultType trans in
 response.PaymentTransactions){
 sb.Append("TransactionID: "+ trans.TransactionID+delimiter);
 sb.Append("FeeAmount: "+ GetAmountValue(trans. FeeAmount)+ delimiter);
 sb.Append("GrossAmount: "+ GetAmountValue(trans.GrossAmount)
 + delimiter);
 sb.Append("NetAmount: "+ GetAmountValue(trans.NetAmount)+ delimiter);
 sb.Append("Payer: "+ trans.Payer+delimiter);
 sb.Append("PayerDisplayName: "+ trans.PayerDisplayName+delimiter);
 sb.Append("Status: "+ trans.Status+delimiter);
 sb.Append("Timestamp: "+ trans.Timestamp.ToLongDateString()+ delimiter);
 sb.Append("Type: "+ trans.Type.ToString()+delimiter);
 sb.Append("--"+delimiter+delimiter);
 }
}
sReturn=sb.ToString();
}else{
 sOut=sb.ToString()+delimiter+"No Results!";
}
Passing search parameters with a dedicated class, TransactionSearchParam (on line 1)
 eliminates the extra coding involved when passing parameters as
 arguments. If the parameters ever change, there is little work to do
 to bring your code up to date. But the best part is that your method
 signature doesn’t change and break all your code. The section of
 if statements from line 2 to line 3
 fills out the TransactionSearchRequestType object that the
 PayPal API needs to run the search. If your search returns any values,
 Ack is set to Success on line 4. Then, provided that the
 result set is not empty (line 5), the code starts looping through the
 collections to retrieve the information. This example is pretty
 straightforward, and it holds all the transaction information for each
 returned transaction.

Running the Hack

Add the RunTransactionSearch code to your API
 wrapper class [Hack #93] .
Next, add three text boxes (txtStartDate, txtEndDate, and txtEmail) and a button (cmdSearch) to From1. Then, add the following code to the
 button’s Click event:
private void cmdSearch_Click(object sender, System.EventArgs e)
{
 string username=txtUserName.Text;
 string password=txtPassword.Text;
 string transactionID=txtTransactionID.Text;
 string certPath="C:\\certificate.cer";
 string url = "https://api.sandbox.paypal.com/2.0/";

 PayPalAPI.APIWrapper api=new
DateTime StartDate = DateTime.Parse (txtStartDate.Text);
DateTime EndDate = DateTime.Parse(txtEndDate.Text);
string Email = txtEmail.Text
lblResponse.Text = "Contacting Paypal...";
PayPalAPI.APIWrapper api = new PayPalAPI.APIWrapper(username, password,
 certPath, url);
PayPalAPI.API.APIWrapper.TransactionSearchParam param =
 new PayPalAPI.APIWrapper.TransactionSearchParam();
param.EndDate = EndDate;
param.PayerEmail=Email;
lblResponse.Text = api.RunTransactionSearch(StartDate, param, "\n");
}
Run the form, fill out the text boxes with your date range and
 email address, and click the Search button. The information supplied
 on the form will be passed to the wrapper class, which will prepare
 the request and then call the RunTransactionSearch API. When successful,
 the list of transactions will appear in the label control.
—Rob Conery and Dave Nielsen

Hack the API Wrapper

Create a master-detail report with
 information collected directly from PayPal.
Looking up order information for your buyers can be hard work,
 especially if you process many orders a day. Here’s an order-searching
 form in Visual Studio .NET that allows you to search the PayPal history
 by date range (which you can expand later to include other parameters).
 The results are displayed in a master-detail report, which consists
 of a list of transactions in a DataGrid and a transaction detail form for any given
 transaction, all with information obtained directly from PayPal!
Add two new forms to your test application, and change the code a
 little bit for the RunTransactionSearch() method to return a DataTable instead of a string:
	Add a new form to your test application, call it frmSearch, and make it your startup
 form.

	Add two DateTimePicker controls, and name them dtStart and dtEnd, respectively, and give each
 descriptive labels (e.g., Search,
 Start).

	Add a DataGrid control and name it dg.

	Add a button to the frmSearch and name it btnSearch.

	Add a label and name it lblStatus. This label tells the user
 what’s going on while he waits for the request to be returned from
 PayPal.

Figure 8-10 shows an
 example of the complete form.
	[image: The new transaction search form]

Figure 8-10. The new transaction search form

The Code

Update the RunTransactionSearch() method to return a
 DataTable instead of a string:
public DataTable RunTransactionSearch(DateTime StartDate,TransactionSearchParam param){
 DataTable table=new DataTable("results");
 TransactionSearchRequestType transSearch=new TransactionSearchRequestType();

 // Set up the TransactionSearch
 TransactionSearchReq request=new TransactionSearchReq();
 transSearch.StartDate=StartDate;

 request.TransactionSearchRequest = new TransactionSearchRequestType();
 transSearch.Version = "1.0";
 transSearch.CurrencyCodeSpecified = false;
 transSearch.EndDateSpecified = false;
 transSearch.StatusSpecified = false;

 //set the params
 transSearch.StartDate=StartDate;
 transSearch.EndDate = param.EndDate;

 #region args list
 int args=1;
 if(param.TransactionID!=""){
 transSearch.TransactionID = param.TransactionID;
 args++;
 }

 if(param.Amount!=""){
 transSearch.Amount = new BasicAmountType();
 transSearch.Amount.Value = param.Amount;
 args++;
 }
 if(param.PayerEmail!=""){
 transSearch.Payer = param.PayerEmail;
 args++;
 }

 if(param.Currency!=""){
 transSearch.CurrencyCodeSpecified = true;
 args++;
 }

 if(param.ItemNumber!=""){
 transSearch.AuctionItemNumber = param.ItemNumber;
 args++;
 }

 if(param.LastName!=""){
 transSearch.PayerName = new PersonNameType();
 transSearch.PayerName.LastName = param.LastName;
 args++;
 }

 if(param.FirstName!=""){
 transSearch.PayerName = new PersonNameType();
 transSearch.PayerName.FirstName = param.FirstName;
 args++;
 }

 if(param.PaymentStatus!=""){
 transSearch.StatusSpecified = true;
 args++;
 }

 if(param.PaymentType!=""){
 transSearch.TransactionClassSpecified = true;
 args++;
 }
 #endregion

 request.TransactionSearchRequest=transSearch;

 //if there are more than 0 args set, run the transaction
 if(args>0){
 //run the transactioon
 TransactionSearchResponseType response =
 service.TransactionSearch(request);
1. if(response!=null){
 if(response.PaymentTransactions!=null){
 //build the columns out
 DataColumn cTransactionID=new DataColumn("TransactionID");
 DataColumn cFeeAmount=new DataColumn("FeeAmount");
 DataColumn cGrossAmount=new DataColumn("GrossAmount");
 DataColumn cNetAmount=new DataColumn("NetAmount");
 DataColumn cPayer=new DataColumn("Payer");
 DataColumn cPayerDisplayName=new DataColumn("PayerDisplayName");
 DataColumn cStatus=new DataColumn("Status");
 DataColumn cTimestamp=new DataColumn("Timestamp");
 DataColumn cType=new DataColumn("Type");

 table.Columns.Add(cTransactionID);
 table.Columns.Add(cFeeAmount);
 table.Columns.Add(cGrossAmount);
 table.Columns.Add(cNetAmount);
 table.Columns.Add(cPayer);
 table.Columns.Add(cPayerDisplayName);
 table.Columns.Add(cStatus);
 table.Columns.Add(cTimestamp);
 table.Columns.Add(cType);

 DataRow dr;
 foreach(PaymentTransactionSearchResultType trans in
 response.PaymentTransactions){
 dr=table.NewRow();
 dr["TransactionID"]=trans.TransactionID;
 dr["FeeAmount"]=GetAmountValue(trans.FeeAmount);
 dr["GrossAmount"]=GetAmountValue(trans.GrossAmount);
 dr["NetAmount"]=GetAmountValue(trans.NetAmount);
 dr["Payer"]=trans.Payer;
 dr["PayerDisplayName"]=trans.PayerDisplayName;
 dr["Status"]=trans.Status;
 dr["Timestamp"]=trans.Timestamp.ToLongDateString();
 dr["Type"]=trans.Type.ToString();

 table.Rows.Add(dr);
 }
 }

 }

 }else{

 throw new Exception("You must specify at least one search parameter");

 }

 return table;
}
Line 1 begins the main change to the code and is responsible for
 building out the DataTable. Its execution is pretty straightforward
 and follows the same principal as appending the return values to a
 string: just loop through the results, adding a row for each
 array element.

Running the Hack

Add this code to the btnSearch Click event to call the API wrapper and set
 the DataGrid.DataSource
 property:
private void btnSearch_Click(object sender, System.EventArgs e) {
 string username = "MyAPIUserName";
 string password = "MyAPIPAssword";
 string certPath = "MyCertPath";
 string url = "https://api.sandbox.paypal.com/2.0/";

 DateTime dStart = dtStart.Value;
 DateTime dEnd = dtEnd.Value;

 //let the user know what's going on
 lblStatus.Text = "Contacting Paypal";
 PayPalAPI.APIWrapper api =
 new PayPalAPI.APIWrapper(username,password,certPath,url);
 PayPalAPI.APIWrapper.TransactionSearchParam param =
 new PayPalAPI.TransactionSearchParam();

 param.EndDate = dEnd;
 System.Data.DataTable table = api.RunTransactionSearch(dStart,param);
 dg.DataSource = table;
 lblStatus.Text = "Finished";
}
This code, activated when the Search button is clicked, performs
 the search and displays the results in the DataGrid, as shown in Figure 8-11.
	[image: Nicely formatted search results]

Figure 8-11. Nicely formatted search results

Finally, create a detail form that calls the GetTransactionDetails() method of the API
 wrapper, and output the results to a label control:
	Add a form named frmDetail.

	Add a label named lblTransactionID.

	Add a label named lblResponse.

	Add three public string fields named UserName, Password, and TransactionID.

	Add an event handler for the form’s load event and call it
 Form_Load.

Add an event handler for the double-click event of the
 DataGrid, and insert code to grab the selected
 transaction ID:
private void dg_DoubleClick(object sender, EventArgs e) {

 DataGridCell cell=dg.CurrentCell;

 //the transaction ID is in the first column
 string transactionID = dg[cell.RowNumber,0].ToString();

 frmDetail detail=new frmDetail();

 //set the form values
 detail.TransactionID=transactionID;
 detail.Show();
}
Finally, add code to the Load
 event of the detail form, which calls the API wrapper GetTransactionDetail() method:
private void frmDetail_Load(object sender, System.EventArgs e) {
string username = "MyAPIUserName";
string password = "MyAPIPassword";
string certPath = "c:\\mycertificate.cer";
string url = "https://api.sandbox.paypal.com/2.0/";

 //let the user know what's going on
 lblResponse.Text="Contacting Paypal....";
 PayPalAPI.APIWrapper api=new PayPalAPI.APIWrapper(UserName,Password,certPath,url);
 lblResponse.Text=api.GetTransactionDetail(TransactionID,"\n");
 lblTransactionID.Text=TransactionID;

}
When you perform a search,
 the results will look something like Figure 8-12.
	[image: Just the transaction you were looking for]

Figure 8-12. Just the transaction you were looking for

With the master-detail report generated by this project, you’ll
 be effectively duplicating the History tab from the PayPal web site,
 albeit in your own application, fully customized and supplemented with
 your own feature set. See the next section for an example of how this
 approach can be especially useful.

Importing into Quicken and QuickBooks

If you’re a Quicken or QuickBooks user, you’ve probably discovered
 that PayPal’s “Download My History” feature (found in the History tab)
 provides nothing more than rudimentary support for converting
 transaction data into a form that Quicken or QuickBooks can
 understand. Fortunately, the PayPal API provides the perfect
 opportunity to build your own customized—and, most importantly,
 automated—means of importing your PayPal transactions into your
 accounting software.
Regardless of the type of accounting software you’re using, you
 need to start by assembling a table of transaction data from your
 PayPal history using the RunTransactionSearch method described earlier in this hack. The tricky part
 is to make sure you don’t import the same transaction twice, and there
 are a few ways to accomplish this. The easiest way is probably to
 confine the table to a fixed date range using the StartDate and EndDate parameters. So, if you run your
 importer project once a week, restrict your search results to those
 transactions between 12:00:01 a.m. Monday morning and 12:00:00
 midnight the following Sunday.
The next step is to get your data into Quicken or QuickBooks.
 The easiest approach is probably to have your application create an
 Open Financial Exchange (OFX) file and then manually import the file
 into Quicken or QuickBooks. For details on the OFX format, go to
 http://www.ofx.net.
Warning
Previously, you would have had to create a Quicken Interchange
 Format (QIF) file for Quicken or an Import Interchange Format (IIF)
 for QuickBooks. However, both of these formats appear to be
 deprecated in favor of the more universal OFX schema.

If you really want to make the connection between PayPal and
 QuickBooks as slick as possible, you’ll want to dispense with the task
 of manually importing your data. Instead, you can connect your
 application to QuickBooks via Intuit’s QBXML Request Processor API and send your transaction
 data to QuickBooks seamlessly (and automatically). For documentation
 and an SDK, visit
 http://developer.intuit.com/.
—Rob Conery, Dave Nielsen, and David A.
 Karp

Issue Payments en Masse with the Mass Pay API

Send out a large number of payments all at
 once with the Mass Pay feature through the API.
As described in
 [Hack #77] , PayPal allows you
 to send many payments at once through the PayPal web site. Using the
 Mass Pay API and some slight modifications to the code in [Hack
 #88] , you can also do this from your own
 applications.
Tip
You can pay up to 250 payees at once using Mass Pay. To make
 more than 250 payments, you’ll need to call Mass Pay
 repeatedly.

Setting up the Request

The first thing to do is set up a simple tab-delimited text file that contains all the
 information about your payees, as shown in Figure 8-13.
	[image: Using a simple tab-delimited text file to store the information about the recipients of your payments]

Figure 8-13. Using a simple tab-delimited text file to store the
 information about the recipients of your payments

List the recipients’ email addresses in the first column and the
 corresponding payment amounts in the second column. Include an
 optional third column to list a unique identifier for each recipient
 for tracking and reconciliation purposes. The optional fourth column
 lets you include a customized note to be sent to each of your
 recipients.

The Code

This code uses the MassPayReq
 , MassPayRequestType,
 MassPayRequestItemType, and
 MassPayResponseType objects
 generated by the web reference in order to process the Mass Pay
 request.
Tip
This code requires the SSL certificate generated in [Hack
 #88] .

// Load the Certificate
X509Certificate certificate = X509Certificate.CreateFromCertFile(certPath);
// Create the API Service
PayPalAPIInterfaceService service = new PayPalAPIInterfaceService();
service.Url = url;

// Add the X509 Cert to the service for authentication
service.ClientCertificates.Add(certificate);
// Create the MassPay Request Item
1. MassPayRequestItemType masspayRequestItem = new MassPayRequestItemType();

// create the Amount
BasicAmountType amount = new BasicAmountType();
amount.currencyID = CurrencyCodeType.USD;
amount.Value = "0.67";
masspayRequestItem.Amount = amount;

// create the recipient email
masspayRequestItem.ReceiverEmail = "your-recipient@domain.com";

// create the optional unique id (for your own benefit)
masspayRequestItem.UniqueID = "some unique id";

// create the optional Note
masspayRequestItem.Note = "some note";
// Create the MassPay Request
2. MassPayRequestType masspayRequest = new MassPayRequestType();

// you can set an email subject if you want to.
// This will be the subject of the email that your payees are going
 to receive
masspayRequest.EmailSubject = "some email subject";

masspayRequest.MassPayRequestItemDetails = new MassPayRequestItemType[1];

// add the previously created MassPayRequestItemType object to this array
masspayRequest.MassPayRequestItemDetails[0] = masspayRequestItem;

MassPayReq request = new MassPayReq();
request.MassPayRequest = masspayRequest;
// Build the Security Header
CustomSecurityHeaderType securityHeader = new CustomSecurityHeaderType();
UserIdPasswordType userIdPassword = new UserIdPasswordType();
userIdPassword.Username = ""; // Insert your API username here
userIdPassword.Password = ""; // Insert your API password here
userIdPassword.Subject = "";
securityHeader.Credentials = userIdPassword;
securityHeader.MustUnderstand = true;
service.RequesterCredentials = securityHeader;
MassPayResponseType response = service.MassPay(request);

Console.WriteLine("Ack: " + response.Ack.ToString());
Console.WriteLine("Correlation ID: " + response.CorrelationID);
Console.WriteLine("Timestamp: " + response.Timestamp.ToString());

Running the Hack

When you successfully execute the code [Hack
 #90] , the Ack
 code returned will be Success:
Ack: Success
CorrelationID:
Timestamp: 4/27/2004 10:25:30 AM
Each payee is represented in the code as a MassPayRequestItemType object. Create the
 initial MassPayRequestItemType
 instance (line 1) and a BasicAmountType instance that contains the
 amount, and add it to the item request. Also create the recipient’s
 email, unique ID, and note, and add them to the item request.
Note that this code creates only one MassPayRequestItemType object (line 2). You
 can repeat the steps to fill in as many objects as you want and thus
 overcome the limit of 250 payees. Typically, the way to do this is to
 read the individual item details from the tab-delimited file and
 create the objects on the fly. That way, you should be able to create
 a list of MassPayRequestItemType
 objects.
Tip
When you send a payment with Mass Pay, you pay the seller fees
 [Hack
 #14] that would otherwise be assessed to your
 recipients.

—Souvik Das, Rob Conery, and Dave
 Nielsen

Pay Affiliates and Suppliers on a Schedule

Automate Mass Pay API calls to schedule mass
 payments at regular intervals.
When you have a lot of people to pay, setting up and executing
 online payments one at a time can quickly get tedious. Likewise,
 repeatedly setting up Mass Pay requests can get tedious if you have to
 do it every month or every week. Here is a great real-world example that
 shows you how to give away your money faster than you thought
 possible.
The Code

Start with the code from
 [Hack #96] and extend it with
 two new classes: MassPayee and
 MassPayeeTable (which supplements
 the ArrayList object):
//a class which holds the payee info
public class MassPayee{
 public string Note="";
 public string Email="";
 public string EmailSubject="";
 public string ReferenceID="";
 public double Amount=0;
}

//a class which holds the MassPayees
public class MassPayTable:ArrayList{

 public void AddPayee(MassPayee payee){
 //the API will only allow 250 payees
 if(Payess.Count=250){
 throw new Execption("A maximum of 250 payees are allowed");
 }else{
 Payees.Add(payee);
 }
 }
 public void ClearPayees(){
 Payees.Clear();
 }
 public int Count{
 get{return Payees.Count;}
 }
}
Here’s the code for the RunMassPay routine:
public string RunMassPay(MassPayTable PayeeTable){

 // Build the Security Header
 this.SetHeaderCredentials(service);

 // Create the MassPay Request
 MassPayRequestType masspayRequest = new MassPayRequestType();
 //allocate the array for the ItemTypes
 masspayRequest.MassPayRequestItemDetails = new
 MassPayRequestItemType[PayeeTable.Count];

 // create the Amount
 BasicAmountType amount;

 // Create the MassPay Request Item
 MassPayRequestItemType masspayRequestItem;;

 //our indexer
 int counter=0;

 //loop through the MassPayee List and add the
 //information to the PayPal API objects.
 for(int i=0;i<PayeeTable.Count;i++){
 masspayRequestItem= new MassPayRequestItemType();
 amount= new BasicAmountType();
 amount.currencyID = CurrencyCodeType.USD;
 MassPayee payee=(MassPayee)PayeeTable[i];

 amount.Value = payee.Amount.ToString();
 masspayRequestItem.Amount = amount;
 masspayRequestItem.ReceiverEmail = payee.Email;
 masspayRequestItem.UniqueID = payee.ReferenceID;
 masspayRequestItem.Note = payee.Note;
 masspayRequest.EmailSubject = payee.EmailSubject;

 // add the previously created MassPayRequestItemType object
 to this array
 masspayRequest.MassPayRequestItemDetails[counter] =
 masspayRequestItem;

 counter++;
 }

 MassPayReq request = new MassPayReq();
 request.MassPayRequest = masspayRequest;

 MassPayResponseType response = service.MassPay(request);
 string sReturn=CheckErrors(response);
 if(sReturn==""){
 sReturn=response.Ack;
 }
 return sReturn;
}
To use this routine, gather the payee information from your site database and execute
 the call:
public string SendMassPay(){

 //get the payees from the database
 string sql="MyPayeeSQL";
 SqlConnection conn=new SqlConnection("MyConnectionString");
 SqlCommand cmd=new SqlCommand(sql,conn);
 SqlDataReader rdr=cmd.ExecuteReader(CommandBehavior.CloseConnection);
 APIWrapper api=new
 APIWrapper("MyUserName","MyPassword","MyCertLocation","APIUrl");

 APIWrapper.MassPayeeTable Payees=new APIWrapper.MassPayeeTable();
 APIWrapper.MassPayee payee;
 while(rdr.Read()){
 payee=new APIWrapper.MassPayee();
 payee.Note=rdr["Note"].ToString();
 payee.Email=rdr["Email"].ToString();
 payee.EmailSubject=rdr["EmailSubject"].ToString();
 payee.ReferenceID=rdr["ReferenceID"].ToString();
 payee.Amount=(double)rdr["Amount"];
 Payees.Add(payee);
 }
 string result=api.RunMassPay(Payees);
 rdr.Close();
 conn.Close();
 return result;
}

Running The Hack

To pay affiliates and suppliers on a schedule, implement the
 code by following these steps:
	Create a new project: select Visual C# Projects and then
 Console Application.

	Add the MassPayee and
 MassPayTable classes to the
 Class1.cs file.

	Add the RunMassPay
 routine to the Class1.cs file.

	Add the SendMassPay
 routine to the Class1.cs file.

	Replace the MyPayeeSQL
 value with the name of a procedure stored in your database that
 you’ve created. The stored procedure should return the following
 fields: Email, EmailSubject, Amount, Note, and ReferenceID. Make sure one of the email
 addresses is your Sandbox Personal account so that you can confirm
 you sent the money.

	Replace the MyConnectionString with your own
 database connection.

	Compile and run the console application.

The response from PayPal will either be Success or a list of errors. See [Hack
 #92] for more information on errors and return
 codes.
Confirm that your payments have been sent and received by
 logging into your Sandbox Personal account.
—Souvik Das, Rob Conery, and Dave
 Nielsen

Search eBay for Listings that Accept PayPal

Use the eBay API to search for
 PayPal-enabled listings.
 eBay and PayPal are a natural fit. eBay buyers love to pay
 with PayPal because it’s quick and easy, so the vast majority of items
 listed for sale on eBay accept PayPal. This hack uses the eBay API to
 search for listings at http://www.ebay.com that
 accept PayPal.
Tip
Like PayPal API applications, eBay API applications can be
 written using any programming language and operating system. This hack
 uses the eBay Software Development Kit (SDK) for Windows and the
 C# programming language. eBay SDKs abstract away some of the
 implementation details of programming the API to make it easier to
 create an application. In addition to the SDK for .NET, eBay also
 provides an SDK for Java, as well as XML over HTTPS POST and SOAP
 interfaces. See eBay Hacks by David A. Karp (O’Reilly) for further coverage of the
 eBay API.

To create a search application with the eBay SDK, you must first
 perform a few preliminary setup steps:
	Sign up for the eBay Developers Program at http://developer.ebay.com. When you complete the
 registration process (which is free), you’ll receive a set of
 developer keys you need to begin developing eBay applications
 against the eBay test environment, known as the Sandbox (different
 than the PayPal Sandbox
 [Hack #87]).

	Download the eBay SDK for Windows and install it on your
 computer. Remember, even if you’re not using Windows and .NET, you
 can still write applications using the eBay API. For instance, much
 of the API code in eBay Hacks is written in
 Perl, which can, of course, be used on virtually any platform and
 without needing to be supported by an SDK.

	Create a test user account on the eBay Sandbox. Go to http://sandbox.ebay.com, click Register at the top of
 the page, and fill out the form. Although the form looks just like
 the sign-up form used by eBay, an eBay Sandbox account is similar to
 a PayPal Sandbox account, in that it is merely a pseudo-account used
 just for testing your software application.

	Create a security token using the token generator located at
 http://developer.ebay.com/tokentool. This page
 takes the developer keys from step 1, as well as your sandbox user
 ID and password, and converts them into a security token that you
 can use for testing purposes. You pass the token to the eBay API
 server each time your application makes an API call.

The Code

Now that you’ve done the preparatory work, it’s time to write
 your application. Create a Windows forms application with a small text
 box called txtSearch, a button
 called btnSearch, and a listbox,
 lstItem, in which to store the
 search output.
To call the functions in the SDK, begin by making a reference to
 the assembly eBay.SDK.dll from your project in
 Visual Studio .NET. Then, insert the appropriate include files at the
 top of your form’s code window:
using eBay.SDK;
using eBay.SDK.API;
using eBay.SDK.Model;
using eBay.SDK.Model.Item;
Finally, create a Click
 event handler for the button that performs the search
 and displays the results:
private void btnSearch_Click(object sender, System.EventArgs e)
{
 IItemFoundCollection items;
 GetSearchResultsCall search = new GetSearchResultsCall(CreateSession());
 search.Query = txtSearch.Text;
 search.PayPalItemsOnly = true;
 search.MaxResults = 20; // can be up to 200; more if you use paging
 items = search.GetSearchResults();

 foreach(IItem it in items)
 {
 lstItem.Items.Add(it.Title);
 }
}
Because the majority of the communication and data-handling code
 is wrapped by the classes provided by the SDK, the code you have to
 write is fairly straightforward. To do the search, this procedure
 simply creates an instance of the GetSearchResultsCall object, assigns values to its properties, and then
 calls the object’s GetSearchResults
 method.
Tip
Setting the PayPalItemsOnly
 method to true
 filters out non-PayPal items.

The return value of GetSearchResults is a typed IItemFoundCollection that is populated with
 IItem objects, each of which
 represents an item listed for sale on eBay. After the function returns
 the collection of eBay items, the foreach loop uses it to populate the listbox
 with their titles.
There’s one part of this code that can be a little tricky:
 creating a session object. The eBay ApiSession object is required to be passed to the server along
 with every eBay API call. Our event handler gets an ApiSession object by calling a function
 called CreateSession , which looks like this:
private ApiSession CreateSession()
{
 ApiSession sess = new eBay.SDK.API.ApiSession();
 sess.Developer = ConfigurationSettings.AppSettings["DeveloperID"];
 sess.Certificate = ConfigurationSettings.AppSettings["Certificate"];
 sess.Application = ConfigurationSettings.AppSettings["ApplicationID"];
 IApiToken t = new ApiToken();
 t.Token = ConfigurationSettings.AppSettings["Token"];
 sess.Token = t;
 sess.Url = ConfigurationSettings.AppSettings["ServerUrl"];
 return sess;
}

Running the Hack

This code expects to find the configuration information it needs
 in a .NET XML configuration file, called
 Web.config if you’re writing a web application or
 ExeNam e.config (where
 ExeName is the name of the executable) if
 you’re creating a compiled binary application. A typical configuration
 file of an eBay application written in any .NET language looks like
 this:
 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <appSettings>
 <add key="DeveloperID" value="mydevid" />
 <add key="ApplicationID" value="myappid" />
 <add key="Certificate" value="mycert" />
 <add key="ServerUrl" value="https://api.sandbox.ebay.com/ws/api.dll" />
 <add key="Token" value="AgAAAA**AQAAAA**aAAAAA**n8yAQA" />
 </appSettings>
 </configuration>
For this to work, you need to replace the italicized values in
 the appSettings section
 (mydevid,
 myappid, and
 mycert) with your developer keys (sent to
 you from eBay after registering in step 1, earlier in this hack) and
 your security token (generated in step 4). Finally, the ServerUrl value provided here is the correct
 URL for the eBay development Sandbox. (You’ll use a different URL to
 take the application live.)
Compile your application, and give it a whirl!

Hacking the Hack

There are many more things you can do with the eBay API besides
 search. One of the most common operations involves automatically
 listing items for sale, typically to save time in the selling process
 or provide integration between your inventory database and eBay. You
 can also use the eBay API to obtain details about listings in
 progress, download high-bidder information for completed items, and
 even create notifications when a bidder with negative feedback bids on
 one of your auctions! There are more than 70 calls in the eBay API,
 and the SDK provides quite a few code examples in a number of
 different programming languages.
—Jeffrey McManus

Test IPN and PDT in the Sandbox

Test Instant Payment Notification (IPN) and
 Payment Data Transfer (PDT) in the PayPal Sandbox.
Once you’ve deposited money into the Personal account in your Sandbox
 [Hack
 #87] , you’ll need to configure your Sandbox
 Business account to use either PDT or IPN (both of which
 are discussed at length in Chapter
 7). This hack shows how to configure PDT.
As with the live PayPal site, to use PDT with the PayPal Sandbox,
 you must first configure some options in your Sandbox Business account
 Profile.
Warning
PDT works only when Auto Return is turned on. You must set this
 before using PDT in your web site.

To enable Auto Return and the PDT feature, follow these
 steps:
	Open the Sandbox, launch the Sandbox Business account, and log
 in.

	Click the My Account tab, and then click Profile.

	Click Website Payment Preferences and turn on the Auto Return
 option.

	Finally, turn on the Payment Data Transfer option.

	Click Save when you’re done.

Tip
When you save your PDT preferences, an ITidentity token is generated and appears in a message at the top
 of the Website Payment Preferences page. In future visits, your
 ITidentity token will appear in the
 Payment Data Transfer section, below the On and Off options.

See [Hack #85] for additional PDT setup
 instructions and tips.
Now, when sending order information to PayPal, you can do it
 through a URL (GET) or via an HTML
 form (POST). Either way, you need to
 tell PayPal that the payment is going to a Sandbox account. Just add the
 parameter test_pdt=1 (or test_ipn=1 if you are using the IPN) to the
 URL (or include it as a variable in your HTML form).
When the transaction is complete, the pseudobuyer will be
 redirected to the URL you supplied in the ReturnURL parameter, along with several transaction parameters
 appended to the URL, including:
	Transaction number (tx)
	You’ll use the transaction number to get the full set of
 transaction information
 [Hack #93] .

	Status (st)
	The status of the transaction is normally Completed. See [Hack
 #65] for explanations of the other status flags
 you might see here.

	Amount of sale (amt)
	The dollar (or whatever currency used) amount of the
 sale.

	Currency (cc)
	The currency used for the sale.

Once the Sandbox has sent you this information, you can set up
 your IPN or PDT logic as you need without worrying about real orders and
 real money being transacted. The return information from PayPal won’t
 specify that it’s a Sandbox transaction, though, so if it’s important to
 you to know this, you can append a flag to your return URL, like
 this:
http://www.myreturnurl.com?test=1
PayPal appends its transaction information to this URL for both
 PDT and IPN, preserving your test
 parameter and thus helping you to distinguish test transactions from
 real ones.
--Rob Conery and Dave Nielsen

Go Live

Take the training wheels off your Sandbox
 application and start working with real money.
Once you’ve finished developing your application and have
 completed your testing in the Sandbox [Hack
 #87] , you’ll ultimately want to take your application
 live. You’ll need to do the following:
	If you haven’t done so already, set up a real, verified
 Business or Premier account on the live site
 outside the Sandbox, as described in the
 introduction to Chapter
 3.

	Obtain a new digital certificate with a new certificate ID and
 password.

	Log into your PayPal Business account and click the Profile
 tab.

	Click the API Access link and then click the API Certificate
 Request link.

	All accounts need to be verified
 [Hack #2] before requesting
 a certificate (otherwise, you won’t see a Request link). When you
 have finished this process, you will receive a link to a new
 certificate with a new user ID and password.
Warning
Unlike the Sandbox, when you have finished the request
 process, you will not automatically be given the option to
 download a certificate. Some businesses will even be denied
 because they do not have an account in good standing. Others might
 be denied because they are too new. The exact reasons for being
 denied a certificate are not clear, but it if it happens to you,
 contact PayPal Customer Service and try to get it resolved.

	Change the URL of the PayPal API in your application. If
 you’ve built a modular application, it should reference the URL for
 the API in one or two locations. Find those locations and change the
 URL from:
	https://api.sandbox.paypal.com/2.0/

	to:
	https://api.paypal.com/2.0/

Tip
If you’re using the API wrapper [Hack
 #89] , you’ll find the URL inside the wrapper
 class.

Performance and Efficiency

Since access to the PayPal API is currently free, you don’t have
 to worry about tracking and limiting the number of calls your
 application makes over a given time period. However, since web
 services calls hamper the performance of your application, you should
 be thinking about efficiency as you develop. For instance, you might
 want to cache repeatedly accessed information so that your users don’t
 have to wait while your application retrieves data
 unnecessarily.

Finishing Up

Once you’ve made these changes to your application, it’s prudent
 to test your application with real money on the live site before
 distributing it or installing into a production environment. When you
 feel your application is ready, go ahead and launch, sit back, and
 enjoy.
—Rob Conery and Dave Nielsen

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	AAC (Alternate Address Confirmation) process, Confirming a Second Address
	
	AbstractResponseType class, Handle Transaction Errors within the API Wrapper
	
	ab_ variable, Making Your Own Button
	
	Acceptable Use Policy, online content must comply
 with, Sell Subscriptions to Your Online Content
	
	Access Database Design & Programming, Further Study
	
	Account Access Limited box, Restore Your Account if It Has Been Limited
	
	accounts
		adding new users to, Adding a New User
	
	administrative, Adding an Administrative Account
	
	appeals process for, Filing an Appeal
	
	chargebacks, protecting yourself from, Protect Yourself from Chargebacks–Providing Additional Information About Your Case
	
	creating, Create a PayPal Account–Create a PayPal Account
	
	debit cards, retrieving funds with, Get Paid to Use the PayPal Debit Card
	
	developer, creating, Create a Developer Account
	
	hijacked, Protect Yourself from Buyer Fraud
	
	limited accounts
		preventing, Avoiding Suspicion
	
	restoring, Restore Your Account if It Has Been Limited
	

	paying from funds in PayPal, Choose How to Fund Payments
	
	phishing, protecting against, Responding if Something Goes Wrong
	
	retrieving money from, Get Your Money–Get Paid to Use the PayPal Debit Card
	
	returning unclaimed funds to, What If They Don’t Sign Up?
	
	Sandbox, creating, Creating a Sandbox Account
	
	types of, Introduction: Hacks #17-27
	
	verifying, Verify Your PayPal Account–Confirm an Account and Get Free Cash, Checking the Buyer’s User Status
	

	Ack property, The Results
	
	Add To Cart button, Introduction: Hacks #28-44
		creating, Hack Shopping Cart Buttons
	
	creating user controls, Creating Your Own PayPal Control–Creating Your Own PayPal Control
	
	inserting, using WebAssist PayPal eCommerce
 Toolkit, Drag and Drop eCommerce
	
	obfuscating button code, Plan B: Obfuscate Your Button Code
	
	putting in one form, with View Cart button, Put Both Cart Buttons in One Form
	

	Address Verification System/Service (AVS), Confirm Your Mailing Address
	
	addresses (see email mailing addresses shipping addresses)
	
	administrative accounts, adding, Adding an Administrative Account
	
	adult Internet sites, not allowed under PayPal, Sell Subscriptions to Your Online Content
	
	AdWord Conversion Tracking system (Google), Track Google Referrals–See Also
	
	affiliate IDs, using instead of email addresses, Hide Your Email Address from Spammers
	
	affiliate systems, Use Mass Pay to Create an Affiliate System–Hacking the Hack
		building buttons for, Building a Button for Your Affiliate
	
	notification of payments received, Notifying Your Affiliates
	
	paying with Mass Payment, Paying Your Affiliates en Mass
	
	scheduling payments with Mass Pay API, Pay Affiliates and Suppliers on a Schedule–Running The Hack
	

	Aggregate Cart feature, Integrate a Third-Party Shopping Cart with PayPal–Hacking the Hack
	
	ai_ variable, Making Your Own Button
	
	alerts about price checks, sending, Sending a Price Check Alert
	
	alt tags on web pages, increasing search engine exposure
 with, Increase Search Engine Exposure
	
	Alternate Address Confirmation (AAC) process, Confirming a Second Address
	
	amount of payments, searching for transactions
 by, Search for PayPal Transactions
	
	amount of sale (amt) transaction parameter, Process Payments like a Credit Card with PDT, Test IPN and PDT in the Sandbox
	
	amt (amount of sale) transaction parameter, Process Payments like a Credit Card with PDT, Test IPN and PDT in the Sandbox
	
	Anything Points program (eBay), eBay-only Payment Methods
	
	Apache web server, needed for Password Management
 feature, .htpasswd and .htaccess
	
	Apache: The Definitive Guide, See Also
	
	API wrapper class, PayPal (see wrapper class for PayPal API)
	
	APIClient tool, Getting Started with PayPal’s APIClient Tool
		issuing refunds with, Making Your First Call
	

	APIPassword property (API wrapper class), Handling the Basics
	
	ApiSession object, The Code
	
	APIUrl property (API wrapper class), Handling the Basics
	
	APIUserName property (API wrapper class), Handling the Basics
	
	appeals process for limited accounts, Filing an Appeal
	
	appropriate content on custom pages, guidelines
 for, Getting the Most from Custom Page Style Banners
	
	ASP.NET, creating custom web controls in, Provide Options with ASP.NET Web Controls–Creating Your Own PayPal Control
	
	ASP/VBScript combination, Server-Side Scripting
		adding email to IPN, Adding Email to IPN
	
	capturing customer information, The IPN Page
	
	processing shopping carts, The Code
	
	sample IPN code, The Code
	

	ATM cards (see debit cards)
	
	attachments, sending digital goods as, The Code
	
	auction options for PayPal, The Easy Way
	
	Auction Payment Button (Payment Wizard), Using the PayPal Payment Wizard
		creating, Create an Auction Payment Button–Hacking the Hack
	

	AuctionInfoType object, Retrieve Transaction Details with the API
	
	auction_buyer_id variable, Use IPN with eBay Listings
	
	auction_closing_date variable, Use IPN with eBay Listings
	
	auction_multi_item variable, Use IPN with eBay Listings
	
	Auto Return and PDT, enabling, Test IPN and PDT in the Sandbox
	
	Auto-Sweep feature, Auto-Sweep
	
	Automatic Settlement Withdrawal feature, Auto-Sweep
	
	AVS (Address Verification System/Service), Confirm Your Mailing Address
	

B
	Baldwin, Paulam, Contributors
	
	bank accounts
		adding to PayPal accounts, Verify Your PayPal Account–Confirm an Account and Get Free Cash
	
	Auto-Sweep feature, Auto-Sweep
	
	confirming new, Confirm an Account and Get Free Cash
	
	transferring PayPal funds to, Transfer to a Bank Account–Transfer to a Bank Account
	
	verifying in the Sandbox, Verifying Bank Accounts in the Sandbox
	

	banners on custom checkout pages, Getting the Most from Custom Page Style Banners
	
	base64 encoder/decoder utilities, Thinking Outside the Disk
	
	BasicAmountType object, Retrieve Transaction Details with the API
	
	Bassett, Loyal, Contributors
	
	bidders, winning, The Easy Way
	
	Billing Information page, Send Money Without Creating a PayPal Account
	
	Blanton, Michael, Contributors
	
	blocking eChecks, Set Your Payment Receiving Preferences
	
	BN (Build Notification) tracking, Build Notification Tracking–See Also
	
	Breitenbach, Patrick, Contributors
	
	browser scripting, Client-Side (Browser) Scripting
	
	Build Notification (BN) tracking, Build Notification Tracking–See Also
	
	Burchell, Dave, About the Authors
	
	Business accounts, Introduction: Hacks #17-27
		applying for merchant rates, Apply for the Merchant Rate
	
	limitations on downgrading, Upgrade to Business Class
	
	Sandbox
		adding bank accounts to, Verifying Bank Accounts in the Sandbox
	
	creating in, Creating a Sandbox Account
	
	sending money from Personal accounts, Setting up a Test Transaction
	
	testing IPN and PDT, Test IPN and PDT in the Sandbox
	

	Button Factory, PayPal, The Code
		building templates for dynamic storefronts, Building the Template–Including Product Details
	
	creating View Cart button, Hack Shopping Cart Buttons
	
	customizing appearance of Buy Now button, Use a Custom Button Image
	
	drop-down lists, providing purchase options
 with, Provide Purchase Options with Drop-Down Listboxes–Hacking the Hack
	
	embedding code in tables, Deal with Design and Layout Issues
	
	modifying code, to increase search engine
 exposure, Modifying the PayPal Button Factory Code
	

	buttons
		augmenting code for return pages, Augmenting the PayPal Button Code
	
	customizing appearance of, Use a Custom Button Image
	
	including more than two option fields, Include More Than Two Option Fields–Include More Than Two Option Fields
	
	modifying code to increase search engine
 exposure, Increase Search Engine Exposure
	

	Buy Now button, Introduction: Hacks #28-44
		adding to Flash-powered online stores, PayPal-Enable Your Flash–Hacking the Hack
	
	Component Inspector for, Snap in the PayPal Connection–Snap in the PayPal Connection
	
	creating, Create a Buy Now Button–Hacking the Hack
	
	customizing appearance of, using Button
 Factory, Use a Custom Button Image
	
	encrypting contents with OpenSSL and C/C++, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	
	including more than two option fields, Include More Than Two Option Fields–Include More Than Two Option Fields
	
	inserting, using WebAssist PayPal eCommerce
 Toolkit, Drag and Drop eCommerce
	
	methods that set values, Hacking the Hack
	
	obfuscating button code, Plan B: Obfuscate Your Button Code
	
	removing for out-of-stock items, Creating the Selling Page
	
	vs. button for selling intangible
 goods/services, Create a Purchase Button for Services
	

	Buyer Credit (PayPal), eBay-only Payment Methods
	
	Buyer Protection Policy, Create a PayPal Account
		disputing merchandise payments, Dispute Merchandise Payments–What happens to bad sellers? I want justice!
	
	etiquette, Buyer Protection Etiquette
	
	filing claims, PayPal Buyer Protection–What happens to bad sellers? I want justice!
	

	Buyer Reputation Numbers, Checking Your Reputation as a Buyer, Checking the Buyer’s User Status
	
	buyers
		checking status of, Access Member Information–Checking Your Reputation as a Buyer, Checking the Buyer’s User Status
	
	contacting, to prevent fraud, Conducting a Little Reconnaissance
	
	enticing with discount coupons, Offer Discount Coupons–Verifying Coupons on the Server Side
	
	merchandise disputes and, Handle Merchandise Disputes Effectively
	
	preventing merchandise disputes, Preventive Maintenance
	
	searching for transactions by, Search for PayPal Transactions
	
	tracking with cookies, Tracking Buyers with Cookies–See Also
	

C
	C/C++, encrypting Buy Now button with, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	
	calculating seller fees, Calculating the Fees Yourself
	
	canceling
		subscriptions, Introduction: Hacks #61-64
	
	unclaimed payments, What If They Don’t Sign Up?
	

	cancel_return variable, Hacking the Hack
	
	Card Verification Value (CVV), unavailable with virtual
 debit card, Use Your PayPal Funds Anywhere
	
	cash back from PayPal, when using debit card, Get Paid to Use the PayPal Debit Card
	
	categorizing web pages, based on content, Increase Search Engine Exposure
	
	cc (currency) transaction parameter, Process Payments like a Credit Card with PDT, Test IPN and PDT in the Sandbox
	
	cell phones, paying from, Pay from a Cell Phone–Requesting Payment with a Text Message
	
	.cer (PKCS12) files
		converting text files into, Setting Up the SSL Certificate
	
	exporting certificates as, Setting Up the SSL Certificate
	

	certificates, Create a Developer Account
		digital
		creating your own handler, Creating Your Own Certificate Handler
	
	obtaining before going live, Go Live
	

	.p12,
 installing into Internet Explorer, Setting Up the SSL Certificate
	
	SSL, The Code
		converting text files into .cer files, using
 OpenSSL, Setting Up the SSL Certificate
	
	generating from Sandbox, Setting Up the SSL Certificate
	

	CertLocation property (API wrapper class), Handling the Basics
	
	cert_key_pem.txt file, Setting Up the SSL Certificate
	
	Chargeback Department at PayPal, Providing Additional Information About Your Case
	
	chargebacks
		with digital goods,
 avoiding, Avoid Chargebacks on Digital Goods
	
	importance of timing, Responding When You Receive a Chargeback, Providing Additional Information About Your Case
	
	protecting yourself from, Protect Yourself from Chargebacks–Providing Additional Information About Your Case
	
	reducing risks of, Set Your Payment Receiving Preferences, Protecting Yourself
	
	responses to receiving, Responding When You Receive a Chargeback
	

	CheckErrors(), The Results
	
	Checkout button, Introduction: Hacks #28-44
	
	checkout process
		customizing, Identify Yourself to Your Customers, Customize Checkout Pages–Getting the Most from Custom Page Style Banners
	
	simplifying, by streamlining purchase buttons, Create a Purchase Button for Services
	

	checks from PayPal, limitations on receiving, Just Send Me a Check
	
	Chen, May, Contributors
	
	ChiliSoft ASP, Database Coding and Platform Choices
	
	claims, filed by buyers, PayPal Buyer Protection–What happens to bad sellers? I want justice!
	
	Click event of Payment Controls, avoiding single-form
 limitation, Using the .NET Payment Controls–Creating Your Own PayPal Control
	
	client-side JavaScript for processing coupons, Accepting Coupons on the Client Side–Hacking the Hack
	
	client-side scripting, Client-Side (Browser) Scripting
	
	cmdDetails button, Use the PayPal API Wrapper Class
	
	cn variable, Hacking the Hack
	
	code tampering, preventing, Hack-Proof Your Payment–Plan B: Obfuscate Your Button Code, Implement Price Checking with IPN–Sending a Price Check Alert
		with encryption, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	

	colors not allowed in custom pages, Getting the Most from Custom Page Style Banners
	
	Component Inspector feature (Macromedia), Snap in the PayPal Connection–Snap in the PayPal Connection
	
	Conery, Rob, Contributors
	
	confirming
		purchases to customers by email, Send a Purchase Confirmation Email with IPN
	
	Sandbox email addresses, Confirming Your Sandbox Email Addresses
	

	Continue buttons on Payment Sent pages, The PayPal Button Code
	
	Continue Shopping button, displaying, The Code
	
	contributors to political campaigns, getting required
 information about, Requiring Information from Your Donors
	
	conversion rate, measuring, Track Google Referrals
	
	cookies
		magic, used for checking valid subscribers, Controlling Access to Your Valued Content–Hacking the Hack
	
	personal information and, Send Money Without Creating a PayPal Account
	
	setting for tiers, Restricting Access Based on Tier
	
	tracking buyers with, Tracking Buyers with Cookies–See Also
	

	CountDonated variable, Hacking the Hack
	
	count_inventory variable, Updating the Inventory Count
	
	coupons, discount, Offer Discount Coupons–Verifying Coupons on the Server Side
	
	CreateSession(), The Code
	
	credit cards
		accepting payments of, Create a PayPal Account
	
	adding to PayPal accounts, Confirm Your Mailing Address–Confirming a Second Address
	
	chargebacks, protecting yourself from, Protect Yourself from Chargebacks
	
	discouraging customer use of, Set Your Payment Receiving Preferences
	
	forgotten passwords and, Pay When You’ve Forgotten Your Password–Pay When You’ve Forgotten Your Password
	
	funding payments with, Choose How to Fund Payments
	
	Personal accounts and, Introduction: Hacks #17-27
	
	setting identifying strings on statements, Identify Yourself to Your Customers
	
	stolen, repercussions of using, Restore Your Account if It Has Been Limited
	

	cross-border payment fees, Set Your Payment Receiving Preferences
	
	crypt(), Adding Users Manually
	
	cryptographic keys, encrypting buttons with, OpenSSL and Keys–Basic Button Encryption Using OpenSSL
	
	cs variable, Hacking the Hack
		incompatible with Custom Payment Pages, Getting the Most from Custom Page Style Banners
	

	currency, Transfer to a Bank Account
		(see also money)
	
	avoiding currency conversions, Transfer to a Bank Account
	
	bogus, accepting payments in, Try Accepting Payments in a Bogus Currency
	
	foreign, accepting payments in, Set Your Payment Receiving Preferences
	
	searching for transactions by, Search for PayPal Transactions
	
	support for subscriptions funded by multiple
 currencies, Hacking the Hack
	

	currency (cc) transaction parameter, Process Payments like a Credit Card with PDT, Test IPN and PDT in the Sandbox
	
	currency_code variable, Hacking the Hack
	
	custom checkout page styles
		header banners, getting the most from, Getting the Most from Custom Page Style Banners
	
	using multiple, Using Multiple Custom Page Styles
	

	Custom Payment Pages, Customize Checkout Pages–Getting the Most from Custom Page Style Banners
	
	custom variable, Hacking the Hack, Include More Than Two Option Fields–Include More Than Two Option Fields
		Aggregate Cart feature, Aggregating Your Cart
	
	tracking sales using, Hacking the Hack
	

	Customer Service, contacting, Telephone Support
	
	customers
		capturing information with IPN, Capture Customer Information with IPN–The IPN Page
	
	getting to know, Protecting Yourself
	
	identifying yourself to, Identify Yourself to Your Customers
	
	offering discount coupons, Offer Discount Coupons–Verifying Coupons on the Server Side
	
	paying seller fees when buying, Pay Seller Fees when Buying–Covering the Recipient’s Fees Using Mass Pay, Let Your Customers Pay
	
	protection when shipping goods to, Shipping Products
	
	returning to web pages, after making
 purchases, Deliver Digital Goods with a Return Page–Building the Return Page
	
	sending purchase confirmation email, Send a Purchase Confirmation Email with IPN
	
	tracking
		before/after PayPal transactions, Tracking Your Users: Before and After
	
	site visitors, Remember Your Customers–See Also
	

	upselling, Upsell Your Customers–Running the Code
	

	CVV (Card Verification Value), unavailable with virtual
 debit card, Use Your PayPal Funds Anywhere
	

D
	Das, Souvik, Contributors
	
	databases
		adding product information to, Adding More Product Information to Your Table
	
	adding tier fields to, Adding a Tier Field to Your Database
	
	building dynamic storefronts, Creating the Storefront Database–Building the Template
	
	capturing customer information with IPN, The Database Table–The IPN Page
	
	delivering digital goods with return pages, Deliver Digital Goods with a Return Page–Building the Return Page
	
	donor lists, displaying, The Database Table–Hacking the Hack
	
	inserting cart details into, Insert Cart Details into a Database–A Shopping Cart IPN
	
	inserting payment details into, using IPN, Insert Payment Details into a Database with IPN
	
	keeping track of subscribers, Setting Up Your Database
	
	tracking eBay products with IPN, Track Your eBay Products with IPN–The Code
	
	using in PayPal hacks, Database Coding and Platform Choices
	

	DataBind(), Creating Your Own PayPal Control
	
	DataGrid
		adding event handlers, Running the Hack
	
	displaying results in, Hack the API Wrapper, Running the Hack
	

	DataSource property, setting, Creating Your Own PayPal Control
	
	DataTable, returning, Hack the API Wrapper–The Code
	
	Debit Bar feature, Use Your PayPal Funds Anywhere–Use Your PayPal Funds Anywhere
	
	debit cards
		funding payments with, Choose How to Fund Payments
	
	lowering seller fees by using, Use the PayPal ATM/Debit Card
	
	retrieving PayPal funds with, Get Paid to Use the PayPal Debit Card
	
	virtual, paying with, Use Your PayPal Funds Anywhere–Use Your PayPal Funds Anywhere
	
	withdrawing money from ATMs, Get Paid to Use the PayPal Debit Card
	

	deposits made by PayPal to confirm accounts, Confirm an Account and Get Free Cash
	
	desktop applications, building, Desktop Applications
	
	details of transactions
		retrieving, Retrieve Transaction Details with the API–Running the Hack
	
	viewing, Quick-Link to Transaction Details–Making a Web Interface, Use the PayPal API Wrapper Class–Use the PayPal API Wrapper Class
	

	Developer Central
		Sandbox environment, Set up the Sandbox–Adding Funds (and Getting Rich Quick)
	
	setting up an account, Create a Developer Account
	

	diagnosing IPN processing problems, Troubleshoot Instant Payment Notifications–Using a Third-Party Testing Script
	
	digital certificates
		creating your own handler, Creating Your Own Certificate Handler
	
	obtaining before going live, Go Live
	

	digital fulfillment, What IPN and PDT Are
	
	digital goods
		avoiding chargebacks when selling, Avoid Chargebacks on Digital Goods
	
	delivering with IPN, Deliver Digital Goods with IPN–Creating an IPN Page
	
	delivering with return pages, Deliver Digital Goods with a Return Page–Building the Return Page
	
	overriding shipping/handling preferences for, Override Shipping and Handling Preferences
	
	selling with PayLoadz, Sell Digital Goods with PayLoadz–See Also
	

	discount coupons, offering, Offer Discount Coupons–Verifying Coupons on the Server Side
	
	discount rates vs. merchant rates, Apply for the Merchant Rate
	
	dispute resolutions, online, PayPal Buyer Protection–What happens to bad sellers? I want justice!
	
	disputed payments
		handling effectively, Handle Merchandise Disputes Effectively
	
	protecting yourself from, Protect Yourself from Chargebacks–Providing Additional Information About Your Case
	

	Donate Button (Payment Wizard), Using the PayPal Payment Wizard
	
	Donate Now button, Introduction: Hacks #28-44
		accepting donations, Accept Donations
	
	displaying donation goals on web sites, Display Donation Goals on Your Web Site–Hacking the Hack
	

	Donation button, obfuscating button code
 for, Plan B: Obfuscate Your Button Code
	
	donations, Accept Donations
		building page for, Building the Donation Page
	
	creating buttons for, Accept Donations
	
	donor lists, displaying, Display a Recent Donor List–Hacking the Hack
	
	encouraging more, Hacking the Hack
	
	goals, displaying, Display Donation Goals on Your Web Site–Hacking the Hack
	
	recording, Recording Donations
	
	suggested giving levels, Establishing Suggested Giving Levels
	

	donors
		displaying lists of, Display a Recent Donor List–Hacking the Hack
	
	getting required information about, Requiring Information from Your Donors
	

	Dornfest, Rael, See Also
	
	downgrading Premier/Business accounts, Upgrade to Business Class
	
	Download My History feature, Hacking the Hack
	
	Dreamweaver
		link to, The Right Tools for the Right Job
	
	using WebAssist PayPal eCommerce Toolkit with, Get More Out of Dreamweaver and PayPal–Hacking the Hack
	

	drop-down lists
		creating user controls, Creating Your Own PayPal Control–Creating Your Own PayPal Control
	
	using .NET Payment
 Controls, Using the .NET Payment Controls
	
	providing purchase options, Provide Purchase Options with Drop-Down Listboxes–Hacking the Hack
	
	working with Dreamweaver and PayPal, Hacking the Hack
	

	duplicate transactions, Providing Additional Information About Your Case
	
	Dutch funding sources for PayPal, Buying from Outside the USA
	
	dynamic storefronts
		adding product details to, Add Dynamic Storefront Details–Hacking the Hack
	
	creating, Create a Dynamic Storefront–Including Product Details
	
	creating databases for, Creating the Storefront Database–Building the Template
	
	generating button code for templates, Building the Template–Including Product Details
	
	inserting product images in, Insert Dynamic Images–Link the Image to PayPal
	
	linking to other web pages, Add Dynamic Storefront Details–Hacking the Hack
	

E
	eBay
		Anything Points program, eBay-only Payment Methods
	
	creating Auction Payment buttons, The Easy Way
	
	Developers Program, signing up for, Search eBay for Listings that Accept PayPal
	
	Gift Certificates, eBay-only Payment Methods
	
	hands-on courses, through eBay University, eBay University
	
	using IPN and, Use IPN with eBay Listings–The Results
	
	listing item numbers on, Listing the Item Number on eBay
	
	searching for listings that accept PayPal, Search eBay for Listings that Accept PayPal–Hacking the Hack
	
	Security Center, What happens to bad sellers? I want justice!
	
	Software Development Kit (SDK), Search eBay for Listings that Accept PayPal
	
	tracking products with IPN, Track Your eBay Products with IPN–The Code
	

	eBay Hacks, Introduction: Hacks #28-44, Hacking the Hack, Search eBay for Listings that Accept PayPal
	
	eChecks
		being careful with, Set Your Payment Receiving Preferences
	
	blocking, Set Your Payment Receiving Preferences
	
	funding payments with, Choose How to Fund Payments
	
	lowering seller fees with, Choose How to Fund Payments, Ask for eChecks
	

	ECMAScript, Client-Side (Browser) Scripting
	
	electronic bank accounts (see bank accounts)
	
	electronic discount coupons, offering, Offer Discount Coupons–Verifying Coupons on the Server Side
	
	Ellingson, Glenn, Contributors
	
	email
		adding payment hyperlinks to, Creating PayPal Payment Hyperlinks
	
	adding to IPN, Adding Email to IPN
	
	alerts about price checks, Sending a Price Check Alert
	
	confirming
		purchases to customers by, Send a Purchase Confirmation Email with IPN
	
	Sandbox addresses, Confirming Your Sandbox Email Addresses
	

	errors in IPN pages, notifying by, Capturing Errors
	
	hiding addresses from spammers, Hide Your Email Address from Spammers
	
	low inventory, alerting yourself through, Alerting Yourself if Inventory Is Low
	
	managing PayPal email, Manage PayPal Email–Setting Notification Preferences
	
	multiple addresses
		adding to PayPal accounts, Identify Yourself to Your Customers
	
	filtering to, Filtering Your Incoming Email
	
	setting up, Setting Up Multiple Email Addresses
	

	payment buttons, including in messages, Include Payment Buttons in Email Messages–Including More than One Button in an Email
	
	PayPal support via, Email Support
	
	requesting payments via, Request Money Without an Account–See Also
	
	sending
		digital goods as attachments, The Code
	
	payments via, Sending a Payment via Email
	

	embedding Button Factory code in tables, Deal with Design and Layout Issues
	
	employees, separate logins for, Create a Separate Login for Each Employee–Responding if Something Goes Wrong
	
	encrypted passwords, generating, Adding Users Manually
	
	encrypting
		Buy Now button, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	
	Donate Now buttons, Accept Donations
	
	vs. obfuscating, Plan B: Obfuscate Your Button Code
	

	errors
		capturing, in IPN pages, Capturing Errors
	
	testing IPN scripts for, Using a Return URL
	
	transaction, handling within API wrapper
 class, Handle Transaction Errors within the API Wrapper–Using the Error Handler
	

	event handlers
		adding for double-click event, Running the Hack
	
	searching eBay for PayPal listings, The Code
	

	Expanded Use Enrollment, Expanded Use Enrollment
	
	expiration dates
		for subscriptions, Time Your Subscriptions to End on Specific Dates–Hacking the Hack
	
	for virtual debit cards, Use Your PayPal Funds Anywhere
	

	Extension Manager (Macromedia), Snap in the PayPal Connection
	

F
	Fatwallet forum, Support Forums
	
	file_location variable, The Code
	
	filing appeals, Filing an Appeal
	
	filtering incoming email, Filtering Your Incoming Email
	
	first_name variable, The Return Page
	
	Flanagan, David, Further Study
	
	Flanders, Jon, Use the PayPal API Wrapper Class
	
	Flash
		snapping in PayPal connection to, Snap in the PayPal Connection–Snap in the PayPal Connection
	
	WA PayPal eCommerce Snap-ins for, PayPal-Enable Your Flash–Hacking the Hack
		underneath the hood of, Hacking the Hack–Hacking the Hack
	

	foreign currency, accepting payments in, Set Your Payment Receiving Preferences
	
	forgotten passwords, Pay When You’ve Forgotten Your Password–Pay When You’ve Forgotten Your Password
	
	form buttons, code for, The Code
	
	for_auction variable, The Results
	
	fraudulent activity
		getting money back after seller fraud, Dispute Merchandise Payments–What happens to bad sellers? I want justice!
	
	protecting yourself from
		buyer fraud, Protect Yourself from Buyer Fraud–Conducting a Little Reconnaissance
	
	chargebacks, Protect Yourself from Chargebacks–Providing Additional Information About Your Case
	

	repercussions of, Restore Your Account if It Has Been Limited–See Also
	
	spoofed payments, preventing, Hack-Proof Your Payment–Plan B: Obfuscate Your Button Code, Implement Price Checking with IPN–Sending a Price Check Alert
	

	frozen funds, Responding When You Receive a Chargeback
	
	funding payments
		choosing sources for, Choose How to Fund Payments–Buying from Outside the USA
	
	overriding hierarchy of funding sources, Overriding the Funding Source Hierarchy
	

G
	Gartner Group study, Protect Yourself from Chargebacks
	
	Gennick, Jonathan, Further Study
	
	German funding sources for PayPal, Buying from Outside the USA
	
	GetAmountValue(), Retrieve Transaction Details with the API
	
	GetPDTValue(), PDT in Action
	
	GetSearchResults(), The Code
	
	GetSearchResultsCall object, The Code
	
	GetTransactionDetail(), Use the PayPal API Wrapper Class–Use the PayPal API Wrapper Class, Retrieve Transaction Details with the API–Running the Hack, Running the Hack–Running the Hack
	
	GetTransactionDetailsResponseType class, Handle Transaction Errors within the API Wrapper
	
	getTrialPeriod(), Hacking the Hack
	
	getTrialTime(), Hacking the Hack
	
	Gift Certificates (eBay), eBay-only Payment Methods
	
	giving levels on donations pages, Establishing Suggested Giving Levels
	
	Google
		AdWord Conversion Tracking system, Track Google Referrals–See Also
	
	modifying button code to increase search engine
 exposure, Increase Search Engine Exposure
	

	Google: The Missing Manual, See Also
	
	Griffiths, Ian, Use the PayPal API Wrapper Class
	

H
	hack-proofing payment buttons, Hack-Proof Your Payment–Plan B: Obfuscate Your Button Code, Implement Price Checking with IPN–Sending a Price Check Alert
		with encryption, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	

	hacking PayPal, Why PayPal Hacks?
	
	Han, Gina, Contributors
	
	handling pages, PDT, PDT in Action
	
	handling preferences, overriding, Override Shipping and Handling Preferences
	
	handling transaction errors within API wrapper
 class, Handle Transaction Errors within the API Wrapper–Using the Error Handler
	
	handling variable, Hacking the Hack
		Aggregate Cart feature, Aggregating Your Cart
	
	overriding preferences, Override Shipping and Handling Preferences
	

	handling_cart variable, Hacking the Hack
	
	header banners on custom checkout pages, Getting the Most from Custom Page Style Banners
	
	Heinlein, Robert A., How IPN Works
	
	Help, PayPal, Get Help from PayPal–eBay University
	
	hidden form fields, using Dreamweaver and
 PayPal, Hacking the Hack
	
	hidden form posts, creating, Hack-Proof Your Payment
	
	hijacked accounts, Protect Yourself from Buyer Fraud
	
	.htaccess file, .htpasswd and .htaccess–Getting the Code
	
	.htpasswd file, .htpasswd and .htaccess–Adding Users Manually
	
	.htpassword file, Getting the Code
	
	HugeURL tool, Creating PayPal Payment Hyperlinks
	
	Hughes, Arthur M., See Also
	
	Hurwitz, Dan, Further Study
	
	hyperlinks, adding to email, Creating PayPal Payment Hyperlinks
	

I
	identifying yourself to customers, Identify Yourself to Your Customers
	
	identity tokens and PDT, Process Payments like a Credit Card with PDT, Test IPN and PDT in the Sandbox
	
	images
		customizing Buy Now buttons, Preparing the Image and Code
	
	of products, inserting in storefronts, Insert Dynamic Images–Link the Image to PayPal
	

	image_url variable, Hacking the Hack
		incompatible with Custom Payment Pages, Getting the Most from Custom Page Style Banners
	

	InitializeComponent(), Creating Your Own PayPal Control
	
	Instant Payment Notification (see IPN)
	
	Instant Transfer payments
		accepting, Set Your Payment Receiving Preferences
	
	funding payments with, Choose How to Fund Payments
	

	Internet Explorer, installing .p12 certificate files
 into, Setting Up the SSL Certificate
	
	introductory prices for new subscribers, Hacking the Trial Period
	
	inventory, managing with IPN, Manage Your Inventory with IPN–Alerting Yourself if Inventory Is Low
	
	invoice variable, Hacking the Hack
		Aggregate Cart feature, Aggregating Your Cart
	

	IPN (Instant Payment Notification), What IPN and PDT Are
		adding email to, Adding Email to IPN
	
	advantage of, What IPN and PDT Are
	
	capturing customer information with, Capture Customer Information with IPN–The IPN Page
	
	capturing errors, Capturing Errors
	
	code for, The Code–Running the Code
	
	digital goods
		delivering with, Deliver Digital Goods with IPN–Creating an IPN Page
	
	selling with PayLoadz, Sell Digital Goods with PayLoadz–See Also
	

	donor lists and, The IPN Page
	
	eBay listings and, Use IPN with eBay Listings–The Results
	
	inserting
		cart details into databases using, Insert Cart Details into a Database–A Shopping Cart IPN
	
	payment details into databases using, Insert Payment Details into a Database with IPN
	

	managing inventory with, Manage Your Inventory with IPN–Alerting Yourself if Inventory Is Low
	
	multiple pages, enabling, Enable Multiple IPN Pages–Hacking the Hack
	
	order summaries, providing with, Provide an Order Summary with IPN–The Code
	
	price checking, implementing with, Implement Price Checking with IPN–Sending a Price Check Alert
	
	processing shopping carts with, Process Shopping Carts with IPN
	
	return variable, using, Using a Return URL
	
	sending purchase confirmation emails with, Send a Purchase Confirmation Email with IPN
	
	setting up, Receive Instant Payment Notifications–Running the Code
	
	synchronizing PDT and, Synchronizing PDT and IPN–Hacking the Hack
	
	testing in Sandbox, Test IPN and PDT in the Sandbox
	
	third-party testing scripts for, Using a Third-Party Testing Script
	
	tracking
		eBay products with, Track Your eBay Products with IPN–The Code
	
	Google conversions, Creating Your IPN Processing Page
	

	troubleshooting, Troubleshoot Instant Payment Notifications–Using a Third-Party Testing Script
	

	item numbers, searching for transactions by, Search for PayPal Transactions
	
	item_name variable, The Code
		Aggregate Cart feature, Aggregating Your Cart
	
	managing inventory with IPN, Updating the Inventory Count
	
	storing customer purchases, The Database Table
	
	tracking eBay products with IPN, Preparing Your Database
	

	item_number variable, The Code, Use IPN with eBay Listings
		managing inventory with IPN, Updating the Inventory Count
	
	using PDT to process
 payments, Retrieving the Order
	
	storing customer purchases, The Database Table
	
	tracking eBay products with IPN, Preparing Your Database
	

	Ivaskevicius, Stephen, Contributors
	

J
	JavaScript, Client-Side (Browser) Scripting
		accepting discount coupons on client side, Accepting Coupons on the Client Side–Hacking the Hack
	
	including more than two option fields, Include More Than Two Option Fields–Include More Than Two Option Fields
	
	integrating third-party shopping carts with
 PayPal, Hacking the Hack
	
	providing purchase options with drop-down
 lists, Hacking the Hack
	
	requiring information from donors, Requiring Information from Your Donors
	
	timing subscriptions to end on same day, Time Your Subscriptions to End on Specific Dates–Hacking the Hack
	

	JavaScript: The Definitive Guide, Further Study
	
	jump.asp, sending purchase information to
 PayPal, The Code
	

K
	Karp, David A., Contributors, Introduction: Hacks #28-44, Hacking the Hack, Search eBay for Listings that Accept PayPal
	
	King, Tim, Further Study
	

L
	Laurie, Ben, See Also
	
	Laurie, Peter, See Also
	
	Liberty, Jesse, Further Study
	
	limited accounts
		preventing, Avoiding Suspicion
	
	restoring, Restore Your Account if It Has Been Limited
	

	linking product images to PayPal payment
 buttons, Link the Image to PayPal
	
	links, converting shopping cart button code to, Create Shopping Cart Links
	
	lists, drop-down (see drop-down lists)
	
	Livnat, Sarah, Contributors
	
	logins, creating multiple, Create a Separate Login for Each Employee–Responding if Something Goes Wrong
	
	logo (PayPal), automatically inserted into running
 auctions, The Easy Way
	
	Lomax, Paul, Further Study
	
	low inventory, emailing yourself about, Alerting Yourself if Inventory Is Low
	
	lowering seller fees, Lower Your Seller Fees–Let Your Customers Pay
	
	Lowery, Joseph, Contributors
	
	Lundvall, Dave, Contributors
	

M
	Macromedia Dreamweaver
		link to, The Right Tools for the Right Job
	
	using WebAssist PayPal eCommerce Toolkit with, Get More Out of Dreamweaver and PayPal–Hacking the Hack
	

	Macromedia Extension Manager, Snap in the PayPal Connection
	
	magic cookies, used for checking valid
 subscribers, Controlling Access to Your Valued Content–Hacking the Hack
	
	mailing addresses
		confirming, Confirm Your Mailing Address–Confirming a Second Address
	
	unconfirmed, accepting payments from, Set Your Payment Receiving Preferences
	

	Managing & Using MySQL, Further Study
	
	Mass Pay feature, Use Mass Pay to Create an Affiliate System–Hacking the Hack
		issuing payments through the API, Issue Payments en Masse with the Mass Pay API–Running the Hack
	
	paying seller fees when buying, Pay Seller Fees when Buying–Covering the Recipient’s Fees Using Mass Pay
	
	scheduling payments to affiliates/suppliers, Pay Affiliates and Suppliers on a Schedule–Running The Hack
	

	MassPayee class, The Code
	
	MassPayeeTable class, The Code
	
	MassPayReq object, The Code
	
	MassPayRequestItemType object, The Code, Running the Hack
	
	MassPayRequestType object, The Code
	
	MassPayResponseType object, The Code
	
	master-detail reports, creating, Hack the API Wrapper–Importing into Quicken and QuickBooks
	
	MasterCard debit cards, retrieving PayPal funds
 using, Get Paid to Use the PayPal Debit Card
	
	Mastering Visual Studio .NET, Use the PayPal API Wrapper Class
	
	McClure, Dave, Contributors
	
	McManus, Jeffrey, Contributors
	
	McPhillips, Evan, Contributors
	
	mc_fee variable, The IPN Page
	
	mc_gross variable, Simple Price Checking with Single Item Purchases, Recording Donations, The IPN Page
	
	member information, accessing, Access Member Information–Checking Your Reputation as a Buyer
	
	members-only content, controlling access to, Controlling Access to Your Valued Content–Hacking the Hack
	
	merchandise
		disputing payments for, Dispute Merchandise Payments–What happens to bad sellers? I want justice!
	
	handling disputes effectively, Handle Merchandise Disputes Effectively
	
	nonreceipt of, Providing Additional Information About Your Case, First Response
	
	preventing disputes about, Preventive Maintenance
	

	merchant rates, applying for, Apply for the Merchant Rate
	
	Merchant Tools tab
		accepting donations, Accept Donations
	
	obfuscating button code, Plan B: Obfuscate Your Button Code
	
	types of payment buttons, Introduction: Hacks #28-44
	

	merchant transaction IDs
		displaying on return pages, Display the Merchant Transaction ID on Your Return Page, Creating an IPN Page
	
	order-tracking pages and, Build an Order-Tracking Page–Hacking the Hack
	

	Message to Seller field, Send Money Without Creating a PayPal Account
	
	Microsoft Outlook, inserting payment buttons into email
 with PayPal Payment Wizard, Using the PayPal Payment Wizard
	
	Milstein, Sarah, See Also
	
	Modify Subscription button, Encouraging Subscribers to Upgrade
	
	money, Accept Donations
		(see also donations; currency)
	
	adding to Personal account, Adding Funds (and Getting Rich Quick)
	
	asking for payments
		using PayPal payment links, Ask for Money in Your Own Way–Choosing the Best Approach
	
	using Request Money feature, Request Money the PayPal Way–Sending Custom Requests to Multiple Recipients
	
	without PayPal account, Request Money Without an Account–See Also
	

	getting back, after seller fraud, Dispute Merchandise Payments–What happens to bad sellers? I want justice!
	
	retrieving from PayPal accounts, Get Your Money–Get Paid to Use the PayPal Debit Card
	
	sending to anyone, Send Money to Anyone–What If They Don’t Sign Up?
	
	sending without creating PayPal account, Send Money Without Creating a PayPal Account–Send Money Without Creating a PayPal Account
	

	Money Market Fund (PayPal), enrolling in, Enroll in the PayPal Money Market
	
	Multi-User Access feature, Create a Separate Login for Each Employee–Responding if Something Goes Wrong, Setting Up Multiple Email Addresses
	
	multiplexer, IPN, The IPN Multiplexer
	

N
	.NET Framework, Desktop Applications
	
	.NET
 Payment Controls, collecting order details with, Using the .NET Payment Controls
	
	new users, adding to accounts, Adding a New User
	
	Nielsen, Dave, About the Authors
	
	noEntry() JavaScript routine, Requiring Information from Your Donors
	
	non-U.S. account holders
		accepting payments from, Set Your Payment Receiving Preferences
	
	funding sources for, Buying from Outside the USA
	
	seller fees for, Calculating the Fees Yourself
	

	nonreceipt of merchandise, Providing Additional Information About Your Case, First Response
	
	ÒNot as describedÓ
 claims, What does significantly “not as described” mean?, Providing Additional Information About Your Case
	
	notification preferences, setting, Setting Notification Preferences
	
	notify_url variable, Recording Referred Purchases
	
	no_note variable, Hacking the Hack, Create a Purchase Button for Services
	
	no_shipping variable, Hacking the Hack, Create a Purchase Button for Services
	
	num_cart_items variable, A Shopping Cart IPN
	

O
	obfuscating button code, Plan B: Obfuscate Your Button Code
		for discount coupons, Accepting Coupons on the Client Side
	

	Olliphant, Hugo, Contributors
	
	On Error Resume Next statements in IPN pages, Capturing Errors
	
	on0/on1 variables, Hacking the Hack
		displaying donor lists, The Donation Button
	
	working with Dreamweaver, Hacking the Hack
	

	online package tracking as protection against
 chargebacks, Shipping Products–Shipping Products
	
	online support forums for PayPal, Support Forums
	
	onLoad function, The Code
	
	OpenSSL
		converting text files into .cer files, Setting Up the SSL Certificate
	
	encrypting Buy Now button with, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	

	options
		using Dreamweaver and
 PayPal, Hacking the Hack–Hacking the Hack
	
	including more than two fields, Include More Than Two Option Fields–Include More Than Two Option Fields
	
	providing purchase options with drop-down
 lists, Provide Purchase Options with Drop-Down Listboxes–Hacking the Hack
	
	providing with ASP.NET web controls, Provide Options with ASP.NET Web Controls–Creating Your Own PayPal Control
	

	order summaries, providing with IPN, Provide an Order Summary with IPN–The Code
	
	order-tracking pages, building, Build an Order-Tracking Page–Hacking the Hack
	
	orders, retrieving details of, Retrieving the Order
	
	os0/os1 variables, Hacking the Hack
		displaying donor lists, The Donation Button
	
	working with Dreamweaver, Hacking the Hack
	

	out-of-stock items, removing Buy Now buttons, Creating the Selling Page
	
	ÒYou’ve got cashÓ email
		payment recipient has no PayPal account, Send Money Without Creating a PayPal Account
	

	O’Neal, Patrick, Contributors
	

P
	.p12
 certificate files, installing into Internet Explorer, Setting Up the SSL Certificate
	
	package tracking (online) as protection against
 chargebacks, Shipping Products–Shipping Products
	
	Page_Load event, Creating Your Own PayPal Control
	
	page_style variable, Hacking the Hack
	
	partial refunds, Refund a Payment
	
	Password Management feature for subscriptions, Manage Subscription Passwords the Easy Way–See Also
	
	passwords
		encrypted, generating, Adding Users Manually
	
	forgotten, Pay When You’ve Forgotten Your Password–Pay When You’ve Forgotten Your Password
	
	resetting by email, Pay When You’ve Forgotten Your Password
	
	setting up SSL certificates, Setting Up the SSL Certificate
	
	of subscribers, Setting Up Your Database–Hacking the Hack
		adding manually, Adding Users Manually
	
	automatically generating, Manage Subscription Passwords the Easy Way–Getting the Code
	

	telephone password recovery process, Pay When You’ve Forgotten Your Password
	

	Pay Anyone subtab, accepting payments from, Set Your Payment Receiving Preferences
	
	Pay Now button
		including in email messages, Include Payment Buttons in Email Messages–Including More than One Button in an Email
	
	inserting into running auctions, The Easy Way
	
	notifying winning auction bidders, The Easy Way
	

	payer_email variable, Send a Purchase Confirmation Email with IPN
	
	PayLoadz, selling digital goods with, Sell Digital Goods with PayLoadz–See Also
	
	Payment Button (Payment Wizard), Using the PayPal Payment Wizard
	
	payment buttons
		for auctions,
 creating your own, Making Your Own Button
	
	creating, using Payment Wizard, Using the PayPal Payment Wizard
	
	hack-proofing, Hack-Proof Your Payment–Plan B: Obfuscate Your Button Code, Implement Price Checking with IPN–Sending a Price Check Alert
		with encryption, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	

	inserting, using Payment Wizard, Using the PayPal Payment Wizard–Including More than One Button in an Email
	
	linking product images to, Link the Image to PayPal
	
	obfuscating button code, Plan B: Obfuscate Your Button Code
	
	tracking sales using, Hacking the Hack
	

	Payment Controls (.NET), collecting order details
 with, Using the .NET Payment Controls
	
	Payment Data Transfer (see PDT)
	
	Payment Data Transfer Manual, PDT in Action
	
	Payment Details page, Send Money Without Creating a PayPal Account
	
	payment details, inserting into databases with
 IPN, Insert Payment Details into a Database with IPN
	
	payment hyperlinks, adding to email, Creating PayPal Payment Hyperlinks
	
	Payment Receiving Preferences
		setting, Set Your Payment Receiving Preferences–Set Your Payment Receiving Preferences
	
	strings on credit card statements,
 setting, Identify Yourself to Your Customers
	

	payment URLs, shortening, Creating PayPal Payment Hyperlinks, Hide Your Email Address from Spammers
	
	Payment Wizard (PayPal), Using the PayPal Payment Wizard–Including More than One Button in an Email
	
	PaymentInfoType object, Retrieve Transaction Details with the API
	
	PaymentItemInfoType object, Retrieve Transaction Details with the API
	
	payments
		accepting
		in bogus currencies, Try Accepting Payments in a Bogus Currency
	
	from
 customers with bank accounts and credit cards, Set Your Payment Receiving Preferences
	
	in foreign
 currency, Set Your Payment Receiving Preferences
	
	with Instant
 Transfer, Set Your Payment Receiving Preferences
	
	from non-U.S.
 account holders, Set Your Payment Receiving Preferences
	
	from Pay Anyone
 subtab, Set Your Payment Receiving Preferences
	
	from unconfirmed
 addresses, Set Your Payment Receiving Preferences
	

	asking for
		using PayPal payment links, Ask for Money in Your Own Way–Choosing the Best Approach
	
	using Request Money feature, Request Money the PayPal Way–Sending Custom Requests to Multiple Recipients
	
	without PayPal account, Request Money Without an Account–See Also
	

	buying from outside USA, Buying from Outside the USA
	
	chargebacks, protecting yourself from, Protect Yourself from Chargebacks–Providing Additional Information About Your Case
	
	choosing how to fund, Choose How to Fund Payments–Buying from Outside the USA
	
	disputed
		handling effectively, Handle Merchandise Disputes Effectively
	
	protecting yourself from, Protect Yourself from Chargebacks–Providing Additional Information About Your Case
	

	eBay-only methods, eBay-only Payment Methods
	
	via email, Sending a Payment via Email
	
	from WAP-enabled cell phones, Pay from a Cell Phone–Requesting Payment with a Text Message
	
	losing money to fraud, protection against, Protect Yourself from Buyer Fraud–Conducting a Little Reconnaissance
	
	overriding hierarchy of funding sources, Overriding the Funding Source Hierarchy
	
	pending, Running the Code
	
	receiving preferences, setting, Set Your Payment Receiving Preferences–Set Your Payment Receiving Preferences
	
	refunding, Refund a Payment, Refund Payments with the API–The Results
	
	requesting with text messages, Requesting Payment with a Text Message
	
	searching for
		by transaction IDs, Quick-Link to Transaction Details–Making a Web Interface
	
	transactions, by amount, Search for PayPal Transactions
	
	transactions, by status, Search for PayPal Transactions
	
	transactions, by type, Search for PayPal Transactions
	

	of seller fees when
 buying, Pay Seller Fees when Buying–Covering the Recipient’s Fees Using Mass Pay
	
	sending money
		to anyone, Send Money to Anyone–What If They Don’t Sign Up?
	
	without creating PayPal account, Send Money Without Creating a PayPal Account–Send Money Without Creating a PayPal Account
	

	unclaimed, What If They Don’t Sign Up?
	

	PayPal
		accounts (see accounts)
	
	API wrapper class (see wrapper class for PayPal API)
	
	APIClient tool, Getting Started with PayPal’s APIClient Tool
	
	ATM/debit card, lowering seller fees by
 using, Use the PayPal ATM/Debit Card
	
	Button Factory (see Button Factory, PayPal)
	
	creating user controls, Creating Your Own PayPal Control–Creating Your Own PayPal Control
	
	deleting PayPal cookie, Send Money Without Creating a PayPal Account
	
	deposits made to confirm accounts, Confirm an Account and Get Free Cash
	
	email, managing, Manage PayPal Email–Setting Notification Preferences
	
	getting help from, Get Help from PayPal–eBay University
	
	logo, automatically inserted into running
 auctions, The Easy Way
	
	online support forums, Support Forums
	
	paying from funds in accounts, Choose How to Fund Payments
	
	Payment Wizard, Using the PayPal Payment Wizard–Including More than One Button in an Email
	
	querying for PDT response, PDT in Action
	
	snapping in connection to Flash, Snap in the PayPal Connection–Snap in the PayPal Connection
	

	PayPal Buyer Credit, eBay-only Payment Methods
	
	PayPal Money Market Fund, enrolling in, Enroll in the PayPal Money Market
	
	PayPal Preferred program, Get Paid to Use the PayPal Debit Card, The Easy Way
	
	PayPal Shipping Tool, Shipping Products
	
	paypal.pl Perl script, enhancements to, .htpasswd and .htaccess–See Also
	
	PayPalDev.org forum, Support Forums
	
	PayPalItemsOnly(), The Code
	
	paypal_cert.pem file, Basic Button Encryption Using OpenSSL
	
	PDT (Payment Data Transfer), What IPN and PDT Are
		advantages of, What IPN and PDT Are, Advantages of PDT
	
	delivering digital goods with return pages, Deliver Digital Goods with a Return Page–Building the Return Page
	
	handling pages, PDT in Action
	
	processing payments like credit cards, Process Payments like a Credit Card with PDT–Retrieving the Order
	
	querying PayPal for response, PDT in Action
	
	synchronizing IPN and, Synchronizing PDT and IPN–Hacking the Hack
	
	testing in Sandbox, Test IPN and PDT in the Sandbox
	

	PEM format, generating keys in, OpenSSL and Keys
	
	pending payments, processing, Running the Code
	
	Perl script for enhancing PayPal subscriptions, .htpasswd and .htaccess–See Also
	
	PerlDiver tool, .htpasswd and .htaccess
	
	Personal accounts, Introduction: Hacks #17-27
		lowering seller fees by receiving money
 into, Receive Money into Your Personal Account
	
	Sandbox
		adding funds to, Adding Funds (and Getting Rich Quick)
	
	creating in, Creating a Sandbox Account
	
	sending money to Business accounts, Setting up a Test Transaction
	

	upgrading, Upgrade to Business Class
	

	Petrusha, Ron, Further Study
	
	phishing, protecting accounts against, Responding if Something Goes Wrong
	
	phone support for PayPal, Telephone Support
	
	phones (cell), paying from, Pay from a Cell Phone–Requesting Payment with a Text Message
	
	PHP Cookbook, Further Study
	
	PKCS12 (.cer) files
		converting text files into, Setting Up the SSL Certificate
	
	exporting certificates as, Setting Up the SSL Certificate
	

	PKCS7-encrypted blobs, Hack-Proof Your Buttons with Encryption
	
	platforms for hosting web sites, Database Coding and Platform Choices
	
	pornographic material, repercussions of selling, Restore Your Account if It Has Been Limited
	
	Post Sale Manager (PayPal), Shipping Products
	
	postback routines, Using the .NET Payment Controls–Creating Your Own PayPal Control
		spoofed prices and, Simple Price Checking with Single Item Purchases
	
	third-party testing scripts and, Using a Third-Party Testing Script
	

	Premier accounts, Introduction: Hacks #17-27
		applying for merchant rates, Apply for the Merchant Rate
	
	limitations on downgrading, Upgrade to Business Class
	

	price checking, implementing with IPN, Implement Price Checking with IPN–Sending a Price Check Alert
	
	price spoofing, preventing, Hack-Proof Your Payment–Plan B: Obfuscate Your Button Code, Implement Price Checking with IPN–Sending a Price Check Alert
		with encryption, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	

	private keys, loading, Basic Button Encryption Using OpenSSL–Basic Button Encryption Using OpenSSL
	
	privileges, setting for different users, Setting Privileges
	
	Product Button (Payment Wizard), Using the PayPal Payment Wizard
	
	product details pages, linking to dynamic
 storefronts, Add Dynamic Storefront Details–Hacking the Hack
	
	product images
		linking to PayPal payment buttons, Link the Image to PayPal
	

	product images, inserting in dynamic storefronts, Insert Dynamic Images–Link the Image to PayPal
	
	Profile Summary page, Pay When You’ve Forgotten Your Password
	
	Programming ASP.NET, Further Study
	
	protecting accounts, Avoiding Suspicion
	
	proxy web references, setting up, SOAP-Enabling Your Application–SOAP-Enabling Your Application
	
	public keys
		exchanging with PayPal, OpenSSL and Keys
	
	loading, Basic Button Encryption Using OpenSSL–Basic Button Encryption Using OpenSSL
	

	purchase buttons
		drop-down lists and, Provide Purchase Options with Drop-Down Listboxes
	
	for intangible goods/services, creating, Create a Purchase Button for Services
	
	overriding shipping/handling preferences, Override Shipping and Handling Preferences
	

	purchase confirmation emails, sending with IPN, Send a Purchase Confirmation Email with IPN
	

Q
	QBXML Request Processor API (Intuit), Importing into Quicken and QuickBooks
	
	Quasi-Cash, be careful when choosing, Sending a Payment via Email
	
	query pages for order-tracking systems, Build an Order-Tracking Page–Hacking the Hack
	
	QuickBooks, importing data into, Importing into Quicken and QuickBooks
	
	Quicken, importing data into, Importing into Quicken and QuickBooks
	

R
	radio buttons
		creating user controls, Creating Your Own PayPal Control–Creating Your Own PayPal Control
	
	working with Dreamweaver and PayPal, Hacking the Hack
	

	ranking web pages, based on content, Increase Search Engine Exposure
	
	receipt IDs, searching for transactions by, Search for PayPal Transactions
	
	ReceiverInfoType object, Retrieve Transaction Details with the API
	
	recording donations, Recording Donations
	
	recordsets
		creating, Database Coding and Platform Choices
	
	in dynamic storefront tables, Building the Template
	
	keeping same names for dynamic storefront pages and
 product details pages, Product Details Page
	

	redundancy, synchronizing PDT and IPN, Synchronizing PDT and IPN–Hacking the Hack
	
	Reese, George, Further Study
	
	referral IDs, using instead of email addresses, Hide Your Email Address from Spammers
	
	referrals from Google advertising, tracking, Track Google Referrals–See Also
	
	referred purchases, recording, Recording Referred Purchases
	
	refreshing return pages until order is processed, Synchronizing PDT and IPN–Hacking the Hack
	
	refunds
		issuing, with APIClient tool, Making Your First Call
	
	limits on, per year, PayPal Buyer Protection
	
	made on payments, Refund a Payment
	
	for not-as-described
 items, What does significantly “not as described” mean?, Providing Additional Information About Your Case
	
	for payments,
 using Web Services API, Refund Payments with the API–The Results
	

	RefundTransaction API, Making Your First Call, Refund Payments with the API–The Results
	
	RefundTransactionReq object, Refund Payments with the API
	
	RefundTransactionRequestType object, Refund Payments with the API
	
	RefundTransactionResponseType object, Refund Payments with the API, Handle Transaction Errors within the API Wrapper
	
	reputations
		of buyers, checking, Checking Your Reputation as a Buyer, Conducting a Little Reconnaissance
	
	of sellers, checking, Understanding the User Status, Checking Your Reputation as a Seller
	

	Request Money - Confirm page, Requesting Money from Multiple People
	
	Request Money - Group feature, Requesting Money from Multiple People
	
	Request Money feature, Request Money the PayPal Way–Sending Custom Requests to Multiple Recipients
		limitations of, Include Payment Buttons in Email Messages
	
	vs. PayPal payment links, Choosing the Best Approach
	

	request URLs, creating, Creating a Request URL
	
	resellers, automating payout incentives to, with Mass
 Pay, Use Mass Pay to Create an Affiliate System–Hacking the Hack
	
	resetting passwords by email, Pay When You’ve Forgotten Your Password
	
	resizable attribute, Hacking the Hack
	
	Resolution Center, filing buyer protection claims
 using, PayPal Buyer Protection
	
	response to purchase conversion rate, Track Google Referrals
	
	restoring limited accounts, Restore Your Account if It Has Been Limited
	
	results pages for order-tracking systems, Build an Order-Tracking Page–Hacking the Hack
	
	retrieving
		money from PayPal accounts, Get Your Money–Get Paid to Use the PayPal Debit Card
	
	transaction details, Retrieve Transaction Details with the API–Running the Hack
	

	return pages
		cookies that remember customer information, The Return Page–See Also
	
	creating, Creating Your Return Page, Building the Return Page
	
	delivering digital goods with, Deliver Digital Goods with a Return Page–Building the Return Page
	
	displaying merchant transaction IDs on, Display the Merchant Transaction ID on Your Return Page, Creating an IPN Page
	
	order-specific information presented on, Provide an Order Summary with IPN–The Code
	
	refreshing, until order is processed, Synchronizing PDT and IPN–Hacking the Hack
	
	upselling customers using, Upsell Your Customers–Running the Code
	

	return variable, Hacking the Hack
		delivering digital goods with return pages, Augmenting the PayPal Button Code
	
	displaying merchant transaction IDs on return
 pages, The PayPal Button Code
	
	testing for errors on IPN pages, Using a Return URL
	

	ReturnURL parameter, Test IPN and PDT in the Sandbox
	
	rm variable, Hacking the Hack, Augmenting the PayPal Button Code
	
	Roman, Steven, Further Study
	
	rsDonationGoal variable, Recording Donations
	
	rsInventoryCount variable, Creating the Selling Page
	
	rsJump recordset, The Code
	
	RunTransactionSearch(), Hack the API Wrapper–The Code, Importing into Quicken and QuickBooks
	

S
	Sandbox, Create a Developer Account
		adding web references, SOAP-Enabling Your Application
	
	confirming email addresses, Confirming Your Sandbox Email Addresses
	
	PayPal API wrapper class, using, Use the PayPal API Wrapper Class
	
	refunding money using API wrapper class, Running the Hack
	
	setting up, Set up the Sandbox–Adding Funds (and Getting Rich Quick)
	
	SSL certificates, setting up, Setting Up the SSL Certificate
	
	test transactions, setting up, Setting up a Test Transaction
	
	testing IPN and PDT, Test IPN and PDT in the Sandbox
	
	verifying bank accounts in, Verifying Bank Accounts in the Sandbox
	

	scrollbars attribute, Hacking the Hack
	
	search engine exposure, increasing by modifying button
 code, Increase Search Engine Exposure
	
	searching
		for eBay listings that accept PayPal, Search eBay for Listings that Accept PayPal–Hacking the Hack
	
	for PayPal transactions, Search for PayPal Transactions–Running the Hack
	

	secondary IPN scripts, The IPN Multiplexer–Hacking the Hack
	
	security code for PayPal, Send Money Without Creating a PayPal Account
	
	security questions/answers, Pay When You’ve Forgotten Your Password
	
	security requirements before accessing web
 services, SOAP-Enabling Your Application
	
	security tokens, creating, Search eBay for Listings that Accept PayPal
	
	seller fees
		calculating, Calculating the Fees Yourself
	
	lowering, Lower Your Seller Fees–Let Your Customers Pay
	
	paid by buyers, Pay Seller Fees when Buying–Covering the Recipient’s Fees Using Mass Pay
	
	received, after refunding payments, Refund a Payment
	
	using Mass Pay, Covering the Recipient’s Fees Using Mass Pay
	

	Seller Protection Policy, Protect Yourself from Buyer Fraud–Conducting a Little Reconnaissance
		chargebacks and, Protect Yourself from Chargebacks, Responding When You Receive a Chargeback
	

	Seller Reputation Numbers, Checking Your Reputation as a Seller
	
	sellers
		checking status of, Access Member Information–Checking Your Reputation as a Buyer, What happens to bad sellers? I want justice!
	
	merchandise disputes and, Dispute Merchandise Payments–What happens to bad sellers? I want justice!, Handle Merchandise Disputes Effectively
	
	preventing merchandise disputes, Preventive Maintenance
	

	Sells, Chris, Use the PayPal API Wrapper Class
	
	Send Money tab
		accepting payments from Pay Anyone
 subtab, Set Your Payment Receiving Preferences
	
	preventing use of, for auctions, Making Your Own Button
	

	Send to Friend feature, Hacking the Hack
	
	SendMassPay(), The Code
	
	server-side scripting, Server-Side Scripting
	
	server-side verification of discount coupons, Verifying Coupons on the Server Side–Verifying Coupons on the Server Side
	
	Service Button (Payment Wizard), Using the PayPal Payment Wizard
	
	session objects, creating, The Code
	
	session variables, setting for customer visits, Verifying Coupons on the Server Side
	
	setAllowNote(), Hacking the Hack
	
	setAmount(), Hacking the Hack
	
	setBillContinuous(), Hacking the Hack
	
	setBillingAmount(), Hacking the Hack
	
	setBillingPeriod(), Hacking the Hack
	
	setBillingTime(), Hacking the Hack
	
	setBusinessID(), Hacking the Hack
	
	setCancelURL(), Hacking the Hack
	
	setCurrency(), Hacking the Hack
	
	setExtraShipping(), Hacking the Hack
	
	setHandling(), Hacking the Hack
	
	setItemName(), Hacking the Hack
	
	setItemNumber(), Hacking the Hack
	
	setLogoURL(), Hacking the Hack
	
	setNoShipping(), Hacking the Hack
	
	setPrice(), Hacking the Hack
	
	setReattempt(), Hacking the Hack
	
	setReturnURL(), Hacking the Hack
	
	setShipping(), Hacking the Hack
	
	setStopAfterBilling(), Hacking the Hack
	
	setTarget(), Hacking the Hack
	
	setTrialAmount(), Hacking the Hack
	
	setUpdateableQuantity(), Hacking the Hack
	
	Share the Love system (Amazon), Offer Discount Coupons
	
	Shining Light Productions Win32 OpenSSL, Setting Up the SSL Certificate
	
	shipping addresses
		capturing with IPN, Capture Customer Information with IPN–The IPN Page
	
	confirming, Confirm Your Mailing Address–Confirming a Second Address
	
	unconfirmed, accepting payments from, Set Your Payment Receiving Preferences
	

	Shipping Calculations page, Override Shipping and Handling Preferences
	
	Shipping Information page, Send Money Without Creating a PayPal Account
	
	shipping preferences, overriding, Override Shipping and Handling Preferences
	
	shipping products, protections when, Shipping Products
	
	Shipping Tool (PayPal), Shipping Products
	
	shipping variable, Hacking the Hack
		Aggregate Cart feature, Aggregating Your Cart
	
	overriding preferences, Override Shipping and Handling Preferences
	

	shipping2 variable, Hacking the Hack, Uploading Shopping Cart Details to PayPal
	
	shopping carts, Introduction: Hacks #45-50–Hacking the Hack
		Add To Cart button (see Add To Cart button)
	
	adding items to, Adding Additional Items
	
	Aggregate Cart feature, Aggregating Your Cart
	
	combining buttons into one form, Put Both Cart Buttons in One Form
	
	converting button code to links, Create Shopping Cart Links
	
	creating button for, Hack Shopping Cart Buttons–Hacking the Hack
	
	creating user controls, Creating Your Own PayPal Control–Creating Your Own PayPal Control
	
	inserting details into databases, Insert Cart Details into a Database–A Shopping Cart IPN
	
	integrating third-party shopping carts with
 PayPal, Integrate a Third-Party Shopping Cart with PayPal–Hacking the Hack
	
	opening in new browser windows, The Code
	
	price checking for purchases, Price Checking for Shopping Cart Purchases
	
	processing with IPN, Process Shopping Carts with IPN
	
	shortening URLs, Shortening the Link
	
	specifying window sizes, Specify the Size of the Shopping Cart Window–Hacking the Hack
	
	Upload Complete Cart feature, Uploading Shopping Cart Details to PayPal–Uploading Shopping Cart Details to PayPal
	

	shortening
		payment URLs, Creating PayPal Payment Hyperlinks, Hide Your Email Address from Spammers
	
	shopping cart URLs, Shortening the Link
	

	Sign In pages for subscribers, Controlling Access to Your Valued Content–Hacking the Hack
	
	signatures, requiring for delivery, Shipping Products
	
	single-item purchases
		IPN pages and, Single-Item Purchases IPN Page
	
	PDT (Payment Data Transfer) and, Retrieving the Order
	
	simple price checking with, Simple Price Checking with Single Item Purchases
	
	vs. shopping carts, Process Shopping Carts with IPN
	

	site_ variable, Making Your Own Button
	
	size of shopping cart windows, specifying, Specify the Size of the Shopping Cart Window–Hacking the Hack
	
	Sklar, David, Further Study
	
	Smart Logo payments, Set Your Payment Receiving Preferences
	
	snapping in PayPal connection to Flash, Snap in the PayPal Connection–Snap in the PayPal Connection
	
	SnipURL tool, Creating PayPal Payment Hyperlinks
	
	SOAP-enabling your application, SOAP-Enabling Your Application–SOAP-Enabling Your Application
	
	Sofield, Shannon, About the Authors
	
	spam
		avoid sending to customers, Verifying Coupons on the Server Side
	
	hiding email addresses from spammers, Hide Your Email Address from Spammers
	

	spoofed payments, preventing, Hack-Proof Your Payment–Plan B: Obfuscate Your Button Code, Implement Price Checking with IPN–Sending a Price Check Alert
		with encryption, Hack-Proof Your Buttons with Encryption–Basic Button Encryption Using OpenSSL
	

	SQL (Structured Query Language) queries, Database Coding and Platform Choices
	
	SQL Pocket Guide, Further Study
	
	SSL certificates, Create a Developer Account, The Code
		converting text files into .cer files, using
 OpenSSL, Setting Up the SSL Certificate
	
	generating from Sandbox, Setting Up the SSL Certificate
	

	st (status of transaction) parameter, Process Payments like a Credit Card with PDT
	
	standard rates vs. merchant rates, Apply for the Merchant Rate
	
	start/end dates, searching for transactions
 by, Search for PayPal Transactions
	
	status attribute, Hacking the Hack
	
	status of orders, tracking, Build an Order-Tracking Page–Hacking the Hack
	
	status of payments, searching for transactions
 by, Search for PayPal Transactions
	
	status of transaction (st) parameter, Process Payments like a Credit Card with PDT
	
	stolen credit cards, repercussions of using, Restore Your Account if It Has Been Limited
	
	storefronts (see dynamic storefronts)
	
	Stranger in a Strange Land, How IPN Works
	
	Strategic Database Marketing: The Master Plan for
 Starting and Managing a Profitable, Customer-Based Marketing
 Program, See Also
	
	Subscribe button
		creating, Creating a Subscribe Button
	
	Modify Subscription button, Encouraging Subscribers to Upgrade
	
	adding a premium
 subscription button, Creating a Premium Subscription Button
	

	subscribers-only content, controlling access to, Controlling Access to Your Valued Content–Hacking the Hack
	
	Subscription button, Introduction: Hacks #28-44
		adding to Flash-powered online stores, PayPal-Enable Your Flash–Hacking the Hack
	
	Component Inspector for, Snap in the PayPal Connection
	
	inserting, using WebAssist PayPal eCommerce
 Toolkit, Drag and Drop eCommerce
	
	methods that set values, Hacking the Hack
	
	obfuscating button code, Plan B: Obfuscate Your Button Code
	

	SubscriptionInfoType object, Retrieve Transaction Details with the API
	
	subscriptions
		canceling, Introduction: Hacks #61-64
	
	multiple currencies supported, Hacking the Hack
	
	multiple terms supported, Hacking the Hack
	
	to online content,
 selling, Sell Subscriptions to Your Online Content–Hacking the Hack
	
	Password Management feature, Manage Subscription Passwords the Easy Way–See Also
	
	processing subscriber notifications, Processing Subscriber Notifications
	
	shortcut to details page, Manage Subscription Passwords the Easy Way
	
	signing in, to access premium online
 content, Controlling Access to Your Valued Content–Hacking the Hack
	
	tiered, Offer Tiered Subscriptions–Encouraging Subscribers to Upgrade
	
	timing to end on same day, Time Your Subscriptions to End on Specific Dates–Hacking the Hack
	
	trial periods, Hacking the Trial Period–Hacking the Hack
	
	upgrading, Encouraging Subscribers to Upgrade
	

	Subscriptions and Recurring Payments Manual, Introduction: Hacks #61-64
	
	suppliers, scheduling payments with Mass Pay API, Pay Affiliates and Suppliers on a Schedule–Running The Hack
	
	support for PayPal
		email inquiries, Email Support
	
	online forums, Support Forums
	
	telephone, Telephone Support
	

T
	tab-delimited text files, setting up for Mass
 Pay, Setting up the Request
	
	tables, embedding Button Factory code in, Deal with Design and Layout Issues
	
	Tanaka, Ray, Contributors
	
	target="paypal” attribute, including in Add To Cart
 buttons, The Code
	
	tax variable, Hacking the Hack
		Aggregate Cart feature, Aggregating Your Cart
	

	telephone password recovery process, Pay When You’ve Forgotten Your Password
	
	telephone support for PayPal, Telephone Support
	
	templates, building for dynamic storefronts, Building the Template–Including Product Details
	
	test transactions
		setting up, Setting up a Test Transaction
	

	testing scripts for IPN pages, Using a Third-Party Testing Script
	
	text messages, requesting payments with, Requesting Payment with a Text Message
	
	Tien, Alan, Contributors
	
	tiered subscriptions, Offer Tiered Subscriptions–Encouraging Subscribers to Upgrade
		inserting tier information for new
 subscriptions, Inserting Tier Information with Each New Subscription
	
	keeping track of levels, for subscribers, Adding a Tier Field to Your Database
	
	restricting access based on level, Restricting Access Based on Tier
	

	TinyURL tool, Creating PayPal Payment Hyperlinks
	
	Trachtenberg, Adam, Further Study
	
	tracking
		affiliate referrals, Use Mass Pay to Create an Affiliate System
	
	eBay products with IPN, Track Your eBay Products with IPN–The Code
	
	Google conversions with IPN, Creating Your IPN Processing Page
	
	order status, Build an Order-Tracking Page–Hacking the Hack
	
	packages to protect against chargebacks, Shipping Products–Shipping Products
	
	PayPal application usage, Build Notification Tracking
	
	sales from Google advertising, Track Google Referrals–See Also
	
	sales using PayPal payment buttons, Hacking the Hack
	
	users before/after PayPal transactions, Tracking Your Users: Before and After
	
	visitors to web sites, Remember Your Customers–See Also
	

	Transaction Disputes page, Responding When You Receive a Chargeback
	
	transaction IDs, PayPal Buyer Protection
		capturing, Single-Item Purchases IPN Page
	
	displaying on return pages, Display the Merchant Transaction ID on Your Return Page, Creating an IPN Page
	
	IPN (Instant Payment Notification) code and, Running the Code
	
	order-tracking pages and, Build an Order-Tracking Page–Hacking the Hack
	
	retrieving transaction details, Retrieve Transaction Details with the API–Running the Hack
	
	searching for payments by, Quick-Link to Transaction Details–Making a Web Interface
	

	transaction logs on cell phones, Checking the Payment
	
	transaction number (tx) parameter, Process Payments like a Credit Card with PDT, Test IPN and PDT in the Sandbox
	
	transactions
		details of
		retrieving, Retrieve Transaction Details with the API–Running the Hack
	
	viewing, Quick-Link to Transaction Details–Making a Web Interface, Use the PayPal API Wrapper Class–Use the PayPal API Wrapper Class
	

	duplicate, Providing Additional Information About Your Case
	
	handling errors within API wrapper class, Handle Transaction Errors within the API Wrapper–Using the Error Handler
	
	return URL parameters, Process Payments like a Credit Card with PDT
	
	searching for, using API, Search for PayPal Transactions–Running the Hack
	

	TransactionSearch API, Search for PayPal Transactions–Running the Hack
	
	TransactionSearchResponseType class, Handle Transaction Errors within the API Wrapper
	
	transferring PayPal funds to bank accounts, Transfer to a Bank Account–Transfer to a Bank Account
	
	trial periods for subscriptions, Hacking the Trial Period–Hacking the Hack
	
	troubleshooting
		Customer Service phone numbers, Telephone Support
	
	IPNs, Troubleshoot Instant Payment Notifications–Using a Third-Party Testing Script
	
	recovering forgotten passwords, Pay When You’ve Forgotten Your Password
	

	tx (transaction number) parameter, Process Payments like a Credit Card with PDT, Test IPN and PDT in the Sandbox
	
	txn_id variable, Creating Your Return Page
	
	txn_type variable, The Results
	
	type of payments, searching for transactions
 by, Search for PayPal Transactions
	

U
	unclaimed payments, What If They Don’t Sign Up?
	
	unconfirmed addresses, accepting payments
 from, Set Your Payment Receiving Preferences
	
	University, eBay, eBay University
	
	upgrading
		to better
 subscriptions, Encouraging Subscribers to Upgrade
	
	Personal accounts, Upgrade to Business Class
	

	Upload Complete Cart feature, Integrate a Third-Party Shopping Cart with PayPal–Hacking the Hack
	
	upselling customers, Upsell Your Customers–Running the Code
	
	URLs
		converting shopping cart button code to, Create Shopping Cart Links
	
	payment URLs, shortening, Creating PayPal Payment Hyperlinks, Hide Your Email Address from Spammers
	
	shopping cart URLs, shortening, Shortening the Link
	

	User Status, checking, Looking Up a User’s Status
	
	usernames of subscribers
		adding manually, Adding Users Manually
	
	automatically generating, Manage Subscription Passwords the Easy Way–Getting the Code
	

V
	variables, adding to payment buttons, The Code–Hacking the Hack
	
	VB.NET Language in a Nutshell, Further Study
	
	VBScript for Active Server Pages (ASP), Server-Side Scripting
		adding email to IPN, Adding Email to IPN
	
	capturing customer information, The IPN Page
	
	processing shopping carts, The Code
	
	sample IPN code, The Code
	

	Vendio Community forum, Support Forums
	
	verifying
		accounts before requesting certificates, Go Live
	
	bank accounts in the Sandbox, Verifying Bank Accounts in the Sandbox
	
	discount coupons on server side, Verifying Coupons on the Server Side–Verifying Coupons on the Server Side
	
	PayPal accounts, Verify Your PayPal Account–Confirm an Account and Get Free Cash, Checking the Buyer’s User Status
	
	PayPal transactions, The IPN Multiplexer
	

	View Cart button
		creating, using Button Factory, Hack Shopping Cart Buttons
	
	inserting, using WebAssist PayPal eCommerce
 Toolkit, Drag and Drop eCommerce
	
	putting in one form, with Add To Cart button, Put Both Cart Buttons in One Form
	

	ViewState of user controls, preserving, Creating Your Own PayPal Control
	
	virtual debit cards, paying with, Use Your PayPal Funds Anywhere–Use Your PayPal Funds Anywhere
	
	visitors to web sites
		current subscriber lists and, Controlling Access to Your Valued Content–Hacking the Hack
	
	tracking, Remember Your Customers–See Also
	

W
	WAP (Wireless Application Protocol), paying from
 WAP-enabled cell phones, Pay from a Cell Phone
	
	weapons, repercussions of selling, Restore Your Account if It Has Been Limited
	
	Web Accept button, Process Shopping Carts with IPN–The Results
	
	web controls, creating in ASP.NET, Provide Options with ASP.NET Web Controls–Creating Your Own PayPal Control
	
	web interface for viewing transaction details, Making a Web Interface
	
	web references, setting up, SOAP-Enabling Your Application–SOAP-Enabling Your Application
	
	Web Services API
		creating developer accounts, Create a Developer Account
	
	handling transaction errors within API
 wrapper, Handle Transaction Errors within the API Wrapper–Using the Error Handler
	
	making first API call, Make Your First API Call–Making Your First Call
	
	refunding payments, Refund Payments with the API–The Results
	
	Sandbox, setting up, Set up the Sandbox–Adding Funds (and Getting Rich Quick)
	
	searching for PayPal transactions, Search for PayPal Transactions–Running the Hack
	
	wrapper class for API calls, Create a Wrapper Class for Your API Calls–Use the PayPal API Wrapper Class
	

	Web Services Description Language (WSDL) files
		accessing web services, SOAP-Enabling Your Application
	

	web sites
		accepting payments through, Set Your Payment Receiving Preferences
	
	increasing search engine exposure, Increase Search Engine Exposure
	
	linking to pages with detailed product
 information, Add Dynamic Storefront Details–Hacking the Hack
	
	phishing and, Responding if Something Goes Wrong
	
	platforms for hosting, Database Coding and Platform Choices
	
	return pages, sending customers to, Deliver Digital Goods with a Return Page–Building the Return Page
	
	using multiple custom checkout page styles, Using Multiple Custom Page Styles
	

	WebAssist PayPal eCommerce Snap-ins for Flash MX, PayPal-Enable Your Flash–Hacking the Hack
		underneath the hood of, Hacking the Hack–Hacking the Hack
	

	WebAssist PayPal eCommerce Toolkit, using Macromedia
 Dreamweaver with, Get More Out of Dreamweaver and PayPal–Hacking the Hack
	
	Website Payment Preferences page, Process Payments like a Credit Card with PDT, Test IPN and PDT in the Sandbox
	
	window size for shopping carts, specifying, Specify the Size of the Shopping Cart Window–Hacking the Hack
	
	winning bidders, notifying, The Easy Way
	
	Wireless Application Protocol (WAP), paying from
 WAP-enabled cell phones, Pay from a Cell Phone
	
	withdrawing money from PayPal accounts, Get Your Money–Get Paid to Use the PayPal Debit Card
	
	Woo, Katherine, Contributors
	
	wrapper class for PayPal API
		creating, Create a Wrapper Class for Your API Calls–Creating Your Own Certificate Handler
	
	creating master-detail reports, Hack the API Wrapper–Importing into Quicken and QuickBooks
	
	making API calls with, Use the PayPal API Wrapper Class–Use the PayPal API Wrapper Class
	
	refunding payments using, Refund Payments with the API–The Results
	
	searching for transactions, Running the Hack
	

	WSDL (Web Services Description Language) files
		accessing web services, SOAP-Enabling Your Application
	

X
	X.com, linking to paypal.com, Introduction: Hacks #1-9
	

Y
	Yarger, Randy Jay, Further Study
	
	Yeung, Mike, Contributors
	
	ÒYou’ve got cashÓ
 email, Send Money to Anyone
	

About the Authors
Shannon Sofield is the personification of a hack, he takes anything that is supposed to do one thing, and manipulates it to serve his own purposes, both in his life as a developer and his life in general. If it was supposed to do one thing originally, he probably has it doing something entirely different instead.

Shannon began creating PayPal solutions more than 3 years ago using his original database driven PayPal purchase system that integrated with Macromedia Dreamweaver UltraDev. Since then, he has gone on to work on implementing unique fixes for common eCommerce problems using PayPal. He has written several tutorials and articles, as well as spoken on the topic of using PayPal in new ways. One of the first members of the PayPal Developer Network, he was added to the PayPal Developer Network Advisory Boards on its inception. He also served several terms as a member of Team Macromedia for their web development program Dreamweaver which he uses in his daily PayPal development. His technical background extends back to the initial Internet boom when he began picking up simple web design that evolved into web planning and programming using a variety of technologies, languages, and databases.

Currently, he manages the PayLoadz Digital Goods eCommerce system that allows merchants to sell digital goods securely with PayPal. One of the first and most successful 3rd party solutions for PayPal, this system made headlines when it launched Madonna's American Life single higher on the Billboard music charts than any previous digital single (and he did it before selling digital music was cool). In addition, he continually contributes to the PayPal Developer Network Message Boards (www.paypaldev.org) which his company, Superfreaker Studios, hosts and maintains.

While not slogging through code at his computer in a caffeinated, sleep-deprived state, Shannon enjoys outdoor activities that fit the time of year. In the Summer he surfs and volunteers for the surfboard manufacturer Wave Riding Vehicles, while in Winter, he can be found on the slopes working on his kicker spins. Year round, he can be found reliving his BMX days on his 24 GT cruiser. Shannon's undergraduate studies majored in Finance and Accounting, while his Maters in Business Administration includes a concentration in Finance. Ctrl+C is his best friend
Dave is the co-founder of CloudCamp, and principal consultant at Platform D, a developer programs consulting company. With over 8 years of developer marketing experience, Dave helps companies such as PayPal, Wetpaint, Nirvanix, Strikeiron create and run their own developer programs. Prior to Platform D, Dave was PayPal's first Technical Evangelist and went on to grow the PayPal Developer Network to over 350,000 developers. Dave gained modest notoriety when he proposed to his wife in his book PayPal Hacks. Dave is also the co-creator of the CloudCamp, a grassroots community for sharing of information about Cloud Computing.
Dave Burchell got his start with computers by programming the Radio Shack TRS-80 in BASIC and the Commodore 64 in 6510 assembly. Currently, Dave's favorite programming languages are Perl and XSLT. A fervent proponent of XML, Dave enjoys solving content-management problems with markup and open source software. His other interests include American history and Hellenistic philosophy. Dave lives with his wife, Renee, and children, Max, Gus, and Samantha Grace, in Lincoln, Nebraska. His web site is http://incolor.inebraska.com/burchell/

Colophon
Our look is the result of reader comments, our own experimentation,
 and feedback from distribution channels. Distinctive covers complement our
 distinctive approach to technical topics, breathing personality and life
 into potentially dry subjects.
The tool on the cover of PayPal Hacks is a money changer. The money
 changer is a container clipped to one’s belt that stores, organizes, and
 dispenses coins to facilitate making change on the go. It is typically
 divided into four barrels, so that pennies, nickels, dimes, and quarters
 can be held separately. The money changer is extremely useful for people
 who need to make frequent cash transactions while in transit, and is often
 used by train conductors and traveling vendors.
Jamie Peppard was the production editor and proofreader for PayPal
 Hacks. Brian Sawyer was the copyeditor. Darren Kelly and Claire Cloutier
 provided quality control. Judy Hoer wrote the index.
Hanna Dyer designed the cover of this book, based on a series design
 by Edie Freedman. The cover image is a photograph from the Stockbyte Work
 Tools CD. Clay Fernald produced the cover layout with QuarkXPress 4.1
 using Adobe’s Helvetica Neue and ITC Garamond fonts.
David Futato designed the interior layout. This book was converted
 by Julie Hawks to FrameMaker 5.5.6 with a format conversion tool created
 by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl
 and XML technologies. The text font is Linotype Birka; the heading font is
 Adobe Helvetica Neue Condensed; and the code font is LucasFont’s TheSans
 Mono Condensed. The illustrations that appear in the book were produced by
 Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
 Photoshop 6. This colophon was written by Sanders Kleinfeld.
The online edition of this book was created by the Safari production
 group (John Chodacki, Becki Maisch, and Ellie Cutler) using a set of
 Frame-to-XML conversion and cleanup tools written and maintained by Erik
 Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

PayPal Hacks

Shannon Sofield

Dave Nielsen

Dave Burchell

Editor
Rael Dornfest

Copyright © 2009 O’Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-11-19T06:27:18-08:00

OEBPS/httpatomoreillycomsourceoreillyimages1877504.png

OEBPS/httpatomoreillycomsourceoreillyimages1877378.png

OEBPS/httpatomoreillycomsourceoreillyimages1877402.png

OEBPS/httpatomoreillycomsourceoreillyimages1877450.png

OEBPS/httpatomoreillycomsourceoreillyimages1877470.png

OEBPS/httpatomoreillycomsourceoreillyimages1877506.png

OEBPS/httpatomoreillycomsourceoreillyimages1877404.png

OEBPS/httpatomoreillycomsourceoreillyimages1877426.png

OEBPS/bk01-toc.html
PayPal Hacks

Table of Contents
		Special Upgrade Offer

		A Note Regarding Supplemental Files

		Credits		About the Authors

		Contributors

		Acknowledgments		Shannon Sofield

		Dave Nielsen

		Dave Burchell

		Preface		Why PayPal Hacks?

		Getting Started with the Code in This Book		Server-Side Scripting

		Client-Side (Browser) Scripting

		Desktop Applications

		Database Coding and Platform Choices

		Further Study

		How to Use This Book

		How This Book Is Organized

		Conventions Used in This Book

		Using Code Examples

		How to Contact Us

		Got a Hack?

		1. Account Management		Introduction: Hacks #1-9

		1. Create a PayPal Account

		2. Verify Your PayPal Account		1.3.1. Add a Bank Account

		1.3.2. Confirm an Account and Get Free Cash

		3. Confirm Your Mailing Address		1.4.1. Expanded Use Enrollment

		1.4.2. Confirming a Second Address

		4. Pay When You’ve Forgotten Your Password

		5. Restore Your Account if It Has Been Limited		1.6.1. Filing an Appeal

		1.6.2. A Last Resort

		1.6.3. Avoiding Suspicion

		1.6.4. See Also

		6. Create a Separate Login for Each Employee		1.7.1. Adding a New User

		1.7.2. Setting Privileges

		1.7.3. Adding an Administrative Account

		1.7.4. Responding if Something Goes Wrong

		7. Access Member Information		1.8.1. Looking Up a User’s Status

		1.8.2. Understanding the User Status

		1.8.3. Checking Your Reputation as a Seller

		1.8.4. Checking Your Reputation as a Buyer

		8. Manage PayPal Email		1.9.1. Setting Up Multiple Email Addresses

		1.9.2. Using Different Email Addresses

		1.9.3. Filtering Your Incoming Email

		1.9.4. Setting Notification Preferences

		9. Get Help from PayPal		1.10.1. Email Support

		1.10.2. Telephone Support

		1.10.3. Support Forums

		1.10.4. eBay University

		2. Making Payments		Introduction: Hacks #10-16

		10. Send Money to Anyone		2.2.1. Sending a Payment via Email

		2.2.2. What If They Don’t Sign Up?

		11. Choose How to Fund Payments		2.3.1. Overriding the Funding Source Hierarchy

		2.3.2. eBay-only Payment Methods

		2.3.3. Buying from Outside the USA

		12. Use Your PayPal Funds Anywhere

		13. Pay from a Cell Phone		2.5.1. Sending Money

		2.5.2. Checking the Payment

		2.5.3. Requesting Payment with a Text Message

		14. Pay Seller Fees when Buying		2.6.1. Calculating the Fees Yourself

		2.6.2. Covering the Recipient’s Fees Using Mass Pay

		15. Send Money Without Creating a PayPal Account

		16. Dispute Merchandise Payments		2.8.1. PayPal Buyer Protection

		2.8.2. Buyer Protection Etiquette

		2.8.3. Can I Get My Money Back?		2.8.3.1. Does PayPal just take the buyer’s word?

		2.8.3.2. What does significantly “not as described” mean?

		2.8.3.3. Where does the refund come from?

		2.8.3.4. What happens to bad sellers? I want justice!

		3. Selling with PayPal		Introduction: Hacks #17-27

		Upgrade to Business Class

		Set Your Payment Receiving Preferences

		Identify Yourself to Your Customers

		17. Request Money the PayPal Way		3.5.1. Requesting Money from Multiple People

		3.5.2. Sending Custom Requests to Multiple Recipients

		18. Ask for Money in Your Own Way		3.6.1. Creating a Request URL

		3.6.2. Choosing the Best Approach

		19. Request Money Without an Account		3.7.1. See Also

		20. Get Your Money		3.8.1. Withdraw Without Withdrawing

		3.8.2. Transfer to a Bank Account

		3.8.3. Auto-Sweep

		3.8.4. Just Send Me a Check

		3.8.5. Get Paid to Use the PayPal Debit Card

		21. Refund a Payment

		22. Quick-Link to Transaction Details		3.10.1. Where to Get Transaction IDs

		3.10.2. Making a Web Interface

		23. Lower Your Seller Fees		3.11.1. Apply for the Merchant Rate

		3.11.2. Ask for eChecks

		3.11.3. Receive Money into Your Personal Account

		3.11.4. Enroll in the PayPal Money Market

		3.11.5. Use the PayPal ATM/Debit Card

		3.11.6. Let Your Customers Pay

		24. Protect Yourself from Buyer Fraud		3.12.1. Qualifying for Seller Protection

		3.12.2. Checking the Buyer’s User Status

		3.12.3. Conducting a Little Reconnaissance

		25. Protect Yourself from Chargebacks		3.13.1. Protecting Yourself

		3.13.2. Shipping Products

		3.13.3. Responding When You Receive a Chargeback

		3.13.4. Providing Additional Information About Your Case

		26. Avoid Chargebacks on Digital Goods		3.14.1. Shipping a Physical Version

		3.14.2. Thinking Outside the Disk

		27. Handle Merchandise Disputes Effectively		3.15.1. First Response

		3.15.2. Preventive Maintenance

		4. Payment Buttons		Introduction: Hacks #28-44

		28. Create a Buy Now Button		4.2.1. The Code

		4.2.2. Hacking the Hack

		29. Use a Custom Button Image		4.3.1. Preparing the Image and Code

		4.3.2. Button Design 101

		30. Create a Purchase Button for Services

		31. Create an Auction Payment Button		4.5.1. The Easy Way

		4.5.2. Making Your Own Button

		4.5.3. Hacking the Hack

		32. Provide Purchase Options with Drop-Down Listboxes		4.6.1. Hacking the Hack

		33. Include More Than Two Option Fields

		34. Override Shipping and Handling Preferences

		35. Build Notification Tracking		4.9.1. Hacking the Hack

		4.9.2. See Also

		36. Hack-Proof Your Payment		4.10.1. The Code

		4.10.2. Hacking the Hack

		4.10.3. Plan B: Obfuscate Your Button Code

		37. Hack-Proof Your Buttons with Encryption		4.11.1. OpenSSL and Keys

		4.11.2. Basic Button Encryption Using OpenSSL

		38. Include Payment Buttons in Email Messages		4.12.1. Creating PayPal Payment Hyperlinks

		4.12.2. Using the PayPal Payment Wizard

		4.12.3. Including More than One Button in an Email

		39. Hide Your Email Address from Spammers

		40. Accept Donations		4.14.1. Establishing Suggested Giving Levels

		4.14.2. Requiring Information from Your Donors

		41. PayPal-Enable Your Flash		4.15.1. Snap in the PayPal Connection

		4.15.2. Hacking the Hack

		42. Get More Out of Dreamweaver and PayPal		4.16.1. Drag and Drop eCommerce

		4.16.2. Hacking the Hack

		43. Provide Options with ASP.NET Web Controls		4.17.1. Using the .NET Payment Controls

		4.17.2. Creating Your Own PayPal Control

		44. Try Accepting Payments in a Bogus Currency

		5. Storefronts and Shopping Carts		Introduction: Hacks #45-50

		45. Hack Shopping Cart Buttons		5.2.1. Hacking the Hack

		46. Create Shopping Cart Links		5.3.1. The Code

		5.3.2. Shortening the Link

		47. Specify the Size of the Shopping Cart Window		5.4.1. The Code

		5.4.2. Hacking the Hack

		48. Deal with Design and Layout Issues

		49. Put Both Cart Buttons in One Form		5.6.1. The Code

		5.6.2. The Right Tools for the Right Job

		50. Integrate a Third-Party Shopping Cart with PayPal		5.7.1. Aggregating Your Cart

		5.7.2. Uploading Shopping Cart Details to PayPal

		5.7.3. Adding Additional Items

		5.7.4. Hacking the Hack

		51. Customize Checkout Pages		5.8.1. Using Multiple Custom Page Styles

		5.8.2. Getting the Most from Custom Page Style Banners

		52. Display the Merchant Transaction ID on Your Return Page		5.9.1. The PayPal Button Code

		5.9.2. Creating Your Return Page

		53. Remember Your Customers		5.10.1. Tracking Buyers with Cookies

		5.10.2. The Return Page

		5.10.3. Cookies at Work

		5.10.4. Hacking the Hack

		5.10.5. See Also

		54. Create a Dynamic Storefront		5.11.1. Creating the Storefront Database

		5.11.2. Building the Template

		5.11.3. Including Product Details

		55. Add Dynamic Storefront Details		5.12.1. Adding More Product Information to Your Table

		5.12.2. Product Details Page

		5.12.3. Hacking the Hack

		56. Insert Dynamic Images		5.13.1. Inserting the Image

		5.13.2. Link the Image to PayPal

		57. Build an Order-Tracking Page		5.14.1. Asking the Question

		5.14.2. Getting the Answer

		5.14.3. Hacking the Hack

		58. Offer Discount Coupons		5.15.1. Accepting Coupons on the Client Side

		5.15.2. Hacking the Hack

		5.15.3. Verifying Coupons on the Server Side

		59. Increase Search Engine Exposure		5.16.1. Modifying the PayPal Button Factory Code

		5.16.2. Hacking the Hack

		60. Sell Digital Goods with PayLoadz		5.17.1. See Also

		6. Managing Subscriptions		Introduction: Hacks #61-64

		61. Sell Subscriptions to Your Online Content		6.2.1. Creating a Subscribe Button

		6.2.2. Setting Up Your Database

		6.2.3. Processing Subscriber Notifications

		6.2.4. Controlling Access to Your Valued Content

		6.2.5. Hacking the Hack

		62. Offer Tiered Subscriptions		6.3.1. Creating a Premium Subscription Button

		6.3.2. Adding a Tier Field to Your Database

		6.3.3. Inserting Tier Information with Each New Subscription

		6.3.4. Restricting Access Based on Tier

		6.3.5. Encouraging Subscribers to Upgrade

		63. Time Your Subscriptions to End on Specific Dates		6.4.1. Hacking the Trial Period

		6.4.2. Hacking the Hack

		64. Manage Subscription Passwords the Easy Way		6.5.1. .htpasswd and .htaccess

		6.5.2. Getting the Code

		6.5.3. Adding Users Manually

		6.5.4. Hacking the Hack

		6.5.5. See Also

		7. IPN and PDT		Introduction: Hacks #65-86

		What IPN and PDT Are

		How IPN Works

		Advantages of PDT

		65. Receive Instant Payment Notifications		7.5.1. The Code

		7.5.2. Running the Code

		66. Troubleshoot Instant Payment Notifications		7.6.1. Adding Email to IPN

		7.6.2. Using a Return URL

		7.6.3. Capturing Errors

		7.6.4. Using a Third-Party Testing Script

		67. Send a Purchase Confirmation Email with IPN		7.7.1. The Code

		68. Process Shopping Carts with IPN		7.8.1. The Code

		7.8.2. The Results

		69. Use IPN with eBay Listings		7.9.1. The Code

		7.9.2. The Results

		70. Track Your eBay Products with IPN		7.10.1. Preparing Your Database

		7.10.2. Listing the Item Number on eBay

		7.10.3. The Code

		71. Deliver Digital Goods with IPN		7.11.1. The Code

		7.11.2. See Also

		72. Deliver Digital Goods with a Return Page		7.12.1. Augmenting the PayPal Button Code

		7.12.2. Creating an IPN Page

		7.12.3. Building the Return Page

		73. Implement Price Checking with IPN		7.13.1. Simple Price Checking with Single Item Purchases

		7.13.2. Price Checking for Shopping Cart Purchases

		7.13.3. Sending a Price Check Alert

		74. Provide an Order Summary with IPN		7.14.1. The Code

		75. Upsell Your Customers		7.15.1. The Return Page’s Job

		7.15.2. The Code

		7.15.3. Running the Code

		76. Enable Multiple IPN Pages		7.16.1. The IPN Multiplexer

		7.16.2. Turning off Secondary Verification to Eliminate Extra
 Postings

		7.16.3. Hacking the Hack

		77. Use Mass Pay to Create an Affiliate System		7.17.1. Creating Your Business Model

		7.17.2. Building a Button for Your Affiliate

		7.17.3. Recording Referred Purchases

		7.17.4. Notifying Your Affiliates

		7.17.5. Paying Your Affiliates en Mass

		7.17.6. Hacking the Hack

		78. Manage Your Inventory with IPN		7.18.1. Updating the Inventory Count

		7.18.2. Creating the Selling Page

		7.18.3. Alerting Yourself if Inventory Is Low

		79. Display Donation Goals on Your Web Site		7.19.1. Recording Donations

		7.19.2. Building the Donation Page

		7.19.3. Hacking the Hack

		80. Display a Recent Donor List		7.20.1. The Donation Button

		7.20.2. The Database Table

		7.20.3. The IPN Page

		7.20.4. The Donation Page

		7.20.5. Hacking the Hack

		81. Capture Customer Information with IPN		7.21.1. The Database Table

		7.21.2. The IPN Page

		82. Insert Payment Details into a Database with IPN		7.22.1. The Database Table

		7.22.2. The IPN Page

		83. Insert Cart Details into a Database		7.23.1. The Database Table

		7.23.2. Single-Item Purchases IPN Page

		7.23.3. A Shopping Cart IPN

		84. Track Google Referrals		7.24.1. Modifying Your Google AdWord Placement

		7.24.2. Setting up Your Selling Page

		7.24.3. Creating Your IPN Processing Page

		7.24.4. See Also

		85. Process Payments like a Credit Card with PDT		7.25.1. PDT in Action

		7.25.2. Tracking Your Users: Before and After

		7.25.3. Retrieving the Order

		86. Synchronizing PDT and IPN		7.26.1. The Code

		7.26.2. Hacking the Hack

		8. The PayPal Web Services API		Introduction: Hacks #87-100

		8.2. Create a Developer Account

		87. Set up the Sandbox		8.3.1. Creating a Sandbox Account

		8.3.2. Confirming Your Sandbox Email Addresses

		8.3.3. Verifying Bank Accounts in the Sandbox

		8.3.4. Adding Funds (and Getting Rich Quick)

		88. Make Your First API Call		8.4.1. Setting Up the SSL Certificate

		8.4.2. SOAP-Enabling Your Application

		8.4.3. Getting Started with PayPal’s APIClient Tool

		8.4.4. Setting up a Test Transaction

		8.4.5. Making Your First Call

		89. Create a Wrapper Class for Your API Calls		8.5.1. Handling the Basics

		8.5.2. Creating Your Own Certificate Handler

		90. Use the PayPal API Wrapper Class

		91. Refund Payments with the API		8.7.1. Running the Hack

		8.7.2. The Results

		92. Handle Transaction Errors within the API Wrapper		8.8.1. Using the Error Handler

		93. Retrieve Transaction Details with the API		8.9.1. The Code

		8.9.2. Running the Hack

		94. Search for PayPal Transactions		8.10.1. The Code

		8.10.2. Running the Hack

		95. Hack the API Wrapper		8.11.1. The Code

		8.11.2. Running the Hack

		8.11.3. Importing into Quicken and QuickBooks

		96. Issue Payments en Masse with the Mass Pay API		8.12.1. Setting up the Request

		8.12.2. The Code

		8.12.3. Running the Hack

		97. Pay Affiliates and Suppliers on a Schedule		8.13.1. The Code

		8.13.2. Running The Hack

		98. Search eBay for Listings that Accept PayPal		8.14.1. The Code

		8.14.2. Running the Hack

		8.14.3. Hacking the Hack

		99. Test IPN and PDT in the Sandbox

		100. Go Live		8.16.1. Performance and Efficiency

		8.16.2. Finishing Up

		Index

		About the Authors

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages1877482.png

OEBPS/httpatomoreillycomsourceoreillyimages1877476.png

OEBPS/httpatomoreillycomsourceoreillyimages1877510.png

OEBPS/httpatomoreillycomsourceoreillyimages1877474.png

OEBPS/httpatomoreillycomsourceoreillyimages1877494.png

OEBPS/httpatomoreillycomsourceoreillyimages1877458.png

OEBPS/httpatomoreillycomsourceoreillyimages1877514.png

OEBPS/httpatomoreillycomsourceoreillyimages1877408.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1877468.png

OEBPS/httpatomoreillycomsourceoreillyimages1877512.png

OEBPS/orm_front_cover.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1877452.png

OEBPS/httpatomoreillycomsourceoreillyimages1877416.png

OEBPS/httpatomoreillycomsourceoreillyimages1877406.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1877434.png

OEBPS/httpatomoreillycomsourceoreillyimages1877414.png

OEBPS/httpatomoreillycomsourceoreillyimages1877466.png

OEBPS/httpatomoreillycomsourceoreillyimages1877444.png

OEBPS/httpatomoreillycomsourceoreillyimages1877500.png

OEBPS/httpatomoreillycomsourceoreillyimages1877520.png

OEBPS/httpatomoreillycomsourceoreillyimages1877382.png

OEBPS/httpatomoreillycomsourceoreillyimages1877394.png

OEBPS/httpatomoreillycomsourceoreillyimages1877518.png

OEBPS/httpatomoreillycomsourceoreillyimages1877516.png

OEBPS/httpatomoreillycomsourceoreillyimages1877448.png

OEBPS/httpatomoreillycomsourceoreillyimages1877486.png

OEBPS/httpatomoreillycomsourceoreillyimages1877502.png

OEBPS/httpatomoreillycomsourceoreillyimages1877472.png

OEBPS/httpatomoreillycomsourceoreillyimages1877508.png

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1877480.png

OEBPS/httpatomoreillycomsourceoreillyimages1877484.png

OEBPS/httpatomoreillycomsourceoreillyimages1877422.png

OEBPS/httpatomoreillycomsourceoreillyimages1877456.png

OEBPS/httpatomoreillycomsourceoreillyimages1877488.png

OEBPS/httpatomoreillycomsourceoreillyimages1877390.png

OEBPS/httpatomoreillycomsourceoreillyimages1877478.png

OEBPS/httpatomoreillycomsourceoreillyimages1877418.png

OEBPS/httpatomoreillycomsourceoreillyimages1877412.png

OEBPS/httpatomoreillycomsourceoreillyimages1877440.png

OEBPS/httpatomoreillycomsourceoreillyimages1877420.png

OEBPS/httpatomoreillycomsourceoreillyimages1877438.png

OEBPS/httpatomoreillycomsourceoreillyimages1877492.png

OEBPS/httpatomoreillycomsourceoreillyimages1877436.png

OEBPS/httpatomoreillycomsourceoreillyimages1877398.png

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1877384.png

OEBPS/httpatomoreillycomsourceoreillyimages1877400.png

OEBPS/httpatomoreillycomsourceoreillyimages1877442.png

OEBPS/httpatomoreillycomsourceoreillyimages1877498.png

OEBPS/httpatomoreillycomsourceoreillyimages1877464.png

OEBPS/httpatomoreillycomsourceoreillyimages1877424.png

OEBPS/httpatomoreillycomsourceoreillyimages1877430.png

OEBPS/httpatomoreillycomsourceoreillyimages1877428.png

OEBPS/httpatomoreillycomsourceoreillyimages1877432.png

OEBPS/httpatomoreillycomsourceoreillyimages1877410.png

OEBPS/httpatomoreillycomsourceoreillyimages1877392.png

OEBPS/httpatomoreillycomsourceoreillyimages1877396.png

OEBPS/httpatomoreillycomsourceoreillyimages1877446.png

OEBPS/httpatomoreillycomsourceoreillyimages1877460.png

OEBPS/httpatomoreillycomsourceoreillyimages1877388.png

OEBPS/httpatomoreillycomsourceoreillyimages1877380.png

OEBPS/httpatomoreillycomsourceoreillyimages1877386.png

OEBPS/httpatomoreillycomsourceoreillyimages1877454.png

OEBPS/httpatomoreillycomsourceoreillyimages1877490.png

OEBPS/httpatomoreillycomsourceoreillyimages1877462.png

OEBPS/httpatomoreillycomsourceoreillyimages1877496.png

