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Introduction

I assume you currently have this book in your hands (or on your e-reader) because you’re interested in 
Unity, or you’re interested in physically based shading, or both.

Shaders are cool, as the Shadertoy web site can attest, and Unity is a good tool through which to learn 
how to write them. Physically Based Shading is also cool, as the last few years’ worth of AAA games can 
attest, and Unity is again a convenient way to dip in, without having to write your own renderer.

This book will teach you shader development and physically based shading, using Unity as a convenient 
medium that keeps the effort needed to learn both within sanity thresholds.

Who This Book Is For
I’m going to assume that you, the reader, have some Unity experience, but little or no shader or coding 
experience. Some programming experience will help, as we’re not going through the absolute basics of 
dealing with code.

You might be a technical artist, wanting to learn the principles of physically based shading, or maybe 
learn how to use code for shader programming, rather than node-based interfaces.

You might be a game programmer, wanting to learn how to get started with shader programming, or 
wanting to implement some technique from physically based shading.

In both cases, this book should work for you. Beware that the book includes some math, but 
understanding it is not strictly necessary. You’ll get to the end fine, even if you skip the math, but you’ll learn 
less.

What You’ll Learn
The following topics are covered in this book.

•	 Shader development in Unity

•	 Graphics pipeline

•	 Writing Unlit shaders

•	 Writing Surface shaders

•	 Physically Based Shading theory

•	 How to research custom lighting models

•	 How to implement physically based custom lighting models in Unity

•	 The state of the art in custom lighting models

•	 How to hook your custom lighting model implementation into the Unity Standard 
shader functionality
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•	 How to implement advanced techniques, such as translucency

•	 Debugging shaders

•	 Advice on writing shaders that are easy for artists to use

•	 How to keep up with the ever-progressing rendering advancements

What Do You Need to Use This Book
You need a PC running any version of Unity between 5.6 and 2017.2. Outside of that optimal version range, 
higher version numbers might break the code, and going too far back (before Unity 5) will definitely break 
the code.

How This Book Is Organized
This book is divided in three parts and 18 chapters. It’s meant to be read in sequence, but if you know some 
parts already, you can skip ahead.

If you’re a seasoned shader developer, looking for knowledge specific to Unity, you might want to skim 
Chapter 1 and then skip to Chapter 5.

If you are only interested in physically based shading and are already handy with graphics programming 
and Unity shader development, you should skim Chapter 1 and then skip to Chapter 8.

If you’re a programmer but haven’t done shader development, I recommend reading the whole book in 
sequence.

If you’re a technical artist and have never written a line of shader code (you may be used to node 
editors), read the book in order and pay particular attention to Chapter 2, as it’ll get you started in writing 
shader code in Unity.

Part I: Introduction to Shaders in Unity
This first part will get you from shader newbie to having working knowledge of the important graphics 
programming concepts and being handy at writing non-physically based shaders.

Chapter 1: How Shader Development Works
This chapter covers many foundational concepts about rendering and graphics programming. You’ll get an 
overview of what shaders are, how the graphics pipeline works, the process of rendering, the behavior of 
light, and shader and render types.

Chapter 2: Your First Unity Shader
In this chapter, you’ll get started writing shaders in Unity. It covers project setup, making a scene, the syntax, 
and the parts that compose a Unity shader. We’re going to write a simple Unlit, monochrome shader.

Chapter 3: The Graphics Pipeline
This chapters explains how the graphics pipeline works, and how different parts of a shader hook into it, 
what data is sent in it, how it’s processed, and some things you can do with it.

http://dx.doi.org/10.1007/978-1-4842-3309-2_1
http://dx.doi.org/10.1007/978-1-4842-3309-2_5
http://dx.doi.org/10.1007/978-1-4842-3309-2_1
http://dx.doi.org/10.1007/978-1-4842-3309-2_8
http://dx.doi.org/10.1007/978-1-4842-3309-2_2
http://dx.doi.org/10.1007/978-1-4842-3309-2_1
http://dx.doi.org/10.1007/978-1-4842-3309-2_2
http://dx.doi.org/10.1007/978-1-4842-3309-2_3
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Chapter 4: Transforming Coordinate Spaces
Coordinate spaces are a necessary, but often confusing, part of the graphics pipeline. This chapter presents 
and explains each of the commonly used coordinate spaces, where they are used in the graphics pipeline, 
and what tools Unity gives to transform between them.

Chapter 5: Your First Unity Lighting Shader
This chapter introduces some common lighting concepts (such as the role of the angle of incidence) and 
approximations (such as diffuse and specular), and how to implement them within an Unlit shader. By the 
end of the chapter, you’ll have written your first custom lighting shader.

Chapter 6: Specular Implementation
Continuing from the previous chapter, we’re going to implement a specular approximation to complete the 
diffuse one from the previous chapter. This chapter also explains how to support more than one light within 
an Unlit shader, a practical use of ShaderLab passes.

Chapter 7: Surface Shaders
So far we’re only used Unlit shaders, because they’re more straightforward and they don’t hide where 
the graphics pipeline comes in contact with shaders. But they can be quite verbose, so this chapter 
introduces Surface shaders and explains how they can save you quite a bit of time and typing. We’re going 
to reimplement the Unlit shader from the two previous chapters, in a surface shader with a custom lighting 
function.

Part II: Physically Based Shading
This part is entirely dedicated to physically based shading, from theory to implementation. Now that you 
have experience implementing shaders in Unity and you have the solid basics in how rendering works, you 
can focus your attention completely on writing shaders according to physics principles.

Chapter 8: What Is Physically Based Shading?
This chapter presents microfacet theory and corrects some simplifications we had made in explaining 
how light works in Chapter 1. We go through Fresnel reflectance, index of refraction, as well as how we can 
measure light, and represent the behavior of light hitting a material with a function. The chapter explains 
what makes a lighting model physically based and explains every part of the rendering equation.

Chapter 9: Making a Shader Physically Based
To put into practice the concepts of physically based shading immediately, we take our custom lighting 
surface shader from Chapter 7 and we make it conform to physically based requirements.

http://dx.doi.org/10.1007/978-1-4842-3309-2_4
http://dx.doi.org/10.1007/978-1-4842-3309-2_5
http://dx.doi.org/10.1007/978-1-4842-3309-2_6
http://dx.doi.org/10.1007/978-1-4842-3309-2_7
http://dx.doi.org/10.1007/978-1-4842-3309-2_8
http://dx.doi.org/10.1007/978-1-4842-3309-2_1
http://dx.doi.org/10.1007/978-1-4842-3309-2_9
http://dx.doi.org/10.1007/978-1-4842-3309-2_7
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Chapter 10: Post-Processing Effects
Post-processing is a necessary part of HDR rendering, which is itself necessary for physically based shading. 
While the post-process effects stack that Unity offers through the Asset Store is powerful, you’ll still need 
to understand and occasionally be able to implement post effects, and that’s what this chapter covers. The 
chapter also includes an overview of the Unity post-processing stack version 1 and version 2.

Chapter 11: BRDFs Who’s Who
It’s time to get to know common lighting functions by name and based on what they look like. This chapter 
presents BRDF Explorer, which is an excellent program developed by Disney Research to develop and 
analyze custom lighting functions.

Chapter 12: Implementing a BRDF
Now that you know a few physically based lighting functions, it’s time to implement one or two. This 
chapter covers how to gather information and implement a physically based BRDF. We’ll implement the 
CookTorrance specular and the DisneyBRDF diffuse.

Chapter 13: Hooking into the Standard Shader
This chapter takes our implemented lighting function from the last chapter and explains how to hack it into 
the Unity standard shader infrastructure, which is going to give you reflections, global illumination, and 
more, for almost free.

Chapter 14: Implementing Advanced Techniques
Having gone through everything about implementing a BRDF, this chapter explains how to add light 
phenomena that cannot be described by BRDFs, such as translucency. It also explains the complex 
mechanisms that cause reflection probes to work.

Part III: Shader Development Advice
Now that you know all the essentials of implementing custom lighting systems in Unity, this part expounds a 
bit about the art of it—debugging, writing good code, and making sure the artists won’t snub your shaders.

Chapter 15: Making Shaders Artists Will Use
There are many ways that programmers make shaders that are too complex for artists to use, without even 
realizing it. This chapter lists the top five shader usability mistakes that people make and includes some 
solutions.

Chapter 16: Complexity and Ubershaders
After Chapter 13, you’ve had quite a bit of exposure about what complexity looks like in a shader system. 
This chapter explains why it gets to that, and why it’s the still the best solution we have, with the current 
shading languages.

http://dx.doi.org/10.1007/978-1-4842-3309-2_10
http://dx.doi.org/10.1007/978-1-4842-3309-2_11
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http://dx.doi.org/10.1007/978-1-4842-3309-2_13
http://dx.doi.org/10.1007/978-1-4842-3309-2_14
http://dx.doi.org/10.1007/978-1-4842-3309-2_15
http://dx.doi.org/10.1007/978-1-4842-3309-2_16
http://dx.doi.org/10.1007/978-1-4842-3309-2_13
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Chapter 17: When Shading Goes Wrong
There is no such thing as writing a shader right on the first try. Hence, you need to know how to track bugs 
and find problems. This chapter is about profiling and debugging shaders, and the many tools you can use to 
do that.

Chapter 18: Keeping Up with the Industry
The game and movie industries never sleep; they keep progressing year after year. After having read the 
entire book, you’ll be in a good position to deepen your knowledge by going straight into SIGGRAPH papers. 
This chapter lists many ways you can keep abreast of the latest developments in rendering and shader 
development.

http://dx.doi.org/10.1007/978-1-4842-3309-2_17
http://dx.doi.org/10.1007/978-1-4842-3309-2_18


PART I

Introduction to Shaders In Unity

This part of the book includes everything you need to know to be a competent shader developer 
in Unity.

Starting from how to write your first shader, going into the role of each step in the graphics 
pipeline, and how your shaders hook into it.

We explain how to develop Unlit and Surface shaders, common lighting approximations, the 
fundamental concepts of light behavior, and rendering.



3© Claudia Doppioslash 2018 
C. Doppioslash, Physically Based Shader Development for Unity 2017,  
https://doi.org/10.1007/978-1-4842-3309-2_1

CHAPTER 1

How Shader Development Works

Shader development is a black art that’s essential for game development.
You might have heard about shaders before. The first encounter with shaders sometimes happens due 

to thorny hard-to-fix rendering issues, which only appear on some rare GPU you can’t get your hands on. Or 
maybe you heard the word “shader” being whispered softly, wrapped in nursery rhymes about developers 
who poke their noses where they shouldn’t, and the dire ends they meet.

Fear not, this book is going to demystify shaders and give you a grounding that will allow you to develop 
great looking lighting shaders and effects from scratch. We’re also going to touch upon the mathematical 
reasoning necessary to understand and implement correct lighting shaders, so that you’ll be able to choose 
your tradeoffs, to achieve good performance without sacrificing fidelity too much.

This chapter introduces the fundamental knowledge necessary to understand shaders. To make it easier 
to get started, I’ll simplify liberally. We’ll go through most of these concepts in more depth in later chapters. 
I don’t assume any knowledge about shaders, but I do assume that you are familiar with Unity and game 
development.

What Is a Shader?
Going straight to the heart of the matter, a shader is both:

•	 A simulation made in code of what happens at the surface microscopic level, which 
makes the final image look realistic to our eyes

•	 A piece of code that runs on GPUs

Shaders as Light Simulations
To explain the first definition, look at the three images in Figure 1-1. They show you three surfaces made of 
different materials. Your brain can instantly understand what material an object is made of, just by looking at it. 
That happens because every material’s pattern of interaction with light is very characteristic and recognizable 
to the human brain. Lighting shaders simulate that interaction with light, either by taking advantage of what we 
know about the physics of light, or through a lot of trial and error and effort from the artists.

https://doi.org/10.1007/978-1-4842-3309-2_1
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In the physical world, surfaces are made of atoms, and light is both a wave and a particle. The 
interaction between light, the surface, and our eyes determines what a surface will look like. When light 
coming from a certain direction hits a surface, it can be absorbed, reflected (in another direction), refracted 
(in a slightly different direction), or scattered (in many different directions). The behavior of light rays, when 
they come in contact with a surface, is what creates the specific look of a material. See Figure 1-2.

Even if a surface looks smooth at the macroscopic level, like skin does, at the microscopic level, it can 
have micro-facets that scatter light in different directions.

Inside computers we don't have the computational power needed to simulate reality to that level of 
detail. If we had to simulate the whole thing, atoms and all, it would take years to render anything. In most 
renderers, surfaces are represented as 3D models, which are basically points in 3D space (vertices) at a 
certain position, that are then grouped in triangles, which are then again grouped to form a 3D shape. Even a 
simple model can have thousands of vertices.

Figure 1-1.  Skin, metal, wood

Figure 1-2.  A ray of light, hitting a surface and bouncing off in the direction of our eyes
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Our 3D scene, composed of models, textures, and shaders, is rendered to a 2D image, composed of 
pixels. This is done by projecting those vertex positions to the correct 2D positions in the final image, while 
applying any textures to the respective surfaces and executing the shaders for each vertex of the 3D models 
and each potential pixel of the final image. See Figure 1-3.

Regardless of how far you are willing to go in detail when modeling, it’s impossible to match the level 
of detail in the real world. We can use our mathematical knowledge of how lighting works, within a shader, 
to make our 3D models look as realistic as possible, compensating for not being able to simulate surfaces 
at a higher level of detail. We can also use it to render our scenes fast enough, so that our game can draw a 
respectable number of frames per second. Frames per second appropriate for games range from 30 fps to 60 
fps, with more than 60 fps being needed for virtual reality games.

This is what physically based rendering is all about. It's basically a catalog of various types of lighting 
behaviors in surfaces and the mathematical models we use to approximate them.

Rendering as Perspective Drawing
Rendering is conceptually (and mathematically) very similar to the painter’s process of drawing from life, 
into a canvas, using perspective.

The techniques of perspective drawing originated in the Italian Renaissance, more than 500 years ago, 
even if the mathematical foundations for it were laid much earlier, back in Euclid’s times. In our case, the 
canvas is our final image, the scene and 3D models are reality, and the painter is our renderer.

In computer graphics, there are many ways to render the scene, some more computationally expensive 
and some less. The fast type (rasterizer-based) is what real-time rendering, games included, has been using. 
The slow type (raytracing, etc.) is what 3D animated movies generally use, because rendering times can 
reach even hours per frame.

The rendering process for the fast type of renderers can be simplified like so: first the shapes of the 
models in the scene are projected into the final 2D image; let’s call it the “sketching the outline” phase, from 
our metaphorical painter’s point of view. Then the pixels contained within each outline are filled, using the 
lighting calculations implemented in the shaders; let’s call that the “painting” phase.

You could render an image without using shaders, and we used to do so. Before the programmable 
graphics pipeline, rendering was carried out with API calls (APIs such as OpenGL and DirectX3D). To 
achieve better speed, the APIs would give you pre-made functions, to which you would pass arguments. 
They were implemented in hardware, so there was no way to modify them. They were called fixed-function 
rendering pipelines.

To make renderers more flexible, the programmable graphics pipeline was introduced. With it, you could 
write small programs, called shaders, that would execute on the GPU, in place of much of the fixed-function 
functionality.

Figure 1-3.  From points, to triangles, to the renderer shaded model
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Rendering Process
As mentioned, this type of rendering could be conceptually broken down in two phases:

•	 The outline phase

•	 The painting phase

The outline phase determines which pixels in the final image are going to belong to a certain triangle, 
by projecting the vertices of the models into the final image, and checking for whether another model is in 
front, from the camera’s point of view. The painting phase calculates the color of each pixel, according to the 
scene data (lights, textures, and lighting calculations).

The first phase manipulates vertices, the second phase manipulates the information it gets from the first 
phase and outputs the pixel colors.

Shaders as Code Running on GPUs
As mentioned, there can be many thousands of vertices in a model, and a rendered image can have millions 
of pixels. Game scenes vary in complexity, according to the platform they’re going to run on. On PlayStation 
4 Pro, the final image resolution reaches 3840×2160 pixels (commonly called 4k resolution), and a scene can 
have more than hundreds of thousands of vertices. Typically a shader will run on every vertex in the scene, 
and on every pixel in the final image. To achieve that real-time rendering speed, we need a special processor 
that’s capable of running very short programs millions of times in just milliseconds. Such a processor is a 
commonly known as a Graphics Processing Unit, or GPU.

Shading is a dataflow process in one direction, which means that vertices, textures, and shaders enter, 
and then, at the other end, colors exit, and are put into a render target, meaning basically a 2D image. We 
don’t need to know anything about the vertices near the one we’re processing, or the pixels near the one 
we’re calculating (at least most of the time), hence all those shaders can be executed independently, at the 
same time, on a large number of vertices/pixels.
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Shader Execution
Figure 1-4 shows how a simple scene is rendered.

Figure 1-4.  A rendered scene containing only a cube with colored vertices

This scene has eight vertices, and it has been rendered to a 1920x1080 image (full HD resolution). What 
is happening exactly in the rendering process?

	 1.	 The scene’s vertices and their respective data are passed to the vertex shader.

	 2.	 A vertex shader is executed on each of them.

	 3.	 The vertex shader produces an output data structure from each vertex, containing 
information such as color and position of the vertex on the final image.

	 4.	 Sequences of vertices are assembled into primitives, such as triangles, lines, 
points, and others. For the purposes of this book, we'll assume triangles.

	 5.	 The rasterizer takes a primitive and transforms it into a list of pixels. For each 
potential pixel within that triangle, that structure’s values are interpolated and 
passed to the pixel shader. (For example, if one vertex is green, and an adjacent 
vertex is red, the pixels between them will form a green to red gradient.) The 
rasterizer is part of the GPU; we can’t customize it.

	 6.	 The fragment shader is run for any potential pixel. This is the phase that will be 
more interesting for us, as most lighting calculations happen in the fragment 
shader.

	 7.	 If the renderer is a forward render, for every light after the first, the fragment 
shader will be run again, with that light’s data.
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	 8.	 Each potential pixel (aka, fragment) is checked for whether there is another 
potential pixel nearer to the camera, therefore in front of the current pixel. If 
there is, the fragment will be rejected.

	 9.	 All the fragment shader light passes are blended together.

	 10.	 All pixel colors are written to a render target (could be the screen, or a texture, or 
a file, etc.)

As you can see in Figure 1-5, this cube has colored vertices. The gradient from black to gray in the 
shaded cube is due to the interpolation happening in Step 4.

Figure 1-5.  Scene data being sent to the renderer, vertex processing phase, to fragment processing

This was an overview of how shaders are executed when rendering a scene. Now we’ll more accurately 
define some technical terms that I’ve mentioned in passing up to now.

Different Types of Shaders 
We have already mentioned a couple types of shaders. Here they are and a few more:

•	 Vertex shader: Executed on every vertex.

•	 Fragment shader: Executed for every possible final pixel (known as a fragment).

•	 Unlit shader: Unity-only, a shader that combines a vertex and pixel shader in one file.

•	 Surface shader: Unity-only, contains both vertex and fragment shader functionality, 
but takes advantage of the ShaderLab extensions to the Cg shading language to 
automate some of the code that’s commonly used in lighting shaders.

•	 Image Effect shader: Unity-only, used to apply effects like Blur, Bloom, Depth of Field, 
Color Grading, etc. It is generally the last shader run on a render, because it’s applied 
to a render of the geometry of the scene.

•	 Compute shader: Computes arbitrary calculations, not necessarily rendering, e.g., physics 
simulation, image processing, raytracing, and in general, any task that can be easily 
broken down into many independent tasks. In this book, we spend a fair amount of time 
on Unity surface shaders, but we won’t cover compute shaders. There are even more 
types of shaders, but since they are not used as often, we won’t mention them.
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Coordinate Systems
Every calculation in a shader lives in a particular coordinate system. Think of the Cartesian coordinate 
system—almost everyone has dealt with it at one point or another. That is a 2D coordinate system, while 
many of the ones used for rendering calculations are 3D rendering systems. Here’s a list:

•	 Local (or Object) Space: The 3D coordinate system relative to the model being 
rendered

•	 World Space: The 3D coordinate system relative to the entire scene being rendered

•	 View (or Eye) Space: The 3D coordinate system relative to the viewer’s point of view 
(the camera you’re rendering from)

•	 Clip Space: A 3D coordinate system that has a range of -1.0 to 1.0

•	 Screen Space: The 2D coordinate system relative to the render target (the screen, etc.)

•	 Tangent Space: Used in Normal Mapping

We’re occasionally going to mention coordinate spaces. It’s important to be aware of them, even though 
most of the time, you won’t need to deal with them directly. It’s very easy to get confused about which space 
is used in which calculation, so it’s worthwhile to learn to recognize each space and when each is useful.

Various phases of the rendering pipeline translate between two spaces, in order to execute the 
calculation in the most appropriate space. Choosing the right coordinate system can make calculations 
simpler and computationally cheaper.

Types of Light
In nature, every light is emitted from a 3D surface. There is no such thing as a real-life pixel. In rendering, we 
use approximations to reduce the computing power needed, but those approximations can limit the fidelity 
of our rendering. In Unity, we use three different approximations of a real-life light (see Figure 1-6):

•	 Point light

•	 Directional light

•	 Area light (only for baking lightmaps)

Figure 1-6.  Point light, directional light, and area light

Point Light
Think of a night lamp, which is a small light that sends rays all around, but those rays don’t reach very far. 
Point lights have a falloff, meaning at a certain distance, the light fades off completely.
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Directional Light
Think of the sun; it’s so far away from us, that even if it is a point light, all the rays that reach us are parallel. 
If you were to zoom in on the light of a point light very very near, you would get to a point where the visible 
rays are all parallel. As a consequence, we're not going to reach the falloff, thus a directional light goes on 
infinitely.

Area Light
Area light is the best approximation of the three for physical reality, but more expensive computationally. 
Any real object that emits light will most likely be tridimensional, and therefore have an area. But that 
complicates the rendering calculations making them more expensive. Unity doesn’t have an area light 
usable for real-time lighting; it can only be used when baking lightmaps.

The Rendering Equation
The calculations that we want to implement in a lighting shader can be represented by the rendering 
equation:

L x L x f x L x n dw0 0 0 0, , ,i i i iw w w w w we( ) = ( )+ ®( )× ( )× ×( )ò
'

,

Don’t panic! It’s just an innocuous equation. You don’t need to know anything about it at this point. 
But it will help you to get used to seeing it without shuddering. It’s actually a pretty useful way of putting 
everything you need to calculate lighting together, in one line.

A later chapter covers this equation in more detail. Here, we’re going to give an overview of what it 
represents, meaning the behavior of light on a surface.

The Behavior of Light
Everything that we see, we see because some light has hit that object and it has bounced off of it, in the 
direction of our eyes. Exactly how and why that bouncing happens is very important to rendering. How 
much light will bounce off a surface, and in which directions, depends on many factors:

•	 The angle the light ray is coming from (aka, reflection). The more parallel it is, the less 
it will bounce. See Figure 1-7.
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•	 The color of the surface (aka, absorption). The light spectrum includes all visible 
colors. A red surface will absorb all other colors in the spectrum, and only reflect the 
red portion. See Figure 1-8.

Figure 1-7.  Two different rays come from different directions and bounce away at the same angle they  
came from

Figure 1-8.  The light spectrum partially absorbed by the surface
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•	 The smoothness or roughness of the surface. At the microscopic level, surfaces can 
be rougher than they look, and microfacets can bounce light in different directions. 
See Figure 1-9.

Figure 1-9.  Rays bouncing off microfacets at different angles
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•	 Semitransparent layers. Think of a puddle. The ground under it looks darker than dry 
ground, because the water surface is reflecting some light off, thus allowing less light 
to reach the ground. See Figure 1-10.

Bounced Light
As you might imagine, the light that is reflected off of one surface often ends up hitting another surface, 
which again is going to reflect some part of it. Bounced light will keep bouncing until the energy is 
completely used up. That is what global illumination simulates.

The light that hits a surface directly is called direct light; the light that hits the object after bouncing off 
from another surface is called indirect light. To make it clearer, Figures 1-11 and 1-12 show the same scene 
twice. In Figure 1-11, there is only direct illumination, while Figure 1-12 is rendered with indirect light as 
well. As you can see, the difference is stark.

Figure 1-10.  Light rays hitting a puddle and the ground beneath it
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Before 2010, games generally used a very crude approximation of global illumination, such as 
ambient light, which consisted of only one value for the entire scene. Spherical harmonics are also used 
to approximate GI. They are a more faithful approximation than ambient, but more expensive and more 
mathematically complex as well.

Figure 1-12.  Direct and indirect light

Figure 1-11.  Direct light only
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Renderer Types
There are a few types of renderers, and many hybrids between them. Depending on the art direction of a 
game, certain parts of the scene will take more time to render compared to others. From that, comes the 
need to change the renderer, in order to optimize the more time-consuming parts.

Forward
This is the first type of real-time renderer. It used to be implemented within the Graphics API (OpenGL or 
Directx3D). It is the type we’ve talked about until now. The scene information is fed into it, every triangle is 
rasterized, and for each light, there is a shading pass.

Deferred
Without global illumination, the only way to render more natural scenes was using a large number of lights. 
This started to be common practice in the PS3/Xbox360 generation. But, as you know, every additional light 
in a Forward renderer means an extra shader pass on all pixels.

To achieve better performance, this new type of renderer was invented, which would defer the shading 
of the scene to the last possible moment. That allows it to ignore the lights that are not reaching the model 
being shaded at the moment, which makes for much better performance.

Deferred renderers have some problematic spots, such as the impossibility of rendering transparent 
objects properly. They are also less flexible, because the information passed onto the shading phase has to 
be decided beforehand, while developing the renderer.

Forward+ (Tiled Forward Shading)
In the PS4/Xbox One generation, various approximations of global illumination are possible, which makes 
Deferred less attractive. A mix of Forward and Deferred, this renderer type breaks the image into tiles, which 
are shaded with the Forward method, but only considering the lights that are influencing the current tile. 
This renderer type is not available in Unity at the moment.

Future Renderers
The industry seems to be going toward developing more flexible renderers that can be better customized for 
the needs of each game. Unity is already working on a scriptable render loop, which will allow you to write 
the rendering code itself, while at the moment you can only choose between Forward and Deferred. This 
new functionality is already available in the current Unity betas.

Shader Visual Graphs
Your previous experiences of shader development might have been through node editors. Many game 
engines and 3D modeling software programs make shader development available through a visual node 
interface. Figure 1-13 shows Unreal’s Shader Editor as an example.
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They are an intuitive way to develop shaders. Unity doesn’t include one (although you can download 
ShaderForge and others from the Asset Store) and, while they’re good for many purposes, it would be hard to 
develop custom lighting shaders with a node editor. Since these tools generate code anyway, and sometimes 
not good code, it’s well worth learning to code shaders by hand. Even if you end up generating your shaders 
with ShaderForge, by learning to hand code shaders, you’ll be able to edit the generated code to improve 
performance or to fix bugs and compiler errors.

Summary
This chapter introduced shaders to give programmers the ability to further customize the graphics pipeline, 
which used to be fixed. Graphics programmers would pass the scene data to it and would only be able to 
give it predetermined parameters. Nowadays, we’re going toward more and more customizability, because it 
gives competent people the possibility of writing faster rendering code.

Shaders are code that runs on the GPU and can simulate lighting for different surfaces. They can also be 
used for image effects (e.g., Blur), tessellation, and general computation. We’re going to stick to lighting and 
image effects in this book.

Knowing how to write shaders will empower you to control the look of your game much more than 
you’d be able to otherwise, if you were just using the built-in shaders.

Next
Now that you’ve been introduced to the fundamentals of shader development, you’re going to put them 
into practice straight away. The next chapter shows you how to create your first Unity shader, while getting 
familiar with the shader development workflow.

Figure 1-13.  Unreal’s Shader Editor
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CHAPTER 2

Your First Unity Shader

In the previous chapter, we introduced many of the concepts necessary to develop real-time lighting 
shaders. In this chapter, I’ll get you started with the practical side of shader development in Unity. You’ll 
install Unity (if you haven’t done so already) and learn how the shader editing workflow works in Unity. To 
do that, we’ll create a basic project and write a simple shader, so you can put into practice some of the things 
that you learned in the last chapter.

Introduction to Unity
In order to write shaders, you need a game engine or a renderer. In this book, we’re going to use the Unity 
game engine as the renderer. You can also write shaders for other game engines, graphics APIs, and various 
3D modeling software programs like Maya, Blender, etc., but that is out of the scope of this book, though 
the same principles apply. If you already know how Unity works and have it installed, feel free to skip this 
section of the chapter.

Set Up
This section lists the steps needed to get Unity up and running on your PC:

	 1.	 You need a PC that’s running Mac, Windows, or Linux.

	 2.	 Download the latest free version of Unity from http://www.unity3d.com/ (Unity 
2017.2 at the time of writing; newer versions are not guaranteed to be compatible 
with this book).

	 3.	 Install Unity.

	 4.	 You’ll need to register an account before being able to use it.

	 5.	 Start Unity.

	 6.	 Log in to your account.

https://doi.org/10.1007/978-1-4842-3309-2_2
http://www.unity3d.com/
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	 7.	 Create a new 3D project (see Figure 2-1).

That’s it; now you have everything you need to get started.

Unity UI
Take a look at the Unity project UI (see Figure 2-2); in it you’ve got everything you need in one screen:

•	 Project panel: All the files in the project

•	 Hierarchy panel: All the GameObjects in the scene

•	 Inspector panel: Gives you info on files or GameObject components

•	 Console panel: Any compiler or runtime errors will show up in this panel, so make 
sure it’s visible

Figure 2-1.  The New Project screen
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Make Your First Scene
To preview a shader, you first need to set up a scene. You should have an empty scene. Add to it:

•	 A 3D object (you will apply the shader to it)

•	 At least one directional light

The simplest way to add a 3D object is to right-click on the Hierarchy panel, then choose 3D Object ➤ 
Sphere (see Figure 2-3). By doing that, you won’t have to worry about 3D models while you’re trying to get 
your head around this first shader.

Figure 2-2.  An empty Unity project
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The type of light is actually an important choice from a shading perspective too, not just from an artistic 
one. In Unity you can only choose between point and directional lights, for real-time, but we’ll talk about 
area lights later and why they are important for physically based rendering. You can add a light by right-
clicking within the Hierarchy panel and choosing Light ➤ Directional Light. You can also change the light 
type by clicking on the light GameObject and changing the light type in the Inspector.

Now we need to create a material. A material is a file that contains all the settings relative to a certain 
kind of surface. That includes which shader will be used to render it, any colors, values, textures to be passed 
to the shader, and other data. Let’s create one.

First create a new directory in the Project panel and call it Materials. Then, right-click into the 
Materials directory and choose Create ➤ Material (see Figure 2-4). Call the new material RedMaterial.

Figure 2-3.  The Create 3D Object menu
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Figure 2-4.  Create a material

Now you need to create the Shaders directory now. Right-click into it and choose Create ➤ Shader ➤ 
Unlit Shader (see Figure 2-5). Call it RedShader. There are a few different types of shaders that you can create, 
but the Unlit type is the simplest.

Figure 2-5.  Create an Unlit shader
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Figure 2-6.  Assign the RedShader to the material you created

Now you need to assign the shader to the material and apply the material to the sphere. The first task is 
done by clicking on the material file within the Project panel. Now look in the Inspector panel to customize 
this material. At the very top, you can choose which shader it should use. By default, any new material uses 
the Unity Standard shader. To find the shader you created, navigate to Unlit ➤ RedShader (see Figure 2-6).

Now drag the material from the Project panel to the Cube GameObject within the Hierarchy panel, or 
on the cube model within the Scene viewer. You’ll see that the cube will change appearance and become a 
completely white cube without any shading (see Figure 2-7).
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Let’s look at the RedShader properties. Click on the Cube GameObject, and the Inspector will show you 
the properties for it (see Figure 2-8). Within the Mesh Renderer, notice that there is a Materials list, which 
has one member, your RedMaterial. Below the Mesh Renderer you’ll find the Material properties. The 
assigned shader should be Unlit/RedShader; there should be a place to assign a texture, which is empty at 
the moment. Then you’ll see the Tiling, Offset, and RenderQueue options.

Figure 2-7.  The cube after applying the new shader
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Shader Editing
You named it the RedShader, but at the moment it’s more of a white shader. Let’s delve into the code and 
fix that. Listing 2-1 shows the complete code of the shader, as Unity would have filled it by default. It can be 
broken down in various parts, which we’ll list after the code.

Listing 2-1.  Unlit Default Shader

Shader "Unlit/RedShader"
{
    Properties
    {
        _MainTex ("Texture", 2D) = "white" {}
    }
    SubShader

Figure 2-8.  The MeshRenderer and Material inspectors
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    {
        Tags { "RenderType"="Opaque" }
        LOD 100

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            // make fog work
            #pragma multi_compile_fog

            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float2 uv : TEXCOORD0;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
                UNITY_FOG_COORDS(1)
                float4 vertex : SV_POSITION;
            };

            sampler2D _MainTex;
            float4 _MainTex_ST;

            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.uv = TRANSFORM_TEX(v.uv, _MainTex);
                UNITY_TRANSFER_FOG(o,o.vertex);
                return o;
            }

            fixed4 frag (v2f i) : SV_Target
            {
                // sample the texture
                fixed4 col = tex2D(_MainTex, i.uv);
                // apply fog
                UNITY_APPLY_FOG(i.fogCoord, col);
                return col;
            }
            ENDCG
        }
    }
} 
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Path and Name of the Shader

Shader "Unlit/RedShader"

Changing this will change the path you have to go through, within the material, to assign this shader to 
it. The filename and the path of the shader can be different (which can be quite treacherous), so changing 
the filename won’t change the shader path, and vice versa.

Properties

Properties
    {
        _MainTex ("Texture", 2D) = "white" {}
    }

Each property that shows up in the inspector is declared here, plus some that don’t need to be declared. 
In this case, only one texture is declared, so we can only pass this shader one texture. You can declare as 
many properties as you want, but if they exceed the capabilities of the target platform, the shader compiler 
will complain.

Sub-Shaders

SubShader
{

There can be more than one sub-shader in a shader, and there are a few types of them. When loading 
the shader, Unity will use the first sub-shader that’s supported by the GPU. Each sub-shader contains a list of 
rendering passes. We’ll get back to this in the chapter on image effects.

Tags

Tags { "RenderType"="Opaque" }

Tags are key/value pairs that can express information, like which rendering queue to use. Transparent 
and opaque GameObjects are rendered in different rendering queues, which is why the code is specifying 
“Opaque”. We’ll come back to tags, but we don’t need to change them now.

Passes

Pass
{

Each pass contains information to set up the rendering and the actual shader calculations code. Passes 
can be executed one by one, separately, from a C# script.
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CGPROGRAM (and ENDCG)

CGPROGRAM

CGPROGRAM and ENDCG mark the beginning and the end of your commands.

Pragma Statements

#pragma vertex vert
#pragma fragment frag
// make fog work
#pragma multi_compile_fog

These provide a way to set options, like which functions should be used for the vertex and pixel shaders. 
It’s a way to pass information to the shader compiler. Some pragmas can be used to compile different 
versions of the same shader automatically.

Includes

#include "UnityCG.cginc"

The “library” files that need to be included to make this shader compile. The shader “library” in Unity is 
fairly extensive and little documented. Here we’re just including the UnityCG.cginc file.

Output and Input Structures

struct appdata
{
   float4 vertex : POSITION;
   float2 uv : TEXCOORD0;

v2f
{
    float2 uv : TEXCOORD0;
    UNITY_FOG_COORDS(1)
    float4 vertex : SV_POSITION;
};

As covered in Chapter 1, the vertex shader passes information to the fragment shader, through a 
structure. v2f is that structure in this file. The vertex shader can request specific information through an 
input structure, which here is appdata.

The words after the semicolons, such as SV_POSITION, are called semantics. They tell the compiler what 
type of information we want to store in that specific member of the structure. The SV_POSITION semantic, 
when attached to the vertex shader output, means that this member will contain the position of the vertex on 
the screen.

http://dx.doi.org/10.1007/978-1-4842-3309-2_1
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You’ll see other semantic with prefix, SV, which stands for system value. This means they refer to 
a specific place in the pipeline. This distinction has been added in DirectX version 10; before that, all 
semantics were predefined.

Variable Declaration

sampler2D _MainTex;
float4 _MainTex_ST;

Any property defined in the property block needs to be defined again as a variable with the appropriate 
type in the CGPROGRAM block. Here, the _MainTex property is defined appropriately as a sampler2D and later 
used in the vertex and fragment functions.

Vertex Function and Fragment Function

v2f vert (appdata v)
{
    v2f o;
    o.vertex = UnityObjectToClipPos(v.vertex);
    o.uv = TRANSFORM_TEX(v.uv, _MainTex);
    UNITY_TRANSFER_FOG(o,o.vertex);
    return o;
}

fixed4 frag (v2f i) : SV_Target
{
    // sample the texture
    fixed4 col = tex2D(_MainTex, i.uv);
    // apply fog
    UNITY_APPLY_FOG(i.fogCoord, col);
    return col;
}

As defined by the pragma statement #pragma vertex name and #pragma fragment name, you can 
choose any function in the shader to serve as the vertex or fragment shader, but they need to conform to 
some requirements, which we’ll list in later chapters.

Now you’re going to become more familiar with editing by making this shader live up to its name of 
RedShader.

Shader Editing
In order to get used to shader editing, we’ll start by making some simple edits and getting rid of code that 
does not contribute to the final result.
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From White to Red
We’re going to change the final color of the mesh to be red. Double-click on the shader file, and 
MonoDevelop (or Visual Studio, depending on your preferences) should open the file for you. It should show 
the file with syntax coloring, which will make it much easier to read.

Let’s think about—what is the bare minimum we can do to make this shader output red—and then 
we’ll clean up the code that will become unused. If you think about the rendering pipeline, which we went 
through in Chapter 1, you’ll realize that if you hardcode the color you want at the end of the fragment 
function, where it returns col, you’ll basically overwrite any other calculation done up to then. Listing 2-2 
shows you how to do this.

Listing 2-2.  On the Left the Default Code, On The Right the Code That Just Returns Red

fixed4 frag (v2f i) : SV_Target
{
    // sample the texture
    fixed4 col = tex2D(_MainTex, i.uv);
    // apply fog
    UNITY_APPLY_FOG(i.fogCoord, col);
    return col;
}

fixed4 frag (v2f i) : SV_Target
{
return fixed4(1, 0, 0, 1);
}

col becomes fixed4(1,0,0,1). fixed4 is a type that contains four decimal numbers with fixed 
precision. fixed is less precise than half, which is less precise than float.

In this case, it doesn’t matter which precision we choose, but it will matter if you want to squeeze more 
performance out of a shader without ruining fidelity. In this position, as the final color outputted by the 
shader, the first component of the vector is red, the second is green, the third blue, and the fourth the alpha 
value. Keep in mind that the alpha is mostly going to be ignored, unless you’re rendering in the Transparent 
queue.

I removed most of the code in the fragment function, because it was no longer relevant. It pays to be tidy 
and mindful of only leaving code that’s actually useful inside a shader. Going still further, we can eliminate 
anything to do with the fog rendering, since we’re hardcoding the final color. The final shader, with all 
superfluous calculations and options removed, looks like Listing 2-3.

Listing 2-3.  The Final RedShader

Shader "Unlit/RedShader"
{
    SubShader
    {
        Tags { "RenderType"="Opaque" }

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            #include "UnityCG.cginc"

http://dx.doi.org/10.1007/978-1-4842-3309-2_1
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            struct appdata
            {
                float4 vertex : POSITION;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
            };

            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                return o;
            }

            fixed4 frag (v2f i) : SV_Target
            {
                return fixed4(1,0,0,1);
            }
            ENDCG
        }
    }
}

As you can see, anything related to textures and fog has been removed. What remains is responsible for 
rasterizing the triangles into pixels, by means of first calculating the position of the vertices. The rasterizing 
part is not visible, as it implemented within the GPU, and it’s not programmable.

You might remember that we mentioned many coordinate systems in the previous chapter. Here 
in the vertex function, there is a translation of the vertex position from Object Space, straight to Clip 
Space. That means the vertex position has been projected from a 3D coordinate space to a different 3D 
coordinate space which is more appropriate to the next set of calculations that the data will go through. 
UnityObjectToClipPos is the function that does this translation. You don’t need to understand this right 
now, but you’ll encounter coordinate spaces again and again, so it pays to keep noticing them.

The next step (which happens automatically) is that that Clip Space vertex position is passed to the 
rasterizer functionality of the GPU (which sits between the vertex and fragment shaders). The output of the 
rasterizer will be interpolated values (pixel position, vertex color, etc.) belonging to a fragment.

This interpolated data, contained within the v2f struct, will be passed to the fragment shader. The 
fragment shader will use it to calculate a final color for each of the fragments.

Adding Properties
Hardcoding values is not a nice habit, so let’s transform this red shader into a shader that can be any color 
we want. To do that, we need to reintroduce the property block. But instead of having a texture property, we 
want a color property.
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The first step is adding this property block back to the file:

Properties
{
    _Color ("Color", Color) = (1,0,0,1)
} 

A property block is made of _Name ("Description", Type) = default value. There are many 
different types of properties, including textures, colors, ranges, and numbers. We’ll introduce more of them 
in the future. For now, let’s go on with wiring this property to the shader itself. As it is now, the shader will 
compile, but the color you pick won’t be used.

That’s because we haven’t declared and used the _Color variable yet. First add the declaration 
somewhere after the CGPROGRAM statement:

fixed4 _Color;

Then change the return statement in the fragment function so it’s actually using the _Color variable:

fixed4 frag (v2f i) : SV_Target
{
    return _Color;
} 

Now you can choose a color from the Material Inspector panel (see Figure 2-9).

Figure 2-9.  The new color picker made available by the Color property
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Now you know how to wire a property into the shader code. This shader, like all Unity shaders, is mixing 
two languages. One is Cg, a shader language developed by NVIDIA, which is used between the CGPROGRAM 
and ENDCG statements. The other is ShaderLab, an extension of Cg developed and used only by Unity, which 
is everything outside of CGPROGRAM. That is the reason you had to declare the _Color variable, so the Cg part 
of the code would be aware of the property living on the ShaderLab side of things.

Now the shader name is not descriptive any more. Let’s change it to MonochromeShader. To do that you 
have to change:

•	 The shader filename to MonochromeShader

•	 The shader path name to Unlit/MonochromeShader

You can choose whether to make them match or not, but when you have many shaders, having non-
matching names is going to get confusing fast.

Summary
This chapter covered the shader editing workflow in Unity, including how the shader code maps to the 
rendering pipeline on the GPU. You made a very simple shader, which included both vertex and fragment 
functions, and you also learned a lot of ShaderLab syntax.

Next
Now that you have some shading coding experience under your belt, the next chapter covers how shaders fit 
within the graphics pipeline in more detail.
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CHAPTER 3

The Graphics Pipeline

This chapter describes every step in the execution of shaders, including how they hook into the graphics pipeline.
By graphics pipeline we intend the steps needed to render a 3D scene into a 2D screen. As mentioned 

in the first chapter, shader execution is composed of many steps. Some of those steps are implemented 
completely in hardware in the GPU, and they are fixed, while others are programmable through shaders. 
This is because the modern GPU has evolved around the graphics pipeline.

3D renderers were first implemented completely in software, which was very flexible, but also very 
slow. Then 3D acceleration appeared, and more and more of the rendering process was implemented in the 
hardware, which as a consequence made it much more inflexible. To get some of that flexibility back, parts of 
the pipeline were made programmable with shaders.

This chapter shows how each part of a shader maps to some part of the graphics pipeline.

Why Learn the Basics of Graphics APIs
You might have heard of OpenGL, Metal, Vulkan, and Direct3D.

They are all graphics APIs, and they have emerged on different platforms, and at different times, but 
they all share the common objective of providing a set of tools to render a 3D scene without starting from 
scratch, while taking advantage of hardware acceleration.

While it is certainly possible to write a software renderer from scratch, it hasn’t been a viable enough 
(which mainly means fast enough, in this case) option to ship a game for at least a decade. While writing a 
software renderer is an enormously educational experience, it’s not needed to ship games. Nowadays you 
don’t even need to use graphics APIs directly, since the available game engines such as Unity wrap them for 
you with an ease that no one who isn’t wielding a large team of graphics programmer can have.

In general, you don’t want to deal with graphics APIs directly, unless you’re developing a game engine. 
But it’s very useful, and sometimes even necessary, in shader development, to know what lies beneath. If you 
aren’t aware of the graphics pipeline and the graphics APIs, you are powerless to optimize your shaders and 
unable to debug the tricky problems that sometimes arise in shader development.

A General Structure of the Graphics Pipeline
The precise way in which the graphics pipeline is implemented, in some specific GPU, can vary a lot. But the 
general principles can be distilled and simplified into a version that works for our explanatory purposes.

Keep in mind that, while the principles hold in this example, the stage names and how the stages are 
divided may vary between different graphics APIs. There are some steps that are always going to be needed, 
but they may be broken down differently, or called with different names, depending on the documentation 
you’re reading. Figure 3-1 shows the stages of a rendering pipeline (which is another name for graphics 
pipeline), which are then listed and explained.

https://doi.org/10.1007/978-1-4842-3309-2_3
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The stages of an example graphics pipeline are as follows:

•	 The input assembly stage gathers data from the scene (meshes, textures, and 
materials) and organizes it to be used in the pipeline.

•	 The vertex processing stage gets the vertices and their info from the previous stage 
and executes the vertex shader on each of them. The main objective of the vertex 
shader used to be obtaining 2D coordinates out of vertices. In more recent API 
versions, that is left to a different, later stage.

•	 The vertex post-processing stage includes transformations between coordinate 
spaces and the clipping of primitives that are not going to end up on the screen.

•	 The primitive assembly stage gathers the data output by the vertex processing stages 
in a primitive and prepares it to be sent to the next stage.

•	 The rasterizer is not a programmable stage. It takes a triangle (three vertices and 
their data) and creates potential pixels (fragments) out of it. It also produces an 
interpolated version of the vertex attributes data for each of the fragments and a 
depth value.

Figure 3-1.  An overview of the graphics pipeline
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•	 The fragment shader stage runs the fragment shader on all the fragments that the 
rasterizer produces. In order to calculate the color of a pixel, multiple fragments may 
be necessary (e.g., antialiasing).

•	 The output merger performs the visibility test that determine whether a fragment 
will be overwritten by a fragment in front of it. It also does other tests, such as the 
blending needed for transparency, and more.

This general overview is a mix of many different graphics pipelines, such as OpenGL and Direct3D 11. 
You might not find the same names in the specific one you want to use, but you’ll see very similar patterns.

The Rasterizer
The rasterizer is an important part of rendering pipelines, and one that is normally not much discussed. It’s a 
solved problem, so to speak, and it works quietly without attracting much attention.

It determines which pixels in the final image the triangle covers (see Figure 3-2). It also interpolates the 
different values that belong to each vertex (such as colors, UVs, or normals) over the pixels the  
triangle covers.

The rasterizer is a fairly hidden bit of functionality and is easily overlooked. One of the clearest 
examples that can be devised to show you how it makes a difference is the interpolation of vertex colors. 
Imagine that you have a model (a simple quad, or even a triangle, will do) that has different vertex colors 
attached to its vertices. Figure 3-3 shows how that looks after it passes through the rasterizer.

Figure 3-2.  The rasterizer determines which pixels a triangle covers
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Later in this chapter, you’ll learn how to write the shader that will render this example.

The Structure of an Unlit Shader
As you saw in the last chapter, an Unlit shader revolves around the two shader functions and the two data 
structures used to pass information between them. Since their objective is to script parts of the graphics 
pipeline, they match some steps of the pipeline quite precisely. We’re going to detail what they are in this 
section.

To summarize what you learned about Unlit shaders, Figure 3-4 shows an illustration representing their 
data flow. The vertex data is gathered into the appdata struct, which is passed to the vertex function. The 
vertex function fills in the members of the v2f data structure (which stands for vertex to fragment), which 
is passed as an argument to the fragment function. The fragment function returns the final color, which is a 
vertex of the four values—red, green, blue, and alpha.

Figure 3-3.  Interpolation of vertex colors by the rasterizer 
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In the last chapter, you wrote your first shader. It was very simple; it just rendered a model in a single 
color, without any lighting. We’re going to use that example again to match some parts of the graphics 
pipeline to shaders, and then we’ll also add to it, to better show the usefulness of the rasterizer.

Vertex Data Structure
The first structure was appdata, which corresponds to the input assembly stage. To freshen your memory, 
here is the appdata from the last shader:

struct appdata
{
    float4 vertex : POSITION; 
};

: POSITION is a shader semantic, which is a string attached to a shader data structure that conveys 
information about the intended use of a member. By adding members with a semantic to appdata, we tell 
the input assembly stage what data we want out of what is available.

In this case, we only asked for the vertex position, which is the bare minimum you’re always going to ask 
for. There is more data you can ask for, such as UV information to deal with texturing, or the vertex colors, 
should the model have them. The semantic and the data type must match. If you were to give it a single float 
for a POSITION semantic, the float4 value would be truncated silently to float.

The data type chooses the “shape” of the variable, but the semantic chooses what goes inside it. Many 
kinds of semantic can fill a float4, but if we were to mistake which semantic we want, the shader would 
break at runtime, likely in subtle ways. Subtle shader breakage is one of the worst issues to track down once 
your shaders get complex, so be careful.

This is the only way you can gather data that changes per vertex, but you can pass other data in from 
properties and global properties that doesn’t vary per vertex. OpenGL calls these per-vertex values, quite 
appropriately, varying, and the ones that you can pass globally, or a property in a shader, are called uniform.

Figure 3-4.  The data flow of an Unlit shader
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Vertex Function
The next programmable stage is the vertex processing one, in which the vertex shader function is executed. 
It takes the appdata data structure (appdata) as an argument and returns the second type of data  
structure (v2f):

v2f vert (appdata v)
{
    v2f o;
    o.vertex = UnityObjectToClipPos(v.vertex);
    return o;
}

This is the bare minimum that needs to be done in a vertex shader: transforming the coordinates 
of the vertex to a coordinate space that can be used by the rasterizer. You do that by using the 
UnityObjectToClipPos function. For now, don’t worry too much about coordinate spaces, as we  
explain them in detail in the next chapter.

Fragment Data Structure
Again, which members we include in the v2f data structure decides what data we can pass on from the 
vertex shader. This is the v2f struct from last chapter:

struct v2f
{
    float4 vertex : SV_POSITION;
};

It’s very minimal and it only covers the 2D position of the vertex that was processed. We still need to get 
the semantic sort of right, but this data structure is less sensitive to mistakes. Keep in mind that semantics must 
not to be repeated. For example, you can’t assign the SV_POSITION semantic to a second member as well.

Fragment Function
The next programmable stage is the fragment shading stage, where the fragment shader is executed on  
each fragment. In the very simple case from Chapter 2, the fragment shader was only using the position from 
the vertex.

float4 frag (v2f i) : SV_Target
{
    return _Color;
}

Actually, if you remember, that float4 wasn’t used anywhere in the code. But if you try to get rid of it, 
you’ll find that the shader doesn’t render anything at all. That value is used by the graphics pipeline, even if 
you don’t see it reflected in the shader code.

You may notice that the frag function has an output semantic, which we didn’t mention in the previous 
chapter. That is used for specific techniques that we are not going to cover in this book. You should stick with 
SV_Target, which means that it outputs one fragment color.

http://dx.doi.org/10.1007/978-1-4842-3309-2_2
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This simple shader shows you that the conversion from 3D scene space and 2D target render space 
works, because we can indeed render a 3D model into a 2D screen. But it doesn’t showcase clearly the role of 
the rasterizer. Let’s add vertex colors support to this shader. For this, you’ll need to use a mesh that does have 
vertex colors. One is included in the example source code for this chapter.

Adding Vertex Colors Support
Basically, we are adding one varying, one extra value attached to the vertex, which will need to be passed to 
the rasterizer, which will interpolate it.

Appdata Additions
When adding a member to appdata that is supposed to be filled with the vertex colors of the mesh (if the 
mesh has them), we need to pay attention to the name and semantic. The best bet is to use color as the 
name of the member and COLOR as semantic. Using only the COLOR semantic with a differently named 
variable might not work, depending on your platform. Here’s how the structure should look after adding this 
vertex color member:

struct appdata
{
    float4 vertex : POSITION; 
    float4 color : COLOR;
}; 

v2f Additions
In v2f, you need to add the exact same member. As before, this data structure can be less nitpicky, but you change 
this formula at your own risk. Here’s how the structure should look after adding this vertex color member:

struct v2f
{
    float4 vertex : SV_POSITION;
    float4 color : COLOR;
};

Assign the Color in the Vertex Function
Having prepared the structures with the appropriate members, we add one line to the vertex function. It 
assigns whatever is in appdata’s color member to the v2f’s color member. The “magic” is here; it makes the 
vertex color data go through the rasterizer, which is going to interpolate the colors appropriately:

v2f vert (appdata v)
{
    v2f o;
    o.vertex = UnityObjectToClipPos(v.vertex);
    o.color = v.color;
    return o;
}
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Use the Color in the Fragment Function
As in the previous shader, the fragment function is only preoccupied with returning one color, but in this 
case we ignore our property (which we can remove completely) and use the interpolated varying that is 
contained in v2f:

fixed4 frag (v2f i) : SV_Target
{
    return i.color;
}

Final Result
Figure 3-5 shows the result of our interpolated vertex colors shader.

Figure 3-5.  The result of rendering this quad with vertex colors within a Unity scene
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Listing 3-1 shows is the final shader, after removing the color property.

Listing 3-1.  The Final Shader That Showcases the Rasterizer’s Contribution

Shader "Custom/RasterizerTestShader"
{
    SubShader
    {
        Tags { "RenderType"="Opaque" }

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float4 color : COLOR;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
                float4 color : COLOR;

            };
            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.color = v.color;
                return o;
            }
            float4 frag (v2f i) : SV_Target
            {
                return i.color;
            }
            ENDCG
        }
    }
}
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Summary
This chapter explained the stages of the graphics pipeline, specifically which ones you can control through 
shader code. We demonstrated the otherwise hard to notice and uncelebrated role of the rasterizer with a 
new shader example.

Next
In the next chapter, we’re going to tackle coordinate spaces in detail and connect them to where they are 
used within the graphics pipeline.
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CHAPTER 4

Transforming Coordinate Spaces

In the past chapters, we mentioned transformations between coordinate spaces multiple times, but we 
deferred a more detailed explanation until this chapter.

As mentioned in the first chapter, you can theoretically choose what coordinate space each of your 
calculations is going to live in. In the case of real-time rendering, most of the choices have already been 
made for you by the graphics pipeline. It expects values (vertex positions, normals, etc.) to be in a certain 
coordinate space, at certain steps of the process.

One example of this from the previous chapter is when the vertex shader outputs the vertex 
position, it’s supposed to be in Clip Space. That’s why we set the vertex in the v2f data structure to 
UnityObjectToClipPos(v.vertex).

This chapter goes through each of the spaces commonly used in the graphics pipeline. For each, we’ll 
go through how to transform them and at what pipeline stages they’re generally used.

Coordinate Spaces Who’s Who
Let’s start by introducing each of the coordinate spaces commonly used in real-time rendering. We will 
consider six: Object Space, World Space, Camera Space, Clip Space, Normalized Device Coordinates, and 
Screen Space.

This is mostly the order in which they are used within the graphics pipeline. The data passed to the 
vertex shader is in Object Space, some of it will need to be translated to World Space (to be used for lighting 
calculations), some of that will go on to being translated to Camera Space, and finally to Clip Space (vertex 
position), etc.

Object Space
The first coordinate space we’re going to talk about is Object Space (see Figure 4-1). Object Space is a 3D 
coordinate system that has its origin commonly set at the base, or center, of the mesh that is being sent to 
the rendering pipeline in the input assembly stage. The origin is likely the pivot point in the 3D modeling 
software that was used to model the mesh.

https://doi.org/10.1007/978-1-4842-3309-2_4
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It can also be called Local Space or Model Space. However, in Autodesk Maya, Local Space is used to 
refer to a different coordinate system, so beware of possible confusion there. When the vertex position is 
stored into appdata, in order to be passed to the vertex shader, it is in Object Space.

World Space
Moving on, next up is World Space. In World Space, the frame of reference is not the single mesh, but the 
entire scene (see Figure 4-2).

Figure 4-1.  Mesh in Object Space; note where the origin is placed

Figure 4-2.  A scene in World Space



Chapter 4 ■ Transforming Coordinate Spaces

45

Where exactly the origin point falls in World Space depends on how you put the scene together. In 
Unity, this is the space in which your Unity scene lives, and the coordinates used in your GameObjects 
transforms should be in this coordinate space.

Transformation Between Spaces
To transform between different coordinate spaces, matrix multiplications are normally used. One 
convenient feature of matrices is that they can be composed. So, one matrix can get us all the way from 
Object Space to Clip Space.

Unity includes many built-in functions that implement the most commonly used transformations for 
some types of values, such as position, normals, light directions, etc. Here are some that will obtain a certain 
value in World Space:

•	 float3 UnityObjectToWorldDir( in float3 dir ) takes a direction in Object 
Space and transforms it to a direction in World Space

•	 float3 UnityObjectToWorldNormal( in float3 norm ) takes a normal in Object 
Space and transforms it to a normal in World Space; useful for lighting calculations

•	 float3 UnityWorldSpaceViewDir( in float3 worldPos ) takes a vertex position 
in World Space and returns the view direction in World Space; useful for lighting 
calculations

•	 float3 UnityWorldSpaceLightDir( in float3 worldPos ) takes a vertex position 
in World Space and returns the light direction in World Space; useful for lighting 
calculations

These functions hide the implementation details, and you only need to worry about passing them the 
right value and using them in the appropriate place.

As explained earlier, transforming from a coordinate space to another is done by using specific 
matrices. If you recoil when hearing the word "matrix," using these utility functions you’ll be able to achieve 
a lot, without worrying about matrices too much.

Thanks to them, you mostly don’t need to handle these transformations with matrices any more, even 
though that is still happening under the hood. Many functions that you can use to transform coordinates 
between spaces can be found in UnityShaderVariables.cginc, UnityShaderUtilities.cginc, and 
UnityCG.cginc.

You can get more hands on and use matrices directly, setting up the matrix multiplication yourself. In 
this use case, Unity includes many built-in matrices you can use for space transformations, but they have 
different names compared to the same options in OpenGL, etc.

Here are some of the built-in Unity matrices for transformation from and to Object Space:

•	 unity_ObjectToWorld, which is a matrix that transforms from Object Space to  
World Space

•	 unity_WorldToObject, the inverse of the above, is a matrix that transforms from 
World Space to Object Space

As an example, let’s translate the vertex position from Object Space to World Space:

float4 vertexWorld = mul(unity_ObjectToWorld, v.vertex);

We’re basically passing to the mul function our matrix and the value that we want transformed. You can 
also make up your own matrix, if none of the built-in ones will do what you need.



Chapter 4 ■ Transforming Coordinate Spaces

46

Camera Space
Next is Camera Space, also called Eye Space or View Space (see Figure 4-3). This coordinate space contains 
the same scene as the World Space coordinate system, but from the point of view of the camera that you are 
rendering from.

Camera Space is needed, because it’s a necessary step to get to outputting Clip Space, but that is mostly 
taken care by the standard shader infrastructure.

There are a couple of built-in matrices for Camera Space:

•	 unity_WorldToCamera, which transforms from World Space to Camera Space

•	 unity_CameraToWorld, the inverse of the above, transforms from Camera Space to 
World Space

There is also one built-in function:

•	 float4 UnityViewToClipPos( in float3 pos ) transforms a position from View 
Space to Clip Space

Figure 4-3.  Scene in View Space
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Clip Space
The next coordinate space we’re going to talk about is Clip Space (see Figure 4-4).

The vertex post-processing stage of the rendering pipeline includes clipping. Clipping removes any part of 
the primitives that are not within the boundaries of Clip Space. Clip Space coordinates range from -1 to 1.

There’s one unintuitive bit of business going on here. You would expect the coordinate spaces we have 
listed up to now, Clip Space included, to have three coordinates—one for the x axis, one for the y axis, and 
one for the z axis. But in OpenGL (and other APIs), the 3D spaces we listed don’t use three coordinates; they 
use four: ( x, y, z, and w).

Where does this w coordinate come from, and why is it used? It turns out that there is an issue with 
using Cartesian spaces for 3D rendering: two parallel lines cannot meet each other, which makes it 
impossible to represent perspective. This additional coordinate is necessary for the workaround to this 
problem, which is called homogeneous coordinates. We keep around this additional coordinate w, and then, 
at the opportune moment (going from Clip Space to Normalized Device Coordinates), we divide all the 
others by it. Doing this, we can represent perspective.

So, Object, World, View, and Clip Space represent 3D spaces using these four coordinates. In all but 
Clip Space, w is 1. Then, w is changed with a number different from 1 by the matrix used to transform from 
View to Clip Space. That matrix is called the projection matrix in OpenGL. Then the w coordinate is used to 
determine whether a vertex should be clipped or not.

To set up the projection matrix, you need to use the information from the viewing volume (aka, the 
frustrum). The frustrum varies with what type of projection you want to use; common ones are perspective 
projection and orthographic projection.

In perspective projection (see Figure 4-5), the frustrum is composed of a near and a far plane, where the 
near plane is smaller than the far one, because objects located farther from the camera will appear smaller 
in perspective. The field of view defines the proportion between the near and far plane. Changing it changes 
how much of the scene we’re going to render.

Figure 4-4.  The scene in Clip Space



Chapter 4 ■ Transforming Coordinate Spaces

48

There are no built-in matrices for Clip Space, but there are some built-in functions for it:

•	 float4 UnityWorldToClipPos( in float3 pos ), which transforms a position 
from World Space to Clip Space

•	 float4 UnityViewToClipPos( in float3 pos ), which transforms a position from 
View Space to Clip Space

•	 float4 UnityObjectToClipPos(in float3 pos), which transforms a vertex 
position from Object Space to Clip Space

Normalized Device Coordinates
Next up are the Normalized Device Coordinates (NDC). This is a 2D space that is independent of the specific 
screen or image resolution. Coordinates in NDC are obtained by diving Clip coordinates by w, a process 
called perspective division. Again, NDC coordinates range from -1 to 1 in OpenGL. NDC uses three numbers 
instead of two, as you’d expect it to, but in this case the z coordinate is used for the depth buffer, rather than 
being a homogeneous coordinate.

Screen Space
Finally, Screen Space (see Figure 4-6) is the coordinate space of the 2D render target. That may be a screen 
buffer, or a separate render target, or an image. It is obtained by transforming and scaling NDC into viewport 
resolution. Finally, these screen coordinates of the vertices are passed to the rasterizer, which will use them 
to produce fragments.

Figure 4-5.  A frustrum used for perspective projection
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Figure 4-6.  The scene in Screen Space

Underneath Built-In Functions
The book has mentioned many built-in functions so far, and now we look at how one of them works in more 
detail. From the last chapter’s example shader:

v2f vert (appdata v)
{
    v2f o;
    o.vertex = UnityObjectToClipPos(v.vertex);
    o.color = v.color;
    return o;
}

UnityObjectToClipPos is a function that stands for mul(UNITY_MATRIX_MVP,*) which is a matrix 
multiplication, going from Object Space to Clip Space. Matrices are commonly combined by multiplying 
them by each other, so MVP stands for Model Matrix * View Matrix * Projection Matrix. In other words, we’re 
fast-forwarding from Object Space through World and View Space to get to Clip Space coordinates using just 
this one line.

In the next chapter, you see more examples of useful applications of transforming values between 
coordinate spaces.
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Where to Find the Shader “Standard Library” Code
What I mean by standard library is a ZIP file that you can download from the Unity web site that contains all 
the shader includes and the shader code in Unity. You can also find that code inside your Unity install, but 
its position may be subject to change.

To get this code, go to the Unity web site and find the link to download older versions of Unity. That 
will give you a list of Unity versions and different download options. What you’re looking for is the "Built In 
Shaders" option (see Figure 4-7). That will download a ZIP file with all the includes mentioned up to now, 
and more.

Summary
This chapter presented the various coordinate spaces commonly used in the graphics pipeline and in 
shading, and discussed ways to transform between them. It also showed which functions are already 
included in Unity to convert between them.

Next
The next chapter begins the journey into lighting shaders, starting from the basics.

Figure 4-7.  Downloading the Unity shader source code
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CHAPTER 5

Your First Unity Lighting Shader

In the previous chapters, we introduced the shader editing workflow, got started with the simplest possible 
shader, and explained the graphics pipeline and the role of coordinate space transformations in it.

This chapter gets started on the main topic of this book: lighting. There is an infinite variety of shaders 
that you can write, without ever needing to worry about lighting. But the heart of this book is lighting 
calculations and how they help making your game look great and distinctive. To get started, we’ll take the 
MonochromeShader shader and extend it with some very approximated lighting calculations.

This type of approximated lighting was used before the advent of physically based rendering. It’s 
cheaper, simpler, but also uglier. You might recognize it as what used to be the typical “video game look”. 
That said, it’ll introduce you to lighting through short and simple shaders, and will also help you understand 
how shading has evolved with time.

Lighting Shaders
A lighting shader includes all the calculations needed to simulate light hitting a surface. While most 
lighting shaders are based, at least loosely, on the rendering equation, a few years ago there wasn’t enough 
computational power in GPUs to do much more than very loose approximations of it. Until about 2010, 
when the physically based model started to trickle down from the movie rendering community, these were 
the terms we would use to refer to different parts of the lighting calculations:

•	 Diffuse is the subset of a surface with irregular microfacets, that reflects light in many 
different directions

•	 Specular is the subset of the surface that has aligned microfacets, and reflects light in 
a few, similar directions

•	 Ambient is the minimum light intensity in the scene, so places where the direct light 
doesn’t reach won’t end up just black

These explanations are in terms of microfacet theory, which is something we can do now, since 
physically based rendering introduced it in real-time shading. But before that, diffuse and specular were 
quite hard to pin down precisely. That’s because in physical reality there is no such clean division between 
specular and diffuse. The variability in directions of the microfacets of a surface controls how smooth 
or rough that surface looks. A rougher surface will look more diffuse; a smoother surface will look more 
specular. Diffuse to specular is a continuum, not a binary choice.

https://doi.org/10.1007/978-1-4842-3309-2_5
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What Is an Approximation
An approximation is a value or quantity that is nearly, but not exactly, correct. In our case, an approximation 
means an alternative way of calculating some parts of the rendering equation. Approximations can be less 
or more computationally intensive. As of yet, it’s impossible to calculate the rendering equation in real-time, 
due to the presence of an integral in it:

L x L x f x L x n dw0 0 0 0, , ,i i i iw w w w w we( ) = ( )+ ®( )× ( )× ×( )
W
ò ,

meaning that the group of calculations after the 
W
ò  is going to be repeated for each direction w  in the 

hemisphere above the point on the surface called x . As you may suspect, each direction means a lot of 

directions. Solving this integral in real-time has so far eluded us, although we’re starting to see things like 
somewhat-real-time raytracing being implemented on GPUs.

Using a cheaper approximation may mean that your game can run at 60 fps, but it will also mean that 
you lost some potential rendering fidelity. Not all games focus on fidelity. Most of the time, graphics need 
only be good enough. But in this book we focus on fidelity, as that’s the yardstick by which physically based 
rendering measures results.

Diffuse Approximation
Let’s try to define diffuse in more practical terms. Think of light hitting a surface, and then being reflected in 
any possible direction (see Figure 5-1). Each reflection direction is equally probable.

Figure 5-1.  Light being reflected off a surface in a diffused way
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This approximation only concerns itself with the direction, color, and intensity of the light. It doesn’t 
take into account the nature of the surface at the microscopic level. The objective is to determine how 
much light is hitting, and being reflected off, each pixel of the rendered model, without delving into a more 
detailed simulation. Imagine it as a function—you pass it the direction, color, and intensity of the light, as 
well as the unlit color of the surface, and it will give you the color of the final image at that point.

It’s possible to implement it in the vertex shader, which is computationally cheaper, since usually there 
are fewer vertices than pixels. This works because the rasterizer will interpolate the values, but as a side 
effect that creates pretty visible artifacts.

Specular Approximation
Think of a light hitting a surface and being reflected in just a few directions (see Figure 5-2). At this level of 
approximation, specular light often appears as an almost white small circle. Again, this approximation is 
concerned only with the direction, color and intensity of the light.

Figure 5-2.  Light being reflected off a surface in a specular way

The fact that light is being reflected only in a few directions makes specular view-dependent, meaning 
that if your point of view moves, the specular term will change. Specular is trickier to simulate in lightmaps, 
because you need to bake the direction, and other information, in the lightmap as well.

Diffuse and Specular Combined
Both diffuse and specular terms will show up in the same surface, most of the time. Metals have a lower 
diffuse component and a much higher specular one, but they still have a diffuse component. When you 
combine them, you have the typical graph commonly used to represent lighting calculations, as shown in 
Figure 5-3.
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Calculating Basic Lighting
Now that we’ve defined specular and diffuse approximations, let’s attempt to implement them.

Diffuse
If you remember, back in Chapter 1, we talked about how the angle at which the light ray hits the surface is 
important. That angle is called the angle of incidence, and the bigger it is, the less light the surface will receive 
from the ray. For angles bigger than 90 degrees, it won’t receive any light at all (see Figure 5-4).

Figure 5-3.  Graph of how light is reflected off a surface, with a specular and a diffuse lobe

http://dx.doi.org/10.1007/978-1-4842-3309-2_1
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To calculate the amount of brightness/light a surface will receive, we can use the cosine of the angle of 
incidence.

To calculate lighting in our shader, we need to calculate that angle from the surface normal direction 
and the light direction. Those two are vectors, which means they are groups of more than one numerical 
value. Vectors in shader languages can typically contain two, three, or four elements. The operation we need 
here is called a dot product. Both cosine and dot product are functions included in every shader language. 
Translated to code, this concept is shown in Listing 5-1.

Listing 5-1.  Two Ways of Calculating Brightness (Magnitudes of Normal and LightDir Are 1)

float brightness = cos( angle_of_incidence ) // brightness from the angle of incidence
float brightness = dot( normal, lightDir )  // �brightness calculated from the Normal and 

Light directions

float3 pixelColor = brightness * lightColor * surfaceColor // final value of the surface color

The result from this operation, multiplied by the color of the light and the color of the surface, will 
give you a crude but effective approximation of lighting. This basic diffuse is also known as Lambert, or 
Lambertian Reflectance:

LightDir Normal Color IntensityLighti ´ ´

Meaning that the dot product of the light direction, with the normal direction, multiplied by the light 
color and intensity, will give you the color of the pixel at that point.

Now that we’ve introduced the theory and implementation of a Diffuse term, we can put this into 
practice by adding them to our cube scene.

Figure 5-4.  Angle of incidence and its effect on the amount of reflected light
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Your First Lighting Unity Shader
Let’s extend the monochrome shader with a Diffuse term.

Implementing a Diffuse Term
Let’s create a new material, called DiffuseMaterial. Duplicate the MonochromeShader and call the duplicate 
DiffuseShader. Remember to change the shader path to Custom/DiffuseShader, or you will have two 
overlapping shader path names.

We need to make quite a few changes to the old shader. First, we need to change the tags section to this:

Tags { "LightMode" = "ForwardBase" } 

This means that this pass will be used for the first light pass of the forward renderer. If we only have one 
ForwardBase pass, any lights after the first one won’t contribute to the final result. If we want them to, we 
need to add another pass and set its tags to the following:

Tags { "LightMode" = "ForwardAdd" } 

We’re not going to worry about the second pass for now. Moving on, we need to add another include to 
the appropriate place in the file:

#include "UnityLightingCommon.cginc"

UnityLightingCommon.cginc is a file that contains many useful variables and functions that can 
be used in lighting shaders. With this, the chores are over, so now we’re going to get into the meat of the 
implementation.

First, keep in mind that the Normal and Light directions need to be in one of the coordinate spaces 
covered in Chapter 4. Thinking about it, we shouldn’t use Object Space, because the light is outside the 
model we’re rendering. The appropriate space to use for these lighting calculations is World Space.

First, we need to get the Normal information from the renderer; therefore, we need to add a slot for that 
normal to appdata, the data structure that contains the information we ask from the renderer. This is how 
appdata should look:

struct appdata
{
    float4 vertex : POSITION;
    float3 normal : NORMAL;
};

Notice that we’re also telling it that we want a normal by adding the NORMAL semantic to the declaration; 
otherwise, there’d be no way for the renderer to understand what we want.

This vertex function will need to calculate the Normal direction in World Space. Fortunately, there is 
a handy function called UnityObjectToWorldNormal (mentioned in Chapter 4) that takes the Object Space 
Normal direction we just passed to the vertex shader through appdata and translates it to World Space.

v2f vert (appdata v)
{
    v2f o;
    o.vertex = UnityObjectToClipPos(v.vertex);

http://dx.doi.org/10.1007/978-1-4842-3309-2_4
http://dx.doi.org/10.1007/978-1-4842-3309-2_4
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    float3 worldNormal = UnityObjectToWorldNormal(v.normal); //calculate world normal
    o.worldNormal = worldNormal; //assign to output data structure
    return o;
}

Then we need to assign it to the output structure. To do that, we need to add that slot, using the 
TEXCOORD0 semantic to tell it to use a slot that fits a vector of three or four values.

struct v2f
{
    float4 vertex : SV_POSITION;
    float3 worldNormal : TEXCOORD0;
};

Now we can use that information to calculate our Lambert diffuse. We can get the light color from the 
variable _LightColor0, which comes from the extra include file, and the World Space light position of the 
first light in the scene from the variable _WorldSpaceLightPos0.

When you want to access a subset of a vector, you can add r, g, b, a, or x, y, z, w to it, after a dot. That 
means accessing the numbers contained by the vector directly, somewhat like you would access the value at 
an index of a c array with [0], [1], etc. This is called a swizzle operator, and it can do more things than array 
indexing, like rearranging the values themselves by changing the order of the letters.

In the fragment shader, we need to first normalize the worldNormal, as the result of a transform may not 
be a vector of magnitude 1. Then we calculate the dot product of normal and light direction, taking care not 
to let it become negative. That’s what the max function does.

float4 frag (v2f i) : SV_Target
{
    float3 normalDirection = normalize(i.worldNormal); 

    float nl = max(0.0, dot(normalDirection, _WorldSpaceLightPos0.xyz));
    float4 diffuseTerm = nl * _Color * tex * _LightColor0;

    return diffuseTerm;
}

Finally, we multiply that dot product with the color of the surface and the color of the light. This is the 
end; your shader should be complete. For your convenience, Listing 5-2 shows all the code for this shader.

Listing 5-2.  Our Diffuse Shader So Far

Shader "Custom/DiffuseShader"
{
    Properties
    {
        _Color ("Color", Color) = (1,0,0,1)
    }
    SubShader
    {
        Tags { "LightMode" = "ForwardBase" }
        LOD 100
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        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #include "UnityCG.cginc"
            #include "UnityLightingCommon.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
                float3 worldNormal : TEXCOORD0;
            };

            float4 _Color;
            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);
                o.worldNormal = worldNormal;
                return o;
            }
            float4 frag (v2f i) : SV_Target
            {
                float3 normalDirection = normalize(i.worldNormal);

                float nl = max(0.0, dot(normalDirection, _WorldSpaceLightPos0.xyz));
                float4 diffuseTerm = nl * _Color * _LightColor0;

                return diffuseTerm;
            }
            ENDCG
        }
    }
}
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To check out your work, apply this shader to the cube in the scene. Assign this shader to its material, 
and then assign the material to your cube (see Figure 5-5).

Figure 5-5.  A cube shader with our Lambert diffuse

To better judge the result, you might want a more complex model. Let’s look at how to import a model. 
In the source supplied with this book, you’ll find a model called duck.fbx. Add a folder called Models to 
your project, and then drag the duck model into it. This will most likely create a folder with a bogus material 
inside; delete that, as we need complete control of our materials, and it’s best to keep the scene tidy. Unity 
attempts to create a material for every imported model, but the results of this automatic conversion are often 
not great.
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Drag the duck model in the scene, then drag DiffuseMaterial on the resulting GameObject, and you 
should be able to enjoy the view of a Lambert-shaded duck (see Figure 5-6).

Figure 5-6.  A duck model shaded with our Lambert diffuse

Adding a Texture Property
In order to make the duck look better, we can add a texture property. Let’s add to the properties:

_DiffuseTex ("Texture", 2D) = "white" {}

Then, you need to add a slot for a texture coordinate in appdata:

float2 uv : TEXCOORD0;

In v2f, since we are already using the TEXCOORD0 semantic for the world normal, we need to change that 
one to TEXCOORD1 and then add:

float2 uv : TEXCOORD0;
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This happens because we’re asking the GPU to give us interpolated texture UVs in that data structure. 
There is a finite number of texture interpolators we can access, and that’s different depending on the GPU in 
your machine. If you work with mobile GPUs and try to pass too many vectors in a data structure, you might 
encounter a compiler error.

Let’s add the variables for the texture:

sampler2D _DiffuseTex;
float4 _DiffuseTex_ST;

In the vertex function, we’re going to add this:

o.uv = TRANSFORM_TEX(v.uv, _MainTex);

This is the macro that scales and offsets texture coordinates. This way, any changes in the material 
properties regarding scales and offsets will be applied here. It’s also the reason why we’re declaring 
_DiffuseTex_ST, because it’s needed by TRANSFORM_TEX. Now we’re going to change the fragment 
function. We need to add a line to sample the texture, and then we need to use this texture with the diffuse 
calculations and the already existing _Color property.

float4 frag (v2f i) : SV_Target
{
    float3 normalDirection = normalize(i.worldNormal);

    float4 tex = tex2D(_DiffuseTex, i.uv);

    float nl = max(_0.0, dot(normalDirection, _WorldSpaceLightPos0.xyz));
    float4 diffuseTerm = nl * _Color * tex * _LightColor0;

    return diffuseTerm;
}

We obtain the final color by multiplying the _Color with the texture sample color, and the dot product of 
normal and light directions. Now you should make a new directory called Textures, drag in the Duck_DIFF.
tga texture from the source code, and assign it to the material property we just added, through the inspector. 
Et voila, your duck will now look much more like a duck (see Figure 5-7).
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Adding an Ambient Value
As mentioned, an ambient is basically a cutoff value, under which we shouldn’t let our diffuse value drop. At 
the moment, it’s hard-coded as 0 in the fragment shader:

float nl = max(0.0, dot(normalDirection, _WorldSpaceLightPos0.xyz));

However, we should probably add a property for it, so that we can change it without changing the code. 
This also introduces you to another type of property, ranges:

_Name ("Description", Range (min, max)) = number

So let’s call this property _Ambient, with a range of 0 to 1, and a default value of 0.25. Then let’s create, as 
usual, a variable for it, called float _Ambient. We will put this variable in place of the 0 as the first argument 
of the max function, where we calculate our nl variable.

Now you can play with the slider for this property and see in real-time how changing it influences the 
final effect (see Figure 5-8).

Figure 5-7.  Our duck benefiting from appropriate textures
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Figure 5-8.  Adding an Ambient slider

Listing 5-3 shows the complete code for this shader.

Listing 5-3.  Our DiffuseShader with Added Properties

Shader "Custom/DiffuseShader"
{
    Properties
    {
        _DiffuseTex ("Texture", 2D) = "white" {}
        _Color ("Color", Color) = (1,0,0,1)
        _Ambient ("Ambient", Range (0, 1)) = 0.25
    }
    SubShader
    {
        Tags { "LightMode" = "ForwardBase" }
        LOD 100

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #include "UnityCG.cginc"
            #include "UnityLightingCommon.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
                float2 uv : TEXCOORD0;
            };



Chapter 5 ■ Your First Unity Lighting Shader

64

            struct v2f
            {
                float2 uv : TEXCOORD0;
                float4 vertex : SV_POSITION;
                float3 worldNormal : TEXCOORD1;
            };

            sampler2D _DiffuseTex;
            float4 _DiffuseTex_ST;
            float4 _Color;
            float _Ambient;
            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.uv = TRANSFORM_TEX(v.uv, _DiffuseTex);
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);
                o.worldNormal = worldNormal;
                return o;
            }
            float4 frag (v2f i) : SV_Target
            {
                float3 normalDirection = normalize(i.worldNormal);

                float4 tex = tex2D(_DiffuseTex, i.uv);

                float nl = max(_Ambient, dot(normalDirection, _WorldSpaceLightPos0.xyz));
                float4 diffuseTerm = nl * _Color * tex * _LightColor0;

                return diffuseTerm;
            }
            ENDCG
        }
    }
}

Summary
This chapter introduced the basics of lighting, explained some lighting formulas, and expanded our 
knowledge of shader writing and ShaderLab properties by implementing diffuse lighting. We also introduced 
how to deal with assets, a subject that will come back in a later chapter.

Next 
In the next chapter, we’re going to add a specular component to this diffuse shader.
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CHAPTER 6

Specular Implementation

In the last chapter, we explained the basic theory of lighting for rendering and implemented a diffuse shader 
from scratch, within an Unlit shader. In this chapter, you’re going to learn how to add a Specular term to that 
shader.

Calculating Basic Lighting (Part II)
In the past chapter, we went through the theory for the diffuse approximation; now it’s Specular 
approximation’s turn.

Specular
You will only see specular if your point of view happens to be lined up with the direction of the specular. That 
makes it view-dependent. You can bake diffuse lighting in standard lightmaps, but specular requires you to 
use some tricks in baking or calculate it in real-time.

One of the simplest formulation of specular we can use is called Phong:

R N L N L= ´ ×( )´ -2

This is the reflection direction. It can be obtained by multiplying the dot product of Normal and Light 
directions with two and the Normal direction, and then subtracting the Light direction. In many shader 
languages there is a function for this, generally called reflect.

Listing 6-1.  An Implementation of Phong

float3 reflectionVector = reflect (-lightDir, normal);
float specDot = max(dot(reflectionVector, eyeDir), 0.0);
float spec = pow(specDot, specExponent);

To implement Phong (see Listing 6-1), you need to first calculate the mirror reflection direction, 
then calculate the dot product of the reflection direction, and the view direction—as we said, specular is 
view-dependent. Then you elevate this value to the power of the exponent that you choose in the shader 
properties. That controls the specular intensity. You’ll see in a future chapter how this approach, while 
loosely based on physical reality, is actually violating many rules of physically based shading. When you 
correct it to conform to PBS principles, even a simple Phong feels much more realistic.

Now we’ve introduced the theory and implementation of a Specular term, let’s put this into practice by 
adding it to the diffuse shader.

https://doi.org/10.1007/978-1-4842-3309-2_6
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Your First Lighting Unity Shader (Part II)
In this section, you’re going to take the DiffuseShader and add a specular term to it.

Implementing a Specular
Let’s create a new material, called SpecularMaterial. Duplicate the DiffuseShader and call the duplicate 
SpecularShader. Remember to change the shader path to Custom/SpecularShader, or you will have two 
overlapping shader path names.

The structure of the shader is unchanged, so no worries there. First, add two new properties to the 
property block: _SpecColor and _Shininess. _SpecColor is the color of the specular and uses white as the 
default. _Shininess is the intensity of the specular and it is one number:

Properties
{
    _DiffuseTex ("Texture", 2D) = "white" {}
    _Color ("Color", Color) = (1,0,0,1)
    _Ambient ("Ambient", Range (0, 1)) = 0.25
    _SpecColor ("Specular Material Color", Color) = (1,1,1,1) 
    _Shininess ("Shininess", Float) = 10
}

Next, add a member to the v2f struct. You need to calculate an extra value in the vertex shader, and then 
pass them the fragment shader through v2f. That extra value is the world space vertex position, which we’re 
going to call vertexWorld:

struct v2f
{
    float2 uv : TEXCOORD0;
    float4 vertexClip : SV_POSITION;
    float4 vertexWorld : TEXCOORD1;
    float3 worldNormal : TEXCOORD2;
};

You do this because you need to calculate the light direction in the fragment shader. You could do it in 
the vertex shader, and that would be called being vertex-lit. But the result, unsurprisingly, is going to look 
better if you do the lighting calculations in the fragment shader.

Now, fill in that value in the vertex shader:

v2f vert (appdata v)
{
    v2f o;
    o.vertexClip = UnityObjectToClipPos(v.vertex);
    o.vertexWorld = mul(unity_ObjectToWorld, v.vertex);
    o.uv = TRANSFORM_TEX(v.uv, _DiffuseTex);
    float3 worldNormal = UnityObjectToWorldNormal(v.normal);
    o.worldNormal = worldNormal;
    return o;
}
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In this line, we’re using a matrix multiplication to transform the local space vertex position to the world 
space vertex position. unity_ObjectToWorld is the matrix you need for this transformation; it’s included in 
the standard library.

Now you’re ready to start adding the lines you need to the fragment function. There are a few values that 
you need to calculate, such as the normalized world space normal, the normalized view direction, and the 
normalized light direction (see Listing 6-2).

Listing 6-2.  Values Needed for Specular Calculations

float3 normalDirection = normalize(i.worldNormal);
float3 viewDirection = normalize(UnityWorldSpaceViewDir(i.vertexWorld));
float3 lightDirection = normalize(UnityWorldSpaceLightDir(i.vertexWorld));

For best results, all the vectors need to be normalized after a transform. Depending on the situation, you 
might get away with avoiding that, but you risk bad artifacts in your lighting. Note that all those values are in 
the same coordinate space: World Space.

Here we’re using various utility functions. You could use mul and the appropriate matrices, but 
Unity 2017.x is substituting those with the utility functions anyway. For example, if you were to use 
mul(UNITY_MATRIX_MVP, v.vertex) after saving and loading in Unity, you’d find it exchanged to 
UnityObjectToClipPos(v.vertex) and this message added to the top of the file:

// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'

Hence, it’s pretty pointless not to use the utility functions in the first place. Moving on, after the diffuse 
implementation, you need to translate those pseudo-code lines from the Specular explanation into valid 
Unity shader code (see Listing 6-3).

Listing 6-3.  Specular Calculations

float3 reflectionDirection = reflect(-lightDirection, normalDirection);
float3 specularDot = max(0.0, dot(viewDirection, reflectionDirection));
float3 specular = pow(specularDot, _Shininess); 

First you find the reflectionDirection using the reflect function. You need to negate the 
lightDirection, so it goes from the object to the light. Then you calculate the dot product between 
viewDirection and reflectionDirection, which is the same sort of operation that you used to calculate 
how much light is being reflected off a surface in the diffuse term.

In the diffuse, it was between the normal and the light directions. Here, it’s between the mirror 
reflection direction and the view direction, because the specular term is view-dependent. Note that again, the 
dot product value cannot be negative. You can’t have negative light.

Then you need to add the specular to the final output. For the diffuse, you multiply it by the color of the 
surface. The equivalent of that for the specular is multiplying by the specular color.

float4 specularTerm = float4(specular, 1) * _SpecColor * _LightColor0; 

As you may have noticed, we are not multiplying the specular by the surface color, as you do for the 
diffuse. That would basically make it disappear. There are physical principles underlying this, which we’re 
going to explain when we introduce physically based shading.

Listing 6-4 shows the complete fragment shader.
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Listing 6-4.  The Complete Fragment Shader, Including a Diffuse and a Specular Term

float4 frag (v2f i) : SV_Target
{
    float3 normalDirection = normalize(i.worldNormal);
    float3 viewDirection = normalize(UnityWorldSpaceViewDir(i.vertexWorld));
    float3 lightDirection = normalize(UnityWorldSpaceLightDir(i.vertexWorld));

    // sample the texture
    float4 tex = tex2D(_DiffuseTex, i.uv);

    //Diffuse implementation (Lambert)
    float nl = max(0, dot(normalDirection, lightDirection));
    float4 diffuseTerm = nl * _Color * tex * _LightColor0;

    //Specular implementation (Phong)
    float3 reflectionDirection = reflect(-lightDirection, normalDirection);
    float3 specularDot = max(0.0, dot(viewDirection, reflectionDirection));
    float3 specular = pow(specularDot, _Shininess); 
    float4 specularTerm = float4(specular, 1) * _SpecColor * _LightColor0; 

    float4 finalColor = diffuseTerm + specularTerm;
    return finalColor;
}

Finally, the whole shader is shown in Listing 6-5, for your convenience.

Listing 6-5.  Complete Shader with a Diffuse and Specular Term

Shader "Custom/SpecularShader"
{
    Properties
    {
        _DiffuseTex ("Texture", 2D) = "white" {}
        _Color ("Color", Color) = (1,0,0,1)
        _Ambient ("Ambient", Range (0, 1)) = 0.25
        _SpecColor ("Specular Material Color", Color) = (1,1,1,1) 
        _Shininess ("Shininess", Float) = 10
    }
    SubShader
    {
        Tags { "LightMode" = "ForwardBase" }
        LOD 100

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #include "UnityCG.cginc"
            #include "UnityLightingCommon.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
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                float3 normal : NORMAL;
                float2 uv : TEXCOORD0;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
                float4 vertexClip : SV_POSITION;
                float4 vertexWorld : TEXCOORD2;
                float3 worldNormal : TEXCOORD1;
            };

            sampler2D _DiffuseTex;
            float4 _DiffuseTex_ST;
            float4 _Color;
            float _Ambient;
            float _Shininess;
            v2f vert (appdata v)
            {
                v2f o;
                o.vertexClip = UnityObjectToClipPos(v.vertex);
                o.vertexWorld = mul(unity_ObjectToWorld, v.vertex);
                o.uv = TRANSFORM_TEX(v.uv, _DiffuseTex);
                float3 worldNormal = UnityObjectToWorldNormal(v.normal); 
                o.worldNormal = worldNormal;
                return o;
            }
            float4 frag (v2f i) : SV_Target
            {
                float3 normalDirection = normalize(i.worldNormal);
                float3 viewDirection = normalize(UnityWorldSpaceViewDir(i.vertexWorld));
                float3 lightDirection = normalize(UnityWorldSpaceLightDir(i.vertexWorld));
                // sample the texture
                float4 tex = tex2D(_DiffuseTex, i.uv);

                //Diffuse implementation (Lambert)
                float nl = max(_Ambient, dot(normalDirection, lightDirection));
                float4 diffuseTerm = nl * _Color * tex * _LightColor0;
                //diff.rbg += ShadeSH9(half4(i.worldNormal,1));
                //Specular implementation (Phong)
                float3 reflectionDirection = reflect(-lightDirection, normalDirection);
                float3 specularDot = max(0.0, dot(viewDirection, reflectionDirection));
                float3 specular = pow(specularDot, _Shininess); 
                float4 specularTerm = float4(specular, 1) * _SpecColor * _LightColor0; 

                float4 finalColor = diffuseTerm + specularTerm;
                return finalColor;
            }
            ENDCG
        }
    }
}
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Figure 6-1 shows how this looks when applied to our duck.

Figure 6-1.  The specular shader applied to the duck model from before

This concludes the introduction to the non-physically based Phong specular. Up to now, you have 
supported only one light in the scene, but by adding a ForwardAdd pass, you can support any number of 
lights in a scene. Let’s add a ForwardAdd pass to this shader.

Supporting More Than One Light
One thing you need to be careful of is to ensure that ForwardAdd is a separate pass, because you don’t want 
to do things like add the ambient more than once. Copy the specular shader and change the shader path to 
Custom/SpecularShaderForwardAdd.

You need to move tags and other info that’s currently residing within the sub-shader, to within the pass, 
and copy and paste the current pass. Add #pragma multi_compile_fwdbase after the other pragmas in the 
ForwardBase pass (see Listing 6-6).
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Listing 6-6.  Set Up for the ForwardBase Pass

Pass
{
    Tags { "LightMode" = "ForwardBase" }

    CGPROGRAM
    #pragma vertex vert
    #pragma fragment frag
    #pragma multi_compile_fwdbase

Then we should change the tag to the second pass ForwardAdd, add the line Blend One One after the 
tags, and add the pragma #pragma multi_compile_fwdadd (see Listing 6-7).

ForwardAdd tells the compiler it should use this pass for any light after the first, and Blend One One 
sets up the blending mode. Blending modes are basically similar to the layer modes in Photoshop. We have 
different layers, rendered by different passes, and we want to blend them together in a way that makes sense. 
Keep in mind that the blending modes are much simpler than those available in Photoshop. The formula 
is Blend SrcFactor DstFactor; we used one for both factors which means that the colors are blended 
additively.

The pragmas are to take advantage of the automatic multi-compile system, which compiles all the 
variants of the shader needed for the specific pass to work.

Listing 6-7.  Set Up for the ForwardAdd Pass

Pass
{
    Tags { "LightMode" = "ForwardAdd" }
    Blend One One

    CGPROGRAM
    #pragma vertex vert
    #pragma fragment frag
    #pragma multi_compile_fwdadd

This is already enough to have lights after the first influence the result. The finishing touch is to remove 
_Ambient as the minimum in the ForwardAdd pass, which means we won’t add the ambient twice or more 
(see Listing 6-8).

Listing 6-8.  Avoiding Re-Adding the Ambient Term into the ForwardAdd Pass

//Diffuse implementation (Lambert)
float nl = max(0.0, dot(normalDirection, lightDirection));

Let’s try it out by adding a different light to the project, maybe using two different colors to keep the two 
lights apart, and then changing the shader applied to the duck to the new one shown in Figure 6-2.
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For your convenience, Listing 6-9 shows the resulting complete shader, as you can see it’s quite long 
because the code is duplicated.

Listing 6-9.  The Complete Shader, with Support for Multiple Lights

Shader "Custom/SpecularShaderForwardAdd"
{
    Properties
    {
        _DiffuseTex ("Texture", 2D) = "white" {}
        _Color ("Color", Color) = (1,0,0,1)
        _Ambient ("Ambient", Range (0, 1)) = 0.25
        _SpecColor ("Specular Material Color", Color) = (1,1,1,1) 
        _Shininess ("Shininess", Float) = 10
    }
    SubShader
    {
        Pass
        {
            Tags { "LightMode" = "ForwardBase" }

            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #pragma multi_compile_fwdbase

            #include "UnityCG.cginc"
            #include "UnityLightingCommon.cginc"

Figure 6-2.  Our duck in a scene with two lights
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            struct appdata
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
                float2 uv : TEXCOORD0;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
                float4 vertexClip : SV_POSITION;
                float4 vertexWorld : TEXCOORD2;
                float3 worldNormal : TEXCOORD1;
            };

            sampler2D _DiffuseTex;
            float4 _DiffuseTex_ST;
            float4 _Color;
            float _Ambient;
            float _Shininess;
            v2f vert (appdata v)
            {
                v2f o;
                o.vertexClip = UnityObjectToClipPos(v.vertex);
                o.vertexWorld = mul(unity_ObjectToWorld, v.vertex);
                o.uv = TRANSFORM_TEX(v.uv, _DiffuseTex);
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);
                o.worldNormal = worldNormal;
                return o;
            }
            float4 frag (v2f i) : SV_Target
            {
                float3 normalDirection = normalize(i.worldNormal);
                float3 viewDirection = normalize(UnityWorldSpaceViewDir(i.vertexWorld));
                float3 lightDirection = normalize(UnityWorldSpaceLightDir(i.vertexWorld));
                float4 tex = tex2D(_DiffuseTex, i.uv);

                float nl = max(_Ambient, dot(normalDirection, lightDirection));
                float4 diffuseTerm = nl * _Color * tex * _LightColor0;
                float3 reflectionDirection = reflect(-lightDirection, normalDirection);
                float3 specularDot = max(0.0, dot(viewDirection, reflectionDirection));
                float3 specular = pow(specularDot, _Shininess); 
                float4 specularTerm = float4(specular, 1) * _SpecColor * _LightColor0; 

                float4 finalColor = diffuseTerm + specularTerm;
                return finalColor;
            }
            ENDCG
        }
        Pass
        {
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            Tags { "LightMode" = "ForwardAdd" }
            Blend One One

            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #pragma multi_compile_fwdadd

            #include "UnityCG.cginc"
            #include "UnityLightingCommon.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
                float2 uv : TEXCOORD0;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
                float4 vertexClip : SV_POSITION;
                float4 vertexWorld : TEXCOORD2;
                float3 worldNormal : TEXCOORD1;
            };

            sampler2D _DiffuseTex;
            float4 _DiffuseTex_ST;
            float4 _Color;
            float _Ambient;
            float _Shininess;
            v2f vert (appdata v)
            {
                v2f o;
                o.vertexClip = UnityObjectToClipPos(v.vertex);
                o.vertexWorld = mul(unity_ObjectToWorld, v.vertex);
                o.uv = TRANSFORM_TEX(v.uv, _DiffuseTex);
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);
                o.worldNormal = worldNormal;
                return o;
            }
            float4 frag (v2f i) : SV_Target
            {
                float3 normalDirection = normalize(i.worldNormal);
                float3 viewDirection = normalize(UnityWorldSpaceViewDir(i.vertexWorld));
                float3 lightDirection = normalize(UnityWorldSpaceLightDir(i.vertexWorld));
                float4 tex = tex2D(_DiffuseTex, i.uv); 

                float nl = max(0.0, dot(normalDirection, lightDirection));
                float4 diffuseTerm = nl * _Color * tex * _LightColor0;
                float3 reflectionDirection = reflect(-lightDirection, normalDirection);
                float3 specularDot = max(0.0, dot(viewDirection, reflectionDirection));
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                float3 specular = pow(specularDot, _Shininess); 
                float4 specularTerm = float4(specular, 1) * _SpecColor * _LightColor0; 

                float4 finalColor = diffuseTerm + specularTerm;
                return finalColor;
            }
            ENDCG
        }
    }
}

Summary
In this chapter, you implemented the simplest Specular version, Phong. Then you added support for 
multiple lights in the shader, which resulted in a very long shader due to code duplication.

Next
The next chapter introduces surface shaders, which are supposed to spare you some of the  
translate-between-spaces work, and will save you a lot of lines of code when supporting multiple lights.
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CHAPTER 7

Surface Shaders

In the previous two chapters, we explained the basic theory of lighting for rendering and implemented a 
diffuse and a specular shader from scratch, within an Unlit shader. In this chapter, we’re going to translate 
the Unlit shader from last chapter into a Surface shader, which will save a fair bit of code.

What Is a Surface Shader?
A Surface shader is a type of shader unique to Unity, which is meant to be used for shaders that calculate 
surface lighting models. From this chapter on, we’re only going to use Surface shaders for lighting.

Their main advantage is that they hide a fair bit of boilerplate code. For example, thinking about the 
previous chapter’s shader, you’ll remember that you had to basically copy and paste the entire shader to make 
the shader support more than one light. That is pretty cumbersome. Surface shaders fix that, and the price is 
some loss in flexibility. It may happen that you do actually need to use an Unlit shader due to needing more 
precise control over the ForwardBase pass, but for our purposes, Surface shaders will do nicely.

The structure of Surface shaders differs from Unlit shaders. In Unlit shaders, we use two shader 
functions (vertex, and fragment), two data structures (one for the input to the vertex function, the other for 
the output), and if you want to support more than one light you need to write two passes, ForwardAdd and 
ForwardBase. In a Surface shader, the vertex function is optional, so you still use two data structures but they 
have different purposes, and you don’t specify the fragment function at all, but you have to write a surface 
function instead. Also you can optionally write your own lighting model function.

The Default Surface Shader
Let’s create a new Surface shader by right-clicking on the Project pane and choosing Create ➤ Shader ➤ 
Standard Surface Shader. Listing 7-1 shows what we get.

Listing 7-1.  The Default Surface Shader

Shader "Custom/SurfaceShader" {
    Properties {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _Glossiness ("Smoothness", Range(0,1)) = 0.5
        _Metallic ("Metallic", Range(0,1)) = 0.0
    }

https://doi.org/10.1007/978-1-4842-3309-2_7
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    SubShader {
        Tags { "RenderType"="Opaque" }
        LOD 200
        CGPROGRAM
        // Physically based Standard lighting model, and enable shadows on all light types
        #pragma surface surf Standard fullforwardshadows

        // Use shader model 3.0 target, to get nicer looking lighting
        #pragma target 3.0

        sampler2D _MainTex;

        struct Input {
            float2 uv_MainTex;
        };

        half _Glossiness;
        half _Metallic;
        fixed4 _Color;

        �// Add instancing support for this shader. You need to check 'Enable Instancing' on 
materials that use the shader.

        �// See https://docs.unity3d.com/Manual/GPUInstancing.html for more information about 
instancing.

        // #pragma instancing_options assumeuniformscaling
        UNITY_INSTANCING_CBUFFER_START(Props)
            // put more per-instance properties here
        UNITY_INSTANCING_CBUFFER_END

        void surf (Input IN, inout SurfaceOutputStandard o) {
            // Albedo comes from a texture tinted by color
            fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
            o.Albedo = c.rgb;
            // Metallic and smoothness come from slider variables
            o.Metallic = _Metallic;
            o.Smoothness = _Glossiness;
            o.Alpha = c.a;
        }
        ENDCG
    }
    FallBack "Diffuse"
}

As promised, no vertex function and no fragment function, but a new surface function and a new pragma.
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Pragmas
We still have a block of properties, but the vert and frag pragmas are not around anymore. In their place, 
there is a single surface pragma. The surface pragma takes as the first argument the surface function, 
which is your responsibility to write in your shader (we’re going to explain in a bit exactly what it is in a bit), 
then the lighting model you’re going to use, and any options.

The surf pragma included in this default file is:

#pragma surface surf Standard fullforwardshadows 

surf is the surface function, Standard is the lighting model, and fullforwardshadows is an option.
If you want to use a vertex function different from the default one, you can. You can write your custom 

vertex function within the Surface shader, specifying the vertex input and output data structures (which 
usually are called appdata and v2f, for historical reasons, but you call them whatever you like), and finally 
pass it to the surf pragma this way:

#pragma surface surf Lambert vertex:vert

surf is again the surface function, Lambert is a built-in lighting model, and vertex:vert specifies the 
vertex function.

New Data Structures
Let’s ignore for now the parts about instancing and examine the surface function. It takes a data structure 
called Input, which is included in this shader, and one called SurfaceOutputStandard, which has inout as a 
type qualifier. That means it’s an input, but also an output, and you won’t need two different data structures 
for that. This SurfaceOutputStandard data structure will then be sent to the lighting function (Standard, 
BlinnPhong, Lambert, or you can write a custom one).

The Input structure in this shader only includes the UVs, taking part of the role that was reserved for the 
vertex output function, v2f:

struct Input {
    float2 uv_MainTex;
};

You may notice that there are no include files listed, but SurfaceOutputStandard comes from the usual 
include files, particularly from UnityPBSLighting.cginc (see Listing 7-2).

Listing 7-2.  The Data Struct SurfaceOutputStandard

struct SurfaceOutputStandard
{
    fixed3 Albedo;      // base (diffuse or specular) color
    fixed3 Normal;      // tangent space normal, if written
    half3 Emission;
    half Metallic;      // 0=non-metal, 1=metal 
    half Smoothness;    // 0=rough, 1=smooth
    half Occlusion;     // occlusion (default 1)
    fixed Alpha;        // alpha for transparencies
}; 

The objective of this data structure is to pass information to the lighting function.
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The Surface Function
The surf function is used to prepare the necessary data and then assign it to the data structure (see Listing 7-3).

Listing 7-3.  The Default surf Function

void surf (Input IN, inout SurfaceOutputStandard o) {
    fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
    o.Albedo = c.rgb;
    // Metallic and smoothness come from slider variables
    o.Metallic = _Metallic;
    o.Smoothness = _Glossiness;
    o.Alpha = c.a;
}

As you can see, in this default shader four of the seven members of the SurfaceOutputStandard data 
structure are being filled in, and some of those are used by most lighting models, while some others are 
specific to the Standard lighting model used by Unity.

Albedo is the name used in Unity for the color of the surface, which generally comes from the diffuse 
texture. Alpha is not really used unless you’re drawing a transparent mesh. Normal takes data that comes 
from Normal maps, and Emission is used if the mesh is supposed to emit light. Everything else is specific to 
the Standard lighting model.

What’s a Lighting Model?
The best way to understand that is with an example. The Standard lighting function is very complex, so let’s 
look at one we already are familiar with, the Lambert lighting function (see Listing 7-4) taken from  
Lighting.cginc (but liberally edited so it fits in one function).

Listing 7-4.  Lambert Implemented as a Lighting Model Function

inline fixed4 LightingLambert (SurfaceOutput s, UnityGI gi)
{
    fixed4 c; 
    UnityLight light = gi.light; 
    fixed diff = max (0, dot (s.Normal, light.dir));

    c.rgb = s.Albedo * light.color * diff;
    c.a = s.Alpha; 

    #ifdef UNITY_LIGHT_FUNCTION_APPLY_INDIRECT
        c.rgb += s.Albedo * gi.indirect.diffuse;
    #endif

    return c;
} 

This is a lighting model function. Any custom lighting models that you can write yourself would 
follow this same pattern. It returns a fixed4 and takes one SurfaceOutput and one UnityGI structure. 
SurfaceOutput is similar to SurfaceOutputStandard, it just has fewer members, because Lambert is a 
simpler lighting model. UnityGI is a data structure used to pass around the indirect light calculated by 
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the global illumination system. Global Illumination is basically a much better way to solve the problem of 
calculating indirect light, which in the past chapter we crudely solved with a simple Ambient value.

You don’t need to worry about global illumination yet. The important member of UnityGI for this topic 
is light, which is another data structure, UnityLight. UnityLight includes the light direction and the light 
color. You should recognize the calculation we used in Chapter 5 to implement Lambert: the dot product and 
the multiplication with the light and surface colors.

A lighting function is supposed to simulate the behavior of light on a surface. To do that, as you’ve 
learned from the Diffuse and Specular approximations, it’s going to need some bits of information. Namely 
the light direction, the normal direction, the surface and light colors, and possibly the view direction.

SurfaceOutput and its cousin SurfaceOutputStandard both contain the normal and the color (albedo) 
of the surface as members. The light direction and color are obtained from the UnityGI data structure. In 
other words, a lighting function gets passed all the data needed to calculate lighting, either with the input 
data structure or by other arguments.

Lambert doesn’t need a view direction, but if it did, the function signature would be:

half4 Lighting<Name> (SurfaceOutput s, half3 viewDir, UnityGI gi);

Using these function signatures will make the compiler recognize your function as a lighting model 
function, and you’ll be able to use it in the surface pragma.

With this, we’ve looked at all the pieces need to write a Surface shader, but how do they fit together exactly?

Data Flow of a Surface Shader
The execution model of a Surface shader is somewhat unintuitive. You should take into consideration that, 
behind the scenes, a Surface shader is compiled to something very similar to an Unlit shader. At that point, 
everything boils down again to a vertex shader and a fragment shader.

Surface shaders remove some flexibility in order to save you time and lines of code. They do that by 
wrapping the fragment shader away, behind an interface. They break it down into a surface function and 
lighting model function. Furthermore, Unity gives you various pre-made lighting functions, so you only 
really need to worry about the surface function.

But the focus of this book is writing physically based lighting model functions and making them work 
with the rest of the Unity shader infrastructure. So, you’ll get pretty familiar with lighting functions later on.

For now, be aware that the flow of data goes starts from the optional vertex function, for which you can 
make input and output data structures, or stick to those included in the standard library. Then it goes from 
the vertex function to the Input struct, which is passed to the surface function. In the surface function, you 
fill in a data structure that contains most of the data needed to calculate the lighting, which is generally 
named SurfaceOutput or similar. That struct is passed to the lighting function, which finally returns a color 
(see Figure 7-1).

http://dx.doi.org/10.1007/978-1-4842-3309-2_5


Chapter 7 ■ Surface Shaders

82

Editing a Surface Shader
Now that you know what a Surface shader is and how it can help you, let’s go through a few examples of 
custom Surface shaders, which are using the Unity Standard lighting function. The Standard lighting model 
is physically based. In the next chapters we’ll explain exactly what that means and show what code makes it 
physically based.

Add a Second Albedo Map
One of the most common tasks that using the Standard lighting model won’t solve is when you need more 
textures than it gives you. Let’s add a second albedo texture and then lerp between the two according to a 
slider.

First, let’s add the second texture and the slider value (see Listing 7-5).

Listing 7-5.  Adding the Properties for a Second Albedo Texture

Properties {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _SecondAlbedo ("Second Albedo (RGB)", 2D) = "white" {}
        _AlbedoLerp ("Albedo Lerp", Range(0,1)) = 0.5
        _Glossiness ("Smoothness", Range(0,1)) = 0.5
        _Metallic ("Metallic", Range(0,1)) = 0.0
    }

Then, as usual, we need to declare those as variables. After the input struct will do (see Listing 7-6). You 
may think we need to add another set of UVs for the second texture to the Input struct, but if the texture has 
the same UVs (and it should, because it’s for the same model), you can recycle the same set of UVs for both.

Figure 7-1.  The data flow of Surface shaders 
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Listing 7-6.  Adding the Variables Declaration for a Second Albedo Texture

sampler2D _MainTex;
sampler2D _SecondAlbedo;
half _AlbedoLerp;

Now we need to add the appropriate lines to the surf function. We’re basically processing our shader 
inputs (textures, values, etc.) in advance of sending the information to the lighting function. So, we need to 
look up the second texture, with the same UVs, and then assign the result of lerping the two to the albedo 
output (see Listing 7-7).

Listing 7-7.  Sampling the Second Albedo Texture and Lerping Between the Two Albedo Textures

void surf (Input IN, inout SurfaceOutputStandard o) {
    fixed4 c = tex2D (_MainTex, IN.uv_MainTex);
    fixed4 secondAlbedo = tex2D (_SecondAlbedo, IN.uv_MainTex);
    o.Albedo = lerp(c, secondAlbedo, _AlbedoLerp)  * _Color;
    // Metallic and smoothness come from slider variables
    o.Metallic = _Metallic;
    o.Smoothness = _Glossiness;
    o.Alpha = c.a;
}

That’s all we need. Let’s look at the final result; the second texture is a different version of the first 
texture, which is filled with noise. Lerping between them has the result shown in Figure 7-2.

Figure 7-2.  The result of lerping between two different albedo textures
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You can see both the slight yellow tint coming from the first texture, and the noise coming from the 
second texture, showing up in the final result. Listing 7-8 shows the complete shader for your convenience.

Listing 7-8.  Surface Shader That Lerps Between Two Albedo Textures

Shader "Custom/SurfaceShaderSecondAlbedo" {
    Properties {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _SecondAlbedo ("Second Albedo (RGB)", 2D) = "white" {}
        _AlbedoLerp ("Albedo Lerp", Range(0,1)) = 0.5
        _Glossiness ("Smoothness", Range(0,1)) = 0.5
        _Metallic ("Metallic", Range(0,1)) = 0.0
    }
    SubShader {
        Tags { "RenderType"="Opaque" }
        LOD 200
        CGPROGRAM
        #pragma surface surf Standard fullforwardshadows
        #pragma target 3.0

        sampler2D _MainTex;
        sampler2D _SecondAlbedo;
        half _AlbedoLerp;

        struct Input {
            float2 uv_MainTex;
        };

        half _Glossiness;
        half _Metallic;
        fixed4 _Color;

        UNITY_INSTANCING_CBUFFER_START(Props)
        UNITY_INSTANCING_CBUFFER_END

        void surf (Input IN, inout SurfaceOutputStandard o) {
            // Albedo comes from a texture tinted by color
            fixed4 c = tex2D (_MainTex, IN.uv_MainTex);
            fixed4 secondAlbedo = tex2D (_SecondAlbedo, IN.uv_MainTex);
            o.Albedo = lerp(c, secondAlbedo, _AlbedoLerp)  * _Color;
            // Metallic and smoothness come from slider variables
            o.Metallic = _Metallic;
            o.Smoothness = _Glossiness;
            o.Alpha = c.a;
        }
        ENDCG
    }
    FallBack "Diffuse"
}
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If you need more fine-grained control, you can use a texture instead of a slider, which would work very 
similarly. You’d need a third texture lookup, and then extract one value out of the texture channels from the 
mask texture, and then use it as the value that controls the lerp.

Add a Normal Map
Another very common task is dealing with normal maps. Let’s add a normal map to the default shader we 
started the chapter with. First, as usual, let’s add a property for the normal map, as shown in Listing 7-9.

Listing 7-9.  Adding the Normal Map Property

Properties {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _NormalMap("Normal Map", 2D) = "bump" {}
        _Glossiness ("Smoothness", Range(0,1)) = 0.5
        _Metallic ("Metallic", Range(0,1)) = 0.0
}

Then again, declare the variable, and add the appropriate handling to the surf function. In this case we 
need both to sample the texture (again the main texture UVs will do) and use the UnpackNormal function on 
it. Then we need to assign the result to the Normal member of the surface output data structure, as shown in 
Listing 7-10.

Listing 7-10.  Declaring the Variable for the Normal Map and Unpacking the Normal Map

sampler2D _NormalMap;

void surf (Input IN, inout SurfaceOutputStandard o) {
    fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
    o.Normal = UnpackNormal (tex2D (_NormalMap, IN.uv_MainTex));
    o.Albedo = c.rgb;
    // Metallic and smoothness come from slider variables
    o.Metallic = _Metallic;
    o.Smoothness = _Glossiness;
    o.Alpha = c.a;
}

What we’re doing with the UnpackNormal function here in a Surface shader would require two extra 
vertex shader output members (binormal and tangent in World Space) and another few lines in the fragment 
function, if we were to do this within an Unlit shader. So some effort is saved by using Surface shaders to deal 
with normal maps. The result of supporting a normal map can be seen in Figure 7-3.
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For your convenience, the complete shader is shown in Listing 7-11.

Listing 7-11.  The Complete Custom Surface Shader with Added Normal Map

Shader "Custom/SurfaceShaderNormalMap" {
    Properties {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _NormalMap("Normal Map", 2D) = "bump" {}
        _Glossiness ("Smoothness", Range(0,1)) = 0.5
        _Metallic ("Metallic", Range(0,1)) = 0.0
    }
    SubShader {
        Tags { "RenderType"="Opaque" }
        LOD 200
        CGPROGRAM
        #pragma surface surf Standard fullforwardshadows
        #pragma target 3.0

        sampler2D _MainTex;
        sampler2D _NormalMap;

        struct Input {
            float2 uv_MainTex;
        };

Figure 7-3.  Our normal map, showing through
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        half _Glossiness;
        half _Metallic;
        fixed4 _Color;

        UNITY_INSTANCING_CBUFFER_START(Props)
        UNITY_INSTANCING_CBUFFER_END
        void surf (Input IN, inout SurfaceOutputStandard o) {
            fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
            o.Normal = UnpackNormal (tex2D (_NormalMap, IN.uv_MainTex));
            o.Albedo = c.rgb;
            o.Metallic = _Metallic;
            o.Smoothness = _Glossiness;
            o.Alpha = c.a;
        }
        ENDCG
    }
    FallBack "Diffuse"
}

Making Sure Shadows Work
You might have noticed that all the shaders have a fallback value that we haven’t mentioned yet. The fallback 
is the name of a different shader that’s going to be used to render the shadows for meshes that use the 
shader. If your fallback shader is missing or broken, the shadows for the mesh will also be broken.

If the shadows of some of your meshes are missing, this is one of the things you should check.

Use Different Built-In Lighting Models
We’ve been using the Standard lighting model, but we can easily switch to a different one if we want to. Let’s 
use the BlinnPhong one instead. To do that, first change the surf pragma to this:

#pragma surface surf BlinnPhong fullforwardshadows

The BlinnPhong light function takes the SurfaceOutput data structure, instead of the 
SurfaceOutputStandard, so let’s change the signature of the surf function to this:

void surf (Input IN, inout SurfaceOutput o) {

BlinnPhong has no concept of glossiness and metallic, so we should remove them from the properties, 
the variable declarations, and the surf function. Then we need to add as properties the Gloss and Specular 
values that the BlinnPhong lighting model function uses, as shown in Listing 7-12.

Listing 7-12.  The Built-In BlinnPhong Lighting Model Function

inline fixed4 UnityPhongLight (SurfaceOutput s, half3 viewDir, UnityLight light)
{
    half3 h = normalize (light.dir + viewDir);

    fixed diff = max (0, dot (s.Normal, light.dir));

    float nh = max (0, dot (s.Normal, h));
    float spec = pow (nh, s.Specular*128.0) * s.Gloss;
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    fixed4 c;
    c.rgb = s.Albedo * light.color * diff + light.color * _SpecColor.rgb * spec;
    c.a = s.Alpha;

    return c;
} 

Specular, SpecColor, and Gloss are used in the BlinnPhong implementation. Traditionally in Unity 
the alpha of the albedo texture has been use to provide the gloss, and the specular has been declared 
as shininess in the properties. The SpecColor also needs to be added to the properties, but not to the 
declarations, as that happens by default. Listing 7-13 shows the final BlinnPhong Surface shader.

Listing 7-13.  The Complete BlinnPhong Custom Shader

Shader "Custom/SurfaceShaderBlinnPhong" {
    Properties {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _SpecColor ("Specular Material Color", Color) = (1,1,1,1) 
        _Shininess ("Shininess", Range (0.03, 1)) = 0.078125
    }
    SubShader {
        Tags { "RenderType"="Opaque" }
        LOD 200
        CGPROGRAM
        #pragma surface surf BlinnPhong fullforwardshadows
        #pragma target 3.0

        sampler2D _MainTex;
        float _Shininess;

        struct Input {
            float2 uv_MainTex;
        };

        fixed4 _Color;

        UNITY_INSTANCING_CBUFFER_START(Props)
            // put more per-instance properties here
        UNITY_INSTANCING_CBUFFER_END

        void surf (Input IN, inout SurfaceOutput o) {
            fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
            o.Albedo = c.rgb;
            o.Specular = _Shininess;
            o.Gloss = c.a;
            o.Alpha = 1.0f;
        }
        ENDCG
    }
    FallBack "Diffuse"
}
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Figure 7-4 shows the result of applying the final BlinnPhong Surface shader to our duck scene.

Figure 7-4.  The BlinnPhong shader applied to our usual scene

Writing a Custom Lighting Model
Writing lighting functions is going to be our main focus from now on, so let’s get started on that. Unity lacks 
a built-in Phong lighting model, because it prefers to use BlinnPhong. We can use the knowledge we already 
have about Phong to implement it as a custom lighting model.

Lighting Model Function Signatures
As mentioned earlier, custom lighting model functions have to conform to one of a few possible signatures. 
There are four of them. Two of them are used in the Forward renderer, one is diffuse only, and one is view-
dependent, so it can be used for speculars. Here is the diffuse one:

half4 Lighting<Name> (SurfaceOutput s, UnityGI gi); 

Here is the view-dependent one:

half4 Lighting<Name> (SurfaceOutput s, half3 viewDir, UnityGI gi); 
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The other two are for the current deferred renderer and the legacy deferred renderer. We’re not going 
to cover deferred rendering in this book, because using a deferred renderer limits the data we can use in 
our shaders, and the more interesting lighting models require extra data that might not be available. All the 
principles you’re learning will work with deferred renderers anyway.

Here are the two function signatures used by the deferred renderers:

half4 Lighting<Name>_Deferred (SurfaceOutput s, UnityGI gi, out half4 outDiffuseOcclusion, 
out half4 outSpecSmoothness, out half4 outNormal); 
half4 Lighting<Name>_PrePass (SurfaceOutput s, half4 light); 

We’re not going to use them, but it’s good to be able to recognize them.

The SurfaceOutput Data Structure
So, moving on, Phong is definitely view-depended, hence we need to use the second type signature. We also 
need to know what member SurfaceOutput has, as shown in Listing 7-14.

Listing 7-14.  The SurfaceOutput Data Structure

struct SurfaceOutput {
    fixed3 Albedo;
    fixed3 Normal;
    fixed3 Emission;
    half Specular;
    fixed Gloss;
    fixed Alpha;
}; 

We’re not going to need Emission (only used when the object is supposed to emit light). The Normal 
that we get from this data structure is already in World Space, and so are the light direction and the viewDir 
that we get from the function signature.

The Surface Function
The surface function is very simple, because we only need to pass it the albedo and the alpha (see Listing 7-15).

Listing 7-15.  The Surface Function for Our Phong Custom Surface Shader

void surf (Input IN, inout SurfaceOutput o) {
    fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
    o.Albedo = c.rgb;
    o.Alpha = 1.0f;
}

Properties Block
As you might remember, Phong uses a SpecColor and a Shininess value, so we need to add them to the 
properties and declare Shininess as a variable. Again, SpecColor doesn’t need to be declared as a variable 
(see Listing 7-16).
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Listing 7-16.  The Properties Block for Our Phong Custom Surface Shader

Properties {
    _Color ("Color", Color) = (1,1,1,1)
    _MainTex ("Albedo (RGB)", 2D) = "white" {}
    _SpecColor ("Specular Material Color", Color) = (1,1,1,1) 
    _Shininess ("Shininess", Range (0.03, 128)) = 0.078125
}

The Custom Lighting Function
Now, this is the heart of this shader. We are adapting our Phong implementation from a few chapters ago. 
Keep in mind that all the directions passed into the lighting function are already in World Space. You need to 
take some care with using correct sources, as there is a mix of data structures passed in, plain values passed 
in, and variables in the properties that are used straight from there.

We’re removing the ambient, because from a Surface shader, it’s easier to access Unity’s global 
illumination functionality.

Listing 7-17 shows the final lighting model function.

Listing 7-17.  Our Custom Phong Lighting Model Function

inline fixed4 LightingPhong (SurfaceOutput s, half3 viewDir, UnityGI gi)
{
    UnityLight light = gi.light;

    float nl = max(0.0f, dot(s.Normal, light.dir));
    float3 diffuseTerm = nl * s.Albedo.rgb * light.color;
    float3 reflectionDirection = reflect(-light.dir, s.Normal);
    float3 specularDot = max(0.0, dot(viewDir, reflectionDirection)); //no more ambient
    float3 specular = pow(specularDot, _Shininess); 
    float3 specularTerm = specular * _SpecColor.rgb * light.color.rgb; 

    float3 finalColor = diffuseTerm.rgb + specularTerm;

    fixed4 c;
    c.rgb = finalColor;
    c.a = s.Alpha;

    #ifdef UNITY_LIGHT_FUNCTION_APPLY_INDIRECT
        c.rgb += s.Albedo * gi.indirect.diffuse;
    #endif

    return c;
} 

Note that block at the end, which is adding the global illumination value to the final color. In order for 
that to work, we need to provide an extra function, called LightingPhong_GI. For the time being, let’s use the 
same GI function as the BlinnPhong (see Listing 7-18).
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Listing 7-18.  The Necessary Global Illumination Function for Our Custom Phong Lighting Model

inline void LightingPhong_GI (SurfaceOutput s, UnityGIInput data, inout UnityGI gi)
{
    gi = UnityGlobalIllumination (data, 1.0, s.Normal);
}

The last touch is to update the surf pragma to use our new lighting function:

        #pragma surface surf Phong fullforwardshadows

The global illumination data is must stronger than our ambient, so the result is a bit too bright,  
as shown in Figure 7-5.

Figure 7-5.  Our custom Phong lighting model with global illumination
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What’s happening is by using the global illumination, we’re mixing non-physically based parts with 
physically based parts, and that’s a recipe for trouble. Next, we’re going to go through what physically 
based means and how to stick to it. For your convenience, Listing 7-19 shows the final shader, with global 
illumination.

Listing 7-19.  The Complete Shader Including the Phong Custom Lighting Model Function

Shader "Custom/SurfaceShaderCustomPhong" {
    Properties {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _SpecColor ("Specular Material Color", Color) = (1,1,1,1) 
        _Shininess ("Shininess", Range (0.03, 128)) = 0.078125
    }
    SubShader {
        Tags { "RenderType"="Opaque" }
        LOD 200
        CGPROGRAM
        #pragma surface surf Phong fullforwardshadows
        #pragma target 3.0

        sampler2D _MainTex;
        float _Shininess; 
        fixed4 _Color;

If we remove the global illumination line and add back an ambient, we can see that the result is the 
same as with the Phong Unlit shader (see Figure 7-6).

Figure 7-6.  On the left is the Unlit Phong shader; on the right is the Phong Surface shader without global 
illumination
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        struct Input {
            float2 uv_MainTex;
        };

        UNITY_INSTANCING_CBUFFER_START(Props)
        UNITY_INSTANCING_CBUFFER_END

        inline void LightingPhong_GI (SurfaceOutput s, UnityGIInput data, inout UnityGI gi)
        {
            gi = UnityGlobalIllumination (data, 1.0, s.Normal);
        }

        inline fixed4 LightingPhong (SurfaceOutput s, half3 viewDir, UnityGI gi)
        {
            UnityLight light = gi.light;

            float nl = max(0.0f, dot(s.Normal, light.dir));
            float3 diffuseTerm = nl * s.Albedo.rgb * light.color;

            float3 reflectionDirection = reflect(-light.dir, s.Normal);
            float3 specularDot = max(0.0, dot(viewDir, reflectionDirection));
            float3 specular = pow(specularDot, _Shininess); 
            float3 specularTerm = specular * _SpecColor.rgb * light.color.rgb; 

            float3 finalColor = diffuseTerm.rgb + specularTerm;

            fixed4 c;
            c.rgb = finalColor;
            c.a = s.Alpha;

            #ifdef UNITY_LIGHT_FUNCTION_APPLY_INDIRECT
                c.rgb += s.Albedo * gi.indirect.diffuse;
            #endif

            return c;
        } 

        void surf (Input IN, inout SurfaceOutput o) {
            fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
            o.Albedo = c.rgb;
            o.Alpha = 1.0f;
        }
        ENDCG
    }
    FallBack "Diffuse"
}
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Summary
This chapter dissected Surface shaders and discussed what they’re useful for. You saw a few useful examples 
of how you can customize them. Most importantly, the chapter explained what a custom lighting model 
function is and showed how to port the Phong implementation from the Unlit shader to a custom lighting 
function within a Surface shader.

Next
We’re going to delve into the physically based principles, explain them in detail, and start to put them  
into practice.



PART II

Physically Based Shading

This part of the book covers Physically Based Shading from the fundamental concepts to how to 
implement custom lighting models.

You will learn the microfacet theory, get to know many different custom lighting functions, 
including handy ways to visualize and analyze them and how to implement them in Unity.

You’ll learn how to hack your custom lighting functions into the Unity standard shader, so 
you can take advantage of its extensive functionality, including specular reflections and global 
illumination.

You’ll also learn how to implement advanced techniques not included in the usual type of 
custom lighting function, such as translucency. This part includes an overview on how to implement 
reflections, or how Unity’s reflection probes work underneath.



99© Claudia Doppioslash 2018 
C. Doppioslash, Physically Based Shader Development for Unity 2017,  
https://doi.org/10.1007/978-1-4842-3309-2_8

CHAPTER 8

What Is Physically Based Shading?

Physically based shading is similar to shading as we used to do before, but now the lighting calculations are 
based on the physics of light with some precision. Correctness is defined as realistic behavior. You can check 
if the lighting implemented in your shader is correct by rendering the same scene using a physically based 
offline renderer.

This chapter discusses the principles of the physics of light that are interesting to us. We presented some 
information about the behavior of light when hitting a surface in Chapter 1, and now we’re going to expand 
on that.

Light Is an Electromagnetic Wave
To cover this topic adequately, we have to delve briefly into physics. Starting from the nature of light, which 
is an electromagnetic wave, which can for some purposes be conceptually simplified to a ray. What that 
means for us is that there is some behavior of light that can be explained by thinking of it as a wave, such as 
diffraction, and other characteristics for which we can just think of light as rays, such as mirror reflection.

In general, when a surface’s irregularities are larger than the width of the light’s wavelength, it’s safe 
to not worry about the nature of light as a wave. Most of the behaviors that we are interested in can be 
explained from a higher level of abstraction, by thinking of light as rays. Recall our previous simplification of 
the behavior of light for shading—diffuse and specular. Now we’re going to re-explain them in more realistic, 
less abstract, terms.

Microfacet Theory Overview
We said that diffuse reflection happens when the microfacets on a surface are oriented in many different 
directions, and specular is when they are oriented in a few similar directions. That was a big simplification to 
get you started, so stay tuned for a more physically accurate explanation.

To begin with, microfacet theory is applicable when the irregularities of a surface are bigger than light’s 
wavelength, but small compared to the scale we’re observing from. Think of whether a surface is flat as a 
macroscale concept, whether it has microfacets as a microscale concept, and then at wavelength scale, the 
important thing is whether irregularities are bigger or smaller than the wavelength of the light.

Microfacet theory is useful as a guide to mathematically derive a statistical representation of where 
incoming light ends up going after hitting a surface. We shade on vertices or on pixels, and it’s very unlikely 
for us to render a surface at such a magnification that we would need to worry about single rays. A statistical 
model is enough for our purposes.

https://doi.org/10.1007/978-1-4842-3309-2_8
http://dx.doi.org/10.1007/978-1-4842-3309-2_1
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Refraction and Other Beasts
There is another behavior of light that we haven’t covered yet, because it’s not generally represented directly 
in games. We said a ray of light can be reflected or absorbed, and we mentioned how light can go through 
semitransparent layers, such as water, but we didn’t say that what allows it to get to the layer below is called 
refraction or transmission.

When a ray hits a surface, some part of its light is absorbed, some is reflected, and some is refracted. 
And how much of the ray light goes to each is important. By “hitting,” I actually mean a slightly more 
complex concept. Each material has an index of refraction, which represents how fast light can go through 
the material.

Light travels in a straight line in a medium that has a constant index of refraction, and it bends while 
travelling if the index of refraction changes slightly. But when passing between mediums with very different 
indices of refraction, it scatters, breaking up into multiple directions.

Absorption (see Figure 8-1) needs to happen (or not happen) to give surfaces their particular albedo 
color. Thinking of light as a wave, the light carries a spectrum of colors, and absorption by the surface 
removes every part of the spectrum, except the color that we see on the surface. That part of the spectrum is 
reflected away, to our eyes. For our purposes, the spectral nature of light can be simplified to RGB colors.

Reflection has been our focus up to now. As we said, when a ray hits a surface, part of its energy is sent in 
a particular direction, the reflection direction. But we haven’t really covered how much of the energy coming 
in gets reflected. We’ve mainly worried about in what direction it goes, so far. Keeping track of the proportion 
of energy that goes into reflection is important for physically based shading.

Figure 8-1.  Absorption, as shown in Chapter 1

http://dx.doi.org/10.1007/978-1-4842-3309-2_1
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Since we don’t model the microgeometry in our 3D models, we have to treat it statistically, as 
mentioned. For every pixel we are shading, light is being reflected in multiple directions, forming a cone  
(see Figure 8-2).

Figure 8-2.  Mirror reflection reflecting rays into a cone, generally called a lobe

To keep track of whether the reflected light is an appropriate quantity, we need to compare it to the 
incoming light. We’ll see in a bit to which parts of the rendering equation this maps to. Incoming light is 
generally measured as coming from a hemisphere around the point, such as in Figure 8-3.
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This hemisphere is basically half a sphere that’s aligned around the normal of the surface. Within the 
rendering equation, the incoming light from every direction within this hemisphere is added up, in one of 
the most time-consuming parts of these calculations. Some of this light will be direct, which we can easily 
track and calculate, but another part of it will be indirect. That is light that has bounced around before 
getting to that point. That needs to heavily approximated, and it generally falls down to either lightmapping 
or global illumination. In the case of mirror reflection, this phenomenon is what makes possible to see the 
whole scene reflected on a reflective object. That needs to be simulated with yet another technique, such as 
reflection probes in Unity, or just plain cube maps.

Moving on, we have the previously overlooked refraction (aka, transmission), last but not least (see 
Figure 8-4). What happens with refraction is slightly more complex than mirror reflection, as it depends on 
the physical characteristics of the material the light is passing through. Each homogeneous material that 
light is passing through has an index of refraction. Every time this exiting and entering from a homogenous 
substance happens, light gets bent.

Figure 8-3.  Mirror reflection, showing incoming light from a hemisphere
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When light exits a material and enters a new one, the angle changes. Depending on how much their 
indexes of refraction differ, the more the angle of refraction will change. From a faster to a slower material, 
say from air to water, the direction of the light bends toward the normal. Also, keep in mind light will change 
direction again when exiting the material.

The refraction direction is usually calculated using Snell’s law, but unless we are simulating an 
unmistakably refractive material, such as water or glass, we’re not going to worry about every single ray of 
light, and every single direction of refraction. As we said, we’d need to render at a truly ridiculous resolution 
to have a one-pixel/one-light-ray correspondence. In reality, every pixel contains so many rays of light, that it 
only makes sense to deal with them statistically, especially since we have to render this in real-time.

For the purposes of refraction, you can divide materials into metals and non-metals (dielectrics).  
Metals absorb all the refracted light, which is why we observe much lower diffuse component on metals. 
Non-metals scatter it around, until it’s either absorbed or it exits the material again, but away from where it 
first entered.

This is the physical origin of the diffuse approximation. It can be simplified as a diffuse when the exit 
point is within the same pixel as the entrance point. If it’s outside of that pixel, you need to use subsurface 
scattering techniques to simulate it adequately. Therefore, the distance from the camera is an important 
factor of whatever something can be shaded as diffuse, or should be shaded with subsurface techniques.

Figure 8-4.  Refraction and mirror reflection, also showing the hemisphere of incoming light directions
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Fresnel Reflectance
As mentioned, keeping track of how much energy (as light intensity) is incoming and how much is going 
to end up outgoing from our point on the surface is important in keeping shading physically based. In the 
Specular approximation, we didn’t worry about making sure that the specular wasn’t brighter than the 
incoming light. This is one of the reasons why Phong doesn’t feel realistic.

The ratio between how much incoming light is reflected and how much is refracted changes depending 
on the light angle, the normal, and the view angle. A glancing viewing angle will have much more reflection 
than a straight down one.

As an example, think of being on a boat and looking straight down. There will be little reflection, and 
you’ll be able to see what’s below the water. If, on the other hand, you look toward the horizon, you will see a 
lot of reflection happening, and won’t see anything underneath the water.

If you graph the Fresnel Reflectance by the angle of incidence (see Figure 8-5) from 0 degrees to about 45, 
most materials hardly change at all. They start from a certain Fresnel value and stick to it. From 45 degrees 
to 75, they start to change, most raising toward maximum reflectance. At 90 degrees, almost every material is 
completely reflective.

Figure 8-5.  A graph of the changes in Fresnel reflectance in materials, depending on the angle of incidence

The color of the surface when the angle of incidence is at 0 degrees is maintained for most of the angle 
of incidence values, so it’s convenient to simplify, and take it as the specular color of the material in general. 
You probably have seen material charts around that list the specular colors various materials should use. 
Unity’s is at https://docs.unity3d.com/Manual/StandardShaderMaterialCharts.html.

Specular colors are mostly necessary for metals. Dielectrics tend to have less precise, darker, and 
monochromatic specular colors. Since metals don’t have any subsurface scattering (they absorb all the light 
that’s not reflected) if they didn’t have specular color, they wouldn’t have any color.

We commonly calculate this split between reflection and refraction using the Fresnel equations, 
commonly implemented in code through the Schlick approximation. This approximation is supposed to 
behave similarly to those real physical world values in the graph we described.

F F l h F F l hschlick 0 0 0

5
1 1, ,        

https://docs.unity3d.com/Manual/StandardShaderMaterialCharts.html
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F
o
 is the specular color, meaning the color at 0 degrees of the angle of incidence. The original  

Fresnel formula use instead of specular color, spectral indices of refraction, which are much less convenient 
to deal with.

How to Measure Light
As you might have realized (maybe with some horror) by now, rendering is inextricably linked with physics. 
Our intuitive approximations were the state of the art a decade ago, but that has moved on. You can’t really 
be innovative in this era of physically based shading, without having a working knowledge of the physics of 
light, and likely of Calculus as well.

As I write I cannot know your personal objectives for this book. You might only want to make your indie 
game look better. You may want to make your own physically based renderer. You may want to become a 
graphics researcher. Depending on your objective, you might need to delve deeper into physics, but I’m 
trying here to give you at least a good idea of how everything fits together. This includes introducing you to 
most used units of measure for light. Measuring light (and other electromagnetic radiation) in physics is 
called radiometry. You need to know at least a few units of measure that concern light to be able to read the 
rendering equation.

Solid Angle
A solid angle (see Figure 8-6) is expressed in a unit called a steradian, for which the symbol is sr. It’s the 
projection of a shape onto a unit sphere. This hemisphere should be familiar to you from before.

Figure 8-6.  Solid angle
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Power
The rate of transmission of energy coming from any direction, and going through a surface, is power (see 
Figure 8-7). You’ll find power represented as W.

Figure 8-8.  Irradiance

Figure 8-7.  Power

Irradiance
Irradiance is power coming from all directions, going through a point (see Figure 8-8). In formulas, it’s 
normally represented as E. You’ll find it represented as W/m2.
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Radiance
Radiance is the magnitude of light along a single ray (see Figure 8-9). It is normally represented by L in 
formulas, with L

i
 being the incoming radiance and L

0
 the outgoing radiance. You’ll find it represented as  

W/(m2sr).

Figure 8-9.  Radiance

The measures build on one another, as you can see by radiance W/(m2sr). The final one uses all the 
previous ones—power (W), solid angle (sr), and irradiance W/(m2). There are more units needed to measure 
light, but these should do for our purposes.

How to Represent a Material
Now we know what units we can use to measure light, so we can tackle how to represent a material for 
the purposes of rendering. Representing how light behaves when hitting a material is something that we 
generally try to do with as few parameters as possible.

All the lighting models we have looked at up to now (Lambert, Phong, and BlinnPhong) needed at 
the minimum the direction of the normal and the direction of the light. Lighting models that are view-
dependent also at minimum require the view direction.

So far, we’ve used the expression lighting model to mean an implementation or a formula that simulates 
the behavior of light when hitting a certain surface. But there are more technical terms to describe the same 
concepts, depending on what subset of light behaviors you want to model with it, and we’re now going to 
introduce them. You’ll find that the common mathematical representation of a lighting model feels different 
than the ones we have implemented and looked at up to now.

Bidirectional Reflectance Distribution Function (BRDF)
A BRDF is a function that defines how light is reflected on a surface. All of the lighting models that we’ve 
implemented up to now are BRDFs, meaning that they mainly concern themselves with reflectance. This 
means they can’t represent phenomena such as subsurface scattering or translucency.
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They are functions that take as arguments the direction of incoming light and the direction of outgoing 
light, but they are in the form of spherical polar coordinates (see Figure 8-10). This coordinate system 
enables us to represent these directions with only four numbers. In this system, everything is measured in 
angles from the point of origin. In different reference material, you might find different symbols representing 
different angles (even switched around, just to make it more confusing) but in this book, we’ll use θ for the 
azimuth angle and ϕ for the zenith angle. This is the convention followed by computer graphics literature.

Figure 8-10.  Incoming light direction, view direction, and normal direction represented in spherical polar 
coordinates

In Figure 8-10, there are four named angles. Out of those, θ
i
 and ϕ

i
 define the incoming light direction, 

while θ
0
 and ϕ

0
 define the outgoing light direction (or view direction). ϕ starts from the tangent vector t. 

We’re going to use this kind of coordinates again in the future, in order to analyze the behavior of different 
BRDFs, so keep an eye out for them.

The original definition of BRDF is:
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As we showed in the previous section, L is radiance and E is irradiance. ω
i
 and ω

r
 are the incoming and 

outgoing (reflected) light directions.cosθ
i
 is the angle between the incoming light direction and the surface 

normal.
There are other types of functions, not as well defined as the BRDF, that can deal with subsurface 

scattering, etc. They are BSDF (Bidirectional Scattering Distribution Function) and BSSRDF (Bidirectional 
scattering-surface reflectance distribution function), but they are outside our real-time rendering scope.

There are some properties that a well behaved physically based BRDF must have, they are positivity, 
reciprocity, and energy conservation.

Positivity
It means that the BRDF cannot return a negative number, there is no negative light.

Reciprocity
The BRDF must have the same value when ω

i
 and ω

r
 are swapped.

Energy Conservation
In the simplest terms, the outgoing light cannot exceed the incoming light, unless the excess of light has 
been emitted from the object.

Of these three, we’ll encounter energy conservation most, as it makes a lot of difference for the 
perceived realism of the BRDF result.

Microfacet Theory
Microfacet theory is a way to mathematically derive BRDFs to describe surface reflection, specifically 
for surfaces that have microsurface irregularities and are not completely smooth and flat at every scale. 
We assume that we have a surface with surface irregularities smaller than the scale of observation, but 
large compared to the wavelength of light. Each point is locally a perfect mirror; we’re ignoring nanoscale 
irregularity.

Such perfect mirrors reflect light (ignoring refraction) into one outgoing direction, which depends on 
the light direction and the microfacet normal. For this light to get into our viewpoint, these microfacets need 
to be oriented so that they reflect into the direction of view.

To achieve that the direction of their normal has to be the half vector. The half vector is halfway between 
the direction of the light and the direction of the view. The half vector is obtained by adding lightDir and 
viewDir, and then normalizing the result.

Shadowing and masking (see Figure 8-11) stop some microfacets from contributing to the outgoing 
light. Shadowing is when irregularity creates a peak, which shadows some microfacets. Masking is when the 
reflection going out is blocked by a peak. In reality, this blocked light will continue to bounce, and might 
make it out of the surface eventually. But microfacet theory simplifies this away.
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Figure 8-11.  Respectively shadowing and masking approximations used by the theory, as opposed to reality 
(light bounces)

From these assumptions, we can derive this equation, which describes a microfacet specular BRDF:

f l v
F l h G l v h D h

n l n v
,

, , ,
       
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It’s useful to break it up into components, discussed next.

Fresnel
F(l,h)

This is the amount of light that’s reflected rather than refracted, for a given substance, based on the light 
angle and normal. We explained Fresnel earlier, and this shows you where its place is within an actual BRDF.

Normal Distribution Function
D(h)

It tells us how many of the microfacets are pointing in the half vector direction, as those are the only 
ones we care about, because they contribute outgoing light. The distribution function determines the 
size and shape of the highlights. Some NDFs that you’re likely to encounter are GGX, BlinnPhong, and 
Beckmann.

Geometry Function
G(l,v,h)

This tells us how many facets are not rendered useless by shadowing and masking. It is necessary for the 
BRDF to be energy conserving. Often, Smith’s shadowing function is used as a geometry function.

Microfacet theory is very useful, but it can’t simulate all phenomena. It ignores diffraction and 
interference, which depend on the nature of light as a wave.
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The Rendering Equation (Part II)
In the first chapter, I showed you the rendering equation. I didn’t do it to scare you off, I promise! It was to 
get you used to seeing it. Now we’re going to map each part of the equation to what it does.

L x L x f x L x n dwe i i i i0 0 0 0, , , ,w w w w w w( ) = ( ) + ®( ) ( ) ×( )
W
ò

First, we have outgoing light:

L
o
(x, ω

0
)

This is what we want to obtain from the equation.
Then we have emitted light:

L
e
(x, ω

0
)

Which is the light emitted by the surface we are shading. It’s out of the BRDF, because it’s not reflected 
or refracted light, and out of the integral, so it’s only added once.

Then we have the integral:

W
ò[ ]... dw

Which is going to repeat and add up everything within it, for each solid angle in the hemisphere (dw)
Within the integral, we have the BRDF:

f x i,w w®( )0

It takes the incoming light ω
i
 and returns the reflected and refracted light ω

0
.

Then we have the incoming light:

L
i
(x, ω

i
)

This is the incoming light to the point on the surface that we’re shading.
Then we have the normal attenuation:

(ω
i
 ∙ n)

Which you know as n∙l from earlier lighting model implementations.

Hacks Real-Time Rendering Needs
The integral part of the rendering equation cannot yet be executed in real-time. As mentioned multiple 
times, indirect light is simulated with many techniques—spherical harmonics, global illumination, 
lightmapping, and image-based lighting (reflection probes, cubemaps, etc.).
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One important point to know is that if you implement a new lighting model, you may need to change 
how global illumination is calculated and how cubemaps are processed.

With reflection probes, a cubemap is captured from the scene, and to use image based lighting, the 
cubemap needs to be processed according to the BRDF that you’re using. In practice, whatever processing 
is built-in within Unity may be sufficiently compatible for it not to be worth changing with a formulation for 
your BRDF.

There are open source tools that can be modified and used to process cubemaps for your custom BRDF, 
such as cmftStudio and the old CubeMapGen. You likely could also implement this processing as a compute 
shader within Unity.

HDR and Tone Mapping
When your camera is not HDR, the scale of your light values cannot be realistic. You definitely want to use 
HDR camera and RenderTextures as much as possible.

The consequence of that is that unless you’re only targeting HDR screens, at some point you need to 
convert those HDR values back to LDR. This is done with tone mapping as a post-processing effect. Tone 
mapping can influence the style of your game, so choosing the best tone mapping operator is important. You 
could think of it as what film stock does to a movie. The light that is captured to film (which was HDR) has 
been converted analogically to LDR, with patterns specific to the composition of the film stock.

Linear Color Space
Have you ever wondered about what space you’re doing your calculations in? Chances are that after starting 
this book, you have, more than once. An obvious problem with rendering that apparently nobody noticed for 
a long time, is that we were doing our calculations in a non-Linear Space.

The colors shown on the LDR screens are in Gamma Space. Gamma Space is a non-Linear Space 
where the midpoint between 0 and 255 is not 128, but 187 (see Figure 8-12). Hence all calculations involving 
colors were subtly wrong. The shift to using Linear Space is another staple of physically based shading. It’s 
relatively easy to take care of, especially on a platform for which Unity supports Linear Space outright.
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Why Is Physically Based Shading Useful?
At this point, you might wonder if physically based shading (PBS) is worth all the fuss and all the math. If you 
desire realism in your graphics, PBS has no comparison.

While this may not sound interesting for you if you want to implement some artistic shaders that 
don’t necessarily need any realism at all, PBR has other advantages. For example, using a physically based 
lighting model, material’s settings for a scene are supposed to behave well with any lighting setup, drastically 
reducing the amount of fiddling artists need to do when changing the lighting of a scene. You can still stylize 
your rendering, either by using post-processing or by tweaking the lighting model.

Summary
This chapter briefly covered most of the physical concepts you need to know in order to understand how 
physically based shading actually works. Hopefully this wasn’t too overwhelming. You may feel like a lot of 
concepts are bouncing about in your head, but don’t worry, it’s almost impossible to take this in all at once. 
Unless you have previously studied the physics of light in some depth, you’re bound to need more time. Some 
BRDF implementations in the next chapters will help you put into practice the concepts from this chapter.

Next
The next chapter shows you how to create your first physically based lighting model in an Unity Surface 
shader, putting what you’ve learned into practice.

Figure 8-12.  Linear and Gamma color spaces middle points compared
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CHAPTER 9

Making a Shader Physically Based

Among the many things you learned in the last chapter, there are the three rules your implemented BRDFs 
need to follow In order to be considered physically based. One way to put this knowledge into practice is 
to review the custom Phong surface shader, to find whether it breaks those rules. The shader followed the 
original formulation of Phong, which is fairly old, so it’s quite likely.

Analyzing Phong
Listing 9-1 shows the custom Phong lighting functions. Let’s check for positivity, reciprocity, and energy 
conservation.

Listing 9-1.  The Phong Custom Lighting Functions

inline fixed4 LightingPhong (SurfaceOutput s, half3 viewDir, UnityGI gi)
{
    UnityLight light = gi.light;

    float nl = max(0.0f, dot(s.Normal, light.dir));
    float3 diffuseTerm = nl * s.Albedo.rgb * light.color;

    float3 reflectionDirection = reflect(-light.dir, s.Normal);
    float3 specularDot = max(0.0, dot(viewDir, reflectionDirection));
    float3 specular = pow(specularDot, _Shininess); 
    float3 specularTerm = specular * _SpecColor.rgb * light.color.rgb; 

    float3 finalColor = diffuseTerm.rgb + specularTerm;

    fixed4 c;
    c.rgb = finalColor;
    c.a = s.Alpha;

    #ifdef UNITY_LIGHT_FUNCTION_APPLY_INDIRECT
       c.rgb += s.Albedo * gi.indirect.diffuse;
    #endif

    return c;
} 

https://doi.org/10.1007/978-1-4842-3309-2_9
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Checking for Positivity
You can make sure that the BRDF output is always positive, with the little trick of putting a max function 
starting from 0 in front of the final color. For the purposes of this chapter that’d be okay, but generally it’s 
better if the BRDF mathematically guarantees that.

Checking for Reciprocity
Reciprocity is not easy to check from the shader code. In general, any BRDF published as physically 
based should have this property. Dig into the research papers on the BRDF if you want to check that, or 
alternatively if you’re handy with programs such as Mathematica, or even with hand calculations, you can do 
the math and check for yourself. Phong is not reciprocal, so this needs some work.

Checking for Energy Conservation
With the right normalization factor, even Phong can be energy conserving. An energy conserving specular 
will be brighter when it’s concentrated in a smaller area, and dimmer when it’s spread around more. 
Generally, this would correspond with how rough the material is, in a BRDF based on microfacet theory.

The Modified Phong
Luckily for us, the work of making Phong physically based was done by Lafortune and Willems, in their 
paper from 1994. The normalization factor we want is:

n+2
2p

You can see the modified, normalized Phong function implemented in Listing 9-2.

Listing 9-2.  Modified Phong as a Custom Lighting Function

inline fixed4 LightingPhongModified (SurfaceOutput s, half3 viewDir, UnityGI gi)
{
    const float PI = 3.14159265358979323846;
    UnityLight light = gi.light;

    float nl = max(0.0f, dot(s.Normal, light.dir));
    float3 diffuseTerm = nl * s.Albedo.rgb * light.color;

    float norm = (n + 2) / (2 * PI);
    float3 reflectionDirection = reflect(-light.dir, s.Normal);
    float3 specularDot = max(0.0, dot(viewDir, reflectionDirection));
    float3 specular = norm * pow(specularDot, _Shininess); 
    float3 specularTerm = specular * _SpecColor.rgb * light.color.rgb; 

    float3 finalColor = diffuseTerm.rgb + specularTerm;

    fixed4 c;
    c.rgb = finalColor;
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    c.a = s.Alpha;

    #ifdef UNITY_LIGHT_FUNCTION_APPLY_INDIRECT
       c.rgb += s.Albedo * gi.indirect.diffuse;
    #endif

    return c;
} 

Et voila; we have implemented a physically based BRDF. Possibly that was a bit anticlimactic. It boiled 
down to multiplying the specular for the normalization factor. The normalization factor prevents the BRDF 
from returning more light than it received in the first place.

You’ll get to play with the interesting BRDFs later on, but for now let’s worry about checking whether it 
feels physically based when you look at it, and learning how you can make a convenient shader. This custom 
lighting function fits well inside the old custom Phong surface shader from a few chapters ago (see Listing 9-3).

Listing 9-3.  The Custom/Modified Phong Surface Shader

Shader "Custom/ModifiedPhong" {
    Properties {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _SpecColor ("Specular Material Color", Color) = (1,1,1,1) 
        _Shininess ("Shininess (n)", Range(1,1000)) = 100
    }
    SubShader {
        Tags { "RenderType"="Opaque" }
        LOD 200

        CGPROGRAM
        // Physically based Standard lighting model, and enable shadows on all light types
        #pragma surface surf PhongModified fullforwardshadows

        // Use shader model 3.0 target, to get nicer looking lighting
        #pragma target 3.0

        sampler2D _MainTex;

        struct Input {
            float2 uv_MainTex;
        };

        half _Shininess;
        fixed4 _Color;

        inline void LightingPhongModified_GI (
            SurfaceOutput s,
            UnityGIInput data,
            inout UnityGI gi)
        {
            gi = UnityGlobalIllumination (data, 1.0, s.Normal);
        }
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        inline fixed4 LightingPhongModified (SurfaceOutput s, half3 viewDir, UnityGI gi)
        {
            const float PI = 3.14159265358979323846;
            UnityLight light = gi.light;

            float nl = max(0.0f, dot(s.Normal, light.dir));
            float3 diffuseTerm = nl * s.Albedo.rgb * light.color;

            float norm = (_Shininess + 2) / (2 * PI);
            float3 reflectionDirection = reflect(-light.dir, s.Normal);
            float3 specularDot = max(0.0, dot(viewDir, reflectionDirection));
            float3 specular = norm * pow(specularDot, _Shininess); 
            float3 specularTerm = specular * _SpecColor.rgb * light.color.rgb; 

            float3 finalColor = diffuseTerm.rgb + specularTerm;

            fixed4 c;
            c.rgb = finalColor;
            c.a = s.Alpha;

            #ifdef UNITY_LIGHT_FUNCTION_APPLY_INDIRECT
            c.rgb += s.Albedo * gi.indirect.diffuse;
            #endif

            return c;
        } 

        UNITY_INSTANCING_CBUFFER_START(Props)
        UNITY_INSTANCING_CBUFFER_END

        void surf (Input IN, inout SurfaceOutput o) {
            fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
            o.Albedo = c.rgb;
            o.Specular = _Shininess;
            o.Alpha = c.a;
        }
        ENDCG
    }
    FallBack "Diffuse"
}

What you are looking for is a reduction of specular brightness when the specular is spread out, and an 
increase of specular brightness when it’s concentrated on a small surface. Since we have a pre-normalization 
version of Phong lying around, we can check that easily. As you can see in Figure 9-1, the original Phong (on 
the right) keeps the same brightness, while the normalized Phong (on the left) is less bright when the specular 
occupies a bigger area and brighter when it occupies a smaller one, as energy conservation should do.
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Figure 9-1.  The left side is the normalized Phong and the right is the plain one; first row is n=1, second  
row is n=80
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Figure 9-2 shows two versions of Phong, plotted on a graph in comparison to each other. On the left side 
of the image, both have n = 10. On the right side of the image, which corresponds to n = 100, you’re seeing 
the modified Phong brightness increasing drastically, while the original Phong’s brightness stays the same.

Summary
As you saw, it’s possible to make even an old-fashioned BRDF more physically based. The same result can be 
achieved with BlinnPhong, by looking up normalization factors or by deriving them yourself. Deriving them 
yourself will require you to be handy with Calculus.

While this modified Phong is energy conserving, it still doesn’t take Fresnel into account, so there will 
still be quite a bit of difference between this Phong and a BRDF derived from microfacet theory.

Next
Now that you have a somewhat physically based BRDF in your arsenal, you’re ready to learn about post 
processing effects. They are going to help the shader seem more realistic. You’ll need to use HDR cameras, 
ensure you’re shading in linear space, and add tone mapping.

Figure 9-2.  Polar plot comparison of original Phong and modified Phong

Another handy way to see the difference is to plot the graph of the BRDF’s behavior comparatively. 
You will see more about that in Chapter 11, where we introduce a program to analyze BRDFs, but Figure 9-2 
shows a little sneak peek into the future.

http://dx.doi.org/10.1007/978-1-4842-3309-2_11
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CHAPTER 10

Post-Processing Effects

As mentioned in Chapter 8, post-processing effects are an essential part of obtaining physically based 
shading. The need to use HDR makes it a must to have tone mapping, which is best implemented as a post-
processing effect. When you have one post effect, you might as well add a few others in, such depth of field 
or bloom.

While the new official Post Effects system available on the Unity Asset Store is very powerful, you might 
still need to implement your own tone mapping, or some other post effect that Unity does not include, so 
it makes sense to get at least an overview of how to develop an image effect. Also keep in mind that post-
processing effects before Unity 2017 used to be called image effects, if you encounter that term.

The new post-processing stack is evolving fast, and since any detail I provide about that is going to be 
obsolete fast, I’m going to stick to showing you how to make a post-process effect from scratch, without 
relying on that stack. That said, the new stack looks great, with movie-level color grading capabilities.

How Post-Processing Effects Work
A post-processing effect is a basically an Image Effect shader, which is applied to every pixel in the current 
screen. Imagine you have rendered your scene, not to the screen but to a separate buffer, which in Unity is 
called a RenderTexture.

Now you can either send that to be visualized by the screen or manipulate it. To manipulate it, you can 
access it as a texture within the post-processing shader. This shader is executed separately from the other ones 
in the scene, because it needs to be executed when the scene has just been rendered. To trigger that, there is a 
function signature you can use in a script attached to the camera you want to apply the post effect to.

Why Post-Processing Effects Are Useful
The most important use of post effects for physically based shading is for tone mapping. You should always 
use an HDR camera for better realism, and then it would need to be tone-mapped back to LDR before being 
shown on an LDR screen. Another effect that does a lot for realism, especially for skin and other subsurface-
based materials, is depth of field.

For platforms where Unity doesn’t support a linear color space, post effects are a great way to 
implement that with a minimum of fuss. Unity recently added support for a linear color space for mobile, 
but before, if you wanted to execute your calculations in linear space, you would need to first convert any 
color input to your shader (color picker, textures, etc.) to the linear space, do the shading calculations, and 
then convert back the entire rendered image to gamma as the last action in your post effects.

It might still be useful for you to know how to do that, so we’ll cover it.

https://doi.org/10.1007/978-1-4842-3309-2_10
http://dx.doi.org/10.1007/978-1-4842-3309-2_8
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Setting Up a Post Effect
You need three things to set up a post effect:

•	 A camera in the scene to apply it to

•	 A script to add to that camera as a component

•	 A shader that the component will execute

HDR and Linear Setup
First, check that your camera is using HDR. As shown in Figure 10-1, the Allow HDR option must be on. 
Notice also our rendering path is Forward. In Chapter 1, we talked about the different types of renderers 
available in Unity, and in general in the game industry. As of Unity 2017.2, the available choice of renderers 
is between Forward and Deferred, and two legacy options, VertexLit and an older Deferred.

Figure 10-1.  HDR camera settings

http://dx.doi.org/10.1007/978-1-4842-3309-2_1
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In the future, they are probably going to be joined by the new ScriptableRenderLoop, a super flexible 
renderer that’s currently in development.

Our shaders work with the Unity Forward renderer, so we’re going to stick to that. Deferred renderers 
can be limiting when developing complex BRDFs, as the decision of what data is made available to shaders 
has been set in stone when the renderer was being developed.

Make sure that in your Player Settings, the Color Space is set to Linear. To check that, open Build 
Settings, then Player Settings, then Other Settings and there you’ll find the Color Space, as shown in 
Figure 10-2.

Of these two, Color Space is the more important one, so if you need to choose only one, choose Linear. 
That said, HDR also helps achieving realism, so seriously consider rendering your game using HDR cameras. 

Script Setup
Let’s create a new post effect script by selecting the camera and clicking on the Add Component button in 
the inspector. Scroll to New Script, select C# as the language, and name the new script PostEffects. The 
script that’s created should be the same as in Listing 10-1.

Listing 10-1.  Default C# Script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class PostEffects : MonoBehaviour {

    // Use this for initialization
    void Start () {

    }

Figure 10-2.  Color Space settings
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    // Update is called once per frame
    void Update () {

    }
}

It’s the classic empty MonoBehaviour based script. Let’s start customizing it to work as an applier of post 
effects. First we’ll add a line that prevents us from adding this script as a component to a GameObject that’s 
not a camera:

[RequireComponent (typeof (Camera))]
[ExecuteInEditMode] 

The second line makes the script execute in edit mode as well; otherwise it’d be tricky to preview our 
changes without playing. Then we should add a few members to the class, plus a getter method. We need 
a reference to the Image Effect shader that the script is going to use, plus we need to create a material for it 
dynamically (see Listing 10-2).

Listing 10-2.  Members and Getter to Add to the Script

public Shader curShader; 
private Material curMaterial;

Material material
{
    get
    {
        if (curMaterial == null){
            curMaterial = new Material(curShader);
            curMaterial.hideFlags = HideFlags.HideAndDontSave;
        }
        return curMaterial;
    } 
}

To make the script more convenient, we can fill the appropriate shader in automatically (finding it by 
name), making sure that the script doesn’t error out if image effects are not supported or if the shader is not 
supported. We can do that by adding lines to the Start function, as shown in Listing 10-3.

Listing 10-3.  Complete Start Function

void Start () {
    curShader = Shader.Find("Hidden/PostEffects");
    GetComponent<Camera>().allowHDR = true;
    if(!SystemInfo.supportsImageEffects){
        enabled = false;
        Debug.Log("not supported");
        return;
    }
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    if (!curShader && !curShader.isSupported){
        enabled = false;
        Debug.Log("not supported");
    }
    GetComponent<Camera>().depthTextureMode = DepthTextureMode.Depth;
}

Note that we’re also forcing the camera to compute a depth texture. A depth texture is useful for many 
effects, such as depth of field, but in this case, I only want to show you what it looks like and how to get to it.

Other administrative tasks include destroying the material when the Camera GameObject is disabled, 
and returning early from the Update function if the camera is not enabled (see Listing 10-4). The latter is 
necessary when you want to change the values for your Image Effects shader within the Update function.

Listing 10-4.  Update and OnDisable

void Update () {
    if (!GetComponent<Camera>().enabled)
    return;
}

void OnDisable(){
    if(curMaterial){
        DestroyImmediate(curMaterial);
    }
}

Finally, we get to where the magic happens. OnDisable, Start, and Awake are methods triggered by the 
engine at the appropriate times.

To apply our effects, we need another of those functions, OnRenderImage:

void OnRenderImage(RenderTexture source, RenderTexture destination).

As you can see, it takes two arguments, a source RenderTexture and a destination one. You’re supposed 
to put the code that actually applies the effect in this method. There is also another way, using two similar 
methods—void OnPreRender() and void OnPostRender(). In this case, you need to create the source render 
texture yourself, which depending on your platform, could be more efficient. We’ll cover both methods. Let’s 
start with OnRenderImage. There are a series of steps needed:

•	 Get the current rendered scene in a RenderTexture (RenderTexture source does 
that for us).

•	 Use Graphics.Blit to apply the image effect shader to the source texture. Blit 
means copying all pixels from an origin surface to a destination surface, while 
optionally applying some transformation.

•	 That also includes a destination RenderTexture. If that is null, Blit will send the result 
directly to the screen.

To put this into practice, let’s make an Image Effect shader the usual way (right-click in the Project pane 
and then choose Create ➤ Shader ➤ Image Effect Shader). Call this shader PostEffects. The result is shown 
in Listing 10-5.

http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=OnPreRender#_blank
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=OnPostRender#_blank
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=Graphics#_blank
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=Blit#_blank
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Listing 10-5.  Default Image Effect Shader

Shader "Hidden/PostEffects"
{
    Properties
    {
        _MainTex ("Texture", 2D) = "white" {}
    }
    SubShader
    {
        // No culling or depth
        Cull Off ZWrite Off ZTest Always

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float2 uv : TEXCOORD0;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
                float4 vertex : SV_POSITION;
            };

            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.uv = v.uv;
                return o;
            }

            sampler2D _MainTex;

            fixed4 frag (v2f i) : SV_Target
            {
                fixed4 col = tex2D(_MainTex, i.uv);
                // just invert the colors
                col = 1 - col;
                return col;
            }
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            ENDCG
        }
    }
}

This looks mostly like an Unlit shader, except that by default the path is under Hidden, and it declared 
Cull and Zwrite off, and ZTest Always. We haven’t previously messed with these values, because we haven’t 
needed to. They are needed because we’re not shading a model, we’re processing a 2D image that’s going 
to be shown on-screen as two triangles, forming a quad. We mustn’t cull the back face, and Zwrite doesn’t 
serve any purpose, because there is no depth.

The main texture is actually our rendered scene. Apply this shader in OnRenderImage and take a look 
at the result. We already have the source texture and a destination texture (which is the screen), so we only 
need a few lines of code to apply the effect (see Listing 10-6).

Listing 10-6.  OnRenderImage First Version

void OnRenderImage(RenderTexture sourceTexture, RenderTexture destTexture) {
    if (curShader != null)
    {
        Graphics.Blit(sourceTexture, destTexture, material, 0);
    }
}

Graphics.Blit takes the source texture, the destination texture, the material that contains the shader to 
apply, and which pass to use, starting from 0. The result is shown in Figure 10-3.

Figure 10-3.  The scene without the post effect (left), and the scene with post effect applied (right)
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As you can see, the default post effect inverts the scene colors. Let’s copy and paste this pass and 
change the content of the frag function to show the depth texture of the camera. We can add a name within 
the pass, and we need to move the Cull Off line to the top of each pass. To access the depth texture for the 
camera we need to declare the variable with the right name (it’s a convention) and then convert it to a 
grayscale color using a macro (Listing 10-7).

Listing 10-7.  Decoding the Camera’s Depth Texture

sampler2D _CameraDepthTexture;

fixed4 frag (v2f i) : SV_Target
{
    fixed depth = UNITY_SAMPLE_DEPTH( tex2D(_CameraDepthTexture, i.uv) );
    fixed4 col = fixed4(depth,depth,depth, 1.0);
    return col;
}

The complete pass will look like Listing 10-8.

Listing 10-8.  An Image Effect Pass Showing the Camera Depth

Pass
    {
        name "DebugDepth"
        Cull Off ZWrite Off ZTest Always Lighting Off
        CGPROGRAM
        #pragma vertex vert
        #pragma fragment frag
        #include "UnityCG.cginc"

        struct appdata {
            float4 vertex : POSITION;
            float2 uv : TEXCOORD0;
        };

        struct v2f {
            float2 uv : TEXCOORD0;
            float4 vertex : SV_POSITION;
        };

        v2f vert (appdata v) {
            v2f o;
            o.vertex = UnityObjectToClipPos(v.vertex);
            o.uv = v.uv;
            return o;
        }

        sampler2D _CameraDepthTexture;
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        fixed4 frag (v2f i) : SV_Target {
            fixed depth = UNITY_SAMPLE_DEPTH( tex2D(_CameraDepthTexture, i.uv) );
            fixed4 col = fixed4(depth,depth,depth, 1.0);
            return col;
        }
        ENDCG
    }

The pass you want to apply has changed, so you need to change the Blit line accordingly:

Graphics.Blit(sourceTexture, destTexture, material, 1);

You’re applying the second pass in the shader. To show off the result, I reduced the camera far plane to 
12 (the bigger the depth, the less precise it is) and added a few spheres farther back (see Figure 10-4).

Let’s add a few options to the script, so you can switch which image effect pass is being applied. We 
need to add two booleans, one for the invert effect, and one for the depth effect. Inside OnRenderImage, 
we’ll check which one is one and act accordingly. If both are on, invert will win. If none are on, the scene 
won’t have any post effect applied (see Listing 10-9).

Figure 10-4.  The camera depth image effect
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Listing 10-9.  Switching Between Different Passes, According to bool Properties Visible in the Inspector

public bool InvertEffect;
public bool DepthEffect;

void OnRenderImage(RenderTexture sourceTexture, RenderTexture destTexture) {
    if (curShader != null)
    {
        if (InvertEffect) { 
            Graphics.Blit(sourceTexture, destTexture, material, 0);
        } else if (DepthEffect) {
            Graphics.Blit(sourceTexture, destTexture, material, 1);
        } else {
            Graphics.Blit(sourceTexture, destTexture);
        }
    }
}

Now you can switch between effects, from the inspector.

Conversion to Linear
To try this out, you’ll need to switch the color space back to gamma in the player settings. For this to be 
completely correct, we’d need to make a shader for the duck as well, which converts any color within it to 
linear space. But that would be too long; we can still see the difference between an image effect calculated in 
linear space and one calculated in Gamma Space even without doing that.

Add another boolean to the members and call it LinearInvertEffect. Add another to the chain, and add 
another pass to the image effect shader. Within that pass, the _MainTex should be sampled within a power to 2.2.  
Then the invert is applied, and then the color should be elevated to the power of 1

2 2.
 (Listing 10-10).

Listing 10-10.  An Effect Calculated in Linear Space Within a Gamma Space Project

fixed4 frag (v2f i) : SV_Target
{
    fixed4 col = pow(tex2D( _MainTex, i.uv ), 2.2);
    col = 1 - col;
    return pow(col, 1/2.2);
}

Even though we’re not doing much at all, you can still see a different result (within a project in gamma 
space, keep in mind) when the calculation of the effect is done in linear space (see Figure 10-5).
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RenderTextures Brief Overview
RenderTextures are textures you can write to. You can set one as the target of a camera. You can create them 
from the UI, as assets, or you can create them programmatically.

When you do create them programmatically, it’s important to remember to release them. One way you 
can do that is by getting a temporary RenderTexture:

RenderTexture.GetTemporary(512,512,24,RenderTextureFormat.DefaultHDR);

After you use it, call

RenderTexture.ReleaseTemporary(someRenderTex);

Up to now, we have only considered post effects that are not consecutive, as they don’t use the result of 
the previous pass. Some effects that use it are blur and depth of field. In that case, you need to use temporary 
textures to pass to the next shader pass as arguments. This is outside of our scope in this book, because you’ll 
most likely use the Unity post-processing stacks, anyway, to do this kind of effect.

As mentioned at the beginning of the chapter, there is an alternative way without using OnRenderImage, 
and it works as shown in Listing 10-11.

Figure 10-5.  Left: gamma space invert effect, right: linear space invert effect
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Listing 10-11.  Alternative Way of Applying a Post Effect

RenderTexture aRenderTex;
void OnPreRender()
{
    aRenderTex = RenderTexture.GetTemporary(width,height,bitDepth, textureFormat);
    camera.targetTexture = myRenderTexture;
}
void OnPostRender()
{
    camera.targetTexture = null;
    Graphics.Blit(aRenderTex,null as RenderTexture, material, passNumber);
    RenderTexture.ReleaseTemporary(aRenderTex);
}

This technique may be quicker, depending on your platform. You can see within it a use of 
GetTemporary and ReleaseTemporary.

A Simple Tone Mapper
Tone mapping, as mentioned in Chapter 8, is a way to gracefully convert an HDR buffer to an LDR buffer. The 
idea is to map the HDR values to LDR values in aesthetically pleasing ways, instead of just clipping them.

There are many tone-mapping operators that you can use, but we’ll stick to a relatively simple one, the 
one that John Hable invented for Uncharted 2, which he published on his blog for everyone to use.

First, we need to add a new boolean, a new if statement, and a new shader pass. We also need to add 
another property, an exposure for the camera. To obtain a slider in the inspector, you should use this code:

[Range(1.0f, 10.0f)]
public float ToneMapperExposure = 2.0f;

After declaring it, we want to send the value to the shader when the effect is active. For that we should 
use material.setFloat. We’re going to put that within the if chain:

[...]
} else if (ToneMappingEffect) {
   material.SetFloat("_ToneMapperExposure", ToneMapperExposure);
   Graphics.Blit(sourceTexture, destTexture, material, 3);
} else {
[...]

Then we need to declare the property within the shader and declare the variable only within the pass 
where we’re going to use it. Then, we implement Hable’s operator in the fragment shader (see Listing 10-12).

Listing 10-12.  The Hable Tone Mapper Operator

float _ToneMapperExposure;

float3 hableOperator(float3 col)
{
    float A = 0.15;
    float B = 0.50;

http://dx.doi.org/10.1007/978-1-4842-3309-2_8
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    float C = 0.10;
    float D = 0.20;
    float E = 0.02;
    float F = 0.30;
    return ((col * (col * A + B * C) + D * E) / (col * (col * A + B) + D * F)) - E / F;
}

fixed4 frag (v2f i) : SV_Target
{
    float4 col = tex2D(_MainTex, i.uv);
    float3 toneMapped = col * _ToneMapperExposure * 4;
    toneMapped = hableOperator(toneMapped) / hableOperator(11.2);
    return float4(toneMapped, 1.0); 
}

The code for this shader has become very long, so I can’t just paste it here for you to peruse. You should 
check that your final result is correct by downloading the book source code and looking at the scene called 
chapter10-posteffects.unity.

At this point, if you check the boolean that activates the tone mapper pass, you should be able to change 
the exposure slider in the inspector and see it change the result. Turning on and off the tone mapper should 
show you how it influences the final result (see Figure 10-6).

Figure 10-6.  Left, no tonemapping; right, hable tonemapping with exposure 1.0

Now you have some idea about how tone mapping is implemented. There are various tone-mapping 
operators documented online, although you’ll most likely going to want to use the powerful post-processing 
stack for this, which I’m going to briefly introduce next.

http://dx.doi.org/10.1007/978-1-4842-3309-2_10
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Post-Processing Stack v1
This processing stack is available on the Asset Store as of August 2017. It’s the first version of the new post-
processing stack and it gives you a number of pre-made effects that you can turn on and off and customize.

To obtain it, download it from the asset store and attach it to a camera as a component. You’ll have 
to create a post-processing settings file (see Figure 10-7) where you can turn on and off different effects. If 
you’re using HDR (as you should, if performance allows) then definitely turn on the Color Grading effect, 
which includes the tone mapper. Also consider the depth of field, as it helps with the perception of realism.

Figure 10-7.  Available options with the v1 of the post-processing stack

Post-Processing Stack v2
This processing stack is available on GitHub as of August 2017. It’s the second version of the new processing 
stack, and it adds more flexibility. Some ways to switch post-effects setup depending on various triggers, 
scriptability, ability to add your own effects, and compatibility with the upcoming rendering scriptable loop.

To get it, you might need to clone the v2 branch of the GitHub project into your Assets folder. The 
setup for this stack is more complex and might well change, so you should read the GitHub wiki, or the 
instructions within Unity’s manual. You’ll need to create a profile for this one as well and again consider 
using the included tone mapper and depth of field (see Figure 10-8).
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Summary
This chapter implemented various post effects from scratch, using C# scripts and Image Effect shaders.  
We introduced RenderTextures and we implemented a simple tone mapper. We also introduced the two post 
effects stack that Unity has developed, which you should likely use for your tone mapping and color grading 
needs.

Next
The next chapter presents a number of popular BRDFs that you may want to consider implementing. We’ll 
introduce a tool to explore them and visualize their differences in many ways.

Figure 10-8.  The v2 stack, applied to a simple scene
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CHAPTER 11

BRDFs Who’s Who

Now that you’re familiar with the principles of physically based shading and how to ensure your BRDF 
implementation respects them, we can explore some of the BRDFs described in past papers.

You can invent your own from scratch, for example by deriving them from the microfacet theory model, 
or you can choose one out of the many BRDFs that have been described in graphics papers in the past.

BRDF Explorer
Since implementing a BRDF in Unity is a fair bit of work, to explore the many available BRDFs we’re going 
to use a different tool. This tool has been developed by the researchers from Disney, and it’s called BRDF 
explorer (see Figure 11-1). It’s open source on GitHub, you can find the source code at https://github.com/
wdas/brdf, and the precompiled version is at https://www.disneyanimation.com/technology/brdf.html.

https://doi.org/10.1007/978-1-4842-3309-2_11
https://github.com/wdas/brdf
https://github.com/wdas/brdf
https://www.disneyanimation.com/technology/brdf.html
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BRDF Explorer comes with many different BRDF implementations and many ways to analyze them. 
Those include graphs that extract relevant information out of them, both real-time and offline rendered 
BRDF preview. You can also compare many different BRDFs at the same time. Sometimes graphics research 
papers include implementations for BRDF Explorer of the technique they describe. All in all, a very useful 
tool, and well worth learning.

As you know from the chapter on the theory of physically based shading, there are common parameters 
between BRDFs (such as incoming light direction) that allow you to analyze the behavior of a BRDF in 
respect to those parameters and to compare them as well. BRDF Explorer is explicitly developed with the 
objective of making their access and comparison convenient. The program comes with a number of .brdf 
files that are included in the /brdfs subfolder. Each of them implements a BRDF using a custom dialect of 
the GLSL shader language.

BRDF Parameterizations
You might remember Figure 11-2 from the chapter about physically based shading. These angles, and others, 
are going to be important to read BRDF Explorer’s output. This is one of the most common parameterizations 
of a BRDF: it uses four angles to describe two vectors, the incoming and outgoing light vectors.

Figure 11-1.  BRDF Explorer analyzing a BRDF
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BRDF Explorer was created to compare BRDFs acquired from real-life materials. There is a small, 
freely available database of such BRDFs, called MERL. This database uses a slightly different coordinate 
system compared to the one in Figure 11-2. It’s still a spherical polar coordinate system, but instead of being 
based on the incoming and outgoing light vectors, it’s based on two vectors derived from them. They are 
the halfway vector (or half-angle) and the difference vector (see Figure 11-3). This is often referred to as an 
alternative BRDF parameterization or a reparameterization.

Figure 11-2.  Original BRDF parameterization in spherical polar coordinates
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The reason of this difference is because a BRDF parameterized on these angles can store the acquired 
data more efficiently. Still, isotropic BRDFs occupy about 33MB. Isotropic means that, when you rotate 
around the normal, the reflections won’t change. In the case of this database, only including isotropic BRDFs 
allows them to store one less angle from the captured BRDF, which would have been angle ϕ

h
.

The half-angle is obtained by adding the incoming and outgoing light vectors, while the difference 
angle is found in more complex ways. One way is to find the rotation that will align the halfway vector to the 
direction (0,0,1) and apply it to the incoming light vector.

One consequence of this change in the coordinate system is that the hemisphere is not centered around 
the normal vector anymore, so part of the acquired data goes under the hemisphere and will show up as 
black. It’s something that will show up when you load a MERL BRDF and play with some of the various levers 
available in BRDF Explorer.

Now let’s start digging into BRDF Explorer’s functionality to see how useful it is.

Reading BRDF Explorer’s Output 
Let’s get started by examining a BRDF we’re quite familiar with: Phong. There are multiple versions of Phong 
included in the BRDF Explorer repository; we’re going to look at the plain one for now.

Figure 11-3.  BRDF reparameterization using the half vector and the difference vector
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Phong
First, we need to open the phong.brdf file, which is in the brdf/ folder under the root of the program. It will 
add itself to the BRDF Parameters column on the left. From there, you can control which BRDF is currently 
shown, manipulate the BRDF’s inputs, and make the BRDF invisible, all the while keeping it in the column 
(see Figure 11-4).

At the top of the column, you can change the thetaL and the phiL angles, which you may better 
recognize as θ

i
 and ϕ

i
. These are the two spherical polar coordinates angles that represent the incoming  

light direction.
The plane has quite a few options, so let’s go through the most important options, one by one:

•	 Incoming light above the plane, the angle θ
l
 slider, from 0 to 90 degrees

•	 Incoming light on the plane, the angle ϕ
l
 slider, from 0 to 360 degrees

These two sliders specify the position of the incoming light. Changes will show up in real time in the 3D 
Plot tab (see Figure 11-5).

Figure 11-4.  BRDF Parameters pane
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Figure 11-5.  The 3D Plot panel

In the phong.brdf box, you’ll find:

•	 The Visible check box, which turns the BRDF on and off

•	 The n value, which is the specular exponent, from 0 to 1000

•	 The divide by N∙L checkbox

If you look at the 3D Plot panel while changing all these options, you’ll get a good idea of the effect they 
have on the behavior of the BRDF. The 3D Plot panel shows the hemisphere with the incoming and outgoing 
light vectors, and the shapes of the BRDF. For example, Phong has one Specular Lobe, of which you might 
notice the resemblance with the specular approximation figure in Chapter 5. In some BRDFs, there is also a 
Diffuse Lobe, which also looks similar to the diffuse approximation figure from Chapter 5.

Looking at the code for phong.brdf, notice the parameters declarations that automatically produce 
sliders and other inputs within the interface. While the code is not in Cg, GLSL has a lot in common with 
it. You can create your own .brdf files or modify the existing ones, in order to try your theories out before 
delving into implementation in Unity.

Another useful panel is the Lit Sphere panel (see Figure 11-6). It shows you a real-time preview of the 
BRDF rendered on a sphere. Again, any changes to the parameters are shown in real time.

http://dx.doi.org/10.1007/978-1-4842-3309-2_5
http://dx.doi.org/10.1007/978-1-4842-3309-2_5
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If you want to test the BRDF in a more interesting setting, the Lit Object panel is what you want to use 
(see Figure 11-7). It renders with an offline renderer and supports image based lighting. You can import your 
own models (it supports the Obj format) and IBS cubemaps. Check the Keep Sampling checkbox to obtain a 
clear render, eventually.

Figure 11-6.  The Lit Sphere panel
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Figure 11-7.  The Lit Object panel

Since we’re using a different parameterization of BRDFs, there are a few extra angles involved. BRDF 
Explorer allows you to look at graphs of their behavior:

•	 Theta H (θ
h
)has θ

d
 as a parameter

•	 Theta D (θ
d
)has θ

h
 as a parameter

•	 Theta V (θ
v
)has ϕ

v
 as a parameter

A general overview of all those values can be gleaned from the Image Slice panel (see Figure 11-8). 
The Image Slice panel is especially useful for comparing at a glance the behavior of BRDFs, included the 
ones acquired from a BRDF capture. The most informative slice corresponds to ϕ

d
 = 90, with ϕ

d
 being the 

azimuthal rotation of the incoming light angle around the half vector.
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Different parts of the image correspond to different characteristics of the BRDF, such as Fresnel 
reflection, specular reflection, grazing reflection, and retro-reflection (see Figure 11-9). The Image Slice 
panel is particularly useful for comparing the binary BRDFs acquired from real life with other BRDFs, either 
binary or implemented in code. As explained in Chapter 8, BRDFs cannot express all light phenomena, so 
these acquired BRDFs might not show some aspects that the original material had, such as iridescence.

Figure 11-8.  The Image Slice panel

http://dx.doi.org/10.1007/978-1-4842-3309-2_8
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That’s it for the Phong analysis.

MERL Database
The MERL database contains 100 captured BRDFs. You can download all of them from https://www.merl.
com/brdf/ as .binary files. BRDF Explorer can read .binary files, so you can explore these BRDFs as you 
can ones implemented in code.

Comparing BRDFs
As you might have noticed, BRDF Explorer allows you to add many different BRDFs and toggle them. One of 
the most useful panels for this kind of comparison is the Polar Plot panel (see Figure 11-10). Different BRDFs 
are traced with different colors, so you can compare them easily. It’s very similar to the 3D Plot panel, but 
easier to peruse when there is more than one BRDFs involved.

Figure 11-9.  A BRDF image slice (left), and how to read it (right)

https://www.merl.com/brdf/
https://www.merl.com/brdf/
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Figure 11-10.  Polar Plot panel, showing the specular lobe for Phong and Cook Torrance

To compare BRDFs, you only need to load more than one .brdf or .binary file, and you’ll be able to 
toggle them with the Visible checkbox and with the Solo This BRDF button. You can add as many BRDFs 
to the comparison as you’d like. Watch out in the 3D Plot panel, because the different BRDF lobes might 
overlap and obscure each other.

To try the multiple BRDF comparison, let’s load the cooktorrance.brdf file. Cook Torrance is a very 
popular BRDF at the moment. It’s used in Unity >= 5.x, in Unreal 4, and in other engines as well. It’s very 
flexible and allows you to simulate many types of materials with only one BRDF. Since implementing 
indirect light for a BRDF within an engine is still cumbersome, due to the BRDF-related processing needed 
to create appropriate cubemaps and global illumination, engines tend to choose one, rather than having 
many available. You’ll also rarely find them called by their actual names in the engine documentation.

For example, Unity 5.x uses calls the default shader "Standard" and doesn’t specify which BRDFs lie 
underneath that name. Depending on platform, the actual BRDF used can be a variant of BlinnPhong, 
CookTorrance, or the Disney BRDF. The only way to find out is to look at the Standard shader code.

An Incomplete List of BRDFs Used in Real-Time Rendering
From a quick perusal of the files under the brdf/ folder, you’ll see many BRDF names, which you might not 
have heard of. Keep in mind that any file starting with d_ is the distribution term of a microfacet BRDF, and 
any file starting with g_ is the geometric term. This section describes the most relevant ones.
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Ashikhmin Shirley
This is an anisotropic BRDF. It’s a particularly good fit for metals, and oil and water layers (see Figure 11-11). 
You can see it applied to our usual duck in Figure 11-12.

Figure 11-11.  Ashikhmin Shirley BRDF in BRDF Explorer
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Figure 11-12.  Ashikhmin Shirley Specular BRDF in Unity

This BRDF was introduced in the 2000 paper entitled An Anisotropic Phong BRDF Model by Michael 
Ashikhmin and Peter Shirley.
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Cook Torrance
As mentioned, this is a very flexible BRDF. It can convincingly simulate metals, wood, plastic, and many 
other materials. It’s based on microfacet theory. It can simulate materials with different roughness as well. 
See Figure 11-13.

It was introduced in the 1982 paper entitled A Reflectance Model for Computer Graphics by Robert L. 
Cook and Kenneth E. Torrance.

Figure 11-13.  CookTorrance Specular BRDF in Unity
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Figure 11-14.  Oren Nayar Diffuse BRDF in BRDF Explorer

Oren Nayar
This is a diffuse-only BRDF. It’s more flexible than Lambert, and it can simulate roughness in diffuse 
materials. It was originally developed in order to model the non-Lambertian behavior of the moon. It 
doesn’t include a specular component, so it needs to be paired with one to simulate materials that need a 
specular term. See Figure 11-14.

This BRDF was introduced in the 1994 paper entitled Generalization of Lambert’s Reflectance Model by 
Michael Oren and Shree K. Nayar.
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Figure 11-15.  Anisotropic Ward specular BRDF in BRDF Explorer

This BRDF was introduced in the 1992 paper Measuring and modeling anisotropic reflection by  
Gregory J. Ward.

Disney
A BRDF invented by Brent Burley, for use in Disney’s 3D rendered animated movies. It’s an interesting 
BRDF to analyze, as it’s built to be extremely flexible, yet very easy for artists to use. You can download an 
implementation for it from BRDF Explorer’s GitHub, as it’s not included in the binary release.

Looking at the parameters, you’ll likely notice how much more intuitive the naming is. It uses actual 
descriptive names instead of opaque acronyms, or even single letters. You should try different settings while 
looking at the Polar or 3D Plot panels, to keep an eye on how dramatic changes in lobe shape can be with 
this BRDF (see Figure 11-16).

Ward
This is a rarely used BRDF. It’s based on empirical data, and is made to fit the measured behavior of 
anisotropic reflection in materials. As a result, it can simulate metals well. See Figure 11-15.
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One simple experiment is to switch from 0 metallic to 1 metallic, which will singlehandedly make the 
rendered material look like metal without changing any other parameters. Note how much lobe shape can 
change when you change the settings. That’s because they are interpolating between very different lobes, 
instead of having just one type of lobe.

This BRDF was introduced in the talk Physically Based Shading at Disney, presented at the Practical 
Physically Based Shading in Film and Game Production course at SIGGRAPH 2012 by Brent Burley.

Figure 11-16.  Disney BRDF in BRDF Explorer
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This is it for our presentation of BRDF Explorer and a few popular BRDFs. It’s a very handy program and 
I encourage you to keep exploring what it can do.

Summary
This chapter introduced the BRDF Explorer program and showed how it’s useful to check out and analyze 
BRDFs. It also presented many famous BRDFs and explained the materials they can simulate well.

Next
The next chapter shows you how to implement one of the BRDFs mentioned in this chapter in a Unity 
Surface shader.
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CHAPTER 12

Implementing a BRDF

In Chapter 9, we modified Phong to make it energy conserving. In the last chapter, we introduced many 
different BRDFs that can be implemented.

In this chapter, we’re going to implement one of those BRDFs as a surface shader in Unity.

Which BRDF to Implement?
The most popular BRDFs used in games at the moment are CookTorrance and the Disney BRDF. They’re 
both physically based BRDFs to different degrees. The Disney BRDF is referred to as “principled” rather than 
entirely physically based.

Their main objective, when developing the Disney BRDF, was to make a BRDF capable of simulating 
most materials, but also one that’s very intuitive for artists to deal with. When physics and intuitiveness 
contradicted each other, intuitiveness won. When we analyzed both of them in BRDF Explorer, you might 
have noticed how flexible Disney’s lobes are. They can contort into some complex shapes, while the 
CookTorrance lobes can vary a lot in size and thickness, but they tend to keep their characteristic shape 
throughout.

CookTorrance is a good example of a microfacet-based BRDF, but Disney’s is a more interesting BRDF 
overall, and it’s a great example of designing a BRDF to be used by artists. In the interest of learning as much 
as is practical from both, we’ll go through the first steps of implementation for both. Those could be called 
the “gathering references” stage of the process. The complete Disney BRDF is quite complex to implement, 
so it’s not appropriate for your first BRDF implementation.

We are going to implement CookTorrance for the specular term and implement only the diffuse part 
of the Disney BRDF for the diffuse term. Microfacet BRDFs are specular-only, so they always need to be 
complemented with a diffuse BRDF. Normally, that would be Lambert. However, OrenNayar and the diffuse 
portion of the Disney BRDF are also good options.

Finding References
The first issue to address when implementing a BRDF is to find good sources. You should find the original 
BRDF formula, later variations on it, and a reference implementation (if you’re lucky), or at least someone 
else’s implementation attempt. For older BRDFs, there are plenty of implementations lying around, but 
they’re liable to have been adapted to some specific platform or requirements. You should check how much 
they follow the original formula, rather than trusting them.

Most of the time, the code you find won’t be targeted at the platform you want to implement the 
BRDF for anyway, so it pays to learn about the most common shading languages to be able to read those 
implementations. Shading languages are all fairly similar, so it shouldn’t be a huge effort. HLSL and GLSL 
are among the most commonly used shading languages.

https://doi.org/10.1007/978-1-4842-3309-2_12
http://dx.doi.org/10.1007/978-1-4842-3309-2_9
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In your search for reference materials, you’re likely to find semi-abandoned repositories, implementers 
who ended up changing half the BRDF anyway, and other materials that can occasionally be useful, but can 
also confuse and mislead you. Thread with caution. Always check out the original paper, if it’s available.

Warnings made—now let’s gather our references.

CookTorrance
The CookTorrance BRDF has been around since 1981, when it was introduced in a research paper. It’s very 
popular, so a lot of people have further researched it and refined it. It is derived from microfacet theory, 
which itself has been written about extensively.

Our main references:

•	 The slides and course notes for Physics and Math of Shading by Naty Hoffman, which 
was presented at SIGGRAPH every year from 2012 to 2015

•	 The slides and course notes for Real Shading in Unreal Engine 4, presented by Brian 
Karis at SIGGRAPH, 2013

•	 The implementation of the CookTorrance BRDF included in BRDF Explorer (GLSL)

•	 The article entitled Specular BRDF Reference on Brian Karis’ blog [1]

•	 The paper entitled An Introduction to BRDF Models by Daniël Jimenez Kwast

Other, somewhat deeper, references include:

•	 The original paper entitled A Reflectance Model for Computer Graphics from 1981

•	 The slides, and course notes, from Understanding the Masking-Shadowing 
Function in Microfacet-Based BRDFs by Eric Heitz at SIGGRAPH, 2014 (great for 
understanding microfacet theory)

•	 The paper entitled Microfacet Models for Refraction through Rough Surfaces from 
EGSR, 2017

As you can see, we’re drawing from more recent reference materials, which include the latest research 
for AAA game rendering techniques. But if you have time, it’s good to go through the history of a BRDF and 
track which changes were made by whom, and where. For this, a SIGGRAPH membership can be invaluable, 
but you should be able to just Google these references and find free versions of them, should you want to.

Many graphics programmers and researchers also keep a blog, where they often publish useful 
information and explain papers and techniques; see Chapter 18 for an incomplete list of them.

Disney
The Disney BRDF has been published by Brent Burley in 2012. It’s a very recent BRDF, and that means there 
isn’t a lot of material about it yet, apart from the original sources.

Our references for the Disney BRDF:

•	 The original slides, and course notes, from the talk Physically Based Shading at 
Disney, presented at the Practical Physically Based Shading in Film and Game 
Production course at SIGGRAPH, 2012, by Brent Burley

•	 The implementation of the Disney BRDF included in BRDF Explorer (GLSL)

1http://graphicrants.blogspot.co.uk/2013/08/specular-brdf-reference.html

http://www.ann.jussieu.fr/~frey/papers/scivi/Cook R.L., A reflectance model for computer graphics.pdf
http://dx.doi.org/10.1007/978-1-4842-3309-2_18
http://graphicrants.blogspot.co.uk/2013/08/specular-brdf-reference.html
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Other, somewhat useful, references include:

•	 The original slides, and course notes, from the talk Extending the Disney BRDF to a 
BSDF with Integrated Subsurface Scattering presented at SIGGRAPH, 2015, by Brent 
Burley

•	 The original slides, and course notes, from the talk Moving Frostbite to Physically 
Based Rendering presented at SIGGRAPH, 2015, by Sébastien Lagarde and Charles 
de Rousiers (only for the Diffuse)

•	 Implementation of Disney BSDF for Blender (C++)

Starting from the Paper
This section goes through the main characteristics of the BRDFs and their formulas, where available. We 
show quite a few of the formulas included in the papers, because after a certain point, implementing a BRDF 
boils down to translating the math into code.

So beware, math is coming, although there’s nothing particularly fancy about these formulas 
mathematically. They just use addition, multiplication, subtraction, division, exponentiation, fractions, and 
cosines, which in the code implementation will become dot products. Possibly the worst part is that they 
are sprinkled with one-letter variable names that need some getting used to. For some added ease of mental 
parsing, I’ve included code examples for most formulas.

CookTorrance (or Microfacet) BRDF
Everything you learned about microfacet theory in Chapter 8 applies to CookTorrance. CookTorrance is 
almost a synonym for microfacet theory at this point, because the skeleton of it ends up being reused while 
being refitted with newer “parts”. You might remember that BRDFs derived from microfacet theory have 
different terms: D (Distribution), F (Fresnel), and G (Geometry, which mainly deals with masking and 
shadowing).

You can plug in different approximations in place of those terms. For example, there are various 
approximations for Fresnel, with Schlick being the most popular. Likewise, for the Geometry term, a popular 
option is Schlick’s approximation to the Smith shadowing function. There is also the Walter approximation 
of the same function, and other functions altogether.

And last, but actually most important, there are many distribution functions (NDF, Normal Distribution 
Functions) you can choose from. The distribution function makes a big difference on the BRDF result. Some 
suitable NDFs are Beckmann, Phong, and GGX.

In order to build our CookTorrance implementation, we have to choose for each term, which of the 
options to go for. Normally it would be a matter of keeping the shader fast, while making it look as good as 
possible. The choices would vary according to the power of the target platform. In our case we’ll go with the 
most common options, meaning GGX, Schlick for the Fresnel term, and Schlick again for the Geometry term.

This is the formulation of CookTorrance you saw in Chapter 8, which you will find in papers from  
recent years:

f l v
D h F l h G l v h

n l n v
, 

, , , ( ) = ( ) ( ) ( )
×( ) ×( )4

D is the Distribution function, G is the Geometry term, and F is the Fresnel term. From this formula, we 
can see that the NDF depends on the half-vector, the Fresnel depends on light direction and the half-vector, 
and the Geometry term depends on light direction, view direction, and the half-vector.

http://dx.doi.org/10.1007/978-1-4842-3309-2_8
http://dx.doi.org/10.1007/978-1-4842-3309-2_8
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We already gave an overview of the terms in this formula, now let’s provide formulas for them too. First, 
the Schlick approximation for the Fresnel:

F F l h F F l hschlick 0 0 0

5
1 1, , ( ) = + -( ) - ×( )( )

As you may have noticed, it depends on the half-vector, rather than on v or ω
0
 or any other variable that 

stands in for the outgoing light direction. This is because this is the version to be used in BRDFs. F
0
 stands for 

the specular color.
In a naïve implementation, this Fresnel term could look like this:

float SchlickFresnel(float4 SpecColor, float lightDir, float3 halfVector)
{
    return SpecColor + ( 1 - SpecColor ) * pow( 1 - ( dot( lightDir, halfVector )), 5);
}

Next is the Schlick approximation for Smith’s shadowing function. We’re going to use the modified 
version from the Unreal paper, because it’s harmonized to work with the NDF of our choice, GGX.

First we define K:

k
Roughness

=
+( )1

8

2

In code:

float modifiedRoughness = _Roughness + 1;
float k = sqr(modifiedRoughness) / 8;

Which is then used by the G
1
 function:

G v
n v

n v k k1 1
( ) = ×

×( ) -( )+

In code:

float G1 (float k, float NdotV)
{
    return NdotV / (NdotV * (1 - k) + k);
}

This needs to be applied once for the light direction and once for the view direction, and then multiplied:

G l v h G l G v, , ( ) = ( ) ( )1 1

In code:

float g1L = G1(k, NdotL);
float g1V = G1(k, NdotV);
G = g1L * g1V;
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Lastly, we need a formulation for the NDF, the distribution function. We’re going to use GGX, and again 
we’re going with a slightly modified version from the Unreal paper:

D h
n h

( ) =
×( ) -( )+( )

a

p a

2

2 2
2

1 1

In code:

float alphaSqr = sqr(alpha);
float denominator = sqr(NdotH) * (alphaSqr - 1.0) + 1.0f;
D = alphaSqr / (PI * sqr( denominator));

You might have noticed that we did not mention a diffuse. This is because CookTorrance doesn’t 
include one. You’ll have to plug one in from a different source. Commonly Lambert is used, but there are 
other options.

With this, we should have all the pieces to implement this BRDF. The next step is to start the 
implementation.

Disney BRDF
Similarly to CookTorrance, this section overviews the Disney BRDF.

An important point from the paper, which can be applied to any BRDF implementation, is the fact that 
all parameters are supposed to share one range, from 0 to 1. This is a very nice touch, as many BRDF have 
counterintuitive, wildly varying ranges.

In this BRDF, many parameters are basically just lerping between different lobe shapes, which is an 
interesting approach. It allows the BRDF to match the variability of real-life materials better.

Looking at the formulas, this BRDF is inspired from microfacet theory, even if not outright derived from 
it, so the different terms that compose the formula will be familiar, as we just looked at CookTorrance.

The diffuse part of the model is meant to improve on Lambert. You might remember the Fresnel Schlick 
approximation; this is a formulation to use for diffuse:

1 1- ( )( ) - ( )( )F Fl dq q

Differently from Lambert, the Disney diffuse formula uses Fresnel:

f
baseColor

F Fd D l D v= + -( ) -( )( ) + -( ) -( )( )p
q q1 1 1 1 1 190

5

90

5
cos cos

where

F roughnessD d90
20 5 2= + ´ ´. cos q

These formulas are defined in the original paper, which differs from the actual implementation code more 
than anything we’ve seen with CookTorrance, because they don’t include the lerping between different lobes.
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In a naïve implementation, they would look like this:

float fresnelDiffuse = 0.5 + 2 * sqr(LdotH) * roughness;
float fresnelL = 1 + (fresnelDiffuse - 1) * pow(1 - NdotL, 5);
float fresnelV = 1 + (fresnelDiffuse - 1) * pow(1 - NdotV, 5);
float3 Fd = (BaseColor / PI) * fresnelL * fresnelV

This is an empirical model; the aim is to behave differently according to the roughness of the material. 
Smooth materials need to be slightly darker, which is achieved by a Fresnel shadow, and rough materials 
need to be made slightly lighter. The Subsurface parameter blends between this diffuse shape and a different 
BRDF, inspired by the Hanrahan-Krueger subsurface BRDF [2].

Next, we’re going to summarize the Specular part of the BRDF for completeness, but we’re not going to 
implement it.

We start from D, the distribution:

D c sinGTR h h= +( )/ cosa q q
g2 2 2

Called Generalized-Trowbridge-Reitz, as you may surmise from the name, it is inspired by the 
Trowbridge-Reitz distribution, with the objective of obtaining a longer tail, which is the softer falloff 
of a specular outside of the brightest highlight. α is a roughness parameter, just as with the modified 
CookTorrance from the previous section, and c is a scaling constant. They prefer remapping α as  
α = roughness2 because it produces a perceptual result that feels more linear. Achieving the illusion of linear 
increases in some visual quality is not necessarily easy or intuitive. For example, our eyes perceive colors in a 
non-linear fashion. We see more shades of dark colors than of light ones.

They chose to have three specular lobes, one for the main specular, one for the clear coat (both 
using this GTR model), and one for the sheen. The sheen specular lobe uses the Fresnel Schlick shape. 
The Specular parameter determines the incident specular amount. It remaps to a range that covers most 
common materials. The clear coat layer has a fixed value for the specular that corresponds to the index of 
refraction of polyurethane.

Next, the Fresnel term. Again, it’s the Schick approximation; nothing new to see here. Next, the G term 
uses a modified version of one derived for GGX. The G for the clear coat layer is fixed.

Implementation
Let’s start implementing our CookTorrance specular, and later we’ll add our Disney diffuse to it.

Properties
Let’s get started with the Properties block and the beginning of the SubShader block (see Listing 12-1). The 
only extra property we need is _Roughness. Note that if we were implementing the entire Disney BRDF, there 
would be many more properties declared here. We’re also getting the surf function out of the way, since 
there is nothing fancy in there either.

2Hanrahan, Pat and Wolfgang Krueger. Reflection from layered surfaces due to subsurface scattering. In proceedings of 
the 20th annual conference on computer graphics and interactive techniques, SIGGRAPH, 1993, pages 165–174, New 
York, NY, USA, 1993. ACM.
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Listing 12-1.  Properties, Variables, Structs, and Surf Setup

Shader "Custom/CookTorranceSurface" {
    Properties {
        _MainTex ("Base (RGB)", 2D) = "white" {}
        _ColorTint ("Color", Color) = (1,1,1,1)
        _SpecColor ("Specular Color", Color) = (1,1,1,1)
        _BumpMap ("Normal Map", 2D) = "bump" {}
        _Roughness ("Roughness", Range(0,1)) = 0.5
        _Subsurface ("Subsurface", Range(0,1)) = 0.5

    }
    SubShader {
        Tags { "RenderType"="Opaque" }
        LOD 200

        CGPROGRAM
        #pragma surface surf CookTorrance fullforwardshadows
        #pragma target 3.0

        struct Input {
            float2 uv_MainTex;
        };

        #define PI 3.14159265358979323846f

        sampler2D _MainTex;
        sampler2D _BumpMap;
        half _Roughness;
        float _Subsurface;
        fixed4 _ColorTint;

        UNITY_INSTANCING_CBUFFER_START(Props)
        UNITY_INSTANCING_CBUFFER_END

        struct SurfaceOutputCustom {
            fixed3 Albedo;
            fixed3 Normal;
            fixed3 Emission;
            fixed Alpha;
        };

        void surf (Input IN, inout SurfaceOutputCustom o) {
            fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _ColorTint;
            o.Albedo = c.rgb;
            o.Normal = UnpackNormal( tex2D ( _BumpMap, IN.uv_MainTex ) );
            o.Alpha = c.a;
        }
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Note the SurfaceOutputCustom struct, which has fewer members than the Standard one. We are 
already passing our custom lighting function to surf, but we haven’t started writing it yet, so the code won’t 
compile yet. Among the variables, _Roughness is used by the CookTorrance specular and the Disney diffuse. 
_Subsurface is only used by the Disney diffuse. We could optionally skip the subsurface approximation 
within the Disney diffuse, but it looks nice, so we’re keeping it.

Make sure you declare the variable PI with a #define exactly how it looks in Listing 12-1; otherwise, you 
might incur horrible shading errors, depending on the platform you’re using.

Custom Light Function Implementation
Now we’ll start the process of condensing this information in implementations of CookTorrance and the 
Disney diffuse. First, we need to create the two functions necessary to implement a custom light in a surface 
shader. In this case they’ll be called:

•	 inline void LightingCookTorrance_GI

•	 inline fixed4 LightingCookTorrance

For now, we’ll just copy one of custom GI functions we already wrote in the past chapters. We’ll dig 
some more into how they work in the next chapter. We’re also going to need some extra utility functions 
later, to abstract away some repeated operations.

I prefer to keep the custom lighting function as the place we calculate most necessary values (NdotL, 
etc.), and where we stitch together diffuse and specular (see Listing 12-2). The actual specular and diffuse 
calculations are kept in their own functions, so it’s all nice and modular.

This way you can easily switch a diffuse or a specular for a different one, while only changing the bare 
minimum lines of code in the custom lighting function.

Listing 12-2.  The Custom Lighting Function Setup

inline float4 LightingCookTorrance (SurfaceOutputCustom s, float3 viewDir, UnityGI gi){
    //Needed values

    UnityLight light = gi.light;

    viewDir = normalize ( viewDir );
    float3 lightDir = normalize ( light.dir );
    s.Normal = normalize( s.Normal );

    float3 halfV = normalize(lightDir+viewDir);
    float NdotL = saturate( dot( s.Normal, lightDir ));
    float NdotH = saturate( dot( s.Normal, halfV ));
    float NdotV = saturate( dot( s.Normal, viewDir ));
    float VdotH = saturate( dot( viewDir, halfV ));
    float LdotH = saturate( dot( lightDir, halfV ));

    // BRDFs
    float3 diff = DisneyDiff(s.Albedo, NdotL,  NdotV, LdotH, _Roughness);
    float3 spec = CookTorranceSpec(NdotL, LdotH, NdotH, NdotV, _Roughness, _SpecColor);

    //Adding diffuse, specular and tints (light, specular)        
    float3 firstLayer = ( diff + spec * _SpecColor) * _LightColor0.rgb;
    float4 c = float4(firstLayer, s.Alpha);
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    #ifdef UNITY_LIGHT_FUNCTION_APPLY_INDIRECT
        c.rgb += s.Albedo * gi.indirect.diffuse;
    #endif

    return c;
}

Straight away, we’re calculating most variables we need and then passing them to the diffuse and 
specular functions. This has the advantage of calculating the values only once, and also reminding us where 
they are actually used. It’s pretty easy to forget unused variables, which can make the code plenty more 
confusing.

Utility Functions
The next priority is to get the utility functions out of the way (see Listing 12-3).

Listing 12-3.  Various Utility Functions

float sqr(float value) 
{
    return value * value;
}

float SchlickFresnel(float value)
{
    float m = clamp(1 - value, 0, 1);
    return pow(m, 5);
}

float G1 (float k, float x)
{
    return x / (x * (1 - k) + k);
}

sqr is a simple power of two function; we’re using it to make the code more readable. Then we have the 
SchlickFresnel approximation, used both by the diffuse and by the specular. Then we have the G1 function, 
used by the CookTorrance Geometry function.

CookTorrance Implementation
Now that the infrastructure of the shader is set up, let’s get started with the CookTorrance implementation. 
We’re going to create a separate function, which takes n⋅l, l⋅h, n⋅h, n⋅v, roughness, and F

0
 he specular color, 

which stands in for the index of refraction). Then within it, we’re going to calculate the F, D, and G terms, 
according to the formulas you saw earlier in the chapter.



Chapter 12 ■ Implementing a BRDF

164

Modified GGX Distribution Term
We call it modified, because the GGX is using the α = roughness2 reparameterization. This formulation of 
GGX is relatively simple to implement (see Listing 12-4).
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Listing 12-4.  The Code Implementation of the Modified GGX NDF

// D
float alphaSqr = sqr(alpha);
float denominator = sqr(NdotH) * (alphaSqr - 1.0) + 1.0f;
D = alphaSqr / (PI * sqr(denominator));

If you look at the formula and the code closely, you can see how they match each other quite precisely.

Schlick Fresnel Term
This is the Schlick Fresnel as used in CookTorrance. As you can see, the part of it that is in common with  
the Disney diffuse is implemented in a utility function to avoid repeated code. By using F0 as a variable, 
instead of the more intuitive _SpecColor, you can really see the parallels between the function and code  
(see Listing 12-5).

F F l h F F l hschlick 0 0 0
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Listing 12-5.  Implementation of the Fresnel Term

// F
float LdotH5 = SchlickFresnel(LdotH);
F = F0 + (1.0 - F0) * LdotH5;

Modified Schlick Geometry Term
This is a slightly more complex term. To better follow the Smith Geometry term, the variable k has been 
changed to k =

a
2

. Further changes coming from the Disney BRDF have been applied to Roughness, which 

has been changed to 
Roughness +1

2
 before squaring.

The result of these changes can be seen here:

k
Roughness

=
+( )1
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This last change comes from the Disney BRDF, and it should help harmonize our Disney diffuse with 
this CookTorrance implementation.

G v
n v

n v k k1 1
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Again, the implementation code (see Listing 12-6) is relatively straightforward and pretty much the same 
as our example implementation a few sections ago. Keep in mind that the function G

1
 is in the utility functions.

Listing 12-6.  Implementation of the Geometry term, Schlick’s Approximation of Smith

// G
float r = _Roughness + 1;
float k = sqr(r) / 8;
float g1L = G1(k, NdotL);
float g1V = G1(k, NdotV);
G = g1L * g1V;

Putting the CookTorrance Together
Now that we have implemented all the terms, let’s put them together into one function (see Listing 12-7).

Listing 12-7.  The Complete CookTorrance Function

inline float3 CookTorranceSpec( float NdotL, float LdotH, float NdotH,
                                float NdotV, float roughness, float F0)
{
    float alpha = sqr(roughness);
    float F, D, G;

    // D
    float alphaSqr = sqr(alpha);
    float denom = sqr(NdotH) * (alphaSqr - 1.0) + 1.0f;
    D = alphaSqr / (PI * sqr(denom));

    // F
    float LdotH5 = SchlickFresnel(LdotH);
    F = F0 + (1.0 - F0) * LdotH5;

    // G
    float r = _Roughness + 1;
    float k = sqr(r) / 8;
    float g1L = G1(k, NdotL);
    float g1V = G1(k, NdotV);
    G = g1L * g1V;

    float specular = NdotL * D * F * G;
    return specular;
}
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Figure 12-1.  CookTorrance at maximum roughness
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Let’s take a look at our temporary result. In Figure 12-1, you can see how the specular looks at maximum 
roughness. Notice that it looks a bit dark, which is normal since we don’t have a diffuse.  
Figure 12-2 shows how the specular looks with 0.2f roughness. You can see it does look physically based, as 
the small highlight is much brighter.

With the CookTorrance specular completely implemented, let’s focus on the next step: the Disney diffuse.

Disney Diffuse
We’ve chosen to implement the Disney diffuse. We could have gone with a simpler Lambert, but you’ve done 
Lambert already, and this is more interesting.

The Disney BRDF is quite extensive, but its diffuse is small enough for our purposes. From our 
description of the BRDF, here are the formulas that concern the diffuse:

F roughnessD d90
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Figure 12-2.  CookTorrance at 0.2f roughness
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We’ll use the Schlick Fresnel function from the utility functions for this. Also, we should consider code 
that’s not included in the paper, but is in the reference implementation in the BRDF Explorer program. 
Looking at the implementation code in Listing 12-8, you may notice that there are quite a few lerps used.  
A lot of this could be simplified away, but I elected to keep it, because we have no performance worries and 
the result looks nice. In a real-life commercial game, you’d have to be much more ruthless about what makes 
enough of a visual difference, and approximate or remove the rest.

Listing 12-8.  The Disney Diffuse Implementation

//Disney Diffuse 
inline float3 DisneyDiff(float3 albedo, float NdotL,
                         float NdotV,  float LdotH, float roughness){

    // luminance approximation    
    float albedoLuminosity = 0.3 * albedo.r 
                           + 0.6 * albedo.g  
                           + 0.1 * albedo.b; 

    // normalize luminosity to isolate hue and saturation
    float3 albedoTint = albedoLuminosity > 0 ? 
                        albedo/albedoLuminosity: 
                        float3(1,1,1); 

    float fresnelL = SchlickFresnel(NdotL);
    float fresnelV = SchlickFresnel(NdotV);

    float fresnelDiffuse = 0.5 + 2 * sqr(LdotH) * roughness;

    float diffuse = albedoTint 
                  * lerp(1.0, fresnelDiffuse, fresnelL) 
                  * lerp(1.0, fresnelDiffuse, fresnelV);

    float fresnelSubsurface90 = sqr(LdotH) * roughness;

    float fresnelSubsurface = lerp(1.0, fresnelSubsurface90, fresnelL) 
                            * lerp(1.0, fresnelSubsurface90, fresnelV);

    float ss = 1.25 * (fresnelSubsurface * (1 / (NdotL + NdotV) - 0.5) + 0.5);

    return saturate(lerp(diffuse, ss, _Subsurface) * (1/PI) * albedo);
}

This is the complete Disney diffuse function. Matching it with the formula is somewhat harder, 
compared to the CookTorrance we just implemented, which was almost a perfect match. Although 
the key bits of functionality can be traced back to the formulas, the rest is adapted from the reference 
implementation.
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Figure 12-3.  CookTorrance and Disney diffuse at maximum roughness and maximum subsurface

Now the shader is complete. Figure 12-3 shows the result at maximum roughness and maximum 
subsurface. Figure 12-4 shows maximum roughness and minimum subsurface. As you can see, this diffuse is 
much more varied and more interesting than Lambert. The subsurface approximation is also quite good.
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For completeness, let’s also look at the shader at lower roughness, as shown in Figure 12-5. It does 
behave well, but at very low roughness, the highlight all but disappears. You’ll probably want to reduce the 
range of the _Roughness to start at 0.1f or thereabouts.

Figure 12-4.  CookTorrance and Disney diffuse at maximum roughness and minimum subsurface
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The Disney BRDF diffuse has been developed to work with the Disney BRDF, which can have three 
lobes—a clear coat, a sheen, and a specular. As a result, it tends to get too dark with lower roughness values. 
Some tweaking might help it work better with just a CookTorrance specular lobe, but that’s outside the scope 
of this book, as we’d need to speak a lot more about math and how to derive BRDFs.

But we can do something about it, even without delving into more complex math. We can try to 
implement the modified Disney diffuse from the Frostbite paper, which was one of the references. They 
are also using it with GGX, and without many the extra lobes from the Disney BRDF, so they didn’t want 
it to get too dark at lower roughness either. Avoiding that problem basically boils down to renormalizing 
it and therefore getting energy conservation back. You should take a look at the Frostbite paper for more 
information.

Another Implementation of the Disney Diffuse
Without spending a lot of time on it, we can adapt the example code from the Frostbite paper and make it 
work with our infrastructure (see Listing 12-9).

The Frostbite infrastructure is very different from Unity's. Frostbite is focused on area lights; Unity does 
not include these for real-time as of 2017.1. This difference makes their code not directly portable to Unity 
without great effort. So tweaking it to work exactly as it was intended, but in Unity, would require some 
serious perusal of the Frostbite paper.

Figure 12-5.  The CookTorrance specular and Disney diffuse at low roughness
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The objective here is to try another implementation of the Disney diffuse and see whether it works 
better for our use case.

Listing 12-9.  Disney Diffuse Implementation Adapted from Frostbite

    float3 FresnelSchlickFrostbite (float3 F0, float F90, float u)
    {
        return F0 + (F90 - F0) * pow (1 - u, 5);
    }

    inline float DisneyFrostbiteDiff( float NdotL, float NdotV,
                                      float LdotH, float roughness)
    {
        float energyBias = lerp (0, 0.5, roughness) ;
        float energyFactor = lerp (1.0, 1.0/1.51, roughness );
        float Fd90 = energyBias + 2.0 * sqr(LdotH) * roughness;
        float3 F0 = float3 (1, 1, 1);
        float lightScatter = FresnelSchlickFrostbite (F0, Fd90, NdotL).r;
        float viewScatter  = FresnelSchlickFrostbite (F0, Fd90, NdotV).r;
        return lightScatter * viewScatter * energyFactor;
    }
[...]
    //within the custom lighting function
    float3 diff2 = (DisneyFrostbiteDiff(NdotL, NdotV, LdotH, _Roughness) * s.Albedo)/PI;

Using this diffuse implementation, we’ve lost the subsurface, but we get more even lighting. It still ends 
up being darker overall compared to the previous implementation (see Figures 12-6 and 12-7).



Chapter 12 ■ Implementing a BRDF

173

Figure 12-6.  The Frostbite version of the Disney diffuse at maximum roughness
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You may prefer this formulation. It’s more even and cheaper than the original one. It will depend on 
your objectives. For our part, we have a working BRDF, including a diffuse and a specular, and we can now 
work on getting it integrated into Unity, more than a plain surface shader would allow. To do that, we delve 
into some “shader standard library” code analysis in the next chapter.

Putting It All Together
I included most parts of this shader in the chapter already. Since it’s quite a beast, it’s impractical to print in 
the book, but you can find it in the book’s source code.

It is a big shader, but as machines get more powerful, shaders get more intricate and more beautiful too. 
Thus we get to implement better looking, if more complex, shaders.

Figure 12-7.  The Frostbite version of the Disney diffuse at 0.2 roughness
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Summary
In this chapter, we presented the CookTorrance and Disney BRDFs in detail, implementing CookTorrance 
specular and Disney diffuse. We also showed you how to go about choosing, gathering references, and 
implementing any BRDF.

Next
The next chapter shows you how to integrate this custom BRDF with the rest of the Unity shader subsystems. 
This includes doing some reverse-engineering of the Unity Standard shader code, which may be subject to 
change without warning in the future.
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CHAPTER 13

Hooking Into the Standard Shader

When you create a surface or Unlit shader, it doesn’t automatically take advantage of all the features of 
the Unity rendering system. You could reimplement them, but that would take a lot of work. Fortunately, 
it’s possible to obtain that functionality by hacking your BRDF implementation into the Standard shader 
infrastructure. You can write your shader so it automatically uses Unity’s Standard shader functionality. 
That’s what we’re going to do in this chapter, but keep in mind that there are no guarantees that the way to 
hook into these subsystems will stay the same in new versions of Unity.

This chapter explains how to hook our shader from the previous chapter to global illumination, 
reflection probes, etc. Some of them are going to be easy; some of them are going to be quite complex. The 
real objective is giving you the tools to reverse-engineer the shader standard library, and be able to redo this 
work on your own, should the methods change. Which they most likely will at some point.

Reverse-Engineering the Standard Shader
What we want to do is analyze the Standard shader and understand how it hooks into the functionality. 
It’s not sufficient to look at just one file, so beware, this analysis might get long. Let’s first look at one of the 
Standard shaders. There are various versions of the Standard shader—the plain one, the one for the Specular 
setup, and the one for the Roughness setup.

Let’s look at the beginning part of the plain Standard shader, shown in Listing 13-1.

Listing 13-1.  The Beginning of the Default Standard Shader

Shader "Standard"
{
    Properties
    {
        _Color("Color", Color) = (1,1,1,1)
        _MainTex("Albedo", 2D) = "white" {}

        _Cutoff("Alpha Cutoff", Range(0.0, 1.0)) = 0.5

        [...]
    }

    CGINCLUDE
        #define UNITY_SETUP_BRDF_INPUT MetallicSetup
    ENDCG

https://doi.org/10.1007/978-1-4842-3309-2_13
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    SubShader
    {
        Tags { "RenderType"="Opaque" "PerformanceChecks"="False" }
        LOD 300

        // ------------------------------------------------------------------
        //  Base forward pass (directional light, emission, lightmaps, ...)
        Pass
        {
            Name "FORWARD"
            Tags { "LightMode" = "ForwardBase" }

            Blend [_SrcBlend] [_DstBlend]
            ZWrite [_ZWrite]

            CGPROGRAM
            #pragma target 3.0

            // -------------------------------------

            #pragma shader_feature _NORMALMAP
            #pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON _ALPHAPREMULTIPLY_ON
            #pragma shader_feature _EMISSION
            #pragma shader_feature _METALLICGLOSSMAP
            #pragma shader_feature ___ _DETAIL_MULX2
            #pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
            #pragma shader_feature _ _SPECULARHIGHLIGHTS_OFF
            #pragma shader_feature _ _GLOSSYREFLECTIONS_OFF
            #pragma shader_feature _PARALLAXMAP

            #pragma multi_compile_fwdbase
            #pragma multi_compile_fog
            #pragma multi_compile_instancing

            #pragma vertex vertBase
            #pragma fragment fragBase
            #include "UnityStandardCoreForward.cginc"

            ENDCG
        }
        // ------------------------------------------------------------------
        //  Additive forward pass (one light per pass)
        Pass
        {
            Name "FORWARD_DELTA"
            Tags { "LightMode" = "ForwardAdd" }
            Blend [_SrcBlend] One
            Fog { Color (0,0,0,0) } // in additive pass fog should be black
            ZWrite Off
            ZTest LEqual
             [...]
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It has a different structure compared to the shaders we’ve seen in the last few chapters. To start with, it’s 
not even a Surface shader! It’s an Unlit shader, which you encountered in the first half of this book. Then you 
should notice the large number of passes divided into different sub-shaders.

The actual functionality of this shader is contained in the .cginc files, which are included in each pass. 
The passes in this file contain a list of on/off "switches" that enable or disable the shader code contained in 
the include files.

There are two types of these switches—#pragma shader_feature and #pragma multi_compile_*. 
To understand how this works, you need to know that shaders are generally compiled to many different 
versions. For example, you might not have included a Normal Map in the material, if you haven’t there’s no 
point in including that functionality in the shader used in the game. Hence, both a version without Normal 
Map and a version without a Normal Map are going to be compiled, and the appropriate one is going to be 
used automatically.

The compiled versions also depend on other variables, such as which platform you’re compiling for 
and what capabilities your GPU has. These pragmas are a way to compile multiple versions of your shader, 
according to variables you choose, in addition to the built-in Unity ones that are already being used.

Shader Keywords
Our switches are technically called keywords. You can turn them on and off with Material.EnableKeyword 
and Material.DisableKeyword by material, or globally with Shader.EnableKeyword and Shader.
DisableKeyword. Most commonly, these methods are used within the custom material Inspector GUI, which 
is generally written in C#.

#pragma multi_compile VARIANT_OFF VARIANT_ON will compile to two shaders, one with VARIANT_OFF 
defined and one with VARIANT_ON defined. At runtime, according to the keywords enabled, one of them will 
be activated. If neither keyword is activated, the first one will be used by default. You can specify more than 
two keywords for each multi_compile, and you can use underscores to mean no keyword is defined.

#pragma shader_feature is the same, except that unused variants of the compiled shader will not be 
included in the build.

#pragma shader_feature SOME_VARIANT is a shortcut for #pragma shader_feature __ SOME_VARIANT, 
meaning by default nothing is defined.

Some predefined multi_compile_* are included within the standard library, and many of them are 
used in the Standard shader, such as multi_compile_fwdbase.

Within the actual implementation code, there are blocks of code that depend on some keyword being 
enabled. They are be contained between #ifdef KEYWORD and #else or #endif. Think of it like the compiler 
preprocessor cutting some parts of the total shader code that we don’t need, or including them if we do need 
them, but both versions are compiled and are available to use.

Standard Shader Structure
As stated the Standard shader is composed of two sub-shaders. The first subshader includes five passes: 
FORWARD, FORWARD_DELTA, ShadowCaster, DEFERRED, and META. The second subshader includes only the 
FORWARD, FORWARD_DELTA, ShadowCaster, and META passes.

The first subshader targets the Shader Model 3.0, while the second targets a previous one, 2.0. The 
second subshader will be able to run on older GPUs, but it lacks some features of the first. We won’t analyze 
the second subshader.

https://docs.unity3d.com/ScriptReference/Material.html
https://docs.unity3d.com/ScriptReference/Shader.html
https://docs.unity3d.com/ScriptReference/Shader.html
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Now let’s look at each pass separately, starting from the FORWARD pass, shown in Listing 13-2.

Listing 13-2.  The Complete First Sub-Shader’s FORWARD Pass

Pass
{
    Name "FORWARD"
    Tags { "LightMode" = "ForwardBase" }

    Blend [_SrcBlend] [_DstBlend]
    ZWrite [_ZWrite]

    CGPROGRAM
    #pragma target 3.0

    #pragma shader_feature _NORMALMAP
    #pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON _ALPHAPREMULTIPLY_ON
    #pragma shader_feature _EMISSION
    #pragma shader_feature _METALLICGLOSSMAP
    #pragma shader_feature ___ _DETAIL_MULX2
    #pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
    #pragma shader_feature _ _SPECULARHIGHLIGHTS_OFF
    #pragma shader_feature _ _GLOSSYREFLECTIONS_OFF
    #pragma shader_feature _PARALLAXMAP

    #pragma multi_compile_fwdbase
    #pragma multi_compile_fog
    #pragma multi_compile_instancing

    #pragma vertex vertBase
    #pragma fragment fragBase
    #include "UnityStandardCoreForward.cginc"

    ENDCG
}

We start with the pass name, then specify the Tags, which are the right tags for a ForwardBase pass, as 
you might remember from the chapters on Unlit shaders. Then we specify how this pass will blend together 
with the subsequent passes _SrcBlend and _DstBlend. These properties will be hidden in the inspector. 
They default respectively to 1.0 and 0.0. Using variables for this, instead of hardcoded numbers, makes it 
possible to make the shaded mesh fade in and fade out.

_ZWrite is also a hidden variable. After that the actual code for the pass starts, these were only the 
settings. We have the list of shader_feature pragmas, then the multi_compile_* pragmas, and finally 
we set the vertex and fragment functions, taking them from the include file UnityStandardCoreForward.
cginc. There is no other code, which might make you wonder where exactly is everything implemented. The 
answer is within the many include files. As mentioned, in this file we only keep the switches.

The FORWARD_DELTA pass (see Listing 13-3) largely resembles the FORWARD pass, only tweaked to be 
appropriate to a ForwardAdd pass. The vertex and fragment functions are different, but they come from the 
same file.
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Listing 13-3.  The Complete First Sub-Shader’s FORWARD_DELTA Pass

Pass
{
    Name "FORWARD_DELTA"
    Tags { "LightMode" = "ForwardAdd" }
    Blend [_SrcBlend] One
    Fog { Color (0,0,0,0) } // in additive pass fog should be black
    ZWrite Off
    ZTest LEqual

    CGPROGRAM
    #pragma target 3.0

    #pragma shader_feature _NORMALMAP
    #pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON _ALPHAPREMULTIPLY_ON
    #pragma shader_feature _METALLICGLOSSMAP
    #pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
    #pragma shader_feature _ _SPECULARHIGHLIGHTS_OFF
    #pragma shader_feature ___ _DETAIL_MULX2
    #pragma shader_feature _PARALLAXMAP

    #pragma multi_compile_fwdadd_fullshadows
    #pragma multi_compile_fog

    #pragma vertex vertAdd
    #pragma fragment fragAdd
    #include "UnityStandardCoreForward.cginc"

    ENDCG
}

Now for the ShadowCaster pass (see Listing 13-4). Since the objective is different, this pass is also quite 
different. It still includes the switches that make a difference for rendering shadows. Vertex and fragment 
functions come from a different file from the previous two passes.

Listing 13-4.  The Complete First Sub-Shader’s ShadowCaster Pass

Pass {
    Name "ShadowCaster"
    Tags { "LightMode" = "ShadowCaster" }

    ZWrite On ZTest LEqual

    CGPROGRAM
    #pragma target 3.0

    #pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON _ALPHAPREMULTIPLY_ON
    #pragma shader_feature _METALLICGLOSSMAP
    #pragma shader_feature _PARALLAXMAP
    #pragma multi_compile_shadowcaster
    #pragma multi_compile_instancing
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    #pragma vertex vertShadowCaster
    #pragma fragment fragShadowCaster

    #include "UnityStandardShadow.cginc"

    ENDCG
}

We’re going to skip the DEFERRED pass, because we’re not going to include one in our shader. Next, we’re 
looking at the META pass (see Listing 13-5), which is supposed to gather information for lightmapping and 
global Illumination. It follows the same patterns as the previous ones.

Listing 13-5.  The Complete First Sub-Shader’s META Pass

Pass
{
    Name "META"
    Tags { "LightMode" = "Meta" }

    Cull Off

    CGPROGRAM
    #pragma vertex vert_meta
    #pragma fragment frag_meta

    #pragma shader_feature _EMISSION
    #pragma shader_feature _METALLICGLOSSMAP
    #pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
    #pragma shader_feature ___ _DETAIL_MULX2
    #pragma shader_feature EDITOR_VISUALIZATION

    #include "UnityStandardMeta.cginc"
    ENDCG
}

We’re going to skip the second subshader, because it’s more of the same, but with fewer features. 
Finally, the last lines of the shader define a fallback and a custom inspector editor (see Listing 13-6).

Listing 13-6.  End of the Standard Shader

    FallBack "VertexLit"
    CustomEditor "StandardShaderGUI"
}

Later on, we’re going to make our own custom GUI, so keep in mind where to set it up. Thus, we have 
finished our look at the different passes. The second subshader passes are pretty much the same, so we’re 
going to move on and skip them.
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Chasing Down Shader Keywords
Now that we have skimmed the whole shader, let’s try digging into one of those shader keywords. We’re 
going to chase down every occurrence of _NORMALMAP, to see in practice how the keywords work within the 
shader code. By searching for it within the entire Standard shader codebase, we can find where the Normal 
Map functionality is implemented. We find it in many files:

•	 UnityStandardConfig.cginc

•	 UnityStandardCore.cginc

•	 UnityStandardCoreForwardSimple.cginc

•	 UnityStandardInput.cginc

Let’s pick a simple example from UnityStandardCoreForwardSimple.cginc (see Listing 13-7). It’s one 
of the structs used in the vertex function. When we compile with the _NORMALMAP keyword defined, the 
members declared within the #ifdef _NORMALMAP are included. Otherwise, they are left out.

Listing 13-7.  Use of _NORMALMAP Keyword Within the Standard Shader Includes

struct VertexOutputBaseSimple
{
    UNITY_POSITION(pos);
    float4 tex                          : TEXCOORD0;
    half4 eyeVec                        : TEXCOORD1; // w: grazingTerm
    half4 ambientOrLightmapUV           : TEXCOORD2; // SH or Lightmap UV
    SHADOW_COORDS(3)
    UNITY_FOG_COORDS_PACKED(4, half4) // x: fogCoord, yzw: reflectVec
    half4 normalWorld                   : TEXCOORD5; // w: fresnelTerm

#ifdef _NORMALMAP
    half3 tangentSpaceLightDir          : TEXCOORD6;
    #if SPECULAR_HIGHLIGHTS
        half3 tangentSpaceEyeVec        : TEXCOORD7;
    #endif
#endif
#if UNITY_REQUIRE_FRAG_WORLDPOS
    float3 posWorld                     : TEXCOORD8;
#endif

    UNITY_VERTEX_OUTPUT_STEREO
};

For any keyword that you want to find out more about, this is the procedure to follow.
As you might imagine, it is a tricky business to handle all of this complexity, only armed with 

conditional compiling. And yet, there is no way out of it until a better system or shader language comes 
along.
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Implementing the Standard Shader Substitute
Now we’re going to start the boilerplate-filled, and thankless, process of copying/pasting our way to our 
BRDF hooking into the Standard shader functionality. What we need to do is copy and paste the entire 
Standard shader, only changing the part that does the shading. If it sounds primitive, it’s because it is. 
Nevertheless, it works.

There are a bunch of functions that handle the lighting calculations within the Standard shader. 
We basically want to overwrite those, to get our custom lighting function called by the Standard shader 
machinery when it triggers calculation of a final shaded color.

Within UnityPBSLighting.cginc, there is a choice of lighting function depending on the platform 
capabilities (see Listing 13-8). We want to make it so our lighting function is always chosen.

Listing 13-8.  BRDF Function Choice

// Default BRDF to use:
#if !defined (UNITY_BRDF_PBS) // allow to explicitly override BRDF in custom shader
    // still add safe net for low shader models, otherwise we might end up with shaders 
failing to compile
    #if SHADER_TARGET < 30
        #define UNITY_BRDF_PBS BRDF3_Unity_PBS
    #elif defined(UNITY_PBS_USE_BRDF3)
        #define UNITY_BRDF_PBS BRDF3_Unity_PBS
    #elif defined(UNITY_PBS_USE_BRDF2)
        #define UNITY_BRDF_PBS BRDF2_Unity_PBS
    #elif defined(UNITY_PBS_USE_BRDF1)
        #define UNITY_BRDF_PBS BRDF1_Unity_PBS
    #elif defined(SHADER_TARGET_SURFACE_ANALYSIS)
        �// we do preprocess pass during shader analysis and we dont actually care about brdf 

as we need only inputs/outputs
        #define UNITY_BRDF_PBS BRDF1_Unity_PBS
    #else
        #error something broke in auto-choosing BRDF
    #endif
#endif 

As you can see, there are three different lighting function choices within the Standard shader:

•	 BRDF3_Unity_PBS is a BlinnPhong used on platform that doesn’t support the Shader 
Model 3.0.

•	 BRDF2_Unity_PBS is a simplified CookTorrance.

•	 BRDF1_Unity_PBS is a modified version of the Disney BRDF.

They are contained within UnityStandardBRDF.cginc, and we’ll need to fit our BRDF in one or more of 
these functions.

Let’s look at the type signatures they have in common:

half4 BRDF1_Unity_PBS ( half3 diffColor, half3 specColor, half oneMinusReflectivity,
                        half smoothness, half3 normal, half3 viewDir,
                        UnityLight light, UnityIndirect gi) 
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They all take the same eight arguments. We’ll need to package our BRDF in a function that takes these 
same arguments and returns a color.

There are various built-in Unity defined keywords that control various aspects of the lighting function 
used, such as UNITY_BRDF_GGX, UNITY_COLORSPACE_GAMMA, SHADER_API_MOBILE, etc. We’re only going to 
worry about a couple of them as an example. But keep in mind that, depending on the platforms you want to 
target with the shader, you may want to also support other keywords needed by different platforms in order 
to get better performance.

So, in a different file, we need to implement this choice based on SHADER_TARGET and the functions it 
will call. We will reduce it to call just one function, for the sake of brevity. Then, we’ll implement a function 
containing our BRDF that uses the above function signature, so it can be slotted in with the rest of the code.

Implementing the BRDF
Let’s create a file called TestOverwriteInclude.cginc in the project. We’re going to do the bare minimum 
to test our thesis about how to overwrite the Standard shader lighting function. In Listing 13-9, you can see 
that it boils down to including UnityStandardBRDF.cginc, defining UNITY_BRDF_PBS to correspond to our 
lighting function, and declaring the lighting function with the signature we used previously.

Listing 13-9.  Minimum Code Needed to Overwrite the Lighting Function

#ifndef UNITY_OVERWRITE_LIGHTING_INCLUDED
#define UNITY_OVERWRITE_LIGHTING_INCLUDED

#include "UnityStandardBRDF.cginc"

#define UNITY_BRDF_PBS TestBRDF_PBS

half4 TestBRDF_PBS ( half3 diffColor, half3 specColor, half oneMinusReflectivity,
                     half smoothness, half3 normal, half3 viewDir,
                     UnityLight light, UnityIndirect gi)
{
    return half4(1, 0, 0, 1);
}

#endif

To have a shader to use this with, we need to create a new shader file and copy and paste the code from 
Standard.shader. Then we need to include the TestOverwriteInclude.cginc file before the line #include 
"UnityStandardCoreForward.cginc" in both the FORWARD and the FORWARD_DELTA passes.

And that’s it. Select the shader for use with a material, and your result should look like Figure 13-1, as we 
are only returning a single color from the lighting function.
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What happens is that, by including our overwritten file first, we’re overriding the #define of the 
function UNITY_BRDF_PBS, which is contained within the Standard shader includes and the lighting function 
choice. As we’re not overriding anything else, the rest of our copied Standard shader file is still using the 
default Standard shader code. If we wanted to change more things, such as modifying how the vertex shader 
works, then we’d need to copy and overwrite more functions.

The modified FORWARD pass is shown in Listing 13-10.

Listing 13-10.  FORWARD Pass Overwriting the Standard Lighting Function

Pass
{
    Name "FORWARD"
    Tags { "LightMode" = "ForwardBase" }

    Blend [_SrcBlend] [_DstBlend]
    ZWrite [_ZWrite]

    CGPROGRAM
    #pragma target 3.0

    #pragma shader_feature _NORMALMAP
    #pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON _ALPHAPREMULTIPLY_ON
    #pragma shader_feature _EMISSION

Figure 13-1.  The results of returning a single color from the lighting function
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    #pragma shader_feature _METALLICGLOSSMAP
    #pragma shader_feature ___ _DETAIL_MULX2
    #pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
    #pragma shader_feature _ _SPECULARHIGHLIGHTS_OFF
    #pragma shader_feature _ _GLOSSYREFLECTIONS_OFF
    #pragma shader_feature _PARALLAXMAP

    #pragma multi_compile_fwdbase
    #pragma multi_compile_fog
    #pragma multi_compile_instancing

    #pragma vertex vertBase
    #pragma fragment fragBase
    #include "TestOverrideInclude.cginc"
    #include "UnityStandardCoreForward.cginc"

    ENDCG
}

Now that we know this method works, we need to adapt our custom BRDF from the last chapter to this 
format.

Making the BRDF Shader 
We start with copying and pasting the file Standard.shader again, to the file CustomStandardShader.
shader. Then we need to customize it with our properties, variables, and includes. The properties can be 
copied from the Surface shaders from the previous chapters, but take care not to remove the many extra 
properties that the Standard shader infrastructure can use.

The result should look like Listing 13-11.

Listing 13-11.  The new custom Standard shader’s properties

Shader "Custom/CustomStandardShader" {
    Properties {
        _Roughness ("Roughness", Range(0,1)) = 0.5
        _Subsurface ("Subsurface", Range(0,1)) = 0.5

        _SpecColor("Specular", Color) = (1, 1, 1)
        _Color("Color", Color) = (1,1,1,1)
        _MainTex("Albedo", 2D) = "white" {}

        _Cutoff("Alpha Cutoff", Range(0.0, 1.0)) = 0.5

        _Glossiness("Smoothness", Range(0.0, 1.0)) = 0.5
        _GlossMapScale("Smoothness Scale", Range(0.0, 1.0)) = 1.0
        �[Enum(Metallic Alpha,0,Albedo Alpha,1)] _SmoothnessTextureChannel ("Smoothness 

texture channel", Float) = 0

        [ToggleOff] _SpecularHighlights("Specular Highlights", Float) = 1.0
        [ToggleOff] _GlossyReflections("Glossy Reflections", Float) = 1.0
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        _BumpScale("Scale", Float) = 1.0
        _BumpMap("Normal Map", 2D) = "bump" {}

        _Parallax ("Height Scale", Range (0.005, 0.08)) = 0.02
        _ParallaxMap ("Height Map", 2D) = "black" {}

        _OcclusionStrength("Strength", Range(0.0, 1.0)) = 1.0
        _OcclusionMap("Occlusion", 2D) = "white" {}

        _EmissionColor("Color", Color) = (0,0,0)
        _EmissionMap("Emission", 2D) = "white" {}

        _DetailMask("Detail Mask", 2D) = "white" {}

        _DetailAlbedoMap("Detail Albedo x2", 2D) = "grey" {}
        _DetailNormalMapScale("Scale", Float) = 1.0
        _DetailNormalMap("Normal Map", 2D) = "bump" {}

        [Enum(UV0,0,UV1,1)] _UVSec ("UV Set for secondary textures", Float) = 0

        // Blending state
        [HideInInspector] _Mode ("__mode", Float) = 0.0
        [HideInInspector] _SrcBlend ("__src", Float) = 1.0
        [HideInInspector] _DstBlend ("__dst", Float) = 0.0
        [HideInInspector] _ZWrite ("__zw", Float) = 1.0
    }

A particularly useful part of the shader is the CGINCLUDE block. Within it, we need to declare what setup 
(specular, metallic, etc.) we’re going to use. But it can also serve as a place to put some of our variables from 
the CookTorrance shader, so that the passes and the custom lighting function will have access to them (see 
Listing 13-12).

Listing 13-12.  CGINCLUDE Block

CGINCLUDE
    #define UNITY_SETUP_BRDF_INPUT MetallicSetup
    float _Roughness;
    float _Subsurface
ENDCG

Now we need to create another include file, called CustomBRDFOverrideInclude.cginc, and copy and 
paste the previous TestOverrideInclude.cginc include file to it. The lighting function will still need all the 
supporting functions from the CookTorranceSurface.shader file, which we should paste before the lighting 
function.

The lighting function from that shader needs to be modified to work with the current arguments, as 
we don’t get direct access to the SurfaceOutput struct anymore. We need to look at the circumstances 
in which UNITY_BRDF_PBS is called to understand the parameters. For that, we need to read the 
UnityPBSLighting.cginc file. The function we’re interested in is LightingStandardSpecular, which you 
can see in Listing 13-13.
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Listing 13-13.  The LightingStandardSpecular Function

inline half4 LightingStandardSpecular ( SurfaceOutputStandardSpecular s, half3 viewDir, 
                                        UnityGI gi)
{
    s.Normal = normalize(s.Normal);

    // energy conservation
    half oneMinusReflectivity;
    �s.Albedo = EnergyConservationBetweenDiffuseAndSpecular (s.Albedo, s.Specular, /*out*/ 

oneMinusReflectivity);

    �// shader relies on pre-multiply alpha-blend (_SrcBlend = One, _DstBlend = 
OneMinusSrcAlpha)

    �// this is necessary to handle transparency in physically correct way - only diffuse 
component gets affected by alpha

    half outputAlpha;
    �s.Albedo = PreMultiplyAlpha (s.Albedo, s.Alpha, oneMinusReflectivity, /*out*/ 

outputAlpha);

    �half4 c = UNITY_BRDF_PBS (s.Albedo, s.Specular, oneMinusReflectivity, s.Smoothness, 
s.Normal, viewDir, gi.light, gi.indirect);

    c.a = outputAlpha;
    return c;
}

Note that the albedo is not coming straight from the texture, but it’s already getting some energy 
conservation calculation applied, before getting to our function. This may disturb our result, depending on 
how much it changes, but changing this would require copy pasting more files, so we’re just going to live 
with it.

For the same reason, we don’t want to customize the SurfaceOutput struct, so the shader will use the 
one already included, which you can see in Listing 13-14.

Listing 13-14.  The SurfaceOutputStandardSpecular Struct

struct SurfaceOutputStandardSpecular
{
    fixed3 Albedo;      // diffuse color
    fixed3 Specular;    // specular color
    fixed3 Normal;      // tangent space normal, if written
    half3 Emission;
    half Smoothness;    // 0=rough, 1=smooth
    half Occlusion;     // occlusion (default 1)
    fixed Alpha;        // alpha for transparencies
};

Since our lighting function is going to be called from a completely different place, it might 
have been awkward to use our variables from it. We solved this problem earlier, by putting them in 
the CGINCLUDE block. If you want a more elegant solution, you may want to store the values in the 
SurfaceOutputStandardSpecular struct somehow.
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One method would be changing the label of a property we’re not going to use, such as Glossiness, and 
use it instead to store _Roughness. But be aware that anywhere in the Standard shader includes code, these 
values may be going through some processing and end up changed. This is why we’re sticking to the simpler 
solution and just making the variables available to use directly.

Going back to our custom lighting function, we can copy and paste the custom lighting function from 
the CookTorrance shader. Then we need to correct it for our needs. The normal is normalized outside of this 
function, so we don’t need it to normalize any more. Then we need to use normal and diffColor instead of 
the equivalent variables names from before (see Listing 13-15).

Listing 13-15.  Temporary Custom Lighting Function

half4 CustomDisneyCookTorrance_PBS ( �half3 diffColor, half3 specColor, half 
oneMinusReflectivity,

                                    half smoothness, half3 normal, half3 viewDir,
                                    UnityLight light, UnityIndirect gi)
{
    viewDir = normalize ( viewDir );
    float3 lightDir = normalize ( light.dir );

    float3 halfV = normalize(lightDir+viewDir);
    float NdotL = saturate( dot( normal, lightDir ));
    float NdotH = saturate( dot( normal, halfV ));
    float NdotV = saturate( dot( normal, viewDir ));
    float VdotH = saturate( dot( viewDir, halfV ));
    float LdotH = saturate( dot( lightDir, halfV ));

    float3 diff = DisneyDiff(diffColor, NdotL,  NdotV, LdotH, _Roughness);
    float3 spec = CookTorranceSpec(NdotL, LdotH, NdotH, NdotV, _Roughness, _SpecColor);
    float3 diff2 = (DisneyFrostbiteDiff(NdotL, NdotV, LdotH, _Roughness) * diffColor)/PI;
    float3 firstLayer = ( diff + spec * _SpecColor) * _LightColor0.rgb;
    float4 c = float4(firstLayer, 1);

    return c;
}

We are not using specColor as it is, because it’s too dark for our BRDF. To keep things simple, we’ll just 
keep using the _SpecColor variable. Remember to set the custom lighting function to this function, using 
#define UNITY_BRDF_PBS CustomDisneyCookTorrance_PBS at the top of the file. At this point, you should 
be able to set your shader material to Custom/CustomStandardShader and be able to see our BRDF being 
applied. But we’re not done, because we’re not using reflections and the other capabilities of the Standard 
shader.

Modifying our BRDF to do that will be a bit of a fight. The way to do it is to copy and paste the BRDF1_
Unity_PBS function from the UnityStandardBRDF.cginc file. It includes a lot of functionality, which we don’t 
really want to worry about, so we’re going to simplify it a little bit. We’re going to keep the UNITY_HANDLE_
CORRECTLY_NEGATIVE_NDOTV and _SPECULARHIGHLIGHTS_OFF functionality.

As our variable naming convention and the Standard shader naming convention clashes, you’re going 
to see both VdotL and nl as variable names. That should help you determine which lines come from the 
Standard shader, and which lines were copied straight from our BRDF. In Listing 13-16, you can see the 
final result. The most interesting part is the final color assembling, where the global illumination and the 
reflections are put together with the BRDF.
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Listing 13-16.  Final Custom Lighting Function

half4 CustomDisneyCookTorrance_PBS ( half3 diffColor, half3 specColor, half oneMinusReflectivity,
                                   half smoothness, half3 normal, half3 viewDir,
                                   UnityLight light, UnityIndirect gi)
{
    half3 halfDir = Unity_SafeNormalize (light.dir + viewDir);

#define UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV 0

#if UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV
    half shiftAmount = dot(normal, viewDir);
    normal = shiftAmount < 0.0f ? normal + viewDir * (-shiftAmount + 1e-5f) : normal;
    half nv = saturate(dot(normal, viewDir)); 
#else
    half nv = abs(dot(normal, viewDir));    // This abs allow to limit artifact
#endif

    float VdotH = saturate( dot( viewDir, halfDir ));
    float LdotH = saturate( dot( light.dir, halfDir ));

    half nl = saturate(dot(normal, light.dir));
    half nh = saturate(dot(normal, halfDir));

    half lv = saturate(dot(light.dir, viewDir));
    half lh = saturate(dot(light.dir, halfDir));

    float3 diffuseTerm = DisneyDiff(diffColor, nl,  nv, LdotH, _Roughness);
    float3 specularTerm = CookTorranceSpec(nl, LdotH, nh, nv, _Roughness, _SpecColor);

#if defined(_SPECULARHIGHLIGHTS_OFF)
    specularTerm = 0.0;
#endif
    specularTerm *= any(specColor) ? 1.0 : 0.0;

    half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));
    half3 color =   diffColor * (gi.diffuse + light.color * diffuseTerm)
                    + specularTerm * light.color 
                    + gi.specular * FresnelLerp (specColor, grazingTerm, nv);

    return half4(color, 1);
}

One difficultly was that the Standard shader treats roughness differently from the way our custom 
lighting function does, so we fell back on keeping the smoothness and roughness separate, and only using 
the smoothness for the reflections part of the shader. This has the side effect that we’re keeping around two 
values that should be describing the same things, and that the specular is not getting automatically reduced 
when roughness increases.

The final result is not perfect, as you can see in Figure 13-2, but it’s similar enough to our target for our 
purposes.
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Making a GUI for the BRDF Shader
Now we have our shader, we should make a nice GUI for it. Again, we should copy, paste, and modify the file 
that implements this functionality for the Standard shader. The file is called StandardShaderGUI.cs, and it 
can be found with the shader includes in the Editor/ folder.

We need two new value fields, one for _Roughness and one for _Subsurface. We’re going to keep the 
Smoothness field and use it to turn the specular reflections on and off.

I’m assuming you named this new file CustomShaderGUI.cs and changed the class name to match. The 
first step is to add these two lines to the Styles section:

public static GUIContent roughnessText = new GUIContent("Roughness", "Roughness value");
public static GUIContent subsurfaceText = new GUIContent("Subsurface", "Subsurface value");

They are declaring the GUIContent (basically the labels) that we’ll use when we’re showing the variable 
field. Then, you need to declare two extra MaterialProperty for them:

MaterialProperty roughness = null;
MaterialProperty subsurface = null;

Next, you need to add these two lines to the FindProperties(MaterialProperty[] props) function:

roughness = FindProperty("_Roughness", props);
subsurface = FindProperty("_Subsurface", props);

They are connecting the MaterialProperty to the actual variables names used in the shader. Finally, 
add these two lines to the end of the DoSpecularMetallicArea() function:

m_MaterialEditor.ShaderProperty( roughness, Styles.roughnessText, indentation );
m_MaterialEditor.ShaderProperty( subsurface, Styles.subsurfaceText, indentation );

They finally draw the fields that we’ve been setting up so far. To use this custom inspector for your 
shader, change the final line of the shader to this:

CustomEditor "CustomShaderGUI"

Figure 13-2.  Left, our custom CookTorrance Surface shader, right, our Custom standard shader, with 
reflections
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That should be all. You should automatically see this inspector editor when you select a mesh that uses 
this shader (see Figure 13-3). The code is way too long to reproduce here, so remember you can check it in 
the book’s source code.

Summary
This chapter covered how to hack the Standard shader code to use a BRDF of our choice. This give you 
access to the extensive functionality included in the Standard shader that a plain Surface shader would lack. 
You could possibly reimplement it, but this way is much quicker.

Next
The next chapter describes and implements some useful advanced techniques to better simulate complex 
light behaviors that our BRDF can’t do in real time without big approximations, such as subsurface 
scattering and translucency.

Figure 13-3.  The custom shader inspector
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CHAPTER 14

Implementing Advanced 
Techniques

As mentioned, GPUs are not currently fast enough to simulate the finer points of simulating the physics 
of light in real-time. But you still want to achieve realistic and impressive shading in your games. To work 
around this problem there is an entire industry worth of tricks, hacks, and approximations designed to give 
you almost the true result, but with a fraction of the computational expense.

This chapter explains the process of choosing and implementing such techniques in Unity. We’re 
choosing a technique that can be implemented quickly enough to get into details. There are many other 
worthwhile techniques around, such as volumetric fog, area light, various kinds of subsurface scattering, 
etc., but they deserve much more space than we could give them here.

Where to Find Techniques
There are many sources from which you can get techniques descriptions, some of which are listed in 
Chapter 18. Some of them are books, some of them are conference talks, and some of them are just articles 
or code repositories on the Internet. Devising techniques generally requires mathematical and algorithmic 
insight, and time to spend on R&D, so they are most commonly invented by graphics programming 
researchers or graphics programmers working in well-funded studios.

For the technique we’re going to implement in this chapter, we’re going back to a Game Developer 
Conference talk from 2011. That year, DICE presented a technique to implement translucency cheaply, which 
they used in their then engine, Frostbite 2. They also published a chapter about it within the GPU PRO 2 book.

Implementing Translucency
One classic real-world example of translucency in action is holding your hand between you and a strong 
light, such as the sun. You’ll see the light penetrate the flesh and make the contours of your fingers look red. 
In general, any time a translucent material is between the point of view and a light, a part of the light will 
come through to the other side, where it will reach the camera.

Some support of translucency is necessary for skin shading, but it’s not enough. Skin is composed of 
many layers which influence the outcome. This translucent shader is more appropriate for homogeneous 
materials such as wax, which don’t have different interacting layers.

Translucency can’t be modeled with a BRDF. The light hitting a translucent material is scattered through 
the surface, exiting at points that can be quite far from where the ray first hit the material. To describe this 
behavior accurately, we’d need a bidirectional scattering distribution function (BSDF), or a bidirectional 
surface scattering reflectance distribution functions (BSSRDF). Meaning that the approximations that optics 

https://doi.org/10.1007/978-1-4842-3309-2_14
http://dx.doi.org/10.1007/978-1-4842-3309-2_18
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give us are not enough, and we need to go deeper. The medium through which light is scattering, below the 
surface, is influencing the light transport. To describe that, we’d need volumetric scattering. But this technique 
simplifies that a lot: it only concerns itself with calculating the light that will get through the mesh, by deviating 
the direction of the light according to a few properties. This extra light is then added to the diffuse term.

Properties
This translucency technique depends on these properties:

•	 The Power and the Scale factors scale the intensity of translucency, in different 
measure.

•	 The Subsurface Distortion factor influences how distorted the direction of the 
outgoing light will be. It works by shifting the surface normal.

•	 The Thickness map represents the thickness of the mesh at a certain point. It’s 
supposed to be built by inverting the surface normals, calculating ambient occlusion, 
and then inverting the result of the ambient occlusion calculation.

•	 The Subsurface Color is not strictly needed, but it’s going to make it easier for us to see 
the result of the translucency calculation, by choosing a color that contrasts with our test 
model. In the original paper, an ambient value is used in place of choosing a color.

You can see what these properties look like in code in Listing 14-1.

Listing 14-1.  The Properties Necessary for Implementing this Technique

_Thickness ("Thickness (R)", 2D) = "white" {}
_Power ("Power Factor", Range(0.1, 10.0)) = 1.0
_Distortion ("Distortion", Range(0.0, 10.0)) = 0.0
_Scale ("Scale Factor", Range(0.0, 10.0)) = 0.5
_SubsurfaceColor ("Subsurface Color", Color) = (1, 1, 1, 1)

Implementation
You should make a new surface shader and copy/paste the CookTorranceSurface shader to it, changing the 
path to Custom/TranslucencyShader. Then, you’ll need to add the new properties to the properties in the 
shader and declare the respective variables.

You’ll need to add a Thickness member to the SurfaceOutputCustom struct, and then sample the 
thickness map, and apply it to this member in the surface function (see Listing 14-2).

Listing 14-2.  The Necessary Changes to SurfaceOutputCustom and the Surface Function

struct SurfaceOutputCustom {
    float3 Albedo;
    float3 Normal;
    float3 Emission;
    float Thickness;
    float Alpha;
};

void surf (Input IN, inout SurfaceOutputCustom o) {
    float4 c = tex2D (_MainTex, IN.uv_MainTex) * _ColorTint;
    o.Albedo = c.rgb;
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    o.Thickness = tex2D (_Thickness, IN.uv_MainTex).r;
    o.Normal = UnpackNormal( tex2D ( _BumpMap, IN.uv_MainTex ) );
    o.Alpha = c.a;
}

After that, the implementation of this technique boils down to just a few lines of code (see Listing 14-3). 
First we shift the light direction, then we calculate the dot product of the inverse of that direction and the 
view direction, and finally scale it to the properties. Then we use the thickness map and the extra color with 
the dot product, which will use the color of the translucency pixel by pixel. Finally, we add the result to the 
diffuse term.

Listing 14-3.  Calculating the Translucency Color

float3 translucencyLightDir = lightDir + s.Normal * _Distortion;
float translucencyDot = pow(saturate(dot(viewDir, -translucencyLightDir)), _Power) * _Scale;
float3 translucency = translucencyDot * s.Thickness * _SubsurfaceColor;

float3 diff = DisneyDiff(s.Albedo, NdotL,  NdotV, LdotH, _Roughness) + translucency;

While this matches the technique example code quite close, we simplified it a bit. We skipped on the 
attenuation, as it’s somewhat awkward to extract it from the custom lighting function infrastructure. We also 
skipped multiplying the translucency value for albedo and light color, as that happens anyway when we add 
the diffuse term to the specular term.

You can take a look at the final result in Figure 14-1. Note that the thickness map is not the actual 
inverted ambient occlusion map. It’s more of an example to see that the shader does work.

Figure 14-1.  The CookTorrance shader with added translucency
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This was our advanced technique. There are many more around for you to lay your hands on. Many will 
work outside of the BRDF, and then get piled on top it somehow, as this one does. That is not necessarily 
a correct way to add complex effects that can’t be described by BRDFs, but it tends to work well enough, 
depending on your objectives.

Next, we’ll cover briefly how the mechanisms behind image based lighting and reflection probes work 
in Unity.

Real-Time Reflections
As of Unity 2017.1, Unity includes an implementation of real-time reflections, but this hasn’t always been 
the case. In Unity 4, there was no such built-in functionality, and if you wanted reflections, you needed to 
implement them from scratch. In this section, we’ll summarize the necessary steps to implement reflections 
in a real-time renderer.

Although you may never have to implement them yourself, there are some advantages to knowing how 
it’s done. The included implementation of image based lighting and reflections works well with the Unity 
Standard BRDF, but it won’t necessary work well with any new BRDF you might want to implement. Since 
the BRDF it uses is most likely going to be different from the one you want to implement, the result of putting 
together your BRDF, and the reflections resulting from calculations meant for a different BRDF, will be subtly 
(or even noticeably) wrong.

That said, the Standard shader uses three different BRDFs depending on platform. While they might 
have implemented different cubemap processing for each BRDF, it could also mean that they haven’t and 
they’re fine with them being slightly off.

I think it is worthwhile to have an underlying knowledge of how reflection probes work underneath, 
because they are a necessary part of physically based shading. Should you ever want to build your own 
renderer, you’ll need to implement this functionality from scratch, and Unity’s reflection probes hide 
amazingly well how much work implementing them really is.

What Is a Cubemap 
We haven’t talked much about cubemaps up to now, because in Unity 5.0 and higher, we only need to deal 
with them to set a skybox, and the default one was fine for our purposes.

Cubemaps are fundamental to implementing reflections. A cubemap is basically a capture of all the 
incoming light into a certain point, which should sound familiar, as it is pretty much the definition of 
irradiance (see Figure 14-2).

Figure 14-2.  Irradiance, incoming light from all directions into a point
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A key difference between cubemaps and irradiance, as we’ve used it up to now in BRDFs, is that 
irradiance is measured on a hemisphere, as it is on a surface. Cubemaps, on the other hand, are 360° 
captures of the surrounding scene. They are obtained by rendering the scene six times, in six different 
directions (+X, -X, +Y, -Y, +Z, and -Z), at field of view 90°, into a square. Then those renders need to be 
stitched together into an image, according to cubemap conventions (see Figure 14-3). There are many 
possible formats, which expect different faces to be in different places. Exporting the cubemap so the faces 
match can be a very confusing part of implementing a cubemap capture.

Figure 14-3.  Layout of a cubemap

Cubemaps can be used to represent light coming from infinite distances, such as a skybox, or they can 
be used to represent local incoming light. In the latter case, additional information about the size of the area 
needs to be stored outside of the cubemap.

What Are Reflection Probes
Reflection probes are basically an automated way of capturing cubemaps in real-time and processing them, 
so they can be used for reflections.

In Chapter 13, we added reflections just by adding the content of the built-in variable gi.specular, 
multiplied by a Fresnel factor, to our diffuse and specular terms:

half3 color =   diffColor * (gi.diffuse + light.color * diffuseTerm)
                + specularTerm * light.color 
                + gi.specular * FresnelLerp (specColor, grazingTerm, nv);

This looks deceptively simple, but quite a lot is going on underneath. What happens behind the scenes 
is that a cubemap of the current scene is captured from the point of view of a reflection probe. This cubemap 
represents the incoming light into a point. Then it needs to be processed according to whether it’s for diffuse 
or specular reflection, and according to your BRDF(s).

http://dx.doi.org/10.1007/978-1-4842-3309-2_13
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If your BRDF supports roughness, the reflection will be blurred at a higher roughness. That can be 
achieved by using different mips and having different convolution applied to the cubemap mips, depending 
on roughness value.

Another necessary feature is blending between the reflection probes in a scene; otherwise, the jump 
between two reflection probes would be jarring.

Finally, box projection is an extremely useful feature, as otherwise in many situations the reflections 
wouldn’t match the position of what is being reflected, as they’re supposed to. [1]

Evaluating a Cubemap 
After capturing, the cubemap cannot be used for reflections as it is. It needs to be prefiltered according to 
the roughness value, and with an eye to scale its color values, to make it behave more realistically. Using the 
cubemap as it is might overwhelm the rest of the shading and definitely isn’t physically correct.

Filtered environment maps are supposed to store reflected radiance, which is obtained by integrating all 
incoming light, multiplied by the BRDF, and by the cosine between the normal and the lighting. [2]

In the course notes for the talk Physically Based Shading in Call of Duty: Black Ops, Dimitar Lazarov 
details one way of doing that scaling, which he calls environment map normalization. [3]

According to the course notes, the filtering is two-fold:

•	 For each mip level, a Gaussian filter with increasing size should be used, 
corresponding to higher roughness. So you can get the appropriate level of 
roughness in a reflection by choosing the right mip. This depends on how the BRDF 
handles roughness.

•	 The cubemap needs to be normalized to be used for reflections, which is done by 
dividing the radiance (see Figure 14-4) at each texel (one pixel in a texture) by the 
average irradiance at the place of capture (this can be done entirely at runtime, when 
sampling the cubemap).

Figure 14-4.  Radiance, all light incoming into to one point, from one direction

1For a good overview of blending between cubemaps and box projection, read: https://seblagarde.wordpress.
com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
2For more information on how filtering for environment maps has evolved in time, see http://jankautz.com/
courses/GameCourse/05_EnvMaps.pdf from SIGGRAPH 2006
3http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf

https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://jankautz.com/courses/GameCourse/05_EnvMaps.pdf
http://jankautz.com/courses/GameCourse/05_EnvMaps.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
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Irradiance and radiance are related: irradiance is equal to the integral of radiance, over the hemisphere 
incoming light directions, weighted by n⋅l

Irradiance Radiance l n l dl== (( )) ××(( ))òò
W

To use the cubemap in the shader of a material to implement reflections, you need to choose which mip 
to sample, according to the roughness of the material.

When you do sample it using the correct mip, you’ll need to scale its value, according to how much light 
is incoming at that point. As we said, this scaling can be done either at runtime or offline. We’re going to look 
at how to do it at runtime in a custom lighting shader.

Cubemap Processing Programs
As mentioned, it’s normal now to do the cubemap filtering at runtime, but there are also various programs 
that can process a cubemap so it can be used for IBL. Some of them are open source, some are closed source 
but freeware and some are commercial.

In the case of the open source ones, you’ll be able to read and modify the processing code. You 
can learn from it and adapt it to the specific BRDF you want. This can be a convenient testbed, before 
implementing the same mechanism in a game engine.

•	 cmftStudio: Open source

•	 Knald Lys: Commercial

•	 IBLBaker: Open source

•	 CubeMapGen: Open source but old

We won’t go into further details about this, but this should be enough to get you started, should you 
want to implement your own equivalent of reflection probes at some point. For some helpful math advice on 
how to calculate necessary parts of cubemap processing, see http://www.rorydriscoll.com/2012/01/15/
cubemap-texel-solid-angle/.

Let’s make these concepts less abstract by looking at some code. The following code used to work in 
Unity 4, but it might not work in recent Unity versions. It’s included just to give you an idea of the kind of 
code required, rather than to serve as a reference implementation.

Before being able to use this technique, you need to set up light probes or something equivalent. Unity 
used to offer a function that taps into the light probes, as a result encoding the irradiance at every light probe 
in the scene into spherical harmonics, which we can use.

After setting light probes up, we can start coding a custom lighting shader that supports reflections. First 
we need to declare a new property and the variable for it in the custom lighting shader where we’re going to 
use the cubemap:

_Cube("Reflection Map", Cube) = "white" {}

[...]

samplerCUBE _Cube;

http://www.rorydriscoll.com/2012/01/15/cubemap-texel-solid-angle/
http://www.rorydriscoll.com/2012/01/15/cubemap-texel-solid-angle/
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Then we need to make a way to get the extra float3 of the cubemap color into the custom lighting 
function. We can do that by adding an extra member in SurfaceOutputCustom:

struct SurfaceOutputCustom {
   [...]
   fixed3 CubeColor;       
};

We also need to calculate the normal in World Space, and the reflection direction in World Space in the 
vertex shader, and pass it on to the custom lighting function. To do that, remember to add them to the Input 
struct:

struct Input {
    fixed2 uv_MainTex;
    fixed3 worldNormal;
    fixed3 worldRefl;
    INTERNAL_DATA
};

Having done this setup, we can sample the cubemap in the surf function.
To do that, we need to match roughness value of the BRDF to a mipmap level. Say we have 10 mipmap 

levels available, and the roughness values range from 0, to 1. That means mip-0 represents roughness 0,  
mip-1 will represent roughness 0.1, and so on. iblLod in the following code stands for the operation of 
finding the right mip-level:

fixed3 skyR = WorldReflectionVector(IN, o.Normal);
fixed4 cubeColor = texCUBElod(_Cube, fixed4(skyR, iblLOD));

Before assigning the sampled cubemap color to the CubeColor SurfaceOutputCustom member, we 
need to rescale it using the irradiance contained in the spherical harmonics:

fixed3 local_irradiance = saturate(ShadeSH9 (fixed4(IN.worldNormal,1.0)));

Finally, we set the scaled color to the CubeColor member:

o.CubeColor = cubeColor / local_irradiance;

In the custom lighting function, we need to complete the missing steps so we can use the reflection 
color. In the course notes for Physically Based Shading in Call of Duty: Black Ops, there is a heavily optimized 
environment BRDF function that you could adapt for your needs, or see also the footnotes [4] and [5].

In the custom lighting function, we calculate the indirect specular by passing the necessary data to an 
environment BRDF function, and then we add it to our final color:

fixed3 indSpec = EnvironmentBRDF(_RoughnessS, NdotV, linearSpecColor) * s.CubeColor; //Fresnel?
[...]
return fixed4(firstLayer + indSpec), 1);

4A good compendium about IBL, included many code samples, taken from a number of papers: https://chetanjags.
wordpress.com/2015/08/26/image-based-lighting/
5See Section 4.9: Image Based Lights: https://seblagarde.files.wordpress.com/2015/07/course_notes_
moving_frostbite_to_pbr_v32.pdf

https://chetanjags.wordpress.com/2015/08/26/image-based-lighting/
https://chetanjags.wordpress.com/2015/08/26/image-based-lighting/
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
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We haven’t included a Fresnel in the indirect specular, but using one would improve it.
That was most of the key necessary shader code, but to build an entire reflection system, you’ll still need 

to implement box projection, a system to position probes and capture cubemaps, and a system to blend 
between probes. Hopefully this was enough to give you a working idea on how to proceed.

Summary
This chapter went through the process of implementing a technique that approximates a phenomenon that 
we wouldn’t be able to implement in real-time (until GPUs step up even more, at the least). While doing 
that, you saw where and how to pick and implement techniques that may be useful to you. The chapter also 
included a brief overview of how image based lighting is implemented.

Next
The next chapter talks about what you need to consider to make your shader convenient for artists  
to use.



PART III

Shader Development Advice

Now you are a seasoned Unity shader developer, so it’s time to reflect on the art of writing good 
code and usable shaders.

You will learn the most common usability mistakes that developers make that put off artists 
from using their shaders. You will learn how to debug and profile problematic and slow shaders.

You will learn how ubershaders came to be, and why they’re a solution to some big problems 
encountered in building complex shader systems.

You will learn where to find up-to-date, bleeding edge information about the game and movie 
industry, so you can keep up with the never-ending tide of progress.
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CHAPTER 15

Making Shaders Artists Will Use

While chasing down physically based perfection, the user experience from the point of view of the artists is 
something that’s easy to overlook. Complex BRDFs have complex settings, and the artists whom you’re going 
to give the shaders are not likely to know as much as you do about how to use them.

Descriptive names are often not a priority, and sometimes we end up with downright confusing names. 
One bright example is the Roughness input for the Unity Standard shader. The concept is commonly known 
as Roughness, but in the Unity Standard shader it’s called Smoothness on the user side, and to compound 
the confusion, it’s called Glossiness on the code side. It’s not a huge deal, but naming things in a confusing 
way has never helped anyone.

This chapter explains a few useful tips to make sure your effort of making great lighting models includes 
taking your end users, the artists, into account.

The UX of the Disney BRDF
Most of the currently BRDFs used by game engines and offline renderers, such as Blender’s Cycles, are 
inspired by Disney’s efforts to streamline a BRDF so it can be used for most materials and is easy for the 
legions of artists at Disney to use.

When you are part of a small studio, it’s easy enough to walk over to the artists’ side of the office and 
personally walk them through the way you intended them to use the shader you just made. When your 
studio employs more than 15 or so people, that becomes pretty much impossible. What you need to do then 
is make the shader controls as intuitive as possible, so that they are almost self-explanatory. But how do you 
achieve that? Let’s look at what you should not do, which will help to get you on the right path.

Typical Problem #1: Too Many Settings
Each setting included in a shader requires some cognitive load from the users. It’s easy to squander all your 
user’s goodwill in the name of flexibility and granular control. As the number of possible settings piles up, 
they’re almost guaranteed not to be used, because the time needed to figure out their effect by tinkering will 
be too high.

It’s particularly easy to get to that point when you’re composing BRDFs without consolidating their 
inputs. For example, assume you’re using a specular BRDF with roughness, and you want to use the 
OrenNayar BRDF as its diffuse. OrenNayar will need a separate roughness variable, a diffuse roughness, 
unless you find a way to have the specular and the diffuse roughness match up, in this way consolidating the 
two variables into one.

Even though I do extol the virtues of the Disney BRDF, when you implement all of it, it does go near to 
the “too many settings” point (see Figure 15-1).
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Typical Problem #2: The Effect of a Setting Is Unclear
The effects of some variation in settings might depend on the value of another one to be visible. As an 
example, in the Ashikhmin Shirley BRDF, you have four settings—Rs, Rd, nu, and nv (see Figure 15-2).

Figure 15-1.  The Disney BRDF, flirting with having too many settings
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Those names mean pretty much nothing to anyone who hasn’t read the paper. And that’s not a great 
start. But worse, it’s hard to figure out how Rd is useful just by tinkering with it.

Also, if a setting doesn’t have any apparent effect in most cases, you probably want to either set it to a 
fixed value in code or get rid of it entirely. Either way, the artist shouldn’t have to deal with it. And this leads 
us directly to the next common problem: dependencies between settings.

Typical Problem #3: Settings Dependencies
This problem is when, in order to achieve one desired effect, you have to change multiple properties. This 
chain of changes is error prone and needs to be documented, and it also takes space in the artist’s mind, 
causing distraction and frustration.

This might not be entirely solvable, but it can at least be better documented, listing the expected case in 
which the interaction of light setting, and certain values or ranges of shader setting, will lead to some setting 
not making any difference. Something to aspire to.

Typical Problem #4: Unclear Compacting of Textures
If you’re just using three channels out of a texture, you might be very tempted to put in the remaining 
channel something else, such as specularity or roughness. This is all good, as long as it’s clear what you’re 
doing. If it’s not clear, that channel will probably get random data, or be ignored, possibly creating  
scene-specific bugs in various places in the game, which can be surprisingly hard to debug.

Figure 15-2.  Note how the naming of the variables gives no clue of their roles
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A while ago, there used to be some ambiguity in the Unity Standard shader, but they duly corrected it. 
Still, in the Specular setup, you need to remember to choose where the smoothness value is held, between 
the alpha from the albedo texture and the one for the specular texture (see Figure 15-3).

Figure 15-4.  Note the differing ranges in this shader—0 to 1 and 1 to 1000

Figure 15-3.  One potential bug-creating setting, if overlooked

Typical Problem #5: Strange Ranges
When offering a setting that can take a range of values, unless the specific range values are relevant to the 
artists in some way, it’s better to stick to a 0 to 1 range. Arbitrary range numbers can be confusing and result 
in more errors. See Figure 15-4.
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Positive Example: Disney BRDF in Blender
The Disney BRDF has been implemented in many renderers, both real-time and offline. Offline renderers 
are more focused on artists in general and have fewer restrictions because they don’t need to be real time. 
That makes them a good source of inspiration to make our real-time shading implementation more realistic 
and user friendly.

Many offline renderers are costly, sometimes complex to set up, and might require expensive 3D 
programs to support them, such as Maya or 3DS Max. There is one that is easily obtainable and includes an 
implementation of the principled Disney BRDF. It’s the open source physically based render included in 
Blender, called Cycles.

In Figure 15-5, you can see the Disney BRDF as implemented in Cycles. Note the self-explanatory 
settings names that they use and how they help make this BRDF friendlier to use than many others.

Figure 15-5.  The Disney BRDF implemented in Blender Cycles
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Summary
This chapter listed some common usability problems that arise when developing lighting models and 
discussed a few ways to avoid them.

Next
The next chapter talks about complexity again, but this time it’s on the code side. We’ll talk about how 
ubershaders are a way to help you deal with the many different variations needed within a shader, and show 
you how the Unity Standard shader uses this technique.
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CHAPTER 16

Complexity and Ubershaders

As you may well have noticed from the chapter on hacking a custom lighting model within the Standard 
shader, once you start to build up functionality upon functionality and need to support many different 
platforms with very different capabilities, the complexity of shader code can get very high, very fast.

A characteristic that most shader systems share is the need to be flexible, while the language itself 
doesn’t really provide much flexibility. Unity is experimenting with writing shaders in C#, so this may change 
in the future. But for now, your best bet is to somehow abuse the built-in features of the Cg language, namely 
pragmas and ifdefs, and build what are generally known as ubershaders.

What Is an Ubershader?
An ubershader is a monolithic shader that includes all the functionality you might need and turns features 
on and off at compile time (not at runtime; that’d be very expensive!).

It’s what happens when you don’t want to keep rewriting slightly different shaders over and over again. 
You start by writing from scratch any shader that you might need in your game. That way you’ll end up with a 
lot of repeated code. Repeated code makes keeping all the different shaders up to date hard, and you have to 
consciously make the effort of backporting any improvement made on one shader to all the old ones that use 
similar code. Meanwhile, the artists end up with too many shaders to choose from, resulting in wasted time 
and confusion.

To solve these problems, you’ll likely want to consolidate common functionality between all your 
shaders in .cginc files. While doing that, you’ll start using ifdefs so you can maximize the reuse of the 
shader code.

The result of this process of consolidation is keeping all the functionality in the library code and only 
using single .shader files as a repository of on and off switches. You need a .shader file to use your shader in 
the scene.

The Standard Shader
The Standard shader is a ubershader. You can gather that from the large number of include files, and the fact 
that the main shader file is built out of turning ifdefs on and off (see Listing 16-1).

https://doi.org/10.1007/978-1-4842-3309-2_16
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Listing 16-1.  The First Pass Included in the First Sub-Shader of the Standard Shader

SubShader
{
    Tags { "RenderType"="Opaque" "PerformanceChecks"="False" }
    LOD 300

    // ------------------------------------------------------------------
    //  Base forward pass (directional light, emission, lightmaps, ...)
    Pass
    {
        Name "FORWARD"
        Tags { "LightMode" = "ForwardBase" }

        Blend [_SrcBlend] [_DstBlend]
        ZWrite [_ZWrite]

        CGPROGRAM
        #pragma target 3.0
        #pragma shader_feature _NORMALMAP
        #pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON _ALPHAPREMULTIPLY_ON
        #pragma shader_feature _EMISSION
        #pragma shader_feature _METALLICGLOSSMAP
        #pragma shader_feature ___ _DETAIL_MULX2
        #pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
        #pragma shader_feature _ _SPECULARHIGHLIGHTS_OFF
        #pragma shader_feature _ _GLOSSYREFLECTIONS_OFF
        #pragma shader_feature _PARALLAXMAP

        #pragma multi_compile_fwdbase
        #pragma multi_compile_fog
        #pragma multi_compile_instancing

        #pragma vertex vertBase
        #pragma fragment fragBase
        #include "UnityStandardCoreForward.cginc"
        ENDCG
    } 

As you might remember, this isn’t even a surface shader, it’s an Unlit shader. We have so far kept away 
from the most intricate parts of the Standard shader code, because editing them can be quite time 
-consuming. But we’re going to take a look at some of that here.

You can see in Listing 16-2 the code that chooses which vertex and fragment functions are going to be 
used. You might think, “but that happens in the main shader, when using the pragmas #vert and #frag,” and 
you’d be right, and wrong. That is one choice, but this is another choice, enforced at compile time. There is a 
set of frag and vert functions for the UNITY_STANDARD_SIMPLE version of the shader, and one for the normal, 
more feature-ful one. They are hosted in different .cginc files.
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Listing 16-2.  Choosing Which Vertex and Fragment Functions to Use

#ifndef UNITY_STANDARD_CORE_FORWARD_INCLUDED
#define UNITY_STANDARD_CORE_FORWARD_INCLUDED

#if defined(UNITY_NO_FULL_STANDARD_SHADER)
#   define UNITY_STANDARD_SIMPLE 1
#endif

#include "UnityStandardConfig.cginc"

#if UNITY_STANDARD_SIMPLE
    #include "UnityStandardCoreForwardSimple.cginc"
    VertexOutputBaseSimple vertBase (VertexInput v) { return vertForwardBaseSimple(v); }
    VertexOutputForwardAddSimple vertAdd (VertexInput v) { return vertForwardAddSimple(v); }
    �half4 fragBase (VertexOutputBaseSimple i) : SV_Target { return fragForwardBaseSimple 

Internal(i); }
    �half4 fragAdd (VertexOutputForwardAddSimple i) : SV_Target { return fragForwardAddSimple 

Internal(i); }
#else
    #include "UnityStandardCore.cginc"
    VertexOutputForwardBase vertBase (VertexInput v) { return vertForwardBase(v); }
    VertexOutputForwardAdd vertAdd (VertexInput v) { return vertForwardAdd(v); }
    half4 fragBase (VertexOutputForwardBase i) : SV_Target { return fragForwardBaseInternal(i); }
    half4 fragAdd (VertexOutputForwardAdd i) : SV_Target { return fragForwardAddInternal(i); }
#endif

#endif // UNITY_STANDARD_CORE_FORWARD_INCLUDED

When we use pragmas to define which functions we are going to use, we are not referring directly to 
them, but we are directing the compile-time control flow to another choice, between another two sets of 
functions.

It’s impressive code, but it can be hard to follow and devilish to modify. Anytime you change something 
somewhere in the include files, you need to consider what ifdef it will impact, and if you’re not careful you 
might break paths different from the one you’re editing at the moment. If you compound that with lacking 
tools such as unit testing, you can see how tricky this ubershader business can get.

This pretty much sums up every ubershader written with a language such as Cg, which hasn’t been built 
to deal with this much complexity. When Cg was invented, it was an alternative to GPU assembly languages, 
and the shader length was limited.

What Causes Complexity in Shaders?
The complexity in shaders comes from having to support many different platforms that can only 
accommodate part of the features and might need to use cheaper approximations. The difference in 
platforms is quite vast, since Unity supports many versions of Direct3D, OpenGL, OpenGL ES, and Vulkan.

The “magic” of Unity is the relative ease of supporting vastly different platforms, from consoles, to 
mobile phones, to high-end PCs. But in reality, each of these platforms requires a lot of attention from the 
shader side, unless you’re using at least part of the Unity shader system.



Chapter 16 ■ Complexity and Ubershaders

216

There are also various platform-specific bugs that need to be worked around. You can find traces of 
them sprinkled through the Unity shader codebase, such as the example in Lighting.cginc shown in 
Listing 16-3.

Listing 16-3.  Example of Platform-Specific Bug in Lighting.cginc.

// NOTE: some intricacy in shader compiler on some GLES2.0 platforms (iOS) needs 'viewDir' & 'h'
// to be mediump instead of lowp, otherwise specular highlight becomes too bright. 

Ubershader Gotchas
As mentioned, this style of shader writing requires great care, because a change made anywhere in the 
includes can snowball and create problems for any of the supported platforms.

Another consequence of the complexity is the great number of shaders that end up getting generated, 
that can then make your project compilation slower. The entire ubershader is compiled to a great number 
of single platform-specific shaders, one for each combination of the various defines and features that can be 
turned on and off, producing a combinatorial explosion of variants.

Ubershader Advantages
So far I’ve mostly pointed out how ubershaders are complex and hard to deal with. But the only real 
alternative to them is the proliferation of the number of independent shaders, and that’s not a good  
thing either.

Having a great number of shaders leads to confusion in the pipeline, as artists need to be guided in the 
choice of which one to use. Having an ubershader leads to having a few shader choices and dealing with the 
rest through options for the few shaders.

Having an ubershader can save coding time, because you only need to edit a few files in order to update 
all the shader variations when you make an improvement.

The industry has converged on ubershaders, which most likely means that they are the best tradeoff 
between ease of use and complexity that we have at the moment.

Summary
This chapter provided an overview of ubershaders, including what they are, how they are used, and some 
tips on how to control the tangle.

Next
The next chapter explains how to proceed with shader debugging, including some of the tools available and 
some of the things to watch out for.



217© Claudia Doppioslash 2018 
C. Doppioslash, Physically Based Shader Development for Unity 2017,  
https://doi.org/10.1007/978-1-4842-3309-2_17

CHAPTER 17

When Shading Goes Wrong

You have written a great lighting model that you’re proud of, but it goes horribly wrong on your test device. 
Or on some user’s device. Or you have an unexplainable bug on your machine, which goes away when you 
deploy to your platform. If any of this has happened to you, welcome to the wonderful and painful world of 
shader debugging.

Debugging gets increasingly hard the more steps of separation you have from your development 
platform. Debugging when your target platform is the same as the PC you’re using is easier. If you’re 
targeting a different device you have to compile and deploy to it, and then access the debugger remotely. 
Also, the fragmentation of your platforms matters; for example, you might be developing an Android game, 
and since Android is notoriously fragmented, you may get a report of graphics bugs on devices that are 
unavailable to you, making debugging an impossibility.

This chapter discusses some of the tools and techniques you can use to debug and profile your shaders.

Common Tricks
Something that you can do without any debugging tools is edit the shader you’re debugging, so you’re 
visualizing the inputs to the different parts of the shader.

For example, your shader may be wrong, or the data that is the input to it may be wrong. Maybe the 
Normal Map is not recognized as such, or the 3D model has been broken by exporting to FBX.

Especially when your shader is working in other scenes or with other models, checking that the 
data is actually correct, is a good first step. Otherwise, you might spend days chasing a nonexistent bug. 
Discontinuities among the normals (such as “pinches”) are a common problem with models and very 
problematic for the shading. You might need to get Unity to recalculate the normals. Or you could use a 
specific shader to show the normals of the model instead of the shaded model and see for yourself what they 
look like (see Listing 17-1).

Listing 17-1.  A shader which visualizes the normals

Shader "Custom/UnlitShaderDebugNormals"
{
        SubShader
        {
                Pass
                {
                        CGPROGRAM
                        #pragma vertex vert
                        #pragma fragment frag
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                        #include "UnityCG.cginc"

                        struct appdata
                        {
                                float4 vertex : POSITION;
                                float3 normal : NORMAL;
                        };

                        struct v2f
                        {
                                float4 vertex : SV_POSITION;
                                float3 worldNormal : TEXCOORD0;
                        };

                        v2f vert (appdata v)
                        {
                                v2f o;
                                o.vertex = UnityObjectToClipPos(v.vertex);
                                float3 worldNormal = UnityObjectToWorldNormal(v.normal);
                                o.worldNormal = worldNormal;
                                return o;
                        }

                        fixed4 frag (v2f i) : SV_Target
                        {
                                return float4(i.worldNormal*0.5+0.5, 1.0f);
                        }
                        ENDCG
                }
        }
}

This shader will not calculate any lighting; it will just visualize the normals. See Figure 17-1 for how 
that looks. As you might have noticed, this is an Unlit shader, because making a surface shader that does 
this is quite inconvenient. You’d have to implement the normals visualizing as a custom lighting model, and 
you’d have to keep at least one member in the Input data structure and implement the global illumination 
function.
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Imagine a multipass image effect. The error could be at any point in the passes, so you first want to 
narrow it down to the specific pass. You can change the script to output the intermediate passes on-screen. 
You could also use a Frame Debugging tool, if it’s available.

Debugging Tools
You first tool you should consider using is contained in Unity—the Unity Frame Debugger (see Figure 17-2). 
Choose Window ➤ Frame Debugger to open it. It allows you to see each of the rendering steps and to check 
your meshes, shader properties, and more. You can jump to any point in the sequence of rendering steps, 
which can be very useful when you have a complex scene.

Figure 17-1.  The Normal Debugging shader applied to the duck mesh
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Sadly, the Frame Debugger is not available on every platform: at least iOS and WebGL can’t use it. Under 
iOS you should be able to use the equivalent tool for XCode, the OpenGL ES Frame Debugger. The Frame 
Debugger is mainly a tool to check for correctness and to figure out what exactly your renderer is doing.

Things to watch for include: verify your shader properties, check that the mesh is the correct one, check 
which passes of a certain shader have been rendered, check the RenderTexture, verify the order in which 
things are rendered, and check when the screen is being cleared.

Depending on your target platform, there are many other Frame Debugging tools that you may want to 
use instead of the built-in one, either because it isn’t available on your deployment platform, or because you 
want other features. RenderDoc is a popular PC tool that is integrated in Unity. If you want to use RenderDoc 
to debug your frame, right-click on the Game tab and choose Load RenderDoc. The RenderDoc icon will 
appear next to the frame scale slider. When you click on it, RenderDoc will open, containing a capture of 
your frame.

RenderDoc (see Figure 17-3) gives you access to an amazing amount of information, including the 
pipeline state, information about what the rasterizer is doing, texture samplers, inputs to vertex shader, 
frame statistics, and much more. It’s well worth trying it out and exploring the possibilities.

Figure 17-2.  The Unity Frame Debugger
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You can also use the Visual Studio Graphics Debugger, Tegra Graphics Debugger, NVIDIA Nsight, GPU 
PerfStudio, and more, depending on your platform.

Looking at the Generated Shader Code
What you’ve written in Cg and what actually ends up running on your deployment platforms, are not 
necessarily the same. There are many steps your code goes through that could end up changing the meaning 
of your program, especially when you’re targeting different platforms at the same time. When you have 
a problem you can’t pin down, you should take a look at the generated and/or compiled code that your 
platform is actually running.

You can look at the final code that generated from your shader, and the .cginc files it includes, by 
clicking on your shader and looking at the inspector. Figure 17-4 shows your options. This is a Surface 
Shader, and you can choose to see the intermediate code generated or go straight to the compiled code for 
different platforms.

Figure 17-3.  RenderDoc

http://gpuopen.com/archive/gpu-perfstudio/
http://gpuopen.com/archive/gpu-perfstudio/
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That compiled code is much lower level and it may be quite hard to understand, so that’s probably 
something you want to try as a last measure.

Performance Profiling
Sometimes the shaders behave as we want, but they are far too slow. For that, you want to consider the general 
performance of the entire scene, which you can check out by using the Unity Profiler (see Figure 17-5).

Figure 17-4.  Obtaining compiled code for your Surface Shader
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Figure 17-5.  The Unity Profiler

The Profiler can analyze performance in many subsystems of your game, but for the shaders you’re 
mainly going to care about the Rendering and the Global Illumination parts. Let’s look at some of the 
information you can get out of the Rendering Profiler:

•	 Number of batches: Unity attempts to combine as many objects as possible, to 
minimize changes in the rendering settings. In the details, batches are broken down 
by type (Static, Dynamic, and GPU Instancing). Fewer is better.



Chapter 17 ■ When Shading Goes Wrong

224

•	 Number of drawcalls: A drawcall is a call to the graphics API, where object data is 
sent to be rendered. Fewer is better.

•	 Number of SetPass calls: SetPass calls are information sent by the CPU to the GPU. 
Fewer is better.

•	 Number of triangles/vertices: As it says on the tin. It can help you keep an eye on 
spikes in on-screen primitives.

•	 How much VRAM is being used.

•	 RenderTexture number, memory used, and number of switches: RenderTextures are 
used in post processing, and you can also use them to process images on the GPU. If 
you have many active ones, they may eat up most of your VRAM.

•	 Number of shadow casters.

•	 Number and size of sent vertex buffer objects.

In general, you want to keep the numbers of all these items as small as possible, but how many you can afford 
really depends on the platform you’re targeting. Some of them may have a more dramatic effect than others. For 
example, mobile game development used to be very drawcall-sensitive, although it’s somewhat less so now.

One key issue to determine to optimize your game is whether your game is CPU- or GPU-bound, because 
they require different interventions. In the CPU Usage part of the Unity Profiler, all tasks executed for each 
frame are listed, with timings in milliseconds, and what percentage of the frame time they take up. You can 
drill down within Camera.Render until you get to Render.Mesh. You might want to create a test scene with just 
your shader, which will make it easier to figure out what it’s doing, but that may also backfire because some 
performance problems arise only within the context of a larger scene and then disappear in a simpler scene.

If you are GPU-bound and you have determined that one of your shaders is too slow, it’s time to dig out 
the frame-specific tools.

Keep in mind that not all shader debuggers give you useful information about the performance of 
your shader. In RenderDoc you can get timings per single drawcall by choosing the Time Durations for the 
Drawcalls option (a clock icon) within the Event Browser toolbar. In some other tools, you can only get frame 
percentage, which is not as useful, and still in others there are no timings at all. You need to spend some time 
to get to know the tools available for your use case and learn to get as much as possible out of them.

If you think you are using too many drawcalls, you should make sure you’re helping Unity to batch your 
meshes together as much as possible. For example, set every GameObject that isn’t supposed to move to 
static, and use the same material for as many meshes as possible, as meshes that use different materials 
can’t be batched.

Summary
This chapter discussed many different tools that will help you profile and debug your shaders, what data you 
can get out of them, and some useful debugging techniques.

Next
The next chapter is about how to keep your knowledge up to date, by chasing the never-ending flow of new 
discoveries and inventions in the games and graphics industries.
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CHAPTER 18

Keeping Up with the Industry

The game industry is in perennial and relentless progress. The insurmountable issues that you incurred last 
year are quite likely to have been overcome by a fellow game developer by now. But how do you keep abreast 
of the latest developments in graphics programming for game development?

Conferences
One way to keep up with progress is to go to game conferences, or at least watch the videos of the talks once 
they’re published. The main ones that are relevant to graphics programmers and Unity developers are these:

•	 Game Developer Conference, aka GDC. Generally held in the United States, it’s 
arguably the most relevant game developer conference in the world, mainly attended 
by AAA developers. Attending doesn’t come cheap, though. You can get the videos of 
the talks afterward by subscribing to the GDC Vault (this is around $400/yearly).

•	 Siggraph. This conference is entirely focused on graphics innovation. Generally held 
in North America. Mainly attended by graphics programmers, graphics researchers, 
and artists, it includes an animation festival. It’s not cheap to attend, but Siggraph 
membership is only around $45/year and it will give you access to most video 
recordings and papers from the conference.

•	 Unite. Unity organizes many different yearly conferences, each held on a different 
continent, generally in North America, Amsterdam, Japan, India, and Australia.  
All are devoted entirely to Unity. The cost is moderate, and there’ll be at least one 
that’s not too far from you. The videos are posted publicly online after some time.

•	 Digital Dragons. A yearly gamedev conference held in Krakow, Poland, with a good 
percentage of graphics programming talks, including many game postmortems. It’s 
cheap to attend, and its videos are posted publicly online.

•	 Eurographics, the equivalent of Siggraph for Europe. It’s not cheap either, and it’s 
somewhat more geared toward research.

There are many more gamedev conferences, but they tend to not focus on graphics as much as  
these do. There are also other conferences that focus more of the GPU side of things, such as the GPU 
Technology Conference.

https://doi.org/10.1007/978-1-4842-3309-2_18


Chapter 18 ■ Keeping Up with the Industry

226

Books
The bleeding edge of graphics programming techniques used in current AAA games tends to get collected 
into yearly books, papers, and articles. There have been various series in the past:

•	 GPU Gems (1 to 3)

•	 ShaderX (1 to 7)

•	 GPU PRO (1 to 7)

•	 GPU Zen, the current series

They are well worth the effort to buy and read, but are mainly about advanced techniques, so be warned.

Online Communities
Slack, Reddit, and discord are some of the online communities where gamedevs and graphics programmers 
converge. Some of them are the /r/GraphicsProgramming/ subreddit, the /r/Unity3D/ subreddit, as well as 
the Unity forums, especially the graphics-experimental-previews one.

Web Sites
There is an immense quantity of relevant content on the Internet. We list a few here, which are by no  
means exhaustive:

•	 http://blog.selfshadow.com/publications/: A lot of Siggraph material is 
collected here

•	 https://labs.unity.com/: the Unity Labs collect the latest research coming from Unity

•	 http://filmicworlds.com/

•	 http://aras-p.info/

•	 https://seblagarde.wordpress.com/

•	 http://c0de517e.blogspot.co.uk/

•	 http://blog.tobias-franke.eu/

•	 https://bartwronski.com/

•	 http://bitsquid.blogspot.co.uk/

•	 http://casual-effects.blogspot.co.uk/

•	 http://kesen.realtimerendering.com/

•	 http://graphicscodex.com

•	 https://www.scratchapixel.com/

http://blog.selfshadow.com/publications/
https://labs.unity.com/
http://filmicworlds.com/
http://aras-p.info/
https://seblagarde.wordpress.com/
http://c0de517e.blogspot.co.uk/
http://blog.tobias-franke.eu/
https://bartwronski.com/
http://bitsquid.blogspot.co.uk/
http://casual-effects.blogspot.co.uk/
http://kesen.realtimerendering.com/
http://graphicscodex.com/
https://www.scratchapixel.com/
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Social Media
Many graphics programmers have Twitter accounts, where they post new screenshots from their  
research/games/tests. Here is a random sample of people worth following, in random order:

•	 @shadercat & @doppioslash: This is me and my shadercat account, where I post 
new articles and anything cool related to graphics programming that I come across

•	 @SebLagarde: Director of rendering research at Unity and ex-senior graphic 
programmer at DICE/Frostbite and Dontnod

•	 @zalbard: PBR programmer at Unity Labs

•	 @thefranke: GI graphics monkey at Unity Technologies

•	 @EricLengyel: Game development and mathematics author and creator of  
http://sluglibrary.com, http://opengex.org, @TombstoneEngine, and @The31stGame

•	 @kenpex: DAY: Rendering technical director. NIGHT: Creative coder and 
photographer. Sometimes I write on c0de517e. My opinions are NOT my own

•	 @sehurlburt: Graphics engineer and entrepreneur. At Binomial making Basis,  
a texture compressor, with @richgel999 Prev Oculus, Unity. VR/C++/graphics

•	 @nlguillemot: Gamedev, rendering, GL, DX, and C++. Graphics @ University of Victoria

•	 @Reedbeta: Real-time graphics and game programmer. Amateur violinist and 
physicist, sci-fi nerd, cat dad, and coffeeholic

•	 @baldurk: Creator of @RenderDoc—Vulkan, D3D11, D3D12, and OpenGL graphics 
debugger. Previously at Unity, Crytek UK

•	 @iquilezles: I do things, mostly graphics and math and images

•	 @self_shadow: Senior rendering engineer, Lucasfilm Advanced Development Group

•	 @eric_heitz: Research scientist at Unity Technologies

•	 @KostasAAA: Lead graphics programmer at @RadiantWorlds, working on  
@SkySaga: Infinite Isles. Ex-Blitz Games Studios, ex-Rare

•	 @aras_p: Code plumber and devtools engineer at Unity (http://unity3d.com), 
personal stuff at http://aras-p.info, ask me at http://ask.fm/aras_pr

•	 @FilmicWorlds: the account of John Hable, who popularized linear lighting in 
games, and has worked on the Uncharted series

•	 @MichalDrobot: Principal rendering engineer at Infinity Ward—personal stuff, 
private opinions

•	 @BartWronsk: Software engineer at Google Daydream. Ex-gamedev, worked at Sony 
Santa Monica, Ubisoft Montreal, and CD Projekt Red

Keep in mind that these are personal accounts. I tried to include only people who Tweet a lot about 
graphics programming, but no guarantees.

http://sluglibrary.com/
http://sluglibrary.com/
http://opengex.org/
http://unity3d.com/
http://aras-p.info/
http://ask.fm/aras_pr
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Conclusion
So this is it—the last chapter, the end of the book. I hope it has been a useful journey, and that you’ll be able 
to use this information to make better games and better art. For any feedback, please give me a shout on 
Twitter @doppioslash or @shadercat.

Good luck with your physically based shading!
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