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Preface

For many years, population genetics was an immensely rich and pow-
erful theory with virtually no suitable facts on which to operate [. . . ]
Quite suddenly the situation has changed [. . . ] and facts in profusion
have been poured into the hopper of this theory machine. [. . . ] The
entire relationship between the theory and the facts needs to be recon-
sidered.

—Lewontin [159]

Sometimes, some researchers may say that they started to work on a topic
or issue incidentally before they spent a lot of their time and energy on it. This
could be said about my involvement in population genomics. My early training
in population genetics was very light, and my background in genomics (a very
new field when I was student) was even lighter. My long-time interest in evo-
lution and my investment in R started in late 1990s have eventually led me to
focus more and more of my scientific interest onto population genomics. Back-
ing on my experience with ape, I started the development of pegas which was
first released in May 2009. Developing an R package for evolutionary analysis
was not a new thing at this time and several colleagues had initiated similar
projects. The idea of this book emerged in part from discussions with some
of these colleagues. At this time high-throughput sequencing (HTS) was just
beginning its breakthrough and we were just starting to foresee the eventual
impacts of this technological revolution. The hackathon held at the National
Evolutionary Synthesis Center (NESCent) in Durham, USA, in March 2015
was for me a great opportunity to develop new tools to handle HTS data in
pegas. The idea of Population Genomics With R then grew progressively to
become a book project after discussions with John Kimmel started in Septem-
ber 2017.

There are three main driving ideas behind this book. The first one is to
consider all types of population genetic and genomic data, from the simplest
genetic data to the most large-scale genomic ‘big data’. The second idea is
to provide a single, common computing environment to address a wide range
of questions or tackle a wide range of analyses with population genetic and
genomic data. The third idea is to promote the use of free and open source
software. In the progress of writing, I found out that statisticians and develop-
ers in genomics use R more frequently than I thought. After having defended
the use of R for more than two decades, this is a fact that certainly provides
me some satisfaction.

xiii



xiv Preface

The basic materials of Population Genomics With R are the R packages
listed in Chaper 1. Clearly, this is not an exhaustive list of computing resources
for population genomics. I have tried as much as possible to consider packages
which are operational and integrate in the general framework of population
genomics outlined above. Theferore, I avoided to mention packages that are
clearly not maintained (e.g., orphaned packages on CRAN) or appeared to
not work correctly. During my research, I have certainly missed some packages
that should have been included in this book. As an example, DECIPHER, a
package distributed on BioConductor for managing very large databases of
sequence data, should have been cited in several chapters of this book. On
the other hand, I did not consider packages which are not distributed on a
server or which are too specialized: these include several R packages developed
to analyze human populations which are available only on request to their
authors—although it is not clear how this way to distribute software conflicts
with the free and open source software framework which I tried to follow.

Writing this book was a very progressive process and I benefited from
critical and very helpful comments on early drafts from Olivier François, San-
thosh Girirajan, Sarah Hendricks, and several anonymous reviewers. Hilmar
Lapp invited me to the hackathon held at NESCent in 2015 where I had one
of the most stimulating week of work and development: thanks to him and
to the colleagues and friends who were there too. Thibaut Jombart shared a
lot of great discussions on many occasions: thanks to him for organizing and
inviting me to another hackathon in London. I had the opportunity to give
several workshops on the packages I develop: these events are very rewarding
experiences and I want to thank particularly Frédéric Chiroleu, Soledad De
Esteban-Trivigno, Jérôme Goudet, and Nicolas Salamin for their invitations.
Many thanks to Agnès Mignot for her full support to develop my research
while she was head of the Institute of Evolutionary Sciences in Montpellier.
I am very grateful to John Kimmel for giving me the oppotunity to write
another book on using R to analyze evolution. Robin Lloyd Starkes enthusias-
tically worked out all the practical aspects handling my manuscript. Finally,
I am grateful to my wife Sinta and my daughter Laure for their permanent
support.

Bangsaen Emmanuel Paradis
March 2020



Preface xv

Symbol Description

E expectation.
H heterozygosity.
h haplotype diversity.
K number of populations, groups,

or clusters.
k number of alleles for a locus.
L likelihood.
N population size.
Ne effective population size defined

as the number of alleles transmit-
ted to the next generation.

n sample size (number of individu-
als or of alleles); number of rows
in a table or in a matrix.

p number of variables; number of
columns in a table or in a matrix.

pi proportion of allele i in the pop-
ulation (i = 1, . . . , k).

p̂i estimate of pi.
p̃i predicted value of pi.
Pr probability.
µ mean; mutation rate.
π nucleotide diversity.
σ standard-deviation.
σ2 variance.
Σ variance-covariance matrix.
Θ the population genetic parameter

defined as Θ = 2Neµ.
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1
Introduction

1.1 Heredity, Genetics, and Genomics
One of the greatest achievements of biology during the twentieth century
was to discover the mechanisms of heredity. One can hardly imagine all the
theories formulated during many centuries before this discovery. Today, the
double helix of DNA structure is an icon of science, and DNA has now a wide
range of technological and commercial applications.

Heredity and its associated concepts are deeply rooted in the history of
mankind. The emergence of agriculture in different parts of the world between
10,000 and 5000 years ago clearly interacted with knowledge on the heredity of
some plants and animals. During thousands of years, breeders have observed
the consequences of heredity on the domesticated forms of these species. In the
nineteenth century, the scientific investigation of heredity took a significant
turn with the generalization of microscopic observations, the formulation of
the laws of heredity by Mendel, and Miescher’s discovery of “nuclein,” later
renamed nucleic acids. An often overlooked feature of the history of genetics
is that it took almost eight decades to demonstrate that DNA is the support
of heredity, and even the brillant experiments by Avery and his colleagues
were not convincing for some geneticists who thought that heredity was coded
by proteins [52]. Therefore, population genetics originated well before the
discovery of the physical support of heredity.

Historical Landmarks: Heredity, Genetics, and Genomics
1866: Mendel publishes his laws of heredity [184].
1869: Miescher discovers DNA [47].
1944: Avery et al. demonstrate that DNA is the support of heredity [10].
1953: Watson et al. discover the double helix structure of DNA [290].
1961: Crick et al. decipher the genetic code [44].
1973: Gilbert and Maxam publish the first DNA sequencing data [95].
1984: Discovery of microsatellites [295].
1996: First high-throughput sequencing technology [237].
2001: First human genome published [127].
2010: Completion of the first phase of the 1000 Genomes Project [270].

1
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During the twentieth century, the methods used by biologists to study
heredity and later DNA progressively increased in power (see Chap. 2). The
growth of high-throughput sequencing technologies has been a very significant
factor in the development of population genomics. Genomics has taken con-
siderable importance during the last decade as a scientific field and a subject
of considerable societal interest. This development has also impacted the field
of population genetics.

This book adopts the following definitions. Population genetics is the study
of the variation in genotypes among individuals across space and time, includ-
ing the forces behind this variation. Genomics is the study of the structure
and functions of genomes. Population genomics is similar to population ge-
netics but applied to a very large number of loci, usually across the whole
genome of a species. Thus, population genomics can be seen as a “scaled-up”
version of population genetics dealing with at least a large number of loci up
to the whole genome of the species of interest [20].

Historical Landmarks: Population Genetics
1930: Publication of Fisher’s Genetical Theory of Natural Selection [77].
1949: Publication of Wright’s paper on population genetic structure [303].
1955: Kimura’s paper on allele fixation under genetic drift [142].
1966: Empirical studies show the importance of molecular variation in
natural populations [107, 160].
1982: Kingman publishes three founding papers on the coalescent [147].
2005: Publication of the sequentially Markov coalescent facilitating the
analysis of genomic data with recombination [182].

1.2 Principles of Population Genomics
This section starts with some explanations on the units used in this book. The
biological meanings of some terms used here (bases, double-stranded, . . . ) are
explained in the following subsection.

1.2.1 Units
The basic unit of the genome is the base, the part of the nucleotide that
is variable: its symbol is ‘b.’ Genomes can be small or (very) big, thus it is
common to use prefixes borrowed from the International System of Units to
express the size of a genome or the length of a DNA sequence:
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one kilobase = 1 kb = 1,000 (103) bases
one megabase = 1 Mb = 1,000,000 (106) bases
one gigabase = 1 Gb = 1,000,000,000 (109) bases
one terabase = 1 Tb = 1,000,000,000,000 (1012) bases
one petabase = 1 Pb = 1,000,000,000,000,000 (1015) bases

Note that ‘base(s)’ is often used to actually mean ‘base pair(s)’ since DNA
is almost always double-stranded. Though this is inconsistent, ‘bp’ is usually
used as a symbol instead of ‘b’ when not prefixed, for instance: 1000 bp =
1 kb.

Modern genomics is tightly connected with computer science, so that we
often need to refer to quantity of information, memory usage, or file size. The
basic unit of information is the bit (or binary variable), and the practical unit
is the byte with symbol ‘B’ (one byte = eight bits). The most common units
of memory usage are:

one kilobyte = 1 kB = 103 bytes
one megabyte = 1 MB = 106 bytes
one gigabyte = 1 GB = 109 bytes
one terabyte = 1 TB = 1012 bytes

In this book, we will also use small units of mass because DNA is usually
present in very small quantities (see Chap. 2):

one microgram = 1 µg = 10−6 g
one nanogram = 1 ng = 10−9 g
one picogram = 1 pg = 10−12 g

1.2.2 Genome Structures
DNA is a polymer made of the repetition of nucleotides which are themselves
made of three molecules: phosphate, deoxyribose, and a base (Fig. 1.1). The
base of a nucleotide can be adenine (A), cytosine (C), guanine (G), or thymine
(T). The name “base” comes from the fact that these molecules are basic in
solution (i.e., they release hydroxide ions OH−, by contrast to acids which
release hydrogen ions H+). There are actually many bases in nature (e.g.,
caffeine, xanthine), but only those four are found in DNA. The sequence of
these bases in a DNA polymer stores the genetic information required to
carry out the basic functions of life, such as coding the sequences of proteins
or coding regulating sequences.

DNA is almost always double-stranded in a way that the bases of both
polymers (or strands) form specific pairs: A with T and G with C (Fig. 1.2).
The two strands are bound by weak forces sharing electrons between the bases
of a pair: two electrons for an A–T pair, three for a G–C pair.

There are a few exceptions to the rule of DNA as the support of genetic
information: in some viruses, ribonucleic acid (RNA) is the support of infor-
mation. RNA is similar to DNA but with two differences: uracyl (U) is used
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Figure 1.1
(A) A nucleotide made of a phosphate (HPO4), a deoxyribose (C5H10O4),
and a base (here adenine, C5H5N5). The annotations 5′ and 3′ show where
the nucleotides are bound together to make single stranded DNA. (B) A single
stranded DNA molecule made of four nucleotides with the sequence ACGT.
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Figure 1.2
(A) A twelve-base pair DNA molecule showing its atoms. (B) A repre-
sentation of the same molecule showing the base pairs (dark grey poly-
gons) and the backbone made of phosphate and deoxyribose (light grey
tubes). (C) The twelve pairs of bases of this molecule (A and B drawn with
http://jena3d.leibniz-fli.de/).

instead of T, and ribose is used instead of deoxyribose (Fig. 1.3). The deoxy-
dation of ribose (removal of one atom of oxygen) makes DNA less chemically
reactive, and so more stable, than RNA. In fact, viruses can have genomes
made of DNA or RNA, single- or double-stranded. In all other living forms,
the genome is always made of double-stranded DNA.

RNAs are actually very important molecules in living beings. An interme-
diate step to the expression of the information stored in DNA is the synthesis
of RNA, or transcription (Fig. 1.4). Some RNA molecules are used in protein
synthesis, and others have different roles in the cell (Fig. 1.5).

Genomes can be of very different sizes and structures (Table 1.1). Viruses
have actually the simplest genomes, typically 2–50 kb long, but some can
reach 2.5 Mb [222]. Prokaryotes are single-cell organisms with relatively simple
genomes: the smallest ones are slightly larger than 100 kb, and the largest ones
are more than 12 Mb. With a few exceptions, viruses and Prokaryotes share
the feature that their genomes are made of a single molecule of DNA (or RNA

http://jena3d.leibniz-fli.de
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Figure 1.3
Deoxyribose (left) and ribose (right) are very similar molecules: the missing
oxygen in the former makes it more chemically stable than the latter.

for some viruses). Prokaryotes have additional DNA molecules called plasmids
that are not integrated into their main genomes and replicate independently.

Eukaryotes are more complex than Prokaryotes. An individual may be
made of several cells, although many species of Eukaryotes are unicellular
(the protists). Their genomes are arranged in several DNA molecules packed
with proteins to make the chromosomes. The number of chromosomes vary
greatly: it is usually between a few and a few tens. The protist Oxytricha
trifallax is an extreme case. This large unicellular organism has two nuclei:
the macronucleus contains the somatic genome with 50 Mb spread on 15,600
chromosomes, and the micronucleus with a 500 Mb genome fragmented into
more than 225,000 DNA molecules used for sexual reproduction [37, 261]. The
size of the DNA molecule of a single eukaryotic chromosome varies greatly:
from a few 100 bp (nanochromosomes) to a few 100 Mb.

Eukaryotes, like Prokaryotes, have accessory genomes, but instead of being
“free” in the cell, they are located in specific organelles, such as the mitochon-
dria present in most eukaryotic cells, or the chloroplasts in photosynthetic
plants. The apicoplast is an organelle specific to some protists which also has
a small genome (Table 1.1).

There are many other differences between eukaryotic and prokaryotic
genomes: two of them are worth mentioning here. First, the organization of
coding sequences (those transcripted into mRNAs) is simple in Prokaryotes
where they are continuous for a given protein. On the other hand, in Eu-
karyotes the coding parts (exons) are discontinuous and interspersed with
non-coding parts (introns, Fig. 1.6). Second, eukaryotic genomes are often
present in several copies in a cell, usually two (diploidy), and most species are
characterized by an alternance of haploid and diploid stages where homologu-
ous chromosomes exchange portions of their DNA during the transition from
the diploid to the haploid phase (see below).

A lot of eukaryotic species have more than two copies of their genome in
a cell, a phenomenon called polyploidy. This is actually much more common
than thought and occurs in some specific cells of most multicellular organisms,
either normally or pathologically [249, 281]. The most common situation of
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Figure 1.4
How genetic information is used to code phenotypic trait such as a protein. (A)
Double stranded DNA is transcribed into mRNA which is then translated into
a protein. (B) The same process shown as sequences of bases and amino acids,
here one of the smallest known proteins [12, 200] (amino acid sequence and
3-D image from https://www.rcsb.org/3d-view/1L2Y using NGL Viewer
[238]). The three-letter code for amino acids is used here.

https://www.rcsb.org
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Table 1.1
Typical genome sizes and structures

Typical genome size Number of copy
Viruses 10 kb haploid
Prokaryotes 1 Mb haploid
Plasmids 1 kb haploid

Eukaryotes 1 Gb haploid, diploid, polyploid
Mitochondria 16 kb haploid
Apicoplasts 35 kb haploid
Chloroplasts 100 kb haploid

polyploid organisms is tetraploidy (four copies of the chromosomes), but a lot
of different situations can be observed. Species with an odd number of copies
are rare and generally reproduce clonally. For instance, the triploid shrub Lo-
matia tasmanica lives in less than 2 km2 where it is critically endangered [175].
On the other hand, the marbled crayfish, Procambarus virginalis, is triploid
and invasive in Madagascar where it threatens native species of crayfish [102].

DNA is copied and transmitted (almost) faithfully from generation to gen-
eration. There are two modes of reproduction with respect to the transmission
of genetic information: clonal and sexual. In clonal reproduction, a single par-
ent produces one or several offspring that have an exact copy of the parent’s
genome which can be haploid, diploid, or polyploid. In sexual reproduction, a
diploid parent produces haploid gametes: two gametes (from the same individ-
ual or from two individuals) unite to produce a diploid offspring. During the
production of gametes, homologous chromosomes exchange DNA to produce
new combinations of sequences: this is recombination. The process of genetic
recombination also exists in Prokaryotes and in viruses but in a different form.
Sexual reproduction can also be observed in polyploid organisms: tetraploid
individuals generally produce diploid gametes [250].

Sexual reproduction is found only in Eukaryotes while clonal reproduction
is observed in all groups—although not in all species. In many groups with
sexual reproduction (e.g., vertebrates or invertebrates), the haploid stage does

DNA −−−−−−−−−−−−→transcription




mRNA −−−−−−−−−−−−→translation Proteins

tRNA, rRNA, miRNA, snRNA, . . .

Figure 1.5
A summary of how information stored in DNA is used in living beings. mRNA:
messenger RNA, tRNA: transfer RNA, rRNA: ribosomal RNA, miRNA: micro
RNA, snRNA: small nuclear RNA.
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Figure 1.6
(A) A gene is transcribed into mRNA which will be later translated into a
protein (in viruses, Prokaryotes, and Eukaryotes’ organelles). (B) Most eu-
karyotic genes are made of coding (exons) and non-coding regions (introns)
and the synthesis of mRNA is a two-step process.

not develop (i.e., it remains at a unicellular state) and the individuals spend
most of their life as diploid. A remarkable exception to this rule is given by
the plants belonging to the Pteridophyta (ferns) which are diploid (the sporo-
phyte) and have a haploid stage (the gametophyte) that grows to produce
the gametes. The protist Plasmodium falciparum is mostly haploid and repro-
duces clonally in humans (where it causes malaria) while sexual reproduction
occurs in mosquitoes of the genus Anopheles.

1.2.3 Mutations
Mutations have been known for a long time: since the beginnings of agri-
culture, breeders have been able to produce lines of plants or animals with
characteristics that are stable and constant through generations. However,
even in the most careful conditions, some individuals with unexpected char-
acter(s) appear sporadically in these breeding lines. More recently, biologists
were able to observe the occurrence of mutations in laboratories with bacteria
or fruit flies.

For a long time, population genetics considered a mutation to be a change
from an allele to another without any further assumption about the nature
of such changes. With the advent of molecular genetics, the word mutation
has shifted to mean a change in the DNA molecules transmitted through
generations independently of its potential phenotypic effects. Similarly, the
words locus (the localization of a gene on a chromosome) and allele (the
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Table 1.2
Frequencies of mutations (in percentages) observed among 2504 human
genomes and 1135 genomes of the thale cress

Mutation type Homo sapiens Arabidopsis thaliana
Biallelic SNPs 95.53 88.26
Insertions–deletions (indels) 4.07 11.74
Multiallelic SNPs 0.33 –
Structural variants 0.07 –

different variants of a gene) have slightly different meanings in population
genomics: a locus is a portion of the genome that shows polymorphism, while
the alleles are the different sequences observed for this locus.

Mutations at the DNA level can be classified into five main categories:

• single nucleotide mutations,
• insertions–deletions,
• genome rearrangements,
• gene duplication,
• genome duplication.

The first category is the most common: it results in changing one base by
another one. One consequence of these mutations is, at the level of the popula-
tion, the presence of single nucleotide polymorphism, or SNP. In practice, the
term SNP is usually restricted to the cases where only two alleles are observed
at a particular site. If three or four alleles are observed, one could talk about
multiallelic SNP or MNP. To avoid confusion, one should use ‘biallelic SNP’
or ‘strict SNP’ to emphasize that only two alleles are observed.

Insertions–deletions (indels) result in the gain or loss of nucleotides, usu-
ally a small number. They are the second most frequent types of mutations.
The other categories of mutations are known collectively as structural vari-
ants: they result in more dramatic changes in the genome, and are much less
frequent.

The publication in 2015 of the sequences of 2504 human genomes from 26
populations in Africa, Asia, Europe, and the Americas [272] gave a benchmark
to assess the frequencies of the different types of mutations. Out of a total of
3,241,953,429 bases (the length of the reference genome GRCh38 used in this
study), 88,332,015 genetic variants (or loci) were identified. Strict SNPs and
indels represented more than 99.5% of the observed polymorphism (Table 1.2).
The fact that MNPs were almost 300 times less frequent than strict SNPs
may be a consequence of the small effective population size of the human
population [136] (see next section). Another consequence of this is the very
strong genomic similarity of humans: two randomly chosen individuals have
99.9% of their respective genomes identical [272].



Principles of Population Genomics 11

A similar large-scale study based on 1135 genomes of the thale cress (Ara-
bidopsis thaliana) revealed 12,135,975 variants out of 119,667,750 bases. With
one variable site every 10 bp, it is the densest eukaryotic genome known so
far in terms of natural variants [273]. Only biallelic SNPs and small indels
(≤ 40 bp) were assessed in this study (Table 1.2). A breeding experiment
on this plant coupled with genome sequencing showed that single base sub-
stitutions was the most frequent mutations across the genome [206]. Never-
theless, the different technologies, samplings, and biological peculiarities used
in these studies make generalizations difficult and many questions are still
open—though some start to be answered. Recent studies on human popula-
tions revealed that, compared to what was shown a few years ago, the number
of SNPs in the human genome is far larger (several hundred millions, most
of them having a very rare allele) [264, 268], and that structural variants are
more extensive [31, 251]. The study of genome variation in natural popula-
tions is still in progress and will surely reveal new fascinating facts after data
from other individuals and populations will be published.

1.2.4 Drift and Selection
Genetic drift is the process by which allele frequencies change by random
sampling of alleles from one generation to another. Drift is always present in
natural populations, even if they are large or growing, though it is stronger in
small populations. A simple way to look at drift is to consider a single locus
with two alleles in a population of effective population size Ne where the allele
frequencies are p1 and p2 = 1− p1. We want to answer the question: what is
the probability that one allele is lost at the next generation if population size
is constant? If we assume that breeding is random (i.e., there is no selection),
then the answer can be found by using the binomial probabilities of sampling
alleles with parameters Ne and p1 (Fig. 1.7). Clearly, the probability of allele
fixation is very low if the allele frequencies are balanced (p1 = p2 = 0.5)
even if Ne is very small. However, in this case it is quite unlikely that these
frequencies are stable (actually the probability to have p1 = p2 = 0.5 at the
next generation is 0.25). So, inevitably p1 will drift to the left- (or right-)hand
side of the x-axis of Figure 1.7 and, consequently, the probability of allele
fixation will increase over time.

Kimura and Ohta [146] showed that the expected time to fixation of a new
neutral allele in a population is given by 4Ne. Another fundamental result
about drift is due to Kimura and Crow [145] who showed that the expected
number of alleles in a population is 4µNe + 1 where µ is the mutation rate.
Therefore, a larger population can contain more alleles but this will also de-
pend on the mutation rate.

Selection is another major mechanism resulting in changes in allele fre-
quencies in natural populations. Classically, three basic types of selection are
considered (Fig. 1.8) [156, 231]. Positive selection results in increased fre-
quency of selectively advantageous alleles, even if they are in low frequency
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Figure 1.7
Probability of losing one allele (i.e., allele fixation) in a biallelic locus in one
generation with respect to the frequency of one of the two alleles (p1) and the
effective populations size (Ne).

in the population. Purifying selection results in the decrease or removal of se-
lectively disadvantegeous alleles which are in low frequency in the population.
Balancing (or diversifying) selection results in the maintainance of several
alleles in the population which may have selective advantages in different sit-
uations or locations. Other forms of selection consider the levels of selection
[204]. Natural selection has been an early motivation in theoretical popula-
tion genetics long before DNA was known to be the support of heredity. Fisher
concluded one of his chapter with “The sole surviving theory [of evolutionary
change] is that of Natural Selection” [77]. With DNA sequences, selection can
be assessed at the molecular level (Fig. 1.9). Chapter 10 examines the methods
analyzing DNA sequences or genomic data.

1.3 R Packages and Conventions
Table 1.3 gives the list of the main R packages that are used thoughout this
book and Table 1.4 gives the list of packages that are used mostly in a single
chapter. The majority of these packages are distributed on the Comprehen-
sive R Archive Network (CRAN) which is the main resource of R packages.
BioConductor is another repository of R packages specialized on bioinformat-
ics. These packages are not an exhaustive list of R resources for population
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Figure 1.8
Main types of natural selection in populations.

genomics, but a selection of packages that integrate altogether to constitute
a software “ecosystem” for population genomics integrated into R [215]. In
addition to these, a few additional packages are used to handle geographi-
cal data (p. 242); alleHap, GeneImp (both on p. 168), pophelper (p. 218), aphid
(p. 292), GENESIS (p. 314), andMINOTAUR (p. 323) are also briefly discussed.
Appendix A details how to install these packages.

In this book, the names of functions and other objects in R are printed
in monospace font. Parentheses are used to distinguish functions from other
objects unless there is no ambiguity, for instance: “print() is used”; “the func-
tion print is used.” Package names are printed in sans serif font. R commands
are indicated with the usual ‘greater than’ prompt while system commands
are indicated with the ‘dollar’ prompt:

> ls() # this is an R command

Table 1.3
Main packages used in this book. All packages are on CRAN except as noted
Name Title Ref.
adegenet Spatial and multivariate population genetics [132]
ape Analyses of phylogenetics and evolution [216]
Biostringsa Biological strings [208]
pegas Population and evolutionary genomics [210]
SNPRelatea Parallel computing toolset for SNP data [311]
snpStatsa Large SNP association studies [41]

aOn BioConductor
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Table 1.4
Other packages used in this book. All packages are on CRAN except as noted
Name Title Ref.
admixturegraph Admixture graphs [157]
CubSFSa Smooth population change with the SFS [288]
coalescentMCMC Coalescent analysis by MCMC
fastbapsb Bayesian hierarchical clustering [279]
flashpcaRc PCA with very large matrices [1]
Genelandd Population structure from multilocus data [100]
haplo.stats Haplotype frequency inference
ips Interfaces to phylogenetic software
LEAe Landscape and ecological association studies [82]
jackalope Genomic and HTS data simulator [201]
mmod Modern measures of population differentiation [301]
OutFLANKf Outlier detection in selection scans [296]
pcadapt Selection scan with PCA [174]
phangorn Phylogeny estimation [247]
phylodyng Statistical tools for phylodynamics [154]
poolSeqh Time-series of allele frequences [267]
poppr Population genetics of clonal organisms [138]
psmcri Pairwise sequantially Markov coalescent
readxl Reading and writing Excel files
rehh Haplotype homozygosity based tests [94]
rhierbaps Bayesian analysis of population structure [278]
Rsamtoolse Interface with the samtools programs
Rsubreade Subread sequence alignment [166]
sangerseqR Tools for Sanger Sequencing Data in R [112]
scrm Simulation of the sequential Markovian coalescent [256]
STITCHj Imputation with low-coverage HTS data [50]
tess3rk Spatial population structure [30]
vcfR Analysis of VCF files [148]

ahttps://github.com/blwaltoft/CubSFS
bhttps://github.com/gtonkinhill/fastbaps
chttps://github.com/gabraham/flashpca/tree/master/flashpcaR
dhttps://i-pri.org/special/Biostatistics/Software/Geneland/
distrib/
eOn BioConductor
fhttps://github.com/whitlock/OutFLANK
ghttps://github.com/mdkarcher/phylodyn
hhttps://github.com/ThomasTaus/poolSeq
ihttps://github.com/emmanuelparadis/psmcr
jhttps://github.com/rwdavies/STITCH
khttps://github.com/bcm-uga/TESS3_encho_sen

dhttps://i-pri.org
khttps://github.com
jhttps://github.com
ihttps://github.com
hhttps://github.com
ghttps://github.com
fhttps://github.com
dhttps://i-pri.org
chttps://github.com
bhttps://github.com
ahttps://github.com
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Figure 1.9
(A) Darwinian selection: individuals with advantageous phenotype (dark grey
color) increase in frequency in the population. (B) Fisher’s Fundamental the-
orem of natural selection: the mean fitness in the population increases at a
rate proportional to its variance. (C) An example of synonymous and non-
synonymous mutations showing three different genotypes in a protein-coding
gene and the respective phenotypes (the amino acid in the protein sequence).
The mutation C ↔ T on the first position is synonymous and has no effect
on the phenotype. (D) Some advantegeous mutations may imply selection of
on loci.

$ ls # this is a system command

The prompt symbol of the system depends on the operating system (OS), or
even on the program used to interact with the system. It is usually C:\ under
Windows. If an output or a result is too long, it is truncated with four dots:

> x <- rnorm(1e6)
> x

[1] 0.817997727 -1.003155277 1.652453571 2.088288475
[5] 0.922376036 0.946748580 -1.028996281 1.031229656

....

File names are printed within single quotes (e.g., ‘datafile.txt’) and file con-
tents are shown in monospace font inside a frame:

>No305
NTTCGAAAAACACACCCACTACTAAAANTTATCAGTCACTCCTTCATCGACTTACCAGCT
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>No304
ATTCGAAAAACACACCCACTACTAAAAATTATCAACCACTCCTTCATCGACTTACCAGCT

1.4 Required Knowledge and Other Readings
This book is meant to be multidisciplinary, using concepts from population
genetics, genomics, bioinformatics, and statistics. This chapter gave basic in-
troductory materials to the first two disciplines. A more extensive introduc-
tion can be found in a recent edition of Principles of Population Genetics by
Hartl and Clark [108]. It is assumed that the reader has basic knowledge on
the following statistical concepts: (co)variance, likelihood, bootstrap, Bayesian
inference, and information criteria. Some very basic knowledge on computing
is also assumed (byte, active memory, hard disk) as well as some elementary
concepts on calculus (matrix product, derivatives, integral), and on molecular
biology laboratory techniques (particularly PCR and gel migration). Finally, I
recommend Freedman’s Statistical Models [81] as one of the best introductions
to the ideas and concepts of statistical inference.



2
Data Acquisition

Methods to acquire genetic or genomic data have known considerable changes
over the last several decades. This chapter presents an overview of these tech-
niques as well as elements of sampling for genomic studies. This is not, of
course, a substitute to detailed manuals on field and laboratory techniques,
but aims to give the elements that are important to keep in mind when ana-
lyzing population genomic data. A description of the main file formats used
in this book and an introduction to bioinformatics methods are also included.

2.1 Samples and Sampling Designs
Proper training is critical to get genomic data from samples. Different types
of tissue generally require different laboratory techniques even from the same
organism. Degraded samples require specific tools which are a discipline of
their own.

2.1.1 How Much DNA in a Sample?
A sample for genomic analysis is taken either from an individual or from
the environment. For unicellular organisms such as bacteria, protists, red and
blue algae, it is very common that the sample is the whole organism. For
multicellular organisms, a tissue sample is often selected. One practical aspect
is how easy it will be to to extract DNA. For instance, hard tissues (bones,
cartilages, woods, . . . ) are more difficult to analyze than soft tissues. Cells
in these organisms are affected by epigenetic changes during development, so
that their epigenomes may be significantly different depending on the organ or
the tissue. Further, different genes are expressed at different levels in various
tissues, so RNA profiles are also tissue-specific. The choice of a specific tissue
to sample thus depends on the species under study (e.g., liver for mammals,
blood for birds,1 . . . ) and the questions asked.

In practice, it is useful to know the mass of DNA that can be extracted
from a sample because different technologies require different quantities of

1Red cells in birds have a nucleus, and thus chromosomes, but not in mammals.
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DNA (see Table 2.3). Of course, this depends on the type of tissue but some
approximate formulas can be used for samples obtained from living organisms
or very recent mortalities. A eukaryotic cell weighs approximately 1 ng: there
are thus around one billion cells in 1 g of tissue. The mass of DNA is known
from its atomic composition: one billion pairs of nucleotide (1 Gb) weigh
approximately 1.023 pg [59]. So the quantity of DNA in a cell is:

DNA (pg) ≈ 1.023 × genome size (Gb) × ploidy.

For instance, a human cell (genome size ≈ 3.2 Gb, ploidy = 2) contains around
6.5 pg of DNA. We can also derive the quantity of base pairs for a given mass
of DNA:

Base pairs (Gb) ≈ 978 × DNA (ng),

and the corresponding quantity of DNA that can be extracted from a tissue
sample:

DNA (ng) ≈ 109× genome size (Gb) × ploidy × tissue (g)
978 .

For human diploid cells, there are thus approximately 6.5 mg of DNA per
gram of tissue.

Prokaryotic cells are much smaller than eukaryotic ones: a typical bac-
terium weighs around 1 pg [252]. With a typical genome size of 3 Mb
and ploidy = 1, the above formula results in that a bacterium carries
≈ 3.069 × 10−3 pg of DNA. Because bacteria reproduce clonally at a very
fast pace, a sample can contain several billions of cells, and can give several
micrograms of DNA.

2.1.2 Degraded Samples
After a cell’s death in an organism, or the organism’s death itself, RNA and
DNA can quickly degrade. If DNA escapes degradation, it can persist for a
more or less long time depending on the environmental conditions [27]. In the
mid-1990s, several publications reported findings of extremely old DNA, for
instance from 25 million year-old fossil insects preserved in amber [15, 28, 228],
or even from an 80 million year-old bone [302]. However, recent assessments
showed convincingly that such results are very likely the consequences of con-
taminations from recent bacteria, and it is more likely that DNA cannot persist
more than one million years [191].

Fragments from degraded DNA such as from fossils usually have less than
50 bp, and are rarely longer than 100 bp [91]. Allentoft et al. [9] quantified
the decay of ancient DNA extracted from bones of the extinct South Island
giant moa (Dinornis robustus) from New Zealand and found that several fac-
tors affect the preservation of DNA such as temperature, fragment length,
or genomic origin. They calculated that the half-life (the time after 50% of
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the molecules have decayed) of 30 bp-long fragments is 158,000 years if the
temperature is −5°C, or 9500 years for 500 bp-long fragments. These half-
lives must be divided by 9 if the temperature is 5°C, or by 300 if it is 25°C.
Furthermore, these half-life estimates apply to mtDNA and should be divided
by two for ncDNA. These calculations agree with the fact that DNA is very
unlikely to persist more than one million years. Furthermore, DNA in ancient
samples is affected by different chemical alterations that require special care
for analyses both in the laboratory and during data analysis [191].

2.1.3 Sampling Designs
Deciding on a sampling strategy for a population genomic study includes four
aspects:

1. The objective(s) of the study.
2. The ethical and legal implications of the study.
3. The method(s) used to characterize genomic variation.
4. The spatial and temporal distributions of the species.

Each of these topics could be discussed in its own chapter (Fig. 2.1). The
first one seems trivial but it is worth noting that spending several days—even
months—thinking thoroughly about the theoretical and/or applied motivation
of a study is not a waste of time. It may be beneficial to separate three sources
of input at this stage: the inner motives (personal interest in a species, or in a
specific scientific question, . . . ), the outer motives (directives from employers,
funding constraints, . . . ), and the prior knowledge on the species. This last
aspect is crucial when designing the field and laboratory methods.

The ethical and legal aspects are probably the most difficult: legal regu-
lations change with time and among countries. The increasing concern about
biodiversity conservation has led to new international treaties and conventions
which have added a layer of complication for genomic and biodiversity stud-
ies. Some ethical aspects are outside the scope of legal texts and should be
considered carefully as well: sampling of endangered species or small popula-
tions should be done in a way to avoid disturbing them as much as possible,
possibly using non-invasive methods [189]. Sampling human populations has
its own ethical and legal framework [e.g., 181, 193]. Archiving of samples and
of data should be considered systematically, even if not legally required, as it
is crucial to preserve precious information on natural populations.

The methods to characterize genomic variation are overviewed in the next
section. The choice of the method will depend on the questions asked and on
the materials available which will impact the sampling design [114, 172].

The fourth aspect listed above is the most out of control of the researchers,
and in fact it is often the subject of the study. Once the sampling design has
been decided, the flow of decisions and actions is simpler and almost linear
(Fig. 2.2).



20 Data Acquisition

Inner motives
(scientific/personal interests, . . . )

Outer motives
(funding agencies, . . . )

Prior knowledge
on the species

Genome size?
Ploidy level(s)?
Life cycle?
Tissue types? . . .

Scientific
Objectives

Sampling
constraints

Degraded samples?
Geographical and
temporal con-
straints? . . .

Laboratory
technologies

Definition of data requirements:
sampling frequencies, sample
sizes, stratification, collected
tissues, preservation, . . .

Sampling Design

ETHICS

Figure 2.1
Flowchart to design sampling for a population genomic study. Actions where
decisions are left to researchers are on a grey background. Parallelograms
indicate outputs with the main questions to be answered.
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Sampling
Design

Sampling

Samples Archiving
(museums, biobanks, . . . )

Laboratory

Raw data
Archiving

(NCBI, EMBL)

Genotypes Archiving
(Dryad, figshare, . . . )

Population
Genomics
Analyses

Figure 2.2
Flowchart for the acquisition of population genomic data.

Data and sample archiving are important aspects that are receiving in-
creasing attention. Recent assessments have shown that lack of reproducible
results has several causes including poorly described experimental protocols
[25, 85, 128] and inappropriate statistical methods [17, 60, 300]. Genomics is
particularly exposed to such difficulties because the acquisition and analysis
of genomic data involves several complicated steps which are likely to induce
biases of different kinds. The possibility to repeat a study from the original
samples will be increasingly important in scientific research in general and in
genomics in particular.
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Table 2.1
Main methods using DNA genetic markers
Method Type of loci Number of loci Degraded DNA
AFLP nuclear +++
Microarray all +++ �
RADseq all +++++ �a

RFLP all + �
Minisatellites nuclear + �
Microsatellites nuclear ++ �

aAfter enrichment [38].

2.2 Low-Throughput Technologies
This section gives an overview of the main methods to acquire genetic data
that are targeted to a specific or small portion of the genome. Some of the
methods presented below have mainly a historical value (e.g., allozymes) and
others are still widely in use (e.g., microsatellites or Sanger sequencing).

2.2.1 Genotypes From Phenotypes
After Mendel’s discovery, it appeared that it was possible to infer a genotype
(the genes carried by an individual) from a phenotype (its observed traits).
One approach from the 1960s was based on the fact that a change in one
amino acid in a protein may result in a change in its electric charge, so the
two variants of this protein can be separated by migrating them on a gel.
Giving the tight link between gene sequence and amino acid sequence, this
approach appeared as a way to assess genetic variation among individuals.
For diploid organisms, it is possible to identify whether an individual has one
or two variants of this protein and to infer its genotype [11].

This method is generally applied to enzymes because of the possibility to
reveal these proteins with their activity. Different variants of the same enzyme
are called allozymes: they have different amino acid sequences but have the
same biochemical activity. Two historically important papers for population
genetics showed, using this approach, that genetic polymorphism was much
more common than previously thought in humans [107] and in the fruit fly,
Drosophila pseudoobscura [118] (see [36] for a recent historical account). This
method became very popular between the 1960s and the early 1990s when
DNA sequencing was not applicable to population studies. Although allozyme
polymorphism is able to reveal only a small fration of the actual genetic or
genomic polymorphism, this approach was very influential in evolutionary
biology [29, 35, 89].
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Figure 2.3
Sketch of the RFLP method. (A) DNA is cut at specific sites with a restriction
enzyme. (B) Fragments of different lengths are produced. (C) The fragments
are migrated on a gel (Id1 and Id2 are the labels of the individuals). (D) Data
file produced.

2.2.2 DNA Cleavage Methods
Numerous methods were devised to measure evolutionary relationships among
species or individuals within a species using DNA (Table 2.1). At the time
when DNA sequencing was restricted to small scale molecular biology exper-
iments, many other methods were developed to assess the genotypes of indi-
viduals from their DNA, especially as alternatives to allozymes (Table 2.2).

Restriction fragment length polymorphism (RFLP) was first used in 1974
by Hutchison et al. [125]. The principle of RFLP is to use DNases (enzymes
that cut DNA) that have specific sites of cleavage: if a mutation is present in-
side the cleavage site, then different fragment lengths may be observed (hence
the name of the method). RFLP studies usually use DNases that cleave DNA
at sites of four to eight nucleotides (Fig. 2.3). RFLP is usually done on small
parts of the genome (e.g., after PCR) or on small genomes (e.g., mitochon-
drial).

Amplified fragment length polymorphism (AFLP) is based on the same
principle as RFLP but the initial cleavage step uses DNases that work with
sites of only two nucleotides: these sites are therefore more frequent in the
genome. These fragments are then amplified by PCR and migrated on a gel
to generate patterns of bands. This method is covered by a patent [286].
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Figure 2.4
Schematic representation of a VNTR with two alleles: (TA)3 and (TA)5.

2.2.3 Repeat Length Polymorphism
The length of repeat patterns present in many genomes is polymorphic
(Sect. 1.2.2). Repeat polymorphism (or variable number tandem repeat,
VNTR) is observed in Eukaryotes but also in some bacteria such as My-
cobacterium spp. [265]. Different methods have been devised depending on
the type of repeats. Repeats are sometimes flanked with conserved sites so
that it is possible to use these as binding sites for PCR primers and amplify
the repeats so that the lengths of the PCR products depend on the number of
repeats (Fig. 2.4). The lengths are identified by gel migration like in RFLP.

Minisatellites were discovered in the early 1980s [305]: their use is one
of the earliest application of genetic profiling in forensic investigations. A
minisatellite is a special type of VNTR and is made of a pattern of 10–60
bases repeated 10–100 times. There are around 1000 minisatellite loci in the
human genome.

Short tandem repeats (STR), or microsatellites, have been widely used
as markers in population genetics. They were first characterized in 1984 by
Weller et al. [295] and are made of 2–6 bases repeated 10–80 times. They
have supplanted minisatellites in forensic investigations [19]. There are around
100,000 microsatellite loci in the human genome. Like minisatellites, these loci
are highly polymorphic and can have several dozens of alleles.

Finding the positions of VNTR loci in a genome (genetic mapping) is la-
borious and usually requires crossing experiments (see for instance the genetic
map of the domestic cat [185]). The widespread occurrence of VNTRs in most
genomes is a challenge for genome assembly with approaches based on shotgun
or high-throughput sequencing [280] (see below).

2.2.4 Sanger and Shotgun Sequencing
After Crick and his collaborators deciphered the first genetic code in 1961,
it became clear that sequencing DNA molecules was the key to many bi-
ological questions. In 1971, Wu and Taylor [304] published the first DNA
sequence made of 12 bases printed in the abstract of their paper. Two years
later, Gilbert and Maxam [95] published a DNA sequence made of 24 bases
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Table 2.2
Number of citations (N) of methods based on DNA (source: Web of Science;
accessed 2019-11-04)
Keyword search N Reference search N

AFLP and gen* 11,630 Vos et al. 1995 [286] 9216
DNA Microarray 36,120
RAD-Seq or RADSeq 757 Miller et al. 2007 [188] 528

Peterson et al. 2012 [221] 954
RFLP and gen* 34,686 Botstein et al. 1980 [22] 5257
minisatellites and gen* 710 Wyman and White 1980 [305] 590
microsatellites and gen* 21,101 Weller et al. 1984 [295] 122

Jeffreys et al. 1985 [130] 2894
DNA sequenc* 426,877 Sanger et al. 1977 [243] 67,595

(also printed in the abstract of their paper) obtained with a new method.
Four years later, Sanger and his collaborators [243] published a simpler and
more efficient method which became extremely popular—and eventually gave
Sanger his second Nobel Prize [242]. The idea is to reproduce the process of
DNA replication in vitro providing the required nucleotides but with a small
proportion of dideoxynucleotides that lack the oxygen atom at the 3′-position
(see Fig. 1.1) so no nucleotide can be further bound to it. The dideoxynu-
cleotides are labelled (with radioactivity or fluorescence), so it is possible to
identify the positions of the different bases after migrating the final fragments
on a gel. The reactions are conducted separately with dideoxynucleotides con-
taining each base and the fragments are introduced in four different wells of
the gel. The final results are four columns of bands which positions give the
sequence of bases (Fig. 2.5).

PCR combined with Sanger sequencing became the major approach to
acquire DNA sequence data during decades [58]. This approach has known few
variants: one is known as shotgun sequencing, first proposed in 1979, where
overlapping DNA fragments are sequenced (the “reads”) and then assembled
to reconstruct the whole sequence [257]. Another important innnovation was
brought by the first automatic sequencers in the mid 1980s [255]. These two
innnovations set the way for high-throughput sequencing (Sect. 2.3.2).

In the early 1980s, the scientific community realized that it would be useful
to provide a public database of DNA sequences acquired throughout the world:
GenBank was first released in 1982 with 606 sequences and a total of 680,338
bases (see Sect. 2.3.8 for updated numbers).

2.2.5 DNA Methylation and Bisulfite Sequencing
The study of the chemical transformations of nucleic acids has a long history.
Methylation of cytosine has been shown to occur in bacterial DNA as early as
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A TCAGGATTAGACT

B A,C,G,T
dA

dC dG
dT

C

1
Figure 2.5
Sketch of the Sanger sequencing method. (A) The DNA to be sequenced (tem-
plate) usually after PCR. (B) The template is replicated with the four nu-
cleotides and a small proportion of one of them with the 3′-OH removed. The
single letters represent the deoxynucleotides, so dN are the dideoxynucleotides
normally written ddNTP, with N = {A,C,G,T}. (C) In each tube, replication
ends randomly when a dideoxynucleotide is incorporated so the lengths of the
DNA fragments give the positions of the bases.
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1925 [131]. Since then, a lot of research has been done on DNA methylation
showing the ubiquity and complexity of this phenomenon [21, 308]. Frommer
et al. [86] developed a method, known as bisulfite sequencing, that can identify
the nucleotides carrying methyl-cytosine (Met-C). The DNA is first treated
with sodium bisulfite (NaHSO3), a salt used in the food industry as additive.
This treatment changes C into U (like in RNA but with deoxyribose) whereas
Met-C are unchanged. DNA is then amplified by PCR so U is copied as T and
Met-C as C, and the PCR products are sequenced with the Sanger method.
In many genomes, a nucleotide with C is sometimes followed by one with
G to form what is called “CpG islands” where the “p” is for the phosphate
linking the two nucleotides on the same strand [73]. DNA methylation and
CpG islands are thought to play a role in the regulation of gene expression
[135]. Other variants make use of the high-throughput technologies introduced
in the next section [179].

2.3 High-Throughput Technologies
2.3.1 DNA Microarrays
Microarrays are small devices made of a plate and some molecules attached on
it in different ways. These molecules can be of different types: proteins, anti-
gens, DNA, or others. In the case of DNA, these molecules, called probes, are
single-stranded so they can be used to identify sequences present in a sample.
The probes are made of a few to around 500 nucleotides, and their number
vary between ten and five million [298]. There is a very wide range of applica-
tions for DNA microarrays: study of gene expression, detection of pathogens,
characterization of polymorphism, among others. In the case of DNA polymor-
phism, it is needed to know the type of variable loci (typically SNPs) in order
to build the probes. DNA microarrays are usually available commercially, but
some open-source protocols to build them have been proposed [e.g., 155].

2.3.2 High-Throughput Sequencing
The overwhelming interest in DNA has stimulated research in many technolo-
gies during the last decade. These technologies, as with the shotgun method,
acquire reads but in much larger numbers, hence the name of high-throughput
sequencing (HTS) technologies (also known as “next generation sequencing,”
NGS) technologies. HTS technologies vary a lot in the way DNA fragments
are read, the read lengths, their accuracy, and the quantity of data output.
Like for shotgun sequencing, the reads must be assembled to infer genome se-
quences. In the last few years, many algorithms and computer programs have
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Table 2.3
Main sequencing technologies in use
Name Input Read length Accuracy (%) Output
Sanger PCR products ≤ 900 bp 99.999
Illumina 1–200 ng 100–300 bpa 99.9 1 Gb–6 Tba

ONT 10 pg–1 µg 5 kb–2 Mb 95 (≤ 99.96 consensus) 3 Gb–20 Tba

PacBio 2 µg 10–15 kb 87 (99.9999 consensus) 5–10 Gba

SeqLL very low 100–200 bp ≥ 99.9 30 Gb
aDepends on the device

been developed depending on the characteristics of the output reads (lengths,
accuracy) or other features of the technology.

It is difficult to draw an overview of HTS technologies. Table 2.3 lists a
few of them in comparison with the Sanger method. The commercial interests
in DNA sequencing are so strong that the field has become quite contentious
over the last few years. The market is still moving swiftly, and even the well-
established manufacturers change their products and technologies at a fast
pace. Currently, three companies share most of the HTS market: Illumina®,
Oxford Nanopore Technologies® (ONT), and Pacific Biosciences™ (PacBio).2
In addition, SeqLL® commercializes a platform based on a technology called
“true single molecule sequencing” which requires very low input of DNA and
is appropriate for applications on degraded samples. Over the last few years,
a marked decrease in the cost of HTS technologies has made them applicable
to population genomics. Some of the methods are overviewed in the following
sections.

2.3.3 Restriction Site Associated DNA
Restriction site associated DNA (RAD) is an approach similar to RFLP [188].
After cutting DNA with a specific restriction enzyme, the overhanging ends
are attached with an adapter (a short, specific sequence of DNA) which may
also be attached to a molecular identifier (Fig. 2.6). The resulting fragments
are then sheared to a length appropriate to be analyzed (typically a few hun-
dreds base pairs) and a second adapter is attached to the other end. The
fragments are amplified by PCR using primers that bind to the adapters.
The first adapter can include a molecular identifier [49]. The final DNA frag-
ments are analyzed by microarray [177, e.g.,] or sequencing, which is refered
to as RADseq (or RAD-Seq). Another variant of this method, double-digest
RADseq (ddRADseq), uses two restriction enzymes in the first step [221].
RAD-based methods have acquired popularity because they provide a rela-

2PacBio was bought by Illumna on 2018-11-01 (https://www.cnbc.com/2018/11/01/
illumina-buys-pacific-biosciences-for-1point2-billion-why.html).

https://www.cnbc.com
https://www.cnbc.com
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Figure 2.6
Sketch of the RAD methods. (A) DNA is cut at specific sites. (B) The over-
hanging ends are attached with an adapter possibly attached to an identifier
(A1). (C) The DNA fragments are sheared. (D) A second adapter (A2) is at-
tached to the other ends. (E) DNA fragments are characterized by microarray,
or sequencing.

tively cheap and fast approach for population genomic study of non-model
organisms for which no reference genome is available [275].

2.3.4 RNA Sequencing
This technique targets the coding sequences of the genome. First, RNAs are
isolated from the cells. Then, some specific RNAs are selected from the ex-
tract depending on the objective of the study; for instance, only the mRNAs
in the sample may be selected if one is interested in coding sequences. Fi-
nally, the selected RNAs are reverse-transcribed into cDNAs which are then
sequenced with a HTS technology. RNA Sequencing (RNA-Seq) has several
applications, particularly the quantification of gene expression where it has
supplanted microarrays in the last few years. An advantage of RNA-Seq is
that it does not require prior knowledge on the targeted loci since it is based
on RNA extraction.

2.3.5 Exome Sequencing
The exome is the set of exons in a genome. By targeting these sequences,
one is more likely to find variation with functional effects, for instance linked
with diseases. In practice, a technique called “capture” is used: the genome
is first fragmented in small DNA molecules, and then mixed with probes so
that only exons will hybridize. The probes may be on a microarray, or in a
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solution. The excess DNA is washed out, so that only the DNA of interest is
kept, and then sequenced. Similarly to microarray methods, and by contrast
to RNA-Seq, the probes must be built using prior knowledge on the genome.

2.3.6 Sequencing of Pooled Individuals
Sequencing of pooled individuals (pool-Seq) is an approach where individual
samples are pooled [248]. This approach is attractive because it reduces con-
siderably the overall costs of the lab work (the sequencing run of an HTS
platform is typically far more expensive than the other steps in a genomic
study such DNA extraction or PCR). Furthermore, the approach is useful for
pooled samples where the individuals are difficult to analyze separately such
as swarms of fish larvae [176] or microbes (see Sect. 10.3). A relatively large
number of studies were devoted to develop statistical and computational tools
to analyze pool-Seq data [e.g., 113].

2.3.7 Designing a Study With HTS
Designing a population genomic study based on HTS is not trivial because of
the many parameters to take into account. Lowry et al. developed a model-
based approach to help set up such designs [172]. Interestingly, they provide
R code with their article to do the calculations for several methods: RADseq,
RNA-Seq, exome sequencing, whole genome sequencing (WGS), and pool-Seq
[248]. Their model include technical details related to the specific sequencing
technologies as well as considerations on the size of linkage blocks in the
genome (see also the follow-up paper by the same authors for further discussion
[173]). Currently, this model considers sequencing outputs made of short reads
(≈ 100 bp) and it will be interesting to see how it can be extended to consider
long reads (> 1 kb).

2.3.8 The Future of DNA Sequencing
HTS technology is a fast moving field, and innovation will not slow down soon.
Current progress in nanotechnology will very likely bring new technologies in
the near future [e.g., 57, 62]. In the last few years, HTS has contributed
to a substantial acceleration of the quantity of genomic data: GenBank is
now hosted by the National Center of Biotechnology Information (NCBI)
together with the “Whole Genome Projects” started in 2002. GenBank now
contains ≈ 380 Gb in more than 216 million sequences, and the Whole Genome
Projects repository hosts > 5.9 Tb in 630,128 projects with more than 1 billion
sequences.3

3https://www.ncbi.nlm.nih.gov/genbank/statistics/ (accessed 2019-10-24).

http://www.ncbi.nlm.nih.gov
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Table 2.4
Main file formats used in this book
Data Format Text or binary Extensions Genomic

positions
Allelic Tabular both .txt .tab .csv .xls . . . No

Specific text .dat .gen .gtx .str . . . No
VCF text .vcf Yes
BCF binary .bcf Yes

DNA FASTA text .fa .fas .fasta .fna Yesa/No
FASTQ text .fastq No
SAM text .sam Yes
BAM binary .bam Yes

SNP PED text .ped Yes
BED binary .bed Yes

Annotations GFF text .gff. gtf Yes
aImplicit if a whole genome sequence is stored

2.4 File Formats
Table 2.4 lists the file formats discussed in this book. There are different ways
to classify these formats depending on the type of data they store, or whether
they are text-based or binary. Text-based formats (usually ASCII) can be
open with a standard text editor.4 Binary formats are specific and need to be
open with an appropriate program.

The descriptions below aim to give a general picture of these formats in
order to understand the general principles. Details can be found in the cited
references or web sites which should be read by users interested in getting a
deeper understanding or if they wish to develop software.

2.4.1 Data Files
During the past several years, there was no standard for population allelic data
so that each program used its own file format (see Sect. 3.3.1) [167]. Never-
theless, a common practice among population geneticists is to store genotypes
in Excel® spreadsheets with one column for each allele and one row for each
individual. In the last few years, with the advent of HTS technologies, the
variant call format (VCF) has appeared as an implicit standard for storing
genotypes over many loci, possibly covering the full genome [48].

For DNA sequences, the FASTA file format has progressively been adopted

4Files with genomic data can be very big, so one has to be careful before trying to open
one of them with a text editor.
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as a standard in most fields using these data. The FASTQ format is derived
from FASTA and includes quality scores associated with the bases of the DNA
sequences which typically were obtained from a sequencer. The SAM format
stores DNA reads mapped onto a reference genome [164]. The BAM format is
a binary version of SAM: both formats are further explained in Section 2.5.2.
Figure 2.7 shows how the same data are stored in different text-based formats.

For diploid and polyploid data, genotypes from multiple loci can be phased
or unphased. Phased data have their alleles identified on the different chromo-
somes from each parent. Such genotypes are written with the alleles separated
by a vertical bar, the maternal chromosome on the left, and the paternal one
on the right (e.g., A|C). Unphased genotypes are written with a slash bar
separating the alleles (e.g., A/C or C/A depending on the convention used on
allele ordering).

Genotypes for diploid, unphased SNPs can be stored in a simplified way
because there are only three possible genotypes. Two file formats were devel-
oped for the program PLINK:5 PED and BED. PED is a text-based format
with individuals as rows and the columns giving information on their pedigree,
sex, phenotype, and genotypes coded with the usual base letters. Missing data
are allowed and may be coded in different ways (e.g., N or 0). A PED file is
associated with a MAP file (.map) giving the genomic positions of the SNPs.
The BED6 format is a binary version of PED and is associated with two files
with the extensions .bim and .fam giving information on genomic positions
and pedigrees, respectively.

Annotation files store the features of genome sequences, typically these
are the functional features (coding sequences, RNAs, and so on). There are
two main types of such files: GTF (general transfer format) and GFF (general
feature format). They are very similar: GTF is identical to GFF version 2
(GFF2) and is considered obsolote compared to GFF3. Both formats are text-
based and made of nine columns separated by tabulations.7

Because some genomic data files are very large, they are sometimes asso-
ciated with an index file generated by the program Tabix [162]. Such index
files typically have the filename extension .tbi, .bai, or .fai for VCF, BAM,
or FASTA files, respectively. A number of applications require an index file
generated by Tabix; however, the packages used in this book do not require
them (see Sects. 3.2.7 and 3.3.3).

2.4.2 Archiving and Compression
Modern genomic data can be voluminous, so tools to manage big files are
definitely useful. Compression is the operation of storing the same information

5http://zzz.bwh.harvard.edu/plink/
6This should not be confused with the “Browser Extensible Data” which is a text-based

format used to code genomic positions on chromosomes; see the package rtracklayer on
BioConductor.

7https://www.ensembl.org/info/website/upload/gff.html

http://zzz.bwh.harvard.edu
http://www.ensembl.org
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A FASTA FASTQ Tabular CSV
>X
AAAAA
>Y
AAGAT

@X
AAAAA
+X
IIIII
@Y
AAGAT
+Y
IIIII

L1 L2
X A A
Y G T

,L1,L2
X,A,A
Y,G,T

VCF
##fileformat=VCFv4.1
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT X Y
1 3 L1 A G 100 PASS . GT 0 1
1 5 L2 A T 100 PASS . GT 0 1

B FASTA Tabular CSV

>X.1
AAAAA
>X.2
AAAAA
>Y.1
AAGAT
>Y.2
AAAAT

L1 L2
X A|A A|A
Y G|A T|T

,L1,L2
X,A|A,A|A
Y,G|A,T|T

Tabular (one allele/column)
L1 L1 L2

X A A A A
Y G A T T

VCF
##fileformat=VCFv4.1
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT X Y
1 3 L1 A G 100 PASS . GT 0|0 1|0
1 5 L2 A T 100 PASS . GT 0|0 1|1

Figure 2.7
(A) A haploid data set made of two sequences with two variable sites in
different file formats. (B) A similar data set but diploid: in the FASTA file the
two chromosomes are identified with the arbitrary suffixes ‘.1’ and ‘.2’ for the
maternal and paternal chromosomes, respectively. Note that the genotypes
are phased.
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Table 2.5
File compression and archiving formats
Format Archiving Compression Extensions Notes
Bzip � .bz2 a

Gzip � .gz a

HDF5 � � .h5
Tar � .tar
XDRb � .rds Store a single R object

� .rda .RData Store several R objects
Zip � � .zip a

aCan be read in R without decompression
bNot specific to R but rarely used outside of it

using less memory. Archiving is the operation of combining several files into
a single one (the archive), with or without compression. Genomic data are
well amenable to compression because of the reduced number of letters used
in DNA sequences and the occurence of repeated patterns.

Archiving and compression are ubiquitous problems in computer science
so there are many methods developed for these operations. Only a few of them
are commonly used in practice with genomic data (Table 2.5). Bzip and Gzip
do essentially the same thing: compressing a single file. Bzip produces files
that are about 10% smaller than Gzip but this can be up to ten times if there
are many repeats and the file is big (> 1 MB). Both can be read without
being uncompressed beforehand using R’s system of connections: this requires
to first open the connection with a specific function (gzfile or bzfile), then
the data can be read in the normal way. The connection may later be closed
with the function close.8 Note that some of the functions presented in the
next chapter handle compression and/or connections implicitly so the user
does not need to call these functions.

Tar is a very common archiving program: it saves many files together with
their attributes (dates of creation and of last modification, owner, . . . ) It is
often used combined with Gzip or Bzip to produce compressed archives with
the extension .tar.gz (or .tgz) or .tar.bz2 (or .tbz). R has the function untar
which can do several things with a Tar archive: list the files inside the archive
(returned as a data frame), extract all the files, or extract a specific file.

Zip is another widespread program that does both compression and archiv-
ing. The function unzip does the same operations as untar but with a
.zip archive. HDF5 (hierarchical data format) is somehow similar to Zip (or
Tar + Gzip) but was specially developed for handling many large files. It is
used by some HTS platforms to store raw reads.

Finally, R uses the XDR (external data representation) format to save one

8See ?connections in R.
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or several objects in a compressed file. This can be used for both archiving
and compression with the disadvantage of being specific to R’s data objects,
but with the strength of being particularly efficient and flexible (see Sect. 4.4).

It is not so straightforward to decide which compression and archiving
strategy to choose because the above programs or formats have different ad-
vantages and inconvenients. Appendix B gives R code for benchmarking the
performance in terms of computing time and file size for different commands.
To summarize, some general points can be formulated:

• Reading compressed files is slower, so it is usually better to uncompress
data files (even big ones) if there is enough disk space and if they have to be
read repeatedly (e.g., to analyze different portions of a genomic data sets).
However, compressed files indexed with Tabix can be accessed quickly.

• Compression is always good when data must be transmitted through net-
works (e.g., Internet).

• XDR is useful when saving complex R data (e.g., lists with attributes) but
can be slow when saving large data sets.

2.5 Bioinformatics and Genomics
The development and wide adoption of HTS technologies has dramatically
changed the way population geneticists work. Before HTS, data acquisition
was a long process in the laboratory, and data entry in the computer was done
manually. Nowadays, all steps from sequence data acquisition to data analysis
can be done in machines that are interconnected. It may be even foreseen
that in a near future sampling and DNA extraction can also be done without
human manipulation. This brings about an important contrast between low-
throughput and high-throughput methods: with the former, genotypes are
inferred in a more or less straightforward way from the laboratory results,
while with the latter, they must be inferred (or called) from the sequencing
reads which requires in most cases intensive computations.

HTS has brought new challenges to data analyses. An important step is the
assembly of the sequencing reads. Two basic situations are met (Fig. 2.8). If the
genome sequence and/or structure is completely unknown, de novo assembly
must be performed. In the second situation, a reference genome exists and the
reads can be mapped onto it. In population genomics, the second situation
is more common where the reference genome is from an individual of the
same species: then mapping the reads from other individuals allow to infer
the genomic variants within the species. These two situations have different
requirements in terms of raw read data quantity and quality (coverage, depth,
number of reads, read lengths, . . . ) Genome assembly requires a large quantity
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of data and is usually more laborious than mapping; however, some researchers
recently proposed to infer draft reference genomes from RNA-Seq making this
procedure much faster and cheaper [40, 179]. On the other hand, mapping
can be done with low coverage sequencing data that could hardly be used for
assembly [275].

In the last few years, a line of research has developed on taking uncertainty
of the calling process into account in the population genomic analyses [e.g.,
285]. The basic idea is to include the uncertainty in the inference of geno-
types when assessing population structure, past demographic events, . . . This
is an important issue, especially with genotypes inferred from low coverage se-
quencing data. The methods presented in this book consider called genotypes
and thus do not include the possible uncertainties in their inference. However,
in many cases it is possible to assess the impact of ignoring this uncertainty,
for instance, with biallelic loci since there are a limited number of genotypes
(three or four depending on phasing). Besides, the constant progress in re-
ducing read errors while increasing read lengths is likely to lead to improved
procedures in the inference of genotypes from HTS data.

The software for the analysis of raw HTS data are mostly stand-alone
programs running under Unix on large computers (e.g., Bowtie, BWA, SOAP,
to name a few). These upstream tools use standard data file formats (e.g.,
FASTA, FASTQ, SAM/BAM) so it is straightforward to integrate them with
R as a downstream tool. In this respect, three R packages are interesting to
describe here.

2.5.1 Processing Sanger Sequencing Data With sangerseqR
Although the package sangerseqR is not designed to handle HTS data, we con-
sider it here because it outputs sequence data in a class defined in the package
Biostrings (Sect. 3.2.6), so it is easily integrated in R workflows (Fig. 3.3 and
Table 4.2). sangerseqR can read raw Sanger sequencing data files in two for-
mats: ABIF which is a proprietary format from Applied Biosystems®, and
SCF which is an open-source format used by several Sanger sequencing plat-
forms [51]. These files are read with the function readsangerseq which re-
turns an object of class "sangerseq." The package provides several functions
to operate on objects of this class. primarySeq and secondarySeq extract
the DNA sequences which can then be written in files with functions decribed
in Section 3.3.7. Other functions make possible to assess the quality of these
inferred sequences. One of them is chromatogram which plots the trace data
from the sequencing platform. Finally, makeBaseCalls and setAllelePhase
infer the genotypes and alleles along the analyzed sequences.

2.5.2 Read Mapping With Rsubread
Rsubread aligns reads on a reference genome using the “seed-and-vote” algo-
rithm described by Liao et al. [166]. Though it is distributed on BioConductor,
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Figure 2.8
Sketch of bioinformatics workflows starting from the raw HTS data (sequenc-
ing reads). There are two main paths: either the reads are used to infer the
whole genome sequence which can be achieved at different resolutions (contigs,
scaffolds, or chromosomes), or a reference genome (in grey) is used to map the
sequencing reads and infer the genotype(s) of the individual(s). The main file
formats used at different stages are within brackets. The two workflows have
different requirements in terms of data quality and quantity.
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it does not use the data classes defined in Biostrings (Sect. 3.2.6), and has thus
no specific dependency so it is simple to install. We try this method with a
very simple example. The first step is to build an index from the reference
genome: we take the mitochondrial genome of the domestic cat that we down-
load from GenBank (accession number: U20753) and write into a FASTA file
(see Chap. 3 for explanations on the functions used here). We do this in a new
directory because several files will be created:

> library(ape)
> ref <- read.GenBank("U20753")
> dir.create("ref/")
> setwd("ref/")
> write.FASTA(ref, "refU.fas")

We can now call the function buildindex with the name of the reference that
we want to build ("myref") and the name of the file containing the reference
genome:

> library(Rsubread)
> buildindex("myref", "refU.fas")
....

Index name : myref
Index space : base-space

Memory : 8000 Mbytes
Repeat threshold : 100 repeats

Distance to next subread : 3

Input files : 1 file in total
o refU.fas

....

This will create, if successful, five files ‘myref.*’: one of them, ‘myref.log’,
contains messages reporting possible problems or errors. The other files are in
a binary format and cannot be open directly.

In a second step, in order to try the subread mapping algorithm, we create
an artificial data set with four reads: three extracted from the reference genome
(so they are expected to map) and one random sequence (expected to not
map):

> myreads <- list(ref$U20753[1:100], ref$U20753[1001:1100],
+ ref$U20753[10001:10100], rDNAbin(100)[[1]])
> class(myreads) <- "DNAbin"
> write.FASTA(myreads, "x.fas")

The reads are now in the file ‘x.fas’ and we then try to align them to the
reference genome previously created:
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> align("myref", "x.fas", type = "dna")
....
Function : Read alignment (DNA-Seq)
Input file : x.fas
Output file : x.fas.subread.BAM (BAM)
Index name : myref

Threads : 1
Phred offset : 33

Min votes : 3 / 10
Maximum allowed mismatches : 3
Maximum allowed indel bases : 5

# of best alignments reported : 1
Unique mapping : no

....

The function align is quite verbose (hence the truncated display above) and
outputs its results in a BAM file named from the input read file name ap-
pended with ‘.subread.BAM’. The function propmapped gives a global sum-
mary of the mapping process:

> propmapped("x.fas.subread.BAM")
Samples NumTotal NumMapped PropMapped

1 x.fas.subread.BAM 4 3 0.75

Rsubread has many options, which are well documented, to control the read
alignment and the computation can be run in parallel. The recent version of
this package (≥ 1.30.3) has the function sublong which aligns long reads
produced by some sequencing technologies (see Table 2.3).

2.5.3 Managing Read Alignments With Rsamtools
The package Rsamtools is an R version of the stand-alone program samtools.
It manages files produced after read mapping or alignment. We can first scan
the BAM file output at the previous section with the function scanBam which
provides a fairly complete information about the mapping process:

> bam <- scanBam("x.fas.subread.BAM")
> bam
[[1]]
[[1]]$qname
[1] "1" "2" "3" "4"

[[1]]$flag
[1] 0 0 0 4
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[[1]]$rname
[1] U20753 U20753 U20753 <NA>
Levels: U20753

[[1]]$strand
[1] + + + <NA>
Levels: + - *

[[1]]$pos
[1] 1 1001 10001 NA

[[1]]$qwidth
[1] 100 100 100 NA

[[1]]$mapq
[1] 40 40 40 NA

[[1]]$cigar
[1] "100M" "100M" "100M" NA

[[1]]$mrnm
[1] <NA> <NA> <NA> <NA>
Levels: U20753

[[1]]$mpos
[1] 0 0 0 0

[[1]]$isize
[1] 0 0 0 NA

[[1]]$seq
A DNAStringSet instance of length 4
width seq

[1] 100 GGACTAATGACTAATCAGCCCATG...GAACTTGCTATGACTCAGCTATG
[2] 100 CGGTGAAAATGCCCTCTAAGTCAC...CCTTGCTCAGCCACACCCCCACG
[3] 100 CTTTAGGGGTCTACTTTACACTCC...GGATCTACCTTCTTCATGGCCAC
[4] 100 TGGTTGTGATGAAGGTGCGCCTTT...CTGCGCTTTCGTCCCTGGGGATA

[[1]]$qual
A PhredQuality instance of length 4
width seq

[1] 100 IIIIIIIIIIIIIIIIIIIIIIII...IIIIIIIIIIIIIIIIIIIIIII
[2] 100 IIIIIIIIIIIIIIIIIIIIIIII...IIIIIIIIIIIIIIIIIIIIIII
[3] 100 IIIIIIIIIIIIIIIIIIIIIIII...IIIIIIIIIIIIIIIIIIIIIII
[4] 100 IIIIIIIIIIIIIIIIIIIIIIII...IIIIIIIIIIIIIIIIIIIIIII
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This shows that, as expected, the first three reads mapped correctly while the
fourth one did not. Since the output is a list, it can be summarized in the
usual way in R. Another possibility is to visualize the BAM file with a specific
viewer such as IGV (Integrative Genomics Viewer, [277]). For this viewer, it is
needed to produce an index of the BAM file beforehand:

> sortBam("x.fas.subread.BAM", "x.sorted.bam")

This is equivalent to the samtools commands:

$ samtools sort x.fas.subread.BAM -o x.sorted.bam
$ samtools index x.sorted.bam

Another possibility is to convert the BAM file into the SAM format:

> asSam("x.fas.subread.BAM", "x.sorted.sam")

which is similar to (with samtools):

$ samtools view x.sorted.bam > x.sorted.sam

This SAM file can be open with a text editor:

@HD VN:1.0 SO:unsorted
@SQ SN:U20753 LN:17009
@PG ID:subread PN:subread VN:Rsubread 1.28.1
1 0 U20753 1 40 100M * 0 0 GGA....
2 0 U20753 1001 40 100M * 0 0 CGG....
3 0 U20753 10001 40 100M * 0 0 CTT....
4 4 * 0 0 * * 0 0 TGG....

The file ouput by samtools is actually slightly different from the one produced
by asSam() since the former lacks the three-line header.

2.6 Simulation of High-Throughput Sequencing Data
The package jackalope implements a general approach to simulate HTS data,
including two methods to simulate short reads [117] or long reads [259] with
the functions illumina and pacbio, respectively. Both have a lot of options
to customize the simulations. jackalope has its own data structures, so we
first read the mtGenome downloaded from GenBank a few lines above with
jackalope’s own function read_fasta:
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> library(jackalope)
> refjack <- read_fasta("refU.fas")
> refjack
< Set of 1 sequences >
# Total size: 17,009 bp
name sequence length

U20753 GGACTAATGACTAATCAG...CAAATGGGACATCTCGAT 17009
> class(refjack)
[1] "ref_genome" "R6"

The simulation can be done from this "ref_genome" object, which will create
one or several files. For example, the following command:

> pacbio(refjack, "pacbio_reads", n_reads = 100)

produces a file ‘pacbio_reads_R1.fq’ in FASTQ format with 100 sequences.
We can read it with the package Biostrings (see next chapter):

> library(Biostrings)
> readDNAStringSet("pacbio_reads_R1.fq", "fastq")
A DNAStringSet instance of length 100

width seq names
[1] 9077 TTCCACTGTGAG...GTGATTAGTTGA REF-U20753-6239-R
[2] 3422 GGTTTGGTCTCT...GGGATGTGGGGC REF-U20753-852-R
[3] 7899 ACTCTCCGGATT...AGTAGGAATCAT REF-U20753-5547-F
[4] 17009 CGGTACACACCG...TTTCCCACAAGA REF-U20753-368-F
[5] 7010 TGTTGGTGGTCG...TTATTATATTCC REF-U20753-2999-R
... ... ...

[96] 4181 AGGCCTGTCCGG...TCTGACTAGCAT REF-U20753-7507-F
[97] 5944 TATTTCTAGAAT...ATACACTCCTGT REF-U20753-4631-F
[98] 4418 CACATTCCTACA...GAAATGCTAAAG REF-U20753-2814-R
[99] 9374 TGGCCTCATGGT...TAGGCATCCATA REF-U20753-6418-R
[100] 424 TAGTTTTGTTTT...GTTAGCGGTAAC REF-U20753-13026-R

or with ape:

> read.fastq("pacbio_reads_R1.fq")
100 DNA sequences in binary format stored in a list.

Mean sequence length: 8211.61
Shortest sequence: 424
Longest sequence: 17009

Labels:
REF-U20753-6239-R
REF-U20753-852-R
REF-U20753-5547-F
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REF-U20753-368-F
REF-U20753-2999-R
REF-U20753-10880-F
...

Base composition:
a c g t

0.296 0.205 0.201 0.297
(Total: 821.16 kb)

We can now align these long reads to the reference genome using sublong
with the default options where we need to give the reference, the name of the
file with the reads, and the name of the output file:

> sublong("myref", "pacbio_reads_R1.fq", "pacbio_reads_R1.bam")

====== Subread long read mapping ======

Threads: 1
Input file: pacbio_reads_R1.fq
Output file: pacbio_reads_R1.bam (BAM)
Index: myref

Index was loaded; the gap bewteen subreads is 3 bases
Processing 0-th read for task 10; used 0.0 minutes

All finished.

Total processed reads : 100
Mapped reads: 100 (100.0%)
Time: 0.0 minutes

All 100 reads mapped correctly to the reference genome. It is possible to fur-
ther examine the results of this alignment with scanBam (propmapped cannot
handle BAM files with long reads).

The function illumina has options to simulate data from several indi-
viduals, either in separate files or pooled with the possibility to specify the
sequences of the barcodes.

Finally, we may return to the original directory:

> setwd("../")

We will come back on jackalope when simulating data from the coalescent
(Sect. 9.1.3).
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2.7 Exercises
1. What are the main landmarks in the history of population genetic

and genomic data acquisition?
2. A veterinarian collects one gram of tissue from the liver of a dead

dog. Suppose the animal died recently, and the sample was immedi-
ately put in an appropriate buffer for the preservation of DNA. How
much DNA, in grams and in number of base pairs, can we expect to
extract from this sample? (The genome size of the dog is 2.4 Gb.)

3. Write functions in R to perform the calculations described on
page 18.

4. What is the mass of the genome of a single Escherichia coli bac-
terium (genome size: 4.6 Mb)? How many bacteria of this species
are needed to obtain 1 µg of DNA?

5. Explain how different DNA sequences can code for the same protein.
6. The DNase EcoRI cuts DNA at the site GAATTC: how many times

this site is expected to be observed in the human mitochondrial
genome or in the human nuclear genome? Explain the assumptions
that are made in your calculations. Do the same calculations for the
DNase Sbf I (see Fig. 2.6).

7. Suppose a single Sanger sequencing run takes one day. How much
time will it take to acquire the quantity of raw sequencing data
output in a single run of an Illumina platform?

8. What is the size of an uncompressed FASTA file containing 1 Mb?
Same question with 1 Gb?

9. Same questions as above with FASTQ files.
10. NCBI’s Website states that the quantity of data hosted by Gen-

Bank roughly doubles every eighteen months. Can you calculate
the approximate number of bases stored by GenBank at the time
you read this using the numbers given in Section 2.3.8?

11. Repeat the above simulation exercise with the function pacbio
(p. 42). Change the command by adding the option sub_prob =
0.7.

(a) What is the default value of this argument?
(b) What is the main consequence of this change?
(c) Can you find a characteristics of the reads that could explain

this change?
12. Your receive a bone found in an archeological site dated 10,000 years

ago and located in a tropical country so that you can reasonably
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assume that the bone was exposed during all this time at a tem-
perature around 25°C. How much DNA can you expect to extract
from it?

13. Write down the design of your next population genomic study fol-
lowing the recommendations on Figs. 2.1 and 2.2.
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3
Genomic Data in R

This chapter presents how genomic data are stored in R. The first section
explains how data are generally structured in R, the second one examines the
classes for genomic data, the third one explains how to read and write data
files, and the fourth one shows how data can be accessed through Internet.
The chapter concludes with a few recommendations on how to manage files
and projects.

3.1 What is an R Data Object?
Data in a computer are made of (a lot of) bits arranged in a way so that the
machine knows how to interpret them. R organizes data as objects which have
a common, quite simple structure sketched by Ihaka and Gentleman [126]:

• a character string storing the name of the object (e.g., "x");

• some basic information stored on a few bytes (unaccessible to the user);

• a pointer to the data (the bits mentioned above);

• a pointer to the attributes (which is a list that is itself an R object).

This simple structure can accommodate a great variety of data types. The
simplest ones are vectors which are made of elements all of the same type:
numeric, logical, character strings, complex, or raw (bytes). However, a vector
in R may also contain the addresses of other objects in which case it is a list.
The combination of these different types of vectors with the attributes make
possible to code a lot of data. The most common attributes are:

dim to code for matrices (or arrays if there are more than two dimensions);

(dim)names for labels associated to the observations;

levels for the labels of the categories (or classes) of a categorical variable;

class a vector of character strings giving the “identity” of the data.

47
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• vector (atomic)

– if vector of integers + class = "factor" + levelsa ⇒ factor
– if attribute dim ⇒ matrixb

• list (vector of objects)

– if list of vectors and/or factors all of the same length +
class = "data.frame" + namesa + row.namesa ⇒ data frame

avector of mode character
bif length(dim) > 2 ⇒ array

Figure 3.1
Synthetic view of data structures in R.

All these attributes are themselves R data objects. To summarize, in R all
data are vectors (Fig. 3.1).

A good example of a data structure is given by the class "dist" since dis-
tances are very common in data analysis (see Sect. 5.3). Basically, distances
are stored in a square matrix with n rows and n columns (n being the number
of observations) where the value in the ith row and jth column is the distance
between observations i and j. Often, distances are symmetric so it is not nec-
essary to store the complete matrix. Besides, in almost all cases the distance
from an observation to itself is zero, so the diagonal can be omitted as well.
Therefore, a set of distances can be stored in a vector of length n(n−1)/2 and
a few additional attributes. We can see how this works with a simple matrix
with three rows and one column and calculate the Euclidean distances among
these three values:

> X <- matrix(1:3, 3)
> rownames(X) <- LETTERS[1:3]
> d <- dist(X)
> str(d)
’dist’ num [1:3] 1 2 1
- attr(*, "Size")= int 3
- attr(*, "Labels")= chr [1:3] "A" "B" "C"
- attr(*, "Diag")= logi FALSE
- attr(*, "Upper")= logi FALSE
- attr(*, "method")= chr "euclidean"
- attr(*, "call")= language dist(x = X)

We see that the distances are stored in a numeric vector of length 3× 2/2 = 3
(n = 3), the labels are stored in a vector of mode character as an attribute
(attr) together with other information.
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3.2 Data Classes for Genomic Data
Data classes in R are structures representing data stored in the active memory
of the computer and ready for analyses. The way such structures are designed
depends on the analyses to be performed. The particularity of R is that such
classes are flexible: they are easily extended by attaching additional elements.
A data object is usually read from data files, but it can be input directly
from the keyboard with simple R commands, or converted from other objects
as illustrated in the examples below. For simplicity, very simple examples
are given in this section to illustrate the logic behind these data stuctures;
real examples are given as case studies introduced in the next chapter (see
Sect. 4.4).

3.2.1 The Class "loci" (pegas)
This class is based on a data frame: the rows represent the individuals and
the columns are the different loci which are coded as factors where the levels
give the different observed genotypes. The genotypes can have any number
of alleles, any level of ploidy, and be phased or unphased, with all possible
combinations of these features. Some additional variables (e.g., population,
phenotypic traits) can be included. There is a print method1 to display the
contents of a "loci" object in a compact way, and a View method to display
the full data in a spreadsheet-like window. In the example below, we create a
small data set with three individuals and one locus, print it by default, print
the details, and display its structure with str:

> library(pegas)
> x <- data.frame(L1 = c("A/A", "A/a", "a/a"))
> x <- as.loci(x)
> x
Allelic data frame: 3 individuals

1 locus
> print(x, details = TRUE) # like View(x) but in the console

L1
1 A/A
2 A/a
3 a/a
> str(x)
Classes ’loci’ and ’data.frame’: 3 obs. of 1 variable:
$ L1: Factor w/ 3 levels "a/a","A/a","A/A": 3 2 1
- attr(*, "locicol")= int 1

1The word ‘method’ here means the specific function called by a generic function (e.g.,
print or summary) depending on the class of the object given as main argument.
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The attribute locicol informs R which columns in the data frame are to
be treated as loci. This structure is very flexible as other variables can be
included in the data frame with the usual R data manipulation operators, for
instance, we append a factor called “population” to the object x:

> x$population <- factor(c(1, 1, 2))
> x
Allelic data frame: 3 individuals

1 locus
1 additional variable

> str(x)
Classes ’loci’ and ’data.frame’: 3 obs. of 2 variables:
$ L1 : Factor w/ 3 levels "a/a","A/a","A/A": 3 2 1
$ population: Factor w/ 2 levels "1","2": 1 1 2
- attr(*, "locicol")= int 1

We observe that the attribute locicol has not been changed, so this second
column is not considered as a locus.

3.2.2 The Class "genind" (adegenet)
This is an S4 class with several slots (the elements of an S4 object): the main
one is tab which is a matrix with the rows representing the individuals and
the columns representing the alleles of all loci. The values inside this matrix
are the number of alleles observed: the value is between 0 and 1 for haploid
loci, between 0 for 2 for diploid loci, and so on. It appears that the information
stored by this class is basically similar to the one stored by the class "loci"
(pegas), but, as we will see later, the "genind" structure is more appropriate
for some analyses (Chap. 8).

We can convert our small data x created in the previous section with the
function loci2genind:

> library(adegenet) # normally loaded with pegas
> y <- loci2genind(x) # function in pegas
> y
/// GENIND OBJECT /////////

// 3 individuals; 1 locus; 2 alleles; size: 6 Kb

// Basic content
@tab: 3 x 2 matrix of allele counts
@loc.n.all: number of alleles per locus (range: 2-2)
@loc.fac: locus factor for the 2 columns of @tab
@all.names: list of allele names for each locus
@ploidy: ploidy of each individual (range: 2-2)
@type: codom
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@call: df2genind(X = as.matrix(x[, attr(x, "locicol")]),
sep = "/", pop = pop, ploidy = ploidy)

// Optional content
@pop: population of each individual (group size range: 1-2)

We note that the column labeled ‘population’ has been converted automati-
cally in the appropriate slot (pop). We can print the matrix of individuals by
alleles and list the slots with the function slotNames:

> y@tab
loc1.A loc1.a

1 2 0
2 1 1
3 0 2
> slotNames(y)
[1] "tab" "loc.fac" "loc.n.all" "all.names"
[5] "ploidy" "type" "other" "call"
[9] "pop" "strata" "hierarchy"

Data in slots are usually accessed with specific functions, called accessor func-
tions, such as:

> pop(y)
[1] 1 1 2
Levels: 1 2
> ploidy(y)
[1] 2 2 2

3.2.3 The Classes "SNPbin" and "genlight" (adegenet)
These two classes store strict SNPs using bits so that one byte can store eight
alleles using R’s raw mode (Fig. 3.2). "SNPbin" codes for a single, usually
haploid, genotype, and "genlight" combines different "SNPbin" objects. As
a simple example, we create a data set with two individuals and one million
SNPs:

> z <- list(Ind1 = rep(1, 1e6), Ind2 = rep(0, 1e6))
> z <- new("genlight", z)
> z
/// GENLIGHT OBJECT /////////

// 2 genotypes, 1,000,000 binary SNPs, size: 249.2 Kb
0 (0 %) missing data

// Basic content
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@gen: list of 2 SNPbin

// Optional content
@ind.names: 2 individual labels
@other: a list containing: elements without names

Both classes are S4 and have slots and accessor functions similar to "genind"
objects. We print the structure of z to see how these data are coded in R:

> str(z)
Formal class ’genlight’ [package "adegenet"] with 12 slots

..@ gen :List of 2

.. ..$ :Formal class ’SNPbin’ [package "adegenet"] with 5 slots

.. .. .. ..@ snp :List of 1

.. .. .. .. ..$ : raw [1:125000] ff ff ff ff ...

.. .. .. ..@ n.loc : int 1000000

.. .. .. ..@ NA.posi: int(0)

.. .. .. ..@ label : NULL

.. .. .. ..@ ploidy : int 1

.. ..$ :Formal class ’SNPbin’ [package "adegenet"] with 5 slots

.. .. .. ..@ snp :List of 1

.. .. .. .. ..$ : raw [1:125000] 00 00 00 00 ...

.. .. .. ..@ n.loc : int 1000000

.. .. .. ..@ NA.posi: int(0)

.. .. .. ..@ label : NULL

.. .. .. ..@ ploidy : int 1

..@ n.loc : int 1000000

..@ ind.names : chr [1:2] "Ind1" "Ind2"

..@ loc.names : NULL

..@ loc.all : NULL

..@ chromosome: NULL

..@ position : NULL

..@ ploidy : NULL

..@ pop : NULL

..@ strata : NULL

..@ hierarchy : NULL

..@ other : list()

We can notice that the SNPs of each individual are coded with 125,000 bytes
making one million bits.

3.2.4 The Class "SnpMatrix" (snpStats)
This is another S4 class to store strict SNPs. Each genotype is stored on a
single byte with the basic coding as follows: 0 = NA, 1 = homozygote, 2 =
heterozygote, 3 = homozygote (with the alternative allele). The basic scheme
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is for diploid genotypes but it has been extended in recent versions of snpStats
with the class "XSnpMatrix" to include different levels of ploidy (e.g., with the
X chromosome). The data are arranged in a matrix with row- and colnames
giving the labels in the usual way:

> zs <- new("SnpMatrix", as.raw(0:3))
object has no names - using numeric order for row/column names
> zs
A SnpMatrix with 4 rows and 1 columns
Row names: 1 ... 4
Col name: 1
> str(zs)
Formal class ’SnpMatrix’ [package "snpStats"] with 1 slot
..@ .Data: raw [1:4, 1] 00 01 02 03
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:4] "1" "2" "3" "4"
.. .. ..$ : chr "1"

3.2.5 The Class "DNAbin" (ape)
This class is detailed in an online document [209]. It uses bytes to store bases
(thanks again to R’s raw mode; Fig. 3.2) so that R’s standard data structures
can be used in the usual way to store and manipulate DNA sequences. A
simple example with three sequences each with two bases is given here:

> S <- matrix(c("A", "A", "A", "A", "A", "G"), 3, 2)
> rownames(S) <- paste0("Ind", 1:3)
> S

[,1] [,2]
Ind1 "A" "A"
Ind2 "A" "A"
Ind3 "A" "G"
> S <- as.DNAbin(S)
> S
3 DNA sequences in binary format stored in a matrix.

All sequences of same length: 2

Labels:
Ind1
Ind2
Ind3

Base composition:
a c g t

0.833 0.000 0.167 0.000
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1
0
0
0
1
0
0
0

10001000

"SNPbin"

A
C
G
T

10001000 00101000 01001000 00011000

"DNAbin"

1Figure 3.2
Data in files (white background) and their binary representations in memory
as R objects (grey background).

(Total: 6 bases)

The sequences can be visualized with the generic function image or with the
ape function alview which prints the sequences in the console showing the
variable sites:

> alview(S)
12

Ind1 AA
Ind2 ..
Ind3 .G

All ambiguity codes of DNA bases are supported as well as alignment gaps
("-") and complete uncertainty ("?"). The limit on sequence length is deter-
mined by the limit on R long vectors (Table 3.1): it is 4.4 Pb, whereas 4.4×1015

sequences can be stored simultaneously, which amounts to a theoretical total
of ≈ 2× 1031 bases which is clearly out of reach of most computers and also
far beyond the quantity of DNA sequences available so far (Sect. 2.3.2).

An object of class "DNAbin" is either a matrix or a list: in the former the
sequences are stored as the rows of the matrix and are thus considered as
aligned, while in the latter they are vectors stored in the list and can be of
different lengths:

> Sb <- as.DNAbin(list(Ind1=c("A", "A"), Ind2=c("A", "A", "G")))
> Sb
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Table 3.1
Main data classes and their size limits. n: number of individuals, p: number
of loci or sites. All values are approximate
Class n max p max Size (bytes)
"loci" 4× 1015 4× 1015 4np
"genind" 2× 109 2× 109 a 4np
"genlight" 4× 1015 4× 1015 np/8
"(X)SnpMatrix" 2× 109 2× 109 np
"DNAbin" 2× 109 or 4× 1015 b 2× 109 or 4× 1015 b np
"XStringSet" 4× 1015 4× 1015 np

aLimit on the total number of alleles over all loci
bThe smallest limit applies to matrices, the largest one to lists

2 DNA sequences in binary format stored in a list.

Mean sequence length: 2.5
Shortest sequence: 2
Longest sequence: 3

Labels:
Ind1
Ind2

Base composition:
a c g t

0.8 0.0 0.2 0.0
(Total: 5 bases)
> str(Sb)
List of 2
$ Ind1: ’DNAbin’ raw [1:2] a a
$ Ind2: ’DNAbin’ raw [1:3] a a g
- attr(*, "class")= chr "DNAbin"

3.2.6 The Classes "XString" and "XStringSet" (Biostrings)
"XString" is a virtual S4 class which means that it does not exist in it-
self. In practice, there are four “actual” classes: "BString", "DNAString",
"RNAString", and "AAString". The first one can store any kind of string (‘B’
is for biological) while the others store a single DNA, RNA, or amino acid
sequence, respectively.

On the same model, there is a virtual S4 class "XStringSet" with
four S4 classes ("BStringSet", etc.) which store one or several se-
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quences. Biostrings has five additional specific classes to store aligned
sequences: "PairwiseAlignments", "PairwiseAlignmentsSingleSubject",
"DNAMultipleAlignment", "RNAMultipleAlignment", and "AAMultiple-
Alignment". We show a few examples of some of these classes below:

> library(Biostrings)
> DNAString("aaa")
3-letter "DNAString" instance

seq: AAA
> DNAString("aaa") == DNAString("AAA")
[1] TRUE
> DNAString("xaa")
Error in .Call2("new_XString_from_CHARACTER", ....
key 120 (char ’x’) not in lookup table

> BString("xaa")
3-letter "BString" instance

seq: xaa

In the last two commands, we see that the character ‘x’ cannot be used as base
by DNAString (see below for the situation where such characters are present
in files).

3.2.7 The Package SNPRelate
This package has a different approach than the others considered previously,
although not incompatible. Instead of working with data objects stored in
the active memory of the computer, SNPRelate stores the data in files, and
data manipulations and analyses are done by the user with objects that store
the characteristics of the data and their locations on the disk. The format of
the files is specific to SNPRelate and is called GDS (genomic data structure,
originally defined in the package gdsmft which is also used by the package
SeqArray [310]). Fortunately, SNPRelate includes several functions to convert
data files from some of the formats described in the previous chapter. For
instance, we consider a VCF file with the data displayed on Fig. 2.7B which
are in the file names ‘sampletwo.vcf’:

> library(SNPRelate)
Loading required package: gdsfmt
SNPRelate -- supported by Streaming SIMD Extensions 2 (SSE2)
> snpgdsVCF2GDS("sampletwo.vcf", "sampletwo.gds")
VCF Format ==> SNP GDS Format
Method: exacting biallelic SNPs
Number of samples: 2
Parsing "sampletwo.vcf" ...
import 2 variants.
+ genotype { Bit2 2x2, 1B } *
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Optimize the access efficiency ...
Clean up the fragments of GDS file:

open the file ’sampletwo.gds’ (2.9K)
# of fragments: 46
save to ’sampletwo.gds.tmp’
rename ’sampletwo.gds.tmp’ (2.6K, reduced: 312B)
# of fragments: 20

The first argument of snpgdsVCF2GDS is the name of the VCF (input) file,
and the second one is the name of the GDS (output) file. Then, to access the
data, the GDS file must first be open with snpgdsOpen:

> samp <- snpgdsOpen("sampletwo.gds")
> samp
File: /home/paradis/data/bouquin/PGR/sampletwo.gds (2.6K)
+ [ ] *
|--+ sample.id { Str8 2 LZMA_ra(1850.0%), 81B }
|--+ snp.id { Int32 2 LZMA_ra(975.0%), 85B }
|--+ snp.rs.id { Str8 2 LZMA_ra(1300.0%), 85B }
|--+ snp.position { Int32 2 LZMA_ra(975.0%), 85B }
|--+ snp.chromosome { Str8 2 LZMA_ra(1850.0%), 81B }
|--+ snp.allele { Str8 2 LZMA_ra(975.0%), 85B }
|--+ genotype { Bit2 2x2, 1B } *
\--+ snp.annot [ ]

|--+ qual { Float32 2 LZMA_ra(975.0%), 85B }
\--+ filter { Str8 2 LZMA_ra(820.0%), 89B }

The output object, here samp, can now be used for data analysis in the usual
way from R even if the data are actually on the disk, for instance to calculate
allele frequencies:

> snpgdsSNPRateFreq(samp, with.id = TRUE)
$sample.id
[1] "X" "Y"

$snp.id
[1] 1 2

$AlleleFreq
[1] 0.75 0.50

$MinorFreq
[1] 0.25 0.50

$MissingRate
[1] 0 0

The GSD file(s) created can be used in future sessions in the usual way.
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Data Files Data Classes Packages

FASTA, FASTQ

FASTA (SNP)

PED, BED

VCF

Text
(tab, csv, . . . )

Genetix
Genepop
Structure
Fstat

GeneAlex (Excel)

XString(Set)

DNAbin

AAbin

genlight

loci

genind

haplotype

SnpMatrix

adegenet

ape

pegas

poppr

Biostrings

snpStats

Figure 3.3
Summary of input functions from file formats to data classes and conversions
among data classes.

3.3 Data Input and Output
Figure 3.3 gives an overview of data input from files and conversions among
classes. This also mentions the class "AAbin" which is similar to "DNAbin",
but for amino acid sequences (like "AAStringSet" in Biostrings).

3.3.1 Reading Text Files
It is usual to arrange genotypic data in a tabular way with individuals as rows
and loci as columns, and the entries of such a table being the genotypes. This
is a standard way to arrange data in general, so that it is straightforward to
read such files with R. pegas has the function read.loci which calls internally
read.table and returns an object of class "loci". Its default arguments are:

read.loci(file, header = TRUE, loci.sep = "", allele.sep = "/|",
col.pop = NULL, col.loci = NULL, ...)

where loci.sep = "" means that the loci are separated by white spaces. If
a column gives the population information, this may be specified with the
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col.pop argument so that this column will be renamed ‘population’. If there
are other additional variables (i.e., which are not loci), then the col.loci
argument should be used to specify which columns are to be treated as loci,
and all the others will be treated as standard variables (i.e., either vectors or
factors).

pegas also provides the function alleles2loci that converts a data frame
read in the usual way (see next section) into a "loci" object. This is useful
for the files with one allele per column (see Fig. 2.7). Its arguments are:

alleles2loci(x, ploidy = 2, rownames = NULL, population = NULL,
phased = FALSE)

where x is the data frame. If the number of columns (excluding the possible
population column) is not a multiple of ploidy, then an error occurs. The op-
tion phased makes possible to specify that the genotypes are actually phased
(by default, they are considered unphased).

adegenet provides four functions to read files in the specific formats used
by fstat [98], genepop [234], genetix [16], and structure [229]; these
functions are respectively:

read.fstat(file, quiet = FALSE)
read.genepop(file, ncode = 2L, quiet = FALSE)
read.genetix(file = NULL, quiet = FALSE)
read.structure(file, n.ind=NULL, n.loc=NULL, onerowperind=NULL,
col.lab=NULL, col.pop=NULL, col.others=NULL,
row.marknames=NULL, NA.char="-9", pop=NULL, sep=NULL,
ask=TRUE, quiet=FALSE)

They are all straightforward to use and are mainly used to read data files
prepared for the above programs, or eventually to convert these files into
tabular format. These four functions return an object of class "genind".

3.3.2 Reading Spreadsheet Files
There are several computer applications to enter, edit, and analyze data in
tabular format. Excel is the most popular, but Calc, delivered with LibreOffice,
has the same functionalities and is overall compatible with Excel. Gnumeric is
another versatile spreadsheet program.2 All these programs can save a sheet
(or table) in a text file so that the functions described in the previous section
can be used.

There are several ways to read directly an Excel file in R: we consider here
the package readxl because of its efficiency and flexibility. This package has
three functions, read_xls, read_xlsx, and read_excel to read directly data

2See https://en.wikipedia.org/wiki/List_of_spreadsheet_software for a list of sim-
ilar programs.

https://en.wikipedia.org
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in an Excel files. The last one tries to guess the version of the Excel format,
whereas the two others can be used instead if it is known by the user. These
three functions have the same options, shown here for the first one:

read_xls(path, sheet = NULL, range = NULL, col_names = TRUE,
col_types = NULL, na = "", trim_ws = TRUE, skip = 0,
n_max = Inf, guess_max = min(1000, n_max))

The first three arguments specify the data to be read with the file name (path),
the sheet with its name or number (by default, the first sheet is read), and
the cells to be read for this sheet (by default all cells are read). For this last
option, the cells can be specified with the usual Excel syntax, possibly giving
the name of the sheet. For instance, the following:

read_xls("data.xls", range = "Genotypes!A2:F11")

will read data from the second to the eleventh rows and from the first to the
sixth columns inside the sheet named “Genotypes” in the file ‘data.xls.’

The objects returned by these functions are of class "tibble" which is an
extension of the class "data.frame" with a few specific features.

3.3.3 Reading VCF Files
VCF files store allelic data in a text-based format, but because they contain
genomic information (and are sometimes very big), they must be read with
special functions. There are a number of tools to handle VCF files within or
outside R. However, we will focus on two packages, pegas and vcfR, because of
their flexibility and their availability in R. As an example, we will use a VCF
file included in a companion package of vcfR, pinfsc50, originally from a study
on the potato mold Phytophthora infestans.

pegas has the function read.vcf which reads a VCF file and returns a
"loci" object. By default, the first 10,000 loci are read. Because there could be
millions of loci in a VCF file, pegas also provides the function VCFloci which
scans a VCF file and returns the information on all loci into a data frame.
Thus, in practice, this function is usually called before using read.vcf. The
data file in pinfsc50 can be accessed with system.file so that the commands
below will not depend on the operating system:

> library(pinfsc50)
> od <- setwd(system.file("extdata/", package = "pinfsc50"))
> dir()
[1] "pinf_sc50.fasta" "pinf_sc50.gff" "pinf_sc50.vcf.gz"
> fl <- "pinf_sc50.vcf.gz"
> file.size(fl)
[1] 3119702
> info <- VCFloci(fl)
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Scanning file pinf_sc50.vcf.gz
14.40774 Mb
Done.

Note that we read the compressed file which is 3.1 MB large, but 14.4 MB
large if uncompressed. We now look at the numbers of rows and of columns
of the returned data frame and print the names of its columns:

> dim(info)
[1] 22031 9
> names(info)
[1] "CHROM" "POS" "ID" "REF" "ALT" "QUAL"
[7] "FILTER" "INFO" "FORMAT"

The VCF file thus contains 22,031 loci. It is possible to know how many
individuals are in the file with the function VCFlabels:

> VCFlabels(fl)
[1] "BL2009P4_us23" "DDR7602" "IN2009T1_us22"
[4] "LBUS5" "NL07434" "P10127"
[7] "P10650" "P11633" "P12204"
[10] "P13527" "P1362" "P13626"
[13] "P17777us22" "P6096" "P7722"
[16] "RS2009P1_us8" "blue13" "t30-4"

There are thus 18 individuals. In addition to this table, pegas stores (in a
hidden place of the memory) a small data frame giving the position of each
locus in the file, so that subsequent readings can be done without scanning
the whole file again. This data frame can be extracted with:

> get(fl, env = pegas:::.cacheVCF)
FROM TO CHUNCK.SIZES

1 1 22031 14407738

where CHUNCK.SIZES are the block sizes in bytes in the file, and FROM and
TO are the first and last loci in each block. In this example, the file is small
enough to be read in one block (the default chunck size in VCFloci is 1 GB).
In practice, the positions of the loci are found from the output of VCFloci:

> info
CHROM POS ID REF ALT QUAL FILTER ....

1 Supercontig_1.50 41 . AT A 4783843 .
2 Supercontig_1.50 136 . A C 549827 .
3 Supercontig_1.50 254 . T G 773844 .
4 Supercontig_1.50 275 . A G 713853 .
....
.....
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22028 Supercontig_1.50 1042198 . T G 59827 .
22029 Supercontig_1.50 1042303 . C G 803815 .
22030 Supercontig_1.50 1042396 . GA G 1577882 .
22031 Supercontig_1.50 1042398 . A C 1586887 .

The columns INFO and FORMAT, not shown here, give information on each
locus:

> info$INFO
[1] "AC=32;AF=1.00;AN=32;DP=174;FS=0.000;InbreedingCoeff=\

-0.0224;MLEAC=32;MLEAF=1.00;MQ=51.30;MQ0=0;QD=27.50;SOR=4.103"
[2] "AC=2;AF=0.059;AN=34;BaseQRankSum=-0.116;ClippingRankSum=\

-0.831;DP=390;FS=0.000;InbreedingCoeff=-0.0292;MLEAC=2;MLEAF=\
0.059;MQ=52.83;MQ0=0;MQRankSum=3.872;QD=11.01;RdPosRankSum=\
2.829;SOR=0.632"
....
> info$FORMAT
[1] "GT:AD:DP:GQ:PL" "GT:AD:DP:GQ:PL" "GT:AD:DP:GQ:PL"
[4] "GT:AD:DP:GQ:PL" "GT:AD:DP:GQ:PL" "GT:AD:DP:GQ:PL"

....

The meanings of all these variables are given in the header of the file (see
below). The function getINFO helps to extract information from the INFO
column, by default this is the sequencing depth (DP):

> getINFO(info)
[1] 174 390 514 514 509 508 467 463 466 443 465 466 537

[14] 534 529 536 465 527 456 496 575 446 460 548 550 551
....

Another variable can be extracted using the option what, for instance mapping
quality:

> pegas::getINFO(info, what = "MQ")
[1] 51.30 52.83 56.79 57.07 57.40 58.89 57.03 56.96 55.59

[10] 52.08 53.23 53.31 58.51 58.77 59.04 44.63 53.19 57.97
....

Once this data frame is obtained, a wide range of analyses can be done
with standard R commands. For instance, it is possible to get the positions of
the (strict) SNPs with the generic function is.snp:

> snp <- is.snp(info)

This will check the REF and ALT columns of info and return TRUE if both are
made of a single base. Note that the INFO field of the VCF file sometimes has
this information; however, this information can be ambiguous because MNPs
may be categorized as SNPs in some VCF files. We now can see how many
variants are true SNPs:
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> table(snp)
snp
FALSE TRUE
2581 19450

The POS column stores the positions of the loci and can be analyzed with
usual numeric operations:

> range(info$POS)
[1] 41 1042398

By combining logical vectors (see Sect. 4.1.4), it is straightforward to answer
specific questions, for instance, what are the positions of the 2581 variants
that are not SNPs:

> info$POS[!snp]
[1] 41 2085 2092 2109 2691 39031 39240
[8] 39245 39279 39302 39350 39409 39507 39536

....

Suppose we want to read only these loci, then we can use the option
which.loci of read.vcf:

> X <- read.vcf(fl, which.loci = which(!snp), quiet = TRUE)
> X
Allelic data frame: 18 individuals

2581 loci

In addition to the four functions described here, pegas has a few others to
extract information in VCF files. One of them is VCFheader which reads the
header of the file:

> cat(VCFheader(fl))
##fileformat=VCFv4.1
##source="GATK haplotype Caller, phased with beagle4"
##FILTER=<ID=LowQual,Description="Low quality">
....

rangePOS returns the indices of the loci that are within a range of genomic
positions. For instance, we can print how many variants there are within the
first 100 kb of this chromosome:

> length(rangePOS(info, 1, 1e5))
[1] 1109

Finally, selectQUAL returns the loci that have quality above a given minimum
value (20 by default). Here we simply print the numbers of loci satisfying two
values of minimum quality:
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> length(selectQUAL(info))
[1] 22031
> length(selectQUAL(info, threshold = 200))
[1] 21983

vcfR does roughly the same operations as the pegas’s functions just re-
viewed but with a different interface and has some handy graphical tools. The
VCF file is read with read.vcfR:

> library(vcfR)
> vcf <- read.vcfR(fl, verbose = FALSE)
> vcf
***** Object of Class vcfR *****
18 samples
1 CHROMs
22,031 variants
Object size: 22.4 Mb
7.929 percent missing data
***** ***** *****

The information that we have read above using different functions in pegas is
stored here in a single S4 object with three slots:

> str(vcf)
Formal class ’vcfR’ [package "vcfR"] with 3 slots
..@ meta: chr [1:29] "##fileformat=VCFv4.1" ....
..@ fix : chr [1:22031, 1:8] "Supercontig_1.50" ....
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:8] "CHROM" "POS" "ID" "REF" ...
..@ gt : chr [1:22031, 1:19] "GT:AD:DP:GQ:PL" ....
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:19] "FORMAT" "BL2009P4_us23" ....

where @meta is the header of the file, @fix is the locus information, and @gt
are the genotypes. Note that by contrast to pegas the FORMAT field is here
stored with the genotypes. The function create.chromR creates a digest of
these information, optionally with the sequence of the reference genome and
an annotation file. The result can then be plotted either with the generic plot
or with chromoqc which displays the distribution of some variables along the
genomic positions (Fig. 3.4):

> chrom <- create.chromR(vcf)
> chromoqc(chrom)

After the data have been read, we come back to the original working directory:

> setwd(od)
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Figure 3.4
Graphical summary of sequencing quality in a VCF file with vcfR.

3.3.4 Reading PED and BED Files
These two file formats can be read with functions in the package snpStats:

read.pedfile(file, n, snps, which, split = "\t| +", sep = ".",
na.strings = "0", lex.order = FALSE)

read.plink(bed, bim, fam, na.strings = c("0", "-9"), sep = ".",
select.subjects = NULL, select.snps = NULL)

The argument file gives the name of the PED file (which can be gzipped),
and the three following ones (n, snps, which) may be left missing. For the
second function, bed, bim, fam give the names of the BED file and its two
associated files (see Sect. 2.4.1). Note that the defaults of na.strings are not
the same. Both functions return an object of class "SnpMatrix".
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snpStats also provides several functions to read SNP data in file formats
produced by beagle, impute2, or mach.

3.3.5 Reading Sequence Files
ape has the function read.FASTA to read FASTA files with DNA or amino
acid sequences. Another possibility is to use read.dna(, format = "fasta")
which can also read other formats, checks the lengths of the sequences, and
returns a matrix if they are all equal (read.FASTA always returns a list).
These two functions return an object of class "DNAbin". The FASTA file may
contain a header (free text before the first sequence). The options of these two
functions are:

read.FASTA(file, type = "DNA")
read.dna(file, format = "interleaved", skip = 0, nlines = 0,

comment.char = "#", as.character = FALSE, as.matrix = NULL)

The function read.fastq, also in ape, reads a FASTQ file and returns a
"DNAbin" object with an additional attribute "QUAL" which is a list with the
qualities. This function has the option offset with the default value −33 in
order to translate the quality scores correctly (see details in ?read.fastq).

Biostrings has several functions to read FASTA files, such as readDNA-
StringSet and readDNAMultipleAlignment to read unaligned or aligned
DNA sequences and return an object of class "DNAStringSet" or
"DNAMultipleAlignment", respectively. These functions are slightly less flex-
ible than the ones in ape as they cannot read FASTA files with a header,
although readDNAStringSet has an option skip but this implies to know
the number of lines in the header. The functions readAAStringSet and
readAAMultipleAlignment do similar operations with FASTA files storing
amino acid sequences. The options of readDNAStringSet are:

readDNAStringSet(filepath, format = "fasta", nrec = -1L,
skip = 0L, seek.first.rec = FALSE, use.names = TRUE)

Biostrings has the function fasta.index to get information from one or
several FASTA or FASTQ files. It scans a bunch of files and returns a data
frame with one row for each sequence giving its label, its length, and the full
path to the file. This can be used to look for specific sequences from many
files.

FASTA files may contain characters that are not part of the sequences
(e.g., X in the case of DNA): they are ignored silently by read.FASTA, or with
a warning by the functions in Biostrings.
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3.3.6 Reading Annotation Files
ape has the function read.gff which reads a standard GFF or GTF file and
returns a data frame. There is an option to specify how missing data are coded
in the file. The arguments are:

read.gff(file, na.strings = c(".", "?"), GFF3 = TRUE)

If GFF3 = FALSE, then the file is assumed to be GFF version 2 (also known
as GTF).

3.3.7 Writing Files
pegas has the function write.loci to write allelic data in a tabular way:
it calls internally write.table so both have common options (passed with
‘...’):

write.loci(x, file = "", loci.sep = " ", allele.sep = "/|", ...)

ape has two functions to write DNA sequences: write.FASTA writes
FASTA files with each sequence on a single line, and write.dna which sup-
ports different formats (FASTA is not the default, so it should be specified
with the option format = "fasta"). This second function is more flexible
but less efficient especially if the sequences are long (> 10 kb) so the first
function should be used with genomic data which are unlikely to be open
with a text editor. Biostrings has a single function to write sequences in files:
writeXStringSet. These three functions have slightly different options and
default values, but perform essentially the same operation:

write.FASTA(x, file, header = NULL, append = FALSE)
write.dna(x, file, format = "interleaved", append = FALSE,

nbcol = 6, colsep = " ", colw = 10, indent = NULL,
blocksep = 1)

writeXStringSet(x, filepath, append = FALSE, compress = FALSE,
compression_level = NA, format = "fasta", ...)

The option header of the first function is to give an optional header to
print before the sequences. write.FASTA and writeXStringSet can also write
amino acid sequences.

The base R function saveRDS can write any R object into a file using the
XDR format (Sect. 2.4.2): this can be useful to save data which have additional
attributes if there is no standard file format to save them. For instance, the
object vcf created above can be saved in a file ‘vcf.rds’ and later read back
into R with readRDS, possibly under a different name:

> saveRDS(vcf, "vcf.rds")
> vcf2 <- readRDS("vcf.rds")
> identical(vcf, vcf2)
[1] TRUE
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3.4 Internet Databases
R has a lot of tools to access data through networks. Most basic functions, such
as read.table or scan, can read file names starting with ftp://, ftps://,
http://, or https://. This is also supported by most of the functions cited
above. If the remote file is compressed, this implies calling something like
gzcon(url("http://....

read.GenBank in ape reads DNA sequences from GenBank and returns a
"DNAbin" object with two additional attributes: "description" which stores
the description of the sequences from GenBank, and "species" with the
species name of each sequence. The main argument is a vector of mode char-
acter giving the accession numbers. If some of these numbers are incorrect,
they are ignored and a warning message is issued.

Below is a simple example where three sequences are downloaded: the first
sequence registered in GenBank [187], a sequence of the cytochrome b of a
bird [105], and a portion of the tiger genome [39] (we append a fourth string
which is not an accession number from GenBank):

> num <- c("V00001", "U15717", "KE721553", "WRONG")
> SEQ <- read.GenBank(num)
Warning message:
In read.GenBank(num) : cannot get the following sequences:
WRONG
> SEQ
3 DNA sequences in binary format stored in a list.

Mean sequence length: 2663
Shortest sequence: 1045
Longest sequence: 5673

Labels:
V00001
U15717
KE721553

Base composition:
a c g t

0.268 0.280 0.232 0.220
(Total: 7.99 kb)
> attr(SEQ, "species")
[1] "Nostoc_sp._PCC_7120" "Ramphocelus_passerinii"
[3] "Panthera_tigris_altaica"
> attr(SEQ, "description")
[1] "V00001.1 Anabaena 7120 nifH gene (nitrogenase reductase),\
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complete CDS"
[2] "U15717.1 Ramphocelus passerinii cytochrome b gene, mitoch\
ondrial gene encoding mitochondrial protein, partial cds"
[3] "KE721553.1 Panthera tigris altaica isolate TaeGuk unplaced\
genomic scaffold scaffold1001, whole genome shotgun sequence"

The two attributes give additional information: taxon, sequence type, etc.
Note that the returned list has names set with the accession numbers.

> names(SEQ)
[1] "V00001" "U15717" "KE721553"

If we want to have these names set like in GenBank, we can change them with
the appropriate attribute and then write the sequences in a FASTA file:

> names(SEQ) <- attr(SEQ, "description")
> write.FASTA(SEQ, file = "SEQ.fas")

3.5 Managing Files and Projects
Modern research requires processing and analysis of large number of big data
files, and not only genomic data. There are computer tools, such as database
management systems (DBMS) based on the structured query language (SQL),
to help solve the difficulties associated with the management of many data
sets. However, a few simple rules can be followed that can be very useful.

If a project is of small or moderate size (say, with fewer than ten data
files), the data files can be placed in a single folder together with the R script
containing the commands to analyze them. The data files can be read without
specifying their locations on the disk. For instance:

x <- read.dna("seq_x.fas", "fasta")

Clearly, this command does not depend on the exact location of the file on
the disk. Thus, it is possible to copy the whole folder to another location, or
computer (even with a different operating system) without needing to change
the R commands to read or write the files. It may be necessary to set the
working directory before starting with setwd but many programs that run R
(e.g., Emacs/ESS, RStudio) set the working directory when opening a script.

If there are many files in a project, it might be a good idea to arrange
them in different subfolders depending on their type (e.g., DNA sequences,
phenotypes, geographical data), and access them from R specifying the relative
path:

x <- read.dna("DNA/seq_x.fas", "fasta")
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or changing temporarily R’s working directory:

odir <- setwd("DNA")
x <- read.dna("seq_x.fas", "fasta")
# read many files...
setwd(odir) # go back to the original working directory

As before, this is robust to changes in the location of the project folder (as
long as its subfolders are also copied or moved).

As projects progress and eventually grow in numbers, it may be useful to
keep some data files in a separate folder so they can be accessed by different
projects (which might be also useful if they are large). In this situation, it is
best to keep track of these files in the R scripts, for instance at the top of the
script we would write:

ref <- "~/DATA/humans/DNA/GRCh38.fas"
droso <- "~/DATA/droso/VCF/global.V3.vcf.gz"
....

These files can later be read directly since their absolute paths are already
given in their names:

refgenome <- read.FASTA(ref)
info.droso <- VCFloci(droso)
....

As above, the script can be moved to another location on the computer, but
if it is moved to another computer the shared data files must also be moved.
If these shared files are moved (e.g., to a server), then their paths need to be
updated in the R script.

In addition to being big, genomic data files often have long names which
complicate their manipulation. There are several tricks to make this easier (in
order of preference):

1. Store the file names in strings within R (as above).
2. Create symbolic links (but this depends on the operation system).
3. Rename the files from R with file.rename (so the operation can

reversed at the end of the script).

Sometimes one has to spend time to find a data file on the computer,
especially to find data that were analyzed a few years (or even months) ago.
To help save time, ape has the function Xplorefiles that returns a list with
six data frames each with two columns giving the full names and sizes of files
found on the disk. By default, six types of files are searched for:

> myfiles <- Xplorefiles()
> names(myfiles)
[1] "clustal" "fasta" "fastq" "newick" "nexus" "phylip"
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It is possible to change the file types with the function editFileExtensions.
Finally, the function Xplor does the same operation but opens the output in
a Web browser with hyperlinks to the files.

3.6 Exercises
1. Create a file on your computer and write a single diploid geno-

type for one individual. Read this file into R using the func-
tion read.loci. Add labels to the file and see which options of
read.loci should be changed.

2. Write the same data in a VCF file using the scheme in Figure 2.7.
Read the file with the functions in vcfR and those in pegas.

3. Write in a file the following data:

L1 L2
Id1 A/a B|b
Id2 a/A b|B

Read the file with the function read.loci. How many distinct geno-
types are there for each locus?

4. Download the sequences with accession numbers U15717–U15724
from GenBank (this should not take more than one line of R com-
mands).

5. Write the data downloaded at the previous question in two FASTA
files with read.dna and read.FASTA. Compare the files output by
these two functions.

6. Explain how two bits of information can store the genotype of a
single SNP locus. Explain the different possibilities, in particular
‘phased genotypes’ and ‘unphased genotypes with missing value’.
Find the memory requirements (in bytes) for n individuals and p
loci under this coding scheme.

7. How much active memory is needed to store 1 Mb? Same question
for 1 Gb? (See Exercise 6, p. 44.)

8. Design an R data class that will store genotypes, chromosome and
genome locations, and a single phenotypic variable. Write a func-
tion to create such objects, and a print method to display them.
(Hint: if the class is named "toto", then this method will be named
print.toto.)

9. Find how many data files you have on your computer (this should
not take more than two lines of R commands).
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4
Data Manipulation

R has been widely adopted in the scientific community because, among other
things, of its powerful tools for data manipulation. This chapter explains how
these tools can be used to manipulate genetic and genomic data. It also in-
troduces the data sets used in the case studies to illustrate the methods in-
troduced in the following chapters.

4.1 Basic Data Manipulation in R
4.1.1 Subsetting, Replacement, and Deletion
Subsetting, replacement, and deletion are the three basic operations of data
manipulation and they are performed efficiently in R with the ‘[’ operator.
This data manipulation system is very powerful and it is common to use it
for data filtering, quality check, or other upstream data management before
proper data analyses. The ‘[’ operator is actually generic and there are meth-
ods for all the classes described in the previous chapter. It implies that the
same syntax can be used for all types of data (real numbers, integers, bases,
genotypes, alleles, etc.)

Table 4.1 shows simple examples to illustrate the different types of index-
ing. These examples apply to vectors and lists; however, they can also be used
with matrices (and arrays) using two or more series of indices separated by
comma(s). For instance, x[, 1:2] will select the first and second columns of
the matrix x (or x[, , 1:2] for a 3-d array).

The classes "loci" and "DNAbin" are S3 objects. They are classical R
objects (vector, matrix, list, . . . ) with a class attribute so that R “knows” they
must be treated specially. The other classes described in the previous chapter
are S4 objects: they are made of “slots” which are accessed or modified with
the @ operator. There are other differences between S3 and S4 which are not
important here (they are for developers writing functions to manipulate these
objects).
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Table 4.1
The three types of data indexing with the ‘[’ operator. The vector x was
created with: x <- 1:10; names(x) <- letters[1:10]. The three types of
indexing have the same output for each operation
Operation Indexing type

Numeric Logical With names
Subsetting x <- x[1:2] x <- x[x < 3] x <- x[c("a", "b")]
Replacement x[1:2] <- 0 x[x < 3] <- 0 x[c("a", "b")] <- 0
Deletion x <- x[-(1:2)] x <- x[x > 2] x <- x[! names(x)

%in% c("a", "b")]

4.1.2 Commonly Used Functions
There are a few functions in R that are useful to know a bit more than others
because they are used almost all the time.

The operator ‘:’ is usually called to create a series of numbers like 1, 2, 3,
. . . It actually also works with non-integer values:

> 1.2:5.2
[1] 1.2 2.2 3.2 4.2 5.2

or with negative numbers:

> -6:-1
[1] -6 -5 -4 -3 -2 -1

Keep in mind that the minus operator has priority on ‘:’ (see ?Syntax):

> -1:2
[1] -1 0 1 2
> -(1:2)
[1] -1 -2

seq() is the generalization of ‘:’. It is a generic function with the default
method being used in most situations (other methods are for dates and times):

> args(seq.default)
function (from = 1, to = 1, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL, ...)

rep() is an internal, generic function that outputs its main argument
repeated with respect to the options times, each, and length.out:

> rep(1:3, times = 3) # or rep(1:3, 3)
[1] 1 2 3 1 2 3 1 2 3
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> rep(1:3, each = 2)
[1] 1 1 2 2 3 3
> rep(1:3, times = 3, each = 2)
[1] 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
> rep(1:3, each = 2, length.out = 3)
[1] 1 1 2

paste() is often used in combination with ‘:’ and rep to create series of
labels, typically to be used for indexing with names; it has only two options:

> args(paste)
function (..., sep = " ", collapse = NULL)

The vectors given as ‘...’ are pasted together separated by the string given
in sep:

> paste("x", 1:6)
[1] "x 1" "x 2" "x 3" "x 4" "x 5" "x 6"
> paste("x", 1:6, sep = "")
[1] "x1" "x2" "x3" "x4" "x5" "x6"
> paste("x", 1:6, sep = " <- ")
[1] "x <- 1" "x <- 2" "x <- 3" "x <- 4" "x <- 5" "x <- 6"

If collapse is used, the strings are then pasted together into a single one:

> paste(LETTERS[24:26], 1:3, sep = "", collapse = " %*% ")
[1] "X1 %*% Y2 %*% Z3"

The function paste0 is similar to paste but with sep = "".
Matching or combining different data sets together is not always straight-

forward and can be done in different ways. The function match finds the
positions of the elements that are in a vector or list x (numeric or else) in
another vector/list table:

> match("Z", LETTERS)
[1] 26

There are two options:

> args(match)
function (x, table, nomatch = NA_integer_, incomparables = NULL)

nomatch is the value returned for the elements in x that are not in table,
and incomparables are the value in x that are always returned with nomatch
even if they are in table. The output is a vector of integers (possibly with
NA’s or the value given to nomatch) that is typically used to reorder and/or
subset the values in table. In practice, this is useful to match different data
tables or lists using their (row)names. For instance, we create two data frames
with the same data but the rows are not in the same order:
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> DF1 <- data.frame(x = 1:3, z = 11:13)
> DF2 <- data.frame(x = 3:1, z = 13:11)
> row.names(DF1) <- paste0("Ind", 1:3)
> row.names(DF2) <- paste0("Ind", 3:1)
> DF1

x z
Ind1 1 11
Ind2 2 12
Ind3 3 13
> DF2

x z
Ind3 3 13
Ind2 2 12
Ind1 1 11

We then match the row.names of both data frames, reorder the rows of the
second one, and check that they are now identical:

> o <- match(row.names(DF2), row.names(DF1))
> o
[1] 3 2 1
> identical(DF1, DF2[o, ])
[1] TRUE

Sometimes, it is just needed to know whether the two sets of labels match
whatever their respective order; the operator %in% makes this simple:

> all(row.names(DF2) %in% row.names(DF1))
[1] TRUE
> all(row.names(DF1) %in% row.names(DF2))
[1] TRUE

4.1.3 Recycling and Coercion
It is worth examining recycling and coercion since they are important fea-
tures of R that can be difficult to fully apprehend. Indeed, most of the time
R recycles and coerces data without notice so the user might be taken by
surprise.

Recycling can be understood when considering that a vector in R is actually
a set of values or observations of a ‘variable’ in the statistical meaning of the
word, so doing an operation such as x + 1 is usually meant to add one to all
elements of x (which could be written as x + rep(1, length(x))). In fact,
R gives a warning in this situation if the length of the shortest vector is not a
multiple of the length of the longest one:

> 1:3 + 1
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[1] 2 3 4
> 1:3 + rep(1, 2)
[1] 2 3 4
Warning message:
In 1:3 + rep(1, 2) :

longer object length is not a multiple of shorter object length

Recycling is actually most useful when passing arguments to a function,
such as the example with paste above.

Coercion (not to be confused with conversion; see Sect. 4.3) is a bit more
difficult because it is rarely warned of by R. For instance:

> x <- 1:2
> y <- "a"
> x[2] <- y
> x
[1] "1" "a"

This feature avoids R to give frequent warning messages. A common trouble
with coercion is when reading data from files, particularly if there are mistakes.
Suppose a file includes a data value “2.O” (instead of “2.0”), then the returned
vector will be of mode character (or maybe a factor).

4.1.4 Logical Vectors
Logical vectors are powerful ways to manipulate data in R. Most often, logical
vectors are used implicitly. For instance, it is possible to select the positive
values of a vector with x[x > 0]. However, it is sometimes useful to store
logical values in their own vector and then do the subsetting:

> s <- x > 0
> x[s]

The advantage of this is that it is much easier to combine different conditions
to create different subsets of the data. For instance, if some missing values have
to be dropped as well, they may be identified in a separate logical vector:

> s2 <- is.na(x)

This can then be used in combination with the above condition or not:

> x[!s2] # drop missing values
> x[s & !s2] # drop negative values and missing ones

The operator & combines two logical vectors and returns a vector with TRUE if
both values are TRUE, or FALSE otherwise (using the recycling rule explained
in the previous section). The operator | returns TRUE if at least one value is
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TRUE.1 The logical operation “only one value TRUE” (also known as “exclusive
OR”) is done with the function xor:

> x <- c(TRUE, TRUE, FALSE, FALSE)
> y <- c(TRUE, FALSE, TRUE, FALSE)
> x & y
[1] TRUE FALSE FALSE FALSE
> x | y
[1] TRUE TRUE TRUE FALSE
> xor(x, y)
[1] FALSE TRUE TRUE FALSE

A few functions are particulaly useful with logical vectors: which returns
the indices of the TRUE values inside a logical vector, all returns TRUE if all
values are TRUE, and any returns TRUE if at least one value is TRUE. Finally,
an efficient way to find the number of values TRUE is to use sum since logical
values are internally coded as 0 (FALSE) and 1 (TRUE).

4.2 Memory Management
R has had the reputation of not being very efficient about managing mem-
ory (though critics rarely defined or gave an example of software with good
memory management). This issue has some importance when handling and
analyzing large data sets in genomics but also in other fields such as geograph-
ical information systems (GIS). Managing data in a memory-efficient way is
a challenge for a computer program which aims to be general like R.

Actually, R has an internal mechanism to save memory by avoiding copying
objects when this is not necessary. To see how this works, we create a vector x
with one billion values, internally initialized with zeros, and print how much
memory it takes:

> system.time(x <- numeric(1e9))
user system elapsed
0.482 1.914 2.395

> object.size(x)
8000000048 bytes

This shows the amount of time taken by R to use the required memory to
create x. As expected, x occupies 8 GB.2 If we make a copy of x into another

1The doubled versions of these operators, && and ||, should only be used inside an if
() loop condition.

2R uses eight bytes to store a numeric value as defined by the 64-bit floating-point of
the IEEE 754 standard.
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vector, say y, we logically expect this to take as much time as the above
one because y will require as much memory as x; however, this is not what
happens:

> system.time(y <- x)
user system elapsed

0 0 0

The reason is because R keeps track of objects that are identical and stores
a “reference” from y to x. However, if one of them is modified, then a copy
is first made which requires time (whereas subsequent modifications will be
much faster):

> system.time(x[1] <- 1)
user system elapsed
1.290 1.923 3.315

> system.time(x[2] <- 2)
user system elapsed

0 0 0

One practical consequence of this is that it is safe and efficient to store different
objects into a list since R will store references to them. For instance, creating
a list with the vectors y and x takes no time even though this list appears to
use 16 GB of memory:

> system.time(L <- list(x = x, y = y))
user system elapsed

0 0 0
> object.size(L)
16000000448 bytes

In addition to R’s internal mechanisms, some packages implement some
forms of memory management. This is the case of Biostrings which implements
several mechanisms to save memory usage. One of them is called run-length
encoding (RLE) and is particularly efficient when sequences include many re-
peated patterns. Another is an extension of the ‘copy by reference’ explained
above but generalized to subsetting. For instance, if X is an object of class
"DNAString" with one million bases, then the command X[1:1e4] will not
make a copy of 10,000 bases in memory but will create a reference to the origi-
nal object with the appropriate coordinates (by contrast, subsetting an object
of class "DNAbin" makes a new copy). Biostrings also implements references
to files thus making possible to manipulate large files without reading all its
contents in memory.3 See also the previous chapter about reading VCF files
with pegas (Sect. 3.3.3).

3Several packages implement similar mechanisms: for instance, raster to avoid storing
too many GIS data sets in memory, or bigmemory to store and analyze big data matrices.
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Table 4.2
Conversion among the different data classes of genomic data
From To Command Package
DNAbin character as.character(x) ape

genind DNAbin2genind(x) adegenet
XString use files (see text)

XString DNAbin as.DNAbin(x) ape
character as.character(x) Biostrings

character DNAbin as.DNAbin(x) ape
loci as.loci(x) pegas
XString BString(x), etc. Biostrings

loci genind loci2genind(x) pegas
SnpMatrix loci2SnpMatrix(x) pegas
data frame class(x) <- "data.frame"

genind loci genind2loci(x) pegas
data frame genind2df(x) adegenet

data frame loci as.loci(x) pegas
genind df2genind(x) adegenet

4.3 Conversions
It is common in R to convert objects with functions such as as.XXX where XXX
is the class to which the conversion is done. Such functions are usually generic,
so the original class does not need to be specified by the user. Table 4.2 sum-
marizes how to convert among the different data classes of allelic and sequence
data. All conversions are pretty straightforward and simple. The conversion
from "DNAbin" to "DNAStringSet" needs a little explanation because this
must be done through a file. To illustrate this in the following example, we
first create a FASTA file by writing the woodmouse data in ape (a set of 15
aligned sequences with 965 bases):

> data(woodmouse)
> write.FASTA(woodmouse, "woodmouse.fas")

We then read this file with two different functions and check that the objects
contain indeed the same information after converting the "DNAStringSet"
object into a "DNAbin" one:

> x <- readDNAStringSet("woodmouse.fas")
> y <- read.FASTA("woodmouse.fas")
> class(x)
[1] "DNAStringSet"
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Table 4.3
Sample sizes of the data sets used as case studies. n: number of individuals, K:
number of populations, p: number of loci or sites, WG: whole genome, WGS:
whole genome sequence.
Data set n K Data p

Asiatic golden cat 40 – mtGenome 16 kb
Fruit fly 121 12 WG 106

Human 2504 29 WG 88× 106

H1N1 433 – two genes 3 kb
Jaguar 59 4 microsatellites 13 loci
Helicobacter pylori 402 – WGS 1.7 Mb
Fish metabarcoding – 4 mtGenome –

attr(,"package")
[1] "Biostrings"
> class(y)
[1] "DNAbin"
> identical(as.DNAbin(x), y)
[1] TRUE

For the reverse operation, it is necessary to use a file as an intermediate step:

> write.FASTA(y, "y.fas")
> x2 <- readDNAStringSet("y.fas")
> identical(x, x2)
[1] TRUE

On the same note, there is a function as.AAbin that works with the class
"AAStringSet".

4.4 Case Studies
The case studies introduced here are used in the following chapters as “real-
life” examples with the aim to illustrate how to conduct analyses from pub-
lished data to results and figures. The present section shows how the data are
found from the original publications and prepared before analyses. Table 4.3
gives a summary of the sample sizes in each data set.
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4.4.1 Mitochondrial Genomes of the Asiatic Golden Cat
The Asiatic golden cat (Catopuma temminckii) is a medium-sized wild cat
species living in a large part of Southeast Asia. Like most wild carnivores, they
are elusive, and their populations are protected in most countries, so it is hard,
if even possible, to sample them in the wild. To surmount this difficulty, Patel
et al. [217] extracted DNA from skins preserved in museums and were able
to sequence the mitochondrial genome of forty individuals. These sequences
were deposited in GenBank. The accession numbers are available from the
original publication (KX224490–KX224529), so we can read the sequences
after building a vector with these numbers as character strings:

> num <- paste0("KX224", 490:529)
> library(ape)
> catopuma <- read.GenBank(num)
> catopuma
40 DNA sequences in binary format stored in a list.

All sequences of same length: 15582

Labels:
KX224490
KX224491
KX224492
KX224493
KX224494
KX224495
...

Base composition:
a c g t

0.329 0.258 0.139 0.274
(Total: 623.28 kb)

All sequences have the same length and they are easily aligned with either
MUSCLE [63] or MAFFT [140] (much faster with the second one). Both pro-
grams can be called from R using interfaces provided in ape or ips [111],
respectively:4

> catopuma.ali <- muscle(catopuma)
> library(ips)
> catopuma.ali.mafft <- mafft(catopuma, path = "/usr/bin/mafft")
> identical(catopuma.ali, catopuma.ali.mafft)
[1] TRUE

4These programs must be installed independently of R with a set-up that may be tedious
on some systems (it is usually easy on Linux; see ?muscle in ape). An alternative is the
package msa from BioConductor.
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We may check that the alignment procedure did not insert gaps with the
function checkAlignment in ape or, more simply, by printing the dimensions
of the result and checking that the number of columns is the same as the
sequence length before alignment:

> dim(catopuma.ali)
[1] 40 15582
> checkAlignment(catopuma.ali, plot = FALSE)
Number of sequences: 40
Number of sites: 15582

No gap in alignment.

Number of segregating sites (including gaps): 226
Number of sites with at least one substitution: 226
Number of sites with 1, 2, 3 or 4 observed bases:

1 2 3 4
15356 226 0 0

We note that all variable sites are strict SNPs (we will come back to this
point in the following chapters). In addition, we review the description of the
sequences from GenBank:

> head(attr(catopuma, "description"))
[1] "KX224490.1 Catopuma temminckii isolate H1-SIK mito....
[2] "KX224491.1 Catopuma temminckii isolate H2-SIK mito....
[3] "KX224492.1 Catopuma temminckii isolate H3-SU mito....
[4] "KX224493.1 Catopuma temminckii isolate H4-SU mito....
[5] "KX224494.1 Catopuma temminckii isolate H5-SU mito....
[6] "KX224495.1 Catopuma temminckii isolate H6-SU mito....

We save the alignment and the original sequences (with their attributes) on
the disk:

> saveRDS(catopuma.ali, "catopuma.ali.rds")
> saveRDS(catopuma, "catopuma.rds")

4.4.2 Complete Genomes of the Fruit Fly
The fruit fly (Drosophila melanogaster) is a classical model species in evo-
lutionary biology. Kao et al. [139] investigated the origin of fruit flies from
Central and North America using 121 individuals from America, Africa, and
Europe. With Illumina sequencing of 23 lines from 12 locations and addi-
tional published data, they inferred 4,021,717 SNPs (out of a genome size of
139.5 Mb). Further filtering to remove low quality SNPs, which likely repre-
sent false positives, resulted in 1,047,913 SNPs. The authors deposited the final
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VCF file on Dryad5 which we will use here. Information on the origin of the
121 flies was found in the original publication. We made a file ‘geo_droso.txt’
(provided with the on-line resources of this book) with the individual labels,
the locality, and the region coded with three letters as used in the original
publication:

> geo <- read.delim("geo_droso.txt")
> str(geo)
’data.frame’: 121 obs. of 3 variables:
$ ID : Factor w/ 121 levels "13_29","13_34",..: 1 2 3 4....
$ Locality: Factor w/ 16 levels "Birmingham, AL",..: 15 15 13....
$ Region : Factor w/ 6 levels "CAM","CAR","FRA",..: 5 5 5 5....

4.4.3 Human Genomes
The ‘1000 Genomes Project’ started in 2008 with the initial goal to sequence
one thousand human genomes in order to give a picture of the genomic vari-
ation within the world population. A study based on 1092 genomes was pub-
lished in 2012 [271] followed by another one based on 2504 genomes three
years later [272]. The Web site of this project6 gives access to several sets of
data. Twenty-five VCF files are provided (one for each chromosome and one
for the mitochondrial genome) for a total of 16.2 GB compressed with GZIP.

Additional information is available from the above Web site in the text file
‘igsr_samples.tsv’ (downloaded from https://www.internationalgenome.
org/data-portal/sample on 2019-06-11):

> samples.info <- read.delim("igsr_samples.tsv")
> str(samples.info)
’data.frame’: 3904 obs. of 8 variables:
$ Sample.name : Factor w/ 3904 levels "HG00096",....
$ Sex : Factor w/ 2 levels "female","ma":....
$ Biosample.ID : Factor w/ 3504 levels "","SAME122....
$ Population.code : Factor w/ 29 levels "ACB","ASW","....
$ Population.name : Factor w/ 29 levels "African-Amer....
$ Superpopulation.code: Factor w/ 5 levels "AFR","AMR","E....
$ Superpopulation.name: Factor w/ 5 levels "African","Ame....
$ Data.collections : Factor w/ 18 levels "","1000 Geno....

This file has data on more individuals than in the VCF files. We thus match
the individual labels from the first VCF file and test whether they are all in
the above file:

> fl <- "ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.\

5https://doi.org/10.5061/dryad.446sv.2
6https://www.internationalgenome.org/

https://doi.org/10.5061/dryad.446sv.2
https://www.internationalgenome.org
http://www.internationalgenome.org
https://www.internationalgenome.org
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20130502.genotypes.vcf.gz"
> labs <- VCFlabels(fl)
> all(labs %in% samples.info$Sample.name)
[1] TRUE

We can then create a smaller data frame with only the 2504 individuals and
the variables we are interested in (stored in the vector vars):

> i <- match(labs, samples.info$Sample.name)
> vars <- c("Sex", "Population.code", "Superpopulation.code")
> DATA <- samples.info[i, vars]
> row.names(DATA) <- samples.info$Sample.name[i]
> str(DATA)
’data.frame’: 2504 obs. of 3 variables:
$ Sex : Factor w/ 2 levels "female","male":....
$ Population.code : Factor w/ 29 levels "ACB","ASW","BEB",....
$ Superpopulation.code: Factor w/ 5 levels "AFR","AMR","EAS",....

The script is easily modifiable, for instance is we want to keep other vari-
ables than the three selected here. We finally save this data frame in a file:

> saveRDS(DATA, "DATA_G1000.rds")

4.4.4 Influenza H1N1 Virus Sequences
The 2009 outbreak of influenza A, also known as swine flu, had a considerable
impact in the public. The genome of the influenza virus is 13.6 kb long and
made of eight molecules of negative sense, single-stranded RNA [65]. Data
were acquired during the outbreak by an international network of researchers
coordinated by the World Health Organization [33]. The genes of the two
surface proteins hemagglutinin and neuraminidase (HA and NA, respectively,
from which the names of virus strains are derived) were sequenced and de-
posited directly in GenBank. These data are provided with adegenet (see the
help page ?seqTrack in this package). In order to access these data, we first
change the working directory because several files will be read:

> odir <- setwd(system.file("files/", package = "adegenet"))
> dir(pattern = "H1N1")
[1] "pdH1N1-data.csv" "pdH1N1-HA.fasta" "pdH1N1-NA.fasta"

There are two FASTA files and one CSV file that we now read and display
successively:

> H1N1.HA <- read.dna("pdH1N1-HA.fasta", "fasta")
> H1N1.HA
433 DNA sequences in binary format stored in a matrix.
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All sequences of same length: 1672

Labels:
GQ243757
GQ160611
GQ243751
GQ243761
GQ243755
GQ247724
...

Base composition:
a c g t

0.352 0.187 0.222 0.239
(Total: 723.98 kb)
> H1N1.NA <- read.dna("pdH1N1-NA.fasta", "fasta")
> H1N1.NA
433 DNA sequences in binary format stored in a matrix.

All sequences of same length: 1353

Labels:
GQ243758
GQ160610
GQ243752
GQ243762
GQ243756
GQ368663
...

Base composition:
a c g t

0.315 0.186 0.239 0.260
(Total: 585.85 kb)
> H1N1.DATA <- read.csv("pdH1N1-data.csv", as.is = TRUE)
> str(H1N1.DATA)
’data.frame’: 433 obs. of 6 variables:
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ HA.acc.nb: chr "GQ243757" "GQ160611" "GQ243751" "GQ243761" ...
$ NA.acc.nb: chr "GQ243758" "GQ160610" "GQ243752" "GQ243762" ...
$ longitude: num 131 153 145 145 116 ...
$ latitude : num -12.4 -27.5 -37.8 -37.8 -31.9 ...
$ date : chr "2009-05-29" "2009-05-07" "2009-05-19" "2009-05-21" ...

We can check that the labels of both sequence data sets and those in the data
table are the same:
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> all(labels(H1N1.HA) == H1N1.DATA$HA.acc.nb)
[1] TRUE
> all(labels(H1N1.NA) == H1N1.DATA$NA.acc.nb)
[1] TRUE

We are thus sure that the different data sets are in the same order. We finally
return to the original directory:

> setwd(odir)

4.4.5 Jaguar Microsatellites
The jaguar (Panthera onca) is an apex predator in Central and South Amer-
ica, and has therefore a crucial function in natural and human-modified
ecosystems. Haag et al. [103] studied four populations of jaguar in Southeast
Brazil in the highly fragmented Atlantic Forest. They genotyped 59 individ-
uals with 13 microsatellites using samples from feces. The original data file
(in Excel) is available from Dryad.7 There is a vignette in pegas that ex-
plains the procedure to read this file, so that this is not repeated here (see
vignette("ReadingFiles") in R). These data are also provided with pegas
ready for analyses, and we will use these here:

> library(pegas)
> data(jaguar)
> jaguar
Allelic data frame: 59 individuals

13 loci
1 additional variable

> names(jaguar)
[1] "FCA742" "FCA723" "FCA740" "FCA441"
[5] "FCA391" "F98" "F53" "F124"
[9] "F146" "F85" "F42" "FCA453"
[13] "FCA741" "population"

4.4.6 Bacterial Whole Genome Sequences
Helicobacter pylori lives in the stomach and the duodenum of more than half
of the world human population, making it the most frequent infectious agent
of humans, and is involved in the development of several cancers [116]. Thorell
et al. [276] studied the geographical variation in different populations of H.
pylori in the Americas. They provide several files on Dryad8 including one
with the alignment of 402 complete genomes:

7https://doi.org/10.5061/dryad.1884
8https://doi.org/10.5061/dryad.8qp4n

https://doi.org/10.5061/dryad.8qp4n
https://doi.org/10.5061/dryad.1884
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> HP <- read.FASTA("BIGSdb_gene-by-gene_alignment.fasta")
> HP
402 DNA sequences in binary format stored in a list.

All sequences of same length: 1721740

Labels:
637_26695_Tomb
638_Puno135
639_Gambia94_24
640_B45
641_52
645_35A
...

More than 10 million bases: not printing base composition
(Total: 692.14 Mb)

We note the relatively small size of the genome for a bacterium (1.7 Mb).

4.4.7 Metabarcoding of Fish Communities
Deiner et al. [53] developed an approach based on environmental DNA (eDNA)
to study fish community compositions in North America. They sampled water
from four sources:

1. A mesocosm experiment with even abundances of eight species of
fish and one species of frog (labelled ‘EH’ here);

2. A mesocosm experiment with skewed abundances of the same nine
species (‘SH’);

3. A mixture of DNA extracted from six Indo-Pacific marine fishes
(‘Mock’);

4. Samples from the Juday Creek water stream (Indiana, USA) (‘JC’).

DNA was extracted and amplified with PCR using primers designed from
mtGenomes of Actinopterygii in order to amplify the complete mtGenomes
present in the samples. The PCR products were sequenced with an Illumina
MiSeq platform and mapped to the reference mtGenomes of 24 species ex-
tracted from GenBank.

The authors provide several files on Dryad9 including the five ones that we
will use here: four SAM files with the mapped reads and one FASTA file with
the reference genomes. For commodity, the file names are stored in character
vectors as follows:

9https://doi.org/10.5061/dryad.q5gg0

https://doi.org/10.5061/dryad.q5gg0
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Table 4.4
Sizes of the four SAM files on fish metabarcoding

File Number of reads Size
EH.sam 252,453 309 MB
SH.sam 252,492 314 MB
Mock.sam 1,029,085 1.4 GB
JC.sam 4,847,320 6.3 GB

> EH.sam <-
+ "Mesocosm_EH.aligning.unique.sorted.MarkedDuplicates.sam"
> SH.sam <-
+ "Mesocosm_SH.aligning.unique.sorted.MarkedDuplicates.sam"
> Mock.sam <- "Mock.aligning.unique.sorted.MarkedDuplicates.sam"
> JC.sam <-
+ "JudayCreek.aligning.unique.sorted.MarkedDuplicates.sam"
> ref.fas <-
+ "mitogenomes_all_corrected_reading_frame.v0301.fasta"

It is possible to check that all reads were matched with the reference
genomes (as mentioned in the text accompanying the files and shown here
for the first SAM file):

> library(Rsubread)
> propmapped(EH.sam)
Samples NumTotal NumMapped PropMapped

1 EH.sam 252453 252453 1

Table 4.4 gives a summary of the quantity of data in the SAM files. The
FASTA file has 24 mtGenomes with species names and GenBank accession
numbers as labels:

> ref <- read.FASTA(ref.fas)
> ref
24 DNA sequences in binary format stored in a list.

Mean sequence length: 16619.88
Shortest sequence: 16484
Longest sequence: 16954

Labels:
Ambloplites_rupestris_KY660677
Etheostoma_caeruleum_KY660678
Amphiprion_ocellari_NC009065
Campostoma_anomalum_KP013113
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Table 4.5
Species compositions of the fish experimental mesocosm (EH and SH) and
mock communities (source: [53]).
Species EH and SH Mock
Ambloplites rupestris
Amphiprion ocellari ×
Campostoma anomalum ×
Catostomus commersonii ×
Centropyge bispinosa ×
Cottus bairdii
Cyprinus carpio ×
Ecsenius bicolor ×
Etheostoma caeruleum
Etheostoma nigrum
Fundulus notatus ×
Gambusia holbrooki ×
Lepomis cyanellus
Lepomis macrochirus ×
Macropharyngodon negrosensis ×
Micropterus dolomieu
Micropterus salmoides
Oncorhynchus mykiss
Pimephales promelas ×
Pseudanthias dispar ×
Rhinichthys atratulus
Salarias fasciatus ×
Salmo trutta
Semotilus atromaculatus ×

Catostomus_commersonii_KP013114
Centropyge_bispinosa_NC028287
...

Base composition:
a c g t

0.279 0.283 0.170 0.268
(Total: 398.88 kb)

Table 4.5 lists the fish species included in the experimental communities
and the mock sample.
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4.5 Exercises
1. Simulate 1,000,000 standard normal variates and select only the

positive values using either logical indexing or numeric indexing.
Compare and discuss the respective advantages of each approach.

2. Take the variates simulated at the first question and find how many
satisfy the following inequalities:

(a) x < −1.96,
(b) x > 1.96,
(c) −1.96 ≤ x ≤ 1.96.
To answer question (c), you may either use the results from ques-
tions (a) and (b), or combine logical operations in a single command.

3. Compare the operators [, [[, and $. Find the major difference be-
tween the last two.

4. What are the difference between the operators $ and @?
5. Vectors and lists in R are basically similar. Can you demonstrate

this statement with the operator [?
6. Try the command match(LETTERS, letters) and explain the out-

put. How would you use the option nomatch in this context?
7. Print the code of the operator %in%. Compare with the previous

question.
8. Compare the two commands 1 > 0 + 1 and (1 > 0) + 1. Com-

ment on: (a) priority of operators, and (b) coercion.
9. Convert the data created to answer Question 3 on page 71 from

the class "loci" to the class "genind". Check whether the same
genotypes are observed in both objects.

10. Convert the data jaguar from the class "loci" to the class
"genind" and back to the class "loci". Is the final object iden-
tical to jaguar? Find the option of loci2genind to make them
identical.
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5
Data Exploration and Summaries

Exploring data is an indispensable step before conducting model fitting or
tests of hypotheses. It helps to assess the proportions of missing data, sample
sizes per group, or the main patterns of variation in the data. Experience—
and patience—are important during data exploration since some insights can
be revealed by carefully looking at different facets of the data. All methods
discussed below work well with big data sets and are illustrated below with
small data sets to show some details of how they work.

5.1 Genotype and Allele Frequencies
With allelic data, the first step of data exploration is to examine genotype
and allele frequencies: these can be calculated in a straightforward way with
the summary method for "loci" objects. We illustrate how it works with a
small artificial data set mixing phased and unphased genotypes:

> X <- as.loci(data.frame(L1 = c("A/A", "A/A", "G|A"),
+ L2 = c("C/C", "C/T", "T|C")))
> s <- summary(X)
> s
Locus L1:
-- Genotype frequencies:
A/A G|A
2 1

-- Allele frequencies:
A G
5 1

Locus L2:
-- Genotype frequencies:
C/C C/T T|C
1 1 1

-- Allele frequencies:
C T
4 2

93
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The output is a list with the genotype and allele frequencies for each locus:

> str(s)
List of 2
$ L1:List of 2
..$ genotype: Named int [1:2] 2 1
.. ..- attr(*, "names")= chr [1:2] "A/A" "G|A"
..$ allele : Named num [1:2] 5 1
.. ..- attr(*, "names")= chr [1:2] "A" "G"

$ L2:List of 2
..$ genotype: Named int [1:3] 1 1 1
.. ..- attr(*, "names")= chr [1:3] "C/C" "C/T" "T|C"
..$ allele : Named num [1:2] 4 2
.. ..- attr(*, "names")= chr [1:2] "C" "T"

- attr(*, "class")= chr "summary.loci"

The names of this list are the names of the loci, so that it is easy to extract
the frequencies for a specific locus:

> s[["L1"]]
$genotype
A/A G|A
2 1

$allele
A G
5 1

This list has a specific class and there is a plot method associated to it
(Fig. 5.1):

> class(s)
[1] "summary.loci"
> plot(s, layout = 4, col = c("grey", "white"))

adegenet has also a summary method which simply displays numbers and
heterozygosities:

> Xg <- loci2genind(X)
> summary(Xg)

// Number of individuals: 3
// Group sizes: 3
// Number of alleles per locus: 2 2
// Number of alleles per group: 4
// Percentage of missing data: 0 %
// Observed heterozygosity: 0.33 0.67
// Expected heterozygosity: 0.28 0.44
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Figure 5.1
Plot of allele and genotype frequencies.

Allele frequencies for data stored in GDS format (package SNPRelate) can
be calculated with snpgdsSNPRateFreq as shown on page 57.

The package snpStats has the function col.summary that returns the allele
and genotype frequencies.

5.1.1 Allelic Richness
In loci with more than two alleles, particularly microsatellites, we have to
consider the possibility that not all alleles present in the population are ob-
served in our sample. A general approach to this problem is provided by the
rarefaction plots initially developed to assess species’ richness in ecological
communities [123]. Given a sample of n among k different alleles, one can
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calculate the expected number of observed alleles with sample of sizes smaller
than n. This is implemented in the function rarefactionplot in pegas which
takes an object of class "loci" as main input and the option plot specifies
whether to do the graphic (TRUE by default).

If there are several populations, it is possible to assess how allelic richness
varies among them. The rarefaction index can be calculated for each of the K
populations and averaged (r̄) to compute the index [66]:

ρST = 1− r̄

K − 1 .

Foulley and Ollivier [79] used an “extrapolation” approach to calculate allelic
richness, R, in each population as:

Ri = ki +
∑

j∈Ai

(1− p̂j)ni i = 1, . . . ,K

where Ai is the set of alleles absent in population i, and ni is the sample size
in population i. Clearly, if an allele is observed in all populations, Ri = k.
The index ρST is then calculated as above replacing r̄ by R̄. The functions
allelicrichness and rhost in pegas implements these two methods (with
respect to the option method) as well as the raw (i.e., observed) number of
alleles (if method = "raw").

These functions are used below with the jaguar data (Sect. 5.7.5).

5.1.2 Missing Data
Missing data can be a source of confusion, particularly with allelic data which
can have several levels of complexity and where missing data can be coded in
different ways. pegas has a flexible framework with respect to missing data:
most of the time, data are read “as is” in files. For instance, take the following
snapshot from a hypothetical VCF file:

... ID REF ALT ... Id1 Id2 Id3 Id4

... L1 A T ... 0/0 0/. ./0 ./1

The dot ‘.’ codes for a missing allele in the VCF standard. However, after
reading the data with read.vcf, the allele coded ‘.’ will be processed in the
same way as the others:

> summary(dat)
Locus L1:
-- Genotype frequencies:
./A ./T A/A
2 1 1

-- Allele frequencies:
. A T
3 4 1
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The reason for this behavior is because missing alleles are coded in different
ways on different platforms; for instance, with microsatellites it is common
to use ‘0’. Several functions in pegas have the option na.alleles with the
default c("0", "."). This is the case of loci2genind:

> loci2genind(dat)
/// GENIND OBJECT /////////

// 1 individual; 1 locus; 1 allele; size: 5.7 Kb
....
Warning message:
In df2genind(as.matrix(x[, attr(x, "locicol"), drop = FALSE]), :
entirely non-type individual(s) deleted

This shows the behavior of adegenet which considers diploid individuals with
one missing allele as completely unknown. In this case, if we want to consider
‘.’ as a normal allele, we could use:

> loci2genind(dat, na.alleles = "")
/// GENIND OBJECT /////////

// 4 individuals; 1 locus; 3 alleles; size: 6.2 Kb
....
Warning message:
In df2genind(as.matrix(x[, attr(x, "locicol"), drop = FALSE]), :
character ’.’ detected in names of loci; replacing with ’_’

snpStats and SNPRelate behave in a way similar to adegenet: genotypes
with at least one missing allele are considered as completely unknown.
For instance, if we read the above VCF file with SNPRelate and then call
snpgdsSNPRateFreq:

> snpgdsSNPRateFreq(datsnp)
$AlleleFreq
[1] 1

$MinorFreq
[1] 0

$MissingRate
[1] 0.75

So, even if the allele ‘T’ was observed in the data, this is ignored here. Never-
theless, it is not clear whether this could be a potential issue with real data.
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5.2 Haplotype and Nucleotide Diversity
With aligned DNA sequences, data summaries are usually obtained by finding
the unique sequences in a data set, their frequencies, and the patterns of
variation among them.

5.2.1 The Class "haplotype"

A useful approach to summarize information from a set of sequences is to
first examine the sequences that are identical and calculate their frequencies.
pegas implements the class "haplotype" which works with different types of
sequence data. As a simple example, we use the object S created on page 53:

> h <- haplotype(S)
> h

Haplotypes extracted from: S

Number of haplotypes: 2
Sequence length: 2

Haplotype labels and frequencies:

I II
2 1

The class of the object returned is composite:

> class(h)
[1] "haplotype" "DNAbin"

This makes possible to apply a number of different functions depending on
the type of the sequences.

Missing data are treated as distinct variants and result in separate haplo-
types. For instance, suppose a site in an alignment shows for three sequences
A, G, and R (which happens if the base of the third sequence was ambigu-
ously identified). In that case, it is not possible to determine whether R was
actually A or G. In fact, ambiguous bases are often observed at polymorphic
sites.1 See below on how to drop haplotypes with missing data.

The objects with the class "haplotype" can be manipulated or analyzed
with several functions, all of them generic. The haplotype frequencies can be
extracted in a vector with:

1With mtDNA, an individual usually has a single haplotype in its cells, but sometimes
several haplotypes can be observed in the same individual (this is called heteroplasmy)
which could result in ambiguous sites during sequencing.
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> nh <- summary(h)
> nh
I II
2 1

The function sort sorts the haplotypes, by default in decreasing order of
their frequencies. There are several options to control how the haplotypes are
sorted: one of them is what which is equal to "frequencies" by default. The
other choice is "labels" to sort in alphabetical order of the labels. Thus, the
two following commands return the object h unchanged because it is already
sorted:

> sort(h)
....
> sort(h, what = "labels")
....

The option decreasing controls the sorting order, either with the frequencies
or with the labels:

> sort(h, decreasing = FALSE)

Haplotypes extracted from: S

Number of haplotypes: 2
Sequence length: 2

Haplotype labels and frequencies:

II I
1 2
> sort(h, what = "labels", decreasing = TRUE)

Haplotypes extracted from: S

Number of haplotypes: 2
Sequence length: 2

Haplotype labels and frequencies:

II I
1 2

The function subset makes possible to drop some haplotypes with respect
to their frequencies and/or the proportions of missing nucleotides: this is con-
trolled by different options. For instance, the haplotypes with a frequency less
than two are dropped with:
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> subset(h, minfreq = 2)

Haplotypes extracted from: S

Number of haplotypes: 1
Sequence length: 2

Haplotype labels and frequencies:

I
2

The other options are maxfreq (to drop haplotypes too abundant) and maxna
(to drop haplotypes with too many missing data). There is also a plot method
which displays the haplotype frequencies with a barplot (see Sect. 5.7.4).

We can examine the structure of h with str:

> str(h)
’haplotype’ raw [1:2, 1:2] a a a g
- attr(*, "dimnames")=List of 2
..$ : chr [1:2] "I" "II"
..$ : NULL

- attr(*, "index")=List of 2
..$ : int [1:2] 1 2
..$ : int 3

- attr(*, "from")= chr "S"

The attribute "index" is a list with two vectors showing that individuals 1
and 2 have the first haplotype, and individual 3 has the second haplotype.
The attribute "from" gives the name of the original set of sequences.

haplotype is a generic function and has four different methods:

> methods(haplotype)
[1] haplotype.character* haplotype.DNAbin*
[3] haplotype.loci* haplotype.numeric*
see ’?methods’ for accessing help and source code

For "loci" objects, the behavior is a bit different: it considers only phased
genotypes and drops individuals with at least one unphased genotype. The
output object is also different with the class "haplotype.loci" where the
haplotypes are arranged in columns, whereas they are as rows above. If we
try this method with the "loci" object X created at the beginning of this
chapter, we see that the unphased genotypes were ignored:

> hX <- haplotype(X)
Analysing individual no. 1 / 1
Warning message:
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In haplotype.loci(X) :
dropping 2 individual(s) out of 3 due to unphased genotype(s)

> hX
[,1] [,2]

L1 "G" "A"
L2 "T" "C"
attr(,"class")
[1] "haplotype.loci"
attr(,"freq")
[1] 1 1

We will return to the inference of haplotype frequencies with phased or
unphased genotypes in Chapter 6.

5.2.2 Haplotype and Nucleotide Diversity From DNA Se-
quences

After haplotypes have been extracted, haplotype diversity h can be calculated
with the classical formula by Nei and Tajima in 1981 [199]:

ĥ = n

n− 1

(
1−

n∑

i=1
p2
i

)
,

where pi is the proportion (relative frequency) of the ith haplotype, and n is
the number of haplotypes. This formula is derived from the one used to calcu-
late heterozygosity (p. 187). There is indeed an equivalence between haplotype
(or nucleotide, see below) diversity and heterozygosity: if two haplotypes are
chosen randomly from the n ones to make a diploid zygote, then the proba-
bility to select two different haplotypes (hence producing a heterozygote) is
equal to h. However, the above formula does not require diploid data (n is the
number of haplotypes). The variance of this estimate is given in a paper by
Nei [195]:

Var(ĥ) = α− α2 + 4(n− 1)(β − α2)
n(n− 1) ,

with α =
∑
i p

2
i and β =

∑
i p

3
i .

This is implemented in the function hap.div:

> hap.div(h, variance = TRUE)
[1] 0.66666667 0.07407407

This function is actually generic and also works with standard "DNAbin" ob-
jects, so the same result can be obtained with the original sequence data:

> hap.div(S, variance = TRUE)
[1] 0.66666667 0.07407407
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Nucleotide diversity was proposed in 1979 by Nei and Li [198] as a way
to measure the diversity within a sample using RFLP data. This was later
extended to DNA sequences [196]. The basic idea is to compute a quantity,
denoted as π, that measures the average difference of two sequences taken at
random in a population. If we have a sample of n individuals, and we can
calculate the proportion of sites that are different between two sequences for
all pairs i, j, denoted as di,j , then we can estimate π with:

π̂ = 2
n(n− 1)

n∑

i<j

dij . (5.1)

The quantity n(n− 1)/2 is the number of possible pairs among n sequences.
From this formula, π can be calculated from the frequencies of variant sites or
of haplotypes. For instance, if the haplotypes have been extracted and dij is
now the proportion of different sites between haplotypes i and j, then π can
be estimated with:

π̂ = 2
m∑

i<j

pipjdij , (5.2)

where m is the number of haplotypes (m ≤ n) and pi and pj are the propor-
tions of haplotypes i and j. If we denote the sequence length as L, the number
of variable sites as Λ (≤ L), the proportion of the ith variant at site j as fij ,
and λj as the number of variants at site j, then π is estimated with:

π̂ = n

n− 1
1
L

Λ∑

j=1


1−

λj∑

i=1
f2
ij


 .

This formula clarifies the relationship between nucleotide diversity and het-
erozygosity (see p. 187): π can be interpreted as the probability of obtaining
a heterozygote site after choosing randomly two sequences to make a diploid
zygote.

The function nuc.div in pegas is generic: it has methods for the classes
"DNAbin" and "haplotype" using either (5.1) or (5.2), respectively. We can
see that both give the same result with the small data sets created above:

> nuc.div(S)
[1] 0.3333333
> nuc.div(h)
[1] 0.3333333

The interpretation of π is similar to h since there is only one polymorphic
site out of two, hence the value of π̂ is half that of ĥ. The above formulas are
estimators of the actual nucleotide diversity (hence the hat above π), thus it
is possible to calculate its associated variance with:



Genetic and Genomic Distances 103

Var(π̂) = n+ 1
3(n− 1)Lπ̂ + 2(n2 + n+ 3)

9n(n− 1) π̂2.

This can be calculated with the option variance in nuc.div():

> nuc.div(x, variance = TRUE)
[1] 0.3333333 0.1728395

5.3 Genetic and Genomic Distances
Distances are important in data analysis because it is often possible to define
a distance between some types of variables which cannot be treated as quanti-
tative (e.g., psychological profiles, molecules). Standard distances such as the
Euclidean or the Manhattan distance (Fig. 5.2) are used in many different
fields. Furthermore, distances between molecular sequences (but also other
traits) can have an evolutionary interpretation if they are calculated properly.

In this section, we will see how distances between individuals can be cal-
culated. Distances among populations based on allele frequencies (e.g., Nei’s
distance) are not reviewed here: see the function dist.genpop in adegenet for
an implementation in R of these methods.

5.3.1 Theoretical Background
The distances presented in this section are based on two basic models. The
infinite-site model (ISM) was first introduced by Kimura in 1969 [143], which
assumes that each mutation introduces a new polymorphic site on a DNA
sequence. This can be a reasonable assumption if the mutation rate is low
and/or the population is small enough to eliminate alleles through the process
of drift.

The Markovian model assumes that a mutation changes the state of a site
during a very short time (so short that two mutations cannot occur simul-
taneously). The number of states can be finite (e.g., the four bases of DNA)
or infinite (or at least large; e.g., the number of repeats of a VNTR). In a
Markovian model, the transitions depend only on the current state.

5.3.2 Hamming Distance
The Hamming distance is a simple way to calculate a distance between two
vectors. It is based on counting the number of differences between two vectors
(or two sequences). It is an appropriate distance for sequences evolving under
the ISM. The function dist.hamming in pegas can be used with any kind
of matrices or data frames as long as the values can be compared with R’s
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Figure 5.2
Euclidean and Manhattan distances in two and three dimensions.

comparison operator ‘!=’. For instance, we calculate the Hamming distances
for the allelic data X created at the beginning of this chapter and the DNA
sequences S:

> dist.hamming(X)
1 2

2 1
3 2 2
> dist.hamming(S)

Ind1 Ind2
Ind2 0
Ind3 1 1

This function also works with sequences of numbers or characters. For
"DNAbin" objects, the Hamming distance is best calculated with the dist.dna
function (see next section).

In the case of allelic data (i.e., objects of class "loci"), the Hamming
distance counts simply the different genotypes over all loci, but it does not
say how much different two different loci are (unless all genotypes are haploid).
As can be seen above with the data X, the Hamming distances for the pairs
(1,3) and (2,3) are equal (see Sect. 5.3.4 below).
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5.3.3 Distances From DNA Sequences
The package ape has the function dist.dna to compute pairwise distances
from aligned DNA sequences. The option model (seventeen possible choices)
makes possible to compute a wide variety of distances. This actually imple-
ments two main categories of methods: evolutionary models of DNA evolution,
and counting some features from pairwise comparisons of DNA sequences (TS,
TV, . . . )

dist.dna implements the eleven models of DNA evolution with an an-
alytical formula for the distance available in the literature. The variance of
each pairwise distance can be calculated with the option variance = TRUE.
These models consider DNA evolution as a Markovian process so that the
changes (mutations or substitutions) are not observed. So, if we observe ‘A’
at a given site in a sequence from an individual and ‘G’ at the same site from
another individual, the evolutionary distance will take into account that the
mutation(s) at the origin of this polymorphism is (are) unobserved. Similarly,
if no polymorphism is observed at a site, this could be the result of either no
mutation or reverse mutation(s). This is why evolutionary distances are often
called “corrected distances” (a detailed treatment of the models implemented
in ape can be found in [211, Chap. 5]).

dist.dna can also compute the number of differences for each pair of
sequences either scaled by the sequence length (often called “uncorrected dis-
tances”) with model = "raw", or unscaled with model = "N" which is the
Hamming distance.

Evolutionary distances are crucial when comparing sequences that have
diverged since a long time (typically more than one million years, but this
obviously depends on the rate of evolution). In populations within a species,
the DNA sequences have generally diverged more recently so that it is common
to use the Hamming distance. This also justifies some models such as the ISM
where each mutation introduces a new allele (i.e., there is no reverse mutation).

5.3.4 Distances From Allele Sharing
The typical situation in population genetics is that alleles are not characterized
at the DNA level so that a distance between two alleles can be simply defined
with a Hamming formula. Furthermore, genotypes are often diploid so that a
distance must take into account that two individuals may have some alleles
in common while their genotypes are different. Gao and Martin [92] reviewed
the approach based on allele sharing and proposed a formula for computing
the distance between two diploid genotypes i and j:

ASDij = 1
L

L∑

k=1
δijk, (5.3)
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where δijk ∈ {0, 1, 2} is the number of alleles shared between individuals i
and j at locus k, and L is the number of loci. This formula was developed for
SNPs but can also be applied to situations with more than two alleles.

The ASD (5.3) is implemented in the function dist.asd in pegas:

> dist.asd(X)
1 2

2 0.5
3 1.0 0.5

All genotypes must be diploid but may have any number of alleles.

5.3.5 Distances From Microsatellites
VNTRs (minisatellites and microsatellites) are challenging for computing dis-
tances because of their high mutation rates. A simple mutation model assumes
that an allele with x repeats can mutate into an allele with x − 1 or x + 1
repeats, so that a distance between two alleles with their difference in number
of repeats written |∆repeats| can be calculated with:

1− 2|∆repeats|.

Bruvo et al. [23] developed a very general approach using this model to
compute a distance between two individuals with any level of ploidy even if
the latter differs among individuals. This method considers all possible combi-
nations of alleles between each pair of genotypes before computing the above
distance. It is implemented in the function bruvo.dist in the package poppr.
We try it with a subset of the jaguar data (introduced in Sect. 4.4.5) keeping
only four individuals and one locus:

> data(jaguar)
> JAG2 <- jaguar[1:4, 2]
> print(JAG2, details = TRUE)

FCA723
bPon01 236/240
bPon02 232/236
bPon133 232/236
bPon134 232/232

We see that the second and third indidivuals have the same genotype and also
share an allele with the two others, but the first one is heterozygous while the
fourth one is homozygous. poppr requires a "genind" object and the number
of repeats for each locus. We must also specify the length of the nucleotide
pattern repeated in the microsatellite (replen):

> library(poppr)
> bruvo.dist(loci2genind(JAG2), replen = 4)
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bPon01 bPon02 bPon133
bPon02 0.375
bPon133 0.375 0.000
bPon134 0.625 0.250 0.250

Thus bPon134 appears closer to the two identical individuals because it is ho-
mozygous with an allele shared with them. The allele sharing distance appears
less informative in this situation:

> dist.asd(JAG2)
bPon01 bPon02 bPon133

bPon02 1
bPon133 1 0
bPon134 2 1 1

5.4 Summary by Groups
An important step in exploratory analyses is to assess how summaries vary
among groups defined by populations, localities, or any other grouping vari-
ables.

by is a generic function that performs summary statistics on a data frame
or other data structures. There is a method for "loci" objects in pegas. By
default, this function calculates allele frequencies for each population in the
data; this default can be changed with the option FUN. We try it with the data
X created above to which we append a population column:

> X$population <- factor(paste0("Pop", c(1, 1, 2)))
> X
Allelic data frame: 3 individuals

2 loci
1 additional variable

> print(X, details = TRUE)
L1 L2 population

1 A/A C/C Pop1
2 A/A C/T Pop1
3 G|A T|C Pop2

By default, by() uses the column named population from the object given
as first argument:

> by(X)
$L1

A G
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Pop1 4 0
Pop2 1 1

$L2
C T

Pop1 3 1
Pop2 1 1

The option INDICES allows the user to use a different grouping factor.
A difficulty with group comparisons is when they are based on pairwise

distances. In this situation each distance is calculated from two observations
either from the same group or from two different groups. In fact, it is straight-
forward to find these two kinds of distances from a matrix using the outer
function. Suppose there are four observations: two from a group (pop1) and
two others from a second group (pop2) and suppose membership is coded in
a factor gr such as:

> gr <- gl(2, 2, labels = paste0("pop", 1:2))
> gr
[1] pop1 pop1 pop2 pop2
Levels: pop1 pop2

We then create a matrix of logical values with:

> o <- outer(gr, gr, "==")
> o

[,1] [,2] [,3] [,4]
[1,] TRUE TRUE FALSE FALSE
[2,] TRUE TRUE FALSE FALSE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE FALSE TRUE TRUE

This matrix stores TRUE if a comparison has been made between two observa-
tions from the same group, and FALSE otherwise. We can then use the matrix
o to select the intra- or inter-group distances which are stored in a matrix,
say D, with, respectively:

D[o]
D[!o]

In the first command, this will also return the diagonal elements of D (because
an observation is in the same group as itself). If these pairwise distances
calculated are stored in a "dist" object (see p. 48), then we should use only
the lower triangle of o:

> o[lower.tri(o)]
[1] TRUE FALSE FALSE FALSE FALSE TRUE
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There are indeed only two intra-group comparisons in this case (1 vs. 2 and 3
vs. 4). The approach can be easily generalized to find only some comparisons
or distances. For instance within the first group:

> o <- outer(gr, gr, function(x, y) x == "pop1" & y == "pop1")
> o[lower.tri(o)]
[1] TRUE FALSE FALSE FALSE FALSE FALSE

Finally, we can generalize the above by building a function that returns the
indices for a specific kind of comparisons or distances as a matrix or as a
vector (the two arguments g1 and g2 could be the same value):

> foo <- function(gr, g1, g2, matrix = TRUE) {
+ o <- outer(gr, gr, function(x, y)
+ x == g1 & y == g2 | x == g2 & y == g1)
+ if (matrix) return(o)
+ o[lower.tri(o)] | o[upper.tri(o)]
+ }

For instance, if we want to find in a matrix the indices of the distances calcu-
lated between an individual from ‘pop1’ and an an individual from ‘pop2’:

> foo(gr, "pop1", "pop2")
[,1] [,2] [,3] [,4]

[1,] FALSE FALSE TRUE TRUE
[2,] FALSE FALSE TRUE TRUE
[3,] TRUE TRUE FALSE FALSE
[4,] TRUE TRUE FALSE FALSE

And similarly of the distances are stored in a "dist" object:

> foo(gr, "pop1", "pop2", matrix = FALSE)
[1] FALSE TRUE TRUE TRUE TRUE FALSE

Obviously, we had this result above but the function foo will work if there
are more than two populations or groups in gr.

A matrix of logical values can be given to the function which introduced
in Section 4.1.4 using the option arr.ind = TRUE so that the output will be a
matrix with two columns giving the indices (rows and columns) of the entries
that are equal to TRUE:

> which(foo(gr, "pop1", "pop2"), arr.ind = TRUE)
row col

[1,] 3 1
[2,] 4 1
[3,] 3 2
[4,] 4 2



110 Data Exploration and Summaries

[5,] 1 3
[6,] 2 3
[7,] 1 4
[8,] 2 4

We also mention here the two functions pairDist and pairDistPlot in
adegenet that plot a summary of the distances for all pairs of groups.

5.5 Sliding Windows
Smoothing methods have a long history in statistics and have resulted in
sophisticated methods, most of them being implemented in R. One of them is
the running median where each data point is replaced by the median over k
points, k being an odd value (Fig. 5.3):

> y <- rnorm(800, rep(0:1, each = 400))
> plot(y, type = "l")
> lines(runmed(y, k = 201), type = "l", lwd = 3, col = "grey")
> legend("topleft", legend = c("y", "runmed(y, k = 201)"),
+ lwd = c(1, 3), col = c("black", "grey"))

In this example, the shift in the mean of the simulated values (from 0 to
1) is equal to their standard-deviation (σ = 1 by default in rnorm), so that
this shift is not obvious with the raw values. See ?runmed and links to other
functions for more sophisticated methods.

5.5.1 DNA Sequences
pegas has the generic function sw (sliding window) for calculating summary
statistics over a matrix with possibly overlapping windows (Fig. 5.4). The
default options for "DNAbin" objects are:

sw(x, width = 100, step = 50, FUN = GC.content,
rowAverage = FALSE, quiet = TRUE)

where width is the size of the windows, step is the shift of two successive
windows, FUN is the function to apply to each window, and rowAverage is a
logical value specifying whether to calculate the statistics over all rows (and
then returning a vector) or not (the default). The option quiet = FALSE
makes possible to follow the progress of the calculations. Below are a few
examples with the woodmouse data in ape:

> data(woodmouse)
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Figure 5.3
Smoothing a random series with the running median method.

> sw(woodmouse)
[1,100] [51,150] [101,200] [151,250] [201,300] ....

No305 0.3877551 0.40 0.3900000 0.3900000 0.36
No304 0.3800000 0.39 0.3800000 0.3800000 0.35
No306 0.3700000 0.39 0.3800000 0.3800000 0.35
No0906S 0.3700000 0.38 0.3800000 0.3800000 0.35
....
> sw(woodmouse, rowAverage = TRUE)
[1,100] [51,150] [101,200] [151,250] [201,300] [251,350]

0.3793103 0.3980000 0.3829219 0.3855904 0.3566667 0.3386667
[301,400] [351,450] [401,500] [451,550] [501,600] [551,650]
0.3866667 0.3620574 0.3820975 0.4186667 0.3900000 0.4206667
[601,700] [651,750] [701,800] [751,850] [801,900] [851,950]
0.3526667 0.3446667 0.4419226 0.4299065 0.3920000 0.4026667
[901,965]
0.4222462
attr(,"class")
[1] "sw"
> sw(woodmouse, 200, 200, rowAverage = TRUE)
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Figure 5.4
The sliding window method, here with width w = 5 and step s = 2.

[1,200] [201,400] [401,600] [601,800] [801,965]
0.3811462 0.3716667 0.3860527 0.3972648 0.4035449
attr(,"class")
[1] "sw"

Note that sw truncates the last window which has 165 columns instead of 200.
There is a plot method that uses the (col)names of the output to scale the
x-axis (Fig. 5.5):

> sw.wood <- sw(woodmouse, rowAverage = TRUE)
> plot(sw.wood, show.ranges = TRUE, col.ranges = "black",
+ ylab = "GC content")

The default label under the x-axis can be modified, as well as most graphi-
cal parameters, with the option xlab. The option x.scaling (1 by default)
changes the order of magnitude of the x-axis; for instance, setting x.scaling
= 1e6 (and xlab = "Position (Mb)") may be useful with long sequences.

5.5.2 Summaries With Genomic Positions
With DNA sequences, the positions of all sites, variable or not, is known
implicitly. This is not the case with genomic data for instance from a VCF
file where only the variable sites are stored. In that case, sliding window sum-
maries must take into account the positions of these sites. There is a “default”
sw method that calculates summaries from a vector of values. Typically, this
vector comes from a genome scan (see the following chapters). The options of
this default method are:
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Figure 5.5
Plot of results from sw showing the proportions of GC calculated with the
woodmouse data. The horizontal segments show the genomic extents used to
calculate the summaries.

sw(x, width = 100, step = 50, POS = NULL, FUN = mean,
out.of.pos = NA_real_, na.rm = TRUE, L = NULL, ...)

POS is a vector of positions of the values stored in x. FUN is as before, and the
two following options specify how this function should treat values that are
not in x. Note that the function given as FUN must have an option na.rm (see
?mean). However, it is possible to use a function which has not this option,
say foo, by inserting it in a call to function: FUN = function(x, na.rm =
NULL) foo(x). Finally, L is the total length of the chromosome: if not given
by the user, it is taken from the largest value in POS or the length of x if POS
is not given as well.

5.5.3 Package SNPRelate
SNPRelate has its own function for sliding windows: snpgdsSlidingWindow.
The logic is the same as with sw while the options have slightly different
names. For instance, we can try the function with the small data set created
previously (p. 57):

> snpgdsSlidingWindow(samp, winsize = 1, shift = 1,
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+ FUN = function(...) NULL)
Sliding Window Analysis:
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
Working space: 2 samples, 2 SNPs

using 1 (CPU) core
window size: 1, shift: 1 (basepair)

Chromosome Set: 1
Fri Jun 21 16:05:50 2019, Chromosome 1 (2 SNPs), 3 windows
Fri Jun 21 16:05:50 2019 Done.
$sample.id
[1] "X" "Y"

$snp.id
[1] 1 2

$chr1
$chr1[[1]]
NULL

$chr1.num
[1] 1 0 1

$chr1.pos
[1] 3 NaN 5

$chr1.posrange
[1] 3 5

The function used here returns the number of SNPs in each window. There
are several options to select some of the data with different criteria.

5.6 Multivariate Methods
Multivariate methods handle a large number of variables (p) with the general
objective to find a small number of new variables, say q with q << p. Often
q = 2 or 3 for a graphical display of the results. There are different ways of
looking at multivariate methods; one of them is with respect to their specific
objectives:

• The new variables summarize the information contained in the original vari-
ables.
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• The new variables discriminate groups in the observations that are known,
or not, beforehand.

• The new variables characterize the relationships with other variables (e.g.,
environmental variables).

The present sections focuses on methods with the first objective; methods
with the second objective are treated in Section 7.4 and we will see a method
with the third objective in Section 10.2.2. Another way to look at multivariate
methods is by grouping them in three broad categories based on the input data
and the main output:

• The new variables are continuous and (usually linear) combinations of the
original variables.

• The new variables are continuous and derived from the pairwise distances
among observations calculated from the original variables.

• The new variables define a structure: classification, tree, network, . . .

Figure 5.6 illustrates these three categories with a simple simulated data set.
With genetic or genomic data, multivariate methods are very attractive

because of the possibility to calculate various distances. Furthermore, allelic
data can be defined as quantitative variables by counting the number of alleles
in a genotype: an allele is present in zero or one copy in a haploid genotype,
in zero, one, or two copies in a diploid genotype, and so on (Fig. 5.7). When
the loci are all biallelic and the genotypes all diploid, this can be simplified
with a single column for each locus with the values 0, 1, or 2.

5.6.1 Matrix Decomposition
Matrix decomposition covers a wide range of mathematical methods with dif-
ferent objectives, one of particular interest here is to solve a system of equa-
tions. Several of these methods are important in computational statistics (e.g.,
the QR decomposition to fit linear regression models). We review here three
approaches that are particularly relevant to find the q variables summarizing
the p original ones.

5.6.1.1 Eigendecomposition

The most common of these methods is eigendecomposition: it works with
square matrices only. Consider the matrix on the right-hand side of Fig. 5.7
and denote it as X. Because X has n rows and p columns, we cannot decom-
pose it directly, instead we first calculate its variance-covariance matrix which
we denote as Σ. This matrix is a legitimate candidate for decomposition be-
cause it stores information on the redundancy of the columns of X. In other
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X <- matrix(rnorm(40), 10, 4)
rownames(X) <- LETTERS[1:nrow(X)]
colnames(X) <- letters[1:ncol(X)]

d <- dist(X)

pca <- prcomp(X)
biplot(pca)

mds <- cmdscale(d)
plot(mds, type = "n")
text(mds, labels=rownames(X))

hc <- hclust(d)
plot(hc)
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1Figure 5.6
The three main categories of multivariate methods illustrated on a small sim-
ulated data set with n = 10 observations and p = 4 variables. The plots are,
from left to right, a principal component analysis (PCA), a multidimensional
scaling (MDS), and a hierarchical clustering.

words, two variables in X with a large covariance in Σ can be replaced by a
single variable. The matrix decomposition can be written as:2

Σv = λv, (5.4)

where v is a vector (i.e., a single-column matrix) and λ is a single value (a
scalar). In matrix calculus the order of the terms is important, so we cannot
divide both sides by v. Indeed, the number of columns of Σ (p) must be equal
to the number of rows of v, and since v has one column, the results has p rows
and one column. Quite obviously, there are several values satisfying (5.4), and
the general solution can be written in matrix form as Σ = V ΛV −1, where
the columns of V are the different vectors v (called eigenvectors) and Λ is a
diagonal matrix with the values of λ (called eigenvalues):

2Σ is here the uppercase version of σ, not the symbol for a sum (
∑

).
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Locus1 Locus2 . . .
Ind1 A/G C/C
Ind2 A/A C/C
Ind3 G/G C/T
...

Locus1 Locus2 . . .
A G C T

Ind1 1 1 2 0
Ind2 2 0 2 0
Ind3 0 2 1 1
...

Figure 5.7
Example of preparing the matrix for a principal component analysis with
diploid genotypes each with two alleles. The number of columns p is the sum
of the number of alleles over all loci.

Λ =




λ1 0 0 . . .
0 λ2 0
0 0 λ3
... . . .


.

The values of λ give the variances in the new coordinate system (X is usually
scaled to have its variances equal to one, but we ignore this detail here). The
eigenvectors are all we need to calculate the new coordinates with XV which
outputs a matrix with n rows and p columns. In most applications, we are
interested in the first few columns.

5.6.1.2 Singular Value Decomposition

Another common method for matrix decomposition is the singular value de-
composition (SVD). By contrast to eigendecomposition, the input matrix is
not required to be square, thus it is possible to decompose directly the matrix
X which is done by solving:

X = UDW ∗.

D is a diagonal matrix with the singular values of X on its diagonal, U is a
square matrix of dimension n × n containing the left singular vectors of X,
and W is a square matrix of dimension p × p containing the right singular
vectors of X.3 The new coordinates are calculated with XW , and the singular
values give their variances.

3W ∗ denotes the conjugate transpose of W : it is either simply the transpose WT if W
has no complex values, or the transpose with the conjugate of the complex values where
their imaginary parts are of the opposite sign.
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5.6.1.3 Power Method and Random Matrices

With a large number of variables p, matrix decomposition can be very chal-
lenging, particularly for eigendecomposition because it requires inverting the
matrix V which is notoriously difficult. Furthermore, eigendecomposition re-
quires computing the variance-covariance which may require storing a very
large square matrix if there are many variables.

There are several algorithms to perform the decomposition of very large
matrices. The power method is based on calculating a limited number of eigen-
vectors and eigenvalues. The eigenvalues being measures of the variance on
the new coordinates, we can write λ = ‖Σv‖2, and substituting in (5.4), we
have:

Σv
‖Σv‖2

= v.

The interesting thing is that if v on the left-hand side is not the correct
eigenvector, the vector output on the right-hand side will be closer to the true
eigenvector. This leads to the iterative estimation:

v(i+1) = Σv(i)

‖Σv(i)‖2
,

which can converge with a few iterations even if v(0) is a random vector. The
eigenvalue is then calculated with:

λ = vTΣv
vTv

.

These require only multiplications and additions, so this is easily implemented
with very large matrices. Halko et al. [106] reviewed several algorithms that
are able to perform decomposition of large matrices including with SVD. The
package RSpectra provides two functions, eigs and svds, that performs eigen-
decomposition and SVD by the power method including for sparse matrices.

5.6.2 Principal Component Analysis
Principal component analysis (PCA) is the main method to summarize infor-
mation in a data matrix. Table 5.1 lists several implementations of PCA in
R. princomp and prcomp are the functions used for basic data analyses. PCA
with SVD is usually more numerically stable than with eigendecomposition
and avoids calculating the covariance matrix [283]. PCA applied to genetic
data was first proposed by Menozzi et al. [186] and was recently reviewed by
Patterson et al. [219]. We see in this section how to perform PCA with genetic
or genomic data.

A common problem with PCA is linked to heterogeneous variances in
the data matrix X. A consequence of this phenomenon is that the variables
with the largest variances are likely to mask covariations among variables. A
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Table 5.1
Functions to perform principal component analysis in R
Function Package Method Typical limit on p
princomp stats eigendecomposition 1000
prcomp stats SVD 10,000
dudi.pca ade4 eigendecomposition 10,000
glPca adegenet eigendecomposition 100,000
pca LEA eigendecomposition 100,000
pcadapt pcadapt SVD 106

snpgdsPCA SNPRelate eigendecomposition/ 106

random matrices
flashpca flashpcaR random matrices 106

solution to this problem is to normalize the data before running the PCA—
although this is not a strict requirement. This is done by centering (subtracting
the mean) and scaling (dividing by the standard-deviation). With SNPs or
other biallelic loci, this can be done with the expected variance under genetic
drift [219], so the entries of X, xij , are replaced by:

xij − x̄j
pj(1− pj)

,

where x̄j is the mean of column j and pj is the proportion of one of the two
alleles for locus j.

5.6.2.1 adegenet

The matrix X can be created in an easy way with adegenet. As an example
we create a new data set Z with four individuals and four unphased genotypes
(we will use it again in the following chapters):

> Z <- data.frame(L1 = c("A/A", "A/A", "G/G", "G/G"),
+ L2 = c("A/A", "G/G", "A/A", "G/G"),
+ L3 = c("A/G", "A/A", "A/G", "G/G"),
+ L4 = c("A/G", "A/G", "A/G", "A/G"))
> Z <- as.loci(Z)
> Z.genind <- loci2genind(Z)

The slot @tab of the "genind" object is actually the matrix X:

> Z.genind@tab
L1.A L1.G L2.A L2.G L3.A L3.G L4.A L4.G

1 2 0 2 0 1 1 1 1
2 2 0 0 2 2 0 1 1
3 0 2 2 0 1 1 1 1
4 0 2 0 2 0 2 1 1
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We can analyze such a table with the function prcomp (as in Fig. 5.6), but
we use here dudi.pca from ade4 setting the options scannf = FALSE so that
the user is not asked for the number of PCs to keep and nf = 2 to keep two
PCs (otherwise the user is asked to enter them on the keyboard):

> pca.Z <- dudi.pca(Z.genind@tab, scannf = FALSE, nf = 2)
> pca.Z
Duality diagramm
class: pca dudi
$call: dudi.pca(df = Z.genind@tab, scannf = FALSE, nf = 2)

$nf: 2 axis-components saved
$rank: 3
eigen values: 3.414 2 0.5858
vector length mode content

1 $cw 8 numeric column weights
2 $lw 4 numeric row weights
3 $eig 3 numeric eigen values

data.frame nrow ncol content
1 $tab 4 8 modified array
2 $li 4 2 row coordinates
3 $l1 4 2 row normed scores
4 $co 8 2 column coordinates
5 $c1 8 2 column normed scores
other elements: cent norm

The main difference with the function in stats is the graphical display of the
results. The object output by dudi.pca has the class c("pca", "dudi") for
which there is a biplot method that displays the observations together with
the variables, as well as the eigenvalues in an inset (Fig. 5.8):

> biplot(pca.Z)

An examination of this small data shows that the results make sense in terms
of genetic proximity of the individuals. For instance, we can check that indi-
viduals 1 and 3 are indeed close:

> d.Z <- dist.asd(Z)
> d.Z

1 2 3
2 0.50
3 0.25 0.75
4 0.75 0.75 0.50

adegenet has also the function glPca that performs PCA on genlight
objects by eigendecomposition.
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Figure 5.8
Principal component analysis on four individuals, four loci, and eight alleles.

5.6.2.2 SNPRelate

SNPRelate has its own function to perform PCA on SNP data sets. In such
data, the two alleles are usually defined as “reference” and “alternate” (or
“minor”) alleles, so the matrix X can be coded with a single column for each
locus with the number of minor allele. For the data Z, the matrix would thus
be:

X =




0 0 1 1
0 2 0 1
2 0 1 1
2 2 2 1


,

which are actually the even columns of Z.genind@tab. These data were writ-
ten into a VCF file which was then converted into GDS format as explained
in Section 3.2.7 (not shown here). snpgdsPCA is then called to perform the
PCA on the GDS data:

> Zgds <- snpgdsOpen("Z.gds")
> pca2.Z <- snpgdsPCA(Zgds)
Principal Component Analysis (PCA) on genotypes:
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Excluding 0 SNP on non-autosomes
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
Working space: 4 samples, 4 SNPs

using 1 (CPU) core
PCA: the sum of all selected genotypes (0,1,2) = 16
CPU capabilities: Double-Precision SSE2
Wed Jun 26 15:50:26 2019 (internal increment: 121856)
[=====================================] 100%, completed in 0s
Wed Jun 26 15:50:26 2019 Begin (eigenvalues and eigenvectors)
Wed Jun 26 15:50:26 2019 Done.

The function prints a progress on the display which might be useful for large
data sets (there is an option verbose which is TRUE by default). The results
are stored in a standard list with the class "snpgdsPCAClass":

> pca2.Z
$sample.id
[1] "X" "Y" "Z" "W"

$snp.id
[1] 1 2 3 4

$eigenval
[1] 1.570820e+00 1.200000e+00 2.291796e-01 -2.775558e-17

$eigenvect
[,1] [,2] [,3] [,4]

[1,] 0.371748 0.5 0.601501 -0.5
[2,] 0.601501 -0.5 -0.371748 -0.5
[3,] -0.371748 0.5 -0.601501 -0.5
[4,] -0.601501 -0.5 0.371748 -0.5

$varprop
[1] 5.236068e-01 4.000000e-01 7.639320e-02 -9.251859e-18

$TraceXTX
[1] 40

$Bayesian
[1] FALSE

$genmat
NULL

attr(,"class")
[1] "snpgdsPCAClass"
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Figure 5.9
Principal component analysis with the same data as in Fig. 5.8 but using
SNPRelate.

snpgdsPCA has several options including algorithm to specify the method
used for matrix decomposition: it can be "exact" (the default) for eigende-
composition or "randomized" for random matrix-based decomposition. Other
options include autosome.only to analyse only loci on autosomes (TRUE by
default), maf to set a threshold to the minor allele frequency (none by de-
fault), and missing.rate for a threshold on the proportion of missing data
per locus.

There is a plot method for the output class (Fig. 5.9):

> plot(pca2.Z)

The layout of the points is very similar to the obtained with dudi.pca. This
plot method does not have many options but the results can be extracted
and plotted with standard graphical functions, for instance:

plot(pca2.Z$eigenvect[, 1:2], type="n", xlab="PC1", ylab="PC2")
text(pca2.Z$eigenvect[, 1:2], labels = pca2.Z$sample.id)

5.6.2.3 flashpcaR

flashpcaR has the function flashpca which performs PCA with the random
matrix method. The default options are:
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> library(flashpcaR)
> args(flashpca)
function (X, ndim = 10, stand = c("binom2", "binom", "sd", "center",

"none"), divisor = c("p", "n", "none"), maxiter = 100, tol = 1e-04,
seed = 1, block_size = 1000, verbose = FALSE, do_loadings = FALSE,
check_geno = TRUE, return_scale = TRUE)

where ndim is the number of dimensions to return, stand is the standard-
ization to use, divisor is the divisor of the eigenvalues, and other options
control the random matrix algorithm. The input data X must have values 0,
1, 2 if the default value of stand is used.

> res.flash <- flashpca(Z.genind@tab, ndim = 1)
> str(res.flash)
List of 5
$ values : num 2.62
$ vectors : num [1:4, 1] -0.372 -0.601 0.372 0.602
$ projection: num [1:4, 1] -0.601 -0.973 0.602 0.973
$ center : num [1:8] 1 1 1 1 1 1 1 1
$ scale : num [1:8] 0.707 0.707 0.707 0.707 0.707 ...
- attr(*, "class")= chr "flashpca"

There is no plot method, so the user has to use standard plotting functions
to display the results.

5.6.3 Multidimensional Scaling
Multidimensional scaling (MDS, also known as principal coordinates analysis,
PCoA or PCO) is performed by the decomposition of the matrix of pairwise
distances among observations, so this matrix is squared and can be decom-
posed by any of the method outlined in Section 5.6.1. The function cmdscale
in the package stats implements MDS by eigendecomposition; the output is
a simple matrix of coordinates. The function dudi.pco in ade4 implements
the same method and returns an object of class c("pco", "dudi"). MDS can
be performed on large data sets using flashpcaR after double-centering the
distance matrix [214].

We may use these distances to do an MDS and a hierarchical clustering,
and plot them together (Fig. 5.10):

> mds.Z <- cmdscale(d.Z)
> hc.Z <- hclust(d.Z)
> layout(matrix(1:2, 1))
> plot(mds.Z, type = "n")
> text(mds.Z, labels = 1:4)
> plot(hc.Z, hang = -1)
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Figure 5.10
MDS (left) and hierarchical clustering (right) on four individuals, four loci,
and eight alleles.

5.7 Case Studies
5.7.1 Mitochondrial Genomes of the Asiatic Golden Cat
We first read the file containing the aligned sequences (remember it is in XDR
format; see pp. 32 and 67):

> catopuma.ali <- readRDS("catopuma.ali.rds")

We check the quantity of missing data with base.freq and its option all set
to TRUE:

> base.freq(catopuma.ali, all = TRUE)
a c g t r

0.327210884 0.257232704 0.138315043 0.273196637 0.000000000
m w s k y

0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
v h d b n

0.000000000 0.000000000 0.000000000 0.000000000 0.004044731
- ?

0.000000000 0.000000000

There is 0.4% of N’s bases, and we can presume that this should not be
influential on the results. In order to confirm this presumption, we can plot
the alignment with image(catopuma.ali, "N"): this would show that 86%



126 Data Exploration and Summaries

of these N’s are found in two segments of 43 and 11 bases in all of the 40
sequences, se these will have no impact on subsequent analyses. The remaining
14% are spread throughout the alignment.

We then use haplotype to extract the unique sequences:

> h <- haplotype(catopuma.ali)
> nrow(h)
[1] 40
> nrow(catopuma.ali)
[1] 40

It appears that all sequences are unique. We remember from the data prepa-
ration that there are 226 variable sites, all of them being strict SNPs. We
extract the positions of these sites with seg.sites:

> ss.catopuma <- seg.sites(catopuma.ali)
> head(ss.catopuma)
[1] 17 86 268 389 814 839

Because these sequences diverged relatively recently, we expect that there
are few reverse mutations. We can check this by comparing the raw (uncor-
rected) pairwise distances with the distances calculated with an evolutionary
model such as Kimura’s K80 model [144] (Fig. 5.11):

> d.K80 <- dist.dna(catopuma.ali)
> d.raw <- dist.dna(catopuma.ali, "raw")
> plot(d.raw, d.K80)
> abline(0, 1)

There is indeed very little evidence of multiple mutations. This can be further
validated by comparing the distributions of both sets of distances:

> summary.default(d.K80)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0001302 0.0017608 0.0029383 0.0031411 0.0046436 0.0063537
> summary.default(d.raw)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001302 0.0017579 0.0029299 0.0031288 0.0046227 0.0063155

We note that all distances have been calculated (summary prints the number
of NA’s if any). We also visualize the distribution of the distances with hist
(Fig. 5.12):

> hist(d.raw)
> rug(d.raw)
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Figure 5.11
Comparison of raw and evolutionary pairwise distances for the Asiatic golden
cat data.

The fact that the distances are more or less spread suggest that it will likely
be easy to separate the haplotypes.

It is good to keep in mind that these analyses are exploratory and we
should not interpret them too much. Mutation rates are known to vary along
the mitochondrial genome, so the calculated pairwise distances are actually
average among different coding and non-coding sequences.

5.7.2 Complete Genomes of the Fruit Fly
We start by scanning the VCF file with VCFloci:

> fl <- "global.pop.GATK.SNP.hard.filters.V3.phased_all.pop.\
maf.05.recode.vcf.gz"
> info.droso <- VCFloci(fl)
Scanning file global.pop.GATK.SNP.hard.filters.V3.phased_all.\



128 Data Exploration and Summaries

Figure 5.12
Distribution of pairwise distances for the Asiatic golden cat data.

pop.maf.05.recode.vcf.gz
1600.114 Mb
Done.
> info.droso

CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
1 2L 5465 . C A -2 PASS . GT:DS:GP
2 2L 5933 . A T -2 PASS . GT:DS:GP
3 2L 5974 . C T -2 PASS . GT:DS:GP
4 2L 6079 . C T -2 PASS . GT:DS:GP
....
.....
1055815 3R 27894820 . C A -2 PASS . GT:DS:GP
1055816 3R 27895256 . G A -2 PASS . GT:DS:GP
1055817 3R 27895404 . A C -2 PASS . GT:DS:GP
1055818 3R 27897168 . A T -2 PASS . GT:DS:GP
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There are thus 1,055,818 loci. We can count how many loci there are on each
chromosome:

> table(info.droso$CHROM)

2L 2R 3L 3R X
224253 193676 214235 270619 153035

We can also find which of the loci are strict SNPs:

> SNP <- is.snp(info.droso)
> table(SNP)

FALSE TRUE
7905 1047913

These numbers match with those reported by Kao et al. (see Sect. 4.4.2). We
then read the file ‘geo_droso.txt’ and display its first six rows:

> geo <- read.delim("geo_droso.txt")
> head(geo)

ID Locality Region
1 13_29 Thomasville, GA SEU
2 13_34 Thomasville, GA SEU
3 20_17 Selba, AL SEU
4 20_28 Selba, AL SEU
5 21_36 Birmingham, AL SEU
6 21_39 Birmingham, AL SEU

We can compare the labels in the column ID with those in the VCF file and
check they are the same and in the same order:

> labs <- VCFlabels(fl)
> all(geo$ID == labs)
[1] TRUE

The column Region is similar to the population origin used by Kao et al.:

> table(geo$Region)

CAM CAR FRA RAL SEU WIN
10 12 20 33 11 35

Now we want to know what are the types of the loci that are not SNPs.
We first read them with read.vcf, get their alleles with getAlleles, and test
whether these are made of a single character or not:
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> nonsnp <- which(!SNP)
> droso.nonsnp <- read.vcf(fl, which.loci = nonsnp)
Reading 7905 / 7905 loci.
Done.
> a <- getAlleles(droso.nonsnp)
> a
$.
[1] "T" "C" "G"

$.
[1] "G" "T" "C"

$.
[1] "G" "T" "A"
....
> all(unlist(lapply(a, nchar)) == 1)
[1] TRUE

Thus, these 7905 loci are MNPs. We can count the number of loci with three
or four alleles using the function lengths (note the plural):

> table(lengths(a))

3 4
7878 27

It is possible to calculate the allele frequencies of these loci in each region:

> res <- by(droso.nonsnp, geo$Region)

The object res is a list with 7905 tables of allele frequencies. The names of
this list are taken from the ID column in the object info.droso and are thus
not informative in the present situation:

> unique(names(res))
[1] "."

We can replace these names with some that we create using the chromosome
and genomic position information:

> chr.nonsnp <- info.droso$CHROM[nonsnp]
> pos.nonsnp <- info.droso$POS[nonsnp]
> names(res) <- paste(chr.nonsnp, pos.nonsnp, sep = ".")
> res[1:3] # print the first three loci
$‘2L.131023‘

C G T
CAM 6 0 14
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CAR 11 0 13
FRA 7 0 33
RAL 13 6 47
SEU 1 0 21
WIN 8 7 55

$‘2L.134948‘
C G T

CAM 5 12 3
CAR 1 22 1
FRA 1 38 1
RAL 5 58 3
SEU 2 17 3
WIN 3 59 8

$‘2L.155545‘
A G T

CAM 0 14 6
CAR 3 18 3
FRA 12 22 6
RAL 10 43 13
SEU 1 20 1
WIN 10 53 7

We can use the vector chr.nonsnp to look at the distribution of these loci
among the chromosomes:

> table(chr.nonsnp)
chr
2L 2R 3L 3R X

1789 1556 1634 1918 1008

We now turn to PCAs to have a global picture of the variation in this
data set. We first perform an analysis with all SNPs with SNPRelate; this
actually replicates a result from Kao et al. [139] but in a slightly different
form. We first convert the VCF file into the GDS format with snpgdsVCF2GDS
(see Sect. 3.2.7):

> library(SNPRelate)
> snpgdsVCF2GDS(fl, "drosoSNP.gds", method = "biallelic.only")
VCF Format ==> SNP GDS Format
Method: exacting biallelic SNPs
Number of samples: 121
Parsing "global.pop.GATK.SNP.hard.filters.V3.phased_all.pop.\
maf.05.recode.vcf.gz" ...
import 1047913 variants.
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+ genotype { Bit2 121x1047913, 30.2M } *
Optimize the access efficiency ...
Clean up the fragments of GDS file:

open the file ’drosoSNP.gds’ (32.4M)
# of fragments: 141
save to ’drosoSNP.gds.tmp’
rename ’drosoSNP.gds.tmp’ (32.4M, reduced: 1.4K)
# of fragments: 20

We then open the GDS file and call snpgdsPCA:

> snp.gds <- snpgdsOpen("drosoSNP.gds")
> pca.snp <- snpgdsPCA(snp.gds, autosome.only = FALSE)
Principal Component Analysis (PCA) on genotypes:
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
Working space: 121 samples, 1,047,913 SNPs

using 1 (CPU) core
PCA: the sum of all selected genotypes (0,1,2) = 190902050
CPU capabilities: Double-Precision SSE2
Sat Jun 29 12:09:24 2019 (internal increment: 4028)
[======================================] 100%, completed in 4s
Sat Jun 29 12:09:28 2019 Begin (eigenvalues and eigenvectors)
Sat Jun 29 12:09:28 2019 Done.

As common with genetic data, the plot of the explained variance by each PC
displays a substantial gap between the first PC and the others (Fig. 5.13):

> barplot(pca.snp$eigenval[1:10])

However, the proportions of variance are small, even for this first axis (6.5%):

> pca.snp$varprop
[1] 0.06505662 0.02210927 0.01959576 0.01639036 0.01539571
[6] 0.01332475 0.01210308 0.01138099 0.01122761 0.01107558
....

It is interesting to do another PCA but with the MNP loci which can be done
with the object droso.nonsnp as described above (Sect. 5.6.2.1):

> X <- loci2genind(droso.nonsnp)@tab
> dim(X)
Warning message:
In df2genind(as.matrix(x[, attr(x, "locicol"), drop = FALSE]),
duplicate labels detected for some loci; using generic labels

> dim(X)
[1] 121 23742
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Figure 5.13
Eigenvalues of the PCA performed on 1,047,913 SNPs of the fruit fly.

The matrix X has 23,742 columns and we can check that this matches the
number of alleles since we found previously that there are 7878 triallelic and
27 tetraallelic loci:

> 7878 * 3 + 27 * 4
[1] 23742

We then call dudi.pca:

> pca.nonsnp <- dudi.pca(X, scannf = FALSE, nf = 2)

The proportions of explained variance are close to the above values, even
slightly less for the first axis (5.7%)

> pca.nonsnp$eig/sum(pca.nonsnp$eig)
[1] 0.056866332 0.021763440 0.018793060 0.016406119
[5] 0.015426837 0.013373751 0.012134838 0.011481352

....

In order to assess the genetic variation related to each chromosome, we
perform a PCA using a subset of 10,000 loci for each of the five chromosomes.
We first prepare a list that will contain the outputs of each analysis:

> chromosomes <- sort(unique(info.droso$CHROM))
> pca <- vector("list", 5)
> names(pca) <- chromosomes
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We then write a loop for each chromosome where we identify the loci on the
chromosome (subx), get the indices of 10,000 loci regularly spaced (stored
in j), read the data from the VCF file and convert them into the "genind"
class, and finally perform the PCA with dudi.pca asking to output only two
principal components (PCs):

> for (chr in chromosomes) {
+ subx <- which(info.droso$CHROM == chr)
+ j <- subx[seq(1, length(subx), length.out = 1e4)]
+ dat <- loci2genind(read.vcf(fl, which.loci = j))
+ pca[[chr]] <- dudi.pca(dat@tab, scannf = FALSE, nf = 2)
+ }

The variance of the first ten PCs can be plotted together for each PCA
(Fig. 5.14):

> layout(matrix(1:6, 3, 2, byrow = TRUE))
> for (i in 1:5)
+ screeplot(pca[[i]], npcs = 10,
+ main = paste("Chromosome", chromosomes[i]), las = 1)

As observed before, the explained variance shows a gap for the first PC com-
pared to the others and the contrast is stronger for chromosome X.

5.7.3 Human Genomes
The human genome data are certainly among the most analyzed genomic data,
so the objective of this section is definitely to illustrate some of the methods
presented in this chapter. We first examine the numbers in each variable stored
in the data frame prepared in the previous chapter:

> DATA <- readRDS("DATA_G1000.rds")
> lapply(DATA, table)
$Sex

female male
1271 1233

$Population.code

ACB ASW BEB CDX CEU CHB CHS CLM ESN FIN GBR GIH GWD GWF GWJ
96 61 86 93 99 103 105 94 99 99 91 103 113 0 0
GWW IBS ITU JPT KHV LWK MSL MXL PEL PJL PUR STU TSI YRI
0 107 102 104 99 99 85 64 85 96 104 102 107 108

$Superpopulation.code
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Figure 5.14
PCAs performed on 10,000 loci for each chromosome of the fruit fly.

AFR AMR EAS EUR SAS
661 347 504 503 489

To keep things simple, we consider the mtGenome data and check that the
labels of the individuals stored in the VCF file match with those in the object
DATA:

> fl <- "ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz"
> labs <- VCFlabels(fl)
> length(labs)
[1] 2534

There are actually 30 more individuals in this data set than in DATA, so we
check that these 2534 individual labels are in the original table:

> all(labs %in% samples.info$Sample.name)
[1] TRUE
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We now scan the VCF file:

> info <- VCFloci(fl)
Scanning file ALL.chrMT.phase3_....genotypes.vcf.gz
19.88329 Mb
Done.
> info

CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
1 MT 10 . T C 100 fa VT=S;AC=3 GT
2 MT 16 . A T 100 fa VT=S;AC=3 GT
3 MT 26 . C T 100 fa VT=S;AC=3 GT
4 MT 35 . G A 100 fa VT=S;AC=2 GT
....
.....
3889 MT 16525 . A G 100 fa VT=S;AC=5 GT
3890 MT 16526 . G A 100 fa VT=S;AC=27 GT
3891 MT 16527 . C T 100 fa VT=S;AC=48 GT
3892 MT 16555 . T C 100 fa VT=S;AC=1 GT

There are 3892 variable sites and we can visualize their distribution on the
genome by using the default method of sw (Fig. 5.15):

> plot(sw(rep(1, nrow(info)), 200, 200, POS=info$POS, FUN=sum))

The trick here is to use FUN = sum and assign the value of one to each site so
that the output is the number of variable sites per segment of 200 bp.

We may also check the number of strict SNPs in the data:

> table(is.snp(info))

FALSE TRUE
305 3587

We then read the whole data and append two geographical variables for
later analyses:

> MITO <- read.vcf(fl, to = nrow(info))
Reading 3892 / 3892 loci.
Done.
> i <- match(row.names(MITO), samples.info$Sample.name)
> MITO$population <- samples.info$Population.code[i]
> MITO$Continent <- samples.info$Superpopulation.code[i]

We turn to PCA to summarize information in this data set and com-
pare the results using two approaches: a PCA by eigendecomposition with
dudi.pca and a PCA by SVD with prcomp. Before running the PCAs, we
convert the data into the class "genind" (setting ploidy = 1) and perform
the analyses on the tab slot:
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Figure 5.15
Density of variable sites along the human mitochondrial genome.

> g <- loci2genind(MITO, ploidy = 1)
> pca <- dudi.pca(g@tab, scannf = FALSE, nf = 2)
> pcasvd <- prcomp(g@tab, scale. = TRUE)

Note that we took care to set scale. = TRUE in the SVD-based PCA so the
data are centered and scaled (they are by default in dudi.pca; the results
would be substantially different without scaling). We may first have a look at
the explained variances by the first six PCs of each analysis:

> head(pca$eig/sum(pca$eig))
[1] 0.011159100 0.007935278 0.006707202 0.006219327
[5] 0.005141309 0.004636335
> head(pcasvd$sdev^2/sum(pcasvd$sdev^2))
[1] 0.011159100 0.007935278 0.006707202 0.006219327
[5] 0.005141309 0.004636335

These look identical and we may expect very similar plots. Instead of using
biplot which plots the individual and variable labels, we use the standard
plot function to obtain more readable plots (Fig. 5.16):

> layout(matrix(1:2, 1))
> plot(pca$li, cex = 0.5, main = "PCA with ade4")
> plot(pcasvd$x[, 1:2], cex = 0.5, main = "PCA by SVD")
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Figure 5.16
Simple biplots of the PCAs run with the human data.

The plots are indeed the same (remember that the signs of the PCs are arbi-
trary).

We close this part with another pair of graphs showing the distributions
of the contributions of the columns to the first axis (Fig. 5.17):

> hist(pca$co[, 1], 100, main = "ade4")
> hist(pcasvd$rotation[, 1], 100, main = "SVD")

These show clearly that only a small proportion of loci contribute to the overall
genetic variability in human populations.

5.7.4 Influenza H1N1 Virus Sequences
We first check the two alignments with the function checkAlignment:

> checkAlignment(H1N1.HA, plot = FALSE)

Number of sequences: 433
Number of sites: 1672

No gap in alignment.

Number of segregating sites (including gaps): 190
Number of sites with at least one substitution: 189
Number of sites with 1, 2, 3 or 4 observed bases:

1 2 3 4
1482 186 3 0
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Figure 5.17
Histograms of the variable contributions to the first principal component of
the PCAs run with the human data.

For this data set, the discrepancy between the number of segregating sites and
the number of sites with at least one substitution comes from the fact that
the second number does not consider base ambiguities.

> checkAlignment(H1N1.NA, plot = FALSE)

Number of sequences: 433
Number of sites: 1353

No gap in alignment.

Number of segregating sites (including gaps): 126
Number of sites with at least one substitution: 126
Number of sites with 1, 2, 3 or 4 observed bases:

1 2 3 4
1227 124 2 0

For both genes, there is no gap and almost all variable sites are strict SNPs,
expect three and two sites for HA and NA, respectively, which are MNPs with
three alleles. We then check the distribution of pairwise Hamming distances:

> summary.default(dist.dna(H1N1.HA, "N"))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.000 3.000 2.952 4.000 14.000

> summary.default(dist.dna(H1N1.NA, "N"))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 1.000 1.249 2.000 12.000
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Most distances are thus very short with more than 25% being zero for the
second gene. We now combine both matrices into a single alignment setting
the row names with the labels from the table (actually simply “1”, “2”, . . . ,
“433”):4

> X <- cbind(H1N1.HA, H1N1.NA, check.names = FALSE)
> rownames(X) <- H1N1.DATA$X
> X
433 DNA sequences in binary format stored in a matrix.

All sequences of same length: 3025

Labels:
1
2
3
4
5
6
...

Base composition:
a c g t

0.335 0.187 0.230 0.248
(Total: 1.31 Mb)

Before extracting the unique sequences, we check the quantity of missing data
with base.freq:

> base.freq(X, freq = TRUE, all = TRUE)
a c g t r m w s

438954 244771 300766 325288 24 5 0 0
k y v h d b n -
6 10 0 0 0 0 1 0
?
0

> h <- haplotype(X)
> h

Haplotypes extracted from: X

Number of haplotypes: 222
Sequence length: 3025

4cbind is a generic function: its method for the "DNAbin" has the option check.names
which is TRUE by default (see ?cbind.DNAbin for details).
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Haplotype labels and frequencies:

I II III IV V VI VII
1 10 1 1 1 3 2

VIII IX X XI XII XIII XIV
7 1 4 99 1 1 3
XV XVI XVII XVIII XIX XX XXI
2 1 1 1 1 6 4

XXII XXIII XXIV XXV XXVI XXVII XXVIII
2 1 1 1 4 1 1

XXIX XXX XXXI XXXII XXXIII XXXIV XXXV
1 1 3 1 2 1 1

XXXVI XXXVII XXXVIII XXXIX XL
1 2 1 1 1

...
(use summary() to print all)

Note that these are not real ‘haplotypes’ since the two genes are on two dif-
ferent chromosomes. These ‘haplotypes’ appeared to be in very different fre-
quencies. We do the same operation for each gene, sort them, and plot them
together (Fig. 5.18):

> h.NA <- sort(haplotype(H1N1.NA))
> h.HA <- sort(haplotype(H1N1.HA))
> layout(matrix(c(1, 3, 2, 3), 2, 2))
> plot(h.NA, las = 2, axisnames = FALSE, main = "NA")
> plot(h.HA, las = 2, axisnames = FALSE, main = "HA")
> plot(sort(h), las = 2, axisnames = FALSE, main = "Combined")

Something interesting comes from these graphics: for both genes there is one
haplotype present in high frequency (> 100) and a second one in moderate
frequency (40–50), while all the other haplotypes appeared in a frequency less
than 20. On the other hand, for the combined data, only a single ‘haplotype’
was present in high frequency and all the others were in low frequency. We
will come back on this result in the next chapter.

Finally, we display the temporal information together on a tree recon-
structed from the pairwise distances. The dates, which are stored as character
strings, are first transformed into the class "Date"; we also check that the
data are correctly ordered in the data frame with the dates and in the tree
(Fig. 5.19):

> d <- dist.dna(X)
> tr <- nj(d)
> dates <- as.Date(H1N1.DATA$date)
> str(dates)
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Figure 5.18
Haplotype frequencies with the H1N1 data.

Date[1:433], format: "2009-05-29" "2009-05-07" "2009-05-19" ...
> all(H1N1.DATA$X == tr$tip.label)
[1] TRUE
> plotTreeTime(tr, dates, color = FALSE, edge.width = 0.5)

5.7.5 Jaguar Microsatellites
A way to apprehend microsatellite data is to print the number of alleles, which
we expect to be fairly large for this type of locus:

> lengths(getAlleles(jaguar))
FCA742 FCA723 FCA740 FCA441 FCA391 F98 F53 F124

16 7 6 5 9 5 11 9
F146 F85 F42 FCA453 FCA741

5 14 10 6 4

There are also a lot of observed genotypes for each locus:

> lengths(getGenotypes(jaguar))
FCA742 FCA723 FCA740 FCA441 FCA391 F98 F53 F124

35 13 11 11 21 8 23 20
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Figure 5.19
Temporal distribution of 222 sequences of H1N1 viruses with their phyloge-
netic relationships.

F146 F85 F42 FCA453 FCA741
9 27 20 17 7

We then extract the frequencies of alleles and genotypes with summary, and
plot the allele frequencies on a single plot (Fig. 5.20):

> s <- summary(jaguar)
> plot(s, what = "alleles", layout = 16, col = "grey", las = 2)

The shapes of these distributions are typical of microsatellites because the
number of repeats seems to be constrained to be not too short or not too long
[97].

There is a population column:

> table(jaguar$population)

Green Corridor Morro do Diabo Ivinhema
18 8 10
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Figure 5.20
Allele frequencies from the jaguar data.

Porto Primavera
23

So we can calculate the allele frequencies for each population and print the
results for the first and the thirteenth loci (i.e., the loci with the largest and
smallest number of alleles, respectively):

> bypop <- by(jaguar)
> bypop[c(1, 13)]
$FCA742

0 142 146 150 152 154 156 158 160 162 164
Green Corridor 4 0 0 0 2 0 3 2 11 3 0
Morro do Diabo 0 1 0 0 0 0 0 10 0 0 0
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Ivinhema 0 2 1 1 0 1 0 7 2 0 2
Porto Primavera 0 4 6 0 1 5 0 10 4 0 5

166 170 172 180 188
Green Corridor 0 6 2 1 2
Morro do Diabo 3 0 0 0 2
Ivinhema 4 0 0 0 0
Porto Primavera 8 1 0 0 2

$FCA741
0 175 179 183

Green Corridor 3 8 20 5
Morro do Diabo 0 0 16 0
Ivinhema 0 12 7 1
Porto Primavera 0 21 20 5

It appears that a substantial number of alleles are absent from some popula-
tions.

We now do a PCA. Because there are more than two alleles for all loci,
we perform this analysis with prcomp (i.e., by SVD decomposition). We first
convert the data into "genind" and check the dimensions of the matrix:

> X <- loci2genind(na.omit(jaguar))
> dim(X@tab)
[1] 47 88

Because there are more columns than rows, princomp cannot be used. Note
that we used the function na.omit which drops all rows with at least one
missing value. This function has the option na.alleles = c("0", ".") so
the ‘0’ alleles were removed (see Sect. 5.1.2).

> acp.jaguar <- prcomp(X@tab, scaled. = TRUE)

The singular values are plotted with (Fig. 5.21):

> screeplot(acp.jaguar, npcs = 40)

For this SVD-based analysis, we have to square the values which are actually
returned as standard-deviations (see ?prcomp):

> vasr <- acp.jaguar$sdev^2
> vars/sum(vars)
[1] 1.390940e-01 9.958787e-02 7.882848e-02 7.249691e-02
[5] 5.841498e-02 4.950359e-02 4.625745e-02 4.028631e-02
....

The first two PCs explain almost 24% of the variance. Instead of using biplot
to display the individuals on these new coordinates, we use standard graphic
functions in order to show the population information:
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Figure 5.21
Singular values from PCA of the jaguar data with prcomp.

> pop <- jaguar$population
> plot(acp.jaguar.svd$x[, 1:2], asp = 1, pch = (1:4)[pop])
> legend("bottomleft", legend = levels(pop), pch = 1:4)

The rarefaction curve of each locus are plotted with (Fig. 5.23):

layout(matrix(1:15, ncol = 3, byrow = TRUE))
rarefactionplot(jaguar)

The allelic richnesses calculated by the extrapolation method show larger val-
ues than the observed richnesses:

> round(allelicrichness(jaguar), 1)
FCA742 FCA723 FCA740 FCA441 FCA391 F98 F53

Green Corridor 13.7 6.7 6.0 4.9 8.6 4.3 10.1
Morro do Diabo 7.3 3.6 3.8 3.7 5.8 3.3 5.7
Ivinhema 10.1 3.9 4.7 4.2 6.1 4.2 7.9
Porto Primavera 12.1 6.5 4.7 4.4 7.4 3.7 9.9

F124 F146 F85 F42 FCA453 FCA741
Green Corridor 8.5 4.1 13.3 9.5 6.0 4.0
Morro do Diabo 5.7 3.4 6.2 6.0 4.4 2.7
Ivinhema 6.6 3.4 7.5 5.0 4.6 3.2
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Figure 5.22
PCA of the jaguar data.

Porto Primavera 7.5 4.6 9.5 7.9 5.7 3.4
> allelicrichness(jaguar, method = "raw")

FCA742 FCA723 FCA740 FCA441 FCA391 F98 F53
Green Corridor 10 6 6 4 8 4 10
Morro do Diabo 4 2 3 2 4 3 4
Ivinhema 8 2 4 4 5 4 7
Porto Primavera 10 6 4 4 6 3 8

F124 F146 F85 F42 FCA453 FCA741
Green Corridor 8 4 12 9 6 4
Morro do Diabo 4 3 3 5 3 1
Ivinhema 6 3 6 3 3 3
Porto Primavera 7 4 7 6 5 3

The estimated values of ρST are slightly different depending on the method
used (the extrapolation method is the default):
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Figure 5.23
Rarefaction plots for thirteen microsatellite loci with the jaguar data.
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> rhost(jaguar)
FCA742 FCA723 FCA740 FCA441 FCA391 F98

0.1846344 0.6511533 0.6831464 0.7232569 0.5000337 0.7640041
F53 F124 F146 F85 F42 FCA453

0.3806827 0.4930452 0.7590793 0.3213005 0.4899983 0.6508319
FCA741

0.8047877
> rhost(jaguar, method = "rarefaction")

FCA742 FCA723 FCA740 FCA441 FCA391 F98
0.4166667 0.7500000 0.7291667 0.7916667 0.6041667 0.7916667

F53 F124 F146 F85 F42 FCA453
0.4791667 0.5625000 0.7916667 0.5000000 0.6041667 0.7291667

FCA741
0.8541667

5.7.6 Bacterial Whole Genome Sequences
We first check the proportions of bases and alignment gaps:

> round(base.freq(HP, all = TRUE), 4)
a c g t r m w s

0.2541 0.1454 0.1756 0.2270 0.0000 0.0000 0.0000 0.0000
k y v h d b n -

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.1977
?

0.0000

The alignment is too big to use functions such as checkAlignment or image
directly. So we use sw from pegas to perform smoothing window summaries,
for instance to calculate the proportion of gaps in non-overlapping windows
of 10,000 sites:

> HP <- as.matrix(HP)
> foo <- function(x) base.freq(x, all = TRUE)["-"]
> o4 <- sw(HP, width = 1e4, step = 1e4, FUN = foo)
> dim(o4)
[1] 402 173

The resulting matrix has thus 173 columns instead of 1.7 millions. The plot
can now be made with (Fig. 5.24):

> image(o4, col=grey((10:0)/10), axes=FALSE, xlab="Position (Mb)")
> at <- seq(0.2, 1.6, 0.2)
> axis(1, at = 1e6 * at/ncol(HP), labels = at)
> box()
> mtext("Sequences", 2, 1)
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Figure 5.24
Density of gaps in 402 genomes of Helicobacter pylori computed by sliding
windows (width = 104, step = 104).

We calculate the matrix of pairwise Hamming distances, and print a sum-
mary of their distribution:

> d <- dist.dna(HP, "N")
> summary(as.vector(d))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1226 7154 8112 8515 9179 14777

It is good to keep in mind that dist.dna, like many functions computing
pairwise distances, handles missing data and gaps by removing all columns
that have at least one of these so that all distances are calculated with the
same sites. This could be a problem if several sequences in the alignment have
many gaps or missing data so that only a few—or sometimes none—columns
are left for the calculations. With these data, we could have used the pairwise
deletion option because of the many alignment gaps and the results are not
drastically changed; both series of distances are strongly correlated:

> d2 <- dist.dna(HP, "N", p = TRUE)
> cor(d, d2)
[1] 0.9568683



Case Studies 151

0.
0e

+
00

1.
0e

+
09

2.
0e

+
09

3.
0e

+
09

Figure 5.25
Eigenvalues from a multidimensional scaling on the Helicobacter pylori data.

We then perform an MDS and plot the results of the eigenvalues of the first
ten axes (Fig. 5.25):

> mds <- cmdscale(d, 10, eig = TRUE)
> barplot(mds$eig[1:10])

This suggests it may be interesting to look at the four first axes (Fig. 5.26):

> pco <- mds$points
> layout(matrix(1:3, 3))
> plot(pco[, 1:2], cex = 0.5, xlab = "Axis 1", ylab = "Axis 2")
> plot(pco[, c(1, 3)], cex = 0.5, xlab = "Axis 1", ylab = "Axis 3")
> plot(pco[, c(1, 4)], cex = 0.5, xlab = "Axis 1", ylab = "Axis 4")

This shows an interesting pattern. The observations on the second axis
show a few points outlying with high values which are easily identified:

> i <- which(pco[, 2] > 1e4)
> names(i)
[1] "680_SouthAfrica7" "1341_SouthAfrica20"
[3] "1342_SouthAfrica50" "1370_SA144A"
[5] "1374_SA155A" "1391_SA166A"
[7] "1394_SA169C" "1400_SA172C"
[9] "1404_SA175A" "1406_SA194A"
[11] "1425_SA233A" "1431_SA253A"
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[13] "1433_SA29A" "1441_SA303C"
[15] "1445_SA34A" "1448_SA36C"
[17] "1451_SA40A" "1456_SA47A"
[19] "1458_SA160A"

On the other hand, the relationship between the axes 1 and 3 shows the typ-
ical curve displayed when analyzing genetic data with multivariate methods
(Fig. 5.26B). It may be worth noting that this relationship is not an “artefact”
but a consequence of the dominance of local structures in a data set [4]. With
genetic data, such local processes may be occurring such as isolation by dis-
tance [203]. Such local structures, whatever their nature, result in the second
axis to be related to the first one by a sinusoidal function, and the subsequent
axes with increasing frequencies [4, 56]. With these data, the typical relation
is shown between the axes and 1 and 3 (instead of 1 and 2) and axes 1 and 4
(Fig. 5.26C).

5.7.7 Metabarcoding of Fish Communities
We first convert the SAM files into BAM format, then scan them using the
functions in Rsamtools (shown here only for the EH data set):

> library(Rsamtools)
> asBam(EH.sam, "EH.bam")
> EHreads <- scanBam("EH.bam")

We are interested in the element rname which gives the information on which
“chromosome” the reads were mapped to (see ?scanBam):

> EHtab <- table(EHreads[[1]]$rname)
> EHtab

Ambloplites_rupestris_KY660677
2

Etheostoma_caeruleum_KY660678
1

Amphiprion_ocellari_NC009065
0

Campostoma_anomalum_KP013113
122874

....

To arrange the output we strip the names of this table using stripLabel (a
utility function in ape to manage taxon names), and delete the underscores
with gsub:

> names(EHtab) <- gsub("_", " ", stripLabel(names(EHtab)))
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Figure 5.26
Multidimensional scaling done on the Helicobacter pylori data (A) axes 1 and
2, (B) axes 1 and 3, and (C) axes 1 and 4.
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The commands were repeated for the three other data sets and plotted with
barplot (Fig. 5.27):

> barplot(EHtab, horiz = TRUE, las = 1, main = "EH")

5.8 Exercises
1. Compute the nucleotide diversity, π, for the woodmouse data. Do

the same analysis after extracting the haplotypes.
2. Show with a simple drawing how the first principal component from

a PCA may not reflect population structure even if such a structure
may discriminate the populations in more than one dimension.

3. Show how you can extract the number of alleles (or genotypes) from
the output of summary.loci with the a single command.

4. Explain how the nucleotide diversity in a population, π, is related
to its mating structure.

5. What is the potential effect of geographical structure on π?
6. Go back to the example illustrating the function sw with the wood-

mouse data and try different values of the options step and width.
7. How can geographical structure affect the results of a PCA? Even-

tually explain your answer with drawings.
8. Write R code to compute the first principal component of a matrix

using the power method.
9. Do similar analysis and plot as shown on Figure 5.11 using the

woodmouse data. Explain the differences between these two results.
10. Compute the genotype and allele frequencies of the nancycats data

set (provided with adegenet). Compare with the results displayed
on Fig. 5.20.
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Figure 5.27
Number of reads in four fish “communties.”



http://taylorandfrancis.com


6
Linkage Disequilibrium and Haplotype
Structure

Genomes are organized in one or several molecules of DNA each made of a
few base pairs to hundreds of megabases (Sect. 1.2.2). Each of these molecules
stores information on possibly several thousands of loci (protein-coding genes,
regulating sequences, . . . ). The association of different alleles on the same
DNA molecule creates haplotype structure. Recombination creates new hap-
lotypes and can operate in different ways. In viruses, recombination happens
when different strains replicate in the same host. In Prokaryotes, distinct cells
can exchange DNA in specific conditions. In Eukaryotes, recombination is
linked to sexual reproduction and is the rule during the production of ga-
metes (see p. 6).

Before the advent of modern genomic technologies, it was laborious to
find whether two loci are on the same chromosome. Nowadays, these can be
quantified with computational methods, or even more recently with sequencing
technologies using long reads (Sect. 2.3.2). A range of statistical methods
was developed to characterize these associations in different situations: these
methods are the subject of this chapter. Table 6.1 gives an overview of the
methods available in R with their main differences.

6.1 Why Linkage Disequilibrium is Important?
Genes do not work independently of each others in a cell, and it is advan-
tageous for an organism to carry in its genome combinations of alleles that
“work well together.” Because the conditions of life change through time, it is
also advantageous to be able to change these combinations. These two seem-
ingly opposite “needs” outline the difficulties in the analysis of recombination
and linkage disequilibrium (LD).

In classical population genetics, LD is considered from the viewpoint of
a diploid organims with two biallelic loci [108, p. 73]: if the frequencies of
the haploid genotypes of the gametes are not equal to those predicted from
the allele frequencies, then the two loci are said to be in LD. The concept
generalizes to many alleles and loci but with more complicated calculations.

157
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With genomic data, it is possible to analyze thousands of loci and in-
fer haplotype structures, or blocks of linked loci on the same chromosome.
The International HapMap Project [274] was an endeavor to map haplotype
strucures in the world human population and is now replaced by the 1000
Genomes Project.1 Because recombination exists also in viruses and bacteria,
it is useful to study haplotype structure in their genomes.

6.2 Linkage Disequilibrium: Two Loci
6.2.1 Phased Genotypes
6.2.1.1 Theoretical Background

Suppose we look at two loci each with two alleles, A and a, and B and b,
respectively, in a diploid species with sexual reproduction. Then, there are
four possible haploid gamete genotypes: A-B, A-b, a-B, and a-b. If the two
loci are unlinked, then a fully heterozygous individual with genotype A/a,B/b
will produce all four types of gametes in equal proportions. On the other hand,
if they are linked, these proportions may be unequal.

The idea of linkage between two loci is independent of the idea of their
physical positions on chromosomes: if they are sufficiently a distance apart
on the same chromosome so that recombinations occur surely between them,
then they will appear unlinked when looking at the frequencies of gamete
genotypes. With modern genomic technologies, many data sets have phased
genotypes. In this situation, it is very straightforward to infer the frequencies
of parental gamete genotypes with standard statistical tools.

Zaykin et al. [309] developed an approach based on a contingency table
of the alleles from two loci. If the both loci are unlinked, then the alleles
are assembled independently and the proportions of gamete genotypes (or
haplotypes) can be predicted from the allele proportions pA, pa, pB, and pb:

A-B: pApB A-b: pApb a-B: papB a-b: papb

These predicted frequencies can be compared with the observed ones with a
standard χ2-based test. The discrepancy between the predicted and observed
proportions can be defined, for instance for the pair of alleles A and B (up-
percase P is used to denote the genotype proportions and lowercase p for the
allele ones):

DAB = PAB − pApB.

This makes possible to define a correlation coefficient between this pair of
alleles:

1https://www.ncbi.nlm.nih.gov/variation/news/NCBI\retiring\HapMap/

http://www.ncbi.nlm.nih.gov
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rAB = DAB√
pA(1− pA)pB(1− pB)

. (6.1)

Because there are only two alleles at each locus, then 1−pA = pa and pA = 1−
pa, thus making this coefficient symmetric for the different allele combinations.
To simplify, we write rAB = r, and the different correlation coefficients can be
arranged in a contingency table:

B b
A r −r
a −r r

D can be interpreted as a disequilibrium coefficient and its value varies be-
tween [108]:

Dmin = max(−pApB,−papb)
Dmax = min(−pApb,−papB).

This leads to define D′:

D′ =
{
D/Dmin if D < 0
D/Dmax if D > 0.

The null hypothesis of no linkage can be tested with a classical χ2-test
comparing observed and predicted proportions (see ?prop.test in R). An-
other test is:

T 2 = (k1 − 1)(k2 − 1)n
∑
r2
ij

k1k2
,

where k1 and k2 are the number of alleles in each locus, and n is the number
of observed haplotypes (i.e., twice the number of diploid individuals if there
are no missing data). This formula actually applies to any number of alleles.
In the situation of biallelic loci, it simplifies to T 2 = nr2. This statistic follows
a χ2 distribution with (k1 − 1)(k2 − 1) degrees of freedom.

Since D is interpreted as a coefficient, it is possible to write a likelihood
function using the multinomial distribution (in the general case with any num-
ber of alleles) and maximize it with respect to D [292].

6.2.1.2 Implementation in pegas

Zaykin et al.’s method is implemented in the function LD in pegas. We take a
small data set with four individuals and three loci (L1, L2, and L3) all with
phased genotypes:
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> G <- data.frame(L1 = c("A|A", "A|A", "G|G", "G|G"),
+ L2 = c("C|C", "C|C", "T|T", "T|T"),
+ L3 = c("C|C", "T|T", "C|C", "T|T"))
> G <- as.loci(G)

Note that there is complete linkage disequilibrium between L1 and L2 (A on
L1 is always with C on L2, and G always with T). We then call LD:

> LD(G)
$‘Observed frequencies‘
C T

A 4 0
G 0 4

$‘Expected frequencies‘
C T

A 2 2
G 2 2

$‘Correlations among alleles‘
C T

A 1 -1
G -1 1

$‘LRT (G-squared)‘
[1] NaN

$‘Pearson’s test (chi-squared)‘
[1] 16

$T2
T2 df P-val

8.000000000 1.000000000 0.004677735

The output matrices are arranged as contingency tables with the alleles of
each locus as rows and columns. The option locus specifies the two loci to be
analyzed (locus = 1:2 by default), so we analyze now the linkage disequilib-
rium between the first and the third loci:

> LD(G, locus = c(1, 3))
$‘Observed frequencies‘
C T

A 2 2
G 2 2

$‘Expected frequencies‘
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C T
A 2 2
G 2 2

$‘Correlations among alleles‘
C T

A 0 0
G 0 0

$‘LRT (G-squared)‘
[1] 0

$‘Pearson’s test (chi-squared)‘
[1] 0

$T2
T2 df P-val
0 1 1

LD() works with any level of ploidy and any number of alleles, as long as the
genotypes are all phased.

6.2.2 Unphased Genotypes
If the genotypes are unphased, the haplotype frequencies cannot be calculated
as above, instead only the genotype frequencies can be measured. Schaid [245]
developed an approach based on a composite measure of disequilibrium. Com-
ing back to the biallelic example with alleles A, a, B, and b, the composite
disequilibrium is [292]:

∆AB = Pr(A and B on same or on different haplotypes)− 2pApB,

where the first term on the right-hand side is estimated with the observed
genotype numbers:

2nAA,BB + nAA,Bb + nAa,BB + 0.5nAa,Bb
n

,

where the n’s on the numerator are the observed numbers of genotypes given
as subscript, and the n on the denominator is the total number of individuals
(by contrast to n in the previous section). A T 2 test similar to the above is
calculated [309].

We take the same data as above and transform them with unphase()
before analyzing them with LD2():

> H <- unphase(G)
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> LD2(H)
$Delta

C T
A 0.5 -0.5
G -0.5 0.5

$T2
T2 df P-val

4.00000000 1.00000000 0.04550026

> LD2(H, c(1, 3))
$Delta
C T

A 0 0
G 0 0

$T2
T2 df P-val
0 1 1

The evidence for disequilibrium between the L1 and L2 is here unsurprisingly
less strong than with the phased genotypes. The function LD2 works with any
number of alleles but only with diploid data.

SNPRelate has the function snpgdsLDPair to quantify LD given two nu-
meric vectors where the genotypes are coded as the number of minor alleles
(0, 1, or 2). It uses a different version of the composite LD (see Table 6.1):

∆ =nAA,BB + naa,bb − naa,BB + nAA,bb
2n − (naa − nAA)(nbb − nBB)

2n2 ×
[
(pApa + PAA − p2

A)(pBpb + PAA − p2
B)
]−1/2

.

6.3 More Than Two Loci
6.3.1 Haplotypes From Unphased Genotypes
With more than two loci, the approach developed by Schaid for unphased
genotypes becomes practically very difficult because of the many combina-
tions involved. Excoffier and Slatkin [70] and Long et al. [170] independently
proposed to use the well-known expectation–maximization (EM) algorithm
[54] to perform maximum likelihood estimation of the LD parameters and the
haplotype proportions. These proportions can be considered as unobserved (or
latent) variables from which the observed variables (the genotype frequencies)
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can be inferred. The algorithm alternates between expectation of the haplo-
type frequencies and maximization of the model parameters until convergence
of the likelihood as detailed in the next section.

6.3.1.1 The Expectation–Maximization Algorithm

Suppose we observe the genotypes at two loci each with two alleles, A and a,
and B and b. If we do not know the phase (i.e., the genotypes of the gametes),
we infer three genotypes for each locus resulting in nine genotypes over both
loci that we may arrange in a contingency table with their observed numbers:

BB Bb bb
AA n1 n2 n3
Aa n4 n5 n6
aa n7 n8 n9

It appears that for eight of these genotypes it is possible to infer the phase
because at least one locus is homozygote. However, this is not possible for the
n5 double heterozygotes. These individuals have either one of two following
pairs of chromosomes:

A-B, a-b in proportion ξ (n′5 individuals)
A-b, a-B in proportion 1− ξ (n′′5 individuals)

with n′5 + n′′5 = n5. Therefore, we cannot estimate directly the haplotype
frequencies h1 (A-B), h2 (A-b), h3 (a-B), and h4 (a-b). If the parameter ξ
were known, these frequencies would be calculated with:

h1 = 2n1 + n2 + n4 + ξn5

h2 = 2n3 + n2 + n6 + (1− ξ)n5

h3 = 2n7 + n4 + n8 + (1− ξ)n5

h4 = 2n9 + n6 + n8 + ξn5.

The EM algorithm considers the n5 individuals as missing data and uses the
eight other numbers to give an initial estimates of h1, h2, h3, and h4 (Fig. 6.1).
With these estimates, it is possible to predict the values of n′5 and n′′5 denoted
as ñ′5 and ñ′′5 (E step) from which new estimates of the h’s can be calculated
(M step). This process is repeated until the solution converges. This approach
assumes that the population is in Hardy–Weinberg equilibrium (see Sect. 7.1).

Because of its versatility and simplicity, the EM algorithm has had many
applications in genetics, genomics, molecular biology, or other fields where
missing or unobserved variables are a potential issue [153].

6.3.1.2 Implementation in haplo.stats

The package haplo.stats implements a modified version of the EM approach.
The original EM versions enumerate all possible pairs of alleles at two loci
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n1 . . . n4
n6 . . . n9 ĥ1, ĥ2, ĥ3, ĥ4 ñ′5 + ñ′′5 (= n5)

E step

M step

Figure 6.1
Sketch of the expectation–maximization (EM) algorithm applied to the esti-
mation of haplotype frequencies. The initial estimation (without n5) and the
M step are done with the log-likelihood using the multinomial distribution.

which become very large as the number of loci increases. Instead, haplo.stats
uses a progressive insertion algorithm which inserts batches of loci into haplo-
types of growing lengths, runs the EM steps, and removes pairs of loci when
the posterior probability of the pair is below a given threshold. The algorithm
alternates between these three steps (insertion, EM, and removal) until all
loci are inserted into the haplotypes.

The main function in haplo.stats is called haplo.em, and we try it with
a simulated data sets of five individuals and three loci generated by random
sampling among the possible genotypes:

> Y <- data.frame(L1=sample(c("A/A", "A/a", "a/a"), 5, rep=TRUE),
+ L2=sample(c("B/B", "B/b", "b/b"), 5, rep=TRUE),
+ L3=sample(c("C/C", "C/c", "c/c"), 5, rep=TRUE))
> Y

L1 L2 L3
1 A/A b/b C/C
2 A/A B/b C/c
3 a/a b/b c/c
4 A/A B/B C/c
5 a/a b/b C/C
> Y <- as.loci(Y)

haplo.em requires as input a matrix of alleles (diploidy is assumed), thus
the function loci2alleles (in pegas) is first called with the "loci" object
before calling the function setupGeno (in haplo.stats) that prepares the data
and returns an object of class "model.matrix":

> library(haplo.stats)
> dat <- setupGeno(loci2alleles(Y))
> dat

loc-1.a1 loc-1.a2 loc-2.a1 loc-2.a2 loc-3.a1 loc-3.a2
[1,] 2 2 1 1 2 2
[2,] 2 2 2 1 2 1
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[3,] 1 1 1 1 1 1
[4,] 2 2 2 2 2 1
[5,] 1 1 1 1 2 2
attr(,"class")
[1] "model.matrix"
attr(,"unique.alleles")
attr(,"unique.alleles")[[1]]
[1] "a" "A"

attr(,"unique.alleles")[[2]]
[1] "b" "B"

attr(,"unique.alleles")[[3]]
[1] "c" "C"

We see here another example of how the same data can be coded in different
ways: here the alleles are coded with 1 and 2 while their names are stored
separately. haplo.em() can now be called:

> hapem <- haplo.em(dat)
> hapem
============================================================

Haplotypes
============================================================
loc-1 loc-2 loc-3 hap.freq

1 1 1 1 0.2
2 1 1 2 0.2
3 2 1 1 0.0
4 2 1 2 0.3
5 2 2 1 0.2
6 2 2 2 0.1
============================================================

Details
============================================================
lnlike = -14.18484
lr stat for no LD = 4.05253 , df = 1 , p-val = 0.04411

The output is a list with 18 elements including the haplotype (relative) fre-
quencies which can be extracted and plotted. In this example, we set the
names of this vector with the haplotype compositions stored, as a matrix, in
the element haplotype (Fig. 6.2):

> fr <- hapem$hap.prob
> names(fr) <- t(apply(hapem$haplotype, 1, paste, collapse="-"))
> barplot(fr)
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Figure 6.2
Frequencies of haplotypes estimated by EM.

Note that not all possible haplotypes were observed and the test of linkage
disequilibrium was slightly significant (P = 0.044). Clearly, the null hypothesis
(no linkage disequilibrium) is true because we simulated these data randomly.
We could show that in fact the type I error rate is slightly larger than 0.2 with
the present sample size (assuming a rejection threshold at the usual 5%). With
increasing sample size, the type I error rate converges progressively towards
0.05. The exercises at the end of this chapter invite the reader to further
explore this result.

6.3.2 Locus-Specific Imputation
In data analysis, imputation is the process of assigning a value to a missing
data. This may seem as a difficult (even risky) exercise, but in some situations
variables are correlated in a way that makes imputation very useful. Genomic
data are one of these situations because loci, particularly if they are linked, co-
vary more or less strongly. Genomic imputation has been extensively studied,
particularly with humans. Three packages offer tools that we review here.

Imputation with snpStats is done in two steps. First, snp.imputation de-
fines rules for imputation and returns an object of class "ImputationRules".
It requires four main arguments (although some can be missing): two objects
of class "snpMatrix" which are the reference SNPs and those to be predicted,
and two vectors of genomic positions for the two previous objects. The other
options control the decision rules for inferring predictions including the EM al-
gorithm (see details in ?snp.imputation). We can try using a simple example
with our data G:
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> Gx <- loci2SnpMatrix(G) # function in pegas
> library(snpStats)
> rules <- snp.imputation(Gx)
SNPs tagged by a single SNP: 2
> rules
L1 ~ L2 (MAF = 0.5, R-squared = 1)
L2 ~ L1 (MAF = 0.5, R-squared = 1)
L3 ~ No imputation available

It is found that a prediction between L1 and L2 can be found, but none for
L3. This is consistent with the linkages found above.

The second step is executed with the function impute.snps that calculates
the imputed values with as main arguments the rules previously found with
snp.imputation and the data:

> impute.snps(rules, Gx)
L1 L2 L3

1 0 0 NA
2 0 0 NA
3 2 2 NA
4 2 2 NA

Davies et al. [50] developed another imputation method which they called
STITCH (sequencing to imputation through constructing haplotypes) and
available in the package of the same name. It is based on combining hid-
den Markov model (HMM) and EM algorithms. The implementation is well
adapted to HTS data with low coverage (< 0.5×). The main function is also
called STITCH. The input data are a series of BAM files with the sequencing
data There are a large number of options to fine tune the algoritm and the
output format (by default in gzipped VCF format).

Finally, we mention the package alleHap that performs imputing for ge-
netic data where the individuals are linked by a pedigree [183], and the pack-
age GeneImp for imputation of low-coverage HTS data with a reference panel
(rather appropriate for human genomic data).

6.3.3 Maps of Linkage Disequilibrium
6.3.3.1 Phased Genotypes With pegas

The function haplotype, introduced in Section 5.2.1, returns the haplotypes
and their frequencies as extracted from an object of class "loci". By default,
only the first two loci are analyzed but this can be modified with the option
locus which is here a vector giving the indices of the loci to be analyzed. We
consider again the data G (p. 160):

> haplotype(G, locus = 1:3)
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Analysing individual no. 4 / 4
[,1] [,2] [,3] [,4]

L1 "A" "A" "G" "G"
L2 "C" "C" "T" "T"
L3 "C" "T" "C" "T"
attr(,"class")
[1] "haplotype.loci"
attr(,"freq")
[1] 2 2 2 2

The option compress = FALSE makes possible to return simply all haplotypes
(as columns) without computing their frequencies:

> haplotype(G, locus = 1:3, compress = FALSE)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

L1 "A" "A" "A" "A" "G" "G" "G" "G"
L2 "C" "C" "C" "C" "T" "T" "T" "T"
L3 "C" "C" "T" "T" "C" "C" "T" "T"

The correlation coefficient (6.1) summarizes the linkage information of
a pair of biallelic loci in a single numerical value. These pairwise coefficients
calculated over many loci can then be arranged into a symmetric matrix where
the rows and columns are the different loci. The function LDscan does this for
an object of class "loci":

> ldG <- LDscan(G, quiet = TRUE)
> ldG

L1 L2
L2 1
L3 0 0

This function has the option depth to perform the analyses only for some
pairs of loci. For instance, depth = 1 will do the analysis only for the pairs of
loci that are contiguous in the data set (but not necessarily contiguous on the
chromosome; see below on how to use position information if it is available).
This may be useful if there are many loci and one wants to avoid calculating
the coefficients for all pairs. For instance, with 1000 loci there are 499,500
pairs, and with 100,000 loci (as in the case studies) there are almost five
billion. By default, the coefficients at all depths are calculated and returned
in an object of class "dist" as above; otherwise if depth is used, they are
returned in a list which names are set with the depths:

> LDscan(G, depth = 1, quiet = TRUE)
$‘1‘
[1] 1 0

> LDscan(G, depth = 2, quiet = TRUE)
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Figure 6.3
Map of linkage disequilibrium with three biallelic loci.

$‘2‘
[1] 0

If the input data have unphased genotypes, these are ignored with a warn-
ing message. However, LDscan does not check whether the loci are biallelic
(see the function is.snp). A graphical display of the correlation matrix can
be done with the function LDmap (Fig. 6.3):

> LDmap(ldG, col=grey(10:1/10), border=TRUE, scale.legend=0.2)

By default, a colored scale is used which is modified here with the option col.
The second argument named POS (NULL by default) gives the positions of the
loci (see the case studies below).

6.3.3.2 SNPRelate

With SNPRelate, the EM algorithm is used to estimate haplotype frequencies
and calculate different measures of LD (Table 6.1). The data need to be in
GDS format, so we write the object G into a VCF file (not shown), convert
into GDS format, and open it with snpgdsOpen:

> snpgdsVCF2GDS("G.vcf", "G.gds", verbose = FALSE)
> Ggds <- snpgdsOpen("G.gds")

The function snpgdsLDMat with setting the option slide (the width of the
sliding window) to zero:
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> library(SNPRelate)
> snpgdsLDMat(Ggds, slide = 0, method = "corr")
Linkage Disequilibrium (LD) estimation on genotypes:
Working space: 4 samples, 3 SNPs

using 1 (CPU) core.
method: correlation

LD matrix: the sum of all selected genotypes (0,1,2) = 12
> ld.rel
$sample.id
[1] "1" "2" "3" "4"

$snp.id
[1] 1 2 3

$LD
[,1] [,2] [,3]

[1,] 1 1 0
[2,] 1 1 0
[3,] 0 0 1

$slide
[1] 0

The output is a standard list with the matrix LD that can be converted in a
"dist" object to be directly compared with the output of LDscan:

> as.dist(ld.rel$LD)
1 2

2 1
3 0 0

6.3.3.3 snpStats

snpStats, like SNPRelate, considers unphased genotypes. However, instead of
the EM algorithm, the haplotype frequencies are calculated by first estimating
the above parameter ξ by writing [41]:

ξ

1− ξ = h1h4
h2h3

,

and solving it directly which is faster the EM algorithm. The statistics cal-
culated are also different (Table 6.1). The function ld does these calculations
after converting the object G from the class "loci" to "SnpMatrix":

> library(snpStats)
> ld.stat <- ld(loci2SnpMatrix(G), depth=2, stats="R.squared")
> ld.stat
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3 x 3 sparse Matrix of class "dgCMatrix"
L1 L2 L3

L1 . 1 0
L2 . . 0
L3 . . .

The output is a matrix of a special class (see the package Matrix installed
by default with R). It can be converted to the standard class "matrix" but
we have to be careful here that only the upper triangle is used, so we must
transpose it with t before converting into the class "dist":

> as.dist(t(as.matrix(ld.stat)))
L1 L2

L2 1
L3 0 0

Clearly, the results of three methods are identical with this small example.
The purpose of this trivial exercise was to illustrate the different methods and
show how to manipulate the results to compare them easily. The case studies
below show other examples with real data.

6.4 Case Studies
6.4.1 Complete Genomes of the Fruit Fly
We start by checking whether some genotypes are unphased by reading all the
data and testing them with is.phased:

> X <- read.vcf(fl, which.loci = 1:nrow(info.droso))
Reading 1055818 / 1055818 loci.
Done.
> any(!is.phased(X))
[1] FALSE

The complete phasing of the genotypes allows us to perform linkage analyses
for all chromosomes. The function LDscan makes possible to explore LD in
many different ways. We will explore this issue in a simple manner using the
SNP on chromosome X. We first locate the strict SNPs on this chromosome
and print how many there are:

> isnpx <- which(info.droso$CHROM == "X" & SNP)
> length(isnpx)
[1] 152027
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If we want to compute LD between each pair of loci, we would need to consider
more than eleven billion pairs. Instead of calculating all pairwise r2, we focus
on short-range LD by selecting 100 loci and then shift the operation by 20,000
along the chromosome so that six successive blocks are read and analyzed; we
thus split the graphical device into six beforehand (Fig. 6.4):

> layout(matrix(1:6, 3, 2, byrow = TRUE))
> for (shift in 0:5 * 2e4) {
+ sel <- isnpx[1:100 + shift]
+ x <- read.vcf(fl, which.loci = sel, quiet = TRUE)
+ s <- LDscan(x, quiet = TRUE)
+ LDmap(s, info.droso$POS[sel], scale.legend = 5,
+ col = grey(10:1/10))
+ }

The code is easily modified to perform a denser analysis or select different
portions along the chromosome. This result shows that LD is stronger in the
early portion of the chromosome which may be related to the fact it is close
to the chromosome telomere [2].

It is interesting to look at long-range LD using the option depth of
LDscan(); we first read all SNPs on chromosome X, compute LD for all pairs
of loci separated by 100,000, and then look at the distribution of the 52,027
values of r2 (Fig. 6.5):

> x <- read.vcf(fl, which.loci = isnpx)
Reading 152027 / 152027 loci.
Done.
> ldlong <- LDscan(x, depth = 1e5)
Scanning haplotypes... done.
Scanning at depth 100000 : 100 %
> round(summary(ldlong[[1]]), 4)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0357 0.0736 0.0914 0.1211 0.9386
> hist(ldlong[[1]], main = "")

A simple way to address the question of the statistical significance of these
coefficients is to perform a simulation study by randomly sampling 242 haploid
genotypes with two loci and no linkage (LD = 0). We first set the sample size
and the allele proportions (remember that the loci are biallelic):

> n <- 2 * 121
> PrA <- 0.5
> PrB <- 0.5

The simulations are run with a very straightforward code where the alleles
are counted very efficiently using logical operations and the coefficient is cal-
culated with (6.1):
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Figure 6.4
Pairwise linkage disequilibrium along the X chromosome of fruit flies.

> nrep <- 10000
> r <- numeric(nrep)
> for (i in 1:nrep) {
+ SA <- sample(1:2, n, replace=TRUE, prob=c(PrA, 1 - PrA))
+ SB <- sample(1:2, n, replace=TRUE, prob=c(PrB, 1 - PrB))
+ PA <- sum(SA == 1)/n
+ PB <- sum(SB == 1)/n
+ PAB <- sum(SA == 1 & SB == 1)/n
+ r[i] <- abs((PAB - PA*PB)/sqrt(PA*(1 - PA) * PB*(1 - PB)))
+ }

We then evaluate the value for which 5% of the r2 values are larger than:
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Figure 6.5
Distribution of long-range linkage disequilibrium along the X chromosome of
fruit flies.

> quantile(r, 0.95)
95%

0.124654

It is possible to change to values of PrA and PrB to assess how they may
influence the present result (actually they don’t much, result not shown). We
can conclude that a value of r2 less than or equal to 0.125 is not statistically
significant. We can now evaluate how many values of long-range LD are above
this threshold:

> table(ldlong[[1]] > 0.125)

FALSE TRUE
39732 12295

There are thus 23.6% apparently significant values. This is, however, a rough
analysis since the r2 values are certainly not independent.
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6.4.2 Human Genomes
We focus on chromosome 22 because it is relatively small (50.8 Mb). The orig-
inal compressed VCF file for this chromosome has a size of 190 MB (11.2 GB
if uncompressed) and we convert it into the GDS format of SNPRelate (an
operation taking a few minutes):

> fl <- "ALL.chr22.phase3_shapeit2_mvncall_integrated_\
v5a.20130502.genotypes.vcf.gz"
> library(SNPRelate)
> snpgdsVCF2GDS(fl, "chr22.gds")
VCF Format ==> SNP GDS Format
Method: exacting biallelic SNPs
Number of samples: 2504
import 1055454 variants.
....

The resulting file has a size of 667 MB. We have seen that most SNPs in
the human genome have the less frequent allele (the minor allele) in very
low frequency, typically ≤ 0.01. This complicates LD analysis because of the
very predicted frequencies of the different gamete genotypes are very low. In
order to avoid this difficulty, we select the SNPs with a large minor allele
frequency. We first open the file and extract the necessary information with
snpgdsSNPRateFreq:

> x <- snpgdsOpen("chr22.gds")
> fx <- snpgdsSNPRateFreq(x)
> str(fx)
List of 3
$ AlleleFreq : num [1:1055454] 1 0.994 0.992 1 1 ...
$ MinorFreq : num [1:1055454] 0.0002 0.00639 0.00759 0.0002 0.0002 ...
$ MissingRate: num [1:1055454] 0 0 0 0 0 0 0 0 0 0 ...

We could draw a histogram with the first vector in the above list; an
alternative is to define intervals with cut (effectively creating a factor but not
stored here) and tabulate the numbers:

> table(cut(fx$MinorFreq, 0:5/10))

(0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]
978427 24862 18328 15715 14341

The vast majority (92.7%) of these SNPs have a minor allele observed at a
frequency less than or equal to 0.1. We thus consider only those with balanced
frequency of alleles (especially to have a relatively small number of loci):

> s <- which(fx$MinorFreq > 0.495)
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> sel <- read.gdsn(index.gdsn(x, "snp.id"))[s]
> length(sel)
[1] 607

We can now compute LDs among these 607 loci with snpgdsLDMat using the
appropriate options:

> ld <- snpgdsLDMat(x, method = "r", snp.id = sel, slide = -1)

The output is a list containing the matrix LD which is, in the present cas, a
607 × 607 matrix with the correlation coefficient r. To represent graphically
this result, we could use image, but we take benefit of the positions of these
loci to use LDmap in pegas. We first extract the positions with read.gdsn:

> pos <- read.gdsn(index.gdsn(x, "snp.position"))[s]

Then it is straightforward to call LDMap (Fig. 6.6):

> LDmap(as.dist(ld$LD^2), pos/1e6, col = grey(9:0/9))

Note that we square the matrix in order to represent r2 so that all values
are positive. The plot shows “islands” with high LD over some concentrated
region, particularly around 29.2 Mb.

6.4.3 Jaguar Microsatellites
There is no prior information on the chromosomal positions of the thirteen
loci or on the genotypes of the gametes, so we will analyze the jaguar data
with the function LD2. We first extract the names of the loci:

> locnms <- names(jaguar)[1:13]

We then build a loop that will perform the analysis for each pair of loci and
store the results in a list as well as the names of the pair in a vector:

> res <- list()
> nms <- character()
> for (i in 1:12) {
+ for (j in (i + 1):13) {
+ res <- c(res, list(LD2(jaguar, c(i, j))))
+ nms <- c(nms, paste(locnms[i], locnms[j], sep = "-"))
+ }
+ }
> names(res) <- nms

We now extract the P -values of each test:
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Figure 6.6
Linkage disequilibrium along chromosome 22 of humans focusing on SNPs
with balanced allele frequencies.

> Pvals <- sapply(res, function(x) x$T2["P-val"])
> names(Pvals) <- nms
> head(Pvals)
FCA742-FCA723 FCA742-FCA740 FCA742-FCA441 FCA742-FCA391
3.361177e-05 1.364700e-06 8.313921e-04 9.381058e-05
FCA742-F98 FCA742-F53

3.572493e-05 5.322866e-07

We look at the distributions with a standard histogram (Fig. 6.7):

> hist(Pvals, 20)
> rug(Pvals)

It appears that most of these tests are statistically significant. To visualize
which tests are significant (i.e., P < 0.05), we build a matrix of logical values:

> Pmat <- matrix(NA, 13, 13, dimnames = list(locnms, locnms))
> Pmat[lower.tri(Pmat)] <- Pvals >= 0.05
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Figure 6.7
Distribution of P -values of the tests for linkage disequilibrium for the jaguar
data.

When plotting this matrix with the graphical function image, the values TRUE
(non-significant tests) will be considered as one while the values FALSE (P <
0.05) will be considered as zero, so we can use a color scale with only two
shades of grey (Fig. 6.8):

> image(1:13, 1:13, t(Pmat), col=grey(1:2/3), xaxt="n", yaxt="n",
+ xlab = "", ylab = "")
> mtext(locnms, at = 1:13)
> mtext(locnms, 2, at = 1:13, las = 1, adj = 1)

The calls to mtext make possible to print the names of the loci in the
margins of the plot. We use the diagonal to print further information such as
the number of alleles for each locus:

> text(1:13, 1:13, lengths(getAlleles(jaguar)), font = 2)

It seems that the more alleles in a locus, the more likely to be in LD. To
further explore this issue, we plot the ∆-values for all pairs of loci (Fig. 6.9):

> layout(matrix(1:81, 9, 9, byrow = TRUE))
> par(mar = c(0.1, 0.1, 1.3, 0.1))
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Figure 6.8
Linkage disequilibrium between pairs of loci for the jaguar data (dark grey:
significant values, light grey: non-significant values).

> for (i in 1:78) {
+ image(res[[i]]$Delta, col=grey(0:4/4), axes=FALSE,
+ xlab="", ylab="")
+ mtext(names(res)[i], cex = .9,
+ font = ifelse(Pvals[i] < 0.05, 2, 3))
+ }

We also plot the number of alleles in a pair of loci (calculated from the numbers
of rows and columns of the ∆ matrices) together with the P -values (Fig. 6.10):

> n.alleles <- sapply(res, function(x) sum(dim(x$Delta)))
> plot(n.alleles, Pvals)
> abline(h = 0.05, lty = 2)

This seems to confirm that the more alleles in a locus, the more likely that
the LD was found to be significant. It remains to check whether such results
might be due to the large number of alleles increasing type I error rates.

6.5 Exercises
1. How many different gametes are there considering three biallelic

loci? And in general with p biallelic loci?
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2. An individual has the following genotypes on three loci: A/A, B/b,
C/C. What were the genotypes of the two gametes that united to
make this individual? Same question for an individual with geno-
types A/a, B/b, C/C.

3. Explain how two loci which are on the same chromosome may not
be in linkage disequilibrium (LD).

4. Repeat the simulation of data and model fitting with haplo.em as
in Section 6.3.1 using increasing numbers of individuals (10, 20, and
100). Comment on what you observe and compare with the above
results.

5. Explain why it is complicated to map LD correlations when loci
have more than two alleles.

6. Write the likelihood function used in the E step of the EM algorithm
in the case depicted on Fig. 6.1.

7. Consider a case with three loci each with two alleles and where
the genotypes are unphased. Sketch the EM algorithm. How many
“missing” data are there?

8. Explain why it is advantageous for living beings to recombine (or
not) their genomes.

9. Consider two biallelic loci with alleles A and a, and B and b, re-
spectively.

(a) Suppose the two loci are linked so that there are only two ga-
metes: A-B and a-b. Write down the possible genotypes and
their frequencies assuming random mating.

(b) Suppose the two loci are unlinked. Write down the possible
genotypes and their frequencies assuming random mating.

10. Simulate data with the following code:

L1 <- sample(c("A/A", "A/a", "a/a"), 1000,
replace = TRUE, prob = c(0.45, 0.1, 0.45))

L2 <- sample(c("B/B", "B/b", "b/b"), 1000,
replace = TRUE, prob = c(0.45, 0.1, 0.45))

X <- as.loci(data.frame(L1, L2))
LD2(X)

Interpret the results with respect to your answer to the previous
question.
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Figure 6.10
Number of alleles in a pair of loci and P -value of the test of linkage disequi-
librium for the same pair of loci.
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7
Population Genetic Structure

Clearly we need something more than a single value of F to give an ade-
quate description of structure.

—Wright [303]

Structure is an important concept in population genomics because ge-
netic information is not distributed evenly in the world: genes, chromosomes,
and genomes are grouped in different types of structures which affect their
dynamics. This chapter reviews the methods assessing genetic structure in
populations in situations where the structure is either known beforehand or
must be found from the genomic data. These methods range from the simple
assessment of structure developed in the early days of population genetics to
the sophisticated methods that are able to handle large genomic data sets.

7.1 Hardy–Weinberg Equilibrium
An early recognition of genetic structure was linked to the (re-)discovery that
organisms have two copies of each gene, therefore creating structures inside
themselves (Fig. 7.1). The mathematical formulation predicting genotype fre-
quencies from allele frequencies was discovered independently by Hardy and
Weinberg in 1908 (for a historical account: [45]). In its simplest form, the
Hardy–Weinberg equilibrium (HWE) considers a diploid locus with two alle-
les, say C and T, present in the population in proportions pC and pT, respec-
tively (with pC + pT = 1). If the gametes meet randomly—a process called
panmixia—then the proportions of genotypes at the next generation will be:

PCC = p2
C PCT = 2pCpT PTT = p2

T.

This is generalized in a straightforward way to cases with more than two alleles
and/or more than two chromosomes. The function proba.genotype in pegas
computes the expected genotype proportions under HWE for any number of
alleles and any level of ploidy. By default, the two alleles are labelled ‘1’ and
‘2’, are in equal proportions, and diploidy is assumed; all these parameters
can be modified with the appropriate options:

185
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Figure 7.1
Alternance between haploid (gametes) and diploid (organisms) stages. The
allele frequencies among gametes are pC and pT, and the genotype frequencies
are PCC, PCT, and PTT.

> proba.genotype()
1/1 1/2 2/2
0.25 0.50 0.25
> proba.genotype(alleles=c("A", "G"), p=c(0.9, 0.1), ploidy=4)
A/A/A/A A/A/A/G A/A/G/G A/G/G/G G/G/G/G
0.6561 0.2916 0.0486 0.0036 0.0001

This makes it possible to calculate easily the number of possible genotypes in
the case of highly polymorphic loci, for example, a microsatellite locus with
twenty alleles for a diploid or a tetraploid genome:

> length(proba.genotype(1:20))
[1] 210
> length(proba.genotype(1:20, ploidy = 4))
[1] 8855

The function hw.test in pegas evaluates HWE given a "loci" object. We
can try it with the small data set X created in the previous chapter (p. 93):

> hw.test(unphase(X))
chi^2 df Pr(chi^2 >) Pr.exact

L1 0.12 1 0.7290345 1
L2 0.75 1 0.3864762 1
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Two statistical tests of the HWE hypothesis are performed: the standard χ2

test based on the observed and expected frequencies of genotypes, and a ran-
domization test. The first test works in all situations of ploidy and number of
alleles, though ploidy must be homogeneous among individuals, for instance
with two tetraploid genotypes:

> hw.test(as.loci(c("A/A/A/A", "T/T/T/T")))
chi^2 df Pr(chi^2 >) Pr.exact

factor.x. 14 3 0.002905153 NA
Warning message: no Monte Carlo test available for polyploids

Simulation studies showed that, although it is an approximate test, it performs
well in a wide range of situations [67]. The second (exact) test is based on the
multinomial distribution of samples under HWE [158] which requires extensive
computations with many alleles. To avoid this problem, Guo and Thompson
[101] developed a Monte Carlo procedure. This second test is available only
for diploids and there is no limit on the number of alleles. The option B to
set the number of replicates of the randomization test (1000 by default). It is
possible to skip this test with B = 0.

SNPRelate has the function snpgdsHWE that performs a test of HWE with
SNP data using a method by Wigginton et al. [297]. This is an exact test with
a better type I error rate than the χ2-test when the number of rare alleles in
the population is low [297].

7.2 F-Statistics
The F -statistics are tightly connected to HWE and provide a general frame-
work for quantifying genetic structure. This framework has a long history and
has produced a vast literature. Wright [303]1 gave a review of early contribu-
tions, and a more recent review was done by Holsinger & Weir [115].

7.2.1 Theoretical Background
Consider a locus with k alleles each in proportion pi in the population, then,
if the population is in HWE, the expected proportion of homozygotes is

∑
i p

2
i

(with i = 1, . . . , k). From this, we can calculate the expected heterozygosity
in a sample of n genotypes with [195]:

HS = 2n
2n− 1

(
1−

k∑

i=1
p̂2
i

)
, (7.1)

1This paper is frequently cited as being published in 1951; however, the Web site of this
journal, now Annals of Human Genetics, lists it as being first published in December 1949.
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where 2n/(2n−1) is a bias correction factor and p̂i is the estimated proportion
of allele i in the population (Appendix C). Heterozygosity is generally denoted
as H, and we use HS to denote the estimated value of this quantity for a
single population—hence the subscript. We further denote HI the observed
heterozygosity in the same population. The inbreeding coefficient is defined
with:

FIS = 1− HI
HS

.

This coefficient is easily interpreted: if FIS > 0 then there are less heterozy-
gotes than expected under HWE, whereas if FIS < 0, there is a heterozygote
excess relative to HWE.

Let us add a second level of structure: suppose the individuals are dis-
tributed in several populations. We can now define heterozygosity in two ways:
HT is the value of H for all populations (the subscript is for ‘Total’), and H̄S
is the mean of the HS’s over all populations. This leads to another coefficient:

FST = 1− H̄S
HT

. (7.2)

This coefficient, often called Wright’s F or fixation index, measures inter-
population differentiation:

FST = 0 ⇒ the allele frequencies are identical in all populations,
FST > 0 ⇒ the allele frequencies differ among populations.

If we ignore population structure, we can calculate an inbreeding coefficient
for the ‘Total’ population (set of populations, or metapopulation):

FIT = 1− HI
HT

.

We note the similar subscript pattern for the three formulas which makes them
easy to remember. The three F ’s are related with (FIS being now calculated
with H̄S):

1− FIT = (1− FST)(1− FIS). (7.3)

Table 8.1 (p. 245) compares the F -statistics with similar indices.
Another approach to calculate FST is based on the variances of allele (rel-

ative) frequencies:

FST = Var(p)
p̄(1− p̄) ,

where Var(p) and p̄ are the variance and mean of the pi’s among populations.
Clearly, if the allele proportions do not vary among populations, then Var(p) =
0. The detailed formulas can be found in Weir & Cockerham [293].
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population 1 population 2
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22
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= 4

7

1Figure 7.2
Details of H’s calculations with the data Z (on grey background).

7.2.2 Implementations in pegas and in mmod
pegas has the function H which computes the expected heterozygosity HS
and, optionally, its variance as well as the observed heterozygosity HI, and
the function Fst which implements Weir and Cockerham’s formulas.

We use the small artificial data Z with four individuals and four loci created
above (p. 119). We append the variable population that puts the individuals
in two populations:

> Z$population <- gl(2, 2)

Locus L1 has only homozygotes and differentiated populations, L2 has also
only homozygotes but the allele frequencies are the same in both populations,
L3 has different allele frequencies in both populations, and L4 has only het-
erozygotes. Note that the (global) allele frequencies are the same for all loci
(Fig. 7.2). We first calculate the values of H for the whole population:

> H(Z, variance = TRUE, observed = TRUE)
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Hs Var_Hs Hi
L1 0.5714286 0.4375 0.0
L2 0.5714286 0.4375 0.0
L3 0.5714286 0.4375 0.5
L4 0.5714286 0.4375 1.0

The values in the column Hs are actually the values of HT (and not H̄S) since
these were calculated with the whole data. It is possible to get the values of
HS for each population with by:

> by(Z, FUN = H)
$L1

[,1]
pop1 0
pop2 0

$L2
[,1]

pop1 0.6666667
pop2 0.6666667

$L3
[,1]

pop1 0.5
pop2 0.5

$L4
[,1]

pop1 0.6666667
pop2 0.6666667

The values from these two commands indeed match those on Figure 7.2. We
now call the function Fst:

> Fst(Z)
Fit Fst Fis

L1 1.0 1.0 NaN
L2 1.0 -1.0 1
L3 0.2 0.2 0
L4 -1.0 0.0 -1

By default, Fst takes the column named population from the object ana-
lyzed as giving the population structure. Optionally, this can be changed with
Fst(Z, pop = ). The genotypes must be diploid. The option na.alleles
makes possible to define which allele(s) must be treated as missing data (e.g.,
c("0", ".")).
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pegas has also the function Rst (with the same options as Fst) which
computes the fixation index developed by Slatkin [254] for microsatellites.
It is an adaptation of the standard FST formula to consider the generalized
stepwise mutation model which is more appropriate for this kind of loci than
the infinite alleles model assumed in the traditional approach.

The package mmod (modern measures of differentiation) provides a more
detailed implementation of these coefficients as well as others. It requires a
"genind" object, so we convert the data Z and call the function diff_stats:

> library(mmod)
> Z.genind <- loci2genind(Z)
> diff_stats(Z.genind)
$per.locus

Hs Ht Gst Gprime_st D
L1 0.0000000 0.5000000 1.0000000 1.0 1.00
L2 0.6666667 0.5833333 -0.1428571 -1.0 -0.50
L3 0.5000000 0.5625000 0.1111111 0.4 0.25
L4 0.6666667 0.5833333 -0.1428571 -1.0 -0.50

$global
Hs Ht Gst_est Gprime_st D_het D_mean

0.4583333 0.5572917 0.1775701 0.5567766 0.3653846 NA

mmod uses slightly different formulas to calculateH where n is replaced by the
harmonic mean of each population size and formula (7.1) is used for each pop-
ulation and then averaged. The second element of the returned list (global)
is a vector with the arithmetic means over all loci. The two differentiation
coefficients denoted GST and G′ST (third and fourth columns in the above
output) are based on the frequencies of heterozygotes, specifically:

GST = 1− HS
HT

G′ST = n(HT −HS)
(nHT −HS)(1−HS) .

The first one is from Nei [194] and is almost identical to (7.2). The second
one is a standardized version due to Hedrick [110] and takes into account that
GST may be larger than one if there are many alleles and more than two
populations. It can also be written [110]:

G′ST = GST
k − 1 +HS

(k − 1)(1−HS) .

Finally, the last column (D) is Jost’s D [137]:

D = HT −HS
1−HS

× d

d− 1 ,

with d being the number of populations. This index is interpreted in a similar
way to FST and G′ST:
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D = 0 ⇒ no population differentiation
D = 1 ⇒ complete population differentiation

This index is not inflenced by the level of polymorphism.
The three indices described above can be calculated seperately with the

functions Gst_Nei, Gst_Hedrick, and D_Jost, for instance:

> D_Jost(Z.genind)
$per.locus

L1 L2 L3 L4
1.00 -0.50 0.25 -0.50

$global.het
[1] 0.3653846

$global.harm_mean
[1] NA

If there are more than two populations, there are also functions to
calculate these indices for each pair of populations: pairwise_Gst_Nei,
pairwise_Gst_Hedrick, and pairwise_D.

Finally, mmod makes possible to test the statistical significance of these
indices by randomization using either a bootstrap or a jackknife approach.
The test is done in several steps. The first step is to generate randomizations
of the data with one of the following functions:

chao_bootstrap(x, nreps = 1000)
jacknife_populations(x, sample_frac = 0.5, nreps = 1000)

where x is the data (of class "genind") and other arguments control the
randomization procedure. For instance:

> Z.bs <- chao_bootstrap(Z.genind)
> Z.bs
Bootstrap sample of genind objects
$BS: 1000 genind objects
$obs: original dataset

The second step is to analyze each sample with the function
summarise_bootstrap:

> test.Z.D <- summarise_bootstrap(Z.bs, D_Jost)
Warning message:
In summarise_bootstrap(Z.bs, D_Jost) :
Bootstrap distribution of D_Jost includes negative values,
harmonic mean is undefined

> test.Z.D
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Estimates for each locus
Locus Mean 95% CI
L1 1.0000 (1.000-1.000)
L2 -0.5000 (-1.137-0.137)
L3 0.2500 (-0.591-1.091)
L4 -0.5000 (-1.146-0.146)

Global Estimate based on average heterozygosity
0.3654 (0.124-0.607)

Global Estimate based on harmonic mean of statistic
NA (NA-NA)

7.2.3 Implementations in snpStats and in SNPRelate
If a locus has only two alleles (k = 2), the above calculations get simpler. It is
necessary to count only one of the two alleles (since p2 = 1− p1), p̄2 = 1− p̄1,
and Var(p2) = Var(p1). Similarly for the calculations of H’s:

1− (p2
1 + p2

2) = 1− p2
1 + (1− p1)2 = 2p1(1− p1).

In snpStats, for each population j (= 1, . . . ,K), the sample size (number
of alleles) is nj and the proportion of one of the two alleles is calculated and
denoted as pj . FST is then calculated with:

FST = 1−

K∑

j=1
wjpj(1− pj)

nj
nj − 1

p(1− p) n

n− 1
,

where n and p are the sample size and allele proportion over all populations,
wj is a population weight calculated as:

wj = nj(nj − 1)
n

.

SNPRelate uses a population divergence model [24, 294] that extends Weir
and Cockerham’s formulas. Three quantities are calculated:
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MSP = 1
K − 1

K∑

j=1
nj(pj − p)2

MSG = 1
∑K
j=1 nj −K

K∑

j=1
np(1− p)

nc = 1
K − 1

K∑

j=1
nj −

n2
j

n
,

where MSP and MSG are the mean squared deviations of allele proportions
at the population and global levels, respectively. FST is calculated with:

FST = MSP−MSG
MSP + (nc − 1)MSG .

We try both packages with the data Z. We first load snpStats:

> library(snpStats)
Loading required package: survival

Attaching package: ’survival’

The following object is masked from ’package:adegenet’:

strata

Loading required package: Matrix

Attaching package: ’snpStats’

The following object is masked from ’package:pegas’:

Fst

The printed messages show something that happens sometimes with R: two
functions in two distinct packages have the same name. This is not big a issue
because each package has its own part of the memory of the computer where
its functions are stored (the namespace), so that Fst in snpStats did not delete
Fst in pegas. The only difficulty here is that because snpStats was loaded after
pegas, calling Fst(x) will use the function in the former; to use the one from
the latter we can simply specify in which namespace to look for with the ‘::’
operator (e.g., pegas::Fst(x)). We thus use Fst directly after transforming
the data, and using the population column of Z as indicator:
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> Zsnp <- loci2SnpMatrix(Z)
> Fst(Zsnp, Z$population)
$Fst
[1] 1.0000000 -0.1666667 0.1250000 -0.1666667

$weight
[1] 0.2857143 0.2857143 0.2857143 0.2857143

Now it’s SNPRelate’s turn after writing Z into a VCF file and converting
it into the GDS format (not shown). Like previously, the second argument of
snpgdsFst is the population indicator:

> Zgds <- snpgdsOpen("Z.gds")
> snpgdsFst(Zgds, Z$population, "W&H02", verbose = FALSE)
$Fst
[1] 0.3015873

$MeanFst
[1] 0.1333333

$FstSNP
[1] 1.0000000 -0.3333333 0.2000000 -0.3333333

$Beta
pop1 pop2

pop1 0.3015873 0.0000000
pop2 0.0000000 0.3015873

The matrix Beta quantifies the divergence among populations while the first
element is equal to the mean of the diagonal elements of Beta. Note that this
matrix is not computed if method = "W&C84".

So, we have tried four functions to compute FST and obtained four differ-
ent results. Indeed, each function uses a specific approach. As we can see from
our small example, the different versions generally agree. Besides, statistical
significance should be done by randomization (we will come back on testing
FST in the presence of selection in Chap. 10). The different packages actu-
ally complement each others. With SNPs (or other biallelic loci), snpStats or
SNPRelate should be used, especially with many loci. pegas accepts all types
of data, and mmod performs the randomization tests. We will see below other
ways to compute (and assess the statistical significance of) FST.
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A B C

D E F

1Figure 7.3
Examples of graphs. (A) An unconnected graph with nodes of degree zero
or one. (B) An unconnected graph with all nodes of degree two. (C) A fully
connected, directed, cyclic graph with all nodes of degree two. (D) A fully con-
nected, acyclic graph with nodes of degree one or two. (E) A fully connected,
acyclic graph with nodes of degree one or three. (F) A directed, acyclic graph
(or rooted tree). In (D–F) the grey nodes represent the observations, while
the black nodes represent reconstructed (or inferred) sequences of genotypes.

7.3 Trees and Networks
Trees and networks are part of a wide class of structures called graphs
(Fig. 7.3). Graphs are often used to represent the relationships among in-
dividuals based on their genetic relationships. A graph is a structure made of
nodes (also called vertices) connected by edges (also called branches or links).
The ‘degree’ of a node is the number of edges connected to it. Nodes of degree
one are often called tips, leaves, or terminal nodes. We consider here only fully
connected graphs where all nodes are connected to make a single set.

These representations are interesting because some methods build a tree
or a network from the matrix of pairwise distances (see Sect. 5.3 on how to get
such matrices). These methods can be distinguished with respect to several
features:

• Some methods infer unobserved sequences or genotypes at the nodes.

• Reticulations (or loops) may be present in the graph. A graph without retic-
ulation is said to be acyclical, or simply called a tree.

• Temporal information may be taken into account in which case the graph
can be directed.
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Some specific cases are well-known: an acyclical graph where all observed
sequences or genotypes are nodes of degree one is a phylogenetic tree. The min-
imum spanning trees and networks (detailed in the next section) are graphs
where all nodes are observations (i.e., there are no inferred sequences or geno-
types). The important thing about the use of graphs in population genomics
(or in phylogenetics) is that these structures have an evolutionary interpre-
tation: the relationship coded in the graph are interpreted in terms of ances-
tral relationships, and the edge lengths measures the quantity of evolutionary
changes.

7.3.1 Minimum Spanning Trees and Networks
The minimum spanning tree (MST) method was originally developed by
Borůvka in 1926 [202], and popularized by Kruskal thirty years later [149].
This is a widely used method in many different fields, especially because it
simply requires a distance matrix. Starting from n observations, the MST
method outputs a graph with n nodes and n−1 links. So, there are no reticu-
lations and no inferred, unobserved sequences or genotypes. Importantly, the
inferred network is of the shortest possible total length.

In most practical situations, the network inferred by the MST method is
not unique: the output depends on the ordering of the data [71]. Bandelt et al.
[13] proposed the minimum spanning network (MSN) method which outputs
a network with reticulations, and has thus more than n − 1 links. Recently,
the randomized minimum spanning tree (RMST) method was proposed as a
simpler solution: it is based on repeating the MST procedure after random-
izing the input order of the observations and outputing a network with links
weighted by the frequencies they appear over the randomizations [213].

These three methods are implemented in pegas with the functions mst,
msn, and rmst, respectively.2 They all take a set of distances (as either a
matrix or a "dist" object) as argument; rmst has an option B to specify the
number of replications of the randomization procedure (100 by default). To
illustrate the use of these functions, we create a small data set with three
observations and three sites (say RFLP sites) and calculate the Manhattan
distances:

> X <- diag(3)
> rownames(X) <- LETTERS[1:3]
> X
[,1] [,2] [,3]

A 1 0 0
B 0 1 0
C 0 0 1
> d <- dist(X, "manhattan")

2ape has also a function called mst implementing an older code which is kept because it
is used by other packages.
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> d
A B

B 2
C 2 2

In spite of its simplicity, this data set presents a difficulty for the MST: all
distances are equal, so the output will depend on the data order. We therefore
expect the inferred MST and RMST networks to be different:

> nt <- mst(d)
> nt
Haplotype network with:

3 haplotypes
2 links
link lengths between 2 and 2 steps

Use print.default() to display all elements.

The object returned by mst is of class "haploNet" which is the class used by
pegas to code networks. The basic structure is a three-column matrix where
each row is a link (or edge), the first two columns give the nodes connected
by these links, and the third column gives the lengths of the links:

> str(nt)
haploNet [1:2, 1:3] 1 1 2 3 2 2
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:3] "" "" "step"

- attr(*, "labels")= chr [1:3] "A" "B" "C"

We now reconstruct the MSN network with these data:

> mn <- msn(d)
> mn
Haplotype network with:

3 haplotypes
3 links
link lengths between 2 and 2 steps

....

Since the number of links is larger than two (= n − 1), there is necessarily a
reticulation in this network:

> str(mn)
haploNet [1:2, 1:3] 1 1 2 3 2 2
- attr(*, "alter.links")= num [1, 1:3] 2 3 2
..- attr(*, "dimnames")=List of 2
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.. ..$ : NULL

.. ..$ : chr [1:3] "" "" "step"
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:3] "" "" "step"

- attr(*, "labels")= chr [1:3] "A" "B" "C"

The structure is slightly more complicated because the reticulation is stored
separately, although this is only for practical reasons. We now build the RMST
network:

> rnt <- rmst(d)
> rnt
Haplotype network with:

3 haplotypes
3 links
link lengths between 2 and 2 steps

....

We can compare two "haploNet" objects using the generic function
all.equal:

> all.equal(rnt, mn)
[1] TRUE
> all.equal(nt, mn)
[1] "Number of links different"
[2] "Links in ’mn’ not in ’nt’:
[3] "B--C"

There is also a plot method for the class "haploNet" (Fig. 7.4).

7.3.2 Statistical Parsimony
Templeton et al. [269] developed a parsimony approach to reconstruct net-
works from RFLP data; the method is applicable to sequence data as well.
Their method actually mixes parsimony and statistical principles, so it is
known as statistical parsimony or TCS from the initials of the three authors
(which is also the name of the associated computer program [42]). A TCS
network may have reticulations defining alternative branchings, and include
unobserved haplotypes in the network. Thus, this method may be used to
infer micro-evolutionary events such as putative recombinations [227].

The function haploNet implements a simplified version of statistical parsi-
mony: the haplotypes are aggregated using the shortest possible links similarly
to the MST method. At each aggregation step, alternative branchings are as-
sessed and added to the network if they create a shorter path between two
haplotypes than the one already possible. The aggregation process is stopped
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when all haplotypes are linked in a single network. The main argument is an
object of class "haplotype"; an optional distance matrix can also be given if
the haplotypes are not from DNA sequences which is the case here:

> hapX <- haplotype(X, labels = rownames(X))
> ntcs <- haploNet(hapX, d)
> all.equal(rnt, ntcs)
[1] TRUE

If the input "haplotype" object comes from DNA sequences, the Hamming
distances are computed for the network construction; otherwise, a set of dis-
tances must be given as in this example.

7.3.3 Median Networks
The median-joining network (MJN) method from Bandelt et al. [13] belongs
to a class of methods based on the reconstruction of median-vectors which can
be interpreted as unobserved data [14]. This is done by considering the triplets
of observed sequences. For instance, with the data matrix X, the median-vector
with (0, 0, 0) is inferred to be the sequence resulting in the smallest number
of changes in the network and is thus added to the network (Fig. 7.4).

The function mjn in pegas implements the MJN method. By contrast to
the methods seen in the previous sections, it requires the original sequences
as input: these can be DNA or binary (0/1) sequences such as the matrix X
created above:

> jn <- mjn(X)
> jn
Haplotype network with:

4 haplotypes
3 links
link lengths between 1 and 1 steps

....

This time the network has four nodes because of the additional median-vector,
and each link is of length one. The inferred sequences are appended to the
network together with the original sequences, so that these can be extracted
as a standard R attribute:

> str(jn)
haploNet [1:3, 1:3] 1 2 3 4 4 4 1 1 1
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:3] "" "" "step"

- attr(*, "labels")= chr [1:4] "A" "B" "C" "median.vector_4"
- attr(*, "data")= num [1:4, 1:3] 1 0 0 0 0 1 0 0 0 0 ...
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Figure 7.4
Four networks reconstructed from the data X in the text.

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:4] "A" "B" "C" "median.vector_4"

.. ..$ : NULL
> attr(jn, "data")

[,1] [,2] [,3]
A 1 0 0
B 0 1 0
C 0 0 1
median.vector_4 0 0 0

The last operation makes possible to examine the sequences of the in-
ferred median-vectors. Unlike the minimum spanning methods which are very
straightforward to run, the MJN method is more computationally intensive
because of the large number of triplets that are considered when n is large.

7.3.4 Phylogenetic Trees
A wide range of phylogenetic methods are available in ape and phangorn
(see [211, Chap. 5], for an extensive introduction). The neighbor-joining (NJ)
method [241] is commonly used with population genetic data as it requires
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a matrix of pairwise distances and is somewhat robust to variation in evo-
lution rate among lineages. This method is implemented in the function nj
in ape, and bootstrap confidence values can be computed with the function
boot.phylo. A wide range of DNA evolutionary models are available to cal-
culate pairwise distances with the function dist.dna. Additionally, phangorn
has a very comprehensive set of tools for ML phylogenetics (see Sect. 10.1.2
for an application in the analysis of selection) as well as a complete set of tools
to handle and analyze phylogenetic networks [reviewed in 124, 192].

Phylogenetic trees are appropriate to study evolution over long times (i.e.,
when the ancestors of the observed sequences are extinct) and are thus usually
used to study interspecific relationships [74, 75]. However, they are founda-
mental tools to model gene genealogies in populations as we will see in Chap-
ter 9.

7.4 Multivariate Methods
7.4.1 Principles of Discriminant Analysis
We have seen in the previous chapter that some multivariate methods seek to
summarize a large matrix with linear combinations of the columns providing
constraints are defined in order to obtain new coordinates that are meaningful.
For instance, in a PCA the constraint is to maximize the variance of the
new axes. If there are groups in the data and the question is to be able to
differentiate (or discriminate) these groups using variables measured on each
individual, then these principal components may not be able to do this if
the differences among groups are not correlated with the greatest variation.
This problem can be approached by decomposing the variance matrix Σ into
a within-group variance matrix B and a within-group variance matrix W
(Fig. 7.5).

In its simplest form, the problem is to find linear combinations of the
columns of X that maximizes the between-group variances. Let us write α
the vector of coefficients of this transformation. We know that Var(αx) =
α2Var(x) for α constant, so the problem is to find α that maximizes the ratio
[283]:

αTBα

αTWα
,

If W has been standardized to be homogeneous among groups, we just need
to maximize αTBα which is something we can do with matrix decomposition
(Sect. 5.6.1). This approach, called the linear discriminant analysis (LDA) was
originally published by Fisher in 1936 [78] (see ?iris in R). In the same way
as for PCA, the matrix decomposition can be done by eigendecomposition,
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Figure 7.5
Graphical representation of within-group, between-group, and total variances
with two variables (X1 and X2).

SVD, or else (Sect. 5.6.2). A vast literature has since been contributed on
the topic of discrimination: Hastie et al. [109] and James et al. [129] made
extensive reviews of this topic including implementations in R. One of the
first use of DA with genetic data was by Piazza et al. [223] in 1981 in a study
of the effect of longitude on human genetic diversity.

7.4.2 Discriminant Analysis of Principal Components
LDA has been adapted to genomic data by Jombart et al. [133] under the name
discriminant analysis of principal components (DAPC). This method works
in two steps: first, a PCA is performed on the original allelic data. Second,
an LDA is performed on the principal components output by the PCA. This
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approach requires to have groups defined beforehand, although it is possible
to use a clustering method to define groups from the data. Jombart et al.
recommended to use the k-means clustering method (see Sect. 7.4.4).

The DAPC is implemented in the function dapc in adegenet and thus
requires an object of class "genind". To try it, we simulate a small haploid
data set with three populations each with three individuals and five loci:

> Y <- sample(c("A", "G"), size = 45, replace = TRUE)
> Y <- matrix(Y, 9, 5)
> Y

[,1] [,2] [,3] [,4] [,5]
[1,] "A" "A" "G" "A" "A"
[2,] "A" "G" "A" "A" "A"
[3,] "A" "A" "A" "G" "G"
[4,] "A" "A" "A" "A" "A"
[5,] "G" "A" "A" "G" "G"
[6,] "G" "A" "G" "G" "G"
[7,] "A" "G" "G" "G" "A"
[8,] "A" "A" "G" "G" "A"
[9,] "G" "G" "A" "G" "G"
> Yloc <- as.loci(as.data.frame(Y))
> Yloc$population <- gl(3, 3, labels = paste0("pop", 1:3))
> Yg <- loci2genind(Yloc, ploidy = 1)

The function can be called directly without option in which case the user will
be asked to enter how many principal and discriminant axes should be kept.
Both numbers can be specified when calling the function with the appropriate
options; for instance, we want to perform the DA on five PCs (n.pc) and keep
two discriminant axes (n.da):

> res.dapc <- dapc(Yg, n.pc = 5, n.da = 2)
> res.dapc
#################################################
# Discriminant Analysis of Principal Components #
#################################################
class: dapc
$call: dapc.genind(x = Y, n.pca = 5, n.da = 2)

$n.pca: 5 first PCs of PCA used
$n.da: 2 discriminant functions saved
$var (proportion of conserved variance): 1

$eig (eigenvalues): 15 6 vector length content
1 $eig 2 eigenvalues
2 $grp 9 prior group assignment
3 $prior 3 prior group probabilities
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4 $assign 9 posterior group assignment
5 $pca.cent 10 centring vector of PCA
6 $pca.norm 10 scaling vector of PCA
7 $pca.eig 5 eigenvalues of PCA

data.frame nrow ncol
1 $tab 9 5
2 $means 3 5
3 $loadings 5 2
4 $ind.coord 9 2
5 $grp.coord 3 2
6 $posterior 9 3
7 $pca.loadings 10 5
8 $var.contr 10 2
content

1 retained PCs of PCA
2 group means
3 loadings of variables
4 coordinates of individuals (principal components)
5 coordinates of groups
6 posterior membership probabilities
7 PCA loadings of original variables
8 contribution of original variables

The output is fairly complete and its elements can be extracted in the usual
way with the list operators ($ or [[). There are two useful plotting functions
to display the results: scatter and compoplot (Fig. 7.6):

> col <- c("grey30", "grey60", "grey90")
> layout(matrix(1:2, 1))
> scatter(res.dapc, col = col)
> compoplot(res.dapc, col = col)

Because of the very small sample size, the three populations are completely
separated from each others. It should be kept in mind that the population
structure is given a priori, and that the method tries to find the combina-
tions of allele frequencies that best separate the populations (see Table 7.1 on
page 223 for a comparison of methods).

One must be careful with the fact that DAPC tends to find structure
when a large number of PCs are retained, even if there is no structure. This
can be checked with simulated data, here we generate simple binary haploid
genotypes (with the usual notation for n, p, and K):

> n <- 90; p <- 100; K <- 3
> X <- sample(0:1, n * p, replace = TRUE)
> dim(X) <- c(n, p)
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Figure 7.6
Scatterplot (left) and composition plot (right) of the results from a DAPC.

> X <- genind(X, ploidy = 1)
> pop(X) <- gl(K, n/K, labels = paste0("Pop", 1:K))

We fit the DAPC playing with a small number and a large number of PCs:

> dapc5 <- dapc(X, n.pca = 5, n.da = 2)
> dapc80 <- dapc(X, n.pca = 80, n.da = 2)

The plots suggest quite different interpretations (Fig. 7.7):

> layout(matrix(1:2, 1))
> scatter(dapc5, col = col)
> scatter(dapc80, col = col)

The same results are observed with different simulations scenarios when there
is no population structure. To handle this issue, adegenet implements the
a-score to assess how many PCs should be kept. This score is defined as
the difference between the observed proportions of correct reassignment with
those using random groups; it is computed with the function a.score. We
check here only the mean values of this score (adegenet computes a score for
each group):

> a.score(dapc5)$mean
[1] 0.01777778
> a.score(dapc80)$mean
[1] -0.008888889

These values indicate that group reassignment is not successful. The func-
tion optim.a.score helps to find an “optimal” number of PCs and, most
importantly, plots the a-score for different number of PCs (Fig. 7.8):

> optim.a.score(dapc80)
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Figure 7.7
DAPC on simulated data (A) with 5 PCs, or (B) with 80 PCs.

It is found that 49 is the “optimal” number of PCs; however, this number
differs slightly depending on the repetition of this last command, and the
fact the a-score does not increase substantially with increasing number of
PCs supports the absence of group structure. An example with real data is
presented below with the fruit fly data.

7.4.3 Clustering

7.4.4 Maximum Likelihood Methods
If there is no structure given a priori with the data, this can be inferred from
the data. There are a several approaches to this problem, one of the most
well-known is the k-means method [169]. A statistical view of this approach
is to assume that the data X follow a multivariate normal distribution with
the vector of means µ and the variance-covariance matrix Σ, which could be
a reasonable approximation even with genetic data since they are generally
standardized before analysis. We may then compute a likelihood function a
posteriori after the groups were identified by summing over all groups. The
underlying model assumes the means are different among groups but homoge-
neous within each group. Different grouping inferences can be compared with
the standard likelihood-based methods (e.g., information criteria). However,
there is a difficulty here: since the groups are inferred, the likelihood must
be computed by summing over all the possible assignments weighted by their
posterior probabilities. This approach makes possible to compare the results
assuming different number of groups.

adegenet has the function find.clusters to find groupings. This function
accepts different types of data as long as there is a way to perform a PCA on
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Figure 7.8
The a-score of the DAPC with respect to the number of PCs.

them. After running the PCA with dudi.pca, a k-means algorithm [169, 258]3
is run to assign each individual in one among a fixed number of groups. An
important issue here is the number of groupsK. find.clusters() implements
three criterion to decide on the optimal value of K: two based on information
criteria (BIC and AIC) and one based on weighted least squares. Their use is
illustrated below.

Beugin et al. [18] extended the above method with a likelihood approach
using allelic data. Instead of a multivariate normal distribution, they used a
likelihood function based on the probability of a given genotype given the allele
frequencies of its population assuming HWE. Like for the previous method, the
value of K must be inferred from the observed data. Beugin et al.’s method is
implemented in the function snapclust which requires to specify the number
of clusters (or groups). We call it on the same small data set assuming there
are two clusters:

3See more references in ?kmeans.
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> snapclust(Yg, k = 2)
$group
Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 Ind7 Ind8 Ind9

1 1 2 1 2 2 1 1 2
Levels: 1 2

$ll
[1] -17.02142

$proba
1 2

Ind1 9.999612e-01 3.884099e-05
Ind2 9.999140e-01 8.596974e-05
Ind3 1.176471e-02 9.882353e-01
Ind4 9.998311e-01 1.688904e-04
Ind5 4.008337e-05 9.999599e-01
Ind6 1.743071e-04 9.998257e-01
Ind7 9.970414e-01 2.958580e-03
Ind8 9.941860e-01 5.813953e-03
Ind9 7.875256e-05 9.999212e-01

$converged
[1] TRUE

$n.iter
[1] 1

$n.param
[1] 10

attr(,"class")
[1] "snapclust" "list"

The output is a list with the inferred group membership for each individ-
ual ($group), the log-likelihood ($ll), the posterior probabilities of group
assignment ($proba), whether the model fitting converged ($converged), the
number of iterations ($n.iter), and the number of parameters ($n.param).

Looking at the posterior membership probabilities, it seems that each in-
dividual is unambiguously assigned to one of the two groups, but it could be
that the model assuming K = 2 is not appropriate to describe these data. The
appropriate value of K can be found with the function snapclust.choose.k
which makes this easier than calling snapclust repeatedly (this function does
not accept k = 1):

> snapclust.choose.k(5, Yg)
1 2 3 4 5
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69.10238 54.04284 54.40123 58.66035 63.87330

The first argument is the largest value ofK to be assessed. By default, the AIC
is used and it suggests that K = 2 is actually the best value here. However,
because of the small sample size we redo this analysis with the version of AIC
corrected for small sample sizes (AICc):

> snapclust.choose.k(5, Yg, IC = "AICc")
1 2 3 4 5

69.10238 -55.95716 -14.17020 -11.33965 -12.59729

The support for K = 2 is clearer than with AIC, but the extremely large value
observed with K = 1 indicates something is wrong. We will come back to this
later.

7.4.5 Bayesian Clustering
Bayesian inference is a natural approach to identify individuals when it is
possible to define sensible priors, for instance, if it is known from previous
studies that allele frequencies are different in different populations. If such
priors cannot be defined or the number of populations is unknown, “sensible”
priors can still be used.

Corander et al. [43] developed a Bayesian approach to the problem of
finding groups (or clusters) from DNA sequences. The strength of this method
is that it relies on an explicit calculation of the posterior probabilities by
numerical integration instead of the traditional integration by MCMC. It is
therefore much faster and numerically more stable than classical Bayesian
methods. The method seeks to infer a partition of the data X which is denoted
S. The posterior probability is computed as usual in Bayesian inference:

Pr(S|X) = Pr(X|S) Pr(S)∑
S Pr(X|S) Pr(S) ,

with the prior Pr(S) and the marginal likelihood Pr(X|S):

Pr(X|S) =
K∏

i=1

p∏

j=1


 Γ (

∑
l αijl)

Γ (
∑
l αijl + nijl)

kj∏

l=1

Γ(αijl + nijl)
Γ(αijl)


 ,

with nijl the count of allele l at locus j in cluster i and αijl is the hyperpa-
rameter of the Dirichlet prior defined as αijl = 1/kj .

The method is implemented in the package rhierbaps with the function
hierBAPS. Unfortunately, this implementation is still in development and does
not yet include specification of priors so that uninformative Dirichlet priors
are used. This package has its own input format which can either read FASTA
files, or convert a "DNAbin" object:
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> library(rhierbaps)
> dat.snp <- load_fasta(as.DNAbin(Y))
> str(dat.snp)
chr [1:9, 1:5] "a" "a" "a" "a" "g" "g" "a" "a" "g" "a" ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:9] "Ind1" "Ind2" "Ind3" "Ind4" ...
..$ : NULL

The data are actually a matrix of lowercase characters. The main function
has several options including n.pops which sets an upper limit on the number
of clusters and is used to build an initial clustering, and max.depth which
sets the maximum depth of the successive clustering computations (0 being a
single cluster). We also ask to return the individual posterior membership (or
assignment) probabilities and to not display the progress of the computations:

> res.baps <- hierBAPS(dat.snp, max.depth = 2, n.pops = 5,
+ assignment.probs = TRUE, quiet = TRUE)
> res.baps
$partition.df
Isolate level 1 level 2

1 Ind1 1 1
2 Ind2 1 1
3 Ind3 2 3
4 Ind4 1 1
5 Ind5 2 3
6 Ind6 2 3
7 Ind7 1 2
8 Ind8 1 2
9 Ind9 2 3

$cluster.assignment.prob
$cluster.assignment.prob[[1]]

Cluster 1 Cluster 2
Ind1 0.996237037 0.003762963
Ind2 0.992651139 0.007348861
Ind3 0.061007638 0.938992362
Ind4 0.987811613 0.012188387
Ind5 0.002524961 0.997475039
Ind6 0.008201269 0.991798731
Ind7 0.972237321 0.027762679
Ind8 0.954569713 0.045430287
Ind9 0.004201197 0.995798803

$cluster.assignment.prob[[2]]
Cluster 1 Cluster 2 Cluster 3

Ind1 0.762686528 0.234253262 0.003060210
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Ind2 0.938578609 0.057655431 0.003765960
Ind3 0.039838505 0.071948199 0.888213296
Ind4 0.959256131 0.035355371 0.005388498
Ind5 0.002719714 0.006876511 0.990403775
Ind6 0.003543808 0.074667885 0.921788307
Ind7 0.052363725 0.938181567 0.009454709
Ind8 0.083314166 0.895625536 0.021060298
Ind9 0.003768943 0.015882295 0.980348762

$lml.list
$lml.list$‘Depth 0‘

1
-34.01159

$lml.list$‘Depth 1‘
1 2

-13.47116 -10.72778

The output is fairly complete showing the successive model fits with increasing
values of K (lml is the log-marginal likelihood). We can compare the final
classification from snapclust with the last result assuming K = 2:

> apply(res.baps$cluster.assignment.prob[[1]], 1, which.max)
Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 Ind7 Ind8 Ind9

1 1 2 1 2 2 1 1 2
> res.snap$group
Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 Ind7 Ind8 Ind9

1 1 2 1 2 2 1 1 2
Levels: 1 2

The results are very similar (keep in mind that the numbering of the inferred
groups is arbitrary for each method). The assignment probabilities are also
very close between both analyses (Fig. 7.9):

> layout(matrix(1:2, 1))
> compoplot(res.baps$cluster.assignment.prob[[1]], col = col[c(1, 3)])
> compoplot(res.snap, col = col[c(1, 3)])

The log-marginal likelihood can be used to compute the Bayes factors of
the different models in order to select the optimal value of K.

The package fastbaps has another implementation of Bayesian clustering
very close to the previous one. An initial clustering is done by simple hierar-
chical classification. This is then used to optimize the hyperparameter of the
priors by maximizing the marginal likelihood at the root node of the hierarchy.
Other details are very similar to rhierbaps. The data are imported from either
a FASTA file, or a "DNAbin" object:
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Figure 7.9
Assignment probabilities with (A) maximum likelihood (snapclust) and (B)
Bayesian method (hierBAPS).

> library(fastbaps)
> Ybaps <- import_fasta_sparse_nt(as.DNAbin(Y))

The data are, however, stored differently with a sparse matrix with the SNPs
and a matrix with the priors:

> Ybaps
$snp.matrix
5 x 9 sparse Matrix of class "dgCMatrix"

1 . . . . 3 3 . . 3
2 . 3 . . . . 3 . 3
3 . 1 1 1 1 . . . 1
4 . . 3 . 3 3 3 3 3
5 . . 3 . 3 3 . . 3

$consensus
[1] 0 0 2 0 0

$prior
[,1] [,2] [,3] [,4] [,5]

[1,] 0.5 0.5 0.5 0.5 0.5
[2,] 0.0 0.0 0.5 0.0 0.0
[3,] 0.0 0.0 0.0 0.0 0.0
[4,] 0.5 0.5 0.0 0.5 0.5
[5,] 0.0 0.0 0.0 0.0 0.0

$prior.type
[1] "baps"
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This last matrix can be changed with the function optimise_prior which
makes possible to use different methods [279]:

> Ybaps.opt <- optimise_prior(Ybaps)
[1] "Optimised hyperparameter: 9.935"
> Ybaps.opt$prior

[,1] [,2] [,3] [,4] [,5]
[1,] 4.9675 4.9675 4.9675 4.9675 4.9675
[2,] 0.0010 0.0010 4.9675 0.0010 0.0010
[3,] 0.0010 0.0010 0.0010 0.0010 0.0010
[4,] 4.9675 4.9675 0.0010 4.9675 4.9675
[5,] 0.0010 0.0010 0.0010 0.0010 0.0010

The function fast_baps does the model fit and outputs an objects of class
"hclust" (see p. 125):

> res.fast <- fast_baps(Ybaps.opt, 2, quiet = TRUE)

Consistently with the previous results, two clusters are inferred by fast_baps
(Fig. 7.10):

> plot(res.fast)

rhierbaps and fastbaps are still in development.

7.5 Admixture
Incomplete mixing of two or more populations is an issue that received a
lot of attention from population geneticists during the last decade [207]. In
the general admixture model a sample of n individuals have genetic origins
coming from K populations. We consider that the p loci are all strict SNPs,
so we need to know only the frequencies of one of the two alleles. The model
is parameterized with two matrices denoted Q and F . The first matrix has
n rows and K columns and contains the probabilities that each individual
comes from each population. The second matrix has K rows and p columns
and contains the frequencies of each allele in each population. Since the rows
of Q sum to one, it is therefore necessary to estimate n(K−1)+pK parameters
making the inference of admixture a (very) high-dimensional problem.

7.5.1 Likelihood Method
The package LEA has several functions to assess structure from genomic data.
One of them, snmf (sparse non-negative matrix factorization), fits the admix-
ture model [83] and is thus very similar to the program admixture [7, 8].



Admixture 215

In
d1

In
d2

In
d4

In
d7

In
d8

In
d3

In
d5

In
d6

In
d9

0
5

10
15

20
25

30

Cluster Dendrogram

combine_clusterings (*, "")
baps

H
ei

gh
t

Figure 7.10
Results from fast_baps.

However, instead of maximizing directly the likelihood function, snmf uses a
least squares approach minimizing the quantity ‖X − QG‖2 where X is the
matrix of genotypes. This makes it 10–30 times faster than admixture. This
function requires the data to be in a file with the alleles coded as 0/1 with no
separation between the columns; we use the fact that the factors in a "loci"
object can be converted as integers into the values 1, . . . , and then subtract
one (we also remove the population column):

> G <- sapply(Yloc[, -6], as.integer) - 1
> write.table(t(G), "G.geno", sep = "", row.names = FALSE,
+ col.names = FALSE)

The resulting file ‘G.geno’ is:

000011001
010000101
100001110
001011111
001011001

Recent versions of LEA include the function vcf2geno to prepare such a file
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from a VCF file. The name of this data file is the main argument to snmf;
we also specify the value(s) of K, the number of repetitions of each model fit,
and whether an entropy-based measure of fit should be calculated:

> K <- 1:3
> res.snmf <- snmf("G.geno", K=K, repetitions=10, entropy=TRUE)
....

Cross-Entropy (all data): 0.331411
Cross-Entropy (masked data): 0.000222234
The project is saved into :
G.snmfProject

To load the project, use:
project = load.snmfProject("G.snmfProject")

To remove the project, use:
remove.snmfProject("G.snmfProject")

The run is very verbose and was mostly cut here. One nice feature of this
implementation is that it lets the user easily assess different values of K with
a cross-validation criterion calculated by partitioning the data matrix into
a training set and a test set and is based on equations from information
theory and Shannon entropy. The criterion is calculated with the function
cross.entropy called here for each repetition and each value of K:

> names(K) <- paste("K", K, sep = "=")
> sapply(K, function(k) cross.entropy(res.snmf, k))

K=1 K=2 K=3
[1,] 1.0986133 0.2877461 0.693307161
[2,] 1.2032624 0.9210381 5.573327667
[3,] 0.5422056 0.9323916 4.393497580
[4,] 1.0986133 1.3861824 8.740409879
[5,] 0.6993585 0.6020171 4.317602819
[6,] 0.6365142 0.1704030 3.018861588
[7,] 0.9675985 0.7676020 3.083899680
[8,] 1.0027188 3.2404483 3.279742406
[9,] 0.8828517 0.4185491 0.477455598
[10,] 0.8109312 8.5172932 0.000300005

Like for other information-based criteria, the smaller the value, the better the
prediction. There is overall support for K = 1:

> colMeans(sapply(K, function(k) cross.entropy(res.snmf, k)))
K=1 K=2 K=3

0.8942667 1.7243671 3.3578404
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Figure 7.11
Assignments of individuals to two or three populations with snmf.

Though this is not meaningful here, we plot the inferred group assignments for
K = 2 and K = 3 which is done here with the function barchart (Fig. 7.11):

> layout(matrix(1:2, 1))
> for (i in 2:3) {
+ o <- barchart(res.snmf, K = i, run = 10, sort.by.Q = FALSE,
+ space = 0, col = cols[1:i], paste("K =", i))
+ mtext(rownames(Yloc), 1, at = 1:nrow(Yloc) - 0.5, las = 3)
+ }

Running snmf creates a number of files and directories; once we have finished
with this small example, we can remove them from the disk:

> remove.snmfProject("G.snmfProject")

7.5.2 Principal Component Analysis of Coancestry
Zheng and Weir [312] developed a method, which they called EIGMIX, based
on the same population divergence model outlined above for the analysis
of FST [294]. The procedure is to first do a PCA on the SNP data with
snpgdsEIGMIX which assumes the above model. Then, using “surrogate” pop-
ulation data with K groups, the first K−1 PCs are retained, and group means
are calculated. The deviations from these means for each individual are taken
as estimates of the ancestry proportions calculated with snpgdsAdmixProp.
There is a special plot function snpgdsAdmixPlot but the results can also be
displayed with compoplot from adegenet.
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W X Y XW Y XW Y

No admixture Admixture

1Figure 7.12
In the absence of admixture, there is a single evolutionary path between popu-
lationsW and X (in grey). If population X is the result of admixture between
W and Y , genes have followed two paths between W and X.

The package pophelper4 [80] offers an alternative way to visualize the re-
sults of the Q matrices from different analyses. It has several functions to
import results from programs outside R such as STRUCTURE [229], AD-
MIXTURE, or TESS. The main plotting function is called plotQ with too
many options to detail here. The Q matrices from the above analyses can
also be analyzed by pophelper by putting them in a list and taking care of
converting the matrices into data frames, for instance:

> Q <- list(snap = as.data.frame(res.snap$proba))

Then the plot can be done with:

> plotQ(Q)

which will write a file ‘snap.png’ with the assignment probabilities. Alterna-
tively, the webserver http://pophelper.com can do these plots after upload-
ing the data; the plots can be edited interactively and exported into files.

7.5.3 A Second Look at F-Statistics
During the last decade, very significant progress has been accomplished in
analyzing genome-wide SNP data to assess population histories, admixture,
and complex demographic scenarios [218, 220, 224, 235, 289]. In a way, these
works draw a link between population genetics and phylogenetics [74]. Indeed,
the basic idea is that populations are linked by a phylogenetic tree and that
drift and mutations occurred along the branches of this tree. Different indices
can be defined based on the expected divergence between two or more popu-
lations, and the distribution of these indices will depend on their demographic
history.

4https://github.com/royfrancis/pophelper

https://github.com
http://pophelper.com
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Consider SNP data and four populations labelled W , X, Y , and Z, and
let the proportions of an arbitrary allele in each population denoted as ξW ,
ξX , ξY , and ξZ . Take two of these populations, say W and X, a measure of
the genetic drift that happened since they separated is given by:

F2(W,X) = E
[
(ξW − ξX)2] ,

In the presence of admixture, the gene lineages took different paths leading to
the present populations W and X (Fig. 7.12). Peter [220] proposed another
formula which avoids the need to define ancestral alleles:

F2(W,X) = πWX −
πW + πX

2 .

where πW and πX are the nucleotide diversity within populations W and X,
and πWX is the inter-population nucleotide diversity (see p. 245). A similar
statistic can be defined with three populations:

F3(Y ;W,X) = E [(ξY − ξW )(ξY − ξX)] .
The order of the populations matters. Interestingly, F3 can be calculated in
terms of F2’s [235]:

F3(Y ;W,X) = 1
2 [F2(Y,W ) + F2(Y,X)− F2(W,X)] .

If Y is not admixed from W and X, then F3 ≥ 0. If F3(Y ;W,X) < 0, then
this is an indication that population Y has a “complex” history. According
to Patterson et al. [218], this assessment of admixture is robust to the ascer-
tainment of the ancestral state of the allele; on the other hand, admixture
may also result in a positive value of F3. Peter [220] suggests, using coalescent
theory, that this test is quite restrictive to detect admixture.

A four-population statistic is defined with:

F4(W,X;Y, Z) = E [(ξW − ξX)(ξY − ξZ)] .
Like for F3, this index can be formulated with the pairwise F2’s [235]:

F4(W,X;Y,Z) = 1
2 [F2(W,Z) + F2(Y,X)− F2(W,Y )− F2(X,Z)] .

Peter [220] defined a test of admixture of W from X and Y with:

α = F4(A,B;W,X)
F4(A,B;X,Y ) ,

where A and B are two distant populations from the three others, B has
to be more closely related to either X or Y , and W is the population where
admixture is assessed. Another way to calculate this quantity, if all populations
are sampled at the same time is:



220 Population Genetic Structure

α = πAX − πAW
πAX − πAY

,

where no outgroup population is required.
In practice, these indices are used assuming different scenarios to test hy-

potheses. For example, Raghavan et al. [232] analyzed a human genome from
Siberia and computed a series of F3 indices fixing Y as the most distant pop-
ulation (from Africa), W as the population from Siberia, and X as one of
the 147 worldwide non-African populations. Peter [220] suggested to use the
pairwise F2 to assess the “treeness” of the population history using traditional
phylogenetic methods.

These three statistics can be calculated with the functions F2, F3, F4 in
pegas. They have identical options which are shown here for the last one:

F4(x, allele.freq = NULL, population = NULL, check.data = TRUE,
pops = NULL, jackknife.block.size = 10, B = 10000)

The data x are an object of class "loci"; alternatively, allele.freq can
be used if the allele frequencies have been calculated with by (Sect. 5.4).
population is the population variable (by default it is taken from x),
check.data = TRUE checks that all loci are biallelic, pops can be used to
specify the four populations and their order, jackknife.block.size is the
number of loci that are considered as a block in the jackknife confidence in-
tervals described by Patterson et al. [218], and B is the number of replications
of the bootstrap procedure to compute the same confidence intervals.

F4 also returns the D statistic defined by Patterson et al. [218] as fol-
lows: suppose the four above populations are related by an unrooted tree
(W,X), (Y,Z), then define the event “BABA” if an allele drawn at random
agrees between populations W and Y and between populations X and Z but
differs among these two pairs. Furthermore, define the event “ABBA” in a
similar way if the allele agrees between populations W and Z. Then D is
defined as:

D(W,X;Y, Z) = Pr(BABA)− Pr(ABBA)
Pr(BABA) + Pr(ABBA) ,

The value of D varies between −1 and +1.
The package admixturegraph can be used to analyze graphically the outputs

of F4. This package provides tools to build admixture graphs. As a simple
example, we build a phylogenetic tree with three populations:

> library(admixturegraph)
> leaves <- c("W", "Y", "X")
> inner_nodes <- c("WY", "WYX")
> edges <- parent_edges(c(edge("W", "WY"), edge("Y", "WY"),
+ edge("WY", "WYX"), edge("X", "WYX")))
> graph <- agraph(leaves, inner_nodes, edges)
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> graph
$leaves
[1] "W" "Y" "X"

$inner_nodes
[1] "WY" "WYX"

$nodes
[1] "W" "Y" "X" "WY" "WYX"

$parents
W Y X WY WYX

W FALSE FALSE FALSE TRUE FALSE
Y FALSE FALSE FALSE TRUE FALSE
X FALSE FALSE FALSE FALSE TRUE
WY FALSE FALSE FALSE FALSE TRUE
WYX FALSE FALSE FALSE FALSE FALSE

$probs
W Y X WY WYX

W "" "" "" "" ""
Y "" "" "" "" ""
X "" "" "" "" ""
WY "" "" "" "" ""
WYX "" "" "" "" ""

$children
W Y X WY WYX

W FALSE FALSE FALSE FALSE FALSE
Y FALSE FALSE FALSE FALSE FALSE
X FALSE FALSE FALSE FALSE FALSE
WY TRUE TRUE FALSE FALSE FALSE
WYX FALSE FALSE TRUE TRUE FALSE

attr(,"class")
[1] "agraph"

We build a second graph with the same three populations but adding an
admixture edge:

> inner_nodes2 <- c("w", "y", "x", "XWY")
> edges2 <- parent_edges(c(edge("W", "w"), edge("w", "XWY"),
+ edge("X", "x"), edge("x", "XWY"),
+ edge("Y", "y"),
+ admixture_edge("y", "w", "x", "alpha")))
> graph2 <- agraph(leaves, inner_nodes2, edges2)
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Figure 7.13
Phylogenetic trees of three populations built with admixturegraph (A) with no
admixture, and (B) with admixture.

We plot both graphs (Fig. 7.13):

> layout(matrix(1:2, 1))
> plot(graph, col = "grey")
> plot(graph2, col = "grey")

admixturegraph has other functions to fit admixture graphs to observed F
statistics (e.g., fit_graph).

To conclude this chapter, Table 7.1 lists the methods reviewed in this
chapter together with some from Chapter 8 and their main characteristics.

7.6 Case Studies
7.6.1 Mitochondrial Genomes of the Asiatic Golden Cat
In order to build a haplotype network, we first calculate the Hamming dis-
tances among the 40 sequences and then call rmst:

> d <- dist.dna(catopuma.ali, "N")
> nt <- rmst(d)
> nt
Haplotype network with:
40 haplotypes
51 links
link lengths between 2 and 40 steps

Use print.default() to display all elements.
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Table 7.1
Functions for testing or assessing genetic structure in R
Function(s) Data Structure

Type Known
a priori?

Fst, diff_stats (p. 189) Allelic Discrete populations Yes
snpgdsFst (p. 195) SNP Yes
amova (p. 247) Distances Hierarchy Yes
dudi.pca (p. 120) Allelic Continuous No
dapc (p. 204) Allelic Discrete populations Yes
spca (p. 252) Allelic Geographic Yes
MCMC (p. 257) Allelic Geographic No
snmf (p. 214) SNP Clusters No
hierBAPS (p. 210) DNA seqs. Hierarchy No
snapclust (p. 208) Allelic Clusters No
find.clusters (p. 207) any Clusters No
F4 (p. 220) SNP Populations with Yes

admixture
tess3 (p. 255) SNP Discrete populations Yes

This network has thus 51 links which is 12 more compared to a network
inferred by MST:

> all.equal(mst(d), nt, use.steps = FALSE)
[1] "Number of links different."
[2] "Links in ’nt’ not in ’mst(d)’:"
[3] "KX224491--KX224524"
....
[14] "KX224523--KX224527"

We can compare this result with a network built with msn which results in
much more links although the link lengths are similar:

> msn(d)
Haplotype network with:
40 haplotypes
352 links
link lengths between 2 and 40 steps

Use print.default() to display all elements.

Plotting networks is a difficult task because of the reticulations creating
loops. There are different approaches to this problem. One is to lay out the
nodes from the coordinates of an MDS performed on the distance matrix [213].
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Figure 7.14
RMST network built from the Asiatic golden cat data plotted with
plotNetMDS.

This has the advantages of spreading the nodes in relation to the variation in
the data, being computationally efficient, and resulting in the same layout for
different networks as long as the same distance matrix is used for the MDS.
This approach is implemented in the function plotNetMDS in pegas (Fig. 7.14):

> plotNetMDS(nt, d, col = "black", font = 1)

The plot can be done in 3-D with the option k = 3 using the package rgl [3]
(see online materials for an animation). The class "haploNet" has its own
plot method with a number of options (see ?plot.haploNet; see also below).
A difficulty with this function is to find an appropriate node layout. The
default layout is generally suitable for small networks (with less than thirty
nodes) but can be quite clumsy with bigger ones. One possibility is to modify
the layout interactively by hand with the function replot. This function is
called after plotting a network, typically with:

> xy <- replot()

Then, the user is invited to click on the nodes to move them; the positions of
the nodes are refreshed on the graphical window after each click. Once done,
the user does a righ-click and the new coordinates are returned (into the list
xy in this example).

Another approach is to use a pre-defined layout and pass it as argument
to replot. An interesting possibility is to use the package network [26] and its
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plot method which supports different algorithms and outputs the coordinates
as a matrix:

> library(network)
> xy <- plot(as.network(nt))

The default is the Fruchterman–Reingold force-directed placement algorithm
[87]. The coordinates have a random component, so the last command can be
repeated several times until a nice layout is found (this usually takes a few
repeats only). The coordinates saved in xy must be changed to the standard
R format (see ?xy.coords):

> xy <- list(x = xy[, 1], y = xy[, 2])

This list can be saved in a file for later use. The plot can now be done
(Fig. 7.15):

> plot(nt, labels=FALSE, show.mutation=3, threshold=c(1, Inf))
> replot(xy)

7.6.2 Complete Genomes of the Fruit Fly
We run a DAPC using 10,000 randomly selected loci on chromosome 2L (sim-
ilar results can be observed with the other chromosomes).

> is <- which(SNP & info.droso$CHROM == "2L")
> x <- read.vcf(fl, which.loci = sample(is, size = 1e4))
> x$population <- geo$Region
> z <- loci2genind(x)
> res <- dapc(z, n.pca = 20, n.da = 3)

The results are displayed with scatter (Fig. 7.16):

> scatter(res, col = "black")

The six main populations are pretty well characterized and the agreement
between the predictions from the DAPC and the original population member-
ships is good:

> xtabs(~ res$assign + x$population)
x$population

res$assign CAM CAR FRA RAL SEU WIN
CAM 10 0 0 0 0 0
CAR 0 11 0 0 0 0
FRA 0 0 20 0 0 0
RAL 0 0 0 30 5 0
SEU 0 1 0 3 6 0
WIN 0 0 0 0 0 35
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Figure 7.15
RMST network built from the Asiatic golden cat mitochondrial genome se-
quence data. The numbers on a grey background are the numbers of mutations
separating two haplotypes.
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Figure 7.16
DAPC scatter plot with the fruit fly data.

Giving the above comment on the potential overfit of DAPC, we may wonder
whether we did not keep too many PCs. We thus plot the a-score for each
DAPC with respect to the number of PCs (Fig. 7.17):

> layout(matrix(1:6, 3, 2, byrow = TRUE))
> for (i in 1:5)
+ optim.a.score(res[[i]], main = names(res)[i])

We have indeed slightly overfit the analyses; however, the a-scores are still
high even with 20 PCs (compare with Fig. 7.8 for the results with a random
structure).

In the DAPC analysis, the population assignments were obviously known;
however, are we able to find these memberships without this prior information?
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Figure 7.17
Assessment of number of PCs in the DACP using the a-score with the fruit
fly data.
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To attempt answering this question, we try the snapclust (in adegenet) and
snmf (in LEA) functions. In order to manage a reasonable number of loci, we
run snapclust with the MNP loci:

> x <- read.vcf(fl, which.loci = which(!SNP))
> z <- loci2genind(x)

We run the function snapclust.choose.k with K from 1 to 10:

> o <- snapclust.choose.k(10, z)
> which.min(o)
6
6

There is apparent support for six groups as shown by the differences in AIC
values with respect to the smallest one (∆AIC or δAIC; Fig. 7.18):

> barplot(o - o[6], xlab = "K", ylab = expression(delta*"AIC"))

However, snapclust run on a random sample of SNPs did not result in a clear
support for a value of K (not shown). We run the complete analysis with
K = 6:

> snap.droso <- snapclust(z, k = 6)

We cross-tabulate the predicted groups by this last analysis with the original
regions:

> xtabs(~ snap.droso$group + geo$Region)
geo$Region

snap.droso$group CAM CAR FRA RAL SEU WIN
1 0 1 20 23 7 35
2 0 10 0 1 1 0
3 0 0 0 0 2 0
4 0 1 0 2 1 0
5 10 0 0 0 0 0
6 0 0 0 7 0 0

It appears that the original groups are not well predicted by the snapclust
method. It is noteworthy that all membership probabilities were very high:

> summary(as.vector(snap.droso$proba))
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.1667 0.0000 1.0000

So it seems the method performs poorly with this data set—which could be
due to the nature of the selected loci.

It’s LEA’s turn. To prepare the data, we use LEA’s function vcf2geno:
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Figure 7.18
Differences in AIC (δAIC) for different values of number of clusters (K) with
snapclust.

> vcf2geno(fl, "droso.geno")

- number of detected individuals: 121
- number of detected loci: 1047913

For SNP info, please check droso.vcfsnp.

7905 line(s) were removed because these are not SNPs.
Please, check droso.removed file, for more informations.

[1] "droso.geno"

The printed message shows that the non-SNP loci have been discarded. This
wrote the file ‘droso.geno’ (128 MB) on the disk and we are now ready to run
the analysis:

> K <- 1:10
> droso.snmf <- snmf("droso.geno", K=K, repetitions=10,
+ entropy=TRUE)

A nice feature of LEA is that the runs are written on the disk progressively
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so that the analysis can be stopped at any time without losing what has been
done until that point. The above command was actually interrupted after five
repetitions (which took around three hours). In that case, the project can be
loaded for subsequent analyses with:

> droso.snmf <- load.snmfProject("droso.snmfProject")

We examine the values of cross-entropy:

> names(K) <- paste("K", K, sep = "=")
> foo <- function(k) cross.entropy(droso.snmf, k)[1:5]
> sapply(K, foo)

K=1 K=2 K=3 K=4 K=5
[1,] 0.6774640 0.5761812 0.5643898 0.5622726 0.5609759
[2,] 0.6772425 0.5757357 0.5650537 0.5629151 0.5617155
[3,] 0.6779777 0.5764992 0.5651459 0.5630375 0.5617573
[4,] 0.6778409 0.5766617 0.5652549 0.5632730 0.5620920
[5,] 0.6779767 0.5767191 0.5643915 0.5623154 0.5649487

K=6 K=7 K=8 K=9 K=10
[1,] 0.5656874 0.5703212 0.5743444 0.5776953 0.5923445
[2,] 0.5661089 0.5703170 0.5725842 0.5798182 0.5835754
[3,] 0.5658548 0.5718043 0.5723704 0.5784191 0.5826877
[4,] 0.5663483 0.5670156 0.5727269 0.5788054 0.5850334
[5,] 0.5693116 0.5710019 0.5714452 0.5773501 0.5823974
> round(colMeans(sapply(K, foo)), 5)

K=1 K=2 K=3 K=4 K=5 K=6 K=7
0.67770 0.57636 0.56485 0.56276 0.56230 0.56666 0.57009

K=8 K=9 K=10
0.57269 0.57842 0.58521

Although there is no large difference, the smallest value was found withK = 5.
We can examine the posterior membership probabilities (Fig. 7.19):

> o <- barchart(droso.snmf, K = 5, run = 5, sort.by.Q = FALSE,
+ space = 0, col = grey(0:4/4), "K = 5",
+ ylab = "Membership probability")
> mtext(geo$Region, 1, at = 1:121 - 0.5, las = 3, cex = 0.85)

An alternative for the labels in the left margin (or under the x-axis depending
on the rotation of the figure) could be to show the individual labels:

mtext(labs, 1, at = 1:121 - 0.5, las = 3, cex = 0.85)

This shows more clearly how some individuals are not unambiguously identi-
fied. These results disagree with the DAPC (Fig. 7.16) on two points: individ-
uals from SEU and RAL are well separated, whereas WIN and RAL appear
very similar—although RAL share some similarities with FRA.
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Figure 7.19
Results of the sNMF method with the fruit fly data.
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To conclude these analyses of the fruit fly data, we estimate the F2 indices
for each pair of populations. To simplify analyses—and to avoid closely linked
loci—we sample 10,000 SNPs regularly along the genome (the results are
similar by considering all SNPs):

> sel <- seq(1, sum(SNP), length.out = 1e4)
> x <- read.vcf(fl, which.loci = which(SNP)[sel])

We append the population information before computing the allelic frequen-
cies for each population:

> x$population <- geo$Region
> fbypop <- by(xsel)

To calculate the pairwise F2, we build a matrix and a loop that will fill this
matrix by considering each pair of populations successively. We first extract
the names of the populations and their numbers:

> POPS <- levels(x$population)
> K <- length(POPS)
> F2.droso <- matrix(0, K, K)

The loop is quite simple:

> for (i in 1:(K - 1))
+ for (j in (i + 1):K)
+ F2.droso[i, j] <- F2.droso[j, i] <-
+ F2(allele.freq=fbypop, jack=0, B=0, pops=POPS[c(i, j)])

The options jack=0 and B=0 of F2 were set in order to skip the jackknife and
bootstrap tests. The dimnames of the matrix can be set with the population
names before conversion into an object of class "dist":

> dimnames(F2.droso) <- list(POPS, POPS)
> F2.d <- as.dist(F2.droso)
> F2.d

CAM CAR FRA RAL SEU
CAR 687.10068
FRA 912.19208 267.19831
RAL 865.27298 206.18627 134.17080
SEU 828.26741 173.06428 158.16144 101.86837
WIN 983.54474 277.31102 104.86695 75.08317 132.94621

We can visualize the relationships among populations with an RMST or an
NJ tree (Fig. 7.20):

> nt <- rmst(F2.d)
> tr <- nj(F2.d)
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Figure 7.20
(A) RMST and (B) NJ tree built from the pairwise F2 indices among six
populations of fruit flies.

7.6.3 Influenza H1N1 Virus Sequences
With these data, we merely follow the same procedure as for the Asiatic
gloden cat. In order to build RMST networks for each gene, we calculate the
Hamming distance matrices:

> d.HA <- dist.dna(h.HA, "N")
> d.NA <- dist.dna(h.NA, "N")

We now build the networks:

> nt.HA <- rmst(d.HA)
> nt.NA <- rmst(d.NA)
> nt.HA
Haplotype network with:
152 haplotypes
166 links
link lengths between 1 and 6 steps
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Use print.default() to display all elements.
> nt.NA
Haplotype network with:
111 haplotypes
116 links
link lengths between 1 and 5 steps

Use print.default() to display all elements.

Both networks are relatively parsimonious with fifteen and six additional links,
respectively, compared to an MST network. The links are relatively short and
most of them are one-mutation long:

> table(rbind(nt.HA, attr(nt.HA, "alter.links"))[, 3])

1 2 3 4 5 6
111 35 16 2 1 1
> table(rbind(nt.NA, attr(nt.NA, "alter.links"))[, 3])

1 2 3 4 5
89 22 3 1 1

We plot the networks with the usual plot method, but instead of representing
the haplotype frequencies with circles of different sizes as commonly done, we
use here a grey scale. This has the advantage of resulting in a graph easier
to read. This requires three commands: first, extract the frequencies with
summary, second define the grey shade for each haplotype after scaling with
the largest value (found with max), and third plotting the network using the
option bg (Fig. 7.21):

> layout(matrix(1:2, 2))
> freq.HA <- summary(h.HA)
> co.HA <- grey((max(freq.HA) - freq.HA)/max(freq.HA))
> plot(nt.HA, labels = FALSE, bg = co.HA)
> freq.NA <- summary(h.NA)
> co.NA <- grey((max(freq.NA) - freq.NA)/max(freq.NA))
> plot(nt.NA, labels = FALSE, bg = co.NA)

The layout was found in the same way as with the Asiatic golden cat data
above. For both genes, the most abundant haplotypes have a central position
in the network and are connected to many haplotypes that were observed in
low frequencies.
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B

Figure 7.21
RMST network from the H1N1 data (A) hemagglutinin and (B) neuraminidase
genes. The grey scale of the nodes shows the haplotype frequencies: darker
means more frequent.
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7.6.4 Jaguar Microsatellites
The jaguar data were collected with a pretty standard design from four pop-
ulations [103], so they are straightforward to analyze. We first test for HWE
for each locus:

> hw.test(jaguar)
chi^2 df Pr(chi^2 >) Pr.exact

FCA742 183.86464 120 1.594495e-04 0.009
FCA723 103.12121 21 8.062440e-13 0.000
FCA740 74.20811 15 7.868073e-10 0.001
FCA441 41.33714 10 9.834077e-06 0.001
FCA391 76.09323 36 1.080868e-04 0.367
F98 120.42555 10 0.000000e+00 0.003
F53 119.13991 55 1.242116e-06 0.003
F124 90.44434 36 1.401578e-06 0.067
F146 12.45142 10 2.559795e-01 0.333
F85 122.68186 91 1.505069e-02 0.001
F42 134.42730 45 7.690482e-11 0.000
FCA453 21.65249 15 1.172451e-01 0.141
FCA741 11.60034 6 7.150214e-02 0.038

All but three loci show significant departure from HWE. We note that the χ2

and exact tests agree except for two loci (FCA391 and FCA124). Considering
the large numbers of alleles in these loci, it is preferable to rely on the second
test. We then calculate the F -statistics as well as the RST:

> Fst(jaguar)
Fit Fst Fis

FCA742 0.10564493 0.08475211 0.0228274913
FCA723 0.30454193 0.13841256 0.1928177679
FCA740 0.05281501 0.12962815 -0.0882532425
FCA441 0.25513047 0.19956849 0.0694150367
FCA391 0.04630618 0.04597942 0.0003425118
F98 -0.03039796 0.05263723 -0.0876487817
F53 0.03568141 0.04443131 -0.0091567409
F124 0.02477705 0.03099930 -0.0064213091
F146 0.03426582 0.03479137 -0.0005444867
F85 0.15936751 0.08706524 0.0791976236
F42 0.15777095 0.09997314 0.0642178689
FCA453 0.17275705 0.14485196 0.0326318844
FCA741 0.23023986 0.14856676 0.0959242571
> Rst(jaguar)

FCA742 FCA723 FCA740 FCA441 FCA391
0.106527418 0.092476322 0.008116949 0.085306414 0.114765269

F98 F53 F124 F146 F85



238 Population Genetic Structure

0.086961624 0.113443587 0.060373802 0.037021475 0.044607472
F42 FCA453 FCA741

0.066427249 0.202954611 0.109671955

We also compute the RST for each locus:

> Rst(jaguar)
FCA742 FCA723 FCA740 FCA441 FCA391

0.106527418 0.092476322 0.008116949 0.085306414 0.114765269
F98 F53 F124 F146 F85

0.086961624 0.113443587 0.060373802 0.037021475 0.044607472
F42 FCA453 FCA741

0.066427249 0.202954611 0.109671955

We then calculate similar statistics with mmod:

> library(mmod)
> jaguar.genind <- loci2genind(jaguar)
> diff_stats(jaguar.genind)
$per.locus

Hs Ht Gst Gprime_st D
FCA742 0.7876422 0.8522502 0.07580875 0.4642499 0.40565515
FCA723 0.5396683 0.6351166 0.15028479 0.4145284 0.27646256
FCA740 0.5765744 0.6625737 0.12979583 0.3917668 0.27080490
FCA441 0.5222616 0.6587300 0.20716902 0.5408449 0.38087356
FCA391 0.7485944 0.7814994 0.04210498 0.2202137 0.17451223
F98 0.5711122 0.5998413 0.04789451 0.1465555 0.08931349
F53 0.8112893 0.8361167 0.02969375 0.2077446 0.17541800
F124 0.7799567 0.8108580 0.03810928 0.2280233 0.18724325
F146 0.6106337 0.6303324 0.03125137 0.1059128 0.06745575
F85 0.7369367 0.8078363 0.08776474 0.4321909 0.35935355
F42 0.6924632 0.7533847 0.08086376 0.3413850 0.26412678
FCA453 0.6323947 0.7282544 0.13162937 0.4573627 0.34769060
FCA741 0.4398615 0.5429817 0.18991469 0.4251518 0.24546356

$global
Hs Ht Gst_est Gprime_st D_het

0.64995298 0.71536734 0.09144163 0.33799985 0.24916407
D_mean

0.18919543

Most values of these statistics show evidence of strong structuring related
to population. To assess statistical significance, we focus on Jost’s D with a
bootstrap approach:

> jaguar.bs <- chao_bootstrap(jaguar.genind, 1e4)
> jaguar.test.Z.D <- summarise_bootstrap(jaguar.bs, D_Jost)
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Warning message:
In summarise_bootstrap(jaguar.bs, D_Jost) :
Bootstrap distribution of D_Jost includes negative values,
harmonic mean is undefined

> jaguar.test.Z.D

Estimates for each locus
Locus Mean 95% CI
FCA742 0.4057 (0.269-0.543)
FCA723 0.2765 (0.118-0.435)
FCA740 0.2708 (0.150-0.392)
FCA441 0.3809 (0.229-0.533)
FCA391 0.1745 (-0.026-0.375)
F98 0.0893 (-0.044-0.223)
F53 0.1754 (0.021-0.330)
F124 0.1872 (0.034-0.341)
F146 0.0675 (-0.074-0.209)
F85 0.3594 (0.239-0.480)
F42 0.2641 (0.102-0.427)
FCA453 0.3477 (0.156-0.539)
FCA741 0.2455 (0.124-0.367)

Global Estimate based on average heterozygosity
0.2492 (0.205-0.293)

Global Estimate based on harmonic mean of statistic
0.1892 (0.066-0.312)

Ten out of the thirteen loci show significant evidence of population structuring.
Interestingly, these results agree with the tests on HWE except for two loci:
F98 (significant for HWE but not with the present analysis) and FCA453 (the
opposite).

7.7 Exercises
1. Simulate a data set by sampling randomly 1000 genotypes among

the three possible genotypes in the case of a biallelic locus. Check
if this random sample is in HWE.

2. Write down the probabilities of genotypes under HWE with three
alleles for a diploid organism (see Sect. 7.1). Check that they sum
to one.

3. Write down the probabilities of genotypes under HWE in the general
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case of any number of alleles and any number of chromosomes (see
Sect. 7.1).

4. Draw the three possible admixture graphs in the case of three pop-
ulations.

5. Analyze the data nancycats provided with adegenet, compute the
FST for each locus using mmod and pegas, and compare the results.

6. Make a picture showing how and in what conditions the first dis-
criminant axis can be different from the first principal component.

7. Explain why the indices FIS and FST are also called fixation indices.
8. Why are there (generally) fewer discriminant axes in a linear dis-

criminant analysis than there are principal components in a PCA
with the same data?

9. What is the relationship between Var(αx) = α2Var(x) and αTBα?
10. What is the number of edges in an unrooted phylogenetic tree with

n leaves? Same question for a rooted tree?
11. How many admixture graphs are there in the case of four popula-

tions?
12. Perform a multidimensional scaling (MDS) analysis with the wood-

mouse data.
13. Perform an MDS analysis with the jaguar data using two differ-

ent distances. Compare with the PCA performed above. Do this
comparison graphically and numerically.



8
Geographical Structure

Recently, geographical information has become more and more accurate and
important in many scientific and applied fields. High-resolution maps and data
sets of land cover, altitude, and other ecological or geophysical variables are
available to scientific community. This chapter starts with a few guidelines on
how to handle geographical data in R, then follows a section on the analysis
of molecular variance which can be viewed as “pre-geographical method” to
assess spatial variation in population genetic structure. The following sections
deal with more recent methods that incorporate geographical information in
a more explicit way.

8.1 Geographical Data in R
Geographical data have become common in many fields so they are now fairly
standardized and are often called geographical information systems (GIS).
There are two main categories of GIS: rasters and geometrical data. Rasters
arrange data in a matrix (or grid) defining cells. The resolution of the raster
gives the size of the cells. Geometrical data can be points, lines, or polygons.
GIS are also characterized by a coordinate reference system (CRS). There are
many CRS, but two are in main use:

• Longitude–latitude which is an angular system with degree (°) as the main
unit and its divisions: the arc-minute (1° = 60′) and the arc-second (1′ =
60′′).

• Universal transverse Mercator (UTM) which divides the Earth into sixty
zones, each 6° of longitude in width (≈ 668 km). The zones are numbered
1 to 60 and are further divided in squares labelled B (south) to X (north);
A, B, Y, and Z are used for the poles. Each square is small enough so that
distances between two points or locations are approximately straight lines
and can be calculated easily (see below). The unit is the meter (m).

The CRS makes it possible to localize the cells or the points on the surface
of the Earth. An important element of the CRS is the ‘datum’ or reference of
the coordinates. The most common datum is WGS84 (world geodetic system

241
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1984) with the reference meridian being 5.3′′ (102 m) east of the Greenwich
meridian.

8.1.1 Packages and Classes
R has a large number of packages to read, write and manipulate GIS. We
describe here a few “core” ones.

sp defines a large number of data classes for GIS and includes many func-
tions for data manipulation such as coordinate transformation. Its data classes
are S4 and may include a data frame, particularly "SpatialGridDataFrame",
"SpatialPointsDataFrame", "SpatialLinesDataFrame", and "SpatialPo-
lygonsDataFrame" with the first one for rasters and the others for geometric
objects. sf (simple features) is an alternative package to manipulate geomet-
rical data with many plotting facilities interacting with the mapping and vi-
sualization packages mapview, tmap, and ggplot2.

rgdal can read and write GIS data in many formats and returns objects
of one of the above classes. The functions to read GIS files are readGDAL for
rasters and readOGR for geometrical data. They have many options including
the possibility to read a subset of the data from GIS files (which can be very
big).

raster has its own data classes making the manipulation and plotting of
rasters easy. It can store and manipulate several large rasters using disk cache
(see p. 78). Its companion package rasterVis has many graphical functions for
flexible graphical display.

maps provides low-resolution databases of the world. It has a very simple
function to draw maps; for instance, map() draws a low-resolution map of the
world with the main country boundaries. mapdata provides databases with
higher resolutions (more suitable to produce final maps for publication), and
mapproj includes more than thirty projections for drawing maps.

8.1.2 Calculating Geographical Distances
Maybe one of the most common operations with geographical data is to cal-
culate distances between two locations or individuals. This is often done with
GPS coordinates (longitude and latitude). Consider Montpellier in the South
of France which has approximate coordinates N 43°36′, E 4°00′. What is the
distance from this city to a place located three degrees eastward (close to
Cannes)? This can be calculated with the geodesic distance which involves
angular calculations. It is implemented in the function geod in pegas which
takes as arguments two vectors of coordinates (or a matrix with two columns)
and returns a (symmetric) matrix with the distances in kilometers (km):

> lon <- c(4, 7); lat <- c(43.6, 43.6)
> geod(lon, lat)

[,1] [,2]
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[1,] 0.0000 241.5596
[2,] 241.5596 0.0000

What is the distance separating two locations with the same longitudes but
on the equator?

> geod(lon, c(0, 0))
[,1] [,2]

[1,] 0.0000 333.5848
[2,] 333.5848 0.0000

The calculations must be done with coordinates in decimal degrees; however,
geographical coordinates are usually stored in angular units. To help convert
these data, pegas also provides the function geoTrans which is quite flexi-
ble with respect to the input format and outputs the coordinates in decimal
degrees:

> geoTrans(c("N 34°36’", "S 34°36’"))
[1] 34.6 -34.6
> geoTrans(c("E 4°00’", "W 4°00’"))
[1] 4 -4

If the coordinates are in UTM, then simple Euclidean distances can be used
because the squares of the UTM system are approximately flat (Fig. 8.1).

In natural populations, geographical distances are not always meaningful
to quantify the connections among them. The package gdistance computes
general distance matrices using GIS data that must be in the class of the
package raster. The operation proceeds along several steps. The first step is
to have a raster with the appropriate variable(s) to calculate the distances
(altitude, land cover, . . . ) The second step is to define transitions among the
cells of the raster with the function transition and a function that will de-
fine transitions depending, for instance, on land cover and/or altitude, and
so on. The third step is to correct for geographical bias with the function
geoCorrection because the transitions among cells do not have the same dis-
tance (particularly because of the different sizes of the cells related to latitude;
see above the two examples of geodesic distance calculations). The fourth step
is to calculate distances among a set of locations given the coordinates on the
raster and the above transition definitions.

8.2 A Third Look at F-Statistics
8.2.1 Hierarchical Components of Genetic Diversity
We have seen a number of estimates or quantities based on pairwise com-
parisons of genotypes or sequences and calculated for all pairs of individuals.
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A Center of the Earth

63
71

 km

New Zealand

Center of the Earth

B

Cannes

Montpellier

Figure 8.1
(A) Two locations in the South of France distant by 3° of longitude. (B) The
two locations showing that the distance between them is approximately a
straight line.
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Table 8.1
Comparison of F -statistics and Φ-statistics
Index Distribution of
FIS alleles among genotypes within populations
FST alleles among populations
FIT alleles among genotypes across all populations
ΦSC genetic variation among populations within a continent
ΦCT genetic variation among continents
ΦST genetic variation among populations across all continents

Consider for example the nucleotide diversity introduced in Section 5.2.2. Sup-
pose the n individuals are distributed in several populations: the pair (i, j)
may come from the same population or from two populations. There are thus
two possible nucleotide diversities: πT is the global nucleotide diversity (cal-
culated with all pairs) and πS calculated only with the pairs from the same
population (i.e., this is the within-population nucleotide diversity). If the se-
quences are distributed randomly (i.e., the population structure has no effect
on the nucleotide diversity), then we expect that πT = πS. Let us define:

ΦST = 1− πS
πT

.

This is similar, but not identical, to FST (p. 187) and can be interpreted in a
similar way (Table 8.1). Of course, if πT = πS the ΦST = 0.

Suppose there is an additional level and let us call it ‘continent’ (though
this could be ‘metapopulation’, ‘region’, or else): there is now a third way to
calculate nucleotide diversity: for the pairs of individuals from two populations
but on the same continent, and we denote it as πC. Now, πT is calculated
over all populations across the different continents. We can define two new
Φ-statistics:

ΦCT = 1− πC
πT

ΦSC = 1− πS
πC

.

The comparison with the F -statistics shows the similarities and differences
with the Φ-statistics: the former considers diploidy (or higher levels of ploidy)
as the first structuring level, whereas ploidy is not important in the latter
(Fig. 8.2). FST appears now similar to ΦCT as being related to the second
level of the structure (Table 8.1). Similarly to (7.3), the three Φ-statistics are
related by:

1− ΦST = (1− ΦCT)(1− ΦSC).
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Figure 8.2
Comparison of the structures with two levels considered by (A) F -statistics
and (B) Φ-statistics.

8.2.2 Analysis of Molecular Variance
The above framework has been used by Excoffier et al. [72]) to develop a very
general approach: the analysis of molecular variance (AMOVA). It is based
on an equivalence between variance and distance: the variance of a sample is
indeed the mean distance of the observations to the sample mean (see also
Fig. 7.5). We can thus write:

SSDT =
n∑

i<j

d2
ij .

with SSD being the sum of squared deviations and dij the distance between
individuals i and j. Using the above hierarchy T > C > S (in Excoffier et al.’s
notation), this can be decomposed in several components (R: residual):

SSDT = SSDC + SSDS + SSDR.

After dividing by the appropriate numbers of degrees of freedom, we have the
following variance components:
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σ2 = σ2
a + σ2

b + σ2
c ,

which are related to the Φ-statistics as follows:

σ2
a = ΦCTσ2

σ2
b = (ΦST − ΦCT )σ2

σ2
c = (1− ΦST )σ2.

In plain words, these different variances are:

σ2
a variation among continents,
σ2
b variation among populations within each continent,
σ2
c variation within each population,
σ2 total variation.

This can be generalized to more than two levels: each additional variance
component is the quantity of variation explained by the additional level.

The function amova in pegas is a general implementation of the AMOVA
framework: it accepts any number of levels. With a single level, it is equivalent
to the partitioning of nucleotide diversity introduced at the beginning of this
chapter.1 The arguments are:

amova(formula, data = NULL, nperm = 1000, is.squared = FALSE)

The first argument is a formula defining the AMOVA model to be fitted;
it must be of the form d ˜ conti/pop/..., where d contains the pairwise
distances (either an object of class "dist" or a square symmetric matrix),
and conti, pop, . . . , are the hierarchical levels. The second argument is an
optional data frame containing these levels (typically factors). nperm is the
number of permutations of the randomization tests assessing the statistical
significance of the variance components, and is.squared indicates whether d
gives the squared pairwise distances or not (the default).

We try amova() with the haploid data set Yloc created on page 204. We
first calculate the Hamming distance matrix:

> dy <- dist.hamming(Yloc)
> dy

Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 Ind7 Ind8
Ind2 2
Ind3 3 3
Ind4 2 2 3

1The package ade4 has a function with the same name implementing the two-level
AMOVA (see p. 194 on how to use the ‘::’ operator).
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Ind5 5 5 2 3
Ind6 4 6 3 4 1
Ind7 3 3 4 4 5 4
Ind8 2 4 3 3 4 3 1
Ind9 6 4 3 5 2 3 3 4

This data set has already a column named population so we can use the
argument data:

> res.amova <- amova(dy ~ population, data = Yloc)
> res.amova

Analysis of Molecular Variance

Call: amova(formula = dy ~ population, data = Yloc)

SSD MSD df
population 26.33333 13.166667 2
Error 24.66667 4.111111 6
Total 51.00000 6.375000 8

Variance components:
sigma2 P.value

population 3.0185 0.0589
Error 4.1111

Phi-statistics:
population.in.GLOBAL

0.4233766

Variance coefficients:
a
3

The variance explained by population is not significantly different from zero
which is not surprising since these data were randomly assigned into the three
populations. As a purely hypothetical exercise, we artificially create structure
in these data by assigning the individuals that are incidentally similar together
in the same group. A simple way to do this is by performing a projection of
the distances using MDS (p. 116):

> mds <- cmdscale(dy)
> mds

[,1] [,2]
Ind1 -2.4895645 -1.19685107
Ind2 -2.3447801 1.07546427
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Ind3 0.4600040 -0.51935489
Ind4 -1.2126382 -1.47318435
Ind5 2.4951381 -1.05172331
Ind6 2.2607319 -1.10317072
Ind7 -0.9190935 2.01749998
Ind8 -0.5846970 0.09919587
Ind9 2.3348994 2.15212423

By definition of the MDS, the individuals that are close in the above coordi-
nates are also close in terms of genetic distances. We take the ordering on the
first axis to identify similar individuals:

> o <- order(mds[, 1])
> o
[1] 1 2 4 7 8 3 6 9 5

So individuals 1, 2, and 4 will be in the first (artificial) population, individuals
7, 8, and 3 will be in the second one, and individuals 6, 9, and 5 in the last
one. We use the vector o as indices to create this new population factor easily
(note that pop must be created beforehand because the ‘[’ operator will look
for it):

> pop <- NULL # or: pop <- integer(nrow(Yloc))
> pop[o] <- rep(1:3, each = 3)
> pop <- factor(pop)
> pop
[1] 1 1 2 1 3 3 2 2 3
Levels: 1 2 3

We now perform the new AMOVA without using the data argument:

> amova(dy ~ pop)

Analysis of Molecular Variance

Call: amova(formula = dy ~ pop)

SSD MSD df
pop 33.66667 16.833333 2
Error 17.33333 2.888889 6
Total 51.00000 6.375000 8

Variance components:
sigma2 P.value

pop 4.6481 0.01
Error 2.8889
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Phi-statistics:
pop.in.GLOBAL

0.6167076

Variance coefficients:
a
3

The variance component σ̂2
a = 4.65 is now significantly greater than zero, and

ΦST = 0.62 is higher than in the first analysis (0.42).
The case studies below show an application of AMOVA with more than

one level.

8.3 Moran I and Spatial Autocorrelation
Moran’s index I [190] is a widely used measure of spatial autocorrelation of a
variable, denoted as x here:

I = n

S0

n∑

i=1

n∑

j=1
wij(xi − x̄)(xj − x̄)

n∑

i=1
(xi − x̄)2

,

S0 =
n∑

i=1

n∑

j=1
wij ,

where wij is a weight quantifying the proximity between individuals i and j,
and x̄ is the sample mean of x. With genetic data x would be the frequency of
an allele, while w would quantify geographical proximity among individuals
[68]. This index can be calculated with the function Moran.I in ape, whereas
the allele frequencies in each population can be calculated as seen in Sec-
tion 5.4. The weights can be calculated in different ways depending on the
context:

• If the coordinates can be assumed to be in a Euclidean space (for instance,
a UTM geographical reference system), then simple Euclidean distances can
be calculated with dist() using its default method.

• If the distances are longitudes and latitudes, then geodesic distances can be
calculated with the function geod in pegas.

• If cost functions depending on the landscape structure must be included,
the package gdistance [282] offers several possibilities (Sect. 8.1.2).
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• A connection graph can be defined with the package adegenet (see Sect. 8.4
below).

A vignette detailing the computation and interpretation of Moran I is
provided with ape (it also explains an alternative implementation of this index
in ade4):

> vignette("MoranI")

8.4 Spatial Principal Component Analysis
The spatial principal component analysis (sPCA) was proposed by Jombart
et al. [132] as a way to integrate geographical coordinates in the analysis of
genetic variation. The procedure follows several steps. The first step is to
define a connection network among individuals. This can be done with the
function chooseCN which takes as main argument a matrix of coordinates and
type which selects the type of the network: six types are available (Fig. 8.3).
The output of this first step is the matrix W defining the ‘neighborhood’
among individuals with diagonal elements set to zero (an individual cannot
be neighbor to itself).

In a second step, a standard PCA as described in Section 5.6 is performed
on the matrix individuals by alleles X. In a third step, a second PCA is done
on the output of the first one using W as a weight matrix for the variance-
covariance matrix computation: that is the decomposition is done on XTWX.
To understand what this second PCA actually does, remind that a standard
PCA is done by decomposing the variance-covariance matrix calculated with
XTX which can also be written XTInX where In is the identity matrix with
n rows and n columns:2

In =




1 0 0 . . .
0 1 0
0 0 1
... . . .


.

Now let’s say that individuals 1 and 2 are moderate neighbors, 1 and 3 are dis-
tant, and 2 and 3 are close neighbors, then the matrix W would be something
like:

2The operation XIn = X is the matrix analog of x× 1 = x.
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Figure 8.3
The six types of connection networks from the function chooseCN with (A)
nine regularly spaced points, and (B) nine random coordinates.

W =




0 1 0 . . .
1 0 3
0 3 0
... . . .


.

Consequently, the variances and covariances are computed only with individ-
uals from the same neighborhood and weighted by the strength of the links.
By contrast to a standard PCA (which normally results in positive eigenval-
ues), the decomposition of this product will result in positive and negative
eigenvalues corresponding to global and local structures, respectively.

The sPCA is implemented in the function spca in adegenet. We try it with
the data Y and first choose a simple connection network (i.e., type = 3):

> cny <- chooseCN(xy, ask = FALSE, type = 3)
> cny
Neighbour list object:
Number of regions: 9
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Number of nonzero links: 24
Percentage nonzero weights: 29.62963
Average number of links: 2.666667

We now call spca using the data in "genind" format. As usual with multivari-
ate methods in adegenet, the function is run interactively by default asking
the user to enter the number of components (or axes) output. This can be
turn off by using option scannf = FALSE and specifying the number of axes
with the appropriate options:

> spca.Y <- spca(Yg, cn=cny, scannf=FALSE, nfposi=2, nfnega=2)
> spca.Y
########################################
# spatial Principal Component Analysis #
########################################
class: spca
$call:
spca.genind(obj=Yg, cn=cny, scannf=FALSE, nfposi=2, nfnega=2)

$nfposi: 2 axis-components saved
$nfnega: 2 axis-components saved
Positive eigenvalues: 0.3045 0.05307
Negative eigenvalues: -0.3023 -0.1123 -0.004805

vector length mode content
1 $eig 5 numeric eigenvalues

data.frame nrow ncol
1 $tab 9 10
2 $c1 10 4
3 $li 9 4
4 $ls 9 4
5 $as 2 4
content

1 transformed data: optionally centred / scaled
2 principal axes: scaled vectors of alleles loadings
3 principal components: coordinates of entities (’scores’)
4 lag vector of principal components
5 pca axes onto spca axes

$xy: matrix of spatial coordinates
$lw: a list of spatial weights (class ’listw’)

other elements: lw

The results can be plotted with (Fig.8.4):
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Figure 8.4
Results of sPCA with the function spca.

> plot(spca.Y, axis = 1)

The option axis = 1 is actually the default and can be changed to display
another principal component. The first panel shows the connection network
previously selected. The three next panels (labeled “Score 1”) display, in dif-
ferent ways, the scores (or coordinates) of the individuals on the axis. The fifth
panel (barplot) shows the eigenvalues including those that were not output
(remember there are five haploid loci in these data), and the last panel is a
plot of these eigenvalues and their spatial autocorrelation as measured by the
Moran I.

The statistical significance of global and local structures output by sPCA
can be tested with randomizations using the functions global.rtest and
local.rtest.
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8.5 Finding Boundaries Between Populations
8.5.1 Spatial Ancestry (tess3r)
Caye et al. [30] published a method inspired from the general admixture model
(Sect. 7.5) but with geographical constraints. The major difference with the
original admixture fitting procedure is that the parameters are estimated by
least squares instead of ML (see Sect. 7.5.1 for a similar approach). The fitting
equation is (simplified from eq. 1 in [30]):

‖X −QG‖2 + α
∑

i,j

wi,j‖Qi −Qj‖2,

where X is the data matrix, α is a regularization parameter (see below) wi,j
is a weight for the pair of individuals (or locations) i and j:

wi,j = exp
(
d2
i,j

d̄2

)
,

with di,j being the Euclidean distance between i and j, and d̄ the mean dis-
tance among the neighboring locations. The quantity ‖Qi − Qj‖2 measures
the “ancestry dissimilarity” between i and j. The parameter α quantifies the
strength of the geographical constraints on ancestry: the larger α, the stronger
the constraints (α = 0 is equivalent to the standard admixture model).

The package tess3r implements the above model and works in a way close
to LEA (p. 214). The input is a matrix of SNPs coded as 0/1, and a matrix of
geographical coordinates. This requires a little data transformation first:

> geno <- loci2alleles(Yloc)
> geno <- ifelse(geno == "A", 1, 2) - 1L
> geno

V1.1 V2.1 V3.1 V4.1 V5.1
Ind1 0 0 1 0 0
Ind2 0 1 0 0 0
....
> xy <- as.matrix(xy)

For diploid data, the genotypes need to be coded as 0, 1, or 2. The function
tess3 does the model fitting; there are a few options that need to be chosen
carefully: ploidy is the ploidy level, K is the number of populations (can be a
vector), rep is the number of repetitions, and lambda is the α parameter (set
to one by default). The function allows the user to specify their own neighbor-
hood scheme wi,j with the argument W (by default the above scheme is used).
Finally, the option openMP.core.num makes possible to run the computations
in parallel.

It can be called with K from 1 to 4 populations and 10 repetitions:
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Figure 8.5
Cross-validation score from the analysis with the function tess3.

> library(tess3r)
> res.tess <- tess3(X = geno, coord = xy, K = 1:4,
+ ploidy = 1, rep = 10)
== Computing spectral decomposition of graph laplacian

matrix: done
== Main loop with 1 threads: done
....

The computations prints a number of messages (even if verbose = FALSE).
The output is a list with the parameter estimates for all repetitions of the
model fits and the class "tess3". The plot method displays the mean cross-
validation score for the different values of K which is computed in the same
way as in LEA (Fig. 8.5):

> plot(res.tess, xlab = "K", ylab = "Cross-validation score")

The smallest mean value of this criterion is observed with K = 1 and is much
more variable for K > 2. The function qmatrix extracts the Q matrix for a
specific value of K. We extract and plot it here for K = 2 (Fig. 8.6):

> qmat <- qmatrix(res.tess, K = 2)
> n <- 9
> o <- barplot(qmat, border = NA, space = 0, xlab = "Individuals",
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Figure 8.6
Composition plot from the output of tess3.

+ ylab = "Ancestry proportions", palette.length = 2,
+ col.palette = CreatePalette(c("grey", "lightgrey"), 2))
> axis(1, at = 1:n - 0.5, labels = o$order, las = 3)

8.5.2 Bayesian Methods (Geneland)
Guillot et al. [99] developed a Bayesian method which differs from the one
implemented in tess3r in several aspects. The basic structure of the model
assumes that there are K different populations present in the “spatial do-
main” under study and that those populations occupy some subdomains. To
facilitate modeling, it is assumed that the subdomains are made of convex
polygons which are modeled with a triangulation algorithm (or Voronoi tes-
salation). The polygons do not need to be contiguous to be in the same sub-
domain: this makes possible to consider discontinuous distributions or recent
migration events [99]. The underlying population genetic model assumes a
Dirichlet distribution for allele frequencies (called the “D-model” by Guillot
et al.), and that K follows a uniform discrete distribution so that the number
of populations is inferred from the posterior probabilities.

The method is implemented in the package Geneland. This package works
a bit differently from most R packages as it outputs a lot of files on the disk.
To make things simpler, we create a directory where to run the analyses:
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> dir.create("Geneland_run/")
> setwd("Geneland_run/")
> library(Geneland)

The analysis is with the SNP and geographical data prepared for tess3 except
that the alleles must be coded 1/2 which we can do very easily:

> geno <- geno + 1L

The function MCMC is called to run analysis here with 10,000 generations (nit)
and a prior distribution for K between one and four populations (npopmax):

> MCMC(xy, geno, path.mcmc = ".", nit = 1e4, npopmax = 4)
....
*** Starting MCMC simulation ***
....
************************************
*** End of MCMC simulation ***
************************************
[1] "Writing MCMC outputs in external text files"
Warning message:
In MCMC(xy, geno, path.mcmc = ".", nit = 10000, npopmax = 4) :
passing a char vector to .Fortran is not portable

Once the MCMC has been run, the output needs to be further processed:

> PostProcessChain(xy, "./", 50, 50, 0)
[1] "Reading MCMC parameter file"
Read 2 items
[1] "Estimating number of populations"
Read 10000 items
Read 10000 items
[1] "Iteration with highest posterior density: 763"
[1] "Calling Fortran function postprocesschain2"
[1] "End of Fortran function postprocesschain2"

This makes possible to plot the results with (plot not shown):

> PlotTessellation(xy, "./")

A diagnostic plot is done with Plotnpop showing the trace of K and its
posterior distribution after discarding 9000 generations as burn-in (Fig. 8.7):

> Plotnpop("./", burnin = 9000)

When the analysis is done, we return to the original working directory:

> setwd("../")
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Figure 8.7
Trace and posterior distribution of K with Geneland.

8.6 Case Studies
8.6.1 Complete Genomes of the Fruit Fly
We conduct an AMOVA separately for each chromosome by drawing randomly
10,000 SNPs. The AMOVA test was significant only for the 3R chromosome
(results for the other chromosomes not shown):

> i <- which(SNP & info.droso$CHROM == "3R")
> x <- read.vcf(fl, which.loci=sample(i, size=1e4), quiet=TRUE)
> d <- dist.asd(x)
> amova(d ~ Region/Locality, geo)

Analysis of Molecular Variance

Call: amova(formula = d ~ Region/Locality, data = geo)

SSD MSD df
Region 5.449476 1.0898951 5
Locality 1.344987 0.1344987 10
Error 11.757241 0.1119737 105
Total 18.551704 0.1545975 120

Variance components:
sigma2 P.value

Region 0.041505 0.0390
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Locality 0.011799 0.6973
Error 0.111974

Phi-statistics:
Region.in.GLOBAL (Phi_CT) Locality.in.GLOBAL (Phi_ST)

0.25112447 0.32251207
Locality.in.Region (Phi_SC)

0.09532639

Variance coefficients:
a b c

1.909091 15.656198 19.110744

The highest level clearly explains the largest amount of genetic variation.

8.6.2 Human Genomes
We do an AMOVA with the human mtGenomes similar to the previous anal-
ysis. We discard the indels in order to compute the pairwise distances from
the SNPS only:

> x <- MITO[, is.snp(MITO)]
> x <- as.DNAbin(sapply(x, as.character))

We check that there are only strict SNPs:

> checkAlignment(x, plot = FALSE)

Number of sequences: 2534
Number of sites: 3589

No gap in alignment.

Number of segregating sites (including gaps): 3586
Number of sites with at least one substitution: 3586
Number of sites with 1, 2, 3 or 4 observed bases:

1 2 3 4
3 3586 0 0

It appears that there are three sites with no polymorphism but this is not
a problem here because they will be ignored when calculating the Hamming
distances:

> dx <- dist.dna(x, "N")

> am <- amova(dx ~ Continent/population, MITO, nperm = 100)
> am
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Analysis of Molecular Variance

Call: amova(formula = dx ~ Continent/population,
data = MITO, nperm = 100)

SSD MSD df
Continent 265645.97 66411.4925 4
population 44040.73 2097.1778 21
Error 1361496.72 542.8615 2508
Total 1671183.43 659.7645 2533

Variance components:
sigma2 P.value

Continent 128.125 0
population 15.981 0
Error 542.862

Phi-statistics:
Continent.in.GLOBAL (Phi_CT)

0.18650742
population.in.GLOBAL (Phi_ST)

0.20977125
population.in.Continent (Phi_SC)

0.02859747

Variance coefficients:
a b c

97.25724 98.20395 501.84905

There are very significant variation at both continent and population levels. A
way to visualize this result is to plot the histograms of the distances selected
using the logical indexing as explained on page 108. Here we build two series of
indices named ic and ip for the continent and population level, respectively:

> ic <- outer(MITO$Continent, MITO$Continent, "==")
> ip <- outer(MITO$population, MITO$population, "==")
> ic <- ic[lower.tri(ic)]
> ip <- ip[lower.tri(ip)]

The logical vector ic is of the same length as the "dist" object dx and has
TRUE is a distance has been calculated between two individuals from the same
continent, or FALSE otherwise; and similarly for the vector ip but with respect
to the population level. We then look at the distribution of different categories
of distances (Fig. 8.8):
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Figure 8.8
Distribution of pairwise Hamming distances at different levels for human
mtGenomes.

> layout(matrix(1:4, 2, 2, byrow = TRUE))
> hist(dx[ic], main = "Within continents")
> hist(dx[!ic], main = "Between continents")
> hist(dx[ip], main = "Within populations")
> hist(dx[!ip], main = "Between populations")

This shows that the contrast between continents (ΦCT) and between pop-
ulations (ΦST) is mainly due to the absence of very short distances (< 5).
To understand the low value of population differentiation within continents
(ΦSC), we plot the distribution of within-population distances for each con-
tinent separately. For this we use the function foo on page 109 and combine
its results with the above indices. We first store the different continent names
(Fig. 8.9):

> conti <- levels(MITO$Continent)

As a reminder, foo returns TRUE for the distances calculated between one
individual from a first population and another individual from a second pop-
ulation, both given as arguments to foo. If the two populations are the same,
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then the value TRUE is for the distances among individuals within a single
population.

> layout(matrix(1:6, 3, 2, byrow = TRUE))
> for (i in 1:5) {
+ j <- foo(MITO$Continent, conti[i], conti[i], FALSE)
+ hist(dx[ip & j],
+ main = paste("Within populations in", conti[i]))
+}

8.7 Exercises
1. Two locations have coordinates N 43° 36′, E 4° 00′ and N 43° 36′, E

4° 30′. After transformation to the UTM system, these coordinates
are (1065044, 4851312) and (1105414, 4854854), respectively. Cal-
culate the geographical distances between both locations using two
methods and compare the results.

2. What is the effect of genetic drift on ΦST, ΦCT, and ΦSC?
3. Write down the equation of the variance component in the case of

a one-level AMOVA. How these components relate to ΦST?
4. Load the package pegas in memory and execute the examples in

?pegas::amova. Modify the factors g and p in order to obtain sig-
nificant variance components (see the example in Sect. 8.2.2).

5. What would be the matrix W so that the Moran I is equivalent to
the Pearson correlation coefficient?

6. The data set rupica provided with adegenet contains the genotypes
of 335 chamois (Rupicapra rupicapra) and their geographical coor-
dinates (see details on these data in ?rupica). Perform a spatial
principal component analysis (sPCA) with these data.

7. Plot the geographical coordinates of the nancycats data set deliv-
ered with adegenet (hint: see the slot @other in this data set). Can
you perform (directly) an sPCA using this data set?
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Figure 8.9
Distribution of pairwise Hamming distances within populations for each con-
tinent for human mtGenomes.
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Past Demographic Events

Those who analyze stochastic models should always lift their eyes from
their equations to ask what they actually mean.

Kingman [147]

9.1 The Coalescent
The coalescent process looks at ancestry (or genealogy) of genes in a popula-
tion. Wakeley [287] made an extensive review of theoretical treatments of the
coalescent. We limit here to examine some aspects of the standard coalescent
which applies to simple genetic data, and one of its extenstions, the sequen-
tial Markovian coalescent, which applies to more complex genetic data with
recombinations.

9.1.1 The Standard Coalescent
The coalescent was introduced by Kingman in 1982 in three papers published
that year (see [147] for a historical account by Kingman himself). Put simply,
take a population of constant size N , with discrete generations, and clonal
reproduction. To simplify the notation, we also assume that all individuals
reproduce so that the effective population size is equal to the total population
size (N = Ne). The coalescent process models the ancestry of the individuals
in the population back in time. The probability that two individuals randomly
chosen have the same parent at the previous generation is:

1
N
. (9.1)

Clearly, the larger N , the smaller this probability. This event is a called a
coalescence.

We can now calculate the probability that these two individuals have the
same parent two generations in the past which is the product of the proba-
bility of a coalescence (9.1) with the probability of no coalescence in the first
generation:

265
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1
N

(
1− 1

N

)
.

This is generalized easily to get the probability of a single coalescence t gen-
erations in the past:

1
N

(
1− 1

N

)t−1
. (9.2)

This is actually the probability density of the geometric distribution with
parameter p = 1/N (see ?rgeom). Interestingly, if N is large (and hence p
is small), the geometric distribution is well approximated by the exponential
distribution with λ = p (see ?rexp). We can see this by simulating a large
number of values from both distributions with the same parameter, say 0.001,
and compare their summaries:

> summary(rgeom(1e6, 1e-3))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 287.0 693.0 998.6 1386.0 12730.0

> summary(rexp(1e6, 1e-3))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 287.2 691.6 998.8 1383.9 13074.2

So far we have considered a sample of two individuals. The idea is gener-
alized to a sample of n individuals. The probability that two individuals out
of n have the same parent one generation in the past is given by the product
of (9.1) with the number of combinations of two out of n:

(
n

2

)
× 1
N

= n(n− 1)
2N .

Each individual represents the end-point of a lineage in the population.
Denote as x the number of lineages not yet coalesced among the n observed.
If we assume that N is sufficiently large so that the probability of two simul-
taneous coalescence events is very small, then x is decreased by one at each
coalescence event (Fig. 9.1). So the coalescent process is similar to a Markov
chain modeling the variable x with the following transitions:

x = n → x = n− 1 → x = n− 2 → · · · → x = 1 .

This makes possible to treat t as continuous time instead of discrete genera-
tions. Time is measured from present to past, so we have t1 = 0 < t2 < · · · <
tn. We define the coalescence intervals as ui = ti+1 − ti with i = 1, . . . , n− 1.
Using the exponential approximation,1 we can calculate the expected time to
the first coalescence (note that u1 = t2):

1If a variable x follows an exponential distribution with rate λ, then E(x) = 1/λ.
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A tree with n = 5 showing the coalescent times (t), the number of lineages
(x), and the coalescent intervals (u).

E(u1) = N(
n

2

) = 2N
n(n− 1) ,

and for the next coalescent interval (under the assumption that N is much
larger than n):

E(u2) = N(
n− 1

2

) = 2N
(n− 1)(n− 2) ,

until the last one:

E(un−1) = N(
2
2

) = N.

So, in a large population individuals will tend to have a common ancestor very
distant in the past, whereas in a small population their common ancestor will
tend to be recent.

Because of the assumption of clonality, the successive coalescent events
create a coalescent tree which is strictly binary. Let T denote the length of
this tree (i.e., the sum of its branch lengths). The expected value of T can
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be calculated with the expected coalescent times multiplied by the number of
lineages between successive coalescences:

E(T ) = nE(u1) + (n− 1)E(u2) + · · ·+ 2E(un−1)

= 2N
n− 1 + 2N

n− 2 + · · ·+ 2N

= 2N
(

1
n− 1 + 1

n− 2 + · · ·+ 1
)
,

which can be written more compactly:

E(T ) = 2N
n−1∑

i=1

1
i
. (9.3)

This quantity is very important in population genetics because it predicts the
amount of genetic diversity in a sample. Indeed, if we interpret the branch
lengths of the coalescent tree as (real) times and if mutations happen at a
constant rate µ, the number of mutations in a sample of n individuals is the
product of the mutation rate with the coalescent tree length:

µE(T ) = 2Nµ
n−1∑

i=1

1
i
. (9.4)

The quantity 2Nµ, usually denoted as Θ, is the genetic diversity parameter—
remember that we are considering haploids and we assume N = Ne, therefore
the factor 2 is not related to the ploidy level.

We note that the sum
∑

1/i increases moderately with increasing values
of n because adding 1/n will contribute slightly to this sum if n is large. This
has the well-known consequence that increasing sample size is not critical to
assess genetic diversity in a homogeneous population.

The coalescent model is easily generalized to handle time-varying popula-
tion size: instead of considering N constant in (9.2), we would have different
values for each generation. The consequence for the coalescent times is that
a growing population will have shorter coalescent times, whereas a declining
population will have longer ones.

9.1.2 The Sequential Markovian Coalescent
If several unlinked loci are considered simultaneously, each locus has its own
coalescent tree. If some loci are linked, then these coalescent trees will be not
independent which complicates the basic model so that it becomes intractable,
particularly it is not possible to write a likelihood function of the data. McVean
and Cardin [182] found an elegant solution to this problem starting from the
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above Markovian definition of the coalescent where the states are described
by lineages, and a sequence of ancestral genetic materials (which can be a
chromosome). There are two possible transitions: either a coalescence, or a
recombination. However, there is a restriction: coalescence between lineages
with no overlapping ancestral material is forbidden. The simplicity of this
sequential Markovian coalescent (SMC) leads to efficient simulations of the
coalescent with recombination as described by McVean and Cardin [182] and
further elaborated by Marjoram and Wall [178] with an algorithm these au-
thors called SMC′.

9.1.3 Simulation of Coalescent Data
There are many applications to the coalescent, so that it is useful to be able to
simulate data from this process. The interest is usually to simulate coalescent
trees and/or genetic data on them. The tools reviewed below ranged from
simple to more complex ones.

The function rcoal in ape simulates a random coalescent tree given n
(Fig. 9.2):

> tr <- rcoal(50)
> plot(tr, type = "c", show.tip.label = FALSE)
> axisPhylo()

As we will see in the exercises, this function simulates coalescent trees with
Θ = 1. Because Θ is proportional to the tree length (see above), it is just
needed to rescale the branch lengths to get a tree with a different value of Θ,
for instance, if we want a tree simulated with Θ = 2:

> tr$edge.length <- 2 * tr$edge.length

A general rescaling can be used to generate coalescent times from any
time-dependent model Θ(t) where Θ is now a function of time. Suppose we
have a coalescent time t simulated with constant Θ, then the new time, t′, is
calculated with:2

t′ =

∫ t

0
Θ(u)du

Θ(0) .

For instance, the exponential growth model Θ(t) = Θ0eρt, where Θ0 is the
value of Θ at present and ρ is the population growth rate [152], we would
have:

t′ = eρt − 1
ρ

.

2In this integral, u is not a coalescence interval but an arbitrary variable on which
integration is done and is usually denoted with this letter.
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Figure 9.2
A random coalescent tree with n = 50 and Θ = 1.

Once we have simulated a coalescent tree, we can simulate sequences on
it. simSeq in phangorn is a very general function to simulate sequences with
no recombination on a phylogenetic tree. It has several options to specify the
model or the type of sequences:

simSeq(x, l=1000, Q=NULL, bf=NULL, rootseq=NULL, type="DNA",
model=NULL, levels=NULL, rate=1, ancestral=FALSE, ...)

where x is a phylogenetic tree, l is the sequence length, and rate is the
mutation rate. The output data are of a specific class ("phyDat") for which
there are various conversion functions. The following example simulates three
sequences of five binary characters:

> tr <- rcoal(3)
> x <- simSeq(tr, 5, type = "USER", levels = 0:1)
> x
3 sequences with 5 character and 3 different site patterns.
The states are 0 1
> as.character(x)

[,1] [,2] [,3] [,4] [,5]
t1 "1" "0" "1" "1" "1"
t2 "1" "1" "1" "0" "1"
t3 "0" "1" "0" "1" "0"

The package phyclust includes a port to R of the popular program ms
[122]. It is called with the function ms taking as arguments the sample size,
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the number of samples (1 by default), and the options of ms given with opts
=. For instance, we simulate a coalescent tree with n = 10:

> library(phyclust)
> x <- ms(10, opts = "-T")
> x
ms 10 1 -T
//
(((s1: 0.020377056673,(s3: 0.004789252300,s9: 0.0047892523....

The output is a vector of character strings storing the command used and
the tree as a Newick string which can be read by the ape function read.tree
without writing it into a file:

> tr <- read.tree(text = x[3])
> tr

Phylogenetic tree with 10 tips and 9 internal nodes.

Tip labels:
s1, s3, s9, s6, s2, s8, ...

Rooted; includes branch lengths.

The tree is actually simulated with Θ = 0.5 since this parameter is scaled with
2N in ms [121] (see Sect. 9.2.5 for a description of the function theta.tree):

> theta.tree(tr)
$theta
[1] 0.5164803

$se
[1] 0.1721601

$logLik
[1] 18.61438

The option "-t" specifies the value of Θ used for simulating genetic data on
the tree:

> res <- ms(5, opts = "-T -t 1")
> res
ms 5 1 -T -t 1
//
(s3: 0.825791060925,((s2: 0.059745077044,s5: 0.059745077....
segsites: 3
positions: 0.5278574538 0.6792884150 0.7635558734
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110
110
001
110
110
> str(res)
’ms’ chr [1:10] "ms 5 1 -T -t 1 " "//" ...

These data are simulated with the infinite-site model, so they are reported as
0/1 (presence/absence of a segregating site) as well as their relative positions
on the chromosome. The data can be extracted as before.

ms is widely used because it has been a pioneer in simulation of the co-
alescent but also because it offers a lot of possibilities. The options can be
printed from R with:

> ms()
Too few command line arguments
usage: ms nsam howmany
Options:
-t theta (this option and/or the next must be used.

Theta = 4*N0*u )
-s segsites ( fixed number of segregating sites)
-T (Output gene tree.)

....

They are detailed in the on-line documentation of ms.3
The package scrm simulates data under the sequential coalescent with

recombination model (SCRM). It can simulate data under a continuum of
models from the SMC′ model to the complete ancestral recombination graph
(ARG) [256]. The interface is very similar to the one just described for ms.
The simplest command is a character string with two values and -T to print
the tree:

> library(scrm)
> scrm("5 2 -T")
$trees
$trees[[1]]
[1] "(((3:0.228149,(5:0.0104377,1:0.0104377):0.217711):
0.356995,2:0.585144):1.50873,4:2.09387);"

$trees[[2]]
[1] "((4:0.171881,1:0.171881):0.560134,(3:0.222992,(5:
0.0530894,2:0.0530894):0.169902):0.509023);"

3http://home.uchicago.edu/~rhudson1/source.html

http://home.uchicago.edu
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The first value is the sample size (n) and the second one is the number of
chromosomes (“independent loci” in the documentation), so that each has its
own coalescent tree. Like for ms, the default is Θ = 0.5. Using the option -t
actually changes the mutation rate µ while keeping Θ = 0.5 (thus generating
more segregating sites for larger values):

> scrm("5 2 -T -t 1.5")
$trees
$trees[[1]]
[1] "((1:0.0142626,2:0.0142626):0.531502,((5:0.120811,4:
0.120811):0.0509184,3:0.171729):0.374035);"

$trees[[2]]
[1] "((4:0.207318,(3:0.10291,1:0.10291):0.104408):0.330389,
(5:0.0120865,2:0.0120865):0.52562);"

$seg_sites
$seg_sites[[1]]

0.192538570430328 0.511100458341031
[1,] 0 1
[2,] 0 1
[3,] 1 0
[4,] 0 0
[5,] 0 0

$seg_sites[[2]]
0.247128599845599

[1,] 0
[2,] 0
[3,] 0
[4,] 1
[5,] 0

In this output, two segregating sites have been generated on the first chromo-
some and one on the second chromosome (these numbers are random), with
their positions as colnames.

The option -r specifies the recombination rate and takes two values: the
recombination rate and the length of the sequence to be recombined on each
chromosome.

> scrm("3 2 -T -r 1 30")
$trees
$trees[[1]]
[1] "[7]((1:0.174676,2:0.174676):0.483794,3:0.65847);"
[2] "[16](3:0.210908,(1:0.174676,2:0.174676):0.0362319);"
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[3] "[7](3:0.210908,(1:0.174676,2:0.174676):0.0362319);"

$trees[[2]]
[1] "[28]((1:0.0020894,2:0.0020894):0.186396,3:0.188485);"
[2] "[2](3:0.552621,(1:0.0020894,2:0.0020894):0.550531);"

This time there are two series of trees and the number of trees inside each
series is random depending on the simulated recombinations.

There are options to specify population structure, gene flow, and popula-
tion size changes, as well as reporting some summary statistics (although these
can be calculated with R). Finally, the option -l controls the model used: -l
0 simulates under the SMC′ model, whereas -l <sequence length> simu-
lates under the coalescent with recombination thus generating the ARG. By
default, a conservation value of -l 500 is used [256].

The package jackalope, introduced in Section 2.6, can simulate HTS data
along a coalescent model. It is first needed to define a model of molecular
evolution and its parameters; here we consider a very simple model with only
nucleotide substitutions following a Jukes–Cantor model with rate equals to
0.001:

> subst <- sub_JC69(lambda = 1e-3)

jackalope includes a few other functions to specify a more complex substitution
model as well as indel rates. We then generate a coalescent tree and create
variants with:

> tr <- rcoal(5)
> vars <- create_variants(refjack, vars_phylo(tr), subst)
> vars

<< Variants object >>
# Variants: 5
# Mutations: 482

<< Reference genome info: >>
< Set of 1 sequences >
# Total size: 17,009 bp
name sequence length

U20753 GGACTAATGAATGATCA...TCAGTTTGGGACATCTCGAT 17009

Different repetitions of create_variants will produce a different output, the
number of mutations being related to the value of the rate defined previously.
We can now simulate the data with illumina (or pacbio if we want to gen-
erate long reads):

> illumina(vars, out_prefix = "illumina", n_reads = 5e4,
+ read_length = 100, paired = FALSE, sep_file = TRUE)

will write five files on the disk each with 10,000 reads.
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9.2 Estimation of Θ
A considerable effort has been put in estimating the population parameter
Θ with different types of genetic data. These are reviewed in this section: all
functions mentioned below are in pegas.

9.2.1 Heterozygosity
Consider a diploid organism and suppose that mutation rate is sufficiently
low so that each mutation creates a heterozygous site in the genome. We now
consider two types of events when looking backward in time: coalescence or
mutation. The Markovian approach is useful here as it allows to write the
expected heterozygozity as the relative probability of a mutation:

H = Pr(mutation)
Pr(mutation) + Pr(coalescence) .

Because of diploidy, the probability of a mutation is 2µ whereas the probability
of a coalescence can be found above (after substituting N by 2N because of
diploidy):

H = 2µ

2µ+ 1
2N

.

We multiply the numerator and the denominator by 2N to find:

H = Θ
Θ + 1 .

This leads to an estimator of Θ with heterozygosity:

Θ̂H = H

1−H .

Zouros [313] showed that the above is only an approximation and a better
approximation is provided by:

H ≈ Θ
[
1 + 2(1 + Θ)

(2 + Θ)(3 + Θ)

]
.

This estimator is implemented in the function theta.h with a variance esti-
mator proposed by Chakraborty and Weiss [32].

9.2.2 Number of Alleles
Ewens [69] developed formulas for the sampling distribution of the number of
distinct neutral alleles k in a sample of n alleles:
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k = Θ
n−1∑

i=0

1
Θ + i

The formula can be solved numerically to find the estimator Θ̂k. This is im-
plemented in the function theta.k with an estimator of its variance.

This estimator of Θ, as well as the previous one, assumes that the popu-
lation is at equilibrium between mutation and drift.

9.2.3 Segregating Sites
The formula derived above (9.4) leads to an estimator of Θ based on the
number of segregating sites S among n DNA sequences:

Θ̂s = S
n−1∑

i=1

1
i

.

This estimator is also called the Watterson estimator [291]. It is implemented
in the function theta.s with an estimator of its variance.

The Watterson estimator, together with the two previous ones, assume
that mutations happen according to the infinite-site model. Θ can also be
estimated from the nucleotide diversity estimator π̂ (p. 101) [88, 262].

9.2.4 Microsatellites
The function theta.msat implements three estimators of Θ specific to mi-
crosatellites based on the variance of the number of repeats, the expected
homozygosity (both from [141]), and the mean allele frequencies [104]. These
are, respectively:

Θ̂v = 2
n− 1

k∑

i=1
ni(ri − r̄)2, Θ̂o = 0.5

(
1
Ho
− 1
)
, Θ̂p = 1

8p̄ − 0.5,

where n is the number of alleles sampled, ni’s are the numbers of each allele
(i = 1, . . . , k), pi = ni/n, ri is the number of repeats in allele i, p̄ and r̄ are
the means of these two variables, and Ho is an estimate of homozygosity:

Ho = n

n− 1

(
k∑

i=1
p2
i − 1

)
.

These estimators have generally high variances [306]. An analysis of the
jaguar data seem to confirm that the results from these estimators are difficult
to interpret, even though we expect high values of Θ in relation to the high
mutation rates of this type of loci:
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> data(jaguar)
> theta.msat(jaguar)

theta.v theta.h theta.x
FCA742 1887.81979 38.964237 31.500
FCA723 3774.82486 5.098186 5.625
FCA740 6250.54846 6.072217 4.000
FCA441 40.65711 4.578423 2.625
FCA391 3643.17080 10.754333 9.625
F98 1245.70665 2.623190 2.625
F53 2520.45082 21.827758 14.625
F124 1575.67782 13.299235 9.625
F146 15.05085 3.421136 2.625
F85 4311.82732 20.271450 24.000
F42 2509.05056 9.977148 12.000
FCA453 4189.53846 8.612252 4.000
FCA741 1594.81979 2.472802 1.500

9.2.5 Trees
The distribution of coalescent times makes possible to estimate Θ using a coa-
lescent tree with branch lengths measured in expected numbers of mutations.
The ML methodology is detailed in the next section. The estimator is:

Θ̂φ = 1
n− 1

n−1∑

i=1

(
n− i+ 1

2

)
ui, (9.5)

with variance:

Var(Θ̂φ) = −
[
n− 1
Θ̂2
φ

− 2
Θ̂3
φ

n−1∑

i=1

(
n− i+ 1

2

)
ui

]−1

.

This is implemented in the function theta.tree that takes a tree as main
argument and returns the estimate of Θ, its standard-error (square-root of
the estimator variance), and the log-likelihood at its maximum:

> tr <- rcoal(50)
> res <- theta.tree(tr)
> res
$theta
[1] 1.073518

$se
[1] 0.1533597

$logLik
[1] 206.6032
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The standard-error is calculated under the assumption of normality of the
estimator, which is an approximation. This function has the option fixed to
return the log-likelihood for a vector of values theta:

> THETA <- seq(0.5, 2, 0.01)
> log.lik <- theta.tree(tr, THETA, fixed = TRUE)
> log.lik
[1] 187.8387 188.9312 189.9633 190.9385 191.8606 192.7326
[7] 193.5576 194.3382 195.0772 195.7767 196.4391 197.0664

....

It makes possible to plot the likelihood for different values of Θ (Fig. 9.3):

> plot(THETA, log.lik, type = "l")
> abline(v = res$theta, lty = 3) # estimated THETA
> abline(v = res$theta + c(-1.96, 1.96) * res$se, lty = 2)
> abline(h = res$logLik - 1.95, lty = 4)
> legend("bottomright", legend = expression("log-likelihood",
+ hat(theta) * " (MLE)", "95%\ conf. interv.", "ML - 1.96"),
+ lty = c(1, 3, 2, 4))

The log-likelihood is asymmetric: in this situation the profile likelihood
method makes possible to define an alternative confidence interval with the
range of values of Θ where the log-likelihood is larger than its maximum minus
1.96 [120].

9.3 Coalescent-Based Inference
9.3.1 Maximum Likelihood Methods
The first coalescent interval u1 follows an exponential distribution; its proba-
bility density function (pdf) is:

(
n

2

)
1
Θ exp

[
−
(
n

2

)
u1
Θ

]
.

In general, the coalescent interval ui has a similar distribution by substituting
n by n− i+ 1 (i = 1, . . . , n− 1). The log-likelihood is therefore:

lnL(Θ|u1, . . . , un−1) =
n−1∑

i=1
ln
(
n− i+ 1

2

)
− ln Θ−

(
n− i+ 1

2

)
ui
Θ . (9.6)

If the coalescent intervals are known, then it is easy to solve this likelihood
function leading to (9.5). However, these intervals are generally unknown and
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Figure 9.3
Profile likelihood for a coalescent tree simulated with Θ = 1.

must be inferred from the genetic data observed on the n individuals. One
general solution is to integrate over the likely genealogies given the genetic
data [76].

What if Θ varies through time? As above (p. 269), the function Θ(t) gives
the value of this parameter through time. Then in (9.6), 1/Θ is replaced by
1/Θ(ti), and ui/Θ by:

∫ ti+1

ti

1
Θ(u)du.

The package coalescentMCMC provides an implementation of maximum
likelihood inference of coalescent models using a Markov chain Monte Carlo
(MCMC) inspired from the work by Kuhner et al. [151]. An important feature
of an MCMC method is how the new proposals are done which will determine
how the Markov chain moves in the tree space. This package implements the
original tree move by Kuhner et al. (neighborhood rearrangement) as well as
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moves developed by Drummond et al. [61]. The package’s main function has
the same name and its options are:

coalescentMCMC(x, ntrees = 3000, tree0 = NULL,
model = "constant", printevery = 100, degree = 1,
nknots = 0, knot.times = NULL, moves = 1:6)

with x an object of class "DNAbin", ntrees the number of generations of the
MCMC, model specifies the temporal model of Θ, printevery controls the
display of the run progress, the next three options are explained below, and
moves specifies which moves should be used by the MCMC run. The output
is analyzed with coda, a general package to handle MCMC outputs [225].

It is difficult to find a move or a combination of moves that is appropriate
to explore the tree space in all situations. In practice, the option moves =
c(1, 3) gives interesting results in different situations with a rejection rate
around 50%. This rate should not be too low (suggesting that the proposals
are always too far from the initial value) or too high (successive proposals too
close so the MCMC does not explore correctly the space of trees).

Figure 9.4 shows the models implemented in coalescentMCMC. In addition
to the constant-Θ model, four simple models with two (exponential, linear),
three (step), or four paramters (double exponential) are available. An ap-
proach based on B-splines [129, Chap. 7] allows to model temporal changes
in Θ in a flexible way, and this model includes all others as special cases.
The model is defined by the user with the options degree which specifies the
degree of the curve describing Θ(t), nknots is the number of knots (points in
time where Θ can change abruptly), and knot.times are the points in time
when these changes occurred. These last paramaters can be fixed by the user
or estimated from the data (the default if nknots is larger than zero). This
approach makes possible to define a very large class of models with a small
number of parameters.

Since the above demographic models are fitted by maximum likelihood
(the MCMC is used to integrate over the coalescent trees), the output of
coalescentMCMC is then analyzed with standard statistical functions such as
logLik, AIC, BIC, or anova (all generic) in order to compare the outputs of
different model fits. Additionally, there is a function called plotTHETA that
displays the inferred values of Θ from one or several runs. Finally, a few
functions help to manage the lists of trees output by MCMC runs during a
session (e.g., getMCMCstats, getMCMCtrees).

9.3.2 Analysis of Markov Chain Monte Carlo Outputs
The treatment of MCMC outputs can be tricky sometimes and usually requires
special care [64]. It is not trivial at all to find a “good” set-up for an MCMC
run as this may be influenced by a number of factors that depend on the
data analyzed. By definition, a Markov chain is likely to be auto-correlated,
that is the successive steps (or generations) are likely to be similar which may
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Figure 9.4
The models of temporal change in Θ implemented in coalescentMCMC.

indicate strong support into a posterior distribution but may not be correct.
The package coda provides generic tools to avoid such pitfalls. In addition to
the standard plot and summary methods, the function acfplot displays the
autocorrelation of the variables output by the MCMC (the functions autocorr
and autocorr.plot can also be used). The function effectiveSize calculates
the effective sampling size (ESS).

coalescentMCMC also includes a subset method which keeps and set cor-
rectly the attributes of the MCMC output (unlike the operator ‘[’ which drops
the attributes). Its arguments are:

subset(x, burnin = 1000, thinning = 10, end = NULL)

where x is an output from coalescentMCMC, burnin is the number of first
generations to be dropped, thinning is the frequency (i.e., one out of ten by
default), and end is the index of the last generation to be kept. The last option
is useful to plot the evolution of the chain during its early generations.

Overall, these different diagnostics and post-processing operations look for
achieving the following targets [6]:

• Acceptance rate of the MCMC around 20–50%;

• Absence of auto-correlation in the parameter estimates;
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• ESS at least 200.

Under theoretical considerations, a good acceptance rate for an MCMC ex-
periment is 50% for one-dimensional problems or 23% for multi-dimensional
ones [236]. However, in practice it seems larger acceptance rates may accept-
able, particularly in situations where the MCMC is used for optimization.4 In
any case, an acceptance close to zero or one is to be avoided.

After an acceptable subset of the MCMC output has been achieved, es-
timates can be calculated with the functions HPDinterval and batchSE in
coda.

9.3.3 Skyline Plots
The skyline plot approach is based on the fact that the inter-node times in a
coalescent tree are equivalent to the coalescent intervals, so that the variation
of these intervals gives a measure of how population size changes through
time. Pybus et al. [230] proposed a simple graphical method to visualize these
changes which they called the skyline plot. The method was improved by
Strimmer and Pybus [260] in the form of the generalized skyline plot. The
latter is implemented in the function skyline which takes as main argument
a tree of class "phylo" and returns a list of class "skyline" including the
inferred population sizes. There is a plot method for this class. Figure 9.5
shows four repetitions of the following command:

> plot(skyline(rcoal(100)))

Though the plots suggest an overall constant population size through time,
this method is sensitive to fluctuations related to short coalescent intervals
close to present which are very frequent in coalescent trees.

9.3.4 Bayesian Methods
Opgen-Rhein et al. [205] developed a Bayesian extension of the skyline plot
method. This is a non-parametric method, so the user does not need to spec-
ify a demographic model. The changes in Θ are smoothed using one-degree
linear splines. The change-points (knots) are modeled with a uniform prior,
and the changes in Θ with a Γ prior. The likelihood function is sampled with
a reversible jump MCMC (rjMCMC) to obtain the posterior distribution of
Θ through time. By contrast to coalescentMCMC, the coalescent tree is con-
sidered known.

This method is available as the function mcmc.popsize in ape. We try with
a random coalescent tree generated with n = 100 and running the rjMCMC
during 104 generations:

4https://stats.stackexchange.com/questions/271953/acceptance-rate-for-
metropolis-hastings-0-5

https://stats.stackexchange.com
https://stats.stackexchange.com
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Figure 9.5
Inferred population size changes by the generalized skyline plot with four
random coalescent trees with n = 100.

> tr <- rcoal(100)
> res <- mcmc.popsize(tr, nstep = 1e4, progress.bar = FALSE)
> names(res)
[1] "pos" "h" "loglik" "steptype" "accept"

The output is a simple list with the information needed for the posterior
analysis. The function extract.popsize extracts the posterior distribution
of the population size changes; here we drop the first 1000 values as a burn-in
period and retain one value out of ten:

> N <- extract.popsize(res, burn.in = 1e3, thinning = 10)
> str(N)
’popsize’ num [1:200, 1:5] 0 0.0137 0.0274 0.0411 0.0548 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:5] "time" "mean" "median" "lower CI" ...

The output is a matrix with the class "popsize" for which there are several
graphical methods. We can now plot the posterior distribution of the popula-
tion sizes together with the generalized skyline plot estimates (Fig. 9.6):
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Figure 9.6
Inferred population size changes by the generalized skyline plot and Bayesian
method with a random coalescent tree with n = 100.

> plot(skyline(tr), lty = 3)
> lines(N)
> legend("bottomleft", legend = c("Skyline", "MCMC",
+ "95% cred. int."), lty = c(3, 1, 1), lwd = c(1, 3, 1))

The package phylodyn proposes an alternative method which is close to
Opgen-Rhein et al.’s. Instead of rjMCMC, it uses Hamiltonian (or hybrid)
Monte Carlo (HMC) and one of its implementation, splitHMC, which they
showed to be particularly fast to converge [154]. Population size, Ne, is as-
sumed to follow a prior normal (Gaussian) distribution. The originality of
phylodyn is the possibility to analyze heterochronous samples, so this package
is further detailed in the next section.

9.4 Heterochronous Samples
So far we have considered that the n sampled individuals are contemporane-
ous; however, this does need to be required. The coalescent theory introduced
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A coalescent tree with n = 4 sampled at three different dates showing the
number of lineages (x).

in Section 9.1 can be generalized to situations where the coalescent tree is
not ultrametric as a consequence of non-contemporaneous (heterochronous)
samples. In this situation, the transitions are not completely random with de-
creasing values of the number of lineages x, but there are transitions x→ x+1
at some known dates (Fig. 9.7). Drummond et al. [61] developed a general co-
alescent approach for analyzing heterochronous samples including tree moves
(proposals) that have been included in coalescentMCMC.

The tree-based estimator of Θ (9.5) can be readily adapted for hete-
rochronous samples by considering that the number of lineages is not de-
creasing back through time but can be increasing. This modified estimator is
implemented in the function theta.tree.hetero which has the same options
as theta.tree.5

Jombart et al. [134] developed a framework, called seqTrack, which handles
genetic data sampled at different dates. This method was initially motivated
by the analysis of epidemiological data. It proceeds by first building a directed
network among the observed haplotypes that respects the chronological order
of the samples and minimizes genetic changes along its links. The number of
mutations between two nodes of the network is assumed to be a random vari-
able following a Poisson distribution with rate equal to the product µLτ with
µ the mutation rate, L the sequence length, and τ the (absolute) time sepa-
rating the two samples. The method is implemented in the function seqTrack

5coalescentMCMC is being adapted to handle dated samples.
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in adegenet: the input data are made of a matrix of pairwise genetic (Ham-
ming) distances and the sampling dates associated to the sequences. There
are a plot method to show the results as a directed network with time (taken
from the input dates) and a function plotSeqTrack which requires spatial
coordinates and displays the network together with the spatial arrangement
of the samples.

phylodyn performs Bayesian nonparametric phylodynamic reconstruction
(BNPR) from a coalescent tree. The main input is an object of class "phylo";
the sampling dates are taken from the tree. We illustrate this method with a
random coalescent tree with n = 100 and all contemporaneaous (isochronous)
samples:

> tr <- rcoal(100)
> res.bnpr <- BNPR(tr)

The output (not displayed here) is a fairly long list which is nicely summarized
by the special graphical function (Fig. 9.8A):

> plot_BNPR(res.bnpr)

The main function BNPR has a number of options to control the fitting process
such as the number of intervals used by the HMC algorithm. We now try with
a tree generated with rtree which simulated trees with branch lengths by
default from a uniform distribution (Fig. 9.8B):

> th <- rtree(100)
> res.bnpr.h <- BNPR(th)
> plot_BNPR(res.bnpr.h)

phylodyn provides also a few functions to help the user prepare data to be
analyzed with BEAST as well as to get the tree from this program.

9.5 Site Frequency Spectrum Methods
We already mentioned that the approach based on analyzing coalescent trees
may become cumbersome for large genomic data because quantifying a ge-
nealogy may be too computationally intensive. An alternative is to consider
the site frequency spectrum (SFS) which quantifies the distributions of a large
number of mutations among n individuals. The SFS is meaningful with bial-
lelic loci because each of these may define what is called a bipartition (or split)
defined as two distinct subsets of the n individuals. The SFS is actually simply
the numbers of mutations present in one, two, three, . . . , individual(s). The
SFS can be folded or unfolded. In the former, the ancestral states of the muta-
tions are unknown so the mutations that are observed in a individuals cannot
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Figure 9.8
Two examples of using phylodyn (A) with isochronous samples, and (B) with
heterochronous samples.

be distinguished from the mutations that are observed in n − a individuals
(a < n). In the unfolded SFS, the ancestral alleles are known (e.g., from an
outgroup). The folded SFS is made of bn/2c values6 while its unfolded version
has n− 1 values.

The SFS can be calculated with the generic function site.spectrum with
methods for the classes "DNAbin" and "loci". We can calculate the folded
and unfolded SFSs for the data Yloc (see p. 204):

> site.spectrum(Yloc)
[1] 0 0 3 2
attr(,"sample.size")
[1] 9
attr(,"folded")
[1] TRUE
attr(,"class")
[1] "spectrum"

We could check from the original data that there are no singleton and no allele
observed twice. If we assume that the ancestral alleles are A for all loci, the
unfolded SFS would be:

> site.spectrum(Yloc, folded = FALSE, ancestral = rep("A", 5))
[1] 0 0 1 0 2 2 0 0
attr(,"sample.size")

6bxc is the ‘floor’ function of x defined as the largest integer less than or equal to x.



288 Past Demographic Events

[1] 9
attr(,"folded")
[1] FALSE
attr(,"class")
[1] "spectrum"

9.5.1 The Stairway Method
There is a close association between the SFS and the coalescent. For instance,
consider the tree on Figure 9.1: any mutation that occurred between t5 and
t4 will result in a variant (or segregating) site with an allele in one individual
and another allele in the four others. Polanski and Kimmel [226] established
formulas for a likelihood analysis of SFS in a coalescent framework. They
considered a simple model of population change. This approach has been ex-
tended by Liu and Fu [168] to include arbitrary changes. The latter method
is implemented in the function stairway, which takes as first argument an
object of class "spectrum" and an optional second argument "epoch" which
specifies the different periods of time (as coalescent intervals) with equal pop-
ulation sizes (this is given as a vector of n − 1 integers). As application, we
use the woodmouse data in ape (Fig. 9.9A):

> data(woodmouse)
> sp <- site.spectrum(woodmouse)
Warning message:
In site.spectrum.DNAbin(woodmouse) :
2 sites with more than two states were ignored

> sp
[1] 33 6 7 4 3 0 1
attr(,"class")
[1] "spectrum"
attr(,"sample.size")
[1] 15
attr(,"folded")
[1] TRUE
> plot(sp, col = "lightgrey")

We then fit a model with different population sizes for each coalescent interval:

> stw.wood <- stairway(sp, epoch = 1:14)
> stw.wood
$estimates
[1] 30.71826989 0.00000001 0.00000001 0.00000001
[5] 0.00000001 0.00000001 0.00000001 0.00000001
[9] 0.00000001 0.00000001 0.00000001 4.34145718
[13] 0.00000001
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$deviance
[1] 114.9504

$null.deviance
[1] 157.1032

$LRT
chi2 df P.val

4.215283e+01 1.300000e+01 6.182944e-05

$AIC
[1] 140.9504

$epoch
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14

attr(,"class")
[1] "stairway"

The value of Θ is fixed to one at present, so the estimates are relative with
respect to this value. The output reports the values of the deviance for the
fitted model and the null model (i.e., with Θ = 1 and constant through time).
The likelihood-ratio test (LRT) compares these two models. There are plot
and lines methods for this class (Fig. 9.9B):

> plot(stw.wood)

9.5.2 CubSFS
The package CubSFS implements an elaboration of the SFS-based approach
using a cubic spline in order to smooth the changes in Θ through time. This
takes as arguments the SFS, the sample size (n), and different options control-
ling the fit including α which controls the degree of smoothness. For instance,
fitting a model with the woodmouse data and α = 0.25 (Fig. 9.9C):

> library(CubSFS)
> res <- estimateCubSFS(sp, attr(sp, "sample.size"), n.knots=5,
+ t_m = 1, alpha = 0.25, is.folded = TRUE)
> plot(res$CoalRate[, 1:2], type = "l")
> text(0.2, 1.5, expression(alpha==0.25))

Figure 9.9D shows the predicted value of Θ with α = 0.5.

9.5.3 Popsicle
Gattepaille et al. [93] further elaborated Polanski et al.’s approach to develop
a method they called the “population size coalescent-times-based estimator”
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Figure 9.9
Results from analyses of the woodmouse data: (A) site frequency spectrum,
(B) results from stairway in pegas, (C–D) results from CubSFS (the time axis
is apparently reversed in this package).

(Popsicle). The input data are sets of coalescent times, so that calculating Ne
is straightforward using a modified version of Polanski et al.’s formulas. Time
is split in discrete intervals in the same way as for the stairway approach. The
authors provide R code to perform the calculations.7 The function Popsicle
does the main calculations; it has two arguments:

Popsicle(coal_times, time_discretization)

The first argument is a matrix of coalescent times in each row so the number
of columns is equal to n − 1, and the second argument is a vector of time
intervals. We try this code here with a set of 1000 coalescent times simulated
with Θ = 1 and n = 50:

> x <- t(replicate(1000, branching.times(rcoal(50))))

x is a matrix with 1000 rows and 49 columns. We then devide the time in 15
equal intervals and call Popsicle:

> td <- seq(0, 1.5, 1e-1)

7http://jakobssonlab.iob.uu.se/popsicle/

http://jakobssonlab.iob.uu.se
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Figure 9.10
Estimation of Ne with Popsicle using 1000 coalescent times simulated with
Θ = 1 and n = 50.

> N <- Popsicle(x, td)
> N
[1] 1.0057900 0.9832872 1.0475176 1.0063479 0.9783519
[6] 0.9344331 1.0277950 0.9546101 1.1183029 0.8619216
[11] 0.9796613 1.1078263 1.0195669 0.9781890 0.8554363

The output is a vector with the estimated values of (scaled) Ne (hence equal
to Θ here) which we plot with (Fig. 9.10):

> plot(td, c(N, N[length(N)]), type="s", xlab="Time", ylab="Ne")
> abline(h = 1, lty = 2)
> legend("topleft", legend = "True Ne", lty = 2)

Note that we had to repeat the last value of Ne to have a proper representation
for each time interval. At the moment, the available implementation does not
provide a way to test or assess whether the fitted model is a good description
of the data.
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9.6 Whole-Genome Methods (psmcr)
The SMC (Sec. 9.1.2) makes possible to analyze genome data where recom-
bination must taken into account. Li and Durbin [163] extended this idea
to the case of a single diploid genome, so n = 2 alleles for all loci. They
called their method the pairwise sequential Markov coalescent (PSMC). The
coalescent model is fitted with a hidden Markov model (HMM) using the
usual Viterbi algorithm.8 It may seem counterintuitive that this approach is
effective with such a small number of alleles, but by extending the sample
through all the gemome (or at least a significant portion) and because many
loci are unlinked—because they are on different chromosomes or because of
recombination—they actually contain genetic materials from a sample of lin-
eages of the whole population.

The basic information comes with the density of heterozygous sites in the
genome which is done by “binning” its sequence in segments of say 100 bp
and coding each segment with one if it includes at least one heterozygous site,
or with zero if it includes only homozygous sites. The PSMC was initially
implemented in the C program psmc and has been ported to R as the package
psmcr. This package includes two functions to help prepare the data:

• VCF2DNAbin takes as input the VCF file and the reference genome and out-
puts a consensus sequence. The option individual selects which individual
to consider in the VCF file in case there are more than one. By default, the
reference genome is looked for in the VCF file (after downloading if it is a
remote file). It is also possible to give a "DNAbin" object or the name of a
FASTA file.

• seqBinning can be used to bin the consensus sequences. The default bin
size is 100, and the output is a set of sequences with either ‘K’ (i.e., G or
T) if there is at least one ambiguous base (representing a heterozygous site)
within a binning interval, or ‘T’ if there are only homozygous sites.

The main function is called psmc:

psmc(x, parapattern = "4+5*3+4", maxt = 15, niters = 30,
trratio = 4, B = 0, trunksize = 5e5, decoding = FALSE,
quiet = FALSE, raw.output = FALSE, mc.cores = 1)

The options are similar to the original program. The first argument is an object
prepared with seqBinning. The second argument is the model of temporal
change in Θ: time is split in atomic intervals and each number specifies the

8HMMs are nicely introduced and illustrated by the package aphid, including a general
function to fit a HMM with the Viterbi algorithm, and a function to align DNA and amino
acid sequences by a HMM-based method [299].
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number of intervals covered by each parameter. In other words, the default is
equivalent to "4+3+3+3+3+3+4".

maxt is the largest possible value for time to the most recent common an-
cestor (MRCA), niters is the number of iterations, trratio is Θ/ρ (ρ: recom-
bination rate), and B is the number of bootstrap replications. If the bootstrap
is performed, the chromosomes are cut in segments of length trunksize bp
and resampling is done on these segments. The other options have their usual
meanings.

The values of parapattern and maxt should be set so that after twenty
rounds of iterations, around ten recombinations are inferred in the intervals
each parameter spans. Otherwise, inappropriate settings may lead to overfit-
ting. The output is a list with the class "psmc" for which there is a plot
method.

The PSMC is powerful to estimate distant population size changes; how-
ever, it poorly represents recent coalescent events (younger than 20,000 years
in the case of humans). To alleviate these limitations, Schiffels and Durbin
[246] extended the PSMC to the case of several complete genomes in the form
of the multiple SMC (MSMC). They showed that as few as eight haplotypes
are enough to detect population size changes as recent as seventy generations
ago. Furthermore, the estimates of recombination are more precise compared
to the PSMC. The MSMC is implemented in D, a very rarely used computer
language in genomics, bioinformatics or phylogenetics. Nevertheless, compiled
programs for Linux and MacOS are provided on the program’s repository as
well as R code to graphically display the results.9 Terhorst et al. published a
related method implemented in Python.10

9.7 Case Studies
9.7.1 Mitochondrial Genomes of the Asiatic Golden Cat
Since the data are aligned DNA sequences, we can calculate directly the Wat-
terson estimator Θ̂s:

> theta.s(catopuma.ali, var = TRUE)
[1] 53.13218 243.41365

This is a relatively high value for this parameter. As mentioned above, the
nucleotide diversity π̂ is another estimator of Θ:

> nuc.div(catopuma.ali, var = TRUE)
[1] 3.128793e-03 2.361517e-06

9https://github.com/stschiff/msmc-tools
10https://github.com/popgenmethods/smcpp

https://github.com
https://github.com
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This sounds like a more reasonable value. We turn to a likelihood ap-
proach with coalescentMCMC running the MCMC during 106 generations
and selecting the moves 1 and 3. These settings can be found by running
coalescentMCMC with the default number of generations (3000) which is usu-
ally enough to have a good idea of the acceptance rate for the selected moves.

> library(coalescentMCMC)
> o <- coalescentMCMC(catopuma.ali, 1e6, moves = c(1, 3))
Running the Markov chain:
Number of generations to run: 1e+06

Generation Nb of accepted moves
1000000 415205

Done.

The output can be analyzed with the package coda (loaded with coalescentM-
CMC). The first step is to assess the effective sample size (ESS) of the chain:

> effectiveSize(o)
logLik.tree logLik.coal theta

1858.139 30090.443 30147.811

These numbers are large which is not a surprise considering the good accep-
tance rate observed previously. However, the values output by the chain may
be correlated if the successive moves are close apart. We assess this with the
autocorr.plot function in coda (Fig. 9.11A):11

> autocorr.plot(o)

These values are too high so we postprocess the output by dropping the first
100,000 generations of the MCMC (burn-in period) and taking one out of 1000
of the remaining ones (thinning):

> o.sub <- subset(o, 1e5, 1e3)
> dim(o.sub)
[1] 900 3

We are left with 900 values but the auto-correlation has been removed
(Fig. 9.11B) and the ESS is larger than 200:

> autocorr.plot(o.sub)
> effectiveSize(o.sub)
logLik.tree logLik.coal theta

503.9597 900.0000 900.0000

We plot the results (Fig. 9.12):

> plot(o.sub)



Case Studies 295

Figure 9.11
Autocorrelation plots with the Asiatic golden cat data (A) complete MCMC
run (B) after trimming with subset.

We may also print summaries with summary and HPDinterval:

> summary(o.sub)

Iterations = 1:900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 900

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
logLik.tree -2.558e+04 3.0328414 1.011e-01 1.351e-01
logLik.coal 3.388e+02 1.8979531 6.327e-02 6.327e-02
theta 8.101e-03 0.0003948 1.316e-05 1.316e-05

2. Quantiles for each variable:

2.5% 25% 50% 75%
logLik.tree -2.559e+04 -2.559e+04 -2.558e+04 -2.558e+04
logLik.coal 3.350e+02 3.375e+02 3.388e+02 3.400e+02
theta 7.365e-03 7.840e-03 8.085e-03 8.362e-03

97.5%
11The function acfplot has the same functionality using the lattice interface.
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Figure 9.12
Output of coalescence analysis with the Asiatic golden cat data.

logLik.tree -2.558e+04
logLik.coal 3.425e+02
theta 8.916e-03

> HPDinterval(o.sub)
lower upper

logLik.tree -2.559036e+04 -2.557971e+04
logLik.coal 3.350281e+02 3.424642e+02
theta 7.319097e-03 8.863753e-03
attr(,"Probability")
[1] 0.95

The credibility interval of Θ (7.3×10−3–8.9×10−3) is slightly larger than the
above estimate with nucleotide diversity (3.1× 10−3).

We now plot the SFS (Fig. 9.13):

> sp <- site.spectrum(catopuma.ali)
> plot(sp, col = "lightgrey", main = "")
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Figure 9.13
Site frequency spectrum of the Asiatic golden cat data.

Most mutations are shared between a few individuals (1–3) suggesting a re-
cent increase in population size. To further investigate this, we do a Bayesian
reconstruction of population sizes by first estimating a phylogeny by NJ with
the distances computed in a previous chapter, rooting the tree with the mid-
point method in phangorn, and dating the tree with a maximum likelihood
method [212]:

> tr <- nj(d.K80)
> library(phangorn)
> rtr <- midpoint(tr)
> chr <- chronos(rtr)

We now do the MCMC population size reconstruction with 10,000 generations,
and plot the results together with the standard skyline plot (Fig. 9.14):

> res <- mcmc.popsize(chr, 1e4, progress.bar = FALSE)
> N <- extract.popsize(res)
> plot(skyline(chr), lty = 2)
> lines(N)
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Figure 9.14
Skyline plot and Bayesian analysis of the Asiatic golden cat data.

9.7.2 Complete Genomes of the Fruit Fly
We begin with a SFS-based analysis by selecting only the SNPs on chromo-
some 2L:

> s <- which(SNP & info.droso$CHROM == "2L")
> droso <- read.vcf(fl, which.loci = s, quiet = TRUE)
> xf <- site.spectrum(droso)
> xf
[1] 0 0 0 0 0 0 0 0 0 0 0
[12] 0 9231 8427 7671 7136 6583 6070 5489 5169 4843 4588
[23] 4330 4181 3865 3596 3576 3305 3263 2908 2986 2756 2727
[34] 2538 2577 2440 2371 2307 2242 2168 2082 1981 1972 1866
[45] 1939 1832 1786 1830 1826 1670 1715 1586 1555 1447 1568
[56] 1505 1488 1477 1458 1413
attr(,"sample.size")
[1] 121
attr(,"folded")
[1] TRUE
attr(,"class")
[1] "spectrum"
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Without plotting the results, we see clearly the absence of singleton sites or
sites shared by a few individuals (between 2 and 12). We thus repeat the same
analysis but for each population separately. The SFSs are computed with a
simple loop:

> reg <- geo$Region
> SFS <- vector("list", nlevels(reg))
> for (i in seq_along(res)) {
+ ind <- reg == levels(reg)[i]
+ SFS[[i]] <- site.spectrum(droso[ind, ])
+ }

The results are plotted with another simple loop (Fig. 9.15):

> layout(matrix(1:6, 2, 3, byrow = TRUE))
> for (i in seq_along(SFS)) {
+ plot(SFS[[i]], col = "lightgrey", main = "")
+ title(levels(reg)[i], cex.main = 1.5)
+ }

This suggests different past demographies for the different populations. We
look at this with the PSMC. We first get the reference genome of D.
melanogaster from Flybase (accessed 2019-08-01):

> url <- "ftp://ftp.flybase.net/genomes/Drosophila_melanogaste\
r/dmel_r5.41_FB2011_09/fasta/dmel-all-chromosome-r5.41.fasta.gz"
> reffile <- "dmel-all-chromosome-r5.41.fasta.gz"
> download.file(url, reffile)
trying URL ’ftp://ftp.flybase.net/....
Content type ’unknown’ length 49863002 bytes (47.6 MB)
==================================================

We read the downloaded file with read.FASTA:

> ref <- read.FASTA(reffile)

In order to build the complete genomes of the individuals in the original VCF
file, the names of the chromosomes of this reference genome must match with
those in the VCF file; however, this FASTA file has more complex names with
a complete description of the chromosome:

> names(ref)
[1] "YHet type=chromosome_arm ....
[2] "dmel_mitochondrion_genome ....
[3] "2L type=chromosome_arm; ....
....

ftp://ftp.flybase.net
ftp://ftp.flybase.net
ftp://ftp.flybase.net
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Figure 9.15
Site frequency spectra using SNP data of the chromosome 2L of fruit flies
from six populations.

Besides, there are fifteen sequences while the VCF file has only five different
chromosomes. To do the match, we strip these names and then select only the
chromosomes that are in both files:

> names(ref) <- gsub(" .*", "", names(ref))
> s <- match(unique(info.droso$CHROM), names(ref))
> ref2 <- ref[s]
> ref2
5 DNA sequences in binary format stored in a list.

Mean sequence length: 23805938
Shortest sequence: 21146708
Longest sequence: 27905053

Labels:
2L
X
3L
2R
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3R

More than 10 million bases: not printing base composition
(Total: 119.03 Mb)

We have finally a reference genome with the five main chrosomes and we can
reconstruct the complete genome of the individual with VCF2DNAbin and bin
it seqBinning:

> library(psmcr)
> x <- VCF2DNAbin(fl, ref2)
> x <- seqBinning(x)

The resulting set of sequences has only ‘T’ for blocks of nucleotides with no
heterozygous sites or ‘K’ if there is at least one:

> x
5 DNA sequences in binary format stored in a list.

Mean sequence length: 238060
Shortest sequence: 211468
Longest sequence: 279051

Labels:
2L
X
3L
2R
3R

Base composition:
a c g t
0 0 0 1
(Total: 1.19 Mb)

We now run the PSCM with psmc fitting a simple model with six periods
each with a different Θ and 100 bootstrap repetitions. We take care to set the
value of trunksize (the size of the sampled blocks during the bootstrap) to
a length less than the shortest chromosome length:

> o <- psmc(x, "1+1+1+1+1+1", B = 100, trunksize=1e5)
Iteration 30/30... Done.
Bootstrapping 100/100... Done.

This analysis takes a few minutes to complete and the results are plotted with
the plot method (Fig. 9.16A):
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> plot(o, scaled = TRUE)

The PSMC considers a single individual genome sequence; however, the
present implementation in psmcr makes easy to analyze different individu-
als: the function VCF2DNAbin has the option individual which selects the
individual in the VCF file. Using the vector labs extracted from the VCF file
in a previous chapter, we can find that individual 22 is from population CAM,
so we do:

> x22 <- VCF2DNAbin(fl, ref2, individual = 22)

and repeat the same commands above with seqBinning and psmc (Fig. 9.16B).
We do a third similar analysis with an individual from population RAL (num-
ber 55; Fig. 9.16C). The inferred patterns are consistent with what was ob-
served with the SFS analysis (Fig. 9.15).

9.7.3 Influenza H1N1 Virus Sequences
The H1N1 data were collected around the world (Fig. 9.17):

> library(maps)
> map()
> points(H1N1.DATA[, 4:5], pch = 20)

We do similar preliminary analyses like done for the Asiatic golden cat:

> theta.s(H1N1.HA, variance = TRUE)
[1] 28.58519 33.43786
> theta.s(H1N1.NA, variance = TRUE)
[1] 18.95650 15.63148
> nuc.div(H1N1.HA, variance = TRUE)
[1] 1.789015e-03 1.072856e-06
> nuc.div(H1N1.NA, variance = TRUE)
[1] 9.335989e-04 4.256622e-07

We run here a simple seqTrack analysis. The input to seqTrack are a
matrix of pairwise Hamming distances, a vector with the names of the samples,
a vector with the dates of sampling (in "POSIXct" format), and an optional
matrix of spatial proximities. The last one is computed from the geographical
coordinates read in Chapter 4, calculating the geodesic distances with geod,
and subtracting them from the largest of these distances to obtain proximities:

> dgen <- dist.dna(H1N1.HA, "N", p = TRUE, as.matrix = TRUE)
> dspat <- 20000 - geod(H1N1.DATA[, 4:5])
> date <- as.POSIXct(H1N1.DATA$date)
> res <- seqTrack(dgen, H1N1.DATA$X, date, prox.mat=dspat)
> str(res)
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Figure 9.16
Scaled population size of fruit fly reconstructed with PSMC with three indi-
viduals from (A) SEU, (B) CAM, and (C) RAL.
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Figure 9.17
Geographical distribution of H1N1 viruses sampled during the 2009 epidemics.

Classes ’seqTrack’ and ’data.frame’: 433 obs. of 5 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ ances : num 3 85 352 204 295 145 71 163 163 124 ...
$ weight : num 0 0 1 0 1 0 0 0 1 2 ...
$ date : POSIXct, format: "2009-05-29" ...
$ ances.date: POSIXct, format: "2009-05-19" ...

The results are drawn with the function plotSeqTrack either on its own
using the package network, or on top of an existing graph if the option add
= TRUE is used. In that case, the second argument is a matrix of coordinates
(Fig. 9.18):

> map()
> plotSeqTrack(res, H1N1.DATA[, 4:5], add = TRUE)

9.7.4 Bacterial Whole Genome Sequences
We make a SFS analysis; however, because of the many alignment gaps we
first remove the sites with gaps. We first scan the data with del.colgapsonly
setting the option freq.only = TRUE so that the returned vector contains the
number of gaps in each site:

> fgaps <- del.colgapsonly(HP, freq.only = TRUE)
> sum(fgaps == 0)
[1] 184202
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Figure 9.18
SeqTrack analysis of H1N1 viruses.

So, there are 89% of the columns of the original alignment that have at
least one gap. We drop them to build a new reduced alignment without gaps:

> x <- HP[, which(fgaps == 0)]

We check the alignment:

> checkAlignment(x, plot = FALSE)

Number of sequences: 402
Number of sites: 184202

No gap in alignment.

Number of segregating sites (including gaps): 73312
Number of sites with at least one substitution: 73311
Number of sites with 1, 2, 3 or 4 observed bases:

1 2 3 4
110890 63121 8779 1411

So the majority (86%) of the polymorphic sites are strict SNPs. We can now
compute the SFS (Fig. 9.19):

> spx <- site.spectrum(x)
Warning message:
In site.spectrum.DNAbin(x) :



306 Past Demographic Events

Figure 9.19
Site frequency spectrum from Helicobacter pylori.

10190 sites with more than two states were ignored
> plot(spx, col = "lightgrey")

The vast majority of these SNPs are singletons and the frequencies decrease
sharply with increasing numbers.

9.8 Exercises
1. Try the following code:

library(coalescentMCMC)
sim.coalescent()
sim.coalescent(N.final = 50)
sim.coalescent(N.0 = 20)

Comment on what you observe.
2. Simulate coalescent trees with rcoal and validate the expected tree

length given by (9.3).
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3. Simulate data with the function ms in the same way as done on
page 271. Calculate the value of Θ̂s. Repeat with different values of
n and interpret.

4. Simulate 1000 trees coalescent trees with n = 10 and Θ = 1 using a
single command. Same question but with different values of Θ (say
between 1 and 10, and generating 100 trees for each value of Θ).

5. Simulate trees with ms(100, opts = "-T -t 1") and with
scrm("100 1 -T -t 2"). Compare and analyze the outputs.

6. Simulate coalescent trees from a model with three parameters (α,
β, τ) where Θ changes through time: Θ = α if t ≤ τ , Θ = β if t > τ
(t is time). Use rcoal and the rescaling introduced in Section 9.1.3.

7. Find the expected coalescent times for the scenarios simulated in
Question 1.

8. Demonstrate (9.5) starting from (9.6).
9. Sketch the HMM algorithm of the PSMC method where the hidden

states are the coalescence and recombination events and the visible
states are the heterozygous sites in the genome.

10. Analyze the woodmouse data with the function coalescentMCMC
using the default options. Repeat the same analysis with an MCMC
of 107 generations. Compare the results from both analyses.
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Natural Selection

10.1 Testing Neutrality
10.1.1 Simple Tests
When a new mutant allele appears in a population, it is initially at a low
frequency. If it is selectively neutral, it will have the same probability to in-
crease (or decrease) in frequency than other alleles that are equally neutral.
If mutations have no selective advantage and are completely random, it is
expected that they accumulate in all lineages independently and at the same
rate. Several statistical tests were developed based on this prediction: two of
them are available in pegas.

Tajima [263] devised a test denoted as D based on the number of segre-
gating sites S in a sample. It is based on the following difference:

d̄− S
n−1∑

i=1
1/i

,

where the first term is the mean Hamming distance among the n sequences:

d̄ = 2
n(n− 1)

∑

i<j

di,j .

Both terms are actually estimates of the genetic population parameter Θ (see
Sect. 9.2) so they are expected to be equal under neutrality. The statistic D
is calculated after standardizing the above quantity. If evolution is neutral, D
follows approximately a normal distribution with mean zero, or, more exactly
after transformation, a beta distribution. The function tajima.test imple-
ments Tajima’s D and computes the P -values under both distributions (see
applications in Sect. 10.4).

A more sophisticated test, denoted as R2, was proposed by Ramos-Onsins
and Rozas [233]: it is based on the number of segregating sites but also weighs
singletons differently. Let us denote Ui the number of singletons in sequence
i. The test is calculated with:

309



310 Natural Selection

R2 = 1
S

√√√√√√

n∑

i=1

(
Ui −

d̄

2

)2

n
.

The P -value is computed by simulation under a coalescent model (see
Sect. 9.1). This test is implemented in the function R2.test in pegas:

R2.test(x, B = 1000, theta = 1, plot = TRUE, quiet = FALSE, ...)

where x is an object of class "DNAbin", B is the number of replications of the
randomization test, theta is the value of Θ used in these simulations, plot
specifies whether the result of the test should be plotted, and quiet, as usual,
controls whether the progress of the randomization test should be printed
in the console. A simulation study showed this test to have generally good
statistical performances [244].

10.1.2 Selection in Protein-Coding Sequences
Proteins are part of the phenotype and thus are direct targets of selection.
Because the genetic code is degenerate, some mutations at the DNA level may
result in no change in the sequence of amino acids of the protein: these are
called synonymous mutations. Consider the codon CTA coding for the amino
acid leucine. A substitution of the first base C by T will actually not change
this amino acid since TTA also codes for leucine, while GTA and ATA code for
two different amino acids (Fig. 10.1). Thus, the first site is twofold degenerate.
A substitution of the second base T by any of the three other bases will always
lead to a different amino acid, thus the second site is nondegenerate. Finally,
the third base A may be substituted by another base with no consequence on
the amino acid, so the third site is fourfold degenerate. This categorization
of the sites of a gene makes possible to calculate the numbers of synonymous
and nonsynonymous mutations, usually denoted as dN and dS, respectively.
They are often expressed as their ratio dN/dS (also denoted as Ka/Ks).

The function dnds in ape implements the method proposed by Li [165]:

dnds(x, code = 1, codonstart = 1)

where x is a "DNAbin" object, code specifies the genetic code to be used (by
default, the standard genetic code), and codonstart specifies if some bases
at the start of the sequences should be skipped. It returns the pairwise dN/dS
as a "dist" object. We illustrate its use with the woodmouse data. Because
these are sequences from an mtGenome, we change the default genetic code:

> data(woodmouse)
> dnds.woodm <- dnds(woodmouse, code = 2)
100 %... done
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CTA

CTA Leu
CAA Gln
CCA Pro
CGA Arg

CTA Leu
TTA Leu
GTA Val
ATA Ile

CTA Leu
CTC Leu
CTG Leu
CTT Leu

NondegenerateTwofold degenerate Fourfold degenerate

1Figure 10.1
The codon CTA illustrates the three possible cases of site degeneracy.

Warning message:
In dnds(woodmouse, code = 2) :
sequence length not a multiple of 3: 2 nucleotides dropped

> str(dnds.woodm)
’dist’ num [1:105] 0.0788 0.1681 0.3339 0.1281 0.1682 ...
- attr(*, "Size")= int 15
- attr(*, "Labels")= chr [1:15] "No305" "No304" "No306" ...
- attr(*, "Upper")= logi FALSE
- attr(*, "Diag")= logi FALSE
- attr(*, "call")= language dnds(x = woodmouse, code = 2)
- attr(*, "method")= chr "dNdS (Li 1993)"

The results could be visualized with hist or more simply summarized with
summary:

> summary(dnds.woodm)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.03409 0.07879 0.11846 0.18183 0.57594

All values are less than one and even more than 50% are less than 0.1 showing
there were much more synonymous than nonsynonymous mutations.

Another approach is to include dN/dS into a phylogenetic model. Yang and
Nielsen [307] developed a substitution model of the evolution among the 64
possible codons. Because of the large size of the rate matrix (64 × 64), they
assumed that the rate of transition between two codons is equal to zero if they
differ at more than one position. This model has therefore two basic param-
eters: κ the ratio of transition to transversion1 rates, and ω (= dN/dS). The

1The word ‘transition’ means here a mutation from a type of base, purine or pyrimidine,
to another of the same type (A ↔ G or C ↔ T), whereas a ‘transversion’ is a mutation
from a type of base to the other.



312 Natural Selection

proportions of the 64 codons are also parameters of this model but they are
estimated with the observed frequencies from the sequences. phangorn imple-
ments this approach with its general functions pml and optim.pml. To prepare
the data, the function dna2codon converts an object of class "DNAbin", for
instance:

> library(phangorn)
Loading required package: ape
> data(woodmouse)
> X <- dna2codon(phyDat(woodmouse))
Warning message:
In phyDat.codon(as.character(x)) :
Found unknown characters. Deleted sites with unknown states.

> X
15 sequences with 291 character and 93 different site patterns.
The states are aaa aac aag aat aca acc acg act aga agc agg ...

The data X can now be analyzed with standard phylogenetic functions in
phangorn (see [211, Chap. 5] for an overview). As a simple example, we fit the
model and estimate the parameters κ and ω after reconstructing a neighbor-
joining tree:

> trw <- nj(dist.dna(woodmouse))
> m0 <- pml(trw, X)
negative edges length changed to 0!
> m0

loglikelihood: -2411.432

unconstrained loglikelihood: -1174.458
dn/ds: 1
ts/tv: 1
> m1 <- optim.pml(m0, control = pml.control(trace = 0))
> m1

loglikelihood: -1599.325

unconstrained loglikelihood: -1174.458
dn/ds: 0.1453747
ts/tv: 13.22447
> anova(m0, m1)
Likelihood Ratio Test Table
Log lik. Df Df change Diff log lik. Pr(>|Chi|)

1 -2411.4 27
2 -1599.3 29 2 1624.2 < 2.2e-16
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There is thus strong support for non-neutral mutations in these cytochrome
b sequences.

10.2 Selection Scans
10.2.1 A Fourth Look at F-Statistics
Among the F -Statistics, FST measures the genetic differentiation between two
or more populations. Recall that it is defined for SNPs as:

FST = Var(p)
p̄(1− p̄) . (10.1)

In absence of selective forces (and migration among populations), the vari-
ance in allele frequency Var(p) is due to the drift which happened since the
populations have separated. The predicted value of FST after t generations of
random drift is [197]:

FST = 1−
(

1− 1
2Ne

)t
. (10.2)

A similar formula can be found with a coalescent approach [253]:

FST = 1− E(tS)
E(tB) ,

where tS are the coalescent times of two lineages within a single population
and tB are the coalescent times of two lineages belonging to two distinct
populations.

Thus, (10.1) can be seen a scaled measure of drift between populations.
Drift depends on Ne; however, Ne is the same for all loci if they are located
on the same genomic compartment (autosomes, mtGenome, Y chromosome).
Therefore, FST is expected to be the same among loci if drift is the only
evolutionary force.

Lewontin and Krakauer [161] first proposed using this idea to measure
selection among loci in 1973. Devlin and Roeder [55] improved the approach
particularly in the case of large numbers of loci and applied it to test the
association of loci with phenotypic traits using a Bayesian approach. Akey
et al. in 2002 [5] were apparently the first to use a graphical display of FST
values along the chromosomes, a method later named “Manhattan plot.”

There are two basic related tests:
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FST
1− FST

× n−K
K − 1 ∼ Fν1,ν2 ν1 = K − 1, ν2 = n−K

FST
1− FST

(n−K) ∼ χ2
ν ν = K − 1

The two tests are equivalent since if n is much larger than K, then the F
distribution is well approximated by a χ2 after multiplying by ν1. Negative
values of FST are replaced by zero or a very small value. The P -values calcu-
lated from the tests are transformed with − log10(P ). These tests are easily
calculated with the outputs of the functions detailed in Section 7.2. Addition-
ally, FST are tested in LEA and in tess3r with this method using the estimated
matrices Q and G.

10.2.2 Association Studies (LEA)
Frichot et al. [84] developed a method, latent factor mixed model (LFMM),
to model and test the association between genomic data and phenotypic or
environmental variables. They used a mixed modeling approach where these
variables are input as predictors and have fixed effects on the genetic data,
while population structure is unknown and treated as latent variables. The
model is fitted with an algorithm similar to the one used in snmf (Sect. 7.5.1)
and in tess (Sect. 8.5.1).

The method is implemented in LEA with the function lfmm which requires
genotypes coded in the same way as snmf and an additional file with the
environmental variable(s). Both files must have the same number of lines. The
third argument K is the number of latent variables. The output is a project
which can be kept on the disk (see p. 214). The P -values can be extracted with
the function lfmm.pvalues with the object output by lfmm as main argument.
There are options to control for overdispersion.

We also mention the package GENESIS [96] that implements different meth-
ods to analyze population structure and relatedness using kinship inference
and multivariate methods. This package is integrated with the GDS data for-
mat (Sect. 3.2.7), and provides assessment of associations using mixed models.

10.2.3 Principal Component Analysis (pcadapt)
PCA makes possible to test for selection among loci by looking at their dis-
tribution on the PC axes [90, 219]. Luu et al. [174] elaborated a test of the
significance of SNPs based on the Mahalanobis distance. First a PCA is run
on the genetic data matrix using SVD and K PCs are retained. Then, a re-
gression of genetic data on these PCs is done and z-scores are calculated for
each locus with:
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zjk = βjk

√∑n
i=1 yik
σ2
j

,

where βjk is the contribution of locus j to the kth PC, yik is the coordinate
of individual i on the kth PC, and σ2

j is the residual variance for locus j. The
Mahalanobis distance is then done with:

Dj = (zj − z̄)TΣ−1(zj − z̄),
where z̄ and Σ are the mean and variance-covariance of K values in zj . The
values of Dj can be plotted in a Manhattan plot.

The method is implemented in the package pcadapt with the main function
of the same name:

pcadapt(input, K = 2, method = "mahalanobis", min.maf = 0.05,
ploidy = 2, LD.clumping = NULL, pca.only = FALSE)

K is the number of PCs to keep, min.maf is the lower bound of the frequency
of the minor allele to include, LD.clumping is to control for LD by requiring
specific parameters, and pca.only is to return only the PCs (if TRUE). The
input data can be of different forms such as the one used by LEA or a VCF
file (actually using the package vcfR).

10.2.4 Scans for Selection With Extended Haplotypes
Extended haplotypes (EH) have been extensively investigated during the
1980s and 1990s in medical genetic studies [e.g., 150]. The theoretical jus-
tification dates back to the concept of “hitch-hiking” formulated by Maynard
Smith and Haigh in 1974 [180] and now known as selective sweep (see [34] for
a historical account). If a mutation with a strong selective advantage appears
in a population—initially as a single copy—it will hitch-hike the alleles on
other loci that are close to it (close enough to not be recombined in a short
time) and other alleles will be swept out of the population (Fig. 1.9D).

Sabeti et al. [239] proposed to quantify allelic variation around a focus
locus with the extended haplotype homozygosity (EHH). Suppose we focus on
the allele a of a given locus. We write Ha the number of distinct haplotypes
carrying this allele, ni their frequencies, and na the number of haplotypes in
the population carrying allele a (na =

∑
i ni, i = 1, . . . ,Ha). Then, EHH for

a is:

EHHa = 1
na(na − 1)

Ha∑

i

ni(ni − 1).

If there is a single haplotype (Ha = 1) then na = ni and EHHa = 1. The same
quantity can be calculated for another allele at the same locus, say d (so that
a is for ‘ancestral’ and d for ‘derived’) leading to EHHd.
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Gautier et al. [94] have developed the package rehh which provides several
measures derived from the above formula:

• Integrated EHH (iHH) is the integral of EHH around the focus allele (a or
d).

• Log ratio of iHH for the ancestral and derived alleles:

UniHS = ln iHHa

iHHd
.

• Standardized ratio of UniHS:

iHS = UniHS− µ
σ

,

where µ and σ are the mean and standard deviation of the UniHS calculated
over all loci with a derived allele frequency similar to that of the core locus.

• iHS is further transformed to give:

piHS = − log10[2FN (−|iHS|)],

with FN being the cumulative density function of the standard normal dis-
tribution (sometimes denoted as Φ).

The last quantity can be interpreted as a two-sided P -value (on a − log10
scale) associated with the null hypothesis of selective neutrality.

To illustrate the tools provided by rehh, we use the data prepared on
page 60. We start by reading the complete VCF file:

> Xall <- read.vcf(fl, which.loci = 1:nrow(info))
Reading 22031 / 22031 loci.
Done.

We select only the loci with phased SNPs, and extract the haplotypes using
the option compress = FALSE to avoid calculating their frequencies:

> sel <- apply(is.phased(Xall), 2, all) & snp
> hap <- haplotype(Xall[, sel], locus=1:sum(sel), compress=FALSE)
> str(hap)
chr [1:11206, 1:36] "T" "A" "G" "G" "C" "C" "C" "G" ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:11206] "." "." "." "." ...
..$ : NULL

The data must be input from files. We thus write the haplotypes into a file
after transposing them:
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> write.table(t(hap), "tmp.hap", quote=FALSE, col.names=FALSE)

We also write the genomic positions with the chromosome name and the alleles
in another file:

> write.table(info[sel, c(1, 2, 4, 5)], "tmp.map", quote=FALSE,
+ col.names = FALSE)

The data can be read with the function data2haplohh in rehh:

> library(rehh)
> dat <- data2haplohh("tmp.hap", "tmp.map",
+ allele_coding = "none")
* Reading input file(s) *
Map info: 11206 markers declared for chromosome Supercontig_1.50 .
Haplotype input file in standard format assumed.
Alleles are being recoded at each marker in alpha-numeric order.
*** Consequently, coding does not provide information on

ancestry status. ***
* Filtering data *
Discard markers genotyped on less than 100 % of haplotypes.
No marker discarded.
Data consists of 36 haplotypes and 11206 markers.
Number of mono-, bi-, multi-allelic markers:
1 2
2 11204

We now scan the data to calculate the iHS values:

> sc <- scan_hh(dat)
> res <- ihh2ihs(sc, freqbin = 0.01)
Discard focal markers with Minor Allele Frequency equal to
or below 0.05 .

2570 markers discarded.
8636 markers remaining.
There were 50 or more warnings (use warnings() ....
> str(res)
List of 2
$ ihs :’data.frame’: 8636 obs. of 4 variables:
..$ CHR : Factor w/ 1 level "Supercontig_1.50": 1 1 1 ...
..$ POSITION : num [1:8636] 1594 41461 41503 77735 79999 ...
..$ IHS : num [1:8636] NA NA NA NA NA NA NA NA NA NA ...
..$ LOGPVALUE: num [1:8636] NA NA NA NA NA NA NA NA NA NA ...

$ frequency.class:’data.frame’: 90 obs. of 5 variables:
..$ N_MRK : num [1:90] 2311 0 0 170 0 ...
..$ MEAN_UNIHS: num [1:90] 0.679 NA NA 0.167 NA ...
..$ SD_UNIHS : num [1:90] 1.63 NA NA 1.65 NA ...
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Figure 10.2
Plot of the value of iHS.

..$ LOWER_QT : num [1:90] -2.15 NA NA -2.22 NA ...

..$ UPPER_QT : num [1:90] 4.21 NA NA 4.03 NA ...

There is a specific plot function manhattanplot (Fig. 10.2):

> manhattanplot(ihs, pval = TRUE)

Once the loci with high iHS values have been identified, it is possible to
do bifurcation plots. Let us do it for the SNP with the largest value of iHS.
We start by finding the index of this locus in the previous output:

> i <- which.max(res$ihs$IHS)
> i
[1] 8604

It is then necessary to find the position of this locus in the genome:

> pos <- res$ihs$POSITION[i]
> pos
[1] 945098

And find the index of the locus in the original data set:
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Figure 10.3
Bifurcations plots showing haplotype diversity around a locus with two alleles.

> foc <- which(dat@positions == pos)
> foc
20978
11164

The bifurcation plots can be done with (Fig. 10.3):

> furc <- calc_furcation(dat, foc)
> plot(furc, col = c("grey", "black"))

Another way to display this information is to calculate the site-specific
EHH (EHHS, [240, 266]) with the function calc_ehhs which computes this
value (Fig. 10.4):

> res.ehhs <- calc_ehhs(dat, mrk = foc)
> str(res.ehhs)
Formal class ’ehhs’ [package "rehh"] with 1 slot

..@ .Data:List of 4

.. ..$ : chr "20978"

.. ..$ :’data.frame’: 82 obs. of 3 variables:
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Figure 10.4
Site-specific extended haplotype homozygosity around a locus with two alleles.

.. .. ..$ POSITION: num [1:82] 929469 929491 929501 929513 929677 ...

.. .. ..$ EHHS : num [1:82] 0.0683 0.0683 0.0841 0.1 0.1 ...

.. .. ..$ NEHHS : num [1:82] 0.0765 0.0765 0.0943 0.1121 0.1121 ...

.. ..$ : num 71624

.. ..$ : num 80966
> plot(res.ehhs)

The integrated EHHS (iES) is the integral of EHHS over the specified
genomic range.

rehh provides also two functions comparing EHH between two populations:
ies2xpehh and ies2rsb to compute XP-EHHS (cross population EHHS) and
Rsb, respectively, which are actually the standardized ratios of iES from both
populations [240].

10.2.5 FST Outliers
Whitlock and Lotterhos [296] developed a method based on outlier detection
which is implemented in their package OutFLANK. This is based on calculat-
ing the standard FST for SNP loci, assessing their overall distribution, and
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trimming their values based on different criteria such as low values of het-
erozygosity.

In order to try the method, we simulate a new SNP data set with a sub-
stantial number of loci because OutFLANK needs enough loci to assess the
distribution of FST values. We use sample with three unphased genotypes,
convert the data into the class "loci", and create a population factor with
two populations:

> n <- 200
> p <- 100
> X <- sample(c("A/A", "A/G", "G/G"), n * p, replace = TRUE)
> dim(X) <- c(n, p)
> X <- as.loci(as.data.frame(X))
> X$population <- gl(2, n/2)

The input format for OutFLANK is similar to the one used by LEA:

> Xg <- sapply(X[, 1:p], as.integer) - 1

We start by computing a table of FST values with MakeDiploidFSTMat which
also requires the names of the loci and the population variable:

> FST <- MakeDiploidFSTMat(Xg, locusNames = 1:p,
+ popNames = X$population)
Calculating FSTs, may take a few minutes...
> str(FST)
’data.frame’: 100 obs. of 9 variables:
$ LocusName : int 1 2 3 4 5 6 7 8 9 10 ...
$ He : num 0.498 0.5 0.5 0.499 0.5 ...
$ FST : num -0.0028 -0.00284 0.00795 0.0064 -0.00626 ...
$ T1 : num -0.000699 -0.00071 0.002003 0.001606 -0.001566 ...
$ T2 : num 0.249 0.25 0.252 0.251 0.25 ...
$ FSTNoCorr : num 0.00321 0.0032 0.01435 0.01275 0.0008 ...
$ T1NoCorr : num 0.0008 0.0008 0.00361 0.0032 0.0002 ...
$ T2NoCorr : num 0.249 0.25 0.252 0.251 0.25 ...
$ meanAlleleFreq: num 0.465 0.51 0.507 0.525 0.495 ...

This outputs a data frame with different columns included the FST uncor-
rected for sample size (FSTNoCorr). These information are used by the main
function OutFLANK which options with their default values are:

OutFLANK(FstDataFrame, LeftTrimFraction = 0.05,
RightTrimFraction = 0.05, Hmin = 0.1,
NumberOfSamples, qthreshold = 0.05)

The first argument is a data frame output by MakeDiploidFSTMat and the
others control how the FST values are trimmed, in particular Hmin drops the
loci that have hetetozygosity below the value given to this option. We run this
function with its default options:
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> outf <- OutFLANK(FST, NumberOfSamples = n)
> str(outf)
List of 6
$ FSTbar : num 0.000741
$ FSTNoCorrbar : num 0.00738
$ dfInferred : num 2
$ numberLowFstOutliers : int 0
$ numberHighFstOutliers: int 0
$ results :’data.frame’: 100 obs. of 15 variables:
..$ LocusName : int [1:100] 1 2 3 4 5 6 7 8 9 10 ...
..$ He : num [1:100] 0.498 0.5 0.5 0.499 0.5 ...
..$ FST : num [1:100] -0.0028 -0.00284 0.00795 ...
..$ T1 : num [1:100] -0.000699 -0.00071 ...
..$ T2 : num [1:100] 0.249 0.25 0.252 0.251 ...
..$ FSTNoCorr : num [1:100] 0.00321 0.0032 0.01435 ...
..$ T1NoCorr : num [1:100] 0.0008 0.0008 0.00361 ...
..$ T2NoCorr : num [1:100] 0.249 0.25 0.252 0.251 ...
..$ meanAlleleFreq : num [1:100] 0.465 0.51 0.507 0.525 ...
..$ indexOrder : int [1:100] 1 2 3 4 5 6 7 8 9 10 ...
..$ GoodH : Factor w/ 2 levels "goodH","lowH": 1 ...
..$ qvalues : num [1:100] 0.99 0.99 0.782 0.782 ...
..$ pvalues : num [1:100] 0.706 0.703 0.286 0.355 ...
..$ pvaluesRightTail: num [1:100] 0.647 0.648 0.143 0.178 ...
..$ OutlierFlag : logi [1:100] FALSE FALSE FALSE FALSE ...

In this case, no outliers were found. The P -values can be calculated with the
function pOutlierFinderChiSqNoCorr:

> P <- pOutlierFinderChiSqNoCorr(FST, Fstbar = outf$FSTNoCorrbar,
+ dfInferred = outf$dfInferred)
> str(P)
’data.frame’: 100 obs. of 13 variables:
$ LocusName : int 1 2 3 4 5 6 7 8 9 10 ...
$ He : num 0.498 0.5 0.5 0.499 0.5 ...
$ FST : num -0.0028 -0.00284 0.00795 0.0064 ...
$ T1 : num -0.000699 -0.00071 0.002003 ...
$ T2 : num 0.249 0.25 0.252 0.251 0.25 ...
$ FSTNoCorr : num 0.00321 0.0032 0.01435 0.01275 ...
$ T1NoCorr : num 0.0008 0.0008 0.00361 0.0032 ...
$ T2NoCorr : num 0.249 0.25 0.252 0.251 0.25 ...
$ meanAlleleFreq : num 0.465 0.51 0.507 0.525 0.495 ...
$ pvalues : num 0.706 0.703 0.286 0.355 0.205 ...
$ pvaluesRightTail: num 0.647 0.648 0.143 0.178 0.897 ...
$ qvalues : num 0.99 0.99 0.782 0.782 0.99 ...
$ OutlierFlag : logi FALSE FALSE FALSE FALSE FALSE ...
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Figure 10.5
Manhatton plot with output from OutFLANK.

It is then possible to do a Manhattan plot with these resuls, for instance with
the P -values (Fig. 10.5):

> plot(-log10(P$pvalues), type = "h")

An application is presented below with the fruit fly data (Sect. 10.4.2).
The package MINOTAUR [284] provides a graphical-user interface to com-

pare and display the results from genome scans, in a way a bit similar to
pophelper (p. 218). Almost all operations are done with a Shiny application
which is launched from R:

> library(MINOTAUR)
> MINOTAUR()

The data are imported from files. With the tested version of MINOTAUR
(0.0.1), it seems that the file should not contain row labels, so if it is cre-
ated with write.table, the option row.names = FALSE should be used. The
package also includes a composite measure of selection based on combining
the results from different methods [171].
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10.3 Time-Series of Allele Frequencies
Traditional population genetics established equations for changes in allele fre-
quencies under the action of selection [e.g., 46]. Taus et al. [267] developed
the package poolSeq to apply this theory and estimate selection coefficients
from time-series of allele frequencies typically with a special focus on exper-
imental systems. The basic model has one or two parameters depending on
ploidy. Assume a biallelic locus with alleles A and a has an effect on fitness.
For haploids, the fitness w of the genotypes are:

wA = 1 + s wa = 1,

and for diploids:

wAA = 1 + s wAa = 1 + hs waa = 1,

with s being the selection coefficient and h the dominance coefficient. The
frequency of allele A pt is given by:

ln
(

pt
1− pt

)
= ln

(
p0

1− p0

)
+ st,

for haploids, and for diploids s is substituted by s/2. These two parameters can
be estimated with the function estimateSH. The input data is a matrix with
the allele frequencies over time in the different columns, and the replications
as the rows. The function also requires a vector of times, and a value of Ne. We
generate random frequencies from a uniform distribution and arrange them
in a matrix with five rows and ten columns and call the function assuming
haploidy and Ne = 100 (although the results are insensitive to this value):

> x <- matrix(runif(50), 5, 10)
> library(poolSeq)
> estimateSH(x, t = 0:9, Ne = 100, haploid = TRUE, h = 0.5)

Estimation of s and p0 with linear least squares

Ne: 100 haploid individuals
t: 0-1-2-3-4-5-6-7-8-9
h: 0.5

s = -0.0764288, p0 = 0.5872328

This gives little support for selection. To simulate a trend in the frequencies,
we sort the rows and repeat the analysis:
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Figure 10.6
(A) Changes in allele frequencies from a random uniform distribution. (B)
The same values but sorted.

> xs <- t(apply(x, 1, sort))
> estimateSH(xs, t = 0:9, Ne = 100, haploid = TRUE, h = 0.5)

Estimation of s and p0 with linear least squares

Ne: 100 haploid individuals
t: 0-1-2-3-4-5-6-7-8-9
h: 0.5

s = 0.4642737, p0 = 0.1087321

Since the data are in a simple matrix, they can be plotted easily (Fig. 10.6):

> layout(matrix(1:2, 1))
> matplot(t(x), type = "l", lty = 1, col = 1)
> matplot(t(xs), type = "l", lty = 1, col = 1)

The package includes a few other functions to simulate allelic frequencies
under different scenarios, summarize data from time-series of these frequen-
cies, and perform a some other related tests.
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10.4 Case Studies
10.4.1 Mitochondrial Genomes of the Asiatic Golden Cat
We start with a Tajima test on the whole sequence:

> tajima.test(catopuma.ali)
$D
[1] -0.3554542

$Pval.normal
[1] 0.7222493

$Pval.beta
[1] 0.7635791

This suggests neutral evolution; however, the sequences are likely to be hetero-
geneous because they cover the whole mtGenome. We thus run the same test
but using a sliding window over the sequences taking care to set rowAverage
= TRUE in sw():

> f <- function(x) tajima.test(x)$Pval.beta
> sw(catopuma.ali, 1e3, 1e3, FUN = f, rowAverage = TRUE)

[1,1000] [1001,2000] [2001,3000] [3001,4000]
0.7013596 0.1259545 0.9118170 0.9067030

[4001,5000] [5001,6000] [6001,7000] [7001,8000]
0.3012799 0.3067034 0.4837281 0.8676259

[8001,9000] [9001,10000] [10001,11000] [11001,12000]
0.3764014 0.5943594 0.5823085 0.8807135

[12001,13000] [13001,14000] [14001,15000] [15001,15582]
0.9889056 0.4876430 0.5326516 0.2850287

None of the P -values is less than 0.05 confirming the lack of significant selective
effect. The R2 test gives a similar result:

> R2.test(catopuma.ali, plot = FALSE)
|==================================================| 100%

$R2
[1] 0.1025507

$P.val
[1] 0.4497992

An analysis of the protein-coding sequences shows that the number of amino
acid replacement is very low. We first read a table with the annotations of the
mtGenome (obtained from GenBank):
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> x <- read.delim("mtGenome_Catopuma_KX224490.txt")
> str(x)
’data.frame’: 39 obs. of 3 variables:
$ start: int NA 1 71 1032 1101 2677 2754 3710 3776 3851 ...
$ end : int 15582 70 1031 1099 2676 2751 3709 3778 3849 ...
$ seq : Factor w/ 37 levels "12S ribosomal RNA",..: 5 31 1 ...

We may then examine the amino acid sequences after translating the DNA
sequences with trans and calculating the Hamming distances with dist.aa;
for instance for the sequences of the cytochrome oxydase I:

> i <- grep("COX1", x$seq)
> s <- x$start[i]
> e <- x$end[i]
> summary.default(dist.aa(trans(catopuma.ali[, s:e], 2)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0

10.4.2 Complete Genomes of the Fruit Fly
We can start with the output from LEA’s run with snmf. The P -values can
be calculated from the saved project:

> pval <- snmf.pvalues(droso.snmf, TRUE, entropy = TRUE,
+ K = 5, ploidy = 2)
> str(pval)
List of 2
$ pvalues: num [1:1047913] 0.949 0.7388 0.0109 0.951 0.3339 ...
$ GIF : num 3.16

The output is a list with the P -value for each locus and the genomic inflation
factor (GIF) used to correct the tests [55]. These can be transformed before
plotting:

> y <- -log10(pval$pvalues)

This could be plotted with plot(y, type = "h") to produce a Manhattan
plot, but we can do this using the genomic positions of the loci. We first
extract the chromosomes and positions of the SNPs:

> CHR <- info.droso$CHROM[SNP]
> POS <- info.droso$POS[SNP]
> chr <- unique(CHR)

The plots are done for each chromosome with (Fig. 10.7):
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Figure 10.7
Manhattan plot of the results from snmf on the fruit fly data.

> layout(matrix(1:6, 2, byrow = TRUE))
> for (i in chr) {
+ s <- CHR == i
+ plot(POS[s]/1e6, y[s], type="h", ylim=c(0, 300), main=i,
+ xlab="Position (Mb)", ylab=expression(-log[10](P)))
+}

We took care to set ylim to have all plots on the same scale, and we divided
the positions by 106 to have them in Mb. Quite clearly, the X chromosome
shows a different pattern.

We perform an analysis with pcadapt. To input the data, we read them
from the VCF file:
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> x <- read.pcadapt(fl, "vcf", "matrix", allele.sep = "|")
No variant got discarded.
Summary:

- input file: global.pop....
- output file: /tmp/Rtmp....

- number of individuals detected: 121
- number of loci detected: 1055818

1055818 lines detected.
121 columns detected.

All loci have been read altough it is not clear how the MNPs will be treated.
We can run pcadapt setting K = 5 like in the analysis with LEA:

> res.pcaa <- pcadapt(x, K = 5)
> str(res.pcaa)
List of 11
$ scores : num [1:121, 1:5] -0.01482 -0.00521 ...
$ singular.values: num [1:5] 0.327 0.19 0.179 0.164 0.159
$ loadings : num [1:1055818, 1:5] 0.000431 -0.000477 ...
$ zscores : num [1:1055818, 1:5] 1.18 -1.46 5.27 -1.6 ...
$ af : num [1:1055818] 0.095 0.0579 0.405 0.0537 ...
$ maf : num [1:1055818] 0.095 0.0579 0.405 0.0537 ...
$ chi2.stat : num [1:1055818] 0.727 7.019 5.4 2.821 ...
$ stat : num [1:1055818] 0.932 8.998 6.923 3.617 ...
$ gif : num 1.28
$ pvalues : num [1:1055818] 0.981 0.219 0.369 0.728 ...
$ pass : int [1:1055608] 1 2 3 4 5 6 7 8 9 10 ...
- attr(*, "K")= num 5
- attr(*, "method")= chr "mahalanobis"
- attr(*, "min.maf")= num 0.05
- attr(*, "class")= chr "pcadapt"

The results are in a list with the class "pcadapt". The associated plot
method draws a Manhattan plot by default (Fig. 10.8):

> plot(res.pcaa)

The chromosome information is not obvious but separate plots can be done
exactly in the same way as above. It is also possible to plot the coordinates
of the individuals setting the option option = "scores" (Fig. 10.9):

> plot(res.pcaa, option = "scores")
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Figure 10.8
Manhattan plot of the results from pcadapt on the fruit fly data.

We turn to an EHH analysis with rehh. Because of the above results, we
focus on the X chromosome. We first select the loci in the usual way and read
them from the VCF file:

> s <- which(info.droso == "X" & SNP)
> X <- read.vcf(fl, which.loci = s)

We check that all loci are phased:

> any(!is.phased(X))
[1] FALSE

We can proceed by writing them in files as described above:

> write.table(t(hap), "X_droso.hap", quote = FALSE,
+ col.names = FALSE)
> write.table(info.droso[s, c(1, 2, 4, 5)], "X_droso.map",
+ quote = FALSE, col.names = FALSE)

The files are read with data2haplohh:2

2Recent versions of rehh can read different file formats including VCF.
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Figure 10.9
Score plot of the results from pcadapt on the fruit fly data.

> dat <- data2haplohh("X_droso.hap", "X_droso.map",
+ allele_coding = "none")
* Reading input file(s) *
Map info: 152027 markers declared for chromosome X .
Haplotype input file in standard format assumed.
Alleles are being recoded in alpha-numeric order.
*** Consequently, coding does not provide information

on ancestry status. ***
* Filtering data *
Discard markers genotyped on less than 100 % of haplotypes.
No marker discarded.
Data consists of 242 haplotypes and 152027 markers.
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Figure 10.10
Manhattan plot on the X chromosome of the fruit fly analyzed with rehh.

Number of mono-, bi-, multi-allelic markers:
1 2
0 152027

We scan the data and calculate iHS:

> sc <- scan_hh(dat, threads = 2)
> ihs <- ihh2ihs(sc, freqbin = 0.01)
Discard focal markers with Minor Allele Frequency
equal to or below 0.05 .

No marker discarded.

The Manhattan plot can be done with (Fig. 10.10):

> manhattanplot(ihs, pval = TRUE)

In agreement with the sNMF analysis, a lot of these tests are significant. We
focus on the locus with the highest significance:

> i <- which.max(ihs$ihs$IHS)
> pos <- ihs$ihs$POSITION[i]
> pos
[1] 3491210
> foc <- which(dat@positions == pos)
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Figure 10.11
Bifurcation plot around locus ‘244707’ on the X chromosome of the fruit fly.

This locus is located at around 3.5 Mb on the X chromosome. We do the
(bi)furcation diagram (Fig. 10.11):

> furc <- calc_furcation(dat, foc)
> plot(furc, col = c("grey", "black"))

Finally, we draw the EHHS around this locus (Fig.10.12):

> plot(calc_ehhs(dat, foc))

To conclude this chapter, we analyze the same data with OutFLANK. This
package needs the genotypes to be coded with 0, 1, or 2 (9 being for missing
data). Fortunately, this is exactly the format used by LEA, so we only need to
read the file prepared above for the analysis with snmf:

> G <- LEA::read.geno("droso.geno")
Read 1047913 items
> dim(G)
[1] 121 1047913

We see that the matrix is already arranged with rows as individuals and
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Figure 10.12
EHHS around locus ‘244707’ on the X chromosome of the fruit fly.

columns as genotypes, and that the number of columns is the number of
SNPs found above. We then perform the analysis of outlier FST’s for each
chromosome selecting 1000 loci regularly spaced. We take care to use the
vectors POS which stores the positions of the strict SNPs. We end by doing
the Manhattan plots separately for each chromosome (Fig. 10.13):

layout(matrix(1:6, 3, 2, byrow = TRUE))
for (chr in c("2L", "X", "3L", "2R", "3R")) {

sel <- which(CHR == chr)
sel <- sel[seq(1, length(sel), length.out = 1000)]
Gs <- G[, sel]
FST <- MakeDiploidFSTMat(Gs, locusNames = 1:ncol(Gs),

popNames = geo$Region)
outf <- OutFLANK(FST, NumberOfSamples = 121)
P <- pOutlierFinderChiSqNoCorr(FST, Fstbar=outf$FSTNoCorrbar,

dfInferred=outf$dfInferred, qthreshold=0.05, Hmin=0.1)
plot(POS[sel]/1e6, P$FST[P1$He > 0.1], type="h", ylim=0:1,
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Figure 10.13
FST calculated with OutFLANK.

xlab="Position (Mb)", ylab="FST", main=chr)
}

The contrast among chromosomes is less flagrant here than with snmf. Be-
sides, a plot of the P -values would also show little difference between the X
chromosome and the others (not shown). This would require deeper analyses
that can be done here.

10.4.3 Influenza H1N1 Virus Sequences
We perform the Tajima test on the two aligned sequences:

> tajima.test(H1N1.HA)
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$D
[1] -2.688268

$Pval.normal
[1] 0.007182365

$Pval.beta
[1] 2.828333e-05

> tajima.test(H1N1.NA)
$D
[1] -2.76335

$Pval.normal
[1] 0.005721143

$Pval.beta
[1] 5.387718e-06

This suggests that selection was stong on both genes. We then run the R2
test:

> R2.test(H1N1.HA, B = 100, plot = FALSE)
|==================================================| 100%

$R2
[1] 0.007034927

$P.val
[1] 0

> R2.test(H1N1.NA, B = 100, plot = FALSE)
|==================================================| 100%

$R2
[1] 0.005526938

$P.val
[1] 0

These results are in agreement with the previous tests. Since these two genes
code for proteins, we calculate the dN/dS after checking that the codons start
at the third positions of both alignments. This information can be found
visually quite easily by testing the three possible starting values:

> for (i in 1:3)
+ alview(trans(h.NA, codonstart = i)[1, 1:60], showpos = FALSE)
I RSV*QLEWLT*YYKLET*SQYGLATQFNLGIKIRLKHAIKASLLMKTTLG*IRHMLTSAT
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I GLYDNWNG*LNITNWKHNLNMD*PLNSTWESKSD*NMQSKRHYL*KQHLGKSDIC*HQQH
I VCMTIGMANLILQIGNIISIWISHSIQLGNQNQIETCNQSVITYENNTWVNQTYVNISNT
Warning messages:
1: In trans(h.NA, codonstart = i) :
sequence length not a multiple of 3: 2 nucleotides dropped

2: In trans(h.NA, codonstart = i) :
sequence length not a multiple of 3: 1 nucleotide dropped

We call dnds setting the correct options:

> dnds.ha <- dnds(h.HA, codonstart = 3, quiet = TRUE)
> dnds.na <- dnds(h.NA, codonstart = 3, quiet = TRUE)
> summary.default(dnds.ha)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
-3304.211 0.192 0.404 Inf 0.804 Inf 6
> summary.default(dnds.na)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
-651.3167 0.2337 0.5217 Inf 0.8292 Inf 1

Most of the ratios are less than one but a substantial numbers are larger
(Fig. 10.14):

> layout(matrix(1:2, 1))
> hist(dnds.ha[dnds.ha >= 0], 50, main = "HA")
> hist(dnds.na[dnds.na >= 0], 50, main = "NA")

It can be shown that the number of amino acid replacements is quite substan-
tial. We first translate the DNA sequences into amino acids:

> aa.NA <- trans(h.NA, codonstart = 3)
Warning message:
In trans(h.NA, codonstart = 3) :
sequence length not a multiple of 3: 1 nucleotide dropped

> aa.HA <- trans(h.HA, codonstart = 3)
Warning message:
In trans(h.HA, codonstart = 3) :
sequence length not a multiple of 3: 2 nucleotides dropped

The Hamming distances are then calculated like with the Catopuma data:

> summary.default(dist.aa(aa.NA))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.000 2.000 2.016 3.000 9.000

> summary.default(dist.aa(aa.HA))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.000 2.000 2.179 3.000 8.000
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Figure 10.14
Distribution of dN/dS for the H1N1 data.

More than 75% are larger than one showing that there are a large number of
different protein sequences. It is possible to find how many there are by con-
verting them into character and calling duplicated (this is a generic function,
although there is no method for the class "AAbin"); the sum of values that
are FALSE is therefore the number of unique sequences:

> sum(!duplicated(as.character(aa.NA)))
[1] 44
> sum(!duplicated(as.character(aa.HA)))
[1] 90

There are thus 44 and 90 different phenotypes of neuraminidase and hemagglu-
tinin, respectively. The larger number for the second protein could be related
to its role in interactions of the virus with the blood red cells of the host.

10.5 Exercises
1. Repeat the analysis of the woodmouse data with the function dnds

using the default code = 1. Explain why this is wrong and comment
on the differences in the observed results.

2. Explain the basic difference between genetic drift and natural se-
lection and how this affects changes in allele frequencies.

3. Tajima’s D is based on the difference between two estimators of Θ.
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What is the effect of natural selection on this difference? Eventually
use simulations to illustrate your answer.

4. Explain the relationships between heterozygosity and natural selec-
tion.

5. How does natural selection affect the frequencies of singletons in
populations?

6. According to Patterson et al. [219], population structure evaluated
with n individuals and p loci will be apparent if np > 1/F 2

ST. Write
R code to assess the sample size (n and p) required to detect differ-
entiation between two populations that diverged under drift using
(10.2).

7. Simulate a random DNA sequence alignment with the function
simSeq in phangorn and analyze it with dnds. Interpret the results,
possibly using the functions trans and alview to make your point.
Try with different values of the options in simSeq (e.g., l or rate).
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A
Installing R Packages

R packages are made available in different ways by their authors or main-
tainers. The packages considered in this book are mainly distributed through
three Internet Web sites: the Comprehensive R Archive Network (CRAN),
BioConductor, and GitHub (Table A.1).

CRAN is a historically important resource of R packages and documenta-
tions hosted by Wirtschaftsuniversität Wien in Austria. The master site is mir-
rored daily towards several Web servers around the world.1 CRAN started in
April 1997 when it distributed twelve packages through three mirrors. CRAN
now distributes more than 15,000 packages which are daily checked to ensure
that they can be installed and run correctly on most common operating sys-
tems. BioConductor is a repository of R resources specialized in bioinformatics
and genomics [119].

GitHub started in 2007; it is both a Web service for distributing code or
documentation and a collaborative platform. Users must register and then can
contribute codes (in any language) by creating repositories. GitHub hosts now
more than 100 million repositories. GitHub’s main software tool for sharing
files is Git, a version-control system. GitHub is not mirrored, but Git makes
possible to create mirrors of specific repositories.

R packages can be installed in several ways depending on their origins and
the operating system. The command setRepositories() allows the user to
select the list of repositories by opening a graphical menu. An alternative is
to set the repositories temporarily. The CRAN and BioConductor mirrors can
be found interactively from R with the commands chooseCRANmirror() and
chooseBioCmirror(). Alternatively, the function getCRANmirrors returns a
data frame with the list of mirrors and their characteristics:

1There are currently 96 CRAN mirrors in 46 countries (October 2019).

Table A.1
The three main sources of the R packages used in this book.
Repository URL Number of mirrors
CRAN https://cran.r-project.org/ 96
BioConductor https://bioconductor.org/ 7
GitHub https://github.com/ 0
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> mirrors <- getCRANmirrors()
> dim(mirrors)
[1] 96 9
> names(mirrors)
[1] "Name" "Country" "City" "URL"
[5] "Host" "Maintainer" "OK" "CountryCode"
[9] "Comment"

For instance, the CRAN mirror in Paris can be found with:

> url.cran.paris <- mirrors$URL[grep("Paris", mirrors$City)]
> url.cran.paris
[1] "http://cran.irsn.fr/"

This chactacter string can be used to build a named vector:

> repos <- c(CRAN = url.cran.paris)
> repos

CRAN
"http://cran.irsn.fr/"

The URL of the BioConductor mirror may be appended to this vector with:

> repos <- c(repos,
+ BioCsoft = "https://bioconductor.org/packages/release/bioc")

Several packages from CRAN and/or BioConductor, for instance those listed
in Table 1.3, can now be installed from R with:

> pkgs <- c("adegenet", "ape", "Biostrings", "pegas",
+ "SNPRelate", "snpStats")
> install.packages(pkgs, dependencies = TRUE, repos = repos)

Packages on GitHub can be installed with the function install_github
from the package remotes. For instance, for the packages listed in Table 1.4:

> pkgs <- c("blwaltoft/CubSFS", "gtonkinhill/fastbaps",
+ "gabraham/flashpca/tree/master/flashpcaR",
+ "whitlock/OutFLANK", "mdkarcher/phylodyn",
+ "ThomasTaus/poolSeq", "emmanuelparadis/psmcr"
+ "rwdavies/STITCH", "bcm-uga/TESS3_encho_sen")
> library(remotes)
> install_github(pkgs)

All repositories and Web servers give the possibility to download the pack-
ages they host. This method must be used for Geneland after downloading the
appropriate version from the URL in Table 1.4, for instance, to install it from
the sources:
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> install.packages("Geneland_4.0.7.tar.gz", repos = NULL)

It is good to keep in mind that R can manage different versions of the same
package by installing them in different directories specified by the option lib
of install.packages. The user can then select the installed version to use
with the option lib.loc of library.
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B
Compressing Large Sequence Files

This example shows how to compare the computing times and file sizes of
different strategies for compressing a large FASTA files (1000 sequences each
with 10,000 bases). The sequences are completely random, and these num-
bers below may be different for non-random data (especially the compression
ratios). We first load ape and set the dimensions of the data:

> library(ape)
> n <- 1000 # number of sequences
> s <- 10000 # sequence length

We use here the function rDNAbin in ape to simulate the data in the class
"DNAbin":

> x <- rDNAbin(nrow = n, ncol = s)

We compare the timings of writing the data in XDR and in FASTA formats
using ape’s function write.FASTA (Sect. 3.3.7):

> system.time(saveRDS(x, "x.rds"))
user system elapsed
2.196 0.004 2.203

> system.time(write.FASTA(x, "x.fas"))
user system elapsed
0.192 0.004 0.196

Compressing the data is actually time-consuming. We can see how long it
takes to compress the FASTA file with system calls of standard compression
programs:

> system.time(system("gzip x.fas"))
user system elapsed
1.088 0.008 1.105

> system.time(system("bzip2 x.fas"))
user system elapsed
0.876 0.008 0.897

We now compare the time needed to read the four files just created using
readRDS and read.FASTA in ape:

345
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> system.time(a <- readRDS("x.rds"))
user system elapsed
0.22 0.00 0.22

> system.time(b <- read.FASTA(gzfile("x.fas.gz")))
user system elapsed
0.628 0.012 0.639

> system.time(c <- read.FASTA(bzfile("x.fas.bz2")))
user system elapsed
1.252 0.048 1.300

> system.time(d <- read.FASTA("x.fas"))
user system elapsed
0.048 0.000 0.048

Reading compressed files takes clearly, and logically, more time. How these
compare with the functions in Biostrings?

> library(Biostrings)
> system.time(e <- readDNAStringSet("x.fas"))

user system elapsed
0.024 0.004 0.028

> system.time(f <- readDNAStringSet("x.fas.gz"))
user system elapsed
0.100 0.008 0.109

Biostrings does not code and store DNA sequences in the same way than ape
does which explains that input/output of data is faster for the former. How-
ever, if we want to convert the data read with Biostrings into ape’s "DNAbin"
class, for instance, to compute evolutionary distances, the conversion requires
a little bit of time:

> system.time(g <- as.DNAbin(e))
user system elapsed
0.316 0.000 0.319

The data may also be written into FASTA files using Biostrings’s function
writeXStringSet:

> system.time(writeXStringSet(e, "x.bios.fas"))
user system elapsed

0.028 0.004 0.033
> system.time(writeXStringSet(e, "x.bios.fas.gz", compress = TRUE))

user system elapsed
1.204 0.000 1.204

Finally, we check what are the gains of compressing the files in terms of
file sizes using the size of the uncompressed FASTA file as a reference:
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> fs0 <- file.size("x.fas")
> file.size("x.rds") / fs0
[1] 0.4623455
> file.size("x.fas.gz") / fs0
[1] 0.2926759
> file.size("x.fas.bz2") / fs0
[1] 0.2735256

This code can be adapted or modified with a representative data set for a
specific study.
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C
Sampling of Alleles in a Population

Consider a locus with k alleles each in proportion (relative frequency) pi (i =
1, . . . , k). Trivially, we have

∑
i pi = 1. If the population is under HWE, the

expected proportion of heterozygotes in the population is therefore:

H = 1−
k∑

i=1
p2
i .

Suppose we have sampled the population and have identified n alleles, then
we may estimate the pi’s with:

p̂i = ni
n
,

where ni is the number of allele i in the sample. Again trivially, we have∑
i ni = n. These ni’s follow a binomial distribution:

ni ∼ B(n, pi),
so we can derive their expectations and variances: E(ni) = npi and Var(ni) =
npi(1 − pi). We may deduce the expectations and variances of the estimates
p̂i:

E(p̂i) = 1
n
E(ni) = pi,

Var(p̂i) = 1
n2 Var(ni) = 1

n
pi(1− pi).

Now we are interested in the expected means and variances of p̂2
i which

we can find by remembering the basic formula of the variance of a random
variable X:

Var(X) = E(X2)− E2(X) =⇒ E(X2) = E2(X) + Var(X),
which is exactly what we are looking for.

E(p̂2
i ) = p2

i + 1
n
pi(1− pi)

= p2
i + 1

n
pi −

1
n
p2
i .
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We are now able to calculate the expectation of a “naive” estimator of H (all
sums below are for i = 1, . . . , k):

E
(

1−
∑

p̂2
i

)
= 1−

∑
E(p̂2

i )

= 1−
∑

p2
i + 1

n

∑
pi −

1
n

∑
p2
i

= 1−
∑

p2
i −

1
n

+ 1
n

∑
p2
i

= 1−
∑

p2
i −

1
n

(
1−

∑
p2
i

)

= H − 1
n
H

= n− 1
n

H.

Replacing n by 2n (number of alleles if n is the number of sampled diploid
individuals), we obtain the unbiased estimator HS (p. 187).

Hurlbert [123] found an identical formula with a different reasoning: in an
ecological community of n individuals with k species and ni individuals of the
ith species, there are n(n − 1)/2 possible encounters and

∑
ni(n − ni)/2 of

them are between two indidivuals of different species. So the “probability of
interspecific encounter” is the ratio of these two numbers:

∑
ni(n− ni)
n(n− 1) =

∑
pi
n− ni
n− 1 .

We factorize the numerator by n to have:

∑
pi

(1− ni/n)n
n− 1 =

∑
pi(1− pi)

n

n− 1
= n

n− 1
∑

pi(1− pi)

= n

n− 1

(∑
pi −

∑
p2
i

)

= n

n− 1

(
1−

∑
p2
i

)
.

Similarly to the assumption of random mating with genetic data, there is an
assumption of random encounter here.



D
Glossary

aDNA: ancient DNA. The DNA from dead animals, plants or microbes that
can be found in fossils or in ancient deposits (caves, . . . ) These DNA
molecules are more or less degraded, and cannot persist more than one
million years.

AIC: Akaike Information criterion. An information theory-based criterion
to compare (possibly many) models. It is tightly connected to the ML
estimation approach, and has different versions (AICc, BIC, . . . )

DNA: deoxyribonucleic acid. This molecule is the support of heredity for all
living beings, except a few viruses that use RNA.

HTS: High-throughput sequencing (synonym: NGS, next-generation se-
quencing). A set of technologies that acquire genetic or genomic data
over a large part of the genome from one or several samples.

MCMC: Markov chain Monte Carlo. A computational technique with many
applications. It is used in statistical data analysis to compute complicated
integrals involved in Bayesian inference or in other approaches requiring
integration over uncertainty (e.g., ML coalescent analysis).

ML: maximum likelihood. A general approach for statistical data analysis,
model fitting, parameter estimation, and hypothesis testing. Other ap-
proaches (e.g., Bayesian inference) require to compute likelihood functions
(marginal likelihood).

MNP: multiple nucleotide polymorphism. A polymorphic site at the DNA
level where a single base is present in three or four variants (or alleles) in
a population. MNP is sometimes considered as a special case of SNP and
is much less frequent.

MDS: multidimensional scaling. A multivariate method related to PCA but
where the input data are pairwise distances. It is widely used when the
original variables cannot be interpreted as coordinates in a multidimen-
sional space.

mtDNA, mitogenome: mitochondrial DNA, mitochondrial genome. A cir-
cular genome located inside the mitochondria of eukaryotic cells. It is
around 16 kb-long and the protein-coding genes have no introns (like in
Prokaryote genomes).
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ncDNA: nuclear DNA. The genome of Eukaryotes that is located inside the
nucleus. The orders of magnitude of its size are 100 Mb–1 Gb, and its
protein-coding genes are made of exons and introns.

PCA: principal component analysis. A widely used multivariate method that
seeks to summarize many variables into a small number of new variables
called the principal components (PCs).

PCR: polymerase chain reaction. A molecular laboratory technique that am-
plifies specific part(s) of DNA using primers that bind on the DNA in a
sample. PCR is used in almost all laboratory genomic protocols.

RNA: ribonucleic acid. An important intermediate step in the expression
of genetic information, usually synthesized from DNA in the cell. A few
viruses have their genomes coded with RNA.

SFS: site frequency spectrum. Given a sample of genotypes or DNA se-
quences, the SFS counts the number of mutations observed in a single
individual (i.e., the singletons), in two individuals, in three individuals,
and so on. The SFS can be folded (if the ancestral alleles are known) or
unfolded.

Singleton: a mutation observed in a single individual.

SNP: single nucleotide polymorphism. A polymorphic site at the DNA level
where a single base is present in two variants (or alleles) in a population.
SNPs are the most frequent genetic variants.
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