
Practical 
MATLAB

With Modeling, Simulation, and  
Processing Projects
—
Irfan Turk



Practical MATLAB
With Modeling, Simulation, and 

Processing Projects

Irfan Turk



Irfan Turk
Nilufer, Bursa, Turkey

Practical MATLAB: With Modeling, Simulation, and Processing Projects

ISBN-13 (pbk): 978-1-4842-5280-2  	       ISBN-13 (electronic): 978-1-4842-5281-9 	
https://doi.org/10.1007/978-1-4842-5281-9

Copyright © 2019 by Irfan Turk 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark.MATLAB® is a registered trademark of The MathWorks, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Raw Pixel (www.rawpixel.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) 
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware 
corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights, 
please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book’s product page, located at www.apress.com/9781484252802. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5281-9


This book is dedicated to the lovers of MATLAB.



v

Table of Contents

Chapter 1: Introduction to MATLAB��������������������������������������������������������������������������� 1

MATLAB Environment��������������������������������������������������������������������������������������������������������������������� 1

Using MATLAB as a Calculator������������������������������������������������������������������������������������������������������� 5

Variables and Expressions������������������������������������������������������������������������������������������������������������� 6

Formats������������������������������������������������������������������������������������������������������������������������������������������ 8

Vectors and Matrices������������������������������������������������������������������������������������������������������������������� 10

Arrays������������������������������������������������������������������������������������������������������������������������������������� 10

Vectors������������������������������������������������������������������������������������������������������������������������������������ 11

Matrices���������������������������������������������������������������������������������������������������������������������������������� 13

Colon Operator������������������������������������������������������������������������������������������������������������������������ 14

Built-in Functions������������������������������������������������������������������������������������������������������������������������� 16

Some of the Elementary Math Functions������������������������������������������������������������������������������� 17

Trigonometric Functions��������������������������������������������������������������������������������������������������������� 18

Data Types������������������������������������������������������������������������������������������������������������������������������������ 19

Homogeneous Data Types������������������������������������������������������������������������������������������������������ 20

Heterogeneous Data Types����������������������������������������������������������������������������������������������������� 29

Plotting Graphics�������������������������������������������������������������������������������������������������������������������������� 33

Single Plotting������������������������������������������������������������������������������������������������������������������������ 33

Multiple Plots�������������������������������������������������������������������������������������������������������������������������� 36

Problems�������������������������������������������������������������������������������������������������������������������������������������� 38

About the Author������������������������������������������������������������������������������������������������������ xi

About the Technical Reviewer�������������������������������������������������������������������������������� xiii

Acknowledgments����������������������������������������������������������������������������������������������������xv

Introduction������������������������������������������������������������������������������������������������������������xvii



vi

Chapter 2: Fundamentals of MATLAB Language������������������������������������������������������ 41

Algorithms������������������������������������������������������������������������������������������������������������������������������������ 42

Flowcharts and Pseudocode�������������������������������������������������������������������������������������������������������� 42

Scripts and M-Files���������������������������������������������������������������������������������������������������������������������� 43

Logical Functions and Selection Structures��������������������������������������������������������������������������������� 46

if and if-else Commands�������������������������������������������������������������������������������������������������������� 46

Switch-Case Commands�������������������������������������������������������������������������������������������������������� 50

Menu�������������������������������������������������������������������������������������������������������������������������������������� 52

Programming Controls����������������������������������������������������������������������������������������������������������������� 53

for Loop���������������������������������������������������������������������������������������������������������������������������������� 54

while Loop������������������������������������������������������������������������������������������������������������������������������ 56

break and continue����������������������������������������������������������������������������������������������������������������� 58

try-catch Block����������������������������������������������������������������������������������������������������������������������� 60

User-Defined Functions���������������������������������������������������������������������������������������������������������������� 62

Creating Functions����������������������������������������������������������������������������������������������������������������� 63

Local and Global Variables������������������������������������������������������������������������������������������������������ 65

Creating Subfunctions������������������������������������������������������������������������������������������������������������ 66

Anonymous Functions������������������������������������������������������������������������������������������������������������ 67

Interaction with the Computer������������������������������������������������������������������������������������������������ 68

Problems�������������������������������������������������������������������������������������������������������������������������������������� 71

Chapter 3: Economic Modeling�������������������������������������������������������������������������������� 73

Preliminaries�������������������������������������������������������������������������������������������������������������������������������� 73

Simple and Compound Interest���������������������������������������������������������������������������������������������������� 74

Simple Interest����������������������������������������������������������������������������������������������������������������������� 74

Compound Interest����������������������������������������������������������������������������������������������������������������� 76

Percentage Change���������������������������������������������������������������������������������������������������������������������� 78

Cost, Revenue, and Profit������������������������������������������������������������������������������������������������������������� 80

Cost���������������������������������������������������������������������������������������������������������������������������������������� 80

Table of Contents



vii

Revenue���������������������������������������������������������������������������������������������������������������������������������� 81

Profit��������������������������������������������������������������������������������������������������������������������������������������� 83

Problems�������������������������������������������������������������������������������������������������������������������������������������� 84

Chapter 4: Numerical Methods�������������������������������������������������������������������������������� 87

Interpolation and Extrapolation���������������������������������������������������������������������������������������������������� 87

Curve Fitting��������������������������������������������������������������������������������������������������������������������������������� 88

Root Finding��������������������������������������������������������������������������������������������������������������������������������� 90

fzero Function������������������������������������������������������������������������������������������������������������������������� 90

Bisection Method�������������������������������������������������������������������������������������������������������������������� 92

Newton’s Method������������������������������������������������������������������������������������������������������������������� 93

Secant Method����������������������������������������������������������������������������������������������������������������������� 94

Fixed-Point Iteration��������������������������������������������������������������������������������������������������������������� 95

Numerical Integration������������������������������������������������������������������������������������������������������������������ 97

Numerical Differentiation������������������������������������������������������������������������������������������������������������� 98

Ordinary Differential Equations���������������������������������������������������������������������������������������������� 98

Problems������������������������������������������������������������������������������������������������������������������������������������ 102

Chapter 5: Applications in Simulation������������������������������������������������������������������� 105

Random Number Generation������������������������������������������������������������������������������������������������������ 105

Flipping a Coin��������������������������������������������������������������������������������������������������������������������������� 108

Rolling a Pair of Dice������������������������������������������������������������������������������������������������������������������ 109

Random Walking������������������������������������������������������������������������������������������������������������������������ 112

Traffic Flow�������������������������������������������������������������������������������������������������������������������������������� 116

Problems������������������������������������������������������������������������������������������������������������������������������������ 119

Chapter 6: Basic Statistics and Data Analysis������������������������������������������������������� 121

Basic Statistics�������������������������������������������������������������������������������������������������������������������������� 121

Data Analysis����������������������������������������������������������������������������������������������������������������������������� 122

Sorting and Searching���������������������������������������������������������������������������������������������������������� 123

Data Processing������������������������������������������������������������������������������������������������������������������� 128

Problems������������������������������������������������������������������������������������������������������������������������������������ 131

Table of Contents



viii

Chapter 7: Data Visualization and Animation�������������������������������������������������������� 133

Data Visualization����������������������������������������������������������������������������������������������������������������������� 133

Animation����������������������������������������������������������������������������������������������������������������������������������� 138

Updating Coordinates����������������������������������������������������������������������������������������������������������� 138

Applying Transformation������������������������������������������������������������������������������������������������������� 140

Creating Movies�������������������������������������������������������������������������������������������������������������������� 142

Problems������������������������������������������������������������������������������������������������������������������������������������ 144

Chapter 8: Computational Biology������������������������������������������������������������������������� 147

Bacterial Growth and Population Models����������������������������������������������������������������������������������� 147

Host–Parasitoid Models������������������������������������������������������������������������������������������������������������� 151

Bioinformatics���������������������������������������������������������������������������������������������������������������������������� 152

Genome Sequencing������������������������������������������������������������������������������������������������������������ 152

Dot Plot��������������������������������������������������������������������������������������������������������������������������������� 159

Predator–Prey Models���������������������������������������������������������������������������������������������������������������� 161

Model with Two Species������������������������������������������������������������������������������������������������������� 161

Model with Three Species���������������������������������������������������������������������������������������������������� 164

Epidemic Models������������������������������������������������������������������������������������������������������������������������ 168

SI Epidemic Model���������������������������������������������������������������������������������������������������������������� 168

SIS Epidemic Model�������������������������������������������������������������������������������������������������������������� 169

SIR Epidemic Model�������������������������������������������������������������������������������������������������������������� 173

SEIR Epidemic Model������������������������������������������������������������������������������������������������������������ 175

Cellular Dynamics of HIV������������������������������������������������������������������������������������������������������ 178

Problems������������������������������������������������������������������������������������������������������������������������������������ 182

Chapter 9: Signal Processing�������������������������������������������������������������������������������� 185

Signal Types������������������������������������������������������������������������������������������������������������������������������� 185

Continuous and Discrete Signals������������������������������������������������������������������������������������������ 185

Analog and Digital Signals���������������������������������������������������������������������������������������������������� 188

Periodic and Nonperiodic Signals����������������������������������������������������������������������������������������� 188

Even and Odd Signals����������������������������������������������������������������������������������������������������������� 192

Table of Contents



ix

Electrical Currents��������������������������������������������������������������������������������������������������������������������� 193

Harmonic Analysis��������������������������������������������������������������������������������������������������������������������� 196

Fast Fourier Transform��������������������������������������������������������������������������������������������������������������� 200

Problems������������������������������������������������������������������������������������������������������������������������������������ 207

Chapter 10: Image Processing������������������������������������������������������������������������������ 209

Image Types������������������������������������������������������������������������������������������������������������������������������� 209

Binary Images����������������������������������������������������������������������������������������������������������������������� 210

Grayscale Images����������������������������������������������������������������������������������������������������������������� 210

Indexed Images�������������������������������������������������������������������������������������������������������������������� 211

Truecolor (RGB) Images�������������������������������������������������������������������������������������������������������� 212

Converting Image Types and Formats���������������������������������������������������������������������������������������� 213

Operations on Images���������������������������������������������������������������������������������������������������������������� 215

Image Enhancement������������������������������������������������������������������������������������������������������������������ 219

Point Processing������������������������������������������������������������������������������������������������������������������� 220

Enhancement in the Spatial Domain������������������������������������������������������������������������������������ 227

Enhancement in the Frequency Domain������������������������������������������������������������������������������� 230

Enhancement with Other Functions������������������������������������������������������������������������������������� 234

Image Restoration���������������������������������������������������������������������������������������������������������������������� 236

Adding and Removing Noise������������������������������������������������������������������������������������������������� 236

Color Processing������������������������������������������������������������������������������������������������������������������������ 238

Image Segmentation������������������������������������������������������������������������������������������������������������������ 242

Thresholding������������������������������������������������������������������������������������������������������������������������� 243

Edge Detection��������������������������������������������������������������������������������������������������������������������� 246

Region-Based Methods�������������������������������������������������������������������������������������������������������� 252

Mathematical Morphology��������������������������������������������������������������������������������������������������������� 253

Problems������������������������������������������������������������������������������������������������������������������������������������ 255

Chapter 11: Introduction to Sound Processing������������������������������������������������������ 259

Sine Wave as Sound������������������������������������������������������������������������������������������������������������������� 266

Problems������������������������������������������������������������������������������������������������������������������������������������ 269

Table of Contents



x

Chapter 12: Applications with Graphical User Interfaces�������������������������������������� 271

GUI Elements������������������������������������������������������������������������������������������������������������������������������ 271

Creating GUIs Programmatically������������������������������������������������������������������������������������������������ 273

Creating GUIs Using GUIDE��������������������������������������������������������������������������������������������������������� 275

Creating GUIs with App Designer����������������������������������������������������������������������������������������������� 278

Creating Applications����������������������������������������������������������������������������������������������������������������� 280

Problems������������������������������������������������������������������������������������������������������������������������������������ 290

Appendix A: References����������������������������������������������������������������������������������������� 291

Index���������������������������������������������������������������������������������������������������������������������� 293

Table of Contents



xi

About the Author

�Irfan Turk, PhD is a math and computer programming 

instructor and has been working in universities, high 

schools, and educational institutions for nearly 15 years. He 

concentrated on applied mathematics for his PhD. Dr. Turk 

finished the computer science track requirements of his 

master’s degree when he was a student at the University of 

Texas at Arlington. He is the author of Python Programming: 

For Engineers and Scientists and MATLAB Programming: 

For Beginners and Professionals. Dr. Turk’s research interests 

include but are not limited to numerical solutions of 

differential equations, scientific computing, mathematical 

modeling, and programming in MATLAB and Python.  



xiii

About the Technical Reviewer

Karpur Shukla is a research fellow at the Centre for 

Mathematical Modeling at FLAME University in Pune, 

India. His current research interests focus on topological 

quantum computation, nonequilibrium and finite-

temperature aspects of topological quantum field theories, 

and applications of quantum materials effects for reversible 

computing. He received an MSc in physics from Carnegie 

Mellon University, with a background in theoretical analysis 

of materials for spintronics applications as well as Monte Carlo simulations for the 

renormalization group of finite-temperature spin lattice systems.  



xv

Acknowledgments

I would like to mention and thank a few people who helped me in the preparation of this 

book. I especially thank Steve Anglin, Associate Editorial Director of Apress, who allowed 

me the honor of authoring this book. I also gratefully thank Mark Powers, Editorial 

Operations Manager of Apress, who helped me and guided me in bringing this product 

to life. I also thank Matthew Moodie, Lead Development Editor at Apress, for being a part 

of this team, and Karpur Shukla, the reviewer of this project. I would like to thank my 

primary PhD supervisor, Associate Professor Dr. Maksat Ashyraliyev from the Software 

Engineering Department of Bahcesehir University, for his priceless contributions to 

my skills. Finally, thanks go to my friend and colleague Ibrahim Emre Celikkale for his 

recommendations.



xvii

Introduction

This book emerged as a result of programming lecture notes, experiences gathered 

from different computational algorithms, and reading about mathematical models of 

real-life problems. The purposes of this book are to introduce and teach MATLAB as a 

programming language and apply the programming concepts to computational models 

in finance, numerical methods, simulation of randomness, analyzing data with basic 

statistics, visualization and animation, computational biology, signal processing, image 

processing, and sound processing. Apart from these illustrations, the book teaches how 

to create applications with graphical user interfaces (GUIs).

The intended audiences of this project are people who want to learn MATLAB as a 

programming language, users of MATLAB who want to excel in problem solving, and 

advanced users of the language looking to prepare applications with GUIs.

The book has two parts. In the first part, the general concepts of the language such as 

variables, data types, and common built-in functions are explained. Besides these topics, 

fundamentals of the language such as algorithms, m files, selection structures, loops, and 

user-defined functions are presented. In the second part of the book, I illustrate solving 

problems from different areas. In the examples, the algorithmic approach is explained 

when necessary. Every new item, whether it is a function or a command, is explained so 

that the reader can understand the subjects and does not miss anything new.

This product can be used as a textbook, or as supplemental material for 

undergraduate or low-level one-semester graduate courses in colleges or universities. 

These courses might include but are not limited to computer programming with 

MATLAB, science and engineering problem solving with MATLAB, scientific computing, 

and mathematical modeling with MATLAB. The first part of the book should be 

taught in such courses. The chapters do not depend on each other in the second part 

of the book. Therefore, topics from the second part can be selected freely depending 

on the needs of the class. Prior to learning the content of this book, knowledge of 

mathematics at the precalculus level helps to understand the modeling concepts, so this 

is recommended as a prerequisite to taking this course. Although a background in any 

programming language might help to grasp the algorithms used in the examples, it is not 

a prerequisite. The book is also a practical resource and textbook for individual learners. 



xviii

It provides 152 illustrative and instructive examples including the solutions along with 

the codes.

Source code for this book is accessible via the Download Source Code button located 

at www.apress.com/9781484252802.

Introduction

http://www.apress.com/9781484252802


1
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_1

CHAPTER 1

Introduction to MATLAB
MATLAB is an abbreviation for the expression Matrix Laboratory. It has been widely 

used in many kinds of applications and fields of study. MATLAB is a high-level language, 

the reputation of which has been increasing over time. Since its first use in 1970 by 

Cleve Moler, a famous mathematician and cofounder of MathWorks, Inc. (the owner of 

MATLAB), it has shown huge advancement and new tools have been added in the new 

versions released twice a year.

Due to the fact that it has a remarkable number of toolboxes, MATLAB attracts many 

users from a variety of different areas ranging from engineering to applied sciences. 

MATLAB has a large number of built-in functions that make the programmer’s job 

easier when it comes to solving problems. Although it is used primarily for technical 

computing and addresses toolbox-oriented jobs, MATLAB carries a very practical and 

easy programming language aspect, as well. One of the important goals of this book is to 

emphasize the programming language aspect of this powerful software.

MATLAB possesses tools that satisfy the programmer’s needs in many applications. 

Even, these days, specific tasks often require specific software. However, MATLAB can 

suit programmers’ demands in most cases.

The MATLAB prompt displays as a double greater sign (>>) in the command window. 

Due to the trademark and logo usage guidelines of MathWorks, Inc., the ∎> symbols will 

be used together throughout this book to represent the MATLAB prompt.

In this chapter, you will learn the necessary concepts of coding of the language when 

it comes to solving real-life applications.

�MATLAB Environment
When you run MATLAB, the programming frame is opened. The cursor awaits in the 

command window with the prompt > preceding it. If you run the student version, the 

prompt is EDU>.



2

Let us explore the console of MATLAB, which has a simple appearance. The default 

window will look like Figure 1-1.

When you open MATLAB, its interface has the following windows:

•	 Command Window: This is the window in which we enter 

commands.

•	 Current Folder: This window shows the directory in which MATLAB 

operates.

•	 Workspace: We can see the program variables in this window.

Figure 1-1.  MATLAB environment

Chapter 1  Introduction to MATLAB



3

•	 Command History: Here we can monitor the previous commands 

that we typed in the command window.

•	 Editor: We can write code that we want to run as an m-file in this 

window.

The user might want to close any of these windows to reorganize the interface. You 

can also customize the appearance interface, such as the way it looks in terms of color, 

font, and so on. Click ENVIRONMENT and then Preferencesto open the menu shown in 

Figure 1-2.

Just by clicking on the items in the left frame shown in Figure 1-2, you can customize 

these settings based on your preferences.

Figure 1-2.  Changing properties

Chapter 1  Introduction to MATLAB



4

When working with MATLAB, one of the most useful commands is the help 

command, which illustrates how a command works and how it is used in MATLAB. Once 

you type help and press Enter, you can click on any of the underlined subjects on the 

resulting screen to review them in detail.

If you are new to MATLAB, you can watch some tutorials available through a demo.  

If you type demo in the command window, you can select from any of the available topics 

to explore:

>demo

>

By clicking on any topic, you can watch the related tutorials, or see explanations 

of commands with illustrative examples. Some of the introductory commands used to 

carry out some basic operations such as closing MATLAB or recording a session from the 

command window are listed in Table 1-1.

Table 1-1.  Some Basic Commands Used in MATLAB

Function Explanation Example

help Returns information about the specified command >>help clc

demo Shows the explanation of any subject in MATLAB >>demo

save Saves the workspace variables to the named file >>save my_var

diary on Starts recording the session >>diary on

diary off Stops recording the session and saves it to a diary file >>diary off

exit Terminates MATLAB >>exit

quit Terminates MATLAB >>quit

clc Clears the screen >>clc

clear Clears all variables or any specified variable from the 

workspace

>>clear all

who Displays all the variables in the workspace >>who

whos Displays all the variables in the workspace with sizes and 

types

>>whos

Chapter 1  Introduction to MATLAB



5

Throughout the book, examples demonstrate the usage of MATLAB. Each example 

illustrates an important aspect of a feature of the subject in the relevant chapter.

In MATLAB, you can save your session from start to finish by saving your session 

with the save function. We can take a look at the following example of this.

Example 1-1. Type disp ('Hello World') at the prompt. Save your session in a file 

named my_session.

Solution 1-1. The following piece of code can be typed at the prompt.

> diary my_session

> disp('Hello World')

Hello World

> diary off

MATLAB will create a file named my_session in your current directory. If you click 

on the file, it will be appear in the editor as follows.

disp('Hello World')

Hello World

diary off

In this code, the command disp() displays whatever is typed between the single 

quotation marks next to it. If the expression to be displayed is a number, then there is no 

need to include the quotation marks. If the expression is a string or a letter, then we need 

to include the quotation marks before and after the text along with the disp() function.

�Using MATLAB as a Calculator
MATLAB can be used as a calculator, as well. You can find the solution for any complex 

calculation. In the following example, we can see an illustration of this function.

Example 1-2. Find the result of 5
8

3

10
7

2
- + ( )- +coscos

e
p .

Solution 1-2. The following code will find the solution.

> 5-8/3+cos(pi)-10/exp(2)+sqrt(7)

ans =

    2.6257

>

Chapter 1  Introduction to MATLAB



6

As shown in the preceding code, π is represented by word pi in MATLAB. For the 

Euler’s number e, we need to type exp(2), and sqrt(7) should be used for finding the 

square root of 7. Because we did not assign a variable to the result, the result is shown as 

ans and it is printed on the screen, where it stands for answer.

�Variables and Expressions
In programming languages such as C, C++, and Java, the type of the variable should 

be specified before the variable is used. However, in MATLAB, this is not the case. The 

variables are ready to use by just assigning their values. That makes MATLAB more 

practical for writing shorter and simpler code more quickly.

Some expressions, such as if, for, or end are reserved for the scripts of the language. 

These words are called keywords. To see a list of the keywords used in MATLAB, simply 

type iskeyword at the prompt.

Unlike in Example 1-2, we can assign variable names to the solutions to use them 

later as well. This is called assigning. By typing the following command at the prompt,

> my_var = 3

my_var =

     3

>

we assign 3 to the variable named my_var. Any defined variable is stored as a double 

precision type in MATLAB by default, unless otherwise specified. Here, the variable my_

var is a 1 x 1 matrix with type double. We examine data types later in this chapter.

To display the defined variables and the information carried by them in the 

workspace, the function whos can be used.

> whos

  Name        Size            Bytes     Class     Attributes

  my_var      1x1             8         double

>

Chapter 1  Introduction to MATLAB



7

There are certain rules for assigning a name to a variable. Variable names cannot be 

selected in a random manner; they must meet the following requirements:

•	 They should start with a letter.

•	 They can contain numbers and underscores.

•	 They can be a maximum of 63 characters long (the namelengthmax 

command can be used to check this).

•	 They should not be a keyword adopted in the MATLAB language.

To avoid confusion, any variable name to be assigned can be checked to see whether 

it is usable or not at the prompt using the isvarname command.

Another important point that programmers should keep in mind is that MATLAB is a 

case-sensitive language. In other words, there is a difference between a=5 and A=5 once 

they are defined in the workspace.

Example 1-3. Check whether it is permissible to use the following names as variable 

names in MATLAB: Howareyou, hi!, Hola+, Heidi, for, name1, Okay_5

Solution 1-3. We can use the isvarname command to check each of these names.  

If the result is 1, then it is acceptable to use the name. If the result is 0, the name cannot 

to be given to a variable. The first two names are checked here as an example:

> isvarname Howareyou

ans =

  logical

   1

> isvarname Hi!

ans =

  logical

   0

>

Here, 0 or 1 values are assigned to the ans variable, the class type of which is logical.

As you can see, whenever new information is entered at the prompt, it is repeated. If 

you do not want the computer to repeat what you typed at the prompt, you can insert a 

semicolon at the end of the line before you press Enter.

Example 1-4. In the equation P*V = n*R*T, the variables are given as P=10, n=2, R=7, 

and T= ½. Find V according to the given formula.

Chapter 1  Introduction to MATLAB



8

Solution 1-4. We can enter the following in MATLAB for the solution.

> P=10;

> n=2;

> R=7;

> T=1/2;

> V=(n*R*T)/P

V =

    0.7000

>

As we can see, there are semicolons after each line except the last one. Because 

there is no semicolon to the right of the last line, we can see the result of that line after 

pressing Enter.

�Formats
In MATLAB, there are line spacing formats and various numerical formats. Line spacing 

formats control the spacing between the lines in showing the results at the command 

window. Numerical formats shape the representation of the output.

Per the line spacing format, there are two options: compact and loose. The compact 

option keeps the lines tight and closer, whereas the loose option introduces additional 

spacing between the lines in the command window.

Example 1-5. Let A=22/7. Show A both in compact format and loose format in the 

command window.

Solution 1-5. If you type the following in the command window, you will see the 

variable A in both formats.

> A=22/7;

> format compact

> A

A =

    3.1429

> format loose

Chapter 1  Introduction to MATLAB



9

> A

A =

    3.1429

>

We use the compact format throughout this book to save space.

As for the numerical formats, more options are available. If the format is not altered, 

the default, format short, is used. This format yields calcuations to four decimal places by 

default. Different alternatives are shown in Table 1-2.

Table 1-2.  Numerical Format Types

Style Display Example

format short Shows 4 decimal digits (default) 0.3333

format long Shows 15 decimal digits 0.333333333333333

format shortE Shows 4 decimal digits in scientific notation 3.3333e-01

format longE Shows 15 decimal digits in scientific notation 3.333333333333333e-01

format shortG Same as format short, or format shortE, whichever 

is more compact

0.33333

format longG Same as format long, or format longE, whichever is 

more compact

0.333333333333333

format shortEng Shows 4 decimal digits in engineering notation 333.3333e-003

format longEng Shows 12 decimal digits in engineering notation 333.333333333333e-003

format + Positive/negative/blank +

format bank Shows in currency format with 2 digits after  

decimal points

0.33

format hex Shows the hexadecimal representation 3fd5555555555555

format rat Converts the decimal number to a fraction 1/3

Chapter 1  Introduction to MATLAB



10

Example 1-6. Let A=22/7. Show A in the formats of long scientific notation, short 

engineering notation, hexadecimal format, and fraction.

Solution 1-6. The commands used in the solution and the corresponding output are 

shown here.

 > format longE

> A

A =

     3.142857142857143e+00

> format shortEng

> A

A =

     3.1429e+000

> format hex

> A

A =

   4009249249249249

> format rat

> A

A =

      22/7

>

�Vectors and Matrices
MATLAB’s foundation is based on matrices. In other words, the basic data type in 

MATLAB is a matrix. There exist close relations among arrays, vectors, and matrices. In 

this section, we explore arrays, vectors, matrices, and the colon operator used in MATLAB.

�Arrays
An array is a group of objects having the same type, size, and attributes. An array that 

consists of one element is called a scalar. Arrays can be specified as vectors or matrices. 

A list of arrays arranged as a column or as a row is a one-dimensional matrix. We can 

think of a 4 × 5 matrix, having two dimensions as shown in Figure 1-3.

Chapter 1  Introduction to MATLAB



11

In Figure 1-3, the cell filled with yellow represents the array that constitutes the 

second row and the fourth column of the matrix. Therefore, we can think of arrays as 

elements of matrices.

�Vectors
A one-dimensional matrix that represents a row or a column matrix is called a vector. In 

the example shown here, A is a row vector having four elements and B is a column vector 

having three elements.

	

A x array elements,

B x arr

=[ ]®

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

®

1 2 3 4 1 4 4

1

3

5

3 1

row vector

aay elements  

B A

3

3 5 2 2

,

;

column vector

( ) = ( ) = 	

To form a row vector, it is sufficient to leave a space between the cells. Also, a comma 

can be placed between the numbers as shown at the prompt here.

> A=[1,2,3,4]

A =

     1     2     3     4

> A=[1 2 3 4]

A =

     1     2     3     4

>

Figure 1-3.  An array

Chapter 1  Introduction to MATLAB



12

To create a column vector, we need to insert a semicolon between the numbers at 

the prompt as shown here.

> B=[1;2;3]

B =

     1

     2

     3

>

Using the size and length commands, you can check the size and length of the 

vectors A and B just specified.

> size(A)

ans =

     1     3

> size(B)

ans =

     3     1

> length(A)

ans =

     3

> length(B)

ans =

     3

>

�linspace Command

The linspace command provides a very convenient way of forming a vector. Any vector can 

be created using this command when you want to use elements that are equally spaced.

For example, one could create a vector between 1 and 10 having 10 elements by just 

typing the following command at the prompt:

> Vec=linspace(1,10,10)

Vec =

     1     2     3     4     5     6     7     8     9    10

>

Chapter 1  Introduction to MATLAB



13

The same vector can be obtained in another way, as shown here:

>Vec=1:1:10

Vec =

     1     2     3     4     5     6     7     8     9    10

>

In this example, the vector starts with 1, and approaches 10 with an increment of 1. 

That is a very efficient way to create vectors in many problems.

�Matrices
An array with more than one dimension is called a matrix. As shown here, A is a 3 × 2 

matrix with two dimensions.

	

A x matrix elements=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

®
1 2

3

5

4

6

3 2 6

	

A(3,2) =6

Row #     Column #

When creating a matrix in MATLAB, we need to insert semicolons between rows as 

seen here.

> A=[1 2;3 4;5 6]

A =

     1     2

     3     4

     5     6

>

�Special Matrices

There are a number of special matrices in MATLAB that are often used to make 

programmers’ jobs easier. These matrices can be used instead of needing to create them 

from scratch, thus saving time in programming. A list of the most useful ones is given in 

Table 1-3.

Chapter 1  Introduction to MATLAB



14

One of the special matrices from Table 1-3 is shown here.

> magic(3)

ans =

     8     1     6

     3     5     7

     4     9     2

>

�Colon Operator
The colon operator is a very important feature that lets users manipulate matrices and 

vectors. For vectors, we summarize the operator as shown in Table 1-4.

Table 1-3.  Special Matrix Functions in MATLAB

Function Explanation Example

eye Creates an identity matrix eye(5)

ones Creates a matrix where all the elements are ones ones(5)

zeros Creates a matrix where all the elements are zeros zeros(5)

diag Extracts or displays the diagonal part of a matrix diag(A)

sparse Creates a matrix where all the elements are zeros sparse(5,5)

spdiags Extracts all diagonals from the matrix sparse(A)

speye Creates an identity sparse matrix speye(5,5)

rand Creates a randomly generated matrix with values 

between 0 and 1

rand(5)

magic Creates magic matrices magic(3)

Chapter 1  Introduction to MATLAB



15

For matrices, we show its usage with rows and columns in Table 1-5.

Example 1-7. In a function given by y = 3x, obtain the values for the vector x = [0, 0.5, 

1, 1.5, 2]. Write a code to obtain the results in MATLAB.

Table 1-4.  Use of the Colon Operator for Vectors

Representation Description Example

y=a:b Starts from a, and goes with an 

increment of 1, up to b

> y=1:5

y =

1   2   3   4   5

>>

y=a:step:b Starts from a, and goes with an 

increment specified by step, up to b

> y=-10:2:3

y =

-10   -8   -6   -4   -2   0   2

>

Table 1-5.  Use of the Colon Operator for Matrices

Representation Description Example

A( : ,k) Is the kth column of A > A=[1 2 3;4 5 6;7 8 9];

> y=A(:,2)

y =

2

5

8

>

A( n , :) Is the nth row of A > y2=A(1,:)

y2 =

1     2     3

>

Chapter 1  Introduction to MATLAB



16

Solution 1-7. We can create vector x, and calculate the values for the function as 

shown here.

> x=0:0.5:2

x =

         0    0.5000    1.0000    1.5000    2.0000

> y=3.^x

y =

    1.0000    1.7321    3.0000    5.1962    9.0000

>

Example 1-8. In a matrix given by A = [0 − 1 2 4 2 3 9 8 5 ], two vectors, B and C, are 

defined as the second column, and the second and third elements of the third row of 

matrix A, respectively. Write code to obtain the vectors B and C.

Solution 1-8. Using the colon operator, we can easily obtain B and C as shown in the 

following prompt.

> A=[0 -1 2;4 2 3;9 8 5];

> B=A(:,2)

B =

    -1

     2

     8

> C=A(3,2:3)

C =

     8     5

>

�Built-in Functions
MATLAB has numerous built-in, ready-to-use functions that make the programmer’s 

job much easier. Although it is hard to categorize these functions precisely, we can 

group the most frequently used ones into categories such as elementary math functions, 

trigonometric functions, complex numbers, random numbers, and basic plotting 

functions, although there are more than we can list here. Using the help command, you 

Chapter 1  Introduction to MATLAB



17

can easily review the descriptions of the functions and their example uses. For a list of all 

elementary math functions, simply type help elfun at the prompt in MATLAB. Most of the 

other built-in MATLAB functions are introduced and explained in subsequent chapters.

�Some of the Elementary Math Functions
In this section, I present the exponential functions and some other important functions 

that are used for rounding and finding remainders of a division function.

Example 1-9. Calculate y =
8

27
 in MATLAB.

Solution 1-9. If the following code is typed at the prompt, the answer will be 

obtained as follows.

> y=log2(8)/sqrt(27)

y =

    0.5774

>

Table 1-6.  Some Math Functions

Function Explanation

    exp Exponential function

    log Natural logarithm function

    log10 Common logarithm function in base 10

    reallog Natural logarithm of a real number

    sqrt Square root of a number

    nthroot Real nth root of a real number

Chapter 1  Introduction to MATLAB



18

Example 1-10. Find the values of x and y, where y = ⌈2.9⌉ + ⌊12.8⌋ and 

x =  mod (157,5).

Solution 1-10. For the first variable y, we are asked to find the sum of the upper 

integer of 2.9 and lower integer of 12.8. For the second variable x, we are supposed to 

find the remainder of the division of 157 by 5. The code that finds the solution is  

given here.

> y=ceil(2.9)+floor(12.8)

y =

    -9

> x=mod(157,5)

x =

     2

>

�Trigonometric Functions
Commands for the trigonometric functions in MATLAB are very intuitive. These 

functions are listed in Tables 1-8 and 1-9.

Table 1-7.  Additional Math Functions

Function Explanation

fix Rounds number toward zero

floor Rounds number toward minus infinity

ceil Rounds number toward plus infinity

round Rounds number toward nearest integer

mod Shows remainder after dividing

rem Shows remainder division

sign Returns -1,0, or 1 (Signum function)

Chapter 1  Introduction to MATLAB



19

�Data Types
In MATLAB, the default data type is double. This means that anything entered at the 

prompt is saved as double unless otherwise specified.

We can divide the data types into two major categories in MATLAB: homogeneous 

data types and heterogeneous data types (Figure 1-4). Homogeneous data types include 

the same type of data, whereas the heterogeneous data types have mixed or complex 

data types.

Table 1-8.  Trigonometric Functions in Radians

Command Definition

    sin Sine

    cos Cosine

    tan Tangent

    cot Cotangent

    sec Secant

    csc Cosecant

Table 1-9.  Trigonometric Functions in Degrees

Command Definition

    sind Sine in degrees

    cosd Cosine in degrees

    tand Tangent in degrees

    cotd Cotangent in degrees

    secd Secant in degrees

    cscd Cosecant in degrees

Chapter 1  Introduction to MATLAB



20

�Homogeneous Data Types
Homogeneous data types have the same characteristics. These types may be characters, 

strings, integers, floating-point numbers, or logical data.

�Characters and Strings

Characters are composed of strings. Letters, numbers, or symbols can be defined as 

characters in MATLAB. Characters can be defined by entering them between single 

quotation marks.

> Let='34'

Let =

34

> class(Let)

ans =

char

>

Figure 1-4.  Data types

Chapter 1  Introduction to MATLAB



21

In this example, even though we define the variable Let as 34 having all numbers, 

due to the fact that these numbers are entered between the single quotation marks, 

MATLAB recognizes Let as a character. If the class command is used to display its class, 

we will see that it is of type character.

> H='How are you?'

H =

How are you?

> length(H)

ans =

    12

> class(H)

ans =

char

>

In the preceding example, the variable H is defined as a character of length 12. The 

variable is defined as a character by putting its name between the single quotation marks.

Example 1-11. Three variables are defined as ‘How are you?’, ‘the weather’, and ‘is 

it correct?’ for A, B, and C, respectively. We want to create a new character ‘How is the 

weather’ by using the given three variables alone. Write the code to achieve this task.

Solution 1-11. To this point, we have typed the commands in the command window. 

We can write the code in the editor and save it in the working directory of MATLAB. Then 

by just typing the name of the saved file, we can run the code. This code is written in 

editor and saved as CharEx.m. The following program can be used for this task.

CharEx.m

% Name of this file is CharEx.m

% This is Example 1-11

% This code gets some strings and puts them

% together for another string

A = 'How are you?';

B = 'the weather';

C = 'is it correct?';

NewOne = [A(1:4) C(1:3) B]

Chapter 1  Introduction to MATLAB



22

As shown, we extract the first four characters of A, the first three characters of C, and 

all of the B strings, and assign them into a new variable NewOne. If the percentage (%) 

symbol is put on a line, MATLAB ignores everything that comes after that % symbol, so 

this is used for commenting.

Once we run the code at the prompt, the following output will be obtained.

> CharEx

NewOne =

How is the weather

>

In MATLAB, there is a very useful command called char. Using this command, we 

can print all the characters defined by the American Standard Code for Information 

Interchange (ASCII) as shown in Figure 1-5.

Figure 1-5.  ASCII table

Chapter 1  Introduction to MATLAB



23

From 32 to 127, these characters can be viewed as it is shown in the solution to 

Example 1-12.

Example 1-12. Write a program that prints out the lowercase and uppercase letters 

from the ASCII table.

Solution 1-12. The following code can be used to accomplish the given task.

Letters.m

% Name of this file is Letters.m

% This is Example 1-12

% This code prints alphabet letters

Small   = char(97:122);

Capital = char(65:90);

fprintf('Small letters are : %s\n',Small);

fprintf('Big letters are : %s\n',Capital);

Then in the command window, once we run the code at the prompt, we obtain the 

following output:

> Letters

Small letters are : abcdefghijklmnopqrstuvwxyz

Big letters are : ABCDEFGHIJKLMNOPQRSTUVWXYZ

>

In the code for Letters.m, the fprintf function prints purple characters up to the % 

symbol. After that, the letter s tells MATLAB that after that time, strings will be printed 

that are called Small and Capital. The \n part cuts the line and goes to the next line 

during printing.

Example 1-13. Bob wants to send the message “Start sending messages at 8:30” 

to Alice in a secret way as an encrypted message. Write a program that encrypts and 

decrypts Bob’s message. (Hint: Use the ASCII table)

Solution 1-13. The encryption and decryption parts can be given as follows.

HidingMessage.m

% Name of this file is HidingMessage.m

% This is Example 1-13

% This code encrypts and decrypts a message

%Encryption starts here

Chapter 1  Introduction to MATLAB



24

Message = 'Start sending message at 8:30';

Encryp = double(Message)+3;

fprintf('Encrypted Message : %s\n',char(Encryp))

%Decryption starts here

Decryp = Encryp-3;

fprintf('Decrypted Message : %s\n',char(Decryp))

In this solution, the message is converted to the corresponding numbers in the ASCII 

table using the command double. We then add 3 to the corresponding numbers of each 

letter for encryption. This shifts each letter by 3 to the right in the ASCII table. After the 

message is encrypted, it is decrypted back to its original version by subtracting 3 from the 

encrypted values. Once we run the code at the prompt, we obtain the following output:

> HidingMessage

Encrypted Message : Vwduw#vhqglqj#phvvdjh#dw#;=63

Decrypted Message : Start sending message at 8:30

>

MATLAB provides very useful functions for manipulating strings or characters. Some 

of the most commonly used functions are listed in Table 1-10.

Table 1-10.  Some of the Built-in Functions Available in MATLAB

Function Explanation Example

fliplr() Flips the array from left to right fliplr('How 5')

isletter() States whether the elements are alphabetical 

letters and returns either 0 or 1

isletter('trabson61of')

isspace() States whether the place is an empty space 

and returns either 0 or 1

isspace('Now 12 ')

lower() Converts strings to lowercase lower('Hola MY friend')

num2str() Converts numerical type to string num2str('61')

sort() Sorts the elements of the array, first the capital 

letters, and then the small letters

sort('HOW are you Jack')

(continued)

Chapter 1  Introduction to MATLAB



25

�Numerical Data

There exist two different kinds of numerical data types in MATLAB: integers and floating-

point numbers. Integers are comprised of signed and unsigned types. There are eight 

types of integers in total, as shown in Table 1-11. The difference between these types is 

the storage space that they occupy in memory. If it is possible to do your calculations 

with low bit integers, you could save space in memory. When higher bit integers are 

preferred, more memory will be needed.

Function Explanation Example

str2num() Converts string to numerical type str2num('23')

strcat() Adds up the strings horizontally strcat('How','Are','You?34')

strcmp() Compares the strings; if the strings are the 

same, it returns 1, else 0

strcmp('Hola','hola')

strcmpi() Compares the strings without case-sensitivity;  

if the strings are the same, it returns 1, else 0

strcmpi('Hola','hola')

strfind() Finds a string within another string strfind('You are','are')

strncmp() Compares the first n strings and returns either 

0 or 1

strncmp('ill6','ill7',4)

strncmpi() Compares the first n strings without case-

sensitivity, and returns either 0 or 1

strncmpi('ill6','ilL6',4)

strvcat() Adds up the strings vertically strvcat('How','Are','You?34')

upper() Converts strings to uppercase upper('Holla My Friend')

Table 1-10.  (continued)

Chapter 1  Introduction to MATLAB



26

To find the maximum or minimum values of integers within the computer, you just 

need to type intmax('classname'). For example, if we type the following

> intmax('int8')

ans =

  127

> intmin('int64')

ans =

 -9223372036854775808

>

we see the values of the highest 8-bit integer and the lowest 64-bit integer. Also,

> intmin('uint64')

ans =

           0

> intmax('uint64')

ans =

 18446744073709551615

>

shows the lowest and highest unsigned 64-bit integers in the preceding code, using the 

intmin and intmax commands.

Table 1-11.  Integer Types

Class Command

Signed 8-bit integer int8

Signed 16-bit integer int16

Signed 32-bit integer int32

Signed 64-bit integer int64

Unsigned 8-bit integer uint8

Unsigned 16-bit integer uint16

Unsigned 32-bit integer uint32

Unsigned 64-bit integer uint64

Chapter 1  Introduction to MATLAB



27

There are two types of floating-point numbers; namely, double-precision and single-

precision numbers. Double-precision floating-point numbers are the default type for all 

entered variables. Single-precision floating-point numbers occupy 32 bits in memory, 

whereas double-precision floating-point numbers occupy 64 bits. We can check the 

highest and lowest values using the same commands we used for integers earlier.

> realmax('double')

ans =

  1.7977e+308

> realmin('single')

ans =

  1.1755e-38

>

�Logical Data

In MATLAB, along with many other programming languages, 1 represents the logical 

true and 0 represents the logical false.

Example 1-14. Write a program that includes two variables as logical values. One 

should be true, and the other should be false. Compare these values using the logical 

and and logical or operators.

Solution 1-14. The following code can be used to accomplish the given task.

LogicalEx.m

% Name of this file is LogicalEx.m

% This is Example 1-14

% This code works with logical values

Logical1 = 3>2 % if it is true, it is 1

Logical2 = 5<4 % if it is false, it is 0

CombineWithAnd = Logical1 && Logical2 % and

CombineWithOr = Logical1 || Logical2  % or

If we run the code, we obtain the following result.

> LogicalEx

Logical1 =

     1

Chapter 1  Introduction to MATLAB



28

Logical2 =

     0

CombineWithAnd =

     0

CombineWithOr =

     1

> class(CombineWithOr)

ans =

logical

>

Once we check the class of the variable CombineWithOr after running the code, as just 

shown, it is logical data. Hence, the logical data values can be either 0 or 1.

�Symbolic Data

Symbolic data are used to perform algebraic calculations using MATLAB’s symbolic 

toolbox. There are two ways of defining a symbolic variable. One is to type syms and the 

other way is to type sym as shown here.

> syms x

> class(x)

ans =

    'sym'

> y=sym('y')

y =

y

> class(y)

ans =

    'sym'

>

In either method, we can create symbolic data types, and then apply some algebraic 

operations such as taking the integral or derivative of them.

Chapter 1  Introduction to MATLAB



29

�Heterogeneous Data Types
In some cases, due to the nature of the task at hand, we need to use more complex 

data types that are obtained by combining more than one type of data. These mixed 

data types are often called heterogeneous data types. Heterogeneous data types are 

encountered as cell arrays, structure arrays, and dataset arrays (tables) in MATLAB.

�Cell Arrays

A cell can be regarded as a data box, and a cell array is an array of cells. Using the cell 

function, it is possible to preallocate empty cell arrays. Elements can be indexed by using 

the cell arrays. As an example, if you type cell(3,2) at the prompt, a variable of cell class 

is created as shown here.

> CellAr1=cell(3,2)

CellAr1 =

    []    []

    []    []

    []    []

>

To determine its class, you just need to type class(CellAr1) for the case given.

> class(CellAr1)

ans =

cell

>

There are several ways of creating a cell array. You may either preallocate the cell 

array before assigning values to the array, which is the case shown earlier, or you can just 

define the array and use it without preallocation.

Example 1-15. Define a cell array that holds the data in Table 1-12.

Chapter 1  Introduction to MATLAB



30

Solution 1-15. There are two different ways of defining this cell array. In the first 

method, all of the elements can be assigned to a single variable, whereas in the second 

case, the elements should be defined one by one. Let us name the cell array My_cell_

array. Then, type the following at the prompt;

> My_cell_array={eye(3),'How are you?',2015;'Hola',72,'Alexander'}

My_cell_array =

    [3x3 double]    'How are you?'    [     2015]

    'Hola'          [          72]    'Alexander'

>

As shown, the index of the cell array is defined within curly brackets.

�Structures

The most significant distinction between structures and cell arrays is the indexing. 

Although cell arrays can be indexed in terms of the elements contained in them, it is not 

possible to loop through the elements of structures. In other words, data are stored in a 

field in structures.

One of two different methods can be followed to create a structure. One is using the 

struct function and the other one is using the dot operator.

Example 1-16. A company wants to save an employee’s information as shown in 

Table 1-13.

Table 1-12.  A Cell Array with Six Cells

1 0 0 ‘How are you?’ 2015

0 1 0

0 0 1

‘Hola’ 72 ‘Alexander’

Chapter 1  Introduction to MATLAB



31

Write a program that stores the information given in Table 1-13.

Solution 1-16. One way of doing that is to create a structure array by using the 

struct function as shown here.

StructArrayEx.m

% Name of this file is StructArrayEx.m

% This is Example 1-16

% This code creates a structure

employer=struct('id',5001,'name','Robert','address',...

    'San Antonio, TX','salary',39900)

As seen in the preceding code, the data are entered next to one another and are 

separated by a comma within the struct function. Once the program is executed from 

the command window, the following output will be shown.

> StructArrayEx

employer =

  struct with fields:

         id: 5001

       name: 'Robert'

    address: 'San Antonio, TX'

     salary: 39900

>

Table 1-13.  Employee Data

Employee’s ID 5001

Employee’s name Robert

Employee’s address San Antonio, TX

Employee’s salary 39,900

Chapter 1  Introduction to MATLAB



32

Example 1-17. In a workspace, there are three variables:

Name = [‘Alex’; ‘Slim’; ‘Bill’], Age = [35; 40; 45], and Height = [160; 165; 170].

Using these data, write a program to create a table. The table should then be saved in 

a MyTable.xlsx file.

Solution 1-17. The following code can be used to accomplish this task.

CreateTables.m

% Name of this file is CreateTables.m

% This is Example 1-17

% This code creates a table and

% saves it as an .xlsx file

Name = ['Alex';'Slim';'Bill'];

Age = [35; 40; 45];

Height = [160; 165; 170];

T = table(Name,Age,Height)

writetable(T,'MyTable.xlsx')

�Tables

The third class of heterogeneous data types is called tables. Tables are especially 

convenient for storing column-oriented data. It is possible to perform useful operations 

on tables such as creating tables, reading data from the tables, changing the content of 

the tables, and so on. Some basic table functions are shown in Table 1-14.

Table 1-14.  Some Basic Functions Used with Tables

Function Explanation Example

table Creates tables from the workspace variables table(Gender,Smoker)

readtable Creates a table from a file readtable(filename)

writetable Writes a table to a file writetable(Table, filename)

table2cell Converts a table to a cell array table2cell(Table)

struct2table Converts a structure to a table struct2table(struct)

Chapter 1  Introduction to MATLAB



33

Once the code is executed, we obtain the following output.

> CreateTables

T =

  3×3 table

    Name    Age    Height

    ____    ___    ______

    Alex    35      160

    Slim    40      165

    Bill    45      170

>

The spreadsheet file was saved in the MyTable.xlsx file in the directory as well.

More complex applications are available for tables. Here, we have seen only a simple 

example to give an idea about the general concept.

�Plotting Graphics
MATLAB is a very powerful tool for graphics and plotting. A wide range of drawing 

tools are available for tasks such as plotting in polar coordinates, logarithmic graphics, 

animated 3-D plots, volume visualization plots, and so on. This section deals with the 

basic plotting of functions in two dimensions and plotting multiple functions on a single 

coordinate system or on a single figure.

�Single Plotting
The basic command for drawing a function in MATLAB is the plot function. The 

simplest form of the plot command is plot(y), where y depends on its index. The most 

common use of the plot function is in the form of plot(x,y), which is the Cartesian plot 

of an (x,y) pair.

Example 1-18. Plot the function y = 2sinsin (x) through the interval of 0 ≤ x ≤ π.

Chapter 1  Introduction to MATLAB



34

Solution 1-18. If x is defined as a vector from 0 to pi using the linspace command, 

then we can draw the corresponding values of y versus x. In the following code, the 

distance from 0 to pi is divided into 100 points. If we pick a large number of points such 

as 1,000, the graph will become more precise.

> x=linspace(0,pi,100);

> y=2.*sin(x);

> plot(x,y)

>

The code just given produces the output shown in Figure 1-6.

Various features of graphics such as title, x label, y label, and grids are available in 

MATLAB. These features are shown in Table 1-15.

Figure 1-6.  Cartesian plot of y=2sin(x) where 0 ≤ x ≤ π

Chapter 1  Introduction to MATLAB



35

There are some other features available that allow programmers to work with line 

styles, colors, and sizes, as shown in Table 1-16.

Table 1-15.  Functions Related to Graphics

Function Explanation

title(‘Title’) Adds title to the plot

text(x,y,’string’) Writes string at the point (x,y)

gtext(‘Text’) Inserts text in the figure manually

xlabel(‘x’) Prints x horizontally on the plot

ylabel(‘y’) Prints y vertically on the plot

legend(‘st1’,..,’stN’) Labels each data as st1, … stN 

strings

grid Shows the grids on the figure

hold Keeps the current figure to plot 

on it

clf Clears the figure

cla Clears the axes

Table 1-16.  Features of the plot Function

Index Color Index Point Type Index Line Type

b Blue . Point - Solid

g Green o Circle : Dotted

r Red x X-mark -. Dashdot

c Cyan + Plus -- Dashed

m Magenta ∗ Star

y Yellow s Square

(continued)

Chapter 1  Introduction to MATLAB



36

To create a regular plot using the plot function, different options can be included in 

the drawing.

There is a remarkable number of special functions available to create two-

dimensional and three-dimensional plots in MATLAB. In the command window, if you 

type >help specgraph and press Enter, you will see which special functions are available 

in your version.

�Multiple Plots
It is possible to draw multiple plots on a single figure. That can be achieved in two ways.

We might have multiple plots on the same coordinate system besides having 

separate plots on one figure. If you want to draw different functions on the same axes, 

you can do it either by using one single plot function, or using the hold command and 

multiple plot commands.

Example 1-19. Plot the function y = 2 sinx with grids. Then, keep the first graph and 

plot a second function given by y = coscos (x) within the same interval. Insert the labels 

for each data set, as well.

Solution 1-19. The desired plot can be obtained using the following program and the 

results are shown in Figure 1-7.

> x=linspace(0,pi,100);

> y=2.*sin(x);

> plot(x,y)

Index Color Index Point Type Index Line Type

k Black d Diamond

w White v Triangle down

^ Triangle up

< Triangle left

> Triangle right

p Pentagram

h Hexagram

Table 1-16.  (continued)

Chapter 1  Introduction to MATLAB



37

> hold

Current plot held

> y2=cos(x);

> plot(x,y2)

> title('Title comes here')

> xlabel('This is x label')

> ylabel('This is y label')

> legend('2sin(x)','cos(x)')

> grid on

>

It is possible to draw multiple plots using different axes on the same figure via the 

subplot command as well.

Example 1-20. Plot the three functions given in Example 4-5 on different axes on the 

same figure using the subplot command.

Solution 1-20. The following program may be entered at the prompt to accomplish 

the given task.

> x=linspace(0,pi,200);

> subplot(3,1,1)

> plot(x,sin(x))

> subplot(312)

Figure 1-7.  Plots of the functions y=2sin(x) and y2=cos(x)

Chapter 1  Introduction to MATLAB



38

> plot(x,cos(x))

> subplot(3,1,3)

> plot(x,sin(x)+cos(x))

> grid on

>

As shown, subplot(312) is used instead of subplot(3,1,2). Both will produce the 

same result. Once the program is executed, the output shown in Figure 1-8 is obtained.

�Problems
1.1. Calculate the result for the variable given by y

e
= +

3

14
8 10 .

1.2. If you type >>3+6-9 at the prompt and press Enter, to which 

variable will the result be assigned?

1.3. Which of the following expressions can be a variable name? 

Check them by using the isvarname command.

Figure 1-8.  Plots of the three functions on the same figure using subplot

Chapter 1  Introduction to MATLAB



39

Alexander, 2Hola, +Number, Good Job, How are, Bg_3, Exam6, 

Add*Or

1.4. Using the help command in the command window, learn the 

details about the iskeyword function. Then, write the difference 

between the isvarname and iskeyword commands.

1.5. What is the difference between the expressions >> disp(4) 

and >> disp('4') entered in the command window?

1.6. Consider the formula given by F=m*a. Find the value of a 

when F=45, m=10 is specified.

1.7. If the following is typed at the prompt

> Logica=islogical(5<6) && islogical(2>1)

what could be your comments about the variable Logica?

1.8. Consider the variable, Numb = 3/8. Write this variable in the 

longE, shortG, hex, and rat formats.

1.9. Consider the function y =  cos (2x), where x =0:pi/12:pi, and 

obtain the vector y.

1.10. Let A = [2 1 − 3 − 3 0 5 8 4 50 ]. If B is given by the second row 

of A, and C is given by the intersection of the third column and the 

first two rows of A, obtain the values of B and C.

1.11. Using Matrix A in Problem 2-2, a new matrix is to be 

obtained. The first row of A will be removed, and the first and third 

rows of the resulting matrix will be swapped, as well. What would 

be the new matrix?

1.12. For y = ⌈−12.9⌉ + ⌊10.8⌋ and x =  mod (15, 9), find the values 

of y and x.

1.13. For f x
x x

tanx
( ) =

* +( )2 2 2sin cos
, calculate the value of f

p
3

æ
è
ç

ö
ø
÷  in 

radians and degrees.

1.14. Plot the functions f1(x) = sinsin (2 * x), f2(x) = coscos (2 * x), 

and f3(x) = sinsin (2 * x) + coscos (2 * x) along the interval 

0 ≤ x ≤ 2 * π on a single coordinate system.

Chapter 1  Introduction to MATLAB



40

1.15. Three variables are defined as ‘champion Barcelona’, ‘is 

good’, and ‘place to go for fun’ corresponding to A, B, and C, 

respectively. You want to create a new statement, ‘Barcelona 

is good place to go’, using the given variables. Write a code to 

perform this task.

1.16. Write a program that holds the data in Table 1-17.

Table 1-17.  A Cell Array with 12 Cells

Your Friend Is Ihsan

34 56 52 55

32 20 56 61

Write a program to list the elements of the array, and then display the content of the 

cell graphically.

Chapter 1  Introduction to MATLAB



41
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_2

CHAPTER 2

Fundamentals of MATLAB 
Language
In this chapter, you will learn the basic concepts of algorithms, M-files, selection 

structures, controlling mechanisms of the MATLAB language, and user-defined 

functions.

A computer program is basically a set of instructions that tells the computer what 

to do. In MATLAB, for larger programs, sometimes called scripts, using an editor is 

preferred to typing the whole code sequence at the prompt. The problems that we have 

dealt with so far have been easy to execute and accomplish. It was sufficient to use the 

prompt alone for solving the problems encountered up to this point. We could also 

use the MATLAB editor to solve these problems, though. However, for larger and more 

complex problems, it is recommended that you keep your code together and organized 

in an editor. For that reason, we use the editor to create our codes for the problems as 

much as we can for the rest of the book.

It is not difficult to write complex, unclear code. After a while, though, if you look 

back to your code for some reason, such as upgrading or editing, it might be difficult to 

understand what you meant. Therefore, one of the primary concerns when creating code 

is to write clear code that is easy to understand. To accomplish that, we could put our 

comments within the code as reminders after the % symbol. MATLAB ignores whatever 

comes after the % symbol. These comments can be placed either after a line of code, or 

as comment blocks, which are longer informative expressions between %{ and %}.

To generate longer comments, the %{ symbol should be standing alone on a line. 

Similarly, the %} symbol used for closing the comment block should also be standing 

alone on the last line, as shown in Figure 2-1.



42

Another important rule for obtaining more organized codes is to use meaningful 

names for variables and structures. That helps users recall scripts easily later on. Some 

other useful tips related to writing better code is outside the scope of this book. For a 

basic understanding of the subject, though, we keep it simple here.

�Algorithms
An algorithm is a computational procedure that shows all the steps involved in solving 

a problem. In general, an input (or a set of inputs) is (are) taken and an output (or some 

outputs) is (are) produced. When solving a problem, the problem is separated into parts 

to analyze and solve the constituent pieces separately. In this way, the problem can be 

analyzed in a more detailed manner. This method is often called a top-down approach. 

Sometimes, the pieces are combined to get information about the entire system, yielding 

more complex systems. The system can be constructed by analyzing and combining the 

pieces about which we have already gathered information. This method is called bottom-

up processing.

In either method, the purpose of an algorithm is to define a solution to a problem in 

some way, such as writing the solution via simple expressions, or showing the solution 

using flowcharts.

�Flowcharts and Pseudocode
Both pseudocode and flowcharts are used to construct an algorithm of a computer 

program. Pseudocode is generally composed of words and expressions, whereas 

flowcharts are represented by a set of simple shapes.

Figure 2-1.  An example of a comment block

Chapter 2  Fundamentals of MATLAB Language



43

Pseudocode provides an informal means for describing the steps of the program 

to be written. It helps the programmer plan and develop the ultimate algorithm for the 

computer program.

A flowchart is a graphical representation of the steps in writing the program. Simple 

shapes and diagrams (Table 2-1) are used to describe the algorithm of a computer 

program.

Table 2-1.  Most Frequently Used Flowchart Symbols

Used for initiating and finishing the program

Used to indicate calculations, or assigning

Used to indicate decision processes

Used to indicate input or output processes

Example 2-1. Construct pseudocode and a flowchart for an algorithm that calculates 

the area of a square. The edge length of the square is to be externally entered by the user.

Solution 2-1. For the pseudocode, the steps of the algorithm can be written as 

follows.

	 1.	 Enter the length of the square, called B.

	 2.	 Calculate the area of the square, Area= B^2.

	 3.	 Display the result, Area.

�Scripts and M-Files
After an algorithm is decided on for solving the problem, the code will be generated to 

accomplish the given task. Code can be written in the MATLAB editor and saved as a file 

called *.m, where * is the name you assign to your program. Thus, the codes written in 

MATLAB are called m-files and these codes are called scripts or programs.

Chapter 2  Fundamentals of MATLAB Language



44

Example 2-2. Construct the flowchart of an algorithm and generate the code that 

calculates the area and perimeter of a circle, where the radius is entered by the user.

Solution 2-2. The flowchart of the algorithm can be drawn as shown in Figure 2-2.

Figure 2-2.  Flowchart of Example 2-2

Example2p2.m

%Example2p2

%this calculates the area and perimeter of a circle

Radius = input('Please enter the radius\n');

AreA = pi*(Radius^2);

Per= 2*pi*Radius;

disp(['Area of the circle is= ',num2str(AreA)]);

fprintf('Perimeter of the circle is = % d\n',Per);

Once the code is run, the following output is obtained.

>  Example2p2

Please enter the radius

10

Area of the circle is= 314.1593

Perimeter of the circle is =  6.283185e+01

>

Chapter 2  Fundamentals of MATLAB Language



45

In this solution, four important functions are used. The input command is used to 

externally enter the data. A numerical value is expected to be entered in the preceding 

code. The code is assigned to the variable named Radius. Both the disp and fprintf 

functions are used to display data. As seen from the code, though, their usages are 

different. The disp function displays the data between parentheses. After showing 

the string between single quotation marks, the numerical value of the variable AreA is 

converted to a string by using the num2str command, and then it is displayed with the 

disp function. When the fprintf function is used, again the data between quotation 

marks are shown. Here, though, the % symbol tells MATLAB that data will be printed. 

The letter coming after the % symbol is the specifier of the data. It tells MATLAB what 

kind of data will be printed. In this example, d is used to show a decimal number 

(Table 2-2). The cursor goes to the next line once '\n' is used. As a result, the value 

of the Per variable is printed as a decimal number after the script Perimeter of the 

circle is = .

Table 2-2.  Formatting Text with Conversion Functions

Specifier Explanation

c Displays a single character

d Displays in signed decimal notation format

e Displays in exponential notation format

f Displays in fixed-point notation format

s Displays character vector or string array

When a conversion function, such as num2str, sprint, or fprintf is used, the user 

can shape the alignment or precision up to a certain digit. For an illustration, look at the 

following example.

Example 2-3. Write a program that shows π three different ways. In the first way, 

the code should display the value of π. In the second case, the code should show three 

numbers after the decimal. In the third case, the code should print the value of π in 15 

digits by aligning π toward the right side.

Solution 2-3. The following code can be used to accomplish the given task.

Chapter 2  Fundamentals of MATLAB Language



46

Example2p3.m

%Example2p3

%This code shows three different pi

fprintf('pi :\n %f\n %.3f\n %15f\n',pi,pi,pi)

Once the code is run, the following output is obtained.

> Example2p3

pi :

 3.141593

 3.142

     3.141593

>

In the preceding code, when the cursor comes to %f\n, the code prints the value of 

π and goes to the next line. When it comes to %.3f\n for execution, it prints the three 

numbers after the decimal point and then goes to the next line. Finally, when it comes to 

execute %15f\n, π is shown in 15 digits with the alignment toward the right side padded 

with spaces as needed. The cursor then goes to the next line.

�Logical Functions and Selection Structures
In some situations, we might need to pick an option from among a set of possible 

candidates. This selection can be achieved by using if, switch, or menu commands in 

MATLAB. In this section, we discuss each case separately.

�if and if-else Commands
There are some cases where it is sufficient to use a single if statement alone, whereas 

the if-else structure is used primarily in more complex cases.

�Single if Structure

In the case of using a single if statement, if the comparison statement after if is true, 

then the commands between if and end are executed. An example usage of the structure 

is given here:

Chapter 2  Fundamentals of MATLAB Language



47

if comparison

      statement

end

Example 2-4. Write code that rolls a pair of dice. If the sum of the two numbers on 

the top faces is 10, then the computer should print “You are LUCKY.” The computer also 

should print the numbers on the screen.

Solution 2-4. To accomplish this task, the following code, which is saved as 

Example2p4.m, can be used.

Example2p4.m

%Example2p4

% This program rolls a pair of dice

Die=randi(6,1,2);

if Die(1)+Die(2)==10

    fprintf('You are LUCKY \n')

end

fprintf('First # is %d Second # is % d\n',...

Die(1),Die(2))

In this code, randi(6,1,2) creates a 1 × 2 matrix randomly where the highest 

number is 6. The elements are all positive integers in this function, unlike the rand 

command. The variable Die has two elements. If the sum of these elements is 10, 

then the message “You are LUCKY” is printed on the screen. In the seventh row of the 

code, three dots (…) are used to tell MATLAB that the coding will continue. Finally, the 

numbers are printed on the screen.

After running the code, the following output will be obtained.

> Example2p4

First # is 1 Second # is  6

>

Chapter 2  Fundamentals of MATLAB Language



48

�if-else Structure

If using a single if-else structure, it is possible to check more than one case in the 

program. An example usage of this structure is shown here.

if comparison

    statement

elseif comparison

    statement

else

  statement

end

Example 2-5. Write a program that asks your age. If the entered age is less than 6, 

MATLAB should print “Maybe NO School” on the screen. If the age is between 6 and 12,  

it should print “Middle School.” If the age is between 13 and 17, it should print “High 

School,” and if the age is between 18 and 25, it should print “Maybe University.” 

Otherwise, the program should display “Professional” on the screen.

Solution 2-5. The following code can be used to accomplish the given task.

Example2p5.m

%Example2p5

% This program asks your age

Age = input('Please enter your age\n');

if Age < 6

    fprintf('Maybe NO School \n');

elseif Age <13

    fprintf('Middle School \n');

elseif Age <18

    fprintf('High School \n');

elseif Age <26

    fprintf('Maybe University \n');

else % for other possibilities

    fprintf('Professional \n')

end

Chapter 2  Fundamentals of MATLAB Language



49

Once the code is executed, the following output will be shown.

> Example2p5

Please enter your age

19

Maybe University

>

�Relational Operators with if and if-else

Relational operators can be used with if and if-else structures as well. These operators 

are listed in Table 2-3.

Table 2-3.  Relational Operators

Operator Description Example

> Greater than 3 > 2

>= Greater than or equal to 4 >= 3

< Less than 2 < 3

<= Less than or equal to 2 <= 3

== Equal to 4 == 4

~= Not equal to 2 ~= 3

Table 2-4.  Ages for Getting a Driver’s License

Interval License Condition Comment

Age<16 No license No license

16<=Age<18 Youth license Can get a youth license

18<=Age<70 Standard license Can have a standard license

70<Age Permitted License Should get a permitted license

For an illustration, let us look at the following example.

Example 2-6. The age intervals that identify your status for getting a driver’s license 

are given in Table 2-4.

Chapter 2  Fundamentals of MATLAB Language



50

Write a computer program that requests your age and prints one of the comments 

given in Table 2-4 accordingly.

Solution 2-6. The following code can be used to accomplish the given task.

Example2p6.m

%Example2p6

%This program uses relational operators

Age=input('Please Enter Your Age \n');

if Age<16

    fprintf('No license \n');

elseif Age<18 && Age >=16

    fprintf('Can get a youth license  \n');

elseif Age<70 && Age>=18

    fprintf('Can have a standard license \n');

else % for the other possibilities

    fprintf('Should get a permitted license\n');

end

If we run the code at the prompt, the output shown here results.

> Example2p6

Please Enter Your Age

41

Can have a standard license

>

�Switch-Case Commands
Switch-case commands are very similar to the if-else structure. Whatever is 

programmed using the if-else commands can be programmed using the switch-

case structure as well. There are minor differences between switch-case and if-else 

structures. Reading the conditions in a switch-case type might be easier compared to 

the if-else type. However, the switch-case structure is less flexible than the if-else 

structure due mainly to its nature.

Chapter 2  Fundamentals of MATLAB Language



51

The usage of the switch-case ladder is shown here.

switch variable

    case option1

     In case of option1 do these

    case option2

     In case of option2 do these

    otherwise

    If none of the cases is applied, do this

  end

Example 2-7. Write a program that, for an amount of money such as $20, $30, $40, or 

$50 entered by the user, tells you what you can eat from a list including chicken, lobster, 

beef, and fish, respectively.

Solution 2-7. The following code can be used for the given task.

Example2p7.m

%Example2p7

%This program has a switch-case illustration

Money=input('How much money you have? \n');

switch Money

    case 20

        fprintf('You can eat Chicken \n');

    case 30

        fprintf('You can eat Lobster \n');

    case 40

        fprintf('You can eat Beef \n');

    case 50

        fprintf('You can eat Fish \n');

    otherwise % for other possibilities

        fprintf('No match with the menu \n');

end

In this code, the number entered should match exactly with one of the numbers 

used with the case statement. Otherwise, the script written under the otherwise part is 

printed on the screen. Once the code is run, the following output is obtained.

Chapter 2  Fundamentals of MATLAB Language



52

> Example2p7

How much money you have?

40

You can eat Beef

>

�Menu
The menu function is very useful in listing items. It can either be used with switch-case 

commands or with if-else commands, which make the appearance nicer. The usage of 

the menu function is represented as shown here.

Name   = menu('memutitle','option1','option2',...,'option')

Example 2-8. Write a program that offers four different places to go for vacation 

using menu. Depending on your choice, the program should tell you how much the 

vacation costs. The venues include Houston, San Antonio, Dallas, and Austin, and the 

prices are $450, $550, $650, and $750, respectively.

Solution 2-8: The code generated for this problem is given here.

Example2p8.m

%Example2p8

%This code uses menu function

city=menu('Select a city from the menu' ,...

    'Houston','San Antonio','Dallas','Austin');

switch city

    case 1

        fprintf('$450 \n');

    case 2

        fprintf('$550 \n');

    case 3

        fprintf('$650 \n');

    case 4

        fprintf('$750 \n');

end

Chapter 2  Fundamentals of MATLAB Language



53

As shown in the first row, three consecutive periods (…) cut the line and extend 

the command to the next line. Once the program is executed, the interface shown in 

Figure 2-3 is obtained.

If the third option, Dallas, is selected, the following output will be obtained.

> Example2p8

$650

>

�Programming Controls
Until a given condition is reached, loop control statements are used to execute a certain 

part of the code. These loops are sometimes called repetition structures, as well. Similar 

to most programming languages, MATLAB has for loop and while loop structures. 

Within these loops. break and continue statements can be used to check conditions 

depending on the cases. Another important control mechanism is to use a try-catch 

block to overcome unexpected situations in MATLAB.

Figure 2-3.  Menu created for the venues

Chapter 2  Fundamentals of MATLAB Language



54

�for Loop
If the number of iterations is known, for loops are preferred to while loops. The 

configuration of this structure is easy to understand.

for starting_variable = Domain

        codes to be executed

end

In the given configuration, in general, Domain has two or three numbers specified. 

If it has two numbers, for example, index=1:5, then the loop repeats itself five times 

with an increment of 1 for each index value from 1 to 5. Once the index value equals 6, 

the computer gets out of the loop and continues with the rest of the script. If Domain has 

three numbers specified, for example, index =1:3:10, then the loop repeats itself four 

times for the values of index =1, index =4, index =7, and index =10 with an increment 

of 3 for the index values from 1 to 10. After the value of 10, the program gets out of the 

loop and continues with the next line of the code. If all indexing operations are not yet 

complete, then the loop keeps repeating itself. Another important feature of indexing in 

MATLAB is that indexing starts with 1, and it cannot start with 0.

If a large number is entered as the final value for the index variable, the process 

of running the code inside the loop could take longer. Depending on your computer’s 

hardware specifications, this might cause your computer to freeze.

The flowchart of a for loop is displayed in Figure 2-4.

Figure 2-4.  Flowchart of a for loop

Chapter 2  Fundamentals of MATLAB Language



55

Example 2-9. Write a program that calculates the following series, which yields the 

value of ln2.

-( )
= - + - +¼¼= ( ) =

+

=

¥

å
1

1
1

2

1

3

1

4
2 0 693147

1

1

i

i i
ln ln . .

Solution 2-9. In programming, a loop cannot be repeated indefinitely in general. 

Otherwise, it keeps running and does not stop. Therefore, we need to assign a limit to the 

loop to calculate the series. The higher the limit is, the better the results we obtain. On 

the other hand, we are limited by another factor, which is the speed of the code. Hence, 

the code gets slower as the limit chosen is higher. The following code can be used to 

accomplish the given task.

Example2p9.m

%Example2p9

%This code calculates ln2

Total=0;

for i=1:1e+6 %1e+6=1000000

    Number=(-1)^(i+1)/i;

    Total = Total + Number;

end

fprintf('ln2= %d\n',Total);

In the beginning, we define a sum equal to zero outside the loop. Then, each 

iteration is accumulated within that sum. The indexing variable i starts from 1, and 

continues up to 106. Once the program is executed at the prompt, the following output 

will be obtained.

> Example2p9

ln2= 6.931467e-01

>

As can be seen, the output is shown in scientific form. In other words, the output can 

be represented by 6,931467.10−1.

Example 2-10. Write a program that prints a triangle by using asterisks (*). The 

height is to be entered by the user. For instance, if the entered number is 3, then the code 

should print the following.

Chapter 2  Fundamentals of MATLAB Language



56

>> Height of the triangle? 3

Output:

*

**

***

Solution 2-10. We can write the following code.

%Example2p10

%This code draws a triangle

x=input('Height of the triangle?\n');

for i=1:x

    for k=1:i

        fprintf('*');

    end

    fprintf('\n');

end

The output of this program is shown here.

> Example2p10

Height of the triangle?

5

*

**

***

****

*****
>

�while Loop
In some cases, we might not know the number of iterations within the loop. In such cases, 

it is preferable to use the while loop. Its usage can be summarized in the following form.

while condition

        execute

end

Chapter 2  Fundamentals of MATLAB Language



57

In this structure, if the condition is true, the program stays in the while loop. 

Unlike the for loop, in the while loop, we need to add an extra mechanism to control 

the condition so that we can get out of the loop. In general, one of two options are 

preferred to get out of a while loop. In the first option, the loop is broken using the 

break command if a planned scenario is reached. In the second option, an increment 

of the indexing variable is defined inside the loop. This is the most significant difference 

between the for loop and the while loop.

The flowchart of the while loop is almost the same as the one for the for loop.

Example 2-11. Write a program that calculates the Euler number within the 

tolerance at least tol=0.001, where

e
ii

= +æ
è
ç

ö
ø
÷

=

¥

å
1

1
1

!

Solution 2-11. The following code can be used for this task.

WhileLo.m

%Example2p11

%This code calculates e

Total=1;

Eu=2.718281;

indeks=1;

tol=1; % arbitrarly defined away from Euler

while tol>1e-3

    Number=(1/(factorial(indeks)));

    Total = Total + Number;

    tol=abs(Eu- Total);

    indeks = indeks +1;

end

fprintf('Tolerance: %d e= %d\n',tol,Total);

In this program, once the tolerance is not greater than 10−3, the program is 

terminated. The output becomes this.

> Example2p11

Tolerance: 2.254444e-04 e= 2.718056e+00

>

Chapter 2  Fundamentals of MATLAB Language



58

�break and continue
In some cases, a loop might need to be terminated once a condition is tested. In such 

cases, the break command is used, which terminates the closest loop and gets out of it.

Example 2-12. Write a program that plays a “Guess the Number” game. The user 

should guess the number between 1 and 100 where the number is picked randomly 

by the program. The user will then be guided by the computer to guess either a larger 

or a smaller number. Finally, the program should print the number that was guessed 

correctly.

Solution 2-12. The following code can be used.

Example2p12.m

%Example2p12

%A Guessing game with break command

Limit=100;%Can be changed

Picked_Number=randi(Limit,1);

Counter=1; %initializing counter

Gues=input('Enter your guess\n');

while true

    if Gues==Picked_Number

        fprintf('Got it in your %d th try\n',Counter);

        break;

    elseif Gues>Picked_Number

        Gues=input('Enter a SMALLER number\n');

    elseif Gues<Picked_Number

        Gues=input('Enter a BIGGER number\n');

    end

    Counter=Counter+1;

end

In the code given, a true statement is written next to the while command. In 

MATLAB, true is a logical variable that always has a value of 1. By writing while true in 

the seventh row of the program, we want the program to keep running until the selected 

number is guessed by the user. If the guessed number is equal to the number that the 

computer picked, then the number of tries is printed and the loop is terminated by the 

break command.

Chapter 2  Fundamentals of MATLAB Language



59

Once we run the code, the following output will be shown.

> Example2p12

Enter your guess

50

Enter a SMALLER number

10

Enter a SMALLER number

5

Enter a SMALLER number

3

Enter a SMALLER number

1

Enter a BIGGER number

2

Got it in your 6 th try

>

The continue command is used to redirect the code. Unlike with the break 

command, the program continues to work without terminating the closest loop.

Example 2-13. Write a program that asks for the user to enter three positive numbers 

to calculate its square root. If the entered number is negative, it shows a message 

indicating that the number should be positive.

Solution 2-13. The following code can be used for this problem.

Example2p13.m

%Example2p13

%This code uses continue command

Counter = 3;

while Counter>0

    Number = input('Enter a number\n');

    if Number<0

        fprintf('The number should be positive\n');

        continue;

    end

Chapter 2  Fundamentals of MATLAB Language



60

    fprintf('Square root of %d is =%d\n',...

        Number,sqrt(Number));

    Counter = Counter-1;

end

The following output will be obtained once this code is executed.

> Example2p13

Enter a number

-2

The number should be positive

Enter a number

3

Square root of 3 is =1.732051e+00

Enter a number

9

Square root of 9 is =3

Enter a number

4

Square root of 4 is =2

>

As shown in the output, if a negative number is entered, the Counter is not 

decreased, and the program keeps asking for a new number. After entering three 

numbers, the program stops.

�try-catch Block
While running code, unexpected circumstances or errors might occur. To overcome 

this obstacle and take the necessary actions, the try-catch block is used. This block is 

composed of two parts. The first part is followed by try and the second part is followed 

by the catch statement.

try

      statement

catch

      statement

end

Chapter 2  Fundamentals of MATLAB Language



61

Whatever is written in the try statement is regarded as a regular code written in the 

editor or at the prompt. When an error occurs in this part, the rest of the code within the 

try part is terminated and MATLAB jumps to the catch part. This second part is where 

the user plans to write the alternatives or explanations in the case of getting an error in 

the first part.

Example 2-14. Write a program that tries to multiply two numbers. The program 

should call a function for the multiplication that is not defined. The code should give a 

warning if something goes wrong.

Solution 2-14. The following code can be used to accomplish the given task.

Example2p14.m

%Example2p14

%This code uses try-catch block

try

    M1=10;

    M2=20;

    Multp = CallFunctionToMultiply(M1,M2);

    fprintf("Multiplication is %f\n",Multp);

    disp("Everything was smooth")

catch

    warning('Something is wrong');

end

Obviously, the program will call the CallFunctionToMultiply(M1,M2) function for 

calculation. User-defined functions are examined in the next section. Here, though, 

because the function is not defined, the program will give the warning written in the 

warning function. The following output will be obtained once the code shown earlier is 

executed.

> Example2p14

Warning: Something is wrong

> In Example2p14 (line 10)

>

Chapter 2  Fundamentals of MATLAB Language



62

�User-Defined Functions
Users are allowed to define functions for specific purposes. To define a function in 

MATLAB, the program must be created within an m-file. In general, user-defined 

functions are saved as a single m-file to be used for later purposes.

In a user-defined function, the first line should start with the command function, 

generally followed by square brackets including one or more output variables, the 

function name, and parentheses including one or more input variables. The structure 

of the user-defined functions can be summarized as follows: In a user-defined function, 

the command function and the name to be assigned are sufficient to create a function. 

Functions generally end either with end statements placed as a final line, or with the 

definition of another subfunction. Although a user-defined function might occasionally 

work without the end statement, for better readability, using it as the last line of the code 

is recommended.

function [ output_variables ] = function_name( input_variables )

      code to be executed

end

As mentioned earlier, the output variables should be between square brackets and 

the input variables should be enclosed within parentheses. The function name should 

be identical to the name of the saved file.

Beginning from the second half of 2016, with the R2016b version, another important 

feature has been incorporated into MATLAB that allows user-defined functions to be 

added at the end of the code within the same file. This new structure can be summarized 

as follows.

a piece of code

function function1

      code to be executed

end

function function2

      code to be executed

end

Chapter 2  Fundamentals of MATLAB Language



63

�Creating Functions
When writing a complex program, you might need to create your own functions. 

Actually, none of the programming languages offers a complete built-in function 

library for all kinds of problems. Therefore, specific functions can be created for specific 

purposes to make the programmer’s job easier.

Some user-defined functions return a single value, whereas some others return 

multiple values. A function might not even return any value. In this chapter, we present 

such types of functions.

Example 2-15. Write a function that prints the square of the number entered by the 

user. The program should also check whether a number is passed to the function.

Solution 2-15. To create a function, first we need to satisfy the requirements by 

writing the necessary parts of a function in an editor. We can check the number of inputs 

by using the nargin function to make sure that a number is entered by the user. The 

following code can be used to do that.

Example2p15.m

function [ Result ] = Example2p15( Number )

%Example2p15

%This code accepts ant input

Checking_if_numeric = isnumeric (Number );

if Checking_if_numeric == 0 || nargin ~=1

    error('Just A NUMBER');

end

Result = Number^2;

end

The name of the function is the same as the name of the file, Example2p15. The 

function accepts only a single numerical value. This function has an output defined as 

Result, and an input defined as Number.

After the program is executed, a logical variable, Checking_if_numeric, gets either 

0 or 1. If the number is numeric, then 1 is assigned to the logical variable Checking_

if_numeric, 0 otherwise. In the fifth row of the code, the line checks if the variable is 

Chapter 2  Fundamentals of MATLAB Language



64

zero, meaning that if it is not a number, or the number of inputs is different from 1, then 

the computer prints the error message, which is placed within the error function. In 

MATLAB, the || symbol is a logical or operator.

We will test both error and calculation cases from the command window. If we call 

the saved function from the command window, and enter a number, such as 5, we obtain 

the following output.

> My_udf(5)

ans =

    25

>

If we run the program for a second time, and pass a string such as G to the function, 

we obtain the following output.

> Example2p15(8,4)

Error using Example2p15

Too many input arguments.

>

In some cases, we might need to get more than one output from our function as 

shown in the following example.

Example 2-16. Write a program that calculates the perimeter, area, and volume for a 

radius entered by the user.

Solution 2-16. The number of outputs should be three. The program is given here.

Example2p16.m

function [Perimeter,Area,Volume] = Example2p16(radius)

%Example2p16

%This function may print 3 outputs

Perimeter = 2*pi*radius;

Area = pi*(radius^2);

Volume = (4/3)*pi*(radius^3);

If we run the code from command window, we obtain the following result.

> [perimeter,area,volume]=Example2p16(10)

perimeter =

   62.8319

Chapter 2  Fundamentals of MATLAB Language



65

area =

  314.1593

volume =

   4.1888e+03

>

As it is seen, there are three outputs specified. If the outputs are not specified, only 

the first output is displayed.

�Local and Global Variables
The variables that are defined inside a function are called local variables. Local variables 

are valid only inside the function, meaning that they are not saved into the workspace. 

To make these variables available outside the function, we need to add global to the left 

of the variables to define them as global. If you define a function inside another function 

and use a variable in both functions, again, that variable should be defined as a global 

variable in both functions. However, many professional programmers recommend 

avoiding global variables. Instead, passing values to the functions is recommended.

Example 2-17. Write a program that shows the differences between using a global 

variable inside and outside a function.

Solution 2-17. The following code can be used to accomplish the given task.

Example2p17.m

%Example2p17

%This code uses local and global variables.

Numb1 = 61; %this is global variable

fprintf("Variable outside :%i\n", Numb1)

MyFunction();%function is called

fprintf("Variable outside :%i \n", Numb1)

function MyFunction

Numb1 = 55; %this is local variable

fprintf("Variable inside :%i\n", Numb1)

end

Chapter 2  Fundamentals of MATLAB Language



66

Once the code is executed, the following output results.

> Example2p17

Variable outside :61

Variable inside :55

Variable outside :61

>

As shown in the code, the global variable Numb1 is defined outside the function and 

printed as 61. Once it is called by the MyFunction function, then the same variable is 

defined as and printed as 55 as well. After exiting the function, its value stays as it was as 61.

�Creating Subfunctions
It is possible to create a file that includes all user-defined functions. The first function 

is defined as the main or primary function. The rest of the functions can be called from 

the main function to execute the corresponding tasks. Other functions included in the 

primary function are called subfunctions. To avoid confusion, the name of the primary 

function and the name of the saved code should be identical.

Example 2-18. Write a function to calculate the volume of a cylinder using a 

subfunction. The radius and the height of the cylinder should be passed to the function 

by the user.

Solution 2-18. The code can be written as shown in the following m-file.

Example2p18.m

function Example2p18(Radius,height)

%Example2p18

% This PRIMARY FUNCTION calculates

% the volume of a cylinder

radius_sq = R_square(Radius);

Result = pi*height*radius_sq;

fprintf('The volume is %f\n',Result);

end

function [r_sq]=R_square(Radius)

r_sq= Radius^2; %Sub-function

end

Chapter 2  Fundamentals of MATLAB Language



67

As shown, the output of the primary function is not defined. Instead, the result is 

printed on the screen by the body part of the primary function.

The second function used in the program is an example of a subfunction. Once the 

program is executed, the following output will be shown.

> Example2p18(4,10)

The volume is 502.654825

>

�Anonymous Functions
Anonymous functions are the functions that are not stored in a separate file. These 

functions are part of a program associated with one or more variables in the file. 

Anonymous functions possess the function_handle data type in MATLAB.

These functions involve the @ symbol in their definitions. The Sqr function, given 

by Sqr = @(x) sqrt(x), is an example of an anonymous function. The @ symbol tells 

MATLAB that Sqr is a function.

Example 2-19. Write a function that takes an input composed of two numbers and 

calculates their product by using an anonymous function. The product of the numbers 

should be printed on the screen.

Solution 2-19. The following code can be used for this purpose.

Example2p19.m

function [Output] = Example2p19(x,y)

%This is Example2p19

%This function has an anonymous func.

Multip = @(x,y) x*y;

Output =Multip(x,y);

After running the code, the following output will be obtained.

> Example2p19(5,6)

ans =

    30

>

Chapter 2  Fundamentals of MATLAB Language



68

�Interaction with the Computer
In this section, we discuss the interaction between the programmer and the computer, 

in other words, dialog boxes. There are numerous dialog boxes in MATLAB such as 

errordlg, warndlg, msgbox, questdlg, and so on, to be used within the codes. Some 

examples of these dialog boxes and their explanations are given in Table 2-5.

Figure 2-5.  Output of a question dialog box

Table 2-5.  Examples of Dialog Boxes in MATLAB

Function Explanation

inputdlg Creates an input dialog box

errordlg Creates an error dialog box

warndlg Creates a warning dialog box

msgbox Creates a message dialog box

helpdlg Creates a help dialog box

waitbar Opens or updates the wait bar dialog box

questdlg Creates a question dialog box

listdlg Creates a list-selection dialog box

To illustrate the usage of a question dialog box, we could write the following code at 

the prompt.

> Picking = questdlg('What kind of Fruit would you like?',...

'Fruit Selection','Apple','Orange','Banana','Orange')

>

Once we press Enter, the output shown in Figure 2-5 is obtained.

Chapter 2  Fundamentals of MATLAB Language



69

The following syntax appears at the prompt.

> Picking = questdlg('What kind of Fruit would you like?',...

'Fruit Selection','Apple','Orange','Banana','Orange')

Picking =

    'Banana'

>

To illustrate the use of a list dialog box, the following code can be used.

> d= listdlg('PromptString','What kind of Fruit would you like?',...

                'SelectionMode','single', 'ListString',{'Strawberry',...

                'Banana','Orange','Apple','Cherry','Cranberry'},...

                'Name','Select A Fruit','ListSize',[210 100])

d =

     1

>

Here, because the first option is picked, as shown in Figure 2-6, 1 is assigned to d.

Figure 2-6.  Output of a list dialog box

Example 2-20. Write a function to calculate the area of a rectangle. The length and 

width of the rectangle should be entered by using the input dialog box. The name of the 

user should be entered into the dialog box, as well.

Solution 2-20. The following code can be used to accomplish the given task.

Chapter 2  Fundamentals of MATLAB Language



70

Example2p20.m

%Example2p20

% This example uses inputdlg box

prompt = {'\fontsize{12} Enter your Name:',...

    '\fontsize{12}Length', '\fontsize{12} Width'};

title = 'CALCULATING AREA';

Defining = {'Alex','3','2'};%Default values

NumLines=[1 50]; % dimensions

opts.Interpreter = 'tex';

options.Resize='on';

options.WindowStyle='normal';

Vals=inputdlg(prompt,title,NumLines,Defining,opts);

Name=num2str(Vals{1});%value converted to string

LS=str2double(Vals{2});%value converted to double

SS=str2double(Vals{3});%value converted to double

Area = LS * SS; %Calculation is done

fprintf(" Hello %s\n The Area is :%i\n",Name,Area)

The command prompt is a cell array of strings that involve one value for each input. 

As shown in the preceding code, the font size can be arranged using the \fontsize{ } 

structure. The variable NumLines sets the dimension of the inputs. It can be either a 

scalar value or a matrix. In the preceding code, str2double converts a string to double. 

The command str2num can be used, as well.

Once the program is executed, the output shown in Figure 2-7 is the result.

Figure 2-7.  Output of Example 2-20

Chapter 2  Fundamentals of MATLAB Language



71

After clicking OK without making any changes to the default values, the following 

output is obtained.

> Example2p20

 Hello Alex

 The Area is :6

>

�Problems
2.1. Construct the code and flowchart of a program that takes 

two inputs as the length and width of a rectangle, and in turn, 

calculates the area of the rectangle.

2.2. Construct the flowchart and pseudocode of an algorithm in 

which, for an entered number greater than 18, the program will 

print, “Yes you can take a driver’s license,” and otherwise, “No 

driver’s license.”

2.3. Write a program that offers three places to go for a vacation 

using the menu function. Depending on your choice, the program 

should tell you how much your vacation will cost. The venues 

include San Antonio, Austin, and Dallas, and the prices are $500, 

$400, and $300, respectively.

2.4. Write a program that requests the user to pick one of the three 

colors “Blue,” “Red,” and “Green,” using the menu function. The 

program is required to print the user’s choice on the screen.

2.5. Plot the graph of the following piecewise function within the 

interval of -4≤x≤4.

f x
x

x
x

x

x
x x( ) = +

- £ £
-

£ £ >{ , , ,
1

1 0
3

0 10 1
2 2

2.6. Using the asterisk (*) symbol, write code that prints a 

rectangle on the screen. The width and the length of the rectangle 

should be entered as positive integers via the input function.

Chapter 2  Fundamentals of MATLAB Language



72

2.7. Write a program that calculates the Euler number within the 

tolerance of 0.0000001. The formula is given below to calculate the 

number.

e
ii

= +æ
è
ç

ö
ø
÷

=

¥

å
1

1
1

!

2.8. The formula for finding the Fibonacci numbers is fn=fn-1 + fn-2, 

where f(0)=1 and f(1)=1. Write code to calculate f(80).

2.9. Write a function that accepts three inputs. If the number of 

inputs is not adequate, the program should give an error message.

2.10. Write a program that involves a function in it. The program 

should calculate the area of a rectangle. The length and width 

of the rectangle are to be entered after the program is executed. 

After providing the inputs, these values should be passed to the 

functions within the program. The function should calculate the 

area of the rectangle and print that value on the screen.

2.11. Write a program that shows a list of four items. The program 

should print the name of the selected item from the list on the 

screen.

Chapter 2  Fundamentals of MATLAB Language



73
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_3

CHAPTER 3

Economic Modeling
In this chapter, new functions that are used in the examples are first defined. Following 

that, simple and compound interest, percentage change, and cost, revenue, and profit 

topics are examined in different sections. Before the examples are presented, necessary 

formulas used in the solutions are explained in each section.

�Preliminaries
In this section, new terminology used in this chapter is introduced. MATLAB has 

symbolic data types for calculations in algebraic equations as shown in Chapter 1. The 

diff(f,x) function takes the derivative of symbolic f with respect to x variable. As an 

illustration we can take a look at the following input typed at the command prompt.

> syms x

> f=x^3-7*x^2+6*x-61;

> y=diff(f,x)

y =

3*x^2 - 14*x + 6

> t=diff(f,x,2)

t =

6*x - 14

>

After defining x as a symbolic variable and f, the derivative of f is calculated with respect 

to x with diff(f,x) and the calculation is assigned to the y variable. Then second derivative 

of f function is calculated with diff(f,x,2) and the result is assigned to the t variable.

> syms x

> y=x^2+2*x-8;

> w=8*x+16;



74

> solve(y,x)

ans =

 -4

  2

> solve(w,x)

ans =

-2

>

In the preceding code, using the solve function, roots of y, and solution of w are 

found that make the equations zero.

> syms x

> y=3*x^2-2*x-6;

> MyFunc = matlabFunction(y);

> MyFunc(2)

ans =

     2

> MyFunc(3)

ans =

    15

>

Here, using matlabFunction(y), the equation for y is converted to a MATLAB 

function. After that y(2), and y(3) are evaluated with the MyFunc function.

�Simple and Compound Interest
Interest is the fee paid to borrow money. In most cases, interest is paid when people put 

their money in bank accounts (i.e., into savings accounts), depending on the contract. In 

general, two types of interest are calculated, simple and compound interest.

�Simple Interest
Simple interest is calculated by multiplying the principal amount, annual rate, and 

time measured by year. For simple interest, the earned amount is not included in the 

principal amount at the end of the year. In other words, simple interest is only earned on 

Chapter 3  Economic Modeling



75

the principal amount. If the time is not given in years, then it is converted to years. As an 

example, if the time is given as six months, then time is calculated as T = * =
1

12
6 0 5. . If 

it is given as 30 days, then the time is calculated as T = *
1

365
30  (sssuming that a year is 

calculated as 365 days). For calculating simple interest, the following formula is used.

I P R T= * *

where I is the interest, P is the principal, R is the annual interest rate, and T if the time 

measured in years.

Example 3-1. Write code to calculate payment amount for a certain principal loan, 

annual rate, and time in months for a bank. The code should ask the user these values, 

and should print the total payment and interest paid on the screen.

Solution 3-1. The following code can be used to accomplish the given task.

Example3p1.m

%Example3p1

%This code calculates simple interest

P = input('Enter Principal Amount: ');

R = input('Enter Annual Rate: ');

T = input('Enter Time As Month: ');

Interest=P*R*(1/12)*T;

Total = P + Interest;

fprintf('Paid Interest Amount is: %.2f\n',Interest)

fprintf('Total Payment is: %.2f\n',Total)

In the code, the input function is used to enter a value on the screen. Once the 

value is entered, it is assigned to P, R, and T as specified earlier. Once the code is run, the 

following output is obtained.

> Example3p1

Enter Principal Amount: 2000

Enter Annual Rate: 0.20

Enter Time As Month: 24

Paid Interest Amount is: 800.00

Total Payment is: 2800.00

>

Chapter 3  Economic Modeling



76

Example 3-2. Omar put $80,000 into a bank with a 35% annual interest rate. He 

plans to withdraw his money at the end of 19 months after depositing it. The bank allows 

customers to withdraw their funds monthly as well. Write code to calculate the amount 

of money he will ger at the end of 19 months.

Solution 3-2. The following code can be used to accomplish the given task.

Example3p2.m

%Example3p2

%This code calculates interest

P = 8e+4;

R=35/100;

T=(1/12)*18;

I=P*R*T;

Balance = P + I;

fprintf('Balance is %.2f\n',Balance);

Once the code is run, the following output is obtained.

> Example3p2

Balance is 122000.00

>

�Compound Interest
Compound interest is different from simple interest. For compound interest, interest 

is earned on the interest accrued as well. After calculating the interest on principal 

amount, that value is added to the principal and the new amount becomes the new 

principal amount. The same process is repeated up to the present or for each cycle. To 

find only the earned interest, the principal amount is subtracted from the total earnings. 

For the calculation of compound interest, the following formula is used.

I P R P
C= * +( ) -¢1

where I is the Interest, P is the principal, R’ is the periodic interest rate, and C is the 

compounding period. Periodic interest rate, R’, is the rate applied to the sum of the 

principal amount and earned interest for every period. Compounding period, C, is 

Chapter 3  Economic Modeling



77

the the total number periods for which the interest is applied. Periodic interest rate is 

calculated by dividing the annual rate by yearly compounding periods.

¢ =R
Annual rate

Periods per year

 

As an illustration, for P = $100, annual rate = 15%, periods per year = 3 (R′ = 5%), 

and C = 4, total earned amounts (balances) can be calculated for 16 months as shown in 

Table 3-1.

Table 3-1.  An Illustration

Period Interest Balance

Starting $100.00

4 months $100.00*5%=$5.00 $105.00

8 months $105.00*5%=$5.25 $110.25

12 months $110.25*5%=$5.51 $115.76

16 months $115.76*5%=$5.79 $121.55

Example 3-3. Write code to calculate the total balance with a compound interest 

rate for the information given in Table 3-1.

Solution 3-3. The following code can be used to accomplish the given task.

Example3p3.m

%Example3p3

%This code calculates compound interest

format short

P = 100;

Rprime=0.05;

C=4;

Balance = P*((1+Rprime)^C);

disp(Balance)

Chapter 3  Economic Modeling



78

Once the code is run, the following output is obtained.

> Example3p3

  121.5506

>

Example 3-4. Jennifer puts $150,000 into a bank account that pays a compound 

interest rate annually of 12%. If she gets her money from the bank after 5 years, how 

much interest does she get?

Solution 3-4. The following code can be used to accomplish the given task.

Example3p4.m

%Example3p4

%This code calculates compound interest

format short

P = 15e+4;

Rprime=0.12;

C=5;

Balance = P*((1+Rprime)^C);

Interest = Balance - P;

fprintf('Obtained interest: %.20f\n',Interest)

Once the code is run, the following output is obtained.

> Example3p4

Obtained interest: 114351.25248000008286908269

>

�Percentage Change
We often encounter problems with percentage change in real life. There are three 

important concepts to understand to solve such types of problems.

•	 More than x% of A = A A
x

A
x

+ * = *
+( )

100

100

100

•	 Less than x% of A = A A
x

A
x

- * = *
-( )

100

100

100

•	 % change = 
new value old value

old value

-
*100  percent

Chapter 3  Economic Modeling



79

Example 3-5. Martin’s annual salary is $50,000 this year. He will get a 20% raise for 

the next year. What will Martin’s annual salary be for the next year?

Solution 3-5. The following code can be used to calculate the salary.

Example3p5.m

%Example3p5

%This code calculates percentage increment

Salary = 5e+4; %5e+4 = 50000

NextY = Salary*(120/100);

fprintf('Martins Next Year Salary is: %.2f\n',NextY)

Once the code is run, the following output is obtained.

> Example3p5

Martins Next Year Salary is: 60000.00

>

Example 3-6. Martin’s market sells melon with a 40% markup at $28 per kilogram. If 

he wants to sell it with a 20% discount from the original cost, how much does the melon 

cost Martin per kilogram? Write code that shows the cost and price after discount.

Solution 3-6. The following code can be used to calculate the cost and discounted price.

Example3p6.m

%Example3p6

%This code calculates percentage

Melon = 28;

CostAmount = Melon*(100/140);

NewPrc = CostAmount*(80/100);

fprintf('Melon costs: %.2f per kg\n',CostAmount);

fprintf('Price After Discount: %.2f per kg\n',...

    NewPrc);

Once the code is run, the following output is obtained.

> Example3p6

Melon costs: 20.00 per kg

Price After Discount: 16.00 per kg

>

Chapter 3  Economic Modeling



80

Example 3-7. A bookstore sells a book at $50 and the price was reduced to $35. What 

is the percentage change on the price of the book?

Solution 3-7. The following code can be used to calculate the percentage change.

Example3p7.m

%Example3p7

%This code calculates % change

OldPrice = 50;

NewPrice = 35;

PercChange = ((NewPrice-OldPrice)/OldPrice)*100;

fprintf('Percentage Change= %.2f\n',PercChange);

Once the code is run, the following output is obtained.

> Example3p7

Percentage Change= -30.00

>

As shown in the output, there is a negative (-) sign in front of 30.00. That indicates 

that the price has decreased. If it is positive (+), then it indicates that there is an increase.

�Cost, Revenue, and Profit
In all businesses, keeping a clear and proper financial account is extremely important. 

Calculation of cost, revenue, and profit plays an important role in this regard. In this 

section, we deal with these three important concepts.

�Cost
Cost, also known as total cost, is the monetary value spent to produce or obtain an item. 

In general, the cost of something can be calculated by using the linear function

C x mx b( ) = +

The marginal cost is represented by m, and b represents the fixed costs.

Example 3-8. Alexander’s biking company produces bike to sell. Production of each 

bike costs the company $50 and other fixed costs of the company are $35. Write code to 

Chapter 3  Economic Modeling



81

calculate the total cost of produced bikes. The code should ask the for number of bikes 

produced to complete the calculation.

Solution 3-8. The following code can be used to accomplish the given task.

Example3p8.m

%Example3p8

%This code calculates cost (total cost)

Number = input('Number of bikes for production\n');

Cost = @(x) 50*x+35;

CostCalculation = Cost(Number);

disp(['The cost is ', num2str(CostCalculation)])

Once the code is run, and number of bikes is entered as 10, the following output is 

obtained.

> Example3p8

Number of bikes for production

10

The cost is 535

>

�Revenue
Revenue is the total money obtained from selling Q items at price P.

R Q P= *

In this equation, R represents revenue, Q represents the number of items sold, 

and P represents the price of each item sold. Finding the total revenue by using the 

given formula is not that difficult. There are questions that require the user to find the 

maximum revenue in different cases. The next example is such a question.

Example 3-9. Alexander’s cinema company sells tickets for a film showing. The 

cinema has 1,000 seats. One ticket costs $8 currently. Alexander wants to increase the 

price. From past experience, he thinks that if he increases the price $0.50 for each ticket, 

then 50 fewer people will attend the showing. Find the price of a ticket that maximizes 

revenue.

Chapter 3  Economic Modeling



82

Solution 3-9. Let x be the number of $0.50 increases. Therefore, $8.00 + $0.50x 

represents the price of one ticket and 1,000 - 50x represents the number of tickets sold. 

Then the revenue can be calculated as R = (1000 − 50x) ∗ (8.00 + 0.50x). From here, we 

can write R =  − 25x2 + 100x + 8000. The following code can be used to accomplish the 

given task. Then we need to find an x value that maximizes the R value. This is the part 

where we need to enter into the code and solve for x to make R the maximum value. The 

following code can be used to achieve this.

Example3p9.m

%Example3p9

%This code finds maximum value

syms x

R = -25*x^2+100*x+8000;

Derivat = diff(R,x);

Number = solve(Derivat,x);

EvalFunc = matlabFunction(R);

MaxVal = EvalFunc(double(Number));

disp(['Maximum Revenue is ',...

    num2str(MaxVal)])

In this code, the R function is entered as a symbolic function. Then its derivative is 

found by using the diff function. The obtained linear equation is solved by using the 

solve function. The obtained Number value shown is a symbolic data value. To convert 

it to a floating number, the double function is used. In the meantime, the R symbolic 

function is converted to a MATLAB function to evaluate R at x=Number value. Finally, the 

maximum value is shown with the disp function.

Once the code is run, the following output is obtained.

> Example3p9

Maximum Revenue is 8100

>

Remark 3-1. For quadratic equations (i.e., f (x) = ax2 + bx + c, a ≠ 0 and a, b, c ∈ R), 

maximum value or minimum value can be calculated depending on the sign of a. If the 

sign is negative (-), then the maximum value can be derived from the equation. If the sign 

Chapter 3  Economic Modeling



83

is positive (+), then the minimum value of the equation can be found. This can be done 

in two ways. In the first way, f
b

a

-æ
è
ç

ö
ø
÷2

 gives us the maximum or minimum value. In the 

second case, the derivative of f (x) is calculated, and the f ′(x) = 0 equation is solved. The 

root of f (x) gives us the maximum or minimum value depending on the sign of a as well.

In the preceding problem, the second method is preferred for finding the maximum 

value.

�Profit
Profit can be defined as the difference between the revenue (total revenue) and the cost 

(total cost).

Pr = -R C

where Pr stands for profit, R stands for revenue, and C stands for cost.

Example 3-10. A company sells t-shirts with cost function C(x) = 3 + 2x, and the 

revenue function is R(x) =  − x2 + 4x + 12 where x indicates the number of t-shirts. For 

the maximum revenue value R, find x. Then by using the same x, calculate cost (C) and 

profit (Pr).

Solution 3-10. The following code can be used for the solution.

Example3p10.m

%Example3p10

%This code profit

syms x

R = -x^2+4*x+12;

Derivat = diff(R,x);

Number = double(solve(Derivat,x));

C = @(x) 3+2*x;

Rev = @(x) -x^2+4*x+12;

disp(['For maximum R, x =',...

    num2str(Number)])

Profit=Rev(Number)-C(Number);

disp(['Profit, Pr=',...

    num2str(Profit)])

Chapter 3  Economic Modeling



84

Here, R, which stands for revenue, is defined in the fourth row. Using this, the 

maximum x variable is calculated by taking its derivative and setting it equal it to zero 

so that its solution can be found using the solve function. Then the same revenue and 

cost function are defined as anonymous functions. These functions are evaluated at 

x=Number, and the results are shown with the disp function. Once the code is run, the 

following output is obtained.

> Example3p10

For maximum R, x =2

Profit, Pr=9

>

�Problems
3.1. Bushra put her $180,000 into a bank with a 25% annual 

interest rate (simple). She plans to withdraw her money at the 

end of 34 months after depositing. The bank allows customers to 

withdraw their funds monthly as well. Write code to calculate the 

amount of money Bushra gets at the end of 34 months.

3.2. Alexander puts $240,000 into a bank account that pays a 

compound interest rate of 20% annually. If he gets his money from 

the bank after 8 years, how much interest does he get?

3.3. David’s market sells watermelon with a 30% markup at $39 

per kilogram. If he wants to sell it with a 10% discount from of 

the original cost, how much does the watermelon cost David per 

kilogram? Write code that shows the cost and price after discount.

3.4. A coffee shop sells a mug for $20 and then changes the price 

to $25. What is the percentage change on the price?

3.5. Benjamin’s biking company produces bikes to sell. The 

production of each bike costs the company $40 and other fixed 

costs to the company are $25. Write code to calculate the total cost 

of the bikes produced. The code should also calculate the cost of 

producing seven bikes.

Chapter 3  Economic Modeling



85

3.6. Lily’s cinema company sells tickets for a film showing. The 

cinema has 1,200 seats. One ticket currently costs $10. Lily wants 

to increase the price. From past experience, Lily thinks that if she 

increases the price $0.50 for each ticket, then 20 fewer people will 

attend the showing. Find the price of the ticket that maximizes 

revenue.

3.7. For a given function R(x) = 2x2 − 4x + 2 find the minimum 

value of R(x). Explain the possibility of finding the maximum 

value of R(x).

Chapter 3  Economic Modeling



87
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_4

CHAPTER 4

Numerical Methods
In this chapter, I present how to solve problems using numerical techniques. First, 

interpolation and extrapolation methods are introduced. Next, curve fitting and root 

finding are explained. Finally, numerical integration and numerical differentiation are 

covered.

�Interpolation and Extrapolation
It is possible to find the corresponding value of a point within a given domain using the 

function interp1 when dealing with interpolation in one-dimensional applications. It 

is also possible to find a value that is out of a given domain via the same function. This 

method is called extrapolation. Various methods such as linear or spline are available 

in the interp1 function (Table 4-1). Some of the methods, which can be used for 

interpolation, are not available for extrapolation within the interp1 function. If an outer 

point is picked for extrapolation using a method in which extrapolation does not work, 

MATLAB returns NaN which stands for “not a number.” Therefore, the method of choice is 

important for performing interpolation or extrapolation.

Table 4-1.  Methods Used with interp1

Option Explanation

linear Uses linear interpolation (default value)

nearest Uses nearest neighbor interpolation

next Uses next neighbor interpolation

previous Uses previous neighbor interpolation

spline Uses piecewise cubic spline interpolation and extrapolation



88

Example 4-1. For the given values of x = [1, 2, 5, 8] and y = [20, 30, 50, 80], calculate 

the value of 7 using the default method of the interp1 function, and calculate the value 

of 10 with the methods linear and spline.

Solution 4-1. The following code can be used to accomplish the given task.

Example4p1.m

%Example4p1

%This code uses interp1 function

x=[1, 2, 5, 8];

y=[20, 30, 50, 80];

ValX1 = interp1(x,y,7);

ValX2 = interp1(x,y,10,"linear");

ValX3 = interp1(x,y,10,"spline");

fprintf("1st value is %f\n",ValX1)

fprintf("2nd value is %f\n",ValX2)

fprintf("3rd value is %f\n",ValX3)

Once the code is executed, the following output will be obtained.

> Example4p1

1st value is 70.000000

2nd value is NaN

3rd value is 121.428571

>

As shown in the preceding output, the computer prints NaN for the 2nd value. It 

indicates the fact that extrapolation is not available with the linear method in the 

interp1 function.

�Curve Fitting
Using a data set, one can obtain a polynomial function using the function polyfit.

Example 4-2. For the given values of x = [4, 6, 6.5, 8, 10] and y = [4, 8, 6, 7, 9], 

obtain four different curves from the first degree to the fourth. Then, with these four 

polynomials, evaluate the values of x, where x = 3:0.5:20. The code should plot all the 

curves in a single figure.

Chapter 4  Numerical Methods



89

Solution 4-2. The following code can be used to accomplish the given task.

Example4p2.m

%Example4p2

%This code uses polyfit function

x=[4, 6, 6.5, 8, 10];y=[4, 8, 6, 7, 9];

P1 = polyfit(x,y,1)%1st degree

P2 = polyfit(x,y,2)%2nd degree

P3 = polyfit(x,y,3)%3rd degree

P4 = polyfit(x,y,4)%4th degree

%Using obtained curves

xx = 3:0.5:20;

y1 = polyval(P1,xx);

y2 = polyval(P2,xx);

y3 = polyval(P3,xx);

y4 = polyval(P4,xx);

subplot(221)

plot(x,y,'s',xx,y1);title('1st degree')

subplot(222)

plot(x,y,'s',xx,y2);title('2nd degree')

subplot(223)

plot(x,y,'s',xx,y3);title('3rd degree')

subplot(224)

plot(x,y,'s',xx,y4);title('4th degree')

Once the code is executed, the following output will be printed on the screen.

> Example4p2

P1 =

    0.7129    1.8812

P2 =

   -0.0678    1.6691   -1.2124

P3 =

    0.1291   -2.7559   19.2697  -37.1885

P4 =

   -0.2905    8.3000  -86.1202  383.4500 -608.7143

>

Chapter 4  Numerical Methods



90

As shown in this output, the coefficients of each polynomial are calculated and 

assigned to the corresponding variables. Figure 4-1 will also be displayed along with the 

output.

Figure 4-1.  Output of Example4p2

�Root Finding
It is possible to find the roots of nonlinear equations with MATLAB. For this purpose, the 

built-in function fzero can be used. Other popular methods, which we overview in this 

section, include the bisection method, Newton’s method, the secant method, and the 

fixed-point iteration method.

�fzero Function
fzero is a built-in function that finds the roots of a nonlinear function in MATLAB. This 

function is very easy to code and it has two different uses. The first use consists of the 

calculation of the root around a point for the defined function.

> fzero(Myfunction,x0)

Chapter 4  Numerical Methods



91

In this use, the given function is Myfunction, and the point is defined by x0.

In the second use, the function finds the root within a given interval.

>fzero(Myfunction, [x0, x1])

In this use, the given function is Myfunction and the root is searched between the 

points x0 and x1. The function can be defined using an anonymous function as in the 

following example.

Example 4-3. Write code to find the root of 2 cos (x). The code should separately find 

the root around 
p
4

 and the root within the interval of π and 2π. The code should print 

the values in terms of degrees on the screen.

Solution 4-3. The following code can be used to find the roots.

Example4p3.m

%Example4p3

%This code uses fzero function

Myfunc = @(x) 2*cos(x); % function

x0 = pi/4; % around this point

FirstKind = fzero(Myfunc,x0); % the usage

CorrespondingDegree1 = (FirstKind)*(180/pi);

fprintf("1st root is %d degree\n",CorrespondingDegree1)

interval = [pi, 2*pi];% interval for 2nd usage

SecondKind = fzero(Myfunc,interval);

CorrespondingDegree2 = (SecondKind)*(180/pi);

fprintf("2nd root is %d degree\n",CorrespondingDegree2)

As shown in the code, the values of the corresponding roots are converted from 

radians to degrees by simply multiplying these values by 180/π.

Once the code is executed, the following output will be printed on the screen.

> Example4p3

1st root is 90 degree

2nd root is 270 degree

>

Chapter 4  Numerical Methods



92

�Bisection Method
The bisection method can be implemented by creating a user-defined function. There 

is no built-in function like fzero in MATLAB for the bisection method. The algorithm 

in the following example can be used for the implementation of this method. In the 

bisection method, the boundary points should be picked carefully. Due to the nature of 

the method, the defined function must have different signs at the boundaries (at a and b 

as presented in the code).

Example 4-4. Write a code to find the root of f (x) = x3 − 3x + 1 between 0 and 1. 

The code should calculate the value up to a tolerance given by 10−10 using the bisection 

method.

Solution 4-4. The following code can be used to find this root.

Example4p4.m

%Example4p4

%This code uses bisection algorithm

format long

tolerance=1e-10;

a = 0.0; b = 1.0;

f=@(x) x^3-3*x+1;% function is defined here

Result = MyBisect (f,a,b,tolerance);

fprintf('Root is = f ( %d ) = %d \n',Result,f(Result));

function [c] = MyBisect (f,a,b,tolerance)

c = (a + b)/2;

while (abs(f(c)) > tolerance)

    c = (a + b)/2;

    if ( f(a)*f(c) < 0 )

       b = c;

    else

       a = c;

    end

end

end

Chapter 4  Numerical Methods



93

Once the code is executed, the following output will be printed on the screen.

> Example4p4

Root is = f ( 3.472964e-01 ) = -4.365619e-11

>

�Newton’s Method
In some textbooks, Newton’s method is referred to as the Newton–Raphson method. 

There is no built-in function in MATLAB to calculate a root by using this method, but its 

algorithm is quite easy to implement.

x x
f x

f xn n
n

n
+ = -

( )
¢( )1

The function must be defined by the user to calculate the root using this algorithm.

Example 4-5. Write code to find the root of f (x) = x3 − 3x + 1 with an initial value 

of 0.5. The code should calculate the value up to a tolerance given by 10−10 by using 

Newton’s method.

Solution 4-5. The following code can be used to illustrate Newton’s method.

Example4p5.m

%Example4p5

%This code uses Newton's algorithm

format long

tolerans=1e-10;

x0 = 0.5;

F = @(x) x^3-3*x+1; %Function written here

Derivat = @(x) 3*x^2-3; % Its derivative should be here

%Make sure Derivat(x0) is NOT equal to zero

x0 = MyNewton (F,Derivat ,x0 ,tolerans);

fprintf('Root = f ( %d ) = %d \n',x0,F(x0));

Chapter 4  Numerical Methods



94

function x0 = MyNewton (F,Derivat ,x0 ,tolerans)

while (abs(F(x0)) > tolerans)

    Result = x0 - (F(x0) / Derivat (x0));

    x0=Result;

end

end

Once we run the code, the following output will be displayed on the screen.

> Example4p5

Root = f ( 3.472964e-01 ) = -2.220446e-16

>

Note that the initial value plays an important role in finding the root more quickly.

�Secant Method
The secant method is yet another method for finding the root of an equation. The 

algorithm for this method is

x x
x x

f x f x
f xn n

n n

n n
n+

-

-

= -
-( )

( ) - ( )( ) ( )1
1

1

The function must be defined by the user to calculate the root using this algorithm. 

The following example can be used to illustrate the secant method.

Example 4-6. Write a code to find the root of f (x) = x3 − 3x + 1 with the first two initial 

values of 0 and 1. The code should calculate the value up to a tolerance given by 10−10 by 

using the secant method.

Solution 4-6. The following code can be used to find the root via the secant method.

Example4p6.m

%Example4p6

%This code uses the secant method

format long

tolerance=1e-10;

x0 = 0.0;

x1 = 1.0;

Chapter 4  Numerical Methods



95

f = @(x) x^3-3*x+1; % function comes here

x1 = MySecant (f,x0,x1 ,tolerance);

fprintf('Root = f ( %d ) = %d \n',x1,f(x1));

function x1 = MySecant (f,x0,x1 ,tolerance)

while (abs(f(x1)) > tolerance)

    Result = x1 - ( (x1 - x0) / (f(x1)-f(x0)) ) * f(x1);

    x0 = x1;

    x1 = Result;

end

end

Once the code is executed, the following output will be shown on the screen.

> Example4p6

Root = f ( 3.472964e-01 ) = -4.440892e-16

>

�Fixed-Point Iteration
The fixed-point iteration method is generally used for finding the roots of equations 

in the form f (x) = 0. From the given equation, the iteration’s function must be derived. 

In this method, the given equation is rewritten in the form x = g(x), where g(x) is the 

iteration function. In the algorithm, an initial point x0 is selected. Then, the iteration 

function is recursively processed by xn + 1 = g(xn). If the function f is continuous and xn 

converges to a number, say M, then M is a fixed point of the iteration function.

For a certain function, more than one equation can be picked as the iteration 

function. Converging to a number plays an important role in picking the iteration 

function. To grasp the idea of how to select the iteration function, take a look at the 

following example.

Example 4-7. Considering the function given by f (x) = x2 − x − 4, find possible 

iteration functions g(x) to find the roots of f (x).

Chapter 4  Numerical Methods



96

Solution 4-7. The iteration function g(x) can be selected as follows.

	 a)	 g(x) = x2 − 4

	 b)	 g x
x

( ) = +1
4

	 c)	 g x x( ) = + 4

Example 4-8. Write code to find the root of f (x) = x3 − 3x + 1 with an initial value of 0.5.  

The code should calculate the value up to a tolerance given by 10−10 using the fixed-point 

iteration method.

Solution 4-8. The following code can be used to find the root using this method.

Example4p8.m

%Example4p8

%This code uses fixed-point iteration method

format long

tolerans=1e-10;

x0 = 0.5;

f = @(x) x^3-3*x+1;% function comes here

while (abs(f(x0)) > tolerans)

    Result =  (x0 ^ 3 + 1) / 3; %fixed point function

    x0 = Result;

end

fprintf('Root = f ( %d ) = %d \n',x0,f(x0));

Once the code is executed, the following output will be displayed on the screen.

> Example4p8

Root = f ( 3.472964e-01 ) = -5.213918e-11

>

If we compare the results obtained by the different methods given, Newton’s method 

yields a slightly better result than the others.

Chapter 4  Numerical Methods



97

�Numerical Integration
MATLAB provides various built-in functions, shown in Table 4-2, to calculate integrals 

numerically.

Table 4-2.  Functions Used in Numerical Integration

Function Explanation

integral Performs integration by using the global adaptive quadrature

integral2 Evaluates double integrals numerically

integral3 Evaluates triple integrals numerically

cumtrapz Calculates cumulative integrals using the trapezoidal method

trapz Calculates integrals using the trapezoidal method

Example 4-9. Write code to numerically calculate the integral of 2
2

xex  from 0 to 1 by 

using the function integral. Then, compare the numerical solution with the analytical 

solution. The code should display the numerical result, analytical result, and error on the 

screen.

Solution 4-9. The following code can be used to accomplish the given task.

Example4p9.m

%Example4p9

%This code uses integral function

format long

Myfun = @(x) 2*exp(x.^2).*x;

NumericSol = integral(Myfun,0,1);

AnalyticSol = exp(1)-1;

Error = abs(NumericSol - AnalyticSol);

fprintf('Numerical solution :%e\n',NumericSol)

fprintf('Analytical solution:%e\n',AnalyticSol)

fprintf('Error is           :%e\n',Error)

Chapter 4  Numerical Methods



98

Once the code is executed, the following output will be printed on the screen.

> Example4p9

Numerical solution :1.718282e+00

Analytical solution:1.718282e+00

Error is           :4.440892e-16

>

�Numerical Differentiation
In this section, numerical methods for solving ordinary differential equations are 

discussed.

�Ordinary Differential Equations
Numerical solution of ordinary differential equations has important applications in a 

wide variety of areas in engineering and applied sciences. MATLAB provides numerous 

built-in functions that solve ordinary differential equations with an initial condition.

Ordinary differential equations (ODEs) with initial values can also be solved using 

Euler’s method and the Runge–Kutta method. This section covers how to solve initial 

value problems of ODEs using the ODE solvers, Euler’s method, and the fourth-order 

Runge–Kutta method.

�ODE Solver Functions

MATLAB has numerous functions for solving ODEs. Although ode45 is the first one to 

come to mind, the user should consider the type of the problem (stiff or nonstiff ) when 

selecting the solver.

Chapter 4  Numerical Methods



99

Example 4-10. Write code to solve the following initial value problem given by

dy

dx
y x y x= - ( ) = £ £, ,0

2

3
0 5

using the ode45 solver, where the exact solution is y x ex= +( )-1
1

3
. The code should 

print the solution at x = 5 (y(5)) to the screen.

Solution 4-10. The following code can be used to accomplish the given tasks.

Example4p10.m

%Example4p10

%This code uses ode45 function

format long

y = 2.0/3.0; %initial condition

x0=0; xF =5;

f = @MyFunc;

xval = [0,5];% 0<=x<=5

[t,Result]=ode45(f,xval,y);

Lengt = length(Result);

fprintf("ode45 Solution of y(5): %.10f\n", Result(Lengt));

y_exact = 5.0 + 1.0 - (1.0/3.0)*exp(5.0);

fprintf("Exact Solution of y(5): %.10f\n",y_exact);

function Res = MyFunc(x,y)

Res = y-x; %defined function

end

Table 4-3.  Common ODE Solvers in MATLAB

Solver Accuracy Explanation

ode45 Medium Most of the time, this solver should be the first one tried; used for 

nonstiff problems

ode113 Low to high Used for nonstiff problems, and when ODE is expensive to evaluate

ode15s Low to medium Recommended when ode45 fails, and when solving differential 

algebraic equations for stiff problems

ode15i Low Solves fully implicit differential equations for stiff problems

Chapter 4  Numerical Methods



100

In the code, the precision is set to show 10 decimal digits and the function ode45 

is called by an anonymous function. Once we run the code, the following output is 

displayed on the screen.

> Example4p10

ode45 Solution of y(5): -43.4717851406

Exact Solution of y(5): -43.4710530342

>

�Euler’s Method

Euler’s method is yet another way to find approximate solutions to initial value problems 

of ODEs of the following type:

{
dy

dx
f x y y a ya= ( ) ( ) =,

y y hf x yi i i i+ = + ( )1 ,

where h is the mesh size (in a uniform mesh) over the interval [a, b].

Example 4-11. Write code to solve the initial value problem given by

dy

dx
y x y x= - ( ) = £ £, ,0

2

3
0 5

using Euler’s method, where the exact solution is y x ex= +( )-1
1

3
. The code should print 

the exact solution and the numerical solution of y(5) on the screen. The mesh size (h) 

should be set to h = 0.0005.

Solution 4-11. The following code can be used to accomplish the given tasks.

Example4p11.m

%Example4p11

%This code uses Euler's method

format long

f = @(x,y) y-x; %defined function

y = 2.0/3.0; %initial condition

xval = linspace(0,5,10001);% 0<=x<=5

h = xval(2)-xval(1); %h is mesh size and it is uniform

Chapter 4  Numerical Methods



101

for i=1:length(xval)

    y = y + f(xval(i),y)*h; %Euler formula

end

fprintf("Numerical Solution of y(5): %.10f\n", y)

y_exact = 5.0 + 1.0 - (1.0/3.0)*exp(5.0);

fprintf("Exact Solution of y(5)    : %.10f\n",y_exact)

In the code, the precision is set to show 10 decimal digits. Once the code is executed, 

the following output will be shown on the screen.

> Example4p11

Numerical Solution of y(5): -43.4334780673

Exact Solution of y(5)    : -43.4710530342

>

�Runge–Kutta Method of Fourth Order

Runge–Kutta methods are another group of methods for solving initial value problems 

of ODEs. In this section, we consider the fourth-order (RK4) formula, which has the 

following form:

{ ,
dy

dx
f x y y a y a x ba= ( ) ( ) = £ £,

{K hf x y K hf x h y K h K hf x h y Ki i i i i i1 2 1 3 2

1

2

1

2

1

2

1

2
= ( ) = + +æ

è
ç

ö
ø
÷ = + +, , , hh K

hf x h y K h y y K K K Ki i i i

æ
è
ç

ö
ø
÷

= + +( ) = + + + +( )+

4

3 1 1 2 3 4

1

6
2 2,

Example 4-12. Write code to solve the initial value problem given by

dy

dx
y x y x= - ( ) = £ £, ,0

2

3
0 5

using RK4, where the exact solution is y x ex= +( )-1
1

3
. The code should print the exact 

solution and the numerical solution of y(5) on the screen. The mesh size (h) should be 

set to h = 0.0005.

Solution 4-12. We can write the following code for the given tasks.

Chapter 4  Numerical Methods



102

Example14p12.m

%Example 4p12

%This example solves a first-order ODE

%by using Runge-Kutta Method of fourth order

format long

f = @(x,y) y-x; %defined function

y = 2.0/3.0; %initial condition

xval = linspace(0,5,10001);% 0<=x<=5

h = xval(2)-xval(1); %h is mesh size and it is uniform

for i=1:length(xval)

    K1 = h*f(xval(i),y);

    K2 = h*f(xval(i) + 0.5*h, y + 0.5*K1*h);

    K3 = h*f(xval(i) + 0.5*h, y + 0.5*K2*h);

    K4 = h*f(xval(i) + h, y + K3*h);

    y = y + (1.0/6.0)*(K1 + 2.0*K2 + 2.0*K3 + K4);%RK4

end

fprintf("Numerical Solution of y(5): %.10f\n", y)

y_exact = 5.0 + 1.0 - (1.0/3.0)*exp(5.0);

fprintf("Exact Solution of y(5)    : %.10f\n",y_exact)

In this code, the precision is set to show 10 decimal digits. Once the code is executed, 

the following output will be displayed on the screen.

> Example4p12

Numerical Solution of y(5): -43.4703160436

Exact Solution of y(5)    : -43.4710530342

>

�Problems
4.1. Given the values x = [1, 4, 8, 9] and y = [15, 30, 50, 60], 

calculate the value of 6 using the default method of the interp1 

function.

Chapter 4  Numerical Methods



103

4.2. Write code to find the root of 3 sin (x). The code should find 

the root within the interval 
p
2

 and 
3

2

p
. The obtained value 

should be displayed on the screen in degrees.

4.3. Write code to find the root of f (x) = x4 + 4x + 2 between -1 and 

1. The code should calculate the value within the tolerance given 

by 10−6 using the bisection method.

4.4. Write code to find the root of f (x) = x4 + 4x + 2 with an initial 

value of -1. The code should calculate the value within the 

tolerance given by 10−6 using Newton’s method.

4.5. Write code to find the root of f (x) = x4 + 4x + 2 with an initial 

value of -0.5. The code should calculate the value within the 

tolerance given by 10−6 using the fixed-point iteration method.

4.6. Write code to calculate the integral of sin(2x) from 0 to π 

numerically using the integral function. Then, compare the 

numerical solution with the analytical solution. The code should 

print the numerical result, analytical result, and the discrepancy 

on the screen.

4.7. Write code to solve the initial value problem given by

dy

dx
x x y y x= + + - ( ) = £ £2 7 6 0 3 0 52 , ,

using Euler’s method. The code should print the numerical 

solution of y(5) on the screen. The mesh size (h) should be set to 

h = 0.0005.

Chapter 4  Numerical Methods



105
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_5

CHAPTER 5

Applications in Simulation
In this chapter, we first cover how to generate random numbers. Then, flipping a coin, 

rolling a pair of dice, random walking, and traffic flow topics are covered. In each 

section, I provide illustrations of the relevant programming ideas and explain them 

when necessary.

�Random Number Generation
To create sequences of pseudorandom numbers in MATLAB, one of the rand, randn, or 

randi commands can be used (Table 5-1). We can use the rng function to control the 

repeatability of the numbers.

Table 5-1.  Random Generating Functions

Function Explanation Example

rand(n)

rand(n,m)

Creates uniformly distributed pseudorandom 

numbers between 0 and 1

> rand(2)

ans =

0.8147    0.1270

0.9058    0.9134

randn(n)

randn(n,m)

Creates normally distributed pseudrandom 

numbers

> randn(2)

ans =

0.3188   -0.4336

-1.3077    0.3426

(continued)



106

In a session, we can get different values each time we run one of the rand, randn, or 

randi functions. If the session is closed and a new session is opened, though, the same 

values are repeated for the same function used. This happens due to the fact that the rng 

function uses the same default seed. The default seed is Mersenne Twister with seed 0. 

If the seed type is changed to shuffle, then we can get different values each time rng is 

called. However, the randperm(n,k) function creates k random permutation of integers 

from 1 to n.

Example 5-1. Create seven numbers between 2 and 8 using the rand command.

Solution 5-1. To get seven numbers, we can use a row vector. If we use the rand 

command, we get numbers between 0 and 1. By multiplying the numbers by 10 and then 

rounding them, the obtained numbers will be between 0 and 10. If we use mode 7, then 

all numbers will be between 0 and 6. After shifting the numbers by adding 2, we can get 

the required numbers. To show all the steps, the following code can be used. However, 

the complete task can be achieved by typing just a single line as written at the bottom of 

the code.

Example5p1.m

%Example5p1

%This code produces 7 numbers

MyNumbers = rand(1,7);

MyBigNumb = MyNumbers*10;

MyIntegers = round(MyBigNumb);

Function Explanation Example

randi(imax)

randi(imax,x,y)

Creates uniformly distributed pseudorandom 

integers up to imax

> randi(5,2,3)

ans =

5     5     3

1     5     5

Rng Controls random number generation > rng('shuffle')

randperm(n)

randperm(n,k)

Creates row vector containing k unique 

permutation of integers from 1 to n
> randi(5,2,3)

ans =

2    4    3    1

Table 5-1.  (continued)

Chapter 5  Applications in Simulation



107

MyMod = mod(MyIntegers,7);

MyFinal = MyMod + 2;

disp(['The numbers are: ',int2str(MyFinal)])

%MyFinal=2+mod(round(10*rand(1,7)),7)

Once the code is executed, the following output will be displayed on the screen.

> Example5p1

The numbers are: 3  3  4  7  6  8  2

>

Example 5-2. Using the randperm function, create five integers between 1 and 20. 

Then, create another sequence of 10 numbers using the randomly selected numbers 

with the randperm function. The first two elements of the sequence should be the first 

number created by randperm. The third and fourth elements of the sequence should be 

the second number created by randperm. The same pattern should be applied to the rest 

of the elements of the sequence.

Solution 5-2. The following code can be used to accomplish the given task.

Example5p2.m

%Example5p2

%This code uses randperm function

Numbers = randperm(20,5);

Seq= Numbers([1,1,2,2,3,3,4,4,5,5]);

disp('Randomly Selected Numbers:');

disp(Numbers);

disp('Numbers of Sequence:');

disp(Seq);

Once the code is executed, the following output will be shown on the screen.

> Example5p2

Randomly Selected Numbers:

     3     9    19     5     1

Numbers of Sequence:

     3     3     9     9    19    19     5     5     1     1

>

Chapter 5  Applications in Simulation



108

�Flipping a Coin
An experiment involving flipping a coin can be performed using the technique in 

the preceding section, or simply by using the randi(2,1) command as illustrated in 

Example 5-3.

Example 5-3. Write code that asks the user the number of times to flip the coin. 

Then the code should call a function to determine the number of tails and heads in 

a sequence. The code should print the number of tails and heads and the flipped 

sequence on the screen.

Solution 5-3. The following code can be used to accomplish the given task.

Example5p3.m

%Example5p3

%This code spins coin

Times=input('Number of times to flip the coin?\n');

[H,T,Sequence]=FlipCoin(Times)

function [H,T,Sequence]=FlipCoin(Times)

rng('shuffle')

n=1; H=0; T=0;

Sequence = zeros(1,n);

while n <= Times

      Result = randi(2,1);

      if Result == 1

          H=H+1;

          Cond = 'H';

      else

          T=T+1;

          Cond = 'T';

      end

      Sequence(n) = Cond;

      n=n+1;

end

Sequence = char(Sequence);

end

Chapter 5  Applications in Simulation



109

The code calls the FlipCoin function to get random integer numbers with the 

randi(2,1) command. This command tells MATLAB that one integer will be selected: 1 or 2. 

Therefore, each time a number is selected. If the number is 1, then this is regarded as heads 

(H) otherwise, the result is saved as T, which means tails. All of these results are saved to the 

Sequence variable as numbers corresponding to H and T from the ASCII table. Then once 

the counting is done, the Sequence variable is converted to H and T using the char function.

Once the code is executed, the following output will be shown on the screen.

> Example5p3

Number of times to flip the coin?

10

H =

     2

T =

     8

Sequence =

    'TTHTTHTTTT'

>

�Rolling a Pair of Dice
Programming the rolling of a pair of dice or a single die can be done in several ways. One 

of the easiest ways is to use the randi(6,1,2) command (or randi(6,1) for a single die). 

In this way, two integers can be selected between 1 to 6. For an illustration, we can take a 

look at Example 5-4.

Example 5-4. Write code to simulate rolling a pair of dice using the randi command. 

The code should ask the user the number of times the pair of dice is rolled. Then all 

outcomes including the sum of each roll should be displayed on the screen.

Solution 5-4. To get two numbers to represent die, you can use the randi(6,1,2) 

command. To achieve the task, the following code can be used.

Example5p4.m

%Example5p4

%This code rolls die and prints the sum

N=input('Enter the number of times to roll\n');

[Results,Sums] = RollDie(N);

Chapter 5  Applications in Simulation



110

disp('The Rolled Die');

disp(Results);

disp('The Sums For Each Rolling');

disp(Sums);

function [Results,Sums] = RollDie(Number)

Results = zeros(Number,2);

Sums = zeros(Number,1);

for i=1:Number

    Die=randi(6,1,2);

    Sum=Die(1)+Die(2);

    Results(i,1:2)=Die;

    Sums(i)=Sum;

end

end

Once the code is run, the following output is obtained.

> Example5p4

Enter the number of times to roll

5

The Rolled Die

     6     1

     2     6

     5     1

     2     4

     4     5

The Sums For Each Rolling

     7

     8

     6

     6

     9

>

Example 5-5. Write code to simulate rolling a pair of dice. The code should ask the 

user whether or not the user wants to play. If the user wants to play, the code rolls a pair 

of dice. If the sum of the numbers is 7, the computer should output “You WON $100” and 

Chapter 5  Applications in Simulation



111

the obtained numbers and keep rolling. If the sum of the numbers is 10, the computer 

should output “You WON $50000” and the obtained numbers and keep rolling. For the 

rest of the sum possibilities, the program should stop running.

Solution 5-5. The following code can be used to accomplish the given task.

Example5p5.m

%Example5p5

%This code simulates a pair of dice

N=input('Enter 1 to roll a pair of dice\n');

while (N==1)

    Die=randi(6,1,2);

    switch sum(Die)

        case 7

            disp('You WON $100');

            fprintf('Numbers: %i and %i\n',...

                Die(1),Die(2));

        case 10

            disp('You WON $50000');

            fprintf('Numbers: %i and %i\n',...

                Die(1),Die(2));

        otherwise

            N=2;

            fprintf('Numbers: %i and %i\n',...

                Die(1),Die(2));

    end

end

Once the code is executed, the following output will be printed on the screen.

> Example5p5

Enter 1 to roll a pair of dice

1

You WON $100

Numbers: 2 and 5

Numbers: 2 and 1

>

Chapter 5  Applications in Simulation



112

As shown in the output, after running the program and entering 1, the program 

began to run. Then, the computer rolled 2 and 5, the sum of which is 7, and printed You 

WON $100 and continued. On the second attempt, the rolled numbers are 2 and 1, the 

sum of which is 3. Because 3 is not one of the special cases identified, the code changed 

the value of variable N, and finished.

�Random Walking
A random walk can be simulated by using the rand command as well. This section 

illustrates one-dimensional and two-dimensional cases separately.

Example 5-6. Write a code to simulate a one-dimensional walk where the directions 

picked randomly from either 1 or -1 to go either to the right or left for 20 steps.

Solution 5-6. Although the question is one-dimensional, to see the right and left 

steps clearly, the path will be drawn one step up toward the y direction in each step. The 

right step will be in red color and blue will indicate the steps to the left. The following 

code can be used to accomplish the given task.

Example5p6.m

%Example5p6

%The code simulates random walk in 1-d

close all; Y=1; P = 0;%position

Steps = 20; Step = 1;

for i=1:Steps

    W = rand;

    if W>0.5

        P = P + Step;

        St = linspace(P-1,P,21);

        plot(St,Y,'r*')

        hold on

    else

        St = linspace(P,P-1,21);

        P = P - Step;

        plot(St,Y,'b+')

        hold on

    end

Chapter 5  Applications in Simulation



113

    Y = Y + 1;

    pause(0.5)

end

grid on

xlabel('Red-->right | Blue-->left')

ylabel('Direction in each step')

title('Random Walk in Each Step')

disp(['Final Place :',num2str(P)])

Once the code is run, the output shown in Figure 5-1 is obtained.

The random walk starts by going left at the beginning. Then it goes right, then left 

again, and so on. At the end, the position is six steps left from the starting point. At the 

prompt, we also obtain the following result.

> Example5p6

Final Place :-6

>

Figure 5-1.  Output of Example5p6

Chapter 5  Applications in Simulation



114

Example 5-7. Write code to simulate a two-dimensional random walk. In each 

step, the computer can go just one step right in the x direction, or one step up in the y 

direction in 15 steps.

Solution 5-7. The following code can be used to accomplish the given tasks.

Example5p7.m

%Example5p7

%The code simulates random walk in 2-d

close all;clear all;P = 0;%position

Steps = 15;X=0;Y=0;Step = 1;

plot(X,Y,'co');hold on

format short

for i=1:Steps

    W = rand;

    if W<0.5

        St = linspace(X,X+1,21);

        X = X + Step;

        plot(St,Y,'r*')

        hold on

    else

        St = linspace(Y,Y+1,21);

        Y = Y + Step;

        plot(X,St,'bs')

        hold on

    end

    pause(0.5)

    disp([X,Y])

end

grid on

xlabel('Red-->Right | Blue-->Up')

ylabel('Direction in each step')

title('Random Walk in Each Step')

Chapter 5  Applications in Simulation



115

Once we run the code, the graphic shown in Figure 5-2 is obtained.

As Figure 5-2 shows, the walk went right seven times and upward eight times. That 

total gives us the total number of steps in the code.

At the prompt, we also got the following after running the code.

> Example5p7

     1     0

     2     0

     2     1

     2     2

     2     3

     2     4

     3     4

     4     4

     4     5

Figure 5-2.  Output of Example5p7

Chapter 5  Applications in Simulation



116

     5     5

     5     6

     5     7

     5     8

     6     8

     7     8

>

�Traffic Flow
In this section, we use an image function, imagesc, to represent vehicle traffic with color. 

In other words, we color different sections of the road to represent traffic flow.

Example 5-8. Write code to show a flow for a vehicle where the width and length of 

the road are 5 and 20 units, respectively.

Solution 5-8. The following code can be used to accomplish the given tasks.

Example5p8.m

%Example5p8

%This code shows traffic flow

rw=5;%road width

rl=25;%road length

road = zeros(rw,rl);

xpos=2;ypos=4;

road(ypos,xpos)=1;

imagesc(road)

axis equal

for t=0:20

    %clear previous vehicle

    road(ypos,xpos)=0;

    %update new position

    xpos=xpos +1;

    road(ypos,xpos)=1;

    %plot new position

    imagesc(road)

Chapter 5  Applications in Simulation



117

    Time=sprintf('Time: %i',t);

    title(Time)

    axis equal;

    pause(0.4);

end

As shown in the code, after moving to the right side in each iteration, the color of the 

vehicle road is assigned to 0. To move forward, the color of the road is assigned to 1. And 

each time, the colors are displayed with the imagesc function. This is done to display a 

traffic flow in a graphic form. Between each frame, the computer waits 0.4 seconds to see 

the simulation slowly.

Figure 5-3 shows the final frame of the simulation done with the code.

Example 5-9. Write code to show a flow with two separate directions of traffic: going 

and coming. On each road, there should be one vehicle driving.

Solution 5-9. The following code can be used to accomplish the given task.

Figure 5-3.  Output of Example5p8

Chapter 5  Applications in Simulation



118

Example5p9.m

%Example5p9

%This code shows traffic flow

rw=11;rl=25;

road = zeros(rw,rl);

road(6,:)=1;

x1pos=2;y1pos=9;

x2pos=19;y2pos=3;

road(y1pos,x1pos)=1;

road(y2pos,x2pos)=1;

imagesc(road);axis equal

for t=0:15

    %clear previous vehicle

    road(y1pos,x1pos)=0;

    road(y2pos,x2pos)=0;

    %update new position

    x1pos=x1pos +1;

    x2pos=x2pos -1;

    road(y1pos,x1pos)=1;

    road(y2pos,x2pos)=1;

    %plot new position

    imagesc(road)

    Time=sprintf('Time: %i',t);

    title(Time);axis equal;

    pause(0.4);

end

Once the code is executed, the output shown in Figure 5-4 is displayed on the screen.

Chapter 5  Applications in Simulation



119

�Problems
5.1. Create 10 numbers between 3 and 7 using the randi 

command.

5.2. Using the randperm function, create seven integers between 

1 and 15. Then, create another sequence of 20 numbers using 

randomly selected numbers with the randperm function. The 

first three elements of the sequence should be the first number 

created by randperm. The fourth, fifth, and sixth elements of the 

sequence should be the second number created by randperm. The 

same pattern should be applied to the rest of the elements of the 

sequence.

5.3. Write code that flips a coin 20 times. The code should print 

the number of tails and heads obtained and the flipped sequence 

on the screen.

Figure 5-4.  Output of Example5p9

Chapter 5  Applications in Simulation



120

5.4. Write code to simulate a pair of dice rolled 10 times using 

the rand command. All outcomes, including the sum of each roll, 

should be displayed on the screen.

5.5. Write code to simulate a pair of dice. If the sum of the 

numbers is 5, the program should write “You GOT $200” and keep 

rolling. If the sum of the numbers is 12, the program should write 

“You GOT THE BIG PRIZE!!” and keep rolling. If the sum of the 

numbers is 8, the program should stop; otherwise it should keep 

running.

5.6. Write code to simulate two-dimensional random walking. In 

each step, the computer can go just one step left in the x direction, 

or one step down in y direction for 20 steps.

5.7. Write code to show a flow for two vehicles where the width 

and length of the road are 6 and 24 units, respectively.

Chapter 5  Applications in Simulation



121
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_6

CHAPTER 6

Basic Statistics and Data 
Analysis
This chapter begins with a brief discussion about basic statistical functions used in 

MATLAB. After that, sorting, searching, and processing data with Microsoft Excel files are 

presented.

�Basic Statistics
MATLAB offers a great variety of features and ready-to-use, built-in functions in the 

area of statistics. In this book, I only introduce an outline of the topic with some basic 

statistical functions (Table 6-1).

Table 6-1.  Some of the Basic Functions Related to Statistics in MATLAB

Function Explanation Example

max() Returns the maximum element max([1,34,21,5])

mean() Returns the average or mean value mean([1,34,21,5])

median() Returns the median value median([1,34,21,5])

min() Returns the smallest value min([1,34,21,5])

mode() Returns the most frequently occurring value mode([1,34,5,21,5])

std() Returns the standard deviation std([1,34,5,21,5])

var() Returns the variance var([1,34,5,21,5])



122

Example 6-1. Create a 3 × 4 matrix randomly by using the function randi().  

Then, calculate the maximum value, mean value, and standard deviation of each 

column of the matrix.

Solution 6-1. The following code can be used to create the matrix and find the 

desired values for each column of the matrix.

Example6p1.m

%Example6p1

%This code finds statistical values

A=randi(100,3,4);

%Maximum number is set as 100

Maximum = max(A);

MeanVal = mean(A);

StanDev = std(A);

disp(['The maximum numbers are ',...

    num2str(Maximum)])

disp(['The mean numbers are ',...

    num2str(MeanVal)])

disp(['The standard deviations are ',...

    num2str(StanDev)])

Once the code is executed, the following output will be displayed on the screen.

> Example6p1

The maximum numbers are 84  92  97  98

The mean numbers are 37.6667           57      60.3333      56.3333

The standard deviations are 40.2782       44.441      32.5167      36.8556

>

�Data Analysis
This section presents various sorting and searching functions, along with data 

processing examples.

Chapter 6  Basic Statistics and Data Analysis



123

�Sorting and Searching
Sorting in ascending or descending order can easily be achieved via the sort function.

Example 6-2. Consider the data given by 23, 70, 86, 5, 120, 50, -9, 61, and 100. Write a 

code to sort the given values both in ascending and descending order.

Solution 6-2. The data can be introduced as a vector, and then can be sorted as 

shown here at the prompt.

Example6p2.m

%Example6p2

%This code sorts data

A=[23,70,86,5,120,50,-9,61,100];

DescendSort = sort(A,'descend');

AscendSort = sort(A,'ascend');

disp('Descending Sort:');

disp(DescendSort);

disp('Ascending Sort:');

disp(AscendSort);

Once the code is run, the following output is obtained.

> Example6p2

Descending Sort:

   120   100    86    70    61    50    23     5    -9

Ascending Sort:

    -9     5    23    50    61    70    86   100   120

>

In some cases, multiple sets of data, as in a matrix, need to be sorted. This case is 

shown in Example 6-3.

Example 6-3. Randomly create a 3 × 5 matrix by using the randi() function. Then, 

sort each column and each row of the matrix in descending order.

Solution 6-3. The following code can be used to sort the columns and rows of the 

matrix.

Chapter 6  Basic Statistics and Data Analysis



124

Example6p3.m

%Example6p3

%This code sorts rows and columns

A=randi(100,3,5);

SortColumn=sort(A,1);

SortRow=sort(A,2);

disp('Original Matrix');

disp(A);

disp('Column Sorted');

disp(SortColumn)

disp('Row Sorted');

disp(SortRow)

Once the code is run, the following output is obtained.

> Example6p3

Original Matrix

    94    29    87   100    58

    46     1    40    54    65

    32    61    26    96    27

Column Sorted

    32     1    26    54    27

    46    29    40    96    58

    94    61    87   100    65

Row Sorted

    29    58    87    94   100

     1    40    46    54    65

    26    27    32    61    96

>

As shown in the output, if the command sort is used in the form sort(Matrix,1), 

sorting is performed for columns; if sort(Matrix,2) is used, then sorting is performed 

for rows.

Searching is also a straightforward task with MATLAB. Typically, there are three 

different possibilities available for searching. A number can be searched in a vector or 

matrix. A group of letters or a string can be searched in a string cluster. Finally, we can 

Chapter 6  Basic Statistics and Data Analysis



125

search some information within a dataset. We will examine each of these cases with an 

example.

Example 6-4. Consider the matrix given by Mat = [32,98,17,71,67; 39,71,65,28,17; 

77,49,71,68,71]. Write code that searches for 71 within this matrix.

Solution 6-4. The following code can be written to perform the search.

Example6p4.m

%Example6p4

%This code find indexes in a matrix

Matrx =[32,98,17,71,67;...

        39,71,65,28,17;...

        77,49,71,68,71];

Key = 71;

Indexing = find(Matrx==Key);

disp('Its indexes are: ')

disp(Indexing);

Once the code is run, the following output is obtained.

> Example6p4

Its indexes are:

     5

     9

    10

    15

>

As shown, MATLAB returns the index values where the number 71 occupies a place. 

The fifth, ninth, tenth, and fifteenth elements of the matrix have a value of 71. From this 

example, we see that the order of indexing goes column by column.

Example 6-5. Consider the string given by 12345 ABcde Antonio. Write code that 

looks for the string antonio without considering case-sensitivity.

Solution 6-5. MATLAB is a case-sensitive language. Therefore, the strings Antonio 

and antonio are two different strings. The following code can be used to search for the 

desired string.

Chapter 6  Basic Statistics and Data Analysis



126

Example6p5.m

%Example6p5

%This code finds string

Text = '12345 ABcde Antonio';

Scr = 'antonio';

NewText = upper(Text);

NewScr= upper(Scr);

Findit = strfind(NewText,NewScr);

disp('Place of string: ');

disp(Findit);

The strings can be defined in MATLAB as vectors containing these strings, as shown 

in the preceding code. After running the code, the following output will be obtained.

> Example6p5

The string is

    13

>

This output states that the searched string is embedded in the bigger string, and it 

starts from the thirteenth element of the vector. If the string did not exist, then we would 

have gotten an empty set [], meaning that the searched word could not be found.

Example 6-6. In MATLAB, there is a dataset available for use with the name 

hospital. A portion of these data are shown in Figure 6-1.

Chapter 6  Basic Statistics and Data Analysis



127

Let us load these data into the workspace. Then, search the dataset to find the  

last name DIAZ, and other relevant information. After that, find the people who are  

50 years old.

Solution 6-6. To find DIAZ, we need to search the column LastName, which contains 

strings. To search for the number 50, we need to work with the column Age. The 

following code can be used to perform the given tasks.

Example6p6.m

%Example6p6

%This code finds data

load hospital

IsThere=ismember(hospital.LastName,'DIAZ');

index = find(IsThere);

fprintf('The person last name DIAZ is\n')

hospital(index,:)

fprintf('Information having age 50:\n')

hospital(find(hospital.Age==50),:)

Figure 6-1.  A screenshot from the hospital dataset

Chapter 6  Basic Statistics and Data Analysis



128

In this code, the command ismember determines whether DIAZ is a member of the 

cell hospital.LastName or not. It returns 1 if it is the case, and 0 if it is not. By using the 

find command, it is possible to find out the index of the required information.

Once the code is executed, we will obtain the following output.

> Example6p6

The person last name DIAZ is

ans =

             LastName    Sex    Age   Weight    Smoker    BloodPressure

    BEZ-311  'DIAZ'      Male   45    172       true      136          93

               Trials

    BEZ-311    [1×0 double]

Information having age 50:

ans =

               LastName          Sex     Age    Weight    Smoker

    XBA-581    'ROBINSON'        Male    50     172       false

    DAU-529    'REED'            Male    50     186       true

               BloodPressure      Trials

    XBA-581    125          76    [1×3 double]

    DAU-529    129          89    [        22]

>

�Data Processing
This section presents how to pull out and process information from a Microsoft Excel 

data file via an example.

Example 6-7. Write code to get the information from the Excel file 

DataProcessing1.xlsx (Figure 6-2).

Chapter 6  Basic Statistics and Data Analysis



129

Acquire the data from the second, third, and fourth columns, including their 

corresponding titles. Plot these data in a bar graph.

Solution 6-7. The following code can be used to accomplish the assigned task.

Example6p7.m

%Example6p7

%This code plots graphics from an Excel file

DataFile = importdata('DataProces.xlsx');

NewVar1=(DataFile.textdata.Sheet1{1,2});

NewVar2=(DataFile.textdata.Sheet1{1,3});

NewVar3=(DataFile.textdata.Sheet1{1,4});

bar(DataFile.data.Sheet1)

grid on

title('Sample Data')

xlabel('Number of Persons');

ylabel('kg');

legend(NewVar1,NewVar2,NewVar3);

Here, we can get the column titles from the variables NewVar1, NewVar2, and NewVar3.

Once the code is executed, we will see the graphic result shown in Figure 6-3.

Figure 6-2.  The content of the file DataProcessing1.xlsx

Chapter 6  Basic Statistics and Data Analysis



130

In MATLAB, you can work with comma-separated value (.csv) files as well.

Example 6-8. Write code to print the first five rows of the data from the outages.csv 

file from MATLAB.

Solution 6-8. The following code can be used to accomplish the given task.

Example6p8.m

%Example6p8

%This code works with csv data

T = readtable('outages.csv');

Y=head(T,4); % show first 4 rows of table

disp(Y)

Once the code is run, the following output is obtained.

Figure 6-3.  The output obtained by Example6p7

Chapter 6  Basic Statistics and Data Analysis



131

> Example6p8

Region       OutageTime        Loss    Customers   RestorationTime   Cause

 _______     ________________  ______  __________  _______________   _________

'SouthWest'  2002-02-01 12:18  458.98  1.8202e+06  2002-02-07 16:50  'winter storm'

'SouthEast'  2003-01-23 00:49  530.14  2.1204e+05   NaT              'winter storm'

'SouthEast'  2003-02-07 21:15  289.4   1.4294e+05  2003-02-17 08:14  'winter storm'

 'West'      2004-04-06 05:44  434.81  3.4037e+05  2004-04-06 06:10  'equipment fault'

>

�Problems
6.1. Create a 4 × 5 matrix randomly by using the rand() function. 

Then, calculate the maximum value, mean value, and standard 

deviation for each column of the matrix.

6.2. Consider the data 30, 45, 100, 65, 98, 45, 61, and 10. Write a 

code to sort the given data both in ascending and descending 

order.

6.3. Randomly create a 2 × 6 matrix by using the randi() function. 

Then, sort each column and each row of the matrix in descending 

order.

6.4. Consider the matrix given by Mat = [41, 45, 100, 65, 41, 45, 61, 

10]. Write code that searches for 41 within this matrix.

6.5. Consider the string given by 5361 Sen Antonio Ben 

Banderas. Write code that looks for the string anderas without 

considering case-sensitivity.

Chapter 6  Basic Statistics and Data Analysis



133
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_7

CHAPTER 7

Data Visualization 
and Animation
MATLAB provides very powerful techniques to visualize data. In this chapter, we look 

at how to visualize data and create animations. Visualizing data was already touched 

on in Chapter 1. Therefore, the animation techniques are emphasized in this chapter. 

Animations can be created by using three basic techniques in MATLAB. These methods 

can be summarized as updating coordinates, applying transformation to objects, and 

creating movies.

�Data Visualization
We already learned how to visualize two-dimensional data Chapter 1 for both single 

plots and multiple plots in a figure. In this section we learn how to visualize three-

dimensional data (Table 7-1).



134

Example 7-1. Consider the three-dimensional function given here.

0 ≤ t ≤ 4π, x = sin (t), y = cos (t), z = t.

Plot the graph of x, y, and z in a single figure.

Solution 7-1. The following code can be used to accomplish the given task.

Example7p1.m

%Example7p1

%This code plots 3-D

close all;

t = linspace(0,8*pi,1000);

x=sin(3*t);y=cos(2*t)-5;z=3*t;

plot3(x,y,z)

xlabel('sin(t)');

ylabel('cos(t)');

zlabel('t');

grid on

title('3-D Plot')

Table 7-1.  Some Functions Related to 3-D Plotting

Function Description

plot3(x,y,z) Creates a 3-D line plot

bar3 Plots 3-D bar graphs

comet3(x,y,z) Plots an animated 3-D graph

ezmesh Visualizes the function in 3-D

ezplot3 A 3-D parametric curve plotter

mesh(x,y,z) Creates a meshed-surface plot

pie3 Draws a 3-D pie chart

scatter3 Is a 3-D scatter plot function

stem3 Creates a 3-D stem plot

surf Plots a 3-D shaded surface

waterfall Creates a waterfall plot

Chapter 7  Data Visualization and Animation



135

In this code, the close all command closes all the active figures drawn when it is 

called. Once the code is run, the output shown in Figure 7-1 is displayed.

There are two important functions that produce values with two variables in 

MATLAB, namely, peaks and meshgrid.

The function peaks(x,y) produces a 49 × 49 matrix by default via Gaussian 

distribution. The function meshgrid(x,y) replicates the grid vectors x and y to produce a 

full grid.

Using the functions [X,Y,Z] = peaks(x,y,z) and [X,Y,Z] = meshgrid(x,y,z), it is 

possible to create three variables, as well.

Example 7-2. Write code that plots two different functions onto two separate figures. 

The first plot belongs to the following function (which plots the Mexican hat):

	

sin x y

x y

2 2

2 2

+( )
+

	

Figure 7-1.  Output of Example7p1

Chapter 7  Data Visualization and Animation



136

where x and y are between -8 and 8. The second function (which plots a cowboy hat) is

	
sin 3 22 2

2 2

x y

x y

+( )
+

	

where x and y are between -1.5 and 1.5.

Solution 7-2. The following code can be used to accomplish the given task.

Example7p2.m

%Example7p2

%This code uses meshgrid and surf

close all;

[x,y] = meshgrid(linspace(-8,8,30));

[xx,yy]=meshgrid(linspace(-1.5,1.5,30),...

    linspace(-1.5,1.5,30));

z1 = sin (sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2);

z2 = sin(3*xx.^2+2*yy.^2)./(xx.^2+yy.^2);

figure(1)

surf(z1), shading flat

title('Mexican Hat');

figure(2)

surf(z2), shading faceted

title('Cowboy Hat');

% other possible shadings: flat, faceted, interp

Once the code is run, the resulting output is shown in Figures 7-2 and 7-3.

Chapter 7  Data Visualization and Animation



137

Figure 7-2.  First output of Example7p2

Figure 7-3.  Second output of Example7p2

Chapter 7  Data Visualization and Animation



138

�Animation
Three techniques can be applied to create an animation with data: updating coordinates, 

applying transformation, and creating movies.

�Updating Coordinates
In this type of animation, the object properties are updated and called within a loop. 

Most of the time these properties are the data of x and y coordinates as illustrated in 

Example 7-3.

Example 7-3. Consider the following function.

	
y x x= ( ) £ £sin ,2 0 3p 	

Write code to animate the function y by changing its coefficient.

Solution 7-3. The following code can be used to accomplish the given task.

Example7p3.m

%Example7p3

%This code animates 2-D

x = 0:0.05:3*pi;

y = sin(x.^2);

N = length(x);

for i=1:N

    y_plot = (i/N)*y;

    plot(x,y_plot)

    axis([0,3*pi,-1,1]);

    xlabel('x values')

    ylabel('y values')

    title('Animating 2-D')

    pause(0.02)

end

grid on

Chapter 7  Data Visualization and Animation



139

In the preceding code, the function y is plotted with coefficients starting from 
1

189
 

to 1. After each plotting in the loop, the pause(0.02) command pauses the computer for 

0.02 seconds to see the changes in each frame visually.

Once the code is run, the plot is animated. The plot shown in Figure 7-4 is the final 

frame of the animation.

Example 7-4. Write code that uses the drawnow function to show the animation. The 

code should draw lines in a circle.

Solution 7-4. The following code can be used to accomplish the given task.

Example7p4.m

%Example7p4

%This code animates 2-D

N=100;

Angle = linspace(-pi,pi,N);

xc = sin(Angle);yc = cos(Angle);

plot(xc,yc);axis equal

xt = [1 1 1 1];yt = [0 0 0 0];

Figure 7-4.  A snapshot of the output of Example7p3

Chapter 7  Data Visualization and Animation



140

hold on

t = area(xt,yt); % initialize flat triangle

for j = 1:N

    xt(j) = xc(j); % determine new vertex value

    yt(j) = yc(j);

    t.XData = xt; % update data

    t.YData = yt; % update data

    drawnow % display updates

end

title('Final Frame of Animation')

In the preceding code, the area function is used to plot yt values versus xt values 

and fills the area between 0 and yt. Inside the for loop, the plotted data are updated and 

displayed with the drawnow function. Once the code is run, the output shown in Figure 7-5 

is obtained, which is the final frame of the animation of the code.

�Applying Transformation
In this technique, transformation is applied to objects. The function hgtransform is used 

to create the transform object.

Figure 7-5.  A snapshot of the output of Example7p4

Chapter 7  Data Visualization and Animation



141

Example 7-5. Write code to animate a 3-D star around the z-axis while the star is 

scaled from a large size to a smaller size by using the hgtransform.

Solution 7-5. The following code can be used to accomplish the given task.

Example7p5.m

%Example7p5

%This code uses hgtransform function

ax = axes('XLim',[-1.5,1.5],...

    'YLim',[-1.5,1.5],'ZLim',[-1.5,1.5]);

view(3) %sets for 3-d view

grid on

[x,y,z] = cylinder([.1 0]);

h(1) = surface(x,y,z,'FaceColor','yellow');

h(2) = surface(x,y,-z,'FaceColor','cyan');

h(3) = surface(z,x,y,'FaceColor','magenta');

h(4) = surface(-z,x,y,'FaceColor','green');

h(5) = surface(y,z,x,'FaceColor','blue');

h(6) = surface(y,-z,x,'FaceColor','red');

t = hgtransform('Parent',ax);

set(h,'Parent',t)

Rz = eye(4);Sxy = Rz;

for r = 1:.1:2*pi

    Rz = makehgtform('zrotate',r);

    % Scaling matrix

    Sxy = makehgtform('scale',r/5);

    set(t,'Matrix',Rz/Sxy)

    drawnow

    pause(0.02)

    if r == 3.6

        f = getframe;

    end

end

imshow(f.cdata)

title('Frame at r=3.6')

Chapter 7  Data Visualization and Animation

https://www.mathworks.com/help/matlab/ref/hgtransform.html


142

Once the code is run, the output shown in Figure 7-6 is obtained.

�Creating Movies
Creating a movie is another method to animate the data. In this method, the picture of 

each drawing in each iteration is obtained using the getframe function. Then, using the 

movie function, the animation is created.

Example 7-6. For the following function given by

	 y t t= ( ) £ £sin , ,0 2p 	

write code to animate the function y as a movie.

Solution 7-6. The following code can be used to accomplish the given task.

Example7p6.m

%Example7p6

%This code creates a movie

t=linspace(0,2*pi,1000);Count=1;

figure('Name',...%'NumberTitle','off')

    'Original Draw','Menu','none')

Figure 7-6.  Output of Example7p5

Chapter 7  Data Visualization and Animation



143

for freq=0:0.1:2*pi

          y=sin(freq*t);

          plot(t,y);

          xlabel('2 pi');ylabel('Results');

          axis([0,2*pi,-1,1])

          Script1=sprintf('y(t)=sin(%.1f t)',freq);

          title('Sinusoidal Function');

          text(1,0.5,Script1)

          M(Count)=getframe;Count=Count+1;

end

figure('Name',...

    'Playing Created Animation twice','Menu','none')

movie(M,2);

Once the code is run, the output is shown in Figure 7-7.

When you want to save the movie that you created, use the functions writeVideo 

and VideoWriter.

Figure 7-7.  The second output of the program Example7p6

Chapter 7  Data Visualization and Animation



144

Example 7-7. Create a movie by using the functions peaks and surf. Then, save the 

movie as an *.avi file.

Solution 7-7. The following code can be used to create the *.avi file.

Example7p7.m

%Example7p7

%This code saves the movie as *.avi

myVideo = VideoWriter('myfile.avi');

uncompressedVideo = VideoWriter('myfile.avi',...

    'Uncompressed AVI');

myVideo.FrameRate = 40;

myVideo.Quality = 100;

open(myVideo); % Open file to write

L = peaks;

surf(L);

axis tight manual

set(gca,'nextplot','replacechildren');

for m = 1:60

   surf(sin(2*pi*m/20)*L,L)

   frame = getframe;

   writeVideo(myVideo, frame);

end

close(myVideo);%close file

In this code, the function VideoWriter creates a video writer object. The class of this 

object is the same as its name, VideoWriter. Using the function writeVideo, the frames 

are written into that file. Once the code is executed, a file named myfile.avi is created 

and saved into your current directory.

�Problems
7.1. Consider the three-dimensional function given here.

0 ≤ t ≤ 2π, x = sin (2t), y = cos (3t), z = 5t

Plot the graph of x, y, and z in a single figure.

Chapter 7  Data Visualization and Animation



145

7.2. Consider the following function.

	
y x x= ( ) £ £sin ,3 0 p 	

Write code to animate the function y by changing its coefficient.

7.3. Write code that uses the drawnow function to show the 

animation. The code should draw lines in a square.

7.4. Write a code to animate a 3-D star around the y-axis while 

the star is scaled from a small size to a larger size using the 

hgtransform function.

7.5. For the following function given by

	 y t t= ( ) £ £sin , ,2 0 p 	

write code to animate the function y twice as a movie and save the 

created animation.

Chapter 7  Data Visualization and Animation

https://www.mathworks.com/help/matlab/ref/hgtransform.html


147
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_8

CHAPTER 8

Computational Biology
Computational biology is a division of applied science that combines application 

of theoretical methods, mathematical modeling, and computer science to solve 

biological, ecological, social, and behavioral problems. In this chapter, we see some of 

its applications written with MATLAB code. Bacterial growth and population models 

are illustrated with a few examples. Then, topics including host–parasitoid models, 

bioinformatics, predator–prey models, and epidemic models are presented.

�Bacterial Growth and Population Models
Bacterial growth or a simulation of a population can be modeled using differential 

equations. Ideally, bacterial growth can be represented as 
dN

dt
N=a , where N is the 

number of cells at the time t and α is the growth rate constant. This model is a first-order 

differential equation model that has the solution N = N0 ∗ eαt where N0 is the initial 

condition. For numerical solutions, MATLAB’s ODE solvers can be used. The equation 

can be used to model population as well.

Example 8-1. For 
dN

dt
N= *0 1. , where N represents the number of bacteria cells, 

write code to plot a graph of the growth of the number of bacteria cells. The initial 

number of cells is 100, and the time is from 1 to 20. The code should plot the numerical 

solution by using ode45 solver as well. Both exact and numerical solutions should be 

shown for the same figure.

Solution 8-1. The following code can be used to accomplish the given task.



148

Example8p1.m

%Example8p1

%This code solves first-order ODE

%which models Bacterial Growth

clear all;close all;

time=0:0.1:20;

Alpha=0.1;% Grow Rate

N_0=100;%initial condition

N=N_0*exp(Alpha*time); %Exact Solution

[x,y]=ode45(@MyFunc,[0,20],100);

plot(time,N,x,y,'ro');

xlabel('time:t');title('Population Changes');

ylabel('Population');grid on;

function Out=MyFunc(x,y)

Alpha=0.1;

Out=Alpha*y;

end

Once the code is executed, the output shown in Figure 8-1 is obtained.

Figure 8-1.  Analytical and numerical solutions

Chapter 8  Computational Biology



149

In Figure 8-1 the red circles shows the numerical solution and the blue line 

represents the exact solution. They are very close to each other, which gives us some idea 

about how the change occurs.

One might question the reason for finding numerical solutions as shown here. In 

some cases, you might not know the exact or analytical solution of the question. There 

might be even no solution for a question. In such cases, you might need to know what 

the solution looks like. In this regard, you can use numerical methods or solutions to find 

an answer to your question up to a certain level of accuracy. Due to the imprecision of 

the solution, numerical solutions are sometimes called approximated solutions.

The differential equation,

	
dN

dt
rN

N

K
= -æ

è
ç

ö
ø
÷1 	 (1)

is called logistic growth or a logistic equation where K is the environmental capacity and 

r is the rate of increase. This model can be used for bacterial growth, or a population 

model. The solution of this logistic equation is N t
KN

N e K Nrt( ) =
+ -( )-

0

0 0

.

Example 8-2. Write code to solve the logistic equation with K = 100, r = 0.1, N0 = 2, 

and time from 1 to 100. The code should animate the analytical solution. Then, both 

numerical and analytical solutions should be plotted on the same figure.

Solution 8-2. The following code can be used to accomplish the given tasks.

Example8p2.m

%Example8p2

%This code solves logistic equation

clear all;close all;

K=500;% environmental capacity

N0=2;% Initial population size

r=0.1;% growth rate

time=linspace(1,100,100);

%N=zeros(1,length(time));

% analytic (exact) solution

Chapter 8  Computational Biology



150

for i=1:length(time) % Animation part

   N(i)=K/(1+(K/N0-1)*exp(-r*time(i)));

   plot(N,'b');

   drawnow

end

[Tode,Node]=ode45(@lge,[1 100],2);

plot(time,N,Tode,Node,'r');

xlabel('Time');title('Population Changes');

ylabel('Population');grid on;

legend('Analytical Solution',...

    'Numerical Solution');

function dN=lge(T,N)

r=0.1;

K=500;

dN=r.*N.*(1-N/K);

end

Once the code is executed, we obtain the output shown in Figure 8-2.

Figure 8-2.  Graph of logistic growth

Chapter 8  Computational Biology



151

�Host–Parasitoid Models
A parasitoid is an organism that lives very close to its host to benefit from it. Parasitoids 

and their hosts generally take advantage of each other. The Nicholson-Bailey model is a 

discrete time model used to simulate a host–parasitoid relationship.

	

H rH aP

P eH aP
t t t

t t t

+

+

= -( )
= - -( )( )

ì
í
ï

îï
1

1 1

exp

exp 	 (2)

In Equation 2, Ht stands for the density of host species and Pt stands for density of 

parasitoid organisms in generation t. Also r is the number of eggs laid by the host, e is the 

number of eggs laid by the parasitoid, and a is proportionality constant.

Example 8-3. Write code to simulate the Nicholson-Bailey model. The initial 

populations for host and parasitoid are 22 and 10, respectively. The number of 

generation is 25. The coefficients are e = 1, a = 0.0069, and r = 2.

Solution 8-3. The following code can be used to accomplish the given task.

Example8p3.m

%Example8p3

%This code solves Nicholson-Bailey model

clear all;close all;

e=1; a=0.069; r=2;

Ngens=25;  %number of generations

time=1:1:Ngens;

H=zeros(1,Ngens); P=zeros(1,Ngens);

P(1)=10; H(1)=22;%initial conditions

for t=1:Ngens-1

    H(t+1)=r*H(t)*exp(- a*P(t));

    P(t+1)=e*H(t)*(1-exp(-a*P(t)));

end

plot(time,H,'r',time,P,'b');

legend('Host','Parasitoid');

xlabel('Generation t');ylabel('Population');

title('Nicholson-Bailey Model');grid on;

Chapter 8  Computational Biology



152

Once the code is executed, we obtain the output shown in Figure 8-3.

�Bioinformatics
Bioinformatics is a broad interdisciplinary field. It develops methods that include 

algorithms and software to understand biological data. Dealing with the full content of 

this topic is outside of the scope of this book. This section presents a few applications 

related to genes from molecular biology.

�Genome Sequencing
Genes are made up of deoxyribonucleic acid (DNA). DNA has four different bases 

(nucleotides): adenine (A), thymine (T), guanine (G), and cytosine (C). A is paired with 

T, G is paired with C, or vice versa on a strand of DNA. Genome sequencing is used to 

investigate the order of nucleotides in DNA.

Example 8-4. A sequence of DNA is given as TCAGGGAATTCCTACTTTTGTAT 

TCGCCAG. Write a code to transcribe that sequence to RNA.

Figure 8-3.  Graph of Nicholson-Bailey model

Chapter 8  Computational Biology



153

Solution 8-4. If you have Bioinformatics Toolbox installed in MATLAB, then by just 

using built-in functions, the code can easily be transcribed into rna. In this solution, 

though, we will write all the code required to get the solution.

Example8p4.m

%Example8p4

%This code transcribes DNA code to RNA

Seq='TCAGGGAATTCCTACTTTTGTATTCGCCAG';

Result = MyDNA2RNA(Seq);

fprintf('DNA : %s\n',Seq')

fprintf('RNA : %s\n',Result')

Here, the sequence seq is passed to the defined function MyDNA2RNA. That function 

is saved in a different file so it can be used in different examples as well. The defined 

function does the transcribing. After obtaining the result, the code prints both the 

original code and the transcribed code.

MyDNA2RNA.m

function [Result]=MyDNA2RNA(Seq)

L=length(Seq);

Result =";

for i=1:L

    switch Seq(i)

        case 'A'

            Result(i) = 'U';

        case 'T'

            Result(i) = 'A';

        case 'G'

            Result(i) = 'C';

        case 'C'

            Result(i) = 'G';

        otherwise

            disp('Code has WRONG Letter');

    end

end

end

Chapter 8  Computational Biology



154

Once the code is executed, we obtain the following output.

>> Example8p4

DNA : TCAGGGAATT C CTA C TTT T GTATTCGCCAG

RNA : AGUCCCUUAAGGAUGAAAACAUAAGCGGUC

>>

Example 8-5. A sequence of a DNA is given as TCAACCGGTCGTAGCTAC. Write 

code to transcribe it to RNA. Then, by using a genetic code table (Figure 8-4), translate it 

to a sequence of amino acids. Finally, the code should display the final sequence on the 

screen.

Solution 8-5. In the genetic code table, the nucleotides are separated, or grouped 

as three by three. Every group is called a codon. For each of these codons, there is a 

corresponding amino acid except UAA, UAG, and UGA. These three codons are known 

as nonsense codons.

Figure 8-4.  Genetic code table

Chapter 8  Computational Biology



155

All amino acids are listed in Figure 8-4 with three-letter abbreviations. As an 

example, AUU represents isoleucine amino acid, and it is abbreviated Ile. It can be just 

shown by its first letter, I, as well. Some amino acids start with the same letters, however. 

Different single letters are assigned to these amino acids. These single codes are taken 

from MATLAB’s official web site. In this example, we will show each amino acid with 

both three letters and one letter.

Example8p5.m

%Example8p5

%This code transcribes DNA code to RNA

Seq='TCAGGGAATTCCTACTTTTGTATTCGCCAG';

Convert = MyDNA2RNA(Seq);

fprintf('DNA : %s\n',Seq');

fprintf('RNA : %s\n',Convert);

Codons = MyCodons(Convert);

disp('Codons :');

disp(Codons);

[Codn3,Codn1]= GeneticCode(Codons);

disp('Amino Acids with 3 codes');

disp(Codn3);

disp('Amino Acids with 1 code');

disp(Codn1);

In the preceding code, there are three defined functions: MyDNA2RNA, MyCodons, and 

GeneticCode. The first function is the same as in the previous question. The other two 

are shown in the following code.

MyCodons.m

function [Out] = MyCodons(Seq)

%This function takes the sequence

%and returns them as codons

L=length(Seq);

Subst=mod(L,3);

Seq2=cell(1,(L-Subst)/3);

Chapter 8  Computational Biology



156

for k=1:(L/3)

    Seq2{k} = Seq(3*k-2:3*k);

end

Out = Seq2;

end

GeneticCode.m

function [Out1,Out2] = GeneticCode(Seq)

L=length(Seq);%Below are 20 amino acids

Seq2=cell(1,L);Seq3=cell(1,L);

Phe=['UUU','UUC'];Ile=['AUU','AUC','AUA'];

Leu=['UUA','UUG','CUU','CUC','CUA','CUG'];

Met=['AUG'];NONE=['UAA','UAG','UGA'];

Val=['GUU','GUC','GUA','GUG'];

Ser=['UCU','UCC','UCA','UCG','AGU','AGC'];

Pro=['CCU','CCC','CCA','CCG'];

Thr=['ACU','ACC','ACA','ACG'];

Ala=['GCU','GCC','GCA','GCG'];

Tyr=['UAU','UAC'];His=['CAU','CAC'];

Gln=['CAA','CAG'];Asn=['AAU','AAC'];

Lys=['AAA','AAG'];Asp=['GAU','GAC'];

Glu=['GAA','GAG'];Cys=['UGU','UGC'];

Arg=['CGU','CGC','CGA','CGG','AGA','AGG'];

Gly=['GGU','GGC','GGA','GGG'];Trp=['UGG'];

for i=1:(L)

    if contains(Seq(i),Phe)

        AA='Phe';Aa='F';

    elseif contains(Ile,Seq(i))

        AA='Ile';Aa='I';

    elseif contains(Leu,Seq(i))

        AA='Leu';Aa='L';

    elseif contains(Met,Seq(i))

        AA='Met';Aa='M';

Chapter 8  Computational Biology



157

    elseif contains(NONE,Seq(i))

        AA='NON';Aa='-';

    elseif contains(Val,Seq(i))

        AA='Val';Aa='V';

    elseif contains(Ser,Seq(i))

        AA='Ser';Aa='S';

    elseif contains(Pro,Seq(i))

        AA='Pro';Aa='P';

    elseif contains(Thr,Seq(i))

        AA='Thr';Aa='T';

    elseif contains(Ala,Seq(i))

        AA='Ala';Aa='A';

    elseif contains(Tyr,Seq(i))

        AA='Tyr';Aa='Y';

    elseif contains(Gln,Seq(i))

        AA='Gln';Aa='Q';

    elseif contains(Lys,Seq(i))

        AA='Lys';Aa='K';

    elseif contains(Glu,Seq(i))

        AA='Glu';Aa='I';

    elseif contains(Arg,Seq(i))

        AA='Arg';Aa='R';

    elseif contains(Gly,Seq(i))

        AA='Gly';Aa='G';

    else

        AA='---';Aa='-';

    end

    Seq2{i}=AA;Seq3{i}=Aa;

end

Out1=Seq2;Out2=Seq3;

end

Chapter 8  Computational Biology



158

Once the code is run, the following output is displayed.

> Example8p5

DNA : TCAGGGAATTCCTACTTTTGTATTCGCCAG

RNA : AGUCCCUUAAGGAUGAAAACAUAAGCGGUC

Codons :

  Columns 1 through 8

    'AGU'    'CCC'    'UUA'    'AGG'    'AUG'    'AAA'    'ACA'    'UAA'

  Columns 9 through 10

    'GCG'    'GUC'

Amino Acids with 3 codes

  Columns 1 through 8

    'NON'    'Pro'    'Ile'    'Arg'    'Met'    'Lys'    'Thr'    'NON'

  Columns 9 through 10

    'Ala'    'Val'

Amino Acids with 1 code

    '-'    'P'    'I'    'R'    'M'    'K'    'T'    '-'    'A'    'V'

>

One dash or three dashes belong to the nonsense codons.

Example 8-6. From the previous example, where the sequence is 

TCAACCGGTCGTAGCTAC, remove the first letter, and transcribe the new sequence 

again. Write the obtained amino acids as one single word where each letter represents 

one amino acid. Explain the obtained result.

Solution 8-6. The following code can be used to accomplish the given tasks.

Example8p6.m

%Example8p6

%This code transcribes DNA code to RNA

Seq='TCAGGGAATTCCTACTTTTGTATTCGCCAG';

Seq2=Seq(2:end);

Convert = MyDNA2RNA(Seq2);

Codons = MyCodons(Convert);

[Codn3,Codn1]= GeneticCode(Codons);

MySeq=";

Chapter 8  Computational Biology



159

for k=1:length(Codn1)

    MySeq(k)=Codn1{k};

end

disp('Original Sequence:');disp(Seq);

disp('Updated Sequence');disp(Seq2);

disp('Obtained Amino Acids:');disp(MySeq);

Here, the MyDNA2RNA, MyCodons, and GeneticCode functions are the same functions 

as those used before. Once the code is run, the following output is obtained.

> Example8p6

Original Sequence:

TCAGGGAATTCCTACTTTTGTATTCGCCAG

Updated Sequence

CAGGGAATTCCTACTTTTGTATTCGCCAG

Obtained Amino Acids:

VL-R-KIKR

>

As shown, the obtained amino acids here and those obtained from the previous 

question are different. This indicates that, if any of the nucleobase is missed in a 

sequence, then a totally different sequence is obtained after transcribing.

�Dot Plot
Dot plots are used to display a comparison of the given two sequences. To plot the 

graphic, generally a two-dimensional matrix is produced, so the obtained graph is also 

two-dimensional. The first given sequence is placed on the row, and the second given 

sequence is laid in a column of the matrix. In the matrix, 1 is assigned for a match, and 0 

is assigned for a mismatch.

Example 8-7. For the given two sequences Seq1=AATGCAATT and Seq2=ATTGACT, write 

code to print out the dot matrix and draw a dot plot. In the graph, matches should be 

shown in red, and mismatches should be shown in blue.

Solution 8-7. The following code can be used to accomplish the given tasks.

Chapter 8  Computational Biology



160

Example8p7.m

%Example8p7

%This code creates dot matrix and dot plot

Seq1='AATGCAATT';Seq2='ATTGACT';

X=length(Seq1);Y=length(Seq2);

DotMatrix=zeros(Y,X);

for i=1:Y

    Places=strfind(Seq1,Seq2(i));

    DotMatrix(i,Places)=1;

end

disp('The Dot Matrix:');

disp(DotMatrix);figure;hAxes=gca;

imagesc(hAxes,DotMatrix);

colormap(hAxes,[0,0,1;1,0,0]);

ylabel(fliplr(Seq2));title(Seq1);

In the preceding code, the matching places are found for each member of the Seq2 

variable using the strfind command. Then, 1 is assigned to these places in DotMatrix. 

After creating the matrix, the figure is created using the figure function. The gca 

command handles the axis of the current figure, and the figure is displayed with scaled 

colors set using the imagesc function. Match and mismatch color assignment is achieved 

using the colormap command for the current figure. The order of the Seq2 variable is 

reversed using the fliplr command, and it is put on the y axis where the Seq2 variable is 

placed as a title.

Once the code is executed, we obtain the following output.

> Example8p7

The Dot Matrix:

     1     1     0     0     0     1     1     0     0

     0     0     1     0     0     0     0     1     1

     0     0     1     0     0     0     0     1     1

     0     0     0     1     0     0     0     0     0

     1     1     0     0     0     1     1     0     0

     0     0     0     0     1     0     0     0     0

     0     0     1     0     0     0     0     1     1

>

Chapter 8  Computational Biology



161

The image shown in Figure 8-5 is displayed.

�Predator–Prey Models
Predators are basically the organisms that eat other organisms to survive. Preys are also 

the organisms that are eaten by the predators. Some examples between predators and 

preys can be given as lions with zebras, tigers with buffalos, and sharks with fishes.

�Model with Two Species
The most famous model used to describe the relationship between predators and their 

prey is the Lotka-Volterra equations.

	

dA

dt
A AB

dB

dt
B AB

= -

= - +

ì

í
ïï

î
ï
ï

g a

d b

;

.
	 (3)

Figure 8-5.  Dot plot image of dot matrix

Chapter 8  Computational Biology



162

A(t) represents the population size of prey at time t, and B(t) represents the 

population size of predators at time t. In the equations, γ is the increasing rate of prey 

population, α is the predation rate, δ is the mortality rate of predators, and β is the 

reproduction rate of predators.

If we interpret the Lotka-Volterra equations shown, the following conclusions can be 

reached.

•	 In Equation 3, if there are no predators, assuming that B(t) = 0, then 

the prey population is exponentially increased.

•	 In Equation 3, if no prey exists, which means A(t) = 0, then the 

predator population decreases exponentially.

Lotka-Volterra equations are nonlinear, first-order differential equations. For such 

types of nonlinear differential equations, analytical solutions are unlikely due to the 

nature of nonlinearity. Although some reports have mentioned that analytical solutions 

exist under some assumptions for these equations, we will benefit from the numerical 

solvers of MATLAB for the solution of Lotka-Volterra equations in this section.

Example 8-8. For the given Equation 3, write code to simulate the population sizes 

for predators and prey with respect to time. The initial populations are 10 and 100 for 

predators and prey, respectively. Time span will be from 0 to 50. Other coefficients are 

given as γ = 0.4, α = 0.4, δ = 2.0, and β = 0.1. Explain the graphic obtained. The figure 

name should have the title Predator-Prey Model, and there should be no menu bar on 

the figure.

Solution 8-8. The following code can be used to accomplish the given tasks.

Example8p8.m

%Example8p8

%This code solves Lotka-Volterra equations

y0 = [100;10];%initial populations

[t,x] = ode45(@LVfunc,[0 50],y0);

A = x(:,1);%Prey

B = x(:,2);%Predator

figure('Name','Predator-Prey Model',...

    'NumberTitle','off','MenuBar', 'none');

plot(t,A,'-o',t,B,'r-');grid on;

legend('Preys','Predators');

Chapter 8  Computational Biology



163

title('Population Along With Time')

xlabel('Time');ylabel('Population');

function dxdt = LVfunc(t,x)

gama = 0.4; alpha = 0.4;

delta = 2.0; beta = 0.1;dxdt=[0;0];

dxdt(1)=gama*x(1)-alpha*x(1)*x(2);%prey

dxdt(2)=-delta*x(2)+beta*x(1)*x(2);%predators

end

Once the code is run, the output shown in Figure 8-6 is displayed.

In Figure 8-6, we see that population starts with 100 and 10 for predators and prey, 

respectively. To see clearly what happens at the very beginning horizontally, in the 

ninth row of the code, we can use the semilog function instead of the plot function. By 

changing just these two functions, we get the graph shown in Figure 8-7.

Figure 8-6.  Predator–prey population model

Chapter 8  Computational Biology



164

Figure 8-6 and Figure 8-7 use the same x and y values. In the second plot, logarithmic 

scale values for base 10 are used for the x axis.

In Figure 8-7, we clearly see that starting from the beginning, the population of 

the prey decreases exponentially and the population of predators increases slowly, 

compared to the speed of decline in the prey. Before time is equal to 1, the populations 

for both predators and prey become equal. For the rest of the time, or in the long run, we 

can take a look Figure 8-6.

As the population of prey gets higher, after a certain amount of time, the population 

of predators increases as well. The predators eat prey faster than the prey can reproduce. 

As a result of, the population of prey begins to fall. The food supply thus diminishes for 

predators, so their population begins to fall as well. After some time, the whole scenario 

starts repeating itself, and the populations behave predictably with respect to time.

�Model with Three Species
There exists a modified Lotka-Volterra model for three species. This model has a system 

of three equations.

Figure 8-7.  Predator–prey populations with semilog

Chapter 8  Computational Biology



165

	
dA

dt
A AB= -g a ; 	 (4)

	
dB

dt
B AB eBC= - + -d b ; 	 (5)

	
dC

dt
fC gBC= - + . 	 (6)

Here C is another type of organism besides A and B, which were introduced in the 

previous section. C can hunt the predator B when there is an interaction. The population 

of organism C can go down with the absence of predators. According to Equations 4, 5, 

and 6, there is no interaction between organisms A and C.

Example 8-9. For the given Equations 4, 5, and 6, write code to simulate the 

population sizes for predators, prey, and the third organism with respect to time. The 

initial population is 100 for all three organisms. Time span will be from 0 to 60. Other 

coefficients are given as γ = 0.4, α = 0.4, δ = 2.0, β = 0.2, e = 0.2, f = 0.1, and g = 0.15.

Solution 8-9. The following code can be used to accomplish the given tasks.

Example8p9.m

%Example8p9

%Lotka-Volterra eqns with 3 species

clear all;close all;

y0 = [100;100;100];%initial populations

[t,x] = ode45(@LVfunc2,[0 60],y0);

A = x(:,1);%Prey

B = x(:,2);%Predator

C = x(:,3);%3rd Organism

figure('Name','Predator-Prey Model',...

    'NumberTitle','off','MenuBar', 'none');

plot(t,A,'-o',t,B,'r-',t,C,'gx');grid on;

legend('Preys','Predators','3rd organism');

title('Population Along With Time')

xlabel('Time');ylabel('Population');

Chapter 8  Computational Biology



166

LVfunc2.m

function dxdt = LVfunc2(t,x)

dxdt=[0;0;0]; gama = 0.4; alpha = 0.4;

delta = 2.0; beta = 0.2;

e=0.2;f=0.1;g=0.15;

dxdt(1)=gama*x(1)-alpha*x(1)*x(2);%prey

dxdt(2)=-delta*x(2)+beta*x(1)*x(2)-...

    e*x(2)*x(3);%predators

dxdt(3)=f*x(2)*x(3)-g*x(3);%3rd organism

end

Once the code is run, the output in Figure 8-8 is displayed.

In Figure 8-8, we can see the long run of populations. By just looking at this output, 

we can say that populations of prey and the third organism decrease over time. This 

picture is misleading, however. If we increase the final time from 60 to 100, we see that 

the bars for each organism stabilize, and they behave predictably after a certain amount 

of time. We can see this scenario in Figure 8-9. where the final time is entered as 200.

Figure 8-8.  Populations of three species

Chapter 8  Computational Biology



167

For the very beginning of the dynamics, we can take a look at the output in Figure 8-10.

Figure 8-9.  Populations of three species at the outset

Figure 8-10.  Population of three species at the outset

Chapter 8  Computational Biology



168

�Epidemic Models
In this section, epidemic models of SI, SIS, SIR, SIRS, and HIV dynamics are presented.

�SI Epidemic Model
In this epidemic model, there exist two different stages, susceptible (S), and infected (I). 

The total population of both organisms should be equal to the total population size, N. In 

other words,

	 S t I t N( ) + ( ) = . 	 (7)

The SI model without considering births and deaths has the following form:

	
dS

dt N
SI= -

b
, 	 (8)

	

dI

dt N
SI=

b
. 	 (9)

Here, 
bb
N
SI  represents the number of infections due to infected individuals at a 

given time, and β is the contact rate by an infected person at a given time.

Example 8-10. For the given Equations 7, 8, and 9, write code to simulate the 

population sizes of SI stages with respect to time. The initial populations are 9 for 

susceptible, and 1 for the infected group, making the total population 10. Time span will 

be from 0 to 10, and β = 0.9.

Solution 8-10. The following code can be used to accomplish the given tasks.

Example8p10.m

%Example8p10

%This code solves SI model

[t,x]=ode45(@SI,[0,10],[9,1]);

plot(t,x);grid on;

xlabel('time');title('SI Model');

ylabel('population');

legend('Susceptible','Infected','Recovered');

function Si=SI(t,x)

beta=.9;N=10;

Chapter 8  Computational Biology



169

%x(1)=susceptible group

Si(1,:)=-(beta/N)*x(1)*x(2);

%x(2)=exposed by infection

Si(2,:)=(beta/N)*x(1)*x(2);

end

Once the code is run, the output shown in Figure 8-11 is displayed.

As shown in Figure 8-11, the infected population starts with 1 person, and at the end, 

all populations have become infected. Conversely, the susceptible population starts 

with 9 persons and is reduced to 0 at the end of 10 days as everybody went from the S to I 

stage. In this model, everyone becomes infected when time goes to infinity. Therefore, it 

can be concluded that this model is more suitable for highly infectious diseases.

�SIS Epidemic Model
In this epidemic model, it looks like as if there are three stages: susceptible (S) stage, 

infected (I) stage, and susceptible (S) stage again. The last stage is actually the first stage. 

Therefore, actually only two stages exist in the SIS model. All infected organisms become 

Figure 8-11.  Dynamics of SI model

Chapter 8  Computational Biology



170

susceptible again. This type of model is more applicable to the diseases that commonly 

have repeat infections in a cycle.

The total population of the all organisms should be equal to total population size, N.

The SIS model without considering births and deaths has the following form:

	

dS

dt N
SI I= - +

b
g 	 (10)

	

dI

dt N
SI I= -

b
g 	 (11)

where β is the contact rate by infected people at a point in time, and γ is the recovery rate.

The ratio of 
b
g

 is called the basic reproduction number R0. If R0 > 1, the disease 

becomes endemic, otherwise (R0 ≤ 1 ) it dissipates.

Example 8-11. For the given Equations 10 and 11, write code to simulate the 

population sizes of the SIS model. The initial populations are 9 and 1 for S and I states, 

respectively. Time span is from 0 to 50. The coefficients are given as γ = 1.0 and β = 0.9.

Solution 8-11. The following code can be used to accomplish the given tasks.

Example8p11.m

%Example8p11

%This code solves SIS model

[t,x]=ode45(@SIS,[0,10],[9,1]);

plot(t,x);grid on;

xlabel('time');

title('SIS Model with ${R}_{0} \ge 1$',...

    'FontAngle','italic','Interpreter',...

    'Latex');

ylabel('population');

legend('Susceptible','Infected');

function Si=SIS(t,x)

beta=.9;N=10;

gamma=1.0;%Recovery rate

%x(1)=susceptible group

Chapter 8  Computational Biology



171

Si(1,:)=-(beta/N)*x(1)*x(2)+gamma*x(2);

%x(2)=exposed by infection

Si(2,:)=(beta/N)*x(1)*x(2)-gamma*x(2);

end

In the preceding code, to print R0 ≤ 1 as the title, a LaTeX interpreter is used. Once 

the code is run, the output shown in Figure 8-12 is the result.

It is obvious that the disease fades out over time.

Example 8-12. Simulate the SIS dynamics with the same population sizes and time 

span used for Example 8-11. The coefficients for this example are given as γ = 0.1, and 

β = 0.9 to make R0 > 1.

Solution 8-12. The following code can be used to accomplish the given tasks.

Example8p12.m

%Example8p12

%This code solves SIS model

[t,x]=ode45(@SIS,[0,10],[9,1]);

plot(t,x);grid on;xlabel('time');

Figure 8-12.  Dynamics of SIS model when R0 ≤ 1

Chapter 8  Computational Biology



172

title('SIS Model with ${R}_{0} \ge 1$',...

   'Interpreter','Latex');

ylabel('population');

legend('Susceptible','Infected');

function Si=SIS(t,x)

beta=.9;N=10;

gamma=0.1;%Recovery rate

Si(1,:)=-(beta/N)*x(1)*x(2)+gamma*x(2);

Si(2,:)=(beta/N)*x(1)*x(2)-gamma*x(2);

end

Once the code is run, the output shown in Figure 8-13 is obtained.

As seen in Figure 8-13, when R0 > 1, the disease spreads to the whole population.

Figure 8-13.  Dynamics of SIS model when R0 > 1

Chapter 8  Computational Biology



173

�SIR Epidemic Model
In this epidemic model, there are three different stages: susceptible (S), infected (I), 

and recovered (R). The total population of the all organisms should be equal to the total 

population size, N. In other words,

	 S t I t R t N( ) + ( ) + ( ) = . 	 (12)

The SIR model without considering births and deaths has the following form:

	

dS

dt N
SI= -

b
	 (13)

	

dI

dt N
SI I= -

b
g 	 (14)

	

dR

dt
I=g 	 (15)

where β is the contact rate by an infected people at a point in time and γ is the recovery 

rate. R0 =
b
g

 is the basic reproduction number.

Example 8-13. For the given Equations 13, 14, and 15, write code to simulate the 

population sizes for all S, I, and R stages over time. The initial populations are 9, 1, and 0 

for S, I, and R populations, respectively. Time span is from 0 to 50. Other coefficients are 

given as γ = 0.1 and β = 0.9.

Solution 8-13. The following codes can be used to accomplish the given tasks.

Example8p13.m

%Example8p13

%This code solves SIR model

[t,x]=ode45(@SIR,[0,50],[9,1,0]);

%semilogx(t,x);

plot(t,x);

xlabel('time');ylabel('population');

title('SIR Model');grid on;

legend('Susceptible','Infected','Recovered');

function Sir=SIR(t,x)

Chapter 8  Computational Biology



174

beta=.9;%contact rate by people in population i

gamma=.1;%Recovery rate

N=10;%N=Total number of population

%dS/dt=Sir(1),x(1)=susceptible people

ds=-(beta/N)*x(1)*x(2);

%dI/dt=Sir(2),x(2)=exposed by infection

di=(beta/N)*x(1)*x(2)-gamma*x(2);

%dr/dt=sir(3),x(3)=Recovered from infection

dr=gamma*x(2);

Sir=[ds;di;dr];

end

Once the code is run, the output displayed in Figure 8-14 is obtained.

In this outcome, R0 is greater than 1. If we use γ = 1.0 and keep the rest of the 

parameters in this example the same, the graphic shown in Figure 8-15 is the output 

when the reproduction number is equal to or less than 1.

Figure 8-14.  Dynamics of SIR model with R0 > 1

Chapter 8  Computational Biology



175

�SEIR Epidemic Model
In this epidemic model, illustrated in Figure 8-16, the exposed stage (E) is added to the 

other known S, I, and R stages.

The total population of the all organisms should be equal to the total population size, 

N. In other words,

	 S t E t I t R t N( ) + ( ) + ( ) + ( ) = . 	 (16)

Figure 8-15.  Dynamics of SIR model with R0 ≤ 1

Figure 8-16.  Stages of the SEIR model

Chapter 8  Computational Biology



176

The SEIR model without considering births and deaths can be written in the 

following system of equations.

	

dS

dt N
SI= -

b
	 (17)

	

dE

dt N
SI E= -

b
a 	 (18)

	

dI

dt
E I= -a g 	 (19)

	

dR

dt
I=g 	 (20)

In Equations 17, 18, 19, and 20, β controls the rate of spread of disease between 

susceptible and infected persons over time, α is the contact rate between exposed and 

infected organisms, and γ is the recovery rate.

Example 8-14. For the given Equations 17, 18, 19, and 20, write code to simulate 

the population sizes for all populations with respect to time. The initial populations are 

17, 2, 1, and 0 for the S, E, I, and R groups, respectively. Time span is from 0 to 50. Other 

coefficients are β = 0.8, α = 0.4, and γ = 0.3.

Solution 8-14. The following codes can be used to accomplish the given tasks.

Example8p14.m

%Example8p14

%This code solves SEIR model

[t,x]=ode45(@Seir,[0,50],[17,2,1,0]);

plot(t,x);

xlabel('time');ylabel('population');

title('SEIR Model');grid on;

legend('Susceptible',...

    'Exposed','Infected','Recovered');

function SEIR=Seir(t,x)

N=10;beta=.8;delta=0.4;gamma=1;

SEIR(1,:)=-(beta/N)*x(1)*x(3);

Chapter 8  Computational Biology



177

SEIR(2,:)=(beta/N)*x(1)*x(3)-delta*x(2);

SEIR(3,:)=delta*x(2)-gamma*x(3);

SEIR(4,:)=gamma*x(3);

end

Once the code is run, the output shown in Figure 8-17 is displayed.

To see the very beginning of the dynamics clearly, we can substitute the semilogx 

command with the plot function to get the result shown in Figure 8-18.

Figure 8-17.  SEIR model

Chapter 8  Computational Biology



178

As is clear in Figure 8-18, populations of types start varying before the time is equal 

to 1. In the long term, we see that infected and exposed populations become almost 

zero and the rest of the populations belong to the susceptible and recovery states. 

Considering Figure 8-17, it can be concluded that these situations stay steady when time 

goes to infinity.

One important point we need to keep in mind is that these outcomes can be changed 

by just changing the coefficients of the dynamics. If we add mortality or births to the 

equations, then we could encounter totally a different scenario from what we saw in the 

previous examples.

�Cellular Dynamics of HIV
Human immunodeficiency virus (HIV) targets and alters the immune system and 

ultimately leads to acquired immune deficiency syndrome (AIDS), which is often fatal. 

Researchers and scientists have been trying for decades to find solutions to protect 

Figure 8-18.  Beginning of SEIR dynamics

Chapter 8  Computational Biology



179

people from HIV and AIDS.HIV attacks a specific type of cell in the body, the CD4 

helper cell, or T cell. The basic model for T cell and virus dynamics has a system of three 

equations:

	

dx

dt
d x xvx= - -g b , 	 (21)

	

dy

dt
xv d yy= -b , 	 (22)

	

dv

dt
ky d v xvv= - - b 	 (23)

In this system of equations, 
dx

dt
 represents the number of uninfected cells changing 

with respect to time, 
dy

dt
 represents the number of infected cells changing with respect 

to time, and 
dv

dt
 represents the number of free virus particles changing with respect to 

time where x0 > 0, v0 > 0, and y0 = 0 should hold for the initial conditions.

For the model of Equations 21, 22, and 23, the basic reproduction number R0 is

	
R

k
d

d d
d

N

d d
x

y v
x

x v
0 =

+
æ

è
ç

ö

ø
÷

=
+

bg

bg
bg
bg 	 (24)

where γ is the rate of uninfected cells produced by the immune system, and βxv is the 

rate of infected cells as a result of the crossing of free virus and uninfected cells. N is the 

number of free virus particles, which should be much greater than 1. dx, dy, and dv are 

the death rates of uninfected cells, infected cells, and virus particles, respectively. Time 

is premeasured in days. k is the rate of production of free viral particles from an infected 

cell.

Example 8-15. For Equations 21, 22, and 23, write code to simulate the population 

sizes for uninfected cells, infected cells, and virus particles with respect to time. The 

initial populations are 106, 0, and 2 for uninfected cells, infected cells, and virus particles, 

respectively. Time span will be from 0 to 50. Other coefficients are γ = 105, k = 200, 

β = 3 ∗ 10−7, dx = 0.12, dy = 0.5,  and dv = 4.

Chapter 8  Computational Biology



180

Solution 8-15. The following code shows the core function used inside the main 

code.

Hiv.m

function HIV=Hiv(t,x)

dx=0.12;dy=0.5;dv=4;

beta=3e-7;k=1e+2;gamma=1e+5;

HIV(1,:)=gamma -dx*x(1)-beta*x(1)*x(3);

HIV(2,:)=beta*x(1)*x(3) -dy*x(2);

HIV(3,:)=k*x(2)-dv*x(3)-beta*x(1)*x(3);

end

Most of the values of the variables in the preceding code are taken from An 

Introduction to Mathematical Biology by Linda J. S. Allen (Pearson Education, 2007, 278). 

The main part of the code can be written as follows.

Example8p15.m

%Example8p15

%This code solves HIV model

clear all;close all;

[t,x]=ode45(@Hiv,[0,50],[1e+6,0,2]);

plot(t,x(:,1));

xlabel('Time in days');ylabel('Population');

title('Uninfected Cells');grid on;

figure;plot(t,x(:,2))

xlabel('Time in days');ylabel('Population');

title('Infected Cells');grid on;

figure;plot(t,x(:,3))

xlabel('Time in days');ylabel('Population');

title('Virus Particles');grid on;

In the preceding code, subplot can be used instead of a plot function. To display the 

graphics clearly, three plot functions are used instead. Once the Example8p15.m file is 

run, we obtained the output shown in Figure 8-19 through 8-21.

Chapter 8  Computational Biology



181

Figure 8-20.  Population of infected cells

Figure 8-19.  Population of uninfected cells

Chapter 8  Computational Biology



182

In Figure 8-19, we see that the population of uninfected cells decreased 

exponentially from 106 to about 67,000. After about 15 days, the population size becomes 

stable. For Figures 8-20 and 8-21, the scenarios look similar. Populations of both infected 

cells and virus particles exponentially increased from the third day to the sixth day. 

Then, after 15 days, their population sizes become stable as well.

�Problems
8.1. Write code to solve the logistic equation with K = 50, r = 0.2, 

N0 = 4, and time from 1 to 200. The code should animate the 

analytical solution. Then, both numerical and analytical solutions 

should be plotted on the same figure.

8.2. Write code to simulate the Nicholson-Bailey model. 

The initial populations for host and parasitoid are 10 and 5, 

respectively. The number of generation is 50. The coefficients are e 

= 2, a = 0.0069, and r = 3.

Figure 8-21.  Population of viral particles

Chapter 8  Computational Biology



183

8.3. A DNA sequence is given as TTCCTACTTTTGTATTCGCCAG. 

Write a code to transcribe it to RNA.

8.4. A DNA sequence is given as GGTCGTAGCTAC. Write code 

to transcribe it to RNA. Then, by using the genetic code table, 

translate it to a sequence of amino acids. Finally, the code should 

print out the final sequence on the screen.

8.5. For the two sequences Seq1=GTTAACAATT and Seq2=GTGAT, 

write a code to print out the dot matrix and draw a dot plot. In 

the graph, matches should be displayed in red and mismatches 

should be shown in blue.

8.6. For Equations 10 and 11, write code to simulate the 

population sizes of the SIS model. The initial populations are 20 

and 2 for S and I states, respectively. The time span is from 0 to 80. 

The coefficients are γ = 0.50 and β = 0.8.

8.7. For Equations 13, 14, and 15, write code to simulate the 

population sizes for all S, I, and R stages with respect to time. The 

initial populations are 20, 1, and 0 for S, I, and R populations, 

respectively. The time span is from 0 to 50. Other coefficients are 

γ = 1.3 and β = 0.7.

8.8. For Equations 17, 18, 19, and 20, write code to simulate the 

population sizes for all populations with respect to time. The 

initial populations are 27, 2, 1, and 0 for S, E, I, and R groups, 

respectively. The time span is from 0 to 50. Other coefficients are 

β = 0.7, α = 0.3, and γ = 0.2.

Chapter 8  Computational Biology



185
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_9

CHAPTER 9

Signal Processing
Signal processing is one of the subfields of electrical engineering that analyzes, modifies, 

and operates information from all sources of data in the universe. A signal in signal 

processing is an electrical or electromagnetic current that relocates data from one 

device to another. Everything in the cosmos, such as sounds, images, and videos, can be 

described as a signal in the form of a wave. Signals can be represented as functions of 

one or more independent variables mathematically.

Signal processing has a very wide field of applications, including brain–computer 

interfaces, voice recognition, motion-sensing games, three-dimensional television, 

wearable technologies, biometric security, and more. Full coverage of this subject is 

beyond the scope of this chapter. Here, we review some introductory topics and a few 

applications in this area with MATLAB, including signal types, currents, Fast Fourier 

Transform, and harmonic analysis.

�Signal Types
Signals can be classified into a few categories such as energy and power signals, or 

deterministic or probabilistic signals. In this section, we take a look at continuous and 

discrete signals, analog and digital signals, periodic and nonperiodic signals, and even 

and odd signals.

�Continuous and Discrete Signals
For a signal defined as a function, if for every value of an independent variable (e.g., t), 

there exists a corresponding value (e.g., y), then that function is called a continuous time 

(CT) signal. However, if a signal represented as a function is defined for some discrete 

values of independent variable t, then it is called a discrete time (DT) signal. DT might 



186

not have a function of time in some cases. As an example, in a grayscale image, there are 

two-dimensional discrete values in the matrix of the image that represent colors of the 

image.

In Figure 9-1, we see the graphic of y(t) where

	 y t t t( ) = ( ) - £ £sin , 2 2p p 	 (1)

with a continuous signal.

In Figure 9-2, although the same function is used, the output is different. Because 

discrete values of t are used, the obtained output is a discrete signal as well.

	 y t t t[ ]= ( ) = ± ± ± ¼ ±sin , , , , , ,0
6

2

6

3

6

12

6

p p p p 	 (2)

Figure 9-1.  An example of a continuous signal

Chapter 9  Signal Processing



187

In Equation 2, because t has discrete values, the function y has discrete values 

(corresponding to t values) as well.

In general, continuous functions are shown with parenthesis and square brackets are 

used to define discrete functions.

Example 9-1. For the given discrete signal function y = f [t] = cos(2t), where t is 

defined as −π ≤ t ≤ π, create 10 discrete equally spaced values for t. The code should 

then calculate the corresponding y values and print them on the screen.

Solution 9-1. The following code can be used to accomplish the given task.

Example9p1.m

%Example9p1

%This code has a discrete signal

t = linspace(-2*pi,2*pi,10);

y=cos(2*pi*t);

disp('y Values:');

disp(y);

Figure 9-2.  An example of a discrete signal

Chapter 9  Signal Processing



188

For DC signals, the linspace function is very useful to create equally spaced values 

for time. Once the code is executed, the following output is obtained.

> Example9p1

y Values:

  Columns 1 through 9

   -0.2070  0.7580  -0.9983  0.8292  -0.3202  -0.3202  0.8292  -0.9983  0.7580

  Column 10

   -0.2070

>

�Analog and Digital Signals
Considering the amplitudes of signals, a signal can be analog or digital. An analog signal 

is a continuous wave that maintains the change for a period of time. Digital signals, 

however, can have a finite number of amplitude values. These values are not continuous 

and infinite. In addition, the wave type of an analog signal looks like a sinusoidal 

function, whereas the wave of a digital signal looks like a square wave.

Some examples of analog signals are voices, music, temperature, and Wi-Fi signals 

in the air. Examples of digitals signal are voice recorded on a CD, a digital thermometer, 

and music in an MP3 player.

�Periodic and Nonperiodic Signals
A signal that repeats itself after a period of time is called a periodic signal. A signal that 

does not repeat itself over a period of time is called an aperiodic or nonperiodic signal.

A continuous time signal y(t) is called periodic if it satisfies the following equality.

	 y t y t T( ) = +( )0 	 (3)

for all t and positive constant T0.

Similarly, a discrete time signal y[t] is called periodic if it satisfies the following 

equality.

	 y t y t T[ ] = +[ ]0 	 (4)

for all t and positive constant T0.

Chapter 9  Signal Processing



189

Remark 9-1. Suppose that y(t) is a function representing a continuous signal. Then if

	 y t k at bn( ) = * +( )sin , 	 (5)

or

	 y t k at bn( ) = * +( )cos , 	 (6)

then, the period , T0, of signal y(t) is

	
T

n

n

a

a

0

2

=

ì

í
ï
ï

î
ï
ï

p

p

,

,

if is an odd integer

if is an even integer
	 (7)

In Equations 5 and 6, constant values of k, a,and b are all real numbers, and n should 

be an integer. In Equation 7, ∣a∣ is the absolute value of a.

Remark 9-2. Suppose that y(t) is a function representing a continuous signal. Then if

	 y t k at bn( ) = * +( )tan , 	 (8)

or

	 y t k at bn( ) = * +( )cot , 	 (9)

then, the period T0, of signal y(t) is

	
T

a0 =
p

	 (10)

In Equations 8 and 9, constant values of k, a,and b are all real numbers, and n should 

be an integer.

Example 9-2. A CT signal is defined as y(t) = 5sin3(4t − 1). Find the period of the 

signal. Then write a code to plot the signal where −2π ≤ t ≤ 2π.

Solution 9-2. In the example, the signal is a continuous signal. Therefore, we can 

use Remark 9-1 to find the period. We see that n = 3, which is an odd number, and a = 4. 

Then T0

2

24
= =

p p
.

Chapter 9  Signal Processing



190

The following code can be used to accomplish the given task.

Example9p2.m

%Example9p2

%This code has a periodic signal

t = -2*pi:0.001:2*pi;

y=5*(sin(4*t-1)).^3;

plot(t,y);grid on;

xlabel('t');ylabel('y');

title('A Periodic Signal');

Once the code is run, the output shown in Figure 9-3 is the result.

As shown in Figure 9-3, the signal repeats itself after every 
p
2

 value.

Example 9-3. A CT signal is defined as y(t) = 2 sin (4t) +  cos (6t − 2). Find the period 

of the signal. Then write a code to plot the signal where −π ≤ t ≤ π.

Solution 9-3. In the example, signal has a sine function added to the cosine. We 

will calculate the periods of these two functions separately. Then we will find the least 

Figure 9-3.  Graph of y(t) = 5sin3(4t − 1)

Chapter 9  Signal Processing



191

common multiple (LCM) of those two periods. Let us define the period of sine term 

as T0, and period of cosine term as T1. Then by considering Remark 9-1, we see that 

T0

2

24
= =

p p
, and T1

2

36
= =

p p
. Then LCM ,

p p
p

2 3
æ
è
ç

ö
ø
÷ = . The graph should have a period of π 

for the signal.

The following code can be used to accomplish the given task.

Example9p3.m

%Example9p3

%This code has a periodic signal

t = -pi:0.001:pi;

y=2*sin(4*t)+cos(6*t-2);

plot(t,y);grid on;

xlabel('t');ylabel('y');

title('A Periodic Signal');

Once the code is executed, we see the output shown in Figure 9-4.

Obviously, as shown in Figure 9-4, the signal repeats itself after every π period.

Figure 9-4.  Graph of y(t) = 2sin(4t) + cos(6t − 2) signal

Chapter 9  Signal Processing



192

�Even and Odd Signals
A continuous time signal y(t) is called even if it satisfies the following equality.

	 y t y t-( ) = ( ) 	 (11)

and it is called odd if it satisfies the following:

	 y t y t-( ) = - ( ) 	 (12)

In a similar manner, a discrete time signal y[t] is called even if it satisfies the 

following:

	 y t y t-[ ] = [ ] 	 (13)

and it is called odd if it satisfies the following:

	 y t y t-[ ] = - [ ] 	 (14)

Example 9-4. For the given CT signal y(t) = sin2(t) + cos(t) + 1, write a code to see 

whether the signal is even or odd over the graphic. Both graphics of y(t), and y(−t) 

should be shown on the same figure.

Solution 9-4. The following code can be used to accomplish the given task.

Example9p4.m

%Example9p4

%This code plots an even signal

t = -pi:0.001:pi;

y=(sin(t)).^2+cos(3*t)+1;

subplot(121);plot(t,y);grid on;

xlabel('t');ylabel('y');

title('Signal of y(t)');

t = -t;

y=(sin(t)).^2+cos(3*t)+1;

subplot(122);plot(t,y);grid on;

xlabel('t');ylabel('y');

title('Signal of y(-t)');

Chapter 9  Signal Processing



193

Once the code is executed, we obtain the output shown in Figure 9-5.

Figure 9-5 shows that both drawings are exactly the same, which indicates that the 

signal is an even signal.

�Electrical Currents
In this section, we learn how to find currents in an electrical network using an example. 

In addition, we examine how to find currents in an RL circuit considering Kirchhoff’s laws.

Example 9-5. Consider an electrical network containing eight resistors and two 

batteries shown in Figure 9-6. Find the currents x, y, and z flowing through the loops.

Figure 9-5.  Graph of y(t) = sin2(t) + cos(t) + 1 signal

Chapter 9  Signal Processing



194

Solution 9-5. To find the currents passing through the loops, we write down the 

equations for each loop as following.

	

90 20 30 40

20 65 40 0

30 40 150 500

x y z

x y z

x y z

- - =
- + - =
- - + =

ì

í
ï

î
ï

	 (15)

The following code can be used to solve this system of equations.

Example9p5.m

%Example9p5

%This code finds currents

%for an electrical network

A=[90 -20 -30;-20 65 -40;-30 -40 150];

B=[40;0;500];

Sol=(A)\B;

disp(['x=',num2str(Sol(1))]);

disp(['y=',num2str(Sol(2))]);

disp(['z=',num2str(Sol(3))]);

Figure 9-6.  An electrical network

Chapter 9  Signal Processing



195

Once the code is executed, we obtain the following output.

> Example9p5

x=3

y=4

z=5

>

An electrical circuit can have a variety of components, including a switch, a voltage 

source (V), a resistor (R), and an inductor (L), as illustrated in Figure 9-7.

The following is the governing equation of the network shown in Figure 9-7.

	 L
di

dt
Ri V+ = 	 (16)

The solution of Equation 16 is

	
i

V

R
R

t

L
= - - *æ

è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷1 exp 	

(17)

Example 9-6. For an RL network, coefficients are given as V = 2 Volt, R = 1 Ohm;  

L = 1/2 Henry, 0 ≤ time ≤ 5. Write code to simulate the values of current i with respect  

to time.

Solution 9-6: The following code can be used to accomplish the given task.

Figure 9-7.  An RL network

Chapter 9  Signal Processing



196

Example9p6.m

%Example9p6

%This code plots current values

t=0:0.05:5;

V=2;R=1;L=1/2;

i=(V/R)*(1-exp(-R.*t/L));

plot(t,i,'bo');grid on;

xlabel('t');ylabel('current');

title('Current with time');

Once the code is executed, the output shown in Figure 9-8 is displayed.

�Harmonic Analysis
Periodic signals can be represented with a sum of sine and cosine waves using a Fourier 

series. Computing such signals is called harmonic analysis. At this point, we need to 

remember the definition of a Fourier series.

Figure 9-8.  Values of current in Example 9-6

Chapter 9  Signal Processing



197

Remark 9-3. Suppose that for all x values, f (x) is defined having period as 2L, 

meaning that f(x) = f (x + 2L). Then the Fourier series of f (x) is

	
f x

a
a

n x
L

b
n x
Ln

n n( ) + æ
è
ç

ö
ø
÷ +

æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷

=

¥

å~ cos sin .0

12
p p

	 (18)

Here, an and bn are called the Fourier coefficients where

	
a

n x
Ln = ( )

-
ò

1

L
f x dx

L

L

cos
p

	 (19)

and

	
b

L
f x dx

L

L

n

n x
L

= ( )
-
ò

1
sin

p
	 (20)

for n = 1, 2, 3, …

Example 9-7. Coefficients of a signal f (x) as defined in Equations 18, 19, and 20 are 

given as L = 2, a0 = 0, an = 0, and b n
n is odd

n is even
n =

ì
í
ï

îï

4

0
p

,

,  
. Calculate the signal f (x) for n = 49 as 

in Equation 18. Then plot the graphic of the signal f (x) where −2π ≤ x ≤ 2π.

Solution 9-7. If we plug the given a0, an, and bn into Equation 18, we get the 

following:

	
f x

x x x x( ) = + + + +¼æ
è
ç

ö
ø
÷

4

2

1

3

3

2

1

5

5

2

1

7

7

2p
p p p p

sin sin sin sin 	 (21)

Therefore, we need to calculate Equation 21 for f (x) having 49 terms in it. The 

following code can be used to get the graph of f (x).

Example9p7.m

%Example9p7

%This code plots graph of a signal

n=49;Point=1000;

x=linspace(-2*pi,2*pi,Point);

bn=zeros(1,Point);a0=0*bn;an=0*bn;

Chapter 9  Signal Processing



198

for i=1:2:n

    Calc=(1/i).*sin((i*pi.*x)/2);

    bn = bn + Calc;

end

bn=(4/pi)*bn;fx=a0+an+bn;

plot(x,fx);grid on;axis('equal');

xlabel('x');ylabel('signal');

title('Square Wave Signal');

Once the code is executed, the output is shown in Figure 9-9.

As shown in Figure 9-9, the signal is the square wave signal. The period of the signal 

is 4 (L = 2). If n is picked higher in the code, the image will look like exactly a square 

wave.

Example 9-8. Coefficients of a signal f (x) as defined in Equations 18, 19, and 20 are 

given as L a a b n
n is odd

n is even
n n= = = =

ì
í
ï

îï

3

2
0

4

0
0, ,

,

,
p

 
. Calculate the signal f (x) for n = 79 as in 

Equation 18. Then plot the graphic of the signal f (x) where −2π ≤ x ≤ 2π.

Figure 9-9.  Output of Example 9-7

Chapter 9  Signal Processing



199

Solution 9-8. If we plug the given a0, an, and bn into Equation 18, we get the 

following:

	
f x

x x x x( ) = + + + +¼æ
è
ç

ö
ø
÷

4

1 5 1 5

1

3

3

1 5

1

3

3

1 5p
p p p p

cos
.

sin
.

cos
.

sin
. 	 (22)

Therefore, we need to calculate Equation 22 for f (x) having 79 terms in it. The 

following code can be used to generate the graph of f (x).

Example9p8.m

%Example9p8

%This code plots graph of a signal

n=79;Point=1000;

x=linspace(-2*pi,2*pi,Point);

bn=zeros(1,Point);a0=0*bn;an=0*bn;

for i=1:2:n

    Calc1=(1/i).*cos((i*pi.*x)/1.5);

    Calc2=(1/i).*sin((i*pi.*x)/1.5);

    an = an + Calc1;

    bn = bn + Calc2;

end

fx=a0+(4/pi)*(an+bn);

plot(x,fx);grid on;axis('equal');

xlabel('x');ylabel('signal');

title('Signal in time');

Once the code is executed, we obtain the output shown in Figure 9-10.

Chapter 9  Signal Processing



200

As shown in Figure 9-10, the signal has a period of 3 (L = 1.5).

�Fast Fourier Transform
We already learned about Fourier series in the previous section on periodic functions. 

When it comes to work with nonperiodic signals, we need to know the Fourier transform 

method. A Fourier transform pairs a time series with the series of frequencies. Fast 

Fourier Transform (FFT) is a better way to handle discrete Fourier transforms (DFTs). 

Before understanding FFT, though, we will take a look at the definition of a Fourier 

transform.

Remark 9-4. The continuous time Fourier transform of a function f (t) is given by:

	
F k f t e dt k Rikt( ) = ( ) Î

-¥

¥
-ò 2p , 	 (23)

	
f t F k e dkikt( ) = ( )

-¥

¥

ò 2p
	 (24)

Figure 9-10.  Output of Example 9-8

Chapter 9  Signal Processing



201

where F(k) can be obtained by using an inverse Fourier transform. The signal f (t) has a 

Fourier transform if the result of Equation 23 converges. An inverse Fourier transform 

maps the series of frequencies back into the relevant time series.

Remark 9-5. A DFT of a time-limited sequence f [t] where 0 ≤ t ≤ N − 1 is given by:

Forward DFT F r f t e r N
n

N jnr

N[ ] = [ ] £ £ -
=

- -

å
0

1 2

0 1
p

,  � (25)

Inverse DFT f t
N

F r e k N
n

N jnr

N[ ] = [ ] £ £ -
=

- -

å1
0 1

0

1 2p

,  � (26)

Although Equations 23 and 24 look very complex, by just substituting Euler’s method 

where eix = cos(x) + isin(x), we can make them much easier, similar to Fourier series.

FFT is an algorithm that finds a solution to the DFT of a sequence in a better way. 

The algorithm was codeveloped by James W. Cooley and John W. Tukey in 1965. Cooley 

and Tukey took advantage of periodic sinusoids. In other words, some pieces of the 

calculations repeat themselves. By saving these computational costs, they reduced the 

time required and obtained a better algorithm.

For a signal with length n, time complexity (the time required to process n samples) 

is O(n2) using DFT. This complexity is much better in FFT than DFT, which is O(nlog(n)).

In MATLAB, the fft function is used to calculate FFT. Because indexing starts with 1, 

not 0, boundaries in the summation symbol for both Equations 25 and 26 are from n = 1 

to N.

Example 9-9. Write code that applies fft to function x where x = sin(2πt), 0 ≤ t ≤ 1, 

The code should generate 100 samples for t, and the length of vector x should be 512. 

The code should plot the graph of x, and power spectrum on the screen.

Solution 9-9. The following code can be used to accomplish the given task.

Example9p9.m

%Example9p9

%This code works with fft

Fs = 100; % Sampling frequency

t=linspace(0,1,Fs);

x = sin(2*pi*t);

Nfft = 512; % Length of FFT

X = fft(x,Nfft);

% FFT is symmetric, take half

Chapter 9  Signal Processing



202

X = X(1:Nfft/2);

% Frequency vector

f = (0:Nfft/2-1)*Fs/Nfft;

figure(1);%for graph of sine

stem(t,x);grid on;

title('Signal of Sine Wave');

xlabel('Time');

ylabel('Amplitude');

figure(2); % for power spectum

plot(f,abs(X));grid on;

title('Power Spectrum');

ylabel('Power');

xlabel('Frequency');

Once the code is run, the output shown in Figure 9-11 is the result.

For the power spectrum of the sine wave, we generated the output shown in  

Figure 9-12.

Figure 9-11.  Signal of sine wave

Chapter 9  Signal Processing



203

Example 9-10. Write code that applies fft to vector x where x has the first 

four elements as [1, 2, 0, 2] and 59 elements as zero. Then, the code should plot the 

estimation of the magnitude of the spectrum and the estimation of the phase spectrum 

on different figures.

Solution 9-10. The following code can be used to accomplish the given task.

Example9p10.m

%Example9p10

%This code works with fft

x = [1 2 0 2 zeros(1,60)]; % zero-padded sequence

N = length(x);X = fft(x);

X = fftshift(X); % shift DFT coefficients

w=linspace(-pi,pi,N);%compute frequencies

stem(w,abs(X)); % plot magnitude spectrum

grid on;title('Magnitude of Spectrum');

xlabel('Frequency');ylabel('Amplitude');

figure; % new one is opened

Figure 9-12.  Power spectrum of sine wave

Chapter 9  Signal Processing



204

stem(w,angle(X));% plot the phase spectrum

grid on;title('Phase Spectrum');

xlabel('Frequency');ylabel('Amplitude');

Once the code is run, the output shown in Figures 9-13 and 9-14 are generated.

Figure 9-13.  Estimation of magnitude of spectrum

Chapter 9  Signal Processing



205

FFT can also be applied to audio files and image files for analysis. As an illustration, 

we show how to apply the fft2 function to an image. Here, fft2 is the two-dimensional 

function of fft. In this illustration, the fft2 function is used as a filter, not for analysis. 

Working with image files is a broad topic that is examined in the next chapter.

Example 9-11. Write code that applies FFT to a colorful image as a filter. The name 

of the image is covboys.png, which is in the same directory as the codes. After applying 

FFT, the image should be shown on the screen. Then, the image should be converted 

back to the original one and the original image should be shown on a different figure as 

well.

Solution 9-11. The following code can be used to accomplish the given task.

Example9p11.m

%Example9p11

%This code apply fft to 2-dimensional picture.

P = imread('cowboys.png');%reads the image

Y=fft2(P); %apply the filter

imshow(Y) % filtered image is shown

Figure 9-14.  Estimation of phase spectrum

Chapter 9  Signal Processing



206

figure;

YY=ifft2(Y);%image is converted back

imshow(YY/256);%original image is shown

Once the code is run, the output shown in Figures 9-15 and 9-16 are the result.

Figure 9-15.  Image after applying fft2 function

Figure 9-16.  After applying ifft2 to get original image

Chapter 9  Signal Processing



207

�Problems
9.1. For the given discrete signal function y = f [t] = sin(2t), where t 

is defined as −2π ≤ t ≤ 2π, create 20 discrete equally spaced values 

for t. The code should calculate the corresponding y values and 

print them on the screen.

9.2. A CT signal is defined as y(t) = 2sic(2t + 1). Find the period of 

the signal. Then write code to plot the signal where −π ≤ t ≤ π.

9.3. A CT signal is defined as y(t) = sin(3t) + cos(4t). Find the 

period of the signal. Then write a code to plot the signal where 

−2π ≤ t ≤ 2π.

9.4. For the given CT signal y(t) = cos(2t) + 10, write code to see 

whether the signal is even or odd over the graphic. Both graphics 

of y(t) and y(−t) should be shown on the same figure.

9.5. Coefficients of a signal f (x) as defined in Equations 18, 19, 

and 20 are given as L = 3, a0 = 0, an = 0, and b n
n is odd

n is even
n =

ì
í
ï

îï

4

0
p

,

,  
. 

Calculate the signal f (x) for n = 19 as in Equation 18. Then plot the 

graphic of the signal f (x) where −π ≤ x ≤ π.

9.6. Write a code that applies fft to function x where x = sin(2πt), 

0 ≤ t ≤ 1. The code should generate 200 samples for t and the 

length of vector x should be 1,024. The code should plot the graph 

of x and the power spectrum on the screen.

Chapter 9  Signal Processing



209
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_10

CHAPTER 10

Image Processing
MATLAB provides very powerful tools to work with graphics and image files, as well as 

for manipulating sounds, audio, and video files. This chapter deals with different topics 

related to image processing. At the beginning, I present the types of images. That is 

followed by discussions on converting image types and formats, operations on images, 

image enhancement, image restoration, color processing, image segmentation, and 

mathematical morphology.

�Image Types
In MATLAB, most images are represented by two-dimensional matrices. In a matrix, 

every element corresponds to a pixel. If an image is composed of n × m pixels, its matrix 

will also have a size of n × m. Hence, every single pixel in an image corresponds to an 

element in its matrix representation.

Let us think of an image that has two dimensions, n × m. Its corresponding matrix 

will have n rows and m columns. If we call the matrix M, then its elements can be 

represented as shown in Figure 10-1.

Figure 10-1.  Matrix for a two-dimensional image



210

There is a remarkable number of supported image formats in MATLAB. These 

formats include .bmp, .gif, .jpg, .jpeg, .hdf, .pcx, .png, .tiff, .xwd, and more.

In the Image Processing Toolbox in MATLAB®, there are basically four different 

types of images: binary images, grayscale images, indexed images, and truecolor (RGB) 

images.

�Binary Images
Binary images are composed of zeros and ones in their corresponding matrix 

representations. Zero represents the white color, and one represents the black color in 

the image. A binary image is stored as a logical array in the workspace. Figure 10-2 is an 

example of a binary image.

�Grayscale Images
Grayscale images are represented by data matrices having various intensity values 

depending on the class of the matrix. Data types might belong to one of the classes 

uint8, uint16, int16, single, or double. Values for single or double data types range 

from 0 to 1. For uint8, the values range from 0 to 255. For uint16, the range is between 0 

and 65,535. Finally, for int16, the values range from -32,768 to 32,767. Figure 10-3 is the 

grayscale version of the same image shown in Figure 10-2.

Figure 10-2.  An example of a binary image

Chapter 10  Image Processing



211

�Indexed Images
An indexed image is composed of an array and a colormap matrix. The colormap matrix is 

an m × 3 matrix of class double, where its elements range from 0 to 1. Each element in the 

array points to one of the rows in the colormap matrix to set the color of the images. The 

relationship between a colormap matrix and an array matrix is clearly shown in Figure 10-4.

Figure 10-3.  An example of a grayscale image

Figure 10-4.  An indexed image with pixel values, index number, and colormap

Chapter 10  Image Processing



212

�Truecolor (RGB) Images
Truecolor images are sometimes called RGB (Red-Green-Blue) images, as well. They 

are composed of three matrices, each one of which is of size n × m. Accordingly, for 

a truecolor image (n, m, 1) shows the values for red, (n, m, 2) shows the values for 

green, and (n, m, 3) shows the values for blue. A combination of these three matrices 

determines the color of the truecolor (RGB) image. The array representing a truecolor 

image can be of class uint8, uint16, single, or double, where the pixel values specify 

the intensity values.

Obviously, RGB images represent the colors directly, rather than mapping the pixel 

values to a colormap matrix.

Example 10-1. Write a program that reads the pixel values of a truecolor image in 

the file named peppers.png. Then, take the transpose of red, green, and blue colors. 

Display the modified data as a new image.

Solution 10-1. The following code can be used to accomplish the given task.

Example10p1.m

%Example10p1

%This code takes the transpose of RGB

RGB = imread('peppers.png');

subplot(211);imshow(RGB)

New_RGB(:,:,1) = RGB(:,:,1)';

New_RGB(:,:,2) = RGB(:,:,2)';

New_RGB(:,:,3) = RGB(:,:,3)';

subplot(212);imshow(New_RGB)

This code reads the image peppers.png by using the imread command. Then 

the original image is shown in the first row of a figure. After that, transposes of each 

color—R, G, and B—are taken and assigned to a new variable named New_RGB. Finally, in 

the second row of the figure, the modified image is shown with the imshow function.

Once the code is executed, the image shown in Figure 10-5 appears.

Chapter 10  Image Processing



213

As you can see from Figure 10-5, the colors are preserved, but the direction of the 

image is altered.

�Converting Image Types and Formats
Sometimes we might need to convert an image from one type to another. During this 

conversion, though, we might lose the quality of the original image.

There are several functions available for the conversion between class types, some of 

which are given in Table 10-1.

Figure 10-5.  Output of Example10p1

Chapter 10  Image Processing



214

Table 10-2 provides a list of some of the useful functions for converting image types.

There are several functions for reading, writing, and performing other operations 

related to images, some of which are listed in Table 10-3.

Table 10-1.  Useful Functions for Converting Class Types

Function Explanation

im2double Converts image to double precision

im2int16 Converts image to 16-bit signed integers

im2single Converts image to single precision

im2uint16 Converts image to 16-bit unsigned integers

im2uint8 Converts image to 8-bit unsigned integers

Table 10-2.  Useful Functions for Converting Image Types

Function Explanation

im2bw Converts image to a binary image

ind2gray Converts indexed image to grayscale image

gray2ind Converts grayscale or binary image to indexed image

rgb2gray Converts RGB image or colormap to grayscale

ind2rgb Converts indexed image to RGB image

Table 10-3.  Useful Functions Related to Images

Function Explanation

imread Reads image from graphics file

imwrite Writes image to graphics file

imfinfo Gives information about graphics file

frame2im Returns image data associated with movie frame

im2frame Converts image to movie frame

Chapter 10  Image Processing



215

Images can be saved in a different format using the imwrite function.

Example 10-2. Write a program that reads the image from the file moon.tif. Then, 

convert this image into.jpg format.

Solution 10-2. First, the following code reads the image. Then, the image is written 

in the target file format.

Example10p2.m

%Example10p2

%This code converts jpg to png format

Cowboy = imread('Cowboys2.jpg');

imwrite(Cowboy,'Cowboys2.png');

Cowboy_png = imread('Cowboys2.png');

imshow(Cowboy_png)

Once the code is executed, the image shown in Figure 10-6 is the result.

�Operations on Images
There are some functions that make users’ job easier in manipulating images. Some of 

them are given in Table 10-4.

Figure 10-6.  Image converted from .jpg to .png

Chapter 10  Image Processing



216

Example 10-3. Write a program that reads the image from the file football.jpg. 

Then, rotate the image 30, 90, and 180 degrees.

Solution 10-3. The following code can be used to accomplish the given task.

Example10p3.m

%Example10p3

%This code rotates images

F = imread('football.jpg');

F30  = imrotate(F,30);

F90  = imrotate(F,90);

F180 = imrotate(F,180);

subplot(2,2,1),imshow(F)

title('Original Image')

subplot(2,2,2),imshow(F30)

title('Rotation with 30')

subplot(2,2,3),imshow(F90)

title('Rotation with 90')

subplot(2,2,4),imshow(F180)

title('Rotation with 180')

There are some images that already exist in MATLAB. One can directly read these 

images without having them in the directory. Football.jpg is one of these image files.

Table 10-4.  Useful Functions for Manipulating Images

Function Explanation Example Format

imadd Adds two images, or adds a constant to an 

image

Z = imadd(X,Y)

imrotate Rotates the image A in degrees in 

counterclockwise direction

B = imrotate(A,angle)

imadjust Adjusts the intensity values of the image J = imadjust(I)

imresize Resizes the image A to specified number of 

rows and columns

B = imresize(A, [#rows #cols])

Chapter 10  Image Processing



217

In the preceding code, the imrotate function rotates the images counterclockwise. 

Once the code is run, the output shown in Figure 10-7 is obtained.

Example 10-4. Write a program that reads the images from the files rice.png and 

cowboys.png, respectively. Then, combine these images, and add 100 to the image 

rice.png. While combining images, dimensions of the pictures should match. If they 

do not match, then the code should pick the smallest row and column numbers from 

the dimensions of the pictures. The code should show all of these images on one figure 

separately.

Solution 10-4. Show the images cowboys.png and rice.png separately in a figure. 

Then, you can show the combined picture and the picture obtained by adding 100 to 

rice.png in the same figure. The code can be written as given shown here.

Figure 10-7.  Rotating images

Chapter 10  Image Processing



218

Example10p4.m

%Example10p4

%This code combines images

I = imread('rice.png');

J = imread('cowboys.png');

[rr,cr]=size(I);[rj,cj]=size(J);

Row=min(rr,rj);Col=min(cr,cj);

K = imadd(I(1:Row,1:Col),J(1:Row,1:Col));

JJ = imadd(I,100);subplot(2,2,1)

imshow(I);title('Only Rice')

subplot(2,2,2),imshow(J)

title('Only cowboy');subplot(2,2,3)

imshow(JJ);title('100 added to Rice')

subplot(2,2,4),imshow(K)

title('Combined Picture')

Once the code is executed, the images appear as shown in Figure 10-8.

Chapter 10  Image Processing



219

As shown in Figure 10-8, after the addition, the combined images get brighter. This is 

due to the fact that having larger numbers in the matrix makes the image brighter.

�Image Enhancement
The purpose of image enhancement is to modify the given image so that the revised 

image is improved. This can be done by manipulating the pixel value of the images, 

called point processing. The methods used can be from enhancement in the spatial 

domain or enhancement in the frequency domain.

Figure 10-8.  Combined images

Chapter 10  Image Processing



220

�Point Processing
Point processing operations can be represented simply in the following form:

	 g T f= ( ) 	 (1)

In Equation 1, g represents the output of the processed image pixel value, f represents 

the pixel value of the image, and T represents the point processing operation.

Example 10-5. Write a program that reads the image named Cowboys.png to the 

workspace. Then, the code should generate four different images using the pixel values 

of the read image. The output images should be obtained by calculating the powers of 

pixel values of the image as 1/5, ½, 2, and 4.

Solution 10-5. The following code can be used to accomplish the given task.

Example10p5.m

%Example10p5

%This code manipulates pixel values

im=imread('Cowboys.png');

im1=double(im).^(1/5);im2=double(im).^(1/2);

im3=double(im).^(2);im4=double(im).^(4);

im1=mat2gray(im1);im2=mat2gray(im2);

im3=mat2gray(im3);im4=mat2gray(im4);

subplot(221),imshow(im1);title('\^(1/5)');

subplot(222),imshow(im2);title('\^(1/2)');

subplot(223),imshow(im3);title('\^(2)');

subplot(224),imshow(im4);title('\^(4)');

In the code, it is not difficult to see that, if the power is smaller, then the obtained 

result becomes smaller, too. If the power increases, the result of the calculation 

increases, too. Before making calculations, pixel values of the image are converted 

to double with the double command. After calculating powers, they are sent back to 

intensity image values using the mat2gray function.

Once the code is run, the output shown in Figure 10-9 is displayed.

Chapter 10  Image Processing



221

Changing specific pixel values within an image is also possible, as illustrated in 

Example 10-6.

Example 10-6. Write a program that reads the image named Cowboys.png to the 

workspace, with an array matrix of 356 × 605 x 3. Then, for every element of the array 

having values between 30 and 150, change these values to 1.

Solution 10-6. The following code can be used to accomplish the given task.

Example10p6.m

%Example10p6

%This code changes pixel values in RGB

[RGB]=imread('Cowboys.png');

[Row,Col,ind]=size(RGB);

for i=1:ind

    for k=1:Row

        for m=1:Col

            if RGB(k,m,i)>=30 && RGB(k,m,i)<=150

Figure 10-9.  Updated image with new pixel values

Chapter 10  Image Processing



222

                RGB(k,m,i)=1;

            end

        end

    end

end

imshow(RGB)

Once the code is executed, the output is shown in Figure 10-10.

The preceding code checks each cell value of R, G, and B cells. Then, 1 is assigned to 

elements having values between 30 and 150.

Using histograms help us to understand how the gray levels are distributed in a 

grayscale image. Therefore, important inferences can be drawn from the appearance of a 

histogram. To obtain the histogram of an image, the imhist function is used.

Example 10-7. In Example 10-5, there are four images plotted. Write code to show 

the histogram of those four images.

Solution 10-7. The following code can be used to accomplish the given task.

Figure 10-10.  Updated image with new pixel values

Chapter 10  Image Processing



223

Example10p7.m

%Example10p7

%This code uses imhist function

im=imread('Cowboys.png');

im1=mat2gray(double(im).^(1/5));

im2=mat2gray(double(im).^(1/2));

im3=mat2gray(double(im).^(2));

im4=mat2gray(double(im).^(4));

subplot(221),imhist(im1);title('\^(1/5)');

subplot(222),imhist(im2);title('\^(1/2)');

subplot(223),imhist(im3);title('\^(2)');

subplot(224),imhist(im4);title('\^(4)');

Once the code is run, the histograms shown in Figure 10-11 are the result.

Figure 10-11.  Histograms of plots in Example 10-7

Chapter 10  Image Processing



224

As shown in Figure 10-11, lighter colors have values close to 1 and darker images 

have values close to zero. The number of bars used on the x axis is called bin. There are 

256 bins by default when using the imhist function for grayscale images. If the image is 

binary, then 2 bins are used.

Contrast stretching is another technique used in image enhancement. To perform 

this technique, the stretchlim function is used together with the imadjust function. 

The stretchlim function computes a lower and upper limit of the image to use contrast 

stretching. Then, using the imadjust function, the intensity values of the image are 

adjusted.

Example 10-8. Write a code to adjust the pixel values of the image Cowboys.png. 

The code should saturate the upper 8% and lower 8% of pixel values. The original and 

adjusted image should be plotted on a figure, including their histograms.

Solution 10-8. The following code can be used to accomplish the given task.

Example10p8.m

%Example10p8

%This code uses imadjust and

%stretchlim functions

im=imread('Cowboys.png');fontSize=10;

Stretched_Image = imadjust(im, ...

    stretchlim(im, [0.08, 0.92]),[]);

subplot(221), imshow(im);

title('Original Image','FontSize',...

    fontSize);

subplot(222),imshow(Stretched_Image),

title('Stretched Image','FontSize',...

    fontSize);

subplot(223), imhist(im),

title('Original Image',...

    'FontSize',fontSize);

subplot(224), imhist(Stretched_Image),

title('Stretched Image',...

    'FontSize',fontSize);

Chapter 10  Image Processing



225

Once the code is run, the result is shown in Figure 10-12.

You can also enhance the contrast using histogram equalization.

Example 10-9. Write code to enhance the contrast of the Cowboys.png image using 

histogram equalization. The code should show the original image, enhanced image, the 

difference from the original to the enhanced image, and the histogram of the enhanced 

image on the same figure.

Solution 10-9. The following code can be used to accomplish the given task.

Example10p9.m

%Example10p9

%This code uses histeq and imshowpair func

im=imread('Cowboys.png');fontSize=10;

J = histeq(im);

imshowpair(im,J,'diff');

Figure 10-12.  Output of Example 10-8

Chapter 10  Image Processing



226

%Other Options of imshowpair-->'checkerboard'

%'blend','falsecolor','montage'

subplot(221),imshow(im)

title('Original Image');

subplot(222),imshow(J)

title('Histogram Equalization');

subplot(223),imshowpair(im,J,'diff')

title('Difference');

subplot(224),imhist(J)

title('Histogram of Hist. Equalization');

In the preceding code, the histeq function is used for the enhancement of contrast 

using histogram equalization. Also, the imshowpair function is used to show the 

difference between the original image and the enhanced image. Other available options 

for this command are included in the code.

Once the code is run, the result is shown in Figure 10-13.

Figure 10-13.  Output of Example 10-9

Chapter 10  Image Processing



227

�Enhancement in the Spatial Domain
The spatial domain deals with the image plane itself. In this type of enhancement, 

manipulations are directly applied to the image pixels. The most common technique to 

enhance an image is filtering, a neighborhood operation that works on pixel values.

For a two-dimensional image, a filtering operation can be formulated as follows:

	
g x y T f x y, ,( ) = ( )( ) 	 (2)

where g represents the output of the processed values, f represents the pixel value of the 

image, and T represents the filter. If the operation applied on the pixels is linear, then the 

filter is said to be a linear spatial filter. Otherwise, the filter is said to be a nonlinear filter. 

Some commonly used filtering functions in the spatial domain are described in Table 10-5.

Example 10-10. Write a code to apply three different filters to an image coins.png. 

The filters are [1,1,1;1,1,1;1,1,1]∗1/9 , [1,1,1,1,1;1,1,1,1,1;1,1,1,1,1;1,1,1,1,1;1,1,1,1,1]∗1/25,  

and [0,1,0;1,-4,1;0,1,0]. The filtered images and the original image should be shown in 

the same figure.

Solution 10-10. All given filters can be applied using the imfilter function. The 

following code can be used to accomplish the given task.

Table 10-5.  Some Basic Filtering Functions for the Spatial Domain

Function Explanation

imfilter Filters the given array with given filter

fspecial Creates 2-D filters for the types of average, disk, gaussian, laplacian, 

log, motion, prewitt, and sobel

imgaussfilt Filters the given image with a 2-D Gaussian mask

medfilt2 Applies median filtering in two dimensions

medfilt3 Applies median filtering in three dimensions

ordfilt2 Applies order-statistic filtering in two dimensions

stdfilt Applies standard deviation filtering

imboxfilt Applies a 3-by-3 box filter to the image

conv2 Applies convolution to 2-D image

Chapter 10  Image Processing



228

Example10p10.m

%Example10p10

%This code works with imfilter

H2=ones(3)/9;H3=ones(5)/25;

H4=[0, 1,0;1,-4,1;0, 1, 0];

I = imread('coins.png');

I2 = imfilter(I,H2);

I3 = imfilter(I,H3);

I4 = imfilter(I,H4);

subplot(2,2,1),imshow(I),title('Original Image');

subplot(222),imshow(I2),title('Filtering by H2');

subplot(223),imshow(I3),title('Filtering by H3');

subplot(224),imshow(I4),title('Filtering by H4');

Once the code is run, the resulting graphics is shown in Figure 10-14.

Figure 10-14.  Outputs of filters

Chapter 10  Image Processing



229

Example 10-11. Write a code to apply the filters of ‘gaussian’, ‘average’, and ‘motion’ 

to 'peppers.png' which MATLAB has. The filtered images and the original image should 

be shown on the same figure.

Solution 10-11. To apply the given special filters, they first need to be created using 

the fspecial function. Using the imfilter function, we can then apply them to the 

image. The following code can be used to accomplish the given task.

Example10p11.m

%Example10p11

%This code works with imfilter and fspecial

H2 = fspecial('gaussian');

H3 = fspecial('average');

H4 = fspecial('motion');

I = imread('peppers.png');

I2 = imfilter(I,H2);

I3 = imfilter(I,H3);

I4 = imfilter(I,H4);

subplot(221),imshow(I),title('Original Image');

subplot(222),imshow(I2),title('By gaussian');

subplot(223),imshow(I3),title('By average');

subplot(224),imshow(I4),title('By motion');

Once the code is run, the result shown in Figure 10-15 is obtained.

Chapter 10  Image Processing



230

�Enhancement in the Frequency Domain
The frequency domain deals with the rate of pixel change. These types of enhancements 

are based on modifying a Fourier transform. Some of the filtering functions used are 

listed in Table 10-6.

Figure 10-15.  Outputs of three special filters

Table 10-6.  Filtering Functions for the Frequency Domain

Function Explanation

freqspace Used to create frequency responses

freqz2 Creates frequency response for a 2-dimensional FIR filter

fsamp2 Creates a 2-dimensional FIR filter for an entered frequency response

Chapter 10  Image Processing



231

The process of enhancement in the frequency domain can be summarized as 

follows.

	 1.	 Take the Fourier transform of an image.

	 2.	 Multiply the obtained output by a filter transfer function.

	 3.	 Take the inverse Fourier transform of the image

	 g w , w ,w H w ,1 2 1 2 1 2w F w( ) = ( )* ( ) 	 (3)

These procedures are illustrated simply in Figure 10-16.

Different filter functions can be selected as H(u, v). For the low pass filter, an ideal 

low pass filter (ILPF) is used in general in two-dimensional applications.

	
H u v

ifD u v D

ifD u v DLP ,
,

,
( ) = ( ) £

( ) >
ì
í
ï

îï

1

0
0

0

,

, 	 (4)

Figure 10-16.  Diagram of filtering in the frequency domain

Chapter 10  Image Processing



232

In Equation 4, D0 is the radius of the circle from the origin. The filter passes all the 

frequencies within D0, and cuts off the rest of the frequencies. The simplest high pass 

filter is the complement of ILPF defined as follows.

	 H u v H u vHP LP, ,( ) = - ( )1 	 (5)

The ideal high pass filter (IHPF) is used in general in two-dimensional applications.

	
H u v

ifD u v D

ifD u v DLP ,
,

,
( ) = ( ) £

( ) >
ì
í
ï

îï

0

1
0

0

,

, 	 (6)

Example 10-12. Write code to apply the ILPF defined earlier to the Cowboys.png 

image. The filter should be written as a separate function. The value of D0 should be 50. 

The resulting figure should show the original image, the transformed image, the filter, 

and the final enhanced image.

Solution 10-12. The main body of the code and the separated filter function can be 

written as illustrated in the following code.

Example10p12.m

%Example10p12

%This code works in frequency domain

im =imread('cowboys.png');

P_grayscale = rgb2gray(im);close all;

P_grayscale=double(P_grayscale);

subplot(221),imshow(mat2gray(P_grayscale));

title('Original Image');

%image i frequency domain

freq_rec=fft2(P_grayscale);

freq_rec=fftshift(freq_rec);

freq_rec_disp=log(1+abs(freq_rec));

%image shown in frequency domain.

subplot(222),imshow(mat2gray(freq_rec_disp));

title('Fourier transform is applied');

[Row,Col]=size(P_grayscale);

Filter =My_filter(Row,Col);

% Applying filtering

Chapter 10  Image Processing



233

Filtering = freq_rec.*Filter;

Filtering_disp=log(1+abs(Filtering));

subplot(223),imshow(mat2gray(Filtering_disp));

title('Applied Filter');

%%% converting back to image

FilteredIm=real(ifft2(ifftshift(Filtering)));

subplot(224),imshow(mat2gray(abs(FilteredIm)));

title('Enhanced Image');

My_filter.m

function Filter =My_filter(Roww,Coll)

Row=ceil(Roww/2);Col=ceil(Coll/2);

D_0=50;

Filter=zeros(Roww,Coll);

for m=1:Roww

    for n=1:Coll

        if((m-Row)^2+(n-Col)^2)^0.5<=D_0

            Filter(m,n)=255;

        end

    end

end%Filter = 255-Filter; can be tried

end

Once the code is run, the result is shown in Figure 10-17.

Chapter 10  Image Processing



234

�Enhancement with Other Functions
Enhancement can also be performed using integral image domain filtering, texture 

filtering, and edge preserving filtering functions, some of which are listed in Tables 10-7 

and 10-8.

Figure 10-17.  Output of Example 10-12

Table 10-7.  Filtering Functions Used in Integral Image Domain

Function Explanation

integralImage Calculates integral image

integralImage3 Calculates 3-D integral image

integralBoxFilter Filters the entered integral image with a 3-by-3 box filter

Chapter 10  Image Processing



235

Apart from the functions listed in Tables 10-7 and Table 10-8, gabor and imgabor 

functions are used in texture filtering.

Example 10-13. Write code that adds Gaussian white noise having zero mean and 

0.0005 variance to the peppers.png image. Then use the imnlmfilt nonlocal means-

based filter to remove the noise.

Solution 10-13. The following code can be used to accomplish the given task.

Example10p13.m

%Example10p13

%This code works with imnlmfilt function

I = rgb2gray(imread('peppers.png'));

noisyImage = imnoise(I,'gaussian',0,0.0005);

filteredImage = imnlmfilt(noisyImage);

subplot(211),imshow(noisyImage);

title('Image with noisy');

subplot(212),imshow(filteredImage);

title ('Filtered Image');

Once the code is run, the images shown in Figure 10-17 are obtained.

Table 10-8.  Filtering Functions Used for Edge Preserving

Function Explanation

imbilatfilt Perfoms Gaussian bilateral filter on entered image

imguidedfilter Applies filter using the guided filter

imnlmfilt Performs a nonlocal means-based filter to color or grayscale images

Chapter 10  Image Processing



236

�Image Restoration
Removing degradation from an image signal and regaining the original signal is called 

image restoration. In this section, we look at how the image signals lose their original 

state with salt and pepper noise, Gaussian noise, and periodic noise. Then methods of 

eliminating this noise are presented.

�Adding and Removing Noise
Errors or noise can happen on images due to external factors such as transmission of 

image signals, or sending image signals via satellite.

Example 10-14. Write code that adds salt and pepper noise to the peppers.png 

image. Then use the medfilt2 filter to remove the noise with 0.2 noise density.

Solution 10-14. The following code can be used to accomplish the given task.

Example10p14.m

%Example10p14

%This code applies salt & pepper noise

I1 = rgb2gray(imread('peppers.png'));

WithNois=imnoise(I1,'salt & pepper',0.2);

I2=medfilt2(I1);

subplot(121),imshow(WithNois);

title('Salt & Pepper Noise');

subplot(122),imshow(I2);

title ('Cleaning Noise');

Figure 10-18.  Output of Example 10-13

Chapter 10  Image Processing



237

Once the code is run, the images shown in Figure 10-19 are the result.

Example 10-15. Write code that adds speckle multiplicative noise to the  

peppers.png image with noise density of 0.05. Then using the FIR filter and adaptive 

filter, remove the noise from the image. The code should generate the original, noisy,  

FIR filtered, and adaptive filtered images in the same figure.

Solution 10-15. The following code can be used to accomplish the given task.

Example10p15.m

%Example10p15

%This code applies and cleans noise

im = rgb2gray(imread('peppers.png'));

no1=imnoise(im,'speckle',0.05);

subplot(221),imshow(im),title('Original Image')

subplot(222),imshow(no1),title('Noisy Image')

no2=mat2gray(filter2(fspecial('average',3),no1));

subplot(223),imshow(no2)

title('FIR filtered Image')

no3= wiener2(no1,[5 5]);%neighborhoods of 5-by-5

subplot(224), imshow(no3)

title('Adaptive Filtered Image')

Once the code is run, the images shown in Figure 10-20 are generated.

Figure 10-19.  Adding and cleaning salt and pepper noise

Chapter 10  Image Processing



238

�Color Processing
Color is a physical feature created by combined different frequencies of light when they 

are seen by the eyes. There are different definitions proposed by different scientists, but 

to keep things simple, I leave the definition short here.

In MATLAB, there are HSV, RGB, YIQ (defined by the National Television Systems 

Committee, or NTSC), YCbCr, and L∗a∗b color spaces. Primarily, though, operations are 

done in RGB space. For other spaces, there are conversion functions between RGB and 

other spaces such as rgb2hsv, rgb2ntsc, rgb2ycbcr, and lab2rgb. You can type help 

and one of these functions to get more information about that function in the command 

window of MATLAB.

In this section, we work with RGB colors.

Example 10-16. Write code that reads the peppers.png image and splits the RGB 

image into its red, green, and blue channels. The code should show the size of the image 

and the first five elements from each channel on the screen.

Figure 10-20.  Output of Example 10-15

Chapter 10  Image Processing



239

Solution 10-16. Using the imsplit function, the image can be separated into its 

red, green, and blue channels. The following code can be used to accomplish the 

given task.

Example10p16.m

%Example10p16

%This code separates RGB colors

RGB = imread('peppers.png');

[R,G,B]=imsplit(RGB);

disp(size(RGB));

disp(RGB(1:5,1:5,:));

subplot(221),imshow(RGB)

title('Original Image');

subplot(222),imshow(R),title('R Channel');

subplot(223),imshow(G),title('G Channel');

subplot(224),imshow(B),title('B Channel');

Once the code is run, the following output is obtained in the command window.

> Example10p16

   384   512     3

(:,:,1) =

   62   63   63   65   66

   63   61   59   64   63

   65   63   63   66   66

   63   67   67   63   64

   63   62   64   65   66

 (:,:,2) =

   29   31   34   30   27

   31   31   32   30   28

   29   30   31   30   31

   29   29   31   31   31

   31   32   33   30   31

Chapter 10  Image Processing



240

(:,:,3) =

   64   64   64   60   59

   62   64   64   60   59

   60   62   63   61   61

   62   63   63   60   62

   62   63   62   61   61

>

As shown in the output, the size of image is 284 × 512 ×3, and the relevant array of the 

RGB image is a three-dimensional matrix. Each dimension corresponding to R, G, and B 

channels has a 284 × 512 matrix.

Figure 10-21 is the result. The original image is a combination of the other three 

images.

Figure 10-21.  Output of Example10-16

Chapter 10  Image Processing



241

An illustration of manipulating pixel values was presented in Example 10-6. 

Changing the coefficient of every channel in an RGB image is another option, as 

illustrated in Example 10-17.

Example 10-17. Write code that multiplies every channel with different coefficients 

of the peppers.png image. The first coefficients of the red, green, and blue channels are 

1/3, 2/3, and 3/3; the second coefficients are 2/3, 3/3, and 1/3; and the last coefficients 

are 3/3, 1/3, and 2/3. After each channel is calculated with the given coefficients, 

channels should be combined to represent an RGB image. Therefore, there should be 

three color images obtained from different coefficients. The code should show three all 

of these images and the original image in one figure.

Solution 10-17. To keep the calculations for each channel, we can create a four-

dimensional array. In this array, the first two dimensions belong to pixel values of each 

channel. The third dimension can keep the values for R, G, and B. The last dimension 

can keep the values with given coefficients. The following code can be used to 

accomplish the given task.

Example10p17.m

%Example10p17

%In code, channels different coefficients

RGB=imread('peppers.png');

New(:,:,1,1)=RGB(:,:,1)*(1/3);

New(:,:,2,1)=RGB(:,:,2)*(2/3);

New(:,:,3,1)=RGB(:,:,3)*(3/3);

New(:,:,1,2)=RGB(:,:,1)*(2/3);

New(:,:,2,2)=RGB(:,:,2)*(3/3);

New(:,:,3,2)=RGB(:,:,3)*(1/3);

New(:,:,1,3)=RGB(:,:,1)*(3/3);

New(:,:,2,3)=RGB(:,:,2)*(1/3);

New(:,:,3,3)=RGB(:,:,3)*(2/3);

subplot(221),imshow(RGB);

title('Original Image');

subplot(222),imshow(mat2gray(New(:,:,:,1)));

title('Image with R*(1/3)-G*(2/3)-B*1');

Chapter 10  Image Processing



242

subplot(223),imshow(mat2gray(New(:,:,:,2)));

title('Image with R*(2/3)-G*(1)-B*(1/3)');

subplot(224),imshow(mat2gray(New(:,:,:,3)));

title('Image with R*(1)-G*(1/3)-B*(2/3)');

Once the code is run, the images shown in Figure 10-22 are obtained in the 

command window.

�Image Segmentation
Image segmentation is the process of partitioning an image into constituent parts, 

or dividing an image into different regions. Generally, pixels that belong to the same 

segment are expected to have similar pixel values, and are thus expected to form a 

connected region. Common techniques for segmentation are thresholding, edge 

detection, and region-based methods.

Figure 10-22.  Output of Example 10-17

Chapter 10  Image Processing



243

�Thresholding
Assigning zero or one to each pixel of a grayscale image considered an exact point or 

points is called thresholding. There are two types of thresholding: single and double.

�Single Thresholding

In single thresholding, only one point is taken into account. Let us assume that the 

threshold value is defined as T. The pixel value at point (x,y) can be defined as follows:

	
P ,

white if the value at ,

black if the value at ,
x y

x y T

x y
( ) = ( ) >

(
,

, )) £
ì
í
ï

îï T 	 (7)

Therefore, in Equation 7, white or black coloring is defined for every pixel value of 

P(x, y) within the grayscale image.

Example 10-18. Write code to detect the borders of the coin.png file with T = 0.61 as 

the threshold.

Solution 10-18. The following code can be used to accomplish the given task.

Example10p18.m

%Example10p18

%This code uses thresholding

T=0.61;

im=mat2gray(imread('coins.png'));

[Row,Col]=size(im);

NewIm=zeros(Row,Col);

for i=1:Row

    for k=1:Col

        if im(i,k)>T

            NewIm(i,k)=1;

        else

            NewIm(i,k)=0;

        end

    end

end

figure,imshowpair(im,mat2gray(NewIm),'montage');

title ('Original Image and Thresholding');

Chapter 10  Image Processing



244

Once the code is run, the output shown in Figure 10-23 is obtained.

Similar thresholding can be performed using built-in MATLAB functions as well.

Example 10-19. Write code to detect the borders of the coins.png image using 

the graythresh function, which computes a global threshold using Otsu’s method. To 

binarize the image, use the imbinarize built-in function.

Solution 10-19. The following code can be used to accomplish the given task.

Example10p19.m

%Example10p19

%This code uses graythresh and imbinarize functions

im = imread('coins.png');

Level = graythresh(im);%using Otsu's method

BinaryIm = imbinarize(im,Level);%binarize the image

imshowpair(im,BinaryIm,'montage');

title ('Original Image and Thresholding');

Once the code is run, the output shown in Figure 10-24 is the result.

Figure 10-23.  Output of Example 10-18

Chapter 10  Image Processing



245

�Double Thresholding

In double thresholding, two points are taken into account. Let us assume that threshold 

values are defined as T1 and T2. The pixel value at point (x,y) can be defined as follows:

	
P( , ) =x y

white, if the value at is between and

black, if 

( , )x y T T1 2

tthe value at is elsewhere( , )x y
ì
í
î

	 (8)

Example 10-20. Write code to detect the borders of the coin.png file with T1 = 0.618, 

and T1 = 0.382 as thresholding values.

Solution 10-20. The following code can be used to accomplish the given task.

Example10p20.m

%Example10p20

%This code uses double thresholding

T1=0.618;T2=0.382;

im=mat2gray(imread('coins.png'));

[Row,Col]=size(im);

NewIm=zeros(Row,Col);

for i=1:Row

    for k=1:Col

        if (im(i,k)>T2) && (im(i,k)<T1)

            NewIm(i,k)=1;

Figure 10-24.  Output of Example 10-19

Chapter 10  Image Processing



246

        else

            NewIm(i,k)=0;

        end

    end

end

figure,imshowpair(im,mat2gray(NewIm),'montage');

title ('Original Image and Thresholding');

Figure 10-25 displays the output once the code has been run.

�Edge Detection
Edge detection is defined as the detection of the boundaries of the objects within an 

image. It is one of the primary image processing techniques used for image segmentation 

and data extraction. There are different algorithms and methods used for this purpose in 

MATLAB. To find the edges in an image, the edge function is used. The methods used for 

this purpose include sobel, prewitt, roberts, log, zerocross, canny, and approxcanny. 

If any of these methods is not selected, the sobel method is used by default.

Many of the edge detection operators are constructed considering differentiation.

	

df

dx

f x h f x

hh
=

+( )- ( )æ

è
ç

ö

ø
÷

®
lim

0 	 (9)

Figure 10-25.  Output of Example 10-20

Chapter 10  Image Processing



247

The definition of the derivative is given in Equation 9. This expression can be 

rewritten as

	 f x h f x+( )- ( ) 	 (10)

when h = 1. Actually, the smallest value of h is 1 if we consider the difference between 

consecutive pixel values horizontally.

Based on the expression f (x + 1) − f (x − 1), horizontal and a vertical filters can be 

defined as [−1, 0, 1], and 

-1
0

1

. The magnitude of the gradient plays an important role in 

edge detection methods. For an image f (x, y), the gradient and its magnitude are defined 

by

				  
¶
¶

¶
¶

é

ë
ê

ù

û
ú

f

x

f

y
 , 

¶
¶

æ
è
ç

ö
ø
÷ +

¶
¶

æ

è
ç

ö

ø
÷

f

x

f

y

2 2

 .� (11)

Example 10-21. Write a program that reads the image from the file cowboys.png. 

Then, use the methods canny and prewitt to find the edges within the image.

Solution 10-21. The following code can be used to accomplish the given task.

Example10p21.m

%Example10p21

%This code finds edges

Im = imread('cowboys.png');

Im2 = rgb2gray(Im);

CannyM = edge(Im2,'canny');

PrewittM = edge(Im2,'prewitt');

figure, imshow(CannyM);

title('Canny method');

figure, imshow(PrewittM);

title('Prewitt method');

Once the code is run, the outputs obtained are displayed in Figures 10-26 and 10-27.

Chapter 10  Image Processing



248

Example 10-22: Two filters are defined as Px =
-
-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 1

1

1

0 1

0 1

, and Py =
- - -é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

0

1

0 0

1 1
. 

Using these two filters, find the edges of the cowboys.png image.

Figure 10-26.  First output of Example10-21

Figure 10-27.  Second output of Example 10-21

Chapter 10  Image Processing



249

Solution 10-22. The following code can be used to accomplish the given task.

Example10p22.m

%Example10p22

%This code finds edges

I = imread('cowboys.png');

s = rgb2gray(I);

px=[-1,0,1;-1,0,1;-1,0,1];

py=px';

Sx=imfilter(s,px);

Sy=imfilter(s,py);

imshow(Sx),title('Applying Px');

figure,imshow(Sy),title('Applying Py');

Once the code is run, the output shown in Figures 10-28 and 10-29 is obtained.

Figure 10-28.  First output of Example 10-22

Chapter 10  Image Processing



250

Example 10-23. Write code to find the edges of the cowboys.png image without 

using MATLAB’s built-in functions with the filter of px=[0,-1,-1;1,0,-1;1,1,0].

Solution 10-23. The following code can be used to accomplish the given task.

Example10p23.m

%Example10p23

%This code finds edges without built-in functions

Im=double(rgb2gray(imread('cowboys.png')));

[Row,Col]=size(Im);

Im2=zeros(Row-1,Col-1);

Im2(1,1)=Im(1,1);

Filt=[0,-1,-1;1,0,-1;1,1,0];

Filt=flipud(Filt);

Filt=fliplr(Filt);

for i=2:size(Im, 1)-1

    for j=2:size(Im, 2)-1

        nghb_mtrx=Filt.*Im(i-1:i+1, j-1:j+1);

        avg_val=sum(nghb_mtrx(:));

        Im2(i, j)=avg_val;

    end

end

Figure 10-29.  Second output of Example 10-22

Chapter 10  Image Processing



251

imshow(uint8(Im2));

title('Edge Detection');

In the preceding code, the convolutional operator is used. Once the code is run, the 

output shown in Figure 10-30 is obtained.

Example 10-24. Write code to find the edges of the cowboys.png image without 

using built-in functions with the filter of px=[0,1,0;1,-4,1;0,1,0], known as discrete 

Laplacian.

Solution 10-24. The following code can be used to accomplish the given task.

Example10p24.m

%Example10p24

%This code applies discrete Laplacian

Im=double(rgb2gray(imread('cowboys.png')));

[Row,Col]=size(Im);

Im2=zeros(Row-1,Col-1);

Im2(1,1)=Im(1,1);

Filt=[0,1,0;1,-4,1;0,1,0];

Filt=flipud(Filt);

Figure 10-30.  Output of Example 10-23

Chapter 10  Image Processing



252

Filt=fliplr(Filt);

for i=2:Row-1

    for j=2:Col-1

        nhbr_mtrx=Filt.*Im(i-1:i+1, j-1:j+1);

        avg_val=sum(nhbr_mtrx(:));

        Im2(i, j)=avg_val;

    end

end

imshow(uint8(Im2)); title('Discrete Laplacian');

In this code, convolution is used to obtain the output. Once the code is run, the 

output is shown in Figure 10-31.

�Region-Based Methods
Generally, data clustering, region growing, region merging and splitting, and mean 

shift are the different methods used to apply region-based image segmentation. These 

methods attempt to find common features among the pixel values over a region on the 

image. One of the easiest methods to use is region growing. In this type, an initial seed 

point is picked, and then the difference between the seed point and the neighboring 

Figure 10-31.  Output of Example 10-24

Chapter 10  Image Processing



253

pixels is checked. If the difference is tolerable up to a certain point, or a threshold, then 

these pixels will be added to the seed pixel and the region will be grown. In this method, 

threshold value or criteria will be an important part of the algorithm.

�Mathematical Morphology
Mathematical morphology is a branch of image processing for analysis and processing 

geometric structures such as extracting image components. Operations are performed 

for noise filtering, segmentation, shape simplifying, and enhancing object structure. 

Dilation and erosion are two important concepts in mathematical morphology. Dilation 

adds pixels to the boundaries of object and erosion removes pixels on the boundaries.

Assume that A and B are two sets having pixel values. Then dilation of A by B is 

defined as

	
A B x y u v x y A u v BÅ = ( )+ ( ) ( )Î ( )Î{ }, , , , ,: . 	 (12)

Erosion of A by B is defined as

	 A B z B Az = Í{ : . 	 (13)

All of the other operations are defined with a combination of dilation and erosion. 

Table 10-9 lists some of the most commonly used functions in morphology.

Table 10-9.  Functions Used in Morphology

Function Explanation

bwpack Packs the entered binary image into uint32

bwunpack Unpacks uint32 binary image to binary image

imdilate Dilates the grayscale, binary, or packed image

imerode Erodes grayscale, binary, or packed image

imclose Applies morphological closing on grayscale or binary image

imopen Applies morphological opening on grayscale or binary image

imbothat Applies morphological bottom-hat filtering to grayscale or binary image

translate Translates a polyshape

Chapter 10  Image Processing



254

Example 10-25. Write code that resizes the image of cowboys.png to 300 by 400. 

Then the code should use the strel function, which creates a cube structuring element 

with a width of 3 pixels. Then apply this to the resized image with erosion and dilation 

separately. The code should show the original image with the dilated one, and the 

original image with the eroded one in two different figures.

Solution 10-25. The following code can be used to accomplish the given task.

Example10p25.m

%Example10p25

%This code applies erosion and dilation

I= rgb2gray(imread('cowboys.png'));

BW=imresize(I,[300 400]);

se = strel('square',3);

BW1=imerode(BW,se);

BW2 = imdilate(BW,se);

figure,imshowpair(BW,BW1,'montage');

title('Original  with Erosion');

figure,imshowpair(BW,BW2,'montage');

title('Original  with Dilation');

Once the code is run, the outputs shown in Figure 10-32 and 10-33 are the result.

Figure 10-32.  First output of Example 10-25

Chapter 10  Image Processing



255

�Problems
10.1. Write a program that reads the pixel values of a truecolor 

image in the file named peppers.png. Then, convert the format of 

the image to .jpg and save it as New.jpg.

10.2. Write a program that reads the image from the file peppers.

png. Then, rotate the image 50 and 12 degrees.

10.3. Write a program that reads the images from the files rice.

png and cowboys.png. Then, subtract these images from each 

other, and take the absolute value of the result. Finally, display 

these values as an image on the screen.

10.4. Write a program that reads the image named rice.png. 

Then, the code should generate two different images by using the 

pixel values of the read image. The pixel values of the first image 

should be the second power of the used image, and the pixel 

values of the second image must be obtained dividing the pixel 

values of the read image by three.

Figure 10-33.  Second output of Example 10-25

Chapter 10  Image Processing



256

10.5. Write a program that reads the image named peppers.png. 

Then, R, G, B frequencies should be changed to B, R, G, and the 

code should display the final image.

10.6. Write code to adjust the pixel values of the image peppers.

png. The code should saturate the upper 10% and lower 10% pixel 

values. The original and adjusted images should be plotted on a 

figure, including their histograms.

10.7. Write code to enhance the contrast of the peppers.png 

image using histogram equalization. The code should show 

the enhanced image, and difference image from the original to 

enhanced one in separate figures.

10.8. Write code to apply two different filters to the image coins.

png. The filters are [1,1;1,1]∗1/4 , and [1,1,1,1,1;1,1,1,1,1;1,1,1,1,1; 

1,1,1,1,1;1,1,1,1,1]∗1/25. The filtered images and the original 

image should be shown in separate figures.

10.9. Write code to apply the MATLAB filters of gaussian, 

average, and motion to rice.png. The filtered images should be 

shown in the same figure.

10.10. Write code that adds Gaussian white noise having zero 

mean and 0.01 variance to peppers.png image. Then use a 4-by-4 

filter to remove the noise.

10.11. Write code that adds speckle multiplicative noise to the 

peppers.png image with noise density of 0.02. Then using an 

adaptive filter, remove the noise from the image. The code should 

show the original and filtered images in different figures.

10.12. Write code that reads the peppers.png image and splits the 

RGB image into its red, green, and blue channels. The code should 

show the size of the image and the first 10 elements from each 

channel on the screen.

Chapter 10  Image Processing



257

10.13. Write code that multiplies every channel with different 

coefficients of the peppers.png image. The coefficients of red, 

green, and blue channels are 1/4, 3/4, and 1/2. After each channel 

is calculated with the given coefficients, channels should be 

combined to represent an RGB image. The code should show all of 

the updated images and the original image in one figure.

10.14. Write code to detect the borders of peppers.png with 

T = 0.5 as the threshold.

10.15. Write a program that reads the image from the file peppers.

png. Then, use a Gaussian filter to find the edges of the image.

Chapter 10  Image Processing



259
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_11

CHAPTER 11

Introduction to Sound 
Processing
It is possible to record, listen to, or manipulate sounds or audio files in MATLAB. This 

chapter introduces some basic features that are used with audio files, including using 

sine function as a sound. Using the Audio toolbox and other toolboxes, sophisticated 

illustrations can be achieved. In this chapter, though, the examples presented take into 

account that the reader might not have these toolboxes installed on MATLAB.

Sound propagates in the form of waves in the air. Sound is a continuous signal that 

can be digitalized as a discrete signal. Sound waves are recorded with a frequency that is 

the number of samples taken generally per second and measured in Hertz (Hz). Sounds 

with frequencies between 20 and 20,000 Hz comprise the hearing range for human 

beings.

To record and listen to a sound file, a microphone and a speaker should be installed 

on the system. To determine whether you have these devices, type the command 

audiodevinfo at the prompt.

> info = audiodevinfo

info =

     input: [1x2 struct]

    output: [1x2 struct]

>

In that code, the variable info is a construction having two fields. To visualize the 

content of info for the first data, you can type the following at the prompt.

> openvar info.input



260

Then, the window shown in Figure 11-1 opens.

If your operating system has a language other than English, you might see output 

similar to that shown in Figure 11-1. This display indicates that we have a microphone 

to record sound in MATLAB. To do that, we use the function audiorecorder. Using 

audiorecorder, we can create an 8,000 Hz, 8-bit, 1-channel audiorecorder file. It is also 

possible to change these default values. Possible numbers of bits include 8, 16, and 24. 

The number of channels should be either 1 (mono) or 2 (stereo).

Example 11-1. Write a program that loads the audio file handel to the workspace. 

Then, the program should play the sound.

Solution 11-1. The following code can be used to accomplish the given task.

Example11p1.m

%Example11p1

%This code plays hallelujah

load handel;

p = audioplayer(y, Fs);

play(p)

As shown, once the handel file is loaded, variables of y and Fs are loaded into 

the workspace. The variable y is the played signal, and Fs is the sample rate. The 

audioplayer function creates an audioplayer object for the signal y, and that object is 

assigned to the variable p. Then in the final row, using the command play, the p variable 

that has the sound is played.

Figure 11-1.  Microphone information

Chapter 11  Introduction to Sound Processing



261

To find information about a sound file, such as number of samples, number of 

channels, and so on, you can use the audioinfo as illustrated here.

> info = audioinfo('Adele.mp3')

info =

  struct with fields:

             Filename: 'C:\...\Adele.mp3'

    CompressionMethod: 'MP3'

          NumChannels: 2

           SampleRate: 44100

         TotalSamples: 12569472

             Duration: 285.0220

                Title: 'Someone Like You'

              Comment: []

               Artist: 'Adele'

              BitRate: 192

>

Example 11-2. Write a program that records your voice for 8 seconds with a 

sampling rate of 22,050 Hz, 16 bits with 2 channels. Then, the program should play the 

recorded sound and plot the graph of the recorded file.

Solution 11-2. The following code can be written to accomplish these tasks.

Example11p2.m

%Example11p2

% This records your voice for 8 seconds.

RecorderVar = audiorecorder(22050, 16, 2);

disp('Start speaking now')

recordblocking(RecorderVar, 8);

disp('End of Recording');

play(RecorderVar); % Playing

% Store data in double-precision array.

RecordData = getaudiodata(RecorderVar);

plot(RecordData); % plotting the sound

Chapter 11  Introduction to Sound Processing



262

As shown in the code, the recorded sound is assigned to the variable RecorderVar. 

In the fifth row, the recordblocking function records the object variable for 8 seconds, 

and it does not return until the recording is finished. The play function plays the 

recorded sound. The getaudiodata function returns the recorded audio data as a double 

array. Once the data are plotted via the plot function, we obtain the graphic shown in 

Figure 11-2, which represents the recorded sound.

Keep in mind that, when an individual runs the same code and speaks into the 

microphone, the output will be different from Figure 11-2 based on that person’s voice. 

Plotting is also different from what was obtained with the plot function earlier due to the 

fact that raw audio data are used in Figure 11-2.

Example 11-3. Write a program that loads the handel audio file to the workspace. 

Then the program should save the file as handel.flac in the directory. The code should 

add some information to the file. In the comment field, the sound file should display 

“This is my first audio,” in the title field “Hallelujah,” and in the artist field “San Antonio.” 

The bits per sample should be 24. The code should play the sound and display the 

information for the saved file.

Figure 11-2.  Recorded sound

Chapter 11  Introduction to Sound Processing



263

Solution 11-3. The following code can be written to accomplish these tasks.

Example11p3.m

%Example11p3

% This code saves an audio file with info

load handel

filename = 'handel.flac';

audiowrite(filename,y,Fs,'BitsPerSample',24,...

'Comment','This is my first audio',...

'Title','Hallelujah','Artist','San Antonio');

sound(y,Fs);

clear y Fs

info = audioinfo(filename);

disp(info);

In the code shown, the sound function plays the vector y as sound. The function 

audiowrite writes the sound with the defined features to the directory. Once the 

program is run, the following output appears in the command window.

>Example11p3

             Filename: 'C:\...\handel.flac'

    CompressionMethod: 'FLAC'

          NumChannels: 1

           SampleRate: 8192

         TotalSamples: 73113

             Duration: 8.9249

                Title: 'Hallelujah'

              Comment: 'This is my first audio'

               Artist: 'San Antonio'

        BitsPerSample: 24

>

The played vector can have values between negative one and positive one. For other 

data types, the ranges are shown in Table 11-1 and the maximum number of channels is 

listed in Table 11-2.

Chapter 11  Introduction to Sound Processing



264

Example 11-4. Write code that loads the handel file to play. After playing for 3 

seconds the file should stop playing and then resume. It should then play for 3 more 

seconds, and then stop.

Solution 11-4. The following code can be written to accomplish these tasks.

Example11p4.m

%Example11p4

% This code pauses and resumes playing

load handel;

player = audioplayer(y, Fs);

play(player);disp('playing is on');

pause(3);

pause(player);disp('playing is paused');

pause(3);

resume(player),disp('playing is resumed');

pause(3);

stop(player),disp('playing is off');

Table 11-1.  Range for y Depending on Its Data Type

Data Type of y Range of y

uint8 0 ≤ y ≤ 255

int16 -32768 ≤ y ≤ +32767

int32 -2^31 ≤ y ≤ 2^31–1

single -1.0 ≤ y ≤ +1.0

double -1.0 ≤ y ≤ +1.0

Table 11-2.  Maximum Number of Channels Depending on Data

File Format Maximum Channels

WAVE (.wav) 1,024

OGG (.ogg) 255

FLAC (.flac) 8

MPEG-4 AAC (.m4a, .mp4) 2

Chapter 11  Introduction to Sound Processing



265

In this code, the play function starts the object player at the beginning. Then the 

pause function pauses the audio after 3 seconds of playing. The same pause function 

holds for 3 more seconds. The resume function resumes the playing and the program 

holds for another 3 seconds. Finally, the stop function stops playing the object. Once the 

code is run, the following output appears in the command window.

> Example11p4

playing is on

playing is paused

playing is resumed

playing is off

>

Example 11-5. Write code that loads handel file to the workspace. Then the code 

should reverse the audio and play it in the reversed order. The code also should print the 

first five data of the original audio, and the last five data of the reversed audio to check 

their accuracy.

Solution 11-5. The following code can be written to accomplish these tasks.

Example11p5.m

%Example11p5

% This code reverses the hallelujah

load handel;

L=length(y);

y2=zeros(L,1);

for i=1:L

    y2(L-i+1)=y(i);

end

sound(y2,Fs);

disp('First 5 Data of Original Handel');

disp(y(1:5));

disp('Last 5 Data of Reversed Handel');

disp(y2(end-4:end));

In this code, after loading handel, the length of y data is stored to the L variable. 

Then, a new variable y2 is initialized as having all zero elements. Then the values of y are 

stored in the y2 variable in reversed order. The code then plays the new data and displays 

Chapter 11  Introduction to Sound Processing



266

the required data on the screen. Once the code is run, the following output appears in 

the command window.

> Example11p5

First 5 Data of Original Handel

         0

   -0.0062

   -0.0750

   -0.0312

    0.0062

Last 5 Data of Reversed Handel

    0.0062

   -0.0312

   -0.0750

   -0.0062

         0

>

�Sine Wave as Sound
One can get a sound by using a sine wave defined as

	 y A n F Fw s= * * * *( )sin /2 p 	 (1)

where A is the amplitude of the wave, Fw is the frequency of the wave, Fs is the sample 

frequency, and n is the index of the sample. In some resources, the same equation is 

presented as

	 y A frequency TimeVector= * * * *( )sin 2 p 	 (2)

where frequency = sine frequency , and TimeVector
Total Number of Points

Sample Frequency
= .

Example 11-6. Write a program that plots the sine wave signal. The variables 

are amplitude = 32, total number of points = 1,000, sampling frequency = 1,000, and 

frequency of sine wave = 20. The code should play the sound of y according to  

Equation 1 or 2 and plot the signal.

Chapter 11  Introduction to Sound Processing



267

Solution 11-6. The following code can be written to accomplish these tasks.

Example11p6.m

%Example11p6

% This code plays sine wave

A=32;N=1000;%Total number of points

Fs=1000;% Sampling frequency

frequency=20;%Frequency of sine wave

TimeVector=(0:N-1)/Fs;

y=A*sin(2*pi* frequency.*TimeVector);

sound(y);plot(TimeVector,y);

title('Sine Wave');ylabel('Amplitude');

xlabel('Time');

Once that code is run, a sound of the signal y is heard and the plot of the signal 

shown in Figure 11-3 is obtained.

Figure 11-3.  Sine wave plot

Chapter 11  Introduction to Sound Processing



268

Example 11-7. Write a program that plots the signal given by 

ysin = A ∗ (sin(2 ∗ π ∗ freq ∗ TimeVector)) + A ∗ (sin(4 ∗ π ∗ freq ∗ TimeVector)).  

The variables are amplitude = 1.5, total number of points = 1,500, sampling frequency = 

1,000, and frequency of sine wave = 50. The code should take the fft of signal ysin, and 

should play and plot the signal.

Solution 11-7. The following code can be written to accomplish these tasks.

Example11p7.m

%Example11p7

% This plays sound

A=1.5;% Amplitude

N=1500;%Total number of points

Fs=1000;% Sampling frequency

freq=50;%Frequency of sine wave

TV=(0:N-1)/Fs;%time vector

ysin=A*sin(2*pi* freq.*TV)+...

    A*sin(4*pi* freq.*TV);

Y = fft(ysin);y = abs(Y/N);

P1=y(1:N/2+1);P1(2:end-1)=2*P1(2:end-1);

t=Fs*(0:(N/2))/N;sound(ysin);plot(t,P1,'r');

Once that code is run, a sound for the signal y is heard and output plot shown in 

Figure 11-4 is obtained.

Chapter 11  Introduction to Sound Processing



269

Two bars are shown in Figure 11-4. If we play with the coefficients of the sine 

function or amplitudes in the signal and change one of them, say that the amplitude of 

the first term is twice the amplitude of the second term in the signal, then we would get 

different values for the bars in the graphic.

�Problems
11.1. Write a program that loads the audio files chirp and handel 

to the workspace. Then, the program should play both of the 

sounds.

11.2. Write a program that records your voice for 5 seconds with 

a sampling rate of 30,000 Hz, 16 bits with 2 channels. Then, the 

program should play the recorded sound back and plot a graph of 

the recorded file.

Figure 11-4.  Output of Example 11-7

Chapter 11  Introduction to Sound Processing



270

11.3. Write a program that loads the chirp audio file into the 

workspace. Then the program should save the file as chirp.flac 

in the directory. The code should add some information to the file. 

In the comment field, the sound file should have the value Nice 

Voice, and in the title field Bird. The code should play the sound 

and display the information for the saved file.

11.4. Write code that loads the audio file chirp to the workspace. 

The code should then separate the sound into two equal parts. 

The code also should play the second half first, and then the first 

half.

11.5. Write a program that plots the sine wave signal. The 

variables are amplitude = 10, total number of points = 5,000, 

sampling frequency = 8,000, and frequency of sine wave = 20. The 

code should play the sound and plot the signal.

Chapter 11  Introduction to Sound Processing



271
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9_12

CHAPTER 12

Applications 
with Graphical User 
Interfaces
A graphical user interface (GUI) can be created in three different ways. The first method 

is to create a GUI programmatically. In this instance, commands are usually written 

directly in the editor. The second way is to use the graphical user interface development 

environment (GUIDE). The third way is to create the GUI via the App Designer. In this 

chapter, we cover how to create GUIs in all of these cases, and illustrate how to program 

applications with them.

�GUI Elements
Although in App Designer, there are more options available, the elements shown in 

Figure 12-1 can be used with GUIDE and programmatically.



272

The buttons available for use are as follows:

•	 Push button

•	 Slider

•	 Radio button

•	 Check box

•	 Edit text

•	 Static text

•	 Pop-up menu

•	 List box

•	 Toggle button

•	 Table

•	 Axes

•	 Panel

•	 Button group

•	 ActiveX control

Using these buttons, it is possible to create neat and useful GUIs in MATLAB.

Figure 12-1.  GUI elements for GUIDE

Chapter 12  Applications with Graphical User Interfaces



273

�Creating GUIs Programmatically
Using this method, the buttons or elements can be directly defined and used in the editor.

Example 12-1: Write code that creates a GUI. The GUI will have two places to enter 

length and height values. Then a button should multiply these entered numbers and 

show the result in noneditable text output with a red background.

Solution 12-1. The following code can be used to accomplish the given task.

Example12p1.m

%Example12p1

% This code creates a GUI programmatically

close all;clear all; %[xpost,ypost,lngth,hght]

hFig=figure('NumberTitle','off','Menubar',...

'none','ToolBar','none','Position',...

[320 180 400 400],'NumberTitle','off',...

    'Name','My First GUI Programmatically');

uicontrol(hFig,'Style', 'text',...

'String', 'Enter Width: W','tag','htextW',...

'Position', [2 200 150 50],'FontSize',15);

uicontrol(hFig,'Style', 'text',...

'String', 'Enter Length: L',...

'Position', [2 300 150 50],'FontSize',15);

uicontrol(hFig,'Style','edit','String','0',...

   'position', [170 310 100 50],...

'FontSize',15,'tag','editL');

uicontrol(hFig,'Style','edit','String',...

'0','position', [170 210 100 50],...

 'FontSize',15,'tag','editW');

uicontrol(hFig,'Style', 'text',...

'String', ' 0 ','BackgroundColor','Red',...

'Position', [200 100 100 40],...

'FontSize',20,'tag','textResult');

uicontrol(hFig,'Style', 'pushbutton',...

'String', 'MULTIPLY L BY W',...

'Position', [20 100 150 50], 'Callback',...

{@Calculate},'FontSize',12);

Chapter 12  Applications with Graphical User Interfaces



274

function Calculate(hObject,event)

LL=findobj(0,'tag','editL');

L=str2double(get(LL,'String'));

WW=findobj(0,'tag','editW');

W=str2double(get(WW,'String'));

Result=findobj(0,'tag','textResult');

set(Result,'String',num2str(L*W));

end

Although this code looks very complicated, it is quite understandable if we look 

at each object separately. In the fourth row, figure is the main frame of our interface 

that holds information about the position of the GUI, including the name of the 

GUI. The expression [320 180 400 400] sets the position of the GUI as [x-position, 

y-position, length, height]. Then every set of rows starting with the uicontrol 

function creates an object in the GUI. There are two text objects to show texts, two 

editable objects to enter values, one button object to click on, and one more text object 

to show the result. Therefore, there are six rows starting with the uicontrol function that 

create these objects. One of them, which is the button object, has a callback function. 

When that button is clicked on the GUI, it calls a function called Calculate. Therefore, 

near the end of the code, the Calculate function is created to do the core part of the 

coding. If we run the code and enter the values shown on GUI, we obtain dialog box 

shown in Figure 12-2.

Figure 12-2.  Creating a GUI programmically

Chapter 12  Applications with Graphical User Interfaces



275

Once we click the Multiply button, it calls the Calculate function and the entire 

code inside the function is run. The code should be able to get the entered values from 

the text boxes. This is performed inside the Calculate function. These objects are found 

by using their tag names. Therefore, in GUI programming, assigning tag names to the 

objects is extremely important. Using the findobj function, these objects are found 

and then their values are obtained using the get function. Using str2double, these 

values are converted to double. After the multiplication, the result is assigned to the text 

with the tag name is textResult via the set function.

�Creating GUIs Using GUIDE
One can type >guide at the prompt to view the GUIDE. After opening, it asks whether 

the user wants to open a new GUI or an existing GUI. In this scenario, you should open a 

new one and create the following objects by dragging and dropping them on the canvas.

Example 12-2. Write a program to code the GUI as shown in Figure 12-3.

Solution 12-2. We need to drag the components from the left and drop them on the 

right side as shown in Figure 12-3. Then, if you double-click the icons, or right-click the 

icon and select Property Inspector, you can change the font size of the strings, values, 

string names, tags, and some other features by choosing from the available options 

within the inspector. Tag names are important in programming the GUI because tags 

are referred to whenever the components are contacted, as explained before. The tag 

name for the Side A text box is editA, for the Side B text box the tag name is editB, for the 

Perimeter text box it is textshow, and for the Area text box it is editson.

After creating the GUI in Figure 12-3 and saving it as Example12p2.fig, a function 

named Example12p2.m is automatically generated by MATLAB.

Figure 12-3.  Creating a GUI using GUIDE

Chapter 12  Applications with Graphical User Interfaces



276

If you run the function Example12p2 from the command window, or click the green 

button in Figure 12-3, then the created function starts working. If you just click the 

Calculate button on the GUI, though, nothing will happen. At minimum, we need a 

function that will request the values of A and B and then, display the area and perimeter 

after clicking the Calculate button.

The Calculate button is tagged as pushbutton1 in the inspector for the button 

(Figure 12-4).

In our case, that will be sufficient to write the following code under the pushbutton1_

Callback function in the automatically generated code. The function names might differ 

depending on the tag names you assign to the elements.

AA=get(handles.editA,'String');

A=str2double(AA);

BB=get(handles.editB,'String');

B=str2double(BB);

Area = A * B;

Perimeter= 2*(A+B);

set(handles.textshow,'String',Perimeter);

set(handles.editson,'String',num2str(Area));

Figure 12-4.  Inspector of Calculate button

Chapter 12  Applications with Graphical User Interfaces



277

In the first line of the preceding code, the string value is obtained. In the second 

line, the value is converted into double for length A. The same procedure is repeated for 

length B in the third and fourth lines. Area and perimeter values are calculated by using 

the formulas in the fifth and sixth lines. Finally, these values are assigned to the places 

that were tagged as textshow and editson.

The pushbutton1_Callback function should look like the Figure 12-5.

Once the code is executed, the GUI shown in Figure 12-6 is the result. If we try the 

GUI with the values A = 10 and B = 61, and click Calculate, we get the result shown.

Figure 12-5.  Additional function written within the generated code

Figure 12-6.  Output of the GUI for the given values

Chapter 12  Applications with Graphical User Interfaces



278

�Creating GUIs with App Designer
To create any application, we need to open the App Designer first. On the MATLAB 

toolbar, one can click the New button and then the App option will be available to select. 

After selecting App, the interface of the app will appear.

On the left, one can select the GUI elements. The objects can be dragged and 

dropped to the center of the canvas to be created. The easiest part is the creation of 

objects. The important part is writing callback functions here, too. In App Designer, 

MATLAB gives you permission to write on the white places in the coding part. As an 

example, one can just write codes on the white spaces seen in Figure 12-7. The rest of the 

coding is automatically generated depending on the design of objects.

Example 12-3. Write a program with App Designer to plot the graphics of 

trigonometric functions of sine, cosine, and tangent between –π and π. These functions 

should be selected from a listbox. There should also be a slider to multiply the selected 

function. Once the Plot button is clicked, the code should plot the trigonometric 

function that is multiplied by the coefficient of the selected value of the slider.

Figure 12-7.  An outlook from the code view

Chapter 12  Applications with Graphical User Interfaces



279

Solution 12-3. After designing the GUI, we need to create a callback function. 

Figure 12-8 shows code used as a callback function.

Figure 12-9 shows the output once the code is run.

Figure 12-8.  Code from Myapp1.mlapp

Figure 12-9.  Obtained output

Chapter 12  Applications with Graphical User Interfaces



280

What is different from GUIDE is that app. should be added as prefix to each tag, and 

the names of the files have an .mlapp suffix instead of .m. The rest of the coding is almost 

the same as coding with GUIDE, although depending on the elements or components 

library, App Designer has more available options.

�Creating Applications
Many applications can be created using GUIs in MATLAB. In this section, a few of them 

are illustrated in the examples. These applications are created by GUIDE.

Example 12-4. Create a GUI that has four options for plotting the graph of a 

trigonometric function such as sine, cosine, tangent, and cotangent of x, where x is 

between 0 and 2π. The function should be multiplied by a constant having a value 

between 0 and 100. The value of the constant should be controlled using a slider.

Solution 12-4. Figure 12-10 shows the outline of the GUI.

In Figure 12-10, we see 10 components on the GUI. The names and tags of the 

elements have been changed.

Under the PlotZ_OpeningFcn function, write the following code.

Figure 12-10.  Output of the GUI named PlotZ

Chapter 12  Applications with Graphical User Interfaces



281

axis(handles.axesSymbol,'off');

ht = text(1,0.5,'$0\leq x\leq 2\pi$',...

    'HorizontalAlignment','Right',...

    'Interpreter','latex','FontSize',25);

set(ht,'Parent',handles.axesSymbol);

Slide    = get(handles.sliderC, 'Value');

Slider = num2str(Slide);

set(handles.editC, 'String',Slider);

Under the sliderC_Callback function, write the following code.

Slide    = get(handles.sliderC, 'Value');

Slider = num2str(Slide);

set(handles.editC, 'String',Slider);

Under the editC_Callback function, write the following code.

Slide    = get(handles.editC, 'String');

Slider = str2double(Slide);

set(handles.sliderC, 'Value',Slider);

Finally, under the pushbuttonZ_Callback function, write the following code.

ChoicE = get(handles.popupmenuY,'Value');

CC=get(handles.editC,'String');

C=str2double(CC);

x=0:0.1:2*pi;

switch ChoicE

    case 1 % sin(x)

        z=C*sin(x);

        plot(z);

    case 2 %cos(x)

        z=C*cos(x);

        plot(z);

    case 3 %tan(x)

        z=C*tan(x);

        plot(z);

    case 4 %cot(x)

Chapter 12  Applications with Graphical User Interfaces



282

        z=C*cot(x);

        plot(z);

end

grid on

Once we run the code, we obtain the GUI shown in Figure 12-10.

Example 12-5. Create a GUI for a restaurant to calculate customers’ bills. The logo 

and the name of the restaurant should be on the GUI as well. Within the GUI, there 

should be panels for soups, desserts, and other available meals. Customers can pick only 

one kind of soup, but they can pick as much as they desire of anything else.

Solution 12-5. Figure 12-11 displays the outline of the GUI.

After designing the GUI as shown, and saving it as Restaurant.fig, the file 

Restaurant.m is automatically generated. Then, the codes given next are entered for the 

corresponding functions.

As a first step, the logo of the restaurant should be uploaded to the GUI. Hence, 

under the Restaurant_OpeningFcn function, write the following code.

Figure 12-11.  Output of the GUI named Restaurant.m

Chapter 12  Applications with Graphical User Interfaces



283

axis(handles.axes1,'off');

myImage = imread('Restaurant.jpg');

axes(handles.axes1);

imshow(myImage);

In the preceding code, the logo is saved as Restaurant.jpg within the same 

directory as the files Restaurant.m and Restaurant.fig.

Next, we need to write code to calculate the bills for the selected meals. Under the 

pushbuttonprice_Callback function, write the following code.

global Amount

Soup = get(handles.uibuttongroupsoup,'SelectedObject');

PickedSoup = get(Soup,'Tag');

switch PickedSoup

    case 'radiobuttontomato'

        Soupprice = 5;

    case 'radiobuttonchicken'

        Soupprice = 7;

    case 'radiobuttonlentil'

        Soupprice = 8;

    otherwise

        msgbox('You did not pick ANYTHING');

end

Baklava = get(handles.radiobuttonbaklava,'Value');

Cake    = get(handles.radiobuttoncake,'Value');

RicePudding= get(handles.radiobuttonricepudding,'Value');

MixedFruit=get(handles.radiobuttonmixedfruit,'Value');

Shish       = get(handles.checkboxshishkebab,'Value');

Bursa    = get(handles.checkboxbursaiskender,'Value');

Wrapper    = get(handles.checkboxwrapper,'Value');

Rice       = get(handles.checkboxrice,'Value');

Salad      = get(handles.checkboxsalad,'Value');

Compote    = get(handles.checkboxcompote,'Value');

Soda       = get(handles.checkboxsoda,'Value');

Coffee     = get(handles.checkboxcoffee,'Value');

HotTea     = get(handles.checkboxhottee,'Value');

Chapter 12  Applications with Graphical User Interfaces



284

Amount = Soupprice+Baklava*5+Cake*5+RicePudding*5+...

    MixedFruit*7+Shish*20+Bursa*22+Wrapper*15+...

   Rice*10+Salad*10+Compote*7+Soda*3+Coffee*3+HotTea*2;

set(handles.textsonuc,'String',Amount);

Under the pushbuttontotal_Callback function, write the following piece of code.

global Amount

if Amount<1

    msgbox('You did not pick ANYTHING');

else

    Tipp    = get(handles.edittip, 'String');

    Tippp = str2double(Tipp);

    TotalPrice = Amount + Tippp;

    set(handles.texttotal,'String',TotalPrice);

end

After running the program, the GUI is ready to work.

Example 12-6. Build a GUI that emulates a calculator.

Solution 12-6. Figure 12-12 shows the output of the code.

It is necessary to write the callback functions for each button on the GUI. Each button 

is tagged with its name. For example, 2 is tagged as Two, + is tagged as Add, and so on.

Figure 12-12.  Outline of the GUI named Calculator1.m

Chapter 12  Applications with Graphical User Interfaces



285

Under the One_Callback function, write the following code.

OldVal=get(handles.textresult,'String');

NewVal='1';

TextString = strcat(OldVal,NewVal);

set(handles.textresult,'String',TextString);

Under the Two_Callback function, write the following code.

OldVal=get(handles.textresult,'String');

NewVal='2';

TextString = strcat(OldVal,NewVal);

set(handles.textresult,'String',TextString);

We repeat the same thing for buttons 2, 3, 4, 5, 6, 7, 8, 9, and 0. For division, nter the 

following code under the Divide_Callback function in our case.

OldVal=get(handles.textresult,'String');

NewVal='/';

TextString = strcat(OldVal,NewVal);

set(handles.textresult,'String',TextString);

Similarly, repeat this procedure for the operations ∗, -, + and the symbols (.) and (,) 

as well as π for their corresponding buttons. For the sin button, enter the following code 

under the Sine_Callback function.

OldVal=get(handles.textresult,'String');

NewVal='sin((pi/180)*';

TextString = strcat(OldVal,NewVal);

set(handles.textresult,'String',TextString);

The angle is converted to degrees from radians in this code. That’s why we need to 

write (pi/180)* within the second line of the code. Similar code must be written for 

the cos, tan, and cot buttons. For the Clear button, enter the following code under the 

Equal_Callback function.

EvValue   = get(handles.textresult,'String');

EvalValue = eval(EvValue);

set(handles.textresult,'String',EvalValue);

Chapter 12  Applications with Graphical User Interfaces



286

In that code, the function eval evaluates the expression EvValue. Under the Back_

Callback function, enter the following code.

textString = get(handles.textresult,'String');

if(strcmp(textString,'0')==1)

   set(handles.textresult,'String','0') ;

else

    Val=char(textString);

    L=length(textString);

    textString=Val(1:L-1);

set(handles.textresult,'String',textString)

end

After running the code, the GUI is ready to work.

Example 12-7. Construct a GUI for the guess game.

Solution 12-7. Figure 12-13 shows the output of the code.

The program is required to guess a number whenever it is started over. Therefore, 

we need to write code under the opening function of the GUI, which will be called 

GuessGame_OpeningFcn, as shown in the following.

global Picked_Number Counter

Picked_Number=randi(100,1);

Counter=1; %initializing counter

The first line, which includes the global variables, should be placed right after the 

function line. The next two lines can be entered at the end of the function.

Figure 12-13.  General view of the GUI

Chapter 12  Applications with Graphical User Interfaces



287

Under the pushbuttonGuess_Callback function in our case, enter the following code.

global Picked_Number Counter

GuessVal=get(handles.editWriteGuess,'String');

Guess=str2double(GuessVal);

if Guess==Picked_Number

    fprintf('You got it in your %d th right\n',Counter);

    set(handles.textBigger,'visible','off');

    set(handles.textSmaller,'visible','off');

    Message1 = 'There You Go! You got it in your ';

    Message2 = 'th right!';

    FinalMes = [Message1, num2str(Counter), Message2];

    set(handles.textYouGot,'String',FinalMes);

    set(handles.textYouGot,'visible','on');

    return;

elseif Guess>Picked_Number

    set(handles.textYouGot,'visible','off');

    set(handles.textBigger,'visible','off');

    set(handles.textSmaller,'visible','on');

elseif Guess<Picked_Number

    set(handles.textYouGot,'visible','off');

    set(handles.textSmaller,'visible','off');

    set(handles.textBigger,'visible','on');

end

Counter=Counter+1;

After running the code, the GUI is ready to work.

Example 12-8. Create a music player GUI. The music should be loaded by a button 

on the workspace.

Solution 12-8. Figure 12-14 displays the output of the code.

Chapter 12  Applications with Graphical User Interfaces



288

The picture should be loaded in the GUI. Therefore, the following code should be put 

at the end of the MusicPlayer_OpeningFcn function as shown here.

axis(handles.axes1,'off');

myImage = imread('Figure_12_14.png');

axes(handles.axes1);

imshow(myImage);

Similarly, the following code should be put at the end of the Play_Callback function 

as shown in the following.

global filename player

[y,Fs] = audioread(filename);

player = audioplayer(y,Fs);

play(player);disp('playing is on');

Similarly, the following code should be put at the end of the Pause_Callback 

function.

global player

pause(player);

The following code should be put at the end of the Resume_Callback function.

global player

resume(player);

The following code should be put at the end of the Stop_Callback function.

global player

stop(player);

Figure 12-14.  General view of the created music player

Chapter 12  Applications with Graphical User Interfaces



289

The following code should be put at the end of the Load_Callback function.

global filename  pathname

[filename, pathname] = ...

    uigetfile({'*.mp3';'*.wav'});

After running the code, the GUI is ready to work.

Example 12-9. Write code that deals one card from a deck of cards.

Solution 12-9. Figure 12-15 shows the output of the code.

After creating the GUI components, the code is saved as PickCard. The pick_

callback function will be similar to the following.

% --- Executes on button press in pick.

function pick_Callback(hObject, eventdata, handles)

% hObject    handle to pick (see GCBO)

% eventdata  reserved - to be defined in a future %version of MATLAB

% handles    structure with handles and user data  %(see GUIDATA)

Suit = {'Club', 'Spade', 'Heart', 'Diamond'};

Numbers={'Ace','2','3','4','5','6','7','8',...

    '9','10','Jack','Queen','King'};

Su=randi(4,1);Nu=randi(13,1);

Card=[cellstr(Suit(Su)),cellstr(Numbers(Nu))];

%Tipp    = get(handles.edittip, 'String');

set(handles.textR,'String',Card);

Figure 12-15.  General view of the GUI

Chapter 12  Applications with Graphical User Interfaces



290

After running the code, the GUI is ready to work.

Many applications can be created using GUIs. Most of the time, GUIDE is used as 

to create these applications, but App Designer has been used more recently and more 

components have been added to the canvas as well. There is a Migrate tool to convert an 

application created in GUIDE into App Designer files. It can easly be downloaded from 

the Mathworks web site.

�Problems
12.1. Create a GUI that calculates the area and perimeter of 

a circle. The radius of the circle should be manually entered 

through the GUI.

12.2. Create a GUI that has two options, such as sine and cosine, 

for plotting the graph of the trigonometric functions for the values 

of x, where x is between 0 and π. After the user clicks the Plot 

button, the GUI should plot the graph.

12.3. Create a GUI that performs as a basic calculator with the four 

basic math operations (addition, subtraction, multiplication, and 

division).

12.4. Create a GUI that deals 13 cards to a player. The code should 

show all of these cards on the GUI.

12.5. Create a GUI for a restaurant showing five different meals. 

A customer can give more than one order for the same meal. The 

GUI should calculate the total amount the customers spent.

12.6. Create a GUI that plays an MP4 video. Stop and Pause 

buttons should be on the GUI as well.

Chapter 12  Applications with Graphical User Interfaces



291
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9

�APPENDIX A

References
	 1)	 Allen, Linda J. S. An Introduction to Mathematical Biology. Upper 

Saddle River, NJ: Pearson, 2006.

	 2)	 McAndrew, Alasdair. A Computational Introduction to Digital 

Image Processing. Boca Raton, FL: CRC, 2016.

	 3)	 Mandal, Mrinal, and Amir Asif. Continuous and Discrete Time 

Signals and Systems. London: Cambridge University Press, 2007.

	 4)	 Edwards, C. Henry, and David E. Penney. Differential Equations 

and Boundary Value Problems: Computing and Modeling. Upper 

Saddle River, NJ: Prentice Hall, 2003.

	 5)	 Gonzalez, Rafael C., and Richard E. Woods. Digital Image 

Processing. Boston: Pearson, 2017.

	 6)	 Hahn, Brian H., and Daniel T. Valentine. Essential MATLAB for 

Engineers and Scientists. Cambridge, MA: Academic Press.

	 7)	 Lial, Margaret L., Raymond N. Greenwell, and Nathan P. Ritchey. 

Finite Mathematics. Boston: Pearson, 2011.

	 8)	 https://github.com/jueseph/Tutorial-GrowthCurves-MATLAB

	 9)	 Hall, Barry G., H. Acar, A. Nandipati, and M. Barlow. Growth Rates 

Made Easy. Molecular Biology and Evolution, 31 (1), 2014.

	 10)	 Cristianini, Nello, and Matthew W. Hahn. Introduction to 

Computational Genomics, A Case Studies Approach. London: 

Cambridge University Press, 2006.

	 11)	 Lent, Graig S. Learning to Program with MATLAB: Building GUI 

Tools. Hoboken, NJ: Wiley, 2013.

	 12)	 Moore, Holly. MATLAB for Engineers. Boston: Pearson, 2017.

https://doi.org/10.1007/978-1-4842-5281-9
https://www.amazon.com/Essential-MATLAB-Engineers-Scientists-Brian/dp/0123943981/ref=sr_1_3?keywords=essential+matlab&qid=1566584450&s=gateway&sr=8-3
https://www.amazon.com/Essential-MATLAB-Engineers-Scientists-Brian/dp/0123943981/ref=sr_1_3?keywords=essential+matlab&qid=1566584450&s=gateway&sr=8-3
https://github.com/jueseph/Tutorial-GrowthCurves-MATLAB


292

	 13)	 Attaway, Stormy. MATLAB: A Practical Introduction to 

Programming and Problem Solving. Oxford, UK: Butterworth-

Heinemann, 2018.

	 14)	 Turk, Irfan. MATLAB Programming for Beginners and 

Professionals. Scotts Valley, CA: CreateSpace, 2018.

	 15)	 Apostol, Tom M. Mathematical Analysis. Englewood Cliffs, NJ: 

Pearson, 1974.

	 16)	 Banon, Gerald Jean Francis, Junior Barerra, and Ulisses de 

Mendonça Braga-Neto. Mathematical Morphology and its 

Applications to Signal and Image Processing: Proceedings of the 8th 

International Symposium on Mathematical Morphology. Rio, de 

Janeiro, Brazil: MCT/INPE, 2007.

	 17)	 Ding, Ding. Modeling and Simulation of Highway Traffic Using a 

Cellular Automaton Approach, UUDM Project Report, 2011.

	 18)	 https://www.mathworks.com/help/

	 19)	 https://www.mathworks.com/help/images/ 

linear-filtering.html

	 20)	 Cheney, E. Ward, and David R. Kinciad. Numerical Mathematics 

and Computing. Pacific Grove, CA: Brooks/Cole, 2007.

	 21)	 Kinciad, David, and Ward Cheney. Numerical Analysis: 

Mathematics of Scientific Computing. Providence, RI: American 

Mathematical Society, 2002.

	 22)	 Zucker, Steven W. Region Growing: Childhood and Adolescence. 

Computer Vision, Graphics, and lmage Processing, 5 (3), 1976.

	 23)	 http://www.stat.rice.edu/~mathbio/stat300/

	 24)	 Nowak, M., and R. May. Virus Dynamics: Mathematical 

Principles of Immunology and Virology. Oxford ,UK: Oxford 

University Press, 2001.

	 25)	 http://www.yildiz.edu.tr/~naydin/na_I2B.htm

	 26)	 https://web.ma.utexas.edu/users/davis/375/popecol/lec10/

lotka.html

APPENDIX A  References

https://www.mathworks.com/help/
https://www.mathworks.com/help/images/linear-filtering.html
https://www.mathworks.com/help/images/linear-filtering.html
http://www.stat.rice.edu/~mathbio/stat300/
http://www.yildiz.edu.tr/~naydin/na_I2B.htm
https://web.ma.utexas.edu/users/davis/375/popecol/lec10/lotka.html
https://web.ma.utexas.edu/users/davis/375/popecol/lec10/lotka.html


293
© Irfan Turk 2019 
I. Turk, Practical MATLAB, https://doi.org/10.1007/978-1-4842-5281-9

Index

A
Algorithms, 42
American Standard Code for Information 

Interchange (ASCII), 22, 23
Analog signal, 188
Animation

hgtransform function, 140, 142
movie creation

∗.avi file, 144
getframe function, 142
movie function, 142
output, 143

updating coordinates, 138–140
Aperiodic/nonperiodic signal, 188
Arrays, 10–11

B
Binary images, 210
Bioinformatics, genome sequencing

amino acid, 155
DNA, 152
dot plots, 159, 161
genetic code table, 154
MyCodons.m, 155, 158
seq, 153

Bisection method, 92, 93
Bottom-up processing, 42
Built-in functions

math functions, 17, 18
trigonometric functions, 18, 19

C
Colon operator

matrices, 15
vectors, 14

Computational biology
bacterial growth

differential equations, 147
logistic growth or  

equation, 149, 150
numerical solutions, 147–149

defined, 147
Continuous time (CT) signal, 185, 186
Cost, 80, 81
Curve fitting, 88–90

D
Data processing

graphic result, 129
Microsoft Excel, 128, 129
print data, 130, 131

Data visualization
meshgrid(x,y) function, 135
output, 136, 137
peaks(x,y) function, 135
plot different functions, 135, 136
3-D plotting, 134

Digital signals, 188
Dilation, 253, 254
Discrete fourier transforms  

(DFTs), 200, 201

https://doi.org/10.1007/978-1-4842-5281-9


294

Discrete Laplacian, 251, 252
Discrete time (DT) signal, 185, 187, 188
disp function, 45, 84
drawnow function, 139, 140

E
Economic modeling

compound interest, 76–78
cost, 80, 81
diff(f,x) function, 73, 74
percentage change, 78–80
profit, 83, 84
revenue, 81, 82
simple interest, 74–76

Electrical network
components, 195
Kirchhoff’s laws, 193, 194
RL network, 195
values of current, 196

Epidemic models
cellular dynamics of HIV, 178–182
SEIR, 175–178
SI, 168, 169
SIR, 173–175
SIS, 169–172

Erosion, 253, 254
Euler’s method, 100, 101
Even/odd signals, 192, 193

F
Fast fourier transform (FFT)

fft function, 201, 202
magnitude, spectrum, 204
phase spectrum, 205
power spectrum, sine wave, 203
signal, sine wave, 202

Fixed-point iteration method, 95, 96
Flowcharts/pseudocode, 42, 43
for loops, 54–56
fprintf function, 23, 45
fspecial function, 229
fzero function, 90, 91

G
getframe function, 142
Graphical user interface development 

environment (GUIDE), 271, 272
Graphical user interface (GUI)

applications, creation
Back_Callback function, 286
calculate customers’  

bills, 282–284
calculator, 284–286
deck of cards, 289
Divide_Callback function, 285
Equal_Callback function, 285
guess game, 286–287
GuessGame_OpeningFcn, 286
music player GUI, 287–289
MusicPlayer_OpeningFcn, 288
One_Callback function, 285
pick_callback function, 289, 290
PlotZ_OpeningFcn function, 280
pushbuttonGuess_Callback 

function, 287
pushbuttontotal_Callback  

function, 284
pushbuttonZ_Callback  

function, 281
Restaurant_OpeningFcn  

function, 282
Sine_Callback function, 285
trigonometric function, 280–282

INDEX



295

calculate function, 274
creation

App Designer, 278–280
GUIDE, 275–277
programmically, 273–275

elements, 271, 272
Grayscale images, 210, 211

H
Harmonic analysis, 196–200
Heterogeneous data types

cell array, 29, 30
structures, 30, 31
tables, 32, 33

hgtransform function, 140, 142
Homogeneous data types

character/strings, 20–25
logical data, 27, 28
numerical data, 25

floating-point numbers, 27
integer types, 26

symbolic data, 28

I, J, K
Ideal high pass filter (IHPF), 232
Image enhancement

edge preserving, 235
frequency domain

diagram of filtering, 231
filtering functions, 230
process, 231

integral image domain  
filtering, 234

point processing operations
histogram, 223
mat2gray function, 220

pixel values, 221, 222
representation, 220

spatial domain
filtering operation, 227, 228
special filters, 230

Image files
binary, 210
color processing, 238
combined, 219
conversion, 214
enhancement (see Image 

enhancement)
functions, 214
grayscale, 210, 211
indexed, 211
.jpg to .png, 215
manipulation, 216
restoration

errors/noise, 236
FIR filtered, 237

rotating, 217
segmentation (see Image 

segmentation)
three-dimensional matrix, 240
truecolor, 212, 213
two-dimensional matrices, 209

Image restoration, 236
imagesc function, 116, 117
Image segmentation

double thresholding, 245
edge detection, 246, 247, 249–252
functions, 253
region-based, 252
single thresholding, 243, 244

imfilter function, 227, 229
imread command, 212, 214
imshow function, 212
imsplit function, 239

Index



296

imwrite function, 215
Indexed image, 211
Interpolation/extrapolation, 87, 88

L
Line spacing formats, 8
Load_Callback function, 289
Logical functions/selection structures

if-else statement, 48
menu function, 52, 53
relational operators, 49, 50
single if statement, 46, 47
switch-case commands, 50, 51

M
Mathematical morphology, 253
MATLAB

calculator, 5, 6
environment, 1

basic commands, 4
changing properties, 3
disp() function, 5
interface, 2

format, 8–10
scripts/M-files, 43–46
variables/expressions, 6–8

Matrices, 13
functions, 14

N
National Television Systems Committee 

(NTSC), 238
Newton–Raphson method, 93, 94
Nicholson-Bailey model, 151, 152
Numerical formats, 8, 9
Numerical integration, 97, 98

O
Ordinary differential equations (ODEs)

Euler’s method, 100, 101
Runge–Kutta method, 101, 102
solver function, 98, 99

P, Q
Periodic signal, 188
Point processing, 219
Pause_Callback function, 288
Play_Callback function, 288
Plotting graphics

multiple plotting, 36–38
single plotting, 33–36

Predator–Prey models
three species

Lotka-Volterra model, 164
population sizes, 165, 166
population with time, 167

two species
Lotka-Volterra equations, 161, 162
population sizes, 162, 163
semilog function, 163, 164

Profit, 83, 84
Programming controls

break/continue, 58–60
for loop, 54–56
try-catch block, 60, 61
while loop, 56, 57

R
rand command, 106, 112
randi command, 105, 109
randperm function, 107
Red-Green-Blue (RGB) images, 212–213
Resume_Callback function, 288

INDEX



297

Revenue, 81, 82
rng function, 105
Root finding

bisection function, 92, 93
fixed-point iteration  

function, 95, 96
Newton’s function, 93, 94
secant function, 94, 95
fzero function, 90, 91

Runge–Kutta methods, 101, 102

S
Searching task

dataset, 126, 127
find command, 128
for strings, 125, 126
vector or matrix, 124, 125

Secant method, 94, 95
SEIR epidemic model, 175–178
SI epidemic model, 168, 169
Signal processing, 185
Simple interest, 74–76
Simulation application

flip coin, 108, 109
random number generation, 105–107
random walk, 112, 113, 115
rolling pair of dice, 109–111
traffic flow, 116–118

SIR epidemic model, 173–175
SIS epidemic model, 169–172
Sorting

matrix, columns and rows, 123, 124
sort function, 123

Sound processing
audiodevinfo, 259
audioplayer function, 260

channels, 263, 264
getaudiodata function, 262
microphone information, 260
play function, 265
recordblocking function, 262
recorded sound, 262
sine wave, 266–269
stop function, 265
zero elements, 265

Statistical functions, 121
Stop_Callback function, 288
stretchlim function, 224

T
Thresholding, 243–246
Trigonometric functions, 19
Truecolor images, 212, 213
try-catch block, 60, 61

U
User-defined function, 62

anonymous functions, 67
creating function, 63–65
dialog boxes, 68, 69, 71
local/global variables, 65, 66
subfunctions, 66, 67

V
Vectors, 11, 12

linspace command, 12

W, X, Y, Z
while loop, 56, 57

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to MATLAB
	MATLAB Environment
	Using MATLAB as a Calculator
	Variables and Expressions
	Formats
	Vectors and Matrices
	Arrays
	Vectors
	linspace Command

	Matrices
	Special Matrices

	Colon Operator

	Built-in Functions
	Some of the Elementary Math Functions
	Trigonometric Functions

	Data Types
	Homogeneous Data Types
	Characters and Strings
	Numerical Data
	Logical Data
	Symbolic Data

	Heterogeneous Data Types
	Cell Arrays
	Structures
	Tables


	Plotting Graphics
	Single Plotting
	Multiple Plots

	Problems

	Chapter 2: Fundamentals of MATLAB Language
	Algorithms
	Flowcharts and Pseudocode
	Scripts and M-Files
	Logical Functions and Selection Structures
	if and if-else Commands
	Single if Structure
	if-else Structure
	Relational Operators with if and if-else

	Switch-Case Commands
	Menu

	Programming Controls
	for Loop
	while Loop
	break and continue
	try-catch Block

	User-Defined Functions
	Creating Functions
	Local and Global Variables
	Creating Subfunctions
	Anonymous Functions
	Interaction with the Computer

	Problems

	Chapter 3: Economic Modeling
	Preliminaries
	Simple and Compound Interest
	Simple Interest
	Compound Interest

	Percentage Change
	Cost, Revenue, and Profit
	Cost
	Revenue
	Profit

	Problems

	Chapter 4: Numerical Methods
	Interpolation and Extrapolation
	Curve Fitting
	Root Finding
	fzero Function
	Bisection Method
	Newton’s Method
	Secant Method
	Fixed-Point Iteration

	Numerical Integration
	Numerical Differentiation
	Ordinary Differential Equations
	ODE Solver Functions
	Euler’s Method
	Runge–Kutta Method of Fourth Order


	Problems

	Chapter 5: Applications in Simulation
	Random Number Generation
	Flipping a Coin
	Rolling a Pair of Dice
	Random Walking
	Traffic Flow
	Problems

	Chapter 6: Basic Statistics and Data Analysis
	Basic Statistics
	Data Analysis
	Sorting and Searching
	Data Processing

	Problems

	Chapter 7: Data Visualization and Animation
	Data Visualization
	Animation
	Updating Coordinates
	Applying Transformation
	Creating Movies

	Problems

	Chapter 8: Computational Biology
	Bacterial Growth and Population Models
	Host–Parasitoid Models
	Bioinformatics
	Genome Sequencing
	Dot Plot

	Predator–Prey Models
	Model with Two Species
	Model with Three Species

	Epidemic Models
	SI Epidemic Model
	SIS Epidemic Model
	SIR Epidemic Model
	SEIR Epidemic Model
	Cellular Dynamics of HIV

	Problems

	Chapter 9: Signal Processing
	Signal Types
	Continuous and Discrete Signals
	Analog and Digital Signals
	Periodic and Nonperiodic Signals
	Even and Odd Signals

	Electrical Currents
	Harmonic Analysis
	Fast Fourier Transform
	Problems

	Chapter 10: Image Processing
	Image Types
	Binary Images
	Grayscale Images
	Indexed Images
	Truecolor (RGB) Images

	Converting Image Types and Formats
	Operations on Images
	Image Enhancement
	Point Processing
	Enhancement in the Spatial Domain
	Enhancement in the Frequency Domain
	Enhancement with Other Functions

	Image Restoration
	Adding and Removing Noise

	Color Processing
	Image Segmentation
	Thresholding
	Single Thresholding
	Double Thresholding

	Edge Detection
	Region-Based Methods

	Mathematical Morphology
	Problems

	Chapter 11: Introduction to Sound Processing
	Sine Wave as Sound
	Problems

	Chapter 12: Applications with Graphical User Interfaces
	GUI Elements
	Creating GUIs Programmatically
	Creating GUIs Using GUIDE
	Creating GUIs with App Designer
	Creating Applications
	Problems

	Appendix A:
References
	Index



