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Introduction
Machine learning is changing the world. Every organization, large and small, seeks to 

extract knowledge from the massive amounts of information that they store and process 

on a daily basis. The tantalizing desire to predict the future drives the work of business 

analysts and data scientists in fields ranging from marketing to healthcare. Our goal with 

this book is to make the tools of analytics approachable for a broad audience.

The R programming language is a purpose-specific language designed to facilitate 

statistical analysis and machine learning. We choose it for this book not only due to its 

strong popularity in the field but also because of its intuitive nature, particularly for indi-

viduals approaching it as their first programming language.

There are many books on the market that cover practical applications of machine 

learning, designed for businesspeople and onlookers. Likewise, there are many deeply 

technical resources that dive into the mathematics and computer science of machine 

learning. In this book, we strive to bridge these two worlds. We attempt to bring the 

reader an intuitive introduction to machine learning with an eye on the practical appli-

cations of machine learning in today’s world. At the same time, we don’t shy away from 

code. As we do in our undergraduate and graduate courses, we seek to make the R pro-

gramming language accessible to everyone. Our hope is that you will read this book with 

your laptop open next to you, following along with our examples and trying your hand at 

the exercises.

Best of luck as you begin your machine learning adventure!

WHAT DOES THIS BOOK COVER?
This book provides an introduction to machine learning using the R program-

ming language.

Chapter 1: What Is Machine Learning?  This chapter introduces the world of 

machine learning and describes how machine learning allows the discovery of 

knowledge in data. In this chapter, we explain the differences between unsupervised 

learning, supervised learning, and reinforcement learning. We describe the differ-

ences between classification and regression problems and explain how to measure 

the effectiveness of machine learning algorithms.
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Chapter 2: Introduction to R and RStudio  In this chapter, we introduce the R pro-

gramming language and the toolset that we will be using throughout the rest of the 

book. We approach R from the beginner’s mind-set, explain the use of the RStudio 

integrated development environment, and walk readers through the creation and 

execution of their first R scripts. We also explain the use of packages to redistribute R 

code and the use of different data types in R.

Chapter 3: Managing Data  This chapter introduces readers to the concepts of data 

management and the use of R to collect and manage data. We introduce the tidy-

verse, a collection of R packages designed to facilitate the analytics process, and we 

describe different approaches to describing and visualizing data in R. We also cover 

how to clean, transform, and reduce data to prepare it for machine learning.

Chapter 4: Linear Regression  In this chapter, we dive into the world of supervised 

machine learning as we explore linear regression. We explain the underlying statis-

tical principles behind regression and demonstrate how to fit simple and complex 

regression models in R. We also explain how to evaluate, interpret, and apply the 

results of regression models.

Chapter 5: Logistic Regression  While linear regression is suitable for problems 

that require the prediction of numeric values, it is not well-suited to categorical pre-

dictions. In this chapter, we describe logistic regression, a categorical prediction 

technique. We discuss the use of generalized linear models and describe how to 

build logistic regression models in R. We also explain how to evaluate, interpret, and 

improve upon the results of a logistic regression model.

Chapter 6: k-Nearest Neighbors  The k-nearest neighbors technique allows us to 

predict the classification of a data point based on the classifications of other, similar 

data points. In this chapter, we describe how the k-NN process works and demon-

strate how to build a k-NN model in R. We also show how to apply that model, making 

predictions about the classifications of new data points.

Chapter 7: Naïve Bayes  The naïve Bayes approach to classification uses a table of 

probabilities to predict the likelihood that an instance belongs to a particular class. In 

this chapter, we discuss the concepts of joint and conditional probability and describe 

how the Bayes classification approach functions. We demonstrate building a naïve 

Bayes classifier in R and use it to make predictions about previously unseen data.

Chapter 8: Decision Trees  Decision trees are a popular modeling technique 

because they produce intuitive results. In this chapter, we describe the creation and 

interpretation of decision tree models. We also explain the process of growing a tree 

in R and using pruning to increase the generalizability of that model.
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Chapter 9: Evaluating Performance  No modeling technique is perfect. Each has 

its own strengths and weaknesses and brings different predictive power to different 

types of problems. In this chapter, we discuss the process of evaluating model per-

formance. We introduce resampling techniques and explain how they can be used to 

estimate the future performance of a model. We also demonstrate how to visualize 

and evaluate model performance in R.

Chapter 10: Improving Performance  Once we have tools to evaluate the perfor-

mance of a model, we can then apply them to help improve model performance. In 

this chapter, we look at techniques for tuning machine learning models. We also dem-

onstrate how we can enhance our predictive power by simultaneously harnessing the 

predictive capability of multiple models.

Chapter 11: Discovering Patterns with Association Rules  Association rules help 

us discover patterns that exist within a dataset. In this chapter, we introduce the 

association rules approach and demonstrate how to generate association rules from 

a dataset in R. We also explain ways to evaluate and quantify the strength of associa-

tion rules.

Chapter 12: Grouping Data with Clustering  Clustering is an unsupervised learning 

technique that groups items based on their similarity to each other. In this chapter, 

we explain the way that the k-means clustering algorithm segments data and demon-

strate the use of k-means clustering in R.

READER SUPPORT FOR THIS BOOK
In order to make the most of this book, we encourage you to make use of the student 

and instructor materials made available on the companion site. We also encourage you 

to provide us with meaningful feedback on ways in which we could improve the book.

Companion Download Files
As you work through the examples in this book, you may choose either to type in all the 

code manually or to use the source code files that accompany the book. If you choose 

to follow along with the examples, you will also want to use the same datasets we use 

throughout the book. All the source code and datasets used in this book are available for 

download from www.wiley.com/go/pmlr.
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How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At 

John Wiley & Sons, we understand how important it is to provide our customers with 

accurate content, but even with our best efforts an error may occur.

To submit your possible errata, please email it to our customer service team at  

wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”
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Chapter 1

What Is 
Machine Learning?

Welcome to the world of machine learning! You’re about to 

embark upon an exciting adventure discovering how data 

scientists use algorithms to uncover knowledge hidden within 

the troves of data that businesses, organizations, and individuals 

generate every day.

If you’re like us, you often find yourself in situations where you are 

facing a mountain of data that you’re certain contains important 

insights, but you just don’t know how to extract that needle of 

knowledge from the proverbial haystack. That’s where machine 

learning can help. This book is dedicated to providing you with the 

knowledge and skills you need to harness the power of machine 

learning algorithms. You’ll learn about the different types of 

problems that are well-suited for machine learning solutions and 

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



Practical Machine Learning in R4

the different categories of machine learning techniques that are 

most appropriate for tackling different types of problems.

Most importantly, we’re going to approach this complex, 

technical field with a practical mind-set. In this book, our 

purpose is not to dwell on the intricate mathematical details of 

these algorithms. Instead, we’ll focus on how you can put those 

algorithms to work for you immediately. We’ll also introduce you to 

the R programming language, which we believe is particularly well-

suited to approaching machine learning problems from a practical 

standpoint. But don’t worry about programming or R for now. 

We’ll get to that in Chapter 2. For now, let’s dive in and get a better 

understanding of how machine learning works.

By the end of this chapter, you will have learned the following:

 ◆ How machine learning allows the discovery of 

knowledge in data

 ◆ How unsupervised learning, supervised learning, and rein-

forcement learning techniques differ from each other

 ◆ How classification and regression problems differ from 

each other

 ◆ How to measure the effectiveness of machine learning 

algorithms

 ◆ How cross-validation improves the accuracy of machine 

learning models
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DISCOVERING KNOWLEDGE IN DATA
Our goal in the world of machine learning is to use algorithms to discover knowledge 

in our datasets that we can then apply to help us make informed decisions about the 

future. That’s true regardless of the specific subject-matter expertise where we’re 

working, as machine learning has applications across a wide variety of fields. For exam-

ple, here are some cases where machine learning commonly adds value:

 • Segmenting customers and determining the marketing messages that will appeal 

to different customer groups

 • Discovering anomalies in system and application logs that may be indicative of a 

cybersecurity incident

 • Forecasting product sales based on market and environmental conditions

 • Recommending the next movie that a customer might want to watch based on 

their past activity and the preferences of similar customers

 • Setting prices for hotel rooms far in advance based on forecasted demand

Of course, those are just a few examples. Machine learning can bring value to 

almost every field where discovering previously unknown knowledge is useful—and we 

challenge you to think of a field where knowledge doesn’t offer an advantage!

Introducing Algorithms
As we proceed throughout this book, you’ll see us continually referring to machine 

learning techniques as algorithms. This is a term from the world of computer science that 

comes up again and again in the world of data science, so it’s important that you under-

stand it. While the term sounds technically complex, the concept of an algorithm is actu-

ally straightforward, and we’d venture to guess that you use some form of an algorithm 

almost every day.

An algorithm is, quite simply, a set of steps that you follow when carrying out a pro-

cess. Most commonly, we use the term when we’re referring to the steps that a computer 

follows when it is carrying out a computational task, but we can think of many things 

that we do each day as algorithms. For example, when we are walking the streets of a 

large city and we reach an intersection, we follow an algorithm for crossing the street. 

Figure 1.1 shows an example of how this process might work.

Of course, in the world of computer science, our algorithms are more complex and are 

implemented by writing software, but we can think of them in this same way. An algo-

rithm is simply a series of precise observations, decisions, and instructions that tell the 

computer how to carry out an action. We design machine learning algorithms to discover 
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knowledge in our data. As we progress through this book, you’ll learn about many differ-

ent types of machine learning algorithms and how they work to achieve this goal in very 

different ways.

Artificial Intelligence, Machine Learning, and 
Deep Learning
We hear the terms artificial intelligence, machine learning, and deep learning being used 

almost interchangeably to describe any sort of technique where computers are working 

with data. Now that you’re entering the world of data science, it’s important to have a 

more precise understanding of these terms.

Reach an
intersection

Observe the
walk signal

Is the
walk signal lit?

Cross the street

Press the walk
buttonNo

Yes

Figure 1.1 Algorithm for crossing 
the street
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Artificial intelligence (AI) includes any type of technique where we are attempting to 

get a computer system to imitate human behavior. As the name implies, we are try-

ing to ask computer systems to artificially behave as if they were intelligent. Now, of 

course, it’s not possible for a modern computer to function at the level of complex 

reasoning found in the human mind, but we can try to mimic some small portions of 

human behavior and judgment.

Machine learning (ML) is a subset of artificial intelligence techniques that attempt to 

apply statistics to data problems in an effort to discover new knowledge by gener-

alizing from examples. Or, in other terms, machine learning techniques are artificial 

intelligence techniques designed to learn.

Deep learning is a further subdivision of machine learning that uses a set of complex 

techniques, known as neural networks, to discover knowledge in a particular way. It 

is a highly specialized subfield of machine learning that is most commonly used for 

image, video, and sound analysis.

Figure 1.2 shows the relationships between these fields. In this book, we focus 

on machine learning techniques. Specifically, we focus on the categories of machine 

learning that do not fit the definition of deep learning.

MACHINE LEARNING TECHNIQUES
The machine learning techniques that we discuss in this book fit into two major cate-

gories. Supervised learning algorithms learn patterns based on labeled examples of past 

data. Unsupervised learning algorithms seek to uncover patterns without the assistance 

of labeled data. Let’s take a look at each of these techniques in more detail.

Deep
Learning

Machine
Learning

Artificial
Intelligence

Figure 1.2 The relationship between  
artificial intelligence, machine learning, and 
deep learning



Practical Machine Learning in R8

Supervised Learning
Supervised learning techniques are perhaps the most commonly used category of 

machine learning algorithms. The purpose of these techniques is to use an existing data-

set to generate a model that then helps us make predictions about future, unlabeled 

data. More formally, we provide a supervised machine learning algorithm with a training 

dataset as input. The algorithm then uses that training data to develop a model as its 

output, as shown in Figure 1.3.

You can think of the model produced by a supervised machine learning algorithm as 

sort of a crystal ball—once we have it, we can use it to make predictions about our data. 

Figure 1.4 shows how this model functions. Once we have it, we can take any new data 

element that we encounter and use the model to make a prediction about that new ele-

ment based on the knowledge it obtained from the training dataset.

The reason that we use the term supervised to describe these techniques is that we 

are using a training dataset to supervise the creation of our model. That training dataset 

contains labels that help us with our prediction task.

Let’s reinforce that with a more concrete example. Consider a loan officer working at 

the car dealership shown in Figure 1.5. The salespeople at the dealership work with indi-

vidual customers to sell them cars. The customers often don’t have the necessary cash 

on hand to purchase a car outright, so they seek financing options. Our job is to match 

customers with the right loan product from three choices.

 • Subprime loans have the most expensive interest rates and are offered to cus-

tomers who are likely to miss payment deadlines or default on their loans.

 • Top-shelf loans have the lowest interest rate and are offered to customers who 

are unlikely to miss payments and have an extremely high likelihood of repayment.

 • Standard loans are offered to customers who fall in the middle of these two 

groups and have an interest rate that falls in between those two values.

Machine Learning Algorithm ModelTraining Dataset

Figure 1.3 Generic supervised learning model



9Chapter 1: What Is Machine Learning?

We receive loan applications from salespeople and must make a decision on the spot. 

If we don’t act quickly, the customer may leave the store, and the business will be lost to 

another dealership. If we offer a customer a higher risk loan than they would normally 

qualify for, we might lose their business to another dealership offering a lower interest 

rate. On the other hand, if we offer a customer a lower interest rate than they deserve, 

we might not profit on the transaction after they later default.

Our current method of doing business is to review the customer’s credit report and 

make decisions about loan categories based on our years of experience in the role. 

We’ve “seen it all” and can rely upon our “gut instinct” to make these important business 

decisions. However, as budding data scientists, we now realize that there might be a 

better way to solve this problem using machine learning.

Our car dealership can use supervised machine learning to assist with this task. First, 

they need a training dataset containing information about their past customers and their 

loan repayment behavior. The more data they can include in the training dataset, the 

better. If they have several years of data, that would help develop a high-quality model.

The dataset might contain a variety of information about each customer, such as the 

customer’s approximate age, credit score, home ownership status, and vehicle type. Each 

of these data points is known as a feature about the customer, and they will become the 

inputs to the machine learning model created by the algorithm. The dataset also needs 

to contain labels for each one of the customers in the training dataset. These labels are 

the values that we’d like to predict using our model. In this case, we have two labels: 

default and repaid. We label each customer in our training dataset with the appropri-

ate label for their loan status. If they repaid their loan in full, they are given the “repaid” 

label, while those who failed to repay their loans are given the “default” label.

PredictionsProduction Data Model

Figure 1.4 Making predictions with a supervised learning model
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A small segment of the resulting dataset appears in Figure 1.6. Notice two things 

about this dataset. First, each row in the dataset corresponds to a single customer, and 

those customers are all past customers who have completed their loan terms. We know 

the outcomes of the loans made to each of these customers, providing us with the labels 

we need to train a supervised learning model. Second, each of the features included in 

the model are characteristics that are available to the loan officer at the time they are 

making a loan decision. That’s crucial to creating a model that is effective for our given 

problem. If the model included a feature that specified whether a customer lost his or 

her job during the loan term, that would likely provide us with accurate results, but the 

loan officer would not be able to actually use that model because they would have no 

way of determining this feature for a customer at the time of a loan decision. How would 

they know if the customer is going to lose their job over the term of the loan that hasn’t 

started yet?

“Uh oh! 
A young person buying a 

sports car seems risky. My 
gut tells me to offer a 

subprime loan 
here!”

780CREDIT

SCORE

Figure 1.5 Using machine learning to classify car dealership customers
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If we use a machine learning algorithm to generate a model based on this data, it 

might pick up on a few characteristics of the dataset that may also be apparent to you 

upon casual inspection. First, most people with a credit score under 600 who have 

financed a car through us in the past defaulted on that loan. If we use that characteristic 

alone to make decisions, we’d likely be in good shape. However, if we look at the data 

carefully, we might realize that we could realize an even better fit by saying that anyone 

who has a credit score under 600 and purchased a sedan is likely to default. That type of 

knowledge, when generated by an algorithm, is a machine learning model!

The loan officer could then deploy this machine learning model by simply following 

these rules to make a prediction each time someone applies for a loan. If the next cus-

tomer through the door has a credit score of 780 and is purchasing a sports car, as shown 

in Figure 1.7, they should be given a top-shelf loan because it is quite unlikely that they 

will default. If the customer has a credit score of 410 and is purchasing a sedan, we’d 

definitely want to slot them into a subprime loan. Customers who fall somewhere in 

between these extremes would be suited for a standard loan.

Now, this was a simplistic example. All of the customers in our example fit neatly into 

the categories we described. This won’t happen in the real world, of course. Our machine 

learning algorithms will have imperfect data that doesn’t have neat, clean divisions 

between groups. We’ll have datasets with many more observations, and our algorithms 

will inevitably make mistakes. Perhaps the next high credit-scoring young person to walk 

into the dealership purchasing a sports car later loses their job and defaults on the loan. 

Our algorithm would make an incorrect prediction. We talk more about the types of 

errors made by algorithms later in this chapter.

Customer
Number

Age Credit Score Home Status Vehicle Type Outcome

1 52 420 Own Sedan Default

2 52 460 Own Sedan Default

3 64 480 Rent Sports Repaid

4 31 580 Rent Sedan Default

5 36 620 Own Sports Repaid

6 29 690 Rent Pickup Repaid

7 23 730 Rent Sedan Repaid

8 27 760 Rent Pickup Repaid

9 43 790 Own Pickup Repaid 

Figure 1.6 Dataset of past customer loan repayment behavior
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Unsupervised Learning
Unsupervised learning techniques work quite differently. While supervised techniques 

train on labeled data, unsupervised techniques develop models based on unlabeled 

training datasets. This changes the nature of the datasets that they are able to tackle 

and the models that they produce. Instead of providing a method for assigning labels to 

input based on historical data, unsupervised techniques allow us to discover hidden pat-

terns in our data.

One way to think of the difference between supervised and unsupervised algorithms 

is that supervised algorithms help us assign known labels to new observations while 

unsupervised algorithms help us discover new labels, or groupings, of the observations 

in our dataset.

For example, let’s return to our car dealership and imagine that we’re now working 

with our dataset of customers and want to develop a marketing campaign for our service 

“The data 
tells me that customers like 

this will repay their loan. This 
one is top shelf!”

780
CREDIT
SCORE

Figure 1.7 Applying the machine learning model
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department. We suspect that the customers in our database are similar to each other in 

ways that aren’t as obvious as the types of cars that they buy and we’d like to discover 

what some of those groupings might be and use them to develop different market-

ing messages.

Unsupervised learning algorithms are well-suited to this type of open-ended dis-

covery task. The car dealership problem that we described is more generally known as 

the market segmentation problem, and there is a wealth of unsupervised learning tech-

niques designed to help with this type of analysis. We talk about how organizations use 

unsupervised clustering algorithms to perform market segmentation in Chapter 12.

Let’s think of another example. Imagine that we manage a grocery store and are try-

ing to figure out the optimal placement of products on the shelves. We know that cus-

tomers often run into our store seeking to pick up some common staples, such as milk, 

bread, meat, and produce. Our goal is to design the store so that impulse purchases are 

near each other in the store. As seen in Figure 1.8, we want to place the cookies right 

next to the milk so someone who came into the store to purchase milk will see them and 

think “Those cookies would be delicious with a glass of this milk!”

Milk

Cookies

Figure 1.8 Strategically placing items in a grocery store based on unsupervised  
learning
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The problem of determining which items customers frequently purchase together is 

also a well-known problem in machine learning known as the market basket problem. We 

talk about how data scientists use association rules approaches to tackle the market bas-

ket problem in Chapter 11.

NOTE You may also hear about a third type of machine learning algorithm 
known as reinforcement learning. These algorithms seek to learn based on 
trial and error, similar to the way that a young child learns the rules of a home 
by being rewarded and punished. Reinforcement learning is an interesting 
technique but is beyond the scope of this book.

MODEL SELECTION
In the previous section, we described ways to group algorithms based on the types of 

data that they use for training. Algorithms that use labeled training datasets are known 

as supervised algorithms because their training is “supervised” by the labels while those 

that use unlabeled training datasets are known as unsupervised algorithms because they 

are free to learn whatever patterns they happen to discover, without “supervision.” Think 

of this categorization scheme as describing how machine learning algorithms learn.

We can also categorize our algorithms based on what they learn. In this book, we 

discuss three major types of knowledge that we can learn from our data. Classification 

techniques train models that allow us to predict membership in a category. Regression 

techniques allow us to predict a numeric result. Similarity learning techniques help us 

discover the ways that observations in our dataset resemble and differ from each other.

Classification Techniques
Classification techniques use supervised machine learning to help us predict a categori-

cal response. That means that the output of our model is a non-numeric label or, more 

formally, a categorical variable. This simply means that the variable takes on discrete, 

non-numeric values, rather than numeric values. Here are some examples of categorical 

variables with some possible values they might take on:

 • Educational degree obtained (none, bachelor’s, master’s, doctorate)

 • Citizenship (United States, Ireland, Nigeria, China, Australia, South Korea)

 • Blood type (A+, A-, B+, B-, AB+, AB-, O+, O-)

 • Political party membership (Democrat, Republican, Independent)

 • Customer status (current customer, past customer, noncustomer)
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For example, earlier in this chapter, we discussed a problem where managers at a car 

dealership needed the ability to predict loan repayment. This is an example of a classifi-

cation problem because we are trying to assign each customer to one of two categories: 

repaid or default.

We encounter all types of classification problems in the real world. We might try to 

determine which of three promotional offers would be most appealing to a potential 

customer. This is a classification problem where the categories are the three different  

offers.

Similarly, we might want to look at people attempting to log on to our computer sys-

tems and predict whether they are a legitimate user or a hacker seeking to violate the 

system’s security policies. This is also a classification problem where we are trying to 

assign each login attempt to the category of “legitimate user” or “hacker.”

Regression Techniques
Regression techniques use supervised machine learning techniques to help us predict 

a continuous response. Simply put, this means that the output of our model is a numeric 

value. Instead of predicting membership in a discrete set of categories, we are predicting 

the value of a numeric variable.

For example, a financial advisor seeking new clients might want to screen possible cli-

ents based on their income. If the advisor has a list of potential customers that does not 

include income explicitly, they might use a dataset of past contacts with known incomes 

to train a regression model that predicts the income of future contacts. This model 

might look something like this:

 Income age yearsPostHighSchoolEducation5000 1000 3000* *  

If the financial advisor encounters a new potential client, they can then use this 

formula to predict the person’s income based on their age and years of education. For 

each year of age, they would expect the person to have $1,000 in additional annual 

income. Similarly, their income would increase $3,000 for each year of education beyond 

high school.

Regression models are quite flexible. We can plug in any possible value of age or 

income and come up with a prediction for that person’s income. Of course, if we didn’t 

have good training data, our prediction might not be accurate. We also might find that 

the relationship between our variables isn’t explained by a simple linear technique. 

For example, income likely increases with age, but only up until a certain point. More 

advanced regression techniques allow us to build more complex models that can take 

these factors into account. We discuss those in Chapter 4.
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Similarity Learning Techniques
Similarity learning techniques use machine learning algorithms to help us identify 

common patterns in our data. We might not know exactly what we’re trying to discover, 

so we allow the algorithm to explore the dataset looking for similarities that we might 

not have already predicted.

We’ve already mentioned two similarity learning techniques in this chapter. Associa-

tion rules techniques, discussed more fully in Chapter 11, allow us to solve problems 

that are similar to the market basket problem—which items are commonly purchased 

together. Clustering techniques, discussed more fully in Chapter 12, allow us to group 

observations into clusters based on the similar characteristics they possess.

Association rules and clustering are both examples of unsupervised uses of similarity 

learning techniques. It’s also possible to use similarity learning in a supervised manner. 

For example, nearest neighbor algorithms seek to assign labels to observations based 

on the labels of the most similar observations in the training dataset. We discuss those 

more in Chapter 6.

MODEL EVALUATION
Before beginning our discussion of specific machine learning algorithms, it’s also help-

ful to have an idea in mind of how we will evaluate the effectiveness of our algorithms. 

We’re going to cover this topic in much more detail throughout the book, so this is just 

to give you a feel for the concept. As we work through each machine learning technique, 

we’ll discuss evaluating its performance against a dataset. We’ll also have a more com-

plete discussion of model performance evaluation in Chapter 9.

Until then, the important thing to realize is that some algorithms will work better 

than others on different problems. The nature of the dataset and the nature of the algo-

rithm will dictate the appropriate technique.

In the world of supervised learning, we can evaluate the effectiveness of an algorithm 

based on the number and/or magnitude of errors that it makes. For classification prob-

lems, we often look at the percentage of times that the algorithm makes an incorrect 

categorical prediction, or the misclassification rate. Similarly, we can look at the percent-

age of predictions that were correct, known as the algorithm’s accuracy. For regression 

problems, we often look at the difference between the values predicted by the algo-

rithm and the actual values.

NOTE It only makes sense to talk about this type of evaluation when we’re 
referring to supervised learning techniques where there actually is a correct 
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answer. In unsupervised learning, we are detecting patterns without any 
objective guide, so there is no set “right” or “wrong” answer to measure our 
performance against. Instead, the effectiveness of an unsupervised learning 
algorithm lies in the value of the insight that it provides us.

Classification Errors
Many classification problems seek to predict a binary value identifying whether an 

observation is a member of a class. We refer to cases where the observation is a member 

of the class as positive cases and cases where the observation is not a member of the 

class as negative cases.

For example, imagine we are developing a model designed to predict whether 

someone has a lactose intolerance, making it difficult for them to digest dairy products. 

Our model might include demographic, genetic, and environmental factors that are 

known or suspected to contribute to lactose intolerance. The model then makes predic-

tions about whether individuals are lactose intolerant or not based on those attributes. 

Individuals predicted to be lactose intolerant are predicted positives, while those who 

are predicted to not be lactose intolerant (or, stated more simply, those who are pre-

dicted to be lactose tolerant) are predicted negatives. These predicted values come  

from our machine learning model.

There is also, however, a real-world truth. Regardless of what the model predicts, 

every individual person is either lactose intolerant or they are not. This real-world data 

determines whether the person is an actual positive or an actual negative. When the 

predicted value for an observation differs from the actual value for that same observa-

tion, an error occurs. There are two different types of error that may occur in a classifica-

tion problem.

 • False positive errors occur when the model labels an observation as predicted posi-

tive when it is, in reality, an actual negative. For example, if the model identifies 

someone as likely lactose intolerant while they are, in reality, lactose tolerant, this 

is a false positive error. False positive errors are also known as Type I errors.

 • False negative errors occur when the model labels an observation as predicted 

negative when it is, in reality, an actual positive. In our lactose intolerance model, 

if the model predicts someone as lactose tolerant when they are, in reality, lactose 

intolerant, this is a false negative error. False negative errors are also known as 

Type II errors.

Similarly, we may label correctly predicted observations as true positives or true nega-

tives, depending on their label. Figure 1.9 shows the types of errors in chart form.
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Of course the absolute numbers for false positive and false negative errors depend 

on the number of predictions that we make. Instead of using these magnitude-based 

measures, we measure the percentage of times that those errors occur. For example, 

the false positive rate (FPR) is the percentage of negative instances that were incorrectly 

identified as positive. We can compute this rate by dividing the number of false positives 

(FP) by the sum of the number of false positives and the number of true negatives (TN), 

or, as a formula:

 
FPR

FP

FP TN  

Similarly, we can compute the false negative rate (FNR) as follows:

 
FNR

FN

FN TP  

There is no clear-cut rule about whether one type of error is better or worse than the 

other. This determination depends greatly on the type of problem being solved.

For example, imagine that we’re using a machine learning algorithm to classify a large 

list of prospective customers as either people who will purchase our product (positive 

cases) or people who will not purchase our product (negative cases). We only spend the 

money to send the mailing to prospects labeled by the algorithm as positive.

In the case of a false positive mailing, you send a brochure to a customer who does 

not buy your product. You’ve lost the money spent on printing and mailing the brochure. 

In the case of a false negative result, you do not send a mailing to a customer who would 

have responded. You’ve lost the opportunity to sell your product to a customer. Which of 
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Figure 1.9 Error types
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these is worse? It depends on the cost of the mailing, the potential profit per customer, 

and other factors.

On the other hand, consider the use of a machine learning model to screen patients 

for the likelihood of cancer and then refer those patients with positive results for addi-

tional, more invasive testing. In the case of a false negative result, a patient who poten-

tially has cancer is not sent for additional screening, possibly leaving an active disease 

untreated. This is clearly a very bad result.

False positive results are not without harm, however. If a patient is falsely flagged 

as potentially cancerous, they are subjected to unnecessary testing that is potentially 

costly and painful, consuming resources that could have been used on another patient. 

They are also subject to emotional harm while they are waiting for the new test results.

The evaluation of machine learning problems is a tricky proposition, and it cannot be 

done in isolation from the problem domain. Data scientists, subject-matter experts, and, 

in some cases, ethicists, should work together to evaluate models in light of the benefits 

and costs of each error type.

Regression Errors
The errors that we might make in regression problems are quite different because the 

nature of our predictions is different. When we assign classification labels to instances, 

we can be either right or wrong with our prediction. When we label a noncancerous 

tumor as cancerous, that is clearly a mistake. However, in regression problems, we are 

predicting a numeric value.

Consider the income prediction problem that we discussed earlier in this chapter. If 

we have an individual with an actual income of $45,000 annually and our algorithm’s pre-

diction is on the nose at exactly $45,000, that’s clearly a correct prediction. If the algo-

rithm predicts an income of $0 or $10,000,000, almost everyone would consider those 

predictions objectively wrong. But what about predictions of $45,001, $45,500, $46,000, 

or $50,000? Are those all incorrect? Are some or all of them close enough?

It makes more sense for us to evaluate regression algorithms based on the magnitude 

of the error in their predictions. We determine this by measuring the distance between 

the predicted value and the actual value. For example, consider the dataset shown in 

Figure 1.10.

In this dataset, we’re trying to predict the number of bicycle rentals that occur each 

day based on the average temperature that day. Bicycle rentals appear on the y-axis 

while temperature appears on the x-axis. The black line is a regression line that says that 

we expect bicycle rentals to increase as temperature increases. That black line is our 

model, and the black dots are predictions at specific temperature values along that line.
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The orange dots represent real data gathered during the bicycle rental company’s 

operations. That’s the “correct” data. The red lines between the predicted and actual 

values are the magnitude of the error, which we call the residual value. The longer the 

line, the worse the algorithm performed on that dataset.

We can’t simply add the residuals together because some of them are negative values 

that would cancel out the positive values. Instead, we square each residual value and 

then add those squared residuals together to get a performance measure called the 

residual sum of squares.

We revisit the concept of residual error, as well as this specific bicycle rental dataset, 

in Chapter 4.

Types of Error
When we build a machine learning model for anything other than the most simplistic 

problems, the model will include some type of prediction error. This error comes in three 

different forms.

 • Bias (in the world of machine learning) is the type of error that occurs due to 

our choice of a machine learning model. When the model type that we choose is 

unable to fit our dataset well, the resulting error is bias.

 • Variance is the type of error that occurs when the dataset that we use to train our 

machine learning model is not representative of the entire universe of possible  

data.

 • Irreducible error, or noise, occurs independently of the machine learning algorithm 

and training dataset that we use. It is error inherent in the problem that we are 

trying to solve.
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When we are attempting to solve a specific machine learning problem, we cannot do 

much to address irreducible error, so we focus our efforts on the two remaining sources 

of error: bias and variance. Generally speaking, an algorithm that exhibits high vari-

ance will have low bias, while a low-variance algorithm will have higher bias, as shown 

in Figure 1.11. Bias and variance are intrinsic characteristics of our models and coexist. 

When we modify our models to improve one, it comes at the expense of the other. Our 

goal is to find an optimal balance between the two.

In cases where we have high bias and low variance, we describe the model as underfit-

ting the data. Let’s take a look at a few examples that might help illustrate this point. 

Figure 1.12 shows a few attempts to use a function of two variables to predict a third 

variable. The leftmost graph in Figure 1.12 shows a linear model that underfits the data. 

Our data points are distributed in a curved manner, but our choice of a straight line (a 

linear model) limits the ability of the model to fit our dataset. There is no way that you 

can draw a straight line that will fit this dataset well. Because of this, the majority of the 

error in our approach is due to our choice of model and our dataset exhibits high bias.

The middle graph in Figure 1.12 illustrates the problem of overfitting, which occurs 

when we have a model with low bias but high variance. In this case, our model fits the 

training dataset too well. It’s the equivalent of studying for a specific test (the training 

dataset) rather than learning a generalized solution to the problem. It’s highly likely that 

when this model is used on a different dataset, it will not work well. Instead of learning 

the underlying knowledge, we studied the answers to a past exam. When we faced a new 

exam, we didn’t have the knowledge necessary to figure out the answers.

The balance that we seek is a model that optimizes both bias and variance, such as the 

one shown in the rightmost graph of Figure 1.12. This model matches the curved nature 

of the distribution but does not closely follow the specific data points in the training 
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dataset. It aligns with the dataset much better than the underfit model but does not 

closely follow specific points in the training dataset as the overfit model does.

Partitioning Datasets
When we evaluate a machine learning model, we can protect against variance errors 

by using validation techniques that expose the model to data other than the data used 

to create the model. The point of this approach is to address the overfitting problem. 

Look back at the overfit model in Figure 1.12. If we used the training dataset to evaluate 

this model, we would find that it performed extremely well because the model is highly 

tuned to perform well on that specific dataset. However, if we used a new dataset to 

evaluate the model, we’d likely find that it performs quite poorly.

We can explore this issue by using a test dataset to assess the performance of our 

model. The test dataset is set aside at the beginning of the model development process 

specifically for the purpose of model assessment. It is not used in the training process, 

so it is not possible for the model to overfit the test dataset. If we develop a generaliz-

able model that does not overfit the training dataset, it will also perform well on the test 

dataset. On the other hand, if our model overfits the training dataset, it will not perform 

well on the test dataset.

We also sometimes need a separate dataset to assist with the model development 

process. These datasets, known as validation datasets, are used to help develop the 

model in an iterative process, adjusting the parameters of the model during each itera-

tion until we find an approach that performs well on the validation dataset. While it may 

be tempting to use the test dataset as the validation dataset, this approach reintro-

duces the potential of overfitting the test dataset, so we should use a third dataset for 

this purpose.

Underfitting
(High Bias, Low Variance)

Overfitting
(Low Bias, High Variance)

Good fit
(Optimal Bias and Variance)

Figure 1.12 Underfitting, overfitting, and optimal fit
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Holdout Method
The most straightforward approach to test and validation datasets is the holdout 

method. In this approach, illustrated in Figure 1.13, we set aside portions of the original 

dataset for validation and testing purposes at the beginning of the model development 

process. We use the validation dataset to assist in model development and then use the 

test dataset to evaluate the performance of the final model.

Cross-Validation Methods
There are also a variety of more advanced methods for creating validation datasets that 

perform repeated sampling of the data during an iterative approach to model develop-

ment. These approaches, known as cross-validation techniques, are particularly useful 

for smaller datasets where it is undesirable to reserve a portion of the dataset for valida-

tion purposes.

Figure 1.14 shows an example of cross-validation. In this approach, we still set aside 

a portion of the dataset for testing purposes, but we use a different portion of the 

training dataset for validation purposes during each iteration of model development.

If this sounds complicated now, don’t worry about it. We discuss the holdout method 

and cross-validation in greater detail when we get to Chapter 9. For now, you should just 

have a passing familiarity with these techniques.

Train

Training TestValidation

Step 2
Train and tune a model
using the training and
validation data.

Evaluate
Step 3
Evaluate the final model
using the test data.

Step 1
Split the data into
training, validation, and
test partitions.

Figure 1.13 Holdout method
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EXERCISES
1. Consider each of the following machine learning problems. Would the problem be 

best approached as a classification problem or a regression problem? Provide a ratio-

nale for your answer.

a. Predicting the number of fish caught on a commercial fishing voyage

b. Identifying likely adopters of a new technology

c. Using weather and population data to predict bicycle rental rates

d. Predicting the best marketing campaign to send a specific person

2. You developed a machine learning algorithm that assesses a patient’s risk of heart 

attack (a positive event) based on a number of diagnostic criteria. How would you 

describe each of the following events?

a. Your model identifies a patient as likely to suffer a heart attack, and the patient 

does suffer a heart attack.

b. Your model identifies a patient as likely to suffer a heart attack, and the patient 

does not suffer a heart attack.

c. Your model identifies a patient as not likely to suffer a heart attack, and the 

patient does not suffer a heart attack.

d. Your model identifies a patient as not likely to suffer a heart attack, and the 

patient does suffer a heart attack.

Validation Training Test

Iteration 1

Iteration 2

Iteration 3

Iteration 5

Iteration 4

Figure 1.14 Cross-validation method



Chapter 2

Introduction to R 
and RStudio

Machine learning sits at the intersection of the worlds of 

statistics and software development. Throughout this book, 

we focus extensively on the statistical techniques used to unlock 

the value hidden within data. In this chapter, we provide you with 

the computer science tools that you will need to implement these 

techniques. In this book, we’ve chosen to do this using the R 

programming language. This chapter introduces the fundamental 

concepts of the R language that you will use consistently 

throughout the remainder of the book.

By the end of this chapter, you will have learned the following:

 ◆ The role that the R programming language plays in the world 

of data science and analytics

 ◆ How the RStudio integrated development environment (IDE) 

facilitates coding in R

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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 ◆ How to use packages to redistribute and reuse R code

 ◆ How to write, save, and execute your own basic R script

 ◆ The purpose of different data types in R

WELCOME TO R
The R programming language began in 1992 as an effort to create a special-purpose lan-

guage for use in statistical applications. More than two decades later, the language has 

evolved into one of the most popular languages used by statisticians, data scientists, 

and business analysts around the world.

R gained rapid traction as a popular language for several reasons. First, it is available 

to everyone as a free, open source language developed by a community of committed 

developers. This approach broke the mold of past approaches to analytic tools that 

relied upon proprietary, commercial software that was often out of the financial reach of 

many individuals and organizations.

R also continues to grow in popularity because of its adoption by the creators of 

machine learning methods. Almost any new machine learning technique created today 

quickly becomes available to R users in a redistributable package, offered as open source 

code on the Comprehensive R Archive Network (CRAN), a worldwide repository of popu-

lar R code. Figure 2.1 shows the growth of the number of packages available through 

CRAN over time. As you can see, the growth took off significantly over the past decade.
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Figure 2.1 Growth of the number of CRAN packages over time
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It’s also important to know that R is an interpreted language, rather than a com-

piled language. In an interpreted language, the code that you write is stored in a doc-

ument called a script, and this script is the code that is directly executed by the system 

processing the code. In a compiled language, the source code written by a developer 

runs through a specialized program called a compiler, which converts the source code 

into executable machine language.

The fact that R is an interpreted language also means that you can execute R com-

mands directly and see an immediate result. For example, you could execute the follow-

ing simple command to add 1 and 1:

> 1+1
[1] 2

When you do this, the R interpreter immediately responds with the result: 2.

R AND RSTUDIO COMPONENTS
Our working environment for this book consists of two major components: the R program-

ming language and the RStudio integrated development environment (IDE). While R is an 

open source language, RStudio is a commercial product designed to make using R easier.

The R Language
The open source R language is available as a free download from the R Project website 

at https://www.r-project.org. As of the writing of this book, the current version of R 

is version 3.6.0, code-named “Planting of a Tree.” R is generally written to be backward 

compatible, so if you are using a later version of R, you should not experience any diffi-

culties following along with the code in this book.

NOTE The code names assigned to different releases of R are quite 
interesting! Past code names included “Great Truth,” “Roasted Marshmallows,” 
“Wooden Christmas-Tree,” and “You Stupid Darkness.” These are all references 
to the Peanuts comic strip by Charles Schultz.

If you haven’t done so already, now would be a good time to install the most recent 

version of R on your computer. Simply visit the R Project home page, click the CRAN link, 

and choose the CRAN mirror closest to your location. You’ll then see a CRAN site similar 

to the one shown in Figure 2.2. Choose the download link for your operating system and 

run the installer after the download completes.
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RStudio
As an integrated development environment, RStudio offers a well-designed graphical 

interface to assist with your creation of R code. There’s no reason that you couldn’t 

simply open a text editor, write an R script, and then execute it directly using the open 

source R environment. But there’s also no reason that you should do that! RStudio makes 

it much easier to manage your code, monitor its progress, and troubleshoot issues that 

might arise in your R scripts.

While R is an open source project, the RStudio IDE comes in different versions. There 

is an open source version of RStudio that is available for free, but RStudio also offers 

commercial versions of its products that come with enhanced support options and 

added features.

For the purposes of this book, the open source version of RStudio will be more than 

sufficient.

RStudio Desktop
RStudio Desktop is the most commonly used version of RStudio, especially for individual 

programmers. It’s a software package that you download and install on your Windows, 

Mac, or Linux system that provides you access to a well-rounded R development environ-

ment. You can see an example of the RStudio IDE in action in Figure 2.3.

Figure 2.2 Comprehensive R Archive Network (CRAN) mirror site
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If you haven’t already installed RStudio Desktop on your computer, go ahead and 

do so now. You can download the most recent version at https://www.rstudio.com/ 

products/rstudio/download/#download.

RStudio Server
RStudio also offers a server version of the RStudio IDE. This version is ideal for teams 

that work together on R code and want to maintain a centralized repository. When you 

use the server version of RStudio, you may access the IDE through a web browser. The 

server then presents a windowed view to you that appears similar to the desktop envi-

ronment. You can see an example of the web-based IDE in Figure 2.4.

Using RStudio Server requires building a Linux server, either on-premises or in the cloud, 

and then installing the RStudio Server code on that server. If your organization already uses 

RStudio Server, you may use that as you follow along with the examples in this book.

Exploring the RStudio Environment
Let’s take a quick tour of the RStudio Desktop environment and become oriented with 

the different windows that you see when you open RStudio.

Figure 2.3 RStudio Desktop offers an IDE for Windows, Mac, and Linux systems.
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Console Pane
When you first open RStudio, you won’t see the view shown in Figure 2.3. Instead, you’ll 

see a view that has only three windows, shown in Figure 2.5. That’s because you haven’t 

yet opened or created an R script.

In this view, the console pane appears on the left side of the RStudio window. Once 

you have a script open, it appears in the lower-left corner, as shown in Figure 2.6.

TIP The window layout shown in Figure 2.6 is the default configuration 
of RStudio. It is possible to change this default layout to match your own 
preferences. If your environment doesn’t exactly match the one shown in 
the figure, don’t worry about it—just look for the window pane titles and 
tabs that we discuss.

The console window allows you to interact directly with the R interpreter. You can type 

commands here and R will immediately execute them. For example, Figure 2.7 shows just 

the console pane executing several simple commands. Notice that the command entered 

by the user is immediately followed by an answer from the R interpreter.

Figure 2.4 RStudio Server provides a web-based IDE for collaborative use.
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Figure 2.5 RStudio Desktop without a script open

Figure 2.6 RStudio Desktop with the console pane highlighted
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TIP The history of commands executed by a user in R is also stored in a file 
on the local system. This file is named .Rhistory and is stored in the current 
working directory.

You also should observe that the console pane includes a tab titled Terminal. This tab 

allows you to open a terminal session directly to your operating system. It’s the same as 

opening a shell session on a Linux system, a terminal window on a Mac, or a command 

prompt on a Windows system. This terminal won’t interact directly with your R code and 

is there merely for your convenience. You can see an example of running Mac terminal 

commands in Figure 2.8.

Figure 2.7 Console pane executing several simple R commands

Figure 2.8 Accessing the Mac terminal in RStudio
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Script Pane
The script pane is where the magic happens! You generally won’t want to execute R com-

mands directly in the console. Instead, you’ll normally write R commands in a script file 

that you can save to edit or reuse at a later date. An R script is simply a text file contain-

ing R commands. When you write an R script in the RStudio IDE, R will color-code differ-

ent elements of your code to make it easier to read.

Figure 2.9 shows an example of an R script rendered inside the script pane in RStudio.

This is a simple script that loads a dataset containing information about the weights 

of a sample of baby chickens and creates the graph shown in Figure 2.10.

Figure 2.11 shows the same script file, opened using a simple text editor. Notice that 

the code is identical. The only difference is that when you open the file in RStudio, you 

see some color-coding to help you parse the code.

You can open an existing script in RStudio either by choosing File ⇨ Open File from 

the top menu or by clicking the file open icon in the taskbar. You may create a new script 

by choosing File ⇨ New File ⇨ R Script from the top menu or by clicking the icon of a 

sheet of paper with a plus symbol in the taskbar.

Figure 2.9 Chick weight script inside the RStudio IDE
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TIP When you are editing a script in RStudio, the name of the script will 
appear in red with an asterisk next to it whenever you have unsaved changes. 
This is just a visual reminder to save your code often! When you save your 
code, the asterisk will disappear, and the filename will revert to black.

Environment Pane
The environment pane allows you to take a look inside the current operating environ-

ment of R. You can see the values of variables, datasets, and other objects that are 
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Figure 2.10 Graph produced by the chick weight script

Figure 2.11 Chick weight script 
inside a text editor
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currently stored in memory. This visual insight into the operating environment of R is 

one of the most compelling reasons to use the RStudio IDE instead of a standard text 

editor to create your R scripts. Access to easily see the contents of memory is a valuable 

tool when developing and troubleshooting your code.

The environment pane in Figure 2.9 is empty because the R script that we used in that 

case did not store any data in memory. Instead, it used the ChickWeight dataset that is 

built into R.

Figure 2.12 shows the RStudio environment pane populated with several variables, 

vectors, and a full dataset stored in an object known as a tibble. We’ll discuss tibbles 

more in Chapter 3.

You can also use tabs in the same pane to access two other RStudio features. The His-

tory tab shows the R commands that were executed during the current session and is 

shown in Figure 2.13. The Connections tab is used to create and manage connections to 

external data sources, a technique that is beyond the scope of this book.

Figure 2.12 RStudio environment pane populated with data

Figure 2.13 RStudio History pane showing previously executed commands
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Plots Pane
The final pane of the RStudio window appears in the lower-right corner of Figure 2.9. 

This pane defaults to the plot view and will contain any graphics that you generate in 

your R code. In Figure 2.9, this pane contains the plot of chick weights by diet type that 

was created in our sample R script. As you can see in Figure 2.5, this pane is empty when 

you first open RStudio and have not yet executed any commands that generate plots.

This pane also has several other tabs available. The Files tab, shown in Figure 2.14, 

allows you to navigate the filesystem on your device to open and manage R scripts and 

other files.

Figure 2.15 shows the Packages tab in RStudio, which allows you to install, update, 

and load packages. Many people prefer to perform these tasks directly in R code, but 

this is a convenient location to verify the packages installed on a system as well as their 

current version number.

The Help tab provides convenient access to the R documentation. You can access this 

by searching within the Help tab or using the ? command at the console, followed by the 

name of the command for which you would like to see documentation. Figure 2.16 shows 

the result of executing the ?install.packages command at the console to view help 

for the install.packages() function.

The final tab, Viewer, is used for displaying local web content, such as that created 

using Shiny. This functionality is also beyond the scope of this book.

Figure 2.14 The Files tab in RStudio allows you to interact with your device’s local 
filesystem.
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Figure 2.15 The Packages tab in RStudio allows you to view and manage the  
packages installed on a system.

Figure 2.16 The Help tab in RStudio displaying documentation for the install 
.packages() command
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R Packages
Packages are the secret sauce of the R community. They consist of collections of code 

created by the community and shared widely for public use. As you saw in Figure 2.1, the 

number of publicly available R packages has skyrocketed in recent years. These packages 

range from extremely popular and widely used packages, such as the tidyverse, to 

highly specialized packages that serve narrow niches of the R community.

In this book, we will use a variety of R packages to import and manipulate data, as well 

as to build machine learning models. We’ll introduce you to these packages as they arise.

The CRAN Repository
The Comprehensive R Archive Network is the official repository of R packages main-

tained by the R community and coordinated by the R Foundation. CRAN volunteers 

 manage the repository to ensure that all packages meet some key criteria, including that 

each package does the following:

 • Makes a nontrivial contribution to the R community

 • Is released under an open source license by individuals or organizations with the 

authority to do so

 • Designates an individual as package maintainer and provides contact information 

for that individual

 • Uses efficient code that minimizes file sizes and computing resource utilization

 • Passes CRAN quality control checks

CRAN is the default package repository in RStudio, and all of the packages used in 

this book are available through CRAN.

Installing Packages
Before you can use a package in your R script, you must ensure that the package is 

installed on your system. Installing a package downloads the code from the repository, 

installs any other packages required by the code, and performs whatever steps are nec-

essary to install the package on the system, such as compiling code and moving files.

The install.packages() command is the easiest way to install R packages on your 

system. For example, here is the command to install the RWeka package on your system 

and the corresponding output:

> install.packages("RWeka")
 also installing the dependencies ‘RWekajars’, ‘rJava’
 trying URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.6/ 
RWekajars_3.9.3-1.tgz'
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Content type 'application/x-gzip' length 10040528 bytes (9.6 MB)
==================================================
downloaded 9.6 MB
 
trying URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.6/
rJava_0.9-11.tgz'
Content type 'application/x-gzip' length 745354 bytes (727 KB)
==================================================
downloaded 727 KB
 trying URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.6/ 
RWeka_0.4-40.tgz'
Content type 'application/x-gzip' length 632071 bytes (617 KB)
==================================================
downloaded 617 KB
  
The downloaded binary packages are in
    /var/folders/f0/yd4s93v92tl2h9ck9ty20kxh000gn/T//RtmpjNb5IB/
downloaded_packages

Notice that, in addition to installing the RWeka package, the command also installed 

the RWekajars and rJava packages. The RWeka package uses functions included in 

these  packages, creating what is known as a dependency between the two packages. The 

install.packages() command resolves these dependencies by installing the two 

required packages before installing RWeka.

TIP You only need to install a package once on each system that you use. 
Therefore, most people prefer to execute the install.packages() command 
at the console, rather than in their R scripts. It is considered bad form to 
prompt the installation of packages on someone else’s system!

Loading Packages
You must load a package into your R session any time you would like to use it in your 

code. While you only need to install a package once on a system, you must load it any 

time that you want to use it. Installing a package makes it available on your system, while 

loading it makes it available for use in the current environment.

You load a package into your R session using the library() command. For example, 

the following command loads the tidyverse package that we will be using throughout 

this book:

library(tidyverse)
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NOTE If you were reading carefully, you might have noticed that the  
install.packages() command enclosed the package name in quotes while 
the library() command did not. This is the standard convention for most 
R users. The library() command will work whether or not you enclose the 
package name in quotes. The install.packages() command requires the 
quotation marks. Also, it is important to note that single and double quotation 
marks are mostly interchangeable in R.

Many people who code in R use the terms package and library interchangeably. They 

are actually slightly different. The code bundles stored in the CRAN repository (and 

other locations) are known as packages. You use the install.packages() command to 

place the package on your system and the library() command to load it into memory. 

Hadley Wickham, a well-known R developer, summed this concept up well in December 

2014 tweet, shown in Figure 2.17.

Package Documentation
We’ve already discussed the use of the ? command to access the help file for a function 

contained within a package. Package authors also often create more detailed explana-

tions of the use of their packages, including examples, in files called vignettes. You can 

access vignettes using the vignette() command. For example, the following command 

finds all of the vignettes associated with R’s dplyr package:

> vignette(package = 'dplyr')
Vignettes in package ‘dplyr’:

compatibility        dplyr compatibility (source, html)
dplyr                Introduction to dplyr (source, html)
programming          Programming with dplyr (source, html)
two-table            Two-table verbs (source, html)
window-functions     Window functions (source, html)

Figure 2.17 Hadley Wickham on the distinction between packages and libraries
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If you wanted to see the vignette called programming, you would use this command:

vignette(package = 'dplyr', topic = 'programming')

Figure 2.18 shows the result of executing this command: a lengthy document 

describing how to write code using the dplyr package.

WRITING AND RUNNING AN R SCRIPT
As we mentioned earlier, the most common way to work in RStudio is to write scripts con-

taining a series of R commands that you can save and reuse at a later date. These R scripts 

are simply text files that you write inside RStudio’s script window pane and save on your 

system or in a cloud storage location. Figure 2.9 showed a simple script open in RStudio.

Figure 2.18 RStudio displaying the programming vignette from the 
dplyr package
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When you want to execute your script, you have two options: the Run button and 

the Source button. When you click the Run button, highlighted in Figure 2.19, RStudio 

will execute the current section of code. If you do not have any text highlighted in 

your script, this will execute whatever line the cursor is currently placed  on. In Figure 

2.19, line 6 contains no code, so the Run button will not do anything. If you move the 

cursor to the first line of code, clicking the Run button would run line 1, loading the 

tidyverse, and then automatically advance to the next line of the script that contains 

code, line 3 (because line 2 is blank). Clicking the Run button a second time would run 

the code on lines 3 and 4 because they combine to form a single statement in R.

The Run button is a common way to execute code in R during the development and trou-

bleshooting stages. It allows you to execute your script as you write it, monitoring the results.

TIP Many of the commands in RStudio are also accessible via keyboard 
shortcuts. For example, you may run the current line of code by 
pressing Ctrl+Enter. See https://support.rstudio.com/hc/en-us/
articles/200711853-Keyboard-Shortcuts for an exhaustive list of 
keyboard shortcuts.

Figure 2.19 The Run button in RStudio runs the current 
section of code.
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The Source button, highlighted in Figure 2.20, will save any changes that you’ve made 

to your script and then execute the entire file at once. This is a useful way to quickly run 

an entire script.

TIP The Source button does not display any output to the screen by default. 
If you want to see the results of your script as it runs, click the small arrow to 
the right of the Source button and choose Source with Echo. This will cause 
each line of the script to appear in the console as it is executed, and plots will 
appear in the Plots pane.

WARNING When you execute a script using the Source button (or the 
Run button, for that matter), the script runs in the context of the current 
environment. This may use data that you created during earlier executions. 
If you want to run in a clean environment, be sure to clear objects from 
your workspace using the broom icon in the Environment pane before 
clicking the Source button.

Figure 2.20 The Source button in RStudio runs the 
entire script.
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DATA TYPES IN R
As with most programming languages, all of the variables that you create in an R script 

have an associated data type. The data type defines the way that R stores the informa-

tion contained within the variable and the range of possible values. Here are some of the 

more common data types in R:

 • The logical data type is a simple binary variable that may have only two values: 

TRUE or FALSE. It’s an efficient way to store data that can take on these two 

values only. These data elements are also commonly referred to as flags. For 

example, we might have a variable in a dataset about students called Married 

that would be set to TRUE for individuals who are married and FALSE for individ-

uals who are not.

 • The numeric data type stores decimal numbers, while the integer data type stores 

integers. If you create a variable containing a number without specifying a data 

type, R will store it as numeric by default. However, R can usually automatically 

convert between the numeric and integer data types as needed.

TIP R also calls the numeric data type double, which is short for a double-
precision floating-point number. The terms numeric and double are 
interchangeable.

 • The character data type is used to store text strings of up to 65,535 characters each.

 • The factor data type is used to store categorical values. Each possible value of a 

factor is known as a level. For example, you might use a factor to store the U.S. 

state where an individual lives. Each one of the 50 states would be a possible level 

of that factor.

 • The ordered factor data type is a special case of the factor data type where the 

order of the levels is significant. For example, if we have a factor containing risk 

ratings of Low, Medium, and High, the order is significant because Medium is 

greater than Low and because High is greater than Medium. Ordered factors pre-

serve this significance. A list of U.S. states, on the other hand, would not be stored 

as an ordered factor because there is no logical ordering of states.

NOTE These are the most commonly used data types in R. The language 
does offer many other data types for special-purpose applications. You may 
encounter these in your machine learning projects, but we will stick to these 
common data types in this book.
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Vectors
Vectors are a way to collect elements of the same data type in R together in a sequence. 

Each data element in a vector is called a component of that vector. Vectors are a conve-

nient way to collect data elements of the same type together and keep them in a spe-

cific order.

We can use the c() function to create a new vector. For example, we might create the 

following two vectors, one containing names and another containing test scores:

> names <- c('Mike', 'Renee', 'Richard', 'Matthew', 'Christopher')
 
> scores <- c(85, 92, 95, 97, 96)

Once we have data stored in a vector, we can access individual components of that 

vector by placing the number of the element that we would like to retrieve in square 

brackets immediately following the vector name. Here’s an example:

> names[1]
[1] "Mike"
 
> names[2]
[1] "Renee"
 
> scores[3]
[1] 95

TIP The first element of a vector in R is element 1 because R uses 1-based 
indexing. This is different from Python and some other programming languages 
that use 0-based indexing and label the first element of a vector as element 0.

There are also functions in R that will work on an entire vector at once. For example, 

you can use the mean(), median(), min(), and max() functions to find the average, 

median, smallest, and largest elements of a numeric vector, respectively. Similarly, the 

sum() function adds the elements of a numeric vector.

> mean(scores)
[1] 93
 
> median(scores)
[1] 95
 
> min(scores)
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[1] 85
 
> max(scores)
[1] 97
 
> sum(scores)
[1] 465

All of the components of a vector must be of the same data type. If you attempt to 

create a vector with varying data types, R will force them all to be the same data type. 

This is a process known as coercion. For example, if we try to create a mixed vector con-

taining both character strings and numeric values:

> mixed <- c('Mike', 85, 'Renee', 92, 'Richard', 95, 'Matthew', 97,  
'Christopher', 96)

the command appears to successfully create the vector, but when we go and examine 

the contents of that vector:

> mixed
 [1] "Mike"   "85"    "Renee"   "92"   "Richard"   "95"   "Matthew"    
 [8] "97"     "Christopher"   "96"

we find that R has converted all of the elements to character strings. We can combine 

vectors of unlike types into data structures that resemble spreadsheets. The traditional 

way to do this in R is through a data structure known as a data frame. For example, we 

can combine the names and scores vectors into a data frame called testResults.

> testResults <- data.frame(names, scores)
 
> testResults
        names scores
1        Mike     85
2       Renee     92
3     Richard     95
4     Matthew     97
5 Christopher     96

You may access the vectors stored within a data frame using the $ operator. For exam-

ple, if you wanted to calculate the mean test score, you could use the following code:

> mean(testResults$scores)
[1] 93
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In Chapter 3, we will discuss how the tidyverse package uses an enhanced version of 

a data frame called a tibble. We will then use tibbles as our primary data structure in the 

remainder of this book.

Testing Data Types
When we use objects in R, we may want to learn more about their data type, either by 

directly asking a question about the object’s type or by testing it programmatically. The 

R language includes functions designed to assist with these tasks.

The class() function returns the data type of an object. For example, examine the 

following sample code:

> x <- TRUE
> y <- 1
> z <- 'Mike Chapple'
 
> class(x)
[1] "logical"
 
> class(y)
[1] "numeric"
 
> class(z)
[1] "character"

Notice that when we assign the values of x, y, and z, we do not need to explicitly 

assign the data types. When you perform the assignments, R interprets the argu-

ments you provide and makes assumptions about the correct data type. In the next 

section, we’ll talk about how you can use the as.x() functions in R to explicitly convert 

data types.

If you’d like to create a factor data type in R, you can use the factor() function to 

convert a vector of character strings into a factor. For example, the following code cre-

ates a character vector, tests the class, converts it to a factor, and retests the class:

> productCategories <- c('fruit', 'vegetable', 'fruit', 'fruit', 'dry 
goods', 'dry goods', 'vegetable')
 
> class(productCategories)
[1] "character"
 
> productCategories <- factor(productCategories)
 
> class(productCategories)
[1] "factor"
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We can also test the length of an object using the length() function. This function 

returns the number of components of that object. If the object is a factor or vector, the 

length() function returns the number of elements in that factor or vector. If the object 

is a single numeric, character, or logical element, the length() function returns the 

value 1. For example, look at this code:

> length(x)
[1] 1
 
> length(y)
[1] 1
 
> length(z)
[1] 1
 
> length(productCategories)
[1] 7

R also includes a set of “is” functions that are designed to test whether an object is 

of a specific data type and return TRUE if it is and FALSE if it is not. The “is” functions 

include the following:

 • is.logical()

 • is.numeric()

 • is.integer()

 • is.character()

 • is.factor()

To use these functions, simply select the appropriate one and pass the object you 

want to test as an argument. For example, examine the following results using the same 

data elements x, y, and z that we created earlier in this section:

> is.numeric(x)
[1] FALSE
 
> is.character(x)
[1] FALSE
 
> is.integer(x)
[1] FALSE
 
> is.logical(x)
[1] TRUE
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> is.numeric(y)
[1] TRUE
 
> is.integer(y)
[1] FALSE
 
> is.character(z)
[1] TRUE

Do those results make sense to you? If you look back at the code that created those 

variables, x is the logical value TRUE, so only the is.logical() function returned a value 

of TRUE, while the other test functions returned FALSE.

The y variable contained an integer value, so the is.integer() function returned 

TRUE, while the other functions returned FALSE. It is significant to note here that the 

is.numeric() function also returned FALSE, which may seem counterintuitive given the 

name of the function. When we created the y variable using the code:

> y <- 1

R assumed that we wanted to create a numeric variable, the default type for values 

consisting of digits. If we wanted to explicitly create an integer, we would need to add 

the L suffix to the number during creation. Examine this code:

> yint <- 1L
 
> is.integer(yint)
[1] TRUE
 
> is.numeric(yint)
[1] TRUE

Here we see yet another apparent inconsistency. Both the is.numeric() and  

is. integer() functions returned values of TRUE in this case. This is a nuance of the 

is.numeric() function. Instead of returning TRUE only when the object tested is of the 

numeric class, it returns TRUE if it is possible to convert the data contained in the object 

to the numeric class. We can verify with the class function that y is a numeric data type 

while yint is an integer.

> class(y)
[1] "numeric"
 
> class(yint)
[1] "integer"
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Alternatively, we could also convert the numeric variable we created initially to an inte-

ger value using the as.integer() function, which we will introduce in the next section.

The “is” functions also work on vector objects, returning values based upon the data 

type of the objects contained in the vector. For example, we can test the names and 

scores vectors that we created in the previous section.

> is.character(names)
[1] TRUE
 
> is.numeric(names)
[1] FALSE
 
> is.character(scores)
[1] FALSE
 
> is.numeric(scores)
[1] TRUE
 
> is.integer(scores)
[1] FALSE

Converting Data Types
You may find yourself in a situation where you need to convert data from one type to 

another. R provides the “as” functions to perform these conversions. Some of the more 

commonly used “as” functions in R are the following:

 • as.logical()

 • as.numeric()

 • as.integer()

 • as.character()

 • as.factor()

Each of these functions takes an object or vector as an argument and attempts to 

convert it from its existing data type to the data type contained within the function 

name. Of course, this conversion isn’t always possible. If you have a numeric data object 

containing the value 1.5, R can easily convert this to the “1.5” character string. There is 

not, however, any reasonable way to convert the character string “apple” into an integer 

value. Here are a few examples of the “as” functions at work:

> as.numeric("1.5")
[1] 1.5
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> as.integer("1.5")
[1] 1
 
> as.character(3.14159)
[1] "3.14159"
 
> as.integer("apple")
[1] NA
Warning message:
NAs introduced by coercion
 
> as.logical(1)
[1] TRUE
 
> as.logical(0)
[1] FALSE
 
> as.logical("true")
[1] TRUE
 
> as.logical("apple")
[1] NA

Missing Values
Missing values appear in many datasets because data was not collected, is unknown, or 

is not relevant. When missing values occur, it’s important to distinguish them from blank 

or zero values. For example, if I don’t yet know the price of an item that will be sold in 

my store, the price is missing. It is definitely not zero, or I would be giving the product 

away for free!

R uses the special constant value NA to represent missing values in a dataset. You 

may assign the NA value to any other type of R data element. You can use the is.na() 

function in R to test whether an object contains the NA value.

Just as the NA value is not the same as a zero or blank value, it’s also important to dis-

tinguish it from the “NA” character string. We once worked with a dataset that contained 

two-letter country codes in a field and were puzzled that some records in the dataset 

were coming up with missing values for the country field, when we did not expect such 

an occurrence. It turns out that the dataset was being imported from a text file that did 

not use quotes around the country code and there were several records in the dataset 

covering the country of Namibia, which, you guessed it, has the country code "NA". When 

the text file was read into R, it interpreted the string NA (without quotes) as a missing 

value, converting it to the constant NA instead of the country code "NA".
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NOTE If you’re familiar with the Structured Query Language (SQL), it might 
be helpful to think of the NA value in R as equivalent to the NULL value in SQL.

EXERCISES
1. Visit the r-project.org website. Download and install the current version of R for 

your computer.

2. Visit the rstudio.com website. Download and install the current version of RStudio 

for your computer.

3. Explore the RStudio environment, as explained in this chapter. Create a file called 

chicken.R that contains the following R script:

install.packages("tidyverse")
 
library(tidyverse)
 
ggplot(data=ChickWeight) +
  geom_smooth(mapping=aes(x=Time, y=weight, color=Diet)) 

Execute your code. It should produce a graph of chicken weights as output.



Chapter 3

Managing Data

In Chapter 1, we discussed some of the foundational principles 

behind machine learning. We followed that discussion with an 

introduction to both the R programming language and the  

RStudio development environment in Chapter 2. In this chapter, we 

explain how to use R to manage our data prior to modeling. The 

quality of a machine learning model is only as good as the data 

used to build it. Quite often, this data is not easily accessible, is in 

the wrong format, or is hard to understand. As a result, it is critically 

important that prior to building a model, we spend as much time 

as needed to collect the data we need, explore and understand 

the data we have, and prepare it so that it is useful for the selected 

machine learning approach. Typically, 80 percent of the time we 

spend in machine learning is, or should be, spent managing data.

By the end of this chapter, you will have learned the following:

 ◆ What the tidyverse is and how to use it to manage data in R

 ◆ How to collect data using R and some of the key things to 

consider when collecting data

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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 ◆ Different approaches to describe and visualize data in R

 ◆ How to clean, transform, and reduce data to make it more 

useful for the machine learning process

THE TIDYVERSE
The tidyverse is a collection of R packages designed to facilitate the entire analytics 

process by offering a standardized format for exchanging data between packages. It 

includes packages designed to import, manipulate, visualize, and model data with a 

series of functions that easily work across different tidyverse packages.

The following are the major packages that make up the tidyverse:

 • readr for importing data into R from a variety of file formats

 • tibble for storing data in a standardized format

 • dplyr for manipulating data

 • ggplot2 for visualizing data

 • tidyr for transforming data into “tidy” form

 • purrr for functional programming

 • stringr for manipulating strings

 • lubridate for manipulating dates and times

These are the developer-facing packages that we’ll use from the tidyverse, but these 

packages depend on dozens of other foundational packages to do their work. Fortu-

nately, you can easily install all of the tidyverse packages with a single command:

install.packages("tidyverse")

Similarly, you can load the entire tidyverse using this command:

library(tidyverse)

In the remainder of this chapter and the rest of this text, we will use several tidyverse 

packages and functions. As we do so, we will endeavor to provide a brief explanation of 

what each function does and how it is used. Please note that this book is not intended to 

be a tutorial on the R programming language or the tidyverse. Rather, the objective is to 

explain and demonstrate machine learning concepts using those tools. For readers who 

are interested in a more in-depth introduction to the R programming language and the 
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tidyverse, we recommend the book R for Data Science by Hadley Wickham and Garrett 

Grolemund.

DATA COLLECTION
Data collection is the process of identifying and acquiring the data needed for the 

machine learning process. The type/amount of data collected is often dependent on the 

machine learning problem and the selected algorithm. For supervised machine learning 

problems, not only does the collected data include variables that describe the attributes 

or characteristics of each observation, it also includes a variable that serves as a label 

or outcome for the observation. Unsupervised machine learning problems don’t require 

that a label be assigned to each observation of the input data. Instead, a major part of 

the learning goal is to identify interesting ways to group the data so that meaningful 

labels can be assigned to it.

Key Considerations
As we collect data, there are a few important things to consider to ensure that the data 

collection process is successful. These include making sure that we capture the right 

type of historical data, that the data is relevant, that we have enough data to work with, 

and that we are being ethical in how we manage and use the data.

Collecting Ground Truth Data
For supervised machine learning problems, we use historical data that has outcome 

labels or response values to train our model. The accuracy of these labels or response 

values is critically important to the success of the approach. This is because this data 

is what the algorithm uses as a baseline for the learning process. This data serves as a 

source of truth upon which patterns are learned. This is why it is often referred to as the 

ground truth. Ground truth either can come with an existing label based on a prior event, 

such as whether a bank customer defaulted on a loan or not, or can require that a label 

be assigned to it by a domain expert, such as whether an email is spam or not. Regardless 

of whether the labels already exist or need to be assigned, a plan should be in place to 

manage the ground truth and ensure that it truly is the source of truth.

Data Relevance
As part of the data collection process, it is important to ensure that the data collected 

is relevant to the learning goal. The variables that are collected to describe an observa-

tion should be relevant in explaining the label or the response for the observation. For 
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example, collecting data on the shoe size of bank customers has no relevance to whether 

they will or will not default on a loan. Conversely, excluding information about a custom-

er’s past loans will have an adverse impact on the effectiveness of a model that attempts 

to predict loan outcomes.

Quantity of Data
The amount of data needed to successfully train a model depends on the type of 

machine learning approach chosen. Certain types of algorithms perform well with small 

amounts of data, while some require a large amount of data to provide meaningful 

results. Understanding the strengths and weaknesses of each approach provides us 

with the guidance needed to determine how much data is enough for the learning task. 

Besides the quantity of data collected, variability in the data collected is also impor-

tant. For example, if one of the predictors we intend to use to predict loan outcomes is 

income, then it would be beneficial to collect data on customers of sufficiently differ-

ent income levels. Doing this enables our model to better determine how income level 

impacts loan outcome.

Ethics
There are several ethical issues to consider during the data collection process. Some of 

these issues include privacy, security, informed consent, and bias. It is important that 

processes and mitigating steps be put in place to address these issues as part of the pro-

cess of acquiring new data. For example, if bias exists in the data used to train a model, 

then the model will also replicate the bias in its predictions. Biased predictions could 

prove quite harmful, especially in situations where unfavorable decisions affecting the 

underrepresented population are being made based on a machine learning model. The 

issue of biased data often stems from intrinsic human bias in the data collection process 

or in an absence of existing data on certain subpopulations.

Importing the Data
The readr package is the first tidyverse package that you’ll likely use in almost any R 

code that you write for the purposes of machine learning because it is the package that 

allows you to import data from a standard file format into R. The readr functions load a 

file that is stored on disk or at a URL and imports it into a tidyverse-friendly data struc-

ture known as a tibble (more on tibbles later).

Reading Comma-Delimited Files
Comma-delimited files are the most common way to exchange data between different 

environments. These files, which are also known as comma-separated value (CSV) files, 
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store data in a simple, standardized format that may be imported or exported from 

almost any source.

Creating a comma-separated value file from a spreadsheet or other data table is 

conceptually straightforward. For example, imagine that we have the spreadsheet data 

shown in Figure 3.1. Converting this to a CSV file simply requires replacing the lines sep-

arating columns with commas, as shown in Figure 3.2. In CSV format, each row in the file 

represents a row from the spreadsheet table. However, sometimes the file may also have 

an optional header row that contains variable names, which is the case in our example.

We can read CSV files into R using the read_csv() function from the readr package. 

This function allows many different arguments, but let’s take a look at a few of the most 

important ones, shown here:

 • file, the first argument to read_csv(), contains the name of the file you want to 

read. This may be the name of a file in R’s current working directory, the full path 

to a file stored elsewhere on disk, a URL to be read over the HTTP or HTTPS pro-

tocol, or the path to a file on an FTP or FTPS site.

 • col_names specifies where R should obtain the names of the variables used in the 

dataset. The default value for col_names is TRUE, which indicates that R should 

use the values appearing in the first line of the CSV file as the variable names. If 

this value is set to FALSE, R will generate its own column names using the sequen-

tially numbered format X1, X2, X3, and so on. Alternatively, you may provide a 

character vector of your own column names.

 • col_types specifies the data types for the columns. If you do not include this 

argument, R will guess the appropriate data types based on the values in the file. 

If you’d like to specify the column types yourself, the easiest way to do so is to pro-

vide a string with one letter corresponding to each column in the dataset, using 

the following values:

 • l for logical

 • n for numeric

Name

Mary

Tom

Beth

27

32

43

F

M

F

11579

07753

46556

Age Gender ZIP

Figure 3.1 Simple spreadsheet containing 
data in tabular form

Figure 3.2 CSV file contain-
ing the same data as the 
spreadsheet in Figure 3.1
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 • i for integers

 • c for characters

 • f for factors

 • D for dates

 • T for datetimes

 • skip is an integer value indicating that read_csv() should ignore the specified 

number of lines at the top of the file before attempting to read data.

These are just a small subset of the many options that you may specify when reading 

data from a CSV file. For more information on the read_csv() function, see the 

help file.

?read_csv

Let’s work through an example of reading in a CSV file. We will use a dataset, stored 

in the vehicles.csv file, containing vehicle fuel efficiency and emissions testing data 

gathered at the Environmental Protection Agency’s National Vehicle and Fuel Emissions 

Laboratory in Ann Arbor, Michigan. The dataset contains fuel economy and emissions 

information for 1984–2018 model year vehicles.

TIP All of the data files used in this book are available to you if you would 
like to follow along with the examples. The introduction to the book contains 
information on how you can obtain the data files.

To read the data, we first need to load the tidyverse packages using the 

library(tidyverse) command. This allows us to use the read_csv() function. We 

pass two arguments to the function. The first is the filename (file), and the second is 

a string that represents the data types for the columns (col_types). By setting col_

types= "nnnfnfffffnn", we tell the read_csv() function that the first three columns 

of the input data should be read as numeric variables (n), the fourth should be read as a 

factor (f), the fifth as numeric (n), and so forth.

> library(tidyverse)
> vehicles <- read_csv(file = 'vehicles.csv', col_types = "nnnfnfffffnn")
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Our dataset is now imported into a tibble called vehicles. We can get a preview of 

the data in the vehicles tibble by using the glimpse() command, which is provided by 

the dplyr package.

> glimpse(vehicles)
 
Observations: 36,979
Variables: 12
$ citympg            <dbl> 14, 14, 18, 21, 14, 18, 14, 18, 18, 20, 1...
$ cylinders          <dbl> 6, 8, 8, 6, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4,...
$ displacement       <dbl> 4.1, 5.0, 5.7, 4.3, 4.1, 5.7, 4.1, 2.4, 2...
$ drive              <fct> 2-Wheel Drive, 2-Wheel Drive, 2-Wheel Dri...
$ highwaympg         <dbl> 19, 20, 26, 31, 19, 26, 19, 21, 24, 21, 2...
$ make               <fct> Buick, Buick, Buick, Cadillac, Cadillac, ...
$ model              <fct> Electra/Park Avenue, Electra/Park Avenue,...
$ class              <fct> Large Cars, Large Cars, Large Cars, Large...
$ year               <fct> 1984, 1984, 1984, 1984, 1984, 1984, 1984,...
$ transmissiontype   <fct> Automatic, Automatic, Automatic, Automati...
$ transmissionspeeds <dbl> 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,...
$ co2emissions       <dbl> 555.4375, 555.4375, 484.7619, 424.1667, 5...

The output is a transposed version of the data that shows us the number of observa-

tions or rows in the data (36 979, ), the number of variables or columns in the data (12), the 

variable names, the data types, and a sample of the data stored in each variable.

Tibbles
Several times in Chapter 2 as well as in this chapter, we have referred to a data 
structure known as a tibble. So, what exactly is a tibble? A tibble is a modern version 
of the R data frame implemented as part of the tidyverse. Compared to data frames, 
tibbles make fewer assumptions about the nature of the data and are a lot more rigid 
to work with. For example, unlike a data frame, a tibble never changes the type of the 
input data, it never changes the names of variables, and it never creates row names. 
As a result, tibbles ensure that data quality issues are dealt with explicitly, leading 
to cleaner and more expressive code. Tibbles also make it easier to work with and 
output large datasets to the screen without overwhelming your system. The read_
csv() function from the readr package reads input data directly into a tibble. This 
differs from the base R read.csv() function, which reads data into a data frame. For 
the remainder of this text, we will stick to the read_csv() function for data import.
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Reading Other Delimited Files
The readr package also provides us with functions to read data stored in other types of 

delimited files besides CSV. For example, to read a tab-delimited (TSV) file as illustrated 

in Figure 3.3, we use the read_tsv() function.

The readr package does provide a more generic read_delim() function, which 

allows for files with custom delimiters to be read. The user simply needs to specify the 

character used to separate columns within the file by setting the delim argument. For 

example, to read a pipe-delimited file such as the one illustrated in Figure 3.4, we would 

need to set delim = "|" for the read_delim() function.

DATA EXPLORATION
After we acquire our data, the next thing we do is spend some time making sure that we 

understand it. This process is known as data exploration. Data exploration allows us to 

answer questions such as these:

 • How many rows and columns are in the data?

 • What data types are present in our data?

 • Are there missing, inconsistent, or duplicate values in the data?

 • Are there outliers in the data?

To answer these questions, we often need to describe the characteristics of the data 

with the use of statistical summaries and visualizations.

Figure 3.3 TSV file containing the 
same data as the spreadsheet in 
Figure 3.1

Figure 3.4 Pipe-delimited 
file containing the same 
data as the spreadsheet in 
Figure 3.1
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Describing the Data
As part of the data exploration process, we often need to describe our data in ways that 

others can understand. In machine learning, there are several terms that are used to describe 

the structure of the data as well as the nature of the values in the data (see Figure 3.5).

Instance
An instance is a row of data. It is an individual independent example of the concept rep-

resented by the dataset. It is described by a set of attributes or features. A dataset con-

sists of several instances. In this text, we will sometimes refer to instances as records, 

examples, or observations.

Feature
A feature is a column of data. It is the property or characteristic of an instance. Each in-

stance consists of several features. In this text, we will sometimes refer to features as 

columns or variables. Features can be categorized based on the type of data they hold. A 

feature can be described as either a discrete feature or a continuous feature.

 • A discrete feature is an attribute that is measured in categorical form. Discrete 

features typically have only a reasonable set of possible values. Examples include 

2011

Year Cylinders

2011

2010

2009

2009

2008

6

Independent Variables

In
st

an
ce

s

Dependent
Variable

Features

8

8

6

4

4

Drive

2-Wheel

4-Wheel

2-Wheel

2-Wheel

4-Wheel

4-Wheel

MPG

14

20

21

14

20

18

Transmission

AUTO

MANUAL

MANUAL

MANUAL

AUTO

MANUAL

Emissions

555.43

484.67

640.15

543.34

555.65

424.17

Figure 3.5 Sample dataset illustrating the instances and features (independent 
and dependent variables)
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clothing size (small, medium, large), customer satisfaction (not happy, somewhat 

happy, very happy), etc.

 • A continuous feature is an attribute that is usually measured in the form of an 

integer or real number. A continuous feature has an infinite number of possible 

values between its lower and upper bounds. Examples include temperature, 

height, weight, age, etc.

Features can also be categorized based on their function. In Chapter 1, we discussed 

that with supervised learning, we use the attributes (or features) that describe our data 

to predict the label for each of the instances in the data. The features that describe our 

data are known as the independent variables, while the feature that represents the label 

is known as the dependent variable. The idea behind the independent and dependent 

monikers comes from the fact that in supervised learning, the value of the dependent 

variable is predicted based on the values of the independent variables. In other words, 

the dependent variable is “dependent” on the values of the independent variables. For 

classification problems, the dependent variable is also referred to as the class, and for 

regression problems, it is referred to as the response.

Dimensionality
The dimensionality of a dataset represents the number of features in the dataset. The 

higher the dimensionality of a dataset, the more detail we have about the data, but also 

the higher the computational complexity and resource consumption. Later, we will dis-

cuss some approaches for reducing the dimensionality of a dataset to make it easier to 

work with for machine learning.

Sparsity and Density
Data sparsity and density describe the degree to which data exists for the features in a 

dataset. For example, if 20 percent of the values in a dataset are missing or undefined, 

the dataset is said to be 20 percent sparse. Density is the complement of sparsity, so a 

dataset that is 20 percent sparse is also said to be 80 percent dense.

Resolution
Resolution describes the grain or level of detail in the data. The more detailed the data is, 

the finer (or higher) the resolution, and the less detailed it is, the coarser (or lower) the 

resolution. For example, point-of-sale retail data of individual customer purchases has 

high resolution. On the other hand, sales data summarized at the state or regional level 

has low resolution. The appropriate resolution is often dictated by the business problem 

and the machine learning task. If data resolution is too fine, important patterns may be 

obscured by noise, but if the resolution is too coarse, important patterns may disappear.
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Descriptive Statistics
Descriptive statistics or summary statistics are useful in data exploration and understand-

ing. They involve the use of statistical measures to describe the characteristics of fea-

tures. For example, the frequency of a feature value tells us how often the value occurs, 

and the mode of the feature tells us which value occurs the most for that feature. Fre-

quency and mode are typically used to describe categorical data. For continuous data, 

measures such as mean and median are often used to describe the properties of the data. 

Both mean and median provide a description of what could be referred to as a “typical” 

value for the feature.

In R, we can get summary statistics for a dataset by using the summary() function. To 

get the summary statistics for our vehicles dataset, we pass the name of the dataset to 

the summary() function.

> summary(vehicles)
 
    citympg        cylinders       displacement  
 Min.   : 6.00   Min.   : 2.000   Min.   :0.600  
 1st Qu.:15.00   1st Qu.: 4.000   1st Qu.:2.200  
 Median :17.00   Median : 6.000   Median :3.000  
 Mean   :17.53   Mean   : 5.776   Mean   :3.346  
 3rd Qu.:20.00   3rd Qu.: 6.000   3rd Qu.:4.300  
 Max.   :57.00   Max.   :16.000   Max.   :8.400  
 NA's   :6                        NA's   :9      

Mean and Median
As a quick statistical refresher, the arithmetic mean (or average) of n values is the  
sum of the values divided by n. For example, given the set of values 1, 5, 7, 9, and 23, 

the mean is 1 5 7 9 23
5

9. The median of the same set of values is the number 

that is at the midpoint of the sorted list of values, which, in this case, is 7. The median 
of a set of values is sometimes preferred over the mean because it is not impacted 
as much by a small proportion of extremely large or small values. For example, when 
evaluating statistics like household income or total assets, which vary greatly based 
on economic status, the mean may be skewed by a small number of extremely high 
or low values. As a result, median values are often used as a better way to describe 
what a “typical” household’s income or total assets are.
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               drive         highwaympg           make      
 2-Wheel Drive    :  491   Min.   : 9.00   Chevrolet: 3750  
 Rear-Wheel Drive :13194   1st Qu.:20.00   Ford     : 3044  
 All-Wheel Drive  : 8871   Median :24.00   Dodge    : 2461  
 Front-Wheel Drive:13074   Mean   :23.77   GMC      : 2414  
 4-Wheel Drive    : 1349   3rd Qu.:27.00   Toyota   : 1840  
                           Max.   :61.00   BMW      : 1774  
                           NA's   :8       (Other)  :21696  
               model                           class           year      
 F150 Pickup 2WD  :  213   Compact Cars           :7918   1985   : 1699  
 F150 Pickup 4WD  :  192   Pickup                 :5763   1987   : 1247  
 Truck 2WD        :  187   Midsize Cars           :5226   1986   : 1209  
 Jetta            :  173   Sport Utility          :5156   2015   : 1203  
 Mustang          :  172   Subcompact Cars        :4523   2017   : 1201  
 Ranger Pickup 2WD:  164   Special Purpose Vehicle:2378   2016   : 1172  
 (Other)          :35878   (Other)                :6015   (Other):29248  
  transmissiontype transmissionspeeds  co2emissions   
 Automatic:24910   Min.   : 1.000     Min.   :  29.0  
 Manual   :12069   1st Qu.: 4.000     1st Qu.: 400.0  
                   Median : 5.000     Median : 467.7  
                   Mean   : 4.954     Mean   : 476.6  
                   3rd Qu.: 6.000     3rd Qu.: 555.4  
                   Max.   :10.000     Max.   :1269.6 

The results show two different formats for the descriptive statistics: one format 

for categorical features and the other for continuous features. For example, the sum-

mary statistics for the categorical features, such as drive and make, show the feature 

values along with the frequency for each value. For the drive feature, we see that there 

are 491 instances with a drive type of 2-Wheel Drive and 1,349 instances of drive type 

4-Wheel Drive. Note that for some features, the summary shows only six feature values 

and groups everything else into Other. The six values listed are the top six in terms of 

frequency. Later, we will look at how to list all the values for a feature along with the 

associated frequencies.

The second format used by the summary() function applies to continuous features. 

For example, we see that for citympg, the summary shows the mean, median, minimum, 

maximum, and first and third quartile values. From the results, we see that the vehicle 

with the worst city fuel efficiency achieves a meager 6 miles per gallon (minimum), while 

the most efficient vehicle is rated at a whopping 57 miles per gallon (maximum). A “typ-

ical” vehicle has a city fuel efficiency rating of between 17 and 17.5 miles per gallon 

(median and mean). The values presented by the first and third quartiles give us an idea 

of how much the city fuel efficiency values differ across vehicles. In Chapter 5, we go into 

a bit more detail on what this means. Also note that for the citympg, displacement, 

and highwaympg features, the descriptive statistics list the number of missing values 
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(NAs) for the features. We will discuss how to deal with these missing values as part of 

our conversation on data preparation, later in the chapter.

In the previous example, we showed the summary statistics for the entire dataset by 

passing the dataset to the summary() function. Sometimes, we only want to look at the 

statistical summary of select features within our data. One way to accomplish this is to 

use the select command from the dplyr package. Recall that dplyr is a package in the 

tidyverse that is used for data exploration and manipulation. It provides five main com-

mands (also known as verbs).

 • select for choosing the columns or variables

 • filter for choosing rows or observations

 • arrange for sorting rows

 • mutate for modifying variables

 • summarize for aggregating rows

Using the select verb, we can limit our vehicles data to only the features that we 

want. Let’s assume that we intend to look only at the class feature. To do so, we pass 

two arguments to the select verb. The first is the input dataset, which is vehicles, and 

the second is the name or names of the features that we choose, which is class.

> library(tidyverse)
> select(vehicles, class)
 
# A tibble: 36,979 x 1
   class     
   <fct>     
 1 Large Cars
 2 Large Cars
 3 Large Cars
 4 Large Cars
 5 Large Cars
 6 Large Cars
 7 Large Cars
 8 Pickup    
 9 Pickup    
10 Pickup    
# ... with 36,969 more rows

Our data is now limited to the class feature. Note that our output is a tibble 

with 36,979 rows and 1 column. The one column is the class feature. To include the 

 cylinders feature in our output, we include it in the feature names passed to the 

select verb as well.
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> select(vehicles, class, cylinders)
 
# A tibble: 36,979 x 2
   class      cylinders
   <fct>          <dbl>
 1 Large Cars         6
 2 Large Cars         8
 3 Large Cars         8
 4 Large Cars         6
 5 Large Cars         8
 6 Large Cars         8
 7 Large Cars         8
 8 Pickup             4
 9 Pickup             4
10 Pickup             4
# ... with 36,969 more rows

Our output is now a tibble with two columns. To get the descriptive statistics for 

these two columns, we pass the select(usedcars, class, cylinders) command 

as the input to the summary() function. What this does is use the output of the select 

command as input to the summary() function.

> summary(select(vehicles, class, cylinders))
 
                     class        cylinders     
 Compact Cars           :7918   Min.   : 2.000  
 Pickup                 :5763   1st Qu.: 4.000  
 Midsize Cars           :5226   Median : 6.000  
 Sport Utility          :5156   Mean   : 5.776  
 Subcompact Cars        :4523   3rd Qu.: 6.000  
 Special Purpose Vehicle:2378   Max.   :16.000  
 (Other)                :6015

We now have the descriptive statistics for the two columns: class and cylinders. 

Earlier, we mentioned that for categorical features, the summary() function shows only 

the top six feature values in terms of count. This is what we see for the class feature. 

To get a complete list of the values and counts for the class feature, we use a different 

function—the table() function. Just like the summary() function, we can also pass the 

output of a select command as input to the table() function.

> table(select(vehicles, class))
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             Large Cars                  Pickup Special Purpose Vehicle 
                   1880                    5763                    2378 
                   Vans            Compact Cars            Midsize Cars 
                   1891                    7918                    5226 
        Subcompact Cars             Two Seaters                 Minivan 
                   4523                    1858                     386 
          Sport Utility 
                   5156 

Now we have all 10 values for the class feature and their associated counts. Instead 

of the count values for each feature value, we can also get the proportional distribu-

tion for each value. To do this, we pass the output of the table() function as input to 

another function—prop.table().

> prop.table(table(select(vehicles, class)))
 
             Large Cars                  Pickup 
             0.05083967              0.15584521 
Special Purpose Vehicle                    Vans 
             0.06430677              0.05113713 
           Compact Cars            Midsize Cars 
             0.21412153              0.14132345 
        Subcompact Cars             Two Seaters 
             0.12231266              0.05024473 
                Minivan           Sport Utility 
             0.01043836              0.13943049

The output tells us that 5 percent of the vehicles in the dataset are classified as Large 

Cars, 15 58.  percent of the vehicles are classified as Pickup, and so on. With these propor-

tions, we can get a better sense of the distribution of values for the class feature.

The approach that we’ve used so far to pass the output of one command or function 

as input into another command or function is known as nesting. With this approach, we 

make sure that we wrap a child function within the parentheses of a parent function. In 

the previous example, we nested the select command within the table() function, 

which we then nested within the prop.table() function. As one can imagine, if we 

had to perform a large number of operations where each successive function relied on 

the output of the previous one for its input, our code would quickly become difficult 

to read. As a result, we sometimes use what is known as a pipe to control the logical 

flow of our code. Pipes are written as %>%. They are provided by the magrittr package, 

which is loaded as part of the tidyverse. For example, the code to list all values and the 
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proportional distribution for the class feature in the vehicles dataset can be written 

as follows:

> library(tidyverse)
> vehicles %>%
   select(class) %>%
   table() %>%
   prop.table()
.
             Large Cars                  Pickup 
             0.05083967              0.15584521 
Special Purpose Vehicle                    Vans 
             0.06430677              0.05113713 
           Compact Cars            Midsize Cars 
             0.21412153              0.14132345 
        Subcompact Cars             Two Seaters 
             0.12231266              0.05024473 
                Minivan           Sport Utility 
             0.01043836              0.13943049 

Pipes allow us to forward the output of one expression as input to another expres-

sion. In this example, we use a pipe to forward the vehicles data as input to the select 

verb. Then we use another pipe to forward the output of the select verb as input to the 

table() function. Finally, we forward the output of the table() function to the prop 

.table() function. Pipes are powerful in that they allow us to write code that is simple, 

readable, and efficient. Going forward, we will use pipes to organize the logic of our 

code examples whenever possible.

We have shown how to limit or choose the variables that we want to work with by 

using the select command. Sometimes, instead of limiting our variables, we want to 

limit the observations or rows that we are working with. This is done using another 

one of the commands from the dplyr package—the filter command. The filter 

command allows us to specify the logical conditions for the rows that we intend to keep. 

For example, let’s assume that we want to see the descriptive statistics for the CO
2 emis-

sions of two-wheel drive vehicles only. Our condition is that for a row to be kept, the 

value of the drive feature must be equal to 2-Wheel Drive. This is written as follows:

> vehicles %>%
   filter(drive == "2-Wheel Drive") %>%
   select(co2emissions) %>%
   summary()
 
  co2emissions  
 Min.   :328.4  
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 1st Qu.:467.7  
 Median :555.4  
 Mean   :564.6  
 3rd Qu.:683.6  
 Max.   :987.4

Now we can compare the descriptive statistics of the two-wheel drive vehicles against 

that of the entire dataset.

Visualizing the Data
In the previous section, we discussed the use of numerical summarization to describe 

data in a way that allows us to better understand it. In this section, we introduce data 

visualization as an important part of data exploration by providing a condensed and 

quickly understood way of describing data.

Quite often, even after using sophisticated statistical techniques, certain patterns 

are understood only when represented with a visualization. Like the popular saying “a 

picture is worth a thousand words,” visualizations serve as a great tool for asking and 

answering questions about data. Depending on the type of question, there are four key 

objectives that inform the type of data visualization we use: comparison, relationship, 

distribution, and composition.

Comparison
A comparison visualization is used to illustrate the difference between two or more 

items at a given point in time or over a period of time. A commonly used comparison 

chart is the box plot. Box plots are typically used to compare the distribution of a contin-

uous feature against the values of a categorical feature. It visualizes the five summary 

statistics (minimum, first quartile, median, third quartile, and maximum) and all outlying 

points individually. Some of the questions that box plots help us to answer include the 

following:

 • Is a feature significant?

 • Does the location of the data differ between subgroups?

 • Does the variation of the data differ between subgroups?

 • Are there outliers in the data?

As we mentioned earlier, the tidyverse provides us with a powerful and flexible 

package for visualizing data called ggplot2. The functions provided by ggplot2 follow 

a principle and consistent syntax known as the grammar of graphics. Instead of a detailed 

tutorial on the syntax and theory behind the package, we will explain some of the 
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relevant concepts as we use it to create visualizations that help us better understand 

our data. For readers who are interested in an in-depth explanation of ggplot2 and the 

grammar of graphics, we refer you to the books ggplot2 by Hadley Wickham and The 

Grammar of Graphics by Leland Wilkinson.

Using ggplot2, we can create a box plot from our vehicles dataset that compares 

the distribution of CO2 emissions across different vehicle classes.

> vehicles %>%
   ggplot() +
   geom_boxplot(mapping = aes(x = class, y = co2emissions), fill = "red") +
   labs(title = "Boxplot of C02 Emissions by Vehicle Class", x = "Class", y = 
"C02 Emissions") 

The first thing our code does is pass the dataset (vehicles) to the ggplot() 

function. This initializes the plot process. Think of this as an empty canvas. The next set 

of commands simply adds layers on top of the canvas. Notice the use of the + operator 

to add successive layers. The first layer is known as a geometry, which specifies the type 

of visualization we intend to create. In this case, we use the geom_boxplot() geometry 

to create a box plot. Within the geometry, we specify the aesthetics of the visualiza-

tion using the aes() function. The aesthetics specify the size, color, position, and other 

visual parameters of a geometry. For the aesthetics, we specify two things. The first is 

the relationship between the aesthetic elements and the data. This is done by setting 

mapping = aes(x = class, y = co2emissions). This states that the x-axis for the 

visualization will be the class feature and the y-axis will be the co2emissions feature. 

The second thing we specify for the aesthetic is the color of the boxes (fill = "red"). 

After the geometry layer, we use the labs() function to add a layer for the plot title and 

the axis labels. See Figure 3.6.

The results show that, on average, subcompact cars, compact cars, and midsize cars 

have the lowest CO
2 emissions, while vans, pickups, and special-purpose cars have the 

highest. This is as expected.

Relationship
Relationship visualizations are used to illustrate the correlation between two or more 

variables. These are typically both continuous features. In other words, they show how 

one variable changes in response to a change in another. Scatterplots are one of the 
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most commonly used relationship visualizations. Some of the questions that scatterplots 

help us answer include the following:

 • Is a feature significant?

 • How do features interact with each other?

 • Are there outliers in the data?

The ggplot package provides the geom_point() geometry for creating scatterplots. 

Similar to what we did for the box plot, we pass our data to ggplot(), set the aesthetic 

parameters, and layer a title and axis labels unto the chart. See Figure 3.7.

> vehicles %>%
   ggplot() + 
   geom_point(mapping = aes(x = citympg, y = co2emissions), color = "blue", 
size = 2) +
   labs(title = "Scatterplot of CO2 Emissions vs. City Miles per Gallon", 
        x = "City MPG", y = "CO2 Emissions")
 
Warning message:
Removed 6 rows containing missing values (geom_point.

Do not be alarmed by the warning message. It simply tells us that there are missing 

values for the citympg feature and that the corresponding instances were excluded 

from the chart. The chart results show that as city gas mileage increases, CO2 emissions 
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Figure 3.6 Box plot of CO2 emissions by vehicle class
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decrease. This means that vehicles with better fuel efficiency ratings emit less carbon 

dioxide. This is also as expected.

Distribution
Distribution visualizations show the statistical distribution of the values of a feature. 

One of the most commonly used distribution visualizations is the histogram. With a 

histogram you can show the spread and skewness of data for a particular feature (see 

Chapter 5 for a discussion on skewness). Some of the questions that histograms help us 

answer include the following:

 • What kind of population distribution does the data come from?

 • Where is the data located?

 • How spread out is the data?

 • Is the data symmetric or skewed?

 • Are there outliers in the data?

The geom_histogram() geometry in the ggplot package allows us to create a histo-

gram in R. For histograms, we do not set a value for the y-axis because the chart uses the 

frequency for the feature value as the y-value. We do specify a value for the number of 

bins to use (bins = 30) for the x-axis of the histogram. See Figure 3.8.

> vehicles %>%
   ggplot() +
   geom_histogram(mapping = aes(x = co2emissions), bins = 30, fill = 
"yellow", color = "black") +
   labs(title = "Histogram of CO2 Emissions", x = "CO2 Emissions", y = 
"Frequency")
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Figure 3.7 Scatterplot of CO2 emissions versus city gas mileage
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The chart shows that most of the CO2 emission values are clustered between 250 and 

750 grams per mile. It also shows that we do have some outliers at the low end as well as 

at the high end.

Composition
A composition visualization shows the component makeup of the data. Stacked bar 

charts and pie charts are two of the most commonly used composition visualizations. 

With a stacked bar chart, you can show how a total value can be divided into parts or 

highlight the significance of each part relative to the total value. Some of the questions 

that stacked bar charts help us answer include the following:

 • How do distributions vary within subgroups?

 • What is the relative change in composition over time?

 • How much does a subgroup contribute to the total?

To create a stacked bar chart using ggplot, we use the geom_bar() geometry. To 

illustrate how this works, we create a visualization showing the change in drive type 

composition for each year. We set the x-axis to year, and we show the drive type compo-

sition by setting fill = drive. Similar to the histogram, we do not set the value for the 

y-axis. To help with legibility, we use the coord_flip() command to flip the axes of the 

chart so that the years are plotted on the y-axis and the number of cars is plotted on the 

x-axis. See Figure 3.9.

> vehicles %>%
   ggplot() +
   geom_bar(mapping = aes(x =year, fill = drive), color = "black") +
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Figure 3.8 Histogram of CO2 emissions
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   labs(title = "Stacked Bar Chart of Drive Type Composition by Year", 
         x = "Model Year", y = "Number of Cars") +
   coord_flip()
 

The results show that other than in 1997, it does appear that no four-wheel drive vehi-

cles were tested before 2010. We also see that two-wheel drive vehicles were tested 

only in 1984 and 1999. These two observations seem to point to a possible variance 

in the way vehicle drive types were classified in the impacted years. For example, it is 

conceivable that all four-wheel drive vehicles were classified as all-wheel drive vehicles 

every year except for 1997 and from 2010 to 2018. The same logic applies to the classifi-

cation of two-wheel drive vehicles as either rear-wheel drive or front-wheel drive.

DATA PREPARATION
Prior to the model build process, we need to make sure that the data that we have is suit-

able for the machine learning approach that we intend to use. This step is known as data 

preparation. Data preparation involves resolving data quality issues such as missing data, 

noisy data, outlier data, and class imbalance. It also involves reducing the data or modi-

fying the structure of the data to make it easier to work with.
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Cleaning the Data
In computing, the saying “garbage in, garbage out” is used to express the idea that incor-

rect or poor-quality input will invariably result in incorrect or poor-quality output. This 

concept is crucially important in machine learning. If proper care is not taken at the front 

end to properly deal with data quality issues before training a model, then the model 

output will be unreliable, misleading, or simply wrong.

Missing Values
An ideal dataset is one that has no missing values and has no values that deviate from 

the expected. Such a dataset hardly exists, if at all. In reality, most datasets have data 

quality issues that need to be dealt with prior to being used for machine learning. One 

of the most commonly encountered data quality issues is that of missing data. There 

are several reasons why data could be missing. These include changes in data collec-

tion methods, human error, combining various datasets, human bias, and so forth. It 

is important to try to understand if there is a reason or pattern for the missing values. 

For example, particular groups of people may not respond to certain questions in a 

survey. Understanding this is useful to the machine learning process. Missing values can 

also have meaning. For example, the absence of a medical test can indicate a particular 

prognosis.

There are several approaches to dealing with missing data. One approach is to sim-

ply remove all instances with features that have a missing value. This is a destructive 

approach and can result in the loss of valuable information and patterns that would have 

been useful in the machine learning process. As a result, this approach should be used 

only when the impact of removing the affected instances is relatively small or when all 

other approaches to dealing with missing data have been exhausted or are infeasible.

A second approach to dealing with missing data is the use of an indicator value, such 

as N/A, “unknown,” or –1, to represent missing values. This approach is usually okay when 

dealing with unordered categorical features. However, if used for continuous features,  

it could be mistaken for real data and could lead to incorrect assumptions about the 

data. For example, consider an age dataset for six students. Let's assume that one of the 

five age values is missing, such that the values are 5, 8, 9, 14, NA, and 19. Excluding 

the missing value, the mean age of the students would be  
5 8 9 14 19

5
11. However, 

if we used -1 as an indicator value to represent the missing value, the mean age of 

the students would then become  
5 8 9 14 1 19

6
6.

An alternative approach to dealing with missing data is to use a method known as 

imputation. Imputation is the use of a systematic approach to fill in missing data using 

the most probable substitute values. There are several approaches to imputing missing 

values. A few of them are discussed next.
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Random Imputation
As the name suggests, random imputation involves the use of a randomly selected 

observed value as the substitute for a missing value. This is a simple approach to impu-

tation; however, it does have some drawbacks. The biggest disadvantage with this 

approach is that it ignores useful information or patterns in the data when selecting sub-

stitute values.

Match-Based Imputation
Match-based imputation is an approach that involves the use of a similar instance with 

nonmissing values as a substitute for the missing value. There are generally two main 

approaches to match-based imputation. They differ based on where the instances for 

the nonmissing data come from.

The first type of match-based imputation is known as hot-deck imputation. In this 

approach, the similar instance belongs to the same dataset as the instance with missing 

data. For example, consider the same dataset of student ages that we discussed pre-

viously. Let's assume that for the dataset we also had gender information for each 

student. If we then realized that there are only two male students in the dataset, one 

of which is missing an age, using hot-deck imputation, we would use the observed age 

of the one male student as a substitute for the age of the male student whose age 

is missing.

The second type of match-based imputation is known as cold-deck imputation. With 

this approach, we use a separate dataset to get the substitute values. Using the same 

example that we used to illustrate the hot-deck approach, with cold-deck imputation, 

we identify a similar male student with a nonmissing age value from a second dataset 

and use their age as a substitute for the missing age in the first dataset. Note that the 

match we use here (age) is rather simplistic. A good match-based approach requires that 

we find several similarities between the two instances with which to create a match. The 

more, the better.

Distribution-Based Imputation
In the distribution-based imputation approach, the substitute value for a missing feature 

value is chosen based on the probability distribution of the observed values for the fea-

ture. This approach is often used for categorical values, where the mode for the feature 

is used as a substitute for the missing value. Recall that the mode of a feature is the 

value that has the highest frequency, which means that it is the most frequently occur-

ring value.
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Predictive Imputation
Predictive imputation is the use of a predictive model (regression or classification) to pre-

dict the missing value. With this approach, the feature with the missing value is consid-

ered the dependent variable (class or response), while the other features are considered 

the independent variables. There is a lot of overhead involved with predictive imputation 

as we essentially are training a model to resolve missing values, as part of the data prep-

aration phase, before we actually begin the modeling process. Because of this, predic-

tive imputation should be used only when absolutely necessary. Quite often, one of the 

other imputation approaches discussed here will prove to be quite sufficient in resolving 

the missing values in a dataset.

Mean or Median Imputation
For continuous features, the most commonly used approach for dealing with missing 

values is the mean or median imputation approach. As the name suggests, the approach 

involves the use of the mean or median of the observed values as a substitute for the 

missing value. To illustrate how mean and median imputation work, we will refer to our 

vehicles dataset. Recall that the descriptive statistics for the dataset showed that we 

had missing values for three of the features in the dataset—citympg, displacement, 

and highwaympg. As a refresher, let's take a look at the descriptive statistics for these 

features again.

> vehicles %>%
   select(citympg, displacement, highwaympg) %>%
   summary()
 
    citympg       displacement     highwaympg   
 Min.   : 6.00   Min.   :0.600   Min.   : 9.00  
 1st Qu.:15.00   1st Qu.:2.200   1st Qu.:20.00  
 Median :17.00   Median :3.000   Median :24.00  
 Mean   :17.53   Mean   :3.346   Mean   :23.77  
 3rd Qu.:20.00   3rd Qu.:4.300   3rd Qu.:27.00  
 Max.   :57.00   Max.   :8.400   Max.   :61.00  
 NA's   :6       NA's   :9       NA's   :8      

The results show that we have six missing values for citympg, nine missing values for 

displacement, and eight missing values for highwaympg. The median and mean values 

for each of the features are not significantly different, so we could use either measure 

for imputation. For illustrative purposes, we will use median imputation for the citympg 
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and highwaympg features and use mean imputation for the displacement feature. In 

R, to use the mean imputation approach to resolve the missing values for the citympg 

feature, we use the mutate verb from the dplyr package, as well as the ifelse() base R 

function and the median() function from the stats package.

> vehicles <- vehicles %>%
   mutate(citympg = ifelse(is.na(citympg), median(citympg, na.rm = TRUE), 
citympg)) %>%
   mutate(highwaympg = ifelse(is.na(highwaympg), median(highwaympg, na.rm 
= TRUE), highwaympg))

Let’s break down the code. The first line states that we are going to perform a series 

of operations against the vehicles dataset and that the resulting dataset from those 

operations should overwrite the original vehicles dataset. The second line uses the 

mutate verb to specify that we intend to modify the value of the citympg feature  

based on the output of the code following the equal sign (=). The ifelse() function 

does a logical test and returns a value depending on the result of the test. The syntax 

is as follows: ifelse(test, yes, no). This states that if the result of the test is TRUE, 

then it returns the yes value, else it returns the no value. In our example, the test is  

is.na(citympg). This is a test to evaluate whether the value for citympg is missing 

“(NA)” for each instance in the vehicles dataset. If the value is missing, then the 

median of the observed values is returned. However, if the value is not missing, then the 

citympg value is returned. This has the effect of changing only the missing values to the 

median of the observed values. Note that the median() function includes the argument 

na.rm = TRUE. This tells the function to ignore the missing values when computing 

the median. While not as useful for the median, ignoring missing values when comput-

ing the mean of a set of values has more significance. In the third line of the code, we 

also applied the same median imputation approach to resolve the missing values for the 

highwaympg feature.

For displacement feature, we use mean imputation instead of median imputation. To 

do this, we simply switch out the median() function with the mean() function.

> vehicles <- vehicles %>%
  mutate(displacement = ifelse(
    is.na(displacement),
    mean(displacement, na.rm = TRUE),
    displacement
  )) 

Now, let’s take another look at our descriptive statistics to make sure that we no 

longer have the missing values in our dataset.
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> vehicles %>%
   select(citympg, displacement, highwaympg) %>%
   summary()
 
    citympg       displacement     highwaympg   
 Min.   : 6.00   Min.   :0.600   Min.   : 9.00  
 1st Qu.:15.00   1st Qu.:2.200   1st Qu.:20.00  
 Median :17.00   Median :3.000   Median :24.00  
 Mean   :17.53   Mean   :3.346   Mean   :23.77  
 3rd Qu.:20.00   3rd Qu.:4.300   3rd Qu.:27.00  
 Max.   :57.00   Max.   :8.400   Max.   :61.00

The results show that we no longer have missing values in our dataset. We also notice 

that the descriptive statistics all remained unchanged. This is a good outcome. It means 

that our imputation approach did not have an appreciable impact on the properties 

of the dataset. While this is a good thing, it is not always the outcome of imputation. 

Often, depending on the number of missing values and the imputation approach chosen, 

the descriptive statistics will vary slightly after imputing missing values. The objective 

should be to keep these changes as small as possible.

Noise
Noise is the random component of measurement error. It is often introduced by the 

tools used in collecting and processing data. Noise is nearly always present in data and 

can sometimes be difficult to get rid of, so it is important that a robust machine learning 

algorithm be able to handle some noise in the data. If noise presents a problem for the 

selected machine learning approach, instead of trying to remove it, the objective should 

be on minimizing its impact. The process of minimizing noise in data is known as smooth-

ing. There are several approaches to smoothing. They include smoothing with bin means, 

smoothing with bin boundaries, smoothing by clustering, and smoothing by regression.

Smoothing with Bin Means
Smoothing with bin means involves sorting and grouping the data into a defined number 

of bins and replacing each value within a bin with the mean value for the bin. The choice 

of the number of bins to use is up to the user. However, it is important to note that 

the larger the number of bins, the smaller the reduction in noise; and the smaller the 

number of bins, the larger the reduction in noise. To illustrate how smoothing by bin 

means works, let’s consider a dataset of 12 values, 4 8 9 15 21 21 24 25 26 28 29 34, , , , , , , , , , , , 

which are sorted in ascending order. Assuming that we choose to bin our data into three 

bins, then the values in each bin would be 4 8 9 15, , , , 21 21 24 25, , , , and 26 28 29 34, , , . 
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The means of the values in the bins are 9 23, , and 29, respectively. Therefore, we replace 

the values in each bin by the mean so that we now have the following 12 values for our 

dataset: 9 9 9 9 23 23 23 23 29 29 29 29, , , , , , , , , , , .

Smoothing with Bin Boundaries
A closely related alternative method to smoothing with bin means is smoothing with 

bin boundaries. With this approach, instead of replacing the values in each bin by the 

mean, we replace the values by either one of the bin boundaries based on proximity. 

The bin boundaries are the smallest and largest numbers in each bin. To illustrate how 

this works, let’s consider the same dataset of 12 values, sorted in ascending order: 

4 8 9 15 21 21 24 25 26 28 29 34, , , , , , , , , , , . Using three bins again, the bins will be 4 8 9 15, , , , 

21 21 24 25, , , , and 26 28 29 34, , , . For the first bin, the boundaries are 4 and 15. To smooth 

the values in this bin, we need to evaluate how close each value in the original set is 

to the bin boundaries and substitute each value by the boundary value closest to it. 

The first value is 4, which happens to be the lower bound, so we leave it as 4. The next 

value is 8, with a distance of 8 4 4 from the lower bound and 15 8 7 from the upper 

bound. Since 8 is closer to the lower bound than the upper bound, we replace it with the 

lower bound 4. The next value in the set is 9, with a distance of 9 4 5 from the lower 

bound and 15 9 6 from the upper bound. Since 9 is closer to the lower bound than 

the upper bound, we also replace it with the lower bound 4. The last value in the set is 

15. This is the upper bound, so we leave it as is. The smoothed bin values will now be 

4 4 4 15, , , . Applying this same approach to the other two bins, our smoothed dataset 

will now be 4 4 4 15 21 21 25 25 26 26 26 34, , , , , , , , , , , .

Smoothing by Clustering
Another approach to smoothing involves the use of an unsupervised machine learning 

approach known as clustering. We discuss clustering in much more detail in Chapter 12. 

With the smoothing by clustering approach, the instances in a dataset are each assigned 

to one of any number of clusters defined by the user. The mean of each cluster is then 

computed and serves as a substitute for each instance assigned to the cluster. For 

example, in Figure 3.10, we have 14 instances (colored circles) with two features (Feature 

A and Feature B), segmented into three separate clusters (red, blue, and yellow dashed 

lines). The mean (or center) of each cluster is represented by the black diamonds (C1, C2, 

and C3). To smooth this dataset by clustering, we substitute the values of the original 

instances with those of the cluster centers.
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Smoothing by Regression
Smoothing by regression involves the use of the supervised machine learning approach, 

known as linear regression, to smooth feature values. Linear regression is discussed in 

much more detail in Chapter 4. The idea behind smoothing by regression is to use a fit-

ted regression line as a substitute for the original data. To illustrate how this works, 

let’s consider a dataset of 14 instances, made up of one independent variable x
i
 and a 

dependent variable y
i
. Each of the instances is represented by the coordinates x y

i i
,  (see 

the yellow circles in Figure 3.11). To smooth the data by regression, we use the points on 

a fitted linear regression line (blue line) as a substitute for the original data. For example, 

the values for instance x y
1 1
,  now become x y

1 1
, , after smoothing.

Outliers
An outlier is a data point that is significantly different from other observations within 

a dataset. Outliers manifest either as instances with characteristics different from 

most other instances or as values of a feature that are unusual with respect to the typ-

ical values for the feature. Unlike noise, outliers can sometimes be legitimate data. As 

a result, once they are identified, we should spend some time understanding why they 

exist in our data and whether they are useful. Quite often, the determination of whether 

an outlier is useful or not is dependent on the learning goal.

C1

Feature B

Fe
at

ur
e 

A

C3
C2

Figure 3.10 Illustration of the smoothing by clustering approach, on 14 instances 
with 2 features segmented into 3 clusters
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In some cases, outliers are simply bad data. If that is the case, the outlier should be 

removed or replaced using one of the imputation methods that we previously discussed 

for dealing with missing data. Outliers could also be legitimate data, which could be 

interesting and useful to the machine learning process. If so, then the outlier data should 

be kept. However, some machine learning approaches, such as linear regression (see 

Chapter 4), are particularly sensitive to outliers. So, if we must keep the outlier data, 

then an approach such as decision trees (see Chapter 8), which are able to handle out-

liers in a robust way, may be more appropriate. In Chapters 4 and 5, we introduce several 

approaches to identifying and dealing with outliers.

Class Imbalance
Machine learning algorithms learn from the examples. As we discussed in Chapter 1, 

these examples are known as the training data. For a classification problem, the goal of 

the machine learning algorithm is to identify patterns in labeled training data that help it 

correctly assign labels (or a class) to new unlabeled data. The more training examples the 

algorithm gets, the more confident it is in the patterns it discovers and the better it does 

in assigning labels to new data.

Let’s consider a popular classification problem: fraud detection for credit card trans-

actions. This type of classification problem is known as a binary classification problem 

because there are only two class labels (Fraud or No Fraud). All of the classification 

problems we deal with in this text will be binary classification problems. To train a model 

y

y1

y'1

x1 x

Figure 3.11 Illustration of the smoothing by regression approach on 14 instances 
represented by x , yi i
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to solve this type of problem, we need to provide the model with examples of previous 

credit card transactions to learn from. Each example would include several features that 

describe a transaction, as well as a label of whether the transaction was classified as 

fraudulent or not. The more examples that the model sees of fraudulent transactions, 

the better it becomes at identifying the patterns that correspond with fraud. Conversely, 

the more examples of nonfraudulent transactions it sees, the better it also becomes at 

learning the patterns that correspond with nonfraudulent transactions.

For classification problems, the proportion of examples that belong to each class is 

known as the class distribution. Ideally, we want the class distribution of training data to 

be uniform or balanced for the learning algorithm to have an equal shot at learning the 

patterns that correspond to each class. However, for some problems, such as our fraud 

detection example, this is not the case. The vast majority of credit transactions are not 

fraudulent. Therefore, the class distribution for the training data will not be balanced. It 

will be skewed toward the nonfraud examples. This is known as class imbalance.

There are several binary classification problems where class imbalance is not only 

common, it is expected. Some of these problems include spam detection, intrusion 

detection, churn prediction, loan default prediction, and so on. For these problems, a 

significant proportion of the observed examples belong to one class. The class with 

more examples is called the majority class, while the class with fewer examples is called 

the minority class.

There are several problems associated with class imbalance in machine learning. One 

problem has to do with the effectiveness of the learning process. Due to the nature of 

class imbalance problems, most often the minority class is the class of interest. This is 

because the minority class typically represents a rare but important event that needs 

to be identified. However, because there are fewer examples for the minority class, it is 

more challenging for a model to effectively learn the patterns that correspond with the 

minority class and to differentiate them from those associated with the majority class.

A second problem with learning against imbalanced data is that it can result in decep-

tively optimistic predictive accuracy. Let’s consider a problem where 99.9 percent of 

the observed and future examples belonged to the majority class. Without any machine 

learning, one could simply predict that all future examples belong to the majority class 

and achieve a predictive accuracy of 99.9 percent. This is known as the accuracy paradox. 

Here the predictive accuracy is simply reflecting the underlying class distribution of 

the dataset.

There are several approaches to dealing with class imbalance in machine learning.

 • Collect more data: To minimize the imbalance in the distribution between the 

majority and minority class, we can attempt to collect more examples of the 

minority class.
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 • Change the performance metric: Since we know that predictive accuracy can be 

misleading with imbalanced data, we should use other measures of performance 

when evaluating a model trained against imbalanced data. Measures such as preci-

sion, recall, kappa, and the ROC curve are often used. We discuss these measures 

extensively in Chapter 9.

 • Try a different algorithm: Certain machine learning algorithms are particularly 

sensitive to class imbalance, while others are not. When training a model to solve 

a class imbalance problem, we should consider models such as decision trees and 

random forest, which handle the imbalance in class distribution well.

 • Resample the data: A common approach to dealing with class imbalance is to 

change the class distribution of the training data with the use of sampling. There 

are two common ways that this is done. The first is to select fewer examples 

from the majority class for the training data. This is known as under-sampling. 

The second approach involves creating more copies of the minority class for the 

training data. This is known as over-sampling. The copies created either can be 

duplicates of the existing data or can be synthetic examples, which are derived 

from the existing minority examples. One of the most popular algorithms used to 

generate synthetic examples is called the Synthetic Minority Over-sampling Tech-

nique (SMOTE). We illustrate the use of SMOTE to deal with class imbalance in 

Chapter 5.

Transforming the Data
As part of the data preparation process, it is often necessary to modify or transform the 

structure or characteristics of the data to meet the requirements of a particular machine 

learning approach, to enhance our ability to understand the data, or to improve the effi-

ciency of the machine learning process. In this section, we discuss several approaches 

that help us accomplish these things.

Normalization
The goal of standardization or normalization is to ensure that an entire set of values has 

a particular property. Often, this involves scaling data to fall within a small or specified 

range. Four of the common approaches to normalization include decimal scaling, z-score 

normalization, min-max normalization, and log transformation.

Decimal Scaling
Decimal scaling as a method of normalization involves moving the position of the decimal 

point on a set of values, such that the maximum absolute value is less than or equal  
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to 1. Let’s consider a dataset with five values: 12000 24000 30000 40000 98000, , , , . To nor-

malize this dataset using decimal scaling, we need to divide each original value v  by a 

multiple of 10, such that the maximum absolute value of the dataset is less than or equal 

to 1. Mathematically this is represented as follows:

 
v

v
j

10  3.1

where j  is the smallest integer such that max v 1. For our example dataset, since 

the maximum value is 98000, we set j 5. Therefore, to normalize the first value by 

decimal scaling, we compute 
12000

10
0 12

5
. . Using this same approach for the remaining 

four values, our normalized dataset will now be 0 120 0 240 0 300 0 400 0 980. , . , . , . , . .

To illustrate how normalization by decimal scaling is done in R, let’s attempt to  

normalize the co2emissions feature of our vehicles dataset. Before we do so, we 

once again take a look at the descriptive statistics for the feature.

> vehicles %>%
   select(co2emissions) %>%
   summary()
 
  co2emissions   
 Min.   :  29.0  
 1st Qu.: 400.0  
 Median : 467.7  
 Mean   : 476.6  
 3rd Qu.: 555.4  
 Max.   :1269.6  

The results show that the minimum value is 29, while the maximum value is 1269 6. . 

Consider Equation 3.1, the smallest integer value for j  such that max v 1 is 4. In other 

words, 4 is the number of digits before the decimal place for the number 1269 6. . Using 

the mutate verb, we create a new normalized version of the co2emissions feature, 

called co2emissions_d, based on Equation 3.1.

> vehicles %>%
   select(co2emissions) %>%
   mutate(co2emissions_d = co2emissions / (10^4)) %>%
   summary()
 
  co2emissions    co2emissions_d   
 Min.   :  29.0   Min.   :0.00290  
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 1st Qu.: 400.0   1st Qu.:0.04000  
 Median : 467.7   Median :0.04677  
 Mean   : 476.6   Mean   :0.04766  
 3rd Qu.: 555.4   3rd Qu.:0.05554  
 Max.   :1269.6   Max.   :0.12696

The descriptive statistics provide a statistical summary of the values for the 

co2emissions feature, before and after normalization (co2emissions_d) by decimal  

scaling.

Z-Score Normalization
The second normalization approach that we look at is known as z-score, or zero mean nor-

malization. It gets its name from the fact that the approach results in normalized values 

that have a mean of 0 and a standard deviation of 1. Given value v  of feature F , the nor-

malized value for the feature v  is computed as follows:

 
v

v F

F  3.2

where F  and F  are the mean and standard deviation of feature F , respectively. Using the 

same example from the discussion on decimal scaling, we can use z-score normalization 

to transform the values of the five-value dataset. First, we need to compute the mean 

and standard deviation of the values. Using a calculator, we see that those values are 

40800 and 33544, respectively. Then we can use the formula from Equation 3.2 to com-

pute the normalized values. Based on this, to normalize the first value in the dataset, we 

compute 
12000 40800

33544
0 859. . Using this same approach for the remaining four 

values, our normalized dataset will now become 0 859 0 500 0 322 0 0241 1 705. , . , . , . , . .

To illustrate how z-score normalization is implemented in R, let’s again use the 

co2emissions feature from the vehicles dataset. This time we use the mean() 

function that we introduced earlier, as well as the sd() function, which helps us compute 

the standard deviation of the feature values.

> vehicles %>%
   select(co2emissions) %>%
   mutate(co2emissions_z = (co2emissions - mean(co2emissions)) / 
sd(co2emissions)) %>%
   summary()
 
  co2emissions    co2emissions_z    
 Min.   :  29.0   Min.   :-3.79952  
 1st Qu.: 400.0   1st Qu.:-0.64988  
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 Median : 467.7   Median :-0.07483  
 Mean   : 476.6   Mean   : 0.00000  
 3rd Qu.: 555.4   3rd Qu.: 0.66972  
 Max.   :1269.6   Max.   : 6.73242

From the descriptive statistics, we see that the normalized values for the co2emis-

sions feature (co2emissions_z) go from 3 79952.  to 6 73242. . Notice that the mean of 

the transformed values is now 0.

TIP It’s important to note that instead of explicitly specifying the formula for 
z-score normalization as we did in our example, we can use the scale() base 
R function instead.

Min-Max Normalization
With min-max normalization, we transform the original data from the measured units 

to a new interval defined by user-specified lower and upper bounds. Most often, the 

new bounding values are 0 and 1. Mathematically, this transformation is represented 

as follows:

 
v

v
upper lower lowerF

F F

min

max min  3.3

where v  is the original value for feature F , minF  is the minimum value for F , maxF  is  

the maximum value for F , lower  is the user-defined lower bound for the normalized 

values, and upper  is the user-defined upper bound. Applied to our five-value dataset  

of 12000 24000 30000 40000 98000, , , , , assuming that we decide to use 0 and 1 as the 

lower and upper bounds of our transformed values, the first value will become 
12000 12000

98000 12000
1 0 0 0. Using this same approach for the remaining four values, our 

normalized dataset will now be 0 000 0 140 0 209 0 326 1 000. , . , . , . , . .

To illustrate how min-max normalization is done in R, let’s once again use the 

co2emissions feature from the vehicles dataset. We use 0 and 1 as our lower and 

upper bounds.

> vehicles %>%
   select(co2emissions) %>%
   mutate(co2emissions_n = 
            ((co2emissions - min(co2emissions)) 
             / (max(co2emissions) - min(co2emissions))) * (1 - 0) + 0
          ) %>% summary()
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  co2emissions    co2emissions_n  
 Min.   :  29.0   Min.   :0.0000  
 1st Qu.: 400.0   1st Qu.:0.2991  
 Median : 467.7   Median :0.3537  
 Mean   : 476.6   Mean   :0.3608  
 3rd Qu.: 555.4   3rd Qu.:0.4244  
 Max.   :1269.6   Max.   :1.0000

The descriptive statistics show that the min-max normalized values 

(co2emissions_n) for our feature now fall between 0 and 1.

Log Transformation
The normalization approaches discussed so far are usually good if the data distribution 

is roughly symmetric. For skewed distributions and data with values that range over sev-

eral orders of magnitude, the log transformation is usually more suitable. With log trans-

formation, we replace the values of the original data by the logarithm, such that:

 v vlog  3.4

where v  is the original value for feature and v  is the normalized value. The logarithm 

used for log transform can be the natural logarithm, log base 10, or log base 2. This is 

generally not critical. However, it is important to note that log transformation works 

only for values that are positive. Using a log transformation for our five-value dataset of 

12000 24000 30000 40000 98000, , , , , we get 4 079 4 380 4 477 4 602 4 991. , . , . , . , . .

To illustrate how log transformation is done in R, let’s refer once again to the 

co2emissions feature from the vehicles dataset.

> vehicles %>%
   select(co2emissions) %>%
   mutate(co2emissions_b = log10(co2emissions)) %>%
   summary()
 
  co2emissions    co2emissions_b 
 Min.   :  29.0   Min.   :1.462  
 1st Qu.: 400.0   1st Qu.:2.602  
 Median : 467.7   Median :2.670  
 Mean   : 476.6   Mean   :2.665  
 3rd Qu.: 555.4   3rd Qu.:2.745  
 Max.   :1269.6   Max.   :3.104 
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Discretization
Discretization involves treating continuous features as if they are categorical. This 

is often done as a pre-step before using a dataset to train a model. This is because 

some algorithms require the independent data to be binary or to have a limited 

number of distinct values. The process of discretization can be accomplished using 

the binning approaches we discussed previously: smoothing with bin means and 

smoothing with bin boundaries. For example, we can effectively reduce the number 

of distinct values for a continuous feature based on the number of bins we choose 

for any of the two approaches. Besides binning, we could also discretize continuous 

features into binary values by coding them in terms of how they compare to a ref-

erence cutoff value. This is known as dichotomization. For example, given the values 

4 8 9 15 21 21 24 25 26 28 29 34, , , , , , , , , , , , we can code all values below 20 as 0 and all values 

above as 1 to yield 0 0 0 0 11111111, , , , , , , , , , , .

Dummy Coding
Dummy coding involves the use of dichotomous (binary) numeric values to represent cat-

egorical features. Dummy coding is often used for algorithms that require that the inde-

pendent features be numeric (such as regression and k -nearest neighbor) and as a way to 

represent missing data. To explain how dummy coding works, consider the drive feature 

from the vehicles dataset. Let’s assume that we have only three values for this feature, 

coded as follows:

Drive Code

Front-Wheel Drive 1
Rear-Wheel Drive 2
All-Wheel Drive 3

Using dichotomous values coded as 0 or 1, we could represent the feature values 

as follows:

Drive Front-Wheel Drive Rear-Wheel Drive All-Wheel Drive

Front-Wheel Drive 1 0 0
Rear-Wheel Drive 0 1 0
All-Wheel Drive 0 0 1
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This way of representing the data is known as full dummy coding. This is also some-

times called one-hot encoding. Notice that instead of the one original variable, we now 

have n  variables, where n  represents the number of class levels for the original variable. 

On close observation, we notice that there is some redundancy to this approach. For 

example, we know that a vehicle that is neither Front-Wheel Drive nor Rear-Wheel Drive 

is All-Wheel Drive. Therefore, we do not need to explicitly code for All-Wheel Drive. We 

could represent the same data as follows:

Drive Front-Wheel Drive Rear-Wheel Drive

Front-Wheel Drive 1 0
Rear-Wheel Drive 0 1
All-Wheel Drive 0 0

This approach means that we only need n 1 variables to dummy code a variable with 

n  class levels. In this example, we chose to not explicitly code All-Wheel Drive. This is 

called the baseline. We could have also chosen to exclude Front-Wheel Drive or Rear-

Wheel Drive instead. The choice of which value to use as the baseline is often arbitrary 

or dependent on the question that a user is trying to answer. For example, if we wanted 

to evaluate the impact on CO2 emissions of going from a four-wheel drive car to a two-

wheel drive car, it makes sense to use the All-Wheel Drive value as a baseline when 

training a regression model. In this scenario, the coefficients of the regression model 

provide us with useful insight into the marginal change in emissions when we go from a 

four-wheel drive car to a two-wheel drive car. It’s okay if this doesn’t quite make sense at 

this stage. We discuss regression, model coefficients, and the use of baseline values in 

more detail in Chapters 4 and 5.

We can do dummy coding in R using the dummies package. The package provides 

us with a function called dummy.data.frame() to accomplish this. To illustrate how to 

dummy code in R, we use the vehicles dataset once again and attempt to dummy code 

the drive feature to get results similar to our conceptual example in the previous para-

graphs. Note that the drive feature currently has more than three values.

> vehicles %>%
   select(drive) %>%
   summary()
 
               drive      
 2-Wheel Drive    :  491  
 Rear-Wheel Drive :13194  
 All-Wheel Drive  : 8871  
 Front-Wheel Drive:13074  
 4-Wheel Drive    : 1349
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To simplify our illustration, we will recode the 2-Wheel Drive vehicles to Front-Wheel 

Drive and recode 4-Wheel Drive vehicles to All-Wheel Drive. Instead of overwriting our 

original dataset, we create a copy of the vehicles dataset, which we call vehicles2. 

We also create a copy of the drive feature, which we call drive2. The values for drive2 

are recoded from drive using the recode() function from the dplyr package (which is 

loaded as part of the tidyverse package).

> library(tidyverse)
> vehicles2 <- vehicles %>%
   mutate(drive2 = recode(drive, "2-Wheel Drive" = "Front-Wheel Drive")) %>%
   mutate(drive2 = recode(drive2, "4-Wheel Drive" = "All-Wheel Drive")) %>%
   select(drive, drive2)

Descriptive statistics for the duplicate dataset (vehicles2) show that we now have 

only three values for the drive2 feature.

> head(vehicles2)
 
# A tibble: 6 x 2
  drive            drive2           
  <fct>            <fct>            
1 2-Wheel Drive    Front-Wheel Drive
2 2-Wheel Drive    Front-Wheel Drive
3 2-Wheel Drive    Front-Wheel Drive
4 Rear-Wheel Drive Rear-Wheel Drive 
5 Rear-Wheel Drive Rear-Wheel Drive 
6 Rear-Wheel Drive Rear-Wheel Drive
 
> summary(vehicles2)
 
               drive                     drive2     
 2-Wheel Drive    :  491   Front-Wheel Drive:13565  
 Rear-Wheel Drive :13194   Rear-Wheel Drive :13194  
 All-Wheel Drive  : 8871   All-Wheel Drive  :10220  
 Front-Wheel Drive:13074                            
 4-Wheel Drive    : 1349

We are now ready to dummy code the drive2 feature. However, before we do so, we 

learn from the documentation provided for the dummy.data.frame() function that the 

input dataset for this function has to be a data frame. Using the data.frame() base R 

function, we make it one.

vehicles2 <- data.frame(vehicles2)
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Then, we use the dummy.data.frame() function to dummy code the drive2 feature. 

We pass three arguments to the function. The first (data) is the input dataset. The sec-

ond argument (names) is the column name for the feature we intend to dummy code. 

The third argument (sep) is the character used between the name of the feature and the 

feature value to create a new column name.

> library(dummies)
> vehicles2 <- dummy.data.frame(data = vehicles2, names = "drive2", sep 
= "_")

A preview of our dataset shows that the drive2 feature is now dummy coded as three 

new features.

> head(vehicles2)
 
             drive drive2_Front-Wheel Drive drive2_Rear-Wheel Drive drive2_All-Wheel Drive
1    2-Wheel Drive                        1                       0                      0
2    2-Wheel Drive                        1                       0                      0
3    2-Wheel Drive                        1                       0                      0
4 Rear-Wheel Drive                        0                       1                      0
5 Rear-Wheel Drive                        0                       1                      0
6 Rear-Wheel Drive                        0                       1                      0

Reducing the Data
Prior to the model build process, we sometimes find that the data is too large or too 

complex to use in its current form. As a result, we sometimes have to reduce the number 

of observations, the number of variables, or both, before we proceed with the machine 

learning process. In the following sections, we discuss some of the most popular 

approaches to data reduction.

Sampling
Given an observed dataset, sampling is the process of selecting a subset of the rows in 

the dataset as a proxy for the whole. In statistical terms, the original dataset is known as 

the population, while the selected subset is known as the sample. In supervised machine 

learning, sampling is often used as a means to generate our training and test datasets. 

There are two common approaches to this. They are simple random sampling and strati-

fied random sampling.
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Simple Random Sampling
The simple random sampling process involves randomly selecting n  instances from an 

unordered set of N  instances, where n  is the sample size and N  is the population size. 

There are two major approaches to simple random sampling. The first approach assumes 

that whenever an instance is selected for the sample, it cannot be chosen again. This 

is known as random sampling without replacement. To help illustrate how this approach 

works, let’s consider a bag of 100 colored marbles and assume that we intend to ran-

domly select 20 of these marbles to create a sample. To do so, we dip into the bag 20 

different times. Each time, we select one random marble, make note of the color of the 

marble, and drop it into a second bag. The tally of the marbles selected over all the itera-

tions represents the sample. With this approach, the first time we dip into the bag, the 

probability of selecting a particular marble is 
1

100
. However, the second time we dip into 

the bag, because we placed the previously selected marble into a second bag, the 

probability of selecting a particular marble will now be 
1

99
. For subsequent iterations, the 

probability of selecting a particular marble will be 
1

98
, 

1

97
, 

1

96
, . . ., and so on. The 

probability of selecting a particular marble increases with each subsequent iteration.

The second approach to simple random sampling assumes that an instance can be 

selected multiple times during the sampling process. This is known as random sampling 

with replacement. Let’s use the same 100 colored marbles from the previous example to 

illustrate how this approach works. Just like before, we also dip into the bag 20 different 

times to create our sample, with one notable difference. This time, we select one random 

marble, make note of the color of the marble, and then return the selected marble into 

the bag (instead of dropping it into a second bag). With this approach, because we return 

the selected marble into the original bag, the probability of selecting a particular marble 

remains the same (
1

100
) across all iterations. This approach to sampling is also known as 

bootstrapping and forms the basis for a popular method used in evaluating the future 

performance of a model. We discuss this in more detail in Chapter 9.

To do simple random sampling in R, we use the sample() base R function. Let’s say 

we want to generate a sample of 20 numbers between 1 and 100. To do this, we pass 

three arguments to the sample() function. The first argument is the number of items to 

choose from. We set this to 100, which is the population size. The second argument is the 

number of items to choose. This, we set to 20, which is the sample size. The final argu-

ment specifies whether the sampling should be done with or without replacement. This 

time we set the argument to replace = FALSE, which indicates that we intend to do 

simple random sampling without replacement.
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> set.seed(1234)
> sample(100, 20, replace = FALSE)
 
 [1] 28 80 22  9  5 38 16  4 86 90 70 79 78 14 56 62 93 84 21 40

Note that we called another base R function before the sample() function—set 

.seed(1234). This function sets the seed for the random number generation engine in 

R. By setting the seed as 1234, we guarantee that whenever we run the random sampling 

code, we get the same set of random numbers. The seed value, 1234 in this case, is arbi-

trary and could be any integer value. The important thing is that the same random num-

bers will be generated whenever we use this seed. A different seed will yield a different 

set of random numbers. We will use the set.seed() function extensively in the rest of 

the book, whenever we intend to run code that depends on the generation of random 

numbers. This allows the reader to replicate the results from the text.

Now that we understand how to do simple random sampling without replacement in 

R, we can easily do simple random sampling with replacement by setting the replace 

argument in the sample() function to TRUE.

> set.seed(1234)
> sample(100, 20, replace = TRUE)
 
 [1] 28 80 22  9  5 38 16  4 98 86 90 70 79 78 14 56 62  4  4 21

Note that this time, we have some duplicates in our sample. For example, we have 

three occurrences of the number 4.

As we mentioned earlier, sampling is often used in machine learning to split the origi-

nal data into training and test datasets prior to the modeling process. To do so, we use 

the simple random sampling without replacement technique to generate what we call a 

sample set vector. This is simply a list of integer values that represent the row numbers in 

the original dataset. Using our vehicles dataset as an example, we know that it consists 

of 36 979,  instances. This is the population size. Let’s assume that we intend to split the 

data such that 75 percent of the data is used for the training set and 25 percent for the 

test set. To do so, we first need to generate a sample set vector of 27 734 0 75 36979, .  

numbers that represent the rows of the original data, which we will use as the training 

set. Using the sample() function, we do this as follows:

> set.seed(1234)
> sample_set <- sample(36979, 27734, replace = FALSE)
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The sample_set object now has 27 734,  numbers, as we can see from the global envi-

ronment window in RStudio. In this example, we explicitly specified the values for the 

population size and the sample size. Instead of doing this, we could have also used the 

nrow() function to get the number of rows of the vehicles dataset and set that as the 

population size in the sample() function. Using this same approach, the sample size 

would then be specified as nrow(vehicles) * 0.75.

> set.seed(1234)
> sample_set <- sample(nrow(vehicles), nrow(vehicles) * 0.75, replace = 
FALSE)

Now, we can select the rows of the vehicles dataset that are represented in the sam-

ple set vector as our training set. This is specified as vehicles[sample_set, ].

> vehicles_train <- vehicles[sample_set, ]
> vehicles_train
 
# A tibble: 27,734 x 12
   citympg cylinders displacement drive highwaympg make  model class
     <dbl>     <dbl>        <dbl> <fct>      <dbl> <fct> <fct> <fct>
 1      23         4          1.9 Fron...         31 Satu... SW      Comp...
 2      14         8          4.2 All-...         23 Audi    R8      Two ...
 3      15         8          5.3 4-Wh...         22 GMC     Yuko... Spor...
 4      25         4          1.9 Fron...         36 Satu... SC      Subc...
 5      17         6          2.5 Fron...         26 Ford    Cont... Comp...
 6      17         6          3.8 Fron...         27 Chev... Mont... Mids...
 7      20         4          2   Fron...         22 Plym... Colt... Comp...
 8      10         8          5.2 All-...         15 Dodge   W100... Pick...
 9      22         4          1.6 Rear...         26 Suzu... Vita... Spor...
10      17         6          4   Rear...         22 Niss... Fron... Pick...
# ... with 27,724 more rows, and 4 more variables: year <fct>,
#   transmissiontype <fct>, transmissionspeeds <dbl>,
#   co2emissions <dbl>

To select the rows of the vehicles dataset that are not represented in the sample 

set vector, we specify this as vehicles[-sample_set, ]. These instances make up 

our test set.

> vehicles_test <- vehicles[-sample_set, ]
> vehicles_test
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# A tibble: 9,245 x 12
   citympg cylinders displacement drive highwaympg make  model  class
     <dbl>     <dbl>        <dbl> <fct>      <dbl> <fct>  <fct>  <fct>
 1      14          8           4.1 Rear...         19 Cadi... Brou... Larg...
 2      18          8           5.7 Rear...         26 Cadi... Brou... Larg...
 3      19          4           2.6 2-Wh...         20 Mits... Truc... Pick...
 4      18          4           2   2-Wh...         20 Mazda   B200... Pick...
 5      23          4           2.2 2-Wh...         24 Isuzu   Pick... Pick...
 6      18          4           2   2-Wh...         24 GMC     S15 ... Pick...
 7      21          4           2   2-Wh...         29 Chev... S10 ... Pick...
 8      19          4           2   2-Wh...         25 Chev... S10 ... Pick...
 9      26          4           2.2 2-Wh...         31 Chev... S10 ... Pick...
10      21          4           2.2 2-Wh...         28 Dodge   Ramp... Pick...
# ... with 9,235 more rows, and 4 more variables: year <fct>,
#   transmissiontype <fct>, transmissionspeeds <dbl>,
#   co2emissions <dbl>

Now we have two new objects that represent our training and test sets—a 

27 734, -sample dataset called vehicles_train and a 9 245, -sample dataset called 

vehicles_test.

Stratified Random Sampling
Stratified random sampling is a modification of the simple random sampling approach 

that ensures that the distribution of feature values within the sample matches the dis-

tribution of values for the same feature in the overall population. To accomplish this, 

the instances in the original data (the population) are first divided into homogenous 

subgroups, known as strata. Then the instances are randomly sampled within each 

stratum. The membership of an instance within a stratum is based on its shared attribute 

with other instances within the stratum. For example, using color for stratification, all 

instances within the blue stratum will have a color attribute of blue.

To illustrate how stratified random sampling works, let’s once again consider the 

previous example of a bag with 100 colored marbles. This time, we assume that of the 

100 marbles, 50 of them are blue, 30 are red, and 20 of them are yellow. To generate a 

stratified sample of 20 marbles based on color from the original set, we would first need 

to group the marbles into three strata by color and then randomly sample from each 

stratum. Since 20 is a fifth of the population, we would need to also sample a fifth of the 

marbles in each strata. This means that for the blue stratum, we sample 
1

5
50 10 

marbles. For the red stratum, we sample 
1

5
30 6 marbles. And for the yellow stratum, 

we sample 
1

5
20 4 marbles. This gives us a total of 20 marbles that maintain the same 

color distribution as the population.
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There are several R packages that provide functions for stratified random sampling. 

One such package is the caTools package. Within this package is a function called 

 sample.split() that allows us to generate stratified random samples from a dataset.  

To illustrate how this function works, we will generate a stratified random sample 

from the vehicles dataset using the drive feature for stratification. Before we begin, 

let’s note the proportional distribution of values for the drive feature in the vehi-

cles dataset.

> vehicles %>%
   select(drive) %>%
   table() %>%
   prop.table()
.
    2-Wheel Drive  Rear-Wheel Drive   All-Wheel Drive 
       0.01327781        0.35679710        0.23989291 
Front-Wheel Drive     4-Wheel Drive 
       0.35355202        0.03648016

Now, let’s assume that we intend to select 1 percent of the data for our sample. Using 

the simple random sampling approach, the proportional distribution of values for the 

drive feature would be as follows:

> set.seed(1234)
> sample_set <- sample(nrow(vehicles), nrow(vehicles) * 0.01, replace = 
FALSE)
> vehicles_simple <- vehicles[sample_set, ]
> vehicles_simple %>%
   select(drive) %>%
   table() %>%
   prop.table()
.
    2-Wheel Drive  Rear-Wheel Drive   All-Wheel Drive 
      0.008130081       0.344173442       0.260162602 
Front-Wheel Drive     4-Wheel Drive 
      0.349593496       0.037940379

Note that while the proportional distributions are close to those of the original data-

set, they are not quite the same. For example, the distribution for 2-Wheel Drive cars 

in the original dataset is 1 3.  percent, but 0 8.  percent in the sample dataset. To ensure 

that the distribution of values for the drive in the sample are as close as possible to 

that of the original dataset, we need to stratify the dataset using the drive feature and 

random sample from each stratum. This is where the sample.split() function from the 
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caTools package comes in. We pass two arguments to the function. The first is the fea-

ture that we intend to use for stratification. In our case, that would be vehicles$drive. 

The second argument specifies how much of the original data should be used to create 

the sample (SplitRatio). Since we intend to use 1 percent of the data for the sample, 

we set this value to 0 01. .

> library(caTools)
> set.seed(1234)
> sample_set <- sample.split(vehicles$drive, SplitRatio = 0.01)

Similar to the sample() function, the sample.split() function returns a sample 

set vector. However, this vector does not list the row numbers that are to be selected. 

Instead, the vector is a logical vector of the same size as the original data with elements 

(which represent instances) that are to be selected, set as TRUE, and those that are not, 

set to FALSE. As a result, we use the subset() function to select the rows that corre-

spond to TRUE for the sample.

> vehicles_stratified <- subset(vehicles, sample_set == TRUE)

Now, let’s take a look at the proportional distribution of values for the drive feature 

in the sample.

> vehicles_stratified %>%
   select(drive) %>%
   table() %>%
   prop.table()
.
    2-Wheel Drive  Rear-Wheel Drive   All-Wheel Drive 
       0.01351351        0.35675676        0.24054054 
Front-Wheel Drive     4-Wheel Drive 
       0.35405405        0.03513514

We can see that the proportional distribution of values for the drive feature is now 

much closer to those of the original dataset. This is the value of stratified random sam-

pling. In practice, stratified random sampling is often used in creating the test dataset 

that is used to evaluate a classification model on highly imbalanced data. In such a sce-

nario, it is important for the test data to closely mimic the class imbalance present in the 

observed data.
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Dimensionality Reduction
As the name suggests, dimensionality reduction is simply the reduction in the number of 

features (dimensions) of a dataset prior to training a model. Dimensionality reduction is 

an important step in the machine learning process because it helps reduce the time and 

storage required to process data, improves data visualization and model interpretability, 

and helps avoid the phenomenon known as the curse of dimensionality. There are two 

major approaches to dimensionality reduction: feature selection and feature extraction.

Feature Selection
The idea behind feature selection (or variable subset selection) is to identify the mini-

mal set of features that result in a model with performance reasonably close to that 

obtained by a model trained on all the features. The assumption with feature selection 

is that some of the independent variables are either redundant or irrelevant and can be 

removed without having much of an impact on the performance of the model. For most 

of the machine learning approaches we introduce in the rest of the text, we will perform 

feature selection to some extent as part of data preparation.

Feature Extraction
Feature extraction, which is also known as feature projection, is the use of a mathemati-

cal function to transform high-dimensional data into lower dimensions. Unlike with fea-

ture selection, where the final set of features is a subset of the original ones, the feature 

extraction process results in a final set of features that are completely different from 

the original set. These new features are used in place of the original ones. While feature 

extraction is an efficient approach to dimensionality reduction, it does present one nota-

ble disadvantage—the values for the newly created features are not easy to interpret 

and may not make much sense to the user. Two of the most popular feature extraction 

techniques are principal component analysis (PCA) and non-negative matrix factorization 

The Curse of Dimensionality
The curse of dimensionality is a phenomenon in machine learning that describes 
the eventual reduction in the performance of a model as the number of features 
(dimensions) used to build it increase without a sufficient corresponding increase in 
the number of examples.
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(NMF). The mechanics of how these two approaches work is beyond the scope of this 

book. For readers interested in a more detailed explanation, we refer you to the book 

The Elements of Statistical Learning by Trevor Hastie, et al.

EXERCISES
1. For all manual transmission vehicles in the vehicles dataset, list the descriptive sta-

tistics for the drive, make, model, and class variables only.

2. Using the min-max normalization approach, normalize the values of the  co2emissions 

variable in the vehicles dataset so that they fall between the values of 1 and 10. Show 

the descriptive statistics for the original and normalized variables.

3. In the vehicles dataset, discretize the co2emissions variable using the High value 

for emission levels at or above 500 grams per mile and Low for emission levels below 

this mark. Using the discretized variable for the strata, generate a stratified random 

sample of 2 percent of the dataset. Show the proportional distribution of values for 

the discretized variable for the original population and for the sample.
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Chapter 4

Linear Regression

In the previous three chapters, we introduced the fundamental 

ideas behind machine learning, the statistical modeling tool that 

we utilize in this text (R and RStudio), and how to manage data 

for the machine learning process. In this chapter, we introduce 

the first of the supervised machine learning approaches we cover 

in this book. It is an approach that is used to generate a numeric 

prediction in situations when we want to answer questions such 

as the amount of revenue that would be generated by a potential 

customer based on the type and amount of money spent on 

advertising, the number of bicycles that might be rented on a 

particular day based on weather patterns, or the blood pressure of 

a particular patient based on other characteristics. This approach is 

known as regression.

Regression techniques are a category of machine learning 

algorithms that seek to predict a numeric response by quantifying 

the size and strength of the relationship between numerical values. 

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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In this chapter, we introduce linear regression as a supervised 

learning method that attempts to use the observed data to fit a 

linear predictor function that estimates unobserved data.

By the end of this chapter, you will have learned the following:

 ◆ The underlying statistical principles behind simple and mul-

tiple linear regression

 ◆ How to fit a simple linear regression model using R

 ◆ How to evaluate, interpret, and apply the results of a simple 

linear regression model

 ◆ How to extend the problem statement to include more than 

one predictor variable and fit a multiple linear regression 

model using R

 ◆ How to evaluate, interpret, improve upon, and apply the 

results of a multiple linear regression model

 ◆ Some of the strengths and weaknesses of both simple and 

multiple linear regression

BICYCLE RENTALS AND REGRESSION
As we explore linear regression in this chapter, we will use a real-world example to 

support our study. Our dataset comes from Capital Bike Share, a bike rental program 

providing service to the Washington, D.C.,area. The dataset that we will use is available 

to you as part of the electronic resources accompanying this book. (See the introduc-

tion for more information on accessing the electronic resources.) It includes daily bicycle 

rental information for the two-year period from 2011–2012.

Imagine that we were hired by the mayor’s office in Washington, D.C., to help them 

deal with a growing traffic congestion problem. The city introduced a low-cost bike-

sharing program in an attempt to reduce the number of cars on the roads. However, 
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after some early successes, the city has started to receive an increasing number of com-

plaints about bike shortages on certain days and an oversupply of bikes on other days. 

In an attempt to address the problem, the city decided to partner with a national bike 

rental company to manage the supply of bikes to the city. As part of the partnership 

agreement, the city will need to provide to the bike rental company daily estimates of 

demand for the entire city. Since the inception of the program, the city has collected 

information on the number of bikes rented daily, along with corresponding weather and 

seasonal data.

The dataset includes several weather-related variables for our analysis:

 • temperature is the average daily air temperature in degrees Fahrenheit.

 • humidity is the average daily humidity, expressed as a decimal number ranging 

from 0.0 to 1.0.

 • windspeed is the average daily wind speed, in miles per hour.

 • realfeel is a measurement derived from temperature, humidity, cloud cover, and 

other weather factors to describe the temperature perceived by a person out-

doors. It is measured in degrees Fahrenheit.

 • weather is a categorical variable used to describe the weather conditions, using 

the following scale:

 • 1: Clear or partly cloudy

 • 2: Light precipitation

 • 3: Heavy precipitation

In addition to this weather information, we also have some variables that describe 

characteristics of each day. These include the following:

 • date is the calendar day described in each instance, including the day, 

month, and year.

 • season is the calendar season for the record, expressed as follows:

 • 1: winter

 • 2: spring

 • 3: summer

 • 4: fall

 • weekday is the day of the week for the record, expressed as an integer ranging 

from 0 (Sunday) through 6 (Saturday).

 • holiday is a binary variable that is 1 if the day was a holiday and 0 otherwise.
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Finally, the dataset includes a variable called rentals that describes the number of 

bicycle rental transactions that occurred during the given day. As consultants to the 

mayor, our task is to use this observed data to develop a model that predicts the daily 

demand for bike rentals across the entire city based upon some or all of the other pro-

vided characteristics. This will help potential partners predict the demand for bicycles on 

a given day, allowing them to both forecast revenue and ensure that sufficient bicycles 

are on the street to meet rider demand.

Given the problem and the data provided, some of the questions we need to answer 

include the following:

 • Is there a relationship between the number of bike rentals and any of the other 

variables?

 • If there is a relationship, how strong is it?

 • Is the relationship linear?

 • If the relationship is linear, how well can we quantify the effect of a variable on 

the number of bike rentals?

 • How accurately can we predict the number of bike rentals given future values for 

each of the relevant variables?

By the end of this chapter, we will have answered each of these questions using linear 

regression and related techniques.

RELATIONSHIPS BETWEEN VARIABLES
To begin answering the questions about bicycle rentals that we posed in the previous 

section, we need to understand our data and how each variable relates to the other. Our 

stated business problem is to be able to effectively predict the number of bike rentals 

across the city on a given day. To do this, we must understand what factors lead to either 

an increase in rentals or a decrease in rentals. Therefore, we should first evaluate and 

quantify the relationship between rentals and the other variables in our dataset.

Correlation
Correlation is a statistical term used to describe and quantify the relationship between 

two variables. It provides a single numeric value of the relationship between the var-

iables, which is known as the correlation coefficient. There are several approaches to 

measuring correlation; however, for linear relationships, Pearson’s correlation coefficient 

is the most commonly used.



107Chapter 4: Linear Regression

Mathematically, the Pearson correlation coefficient (ρ) between two random vari-

ables x and y is denoted as follows:

 
,

,
x y

x y

Cov x y

 (4.1)

where C x yov ,  is the covariance of x; y, x  is the standard deviation of x; and y is the 

standard deviation of y. The values of Pearson’s correlation coefficient range from -1 

to +1, with larger absolute values indicating a strong relationship between variables 

and smaller absolute numbers indicating a weak relationship. Negative coefficients 

imply an inverse relationship between the two variables. In other words, as one vari-

able increases, the other decreases and vice versa. Inversely, positive coefficients imply 

that as one variable increases, the other also increases. A common rule of thumb when 

interpreting the strength of a Pearson correlation coefficient between two variables is 

to view absolute coefficient values of 0 to 0.3 as nonexistent to weak, above 0.3 to 0.5 as 

moderate, and above 0.5 as strong.

Statistics Refresher
Did all that talk of covariance and standard deviations send your head spinning? 
If it’s been a while since you last took a statistics course, here’s a brief refresher on 
those terms.

The standard deviation of a variable is a measurement of the amount of 
variability present. It is measured in the same units as the variable itself and 
tells us how spread out the instances of the variable are from the mean. If the 
standard deviation is low, the data points tend to be close to the mean, while a 
high standard deviation tells us to expect data points that are relatively far from 
the mean. The standard deviation of a variable is normally expressed using the 
lowercase Greek letter sigma (σ), with the name of the variable as a subscript. So, 
we would note the standard deviation of a variable x as σx.

The covariance between two variables measures their joint variability. This is 
a measure of how strong the relationship is between those two variables, or how 
much one variable is likely to change in response to a change in the other variable. 
Covariance values range from -∞ to ∞ and will change if the unit of measurement 
for the variables is changed. We express the covariance of two variables, x and y, 
using the notation Cov(x,y).

The correlation between two variables is a normalized version of covariance. It 
also describes the relationship between two variables, but the correlation is scaled 
to fit in a range of -1 to 1. Because it is normalized, the correlation value will not 

(Continued)
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Now, let’s take a look at our bicycle rental dataset and see if we can quantify the rela-

tionship between rentals and some of the other variables using Pearson’s correlation 

coefficient. Figure 4.1 shows scatterplots comparing rentals to each of three other var-

iables (humidity, windspeed, and temperature). All three plots show that there seems 

to be some sort of relationship between each variable and rentals. We can observe 

these relationships by examining the shapes of the scatterplots.

Let’s begin with temperature. The plot of rentals versus temperature shows a strong 

relationship between those variables. Beginning with chilly temperatures in the 20s, 

bicycle rentals are low. They steadily increase as the temperature warms, until we reach 

a point where rentals start to drop off on excessively hot days. Or, to use the language of 

statistics, there is a strong positive correlation between temperature and rentals when 
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Figure 4.1 Scatterplots illustrating the relationship between the dependent vari-
able, rentals, and each of the three independent variables: humidity, windspeed, 
and temperature

change when the unit of measurement changes. There are several different ways 
to measure correlation, but we will use Pearson’s correlation coefficient, which is 
described using the lowercase Greek letter rho (ρ). The Pearson’s correlation for the 
two variables, x and y, is therefore expressed as ρx,y.

Pearson’s correlation seeks to normalize covariance values by taking into 
account the degree of variability that occurs in each of the variables. To do this, it 
first computes the covariance between the two variables and then divides that 
value by the product of each variable’s standard deviation, giving us the formula 
shown in Equation 4.1.

If you’d like to explore these concepts in more detail, you should consult 
any statistics textbook. Fortunately, we won’t need to compute them by hand, 
because R can easily perform those calculations for us. The important concept 
that you should take away from this section is an understanding of what these 
terms describe.
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temperature is less than 70 degrees and then a moderate negative correlation when tem-

perature is above 70 degrees. That makes sense intuitively: a 70-degree day sounds like a 

beautiful day for a bike ride!

The relationships between humidity and rentals and windspeed and rentals are 

not as strong, however. We do note a slight negative correlation for extreme values of 

both weather attributes. Rentals begin to drop off when humidity exceeds 75 percent or 

windspeed exceeds 10 miles per hour.

While visual inspection gives us a sense of the strength of the relationships between 

these variables, it only allows us to describe those relationships in imprecise terms, such 

as “slight negative correlation” or “strong positive correlation.” Visual inspection does 

not allow us to quantify the strength of those relationships. That’s where Pearson’s cor-

relation coefficient can help. We’ll compute that using R.

First, we need to load in the dataset. For our discussions here, we’ll load datasets as if 

they were stored in the current working directory. For more information on options for 

loading datasets, see the introduction. Here’s the code to load the dataset:

> library(tidyverse)
> bikes <- read_csv("bikes.csv")

Once we have the dataset loaded, let’s try calculating some of these statistical values. 

We’ll begin by calculating the covariance of humidity and rentals by using R’s build-in 

cov() function.

> cov(bikes$humidity, bikes$rentals)
 
[1] -27.77323

This tells us that the covariance between humidity and rentals is -27.77. Similarly, 

we can calculate the standard deviations of both variables using R’s sd() function.

> sd(bikes$humidity)
 
[1] 0.1424291
 
> sd(bikes$rentals)
 
[1] 1937.211

Remember that standard deviation is measured in the same units as the original vari-

able, so the standard deviation of humidity is 14.2 percent, while the standard deviation 

of bicycle rentals is 1937.2 rentals.

We can then compute Pearson’s correlation coefficient by writing the formula in 

Equation 4.1 as R code.
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> pearson <- cov(bikes$humidity, bikes$rentals) / 
   (sd(bikes$humidity) * sd(bikes$rentals))
 
> pearson
 
[1] -0.1006586 

That’s the hard way of performing this calculation. R saves us the steps of calculating 

the covariance and standard deviations ourselves by providing the cor() function that 

calculates the Pearson’s correlation coefficient for two random variables directly.

> cor(bikes$humidity, bikes$rentals)
 
[1] -0.1006586

Our results show that the Pearson correlation for humidity and rentals (
humidity rentals,

) 

is -0.1006586. Remember, the values for Pearson’s coefficient range from -1 (a strong 

negative correlation) to 1 (a strong positive correlation), so we can draw the conclu-

sion from this value that there is a weak negative correlation between humidity and 

rentals. Let’s take a look at the Pearson correlation between rentals and the other two 

variables (windspeed and temperature).

> cor(bikes$windspeed, bikes$rentals)
 
[1] -0.234545
 
> cor(bikes$temperature, bikes$rentals)
 
[1] 0.627494

Our initial assumptions about the relationships between rentals and the three other 

variables are confirmed by the Pearson correlation coefficients. The correlation between 

rentals and windspeed of -0.234545 implies a weak negative correlation. However, the 

correlation between temperature and rentals of 0.627494 implies a strong positive 

correlation.

So what do these results mean for our business problem? The first question we asked 

was “Is there a relationship between the number of bike rentals and any of the other 

variables?” Based on our results, the answer is “yes.” The Pearson correlation coefficient 

shows that there are relationships between rentals and the three other variables that 

we evaluated.

The second question we asked is “If there is a relationship, how strong is it?” This 

question is answered by looking at the absolute values of the correlation coefficients. 
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The weakest relationship is between rentals and humidity, whereas the strongest 

relationship is between rentals and temperature.

The third question we asked is “Is the relationship linear?” We don’t yet have enough 

information to answer this question. The Pearson coefficient simply tells us the strength 

of a correlation, but not the nature of that correlation. If we want to describe the rela-

tionship in greater detail, we’ll need to use a more robust approach that takes other 

factors into account to evaluate how good of a linear model we can create between two 

or more variables. Linear regression is one such approach.

Visualizing Correlations with corrplot
Humans are visual creatures, and we’re predisposed to interpret data better when 
it’s presented to us in a visual form rather than as a series of numbers. The corrplot 
package in R provides an excellent way to visualize correlation data. For example, 
here is a table showing the Pearson’s correlation coefficients for data elements in the 
bicycle rental dataset:

                 season     holiday     weekday    weather  temperature
season       1.000000000 -0.010536659 -0.0030798813  0.01921103  0.3343148564
holiday     -0.010536659  1.000000000 -0.1019602689 -0.03462684 -0.0285555350
weekday     -0.003079881 -0.101960269  1.0000000000  0.03108747 -0.0001699624
weather      0.019211028 -0.034626841  0.0310874694  1.00000000 -0.1206022365
temperature  0.334314856 -0.028555535 -0.0001699624 -0.12060224  1.0000000000
realfeel     0.342875613 -0.032506692 -0.0075371318 -0.12158335  0.9917015532
humidity     0.205444765 -0.015937479 -0.0522321004  0.59104460  0.1269629390
windspeed   -0.229046337  0.006291507  0.0142821241  0.03951106 -0.1579441204
rentals      0.406100371 -0.068347716  0.0674434124 -0.29739124  0.6274940090
 
              realfeel   humidity  windspeed    rentals
season       0.342875613   0.20544476 -0.229046337  0.40610037
holiday     -0.032506692  -0.01593748  0.006291507 -0.06834772
weekday     -0.007537132  -0.05223210  0.014282124  0.06744341
weather     -0.121583354   0.59104460  0.039511059 -0.29739124
temperature  0.991701553   0.12696294 -0.157944120  0.62749401
realfeel     1.000000000   0.13998806 -0.183642967  0.63106570
humidity     0.139988060   1.00000000 -0.248489099 -0.10065856
windspeed   -0.183642967  -0.24848910  1.000000000 -0.23454500
rentals      0.631065700  -0.10065856 -0.234544997  1.00000000

Take a quick look at that table and identify the variables with the strongest 
positive and negative correlation.

(Continued)
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That’s not so easy, is it? We’re simply not well-suited to that type of analysis. 
Now let’s take a look at this data in visual form, using the corrplot package. First, 
we create a subset of our dataset that removes the non-numeric date values.

> bikenumeric <- bikes %>% 
    select(-date)

Next, we compute the table of correlation coefficients shown previously using 
the cor() function.

> bike_correlations <- cor(bikenumeric)

Finally, we visualize these correlations using the corrplot function.

> corrplot(bike_correlations)

This gives us the visualization shown here:
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This visualization is far easier to interpret than the table of numeric data. To 
find the correlation between two variables, find the cell corresponding to the 
intersection of the row and column for each variable. The size of the circle and 
intensity of the color in that cell correspond to the strength of the correlation, or 
the absolute value of the correlation coefficient for the two variables. Positive 
correlations are coded in blue, while negative correlations are coded in red.
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Looking at this visualization, we can quickly see that the strongest positive 
correlation is between temperature and realfeel. This makes sense. As measured 
temperature rises, the perceived temperature also rises. The strongest negative 
correlation is between weather and rentals, which also makes intuitive sense. 
Higher values of the weather variable correspond to worsening weather conditions, 
and as weather conditions get worse, rentals go down.

You probably noticed that the correlation visualization is symmetric around 
the diagonal. This is because there is no order to the variables when computing 
correlation. The correlation between A and B is the same as the correlation 
between B and A. We can choose to simplify our visualization by showing only the 
coefficients above the diagonal using the type=“upper” argument to corrplot().

corrplot(bike_correlations, type="upper")
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That matrix is a little easier to read.
You also may note that it becomes difficult to discern small differences 

between variables. You might want to develop a visualization that allows you 
to quickly see the differences between variables, but also provides the detailed 
coefficient information. The corrplot.mixed() function provides this visualization:

corrplot.mixed(bike_correlations)

(Continued)
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Regression
Regression analysis is a family of statistical methods that are used to model complex 

numerical relationships between variables. In general, regression analysis involves three 

key components.

 • A single numeric dependent variable, which represents the value or values that we 

want to predict. This variable is known as the response variable (Y).

 • One or more independent numeric variables (X) that we believe we can use to pre-

dict the response variable. These variables are known as the predictors.

 • Coefficients (β), which describe the relationships between the predictors and the 

response variable. We don’t know these values going into the analysis and use 

regression techniques to estimate them. The coefficients are what constitute the 

regression model.

The relationship between these three components is represented using a function that 

maps from the independent variable space to the dependent variable space in the form.

 Y f X ,  (4.2)

This can be read as stating that the response variable Y is approximately modeled as a 

function 𝑓, where 𝑓 is an estimated function that quantifies the interaction between the 

observed predictors X and a set of coefficients β. The goal of regression is to identify the 

values for β that best estimate the values for Y based on the observed values of X. See 

Figure 4.2.
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SIMPLE LINEAR REGRESSION
Linear regression is a subset of regression that assumes that the relationship between 

the predictor variables X and the response variable Y is linear. In cases where we 

have only a single predictor variable, we can write the regression equation using the 

slope-intercept format.

 0 1,Y f X X  (4.3)

Here, both β0 and β1 are unknown parameters that represent the intercept and slope, 

respectively. β1 is the expected increase in Y for each unit increase in X, while β0 is the 

expected value for Y when X = 0. This approach of using a single dependent variable to 

predict the dependent variable is known as simple linear regression.

In a more specific case, imagine that for our bike rentals data, we want to model the 

relationship between temperature and rentals using simple linear regression. We could 

rewrite Equation 4.3 as follows:

 rentals f temperature temperature,
0 1  (4.4)

If we assume that the relationship between these variables is linear, then with 

simple linear regression, our goal is to find a single line that best fits the data, as shown 

in Figure 4.3. In other words, our task is to identify the slope of this line (β1) and its 

y- intercept (β0).
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Figure 4.2 Estimated regression line and actual values for a sample (n=20) of the 
bike rentals data



Practical Machine Learning in R116

Ordinary Least Squares Method
There are several mathematical approaches that we could employ to help us find the 

values for 0 and 1 that best approximates the relationship between X and Y. The simplest 

of these approaches is known as the ordinary least squares (OLS) method.

To illustrate the OLS method, let’s suppose that for our example, we start off by 

 creating a scatterplot of our rentals and temperature data, such as the one shown in 

Figure 4.2. Next, we do our best to draw a line that fits through the middle of the data 

points in our plot, as we show in Figure 4.3.

The estimated line (black) now represents our regression line. We can use this line to 

make a prediction of the number of rentals, for any given value of temperature, by sim-

ply finding the appropriate temperature value on the x-axis and then finding the point 

on the line where it crosses that value. For example, if the weather forecast for tomorrow 

was 65 degrees, we could use the regression line to estimate that we would rent approxi-

mately 5,200 bicycles that day.

It is important to note that the predicted points (represented by black dots in 

Figure 4.3) generated by our regression line are not always the same as the original 

points from our dataset (orange dots in Figure 4.3). The difference between our predic-

tions and the actual values is known as the error or residual. In Figure 4.3, the value of 

the residual is the length of the vertical red line between the actual values and the pre-

dicted values. As you can see from the illustration, there are several of these red lines. 
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Figure 4.3 For our regression line, the differences between each actual value ) 
and each predicted value ( ) is the residual ( ), represented as the length of each 
red line, where .
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Our regression line is simply an estimate, and with estimation, we should always expect 

some degree of error. With that in mind, we can rewrite our simple linear regression 

Equation 4.3 as follows:

 Y f X X,
0 1  (4.5)

In Equation 4.5,  represents the sum of all our estimation errors. The goal of the OLS 

method is to find the best values for 0 and 1 that minimize , which is also known as the 

residual sum of squares or sum of squared errors.

In mathematical terms, let the number of observations in our data be represented 

as n, the coefficients for our line estimate be represented by 0 and 1, and each pair of 

observed values for temperature and rentals be denoted as x y
i i
, , with 1,2,… ,ni . 

Then, we can think of y i , our prediction for Y based on a given value x
i
, as:

  y xi i0 1  (4.6)

At any given point, the distance between the observed value for Y (y
i
) and the pre-

dicted value for Y (y i), which is the residual, is denoted as follows:

 e y y
i i i  (4.7)

The residual sum of squares can be expressed as follows:
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It can be shown using calculus that the value for 1 that minimizes the residual sum of 

squares is as follows:
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with x- and ȳ representing the sample means for X and Y. On closer inspection, we can see 

that the numerator for 1 is the covariance of x and y, and the denominator is the vari-

ance of x. With this in mind, we could rewrite the equation as follows:

 
1

C x y

Var x

ov ,

 (4.10)

Now that we’ve derived the value for 1, given that y x
0 1

, the optimal value for 0 

can consequently be derived as follows:

 0 1
y x (4.11)

With these formulas, we are able to use the OLS methods to derive the values for 0 

and 1 in R using the functions for covariance cov(), variance var(), and average mean():

> B1 <- cov(bikes$temperature, bikes$rentals) / var(bikes$temperature)
> B1
 
[1] 78.49539
 
> B0 <- mean(bikes$rentals) - B1 * mean(bikes$temperature)
> B0
 
[1] -166.8767

Based on our results, for any given value of xi (temperature), our prediction for yi  

(rentals) is defined as follows:

 y xi i
166 9 78 5. .  (4.12)

In other words,

 rentals temperature166 9 78 5. .  (4.13)

This means that for every unit increase in temperature, the city experiences a 

corresponding increase in bike rentals of about 78 bikes.
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We can also plug a weather forecast into this equation to predict the number of 

rentals on a future day. Earlier, we estimated by inspecting Figure 4.3 that a 65-degree 

day would result in 5,200 bicycle rentals. We can use Equation 4.13 to generate a more 

specific estimate.

 rentals 166 9 78 5 65 4935 6. . .  (4.14)

NOTE The estimate provided by visual inspection of Figure 4.3 is quite 
different from the value derived using the regression equation in Equation 4.14. 
The main reason for this discrepancy is that the regression models were 
generated based upon different datasets. For the sake of visual simplicity, the 
regression line in Figure 4.3 was generated using a small dataset of 20 points, 
while the regression model in Equation 4.13 was generated based upon the 
entire dataset. This illustrates the importance of having a robust dataset to 
improve the accuracy of a regression model.

We have seen how we can manually estimate our coefficients using the ordinary 

least squares method. However, R provides us with a way to do this in a more efficient 

manner using the built-in linear model function called lm(). We explore this in the fol-

lowing sections.

Simple Linear Regression Model
The lm() function in R automates the OLS technique we worked through in the previ-

ous section. Instead of deriving the values for 0 and 1 individually, we can build a linear 

model by simply passing our dataset to the lm() function and specifying the predictor 

and response variables. Using the same pair of variables (temperature and rentals) as 

we used in the OLS method, let’s build a simple linear regression model, which we will 

call bikes_mod1.

> bikes_mod1 <- lm (data=bikes, rentals~temperature)

The lm() function takes two parameters. The first parameter specifies our dataset 

(bikes). The second parameter tells the function that we intend to predict rentals (our 

response) based on temperature (our predictor).
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Evaluating the Model
Simply typing the name of the model bikes_mod1 gives us some basic information 

about the model.

> bikes_mod1
 
Call:
lm(formula = rentals ~ temperature, data = bikes)
 
Coefficients:
(Intercept)  temperature  
     -166.9         78.5

Notice that the values for the coefficients look rather familiar (see Equation 4.12). The 

coefficient for the intercept (-166.9) is the same value we calculated for 0 in the previ-

ous section, and the coefficient for temperature (78.5) is the same for 1. So, our esti-

mated line is the same between these two approaches. To get more detailed information 

about the model, we run the summary(bikes.mod) command.

> summary(bikes_mod1)
 
Call:
lm(formula = rentals ~ temperature, data = bikes)
 
Residuals:
    Min       1Q     Median       3Q       Max 
-4615.3  -1134.9     -104.4   1044.3    3737.8 
 
Coefficients:
               Estimate   Std. Error   t value   Pr(>|t|)    
(Intercept)    -166.877      221.816   -0.752     0.452    
temperature      78.495        3.607   21.759    <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 1509 on 729 degrees of freedom
Multiple R-squared:  0.3937,  Adjusted R-squared:  0.3929 
F-statistic: 473.5 on 1 and 729 DF,  p-value: < 2.2e-16

The output now provides us with information about the residuals, additional detail 

about the coefficients, and some additional model diagnostics for residual standard 

error, multiple R-squared, adjusted R-squared, and F-statistic. This is a much more robust 

output compared to what we got before. In the next few sections, we discuss what each 

category represents.
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Residuals
The residuals section shows the summary statistics for the residuals (minimum, first 

quartile, median, third quartile, and maximum).

Residuals:
    Min       1Q     Median       3Q       Max 
-4615.3  -1134.9     -104.4   1044.3    3737.8

Recall that the residual is the observed value minus the predicted value, or the 

error in our prediction. The model summary shows a minimum residual for our model 

of -4615.3. This means that, for at least one temperature, our model overpredicted 

the number of bike rentals by 4,615 bikes. Similarly, the maximum residual is 3737.8, 

meaning that, for at least one temperature, our model underpredicted rentals by 

3,737 bikes.

We can also look at the median residual to get a sense of the typical model perfor-

mance. Recall that the median value is the middle value of a set of data. In this case, the 

negative median residual (-104.4) means that at least half of the residuals are negative. 

In other words, the predicted values are more than the observed values in more than 50 

percent of the cases.

Coefficients
The coefficients section of the model summary provides some vital information about 

the model predictors and their coefficients.

Coefficients:
               Estimate   Std. Error   t value   Pr(>|t|)    
(Intercept)    -166.877      221.816   -0.752     0.452    
temperature      78.495        3.607   21.759    <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The first field (Estimate) shows the fitted value for each parameter. These are the 

regression coefficients that we discussed earlier: 0 and 1.

The second field (Std. Error) shows the standard error, which is the standard deviation 

of the parameter estimates. The lower the standard error is with regard to the estimate, 

the better the estimate is.

The last two fields (t value and Pr(>|t|)) show the student t-test and the p-value of  

one sample t-test for each parameter. Without going into the statistical principles 

behind these two values, the important thing to note is that they evaluate whether a 

particular parameter is significant in our model. That is, they estimate the predictive 
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power of a feature. To help with interpretation, the output provides significance levels 

between 0 and 1, which are coded as ‘***’, ‘**’, ‘*’, ‘.’, and ‘ ’. Note that these codes 

represent intervals and not discrete values. Each parameter estimate is assigned one of 

these codes.

In our output, we see that the temperature feature has a significance code of ‘***’, 

which means that it has a significance level between 0 and 0.001. The lower the sig-

nificance level, the more predictive power a feature has. In practice, any feature with 

a significance level of 0.05 or less is statistically significant and is a good candidate 

for a model.

Diagnostics
The lm() model summary also provides a section at the end offering diagnostic values. 

We can use these diagnostics to assess the overall accuracy and usefulness of our regres-

sion model. The diagnostics section includes information on residual standard error (RSE), 

multiple R-squared, adjusted R-squared, and the F-statistic.

Residual Standard Error
The residual standard error is the standard deviation of the model errors. For our model, 

the RSE was this:

Residual standard error: 1509 on 729 degrees of freedom

This is the average amount that the predicted response will deviate from the 

observed data. In the case of our output, the RSE shows that the actual number of bike 

rentals deviate from our predictions by an average of 1509 rentals. RSE is a measure of 

lack of fit for a model. So, whether 1509 is good or bad is dependent upon the context of 

the problem. In general, the smaller the RSE, the more confident we are that our model 

fits our data well.

The degrees of freedom value provides the number of data points in our model that 

are variable. In our output, the degrees of freedom value is 729. This is calculated by sub-

tracting the number of features in our model including the intercept from the number of 

observations in our dataset. Our bicycle rental dataset had 731 observations and devel-

oped a model based upon two features: the temperature and the y-intercept. There-

fore, the number of degrees of freedom in the model is 731-2 = 729.

Multiple and Adjusted R-squared
The R-squared statistic provides an alternative measure of fit from the RSE. Unlike RSE, 

which provides an absolute measure of lack of fit measured in the units of Y, R-squared 
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is independent of the scale of Y and takes the form of a proportion, with values rang-

ing from 0 to 1. The R-squared statistic measures the proportion of variability in the 

response variable that is explained by the regression model. The closer the R-squared 

is to 1, the better the model explains the data. Here is the R-squared data from our 

model summary:

Multiple R-squared:  0.3937,    Adjusted R-squared:  0.3929

Our output shows two types of R-squared values. The multiple R-squared value, which 

is also known as the coefficient of determination, explains how well our model explains 

the values of the dependent variable. From our output, we can say that our simple linear 

regression model explains about 39.37 percent of the variability in our dataset.

The adjusted R-squared value is a slight modification to the multiple R-squared in that 

it penalizes models with a large number of independent variables. It is a more conserva-

tive measure of variance explained especially when the sample size is small compared 

to the number of parameters. It is useful when comparing the performance of several 

models with different numbers of predictors. In those scenarios, we would use the 

adjusted R-squared instead of the multiple R-squared when evaluating how much of the 

data is explained by each model.

F-statistic
The F-statistic is a statistical test of whether there exists a relationship between the pre-

dictor and the response variables. The larger the value for the F-statistic, the stronger 

the relationship. Here is the F-statistic data for our model:

F-statistic: 473.5 on 1 and 729 DF,  p-value: < 2.2e-16

In our output, we can say that with an F-statistic of 473.5, our predictor does have a 

strong relationship with the response. However, it is important to note that the value of  

the F-statistic is impacted by the size of our dataset. If we have a large dataset, an 

F- statistic that is close to 1 may still indicate a strong relationship. Inversely, if our data-

set is small, a large F-statistic may not always imply a strong relationship.

This is why the best measure of fit comes from analyzing the p-value of the F-statistic, 

rather than the F-statistic value itself. The p-value takes the characteristic of the data-

set into account and tells us how likely it is that the variables in our regression model 

fit the data in a statistically significant manner. The closer this value is to zero, the 

better the fit.

In our example, the p-value of the F-statistic is extremely small (< 2.2e-16). As we men-

tioned in the section on coefficients, p-values with a significance level less than 0.05 are 

usually acceptable. Therefore, we can feel pretty confident about our F-statistic value.
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MULTIPLE LINEAR REGRESSION
In the previous example, we looked at the use of a single predictor (temperature) to 

estimate the values for bike rentals. This approach yielded a decent regression model 

that accounted for about 39 percent of the variability in the dataset. However, as we 

know, trying to predict the number of bicycle rentals based solely upon the tempera-

ture is a little simplistic. A 65-degree day with a gentle breeze is a lot different than a 

65-degree day with 30-mph wind gusts!

What if we wanted to see how well the other variables in our dataset predicted the 

number of bike rentals? One approach would be to create separate models with each 

of the remaining variables to see how well they predict rentals. There are several chal-

lenges to this approach. The first challenge is that since we would now have several 

simple linear regression models, we would not be able to make a single prediction 

for bike rentals based on changes in the values of the predictor variables. The second 

challenge is that by creating individual models based on only one variable each, we 

ignore the possibility that there may be some correlation between the predictor vari-

ables that could have an impact on our predictions.

Instead of building several simple linear regression models, a better approach is to 

extend our model to accommodate multiple predictor variables. This approach of using 

multiple independent variables to predict the dependent variable is known as multiple 

linear regression. Similar to Equation 4.5, given p predictor variables, we can represent 

the multiple linear regression equation in slope intercept format as follows:

 0 1 1 2 2 p
…

pY X X X  (4.15)

Here, X
1
is the first predictor, while X

p
 is the pth predictor. 1 is the expected increase in 

Y for each unit increase in predictor X
1
, assuming all other predictors are held constant, 

and 0 is the expected value for Y when all the predictors are equal to zero. Applying 

Equation 4.15 to our example, assuming we wanted to evaluate how well we could pre-

dict bike rentals based on humidity, windspeed, and temperature, then our multiple 

linear regression equation would be the following:

 rentals humidity windspeed temperature
0 1 2 3  (4.16)

The Multiple Linear Regression Model
Similar to the OLS approach we discussed for simple linear regression, the goal for mul-

tiple linear regression is also to estimate the values for the coefficients 
0 1 2 p, , , … ,  

that minimize the residual sum of squares. However, unlike with simple linear regression 
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where we had only one predictor variable, estimating the coefficients in multiple linear 

regression requires the use of matrix algebra, which is beyond the scope of this book. 

Luckily, we don’t need to fully understand the math behind this approach to build a mul-

tiple linear regression model. The lm() function in R, which we used to develop a simple 

regression model, can also handle the mathematical heavy lifting required to develop a 

multiple regression model.

Let’s build a model to predict rentals, which we call bikes_mod2, based on the 

dependent variables humidity, windspeed, and temperature.

> library (stats)
> bikes_mod2 <- lm(data=bikes, rentals ~ humidity + windspeed + temperature)

The syntax is similar to what we used in the simple linear regression example. This 

time, we include two additional predictors to our model with the use of the + sign.

Evaluating the Model
After building our model, we can evaluate the model’s output in detail by using the  

summary() command.

> summary(bikes_mod2)
 
Call:
lm(formula = rentals ~ humidity + windspeed + temperature, data = bikes)
 
Residuals:
    Min      1Q  Median      3Q     Max 
-4780.5 -1082.6   -62.2  1056.5  3653.5 
 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2706.002    367.483   7.364 4.86e-13 ***
humidity    -3100.123    383.992  -8.073 2.83e-15 ***
windspeed    -115.463     17.028  -6.781 2.48e-11 ***
temperature    78.316      3.464  22.606  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 1425 on 727 degrees of freedom
Multiple R-squared:  0.4609,       Adjusted R-squared:  0.4587 
F-statistic: 207.2 on 3 and 727 DF,  p-value: < 2.2e-16
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The three asterisks (***) appearing after each variable in the coefficients section of 

our output tell us that all of our predictors are significant. This also provides us with the 

estimated values for the model coefficients 0(2706.0), 1(-3100.1), 2(-115.5), and 4(78.3). 

We can plug these values into Equation 4.16 to find the regression model for this data.

 rentals humidity windspeed temper2706 0 3100 1 115 5 78 3. . . . aature  (4.17)

We can then use Equation 4.17 to make predictions for bicycle rentals based upon dif-

ferent weather conditions. For example, our simple linear regression model predicted 

that a 65-degree day would yield 4935.6 rentals (see Equation 4.13). This new model is 

more nuanced, providing different estimates for 65-degree days with differing humidity 

and windspeed conditions, as shown in Table 4.1.

The model clearly predicts that the number of bicycle rentals in a given day will vary 

based upon windspeed and humidity, in addition to changes in temperature.

Our residual standard error of 1425 is lower than that for the simple linear regres-

sion model, which was 1509. This means our new model does a better job, on average, in 

terms of how much its predicted values deviate from actual values. Since bikes_mod2 

uses three predictors in contrast to the single predictor used by bikes_mod1, we use 

the adjusted R-squared when comparing how well each does in explaining the variability 

in the response variable. We can see that bikes_mod2 explains 45.87 percent of the 

variability in the response variable compared to the 39.39 percent of bikes_mod1. The 

F-statistic for bikes_mod2 is statistically significant and has a value significantly greater 

than 1. This means that there is a strong linear relationship between our predictors and 

the response variable.

In summary, our model outputs suggest that our multiple linear regression model 

(bikes_mod2) performs better than the simple linear regression model (bikes_mod1 ). 

However, beyond the linear model outputs, which we’ve used so far to evaluate the 

performance of our model, there are some additional diagnostic tests that enable us to 

evaluate the suitability of our model to the data. We look at these tests next.

Table 4.1 Changes in Windspeed and Humidity Produce Significant Variations in 
Bicycle Rental Predictions

Temperature Windspeed Humidity Predicted Rentals

65 0 0.00 7795.5
65 5 0.40 5978.0
65 5 0.90 4427.9
65 15 0.40 4823.0
65 15 0.90 3272.9
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Residual Diagnostics
The first set of diagnostic tests we look at has to do with the residuals of a linear regres-

sion model. As we discussed earlier, residuals are the difference between the predicted 

values of our model and the actual (or observed) values in our data. Linear regression 

models make certain critical assumptions about the characteristics of its residuals. If 

some or all of these assumptions are invalid, then the accuracy of the model is suspect. 

For a linear regression model to be valid, it is assumed that its residuals:

 • Have a mean of zero

 • Are normally distributed

 • Have equal variance across the values of the independent variable (homoscedasticity)

 • Are not correlated

Zero Mean of Residuals
The zero-mean assumption for residuals implies that the residuals have either a mean 

of zero or a mean that is reducible to zero. An easy way to test this is to simply check the 

mean of our model’s residuals using the mean() function. We can access the residuals 

from our model as bikes_mod2$residuals. This notation indicates to R that we would 

like to access the residuals from the bikes_mod2 model. To calculate the mean of these 

residuals, we execute this code:

> mean (bikes_mod2$residuals)
 
[1] -2.92411e-13

We can see from the output that the mean of the residuals is very close to zero, and 

therefore, we satisfy the zero mean criteria.

Normality of Residuals
For a linear regression model to be valid, the residuals should be normally distributed. This 

implies that our errors are random noise and that all the signals in the data have been cap-

tured. There are several formal statistical approaches to test for the normality of residuals. 

These include the Kolmogorov-Smirnov, Shapiro-Wilk, Cramer-von Mises, and Anderson-

Darling tests. However, for our purposes, we will limit ourselves to a simple visual test of 

normality using the ols_plot_resid_hist() function from the olsrr package in R. We 

use this function to plot a histogram of our residuals—see the results in Figure 4.4(a).

> librar y(olsrr)
> ols_plot_resid_hist (bikes_mod2)
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A visual inspection of our resulting plot shows that our residuals are indeed normally 

distributed. The olsrr package contains a number of useful functions for diagnosing 

OLS regression output. We will rely on it a few more times in the following sections.

Homoscedasticity of Residuals
Heteroscedasticity occurs when we have heterogeneity in the variance of observations 

in our data. When this occurs, we can no longer trust that our model errors are correct, 

and this can lead to misleading conclusions based on our model coefficients. Heterosce-

dasticity is not unusual when working with real-world data. The key is to detect that it 

exists and find ways to correct for it. Note that the larger your dataset, the less impact 

heteroscedasticity has on your model.

There are two common approaches to detecting heteroscedasticity. One is to use 

the Breusch-Pagan statistical test, and the other is to use a residual plot. We will use 

the second approach. In a residual versus fitted value plot, heteroscedasticity is visually 

detected by the presence of a funnel shape, as illustrated in Figure 4.5 (a and b). Homo-

scedasticity, which is the opposite of heteroscedasticity, is observed when there is no 

discernable pattern in the distribution of points in the plot—see Figure 4.5(c). When we 

use linear regression to fit a model to a dataset, we should expect to see homoscedas-

ticity of the residuals in a well-fit model.

The ols_plot_resid_fit() function in olsrr allows us to create such a residual 

versus fitted value plot in order to check for heteroscedasticity.

> ols_plot_resid_fit (bikes_mod2)
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Figure 4.4 (a) Residual histogram showing normality of residuals, (b) residual 
versus fitted values plot showing homoscedasticity of residual values
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The results—see Figure 4.4(b)—show that the residuals form an approximate hori-

zontal band around the y-axis. However, we do observe some heteroscedasticity in the 

plot. In practice, there are several approaches to resolving this. One common approach is 

to use a weighted regression approach where each data point is assigned a weight based 

on the variance of its fitted value. The goal here is to minimize the squared residual of 

data points that have higher variances. Another common approach to resolving het-

eroscedasticity is to apply a concave function, such as a log-transform, to the dependent 

variable in order to normalize its values. The challenge with this approach is that it makes 

it more difficult to interpret the results of your model because the units of your model 

are no longer the same as that of the original data.

Residual Autocorrelation
As we discussed earlier, correlation is the quantification of the relationship between two 

variables. Autocorrelation is the correlation of a variable with itself at different points in 

time. An important assumption for linear regression models is that its residuals are not 

correlated. If the residuals of our linear regression model show autocorrelation, then it 

means that the noise in our model is not purely by chance and that there is more infor-

mation that we need to extract from our data in order to improve our model.

The most popular test for residual autocorrelation is the Durbin-Watson (DW) test. 

The DW test statistic varies from 0 to 4, with values between 0 and 2 indicating positive 

autocorrelation, 2 indicating zero autocorrelation, and values between 2 and 4 indicating 

negative autocorrelation. The durbinWatsonTest() function in the car package pro-

vides us with a convenient way to get the DW test statistic.

> library (car)
> durbinWatsonTest (bikes_mod2)
 
 lag Autocorrelation D-W Statistic p-value
   1       0.7963326     0.4042771       0
 Alternative hypothesis: rho != 0
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Figure 4.5 Residual versus fitted value plots illustrating heteroscedasticity  
(a and b) and homoscedasticity (c)
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With a DW test statistic of 0.404 and p-value of 0, there is strong evidence suggesting 

that our model’s residuals are positively correlated. To remediate this, we would need to 

identify which additional predictors, from our dataset, we need to include in our model. 

If that is unsuccessful in reducing residual autocorrelation, then we need to also look 

into transforming some of our predictor variables. We include more predictors and trans-

form some of our predictors in the “Improving the Model” section.

Influential Point Analysis
Extreme values for predictor variables can create problems with the accuracy of linear 

regression models and with how well they can be generalized. If we have a model that 

can be heavily influenced or invalidated by a change in the value of a few observations, 

then we have a rather brittle model. These types of observations are known as influen-

tial points because of the sizable impact they have on a model. As a result, it is important 

for us to identify these influential points in our data as part of the model evalua-

tion process.

With simple linear regression, influential points are easy to identify by simply iden-

tifying the outlier values in a single predictor variable. However, with multiple linear 

regression, it is possible to have an observation with a variable whose value is not con-

sidered an outlier, when compared to other values for that variable, but is extreme when 

compared with the full set of predictors. To quantify these influential points when we’re 

dealing with multiple predictors, we use a statistical test known as Cook’s distance.

Cook’s distance measures the effect of removing an observation from a model. If the 

Cook’s distance for a particular observation is large, then it has a sizable impact on the 

estimated regression line and should be looked into for further remediation. As a rule of 

thumb, for an observation to be flagged for investigation, its Cook’s distance (D) should 

be greater than the threshold 4 1/ n k , where n  is the number of observations in the 

dataset and k  is the number of variables in the model. To identify the influential points 

in our data, based on Cook’s distance, we will use the ols_plot_cooksd_chart() 

function from the olsrr package.

> library (olsrr)
> ols_plot_cooksd_chart (bikes_mod2)

As we can see from our results in Figure 4.6, based on a Cook’s distance threshold 

of 0.005, there are several influential points in our dataset. Observation 69 stands out 

from the rest as being a significant influential point. By visual inspection, we can iden-

tify most of the outlier observations. However, if we wanted to get a complete list of 

these outliers, we could do so by getting the $outliers value of the chart. We list these 

values in descending order of Cook’s distance by using the arrange() function from the 

dplyr package.
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> cooks_outliers <- ols_plot_cooksd_chart(bikes_mod2)$outliers
> arrange(cooks_outliers, desc(cooks_distance))
 
# A tibble: 25 x 2
   observation cooks_distance
         <int>          <dbl>
 1          69        0.0835 
 2         239        0.0211 
 3         204        0.0205 
 4          50        0.0173 
 5         203        0.0139 
 6         668        0.0127 
 7         205        0.0102 
 8         210        0.00960
 9         554        0.00789
10         212        0.00771
# ... with 15 more rows

Similar to what we see in Figure 4.6, the results show that observation 69 has the 

highest Cook’s distance in the dataset. The results also show that there are 24 other 

observations that exceed the Cook’s distance threshold. To figure out what’s going on 

here, let’s a take a look at the values for observation 69.

> bikes[69,c ("rentals","humidity","windspeed","temperature")]
 
# A tibble: 1 x 4
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  rentals humidity windspeed temperature
    <dbl>    <dbl>     <dbl>       <dbl>
1     623        0      10.9        50.5
 
> summary(bikes[-69,c("rentals","humidity","windspeed","temperature")])
 
    rentals        humidity        windspeed        temperature   
 Min.   :  22   Min.   :0.1879   Min.   : 0.9322   Min.   :22.60  
 1st Qu.:3170   1st Qu.:0.5205   1st Qu.: 5.6182   1st Qu.:46.10  
 Median :4548   Median :0.6271   Median : 7.5342   Median :59.83  
 Mean   :4510   Mean   :0.6288   Mean   : 7.9262   Mean   :59.52  
 3rd Qu.:5966   3rd Qu.:0.7303   3rd Qu.: 9.7088   3rd Qu.:73.07  
 Max.   :8714   Max.   :0.9725   Max.   :21.1266   Max.   :90.50 

Comparing the statistical summary of the rest of the data with the values of the 

influential point, we see that the humidity for the influential point with a value of zero is 

clearly an outlier. Without observation 69, the minimum value for humidity is now 0.1879. 

The windspeed value for the influential point is higher than the third quartile of the rest 

of the data, further supporting the fact that this observation is an influential point in the 

model. However, the temperature value is not extreme as compared to the rest of the 

data. Now, let’s take a look at the rest of the influential points and see how they compare 

with the rest of the data. To do this, we get a statistical summary of the 25 identified 

influential points and compare that to the statistical summary of the rest of the data.

> outlier_index <- as.numeric(unlist(cooks_outliers[,"observation"]))
 
> summary(bikes[outlier_index,c("rentals","humidity","windspeed","temperature")])
 
    rentals        humidity        windspeed       temperature   
 Min.   :  22   Min.   :0.0000   Min.   : 3.263   Min.   :49.89  
 1st Qu.:1842   1st Qu.:0.4658   1st Qu.: 6.809   1st Qu.:54.61  
 Median :3606   Median :0.5675   Median : 8.024   Median :71.23  
 Mean   :3617   Mean   :0.5960   Mean   :10.202   Mean   :70.76  
 3rd Qu.:4840   3rd Qu.:0.8800   3rd Qu.:14.291   3rd Qu.:85.77  
 Max.   :8395   Max.   :0.9725   Max.   :21.127   Max.   :90.50  
 
> summary(bikes[-outlier_index,c ("rentals","humidity","windspeed", 
"temperature")])
 
    rentals        humidity        windspeed        temperature   
 Min.   : 431   Min.   :0.2758   Min.   : 0.9322   Min.   :22.60  
 1st Qu.:3206   1st Qu.:0.5235   1st Qu.: 5.5992   1st Qu.:45.62  
 Median :4570   Median :0.6308   Median : 7.5082   Median :59.30  
 Mean   :4536   Mean   :0.6290   Mean   : 7.8498   Mean   :59.11  
 3rd Qu.:5990   3rd Qu.:0.7296   3rd Qu.: 9.6318   3rd Qu.:72.87  
 Max.   :8714   Max.   :0.9625   Max.   :17.5801   Max.   :88.17
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Now we see that the outlier mean (and median) for windspeed and temperature are 

both higher than those for the non-outlier data. Humidity, on the hand, has a lower mean 

and median in the outlier data as compared to the rest of the data. Finally, let’s compare 

the statistical distribution of the original data to that of the data without the outliers to 

see what the impact will be of removing the outliers.

> summary (bikes[,c ("rentals","humidity","windspeed","temperature")])
 
    rentals        humidity        windspeed        temperature   
 Min.   :  22   Min.   :0.0000   Min.   : 0.9322   Min.   :22.60  
 1st Qu.:3152   1st Qu.:0.5200   1st Qu.: 5.6182   1st Qu.:46.12  
 Median :4548   Median :0.6267   Median : 7.5343   Median :59.76  
 Mean   :4504   Mean   :0.6279   Mean   : 7.9303   Mean   :59.51  
 3rd Qu.:5956   3rd Qu.:0.7302   3rd Qu.: 9.7092   3rd Qu.:73.05  
 Max.   :8714   Max.   :0.9725   Max.   :21.1266   Max.   :90.50  

The results show similar mean and median values across the board for the humidity, 

windspeed, and temperature variables between the two datasets. We can safely remove 

the outlier from our data. Before we do so, it’s important to note that special care must 

always be taken when getting rid of data. It is possible to lose small but crucially impor-

tant patterns in the data if it’s done recklessly. In that regard, we will leave our original 

data as is and create a new copy called bikes2 without the outliers.

bikes2 <- bikes[-outlier_index,]

Multicollinearity
Multicollinearity is a phenomenon that occurs when two or more predictor variables are 

highly correlated with each other. For example, consider a scenario where you try to pre-

dict house prices based on the following variables:

 • Number of bedrooms

 • Age

 • Number of stories

 • Square footage

In this example, it stands to reason that the number of bedrooms, number of stories, 

and square footage will be highly correlated. As the number of stories increases, so will 

the square footage of the house. Similarly, as the number of bedrooms and the number 

of stories increase, so will the square footage.

Multicollinearity in linear regression models is a problem because it leads to standard 

errors that are highly inflated, and it makes it rather difficult to separate out the impact 

of individual predictors on the response.
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There are several approaches to test for collinearity, one of which is to use a simple 

correlation matrix (see “Visualizing Correlations with corrplot” earlier in this chapter) 

to access the degree of correlation between pairs of predictor variables. However, this 

approach is not useful in detecting situations where no individual pair of variables is 

highly correlated, but three or more variables are highly correlated with each other.

To detect the presence of such a scenario, we can compute the variance inflation 

factor (VIF) for each predictor. The VIF for a variable is the measure of how much the vari-

ance of the estimated regression coefficient for that variable is inflated by the existence 

of correlation among the predictor variables in the model. The VIF for predictor k is 

computed as follows:

 
VIF

R Tolerance
k

1

1

1

2

 (4.18)

R
k

2 is the coefficient of determination of a regression equation where predictor k is 

on the left side and all the other predictor variables are on the right side. Tolerance can 

be thought of as the percent of variance in predictor k that cannot be accounted for by 

other predictors. As a rule of thumb, a VIF of greater than 5 or a tolerance less than 0.2 

indicates the presence of multicollinearity and requires remediation. To compute the VIF 

for our predictor variables, we make use of the ols_vif_tol() function from olsrr.

> ols_vif_tol(bikes_mod2)
 
# A tibble: 3 x 3
  Variables   Tolerance   VIF
  <chr>           <dbl> <dbl>
1 humidity        0.930  1.07
2 windspeed       0.922  1.08
3 temperature     0.967  1.03

We can see from the results that we have no problems with multicollinearity among 

our predictor variables, as all VIF values are well below 5.0 and all tolerance values are 

well above 0.2.

In the event that the VIF analysis does indicate multicollinearity, there are two 

common approaches to dealing with this situation. One approach is to drop one of the 

problematic variables from the model, while the other approach is to combine the col-

linear predictors into a single variable. Applying these options to our earlier example for 

housing price, we would choose to use either the number of bedrooms, the number of 

stories, or the square footage of the home, but not all three.
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Improving the Model
Now that we have a better understanding of the various linear regression diagnostic 

tests and how they apply to our data and our model, it is time for us to put them into 

practice to improve our model. Before we do, there are a few additional things we need 

to consider with regard to our predictor variables. We discuss those considerations in the 

next three sections.

Considering Nonlinear Relationships
The base assumption in linear regression is that the relationship between the predictors 

and the response is linear. However, this is not always the case. For example, looking 

at the plots in Figure 4.7, we see that the relationship between our predictors and the 

response is slightly nonlinear.

To extend our model to accommodate these nonlinear relationships, we can add 

transformed versions of our predictors to the model. This new type of model is known 

as polynomial regression. Looking at the curvature of the colored fit lines, they seem to 

suggest a quadratic relationship, so we will add squared versions of our predictors to the 

model. To do this, we simply create new variables humidity2, windspeed2, and tem-

perature2 as follows:

> bikes2 <- bikes2 %>%
    mutate (humidity2 = humidity^2) %>%
    mutate (windspeed2 = windspeed^2) %>%
    mutate (temperature2 = temperature^2)
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Let’s create a new linear model with our newly transformed predictors added:

> bikes_mod3 <-
   lm (data = bikes2,
       rentals ~ humidity + windspeed + temperature + 
        humidity2 + windspeed2 + temperature2)
 
> summary (bikes_mod3)
 
Call:
lm(formula = rentals ~ humidity + windspeed + temperature + humidity2 + 
    windspeed2 + temperature2, data = bikes2)
 
Residuals:
     Min       1Q   Median       3Q      Max 
-3153.77  -950.91   -97.23  1034.22  3000.12 
 
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -8335.7021  1128.0572  -7.389 4.22e-13 ***
humidity      6203.5583  2727.8537   2.274 0.023259 *  
windspeed     -147.3909    63.5284  -2.320 0.020624 *  
temperature    397.0970    25.7213  15.438  < 2e-16 ***
humidity2    -8324.7772  2128.2637  -3.912 0.000101 ***
windspeed2       1.5802     3.5370   0.447 0.655191    
temperature2    -2.6839     0.2175 -12.339  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 1213 on 699 degrees of freedom
Multiple R-squared:  0.6022,       Adjusted R-squared:  0.5988 
F-statistic: 176.4 on 6 and 699 DF,  p-value: < 2.2e-16 

Looking at our results, we can see that windspeed2 is not significant, so let’s remove 

it and re-create our model:

> bikes_mod3 <-
   lm (data = bikes2,
       rentals ~ humidity + windspeed + temperature + 
        humidity2 + temperature2)
 
> summary (bikes_mod3)
 
Call:
lm(formula = rentals ~ humidity + windspeed + temperature + humidity2 + 
    temperature2, data = bikes2)
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Residuals:
    Min      1Q  Median      3Q     Max 
-3167.5  -945.0  -106.7  1034.4  2984.6 
 
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -8441.8304  1102.1300  -7.660 6.22e-14 ***
humidity      6172.7633  2725.4232   2.265 0.023825 *  
windspeed     -119.8659    15.4807  -7.743 3.41e-14 ***
temperature    397.6880    25.6726  15.491  < 2e-16 ***
humidity2    -8298.1097  2126.2098  -3.903 0.000104 ***
temperature2    -2.6903     0.2169 -12.402  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 1213 on 700 degrees of freedom
Multiple R-squared:  0.6021,  Adjusted R-squared:  0.5993 
F-statistic: 211.8 on 5 and 700 DF,  p-value: < 2.2e-16

Our results now show that all our predictors are significant. The model diagnostics 

show an improvement over our previous model (bikes_mod2). Our residual standard error 

decreased from 1425 to 1213, and our adjusted R-squared increased from 0.4587 to 0.5993.

Considering Categorical Variables
The three predictor variables (humidity, windspeed, and temperature) that we’ve 

introduced into our model so far have all been continuous variables. However, we do 

know that our bikes dataset has more potential predictor variables that we could incor-

porate into our model. Earlier, we decided that we would not use the date variable to 

avoid overfitting. We also decided against using the realfeel variable as it correlates 

highly with temperature. That leaves us with season, holiday, weekday, and weather.

While these four variables do have numeric values, they actually are categorical in 

nature. Let’s take a look at the values for these variables as well as the numeric distribu-

tion for each of their values by using the summary() function.

> summary(bikes2[, c ("season", "holiday", "weekday", "weather")])
 
season  holiday weekday weather
 1:177   0:685   6: 96   2:243  
 2:180   1: 21   0:103   1:448  
 3:175           1:103   3: 15  
 4:174           2:103          
                 3:100          
                 4:100          
                 5:101          
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In practice, it is common to incorporate both continuous and categorical variables into 

a model. Before we do so, let’s perform an additional transformation of the data. The use 

of numeric values to represent categorical values is confusing to those interpreting the 

model and also requires the reader to look up values. Before we use these features in our 

model, let’s transform them using the revalue() function from the dplyr package.

bikes2 <- bikes2 %>%
  mutate(season=revalue(season, c("1"="Winter", "2"="Spring", 
"3"="Summer", "4"="Fall"))) %>%
  mutate(holiday=revalue(holiday, c("0"="No", "1"="Yes"))) %>%
  mutate(weekday=revalue(weekday, c("0"="Sunday", "1"="Monday", 
"2"="Tuesday", "3"="Wednesday", "4"="Thursday", "5"="Friday", 
"6"="Saturday"))) %>%
  mutate(weather=revalue(weather, c("1"="Clear", "2"="Light 
precipitation", "3"="Heavy precipitation")))

This code simply changes the levels (names) of the categorical factor values from 

numbers to their text equivalent. Now that we’ve done this, let’s create a new model 

that includes some of these additional predictors. For illustrative purposes, we will start 

off only adding the season variable to our model.

> bikes_mod4 <-
   lm(data = bikes2,
      rentals ~ humidity + windspeed + temperature + humidity2 + 
      temperature2 + season)
 
> summary(bikes_mod4)
 
Call:
lm(formula = rentals ~ humidity + windspeed + temperature + humidity2 + 
    temperature2 + season, data = bikes2)
 
Residuals:
    Min      1Q  Median      3Q     Max 
-3623.7  -960.4   -39.9   987.0  3363.4 
 
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -6737.0068  1118.5289  -6.023 2.77e-09 ***
humidity      5210.4033  2667.1441   1.954 0.051154 .  
windspeed     -103.7065    15.2032  -6.821 1.96e-11 ***
temperature    331.2778    29.0463  11.405  < 2e-16 ***
humidity2    -7626.8064  2077.8323  -3.671 0.000261 ***
temperature2    -2.1790     0.2503  -8.706  < 2e-16 ***
seasonSpring   489.6013   168.9875   2.897 0.003882 ** 
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seasonSummer   581.3724   221.2979   2.627 0.008801 ** 
seasonFall     994.2943   145.9958   6.810 2.10e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 1175 on 697 degrees of freedom
Multiple R-squared:  0.6282,       Adjusted R-squared:  0.624 
F-statistic: 147.2 on 8 and 697 DF,  p-value: < 2.2e-16

Notice that by including just one categorical variable, season, we now have three 

additional coefficients in our model. This is because, when we include a categorical vari-

able in our model, the linear regression function lm() creates a dummy variable (with 

values 0 or 1) for each of the values of the categorical variable.

For example, if the i-th observation in our dataset has a value of Spring for the 

season variable, then in our model, the value of the predictor variable seasonSpring 

for that observation will be 1, and it will be 0 for both predictor variables seasonSum-

mer and seasonFall. Note that, though, season has four distinct values, our model has 

only three dummy variables. There is no dummy variable for seasonWinter. This is by 

design. In this example, the dummy variable seasonWinter is known as the baseline. If 

the values of seasonSpring, seasonSummer, and seasonFall are all 0, then the season 

is assumed to be the baseline value of winter.

Unlike with the continuous variables, where we interpret the coefficient of a predictor 

variable as the degree of change in the response variable as a result of a unit change  

in the value of the predictor (assuming all other predictors are held constant), we inter-

pret the coefficients of the categorical predictors as the average difference in the change 

of the response variable between each predictor value and the baseline. In other words, 

in our model, the coefficient for seasonSpring is the average difference in the number 

of bike rentals between spring and the baseline of winter. Similarly, the coefficients 

for seasonSummer and seasonFall are the average differences in the number of bike 

rentals between summer and winter, and between fall and winter, respectively.

Our model outputs tell us that these new predictors for the season variable are all 

significant and that adding them improves the quality of our model. We see that our 

residual standard error goes down as compared to our previous model. Our adjusted 

R-squared tells us that our new model now explains 62.4 percent of the variability in our 

response variable. That’s an improvement from our previous model.

Considering Interactions Between Variables
So far, our models have been premised on the assumption that the relationship between 

the response and each predictor is independent of the value of the other predictors.  

When interpreting the results of our previous models, we interpret the model 
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coefficients as the average change in the value of the response as a result of a unit 

change of a particular predictor, assuming all other predictors are held constant. How-

ever, this assumption is not always valid. There are situations where two variables have 

a combined effect on the response. In statistics this phenomenon is referred to as the 

interaction effect.

In our bikes2 data, we could expect some sort of interaction effect between the 

windspeed and weather predictors or between the weather and temperature predic-

tors. It is reasonable to assume that if both the overall weather condition worsened and 

windspeeds increased, it would have a more significant impact on the number of bike 

rentals than if either windspeeds alone increased or overall weather conditions alone 

worsened. R provides us with a way to specify these interaction effects in our model 

by using the * operator. So, to specify the interaction between the windspeed and 

weather predictors, we would use the syntax windspeed * weather. Let’s create a new 

model with this interaction in mind.

> bikes_mod5 <-
   lm(
     data = bikes2,
     rentals ~ humidity + temperature + humidity2 + 
     temperature2 + season + windspeed * weather
   )
 
> summary(bikes_mod5)
 
Call:
lm(formula = rentals ~ humidity + temperature + humidity2 + temperature2 + 
    season + windspeed * weather, data = bikes2)
 
Residuals:
    Min      1Q  Median      3Q     Max 
-3620.9  -961.8   -56.5   980.1  3224.9 
 
Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   -6465.8882  1146.0328  -5.642 2.45e-08 ***
humidity                      5011.7326  2843.8582   1.762  0.07846 .  
temperature                     329.9987    28.9740  11.389  < 2e-16 ***
humidity2                    -7073.1818  2249.3058  -3.145  0.00173 ** 
temperature2                     -2.1794     0.2494  -8.739  < 2e-16 ***
seasonSpring                   519.6417   169.0658   3.074  0.00220 ** 
seasonSummer                   635.4740   221.8383   2.865  0.00430 ** 
seasonFall                     1045.5251   146.1096   7.156 2.12e-12 ***
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windspeed                                 -151.2331     24.6076   -6.146      1.34e-09 ***
weatherClear                                -566.2684   263.2216  -2.151      0.03180 *  
weatherHeavy precipitation           -1842.9293   984.0347  -1.873      0.06151 .  
windspeed:weatherClear                  83.0116    31.1330   2.666      0.00785 ** 
windspeed:weatherHeavy precipitation  129.4237    92.7197    1.396          0.16320    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 1168 on 693 degrees of freedom
Multiple R-squared:  0.6346,  Adjusted R-squared:  0.6283 
F-statistic: 100.3 on 12 and 693 DF,  p-value: < 2.2e-16 

We can see from the model output that compared to bikes_mod4, we improve 

upon both our residual standard error and adjusted R-squared. We also see that the 

coefficients of the interaction term as well as those of the newly introduced variable 

(weather) are significant. Interestingly, because the interaction coefficients are positive 

and the coefficients for windspeed and weather are negative, the interaction has a tem-

pering effect on the impact the two predictors individually have on bike rentals.

Let’s take the interaction between windspeed, weatherClear, and weatherHeavy_ 

Precipitation, for example. Our results suggest that when the weather forecast 

is clear or partly cloudy, for every 10 mph increase in windspeed, the number of bike 

rentals will decrease by 682 units ( 151 2 10 83 0 10. . ). However, when the weather 

forecast is for heavy precipitation, every 10 mph increase in windspeed reduces bike 

rentals by 218 units ( 151 2 10 129 4 10. . ). This means that an increase in windspeed 

has less of an impact on the number of bike rentals as the weather gets worse.

Selecting the Important Variables
In our effort to improve upon our model, we have selectively included certain predictors 

to help illustrate the point we’re trying to make at each stage. At this point, we do not 

really know which subset of our predictors will provide us with the best model for our 

use case. The process of identifying the appropriate subset of predictors is known as 

variable selection.

Ideally, our variable selection process would involve selecting the best model based 

on the evaluation of an exhaustive list of models created using all possible combina-

tions of our predictors. However, this approach is infeasible because of the sheer com-

putational complexity involved. Instead, we need a systematic approach for choosing 

the best subset of predictors for our response. The choice of which model is best is 

dependent on the metric we choose to use. So far, we have decided to use the adjusted 

R-squared as our measure of performance. However, it is important to note that there 
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are other measures we could use as well. We will address some of them in the next chap-

ter and in much more detail in Chapter 9.

In practice, there are three common approaches to the variable selection process. The 

first approach is called forward selection. In forward selection, we begin with the inter-

cept and then create several simple linear regression models based on the intercept and 

each individual predictor. We then select the predictor whose model had the best results 

based on a particular performance measure. The residual sum of squares is a common 

measure used in this approach. The next step involves creating several two-predictor 

models based on the predictor we chose in the first step and each of the remaining pre-

dictors. Like we did before, we then choose the new predictor whose model had the 

best performance. This process continues with the creation of a set of three-predictor 

models, a set of four-predictor models, and so forth, until we’ve exhausted all predictors 

or some predefined stopping criteria is met. It’s important to note that backward selec-

tion is not possible if we have more predictors than observations in our data.

The second variable selection approach is known as backward selection. This approach 

involves creating a model with all our predictors and then removing the predictor that is 

least statistically significant (based on the p-value). We then fit a new model without the 

removed predictor. Just like we did the first time, we proceed to remove the predictor 

that is least statistically significant. We continue doing this recursively until some pre-

defined stopping criteria has been met.

The third approach is a combination of both forward and backward selection that 

attempts to overcome the limitations of each of the previous two approaches. It is called 

mixed selection. In this approach, we begin with the forward selection method of add-

ing predictors one at a time. However, like with backward selection, at each stage of 

the process, we evaluate the statistical significance of each predictor and remove those 

that don’t meet a predefined significance threshold. We continue with this forward and 

backward selection process until we’ve exhausted all the variables in our data and have a 

model with only predictors that meet our significance threshold.

The olsrr package in R provides us with a set of functions to perform forward, 

backward, and mixed selection. To illustrate the mixed variable selection process, we 

use the ols_step_both_p() function. Before we demonstrate the variable selection, 

let’s create some additional candidate predictors for our bikes data. These variables 

are derived from the date variable. To help us with this, we introduce the lubridate 

package, which has several functions for working with dates. The first variable we create 

is a day variable, which describes the number of days since the program began. This vari-

able is derived as the difference between the date variable and the minimum value for 

the date variable. The next two are variables for the month and year. Now that we have 

these three new derived variables, we do not need the date variable, so we remove it 

from our data.
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> library (lubridate)
 
> bikes2 <- bikes2 %>%
  mutate (day=as.numeric(date-min(date))) %>%
  mutate (month=as.factor(month(date))) %>%
  mutate (year=as.factor(year(date))) %>%
  select (-date)

Now that we have our new candidate predictors, we proceed with the ols_step_

both_p() function. The function takes four parameters, and the first is a linear model 

with all candidate predictors (model ). Our candidate predictors include all the indepen-

dent variables in our bikes2 data as well as the interaction term for windspeed and 

weather. The second parameter of the function is the p-value threshold for entry into 

the process (pent), the third is the p-value threshold for removal (prem), and the last is 

a flag indicating how much detail to print (details). For our example, we set the values 

for pent, prem, and details as 0.2, 0.01, and FALSE, respectively.

> ols_step_both_p(
     model = lm(
     data = bikes2,
     rentals ~ humidity + weekday + holiday +
       temperature + humidity2 + temperature2 + season +
       windspeed * weather + realfeel + day + month + year
   ),
   pent = 0.2,
   prem = 0.01,
   details = FALSE
 )

Even with the details parameter set to FALSE, our output is still rather verbose. As a 

result, we will focus our attention on just a few of the sections from the output. The first 

thing we want to look at is the final model output. This gives us a summary of the model 

diagnostics based on linear regression model created using only the predictors chosen 

through the mixed variable selection process.

Final Model Output 
------------------
 
                          Model Summary                            
------------------------------------------------------------------
R                       0.939       RMSE                  671.919 
R-Squared               0.882       Coef. Var              14.814 
Adj. R-Squared          0.877       MSE                451475.658 
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Pred R-Squared          0.870       MAE                   491.914 
------------------------------------------------------------------
 RMSE: Root Mean Square Error 
 MSE: Mean Square Error 
 MAE: Mean Absolute Error

As we can see from the results, we lowered our residual error to 671.92 and increased 

our adjusted R-squared to 0.877. This means our model now explains 87.7 percent of the 

variability in the response. This is a significant improvement over our previous model.

The next thing we want to take a look at is the “Parameter Estimates” section, as 

shown here:

                            Parameter Estimates                                                     
-------------------------------------------------------------------------------
        model       Beta  Std.Error Std.Beta   t       Sig        lower       upper 
-------------------------------------------------------------------------------
   (Intercept)    -5783.258      698.492             -8.280    0.000    -7154.733    -4411.784 
          month2      -148.493    129.378    -0.021   -1.148     0.251      -402.525        105.538 
         month3          97.746     152.663       0.014     0.640    0.522      -202.005        397.497 
         month4     -104.921    224.607       -0.015    -0.467           0.641           -545.933      336.090 
         month5         343.918         238.563        0.051     1.442    0.150    -124.495         812.331 
        month6       304.343         251.821        0.043     1.209    0.227    -190.102      798.789 
         month7       232.599     278.814       0.032         0.834    0.404      -314.846        780.044 
         month8          249.976   268.742        0.037     0.930     0.353       -277.694      777.646 
        month9      546.315    238.624        0.077     2.289       0.022      77.783        1014.847 
        month10      -122.349     221.254      -0.018    -0.553    0.580    -556.776         312.078 
        month11       -739.354     210.390      -0.108   -  3.514       0.000       -1152.450          -326.258 
        month12        -543.116     164.466      -0.079        -3.302    0.001       -866.042               -220.189 
   weekdaySunday       -464.040      95.748    -0.086    -4.846      0.000    -652.040       -276.040 
  weekdayMonday       -253.997      98.438    -0.047   -2.580    0.010      -447.278         -60.716 
weekdayTuesday     -207.566       95.923      -0.038    -2.164    0.031    -395.908        -19.223 

weekdayWednesday     -126.759     96.544    -0.023    -1.313              0.190     -316.321         62.804 
weekdayThursday      -91.007     96.596    -0.017    -0.942           0.346    -280.672          98.657 
 weekdayFriday      -26.515    96.361    -0.005   -0.275       0.783    -215.719        162.688 
  seasonSpring      851.685   159.441        0.194     5.342       0.000     538.626     1164.743 
  seasonSummer      980.975  192.287     0.221     5.102       0.000     603.424     1358.526 
    seasonFall     1624.307  160.785     0.366   10.102       0.000    1308.608     1940.006 
    holidayYes     -553.809   157.964     0.049   -3.506       0.000    -863.968    - 243.649 
  temperature2       -1.641     0.172    -1.555    -9.522      0.000        -1.979       -1.302 
   temperature      241.043   19.717     1.934   12.225    0.000     202.329      279.757 
      year2012     1897.337    52.237     0.496   36.322       0.000      1794.771      1999.904 
     windspeed     -101.108     9.693    -0.165   -10.431       0.000       - 120.140            -82.076 
      humidity       6088.026  1597.069     0.433    3.812     0.000         2952.215          9223.838 
     humidity2     -6543.385      1252.304          -0.593           -5.225                  0.000      -  9002.257     -4084.513 

windspeed:weatherClear    47.327       8.255            0.111         5.733      0.000              31.119            63.536 
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windspeed:weather 
Heavy precipitation  -59.355  18.619 -0.047 -3.188 0.001 -95.913    -    22.796 
-----------------------------------------------------------------------                                          

The layout is a bit different from what we saw previously when using the summary() 

function against our linear model. However, most of the information is similar. Here, 

the model column lists the intercept and predictors, the Beta column lists the predictor 

coefficients, and the Sig column shows the significance level of each predictor in the 

model. The results show that including all the candidate predictors except for realfeel 

and day gives us a more robust model.

The final section of interest to us is “Stepwise Selection Summary,” as shown here:

                         Stepwise Selection Summary                                       
------------------------------------------------------------------------------
                  Added/              Adj.                                              
Step   Variable   Removed  R-Square R-Square    C(p)       AIC          RMSE       
------------------------------------------------------------------------------
   1   realfeel   addition   0.444   0.443   2485.8090   12266.2830  1429.9573    
   2      day     addition   0.721   0.720    899.0440   11781.1939  1013.4814    
   3  windspeed: 
       weather    addition   0.765   0.763    649.8410   11666.5370   932.4671    
   4     month    addition   0.820   0.815    337.6480   11501.1578   823.0760    
   5    weekday   addition   0.829   0.823    288.0660   11477.0170   805.7925    
   6    season    addition   0.850   0.844    168.9290   11390.0745   756.1230    
   7    holiday   addition   0.852   0.846    158.5180   11381.8230   751.2058    
   8 temperature2 addition   0.854   0.848    149.7690   11374.8218   746.9825    
   9 temperature  addition   0.865   0.860     85.7640   11318.8851   717.4822    
  10   realfeel    removal   0.865   0.860     83.7720   11316.8924   716.9566    
  11    year      addition   0.868   0.862     72.4330   11306.5835   711.2585    
  12     day       removal   0.867   0.862     73.6180   11307.5420   712.2245    
  13  windspeed   addition   0.867   0.862     75.6180   11307.5420   712.2245    
  14   humidity   addition   0.877   0.872     19.1520   11253.1529   684.8471    
  15  humidity2   addition   0.882   0.877     -6.1430   11227.2005   671.9194    
  16    weather   addition   0.882   0.877     -5.6590   11229.6159   672.1608    
  17    weather    removal   0.882   0.877     -6.1430   11227.2005   671.9194    
------------------------------------------------------------------------------

This section shows us each of the steps in the mixed variable selection process. We 

see the addition of all the candidate predictors and the removal of realfeel and day in 

steps 10 and 12, respectively. We also see the various performance metrics generated 

during each step of the process. We now have a model that we feel much more comfort-

able with compared to the model we started with.
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Strengths and Weaknesses
Now that we’ve seen both simple and multiple linear regression in action and have 

a better understanding of some of the model outputs and diagnostics, let’s take a 

moment to discuss some of the strengths and weaknesses of these two approaches.

Here are the strengths:

 • The linear regression equation is easy to understand and can be applied to any 

set of predictors to generate a response with minimal computation. This also 

means that when working with one predictor, we can easily visualize the result 

of our model by drawing a regression line overlaid against a scatterplot of the 

observed data.

 • Linear regression provides an estimate of the size and strength of the relationship 

between two or more variables.

 • Linear regression models are easy to build and understand because the underlying 

statistical principles are well defined and have wide applicability.

Here are the weaknesses:

 • Linear regression makes some assumptions about the relationship between the 

independent and dependent variables. The most notable assumption is that this 

relationship is linear. However, this is not always the case for real-world data. For 

example, the relationship between age and income is not always linear. Income 

tends to rise with age but flattens or even declines as people age and eventu-

ally retire.

 • As we saw in our analysis, outliers pose a significant problem for linear regression 

models. So, to have more confidence in our model, we must identify and handle 

influential points in the dataset.

 • Linear regression models the numeric relationship between predictors and the 

response. This implicitly assumes that the variables are continuous. To deal with a 

categorical predictor, the model has to create dummy variables as a proxy for the 

categorical variable.

 • Understanding the model outputs for linear regression requires some basic statis-

tical knowledge.
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 • Linear regression requires that we specify the model’s form before beginning 

the modeling process. For example, in our previous discussion, prior to creating a 

model we had to determine which predictors to include in our model. We also had 

to decide whether we would include polynomial or log-transformed variables in 

our model and whether we would consider interaction effects.

CASE STUDY: PREDICTING BLOOD PRESSURE
Now that we have a better understanding of how to build, evaluate, and improve a linear 

regression model, let’s put some of the principles we learned in the previous sections to 

use. Suppose you are freelancing as a data science consultant with a small community 

clinic in Chicago. The care providers at the clinic are concerned about the prevalence of 

hypertension among their patient population. If left untreated for a sustained period 

of time, high blood pressure can lead to significant medical complications such as heart 

attack, stroke, or kidney disease. To raise awareness of the issue, the clinic would like 

you to develop a model that predicts blood pressure, based on anonymized health met-

rics and limited lifestyle information about their patients. The clinic’s goal is to use this 

model to develop an interactive self-service patient portal that provides a patient’s esti-

mated blood pressure based on their health metrics and lifestyle.

You are provided with data for 1,475 patients collected by the clinic over the last 12 

months. The data that you will be using in this case study is real-world data collected by 

the U.S. Centers for Disease Control and Prevention as part of its National Health and 

Nutrition Examination Survey (NHANES). Extensive data from this survey is available 

through the RNHANES package. The variables in our dataset are as follows:

 • systolic is the systolic blood pressure of the patient. The unit of measure is milli-

meters of mercury (mmHg). This is the dependent variable that we want to predict.

 • weight is the measured weight of the patient in kilograms (kg).

 • height is the measured height of the patient in centimeters (cm).

 • bmi is the body mass index of the patient. This provides a sense of how under-

weight or overweight a patient is.

 • waist is the measured circumference of a patient’s waist in centimeters (cm).

 • age is the self-reported age of the patient.

 • diabetes is a binary indictor of whether the patient has diabetes (1) or not (0).

 • smoker is a binary indicator of whether the patient smokes cigarettes regularly (1) 

or not (0).

 • fastfood is a self-reported count of how many fast-food meals the patient has 

had in the past week.
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Importing the Data
We begin by reading our data using the read_csv() function from the tidyverse  

package.

> library (tidyverse)
 
> health <- read_csv ("health.csv")

We successfully imported the 1,475 observations and 9 variables. To get a quick view 

of our data, we use the glimpse() command to show us our variable names, data types, 

and some sample data.

> glimpse(health)

 

Observations: 1,475

Variables: 9

$ systolic <dbl> 100, 112, 134, 108, 128, 102, 126, 124, 166, 138, 118, 124, 96, 116,...

$ weight   <dbl> 98.6, 96.9, 108.2, 84.8, 97.0, 102.4, 99.4, 53.6, 78.6, 135.5, 72.3,...

$ height   <dbl> 172.0, 186.0, 154.4, 168.9, 175.3, 150.5, 157.8, 162.4, 156.9, 180.2...

$ bmi      <dbl> 33.3, 28.0, 45.4, 29.7, 31.6, 45.2, 39.9, 20.3, 31.9, 41.7, 28.6, 31...

$ waist    <dbl> 120.4, 107.8, 120.3, 109.0, 111.1, 130.7, 113.2, 74.6, 102.8, 138.4,...

$ age      <dbl> 43, 57, 38, 75, 42, 63, 58, 26, 51, 61, 47, 52, 64, 55, 72, 80, 71, ...

$ diabetes <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,...

$ smoker   <dbl> 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,...

$ fastfood <dbl> 5, 0, 2, 1, 1, 3, 6, 5, 0, 1, 0, 3, 0, 1, 0, 5, 0, 2, 1, 3, 2, 0, 12...

As we discussed earlier, systolic will be the response variable, and the other variables 

will be our predictors. Notice that all the variables were imported as numeric (dbl to 

be precise). However, we do know that the diabetes and smoker variables are actually 

 categorical values. So, we need to convert these variables to factors by using the  

as.factor() function.

> health <- health %>%
  mutate(diabetes=as.factor(diabetes)) %>%
  mutate(smoker=as.factor(smoker)) 
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Exploring the Data
Now that we have our data, let’s explore our data. We start by using the summary() 

function to get a statistical summary of the numeric variables in our data.

> summary(health)
 
    systolic         weight           height           bmi            waist      
 Min.   : 80.0   Min.  : 29.10   Min.   :141.2   Min.   :13.40   Min.   : 56.2  
 1st Qu.:114.0  1st Qu.: 69.15   1st Qu.:163.8   1st Qu.:24.10   1st Qu.: 88.4  
 Median :122.0  Median : 81.00   Median :170.3   Median :27.90   Median : 98.9  
 Mean   :124.7  Mean   : 83.56   Mean   :170.2   Mean   :28.79   Mean   :100.0  
 3rd Qu.:134.0  3rd Qu.: 94.50   3rd Qu.:176.8   3rd Qu.:32.10   3rd Qu.:109.5  
 Max.   :224.0  Max.   :203.50   Max.   :200.4   Max.   :62.00   Max.   :176.0  
 
      age        diabetes smoker     fastfood    
 Min.   :20.00   0:1265   0:770   Min.   : 0.00  
 1st Qu.:34.00   1: 210   1:705   1st Qu.: 0.00  
 Median :49.00                    Median : 1.00  
 Mean   :48.89                    Mean   : 2.14  
 3rd Qu.:62.00                    3rd Qu.: 3.00  
 Max.   :80.00                    Max.   :22.00  

Looking at the statistical distribution for our response variable systolic, we see 

that the mean and median are relatively close, suggesting that the data is normally 

distributed. Using a histogram, we can get a visual representation of the distribution 

(Figure 4.8).
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Figure 4.8 The systolic blood pressure data for this population appears to be  
normally distributed.
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> health %>%
   ggplot () +
      geom_histogram (mapping=aes (x=systolic), fill = "lightblue", color = 
"black") +
      theme_minimal()

The histogram shows that the data for the response variable is normally distributed. 

Now, let’s also take a look at the statistical distributions of the predictor variables using a 

set of histograms. We do this by using the tidyverse keep(), gather(), and facet_wrap()  

functions (Figure 4.9).

> health %>%
   select (-systolic) %>%
   keep (is.numeric) %>%
   gather () %>%
   ggplot () +
       geom_histogram(mapping = aes(x=value,fill=key), color = "black") +
       facet_wrap (~ key, scales = "free") +
theme_minimal ()

We see a near uniform distribution for our age predictor. This means that our data is 

representative of patients across a wide age spectrum. This is to be expected. The fast-

food variable is right-skewed. Most of our patients consume fast food as a meal less than 

five times a week. The rest of our predictors are normally distributed. From visual inspec-

tion, there are no obvious outliers in our data that need to be dealt with.
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Figure 4.9 Distributions of dependent variables in the 
health dataset
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The next thing we need to do as part of the data exploration process is to look at the 

correlation between our continuous variables. To do this, we use the cor() function, 

which was introduced earlier.

> cor (health[, c ("systolic","weight","height","bmi","waist","age","fastfood")])

 

            systolic      weight     height          bmi       waist         age    fastfood

systolic  1.00000000  0.10021386  0.02301030  0.09054668  0.16813021  0.40170911 -0.08417538

weight    0.10021386  1.00000000  0.40622019  0.89152826  0.89928820 -0.02217221  0.05770725

height    0.02301030  0.40622019  1.00000000 -0.03848241  0.14544676 -0.12656952  0.10917107

bmi       0.09054668  0.89152826 -0.03848241  1.00000000  0.91253710  0.03379844  0.01003525

waist     0.16813021  0.89928820  0.14544676  0.91253710  1.00000000  0.19508769 -0.02167324

age       0.40170911 -0.02217221 -0.12656952  0.03379844  0.19508769  1.00000000 -0.30089756

fastfood -0.08417538  0.05770725  0.10917107  0.01003525 -0.02167324 -0.30089756  1.00000000

Looking at the systolic column, we can see that the age predictor has the strongest 

correlation with systolic blood pressure. This is followed by waist size and weight, both 

of which are weakly correlated. It is interesting to note the negative correlation between 

fastfood consumption and systolic blood pressure. This seems unusual and counter-

intuitive; however, the negative correlation is quite low, so it will not significantly impact 

our model.

Fitting the Simple Linear Regression Model
In the previous two sections, we imported and explored our data. From our exploration, 

we discovered that the age predictor has the strongest correlation to our response. So, 

we will begin by building a simple linear regression model using the age as the predictor 

and systolic as the response.

> health_mod1 <- lm (data=health, systolic~age)
 
> summary (health_mod1)
 
Call:
lm(formula = systolic ~ age, data = health)
 
Residuals:
    Min      1Q  Median      3Q     Max 
-42.028 -10.109  -1.101   8.223  98.806 
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Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 104.34474    1.28169   81.41   <2e-16 ***
age           0.41698    0.02477   16.84   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 16.14 on 1473 degrees of freedom
Multiple R-squared:  0.1614,  Adjusted R-squared:  0.1608 
F-statistic: 283.4 on 1 and 1473 DF,  p-value: < 2.2e-16

Our results show that our predictors are significant. The coefficient for age tells us 

that for every 0.4-year increase in a patient’s age, we should expect his or her systolic 

blood pressure to increase by 1 point. This means that, on average, the older a patient is, 

the higher their blood pressure.

Looking at our model diagnostics, we see that our residual standard error is low and 

our F-statistic is statistically significant. These are both good indicators of model fit. 

However, our multiple R-squared tells us that our model explains only 16 percent of the 

variability in the response. Let’s see if we can do better by introducing additional predic-

tors to the model.

Fitting the Multiple Linear Regression Model
For our multiple linear regression model, we will begin with all the predictors in our data 

and systolic as the response.

> health_mod2 <- lm (data=health, systolic~.)
 
> summary (health_mod2)
 
Call:
lm(formula = systolic ~ ., data = health)
 
Residuals:
    Min      1Q  Median      3Q     Max 
-41.463 -10.105  -0.765   8.148 100.398 
 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 163.30026   33.52545   4.871 1.23e-06 ***
weight        0.55135    0.19835   2.780  0.00551 ** 
height       -0.39201    0.19553  -2.005  0.04516 *  
bmi          -1.36839    0.57574  -2.377  0.01759 *  
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waist        -0.00955    0.08358  -0.114  0.90905    
age           0.43345    0.03199  13.549  < 2e-16 ***
diabetes1     2.20636    1.26536   1.744  0.08143 .  
smoker1       1.13983    0.90964   1.253  0.21039    
fastfood      0.17638    0.15322   1.151  0.24985    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 15.99 on 1466 degrees of freedom
Multiple R-squared:  0.1808,       Adjusted R-squared:  0.1763 
F-statistic: 40.44 on 8 and 1466 DF,  p-value: < 2.2e-16

The results show that the coefficient estimates for weight, height, bmi, age, and 

diabetes are significant in the model. Our model diagnostics also show a slight reduc-

tion in our residual standard error, a slight increase in our adjusted R-squared and 

significant F-statistic that is greater than 0. Overall, this model provides a better fit 

than our previous model. Let’s now run some additional diagnostic tests against our 

new model.

The first test we run is the test for zero mean of residuals.

> mean (health_mod2$residuals)
 
[1] -1.121831e-15

Our residual mean is very close to zero, so our model passes this test.

Next, we test for normality of residuals (Figure 4.10).
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Figure 4.10 Histogram of residuals produced using the ols_plot_resid_hist()  
function
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> library (olsrr)
 
> ols_plot_resid_hist (health_mod2)

The residual plot is normally distributed with a slight right skew. This is close enough 

to a normal distribution to satisfy our test.

Next, we test for the presence of heteroscedasticity in our residuals (Figure 4.11).

> ols_plot_resid_fit (health_mod2)

Our plot shows an even distribution of points around the origin line. There is no het-

eroscedasticity in the distribution of our residuals versus fitted values.

Next, we run a test for residual autocorrelation.

> library (car)
 
> durbinWatsonTest (health_mod2)
 
 lag Autocorrelation D-W Statistic p-value
   1     -0.01985291      2.038055   0.456
 Alternative hypothesis: rho != 0

With a Durbin-Watson statistic of 2.04 and a p-value greater than 0.05, we cannot 

reject the null hypothesis that “no first order autocorrelation exists.” Therefore, we can 

say that our residuals are not autocorrelated.

The next diagnostic test we run is a check for influential points in our data by gener-

ating a chart of Cook’s distance function for our dataset (Figure 4.12).

> ols_plot_cooksd_chart (health_mod2)
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Figure 4.11 Scatterplot of residuals produced using the ols_plot_resid_fit()  
function
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Our plot shows that there are indeed several influential points in our data. Obser-

vation 1358 stands out from the rest. Let’s take a look at the observed values for that 

observation:

> health[1358,]
 
# A tibble: 1 x 9
  systolic weight height   bmi waist   age diabetes smoker fastfood
     <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <fct>    <fct>     <dbl>
1      184   146.   180.  44.9  140.    26 0         0           14

and compare those values to the statistical summary of our entire dataset, shown here:

> summary(health)
 
    systolic         weight           height           bmi            waist      
 Min.   : 80.0   Min.   : 29.10   Min.   :141.2   Min.   :13.40   Min.   : 56.2  
 1st Qu.:114.0   1st Qu.: 69.15   1st Qu.:163.8   1st Qu.:24.10   1st Qu.: 88.4  
 Median :122.0   Median : 81.00   Median :170.3   Median :27.90   Median : 98.9  
 Mean   :124.7   Mean   : 83.56   Mean   :170.2   Mean   :28.79   Mean   :100.0  
 3rd Qu.:134.0   3rd Qu.: 94.50   3rd Qu.:176.8   3rd Qu.:32.10   3rd Qu.:109.5  
 Max.   :224.0   Max.   :203.50   Max.   :200.4   Max.   :62.00   Max.   :176.0  
 
      age        diabetes smoker     fastfood    
 Min.   :20.00   0:1265   0:770   Min.   : 0.00  
 1st Qu.:34.00   1: 210   1:705   1st Qu.: 0.00  
 Median :49.00                    Median : 1.00  
 Mean   :48.89                    Mean   : 2.14  
 3rd Qu.:62.00                    3rd Qu.: 3.00  
 Max.   :80.00                    Max.   :22.00  
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Figure 4.12 Cook’s distance chart for the health dataset produced using the ols_
plot_cooksd_chart() function
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We can see that the values for weight, bmi, height, age, and fastfood are signifi-

cantly different for observation 1358 compared to the average and median of those vari-

ables across the entire dataset.

Let’s also take a look at the statistical distribution of the rest of the outliers and com-

pare those to the statistical distribution of the data without the outliers. To do so, we 

will need a list of all the observations that make up our influential points. We first need 

to get a list of the index values for those observations. This is done by referring to the 

observation column of the outlier attribute from Cook’s distance function.

> outlier_index <-  
as.numeric (unlist (ols_plot_cooksd_chart (health_mod2)$outliers[,"observation"]))
 
> outlier_index
 
 [1]    6    9   31   67   77   86   93  112  122  164  205  299  308  315  316  325

[17]  338  360  370  400  427  432  437  465  486  503  514  560  570  573  576  617

[33]  632  659  667  703  714  752  805  859  867  869  887  900  904  910  977 1005

[49] 1080 1109 1116 1120 1158 1170 1216 1223 1230 1288 1293 1299 1313 1315 1330 1356

[65] 1358 1393 1398 1448 

There are 68 observations in the list. Now that we have the outlier index values, we 

use the summary() command to compare the two datasets. First, let’s look at a statisti-

cal summary of only the outlier points:

> summary (health[outlier_index,])
 
    systolic         weight           height           bmi            waist       
 Min.   : 86.0   Min.   : 29.10   Min.   :144.2   Min.   :13.40   Min.   : 56.20  
 1st Qu.:109.0   1st Qu.: 68.92   1st Qu.:159.5   1st Qu.:23.60   1st Qu.: 92.35  
 Median :163.0   Median : 82.20   Median :167.2   Median :32.00   Median :111.20  
 Mean   :149.4   Mean   : 91.73   Mean   :167.2   Mean   :32.26   Mean   :109.81  
 3rd Qu.:174.0   3rd Qu.:109.03   3rd Qu.:174.2   3rd Qu.:38.42   3rd Qu.:124.92  
 Max.   :224.0   Max.   :203.50   Max.   :193.3   Max.   :62.00   Max.   :172.20  
 
      age        diabetes smoker    fastfood     
 Min.   :21.00   0:44     0:29   Min.   : 0.000  
 1st Qu.:41.75   1:24     1:39   1st Qu.: 0.000  
 Median :56.00                   Median : 1.000  
 Mean   :55.50                   Mean   : 2.897  
 3rd Qu.:68.00                   3rd Qu.: 3.000  
 Max.   :80.00                   Max.   :18.000  

Next, let’s compare that to a summary of the points in the dataset excluding 

the outliers.
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> summary (health[-outlier_index,])
 
    systolic         weight           height           bmi            waist       
 Min.   : 80.0   Min.   : 41.10   Min.   :141.2   Min.   :16.00   Min.   : 65.60  
 1st Qu.:114.0   1st Qu.: 69.15   1st Qu.:164.0   1st Qu.:24.10   1st Qu.: 88.15  
 Median :122.0   Median : 81.00   Median :170.4   Median :27.80   Median : 98.50  
 Mean   :123.5   Mean   : 83.17   Mean   :170.3   Mean   :28.63   Mean   : 99.56  
 3rd Qu.:134.0   3rd Qu.: 94.10   3rd Qu.:176.8   3rd Qu.:31.90   3rd Qu.:108.80  
 Max.   :182.0   Max.   :180.20   Max.   :200.4   Max.   :59.00   Max.   :176.00  
 
      age        diabetes smoker     fastfood     
 Min.   :20.00   0:1221   0:741   Min.   : 0.000  
 1st Qu.:34.00   1: 186   1:666   1st Qu.: 0.000  
 Median :48.00                    Median : 1.000  
 Mean   :48.57                    Mean   : 2.103  
 3rd Qu.:62.00                    3rd Qu.: 3.000  
 Max.   :80.00                    Max.   :22.000

We can see a slight to moderate difference in the mean and median between each of 

the variable pairs. While the minimum and maximum values for most pairs are similar, we 

see a significant difference with the minimum and maximum values of the weight vari-

able. To improve our model, we should remove these influential points from our dataset. 

However, for us to be able to refer to the original data, let’s create a new version of our 

dataset from the original without outliers. We call this new dataset health2.

> health2 <- health[-outlier_index,]

The final diagnostic test that we run is the test for multicollinearity.

> ols_vif_tol (health_mod2)
 
# A tibble: 8 x 3
  Variables Tolerance   VIF
  <chr>         <dbl> <dbl>
1 weight       0.0104 96.1 
2 height       0.0522 19.2 
3 bmi          0.0125 80.0 
4 waist        0.0952 10.5 
5 age          0.588   1.70
6 diabetes1    0.887   1.13
7 smoker1      0.840   1.19
8 fastfood     0.896   1.12

With a VIF well above 5.0 for weight, height, bmi, and waist, it’s obvious that we have 

a problem with multicollinearity. This is not surprising, considering that bmi is calculated 
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as weight divided by the square of height and that waist size is highly correlated with a 

person’s weight. To resolve our multicollinearity problem, we need to either combine the 

impacted variables or drop some of them. Since weight has the lowest tolerance among 

the four predictors, we choose to drop the other three and keep weight.

With the changes we’ve made to our data and the new insight we have about our 

model, let’s build a new multiple linear regression model.

> health_mod3 <- lm (data=health2, systolic ~ weight+age+diabetes)
 
> summary (health_mod3)
 
Call:
lm (formula = systolic ~ weight + age + diabetes, data = health2)
 
Residuals:
    Min      1Q  Median      3Q     Max 
-38.825  -9.004  -0.177   8.222  49.679 
 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 96.62591    1.93014  50.062  < 2e-16 ***
weight       0.09535    0.01870   5.100 3.87e-07 ***
age          0.38372    0.02218  17.297  < 2e-16 ***
diabetes1    2.62446    1.11859   2.346   0.0191 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 13.59 on 1403 degrees of freedom
Multiple R-squared:  0.2128,  Adjusted R-squared:  0.2111 
F-statistic: 126.4 on 3 and 1403 DF,  p-value: < 2.2e-16

All our predictors are significant, and all our model diagnostics show an improve-

ment over the previous model. Our model now explains 21 percent of the variability in 

the response. This is still rather low, so let’s try to see whether we can further improve 

our model.

The next two things we consider are the possibility of an interaction effect between 

our predictors and the possibility that there is a nonlinear relationship between some of 

our predictors and the response.

It is reasonable to expect that there may be interactions between weight and diabe-

tes and between age and diabetes, so we will incorporate those possible interactions 

into our model. We learned how to specify this earlier using the * operator.

It is also reasonable to expect that the relationship between age and hypertension 

may not be constant at all age levels. As a patient gets older, there very well may be an 
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accelerated relationship between age and systolic blood pressure. To account for this 

possibility, we will need to introduce nonlinear predictors into our model. To do so, we add 

two new variables to our health2 data — age2, which we call age2, and log(age), which 

we call lage.

> health2 <- health2 %>%
  mutate(age2=age^2, 
         lage=log(age))

To build our next model, we again use the ols_step_both_p() function from the 

olsrr package to perform variable selection. We provide as input our original dataset, 

along with four interaction effects between diabetes and four other dependent vari-

ables: weight, age, age2, and lage.

> ols_step_both_p (

   model = lm (

     data = health2,

     systolic ~ weight * diabetes + age * diabetes + age2 * diabetes 

     + lage * diabetes

   ),

   pent = 0.2,

   prem = 0.01,

   details = FALSE

 )

 

Final Model Output 

------------------

 

                              Model Summary                          

--------------------------------------------------------------------------

R                            0.467         RMSE                    13.551 

R-Squared                    0.218         Coef. Var                10.969 

Adj. R-Squared               0.216         MSE                     183.636 

Pred R-Squared               0.213         MAE                      10.626 

--------------------------------------------------------------------------

 RMSE: Root Mean Square Error 

 MSE: Mean Square Error 

 MAE: Mean Absolute Error 
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                                 ANOVA                                   

------------------------------------------------------------------------------

                  Sum of                                                

                 Squares          DF    Mean Square      F          Sig. 

------------------------------------------------------------------------------

Regression         71747.979              4         17936.995     97.677       0.0000 

Residual          257457.582           1402           183.636                     

Total             329205.561           1406                                    

------------------------------------------------------------------------------

 

                             Parameter Estimates                                        

------------------------------------------------------------------------------

 model             Beta     Std. Error   Std. Beta   t      Sig     lower      upper 

-------------------------------------------------------------------------------------------

(Intercept)       142.588      14.796                  9.637   0.000   113.563    171.612 

lage              -16.720       5.364      -0.411     -3.117   0.002   -27.243     -6.197 

age                 0.750       0.119       0.830      6.295   0.000     0.516      0.983 

weight:diabetes0    0.096       0.019        0.209      5.077   0.000     0.059      0.134 

weight:diabetes1    0.124       0.020         0.253      6.136   0.000     0.084      0.164 

------------------------------------------------------------------------------

 

                        Stepwise Selection Summary                                    

------------------------------------------------------------------------------

                       Added/                Adj.                                          

Step     Variable    Removed   R-Square  R-Square    C(p)        AIC       RMSE      
------------------------------------------------------------------------------

   1     diabetes:age2    addition         0.200       0.199    30.1580    11362.6333    13.6970    

   2        weight        addition        0.217       0.215     2.3790    11335.0892    13.5588    

   3       diabetes       addition        0.217       0.215     3.0660    11335.7725    13.5573    

   4         lage         addition        0.217       0.214     5.0560    11337.7626    13.5621    

   5       diabetes        removal        0.217       0.214     4.3590    11337.0698    13.5636    

   6         age2         addition        0.217       0.214     6.3590    11337.0698    13.5636    

   7        weight         removal        0.200       0.198     33.8080    11364.2895    13.7002    

   8    weight:diabetes   addition        0.217       0.214     5.4730      11338.1811    13.5641    

   9     diabetes:age2     removal        0.217       0.215     3.4960    11336.2045    13.5594    

  10         age          addition        0.218       0.216     3.1620    11335.8602    13.5529    

  11         age2         removal         0.218       0.216     1.8100    11334.5121    13.5512    

------------------------------------------------------------------------------

Our output suggests a slight improvement over the previous model. The model now 

explains 21.6 percent of the variability in the response. This is better than what we 

started with but still rather low, suggesting limitations with the data. To get a model 

that better explains the variability in our response, we would need more predictors that 

correlate with the response. For example, we might want to include information about 

gender, family medical history, and exercise habits in our model.
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However, it is also important to note that when working with behavioral data, it is 

common to run into difficulties building a model that explains most of the variability in 

the response. This is as a result of the unpredictable nature of human behavior.

Looking at the coefficient estimates from our output, we see that lage, age, 

weight:diabetes0, and weight:diabetes1 are all significant. This suggests that there 

is a nonlinear relationship between age and blood pressure. It also shows that there is an 

interaction between weight and diabetes. The weight and diabetes interactions can be 

interpreted as follows: for patients without diabetes, a 1kg increase in weight results in 

an increase in systolic blood pressure of 0.96 points. However, for patients with diabetes, 

a 1kg increase in weight results in a 1.24 point increase in systolic blood pressure.

EXERCISES
1. You are working with a movie production company to evaluate the potential success 

of new feature films. As you begin your work, you gather data elements about all 

feature films released in the past 10 years. Identify five data elements that you think 

would be useful to gather for analysis. Characterize your expectations for each vari-

able, stating whether you believe it would be positively correlated or negatively cor-

related with box office revenue and whether you believe each correlation would be 

relatively strong, moderate, or weak.

2. Using the blood pressure dataset from the use case in this chapter, produce a correla-

tion plot. Use the corrplot.mixed function and generate a plot that shows the cor-

relation coefficients visually above the diagonal and numerically below the diagonal. 

Provide an interpretation of your results.

3. You are working with college admission data and trying to determine whether you 

can predict a student’s future GPA based upon their college admission test score. The 

test is scored on a scale of 0–100, while GPA is measured on a scale of 0.0–4.0.

Call:
lm(formula = gpa ~ test)
 
Residuals:
    Min      1Q  Median      3Q     Max 
-0.3050 -0.1237  0.0525  0.1412  0.2000 
 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.695000   0.531954   1.307   0.2392   
test        0.033000   0.006205   5.318   0.0018 **
---
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When you build your regression model, you receive the following results:

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 0.1962 on 6 degrees of freedom
Multiple R-squared:  0.825,  Adjusted R-squared:  0.7958 
F-statistic: 28.29 on 1 and 6 DF,  p-value: 0.001798

a. According to this model, what impact would a single point increase in admissions 

test score have on the prediction of a student’s GPA?

b. If a student scored 82 on the admissions test, what would be your prediction of 

their GPA?

c. If another student scored 97 on the admissions test, what would be your predic-

tion of their GPA?

d. How well does this model fit the data based upon the Adjusted R-squared?

4. Returning to the bicycle rental dataset, use R to create a simple regression model 

designed to predict the realfeel temperature based upon the air temperature. 

Explain your model and describe how well it fits the data.

5. After building the regression model in exercise 3, you return to the same dataset and 

want to know whether the age of a student at application time is also a contributing 

factor to their GPA. You add this element to a multiple regression model and receive 

the results shown here:

Call:
lm(formula = gpa ~ test + age)
 
Residuals:
       1        2        3        4        5        6        7 
-0.16842  0.02851 -0.07939  0.13158  0.07456  0.12807 -0.11798 
       8 
 0.00307 
 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) -1.900439   0.984841  -1.930  0.11153   
test         0.025702   0.004937   5.206  0.00345 **
age          0.182456   0.064412   2.833  0.03656 * 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 0.1332 on 5 degrees of freedom
Multiple R-squared:  0.9328,       Adjusted R-squared:  0.9059 
F-statistic: 34.71 on 2 and 5 DF,  p-value: 0.00117
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a. According to this model, what impact would a single point increase in admissions 

test score have on the prediction of a student’s GPA? How about a single year 

increase in age?

b. If a student scored 82 on the admissions test and was 17 years old at the time of 

application, what would be your prediction of their GPA?

c. If another student scored 97 on the admissions test and was 19 years old at the 

time of application, what would be your prediction of their GPA?

d. How well does this model fit the data based upon the adjusted R-squared? How 

does that compare to the model from exercise 3?

6. Returning to the bicycle rental dataset, convert your simple regression model from 

exercise 4 to a multiple regression model that predicts realfeel based upon tem-

perature, windspeed, and humidity. Explain your model and describe how well it 

fits the data, compared to the model you created in exercise 4.



Chapter 5

Logistic Regression

In Chapter 4, we discussed how analysts can use linear 

regression to predict the value of a numeric variable based upon 

its relationship to one or more independent variables. Linear 

regression is a useful tool for these situations, but it isn’t well-

suited for every type of problem. In particular, linear regression 

does not work well when our problem requires that we predict 

a categorical variable. For example, we might want to predict 

whether a potential customer might fit into the categories of Big 

Spender, Repeat Customer, One-Time Customer, or Noncustomer. 

Similarly, we might want to predict whether a tumor detected in 

a medical imaging scan is benign or malignant. These problems, 

where we attempt to predict membership in a category, are known 

as classification problems.

In this chapter, we explore the first of several techniques that 

we will use to model classification problems: logistic regression. 
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While linear regression seeks to predict a numeric response, 

logistic regression seeks to predict the probability of a categorical 

response. As you will see in this chapter, we can then extend 

logistic regression to handle cases where there are more than two 

possible outcomes.

By the end of this chapter, you will have learned the following:

 ◆ The difference between regression and classification

 ◆ The underlying statistical principles and concepts behind 

logistic regression

 ◆ How logistic regression fits into the larger family of general-

ized linear models

 ◆ How to build a logistic regression model using R

 ◆ How to evaluate, interpret, improve upon, and apply the 

results of a logistic regression model

 ◆ The strengths and weaknesses of logistic regression models

PROSPECTING FOR POTENTIAL DONORS
As we explore logistic regression in this chapter, we will use a real-world example to 

support our study. Our dataset comes from a national veterans’ organization that fre-

quently solicits donations through direct mail campaigns to its database of current and 

prospective donors. The organization sent out a test mailing to a group of potential 

donors and gathered information on the response to that test mailing. This dataset was 

initially gathered for use in the Second International Knowledge Discovery and Data Min-

ing Tools Competition.

TIP The dataset that we will use is available to you as part of the electronic 
resources accompanying this book. (See the introduction for more 
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information on accessing the electronic resources.) It includes information 
on the characteristics of individuals and whether they responded to the test 
mailing or not.

Imagine that we were hired by the veterans’ organization to determine which donors 

would be most likely to respond to a future mailing based upon the results of the test 

mailing that they performed. Our goal is to use the test mailing data to build a model 

that allows the organization to predict which future potential donors should receive a 

test mailing. To accomplish this, we will split the data into two parts. The first part will be 

our training set. We will use the training set to develop our model. The second dataset 

will be our test set. We will use the test set to evaluate the performance of our model 

by comparing the predicted outcome of our model against the actual outcomes in the 

test data.

The dataset includes several demographic variables for our analysis, listed here:

 • age is the age, in years, of the donor.

 • numberChildren is the number of children in the donor’s household.

 • incomeRating is a relative measure of the donor’s annual income, on a scale of 

1–7 (7 is the highest), while wealthRating is a similar measure of the donor’s 

total wealth using a 1–9 scale.

 • mailOrderPurchases is a number of known purchases that the donor made 

through mail order sources.

 • state is the name of the U.S. state where the donor resides.

 • urbanicity is a categorical variable describing the region where the donor lives, 

with the following values:

 • rural

 • suburb

 • town

 • urban

 • city

 • socioEconomicStatus is a categorical variable describing the socioeconomic 

class of the donor, with the following values:

 • highest

 • average

 • lowest
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 • isHomeowner is TRUE when the donor is a homeowner. NA values in this field indi-

cate that it is unknown whether the donor is a homeowner. Of note, this field con-

tains no FALSE values.

 • gender is a categorical variable describing the gender of the donor, with the fol-

lowing values:

 • female

 • male

 • joint (the account belongs to two or more people)

In addition to this demographic information, we also have some variables about the 

donor’s past giving patterns. These include the following:

 • totalGivingAmount is the total dollar amount of gifts received from the donor 

over their entire giving history.

 • numberGifts is the number of gifts received from the donor over their entire 

giving history.

 • smallestGiftAmount is the dollar amount of the smallest gift ever received from 

the donor.

 • largestGiftAmount is the dollar amount of the largest gift ever received from 

the donor.

 • averageGiftAmount is the average gift size, in dollars, received from the donor.

 • yearsSinceFirstDonation is the number of years that have elapsed since the 

donor’s first gift to the organization.

 • monthsSinceLastDonation is the number of months that have elapsed since the 

donor’s most recent gift to the organization.

 • inHouseDonor is a logical value indicating whether the donor participated in the 

“in-house” fundraising program.

 • plannedGivingDonor is a logical value indicating whether the donor has 

designated the organization as the recipient of a gift from his or her estate.

 • sweepstakesDonor is a logical value indicating whether the donor participated in 

any of the organization’s fundraising sweepstakes.

 • P3Donor is a logical value indicating whether the donor participated in the “P3” 

fundraising program.

Finally, the dataset includes a variable called respondedMailing that indicates 

whether the prospective donor gave a gift in response to the test mailing or not.
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Given the problem and the data provided, these are some of the questions we need 

to answer:

 • How well can we predict whether a prospective donor will respond to our cam-

paign, given the information we have about them?

 • How do we interpret the effect of a change in any particular variable on the prob-

ability of a donor responding or not responding to our mailing?

By the end of this chapter, we will have answered each of these questions using logis-

tic regression and related techniques.

CLASSIFICATION
To solve the problem that we are presented with, we could attempt to the use the same 

approach that we used in Chapter 4 (linear regression) to predict the dependent vari-

able for this problem. However, there is a key difference between the problems we dealt 

with in Chapter 4 and this one. The outcome we are trying to predict for the test mail-

ing is an indicator of whether a potential donor will or will not respond to a mailing. The 

values of our dependent variable, respondedMailing, are either TRUE or FALSE. This 

is a categorical response. The response variable for the problems we dealt with in Chap-

ter 4 were all continuous values. Linear regression is good at dealing with those types 

of problems.

There are ways in which we could attempt to modify our current problem so that 

it seems more suitable for linear regression. One way is to encode the response as a 

numeric variable, such that 0 represents FALSE and 1 represents TRUE. This transforms 

our categorical response variable into a “somewhat continuous” response variable. With 

this approach, we could interpret predicted values below 0.5 as FALSE and values above 

0.5 as TRUE. There are some critical flaws with this approach. First, while this approach 

could work for our particular problem, it does not generalize well to other problems, 

especially ones with more than two response values. For example, imagine that we were 

trying to predict whether a vehicle should be painted blue, red, or green based upon 

other characteristics of the car. How would we assign numeric values to those colors? 

Which of the following six options should we choose?

Color Option 1 Option 2 Option 3 Option 4 Option 5 Option 6

Blue 0 2 0 1 1 2
Red 1 0 2 2 0 1
Green 2 1 1 0 2 0
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This is an arbitrary choice, and besides, it seems to suggest that the colors are 

ordered such that for option 1, Green is twice as valuable as Red, and both are more valu-

able than Blue. We could also choose a different scheme where Red could be –1, Blue 

could be 0, and Green could be 1. This approach also presents its own set of problems, 

including skewing our model coefficients depending on the values used.

Another challenge with using linear regression for this problem is that with a fitted 

straight line, we could feasibly have response values larger or smaller than our decision 

boundaries of 0 and 1. How would we interpret a response of 20 or a response of –50?

Because of the limitations of linear regression in generalizing to these scenarios, we 

prefer to use a different type of approach. Instead of regression, we use classification. 

Classification techniques are designed specifically to predict two or more values. We will 

introduce a variety of classification techniques in this book. The first, which we introduce 

in this chapter, extends the regression approach from the previous chapter so that it 

works well for categorical responses. This technique is known as logistic regression.

LOGISTIC REGRESSION
Instead of modeling our response variable directly, as in linear regression, logistic 

regression models the probability of a particular response value. Applying this idea to 

our stated problem, instead of predicting the value of respondedMailing, the logistic 

regression model would predict the probability that the value of respondedMailing is 

TRUE. Using monthsSinceLastDonation as our predictor, the model would be repre-

sented as follows:

 Pr respondedMailing monthsSinceLastDonationTRUE |  (5.1)

If we were to generalize the equation in terms of X and Y, assuming that TRUE is repre-

sented by 1 and FALSE by 0, then our model can be written as follows:

  Pr |Y X1  (5.2)

Restated, this is saying that we are predicting the probability of Y given X, or, in 

the case of the veterans’ organization data, we are trying to predict the probabil-

ity that someone responded to the mailing given the number of months since their 

last donation.
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Since this is a probability, we would expect the value to range between 0 and 1, and 

we would expect to interpret the value as the prediction of how likely it is that the 

response variable is true. For example, if the model in Equation 5.1 predicted a value of 

0.8, we would interpret that as meaning that there is an 80 percent likelihood that the 

person responded to the mailing, while a prediction of 0.3 indicates a 30 percent likeli-

hood of response.

In the previous chapter, we learned that regression analysis involves three key com-

ponents: the response, the predictor(s), and the coefficients. We also learned that the 

relationship between these three components is modeled using the function ,Y f X  . 

As we mentioned earlier, logistic regression is focused on modeling the probability of a 

response, which is described in Equation 5.2 as Pr Y X1| . This means that to model our 

response using a straight-line function like we did with linear regression, our function 

would be defined as follows:

 0 11|Pr Y X X  (5.3)

The fitted line based on this equation is shown in Figure 5.1(a). As we can see, the plot 

illustrates the limitations with this approach that we discussed earlier.

As the values for monthsSinceLastDonation approach 20, we begin to see negative 

values for our predicted probabilities. These are not reasonable values. How would we 
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Figure 5.1 Fitted line for probability of respondedMailing using a straight-line 
function (a) like in linear regression and a sigmoid function (b) in logistic regression



Practical Machine Learning in R172

interpret a –10 percent chance of something occurring? To overcome this challenge,  

we need to use a nonlinear function for our regression line. One such function is the 

logistic function.

 
p X Y X

e

e

X

X
Pr 1

1

0 1

0 1

|
 (5.4)

The output for the logistic function is always between 0 and 1 for all possible values 

of X. This is illustrated by the curved line in Figure 5.1(b). We see that the logistic 

function produces an s-shaped curve that approaches, but never goes beyond, 0 and 1. 

This kind of curve is known as a sigmoid curve. This sigmoid curve does a much better job 

of capturing the range of probabilities in our data than the straight-line curve based on 

the linear regression function.

Just like we did with linear regression in the previous chapter, our goal in fitting a 

logistic regression model is to identify the values for 0 and 1 that best approximate the 

relationship between X and Y. However, unlike with linear regression where we used the 

ordinary least squares method, logistic regression uses a different approach called maxi-

mum likelihood estimation. Maximum likelihood estimation (MLE) is a more sophisticated 

statistical method used to estimate the parameters of a model based on only a sampling 

of the data. The details of how this method works are beyond the scope of this text. For 

a more in-depth explanation of MLE, see the book Maximum Likelihood Estimation and 

Inference by Russel B. Millar.

We began this section with a discussion about how logistic regression differs from lin-

ear regression in terms of how it models the response. It is important to note that logis-

tic regression also differs from linear regression in terms of how we interpret the model. 

In simple linear regression, 
1
 is the expected value for Y when X = 0, and 1 is the average 

expected increase in Y for each unit increase in X. However, in logistic regression, 1 is  

the corresponding change in the log-odds of Pr Y X1|  as a result of a unit change in X .  

What does this mean? To understand this, let’s begin by discussing what an odds ratio is 

and what log-odds mean.

Odds Ratio
The odds or odds ratio of an event is the likelihood (or probability) that the event will 

occur expressed as a proportion of the likelihood that the event will not occur. For exam-

ple, if the probability of an event occurring is X , the probability of it not occurring is 1 X ; 

therefore, the odds of the event occurring is 
X

X1
. Odds ratios are commonly used in
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horse races, sports, epidemiology, gambling, and so forth. In sports, instead of stating 

the probability of winning, people will often talk about the odds of winning. How do 

these two metrics differ? Let’s assume that out of 10 basketball games between team A 

and team B, team A won 6 of them. We can then say that the probability of team A win-

ning the next game is 60 percent, or 0.6 (6/10); however, their odds of winning the next 

game are 0.6/0.4 = 1.5.

Applying the concept of odds to our logistic function p X , the odds of Pr Y X1|  are 

as follows:

 

p X

p X1  (5.5)

With the definition of p X  in Equation 5.4, we can define 1 p X  as follows:

 
1

1

1

1

0 1

0 1 0 1

e

e e

X

X X  (5.6)

Applying Equations 5.4 and 5.6 to our definition of the odds of Pr Y X1|  in  

Equation 5.5, we get the following:

 

p X

p X
e X

1

0 1

 (5.7)

Based on this equation, we can see that a unit increase in X  changes the odds of p X  

by a multiple of e 1. It is important to note that if 1, then e 1 1. This means that as X  

increases, the odds of p X  will decrease. Inversely, if 1, then e 1 1. This means that 

as X  increases, so will the odds of p X . By taking the logarithm of Equation 5.7, we get 

the log-odds of p X , which is also known as the logit.

 
log

p X

p X1
0 1

X

 (5.8)

As we can see, the logit (or logistic unit) is a linear combination of the predictors. 

Going back to the definition of the logistic function in Equation 5.4, we can think of 
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the logistic function as a mathematical function that converts the log-odds of p X  to 

a probability, which gives us the sigmoid curve we saw earlier. This explains why a unit 

increase in X changes the log-odds of p X  by 1.

Odds, Log-Odds, and Probability
To better understand the relationship between odds, log-odds, and probability, it is 
useful to visually illustrate how these values change in relation to each other. The first 
illustration shows the relationship between the log-odds and the odds of an event. 
We see that at negative values for log-odds, as the log-odds increases, the odds 
values increase slowly between the range of 0 and 1. However, as log-odds become 
positive, an increase in log-odds results in an exponential increase in odds.
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The next illustration shows the relationship between odds and probability. Here 
we see that the probability of an event increases as the odds of the event increase. 
However, the rate of increase for probability starts to slow down as the odds of an 
event exceeds 1.
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The final illustration shows the relationship between log-odds and probability. 
Since we know that the coefficients of a logistic regression model are log-odds, 
this illustration shows the relationship between the coefficient values of a logistic 
regression model and the probability of the outcome being modeled. Negative 
log-odds correspond to probability values of below 0.5, while positive log-odds 
correspond to probabilities above 0.5.
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Binomial Logistic Regression Model
Now that we have a theoretical idea of how logistic regression works, it’s time to put it 

into practice. Logistic regression comes in different forms depending on the nature of 

the response variable. The response variable for the donors dataset is binary, meaning 

that it has only two possible values. The type of logistic regression that is used to model 

such a dataset is known as binomial logistic regression. In this section, we illustrate how 

to train a binomial logistic regression model in R. The first thing we do is import our data 

using the read_csv() function from the tidyverse package, as shown here:

> library(tidyverse)
> donors <- read_csv("donors.csv", col_types = "nnffnnnnnnnnffffffffff")

Now that we have our data, let’s take some time to explore and prepare the 

data. The first thing we want to do is get a high-level view of our data using the 

glimpse() function.

> glimpse(donors)

 

Observations: 95,412

Variables: 22

$ age                     <dbl> 60, 46, NA, 70, 78, NA, 38, NA, NA, 65, NA, 75,...

$ numberChildren          <dbl> NA, 1, NA, NA, 1, NA, 1, NA, NA, NA, NA, NA, 2,...

$ incomeRating            <fct> NA, 6, 3, 1, 3, NA, 4, 2, 3, NA, 2, 1, 4, NA, 4...

$ wealthRating            <fct> NA, 9, 1, 4, 2, NA, 6, 9, 2, NA, 0, 5, 2, NA, 6...

$ mailOrderPurchases      <dbl> 0, 16, 2, 2, 60, 0, 0, 1, 0, 0, 0, 3, 16, 0, 17...

$ totalGivingAmount       <dbl> 240, 47, 202, 109, 254, 51, 107, 31, 199, 28, 2...

$ numberGifts             <dbl> 31, 3, 27, 16, 37, 4, 14, 5, 11, 3, 1, 2, 9, 12...

$ smallestGiftAmount      <dbl> 5, 10, 2, 2, 3, 10, 3, 5, 10, 3, 20, 10, 4, 5, ...

$ largestGiftAmount       <dbl> 12, 25, 16, 11, 15, 16, 12, 11, 22, 15, 20, 15,...

$ averageGiftAmount       <dbl> 7.741935, 15.666667, 7.481481, 6.812500, 6.8648...

$ yearsSinceFirstDonation <dbl> 8, 3, 7, 10, 11, 3, 10, 3, 9, 3, 1, 1, 8, 5, 4,...

$ monthsSinceLastDonation <dbl> 14, 14, 14, 14, 13, 20, 22, 18, 19, 22, 12, 14,...

$ inHouseDonor            <fct> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,...

$ plannedGivingDonor      <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...

$ sweepstakesDonor        <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...

$ P3Donor                 <fct> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,...

$ state                   <fct> IL, CA, NC, CA, FL, AL, IN, LA, IA, TN, KS, IN,...
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$ urbanicity              <fct> town, suburb, rural, rural, suburb, town, town,...

$ socioEconomicStatus     <fct> average, highest, average, average, average, av...

$ isHomeowner             <fct> NA, TRUE, NA, NA, TRUE, NA, TRUE, NA, NA, NA, N...

$ gender                  <fct> female, male, male, female, female, NA, female,...

$ respondedMailing        <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...

We can see that our dataset contains 95,412 observations and 22 variables (or fea-

tures). There are two types of features in the data: 12 categorical and 10 continuous. 

Let’s take a look at them by type, starting with the categorical features. The summary() 

function is a good place to start. It provides us with a statistical distribution of the values 

for each feature.

> donors %>%
   keep(is.factor) %>%
   summary()
 
  incomeRating    wealthRating   inHouseDonor  plannedGivingDonor
 5      :15451   9      : 7585   FALSE:88709   FALSE:95298       
 2      :13114   8      : 6793   TRUE : 6703   TRUE :  114       
 4      :12732   7      : 6198                                   
 1      : 9022   6      : 5825                                   
 3      : 8558   5      : 5280                                   
 (Other):15249   (Other):18999                                   
 NA's   :21286   NA's   :44732                                   
 sweepstakesDonor  P3Donor          state        urbanicity   
 FALSE:93795      FALSE:93395   CA     :17343   town  :19527  
 TRUE : 1617      TRUE : 2017   FL     : 8376   suburb:21924  
                                TX     : 7535   rural :19790  
                                IL     : 6420   urban :12166  
                                MI     : 5654   city  :19689  
                                NC     : 4160   NA's  : 2316  
                                (Other):45924                
 
 socioEconomicStatus isHomeowner     gender      respondedMailing
 average:48638       TRUE:52354   female:51277   FALSE:90569     
 highest:28498       NA's:43058   male  :39094   TRUE : 4843     
 lowest :15960                    joint :  365                   
 NA's   : 2316                    NA's  : 4676
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Here we used the keep() function from the tidyverse package to select only the 

categorical features (factor data type). Our results show that we have a number of fea-

tures with a significant amount of missing data, as represented by the count of NAs. 

We need to address this issue because logistic regression is not well-suited to handling 

missing values. Recall that in Chapter 4, we mentioned that regression is used to model 

the size and strength of numeric relationships. As one can imagine, we cannot model the 

size and strength of missing values.

Dealing with Missing Data
In Chapter 3, we discussed the concept of missing values as a common data qual-

ity problem. In that chapter, we also introduced several approaches to dealing with 

missing data, some of which we will use here. Let’s begin with the incomeRating 

feature. We can get a fractional frequency distribution for the values of this fea-

ture by first creating a table of frequencies using the table() function in R and then 

converting that table to proportions using the prop.table() function. Note that we 

must also use the exclude=NULL argument to the table() function to include NA 

values in our results.

> donors %>%
  select(incomeRating) %>%
  table(exclude=NULL) %>%
  prop.table()
 
         6          3          1          4          2          7          5       <NA> 
0.08152014 0.08969522 0.09455834 0.13344233 0.13744602 0.07830252 0.16193980 0.22309563 

We see from these results that 22.31 percent of the incomeRating data is missing. 

That is a significant number of observations. We should not get rid of that many obser-

vations from our dataset simply because of “missingness.” So, let’s assign a dummy value 

to represent the missing values. This compensates for the fact that logistic regression 

cannot handle NA values, so we replace them with a substitute value. Here we use UNK as 

the feature value:

> donors <- donors %>%
   mutate(incomeRating = as.character(incomeRating)) %>%
   mutate(incomeRating = as.factor(ifelse(is.na(incomeRating), 'UNK', 
incomeRating)))
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> donors %>%
  select(incomeRating) %>%
  table() %>%
  prop.table()
 
         1          2          3          4          5          6          7        UNK 
0.09455834 0.13744602 0.08969522 0.13344233 0.16193980 0.08152014 0.07830252 0.22309563 

This approach can also be applied to the other features with missing data.

> donors <- donors %>%
   mutate(wealthRating = as.character(wealthRating)) %>%
   mutate(wealthRating = as.factor(ifelse(is.na(wealthRating), 'UNK', 
wealthRating))) %>%
   mutate(urbanicity = as.character(urbanicity)) %>%
   mutate(urbanicity = as.factor(ifelse(is.na(urbanicity), 'UNK', 
urbanicity))) %>%
   mutate(socioEconomicStatus = as.character(socioEconomicStatus)) %>%
   mutate(socioEconomicStatus = as.factor(ifelse(is.
na(socioEconomicStatus), 'UNK', socioEconomicStatus))) %>%
   mutate(isHomeowner = as.character(isHomeowner)) %>%
   mutate(isHomeowner = as.factor(ifelse(is.na(isHomeowner), 'UNK', 
isHomeowner))) %>%
   mutate(gender = as.character(gender)) %>%
   mutate(gender = as.factor(ifelse(is.na(gender), 'UNK', gender)))
 
> donors %>%
   keep(is.factor) %>%
   summary()
 
  incomeRating    wealthRating   inHouseDonor  plannedGivingDonor
 UNK    :21286   UNK    :44732   FALSE:88709   FALSE:95298       
 5      :15451   9      : 7585   TRUE : 6703   TRUE :  114       
 2      :13114   8      : 6793                                   
 4      :12732   7      : 6198                                   
 1      : 9022   6      : 5825                                   
 3      : 8558   5      : 5280                                   
 (Other):15249   (Other):18999 
                                  
 sweepstakesDonor  P3Donor          state        urbanicity   
 FALSE:93795      FALSE:93395   CA     :17343   city  :19689  
 TRUE : 1617      TRUE : 2017   FL     : 8376   rural :19790  
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                                TX     : 7535   suburb:21924  
                                IL     : 6420   town  :19527  
                                MI     : 5654   UNK   : 2316  
                                NC     : 4160   urban :12166  
                                (Other):45924         
        
 socioEconomicStatus isHomeowner     gender      respondedMailing
 average:48638       TRUE:52354   female:51277   FALSE:90569     
 highest:28498       UNK :43058   joint :  365   TRUE : 4843     
 lowest :15960                    male  :39094                   
 UNK    : 2316                    UNK   : 4676

Now that we’ve resolved the missing values for our categorical data, let’s take a look 

at the continuous features. Just like we did for the categorical features, we start by 

looking at the summary statistics.

> donors %>%
   keep(is.numeric) %>%
   summary()
 
      age        numberChildren  mailOrderPurchases totalGivingAmount
 Min.   : 1.00   Min.   :1.00    Min.   :  0.000    Min.   :  13.0   
 1st Qu.:48.00   1st Qu.:1.00    1st Qu.:  0.000    1st Qu.:  40.0   
 Median :62.00   Median :1.00    Median :  0.000    Median :  78.0   
 Mean   :61.61   Mean   :1.53    Mean   :  3.321    Mean   : 104.5   
 3rd Qu.:75.00   3rd Qu.:2.00    3rd Qu.:  3.000    3rd Qu.: 131.0   
 Max.   :98.00   Max.   :7.00    Max.   :241.000    Max.   :9485.0   
 NA's   :23665   NA's   :83026        
                               
  numberGifts      smallestGiftAmount largestGiftAmount averageGiftAmount 
 Min.   :  1.000   Min.   :   0.000   Min.   :   5      Min.   :   1.286  
 1st Qu.:  3.000   1st Qu.:   3.000   1st Qu.:  14      1st Qu.:   8.385  
 Median :  7.000   Median :   5.000   Median :  17      Median :  11.636  
 Mean   :  9.602   Mean   :   7.934   Mean   :  20      Mean   :  13.348  
 3rd Qu.: 13.000   3rd Qu.:  10.000   3rd Qu.:  23      3rd Qu.:  15.478  
 Max.   :237.000   Max.   :1000.000   Max.   :5000      Max.   :1000.000  
                                                                          
 yearsSinceFirstDonation monthsSinceLastDonation
 Min.   : 0.000          Min.   : 0.00          
 1st Qu.: 2.000          1st Qu.:12.00          
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 Median : 5.000          Median :14.00          
 Mean   : 5.596          Mean   :14.36          
 3rd Qu.: 9.000          3rd Qu.:17.00          
 Max.   :13.000          Max.   :23.00

We see that both the age and numberChildren features are missing a significant 

number of values. For age, we’ll use mean imputation as our approach to resolve the 

missing values. However, instead of simply using the mean of all the age values in our 

data, we use the mean of the age values grouped by gender.

> donors <- donors %>%
   group_by(gender) %>%
   mutate(age = ifelse(is.na(age), mean(age, na.rm = TRUE), age)) %>%
   ungroup()
 
> donors %>%
  select(age) %>%
  summary()
 
      age       
 Min.   : 1.00  
 1st Qu.:52.00  
 Median :61.95  
 Mean   :61.67  
 3rd Qu.:71.00  
 Max.   :98.00

TIP When dealing with missing values, care should always be taken to  
not significantly alter the structural characteristics of the original data.  
A simple way to verify that our data maintains its overall structure through 
the imputation process is to evaluate the statistical summary of the data 
before and after the missing values are filled in. For example, here we used a 
mean imputation approach to deal with missing values for the age variable. 
Our validation approach involves looking at the statistical summary for 
that feature before and after the imputation process to make sure that the 
minimum, first quartile, median, mean, third quartile, and maximum values 
have not been significantly altered. Our results show that they have not.
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The second feature with missing values is numberChildren. Using the same mean 

imputation approach used for age would not be appropriate here. First, using the mean 

number of children by gender makes no logical sense. Second, if we simply used the 

mean of the nonmissing data, we would get 1.53, which is not a reasonable value for this 

feature. So, this time we will use median imputation instead.

> donors <- donors %>%
    mutate(numberChildren = ifelse(is.na(numberChildren), 
                                   median(numberChildren, na.rm = TRUE), 
                                   numberChildren))
 
> donors %>%
  select(numberChildren) %>%
  summary() 
 
numberChildren 
 Min.   :1.000  
 1st Qu.:1.000  
 Median :1.000  
 Mean   :1.069  
 3rd Qu.:1.000  
 Max.   :7.000

Now that we’ve resolved the missingness with both age and numberChildren, let’s 

evaluate our other features. From our summary statistics we see that maximum values 

for mailOrderPurchases, totalGivingAmount, numberGifts, smallestGiftAmount, 

largestGiftAmount, and averageGiftAmount are rather high compared to the mean 

and median. This is indicative of outliers in our data.

Dealing with Outliers
The histograms in Figure 5.2 show the distribution of the values for the six features that 

we identified as having outlier data. Each of the charts further illustrate the problem 

in a much more visible way than the summary statistics. We notice that the distribu-

tion of data on each chart is right skewed with most of the values clustered toward the 

lower range.

There are several approaches to dealing with outlier data. One approach is to use a 

simple rule of thumb based on the statistical properties of the data. The principle behind 

the rule is that any value that is larger or less than 1.5 times the interquartile range (IQR) 

is labeled as an outlier and should be removed from the data.
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Figure 5.2 Histogram showing the distribution of values for the mailOrder
Purchases, totalGivingAmount, numberGifts, smallestGiftAmount, largestGift 
Amount, and averageGiftAmount variables

Symmetric and Skewed Distributions
Data distributions can be described, in terms of their shape, as either symmetric, left 
skewed, or right skewed. A symmetric distribution is one where the data is evenly 
balanced on both sides of the mean (or center point). For symmetric distributions, the 
mean is approximately equal to the median.

(a) Symmetric (b) Left Skewed (c) Right Skewed

(Continued)
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Using this rule of thumb approach, we first get the outlier cutoff values (max1, max2, 

max3, max4, max5, and max6) for each of the values for the mailOrderPurchases, 

totalGiving Amount, numberGifts, smallestGiftAmount, largestGiftAmount, and 

averageGiftAmount variables. Next, we eliminate any values that fall above those 

thresholds for each of the variables.

> donors <- donors %>%
   mutate(max1 = quantile(mailOrderPurchases, .75) + (1.5 * 
IQR(mailOrderPurchases))) %>%
   mutate(max2 = quantile(totalGivingAmount, .75) + (1.5 * 
IQR(totalGivingAmount))) %>%
   mutate(max3 = quantile(numberGifts, .75) + (1.5 * IQR(numberGifts))) 
%>%
   mutate(max4 = quantile(smallestGiftAmount, .75) + (1.5 * 
IQR(smallestGiftAmount))) %>%

Interquartile Range
For readers not familiar with descriptive statistics, the interquartile range (IQR) of 
a set of values is the difference between the values for the first quartile (Q1) and 
the third quartile (Q3). Quartiles divide an ordered set of values into four equal 
parts. The first quartile is the middle number between the smallest number and 
the median. The first quartile is also known as the 25th percentile, because 25 
percent of the values in the dataset are below its value. The second quartile (Q2) 
or 50th percentile is the median. The third quartile or 75th percentile is the middle 
value between the median and the highest value. In R, we can use the quantile() 
function from the stats package to get the quartile values for a variable. For 
example, to get the third quartile (or 75th percentile) for the mailOrderPurchases 
variable, we use quantile(mailOrderPurchases, .75). The stats package also 
provides us with a function, aptly called IQR(), to calculate the interquartile range 
for a set of values.

A distribution where the tail is longer on the left side than on the right is known 
as a left skewed (or negative) distribution. For left skewed distributions, the mean 
is less than the median. Right skewed (or positive) distributions have the opposite 
characteristics of left skewed distributions. For right skewed distributions, the tail 
is longer on the right side than on the left and the mean is larger than the median. 
The illustration summarizes the three types of distributions.
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   mutate(max5 = quantile(largestGiftAmount, .75) + (1.5 * 
IQR(largestGiftAmount))) %>%
   mutate(max6 = quantile(averageGiftAmount, .75) + (1.5 * 
IQR(averageGiftAmount))) %>%
   filter(mailOrderPurchases <= max1) %>%
   filter(totalGivingAmount <= max2) %>%
   filter(numberGifts <= max3) %>%
   filter(smallestGiftAmount <= max4) %>%
   filter(largestGiftAmount <= max5) %>%
   filter(averageGiftAmount <= max6) %>%
   select(-max1,-max2,-max3,-max4,-max5,-max6)

Now that we’ve removed the outliers from our data, let’s see what our summary sta-

tistics look like. We should expect that as a result of removing the outliers, the range of 

values for each of our variables will be much smaller than it was prior to the process.

> donors %>%
   keep(is.numeric) %>%
   summary()
 
      age        numberChildren  mailOrderPurchases totalGivingAmount
 Min.   : 1.00   Min.   :1.000   Min.   :0.0000     Min.   : 14.00   
 1st Qu.:51.00   1st Qu.:1.000   1st Qu.:0.0000     1st Qu.: 38.00   
 Median :61.19   Median :1.000   Median :0.0000     Median : 70.00   
 Mean   :60.58   Mean   :1.071   Mean   :0.9502     Mean   : 82.79   
 3rd Qu.:69.00   3rd Qu.:1.000   3rd Qu.:1.0000     3rd Qu.:115.00   
 Max.   :98.00   Max.   :6.000   Max.   :7.0000     Max.   :267.00   
 
  numberGifts     smallestGiftAmount largestGiftAmount averageGiftAmount
 Min.   : 1.000   Min.   : 0.000     Min.   : 5.00     Min.   : 1.600   
 1st Qu.: 3.000   1st Qu.: 3.000     1st Qu.:13.00     1st Qu.: 8.231   
 Median : 7.000   Median : 5.000     Median :16.00     Median :11.000   
 Mean   : 8.463   Mean   : 6.918     Mean   :17.04     Mean   :11.661   
 3rd Qu.:12.000   3rd Qu.:10.000     3rd Qu.:20.00     3rd Qu.:15.000   
 Max.   :28.000   Max.   :20.000     Max.   :36.00     Max.   :26.111  
 
 yearsSinceFirstDonation monthsSinceLastDonation
 Min.   : 0.000          Min.   : 0.00          
 1st Qu.: 2.000          1st Qu.:12.00          
 Median : 5.000          Median :14.00          
 Mean   : 5.373          Mean   :14.46          
 3rd Qu.: 8.000          3rd Qu.:16.00          
 Max.   :12.000          Max.   :23.00
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Our results are as expected. For example, we see that the minimum and maximum 

values for the mailOrderPurchases feature have changed from 0 and 241, respec-

tively, to 0 and 7. That is a significant contraction in the range of values. Comparing Fig-

ures 5.2 and 5.3 provides us with a good illustration of the impact that outlier removal 

has on the distribution of values for our features. While we still do have some skew with 

a couple of the features, we no longer have the long tails that we observed prior to 

removing the outlier values.

So far, we have dealt with the missing values in our data using imputation methods 

and dummy variables. We have also dealt with the outlier values in our data by excluding 

them using a rule of thumb. We are almost ready to build our logistic regression model. 

Before we do so, we need to split our data and prepare the dependent variable, which in 

classification is known as the class. Our class is the respondedMailing feature.

TIP Please note that outliers can be legitimate data. In our example, we chose 
to remove them from our data. However, there are circumstances where we do 
want to keep outlier values because they provide us with insight into particular 
phenomena. For example, let’s assume that we are working with emigration 
rates across countries or regions by year. Sometimes, we could observe a higher 
than normal rate of emigration out of a certain country for a defined period. 
This outlier data could be as a result of a military conflict within the region 
during that period. Depending on our goal, we may want to keep this data.

averageGiftAmount

6000

4000

2000

0
0 10 20

6000

4000

2000

0
0 10 20

6000

4000

2000

0
0 100 200

mailOrderPurchases

40000

30000

20000

10000

0
0 2 4 6

largestGiftAmount

15000

10000

5000

0
10 20 30

numberGifts

0 5 10 15 20

totalGivingAmountsmallestGiftAmount

20000

10000

0

co
un

t

Figure 5.3 Histogram showing the distribution of values for the mailOrderPurchases, 
totalGivingAmount, numberGifts, smallestGiftAmount, largestGiftAmount, and 
averageGiftAmount variables after the outlier values have been removed
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Splitting the Data
Using the sample() base R function that we introduced in Chapter 3, we partition our 

data into training and test datasets using a 75 percent to 25 percent split. We call the 

new datasets donors _ train and donors _ test, respectively.

> set.seed(1234)
> sample_set <- sample(nrow(donors), round(nrow(donors)*.75), replace = 
FALSE)
> donors_train <- donors[sample_set, ]
> donors_test <- donors[-sample_set, ]

When sampling data for the modeling process, it is important that the class distribu-

tion of the samples mimic the class distribution of the original dataset. This is because, 

as discussed in Chapter 3, a good sample should serve as a proxy for the original data so 

that a model created from a sample will have similar predictive performance as a model 

created from the entire dataset. In our case, this means that we want the donors _

train and donors _ test datasets to have the same or similar class distribution as the 

donors dataset. Let’s see how the class distributions compare:

> round(prop.table(table(select(donors, respondedMailing), exclude = 
NULL)), 4) * 100
 
FALSE  TRUE 
94.98  5.02 
 
> round(prop.table(table(select(donors_train, respondedMailing), 
exclude = NULL)), 4) * 100
 
FALSE  TRUE 
94.98  5.02 
 
> round(prop.table(table(select(donors_test, respondedMailing), exclude 
= NULL)), 4) * 100
 
FALSE  TRUE 
94.97  5.03  

The results show that we do have similar class distributions across all three sets. With 

a class distribution of 94.98 percent to 5.02 percent, the results also show that we have a 

class imbalance problem.
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Dealing with Class Imbalance
As we discussed in Chapter 3, class imbalance is a common problem when working with 

real-world data. It degrades the performance of a machine learning model because it 

biases the model toward the majority class at the expense of the minority class. Before 

we build a model, we need to address this problem. There are several approaches to solv-

ing class imbalance problems; one of them is by using a synthetic minority oversampling 

technique (SMOTE). This technique works by creating new synthetic samples from the 

minority class to resolve the imbalance.

Earlier, we mentioned that when sampling data for the modeling process, the class 

distributions of the subsets should always mirror those of the original dataset. There is 

one notable exception to this rule and that is with regard to the training data for imbal-

anced datasets. When dealing with imbalanced data, we need to balance the training 

set prior to the modeling process. Note that this applies only to the training set. The 

test data should mirror the class distribution of the original data because a model’s 

performance against the test data is a proxy for its generalizability against unseen data. 

In R, the DMwR package provides us with a function called SMOTE(), which we can use to 

balance our training data. The SMOTE() function accepts arguments that describe the 

formula for the prediction problem, the data frame containing the original imbalanced 

data, a specification of how many extra cases from the minority class are to be gener-

ated (perc.over), and a specification for how many extra cases from the majority class 

should be selected for each case generated from the minority class (perc.under). The 

output of the function is a data frame of the balanced data.

> library(DMwR)
> set.seed(1234)
> donors_train <- SMOTE(respondedMailing ~ ., data.frame(donors_train), 
perc.over = 100, perc.under = 200)

In our code, we specified the prediction problem for SMOTE() as follows:

respondedMailing ˜ .

This means, that the values for the respondedMailing variable should be predicted (˜) 

using all the other variables (.) in the training set.

We set the value for perc.over to 100. This means that we want 100 percent addi-

tional cases from the minority class to be generated. In other words, we want to double 

the number of instances for the minority class. For example, if we had 20 instances for 

the minority class, a setting of 100 for perc.over tells SMOTE() to generate 20 addi-

tional synthetic instances of the minority class for a total of 40. The setting of 200 for 

perc.under tells SMOTE to select twice the number (or 200 percent) of instances from 
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the majority class as were generated for the minority class. Applying this to our previous 

example where we generated 20 additional synthetic instances of the minority class, a 

setting of 200 for perc.under tells SMOTE to select 40 instances from the majority class. 

This means that our resulting dataset will have 40 instances each, for the majority and 

minority classes (a 50-50 balance).

Now that we understand how SMOTE works and have used it to balance our training 

data, let’s take a look at the new class distributions:

> round(prop.table(table(select(donors, respondedMailing), exclude = 
NULL)), 4) * 100
 
FALSE  TRUE 
94.98  5.02 
 
> round(prop.table(table(select(donors_train, respondedMailing), 
exclude = NULL)), 4) * 100
 
FALSE  TRUE 
   50    50 
 
> round(prop.table(table(select(donors_test, respondedMailing), exclude 
= NULL)), 4) * 100
 
FALSE  TRUE 
94.97  5.03

As we can see, the training data is now balanced at 50 percent, while the original data 

and the test data remain imbalanced. The last thing we do before we build our model 

is transform the values for our class from FALSE/TRUE to 0/1. This is not a required 

step, but we do this for illustrative purposes and to be consistent with the examples we 

shared at the beginning of the chapter.

> donors <- donors %>%
   mutate(respondedMailing = as.factor(ifelse(respondedMailing==TRUE, 
1, 0)))
> donors_train <- donors_train %>%
   mutate(respondedMailing = as.factor(ifelse(respondedMailing==TRUE, 
1, 0)))
> donors_test <- donors_test %>%
   mutate(respondedMailing = as.factor(ifelse(respondedMailing==TRUE, 
1, 0)))

We are now ready to build our model.
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Training a Model
One of the most popular functions used in R to build a binomial logistic regression model 

is the glm() function from the stats package. The name of the function, glm, stands for 

generalized liner model (GLM). The GLM is a statistical technique that was developed as 

an approach to unify various regression techniques into a single framework. It accom-

plishes this by using what is known as a transformation function (or link function) to rep-

resent the relationship between the predictor variables and the response variable for a 

regression problem. There are three core components to the GLM.

 • The random component. This represents the response or a function that describes 

the distribution of the values of the response.

 • The systematic component. This is the linear combination of predictors ,f X .

 • The link function. This specifies the relationship between the random and system-

atic components.

The type of link function used in a GLM is dependent on the type of data we are 

working with and the intended regression approach. For logistic regression, the link 

function is the logit function, which we specified in Equation 5.8.

To train a binomial logistic regression model using the glm() function, we pass three 

main arguments to it. The first argument (data) is the training data (donors _ train). 

The second argument (family) is the type of regression model we intend to build. We 

set it to binomial. This tells the glm() function that we intend to build a binomial 

logistic regression model using the logit link function. Instead of setting family = 

binomial, we could also write family = binomial(link = “logit”). The last argu-

ment we pass to the function is the formula for the prediction problem. This is where 

we specify which features (predictors) to use to predict the class (response). For our 

model, we specify that the function should use all the features in our training set (.) to 

build a model that predicts respondedMailing.

> donors_mod1 <- glm(data=donors_train, family=binomial, 
formula=respondedMailing ~ .)

Evaluating the Model
Now that we have trained a model called donors _ mod1, we can get a detailed descrip-

tion of the model by using the summary() function.

> summary(donors_mod1)
 
Call:
glm(formula = respondedMailing ˜ ., family = binomial, data = donors_
train)
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Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.1854  -1.0440   0.1719   1.0673   2.1874  
 
Coefficients:
                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                -4.415e-01  2.895e-01  -1.525 0.127217    
age                        -6.841e-05  1.745e-03  -0.039 0.968734    
numberChildren              8.398e-02  6.602e-02   1.272 0.203367    
incomeRating2               2.807e-01  9.649e-02   2.910 0.003619 ** 
incomeRating3               4.691e-02  1.103e-01   0.425 0.670707    
incomeRating4              -7.950e-03  1.035e-01  -0.077 0.938790    
incomeRating5               4.135e-02  1.008e-01   0.410 0.681625    
incomeRating6               5.827e-01  1.119e-01   5.210 1.89e-07 ***
incomeRating7               4.823e-01  1.130e-01   4.266 1.99e-05 ***
incomeRatingUNK             6.594e-01  9.369e-02   7.038 1.95e-12 ***
wealthRating1              -2.423e-02  2.058e-01  -0.118 0.906289    
wealthRating2              -1.457e-01  2.000e-01  -0.728 0.466425    
wealthRating3              -3.470e-02  1.952e-01  -0.178 0.858911    
wealthRating4              -2.960e-01  1.959e-01  -1.511 0.130768    
wealthRating5              -1.173e-01  1.930e-01  -0.608 0.543105    
wealthRating6               4.109e-01  1.833e-01   2.242 0.024985 *  
wealthRating7              -3.035e-01  1.897e-01  -1.600 0.109660    
wealthRating8               4.188e-01  1.854e-01   2.259 0.023894 *  
wealthRating9              -4.916e-01  1.913e-01  -2.570 0.010174 *  
wealthRatingUNK             7.296e-03  1.686e-01   0.043 0.965482    
mailOrderPurchases          6.808e-02  1.516e-02   4.489 7.14e-06 ***
totalGivingAmount          -2.463e-03  1.106e-03  -2.226 0.026012 *  
numberGifts                 3.731e-02  1.065e-02   3.502 0.000461 ***
smallestGiftAmount          6.562e-02  1.084e-02   6.053 1.42e-09 ***
largestGiftAmount          -5.563e-02  8.441e-03  -6.591 4.37e-11 ***
averageGiftAmount           3.700e-02  1.827e-02   2.025 0.042877 *  
yearsSinceFirstDonation     2.370e-02  1.159e-02   2.044 0.040943 *  
monthsSinceLastDonation    -3.948e-02  6.625e-03  -5.959 2.54e-09 ***
inHouseDonorTRUE            6.275e-03  1.026e-01   0.061 0.951218    
plannedGivingDonorTRUE     -1.305e+01  3.662e+02  -0.036 0.971561    
sweepstakesDonorTRUE       -3.769e-01  1.911e-01  -1.972 0.048577 *  
P3DonorTRUE                 2.011e-01  1.614e-01   1.246 0.212775    
stateCA                     3.172e-01  1.014e-01   3.129 0.001756 ** 
stateNC                     1.388e+00  1.183e-01  11.730  < 2e-16 ***
stateFL                     6.077e-01  1.081e-01   5.621 1.90e-08 ***
stateAL                     5.251e-01  1.895e-01   2.771 0.005584 ** 
stateIN                    -1.462e-01  1.542e-01  -0.948 0.343103    
stateLA                     1.587e+00  1.565e-01  10.136  < 2e-16 ***
stateIA                    -2.341e-02  2.121e-01  -0.110 0.912098    
stateTN                    -1.975e-01  1.740e-01  -1.135 0.256406    
stateKS                    -4.546e-02  2.211e-01  -0.206 0.837062    
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stateMN                    -3.296e-02  1.771e-01  -0.186 0.852364    
stateUT                    -2.280e-01  3.136e-01  -0.727 0.467252    
stateMI                     7.231e-01  1.176e-01   6.150 7.74e-10 ***
stateMO                    -7.663e-02  1.532e-01  -0.500 0.616895    
stateTX                    -8.052e-02  1.192e-01  -0.676 0.499201    
stateOR                     5.361e-01  1.618e-01   3.314 0.000921 ***
stateWA                     2.610e-01  1.431e-01   1.824 0.068144 .  
stateWI                     1.611e-01  1.546e-01   1.042 0.297486    
stateGA                    -3.281e-01  1.599e-01  -2.051 0.040221 *  
stateOK                    -1.796e-01  2.034e-01  -0.883 0.377138    
stateSC                     1.558e-01  1.722e-01   0.905 0.365617    
stateKY                     4.066e-02  1.860e-01   0.219 0.826980    
stateMD                     1.763e-01  1.100e+00   0.160 0.872700    
stateSD                     4.611e-01  3.284e-01   1.404 0.160321    
stateNV                     3.844e-01  2.175e-01   1.767 0.077217 .  
stateNE                    -9.417e-02  2.755e-01  -0.342 0.732530    
stateAZ                     2.300e-01  1.615e-01   1.424 0.154529    
stateVA                     1.176e+00  1.241e+00   0.948 0.343187    
stateND                    -3.089e-01  3.843e-01  -0.804 0.421530    
stateAK                    -1.219e+00  6.517e-01  -1.870 0.061463 .  
stateAR                    -2.679e-02  2.378e-01  -0.113 0.910305    
stateNM                     4.644e-01  2.424e-01   1.916 0.055418 .  
stateMT                     5.390e-01  3.088e-01   1.746 0.080840 .  
stateMS                    -1.186e-01  2.340e-01  -0.507 0.612210    
stateAP                     1.062e+00  7.362e-01   1.442 0.149170    
stateCO                    -3.632e-02  1.735e-01  -0.209 0.834184    
stateAA                     1.496e+00  1.254e+00   1.194 0.232564    
stateHI                     3.511e-01  3.141e-01   1.118 0.263672    
stateME                    -1.272e+01  3.721e+02  -0.034 0.972739    
stateWY                     2.598e-01  3.890e-01   0.668 0.504233    
stateID                     2.412e-01  3.304e-01   0.730 0.465377    
stateOH                    -1.348e+01  2.623e+02  -0.051 0.959024    
stateNJ                    -4.414e-01  1.279e+00  -0.345 0.729964    
stateMA                    -1.319e+01  3.674e+02  -0.036 0.971362    
stateNY                    -1.477e+00  1.077e+00  -1.372 0.170170    
statePA                    -1.367e+01  3.454e+02  -0.040 0.968433    
stateDC                    -1.383e+01  5.354e+02  -0.026 0.979399    
stateAE                    -1.315e+01  5.354e+02  -0.025 0.980411    
stateCT                     7.484e-01  1.519e+00   0.493 0.622229    
stateDE                    -1.257e+01  3.786e+02  -0.033 0.973518    
stateRI                    -1.321e+01  5.354e+02  -0.025 0.980309    
stateGU                     7.761e-01  1.257e+00   0.617 0.536983    
urbanicityrural            -2.506e-03  6.920e-02  -0.036 0.971114    
urbanicitysuburb           -2.326e-02  6.641e-02  -0.350 0.726183    
urbanicitytown              1.832e-01  6.665e-02   2.748 0.005987 ** 
urbanicityUNK               9.796e-02  3.888e-01   0.252 0.801098    
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urbanicityurban            -2.497e-01  8.127e-02  -3.072 0.002125 ** 
socioEconomicStatushighest  8.669e-02  5.525e-02   1.569 0.116666    
socioEconomicStatuslowest  -4.529e-01  6.714e-02  -6.745 1.53e-11 ***
socioEconomicStatusUNK     -2.216e-01  3.887e-01  -0.570 0.568649    
isHomeownerUNK             -2.025e-01  5.447e-02  -3.717 0.000202 ***
genderjoint                 3.649e-01  3.258e-01   1.120 0.262668    
gendermale                  1.505e-01  4.427e-02   3.399 0.000675 ***
genderUNK                  -2.645e-01  1.017e-01  -2.601 0.009304 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
(Dispersion parameter for binomial family taken to be 1)
 
    Null deviance: 14623  on 10547  degrees of freedom
Residual deviance: 13112  on 10453  degrees of freedom
AIC: 13302
 
Number of Fisher Scoring iterations: 12

In this output, the first thing we see is the call. This is R reminding us about what 

model we ran and what arguments we passed to it. The next thing the output shows 

is the distribution of deviance residuals. For logistic regression, these metrics are not 

important. If we had used the glm() function for linear regression, then we would 

expect these residuals to be normally distributed. We evaluate this from the deviance 

residuals by comparing the difference in the absolute values for 1Q and 3Q. The closer 

those numbers are to each other, the more normally distributed the residuals.

Coefficients
The next part of the output are the model coefficients. These are similar to what we saw 

with linear regression in Chapter 4. This section lists the predictors (including the inter-

cept) used in the model, the estimated coefficient for each predictor, the standard error, 

z-value, p-value, and the significance of each predictor.

In linear regression, we interpreted the model coefficients as the average change in 

the value of the response as a result of a unit change in a particular predictor. However, 

in logistic regression, we interpret the model coefficients as the change in the log-odds 

of the response as a result of a unit change in the predictor variable (see Equation 5.8). 

For example, a value of 0.0369957 for the coefficient of averageGiftAmount means 

that, for every unit increase in the value of averageGiftAmount, the log-odds of 

respondedMailing being TRUE changes by 0.0369957. This interpretation may be a bit 

confusing and unnatural, so we can interpret it a different way by explaining the change 

in odds rather than log-odds. To do so, we need to exponentiate the coefficients by using 
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the exp() and coef() functions. To convert the coefficient for the averageGiftAmount 

variable, we do the following:

> exp(coef(donors_mod1)["averageGiftAmount"])
 
averageGiftAmount 
         1.037689 

Now, we can interpret the coefficient as saying that, assuming all other predictors 

are held constant, for a one unit increase in averageGiftAmount, the odds of a donor 

responding to the campaign increases by a factor of 1.037689. Note that the coefficient 

for averageGiftAmount is positive. This resulted in an odds ratio that is above 1, which 

represents an increase in the odds of the event. However, if we were to interpret the 

negative coefficient for a variable such as monthsSinceLastDonation, we get the 

following:

> exp(coef(donors_mod1)["monthsSinceLastDonation"])
 
monthsSinceLastDonation 
               0.961289

We can interpret this value to mean that, assuming all other predictors are held 

constant, the odds that a donor will respond to the campaign decreases by a factor of 

0.961289 for each additional month since their last donation (monthsSinceLastDona

tion). Here we see that a coefficient with a negative value results in a decrease in the 

odds of the event. Note that the two examples we looked at, averageGiftAmount and 

monthsSinceLastDonation, are both continuous features. When interpreting the 

coefficients of categorical features, we do so in reference to the baseline. For example, 

for the incomeRating variable, our model lists six dummy variables for incomeRating 

levels 2 to 7. This means that incomeRating level 1 is the baseline (or reference) for this 

variable. To interpret the coefficient for incomeRating level 2 (incomeRating2), we 

use the same process of exponentiation that we used previously to get the odds.

> exp(coef(donors_mod1)["incomeRating2"])
 
incomeRating2 
     1.324102

This time around, we interpret the result as the increased odds (1.324102) that a 

donor with an income rating of 2 will respond to the campaign relative to a donor with an 
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income rating of 1 (baseline), holding all other factors constant. In other words, donors 

with an income rating of 2 are more likely to respond to the campaign than donors with 

an income rating of 1.

Diagnostics
The rest of the model output includes some additional diagnostics about the model. 

The first part states that “Dispersion parameter for binomial family taken to be 1.” This 

means that an additional scaling parameter was added to help fit the model. This is not 

important information for interpreting the model and can be ignored.

Null and Residual Deviance
The null deviance indicates how well the model did in predicting the response using 

only the intercept. The smaller this number is, the better. The residual deviance quan-

tifies how well the model did in predicting the response using not only the intercept but 

the included predictors as well. The difference between the null and residual deviance 

values indicates how much the model’s performance was enhanced by the inclusion of 

the predictors. The larger the difference between the null and residual deviance values, 

the better.

AIC
The AIC is the Akaike Information Criterion. It is a quantification of how well our model 

does in explaining the variability in our data. AIC is often used when comparing two 

models built from the same data with each other. When comparing two models, the 

model with the lower AIC is preferred.

The last diagnostic, “Number of Fisher Scoring iterations,” is just an indication of how 

long the model took to fit. This is not important for interpreting the model and can be 

safely ignored most of the time.

Predictive Accuracy
So far, we’ve built a logistic regression model using our training data. We evaluated 

and interpreted the model’s outputs, including the coefficients and diagnostics. The 

next thing we need to do is assess the performance of the model in actually  predicting 

the response for out-of-sample observations. This involves using our model to  predict 

respondedMailing in the test data (donors _ test). To do this, we will use the 

 predict() function from the stats package. This function takes three arguments. 
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The first argument is the model we created (donors _ mod1 ). The second argument is the 

test data (donors _ test). The third argument is the type of prediction required (type = 

'response').

> donors_pred1 <- predict(donors_mod1, donors_test, type = 'response')
 
Error in model.frame.default(Terms, newdata, na.action = na.action, 
xlev = object$xlevels) : 
  factor state has new levels VT, WV, NH, VI

We get an error. No need for alarm. The error is simply letting us know that there 

are four levels (or values) in our test data that are not present in our training data. 

Recall that we used a random sampling approach to create our training and test data-

sets. This approach, as the name implies, is completely at random and does not guar-

antee that we have equal representation of feature values in both datasets. In this 

example, our training sample did not include records from Vermont, West Virginia, 

New Hampshire, or the Virgin Islands, but those regions were included in our test set. 

Because the training set did not include these values, our model cannot make a predic-

tion for test records that do include those values. A simple solution to this problem is 

to remove these observations from our test data. First, let’s identify the observations 

in question:

> filter(donors_test, state=="VT" | state=="WV" | state=="NH" | 
state=="VI")
 
# A tibble: 7 x 22
    age numberChildren incomeRating wealthRating mailOrderPurcha... totalGivingAmou...
  <dbl>       <dbl> <fct>     <fct>               <dbl>           <dbl>
1  48             1 4         UNK                     0             193
2  68             1 4         2                       0              73
3  30             1 4         7                       4              43
4  62.0           1 UNK       UNK                     0              35
5  34             1 7         7                       1              15
6  62.0           1 UNK       UNK                     0              22
7  73             1 1         2                       4             105
# ... with 16 more variables: numberGifts <dbl>, smallestGiftAmount <dbl>,
#   largestGiftAmount <dbl>, averageGiftAmount <dbl>, yearsSinceFirstDonation <dbl>,
#   monthsSinceLastDonation <dbl>, inHouseDonor <fct>, plannedGivingDonor <fct>,
#   sweepstakesDonor <fct>, P3Donor <fct>, state <fct>, urbanicity <fct>,
#   socioEconomicStatus <fct>, isHomeowner <fct>, gender <fct>, respondedMailing <fct> 
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There are seven affected records. That is not a significant number, considering that 

we have 17,502 observations in our test set. Let’s get rid of them:

> donors_test <- donors_test %>%
   filter(state!="VT" & state!="WV" & state!="NH" & state!="VI")

Now, we can redo our predictions and take a look at the first six results using the 

head() function.

> donors_pred1 <- predict(donors_mod1, donors_test, type = 'response')
> head(donors_pred1)
 
        1         2         3         4         5         6 
0.3820397 0.2585851 0.4847741 0.6231658 0.4854076 0.5445497

The results show the probability that respondedMailing is equal to 1 (or TRUE) for 

each of the observations. In our output, for example, the results show that donor 1 in 

our data has a 38.2 percent probability of responding to the campaign, while donor 4 has 

a 62.3 percent probability of responding.

Recall that when we first introduced classification, we briefly mentioned that when 

predicting the probability of a binary event, we could interpret any response predictions 

less than 0.5 as FALSE and responses greater than or equal to 0.5 as TRUE. Let’s use that 

approach here to convert our results into 1 and 0 or TRUE and FALSE.

> donors_pred1 <- ifelse(donors_pred1 >= 0.5, 1, 0)
> head(donors_pred1)
 
1 2 3 4 5 6 
0 0 0 1 0 1

Now we can easily interpret the first six predictions as FALSE, FALSE, FALSE, TRUE, 

FALSE, and TRUE. To assess how well our model actually performed, let’s compare our 

model’s predicted values for respondedMailing with the actual values in the test data-

set. To do this, we create a confusion matrix, which shows the interaction between the 

predicted and actual values. Using the base R table() function, we can create a simple 

confusion matrix. The first argument we pass to it is a vector of the actual values for 

respondedMailing. The second argument we pass to it is a vector of our model’s pre-

dictions for respondedMailing.
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> donors_pred1_table <- table(donors_test$respondedMailing, donors_
pred1)
> donors_pred1_table
 
   donors_pred1
        0     1
  0 11041  5574
  1   561   319

Each row of the confusion matrix represents the instances in a predicted class, while 

each column represents the instances in an actual class. For example, the first row tells 

us that our model correctly predicted 0 for 11,041 observations and incorrectly predicted 

1 for 5,574 observations. The second row tells us that our model incorrectly predicted 0 

for 561 observations and correctly predicted 1 for 319 observations. The diagonal cells 

of the matrix represent correct predictions; therefore, to get the accuracy of our model 

based on the confusion matrix, we need to sum the diagonals and divide that by the 

number of rows in our test data.

> sum(diag(donors_pred1_table)) / nrow(donors_test)
[1] 0.6493284

This tells us that our model has a prediction accuracy of 64.93 percent. This is not bad 

for our first attempt, but let’s see if we can improve our model’s accuracy.

Improving the Model
In the previous section, we successfully built our first logistic regression model. In this 

section, we’ll look at some of the steps we can take to improve upon the performance of 

our model.

Dealing with Multicollinearity
Similar to linear regression, multicollinearity in logistic regression models also makes 

it rather difficult to separate the impact of individual predictors on the response. To 

identify the presence of multicollinearity, we first use a correlation plot. To create a cor-

relation matrix, we use the cor() function from the stats package and the  corrplot() 

function from the corrplot package.
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> library(stats)
> library(corrplot)
> donors %>%
   keep(is.numeric) %>%
   cor() %>%
   corrplot()

The results in Figure 5.4 show that we have a few features that are highly correlated. 

We see high positive correlation between totalGivingAmount, numberGifts, and 

yearsSinceFirstDonation. We also see high positive correlation between average

GiftAmount, smallestGiftAmount, and largestGiftAmount. We do see some neg-

ative correlation effects as well. We see negative correlation between numberGifts, 

smallestGiftAmount, and averageGiftAmount. We see the same between smallest 

GiftAmount and yearsSinceFirstDonation. Before we decide on what to do with 

these correlated variables, let’s get some additional data to support our decisions.
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Figure 5.4 Correlation matrix of the numeric features in the donors dataset
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The second approach to identifying multicollinearity in our data is with the use of 

the variance inflation factor (VIF). We use the vif() function from the car package 

to do this.

> library(car)
> vif(donors_mod1)
 
                             GVIF Df GVIF^(1/(2*Df))
age                      1.237917  1        1.112617
numberChildren           1.127750  1        1.061956
incomeRating             2.931339  7        1.079846
wealthRating             3.006647 10        1.056584
mailOrderPurchases       1.536639  1        1.239612
totalGivingAmount        7.466313  1        2.732455
numberGifts              9.479584  1        3.078893
smallestGiftAmount       7.134443  1        2.671038
largestGiftAmount        5.075573  1        2.252903
averageGiftAmount       16.588358  1        4.072881
yearsSinceFirstDonation  3.041608  1        1.744021
monthsSinceLastDonation  1.276265  1        1.129719
inHouseDonor             1.174562  1        1.083772
plannedGivingDonor       1.000000  1        1.000000
sweepstakesDonor         1.059773  1        1.029453
P3Donor                  1.077622  1        1.038086
state                    1.970199 51        1.006671
urbanicity              12.038126  5        1.282496
socioEconomicStatus     12.158669  3        1.516402
isHomeowner              1.689908  1        1.299965
gender                   1.123782  3        1.019640

As we discussed in Chapter 4, a VIF of greater than 5 indicates the presence of multi-

collinearity and requires remediation. Our results show that we have eight features that 

fit this criterion.

Previously we saw that totalGivingAmount, numberGifts, and yearsSinceFirst

Donation are correlated. However, based on the VIF, of the three, only totalGiving

Amount and numberGifts have a VIF of more than 5. As a result, we decide to exclude 

totalGivingAmount but keep numberGifts and yearsSinceFirstDonation. Why did 

we choose to keep numberGifts and not totalGivingAmount? There really is no simple 

rule of thumb to this process. We made our choice based on which predictor we think 

will do a better job in explaining the response. Besides, based on our correlation matrix, 

we saw that numberGifts correlated to more variables than totalGiving Amount, 
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which means it approximates the relationship of a larger number of predictors with the 

response. Based on our VIF results, we also see that smallestGiftAmount, largest 

GiftAmount, and averageGiftAmount are collinear. We choose the average

GiftAmount and exclude the other two. Finally, we see that both urbanicity and 

socioEconomicStatus have a VIF of more than 5. Since these are categorical variables 

and will be converted to dummy variables in our model, we ignore them.

Using only the significant features from our previous model and excluding the collin-

ear features we recently identified, let’s build a new model.

> donors_mod2 <-
   glm(
     data = donors_train,
     family = binomial,
     formula = respondedMailing ~ incomeRating + wealthRating + 
       mailOrderPurchases + numberGifts + yearsSinceFirstDonation + 
       monthsSinceLastDonation + sweepstakesDonor + state + 
       urbanicity + socioEconomicStatus + isHomeowner + gender
   )
> summary(donors_mod2)
 
Call:
glm(formula = respondedMailing ˜ incomeRating + wealthRating + 
    mailOrderPurchases + numberGifts + yearsSinceFirstDonation + 
    monthsSinceLastDonation + sweepstakesDonor + state + urbanicity + 
    socioEconomicStatus + isHomeowner + gender, family = binomial, 
    data = donors_train)
 
Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-2.180  -1.068   0.207   1.109   2.053  
 
Coefficients:
                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                 -0.059651   0.221236  -0.270 0.787449    
incomeRating2                0.298602   0.094885   3.147 0.001650 ** 
incomeRating3                0.057756   0.108374   0.533 0.594081    
incomeRating4               -0.001480   0.100721  -0.015 0.988277    
incomeRating5                0.028832   0.098178   0.294 0.769013    
incomeRating6                0.537860   0.109044   4.933 8.12e-07 ***
incomeRating7                0.539210   0.109293   4.934 8.07e-07 ***
incomeRatingUNK              0.709662   0.091740   7.736 1.03e-14 ***
wealthRating1                0.049826   0.202726   0.246 0.805854    
wealthRating2               -0.128221   0.196844  -0.651 0.514798    
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wealthRating3               -0.010190   0.192452  -0.053 0.957773    
wealthRating4               -0.275018   0.193306  -1.423 0.154820    
wealthRating5               -0.118734   0.190527  -0.623 0.533160    
wealthRating6                0.352507   0.181000   1.948 0.051469 .  
wealthRating7               -0.309143   0.187046  -1.653 0.098379 .  
wealthRating8                0.517877   0.182666   2.835 0.004581 ** 
wealthRating9               -0.473027   0.188448  -2.510 0.012069 *  
wealthRatingUNK             -0.025601   0.166307  -0.154 0.877658    
mailOrderPurchases           0.048256   0.014914   3.236 0.001213 ** 
numberGifts                  0.015152   0.005638   2.687 0.007200 ** 
yearsSinceFirstDonation     -0.039424   0.010625  -3.711 0.000207 ***
monthsSinceLastDonation     -0.032425   0.006104  -5.312 1.08e-07 ***
sweepstakesDonorTRUE        -0.549901   0.186693  -2.945 0.003224 ** 
stateCA                      0.237916   0.099592   2.389 0.016899 *  
stateNC                      1.404587   0.116532  12.053  < 2e-16 ***
stateFL                      0.586508   0.106300   5.517 3.44e-08 ***
stateAL                      0.423637   0.186483   2.272 0.023103 *  
stateIN                     -0.152629   0.151517  -1.007 0.313771    
stateLA                      1.418199   0.154395   9.186  < 2e-16 ***
stateIA                     -0.038710   0.208926  -0.185 0.853009    
stateTN                     -0.215528   0.171153  -1.259 0.207932    
stateKS                     -0.090561   0.217931  -0.416 0.677739    
stateMN                     -0.059304   0.174391  -0.340 0.733809    
stateUT                     -0.254867   0.309052  -0.825 0.409557    
stateMI                      0.747188   0.114980   6.498 8.12e-11 ***
stateMO                     -0.130955   0.150605  -0.870 0.384558    
stateTX                     -0.112965   0.117244  -0.964 0.335293    
stateOR                      0.466091   0.159254   2.927 0.003426 ** 
stateWA                      0.204953   0.140527   1.458 0.144714    
stateWI                      0.127991   0.151889   0.843 0.399419    
stateGA                     -0.400950   0.157313  -2.549 0.010812 *  
stateOK                     -0.270733   0.200564  -1.350 0.177062    
stateSC                      0.109946   0.169295   0.649 0.516060    
stateKY                      0.006423   0.183144   0.035 0.972025    
stateMD                      0.248137   1.060386   0.234 0.814980    
stateSD                      0.400123   0.325981   1.227 0.219657    
stateNV                      0.311780   0.213901   1.458 0.144954    
stateNE                     -0.025792   0.271846  -0.095 0.924411    
stateAZ                      0.156000   0.158884   0.982 0.326175    
stateVA                      1.281786   1.246233   1.029 0.303701    
stateND                     -0.267617   0.375967  -0.712 0.476582    
stateAK                     -1.246755   0.648235  -1.923 0.054441 .  
stateAR                     -0.067171   0.234433  -0.287 0.774476    
stateNM                      0.370957   0.237529   1.562 0.118351    
stateMT                      0.520523   0.303868   1.713 0.086715 .  
stateMS                     -0.167163   0.231985  -0.721 0.471168    
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stateAP                      0.876915   0.727124   1.206 0.227816    
stateCO                     -0.069645   0.170698  -0.408 0.683272    
stateAA                      1.285336   1.166041   1.102 0.270328    
stateHI                      0.265303   0.310405   0.855 0.392718    
stateME                    -12.781759 378.289460  -0.034 0.973046    
stateWY                      0.214670   0.381617   0.563 0.573756    
stateID                      0.220460   0.324274   0.680 0.496596    
stateOH                    -13.101737 254.982380  -0.051 0.959020    
stateNJ                     -0.529009   1.252653  -0.422 0.672798    
stateMA                    -12.979932 378.277716  -0.034 0.972627    
stateNY                     -1.832435   1.070291  -1.712 0.086880 .  
statePA                    -13.460871 353.452328  -0.038 0.969621    
stateDC                    -13.283025 535.411181  -0.025 0.980207    
stateAE                    -13.269704 535.411186  -0.025 0.980227    
stateCT                      0.714116   1.459579   0.489 0.624656    
stateDE                    -12.778529 378.592900  -0.034 0.973074    
stateRI                    -13.566019 535.411196  -0.025 0.979786    
stateGU                      0.515087   1.239274   0.416 0.677676    
urbanicityrural             -0.042477   0.068040  -0.624 0.532429    
urbanicitysuburb            -0.032056   0.065154  -0.492 0.622715    
urbanicitytown               0.152852   0.065642   2.329 0.019882 *  
urbanicityUNK                0.069086   0.389701   0.177 0.859289    
urbanicityurban             -0.254339   0.079876  -3.184 0.001452 ** 
socioEconomicStatushighest   0.094913   0.054256   1.749 0.080226 .  
socioEconomicStatuslowest   -0.440059   0.066129  -6.655 2.84e-11 ***
socioEconomicStatusUNK      -0.194321   0.389610  -0.499 0.617951    
isHomeownerUNK              -0.204959   0.053423  -3.837 0.000125 ***
genderjoint                  0.368017   0.322407   1.141 0.253676    
gendermale                   0.141587   0.043520   3.253 0.001140 ** 
genderUNK                   -0.259366   0.100190  -2.589 0.009632 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
(Dispersion parameter for binomial family taken to be 1)
 
    Null deviance: 14623  on 10547  degrees of freedom
Residual deviance: 13423  on 10462  degrees of freedom
AIC: 13595
 
Number of Fisher Scoring iterations: 12

The results show that all of our features are either significant or have at least one 

level that is significant. For example, we see that for incomeRating, the level 2 dummy 

variable, incomeRating2 is significant, while the others are not. Because of this, we 

keep the feature in our model, which means keeping all six dummy variables. However, 
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we do see that our AIC value has increased slightly, from 13302 in our original model to 

13595 in this model. This is okay. The choice we made to remove both the collinear fea-

tures and the nonsignificant features is worth the cost in the long term. The next thing 

we need to do is check to make sure that we no longer have multicollinearity in our 

feature set.

> vif(donors_mod2)
 
                             GVIF Df GVIF^(1/(2*Df))
incomeRating             2.721121  7        1.074122
wealthRating             2.924728 10        1.055126
mailOrderPurchases       1.513325  1        1.230173
numberGifts              2.722302  1        1.649940
yearsSinceFirstDonation  2.612104  1        1.616200
monthsSinceLastDonation  1.126158  1        1.061206
sweepstakesDonor         1.046125  1        1.022803
state                    1.811086 51        1.005840
urbanicity              12.311840  5        1.285382
socioEconomicStatus     12.559579  3        1.524623
isHomeowner              1.675895  1        1.294563
gender                   1.115104  3        1.018324

We are good. None of the numeric features has a VIF larger than 5. With our new 

model, it’s time to make some predictions against the test data.

> donors_pred2 <- predict(donors_mod2, donors_test, type = 'response')
 
> head(donors_pred2)
 
        1         2         3         4         5         6 
0.3534621 0.2537164 0.5182092 0.6619119 0.3158936 0.5246699 

Just like we saw previously, the output provides us with the probability that 

respondedMailing = 1, given the values of the predictors for each observation in our 

test data. Compared to the results of our previous model, we see some slight changes in 

the predicted probabilities. The probability of response for donor 1 has decreased from 

38.2 percent in the previous model to 35.3 percent in this model. However, the probabil-

ity of response for donor 4 has increased from 62.3 percent in the previous model to 66.2 

percent in this model. The impact of these changes in classifying our data will depend on 

the cutoff value we choose for our model. We discuss this in the following section.
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Choosing a Cutoff Value
In our previous attempt, we chose to interpret the predicted probabilities using a cutoff 

of 0.5, where values equal to or above 0.5 were interpreted as 1 and values below that 

threshold were interpreted as 0. While 0.5 is a reasonable cutoff in some instances, it is 

not the ideal cutoff value for all situations. To get the ideal cutoff value for our model, 

we will make the optimalCutoff() function from the InformationValue package in R. 

We pass three arguments to the function.

 • The first argument is a vector of the actual values for the response (actuals = 

donors _ test$respondedMailing).

 • The second argument is a vector of the predicted values for the response (pre-

dictedScores = donors _ pred2).

 • The third argument specifies that we want the optimal cutoff to be based on the 

value that maximizes the proportions of correctly predicted observations for 

both 1 and 0.

> library(InformationValue)
> ideal_cutoff <-
   optimalCutoff(
     actuals = donors_test$respondedMailing,
     predictedScores = donors_pred2,
     optimiseFor = "Both")
 
> ideal_cutoff
[1] 0.5462817

The result tells us that instead of using 0.5 as our cutoff, we should use 0.5462817. 

With the recommended cutoff value, let’s transform our predictions and calculate our 

model’s predictive accuracy.

> donors_pred2 <- ifelse(donors_pred2 >= ideal_cutoff, 1, 0)
> donors_pred2_table <- table(donors_test$respondedMailing, donors_
pred2)
> sum(diag(donors_pred2_table)) / nrow(donors_test)
 
[1] 0.7368391

Our model’s predictive accuracy is now 73.68 percent. This is an improvement over 

our previous model (donors _ mod1 ), which had an accuracy of 64.93 percent.
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Strengths and Weaknesses
Logistic regression is a widely used classification technique. In the previous sections, we 

discussed how to build, evaluate, and improve a binomial logistic regression model. In 

this section, we take a look at some of the strengths and weaknesses of the approach to 

get a better understanding of when to use it.

These are some of the strengths:

 • Like linear regression, logistic regression models are easy to train.

 • Logistic regression is efficient in that it is not computationally expensive.

 • The input features for logistic regression do not have to be scaled before 

being used.

 • The output of a logistic regression model has a relatively easy-to-understand 

probabilistic interpretation.

 • Logistic regression models do not require hyperparameter tuning.

These are some of the weaknesses:

 • Logistic regression tends to underperform when there are multiple or nonlinear 

decision boundaries.

 • Similar to linear regression, multicollinearity is a concern in logistic regression.

 • Logistic regression models are vulnerable to overfitting.

Classification for Responses with More 
Than Two Values
In binomial logistic regression, our goal is to classify a response variable that has one 
of two values. However, there are instances where we would like to classify a response 
variable that has three or more possible values. The approach that we use to do this 
is known as multinomial logistic regression. Though not used as much in practice, 
a common approach to multinomial logistic regression involves creating a separate 
logistic regression model for each class value and then choosing a value based on the 
performance of each model. For example, let’s say we are presented with a problem 
to predict the income level of a customer: low, medium, or high. We would create a 
model to predict Pr Y low X| , a second model to predict Pr Y medium X| , and 
a third to predict Pr Y high X| . To classify the income of a particular customer, we 
would choose the predicted class of the model with the highest probability or ratio of 
predicted probabilities by prior distribution.
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 • Logistic regression requires that we specify the model’s form before beginning 

the modeling process.

 • Logistic regression models are sensitive to outliers and are not able to deal with 

missing data.

CASE STUDY: INCOME PREDICTION
Now that you’re familiar with how logistic regression works, let’s work through a case 

study using this technique. Imagine that we’re employed by the marketing department at 

a financial planning company and we would like to identify prospective customers from 

a database that we’ve purchased. Our target customer is anyone with an annual income 

over $50,000, but we generally do not get income information about a new customer 

prospect. Therefore, we’d like to develop a model that analyzes other factors to help us 

predict whether a potential customer has an income over the $50,000 threshold. We’ll 

use logistic regression for this task.

To solve this problem, you are provided with data for 32,560 prospective customers. 

The following are the variables in our dataset:

 • age is the self-reported age of the customer.

 • workClassification is the type of employer the customer works for. Examples 

include Private, Localgov, Federalgov, etc.

 • educationLevel is the prospective customer’s highest education level attained. 

Examples of the values include Bachelors, HSgrad, Masters, etc.

 • educationYears is the number of years of education that a customer has.

 • maritalStatus is the designation of the customer’s marital status. Examples of 

this include Divorced, Separated, Nevermarried, etc.

 • occupation is the type of work that the customer has. Examples of this are 

 Admclerical, Sales, Techsupport, etc.

 • relationship is the reported relationship between the customer and their 

designated next of kin.

 • race is the self-reported racial identity of the customer.

 • gender is the self-reported gender identity—either Male or Female.

 • workHours is the number of hours within a week that the customer typi-

cally works.

 • nativeCountry is the nation of origin of the prospective customer

 • income is the class we are trying to predict and has values: <=50K and >50K.
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Importing the Data
The first thing we need to do is import our dataset using the read _ csv() function from 

the tidyverse package.

> library(tidyverse)
> income <- read_csv("income.csv", col_types = "nffnfffffnff")
> glimpse(income)
 
Observations: 32,560
Variables: 12
$ age                <dbl> 50, 38, 53, 28, 37, 49, 52, 31, 42, 37, 30, 23, 32,...
$ workClassification <fct> Self-emp-not-inc, Private, Private, Private, Privat...
$ educationLevel     <fct> Bachelors, HS-grad, 11th, Bachelors, Masters, 9th, ...
$ educationYears     <dbl> 13, 9, 7, 13, 14, 5, 9, 14, 13, 10, 13, 13, 12, 11,...
$ maritalStatus      <fct> Married-civ-spouse, Divorced, Married-civ-spouse, M...
$ occupation         <fct> Exec-managerial, Handlers-cleaners, Handlers-cleane...
$ relationship       <fct> Husband, Not-in-family, Husband, Wife, Wife, Not-in...
$ race               <fct> White, White, Black, Black, White, Black, White, Wh...
$ gender             <fct> Male, Male, Male, Female, Female, Female, Male, Fem...
$ workHours          <dbl> 13, 40, 40, 40, 40, 16, 45, 50, 40, 80, 40, 30, 50,...
$ nativeCountry      <fct> United-States, United-States, United-States, Cuba, ...
$ income             <fct> <=50K, <=50K, <=50K, <=50K, <=50K, <=50K, >50K, >50...

As we can see from the output, we have 12 features and 32,5620 instances to work 

with. The dependent variable (or class) is the income feature.

Exploring and Preparing the Data
With our data imported, let’s take some time to do some data exploration and prepara-

tion prior to building our model. For the rest of this section, we will limit ourselves to the 

categorical features (factor data types) within our dataset. The first thing we do is get a 

statistical summary for our target features.

> income %>%
   keep(is.factor) %>%
   summary()
 
        workClassification      educationLevel                maritalStatus  
 Private         :22696  HS-grad     :10501   Married-civ-spouse   :14976  
 Self-emp-not-inc: 2541  Some-college: 7291   Divorced             : 4443  
 Local-gov       : 2093  Bachelors   : 5354   Married-spouse-absent:  418  
 ?               : 1836  Masters     : 1723   Never-married        :10682  
 State-gov       : 1297  Assoc-voc   : 1382   Separated            : 1025  



209Chapter 5: Logistic Regression

 Self-emp-inc    : 1116  11th        : 1175   Married-AF-spouse    :   23  
 (Other)         :  981  (Other)     : 5134   Widowed              :  993  
 
           occupation           relationship                   race      
 Prof-specialty :4140   Husband       :13193  White             :27815  
 Craft-repair   :4099   Not-in-family : 8304  Black             : 3124  
 Exec-managerial:4066   Wife          : 1568  Asian-Pac-Islander: 1039  
 Adm-clerical   :3769   Own-child     : 5068  Amer-Indian-Eskimo:  311  
 Sales          :3650   Unmarried     : 3446  Other             :  271  
 Other-service  :3295   Other-relative:  981                            
 (Other)        :9541                       
                             
    gender            nativeCountry     income     
 Male  :21789   United-States:29169   <=50K:24719  
 Female:10771   Mexico       :  643   >50K : 7841  
                ?            :  583                
                Philippines  :  198                
                Germany      :  137                
                Canada       :  121                
                (Other)      : 1709  

The output shows the distribution of values for each of the categorical features. How-

ever, we get to see only the top six values for each feature. To get the distribution of all 

the values for the features with more than six values, we use the table() function.

> table(select(income, workClassification))
 
Self-emp-not-inc          Private        State-gov      Federal-gov 
            2541            22696             1297              960 
       Local-gov                ?     Self-emp-inc      Without-pay 
            2093             1836             1116               14 
    Never-worked 
               7 
 
> table(select(income, educationLevel))
 
   Bachelors      HS-grad         11th      Masters          9th Some-college 
        5354       10501         1175        1723          514         7291 
  Assoc-acdm   Assoc-voc      7th-8th   Doctorate  Prof-school     5th-6th 
        1067        1382          646         413          576          333 
        10th     1st-4th    Preschool        12th 
         933         168           51          433 
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> table(select(income, occupation))
 
  Exec-managerial Handlers-cleaners    Prof-specialty     Other-service 
             4066              1370              4140              3295 
     Adm-clerical             Sales      Craft-repair  Transport-moving 
             3769              3650              4099              1597 
  Farming-fishing Machine-op-inspct      Tech-support                 ? 
              994              2002               928              1843 
  Protective-serv      Armed-Forces   Priv-house-serv 
              649                 9               149 
 
> table(select(income, nativeCountry))
 
           United-States                   Cuba                 Jamaica 
                   29169                     95                      81 
                   India                      ?                  Mexico 
                     100                    583                     643 
                   South            Puerto-Rico                Honduras 
                      80                    114                      13 
                 England                 Canada                 Germany 
                      90                    121                     137 
                    Iran            Philippines                   Italy 
                      43                    198                      73 
                  Poland               Columbia                Cambodia 
                      60                     59                      19 
                Thailand                Ecuador                    Laos 
                      18                     28                      18 
                  Taiwan                  Haiti                Portugal 
                      51                     44                      37 
      Dominican-Republic            El-Salvador                  France 
                      70                    106                      29 
               Guatemala                  China                   Japan 
                      64                     75                      62 
              Yugoslavia                Peru Outlying-US(Guam-USVI-etc) 
                      16                     31                      14 
                Scotland        Trinadad&Tobago                  Greece 
                      12                     19                      29 
               Nicaragua                Vietnam                    Hong 
                      34                     67                      20 
                 Ireland                Hungary      Holand-Netherlands 
                      24                     13                       1

We notice that the missing values for the workClassification, occupation, and 

nativeCountry features are represented by an indicator variable (?). Let’s replace this 

with something more obvious (UNK). Since these features are factors, instead of using 

the ifelse() function, we use the recode() function to replace ? with UNK.
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> income <- income %>%
    mutate(workClassification = recode(workClassification, "?" = "UNK")) %>%
   mutate(nativeCountry = recode(nativeCountry, "?" = "UNK")) %>%
   mutate(occupation = recode(occupation, "?" = "UNK"))

The next thing we do is also recode the values for our class. Currently, our class values 

are <=50K and >50K. Let’s transform these so 0 represents <=50K and 1 represents >50K.

> income <- income %>%
   mutate(income = recode(income, "<=50K" = "0")) %>%
   mutate(income = recode(income, ">50K" = "1"))
 
> summary(income[,"income"])
 
 income   
 0:24719  
 1: 7841

With our missing values and class values recoded, we are now ready to split our data. 

Using the method we used previously, we split our data 75 percent to 25 percent and cre-

ate two new datasets called income _ train and income _ test.

> set.seed(1234)
> sample_set <- sample(nrow(income), round(nrow(income)*.75), replace = 
FALSE)
> income_train <- income[sample_set, ]
> income_test <- income[-sample_set, ]

Now that we’ve split our data, let’s check the class distributions between all three 

datasets to make sure that they are similar.

> round(prop.table(table(select(income, income), exclude = NULL)), 4) * 
100
 
    0     1 
75.92 24.08 
 
> round(prop.table(table(select(income_train, income), exclude = 
NULL)), 4) * 100
 
    0     1 
75.78 24.22 
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> round(prop.table(table(select(income_test, income), exclude = NULL)), 
4) * 100
 
    0     1 
76.33 23.67

Our results show similar class distribution between the three sets. However, the 

results also highlight the fact that our data is imbalanced. As we discussed previously, 

imbalanced data biases our model toward the majority class, so we need to balance the 

training data. We do so using the SMOTE() function from the DMwR package.

> library(DMwR)
> set.seed(1234)
> income_train <- SMOTE(income ~ ., data.frame(income_train), perc.over 
= 100, perc.under = 200)
 
> round(prop.table(table(select(income_train, income), exclude = 
NULL)), 4) * 100
 
 0  1 
50 50

Training the Model
With our balanced training data, we can now build our logistic regression model. We 

use only the categorical features in our dataset to build our model, which we call 

income _ mod1.

> income_mod1 <- income_train %>%
   keep(is.factor) %>%
   glm(formula = income ~ ., family= binomial)
 
> summary(income_mod1)
 
Call:
glm(formula = income ˜ ., family = "binomial", data = .)
 
Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.6235  -0.6429   0.0135   0.6693   3.1759  
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Coefficients:
                                          Estimate Std. Error z value Pr(>|z|)    
(Intercept)                               2.057415   0.079765  25.794  < 2e-16 ***
workClassificationPrivate                -0.380531   0.061600  -6.177 6.52e-10 ***
workClassificationState-gov              -0.501281   0.104409  -4.801 1.58e-06 ***
workClassificationFederal-gov             0.794956   0.103578   7.675 1.65e-14 ***
workClassificationLocal-gov              -0.128445   0.085283  -1.506 0.132040    
workClassificationUNK                    -0.751481   0.223633  -3.360 0.000779 ***
workClassificationSelf-emp-inc            0.441674   0.103789   4.255 2.09e-05 ***
workClassificationWithout-pay           -13.744495 268.085626  -0.051 0.959111    
workClassificationNever-worked          -11.562916 484.685475  -0.024 0.980967    
educationLevelHS-grad                    -1.147699   0.053718 -21.365  < 2e-16 ***
educationLevel11th                       -1.582094   0.124896 -12.667  < 2e-16 ***
educationLevelMasters                     0.453522   0.076560   5.924 3.15e-09 ***
educationLevel9th                        -2.304317   0.214759 -10.730  < 2e-16 ***
educationLevelSome-college               -0.975388   0.056128 -17.378  < 2e-16 ***
educationLevelAssoc-acdm                 -0.453770   0.095723  -4.740 2.13e-06 ***
educationLevelAssoc-voc                  -0.747874   0.085236  -8.774  < 2e-16 ***
educationLevel7th-8th                    -2.336997   0.179268 -13.036  < 2e-16 ***
educationLevelDoctorate                   1.180078   0.177914   6.633 3.29e-11 ***
educationLevelProf-school                 1.431921   0.147249   9.724  < 2e-16 ***
educationLevel5th-6th                    -3.151291   0.319428  -9.865  < 2e-16 ***
educationLevel10th                       -2.153881   0.155469 -13.854  < 2e-16 ***
educationLevel1st-4th                    -3.397059   0.570713  -5.952 2.64e-09 ***
educationLevelPreschool                 -14.882712 165.412839  -0.090 0.928309    
educationLevel12th                       -1.712003   0.214800  -7.970 1.58e-15 ***
maritalStatusDivorced                    -0.590752   0.066843  -8.838  < 2e-16 ***
maritalStatusMarried-spouse-absent       -0.350370   0.147485  -2.376 0.017519 *  
maritalStatusNever-married               -1.430695   0.067560 -21.177  < 2e-16 ***
maritalStatusSeparated                   -1.051163   0.120632  -8.714  < 2e-16 ***
maritalStatusMarried-AF-spouse           -0.075376   0.444303  -0.170 0.865286    
maritalStatusWidowed                     -0.368553   0.114742  -3.212 0.001318 ** 
occupationHandlers-cleaners              -1.473390   0.130872 -11.258  < 2e-16 ***
occupationProf-specialty                 -0.128743   0.063198  -2.037 0.041638 *  
occupationOther-service                  -1.469594   0.085942 -17.100  < 2e-16 ***
occupationAdm-clerical                   -1.073049   0.073384 -14.622  < 2e-16 ***
occupationSales                          -0.552853   0.067618  -8.176 2.93e-16 ***
occupationCraft-repair                   -0.712170   0.066724 -10.673  < 2e-16 ***
occupationTransport-moving               -0.793742   0.090834  -8.738  < 2e-16 ***
occupationFarming-fishing                -1.862775   0.128855 -14.456  < 2e-16 ***
occupationMachine-op-inspct              -1.332522   0.094676 -14.075  < 2e-16 ***
occupationTech-support                   -0.294672   0.102080  -2.887 0.003893 ** 
occupationUNK                            -0.952324   0.221143  -4.306 1.66e-05 ***
occupationProtective-serv                 0.185790   0.113401   1.638 0.101351    
occupationArmed-Forces                  -15.500801 432.759350  -0.036 0.971427    
occupationPriv-house-serv                -3.546814   1.030645  -3.441 0.000579 ***
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relationshipNot-in-family                -0.726953   0.064070 -11.346  < 2e-16 ***
relationshipWife                          0.837109   0.081847  10.228  < 2e-16 ***
relationshipOwn-child                    -2.299872   0.117274 -19.611  < 2e-16 ***
relationshipUnmarried                    -0.503751   0.074711  -6.743 1.55e-11 ***
relationshipOther-relative               -1.082911   0.138016  -7.846 4.29e-15 ***
raceBlack                                 0.606281   0.061005   9.938  < 2e-16 ***
raceAsian-Pac-Islander                    1.614144   0.080810  19.975  < 2e-16 ***
raceAmer-Indian-Eskimo                    0.461699   0.155727   2.965 0.003029 ** 
raceOther                                 0.633979   0.185451   3.419 0.000629 ***
genderFemale                             -0.123921   0.047842  -2.590 0.009592 ** 
nativeCountryCuba                         0.317128   0.310020   1.023 0.306343    
nativeCountryJamaica                      1.404543   0.297432   4.722 2.33e-06 ***
nativeCountryIndia                        1.466653   0.219183   6.691 2.21e-11 ***
nativeCountryUNK                          0.488870   0.108748   4.495 6.94e-06 ***
nativeCountryMexico                      -0.356017   0.200478  -1.776 0.075760 .  
nativeCountrySouth                        2.712322   0.224475  12.083  < 2e-16 ***
nativeCountryPuerto-Rico                 -0.330702   0.362388  -0.913 0.361473    
nativeCountryHonduras                    -0.116442   1.457708  -0.080 0.936333    
nativeCountryEngland                      0.168188   0.314917   0.534 0.593292    
nativeCountryCanada                       1.815523   0.221290   8.204 2.32e-16 ***
nativeCountryGermany                      0.194379   0.225471   0.862 0.388632    
nativeCountryIran                         0.130755   0.435480   0.300 0.763982    
nativeCountryPhilippines                  1.516576   0.144374  10.504  < 2e-16 ***
nativeCountryItaly                        1.430372   0.322360   4.437 9.11e-06 ***
nativeCountryPoland                      -0.011026   0.399951  -0.028 0.978006    
nativeCountryColumbia                    -2.058625   0.801743  -2.568 0.010238 *  
nativeCountryCambodia                     1.185365   0.567790   2.088 0.036827 *  
nativeCountryThailand                    -1.515856   0.790739  -1.917 0.055237 .  
nativeCountryEcuador                      0.305120   0.590870   0.516 0.605581    
nativeCountryLaos                        -1.774955   0.928975  -1.911 0.056048 .  
nativeCountryTaiwan                      -0.369773   0.393158  -0.941 0.346952    
nativeCountryHaiti                        0.686366   0.603986   1.136 0.255791    
nativeCountryPortugal                     0.546523   0.606772   0.901 0.367745    
nativeCountryDominican-Republic           1.021236   0.328344   3.110 0.001869 ** 
nativeCountryEl-Salvador                 -0.311822   0.480396  -0.649 0.516278    
nativeCountryFrance                       0.961540   0.327440   2.937 0.003319 ** 
nativeCountryGuatemala                   -0.002497   0.576969  -0.004 0.996547    
nativeCountryChina                        0.476137   0.302153   1.576 0.115068    
nativeCountryJapan                        0.629314   0.356327   1.766 0.077377 .  
nativeCountryYugoslavia                   1.585079   0.613635   2.583 0.009792 ** 
nativeCountryPeru                        -1.907448   1.086935  -1.755 0.079279 .  
nativeCountryOutlying-US(Guam-USVI-etc) -12.983037 481.588575  -0.027 0.978493    
nativeCountryScotland                    -1.124844   0.931690  -1.207 0.227311    
nativeCountryTrinadad&Tobago             -0.538606   0.958978  -0.562 0.574357    
nativeCountryGreece                       1.850875   0.445076   4.159 3.20e-05 ***
nativeCountryNicaragua                    0.520045   0.711204   0.731 0.464646    
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nativeCountryVietnam                     -0.755812   0.444117  -1.702 0.088787 .  
nativeCountryHong                        -0.024543   0.541438  -0.045 0.963845    
nativeCountryIreland                      2.304061   0.781947   2.947 0.003213 ** 
nativeCountryHungary                      0.556481   0.684296   0.813 0.416094    
nativeCountryHoland-Netherlands         -11.297514 882.743391  -0.013 0.989789    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
(Dispersion parameter for binomial family taken to be 1)
 
    Null deviance: 32794  on 23655  degrees of freedom
Residual deviance: 20094  on 23561  degrees of freedom
AIC: 20284
 
Number of Fisher Scoring iterations: 13

Our model’s output shows that all the features that we used are significant, so we 

don’t need to remove any of them from our model at this time.

Evaluating the Model
Now that we have our logistic regression model, let’s generate predictions against the 

test data.

> income_pred1 <- predict(income_mod1, income_test, type = 'response')
 
> head(income_pred1)
 
         1          2          3          4          5          6 
0.88669468 0.09432701 0.31597757 0.96025585 0.21628507 0.43047656

As we can see, the predictions provide us with the probability that income=1 for each 

instance in our test data. To interpret the results in terms of 0 and 1, we need to deter-

mine an ideal cutoff value.

> library(InformationValue)
 
> ideal_cutoff <-
   optimalCutoff(
     actuals = income_test$income,
     predictedScores = income_pred1,
     optimiseFor = "Both")
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> ideal_cutoff
[1] 0.4294492

Our output tells us that the ideal cutoff for our predictions is 0.4294492. Using this 

cutoff value, we recode our predictions.

> income_pred1 <- ifelse(income_pred1 >= ideal_cutoff, 1, 0)
 
> head(income_pred1)
 
1 2 3 4 5 6 
1 0 0 1 0 1

Now we are ready to evaluate how well our model does against the test data. To 

do so, we create a confusion matrix and use its values to derive our model’s predic-

tive accuracy.

> income_pred1.table <- table(income_test$income, income_pred1)
 
> sum(diag(income_pred1.table)) / nrow(income_test)
[1] 0.7384521

The results show that our model’s predictive accuracy is 73.85 percent. This is pretty 

reasonable performance. Note that we only used the categorical features in our data for 

our model. In the following exercises, we provide you with the opportunity to improve 

upon our model by considering the continuous features as well.

EXERCISES
1. Consider each one of the following problems. Would this problem best be 

approached as a regression problem or a classification problem?

a. Predicting the restaurant chain that someone is most likely to visit based upon 

their age, number of children, ZIP code, and income level

b. Predicting the number of visitors that a restaurant is likely to see on a given day 

based upon the day of the week, the outdoor temperature, and whether the res-

taurant is running a promotion

c. Predicting the baseball team that an individual is likely to cheer for based upon 

their place of birth, current residence, age, and gender

d. Predicting the price of a used car based upon the make, model, age, odometer 

reading, condition, and color
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2. You are working with a healthcare provider who provides patients with a free annual 

health screening. The provider would like to better understand the factors that 

drive participation in the screening program. You use logistic regression to develop a 

model that predicts participation based upon an individual’s marital status and eth-

nicity. The results of the model are shown here:

Call:
glm(formula = participated ˜ age + maritalStatus + ethnicity, 
    family = binomial, data = patients_train)
 
Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-1.739  -1.256   1.018   1.027   1.590  
 
Coefficients:
                                                     Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                          1.424848   0.567979   2.509   0.0121 *  
age                                                  0.000498   0.002121   0.235   0.8144    
maritalStatusMarried                                -0.195182   0.159257  -1.226   0.2204    
maritalStatusNot Known                              -1.150035   0.175621  -6.548 5.82e-11 ***
maritalStatusSingle                                 -0.770244   0.168187  -4.580 4.66e-06 ***
maritalStatusWidowed                                -0.441739   0.290676  -1.520   0.1286    
ethnicityAsian                                      -1.019093   0.543590  -1.875   0.0608 .  
ethnicityBlack or African American                  -1.187287   0.544551  -2.180   0.0292 *  
ethnicityHispanic                                   -0.984501   0.545999  -1.803   0.0714 .  
ethnicityNative Hawaiian or Other Pacific Islander -12.230119 196.968421  -0.062   0.9505    
ethnicityTwo or More                                -1.060614   0.561182  -1.890   0.0588 .  
ethnicityUnknown                                    -1.217726   0.554415  -2.196   0.0281 *  
ethnicityWhite                                      -0.880737   0.536667  -1.641   0.1008    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
(Dispersion parameter for binomial family taken to be 1)
 
    Null deviance: 8464.2  on 6111  degrees of freedom
Residual deviance: 8223.3  on 6099  degrees of freedom
AIC: 8249.3
 
Number of Fisher Scoring iterations: 10

a. In this model, which variable has the greatest effect on the outcome?

b. For that variable, rank-order the levels from the group least likely to participate in 

the assessments to the group most likely to participate in the assessments.

3. After developing the model in exercise 2, you obtained additional information about 

the individuals in the study. Specifically, you learned how many prior times each 
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person participated in the screening program. You incorporate that information into 

your model and obtain these results:

Call:
glm(formula = participated ˜ age + maritalStatus + ethnicity + 
    priorScreenings, family = binomial, data = patients_train)
 
Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.1965  -0.6845   0.2264   0.5264   2.1374  
 
Coefficients:
                                                     Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                          0.420756   0.692364  0.608   0.5434    
age                                                 -0.017940   0.002855 -6.284 3.31e-10 ***
maritalStatusMarried                                 0.078128   0.225397  0.347   0.7289    
maritalStatusNot Known                               0.205479   0.241209  0.852   0.3943    
maritalStatusSingle                                 -0.352247   0.236139 -1.492   0.1358    
maritalStatusWidowed                                -0.035840   0.406231 -0.088   0.9297    
ethnicityAsian                                      -1.095094   0.653537 -1.676   0.0938 .  
ethnicityBlack or African American                  -1.151009   0.654967 -1.757   0.0789 .  
ethnicityHispanic                                   -0.953887   0.656464 -1.453   0.1462    
ethnicityNative Hawaiian or Other Pacific Islander -11.293698 196.968754 -0.057   0.9543    
ethnicityTwo or More                                -1.341665   0.679203 -1.975   0.0482 *  
ethnicityUnknown                                    -1.093776   0.666182 -1.642   0.1006    
ethnicityWhite                                      -1.076935   0.644631 -1.671   0.0948 .  
priorScreenings                                      1.619062   0.040467 40.010  < 2e-16 ***

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
(Dispersion parameter for binomial family taken to be 1)
 
    Null deviance: 8464.2  on 6111  degrees of freedom
Residual deviance: 5267.5  on 6098  degrees of freedom
AIC: 5295.5
 
Number of Fisher Scoring iterations: 10

a. Are individuals who participated in a past screening more likely to participate in 

future screenings, less likely to participate in future screenings, or is it not possible 

to determine a difference?

b. For each time an individual participated in a past screening, by what factor do the 

odds change that they will participate in the next screening?

c. Which model fits the data better, the model from exercise 2 or this model? How 

can you tell?
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4. After improving your model in exercise 3, you use the model to make predictions 

for employees that were not in the original training set. You obtain the following 10 

predictions:

1         2         3         4         5         
0.1465268 0.9588654 0.9751363 0.4956821 0.8601916 
 
6         7         8         9        10 
0.3984430 0.2268064 0.8490515 0.9527210 0.4642998

a. Interpret these results. How many of these ten employees are likely to participate 

in the wellness assessment?

b. How could you improve your predictions?

5. Extend the logistic regression model from the income prediction use case to include 

the continuous variables as well.

a. Create and examine a correlation plot for these variables. Do they exhibit multicol-

linearity?

b. Examine the summary statistics for the continuous variables. Do you observe any 

outliers? If so, address them appropriately.

c. Fit a logistic regression model to the dataset. This time, include both the contin-

uous and categorical variables. Use the same training/test dataset split as the use 

case.

d. Examine the summary of the model. Were the continuous variables significant? 

How does this model compare to the model without the continuous variables?

e. Generate predictions for the test dataset using a 0.50 threshold and create a con-

fusion matrix of your results. Compare these results to the model from earlier in 

the chapter.
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Chapter 6

k-Nearest  
Neighbors

In Chapter 5, we introduced logistic regression as one of several 

methods for assigning a label or class to new data (classification). 

In this chapter, we introduce another classification approach that 

assigns a class to an unlabeled data point based upon the most 

common class of existing similar data points. This method is known 

as k-nearest neighbors.

The nearest neighbors algorithm is part of a family of algorithms 

that are known as lazy learners. These types of learners do not 

build a model, which means they do not really do any learning. 

Instead, they simply refer to the training data during the prediction 

phase in order to assign labels to unlabeled data. Lazy learners are 

also referred to as instance-based learners or rote learners due to 
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their heavy reliance on the training set. Despite the simplicity of 

lazy learners, such as the k-nearest neighbors approach, they are 

powerful in dealing with difficult-to-understand data that have a 

large number of features with a large number of instances of fairly 

similar class.

By the end of this chapter, you will have learned the following:

 ◆ How to quantify the similarity between new and existing data

 ◆ How to choose the appropriate number of “neighbors” (k) to 

use in classifying new data

 ◆ How the k-NN classification process works

 ◆ How to use the k-NN classifier to assign labels to new data in R

 ◆ The strengths and weaknesses of the k-NN method

DETECTING HEART DISEASE
As we explore the nearest neighbors algorithm in this chapter, we will use a dataset 

containing information about patients with and without heart disease. This dataset was 

initially gathered for use by researchers at four medical institutions in the United States, 

Switzerland, and Hungary and is made available to the data science community through 

the University of California at Irvine’s Machine Learning Repository.1

The dataset that we will use is available to you as part of the electronic resources 

accompanying this book. (See the introduction for more information on accessing the 

electronic resources.) It is separated into training and testing datasets and includes infor-

mation on the medical status of individuals and whether they suffer from heart disease.

Our task is to use this dataset to examine records of existing patients in the training 

set and use that information to predict whether patients in the evaluation set are likely 

to suffer from heart disease without performing any invasive procedures.

The dataset includes a variety of medical data for our analysis:

 • age is the age, in years, of the patient.

 • sex is the biological sex of the patient.
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 • painType describes the type of chest pain, if any, reported by the patient. The 

options for this variable are

 • Typical angina

 • Atypical angina

 • Nonanginal pain

 • Asymptomatic (no pain)

 • restingBP is the patient’s systolic blood pressure at rest, measured in millimeters 

of mercury.

 • cholesterol is the patient’s total cholesterol, measured in milligrams per liter.

 • highBloodSugar is a logical value indicating whether the patient has a fasting 

blood sugar reading greater than 120 milligrams per deciliter.

 • restingECG is a categorical variable providing an interpretation of the patient’s 

resting electrocardiographic results. The possible values are

 • Normal

 • Hypertrophy

 • WaveAbnormality

 • exerciseAngina is a logical value indicating whether the patient experiences 

exercise-induced angina.

 • STdepression is a numeric evaluation of the patient’s degree of ST depression, 

an electrocardiogram finding related to heart disease.

 • STslope is a categorical value describing the slope of the patient’s ST segment on 

an electrocardiogram. It may have these values:

 • Downsloping

 • Flat

 • Upsloping

 • coloredVessels is the number of major vessels that appear colored when sub-

jected to fluoroscopy. This value ranges from 0 to 3.

 • defectType is a categorical value describing a defect identified in the patient’s 

heart. It may have these values:

 • Normal

 • ReversibleDefect

 • FixedDefect

 • heartDisease is the variable we are trying to predict. It is a logical value that is 

TRUE if the patient suffers from heart disease and FALSE if he or she does not.
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TIP This dataset includes variables that contain technical medical diagnostic 
information. If you find some of these variables confusing, don’t worry too 
much about it. The nature of this dataset underscores the importance 
of including subject-matter experts with contextual experience when 
performing machine learning in the real world.

Given the problem and the data provided, these are some of the questions we need 

to answer:

 • How well can we predict whether a patient suffers from heart disease or not 

based on the predictor variables available to us?

 • What value of k provides us with the best predictive performance?

By the end of this chapter, we will have answered each of these questions using 

k-nearest neighbors and related techniques.

k-NEAREST NEIGHBORS
The k-nearest neighbors method is premised on the basic idea that things that are sim-

ilar are likely to have properties that are similar. Therefore, to assign a class to new data, 

we first find k instances of existing data that are as similar as possible (nearest neigh-

bors) to the new data. Then, we use the labels of those nearest neighbors to predict the 

label of the new data.

To illustrate how k-NN works, let’s attempt to deal with the problem we introduced 

in the previous section. Our goal is to use the existing set of patient records to predict 

whether a new patient is likely to suffer from heart disease or not. To keep things simple, 

let’s limit our analysis to only two of the predictor variables in our dataset: age and cho-

lesterol. Our class variable is heartDisease. Assuming that we created a scatterplot 

of our data, with age on the y-axis and cholesterol on the x-axis, our chart would look 

something like Figure 6.1.

Now, consider a hypothetical 45-year-old new patient with a cholesterol level of 225. 

Based on their cholesterol level and age alone, how could we determine whether they 

suffer from heart disease or not? Using the k-nearest neighbors approach, the first thing 

we do is find the k most similar patients to our new patient in our dataset. These are the 

nearest neighbors to our new patient. Then, we assign the label of the most common 

class among the neighbors to our new patient. To illustrate this approach, we add a new 

data point to our previous scatterplot that represents the new patient. This is illustrated 

by the black box in Figure 6.2. We also annotate each existing point with a unique identi-

fier for each of the 20 existing patients in our sample dataset.
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Figure 6.1 Scatterplot of age versus cholesterol levels for a sampling of 20 patients 
from our dataset. The shape and color of each point indicates whether the patient 
suffers from heart disease.

50
4

5
19

11

12 20

18
6

9
1

10

14

17

7
8

16

3

2 13
15

heartDisease

FALSE

TRUE

45

40ag
e

35

30

200 300
cholesterol

400

Figure 6.2 Scatterplot of age versus cholesterol levels for a sampling of 20 patients 
from our dataset and the new patient to be classified (black square)
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If k is set to 1, we identify the one existing data point that is closest to our new data 

point. By visual inspection, we can see that this is either patient 11 or patient 9. Let’s 

assume that it is patient 9. This patient does not suffer from heart disease. Therefore, we 

will classify our new patient as also not suffering from heart disease. However, if k were 

set to 3, the three nearest neighbors to our new patient are patients 9, 11, and 5. Since 

the most common class among these three patients is TRUE for heart disease, then we 

would classify our new patient as suffering from heart disease as well.

Finding the Nearest Neighbors
As our previous example illustrates, the value of k has a significant impact on how new 

unlabeled examples are classified. We will discuss methods for choosing the appropri-

ate value for k later in the chapter. The other thing that the previous example illustrates 

is the importance of properly identifying the nearest neighbors of a new instance. In 

that example, we did this by visual inspection. However, as you can imagine, this is not a 

very precise approach. Besides, it’s fairly easy to visually identify points that are close to 

each other when considering only two dimensions, such as we did in Figure 6.2 with age 

and cholesterol. However, if we decided to include more dimensions to represent the 

additional features in our dataset, we quickly run into some obvious challenges with the 

visual approach. To quantify the distance between two points, the k-nearest neighbors 

algorithm uses a distance function that works for data with more than two dimensions. 

This measure is known as Euclidean distance.

Euclidean distance is the straight-line distance between the coordinates of two points 

in multidimensional space. Mathematically, we define the Euclidean distance between 

two points p and q  as follows:

 dist p q p q p q p q
n n

,
1 1

2

2 2

2 2

  (6.1)

 where n  represents the number of features for both p and q , such that p1and q1 represent 

the values of the first feature of p and q ; p2 and q2 represent the values of the second fea-

ture of p and q ; and p
n
 and q

n
 represent the values of the nth feature of p and q .

Given that our new patient (P
new

) is a 45-year-old with a cholesterol level of 225 and 

patient 11 (P11) is a 46-year-old with a cholesterol level of 202, to calculate the distance 

between our new patient and patient 11 using only the features of age and cholesterol, 

we do the following:

 dist P P
new

,
11

2 2

45 46 225 202 23 02.  (6.2)
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This example illustrates an important concept with regard to Euclidean distance. Fea-

tures with larger values or features with a wider range of values tend to have a dispro-

portionate impact on the distance calculation. For example, let’s say we decide to use 

k-NN against the donor dataset we worked with in Chapter 5. Two of the features in that 

dataset were numberChildren and totalGivingAmount. Given donor A with four chil-

dren and prior total giving of $5,000 and given donor B with two children and prior total 

giving of $6,000, to calculate the distance between these two donors using only num-

berChildren and totalGivingAmount, we would do the following:

 
dist A B, 4 2 5000 6000 1000 002

2 2

.
 (6.3)

We see from the results that the distance between donor A and donor B is pretty 

much the absolute difference between the values of the totalGivingAmount feature 

for both donors ($1,000). The numberChildren feature has little to no significance in 

the final result of the distance calculation. To overcome this limitation in the approach, 

it is common practice to scale or normalize feature values prior to using the k-NN algo-

rithm. So, for this example, if we chose to use the min-max normalization approach we 

introduced in Chapter 3, the normalized feature values for donor A’s numberChildren 

and totalGivingAmount would be 0.500 and 0.526, respectively. The normalized fea-

ture values for donor B’s numberChildren and totalGivingAmount would be 0.167 and 

0.632, respectively. Using these normalized values for our distance calculation gives us 

the following:

 dist A B, 0 500 0 167 0 526 0 632 0 349
2 2

. . . . .  (6.4)

Our distance is no longer disproportionately influenced by one feature over the other. 

In fact, with min-max normalization, what we see is that regardless of the size of the 

original feature values, the farther apart two data points are from each other within the 

list of values for a particular feature, the more their distance influences the overall dis-

tance calculation.

Now, let’s get back to our original example. Applying the min-max normalization 

approach to the feature values for our new patient, we get 0.750 and 0.250 for the age 

and cholesterol values, respectively. Doing the same for patient 11 gives us 0.818 and 

0.206 for the age and cholesterol values, respectively. Therefore, instead of the dis-

tance we calculated in Equation 6.2, the distance between P
new

 and P11 is as follows:

 dist P P
new

, 
11

2 2

0 750 0 818 0 250 0 206 0 081. . . . .  
(6.5)
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Applying this approach to the data points representing all 20 patients in our sample 

gives us the following results, which show the distance between each existing patient 

and the new patient sorted in ascending order of distance:

Patient Age Cholesterol

Age  

(Normalized)

Cholesterol  

(Normalized)

Distance to 

P
new

heart

Disease

11 46 202 0.818 0.206 0.081 TRUE
9 46 243 0.818 0.306 0.088 FALSE
5 48 193 0.909 0.184 0.172 TRUE

18 48 256 0.909 0.337 0.182 TRUE
1 45 297 0.773 0.437 0.188 FALSE
2 41 172 0.591 0.133 0.197 TRUE

19 49 212 0.955 0.231 0.205 TRUE
13 41 289 0.591 0.417 0.231 TRUE
6 49 271 0.955 0.374 0.239 FALSE

10 43 315 0.682 0.481 0.240 FALSE
8 39 220 0.500 0.250 0.250 FALSE

12 50 264 1.000 0.357 0.272 TRUE
4 49 142 0.955 0.061 0.279 TRUE

20 50 288 1.000 0.415 0.300 TRUE
7 38 292 0.455 0.425 0.343 FALSE

14 39 321 0.500 0.495 0.350 FALSE
16 35 264 0.318 0.357 0.445 FALSE
17 36 340 0.364 0.541 0.484 FALSE
15 40 466 0.545 0.847 0.631 TRUE

3 30 237 0.091 0.291 0.660 FALSE

The results show that patient 11 is the closest in distance (nearest neighbor) to our 

hypothetical new patient, while patient 3 is the furthest away from our new patient. 

These results are consistent with what we saw in Figure 6.2.

Labeling Unlabeled Data
After we identify the nearest neighbors of our hypothetical new patient P

new
, the next 

step is to assign the new patient a class label. This is where the k in k-NN comes in. As we 

mentioned previously, k represents the number of preexisting labeled neighbors that we 

reference in order to assign a class label to the new unlabeled instance. In our example, 

if we choose to set k to 1, then we will assign a class label to P
new

 solely based on the class 

label of its single nearest neighbor, which is patient 11. Therefore, P
new

 will be assigned a 

class label of TRUE.
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As you can imagine, k can take on any integer value up to the number of existing 

labeled instances in our dataset (our training data). Let’s assume that we decide to set 

k to 3 instead. This means that we now need to consider the three nearest neighbors to 

our new patient. From our previous distance table, we see that the three nearest neigh-

bors are patients 11, 9, and 5, with class labels of TRUE, FALSE, and TRUE, respectively. 

To assign a label to our new patient, we rely on a majority vote from among the k-nearest 

neighbors. In this case, two of the three nearest neighbors are TRUE, making the major-

ity class TRUE, so the new patient is assigned a class label of TRUE.

It is important to note that when working with data with only two classes, there is the 

real possibility that with even numbered values for k, we can get a tie vote. For example, 

suppose that for some hypothetical dataset we set the value of k to 6 and the class 

labels for the six nearest neighbors are TRUE, TRUE, FALSE, TRUE, FALSE, and FALSE 

(three TRUE votes and three FALSE votes). In this scenario, the majority vote will then 

be chosen at random between the two options. To minimize the likelihood of such a sce-

nario, it is common in practice to use only odd numbers for the values of k.

Choosing an Appropriate k
Choosing an appropriate value for k impacts how generalizable the model is to unseen 

data. The higher the value for k, the less the model is impacted by noise or outliers in 

the data. However, higher values of k also increase the likelihood that the model may 

not capture some of the important patterns in the data. Figure 6.3(a) illustrates the 

impact of a large value for k on the decision boundary (dashed line). Based on the deci-

sion boundary, we see that all the data points above the line are labeled as TRUE, while 

the points below are all labeled as FALSE. In the extreme, setting the value for k to the 

number of instances in our training data means that, regardless of the class of its nearest 

neighbors, every unlabeled instance will be assigned the label of the majority class.

Lower values for k allow for more complex decision boundaries that more closely fit 

the patterns in the data. However, this also means that the lower the value for k, the 

greater the impact that outliers and noisy data have on the model. This is illustrated in 

Figure 6.3(b). Therefore, it is critically important that we choose a value for k that pro-

vides a good balance between identifying small but important patterns in the data and 

yet not overfitting against the noise in the data.

When choosing the optimal value for k, it is important to note that the more complex 

and irregular the data is, the smaller the appropriate value for k is. In practice, there are 

several common approaches to choosing the appropriate value for k. One approach is to 

set the value of k as the square root of the number of training instances. However, this 

approach should be considered a starting point and not an empirical basis for choosing 

the value for k. A more common approach is to evaluate how well the model performs 
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against the test data using several values for k. With this approach, the k value that pro-

vides the best performance is chosen. For now, we will limit our idea of performance 

to predictive accuracy. In Chapter 9, we will look at other measures of performance 

beyond accuracy.

k-Nearest Neighbors Model
Now that we have a better understanding of how the k-nearest neighbors algorithm 

works, it’s time to put our knowledge into practice. In this section, we will use k-NN to 

solve the heart disease detection problem we introduced at the beginning of the chapter 

in R. The first thing we do is import and preview our data.

> library(tidyverse)
> heart <- read_csv("heart.csv", col_types = "nffnnffnfnfnff")
> glimpse(heart)
 
Observations: 920
Variables: 14
$ age            <dbl> 63, 67, 67, 37, 41, 56, 62, 57, 63, 53, 57, 56, 56, 44, ...
$ sex            <fct> male, male, male, male, female, male, female, female, ma...
$ painType       <fct> Typical Angina, Asymptomatic, Asymptomatic, Non-Anginal ...
$ restingBP      <dbl> 145, 160, 120, 130, 130, 120, 140, 120, 130, 140, 140, 1...
$ cholesterol    <dbl> 233, 286, 229, 250, 204, 236, 268, 354, 254, 203, 192, 2...
$ highBloodSugar <fct> TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, F...
$ restingECG     <fct> Hypertrophy, Hypertrophy, Hypertrophy, Normal, Hypertrop...
$ restingHR      <dbl> 150, 108, 129, 187, 172, 178, 160, 163, 147, 155, 148, 1...
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Figure 6.3 The impact of a large value for k (a) and a small value for k (b) on the 
decision boundary (dashed line) of a model
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$ exerciseAngina <fct> FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FAL...
$ STdepression   <dbl> 2.3, 1.5, 2.6, 3.5, 1.4, 0.8, 3.6, 0.6, 1.4, 3.1, 0.4, 1...
$ STslope        <fct> Downsloping, Flat, Flat, Downsloping, Upsloping, Upslopi...
$ coloredVessels <dbl> 0, 3, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,...
$ defectType     <fct> FixedDefect, Normal, ReversibleDefect, Normal, Normal, N...
$ heartDisease   <fct> FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRU... 

The preview of our data shows that we have 920 observations and 14 variables. Now 

that we have our data, let’s take some time to do some exploratory data analysis. As 

we’ve done previously, the summary() function provides us with a great overall view of 

the statistical distribution of our data and also helps us identify any potential issues with 

outliers, noise, and missing data.

> summary(heart)
 
      age            sex                  painType     restingBP    
 Min.   :28.00   male  :206   Typical Angina    : 46   Min.    :  0.0  
 1st Qu.:47.00   female:714   Asymptomatic      :496   1st Qu. :120.0  
 Median :54.00                Non-Anginal Pain  :204   Median  :130.0  
 Mean   :53.51                Atypical Angina   :174   Mean    :132.1  
 3rd Qu.:60.00                                         3rd Qu. :140.0  
 Max.   :77.00                                         Max.    :200.0  
                                                       NA's        :59     
  cholesterol    highBloodSugar           restingECG    restingHR    
 Min.   :  0.0    TRUE :138      Hypertrophy    :188   Min.    : 60.0  
 1st Qu.:175.0    FALSE:692      Normal         :551   1st Qu. :120.0  
 Median :223.0    NA's : 90      waveAbnormality:179   Median  :140.0  
 Mean   :199.1                   NA's           :  2   Mean    :137.5  
 3rd Qu.:268.0                                         3rd Qu. :157.0  
 Max.   :603.0                                         Max.    :202.0  
 NA's   :30                                            NA's    :55     
 exerciseAngina  STdepression            STslope    coloredVessels  
 FALSE:528      Min.   :-2.6000      Downsloping: 63   Min.    :0.0000  
 TRUE :337      1st Qu.: 0.0000      Flat       :345   1st Qu. :0.0000  
 NA's : 55      Median : 0.5000      Upsloping  :203   Median  :0.0000  
                    Mean   : 0.8788      NA's       :309   Mean       :0.6764  
                3rd Qu.: 1.5000                        3rd Qu.    :1.0000  
                Max.   : 6.2000                        Max.      :3.0000  
                 NA's   :62                             NA's      :611     
            defectType  heartDisease
 FixedDefect     : 46   FALSE:411   
 Normal          :196   TRUE :509   
 ReversibleDefect:192               
 NA's            :486               
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Dealing with Missing Data
Our results show that we have missing data for 10 of our 14 variables. In previous chap-

ters, we attempted to resolve these missing values either by using an indicator variable 

or by using one of the imputation methods we introduced in Chapter 3. This time, we 

are going to use another of the methods we also introduced in that chapter, which is to 

simply exclude the records with missing data from our dataset. To do this, we use the 

filter() function from the dplyr package to limit our dataset to only records without 

missing values (i.e., !is.na()) for any of the 10 variables in question.

> heart <- heart %>%
   filter(!is.na(restingBP) & !is.na(cholesterol) & !is.na(highBloodSugar) &  
!is.na(restingECG) & !is.na(restingHR) & !is.na(exerciseAngina) & !is.
na(STdepression) & !is.na(STslope) & !is.na(coloredVessels) & !is.
na(defectType))

Normalizing the Data
As we learned previously, features with larger values or that have a wider range of values 

tend to disproportionately impact Euclidean distance calculations. Therefore, it is impor-

tant to normalize the feature values prior to using k-NN. For our data, we choose to use 

the min-max normalization approach, which was introduced in Chapter 3. Just like we did 

in that chapter, the first thing we do is write and execute the code for our normalization 

function, which we call normalize.

> normalize <- function(x) {
+   return((x - min(x)) / (max(x) - min(x)))
+ }

Then we apply the normalization function to each of our numeric features to nor-

malize their values between the range of 0 to 1.

> heart <- heart %>%
   mutate(age = normalize(age)) %>%
   mutate(restingBP = normalize(restingBP)) %>%
   mutate(cholesterol = normalize(cholesterol)) %>%
   mutate(restingHR = normalize(restingHR)) %>%
   mutate(STdepression = normalize(STdepression)) %>%
   mutate(coloredVessels = normalize(coloredVessels))

Running the summary() function again shows that the range of values for our 

numeric features are all now within 0 and 1.
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 > summary(heart)
 
      age             sex                  painType     restingBP     
 Min.   :0.0000   male  :201   Typical Angina  : 23   Min.   :0.0000  
 1st Qu.:0.3958   female: 98   Asymptomatic    :144   1st Qu.:0.2453  
 Median :0.5625                Non-Anginal Pain: 83   Median :0.3396  
 Mean   :0.5317                Atypical Angina : 49   Mean   :0.3558  
 3rd Qu.:0.6667                                       3rd Qu.:0.4340  
 Max.   :1.0000                                       Max.   :1.0000  
  cholesterol     highBloodSugar           restingECG    restingHR     
 Min.   :0.0000   TRUE : 43      Hypertrophy    :146   Min.   :0.0000  
 1st Qu.:0.2392   FALSE:256      Normal         :149   1st Qu.:0.4695  
 Median :0.3060                  waveAbnormality:  4   Median :0.6183  
 Mean   :0.3163                                        Mean   :0.5979  
 3rd Qu.:0.3782                                        3rd Qu.:0.7214  
 Max.   :1.0000                                        Max.   :1.0000  
 exerciseAngina  STdepression           STslope    coloredVessels  
 FALSE:200      Min.   :0.0000   Downsloping: 21   Min.   :0.0000  
 TRUE : 99      1st Qu.:0.0000   Flat       :139   1st Qu.:0.0000  
                Median :0.1290   Upsloping  :139   Median :0.0000  
                Mean   :0.1707                     Mean   :0.2241  
                3rd Qu.:0.2581                     3rd Qu.:0.3333  
                Max.   :1.0000                     Max.   :1.0000  
            defectType  heartDisease
 FixedDefect     : 18   FALSE:160   
 Normal          :164   TRUE :139   
 ReversibleDefect:117

Dealing with Categorical Features
The Euclidean distance between point A and point B is calculated as the square root of 

the sum of squared differences between the coordinates of those two points (see Equa-

tion 6.1). Applied to k-NN, each point is a record in our dataset, and each of the coordi-

nates is represented by the features of each record.

Calculating the difference between two feature values implies that those feature 

values are numeric. So, how do we calculate distance between categorical features? 

One common approach is to code them as dummy variables, with a new dummy variable 

representing each of the unique values of the original categorical variable. For example, 

the sex variable in our dataset has two values: male and female. To represent this 

variable as dummy variables, we would create two new variables called sex_male and 

sex_female. The sex_male variable will have a value of 1 if the patient is male and 0 

if the patient is female. The sex_female variable will have a value of 1 if the patient is 

female and 0 if the patient is male. Conveniently, the values for these new features also 

fall within the same scale (0 and 1) as our normalized numeric features.
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Instead of coding each of our categorical variables as dummy variables manually, the 

dummies package in R provides us with a function called dummy.data.frame(), which 

allows us to do this at scale. But before we do so, we need to do a couple of things. The 

first is to convert our dataset from a tibble into a data frame. This is an important step 

because some machine learning functions (like dummy.data.frame()) require data 

passed to it as a data frame.

> heart <- data.frame(heart)

The second thing we need to do is split off the class labels from the rest of our data. 

We call this new dataset heart_labels. This is important because we do not want to 

create dummy variables for the class.

> heart_labels <- heart %>% select(heartDisease)
> heart <- heart %>% select(-heartDisease)

Before we create our dummy variables, let’s take a moment to list our original fea-

tures so we can compare them later to the new ones we create.

> colnames(heart)
 
 [1] "age"            "sex"            "painType"       "restingBP"     
 [5] "cholesterol"    "highBloodSugar" "restingECG"     "restingHR"     
 [9] "exerciseAngina" "STdepression"   "STslope"       "coloredVessels"
[13] "defectType"

Now we’re ready to create our dummy variables. To do so, we pass our dataset heart 

(without the class labels) to the dummy.data.frame() function. We also specify the sep-

arator character (sep=" _ ") to use when combining the original feature names and their 

values to create new feature names.

> library(dummies)
> heart <- dummy.data.frame(data=heart, sep="_")
> colnames(heart)
 
 [1] "age"                         "sex_male"                   
 [3] "sex_female"                  "painType_Typical Angina"    
 [5] "painType_Asymptomatic"       "painType_Non-Anginal Pain"  
 [7] "painType_Atypical Angina"    "restingBP"                  
 [9] "cholesterol"                 "highBloodSugar_TRUE"        
[11] "highBloodSugar_FALSE"        "restingECG_Hypertrophy"     
[13] "restingECG_Normal"           "restingECG_waveAbnormality" 
[15] "restingHR"                   "exerciseAngina_FALSE"       
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[17] "exerciseAngina_TRUE"         "STdepression"               
[19] "STslope_Downsloping"         "STslope_Flat"               
[21] "STslope_Upsloping"           "coloredVessels"             
[23] "defectType_FixedDefect"      "defectType_Normal"          
[25] "defectType_ReversibleDefect"

Our new feature names list shows that we now have 25 features, 19 of which are our 

newly created dummy variables.

Splitting the Data
So far, we’ve dealt with the missing values in our original dataset by excluding them from 

our analysis, we’ve normalized our numeric features so certain features don’t dominate 

the distance calculation, and we’ve coded our categorical features as dummy variables 

so that they can be included in our distance calculations. The next thing we need to do 

is split our data into training and test datasets. Our test data will serve as our unlabeled 

dataset, while the training data will serve as our existing labeled examples. Using the 

sample() function, we partition 75 percent of our data as training examples and 25 per-

cent as our test data.

> set.seed(1234)
> sample_index <- sample(nrow(heart), round(nrow(heart)*.75), replace = FALSE)
> heart_train <- heart[sample_index, ]
> heart_test <- heart[-sample_index, ]

We do the same split for our class labels.

> heart_train_labels <- as.factor(heart_labels[sample_index, ])
> heart_test_labels <- as.factor(heart_labels[-sample_index, ])

Note that for the class labels, we use the as.factor() function to convert the 

data from a data frame to a vector of factor values. This is a requirement of the knn() 

function, which we use in the next section.

Classifying Unlabeled Data
We are now ready to label our unlabeled data using the k-nearest neighbors approach 

in R. To do so, we use the knn() function from the class package. The function takes 

four arguments. The first argument (train) is a dataset of the training data, the second 

argument (test) is a dataset of the test data, the third argument (cl ) is a list of the class 

labels for the training data, and the last argument (k ) is the number of neighbors to 

consider. We set k to 15, which is approximately the square root of 224 (the number of 

training examples in our data).
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> library(class)
> heart_pred1 <-
   knn(
     train = heart_train,
     test = heart_test,
     cl = heart_train_labels,
     k = 15
   )

Using the head() function, let’s get a preview of our predictions.

> head(heart_pred1)
 
[1] FALSE TRUE  FALSE FALSE FALSE FALSE
Levels: FALSE TRUE

The output provides an ordered list of the predicted labels for the first six instances 

in our test dataset.

Evaluating the Model
Now that we’ve assigned labels to our unlabeled examples (heart_test), let’s see how 

well our model actually did in predicting the right label. To do this, we need to compare 

the predicted labels for our test data (heart_pred1 ) against the actual labels for our 

test data (heart_test_labels). Just like we did in the previous chapter, we use the 

table() function to create a confusion matrix of our predicted labels compared to the 

actual labels.

> heart_pred1_table <- table(heart_test_labels, heart_pred1)
> heart_pred1_table
 
                 heart_pred1
heart_test_labels FALSE TRUE
            FALSE    30    5
            TRUE      9   31

Our predictive accuracy is 81.33 percent, as we see here:

> sum(diag(heart_pred1_table)) / nrow(heart_test)
 
[1] 0.8133333

This is pretty good performance, considering that we simply set k to the value of the 

square root of the number of our training examples. In the following section, we will 

attempt to vary the value of k to see if we can improve the performance of our model.
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Improving the Model
This time let’s try setting the value of k to 1 to see whether that has a meaningful impact 

on our predictive accuracy.

> heart_pred2 <-
   knn(
     train = heart_train,
     test = heart_test,
     cl = heart_train_labels,
     k = 1
   )
> heart_pred2_table <- table(heart_test_labels, heart_pred2)
> sum(diag(heart_pred2_table)) / nrow(heart_test)
 
[1] 0.6666667

Predicting Numerical 
Responses with k-NN
The sample problem we use in this chapter to illustrate k-NN is a prediction problem 
with a categorical response (classification). However, it is important to note that k-NN  
can also be applied to problems where the goal is to predict a numeric response 
(regression). In such a scenario, the process of finding the nearest neighbors remains 
unchanged from the approach we discussed earlier. However, for a regression 
problem, instead of using a majority vote to assign a label to unlabeled data, we use 
the average (or weighted average) response value of the k-nearest neighbors as the 
predicted response value. So if k is set to 3 and the response values for the three 
nearest neighbors of a new record are 4 , 6, and 5, the response for the new record 
would be the average of the three neighbors, which is 5.

The method of evaluating predictive accuracy is also different for a k-NN 
regression problem. Instead of calculating accuracy as the sum of correct 
predictions divided by the number of test instances, we use root mean squared 
error (RMSE). Mathematically, RMSE is defined as follows:

 
RMSE
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where y i
  is the predicted response, yi  is the actual response, and n is the number of 

unlabeled examples (the number of test instances).
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Our results show that setting k to 1 has a negative effect on our predictive accuracy. 

We go from 81.33 percent, in our previous attempt to 66.67 percent, this time. So, let’s 

try going the other way. This time, we set k to 40.

> heart_pred3 <-
   knn(
     train = heart_train,
     test = heart_test,
     cl = heart_train_labels,
     k = 40
   )
> heart_pred3_table <- table(heart_test_labels, heart_pred3)
> sum(diag(heart_pred3_table)) / nrow(heart_test)
 
[1] 0.76

Setting the value for k to 40 provides better predictive accuracy than k = 1. However, 

with an accuracy of 76 percent, it does not perform as well as our original approach  

(k = 15). Figure 6.4 shows the changes in predictive accuracy if we ran the previous code 

and varied the value of k from 1 to 40. As the results show, the best performing value for 

k, in terms of predictive accuracy, is 7. At k = 7, our predictive accuracy is 82.7 percent.
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Figure 6.4 The predictive accuracy of our model for values of k-nearest neighbors 
between 1 and 40
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Strengths and Weaknesses
As we’ve seen so far, the k-nearest neighbors classification method is simple and yet very 

effective. In this section, we discuss some of the strengths and inherent weaknesses with it.

Here are some strengths:

 • The k-nearest neighbors classification approach is rather simple to understand 

and implement. Yet it is very effective.

 • It makes no assumptions about the underlying data distribution; this allows it to 

be applied to a wide variety of problems.

 • The training phase is very fast. This is because it does not build a model and simply 

uses the existing examples to make predictions when needed.

 • As new data is collected, the k-NN classifier adapts. This allows it to respond 

quickly to real-time changes in the input.

Here are some weaknesses:

 • With k-NN, the selection of an appropriate k is often arbitrary.

 • The classification phase is rather slow. This is because the distance calculations 

are computed during the classification phase. The larger the dataset, the slower 

it becomes.

 • The algorithm has no way of handling missing data.

 • k-NN does not perform well on imbalanced data.

 • Without preprocessing, k-NN cannot handle nominal or outlier data.

CASE STUDY: REVISITING THE DONOR DATASET
For our chapter case study, let’s take another look at one of the problems we introduced 

in Chapter 5. The problem was in the section “Prospecting for Potential Donors.” For that 

problem, our goal was to help a veterans’ organization to determine which donors would 

be most likely to respond to a mailing based on their demographic information, prior 

giving history, and response to prior mailings. In that chapter, we used logistic regression 

to solve the problem. This time, we will attempt to use k-NN to solve the problem.

Importing the Data
We begin by importing and previewing the data.

> library(tidyverse)
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> donors <- read_csv("donors.csv", col_types = "nnnnnnnnnnnnffffffffff")
> glimpse(donors)
 
Observations: 95,412
Variables: 22
$ age                     <dbl> 60, 46, NA, 70, 78, NA, 38, NA, NA, 65, NA, 75,...
$ numberChildren          <dbl> NA, 1, NA, NA, 1, NA, 1, NA, NA, NA, NA, NA, 2,...
$ incomeRating            <dbl> NA, 6, 3, 1, 3, NA, 4, 2, 3, NA, 2, 1, 4, NA, 4...
$ wealthRating            <dbl> NA, 9, 1, 4, 2, NA, 6, 9, 2, NA, 0, 5, 2, NA, 6...
$ mailOrderPurchases      <dbl> 0, 16, 2, 2, 60, 0, 0, 1, 0, 0, 0, 3, 16, 0, 17...
$ totalGivingAmount       <dbl> 240, 47, 202, 109, 254, 51, 107, 31, 199, 28, 2...
$ numberGifts             <dbl> 31, 3, 27, 16, 37, 4, 14, 5, 11, 3, 1, 2, 9, 12...
$ smallestGiftAmount      <dbl> 5, 10, 2, 2, 3, 10, 3, 5, 10, 3, 20, 10, 4, 5, ...
$ largestGiftAmount       <dbl> 12, 25, 16, 11, 15, 16, 12, 11, 22, 15, 20, 15,...
$ averageGiftAmount       <dbl> 7.741935, 15.666667, 7.481481, 6.812500, 6.8648...
$ yearsSinceFirstDonation <dbl> 8, 3, 7, 10, 11, 3, 10, 3, 9, 3, 1, 1, 8, 5, 4,...
$ monthsSinceLastDonation <dbl> 14, 14, 14, 14, 13, 20, 22, 18, 19, 22, 12, 14,...
$ inHouseDonor            <fct> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,...
$ plannedGivingDonor      <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...
$ sweepstakesDonor        <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...
$ P3Donor                 <fct> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,...
$ state                   <fct> IL, CA, NC, CA, FL, AL, IN, LA, IA, TN, KS, IN,...
$ urbanicity              <fct> town, suburb, rural, rural, suburb, town, town,...
$ socioEconomicStatus     <fct> average, highest, average, average, average, av...
$ isHomeowner             <fct> NA, TRUE, NA, NA, TRUE, NA, TRUE, NA, NA, NA, N...
$ gender                  <fct> female, male, male, female, female, NA, female,...
$ respondedMailing        <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...

Our original dataset has 95,412 instances and 22 features. Twelve of the features are 

numeric, while the other 10 are categorical. Our class feature is called respondedMailing.

Exploring and Preparing the Data
Now that we have our data, let’s take a moment to do some initial data analysis to better 

understand it. To keep things simple, we will limit our scope to using only the numeric 

features in our dataset as predictors for our response.

> donors <- donors %>%
   select(
     age,
     numberChildren,
     incomeRating,
     wealthRating,
     mailOrderPurchases,
     totalGivingAmount,
     numberGifts,
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     smallestGiftAmount,
     largestGiftAmount,
     averageGiftAmount,
     yearsSinceFirstDonation,
     monthsSinceLastDonation,
     respondedMailing
   )

Dealing with Missing Data
A statistical summary of our new dataset shows that we have a few missing values (NAs) 

and that the scale of our predictors varies considerably.

> summary(donors)
 
      age        numberChildren   incomeRating    wealthRating  
 Min.   : 1.00   Min.   :1.00    Min.   :1.000   Min.   :0.00   
 1st Qu.:48.00   1st Qu.:1.00    1st Qu.:2.000   1st Qu.:3.00   
 Median :62.00   Median :1.00    Median :4.000   Median :6.00   
 Mean   :61.61   Mean   :1.53    Mean   :3.886   Mean   :5.35   
 3rd Qu.:75.00   3rd Qu.:2.00    3rd Qu.:5.000   3rd Qu.:8.00   
 Max.   :98.00   Max.   :7.00    Max.   :7.000   Max.   :9.00   
 NA's   :23665   NA's   :83026   NA's   :21286   NA's   :44732  
                                                                          
 mailOrderPurchases totalGivingAmount  numberGifts      smallestGiftAmount
 Min.   :  0.000    Min.   :  13.0    Min.   :  1.000   Min.   :   0.000  
 1st Qu.:  0.000    1st Qu.:  40.0    1st Qu.:  3.000   1st Qu.:   3.000  
 Median :  0.000    Median :  78.0    Median :  7.000   Median :   5.000  
 Mean   :  3.321    Mean   : 104.5    Mean   :  9.602   Mean   :   7.934  
 3rd Qu.:  3.000    3rd Qu.: 131.0    3rd Qu.: 13.000   3rd Qu.:  10.000  
 Max.   :241.000    Max.   :9485.0    Max.   :237.000   Max.   :1000.000  
                                                                          
 largestGiftAmount averageGiftAmount  yearsSinceFirstDonation
 Min.   :   5      Min.   :   1.286   Min.   : 0.000         
 1st Qu.:  14      1st Qu.:   8.385   1st Qu.: 2.000         
 Median :  17      Median :  11.636   Median : 5.000         
 Mean   :  20      Mean   :  13.348   Mean   : 5.596         
 3rd Qu.:  23      3rd Qu.:  15.478   3rd Qu.: 9.000         
 Max.   :5000      Max.   :1000.000   Max.   :13.000         
                                                             
 monthsSinceLastDonation respondedMailing
 Min.   : 0.00           FALSE:90569     
 1st Qu.:12.00           TRUE : 4843     
 Median :14.00                           
 Mean   :14.36                           
 3rd Qu.:17.00                           
 Max.   :23.00   
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Let’s deal with the missing values first, and then we can normalize the feature values. 

We have 23,665 instances with missing values for the age feature. To resolve them, we 

use mean imputation.

> donors <- donors %>%
   mutate(age = ifelse(is.na(age), mean(age, na.rm = TRUE), age))
> summary(select(donors, age))
 
      age       
 Min.   : 1.00  
 1st Qu.:52.00  
 Median :61.61  
 Mean   :61.61  
 3rd Qu.:71.00  
 Max.   :98.00

The numberChildren feature has 83,026 missing values. To resolve these, we use 

median imputation.

> donors <- donors %>%
   mutate(numberChildren = ifelse(is.na(numberChildren), 
median(numberChildren, na.rm = TRUE), numberChildren))
> summary(select(donors, numberChildren))
 
numberChildren 
 Min.   :1.000  
 1st Qu.:1.000  
 Median :1.000  
 Mean   :1.069  
 3rd Qu.:1.000  
 Max.   :7.000

For the missing values for incomeRating and wealthRating, we exclude those 

instances from our dataset. As we mentioned in Chapter 5, the scale for wealthRating 

is between 1 and 9. However, our statistical summary shows that we have some instances 

with wealthRating for 0. We need to exclude those instances as well.

> donors <- donors %>%
   filter(!is.na(incomeRating) & !is.na(wealthRating) & wealthRating > 0)
> summary(select(donors, incomeRating,wealthRating))
 
  incomeRating    wealthRating  
 Min.   :1.000   Min.   :1.000  
 1st Qu.:2.000   1st Qu.:4.000  
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 Median :4.000   Median :6.000  
 Mean   :3.979   Mean   :5.613  
 3rd Qu.:5.000   3rd Qu.:8.000  
 Max.   :7.000   Max.   :9.000

Normalizing the Data
We are done dealing with the missing data. The next thing we need to do is normalize 

the scales of our data. Just like before, we’ll use the min-max normalization approach. To 

do so, we first create a min-max normalization function, called normalize.

> normalize <- function(x) {
   return((x - min(x)) / (max(x) - min(x)))
 }

Then we pass each of our features to the function to standardize their scales 

between 0 and 1.

> donors <- donors %>%
   mutate(age = normalize(age)) %>%
   mutate(numberChildren = normalize(numberChildren)) %>%
   mutate(incomeRating = normalize(incomeRating)) %>%
   mutate(wealthRating = normalize(wealthRating)) %>%
   mutate(mailOrderPurchases = normalize(mailOrderPurchases)) %>%
   mutate(totalGivingAmount = normalize(totalGivingAmount)) %>%
   mutate(numberGifts = normalize(numberGifts)) %>%
   mutate(smallestGiftAmount = normalize(smallestGiftAmount)) %>%
   mutate(largestGiftAmount = normalize(largestGiftAmount)) %>%
   mutate(averageGiftAmount = normalize(averageGiftAmount)) %>%
   mutate(yearsSinceFirstDonation = normalize(yearsSinceFirstDonation)) %>%
   mutate(monthsSinceLastDonation = normalize(monthsSinceLastDonation))
 
> summary(donors)
 
      age         numberChildren     incomeRating     wealthRating   
 Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.5155   1st Qu.:0.00000   1st Qu.:0.1667   1st Qu.:0.3750  
 Median :0.6249   Median :0.00000   Median :0.5000   Median :0.6250  
 Mean   :0.6308   Mean   :0.01483   Mean   :0.4965   Mean   :0.5766  
 3rd Qu.:0.7526   3rd Qu.:0.00000   3rd Qu.:0.6667   3rd Qu.:0.8750  
 Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
                                                             
 mailOrderPurchases totalGivingAmount   numberGifts      smallestGiftAmount
 Min.   :0.000000   Min.   :0.000000   Min.   :0.00000   Min.   :0.00000   
 1st Qu.:0.004149   1st Qu.:0.004945   1st Qu.:0.01271   1st Qu.:0.00600   
 Median :0.012448   Median :0.011834   Median :0.02966   Median :0.01000   
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 Mean   :0.025986   Mean   :0.016236   Mean   :0.03715   Mean   :0.01538   
 3rd Qu.:0.033195   3rd Qu.:0.021018   3rd Qu.:0.05508   3rd Qu.:0.02000   
 Max.   :1.000000   Max.   :1.000000   Max.   :1.00000   Max.   :1.00000   
                                                             
 largestGiftAmount  averageGiftAmount yearsSinceFirstDonation
 Min.   :0.000000   Min.   :0.00000   Min.   :0.0000         
 1st Qu.:0.009045   1st Qu.:0.01405   1st Qu.:0.1818         
 Median :0.012060   Median :0.02034   Median :0.5455         
 Mean   :0.014689   Mean   :0.02362   Mean   :0.5235         
 3rd Qu.:0.017085   3rd Qu.:0.02750   3rd Qu.:0.8182         
 Max.   :1.000000   Max.   :1.00000   Max.   :1.0000         
                                                             
 monthsSinceLastDonation respondedMailing
 Min.   :0.0000          FALSE:45770     
 1st Qu.:0.5217          TRUE : 2497     
 Median :0.6087                          
 Mean   :0.6208                          
 3rd Qu.:0.6957                          
 Max.   :1.0000

The statistical summary shows that our features all now have values within the range 

of 0 and 1.

Splitting and Balancing the Data
Now that we’ve dealt with the missing values in our data and normalized our feature 

values, we can split the data into training and test datasets. Just like we did previously, 

we will split our data using a 75:25 ratio. Before we do so, we need to convert our data 

into a data frame.

> donors <- data.frame(donors)
 
> set.seed(1234)
> sample_index <- sample(nrow(donors), round(nrow(donors)*.75), replace = FALSE)
> donors_train <- donors[sample_index, ]
> donors_test <- donors[-sample_index, ]

The class distribution for our original (donors), training (donors_train), and test 

(donors_test) datasets show that we have a class imbalance problem (refer to Chap-

ter 3 for a refresher on dealing with class imbalance).

> round(prop.table(table(select(donors, respondedMailing), exclude = NULL)), 4) * 100
 
FALSE  TRUE 
94.83  5.17 
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> round(prop.table(table(select(donors_train, respondedMailing), exclude = NULL)), 4) * 100
 
FALSE  TRUE 
94.75  5.25 
 
> round(prop.table(table(select(donors_test, respondedMailing), exclude = NULL)), 4) * 100
 
FALSE  TRUE 
95.04  4.96

Using the SMOTE() function from the DMwR package, we balance the training data.

> library(DMwR)
> set.seed(1234)
> donors_train <- SMOTE(respondedMailing ~ ., donors_train, perc.over = 
100, perc.under = 200)
 
> round(prop.table(table(select(donors_train, respondedMailing), 
exclude = NULL)), 4) * 100
 
FALSE  TRUE 
   50    50

With our original dataset split into training and test sets and our training data bal-

anced, we now need to split off the class labels into separate datasets. Using the pull() 

command from the tidyverse, we create new vectors to hold the labels of the class 

feature (respondedMailing). The specifications for the knn() function that we use 

subsequently requires that these labels be factors, so we convert our vector values into 

factors as well, using the as.factor() function.

> donors_train_labels <- as.factor(pull(donors_train, respondedMailing))
> donors_test_labels <- as.factor(pull(donors_test, respondedMailing))

After we’ve created vectors donors_train_labels and donors_test_labels  

to hold the class labels for our training and test data, we can then remove the class 

labels from our training and test datasets.

> donors_train <- data.frame(select(donors_train, -respondedMailing))
> donors_test <- data.frame(select(donors_test, -respondedMailing))

We are now ready to use k-NN to label our unlabeled test examples using the 

training data.
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Building the Model
Using the knn() function from the class package with k set to 5, we predict the labels 

of our test data using the training data and corresponding class labels.

> library(class)
> donors_pred <-
   knn(
     train = donors_train,
     test = donors_test,
     cl = donors_train_labels,
     k = 5
   )
 
> head(donors_pred)
 
[1] TRUE  FALSE FALSE TRUE  TRUE  FALSE
Levels: FALSE TRUE

Evaluating the Model
Let’s see how well we did with our predictions. The first thing we look at is a confu-

sion matrix of our predicted values versus the actuals. Then we calculate our predic-

tive accuracy.

> donors_pred_table <- table(donors_test_labels, donors_pred)
> donors_pred_table
 
                  donors_pred
donors_test_labels FALSE TRUE
             FALSE  6132 5337
             TRUE    278  320
 
> sum(diag(donors_pred_table)) / nrow(donors_test)
 
[1] 0.5346814

Our results show that using k = 5 yields a predictive accuracy of 53.47 percent. This 

is only marginally better than a coin toss, so we definitely have some work to do here. 

Recall that for this example, we used only the numeric features for our predictions, so in 

the following exercises, we provide the reader with the opportunity to improve upon our 

predictions by taking into account the categorical features.
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EXERCISES
1. Examine the following figure. The square near the center of the diagram represents a 

new, unlabeled point. Using the k-nearest neighbors algorithm, what class would you 

assign the point using each of the following parameters?

a. k = 1

b. k = 3

c. k = 7

d. k = 15

2. Modify the code used for the donation data use case to incorporate categorical vari-

ables into the model. What impact does this have on the accuracy of the model?



Chapter 7

Naïve Bayes

In Chapter 6, we introduced the k-nearest neighbor classifier as 

a part of a family of lazy learners that assign a class to new data 

based on the most common class of existing similar data points. 

In this chapter, we introduce a new classifier called naïve Bayes, 

which uses a table of probabilities to estimate the likelihood that an 

instance belongs to a particular class.

The naïve Bayes approach is based on the premise that the 

probability of prior events can be a good estimate of the probability 

of future events. For example, when forecasting the probability 

of rain for today, we would report on the proportion of prior days 

with the same weather conditions as today, in which it rained. So, 

if it rained 4 out of 10 of those days, then we estimate a 40 percent 

chance of rain today. This approach is useful in several domains and 

problem areas. In this chapter, we will use a spam-filtering example 

to illustrate how the naïve Bayes classifier can be used to label 

unseen emails based on how similar prior emails were labeled.

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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By the end of this chapter, you will have learned the following:

 ◆ The basic principles of probability, joint probability, and condi-

tional probability

 ◆ How the naïve Bayes classification approach works and how 

that differs from classical Bayesian methods

 ◆ How to build a naïve Bayes classifier in R and how to use it to 

predict the class values of previously unseen data

 ◆ The strengths and weaknesses of the naïve Bayes method

CLASSIFYING SPAM EMAIL
As we explore the naïve Bayes method in this chapter, we will use a dataset of more than 

1,600 email messages, labeled as either “ham” (legitimate messages) or “spam” (unsolic-

ited commercial email). The emails in this dataset come from the Enron Corporation and 

were initially released by the Federal Energy Regulatory Commission as part of its inves-

tigation into the collapse of the firm.

The dataset that we will use is available to you as part of the electronic resources 

accompanying this book. (See the introduction for more information on accessing the 

electronic resources.)

This dataset uses a format different from others that you’ve encountered so far in 

this book. It is a sparse matrix. That means that it is a matrix of 1s and 0s where the vast 

majority of the values are 0. In this case, each row in the matrix represents a single email 

message from the Enron archive. Each column represents a word that might appear in 

the message. The value of each field is 1 if the email message corresponding to the row 

contains the word corresponding to that column. For example, imagine we had the fol-

lowing email message:

“Hi, Let’s get coffee”

along with this separate message that was sent in reply:

“Great! Coffee sounds great!”

Together, these messages could be represented in the matrix shown in Table 7.1.
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Notice that the table contains a single column for each unique word that appeared 

in the messages. The columns contain words where capitalization and punctuation have 

been removed. The values are all 0 or 1, regardless of the number of times each word 

appears in a message. For example, the second message contains the word great twice, 

but that field still contains a 1 in the matrix.

Of course, this is a vastly simplified example. The full Enron dataset contains 33,616 

rows, each corresponding to an individual email message. It also contains 29,572 col-

umns, corresponding to unique words in the message.

TIP We’ve already done some cleaning of this dataset to reduce the number 
of columns. First, we removed stop words from the dataset. These are words 
such as and, or, the, and are that appear very commonly but do not add 
contextual value. Second, we’ve eliminated words that did not appear in at 
least 10 separate messages. Finally, we removed numbers from the dataset so 
that we are working only with words. These are common actions taken when 
cleaning text-based datasets.

The Enron dataset also contains a column containing a label for each message indi-

cating whether the message was unsolicited commercial email (“spam”) or a regular 

email (“ham”). Our task is to use this dataset to develop a model that will help us predict 

whether a newly arrived message is spam or ham. We could then use that model to per-

form spam filtering against new email messages. By the end of this chapter, we will have 

created a model that does this using the naïve Bayes classification approach.

NAÏVE BAYES
The naïve Bayes method is named after 18th century clergy and mathematician Thomas 

Bayes who developed mathematical principles for describing the probability of events 

and how those probabilities are to be revised in light of additional information. Those 

foundational mathematical principles are known today as Bayesian methods. Applied to 

machine learning, an event is the expected outcome (or class) such as “true” or “false,” 

Table 7.1 Sparse Matrix from Two Sample Messages

message_id coffee get great Hi lets sounds

1 1 1 0 1 1 0
2 1 0 1 0 0 1
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“yes” or “no,” and “spam” or “ham.” A classifier based on Bayesian methods is one that 

attempts to predict the class of unlabeled data by answering this question: “Based on 

prior evidence, what is the most likely class of a new unlabeled instance?” It does this by 

doing the following:

1. Finding all existing instances with the same feature values (or profile) as the 

un labeled instance

2. Determining the most likely class that those instances belong to

3. Assigning the identified class label to the unlabeled instance

This classification approach uses the concept of conditional probability to deter-

mine the most likely class of an instance. Before we go into detail on how this process 

works, let’s take some time to refresh our knowledge of some of the fundamental con-

cepts used by the naïve Bayes classifier—probability, joint probability, and conditional 

probability.

Probability
The probability of an event is how likely the event is to happen. Since most events cannot 

be predicted with total certainty, the chance that an event will occur is often described 

in terms of the probability of the event. For example, when a coin is tossed, there are 

two possible outcomes: heads or tails. The probability of one of those outcomes, heads 

for example, is the number of outcomes we care about (heads) divided by the total 

number of possible outcomes (heads or tails). Therefore, the probability of heads is 1
2

. 

The mathematical notation for this is P head 1
2

.

We can also use previous occurrences of an event to inform our understanding of how 

likely that event is to happen in the future. In such a scenario, we describe the probability 

of an event as the number of times that the event has previously occurred divided by the 

total number of times that the event could have occurred. The number of times that an 

event could have occurred is called a trial.

Let’s use weather forecasting as an example, assuming we had no access to Doppler 

weather radar data but would like to predict the likelihood of afternoon rain showers 

today. To do this, we could use historical events to inform our prediction. Let’s say that 

we had access to a dataset that contained early morning weather conditions such as 

barometric pressure, wind speed, temperature, and humidity for the past year. Let’s say 

that this dataset also had a Boolean value that indicated whether it rained in the after-

noon or not, for each of those days. Based on this historical data, if we identified 10 days 

with the same early morning weather conditions as today and if it rained in the after-

noon 8 out of those 10 days, we can say that the probability of rainfall this afternoon is 
8

10
, 0.8, or 80 percent. In this example, the event is afternoon rainfall, the trials are 10, 
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and the number of times the event occurred is 8. In mathematical terms, the notation we 

use to represent the probability of rainfall in this example is P rainfall 0 8. .

It’s important to note that the probability of all mutually exclusive event outcomes 

for a trial have to total 1. Mutual exclusivity implies that an event cannot simultaneously 

occur and not occur. We cannot have rain and no rainfall at the same time. Therefore, 

if the probability of rainfall P rainfall  is 0.8, the probability of no rainfall P rainfall  

would be 1 0 8 0 2. . .

NOTE In probability notation, the symbol  is used to indicate the negation of 
a variable. So, P rainfall is the probability that rainfall will not occur.

Joint Probability
Quite often, we are interested in looking not only at the probability of a single event but 

the probability of several events that occur as part of a trial. To illustrate this concept, 

let’s go back to the scenario we introduced at the beginning of the chapter on classifying 

spam emails. This time, let’s assume we had the following four email messages:

1. “Hi, Let’s get coffee”

2. “Great! Coffee sounds great!”

3. “Free coffee is great!”

4. “Great coffee on Sale!”

If we learned that the first two messages were legitimate email messages (ham) and 

the last two were unsolicited commercial messages (spam), we could then represent the 

email messages in a sparse matrix such as this:

message_id coffee free get great hi lets sale sounds type

1 1 0 1 0 1 1 0 0 ham
2 1 0 0 1 0 0 0 1 ham
3 1 1 0 1 0 0 0 0 spam
4 1 0 0 1 0 0 1 0 spam

In this scenario, each email message would be a trial, and each word, including the 

type of email (ham or spam), would be an event. With this information, we can evaluate 

the probability of more than one event occurring at the same time. This is known as joint 

probability. For example, suppose we wanted to know the probability that a message 

that is a spam message also has the word great in it. If we assume that both events are 

independently occurring, which means that the occurrence of one does not influence the 
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occurrence of the other, then the joint probability of the two events P spam great,  is 

the product of the probabilities of each individual event, which is P spam P great .

Based on our sparse matrix, we can compute both the probability of spam P spam  and 

the probability of great P great . The probability of spam is the number of messages 

that are labeled as spam divided by the total number of messages. P spam 2
4

0 5. . 

The probability of great is the number of messages that have the word great divided 

by the total number of messages. P great 3
4

0 75. . Therefore, the joint probability of 

the two events P spam great, 0 5 0 75 0 375. . . . This can be interpreted to say that the 

probability of an email message having the word great and also being a spam message is 

37.5 percent. In other words, out of every eight email messages, we expect to encounter 

three that contain the word great and also happen to be spam messages.

Conditional Probability
The idea of event independence makes practical sense when working with events that 

are reasonably unrelated, for example the probability of rainfall and the probability of 

receiving a spam message. However, we cannot reasonably conclude that the probability 

of a message being either spam or ham is not in some way dependent or related to the 

probability of the occurrence of certain words within the email. Based on prior experi-

ence, we do know that certain words can be predictive of spam.

For dependent events, instead of simply evaluating the probability that events A and 

B occurred, we determine the probability of event A given that event B occurred. This is 

known as conditional probability, because the probability of event A is conditioned on the 

probability of event B. The notation for this is P A B| , which reads the probability of A 

given B. This relationship can be represented using Bayes theorem, which describes the 

relationship between dependent events A and B as follows:

 
P A B

P A P B A

P B
|

|

 
(7.1)

There are four parts to this formula. The first part is the conditional probability of A 

given that B occurred. This is written as P A B|  and is known as the posterior probability. 

In the spam email example, this is the probability that a message is spam given that it has 

the word great. This is written as P spam great| .

The second part of the Bayes formula is known as the prior probability. It is written 

asP A  and describes the probability of event A by itself, before we consider any addi-

tional information. In the spam email example, this would simply be the probability that 

any prior message is spam, which is P spam . This probability represents our prior belief 
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about the likelihood that a message is spam before we consider any additional evidence. 

According to the sparse matrix from the previous section, we see that of the four mes-

sages, two are labeled as spam. Therefore, P spam 2
4

0 5. .

The next part of the Bayes formula represents the inverse of the posterior probabil-

ity. It is the probability of B given that A occurred. This is known as the likelihood and is 

written as P B A| . In our spam email example, this is the likelihood that the word great 

occurred in any prior spam messages. The sparse matrix shows that there are two mes-

sages labeled as spam, and both of them have the word great. So, P great spam| 2
2

1.

The fourth part of the Bayes formula is called the marginal likelihood. It represents 

the probability of event B alone and is written as P B . In our spam email example, this 

is the likelihood of any email message having the word great. According to our sparse 

matrix, three messages contain the word great. Therefore, P great 3
4

0 75. .

Now we can apply the Bayes theorem (Equation 7.1) to our spam email example. To 

determine the probability that an email message is spam given that it contains the word 

great, we do the following:

 
P spam great

P spam P great spam

P great
|

| 0 5 1

0 75
0 667

.

.
.

 
(7.2)

This means that the probability that a message is spam, given that it contains the 

word great, is 66.7 percent.

Classification with Naïve Bayes
Now that we have a fundamental understanding of how the Bayes theorem is used to 

explain the relationship between two dependent events, let’s explore how this idea is 

used for classification. Earlier, we mentioned that a classifier based on Bayesian methods 

is one that attempts to predict the class of unlabeled data by answering this question: 

“Based on prior evidence, what is the most likely class of a new unlabeled instance?” 

The most likely class of an instance is the class that it has the highest probability of 

belonging to. To determine this, we need to calculate the conditional probability that an 

instance belongs to each class given its predictor values. Suppose our dataset consists 

of n  predictors denoted as x x x
n1 2

, , ,  and m distinct class values, which are represented 

as C C C
m1 2

, , , ; then using the Bayes theorem, the conditional probability that an instance 

belongs to class C
k
 is denoted as follows:

 
P C x x x

P C P x x x C

P x x x
k n

k n k

n

| , , , 
, ,  |

 , , 
1 2

1 2

1 2







,

,  
(7.3)
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Based on the results of this computation, each instance is then assigned to the class 

that it has the highest conditional probability of belonging to.

In the previous example where we looked only at the occurrence of a single word, 

great, we were able to pretty easily compute the likelihood P great spam|  by hand. When 

we begin to consider additional features, the complexity of such a computation signifi-

cantly increases. In such a scenario, we would need to compute the product of the prob-

ability of each feature conditioned on every other feature being considered. According 

to the chain rule for the repeated application of conditional probability, the likelihood in 

Equation 7.3 would be computed as follows:

 P x x x C
n k1 2

, , , |   (7.4)

 P x x x x C P x x x C
n k n k1 2 3 2 3

| |, , , , , , ,   
P x x x x C P x x x x C P x x x C

n k n k n k1 2 3 2 3 4 3 4
| | |, , , , , , , , , , ,    

 
P x x x x C P x x x x C P x x C P x C

n k n k n n k n1 2 3 2 3 4 1
| | | |, , , , , , , , ,  

kk k
P C  

As you can see, this is tedious to calculate. The more predictor variables we consider 

in our computation, the more intractable computing the likelihood becomes. Consider 

for a moment using this approach to classify real-world email messages with tens or hun-

dreds of words. That would be terribly inefficient.

To overcome this inefficiency, the naïve Bayes classifier makes a naïve assumption of 

class conditional independence between features.

NOTE A naïve assumption is a simplifying assumption that relaxes the rules 
that guide an approach in order to make it easier to work with. The class 
conditional independence assumption is naïve because the probability of 
each feature’s occurrence is not always independent of other features.

This means that events are independent as long as they are conditioned on the same 

class value. Earlier, we mentioned that the probability of a message being either spam 

or ham is dependent or related to the probability of the occurrence of certain words 

within the email. With class conditional independence, we make the assumption that for 

all spam messages, the probability of occurrence of each word is independent of each 

other. And for the ham messages, the probability of occurrence of each word is also inde-

pendent of each other. With this in mind, instead of the complicated likelihood decompo-

sition in Equation 7.4, we now have the following:

  P x x x C P x C P x C P x C P x C
n k k k k n k1 2 1 2 3

, , , | | | | |  (7.5)
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This equation significantly simplifies our calculation and allows the classifier to scale 

much easier as we consider additional features. Applied to Equation 7.3, the naïve Bayes 

classifier computes the conditional probability that an instance belongs to class C
k
 

as follows:

  
P C x x x

P C P x C P x C P x C

P x x
k n

k k k n k
| , , , 

| | |

, ,
1 2

1 2

1 2





  ,  x
n  

(7.6)

Let’s work through an example. To help with our illustration, we present a frequency 

table that shows the number of spam and ham email messages that contain the words 

coffee, free, great, and sale.

Class Word Yes No Total

spam coffee 10 10 20
free 4 16
great 10 10
sale 8 12

ham coffee 15 65 80
free 2 78
great 25 55
sale 5 75

Note that the frequency table is not a count of the number of occurrences of words 

in existing emails but rather a count of existing emails where each word occurs. So, if a 

word occurs more than once in an email, it is still counted once. For example, the first 

row indicates that among the 20 email messages that are labeled as spam, the word 

coffee occurred at least once in 10 of them and did not in 10 others. The last row of the 

table indicates that among the 80 existing ham messages, the word sale occurred at 

least once in five of them and not in 75 others.

Now suppose that we receive a new email message that says, “The Great Coffee 

Sale!”. How do we classify this email message? After we remove punctuations and stop 

words, we are left with three words—coffee, great, and sale. Based on our frequency 

table and using the naïve Bayes classification approach, we would need to first compute 

the conditional probability that a message is spam, given that it has the words coffee, 

great, and sale, but not free ( free). This is represented as follows:

 P spam coffee free great sale| , , ,  (7.7)

  

P spam P coffee spam P free spam P great spam P sale spam| | | |

P coffee free great sale,  , ,  
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We then need to also compute the conditional probability that the message is ham, 

given that it has the words coffee, great, and sale, but not free ( free).

 P ham coffee free great sale| , , ,  (7.8)

  

P ham P coffee ham P free ham P great ham P sale ham

P co

| | | |

fffee free great sale, , ,  

The conditional probability that the message is spam (Equation 7.7) should be com-

pared with the conditional probability that the message is ham (Equation 7.8). Since the 

denominator for both equations is the same, we ignore them to simplify our computa-

tions and focus only on the numerators. Without the denominators, we now refer to the 

two computations as the likelihood of spam and the likelihood of ham.

The probability that a particular message is spam is the likelihood that it is spam 

divided by the likelihood that it is either spam or ham. Similarly, the probability that a 

particular message is ham is the likelihood that it is ham divided by the likelihood that is 

either spam or ham. Using the values from our frequency table, we can compute the like-

lihood that our message is spam as follows:

 
20

100
10

20
16

20
10

20
8

20
0 016.

 
(7.9)

 while the likelihood that our message is ham is computed as follows:

 
80

100
15

80
78

80
25

80
5

80
0 003.

 
(7.10)

Therefore, the probability that our message is spam is as follows:

 0 016 0 016 0 003 0 842. / . . .  (7.11)

The probability that our message is ham is as follows:

 0 003 0 016 0 003 0 158. / . . .  (7.12)

Therefore, based on the existing labeled email messages and using the naïve Bayes 

classification approach, the new message that reads “The Great Coffee Sale!” has 

an 84.2 percent probability of being spam and a 15.8 percent probability of being ham. 

Since the probability of the message being spam is higher than that of it being ham, the 

message will be classified as a spam message.
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Additive Smoothing
Now, let’s consider a slight change to the previous example. Suppose that the word sale 

did not occur in any ham messages. This means that the last line of our previous fre-

quency table would be as follows:

Class Word Yes No Total

ham Sale 0 80 80

Using the naïve Bayes approach, the likelihood that the new message is spam 

would still be 0.016. However, the likelihood that the message is ham would now be 

as follows:

 
80

100
15

80
78

80
25

80
0

80
0

 (7.13)

This means that the probability that our message is ham is now as follows:

 0 0 016 0 0/ .  (7.14)

With the introduction of a zero-frequency word to our calculation, the likelihood of 

ham will always be zero as well, regardless of the frequency of occurrence of any other 

words in our table. This means that the probability of spam will always be 100 percent 

for any new message that does not have the word sale. This is obviously incorrect.

To resolve this problem, we do what is called additive smoothing or Laplace smoothing. 

The approach involves adding a small number, known as the pseudocount, to the probability 

calculation for each word. This number is typically set at 1, and by adding it, we ensure that 

none of the words has a zero probability of occurrence within each class. Therefore, given 

class frequency N , instead of calculating the probability of a certain word x
i
 as follows:

 
x
N

i

 (7.15)

 the calculation now becomes as follows:

 
x

N d
i

 (7.16)
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where  is the pseudocount and d  is the number of features (or words) in the data-

set. Applying additive smoothing to our example, the probability of sale given ham 

p sale ham|  will now be as follows:

 
0 1

80 1 4
0 012.

 
(7.17)

Using this approach, to classify a new email message that reads “The Great Coffee 

Sale!”, we calculate the likelihood of spam as follows:

 
20

100
11

24
17

24
11

24
9

24
0 0112.

 (7.18)

 while the likelihood of ham is computed as follows:

 
80

100
16

84
79

84
26

84
1

84
0 0005.

 (7.19)

Therefore, the probability that our message is spam is as follows:

 0 0112 0 0112 0 0005 0 957. / . . .  (7.20)

The probability that our message is ham is as follows:

 0 0005 0 0112 0 0005 0 043. / . . .  (7.21)

The results we get with additive smoothing are much more reasonable. The introduc-

tion of a zero-frequency word does not zero out our posterior probabilities.

Working with Continuous Features  
in Naïve Bayes
As you may have noticed, the spam-filtering example we’ve used so far to illustrate 
the mechanics of the naïve Bayes approach includes only categorical features. 
Because the naïve Bayes approach is based on the conditional probability of 
the occurrence of a particular value within a dataset, it does not work well with 
continuous features (which may have values that occur only once within the dataset). 
To overcome this limitation, continuous features should be discretized (or binned) 
prior to being used in a naïve Bayes model. Recall that we introduced several 
approaches to binning as part of the process of data preparation in Chapter 3.
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Naïve Bayes Model
In the previous sections, we introduced the theoretical principles behind the naïve Bayes 

classifier. Now, let’s put the theory to practice using R. In this section, we will use a naïve 

Bayes classifier to solve the problem we introduced at the beginning of the chapter, 

which is to label emails as either spam or ham. As usual, we first need to import and pre-

view our data.

> library(tidyverse)
> email <- read_csv("email.csv")
> head(email)
 
# A tibble: 6 x 1,103
  message_index message_label ability abuse accept acceptance accepted access
          <dbl> <chr>           <dbl> <dbl>  <dbl>      <dbl>    <dbl>  <dbl>
1            12 ham                 0     0      0          0        0      0
2            21 ham                 0     0      0          0        0      0
3            29 ham                 0     0      0          0        0      0
4            43 ham                 0     0      0          0        0      0
5            59 ham                 0     0      0          0        0      0
6            68 ham                 0     0      0          0        0      0
# ... with 1,095 more variables: account <dbl>, accounting <dbl>, accounts <dbl>,...

The head() command provides us with a view of the first six rows of the dataset. The 

output shows that we have 1,103 variables in our dataset. The first variable is message _

index, which uniquely identifies each email message. The second variable is message _

label, which identifies whether the message is spam or ham. This is the feature we will 

attempt to predict (our class). A number of machine learning algorithms in R require that 

the class feature be a factor, so let’s convert this variable to a factor.

> email <- email %>%
   mutate(message_label = as.factor(message_label))

The remaining 1,101 variables in our dataset represent the words that may appear 

in each message. Let’s identify which of these words occurs most often in our dataset. 

To do so, we first need to convert the dataset so that instead of having a column for 

the count of each word, we have two columns—one for the word and the other for the 

count. To do so, we use the gather() verb from the tidyr package (which is part of 

the Tidyverse). The gather() command pivots the columns of our data into rows. We 

pass four arguments to it. The first is the key, which is the name for the new column that 

holds the names of the original columns, which in this case are the words. We name this 

column word. The second argument is the value, which is the name for the new column 
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that holds the count for each of the words in our original dataset. We name this column 

count. The last two arguments tell the gather() verb to ignore message _ index and 

message _ label, which are features during the pivot process.

> email %>%
   gather(word, count,-message_index, -message_label)
 
# A tibble: 1,850,781 x 4
   message_index message_label word    count
           <dbl> <fct>         <chr>   <dbl>
 1            12 ham           ability     0
 2            21 ham           ability     0
 3            29 ham           ability     0
 4            43 ham           ability     0
 5            59 ham           ability     0
 6            68 ham           ability     0
 7            72 ham           ability     0
 8           104 ham           ability     0
 9           105 ham           ability     0
10           110 ham           ability     0
# ... with 1,850,771 more rows

The next thing we do is group our data by word; sum the count variable, which we call 

occurrence; and sort our results in descending order of occurrence. To list only the 

top 10 words by occurrence, we use the slice() command from the dplyr package.

 > email %>%
   gather(word, count, -message_index, -message_label) %>%
   group_by(word) %>%
   summarize(occurrence = sum(count)) %>%
   arrange(desc(occurrence)) %>%
   slice(1:10)
 
# A tibble: 10 x 2
   word        occurrence
   <chr>            <dbl>
 1 enron              382
 2 time               366
 3 http               284
 4 information        279
 5 message            266
 6 email              251
 7 mail               250
 8 business           216
 9 company            212
10 day                208
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As we can see from the results, enron is the top occurring word among all email mes-

sages. This not surprising considering that the email messages are from the Enron Cor-

poration. The other top occurring words mostly seem to be a combination of words that 

describe everyday business. Now, let’s see if there is a difference in the top occurring 

words among ham messages in comparison to spam messages. To do so, we modify our 

previous code by filtering for either ham or spam. The top 10 occurring words for ham 

messages are as follows:

> email %>%
   filter(message_label=='ham') %>%
   gather(word, count, -message_index, -message_label) %>%
   group_by(word) %>%
   summarize(occurrence = sum(count)) %>%
   arrange(desc(occurrence)) %>%
   slice(1:10)
 
# A tibble: 10 x 2
   word      occurrence
   <chr>          <dbl>
 1 enron            382
 2 pmto             191
 3 time             185
 4 message          169
 5 ect              165
 6 forwarded        162
 7 questions        160
 8 hou              153
 9 amto             147
10 call             145

Using the slice() Command
The slice() command is useful in specifying which rows of a data frame or tibble to 
display. It generally takes two arguments. The first argument is the dataset to display, 
and the second argument specifies how much of the data to display. To display a 
single row, we provide the slice() command with the row number to display. For 
example, to display the first row of our email data, we would use slice(email, 1). To 
display a range of values, we use the : operator to specify the starting and ending row 
numbers to display. For example, to display the sixth to tenth rows of our email data, 
we use slice(email, 6:10). We can also use the slice() command to specify which 
rows not to display. For example, to display all the rows of the email data except the 
fifth row, we use slice(email, -5).
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The top 10 occurring words among spam messages are as follows:

> email %>%
   filter(message_label=='spam') %>%
   gather(word, count, -message_index, -message_label) %>%
   group_by(word) %>%
   summarize(occurrence = sum(count)) %>%
   arrange(desc(occurrence)) %>%
   slice(1:10)
 
# A tibble: 10 x 2
   word        occurrence
   <chr>            <dbl>
 1 http               233
 2 time               181
 3 email              171
 4 information        148
 5 money              147
 6 company            141
 7 mail               137
 8 www                123
 9 free               121
10 business           120

Our results show that the top occurring words in both sets are rather different, 

except for the word time, which shows up in both lists. Among the ham messages, 

enron remains the top occurring word, while http is the top occurring word among 

spam messages.

Splitting the Data
The next step in our process is to split the data into training and test sets. We use a 75:25 

training-to-test split ratio. Then we show the class distributions for each of the datasets.

> set.seed(1234)
> sample_set <- sample(nrow(email), round(nrow(email)*.75), replace = FALSE)
> email_train <- email[sample_set, ]
> email_test <- email[-sample_set, ]
 
> round(prop.table(table(select(email, message_label))),2)
 
 ham spam 
0.49 0.51 
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> round(prop.table(table(select(email_train, message_label))),2)
 
 ham spam 
0.49 0.51 
 
> round(prop.table(table(select(email_test, message_label))),2)
 
 ham spam 
0.49 0.51

The class distributions show that we have a pretty balanced dataset: 49 percent of 

the records are ham, and 51 percent are spam across the entire dataset as well as the 

training and testing subsets.

Training a Model
We are now ready to build our naïve Bayes model. To do so, we use the naiveBayes() 

function from the e1071 package in R. The function takes three arguments. The first is 

the learning formula, which we specify as follows:

message_label ~ .-message_index

This means that our classifier should predict the message _ label using all the other 

variables in the dataset except message _ index. The second argument is the dataset 

used to train the model. This is email _ train. The final argument is the pseudocount 

value that should be used for Laplace smoothing. We set this value to 1.

> library(e1071)
> email_mod <- 
naiveBayes(message_label ~ .-message_index, data = email_train, laplace = 1)

Evaluating the Model
Now that we’ve trained our model, let’s evaluate how well it does against the test data in 

predicting whether a message is spam or ham. To do this, we use the predict() function 

from the stats package. We pass three arguments to the predict() function. The first 

argument is the model we just trained: email _ mod. The second argument is the test 

data email _ test. The final argument is the type of prediction we want. We can either 

get the predicted probabilities or get the predicted class labels. To get the predicted 

probabilities, we set type = “raw”.

> email_pred <- predict(email_mod, email_test, type = "raw")
> head(email_pred)
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               ham        spam
[1,]  1.000000e+00 0.00000e+00
[2,]  1.000000e+00 4.26186e-55
[3,]  0.000000e+00 1.00000e+00
[4,]  1.000000e+00 0.00000e+00
[5,] 3.050914e-202 1.00000e+00
[6,]  1.000000e+00 0.00000e+00

The results show that for the first two messages, the probability that the message is 

ham is at or near 100 percent. Since the probability for ham is larger than that for spam, 

we classify these two messages as ham. However, for the third message, the probability 

that the message is spam is 100 percent. This message will be classified as spam. Looking 

at the probabilities for the next three results shows that those messages will be clas-

sified as ham, spam, and ham, respectively. To get the predicted class labels directly 

instead of the predicted probabilities, we need to set type = “class” for the pre-

dict() function.

> email_pred <- predict(email_mod, email_test, type = "class")
> head(email_pred)
 
[1] ham  ham  spam ham  spam ham 
Levels: ham spam

As the results show, the predicted class labels provide the same results as what 

we inferred from the predicted probabilities. With our class predictions, we can now 

 evaluate how well we did against the labels of the test data. Similar to what we’ve done 

previously, we first create a confusion matrix based on our actuals and predicted values, 

and then we compute the predictive accuracy of the model based on the values of the 

 confusion matrix.

> email pred table <- table(email_test$message_label, email_pred)
> email_pred_table
 
      email_pred
       ham spam
  ham  203    2
  spam  80  135
 
> sum(diag(email_pred_table)) / nrow(email_test)
 
[1] 0.8047619
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Our model has a predictive accuracy of 80.5 percent. Not bad for a low-budget spam 

filter. However, there is some room for improvement. To improve our predictive accu-

racy, we need to gather more training examples. This not only increases the number of 

examples (instances) considered, it also potentially increases the number of words (fea-

tures) considered.

Strengths and Weaknesses of the Naïve Bayes 
Classifier
The naïve Bayes classifier is a powerful and effective approach to classification, espe-

cially for text data. In this section, we take a look at some of the strengths and weak-

nesses of the naïve Bayes classifier to get a better understanding of when it’s useful and 

when it’s not the best approach to use.

Here are some strengths:

 • One of the primary strengths of the naïve Bayes classifier is its simplicity and com-

putational efficiency.

 • It does a great job handling categorical features directly, without any pre-

processing.

 • It often performs better than more sophisticated classifiers when working with a 

large number of predictors.

 • It handles noisy and missing data pretty well.

Here are some weaknesses:

 • To get good performance, naïve Bayes needs a sizable amount of data.

 • Because of the naïve assumption of class conditional independence, computed 

probabilities are not reliable when considered in isolation. The computed prob-

ability of an instance belonging to a particular class has to be evaluated relative to 

the computed probability of the same instance belonging to other classes.

 • It does not work well for datasets with a large number of continuous features.

 • It assumes that all features within a class are not only independent but are equally 

important.

CASE STUDY: REVISITING THE HEART DISEASE 
DETECTION PROBLEM
For our chapter case study, let’s take another look at the first problem we introduced 

in Chapter 6. Our objective with that problem was to examine the records of existing 
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patients and to use that information to predict whether a particular patient is likely 

to suffer from heart disease or not. In that chapter, we used the k-nearest neighbor 

approach to make our predictions. This time, we will apply a naïve Bayes approach to 

the problem.

Importing the Data
We begin by importing and previewing the data.

> library(tidyverse)
> heart <- read_csv("heart.csv", col_types = "nffnnffnfnfnff")
> glimpse(heart)
 
Observations: 920
Variables: 14
$ age            <dbl> 63, 67, 67, 37, 41, 56, 62, 57, 63, 53, 57, 56, 56, 44, ...
$ sex            <fct> male, male, male, male, female, male, female, female, ma...
$ painType       <fct> Typical Angina, Asymptomatic, Asymptomatic, Non-Anginal ...
$ restingBP      <dbl> 145, 160, 120, 130, 130, 120, 140, 120, 130, 140, 140, 1...
$ cholesterol    <dbl> 233, 286, 229, 250, 204, 236, 268, 354, 254, 203, 192, 2...
$ highBloodSugar <fct> TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, F...
$ restingECG     <fct> Hypertrophy, Hypertrophy, Hypertrophy, Normal, Hypertrop...
$ restingHR      <dbl> 150, 108, 129, 187, 172, 178, 160, 163, 147, 155, 148, 1...
$ exerciseAngina <fct> FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FAL...
$ STdepression   <dbl> 2.3, 1.5, 2.6, 3.5, 1.4, 0.8, 3.6, 0.6, 1.4, 3.1, 0.4, 1...
$ STslope        <fct> Downsloping, Flat, Flat, Downsloping, Upsloping, Upslopi...
$ coloredVessels <dbl> 0, 3, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,...
$ defectType     <fct> FixedDefect, Normal, ReversibleDefect, Normal, Normal, N...
$ heartDisease   <fct> FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRU... 

Our output shows that we have 920 instances and 14 features. We are working with a 

lot fewer features than what we had for the spam-filtering example.

Exploring and Preparing the Data
Now that we have our data, let’s get a big-picture view of what we’re dealing with here. 

The summary() function is always a good way to get a quick summary of our data.

> summary(heart)
 
      age            sex                  painType     restingBP    
 Min.   :28.00   male  :206   Typical Angina  : 46   Min.   :  0.0  
 1st Qu.:47.00   female:714   Asymptomatic    :496   1st Qu.:120.0  
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 Median :54.00                Non-Anginal Pain:204   Median :130.0  
 Mean   :53.51                Atypical Angina :174   Mean   :132.1  
 3rd Qu.:60.00                                       3rd Qu.:140.0  
 Max.   :77.00                                       Max.   :200.0  
                                                     NA's   :59     
  cholesterol    highBloodSugar           restingECG    restingHR    
 Min.   :  0.0   TRUE :138      Hypertrophy    :188   Min.   : 60.0  
 1st Qu.:175.0   FALSE:692      Normal         :551   1st Qu.:120.0  
 Median :223.0   NA's : 90      waveAbnormality:179   Median :140.0  
 Mean   :199.1                  NA's           :  2   Mean   :137.5  
 3rd Qu.:268.0                                        3rd Qu.:157.0  
 Max.   :603.0                                        Max.   :202.0  
 NA's   :30                                           NA's   :55     
 exerciseAngina  STdepression            STslope    coloredVessels  
 FALSE:528      Min.   :-2.6000   Downsloping: 63   Min.   :0.0000  
 TRUE :337      1st Qu.: 0.0000   Flat       :345   1st Qu.:0.0000  
 NA's : 55      Median : 0.5000   Upsloping  :203   Median :0.0000  
                Mean   : 0.8788   NA's       :309   Mean   :0.6764  
                3rd Qu.: 1.5000                     3rd Qu.:1.0000  
                Max.   : 6.2000                     Max.   :3.0000  
                NA's   :62                          NA's   :611     
            defectType  heartDisease
 FixedDefect     : 46   FALSE:411   
 Normal          :196   TRUE :509   
 ReversibleDefect:192               
 NA's            :486               

Our output shows that we have some missing values in our dataset. It also shows that 

some of our numeric features have a wider range of values than others. In the previous 

chapter, prior to applying the k-NN approach, we had to impute the missing values and 

normalize the data. The naïve Bayes approach does not require us to do either one of 

those things. The naïve Bayes classifier ignores missing data and does not require that 

feature values be normalized to a standard scale.

The next step in our process is to split the data. Similar to what we did in Chapter 6, 

we use the sample() function to partition 75 percent of our data as the training dataset 

and the remaining 25 percent as the test dataset.

> set.seed(1234)
> sample_set <- sample(nrow(heart), round(nrow(heart)*.75), replace = FALSE)
> heart_train <- heart[sample_set, ]
> heart_test <- heart[-sample_set, ]
 
> round(prop.table(table(select(heart, heartDisease))),2)
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FALSE  TRUE 
 0.45  0.55 
 
> round(prop.table(table(select(heart_train, heartDisease))),2)
 
FALSE  TRUE 
 0.45  0.55 
 
> round(prop.table(table(select(heart_test, heartDisease))),2)
 
FALSE  TRUE 
 0.43  0.57

The output shows that the class distributions of our new partitions (heart _ train 

and heart _ test) are similar to the original dataset (heart) and that our data does not 

suffer from an imbalance problem. So, we are done with the data preparation stage and 

are ready to move on to modeling.

Building the Model
Similar to what we did earlier in the chapter, we use the naiveBayes() function from 

the e1071 package to train a model.

> library(e1071)
> heart_mod <- naiveBayes(heartDisease ~ ., data = heart_train, laplace 
= 1)

To see the probabilities generated by the model, we simply call the model.

> heart_mod
 
Naive Bayes Classifier for Discrete Predictors
 
Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)
 
A-priori probabilities:
Y
    FALSE      TRUE 
0.4521739 0.5478261 

The first set of probabilities our model outputs are the prior probabilities for 

each class, which it calls A-priori probabilities. Note that this is the same as the class 
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distribution for our training data. After these probabilities, the output shows the con-

ditional probabilities for each feature (for the sake of brevity, we show only a subset of 

the output).

Conditional probabilities:
       age
Y           [,1]     [,2]
  FALSE 50.28846 9.361624
  TRUE  55.61640 8.661843
 
       sex
Y            male    female
  FALSE 0.2197452 0.7802548
  TRUE  0.2210526 0.7789474
 
       painType
Y       Typical Angina Asymptomatic Non-Anginal Pain Atypical Angina
  FALSE     0.05696203   0.26265823       0.32594937      0.35443038
  TRUE      0.04450262   0.76178010       0.16230366      0.03141361
 
       restingBP
Y           [,1]     [,2]
  FALSE 129.0404 16.39849
  TRUE  133.0632 20.73787

The format of these conditional probabilities varies depending on the data type 

of the feature. For numeric features, such as age, the output shows the mean ([,1]) 

and standard deviation ([,2]) of the feature for each class value (FALSE, TRUE). 

However, for discrete features, such as sex, the output shows the conditional prob-

ability of each feature value for each class value. For example, the output shows 

that P sex male FALSE| 0 2197452.  and P sex female FALSE| 0 7802548. .

Evaluating the Model
With our model trained against the training data, let’s evaluate how well it does against 

unseen data from the test partition.

> heart_pred <- predict(heart_mod, heart_test, type = "class")
> heart_pred_table <- table(heart_test$heartDisease, heart_pred)
> heart_pred_table
 
       heart_pred
        FALSE TRUE
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  FALSE    78   21
  TRUE     13  118
 
> sum(diag(heart_pred_table)) / nrow(heart_test)
 
[1] 0.8521739

Our results show that the predictive accuracy of our model is 85.2 percent. This is 

pretty good and slightly better than the accuracy of 82.7 percent we got using the k-NN 

classifier against the same dataset. This seems to suggest that if we cared only about 

predictive accuracy, the naïve Bayes classifier is a slightly better approach to use for this 

particular problem. However, as we will see in Chapter 9, predictive accuracy alone does 

not tell the whole story.

EXERCISES
Exercises 1 and 2 use the following frequency table. This is data collected from a gym 

that offers several different levels of membership. Standard membership allows mem-

bers to participate in three classes per week. Elite membership allows members to par-

ticipate in an unlimited number of classes each week. Drop-in membership includes no 

classes, but members may attend a class after paying a per-session fee.

The frequency table shows the number of individuals at the gym who have purchased 

each membership plan, broken out by their age (teenager, adult, or senior citizen), their 

gender (male or female), and their homeownership status.

Level Teenager Adult Senior Male Female Homeowner Total

Drop-in 94 458 280 406 426 422 832
Standard 112 915 174 581 620 817 1201
Elite 20 250 95 60 305 270 365
Total 226 1623 549 1047 1351 1509 2398

1. The gym is soliciting a new member who is a female adult homeowner.

a. Compute Likelihood(Drop-in | Female, Adult, Homeowner)

b. Compute Likelihood(Standard | Female, Adult, Homeowner)

c. Compute Likelihood(Elite | Female, Adult, Homeowner)

d. Which membership level is this person most likely to select?
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2. The gym is soliciting a new member who is a male teenager who does not 

own a home.

a. Compute Likelihood(Drop-in | Male, Teenager, Homeowner)

b. Compute Likelihood(Standard | Female, Adult, Homeowner)

c. Compute Likelihood(Elite | Female, Adult, Homeowner)

d. Which membership level is this person most likely to select?

3. In Chapter 5, we used logistic regression to predict the income of prospective cus-

tomers. Using the same income dataset, attempt to improve upon the predictive 

accuracy of the previous model by using a naïve Bayes approach. Just like we did in 

Chapter 5, limit your data to only the categorical features and don’t forget to balance 

your training data. Did your predictive accuracy improve?



Chapter 8

Decision Trees

In Chapter 7, we introduced the naïve Bayes classifier as a machine 

learning approach that uses the probability of prior events to 

inform the likelihood of a future event. In this chapter, we introduce 

a different type of classifier known as a decision tree. Instead of 

using the probability of prior events to predict future events, the 

decision tree classifier uses a logical tree-like structure to represent 

the relationship between predictors and a target outcome.

Decision trees are constructed based on a divide-and-conquer 

approach, where the original dataset is split repeatedly into 

smaller subsets until each subset is as homogenous as possible. 

We discuss this recursive partitioning approach in some length in 

the early part of the chapter. Later in the chapter, we discuss the 

process of paring back the size of a decision tree to make it more 

useful to a wider set of use cases. We wrap up the chapter by 

training a decision tree model in R, discussing the strengths and 

weaknesses of the approach and working through a use case.

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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By the end of this chapter, you will have learned the following:

 ◆ The basic components of a decision tree and how to 

interpret it

 ◆ How decision trees are constructed based on the process of 

recursive partitioning and impurity

 ◆ Two of the most popular implementations of decision trees 

and how they differ in terms of how they measure impurity

 ◆ Why and how decisions trees are pruned

 ◆ How to build a decision tree classifier in R and how to use it to 

predict the class values of previously unseen data

 ◆ The strengths and weaknesses of the decision tree method

PREDICTING BUILD PERMIT DECISIONS
As we explore the decision tree methods in this chapter, we will use a dataset from the 

Department of Building and Safety in Los Angeles, California. This dataset contains infor-

mation on building permit decisions made by the department and includes information on 

the nature of the project and whether the permit was approved through an expedited one-

day process or whether it was flagged for more extensive review by department staff.

Contractors, of course, would prefer that as many of their building projects as pos-

sible be routed through the expedited process. Our task is to analyze the data to deter-

mine whether there are specific characteristics of a permit application that make it more 

likely to go through the expedited review process.

The dataset that we will use is available to you as part of the electronic resources 

accompanying this book. (See the Introduction for more information on accessing the 

electronic resources.)

The dataset includes a variety of permit data for our analysis:

 • status is the current status of the permit application. It may take on values such 

as Finaled, Issued, Expired, and other status codes.

 • permitType contains the nature of the improvements applied for. It may take on 

values such as Electrical, Building Alteration/Repair, Plumbing, etc.
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 • permitSubtype is the type of building impacted by the permit. It may take on 

values such as 1 or 2 Family Dwelling, Commercial, Apartment, etc.

 • initiatingOffice is the department office location that initiated the permit 

application.

 • ZIP is the ZIP code of the property address.

 • Valuation is the assessed value of the property from tax records.

 • floorArea is the square footage of the property’s floor area.

 • numberUnits is the number of residential units in a multidwelling property.

 • stories represents the number of floors in the building.

 • contractorState is the state where the contractor applying for the permit is 

based, if applicable.

 • licenseType is a field categorizing the type of license held by the contractor, if 

applicable.

 • zone is the zoning category for the property.

 • year and month are the year and month that the permit application was pro-

cessed, respectively.

 • permitCategory is the variable that we want to predict. It contains either the 

value Plan Check or the value No Plan Check.

Given the problem and the data provided, these are some of the questions we need 

to answer:

 • Which variables are most predictive of whether a permit application will be expe-

dited or flagged for further review?

 • How well can we predict whether a permit application will be flagged for review 

or not based on the predictor variables available to us?

By the end of this chapter, we will have answered each of these questions using linear 

regression and related techniques.

DECISION TREES
Decision trees use a tree-like structure to represent the relationship between predic-

tors and potential outcomes. The potential outcomes of a decision tree can be either 

discrete (classification tree) or continuous (regression tree). The structure of a deci-

sion tree, as illustrated in Figure 8.1, is similar to that of an inverted literal tree (or 

upside-down tree). It begins with a single partition known as the root node, which is 
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then followed by progressively smaller partitions as the tree splits and grows. At each 

point where the tree splits, a decision is made in terms of how to further partition 

the data based on the values of a particular predictor. These split points are known 

as decision nodes, and the outcomes of the decision nodes are known as branches. As 

the data is further partitioned, each decision node yields new branches, which lead to 

additional decision nodes until the tree terminates. The end or terminal nodes of the 

tree are known as the leaf nodes. These nodes represent the predicted outcome based 

on the set of decisions made from the root node, through the decision nodes to the 

leaf node.

Figure 8.1 shows a decision tree describing bank customers who received a loan and 

whether they are likely to default or not, based on information about how much they 

borrowed, how much they earn, and whether they own or rent a home. The logic of the 

tree can be easily interpreted as a rule for predicting whether future bank customers 

will default or not default on a loan. Based on the tree, one of the rules would read 

as follows:

IF (customer borrows more than $40,000) AND (customer owns a home) THEN (cus-

tomer will not default)

Borrowed Less
Than $40,000

Earns More Than
$20,000 a Year

Not
Default

Yes No

Root
Node

Owns a Home

No

Branches
Decision

Node

Leaf
Node

Default Not
Default

Yes No

Default

Yes

Figure 8.1 Structure of a decision tree
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The ease with which decision trees can be translated into simple and understand-

able IF-THEN-ELSE rules makes them a very popular classification approach in situations 

where transparency is important for legal or compliance reasons or in situations where 

the decision logic needs to be shared with nontechnical stakeholders.

Two of the most popular implementations of decision tree algorithms are classifica-

tion and regression trees (CART), which was introduced by Breiman et al (1984), and 

C5.0, which was developed by computer scientist J. Ross Quinlan as an extension of his 

original ID3 decision tree algorithm. Both implementations use a similar approach to 

tree building, known as recursive partitioning. This approach repeatedly splits data into 

smaller and smaller subsets until some stopping criteria are met.

Recursive Partitioning
The process of recursive partitioning begins with a decision at the root node. The deci-

sion is to identify which feature is most predictive of the target outcome (or class). 

To determine this, the algorithm evaluates all the features in the dataset and tries to 

identify the one that would result in a split such that the resulting partitions contain 

instances that are primarily of a single class. Once the candidate feature has been iden-

tified, the data is then partitioned based on the values of the feature. Next, each of the 

newly created partitions are also split based on the feature that is most predictive of 

the target outcome among the set of instances within the partition. This partitioning 

process continues recursively until almost all of the instances within a partition are of 

the same class, all the features in the dataset have been exhausted, a specified tree size 

has been met, or when additional partitioning no longer adds value to the tree (more on 

this later).

To help illustrate the recursive partitioning process, imagine that we have data about 

30 personal loans issued by a small commercial bank. The dataset includes information 

about the amount that was borrowed, the annual income of the customer, and whether 

the customer defaulted on the loan. Of the 30 customers represented in the dataset, 

16 defaulted and 14 did not. Using this information, we create a scatterplot of annual 

income against loan amount, as shown in Figure 8.2.

The first thing we need to do is determine which of the two features (Annual 

Income or Loan Amount) is most predictive of the target outcome (Default or Not 

Default). The ideal feature is the one that results in most of the data points within a 

partition having the same class. By visual inspection, we decide on a loan amount of 

$40,000 as our best split. How did we decide on this? We considered (visually) the differ-

ent values for both loan amount and annual income to determine where we could draw 

a vertical or horizontal line that partitioned the data points such that most of the exam-

ples within each partition have the same class (see Figure 8.3).
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With the split that we chose, we get 14 customers with a loan amount of $40,000 

or less and 16 with a loan amount of $40,000 or more. Among the customers who bor-

rowed less than $40,000, eight of them did not default on their loans while six of them 

did. While for the customers who borrowed more than $40,000, 10 of them defaulted on 

their loans and 6 of them did not.
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Figure 8.2 Scatterplot of annual income versus loan amount for 30 commercial 
bank customers (including loan outcomes)
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Figure 8.3 Bank customers partitioned on loan amount of less than or more 
than $40,000
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The next partition we make is within the group of customers who borrowed less than 

$40,000. Among these customers, we can further partition the data into those who earn 

more than $20,000 a year and those who don’t. This is illustrated in Figure 8.4.

Of those customers who borrowed less than $40,000 and earn more than $20,000 a 

year, seven of them did not default on their loan and one of them did. And of those cus-

tomers who borrowed less than $40,000 and earn less than $20,000 a year, four of them 

defaulted on their loan and one did not. If we stopped the recursive partitioning process 

here, we would generate a decision tree as illustrated in Figure 8.5.

As mentioned earlier, decision trees can be translated relatively easily to a set of rules 

that guide future business decisions. Based on our tree (Figure 8.5), we come up with the 

following three rules by following the branches of the tree from the root mode to the 

leaf nodes:

 • IF (customer borrows less than $40,000) AND (customer earns more than $20,000 

a year) THEN (customer will not default).

 • IF (customer borrows less than $40,000) AND (customer earns less than $20,000 a 

year) THEN (customer will default).

 • IF (customer borrows more than $40,000) THEN (customer will default).

As you may have noticed, our decision tree in Figure 8.5 is similar to the one in 

Figure 8.1. The only difference is that we limited ourselves to only use the Loan Amount 

and Annual Income predictors this time, whereas the first tree also considered home 
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Figure 8.4 Bank customers partitioned on loan amount of less than or more than 
$40,000 as well as on annual income less than or more than $20,000 a year
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ownership as a predictor. By including home ownership in the partitioning process, we 

can improve the accuracy of our tree by ensuring that a greater proportion of the data 

points in a partition are of the same class. However, this is not always advisable as it can 

lead to overfitting. As we discussed in Chapter 1, when a model overfits, it reduces its 

ability to generalize to a broad range of problems.

Choosing the Split Values
During the recursive partitioning process, not only is the best feature to split on 
chosen, but the best value (or values) to split on are also chosen.

For discrete variables, this is done by grouping the feature values into two 
subsets for comparison. For example, a feature with three discrete values {a, b, c} 
will be evaluated as {a} versus {b, c}; {b} versus {a, c}; and {c} versus {a, b}.

For continuous variables, the split values are based on the midpoint between 
pairs of consecutive values. For example, a feature with the four continuous values 
{1, 3, 8, 11} will be evaluated based on splits greater than or less than {2, 5.5, 9.5}.

Borrowed Less
Than $40,000

Earns More Than
$20,000 a Year

Not
Default

Yes No

No

Default

Default

Yes

8/6

7/1

6/10

1/5

Figure 8.5 Decision tree of bank customers based on the loan amount and 
annual income. Each decision and leaf node shows the number of customers who 
defaulted (red number) and those who did not (green number).
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In the illustration we just went through, we attempted to partition our data so that the 

data points in each partition were mostly of the same class. We did this manually, via visual 

inspection. Decision tree algorithms do something similar when trying to determine the 

best split. They use a quantitative measure of what is commonly referred to as purity or 

impurity. Purity in this sense means the degree to which data points within a partition are 

of the same class. A partition where all of the data points are of the same class is consid-

ered pure, while a partition with half of its data points are of one class and the other half 

are of a different class is considered impure. In general terms, the more one class domi-

nates the purer the partition is, and the less a single class dominates the more impure the 

partition becomes. Therefore, to find the best split, the decision tree algorithm attempts 

to find the split that results in the least amount of impurity within the new partitions.

There are several quantitative measures of impurity commonly used by decision tree 

algorithms. The two most common ones are entropy and Gini. As we mentioned earlier, 

the two most popular decision tree implementations are C5.0 and CART. One of the dis-

tinguishing features of these two algorithms is the measure of impurity that they use. 

The C5.0 algorithm uses entropy as its measure of impurity, while the CART algorithm 

uses Gini. In the next few sections, we explain the idea behind these two measures and 

how they are used in the recursive partitioning process.

Entropy
Entropy is a concept that is borrowed from information theory and, when applied to 

decision trees, represents a quantification of the level of impurity or randomness that 

exists within a partition. The higher the impurity that exists within a partition, the higher 

the entropy value for that partition, and vice versa. Mathematically, for data partition D 

with class levels i n1 2, , , , entropy is defined as follows:

 
Entropy D p p

i

n

i i1 2
log

 
(8.1)

where p
i
 represents the proportion of data points that have a class label of i . Entropy 

values range from 0, when all data points within a partition are of the same class, to 

log
2

n , when all n  classes are equally represented in the partition. So, for the bank 

 customer example that has two outcomes —Default and Not Default—n  is equal  

to 2. This means that the entropy values for its partitions will range from 0 to 1 (log
2
2).

During our illustration of the recursive partitioning process using the loan data of 30 

bank customers, we ended up with a partition of 16 customers who borrowed more than 

$40,000 (see Figures 8.4 and 8.5). Among these customers, 10 of them did not default on 

their loans and 6 of them did. In terms of the proportion of data points in this partition, 
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we can say that we have 62.5 percent Not Default and 37.5 percent Default. There-

fore, using Equation 8.1, the entropy of this partition would be as follows:

 Entropy D . . . . .625 625 375 375 0 9544
2 2

log log  (8.2)

As we mentioned previously, the maximum entropy for a partition with two possible 

values is 1. Therefore, an entropy value of 0 9544.  tells us that there is a high degree of impu-

rity in this partition. This suggests that the tree could benefit from additional partitioning.

Information Gain
Now, let’s assume that we choose to continue with the recursive partitioning process from 

our previous example. We want to further partition the data points for customers who bor-

rowed more than $40,000 to minimize entropy. To accomplish this, the decision tree algo-

rithm would evaluate all the features and their corresponding values to determine which 

split would result in the largest reduction in entropy. This reduction in entropy is measured 

as the difference between the entropy of the partition before the split D1 and the combined 

entropy of the partitions after the split D2. This measure is known as information gain. Math-

ematically, the information gain of splitting by a particular feature F  is calculated as follows:

 InformationGain F Entropy D Entropy D
1 2  (8.3)

It’s important to note that Entropy D2  is the combined entropy of all the partitions 

after the split. Therefore, it is computed as a weighted sum of the entropy of each of 

the new partitions, where the weight w
i
 is based on the proportion of data points in 

 partition P
i
. Entropy D2  is computed as follows:

 Entropy D w Entropy P
i

n

i i2 1  (8.4)

With this in mind, to partition our data points further, let’s assume that we had to con-

sider two possible features to partition by—loan grade and home ownership. Unlike the 

previous features we looked at (loan amount and annual income), these new features are 

discrete and not continuous. Loan grade has two possible values (A and B), and home own-

ership also has two possible values (Own and Rent). To split our data, the decision tree 

algorithm would need to evaluate the information gain of splitting by loan grade and com-

pare that with the information gain of splitting by home ownership. Whichever split results 

in the highest information gain (or reduction in entropy) would be chosen as the best split 

for the partition.

Figure 8.6 shows the two possible split options we are considering, along with the 

number of data points that fall into each partition by class label.
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Using this information, let’s work through an example of how the decision tree algo-

rithm would compute information gain and decide on the best split. The first feature we 

consider is loan grade (Figure 8.6a). To get the information gain for this split, we need 

to compute the entropy before the split (D1) as well as the combined entropy after the 

split (D2). From Equation 8.2, we know that the entropy before the split is 0.9544. After 

the split, the left partition (Loan Grade = A) has three out of six customers who do not 

default and three out of six who do. The entropy for this partition is as follows: 

Entropy Grade A  

3
6

3
6

3
6

3
6

1
2 2

log log
 (8.5)

Notice that for this partition, each class is equally represented, which means that the 

entropy will be at its maximum value. In this case, that value is 1. This is interpreted to mean 

that the partition is at a state of maximum impurity. Now, let’s look at the right partition 

(Loan Grade = B). After the split, this partition has 3 out of 10 customers who do not default 

on their loan and 7 out of 10 who do. Therefore, the entropy for this partition is as follows:

Entropy GradeB  

3
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3
10

7
10

7
10

0 8813
2 2

log log .
 (8.6)

Loan Grade

Not
Default

A B

Default3/3

6/106/10

3/7

Home
Ownership

Not
Default

Own Rent

Default6/2 0/8

(a) (b)

Figure 8.6 Candidate features for splitting the partition of customers who bor-
rowed more than $40,000. Each decision and leaf node shows the number of cus-
tomers who defaulted (red number) and those who did not (green number).
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From Equation 8.4, we know that the combined entropy after the split (D2) is a 

weighted sum of the entropy of each of the new partitions, where the weights (w
i
) are 

the proportion of the original data points in each new partition. Of the 16 customers 

before the split, 6 of them (37.5 percent) are in the left partition (Loan Grade = A), while 

10 of them (62.5 percent) are in right partition (Loan Grade = B). The combined entropy 

of the partitions after the split is as follows:

Entropy D2  

0 375 0 625. . (Entropy Grade A Entropy GradeB

0 375 1 0 625 0 8813. . .  

0 9258.   (8.7)

Now that we have both the entropy before the split and the combined entropy after 

the split, we can compute the information gain of splitting by loan grade as follows:

 InformationGain Loan Grade 0 9544 0 9258 0 0286. . .  (8.8)

Let’s go through the same steps for the split based on home ownership in order to get 

the information gain of that split.

Entropy Own  

6
8

6
8

2
8

2
8

0 8113
2 2

log log .
 

 Entropy Rent  

0
8

0
8

8
8

8
8

0
2 2

log log
 

 Entropy D2  

0 5 0 5. . (Entropy Own Entropy Rent
 

0 5 0 8113 0 5 0. . .  

0 4057.  
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  InformationGain Home Ownership 0 9544 0 4057 0 5487. . .  (8.9)

By comparing the information gain of the split based on loan grade with that of 

the split based on home ownership, we see that the split based on home ownership 

has the higher value. Therefore, our decision tree algorithm will choose this split as 

the best split. It’s important to note that in Equation 8.9, we computed the entropy 

of the partition (Home Ownership = Rent) as 0. This is the lowest value of entropy 

and implies that the partition is at a state of maximum purity. This makes sense if we 

look at the right partition in Figure 8.6b. All customers in that partition defaulted on 

their loans.

Gain Ratio
Using information gain as a measure of the reduction in entropy before and after 
a split has a significant drawback. It tends to be biased toward features with a 
high number of distinct values. For example, suppose that for the bank customers 
example, we included a feature that represented the checking account numbers 
of all borrowers. Based simply on information gain, this feature would always be 
chosen because it will result in pure partitions that uniquely identify each individual 
customer. Such a tree will not generalize well to new customer data. To overcome this 
limitation with information gain, we can use gain ratio as a metric of entropy instead 
of information gain.

Gain ratio is a modification of information gain that reduces its bias on highly 
branching features by taking into account the number and size of branches when 
choosing a feature. It does this by normalizing information gain by the intrinsic 
information of a split. Just like entropy, intrinsic information is also a concept 
borrowed from information theory. The specifics of how it is calculated are beyond 
the scope of this text. The important thing to note is that the more distinct values 
a feature has, the higher its intrinsic information. Using intrinsic information, gain 
ratio is calculated as follows:

 
Gain Ratio F

Information Gain F

Intrinsic Information F
 

 

  

For more information on intrinsic information, see: Quinlan, J. Ross. “Induction 
of Decision Trees.” Machine Learning 1.1 (1986): 81–106.
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Gini Impurity
As we mentioned earlier, entropy and information gain are not the only criteria used to 

build decision trees. The degree of impurity within a partition can also be quantified by 

a measure called Gini impurity. Gini represents a measure of how often a particular data 

point in a partition would be incorrectly labeled if it were randomly labeled based on 

the distribution of labels in the partition. Mathematically, for data partition D with class 

levels i n1 2, , , , Gini impurity is computed as follows:

 Gini Impurity D p
ii

n
 1

2

1  (8.10)

where p
i
 represents the proportion of data points that have a class label of i . Similar to 

entropy, the greater the degree of randomness or impurity within a partition, the higher 

the Gini impurity value. Gini values range from 0, when all data points within a partition are 

of the same class, to n n1 / , when all n  classes are equally represented in the partition. 

So, for the bank customers example, which has two outcomes, Default and Not Default, 

n  is equal to 2. This means that the Gini impurity values for its partitions will range from 0 

to 0.5. During the recursive partitioning process, the change in the Gini impurity value is 

used in the same way that information gain is used when deciding on the best split.

Pruning
Previously, we mentioned that the recursive partitioning process continues indefinitely 

until it encounters a stopping criterion. One such criterion, which signals the partition-

ing process to stop, is when all of the instances within a partition are of the same class. 

Another is when all the features in the dataset have been exhausted. Quite often, if the 

tree is allowed to grow uninhibited until it meets one or both of these criteria, it may 

already be too large and overfit against the training data. To avoid this, the size of a deci-

sion tree is often reduced during or after the growth process for it to generalize better 

against unseen data. This process is known as pruning.

Pruning can be done during the recursive partitioning process by setting criteria that 

need to be met at each split point. These criteria can be in the form of specifying a maximum 

number of features to be considered, a maximum number of decision nodes, a minimum 

number of data points in each partition, and so on. This approach to pruning is known as pre-

pruning. It is appealing in that it prevents unnecessary branches and nodes from being cre-

ated, thereby saving compute cycles. However, the major drawback with this approach is that 

by stopping tree growth early, it is possible that certain patterns in the data could be missed.

The alternative approach to pre-pruning is post-pruning. As the name suggests, the 

idea here is to allow the decision tree to grow as large as it can and then reduce its size 

afterward. This process consists of successively designating decision nodes as leaf nodes 
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or getting rid of them altogether. With regard to compute time, post-pruning is a less 

efficient approach compared to pre-pruning. However, it does provide the significant 

benefit of being more effective in discovering important patterns within the data.

Both of the decision tree algorithms (CART and C5.0) that we’ve discussed so far 

handle pruning in slightly different ways. The C5.0 algorithm makes several internal 

assumptions during the model build process in terms of how it handles pruning. It takes a 

post-pruning approach of allowing the tree to grow as large as it can such that it overfits 

against the training data. Then it goes back through the nodes and branches of the tree 

and attempts to reduce the size of the overall tree by removing, replacing, or moving 

branches and nodes that do not have a significant impact on the performance of the tree.

The CART algorithm, on the other hand, uses a metric known as the complexity param-

eter to inform the pruning process. The complexity parameter can be seen as a cost 

metric associated with adding a node to the decision tree during the recursive partition-

ing process. This cost metric can take on values from 0 to  and gets smaller as more 

nodes are added to the decision tree. When used for pruning, a complexity parameter 

threshold is specified. For pre-pruning, at each stage of the partitioning process, the 

decision tree algorithm evaluates the cost of adding an additional node to the tree. If 

this cost exceeds the specified complexity parameter value, the node will not be created.

In the post-pruning approach, the complexity parameter is used differently. In this 

approach, we can think of the entire decision tree as a successive series of subtrees. For 

example, a decision tree with five nodes can be thought of as a sequence of five different 

decision trees with node sizes of 1, 2, 3, 4, and 5. As we go from a tree with one node to a 

two-node tree, we compute the cost of doing so (complexity parameter) as well as the error 

rate of the tree. This is repeated for each of the successive trees. Then we compare the 

error rates, and whichever tree had the lowest error rate is chosen as the final decision tree.

Building a Classification Tree Model
Now that we have a better understanding of the concept behind decision trees, let’s put 

it into practice using R. In this section, we will use a decision tree function based on the 

CART algorithm to solve the problem we introduced at the beginning of the chapter. Our 

objective is to build a model that predicts whether a permit application will go through 

an expedited review process or not based on the characteristics of the application.

We first import and preview our data.

> library(tidyverse)
> permits <- read_csv("permits.csv", col_types = "ffffffnnnnfffff")
> glimpse(permits)
 
Observations: 971,486
Variables: 15
$ status           <fct> Permit Expired, Permit Finaled, Permit Finaled,...
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$ permitType       <fct> Plumbing, Plumbing, Plumbing, Plumbing, Electri...
$ permitSubtype    <fct> 1 or 2 Family Dwelling, 1 or 2 Family Dwelling,...
$ permitCategory   <fct> No Plan Check, No Plan Check, No Plan Check, No...
$ initiatingOffice <fct> INTERNET, INTERNET, INTERNET, INTERNET, INTERNE...
$ ZIP              <fct> 90046, 90004, 90021, 90029, 90039, 90039, 91406...
$ valuation        <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ floorArea        <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ numberUnits      <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ stories          <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ contractorState  <fct> CA, CA, CA, CA, CA, CA, CA, CA, CA, CA, CA, CA,...
$ licenseType      <fct> C36, C36, C36, C36, C10, C36, C10, C10, C20, C3...
$ zone             <fct> R1-1, R2-1, M2-2D, R1-1-HPOZ, R1-1, R1-1VL, R1-...
$ year             <fct> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013,...
$ month            <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...

Based on the output of the glimpse() command, we see that our dataset consists of 

971,486 instances and 15 features. As we mentioned at the beginning of the chapter, the 

variable we are trying to predict (our class) is permitCategory. Our output also shows 

that we have a number of missing values for some of our features (denoted as NA). Let’s 

get a statistical summary of our dataset to better understand what problems we may 

have with missing data, outliers, and noise. To do this, we use the summary() function.

> summary(permits)
 
            status                   permitType    
 Permit Finaled:644876   Electrical       :274356  
 Issued        :196696   Bldg-Alter/Repair:222644  
 Permit Expired: 54706   Plumbing         :185189  
 CofO Issued   : 43917   HVAC             : 96490  
 Permit Closed : 12832   Fire Sprinkler   : 38404  
 (Other)       : 18419   (Other)          :154363  
 NA's          :    40   NA's             :    40  
                permitSubtype          permitCategory   
initiatingOffice 
 1 or 2 Family Dwelling:542641   No Plan Check:646957   METRO   :289327  
 Commercial            :248659   Plan Check   :324489   VAN NUYS:283862  
 Apartment             :161264   NA's         :    40   INTERNET:251721  
 Onsite                : 12536                          WEST LA : 76451  
 Special Equipment     :  5299                          SOUTH LA: 37615  
 (Other)               :  1047                          (Other) : 32470  
 NA's                  :    40                          NA's    :    40  
      ZIP           valuation           floorArea        numberUnits    
 90045  : 25362   Min.   :        0   Min.   :-154151   Min.   :-147.0  
 90049  : 21111   1st Qu.:     2100   1st Qu.:     32   1st Qu.:   0.0  
 91331  : 17270   Median :     8000   Median :    500   Median :   0.0  
 91367  : 16631   Mean   :   153474   Mean   :   3869   Mean   :   1.8  
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 90026  : 16109   3rd Qu.:    30000   3rd Qu.:   2180   3rd Qu.:   1.0  
 (Other):874902   Max.   :525000000   Max.   :1788210   Max.   : 910.0  
 NA's   :   101   NA's   :602487      NA's   :888698    NA's   :927409  
    stories       contractorState   licenseType          zone       
 Min.   :  -3.0   CA     :809934   B      :327643   R1-1   :179475  
 1st Qu.:   0.0   TN     :  3670   C10    :175364   R3-1   : 51635  
 Median :   1.0   GA     :  3666   C36    :125550   RS-1   : 41478  
 Mean   :   1.6   WA     :  3597   C20    : 73022   R2-1   : 26992  
 3rd Qu.:   2.0   FL     :  3236   C16    : 37949   RA-1   : 25430  
 Max.   :4654.0   (Other): 13663   (Other): 98788   (Other):644096  
 NA's   :891769   NA's   :133720   NA's   :133170   NA's   :  2380  
      year            month       
 2018   :175912   4      : 92875  
 2017   :169791   3      : 91715  
 2016   :156165   8      : 84622  
 2015   :148824   10     : 83117  
 2014   :132524   1      : 82425  
 (Other):188230   (Other):536692  
 NA's   :    40   NA's   :    40

The summary output shows that we do have missing data for most of our features. This 

is not a problem for decision tree algorithms. They are able to handle missing data very 

well without the need for imputation on our part. This is because, during the recursive 

partitioning process, splits are made based solely on the observed values of a variable. If 

an observation has a missing value for the variable being considered, it is simply ignored.

We also notice from the summary output that some of the numeric features, such as 

valuation and floorArea, have a wide range of values and possible outlier data. With 

some of the machine learning approaches we’ve covered previously, these would be 

problematic and would need to be remediated. That is not the case with decision trees. 

They are able to robustly handle outliers and noisy data.

As you can start to see, decision trees require rather little of us in terms of data prepara-

tion. However, our summary statistics do point out some logical inconsistencies with some of 

our feature values. For example, we see that the minimum value for floorArea is –154,151. 

This is not a reasonable value for the square footage of a building. We see similar problems 

with the minimum values for the valuation, numberUnits, and stories features as well. 

While these inconsistencies are not a problem for the decision tree algorithm, they will lead 

to illogical decision rules if the tree were used for business decision-making. To resolve these 

inconsistencies, we simply treat them as missing data by setting their values to NA.

> permits <- permits %>%
   mutate(valuation = ifelse(valuation < 1, NA, valuation)) %>%
   mutate(floorArea = ifelse(floorArea < 1, NA, floorArea)) %>%
   mutate(numberUnits = ifelse(numberUnits < 1, NA, numberUnits)) %>%
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   mutate(stories = ifelse(stories < 1, NA, stories))

The summary statistics also show that we have a problem with the maximum value for 

the stories feature. A quick online search reveals that the tallest building in Los Ange-

les (the Wilshire Grand Center) has only 73 floors. Therefore, we treat any values greater 

than 73 as missing data by setting the value to NA.

permits <- permits %>%
   mutate(stories = ifelse(stories > 73, NA, stories))
 
> summary(select(permits, valuation, floorArea, numberUnits, stories))
 
  valuation           floorArea        numberUnits        stories      
 Min.   :        1   Min.   :      1   Min.   :  1.0    Min.   : 1.0    
 1st Qu.:     3000   1st Qu.:    397   1st Qu.:  1.0    1st Qu.: 1.0    
 Median :     9801   Median :   1296   Median :  1.0    Median : 2.0    
 Mean   :   164723   Mean   :   5105   Mean   :  5.6    Mean   : 1.8    
 3rd Qu.:    32700   3rd Qu.:   2853   3rd Qu.:  1.0    3rd Qu.: 2.0    
 Max.   :525000000   Max.   :1788210   Max.   :910.0    Max.   :63.0    
 NA's   :627686      NA's   :908545    NA's   :954847   NA's   :914258  

Decision tree algorithms do a great job selecting which features are important in 

predicting the final outcome and which are not. So, feature selection as a data prepara-

tion step is not necessary. However, to simplify our illustration, let’s only use the per-

mitType, permitSubtype, and initiatingOffice features as predictors of the final 

outcome, which is represented by the permitCategory feature. Using the select() 

command from the dplyr package, we reduce our dataset to these four features:

> permits <- permits %>%
   select(
     permitType,
     permitSubtype,
     initiatingOffice,
     permitCategory
   )

As part of the end of chapter exercises, you will have the opportunity to improve the 

performance of our decision tree model by taking into account some of the additional 

features in the dataset.

Splitting the Data
The next stage in our process is to split our data into training and test sets. Using the 

sample() function, we split our dataset by partitioning 80 percent of the original data as 

training data and the remaining 20 percent as test data.
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> set.seed(1234)
> sample_set <- sample(nrow(permits), round(nrow(permits)*.80), replace 
= FALSE)
> permits_train <- permits[sample_set, ]
> permits_test <- permits[-sample_set, ]
 
> round(prop.table(table(select(permits, permitCategory))),2)
 
No Plan Check    Plan Check 
         0.67          0.33 
> round(prop.table(table(select(permits_train, permitCategory))),2)
 
No Plan Check    Plan Check 
         0.67          0.33 
> round(prop.table(table(select(permits_test, permitCategory))),2)
 
No Plan Check    Plan Check 
         0.67          0.33

Training a Model
We are now ready to build our model. As we mentioned earlier, we will be using the CART 

algorithm to solve our example problem. The CART algorithm is implemented in R as part 

of the rpart package. This package provides a similarly named function rpart(), which 

we use to train our model. This function takes three primary arguments. The first is the 

prediction formula, which we specify as permitCategory ˜ . to mean that our model 

should use all the other variables in the dataset as predictors for the permitCategory 

variable. The second argument is the method, which we specify as class. This means that 

we are building a classification tree. The final argument is the training dataset that will be 

used to build the model.

> library(rpart)
> permits_mod <-
   rpart(
     permitCategory ~ .,
     method = "class",
     data = permits_train
   )

Evaluating the Model
Now that we’ve trained our decision tree model, let’s visualize it. To do so, we use the 

rpart.plot() function from the similarly named rpart.plot package. See Figure 8.7.

> library(rpart.plot)
> rpart.plot(permits_mod)



No Plan Check
0.33

100%

No Plan Check
0.10
57%

No Plan Check
0.10
6%

No Plan Check
0.41
9%

permitType = Plumbing,Electrical,HVAC,Bldg-Alter/Repair,Elevator,Pressure Vessel

No Plan Check
0.20
82%

permitType = Plumbing,Electrical,HVAC,Pressure Vessel

Plan Check
0.92
18%

Plan Check
0.54
5%

No Plan Check
0.00
1%

Plan Check
0.95
18%

Plan Check
0.87
5%

initiatingOffice = INTERNET

No Plan Check
0.45
24%

initiatingOffice = INTERNET,SANPEDRO,SOUTH LA

permitSubtype = 1 or 2 Family Dwelling,Apartment

Plan Check
0.56
18%

No Plan Check
0.46
14%

initiatingOffice = WEST LA,VAN NUYS

yes no

Figure 8.7 Visualization of a decision tree model using the rpart.plot() function in R
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The structure of a decision tree can tell us a lot about our data. For example, the 

order in which features are evaluated within the tree is significant. Our particular tree 

begins with a split by permitType at the root node. This tells us that of the features 

that we used in our model, permitType is the most predictive of our final outcome. The 

farther away we get from the root node, the less predictive a feature is of the final out-

come. This means that after permitType, initiatingOffice is the next most predictive 

feature, followed by permitSubtype.

Besides the order in which features are encountered, the colors and node labels are 

also useful in understanding our data. Recall that the root node of a tree represents the 

original dataset before the first split and that each of the subsequent nodes (decision 

and leaf nodes) represents subpartitions of the original dataset after each previous split.

Looking at the labels in each node, we learn something about each of the partitions 

that they represent. For example, the labels of the root node are: No Plan Check, 0.33, 

and 100%. The bottom label (100%) tells us how much of our original data the partition 

represents. The middle number (0.33) tells us the probability that an application within 

this partition will be flagged for further review (Plan Check). Because this probability is 

less than 0.5, the node is labeled as No Plan Check, which is the top label on the node. 

Another way to read this is that based on all of our data, the probability that a new 

permit application will be expedited is 67 percent, while the probability that it will be 

flagged for further review is 33 percent. These numbers are consistent with the class 

distribution numbers we got earlier. Now if we follow the leftmost branches of our tree 

down to the leaf node, we learn that the probability that a new permit application will be 

flagged for further review decreases even further, from 33 percent to 10 percent, if the 

permit is for plumbing, electrical, HVAC, or pressure vessel work.

When using a decision tree for classification, the nodes and branches of the tree illus-

trate the logical decision pathway that one can take in classifying previously unclassified 

data. As new data is encountered, it is evaluated against specific split criteria at each of 

the decision nodes, and a pathway is chosen until a terminal node is encountered and a 

label is assigned. Pathways (or branches) toward the left represent agreement with the 

split criteria, while pathways toward the right represent disagreement with the split 

criteria. For example, the rightmost pathway of our tree tells us that if we have a new 

building permit application for fire sprinkler repair (permitType = Fire Sprinkler) 

that was not initiated over the Internet (initiatingOffice != INTERNET), then it will 

be flagged for further review (Plan Check).

Now, let’s see how our model does with this process against our test. Similar to 

what we did in previous chapters, we pass the model (permits_mod) to the predict() 

function to classify the test data (permits_test), by setting the type argument to 

class. After this, we create a confusion matrix based on our predictions and calculate 

the predictive accuracy of our model.
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> permits_pred <- predict(permits_mod, permits_test, type = "class")
> permits_pred_table <- table(permits_test$permitCategory, permits_pred)
> permits_pred_table
 
               permits_pred
                No Plan Check Plan Check
  No Plan Check        121929       7357
  Plan Check            19054      45949
 
> sum(diag(permits_pred_table)) / nrow(permits_test)
 
[1] 0.8640278

The results show that our model has a predictive accuracy of 86.4 percent against the 

test data. How can we improve this performance? There are several things that come 

to mind. The first is to remember that decision tree algorithms are nonparametric. The 

performance of nonparametric models can improve as additional data is considered. So, 

either we could adjust the ratio of training to test data for our existing data or we could 

gather additional data. The second approach is to consider additional features for the 

model. Recall that we used only four features in this model. In the chapter exercise, you 

will have the opportunity to explore this approach.

Strengths and Weaknesses of the Decision Tree Model
Compared to other machine learning approaches, decision trees present several 

strengths and weaknesses. In this section, we list and discuss several of them.

Regression Trees
Decision trees can also be used to solve regression problems (problems with numeric 
outcomes). Regression trees work in similar ways to classification trees with some 
slight modifications.

In classification trees, the label of the terminal node is based on a majority vote of 
the training examples that fall within that node. In regression trees, the value of the 
leaf node is an average of the output values of the training examples in the node.

In classification trees, impurity is commonly measured by entropy or Gini. 
However, for regression trees, impurity is typically measured as the sum of squared 
deviations (or squared errors) from the mean of the node. In other words, each of 
the outcomes of the training examples within a node is subtracted from the mean 
of the node, squared, and then summed. Impurity is zero within a node when all 
the values are the same.
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Here are some strengths:

 • Decision trees are simple to understand and interpret. The logical structure of a 

tree is intuitive and easy for nonexperts to follow and derive business rules out of.

 • Unlike some other approaches, which work better with either discrete or contin-

uous features, decision trees are able to handle both very well.

 • Decision trees handle missing, noisy, and outlier data very well. This minimizes the 

need for extensive data preparation.

 • During each stage of the recursive partitioning process, the feature that reduces 

impurity the most is chosen. This results in unimportant features being ignored 

and important ones being chosen. Feature selection is not necessary.

 • Decision trees do well on most problems and are useful on both small and large 

datasets. However, like other nonparametric models, they do tend to improve as 

they encounter more examples.

Here are some weaknesses:

 • For the C5.0 algorithm, which uses information gain, the choice of which features 

to split on during the recursive partitioning process tends to be biased toward fea-

tures with a large number of levels.

 • Decision trees are nonparametric models. This means that they do not make an 

assumption about the form of the data but instead model against existing data. As a 

result, small changes in data can result in large changes to the structure of the tree.

 • If not properly remediated, decision trees can easily overfit against the training 

data. They can also underfit if the pruning process is overly aggressive.

 • Decision trees are limited to axis-parallel splits (as illustrated in Figures 8.3 

and 8.4), This limits their usefulness in certain problem domains.

 • While decision trees are easy to understand, very large trees can be rather diffi-

cult to interpret.

CASE STUDY: REVISITING THE INCOME 
PREDICTION PROBLEM
For our chapter case study, let’s take another look at the income prediction problem we 

introduced in Chapter 5. For that problem, our objective was to use information about 

existing customers of a financial services company to develop a model that predicts 

whether a customer has an income of $50,000 or more. The motivation for this problem 

is to identify potential high-income customers from a prospective customer database 
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that we recently purchased. In Chapter 5, we used logistic regression to solve the 

problem. This time, we will use a classification tree.

Importing the Data
Let’s begin by importing our data. As usual, we will use the read _ csv() function from 

the readr package, which is included as part of the tidyverse package.

> library(tidyverse)
> income <- read_csv("income.csv", col_types = "nffnfffffnff")
> glimpse(income)
 
Observations: 32,560
Variables: 12
$ age                <dbl> 50, 38, 53, 28, 37, 49, 52, 31, 42, 37, 30, 23, 32,...
$ workClassification <fct> Self-emp-not-inc, Private, Private, Private, Privat...
$ educationLevel     <fct> Bachelors, HS-grad, 11th, Bachelors, Masters, 9th, ...
$ educationYears     <dbl> 13, 9, 7, 13, 14, 5, 9, 14, 13, 10, 13, 13, 12, 11,...
$ maritalStatus      <fct> Married-civ-spouse, Divorced, Married-civ-spouse, M...
$ occupation         <fct> Exec-managerial, Handlers-cleaners, Handlers-cleane...
$ relationship       <fct> Husband, Not-in-family, Husband, Wife, Wife, Not-in...
$ race               <fct> White, White, Black, Black, White, Black, White, Wh...
$ gender             <fct> Male, Male, Male, Female, Female, Female, Male, Fem...
$ workHours          <dbl> 13, 40, 40, 40, 40, 16, 45, 50, 40, 80, 40, 30, 50,...
$ nativeCountry      <fct> United-States, United-States, United-States, Cuba, ...
$ income             <fct> <=50K, <=50K, <=50K, <=50K, <=50K, <=50K, >50K, >50...

Our dataset consists of 32,560 customers. Each customer is described by 12 features, 

one of which is income level (<=50K or >50K). The income feature is the output we’re 

interested in.

Exploring and Preparing the Data
To begin our data exploration and preparation, we start by getting a statistical summary 

of our data using the summary() function.

> summary(income)
 
      age               workClassification      educationLevel  educationYears 
 Min.   :17.00   Private         :22696    HS-grad     :10501   Min.   : 1.00  
 1st Qu.:28.00   Self-emp-not-inc: 2541    Some-college: 7291   1st Qu.: 9.00  
 Median :37.00   Local-gov       : 2093    Bachelors   : 5354   Median :10.00  
 Mean   :38.58   ?               : 1836    Masters     : 1723   Mean   :10.08  
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 3rd Qu.:48.00   State-gov       : 1297    Assoc-voc   : 1382   3rd Qu.:12.00  
 Max.   :90.00   Self-emp-inc    : 1116    11th        : 1175   Max.   :16.00  
                 (Other)         :  981    (Other)     : 5134                  
               maritalStatus             occupation           relationship  
 Married-civ-spouse   :14976   Prof-specialty :4140   Husband       :13193  
 Divorced             : 4443   Craft-repair   :4099   Not-in-family : 8304  
 Married-spouse-absent:  418   Exec-managerial:4066   Wife          : 1568  
 Never-married        :10682   Adm-clerical   :3769   Own-child     : 5068  
 Separated            : 1025   Sales          :3650   Unmarried     : 3446  
 Married-AF-spouse    :   23   Other-service  :3295   Other-relative:  981  
 Widowed              :  993   (Other)        :9541                         
                 race          gender        workHours       ativeCountry  
 White             :27815   Male  :21789   Min.   : 1.00   United-States:29169  
 Black             : 3124   Female:10771   1st Qu.:40.00   Mexico       :  643  
 Asian-Pac-Islander: 1039                  Median :40.00   ?            :  583  
 Amer-Indian-Eskimo:  311                  Mean   :40.44   Philippines  :  198  
 Other             :  271                  3rd Qu.:45.00   Germany      :  137  
                                           Max.   :99.00   Canada       :  121  
                                                           (Other)      : 1709  
   income     
 <=50K:24719  
 >50K : 7841

The output shows that we have missing data for some of our features denoted by 

the question marks (?). In previous approaches, we have attempted to deal with these 

missing values. However, as we learned earlier, decision trees are not adversely impacted 

by missing data, so we can leave them as they are. We also do not concern ourselves here 

with outliers, noise, or normalization. The next step in our process is then to split our 

data into training and test sets. Using the sample() function, our original data is parti-

tioned into training and test subsets by a ratio of 75:25, respectively.

> set.seed(1234)
> sample_set <- sample(nrow(income), round(nrow(income)*.75), replace = FALSE)
> income_train <- income[sample_set, ]
> income_test <- income[-sample_set, ]
 
> round(prop.table(table(select(income, income), exclude = NULL)), 4) * 100
 
<=50K  >50K 
75.92 24.08 
 
> round(prop.table(table(select(income_train, income), exclude = NULL)), 4) * 100
 
<=50K  >50K 
75.78 24.22 
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> round(prop.table(table(select(income_test, income), exclude = NULL)), 4) * 100
 
<=50K  >50K 
76.33 23.67

The class distributions of our data partitions show that we have a class imbalance 

problem. To resolve this for the training data, we use the SMOTE() function from the 

DMwR package.

> library(DMwR)
> set.seed(1234)
> income_train <- SMOTE(income ~ ., data.frame(income_train), perc.over = 100,  
perc.under = 200)
 
> round(prop.table(table(select(income_train, income), exclude = NULL)), 4) * 100
 
<=50K  >50K 
   50    50

Building the Model
We are now ready to train our decision tree model. To do so, we once again use the 

rpart() function from the rpart package in R.

> library(rpart)
> income_mod <-
   rpart(
     income ~ .,
     method = "class",
     data = income_train
   )

Evaluating the Model
The rpart.plot() function from the rpart.plot package allows us to create a visual of 

the classification tree (see Figure 8.8).

> library(rpart.plot)
> rpart.plot(income_mod)

Looking at the structure of the tree in Figure 8.8, you’ll notice that of the 11 predictor 

variables in our original data, our model only uses of 4 of them (educationYears, age, 
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maritalStatus, and relationship). The algorithm evaluates all available features, 

chooses the ones that are predictive of the final outcome to split with, and ignores the 

rest. Based on the tree that was created, we can create a set of business rules that govern 

how we label a new customer. For example, by following the pathways of the tree, we can 

say that a customer who has 10 years or more of education and is over 28 years old is 80 

percent likely to have an income greater than $50,000 a year. While, a never-married cus-

tomer with fewer than 10 years of education and who lists a nonfamily member as next of 

kin is 91 percent (1 – 0.09) likely to have an income of $50,000 or less.

With our model in place, let’s label the examples in our test data and evaluate how well 

our model does. To do so, we create a set of predictions based on our model. Comparing 

our predictions against the actual labels of the test data, we create a confusion matrix that 

we then use to compute our model’s predictive accuracy.

> income_pred <- predict(income_mod, income_test, type = "class")
> income_pred_table <- table(income_test$income, income_pred)
> income_pred_table
 
       income_pred
        <=50K >50K
  <=50K  4732 1481
  >50K    553 1374
 
> sum(diag(income_pred_table)) / nrow(income_test)
 
[1] 0.7501229

educationYears < 10

maritalStatus = Divorced,Married-spouse-absent,Never-married,Separated,Widowed
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Figure 8.8 Classification tree to predict customer income level
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The predictive accuracy of our model is 75 percent. This is slightly better than the 

accuracy of 73.85 percent, which we got for the same problem using logistic regres-

sion. It is important to note that the logistic regression model considered only the 

categorical features, while our classification tree model considers all the features 

in the data.

EXERCISES
1. Use the decision tree that we built in the case study (shown in Figure 8.8) to predict 

the income level for each of the following people:

a. A married 30-year-old woman with 16 years of education

b. A divorced 45-year-old man with 12 years of education

c. A married 40-year-old woman with 8 years of education

2. Attempt to improve the accuracy of the building permit model by including addi-

tional features in the decision tree. What improvement in predictive accuracy were 

you able to achieve?

3. The C5.0 algorithm discussed in this chapter takes a different approach to building 

decision trees. Use the C50 package in R to build a decision tree model of the 

building permit dataset using the same features that we used in this chapter. What 

results did you achieve? How do they differ from the results in the chapter and the 

results in Exercise 2?
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Chapter 9

Evaluating 
Performance

In Chapters 4 through 8, we introduced some of the most 

common supervised machine learning approaches. For each 

of the techniques, we started by explaining the basic principles 

behind them, and then we illustrated how to build a model with 

them in R. For the regression examples, we used several measures 

to evaluate how well our model fit the observed data. This is 

known as goodness-of-fit. For the classification examples, we used 

a simple metric, predictive accuracy, to evaluate the performance 

of our models. Predictive accuracy is easy to calculate—you simply 

divide the number of correct predictions by the number of total 

predictions. However, it does not always provide a complete 

picture of the estimated future performance of a model.

In this chapter, we discuss some of the limitations of predictive 

accuracy and introduce some other metrics that provide additional 
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perspectives on model performance. Before we do so, we explore 

some of the different ways in which we can partition our data in 

order to get the best estimate of future performance from a given 

model or set of models.

By the end of this chapter, you will have learned the following:

 ◆ The different approaches to resampling as a means to  

estimate the future performance of a model

 ◆ The pros and cons of the different resampling techniques

 ◆ How to evaluate model performance with metrics other 

than accuracy

 ◆ How to visualize model performance

ESTIMATING FUTURE PERFORMANCE
During the model building process, the goal is to use the observed data to develop 

a model that best estimates the relationship between a set of predictor variables X  and 

corresponding response values Y . The degree to which the model explains the relation-

ship between X  and Y  is known as goodness-of-fit. To evaluate how well the model fits 

against the data, we quantify the difference between the model’s predicted response 

values Y and the observed response values Y  (see Figure 9.1). The difference between the 

model’s predicted response and the observed response values for the data from which a 

model is built is known as the resubstitution error.

While the resubstitution error provides an assessment of how well a model estimates 

the relationship between the predictors and response variables within a dataset, it does 

not provide useful insight into how well the model will perform in the future against 

new data. The problem is that we’re testing the model on data that it has already seen. 

It’s the equivalent of a professor showing students the answers to a test they’ll be tak-

ing the next day and then using that test to evaluate their performance in class. If the 

professor wants to truly evaluate the knowledge of her students, she would need to ask 

them new questions that they haven’t previously seen.
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To accomplish this in the world of machine learning, we need to evaluate our model 

against data that has played no part in the training of the model. Therefore, instead of 

using our entire dataset to train and evaluate our model, we split the original data into 

two partitions so that we use one partition (training data) to build our model and we use 

the other partition (test data) to evaluate how well our model will perform against previ-

ously unseen data (Figure 9.2). This approach is known as the holdout method, and it’s the 

approach we used in the previous chapters.

Typically, with the holdout method, one-quarter to one-third of the original data is 

held out for testing, while the remainder is used to train the model. However, depend-

ing on how much data is available, these proportions may vary. There are two important 

principles to keep in mind with the holdout method. The first is that when creating the 

training and test partitions, it is important that both datasets be independent of each 

Train

Original Data

Step 1
Train a model using all of
the available data.

Evaluate
Step 2
Evaluate the model using
the same data.

Figure 9.1 Model build and evaluation process using all of the observed data

Train

Training Test

Step 2
Train a model using the
training data.

Evaluate
Step 3
Evaluate the model using
the test data.

Step 1
Split the data into
training and test
partitions.

Figure 9.2 Model build and evaluation process using subsets of the observed data 
for training and for test (the holdout method)



Practical Machine Learning in R310

other and that they be representative samples of the original data (or problem that we 

are trying to solve). Independence here implies that if an instance is selected from the 

original dataset as part of the training data, it cannot also be selected as part of the test 

data, and vice versa. The second principle is that at no time during the model build pro-

cess should a model’s performance on the test data be allowed to influence the choice of 

a model or be used to optimize a model’s parameters.

For example, one can be tempted to build several models using the training data and 

then choose the one that performs the best against the test data as the final model. 

While this sounds like a logical approach, the problem with it is that it does not provide 

us with an unbiased estimation of how our model will perform against previously unseen 

data. To avoid this limitation, we need a separate dataset other than test to help us 

refine our model. This dataset is commonly known as the validation data. The validation 

data is used iteratively to refine or choose a model so that the test data is held out and 

used only at the end to estimate the future performance of the final model. Figure 9.3 

illustrates the inclusion of the validation data in the model build and evaluation process.

In practice, it is common for the split between the training, validation, and test sets 

to be 50:25:25, respectively, and that each partition be independent of each other. In 

situations where we have a lot of available data, this approach works well. We use half 

of the original data (50 percent) to train a model. We then use a separate 25 percent of 

the original data to evaluate the performance of the model. We repeat the process of 

training and validation several times with the same training and validation datasets to 

create several models based on different parameters. Once we decide on a final model, 

we then use the remaining 25 percent of the original data (the test data) that our model 

has not yet seen to estimate the future performance of the model.

Train

Training TestValidation

Step 2
Train and tune a model
using the training and
validation data.

Evaluate
Step 3
Evaluate the final model
using the test data.

Step 1
Split the data into
training, validation, and
test partitions.

Figure 9.3 Model build and evaluation process using the training and validation 
data to optimize and choose a model. The test data is used to estimate the future 
performance of the final model.
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The problem with this approach is that when we don’t have a large amount of data to 

work with, all or some of our data partitions may not be adequately representative of 

the original dataset. For example, let’s assume that our objective is to develop a model 

that predicts whether a bank customer will or will not default on their loan. The class 

distribution of the observed data is 95 percent Not Default and 5 percent Default. With a 

small enough dataset, it is possible that the random sampling approach used to generate 

the training, validation, and test partitions result in samples that do not evenly represent 

the class distribution of the original dataset. Even if a stratified sampling approach were 

used, some of the partitions may also have too many or too few examples of the easy or 

difficult-to-predict patterns that exist in the original dataset.

Cross-Validation
To mitigate some of the problems with the holdout method, a technique known as 

repeated holdout or resampling is often used. This technique involves repeatedly using 

different samples of the original data to train and validate a model. At the end of the 

process, the performance of the model across the different iterations is averaged to 

yield an overall performance estimate for the model. In the following sections, we dis-

cuss some of the most common approaches to this resampling technique known as cross-

validation.

k-Fold Cross-Validation
Of all the approaches to cross-validation, the most commonly used is k-fold cross-valida-

tion. In this approach, after the test data has been sequestered, the remaining data is 

divided into k completely separate random partitions of approximately equal size. These 

partitions are known as folds. The folds represent the data that will be used to validate 

the model during each of the k iterations of the repeated holdout. Although k can be 

set to any value, in practice, k is often set to either 5 or 10. To illustrate how k-fold cross-

validation works, let’s take a look at an example with k=5, as illustrated in Figure 9.4.

With k set to 5, the data is partitioned into five separate folds (fold1, fold2, fold3, 

fold4, and fold5) of approximately equal size. Think of this as assigning one of five labels 

to each of the instances in the dataset. For the first iteration, all instances labeled as 

fold1 are held out, while the remainder of the data is used to train the model. The per-

formance of the model is then evaluated against the unseen data (fold1). For the second 

iteration, the instances labeled as fold2 are held out as the validation data, while the 

remaining instances are used to train the model. This process is then repeated three 

more times using each of the remaining folds. During each of the k iterations, a differ-

ent validation set is used, and by the end of the fifth iteration, all of the instances in the 
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dataset will have been used for both training and validation. This process results in k 

estimates of the model’s performance. The k-fold cross-validation estimate is computed 

as the average of the k estimates.

A slight variant of the k-fold cross-validation approach is known as stratified cross-vali-

dation. As the name implies, the idea behind this approach is to ensure that the class dis-

tribution with each fold is representative of the class distribution of the overall dataset.

To illustrate how to implement k-fold cross validation in R, let’s take another look at 

the income prediction problem, which was introduced in Chapter 5 and then revisited 

in Chapter 8. The objective is to use information about existing customers of a financial 

services company to develop a model that predicts whether a customer has an income of 

$50,000 or more. The first thing we do is import and preview the data.

> library(tidyverse)
> income <- read_csv("income.csv", col_types = "nffnfffffnff")
> glimpse(income)
 
Observations: 32,560
Variables: 12
$ age                <dbl> 50, 38, 53, 28, 37, 49, 52, 31, 42, 37, 30, 23, 32,...
$ workClassification <fct> Self-emp-not-inc, Private, Private, Private, Privat...
$ educationLevel     <fct> Bachelors, HS-grad, 11th, Bachelors, Masters, 9th, ...
$ educationYears     <dbl> 13, 9, 7, 13, 14, 5, 9, 14, 13, 10, 13, 13, 12, 11,...
$ maritalStatus      <fct> Married-civ-spouse, Divorced, Married-civ-spouse, M...
$ occupation         <fct> Exec-managerial, Handlers-cleaners, Handlers-cleane...
$ relationship       <fct> Husband, Not-in-family, Husband, Wife, Wife, Not-in...
$ race               <fct> White, White, Black, Black, White, Black, White, Wh...

Validation Training Test

Iteration 1

Iteration 2

Iteration 3

Iteration 5

Iteration 4

Figure 9.4 The k-fold cross-validation approach with k=5 (5-fold cross validation). A 
set of n examples is split into five independent folds.
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$ gender             <fct> Male, Male, Male, Female, Female, Female, Male, Fem...
$ workHours          <dbl> 13, 40, 40, 40, 40, 16, 45, 50, 40, 80, 40, 30, 50,...
$ nativeCountry      <fct> United-States, United-States, United-States, Cuba, ...
$ income             <fct> <=50K, <=50K, <=50K, <=50K, <=50K, <=50K, >50K, >50...

Now that we have our data, we need to partition it into training and test sets. This 

is similar to what we did in previous chapters. The only difference this time is that we 

will use a new function called createDataPartition() from the caret package. The 

caret package is one that will become increasingly more important to our efforts in this 

chapter and the next. More on that later. The createDataPartition()function creates 

stratified random samples from the original data and takes three main arguments. The 

first argument (y) specifies the class or dependent variable, the second argument (p) 

specifies the proportion of examples that should be assigned to the training set, and 

the third argument (list) specifies the format of the results that are returned. This 

argument can be either TRUE or FALSE. If it is TRUE, then the results of the function are 

returned as a list (single row), but if it is FALSE, then the results are returned as a matrix 

(several rows). Note that we use the set.seed() function here again, like we did in previ-

ous chapters. By setting the seed value, we ensure that we get the same data partitions 

every time we run the code.

> library(caret)
> set.seed(1234)
> sample_set <- createDataPartition(y = income$income, p = .75, list = FALSE)
> income_train <- income[sample_set,]
> income_test <- income[-sample_set,]

We know that this dataset is imbalanced, so just like we did in Chapter 5, we use the 

SMOTE() function from the DMwR package to balance the training data.

> library(DMwR)
> set.seed(1234)
> income_train <-
   SMOTE(income ~ .,
         data.frame(income_train),
         perc.over = 100,
         perc.under = 200)

With our balanced training data, we are now ready to train and validate our model 

using the k-fold cross-validation approach. To do so, we will use the train() function 

from the caret package. This function takes a number of arguments that inform the 

training process. The first two arguments are the training formula and the training 

data. These two arguments are similar to what we’ve seen before. The third argument 
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(metric) specifies the type of performance measure we want to use to evaluate our 

model. We set this to accuracy (later in the chapter, we will explore other measures of 

performance). The next argument (method) specifies the training method or algorithm 

to use. We set this to rpart, which tells the train() function that we want to use the 

CART classification tree algorithm (see Chapter 8). Notice that we also loaded the rpart 

package. The fifth argument (trControl ) is where we specify the resampling tech-

nique we want to use. The values for this argument are specified based on the returned 

values of the trainControl() function, which allows a user to control several compo-

nents of the training process. Here we specify that the resampling method is cv, which 

means cross-validation and that the number of iterations is 5. This effectively tells the 

training function to use a five-fold cross-validation resampling technique to estimate 

performance.

> library(rpart)
> set.seed(1234)
> income_mod <- train(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   method = "rpart",
   trControl = trainControl(method = "cv", number = 5)
 )

To see the performance results for each iteration, refer to the resample object of the 

model we created (income_mod) and sort the results by the Resample column.

> income_mod$resample %>%
   arrange(Resample)
 
   Accuracy     Kappa Resample
1 0.7963868 0.5927808    Fold1
2 0.7861395 0.5722789    Fold2
3 0.7333192 0.4666383    Fold3
4 0.7309245 0.4618247    Fold4
5 0.7774235 0.5548469    Fold5

As you can see, the output shows the accuracy values for each of the five folds. 

The estimated accuracy of the model is the average of these five iterations, which is 

0.7648387 (or 76.5 percent), as the following code shows:

> income_mod$resample %>%
   arrange(Resample) %>%
   summarise(AvgAccuracy = mean(Accuracy))
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  AvgAccuracy
1   0.7648387 

Leave-One-Out Cross-Validation
Another common approach to cross-validation is the leave-one-out cross-validation 

method (LOOCV). The approach is essentially k-fold cross-validation with k set to n (the 

number of instances in the dataset).

As Figure 9.5 illustrates, in the LOOCV approach, during the first iteration, the first 

instance is held out for validation while the rest of the data is used to train the model. 

Then the performance of the model is evaluated against the single instance that was 

held out. This process is repeated n-1 additional times until all the instances in the 

dataset have been used once for validation. After the last iteration, we end up with n 

estimates of the model’s performance from each of the iterations. The average of these 

estimates is used as the LOOCV estimate of model performance.

There are several benefits to this approach. The first is that it ensures that the 

greatest amount of data is used each time we train the model. This helps with the accu-

racy of the model. The second benefit is that the approach is deterministic. This means 

that the performance of the model will be the same every time the process is executed. 

Unlike the k-fold cross-validation approach, which uses random sampling to create the k 

folds, there is no randomness in the splits used by LOOCV. We are training the model on 

every possible combination of observations.

Validation

...
...

...
...

...

Training Test

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration N

Figure 9.5 The leave-one-out cross-validation approach (LOOCV). A set of n exam-
ples with only one instance is used for validation in each iteration.
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There are some notable drawbacks to this approach as well. The most obvious one is 

the high computational cost. Since the approach requires that a model be trained and 

validated n times, this can become rather expensive or infeasible with complex models 

and large datasets. Another disadvantage to LOOCV is that by its nature, it guarantees 

that the validation dataset is not stratified. By using a single instance for validation, it 

is impossible for the class distribution of the validation set to mimic that of the over-

all dataset.

To implement LOOCV in R, we make two slight modifications to what we did for k-fold 

cross-validation. We set the method in the trainControl() function to LOOCV, and we 

do not specify the number argument.

> library(rpart)
> set.seed(1234)
> income_mod <- train(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   method = "rpart",
   trControl = trainControl(method = "LOOCV")
 )

TIP It’s important to note that leave-one-out cross-validation is 
computationally expensive. As a result, it can take an inordinate amount of 
time to run against a large dataset. We chose not to run it against our training 
set because with 23,524 examples in our dataset, we would need to build and 
evaluate 23,524 different models. That’s a bit much. In practice, this approach 
should really be used only against small datasets.

Random Cross-Validation
The random or Monte Carlo cross-validation method is another common approach to 

cross-validation. This approach is similar to k-fold cross-validation but with one notable 

difference. In this approach, instead of creating a set number of folds (validation sets) at 

the beginning of the process, as we do in k-fold cross-validation, the random sample that 

makes up the validation set is created during each iteration (see Figure 9.6).

During the first iteration, a random sampling without replacement approach is used 

to create the validation set. This dataset is held out for validation, and the remainder of 

the data is used to train the model. In the second iteration, a new independent valida-

tion set is randomly selected. Because of the random nature of the sampling approach, 

it is possible and likely that some of the instances selected as part of this new validation 
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set were also selected as part of the validation set in the previous iteration. Therefore, 

one of the drawbacks of this approach is that some instances may be used more than 

once for validation, and some instances may never be used. On the other hand, the major 

advantages of this approach over k-fold cross-validation is that the size of the training 

and validation sets is independent of the number of cross-validation iterations. Similar 

to both k-fold and leave-one-out cross-validation, the random cross-validation estimate 

of model performance is the average performance of the model across all iterations.

Similar to LOOCV, to implement random cross-validation in R, we also need to make a 

slight change to the arguments of the trainControl() function. In the caret package, 

random cross-validation is referred to as leave-group-out cross-validation (LGOCV). 

So, this time, we set the method to LGOCV, the holdout percentage (p) to 0.1, and the 

number argument to 10. This tells our model to randomly select 90 percent of the exam-

ples as the training data and use the remaining 10 percent as validation data over 10 dif-

ferent iterations.

> library(rpart)
> set.seed(1234)
> income_mod <- train(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   method = "rpart",

Training

...
...

...
...

...

Training Training Test

Validation

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration N

Figure 9.6 The random cross-validation approach. The training and validation sets 
are created independently in each iteration.
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   trControl = trainControl(method = "LGOCV", p = .1, number = 10)
 )
 
> income_mod$resample %>%
   arrange(Resample)
 
    Accuracy     Kappa   Resample
1  0.7652811 0.5305621 Resample01
2  0.7821445 0.5642891 Resample02
3  0.7811053 0.5622107 Resample03
4  0.7825224 0.5650449 Resample04
5  0.7597544 0.5195087 Resample05
6  0.7666982 0.5333963 Resample06
7  0.7361833 0.4723666 Resample07
8  0.7780350 0.5560699 Resample08
9  0.7384979 0.4769957 Resample09
10 0.7639112 0.5278224 Resample10

Bootstrap Sampling
The second resampling technique we introduce is known as bootstrap sampling or boot-

strapping. The basic idea behind bootstrap sampling is to create a training dataset from 

the original data using a random sampling with replacement approach (see Chapter 3). 

A version of this technique, known as the 0.632 bootstrap, involves random sampling a 

dataset with n instances, n different times with replacement, to create another dataset 

also with n instances. This new dataset is used for training, while the instances from 

the original data, which were not selected as part of the training data, are used for 

validation.

Figure 9.7 provides an example of the bootstrap sampling technique. Starting with 

an original dataset with 10 instances, we first have to sequester the test data. This is 

represented by instances 8, 9, and 10. Now we are left with a dataset of 7 instances 

(n=7). To use bootstrap sampling to estimate the performance of a model, we sample the 

data seven times with replacement. This creates our new training set, which consists of 

instances 5, 2, 7, 4, 2, 2, and 7. As expected, we have repetitions in our training data. Of 

the seven instances sampled from, three instances were never selected (instances 1, 3, 

and 6). These instances now become our validation data. With our training and validation 

data in hand, we train and evaluate our model’s performance.

The 0.632 bootstrap technique described here results in rather pessimistic per-

formance estimates against the validation data. This is because, by using sampling by 

replacement to create the training data, the probability that an instance will be selected 

is statistically shown to be 63.2 percent. Therefore, with training data that is only 
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63.2 percent of the available data, the model is likely to perform worse than a model 

trained on 100 percent or even 90 percent of the available data. To account for this, the 

0.632 bootstrap technique calculates the final performance of a model as a function of 

the performance on both the training (resubstitution error) and validation (misclassifica-

tion error) datasets. The bootstrap performance estimate is calculated as follows:

 error error error
bootstrap validation training

0 632 0 368. .  9.1

To help illustrate this process, let’s assume that we train and evaluate a model against 

data generated using the 0.632 bootstrap technique. During the training phase, the 

resubstitution or training error rate of the model was 5 percent (which is overly opti-

mistic). However, when we evaluate the model’s performance against the validation set, 

we end up with a misclassification rate of 50 percent (which is overly pessimistic). The 

model’s 0.632 bootstrap error rate will be calculated as follows:

 error
bootstrap

0 632 0 5 0 368 0 05 0 3344. . . . .  9.2

So instead of an accuracy of 50 percent, the model’s predictive accuracy is estimated 

at 66.56 percent (1 0 3344. ). Similar to the cross-validation resampling technique, the 

bootstrap procedure is repeated several times with different samples for the training 

and validation sets, and the model’s performance across all iterations is averaged to get 

an overall estimate of the model’s performance.

Validation

Test

Original Data

Training

1 2 3 4 5 6 7 8 9 10

5 2 7 4 2 2 7 1 3 6

Figure 9.7 The bootstrap sampling 
approach. The training set is created by 
random sampling with replacement. Exam-
ples not selected as part of the training set 
are used for validation.
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To implement the 0.632 bootstrap resampling technique in R, we build off of what we 

did for the various cross-validation approaches in the previous sections. This time, we 

simply pass the method = “boot632” argument to the trainControl() function. This 

time, we set the number of iterations to 3.

> library(rpart)
> set.seed(1234)
> income_mod <- train(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   method = "rpart",
   trControl = trainControl(method = "boot632", number = 3)
 
> income_mod$resample %>%
   arrange(Resample)
 
   Accuracy     Kappa  Resample
1 0.7828512 0.5655476 Resample1
2 0.7367153 0.4720543 Resample2
3 0.7353111 0.4701254 Resample3

When compared to cross-validation, bootstrapping as a resampling technique pro-

vides several advantages. It is faster and simpler, and by using sampling with replace-

ment to generate the training data, bootstrapping tends to be a better way to estimate 

model performance for small datasets. However, a drawback of the technique is that 

similar to the random cross-validation approach, some instances in the original dataset 

The 0.632 Bootstrap
The 0.632 bootstrap gets its name from the fact that when sampling with 
replacement, the probability that a particular example will be selected as part of 
the training set is 63.2 percent. How do we get this number? From a dataset of n 
examples, the probability that a particular example will be picked is 1

n. Therefore, 

the probability that it will not be picked is 1 1
n. Because the probability of picking 

an example stays the same when sampling with replacement, for a sufficiently large 

dataset, the probability over n trials of not picking a particular example is 1 1
n

n
.  

This is approximately equal to e 1 or 0 368. , where e is the base of natural logarithms. 
Therefore, for a reasonably large dataset, if we sample with replacement, 36.8 percent 
of the examples will not be selected for the training partition and will thus be selected 
for test. This means that 63.2 percent (0.632) of the examples in the dataset would 
have been selected as part of the training partition.
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may be used more than once for validation or training, and some instances may never be 

used at all. This means that a model may never learn or be evaluated against some of the 

patterns in the data.

BEYOND PREDICTIVE ACCURACY
Until now, we have used predictive accuracy as a measure of the future performance of 

a model. With predictive accuracy, we simply count the number of correct predictions 

by the classifier and divide that by the number of examples in the dataset. For example, 

for our spam filter in Chapter 7, of the 420 examples we had to classify, we correctly 

predicted 338 of them as either ham or spam. Therefore, the predictive accuracy of our 

model was 80.5 percent ( 338
420

). While this may seem like reasonably good perfor-

mance, simply looking at predictive accuracy alone can be deceptive. To understand how, 

we need to take a closer look at the confusion matrix for that model. Before we do so, 

let’s go through a quick refresher on the confusion (or classification) matrix.

As Figure 9.8 illustrates, a two-class confusion matrix (with classes Yes and No) con-

sists of four cells. The true positive (TP) and true negative (TN) cells represent the 

number of examples that were correctly predicted as either Yes or No, respectively. The 

false positive (FP) and false negative (FN) cells represent the number of examples that 

were incorrectly predicted as either Yes or No, respectively. If we designate the predic-

tion of a spam message as a positive prediction and the prediction of a ham message as a 

negative prediction, then we get the confusion matrix in Figure 9.9.

Yes No

True Positive False Negative

False Positive True Negative

Predicted

TP FN

FP TN

Ac
tu

al
Ye

s
No

Figure 9.8 A sample confusion 
matrix showing actual versus 
 predicted values
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Based on the confusion matrix, we see that of the 205 emails in the dataset that 

were actually ham, our model predicted 203 of them correctly but misclassified 2 as 

spam. That’s 99 percent accuracy on predicting ham messages. This means that our 

spam filter will wrongfully flag 1 out of every 100 ham messages as spam. This means 

that one would need to periodically check the spam folder to make sure that nothing 

important was mistakenly flagged as spam. While not ideal, this is not a major problem. 

The confusion matrix also shows that of the 215 spam messages in our dataset, our 

spam filter correctly flagged 135 of them but mislabeled 80 of them. This is a 37 percent 

misclassification rate. This means that our spam filter will allow over a third of the spam 

messages that are sent to us to get through into our inbox. It goes without saying that 

most users would not be impressed with a spam filter that allowed that much spam into 

their inbox.

We see here that even though the spam filter has a predictive accuracy of 80.5 per-

cent, when we take a closer look at its performance against the positive examples alone 

or against the negative examples alone, we get a slightly different perspective. It’s 

important to note that there are several ways to evaluate the performance of a model. 

The key is to evaluate performance based on utility. This means that the performance 

measure used to evaluate a model should be based on the model’s intended purpose. 

In the following sections, we introduce other measures of model performance that go 

beyond the basic metric of predictive accuracy.

Spam Ham
Predicted

135 80

2 203
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am
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m

Figure 9.9 Spam filter confu-
sion matrix
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Kappa
Suppose that in Chapter 7, instead of using the naïve Bayes algorithm to build a spam 

filter, we simply used an approach that labeled messages as either spam or ham using 

stratified random sampling. With this approach, the class distribution of the predic-

tions would be similar to the class distribution of the training data. Therefore, the more 

imbalanced the data is, the more likely that such a classifier would have high accuracy by 

simply guessing the label of the majority class most of the time. To account for the pos-

sibility of a correct prediction by chance alone, the Cohen’s Kappa coefficient (or Kappa 

statistic) is often used as a measure of performance.

Kappa can be thought of as an adjustment to predictive accuracy by accounting for 

the possibility of a correct prediction by chance alone. To do so, we first compute the 

probability of expected or chance agreement (p
e
) between the predicted values and the 

actual values under the assumption that the predictions were made at random. We then 

use this measure to adjust the predictive accuracy (p
a
) of the model. Kappa is computed 

as follows:

 

p p

p
a e

e
1  9.3

To illustrate how kappa is calculated, let’s refer to the results in Figure 9.9. According 

to the confusion matrix, the predictive accuracy, which is also known as the proportion 

of actual agreement, is as follows:

 
p

TP TN

TP TN FP FN
a

135 203

135 203 2 80
0 805.

 9.4

In the context of the kappa statistic, a p
a
 value of 0.805 tells us that for the model, 

the predicted values and actual values agree 80.5 percent of the time. Note that this is 

the same value as the accuracy. The next thing we need to calculate is the probability of 

expected agreement (p
e
). This is the probability that the predicted and expected values 

match. To compute this, refer to the principles of joint probability, which we introduced 

in Chapter 7.

Let’s begin with the joint probability that the predicted and actual values are both 

ham. Based on Figure 9.9, the probability that ham was predicted is 
203 80

420
0 674. , 

and the probability that a message is actually ham is 
203 2

420
0 488. . Therefore, the joint 

probability that the predicted and actual values are both ham is 0 674 0 488 0 329. . . . 
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Now, let’s do the same for the joint probability that the predicted and actual values are 

both spam. The probability that spam was predicted is 
2 135

420
0 326. , while the prob-

ability that a message is actually spam is 
80 135

420
0 512. . Therefore, the joint probability 

that the predicted and actual values are both spam is 0 326 0 512 0 167. . . . Since the pre-

dicted and actual probability of ham is mutually exclusive from the predicted and actual 

probability of spam, the probability of chance agreement for either ham or spam is the 

sum of both probabilities. This means that p
e

0 329 0 167 0 496. . . . Applying the values 

for p
a
 and p

e
 to Equation 9.3, the kappa statistic for our model is as follows:

 

0 805 0 496

1 0 496
0 613

. .

.
.

 9.5

This means that predictive accuracy of the model, adjusted for correct predictions by 

chance alone, is 61.3 percent. Kappa values range from 0 to 1. Values above 0.5 indicate 

moderate to very good performance, while values below 0.5 indicate fair to very poor 

performance.

There are several packages in R that provide functions to compute kappa. For our pur-

poses, we will stick with the caret package, which we introduced earlier in the chapter. 

The caret package provides a suite of functions that we will find very useful as we look 

at different ways to evaluate model performance. To help with our illustration, we start 

by loading the environment variables, which include the data and values, from the spam 

filter example from Chapter 7.

> load("spam.RData")

You will notice that we now have the original (email ), training (email_train), and 

test (email_test) datasets from that example in our global environment. We also now 

have the spam filter model we trained (email_mod) as well as the model’s predictions 

against the test data (email_pred). Now that we have our data, model, and predictions, 

we can create a confusion matrix to assess the performance of our model.

So far, we have used the table() function to create the confusion matrix for each of the 

models that we’ve trained. However, going forward, we will use the confusionMatrix() 

function from the caret package. Similar to the table() function, the confusionMatrix() 

function takes arguments that represent the predicted values and the actual values.  

However, it also takes an additional argument, which specifies which of the class values 

is considered the positive class. Here we specify spam as the positive class for the model.
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> spam_matrix <-
   confusionMatrix(email_pred, email_test$message_label, positive = "spam")
> spam_matrix
 
Confusion Matrix and Statistics
 
          Reference
Prediction ham spam
      ham  203   80
      spam   2  135
                                          
               Accuracy : 0.8048          
                 95% CI : (0.7636, 0.8416)
    No Information Rate : 0.5119          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.6127          
                                          
 Mcnemar's Test P-Value : < 2.2e-16       
                                          
            Sensitivity : 0.6279          
            Specificity : 0.9902          
         Pos Pred Value : 0.9854          
         Neg Pred Value : 0.7173          
             Prevalence : 0.5119          
         Detection Rate : 0.3214          
   Detection Prevalence : 0.3262          
      Balanced Accuracy : 0.8091          
                                          
       'Positive' Class : spam

The output is a lot more involved than what we got from the table() function. How-

ever, at the top we can see the confusion matrix, which is similar to what we have seen 

before. We also see additional metrics that provide us with insight into the model’s per-

formance. The accuracy of 0.8048 is the same as what we calculated manually and also 

what we got in Chapter 7. A few lines below the accuracy, we see that we get a kappa 

value of 0.6127, which is the same as what we got in Equation 9.5.

Sometimes, we simply just want the accuracy and kappa values individually, instead 

of the verbose output we have here. To get that, we need to extract those values from 

the overall attribute of the confusion matrix. The overall attribute stores both the 

accuracy and kappa values of the model as individual columns in a single-row table.
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> spam_accuracy <- as.numeric(spam_matrix$overall["Accuracy"])
> spam_accuracy
 
[1] 0.8047619
 
> spam_kappa <- as.numeric(spam_matrix$overall["Kappa"])
> spam_kappa
 
[1] 0.6127291

Precision and Recall
Sometimes we want to know not only how well a model performs in terms of correctly pre-

dicting the right class but also want to know how trustworthy the model is or how relevant 

the model’s predictions are. To do so, we use two different measures known as precision 

and recall. Precision, which is also known as the positive predictive value, is the proportion 

of positive predictions made by a model that are indeed truly positive. A model with high 

precision is one that is trustworthy. With regard to our spam filter, this means that the vast 

majority of messages it identified as spam are truly spam. Precision is calculated as follows:

 
precision

TP

TP FP  9.6

Applied to spam filter confusion matrix (see Figure 9.10), the precision of our model is 

calculated in the equation on the next page.
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Figure 9.10 (a) Precision as a measure of model performance based on (b) the 
spam filter confusion matrix
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precision
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135 2
0 985.

 9.7

The second measure, recall, is the proportion of positive examples in a dataset that 

were correctly predicted by a model. A model with high recall is one that has wide 

breadth. It is a model that correctly identifies a large number of the positive examples 

in the data. In the case of our spam filter, this means that the vast majority of spam mes-

sages were correctly identified as spam. Recall is calculated as follows:

 
recall

TP

TP FN  9.8

Applied to our spam filter example (see Figure 9.11), the recall of the model is 

as follows:

 
recall

135

135 80
0 628.

 9.9
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Figure 9.11 (a) Recall as a measure of model performance based on (b) the spam 
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There often is a trade-off inherent in a model’s precision and recall values. Typically, if 

a model has high recall, it will not have such high precision and vice versa. Recall (no pun 

intended) that, previously, we mentioned that the performance of a model should be 

evaluated based on utility. This means that depending on the intended objective, a mod-

el’s trustworthiness may be more relevant than its breadth, or a model that covers more 

examples may be more relevant than one with high precision.

Sometimes, instead of choosing one measure over the other, precision and recall are 

combined into a single metric so that the performance of several models can be com-

pared side by side. One such metric is the F-score (or F-measure). The F-score represents 

the harmonic mean of precision and recall and is calculated as follows:

 
F s ore

precision recall

precision recall
- c

2

 9.10

Using our results from Equations 9.7 and 9.9, the F-score for our spam filter is 

as follows:

 
F score- 7

2 0 985 0 628

0 985 0 628
0 67

. .

. .
.

 9.11

This metric can be rather deceptive if not properly understood. By using the harmonic 

mean of precision and recall, we are assuming that both precision and recall are equally 

important for our problem. This is not always the case. Therefore, it is important that 

when comparing several models based on the F-score, we should also consider additional 

measures of model performance.

Sensitivity and Specificity
Both precision and recall evaluate model performance in terms of the positive class. 

Sometimes it is also important to evaluate a model’s performance not only in terms 

of how well it does with one class but in terms of how well it does in discriminating 

between classes. For instance, with respect to our spam filter example, a model that 

is overly permissive could do very well at identifying most or all of the spam messages 

(high recall), but in doing so, it could end up blocking an inordinate number of ham 

messages. Evaluating the performance of the model in terms of how well it does at 

identifying the positive class and also how well it does at identifying the negative class 
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provides us with a more balanced view of model performance. Sensitivity and specificity 

are two performance measures that provide us with this information.

The sensitivity of a model is the proportion of actual positive examples that it cor-

rectly identifies (see Figure 9.12). It is also known as the true positive rate, and it has the 

same formula as recall. Applied to our spam filter, a model with high sensitivity is one 

that does a great job identifying most of the spam messages. Sensitivity is calculated 

as follows:

 
sensitivity

TP

TP FN  9.12

Using the numbers from Figure 9.12, we calculate the sensitivity of our spam filter 

as follows:

 
sensitivity

135

135 80
0 628.

 9.13

Specificity, which is also known as the true negative rate, is the proportion of actual 

negative examples that a model correctly identifies (see Figure 9.13). In terms of our 
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Figure 9.12 (a) Sensitivity as a measure of model performance based on (b) the 
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spam filter, a model with high specificity is one that correctly identifies most of the ham 

messages. The specificity of a model is calculated as follows:

 
specificity

TN

TN FP  9.14

Applying this formula to the results of our spam filter, we get the following:

 
specificity

203

203 2
0 99.

 9.15

The values for both sensitivity and specificity range from 0 to 1, with higher values 

representing better performance. Similar to precision and recall, there often is a 

trade-off between a model’s value for these two measures. Therefore, if we adjusted our 

model to increase one of the measures, the improvement would come at the expense of 

the other. The Equation 9.13 and 9.15 results tell us that 99 percent of the ham messages 

were correctly identified by the model, while only 62.8 percent of the spam messages 
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were correctly flagged. If the objective is simply to avoid inadvertently filtering ham 

messages, then we have pretty decent model.

However, if our objective is to avoid allowing in too many spam messages, then we 

have some work to do. Our model, as it stands, will allow 37.2 percent of spam mes-

sages through. If we adjusted the model to increase sensitivity, we would most likely see 

a drop in the specificity of the model. Our objective will be to try different models until 

we find a balance that satisfies the problem we’re trying to solve.

We can compute the sensitivity, specificity, precision, recall, and f-measure of a model 

in R using functions provided by the caret package. Unlike the accuracy and kappa 

values, which we had to extract from the confusion matrix, caret provides specific 

functions for these additional metrics.

To illustrate how this works, we will continue to use the data we loaded earlier from the 

spam filter we built in Chapter 7. To get the sensitivity and specificity of our model, we use 

the sensitivity() and specificity() functions. Both functions require that we specify 

the predicted class values as well as the actual class values, just like we did with the confu-

sion matrix. Similarly, the sensitivity() function requires that we specify the positive class 

value, while the specificity() function requires that we specify the negative class value.

> spam_sensitivity <-
   sensitivity(email_pred, email_test$message_label, positive = "spam")
> spam_sensitivity
 
[1] 0.627907
 
> spam_specificity <-
   specificity(email_pred, email_test$message_label, negative = "ham")
> spam_specificity
 
[1] 0.9902439

Our results match the sensitivity and specificity values we manually computed 

in Equations 9.13 and 9.15. We can also get the precision of our model from the 

 posPredValue() function. The caret package does not provide an explicit function to 

get recall, but we do know that recall is the same measure as sensitivity, so we use the 

sensitivity() function for recall as well.

> spam_precision <-
   posPredValue(email_pred, email_test$message_label, positive = "spam")
> spam_precision
 
[1] 0.9854015
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> spam_recall <- spam_sensitivity
> spam_recall
 
[1] 0.627907

These results also match the precision and recall values we manually calculated in 

Equations 9.7 and 9.9. From these values, we can then compute the f-score to get the 

same result as we did in Equation 9.11.

> spam_fmeasure <-
   (2 * spam_precision * spam_recall) / (spam_precision + spam_recall)
> spam_fmeasure
 
[1] 0.7670455

In this section, we introduced kappa, precision, recall, f-score, sensitivity, and speci-

ficity. Each of these metrics evaluates the performance of a model from a different 

perspective. Therefore, the choice of which performance metric to use for a particular 

problem is highly dependent on the needs of the user. Sometimes, getting the positive 

class right is of utmost importance; other times the negative class is more important. 

Sometimes, we are more concerned with making sure that our model properly differ-

entiates between classes. The most important thing to note is that predictive accuracy 

is not always sufficient and we must often consider other measures of performance 

based on need.

VISUALIZING MODEL PERFORMANCE
So far, we have evaluated model performance simply based on how accurately a mod-

el’s predictions match the observed labels in the evaluation dataset. This approach 

assumes that predictions made by the underlying machine learning algorithms are binary 

decisions. This is not entirely the case. During the classification process, algorithms 

actually estimate the probability that an individual instance belongs to a particular 

class. These probabilities are also known as propensities. The propensity of an instance 

belonging to a particular class is compared against a threshold or cutoff value, which 

was set either by the algorithm or by a user. If the probability of belonging to the class in 

question is higher than the cutoff value, then the instance is assigned to that class. For 

most classification algorithms, the default two-class cutoff is 0.5. However, it is possible 



333Chapter 9: Evaluating Performance

to use a cutoff value that is either greater than or less than 0.5. As one can imagine, 

adjusting the cutoff value for a classifier will have an impact on its true positive (sensitiv-

ity) rate as well as its true negative (specificity) rate. Understanding how the sensitivity 

and specificity of a classifier changes as a function of the cutoff value provides us with a 

better picture of model performance.

Visualizations help us paint this picture. Rather than simply looking at a single perfor-

mance measure, we can explore the performance of a model under varying conditions. 

In the following section, we discuss one of the most popular visualizations of model 

performance.

Receiver Operating Characteristic Curve
The receiver operating characteristic (ROC) curve is commonly used to visually represent the 

relationship between a model’s true positive rate (TPR) and false positive rate (FPR) for all 

possible cutoff values. ROC curves have been in use for some time and were introduced dur-

ing World War II where radar and radio operators used them to evaluate a receiver’s ability 

to discriminate between true and false signals. This is similar to how they are used today in 

machine learning. The ROC curve of a model (as illustrated by the green line in Figure 9.14) is 

used to evaluate how well the model does in correctly discriminating between the positive 

and negative classes in the evaluation dataset. The ROC curve shows the true positive rate 

of a classifier on the y-axis against the false positive rate on the x-axis. Note that the false 

positive rate is the same as 1 minus the true negative rate (or 1 – specificity).

The ROC curve shown in Figure 9.14 provides us with insight into the classifier’s per-

formance at various cutoff thresholds. For example, at threshold (a), we see that the 
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classifier’s TPR is at 60 percent, while its FPR is at 15 percent. If we applied this to our 

spam filter example, this means that at this threshold, the model is able to correctly clas-

sify 60 percent of the spam messages (the positive class) while misclassifying 15 percent 

of the ham messages (the negative class). As we progress up the curve to thresholds 

(b) and (c), we see that as the classifier’s ability to correctly identify the positive class 

improves, so does its misclassification rate for the negative class. At threshold (c), the 

TPR for the classifier is now at 90 percent, and the FPR has also increased to 60 percent. 

This illustrates the inherent trade-off that exists between a classifier’s ability to correctly 

identify the positive classes (sensitivity) while also correctly identifying the negative 

classes (specificity).

The shape of an ROC curve provides insight into a classifier’s ability to discriminate 

between the positive and negative classes. Figure 9.15 shows the ROC curves for three 

different classifiers. The classifier represented by the black dotted line is a classifier with 

no predictive value. This classifier identifies positive and negative examples within the 

evaluation dataset at the same rate regardless of the cutoff threshold. It performs no 

better than chance. The classifier represented by the red dotted line is an ideal classi-

fier. It is able to identify all of the positive examples while not misclassifying any of the 

negative examples. In practice, most classifiers fall somewhere between both extremes, 

as represented by the green ROC curve. The closer a classifier’s ROC curve is to the red 
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Figure 9.15 The ROC curve for a sample classifier, a perfect classifier, and a classi-
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line, the better it is. Conversely, the closer a classifier’s ROC curve is to the black line, the 

worse it is.

There are several packages in R to provide tools that enable users to plot the ROC 

curve for a classifier. For our example, we will use the functions provided by the aptly 

named ROCR package. We will also use the data and values from the spam filter example 

we introduced in Chapter 7. We begin by loading the environment variables.

> load("spam.RData")

You will notice that one of the objects that we loaded is email_pred, which con-

tains the predicted classes against the test data. To create an ROC curve, instead of the 

predicted class values, we need the predicted probabilities that an example belongs to 

a particular class. The method to get these predicted probabilities varies across classi-

fier. For most classifiers, this is specified as an argument within the predict() function. 

Always refer to the R documentation for the classifier you’re working with to get the 

specifics. In Chapter 7, we built our naïve Bayes model using the e1071 package. For that 

particular classifier, we specify type = “raw” within the predict() function in order 

to get the predicted probabilities.

> library(e1071)
> email_pred_prob <- predict(email_mod, email_test, type = "raw")
> head(email_pred_prob)
 
               ham        spam
[1,]  1.000000e+00 0.00000e+00
[2,]  1.000000e+00 4.26186e-55
[3,]  0.000000e+00 1.00000e+00
[4,]  1.000000e+00 0.00000e+00
[5,] 3.050914e-202 1.00000e+00
[6,]  1.000000e+00 0.00000e+00

With this data, we can now generate what’s called a prediction object in the ROCR 

package. The prediction object transforms the input data into a standardized format 

that is used by the ROCR package. To create a prediction object, we use the prediction() 

function and pass to it the predicted probabilities of our model (only for the positive 

class, which is spam) and the actual class values from the evaluation dataset.

> library(ROCR)
> roc_pred <-
   prediction(
     predictions = email_pred_prob[, "spam"],
     labels = email_test$message_label
     )
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Now that we have our prediction object, we create a performance object from it. The 

performance object provides a way to perform different kinds of evaluations against 

the prediction object within the ROCR package. To create an ROC curve, the two evalua-

tions we need are the true positive rates and false positive rates across different cutoff 

thresholds. We get these by passing three arguments to the performance() function. 

The first argument is the prediction object we just created. The second argument (mea-

sure) is set as tpr. This means that we want the TPR represented in the y-axis of our 

visualization. The third argument (x.measure) specifies the metric we want on the 

x-axis. We set this to fpr.

> roc_perf <- performance(roc_pred, measure = "tpr", x.measure = "fpr")

With the performance object, we are now able to plot our ROC curve using the plot() 

function. We pass four arguments to this function. The first is the performance object. 

The second is a title for the plot (main). The third (col ) and fourth (lwd) arguments are 

aesthetic parameters that specify the color and width of the ROC curve, respectively. 

Using the abline() function, we also plot a diagonal reference line representing a clas-

sifier with no predictive value. We pass five arguments to this function that specify the 

intercept (a), slope (b), width (lwd), type (lty), and color (col ) of the line.

> plot(roc_perf, main = "ROC Curve", col = "green", lwd = 3)
> abline(a = 0, b = 1, lwd = 3, lty = 2, col = 1)

Figure 9.16 shows the ROC curve we created in R. We can see that it tends more 

toward a perfect classifier than toward the diagonal reference line. The closer the curve 

is toward a perfect classifier, the better it is at identifying the positive values in the 

evaluation data.

Area Under the Curve
The ROC curve is sometimes summarized into a single quantity known as the area under 

the curve (AUC). As the name implies, the AUC is a measure of the total surface area 

under the ROC curve. AUC values range from 0.5 (for a classifier with no predictive value) 

to 1.0 (for a perfect classifier). The AUC of a classifier can be interpreted as the probabil-

ity that a classifier ranks a randomly chosen positive instance above a randomly chosen 

negative instance.

In R, we can also use the ROCR package to calculate the AUC of a classifier. In fact, we 

use the same performance() function we used for the ROC curve but with slightly dif-

ferent parameters. The first argument we pass to it is the prediction object like we did 
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previously. However, this time we set the measure parameter to auc, and we do not set 

a value for x.measure.

> auc_perf <- performance(roc_pred, measure = "auc")

The auc performance object is what is known in R as an S4 object. These types of 

objects store their attributes in slots. Data stored in slots cannot be accessed using the 

standard $ operator used for other objects, such as data frames. To access values stored 

in slots, we use the base R slot() function coupled with the unlist() function, which 

simplifies lists to a vector of values.

> spam_auc <- unlist(slot(auc_perf,"y.values"))
> spam_auc
 
[1] 0.9800567

The AUC for our spam filter is 0.98. This indicates that our classifier does a pretty 

good job of discriminating between the positive and negative classes.

It is important to note that it is possible for two different classifiers to have similar 

AUC values but have ROC curves that are shaped differently (as illustrated in Figure 9.17). 

So, it is important to not only use the AUC metric when evaluating model performance, 

but also combine it with an examination of the ROC curve to determine which classifier 

better meets the business objective. For example, for the two classifiers represented in 
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Evaluating Numeric Prediction
The performance measures we have discussed so far have all pertained to the 
prediction of discrete values (classification). When it comes to the prediction of 
continuous values (regression), predictions are not either right or wrong. Instead, 
predictions vary in terms of how close or how far they are from the actual values. 
As a result, the measures used to evaluate the performance of a regression 
model are focused on quantifying the difference between the predicted and 
actual values.

A commonly used measure to quantify the prediction error for regression 
models is the root mean squared error (RMSE). Let’s assume that the actual and 
predicted values for the i-th example in our test dataset are represented by yi  

and yi, respectively. The prediction error ei is therefore calculated as yi iy . The 

RMSE for the i-th example is calculated as 1

1

2

n
e

i

n

i . RMSE tends to exaggerate 

the effect of outliers, so sometimes a modification of the metric known as mean 

absolute error (MAE) is used. MAE is computed as 1

1n
e

i

n

i . Sometimes, it is more 

important to look at the relative error rather than the absolute difference between 

predicted and actual values. In such a scenario, instead of ei, we use e y
i

i

 for both 
RMSE and MAE.
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Figure 9.17, assuming that they have similar AUC values, how do we decide which classifier 

is better? The answer depends on the business objective. If the objective is to keep the 

false positive rate below 20 percent, while correctly classifying up to 60 percent of the 

true positives, then classifier B is the better option. At a true positive rate of 60 percent, 

classifier B has a false positive rate of less than 20 percent, compared to classifier A, which 

has a false positive rate of about 30 percent. However, if the objective is to correctly clas-

sify at least 90 percent of the true positives, then classifier A provides better false positive 

rates within that range. At a true positive rate of 90 percent, classifier A has a false posi-

tive rate of 50 percent, while classifier B has a false positive rate of about 70 percent.

EXERCISES
1. You are building a machine learning model using an original dataset of 10,000 obser-

vations. The dataset includes 10 independent variables and 1 dependent variable. 

The independent variables are a mixture of categorical and numeric data, while the 

dependent variable is a binary value.

If you used each of the following validation techniques, how many iterations would 

occur in the model building? Assume that k = 5 and number = 3 for cases where those 

values are relevant.

a. Holdout method

b. k-fold cross-validation

c. LOOCV

d. LGOCV

e. Bootstrap method

2. Consider the following confusion matrix:
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Compute the following values:

a. Predictive accuracy (p
a
)

b. Probability of expected agreement (p
e
)

c. Kappa ( )

d. Precision

e. Recall

f. F-score

g. Sensitivity

h. Specificity

i. False positive rate

j. True positive rate

k. False negative rate

l. True negative rate

3. You recently built three machine learning models to perform a classification task and 

found that the models have the ROC curves shown in Figure 9.18.

a. Which model performs the best against your data?

b. How would you choose between models A and C?
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Figure 9.18 ROC curve for three different classifiers



Chapter 10

Improving 
Performance

In Chapter 9, we introduced several of the commonly used 

approaches to evaluating and estimating the future performance 

of a machine learning. As part of that discussion, we explained the 

idea behind cross-validation and bootstrapping, which are two of 

the most popular resampling techniques. We also discussed the 

limitations of predictive accuracy as the sole measure of model 

performance and introduced other measures of performance such 

as kappa, precision, recall, F-measure, sensitivity, specificity, the 

receiver operating characteristic (ROC) curve, and area under the 

curve (AUC).

In the previous chapter, to illustrate how model performance 

evaluation works in R, we used a powerful package called caret. 

In this chapter, we will continue to rely on some of the functions 

provided by this package as we look into different techniques for 

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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improving the performance of a machine learning model. The 

techniques we discuss will be based on two main approaches. The 

first approach is focused on improving performance by optimizing 

a single model, while the second approach is focused on leveraging 

the power of several suboptimal models to improve performance.

By the end of this chapter, you will have learned the following:

 ◆ How to improve performance by tuning the parameters of a 

single machine learning model to make it better

 ◆ How to improve performance by bringing several weak 

machine learning models together to create a more 

powerful unit

PARAMETER TUNING
Most machine learning techniques have one or more parameters that need to be set 

before the learning process begins. These parameters are commonly known as hyperpa-

rameters. We encountered hyperparameters in previous chapters but did not call them 

that at the time. For example, in Chapter 6, when using the k -nearest neighbor approach, 

we had to set the value of the hyperparameter k, prior to the model build process. In 

Chapter 8, while we did not explicitly set the complexity parameter for the decision 

tree model, the rpart() function chose a value for us. The complexity parameter is a 

hyperparameter. The choice of values for each hyperparameter has significant impact on 

the performance of any particular model. Therefore, it is critically important to identify 

the appropriate values for a model’s hyperparameters and set them prior to the build 

process. In machine learning, the process of identifying and setting the optimal hyperpa-

rameter for a model is known as parameter tuning or hyperparameter tuning.

Automated Parameter Tuning
Setting the appropriate values for a model’s hyperparameters can be a rather arduous 

task. A systematic approach involves first creating a grid of possible hyperparameters 

to evaluate and then conducting a search within the grid to identify the combination of 
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hyperparameters that result in the best performance for a particular model. The search 

process involves building a model based on each hyperparameter combination in the grid, 

evaluating the performance of each model, and choosing the one with the desired perfor-

mance based on a chosen evaluation method and metric. This iterative search process is 

commonly referred to as grid search. We illustrate the grid search process in Figure 10.1.

The caret package in R provides us with a powerful set of tools to perform grid 

search and serves as a wrapper that provides a uniform interface to several of the 

machine learning models and functions available in R. The package has a well-docu-

mented site at http://topepo.github.io/caret/index.html. To use caret for automated 

parameter tuning, the first thing we do is decide on the machine learning algorithm that 

we intend to use. The caret package calls it the method. For example, in Chapter 9, when 

we used caret to train a decision tree model based on the CART algorithm, we set the 

method argument of the train() function to rpart. This told caret to use the machine 

learning algorithm provided by the rpart package to train our model. Note that we first 

had to load the rpart package for this to work. This is because the caret package did 

not actually train the model; instead, it called the rpart package behind the scenes to 

train the model. So, it is important that when we choose a method for caret to use, we 

also install and load the package that actually implements the method prior to calling 

the train() function in caret.

After we identify the machine learning method (and underlying package) that we 

intend to use, the next thing we do is identify the tunable parameters provided by the 

method. This varies from method to method. A complete list of the available methods 

1. Create grid of parameter
combinations to be considered.

2. Use k-fold cross-validation to evaluate the
performance of each model.

3. Select the model with the best-performing
parameter combination.
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Figure 10.1 The grid search process showing eight models with different parameter 
combinations, which are each evaluated using k-fold cross-validation. The model 
with the best-performing parameter combination is chosen (model 2).
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and tunable parameters supported by caret can be found on the documentation site 

(http://topepo.github.io/caret/available-models.html). By using the search box provided 

on this page, we can find the tunable parameters provided by any of the supported 

methods. Figure 10.2 shows the caret documentation for the rpart method. It shows 

that the method implements the CART algorithm (Model), can be used for both classifi-

cation and regression (Type), depends on the rpart package (Libraries), and provides a 

single tunable parameter, cp (Tuning Parameters).

Besides using the caret documentation site, we can figure out what parameters are 

supported by a particular method in R if we know the name of the method. We do this 

by passing the method name to the modelLookup() function provided by caret. As we 

mentioned earlier, cp is the complexity parameter for the CART decision tree algorithm 

that is implemented by the rpart package in R. So, to find out which parameters are 

supported by the rpart method, we call modelLookup(“rpart”).

> library(caret)
> library(rpart)
> modelLookup("rpart")
 
  model parameter                label forReg forClass probModel
1 rpart        cp Complexity Parameter   TRUE     TRUE      TRUE

After we decide on a method and identify the tunable parameters for it, we can then 

proceed with the parameter tuning process. To illustrate how this is done, we revisit the 

income prediction problem from Chapter 9. Similar to what we did in that chapter, we 

begin by importing and partitioning 75 percent of the data as the training set and the 

remaining 25 percent as the test set.

Figure 10.2 Tunable parameters supported by the caret package for the 
rpart method
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> library(tidyverse)
> income <- read_csv("income.csv", col_types = "nffnfffffnff")
 
> set.seed(1234)
> sample_set <- createDataPartition(y = income$income, p = .75, list = 
FALSE)
> income_train <- income[sample_set,]
> income_test <- income[-sample_set,]

We know from our prior exploration of the income dataset that it suffers from a class 

imbalance problem. So, we use the SMOTE() function from the DMwR package to balance 

the training dataset prior to the model build process.

> set.seed(1234)
> library(DMwR)
> income_train <-
   SMOTE(income ~ .,
         data.frame(income_train),
         perc.over = 100,
         perc.under = 200)

Note the repeated use of the set.seed() function. As a reminder, we do this to 

ensure that the sequence of random numbers generated by our code remains the same. 

This keeps the results of the sampling process consistent, so you can replicate the 

results in this book.

TIP Depending on the version of R and related packages used by a reader, 
some of the results in the remainder of the chapter may be slightly different, 
and an error may occur during the model training phase. If so, use the 
information provided by the error as a guide to resolve it. For example, if the 
error reads Error: package e1071 is required, then install and load the 
e1071 package.

The next step is to build and tune a model using the train() function provided by 

the caret package. The arguments we pass to the function specify the training formula, 

training data, performance evaluation metric (accuracy), training algorithm (rpart), resa-

mpling technique (0.632 bootstrap), and number of resampling iterations (3).

> set.seed(1234)
> income_mod <- train(
   income ~ .,
   data = income_train,
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   metric = "Accuracy",
   method = "rpart",
   trControl = trainControl(method = "boot632", number = 3)
  )
 
> income_mod
 
CART 
 
23524 samples
   11 predictor
    2 classes: '<=50K', '>50K' 
 
No pre-processing
Resampling: Bootstrapped (3 reps) 
Summary of sample sizes: 23524, 23524, 23524 
Resampling results across tuning parameters:
 
  cp          Accuracy   Kappa     
  0.02469818  0.7503711  0.50066598
  0.05347730  0.7109033  0.42185549
  0.41379017  0.5408935  0.08509881
 
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.02469818.
 

The output of the model (income_mod) provides us with some insight into what the 

train() function did. The first line shows the learning algorithm used, which in this case 

is the CART decision tree algorithm. The next three lines describe the training data used 

to build the model. The training data consists of 23,524 examples and 11 predictor var-

iables. The class has two levels: <=50K and >50K. The next section of the result shows 

the preprocessing and resampling technique used in the process. As we expect from the 

arguments we passed, three bootstrap samples were generated, and each of the sam-

ples had 23,524 examples in them. Following the resampling results is a section that lists 

the results for each of the models that were evaluated. Each model is represented by the 

parameter and parameter value that was used to build the model, the model's accuracy, 

and the kappa value for the model. We see that three different candidate models were 

considered, each with a different value for cp. The final section of the result tells us that 

of the three models considered, the one with a cp value of 0.02469818 was selected, 

because it had the highest accuracy.
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NOTE Notice that the train() function selected three different values for 
the hyperparameter cp. We did not specify these values. This is the default 
behavior of the function. If no parameter values are specified by the user, the 
function randomly selects at most three values for each of the parameters 
supported by the method. This means that for a method with p different 
parameters, the train() function will create at most 3p candidate models to 
be evaluated.

With our model training complete, we can now evaluate how well the model per-

forms against the test data. To do so, we pass both the model and the test data to the 

predict() function and then use the confusionMatrix() function from the caret 

package to generate the performance metrics.

> income_pred <- predict(income_mod, income_test)
> confusionMatrix(income_pred, income_test$income, positive = "<=50K")
 
Confusion Matrix and Statistics
 
          Reference
Prediction <=50K >50K
     <=50K  5077  880
     >50K   1102 1080
                                         
               Accuracy    : 0.7565         
                 95% CI    : (0.747, 0.7658)
    No Information Rate        : 0.7592         
    P-Value [Acc > NIR]        : 0.7206         
                                         
                  Kappa        : 0.3588         
                                         
 Mcnemar's Test P-Value        : 6.902e-07      
                                         
            Sensitivity        : 0.8217         
            Specificity    : 0.5510         
         Pos Pred Value    : 0.8523         
         Neg Pred Value    : 0.4950         
             Prevalence    : 0.7592         
         Detection Rate    : 0.6238         
   Detection Prevalence        : 0.7319         
      Balanced Accuracy        : 0.6863         
                                         
       'Positive' Class        : <=50K
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As we can see from the results, the predictive accuracy of our model based on 

automated parameter tuning is 75.65 percent. This is only marginally better than the 

75 percent accuracy we achieved in Chapter 8 by using the rpart() function without 

hyperparameter tuning. Our kappa value of 0.3588 tells us that if we account for correct 

predictions by chance alone, our model actually does not perform that well and there is 

room for improvement. We attempt to do so in the following section.

Customized Parameter Tuning
In the previous example, we noted that the train() function independently chose which 

hyperparameter values to use for the tuning process without user intervention. We also 

learned that the default process limits the choice of values to three per hyperparameter. 

Fortunately, the train() function does provide users with a lot more fine-grained con-

trol over the parameter tuning process than what we’ve used so far. For example, we 

can instruct the function to use more than three values per hyperparameter by simply 

setting the tuneLength argument to the number of values we want the function to 

evaluate per hyperparameter. For example, to increase the number of cp values evalu-

ated during the tuning process from 3 to 20, we set the tuneLength argument to 20.

> set.seed(1234)
> income_mod <- train(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   method = "rpart",
   trControl = trainControl(method = "boot632", number = 3),
   tuneLength = 20
  )
 
> income_mod
 
CART 
 
23524 samples
   11 predictor
    2 classes: '<=50K', '>50K' 
 
No pre-processing
Resampling: Bootstrapped (3 reps) 
Summary of sample sizes: 23524, 23524, 23524 
Resampling results across tuning parameters:
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  cp           Accuracy   Kappa     
  0.001190274  0.8249197  0.64984074
  0.001360313  0.8222101  0.64441434
  0.001530352  0.8212731  0.64253394
  0.001615372  0.8206107  0.64119274
  0.001870430  0.8188800  0.63775032
  0.002040469  0.8182132  0.63641601
  0.002125489  0.8178223  0.63563409
  0.002508077  0.8154395  0.63083335
  0.002805645  0.8116371  0.62323467
  0.002826900  0.8085719  0.61710439
  0.002975684  0.8025796  0.60507465
  0.003060704  0.8002352  0.60038852
  0.004591056  0.7890364  0.57813718
  0.004761095  0.7881606  0.57638567
  0.005356232  0.7866170  0.57330219
  0.005441251  0.7836144  0.56729702
  0.005738820  0.7809698  0.56201224
  0.024698181  0.7503711  0.50066598
  0.053477300  0.7109033  0.42185549
  0.413790172  0.5408935  0.08509881
 
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.001190274.

As expected, our results show that 20 different models were created and evaluated. 

Of those models, the one with a cp parameter of 0.001190274 was chosen. We also 

notice that, similar to the previous example, the results show that the best-performing 

model is the one with the smallest value for cp. This is to be expected, because as we 

discussed in Chapter 8, the smaller the complexity parameter (cp) for a decision tree, 

the larger the tree is and the more the tree can model the patterns in the data. However, 

we do know that decision trees also have a tendency to overfit. This means that, below a 

certain limit for cp, our accuracy will start to go down. To find this limit, we could expand 

the value for tuneLength to 50, 100, or even more, and let the train() function inde-

pendently consider additional cp values. This could end up being very computationally 

expensive depending on how far the optimal cp value is from where we start. A different 

and preferred approach is to explicitly specify the cp values we want to consider.

To specify the cp values considered during the parameter tuning process, we first 

need to create a parameter grid. According to the specifications for the caret package, 

the grid columns must represent each of the tunable parameters of the method being 

used, the grid column names must correspond to the names of the tunable parameters 

prefixed by a period, and each row of the grid must specify the combination of parame-

ters to be evaluated.
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To illustrate how this works, let’s consider a fictional method called zeta with three tun-

able parameters—alpha, beta, and gamma. Based on our understanding of zeta and the 

documentation for zeta, we know that alpha can take on any integer value between 1 and 3, 

beta is either TRUE or FALSE, and gamma can be any continuous value. To create a parameter 

grid for all possible values of both alpha and beta, and the values 4, 4.5, and 5 for gamma, 

we use the expand.grid() R function. The function allows us to create a parameter grid 

quickly, without having to explicitly list each parameter combination. The first argument we 

pass to the function is a list of values, c(1, 2, 3), for the argument.alpha. This represents 

the possible values for the alpha parameter. We do the same thing for the beta parameter. 

For the gamma parameter, we use the seq() function to create a list of values between 4 

and 5, incremented by 0.5. This list of values is assigned to the argument called .gamma.

> expand.grid(
   .alpha = c(1, 2, 3),
   .beta = c(TRUE, FALSE),
   .gamma = seq(from = 4, to = 5, by = 0.5)
 )
 
   .alpha .beta .gamma
1       1  TRUE    4.0
2       2  TRUE    4.0
3       3  TRUE    4.0
4       1 FALSE    4.0
5       2 FALSE    4.0
6       3 FALSE    4.0
7       1  TRUE    4.5
8       2  TRUE    4.5
9       3  TRUE    4.5
10      1 FALSE    4.5
11      2 FALSE    4.5
12      3 FALSE    4.5
13      1  TRUE    5.0
14      2  TRUE    5.0
15      3  TRUE    5.0
16      1 FALSE    5.0
17      2 FALSE    5.0
18      3 FALSE    5.0 

The results show the 18 different parameter combinations that would be consid-

ered during the tuning process. Going back to our income prediction example using the 

rpart method, let’s assume that we decide to evaluate 20 complexity parameter values 

between the values of 0.0001 and 0.002. We would use the expand.grid() function to 

create a parameter grid for these cp values just like we did in our fictional example.
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> expand.grid(.cp = seq(from = 0.0001, to = 0.002, by = 0.0001))
 
      .cp
1  0.0001
2  0.0002
3  0.0003
4  0.0004
5  0.0005
6  0.0006
7  0.0007
8  0.0008
9  0.0009
10 0.0010
11 0.0011
12 0.0012
13 0.0013
14 0.0014
15 0.0015
16 0.0016
17 0.0017
18 0.0018
19 0.0019
20 0.0020

Why did we choose to only look at values between 0.0001 and 0.002? Great question. 

From our previous results, we know that the optimal cp value is somewhere below 0.002. 

Therefore, we simply decided to try 20 different cp values below this threshold. We 

chose 20 for illustrative purposes. The number/range of values to evaluate is at the dis-

cretion of the user. With our parameter grid in place, we can now instruct the train() 

function to only consider these parameters in the tuning process. To do so, we pass our 

parameter grid to the tuneGrid argument of the train() function.

> set.seed(1234)
> income_mod <- train(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   method = "rpart",
   trControl = trainControl(method = "boot632", number = 3),
   tuneGrid = expand.grid(.cp = seq(from = 0.0001, to = 0.002, by = 
0.0001))
  )
 
> income_mod
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CART 
 
23524 samples
   11 predictor
    2 classes: '<=50K', '>50K' 
 
No pre-processing
Resampling: Bootstrapped (3 reps) 
Summary of sample sizes: 23524, 23524, 23524 
Resampling results across tuning parameters:
 
  cp      Accuracy   Kappa    
  0.0001  0.8458971  0.6918087
  0.0002  0.8474552  0.6949238
  0.0003  0.8452231  0.6904421
  0.0004  0.8427255  0.6854406
  0.0005  0.8403488  0.6806960
  0.0006  0.8373673  0.6747242
  0.0007  0.8355844  0.6711520
  0.0008  0.8347887  0.6695676
  0.0009  0.8326862  0.6653719
  0.0010  0.8280034  0.6560078
  0.0011  0.8267913  0.6535846
  0.0012  0.8244087  0.6488197
  0.0013  0.8233899  0.6467654
  0.0014  0.8217246  0.6434373
  0.0015  0.8215546  0.6430969
  0.0016  0.8209079  0.6417870
  0.0017  0.8199552  0.6398810
  0.0018  0.8191755  0.6383398
  0.0019  0.8188072  0.6376045
  0.0020  0.8185886  0.6371667
 
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 2e-04.

The output shows that the cp value chosen by our model is 0.0002. We also notice 

that this is not the smallest cp value evaluated. This means that our optimal cp value is 

somewhere close to this value. To make sure that we’re not simply overfitting against 

the training data, let’s use our model to predict the labels of the test data and evalu-

ate how well our model performs against unseen examples that were not used in the 

training process.

> income_pred <- predict(income_mod, income_test)
> confusionMatrix(income_pred, income_test$income, positive = "<=50K")
 



353Chapter 10: Improving Performance

Confusion Matrix and Statistics
 
          Reference
Prediction <=50K >50K
     <=50K  5188  537
     >50K    991 1423
                                          
               Accuracy : 0.8123          
                 95% CI : (0.8036, 0.8207)
    No Information Rate : 0.7592          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.5242          
                                          
 Mcnemar's Test P-Value : < 2.2e-16       
                                          
            Sensitivity : 0.8396          
            Specificity : 0.7260          
         Pos Pred Value : 0.9062          
         Neg Pred Value : 0.5895          
             Prevalence : 0.7592          
         Detection Rate : 0.6374          
   Detection Prevalence : 0.7034          
      Balanced Accuracy : 0.7828          
                                          
       'Positive' Class : <=50K   

The predictive accuracy of our model is now at 81.23 percent. That is better than 

the 75.65 percent accuracy we achieved for our initial automated parameter tuning 

attempt. Our kappa value has also improved from 0.3588 for the first attempt to 0.5242. 

That is a significant improvement. We also see improvement in our other measures of 

performance: sensitivity (or recall), specificity, and precision (which is labeled as Pos 

Pred Value).

NOTE So far, we have set the metric argument of the train() function 
as Accuracy. This tells the function that during the automated parameter 
tuning process, the model with the highest accuracy should be selected. It’s 
important to note that we could also use the kappa metric as the measure of 
performance. To do so, we would simply set the metric argument to Kappa. 
If our problem were a regression problem, then the possible values for the 
metric argument would be RMSE or Rsquared instead.
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ENSEMBLE METHODS
In the previous section, we used hyperparameter tuning as a means to improve the per-

formance of a model. The idea behind this is that if one can find the optimal combination 

of hyperparameters for a model, then the model’s ability to effectively predict future 

outcomes will improve. This is one approach to model performance improvement. In this 

section, we introduce a different approach known as ensemble learning.

Ensemble learning assumes that we may not always be able to find the optimal set of 

hyperparameters for a single model and that, even if we did, the model may not always 

be able to capture all the underlying patterns in the data. Therefore, instead of simply 

focusing on optimizing the performance of a single model, we should use several com-

plementary weak models to build a much more effective and powerful model.

There are several approaches to ensemble learning. All of them are premised on the 

basic idea that by bringing together a varied team of experts (or models, in this case) 

to solve a problem, we will learn more effectively. There are three major characteristics 

that differentiate ensemble methods.

 • How the experts are chosen: Most ensemble techniques are made up of weak 

learners that are based on a single learning algorithm. For example, we can have 

an ensemble of several decision tree learners or an ensemble of several k-nearest 

neighbor (k-NN) learners. These types of ensembles are called homogenous ensem-

ble models. However, some ensemble techniques are based on different learning 

algorithms. In such an ensemble, we could have a naïve Bayes learner coupled with 

a logistic regression learner and a decision tree learner. These are described as het-

erogeneous ensemble models.

 • How tasks are assigned to each expert: The decision of how much of the training 

data is assigned to each model in the ensemble is dictated by a set of rules known 

as the allocation function. The allocation function can assign all or a subset of the 

examples and/or features in the data to any particular model in the ensemble. This 

also means that each instance can be assigned to one, more than one, or no models. 

By varying the input passed on to a model, the allocation function can distribute 

the learning task and/or bias certain models toward focusing on specific patterns 

within the data.

 • How the results from each expert are combined: By using a varied team of 

experts on a learning task, it is expected that sometimes these experts will pro-

vide different answers for the same problem. Ensemble methods use a set of rules 

known as a combination function to reconcile these differences. In the following 

sections, we discuss some of the common combination function techniques used 

in ensemble learning.
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In the remainder of this chapter, we will explore three different approaches to ensem-

ble learning: bagging, boosting, and stacking.

Bagging
One of the most common ensemble learning approaches is known as bagging, which 

stands for bootstrap aggregating. The name comes from the fact that bagging ensembles 

use a bootstrap sampling approach for the allocation function, which is used to generate 

the data assigned to each model in the ensemble. Bagging ensembles are typically made 

up of homogenous learners, which are trained independently and in parallel (as illus-

trated in Figure 10.3).

The combination function for bagging ensembles is implemented in several ways. For 

classification problems, the prediction differences are sometimes reconciled by tallying 

the vote of each expert. The class value that receives the majority vote is then returned 

by the ensemble. This is known as hard voting. For example, let’s assume that for the 

bagged ensemble illustrated in Figure 10.3, model 1 predicts “Yes” for a particular in-

stance. However, for the same instance, models 2 and 3 both predict “No.” Then, the 

combination function will return the majority vote, which is “No” for the instance.

Sometimes, instead of counting votes, the combination function for a bagged 

ensemble looks at the probability for each class value returned by the learners and 

averages the probabilities. The class value with the highest probability is then returned 

Model
1

Subset 1

Subset 3

Training
Data EnsembleSubset 2

Model
2

Model
3

Figure 10.3 The bagging ensemble features independently trained homogenous 
models in parallel.
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by the ensemble. This is known as soft voting. For example, let’s assume that for the 

same bagged ensemble illustrated in model 1 of Figure 10.3 returns 0.87 as the prob-

ability that the label for a particular instance is “Yes.” For the same instance, model 2 

returns the probability of “Yes” as 0.46, and model 3 returns 0.48. The average of the 

three probabilities is  
0 87 0 46 0 48

3
0 60

. . .
. . With soft voting, since the average prob-

ability is above the default cutoff of 0 5. , the combination function will return “Yes” for 

the instance.

TIP When dealing with a regression problem, bagging ensembles reconcile 
the differences by simply taking the average of the predictions.

One of the most popular bagging ensemble methods is the random forests or decision 

tree forests ensemble technique. It gets its name from the fact that the ensemble con-

sists of a large number of decision tree learners (which are collectively called a forest) 

and that its allocation function combines both bootstrap sampling and random feature 

selection to generate the data assigned to each learner in the ensemble. By using only a 

random subset of the full feature set, random forests are able to handle very wide data-

sets (datasets with a large number of features).

To illustrate the random forests ensemble technique in R, we use the rf method 

in caret, which depends on the aptly named randomForest package. Using the 

 modelLookup() command for the rf method reveals that it has only one tunable 

 parameter: mtry. This is the number of randomly selected features to consider at each 

split (more on this shortly).

> library(randomForest)
> modelLookup("rf")
 
   model parameter                            label     forReg  forClass  probModel
1  rf     mtry  #Randomly Selected Predictors       TRUE     TRUE      TRUE

Based on the documentation provided by the randomForest package, the default 

value for mtry is the square root of the number of features in the dataset when working 

on a classification problem. For regression problems, the default value for mtry is a third 

of the number of features in the dataset. Since our income prediction example is a classi-

fication problem, we will set the value for mtry to the square root of 11 (number of pre-

dictors in our dataset). This is approximately 3. By setting mtry to 3, we are specifying 

that during the recursive partitioning process for each of the bagged decision trees, 

each tree will consider only 3 randomly selected features to split on (see Chapter 8 for a 
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refresher on decision trees and the recursive partitioning process). By keeping the value 

of mtry small, the objective is to have a large enough number of trees with significant 

random variation between them. This ensures that, as all the features in the original data 

are considered by the ensemble of trees, there will also be substantial diversity in the 

data used to train each tree.

To illustrate the power of a basic ensemble method, we chose not to do hyperparam-

eter tuning for our random forest model, which also means that we do not really need 

to do resampling. To specify this, we set the method argument in the trainControl() 

function to none and train our model.

 
> set.seed(1234)
> rf_mod <- train(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   method = "rf",
   trControl = trainControl(method = "none"),
   tuneGrid = expand.grid(.mtry = 3)
 )

Let’s take a look at how well our random forest ensemble model does against the 

unseen test data.

> rf_pred <- predict(rf_mod, income_test)
> confusionMatrix(rf_pred, income_test$income, positive = "<=50K")
 
Confusion Matrix and Statistics
 
          Reference
Prediction <=50K >50K
     <=50K  4981  495
     >50K   1198 1465
                                         
               Accuracy : 0.792          
                 95% CI : (0.783, 0.8008)
    No Information Rate : 0.7592         
    P-Value [Acc > NIR] : 1.099e-12      
                                         
                  Kappa : 0.4932         
                                         
 Mcnemar's Test P-Value : < 2.2e-16      
                                         
            Sensitivity : 0.8061         
            Specificity : 0.7474         
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         Pos Pred Value : 0.9096         
         Neg Pred Value : 0.5501         
             Prevalence : 0.7592         
         Detection Rate : 0.6120         
   Detection Prevalence : 0.6728         
      Balanced Accuracy : 0.7768         
                                         
       'Positive' Class : <=50K 

The results show that our random forests ensemble performs relatively well for very 

little effort. Without doing parameter tuning, our ensemble’s accuracy of 79.2 percent is 

slightly lower than the 81.23 percent achieved by the tuned decision tree from the previ-

ous example. Also, the kappa value of 0.4932 is not too far off from the 0.5242 value of 

the tuned decision tree. The results of the other measures of performance (sensitivity, 

specificity, precision, and recall) tell a similar story.

Boosting
The second commonly used ensemble method we introduce is called boosting. Similar to 

bagging, boosting ensembles are built based on a homogenous set of base models. How-

ever, boosting differs from bagging in that, instead of independently training the base 

models in parallel, the base models in the boosting ensemble are trained in sequence. 

Within the sequence, each successive model attempts to improve upon the performance 

of the preceding model by learning from the mistakes of its predecessor. This is why it’s 

called boosting. Each successive model boosts the performance of the ensemble.

Figure 10.4 provides an illustration of the basic architecture of the boosting ensemble 

technique. The process involves training an initial model on the data. The model is then 

evaluated and assigned a score based on how well it does against the training data.

The training data is then resampled in such a way as to give greater weight to the 

examples that the first model predicted incorrectly. By applying weights in this way, 

the misclassified examples appear more often in the new training data, while the cor-

rectly classified ones appear less frequently. The next model in the ensemble sequence 

Training
Data Ensemble

Model
1

Model
2

Model
3

Figure 10.4 The boosting ensemble features a linear sequence of homoge-
nous models.
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is trained based on this newly weighted training data. This model is then evaluated and 

scored, similar to the first model. The training data is then resampled with new weights 

applied to the examples based on how well the second model performed. This process 

of resampling, training, evaluating, and scoring is repeated for each of the models in the 

sequence until all the models have been trained.

The combination function for boosting ensembles works in a similar way as that of 

bagging ensembles. For classification problems, the boosting ensemble reconciles the 

predictions of the models by tallying the vote. However, unlike bagging ensembles, the 

boosting ensemble also factors in the performance score assigned to each base model 

during the training process. The prediction returned by the ensemble is therefore a lin-

ear combination of these weighted votes. Models that perform better will have a larger 

influence on the final prediction than those that perform poorly. For regression prob-

lems, the differences in prediction are reconciled by using a weighted average of the 

predictions.

To illustrate how boosting works in R, we use a popular boosting ensemble algorithm 

known as extreme gradient boosting (XGBoost). The xgbTree method in caret imple-

ments this ensemble and is dependent on the xgboost package. The modelLookup() 

function reveals that there are seven tunable parameters for the xgbTree method.

Adaptive Boosting vs. Gradient Boosting
The boosting method we described is known as adaptive boosting. Another 
common boosting approach is known as gradient boosting. With gradient boosting, 
instead of trying to correctly predict the previously misclassified examples at each 
boosting iteration, the focus is on predicting the residuals (the difference between 
the predicted and actual values).

One can think of boosting in terms of a golfer trying to hit a ball into a hole. With 
adaptive boosting, imagine that the golfer makes an initial attempt to get the ball 
into the hole but misses. The golfer then continues to make successive attempts 
at getting the ball into the hole, all from the same starting position. The goal is to 
learn from previous attempts to get the ball into the hole with only one stroke.

With gradient boosting, the golfer’s strategy is a bit different. Instead of making 
all the attempts from the same starting location, the golfer makes each successive 
attempt from wherever the ball landed the previous time. Sometimes the golfer 
may fall short of the hole, and sometimes the golfer may overshoot the hole. Each 
time, the focus is on the distance between where the ball landed in the previous 
attempt and the hole.
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> library(xgboost)
> modelLookup("xgbTree")
 
    model        parameter                         label forReg forClass probModel
1 xgbTree          nrounds          # Boosting Iterations   TRUE     TRUE      TRUE
2 xgbTree        max_depth                 Max Tree Depth   TRUE     TRUE      TRUE
3 xgbTree              eta                      Shrinkage   TRUE     TRUE      TRUE
4 xgbTree            gamma         Minimum Loss Reduction   TRUE     TRUE      TRUE
5 xgbTree colsample_bytree     Subsample Ratio of Columns   TRUE     TRUE      TRUE
6 xgbTree min_child_weight Minimum Sum of Instance Weight   TRUE     TRUE      TRUE
7 xgbTree        subsample           Subsample Percentage   TRUE     TRUE      TRUE

The R documentation provided by the xgboost package provides useful informa-

tion on what each of these hyperparameters means. For our example, we use this doc-

umentation to figure out what values to assign to each of the parameters. For each of 

them, except for nrounds, we used the default value provided by the package. There 

is no default value for nrounds, so we set it at 100, with the awareness that the higher 

this number is, the better the performance of the model, but also the more likely it is to 

overfit against the training data. With our parameter combination, we build our model, 

making sure to specify that we do not want to resample, just like we did in the previ-

ous example.

> set.seed(1234)
> xgb_mod <- train(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   method = "xgbTree",
   trControl = trainControl(method = "none"),
   tuneGrid = expand.grid(
     nrounds = 100,
     max_depth = 6,
     eta =  0.3,
     gamma = 0.01,
     colsample_bytree = 1,
     min_child_weight = 1,
     subsample = 1
   )
 )

Let’s evaluate how well our model does against the test data.

> xgb_pred <- predict(xgb_mod, income_test)
> confusionMatrix(xgb_pred, income_test$income, positive = "<=50K")
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Confusion Matrix and Statistics
 
          Reference
Prediction <=50K >50K
     <=50K  5168  477
     >50K   1011 1483
                                          
               Accuracy : 0.8172          
                 95% CI : (0.8086, 0.8255)
    No Information Rate : 0.7592          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.5425          
                                          
 Mcnemar's Test P-Value : < 2.2e-16       
                                          
            Sensitivity : 0.8364          
            Specificity : 0.7566          
         Pos Pred Value : 0.9155          
         Neg Pred Value : 0.5946          
             Prevalence : 0.7592          
         Detection Rate : 0.6350          
   Detection Prevalence : 0.6936          
      Balanced Accuracy : 0.7965          
                                          
       'Positive' Class : <=50K

With an accuracy of 81.72 percent and a kappa value of 0.5425, our boosted ensemble 

performs better than all of our previous examples. And this is without any hyperparam-

eter tuning. This illustrates the power of ensemble methods such as extreme gradient 

boosting to improve the performance of a model by bringing several learners together 

to solve a problem.

Stacking
The next ensemble technique we introduce is called stacking. Stacking is different 

from both bagging and boosting in that, while those approaches are usually built using 

homogenous base models, the base models in a stacking ensemble are usually heteroge-

neous. For example, a stacked ensemble can consist of a k-NN model, a logistic regres-

sion model, and a naïve Bayes model.

Stacking does have some similarity to bagging, in that it relies on several inde-

pendently built learners whose predictions are eventually reconciled by a combina-

tion function. However, unlike bagging, the combination function used in stacking 
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is nondeterministic. This means that it does not follow a predefined set of rules or 

pattern. This is because the combination function for a stacked ensemble is another 

machine learning algorithm that learns from the outputs of the other learners within the 

ensemble to decide on a final prediction. This is illustrated in Figure 10.5. In that illustra-

tion, model 4 is a machine learning model that takes the outputs of models 1, 2, and 3 

as inputs in order to make a final prediction. This type of machine learning model that 

learns from other models is called a meta-model.

To illustrate how to implement a stacking ensemble in R, we use the caretEnsemble 

package, which allows us to build custom ensembles from caret models. Before we 

do so, we need to modify the labels for our class levels. The functions provided by the 

caretEnsemble package are particular about how class values are labeled and do not 

respond well to class values that start with a number or special character. As a result, we 

will recode the values for the income feature such that <=50K will now become Below 

and >50K becomes Above. We do this by using the recode() function within the dplyr 

mutate verb.

> library(tidyverse)
> library(DMwR)
> income <- income %>% 
   mutate(income = as.factor(recode(income, "<=50K" = "Below", ">50K" = 
"Above"))) 

Model
1

Subset 1

Subset 3

Training
Data EnsembleSubset 2

Model
2

Model
4

Model
3

Figure 10.5 The stacking ensemble features independently trained heterogeneous 
models with a meta-model as the combination function.
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After recoding our class values, we re-create our training and test partitions using the 

createDataPartition() function from caret, making sure to balance the training 

data as well.

> library(caret) 
> set.seed(1234)
> sample_set <-
   createDataPartition(y = income$income, p = .75, list = FALSE)
> income_train <- income[sample_set, ]
> income_test <- income[-sample_set, ]
 
> set.seed(1234)
> income_train <-
   SMOTE(income ~ .,
         data.frame(income_train),
         perc.over = 100,
         perc.under = 200)

Next, we load the caretEnsemble package and create a list, called ensembleLearn-

ers, of the learners that we intend to use to build our ensemble – rpart (decision 

tree), glm (logistic regression), and knn (k-nearest neighbor). Note that we also load the 

dependent packages for those learners.

> library(caretEnsemble)
> ensembleLearners <- c("rpart","glm","knn")
> library(rpart)
> library(stats)
> library(class)

Using the caretList() function from the caretEnsemble package, we train a model 

based on each of the learners in our list. We do this by passing the list of learners to the 

methodList argument. For each model that we train, we repeat the 10-fold cross-valida-

tion resampling approach 5 times to estimate future performance. We also save the class 

probabilities and predictions of the final tuned model of each learner for further evalua-

tion. This is a rather compute-intensive process and takes a while to complete.

> models <- caretList(
   income ~ .,
   data = income_train,
   metric = "Accuracy",
   methodList = ensembleLearners,
   trControl = trainControl(
     method = "repeatedcv",
     number = 10,
     repeats = 5,
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     savePredictions = "final",
     classProbs = TRUE
   )
 )

With our base models trained, the next step is to train the meta-model that serves 

as the combination function. Before we do so, we need to first analyze the results of 

our base models to see how well they did against the training data. We accomplish this 

by using the resamples() function to collect results from each model and by using the 

summary() function to provide the summary statistics of the results.

> results <- resamples(models)
> summary(results)
 
Call:
summary.resamples(object = results)
 
Models: rpart, glm, knn 
Number of resamples: 50 
 
Accuracy 
            Min.  1st Qu.    Median      Mean   3rd Qu.      Max. NA's
rpart 0.7151361 0.7312514 0.7630184 0.7543618 0.7755102 0.7937925    0
glm   0.7857143 0.8042092 0.8097364 0.8084176 0.8143268 0.8222789    0
knn   0.7733844 0.7850158 0.7901786 0.7904017 0.7963435 0.8099490    0
 
Kappa 
            Min.  1st Qu.    Median      Mean   3rd Qu.      Max. NA's
rpart 0.4302721 0.4625029 0.5260449 0.5087228 0.5510204 0.5875850    0
glm   0.5714286 0.6084184 0.6194728 0.6168353 0.6286527 0.6445578    0
knn   0.5467687 0.5700317 0.5803571 0.5808035 0.5926871 0.6198980    0

The results show similar average performance between the three models, with the 

logistic regression model (glm) performing the best of the three. The next thing we do is 

evaluate the correlation of the results between the three models. When combining the pre-

dictions of different models using stacking, we want to ensure that the base models of the 

ensemble have very low correlation. Low correlation in this case tells us that we have a pool 

of experts that are good in different ways and that do not approach problems the same 

way. This provides an opportunity for the meta-model to evaluate the output from each 

model and choose the best in order to improve the performance of the entire ensemble.

> modelCor(results)
 
             rpart         glm        knn
rpart  1.00000000 -0.04723051 -0.1593756
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glm   -0.04723051  1.00000000  0.3920402
knn   -0.15937561  0.39204015  1.0000000

The correlation results show little correlation between the model results. The highest 

correlation is 0.39, which is between the knn and glm models. This number is low and not 

a concern. A correlation of 0.75 or more would be considered high for our purposes.

Now, we are ready to build the final piece of our stacking ensemble, which is the 

meta-model. We use the random forest ensemble method as the machine learning 

 algorithm for this. The caretEnsemble package provides us with a function called 

 caretStack() that allows us to combine several predictive models by using stacking. 

Using this function, we now train the meta-model, which will serve as the combination 

function for our ensemble. Note that instead of passing a prediction formula and data 

like we’ve done previously, we simply pass our trained models (called models) to the 

caretStack() function. This time, we specify rf for random forests as the method and 

keep all the other arguments the same as before. This is also a rather compute-intensive 

process and takes a while to complete.

> library(randomForest)
> stack_mod <- caretStack(
   models,
   method = "rf",
   metric = "Accuracy",
   trControl = trainControl(
     method = "repeatedcv",
     number = 10,
     repeats = 5,
     savePredictions = "final",
     classProbs = TRUE
   )
 )

We now have a trained stacking ensemble. Let’s evaluate how well it performs against 

the test data.

> stack_pred <- predict(stack_mod, income_test)
> confusionMatrix(stack_pred, income_test$income, positive = "Below")
 
Confusion Matrix and Statistics
 
          Reference
Prediction Below Above
     Below  4747   451
     Above  1432  1509
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               Accuracy : 0.7686          
                 95% CI : (0.7593, 0.7778)
    No Information Rate : 0.7592          
    P-Value [Acc > NIR] : 0.0233          
                                          
                  Kappa : 0.4596          
                                          
 Mcnemar's Test P-Value : <2e-16          
                                          
            Sensitivity : 0.7682          
            Specificity : 0.7699          
         Pos Pred Value : 0.9132          
         Neg Pred Value : 0.5131          
             Prevalence : 0.7592          
         Detection Rate : 0.5832          
   Detection Prevalence : 0.6387          
      Balanced Accuracy : 0.7691          
                                          
       'Positive' Class : Below  

The accuracy (76.86 percent) and kappa value (0.4596) of our stacking ensemble are 

not as good as those of our custom tuned model, nor those of our bagging or boosting 

ensembles. While we do not achieve better performance with the stacking ensemble, it 

does provide us with more fine-grained control over the process and much more flexi-

bility in deciding what models we want to bring together to solve a problem.

EXERCISES
1. Research the tuning parameters available for other learning methods with the caret 

package. What parameters may be tuned for each one of the following techniques?

a. k-nearest-neighbor (with the knn package)

b. Generalized linear models (with the glm package)

c. Naïve Bayes (with the naive_bayes package)

d. Random forest (with the rf package)

2. Attempt to improve the accuracy of the income prediction random forest model by 

doing some additional parameter tuning. What improvement in predictive accuracy 

were you able to achieve?

3. Now, attempt to improve the predictive accuracy of the income prediction model by 

using the extreme gradient boosting approach. This time, instead of explicitly setting 

the tuning parameters, have caret evaluate two values per hyperparameter in order 

to select the combination that provides the best predictive accuracy. What improve-

ment in predictive accuracy were you able to achieve?
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Chapter 11

Discovering 
Patterns with 
Association Rules

In Chapters 4 through 8, we introduced several supervised 

machine learning approaches. With those approaches, we 

used previously labeled data to train a model that we then used 

to assign labels to unlabeled data. In Chapters 9 and 10, we 

discussed several of the common approaches used in evaluating 

and improving the performance of a supervised learning. In the 

next two chapters, we will introduce two unsupervised learning 

techniques. Unsupervised learning differs from supervised learning 

in that with unsupervised learning, there are no previously labeled 

examples to learn from. With unsupervised learning, we are not 
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attempting to make a prediction; instead, we are looking for new 

and interesting patterns and insights in the data.

In this chapter, we introduce the first of the two unsupervised 

machine learning techniques we cover in this book—association 

rules. Association rules are often used to discover patterns that 

exist within a set of transactions. These transactions can be retail 

transactions that occur at a point of sale, they can be symptoms 

that are observed when certain medications are administered 

to patients during a drug trial, or they can be any set of items or 

events that occur together at distinct points in time.

By the end of this chapter, you will have learned the following:

 ◆ The basic ideas behind the association rules approach

 ◆ The different ways to evaluate and quantify the strength of 

association rules

 ◆ How to generate and evaluate association rules in R

 ◆ The strengths and weaknesses of association rules

MARKET BASKET ANALYSIS
As customers purchase goods and services, large amounts of data about those transac-

tions are generated and often stored for further analysis. This data provides a wealth of 

information about customer behavior and actionable insight to businesses that are able 

to understand it. This data is commonly referred to as market basket data. The study of 

this data to identify patterns and extract meaningful insight is known as market basket 

analysis or affinity analysis. It is important to note that while market basket analysis is 

often used in the analysis of retail transactions, it can be applied to any process where a 

unique set of events occur together at distinct points in time.

When applied in the retail space, market basket data consists of individual customer 

transactions. Each transaction consists of a unique set or collection of items that were 
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purchased by a customer. Any combination of items that could be purchased together 

within a transaction is known as an itemset. For example, according to the transactions 

dataset in Figure 11.1, transaction T1 is made up of the itemset bread milk beer, , , and 

transaction T3 is made up of the itemset milk diaper beer coke, , , . Note that an item-

set is a unique list of items and does not consider the quantity of each item that was pur-

chased. It is also important to note that an itemset does not always refer to all the items 

that were purchased by a customer. It refers to any combination of items that could have 

been purchased together by a customer. For example, eggs coke,  is an itemset within 

the dataset, even though none of the transactions lists these two items together.

ASSOCIATION RULES
In market basket analysis, the description of the relationship between items and item-

sets is specified by a set of association rules. Association rules describe which groups of 

items or itemsets tend to occur together within the data. They are represented using 

an IF-THEN format, where the left side (IF) lists a set of items (or events) that occurred 

together, while the right side (THEN) lists a corresponding item (or event) that also 

occurred at the same time as the previous set of items (or events). The left side of the 

rule is also referred to as the antecedent, while the right side is referred to as the con-

sequent. A sample association rule is illustrated by Figure 11.2. This rule states that for 

a set of transactions within the market basket data, when both beer and milk were pur-

chased, diapers were also purchased.

TIP There are three items in the itemset for the rule illustrated in Figure 11.2, so 
we say that the rule has a length of 3. A rule with a length of 2 would look like 
this: beer milk . Here beer is the antecedent, while milk is the consequent. 
It’s important to note that association rules allow for one or more items in 
the antecedent, but only one item in the consequent. Association rules can 
also have a length of 1. Such a rule has a consequent but no antecedent. For 
example, beer , milk , and diaper  are also valid rules, albeit with a length of 1.

Transaction Items Bought

T1

T2

T3

T4

T5

bread, milk, beer

bread, diaper, beer, eggs

milk, diaper, beer, coke

bread, milk, diaper, beer

bread, milk, diaper, coke

Figure 11.1 Sample market basket dataset 
showing five different transactions
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As we mentioned earlier, effective market basket analysis can provide retailers with 

valuable insight into the purchase patterns of customers. With this understanding, a 

retailer is able to answer critical questions such as the following:

 • What products should be displayed together in the store?

 • What products could be discounted together to increase sales?

 • What products should be recommended to customers as part of a cross- 

selling strategy?

While association rules are useful in describing the relationship between itemsets, 

they do not provide an objective measure of usefulness. Each rule that is generated has 

to be evaluated by a user for qualitative usefulness. In this regard, association rules can 

be classified into one of three major categories.

 • Actionable: These are rules that provide clear and useful insights that can be 

acted upon. For example, a rule that shows that customers who buy bread often 

buy avocados could provide some interesting insight into the food trend of avo-

cado toast. As a result, a store could decide to place these two items in close prox-

imity of each other within the store.

 • Trivial: These are rules that provide insight that is already well-known by those 

familiar with the domain. For example, a rule that shows that customers who buy 

pens often also buy notebooks does not really provide meaningful new insight.

 • Inexplicable: These are rules that defy rational explanation, need more research 

to understand, and do not suggest a clear course of action. For example, discov-

ering that customers who buy shoes are more likely to also buy pens defies ratio-

nal explanation and requires more research to understand.

The determination of whether a rule is actionable, trivial, or inexplicable is solely 

based on the judgment of the user. A single rule can be considered actionable by one 

user and yet be considered trivial by another. It is important to note that most rules are 

usually trivial or inexplicable. Identifying and acting upon the truly actionable rules is 

what provides value for a business.

Antecedent Consequent

Figure 11.2 An association rule 
describing that whenever both beer 
and milk were purchased, diapers were 
also purchased
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Identifying Strong Rules
To determine which association rules are potentially useful, it is important to evaluate 

all possible combinations of items within a dataset. For a dataset with p distinct items, 

there exist 3 2 1
1P p  possible rules with both an antecedent and a consequent. For 

our example dataset (see Figure 11.1), we have six distinct items; therefore, we can cre-

ate 3 2 1 602
6 7  different association rules. Evaluating 602 different rules to identify 

which of them are potentially useful is a painstaking process. Instead of doing this, an 

alternate approach is to only look at rules that meet certain criteria. One such criterion 

is to only look at rules that are based on itemsets that occur regularly within the dataset. 

These are known as frequent itemsets.

Support
To identify the frequent itemsets within a dataset, we need to decide how often a particu-

lar itemset needs to occur for it to be considered frequent. The frequency of an itemset 

is measured using a metric known as support or coverage. The support of an itemset is 

defined as the fraction of transactions within the dataset that contain the itemset. In our 

example dataset (see Figure 11.1), the itemset beer milk,  occurs in three transactions 

out of five; therefore, the support of beer milk,
3

5
0 6. . Similarly, the support of 

the itemset beer milk diaper, , 
2

5
0 4. .

By computing the support of every itemset, we can set a minimum support threshold 

that a particular rule has to meet to be evaluated for usefulness. This allows us to reduce 

the number of rules that we eventually take a look at. Note that with support, we treat 

an itemset and a rule as the same thing. This is because the rules beer milk diaper, ,  

beer diaper milk, , and diaper milk beer,  all have the same support. That’s 

because they are derived from the same itemset: beer milk diaper, , .

Confidence
In addition to limiting our focus to the frequent itemsets, we need to consider only 

those rules that suggest a strong dependence between the antecedent and the conse-

quent. These are considered strong rules. One way of identifying the strong rules within 

a dataset is to consider the degree of certainty of each rule. This means, to what degree 

does the consequent occur given that the antecedent occurred? Another way of looking 

at this is in terms of probability—what is the conditional probability that a transaction 
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selected at random contains the itemset in the consequent given that the transaction 

contains the itemset in the antecedent? The measure we use to quantify this is known 

as the confidence or accuracy of the rule. The confidence of a rule is defined as the ratio 

of the number of transactions that include both the antecedent and consequent to the 

number of transactions that include only the antecedent. For example, with our sample 

dataset, the confidence of the rule beer milk diaper,
2

3
0 67. . This is the support of 

the rule beer milk diaper,  divided by the support of the rule beer milk, . The result 

means that of all the transactions where both beer and milk were purchased, 67 percent 

of them also included a purchase of diapers.

The higher the confidence value for a rule, the stronger the relationship between 

the antecedent and the consequent. For example, if the confidence of the rule 

beer milk diaper,  were 100 percent, then we can safely say that customers always 

buy beer, milk, and diapers together. Note that unlike with support, even though the 

itemset is the same, the confidence of bread eggs
1

4
0 25.  is not the same as the 

confidence of eggs bread
1
1

1.

Lift
Another measure of the strength of a rule considers the increased or decreased likeli-

hood of both the antecedent and the consequent occurring together compared to the 

typical rate of occurrence of the consequent alone. This measure is known as the lift, 

and it is defined as the confidence of the itemset containing both antecedent and  

the consequent divided by the support of the itemset containing only the antecedent. 

Items with high support can have high confidence values simply by chance alone.  

Lift helps account for this chance co-occurrence by evaluating the strength of the  

relationship between the items in the itemset. Applied to our sample dataset, 

the lift of the rule beer milk diaper,
0 67

0 80
0 84

.

.
. . This is the confidence of the 

rule beer milk diaper,  divided by the support of the rule diaper . A lift value of 

0.84 tells us that customers who bought beer and milk are 0.84 times likely to also 

buy diapers. Since this value is less than 1, it means that the likelihood of purchasing 

diapers is lower for customers who buy beer and milk. If the lift value were above 

1, then the inverse would be true. It’s important to note that similar to support, the 

lift of rules based on the same itemset are always the same. For example, the lift of 

bread eggs
0 25

0 20
1 25

.

.
.  is the same as the lift of eggs bread

1

0 80
1 25

.
. .

The Apriori Algorithm
The frequent itemset process described in the previous section requires the generation 

of all itemsets to evaluate and determine which are frequent and which derived rules are 

strong. This can be a computationally expensive process, especially for datasets with a 
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large number of distinct items (p). For a dataset with p distinct items, there exist 2 1
P  

possible itemsets. Therefore, for our sample dataset, there exist 2 1 63
6  possible item-

sets. Now imagine a tiny corner grocery store that sells only 50 unique items. The market 

basket data would consist of a little over 1 quadrillion (15 zeroes) possible itemsets to 

evaluate. To minimize the computational cost of this process, a commonly used approach 

known as the apriori algorithm is used to limit the number of itemsets generated. The 

apriori algorithm was first introduced by Rakesh Agrawal and Ramakrishnan Srikant in 

1993 and gets its name from the fact that it uses prior knowledge about the properties 

of frequent itemsets in the generation process.

The apriori algorithm is based on the principle that the support of an itemset  

never exceeds that of its subsets. In other words, if an itemset is infrequent, then its 

supersets are infrequent as well. For example, if either itemset beer  or itemset milk  

is infrequent, then itemset beer milk,  will also be infrequent. This is known as the 

 anti-monotone property of support.

To help illustrate the apriori algorithm, consider the itemset lattice illustrated in 

Figure 11.3.

A

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

B C D E

ABCD ABCE ABDE

ABCDE

ACDE BCDE

Figure 11.3 All possible itemsets (itemset lattice) derived from items A, B, 
C, D, and E
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The algorithm begins by generating itemsets with just one item. Each of these item-

sets are evaluated to see whether they meet the minimum support threshold set by 

the user. Let’s assume that itemset E  is determined to be infrequent. Based on the 

anti-monotone property of support, if itemset E  is infrequent, then all of its supersets 

(red) will also be infrequent. As a result, the apriori algorithm will not generate those 

itemsets. This is what is meant by apriori pruning—the algorithm knows beforehand that 

these itemsets will not be frequent, so it does not generate them.

The next step in the apriori process is to generate itemsets with two items based only 

on the frequent itemsets from the previous stage. These itemsets are evaluated to see 

whether they meet the support threshold. If we assume that itemset A D,  is determined 

to be infrequent, then its supersets (orange) will also be infrequent and are pruned.

Finally, itemsets with three items based on the frequent items from the previous 

stage are generated. In our case, those are itemsets A B C, ,  and B C D, , . There are no 

additional itemsets to generate or evaluate, so our process terminates at this point. The 

11 itemsets (white) that are determined to be frequent are then used to generate associ-

ation rules. These rules are evaluated against minimum confidence and/or lift thresholds 

to assess the strength of the relationship between the antecedent and consequent.

TIP While the apriori algorithm is one of the most popular approaches to 
reducing the number of itemsets evaluated, it is not the only one. Another 
popular approach is the frequent pattern growth (FP-growth) approach. This 
approach uses a tree-like structure to store information that makes it easier to 
identify the itemsets that are frequent.

DISCOVERING ASSOCIATION RULES
As we explore association rules in this chapter, we will use a dataset containing informa-

tion about purchases at an anonymous Belgian supermarket. This dataset was initially 

gathered for use by Tom Brijs and made available as a public dataset.1

The dataset is available to you as part of the electronic resources accompanying this 

book. (See the introduction for more information on accessing the electronic resources.) 

The structure of the dataset is quite straightforward. Each line in the dataset represents 

a single transaction at the store’s checkout counter. The lines consist of a list of integers 

corresponding to the items purchased in that transaction. For example, here are the first 

10 lines of the dataset (with line numbers added for clarity):

1: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
26 27 28 29 
2: 30 31 32 
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3: 33 34 35 
4: 36 37 38 39 40 41 42 43 44 45 46 
5: 38 39 47 48 
6: 38 39 48 49 50 51 52 53 54 55 56 57 58 
7: 32 41 59 60 61 62 
8: 3 39 48 
9: 63 64 65 66 67 68 
10: 32 69 

The first transaction involved 30 distinct items, which are assigned the numbers 0 

through 29. In the second transaction, the customer purchased three distinct items, 

none of which was included in the first transaction, so they get three new numbers: 30 

through 32. If we skip ahead to transaction 5, that customer purchased four items. Two 

of those items, items 38 and 39, had been previously purchased in the fourth transaction, 

so those item numbers are reused. The remaining two items are appearing for the first 

time in the dataset, so those items are assigned numbers 47 and 48.

In this dataset, we don’t know what specific items were involved. Item 30 might be an 

apple, a toy car, or a box of cereal. But that actually doesn’t matter for the task we have 

at hand: identifying items that are commonly purchased together.

Generating the Rules
Using the Belgian supermarket data, we illustrate how to build association rules based 

on market basket data in R. The first thing we do is import our data. To do so, we use 

the read.transactions() function from the arules package in R. This function reads 

the dataset in as a sparse matrix. That means it is a matrix of 1s and 0s where the vast 

majority of the values are 0. In this case, each row in the matrix represents a single trans-

action, while each column represents a unique item that is sold by the supermarket. The 

value of each cell is 1 if the item corresponding to the column was purchased as part of 

the transaction corresponding to the row. We use a sparse matrix, instead of a standard 

data frame or tibble, for the market basket data because it helps speed up processing 

and uses a lot less memory space. We pass two arguments to the read.transactions() 

function—the first argument specifies the name of the file we want to read, and the 

second argument (sep) specifies how fields are separated in the data file. Since we know, 

from the previous section, that the fields in our data are separated by whitespace, we 

use sep = "".

> library(arules)
> supermart <- read.transactions("retail.txt", sep = "")
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Now let’s get some summary statistics on the dataset.

> summary(supermart)
 
transactions as itemMatrix in sparse format with
 88162 rows (elements/itemsets/transactions) and
 16470 columns (items) and a density of 0.0006257289 
 
most frequent items:
     39      48      38      32      41 (Other) 
  50675   42135   15596   15167   14945  770058 
 
element (itemset/transaction) length distribution:
sizes
   1    2    3    4    5    6    7    8    9   10   11   12   13   14 
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620 
  15   16   17   18   19   20   21   22   23   24   25   26   27   28 
2310 2115 1874 1645 1469 1290 1205  981  887  819  684  586  582  472 
  29   30   31   32   33   34   35   36   37   38   39   40   41   42 
 480  355  310  303  272  234  194  136  153  123  115  112   76   66 
  43   44   45   46   47   48   49   50   51   52   53   54   55   56 
  71   60   50   44   37   37   33   22   24   21   21   10   11   10 
  57   58   59   60   61   62   63   64   65   66   67   68   71   73 
   9   11    4    9    7    4    5    2    2    5    3    3    1    1 
  74   76 
   1    1 
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    4.00    8.00   10.31   14.00   76.00 
 
includes extended item information - examples:
  labels
1      0
2      1
3     10

Notice that the output of the summary() function is very different from what we’ve 

seen previously. This is because, unlike the datasets we used in previous chapters, which 

were either a data frame or a tibble, this dataset is a sparse matrix. The output provides 

us with some high-level insight about our data. The first three rows tell us that we have 

88,162 transactions (rows) and 16,470 unique items (columns) in the dataset. We also see 

that the density of the dataset is 0.0006257289. Recall that in Chapter 3 we described 

the density of a dataset as the ratio of items in the dataset that are not missing. Density 
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is the inverse of sparsity, which represents the ratio of items that are missing. The super-

market dataset is very sparse. This is expected for market basket data. Most transactions 

do not include the majority of the items sold at the store.

The next three lines of the output list the most frequently purchased items at the 

store, along with a count of the number of transactions in which they occur. Here we 

see that item 39 is the most frequently bought item, and it was bought in 50,675 of the 

88,162 transactions in the dataset.

The next 14 lines of the output provide a summary of the length of transactions in the 

dataset along with the corresponding number of transactions of that length. For exam-

ple, the first two rows of the first column tell us that there are 3,016 transactions with a 

length of 1. In other words, there are 3,016 transactions in which only one item was pur-

chased. Going all the way to the last pair of values, we see that there is one transaction 

in which 76 unique items were purchased. The remaining lines of the output simply show 

the range of values for the transaction lengths and a sampling of three of the items in 

our dataset.

To get a better understanding of our data, we need to take a closer look at some of 

the transactions in the dataset. The arules package provides us with the inspect() 

function to do this. We use this function to list the first five transactions in the dataset.

> inspect(supermart[1:5])
 
    items                                                                            
[1] {0,1,10,11,12,13,14,15,16,17,18,19,2,20,21,22,23,24,25,26,27,28,29,
3,4,5,6,7,8,9}
[2] {30,31,32}                                                                       
[3] {33,34,35}                                                                       
[4] {36,37,38,39,40,41,42,43,44,45,46}                                               
[5] {38,39,47,48}

The output tells us that the first transaction had 30 unique items, the second had 3, 

and so on. As we mentioned in the previous section, we do not know what specific items 

these numbers represent, but we do know that they represent unique items within the 

market basket data. With that in mind, we can look at how often each item occurs in the 

dataset by using the itemFrequency() function. Note that the frequency of an item is 

the same as the support of the item. Earlier we saw that item 39 is the most frequently 

bought item in the dataset. Let’s take a look at the frequency for this item.

> itemFrequency(supermart[ ,"39"])
 
       39 
0.5747941
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The item frequency (or support) for item 39 is 0.5747941, which tells us that it 

occurred in almost 60 percent of the transactions in the dataset. The arules package is 

rather limited in terms of the functionality it provides for data exploration. For example, 

it does not provide a function to list the top five items in terms of frequency or, con-

versely, the bottom five. To get that information, we need to transform the output of 

the itemFrequency() function into a format that is easier to work with. The output 

of the itemFrequency() function is a numeric vector with a label for each value. For 

example, in our previous output, the numeric vector 0.5747941 has an attached label of 

39. Using this data, we can create a table with two columns, where one column repre-

sents the item and the other represents the frequency of the item. We do this by using 

the tibble() function from the tibble package (which is included in the tidyverse 

package). This function creates what in R is known as a tibble, which is simply the tidy-

verse’s version of a standard data frame.

> library(tidyverse)
> supermart_frequency <-
   tibble(
     Items = names(itemFrequency(supermart)),
     Frequency = itemFrequency(supermart)
   )

Let’s take a look at the first six rows of our item frequency dataset by using the 

head() function.

> head(supermart_frequency)
 
# A tibble: 6 x 2
  Items Frequency
  <chr>     <dbl>
1 0     0.00201  
2 1     0.00302  
3 10    0.00808  
4 100   0.000613 
5 1000  0.00480  
6 10000 0.0000227

With the data in this format, we can now easily answer a question such as this: what 

are the 10 most frequently bought items at the store? To get the answer, we simply  

sort the items in descending order of frequency and limit our results to only the top 10 

by using the slice() function from the dplyr package (which is also included in the 

tidyverse package).

> supermart_frequency %>%
   arrange(desc(Frequency)) %>%
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   slice(1:10)
 
# A tibble: 10 x 2
   Items Frequency
   <chr>     <dbl>
 1 39       0.575 
 2 48       0.478 
 3 38       0.177 
 4 32       0.172 
 5 41       0.170 
 6 65       0.0507
 7 89       0.0435
 8 225      0.0369
 9 170      0.0352
10 237      0.0344

We see from the results that items 39 and 48 occur in 50 percent or more of the 

transactions. However, as we go down the list, the frequency of occurrence drops dra-

matically. Keeping in mind the anti-monotone principle of support, which we discussed 

earlier, these results tell us that the support threshold for our association rules will need 

to be at or lower than 0.0344 for us to capture rules that contain these items.

With the additional insight that we now have on our data, we can proceed with 

building association rules. The arules R package provides the apriori() function 

for association rules generation. This function takes a couple of arguments. The first 

argument is the data. The second is a parameter list that allows us to specify minimum 

support, confidence, and rule length thresholds for our rules. Quite often, there is a 

fair amount of trial and error required to set the appropriate thresholds for associa-

tion rules. If we set the thresholds too high, we may not get back any rules. If we set 

the thresholds too low, we may be overwhelmed by the number of rules to make any 

sense of them.

A useful approach to take when setting the minimum support threshold is to decide 

how often a pattern should occur for it to be useful to you. Let’s assume that we are 

interested only in patterns that occur at least five times a day. Since we know that our 

data was collected over a five-month period of time and assuming that each of those 

months were 30 days long, then a pattern that occurs at least five times a day will need 

to occur in at least 5 150 transactions in our dataset. We know that there are 88,162 

transactions in our dataset; therefore, the minimum support for our pattern will need to 

be  
5 150

88162
0 0085. . For our confidence threshold, let’s start with the expectation that in 

order for a rule to be included, the antecedent and the consequent must occur together 

at least 50 percent of the time. This means that we set our confidence threshold to 0.5. 



Practical Machine Learning in R382

To exclude rules that have fewer than two items, we set our minimum rule length to 2. 

With these thresholds decided, we can now generate our rules.

> supermartrules <-
   apriori(supermart,
           parameter = list(
             support = 0.0085,
             confidence = 0.5,
             minlen = 2
           ))

Evaluating the Rules
With our rules in place, we can now start to evaluate how useful they are. To get a  

high-level overview of our rules, we pass the ruleset (supermartrules) to the  

summary() function.

> summary(supermartrules)
 
set of 145 rules
 
rule length distribution (lhs + rhs):sizes
 2  3  4 
76 54 15 
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  2.000   2.000   2.000   2.579   3.000   4.000 
 
summary of quality measures:
    support           confidence          lift            count      
 Min.   :0.008507   Min.   :0.5024   Min.   :0.9698   Min.   :  750  
 1st Qu.:0.010458   1st Qu.:0.6037   1st Qu.:1.1618   1st Qu.:  922  
 Median :0.013543   Median :0.6724   Median :1.2476   Median : 1194  
 Mean   :0.025466   Mean   :0.6976   Mean   :1.7245   Mean   : 2245  
 3rd Qu.:0.021880   3rd Qu.:0.7610   3rd Qu.:1.3816   3rd Qu.: 1929  
 Max.   :0.330551   Max.   :0.9942   Max.   :5.6202   Max.   :29142  
 
mining info:
      data ntransactions support confidence
 supermart         88162  0.0085        0.5

Similar to what we saw when we used the summary() function to get the descrip-

tive statistics of the market basket data after import, this output is also different from 

anything we have previously seen. This is because what we now have is a ruleset and 
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not a sparse matrix, a tibble, or a data frame. The first two sections of the output tell us 

that 145 rules were generated according to the thresholds that we set. Of the rules gen-

erated, 76 have a length of 2, 54 have a length of 3, and 15 have a length of 4. The next 

section of the output provides a statistical summary of the support, confidence, lift, and 

count for the rules generated. The last section of the output lists the parameters that 

were used to generate the rules.

We can also take a look at each individual rule that was generated. We do so by using 

the inspect() function like we did with the market basket data. Let’s start by taking a 

look at the first 10 rules.

> inspect(supermartrules[1:10])
 
     lhs       rhs  support     confidence lift     count
[1]  {371}  => {38} 0.008699893 0.9808184  5.544429  767 
[2]  {37}   => {38} 0.011864522 0.9739292  5.505485 1046 
[3]  {286}  => {38} 0.012658515 0.9433643  5.332706 1116 
[4]  {286}  => {39} 0.008507067 0.6339814  1.102971  750 
[5]  {2958} => {48} 0.008836006 0.8617257  1.803049  779 
[6]  {740}  => {39} 0.008609151 0.6426757  1.118097  759 
[7]  {78}   => {48} 0.009346430 0.7773585  1.626521  824 
[8]  {78}   => {39} 0.008779293 0.7301887  1.270348  774 
[9]  {49}   => {48} 0.009561943 0.7526786  1.574882  843 
[10] {49}   => {39} 0.008711236 0.6857143  1.192974  768

The first rule tells us that 98 percent (confidence) of the time, customers who bought 

item 371 also bought item 38. This pattern is found in 0.86 percent or 767 (support and 

count) of the transactions in the dataset. The rule also tells us that customers who 

bought item 371 are 5.54 (lift) times more likely to also purchase item 38. This is a very 

strong rule. While we do not know what items 371 and 38 are, exactly, we do know that 

there is a strong association between the two items.

To help us identify other strong rules in the dataset, it is useful to be able to sort 

and filter the rules based on certain criteria. For example, if we want to sort and filter 

for the top 10 rules based on lift, we do so using the sort() function provided by the 

arules package.

> supermartrules %>%
   sort(by = "lift") %>%
   head(n = 10) %>%
   inspect()
 
     lhs            rhs  support     confidence lift     count
[1]  {110,39,48} => {38} 0.011694381 0.9942141  5.620153 1031 
[2]  {170,39,48} => {38} 0.013531907 0.9892206  5.591925 1193 
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[3]  {110,39}    => {38} 0.019736394 0.9891984  5.591800 1740 
[4]  {170,48}    => {38} 0.017445158 0.9877970  5.583878 1538 
[5]  {170,41}    => {38} 0.009006148 0.9863354  5.575616  794 
[6]  {110,48}    => {38} 0.015437490 0.9862319  5.575030 1361 
[7]  {371}       => {38} 0.008699893 0.9808184  5.544429  767 
[8]  {170,39}    => {38} 0.022901023 0.9805731  5.543042 2019 
[9]  {170}       => {38} 0.034379892 0.9780574  5.528821 3031 
[10] {110}       => {38} 0.030909008 0.9753042  5.513258 2725

In this example, we specified by = "lift" to indicate that we want our rules sorted 

by lift. Note that we could have also sorted by support, confidence, or count. Suppose 

that we identified item 41 as an item of interest to us and we decide to take a look at all 

the rules that have that particular item. To do this, we can use the subset() function.

> supermartrules %>%
   subset(items %in% "41") %>%
   inspect()
 
     lhs           rhs  support     confidence lift     count
[1]  {41}       => {48} 0.102288968 0.6034125  1.262562  9018
[2]  {41}       => {39} 0.129466210 0.7637337  1.328708 11414
[3]  {170,41}   => {38} 0.009006148 0.9863354  5.575616   794
[4]  {41,65}    => {39} 0.008983462 0.7959799  1.384809   792
[5]  {38,41}    => {48} 0.026927701 0.6091866  1.274644  2374
[6]  {38,41}    => {39} 0.034606747 0.7829099  1.362070  3051
[7]  {32,41}    => {48} 0.023400104 0.6454944  1.350613  2063
[8]  {32,41}    => {39} 0.026757560 0.7381101  1.284130  2359
[9]  {41,48}    => {39} 0.083550736 0.8168108  1.421049  7366
[10] {39,41}    => {48} 0.083550736 0.6453478  1.350306  7366
[11] {38,41,48} => {39} 0.022583426 0.8386689  1.459077  1991
[12] {38,39,41} => {48} 0.022583426 0.6525729  1.365424  1991
[13] {32,41,48} => {39} 0.018670175 0.7978672  1.388092  1646
[14] {32,39,41} => {48} 0.018670175 0.6977533  1.459958  1646

We can also combine the sort() and subset() functions to help us organize the rules 

that we intend to look at. For example, suppose we want to take a look at the top 10 

rules in terms of lift that contain item 41.

> supermartrules %>%
   subset(items %in% "41") %>%
   sort(by = "lift") %>%
   head(n = 10) %>%
   inspect()
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     lhs           rhs  support     confidence lift     count
[1]  {170,41}   => {38} 0.009006148 0.9863354  5.575616  794 
[2]  {32,39,41} => {48} 0.018670175 0.6977533  1.459958 1646 
[3]  {38,41,48} => {39} 0.022583426 0.8386689  1.459077 1991 
[4]  {41,48}    => {39} 0.083550736 0.8168108  1.421049 7366 
[5]  {32,41,48} => {39} 0.018670175 0.7978672  1.388092 1646 
[6]  {41,65}    => {39} 0.008983462 0.7959799  1.384809  792 
[7]  {38,39,41} => {48} 0.022583426 0.6525729  1.365424 1991 
[8]  {38,41}    => {39} 0.034606747 0.7829099  1.362070 3051 
[9]  {32,41}    => {48} 0.023400104 0.6454944  1.350613 2063 
[10] {39,41}    => {48} 0.083550736 0.6453478  1.350306 7366

This output now gives us a more focused list of rules to look at. Based on what we 

know about the items included in the rules, we can decide whether each of the rules are 

actionable, trivial, or simply inexplicable.

The subset() Function
Note that the subset() function can be used with several keywords and operators, 
as follows:

 • The keyword items matches an item appearing anywhere in the rule.

 • We can also limit our rules based on items on the left side or right side of the 
rules by using the lhs and rhs keywords, respectively. For example, to list the 
rules that have item 41 on the left side only, we use subset(lhs %in% "41").

 • The operator %in% means that at least one of the items must be found in the 
list you defined.

 • We can also do partial matching by using the %pin% operator. For example, 
using subset(items %pin% "41"), we can find all rules that have items with 41 
in the name. This includes both items 41 and 413.

 • The operator %ain% allows us to do complete matching. This is useful when 
we want to find all rules that have all listed items. For example, to find all the 
rules that have both items 38 and 41 in them, we use subset(items %ain% 
c("38","41")).

 • We can also use the subset() function to filter by support, confidence, or lift. 
For example, to only list rules that have a confidence of 0.8 or more, we use 
subset(confidence >= 0.8).

 • The subset() function also supports the use of R logical operators such as and 
(&), or (|), and not (!). For example, to list rules that have a confidence of 0.8 or 
more and lift of less than 2, we use subset(confidence >= 0.8 & lift < 2).
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Strengths and Weaknesses
As with any other machine learning approach, association rules have a number of 

strengths and weaknesses. Understanding these strengths and weaknesses help inform 

the choice of when to use them and when they may not be the best approach.

These are some strengths:

 • Association rules are useful when working with a lot of transactional data.

 • The basic IF-THEN representation of the relationship between the antecedent and 

the consequent is easy to understand.

 • Association rules are great at identifying previously unseen or even unexpected 

patterns in data.

These are some weaknesses:

 • While great for large transactional data, association rules are not reliable when 

working with small datasets.

 • It is often difficult to derive actionable insight from the large number of rules 

generated.

 • It is easy to draw wrong and misleading conclusions from the patterns identified 

by association rules, since rules simply highlight that items occur together but 

can’t be used to infer causation.

CASE STUDY: IDENTIFYING GROCERY 
PURCHASE PATTERNS
For our chapter case study, we are going to use market basket data adapted from the 

Groceries2 dataset provided by the arules package. The dataset consists of 9,835 

transactions collected over a one-month period of time from a small grocery store. The 

dataset has a similar structure to the Belgian supermarket data we introduced earlier 

in the chapter but with two key differences. The first is that, unlike the Belgian super-

market data where each item is separated by a whitespace, items in this dataset are 

separated by a comma. The second difference is that the items in this dataset are not 

anonymized like they were in the Belgian supermarket dataset. This time, we actually 

know what each item is. Our goal is to generate association rules that describe the inter-

esting purchase patterns within the data.
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Importing the Data
Let’s begin by importing our data. As we did previously, we use the read.transactions() 

function from the arules package. Note that this time, we set the sep parameter to "," in 

accordance with how our data is formatted.

> library(arules)
> groceries <- read.transactions("groceries.csv", sep = ",")

Exploring and Preparing the Data
After importing the data, we begin the data exploration process to understand it 

better. The first thing we do is use the summary() function to get a high-level overview 

of the data.

> summary(groceries)
 
transactions as itemMatrix in sparse format with
 9835 rows (elements/itemsets/transactions) and
 169 columns (items) and a density of 0.02609146 
 
most frequent items:
      whole milk other vegetables       rolls/buns             soda 
            2513             1903             1809             1715 
          yogurt          (Other) 
            1372            34055 
 
element (itemset/transaction) length distribution:
sizes
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
2159 1643 1299 1005  855  645  545  438  350  246  182  117   78   77   55 
  16   17   18   19   20   21   22   23   24   26   27   28   29   32 
  46   29   14   14    9   11    4    6    1    1    1    1    3    1 
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.000   2.000   3.000   4.409   6.000  32.000 
 
includes extended item information - examples:
            labels
1 abrasive cleaner
2 artif. sweetener
3   baby cosmetics
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From the output, we learn that there are 9,835 transactions and 169 distinct items 

in the dataset. Of the transactions in the dataset, 2,159 of them involved the purchase 

of a single item, while one of them involved the purchase of 32 distinct items. The most 

frequently purchased items were whole milk, other vegetables, rolls/buns, soda, and 

yogurt. To get to the specifics of the frequency (or support) of these items, we first need 

to get the frequency for each item using the itemFrequency() function, and then we 

will transform the data to a tibble.

> library(tidyverse)
> groceries_frequency <-
   tibble(
     Items = names(itemFrequency(groceries)),
     Frequency = itemFrequency(groceries)
   )

With the data in this format, we can now easily list the 10 most frequently bought 

items at the store.

> groceries_frequency %>%
   arrange(desc(Frequency)) %>%
   slice(1:10)
 
# A tibble: 10 x 2
   Items            Frequency
   <chr>                <dbl>
 1 whole milk          0.256 
 2 other vegetables    0.193 
 3 rolls/buns          0.184 
 4 soda                0.174 
 5 yogurt              0.140 
 6 bottled water       0.111 
 7 root vegetables     0.109 
 8 tropical fruit      0.105 
 9 shopping bags       0.0985
10 sausage             0.0940

The results confirm the list of top five most frequently bought items that we saw 

from the results of the summary() function. However, this time, we see the actual fre-

quency (or support) for each of these items. The support values tell us that whole milk is 

bought in one out of every four transactions; other vegetables, rolls/buns, and soda are 

bought in about one out of every five transactions.

Using the summary() function, we can also get summary statistics for the item 

frequencies. The median item frequency (0.0104728) provides us with a low water mark 
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for the minimum support threshold we should use when generating our association 

rules. A threshold below the median suggests rules with a rate of occurrence below what 

would be considered typical within the dataset.

> groceries_frequency %>%
   select(Frequency) %>%
   summary()
 
   Frequency        
 Min.   :0.0001017  
 1st Qu.:0.0038637  
 Median :0.0104728  
 Mean   :0.0260915  
 3rd Qu.:0.0310117  
 Max.   :0.2555160

Generating the Rules
To generate our rules, we pass our minimum support, confidence, and rule length  

thresholds to the apriori() function. Similar to what we did in the previous example, 

we will consider any patterns that occur at least five times a day as important. Consid-

ering that our dataset was collected over a 30-day period, this means that our minimum 

support threshold will be   
5 30

9835
0 015. . This time, we will keep the minimum confidence 

threshold at 0.25, and the minimum rule length will remain as 2.

> groceryrules <-
   apriori(groceries,
           parameter = list(
             support = 0.015,
             confidence = 0.25,
             minlen = 2
           ))

Evaluating the Rules
A high-level summary of our rules shows that based on the thresholds that we set, we 

were able to generate 78 association rules (62 of which have a length of 2, and 16 have a 

length of 3).

> summary(groceryrules)
 
set of 78 rules
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rule length distribution (lhs + rhs):sizes
 2  3 
62 16 
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  2.000   2.000   2.000   2.205   2.000   3.000 
 
summary of quality measures:
    support          confidence          lift            count      
 Min.   :0.01505   Min.   :0.2537   Min.   :0.9932   Min.   :148.0  
 1st Qu.:0.01790   1st Qu.:0.3084   1st Qu.:1.5047   1st Qu.:176.0  
 Median :0.02191   Median :0.3546   Median :1.7400   Median :215.5  
 Mean   :0.02558   Mean   :0.3608   Mean   :1.7632   Mean   :251.6  
 3rd Qu.:0.02888   3rd Qu.:0.4056   3rd Qu.:1.9427   3rd Qu.:284.0  
 Max.   :0.07483   Max.   :0.5174   Max.   :3.0404   Max.   :736.0  
 
mining info:
      data ntransactions support confidence
 groceries          9835   0.015       0.25

With our rules in place, we can start looking at potentially interesting purchase 

patterns in the dataset. Let’s begin by taking a look at the top 10 rules in terms of 

confidence.

> groceryrules %>%
   sort(by = "confidence") %>%
   head(n = 10) %>%
   inspect()
 
     lhs                                   rhs                support    confidence lift     count
[1]  {tropical fruit,yogurt}            => {whole milk}       0.01514997 0.5173611  2.024770 149  
[2]  {other vegetables,yogurt}          => {whole milk}       0.02226741 0.5128806  2.007235 219  
[3]  {butter}                           => {whole milk}       0.02755465 0.4972477  1.946053 271  
[4]  {curd}                             => {whole milk}       0.02613116 0.4904580  1.919481 257  
[5]  {other vegetables,root vegetables} => {whole milk}       0.02318251 0.4892704  1.914833 228  
[6]  {other vegetables,tropical fruit}  => {whole milk}       0.01708185 0.4759207  1.862587 168  
[7]  {root vegetables,whole milk}       => {other vegetables} 0.02318251 0.4740125  2.449770 228  
[8]  {domestic eggs}                    => {whole milk}       0.02999492 0.4727564  1.850203 295  
[9]  {rolls/buns,yogurt}                => {whole milk}       0.01555669 0.4526627  1.771563 153  
[10] {whipped/sour cream}               => {whole milk}       0.03223183 0.4496454  1.759754 317

These rules do provide us with some insight into purchase patterns. For example, the 

first rule tells us that those who buy both tropical fruit and yogurt are twice as likely to 

also buy whole milk. This is likely for a smoothie or a fruit drink of some sort. Notice that 
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most of these rules have whole milk as the consequent. This is expected, considering 

that whole milk is the most frequently bought item in the dataset. To get a different per-

spective on the rules, let’s take a look at the top 10 rules in terms of lift to see if we get 

some new insights.

> groceryrules %>%
   sort(by = "lift") %>%
   head(n = 10) %>%
   inspect()
 
     lhs                              rhs                support    confidence lift     count
[1]  {beef}                        => {root vegetables}  0.01738688 0.3313953  3.040367 171  
[2]  {other vegetables,whole milk} => {root vegetables}  0.02318251 0.3097826  2.842082 228  
[3]  {whole milk,yogurt}           => {tropical fruit}   0.01514997 0.2704174  2.577089 149  
[4]  {pip fruit}                   => {tropical fruit}   0.02043721 0.2701613  2.574648 201  
[5]  {tropical fruit,whole milk}   => {yogurt}           0.01514997 0.3581731  2.567516 149  
[6]  {root vegetables,whole milk}  => {other vegetables} 0.02318251 0.4740125  2.449770 228  
[7]  {curd}                        => {yogurt}           0.01728521 0.3244275  2.325615 170  
[8]  {root vegetables}             => {other vegetables} 0.04738180 0.4347015  2.246605 466  
[9]  {chicken}                     => {other vegetables} 0.01789527 0.4170616  2.155439 176  
[10] {other vegetables,whole milk} => {yogurt}           0.02226741 0.2975543  2.132979 219

These rules provide us with some additional information on purchase patterns. The 

first rule tells us that root vegetables are three times more likely to be bought if a 

customer buys beef. The second rule shows a high likelihood that those who buy both 

whole milk and other vegetables will also buy root vegetables. With the awareness that 

whole milk and other vegetables are the two most frequently bought items, we can 

exclude them from the rules that we consider to see what other itemsets provide inter-

esting rules.

> groceryrules %>%
   subset(!items %in% c("whole milk","other vegetables")) %>%
   sort(by = "lift") %>%
   inspect()
 
     lhs                        rhs               support    confidence lift     count
[1]  {beef}                  => {root vegetables} 0.01738688 0.3313953  3.040367 171  
[2]  {pip fruit}             => {tropical fruit}  0.02043721 0.2701613  2.574648 201  
[3]  {curd}                  => {yogurt}          0.01728521 0.3244275  2.325615 170  
[4]  {whipped/sour cream}    => {yogurt}          0.02074225 0.2893617  2.074251 204  
[5]  {tropical fruit}        => {yogurt}          0.02928317 0.2790698  2.000475 288  
[6]  {citrus fruit}          => {yogurt}          0.02165735 0.2616708  1.875752 213  
[7]  {fruit/vegetable juice} => {yogurt}          0.01870869 0.2587904  1.855105 184  
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[8]  {frankfurter}           => {rolls/buns}      0.01921708 0.3258621  1.771616 189  
[9]  {sausage}               => {rolls/buns}      0.03060498 0.3257576  1.771048 301  
[10] {bottled water}         => {soda}            0.02897814 0.2621895  1.503577 285  
[11] {sausage}               => {soda}            0.02430097 0.2586580  1.483324 239  
[12] {fruit/vegetable juice} => {soda}            0.01840366 0.2545710  1.459887 181  

We now have 12 different rules sorted by lift. We already discussed the first one. The 

second rule seems rather trivial. It’s no surprise that a person who buys pip fruit will also 

buy tropical fruit. This simply suggests that a variety of fruits are often bought together. 

Rules 3 and 4 suggest purchases of a variety of dairy products. Rules 5, 6, and 7 suggest 

that customers are likely to pair the purchase of different kinds of fruits with yogurt. The 

remaining rules provide additional insights into food pairings that support actionable 

measures in terms of store layout that could strengthen or take advantage of the strong 

relationships between items.

EXERCISES
1. You work in a hospital and have access to patient medical records. You decide to use 

association rules on a variety of datasets available to you. In this context, what are 

examples of association rules that you might discover that fit into each of the follow-

ing categories?

a. Actionable

b. Trivial

c. Inexplicable

2. Think of an organization where you currently work or have worked in the past. If you 

have never had employment, think of an organization with which you are familiar, 

such as a school or community group. What is an application of association rules that 

might be useful in that environment?

3. Continue to explore the Groceries dataset presented in the case study of this chap-

ter. Answer the following questions:

a. What are the 10 least frequently purchased items?

b. If you change the minimum rule length to 3, how many rules do you generate? 

What if you change it to 4?

c. Change the minimum rule length back to 2 and produce a list of rules involving 

either soda or whipped/sour cream.
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Chapter 12

Grouping Data 
with Clustering

In Chapter 11, we introduced association rules, the first of the 

two unsupervised machine learning approaches that we cover 

in this book. In that approach, the objective was to develop a set 

of rules that describe the patterns that exist between events or 

items in a transaction set. In this chapter, we introduce the second 

unsupervised machine learning approach—clustering. With 

clustering, the objective is to find interesting ways to group items 

based on some measure of similarity. There are several real-world 

applications of clustering. Most often we see clustering applied to 

problems such as customer segmentation based on demographics 

or purchase behavior and anomalous network activity detection. 

As part of our discussion on clustering, we will introduce the basic 

idea behind clustering, discuss the different ways to describe 
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approaches to clustering, explore the mechanics of a common 

clustering algorithm (k-means clustering), and illustrate how to 

cluster data in R using the k-means clustering algorithm.

By the end of this chapter, you will have learned the following:

 ◆ The basic idea behind clustering as an unsupervised machine 

learning approach

 ◆ How the k-means clustering algorithm works

 ◆ How to segment data using the k-means algorithm in R

 ◆ The strengths and weaknesses of k-means clustering

CLUSTERING
Clustering as a machine learning task refers to several approaches used in partition-

ing unlabeled data into subgroups based on similarity. These subgroups are known as 

clusters. There are two objectives to clustering. The first is to ensure that the items 

within a particular cluster are as similar as possible. This is referred to as high intraclass 

similarity. The second objective to clustering is to make sure that items within one 

cluster are as dissimilar as possible with items in other clusters. This is referred to as 

low interclass similarity. The degree of similarity between two items is often quantified 

based on a distance measure. One such distance measure is Euclidean distance. As you 

recall, we first introduced Euclidean distance in Chapter 6 while discussing the k -nearest 

neighbor approach.

As previously mentioned, clustering is an unsupervised machine learning approach. 

Unlike in supervised learning where we use previously labeled data to build a model, 

with clustering, we attempt to identify interesting patterns in unlabeled data by group-

ing it. To illustrate how clustering works, let’s assume that we have 12 items that are 

described by two features—Feature A and Feature B (see Figure 12.1a). If we represent 

the original data as a scatterplot (see Figure 12.1b), we can start to see some patterns 

emerge simply based on visual inspection. By evaluating how close each of the items are 

to each other, we are able to group them into three distinct clusters (see Figure 12.1c).
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These clusters have no intrinsic meaning other than that they represent closely 

related items. It is up to the user to assign contextual labels to each of the clusters. In 

our example, we could assign the labels Alpha, Beta, and Theta to the three clusters. 

By doing this, we are implicitly assigning labels to each of the items within each cluster. 

Because of our ability to apply labels to previously unlabeled data in this way, clustering 

is also sometimes referred to as unsupervised classification. The clustering approach 

that we describe here is one of many. There are several ways to describe the different 

approaches to clustering. We discuss a few of them next.

Clustering can be described as either hierarchical or partitional. With hierarchical clus-

tering, clusters are nested within other clusters. This means that the boundaries of a par-

ticular cluster can fall within the boundaries of another cluster, creating a parent-child 

relationship. This nested structure between clusters creates a hierarchy that is often rep-

resented in the form of a cluster tree known as a dendrogram. With partitional clustering, 

each cluster boundary is independent of the others. There is no hierarchical relationship 

between clusters. Figure 12.2 illustrates the difference between the hierarchical and 

partitional clustering approaches.

Clustering can also be described as either overlapping or exclusive. As the name 

implies, an overlapping cluster is one where the boundaries of one cluster can overlap 

with those of other clusters. This means that each item in the dataset can belong to one 

or more clusters. This differs from the hierarchical clustering approach in that, with hier-

archical clustering, the boundaries of a child cluster must always be within the bound-

aries of the parent cluster. In our example (see Figure 12.2), we see that the red cluster 

is completely inside of the blue cluster, which in turn is completely inside of the yellow 

cluster. This is not always the case with overlapping clusters, as illustrated in Figure 12.3. 
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Figure 12.1 Simulated dataset showing previously unlabeled items (a). The same 
items are then represented in a scatterplot (b), clustered and labeled (c).
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Unlike overlapping clustering, an exclusive clustering approach results in clusters where 

each item can belong to only one cluster. The cluster membership of each item is “exclu-

sive.” The differences in the results of these two approaches is illustrated in Figure 12.3.

Between the overlapping and exclusive approaches is another approach known as 

fuzzy or soft clustering. With soft clustering, the membership of an item to a particular 

cluster is specified based on a membership weight that goes between 0 and 1. The larger 

the weight, the greater the likelihood that the item belongs to a particular cluster. If the 

weight is 0, then the item absolutely does not belong to the cluster. If the weight is 1, 

then the item absolutely does belong to the cluster in question.

TIP It’s important to note that while the results of both exclusive and 
partitional clustering are similar (as illustrated in Figures 12.2 and 12.3), the 
approaches are different in terms of focus. Partitional clustering is focused 
on ensuring that each cluster is independent and not nested within another 
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Figure 12.3 Overlapping versus exclusive clustering
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cluster, while exclusive clustering is focused on ensuring that each item 
belongs to one and only one cluster.

Clustering can be described as either complete or partial. With complete clustering, 

every item in the dataset must be assigned to at least one cluster. However, with partial 

clustering, this is not the case. With this approach, the number of clusters is not known 

beforehand. Instead, the goal is to estimate the number of clusters and cluster bound-

aries based on the similarity of the items in the dataset. As a result, items that do not 

share enough similarity with other items (typically outliers) are not assigned to a cluster. 

The differences in the results of complete clustering versus partial clustering are illus-

trated in Figure 12.4.

k -MEANS CLUSTERING
As we discussed in the previous section, there are several approaches to clustering. 

One of the most commonly used is known as k-means clustering. In terms of the clus-

tering techniques described in the previous section, k -means clustering is a partitional, 

exclusive, and complete clustering approach. This means that the cluster boundaries are 

independent of each other; each item can belong to only one cluster, and every item is 

assigned to a cluster. In k -means clustering, a user decides how many clusters (k ) a given 

dataset should be partitioned into. The algorithm then attempts to assign every item 

within the dataset to one (and only one) of k  nonoverlapping clusters based on similarity.

The k -means clustering algorithm is a simple and efficient approach because it takes 

a heuristic approach to clustering. This means that it begins by making a decision about 

what clusters items should belong to. It then evaluates the impact of the decision based 

on how similar the items within a cluster are and how different they are with items in 
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other clusters. Depending on the results of this evaluation, it makes adjustments to its 

item cluster assignment. It repeats the process of assignment and evaluation until it can 

no longer improve upon the cluster assignments or the changes become insignificant.

For a detailed illustration of how the k -means clustering algorithm works, we are 

going to use the same simulated dataset from Figure 12.1. Let’s assume that our expec-

tation is that the items in the dataset are to be grouped into three different clusters. 

This means we begin by setting the value of k  to 3. The first thing that the algorithm 

does is choose k  random points in the feature space that serve as the initial centers for 

the clusters. Since we set k 3, three different points are chosen as the cluster centers. 

These initial centers are represented by points C1, C 2, and C 3 in Figure 12.5a.
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Figure 12.5 The initial centroids are randomly chosen (a), and every item is assigned 
to the cluster of the centroid closest to it (b).

The Random Initialization Trap
It’s important to note that these initial cluster centers don’t have to represent actual 
points in the original dataset. Also, in our example, the initial centers are spread apart. 
This is not always the case. Since they are randomly selected, nothing stops them 
from being clustered next to each other. This highlights an important weakness 
with the k-means clustering approach. The final set of clusters is sensitive to the 
location of the initial set of cluster centers. This means that we could run the k-means 
clustering process several times and end up with different looking clusters each 
time, depending on the choice of initial cluster centers. This is known as the random 
initialization trap. There are several approaches that try to overcome or mitigate 
this weakness. One such approach is known as k-means++.1 The idea behind the 
approach is to always choose an initial set of cluster centers that are as far away as 
possible from each other. By doing this, we minimize the impact of randomness on 
the final clusters.
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After choosing the initial cluster centers, each item is assigned to the cluster that is 

represented by the center closest to it (illustrated by Figure 12.5b). The measure of dis-

tance most commonly used by k-means clustering is the Euclidean distance. As we first 

mentioned in Chapter 6, Euclidean distance is the straight-line distance between the coor-

dinates of two points in multidimensional space. Assuming that we have two points p and 

q  in two-dimensional space, the Euclidean distance between them is calculated as follows:

 dist p q p q p q,
1 1

2

2 2

2

 12.1

 where p1 and q1 represent the values of the first feature of p and q , respectively, while p2 

and q2 represent the values of the second feature of p and q .

With each item now assigned to a cluster, the algorithm proceeds to calculate the true 

center for each cluster. This is known as the cluster centroid. The cluster centroid is the 

average position of the items currently assigned to a cluster. Assuming that we have a 

cluster made up of three items x , y , and z  in two-dimensional space that are represented 

by points x x
1 2
, , y y

1 2
, , and z z

1 2
, , respectively, the cluster centroid is calculated 

as follows:

 
centroid x y z

x y z x y z
, , ,1 1 1 2 2 2

3 3  12.2

After new cluster centers are calculated, the k-means clustering algorithm re-assigns 

each item to the cluster that is represented by the center closest to it. This has the 

effect of shifting some points from one cluster to another, as illustrated in Figure 12.6. In 

Figure 12.6a, we see a shift in all three cluster centers, from the initial randomly selected 

centers (gray diamond) to the newly computed centers (colored diamonds). As a result of 

the shift, we see that one of the items that originally belonged to the red cluster is now 

assigned to the blue cluster (see Figure 12.6b). This is because the item is now closer to 

the blue cluster center (C 2) than it is to the red cluster center (C1).

The process of assignment and evaluation repeats, with new centroids computed for 

each cluster (see Figure 12.7a), and each item assigned to the cluster closest to it based 

on its distance to the centroid (see Figure 12.7b).

Eventually, the shift in centroids (see Figure 12.8a) will be immaterial and not result 

in any subsequent changes to cluster assignments. At this point, our algorithm is said to 

have achieved convergence. In Figure 12.8a, we see that the shift in the centroid for the 

red cluster had no impact on cluster assignments because every item is already assigned 

to the cluster of its closest centroid. At this point, we can now stop the process and 

report the cluster assignments for each item in the dataset (see Figure 12.8b).
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Figure 12.7 During the next iteration, new cluster centers are chosen again (a), and 
each item is re-assigned to the cluster of the centroid closest to it (b).
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Figure 12.6 New cluster centers are chosen (a); then each item is re-assigned to the 
cluster of the centroid closest to it (b).

Other Measures of Distance
It’s important to note that while Euclidean distance is the default distance measure 
used for k-means clustering, it is not the only distance measure used in clustering. 
The choice of distance measure has a strong influence on the clustering results and 
should be chosen based on factors such as the type of data to be clustered and the 
type of clustering that is to be done. Other common distance measures include 
Manhattan distance, Pearson correlation distance, Spearman correlation distance, 
and Kendall correlation distance.
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SEGMENTING COLLEGES WITH k -MEANS 
CLUSTERING
As we explore k -means clustering in this chapter, we will use a dataset containing infor-

mation about a large number of colleges and universities in the United States. This data 

comes from the U.S. Department of Education and has been filtered and modified for 

our purposes. It is available to you as part of the electronic resources accompanying this 

book. (See the introduction for more information on accessing the electronic resources.) 

The dataset includes a variety of information about 1,270 colleges and universities.

 • id is a unique integer identifier for each institution.

 • name is the name of the institution.

 • city is the name of the city where the institution is located.

 • state is the two-character abbreviation of the state where the institution 

is located.

 • region is one of four U.S. regions where the institution is located (Northeast, 

Midwest, West, or South).

 • highest_degree is the highest level of degree offered by the institution (Associ-

ate, Bachelor, Graduate, or Nondegree).

 • control is the nature of the institution’s governance (Public or Private).

 • gender is the gender of students at the institution (CoEd, Male, or Female).
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Figure 12.8 The change in cluster center (a) did not result in change in cluster 
membership, so the algorithm has reached convergence and stops (b).
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 • admission_rate is the percentage of students who apply and are admitted to 

the institution.

 • sat_avg is the average SAT test score of applicants (scores range from 

400 to 1600).

 • undergrads is the number of undergraduate students at the institution.

 • tuition is the annual tuition charged by the institution, in dollars.

 • faculty_salary_avg is the average monthly salary of faculty members, 

in dollars.

 • loan_default_rate is the percentage of students who later fail to make their 

student loan payments.

 • median_debt is the median amount of debt for graduating students, in dollars.

 • lon is the longitude of the school’s main campus.

 • lat is the latitude of the school’s main campus.

Our goal with this dataset is to segment colleges using the k -means clustering 

approach. For illustrative purposes, we will limit our analysis only to colleges in the state 

of Maryland. However, the concepts and approaches introduced here can be applied to 

any other subset of the data. As part of the chapter exercises, we provide the reader 

with the opportunity to do so.

Creating the Clusters
To begin our analysis, we need to first import the colleges and universities dataset 

using the read_csv() function from the readr package (which is included as part of 

the tidyverse package). Note that we use the col_types argument of the function to 

specify the target data types for the imported features. After the data import, we pre-

view the data using the glimpse() function.

> library(tidyverse)
> college <- read_csv("college.csv", col_types = "nccfffffnnnnnnnnn")
> glimpse(college)
 
Observations: 1,270
Variables: 17
$ id                 <dbl> 102669, 101648, 100830, 101879, 100858, 100...
$ name               <chr> "Alaska Pacific University", "Marion Milita...
$ city               <chr> "Anchorage", "Marion", "Montgomery", "Flore...
$ state              <fct> AK, AL, AL, AL, AL, AL, AL, AL, AL, AL, AL,...
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$ region             <fct> West, South, South, South, South, South, So...
$ highest_degree     <fct> Graduate, Associate, Graduate, Graduate, Gr...
$ control            <fct> Private, Public, Public, Public, Public, Pu...
$ gender             <fct> CoEd, CoEd, CoEd, CoEd, CoEd, CoEd, CoEd, C...
$ admission_rate     <dbl> 0.4207, 0.6139, 0.8017, 0.6788, 0.8347, 0.8...
$ sat_avg            <dbl> 1054, 1055, 1009, 1029, 1215, 1107, 1041, 1...
$ undergrads         <dbl> 275, 433, 4304, 5485, 20514, 11383, 7060, 3...
$ tuition            <dbl> 19610, 8778, 9080, 7412, 10200, 7510, 7092,...
$ faculty_salary_avg <dbl> 5804, 5916, 7255, 7424, 9487, 9957, 6801, 8...
$ loan_default_rate  <dbl> 0.077, 0.136, 0.106, 0.111, 0.045, 0.062, 0...
$ median_debt        <dbl> 23250.0, 11500.0, 21335.0, 21500.0, 21831.0...
$ lon                <dbl> -149.90028, -87.31917, -86.29997, -87.67725...
$ lat                <dbl> 61.21806, 32.63235, 32.36681, 34.79981, 32....

During the import process, two warnings were generated as a result of failures in 

converting the data type of the loan_default_rate for two examples. This is not of 

consequence to our analysis, so we choose to ignore the warnings and move on. As men-

tioned previously, we will limit our analysis to only the colleges and universities in Mary-

land. We create a new dataset of these schools called maryland_college.

> maryland_college <- college %>%
   filter(state == "MD") %>%
   column_to_rownames(var = "name")

Note that for our new dataset we also assigned a label to each row of the data using 

the column_to_rownames() function from the tibble package (which is also included 

in the tidyverse package). This function converts the column specified by the var argu-

ment (name) to row labels. This effectively assigns the name of each school as the row 

label for each observation in the dataset. Row labels will come in handy a little bit later, 

when we visualize our clusters.

The next step in our process is to decide which of the 17 features in our dataset to 

use for segmentation. Similar to our choice to limit ourselves to colleges in Maryland, we 

also decide to limit our segmentation to two features: admission_rate and sat_avg. 

Let’s take a look at the summary statistics for these two features:

> maryland_college %>%
   select(admission_rate, sat_avg) %>%
   summary()
 
 admission_rate      sat_avg    
 Min.   :0.1608   Min.   : 842  
 1st Qu.:0.5181   1st Qu.: 900  
 Median :0.5961   Median :1048  
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 Mean   :0.5886   Mean   :1062  
 3rd Qu.:0.6606   3rd Qu.:1176  
 Max.   :0.8696   Max.   :1439

We can see from the results that the range of values for both features are different. 

In Chapter 6, we explained that with regard to distance measures, features with larger 

values or features with a wider range of values tend to have a disproportionate impact 

on the calculation. As a result, we have to normalize the values prior to building a model. 

Using the base R scale() function, we create a new z-score normalized dataset called 

maryland_college_scaled.

> maryland_college_scaled <- maryland_college %>%
   select(admission_rate, sat_avg) %>%
   scale()

The summary statistics for the new dataset show the normalized values for the two 

features we intend to use for segmentation.

> maryland_college_scaled %>%
   summary()
 
 admission_rate        sat_avg       
 Min.   :-2.77601   Min.   :-1.2512  
 1st Qu.:-0.45725   1st Qu.:-0.9218  
 Median : 0.04895   Median :-0.0813  
 Mean   : 0.00000   Mean   : 0.0000  
 3rd Qu.: 0.46753   3rd Qu.: 0.6485  
 Max.   : 1.82387   Max.   : 2.1393

We are now ready to cluster our data. To do so, we use the kmeans() function from 

the stats package. The kmeans() function takes several arguments, which control the 

clustering process. The first argument is the data that needs to be clustered. The second 

(centers) is the number of clusters that we want to end up with. This represents the 

value for k. We set this value to 3. The last argument (nstart) specifies the number of 

initial configurations to attempt. The configuration that provides the best results will be 

chosen. We set this argument to 25.

> library(stats)
> set.seed(1234)
> k_3 <- kmeans(maryland_college_scaled, centers=3, nstart = 25)
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Analyzing the Clusters
The kmeans() function returns an object with several attributes that describe the clus-

ters created. One of those attributes is the size attribute. This represents the number 

of observations in each cluster.

> k_3$size
 
[1]  2 9 8

The output tells us that for the three clusters, we have 2, 9, and 8 observations, 

respectively. Another one of the attributes returned by the kmeans() function is the 

centers attribute. As the name implies, this represents the center for each of the clus-

ters. These are the coordinates of the cluster centroids.

> k_3$centers
 
  admission_rate    sat_avg
1     -1.7425275  1.7871932
2     -0.2001854 -0.8322366
3      0.6608405  0.4894679

Based on the output of the kmeans() function, we can also visualize our clusters. The 

factoextra package provides us with a useful function called fviz_cluster() to do 

this. We pass three arguments to this function. The first argument (k_3) is the clustering 

result. The second argument is the data that was used to create the clusters (data). The 

third argument (repel = TRUE) helps organize the layout of the item labels within the 

visualization.

> library(factoextra)
> fviz_cluster(k_3, data = maryland_college_scaled, repel = TRUE)

The visualization (see Figure 12.9) shows the colleges in each of the three clusters. 

The colleges in cluster 1 (Johns Hopkins and University of Maryland–College Park) have 

higher than average ( 0) SAT scores and lower than average ( 0) admission rates com-

pared to the other colleges in the state. These are highly selective schools with a high-

performing student population. The average SAT score for colleges in cluster 2 is below 

the state average, and so is the admission rate for those colleges. The colleges in cluster 

3 generally have admission rates and SAT scores at or above the state average.
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We can also evaluate how other attributes such as tuition, loan default rate, faculty 

salaries, and so forth, vary across clusters. To do so, we first need to assign cluster labels 

to the observations in the maryland_college dataset. Then we select the attributes we 

want to compare, group by cluster, and generate the mean values for each of the attrib-

utes we selected.

> maryland_college %>%
   mutate(cluster = k_3$cluster) %>%
   select(cluster,
          undergrads,
          tuition,
          faculty_salary_avg,
          loan_default_rate,
          median_debt) %>%
   group_by(cluster) %>%
   summarise_all("mean")
 
# A tibble: 3 x 6
  cluster undergrads tuition faculty_salary_avg loan_default_rate median_debt
    <int>      <dbl>   <dbl>              <dbl>             <dbl>       <dbl>
1       1     16286.  28244.             11258             0.0175      17875 
2       2      3407   14219.              7781.            0.108       24776.
3       3      4711.  27523.              7593.            0.045       23925.

The results provide some further insight into the different clusters. We see that when 

compared to other colleges in the state, colleges in cluster 1 (on average) tend to have a 

larger undergraduate student population (16,286), higher tuition ($28,244), and better 
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paid faculty ($11,258). The results also tell us that students who graduate from those 

schools tend to default on their college loans at a lower rate (1.75 percent). This corre-

lates with the fact that those students also tend to have a lower loan burden upon grad-

uation ($17,875).

Choosing the Right Number of Clusters
So far, our cluster analysis has been based on the assumption that the colleges in the 

state of Maryland should belong to one of three clusters (k 3) based on average SAT 

scores and admissions rate. Because clustering is an unsupervised learning approach, 

there are no previous labels upon which we can evaluate our work. Therefore, the choice 

of whether three is the right number of clusters is left to the discretion of the user. 

Sometimes, prior knowledge of the expected number of clusters is used to inform the 

value for k . This could be based on existing business requirements or constraints. Some-

times in the absence of prior knowledge, a simple rule of thumb is used. One such rule 

is setting k  to the square root of the number of observations in the dataset. As one can 

imagine, this rule of thumb is limited in use to small datasets. However, there are sev-

eral statistical methods that provide us with “some guidance” as to how many clusters 

are reasonable when segmenting items within a dataset. Next, we introduce three of 

them—the elbow method, the average silhouette method, and the gap statistic.

The Elbow Method
The idea behind k -means clustering is that we decide on a value for k  and the algorithm 

attempts to assign every item in the dataset into one of k  clusters based on similarity. 

The degree to which items within a cluster are similar (or dissimilar) can be quantified 

using a measure called the within-cluster sum of squares (WCSS). The WCSS of a cluster is 

the sum of the distances between the items in the cluster and the cluster centroid. For 

k 3, the WCSS is calculated as follows:

 distance P C distance P C distance P C
i i i1 1

2

2 2

2

3 3

2

, , ,  12.3

where C1, C2, and C3 represent the centers for clusters 1, 2, and 3; while P
i1 , P

i2 , and P
i3  rep-

resent the items within clusters 1, 2, and 3. The closer the items within a cluster are to 

the centroid, the smaller the value for WCSS. The smaller the WCSS, the more similar 

items within a cluster are. As the value of k  increases, the closer the items within each 

cluster become and the smaller the total WCSS becomes. If we were to compute the 

total WCSS for clusters created based on different values of k , we would get a convex 

curve with a negative slope, as shown in Figure 12.10.
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As Figure 12.10 shows, as we increase k , not only does the value for WCSS go down, 

but the reduction in WCSS for each unit increase in k  goes down. At some point in the 

curve, a visible bend occurs that represents the point at which increasing the value for 

k  no longer yields a significant reduction in WCSS. This point is known as the elbow, and 

the k  value at this point is usually expected to be the appropriate number of clusters for 

the dataset. This technique of using the elbow of the WCSS curve to determine the right 

number of clusters is known as the elbow method.

The factoextra package, which we previously used to visualize our clusters,  

also provides an easy-to-use function called fviz_nbclust() for determining the  

optimal number of clusters. The function takes three arguments. The first is the dataset 

(maryland_college_scaled), the second is the clustering approach (kmeans), and the 

last is the method of evaluation (wss). Note that for this function, the method of evalua-

tion wss means WCSS.

> fviz_nbclust(maryland_college_scaled, kmeans, method = "wss") 

The result in Figure 12.11, as denoted by the two red circles, shows that we have two 

possible values for k  (4 or 7). This means that the optimal number of clusters for our data 

can be either 4 or 7. However, before we decide on a final value for k , let’s take a look at 

two additional statistical methods for determining the right number of clusters to see 

what they tell us.
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The Average Silhouette Method
The next statistical approach we consider is known as the average silhouette method. The 

silhouette of an item is a measure of how closely the item is matched with other items 

within the same cluster and how loosely it is with items in neighboring clusters. A sil-

houette value close to 1 implies that an item is the right cluster, while a silhouette value 

close to –1 implies that it is in the wrong cluster. The average silhouette method com-

putes the average silhouette of all items in the dataset based on different values for k . If 

most items have a high value, then the average will be high, and the clustering configura-

tion is considered appropriate. However, if many points have a low silhouette value, then 

the average will also be low, and the clustering configuration is not optimal.

Similar to the elbow method, to use the average silhouette method, we plot the 

average silhouette against different values of k . The k  value corresponding to the high-

est average silhouette represents the optimal number of clusters. In R, we also use the 

fviz_nbclust() for this method. However, instead of specifying wss for the method, 

we specify silhouette.

> fviz_nbclust(maryland_college_scaled, kmeans, method = "silhouette") 

Similar to what we got with the elbow method, the results of the average silhouette 

method (see Figure 12.12) also suggest that both k 4 and k 7 provide the optimal 

number of clusters.
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The Gap Statistic
The third statistical approach we consider compares the difference between clusters 

created from the observed data and clusters created from a randomly generated data-

set, known as the reference dataset. For a given k , the gap statistic is the difference in 

the total WCSS for the observed data and that of the reference dataset. The optimal 

number of clusters is denoted by the k  value that yields the largest gap statistic. The 

fviz_nbclust()function allows us to visualize the gap statistic for different values of k . 

This time, we set the method to gap_stat.

> fviz_nbclust(maryland_college_scaled, kmeans, method = "gap_stat")
 
Clustering k = 1,2,..., K.max (= 10): .. done
Bootstrapping, b = 1,2,..., B (= 100)  [one "." per sample]:
.................................................. 50 
.................................................. 100

The result (see Figure 12.13) suggests the optimal number of clusters should be 

either 1 or 7. These are the k  values with the largest gap statistic. Based on the three 

approaches that we considered, two suggest that the optimal number of clusters should 
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be 4 or 7, and one suggests that the optimal number of clusters should be 1 or 7. This 

means it is reasonable to choose either 4 or 7 as the final number of clusters.

It’s important to note that the statistical approaches we introduced here simply pro-

vide us with suggested values for k . We can view the approaches as a panel of experts 

who look at a single problem from different perspectives. The most important thing to 

consider when choosing a value for k  is how reasonable the final clusters are to you. Con-

sidering that we have only 19 colleges in our dataset for the state of Maryland, setting 

k 7 means that each cluster will have only two or three colleges on average. That 

doesn’t provide us with a lot of room to compare colleges within a cluster, so we will use 

k 4 instead. This provides us with about four to five colleges (on average) within each 

cluster. Using this value for k , we re-create and visualize our clusters. See Figure 12.14.

> k_4 <- kmeans(maryland_college_scaled, centers = 4, nstart = 25)
> fviz_cluster(
   k_4,
   data = maryland_college_scaled,
   main = "Maryland Colleges Segmented by SAT Scores and Admission 
Rates",
   repel = TRUE)
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Strengths and Weaknesses of k-Means Clustering
Similar to other machine learning approaches, the k -means clustering approach has cer-

tain pros and cons associated with it. Understanding the strengths and weaknesses of 

the approach is useful in deciding when it is or is not a good fit for the problem at hand.

Here are the strengths:

 • One of the reasons why the k -means clustering approach is so commonly used 

in segmenting data into subgroups is because it has a wide set of real-world 

applications.

 • The approach is also flexible and malleable in that all one needs to vary is 

the value of k  in order to change the number of subgroups that items are 

grouped into.

 • The underlying mathematical principles behind k -means clustering (such as 

Euclidean distance) are not difficult to understand.

Here are the weaknesses:

 • k -means clustering requires that the value for k  be set by the user. Sometimes 

choosing the right number of clusters requires additional knowledge about the 

problem domain.

 • Because distance can be calculated only between numeric values, k - means clus-

tering works only with numeric data.
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 • The algorithm is sensitive to outliers.

 • The k -means algorithm is not good at modeling clusters that have a complex geo-

metric shape (nonspherical clusters).

 • The simplicity of k -means clustering makes it less than ideal for modeling complex 

relationships between items beyond the use of a distance measure.

 • The use of random or pseudorandom initial centroids means that the approach, to 

some extent, relies on chance.

CASE STUDY: SEGMENTING SHOPPING 
MALL CUSTOMERS
For the chapter case study, we will use a simulated dataset of 200 shopping mall cus-

tomers. Each customer record consists of a unique identifier (CustomerID), gender 

(Gender), age (Age), annual salary (Income), and an assigned score, between 1 and 100, 

based on the customer’s purchase habits and several other factors (SpendingScore). 

Our goal is to segment customers based on Income and SpendingScore.

Let’s begin by importing our data using the read_csv() function from the  

tidyverse package.

> library(tidyverse)
> mallcustomers <- read_csv("mallcustomers.csv")
> glimpse(mallcustomers)
 
Observations: 200
Variables: 5
$ CustomerID    <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...
$ Gender        <chr> "Male", "Male", "Female", "Female", "Female...
$ Age           <dbl> 19, 21, 20, 23, 31, 22, 35, 23, 64, 30, 67,...
$ Income        <chr> "15,000 USD", "15,000 USD", "16,000 USD", "...
$ SpendingScore <dbl> 39, 81, 6, 77, 40, 76, 6, 94, 3, 72, 14, 99...

Exploring and Preparing the Data
Based on the preview of our data, we see that the Income feature is stored as a string.  

k -means clustering uses Euclidean distance to evaluate the distance between the features 

of items. We can only calculate distance between numeric values. Therefore, we need 

to convert the Income feature to a numeric value. To do so, we first need to remove the 

substrings “,” and “USD” from the data. Then we can convert it to numeric. We use the 
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str_replace_all() function from the stringr package to replace the substrings with 

a null string (“”). We use the as.numeric() base R function to change the data type from 

string to numeric.

> library(stringr)
> mallcustomers <- mallcustomers %>%
   mutate(Income = str_replace_all(Income," USD","")) %>%
   mutate(Income = str_replace_all(Income,",","")) %>%
   mutate(Income = as.numeric(Income))
> summary(mallcustomers)
 
   CustomerID        Gender               Age            Income       SpendingScore  
 Min.   :  1.00   Length:200         Min.   :18.00   Min.   : 15000   Min.   : 1.00  
 1st Qu.: 50.75   Class :character   1st Qu.:28.75   1st Qu.: 41500   1st Qu.:34.75  
 Median :100.50   Mode  :character   Median :36.00   Median : 61500   Median :50.00  
 Mean   :100.50                      Mean   :38.85   Mean   : 60560   Mean   :50.20  
 3rd Qu.:150.25                      3rd Qu.:49.00   3rd Qu.: 78000   3rd Qu.:73.00  
 Max.   :200.00                      Max.   :70.00   Max.   :137000   Max.   :99.00

The summary statistics show that there is a significant difference in the scale of the 

Income and SpendingScore features. Therefore, we need to normalize them. Before 

we do so, we exclude the other features that are not useful for segmentation, and then 

we use the scale() function to normalize our two features using the z-score normaliza-

tion approach.

> mallcustomers_scaled <- mallcustomers %>%
   select(-CustomerID, -Gender, -Age) %>%
   scale()
> summary(mallcustomers_scaled)
 
     Income         SpendingScore      
 Min.   :-1.73465   Min.   :-1.905240  
 1st Qu.:-0.72569   1st Qu.:-0.598292  
 Median : 0.03579   Median :-0.007745  
 Mean   : 0.00000   Mean   : 0.000000  
 3rd Qu.: 0.66401   3rd Qu.: 0.882916  
 Max.   : 2.91037   Max.   : 1.889750  

Clustering the Data
With our normalized features, we are now ready to cluster the data. As we discussed pre-

viously, the k -means clustering approach requires that a user specify how many clusters 

(k ) the data should be grouped into. There are several approaches to determining the 



417Chapter 12: Grouping Data with Clustering

optimal value for k . We discussed three of the most commonly used ones—the elbow 

method, the silhouette method, and the gap statistic. Using fviz_nbclust(), we obtain 

a recommended value for k  based on all three methods. See Figure 12.15.

> fviz_nbclust(mallcustomers_scaled, kmeans, method = "wss") 
> fviz_nbclust(mallcustomers_scaled, kmeans, method = "silhouette")
> fviz_nbclust(mallcustomers_scaled, kmeans, method = "gap_stat")
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The results suggest that k 6 is the optimal number of clusters for the dataset. With 

k  set to 6, we create our final set of clusters and visualize the results to see which cluster 

each of our mall customers belongs to.

> set.seed(1234)
> k_clust <- kmeans(mallcustomers_scaled, centers = 6, nstart = 25)
> fviz_cluster(
   k_clust,
   data = mallcustomers_scaled,
   main = "Mall Customers Segmented by Income and Spending Score",
   repel = TRUE)

Evaluating the Clusters
We see from the cluster visualization (see Figure 12.16) that customers in clusters 1 and 2 

have above average spending scores and above average income. These are high-earning 

big spenders. The customers in cluster 3 are also high earners, but they have below aver-

age spending scores. These are high-earning low spenders. These customers provide rev-

enue opportunity for a business. Cluster 4 represents lower-earning and lower-spending 

customers, while cluster 5 represents the average customer with average income and 

average spending score. The customers in cluster 6 are customers with above average 

spending but below average income. If these segments were to be used for evaluating 

credit risk, these customers would be the riskiest segment.

We can also get additional insight into the demographics of the customers in each 

segment by assigning cluster labels to the original data and evaluating the gender distri-

bution and mean age for each cluster. To help with the evaluation of gender distribution, 

we create two dummy variables—Male and Female—to represent the Gender feature.

> mallcustomers %>%
   mutate(cluster = k_clust$cluster) %>%
   mutate(Male = ifelse(Gender == "Male", 1, 0)) %>%
   mutate(Female = ifelse(Gender == "Female", 1, 0)) %>%
   select(cluster, Male, Female, Age) %>%
   group_by(cluster) %>%
   summarise_all("mean")
 
# A tibble: 6 x 4
  cluster  Male Female   Age
    <int> <dbl>  <dbl> <dbl>
1       1 0.483  0.517  32.9
2       2 0.4    0.6    32.2
3       3 0.543  0.457  41.1
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4       4 0.391  0.609  45.2
5       5 0.407  0.593  42.7
6       6 0.409  0.591  25.3

The results show similar gender distribution (60 percent female, 40 percent male) 

across all clusters except for clusters 1 and 3. In those clusters, we see a slightly more 

balanced gender distribution, with cluster 1 showing a slight skew toward females and 

cluster 3 showing a skew toward males.

The average age for each cluster also provides some additional information. The aver-

age age of customers in clusters 3, 4, and 5 is between 41 and 45. These customers tend 

to be more conservative in their spending (see Figure 12.16). Customers in both clusters 

1 and 2 have an average age of 32. These are the high-earning high spenders. With an 

average age of 25, customers in cluster 6 tend to be younger. Overall, the demographic 

information seems to suggest that the older customers are, the less they tend to spend 

on average.

EXERCISES
1. Using the college dataset from this chapter, perform clustering that looks at the 

average faculty salary and annual tuition rates for schools located in Indiana. Choose 

k=3 and produce a visualization of your clusters.

2. Use the techniques described in this chapter to select two possible optimal values for 

k for the clustering problem you coded in Exercise 1. Justify your answer.

3. Generate cluster diagrams for the two values of k that you selected in Exercise 2. 

Which one of these do you believe is the best result? Why?

NOTE
1. For more information on the k-means++ approach, refer to the following: Arthur, D., 

Vassilvitskii, S. “k-means++: The advantages of careful seeding.”In: Proceedings of the 

eighteenth annual ACM-SIAM symposium on discrete algorithms. 2007:1027–1035.



421

Index

Symbols
= (equal sign), 78
*** (asterisks), 126
$ operator, 46–47

A
abline() function, 336
accuracy

of algorithms, 16
association rules and, 373–374

accuracy paradox, 83
actionable association rules, 372
actual values, 205
adaptive boosting, 359
additive smoothing, 261–262
adjusted R-squared, 122–123
aes() function, 70
affinity analysis, 370–371
Agrawal, Rakesh, 375
AI (artificial intelligence), relationship 

between deep learning, machine 
learning and, 7

Akaike Information Criterion (AIC),  
195

algorithms
about, 5–6
supervised, 14
unsupervised, 14

allocation function, 354
analyzing

association rules, 382–385

association rules in Identifying  
Grocery Purchase Patterns case 
study, 389–393

clusters, 407–409
data in Identifying Grocery Purchase 

Patterns case study, 418–420
decision tree models, 295–298
model in Income Prediction case 

study, 215–216
models, 16–24, 120–123, 125–134, 

190–198, 238–239
models in Naïve Bayes, 267–269
models in Revisiting the Donor  

Dataset case study, 248
models in Revisiting the Heart  

Disease Detection Problem case 
study, 273–274

models in Revisiting the Income Pre-
diction Problem case stud, 302–304

numeric prediction, 338
Anderson-Darling test, 127
antecedent, 371
anti-monotone property of support, 375
apriori algorithm, 374–376
apriori() function, 381, 389
A-priori probabilities, 272–273
area under the curve (AUC), 336–339
arrange() function, 130–131
artificial intelligence (AI), relationship 

between deep learning, machine 
learning and, 7

arules package, 377, 378, 383–384, 386
as.character() function, 50–51

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
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as.factor() function, 50–51, 148, 237
as.integer() function, 50–51
as.logical() function, 50–51
as.numeric() function, 50–51, 416
association rules

about, 14, 16, 369–370
apriori algorithm, 374–376
case study for, 386–393
discovering, 376–386
evaluating, 382–385
generating, 377–382
identifying strong, 373–374
market basket analysis, 370–371
overview of, 371–376
strengths and weaknesses, 386

asterisks (***), 126
AUC (area under the curve), 336–339
autocorrelation, residual, 129–130
automated parameter tuning, 342–348
average silhouette method, 411–412

B
backward selection, 142
bagging (bootstrap aggregating),  

355–358
balancing data, 246–247
Bayes theorem, 256–257
Bayesian methods, 253
bias errors, 20–22
bin boundaries, smoothing with, 80
bin means, smoothing with, 79–80
binary classification problem, 82–83
binomial logistic regression 

model, 176–190
boosting, 358–361
bootstrap aggregating, 355–358
bootstrap sampling, 318–321
bootstrapping, 93, 318–321
branches, in decision trees, 280
Breusch-Pagan statistical test, 128
building

association rules, 377–382

association rules in Identifying  
Grocery Purchase Patterns case 
study, 389

classification tree models, 291–295
clusters, 404–406
model in Revisiting the Income  

Prediction Problem case study, 302
models in Revisiting the Donor  

Dataset case study, 248
models in Revisiting the Heart  

Disease Detection Problem case 
study, 272–273

C
c() function, 45
call, 193
Capital Bike Share example, 104–106
car package, 129–130
caret package, 313, 324, 331, 343–344, 

345, 347, 356, 359, 362, 363
caretEnsemble package, 362, 363, 365
caretList() function, 363
caretStack() function, 365
CART (classification and regression 

trees), 281, 291
case studies

for association rules, 386–393
clustering, 415–420
decision trees, 299–304
Identifying Grocery Purchase Patterns

about, 386
evaluating association 

rules, 389–393
exploring data, 387–389
generating association rules, 389
importing data, 387
preparing data, 387–389

Income Prediction
about, 207
evaluating models, 215–216
exploring data, 208–212
importing data, 208
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preparing data, 208–212
training models, 212–215

k-nearest neighbors, 241–248
linear regression, 147–161
logistic regression, 207–216
Naïve Bayes, 269–274
Predicting Blood Pressure

about, 147
exploring data, 149–151
fitting multiple linear regression 

model, 152–161
fitting simple linear regression 

model, 151–152
importing data, 148

Revisiting the Donor Dataset
about, 241
building models, 248
evaluating models, 248
exploring data, 242–247
importing data, 241–242
preparing data, 242–247

Revisiting the Heart Disease  
Detection Problem

about, 269–270
building models, 272–273
evaluating models, 273–274
exploring data, 270–272
importing data, 270
preparing data, 270–272

Revisiting the Income Predic-
tion Problem

about, 299–300
building model, 302
evaluating model, 302–304
exploring data, 300–302
importing data, 300
preparing data, 300–302

Segmenting Shopping Mall Customers
about, 415
clustering data, 417–418
evaluating clusters, 418–420
exploring data, 415–416
preparing data, 415–416

categorical features, handling, 235–237
categorical variables, 137–139
categories, of association rules, 372
character data type, 44
choosing

appropriate value for k, 231–232
cutoff values, 205
models, 14–16
numbers of clusters, 409–414
split values, 284
variables, 141–145

class conditional independence, 258
class distribution, 83
class() function, 47
class imbalance

about, 82–84
handling, 188–189

class package, 237–238, 248
classification

about, 169–170
with Naïve Bayes, 257–260
problems with, 165 (See also logistic 

regression)
for responses, 206
unsupervised, 397

classification and regression trees 
(CART), 281, 291

classification techniques
about, 14–15
errors in, 17–19

classification tree, 279
classification tree models, 

building, 291–295
classifying

spam email, 252–253
unlabeled data, 237–238

cleaning data, 75–84
cluster centroid, 401
clustering

about, 395–399
analyzing clusters, 407–409
case study for, 415–420
choosing number of clusters, 409–414
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creating clusters, 404–406
data in Identifying Grocery Purchase 

Patterns case study, 417–418
k-means, 399–415
real-world example for, 403–415
strengths and weaknesses of, 414–415

clustering algorithms
about, 13, 16
smoothing by, 80–81

code names, for R language, 27
coef() function, 193–194
coefficients, 114, 121–122, 193–195
coercion, 46
Cohen’s Kappa coefficient, 323–326
cold-deck imputation, 76
collecting data, 55–60
col_names argument, 57
col_types argument, 57–58
columns

about, 61–62
categorical, 137–139
extracting, 99–100
interactions between, 139–141
projecting, 99–100
relationships between, 106–115
selecting, 99, 141–145
in supervised learning, 9

column_to_rownames() function, 405
combination function, 354
comma-delimited files, reading, 56–59
commands, history of, 32
comma-separated value (CSV) files, 

reading, 56–59
comparison visualization, 69–70
compiler, 27
components, of vectors, 45
composition visualizations, 73–74
Comprehensive R Archive Network 

(CRAN), 26, 38
conditional probability, 254, 256–257, 260
confidence, association rules 

and, 373–374

confusion matrix, 197, 321–322
confusionMatrix() function, 347
consequent, 371
console pane (RStudio), 30–32
continuous decision tree, 279
continuous features, 61, 62, 262
continuous response, 15
controlling

categorical features, 235–237
class imbalance, 188–189
missing data, 178–182, 234, 243–245
missing values, 75
multicollinearity, 198–204
noise, 79
outliers, 81–82, 182–186

convergence, 401–402
converting data types, 50–51
Cook’s distance threshold, 130–131
coord_flip() command, 73–74
cor() function, 110, 151, 198
correlation

about, 106–114
residual autocorrelation, 129–130
visualizing with corrplot 

function, 111–114
correlation coefficient, 106–111
corrplot() function, 111–114, 198
corrplot package, 198
corrplot.mixed() function, 113–114
cov() function, 118
covariance, 107
coverage, association rules and, 373
Cramer-vin Mises test, 127
CRAN (Comprehensive R Archive  

Network), 26, 38
createDataPartition() function, 313, 363
creating

association rules, 377–382
association rules in Identifying  

Grocery Purchase Patterns case 
study, 389

classification tree models, 291–295
clusters, 404–406

clustering (continued)
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model in Revisiting the Income Predic-
tion Problem case study, 302

models in Revisiting the Donor  
Dataset case study, 248

models in Revisiting the Heart  
Disease Detection Problem case 
study, 272–273

cross-validation method
about, 311–317
for test and validation datasets, 23–24

CSV. See comma-separated value 
(CSV) files

curse of dimensionality, 99
customized parameter tuning, 348–353
cutoff values, choosing, 205

D
data

balancing, 246–247
classifying unlabeled, 237–238
cleaning, 75–84
clustering in Identifying Grocery Pur-

chase Patterns case study, 417–418
collecting, 55–60
describing, 61–69
discovering knowledge in, 5–7
evaluating in Identifying Grocery Pur-

chase Patterns case study, 418–420
exploration of

about, 60
describing data, 61–69
in Identifying Grocery Purchase 

Patterns case study, 387–389
in Income Prediction case 

study, 208–212
in Predicting Blood Pressure case 

study, 149–151
in Revisiting the Donor Dataset 

case study, 242–247
in Revisiting the Heart Disease 

Detection Problem case 
study, 270–272

in Revisiting the Income  
Prediction Problem case 
study, 300–302

in Segmenting Shopping Mall  
Customers case study, 415–416

visualizing data, 69–74
grouping (See clustering)
importing, 56–60
importing in Identifying Grocery  

Purchase Patterns case study, 387
importing in Income Prediction case 

study, 208
importing in Predicting Blood 

Pressure case study, 148
importing in Revisiting the Donor 

Dataset case study, 241–242
importing in Revisiting the Heart 

Disease Detection Problem case 
study, 270

importing in Revisiting the Income 
Prediction Problem case study,  
300

labeling unlabeled,  
230–231

management of
about, 53–54
data collection, 55–60
tidyverse, 54–55

normalizing, 234–235, 245–246
preparation of

about, 74
cleaning data, 75–84
in Identifying Grocery Purchase 

Patterns case study, 387–389,  
415–416

in Income Prediction case 
study, 208–212

reducing data, 92–100
in Revisiting the Donor Dataset 

case study, 242–247
in Revisiting the Heart Disease 

Detection Problem case 
study, 270–272
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in Revisiting the Income  
Prediction Problem case 
study, 300–302

transforming data, 84–92
quantity of, 56
reducing, 92–100
relevance of, 55–56
splitting, 187, 237, 246–247,  

266–267, 294–295
transforming, 84–92
visualizing, 69–74

data frame, 46
data types

converting, 50–51
R language, 44–52
testing, 47–50

data.frame() function, 91
datasets, partitioning, 22–24
decimal scaling, 84–86
decision nodes, 280
decision tree forests, 356
decision trees

about, 277–278
building classification tree 

models, 291–296
case study for, 299–304
choosing split values, 284
entropy, 285–289
evaluating models, 296–298
Gini impurity, 290
information gain, 286–289
overview of, 279–299
pruning, 290–291
real-world example for, 278–279
recursive partitioning, 281–285
regression trees, 298
strengths and weaknesses of 

models, 298–299
deep learning, relationship between 

artificial intelligence, machine 
learning and, 7

delimited files, reading, 60
dendogram, 397

density, of data, 62
Department of Building and Safety, 278
dependencies, 39
dependent variables, 62
descriptive statistics, 63–69
deviance, 195
diagnostics, 122, 195
dichotomization, 89
dimensionality, of data, 62
dimensionality reduction, 99–100
discovering

association rules, 376–386
knowledge in data, 5–7

discrete decision tree, 279
discrete feature, 61–62
discretization, 89
distribution visualizations, 72–73
distributions

skewed, 183–184
symmetric, 183–184

distributiuon-based imputation, 76
DMwR package, 313, 345
documentation, for packages, 40–41
dplyr package, 54, 59, 65, 78, 91, 130–131, 

138, 234, 380
dummies package, 236
dummy coding, 89–92
dummy.data.frame() function, 90, 92,  

236
durbinWatsonTest() function, 129–130

E
editing scripts in RStudio, 34
Elbow method, 409–411
The Elements of Statistical Learning 

(Hastie), 100
Enron Corporation, 252–253
ensemble methods

about, 354–355
bagging (bootstrap aggregating),  

355–358
boosting, 358–361
stacking, 361–366

data (continued)
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entropy, 285–289
environment, RStudio Desktop, 29–37
environment pane (RStudio), 34–35
equal sign (=), 78
errors

in classification techniques, 17–19
in regression techniques, 19–20
types of, 20–22

estimating future performance, 308–321
ethics, data collection and, 56
Euclidean distance, 228–229, 396, 402
evaluating

association rules, 382–385
association rules in Identifying  

Grocery Purchase Patterns case 
study, 389–393

clusters, 407–409
data in Identifying Grocery Purchase 

Patterns case study, 418–420
decision tree models, 295–298
model in Income Prediction case 

study, 215–216
models, 16–24, 120–123, 125–134, 

190–198, 238–239
models in Naïve Bayes, 267–269
models in Revisiting the Donor  

Dataset case study, 248
models in Revisiting the Heart  

Disease Detection Problem case 
study, 273–274

models in Revisiting the Income  
Prediction Problem case 
stud, 302–304

numeric prediction, 338
events, 253–254
examples, 61
exp() function, 193–194
expand.grid() function, 350
exploring

data in Identifying Grocery Purchase 
Patterns case study, 387–389

data in Income Prediction case 
study, 208–212

data in Predicting Blood Pressure case 
study, 149–151

data in Revisiting the Donor Dataset 
case study, 242–247

data in Revisiting the Heart Disease  
Detection Problem case 
study, 270–272

data in Revisiting the Income Predic-
tion Problem case study, 300–302

data in Segmenting Shopping Mall 
Customers case study, 415–416

extreme gradient boosting (XGBoost), 359

F
facet_wrap() function, 150
factoextra package, 410
factor data type, 44
factor() function, 47
false negative errors, 17–19
false positive errors, 17–19
false positive rate (FPR), 18, 333–334
features

about, 61–62
categorical, 137–139
extracting, 99–100
interactions between, 139–141
projecting, 99–100
relationships between, 106–115
selecting, 99, 141–145
in supervised learning, 9

Federal Energy Regulatory 
Commission, 252–253

file argument, 57
Files tab (RStudio), 36
filter() function, 68, 234
finding nearest neighbors, 228–230
fitting

multiple linear regression 
model, 152–161

simple linear regression 
model, 151–152

flags, 44
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folds, 311
forest, 356
forward selection, 142
FPR (false positive rate), 18, 333–334
frequency, of feature values, 63
frequent itemsets, 373
F-score/-measure, 328
F-statistic, 123
functions

abline(), 336
aes(), 70
allocation, 354
apriori(), 381, 389
arrange(), 130–131
as.character(), 50–51
as.factor(), 50–51, 148, 237
as.integer(), 50–51
as.logical(), 50–51
as.numeric(), 50–51, 416
c(), 45
caretList(), 363
caretStack(), 365
class(), 47
coef(), 193–194
column_to_rownames(), 405
combination, 354
confusionMatrix(), 347
cor(), 110, 151, 198
corrplot(), 111–114, 198
corrplot.mixed(), 113–114
cov(), 118
createDataPartition(), 313, 363
data.frame(), 91
dummy.data.frame(), 90, 92, 236
durbinWatsonTest(), 129–130
exp(), 193–194
expand.grid(), 350
facet_wrap(), 150
factor(), 47
filter(), 68, 234
fviz_cluster(), 407

fviz_nbclust(), 410, 411, 412, 417
gather(), 150, 263–264
geom_bar(), 73–74
geom_boxplot(), 70
geom_histogram(), 72–73
geom_point(), 71
glimpse(), 59, 148, 176, 292, 404
glm(), 190, 193
head(), 263, 380
ifelse(), 78
inspect(), 383
is.integer(), 49
is.logical(), 49
is.na(), 51
is.numeric(), 49
itemFrequency(), 379–380, 388
keep(), 150, 178
kmeans(), 406, 407
knn(), 237–238, 247, 248
length(), 48
link, 190
lm(), 119, 122, 125, 139
logistic, 172
max(), 45, 46
mean(), 45, 78, 86–87, 118, 127
median(), 45, 78
min(), 45
modelLookup(), 344, 356, 359
naiveBayes(), 267, 272
normalize, 245–246
ols_plot_cooksd_chart(), 130
ols_plot_resid_fit(), 128
ols_plot_resid_hist(), 127
ols_step_both_p(), 142–143, 159
ols_vif_tol(), 134
optimalCutoff(), 205
performance(), 336
plot(), 336
posPredValue(), 331
predict(), 267–268, 335, 347
prediction(), 335
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prop.table(), 67, 68, 178
read_csv(), 57, 58, 59, 148, 176, 208, 

300, 404, 415
read_delim(), 60
read.transactions(), 377
read_tsv(), 60
recode(), 91, 210–211, 362
resamples(), 364
revalue(), 138
rpart(), 295, 302, 342, 348, 350
rpart.plot(), 295–298, 302–303
sample(), 93–95, 187, 237, 271–272,  

294–295
sample.split(), 97–98
scale(), 87, 406, 416
select(), 66–67, 68, 294
sensitivity(), 331
seq(), 350
set.seed(), 94, 313, 345
slice(), 264–265, 380
SMOTE(), 188–189, 212, 247, 

302, 313, 345
sort(), 383–384
specificity(), 331
str_replace_all(), 415–416
subset(), 98, 384–385
sum(), 45, 46
summary(), 63–66, 120, 125, 137,  

145, 149, 156, 177, 190–193, 233, 
234–235, 270–271, 292–293, 300–
301, 364, 378, 382, 387, 388–389

table(), 66–67, 68, 178, 197–198,  
209–210, 238, 325

tibble(), 380
train(), 313–314, 343, 345, 346, 347, 

348–349, 351, 353
trainControl(), 314, 316, 317, 320, 357
transformation, 190
unlist(), 337
var(), 118
vif(), 200

fuzzy clustering, 398
fviz_cluster() function, 407
fviz_nbclust() function, 410, 

411, 412, 417

G
gain ratio, 289
gap statistic, 412–414
gather() function, 150, 263–264
generalized linear model (GLM), 190
generating

association rules, 377–382
association rules in Identifying  

Grocery Purchase Patterns case 
study, 389

classification tree models, 291–295
clusters, 404–406
model in Revisiting the Income  

Prediction Problem case study, 302
models in Revisiting the Donor  

Dataset case study, 248
models in Revisiting the Heart  

Disease Detection Problem case 
study, 272–273

geom_bar() function, 73–74
geom_boxplot() function, 70
geom_histogram() function, 72–73
geom_point() function, 71
ggplot package, 71, 73–74
ggplot2 (Wickham), 70
ggplot2 package, 54, 70
Gini impurity, 290
glimpse() function, 59, 148, 176, 292,  

404
GLM (generalized linear model), 190
glm() function, 190, 193
goodness-of-fit, 307, 308
gradient boosting, 359
grammar of graphics, 69–70
The Grammar of Graphics (Wilkinson), 70



Index430

grid search, 343
Grolemund, Garrett (author)

R for Data Science, 55
ground truth, 55
grouping data. See clustering

H
handling

categorical features, 235–237
class imbalance, 188–189
missing data, 178–182, 234, 243–245
missing values, 75
multicollinearity, 198–204
noise, 79
outliers, 81–82, 182–186

hard voting, 355–356
Hastie, Trevor (author)

The Elements of Statistical 
Learning, 100

head() function, 263, 380
Help tab (RStudio), 36, 37
heterogeneous ensemble methods, 354
high intraclass similarity, 396
holdout method

about, 309–310
for test and validation datasets, 23

homogeneous ensemble methods, 354
homoscedasticity of residuals, 128–129
hot-deck imputation, 76
hyperparameter tuning. See param-

eter tuning
hyperparameters, 342

I
Identifying Grocery Purchase Patterns 

case study
about, 386
evaluating association rules, 389–393
exploring data, 387–389
generating association rules, 389

importing data, 387
preparing data, 387–389

identifying strong association 
rules, 373–374

ifelse() function, 78
IF-THEN format, 371
importing

data, 56–60
data in Identifying Grocery Purchase 

Patterns case study, 387
data in Income Prediction case 

study, 208
data in Predicting Blood Pressure case 

study, 148
data in Revisiting the Donor Dataset 

case study, 241–242
data in Revisiting the Heart Disease 

Detection Problem case study, 270
data in Revisiting the Income  

Prediction Problem case study, 300
improving

model performance, 341–366
models, 135–145, 198–207, 239–240

imputation
cold-deck, 76
distributiuon-based, 76
hot-deck, 76
match-based, 76
mean, 77–79
median, 77–79
predictive, 77
random, 76

Income Prediction case study
about, 207
evaluating models, 215–216
exploring data, 208–212
importing data, 208
preparing data, 208–212
training models, 212–215

independent variables, 62
inexplicable association rules, 372
influential point analysis, 130
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information gain, 286–289
inspect() function, 383
installing packages, 38–39
install.packages() command, 38–39, 40
instances, 61
integer data type, 44
interaction effect, 140
interactions, between variables, 139–141
Internet resources

R Project, 27
RStudio Desktop, 29

interpreted language, 27
interquartile ranges, 184
intrinsic information, 289
irreducible rrors, 20–22
is.integer() function, 49
is.logical() function, 49
is.na() function, 51
is.numeric() function, 49
itemFrequency() function, 379–380, 388
itemset, 371

J
joint probability, 255–256

K
Kappa statistic, 323–326
keep() function, 150, 178
Kendall correlation distance, 403
k-fold cross validation, 311–315
k-means clustering, 399–415
kmeans() function, 406, 407
k-nearest neighbors

about, 223–224
case study for, 241–248
choosing appropriate value for 

k, 231–232
evaluating models, 238–239
finding nearest neighbors, 228–230
improving models, 239–241

labeling unlabeled data, 230–231
model for, 232–238
overview of, 226–249
predicting numerical responses, 239
real-world example for, 224–226
strengths and weaknesses, 241

k-NN. See k-nearest neighbors
knn() function, 237–238, 247, 248
knowledge, discovering in data, 5–7
Kolmogorov-Smirnov test, 127

L
labeling unlabeled data, 230–231
labels, in supervised learning, 9
lazy learners, 223–224
leaf nodes, 280
leave-group-out cross-validation 

(LGOCV), 317
leave-one-out cross-validation 

(LOOCV), 315–316
length() function, 48
level, 44
LGOCV (leave-group-out cross- 

validation), 317
library() command, 39–40, 58
lift, asociation rules and, 374
likelihood, 257, 258
likelihood P, 258
linear regression

about, 81, 103–104
case study in, 147–161
multiple, 124–147
real-world example of, 104–106
relationships between variables,  

106–115
simple, 115–123

link function, 190
lm() function, 119, 122, 125, 139
loading packages, 39–40
loans, 8–9
log transformation, 88
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logical data type, 44
logistic function, 172
logistic regression

about, 165–166, 170–172
binomial logistic regression 

model, 176–190
case study for, 207–216
classification, 169–170
odds ratio, 172–175
process of, 170–207
real-world example for, 166–169

log-odds, 174–175
LOOCV (leave-one-out cross- 

validation), 315–316
low interclass similarity, 396
lubridate package, 54

M
machine learning (ML)

about, 3–4
relationship between deep learning, 

artificial intelligence and, 7
techniques of, 7–14

Machine Learning Repository, 224
MAE (mean absolute error), 338
majority class, 83
managing

categorical features, 235–237
class imbalance, 188–189
data

about, 53–54
data collection, 55–60
tidyverse, 54–55

missing data, 178–182, 234, 243–245
missing values, 75
multicollinearity, 198–204
noise, 79
outliers, 81–82, 182–186

Manhattan distance, 403
marginal likelihood, 257
market basket analysis, 370–371
market basket problem, 14

market segmentation problem, 13
match-based imputation, 76
max() function, 45, 46
maximum likelihood estimation 

(MLE), 172
Maximum Likelihood Estimation and  

Inference (Millar), 172
mean, 63
mean absolute error (MAE), 338
mean() function, 45, 78, 86–87, 118, 127
mean imputation, 77–79
median, 63
median() function, 45, 78
median imputation, 77–79
meta-model, 362
Millar, Russel B. (author)

Maximum Likelihood Estimation and 
Inference, 172

min() function, 45
min-max-normalization, 87–88, 

229, 245–246
minority class, 83
misclassification rate, 16
missing data/values

about, 51–52
handling, 75, 178–182, 234, 243–245

mixed selection, 142
ML. See machine learning (ML)
MLE (maximum likelihood estimation),  

172
modelLookup() function, 344, 356, 359
models

binomial logistic regression, 176–190
building in Revisiting the Donor  

Dataset case study, 248
building in Revisiting the Heart  

Disease Detection Problem case 
study, 272–273

building in Revisiting the Income  
Prediction Problem case study, 302

decision tree, evaluating, 295–298
evaluating, 16–24, 120–123, 125–134, 

190–198, 238–239



433Index

evaluating in Income Prediction case 
study, 215–216

evaluating in Naïve Bayes, 267–269
evaluating in Revisiting the Donor 

Dataset case study, 248
evaluating in Revisiting the Heart 

Disease Detection Problem case 
study, 273–274

evaluating in Revisiting the Income 
Prediction Problem case 
stud, 302–304

improving, 135–145, 198–207, 239–240
k-nearest neighbors, 232–238
multiple linear regression, 124–145
Naïve Bayes, 263–267
selecting, 14–16
training, 190, 267, 295
training in Income Prediction case 

study, 212–215
Monte Carlo cross-validation, 316–318
multicollinearity

about, 133–134
handling, 198–204

multinomial logistic regression, 206
multiple linear regression

about, 124
fitting model, 152–161
model evaluation, 125–134
model for, 124–125
model improvement, 135–145
strengths and weaknesses, 146–147

multiple R-squared, 122–123

N
naïve Bayes

about, 251–252
additive smoothing, 261–262
building models, 272–273
case study for, 269–274
classification with, 257–260
conditional probability, 256–257
continuous features in, 262

evaluating models, 267–269, 273–274
exploring data, 270–272
importing data, 270
joint probability, 255–256
model for, 263–267
overview of, 253–269
preparing data, 270–272
probablity, 254–255
real-world example for, 252–253
slice() command, 265
strengths and weaknesses of  

classifier, 269
naiveBayes() function, 267, 272
National Health and Nutrition  

Examination Survey (NHANES), 147
neural networks, 7
NMF (non-negative matrix factorization),  

99–100
noise, handling, 79
nonlinear relationships, 135–137
non-negative matrix factorization 

(NMF), 99–100
normality of residuals, 127–128
normalization

of data, 84, 234–235, 245–246
min-max, 87–88
min-max-, 229
min-max, 245–246
zero mean, 86–87
z-score, 86–87

normalize function, 245–246
null deviance, 195
numeric data type, 44
numeric prediction, evaluating, 338
numerical responses, predicting, 239

O
observations, 61
odds ratio, 172–175
OLS (ordinary least squares) 

method, 116–119
ols_plot_cooksd_chart() function, 130
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ols_plot_resid_fit() function, 128
ols_plot_resid_hist() function, 127
olsrr package, 127–128, 128–129, 

130, 134, 142
ols_step_both_p() function, 142–143, 159
ols_vif_tol() function, 134
one-hot encoding, 89–92
optimalCutoff() function, 205
ordered factor data type, 44
ordinary least squares (OLS) 

method, 116–119
outliers, handling, 81–82, 182–186
overfitting, 21, 284
over-sampling, 84

P
packages

arules, 377, 378, 383–384, 386
car, 129–130
caret, 313, 324, 331, 343–344, 345, 

347, 356, 359, 362, 363
caretEnsemble, 362, 363, 365
class, 237–238, 248
corrplot, 198
DMwR, 313, 345
documentation for, 40–41
dplyr, 54, 59, 65, 78, 91, 130–131, 

138, 234, 380
dummies, 236
factoextra, 410
ggplot, 71, 73–74
ggplot2, 54, 70
installing, 38–39
loading, 39–40
lubridate, 54
olsrr, 127–128, 128–129, 130, 134, 142
purrr, 54
R language, 38–41
randomForest, 356
readr, 54, 56, 57, 59, 60, 300, 404
RMwR, 212

ROCR, 335–336
rpart, 295, 302, 343–344
rpart.plot, 302–303
stats, 184, 190, 198, 267–268, 406
stringr, 54, 415–416
tibble, 54, 380, 405
tidyr, 54, 263
tidyverse, 54–55, 178, 208, 300, 380, 

404, 405, 415
xgboost, 360

Packages tab (RStudio), 36, 37
parameter tuning

about, 342
automated, 342–348
customized, 348–353

partitioning
datasets, 22–24
recursive, 281–285

patterns. See association rules
PCA (principal component analysis),  

99–100
Pearson’s correlation coefficient, 

106–111, 403
performance (model)

about, 307–308
area under the curve (AUC), 336–339
automated parameter tuning, 342–348
bagging, 355–358
boosting, 358–361
bootstrap sampling, 318–321
confusion matrix, 321–322
cross-validation method, 311–317
customized parameter 

tuning, 348–353
ensemble methods, 354–366
evaluating numeric prediction, 338
improving, 341–366
Kappa statistic, 323–326
parameter tuning, 342–353
precision, 326–328
real-world example for, 308–321
recall, 326–328
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(ROC) curve, 333–336

sensitivity, 328–332
specificity, 328–332
stacking, 361–366
visualizing, 332–339

performance() function, 336
pipe, 67–68
plot() function, 336
plots pane (RStudio), 36–37
polynomial regression, 135
population, 92
posPredValue() function, 331
posterior probability, 256
post-pruning, 290–291
precision, in model performance, 326–328
predict() function, 267–268, 335, 347
predicted values, 205
Predicting Blood Pressure case study

about, 147
exploring data, 149–151
fitting multiple linear regression 

model, 152–161
fitting simple linear regression 

model, 151–152
importing data, 148

predicting numerical responses, 239
prediction() function, 335
predictive accuracy, 195–198, 307–308. 

See also performance (model)
predictive imputation, 77
predictors, 114
preparing

data in Identifying Grocery  
Purchase Patterns case study,  
387–389, 415–416

data in Income Prediction case 
study, 208–212

data in Revisiting the Donor Dataset 
case study, 242–247

data in Revisiting the Heart Dis-
ease Detection Problem case 
study, 270–272

data in Revisiting the Income Predic-
tion Problem case study, 300–302

principal component analysis 
(PCA), 99–100

prior probability, 256
probability

about, 174–175, 254–255
A-priori, 272–273
conditional, 256–257
joint, 255–256

propensities, 332
prop.table() function, 67, 68, 178
pruning decision trees, 290–291
purrr package, 54

Q
quantity, of data, 56
Quinlan, J. Ross (computer scientist), 281

R
R for Data Science (Wockham and 

Grolemund), 55
R language

about, 25–27
code names for, 27
components of, 27–28
data types in, 44–52
packages, 38–41

R Project (website), 27
R scripts

running, 41–43
writing, 41–43

random component, 190
random cross-validation, 316–318
random forests, 356
random imputation, 76
random initialization trap, 400
randomForest package, 356
read_csv() function, 57, 58, 59, 148, 176, 

208, 300, 404, 415
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read_delim() function, 60
reading

comma-delimited files, 56–59
delimited files, 60

readr package, 54, 56, 57, 59, 60, 300, 404
read.transactions() function, 377
read_tsv() function, 60
recall, in model performance, 326–328
receiver operating characteristic (ROC) 

curve, 333–336
recode() function, 91, 210–211, 362
records, 61
recursive partitioning, 281–285
reducing data, 92–100
reference dataset, 412
regression. See also linear regression

about, 103
multinomial logistic, 206
polynomial, 135
smoothing by, 81

regression analysis, 114–115
regression techniques

about, 14, 15
errors in, 19–20

regression trees, 279, 298
reinforcement learning, 14
relationship visualizations, 70–72
relevance, of data, 55–56
repeated holdout, 311
resamples() function, 364
resampling, 311
residual autocorrelation, 129–130
residual deviance, 195
residual diagnostics, 127
residual standard error (RSE), 122
residual sum of squares, 20, 116, 117
residual value, 20
residuals

about, 121
homoscedasticity of, 128–129
normality of, 127–128
zero mean of, 127

resolution, of data, 62
resources, Internet

R Project, 27
RStudio Desktop, 29

response variable, 114
resubstitution error, 308
revalue() function, 138
Revisiting the Donor Dataset case study

about, 241
building models, 248
evaluating models, 248
exploring data, 242–247
importing data, 241–242
preparing data, 242–247

Revisiting the Heart Disease Detection 
Problem case study
about, 269–270
building models, 272–273
evaluating models, 273–274
exploring data, 270–272
importing data, 270
preparing data, 270–272

Revisiting the Income Prediction Problem 
case study
about, 299–300
building model, 302
evaluating model, 302–304
exploring data, 300–302
importing data, 300
preparing data, 300–302

RMSE (root mean squared error), 239, 338
RMwR package, 212
ROC (receiver operating characteristic) 

curve, 333–336
ROCR package, 335–336
root mean squared error (RMSE), 239, 338
root node, 279–280
rpart() function, 295, 302, 342, 348, 350
rpart package, 295, 302, 343–344
rpart.plot() function, 295–298, 302–303
rpart.plot package, 302–303
RSE (residual standard error), 122
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RStudio
about, 25–26, 27
components of, 28–37
running scripts, 41–43
writing scripts, 41–43

RStudio Desktop
about, 28–29
environment, 29–37

RStudio Server, 29
Run button, 42, 43
running R scripts, 41–43

S
sample, 92
sample() function, 93–95, 187, 237,  

271–272, 294–295
sample set vector, 94
sample.split() function, 97–98
sampling

about, 92
simple random, 93–96
stratified random, 96–98

scale() function, 87, 406, 416
scatterplots, 70–71
script pane (RStudio), 33–34
scripts

defined, 27
editing in RStudio, 34

Second International Knowledge  
Discovery and Data Mining Tools  
Competition, 166

Segmenting Shopping Mall Customers 
case study
about, 415
clustering data, 417–418
evaluating clusters, 418–420
exploring data, 415–416
preparing data, 415–416

select() function, 66–67, 68, 294
selecting

appropriate value for k, 231–232

cutoff values, 205
models, 14–16
numbers of clusters, 409–414
split values, 284
variables, 141–145

sensitivity, in model performance,  
328–331

sensitivity() function, 331
seq() function, 350
set.seed() function, 94, 313, 345
Shapiro-Wilk test, 127
sigmoid curve, 172
similarity learning techniques, 14, 16
simple linear regression

about, 115–116
fitting model, 151–152

simple random sampling, 93–96
skewed distributions, 183–184
skip argument, 58
slice() function, 264–265, 380
smoothing

additive, 261–262
with bin boundaries, 80
with bin means, 79–80
by clustering, 80–81
by regression, 81

SMOTE (Synthetic Minority Oversampling 
Technique), 84, 188

SMOTE() function, 188–189, 212, 247, 
302, 313, 345

soft clustering, 398
soft voting, 356
sort() function, 383–384
Source button, 42, 43
spam email, classifying, 252–253
sparse matrix, 252, 257
sparsity, of data, 62
Spearman correlation distance, 403
specificity, in model performance,  

328–331
specificity() function, 331
split values, choosing, 284
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splitting data, 187, 237, 246–247,  
266–267, 294–295

SQL (Structured Query Language), 52
Srikant, Ramakrishnan, 375
stacking, 361–366
standard deviation, 107
standard loans, 8
standardization. See normalization
statistics

descriptive, 63–69
terminology for, 107–108

stats package, 184, 190, 198, 
267–268, 406

strata, 96
stratified cross-validation, 312
stratified random sampling, 96–98
stringr package, 54, 415–416
str_replace_all() function, 415–416
Structured Query Language (SQL), 52
subprime loans, 8
subset() function, 98, 384–385
sum() function, 45, 46
sum of squared errors, 117
summary() function, 63–66, 120, 125, 137, 

145, 149, 156, 177, 190–193, 233, 234–
235, 270–271, 292–293, 300–301, 364, 
378, 382, 387, 388–389

summary statistics. See descriptive 
statistics

supervised algorithms, 14
supervised learning

algorithms for, 7, 8–12
techniques for, 8–12

support, association rules and, 373
symmetric distributions, 183–184
Synthetic Minority Oversampling  

Technique (SMOTE), 84, 188
systematic component, 190

T
table() function, 66–67, 68, 178, 197–198, 

209–210, 238, 325
test dataset, 22

testing data types, 47–50
tibble() function, 380
tibble package, 54, 380,  

405
tibbles, 35, 47, 59, 380
tidyr package, 54, 263
tidyverse package, 54–55, 178, 208, 300, 

380, 404, 405, 415
top-shelf loans, 8
TPR (true positive rate),  

333–334
train() function, 313–314, 343, 345, 346, 

347, 348–349, 351, 353
trainControl() function, 314, 316, 

317, 320, 357
training

model in Income Prediction case 
study, 212–215

models, 190, 267, 295
training data, 82
transformation, log, 88
transformation function,  

190
transforming data, 84–92
trial, 254
trivial association rules, 372
true negative rate, 329–330
true positive rate (TPR),  

333–334
Type I errors, 17–19
Type II errors, 17–19

U
under-sampling, 84
University of California at Irvine, 224
unlist() function, 337
unsupervised algorithms, 14
unsupervised classification, 397
unsupervised learning

algorithms for, 7, 12–14
techniques for, 12–14

U.S. Centers for Disease Control and  
Prevention, 147
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V
validation dataset, 22
valudation data, 310
values, missing, 51–52
var() function, 118
variable subset selection, 99
variables

about, 61–62
categorical, 137–139
extracting, 99–100
interactions between, 139–141
projecting, 99–100
relationships between, 106–115
selecting, 99, 141–145
in supervised learning, 9

variance errors, 20–22
variance inflation factor (VIF), 134, 200
vectors, 45–47
Viewer tab (RStudio), 36
VIF (variance inflation factor), 134, 200
vif() function, 200
vignette() command, 40–41
visualizing

correlations with corrplot 
function, 111–114

data, 69–74
model performance, 332–339

W
WCSS (within-cluster sum of squares),  

409–410
websites

R Project, 27
RStudio Desktop, 29
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ggplot2, 70

Wilkinson, Leland (author)
The Grammar of Graphics, 70

within-cluster sum of squares 
(WCSS), 409–410

Wockham, Hadley (author)
R for Data Science, 55

writing R scripts, 41–43

X
XGBoost (extreme gradient boosting), 359
xgboost package, 360

Z
zero mean normalization, 86–87
zero mean of residuals, 127
0.632 bootstrap, 318, 320
z-score normalization, 86–87


