

Practical
Machine
Learning in R

Practical
Machine
Learning in R
FRED NWANGANGA
MIKE CHAPPLE

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-59151-1
ISBN: 978-1-119-59153-5 (ebk)
ISBN: 978-1-119-59157-3 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further, readers should
be aware that Internet websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020933607

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

To my parents, Grace and Friday. I would not be who I am without you. Thanks for always

being there. I miss you.

Your loving son,

Chuka

To Ricky. I am so proud of the young man you’ve become.

Love,

Dad

vii

About the Authors
Fred Nwanganga is an assistant teaching professor of business analytics at the Univer-

sity of Notre Dame’s Mendoza College of Business, where he teaches both graduate and

undergraduate courses in data management, machine learning, and unstructured data

analytics. He has more than 15 years of technology leadership experience in both the

private sector and higher education. Fred holds a PhD in computer science and engineer-

ing from the University of Notre Dame.

Mike Chapple is an associate teaching professor of information technology, analytics,

and operations at the University of Notre Dame’s Mendoza College of Business. Mike has

more than 20 years of technology experience in the public and private sectors. He serves

as academic director of the university’s Master of Science in Business Analytics Program

and is the author of more than 25 books. Mike earned his PhD in computer science from

Notre Dame.

ix

About the
Technical Editors
Everaldo Aguiar received his PhD from the University of Notre Dame, where he was

affiliated with the Interdisciplinary Center for Network Science and Applications. He

is a former data science for social good fellow and now works as a principal data sci-

ence manager at SAP Concur, where he leads a team of data scientists that develops,

deploys, maintains, and evaluates machine learning solutions embedded into customer-

facing products.

Seth Berry is an assistant teaching professor in the Information Technology, Analytics,

and Operations Department at the University of Notre Dame. He is an avid R user (he is

old enough to remember when using Tinn-R was a good idea) and enjoys just about any

statistical programming task that comes his way. He is particularly interested in all forms

of text analysis and how people’s online behaviors can predict real-life decisions.

xi

Acknowledgments
It takes a small army to put together a book, and we are grateful to the many people who

collaborated with us on this one.

First and foremost, we thank our families, who once again put up with our nonsense

as we were getting this book to press. We’d also like to thank our colleagues in the Infor-

mation Technology, Analytics, and Operations Department at the University of Notre

Dame’s Mendoza College of Business. Much of the content in this book started as colle-

gial hallway conversations, and we are thankful to have you in our lives.

Jim Minatel, our acquisitions editor at Wiley, was instrumental in getting this book

underway. Mike has worked with Jim for many years and is thankful for his unwavering

support. This is Fred’s first collaboration with Wiley, and it truly has been a remarkable

and rewarding experience.

Our agent, Carole Jelen of Waterside Productions, continues to be a valuable partner,

helping us develop new opportunities, including this one.

Our technical editors, Seth Berry and Everaldo Aguiar, gave us invaluable feedback as

we worked our way through this book. Thank you for your meaningful contributions to

this work.

Our research assistants, Nicholas Schmit and Yun “Jessica” Yan, did an awesome

job with literature review and putting together some of the supplemental material

for the book.

We’d also like to thank the support crew at Wiley, particularly Kezia Endsley, our

project editor, and Vasanth Koilraj, our production editor. You were the glue that kept

this project on schedule.

—Fred and Mike

xiii

Contents at a
Glance
About the Authors vii

About the Technical
Editors ix

Acknowledgments xi

Introduction xxi

PART I:
Getting Started 1

Chapter 1
What Is Machine Learning? 3

Chapter 2
Introduction to R
and RStudio 25

Chapter 3
Managing Data 53

PART II:
Regression 101

Chapter 4
Linear Regression 103

Chapter 5
Logistic Regression 165

PART III:
Classification 221

Chapter 6
k-Nearest Neighbors 223

Chapter 7
Naïve Bayes 251

Chapter 8
Decision Trees 277

PART IV:
Evaluating and
Improving Performance 305

Chapter 9
Evaluating Performance 307

Chapter 10
Improving Performance 341

PART V:
Unsupervised
Learning 367

Chapter 11
Discovering Patterns with
Association Rules 369

Chapter 12
Grouping Data with
Clustering 395

Index 421

xv

Contents
About the Authors vii
About the Technical
Editors ix
Acknowledgments xi
Introduction xxi

PART I:
Getting Started 1

Chapter 1
What Is Machine Learning? 3
Discovering Knowledge in Data 5

Introducing Algorithms 5

Artificial Intelligence, Machine

Learning, and Deep Learning 6

Machine Learning Techniques 7

Supervised Learning 8

Unsupervised Learning 12

Model Selection 14

Classification Techniques 14

Regression Techniques 15

Similarity Learning Techniques 16

Model Evaluation 16

Classification Errors 17

Regression Errors 19

Types of Error 20

Partitioning Datasets 22

Holdout Method 23

Cross-Validation Methods 23

Exercises 24

Chapter 2
Introduction to R
and RStudio 25
Welcome to R 26

R and RStudio Components 27

The R Language 27

RStudio 28

RStudio Desktop 28

RStudio Server 29

Exploring the RStudio

Environment 29

R Packages 38

The CRAN Repository 38

Installing Packages 38

Loading Packages 39

Package Documentation 40

Writing and Running an R Script 41

Data Types in R 44

Vectors 45

Testing Data Types 47

Converting Data Types 50

Missing Values 51

Exercises 52

Chapter 3
Managing Data 53
The Tidyverse 54

Data Collection 55

Key Considerations 55

Collecting Ground Truth Data 55

Data Relevance 55

Contentsxvi

Quantity of Data 56

Ethics 56

Importing the Data 56

Reading Comma-Delimited Files 56

Reading Other Delimited Files 60

Data Exploration 60

Describing the Data 61

Instance 61

Feature 61

Dimensionality 62

Sparsity and Density 62

Resolution 62

Descriptive Statistics 63

Visualizing the Data 69

Comparison 69

Relationship 70

Distribution 72

Composition 73

Data Preparation 74

Cleaning the Data 75

Missing Values 75

Noise 79

Outliers 81

Class Imbalance 82

Transforming the Data 84

Normalization 84

Discretization 89

Dummy Coding 89

Reducing the Data 92

Sampling 92

Dimensionality Reduction 99

Exercises 100

PART II:
Regression 101

Chapter 4
Linear Regression 103
Bicycle Rentals and Regression 104

Relationships Between Variables 106

Correlation 106

Regression 114

Simple Linear Regression 115

Ordinary Least Squares Method 116

Simple Linear Regression Model 119

Evaluating the Model 120

Residuals 121

Coefficients 121

Diagnostics 122

Multiple Linear Regression 124

The Multiple Linear

Regression Model 124

Evaluating the Model 125

Residual Diagnostics 127

Influential Point Analysis 130

Multicollinearity 133

Improving the Model 135

Considering Nonlinear

Relationships 135

Considering Categorical

Variables 137

Considering Interactions

Between Variables 139

Selecting the Important

Variables 141

Strengths and Weaknesses 146

Case Study: Predicting Blood

Pressure 147

Importing the Data 148

Exploring the Data 149

Fitting the Simple Linear

Regression Model 151

Fitting the Multiple Linear

Regression Model 152

Exercises 161

Chapter 5
Logistic Regression 165
Prospecting for Potential Donors 166

Classification 169

Logistic Regression 170

Odds Ratio 172

xviiContents

Binomial Logistic Regression

Model 176

Dealing with Missing Data 178

Dealing with Outliers 182

Splitting the Data 187

Dealing with Class Imbalance 188

Training a Model 190

Evaluating the Model 190

Coefficients 193

Diagnostics 195

Predictive Accuracy 195

Improving the Model 198

Dealing with Multicollinearity 198

Choosing a Cutoff Value 205

Strengths and Weaknesses 206

Case Study: Income Prediction 207

Importing the Data 208

Exploring and Preparing

the Data 208

Training the Model 212

Evaluating the Model 215

Exercises 216

PART III:
Classification 221

Chapter 6
k-Nearest Neighbors 223
Detecting Heart Disease 224

k-Nearest Neighbors 226

Finding the Nearest Neighbors 228

Labeling Unlabeled Data 230

Choosing an Appropriate k 231

k-Nearest Neighbors Model 232

Dealing with Missing Data 234

Normalizing the Data 234

Dealing with Categorical

Features 235

Splitting the Data 237

Classifying Unlabeled Data 237

Evaluating the Model 238

Improving the Model 239

Strengths and Weaknesses 241

Case Study: Revisiting the

Donor Dataset 241

Importing the Data 241

Exploring and Preparing the Data 242

Dealing with Missing Data 243

Normalizing the Data 245

Splitting and Balancing the

Data 246

Building the Model 248

Evaluating the Model 248

Exercises 249

Chapter 7
Naïve Bayes 251
Classifying Spam Email 252

Naïve Bayes 253

Probability 254

Joint Probability 255

Conditional Probability 256

Classification with

Naïve Bayes 257

Additive Smoothing 261

Naïve Bayes Model 263

Splitting the Data 266

Training a Model 267

Evaluating the Model 267

Strengths and Weaknesses of

the Naïve Bayes Classifier 269

Case Study: Revisiting the

Heart Disease Detection Problem 269

Importing the Data 270

Exploring and Preparing the Data 270

Building the Model 272

Evaluating the Model 273

Exercises 274

Chapter 8
Decision Trees 277
Predicting Build Permit Decisions 278

Contentsxviii

Decision Trees 279

Recursive Partitioning 281

Entropy 285

Information Gain 286

Gini Impurity 290

Pruning 290

Building a Classification Tree

Model 291

Splitting the Data 294

Training a Model 295

Evaluating the Model 295

Strengths and Weaknesses of

the Decision Tree Model 298

Case Study: Revisiting the Income

Prediction Problem 299

Importing the Data 300

Exploring and Preparing the

Data 300

Building the Model 302

Evaluating the Model 302

Exercises 304

PART IV:
Evaluating and
Improving Performance 305

Chapter 9
Evaluating Performance 307
Estimating Future Performance 308

Cross-Validation 311

k-Fold Cross-Validation 311

Leave-One-Out Cross-

Validation 315

Random Cross-Validation 316

Bootstrap Sampling 318

Beyond Predictive Accuracy 321

Kappa 323

Precision and Recall 326

Sensitivity and Specificity 328

Visualizing Model Performance 332

Receiver Operating

Characteristic Curve 333

Area Under the Curve 336

Exercises 339

Chapter 10
Improving Performance 341
Parameter Tuning 342

Automated Parameter Tuning 342

Customized Parameter Tuning 348

Ensemble Methods 354

Bagging 355

Boosting 358

Stacking 361

Exercises 366

PART V:
Unsupervised
Learning 367

Chapter 11
Discovering Patterns
with Association Rules 369
Market Basket Analysis 370

Association Rules 371

Identifying Strong Rules 373

Support 373

Confidence 373

Lift 374

The Apriori Algorithm 374

Discovering Association Rules 376

Generating the Rules 377

Evaluating the Rules 382

Strengths and Weaknesses 386

Case Study: Identifying Grocery

Purchase Patterns 386

Importing the Data 387

Exploring and Preparing the Data 387

Generating the Rules 389

Evaluating the Rules 389

xixContents

Exercises 392

Notes 393

Chapter 12
Grouping Data with
Clustering 395
Clustering 396

k-Means Clustering 399

Segmenting Colleges with k-Means

Clustering 403

Creating the Clusters 404

Analyzing the Clusters 407

Choosing the Right Number of

Clusters 409

The Elbow Method 409

The Average Silhouette

Method 411

The Gap Statistic 412

Strengths and Weaknesses of

k-Means Clustering 414

Case Study: Segmenting

Shopping Mall Customers 415

Exploring and Preparing the Data 415

Clustering the Data 416

Evaluating the Clusters 418

Exercises 420

Notes 420

Index 421

xxi

Introduction
Machine learning is changing the world. Every organization, large and small, seeks to

extract knowledge from the massive amounts of information that they store and process

on a daily basis. The tantalizing desire to predict the future drives the work of business

analysts and data scientists in fields ranging from marketing to healthcare. Our goal with

this book is to make the tools of analytics approachable for a broad audience.

The R programming language is a purpose-specific language designed to facilitate

statistical analysis and machine learning. We choose it for this book not only due to its

strong popularity in the field but also because of its intuitive nature, particularly for indi-

viduals approaching it as their first programming language.

There are many books on the market that cover practical applications of machine

learning, designed for businesspeople and onlookers. Likewise, there are many deeply

technical resources that dive into the mathematics and computer science of machine

learning. In this book, we strive to bridge these two worlds. We attempt to bring the

reader an intuitive introduction to machine learning with an eye on the practical appli-

cations of machine learning in today’s world. At the same time, we don’t shy away from

code. As we do in our undergraduate and graduate courses, we seek to make the R pro-

gramming language accessible to everyone. Our hope is that you will read this book with

your laptop open next to you, following along with our examples and trying your hand at

the exercises.

Best of luck as you begin your machine learning adventure!

WHAT DOES THIS BOOK COVER?
This book provides an introduction to machine learning using the R program-

ming language.

Chapter 1: What Is Machine Learning? This chapter introduces the world of

machine learning and describes how machine learning allows the discovery of

knowledge in data. In this chapter, we explain the differences between unsupervised

learning, supervised learning, and reinforcement learning. We describe the differ-

ences between classification and regression problems and explain how to measure

the effectiveness of machine learning algorithms.

Introductionxxii

Chapter 2: Introduction to R and RStudio In this chapter, we introduce the R pro-

gramming language and the toolset that we will be using throughout the rest of the

book. We approach R from the beginner’s mind-set, explain the use of the RStudio

integrated development environment, and walk readers through the creation and

execution of their first R scripts. We also explain the use of packages to redistribute R

code and the use of different data types in R.

Chapter 3: Managing Data This chapter introduces readers to the concepts of data

management and the use of R to collect and manage data. We introduce the tidy-

verse, a collection of R packages designed to facilitate the analytics process, and we

describe different approaches to describing and visualizing data in R. We also cover

how to clean, transform, and reduce data to prepare it for machine learning.

Chapter 4: Linear Regression In this chapter, we dive into the world of supervised

machine learning as we explore linear regression. We explain the underlying statis-

tical principles behind regression and demonstrate how to fit simple and complex

regression models in R. We also explain how to evaluate, interpret, and apply the

results of regression models.

Chapter 5: Logistic Regression While linear regression is suitable for problems

that require the prediction of numeric values, it is not well-suited to categorical pre-

dictions. In this chapter, we describe logistic regression, a categorical prediction

technique. We discuss the use of generalized linear models and describe how to

build logistic regression models in R. We also explain how to evaluate, interpret, and

improve upon the results of a logistic regression model.

Chapter 6: k-Nearest Neighbors The k-nearest neighbors technique allows us to

predict the classification of a data point based on the classifications of other, similar

data points. In this chapter, we describe how the k-NN process works and demon-

strate how to build a k-NN model in R. We also show how to apply that model, making

predictions about the classifications of new data points.

Chapter 7: Naïve Bayes The naïve Bayes approach to classification uses a table of

probabilities to predict the likelihood that an instance belongs to a particular class. In

this chapter, we discuss the concepts of joint and conditional probability and describe

how the Bayes classification approach functions. We demonstrate building a naïve

Bayes classifier in R and use it to make predictions about previously unseen data.

Chapter 8: Decision Trees Decision trees are a popular modeling technique

because they produce intuitive results. In this chapter, we describe the creation and

interpretation of decision tree models. We also explain the process of growing a tree

in R and using pruning to increase the generalizability of that model.

xxiiiIntroduction

Chapter 9: Evaluating Performance No modeling technique is perfect. Each has

its own strengths and weaknesses and brings different predictive power to different

types of problems. In this chapter, we discuss the process of evaluating model per-

formance. We introduce resampling techniques and explain how they can be used to

estimate the future performance of a model. We also demonstrate how to visualize

and evaluate model performance in R.

Chapter 10: Improving Performance Once we have tools to evaluate the perfor-

mance of a model, we can then apply them to help improve model performance. In

this chapter, we look at techniques for tuning machine learning models. We also dem-

onstrate how we can enhance our predictive power by simultaneously harnessing the

predictive capability of multiple models.

Chapter 11: Discovering Patterns with Association Rules Association rules help

us discover patterns that exist within a dataset. In this chapter, we introduce the

association rules approach and demonstrate how to generate association rules from

a dataset in R. We also explain ways to evaluate and quantify the strength of associa-

tion rules.

Chapter 12: Grouping Data with Clustering Clustering is an unsupervised learning

technique that groups items based on their similarity to each other. In this chapter,

we explain the way that the k-means clustering algorithm segments data and demon-

strate the use of k-means clustering in R.

READER SUPPORT FOR THIS BOOK
In order to make the most of this book, we encourage you to make use of the student

and instructor materials made available on the companion site. We also encourage you

to provide us with meaningful feedback on ways in which we could improve the book.

Companion Download Files
As you work through the examples in this book, you may choose either to type in all the

code manually or to use the source code files that accompany the book. If you choose

to follow along with the examples, you will also want to use the same datasets we use

throughout the book. All the source code and datasets used in this book are available for

download from www.wiley.com/go/pmlr.

Introductionxxiv

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At

John Wiley & Sons, we understand how important it is to provide our customers with

accurate content, but even with our best efforts an error may occur.

To submit your possible errata, please email it to our customer service team at

wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

P A R T I

Getting Started

Chapter 1: What Is Machine Learning?

Chapter 2: Introduction to R and RStudio

Chapter 3: Managing Data

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Chapter 1

What Is
Machine Learning?

Welcome to the world of machine learning! You’re about to

embark upon an exciting adventure discovering how data

scientists use algorithms to uncover knowledge hidden within

the troves of data that businesses, organizations, and individuals

generate every day.

If you’re like us, you often find yourself in situations where you are

facing a mountain of data that you’re certain contains important

insights, but you just don’t know how to extract that needle of

knowledge from the proverbial haystack. That’s where machine

learning can help. This book is dedicated to providing you with the

knowledge and skills you need to harness the power of machine

learning algorithms. You’ll learn about the different types of

problems that are well-suited for machine learning solutions and

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R4

the different categories of machine learning techniques that are

most appropriate for tackling different types of problems.

Most importantly, we’re going to approach this complex,

technical field with a practical mind-set. In this book, our

purpose is not to dwell on the intricate mathematical details of

these algorithms. Instead, we’ll focus on how you can put those

algorithms to work for you immediately. We’ll also introduce you to

the R programming language, which we believe is particularly well-

suited to approaching machine learning problems from a practical

standpoint. But don’t worry about programming or R for now.

We’ll get to that in Chapter 2. For now, let’s dive in and get a better

understanding of how machine learning works.

By the end of this chapter, you will have learned the following:

 ◆ How machine learning allows the discovery of

knowledge in data

 ◆ How unsupervised learning, supervised learning, and rein-

forcement learning techniques differ from each other

 ◆ How classification and regression problems differ from

each other

 ◆ How to measure the effectiveness of machine learning

algorithms

 ◆ How cross-validation improves the accuracy of machine

learning models

5Chapter 1: What Is Machine Learning?

DISCOVERING KNOWLEDGE IN DATA
Our goal in the world of machine learning is to use algorithms to discover knowledge

in our datasets that we can then apply to help us make informed decisions about the

future. That’s true regardless of the specific subject-matter expertise where we’re

working, as machine learning has applications across a wide variety of fields. For exam-

ple, here are some cases where machine learning commonly adds value:

 • Segmenting customers and determining the marketing messages that will appeal

to different customer groups

 • Discovering anomalies in system and application logs that may be indicative of a

cybersecurity incident

 • Forecasting product sales based on market and environmental conditions

 • Recommending the next movie that a customer might want to watch based on

their past activity and the preferences of similar customers

 • Setting prices for hotel rooms far in advance based on forecasted demand

Of course, those are just a few examples. Machine learning can bring value to

almost every field where discovering previously unknown knowledge is useful—and we

challenge you to think of a field where knowledge doesn’t offer an advantage!

Introducing Algorithms
As we proceed throughout this book, you’ll see us continually referring to machine

learning techniques as algorithms. This is a term from the world of computer science that

comes up again and again in the world of data science, so it’s important that you under-

stand it. While the term sounds technically complex, the concept of an algorithm is actu-

ally straightforward, and we’d venture to guess that you use some form of an algorithm

almost every day.

An algorithm is, quite simply, a set of steps that you follow when carrying out a pro-

cess. Most commonly, we use the term when we’re referring to the steps that a computer

follows when it is carrying out a computational task, but we can think of many things

that we do each day as algorithms. For example, when we are walking the streets of a

large city and we reach an intersection, we follow an algorithm for crossing the street.

Figure 1.1 shows an example of how this process might work.

Of course, in the world of computer science, our algorithms are more complex and are

implemented by writing software, but we can think of them in this same way. An algo-

rithm is simply a series of precise observations, decisions, and instructions that tell the

computer how to carry out an action. We design machine learning algorithms to discover

Practical Machine Learning in R6

knowledge in our data. As we progress through this book, you’ll learn about many differ-

ent types of machine learning algorithms and how they work to achieve this goal in very

different ways.

Artificial Intelligence, Machine Learning, and
Deep Learning
We hear the terms artificial intelligence, machine learning, and deep learning being used

almost interchangeably to describe any sort of technique where computers are working

with data. Now that you’re entering the world of data science, it’s important to have a

more precise understanding of these terms.

Reach an
intersection

Observe the
walk signal

Is the
walk signal lit?

Cross the street

Press the walk
buttonNo

Yes

Figure 1.1 Algorithm for crossing
the street

7Chapter 1: What Is Machine Learning?

Artificial intelligence (AI) includes any type of technique where we are attempting to

get a computer system to imitate human behavior. As the name implies, we are try-

ing to ask computer systems to artificially behave as if they were intelligent. Now, of

course, it’s not possible for a modern computer to function at the level of complex

reasoning found in the human mind, but we can try to mimic some small portions of

human behavior and judgment.

Machine learning (ML) is a subset of artificial intelligence techniques that attempt to

apply statistics to data problems in an effort to discover new knowledge by gener-

alizing from examples. Or, in other terms, machine learning techniques are artificial

intelligence techniques designed to learn.

Deep learning is a further subdivision of machine learning that uses a set of complex

techniques, known as neural networks, to discover knowledge in a particular way. It

is a highly specialized subfield of machine learning that is most commonly used for

image, video, and sound analysis.

Figure 1.2 shows the relationships between these fields. In this book, we focus

on machine learning techniques. Specifically, we focus on the categories of machine

learning that do not fit the definition of deep learning.

MACHINE LEARNING TECHNIQUES
The machine learning techniques that we discuss in this book fit into two major cate-

gories. Supervised learning algorithms learn patterns based on labeled examples of past

data. Unsupervised learning algorithms seek to uncover patterns without the assistance

of labeled data. Let’s take a look at each of these techniques in more detail.

Deep
Learning

Machine
Learning

Artificial
Intelligence

Figure 1.2 The relationship between
artificial intelligence, machine learning, and
deep learning

Practical Machine Learning in R8

Supervised Learning
Supervised learning techniques are perhaps the most commonly used category of

machine learning algorithms. The purpose of these techniques is to use an existing data-

set to generate a model that then helps us make predictions about future, unlabeled

data. More formally, we provide a supervised machine learning algorithm with a training

dataset as input. The algorithm then uses that training data to develop a model as its

output, as shown in Figure 1.3.

You can think of the model produced by a supervised machine learning algorithm as

sort of a crystal ball—once we have it, we can use it to make predictions about our data.

Figure 1.4 shows how this model functions. Once we have it, we can take any new data

element that we encounter and use the model to make a prediction about that new ele-

ment based on the knowledge it obtained from the training dataset.

The reason that we use the term supervised to describe these techniques is that we

are using a training dataset to supervise the creation of our model. That training dataset

contains labels that help us with our prediction task.

Let’s reinforce that with a more concrete example. Consider a loan officer working at

the car dealership shown in Figure 1.5. The salespeople at the dealership work with indi-

vidual customers to sell them cars. The customers often don’t have the necessary cash

on hand to purchase a car outright, so they seek financing options. Our job is to match

customers with the right loan product from three choices.

 • Subprime loans have the most expensive interest rates and are offered to cus-

tomers who are likely to miss payment deadlines or default on their loans.

 • Top-shelf loans have the lowest interest rate and are offered to customers who

are unlikely to miss payments and have an extremely high likelihood of repayment.

 • Standard loans are offered to customers who fall in the middle of these two

groups and have an interest rate that falls in between those two values.

Machine Learning Algorithm ModelTraining Dataset

Figure 1.3 Generic supervised learning model

9Chapter 1: What Is Machine Learning?

We receive loan applications from salespeople and must make a decision on the spot.

If we don’t act quickly, the customer may leave the store, and the business will be lost to

another dealership. If we offer a customer a higher risk loan than they would normally

qualify for, we might lose their business to another dealership offering a lower interest

rate. On the other hand, if we offer a customer a lower interest rate than they deserve,

we might not profit on the transaction after they later default.

Our current method of doing business is to review the customer’s credit report and

make decisions about loan categories based on our years of experience in the role.

We’ve “seen it all” and can rely upon our “gut instinct” to make these important business

decisions. However, as budding data scientists, we now realize that there might be a

better way to solve this problem using machine learning.

Our car dealership can use supervised machine learning to assist with this task. First,

they need a training dataset containing information about their past customers and their

loan repayment behavior. The more data they can include in the training dataset, the

better. If they have several years of data, that would help develop a high-quality model.

The dataset might contain a variety of information about each customer, such as the

customer’s approximate age, credit score, home ownership status, and vehicle type. Each

of these data points is known as a feature about the customer, and they will become the

inputs to the machine learning model created by the algorithm. The dataset also needs

to contain labels for each one of the customers in the training dataset. These labels are

the values that we’d like to predict using our model. In this case, we have two labels:

default and repaid. We label each customer in our training dataset with the appropri-

ate label for their loan status. If they repaid their loan in full, they are given the “repaid”

label, while those who failed to repay their loans are given the “default” label.

PredictionsProduction Data Model

Figure 1.4 Making predictions with a supervised learning model

Practical Machine Learning in R10

A small segment of the resulting dataset appears in Figure 1.6. Notice two things

about this dataset. First, each row in the dataset corresponds to a single customer, and

those customers are all past customers who have completed their loan terms. We know

the outcomes of the loans made to each of these customers, providing us with the labels

we need to train a supervised learning model. Second, each of the features included in

the model are characteristics that are available to the loan officer at the time they are

making a loan decision. That’s crucial to creating a model that is effective for our given

problem. If the model included a feature that specified whether a customer lost his or

her job during the loan term, that would likely provide us with accurate results, but the

loan officer would not be able to actually use that model because they would have no

way of determining this feature for a customer at the time of a loan decision. How would

they know if the customer is going to lose their job over the term of the loan that hasn’t

started yet?

“Uh oh!
A young person buying a

sports car seems risky. My
gut tells me to offer a

subprime loan
here!”

780CREDIT

SCORE

Figure 1.5 Using machine learning to classify car dealership customers

11Chapter 1: What Is Machine Learning?

If we use a machine learning algorithm to generate a model based on this data, it

might pick up on a few characteristics of the dataset that may also be apparent to you

upon casual inspection. First, most people with a credit score under 600 who have

financed a car through us in the past defaulted on that loan. If we use that characteristic

alone to make decisions, we’d likely be in good shape. However, if we look at the data

carefully, we might realize that we could realize an even better fit by saying that anyone

who has a credit score under 600 and purchased a sedan is likely to default. That type of

knowledge, when generated by an algorithm, is a machine learning model!

The loan officer could then deploy this machine learning model by simply following

these rules to make a prediction each time someone applies for a loan. If the next cus-

tomer through the door has a credit score of 780 and is purchasing a sports car, as shown

in Figure 1.7, they should be given a top-shelf loan because it is quite unlikely that they

will default. If the customer has a credit score of 410 and is purchasing a sedan, we’d

definitely want to slot them into a subprime loan. Customers who fall somewhere in

between these extremes would be suited for a standard loan.

Now, this was a simplistic example. All of the customers in our example fit neatly into

the categories we described. This won’t happen in the real world, of course. Our machine

learning algorithms will have imperfect data that doesn’t have neat, clean divisions

between groups. We’ll have datasets with many more observations, and our algorithms

will inevitably make mistakes. Perhaps the next high credit-scoring young person to walk

into the dealership purchasing a sports car later loses their job and defaults on the loan.

Our algorithm would make an incorrect prediction. We talk more about the types of

errors made by algorithms later in this chapter.

Customer
Number

Age Credit Score Home Status Vehicle Type Outcome

1 52 420 Own Sedan Default

2 52 460 Own Sedan Default

3 64 480 Rent Sports Repaid

4 31 580 Rent Sedan Default

5 36 620 Own Sports Repaid

6 29 690 Rent Pickup Repaid

7 23 730 Rent Sedan Repaid

8 27 760 Rent Pickup Repaid

9 43 790 Own Pickup Repaid

Figure 1.6 Dataset of past customer loan repayment behavior

Practical Machine Learning in R12

Unsupervised Learning
Unsupervised learning techniques work quite differently. While supervised techniques

train on labeled data, unsupervised techniques develop models based on unlabeled

training datasets. This changes the nature of the datasets that they are able to tackle

and the models that they produce. Instead of providing a method for assigning labels to

input based on historical data, unsupervised techniques allow us to discover hidden pat-

terns in our data.

One way to think of the difference between supervised and unsupervised algorithms

is that supervised algorithms help us assign known labels to new observations while

unsupervised algorithms help us discover new labels, or groupings, of the observations

in our dataset.

For example, let’s return to our car dealership and imagine that we’re now working

with our dataset of customers and want to develop a marketing campaign for our service

“The data
tells me that customers like

this will repay their loan. This
one is top shelf!”

780
CREDIT
SCORE

Figure 1.7 Applying the machine learning model

13Chapter 1: What Is Machine Learning?

department. We suspect that the customers in our database are similar to each other in

ways that aren’t as obvious as the types of cars that they buy and we’d like to discover

what some of those groupings might be and use them to develop different market-

ing messages.

Unsupervised learning algorithms are well-suited to this type of open-ended dis-

covery task. The car dealership problem that we described is more generally known as

the market segmentation problem, and there is a wealth of unsupervised learning tech-

niques designed to help with this type of analysis. We talk about how organizations use

unsupervised clustering algorithms to perform market segmentation in Chapter 12.

Let’s think of another example. Imagine that we manage a grocery store and are try-

ing to figure out the optimal placement of products on the shelves. We know that cus-

tomers often run into our store seeking to pick up some common staples, such as milk,

bread, meat, and produce. Our goal is to design the store so that impulse purchases are

near each other in the store. As seen in Figure 1.8, we want to place the cookies right

next to the milk so someone who came into the store to purchase milk will see them and

think “Those cookies would be delicious with a glass of this milk!”

Milk

Cookies

Figure 1.8 Strategically placing items in a grocery store based on unsupervised
learning

Practical Machine Learning in R14

The problem of determining which items customers frequently purchase together is

also a well-known problem in machine learning known as the market basket problem. We

talk about how data scientists use association rules approaches to tackle the market bas-

ket problem in Chapter 11.

NOTE You may also hear about a third type of machine learning algorithm
known as reinforcement learning. These algorithms seek to learn based on
trial and error, similar to the way that a young child learns the rules of a home
by being rewarded and punished. Reinforcement learning is an interesting
technique but is beyond the scope of this book.

MODEL SELECTION
In the previous section, we described ways to group algorithms based on the types of

data that they use for training. Algorithms that use labeled training datasets are known

as supervised algorithms because their training is “supervised” by the labels while those

that use unlabeled training datasets are known as unsupervised algorithms because they

are free to learn whatever patterns they happen to discover, without “supervision.” Think

of this categorization scheme as describing how machine learning algorithms learn.

We can also categorize our algorithms based on what they learn. In this book, we

discuss three major types of knowledge that we can learn from our data. Classification

techniques train models that allow us to predict membership in a category. Regression

techniques allow us to predict a numeric result. Similarity learning techniques help us

discover the ways that observations in our dataset resemble and differ from each other.

Classification Techniques
Classification techniques use supervised machine learning to help us predict a categori-

cal response. That means that the output of our model is a non-numeric label or, more

formally, a categorical variable. This simply means that the variable takes on discrete,

non-numeric values, rather than numeric values. Here are some examples of categorical

variables with some possible values they might take on:

 • Educational degree obtained (none, bachelor’s, master’s, doctorate)

 • Citizenship (United States, Ireland, Nigeria, China, Australia, South Korea)

 • Blood type (A+, A-, B+, B-, AB+, AB-, O+, O-)

 • Political party membership (Democrat, Republican, Independent)

 • Customer status (current customer, past customer, noncustomer)

15Chapter 1: What Is Machine Learning?

For example, earlier in this chapter, we discussed a problem where managers at a car

dealership needed the ability to predict loan repayment. This is an example of a classifi-

cation problem because we are trying to assign each customer to one of two categories:

repaid or default.

We encounter all types of classification problems in the real world. We might try to

determine which of three promotional offers would be most appealing to a potential

customer. This is a classification problem where the categories are the three different

offers.

Similarly, we might want to look at people attempting to log on to our computer sys-

tems and predict whether they are a legitimate user or a hacker seeking to violate the

system’s security policies. This is also a classification problem where we are trying to

assign each login attempt to the category of “legitimate user” or “hacker.”

Regression Techniques
Regression techniques use supervised machine learning techniques to help us predict

a continuous response. Simply put, this means that the output of our model is a numeric

value. Instead of predicting membership in a discrete set of categories, we are predicting

the value of a numeric variable.

For example, a financial advisor seeking new clients might want to screen possible cli-

ents based on their income. If the advisor has a list of potential customers that does not

include income explicitly, they might use a dataset of past contacts with known incomes

to train a regression model that predicts the income of future contacts. This model

might look something like this:

 Income age yearsPostHighSchoolEducation5000 1000 3000* *

If the financial advisor encounters a new potential client, they can then use this

formula to predict the person’s income based on their age and years of education. For

each year of age, they would expect the person to have $1,000 in additional annual

income. Similarly, their income would increase $3,000 for each year of education beyond

high school.

Regression models are quite flexible. We can plug in any possible value of age or

income and come up with a prediction for that person’s income. Of course, if we didn’t

have good training data, our prediction might not be accurate. We also might find that

the relationship between our variables isn’t explained by a simple linear technique.

For example, income likely increases with age, but only up until a certain point. More

advanced regression techniques allow us to build more complex models that can take

these factors into account. We discuss those in Chapter 4.

Practical Machine Learning in R16

Similarity Learning Techniques
Similarity learning techniques use machine learning algorithms to help us identify

common patterns in our data. We might not know exactly what we’re trying to discover,

so we allow the algorithm to explore the dataset looking for similarities that we might

not have already predicted.

We’ve already mentioned two similarity learning techniques in this chapter. Associa-

tion rules techniques, discussed more fully in Chapter 11, allow us to solve problems

that are similar to the market basket problem—which items are commonly purchased

together. Clustering techniques, discussed more fully in Chapter 12, allow us to group

observations into clusters based on the similar characteristics they possess.

Association rules and clustering are both examples of unsupervised uses of similarity

learning techniques. It’s also possible to use similarity learning in a supervised manner.

For example, nearest neighbor algorithms seek to assign labels to observations based

on the labels of the most similar observations in the training dataset. We discuss those

more in Chapter 6.

MODEL EVALUATION
Before beginning our discussion of specific machine learning algorithms, it’s also help-

ful to have an idea in mind of how we will evaluate the effectiveness of our algorithms.

We’re going to cover this topic in much more detail throughout the book, so this is just

to give you a feel for the concept. As we work through each machine learning technique,

we’ll discuss evaluating its performance against a dataset. We’ll also have a more com-

plete discussion of model performance evaluation in Chapter 9.

Until then, the important thing to realize is that some algorithms will work better

than others on different problems. The nature of the dataset and the nature of the algo-

rithm will dictate the appropriate technique.

In the world of supervised learning, we can evaluate the effectiveness of an algorithm

based on the number and/or magnitude of errors that it makes. For classification prob-

lems, we often look at the percentage of times that the algorithm makes an incorrect

categorical prediction, or the misclassification rate. Similarly, we can look at the percent-

age of predictions that were correct, known as the algorithm’s accuracy. For regression

problems, we often look at the difference between the values predicted by the algo-

rithm and the actual values.

NOTE It only makes sense to talk about this type of evaluation when we’re
referring to supervised learning techniques where there actually is a correct

17Chapter 1: What Is Machine Learning?

answer. In unsupervised learning, we are detecting patterns without any
objective guide, so there is no set “right” or “wrong” answer to measure our
performance against. Instead, the effectiveness of an unsupervised learning
algorithm lies in the value of the insight that it provides us.

Classification Errors
Many classification problems seek to predict a binary value identifying whether an

observation is a member of a class. We refer to cases where the observation is a member

of the class as positive cases and cases where the observation is not a member of the

class as negative cases.

For example, imagine we are developing a model designed to predict whether

someone has a lactose intolerance, making it difficult for them to digest dairy products.

Our model might include demographic, genetic, and environmental factors that are

known or suspected to contribute to lactose intolerance. The model then makes predic-

tions about whether individuals are lactose intolerant or not based on those attributes.

Individuals predicted to be lactose intolerant are predicted positives, while those who

are predicted to not be lactose intolerant (or, stated more simply, those who are pre-

dicted to be lactose tolerant) are predicted negatives. These predicted values come

from our machine learning model.

There is also, however, a real-world truth. Regardless of what the model predicts,

every individual person is either lactose intolerant or they are not. This real-world data

determines whether the person is an actual positive or an actual negative. When the

predicted value for an observation differs from the actual value for that same observa-

tion, an error occurs. There are two different types of error that may occur in a classifica-

tion problem.

 • False positive errors occur when the model labels an observation as predicted posi-

tive when it is, in reality, an actual negative. For example, if the model identifies

someone as likely lactose intolerant while they are, in reality, lactose tolerant, this

is a false positive error. False positive errors are also known as Type I errors.

 • False negative errors occur when the model labels an observation as predicted

negative when it is, in reality, an actual positive. In our lactose intolerance model,

if the model predicts someone as lactose tolerant when they are, in reality, lactose

intolerant, this is a false negative error. False negative errors are also known as

Type II errors.

Similarly, we may label correctly predicted observations as true positives or true nega-

tives, depending on their label. Figure 1.9 shows the types of errors in chart form.

Practical Machine Learning in R18

Of course the absolute numbers for false positive and false negative errors depend

on the number of predictions that we make. Instead of using these magnitude-based

measures, we measure the percentage of times that those errors occur. For example,

the false positive rate (FPR) is the percentage of negative instances that were incorrectly

identified as positive. We can compute this rate by dividing the number of false positives

(FP) by the sum of the number of false positives and the number of true negatives (TN),

or, as a formula:

FPR

FP

FP TN

Similarly, we can compute the false negative rate (FNR) as follows:

FNR

FN

FN TP

There is no clear-cut rule about whether one type of error is better or worse than the

other. This determination depends greatly on the type of problem being solved.

For example, imagine that we’re using a machine learning algorithm to classify a large

list of prospective customers as either people who will purchase our product (positive

cases) or people who will not purchase our product (negative cases). We only spend the

money to send the mailing to prospects labeled by the algorithm as positive.

In the case of a false positive mailing, you send a brochure to a customer who does

not buy your product. You’ve lost the money spent on printing and mailing the brochure.

In the case of a false negative result, you do not send a mailing to a customer who would

have responded. You’ve lost the opportunity to sell your product to a customer. Which of

Actual Positive Actual Negative

True Positive

Pr
ed

ic
te

d
Po

si
tiv

e
Pr

ed
ic

te
d

Ne
ga

tiv
e

False Positive
Type I Error

False Negative
Type II Error True Negative

Figure 1.9 Error types

19Chapter 1: What Is Machine Learning?

these is worse? It depends on the cost of the mailing, the potential profit per customer,

and other factors.

On the other hand, consider the use of a machine learning model to screen patients

for the likelihood of cancer and then refer those patients with positive results for addi-

tional, more invasive testing. In the case of a false negative result, a patient who poten-

tially has cancer is not sent for additional screening, possibly leaving an active disease

untreated. This is clearly a very bad result.

False positive results are not without harm, however. If a patient is falsely flagged

as potentially cancerous, they are subjected to unnecessary testing that is potentially

costly and painful, consuming resources that could have been used on another patient.

They are also subject to emotional harm while they are waiting for the new test results.

The evaluation of machine learning problems is a tricky proposition, and it cannot be

done in isolation from the problem domain. Data scientists, subject-matter experts, and,

in some cases, ethicists, should work together to evaluate models in light of the benefits

and costs of each error type.

Regression Errors
The errors that we might make in regression problems are quite different because the

nature of our predictions is different. When we assign classification labels to instances,

we can be either right or wrong with our prediction. When we label a noncancerous

tumor as cancerous, that is clearly a mistake. However, in regression problems, we are

predicting a numeric value.

Consider the income prediction problem that we discussed earlier in this chapter. If

we have an individual with an actual income of $45,000 annually and our algorithm’s pre-

diction is on the nose at exactly $45,000, that’s clearly a correct prediction. If the algo-

rithm predicts an income of $0 or $10,000,000, almost everyone would consider those

predictions objectively wrong. But what about predictions of $45,001, $45,500, $46,000,

or $50,000? Are those all incorrect? Are some or all of them close enough?

It makes more sense for us to evaluate regression algorithms based on the magnitude

of the error in their predictions. We determine this by measuring the distance between

the predicted value and the actual value. For example, consider the dataset shown in

Figure 1.10.

In this dataset, we’re trying to predict the number of bicycle rentals that occur each

day based on the average temperature that day. Bicycle rentals appear on the y-axis

while temperature appears on the x-axis. The black line is a regression line that says that

we expect bicycle rentals to increase as temperature increases. That black line is our

model, and the black dots are predictions at specific temperature values along that line.

Practical Machine Learning in R20

The orange dots represent real data gathered during the bicycle rental company’s

operations. That’s the “correct” data. The red lines between the predicted and actual

values are the magnitude of the error, which we call the residual value. The longer the

line, the worse the algorithm performed on that dataset.

We can’t simply add the residuals together because some of them are negative values

that would cancel out the positive values. Instead, we square each residual value and

then add those squared residuals together to get a performance measure called the

residual sum of squares.

We revisit the concept of residual error, as well as this specific bicycle rental dataset,

in Chapter 4.

Types of Error
When we build a machine learning model for anything other than the most simplistic

problems, the model will include some type of prediction error. This error comes in three

different forms.

 • Bias (in the world of machine learning) is the type of error that occurs due to

our choice of a machine learning model. When the model type that we choose is

unable to fit our dataset well, the resulting error is bias.

 • Variance is the type of error that occurs when the dataset that we use to train our

machine learning model is not representative of the entire universe of possible

data.

 • Irreducible error, or noise, occurs independently of the machine learning algorithm

and training dataset that we use. It is error inherent in the problem that we are

trying to solve.

60
temperature

re
nt

al
s

70 8030

2000

4000

6000

8000

40 50

residual (ei)

predicted value for Y (ŷ i)

actual value for Y (yi)

Figure 1.10 Residual error

21Chapter 1: What Is Machine Learning?

When we are attempting to solve a specific machine learning problem, we cannot do

much to address irreducible error, so we focus our efforts on the two remaining sources

of error: bias and variance. Generally speaking, an algorithm that exhibits high vari-

ance will have low bias, while a low-variance algorithm will have higher bias, as shown

in Figure 1.11. Bias and variance are intrinsic characteristics of our models and coexist.

When we modify our models to improve one, it comes at the expense of the other. Our

goal is to find an optimal balance between the two.

In cases where we have high bias and low variance, we describe the model as underfit-

ting the data. Let’s take a look at a few examples that might help illustrate this point.

Figure 1.12 shows a few attempts to use a function of two variables to predict a third

variable. The leftmost graph in Figure 1.12 shows a linear model that underfits the data.

Our data points are distributed in a curved manner, but our choice of a straight line (a

linear model) limits the ability of the model to fit our dataset. There is no way that you

can draw a straight line that will fit this dataset well. Because of this, the majority of the

error in our approach is due to our choice of model and our dataset exhibits high bias.

The middle graph in Figure 1.12 illustrates the problem of overfitting, which occurs

when we have a model with low bias but high variance. In this case, our model fits the

training dataset too well. It’s the equivalent of studying for a specific test (the training

dataset) rather than learning a generalized solution to the problem. It’s highly likely that

when this model is used on a different dataset, it will not work well. Instead of learning

the underlying knowledge, we studied the answers to a past exam. When we faced a new

exam, we didn’t have the knowledge necessary to figure out the answers.

The balance that we seek is a model that optimizes both bias and variance, such as the

one shown in the rightmost graph of Figure 1.12. This model matches the curved nature

of the distribution but does not closely follow the specific data points in the training

Model Complexity

Bias2

Variance

Op
tim

al
 M

od
el

 C
om

pl
ex

ity Total Error

Er
ro

r

Figure 1.11 The bias/variance trade-off

Practical Machine Learning in R22

dataset. It aligns with the dataset much better than the underfit model but does not

closely follow specific points in the training dataset as the overfit model does.

Partitioning Datasets
When we evaluate a machine learning model, we can protect against variance errors

by using validation techniques that expose the model to data other than the data used

to create the model. The point of this approach is to address the overfitting problem.

Look back at the overfit model in Figure 1.12. If we used the training dataset to evaluate

this model, we would find that it performed extremely well because the model is highly

tuned to perform well on that specific dataset. However, if we used a new dataset to

evaluate the model, we’d likely find that it performs quite poorly.

We can explore this issue by using a test dataset to assess the performance of our

model. The test dataset is set aside at the beginning of the model development process

specifically for the purpose of model assessment. It is not used in the training process,

so it is not possible for the model to overfit the test dataset. If we develop a generaliz-

able model that does not overfit the training dataset, it will also perform well on the test

dataset. On the other hand, if our model overfits the training dataset, it will not perform

well on the test dataset.

We also sometimes need a separate dataset to assist with the model development

process. These datasets, known as validation datasets, are used to help develop the

model in an iterative process, adjusting the parameters of the model during each itera-

tion until we find an approach that performs well on the validation dataset. While it may

be tempting to use the test dataset as the validation dataset, this approach reintro-

duces the potential of overfitting the test dataset, so we should use a third dataset for

this purpose.

Underfitting
(High Bias, Low Variance)

Overfitting
(Low Bias, High Variance)

Good fit
(Optimal Bias and Variance)

Figure 1.12 Underfitting, overfitting, and optimal fit

23Chapter 1: What Is Machine Learning?

Holdout Method
The most straightforward approach to test and validation datasets is the holdout

method. In this approach, illustrated in Figure 1.13, we set aside portions of the original

dataset for validation and testing purposes at the beginning of the model development

process. We use the validation dataset to assist in model development and then use the

test dataset to evaluate the performance of the final model.

Cross-Validation Methods
There are also a variety of more advanced methods for creating validation datasets that

perform repeated sampling of the data during an iterative approach to model develop-

ment. These approaches, known as cross-validation techniques, are particularly useful

for smaller datasets where it is undesirable to reserve a portion of the dataset for valida-

tion purposes.

Figure 1.14 shows an example of cross-validation. In this approach, we still set aside

a portion of the dataset for testing purposes, but we use a different portion of the

training dataset for validation purposes during each iteration of model development.

If this sounds complicated now, don’t worry about it. We discuss the holdout method

and cross-validation in greater detail when we get to Chapter 9. For now, you should just

have a passing familiarity with these techniques.

Train

Training TestValidation

Step 2
Train and tune a model
using the training and
validation data.

Evaluate
Step 3
Evaluate the final model
using the test data.

Step 1
Split the data into
training, validation, and
test partitions.

Figure 1.13 Holdout method

Practical Machine Learning in R24

EXERCISES
1. Consider each of the following machine learning problems. Would the problem be

best approached as a classification problem or a regression problem? Provide a ratio-

nale for your answer.

a. Predicting the number of fish caught on a commercial fishing voyage

b. Identifying likely adopters of a new technology

c. Using weather and population data to predict bicycle rental rates

d. Predicting the best marketing campaign to send a specific person

2. You developed a machine learning algorithm that assesses a patient’s risk of heart

attack (a positive event) based on a number of diagnostic criteria. How would you

describe each of the following events?

a. Your model identifies a patient as likely to suffer a heart attack, and the patient

does suffer a heart attack.

b. Your model identifies a patient as likely to suffer a heart attack, and the patient

does not suffer a heart attack.

c. Your model identifies a patient as not likely to suffer a heart attack, and the

patient does not suffer a heart attack.

d. Your model identifies a patient as not likely to suffer a heart attack, and the

patient does suffer a heart attack.

Validation Training Test

Iteration 1

Iteration 2

Iteration 3

Iteration 5

Iteration 4

Figure 1.14 Cross-validation method

Chapter 2

Introduction to R
and RStudio

Machine learning sits at the intersection of the worlds of

statistics and software development. Throughout this book,

we focus extensively on the statistical techniques used to unlock

the value hidden within data. In this chapter, we provide you with

the computer science tools that you will need to implement these

techniques. In this book, we’ve chosen to do this using the R

programming language. This chapter introduces the fundamental

concepts of the R language that you will use consistently

throughout the remainder of the book.

By the end of this chapter, you will have learned the following:

 ◆ The role that the R programming language plays in the world

of data science and analytics

 ◆ How the RStudio integrated development environment (IDE)

facilitates coding in R

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R26

 ◆ How to use packages to redistribute and reuse R code

 ◆ How to write, save, and execute your own basic R script

 ◆ The purpose of different data types in R

WELCOME TO R
The R programming language began in 1992 as an effort to create a special-purpose lan-

guage for use in statistical applications. More than two decades later, the language has

evolved into one of the most popular languages used by statisticians, data scientists,

and business analysts around the world.

R gained rapid traction as a popular language for several reasons. First, it is available

to everyone as a free, open source language developed by a community of committed

developers. This approach broke the mold of past approaches to analytic tools that

relied upon proprietary, commercial software that was often out of the financial reach of

many individuals and organizations.

R also continues to grow in popularity because of its adoption by the creators of

machine learning methods. Almost any new machine learning technique created today

quickly becomes available to R users in a redistributable package, offered as open source

code on the Comprehensive R Archive Network (CRAN), a worldwide repository of popu-

lar R code. Figure 2.1 shows the growth of the number of packages available through

CRAN over time. As you can see, the growth took off significantly over the past decade.

16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Figure 2.1 Growth of the number of CRAN packages over time

27Chapter 2: Introduction to R and RStudio

It’s also important to know that R is an interpreted language, rather than a com-

piled language. In an interpreted language, the code that you write is stored in a doc-

ument called a script, and this script is the code that is directly executed by the system

processing the code. In a compiled language, the source code written by a developer

runs through a specialized program called a compiler, which converts the source code

into executable machine language.

The fact that R is an interpreted language also means that you can execute R com-

mands directly and see an immediate result. For example, you could execute the follow-

ing simple command to add 1 and 1:

> 1+1
[1] 2

When you do this, the R interpreter immediately responds with the result: 2.

R AND RSTUDIO COMPONENTS
Our working environment for this book consists of two major components: the R program-

ming language and the RStudio integrated development environment (IDE). While R is an

open source language, RStudio is a commercial product designed to make using R easier.

The R Language
The open source R language is available as a free download from the R Project website

at https://www.r-project.org. As of the writing of this book, the current version of R

is version 3.6.0, code-named “Planting of a Tree.” R is generally written to be backward

compatible, so if you are using a later version of R, you should not experience any diffi-

culties following along with the code in this book.

NOTE The code names assigned to different releases of R are quite
interesting! Past code names included “Great Truth,” “Roasted Marshmallows,”
“Wooden Christmas-Tree,” and “You Stupid Darkness.” These are all references
to the Peanuts comic strip by Charles Schultz.

If you haven’t done so already, now would be a good time to install the most recent

version of R on your computer. Simply visit the R Project home page, click the CRAN link,

and choose the CRAN mirror closest to your location. You’ll then see a CRAN site similar

to the one shown in Figure 2.2. Choose the download link for your operating system and

run the installer after the download completes.

Practical Machine Learning in R28

RStudio
As an integrated development environment, RStudio offers a well-designed graphical

interface to assist with your creation of R code. There’s no reason that you couldn’t

simply open a text editor, write an R script, and then execute it directly using the open

source R environment. But there’s also no reason that you should do that! RStudio makes

it much easier to manage your code, monitor its progress, and troubleshoot issues that

might arise in your R scripts.

While R is an open source project, the RStudio IDE comes in different versions. There

is an open source version of RStudio that is available for free, but RStudio also offers

commercial versions of its products that come with enhanced support options and

added features.

For the purposes of this book, the open source version of RStudio will be more than

sufficient.

RStudio Desktop
RStudio Desktop is the most commonly used version of RStudio, especially for individual

programmers. It’s a software package that you download and install on your Windows,

Mac, or Linux system that provides you access to a well-rounded R development environ-

ment. You can see an example of the RStudio IDE in action in Figure 2.3.

Figure 2.2 Comprehensive R Archive Network (CRAN) mirror site

29Chapter 2: Introduction to R and RStudio

If you haven’t already installed RStudio Desktop on your computer, go ahead and

do so now. You can download the most recent version at https://www.rstudio.com/

products/rstudio/download/#download.

RStudio Server
RStudio also offers a server version of the RStudio IDE. This version is ideal for teams

that work together on R code and want to maintain a centralized repository. When you

use the server version of RStudio, you may access the IDE through a web browser. The

server then presents a windowed view to you that appears similar to the desktop envi-

ronment. You can see an example of the web-based IDE in Figure 2.4.

Using RStudio Server requires building a Linux server, either on-premises or in the cloud,

and then installing the RStudio Server code on that server. If your organization already uses

RStudio Server, you may use that as you follow along with the examples in this book.

Exploring the RStudio Environment
Let’s take a quick tour of the RStudio Desktop environment and become oriented with

the different windows that you see when you open RStudio.

Figure 2.3 RStudio Desktop offers an IDE for Windows, Mac, and Linux systems.

Practical Machine Learning in R30

Console Pane
When you first open RStudio, you won’t see the view shown in Figure 2.3. Instead, you’ll

see a view that has only three windows, shown in Figure 2.5. That’s because you haven’t

yet opened or created an R script.

In this view, the console pane appears on the left side of the RStudio window. Once

you have a script open, it appears in the lower-left corner, as shown in Figure 2.6.

TIP The window layout shown in Figure 2.6 is the default configuration
of RStudio. It is possible to change this default layout to match your own
preferences. If your environment doesn’t exactly match the one shown in
the figure, don’t worry about it—just look for the window pane titles and
tabs that we discuss.

The console window allows you to interact directly with the R interpreter. You can type

commands here and R will immediately execute them. For example, Figure 2.7 shows just

the console pane executing several simple commands. Notice that the command entered

by the user is immediately followed by an answer from the R interpreter.

Figure 2.4 RStudio Server provides a web-based IDE for collaborative use.

31Chapter 2: Introduction to R and RStudio

Figure 2.5 RStudio Desktop without a script open

Figure 2.6 RStudio Desktop with the console pane highlighted

Practical Machine Learning in R32

TIP The history of commands executed by a user in R is also stored in a file
on the local system. This file is named .Rhistory and is stored in the current
working directory.

You also should observe that the console pane includes a tab titled Terminal. This tab

allows you to open a terminal session directly to your operating system. It’s the same as

opening a shell session on a Linux system, a terminal window on a Mac, or a command

prompt on a Windows system. This terminal won’t interact directly with your R code and

is there merely for your convenience. You can see an example of running Mac terminal

commands in Figure 2.8.

Figure 2.7 Console pane executing several simple R commands

Figure 2.8 Accessing the Mac terminal in RStudio

33Chapter 2: Introduction to R and RStudio

Script Pane
The script pane is where the magic happens! You generally won’t want to execute R com-

mands directly in the console. Instead, you’ll normally write R commands in a script file

that you can save to edit or reuse at a later date. An R script is simply a text file contain-

ing R commands. When you write an R script in the RStudio IDE, R will color-code differ-

ent elements of your code to make it easier to read.

Figure 2.9 shows an example of an R script rendered inside the script pane in RStudio.

This is a simple script that loads a dataset containing information about the weights

of a sample of baby chickens and creates the graph shown in Figure 2.10.

Figure 2.11 shows the same script file, opened using a simple text editor. Notice that

the code is identical. The only difference is that when you open the file in RStudio, you

see some color-coding to help you parse the code.

You can open an existing script in RStudio either by choosing File ⇨ Open File from

the top menu or by clicking the file open icon in the taskbar. You may create a new script

by choosing File ⇨ New File ⇨ R Script from the top menu or by clicking the icon of a

sheet of paper with a plus symbol in the taskbar.

Figure 2.9 Chick weight script inside the RStudio IDE

Practical Machine Learning in R34

TIP When you are editing a script in RStudio, the name of the script will
appear in red with an asterisk next to it whenever you have unsaved changes.
This is just a visual reminder to save your code often! When you save your
code, the asterisk will disappear, and the filename will revert to black.

Environment Pane
The environment pane allows you to take a look inside the current operating environ-

ment of R. You can see the values of variables, datasets, and other objects that are

10

Time

1

2

3

4

Diet

50

100

200

w
ei

gh
t

300

15 20

Figure 2.10 Graph produced by the chick weight script

Figure 2.11 Chick weight script
inside a text editor

35Chapter 2: Introduction to R and RStudio

currently stored in memory. This visual insight into the operating environment of R is

one of the most compelling reasons to use the RStudio IDE instead of a standard text

editor to create your R scripts. Access to easily see the contents of memory is a valuable

tool when developing and troubleshooting your code.

The environment pane in Figure 2.9 is empty because the R script that we used in that

case did not store any data in memory. Instead, it used the ChickWeight dataset that is

built into R.

Figure 2.12 shows the RStudio environment pane populated with several variables,

vectors, and a full dataset stored in an object known as a tibble. We’ll discuss tibbles

more in Chapter 3.

You can also use tabs in the same pane to access two other RStudio features. The His-

tory tab shows the R commands that were executed during the current session and is

shown in Figure 2.13. The Connections tab is used to create and manage connections to

external data sources, a technique that is beyond the scope of this book.

Figure 2.12 RStudio environment pane populated with data

Figure 2.13 RStudio History pane showing previously executed commands

Practical Machine Learning in R36

Plots Pane
The final pane of the RStudio window appears in the lower-right corner of Figure 2.9.

This pane defaults to the plot view and will contain any graphics that you generate in

your R code. In Figure 2.9, this pane contains the plot of chick weights by diet type that

was created in our sample R script. As you can see in Figure 2.5, this pane is empty when

you first open RStudio and have not yet executed any commands that generate plots.

This pane also has several other tabs available. The Files tab, shown in Figure 2.14,

allows you to navigate the filesystem on your device to open and manage R scripts and

other files.

Figure 2.15 shows the Packages tab in RStudio, which allows you to install, update,

and load packages. Many people prefer to perform these tasks directly in R code, but

this is a convenient location to verify the packages installed on a system as well as their

current version number.

The Help tab provides convenient access to the R documentation. You can access this

by searching within the Help tab or using the ? command at the console, followed by the

name of the command for which you would like to see documentation. Figure 2.16 shows

the result of executing the ?install.packages command at the console to view help

for the install.packages() function.

The final tab, Viewer, is used for displaying local web content, such as that created

using Shiny. This functionality is also beyond the scope of this book.

Figure 2.14 The Files tab in RStudio allows you to interact with your device’s local
filesystem.

37Chapter 2: Introduction to R and RStudio

Figure 2.15 The Packages tab in RStudio allows you to view and manage the
packages installed on a system.

Figure 2.16 The Help tab in RStudio displaying documentation for the install
.packages() command

Practical Machine Learning in R38

R Packages
Packages are the secret sauce of the R community. They consist of collections of code

created by the community and shared widely for public use. As you saw in Figure 2.1, the

number of publicly available R packages has skyrocketed in recent years. These packages

range from extremely popular and widely used packages, such as the tidyverse, to

highly specialized packages that serve narrow niches of the R community.

In this book, we will use a variety of R packages to import and manipulate data, as well

as to build machine learning models. We’ll introduce you to these packages as they arise.

The CRAN Repository
The Comprehensive R Archive Network is the official repository of R packages main-

tained by the R community and coordinated by the R Foundation. CRAN volunteers

 manage the repository to ensure that all packages meet some key criteria, including that

each package does the following:

 • Makes a nontrivial contribution to the R community

 • Is released under an open source license by individuals or organizations with the

authority to do so

 • Designates an individual as package maintainer and provides contact information

for that individual

 • Uses efficient code that minimizes file sizes and computing resource utilization

 • Passes CRAN quality control checks

CRAN is the default package repository in RStudio, and all of the packages used in

this book are available through CRAN.

Installing Packages
Before you can use a package in your R script, you must ensure that the package is

installed on your system. Installing a package downloads the code from the repository,

installs any other packages required by the code, and performs whatever steps are nec-

essary to install the package on the system, such as compiling code and moving files.

The install.packages() command is the easiest way to install R packages on your

system. For example, here is the command to install the RWeka package on your system

and the corresponding output:

> install.packages("RWeka")
 also installing the dependencies ‘RWekajars’, ‘rJava’
 trying URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.6/
RWekajars_3.9.3-1.tgz'

39Chapter 2: Introduction to R and RStudio

Content type 'application/x-gzip' length 10040528 bytes (9.6 MB)
==
downloaded 9.6 MB

trying URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.6/
rJava_0.9-11.tgz'
Content type 'application/x-gzip' length 745354 bytes (727 KB)
==
downloaded 727 KB
 trying URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.6/
RWeka_0.4-40.tgz'
Content type 'application/x-gzip' length 632071 bytes (617 KB)
==
downloaded 617 KB

The downloaded binary packages are in
 /var/folders/f0/yd4s93v92tl2h9ck9ty20kxh000gn/T//RtmpjNb5IB/
downloaded_packages

Notice that, in addition to installing the RWeka package, the command also installed

the RWekajars and rJava packages. The RWeka package uses functions included in

these packages, creating what is known as a dependency between the two packages. The

install.packages() command resolves these dependencies by installing the two

required packages before installing RWeka.

TIP You only need to install a package once on each system that you use.
Therefore, most people prefer to execute the install.packages() command
at the console, rather than in their R scripts. It is considered bad form to
prompt the installation of packages on someone else’s system!

Loading Packages
You must load a package into your R session any time you would like to use it in your

code. While you only need to install a package once on a system, you must load it any

time that you want to use it. Installing a package makes it available on your system, while

loading it makes it available for use in the current environment.

You load a package into your R session using the library() command. For example,

the following command loads the tidyverse package that we will be using throughout

this book:

library(tidyverse)

Practical Machine Learning in R40

NOTE If you were reading carefully, you might have noticed that the
install.packages() command enclosed the package name in quotes while
the library() command did not. This is the standard convention for most
R users. The library() command will work whether or not you enclose the
package name in quotes. The install.packages() command requires the
quotation marks. Also, it is important to note that single and double quotation
marks are mostly interchangeable in R.

Many people who code in R use the terms package and library interchangeably. They

are actually slightly different. The code bundles stored in the CRAN repository (and

other locations) are known as packages. You use the install.packages() command to

place the package on your system and the library() command to load it into memory.

Hadley Wickham, a well-known R developer, summed this concept up well in December

2014 tweet, shown in Figure 2.17.

Package Documentation
We’ve already discussed the use of the ? command to access the help file for a function

contained within a package. Package authors also often create more detailed explana-

tions of the use of their packages, including examples, in files called vignettes. You can

access vignettes using the vignette() command. For example, the following command

finds all of the vignettes associated with R’s dplyr package:

> vignette(package = 'dplyr')
Vignettes in package ‘dplyr’:

compatibility dplyr compatibility (source, html)
dplyr Introduction to dplyr (source, html)
programming Programming with dplyr (source, html)
two-table Two-table verbs (source, html)
window-functions Window functions (source, html)

Figure 2.17 Hadley Wickham on the distinction between packages and libraries

41Chapter 2: Introduction to R and RStudio

If you wanted to see the vignette called programming, you would use this command:

vignette(package = 'dplyr', topic = 'programming')

Figure 2.18 shows the result of executing this command: a lengthy document

describing how to write code using the dplyr package.

WRITING AND RUNNING AN R SCRIPT
As we mentioned earlier, the most common way to work in RStudio is to write scripts con-

taining a series of R commands that you can save and reuse at a later date. These R scripts

are simply text files that you write inside RStudio’s script window pane and save on your

system or in a cloud storage location. Figure 2.9 showed a simple script open in RStudio.

Figure 2.18 RStudio displaying the programming vignette from the
dplyr package

Practical Machine Learning in R42

When you want to execute your script, you have two options: the Run button and

the Source button. When you click the Run button, highlighted in Figure 2.19, RStudio

will execute the current section of code. If you do not have any text highlighted in

your script, this will execute whatever line the cursor is currently placed on. In Figure

2.19, line 6 contains no code, so the Run button will not do anything. If you move the

cursor to the first line of code, clicking the Run button would run line 1, loading the

tidyverse, and then automatically advance to the next line of the script that contains

code, line 3 (because line 2 is blank). Clicking the Run button a second time would run

the code on lines 3 and 4 because they combine to form a single statement in R.

The Run button is a common way to execute code in R during the development and trou-

bleshooting stages. It allows you to execute your script as you write it, monitoring the results.

TIP Many of the commands in RStudio are also accessible via keyboard
shortcuts. For example, you may run the current line of code by
pressing Ctrl+Enter. See https://support.rstudio.com/hc/en-us/
articles/200711853-Keyboard-Shortcuts for an exhaustive list of
keyboard shortcuts.

Figure 2.19 The Run button in RStudio runs the current
section of code.

43Chapter 2: Introduction to R and RStudio

The Source button, highlighted in Figure 2.20, will save any changes that you’ve made

to your script and then execute the entire file at once. This is a useful way to quickly run

an entire script.

TIP The Source button does not display any output to the screen by default.
If you want to see the results of your script as it runs, click the small arrow to
the right of the Source button and choose Source with Echo. This will cause
each line of the script to appear in the console as it is executed, and plots will
appear in the Plots pane.

WARNING When you execute a script using the Source button (or the
Run button, for that matter), the script runs in the context of the current
environment. This may use data that you created during earlier executions.
If you want to run in a clean environment, be sure to clear objects from
your workspace using the broom icon in the Environment pane before
clicking the Source button.

Figure 2.20 The Source button in RStudio runs the
entire script.

Practical Machine Learning in R44

DATA TYPES IN R
As with most programming languages, all of the variables that you create in an R script

have an associated data type. The data type defines the way that R stores the informa-

tion contained within the variable and the range of possible values. Here are some of the

more common data types in R:

 • The logical data type is a simple binary variable that may have only two values:

TRUE or FALSE. It’s an efficient way to store data that can take on these two

values only. These data elements are also commonly referred to as flags. For

example, we might have a variable in a dataset about students called Married

that would be set to TRUE for individuals who are married and FALSE for individ-

uals who are not.

 • The numeric data type stores decimal numbers, while the integer data type stores

integers. If you create a variable containing a number without specifying a data

type, R will store it as numeric by default. However, R can usually automatically

convert between the numeric and integer data types as needed.

TIP R also calls the numeric data type double, which is short for a double-
precision floating-point number. The terms numeric and double are
interchangeable.

 • The character data type is used to store text strings of up to 65,535 characters each.

 • The factor data type is used to store categorical values. Each possible value of a

factor is known as a level. For example, you might use a factor to store the U.S.

state where an individual lives. Each one of the 50 states would be a possible level

of that factor.

 • The ordered factor data type is a special case of the factor data type where the

order of the levels is significant. For example, if we have a factor containing risk

ratings of Low, Medium, and High, the order is significant because Medium is

greater than Low and because High is greater than Medium. Ordered factors pre-

serve this significance. A list of U.S. states, on the other hand, would not be stored

as an ordered factor because there is no logical ordering of states.

NOTE These are the most commonly used data types in R. The language
does offer many other data types for special-purpose applications. You may
encounter these in your machine learning projects, but we will stick to these
common data types in this book.

45Chapter 2: Introduction to R and RStudio

Vectors
Vectors are a way to collect elements of the same data type in R together in a sequence.

Each data element in a vector is called a component of that vector. Vectors are a conve-

nient way to collect data elements of the same type together and keep them in a spe-

cific order.

We can use the c() function to create a new vector. For example, we might create the

following two vectors, one containing names and another containing test scores:

> names <- c('Mike', 'Renee', 'Richard', 'Matthew', 'Christopher')

> scores <- c(85, 92, 95, 97, 96)

Once we have data stored in a vector, we can access individual components of that

vector by placing the number of the element that we would like to retrieve in square

brackets immediately following the vector name. Here’s an example:

> names[1]
[1] "Mike"

> names[2]
[1] "Renee"

> scores[3]
[1] 95

TIP The first element of a vector in R is element 1 because R uses 1-based
indexing. This is different from Python and some other programming languages
that use 0-based indexing and label the first element of a vector as element 0.

There are also functions in R that will work on an entire vector at once. For example,

you can use the mean(), median(), min(), and max() functions to find the average,

median, smallest, and largest elements of a numeric vector, respectively. Similarly, the

sum() function adds the elements of a numeric vector.

> mean(scores)
[1] 93

> median(scores)
[1] 95

> min(scores)

Practical Machine Learning in R46

[1] 85

> max(scores)
[1] 97

> sum(scores)
[1] 465

All of the components of a vector must be of the same data type. If you attempt to

create a vector with varying data types, R will force them all to be the same data type.

This is a process known as coercion. For example, if we try to create a mixed vector con-

taining both character strings and numeric values:

> mixed <- c('Mike', 85, 'Renee', 92, 'Richard', 95, 'Matthew', 97,
'Christopher', 96)

the command appears to successfully create the vector, but when we go and examine

the contents of that vector:

> mixed
 [1] "Mike" "85" "Renee" "92" "Richard" "95" "Matthew"
 [8] "97" "Christopher" "96"

we find that R has converted all of the elements to character strings. We can combine

vectors of unlike types into data structures that resemble spreadsheets. The traditional

way to do this in R is through a data structure known as a data frame. For example, we

can combine the names and scores vectors into a data frame called testResults.

> testResults <- data.frame(names, scores)

> testResults
 names scores
1 Mike 85
2 Renee 92
3 Richard 95
4 Matthew 97
5 Christopher 96

You may access the vectors stored within a data frame using the $ operator. For exam-

ple, if you wanted to calculate the mean test score, you could use the following code:

> mean(testResults$scores)
[1] 93

47Chapter 2: Introduction to R and RStudio

In Chapter 3, we will discuss how the tidyverse package uses an enhanced version of

a data frame called a tibble. We will then use tibbles as our primary data structure in the

remainder of this book.

Testing Data Types
When we use objects in R, we may want to learn more about their data type, either by

directly asking a question about the object’s type or by testing it programmatically. The

R language includes functions designed to assist with these tasks.

The class() function returns the data type of an object. For example, examine the

following sample code:

> x <- TRUE
> y <- 1
> z <- 'Mike Chapple'

> class(x)
[1] "logical"

> class(y)
[1] "numeric"

> class(z)
[1] "character"

Notice that when we assign the values of x, y, and z, we do not need to explicitly

assign the data types. When you perform the assignments, R interprets the argu-

ments you provide and makes assumptions about the correct data type. In the next

section, we’ll talk about how you can use the as.x() functions in R to explicitly convert

data types.

If you’d like to create a factor data type in R, you can use the factor() function to

convert a vector of character strings into a factor. For example, the following code cre-

ates a character vector, tests the class, converts it to a factor, and retests the class:

> productCategories <- c('fruit', 'vegetable', 'fruit', 'fruit', 'dry
goods', 'dry goods', 'vegetable')

> class(productCategories)
[1] "character"

> productCategories <- factor(productCategories)

> class(productCategories)
[1] "factor"

Practical Machine Learning in R48

We can also test the length of an object using the length() function. This function

returns the number of components of that object. If the object is a factor or vector, the

length() function returns the number of elements in that factor or vector. If the object

is a single numeric, character, or logical element, the length() function returns the

value 1. For example, look at this code:

> length(x)
[1] 1

> length(y)
[1] 1

> length(z)
[1] 1

> length(productCategories)
[1] 7

R also includes a set of “is” functions that are designed to test whether an object is

of a specific data type and return TRUE if it is and FALSE if it is not. The “is” functions

include the following:

 • is.logical()

 • is.numeric()

 • is.integer()

 • is.character()

 • is.factor()

To use these functions, simply select the appropriate one and pass the object you

want to test as an argument. For example, examine the following results using the same

data elements x, y, and z that we created earlier in this section:

> is.numeric(x)
[1] FALSE

> is.character(x)
[1] FALSE

> is.integer(x)
[1] FALSE

> is.logical(x)
[1] TRUE

49Chapter 2: Introduction to R and RStudio

> is.numeric(y)
[1] TRUE

> is.integer(y)
[1] FALSE

> is.character(z)
[1] TRUE

Do those results make sense to you? If you look back at the code that created those

variables, x is the logical value TRUE, so only the is.logical() function returned a value

of TRUE, while the other test functions returned FALSE.

The y variable contained an integer value, so the is.integer() function returned

TRUE, while the other functions returned FALSE. It is significant to note here that the

is.numeric() function also returned FALSE, which may seem counterintuitive given the

name of the function. When we created the y variable using the code:

> y <- 1

R assumed that we wanted to create a numeric variable, the default type for values

consisting of digits. If we wanted to explicitly create an integer, we would need to add

the L suffix to the number during creation. Examine this code:

> yint <- 1L

> is.integer(yint)
[1] TRUE

> is.numeric(yint)
[1] TRUE

Here we see yet another apparent inconsistency. Both the is.numeric() and

is. integer() functions returned values of TRUE in this case. This is a nuance of the

is.numeric() function. Instead of returning TRUE only when the object tested is of the

numeric class, it returns TRUE if it is possible to convert the data contained in the object

to the numeric class. We can verify with the class function that y is a numeric data type

while yint is an integer.

> class(y)
[1] "numeric"

> class(yint)
[1] "integer"

Practical Machine Learning in R50

Alternatively, we could also convert the numeric variable we created initially to an inte-

ger value using the as.integer() function, which we will introduce in the next section.

The “is” functions also work on vector objects, returning values based upon the data

type of the objects contained in the vector. For example, we can test the names and

scores vectors that we created in the previous section.

> is.character(names)
[1] TRUE

> is.numeric(names)
[1] FALSE

> is.character(scores)
[1] FALSE

> is.numeric(scores)
[1] TRUE

> is.integer(scores)
[1] FALSE

Converting Data Types
You may find yourself in a situation where you need to convert data from one type to

another. R provides the “as” functions to perform these conversions. Some of the more

commonly used “as” functions in R are the following:

 • as.logical()

 • as.numeric()

 • as.integer()

 • as.character()

 • as.factor()

Each of these functions takes an object or vector as an argument and attempts to

convert it from its existing data type to the data type contained within the function

name. Of course, this conversion isn’t always possible. If you have a numeric data object

containing the value 1.5, R can easily convert this to the “1.5” character string. There is

not, however, any reasonable way to convert the character string “apple” into an integer

value. Here are a few examples of the “as” functions at work:

> as.numeric("1.5")
[1] 1.5

51Chapter 2: Introduction to R and RStudio

> as.integer("1.5")
[1] 1

> as.character(3.14159)
[1] "3.14159"

> as.integer("apple")
[1] NA
Warning message:
NAs introduced by coercion

> as.logical(1)
[1] TRUE

> as.logical(0)
[1] FALSE

> as.logical("true")
[1] TRUE

> as.logical("apple")
[1] NA

Missing Values
Missing values appear in many datasets because data was not collected, is unknown, or

is not relevant. When missing values occur, it’s important to distinguish them from blank

or zero values. For example, if I don’t yet know the price of an item that will be sold in

my store, the price is missing. It is definitely not zero, or I would be giving the product

away for free!

R uses the special constant value NA to represent missing values in a dataset. You

may assign the NA value to any other type of R data element. You can use the is.na()

function in R to test whether an object contains the NA value.

Just as the NA value is not the same as a zero or blank value, it’s also important to dis-

tinguish it from the “NA” character string. We once worked with a dataset that contained

two-letter country codes in a field and were puzzled that some records in the dataset

were coming up with missing values for the country field, when we did not expect such

an occurrence. It turns out that the dataset was being imported from a text file that did

not use quotes around the country code and there were several records in the dataset

covering the country of Namibia, which, you guessed it, has the country code "NA". When

the text file was read into R, it interpreted the string NA (without quotes) as a missing

value, converting it to the constant NA instead of the country code "NA".

Practical Machine Learning in R52

NOTE If you’re familiar with the Structured Query Language (SQL), it might
be helpful to think of the NA value in R as equivalent to the NULL value in SQL.

EXERCISES
1. Visit the r-project.org website. Download and install the current version of R for

your computer.

2. Visit the rstudio.com website. Download and install the current version of RStudio

for your computer.

3. Explore the RStudio environment, as explained in this chapter. Create a file called

chicken.R that contains the following R script:

install.packages("tidyverse")

library(tidyverse)

ggplot(data=ChickWeight) +
 geom_smooth(mapping=aes(x=Time, y=weight, color=Diet))

Execute your code. It should produce a graph of chicken weights as output.

Chapter 3

Managing Data

In Chapter 1, we discussed some of the foundational principles

behind machine learning. We followed that discussion with an

introduction to both the R programming language and the

RStudio development environment in Chapter 2. In this chapter, we

explain how to use R to manage our data prior to modeling. The

quality of a machine learning model is only as good as the data

used to build it. Quite often, this data is not easily accessible, is in

the wrong format, or is hard to understand. As a result, it is critically

important that prior to building a model, we spend as much time

as needed to collect the data we need, explore and understand

the data we have, and prepare it so that it is useful for the selected

machine learning approach. Typically, 80 percent of the time we

spend in machine learning is, or should be, spent managing data.

By the end of this chapter, you will have learned the following:

 ◆ What the tidyverse is and how to use it to manage data in R

 ◆ How to collect data using R and some of the key things to

consider when collecting data

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R54

 ◆ Different approaches to describe and visualize data in R

 ◆ How to clean, transform, and reduce data to make it more

useful for the machine learning process

THE TIDYVERSE
The tidyverse is a collection of R packages designed to facilitate the entire analytics

process by offering a standardized format for exchanging data between packages. It

includes packages designed to import, manipulate, visualize, and model data with a

series of functions that easily work across different tidyverse packages.

The following are the major packages that make up the tidyverse:

 • readr for importing data into R from a variety of file formats

 • tibble for storing data in a standardized format

 • dplyr for manipulating data

 • ggplot2 for visualizing data

 • tidyr for transforming data into “tidy” form

 • purrr for functional programming

 • stringr for manipulating strings

 • lubridate for manipulating dates and times

These are the developer-facing packages that we’ll use from the tidyverse, but these

packages depend on dozens of other foundational packages to do their work. Fortu-

nately, you can easily install all of the tidyverse packages with a single command:

install.packages("tidyverse")

Similarly, you can load the entire tidyverse using this command:

library(tidyverse)

In the remainder of this chapter and the rest of this text, we will use several tidyverse

packages and functions. As we do so, we will endeavor to provide a brief explanation of

what each function does and how it is used. Please note that this book is not intended to

be a tutorial on the R programming language or the tidyverse. Rather, the objective is to

explain and demonstrate machine learning concepts using those tools. For readers who

are interested in a more in-depth introduction to the R programming language and the

55Chapter 3: Managing Data

tidyverse, we recommend the book R for Data Science by Hadley Wickham and Garrett

Grolemund.

DATA COLLECTION
Data collection is the process of identifying and acquiring the data needed for the

machine learning process. The type/amount of data collected is often dependent on the

machine learning problem and the selected algorithm. For supervised machine learning

problems, not only does the collected data include variables that describe the attributes

or characteristics of each observation, it also includes a variable that serves as a label

or outcome for the observation. Unsupervised machine learning problems don’t require

that a label be assigned to each observation of the input data. Instead, a major part of

the learning goal is to identify interesting ways to group the data so that meaningful

labels can be assigned to it.

Key Considerations
As we collect data, there are a few important things to consider to ensure that the data

collection process is successful. These include making sure that we capture the right

type of historical data, that the data is relevant, that we have enough data to work with,

and that we are being ethical in how we manage and use the data.

Collecting Ground Truth Data
For supervised machine learning problems, we use historical data that has outcome

labels or response values to train our model. The accuracy of these labels or response

values is critically important to the success of the approach. This is because this data

is what the algorithm uses as a baseline for the learning process. This data serves as a

source of truth upon which patterns are learned. This is why it is often referred to as the

ground truth. Ground truth either can come with an existing label based on a prior event,

such as whether a bank customer defaulted on a loan or not, or can require that a label

be assigned to it by a domain expert, such as whether an email is spam or not. Regardless

of whether the labels already exist or need to be assigned, a plan should be in place to

manage the ground truth and ensure that it truly is the source of truth.

Data Relevance
As part of the data collection process, it is important to ensure that the data collected

is relevant to the learning goal. The variables that are collected to describe an observa-

tion should be relevant in explaining the label or the response for the observation. For

Practical Machine Learning in R56

example, collecting data on the shoe size of bank customers has no relevance to whether

they will or will not default on a loan. Conversely, excluding information about a custom-

er’s past loans will have an adverse impact on the effectiveness of a model that attempts

to predict loan outcomes.

Quantity of Data
The amount of data needed to successfully train a model depends on the type of

machine learning approach chosen. Certain types of algorithms perform well with small

amounts of data, while some require a large amount of data to provide meaningful

results. Understanding the strengths and weaknesses of each approach provides us

with the guidance needed to determine how much data is enough for the learning task.

Besides the quantity of data collected, variability in the data collected is also impor-

tant. For example, if one of the predictors we intend to use to predict loan outcomes is

income, then it would be beneficial to collect data on customers of sufficiently differ-

ent income levels. Doing this enables our model to better determine how income level

impacts loan outcome.

Ethics
There are several ethical issues to consider during the data collection process. Some of

these issues include privacy, security, informed consent, and bias. It is important that

processes and mitigating steps be put in place to address these issues as part of the pro-

cess of acquiring new data. For example, if bias exists in the data used to train a model,

then the model will also replicate the bias in its predictions. Biased predictions could

prove quite harmful, especially in situations where unfavorable decisions affecting the

underrepresented population are being made based on a machine learning model. The

issue of biased data often stems from intrinsic human bias in the data collection process

or in an absence of existing data on certain subpopulations.

Importing the Data
The readr package is the first tidyverse package that you’ll likely use in almost any R

code that you write for the purposes of machine learning because it is the package that

allows you to import data from a standard file format into R. The readr functions load a

file that is stored on disk or at a URL and imports it into a tidyverse-friendly data struc-

ture known as a tibble (more on tibbles later).

Reading Comma-Delimited Files
Comma-delimited files are the most common way to exchange data between different

environments. These files, which are also known as comma-separated value (CSV) files,

57Chapter 3: Managing Data

store data in a simple, standardized format that may be imported or exported from

almost any source.

Creating a comma-separated value file from a spreadsheet or other data table is

conceptually straightforward. For example, imagine that we have the spreadsheet data

shown in Figure 3.1. Converting this to a CSV file simply requires replacing the lines sep-

arating columns with commas, as shown in Figure 3.2. In CSV format, each row in the file

represents a row from the spreadsheet table. However, sometimes the file may also have

an optional header row that contains variable names, which is the case in our example.

We can read CSV files into R using the read_csv() function from the readr package.

This function allows many different arguments, but let’s take a look at a few of the most

important ones, shown here:

 • file, the first argument to read_csv(), contains the name of the file you want to

read. This may be the name of a file in R’s current working directory, the full path

to a file stored elsewhere on disk, a URL to be read over the HTTP or HTTPS pro-

tocol, or the path to a file on an FTP or FTPS site.

 • col_names specifies where R should obtain the names of the variables used in the

dataset. The default value for col_names is TRUE, which indicates that R should

use the values appearing in the first line of the CSV file as the variable names. If

this value is set to FALSE, R will generate its own column names using the sequen-

tially numbered format X1, X2, X3, and so on. Alternatively, you may provide a

character vector of your own column names.

 • col_types specifies the data types for the columns. If you do not include this

argument, R will guess the appropriate data types based on the values in the file.

If you’d like to specify the column types yourself, the easiest way to do so is to pro-

vide a string with one letter corresponding to each column in the dataset, using

the following values:

 • l for logical

 • n for numeric

Name

Mary

Tom

Beth

27

32

43

F

M

F

11579

07753

46556

Age Gender ZIP

Figure 3.1 Simple spreadsheet containing
data in tabular form

Figure 3.2 CSV file contain-
ing the same data as the
spreadsheet in Figure 3.1

Practical Machine Learning in R58

 • i for integers

 • c for characters

 • f for factors

 • D for dates

 • T for datetimes

 • skip is an integer value indicating that read_csv() should ignore the specified

number of lines at the top of the file before attempting to read data.

These are just a small subset of the many options that you may specify when reading

data from a CSV file. For more information on the read_csv() function, see the

help file.

?read_csv

Let’s work through an example of reading in a CSV file. We will use a dataset, stored

in the vehicles.csv file, containing vehicle fuel efficiency and emissions testing data

gathered at the Environmental Protection Agency’s National Vehicle and Fuel Emissions

Laboratory in Ann Arbor, Michigan. The dataset contains fuel economy and emissions

information for 1984–2018 model year vehicles.

TIP All of the data files used in this book are available to you if you would
like to follow along with the examples. The introduction to the book contains
information on how you can obtain the data files.

To read the data, we first need to load the tidyverse packages using the

library(tidyverse) command. This allows us to use the read_csv() function. We

pass two arguments to the function. The first is the filename (file), and the second is

a string that represents the data types for the columns (col_types). By setting col_

types= "nnnfnfffffnn", we tell the read_csv() function that the first three columns

of the input data should be read as numeric variables (n), the fourth should be read as a

factor (f), the fifth as numeric (n), and so forth.

> library(tidyverse)
> vehicles <- read_csv(file = 'vehicles.csv', col_types = "nnnfnfffffnn")

59Chapter 3: Managing Data

Our dataset is now imported into a tibble called vehicles. We can get a preview of

the data in the vehicles tibble by using the glimpse() command, which is provided by

the dplyr package.

> glimpse(vehicles)

Observations: 36,979
Variables: 12
$ citympg <dbl> 14, 14, 18, 21, 14, 18, 14, 18, 18, 20, 1...
$ cylinders <dbl> 6, 8, 8, 6, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4,...
$ displacement <dbl> 4.1, 5.0, 5.7, 4.3, 4.1, 5.7, 4.1, 2.4, 2...
$ drive <fct> 2-Wheel Drive, 2-Wheel Drive, 2-Wheel Dri...
$ highwaympg <dbl> 19, 20, 26, 31, 19, 26, 19, 21, 24, 21, 2...
$ make <fct> Buick, Buick, Buick, Cadillac, Cadillac, ...
$ model <fct> Electra/Park Avenue, Electra/Park Avenue,...
$ class <fct> Large Cars, Large Cars, Large Cars, Large...
$ year <fct> 1984, 1984, 1984, 1984, 1984, 1984, 1984,...
$ transmissiontype <fct> Automatic, Automatic, Automatic, Automati...
$ transmissionspeeds <dbl> 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,...
$ co2emissions <dbl> 555.4375, 555.4375, 484.7619, 424.1667, 5...

The output is a transposed version of the data that shows us the number of observa-

tions or rows in the data (36 979,), the number of variables or columns in the data (12), the

variable names, the data types, and a sample of the data stored in each variable.

Tibbles
Several times in Chapter 2 as well as in this chapter, we have referred to a data
structure known as a tibble. So, what exactly is a tibble? A tibble is a modern version
of the R data frame implemented as part of the tidyverse. Compared to data frames,
tibbles make fewer assumptions about the nature of the data and are a lot more rigid
to work with. For example, unlike a data frame, a tibble never changes the type of the
input data, it never changes the names of variables, and it never creates row names.
As a result, tibbles ensure that data quality issues are dealt with explicitly, leading
to cleaner and more expressive code. Tibbles also make it easier to work with and
output large datasets to the screen without overwhelming your system. The read_
csv() function from the readr package reads input data directly into a tibble. This
differs from the base R read.csv() function, which reads data into a data frame. For
the remainder of this text, we will stick to the read_csv() function for data import.

Practical Machine Learning in R60

Reading Other Delimited Files
The readr package also provides us with functions to read data stored in other types of

delimited files besides CSV. For example, to read a tab-delimited (TSV) file as illustrated

in Figure 3.3, we use the read_tsv() function.

The readr package does provide a more generic read_delim() function, which

allows for files with custom delimiters to be read. The user simply needs to specify the

character used to separate columns within the file by setting the delim argument. For

example, to read a pipe-delimited file such as the one illustrated in Figure 3.4, we would

need to set delim = "|" for the read_delim() function.

DATA EXPLORATION
After we acquire our data, the next thing we do is spend some time making sure that we

understand it. This process is known as data exploration. Data exploration allows us to

answer questions such as these:

 • How many rows and columns are in the data?

 • What data types are present in our data?

 • Are there missing, inconsistent, or duplicate values in the data?

 • Are there outliers in the data?

To answer these questions, we often need to describe the characteristics of the data

with the use of statistical summaries and visualizations.

Figure 3.3 TSV file containing the
same data as the spreadsheet in
Figure 3.1

Figure 3.4 Pipe-delimited
file containing the same
data as the spreadsheet in
Figure 3.1

61Chapter 3: Managing Data

Describing the Data
As part of the data exploration process, we often need to describe our data in ways that

others can understand. In machine learning, there are several terms that are used to describe

the structure of the data as well as the nature of the values in the data (see Figure 3.5).

Instance
An instance is a row of data. It is an individual independent example of the concept rep-

resented by the dataset. It is described by a set of attributes or features. A dataset con-

sists of several instances. In this text, we will sometimes refer to instances as records,

examples, or observations.

Feature
A feature is a column of data. It is the property or characteristic of an instance. Each in-

stance consists of several features. In this text, we will sometimes refer to features as

columns or variables. Features can be categorized based on the type of data they hold. A

feature can be described as either a discrete feature or a continuous feature.

 • A discrete feature is an attribute that is measured in categorical form. Discrete

features typically have only a reasonable set of possible values. Examples include

2011

Year Cylinders

2011

2010

2009

2009

2008

6

Independent Variables

In
st

an
ce

s

Dependent
Variable

Features

8

8

6

4

4

Drive

2-Wheel

4-Wheel

2-Wheel

2-Wheel

4-Wheel

4-Wheel

MPG

14

20

21

14

20

18

Transmission

AUTO

MANUAL

MANUAL

MANUAL

AUTO

MANUAL

Emissions

555.43

484.67

640.15

543.34

555.65

424.17

Figure 3.5 Sample dataset illustrating the instances and features (independent
and dependent variables)

Practical Machine Learning in R62

clothing size (small, medium, large), customer satisfaction (not happy, somewhat

happy, very happy), etc.

 • A continuous feature is an attribute that is usually measured in the form of an

integer or real number. A continuous feature has an infinite number of possible

values between its lower and upper bounds. Examples include temperature,

height, weight, age, etc.

Features can also be categorized based on their function. In Chapter 1, we discussed

that with supervised learning, we use the attributes (or features) that describe our data

to predict the label for each of the instances in the data. The features that describe our

data are known as the independent variables, while the feature that represents the label

is known as the dependent variable. The idea behind the independent and dependent

monikers comes from the fact that in supervised learning, the value of the dependent

variable is predicted based on the values of the independent variables. In other words,

the dependent variable is “dependent” on the values of the independent variables. For

classification problems, the dependent variable is also referred to as the class, and for

regression problems, it is referred to as the response.

Dimensionality
The dimensionality of a dataset represents the number of features in the dataset. The

higher the dimensionality of a dataset, the more detail we have about the data, but also

the higher the computational complexity and resource consumption. Later, we will dis-

cuss some approaches for reducing the dimensionality of a dataset to make it easier to

work with for machine learning.

Sparsity and Density
Data sparsity and density describe the degree to which data exists for the features in a

dataset. For example, if 20 percent of the values in a dataset are missing or undefined,

the dataset is said to be 20 percent sparse. Density is the complement of sparsity, so a

dataset that is 20 percent sparse is also said to be 80 percent dense.

Resolution
Resolution describes the grain or level of detail in the data. The more detailed the data is,

the finer (or higher) the resolution, and the less detailed it is, the coarser (or lower) the

resolution. For example, point-of-sale retail data of individual customer purchases has

high resolution. On the other hand, sales data summarized at the state or regional level

has low resolution. The appropriate resolution is often dictated by the business problem

and the machine learning task. If data resolution is too fine, important patterns may be

obscured by noise, but if the resolution is too coarse, important patterns may disappear.

63Chapter 3: Managing Data

Descriptive Statistics
Descriptive statistics or summary statistics are useful in data exploration and understand-

ing. They involve the use of statistical measures to describe the characteristics of fea-

tures. For example, the frequency of a feature value tells us how often the value occurs,

and the mode of the feature tells us which value occurs the most for that feature. Fre-

quency and mode are typically used to describe categorical data. For continuous data,

measures such as mean and median are often used to describe the properties of the data.

Both mean and median provide a description of what could be referred to as a “typical”

value for the feature.

In R, we can get summary statistics for a dataset by using the summary() function. To

get the summary statistics for our vehicles dataset, we pass the name of the dataset to

the summary() function.

> summary(vehicles)

 citympg cylinders displacement
 Min. : 6.00 Min. : 2.000 Min. :0.600
 1st Qu.:15.00 1st Qu.: 4.000 1st Qu.:2.200
 Median :17.00 Median : 6.000 Median :3.000
 Mean :17.53 Mean : 5.776 Mean :3.346
 3rd Qu.:20.00 3rd Qu.: 6.000 3rd Qu.:4.300
 Max. :57.00 Max. :16.000 Max. :8.400
 NA's :6 NA's :9

Mean and Median
As a quick statistical refresher, the arithmetic mean (or average) of n values is the
sum of the values divided by n. For example, given the set of values 1, 5, 7, 9, and 23,

the mean is 1 5 7 9 23
5

9. The median of the same set of values is the number

that is at the midpoint of the sorted list of values, which, in this case, is 7. The median
of a set of values is sometimes preferred over the mean because it is not impacted
as much by a small proportion of extremely large or small values. For example, when
evaluating statistics like household income or total assets, which vary greatly based
on economic status, the mean may be skewed by a small number of extremely high
or low values. As a result, median values are often used as a better way to describe
what a “typical” household’s income or total assets are.

Practical Machine Learning in R64

 drive highwaympg make
 2-Wheel Drive : 491 Min. : 9.00 Chevrolet: 3750
 Rear-Wheel Drive :13194 1st Qu.:20.00 Ford : 3044
 All-Wheel Drive : 8871 Median :24.00 Dodge : 2461
 Front-Wheel Drive:13074 Mean :23.77 GMC : 2414
 4-Wheel Drive : 1349 3rd Qu.:27.00 Toyota : 1840
 Max. :61.00 BMW : 1774
 NA's :8 (Other) :21696
 model class year
 F150 Pickup 2WD : 213 Compact Cars :7918 1985 : 1699
 F150 Pickup 4WD : 192 Pickup :5763 1987 : 1247
 Truck 2WD : 187 Midsize Cars :5226 1986 : 1209
 Jetta : 173 Sport Utility :5156 2015 : 1203
 Mustang : 172 Subcompact Cars :4523 2017 : 1201
 Ranger Pickup 2WD: 164 Special Purpose Vehicle:2378 2016 : 1172
 (Other) :35878 (Other) :6015 (Other):29248
 transmissiontype transmissionspeeds co2emissions
 Automatic:24910 Min. : 1.000 Min. : 29.0
 Manual :12069 1st Qu.: 4.000 1st Qu.: 400.0
 Median : 5.000 Median : 467.7
 Mean : 4.954 Mean : 476.6
 3rd Qu.: 6.000 3rd Qu.: 555.4
 Max. :10.000 Max. :1269.6

The results show two different formats for the descriptive statistics: one format

for categorical features and the other for continuous features. For example, the sum-

mary statistics for the categorical features, such as drive and make, show the feature

values along with the frequency for each value. For the drive feature, we see that there

are 491 instances with a drive type of 2-Wheel Drive and 1,349 instances of drive type

4-Wheel Drive. Note that for some features, the summary shows only six feature values

and groups everything else into Other. The six values listed are the top six in terms of

frequency. Later, we will look at how to list all the values for a feature along with the

associated frequencies.

The second format used by the summary() function applies to continuous features.

For example, we see that for citympg, the summary shows the mean, median, minimum,

maximum, and first and third quartile values. From the results, we see that the vehicle

with the worst city fuel efficiency achieves a meager 6 miles per gallon (minimum), while

the most efficient vehicle is rated at a whopping 57 miles per gallon (maximum). A “typ-

ical” vehicle has a city fuel efficiency rating of between 17 and 17.5 miles per gallon

(median and mean). The values presented by the first and third quartiles give us an idea

of how much the city fuel efficiency values differ across vehicles. In Chapter 5, we go into

a bit more detail on what this means. Also note that for the citympg, displacement,

and highwaympg features, the descriptive statistics list the number of missing values

65Chapter 3: Managing Data

(NAs) for the features. We will discuss how to deal with these missing values as part of

our conversation on data preparation, later in the chapter.

In the previous example, we showed the summary statistics for the entire dataset by

passing the dataset to the summary() function. Sometimes, we only want to look at the

statistical summary of select features within our data. One way to accomplish this is to

use the select command from the dplyr package. Recall that dplyr is a package in the

tidyverse that is used for data exploration and manipulation. It provides five main com-

mands (also known as verbs).

 • select for choosing the columns or variables

 • filter for choosing rows or observations

 • arrange for sorting rows

 • mutate for modifying variables

 • summarize for aggregating rows

Using the select verb, we can limit our vehicles data to only the features that we

want. Let’s assume that we intend to look only at the class feature. To do so, we pass

two arguments to the select verb. The first is the input dataset, which is vehicles, and

the second is the name or names of the features that we choose, which is class.

> library(tidyverse)
> select(vehicles, class)

A tibble: 36,979 x 1
 class
 <fct>
 1 Large Cars
 2 Large Cars
 3 Large Cars
 4 Large Cars
 5 Large Cars
 6 Large Cars
 7 Large Cars
 8 Pickup
 9 Pickup
10 Pickup
... with 36,969 more rows

Our data is now limited to the class feature. Note that our output is a tibble

with 36,979 rows and 1 column. The one column is the class feature. To include the

 cylinders feature in our output, we include it in the feature names passed to the

select verb as well.

Practical Machine Learning in R66

> select(vehicles, class, cylinders)

A tibble: 36,979 x 2
 class cylinders
 <fct> <dbl>
 1 Large Cars 6
 2 Large Cars 8
 3 Large Cars 8
 4 Large Cars 6
 5 Large Cars 8
 6 Large Cars 8
 7 Large Cars 8
 8 Pickup 4
 9 Pickup 4
10 Pickup 4
... with 36,969 more rows

Our output is now a tibble with two columns. To get the descriptive statistics for

these two columns, we pass the select(usedcars, class, cylinders) command

as the input to the summary() function. What this does is use the output of the select

command as input to the summary() function.

> summary(select(vehicles, class, cylinders))

 class cylinders
 Compact Cars :7918 Min. : 2.000
 Pickup :5763 1st Qu.: 4.000
 Midsize Cars :5226 Median : 6.000
 Sport Utility :5156 Mean : 5.776
 Subcompact Cars :4523 3rd Qu.: 6.000
 Special Purpose Vehicle:2378 Max. :16.000
 (Other) :6015

We now have the descriptive statistics for the two columns: class and cylinders.

Earlier, we mentioned that for categorical features, the summary() function shows only

the top six feature values in terms of count. This is what we see for the class feature.

To get a complete list of the values and counts for the class feature, we use a different

function—the table() function. Just like the summary() function, we can also pass the

output of a select command as input to the table() function.

> table(select(vehicles, class))

67Chapter 3: Managing Data

 Large Cars Pickup Special Purpose Vehicle
 1880 5763 2378
 Vans Compact Cars Midsize Cars
 1891 7918 5226
 Subcompact Cars Two Seaters Minivan
 4523 1858 386
 Sport Utility
 5156

Now we have all 10 values for the class feature and their associated counts. Instead

of the count values for each feature value, we can also get the proportional distribu-

tion for each value. To do this, we pass the output of the table() function as input to

another function—prop.table().

> prop.table(table(select(vehicles, class)))

 Large Cars Pickup
 0.05083967 0.15584521
Special Purpose Vehicle Vans
 0.06430677 0.05113713
 Compact Cars Midsize Cars
 0.21412153 0.14132345
 Subcompact Cars Two Seaters
 0.12231266 0.05024473
 Minivan Sport Utility
 0.01043836 0.13943049

The output tells us that 5 percent of the vehicles in the dataset are classified as Large

Cars, 15 58. percent of the vehicles are classified as Pickup, and so on. With these propor-

tions, we can get a better sense of the distribution of values for the class feature.

The approach that we’ve used so far to pass the output of one command or function

as input into another command or function is known as nesting. With this approach, we

make sure that we wrap a child function within the parentheses of a parent function. In

the previous example, we nested the select command within the table() function,

which we then nested within the prop.table() function. As one can imagine, if we

had to perform a large number of operations where each successive function relied on

the output of the previous one for its input, our code would quickly become difficult

to read. As a result, we sometimes use what is known as a pipe to control the logical

flow of our code. Pipes are written as %>%. They are provided by the magrittr package,

which is loaded as part of the tidyverse. For example, the code to list all values and the

Practical Machine Learning in R68

proportional distribution for the class feature in the vehicles dataset can be written

as follows:

> library(tidyverse)
> vehicles %>%
 select(class) %>%
 table() %>%
 prop.table()
.
 Large Cars Pickup
 0.05083967 0.15584521
Special Purpose Vehicle Vans
 0.06430677 0.05113713
 Compact Cars Midsize Cars
 0.21412153 0.14132345
 Subcompact Cars Two Seaters
 0.12231266 0.05024473
 Minivan Sport Utility
 0.01043836 0.13943049

Pipes allow us to forward the output of one expression as input to another expres-

sion. In this example, we use a pipe to forward the vehicles data as input to the select

verb. Then we use another pipe to forward the output of the select verb as input to the

table() function. Finally, we forward the output of the table() function to the prop

.table() function. Pipes are powerful in that they allow us to write code that is simple,

readable, and efficient. Going forward, we will use pipes to organize the logic of our

code examples whenever possible.

We have shown how to limit or choose the variables that we want to work with by

using the select command. Sometimes, instead of limiting our variables, we want to

limit the observations or rows that we are working with. This is done using another

one of the commands from the dplyr package—the filter command. The filter

command allows us to specify the logical conditions for the rows that we intend to keep.

For example, let’s assume that we want to see the descriptive statistics for the CO
2 emis-

sions of two-wheel drive vehicles only. Our condition is that for a row to be kept, the

value of the drive feature must be equal to 2-Wheel Drive. This is written as follows:

> vehicles %>%
 filter(drive == "2-Wheel Drive") %>%
 select(co2emissions) %>%
 summary()

 co2emissions
 Min. :328.4

69Chapter 3: Managing Data

 1st Qu.:467.7
 Median :555.4
 Mean :564.6
 3rd Qu.:683.6
 Max. :987.4

Now we can compare the descriptive statistics of the two-wheel drive vehicles against

that of the entire dataset.

Visualizing the Data
In the previous section, we discussed the use of numerical summarization to describe

data in a way that allows us to better understand it. In this section, we introduce data

visualization as an important part of data exploration by providing a condensed and

quickly understood way of describing data.

Quite often, even after using sophisticated statistical techniques, certain patterns

are understood only when represented with a visualization. Like the popular saying “a

picture is worth a thousand words,” visualizations serve as a great tool for asking and

answering questions about data. Depending on the type of question, there are four key

objectives that inform the type of data visualization we use: comparison, relationship,

distribution, and composition.

Comparison
A comparison visualization is used to illustrate the difference between two or more

items at a given point in time or over a period of time. A commonly used comparison

chart is the box plot. Box plots are typically used to compare the distribution of a contin-

uous feature against the values of a categorical feature. It visualizes the five summary

statistics (minimum, first quartile, median, third quartile, and maximum) and all outlying

points individually. Some of the questions that box plots help us to answer include the

following:

 • Is a feature significant?

 • Does the location of the data differ between subgroups?

 • Does the variation of the data differ between subgroups?

 • Are there outliers in the data?

As we mentioned earlier, the tidyverse provides us with a powerful and flexible

package for visualizing data called ggplot2. The functions provided by ggplot2 follow

a principle and consistent syntax known as the grammar of graphics. Instead of a detailed

tutorial on the syntax and theory behind the package, we will explain some of the

Practical Machine Learning in R70

relevant concepts as we use it to create visualizations that help us better understand

our data. For readers who are interested in an in-depth explanation of ggplot2 and the

grammar of graphics, we refer you to the books ggplot2 by Hadley Wickham and The

Grammar of Graphics by Leland Wilkinson.

Using ggplot2, we can create a box plot from our vehicles dataset that compares

the distribution of CO2 emissions across different vehicle classes.

> vehicles %>%
 ggplot() +
 geom_boxplot(mapping = aes(x = class, y = co2emissions), fill = "red") +
 labs(title = "Boxplot of C02 Emissions by Vehicle Class", x = "Class", y =
"C02 Emissions")

The first thing our code does is pass the dataset (vehicles) to the ggplot()

function. This initializes the plot process. Think of this as an empty canvas. The next set

of commands simply adds layers on top of the canvas. Notice the use of the + operator

to add successive layers. The first layer is known as a geometry, which specifies the type

of visualization we intend to create. In this case, we use the geom_boxplot() geometry

to create a box plot. Within the geometry, we specify the aesthetics of the visualiza-

tion using the aes() function. The aesthetics specify the size, color, position, and other

visual parameters of a geometry. For the aesthetics, we specify two things. The first is

the relationship between the aesthetic elements and the data. This is done by setting

mapping = aes(x = class, y = co2emissions). This states that the x-axis for the

visualization will be the class feature and the y-axis will be the co2emissions feature.

The second thing we specify for the aesthetic is the color of the boxes (fill = "red").

After the geometry layer, we use the labs() function to add a layer for the plot title and

the axis labels. See Figure 3.6.

The results show that, on average, subcompact cars, compact cars, and midsize cars

have the lowest CO
2 emissions, while vans, pickups, and special-purpose cars have the

highest. This is as expected.

Relationship
Relationship visualizations are used to illustrate the correlation between two or more

variables. These are typically both continuous features. In other words, they show how

one variable changes in response to a change in another. Scatterplots are one of the

71Chapter 3: Managing Data

most commonly used relationship visualizations. Some of the questions that scatterplots

help us answer include the following:

 • Is a feature significant?

 • How do features interact with each other?

 • Are there outliers in the data?

The ggplot package provides the geom_point() geometry for creating scatterplots.

Similar to what we did for the box plot, we pass our data to ggplot(), set the aesthetic

parameters, and layer a title and axis labels unto the chart. See Figure 3.7.

> vehicles %>%
 ggplot() +
 geom_point(mapping = aes(x = citympg, y = co2emissions), color = "blue",
size = 2) +
 labs(title = "Scatterplot of CO2 Emissions vs. City Miles per Gallon",
 x = "City MPG", y = "CO2 Emissions")

Warning message:
Removed 6 rows containing missing values (geom_point.

Do not be alarmed by the warning message. It simply tells us that there are missing

values for the citympg feature and that the corresponding instances were excluded

from the chart. The chart results show that as city gas mileage increases, CO2 emissions

C0
2

Em
is

si
on

s

1000

500

0
Large Cars Pickup Vans Compact

Cars
Midsize

Cars

Class

Subcompact
Cars

Two Seaters Minivan Sport UtilitySpecial Purpose
Vehicle

Figure 3.6 Box plot of CO2 emissions by vehicle class

Practical Machine Learning in R72

decrease. This means that vehicles with better fuel efficiency ratings emit less carbon

dioxide. This is also as expected.

Distribution
Distribution visualizations show the statistical distribution of the values of a feature.

One of the most commonly used distribution visualizations is the histogram. With a

histogram you can show the spread and skewness of data for a particular feature (see

Chapter 5 for a discussion on skewness). Some of the questions that histograms help us

answer include the following:

 • What kind of population distribution does the data come from?

 • Where is the data located?

 • How spread out is the data?

 • Is the data symmetric or skewed?

 • Are there outliers in the data?

The geom_histogram() geometry in the ggplot package allows us to create a histo-

gram in R. For histograms, we do not set a value for the y-axis because the chart uses the

frequency for the feature value as the y-value. We do specify a value for the number of

bins to use (bins = 30) for the x-axis of the histogram. See Figure 3.8.

> vehicles %>%
 ggplot() +
 geom_histogram(mapping = aes(x = co2emissions), bins = 30, fill =
"yellow", color = "black") +
 labs(title = "Histogram of CO2 Emissions", x = "CO2 Emissions", y =
"Frequency")

City MPG

1000
CO

2
Em

is
si

on
s

500

0
10 20 30 40 50

Figure 3.7 Scatterplot of CO2 emissions versus city gas mileage

73Chapter 3: Managing Data

The chart shows that most of the CO2 emission values are clustered between 250 and

750 grams per mile. It also shows that we do have some outliers at the low end as well as

at the high end.

Composition
A composition visualization shows the component makeup of the data. Stacked bar

charts and pie charts are two of the most commonly used composition visualizations.

With a stacked bar chart, you can show how a total value can be divided into parts or

highlight the significance of each part relative to the total value. Some of the questions

that stacked bar charts help us answer include the following:

 • How do distributions vary within subgroups?

 • What is the relative change in composition over time?

 • How much does a subgroup contribute to the total?

To create a stacked bar chart using ggplot, we use the geom_bar() geometry. To

illustrate how this works, we create a visualization showing the change in drive type

composition for each year. We set the x-axis to year, and we show the drive type compo-

sition by setting fill = drive. Similar to the histogram, we do not set the value for the

y-axis. To help with legibility, we use the coord_flip() command to flip the axes of the

chart so that the years are plotted on the y-axis and the number of cars is plotted on the

x-axis. See Figure 3.9.

> vehicles %>%
 ggplot() +
 geom_bar(mapping = aes(x =year, fill = drive), color = "black") +

6000

CO2 Emissions

Fr
eq

ue
nc

y 4000

2000

0

0 500 1000

Figure 3.8 Histogram of CO2 emissions

Practical Machine Learning in R74

 labs(title = "Stacked Bar Chart of Drive Type Composition by Year",
 x = "Model Year", y = "Number of Cars") +
 coord_flip()

The results show that other than in 1997, it does appear that no four-wheel drive vehi-

cles were tested before 2010. We also see that two-wheel drive vehicles were tested

only in 1984 and 1999. These two observations seem to point to a possible variance

in the way vehicle drive types were classified in the impacted years. For example, it is

conceivable that all four-wheel drive vehicles were classified as all-wheel drive vehicles

every year except for 1997 and from 2010 to 2018. The same logic applies to the classifi-

cation of two-wheel drive vehicles as either rear-wheel drive or front-wheel drive.

DATA PREPARATION
Prior to the model build process, we need to make sure that the data that we have is suit-

able for the machine learning approach that we intend to use. This step is known as data

preparation. Data preparation involves resolving data quality issues such as missing data,

noisy data, outlier data, and class imbalance. It also involves reducing the data or modi-

fying the structure of the data to make it easier to work with.

2018

M
od

el
 Y

ea
r

2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984

0 500 1000 1500

Number of Cars

drive
2-Wheel Drive

Rear-Wheel Drive

All-Wheel Drive

Front-Wheel Drive

4-Wheel Drive

Figure 3.9 Stacked bar chart of drive type composition by year

75Chapter 3: Managing Data

Cleaning the Data
In computing, the saying “garbage in, garbage out” is used to express the idea that incor-

rect or poor-quality input will invariably result in incorrect or poor-quality output. This

concept is crucially important in machine learning. If proper care is not taken at the front

end to properly deal with data quality issues before training a model, then the model

output will be unreliable, misleading, or simply wrong.

Missing Values
An ideal dataset is one that has no missing values and has no values that deviate from

the expected. Such a dataset hardly exists, if at all. In reality, most datasets have data

quality issues that need to be dealt with prior to being used for machine learning. One

of the most commonly encountered data quality issues is that of missing data. There

are several reasons why data could be missing. These include changes in data collec-

tion methods, human error, combining various datasets, human bias, and so forth. It

is important to try to understand if there is a reason or pattern for the missing values.

For example, particular groups of people may not respond to certain questions in a

survey. Understanding this is useful to the machine learning process. Missing values can

also have meaning. For example, the absence of a medical test can indicate a particular

prognosis.

There are several approaches to dealing with missing data. One approach is to sim-

ply remove all instances with features that have a missing value. This is a destructive

approach and can result in the loss of valuable information and patterns that would have

been useful in the machine learning process. As a result, this approach should be used

only when the impact of removing the affected instances is relatively small or when all

other approaches to dealing with missing data have been exhausted or are infeasible.

A second approach to dealing with missing data is the use of an indicator value, such

as N/A, “unknown,” or –1, to represent missing values. This approach is usually okay when

dealing with unordered categorical features. However, if used for continuous features,

it could be mistaken for real data and could lead to incorrect assumptions about the

data. For example, consider an age dataset for six students. Let's assume that one of the

five age values is missing, such that the values are 5, 8, 9, 14, NA, and 19. Excluding

the missing value, the mean age of the students would be
5 8 9 14 19

5
11. However,

if we used -1 as an indicator value to represent the missing value, the mean age of

the students would then become
5 8 9 14 1 19

6
6.

An alternative approach to dealing with missing data is to use a method known as

imputation. Imputation is the use of a systematic approach to fill in missing data using

the most probable substitute values. There are several approaches to imputing missing

values. A few of them are discussed next.

Practical Machine Learning in R76

Random Imputation
As the name suggests, random imputation involves the use of a randomly selected

observed value as the substitute for a missing value. This is a simple approach to impu-

tation; however, it does have some drawbacks. The biggest disadvantage with this

approach is that it ignores useful information or patterns in the data when selecting sub-

stitute values.

Match-Based Imputation
Match-based imputation is an approach that involves the use of a similar instance with

nonmissing values as a substitute for the missing value. There are generally two main

approaches to match-based imputation. They differ based on where the instances for

the nonmissing data come from.

The first type of match-based imputation is known as hot-deck imputation. In this

approach, the similar instance belongs to the same dataset as the instance with missing

data. For example, consider the same dataset of student ages that we discussed pre-

viously. Let's assume that for the dataset we also had gender information for each

student. If we then realized that there are only two male students in the dataset, one

of which is missing an age, using hot-deck imputation, we would use the observed age

of the one male student as a substitute for the age of the male student whose age

is missing.

The second type of match-based imputation is known as cold-deck imputation. With

this approach, we use a separate dataset to get the substitute values. Using the same

example that we used to illustrate the hot-deck approach, with cold-deck imputation,

we identify a similar male student with a nonmissing age value from a second dataset

and use their age as a substitute for the missing age in the first dataset. Note that the

match we use here (age) is rather simplistic. A good match-based approach requires that

we find several similarities between the two instances with which to create a match. The

more, the better.

Distribution-Based Imputation
In the distribution-based imputation approach, the substitute value for a missing feature

value is chosen based on the probability distribution of the observed values for the fea-

ture. This approach is often used for categorical values, where the mode for the feature

is used as a substitute for the missing value. Recall that the mode of a feature is the

value that has the highest frequency, which means that it is the most frequently occur-

ring value.

77Chapter 3: Managing Data

Predictive Imputation
Predictive imputation is the use of a predictive model (regression or classification) to pre-

dict the missing value. With this approach, the feature with the missing value is consid-

ered the dependent variable (class or response), while the other features are considered

the independent variables. There is a lot of overhead involved with predictive imputation

as we essentially are training a model to resolve missing values, as part of the data prep-

aration phase, before we actually begin the modeling process. Because of this, predic-

tive imputation should be used only when absolutely necessary. Quite often, one of the

other imputation approaches discussed here will prove to be quite sufficient in resolving

the missing values in a dataset.

Mean or Median Imputation
For continuous features, the most commonly used approach for dealing with missing

values is the mean or median imputation approach. As the name suggests, the approach

involves the use of the mean or median of the observed values as a substitute for the

missing value. To illustrate how mean and median imputation work, we will refer to our

vehicles dataset. Recall that the descriptive statistics for the dataset showed that we

had missing values for three of the features in the dataset—citympg, displacement,

and highwaympg. As a refresher, let's take a look at the descriptive statistics for these

features again.

> vehicles %>%
 select(citympg, displacement, highwaympg) %>%
 summary()

 citympg displacement highwaympg
 Min. : 6.00 Min. :0.600 Min. : 9.00
 1st Qu.:15.00 1st Qu.:2.200 1st Qu.:20.00
 Median :17.00 Median :3.000 Median :24.00
 Mean :17.53 Mean :3.346 Mean :23.77
 3rd Qu.:20.00 3rd Qu.:4.300 3rd Qu.:27.00
 Max. :57.00 Max. :8.400 Max. :61.00
 NA's :6 NA's :9 NA's :8

The results show that we have six missing values for citympg, nine missing values for

displacement, and eight missing values for highwaympg. The median and mean values

for each of the features are not significantly different, so we could use either measure

for imputation. For illustrative purposes, we will use median imputation for the citympg

Practical Machine Learning in R78

and highwaympg features and use mean imputation for the displacement feature. In

R, to use the mean imputation approach to resolve the missing values for the citympg

feature, we use the mutate verb from the dplyr package, as well as the ifelse() base R

function and the median() function from the stats package.

> vehicles <- vehicles %>%
 mutate(citympg = ifelse(is.na(citympg), median(citympg, na.rm = TRUE),
citympg)) %>%
 mutate(highwaympg = ifelse(is.na(highwaympg), median(highwaympg, na.rm
= TRUE), highwaympg))

Let’s break down the code. The first line states that we are going to perform a series

of operations against the vehicles dataset and that the resulting dataset from those

operations should overwrite the original vehicles dataset. The second line uses the

mutate verb to specify that we intend to modify the value of the citympg feature

based on the output of the code following the equal sign (=). The ifelse() function

does a logical test and returns a value depending on the result of the test. The syntax

is as follows: ifelse(test, yes, no). This states that if the result of the test is TRUE,

then it returns the yes value, else it returns the no value. In our example, the test is

is.na(citympg). This is a test to evaluate whether the value for citympg is missing

“(NA)” for each instance in the vehicles dataset. If the value is missing, then the

median of the observed values is returned. However, if the value is not missing, then the

citympg value is returned. This has the effect of changing only the missing values to the

median of the observed values. Note that the median() function includes the argument

na.rm = TRUE. This tells the function to ignore the missing values when computing

the median. While not as useful for the median, ignoring missing values when comput-

ing the mean of a set of values has more significance. In the third line of the code, we

also applied the same median imputation approach to resolve the missing values for the

highwaympg feature.

For displacement feature, we use mean imputation instead of median imputation. To

do this, we simply switch out the median() function with the mean() function.

> vehicles <- vehicles %>%
 mutate(displacement = ifelse(
 is.na(displacement),
 mean(displacement, na.rm = TRUE),
 displacement
))

Now, let’s take another look at our descriptive statistics to make sure that we no

longer have the missing values in our dataset.

79Chapter 3: Managing Data

> vehicles %>%
 select(citympg, displacement, highwaympg) %>%
 summary()

 citympg displacement highwaympg
 Min. : 6.00 Min. :0.600 Min. : 9.00
 1st Qu.:15.00 1st Qu.:2.200 1st Qu.:20.00
 Median :17.00 Median :3.000 Median :24.00
 Mean :17.53 Mean :3.346 Mean :23.77
 3rd Qu.:20.00 3rd Qu.:4.300 3rd Qu.:27.00
 Max. :57.00 Max. :8.400 Max. :61.00

The results show that we no longer have missing values in our dataset. We also notice

that the descriptive statistics all remained unchanged. This is a good outcome. It means

that our imputation approach did not have an appreciable impact on the properties

of the dataset. While this is a good thing, it is not always the outcome of imputation.

Often, depending on the number of missing values and the imputation approach chosen,

the descriptive statistics will vary slightly after imputing missing values. The objective

should be to keep these changes as small as possible.

Noise
Noise is the random component of measurement error. It is often introduced by the

tools used in collecting and processing data. Noise is nearly always present in data and

can sometimes be difficult to get rid of, so it is important that a robust machine learning

algorithm be able to handle some noise in the data. If noise presents a problem for the

selected machine learning approach, instead of trying to remove it, the objective should

be on minimizing its impact. The process of minimizing noise in data is known as smooth-

ing. There are several approaches to smoothing. They include smoothing with bin means,

smoothing with bin boundaries, smoothing by clustering, and smoothing by regression.

Smoothing with Bin Means
Smoothing with bin means involves sorting and grouping the data into a defined number

of bins and replacing each value within a bin with the mean value for the bin. The choice

of the number of bins to use is up to the user. However, it is important to note that

the larger the number of bins, the smaller the reduction in noise; and the smaller the

number of bins, the larger the reduction in noise. To illustrate how smoothing by bin

means works, let’s consider a dataset of 12 values, 4 8 9 15 21 21 24 25 26 28 29 34, , , , , , , , , , , ,

which are sorted in ascending order. Assuming that we choose to bin our data into three

bins, then the values in each bin would be 4 8 9 15, , , , 21 21 24 25, , , , and 26 28 29 34, , , .

Practical Machine Learning in R80

The means of the values in the bins are 9 23, , and 29, respectively. Therefore, we replace

the values in each bin by the mean so that we now have the following 12 values for our

dataset: 9 9 9 9 23 23 23 23 29 29 29 29, , , , , , , , , , , .

Smoothing with Bin Boundaries
A closely related alternative method to smoothing with bin means is smoothing with

bin boundaries. With this approach, instead of replacing the values in each bin by the

mean, we replace the values by either one of the bin boundaries based on proximity.

The bin boundaries are the smallest and largest numbers in each bin. To illustrate how

this works, let’s consider the same dataset of 12 values, sorted in ascending order:

4 8 9 15 21 21 24 25 26 28 29 34, , , , , , , , , , , . Using three bins again, the bins will be 4 8 9 15, , , ,

21 21 24 25, , , , and 26 28 29 34, , , . For the first bin, the boundaries are 4 and 15. To smooth

the values in this bin, we need to evaluate how close each value in the original set is

to the bin boundaries and substitute each value by the boundary value closest to it.

The first value is 4, which happens to be the lower bound, so we leave it as 4. The next

value is 8, with a distance of 8 4 4 from the lower bound and 15 8 7 from the upper

bound. Since 8 is closer to the lower bound than the upper bound, we replace it with the

lower bound 4. The next value in the set is 9, with a distance of 9 4 5 from the lower

bound and 15 9 6 from the upper bound. Since 9 is closer to the lower bound than

the upper bound, we also replace it with the lower bound 4. The last value in the set is

15. This is the upper bound, so we leave it as is. The smoothed bin values will now be

4 4 4 15, , , . Applying this same approach to the other two bins, our smoothed dataset

will now be 4 4 4 15 21 21 25 25 26 26 26 34, , , , , , , , , , , .

Smoothing by Clustering
Another approach to smoothing involves the use of an unsupervised machine learning

approach known as clustering. We discuss clustering in much more detail in Chapter 12.

With the smoothing by clustering approach, the instances in a dataset are each assigned

to one of any number of clusters defined by the user. The mean of each cluster is then

computed and serves as a substitute for each instance assigned to the cluster. For

example, in Figure 3.10, we have 14 instances (colored circles) with two features (Feature

A and Feature B), segmented into three separate clusters (red, blue, and yellow dashed

lines). The mean (or center) of each cluster is represented by the black diamonds (C1, C2,

and C3). To smooth this dataset by clustering, we substitute the values of the original

instances with those of the cluster centers.

81Chapter 3: Managing Data

Smoothing by Regression
Smoothing by regression involves the use of the supervised machine learning approach,

known as linear regression, to smooth feature values. Linear regression is discussed in

much more detail in Chapter 4. The idea behind smoothing by regression is to use a fit-

ted regression line as a substitute for the original data. To illustrate how this works,

let’s consider a dataset of 14 instances, made up of one independent variable x
i
 and a

dependent variable y
i
. Each of the instances is represented by the coordinates x y

i i
, (see

the yellow circles in Figure 3.11). To smooth the data by regression, we use the points on

a fitted linear regression line (blue line) as a substitute for the original data. For example,

the values for instance x y
1 1
, now become x y

1 1
, , after smoothing.

Outliers
An outlier is a data point that is significantly different from other observations within

a dataset. Outliers manifest either as instances with characteristics different from

most other instances or as values of a feature that are unusual with respect to the typ-

ical values for the feature. Unlike noise, outliers can sometimes be legitimate data. As

a result, once they are identified, we should spend some time understanding why they

exist in our data and whether they are useful. Quite often, the determination of whether

an outlier is useful or not is dependent on the learning goal.

C1

Feature B

Fe
at

ur
e

A

C3
C2

Figure 3.10 Illustration of the smoothing by clustering approach, on 14 instances
with 2 features segmented into 3 clusters

Practical Machine Learning in R82

In some cases, outliers are simply bad data. If that is the case, the outlier should be

removed or replaced using one of the imputation methods that we previously discussed

for dealing with missing data. Outliers could also be legitimate data, which could be

interesting and useful to the machine learning process. If so, then the outlier data should

be kept. However, some machine learning approaches, such as linear regression (see

Chapter 4), are particularly sensitive to outliers. So, if we must keep the outlier data,

then an approach such as decision trees (see Chapter 8), which are able to handle out-

liers in a robust way, may be more appropriate. In Chapters 4 and 5, we introduce several

approaches to identifying and dealing with outliers.

Class Imbalance
Machine learning algorithms learn from the examples. As we discussed in Chapter 1,

these examples are known as the training data. For a classification problem, the goal of

the machine learning algorithm is to identify patterns in labeled training data that help it

correctly assign labels (or a class) to new unlabeled data. The more training examples the

algorithm gets, the more confident it is in the patterns it discovers and the better it does

in assigning labels to new data.

Let’s consider a popular classification problem: fraud detection for credit card trans-

actions. This type of classification problem is known as a binary classification problem

because there are only two class labels (Fraud or No Fraud). All of the classification

problems we deal with in this text will be binary classification problems. To train a model

y

y1

y'1

x1 x

Figure 3.11 Illustration of the smoothing by regression approach on 14 instances
represented by x , yi i

83Chapter 3: Managing Data

to solve this type of problem, we need to provide the model with examples of previous

credit card transactions to learn from. Each example would include several features that

describe a transaction, as well as a label of whether the transaction was classified as

fraudulent or not. The more examples that the model sees of fraudulent transactions,

the better it becomes at identifying the patterns that correspond with fraud. Conversely,

the more examples of nonfraudulent transactions it sees, the better it also becomes at

learning the patterns that correspond with nonfraudulent transactions.

For classification problems, the proportion of examples that belong to each class is

known as the class distribution. Ideally, we want the class distribution of training data to

be uniform or balanced for the learning algorithm to have an equal shot at learning the

patterns that correspond to each class. However, for some problems, such as our fraud

detection example, this is not the case. The vast majority of credit transactions are not

fraudulent. Therefore, the class distribution for the training data will not be balanced. It

will be skewed toward the nonfraud examples. This is known as class imbalance.

There are several binary classification problems where class imbalance is not only

common, it is expected. Some of these problems include spam detection, intrusion

detection, churn prediction, loan default prediction, and so on. For these problems, a

significant proportion of the observed examples belong to one class. The class with

more examples is called the majority class, while the class with fewer examples is called

the minority class.

There are several problems associated with class imbalance in machine learning. One

problem has to do with the effectiveness of the learning process. Due to the nature of

class imbalance problems, most often the minority class is the class of interest. This is

because the minority class typically represents a rare but important event that needs

to be identified. However, because there are fewer examples for the minority class, it is

more challenging for a model to effectively learn the patterns that correspond with the

minority class and to differentiate them from those associated with the majority class.

A second problem with learning against imbalanced data is that it can result in decep-

tively optimistic predictive accuracy. Let’s consider a problem where 99.9 percent of

the observed and future examples belonged to the majority class. Without any machine

learning, one could simply predict that all future examples belong to the majority class

and achieve a predictive accuracy of 99.9 percent. This is known as the accuracy paradox.

Here the predictive accuracy is simply reflecting the underlying class distribution of

the dataset.

There are several approaches to dealing with class imbalance in machine learning.

 • Collect more data: To minimize the imbalance in the distribution between the

majority and minority class, we can attempt to collect more examples of the

minority class.

Practical Machine Learning in R84

 • Change the performance metric: Since we know that predictive accuracy can be

misleading with imbalanced data, we should use other measures of performance

when evaluating a model trained against imbalanced data. Measures such as preci-

sion, recall, kappa, and the ROC curve are often used. We discuss these measures

extensively in Chapter 9.

 • Try a different algorithm: Certain machine learning algorithms are particularly

sensitive to class imbalance, while others are not. When training a model to solve

a class imbalance problem, we should consider models such as decision trees and

random forest, which handle the imbalance in class distribution well.

 • Resample the data: A common approach to dealing with class imbalance is to

change the class distribution of the training data with the use of sampling. There

are two common ways that this is done. The first is to select fewer examples

from the majority class for the training data. This is known as under-sampling.

The second approach involves creating more copies of the minority class for the

training data. This is known as over-sampling. The copies created either can be

duplicates of the existing data or can be synthetic examples, which are derived

from the existing minority examples. One of the most popular algorithms used to

generate synthetic examples is called the Synthetic Minority Over-sampling Tech-

nique (SMOTE). We illustrate the use of SMOTE to deal with class imbalance in

Chapter 5.

Transforming the Data
As part of the data preparation process, it is often necessary to modify or transform the

structure or characteristics of the data to meet the requirements of a particular machine

learning approach, to enhance our ability to understand the data, or to improve the effi-

ciency of the machine learning process. In this section, we discuss several approaches

that help us accomplish these things.

Normalization
The goal of standardization or normalization is to ensure that an entire set of values has

a particular property. Often, this involves scaling data to fall within a small or specified

range. Four of the common approaches to normalization include decimal scaling, z-score

normalization, min-max normalization, and log transformation.

Decimal Scaling
Decimal scaling as a method of normalization involves moving the position of the decimal

point on a set of values, such that the maximum absolute value is less than or equal

85Chapter 3: Managing Data

to 1. Let’s consider a dataset with five values: 12000 24000 30000 40000 98000, , , , . To nor-

malize this dataset using decimal scaling, we need to divide each original value v by a

multiple of 10, such that the maximum absolute value of the dataset is less than or equal

to 1. Mathematically this is represented as follows:

v

v
j

10 3.1

where j is the smallest integer such that max v 1. For our example dataset, since

the maximum value is 98000, we set j 5. Therefore, to normalize the first value by

decimal scaling, we compute
12000

10
0 12

5
. . Using this same approach for the remaining

four values, our normalized dataset will now be 0 120 0 240 0 300 0 400 0 980. , . , . , . , . .

To illustrate how normalization by decimal scaling is done in R, let’s attempt to

normalize the co2emissions feature of our vehicles dataset. Before we do so, we

once again take a look at the descriptive statistics for the feature.

> vehicles %>%
 select(co2emissions) %>%
 summary()

 co2emissions
 Min. : 29.0
 1st Qu.: 400.0
 Median : 467.7
 Mean : 476.6
 3rd Qu.: 555.4
 Max. :1269.6

The results show that the minimum value is 29, while the maximum value is 1269 6. .

Consider Equation 3.1, the smallest integer value for j such that max v 1 is 4. In other

words, 4 is the number of digits before the decimal place for the number 1269 6. . Using

the mutate verb, we create a new normalized version of the co2emissions feature,

called co2emissions_d, based on Equation 3.1.

> vehicles %>%
 select(co2emissions) %>%
 mutate(co2emissions_d = co2emissions / (10^4)) %>%
 summary()

 co2emissions co2emissions_d
 Min. : 29.0 Min. :0.00290

Practical Machine Learning in R86

 1st Qu.: 400.0 1st Qu.:0.04000
 Median : 467.7 Median :0.04677
 Mean : 476.6 Mean :0.04766
 3rd Qu.: 555.4 3rd Qu.:0.05554
 Max. :1269.6 Max. :0.12696

The descriptive statistics provide a statistical summary of the values for the

co2emissions feature, before and after normalization (co2emissions_d) by decimal

scaling.

Z-Score Normalization
The second normalization approach that we look at is known as z-score, or zero mean nor-

malization. It gets its name from the fact that the approach results in normalized values

that have a mean of 0 and a standard deviation of 1. Given value v of feature F , the nor-

malized value for the feature v is computed as follows:

v

v F

F 3.2

where F and F are the mean and standard deviation of feature F , respectively. Using the

same example from the discussion on decimal scaling, we can use z-score normalization

to transform the values of the five-value dataset. First, we need to compute the mean

and standard deviation of the values. Using a calculator, we see that those values are

40800 and 33544, respectively. Then we can use the formula from Equation 3.2 to com-

pute the normalized values. Based on this, to normalize the first value in the dataset, we

compute
12000 40800

33544
0 859. . Using this same approach for the remaining four

values, our normalized dataset will now become 0 859 0 500 0 322 0 0241 1 705. , . , . , . , . .

To illustrate how z-score normalization is implemented in R, let’s again use the

co2emissions feature from the vehicles dataset. This time we use the mean()

function that we introduced earlier, as well as the sd() function, which helps us compute

the standard deviation of the feature values.

> vehicles %>%
 select(co2emissions) %>%
 mutate(co2emissions_z = (co2emissions - mean(co2emissions)) /
sd(co2emissions)) %>%
 summary()

 co2emissions co2emissions_z
 Min. : 29.0 Min. :-3.79952
 1st Qu.: 400.0 1st Qu.:-0.64988

87Chapter 3: Managing Data

 Median : 467.7 Median :-0.07483
 Mean : 476.6 Mean : 0.00000
 3rd Qu.: 555.4 3rd Qu.: 0.66972
 Max. :1269.6 Max. : 6.73242

From the descriptive statistics, we see that the normalized values for the co2emis-

sions feature (co2emissions_z) go from 3 79952. to 6 73242. . Notice that the mean of

the transformed values is now 0.

TIP It’s important to note that instead of explicitly specifying the formula for
z-score normalization as we did in our example, we can use the scale() base
R function instead.

Min-Max Normalization
With min-max normalization, we transform the original data from the measured units

to a new interval defined by user-specified lower and upper bounds. Most often, the

new bounding values are 0 and 1. Mathematically, this transformation is represented

as follows:

v

v
upper lower lowerF

F F

min

max min 3.3

where v is the original value for feature F , minF is the minimum value for F , maxF is

the maximum value for F , lower is the user-defined lower bound for the normalized

values, and upper is the user-defined upper bound. Applied to our five-value dataset

of 12000 24000 30000 40000 98000, , , , , assuming that we decide to use 0 and 1 as the

lower and upper bounds of our transformed values, the first value will become
12000 12000

98000 12000
1 0 0 0. Using this same approach for the remaining four values, our

normalized dataset will now be 0 000 0 140 0 209 0 326 1 000. , . , . , . , . .

To illustrate how min-max normalization is done in R, let’s once again use the

co2emissions feature from the vehicles dataset. We use 0 and 1 as our lower and

upper bounds.

> vehicles %>%
 select(co2emissions) %>%
 mutate(co2emissions_n =
 ((co2emissions - min(co2emissions))
 / (max(co2emissions) - min(co2emissions))) * (1 - 0) + 0
) %>% summary()

Practical Machine Learning in R88

 co2emissions co2emissions_n
 Min. : 29.0 Min. :0.0000
 1st Qu.: 400.0 1st Qu.:0.2991
 Median : 467.7 Median :0.3537
 Mean : 476.6 Mean :0.3608
 3rd Qu.: 555.4 3rd Qu.:0.4244
 Max. :1269.6 Max. :1.0000

The descriptive statistics show that the min-max normalized values

(co2emissions_n) for our feature now fall between 0 and 1.

Log Transformation
The normalization approaches discussed so far are usually good if the data distribution

is roughly symmetric. For skewed distributions and data with values that range over sev-

eral orders of magnitude, the log transformation is usually more suitable. With log trans-

formation, we replace the values of the original data by the logarithm, such that:

 v vlog 3.4

where v is the original value for feature and v is the normalized value. The logarithm

used for log transform can be the natural logarithm, log base 10, or log base 2. This is

generally not critical. However, it is important to note that log transformation works

only for values that are positive. Using a log transformation for our five-value dataset of

12000 24000 30000 40000 98000, , , , , we get 4 079 4 380 4 477 4 602 4 991. , . , . , . , . .

To illustrate how log transformation is done in R, let’s refer once again to the

co2emissions feature from the vehicles dataset.

> vehicles %>%
 select(co2emissions) %>%
 mutate(co2emissions_b = log10(co2emissions)) %>%
 summary()

 co2emissions co2emissions_b
 Min. : 29.0 Min. :1.462
 1st Qu.: 400.0 1st Qu.:2.602
 Median : 467.7 Median :2.670
 Mean : 476.6 Mean :2.665
 3rd Qu.: 555.4 3rd Qu.:2.745
 Max. :1269.6 Max. :3.104

89Chapter 3: Managing Data

Discretization
Discretization involves treating continuous features as if they are categorical. This

is often done as a pre-step before using a dataset to train a model. This is because

some algorithms require the independent data to be binary or to have a limited

number of distinct values. The process of discretization can be accomplished using

the binning approaches we discussed previously: smoothing with bin means and

smoothing with bin boundaries. For example, we can effectively reduce the number

of distinct values for a continuous feature based on the number of bins we choose

for any of the two approaches. Besides binning, we could also discretize continuous

features into binary values by coding them in terms of how they compare to a ref-

erence cutoff value. This is known as dichotomization. For example, given the values

4 8 9 15 21 21 24 25 26 28 29 34, , , , , , , , , , , , we can code all values below 20 as 0 and all values

above as 1 to yield 0 0 0 0 11111111, , , , , , , , , , , .

Dummy Coding
Dummy coding involves the use of dichotomous (binary) numeric values to represent cat-

egorical features. Dummy coding is often used for algorithms that require that the inde-

pendent features be numeric (such as regression and k -nearest neighbor) and as a way to

represent missing data. To explain how dummy coding works, consider the drive feature

from the vehicles dataset. Let’s assume that we have only three values for this feature,

coded as follows:

Drive Code

Front-Wheel Drive 1
Rear-Wheel Drive 2
All-Wheel Drive 3

Using dichotomous values coded as 0 or 1, we could represent the feature values

as follows:

Drive Front-Wheel Drive Rear-Wheel Drive All-Wheel Drive

Front-Wheel Drive 1 0 0
Rear-Wheel Drive 0 1 0
All-Wheel Drive 0 0 1

Practical Machine Learning in R90

This way of representing the data is known as full dummy coding. This is also some-

times called one-hot encoding. Notice that instead of the one original variable, we now

have n variables, where n represents the number of class levels for the original variable.

On close observation, we notice that there is some redundancy to this approach. For

example, we know that a vehicle that is neither Front-Wheel Drive nor Rear-Wheel Drive

is All-Wheel Drive. Therefore, we do not need to explicitly code for All-Wheel Drive. We

could represent the same data as follows:

Drive Front-Wheel Drive Rear-Wheel Drive

Front-Wheel Drive 1 0
Rear-Wheel Drive 0 1
All-Wheel Drive 0 0

This approach means that we only need n 1 variables to dummy code a variable with

n class levels. In this example, we chose to not explicitly code All-Wheel Drive. This is

called the baseline. We could have also chosen to exclude Front-Wheel Drive or Rear-

Wheel Drive instead. The choice of which value to use as the baseline is often arbitrary

or dependent on the question that a user is trying to answer. For example, if we wanted

to evaluate the impact on CO2 emissions of going from a four-wheel drive car to a two-

wheel drive car, it makes sense to use the All-Wheel Drive value as a baseline when

training a regression model. In this scenario, the coefficients of the regression model

provide us with useful insight into the marginal change in emissions when we go from a

four-wheel drive car to a two-wheel drive car. It’s okay if this doesn’t quite make sense at

this stage. We discuss regression, model coefficients, and the use of baseline values in

more detail in Chapters 4 and 5.

We can do dummy coding in R using the dummies package. The package provides

us with a function called dummy.data.frame() to accomplish this. To illustrate how to

dummy code in R, we use the vehicles dataset once again and attempt to dummy code

the drive feature to get results similar to our conceptual example in the previous para-

graphs. Note that the drive feature currently has more than three values.

> vehicles %>%
 select(drive) %>%
 summary()

 drive
 2-Wheel Drive : 491
 Rear-Wheel Drive :13194
 All-Wheel Drive : 8871
 Front-Wheel Drive:13074
 4-Wheel Drive : 1349

91Chapter 3: Managing Data

To simplify our illustration, we will recode the 2-Wheel Drive vehicles to Front-Wheel

Drive and recode 4-Wheel Drive vehicles to All-Wheel Drive. Instead of overwriting our

original dataset, we create a copy of the vehicles dataset, which we call vehicles2.

We also create a copy of the drive feature, which we call drive2. The values for drive2

are recoded from drive using the recode() function from the dplyr package (which is

loaded as part of the tidyverse package).

> library(tidyverse)
> vehicles2 <- vehicles %>%
 mutate(drive2 = recode(drive, "2-Wheel Drive" = "Front-Wheel Drive")) %>%
 mutate(drive2 = recode(drive2, "4-Wheel Drive" = "All-Wheel Drive")) %>%
 select(drive, drive2)

Descriptive statistics for the duplicate dataset (vehicles2) show that we now have

only three values for the drive2 feature.

> head(vehicles2)

A tibble: 6 x 2
 drive drive2
 <fct> <fct>
1 2-Wheel Drive Front-Wheel Drive
2 2-Wheel Drive Front-Wheel Drive
3 2-Wheel Drive Front-Wheel Drive
4 Rear-Wheel Drive Rear-Wheel Drive
5 Rear-Wheel Drive Rear-Wheel Drive
6 Rear-Wheel Drive Rear-Wheel Drive

> summary(vehicles2)

 drive drive2
 2-Wheel Drive : 491 Front-Wheel Drive:13565
 Rear-Wheel Drive :13194 Rear-Wheel Drive :13194
 All-Wheel Drive : 8871 All-Wheel Drive :10220
 Front-Wheel Drive:13074
 4-Wheel Drive : 1349

We are now ready to dummy code the drive2 feature. However, before we do so, we

learn from the documentation provided for the dummy.data.frame() function that the

input dataset for this function has to be a data frame. Using the data.frame() base R

function, we make it one.

vehicles2 <- data.frame(vehicles2)

Practical Machine Learning in R92

Then, we use the dummy.data.frame() function to dummy code the drive2 feature.

We pass three arguments to the function. The first (data) is the input dataset. The sec-

ond argument (names) is the column name for the feature we intend to dummy code.

The third argument (sep) is the character used between the name of the feature and the

feature value to create a new column name.

> library(dummies)
> vehicles2 <- dummy.data.frame(data = vehicles2, names = "drive2", sep
= "_")

A preview of our dataset shows that the drive2 feature is now dummy coded as three

new features.

> head(vehicles2)

 drive drive2_Front-Wheel Drive drive2_Rear-Wheel Drive drive2_All-Wheel Drive
1 2-Wheel Drive 1 0 0
2 2-Wheel Drive 1 0 0
3 2-Wheel Drive 1 0 0
4 Rear-Wheel Drive 0 1 0
5 Rear-Wheel Drive 0 1 0
6 Rear-Wheel Drive 0 1 0

Reducing the Data
Prior to the model build process, we sometimes find that the data is too large or too

complex to use in its current form. As a result, we sometimes have to reduce the number

of observations, the number of variables, or both, before we proceed with the machine

learning process. In the following sections, we discuss some of the most popular

approaches to data reduction.

Sampling
Given an observed dataset, sampling is the process of selecting a subset of the rows in

the dataset as a proxy for the whole. In statistical terms, the original dataset is known as

the population, while the selected subset is known as the sample. In supervised machine

learning, sampling is often used as a means to generate our training and test datasets.

There are two common approaches to this. They are simple random sampling and strati-

fied random sampling.

93Chapter 3: Managing Data

Simple Random Sampling
The simple random sampling process involves randomly selecting n instances from an

unordered set of N instances, where n is the sample size and N is the population size.

There are two major approaches to simple random sampling. The first approach assumes

that whenever an instance is selected for the sample, it cannot be chosen again. This

is known as random sampling without replacement. To help illustrate how this approach

works, let’s consider a bag of 100 colored marbles and assume that we intend to ran-

domly select 20 of these marbles to create a sample. To do so, we dip into the bag 20

different times. Each time, we select one random marble, make note of the color of the

marble, and drop it into a second bag. The tally of the marbles selected over all the itera-

tions represents the sample. With this approach, the first time we dip into the bag, the

probability of selecting a particular marble is
1

100
. However, the second time we dip into

the bag, because we placed the previously selected marble into a second bag, the

probability of selecting a particular marble will now be
1

99
. For subsequent iterations, the

probability of selecting a particular marble will be
1

98
,

1

97
,

1

96
, . . ., and so on. The

probability of selecting a particular marble increases with each subsequent iteration.

The second approach to simple random sampling assumes that an instance can be

selected multiple times during the sampling process. This is known as random sampling

with replacement. Let’s use the same 100 colored marbles from the previous example to

illustrate how this approach works. Just like before, we also dip into the bag 20 different

times to create our sample, with one notable difference. This time, we select one random

marble, make note of the color of the marble, and then return the selected marble into

the bag (instead of dropping it into a second bag). With this approach, because we return

the selected marble into the original bag, the probability of selecting a particular marble

remains the same (
1

100
) across all iterations. This approach to sampling is also known as

bootstrapping and forms the basis for a popular method used in evaluating the future

performance of a model. We discuss this in more detail in Chapter 9.

To do simple random sampling in R, we use the sample() base R function. Let’s say

we want to generate a sample of 20 numbers between 1 and 100. To do this, we pass

three arguments to the sample() function. The first argument is the number of items to

choose from. We set this to 100, which is the population size. The second argument is the

number of items to choose. This, we set to 20, which is the sample size. The final argu-

ment specifies whether the sampling should be done with or without replacement. This

time we set the argument to replace = FALSE, which indicates that we intend to do

simple random sampling without replacement.

Practical Machine Learning in R94

> set.seed(1234)
> sample(100, 20, replace = FALSE)

 [1] 28 80 22 9 5 38 16 4 86 90 70 79 78 14 56 62 93 84 21 40

Note that we called another base R function before the sample() function—set

.seed(1234). This function sets the seed for the random number generation engine in

R. By setting the seed as 1234, we guarantee that whenever we run the random sampling

code, we get the same set of random numbers. The seed value, 1234 in this case, is arbi-

trary and could be any integer value. The important thing is that the same random num-

bers will be generated whenever we use this seed. A different seed will yield a different

set of random numbers. We will use the set.seed() function extensively in the rest of

the book, whenever we intend to run code that depends on the generation of random

numbers. This allows the reader to replicate the results from the text.

Now that we understand how to do simple random sampling without replacement in

R, we can easily do simple random sampling with replacement by setting the replace

argument in the sample() function to TRUE.

> set.seed(1234)
> sample(100, 20, replace = TRUE)

 [1] 28 80 22 9 5 38 16 4 98 86 90 70 79 78 14 56 62 4 4 21

Note that this time, we have some duplicates in our sample. For example, we have

three occurrences of the number 4.

As we mentioned earlier, sampling is often used in machine learning to split the origi-

nal data into training and test datasets prior to the modeling process. To do so, we use

the simple random sampling without replacement technique to generate what we call a

sample set vector. This is simply a list of integer values that represent the row numbers in

the original dataset. Using our vehicles dataset as an example, we know that it consists

of 36 979, instances. This is the population size. Let’s assume that we intend to split the

data such that 75 percent of the data is used for the training set and 25 percent for the

test set. To do so, we first need to generate a sample set vector of 27 734 0 75 36979, .

numbers that represent the rows of the original data, which we will use as the training

set. Using the sample() function, we do this as follows:

> set.seed(1234)
> sample_set <- sample(36979, 27734, replace = FALSE)

95Chapter 3: Managing Data

The sample_set object now has 27 734, numbers, as we can see from the global envi-

ronment window in RStudio. In this example, we explicitly specified the values for the

population size and the sample size. Instead of doing this, we could have also used the

nrow() function to get the number of rows of the vehicles dataset and set that as the

population size in the sample() function. Using this same approach, the sample size

would then be specified as nrow(vehicles) * 0.75.

> set.seed(1234)
> sample_set <- sample(nrow(vehicles), nrow(vehicles) * 0.75, replace =
FALSE)

Now, we can select the rows of the vehicles dataset that are represented in the sam-

ple set vector as our training set. This is specified as vehicles[sample_set,].

> vehicles_train <- vehicles[sample_set,]
> vehicles_train

A tibble: 27,734 x 12
 citympg cylinders displacement drive highwaympg make model class
 <dbl> <dbl> <dbl> <fct> <dbl> <fct> <fct> <fct>
 1 23 4 1.9 Fron... 31 Satu... SW Comp...
 2 14 8 4.2 All-... 23 Audi R8 Two ...
 3 15 8 5.3 4-Wh... 22 GMC Yuko... Spor...
 4 25 4 1.9 Fron... 36 Satu... SC Subc...
 5 17 6 2.5 Fron... 26 Ford Cont... Comp...
 6 17 6 3.8 Fron... 27 Chev... Mont... Mids...
 7 20 4 2 Fron... 22 Plym... Colt... Comp...
 8 10 8 5.2 All-... 15 Dodge W100... Pick...
 9 22 4 1.6 Rear... 26 Suzu... Vita... Spor...
10 17 6 4 Rear... 22 Niss... Fron... Pick...
... with 27,724 more rows, and 4 more variables: year <fct>,
transmissiontype <fct>, transmissionspeeds <dbl>,
co2emissions <dbl>

To select the rows of the vehicles dataset that are not represented in the sample

set vector, we specify this as vehicles[-sample_set,]. These instances make up

our test set.

> vehicles_test <- vehicles[-sample_set,]
> vehicles_test

Practical Machine Learning in R96

A tibble: 9,245 x 12
 citympg cylinders displacement drive highwaympg make model class
 <dbl> <dbl> <dbl> <fct> <dbl> <fct> <fct> <fct>
 1 14 8 4.1 Rear... 19 Cadi... Brou... Larg...
 2 18 8 5.7 Rear... 26 Cadi... Brou... Larg...
 3 19 4 2.6 2-Wh... 20 Mits... Truc... Pick...
 4 18 4 2 2-Wh... 20 Mazda B200... Pick...
 5 23 4 2.2 2-Wh... 24 Isuzu Pick... Pick...
 6 18 4 2 2-Wh... 24 GMC S15 ... Pick...
 7 21 4 2 2-Wh... 29 Chev... S10 ... Pick...
 8 19 4 2 2-Wh... 25 Chev... S10 ... Pick...
 9 26 4 2.2 2-Wh... 31 Chev... S10 ... Pick...
10 21 4 2.2 2-Wh... 28 Dodge Ramp... Pick...
... with 9,235 more rows, and 4 more variables: year <fct>,
transmissiontype <fct>, transmissionspeeds <dbl>,
co2emissions <dbl>

Now we have two new objects that represent our training and test sets—a

27 734, -sample dataset called vehicles_train and a 9 245, -sample dataset called

vehicles_test.

Stratified Random Sampling
Stratified random sampling is a modification of the simple random sampling approach

that ensures that the distribution of feature values within the sample matches the dis-

tribution of values for the same feature in the overall population. To accomplish this,

the instances in the original data (the population) are first divided into homogenous

subgroups, known as strata. Then the instances are randomly sampled within each

stratum. The membership of an instance within a stratum is based on its shared attribute

with other instances within the stratum. For example, using color for stratification, all

instances within the blue stratum will have a color attribute of blue.

To illustrate how stratified random sampling works, let’s once again consider the

previous example of a bag with 100 colored marbles. This time, we assume that of the

100 marbles, 50 of them are blue, 30 are red, and 20 of them are yellow. To generate a

stratified sample of 20 marbles based on color from the original set, we would first need

to group the marbles into three strata by color and then randomly sample from each

stratum. Since 20 is a fifth of the population, we would need to also sample a fifth of the

marbles in each strata. This means that for the blue stratum, we sample
1

5
50 10

marbles. For the red stratum, we sample
1

5
30 6 marbles. And for the yellow stratum,

we sample
1

5
20 4 marbles. This gives us a total of 20 marbles that maintain the same

color distribution as the population.

97Chapter 3: Managing Data

There are several R packages that provide functions for stratified random sampling.

One such package is the caTools package. Within this package is a function called

 sample.split() that allows us to generate stratified random samples from a dataset.

To illustrate how this function works, we will generate a stratified random sample

from the vehicles dataset using the drive feature for stratification. Before we begin,

let’s note the proportional distribution of values for the drive feature in the vehi-

cles dataset.

> vehicles %>%
 select(drive) %>%
 table() %>%
 prop.table()
.
 2-Wheel Drive Rear-Wheel Drive All-Wheel Drive
 0.01327781 0.35679710 0.23989291
Front-Wheel Drive 4-Wheel Drive
 0.35355202 0.03648016

Now, let’s assume that we intend to select 1 percent of the data for our sample. Using

the simple random sampling approach, the proportional distribution of values for the

drive feature would be as follows:

> set.seed(1234)
> sample_set <- sample(nrow(vehicles), nrow(vehicles) * 0.01, replace =
FALSE)
> vehicles_simple <- vehicles[sample_set,]
> vehicles_simple %>%
 select(drive) %>%
 table() %>%
 prop.table()
.
 2-Wheel Drive Rear-Wheel Drive All-Wheel Drive
 0.008130081 0.344173442 0.260162602
Front-Wheel Drive 4-Wheel Drive
 0.349593496 0.037940379

Note that while the proportional distributions are close to those of the original data-

set, they are not quite the same. For example, the distribution for 2-Wheel Drive cars

in the original dataset is 1 3. percent, but 0 8. percent in the sample dataset. To ensure

that the distribution of values for the drive in the sample are as close as possible to

that of the original dataset, we need to stratify the dataset using the drive feature and

random sample from each stratum. This is where the sample.split() function from the

Practical Machine Learning in R98

caTools package comes in. We pass two arguments to the function. The first is the fea-

ture that we intend to use for stratification. In our case, that would be vehicles$drive.

The second argument specifies how much of the original data should be used to create

the sample (SplitRatio). Since we intend to use 1 percent of the data for the sample,

we set this value to 0 01. .

> library(caTools)
> set.seed(1234)
> sample_set <- sample.split(vehicles$drive, SplitRatio = 0.01)

Similar to the sample() function, the sample.split() function returns a sample

set vector. However, this vector does not list the row numbers that are to be selected.

Instead, the vector is a logical vector of the same size as the original data with elements

(which represent instances) that are to be selected, set as TRUE, and those that are not,

set to FALSE. As a result, we use the subset() function to select the rows that corre-

spond to TRUE for the sample.

> vehicles_stratified <- subset(vehicles, sample_set == TRUE)

Now, let’s take a look at the proportional distribution of values for the drive feature

in the sample.

> vehicles_stratified %>%
 select(drive) %>%
 table() %>%
 prop.table()
.
 2-Wheel Drive Rear-Wheel Drive All-Wheel Drive
 0.01351351 0.35675676 0.24054054
Front-Wheel Drive 4-Wheel Drive
 0.35405405 0.03513514

We can see that the proportional distribution of values for the drive feature is now

much closer to those of the original dataset. This is the value of stratified random sam-

pling. In practice, stratified random sampling is often used in creating the test dataset

that is used to evaluate a classification model on highly imbalanced data. In such a sce-

nario, it is important for the test data to closely mimic the class imbalance present in the

observed data.

99Chapter 3: Managing Data

Dimensionality Reduction
As the name suggests, dimensionality reduction is simply the reduction in the number of

features (dimensions) of a dataset prior to training a model. Dimensionality reduction is

an important step in the machine learning process because it helps reduce the time and

storage required to process data, improves data visualization and model interpretability,

and helps avoid the phenomenon known as the curse of dimensionality. There are two

major approaches to dimensionality reduction: feature selection and feature extraction.

Feature Selection
The idea behind feature selection (or variable subset selection) is to identify the mini-

mal set of features that result in a model with performance reasonably close to that

obtained by a model trained on all the features. The assumption with feature selection

is that some of the independent variables are either redundant or irrelevant and can be

removed without having much of an impact on the performance of the model. For most

of the machine learning approaches we introduce in the rest of the text, we will perform

feature selection to some extent as part of data preparation.

Feature Extraction
Feature extraction, which is also known as feature projection, is the use of a mathemati-

cal function to transform high-dimensional data into lower dimensions. Unlike with fea-

ture selection, where the final set of features is a subset of the original ones, the feature

extraction process results in a final set of features that are completely different from

the original set. These new features are used in place of the original ones. While feature

extraction is an efficient approach to dimensionality reduction, it does present one nota-

ble disadvantage—the values for the newly created features are not easy to interpret

and may not make much sense to the user. Two of the most popular feature extraction

techniques are principal component analysis (PCA) and non-negative matrix factorization

The Curse of Dimensionality
The curse of dimensionality is a phenomenon in machine learning that describes
the eventual reduction in the performance of a model as the number of features
(dimensions) used to build it increase without a sufficient corresponding increase in
the number of examples.

Practical Machine Learning in R100

(NMF). The mechanics of how these two approaches work is beyond the scope of this

book. For readers interested in a more detailed explanation, we refer you to the book

The Elements of Statistical Learning by Trevor Hastie, et al.

EXERCISES
1. For all manual transmission vehicles in the vehicles dataset, list the descriptive sta-

tistics for the drive, make, model, and class variables only.

2. Using the min-max normalization approach, normalize the values of the co2emissions

variable in the vehicles dataset so that they fall between the values of 1 and 10. Show

the descriptive statistics for the original and normalized variables.

3. In the vehicles dataset, discretize the co2emissions variable using the High value

for emission levels at or above 500 grams per mile and Low for emission levels below

this mark. Using the discretized variable for the strata, generate a stratified random

sample of 2 percent of the dataset. Show the proportional distribution of values for

the discretized variable for the original population and for the sample.

P A R T I I

Regression

Chapter 4: Linear Regression

Chapter 5: Logistic Regression

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Chapter 4

Linear Regression

In the previous three chapters, we introduced the fundamental

ideas behind machine learning, the statistical modeling tool that

we utilize in this text (R and RStudio), and how to manage data

for the machine learning process. In this chapter, we introduce

the first of the supervised machine learning approaches we cover

in this book. It is an approach that is used to generate a numeric

prediction in situations when we want to answer questions such

as the amount of revenue that would be generated by a potential

customer based on the type and amount of money spent on

advertising, the number of bicycles that might be rented on a

particular day based on weather patterns, or the blood pressure of

a particular patient based on other characteristics. This approach is

known as regression.

Regression techniques are a category of machine learning

algorithms that seek to predict a numeric response by quantifying

the size and strength of the relationship between numerical values.

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R104

In this chapter, we introduce linear regression as a supervised

learning method that attempts to use the observed data to fit a

linear predictor function that estimates unobserved data.

By the end of this chapter, you will have learned the following:

 ◆ The underlying statistical principles behind simple and mul-

tiple linear regression

 ◆ How to fit a simple linear regression model using R

 ◆ How to evaluate, interpret, and apply the results of a simple

linear regression model

 ◆ How to extend the problem statement to include more than

one predictor variable and fit a multiple linear regression

model using R

 ◆ How to evaluate, interpret, improve upon, and apply the

results of a multiple linear regression model

 ◆ Some of the strengths and weaknesses of both simple and

multiple linear regression

BICYCLE RENTALS AND REGRESSION
As we explore linear regression in this chapter, we will use a real-world example to

support our study. Our dataset comes from Capital Bike Share, a bike rental program

providing service to the Washington, D.C.,area. The dataset that we will use is available

to you as part of the electronic resources accompanying this book. (See the introduc-

tion for more information on accessing the electronic resources.) It includes daily bicycle

rental information for the two-year period from 2011–2012.

Imagine that we were hired by the mayor’s office in Washington, D.C., to help them

deal with a growing traffic congestion problem. The city introduced a low-cost bike-

sharing program in an attempt to reduce the number of cars on the roads. However,

105Chapter 4: Linear Regression

after some early successes, the city has started to receive an increasing number of com-

plaints about bike shortages on certain days and an oversupply of bikes on other days.

In an attempt to address the problem, the city decided to partner with a national bike

rental company to manage the supply of bikes to the city. As part of the partnership

agreement, the city will need to provide to the bike rental company daily estimates of

demand for the entire city. Since the inception of the program, the city has collected

information on the number of bikes rented daily, along with corresponding weather and

seasonal data.

The dataset includes several weather-related variables for our analysis:

 • temperature is the average daily air temperature in degrees Fahrenheit.

 • humidity is the average daily humidity, expressed as a decimal number ranging

from 0.0 to 1.0.

 • windspeed is the average daily wind speed, in miles per hour.

 • realfeel is a measurement derived from temperature, humidity, cloud cover, and

other weather factors to describe the temperature perceived by a person out-

doors. It is measured in degrees Fahrenheit.

 • weather is a categorical variable used to describe the weather conditions, using

the following scale:

 • 1: Clear or partly cloudy

 • 2: Light precipitation

 • 3: Heavy precipitation

In addition to this weather information, we also have some variables that describe

characteristics of each day. These include the following:

 • date is the calendar day described in each instance, including the day,

month, and year.

 • season is the calendar season for the record, expressed as follows:

 • 1: winter

 • 2: spring

 • 3: summer

 • 4: fall

 • weekday is the day of the week for the record, expressed as an integer ranging

from 0 (Sunday) through 6 (Saturday).

 • holiday is a binary variable that is 1 if the day was a holiday and 0 otherwise.

Practical Machine Learning in R106

Finally, the dataset includes a variable called rentals that describes the number of

bicycle rental transactions that occurred during the given day. As consultants to the

mayor, our task is to use this observed data to develop a model that predicts the daily

demand for bike rentals across the entire city based upon some or all of the other pro-

vided characteristics. This will help potential partners predict the demand for bicycles on

a given day, allowing them to both forecast revenue and ensure that sufficient bicycles

are on the street to meet rider demand.

Given the problem and the data provided, some of the questions we need to answer

include the following:

 • Is there a relationship between the number of bike rentals and any of the other

variables?

 • If there is a relationship, how strong is it?

 • Is the relationship linear?

 • If the relationship is linear, how well can we quantify the effect of a variable on

the number of bike rentals?

 • How accurately can we predict the number of bike rentals given future values for

each of the relevant variables?

By the end of this chapter, we will have answered each of these questions using linear

regression and related techniques.

RELATIONSHIPS BETWEEN VARIABLES
To begin answering the questions about bicycle rentals that we posed in the previous

section, we need to understand our data and how each variable relates to the other. Our

stated business problem is to be able to effectively predict the number of bike rentals

across the city on a given day. To do this, we must understand what factors lead to either

an increase in rentals or a decrease in rentals. Therefore, we should first evaluate and

quantify the relationship between rentals and the other variables in our dataset.

Correlation
Correlation is a statistical term used to describe and quantify the relationship between

two variables. It provides a single numeric value of the relationship between the var-

iables, which is known as the correlation coefficient. There are several approaches to

measuring correlation; however, for linear relationships, Pearson’s correlation coefficient

is the most commonly used.

107Chapter 4: Linear Regression

Mathematically, the Pearson correlation coefficient (ρ) between two random vari-

ables x and y is denoted as follows:

,

,
x y

x y

Cov x y

 (4.1)

where C x yov , is the covariance of x; y, x is the standard deviation of x; and y is the

standard deviation of y. The values of Pearson’s correlation coefficient range from -1

to +1, with larger absolute values indicating a strong relationship between variables

and smaller absolute numbers indicating a weak relationship. Negative coefficients

imply an inverse relationship between the two variables. In other words, as one vari-

able increases, the other decreases and vice versa. Inversely, positive coefficients imply

that as one variable increases, the other also increases. A common rule of thumb when

interpreting the strength of a Pearson correlation coefficient between two variables is

to view absolute coefficient values of 0 to 0.3 as nonexistent to weak, above 0.3 to 0.5 as

moderate, and above 0.5 as strong.

Statistics Refresher
Did all that talk of covariance and standard deviations send your head spinning?
If it’s been a while since you last took a statistics course, here’s a brief refresher on
those terms.

The standard deviation of a variable is a measurement of the amount of
variability present. It is measured in the same units as the variable itself and
tells us how spread out the instances of the variable are from the mean. If the
standard deviation is low, the data points tend to be close to the mean, while a
high standard deviation tells us to expect data points that are relatively far from
the mean. The standard deviation of a variable is normally expressed using the
lowercase Greek letter sigma (σ), with the name of the variable as a subscript. So,
we would note the standard deviation of a variable x as σx.

The covariance between two variables measures their joint variability. This is
a measure of how strong the relationship is between those two variables, or how
much one variable is likely to change in response to a change in the other variable.
Covariance values range from -∞ to ∞ and will change if the unit of measurement
for the variables is changed. We express the covariance of two variables, x and y,
using the notation Cov(x,y).

The correlation between two variables is a normalized version of covariance. It
also describes the relationship between two variables, but the correlation is scaled
to fit in a range of -1 to 1. Because it is normalized, the correlation value will not

(Continued)

Practical Machine Learning in R108

Now, let’s take a look at our bicycle rental dataset and see if we can quantify the rela-

tionship between rentals and some of the other variables using Pearson’s correlation

coefficient. Figure 4.1 shows scatterplots comparing rentals to each of three other var-

iables (humidity, windspeed, and temperature). All three plots show that there seems

to be some sort of relationship between each variable and rentals. We can observe

these relationships by examining the shapes of the scatterplots.

Let’s begin with temperature. The plot of rentals versus temperature shows a strong

relationship between those variables. Beginning with chilly temperatures in the 20s,

bicycle rentals are low. They steadily increase as the temperature warms, until we reach

a point where rentals start to drop off on excessively hot days. Or, to use the language of

statistics, there is a strong positive correlation between temperature and rentals when

2500

0
0.00 0.25 0.50

humidity

re
nt

al
s

0.75 1.00

7500

5000

2500

0
0 5 10

windspeed

re
nt

al
s

15 20

7500

5000

2500

0
20 40 60

temperature

re
nt

al
s

80

7500

5000

Figure 4.1 Scatterplots illustrating the relationship between the dependent vari-
able, rentals, and each of the three independent variables: humidity, windspeed,
and temperature

change when the unit of measurement changes. There are several different ways
to measure correlation, but we will use Pearson’s correlation coefficient, which is
described using the lowercase Greek letter rho (ρ). The Pearson’s correlation for the
two variables, x and y, is therefore expressed as ρx,y.

Pearson’s correlation seeks to normalize covariance values by taking into
account the degree of variability that occurs in each of the variables. To do this, it
first computes the covariance between the two variables and then divides that
value by the product of each variable’s standard deviation, giving us the formula
shown in Equation 4.1.

If you’d like to explore these concepts in more detail, you should consult
any statistics textbook. Fortunately, we won’t need to compute them by hand,
because R can easily perform those calculations for us. The important concept
that you should take away from this section is an understanding of what these
terms describe.

109Chapter 4: Linear Regression

temperature is less than 70 degrees and then a moderate negative correlation when tem-

perature is above 70 degrees. That makes sense intuitively: a 70-degree day sounds like a

beautiful day for a bike ride!

The relationships between humidity and rentals and windspeed and rentals are

not as strong, however. We do note a slight negative correlation for extreme values of

both weather attributes. Rentals begin to drop off when humidity exceeds 75 percent or

windspeed exceeds 10 miles per hour.

While visual inspection gives us a sense of the strength of the relationships between

these variables, it only allows us to describe those relationships in imprecise terms, such

as “slight negative correlation” or “strong positive correlation.” Visual inspection does

not allow us to quantify the strength of those relationships. That’s where Pearson’s cor-

relation coefficient can help. We’ll compute that using R.

First, we need to load in the dataset. For our discussions here, we’ll load datasets as if

they were stored in the current working directory. For more information on options for

loading datasets, see the introduction. Here’s the code to load the dataset:

> library(tidyverse)
> bikes <- read_csv("bikes.csv")

Once we have the dataset loaded, let’s try calculating some of these statistical values.

We’ll begin by calculating the covariance of humidity and rentals by using R’s build-in

cov() function.

> cov(bikes$humidity, bikes$rentals)

[1] -27.77323

This tells us that the covariance between humidity and rentals is -27.77. Similarly,

we can calculate the standard deviations of both variables using R’s sd() function.

> sd(bikes$humidity)

[1] 0.1424291

> sd(bikes$rentals)

[1] 1937.211

Remember that standard deviation is measured in the same units as the original vari-

able, so the standard deviation of humidity is 14.2 percent, while the standard deviation

of bicycle rentals is 1937.2 rentals.

We can then compute Pearson’s correlation coefficient by writing the formula in

Equation 4.1 as R code.

Practical Machine Learning in R110

> pearson <- cov(bikes$humidity, bikes$rentals) /
 (sd(bikes$humidity) * sd(bikes$rentals))

> pearson

[1] -0.1006586

That’s the hard way of performing this calculation. R saves us the steps of calculating

the covariance and standard deviations ourselves by providing the cor() function that

calculates the Pearson’s correlation coefficient for two random variables directly.

> cor(bikes$humidity, bikes$rentals)

[1] -0.1006586

Our results show that the Pearson correlation for humidity and rentals (
humidity rentals,

)

is -0.1006586. Remember, the values for Pearson’s coefficient range from -1 (a strong

negative correlation) to 1 (a strong positive correlation), so we can draw the conclu-

sion from this value that there is a weak negative correlation between humidity and

rentals. Let’s take a look at the Pearson correlation between rentals and the other two

variables (windspeed and temperature).

> cor(bikes$windspeed, bikes$rentals)

[1] -0.234545

> cor(bikes$temperature, bikes$rentals)

[1] 0.627494

Our initial assumptions about the relationships between rentals and the three other

variables are confirmed by the Pearson correlation coefficients. The correlation between

rentals and windspeed of -0.234545 implies a weak negative correlation. However, the

correlation between temperature and rentals of 0.627494 implies a strong positive

correlation.

So what do these results mean for our business problem? The first question we asked

was “Is there a relationship between the number of bike rentals and any of the other

variables?” Based on our results, the answer is “yes.” The Pearson correlation coefficient

shows that there are relationships between rentals and the three other variables that

we evaluated.

The second question we asked is “If there is a relationship, how strong is it?” This

question is answered by looking at the absolute values of the correlation coefficients.

111Chapter 4: Linear Regression

The weakest relationship is between rentals and humidity, whereas the strongest

relationship is between rentals and temperature.

The third question we asked is “Is the relationship linear?” We don’t yet have enough

information to answer this question. The Pearson coefficient simply tells us the strength

of a correlation, but not the nature of that correlation. If we want to describe the rela-

tionship in greater detail, we’ll need to use a more robust approach that takes other

factors into account to evaluate how good of a linear model we can create between two

or more variables. Linear regression is one such approach.

Visualizing Correlations with corrplot
Humans are visual creatures, and we’re predisposed to interpret data better when
it’s presented to us in a visual form rather than as a series of numbers. The corrplot
package in R provides an excellent way to visualize correlation data. For example,
here is a table showing the Pearson’s correlation coefficients for data elements in the
bicycle rental dataset:

 season holiday weekday weather temperature
season 1.000000000 -0.010536659 -0.0030798813 0.01921103 0.3343148564
holiday -0.010536659 1.000000000 -0.1019602689 -0.03462684 -0.0285555350
weekday -0.003079881 -0.101960269 1.0000000000 0.03108747 -0.0001699624
weather 0.019211028 -0.034626841 0.0310874694 1.00000000 -0.1206022365
temperature 0.334314856 -0.028555535 -0.0001699624 -0.12060224 1.0000000000
realfeel 0.342875613 -0.032506692 -0.0075371318 -0.12158335 0.9917015532
humidity 0.205444765 -0.015937479 -0.0522321004 0.59104460 0.1269629390
windspeed -0.229046337 0.006291507 0.0142821241 0.03951106 -0.1579441204
rentals 0.406100371 -0.068347716 0.0674434124 -0.29739124 0.6274940090

 realfeel humidity windspeed rentals
season 0.342875613 0.20544476 -0.229046337 0.40610037
holiday -0.032506692 -0.01593748 0.006291507 -0.06834772
weekday -0.007537132 -0.05223210 0.014282124 0.06744341
weather -0.121583354 0.59104460 0.039511059 -0.29739124
temperature 0.991701553 0.12696294 -0.157944120 0.62749401
realfeel 1.000000000 0.13998806 -0.183642967 0.63106570
humidity 0.139988060 1.00000000 -0.248489099 -0.10065856
windspeed -0.183642967 -0.24848910 1.000000000 -0.23454500
rentals 0.631065700 -0.10065856 -0.234544997 1.00000000

Take a quick look at that table and identify the variables with the strongest
positive and negative correlation.

(Continued)

Practical Machine Learning in R112

That’s not so easy, is it? We’re simply not well-suited to that type of analysis.
Now let’s take a look at this data in visual form, using the corrplot package. First,
we create a subset of our dataset that removes the non-numeric date values.

> bikenumeric <- bikes %>%
 select(-date)

Next, we compute the table of correlation coefficients shown previously using
the cor() function.

> bike_correlations <- cor(bikenumeric)

Finally, we visualize these correlations using the corrplot function.

> corrplot(bike_correlations)

This gives us the visualization shown here:

season

holiday

weekday

weather

temperature

realfeel

humidity

windspeed

rentals

se
as

on

ho
lid

ay

w
ee

kd
ay

w
ea

th
er

te
m

pe
ra

tu
r e

re
al

fe
el

hu
m

id
ity

w
in

ds
pe

ed

re
nt

al
s

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

This visualization is far easier to interpret than the table of numeric data. To
find the correlation between two variables, find the cell corresponding to the
intersection of the row and column for each variable. The size of the circle and
intensity of the color in that cell correspond to the strength of the correlation, or
the absolute value of the correlation coefficient for the two variables. Positive
correlations are coded in blue, while negative correlations are coded in red.

113Chapter 4: Linear Regression

Looking at this visualization, we can quickly see that the strongest positive
correlation is between temperature and realfeel. This makes sense. As measured
temperature rises, the perceived temperature also rises. The strongest negative
correlation is between weather and rentals, which also makes intuitive sense.
Higher values of the weather variable correspond to worsening weather conditions,
and as weather conditions get worse, rentals go down.

You probably noticed that the correlation visualization is symmetric around
the diagonal. This is because there is no order to the variables when computing
correlation. The correlation between A and B is the same as the correlation
between B and A. We can choose to simplify our visualization by showing only the
coefficients above the diagonal using the type=“upper” argument to corrplot().

corrplot(bike_correlations, type="upper")

season

holiday

weekday

weather

temperature

realfeel

humidity

windspeed

rentals

se
as

on

ho
lid

ay

w
ee

kd
ay

w
ea

th
er

te
m

pe
ra

tu
r e

re
al

fe
el

hu
m

id
ity

w
in

ds
pe

ed

re
nt

al
s

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

That matrix is a little easier to read.
You also may note that it becomes difficult to discern small differences

between variables. You might want to develop a visualization that allows you
to quickly see the differences between variables, but also provides the detailed
coefficient information. The corrplot.mixed() function provides this visualization:

corrplot.mixed(bike_correlations)

(Continued)

Practical Machine Learning in R114

Regression
Regression analysis is a family of statistical methods that are used to model complex

numerical relationships between variables. In general, regression analysis involves three

key components.

 • A single numeric dependent variable, which represents the value or values that we

want to predict. This variable is known as the response variable (Y).

 • One or more independent numeric variables (X) that we believe we can use to pre-

dict the response variable. These variables are known as the predictors.

 • Coefficients (β), which describe the relationships between the predictors and the

response variable. We don’t know these values going into the analysis and use

regression techniques to estimate them. The coefficients are what constitute the

regression model.

The relationship between these three components is represented using a function that

maps from the independent variable space to the dependent variable space in the form.

 Y f X , (4.2)

This can be read as stating that the response variable Y is approximately modeled as a

function 𝑓, where 𝑓 is an estimated function that quantifies the interaction between the

observed predictors X and a set of coefficients β. The goal of regression is to identify the

values for β that best estimate the values for Y based on the observed values of X. See

Figure 4.2.

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

season

0.99

0.59

0.63

0.33

–0.03

–0.03

–0.1

0.03

0.03

0.03

0.02

0.02

0.01

0.01

0.34

0.21 0.140.13

0.04–0.23

–0.07 –0.3

–0.05

–0.16

–0.1

–0.12

–0.12

–0.18 –0.25

–0.230.070.41 0.63

holiday

weekday

weather

temperature

realfeel

humidity

windspeed

rentals

115Chapter 4: Linear Regression

SIMPLE LINEAR REGRESSION
Linear regression is a subset of regression that assumes that the relationship between

the predictor variables X and the response variable Y is linear. In cases where we

have only a single predictor variable, we can write the regression equation using the

slope-intercept format.

 0 1,Y f X X (4.3)

Here, both β0 and β1 are unknown parameters that represent the intercept and slope,

respectively. β1 is the expected increase in Y for each unit increase in X, while β0 is the

expected value for Y when X = 0. This approach of using a single dependent variable to

predict the dependent variable is known as simple linear regression.

In a more specific case, imagine that for our bike rentals data, we want to model the

relationship between temperature and rentals using simple linear regression. We could

rewrite Equation 4.3 as follows:

 rentals f temperature temperature,
0 1 (4.4)

If we assume that the relationship between these variables is linear, then with

simple linear regression, our goal is to find a single line that best fits the data, as shown

in Figure 4.3. In other words, our task is to identify the slope of this line (β1) and its

y- intercept (β0).

60
temperature

re
nt

al
s

70 8030

2000

4000

6000

8000

40 50

estimated regression line

Figure 4.2 Estimated regression line and actual values for a sample (n=20) of the
bike rentals data

Practical Machine Learning in R116

Ordinary Least Squares Method
There are several mathematical approaches that we could employ to help us find the

values for 0 and 1 that best approximates the relationship between X and Y. The simplest

of these approaches is known as the ordinary least squares (OLS) method.

To illustrate the OLS method, let’s suppose that for our example, we start off by

 creating a scatterplot of our rentals and temperature data, such as the one shown in

Figure 4.2. Next, we do our best to draw a line that fits through the middle of the data

points in our plot, as we show in Figure 4.3.

The estimated line (black) now represents our regression line. We can use this line to

make a prediction of the number of rentals, for any given value of temperature, by sim-

ply finding the appropriate temperature value on the x-axis and then finding the point

on the line where it crosses that value. For example, if the weather forecast for tomorrow

was 65 degrees, we could use the regression line to estimate that we would rent approxi-

mately 5,200 bicycles that day.

It is important to note that the predicted points (represented by black dots in

Figure 4.3) generated by our regression line are not always the same as the original

points from our dataset (orange dots in Figure 4.3). The difference between our predic-

tions and the actual values is known as the error or residual. In Figure 4.3, the value of

the residual is the length of the vertical red line between the actual values and the pre-

dicted values. As you can see from the illustration, there are several of these red lines.

60
temperature

re
nt

al
s

70 8030

2000

4000

6000

8000

40 50

residual (ei)

predicted value for Y (ŷ i)

actual value for Y (yi)

Figure 4.3 For our regression line, the differences between each actual value)
and each predicted value () is the residual (), represented as the length of each
red line, where .

117Chapter 4: Linear Regression

Our regression line is simply an estimate, and with estimation, we should always expect

some degree of error. With that in mind, we can rewrite our simple linear regression

Equation 4.3 as follows:

 Y f X X,
0 1 (4.5)

In Equation 4.5, represents the sum of all our estimation errors. The goal of the OLS

method is to find the best values for 0 and 1 that minimize , which is also known as the

residual sum of squares or sum of squared errors.

In mathematical terms, let the number of observations in our data be represented

as n, the coefficients for our line estimate be represented by 0 and 1, and each pair of

observed values for temperature and rentals be denoted as x y
i i
, , with 1,2,… ,ni .

Then, we can think of y i , our prediction for Y based on a given value x
i
, as:

 y xi i0 1 (4.6)

At any given point, the distance between the observed value for Y (y
i
) and the pre-

dicted value for Y (y i), which is the residual, is denoted as follows:

 e y y
i i i (4.7)

The residual sum of squares can be expressed as follows:

i

n

i

n

i i i

n

i i
e y y y x

1 1

2

1

2

1 0 1

2

 (4.8)

It can be shown using calculus that the value for 1 that minimizes the residual sum of

squares is as follows:

1

1

1

2

i

n

i i

i

n

i

x y

x

x y

x

(4.9)

Practical Machine Learning in R118

with x- and ȳ representing the sample means for X and Y. On closer inspection, we can see

that the numerator for 1 is the covariance of x and y, and the denominator is the vari-

ance of x. With this in mind, we could rewrite the equation as follows:

1

C x y

Var x

ov ,

 (4.10)

Now that we’ve derived the value for 1, given that y x
0 1

, the optimal value for 0

can consequently be derived as follows:

 0 1
y x (4.11)

With these formulas, we are able to use the OLS methods to derive the values for 0

and 1 in R using the functions for covariance cov(), variance var(), and average mean():

> B1 <- cov(bikes$temperature, bikes$rentals) / var(bikes$temperature)
> B1

[1] 78.49539

> B0 <- mean(bikes$rentals) - B1 * mean(bikes$temperature)
> B0

[1] -166.8767

Based on our results, for any given value of xi (temperature), our prediction for yi

(rentals) is defined as follows:

 y xi i
166 9 78 5. . (4.12)

In other words,

 rentals temperature166 9 78 5. . (4.13)

This means that for every unit increase in temperature, the city experiences a

corresponding increase in bike rentals of about 78 bikes.

119Chapter 4: Linear Regression

We can also plug a weather forecast into this equation to predict the number of

rentals on a future day. Earlier, we estimated by inspecting Figure 4.3 that a 65-degree

day would result in 5,200 bicycle rentals. We can use Equation 4.13 to generate a more

specific estimate.

 rentals 166 9 78 5 65 4935 6. . . (4.14)

NOTE The estimate provided by visual inspection of Figure 4.3 is quite
different from the value derived using the regression equation in Equation 4.14.
The main reason for this discrepancy is that the regression models were
generated based upon different datasets. For the sake of visual simplicity, the
regression line in Figure 4.3 was generated using a small dataset of 20 points,
while the regression model in Equation 4.13 was generated based upon the
entire dataset. This illustrates the importance of having a robust dataset to
improve the accuracy of a regression model.

We have seen how we can manually estimate our coefficients using the ordinary

least squares method. However, R provides us with a way to do this in a more efficient

manner using the built-in linear model function called lm(). We explore this in the fol-

lowing sections.

Simple Linear Regression Model
The lm() function in R automates the OLS technique we worked through in the previ-

ous section. Instead of deriving the values for 0 and 1 individually, we can build a linear

model by simply passing our dataset to the lm() function and specifying the predictor

and response variables. Using the same pair of variables (temperature and rentals) as

we used in the OLS method, let’s build a simple linear regression model, which we will

call bikes_mod1.

> bikes_mod1 <- lm (data=bikes, rentals~temperature)

The lm() function takes two parameters. The first parameter specifies our dataset

(bikes). The second parameter tells the function that we intend to predict rentals (our

response) based on temperature (our predictor).

Practical Machine Learning in R120

Evaluating the Model
Simply typing the name of the model bikes_mod1 gives us some basic information

about the model.

> bikes_mod1

Call:
lm(formula = rentals ~ temperature, data = bikes)

Coefficients:
(Intercept) temperature
 -166.9 78.5

Notice that the values for the coefficients look rather familiar (see Equation 4.12). The

coefficient for the intercept (-166.9) is the same value we calculated for 0 in the previ-

ous section, and the coefficient for temperature (78.5) is the same for 1. So, our esti-

mated line is the same between these two approaches. To get more detailed information

about the model, we run the summary(bikes.mod) command.

> summary(bikes_mod1)

Call:
lm(formula = rentals ~ temperature, data = bikes)

Residuals:
 Min 1Q Median 3Q Max
-4615.3 -1134.9 -104.4 1044.3 3737.8

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -166.877 221.816 -0.752 0.452
temperature 78.495 3.607 21.759 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1509 on 729 degrees of freedom
Multiple R-squared: 0.3937, Adjusted R-squared: 0.3929
F-statistic: 473.5 on 1 and 729 DF, p-value: < 2.2e-16

The output now provides us with information about the residuals, additional detail

about the coefficients, and some additional model diagnostics for residual standard

error, multiple R-squared, adjusted R-squared, and F-statistic. This is a much more robust

output compared to what we got before. In the next few sections, we discuss what each

category represents.

121Chapter 4: Linear Regression

Residuals
The residuals section shows the summary statistics for the residuals (minimum, first

quartile, median, third quartile, and maximum).

Residuals:
 Min 1Q Median 3Q Max
-4615.3 -1134.9 -104.4 1044.3 3737.8

Recall that the residual is the observed value minus the predicted value, or the

error in our prediction. The model summary shows a minimum residual for our model

of -4615.3. This means that, for at least one temperature, our model overpredicted

the number of bike rentals by 4,615 bikes. Similarly, the maximum residual is 3737.8,

meaning that, for at least one temperature, our model underpredicted rentals by

3,737 bikes.

We can also look at the median residual to get a sense of the typical model perfor-

mance. Recall that the median value is the middle value of a set of data. In this case, the

negative median residual (-104.4) means that at least half of the residuals are negative.

In other words, the predicted values are more than the observed values in more than 50

percent of the cases.

Coefficients
The coefficients section of the model summary provides some vital information about

the model predictors and their coefficients.

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -166.877 221.816 -0.752 0.452
temperature 78.495 3.607 21.759 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The first field (Estimate) shows the fitted value for each parameter. These are the

regression coefficients that we discussed earlier: 0 and 1.

The second field (Std. Error) shows the standard error, which is the standard deviation

of the parameter estimates. The lower the standard error is with regard to the estimate,

the better the estimate is.

The last two fields (t value and Pr(>|t|)) show the student t-test and the p-value of

one sample t-test for each parameter. Without going into the statistical principles

behind these two values, the important thing to note is that they evaluate whether a

particular parameter is significant in our model. That is, they estimate the predictive

Practical Machine Learning in R122

power of a feature. To help with interpretation, the output provides significance levels

between 0 and 1, which are coded as ‘***’, ‘**’, ‘*’, ‘.’, and ‘ ’. Note that these codes

represent intervals and not discrete values. Each parameter estimate is assigned one of

these codes.

In our output, we see that the temperature feature has a significance code of ‘***’,

which means that it has a significance level between 0 and 0.001. The lower the sig-

nificance level, the more predictive power a feature has. In practice, any feature with

a significance level of 0.05 or less is statistically significant and is a good candidate

for a model.

Diagnostics
The lm() model summary also provides a section at the end offering diagnostic values.

We can use these diagnostics to assess the overall accuracy and usefulness of our regres-

sion model. The diagnostics section includes information on residual standard error (RSE),

multiple R-squared, adjusted R-squared, and the F-statistic.

Residual Standard Error
The residual standard error is the standard deviation of the model errors. For our model,

the RSE was this:

Residual standard error: 1509 on 729 degrees of freedom

This is the average amount that the predicted response will deviate from the

observed data. In the case of our output, the RSE shows that the actual number of bike

rentals deviate from our predictions by an average of 1509 rentals. RSE is a measure of

lack of fit for a model. So, whether 1509 is good or bad is dependent upon the context of

the problem. In general, the smaller the RSE, the more confident we are that our model

fits our data well.

The degrees of freedom value provides the number of data points in our model that

are variable. In our output, the degrees of freedom value is 729. This is calculated by sub-

tracting the number of features in our model including the intercept from the number of

observations in our dataset. Our bicycle rental dataset had 731 observations and devel-

oped a model based upon two features: the temperature and the y-intercept. There-

fore, the number of degrees of freedom in the model is 731-2 = 729.

Multiple and Adjusted R-squared
The R-squared statistic provides an alternative measure of fit from the RSE. Unlike RSE,

which provides an absolute measure of lack of fit measured in the units of Y, R-squared

123Chapter 4: Linear Regression

is independent of the scale of Y and takes the form of a proportion, with values rang-

ing from 0 to 1. The R-squared statistic measures the proportion of variability in the

response variable that is explained by the regression model. The closer the R-squared

is to 1, the better the model explains the data. Here is the R-squared data from our

model summary:

Multiple R-squared: 0.3937, Adjusted R-squared: 0.3929

Our output shows two types of R-squared values. The multiple R-squared value, which

is also known as the coefficient of determination, explains how well our model explains

the values of the dependent variable. From our output, we can say that our simple linear

regression model explains about 39.37 percent of the variability in our dataset.

The adjusted R-squared value is a slight modification to the multiple R-squared in that

it penalizes models with a large number of independent variables. It is a more conserva-

tive measure of variance explained especially when the sample size is small compared

to the number of parameters. It is useful when comparing the performance of several

models with different numbers of predictors. In those scenarios, we would use the

adjusted R-squared instead of the multiple R-squared when evaluating how much of the

data is explained by each model.

F-statistic
The F-statistic is a statistical test of whether there exists a relationship between the pre-

dictor and the response variables. The larger the value for the F-statistic, the stronger

the relationship. Here is the F-statistic data for our model:

F-statistic: 473.5 on 1 and 729 DF, p-value: < 2.2e-16

In our output, we can say that with an F-statistic of 473.5, our predictor does have a

strong relationship with the response. However, it is important to note that the value of

the F-statistic is impacted by the size of our dataset. If we have a large dataset, an

F- statistic that is close to 1 may still indicate a strong relationship. Inversely, if our data-

set is small, a large F-statistic may not always imply a strong relationship.

This is why the best measure of fit comes from analyzing the p-value of the F-statistic,

rather than the F-statistic value itself. The p-value takes the characteristic of the data-

set into account and tells us how likely it is that the variables in our regression model

fit the data in a statistically significant manner. The closer this value is to zero, the

better the fit.

In our example, the p-value of the F-statistic is extremely small (< 2.2e-16). As we men-

tioned in the section on coefficients, p-values with a significance level less than 0.05 are

usually acceptable. Therefore, we can feel pretty confident about our F-statistic value.

Practical Machine Learning in R124

MULTIPLE LINEAR REGRESSION
In the previous example, we looked at the use of a single predictor (temperature) to

estimate the values for bike rentals. This approach yielded a decent regression model

that accounted for about 39 percent of the variability in the dataset. However, as we

know, trying to predict the number of bicycle rentals based solely upon the tempera-

ture is a little simplistic. A 65-degree day with a gentle breeze is a lot different than a

65-degree day with 30-mph wind gusts!

What if we wanted to see how well the other variables in our dataset predicted the

number of bike rentals? One approach would be to create separate models with each

of the remaining variables to see how well they predict rentals. There are several chal-

lenges to this approach. The first challenge is that since we would now have several

simple linear regression models, we would not be able to make a single prediction

for bike rentals based on changes in the values of the predictor variables. The second

challenge is that by creating individual models based on only one variable each, we

ignore the possibility that there may be some correlation between the predictor vari-

ables that could have an impact on our predictions.

Instead of building several simple linear regression models, a better approach is to

extend our model to accommodate multiple predictor variables. This approach of using

multiple independent variables to predict the dependent variable is known as multiple

linear regression. Similar to Equation 4.5, given p predictor variables, we can represent

the multiple linear regression equation in slope intercept format as follows:

 0 1 1 2 2 p
…

pY X X X (4.15)

Here, X
1
is the first predictor, while X

p
 is the pth predictor. 1 is the expected increase in

Y for each unit increase in predictor X
1
, assuming all other predictors are held constant,

and 0 is the expected value for Y when all the predictors are equal to zero. Applying

Equation 4.15 to our example, assuming we wanted to evaluate how well we could pre-

dict bike rentals based on humidity, windspeed, and temperature, then our multiple

linear regression equation would be the following:

 rentals humidity windspeed temperature
0 1 2 3 (4.16)

The Multiple Linear Regression Model
Similar to the OLS approach we discussed for simple linear regression, the goal for mul-

tiple linear regression is also to estimate the values for the coefficients
0 1 2 p, , , … ,

that minimize the residual sum of squares. However, unlike with simple linear regression

125Chapter 4: Linear Regression

where we had only one predictor variable, estimating the coefficients in multiple linear

regression requires the use of matrix algebra, which is beyond the scope of this book.

Luckily, we don’t need to fully understand the math behind this approach to build a mul-

tiple linear regression model. The lm() function in R, which we used to develop a simple

regression model, can also handle the mathematical heavy lifting required to develop a

multiple regression model.

Let’s build a model to predict rentals, which we call bikes_mod2, based on the

dependent variables humidity, windspeed, and temperature.

> library (stats)
> bikes_mod2 <- lm(data=bikes, rentals ~ humidity + windspeed + temperature)

The syntax is similar to what we used in the simple linear regression example. This

time, we include two additional predictors to our model with the use of the + sign.

Evaluating the Model
After building our model, we can evaluate the model’s output in detail by using the

summary() command.

> summary(bikes_mod2)

Call:
lm(formula = rentals ~ humidity + windspeed + temperature, data = bikes)

Residuals:
 Min 1Q Median 3Q Max
-4780.5 -1082.6 -62.2 1056.5 3653.5

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2706.002 367.483 7.364 4.86e-13 ***
humidity -3100.123 383.992 -8.073 2.83e-15 ***
windspeed -115.463 17.028 -6.781 2.48e-11 ***
temperature 78.316 3.464 22.606 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1425 on 727 degrees of freedom
Multiple R-squared: 0.4609, Adjusted R-squared: 0.4587
F-statistic: 207.2 on 3 and 727 DF, p-value: < 2.2e-16

Practical Machine Learning in R126

The three asterisks (***) appearing after each variable in the coefficients section of

our output tell us that all of our predictors are significant. This also provides us with the

estimated values for the model coefficients 0(2706.0), 1(-3100.1), 2(-115.5), and 4(78.3).

We can plug these values into Equation 4.16 to find the regression model for this data.

 rentals humidity windspeed temper2706 0 3100 1 115 5 78 3. . . . aature (4.17)

We can then use Equation 4.17 to make predictions for bicycle rentals based upon dif-

ferent weather conditions. For example, our simple linear regression model predicted

that a 65-degree day would yield 4935.6 rentals (see Equation 4.13). This new model is

more nuanced, providing different estimates for 65-degree days with differing humidity

and windspeed conditions, as shown in Table 4.1.

The model clearly predicts that the number of bicycle rentals in a given day will vary

based upon windspeed and humidity, in addition to changes in temperature.

Our residual standard error of 1425 is lower than that for the simple linear regres-

sion model, which was 1509. This means our new model does a better job, on average, in

terms of how much its predicted values deviate from actual values. Since bikes_mod2

uses three predictors in contrast to the single predictor used by bikes_mod1, we use

the adjusted R-squared when comparing how well each does in explaining the variability

in the response variable. We can see that bikes_mod2 explains 45.87 percent of the

variability in the response variable compared to the 39.39 percent of bikes_mod1. The

F-statistic for bikes_mod2 is statistically significant and has a value significantly greater

than 1. This means that there is a strong linear relationship between our predictors and

the response variable.

In summary, our model outputs suggest that our multiple linear regression model

(bikes_mod2) performs better than the simple linear regression model (bikes_mod1).

However, beyond the linear model outputs, which we’ve used so far to evaluate the

performance of our model, there are some additional diagnostic tests that enable us to

evaluate the suitability of our model to the data. We look at these tests next.

Table 4.1 Changes in Windspeed and Humidity Produce Significant Variations in
Bicycle Rental Predictions

Temperature Windspeed Humidity Predicted Rentals

65 0 0.00 7795.5
65 5 0.40 5978.0
65 5 0.90 4427.9
65 15 0.40 4823.0
65 15 0.90 3272.9

127Chapter 4: Linear Regression

Residual Diagnostics
The first set of diagnostic tests we look at has to do with the residuals of a linear regres-

sion model. As we discussed earlier, residuals are the difference between the predicted

values of our model and the actual (or observed) values in our data. Linear regression

models make certain critical assumptions about the characteristics of its residuals. If

some or all of these assumptions are invalid, then the accuracy of the model is suspect.

For a linear regression model to be valid, it is assumed that its residuals:

 • Have a mean of zero

 • Are normally distributed

 • Have equal variance across the values of the independent variable (homoscedasticity)

 • Are not correlated

Zero Mean of Residuals
The zero-mean assumption for residuals implies that the residuals have either a mean

of zero or a mean that is reducible to zero. An easy way to test this is to simply check the

mean of our model’s residuals using the mean() function. We can access the residuals

from our model as bikes_mod2$residuals. This notation indicates to R that we would

like to access the residuals from the bikes_mod2 model. To calculate the mean of these

residuals, we execute this code:

> mean (bikes_mod2$residuals)

[1] -2.92411e-13

We can see from the output that the mean of the residuals is very close to zero, and

therefore, we satisfy the zero mean criteria.

Normality of Residuals
For a linear regression model to be valid, the residuals should be normally distributed. This

implies that our errors are random noise and that all the signals in the data have been cap-

tured. There are several formal statistical approaches to test for the normality of residuals.

These include the Kolmogorov-Smirnov, Shapiro-Wilk, Cramer-von Mises, and Anderson-

Darling tests. However, for our purposes, we will limit ourselves to a simple visual test of

normality using the ols_plot_resid_hist() function from the olsrr package in R. We

use this function to plot a histogram of our residuals—see the results in Figure 4.4(a).

> librar y(olsrr)
> ols_plot_resid_hist (bikes_mod2)

Practical Machine Learning in R128

A visual inspection of our resulting plot shows that our residuals are indeed normally

distributed. The olsrr package contains a number of useful functions for diagnosing

OLS regression output. We will rely on it a few more times in the following sections.

Homoscedasticity of Residuals
Heteroscedasticity occurs when we have heterogeneity in the variance of observations

in our data. When this occurs, we can no longer trust that our model errors are correct,

and this can lead to misleading conclusions based on our model coefficients. Heterosce-

dasticity is not unusual when working with real-world data. The key is to detect that it

exists and find ways to correct for it. Note that the larger your dataset, the less impact

heteroscedasticity has on your model.

There are two common approaches to detecting heteroscedasticity. One is to use

the Breusch-Pagan statistical test, and the other is to use a residual plot. We will use

the second approach. In a residual versus fitted value plot, heteroscedasticity is visually

detected by the presence of a funnel shape, as illustrated in Figure 4.5 (a and b). Homo-

scedasticity, which is the opposite of heteroscedasticity, is observed when there is no

discernable pattern in the distribution of points in the plot—see Figure 4.5(c). When we

use linear regression to fit a model to a dataset, we should expect to see homoscedas-

ticity of the residuals in a well-fit model.

The ols_plot_resid_fit() function in olsrr allows us to create such a residual

versus fitted value plot in order to check for heteroscedasticity.

> ols_plot_resid_fit (bikes_mod2)

4000

Fitted Value
60002000

Residual vs Fitted Values

–5000

–2500

0

Re
si

du
al

2500

–4000

Residuals
20000–2000 4000–6000

Residual Histogram

0

100

200

co
un

t

300

(a) (b)

Figure 4.4 (a) Residual histogram showing normality of residuals, (b) residual
versus fitted values plot showing homoscedasticity of residual values

129Chapter 4: Linear Regression

The results—see Figure 4.4(b)—show that the residuals form an approximate hori-

zontal band around the y-axis. However, we do observe some heteroscedasticity in the

plot. In practice, there are several approaches to resolving this. One common approach is

to use a weighted regression approach where each data point is assigned a weight based

on the variance of its fitted value. The goal here is to minimize the squared residual of

data points that have higher variances. Another common approach to resolving het-

eroscedasticity is to apply a concave function, such as a log-transform, to the dependent

variable in order to normalize its values. The challenge with this approach is that it makes

it more difficult to interpret the results of your model because the units of your model

are no longer the same as that of the original data.

Residual Autocorrelation
As we discussed earlier, correlation is the quantification of the relationship between two

variables. Autocorrelation is the correlation of a variable with itself at different points in

time. An important assumption for linear regression models is that its residuals are not

correlated. If the residuals of our linear regression model show autocorrelation, then it

means that the noise in our model is not purely by chance and that there is more infor-

mation that we need to extract from our data in order to improve our model.

The most popular test for residual autocorrelation is the Durbin-Watson (DW) test.

The DW test statistic varies from 0 to 4, with values between 0 and 2 indicating positive

autocorrelation, 2 indicating zero autocorrelation, and values between 2 and 4 indicating

negative autocorrelation. The durbinWatsonTest() function in the car package pro-

vides us with a convenient way to get the DW test statistic.

> library (car)
> durbinWatsonTest (bikes_mod2)

 lag Autocorrelation D-W Statistic p-value
 1 0.7963326 0.4042771 0
 Alternative hypothesis: rho != 0

Fitted Value

Re
si

du
al

Fitted Value

(a) Heteroscedasticity

Fitted Value

Re
si

du
al

(c) Homoscedasticity(b) Heteroscedasticity

Re
si

du
al

Figure 4.5 Residual versus fitted value plots illustrating heteroscedasticity
(a and b) and homoscedasticity (c)

Practical Machine Learning in R130

With a DW test statistic of 0.404 and p-value of 0, there is strong evidence suggesting

that our model’s residuals are positively correlated. To remediate this, we would need to

identify which additional predictors, from our dataset, we need to include in our model.

If that is unsuccessful in reducing residual autocorrelation, then we need to also look

into transforming some of our predictor variables. We include more predictors and trans-

form some of our predictors in the “Improving the Model” section.

Influential Point Analysis
Extreme values for predictor variables can create problems with the accuracy of linear

regression models and with how well they can be generalized. If we have a model that

can be heavily influenced or invalidated by a change in the value of a few observations,

then we have a rather brittle model. These types of observations are known as influen-

tial points because of the sizable impact they have on a model. As a result, it is important

for us to identify these influential points in our data as part of the model evalua-

tion process.

With simple linear regression, influential points are easy to identify by simply iden-

tifying the outlier values in a single predictor variable. However, with multiple linear

regression, it is possible to have an observation with a variable whose value is not con-

sidered an outlier, when compared to other values for that variable, but is extreme when

compared with the full set of predictors. To quantify these influential points when we’re

dealing with multiple predictors, we use a statistical test known as Cook’s distance.

Cook’s distance measures the effect of removing an observation from a model. If the

Cook’s distance for a particular observation is large, then it has a sizable impact on the

estimated regression line and should be looked into for further remediation. As a rule of

thumb, for an observation to be flagged for investigation, its Cook’s distance (D) should

be greater than the threshold 4 1/ n k , where n is the number of observations in the

dataset and k is the number of variables in the model. To identify the influential points

in our data, based on Cook’s distance, we will use the ols_plot_cooksd_chart()

function from the olsrr package.

> library (olsrr)
> ols_plot_cooksd_chart (bikes_mod2)

As we can see from our results in Figure 4.6, based on a Cook’s distance threshold

of 0.005, there are several influential points in our dataset. Observation 69 stands out

from the rest as being a significant influential point. By visual inspection, we can iden-

tify most of the outlier observations. However, if we wanted to get a complete list of

these outliers, we could do so by getting the $outliers value of the chart. We list these

values in descending order of Cook’s distance by using the arrange() function from the

dplyr package.

131Chapter 4: Linear Regression

> cooks_outliers <- ols_plot_cooksd_chart(bikes_mod2)$outliers
> arrange(cooks_outliers, desc(cooks_distance))

A tibble: 25 x 2
 observation cooks_distance
 <int> <dbl>
 1 69 0.0835
 2 239 0.0211
 3 204 0.0205
 4 50 0.0173
 5 203 0.0139
 6 668 0.0127
 7 205 0.0102
 8 210 0.00960
 9 554 0.00789
10 212 0.00771
... with 15 more rows

Similar to what we see in Figure 4.6, the results show that observation 69 has the

highest Cook’s distance in the dataset. The results also show that there are 24 other

observations that exceed the Cook’s distance threshold. To figure out what’s going on

here, let’s a take a look at the values for observation 69.

> bikes[69,c ("rentals","humidity","windspeed","temperature")]

A tibble: 1 x 4

0

0.00

0.02

0.04

Co
ok

’s
D

0.06

0.08

Cook’s D Chart

200 400

Observation
600

Figure 4.6 Cook’s Distance chart showing the influential points in
the bikes dataset

Practical Machine Learning in R132

 rentals humidity windspeed temperature
 <dbl> <dbl> <dbl> <dbl>
1 623 0 10.9 50.5

> summary(bikes[-69,c("rentals","humidity","windspeed","temperature")])

 rentals humidity windspeed temperature
 Min. : 22 Min. :0.1879 Min. : 0.9322 Min. :22.60
 1st Qu.:3170 1st Qu.:0.5205 1st Qu.: 5.6182 1st Qu.:46.10
 Median :4548 Median :0.6271 Median : 7.5342 Median :59.83
 Mean :4510 Mean :0.6288 Mean : 7.9262 Mean :59.52
 3rd Qu.:5966 3rd Qu.:0.7303 3rd Qu.: 9.7088 3rd Qu.:73.07
 Max. :8714 Max. :0.9725 Max. :21.1266 Max. :90.50

Comparing the statistical summary of the rest of the data with the values of the

influential point, we see that the humidity for the influential point with a value of zero is

clearly an outlier. Without observation 69, the minimum value for humidity is now 0.1879.

The windspeed value for the influential point is higher than the third quartile of the rest

of the data, further supporting the fact that this observation is an influential point in the

model. However, the temperature value is not extreme as compared to the rest of the

data. Now, let’s take a look at the rest of the influential points and see how they compare

with the rest of the data. To do this, we get a statistical summary of the 25 identified

influential points and compare that to the statistical summary of the rest of the data.

> outlier_index <- as.numeric(unlist(cooks_outliers[,"observation"]))

> summary(bikes[outlier_index,c("rentals","humidity","windspeed","temperature")])

 rentals humidity windspeed temperature
 Min. : 22 Min. :0.0000 Min. : 3.263 Min. :49.89
 1st Qu.:1842 1st Qu.:0.4658 1st Qu.: 6.809 1st Qu.:54.61
 Median :3606 Median :0.5675 Median : 8.024 Median :71.23
 Mean :3617 Mean :0.5960 Mean :10.202 Mean :70.76
 3rd Qu.:4840 3rd Qu.:0.8800 3rd Qu.:14.291 3rd Qu.:85.77
 Max. :8395 Max. :0.9725 Max. :21.127 Max. :90.50

> summary(bikes[-outlier_index,c ("rentals","humidity","windspeed",
"temperature")])

 rentals humidity windspeed temperature
 Min. : 431 Min. :0.2758 Min. : 0.9322 Min. :22.60
 1st Qu.:3206 1st Qu.:0.5235 1st Qu.: 5.5992 1st Qu.:45.62
 Median :4570 Median :0.6308 Median : 7.5082 Median :59.30
 Mean :4536 Mean :0.6290 Mean : 7.8498 Mean :59.11
 3rd Qu.:5990 3rd Qu.:0.7296 3rd Qu.: 9.6318 3rd Qu.:72.87
 Max. :8714 Max. :0.9625 Max. :17.5801 Max. :88.17

133Chapter 4: Linear Regression

Now we see that the outlier mean (and median) for windspeed and temperature are

both higher than those for the non-outlier data. Humidity, on the hand, has a lower mean

and median in the outlier data as compared to the rest of the data. Finally, let’s compare

the statistical distribution of the original data to that of the data without the outliers to

see what the impact will be of removing the outliers.

> summary (bikes[,c ("rentals","humidity","windspeed","temperature")])

 rentals humidity windspeed temperature
 Min. : 22 Min. :0.0000 Min. : 0.9322 Min. :22.60
 1st Qu.:3152 1st Qu.:0.5200 1st Qu.: 5.6182 1st Qu.:46.12
 Median :4548 Median :0.6267 Median : 7.5343 Median :59.76
 Mean :4504 Mean :0.6279 Mean : 7.9303 Mean :59.51
 3rd Qu.:5956 3rd Qu.:0.7302 3rd Qu.: 9.7092 3rd Qu.:73.05
 Max. :8714 Max. :0.9725 Max. :21.1266 Max. :90.50

The results show similar mean and median values across the board for the humidity,

windspeed, and temperature variables between the two datasets. We can safely remove

the outlier from our data. Before we do so, it’s important to note that special care must

always be taken when getting rid of data. It is possible to lose small but crucially impor-

tant patterns in the data if it’s done recklessly. In that regard, we will leave our original

data as is and create a new copy called bikes2 without the outliers.

bikes2 <- bikes[-outlier_index,]

Multicollinearity
Multicollinearity is a phenomenon that occurs when two or more predictor variables are

highly correlated with each other. For example, consider a scenario where you try to pre-

dict house prices based on the following variables:

 • Number of bedrooms

 • Age

 • Number of stories

 • Square footage

In this example, it stands to reason that the number of bedrooms, number of stories,

and square footage will be highly correlated. As the number of stories increases, so will

the square footage of the house. Similarly, as the number of bedrooms and the number

of stories increase, so will the square footage.

Multicollinearity in linear regression models is a problem because it leads to standard

errors that are highly inflated, and it makes it rather difficult to separate out the impact

of individual predictors on the response.

Practical Machine Learning in R134

There are several approaches to test for collinearity, one of which is to use a simple

correlation matrix (see “Visualizing Correlations with corrplot” earlier in this chapter)

to access the degree of correlation between pairs of predictor variables. However, this

approach is not useful in detecting situations where no individual pair of variables is

highly correlated, but three or more variables are highly correlated with each other.

To detect the presence of such a scenario, we can compute the variance inflation

factor (VIF) for each predictor. The VIF for a variable is the measure of how much the vari-

ance of the estimated regression coefficient for that variable is inflated by the existence

of correlation among the predictor variables in the model. The VIF for predictor k is

computed as follows:

VIF

R Tolerance
k

1

1

1

2

 (4.18)

R
k

2 is the coefficient of determination of a regression equation where predictor k is

on the left side and all the other predictor variables are on the right side. Tolerance can

be thought of as the percent of variance in predictor k that cannot be accounted for by

other predictors. As a rule of thumb, a VIF of greater than 5 or a tolerance less than 0.2

indicates the presence of multicollinearity and requires remediation. To compute the VIF

for our predictor variables, we make use of the ols_vif_tol() function from olsrr.

> ols_vif_tol(bikes_mod2)

A tibble: 3 x 3
 Variables Tolerance VIF
 <chr> <dbl> <dbl>
1 humidity 0.930 1.07
2 windspeed 0.922 1.08
3 temperature 0.967 1.03

We can see from the results that we have no problems with multicollinearity among

our predictor variables, as all VIF values are well below 5.0 and all tolerance values are

well above 0.2.

In the event that the VIF analysis does indicate multicollinearity, there are two

common approaches to dealing with this situation. One approach is to drop one of the

problematic variables from the model, while the other approach is to combine the col-

linear predictors into a single variable. Applying these options to our earlier example for

housing price, we would choose to use either the number of bedrooms, the number of

stories, or the square footage of the home, but not all three.

135Chapter 4: Linear Regression

Improving the Model
Now that we have a better understanding of the various linear regression diagnostic

tests and how they apply to our data and our model, it is time for us to put them into

practice to improve our model. Before we do, there are a few additional things we need

to consider with regard to our predictor variables. We discuss those considerations in the

next three sections.

Considering Nonlinear Relationships
The base assumption in linear regression is that the relationship between the predictors

and the response is linear. However, this is not always the case. For example, looking

at the plots in Figure 4.7, we see that the relationship between our predictors and the

response is slightly nonlinear.

To extend our model to accommodate these nonlinear relationships, we can add

transformed versions of our predictors to the model. This new type of model is known

as polynomial regression. Looking at the curvature of the colored fit lines, they seem to

suggest a quadratic relationship, so we will add squared versions of our predictors to the

model. To do this, we simply create new variables humidity2, windspeed2, and tem-

perature2 as follows:

> bikes2 <- bikes2 %>%
 mutate (humidity2 = humidity^2) %>%
 mutate (windspeed2 = windspeed^2) %>%
 mutate (temperature2 = temperature^2)

2500

0

0.2 0.4 0.6

humidity

re
nt

al
s

0.8 1.0

7500

5000

2500

0

re
nt

al
s

7500

5000

2500

0

re
nt

al
s

7500

5000

0 5 10

windspeed

15 20 20 40 60

temperature

80

Figure 4.7 Linear regression fit for each of the predictor variables (humidity, wind-
speed, and temperature) and the response variable (rentals). The dark colored lines
represent a linear regression fit with the original predictors, while the light-colored
lines (blue, red, and green) represent the fit with polynomial predictors introduced.

Practical Machine Learning in R136

Let’s create a new linear model with our newly transformed predictors added:

> bikes_mod3 <-
 lm (data = bikes2,
 rentals ~ humidity + windspeed + temperature +
 humidity2 + windspeed2 + temperature2)

> summary (bikes_mod3)

Call:
lm(formula = rentals ~ humidity + windspeed + temperature + humidity2 +
 windspeed2 + temperature2, data = bikes2)

Residuals:
 Min 1Q Median 3Q Max
-3153.77 -950.91 -97.23 1034.22 3000.12

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -8335.7021 1128.0572 -7.389 4.22e-13 ***
humidity 6203.5583 2727.8537 2.274 0.023259 *
windspeed -147.3909 63.5284 -2.320 0.020624 *
temperature 397.0970 25.7213 15.438 < 2e-16 ***
humidity2 -8324.7772 2128.2637 -3.912 0.000101 ***
windspeed2 1.5802 3.5370 0.447 0.655191
temperature2 -2.6839 0.2175 -12.339 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1213 on 699 degrees of freedom
Multiple R-squared: 0.6022, Adjusted R-squared: 0.5988
F-statistic: 176.4 on 6 and 699 DF, p-value: < 2.2e-16

Looking at our results, we can see that windspeed2 is not significant, so let’s remove

it and re-create our model:

> bikes_mod3 <-
 lm (data = bikes2,
 rentals ~ humidity + windspeed + temperature +
 humidity2 + temperature2)

> summary (bikes_mod3)

Call:
lm(formula = rentals ~ humidity + windspeed + temperature + humidity2 +
 temperature2, data = bikes2)

137Chapter 4: Linear Regression

Residuals:
 Min 1Q Median 3Q Max
-3167.5 -945.0 -106.7 1034.4 2984.6

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -8441.8304 1102.1300 -7.660 6.22e-14 ***
humidity 6172.7633 2725.4232 2.265 0.023825 *
windspeed -119.8659 15.4807 -7.743 3.41e-14 ***
temperature 397.6880 25.6726 15.491 < 2e-16 ***
humidity2 -8298.1097 2126.2098 -3.903 0.000104 ***
temperature2 -2.6903 0.2169 -12.402 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1213 on 700 degrees of freedom
Multiple R-squared: 0.6021, Adjusted R-squared: 0.5993
F-statistic: 211.8 on 5 and 700 DF, p-value: < 2.2e-16

Our results now show that all our predictors are significant. The model diagnostics

show an improvement over our previous model (bikes_mod2). Our residual standard error

decreased from 1425 to 1213, and our adjusted R-squared increased from 0.4587 to 0.5993.

Considering Categorical Variables
The three predictor variables (humidity, windspeed, and temperature) that we’ve

introduced into our model so far have all been continuous variables. However, we do

know that our bikes dataset has more potential predictor variables that we could incor-

porate into our model. Earlier, we decided that we would not use the date variable to

avoid overfitting. We also decided against using the realfeel variable as it correlates

highly with temperature. That leaves us with season, holiday, weekday, and weather.

While these four variables do have numeric values, they actually are categorical in

nature. Let’s take a look at the values for these variables as well as the numeric distribu-

tion for each of their values by using the summary() function.

> summary(bikes2[, c ("season", "holiday", "weekday", "weather")])

season holiday weekday weather
 1:177 0:685 6: 96 2:243
 2:180 1: 21 0:103 1:448
 3:175 1:103 3: 15
 4:174 2:103
 3:100
 4:100
 5:101

Practical Machine Learning in R138

In practice, it is common to incorporate both continuous and categorical variables into

a model. Before we do so, let’s perform an additional transformation of the data. The use

of numeric values to represent categorical values is confusing to those interpreting the

model and also requires the reader to look up values. Before we use these features in our

model, let’s transform them using the revalue() function from the dplyr package.

bikes2 <- bikes2 %>%
 mutate(season=revalue(season, c("1"="Winter", "2"="Spring",
"3"="Summer", "4"="Fall"))) %>%
 mutate(holiday=revalue(holiday, c("0"="No", "1"="Yes"))) %>%
 mutate(weekday=revalue(weekday, c("0"="Sunday", "1"="Monday",
"2"="Tuesday", "3"="Wednesday", "4"="Thursday", "5"="Friday",
"6"="Saturday"))) %>%
 mutate(weather=revalue(weather, c("1"="Clear", "2"="Light
precipitation", "3"="Heavy precipitation")))

This code simply changes the levels (names) of the categorical factor values from

numbers to their text equivalent. Now that we’ve done this, let’s create a new model

that includes some of these additional predictors. For illustrative purposes, we will start

off only adding the season variable to our model.

> bikes_mod4 <-
 lm(data = bikes2,
 rentals ~ humidity + windspeed + temperature + humidity2 +
 temperature2 + season)

> summary(bikes_mod4)

Call:
lm(formula = rentals ~ humidity + windspeed + temperature + humidity2 +
 temperature2 + season, data = bikes2)

Residuals:
 Min 1Q Median 3Q Max
-3623.7 -960.4 -39.9 987.0 3363.4

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -6737.0068 1118.5289 -6.023 2.77e-09 ***
humidity 5210.4033 2667.1441 1.954 0.051154 .
windspeed -103.7065 15.2032 -6.821 1.96e-11 ***
temperature 331.2778 29.0463 11.405 < 2e-16 ***
humidity2 -7626.8064 2077.8323 -3.671 0.000261 ***
temperature2 -2.1790 0.2503 -8.706 < 2e-16 ***
seasonSpring 489.6013 168.9875 2.897 0.003882 **

139Chapter 4: Linear Regression

seasonSummer 581.3724 221.2979 2.627 0.008801 **
seasonFall 994.2943 145.9958 6.810 2.10e-11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1175 on 697 degrees of freedom
Multiple R-squared: 0.6282, Adjusted R-squared: 0.624
F-statistic: 147.2 on 8 and 697 DF, p-value: < 2.2e-16

Notice that by including just one categorical variable, season, we now have three

additional coefficients in our model. This is because, when we include a categorical vari-

able in our model, the linear regression function lm() creates a dummy variable (with

values 0 or 1) for each of the values of the categorical variable.

For example, if the i-th observation in our dataset has a value of Spring for the

season variable, then in our model, the value of the predictor variable seasonSpring

for that observation will be 1, and it will be 0 for both predictor variables seasonSum-

mer and seasonFall. Note that, though, season has four distinct values, our model has

only three dummy variables. There is no dummy variable for seasonWinter. This is by

design. In this example, the dummy variable seasonWinter is known as the baseline. If

the values of seasonSpring, seasonSummer, and seasonFall are all 0, then the season

is assumed to be the baseline value of winter.

Unlike with the continuous variables, where we interpret the coefficient of a predictor

variable as the degree of change in the response variable as a result of a unit change

in the value of the predictor (assuming all other predictors are held constant), we inter-

pret the coefficients of the categorical predictors as the average difference in the change

of the response variable between each predictor value and the baseline. In other words,

in our model, the coefficient for seasonSpring is the average difference in the number

of bike rentals between spring and the baseline of winter. Similarly, the coefficients

for seasonSummer and seasonFall are the average differences in the number of bike

rentals between summer and winter, and between fall and winter, respectively.

Our model outputs tell us that these new predictors for the season variable are all

significant and that adding them improves the quality of our model. We see that our

residual standard error goes down as compared to our previous model. Our adjusted

R-squared tells us that our new model now explains 62.4 percent of the variability in our

response variable. That’s an improvement from our previous model.

Considering Interactions Between Variables
So far, our models have been premised on the assumption that the relationship between

the response and each predictor is independent of the value of the other predictors.

When interpreting the results of our previous models, we interpret the model

Practical Machine Learning in R140

coefficients as the average change in the value of the response as a result of a unit

change of a particular predictor, assuming all other predictors are held constant. How-

ever, this assumption is not always valid. There are situations where two variables have

a combined effect on the response. In statistics this phenomenon is referred to as the

interaction effect.

In our bikes2 data, we could expect some sort of interaction effect between the

windspeed and weather predictors or between the weather and temperature predic-

tors. It is reasonable to assume that if both the overall weather condition worsened and

windspeeds increased, it would have a more significant impact on the number of bike

rentals than if either windspeeds alone increased or overall weather conditions alone

worsened. R provides us with a way to specify these interaction effects in our model

by using the * operator. So, to specify the interaction between the windspeed and

weather predictors, we would use the syntax windspeed * weather. Let’s create a new

model with this interaction in mind.

> bikes_mod5 <-
 lm(
 data = bikes2,
 rentals ~ humidity + temperature + humidity2 +
 temperature2 + season + windspeed * weather
)

> summary(bikes_mod5)

Call:
lm(formula = rentals ~ humidity + temperature + humidity2 + temperature2 +
 season + windspeed * weather, data = bikes2)

Residuals:
 Min 1Q Median 3Q Max
-3620.9 -961.8 -56.5 980.1 3224.9

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -6465.8882 1146.0328 -5.642 2.45e-08 ***
humidity 5011.7326 2843.8582 1.762 0.07846 .
temperature 329.9987 28.9740 11.389 < 2e-16 ***
humidity2 -7073.1818 2249.3058 -3.145 0.00173 **
temperature2 -2.1794 0.2494 -8.739 < 2e-16 ***
seasonSpring 519.6417 169.0658 3.074 0.00220 **
seasonSummer 635.4740 221.8383 2.865 0.00430 **
seasonFall 1045.5251 146.1096 7.156 2.12e-12 ***

141Chapter 4: Linear Regression

windspeed -151.2331 24.6076 -6.146 1.34e-09 ***
weatherClear -566.2684 263.2216 -2.151 0.03180 *
weatherHeavy precipitation -1842.9293 984.0347 -1.873 0.06151 .
windspeed:weatherClear 83.0116 31.1330 2.666 0.00785 **
windspeed:weatherHeavy precipitation 129.4237 92.7197 1.396 0.16320

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1168 on 693 degrees of freedom
Multiple R-squared: 0.6346, Adjusted R-squared: 0.6283
F-statistic: 100.3 on 12 and 693 DF, p-value: < 2.2e-16

We can see from the model output that compared to bikes_mod4, we improve

upon both our residual standard error and adjusted R-squared. We also see that the

coefficients of the interaction term as well as those of the newly introduced variable

(weather) are significant. Interestingly, because the interaction coefficients are positive

and the coefficients for windspeed and weather are negative, the interaction has a tem-

pering effect on the impact the two predictors individually have on bike rentals.

Let’s take the interaction between windspeed, weatherClear, and weatherHeavy_

Precipitation, for example. Our results suggest that when the weather forecast

is clear or partly cloudy, for every 10 mph increase in windspeed, the number of bike

rentals will decrease by 682 units (151 2 10 83 0 10. .). However, when the weather

forecast is for heavy precipitation, every 10 mph increase in windspeed reduces bike

rentals by 218 units (151 2 10 129 4 10. .). This means that an increase in windspeed

has less of an impact on the number of bike rentals as the weather gets worse.

Selecting the Important Variables
In our effort to improve upon our model, we have selectively included certain predictors

to help illustrate the point we’re trying to make at each stage. At this point, we do not

really know which subset of our predictors will provide us with the best model for our

use case. The process of identifying the appropriate subset of predictors is known as

variable selection.

Ideally, our variable selection process would involve selecting the best model based

on the evaluation of an exhaustive list of models created using all possible combina-

tions of our predictors. However, this approach is infeasible because of the sheer com-

putational complexity involved. Instead, we need a systematic approach for choosing

the best subset of predictors for our response. The choice of which model is best is

dependent on the metric we choose to use. So far, we have decided to use the adjusted

R-squared as our measure of performance. However, it is important to note that there

Practical Machine Learning in R142

are other measures we could use as well. We will address some of them in the next chap-

ter and in much more detail in Chapter 9.

In practice, there are three common approaches to the variable selection process. The

first approach is called forward selection. In forward selection, we begin with the inter-

cept and then create several simple linear regression models based on the intercept and

each individual predictor. We then select the predictor whose model had the best results

based on a particular performance measure. The residual sum of squares is a common

measure used in this approach. The next step involves creating several two-predictor

models based on the predictor we chose in the first step and each of the remaining pre-

dictors. Like we did before, we then choose the new predictor whose model had the

best performance. This process continues with the creation of a set of three-predictor

models, a set of four-predictor models, and so forth, until we’ve exhausted all predictors

or some predefined stopping criteria is met. It’s important to note that backward selec-

tion is not possible if we have more predictors than observations in our data.

The second variable selection approach is known as backward selection. This approach

involves creating a model with all our predictors and then removing the predictor that is

least statistically significant (based on the p-value). We then fit a new model without the

removed predictor. Just like we did the first time, we proceed to remove the predictor

that is least statistically significant. We continue doing this recursively until some pre-

defined stopping criteria has been met.

The third approach is a combination of both forward and backward selection that

attempts to overcome the limitations of each of the previous two approaches. It is called

mixed selection. In this approach, we begin with the forward selection method of add-

ing predictors one at a time. However, like with backward selection, at each stage of

the process, we evaluate the statistical significance of each predictor and remove those

that don’t meet a predefined significance threshold. We continue with this forward and

backward selection process until we’ve exhausted all the variables in our data and have a

model with only predictors that meet our significance threshold.

The olsrr package in R provides us with a set of functions to perform forward,

backward, and mixed selection. To illustrate the mixed variable selection process, we

use the ols_step_both_p() function. Before we demonstrate the variable selection,

let’s create some additional candidate predictors for our bikes data. These variables

are derived from the date variable. To help us with this, we introduce the lubridate

package, which has several functions for working with dates. The first variable we create

is a day variable, which describes the number of days since the program began. This vari-

able is derived as the difference between the date variable and the minimum value for

the date variable. The next two are variables for the month and year. Now that we have

these three new derived variables, we do not need the date variable, so we remove it

from our data.

143Chapter 4: Linear Regression

> library (lubridate)

> bikes2 <- bikes2 %>%
 mutate (day=as.numeric(date-min(date))) %>%
 mutate (month=as.factor(month(date))) %>%
 mutate (year=as.factor(year(date))) %>%
 select (-date)

Now that we have our new candidate predictors, we proceed with the ols_step_

both_p() function. The function takes four parameters, and the first is a linear model

with all candidate predictors (model). Our candidate predictors include all the indepen-

dent variables in our bikes2 data as well as the interaction term for windspeed and

weather. The second parameter of the function is the p-value threshold for entry into

the process (pent), the third is the p-value threshold for removal (prem), and the last is

a flag indicating how much detail to print (details). For our example, we set the values

for pent, prem, and details as 0.2, 0.01, and FALSE, respectively.

> ols_step_both_p(
 model = lm(
 data = bikes2,
 rentals ~ humidity + weekday + holiday +
 temperature + humidity2 + temperature2 + season +
 windspeed * weather + realfeel + day + month + year
),
 pent = 0.2,
 prem = 0.01,
 details = FALSE
)

Even with the details parameter set to FALSE, our output is still rather verbose. As a

result, we will focus our attention on just a few of the sections from the output. The first

thing we want to look at is the final model output. This gives us a summary of the model

diagnostics based on linear regression model created using only the predictors chosen

through the mixed variable selection process.

Final Model Output

 Model Summary
--
R 0.939 RMSE 671.919
R-Squared 0.882 Coef. Var 14.814
Adj. R-Squared 0.877 MSE 451475.658

Practical Machine Learning in R144

Pred R-Squared 0.870 MAE 491.914
--
 RMSE: Root Mean Square Error
 MSE: Mean Square Error
 MAE: Mean Absolute Error

As we can see from the results, we lowered our residual error to 671.92 and increased

our adjusted R-squared to 0.877. This means our model now explains 87.7 percent of the

variability in the response. This is a significant improvement over our previous model.

The next thing we want to take a look at is the “Parameter Estimates” section, as

shown here:

 Parameter Estimates

 model Beta Std.Error Std.Beta t Sig lower upper

 (Intercept) -5783.258 698.492 -8.280 0.000 -7154.733 -4411.784
 month2 -148.493 129.378 -0.021 -1.148 0.251 -402.525 105.538
 month3 97.746 152.663 0.014 0.640 0.522 -202.005 397.497
 month4 -104.921 224.607 -0.015 -0.467 0.641 -545.933 336.090
 month5 343.918 238.563 0.051 1.442 0.150 -124.495 812.331
 month6 304.343 251.821 0.043 1.209 0.227 -190.102 798.789
 month7 232.599 278.814 0.032 0.834 0.404 -314.846 780.044
 month8 249.976 268.742 0.037 0.930 0.353 -277.694 777.646
 month9 546.315 238.624 0.077 2.289 0.022 77.783 1014.847
 month10 -122.349 221.254 -0.018 -0.553 0.580 -556.776 312.078
 month11 -739.354 210.390 -0.108 - 3.514 0.000 -1152.450 -326.258
 month12 -543.116 164.466 -0.079 -3.302 0.001 -866.042 -220.189
 weekdaySunday -464.040 95.748 -0.086 -4.846 0.000 -652.040 -276.040
 weekdayMonday -253.997 98.438 -0.047 -2.580 0.010 -447.278 -60.716
weekdayTuesday -207.566 95.923 -0.038 -2.164 0.031 -395.908 -19.223

weekdayWednesday -126.759 96.544 -0.023 -1.313 0.190 -316.321 62.804
weekdayThursday -91.007 96.596 -0.017 -0.942 0.346 -280.672 98.657
 weekdayFriday -26.515 96.361 -0.005 -0.275 0.783 -215.719 162.688
 seasonSpring 851.685 159.441 0.194 5.342 0.000 538.626 1164.743
 seasonSummer 980.975 192.287 0.221 5.102 0.000 603.424 1358.526
 seasonFall 1624.307 160.785 0.366 10.102 0.000 1308.608 1940.006
 holidayYes -553.809 157.964 0.049 -3.506 0.000 -863.968 - 243.649
 temperature2 -1.641 0.172 -1.555 -9.522 0.000 -1.979 -1.302
 temperature 241.043 19.717 1.934 12.225 0.000 202.329 279.757
 year2012 1897.337 52.237 0.496 36.322 0.000 1794.771 1999.904
 windspeed -101.108 9.693 -0.165 -10.431 0.000 - 120.140 -82.076
 humidity 6088.026 1597.069 0.433 3.812 0.000 2952.215 9223.838
 humidity2 -6543.385 1252.304 -0.593 -5.225 0.000 - 9002.257 -4084.513

windspeed:weatherClear 47.327 8.255 0.111 5.733 0.000 31.119 63.536

145Chapter 4: Linear Regression

windspeed:weather
Heavy precipitation -59.355 18.619 -0.047 -3.188 0.001 -95.913 - 22.796

The layout is a bit different from what we saw previously when using the summary()

function against our linear model. However, most of the information is similar. Here,

the model column lists the intercept and predictors, the Beta column lists the predictor

coefficients, and the Sig column shows the significance level of each predictor in the

model. The results show that including all the candidate predictors except for realfeel

and day gives us a more robust model.

The final section of interest to us is “Stepwise Selection Summary,” as shown here:

 Stepwise Selection Summary
--
 Added/ Adj.
Step Variable Removed R-Square R-Square C(p) AIC RMSE
--
 1 realfeel addition 0.444 0.443 2485.8090 12266.2830 1429.9573
 2 day addition 0.721 0.720 899.0440 11781.1939 1013.4814
 3 windspeed:
 weather addition 0.765 0.763 649.8410 11666.5370 932.4671
 4 month addition 0.820 0.815 337.6480 11501.1578 823.0760
 5 weekday addition 0.829 0.823 288.0660 11477.0170 805.7925
 6 season addition 0.850 0.844 168.9290 11390.0745 756.1230
 7 holiday addition 0.852 0.846 158.5180 11381.8230 751.2058
 8 temperature2 addition 0.854 0.848 149.7690 11374.8218 746.9825
 9 temperature addition 0.865 0.860 85.7640 11318.8851 717.4822
 10 realfeel removal 0.865 0.860 83.7720 11316.8924 716.9566
 11 year addition 0.868 0.862 72.4330 11306.5835 711.2585
 12 day removal 0.867 0.862 73.6180 11307.5420 712.2245
 13 windspeed addition 0.867 0.862 75.6180 11307.5420 712.2245
 14 humidity addition 0.877 0.872 19.1520 11253.1529 684.8471
 15 humidity2 addition 0.882 0.877 -6.1430 11227.2005 671.9194
 16 weather addition 0.882 0.877 -5.6590 11229.6159 672.1608
 17 weather removal 0.882 0.877 -6.1430 11227.2005 671.9194
--

This section shows us each of the steps in the mixed variable selection process. We

see the addition of all the candidate predictors and the removal of realfeel and day in

steps 10 and 12, respectively. We also see the various performance metrics generated

during each step of the process. We now have a model that we feel much more comfort-

able with compared to the model we started with.

Practical Machine Learning in R146

Strengths and Weaknesses
Now that we’ve seen both simple and multiple linear regression in action and have

a better understanding of some of the model outputs and diagnostics, let’s take a

moment to discuss some of the strengths and weaknesses of these two approaches.

Here are the strengths:

 • The linear regression equation is easy to understand and can be applied to any

set of predictors to generate a response with minimal computation. This also

means that when working with one predictor, we can easily visualize the result

of our model by drawing a regression line overlaid against a scatterplot of the

observed data.

 • Linear regression provides an estimate of the size and strength of the relationship

between two or more variables.

 • Linear regression models are easy to build and understand because the underlying

statistical principles are well defined and have wide applicability.

Here are the weaknesses:

 • Linear regression makes some assumptions about the relationship between the

independent and dependent variables. The most notable assumption is that this

relationship is linear. However, this is not always the case for real-world data. For

example, the relationship between age and income is not always linear. Income

tends to rise with age but flattens or even declines as people age and eventu-

ally retire.

 • As we saw in our analysis, outliers pose a significant problem for linear regression

models. So, to have more confidence in our model, we must identify and handle

influential points in the dataset.

 • Linear regression models the numeric relationship between predictors and the

response. This implicitly assumes that the variables are continuous. To deal with a

categorical predictor, the model has to create dummy variables as a proxy for the

categorical variable.

 • Understanding the model outputs for linear regression requires some basic statis-

tical knowledge.

147Chapter 4: Linear Regression

 • Linear regression requires that we specify the model’s form before beginning

the modeling process. For example, in our previous discussion, prior to creating a

model we had to determine which predictors to include in our model. We also had

to decide whether we would include polynomial or log-transformed variables in

our model and whether we would consider interaction effects.

CASE STUDY: PREDICTING BLOOD PRESSURE
Now that we have a better understanding of how to build, evaluate, and improve a linear

regression model, let’s put some of the principles we learned in the previous sections to

use. Suppose you are freelancing as a data science consultant with a small community

clinic in Chicago. The care providers at the clinic are concerned about the prevalence of

hypertension among their patient population. If left untreated for a sustained period

of time, high blood pressure can lead to significant medical complications such as heart

attack, stroke, or kidney disease. To raise awareness of the issue, the clinic would like

you to develop a model that predicts blood pressure, based on anonymized health met-

rics and limited lifestyle information about their patients. The clinic’s goal is to use this

model to develop an interactive self-service patient portal that provides a patient’s esti-

mated blood pressure based on their health metrics and lifestyle.

You are provided with data for 1,475 patients collected by the clinic over the last 12

months. The data that you will be using in this case study is real-world data collected by

the U.S. Centers for Disease Control and Prevention as part of its National Health and

Nutrition Examination Survey (NHANES). Extensive data from this survey is available

through the RNHANES package. The variables in our dataset are as follows:

 • systolic is the systolic blood pressure of the patient. The unit of measure is milli-

meters of mercury (mmHg). This is the dependent variable that we want to predict.

 • weight is the measured weight of the patient in kilograms (kg).

 • height is the measured height of the patient in centimeters (cm).

 • bmi is the body mass index of the patient. This provides a sense of how under-

weight or overweight a patient is.

 • waist is the measured circumference of a patient’s waist in centimeters (cm).

 • age is the self-reported age of the patient.

 • diabetes is a binary indictor of whether the patient has diabetes (1) or not (0).

 • smoker is a binary indicator of whether the patient smokes cigarettes regularly (1)

or not (0).

 • fastfood is a self-reported count of how many fast-food meals the patient has

had in the past week.

Practical Machine Learning in R148

Importing the Data
We begin by reading our data using the read_csv() function from the tidyverse

package.

> library (tidyverse)

> health <- read_csv ("health.csv")

We successfully imported the 1,475 observations and 9 variables. To get a quick view

of our data, we use the glimpse() command to show us our variable names, data types,

and some sample data.

> glimpse(health)

Observations: 1,475

Variables: 9

$ systolic <dbl> 100, 112, 134, 108, 128, 102, 126, 124, 166, 138, 118, 124, 96, 116,...

$ weight <dbl> 98.6, 96.9, 108.2, 84.8, 97.0, 102.4, 99.4, 53.6, 78.6, 135.5, 72.3,...

$ height <dbl> 172.0, 186.0, 154.4, 168.9, 175.3, 150.5, 157.8, 162.4, 156.9, 180.2...

$ bmi <dbl> 33.3, 28.0, 45.4, 29.7, 31.6, 45.2, 39.9, 20.3, 31.9, 41.7, 28.6, 31...

$ waist <dbl> 120.4, 107.8, 120.3, 109.0, 111.1, 130.7, 113.2, 74.6, 102.8, 138.4,...

$ age <dbl> 43, 57, 38, 75, 42, 63, 58, 26, 51, 61, 47, 52, 64, 55, 72, 80, 71, ...

$ diabetes <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,...

$ smoker <dbl> 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,...

$ fastfood <dbl> 5, 0, 2, 1, 1, 3, 6, 5, 0, 1, 0, 3, 0, 1, 0, 5, 0, 2, 1, 3, 2, 0, 12...

As we discussed earlier, systolic will be the response variable, and the other variables

will be our predictors. Notice that all the variables were imported as numeric (dbl to

be precise). However, we do know that the diabetes and smoker variables are actually

 categorical values. So, we need to convert these variables to factors by using the

as.factor() function.

> health <- health %>%
 mutate(diabetes=as.factor(diabetes)) %>%
 mutate(smoker=as.factor(smoker))

149Chapter 4: Linear Regression

Exploring the Data
Now that we have our data, let’s explore our data. We start by using the summary()

function to get a statistical summary of the numeric variables in our data.

> summary(health)

 systolic weight height bmi waist
 Min. : 80.0 Min. : 29.10 Min. :141.2 Min. :13.40 Min. : 56.2
 1st Qu.:114.0 1st Qu.: 69.15 1st Qu.:163.8 1st Qu.:24.10 1st Qu.: 88.4
 Median :122.0 Median : 81.00 Median :170.3 Median :27.90 Median : 98.9
 Mean :124.7 Mean : 83.56 Mean :170.2 Mean :28.79 Mean :100.0
 3rd Qu.:134.0 3rd Qu.: 94.50 3rd Qu.:176.8 3rd Qu.:32.10 3rd Qu.:109.5
 Max. :224.0 Max. :203.50 Max. :200.4 Max. :62.00 Max. :176.0

 age diabetes smoker fastfood
 Min. :20.00 0:1265 0:770 Min. : 0.00
 1st Qu.:34.00 1: 210 1:705 1st Qu.: 0.00
 Median :49.00 Median : 1.00
 Mean :48.89 Mean : 2.14
 3rd Qu.:62.00 3rd Qu.: 3.00
 Max. :80.00 Max. :22.00

Looking at the statistical distribution for our response variable systolic, we see

that the mean and median are relatively close, suggesting that the data is normally

distributed. Using a histogram, we can get a visual representation of the distribution

(Figure 4.8).

250

200

150

co
un

t

100

50

0
80 120 160

systolic
200

Figure 4.8 The systolic blood pressure data for this population appears to be
normally distributed.

Practical Machine Learning in R150

> health %>%
 ggplot () +
 geom_histogram (mapping=aes (x=systolic), fill = "lightblue", color =
"black") +
 theme_minimal()

The histogram shows that the data for the response variable is normally distributed.

Now, let’s also take a look at the statistical distributions of the predictor variables using a

set of histograms. We do this by using the tidyverse keep(), gather(), and facet_wrap()

functions (Figure 4.9).

> health %>%
 select (-systolic) %>%
 keep (is.numeric) %>%
 gather () %>%
 ggplot () +
 geom_histogram(mapping = aes(x=value,fill=key), color = "black") +
 facet_wrap (~ key, scales = "free") +
theme_minimal ()

We see a near uniform distribution for our age predictor. This means that our data is

representative of patients across a wide age spectrum. This is to be expected. The fast-

food variable is right-skewed. Most of our patients consume fast food as a meal less than

five times a week. The rest of our predictors are normally distributed. From visual inspec-

tion, there are no obvious outliers in our data that need to be dealt with.

80
60
40
20
0

20 40 60

age bmi fastfood

80 20
0

50

100

150

30 40 50 60 0
0

100
200
300
400

5 10 15 20
waist

50
0

50

100

150

100 150

weight

50
0

50

100

150

200

100 150 200

height

co
un

t

value

key

140
0

50

100

160 180 200

age bmi fastfood height waist weight

Figure 4.9 Distributions of dependent variables in the
health dataset

151Chapter 4: Linear Regression

The next thing we need to do as part of the data exploration process is to look at the

correlation between our continuous variables. To do this, we use the cor() function,

which was introduced earlier.

> cor (health[, c ("systolic","weight","height","bmi","waist","age","fastfood")])

 systolic weight height bmi waist age fastfood

systolic 1.00000000 0.10021386 0.02301030 0.09054668 0.16813021 0.40170911 -0.08417538

weight 0.10021386 1.00000000 0.40622019 0.89152826 0.89928820 -0.02217221 0.05770725

height 0.02301030 0.40622019 1.00000000 -0.03848241 0.14544676 -0.12656952 0.10917107

bmi 0.09054668 0.89152826 -0.03848241 1.00000000 0.91253710 0.03379844 0.01003525

waist 0.16813021 0.89928820 0.14544676 0.91253710 1.00000000 0.19508769 -0.02167324

age 0.40170911 -0.02217221 -0.12656952 0.03379844 0.19508769 1.00000000 -0.30089756

fastfood -0.08417538 0.05770725 0.10917107 0.01003525 -0.02167324 -0.30089756 1.00000000

Looking at the systolic column, we can see that the age predictor has the strongest

correlation with systolic blood pressure. This is followed by waist size and weight, both

of which are weakly correlated. It is interesting to note the negative correlation between

fastfood consumption and systolic blood pressure. This seems unusual and counter-

intuitive; however, the negative correlation is quite low, so it will not significantly impact

our model.

Fitting the Simple Linear Regression Model
In the previous two sections, we imported and explored our data. From our exploration,

we discovered that the age predictor has the strongest correlation to our response. So,

we will begin by building a simple linear regression model using the age as the predictor

and systolic as the response.

> health_mod1 <- lm (data=health, systolic~age)

> summary (health_mod1)

Call:
lm(formula = systolic ~ age, data = health)

Residuals:
 Min 1Q Median 3Q Max
-42.028 -10.109 -1.101 8.223 98.806

Practical Machine Learning in R152

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 104.34474 1.28169 81.41 <2e-16 ***
age 0.41698 0.02477 16.84 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.14 on 1473 degrees of freedom
Multiple R-squared: 0.1614, Adjusted R-squared: 0.1608
F-statistic: 283.4 on 1 and 1473 DF, p-value: < 2.2e-16

Our results show that our predictors are significant. The coefficient for age tells us

that for every 0.4-year increase in a patient’s age, we should expect his or her systolic

blood pressure to increase by 1 point. This means that, on average, the older a patient is,

the higher their blood pressure.

Looking at our model diagnostics, we see that our residual standard error is low and

our F-statistic is statistically significant. These are both good indicators of model fit.

However, our multiple R-squared tells us that our model explains only 16 percent of the

variability in the response. Let’s see if we can do better by introducing additional predic-

tors to the model.

Fitting the Multiple Linear Regression Model
For our multiple linear regression model, we will begin with all the predictors in our data

and systolic as the response.

> health_mod2 <- lm (data=health, systolic~.)

> summary (health_mod2)

Call:
lm(formula = systolic ~ ., data = health)

Residuals:
 Min 1Q Median 3Q Max
-41.463 -10.105 -0.765 8.148 100.398

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 163.30026 33.52545 4.871 1.23e-06 ***
weight 0.55135 0.19835 2.780 0.00551 **
height -0.39201 0.19553 -2.005 0.04516 *
bmi -1.36839 0.57574 -2.377 0.01759 *

153Chapter 4: Linear Regression

waist -0.00955 0.08358 -0.114 0.90905
age 0.43345 0.03199 13.549 < 2e-16 ***
diabetes1 2.20636 1.26536 1.744 0.08143 .
smoker1 1.13983 0.90964 1.253 0.21039
fastfood 0.17638 0.15322 1.151 0.24985

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.99 on 1466 degrees of freedom
Multiple R-squared: 0.1808, Adjusted R-squared: 0.1763
F-statistic: 40.44 on 8 and 1466 DF, p-value: < 2.2e-16

The results show that the coefficient estimates for weight, height, bmi, age, and

diabetes are significant in the model. Our model diagnostics also show a slight reduc-

tion in our residual standard error, a slight increase in our adjusted R-squared and

significant F-statistic that is greater than 0. Overall, this model provides a better fit

than our previous model. Let’s now run some additional diagnostic tests against our

new model.

The first test we run is the test for zero mean of residuals.

> mean (health_mod2$residuals)

[1] -1.121831e-15

Our residual mean is very close to zero, so our model passes this test.

Next, we test for normality of residuals (Figure 4.10).

–50
0

250

500

co
un

t

750

1000

0 50

Residuals

Residual Histogram

100

Figure 4.10 Histogram of residuals produced using the ols_plot_resid_hist()
function

Practical Machine Learning in R154

> library (olsrr)

> ols_plot_resid_hist (health_mod2)

The residual plot is normally distributed with a slight right skew. This is close enough

to a normal distribution to satisfy our test.

Next, we test for the presence of heteroscedasticity in our residuals (Figure 4.11).

> ols_plot_resid_fit (health_mod2)

Our plot shows an even distribution of points around the origin line. There is no het-

eroscedasticity in the distribution of our residuals versus fitted values.

Next, we run a test for residual autocorrelation.

> library (car)

> durbinWatsonTest (health_mod2)

 lag Autocorrelation D-W Statistic p-value
 1 -0.01985291 2.038055 0.456
 Alternative hypothesis: rho != 0

With a Durbin-Watson statistic of 2.04 and a p-value greater than 0.05, we cannot

reject the null hypothesis that “no first order autocorrelation exists.” Therefore, we can

say that our residuals are not autocorrelated.

The next diagnostic test we run is a check for influential points in our data by gener-

ating a chart of Cook’s distance function for our dataset (Figure 4.12).

> ols_plot_cooksd_chart (health_mod2)

110

Residual vs Fitted Values

0

50

Re
si

du
al

100

120 130

Fitted Value
140

Figure 4.11 Scatterplot of residuals produced using the ols_plot_resid_fit()
function

155Chapter 4: Linear Regression

Our plot shows that there are indeed several influential points in our data. Obser-

vation 1358 stands out from the rest. Let’s take a look at the observed values for that

observation:

> health[1358,]

A tibble: 1 x 9
 systolic weight height bmi waist age diabetes smoker fastfood
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <dbl>
1 184 146. 180. 44.9 140. 26 0 0 14

and compare those values to the statistical summary of our entire dataset, shown here:

> summary(health)

 systolic weight height bmi waist
 Min. : 80.0 Min. : 29.10 Min. :141.2 Min. :13.40 Min. : 56.2
 1st Qu.:114.0 1st Qu.: 69.15 1st Qu.:163.8 1st Qu.:24.10 1st Qu.: 88.4
 Median :122.0 Median : 81.00 Median :170.3 Median :27.90 Median : 98.9
 Mean :124.7 Mean : 83.56 Mean :170.2 Mean :28.79 Mean :100.0
 3rd Qu.:134.0 3rd Qu.: 94.50 3rd Qu.:176.8 3rd Qu.:32.10 3rd Qu.:109.5
 Max. :224.0 Max. :203.50 Max. :200.4 Max. :62.00 Max. :176.0

 age diabetes smoker fastfood
 Min. :20.00 0:1265 0:770 Min. : 0.00
 1st Qu.:34.00 1: 210 1:705 1st Qu.: 0.00
 Median :49.00 Median : 1.00
 Mean :48.89 Mean : 2.14
 3rd Qu.:62.00 3rd Qu.: 3.00
 Max. :80.00 Max. :22.00

0
0.00

0.01

0.02

Co
ok

’s
D

0.03

0.04

500 1000

Observation

Cook’s D Chart

1500

Figure 4.12 Cook’s distance chart for the health dataset produced using the ols_
plot_cooksd_chart() function

Practical Machine Learning in R156

We can see that the values for weight, bmi, height, age, and fastfood are signifi-

cantly different for observation 1358 compared to the average and median of those vari-

ables across the entire dataset.

Let’s also take a look at the statistical distribution of the rest of the outliers and com-

pare those to the statistical distribution of the data without the outliers. To do so, we

will need a list of all the observations that make up our influential points. We first need

to get a list of the index values for those observations. This is done by referring to the

observation column of the outlier attribute from Cook’s distance function.

> outlier_index <-
as.numeric (unlist (ols_plot_cooksd_chart (health_mod2)$outliers[,"observation"]))

> outlier_index

 [1] 6 9 31 67 77 86 93 112 122 164 205 299 308 315 316 325

[17] 338 360 370 400 427 432 437 465 486 503 514 560 570 573 576 617

[33] 632 659 667 703 714 752 805 859 867 869 887 900 904 910 977 1005

[49] 1080 1109 1116 1120 1158 1170 1216 1223 1230 1288 1293 1299 1313 1315 1330 1356

[65] 1358 1393 1398 1448

There are 68 observations in the list. Now that we have the outlier index values, we

use the summary() command to compare the two datasets. First, let’s look at a statisti-

cal summary of only the outlier points:

> summary (health[outlier_index,])

 systolic weight height bmi waist
 Min. : 86.0 Min. : 29.10 Min. :144.2 Min. :13.40 Min. : 56.20
 1st Qu.:109.0 1st Qu.: 68.92 1st Qu.:159.5 1st Qu.:23.60 1st Qu.: 92.35
 Median :163.0 Median : 82.20 Median :167.2 Median :32.00 Median :111.20
 Mean :149.4 Mean : 91.73 Mean :167.2 Mean :32.26 Mean :109.81
 3rd Qu.:174.0 3rd Qu.:109.03 3rd Qu.:174.2 3rd Qu.:38.42 3rd Qu.:124.92
 Max. :224.0 Max. :203.50 Max. :193.3 Max. :62.00 Max. :172.20

 age diabetes smoker fastfood
 Min. :21.00 0:44 0:29 Min. : 0.000
 1st Qu.:41.75 1:24 1:39 1st Qu.: 0.000
 Median :56.00 Median : 1.000
 Mean :55.50 Mean : 2.897
 3rd Qu.:68.00 3rd Qu.: 3.000
 Max. :80.00 Max. :18.000

Next, let’s compare that to a summary of the points in the dataset excluding

the outliers.

157Chapter 4: Linear Regression

> summary (health[-outlier_index,])

 systolic weight height bmi waist
 Min. : 80.0 Min. : 41.10 Min. :141.2 Min. :16.00 Min. : 65.60
 1st Qu.:114.0 1st Qu.: 69.15 1st Qu.:164.0 1st Qu.:24.10 1st Qu.: 88.15
 Median :122.0 Median : 81.00 Median :170.4 Median :27.80 Median : 98.50
 Mean :123.5 Mean : 83.17 Mean :170.3 Mean :28.63 Mean : 99.56
 3rd Qu.:134.0 3rd Qu.: 94.10 3rd Qu.:176.8 3rd Qu.:31.90 3rd Qu.:108.80
 Max. :182.0 Max. :180.20 Max. :200.4 Max. :59.00 Max. :176.00

 age diabetes smoker fastfood
 Min. :20.00 0:1221 0:741 Min. : 0.000
 1st Qu.:34.00 1: 186 1:666 1st Qu.: 0.000
 Median :48.00 Median : 1.000
 Mean :48.57 Mean : 2.103
 3rd Qu.:62.00 3rd Qu.: 3.000
 Max. :80.00 Max. :22.000

We can see a slight to moderate difference in the mean and median between each of

the variable pairs. While the minimum and maximum values for most pairs are similar, we

see a significant difference with the minimum and maximum values of the weight vari-

able. To improve our model, we should remove these influential points from our dataset.

However, for us to be able to refer to the original data, let’s create a new version of our

dataset from the original without outliers. We call this new dataset health2.

> health2 <- health[-outlier_index,]

The final diagnostic test that we run is the test for multicollinearity.

> ols_vif_tol (health_mod2)

A tibble: 8 x 3
 Variables Tolerance VIF
 <chr> <dbl> <dbl>
1 weight 0.0104 96.1
2 height 0.0522 19.2
3 bmi 0.0125 80.0
4 waist 0.0952 10.5
5 age 0.588 1.70
6 diabetes1 0.887 1.13
7 smoker1 0.840 1.19
8 fastfood 0.896 1.12

With a VIF well above 5.0 for weight, height, bmi, and waist, it’s obvious that we have

a problem with multicollinearity. This is not surprising, considering that bmi is calculated

Practical Machine Learning in R158

as weight divided by the square of height and that waist size is highly correlated with a

person’s weight. To resolve our multicollinearity problem, we need to either combine the

impacted variables or drop some of them. Since weight has the lowest tolerance among

the four predictors, we choose to drop the other three and keep weight.

With the changes we’ve made to our data and the new insight we have about our

model, let’s build a new multiple linear regression model.

> health_mod3 <- lm (data=health2, systolic ~ weight+age+diabetes)

> summary (health_mod3)

Call:
lm (formula = systolic ~ weight + age + diabetes, data = health2)

Residuals:
 Min 1Q Median 3Q Max
-38.825 -9.004 -0.177 8.222 49.679

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 96.62591 1.93014 50.062 < 2e-16 ***
weight 0.09535 0.01870 5.100 3.87e-07 ***
age 0.38372 0.02218 17.297 < 2e-16 ***
diabetes1 2.62446 1.11859 2.346 0.0191 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.59 on 1403 degrees of freedom
Multiple R-squared: 0.2128, Adjusted R-squared: 0.2111
F-statistic: 126.4 on 3 and 1403 DF, p-value: < 2.2e-16

All our predictors are significant, and all our model diagnostics show an improve-

ment over the previous model. Our model now explains 21 percent of the variability in

the response. This is still rather low, so let’s try to see whether we can further improve

our model.

The next two things we consider are the possibility of an interaction effect between

our predictors and the possibility that there is a nonlinear relationship between some of

our predictors and the response.

It is reasonable to expect that there may be interactions between weight and diabe-

tes and between age and diabetes, so we will incorporate those possible interactions

into our model. We learned how to specify this earlier using the * operator.

It is also reasonable to expect that the relationship between age and hypertension

may not be constant at all age levels. As a patient gets older, there very well may be an

159Chapter 4: Linear Regression

accelerated relationship between age and systolic blood pressure. To account for this

possibility, we will need to introduce nonlinear predictors into our model. To do so, we add

two new variables to our health2 data — age2, which we call age2, and log(age), which

we call lage.

> health2 <- health2 %>%
 mutate(age2=age^2,
 lage=log(age))

To build our next model, we again use the ols_step_both_p() function from the

olsrr package to perform variable selection. We provide as input our original dataset,

along with four interaction effects between diabetes and four other dependent vari-

ables: weight, age, age2, and lage.

> ols_step_both_p (

 model = lm (

 data = health2,

 systolic ~ weight * diabetes + age * diabetes + age2 * diabetes

 + lage * diabetes

),

 pent = 0.2,

 prem = 0.01,

 details = FALSE

)

Final Model Output

 Model Summary

--

R 0.467 RMSE 13.551

R-Squared 0.218 Coef. Var 10.969

Adj. R-Squared 0.216 MSE 183.636

Pred R-Squared 0.213 MAE 10.626

--

 RMSE: Root Mean Square Error

 MSE: Mean Square Error

 MAE: Mean Absolute Error

Practical Machine Learning in R160

 ANOVA

--

 Sum of

 Squares DF Mean Square F Sig.

--

Regression 71747.979 4 17936.995 97.677 0.0000

Residual 257457.582 1402 183.636

Total 329205.561 1406

--

 Parameter Estimates

--

 model Beta Std. Error Std. Beta t Sig lower upper

(Intercept) 142.588 14.796 9.637 0.000 113.563 171.612

lage -16.720 5.364 -0.411 -3.117 0.002 -27.243 -6.197

age 0.750 0.119 0.830 6.295 0.000 0.516 0.983

weight:diabetes0 0.096 0.019 0.209 5.077 0.000 0.059 0.134

weight:diabetes1 0.124 0.020 0.253 6.136 0.000 0.084 0.164

--

 Stepwise Selection Summary

--

 Added/ Adj.

Step Variable Removed R-Square R-Square C(p) AIC RMSE
--

 1 diabetes:age2 addition 0.200 0.199 30.1580 11362.6333 13.6970

 2 weight addition 0.217 0.215 2.3790 11335.0892 13.5588

 3 diabetes addition 0.217 0.215 3.0660 11335.7725 13.5573

 4 lage addition 0.217 0.214 5.0560 11337.7626 13.5621

 5 diabetes removal 0.217 0.214 4.3590 11337.0698 13.5636

 6 age2 addition 0.217 0.214 6.3590 11337.0698 13.5636

 7 weight removal 0.200 0.198 33.8080 11364.2895 13.7002

 8 weight:diabetes addition 0.217 0.214 5.4730 11338.1811 13.5641

 9 diabetes:age2 removal 0.217 0.215 3.4960 11336.2045 13.5594

 10 age addition 0.218 0.216 3.1620 11335.8602 13.5529

 11 age2 removal 0.218 0.216 1.8100 11334.5121 13.5512

--

Our output suggests a slight improvement over the previous model. The model now

explains 21.6 percent of the variability in the response. This is better than what we

started with but still rather low, suggesting limitations with the data. To get a model

that better explains the variability in our response, we would need more predictors that

correlate with the response. For example, we might want to include information about

gender, family medical history, and exercise habits in our model.

161Chapter 4: Linear Regression

However, it is also important to note that when working with behavioral data, it is

common to run into difficulties building a model that explains most of the variability in

the response. This is as a result of the unpredictable nature of human behavior.

Looking at the coefficient estimates from our output, we see that lage, age,

weight:diabetes0, and weight:diabetes1 are all significant. This suggests that there

is a nonlinear relationship between age and blood pressure. It also shows that there is an

interaction between weight and diabetes. The weight and diabetes interactions can be

interpreted as follows: for patients without diabetes, a 1kg increase in weight results in

an increase in systolic blood pressure of 0.96 points. However, for patients with diabetes,

a 1kg increase in weight results in a 1.24 point increase in systolic blood pressure.

EXERCISES
1. You are working with a movie production company to evaluate the potential success

of new feature films. As you begin your work, you gather data elements about all

feature films released in the past 10 years. Identify five data elements that you think

would be useful to gather for analysis. Characterize your expectations for each vari-

able, stating whether you believe it would be positively correlated or negatively cor-

related with box office revenue and whether you believe each correlation would be

relatively strong, moderate, or weak.

2. Using the blood pressure dataset from the use case in this chapter, produce a correla-

tion plot. Use the corrplot.mixed function and generate a plot that shows the cor-

relation coefficients visually above the diagonal and numerically below the diagonal.

Provide an interpretation of your results.

3. You are working with college admission data and trying to determine whether you

can predict a student’s future GPA based upon their college admission test score. The

test is scored on a scale of 0–100, while GPA is measured on a scale of 0.0–4.0.

Call:
lm(formula = gpa ~ test)

Residuals:
 Min 1Q Median 3Q Max
-0.3050 -0.1237 0.0525 0.1412 0.2000

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.695000 0.531954 1.307 0.2392
test 0.033000 0.006205 5.318 0.0018 **

Practical Machine Learning in R162

When you build your regression model, you receive the following results:

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1962 on 6 degrees of freedom
Multiple R-squared: 0.825, Adjusted R-squared: 0.7958
F-statistic: 28.29 on 1 and 6 DF, p-value: 0.001798

a. According to this model, what impact would a single point increase in admissions

test score have on the prediction of a student’s GPA?

b. If a student scored 82 on the admissions test, what would be your prediction of

their GPA?

c. If another student scored 97 on the admissions test, what would be your predic-

tion of their GPA?

d. How well does this model fit the data based upon the Adjusted R-squared?

4. Returning to the bicycle rental dataset, use R to create a simple regression model

designed to predict the realfeel temperature based upon the air temperature.

Explain your model and describe how well it fits the data.

5. After building the regression model in exercise 3, you return to the same dataset and

want to know whether the age of a student at application time is also a contributing

factor to their GPA. You add this element to a multiple regression model and receive

the results shown here:

Call:
lm(formula = gpa ~ test + age)

Residuals:
 1 2 3 4 5 6 7
-0.16842 0.02851 -0.07939 0.13158 0.07456 0.12807 -0.11798
 8
 0.00307

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.900439 0.984841 -1.930 0.11153
test 0.025702 0.004937 5.206 0.00345 **
age 0.182456 0.064412 2.833 0.03656 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1332 on 5 degrees of freedom
Multiple R-squared: 0.9328, Adjusted R-squared: 0.9059
F-statistic: 34.71 on 2 and 5 DF, p-value: 0.00117

163Chapter 4: Linear Regression

a. According to this model, what impact would a single point increase in admissions

test score have on the prediction of a student’s GPA? How about a single year

increase in age?

b. If a student scored 82 on the admissions test and was 17 years old at the time of

application, what would be your prediction of their GPA?

c. If another student scored 97 on the admissions test and was 19 years old at the

time of application, what would be your prediction of their GPA?

d. How well does this model fit the data based upon the adjusted R-squared? How

does that compare to the model from exercise 3?

6. Returning to the bicycle rental dataset, convert your simple regression model from

exercise 4 to a multiple regression model that predicts realfeel based upon tem-

perature, windspeed, and humidity. Explain your model and describe how well it

fits the data, compared to the model you created in exercise 4.

Chapter 5

Logistic Regression

In Chapter 4, we discussed how analysts can use linear

regression to predict the value of a numeric variable based upon

its relationship to one or more independent variables. Linear

regression is a useful tool for these situations, but it isn’t well-

suited for every type of problem. In particular, linear regression

does not work well when our problem requires that we predict

a categorical variable. For example, we might want to predict

whether a potential customer might fit into the categories of Big

Spender, Repeat Customer, One-Time Customer, or Noncustomer.

Similarly, we might want to predict whether a tumor detected in

a medical imaging scan is benign or malignant. These problems,

where we attempt to predict membership in a category, are known

as classification problems.

In this chapter, we explore the first of several techniques that

we will use to model classification problems: logistic regression.

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R166

While linear regression seeks to predict a numeric response,

logistic regression seeks to predict the probability of a categorical

response. As you will see in this chapter, we can then extend

logistic regression to handle cases where there are more than two

possible outcomes.

By the end of this chapter, you will have learned the following:

 ◆ The difference between regression and classification

 ◆ The underlying statistical principles and concepts behind

logistic regression

 ◆ How logistic regression fits into the larger family of general-

ized linear models

 ◆ How to build a logistic regression model using R

 ◆ How to evaluate, interpret, improve upon, and apply the

results of a logistic regression model

 ◆ The strengths and weaknesses of logistic regression models

PROSPECTING FOR POTENTIAL DONORS
As we explore logistic regression in this chapter, we will use a real-world example to

support our study. Our dataset comes from a national veterans’ organization that fre-

quently solicits donations through direct mail campaigns to its database of current and

prospective donors. The organization sent out a test mailing to a group of potential

donors and gathered information on the response to that test mailing. This dataset was

initially gathered for use in the Second International Knowledge Discovery and Data Min-

ing Tools Competition.

TIP The dataset that we will use is available to you as part of the electronic
resources accompanying this book. (See the introduction for more

167Chapter 5: Logistic Regression

information on accessing the electronic resources.) It includes information
on the characteristics of individuals and whether they responded to the test
mailing or not.

Imagine that we were hired by the veterans’ organization to determine which donors

would be most likely to respond to a future mailing based upon the results of the test

mailing that they performed. Our goal is to use the test mailing data to build a model

that allows the organization to predict which future potential donors should receive a

test mailing. To accomplish this, we will split the data into two parts. The first part will be

our training set. We will use the training set to develop our model. The second dataset

will be our test set. We will use the test set to evaluate the performance of our model

by comparing the predicted outcome of our model against the actual outcomes in the

test data.

The dataset includes several demographic variables for our analysis, listed here:

 • age is the age, in years, of the donor.

 • numberChildren is the number of children in the donor’s household.

 • incomeRating is a relative measure of the donor’s annual income, on a scale of

1–7 (7 is the highest), while wealthRating is a similar measure of the donor’s

total wealth using a 1–9 scale.

 • mailOrderPurchases is a number of known purchases that the donor made

through mail order sources.

 • state is the name of the U.S. state where the donor resides.

 • urbanicity is a categorical variable describing the region where the donor lives,

with the following values:

 • rural

 • suburb

 • town

 • urban

 • city

 • socioEconomicStatus is a categorical variable describing the socioeconomic

class of the donor, with the following values:

 • highest

 • average

 • lowest

Practical Machine Learning in R168

 • isHomeowner is TRUE when the donor is a homeowner. NA values in this field indi-

cate that it is unknown whether the donor is a homeowner. Of note, this field con-

tains no FALSE values.

 • gender is a categorical variable describing the gender of the donor, with the fol-

lowing values:

 • female

 • male

 • joint (the account belongs to two or more people)

In addition to this demographic information, we also have some variables about the

donor’s past giving patterns. These include the following:

 • totalGivingAmount is the total dollar amount of gifts received from the donor

over their entire giving history.

 • numberGifts is the number of gifts received from the donor over their entire

giving history.

 • smallestGiftAmount is the dollar amount of the smallest gift ever received from

the donor.

 • largestGiftAmount is the dollar amount of the largest gift ever received from

the donor.

 • averageGiftAmount is the average gift size, in dollars, received from the donor.

 • yearsSinceFirstDonation is the number of years that have elapsed since the

donor’s first gift to the organization.

 • monthsSinceLastDonation is the number of months that have elapsed since the

donor’s most recent gift to the organization.

 • inHouseDonor is a logical value indicating whether the donor participated in the

“in-house” fundraising program.

 • plannedGivingDonor is a logical value indicating whether the donor has

designated the organization as the recipient of a gift from his or her estate.

 • sweepstakesDonor is a logical value indicating whether the donor participated in

any of the organization’s fundraising sweepstakes.

 • P3Donor is a logical value indicating whether the donor participated in the “P3”

fundraising program.

Finally, the dataset includes a variable called respondedMailing that indicates

whether the prospective donor gave a gift in response to the test mailing or not.

169Chapter 5: Logistic Regression

Given the problem and the data provided, these are some of the questions we need

to answer:

 • How well can we predict whether a prospective donor will respond to our cam-

paign, given the information we have about them?

 • How do we interpret the effect of a change in any particular variable on the prob-

ability of a donor responding or not responding to our mailing?

By the end of this chapter, we will have answered each of these questions using logis-

tic regression and related techniques.

CLASSIFICATION
To solve the problem that we are presented with, we could attempt to the use the same

approach that we used in Chapter 4 (linear regression) to predict the dependent vari-

able for this problem. However, there is a key difference between the problems we dealt

with in Chapter 4 and this one. The outcome we are trying to predict for the test mail-

ing is an indicator of whether a potential donor will or will not respond to a mailing. The

values of our dependent variable, respondedMailing, are either TRUE or FALSE. This

is a categorical response. The response variable for the problems we dealt with in Chap-

ter 4 were all continuous values. Linear regression is good at dealing with those types

of problems.

There are ways in which we could attempt to modify our current problem so that

it seems more suitable for linear regression. One way is to encode the response as a

numeric variable, such that 0 represents FALSE and 1 represents TRUE. This transforms

our categorical response variable into a “somewhat continuous” response variable. With

this approach, we could interpret predicted values below 0.5 as FALSE and values above

0.5 as TRUE. There are some critical flaws with this approach. First, while this approach

could work for our particular problem, it does not generalize well to other problems,

especially ones with more than two response values. For example, imagine that we were

trying to predict whether a vehicle should be painted blue, red, or green based upon

other characteristics of the car. How would we assign numeric values to those colors?

Which of the following six options should we choose?

Color Option 1 Option 2 Option 3 Option 4 Option 5 Option 6

Blue 0 2 0 1 1 2
Red 1 0 2 2 0 1
Green 2 1 1 0 2 0

Practical Machine Learning in R170

This is an arbitrary choice, and besides, it seems to suggest that the colors are

ordered such that for option 1, Green is twice as valuable as Red, and both are more valu-

able than Blue. We could also choose a different scheme where Red could be –1, Blue

could be 0, and Green could be 1. This approach also presents its own set of problems,

including skewing our model coefficients depending on the values used.

Another challenge with using linear regression for this problem is that with a fitted

straight line, we could feasibly have response values larger or smaller than our decision

boundaries of 0 and 1. How would we interpret a response of 20 or a response of –50?

Because of the limitations of linear regression in generalizing to these scenarios, we

prefer to use a different type of approach. Instead of regression, we use classification.

Classification techniques are designed specifically to predict two or more values. We will

introduce a variety of classification techniques in this book. The first, which we introduce

in this chapter, extends the regression approach from the previous chapter so that it

works well for categorical responses. This technique is known as logistic regression.

LOGISTIC REGRESSION
Instead of modeling our response variable directly, as in linear regression, logistic

regression models the probability of a particular response value. Applying this idea to

our stated problem, instead of predicting the value of respondedMailing, the logistic

regression model would predict the probability that the value of respondedMailing is

TRUE. Using monthsSinceLastDonation as our predictor, the model would be repre-

sented as follows:

 Pr respondedMailing monthsSinceLastDonationTRUE | (5.1)

If we were to generalize the equation in terms of X and Y, assuming that TRUE is repre-

sented by 1 and FALSE by 0, then our model can be written as follows:

 Pr |Y X1 (5.2)

Restated, this is saying that we are predicting the probability of Y given X, or, in

the case of the veterans’ organization data, we are trying to predict the probabil-

ity that someone responded to the mailing given the number of months since their

last donation.

171Chapter 5: Logistic Regression

Since this is a probability, we would expect the value to range between 0 and 1, and

we would expect to interpret the value as the prediction of how likely it is that the

response variable is true. For example, if the model in Equation 5.1 predicted a value of

0.8, we would interpret that as meaning that there is an 80 percent likelihood that the

person responded to the mailing, while a prediction of 0.3 indicates a 30 percent likeli-

hood of response.

In the previous chapter, we learned that regression analysis involves three key com-

ponents: the response, the predictor(s), and the coefficients. We also learned that the

relationship between these three components is modeled using the function ,Y f X .

As we mentioned earlier, logistic regression is focused on modeling the probability of a

response, which is described in Equation 5.2 as Pr Y X1| . This means that to model our

response using a straight-line function like we did with linear regression, our function

would be defined as follows:

 0 11|Pr Y X X (5.3)

The fitted line based on this equation is shown in Figure 5.1(a). As we can see, the plot

illustrates the limitations with this approach that we discussed earlier.

As the values for monthsSinceLastDonation approach 20, we begin to see negative

values for our predicted probabilities. These are not reasonable values. How would we

1.00

0.75

0.50

0.25

0.00

0 5 10
monthsSinceLastDonation

(a)

Pr
ob

ab
ili

ty
 o

f r
es

po
nd

ed
M

ai
lin

g

15 20

1.00

0.75

0.50

0.25

0.00
0 5 10

monthsSinceLastDonation
(b)

Pr
ob

ab
ili

ty
 o

f r
es

po
nd

ed
M

ai
lin

g

15 20

Figure 5.1 Fitted line for probability of respondedMailing using a straight-line
function (a) like in linear regression and a sigmoid function (b) in logistic regression

Practical Machine Learning in R172

interpret a –10 percent chance of something occurring? To overcome this challenge,

we need to use a nonlinear function for our regression line. One such function is the

logistic function.

p X Y X

e

e

X

X
Pr 1

1

0 1

0 1

|
 (5.4)

The output for the logistic function is always between 0 and 1 for all possible values

of X. This is illustrated by the curved line in Figure 5.1(b). We see that the logistic

function produces an s-shaped curve that approaches, but never goes beyond, 0 and 1.

This kind of curve is known as a sigmoid curve. This sigmoid curve does a much better job

of capturing the range of probabilities in our data than the straight-line curve based on

the linear regression function.

Just like we did with linear regression in the previous chapter, our goal in fitting a

logistic regression model is to identify the values for 0 and 1 that best approximate the

relationship between X and Y. However, unlike with linear regression where we used the

ordinary least squares method, logistic regression uses a different approach called maxi-

mum likelihood estimation. Maximum likelihood estimation (MLE) is a more sophisticated

statistical method used to estimate the parameters of a model based on only a sampling

of the data. The details of how this method works are beyond the scope of this text. For

a more in-depth explanation of MLE, see the book Maximum Likelihood Estimation and

Inference by Russel B. Millar.

We began this section with a discussion about how logistic regression differs from lin-

ear regression in terms of how it models the response. It is important to note that logis-

tic regression also differs from linear regression in terms of how we interpret the model.

In simple linear regression,
1
 is the expected value for Y when X = 0, and 1 is the average

expected increase in Y for each unit increase in X. However, in logistic regression, 1 is

the corresponding change in the log-odds of Pr Y X1| as a result of a unit change in X .

What does this mean? To understand this, let’s begin by discussing what an odds ratio is

and what log-odds mean.

Odds Ratio
The odds or odds ratio of an event is the likelihood (or probability) that the event will

occur expressed as a proportion of the likelihood that the event will not occur. For exam-

ple, if the probability of an event occurring is X , the probability of it not occurring is 1 X ;

therefore, the odds of the event occurring is
X

X1
. Odds ratios are commonly used in

173Chapter 5: Logistic Regression

horse races, sports, epidemiology, gambling, and so forth. In sports, instead of stating

the probability of winning, people will often talk about the odds of winning. How do

these two metrics differ? Let’s assume that out of 10 basketball games between team A

and team B, team A won 6 of them. We can then say that the probability of team A win-

ning the next game is 60 percent, or 0.6 (6/10); however, their odds of winning the next

game are 0.6/0.4 = 1.5.

Applying the concept of odds to our logistic function p X , the odds of Pr Y X1| are

as follows:

p X

p X1 (5.5)

With the definition of p X in Equation 5.4, we can define 1 p X as follows:

1

1

1

1

0 1

0 1 0 1

e

e e

X

X X (5.6)

Applying Equations 5.4 and 5.6 to our definition of the odds of Pr Y X1| in

Equation 5.5, we get the following:

p X

p X
e X

1

0 1

 (5.7)

Based on this equation, we can see that a unit increase in X changes the odds of p X

by a multiple of e 1. It is important to note that if 1, then e 1 1. This means that as X

increases, the odds of p X will decrease. Inversely, if 1, then e 1 1. This means that

as X increases, so will the odds of p X . By taking the logarithm of Equation 5.7, we get

the log-odds of p X , which is also known as the logit.

log

p X

p X1
0 1

X

 (5.8)

As we can see, the logit (or logistic unit) is a linear combination of the predictors.

Going back to the definition of the logistic function in Equation 5.4, we can think of

Practical Machine Learning in R174

the logistic function as a mathematical function that converts the log-odds of p X to

a probability, which gives us the sigmoid curve we saw earlier. This explains why a unit

increase in X changes the log-odds of p X by 1.

Odds, Log-Odds, and Probability
To better understand the relationship between odds, log-odds, and probability, it is
useful to visually illustrate how these values change in relation to each other. The first
illustration shows the relationship between the log-odds and the odds of an event.
We see that at negative values for log-odds, as the log-odds increases, the odds
values increase slowly between the range of 0 and 1. However, as log-odds become
positive, an increase in log-odds results in an exponential increase in odds.

100

50

Od
ds

0

–5 –4 –3 –2 –1 0
Log-Odds

1 2 3 4 5

150

Odds vs. Log-Odds

The next illustration shows the relationship between odds and probability. Here
we see that the probability of an event increases as the odds of the event increase.
However, the rate of increase for probability starts to slow down as the odds of an
event exceeds 1.

175Chapter 5: Logistic Regression

0.75

0.25

Pr
ob

ab
ili

ty

0.00

0 50
Odds

100 150

1.00

Probability vs. Odds

0.50

The final illustration shows the relationship between log-odds and probability.
Since we know that the coefficients of a logistic regression model are log-odds,
this illustration shows the relationship between the coefficient values of a logistic
regression model and the probability of the outcome being modeled. Negative
log-odds correspond to probability values of below 0.5, while positive log-odds
correspond to probabilities above 0.5.

0.75

0.50

0.25

Pr
ob

ab
ili

ty

0.00
–5 –4 –3 –2 –1 0

Log-Odds
1 2 3 4 5

1.00

Probability vs. Log-Odds

Practical Machine Learning in R176

Binomial Logistic Regression Model
Now that we have a theoretical idea of how logistic regression works, it’s time to put it

into practice. Logistic regression comes in different forms depending on the nature of

the response variable. The response variable for the donors dataset is binary, meaning

that it has only two possible values. The type of logistic regression that is used to model

such a dataset is known as binomial logistic regression. In this section, we illustrate how

to train a binomial logistic regression model in R. The first thing we do is import our data

using the read_csv() function from the tidyverse package, as shown here:

> library(tidyverse)
> donors <- read_csv("donors.csv", col_types = "nnffnnnnnnnnffffffffff")

Now that we have our data, let’s take some time to explore and prepare the

data. The first thing we want to do is get a high-level view of our data using the

glimpse() function.

> glimpse(donors)

Observations: 95,412

Variables: 22

$ age <dbl> 60, 46, NA, 70, 78, NA, 38, NA, NA, 65, NA, 75,...

$ numberChildren <dbl> NA, 1, NA, NA, 1, NA, 1, NA, NA, NA, NA, NA, 2,...

$ incomeRating <fct> NA, 6, 3, 1, 3, NA, 4, 2, 3, NA, 2, 1, 4, NA, 4...

$ wealthRating <fct> NA, 9, 1, 4, 2, NA, 6, 9, 2, NA, 0, 5, 2, NA, 6...

$ mailOrderPurchases <dbl> 0, 16, 2, 2, 60, 0, 0, 1, 0, 0, 0, 3, 16, 0, 17...

$ totalGivingAmount <dbl> 240, 47, 202, 109, 254, 51, 107, 31, 199, 28, 2...

$ numberGifts <dbl> 31, 3, 27, 16, 37, 4, 14, 5, 11, 3, 1, 2, 9, 12...

$ smallestGiftAmount <dbl> 5, 10, 2, 2, 3, 10, 3, 5, 10, 3, 20, 10, 4, 5, ...

$ largestGiftAmount <dbl> 12, 25, 16, 11, 15, 16, 12, 11, 22, 15, 20, 15,...

$ averageGiftAmount <dbl> 7.741935, 15.666667, 7.481481, 6.812500, 6.8648...

$ yearsSinceFirstDonation <dbl> 8, 3, 7, 10, 11, 3, 10, 3, 9, 3, 1, 1, 8, 5, 4,...

$ monthsSinceLastDonation <dbl> 14, 14, 14, 14, 13, 20, 22, 18, 19, 22, 12, 14,...

$ inHouseDonor <fct> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,...

$ plannedGivingDonor <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...

$ sweepstakesDonor <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...

$ P3Donor <fct> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,...

$ state <fct> IL, CA, NC, CA, FL, AL, IN, LA, IA, TN, KS, IN,...

177Chapter 5: Logistic Regression

$ urbanicity <fct> town, suburb, rural, rural, suburb, town, town,...

$ socioEconomicStatus <fct> average, highest, average, average, average, av...

$ isHomeowner <fct> NA, TRUE, NA, NA, TRUE, NA, TRUE, NA, NA, NA, N...

$ gender <fct> female, male, male, female, female, NA, female,...

$ respondedMailing <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...

We can see that our dataset contains 95,412 observations and 22 variables (or fea-

tures). There are two types of features in the data: 12 categorical and 10 continuous.

Let’s take a look at them by type, starting with the categorical features. The summary()

function is a good place to start. It provides us with a statistical distribution of the values

for each feature.

> donors %>%
 keep(is.factor) %>%
 summary()

 incomeRating wealthRating inHouseDonor plannedGivingDonor
 5 :15451 9 : 7585 FALSE:88709 FALSE:95298
 2 :13114 8 : 6793 TRUE : 6703 TRUE : 114
 4 :12732 7 : 6198
 1 : 9022 6 : 5825
 3 : 8558 5 : 5280
 (Other):15249 (Other):18999
 NA's :21286 NA's :44732
 sweepstakesDonor P3Donor state urbanicity
 FALSE:93795 FALSE:93395 CA :17343 town :19527
 TRUE : 1617 TRUE : 2017 FL : 8376 suburb:21924
 TX : 7535 rural :19790
 IL : 6420 urban :12166
 MI : 5654 city :19689
 NC : 4160 NA's : 2316
 (Other):45924

 socioEconomicStatus isHomeowner gender respondedMailing
 average:48638 TRUE:52354 female:51277 FALSE:90569
 highest:28498 NA's:43058 male :39094 TRUE : 4843
 lowest :15960 joint : 365
 NA's : 2316 NA's : 4676

Practical Machine Learning in R178

Here we used the keep() function from the tidyverse package to select only the

categorical features (factor data type). Our results show that we have a number of fea-

tures with a significant amount of missing data, as represented by the count of NAs.

We need to address this issue because logistic regression is not well-suited to handling

missing values. Recall that in Chapter 4, we mentioned that regression is used to model

the size and strength of numeric relationships. As one can imagine, we cannot model the

size and strength of missing values.

Dealing with Missing Data
In Chapter 3, we discussed the concept of missing values as a common data qual-

ity problem. In that chapter, we also introduced several approaches to dealing with

missing data, some of which we will use here. Let’s begin with the incomeRating

feature. We can get a fractional frequency distribution for the values of this fea-

ture by first creating a table of frequencies using the table() function in R and then

converting that table to proportions using the prop.table() function. Note that we

must also use the exclude=NULL argument to the table() function to include NA

values in our results.

> donors %>%
 select(incomeRating) %>%
 table(exclude=NULL) %>%
 prop.table()

 6 3 1 4 2 7 5 <NA>
0.08152014 0.08969522 0.09455834 0.13344233 0.13744602 0.07830252 0.16193980 0.22309563

We see from these results that 22.31 percent of the incomeRating data is missing.

That is a significant number of observations. We should not get rid of that many obser-

vations from our dataset simply because of “missingness.” So, let’s assign a dummy value

to represent the missing values. This compensates for the fact that logistic regression

cannot handle NA values, so we replace them with a substitute value. Here we use UNK as

the feature value:

> donors <- donors %>%
 mutate(incomeRating = as.character(incomeRating)) %>%
 mutate(incomeRating = as.factor(ifelse(is.na(incomeRating), 'UNK',
incomeRating)))

179Chapter 5: Logistic Regression

> donors %>%
 select(incomeRating) %>%
 table() %>%
 prop.table()

 1 2 3 4 5 6 7 UNK
0.09455834 0.13744602 0.08969522 0.13344233 0.16193980 0.08152014 0.07830252 0.22309563

This approach can also be applied to the other features with missing data.

> donors <- donors %>%
 mutate(wealthRating = as.character(wealthRating)) %>%
 mutate(wealthRating = as.factor(ifelse(is.na(wealthRating), 'UNK',
wealthRating))) %>%
 mutate(urbanicity = as.character(urbanicity)) %>%
 mutate(urbanicity = as.factor(ifelse(is.na(urbanicity), 'UNK',
urbanicity))) %>%
 mutate(socioEconomicStatus = as.character(socioEconomicStatus)) %>%
 mutate(socioEconomicStatus = as.factor(ifelse(is.
na(socioEconomicStatus), 'UNK', socioEconomicStatus))) %>%
 mutate(isHomeowner = as.character(isHomeowner)) %>%
 mutate(isHomeowner = as.factor(ifelse(is.na(isHomeowner), 'UNK',
isHomeowner))) %>%
 mutate(gender = as.character(gender)) %>%
 mutate(gender = as.factor(ifelse(is.na(gender), 'UNK', gender)))

> donors %>%
 keep(is.factor) %>%
 summary()

 incomeRating wealthRating inHouseDonor plannedGivingDonor
 UNK :21286 UNK :44732 FALSE:88709 FALSE:95298
 5 :15451 9 : 7585 TRUE : 6703 TRUE : 114
 2 :13114 8 : 6793
 4 :12732 7 : 6198
 1 : 9022 6 : 5825
 3 : 8558 5 : 5280
 (Other):15249 (Other):18999

 sweepstakesDonor P3Donor state urbanicity
 FALSE:93795 FALSE:93395 CA :17343 city :19689
 TRUE : 1617 TRUE : 2017 FL : 8376 rural :19790

Practical Machine Learning in R180

 TX : 7535 suburb:21924
 IL : 6420 town :19527
 MI : 5654 UNK : 2316
 NC : 4160 urban :12166
 (Other):45924

 socioEconomicStatus isHomeowner gender respondedMailing
 average:48638 TRUE:52354 female:51277 FALSE:90569
 highest:28498 UNK :43058 joint : 365 TRUE : 4843
 lowest :15960 male :39094
 UNK : 2316 UNK : 4676

Now that we’ve resolved the missing values for our categorical data, let’s take a look

at the continuous features. Just like we did for the categorical features, we start by

looking at the summary statistics.

> donors %>%
 keep(is.numeric) %>%
 summary()

 age numberChildren mailOrderPurchases totalGivingAmount
 Min. : 1.00 Min. :1.00 Min. : 0.000 Min. : 13.0
 1st Qu.:48.00 1st Qu.:1.00 1st Qu.: 0.000 1st Qu.: 40.0
 Median :62.00 Median :1.00 Median : 0.000 Median : 78.0
 Mean :61.61 Mean :1.53 Mean : 3.321 Mean : 104.5
 3rd Qu.:75.00 3rd Qu.:2.00 3rd Qu.: 3.000 3rd Qu.: 131.0
 Max. :98.00 Max. :7.00 Max. :241.000 Max. :9485.0
 NA's :23665 NA's :83026

 numberGifts smallestGiftAmount largestGiftAmount averageGiftAmount
 Min. : 1.000 Min. : 0.000 Min. : 5 Min. : 1.286
 1st Qu.: 3.000 1st Qu.: 3.000 1st Qu.: 14 1st Qu.: 8.385
 Median : 7.000 Median : 5.000 Median : 17 Median : 11.636
 Mean : 9.602 Mean : 7.934 Mean : 20 Mean : 13.348
 3rd Qu.: 13.000 3rd Qu.: 10.000 3rd Qu.: 23 3rd Qu.: 15.478
 Max. :237.000 Max. :1000.000 Max. :5000 Max. :1000.000

 yearsSinceFirstDonation monthsSinceLastDonation
 Min. : 0.000 Min. : 0.00
 1st Qu.: 2.000 1st Qu.:12.00

181Chapter 5: Logistic Regression

 Median : 5.000 Median :14.00
 Mean : 5.596 Mean :14.36
 3rd Qu.: 9.000 3rd Qu.:17.00
 Max. :13.000 Max. :23.00

We see that both the age and numberChildren features are missing a significant

number of values. For age, we’ll use mean imputation as our approach to resolve the

missing values. However, instead of simply using the mean of all the age values in our

data, we use the mean of the age values grouped by gender.

> donors <- donors %>%
 group_by(gender) %>%
 mutate(age = ifelse(is.na(age), mean(age, na.rm = TRUE), age)) %>%
 ungroup()

> donors %>%
 select(age) %>%
 summary()

 age
 Min. : 1.00
 1st Qu.:52.00
 Median :61.95
 Mean :61.67
 3rd Qu.:71.00
 Max. :98.00

TIP When dealing with missing values, care should always be taken to
not significantly alter the structural characteristics of the original data.
A simple way to verify that our data maintains its overall structure through
the imputation process is to evaluate the statistical summary of the data
before and after the missing values are filled in. For example, here we used a
mean imputation approach to deal with missing values for the age variable.
Our validation approach involves looking at the statistical summary for
that feature before and after the imputation process to make sure that the
minimum, first quartile, median, mean, third quartile, and maximum values
have not been significantly altered. Our results show that they have not.

Practical Machine Learning in R182

The second feature with missing values is numberChildren. Using the same mean

imputation approach used for age would not be appropriate here. First, using the mean

number of children by gender makes no logical sense. Second, if we simply used the

mean of the nonmissing data, we would get 1.53, which is not a reasonable value for this

feature. So, this time we will use median imputation instead.

> donors <- donors %>%
 mutate(numberChildren = ifelse(is.na(numberChildren),
 median(numberChildren, na.rm = TRUE),
 numberChildren))

> donors %>%
 select(numberChildren) %>%
 summary()

numberChildren
 Min. :1.000
 1st Qu.:1.000
 Median :1.000
 Mean :1.069
 3rd Qu.:1.000
 Max. :7.000

Now that we’ve resolved the missingness with both age and numberChildren, let’s

evaluate our other features. From our summary statistics we see that maximum values

for mailOrderPurchases, totalGivingAmount, numberGifts, smallestGiftAmount,

largestGiftAmount, and averageGiftAmount are rather high compared to the mean

and median. This is indicative of outliers in our data.

Dealing with Outliers
The histograms in Figure 5.2 show the distribution of the values for the six features that

we identified as having outlier data. Each of the charts further illustrate the problem

in a much more visible way than the summary statistics. We notice that the distribu-

tion of data on each chart is right skewed with most of the values clustered toward the

lower range.

There are several approaches to dealing with outlier data. One approach is to use a

simple rule of thumb based on the statistical properties of the data. The principle behind

the rule is that any value that is larger or less than 1.5 times the interquartile range (IQR)

is labeled as an outlier and should be removed from the data.

183Chapter 5: Logistic Regression

averageGiftAmount

60000

40000

20000

0
0 250 500 750 1000

mailOrderPurchases

60000

40000

20000

0
0 50 100 150 200 250

largestGiftAmount

75000

50000

25000

0
0 1000 2000 3000 4000 5000

numberGifts

30000

20000

10000

0
0 250 500 750 1000 0 2500 5000 7500 1000

totalGivingAmount

0 50 100 150 200 250

smallestGiftAmount

80000

40000

60000

20000

0

80000

40000

60000

20000

0

co
un

t

Figure 5.2 Histogram showing the distribution of values for the mailOrder
Purchases, totalGivingAmount, numberGifts, smallestGiftAmount, largestGift
Amount, and averageGiftAmount variables

Symmetric and Skewed Distributions
Data distributions can be described, in terms of their shape, as either symmetric, left
skewed, or right skewed. A symmetric distribution is one where the data is evenly
balanced on both sides of the mean (or center point). For symmetric distributions, the
mean is approximately equal to the median.

(a) Symmetric (b) Left Skewed (c) Right Skewed

(Continued)

Practical Machine Learning in R184

Using this rule of thumb approach, we first get the outlier cutoff values (max1, max2,

max3, max4, max5, and max6) for each of the values for the mailOrderPurchases,

totalGiving Amount, numberGifts, smallestGiftAmount, largestGiftAmount, and

averageGiftAmount variables. Next, we eliminate any values that fall above those

thresholds for each of the variables.

> donors <- donors %>%
 mutate(max1 = quantile(mailOrderPurchases, .75) + (1.5 *
IQR(mailOrderPurchases))) %>%
 mutate(max2 = quantile(totalGivingAmount, .75) + (1.5 *
IQR(totalGivingAmount))) %>%
 mutate(max3 = quantile(numberGifts, .75) + (1.5 * IQR(numberGifts)))
%>%
 mutate(max4 = quantile(smallestGiftAmount, .75) + (1.5 *
IQR(smallestGiftAmount))) %>%

Interquartile Range
For readers not familiar with descriptive statistics, the interquartile range (IQR) of
a set of values is the difference between the values for the first quartile (Q1) and
the third quartile (Q3). Quartiles divide an ordered set of values into four equal
parts. The first quartile is the middle number between the smallest number and
the median. The first quartile is also known as the 25th percentile, because 25
percent of the values in the dataset are below its value. The second quartile (Q2)
or 50th percentile is the median. The third quartile or 75th percentile is the middle
value between the median and the highest value. In R, we can use the quantile()
function from the stats package to get the quartile values for a variable. For
example, to get the third quartile (or 75th percentile) for the mailOrderPurchases
variable, we use quantile(mailOrderPurchases, .75). The stats package also
provides us with a function, aptly called IQR(), to calculate the interquartile range
for a set of values.

A distribution where the tail is longer on the left side than on the right is known
as a left skewed (or negative) distribution. For left skewed distributions, the mean
is less than the median. Right skewed (or positive) distributions have the opposite
characteristics of left skewed distributions. For right skewed distributions, the tail
is longer on the right side than on the left and the mean is larger than the median.
The illustration summarizes the three types of distributions.

185Chapter 5: Logistic Regression

 mutate(max5 = quantile(largestGiftAmount, .75) + (1.5 *
IQR(largestGiftAmount))) %>%
 mutate(max6 = quantile(averageGiftAmount, .75) + (1.5 *
IQR(averageGiftAmount))) %>%
 filter(mailOrderPurchases <= max1) %>%
 filter(totalGivingAmount <= max2) %>%
 filter(numberGifts <= max3) %>%
 filter(smallestGiftAmount <= max4) %>%
 filter(largestGiftAmount <= max5) %>%
 filter(averageGiftAmount <= max6) %>%
 select(-max1,-max2,-max3,-max4,-max5,-max6)

Now that we’ve removed the outliers from our data, let’s see what our summary sta-

tistics look like. We should expect that as a result of removing the outliers, the range of

values for each of our variables will be much smaller than it was prior to the process.

> donors %>%
 keep(is.numeric) %>%
 summary()

 age numberChildren mailOrderPurchases totalGivingAmount
 Min. : 1.00 Min. :1.000 Min. :0.0000 Min. : 14.00
 1st Qu.:51.00 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.: 38.00
 Median :61.19 Median :1.000 Median :0.0000 Median : 70.00
 Mean :60.58 Mean :1.071 Mean :0.9502 Mean : 82.79
 3rd Qu.:69.00 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:115.00
 Max. :98.00 Max. :6.000 Max. :7.0000 Max. :267.00

 numberGifts smallestGiftAmount largestGiftAmount averageGiftAmount
 Min. : 1.000 Min. : 0.000 Min. : 5.00 Min. : 1.600
 1st Qu.: 3.000 1st Qu.: 3.000 1st Qu.:13.00 1st Qu.: 8.231
 Median : 7.000 Median : 5.000 Median :16.00 Median :11.000
 Mean : 8.463 Mean : 6.918 Mean :17.04 Mean :11.661
 3rd Qu.:12.000 3rd Qu.:10.000 3rd Qu.:20.00 3rd Qu.:15.000
 Max. :28.000 Max. :20.000 Max. :36.00 Max. :26.111

 yearsSinceFirstDonation monthsSinceLastDonation
 Min. : 0.000 Min. : 0.00
 1st Qu.: 2.000 1st Qu.:12.00
 Median : 5.000 Median :14.00
 Mean : 5.373 Mean :14.46
 3rd Qu.: 8.000 3rd Qu.:16.00
 Max. :12.000 Max. :23.00

Practical Machine Learning in R186

Our results are as expected. For example, we see that the minimum and maximum

values for the mailOrderPurchases feature have changed from 0 and 241, respec-

tively, to 0 and 7. That is a significant contraction in the range of values. Comparing Fig-

ures 5.2 and 5.3 provides us with a good illustration of the impact that outlier removal

has on the distribution of values for our features. While we still do have some skew with

a couple of the features, we no longer have the long tails that we observed prior to

removing the outlier values.

So far, we have dealt with the missing values in our data using imputation methods

and dummy variables. We have also dealt with the outlier values in our data by excluding

them using a rule of thumb. We are almost ready to build our logistic regression model.

Before we do so, we need to split our data and prepare the dependent variable, which in

classification is known as the class. Our class is the respondedMailing feature.

TIP Please note that outliers can be legitimate data. In our example, we chose
to remove them from our data. However, there are circumstances where we do
want to keep outlier values because they provide us with insight into particular
phenomena. For example, let’s assume that we are working with emigration
rates across countries or regions by year. Sometimes, we could observe a higher
than normal rate of emigration out of a certain country for a defined period.
This outlier data could be as a result of a military conflict within the region
during that period. Depending on our goal, we may want to keep this data.

averageGiftAmount

6000

4000

2000

0
0 10 20

6000

4000

2000

0
0 10 20

6000

4000

2000

0
0 100 200

mailOrderPurchases

40000

30000

20000

10000

0
0 2 4 6

largestGiftAmount

15000

10000

5000

0
10 20 30

numberGifts

0 5 10 15 20

totalGivingAmountsmallestGiftAmount

20000

10000

0

co
un

t

Figure 5.3 Histogram showing the distribution of values for the mailOrderPurchases,
totalGivingAmount, numberGifts, smallestGiftAmount, largestGiftAmount, and
averageGiftAmount variables after the outlier values have been removed

187Chapter 5: Logistic Regression

Splitting the Data
Using the sample() base R function that we introduced in Chapter 3, we partition our

data into training and test datasets using a 75 percent to 25 percent split. We call the

new datasets donors _ train and donors _ test, respectively.

> set.seed(1234)
> sample_set <- sample(nrow(donors), round(nrow(donors)*.75), replace =
FALSE)
> donors_train <- donors[sample_set,]
> donors_test <- donors[-sample_set,]

When sampling data for the modeling process, it is important that the class distribu-

tion of the samples mimic the class distribution of the original dataset. This is because,

as discussed in Chapter 3, a good sample should serve as a proxy for the original data so

that a model created from a sample will have similar predictive performance as a model

created from the entire dataset. In our case, this means that we want the donors _

train and donors _ test datasets to have the same or similar class distribution as the

donors dataset. Let’s see how the class distributions compare:

> round(prop.table(table(select(donors, respondedMailing), exclude =
NULL)), 4) * 100

FALSE TRUE
94.98 5.02

> round(prop.table(table(select(donors_train, respondedMailing),
exclude = NULL)), 4) * 100

FALSE TRUE
94.98 5.02

> round(prop.table(table(select(donors_test, respondedMailing), exclude
= NULL)), 4) * 100

FALSE TRUE
94.97 5.03

The results show that we do have similar class distributions across all three sets. With

a class distribution of 94.98 percent to 5.02 percent, the results also show that we have a

class imbalance problem.

Practical Machine Learning in R188

Dealing with Class Imbalance
As we discussed in Chapter 3, class imbalance is a common problem when working with

real-world data. It degrades the performance of a machine learning model because it

biases the model toward the majority class at the expense of the minority class. Before

we build a model, we need to address this problem. There are several approaches to solv-

ing class imbalance problems; one of them is by using a synthetic minority oversampling

technique (SMOTE). This technique works by creating new synthetic samples from the

minority class to resolve the imbalance.

Earlier, we mentioned that when sampling data for the modeling process, the class

distributions of the subsets should always mirror those of the original dataset. There is

one notable exception to this rule and that is with regard to the training data for imbal-

anced datasets. When dealing with imbalanced data, we need to balance the training

set prior to the modeling process. Note that this applies only to the training set. The

test data should mirror the class distribution of the original data because a model’s

performance against the test data is a proxy for its generalizability against unseen data.

In R, the DMwR package provides us with a function called SMOTE(), which we can use to

balance our training data. The SMOTE() function accepts arguments that describe the

formula for the prediction problem, the data frame containing the original imbalanced

data, a specification of how many extra cases from the minority class are to be gener-

ated (perc.over), and a specification for how many extra cases from the majority class

should be selected for each case generated from the minority class (perc.under). The

output of the function is a data frame of the balanced data.

> library(DMwR)
> set.seed(1234)
> donors_train <- SMOTE(respondedMailing ~ ., data.frame(donors_train),
perc.over = 100, perc.under = 200)

In our code, we specified the prediction problem for SMOTE() as follows:

respondedMailing ˜ .

This means, that the values for the respondedMailing variable should be predicted (˜)

using all the other variables (.) in the training set.

We set the value for perc.over to 100. This means that we want 100 percent addi-

tional cases from the minority class to be generated. In other words, we want to double

the number of instances for the minority class. For example, if we had 20 instances for

the minority class, a setting of 100 for perc.over tells SMOTE() to generate 20 addi-

tional synthetic instances of the minority class for a total of 40. The setting of 200 for

perc.under tells SMOTE to select twice the number (or 200 percent) of instances from

189Chapter 5: Logistic Regression

the majority class as were generated for the minority class. Applying this to our previous

example where we generated 20 additional synthetic instances of the minority class, a

setting of 200 for perc.under tells SMOTE to select 40 instances from the majority class.

This means that our resulting dataset will have 40 instances each, for the majority and

minority classes (a 50-50 balance).

Now that we understand how SMOTE works and have used it to balance our training

data, let’s take a look at the new class distributions:

> round(prop.table(table(select(donors, respondedMailing), exclude =
NULL)), 4) * 100

FALSE TRUE
94.98 5.02

> round(prop.table(table(select(donors_train, respondedMailing),
exclude = NULL)), 4) * 100

FALSE TRUE
 50 50

> round(prop.table(table(select(donors_test, respondedMailing), exclude
= NULL)), 4) * 100

FALSE TRUE
94.97 5.03

As we can see, the training data is now balanced at 50 percent, while the original data

and the test data remain imbalanced. The last thing we do before we build our model

is transform the values for our class from FALSE/TRUE to 0/1. This is not a required

step, but we do this for illustrative purposes and to be consistent with the examples we

shared at the beginning of the chapter.

> donors <- donors %>%
 mutate(respondedMailing = as.factor(ifelse(respondedMailing==TRUE,
1, 0)))
> donors_train <- donors_train %>%
 mutate(respondedMailing = as.factor(ifelse(respondedMailing==TRUE,
1, 0)))
> donors_test <- donors_test %>%
 mutate(respondedMailing = as.factor(ifelse(respondedMailing==TRUE,
1, 0)))

We are now ready to build our model.

Practical Machine Learning in R190

Training a Model
One of the most popular functions used in R to build a binomial logistic regression model

is the glm() function from the stats package. The name of the function, glm, stands for

generalized liner model (GLM). The GLM is a statistical technique that was developed as

an approach to unify various regression techniques into a single framework. It accom-

plishes this by using what is known as a transformation function (or link function) to rep-

resent the relationship between the predictor variables and the response variable for a

regression problem. There are three core components to the GLM.

 • The random component. This represents the response or a function that describes

the distribution of the values of the response.

 • The systematic component. This is the linear combination of predictors ,f X .

 • The link function. This specifies the relationship between the random and system-

atic components.

The type of link function used in a GLM is dependent on the type of data we are

working with and the intended regression approach. For logistic regression, the link

function is the logit function, which we specified in Equation 5.8.

To train a binomial logistic regression model using the glm() function, we pass three

main arguments to it. The first argument (data) is the training data (donors _ train).

The second argument (family) is the type of regression model we intend to build. We

set it to binomial. This tells the glm() function that we intend to build a binomial

logistic regression model using the logit link function. Instead of setting family =

binomial, we could also write family = binomial(link = “logit”). The last argu-

ment we pass to the function is the formula for the prediction problem. This is where

we specify which features (predictors) to use to predict the class (response). For our

model, we specify that the function should use all the features in our training set (.) to

build a model that predicts respondedMailing.

> donors_mod1 <- glm(data=donors_train, family=binomial,
formula=respondedMailing ~ .)

Evaluating the Model
Now that we have trained a model called donors _ mod1, we can get a detailed descrip-

tion of the model by using the summary() function.

> summary(donors_mod1)

Call:
glm(formula = respondedMailing ˜ ., family = binomial, data = donors_
train)

191Chapter 5: Logistic Regression

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.1854 -1.0440 0.1719 1.0673 2.1874

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.415e-01 2.895e-01 -1.525 0.127217
age -6.841e-05 1.745e-03 -0.039 0.968734
numberChildren 8.398e-02 6.602e-02 1.272 0.203367
incomeRating2 2.807e-01 9.649e-02 2.910 0.003619 **
incomeRating3 4.691e-02 1.103e-01 0.425 0.670707
incomeRating4 -7.950e-03 1.035e-01 -0.077 0.938790
incomeRating5 4.135e-02 1.008e-01 0.410 0.681625
incomeRating6 5.827e-01 1.119e-01 5.210 1.89e-07 ***
incomeRating7 4.823e-01 1.130e-01 4.266 1.99e-05 ***
incomeRatingUNK 6.594e-01 9.369e-02 7.038 1.95e-12 ***
wealthRating1 -2.423e-02 2.058e-01 -0.118 0.906289
wealthRating2 -1.457e-01 2.000e-01 -0.728 0.466425
wealthRating3 -3.470e-02 1.952e-01 -0.178 0.858911
wealthRating4 -2.960e-01 1.959e-01 -1.511 0.130768
wealthRating5 -1.173e-01 1.930e-01 -0.608 0.543105
wealthRating6 4.109e-01 1.833e-01 2.242 0.024985 *
wealthRating7 -3.035e-01 1.897e-01 -1.600 0.109660
wealthRating8 4.188e-01 1.854e-01 2.259 0.023894 *
wealthRating9 -4.916e-01 1.913e-01 -2.570 0.010174 *
wealthRatingUNK 7.296e-03 1.686e-01 0.043 0.965482
mailOrderPurchases 6.808e-02 1.516e-02 4.489 7.14e-06 ***
totalGivingAmount -2.463e-03 1.106e-03 -2.226 0.026012 *
numberGifts 3.731e-02 1.065e-02 3.502 0.000461 ***
smallestGiftAmount 6.562e-02 1.084e-02 6.053 1.42e-09 ***
largestGiftAmount -5.563e-02 8.441e-03 -6.591 4.37e-11 ***
averageGiftAmount 3.700e-02 1.827e-02 2.025 0.042877 *
yearsSinceFirstDonation 2.370e-02 1.159e-02 2.044 0.040943 *
monthsSinceLastDonation -3.948e-02 6.625e-03 -5.959 2.54e-09 ***
inHouseDonorTRUE 6.275e-03 1.026e-01 0.061 0.951218
plannedGivingDonorTRUE -1.305e+01 3.662e+02 -0.036 0.971561
sweepstakesDonorTRUE -3.769e-01 1.911e-01 -1.972 0.048577 *
P3DonorTRUE 2.011e-01 1.614e-01 1.246 0.212775
stateCA 3.172e-01 1.014e-01 3.129 0.001756 **
stateNC 1.388e+00 1.183e-01 11.730 < 2e-16 ***
stateFL 6.077e-01 1.081e-01 5.621 1.90e-08 ***
stateAL 5.251e-01 1.895e-01 2.771 0.005584 **
stateIN -1.462e-01 1.542e-01 -0.948 0.343103
stateLA 1.587e+00 1.565e-01 10.136 < 2e-16 ***
stateIA -2.341e-02 2.121e-01 -0.110 0.912098
stateTN -1.975e-01 1.740e-01 -1.135 0.256406
stateKS -4.546e-02 2.211e-01 -0.206 0.837062

Practical Machine Learning in R192

stateMN -3.296e-02 1.771e-01 -0.186 0.852364
stateUT -2.280e-01 3.136e-01 -0.727 0.467252
stateMI 7.231e-01 1.176e-01 6.150 7.74e-10 ***
stateMO -7.663e-02 1.532e-01 -0.500 0.616895
stateTX -8.052e-02 1.192e-01 -0.676 0.499201
stateOR 5.361e-01 1.618e-01 3.314 0.000921 ***
stateWA 2.610e-01 1.431e-01 1.824 0.068144 .
stateWI 1.611e-01 1.546e-01 1.042 0.297486
stateGA -3.281e-01 1.599e-01 -2.051 0.040221 *
stateOK -1.796e-01 2.034e-01 -0.883 0.377138
stateSC 1.558e-01 1.722e-01 0.905 0.365617
stateKY 4.066e-02 1.860e-01 0.219 0.826980
stateMD 1.763e-01 1.100e+00 0.160 0.872700
stateSD 4.611e-01 3.284e-01 1.404 0.160321
stateNV 3.844e-01 2.175e-01 1.767 0.077217 .
stateNE -9.417e-02 2.755e-01 -0.342 0.732530
stateAZ 2.300e-01 1.615e-01 1.424 0.154529
stateVA 1.176e+00 1.241e+00 0.948 0.343187
stateND -3.089e-01 3.843e-01 -0.804 0.421530
stateAK -1.219e+00 6.517e-01 -1.870 0.061463 .
stateAR -2.679e-02 2.378e-01 -0.113 0.910305
stateNM 4.644e-01 2.424e-01 1.916 0.055418 .
stateMT 5.390e-01 3.088e-01 1.746 0.080840 .
stateMS -1.186e-01 2.340e-01 -0.507 0.612210
stateAP 1.062e+00 7.362e-01 1.442 0.149170
stateCO -3.632e-02 1.735e-01 -0.209 0.834184
stateAA 1.496e+00 1.254e+00 1.194 0.232564
stateHI 3.511e-01 3.141e-01 1.118 0.263672
stateME -1.272e+01 3.721e+02 -0.034 0.972739
stateWY 2.598e-01 3.890e-01 0.668 0.504233
stateID 2.412e-01 3.304e-01 0.730 0.465377
stateOH -1.348e+01 2.623e+02 -0.051 0.959024
stateNJ -4.414e-01 1.279e+00 -0.345 0.729964
stateMA -1.319e+01 3.674e+02 -0.036 0.971362
stateNY -1.477e+00 1.077e+00 -1.372 0.170170
statePA -1.367e+01 3.454e+02 -0.040 0.968433
stateDC -1.383e+01 5.354e+02 -0.026 0.979399
stateAE -1.315e+01 5.354e+02 -0.025 0.980411
stateCT 7.484e-01 1.519e+00 0.493 0.622229
stateDE -1.257e+01 3.786e+02 -0.033 0.973518
stateRI -1.321e+01 5.354e+02 -0.025 0.980309
stateGU 7.761e-01 1.257e+00 0.617 0.536983
urbanicityrural -2.506e-03 6.920e-02 -0.036 0.971114
urbanicitysuburb -2.326e-02 6.641e-02 -0.350 0.726183
urbanicitytown 1.832e-01 6.665e-02 2.748 0.005987 **
urbanicityUNK 9.796e-02 3.888e-01 0.252 0.801098

193Chapter 5: Logistic Regression

urbanicityurban -2.497e-01 8.127e-02 -3.072 0.002125 **
socioEconomicStatushighest 8.669e-02 5.525e-02 1.569 0.116666
socioEconomicStatuslowest -4.529e-01 6.714e-02 -6.745 1.53e-11 ***
socioEconomicStatusUNK -2.216e-01 3.887e-01 -0.570 0.568649
isHomeownerUNK -2.025e-01 5.447e-02 -3.717 0.000202 ***
genderjoint 3.649e-01 3.258e-01 1.120 0.262668
gendermale 1.505e-01 4.427e-02 3.399 0.000675 ***
genderUNK -2.645e-01 1.017e-01 -2.601 0.009304 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 14623 on 10547 degrees of freedom
Residual deviance: 13112 on 10453 degrees of freedom
AIC: 13302

Number of Fisher Scoring iterations: 12

In this output, the first thing we see is the call. This is R reminding us about what

model we ran and what arguments we passed to it. The next thing the output shows

is the distribution of deviance residuals. For logistic regression, these metrics are not

important. If we had used the glm() function for linear regression, then we would

expect these residuals to be normally distributed. We evaluate this from the deviance

residuals by comparing the difference in the absolute values for 1Q and 3Q. The closer

those numbers are to each other, the more normally distributed the residuals.

Coefficients
The next part of the output are the model coefficients. These are similar to what we saw

with linear regression in Chapter 4. This section lists the predictors (including the inter-

cept) used in the model, the estimated coefficient for each predictor, the standard error,

z-value, p-value, and the significance of each predictor.

In linear regression, we interpreted the model coefficients as the average change in

the value of the response as a result of a unit change in a particular predictor. However,

in logistic regression, we interpret the model coefficients as the change in the log-odds

of the response as a result of a unit change in the predictor variable (see Equation 5.8).

For example, a value of 0.0369957 for the coefficient of averageGiftAmount means

that, for every unit increase in the value of averageGiftAmount, the log-odds of

respondedMailing being TRUE changes by 0.0369957. This interpretation may be a bit

confusing and unnatural, so we can interpret it a different way by explaining the change

in odds rather than log-odds. To do so, we need to exponentiate the coefficients by using

Practical Machine Learning in R194

the exp() and coef() functions. To convert the coefficient for the averageGiftAmount

variable, we do the following:

> exp(coef(donors_mod1)["averageGiftAmount"])

averageGiftAmount
 1.037689

Now, we can interpret the coefficient as saying that, assuming all other predictors

are held constant, for a one unit increase in averageGiftAmount, the odds of a donor

responding to the campaign increases by a factor of 1.037689. Note that the coefficient

for averageGiftAmount is positive. This resulted in an odds ratio that is above 1, which

represents an increase in the odds of the event. However, if we were to interpret the

negative coefficient for a variable such as monthsSinceLastDonation, we get the

following:

> exp(coef(donors_mod1)["monthsSinceLastDonation"])

monthsSinceLastDonation
 0.961289

We can interpret this value to mean that, assuming all other predictors are held

constant, the odds that a donor will respond to the campaign decreases by a factor of

0.961289 for each additional month since their last donation (monthsSinceLastDona

tion). Here we see that a coefficient with a negative value results in a decrease in the

odds of the event. Note that the two examples we looked at, averageGiftAmount and

monthsSinceLastDonation, are both continuous features. When interpreting the

coefficients of categorical features, we do so in reference to the baseline. For example,

for the incomeRating variable, our model lists six dummy variables for incomeRating

levels 2 to 7. This means that incomeRating level 1 is the baseline (or reference) for this

variable. To interpret the coefficient for incomeRating level 2 (incomeRating2), we

use the same process of exponentiation that we used previously to get the odds.

> exp(coef(donors_mod1)["incomeRating2"])

incomeRating2
 1.324102

This time around, we interpret the result as the increased odds (1.324102) that a

donor with an income rating of 2 will respond to the campaign relative to a donor with an

195Chapter 5: Logistic Regression

income rating of 1 (baseline), holding all other factors constant. In other words, donors

with an income rating of 2 are more likely to respond to the campaign than donors with

an income rating of 1.

Diagnostics
The rest of the model output includes some additional diagnostics about the model.

The first part states that “Dispersion parameter for binomial family taken to be 1.” This

means that an additional scaling parameter was added to help fit the model. This is not

important information for interpreting the model and can be ignored.

Null and Residual Deviance
The null deviance indicates how well the model did in predicting the response using

only the intercept. The smaller this number is, the better. The residual deviance quan-

tifies how well the model did in predicting the response using not only the intercept but

the included predictors as well. The difference between the null and residual deviance

values indicates how much the model’s performance was enhanced by the inclusion of

the predictors. The larger the difference between the null and residual deviance values,

the better.

AIC
The AIC is the Akaike Information Criterion. It is a quantification of how well our model

does in explaining the variability in our data. AIC is often used when comparing two

models built from the same data with each other. When comparing two models, the

model with the lower AIC is preferred.

The last diagnostic, “Number of Fisher Scoring iterations,” is just an indication of how

long the model took to fit. This is not important for interpreting the model and can be

safely ignored most of the time.

Predictive Accuracy
So far, we’ve built a logistic regression model using our training data. We evaluated

and interpreted the model’s outputs, including the coefficients and diagnostics. The

next thing we need to do is assess the performance of the model in actually predicting

the response for out-of-sample observations. This involves using our model to predict

respondedMailing in the test data (donors _ test). To do this, we will use the

 predict() function from the stats package. This function takes three arguments.

Practical Machine Learning in R196

The first argument is the model we created (donors _ mod1). The second argument is the

test data (donors _ test). The third argument is the type of prediction required (type =

'response').

> donors_pred1 <- predict(donors_mod1, donors_test, type = 'response')

Error in model.frame.default(Terms, newdata, na.action = na.action,
xlev = object$xlevels) :
 factor state has new levels VT, WV, NH, VI

We get an error. No need for alarm. The error is simply letting us know that there

are four levels (or values) in our test data that are not present in our training data.

Recall that we used a random sampling approach to create our training and test data-

sets. This approach, as the name implies, is completely at random and does not guar-

antee that we have equal representation of feature values in both datasets. In this

example, our training sample did not include records from Vermont, West Virginia,

New Hampshire, or the Virgin Islands, but those regions were included in our test set.

Because the training set did not include these values, our model cannot make a predic-

tion for test records that do include those values. A simple solution to this problem is

to remove these observations from our test data. First, let’s identify the observations

in question:

> filter(donors_test, state=="VT" | state=="WV" | state=="NH" |
state=="VI")

A tibble: 7 x 22
 age numberChildren incomeRating wealthRating mailOrderPurcha... totalGivingAmou...
 <dbl> <dbl> <fct> <fct> <dbl> <dbl>
1 48 1 4 UNK 0 193
2 68 1 4 2 0 73
3 30 1 4 7 4 43
4 62.0 1 UNK UNK 0 35
5 34 1 7 7 1 15
6 62.0 1 UNK UNK 0 22
7 73 1 1 2 4 105
... with 16 more variables: numberGifts <dbl>, smallestGiftAmount <dbl>,
largestGiftAmount <dbl>, averageGiftAmount <dbl>, yearsSinceFirstDonation <dbl>,
monthsSinceLastDonation <dbl>, inHouseDonor <fct>, plannedGivingDonor <fct>,
sweepstakesDonor <fct>, P3Donor <fct>, state <fct>, urbanicity <fct>,
socioEconomicStatus <fct>, isHomeowner <fct>, gender <fct>, respondedMailing <fct>

197Chapter 5: Logistic Regression

There are seven affected records. That is not a significant number, considering that

we have 17,502 observations in our test set. Let’s get rid of them:

> donors_test <- donors_test %>%
 filter(state!="VT" & state!="WV" & state!="NH" & state!="VI")

Now, we can redo our predictions and take a look at the first six results using the

head() function.

> donors_pred1 <- predict(donors_mod1, donors_test, type = 'response')
> head(donors_pred1)

 1 2 3 4 5 6
0.3820397 0.2585851 0.4847741 0.6231658 0.4854076 0.5445497

The results show the probability that respondedMailing is equal to 1 (or TRUE) for

each of the observations. In our output, for example, the results show that donor 1 in

our data has a 38.2 percent probability of responding to the campaign, while donor 4 has

a 62.3 percent probability of responding.

Recall that when we first introduced classification, we briefly mentioned that when

predicting the probability of a binary event, we could interpret any response predictions

less than 0.5 as FALSE and responses greater than or equal to 0.5 as TRUE. Let’s use that

approach here to convert our results into 1 and 0 or TRUE and FALSE.

> donors_pred1 <- ifelse(donors_pred1 >= 0.5, 1, 0)
> head(donors_pred1)

1 2 3 4 5 6
0 0 0 1 0 1

Now we can easily interpret the first six predictions as FALSE, FALSE, FALSE, TRUE,

FALSE, and TRUE. To assess how well our model actually performed, let’s compare our

model’s predicted values for respondedMailing with the actual values in the test data-

set. To do this, we create a confusion matrix, which shows the interaction between the

predicted and actual values. Using the base R table() function, we can create a simple

confusion matrix. The first argument we pass to it is a vector of the actual values for

respondedMailing. The second argument we pass to it is a vector of our model’s pre-

dictions for respondedMailing.

Practical Machine Learning in R198

> donors_pred1_table <- table(donors_test$respondedMailing, donors_
pred1)
> donors_pred1_table

 donors_pred1
 0 1
 0 11041 5574
 1 561 319

Each row of the confusion matrix represents the instances in a predicted class, while

each column represents the instances in an actual class. For example, the first row tells

us that our model correctly predicted 0 for 11,041 observations and incorrectly predicted

1 for 5,574 observations. The second row tells us that our model incorrectly predicted 0

for 561 observations and correctly predicted 1 for 319 observations. The diagonal cells

of the matrix represent correct predictions; therefore, to get the accuracy of our model

based on the confusion matrix, we need to sum the diagonals and divide that by the

number of rows in our test data.

> sum(diag(donors_pred1_table)) / nrow(donors_test)
[1] 0.6493284

This tells us that our model has a prediction accuracy of 64.93 percent. This is not bad

for our first attempt, but let’s see if we can improve our model’s accuracy.

Improving the Model
In the previous section, we successfully built our first logistic regression model. In this

section, we’ll look at some of the steps we can take to improve upon the performance of

our model.

Dealing with Multicollinearity
Similar to linear regression, multicollinearity in logistic regression models also makes

it rather difficult to separate the impact of individual predictors on the response. To

identify the presence of multicollinearity, we first use a correlation plot. To create a cor-

relation matrix, we use the cor() function from the stats package and the corrplot()

function from the corrplot package.

199Chapter 5: Logistic Regression

> library(stats)
> library(corrplot)
> donors %>%
 keep(is.numeric) %>%
 cor() %>%
 corrplot()

The results in Figure 5.4 show that we have a few features that are highly correlated.

We see high positive correlation between totalGivingAmount, numberGifts, and

yearsSinceFirstDonation. We also see high positive correlation between average

GiftAmount, smallestGiftAmount, and largestGiftAmount. We do see some neg-

ative correlation effects as well. We see negative correlation between numberGifts,

smallestGiftAmount, and averageGiftAmount. We see the same between smallest

GiftAmount and yearsSinceFirstDonation. Before we decide on what to do with

these correlated variables, let’s get some additional data to support our decisions.

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

age

numberChildren

mailOrderPurchases

totalGivingAmount

numberGifts

smallestGiftAmount

largestGiftAmount

averageGiftAmount

yearsSinceFirstDonation

monthsSinceLastDonation

ag
e

nu
m

be
rC

hi
ld

re
n

m
ai

lO
rd

er
Pu

rc
ha

se
s

to
ta

lG
iv

in
gA

m
ou

nt

nu
m

be
rG

ift
s

sm
al

le
st

Gi
ftA

m
ou

nt

la
rg

es
tG

ift
Am

ou
nt

av
er

ag
eG

ift
Am

ou
nt

ye
ar

sS
in

ce
Fi

rs
tD

on
at

io
n

m
on

th
sS

in
ce

La
st

Do
na

tio
n

Figure 5.4 Correlation matrix of the numeric features in the donors dataset

Practical Machine Learning in R200

The second approach to identifying multicollinearity in our data is with the use of

the variance inflation factor (VIF). We use the vif() function from the car package

to do this.

> library(car)
> vif(donors_mod1)

 GVIF Df GVIF^(1/(2*Df))
age 1.237917 1 1.112617
numberChildren 1.127750 1 1.061956
incomeRating 2.931339 7 1.079846
wealthRating 3.006647 10 1.056584
mailOrderPurchases 1.536639 1 1.239612
totalGivingAmount 7.466313 1 2.732455
numberGifts 9.479584 1 3.078893
smallestGiftAmount 7.134443 1 2.671038
largestGiftAmount 5.075573 1 2.252903
averageGiftAmount 16.588358 1 4.072881
yearsSinceFirstDonation 3.041608 1 1.744021
monthsSinceLastDonation 1.276265 1 1.129719
inHouseDonor 1.174562 1 1.083772
plannedGivingDonor 1.000000 1 1.000000
sweepstakesDonor 1.059773 1 1.029453
P3Donor 1.077622 1 1.038086
state 1.970199 51 1.006671
urbanicity 12.038126 5 1.282496
socioEconomicStatus 12.158669 3 1.516402
isHomeowner 1.689908 1 1.299965
gender 1.123782 3 1.019640

As we discussed in Chapter 4, a VIF of greater than 5 indicates the presence of multi-

collinearity and requires remediation. Our results show that we have eight features that

fit this criterion.

Previously we saw that totalGivingAmount, numberGifts, and yearsSinceFirst

Donation are correlated. However, based on the VIF, of the three, only totalGiving

Amount and numberGifts have a VIF of more than 5. As a result, we decide to exclude

totalGivingAmount but keep numberGifts and yearsSinceFirstDonation. Why did

we choose to keep numberGifts and not totalGivingAmount? There really is no simple

rule of thumb to this process. We made our choice based on which predictor we think

will do a better job in explaining the response. Besides, based on our correlation matrix,

we saw that numberGifts correlated to more variables than totalGiving Amount,

201Chapter 5: Logistic Regression

which means it approximates the relationship of a larger number of predictors with the

response. Based on our VIF results, we also see that smallestGiftAmount, largest

GiftAmount, and averageGiftAmount are collinear. We choose the average

GiftAmount and exclude the other two. Finally, we see that both urbanicity and

socioEconomicStatus have a VIF of more than 5. Since these are categorical variables

and will be converted to dummy variables in our model, we ignore them.

Using only the significant features from our previous model and excluding the collin-

ear features we recently identified, let’s build a new model.

> donors_mod2 <-
 glm(
 data = donors_train,
 family = binomial,
 formula = respondedMailing ~ incomeRating + wealthRating +
 mailOrderPurchases + numberGifts + yearsSinceFirstDonation +
 monthsSinceLastDonation + sweepstakesDonor + state +
 urbanicity + socioEconomicStatus + isHomeowner + gender
)
> summary(donors_mod2)

Call:
glm(formula = respondedMailing ˜ incomeRating + wealthRating +
 mailOrderPurchases + numberGifts + yearsSinceFirstDonation +
 monthsSinceLastDonation + sweepstakesDonor + state + urbanicity +
 socioEconomicStatus + isHomeowner + gender, family = binomial,
 data = donors_train)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.180 -1.068 0.207 1.109 2.053

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.059651 0.221236 -0.270 0.787449
incomeRating2 0.298602 0.094885 3.147 0.001650 **
incomeRating3 0.057756 0.108374 0.533 0.594081
incomeRating4 -0.001480 0.100721 -0.015 0.988277
incomeRating5 0.028832 0.098178 0.294 0.769013
incomeRating6 0.537860 0.109044 4.933 8.12e-07 ***
incomeRating7 0.539210 0.109293 4.934 8.07e-07 ***
incomeRatingUNK 0.709662 0.091740 7.736 1.03e-14 ***
wealthRating1 0.049826 0.202726 0.246 0.805854
wealthRating2 -0.128221 0.196844 -0.651 0.514798

Practical Machine Learning in R202

wealthRating3 -0.010190 0.192452 -0.053 0.957773
wealthRating4 -0.275018 0.193306 -1.423 0.154820
wealthRating5 -0.118734 0.190527 -0.623 0.533160
wealthRating6 0.352507 0.181000 1.948 0.051469 .
wealthRating7 -0.309143 0.187046 -1.653 0.098379 .
wealthRating8 0.517877 0.182666 2.835 0.004581 **
wealthRating9 -0.473027 0.188448 -2.510 0.012069 *
wealthRatingUNK -0.025601 0.166307 -0.154 0.877658
mailOrderPurchases 0.048256 0.014914 3.236 0.001213 **
numberGifts 0.015152 0.005638 2.687 0.007200 **
yearsSinceFirstDonation -0.039424 0.010625 -3.711 0.000207 ***
monthsSinceLastDonation -0.032425 0.006104 -5.312 1.08e-07 ***
sweepstakesDonorTRUE -0.549901 0.186693 -2.945 0.003224 **
stateCA 0.237916 0.099592 2.389 0.016899 *
stateNC 1.404587 0.116532 12.053 < 2e-16 ***
stateFL 0.586508 0.106300 5.517 3.44e-08 ***
stateAL 0.423637 0.186483 2.272 0.023103 *
stateIN -0.152629 0.151517 -1.007 0.313771
stateLA 1.418199 0.154395 9.186 < 2e-16 ***
stateIA -0.038710 0.208926 -0.185 0.853009
stateTN -0.215528 0.171153 -1.259 0.207932
stateKS -0.090561 0.217931 -0.416 0.677739
stateMN -0.059304 0.174391 -0.340 0.733809
stateUT -0.254867 0.309052 -0.825 0.409557
stateMI 0.747188 0.114980 6.498 8.12e-11 ***
stateMO -0.130955 0.150605 -0.870 0.384558
stateTX -0.112965 0.117244 -0.964 0.335293
stateOR 0.466091 0.159254 2.927 0.003426 **
stateWA 0.204953 0.140527 1.458 0.144714
stateWI 0.127991 0.151889 0.843 0.399419
stateGA -0.400950 0.157313 -2.549 0.010812 *
stateOK -0.270733 0.200564 -1.350 0.177062
stateSC 0.109946 0.169295 0.649 0.516060
stateKY 0.006423 0.183144 0.035 0.972025
stateMD 0.248137 1.060386 0.234 0.814980
stateSD 0.400123 0.325981 1.227 0.219657
stateNV 0.311780 0.213901 1.458 0.144954
stateNE -0.025792 0.271846 -0.095 0.924411
stateAZ 0.156000 0.158884 0.982 0.326175
stateVA 1.281786 1.246233 1.029 0.303701
stateND -0.267617 0.375967 -0.712 0.476582
stateAK -1.246755 0.648235 -1.923 0.054441 .
stateAR -0.067171 0.234433 -0.287 0.774476
stateNM 0.370957 0.237529 1.562 0.118351
stateMT 0.520523 0.303868 1.713 0.086715 .
stateMS -0.167163 0.231985 -0.721 0.471168

203Chapter 5: Logistic Regression

stateAP 0.876915 0.727124 1.206 0.227816
stateCO -0.069645 0.170698 -0.408 0.683272
stateAA 1.285336 1.166041 1.102 0.270328
stateHI 0.265303 0.310405 0.855 0.392718
stateME -12.781759 378.289460 -0.034 0.973046
stateWY 0.214670 0.381617 0.563 0.573756
stateID 0.220460 0.324274 0.680 0.496596
stateOH -13.101737 254.982380 -0.051 0.959020
stateNJ -0.529009 1.252653 -0.422 0.672798
stateMA -12.979932 378.277716 -0.034 0.972627
stateNY -1.832435 1.070291 -1.712 0.086880 .
statePA -13.460871 353.452328 -0.038 0.969621
stateDC -13.283025 535.411181 -0.025 0.980207
stateAE -13.269704 535.411186 -0.025 0.980227
stateCT 0.714116 1.459579 0.489 0.624656
stateDE -12.778529 378.592900 -0.034 0.973074
stateRI -13.566019 535.411196 -0.025 0.979786
stateGU 0.515087 1.239274 0.416 0.677676
urbanicityrural -0.042477 0.068040 -0.624 0.532429
urbanicitysuburb -0.032056 0.065154 -0.492 0.622715
urbanicitytown 0.152852 0.065642 2.329 0.019882 *
urbanicityUNK 0.069086 0.389701 0.177 0.859289
urbanicityurban -0.254339 0.079876 -3.184 0.001452 **
socioEconomicStatushighest 0.094913 0.054256 1.749 0.080226 .
socioEconomicStatuslowest -0.440059 0.066129 -6.655 2.84e-11 ***
socioEconomicStatusUNK -0.194321 0.389610 -0.499 0.617951
isHomeownerUNK -0.204959 0.053423 -3.837 0.000125 ***
genderjoint 0.368017 0.322407 1.141 0.253676
gendermale 0.141587 0.043520 3.253 0.001140 **
genderUNK -0.259366 0.100190 -2.589 0.009632 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 14623 on 10547 degrees of freedom
Residual deviance: 13423 on 10462 degrees of freedom
AIC: 13595

Number of Fisher Scoring iterations: 12

The results show that all of our features are either significant or have at least one

level that is significant. For example, we see that for incomeRating, the level 2 dummy

variable, incomeRating2 is significant, while the others are not. Because of this, we

keep the feature in our model, which means keeping all six dummy variables. However,

Practical Machine Learning in R204

we do see that our AIC value has increased slightly, from 13302 in our original model to

13595 in this model. This is okay. The choice we made to remove both the collinear fea-

tures and the nonsignificant features is worth the cost in the long term. The next thing

we need to do is check to make sure that we no longer have multicollinearity in our

feature set.

> vif(donors_mod2)

 GVIF Df GVIF^(1/(2*Df))
incomeRating 2.721121 7 1.074122
wealthRating 2.924728 10 1.055126
mailOrderPurchases 1.513325 1 1.230173
numberGifts 2.722302 1 1.649940
yearsSinceFirstDonation 2.612104 1 1.616200
monthsSinceLastDonation 1.126158 1 1.061206
sweepstakesDonor 1.046125 1 1.022803
state 1.811086 51 1.005840
urbanicity 12.311840 5 1.285382
socioEconomicStatus 12.559579 3 1.524623
isHomeowner 1.675895 1 1.294563
gender 1.115104 3 1.018324

We are good. None of the numeric features has a VIF larger than 5. With our new

model, it’s time to make some predictions against the test data.

> donors_pred2 <- predict(donors_mod2, donors_test, type = 'response')

> head(donors_pred2)

 1 2 3 4 5 6
0.3534621 0.2537164 0.5182092 0.6619119 0.3158936 0.5246699

Just like we saw previously, the output provides us with the probability that

respondedMailing = 1, given the values of the predictors for each observation in our

test data. Compared to the results of our previous model, we see some slight changes in

the predicted probabilities. The probability of response for donor 1 has decreased from

38.2 percent in the previous model to 35.3 percent in this model. However, the probabil-

ity of response for donor 4 has increased from 62.3 percent in the previous model to 66.2

percent in this model. The impact of these changes in classifying our data will depend on

the cutoff value we choose for our model. We discuss this in the following section.

205Chapter 5: Logistic Regression

Choosing a Cutoff Value
In our previous attempt, we chose to interpret the predicted probabilities using a cutoff

of 0.5, where values equal to or above 0.5 were interpreted as 1 and values below that

threshold were interpreted as 0. While 0.5 is a reasonable cutoff in some instances, it is

not the ideal cutoff value for all situations. To get the ideal cutoff value for our model,

we will make the optimalCutoff() function from the InformationValue package in R.

We pass three arguments to the function.

 • The first argument is a vector of the actual values for the response (actuals =

donors _ test$respondedMailing).

 • The second argument is a vector of the predicted values for the response (pre-

dictedScores = donors _ pred2).

 • The third argument specifies that we want the optimal cutoff to be based on the

value that maximizes the proportions of correctly predicted observations for

both 1 and 0.

> library(InformationValue)
> ideal_cutoff <-
 optimalCutoff(
 actuals = donors_test$respondedMailing,
 predictedScores = donors_pred2,
 optimiseFor = "Both")

> ideal_cutoff
[1] 0.5462817

The result tells us that instead of using 0.5 as our cutoff, we should use 0.5462817.

With the recommended cutoff value, let’s transform our predictions and calculate our

model’s predictive accuracy.

> donors_pred2 <- ifelse(donors_pred2 >= ideal_cutoff, 1, 0)
> donors_pred2_table <- table(donors_test$respondedMailing, donors_
pred2)
> sum(diag(donors_pred2_table)) / nrow(donors_test)

[1] 0.7368391

Our model’s predictive accuracy is now 73.68 percent. This is an improvement over

our previous model (donors _ mod1), which had an accuracy of 64.93 percent.

Practical Machine Learning in R206

Strengths and Weaknesses
Logistic regression is a widely used classification technique. In the previous sections, we

discussed how to build, evaluate, and improve a binomial logistic regression model. In

this section, we take a look at some of the strengths and weaknesses of the approach to

get a better understanding of when to use it.

These are some of the strengths:

 • Like linear regression, logistic regression models are easy to train.

 • Logistic regression is efficient in that it is not computationally expensive.

 • The input features for logistic regression do not have to be scaled before

being used.

 • The output of a logistic regression model has a relatively easy-to-understand

probabilistic interpretation.

 • Logistic regression models do not require hyperparameter tuning.

These are some of the weaknesses:

 • Logistic regression tends to underperform when there are multiple or nonlinear

decision boundaries.

 • Similar to linear regression, multicollinearity is a concern in logistic regression.

 • Logistic regression models are vulnerable to overfitting.

Classification for Responses with More
Than Two Values
In binomial logistic regression, our goal is to classify a response variable that has one
of two values. However, there are instances where we would like to classify a response
variable that has three or more possible values. The approach that we use to do this
is known as multinomial logistic regression. Though not used as much in practice,
a common approach to multinomial logistic regression involves creating a separate
logistic regression model for each class value and then choosing a value based on the
performance of each model. For example, let’s say we are presented with a problem
to predict the income level of a customer: low, medium, or high. We would create a
model to predict Pr Y low X| , a second model to predict Pr Y medium X| , and
a third to predict Pr Y high X| . To classify the income of a particular customer, we
would choose the predicted class of the model with the highest probability or ratio of
predicted probabilities by prior distribution.

207Chapter 5: Logistic Regression

 • Logistic regression requires that we specify the model’s form before beginning

the modeling process.

 • Logistic regression models are sensitive to outliers and are not able to deal with

missing data.

CASE STUDY: INCOME PREDICTION
Now that you’re familiar with how logistic regression works, let’s work through a case

study using this technique. Imagine that we’re employed by the marketing department at

a financial planning company and we would like to identify prospective customers from

a database that we’ve purchased. Our target customer is anyone with an annual income

over $50,000, but we generally do not get income information about a new customer

prospect. Therefore, we’d like to develop a model that analyzes other factors to help us

predict whether a potential customer has an income over the $50,000 threshold. We’ll

use logistic regression for this task.

To solve this problem, you are provided with data for 32,560 prospective customers.

The following are the variables in our dataset:

 • age is the self-reported age of the customer.

 • workClassification is the type of employer the customer works for. Examples

include Private, Localgov, Federalgov, etc.

 • educationLevel is the prospective customer’s highest education level attained.

Examples of the values include Bachelors, HSgrad, Masters, etc.

 • educationYears is the number of years of education that a customer has.

 • maritalStatus is the designation of the customer’s marital status. Examples of

this include Divorced, Separated, Nevermarried, etc.

 • occupation is the type of work that the customer has. Examples of this are

 Admclerical, Sales, Techsupport, etc.

 • relationship is the reported relationship between the customer and their

designated next of kin.

 • race is the self-reported racial identity of the customer.

 • gender is the self-reported gender identity—either Male or Female.

 • workHours is the number of hours within a week that the customer typi-

cally works.

 • nativeCountry is the nation of origin of the prospective customer

 • income is the class we are trying to predict and has values: <=50K and >50K.

Practical Machine Learning in R208

Importing the Data
The first thing we need to do is import our dataset using the read _ csv() function from

the tidyverse package.

> library(tidyverse)
> income <- read_csv("income.csv", col_types = "nffnfffffnff")
> glimpse(income)

Observations: 32,560
Variables: 12
$ age <dbl> 50, 38, 53, 28, 37, 49, 52, 31, 42, 37, 30, 23, 32,...
$ workClassification <fct> Self-emp-not-inc, Private, Private, Private, Privat...
$ educationLevel <fct> Bachelors, HS-grad, 11th, Bachelors, Masters, 9th, ...
$ educationYears <dbl> 13, 9, 7, 13, 14, 5, 9, 14, 13, 10, 13, 13, 12, 11,...
$ maritalStatus <fct> Married-civ-spouse, Divorced, Married-civ-spouse, M...
$ occupation <fct> Exec-managerial, Handlers-cleaners, Handlers-cleane...
$ relationship <fct> Husband, Not-in-family, Husband, Wife, Wife, Not-in...
$ race <fct> White, White, Black, Black, White, Black, White, Wh...
$ gender <fct> Male, Male, Male, Female, Female, Female, Male, Fem...
$ workHours <dbl> 13, 40, 40, 40, 40, 16, 45, 50, 40, 80, 40, 30, 50,...
$ nativeCountry <fct> United-States, United-States, United-States, Cuba, ...
$ income <fct> <=50K, <=50K, <=50K, <=50K, <=50K, <=50K, >50K, >50...

As we can see from the output, we have 12 features and 32,5620 instances to work

with. The dependent variable (or class) is the income feature.

Exploring and Preparing the Data
With our data imported, let’s take some time to do some data exploration and prepara-

tion prior to building our model. For the rest of this section, we will limit ourselves to the

categorical features (factor data types) within our dataset. The first thing we do is get a

statistical summary for our target features.

> income %>%
 keep(is.factor) %>%
 summary()

 workClassification educationLevel maritalStatus
 Private :22696 HS-grad :10501 Married-civ-spouse :14976
 Self-emp-not-inc: 2541 Some-college: 7291 Divorced : 4443
 Local-gov : 2093 Bachelors : 5354 Married-spouse-absent: 418
 ? : 1836 Masters : 1723 Never-married :10682
 State-gov : 1297 Assoc-voc : 1382 Separated : 1025

209Chapter 5: Logistic Regression

 Self-emp-inc : 1116 11th : 1175 Married-AF-spouse : 23
 (Other) : 981 (Other) : 5134 Widowed : 993

 occupation relationship race
 Prof-specialty :4140 Husband :13193 White :27815
 Craft-repair :4099 Not-in-family : 8304 Black : 3124
 Exec-managerial:4066 Wife : 1568 Asian-Pac-Islander: 1039
 Adm-clerical :3769 Own-child : 5068 Amer-Indian-Eskimo: 311
 Sales :3650 Unmarried : 3446 Other : 271
 Other-service :3295 Other-relative: 981
 (Other) :9541

 gender nativeCountry income
 Male :21789 United-States:29169 <=50K:24719
 Female:10771 Mexico : 643 >50K : 7841
 ? : 583
 Philippines : 198
 Germany : 137
 Canada : 121
 (Other) : 1709

The output shows the distribution of values for each of the categorical features. How-

ever, we get to see only the top six values for each feature. To get the distribution of all

the values for the features with more than six values, we use the table() function.

> table(select(income, workClassification))

Self-emp-not-inc Private State-gov Federal-gov
 2541 22696 1297 960
 Local-gov ? Self-emp-inc Without-pay
 2093 1836 1116 14
 Never-worked
 7

> table(select(income, educationLevel))

 Bachelors HS-grad 11th Masters 9th Some-college
 5354 10501 1175 1723 514 7291
 Assoc-acdm Assoc-voc 7th-8th Doctorate Prof-school 5th-6th
 1067 1382 646 413 576 333
 10th 1st-4th Preschool 12th
 933 168 51 433

Practical Machine Learning in R210

> table(select(income, occupation))

 Exec-managerial Handlers-cleaners Prof-specialty Other-service
 4066 1370 4140 3295
 Adm-clerical Sales Craft-repair Transport-moving
 3769 3650 4099 1597
 Farming-fishing Machine-op-inspct Tech-support ?
 994 2002 928 1843
 Protective-serv Armed-Forces Priv-house-serv
 649 9 149

> table(select(income, nativeCountry))

 United-States Cuba Jamaica
 29169 95 81
 India ? Mexico
 100 583 643
 South Puerto-Rico Honduras
 80 114 13
 England Canada Germany
 90 121 137
 Iran Philippines Italy
 43 198 73
 Poland Columbia Cambodia
 60 59 19
 Thailand Ecuador Laos
 18 28 18
 Taiwan Haiti Portugal
 51 44 37
 Dominican-Republic El-Salvador France
 70 106 29
 Guatemala China Japan
 64 75 62
 Yugoslavia Peru Outlying-US(Guam-USVI-etc)
 16 31 14
 Scotland Trinadad&Tobago Greece
 12 19 29
 Nicaragua Vietnam Hong
 34 67 20
 Ireland Hungary Holand-Netherlands
 24 13 1

We notice that the missing values for the workClassification, occupation, and

nativeCountry features are represented by an indicator variable (?). Let’s replace this

with something more obvious (UNK). Since these features are factors, instead of using

the ifelse() function, we use the recode() function to replace ? with UNK.

211Chapter 5: Logistic Regression

> income <- income %>%
 mutate(workClassification = recode(workClassification, "?" = "UNK")) %>%
 mutate(nativeCountry = recode(nativeCountry, "?" = "UNK")) %>%
 mutate(occupation = recode(occupation, "?" = "UNK"))

The next thing we do is also recode the values for our class. Currently, our class values

are <=50K and >50K. Let’s transform these so 0 represents <=50K and 1 represents >50K.

> income <- income %>%
 mutate(income = recode(income, "<=50K" = "0")) %>%
 mutate(income = recode(income, ">50K" = "1"))

> summary(income[,"income"])

 income
 0:24719
 1: 7841

With our missing values and class values recoded, we are now ready to split our data.

Using the method we used previously, we split our data 75 percent to 25 percent and cre-

ate two new datasets called income _ train and income _ test.

> set.seed(1234)
> sample_set <- sample(nrow(income), round(nrow(income)*.75), replace =
FALSE)
> income_train <- income[sample_set,]
> income_test <- income[-sample_set,]

Now that we’ve split our data, let’s check the class distributions between all three

datasets to make sure that they are similar.

> round(prop.table(table(select(income, income), exclude = NULL)), 4) *
100

 0 1
75.92 24.08

> round(prop.table(table(select(income_train, income), exclude =
NULL)), 4) * 100

 0 1
75.78 24.22

Practical Machine Learning in R212

> round(prop.table(table(select(income_test, income), exclude = NULL)),
4) * 100

 0 1
76.33 23.67

Our results show similar class distribution between the three sets. However, the

results also highlight the fact that our data is imbalanced. As we discussed previously,

imbalanced data biases our model toward the majority class, so we need to balance the

training data. We do so using the SMOTE() function from the DMwR package.

> library(DMwR)
> set.seed(1234)
> income_train <- SMOTE(income ~ ., data.frame(income_train), perc.over
= 100, perc.under = 200)

> round(prop.table(table(select(income_train, income), exclude =
NULL)), 4) * 100

 0 1
50 50

Training the Model
With our balanced training data, we can now build our logistic regression model. We

use only the categorical features in our dataset to build our model, which we call

income _ mod1.

> income_mod1 <- income_train %>%
 keep(is.factor) %>%
 glm(formula = income ~ ., family= binomial)

> summary(income_mod1)

Call:
glm(formula = income ˜ ., family = "binomial", data = .)

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.6235 -0.6429 0.0135 0.6693 3.1759

213Chapter 5: Logistic Regression

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.057415 0.079765 25.794 < 2e-16 ***
workClassificationPrivate -0.380531 0.061600 -6.177 6.52e-10 ***
workClassificationState-gov -0.501281 0.104409 -4.801 1.58e-06 ***
workClassificationFederal-gov 0.794956 0.103578 7.675 1.65e-14 ***
workClassificationLocal-gov -0.128445 0.085283 -1.506 0.132040
workClassificationUNK -0.751481 0.223633 -3.360 0.000779 ***
workClassificationSelf-emp-inc 0.441674 0.103789 4.255 2.09e-05 ***
workClassificationWithout-pay -13.744495 268.085626 -0.051 0.959111
workClassificationNever-worked -11.562916 484.685475 -0.024 0.980967
educationLevelHS-grad -1.147699 0.053718 -21.365 < 2e-16 ***
educationLevel11th -1.582094 0.124896 -12.667 < 2e-16 ***
educationLevelMasters 0.453522 0.076560 5.924 3.15e-09 ***
educationLevel9th -2.304317 0.214759 -10.730 < 2e-16 ***
educationLevelSome-college -0.975388 0.056128 -17.378 < 2e-16 ***
educationLevelAssoc-acdm -0.453770 0.095723 -4.740 2.13e-06 ***
educationLevelAssoc-voc -0.747874 0.085236 -8.774 < 2e-16 ***
educationLevel7th-8th -2.336997 0.179268 -13.036 < 2e-16 ***
educationLevelDoctorate 1.180078 0.177914 6.633 3.29e-11 ***
educationLevelProf-school 1.431921 0.147249 9.724 < 2e-16 ***
educationLevel5th-6th -3.151291 0.319428 -9.865 < 2e-16 ***
educationLevel10th -2.153881 0.155469 -13.854 < 2e-16 ***
educationLevel1st-4th -3.397059 0.570713 -5.952 2.64e-09 ***
educationLevelPreschool -14.882712 165.412839 -0.090 0.928309
educationLevel12th -1.712003 0.214800 -7.970 1.58e-15 ***
maritalStatusDivorced -0.590752 0.066843 -8.838 < 2e-16 ***
maritalStatusMarried-spouse-absent -0.350370 0.147485 -2.376 0.017519 *
maritalStatusNever-married -1.430695 0.067560 -21.177 < 2e-16 ***
maritalStatusSeparated -1.051163 0.120632 -8.714 < 2e-16 ***
maritalStatusMarried-AF-spouse -0.075376 0.444303 -0.170 0.865286
maritalStatusWidowed -0.368553 0.114742 -3.212 0.001318 **
occupationHandlers-cleaners -1.473390 0.130872 -11.258 < 2e-16 ***
occupationProf-specialty -0.128743 0.063198 -2.037 0.041638 *
occupationOther-service -1.469594 0.085942 -17.100 < 2e-16 ***
occupationAdm-clerical -1.073049 0.073384 -14.622 < 2e-16 ***
occupationSales -0.552853 0.067618 -8.176 2.93e-16 ***
occupationCraft-repair -0.712170 0.066724 -10.673 < 2e-16 ***
occupationTransport-moving -0.793742 0.090834 -8.738 < 2e-16 ***
occupationFarming-fishing -1.862775 0.128855 -14.456 < 2e-16 ***
occupationMachine-op-inspct -1.332522 0.094676 -14.075 < 2e-16 ***
occupationTech-support -0.294672 0.102080 -2.887 0.003893 **
occupationUNK -0.952324 0.221143 -4.306 1.66e-05 ***
occupationProtective-serv 0.185790 0.113401 1.638 0.101351
occupationArmed-Forces -15.500801 432.759350 -0.036 0.971427
occupationPriv-house-serv -3.546814 1.030645 -3.441 0.000579 ***

Practical Machine Learning in R214

relationshipNot-in-family -0.726953 0.064070 -11.346 < 2e-16 ***
relationshipWife 0.837109 0.081847 10.228 < 2e-16 ***
relationshipOwn-child -2.299872 0.117274 -19.611 < 2e-16 ***
relationshipUnmarried -0.503751 0.074711 -6.743 1.55e-11 ***
relationshipOther-relative -1.082911 0.138016 -7.846 4.29e-15 ***
raceBlack 0.606281 0.061005 9.938 < 2e-16 ***
raceAsian-Pac-Islander 1.614144 0.080810 19.975 < 2e-16 ***
raceAmer-Indian-Eskimo 0.461699 0.155727 2.965 0.003029 **
raceOther 0.633979 0.185451 3.419 0.000629 ***
genderFemale -0.123921 0.047842 -2.590 0.009592 **
nativeCountryCuba 0.317128 0.310020 1.023 0.306343
nativeCountryJamaica 1.404543 0.297432 4.722 2.33e-06 ***
nativeCountryIndia 1.466653 0.219183 6.691 2.21e-11 ***
nativeCountryUNK 0.488870 0.108748 4.495 6.94e-06 ***
nativeCountryMexico -0.356017 0.200478 -1.776 0.075760 .
nativeCountrySouth 2.712322 0.224475 12.083 < 2e-16 ***
nativeCountryPuerto-Rico -0.330702 0.362388 -0.913 0.361473
nativeCountryHonduras -0.116442 1.457708 -0.080 0.936333
nativeCountryEngland 0.168188 0.314917 0.534 0.593292
nativeCountryCanada 1.815523 0.221290 8.204 2.32e-16 ***
nativeCountryGermany 0.194379 0.225471 0.862 0.388632
nativeCountryIran 0.130755 0.435480 0.300 0.763982
nativeCountryPhilippines 1.516576 0.144374 10.504 < 2e-16 ***
nativeCountryItaly 1.430372 0.322360 4.437 9.11e-06 ***
nativeCountryPoland -0.011026 0.399951 -0.028 0.978006
nativeCountryColumbia -2.058625 0.801743 -2.568 0.010238 *
nativeCountryCambodia 1.185365 0.567790 2.088 0.036827 *
nativeCountryThailand -1.515856 0.790739 -1.917 0.055237 .
nativeCountryEcuador 0.305120 0.590870 0.516 0.605581
nativeCountryLaos -1.774955 0.928975 -1.911 0.056048 .
nativeCountryTaiwan -0.369773 0.393158 -0.941 0.346952
nativeCountryHaiti 0.686366 0.603986 1.136 0.255791
nativeCountryPortugal 0.546523 0.606772 0.901 0.367745
nativeCountryDominican-Republic 1.021236 0.328344 3.110 0.001869 **
nativeCountryEl-Salvador -0.311822 0.480396 -0.649 0.516278
nativeCountryFrance 0.961540 0.327440 2.937 0.003319 **
nativeCountryGuatemala -0.002497 0.576969 -0.004 0.996547
nativeCountryChina 0.476137 0.302153 1.576 0.115068
nativeCountryJapan 0.629314 0.356327 1.766 0.077377 .
nativeCountryYugoslavia 1.585079 0.613635 2.583 0.009792 **
nativeCountryPeru -1.907448 1.086935 -1.755 0.079279 .
nativeCountryOutlying-US(Guam-USVI-etc) -12.983037 481.588575 -0.027 0.978493
nativeCountryScotland -1.124844 0.931690 -1.207 0.227311
nativeCountryTrinadad&Tobago -0.538606 0.958978 -0.562 0.574357
nativeCountryGreece 1.850875 0.445076 4.159 3.20e-05 ***
nativeCountryNicaragua 0.520045 0.711204 0.731 0.464646

215Chapter 5: Logistic Regression

nativeCountryVietnam -0.755812 0.444117 -1.702 0.088787 .
nativeCountryHong -0.024543 0.541438 -0.045 0.963845
nativeCountryIreland 2.304061 0.781947 2.947 0.003213 **
nativeCountryHungary 0.556481 0.684296 0.813 0.416094
nativeCountryHoland-Netherlands -11.297514 882.743391 -0.013 0.989789

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 32794 on 23655 degrees of freedom
Residual deviance: 20094 on 23561 degrees of freedom
AIC: 20284

Number of Fisher Scoring iterations: 13

Our model’s output shows that all the features that we used are significant, so we

don’t need to remove any of them from our model at this time.

Evaluating the Model
Now that we have our logistic regression model, let’s generate predictions against the

test data.

> income_pred1 <- predict(income_mod1, income_test, type = 'response')

> head(income_pred1)

 1 2 3 4 5 6
0.88669468 0.09432701 0.31597757 0.96025585 0.21628507 0.43047656

As we can see, the predictions provide us with the probability that income=1 for each

instance in our test data. To interpret the results in terms of 0 and 1, we need to deter-

mine an ideal cutoff value.

> library(InformationValue)

> ideal_cutoff <-
 optimalCutoff(
 actuals = income_test$income,
 predictedScores = income_pred1,
 optimiseFor = "Both")

Practical Machine Learning in R216

> ideal_cutoff
[1] 0.4294492

Our output tells us that the ideal cutoff for our predictions is 0.4294492. Using this

cutoff value, we recode our predictions.

> income_pred1 <- ifelse(income_pred1 >= ideal_cutoff, 1, 0)

> head(income_pred1)

1 2 3 4 5 6
1 0 0 1 0 1

Now we are ready to evaluate how well our model does against the test data. To

do so, we create a confusion matrix and use its values to derive our model’s predic-

tive accuracy.

> income_pred1.table <- table(income_test$income, income_pred1)

> sum(diag(income_pred1.table)) / nrow(income_test)
[1] 0.7384521

The results show that our model’s predictive accuracy is 73.85 percent. This is pretty

reasonable performance. Note that we only used the categorical features in our data for

our model. In the following exercises, we provide you with the opportunity to improve

upon our model by considering the continuous features as well.

EXERCISES
1. Consider each one of the following problems. Would this problem best be

approached as a regression problem or a classification problem?

a. Predicting the restaurant chain that someone is most likely to visit based upon

their age, number of children, ZIP code, and income level

b. Predicting the number of visitors that a restaurant is likely to see on a given day

based upon the day of the week, the outdoor temperature, and whether the res-

taurant is running a promotion

c. Predicting the baseball team that an individual is likely to cheer for based upon

their place of birth, current residence, age, and gender

d. Predicting the price of a used car based upon the make, model, age, odometer

reading, condition, and color

217Chapter 5: Logistic Regression

2. You are working with a healthcare provider who provides patients with a free annual

health screening. The provider would like to better understand the factors that

drive participation in the screening program. You use logistic regression to develop a

model that predicts participation based upon an individual’s marital status and eth-

nicity. The results of the model are shown here:

Call:
glm(formula = participated ˜ age + maritalStatus + ethnicity,
 family = binomial, data = patients_train)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.739 -1.256 1.018 1.027 1.590

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.424848 0.567979 2.509 0.0121 *
age 0.000498 0.002121 0.235 0.8144
maritalStatusMarried -0.195182 0.159257 -1.226 0.2204
maritalStatusNot Known -1.150035 0.175621 -6.548 5.82e-11 ***
maritalStatusSingle -0.770244 0.168187 -4.580 4.66e-06 ***
maritalStatusWidowed -0.441739 0.290676 -1.520 0.1286
ethnicityAsian -1.019093 0.543590 -1.875 0.0608 .
ethnicityBlack or African American -1.187287 0.544551 -2.180 0.0292 *
ethnicityHispanic -0.984501 0.545999 -1.803 0.0714 .
ethnicityNative Hawaiian or Other Pacific Islander -12.230119 196.968421 -0.062 0.9505
ethnicityTwo or More -1.060614 0.561182 -1.890 0.0588 .
ethnicityUnknown -1.217726 0.554415 -2.196 0.0281 *
ethnicityWhite -0.880737 0.536667 -1.641 0.1008

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 8464.2 on 6111 degrees of freedom
Residual deviance: 8223.3 on 6099 degrees of freedom
AIC: 8249.3

Number of Fisher Scoring iterations: 10

a. In this model, which variable has the greatest effect on the outcome?

b. For that variable, rank-order the levels from the group least likely to participate in

the assessments to the group most likely to participate in the assessments.

3. After developing the model in exercise 2, you obtained additional information about

the individuals in the study. Specifically, you learned how many prior times each

Practical Machine Learning in R218

person participated in the screening program. You incorporate that information into

your model and obtain these results:

Call:
glm(formula = participated ˜ age + maritalStatus + ethnicity +
 priorScreenings, family = binomial, data = patients_train)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.1965 -0.6845 0.2264 0.5264 2.1374

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.420756 0.692364 0.608 0.5434
age -0.017940 0.002855 -6.284 3.31e-10 ***
maritalStatusMarried 0.078128 0.225397 0.347 0.7289
maritalStatusNot Known 0.205479 0.241209 0.852 0.3943
maritalStatusSingle -0.352247 0.236139 -1.492 0.1358
maritalStatusWidowed -0.035840 0.406231 -0.088 0.9297
ethnicityAsian -1.095094 0.653537 -1.676 0.0938 .
ethnicityBlack or African American -1.151009 0.654967 -1.757 0.0789 .
ethnicityHispanic -0.953887 0.656464 -1.453 0.1462
ethnicityNative Hawaiian or Other Pacific Islander -11.293698 196.968754 -0.057 0.9543
ethnicityTwo or More -1.341665 0.679203 -1.975 0.0482 *
ethnicityUnknown -1.093776 0.666182 -1.642 0.1006
ethnicityWhite -1.076935 0.644631 -1.671 0.0948 .
priorScreenings 1.619062 0.040467 40.010 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 8464.2 on 6111 degrees of freedom
Residual deviance: 5267.5 on 6098 degrees of freedom
AIC: 5295.5

Number of Fisher Scoring iterations: 10

a. Are individuals who participated in a past screening more likely to participate in

future screenings, less likely to participate in future screenings, or is it not possible

to determine a difference?

b. For each time an individual participated in a past screening, by what factor do the

odds change that they will participate in the next screening?

c. Which model fits the data better, the model from exercise 2 or this model? How

can you tell?

219Chapter 5: Logistic Regression

4. After improving your model in exercise 3, you use the model to make predictions

for employees that were not in the original training set. You obtain the following 10

predictions:

1 2 3 4 5
0.1465268 0.9588654 0.9751363 0.4956821 0.8601916

6 7 8 9 10
0.3984430 0.2268064 0.8490515 0.9527210 0.4642998

a. Interpret these results. How many of these ten employees are likely to participate

in the wellness assessment?

b. How could you improve your predictions?

5. Extend the logistic regression model from the income prediction use case to include

the continuous variables as well.

a. Create and examine a correlation plot for these variables. Do they exhibit multicol-

linearity?

b. Examine the summary statistics for the continuous variables. Do you observe any

outliers? If so, address them appropriately.

c. Fit a logistic regression model to the dataset. This time, include both the contin-

uous and categorical variables. Use the same training/test dataset split as the use

case.

d. Examine the summary of the model. Were the continuous variables significant?

How does this model compare to the model without the continuous variables?

e. Generate predictions for the test dataset using a 0.50 threshold and create a con-

fusion matrix of your results. Compare these results to the model from earlier in

the chapter.

P A R T I I I

Classification

Chapter 6: k-Nearest Neighbors

Chapter 7: Naïve Bayes

Chapter 8: Decision Trees

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Chapter 6

k-Nearest
Neighbors

In Chapter 5, we introduced logistic regression as one of several

methods for assigning a label or class to new data (classification).

In this chapter, we introduce another classification approach that

assigns a class to an unlabeled data point based upon the most

common class of existing similar data points. This method is known

as k-nearest neighbors.

The nearest neighbors algorithm is part of a family of algorithms

that are known as lazy learners. These types of learners do not

build a model, which means they do not really do any learning.

Instead, they simply refer to the training data during the prediction

phase in order to assign labels to unlabeled data. Lazy learners are

also referred to as instance-based learners or rote learners due to

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R224

their heavy reliance on the training set. Despite the simplicity of

lazy learners, such as the k-nearest neighbors approach, they are

powerful in dealing with difficult-to-understand data that have a

large number of features with a large number of instances of fairly

similar class.

By the end of this chapter, you will have learned the following:

 ◆ How to quantify the similarity between new and existing data

 ◆ How to choose the appropriate number of “neighbors” (k) to

use in classifying new data

 ◆ How the k-NN classification process works

 ◆ How to use the k-NN classifier to assign labels to new data in R

 ◆ The strengths and weaknesses of the k-NN method

DETECTING HEART DISEASE
As we explore the nearest neighbors algorithm in this chapter, we will use a dataset

containing information about patients with and without heart disease. This dataset was

initially gathered for use by researchers at four medical institutions in the United States,

Switzerland, and Hungary and is made available to the data science community through

the University of California at Irvine’s Machine Learning Repository.1

The dataset that we will use is available to you as part of the electronic resources

accompanying this book. (See the introduction for more information on accessing the

electronic resources.) It is separated into training and testing datasets and includes infor-

mation on the medical status of individuals and whether they suffer from heart disease.

Our task is to use this dataset to examine records of existing patients in the training

set and use that information to predict whether patients in the evaluation set are likely

to suffer from heart disease without performing any invasive procedures.

The dataset includes a variety of medical data for our analysis:

 • age is the age, in years, of the patient.

 • sex is the biological sex of the patient.

225Chapter 6: k-Nearest Neighbors

 • painType describes the type of chest pain, if any, reported by the patient. The

options for this variable are

 • Typical angina

 • Atypical angina

 • Nonanginal pain

 • Asymptomatic (no pain)

 • restingBP is the patient’s systolic blood pressure at rest, measured in millimeters

of mercury.

 • cholesterol is the patient’s total cholesterol, measured in milligrams per liter.

 • highBloodSugar is a logical value indicating whether the patient has a fasting

blood sugar reading greater than 120 milligrams per deciliter.

 • restingECG is a categorical variable providing an interpretation of the patient’s

resting electrocardiographic results. The possible values are

 • Normal

 • Hypertrophy

 • WaveAbnormality

 • exerciseAngina is a logical value indicating whether the patient experiences

exercise-induced angina.

 • STdepression is a numeric evaluation of the patient’s degree of ST depression,

an electrocardiogram finding related to heart disease.

 • STslope is a categorical value describing the slope of the patient’s ST segment on

an electrocardiogram. It may have these values:

 • Downsloping

 • Flat

 • Upsloping

 • coloredVessels is the number of major vessels that appear colored when sub-

jected to fluoroscopy. This value ranges from 0 to 3.

 • defectType is a categorical value describing a defect identified in the patient’s

heart. It may have these values:

 • Normal

 • ReversibleDefect

 • FixedDefect

 • heartDisease is the variable we are trying to predict. It is a logical value that is

TRUE if the patient suffers from heart disease and FALSE if he or she does not.

Practical Machine Learning in R226

TIP This dataset includes variables that contain technical medical diagnostic
information. If you find some of these variables confusing, don’t worry too
much about it. The nature of this dataset underscores the importance
of including subject-matter experts with contextual experience when
performing machine learning in the real world.

Given the problem and the data provided, these are some of the questions we need

to answer:

 • How well can we predict whether a patient suffers from heart disease or not

based on the predictor variables available to us?

 • What value of k provides us with the best predictive performance?

By the end of this chapter, we will have answered each of these questions using

k-nearest neighbors and related techniques.

k-NEAREST NEIGHBORS
The k-nearest neighbors method is premised on the basic idea that things that are sim-

ilar are likely to have properties that are similar. Therefore, to assign a class to new data,

we first find k instances of existing data that are as similar as possible (nearest neigh-

bors) to the new data. Then, we use the labels of those nearest neighbors to predict the

label of the new data.

To illustrate how k-NN works, let’s attempt to deal with the problem we introduced

in the previous section. Our goal is to use the existing set of patient records to predict

whether a new patient is likely to suffer from heart disease or not. To keep things simple,

let’s limit our analysis to only two of the predictor variables in our dataset: age and cho-

lesterol. Our class variable is heartDisease. Assuming that we created a scatterplot

of our data, with age on the y-axis and cholesterol on the x-axis, our chart would look

something like Figure 6.1.

Now, consider a hypothetical 45-year-old new patient with a cholesterol level of 225.

Based on their cholesterol level and age alone, how could we determine whether they

suffer from heart disease or not? Using the k-nearest neighbors approach, the first thing

we do is find the k most similar patients to our new patient in our dataset. These are the

nearest neighbors to our new patient. Then, we assign the label of the most common

class among the neighbors to our new patient. To illustrate this approach, we add a new

data point to our previous scatterplot that represents the new patient. This is illustrated

by the black box in Figure 6.2. We also annotate each existing point with a unique identi-

fier for each of the 20 existing patients in our sample dataset.

227Chapter 6: k-Nearest Neighbors

50

heartDisease

FALSE

TRUE

45

40ag
e

35

30

200 300
cholesterol

400

Figure 6.1 Scatterplot of age versus cholesterol levels for a sampling of 20 patients
from our dataset. The shape and color of each point indicates whether the patient
suffers from heart disease.

50
4

5
19

11

12 20

18
6

9
1

10

14

17

7
8

16

3

2 13
15

heartDisease

FALSE

TRUE

45

40ag
e

35

30

200 300
cholesterol

400

Figure 6.2 Scatterplot of age versus cholesterol levels for a sampling of 20 patients
from our dataset and the new patient to be classified (black square)

Practical Machine Learning in R228

If k is set to 1, we identify the one existing data point that is closest to our new data

point. By visual inspection, we can see that this is either patient 11 or patient 9. Let’s

assume that it is patient 9. This patient does not suffer from heart disease. Therefore, we

will classify our new patient as also not suffering from heart disease. However, if k were

set to 3, the three nearest neighbors to our new patient are patients 9, 11, and 5. Since

the most common class among these three patients is TRUE for heart disease, then we

would classify our new patient as suffering from heart disease as well.

Finding the Nearest Neighbors
As our previous example illustrates, the value of k has a significant impact on how new

unlabeled examples are classified. We will discuss methods for choosing the appropri-

ate value for k later in the chapter. The other thing that the previous example illustrates

is the importance of properly identifying the nearest neighbors of a new instance. In

that example, we did this by visual inspection. However, as you can imagine, this is not a

very precise approach. Besides, it’s fairly easy to visually identify points that are close to

each other when considering only two dimensions, such as we did in Figure 6.2 with age

and cholesterol. However, if we decided to include more dimensions to represent the

additional features in our dataset, we quickly run into some obvious challenges with the

visual approach. To quantify the distance between two points, the k-nearest neighbors

algorithm uses a distance function that works for data with more than two dimensions.

This measure is known as Euclidean distance.

Euclidean distance is the straight-line distance between the coordinates of two points

in multidimensional space. Mathematically, we define the Euclidean distance between

two points p and q as follows:

 dist p q p q p q p q
n n

,
1 1

2

2 2

2 2

 (6.1)

 where n represents the number of features for both p and q , such that p1and q1 represent

the values of the first feature of p and q ; p2 and q2 represent the values of the second fea-

ture of p and q ; and p
n
 and q

n
 represent the values of the nth feature of p and q .

Given that our new patient (P
new

) is a 45-year-old with a cholesterol level of 225 and

patient 11 (P11) is a 46-year-old with a cholesterol level of 202, to calculate the distance

between our new patient and patient 11 using only the features of age and cholesterol,

we do the following:

 dist P P
new

,
11

2 2

45 46 225 202 23 02. (6.2)

229Chapter 6: k-Nearest Neighbors

This example illustrates an important concept with regard to Euclidean distance. Fea-

tures with larger values or features with a wider range of values tend to have a dispro-

portionate impact on the distance calculation. For example, let’s say we decide to use

k-NN against the donor dataset we worked with in Chapter 5. Two of the features in that

dataset were numberChildren and totalGivingAmount. Given donor A with four chil-

dren and prior total giving of $5,000 and given donor B with two children and prior total

giving of $6,000, to calculate the distance between these two donors using only num-

berChildren and totalGivingAmount, we would do the following:

dist A B, 4 2 5000 6000 1000 002

2 2

.
 (6.3)

We see from the results that the distance between donor A and donor B is pretty

much the absolute difference between the values of the totalGivingAmount feature

for both donors ($1,000). The numberChildren feature has little to no significance in

the final result of the distance calculation. To overcome this limitation in the approach,

it is common practice to scale or normalize feature values prior to using the k-NN algo-

rithm. So, for this example, if we chose to use the min-max normalization approach we

introduced in Chapter 3, the normalized feature values for donor A’s numberChildren

and totalGivingAmount would be 0.500 and 0.526, respectively. The normalized fea-

ture values for donor B’s numberChildren and totalGivingAmount would be 0.167 and

0.632, respectively. Using these normalized values for our distance calculation gives us

the following:

 dist A B, 0 500 0 167 0 526 0 632 0 349
2 2

. (6.4)

Our distance is no longer disproportionately influenced by one feature over the other.

In fact, with min-max normalization, what we see is that regardless of the size of the

original feature values, the farther apart two data points are from each other within the

list of values for a particular feature, the more their distance influences the overall dis-

tance calculation.

Now, let’s get back to our original example. Applying the min-max normalization

approach to the feature values for our new patient, we get 0.750 and 0.250 for the age

and cholesterol values, respectively. Doing the same for patient 11 gives us 0.818 and

0.206 for the age and cholesterol values, respectively. Therefore, instead of the dis-

tance we calculated in Equation 6.2, the distance between P
new

 and P11 is as follows:

 dist P P
new

,
11

2 2

0 750 0 818 0 250 0 206 0 081.
(6.5)

Practical Machine Learning in R230

Applying this approach to the data points representing all 20 patients in our sample

gives us the following results, which show the distance between each existing patient

and the new patient sorted in ascending order of distance:

Patient Age Cholesterol

Age

(Normalized)

Cholesterol

(Normalized)

Distance to

P
new

heart

Disease

11 46 202 0.818 0.206 0.081 TRUE
9 46 243 0.818 0.306 0.088 FALSE
5 48 193 0.909 0.184 0.172 TRUE

18 48 256 0.909 0.337 0.182 TRUE
1 45 297 0.773 0.437 0.188 FALSE
2 41 172 0.591 0.133 0.197 TRUE

19 49 212 0.955 0.231 0.205 TRUE
13 41 289 0.591 0.417 0.231 TRUE
6 49 271 0.955 0.374 0.239 FALSE

10 43 315 0.682 0.481 0.240 FALSE
8 39 220 0.500 0.250 0.250 FALSE

12 50 264 1.000 0.357 0.272 TRUE
4 49 142 0.955 0.061 0.279 TRUE

20 50 288 1.000 0.415 0.300 TRUE
7 38 292 0.455 0.425 0.343 FALSE

14 39 321 0.500 0.495 0.350 FALSE
16 35 264 0.318 0.357 0.445 FALSE
17 36 340 0.364 0.541 0.484 FALSE
15 40 466 0.545 0.847 0.631 TRUE

3 30 237 0.091 0.291 0.660 FALSE

The results show that patient 11 is the closest in distance (nearest neighbor) to our

hypothetical new patient, while patient 3 is the furthest away from our new patient.

These results are consistent with what we saw in Figure 6.2.

Labeling Unlabeled Data
After we identify the nearest neighbors of our hypothetical new patient P

new
, the next

step is to assign the new patient a class label. This is where the k in k-NN comes in. As we

mentioned previously, k represents the number of preexisting labeled neighbors that we

reference in order to assign a class label to the new unlabeled instance. In our example,

if we choose to set k to 1, then we will assign a class label to P
new

 solely based on the class

label of its single nearest neighbor, which is patient 11. Therefore, P
new

 will be assigned a

class label of TRUE.

231Chapter 6: k-Nearest Neighbors

As you can imagine, k can take on any integer value up to the number of existing

labeled instances in our dataset (our training data). Let’s assume that we decide to set

k to 3 instead. This means that we now need to consider the three nearest neighbors to

our new patient. From our previous distance table, we see that the three nearest neigh-

bors are patients 11, 9, and 5, with class labels of TRUE, FALSE, and TRUE, respectively.

To assign a label to our new patient, we rely on a majority vote from among the k-nearest

neighbors. In this case, two of the three nearest neighbors are TRUE, making the major-

ity class TRUE, so the new patient is assigned a class label of TRUE.

It is important to note that when working with data with only two classes, there is the

real possibility that with even numbered values for k, we can get a tie vote. For example,

suppose that for some hypothetical dataset we set the value of k to 6 and the class

labels for the six nearest neighbors are TRUE, TRUE, FALSE, TRUE, FALSE, and FALSE

(three TRUE votes and three FALSE votes). In this scenario, the majority vote will then

be chosen at random between the two options. To minimize the likelihood of such a sce-

nario, it is common in practice to use only odd numbers for the values of k.

Choosing an Appropriate k
Choosing an appropriate value for k impacts how generalizable the model is to unseen

data. The higher the value for k, the less the model is impacted by noise or outliers in

the data. However, higher values of k also increase the likelihood that the model may

not capture some of the important patterns in the data. Figure 6.3(a) illustrates the

impact of a large value for k on the decision boundary (dashed line). Based on the deci-

sion boundary, we see that all the data points above the line are labeled as TRUE, while

the points below are all labeled as FALSE. In the extreme, setting the value for k to the

number of instances in our training data means that, regardless of the class of its nearest

neighbors, every unlabeled instance will be assigned the label of the majority class.

Lower values for k allow for more complex decision boundaries that more closely fit

the patterns in the data. However, this also means that the lower the value for k, the

greater the impact that outliers and noisy data have on the model. This is illustrated in

Figure 6.3(b). Therefore, it is critically important that we choose a value for k that pro-

vides a good balance between identifying small but important patterns in the data and

yet not overfitting against the noise in the data.

When choosing the optimal value for k, it is important to note that the more complex

and irregular the data is, the smaller the appropriate value for k is. In practice, there are

several common approaches to choosing the appropriate value for k. One approach is to

set the value of k as the square root of the number of training instances. However, this

approach should be considered a starting point and not an empirical basis for choosing

the value for k. A more common approach is to evaluate how well the model performs

Practical Machine Learning in R232

against the test data using several values for k. With this approach, the k value that pro-

vides the best performance is chosen. For now, we will limit our idea of performance

to predictive accuracy. In Chapter 9, we will look at other measures of performance

beyond accuracy.

k-Nearest Neighbors Model
Now that we have a better understanding of how the k-nearest neighbors algorithm

works, it’s time to put our knowledge into practice. In this section, we will use k-NN to

solve the heart disease detection problem we introduced at the beginning of the chapter

in R. The first thing we do is import and preview our data.

> library(tidyverse)
> heart <- read_csv("heart.csv", col_types = "nffnnffnfnfnff")
> glimpse(heart)

Observations: 920
Variables: 14
$ age <dbl> 63, 67, 67, 37, 41, 56, 62, 57, 63, 53, 57, 56, 56, 44, ...
$ sex <fct> male, male, male, male, female, male, female, female, ma...
$ painType <fct> Typical Angina, Asymptomatic, Asymptomatic, Non-Anginal ...
$ restingBP <dbl> 145, 160, 120, 130, 130, 120, 140, 120, 130, 140, 140, 1...
$ cholesterol <dbl> 233, 286, 229, 250, 204, 236, 268, 354, 254, 203, 192, 2...
$ highBloodSugar <fct> TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, F...
$ restingECG <fct> Hypertrophy, Hypertrophy, Hypertrophy, Normal, Hypertrop...
$ restingHR <dbl> 150, 108, 129, 187, 172, 178, 160, 163, 147, 155, 148, 1...

50

heartDisease
FALSE

TRUE

45

40ag
e

35

30

200 300
cholesterol

(a) (b)

50

heartDisease
FALSE

TRUE

45

40ag
e

35

30

200 300
cholesterol

Figure 6.3 The impact of a large value for k (a) and a small value for k (b) on the
decision boundary (dashed line) of a model

233Chapter 6: k-Nearest Neighbors

$ exerciseAngina <fct> FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FAL...
$ STdepression <dbl> 2.3, 1.5, 2.6, 3.5, 1.4, 0.8, 3.6, 0.6, 1.4, 3.1, 0.4, 1...
$ STslope <fct> Downsloping, Flat, Flat, Downsloping, Upsloping, Upslopi...
$ coloredVessels <dbl> 0, 3, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,...
$ defectType <fct> FixedDefect, Normal, ReversibleDefect, Normal, Normal, N...
$ heartDisease <fct> FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRU...

The preview of our data shows that we have 920 observations and 14 variables. Now

that we have our data, let’s take some time to do some exploratory data analysis. As

we’ve done previously, the summary() function provides us with a great overall view of

the statistical distribution of our data and also helps us identify any potential issues with

outliers, noise, and missing data.

> summary(heart)

 age sex painType restingBP
 Min. :28.00 male :206 Typical Angina : 46 Min. : 0.0
 1st Qu.:47.00 female:714 Asymptomatic :496 1st Qu. :120.0
 Median :54.00 Non-Anginal Pain :204 Median :130.0
 Mean :53.51 Atypical Angina :174 Mean :132.1
 3rd Qu.:60.00 3rd Qu. :140.0
 Max. :77.00 Max. :200.0
 NA's :59
 cholesterol highBloodSugar restingECG restingHR
 Min. : 0.0 TRUE :138 Hypertrophy :188 Min. : 60.0
 1st Qu.:175.0 FALSE:692 Normal :551 1st Qu. :120.0
 Median :223.0 NA's : 90 waveAbnormality:179 Median :140.0
 Mean :199.1 NA's : 2 Mean :137.5
 3rd Qu.:268.0 3rd Qu. :157.0
 Max. :603.0 Max. :202.0
 NA's :30 NA's :55
 exerciseAngina STdepression STslope coloredVessels
 FALSE:528 Min. :-2.6000 Downsloping: 63 Min. :0.0000
 TRUE :337 1st Qu.: 0.0000 Flat :345 1st Qu. :0.0000
 NA's : 55 Median : 0.5000 Upsloping :203 Median :0.0000
 Mean : 0.8788 NA's :309 Mean :0.6764
 3rd Qu.: 1.5000 3rd Qu. :1.0000
 Max. : 6.2000 Max. :3.0000
 NA's :62 NA's :611
 defectType heartDisease
 FixedDefect : 46 FALSE:411
 Normal :196 TRUE :509
 ReversibleDefect:192
 NA's :486

Practical Machine Learning in R234

Dealing with Missing Data
Our results show that we have missing data for 10 of our 14 variables. In previous chap-

ters, we attempted to resolve these missing values either by using an indicator variable

or by using one of the imputation methods we introduced in Chapter 3. This time, we

are going to use another of the methods we also introduced in that chapter, which is to

simply exclude the records with missing data from our dataset. To do this, we use the

filter() function from the dplyr package to limit our dataset to only records without

missing values (i.e., !is.na()) for any of the 10 variables in question.

> heart <- heart %>%
 filter(!is.na(restingBP) & !is.na(cholesterol) & !is.na(highBloodSugar) &
!is.na(restingECG) & !is.na(restingHR) & !is.na(exerciseAngina) & !is.
na(STdepression) & !is.na(STslope) & !is.na(coloredVessels) & !is.
na(defectType))

Normalizing the Data
As we learned previously, features with larger values or that have a wider range of values

tend to disproportionately impact Euclidean distance calculations. Therefore, it is impor-

tant to normalize the feature values prior to using k-NN. For our data, we choose to use

the min-max normalization approach, which was introduced in Chapter 3. Just like we did

in that chapter, the first thing we do is write and execute the code for our normalization

function, which we call normalize.

> normalize <- function(x) {
+ return((x - min(x)) / (max(x) - min(x)))
+ }

Then we apply the normalization function to each of our numeric features to nor-

malize their values between the range of 0 to 1.

> heart <- heart %>%
 mutate(age = normalize(age)) %>%
 mutate(restingBP = normalize(restingBP)) %>%
 mutate(cholesterol = normalize(cholesterol)) %>%
 mutate(restingHR = normalize(restingHR)) %>%
 mutate(STdepression = normalize(STdepression)) %>%
 mutate(coloredVessels = normalize(coloredVessels))

Running the summary() function again shows that the range of values for our

numeric features are all now within 0 and 1.

235Chapter 6: k-Nearest Neighbors

 > summary(heart)

 age sex painType restingBP
 Min. :0.0000 male :201 Typical Angina : 23 Min. :0.0000
 1st Qu.:0.3958 female: 98 Asymptomatic :144 1st Qu.:0.2453
 Median :0.5625 Non-Anginal Pain: 83 Median :0.3396
 Mean :0.5317 Atypical Angina : 49 Mean :0.3558
 3rd Qu.:0.6667 3rd Qu.:0.4340
 Max. :1.0000 Max. :1.0000
 cholesterol highBloodSugar restingECG restingHR
 Min. :0.0000 TRUE : 43 Hypertrophy :146 Min. :0.0000
 1st Qu.:0.2392 FALSE:256 Normal :149 1st Qu.:0.4695
 Median :0.3060 waveAbnormality: 4 Median :0.6183
 Mean :0.3163 Mean :0.5979
 3rd Qu.:0.3782 3rd Qu.:0.7214
 Max. :1.0000 Max. :1.0000
 exerciseAngina STdepression STslope coloredVessels
 FALSE:200 Min. :0.0000 Downsloping: 21 Min. :0.0000
 TRUE : 99 1st Qu.:0.0000 Flat :139 1st Qu.:0.0000
 Median :0.1290 Upsloping :139 Median :0.0000
 Mean :0.1707 Mean :0.2241
 3rd Qu.:0.2581 3rd Qu.:0.3333
 Max. :1.0000 Max. :1.0000
 defectType heartDisease
 FixedDefect : 18 FALSE:160
 Normal :164 TRUE :139
 ReversibleDefect:117

Dealing with Categorical Features
The Euclidean distance between point A and point B is calculated as the square root of

the sum of squared differences between the coordinates of those two points (see Equa-

tion 6.1). Applied to k-NN, each point is a record in our dataset, and each of the coordi-

nates is represented by the features of each record.

Calculating the difference between two feature values implies that those feature

values are numeric. So, how do we calculate distance between categorical features?

One common approach is to code them as dummy variables, with a new dummy variable

representing each of the unique values of the original categorical variable. For example,

the sex variable in our dataset has two values: male and female. To represent this

variable as dummy variables, we would create two new variables called sex_male and

sex_female. The sex_male variable will have a value of 1 if the patient is male and 0

if the patient is female. The sex_female variable will have a value of 1 if the patient is

female and 0 if the patient is male. Conveniently, the values for these new features also

fall within the same scale (0 and 1) as our normalized numeric features.

Practical Machine Learning in R236

Instead of coding each of our categorical variables as dummy variables manually, the

dummies package in R provides us with a function called dummy.data.frame(), which

allows us to do this at scale. But before we do so, we need to do a couple of things. The

first is to convert our dataset from a tibble into a data frame. This is an important step

because some machine learning functions (like dummy.data.frame()) require data

passed to it as a data frame.

> heart <- data.frame(heart)

The second thing we need to do is split off the class labels from the rest of our data.

We call this new dataset heart_labels. This is important because we do not want to

create dummy variables for the class.

> heart_labels <- heart %>% select(heartDisease)
> heart <- heart %>% select(-heartDisease)

Before we create our dummy variables, let’s take a moment to list our original fea-

tures so we can compare them later to the new ones we create.

> colnames(heart)

 [1] "age" "sex" "painType" "restingBP"
 [5] "cholesterol" "highBloodSugar" "restingECG" "restingHR"
 [9] "exerciseAngina" "STdepression" "STslope" "coloredVessels"
[13] "defectType"

Now we’re ready to create our dummy variables. To do so, we pass our dataset heart

(without the class labels) to the dummy.data.frame() function. We also specify the sep-

arator character (sep=" _ ") to use when combining the original feature names and their

values to create new feature names.

> library(dummies)
> heart <- dummy.data.frame(data=heart, sep="_")
> colnames(heart)

 [1] "age" "sex_male"
 [3] "sex_female" "painType_Typical Angina"
 [5] "painType_Asymptomatic" "painType_Non-Anginal Pain"
 [7] "painType_Atypical Angina" "restingBP"
 [9] "cholesterol" "highBloodSugar_TRUE"
[11] "highBloodSugar_FALSE" "restingECG_Hypertrophy"
[13] "restingECG_Normal" "restingECG_waveAbnormality"
[15] "restingHR" "exerciseAngina_FALSE"

237Chapter 6: k-Nearest Neighbors

[17] "exerciseAngina_TRUE" "STdepression"
[19] "STslope_Downsloping" "STslope_Flat"
[21] "STslope_Upsloping" "coloredVessels"
[23] "defectType_FixedDefect" "defectType_Normal"
[25] "defectType_ReversibleDefect"

Our new feature names list shows that we now have 25 features, 19 of which are our

newly created dummy variables.

Splitting the Data
So far, we’ve dealt with the missing values in our original dataset by excluding them from

our analysis, we’ve normalized our numeric features so certain features don’t dominate

the distance calculation, and we’ve coded our categorical features as dummy variables

so that they can be included in our distance calculations. The next thing we need to do

is split our data into training and test datasets. Our test data will serve as our unlabeled

dataset, while the training data will serve as our existing labeled examples. Using the

sample() function, we partition 75 percent of our data as training examples and 25 per-

cent as our test data.

> set.seed(1234)
> sample_index <- sample(nrow(heart), round(nrow(heart)*.75), replace = FALSE)
> heart_train <- heart[sample_index,]
> heart_test <- heart[-sample_index,]

We do the same split for our class labels.

> heart_train_labels <- as.factor(heart_labels[sample_index,])
> heart_test_labels <- as.factor(heart_labels[-sample_index,])

Note that for the class labels, we use the as.factor() function to convert the

data from a data frame to a vector of factor values. This is a requirement of the knn()

function, which we use in the next section.

Classifying Unlabeled Data
We are now ready to label our unlabeled data using the k-nearest neighbors approach

in R. To do so, we use the knn() function from the class package. The function takes

four arguments. The first argument (train) is a dataset of the training data, the second

argument (test) is a dataset of the test data, the third argument (cl) is a list of the class

labels for the training data, and the last argument (k) is the number of neighbors to

consider. We set k to 15, which is approximately the square root of 224 (the number of

training examples in our data).

Practical Machine Learning in R238

> library(class)
> heart_pred1 <-
 knn(
 train = heart_train,
 test = heart_test,
 cl = heart_train_labels,
 k = 15
)

Using the head() function, let’s get a preview of our predictions.

> head(heart_pred1)

[1] FALSE TRUE FALSE FALSE FALSE FALSE
Levels: FALSE TRUE

The output provides an ordered list of the predicted labels for the first six instances

in our test dataset.

Evaluating the Model
Now that we’ve assigned labels to our unlabeled examples (heart_test), let’s see how

well our model actually did in predicting the right label. To do this, we need to compare

the predicted labels for our test data (heart_pred1) against the actual labels for our

test data (heart_test_labels). Just like we did in the previous chapter, we use the

table() function to create a confusion matrix of our predicted labels compared to the

actual labels.

> heart_pred1_table <- table(heart_test_labels, heart_pred1)
> heart_pred1_table

 heart_pred1
heart_test_labels FALSE TRUE
 FALSE 30 5
 TRUE 9 31

Our predictive accuracy is 81.33 percent, as we see here:

> sum(diag(heart_pred1_table)) / nrow(heart_test)

[1] 0.8133333

This is pretty good performance, considering that we simply set k to the value of the

square root of the number of our training examples. In the following section, we will

attempt to vary the value of k to see if we can improve the performance of our model.

239Chapter 6: k-Nearest Neighbors

Improving the Model
This time let’s try setting the value of k to 1 to see whether that has a meaningful impact

on our predictive accuracy.

> heart_pred2 <-
 knn(
 train = heart_train,
 test = heart_test,
 cl = heart_train_labels,
 k = 1
)
> heart_pred2_table <- table(heart_test_labels, heart_pred2)
> sum(diag(heart_pred2_table)) / nrow(heart_test)

[1] 0.6666667

Predicting Numerical
Responses with k-NN
The sample problem we use in this chapter to illustrate k-NN is a prediction problem
with a categorical response (classification). However, it is important to note that k-NN
can also be applied to problems where the goal is to predict a numeric response
(regression). In such a scenario, the process of finding the nearest neighbors remains
unchanged from the approach we discussed earlier. However, for a regression
problem, instead of using a majority vote to assign a label to unlabeled data, we use
the average (or weighted average) response value of the k-nearest neighbors as the
predicted response value. So if k is set to 3 and the response values for the three
nearest neighbors of a new record are 4 , 6, and 5, the response for the new record
would be the average of the three neighbors, which is 5.

The method of evaluating predictive accuracy is also different for a k-NN
regression problem. Instead of calculating accuracy as the sum of correct
predictions divided by the number of test instances, we use root mean squared
error (RMSE). Mathematically, RMSE is defined as follows:

RMSE

y y

n
i

n

i i1

2

where y i
 is the predicted response, yi is the actual response, and n is the number of

unlabeled examples (the number of test instances).

Practical Machine Learning in R240

Our results show that setting k to 1 has a negative effect on our predictive accuracy.

We go from 81.33 percent, in our previous attempt to 66.67 percent, this time. So, let’s

try going the other way. This time, we set k to 40.

> heart_pred3 <-
 knn(
 train = heart_train,
 test = heart_test,
 cl = heart_train_labels,
 k = 40
)
> heart_pred3_table <- table(heart_test_labels, heart_pred3)
> sum(diag(heart_pred3_table)) / nrow(heart_test)

[1] 0.76

Setting the value for k to 40 provides better predictive accuracy than k = 1. However,

with an accuracy of 76 percent, it does not perform as well as our original approach

(k = 15). Figure 6.4 shows the changes in predictive accuracy if we ran the previous code

and varied the value of k from 1 to 40. As the results show, the best performing value for

k, in terms of predictive accuracy, is 7. At k = 7, our predictive accuracy is 82.7 percent.

0 10 20
Number of Neighbors (k)

Predictive Accuracy vs. Number of Neighbors

30 40

0.70

0.75

Pr
ed

ic
tiv

e
Ac

cu
ra

cy

0.80

Figure 6.4 The predictive accuracy of our model for values of k-nearest neighbors
between 1 and 40

241Chapter 6: k-Nearest Neighbors

Strengths and Weaknesses
As we’ve seen so far, the k-nearest neighbors classification method is simple and yet very

effective. In this section, we discuss some of the strengths and inherent weaknesses with it.

Here are some strengths:

 • The k-nearest neighbors classification approach is rather simple to understand

and implement. Yet it is very effective.

 • It makes no assumptions about the underlying data distribution; this allows it to

be applied to a wide variety of problems.

 • The training phase is very fast. This is because it does not build a model and simply

uses the existing examples to make predictions when needed.

 • As new data is collected, the k-NN classifier adapts. This allows it to respond

quickly to real-time changes in the input.

Here are some weaknesses:

 • With k-NN, the selection of an appropriate k is often arbitrary.

 • The classification phase is rather slow. This is because the distance calculations

are computed during the classification phase. The larger the dataset, the slower

it becomes.

 • The algorithm has no way of handling missing data.

 • k-NN does not perform well on imbalanced data.

 • Without preprocessing, k-NN cannot handle nominal or outlier data.

CASE STUDY: REVISITING THE DONOR DATASET
For our chapter case study, let’s take another look at one of the problems we introduced

in Chapter 5. The problem was in the section “Prospecting for Potential Donors.” For that

problem, our goal was to help a veterans’ organization to determine which donors would

be most likely to respond to a mailing based on their demographic information, prior

giving history, and response to prior mailings. In that chapter, we used logistic regression

to solve the problem. This time, we will attempt to use k-NN to solve the problem.

Importing the Data
We begin by importing and previewing the data.

> library(tidyverse)

Practical Machine Learning in R242

> donors <- read_csv("donors.csv", col_types = "nnnnnnnnnnnnffffffffff")
> glimpse(donors)

Observations: 95,412
Variables: 22
$ age <dbl> 60, 46, NA, 70, 78, NA, 38, NA, NA, 65, NA, 75,...
$ numberChildren <dbl> NA, 1, NA, NA, 1, NA, 1, NA, NA, NA, NA, NA, 2,...
$ incomeRating <dbl> NA, 6, 3, 1, 3, NA, 4, 2, 3, NA, 2, 1, 4, NA, 4...
$ wealthRating <dbl> NA, 9, 1, 4, 2, NA, 6, 9, 2, NA, 0, 5, 2, NA, 6...
$ mailOrderPurchases <dbl> 0, 16, 2, 2, 60, 0, 0, 1, 0, 0, 0, 3, 16, 0, 17...
$ totalGivingAmount <dbl> 240, 47, 202, 109, 254, 51, 107, 31, 199, 28, 2...
$ numberGifts <dbl> 31, 3, 27, 16, 37, 4, 14, 5, 11, 3, 1, 2, 9, 12...
$ smallestGiftAmount <dbl> 5, 10, 2, 2, 3, 10, 3, 5, 10, 3, 20, 10, 4, 5, ...
$ largestGiftAmount <dbl> 12, 25, 16, 11, 15, 16, 12, 11, 22, 15, 20, 15,...
$ averageGiftAmount <dbl> 7.741935, 15.666667, 7.481481, 6.812500, 6.8648...
$ yearsSinceFirstDonation <dbl> 8, 3, 7, 10, 11, 3, 10, 3, 9, 3, 1, 1, 8, 5, 4,...
$ monthsSinceLastDonation <dbl> 14, 14, 14, 14, 13, 20, 22, 18, 19, 22, 12, 14,...
$ inHouseDonor <fct> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,...
$ plannedGivingDonor <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...
$ sweepstakesDonor <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...
$ P3Donor <fct> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,...
$ state <fct> IL, CA, NC, CA, FL, AL, IN, LA, IA, TN, KS, IN,...
$ urbanicity <fct> town, suburb, rural, rural, suburb, town, town,...
$ socioEconomicStatus <fct> average, highest, average, average, average, av...
$ isHomeowner <fct> NA, TRUE, NA, NA, TRUE, NA, TRUE, NA, NA, NA, N...
$ gender <fct> female, male, male, female, female, NA, female,...
$ respondedMailing <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...

Our original dataset has 95,412 instances and 22 features. Twelve of the features are

numeric, while the other 10 are categorical. Our class feature is called respondedMailing.

Exploring and Preparing the Data
Now that we have our data, let’s take a moment to do some initial data analysis to better

understand it. To keep things simple, we will limit our scope to using only the numeric

features in our dataset as predictors for our response.

> donors <- donors %>%
 select(
 age,
 numberChildren,
 incomeRating,
 wealthRating,
 mailOrderPurchases,
 totalGivingAmount,
 numberGifts,

243Chapter 6: k-Nearest Neighbors

 smallestGiftAmount,
 largestGiftAmount,
 averageGiftAmount,
 yearsSinceFirstDonation,
 monthsSinceLastDonation,
 respondedMailing
)

Dealing with Missing Data
A statistical summary of our new dataset shows that we have a few missing values (NAs)

and that the scale of our predictors varies considerably.

> summary(donors)

 age numberChildren incomeRating wealthRating
 Min. : 1.00 Min. :1.00 Min. :1.000 Min. :0.00
 1st Qu.:48.00 1st Qu.:1.00 1st Qu.:2.000 1st Qu.:3.00
 Median :62.00 Median :1.00 Median :4.000 Median :6.00
 Mean :61.61 Mean :1.53 Mean :3.886 Mean :5.35
 3rd Qu.:75.00 3rd Qu.:2.00 3rd Qu.:5.000 3rd Qu.:8.00
 Max. :98.00 Max. :7.00 Max. :7.000 Max. :9.00
 NA's :23665 NA's :83026 NA's :21286 NA's :44732

 mailOrderPurchases totalGivingAmount numberGifts smallestGiftAmount
 Min. : 0.000 Min. : 13.0 Min. : 1.000 Min. : 0.000
 1st Qu.: 0.000 1st Qu.: 40.0 1st Qu.: 3.000 1st Qu.: 3.000
 Median : 0.000 Median : 78.0 Median : 7.000 Median : 5.000
 Mean : 3.321 Mean : 104.5 Mean : 9.602 Mean : 7.934
 3rd Qu.: 3.000 3rd Qu.: 131.0 3rd Qu.: 13.000 3rd Qu.: 10.000
 Max. :241.000 Max. :9485.0 Max. :237.000 Max. :1000.000

 largestGiftAmount averageGiftAmount yearsSinceFirstDonation
 Min. : 5 Min. : 1.286 Min. : 0.000
 1st Qu.: 14 1st Qu.: 8.385 1st Qu.: 2.000
 Median : 17 Median : 11.636 Median : 5.000
 Mean : 20 Mean : 13.348 Mean : 5.596
 3rd Qu.: 23 3rd Qu.: 15.478 3rd Qu.: 9.000
 Max. :5000 Max. :1000.000 Max. :13.000

 monthsSinceLastDonation respondedMailing
 Min. : 0.00 FALSE:90569
 1st Qu.:12.00 TRUE : 4843
 Median :14.00
 Mean :14.36
 3rd Qu.:17.00
 Max. :23.00

Practical Machine Learning in R244

Let’s deal with the missing values first, and then we can normalize the feature values.

We have 23,665 instances with missing values for the age feature. To resolve them, we

use mean imputation.

> donors <- donors %>%
 mutate(age = ifelse(is.na(age), mean(age, na.rm = TRUE), age))
> summary(select(donors, age))

 age
 Min. : 1.00
 1st Qu.:52.00
 Median :61.61
 Mean :61.61
 3rd Qu.:71.00
 Max. :98.00

The numberChildren feature has 83,026 missing values. To resolve these, we use

median imputation.

> donors <- donors %>%
 mutate(numberChildren = ifelse(is.na(numberChildren),
median(numberChildren, na.rm = TRUE), numberChildren))
> summary(select(donors, numberChildren))

numberChildren
 Min. :1.000
 1st Qu.:1.000
 Median :1.000
 Mean :1.069
 3rd Qu.:1.000
 Max. :7.000

For the missing values for incomeRating and wealthRating, we exclude those

instances from our dataset. As we mentioned in Chapter 5, the scale for wealthRating

is between 1 and 9. However, our statistical summary shows that we have some instances

with wealthRating for 0. We need to exclude those instances as well.

> donors <- donors %>%
 filter(!is.na(incomeRating) & !is.na(wealthRating) & wealthRating > 0)
> summary(select(donors, incomeRating,wealthRating))

 incomeRating wealthRating
 Min. :1.000 Min. :1.000
 1st Qu.:2.000 1st Qu.:4.000

245Chapter 6: k-Nearest Neighbors

 Median :4.000 Median :6.000
 Mean :3.979 Mean :5.613
 3rd Qu.:5.000 3rd Qu.:8.000
 Max. :7.000 Max. :9.000

Normalizing the Data
We are done dealing with the missing data. The next thing we need to do is normalize

the scales of our data. Just like before, we’ll use the min-max normalization approach. To

do so, we first create a min-max normalization function, called normalize.

> normalize <- function(x) {
 return((x - min(x)) / (max(x) - min(x)))
 }

Then we pass each of our features to the function to standardize their scales

between 0 and 1.

> donors <- donors %>%
 mutate(age = normalize(age)) %>%
 mutate(numberChildren = normalize(numberChildren)) %>%
 mutate(incomeRating = normalize(incomeRating)) %>%
 mutate(wealthRating = normalize(wealthRating)) %>%
 mutate(mailOrderPurchases = normalize(mailOrderPurchases)) %>%
 mutate(totalGivingAmount = normalize(totalGivingAmount)) %>%
 mutate(numberGifts = normalize(numberGifts)) %>%
 mutate(smallestGiftAmount = normalize(smallestGiftAmount)) %>%
 mutate(largestGiftAmount = normalize(largestGiftAmount)) %>%
 mutate(averageGiftAmount = normalize(averageGiftAmount)) %>%
 mutate(yearsSinceFirstDonation = normalize(yearsSinceFirstDonation)) %>%
 mutate(monthsSinceLastDonation = normalize(monthsSinceLastDonation))

> summary(donors)

 age numberChildren incomeRating wealthRating
 Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.0000
 1st Qu.:0.5155 1st Qu.:0.00000 1st Qu.:0.1667 1st Qu.:0.3750
 Median :0.6249 Median :0.00000 Median :0.5000 Median :0.6250
 Mean :0.6308 Mean :0.01483 Mean :0.4965 Mean :0.5766
 3rd Qu.:0.7526 3rd Qu.:0.00000 3rd Qu.:0.6667 3rd Qu.:0.8750
 Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.0000

 mailOrderPurchases totalGivingAmount numberGifts smallestGiftAmount
 Min. :0.000000 Min. :0.000000 Min. :0.00000 Min. :0.00000
 1st Qu.:0.004149 1st Qu.:0.004945 1st Qu.:0.01271 1st Qu.:0.00600
 Median :0.012448 Median :0.011834 Median :0.02966 Median :0.01000

Practical Machine Learning in R246

 Mean :0.025986 Mean :0.016236 Mean :0.03715 Mean :0.01538
 3rd Qu.:0.033195 3rd Qu.:0.021018 3rd Qu.:0.05508 3rd Qu.:0.02000
 Max. :1.000000 Max. :1.000000 Max. :1.00000 Max. :1.00000

 largestGiftAmount averageGiftAmount yearsSinceFirstDonation
 Min. :0.000000 Min. :0.00000 Min. :0.0000
 1st Qu.:0.009045 1st Qu.:0.01405 1st Qu.:0.1818
 Median :0.012060 Median :0.02034 Median :0.5455
 Mean :0.014689 Mean :0.02362 Mean :0.5235
 3rd Qu.:0.017085 3rd Qu.:0.02750 3rd Qu.:0.8182
 Max. :1.000000 Max. :1.00000 Max. :1.0000

 monthsSinceLastDonation respondedMailing
 Min. :0.0000 FALSE:45770
 1st Qu.:0.5217 TRUE : 2497
 Median :0.6087
 Mean :0.6208
 3rd Qu.:0.6957
 Max. :1.0000

The statistical summary shows that our features all now have values within the range

of 0 and 1.

Splitting and Balancing the Data
Now that we’ve dealt with the missing values in our data and normalized our feature

values, we can split the data into training and test datasets. Just like we did previously,

we will split our data using a 75:25 ratio. Before we do so, we need to convert our data

into a data frame.

> donors <- data.frame(donors)

> set.seed(1234)
> sample_index <- sample(nrow(donors), round(nrow(donors)*.75), replace = FALSE)
> donors_train <- donors[sample_index,]
> donors_test <- donors[-sample_index,]

The class distribution for our original (donors), training (donors_train), and test

(donors_test) datasets show that we have a class imbalance problem (refer to Chap-

ter 3 for a refresher on dealing with class imbalance).

> round(prop.table(table(select(donors, respondedMailing), exclude = NULL)), 4) * 100

FALSE TRUE
94.83 5.17

247Chapter 6: k-Nearest Neighbors

> round(prop.table(table(select(donors_train, respondedMailing), exclude = NULL)), 4) * 100

FALSE TRUE
94.75 5.25

> round(prop.table(table(select(donors_test, respondedMailing), exclude = NULL)), 4) * 100

FALSE TRUE
95.04 4.96

Using the SMOTE() function from the DMwR package, we balance the training data.

> library(DMwR)
> set.seed(1234)
> donors_train <- SMOTE(respondedMailing ~ ., donors_train, perc.over =
100, perc.under = 200)

> round(prop.table(table(select(donors_train, respondedMailing),
exclude = NULL)), 4) * 100

FALSE TRUE
 50 50

With our original dataset split into training and test sets and our training data bal-

anced, we now need to split off the class labels into separate datasets. Using the pull()

command from the tidyverse, we create new vectors to hold the labels of the class

feature (respondedMailing). The specifications for the knn() function that we use

subsequently requires that these labels be factors, so we convert our vector values into

factors as well, using the as.factor() function.

> donors_train_labels <- as.factor(pull(donors_train, respondedMailing))
> donors_test_labels <- as.factor(pull(donors_test, respondedMailing))

After we’ve created vectors donors_train_labels and donors_test_labels

to hold the class labels for our training and test data, we can then remove the class

labels from our training and test datasets.

> donors_train <- data.frame(select(donors_train, -respondedMailing))
> donors_test <- data.frame(select(donors_test, -respondedMailing))

We are now ready to use k-NN to label our unlabeled test examples using the

training data.

Practical Machine Learning in R248

Building the Model
Using the knn() function from the class package with k set to 5, we predict the labels

of our test data using the training data and corresponding class labels.

> library(class)
> donors_pred <-
 knn(
 train = donors_train,
 test = donors_test,
 cl = donors_train_labels,
 k = 5
)

> head(donors_pred)

[1] TRUE FALSE FALSE TRUE TRUE FALSE
Levels: FALSE TRUE

Evaluating the Model
Let’s see how well we did with our predictions. The first thing we look at is a confu-

sion matrix of our predicted values versus the actuals. Then we calculate our predic-

tive accuracy.

> donors_pred_table <- table(donors_test_labels, donors_pred)
> donors_pred_table

 donors_pred
donors_test_labels FALSE TRUE
 FALSE 6132 5337
 TRUE 278 320

> sum(diag(donors_pred_table)) / nrow(donors_test)

[1] 0.5346814

Our results show that using k = 5 yields a predictive accuracy of 53.47 percent. This

is only marginally better than a coin toss, so we definitely have some work to do here.

Recall that for this example, we used only the numeric features for our predictions, so in

the following exercises, we provide the reader with the opportunity to improve upon our

predictions by taking into account the categorical features.

249Chapter 6: k-Nearest Neighbors

EXERCISES
1. Examine the following figure. The square near the center of the diagram represents a

new, unlabeled point. Using the k-nearest neighbors algorithm, what class would you

assign the point using each of the following parameters?

a. k = 1

b. k = 3

c. k = 7

d. k = 15

2. Modify the code used for the donation data use case to incorporate categorical vari-

ables into the model. What impact does this have on the accuracy of the model?

Chapter 7

Naïve Bayes

In Chapter 6, we introduced the k-nearest neighbor classifier as

a part of a family of lazy learners that assign a class to new data

based on the most common class of existing similar data points.

In this chapter, we introduce a new classifier called naïve Bayes,

which uses a table of probabilities to estimate the likelihood that an

instance belongs to a particular class.

The naïve Bayes approach is based on the premise that the

probability of prior events can be a good estimate of the probability

of future events. For example, when forecasting the probability

of rain for today, we would report on the proportion of prior days

with the same weather conditions as today, in which it rained. So,

if it rained 4 out of 10 of those days, then we estimate a 40 percent

chance of rain today. This approach is useful in several domains and

problem areas. In this chapter, we will use a spam-filtering example

to illustrate how the naïve Bayes classifier can be used to label

unseen emails based on how similar prior emails were labeled.

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R252

By the end of this chapter, you will have learned the following:

 ◆ The basic principles of probability, joint probability, and condi-

tional probability

 ◆ How the naïve Bayes classification approach works and how

that differs from classical Bayesian methods

 ◆ How to build a naïve Bayes classifier in R and how to use it to

predict the class values of previously unseen data

 ◆ The strengths and weaknesses of the naïve Bayes method

CLASSIFYING SPAM EMAIL
As we explore the naïve Bayes method in this chapter, we will use a dataset of more than

1,600 email messages, labeled as either “ham” (legitimate messages) or “spam” (unsolic-

ited commercial email). The emails in this dataset come from the Enron Corporation and

were initially released by the Federal Energy Regulatory Commission as part of its inves-

tigation into the collapse of the firm.

The dataset that we will use is available to you as part of the electronic resources

accompanying this book. (See the introduction for more information on accessing the

electronic resources.)

This dataset uses a format different from others that you’ve encountered so far in

this book. It is a sparse matrix. That means that it is a matrix of 1s and 0s where the vast

majority of the values are 0. In this case, each row in the matrix represents a single email

message from the Enron archive. Each column represents a word that might appear in

the message. The value of each field is 1 if the email message corresponding to the row

contains the word corresponding to that column. For example, imagine we had the fol-

lowing email message:

“Hi, Let’s get coffee”

along with this separate message that was sent in reply:

“Great! Coffee sounds great!”

Together, these messages could be represented in the matrix shown in Table 7.1.

253Chapter 7: Naïve Bayes

Notice that the table contains a single column for each unique word that appeared

in the messages. The columns contain words where capitalization and punctuation have

been removed. The values are all 0 or 1, regardless of the number of times each word

appears in a message. For example, the second message contains the word great twice,

but that field still contains a 1 in the matrix.

Of course, this is a vastly simplified example. The full Enron dataset contains 33,616

rows, each corresponding to an individual email message. It also contains 29,572 col-

umns, corresponding to unique words in the message.

TIP We’ve already done some cleaning of this dataset to reduce the number
of columns. First, we removed stop words from the dataset. These are words
such as and, or, the, and are that appear very commonly but do not add
contextual value. Second, we’ve eliminated words that did not appear in at
least 10 separate messages. Finally, we removed numbers from the dataset so
that we are working only with words. These are common actions taken when
cleaning text-based datasets.

The Enron dataset also contains a column containing a label for each message indi-

cating whether the message was unsolicited commercial email (“spam”) or a regular

email (“ham”). Our task is to use this dataset to develop a model that will help us predict

whether a newly arrived message is spam or ham. We could then use that model to per-

form spam filtering against new email messages. By the end of this chapter, we will have

created a model that does this using the naïve Bayes classification approach.

NAÏVE BAYES
The naïve Bayes method is named after 18th century clergy and mathematician Thomas

Bayes who developed mathematical principles for describing the probability of events

and how those probabilities are to be revised in light of additional information. Those

foundational mathematical principles are known today as Bayesian methods. Applied to

machine learning, an event is the expected outcome (or class) such as “true” or “false,”

Table 7.1 Sparse Matrix from Two Sample Messages

message_id coffee get great Hi lets sounds

1 1 1 0 1 1 0
2 1 0 1 0 0 1

Practical Machine Learning in R254

“yes” or “no,” and “spam” or “ham.” A classifier based on Bayesian methods is one that

attempts to predict the class of unlabeled data by answering this question: “Based on

prior evidence, what is the most likely class of a new unlabeled instance?” It does this by

doing the following:

1. Finding all existing instances with the same feature values (or profile) as the

un labeled instance

2. Determining the most likely class that those instances belong to

3. Assigning the identified class label to the unlabeled instance

This classification approach uses the concept of conditional probability to deter-

mine the most likely class of an instance. Before we go into detail on how this process

works, let’s take some time to refresh our knowledge of some of the fundamental con-

cepts used by the naïve Bayes classifier—probability, joint probability, and conditional

probability.

Probability
The probability of an event is how likely the event is to happen. Since most events cannot

be predicted with total certainty, the chance that an event will occur is often described

in terms of the probability of the event. For example, when a coin is tossed, there are

two possible outcomes: heads or tails. The probability of one of those outcomes, heads

for example, is the number of outcomes we care about (heads) divided by the total

number of possible outcomes (heads or tails). Therefore, the probability of heads is 1
2

.

The mathematical notation for this is P head 1
2

.

We can also use previous occurrences of an event to inform our understanding of how

likely that event is to happen in the future. In such a scenario, we describe the probability

of an event as the number of times that the event has previously occurred divided by the

total number of times that the event could have occurred. The number of times that an

event could have occurred is called a trial.

Let’s use weather forecasting as an example, assuming we had no access to Doppler

weather radar data but would like to predict the likelihood of afternoon rain showers

today. To do this, we could use historical events to inform our prediction. Let’s say that

we had access to a dataset that contained early morning weather conditions such as

barometric pressure, wind speed, temperature, and humidity for the past year. Let’s say

that this dataset also had a Boolean value that indicated whether it rained in the after-

noon or not, for each of those days. Based on this historical data, if we identified 10 days

with the same early morning weather conditions as today and if it rained in the after-

noon 8 out of those 10 days, we can say that the probability of rainfall this afternoon is
8

10
, 0.8, or 80 percent. In this example, the event is afternoon rainfall, the trials are 10,

255Chapter 7: Naïve Bayes

and the number of times the event occurred is 8. In mathematical terms, the notation we

use to represent the probability of rainfall in this example is P rainfall 0 8. .

It’s important to note that the probability of all mutually exclusive event outcomes

for a trial have to total 1. Mutual exclusivity implies that an event cannot simultaneously

occur and not occur. We cannot have rain and no rainfall at the same time. Therefore,

if the probability of rainfall P rainfall is 0.8, the probability of no rainfall P rainfall

would be 1 0 8 0 2. . .

NOTE In probability notation, the symbol is used to indicate the negation of
a variable. So, P rainfall is the probability that rainfall will not occur.

Joint Probability
Quite often, we are interested in looking not only at the probability of a single event but

the probability of several events that occur as part of a trial. To illustrate this concept,

let’s go back to the scenario we introduced at the beginning of the chapter on classifying

spam emails. This time, let’s assume we had the following four email messages:

1. “Hi, Let’s get coffee”

2. “Great! Coffee sounds great!”

3. “Free coffee is great!”

4. “Great coffee on Sale!”

If we learned that the first two messages were legitimate email messages (ham) and

the last two were unsolicited commercial messages (spam), we could then represent the

email messages in a sparse matrix such as this:

message_id coffee free get great hi lets sale sounds type

1 1 0 1 0 1 1 0 0 ham
2 1 0 0 1 0 0 0 1 ham
3 1 1 0 1 0 0 0 0 spam
4 1 0 0 1 0 0 1 0 spam

In this scenario, each email message would be a trial, and each word, including the

type of email (ham or spam), would be an event. With this information, we can evaluate

the probability of more than one event occurring at the same time. This is known as joint

probability. For example, suppose we wanted to know the probability that a message

that is a spam message also has the word great in it. If we assume that both events are

independently occurring, which means that the occurrence of one does not influence the

Practical Machine Learning in R256

occurrence of the other, then the joint probability of the two events P spam great, is

the product of the probabilities of each individual event, which is P spam P great .

Based on our sparse matrix, we can compute both the probability of spam P spam and

the probability of great P great . The probability of spam is the number of messages

that are labeled as spam divided by the total number of messages. P spam 2
4

0 5. .

The probability of great is the number of messages that have the word great divided

by the total number of messages. P great 3
4

0 75. . Therefore, the joint probability of

the two events P spam great, 0 5 0 75 0 375. . . . This can be interpreted to say that the

probability of an email message having the word great and also being a spam message is

37.5 percent. In other words, out of every eight email messages, we expect to encounter

three that contain the word great and also happen to be spam messages.

Conditional Probability
The idea of event independence makes practical sense when working with events that

are reasonably unrelated, for example the probability of rainfall and the probability of

receiving a spam message. However, we cannot reasonably conclude that the probability

of a message being either spam or ham is not in some way dependent or related to the

probability of the occurrence of certain words within the email. Based on prior experi-

ence, we do know that certain words can be predictive of spam.

For dependent events, instead of simply evaluating the probability that events A and

B occurred, we determine the probability of event A given that event B occurred. This is

known as conditional probability, because the probability of event A is conditioned on the

probability of event B. The notation for this is P A B| , which reads the probability of A

given B. This relationship can be represented using Bayes theorem, which describes the

relationship between dependent events A and B as follows:

P A B

P A P B A

P B
|

|

(7.1)

There are four parts to this formula. The first part is the conditional probability of A

given that B occurred. This is written as P A B| and is known as the posterior probability.

In the spam email example, this is the probability that a message is spam given that it has

the word great. This is written as P spam great| .

The second part of the Bayes formula is known as the prior probability. It is written

asP A and describes the probability of event A by itself, before we consider any addi-

tional information. In the spam email example, this would simply be the probability that

any prior message is spam, which is P spam . This probability represents our prior belief

257Chapter 7: Naïve Bayes

about the likelihood that a message is spam before we consider any additional evidence.

According to the sparse matrix from the previous section, we see that of the four mes-

sages, two are labeled as spam. Therefore, P spam 2
4

0 5. .

The next part of the Bayes formula represents the inverse of the posterior probabil-

ity. It is the probability of B given that A occurred. This is known as the likelihood and is

written as P B A| . In our spam email example, this is the likelihood that the word great

occurred in any prior spam messages. The sparse matrix shows that there are two mes-

sages labeled as spam, and both of them have the word great. So, P great spam| 2
2

1.

The fourth part of the Bayes formula is called the marginal likelihood. It represents

the probability of event B alone and is written as P B . In our spam email example, this

is the likelihood of any email message having the word great. According to our sparse

matrix, three messages contain the word great. Therefore, P great 3
4

0 75. .

Now we can apply the Bayes theorem (Equation 7.1) to our spam email example. To

determine the probability that an email message is spam given that it contains the word

great, we do the following:

P spam great

P spam P great spam

P great
|

| 0 5 1

0 75
0 667

.

.
.

(7.2)

This means that the probability that a message is spam, given that it contains the

word great, is 66.7 percent.

Classification with Naïve Bayes
Now that we have a fundamental understanding of how the Bayes theorem is used to

explain the relationship between two dependent events, let’s explore how this idea is

used for classification. Earlier, we mentioned that a classifier based on Bayesian methods

is one that attempts to predict the class of unlabeled data by answering this question:

“Based on prior evidence, what is the most likely class of a new unlabeled instance?”

The most likely class of an instance is the class that it has the highest probability of

belonging to. To determine this, we need to calculate the conditional probability that an

instance belongs to each class given its predictor values. Suppose our dataset consists

of n predictors denoted as x x x
n1 2

, , , and m distinct class values, which are represented

as C C C
m1 2

, , , ; then using the Bayes theorem, the conditional probability that an instance

belongs to class C
k
 is denoted as follows:

P C x x x

P C P x x x C

P x x x
k n

k n k

n

| , , ,
, , |

 , ,
1 2

1 2

1 2

,

,
(7.3)

Practical Machine Learning in R258

Based on the results of this computation, each instance is then assigned to the class

that it has the highest conditional probability of belonging to.

In the previous example where we looked only at the occurrence of a single word,

great, we were able to pretty easily compute the likelihood P great spam| by hand. When

we begin to consider additional features, the complexity of such a computation signifi-

cantly increases. In such a scenario, we would need to compute the product of the prob-

ability of each feature conditioned on every other feature being considered. According

to the chain rule for the repeated application of conditional probability, the likelihood in

Equation 7.3 would be computed as follows:

 P x x x C
n k1 2

, , , | (7.4)

 P x x x x C P x x x C
n k n k1 2 3 2 3

| |, , , , , , ,
P x x x x C P x x x x C P x x x C

n k n k n k1 2 3 2 3 4 3 4
| | |, , , , , , , , , , ,

P x x x x C P x x x x C P x x C P x C

n k n k n n k n1 2 3 2 3 4 1
| | | |, , , , , , , , ,

kk k
P C

As you can see, this is tedious to calculate. The more predictor variables we consider

in our computation, the more intractable computing the likelihood becomes. Consider

for a moment using this approach to classify real-world email messages with tens or hun-

dreds of words. That would be terribly inefficient.

To overcome this inefficiency, the naïve Bayes classifier makes a naïve assumption of

class conditional independence between features.

NOTE A naïve assumption is a simplifying assumption that relaxes the rules
that guide an approach in order to make it easier to work with. The class
conditional independence assumption is naïve because the probability of
each feature’s occurrence is not always independent of other features.

This means that events are independent as long as they are conditioned on the same

class value. Earlier, we mentioned that the probability of a message being either spam

or ham is dependent or related to the probability of the occurrence of certain words

within the email. With class conditional independence, we make the assumption that for

all spam messages, the probability of occurrence of each word is independent of each

other. And for the ham messages, the probability of occurrence of each word is also inde-

pendent of each other. With this in mind, instead of the complicated likelihood decompo-

sition in Equation 7.4, we now have the following:

 P x x x C P x C P x C P x C P x C
n k k k k n k1 2 1 2 3

, , , | | | | | (7.5)

259Chapter 7: Naïve Bayes

This equation significantly simplifies our calculation and allows the classifier to scale

much easier as we consider additional features. Applied to Equation 7.3, the naïve Bayes

classifier computes the conditional probability that an instance belongs to class C
k

as follows:

P C x x x

P C P x C P x C P x C

P x x
k n

k k k n k
| , , ,

| | |

, ,
1 2

1 2

1 2

 , x
n

(7.6)

Let’s work through an example. To help with our illustration, we present a frequency

table that shows the number of spam and ham email messages that contain the words

coffee, free, great, and sale.

Class Word Yes No Total

spam coffee 10 10 20
free 4 16
great 10 10
sale 8 12

ham coffee 15 65 80
free 2 78
great 25 55
sale 5 75

Note that the frequency table is not a count of the number of occurrences of words

in existing emails but rather a count of existing emails where each word occurs. So, if a

word occurs more than once in an email, it is still counted once. For example, the first

row indicates that among the 20 email messages that are labeled as spam, the word

coffee occurred at least once in 10 of them and did not in 10 others. The last row of the

table indicates that among the 80 existing ham messages, the word sale occurred at

least once in five of them and not in 75 others.

Now suppose that we receive a new email message that says, “The Great Coffee

Sale!”. How do we classify this email message? After we remove punctuations and stop

words, we are left with three words—coffee, great, and sale. Based on our frequency

table and using the naïve Bayes classification approach, we would need to first compute

the conditional probability that a message is spam, given that it has the words coffee,

great, and sale, but not free (free). This is represented as follows:

 P spam coffee free great sale| , , , (7.7)

P spam P coffee spam P free spam P great spam P sale spam| | | |

P coffee free great sale, , ,

Practical Machine Learning in R260

We then need to also compute the conditional probability that the message is ham,

given that it has the words coffee, great, and sale, but not free (free).

 P ham coffee free great sale| , , , (7.8)

P ham P coffee ham P free ham P great ham P sale ham

P co

| | | |

fffee free great sale, , ,

The conditional probability that the message is spam (Equation 7.7) should be com-

pared with the conditional probability that the message is ham (Equation 7.8). Since the

denominator for both equations is the same, we ignore them to simplify our computa-

tions and focus only on the numerators. Without the denominators, we now refer to the

two computations as the likelihood of spam and the likelihood of ham.

The probability that a particular message is spam is the likelihood that it is spam

divided by the likelihood that it is either spam or ham. Similarly, the probability that a

particular message is ham is the likelihood that it is ham divided by the likelihood that is

either spam or ham. Using the values from our frequency table, we can compute the like-

lihood that our message is spam as follows:

20

100
10

20
16

20
10

20
8

20
0 016.

(7.9)

 while the likelihood that our message is ham is computed as follows:

80

100
15

80
78

80
25

80
5

80
0 003.

(7.10)

Therefore, the probability that our message is spam is as follows:

 0 016 0 016 0 003 0 842. / . . . (7.11)

The probability that our message is ham is as follows:

 0 003 0 016 0 003 0 158. / . . . (7.12)

Therefore, based on the existing labeled email messages and using the naïve Bayes

classification approach, the new message that reads “The Great Coffee Sale!” has

an 84.2 percent probability of being spam and a 15.8 percent probability of being ham.

Since the probability of the message being spam is higher than that of it being ham, the

message will be classified as a spam message.

261Chapter 7: Naïve Bayes

Additive Smoothing
Now, let’s consider a slight change to the previous example. Suppose that the word sale

did not occur in any ham messages. This means that the last line of our previous fre-

quency table would be as follows:

Class Word Yes No Total

ham Sale 0 80 80

Using the naïve Bayes approach, the likelihood that the new message is spam

would still be 0.016. However, the likelihood that the message is ham would now be

as follows:

80

100
15

80
78

80
25

80
0

80
0

 (7.13)

This means that the probability that our message is ham is now as follows:

 0 0 016 0 0/ . (7.14)

With the introduction of a zero-frequency word to our calculation, the likelihood of

ham will always be zero as well, regardless of the frequency of occurrence of any other

words in our table. This means that the probability of spam will always be 100 percent

for any new message that does not have the word sale. This is obviously incorrect.

To resolve this problem, we do what is called additive smoothing or Laplace smoothing.

The approach involves adding a small number, known as the pseudocount, to the probability

calculation for each word. This number is typically set at 1, and by adding it, we ensure that

none of the words has a zero probability of occurrence within each class. Therefore, given

class frequency N , instead of calculating the probability of a certain word x
i
 as follows:

x
N

i

 (7.15)

 the calculation now becomes as follows:

x

N d
i

 (7.16)

Practical Machine Learning in R262

where is the pseudocount and d is the number of features (or words) in the data-

set. Applying additive smoothing to our example, the probability of sale given ham

p sale ham| will now be as follows:

0 1

80 1 4
0 012.

(7.17)

Using this approach, to classify a new email message that reads “The Great Coffee

Sale!”, we calculate the likelihood of spam as follows:

20

100
11

24
17

24
11

24
9

24
0 0112.

 (7.18)

 while the likelihood of ham is computed as follows:

80

100
16

84
79

84
26

84
1

84
0 0005.

 (7.19)

Therefore, the probability that our message is spam is as follows:

 0 0112 0 0112 0 0005 0 957. / . . . (7.20)

The probability that our message is ham is as follows:

 0 0005 0 0112 0 0005 0 043. / . . . (7.21)

The results we get with additive smoothing are much more reasonable. The introduc-

tion of a zero-frequency word does not zero out our posterior probabilities.

Working with Continuous Features
in Naïve Bayes
As you may have noticed, the spam-filtering example we’ve used so far to illustrate
the mechanics of the naïve Bayes approach includes only categorical features.
Because the naïve Bayes approach is based on the conditional probability of
the occurrence of a particular value within a dataset, it does not work well with
continuous features (which may have values that occur only once within the dataset).
To overcome this limitation, continuous features should be discretized (or binned)
prior to being used in a naïve Bayes model. Recall that we introduced several
approaches to binning as part of the process of data preparation in Chapter 3.

263Chapter 7: Naïve Bayes

Naïve Bayes Model
In the previous sections, we introduced the theoretical principles behind the naïve Bayes

classifier. Now, let’s put the theory to practice using R. In this section, we will use a naïve

Bayes classifier to solve the problem we introduced at the beginning of the chapter,

which is to label emails as either spam or ham. As usual, we first need to import and pre-

view our data.

> library(tidyverse)
> email <- read_csv("email.csv")
> head(email)

A tibble: 6 x 1,103
 message_index message_label ability abuse accept acceptance accepted access
 <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 12 ham 0 0 0 0 0 0
2 21 ham 0 0 0 0 0 0
3 29 ham 0 0 0 0 0 0
4 43 ham 0 0 0 0 0 0
5 59 ham 0 0 0 0 0 0
6 68 ham 0 0 0 0 0 0
... with 1,095 more variables: account <dbl>, accounting <dbl>, accounts <dbl>,...

The head() command provides us with a view of the first six rows of the dataset. The

output shows that we have 1,103 variables in our dataset. The first variable is message _

index, which uniquely identifies each email message. The second variable is message _

label, which identifies whether the message is spam or ham. This is the feature we will

attempt to predict (our class). A number of machine learning algorithms in R require that

the class feature be a factor, so let’s convert this variable to a factor.

> email <- email %>%
 mutate(message_label = as.factor(message_label))

The remaining 1,101 variables in our dataset represent the words that may appear

in each message. Let’s identify which of these words occurs most often in our dataset.

To do so, we first need to convert the dataset so that instead of having a column for

the count of each word, we have two columns—one for the word and the other for the

count. To do so, we use the gather() verb from the tidyr package (which is part of

the Tidyverse). The gather() command pivots the columns of our data into rows. We

pass four arguments to it. The first is the key, which is the name for the new column that

holds the names of the original columns, which in this case are the words. We name this

column word. The second argument is the value, which is the name for the new column

Practical Machine Learning in R264

that holds the count for each of the words in our original dataset. We name this column

count. The last two arguments tell the gather() verb to ignore message _ index and

message _ label, which are features during the pivot process.

> email %>%
 gather(word, count,-message_index, -message_label)

A tibble: 1,850,781 x 4
 message_index message_label word count
 <dbl> <fct> <chr> <dbl>
 1 12 ham ability 0
 2 21 ham ability 0
 3 29 ham ability 0
 4 43 ham ability 0
 5 59 ham ability 0
 6 68 ham ability 0
 7 72 ham ability 0
 8 104 ham ability 0
 9 105 ham ability 0
10 110 ham ability 0
... with 1,850,771 more rows

The next thing we do is group our data by word; sum the count variable, which we call

occurrence; and sort our results in descending order of occurrence. To list only the

top 10 words by occurrence, we use the slice() command from the dplyr package.

 > email %>%
 gather(word, count, -message_index, -message_label) %>%
 group_by(word) %>%
 summarize(occurrence = sum(count)) %>%
 arrange(desc(occurrence)) %>%
 slice(1:10)

A tibble: 10 x 2
 word occurrence
 <chr> <dbl>
 1 enron 382
 2 time 366
 3 http 284
 4 information 279
 5 message 266
 6 email 251
 7 mail 250
 8 business 216
 9 company 212
10 day 208

265Chapter 7: Naïve Bayes

As we can see from the results, enron is the top occurring word among all email mes-

sages. This not surprising considering that the email messages are from the Enron Cor-

poration. The other top occurring words mostly seem to be a combination of words that

describe everyday business. Now, let’s see if there is a difference in the top occurring

words among ham messages in comparison to spam messages. To do so, we modify our

previous code by filtering for either ham or spam. The top 10 occurring words for ham

messages are as follows:

> email %>%
 filter(message_label=='ham') %>%
 gather(word, count, -message_index, -message_label) %>%
 group_by(word) %>%
 summarize(occurrence = sum(count)) %>%
 arrange(desc(occurrence)) %>%
 slice(1:10)

A tibble: 10 x 2
 word occurrence
 <chr> <dbl>
 1 enron 382
 2 pmto 191
 3 time 185
 4 message 169
 5 ect 165
 6 forwarded 162
 7 questions 160
 8 hou 153
 9 amto 147
10 call 145

Using the slice() Command
The slice() command is useful in specifying which rows of a data frame or tibble to
display. It generally takes two arguments. The first argument is the dataset to display,
and the second argument specifies how much of the data to display. To display a
single row, we provide the slice() command with the row number to display. For
example, to display the first row of our email data, we would use slice(email, 1). To
display a range of values, we use the : operator to specify the starting and ending row
numbers to display. For example, to display the sixth to tenth rows of our email data,
we use slice(email, 6:10). We can also use the slice() command to specify which
rows not to display. For example, to display all the rows of the email data except the
fifth row, we use slice(email, -5).

Practical Machine Learning in R266

The top 10 occurring words among spam messages are as follows:

> email %>%
 filter(message_label=='spam') %>%
 gather(word, count, -message_index, -message_label) %>%
 group_by(word) %>%
 summarize(occurrence = sum(count)) %>%
 arrange(desc(occurrence)) %>%
 slice(1:10)

A tibble: 10 x 2
 word occurrence
 <chr> <dbl>
 1 http 233
 2 time 181
 3 email 171
 4 information 148
 5 money 147
 6 company 141
 7 mail 137
 8 www 123
 9 free 121
10 business 120

Our results show that the top occurring words in both sets are rather different,

except for the word time, which shows up in both lists. Among the ham messages,

enron remains the top occurring word, while http is the top occurring word among

spam messages.

Splitting the Data
The next step in our process is to split the data into training and test sets. We use a 75:25

training-to-test split ratio. Then we show the class distributions for each of the datasets.

> set.seed(1234)
> sample_set <- sample(nrow(email), round(nrow(email)*.75), replace = FALSE)
> email_train <- email[sample_set,]
> email_test <- email[-sample_set,]

> round(prop.table(table(select(email, message_label))),2)

 ham spam
0.49 0.51

267Chapter 7: Naïve Bayes

> round(prop.table(table(select(email_train, message_label))),2)

 ham spam
0.49 0.51

> round(prop.table(table(select(email_test, message_label))),2)

 ham spam
0.49 0.51

The class distributions show that we have a pretty balanced dataset: 49 percent of

the records are ham, and 51 percent are spam across the entire dataset as well as the

training and testing subsets.

Training a Model
We are now ready to build our naïve Bayes model. To do so, we use the naiveBayes()

function from the e1071 package in R. The function takes three arguments. The first is

the learning formula, which we specify as follows:

message_label ~ .-message_index

This means that our classifier should predict the message _ label using all the other

variables in the dataset except message _ index. The second argument is the dataset

used to train the model. This is email _ train. The final argument is the pseudocount

value that should be used for Laplace smoothing. We set this value to 1.

> library(e1071)
> email_mod <-
naiveBayes(message_label ~ .-message_index, data = email_train, laplace = 1)

Evaluating the Model
Now that we’ve trained our model, let’s evaluate how well it does against the test data in

predicting whether a message is spam or ham. To do this, we use the predict() function

from the stats package. We pass three arguments to the predict() function. The first

argument is the model we just trained: email _ mod. The second argument is the test

data email _ test. The final argument is the type of prediction we want. We can either

get the predicted probabilities or get the predicted class labels. To get the predicted

probabilities, we set type = “raw”.

> email_pred <- predict(email_mod, email_test, type = "raw")
> head(email_pred)

Practical Machine Learning in R268

 ham spam
[1,] 1.000000e+00 0.00000e+00
[2,] 1.000000e+00 4.26186e-55
[3,] 0.000000e+00 1.00000e+00
[4,] 1.000000e+00 0.00000e+00
[5,] 3.050914e-202 1.00000e+00
[6,] 1.000000e+00 0.00000e+00

The results show that for the first two messages, the probability that the message is

ham is at or near 100 percent. Since the probability for ham is larger than that for spam,

we classify these two messages as ham. However, for the third message, the probability

that the message is spam is 100 percent. This message will be classified as spam. Looking

at the probabilities for the next three results shows that those messages will be clas-

sified as ham, spam, and ham, respectively. To get the predicted class labels directly

instead of the predicted probabilities, we need to set type = “class” for the pre-

dict() function.

> email_pred <- predict(email_mod, email_test, type = "class")
> head(email_pred)

[1] ham ham spam ham spam ham
Levels: ham spam

As the results show, the predicted class labels provide the same results as what

we inferred from the predicted probabilities. With our class predictions, we can now

 evaluate how well we did against the labels of the test data. Similar to what we’ve done

previously, we first create a confusion matrix based on our actuals and predicted values,

and then we compute the predictive accuracy of the model based on the values of the

 confusion matrix.

> email pred table <- table(email_test$message_label, email_pred)
> email_pred_table

 email_pred
 ham spam
 ham 203 2
 spam 80 135

> sum(diag(email_pred_table)) / nrow(email_test)

[1] 0.8047619

269Chapter 7: Naïve Bayes

Our model has a predictive accuracy of 80.5 percent. Not bad for a low-budget spam

filter. However, there is some room for improvement. To improve our predictive accu-

racy, we need to gather more training examples. This not only increases the number of

examples (instances) considered, it also potentially increases the number of words (fea-

tures) considered.

Strengths and Weaknesses of the Naïve Bayes
Classifier
The naïve Bayes classifier is a powerful and effective approach to classification, espe-

cially for text data. In this section, we take a look at some of the strengths and weak-

nesses of the naïve Bayes classifier to get a better understanding of when it’s useful and

when it’s not the best approach to use.

Here are some strengths:

 • One of the primary strengths of the naïve Bayes classifier is its simplicity and com-

putational efficiency.

 • It does a great job handling categorical features directly, without any pre-

processing.

 • It often performs better than more sophisticated classifiers when working with a

large number of predictors.

 • It handles noisy and missing data pretty well.

Here are some weaknesses:

 • To get good performance, naïve Bayes needs a sizable amount of data.

 • Because of the naïve assumption of class conditional independence, computed

probabilities are not reliable when considered in isolation. The computed prob-

ability of an instance belonging to a particular class has to be evaluated relative to

the computed probability of the same instance belonging to other classes.

 • It does not work well for datasets with a large number of continuous features.

 • It assumes that all features within a class are not only independent but are equally

important.

CASE STUDY: REVISITING THE HEART DISEASE
DETECTION PROBLEM
For our chapter case study, let’s take another look at the first problem we introduced

in Chapter 6. Our objective with that problem was to examine the records of existing

Practical Machine Learning in R270

patients and to use that information to predict whether a particular patient is likely

to suffer from heart disease or not. In that chapter, we used the k-nearest neighbor

approach to make our predictions. This time, we will apply a naïve Bayes approach to

the problem.

Importing the Data
We begin by importing and previewing the data.

> library(tidyverse)
> heart <- read_csv("heart.csv", col_types = "nffnnffnfnfnff")
> glimpse(heart)

Observations: 920
Variables: 14
$ age <dbl> 63, 67, 67, 37, 41, 56, 62, 57, 63, 53, 57, 56, 56, 44, ...
$ sex <fct> male, male, male, male, female, male, female, female, ma...
$ painType <fct> Typical Angina, Asymptomatic, Asymptomatic, Non-Anginal ...
$ restingBP <dbl> 145, 160, 120, 130, 130, 120, 140, 120, 130, 140, 140, 1...
$ cholesterol <dbl> 233, 286, 229, 250, 204, 236, 268, 354, 254, 203, 192, 2...
$ highBloodSugar <fct> TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, F...
$ restingECG <fct> Hypertrophy, Hypertrophy, Hypertrophy, Normal, Hypertrop...
$ restingHR <dbl> 150, 108, 129, 187, 172, 178, 160, 163, 147, 155, 148, 1...
$ exerciseAngina <fct> FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FAL...
$ STdepression <dbl> 2.3, 1.5, 2.6, 3.5, 1.4, 0.8, 3.6, 0.6, 1.4, 3.1, 0.4, 1...
$ STslope <fct> Downsloping, Flat, Flat, Downsloping, Upsloping, Upslopi...
$ coloredVessels <dbl> 0, 3, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,...
$ defectType <fct> FixedDefect, Normal, ReversibleDefect, Normal, Normal, N...
$ heartDisease <fct> FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRU...

Our output shows that we have 920 instances and 14 features. We are working with a

lot fewer features than what we had for the spam-filtering example.

Exploring and Preparing the Data
Now that we have our data, let’s get a big-picture view of what we’re dealing with here.

The summary() function is always a good way to get a quick summary of our data.

> summary(heart)

 age sex painType restingBP
 Min. :28.00 male :206 Typical Angina : 46 Min. : 0.0
 1st Qu.:47.00 female:714 Asymptomatic :496 1st Qu.:120.0

271Chapter 7: Naïve Bayes

 Median :54.00 Non-Anginal Pain:204 Median :130.0
 Mean :53.51 Atypical Angina :174 Mean :132.1
 3rd Qu.:60.00 3rd Qu.:140.0
 Max. :77.00 Max. :200.0
 NA's :59
 cholesterol highBloodSugar restingECG restingHR
 Min. : 0.0 TRUE :138 Hypertrophy :188 Min. : 60.0
 1st Qu.:175.0 FALSE:692 Normal :551 1st Qu.:120.0
 Median :223.0 NA's : 90 waveAbnormality:179 Median :140.0
 Mean :199.1 NA's : 2 Mean :137.5
 3rd Qu.:268.0 3rd Qu.:157.0
 Max. :603.0 Max. :202.0
 NA's :30 NA's :55
 exerciseAngina STdepression STslope coloredVessels
 FALSE:528 Min. :-2.6000 Downsloping: 63 Min. :0.0000
 TRUE :337 1st Qu.: 0.0000 Flat :345 1st Qu.:0.0000
 NA's : 55 Median : 0.5000 Upsloping :203 Median :0.0000
 Mean : 0.8788 NA's :309 Mean :0.6764
 3rd Qu.: 1.5000 3rd Qu.:1.0000
 Max. : 6.2000 Max. :3.0000
 NA's :62 NA's :611
 defectType heartDisease
 FixedDefect : 46 FALSE:411
 Normal :196 TRUE :509
 ReversibleDefect:192
 NA's :486

Our output shows that we have some missing values in our dataset. It also shows that

some of our numeric features have a wider range of values than others. In the previous

chapter, prior to applying the k-NN approach, we had to impute the missing values and

normalize the data. The naïve Bayes approach does not require us to do either one of

those things. The naïve Bayes classifier ignores missing data and does not require that

feature values be normalized to a standard scale.

The next step in our process is to split the data. Similar to what we did in Chapter 6,

we use the sample() function to partition 75 percent of our data as the training dataset

and the remaining 25 percent as the test dataset.

> set.seed(1234)
> sample_set <- sample(nrow(heart), round(nrow(heart)*.75), replace = FALSE)
> heart_train <- heart[sample_set,]
> heart_test <- heart[-sample_set,]

> round(prop.table(table(select(heart, heartDisease))),2)

Practical Machine Learning in R272

FALSE TRUE
 0.45 0.55

> round(prop.table(table(select(heart_train, heartDisease))),2)

FALSE TRUE
 0.45 0.55

> round(prop.table(table(select(heart_test, heartDisease))),2)

FALSE TRUE
 0.43 0.57

The output shows that the class distributions of our new partitions (heart _ train

and heart _ test) are similar to the original dataset (heart) and that our data does not

suffer from an imbalance problem. So, we are done with the data preparation stage and

are ready to move on to modeling.

Building the Model
Similar to what we did earlier in the chapter, we use the naiveBayes() function from

the e1071 package to train a model.

> library(e1071)
> heart_mod <- naiveBayes(heartDisease ~ ., data = heart_train, laplace
= 1)

To see the probabilities generated by the model, we simply call the model.

> heart_mod

Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:
Y
 FALSE TRUE
0.4521739 0.5478261

The first set of probabilities our model outputs are the prior probabilities for

each class, which it calls A-priori probabilities. Note that this is the same as the class

273Chapter 7: Naïve Bayes

distribution for our training data. After these probabilities, the output shows the con-

ditional probabilities for each feature (for the sake of brevity, we show only a subset of

the output).

Conditional probabilities:
 age
Y [,1] [,2]
 FALSE 50.28846 9.361624
 TRUE 55.61640 8.661843

 sex
Y male female
 FALSE 0.2197452 0.7802548
 TRUE 0.2210526 0.7789474

 painType
Y Typical Angina Asymptomatic Non-Anginal Pain Atypical Angina
 FALSE 0.05696203 0.26265823 0.32594937 0.35443038
 TRUE 0.04450262 0.76178010 0.16230366 0.03141361

 restingBP
Y [,1] [,2]
 FALSE 129.0404 16.39849
 TRUE 133.0632 20.73787

The format of these conditional probabilities varies depending on the data type

of the feature. For numeric features, such as age, the output shows the mean ([,1])

and standard deviation ([,2]) of the feature for each class value (FALSE, TRUE).

However, for discrete features, such as sex, the output shows the conditional prob-

ability of each feature value for each class value. For example, the output shows

that P sex male FALSE| 0 2197452. and P sex female FALSE| 0 7802548. .

Evaluating the Model
With our model trained against the training data, let’s evaluate how well it does against

unseen data from the test partition.

> heart_pred <- predict(heart_mod, heart_test, type = "class")
> heart_pred_table <- table(heart_test$heartDisease, heart_pred)
> heart_pred_table

 heart_pred
 FALSE TRUE

Practical Machine Learning in R274

 FALSE 78 21
 TRUE 13 118

> sum(diag(heart_pred_table)) / nrow(heart_test)

[1] 0.8521739

Our results show that the predictive accuracy of our model is 85.2 percent. This is

pretty good and slightly better than the accuracy of 82.7 percent we got using the k-NN

classifier against the same dataset. This seems to suggest that if we cared only about

predictive accuracy, the naïve Bayes classifier is a slightly better approach to use for this

particular problem. However, as we will see in Chapter 9, predictive accuracy alone does

not tell the whole story.

EXERCISES
Exercises 1 and 2 use the following frequency table. This is data collected from a gym

that offers several different levels of membership. Standard membership allows mem-

bers to participate in three classes per week. Elite membership allows members to par-

ticipate in an unlimited number of classes each week. Drop-in membership includes no

classes, but members may attend a class after paying a per-session fee.

The frequency table shows the number of individuals at the gym who have purchased

each membership plan, broken out by their age (teenager, adult, or senior citizen), their

gender (male or female), and their homeownership status.

Level Teenager Adult Senior Male Female Homeowner Total

Drop-in 94 458 280 406 426 422 832
Standard 112 915 174 581 620 817 1201
Elite 20 250 95 60 305 270 365
Total 226 1623 549 1047 1351 1509 2398

1. The gym is soliciting a new member who is a female adult homeowner.

a. Compute Likelihood(Drop-in | Female, Adult, Homeowner)

b. Compute Likelihood(Standard | Female, Adult, Homeowner)

c. Compute Likelihood(Elite | Female, Adult, Homeowner)

d. Which membership level is this person most likely to select?

275Chapter 7: Naïve Bayes

2. The gym is soliciting a new member who is a male teenager who does not

own a home.

a. Compute Likelihood(Drop-in | Male, Teenager, Homeowner)

b. Compute Likelihood(Standard | Female, Adult, Homeowner)

c. Compute Likelihood(Elite | Female, Adult, Homeowner)

d. Which membership level is this person most likely to select?

3. In Chapter 5, we used logistic regression to predict the income of prospective cus-

tomers. Using the same income dataset, attempt to improve upon the predictive

accuracy of the previous model by using a naïve Bayes approach. Just like we did in

Chapter 5, limit your data to only the categorical features and don’t forget to balance

your training data. Did your predictive accuracy improve?

Chapter 8

Decision Trees

In Chapter 7, we introduced the naïve Bayes classifier as a machine

learning approach that uses the probability of prior events to

inform the likelihood of a future event. In this chapter, we introduce

a different type of classifier known as a decision tree. Instead of

using the probability of prior events to predict future events, the

decision tree classifier uses a logical tree-like structure to represent

the relationship between predictors and a target outcome.

Decision trees are constructed based on a divide-and-conquer

approach, where the original dataset is split repeatedly into

smaller subsets until each subset is as homogenous as possible.

We discuss this recursive partitioning approach in some length in

the early part of the chapter. Later in the chapter, we discuss the

process of paring back the size of a decision tree to make it more

useful to a wider set of use cases. We wrap up the chapter by

training a decision tree model in R, discussing the strengths and

weaknesses of the approach and working through a use case.

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R278

By the end of this chapter, you will have learned the following:

 ◆ The basic components of a decision tree and how to

interpret it

 ◆ How decision trees are constructed based on the process of

recursive partitioning and impurity

 ◆ Two of the most popular implementations of decision trees

and how they differ in terms of how they measure impurity

 ◆ Why and how decisions trees are pruned

 ◆ How to build a decision tree classifier in R and how to use it to

predict the class values of previously unseen data

 ◆ The strengths and weaknesses of the decision tree method

PREDICTING BUILD PERMIT DECISIONS
As we explore the decision tree methods in this chapter, we will use a dataset from the

Department of Building and Safety in Los Angeles, California. This dataset contains infor-

mation on building permit decisions made by the department and includes information on

the nature of the project and whether the permit was approved through an expedited one-

day process or whether it was flagged for more extensive review by department staff.

Contractors, of course, would prefer that as many of their building projects as pos-

sible be routed through the expedited process. Our task is to analyze the data to deter-

mine whether there are specific characteristics of a permit application that make it more

likely to go through the expedited review process.

The dataset that we will use is available to you as part of the electronic resources

accompanying this book. (See the Introduction for more information on accessing the

electronic resources.)

The dataset includes a variety of permit data for our analysis:

 • status is the current status of the permit application. It may take on values such

as Finaled, Issued, Expired, and other status codes.

 • permitType contains the nature of the improvements applied for. It may take on

values such as Electrical, Building Alteration/Repair, Plumbing, etc.

279Chapter 8: Decision Trees

 • permitSubtype is the type of building impacted by the permit. It may take on

values such as 1 or 2 Family Dwelling, Commercial, Apartment, etc.

 • initiatingOffice is the department office location that initiated the permit

application.

 • ZIP is the ZIP code of the property address.

 • Valuation is the assessed value of the property from tax records.

 • floorArea is the square footage of the property’s floor area.

 • numberUnits is the number of residential units in a multidwelling property.

 • stories represents the number of floors in the building.

 • contractorState is the state where the contractor applying for the permit is

based, if applicable.

 • licenseType is a field categorizing the type of license held by the contractor, if

applicable.

 • zone is the zoning category for the property.

 • year and month are the year and month that the permit application was pro-

cessed, respectively.

 • permitCategory is the variable that we want to predict. It contains either the

value Plan Check or the value No Plan Check.

Given the problem and the data provided, these are some of the questions we need

to answer:

 • Which variables are most predictive of whether a permit application will be expe-

dited or flagged for further review?

 • How well can we predict whether a permit application will be flagged for review

or not based on the predictor variables available to us?

By the end of this chapter, we will have answered each of these questions using linear

regression and related techniques.

DECISION TREES
Decision trees use a tree-like structure to represent the relationship between predic-

tors and potential outcomes. The potential outcomes of a decision tree can be either

discrete (classification tree) or continuous (regression tree). The structure of a deci-

sion tree, as illustrated in Figure 8.1, is similar to that of an inverted literal tree (or

upside-down tree). It begins with a single partition known as the root node, which is

Practical Machine Learning in R280

then followed by progressively smaller partitions as the tree splits and grows. At each

point where the tree splits, a decision is made in terms of how to further partition

the data based on the values of a particular predictor. These split points are known

as decision nodes, and the outcomes of the decision nodes are known as branches. As

the data is further partitioned, each decision node yields new branches, which lead to

additional decision nodes until the tree terminates. The end or terminal nodes of the

tree are known as the leaf nodes. These nodes represent the predicted outcome based

on the set of decisions made from the root node, through the decision nodes to the

leaf node.

Figure 8.1 shows a decision tree describing bank customers who received a loan and

whether they are likely to default or not, based on information about how much they

borrowed, how much they earn, and whether they own or rent a home. The logic of the

tree can be easily interpreted as a rule for predicting whether future bank customers

will default or not default on a loan. Based on the tree, one of the rules would read

as follows:

IF (customer borrows more than $40,000) AND (customer owns a home) THEN (cus-

tomer will not default)

Borrowed Less
Than $40,000

Earns More Than
$20,000 a Year

Not
Default

Yes No

Root
Node

Owns a Home

No

Branches
Decision

Node

Leaf
Node

Default Not
Default

Yes No

Default

Yes

Figure 8.1 Structure of a decision tree

281Chapter 8: Decision Trees

The ease with which decision trees can be translated into simple and understand-

able IF-THEN-ELSE rules makes them a very popular classification approach in situations

where transparency is important for legal or compliance reasons or in situations where

the decision logic needs to be shared with nontechnical stakeholders.

Two of the most popular implementations of decision tree algorithms are classifica-

tion and regression trees (CART), which was introduced by Breiman et al (1984), and

C5.0, which was developed by computer scientist J. Ross Quinlan as an extension of his

original ID3 decision tree algorithm. Both implementations use a similar approach to

tree building, known as recursive partitioning. This approach repeatedly splits data into

smaller and smaller subsets until some stopping criteria are met.

Recursive Partitioning
The process of recursive partitioning begins with a decision at the root node. The deci-

sion is to identify which feature is most predictive of the target outcome (or class).

To determine this, the algorithm evaluates all the features in the dataset and tries to

identify the one that would result in a split such that the resulting partitions contain

instances that are primarily of a single class. Once the candidate feature has been iden-

tified, the data is then partitioned based on the values of the feature. Next, each of the

newly created partitions are also split based on the feature that is most predictive of

the target outcome among the set of instances within the partition. This partitioning

process continues recursively until almost all of the instances within a partition are of

the same class, all the features in the dataset have been exhausted, a specified tree size

has been met, or when additional partitioning no longer adds value to the tree (more on

this later).

To help illustrate the recursive partitioning process, imagine that we have data about

30 personal loans issued by a small commercial bank. The dataset includes information

about the amount that was borrowed, the annual income of the customer, and whether

the customer defaulted on the loan. Of the 30 customers represented in the dataset,

16 defaulted and 14 did not. Using this information, we create a scatterplot of annual

income against loan amount, as shown in Figure 8.2.

The first thing we need to do is determine which of the two features (Annual

Income or Loan Amount) is most predictive of the target outcome (Default or Not

Default). The ideal feature is the one that results in most of the data points within a

partition having the same class. By visual inspection, we decide on a loan amount of

$40,000 as our best split. How did we decide on this? We considered (visually) the differ-

ent values for both loan amount and annual income to determine where we could draw

a vertical or horizontal line that partitioned the data points such that most of the exam-

ples within each partition have the same class (see Figure 8.3).

Practical Machine Learning in R282

With the split that we chose, we get 14 customers with a loan amount of $40,000

or less and 16 with a loan amount of $40,000 or more. Among the customers who bor-

rowed less than $40,000, eight of them did not default on their loans while six of them

did. While for the customers who borrowed more than $40,000, 10 of them defaulted on

their loans and 6 of them did not.

40

10

20

30

80
Loan Amount

(in Thousands of USD)

An
nu

al
 In

co
m

e
(in

 T
ho

us
an

ds
 o

f U
SD

)

120

Default

Not Default

Figure 8.2 Scatterplot of annual income versus loan amount for 30 commercial
bank customers (including loan outcomes)

40

10

20

30

80
Loan Amount

(in Thousands of USD)

An
nu

al
 In

co
m

e
(in

 T
ho

us
an

ds
 o

f U
SD

)

120

Default

Not Default

Figure 8.3 Bank customers partitioned on loan amount of less than or more
than $40,000

283Chapter 8: Decision Trees

The next partition we make is within the group of customers who borrowed less than

$40,000. Among these customers, we can further partition the data into those who earn

more than $20,000 a year and those who don’t. This is illustrated in Figure 8.4.

Of those customers who borrowed less than $40,000 and earn more than $20,000 a

year, seven of them did not default on their loan and one of them did. And of those cus-

tomers who borrowed less than $40,000 and earn less than $20,000 a year, four of them

defaulted on their loan and one did not. If we stopped the recursive partitioning process

here, we would generate a decision tree as illustrated in Figure 8.5.

As mentioned earlier, decision trees can be translated relatively easily to a set of rules

that guide future business decisions. Based on our tree (Figure 8.5), we come up with the

following three rules by following the branches of the tree from the root mode to the

leaf nodes:

 • IF (customer borrows less than $40,000) AND (customer earns more than $20,000

a year) THEN (customer will not default).

 • IF (customer borrows less than $40,000) AND (customer earns less than $20,000 a

year) THEN (customer will default).

 • IF (customer borrows more than $40,000) THEN (customer will default).

As you may have noticed, our decision tree in Figure 8.5 is similar to the one in

Figure 8.1. The only difference is that we limited ourselves to only use the Loan Amount

and Annual Income predictors this time, whereas the first tree also considered home

40

10

20

30

80
Loan Amount

(in Thousands of USD)

An
nu

al
 In

co
m

e
(in

 T
ho

us
an

ds
 o

f U
SD

)

120

Default

Not Default

Figure 8.4 Bank customers partitioned on loan amount of less than or more than
$40,000 as well as on annual income less than or more than $20,000 a year

Practical Machine Learning in R284

ownership as a predictor. By including home ownership in the partitioning process, we

can improve the accuracy of our tree by ensuring that a greater proportion of the data

points in a partition are of the same class. However, this is not always advisable as it can

lead to overfitting. As we discussed in Chapter 1, when a model overfits, it reduces its

ability to generalize to a broad range of problems.

Choosing the Split Values
During the recursive partitioning process, not only is the best feature to split on
chosen, but the best value (or values) to split on are also chosen.

For discrete variables, this is done by grouping the feature values into two
subsets for comparison. For example, a feature with three discrete values {a, b, c}
will be evaluated as {a} versus {b, c}; {b} versus {a, c}; and {c} versus {a, b}.

For continuous variables, the split values are based on the midpoint between
pairs of consecutive values. For example, a feature with the four continuous values
{1, 3, 8, 11} will be evaluated based on splits greater than or less than {2, 5.5, 9.5}.

Borrowed Less
Than $40,000

Earns More Than
$20,000 a Year

Not
Default

Yes No

No

Default

Default

Yes

8/6

7/1

6/10

1/5

Figure 8.5 Decision tree of bank customers based on the loan amount and
annual income. Each decision and leaf node shows the number of customers who
defaulted (red number) and those who did not (green number).

285Chapter 8: Decision Trees

In the illustration we just went through, we attempted to partition our data so that the

data points in each partition were mostly of the same class. We did this manually, via visual

inspection. Decision tree algorithms do something similar when trying to determine the

best split. They use a quantitative measure of what is commonly referred to as purity or

impurity. Purity in this sense means the degree to which data points within a partition are

of the same class. A partition where all of the data points are of the same class is consid-

ered pure, while a partition with half of its data points are of one class and the other half

are of a different class is considered impure. In general terms, the more one class domi-

nates the purer the partition is, and the less a single class dominates the more impure the

partition becomes. Therefore, to find the best split, the decision tree algorithm attempts

to find the split that results in the least amount of impurity within the new partitions.

There are several quantitative measures of impurity commonly used by decision tree

algorithms. The two most common ones are entropy and Gini. As we mentioned earlier,

the two most popular decision tree implementations are C5.0 and CART. One of the dis-

tinguishing features of these two algorithms is the measure of impurity that they use.

The C5.0 algorithm uses entropy as its measure of impurity, while the CART algorithm

uses Gini. In the next few sections, we explain the idea behind these two measures and

how they are used in the recursive partitioning process.

Entropy
Entropy is a concept that is borrowed from information theory and, when applied to

decision trees, represents a quantification of the level of impurity or randomness that

exists within a partition. The higher the impurity that exists within a partition, the higher

the entropy value for that partition, and vice versa. Mathematically, for data partition D

with class levels i n1 2, , , , entropy is defined as follows:

Entropy D p p

i

n

i i1 2
log

(8.1)

where p
i
 represents the proportion of data points that have a class label of i . Entropy

values range from 0, when all data points within a partition are of the same class, to

log
2

n , when all n classes are equally represented in the partition. So, for the bank

 customer example that has two outcomes —Default and Not Default—n is equal

to 2. This means that the entropy values for its partitions will range from 0 to 1 (log
2
2).

During our illustration of the recursive partitioning process using the loan data of 30

bank customers, we ended up with a partition of 16 customers who borrowed more than

$40,000 (see Figures 8.4 and 8.5). Among these customers, 10 of them did not default on

their loans and 6 of them did. In terms of the proportion of data points in this partition,

Practical Machine Learning in R286

we can say that we have 62.5 percent Not Default and 37.5 percent Default. There-

fore, using Equation 8.1, the entropy of this partition would be as follows:

 Entropy D625 625 375 375 0 9544
2 2

log log (8.2)

As we mentioned previously, the maximum entropy for a partition with two possible

values is 1. Therefore, an entropy value of 0 9544. tells us that there is a high degree of impu-

rity in this partition. This suggests that the tree could benefit from additional partitioning.

Information Gain
Now, let’s assume that we choose to continue with the recursive partitioning process from

our previous example. We want to further partition the data points for customers who bor-

rowed more than $40,000 to minimize entropy. To accomplish this, the decision tree algo-

rithm would evaluate all the features and their corresponding values to determine which

split would result in the largest reduction in entropy. This reduction in entropy is measured

as the difference between the entropy of the partition before the split D1 and the combined

entropy of the partitions after the split D2. This measure is known as information gain. Math-

ematically, the information gain of splitting by a particular feature F is calculated as follows:

 InformationGain F Entropy D Entropy D
1 2 (8.3)

It’s important to note that Entropy D2 is the combined entropy of all the partitions

after the split. Therefore, it is computed as a weighted sum of the entropy of each of

the new partitions, where the weight w
i
 is based on the proportion of data points in

 partition P
i
. Entropy D2 is computed as follows:

 Entropy D w Entropy P
i

n

i i2 1 (8.4)

With this in mind, to partition our data points further, let’s assume that we had to con-

sider two possible features to partition by—loan grade and home ownership. Unlike the

previous features we looked at (loan amount and annual income), these new features are

discrete and not continuous. Loan grade has two possible values (A and B), and home own-

ership also has two possible values (Own and Rent). To split our data, the decision tree

algorithm would need to evaluate the information gain of splitting by loan grade and com-

pare that with the information gain of splitting by home ownership. Whichever split results

in the highest information gain (or reduction in entropy) would be chosen as the best split

for the partition.

Figure 8.6 shows the two possible split options we are considering, along with the

number of data points that fall into each partition by class label.

287Chapter 8: Decision Trees

Using this information, let’s work through an example of how the decision tree algo-

rithm would compute information gain and decide on the best split. The first feature we

consider is loan grade (Figure 8.6a). To get the information gain for this split, we need

to compute the entropy before the split (D1) as well as the combined entropy after the

split (D2). From Equation 8.2, we know that the entropy before the split is 0.9544. After

the split, the left partition (Loan Grade = A) has three out of six customers who do not

default and three out of six who do. The entropy for this partition is as follows:

Entropy Grade A

3
6

3
6

3
6

3
6

1
2 2

log log
 (8.5)

Notice that for this partition, each class is equally represented, which means that the

entropy will be at its maximum value. In this case, that value is 1. This is interpreted to mean

that the partition is at a state of maximum impurity. Now, let’s look at the right partition

(Loan Grade = B). After the split, this partition has 3 out of 10 customers who do not default

on their loan and 7 out of 10 who do. Therefore, the entropy for this partition is as follows:

Entropy GradeB

3
10

3
10

7
10

7
10

0 8813
2 2

log log .
 (8.6)

Loan Grade

Not
Default

A B

Default3/3

6/106/10

3/7

Home
Ownership

Not
Default

Own Rent

Default6/2 0/8

(a) (b)

Figure 8.6 Candidate features for splitting the partition of customers who bor-
rowed more than $40,000. Each decision and leaf node shows the number of cus-
tomers who defaulted (red number) and those who did not (green number).

Practical Machine Learning in R288

From Equation 8.4, we know that the combined entropy after the split (D2) is a

weighted sum of the entropy of each of the new partitions, where the weights (w
i
) are

the proportion of the original data points in each new partition. Of the 16 customers

before the split, 6 of them (37.5 percent) are in the left partition (Loan Grade = A), while

10 of them (62.5 percent) are in right partition (Loan Grade = B). The combined entropy

of the partitions after the split is as follows:

Entropy D2

0 375 0 625. . (Entropy Grade A Entropy GradeB

0 375 1 0 625 0 8813. . .

0 9258. (8.7)

Now that we have both the entropy before the split and the combined entropy after

the split, we can compute the information gain of splitting by loan grade as follows:

 InformationGain Loan Grade 0 9544 0 9258 0 0286. . . (8.8)

Let’s go through the same steps for the split based on home ownership in order to get

the information gain of that split.

Entropy Own

6
8

6
8

2
8

2
8

0 8113
2 2

log log .

 Entropy Rent

0
8

0
8

8
8

8
8

0
2 2

log log

 Entropy D2

0 5 0 5. . (Entropy Own Entropy Rent

0 5 0 8113 0 5 0. . .

0 4057.

289Chapter 8: Decision Trees

 InformationGain Home Ownership 0 9544 0 4057 0 5487. . . (8.9)

By comparing the information gain of the split based on loan grade with that of

the split based on home ownership, we see that the split based on home ownership

has the higher value. Therefore, our decision tree algorithm will choose this split as

the best split. It’s important to note that in Equation 8.9, we computed the entropy

of the partition (Home Ownership = Rent) as 0. This is the lowest value of entropy

and implies that the partition is at a state of maximum purity. This makes sense if we

look at the right partition in Figure 8.6b. All customers in that partition defaulted on

their loans.

Gain Ratio
Using information gain as a measure of the reduction in entropy before and after
a split has a significant drawback. It tends to be biased toward features with a
high number of distinct values. For example, suppose that for the bank customers
example, we included a feature that represented the checking account numbers
of all borrowers. Based simply on information gain, this feature would always be
chosen because it will result in pure partitions that uniquely identify each individual
customer. Such a tree will not generalize well to new customer data. To overcome this
limitation with information gain, we can use gain ratio as a metric of entropy instead
of information gain.

Gain ratio is a modification of information gain that reduces its bias on highly
branching features by taking into account the number and size of branches when
choosing a feature. It does this by normalizing information gain by the intrinsic
information of a split. Just like entropy, intrinsic information is also a concept
borrowed from information theory. The specifics of how it is calculated are beyond
the scope of this text. The important thing to note is that the more distinct values
a feature has, the higher its intrinsic information. Using intrinsic information, gain
ratio is calculated as follows:

Gain Ratio F

Information Gain F

Intrinsic Information F

For more information on intrinsic information, see: Quinlan, J. Ross. “Induction
of Decision Trees.” Machine Learning 1.1 (1986): 81–106.

Practical Machine Learning in R290

Gini Impurity
As we mentioned earlier, entropy and information gain are not the only criteria used to

build decision trees. The degree of impurity within a partition can also be quantified by

a measure called Gini impurity. Gini represents a measure of how often a particular data

point in a partition would be incorrectly labeled if it were randomly labeled based on

the distribution of labels in the partition. Mathematically, for data partition D with class

levels i n1 2, , , , Gini impurity is computed as follows:

 Gini Impurity D p
ii

n
 1

2

1 (8.10)

where p
i
 represents the proportion of data points that have a class label of i . Similar to

entropy, the greater the degree of randomness or impurity within a partition, the higher

the Gini impurity value. Gini values range from 0, when all data points within a partition are

of the same class, to n n1 / , when all n classes are equally represented in the partition.

So, for the bank customers example, which has two outcomes, Default and Not Default,

n is equal to 2. This means that the Gini impurity values for its partitions will range from 0

to 0.5. During the recursive partitioning process, the change in the Gini impurity value is

used in the same way that information gain is used when deciding on the best split.

Pruning
Previously, we mentioned that the recursive partitioning process continues indefinitely

until it encounters a stopping criterion. One such criterion, which signals the partition-

ing process to stop, is when all of the instances within a partition are of the same class.

Another is when all the features in the dataset have been exhausted. Quite often, if the

tree is allowed to grow uninhibited until it meets one or both of these criteria, it may

already be too large and overfit against the training data. To avoid this, the size of a deci-

sion tree is often reduced during or after the growth process for it to generalize better

against unseen data. This process is known as pruning.

Pruning can be done during the recursive partitioning process by setting criteria that

need to be met at each split point. These criteria can be in the form of specifying a maximum

number of features to be considered, a maximum number of decision nodes, a minimum

number of data points in each partition, and so on. This approach to pruning is known as pre-

pruning. It is appealing in that it prevents unnecessary branches and nodes from being cre-

ated, thereby saving compute cycles. However, the major drawback with this approach is that

by stopping tree growth early, it is possible that certain patterns in the data could be missed.

The alternative approach to pre-pruning is post-pruning. As the name suggests, the

idea here is to allow the decision tree to grow as large as it can and then reduce its size

afterward. This process consists of successively designating decision nodes as leaf nodes

291Chapter 8: Decision Trees

or getting rid of them altogether. With regard to compute time, post-pruning is a less

efficient approach compared to pre-pruning. However, it does provide the significant

benefit of being more effective in discovering important patterns within the data.

Both of the decision tree algorithms (CART and C5.0) that we’ve discussed so far

handle pruning in slightly different ways. The C5.0 algorithm makes several internal

assumptions during the model build process in terms of how it handles pruning. It takes a

post-pruning approach of allowing the tree to grow as large as it can such that it overfits

against the training data. Then it goes back through the nodes and branches of the tree

and attempts to reduce the size of the overall tree by removing, replacing, or moving

branches and nodes that do not have a significant impact on the performance of the tree.

The CART algorithm, on the other hand, uses a metric known as the complexity param-

eter to inform the pruning process. The complexity parameter can be seen as a cost

metric associated with adding a node to the decision tree during the recursive partition-

ing process. This cost metric can take on values from 0 to and gets smaller as more

nodes are added to the decision tree. When used for pruning, a complexity parameter

threshold is specified. For pre-pruning, at each stage of the partitioning process, the

decision tree algorithm evaluates the cost of adding an additional node to the tree. If

this cost exceeds the specified complexity parameter value, the node will not be created.

In the post-pruning approach, the complexity parameter is used differently. In this

approach, we can think of the entire decision tree as a successive series of subtrees. For

example, a decision tree with five nodes can be thought of as a sequence of five different

decision trees with node sizes of 1, 2, 3, 4, and 5. As we go from a tree with one node to a

two-node tree, we compute the cost of doing so (complexity parameter) as well as the error

rate of the tree. This is repeated for each of the successive trees. Then we compare the

error rates, and whichever tree had the lowest error rate is chosen as the final decision tree.

Building a Classification Tree Model
Now that we have a better understanding of the concept behind decision trees, let’s put

it into practice using R. In this section, we will use a decision tree function based on the

CART algorithm to solve the problem we introduced at the beginning of the chapter. Our

objective is to build a model that predicts whether a permit application will go through

an expedited review process or not based on the characteristics of the application.

We first import and preview our data.

> library(tidyverse)
> permits <- read_csv("permits.csv", col_types = "ffffffnnnnfffff")
> glimpse(permits)

Observations: 971,486
Variables: 15
$ status <fct> Permit Expired, Permit Finaled, Permit Finaled,...

Practical Machine Learning in R292

$ permitType <fct> Plumbing, Plumbing, Plumbing, Plumbing, Electri...
$ permitSubtype <fct> 1 or 2 Family Dwelling, 1 or 2 Family Dwelling,...
$ permitCategory <fct> No Plan Check, No Plan Check, No Plan Check, No...
$ initiatingOffice <fct> INTERNET, INTERNET, INTERNET, INTERNET, INTERNE...
$ ZIP <fct> 90046, 90004, 90021, 90029, 90039, 90039, 91406...
$ valuation <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ floorArea <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ numberUnits <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ stories <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ contractorState <fct> CA, CA, CA, CA, CA, CA, CA, CA, CA, CA, CA, CA,...
$ licenseType <fct> C36, C36, C36, C36, C10, C36, C10, C10, C20, C3...
$ zone <fct> R1-1, R2-1, M2-2D, R1-1-HPOZ, R1-1, R1-1VL, R1-...
$ year <fct> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013,...
$ month <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...

Based on the output of the glimpse() command, we see that our dataset consists of

971,486 instances and 15 features. As we mentioned at the beginning of the chapter, the

variable we are trying to predict (our class) is permitCategory. Our output also shows

that we have a number of missing values for some of our features (denoted as NA). Let’s

get a statistical summary of our dataset to better understand what problems we may

have with missing data, outliers, and noise. To do this, we use the summary() function.

> summary(permits)

 status permitType
 Permit Finaled:644876 Electrical :274356
 Issued :196696 Bldg-Alter/Repair:222644
 Permit Expired: 54706 Plumbing :185189
 CofO Issued : 43917 HVAC : 96490
 Permit Closed : 12832 Fire Sprinkler : 38404
 (Other) : 18419 (Other) :154363
 NA's : 40 NA's : 40
 permitSubtype permitCategory
initiatingOffice
 1 or 2 Family Dwelling:542641 No Plan Check:646957 METRO :289327
 Commercial :248659 Plan Check :324489 VAN NUYS:283862
 Apartment :161264 NA's : 40 INTERNET:251721
 Onsite : 12536 WEST LA : 76451
 Special Equipment : 5299 SOUTH LA: 37615
 (Other) : 1047 (Other) : 32470
 NA's : 40 NA's : 40
 ZIP valuation floorArea numberUnits
 90045 : 25362 Min. : 0 Min. :-154151 Min. :-147.0
 90049 : 21111 1st Qu.: 2100 1st Qu.: 32 1st Qu.: 0.0
 91331 : 17270 Median : 8000 Median : 500 Median : 0.0
 91367 : 16631 Mean : 153474 Mean : 3869 Mean : 1.8

293Chapter 8: Decision Trees

 90026 : 16109 3rd Qu.: 30000 3rd Qu.: 2180 3rd Qu.: 1.0
 (Other):874902 Max. :525000000 Max. :1788210 Max. : 910.0
 NA's : 101 NA's :602487 NA's :888698 NA's :927409
 stories contractorState licenseType zone
 Min. : -3.0 CA :809934 B :327643 R1-1 :179475
 1st Qu.: 0.0 TN : 3670 C10 :175364 R3-1 : 51635
 Median : 1.0 GA : 3666 C36 :125550 RS-1 : 41478
 Mean : 1.6 WA : 3597 C20 : 73022 R2-1 : 26992
 3rd Qu.: 2.0 FL : 3236 C16 : 37949 RA-1 : 25430
 Max. :4654.0 (Other): 13663 (Other): 98788 (Other):644096
 NA's :891769 NA's :133720 NA's :133170 NA's : 2380
 year month
 2018 :175912 4 : 92875
 2017 :169791 3 : 91715
 2016 :156165 8 : 84622
 2015 :148824 10 : 83117
 2014 :132524 1 : 82425
 (Other):188230 (Other):536692
 NA's : 40 NA's : 40

The summary output shows that we do have missing data for most of our features. This

is not a problem for decision tree algorithms. They are able to handle missing data very

well without the need for imputation on our part. This is because, during the recursive

partitioning process, splits are made based solely on the observed values of a variable. If

an observation has a missing value for the variable being considered, it is simply ignored.

We also notice from the summary output that some of the numeric features, such as

valuation and floorArea, have a wide range of values and possible outlier data. With

some of the machine learning approaches we’ve covered previously, these would be

problematic and would need to be remediated. That is not the case with decision trees.

They are able to robustly handle outliers and noisy data.

As you can start to see, decision trees require rather little of us in terms of data prepara-

tion. However, our summary statistics do point out some logical inconsistencies with some of

our feature values. For example, we see that the minimum value for floorArea is –154,151.

This is not a reasonable value for the square footage of a building. We see similar problems

with the minimum values for the valuation, numberUnits, and stories features as well.

While these inconsistencies are not a problem for the decision tree algorithm, they will lead

to illogical decision rules if the tree were used for business decision-making. To resolve these

inconsistencies, we simply treat them as missing data by setting their values to NA.

> permits <- permits %>%
 mutate(valuation = ifelse(valuation < 1, NA, valuation)) %>%
 mutate(floorArea = ifelse(floorArea < 1, NA, floorArea)) %>%
 mutate(numberUnits = ifelse(numberUnits < 1, NA, numberUnits)) %>%

Practical Machine Learning in R294

 mutate(stories = ifelse(stories < 1, NA, stories))

The summary statistics also show that we have a problem with the maximum value for

the stories feature. A quick online search reveals that the tallest building in Los Ange-

les (the Wilshire Grand Center) has only 73 floors. Therefore, we treat any values greater

than 73 as missing data by setting the value to NA.

permits <- permits %>%
 mutate(stories = ifelse(stories > 73, NA, stories))

> summary(select(permits, valuation, floorArea, numberUnits, stories))

 valuation floorArea numberUnits stories
 Min. : 1 Min. : 1 Min. : 1.0 Min. : 1.0
 1st Qu.: 3000 1st Qu.: 397 1st Qu.: 1.0 1st Qu.: 1.0
 Median : 9801 Median : 1296 Median : 1.0 Median : 2.0
 Mean : 164723 Mean : 5105 Mean : 5.6 Mean : 1.8
 3rd Qu.: 32700 3rd Qu.: 2853 3rd Qu.: 1.0 3rd Qu.: 2.0
 Max. :525000000 Max. :1788210 Max. :910.0 Max. :63.0
 NA's :627686 NA's :908545 NA's :954847 NA's :914258

Decision tree algorithms do a great job selecting which features are important in

predicting the final outcome and which are not. So, feature selection as a data prepara-

tion step is not necessary. However, to simplify our illustration, let’s only use the per-

mitType, permitSubtype, and initiatingOffice features as predictors of the final

outcome, which is represented by the permitCategory feature. Using the select()

command from the dplyr package, we reduce our dataset to these four features:

> permits <- permits %>%
 select(
 permitType,
 permitSubtype,
 initiatingOffice,
 permitCategory
)

As part of the end of chapter exercises, you will have the opportunity to improve the

performance of our decision tree model by taking into account some of the additional

features in the dataset.

Splitting the Data
The next stage in our process is to split our data into training and test sets. Using the

sample() function, we split our dataset by partitioning 80 percent of the original data as

training data and the remaining 20 percent as test data.

295Chapter 8: Decision Trees

> set.seed(1234)
> sample_set <- sample(nrow(permits), round(nrow(permits)*.80), replace
= FALSE)
> permits_train <- permits[sample_set,]
> permits_test <- permits[-sample_set,]

> round(prop.table(table(select(permits, permitCategory))),2)

No Plan Check Plan Check
 0.67 0.33
> round(prop.table(table(select(permits_train, permitCategory))),2)

No Plan Check Plan Check
 0.67 0.33
> round(prop.table(table(select(permits_test, permitCategory))),2)

No Plan Check Plan Check
 0.67 0.33

Training a Model
We are now ready to build our model. As we mentioned earlier, we will be using the CART

algorithm to solve our example problem. The CART algorithm is implemented in R as part

of the rpart package. This package provides a similarly named function rpart(), which

we use to train our model. This function takes three primary arguments. The first is the

prediction formula, which we specify as permitCategory ˜ . to mean that our model

should use all the other variables in the dataset as predictors for the permitCategory

variable. The second argument is the method, which we specify as class. This means that

we are building a classification tree. The final argument is the training dataset that will be

used to build the model.

> library(rpart)
> permits_mod <-
 rpart(
 permitCategory ~ .,
 method = "class",
 data = permits_train
)

Evaluating the Model
Now that we’ve trained our decision tree model, let’s visualize it. To do so, we use the

rpart.plot() function from the similarly named rpart.plot package. See Figure 8.7.

> library(rpart.plot)
> rpart.plot(permits_mod)

No Plan Check
0.33

100%

No Plan Check
0.10
57%

No Plan Check
0.10
6%

No Plan Check
0.41
9%

permitType = Plumbing,Electrical,HVAC,Bldg-Alter/Repair,Elevator,Pressure Vessel

No Plan Check
0.20
82%

permitType = Plumbing,Electrical,HVAC,Pressure Vessel

Plan Check
0.92
18%

Plan Check
0.54
5%

No Plan Check
0.00
1%

Plan Check
0.95
18%

Plan Check
0.87
5%

initiatingOffice = INTERNET

No Plan Check
0.45
24%

initiatingOffice = INTERNET,SANPEDRO,SOUTH LA

permitSubtype = 1 or 2 Family Dwelling,Apartment

Plan Check
0.56
18%

No Plan Check
0.46
14%

initiatingOffice = WEST LA,VAN NUYS

yes no

Figure 8.7 Visualization of a decision tree model using the rpart.plot() function in R

297Chapter 8: Decision Trees

The structure of a decision tree can tell us a lot about our data. For example, the

order in which features are evaluated within the tree is significant. Our particular tree

begins with a split by permitType at the root node. This tells us that of the features

that we used in our model, permitType is the most predictive of our final outcome. The

farther away we get from the root node, the less predictive a feature is of the final out-

come. This means that after permitType, initiatingOffice is the next most predictive

feature, followed by permitSubtype.

Besides the order in which features are encountered, the colors and node labels are

also useful in understanding our data. Recall that the root node of a tree represents the

original dataset before the first split and that each of the subsequent nodes (decision

and leaf nodes) represents subpartitions of the original dataset after each previous split.

Looking at the labels in each node, we learn something about each of the partitions

that they represent. For example, the labels of the root node are: No Plan Check, 0.33,

and 100%. The bottom label (100%) tells us how much of our original data the partition

represents. The middle number (0.33) tells us the probability that an application within

this partition will be flagged for further review (Plan Check). Because this probability is

less than 0.5, the node is labeled as No Plan Check, which is the top label on the node.

Another way to read this is that based on all of our data, the probability that a new

permit application will be expedited is 67 percent, while the probability that it will be

flagged for further review is 33 percent. These numbers are consistent with the class

distribution numbers we got earlier. Now if we follow the leftmost branches of our tree

down to the leaf node, we learn that the probability that a new permit application will be

flagged for further review decreases even further, from 33 percent to 10 percent, if the

permit is for plumbing, electrical, HVAC, or pressure vessel work.

When using a decision tree for classification, the nodes and branches of the tree illus-

trate the logical decision pathway that one can take in classifying previously unclassified

data. As new data is encountered, it is evaluated against specific split criteria at each of

the decision nodes, and a pathway is chosen until a terminal node is encountered and a

label is assigned. Pathways (or branches) toward the left represent agreement with the

split criteria, while pathways toward the right represent disagreement with the split

criteria. For example, the rightmost pathway of our tree tells us that if we have a new

building permit application for fire sprinkler repair (permitType = Fire Sprinkler)

that was not initiated over the Internet (initiatingOffice != INTERNET), then it will

be flagged for further review (Plan Check).

Now, let’s see how our model does with this process against our test. Similar to

what we did in previous chapters, we pass the model (permits_mod) to the predict()

function to classify the test data (permits_test), by setting the type argument to

class. After this, we create a confusion matrix based on our predictions and calculate

the predictive accuracy of our model.

Practical Machine Learning in R298

> permits_pred <- predict(permits_mod, permits_test, type = "class")
> permits_pred_table <- table(permits_test$permitCategory, permits_pred)
> permits_pred_table

 permits_pred
 No Plan Check Plan Check
 No Plan Check 121929 7357
 Plan Check 19054 45949

> sum(diag(permits_pred_table)) / nrow(permits_test)

[1] 0.8640278

The results show that our model has a predictive accuracy of 86.4 percent against the

test data. How can we improve this performance? There are several things that come

to mind. The first is to remember that decision tree algorithms are nonparametric. The

performance of nonparametric models can improve as additional data is considered. So,

either we could adjust the ratio of training to test data for our existing data or we could

gather additional data. The second approach is to consider additional features for the

model. Recall that we used only four features in this model. In the chapter exercise, you

will have the opportunity to explore this approach.

Strengths and Weaknesses of the Decision Tree Model
Compared to other machine learning approaches, decision trees present several

strengths and weaknesses. In this section, we list and discuss several of them.

Regression Trees
Decision trees can also be used to solve regression problems (problems with numeric
outcomes). Regression trees work in similar ways to classification trees with some
slight modifications.

In classification trees, the label of the terminal node is based on a majority vote of
the training examples that fall within that node. In regression trees, the value of the
leaf node is an average of the output values of the training examples in the node.

In classification trees, impurity is commonly measured by entropy or Gini.
However, for regression trees, impurity is typically measured as the sum of squared
deviations (or squared errors) from the mean of the node. In other words, each of
the outcomes of the training examples within a node is subtracted from the mean
of the node, squared, and then summed. Impurity is zero within a node when all
the values are the same.

299Chapter 8: Decision Trees

Here are some strengths:

 • Decision trees are simple to understand and interpret. The logical structure of a

tree is intuitive and easy for nonexperts to follow and derive business rules out of.

 • Unlike some other approaches, which work better with either discrete or contin-

uous features, decision trees are able to handle both very well.

 • Decision trees handle missing, noisy, and outlier data very well. This minimizes the

need for extensive data preparation.

 • During each stage of the recursive partitioning process, the feature that reduces

impurity the most is chosen. This results in unimportant features being ignored

and important ones being chosen. Feature selection is not necessary.

 • Decision trees do well on most problems and are useful on both small and large

datasets. However, like other nonparametric models, they do tend to improve as

they encounter more examples.

Here are some weaknesses:

 • For the C5.0 algorithm, which uses information gain, the choice of which features

to split on during the recursive partitioning process tends to be biased toward fea-

tures with a large number of levels.

 • Decision trees are nonparametric models. This means that they do not make an

assumption about the form of the data but instead model against existing data. As a

result, small changes in data can result in large changes to the structure of the tree.

 • If not properly remediated, decision trees can easily overfit against the training

data. They can also underfit if the pruning process is overly aggressive.

 • Decision trees are limited to axis-parallel splits (as illustrated in Figures 8.3

and 8.4), This limits their usefulness in certain problem domains.

 • While decision trees are easy to understand, very large trees can be rather diffi-

cult to interpret.

CASE STUDY: REVISITING THE INCOME
PREDICTION PROBLEM
For our chapter case study, let’s take another look at the income prediction problem we

introduced in Chapter 5. For that problem, our objective was to use information about

existing customers of a financial services company to develop a model that predicts

whether a customer has an income of $50,000 or more. The motivation for this problem

is to identify potential high-income customers from a prospective customer database

Practical Machine Learning in R300

that we recently purchased. In Chapter 5, we used logistic regression to solve the

problem. This time, we will use a classification tree.

Importing the Data
Let’s begin by importing our data. As usual, we will use the read _ csv() function from

the readr package, which is included as part of the tidyverse package.

> library(tidyverse)
> income <- read_csv("income.csv", col_types = "nffnfffffnff")
> glimpse(income)

Observations: 32,560
Variables: 12
$ age <dbl> 50, 38, 53, 28, 37, 49, 52, 31, 42, 37, 30, 23, 32,...
$ workClassification <fct> Self-emp-not-inc, Private, Private, Private, Privat...
$ educationLevel <fct> Bachelors, HS-grad, 11th, Bachelors, Masters, 9th, ...
$ educationYears <dbl> 13, 9, 7, 13, 14, 5, 9, 14, 13, 10, 13, 13, 12, 11,...
$ maritalStatus <fct> Married-civ-spouse, Divorced, Married-civ-spouse, M...
$ occupation <fct> Exec-managerial, Handlers-cleaners, Handlers-cleane...
$ relationship <fct> Husband, Not-in-family, Husband, Wife, Wife, Not-in...
$ race <fct> White, White, Black, Black, White, Black, White, Wh...
$ gender <fct> Male, Male, Male, Female, Female, Female, Male, Fem...
$ workHours <dbl> 13, 40, 40, 40, 40, 16, 45, 50, 40, 80, 40, 30, 50,...
$ nativeCountry <fct> United-States, United-States, United-States, Cuba, ...
$ income <fct> <=50K, <=50K, <=50K, <=50K, <=50K, <=50K, >50K, >50...

Our dataset consists of 32,560 customers. Each customer is described by 12 features,

one of which is income level (<=50K or >50K). The income feature is the output we’re

interested in.

Exploring and Preparing the Data
To begin our data exploration and preparation, we start by getting a statistical summary

of our data using the summary() function.

> summary(income)

 age workClassification educationLevel educationYears
 Min. :17.00 Private :22696 HS-grad :10501 Min. : 1.00
 1st Qu.:28.00 Self-emp-not-inc: 2541 Some-college: 7291 1st Qu.: 9.00
 Median :37.00 Local-gov : 2093 Bachelors : 5354 Median :10.00
 Mean :38.58 ? : 1836 Masters : 1723 Mean :10.08

301Chapter 8: Decision Trees

 3rd Qu.:48.00 State-gov : 1297 Assoc-voc : 1382 3rd Qu.:12.00
 Max. :90.00 Self-emp-inc : 1116 11th : 1175 Max. :16.00
 (Other) : 981 (Other) : 5134
 maritalStatus occupation relationship
 Married-civ-spouse :14976 Prof-specialty :4140 Husband :13193
 Divorced : 4443 Craft-repair :4099 Not-in-family : 8304
 Married-spouse-absent: 418 Exec-managerial:4066 Wife : 1568
 Never-married :10682 Adm-clerical :3769 Own-child : 5068
 Separated : 1025 Sales :3650 Unmarried : 3446
 Married-AF-spouse : 23 Other-service :3295 Other-relative: 981
 Widowed : 993 (Other) :9541
 race gender workHours ativeCountry
 White :27815 Male :21789 Min. : 1.00 United-States:29169
 Black : 3124 Female:10771 1st Qu.:40.00 Mexico : 643
 Asian-Pac-Islander: 1039 Median :40.00 ? : 583
 Amer-Indian-Eskimo: 311 Mean :40.44 Philippines : 198
 Other : 271 3rd Qu.:45.00 Germany : 137
 Max. :99.00 Canada : 121
 (Other) : 1709
 income
 <=50K:24719
 >50K : 7841

The output shows that we have missing data for some of our features denoted by

the question marks (?). In previous approaches, we have attempted to deal with these

missing values. However, as we learned earlier, decision trees are not adversely impacted

by missing data, so we can leave them as they are. We also do not concern ourselves here

with outliers, noise, or normalization. The next step in our process is then to split our

data into training and test sets. Using the sample() function, our original data is parti-

tioned into training and test subsets by a ratio of 75:25, respectively.

> set.seed(1234)
> sample_set <- sample(nrow(income), round(nrow(income)*.75), replace = FALSE)
> income_train <- income[sample_set,]
> income_test <- income[-sample_set,]

> round(prop.table(table(select(income, income), exclude = NULL)), 4) * 100

<=50K >50K
75.92 24.08

> round(prop.table(table(select(income_train, income), exclude = NULL)), 4) * 100

<=50K >50K
75.78 24.22

Practical Machine Learning in R302

> round(prop.table(table(select(income_test, income), exclude = NULL)), 4) * 100

<=50K >50K
76.33 23.67

The class distributions of our data partitions show that we have a class imbalance

problem. To resolve this for the training data, we use the SMOTE() function from the

DMwR package.

> library(DMwR)
> set.seed(1234)
> income_train <- SMOTE(income ~ ., data.frame(income_train), perc.over = 100,
perc.under = 200)

> round(prop.table(table(select(income_train, income), exclude = NULL)), 4) * 100

<=50K >50K
 50 50

Building the Model
We are now ready to train our decision tree model. To do so, we once again use the

rpart() function from the rpart package in R.

> library(rpart)
> income_mod <-
 rpart(
 income ~ .,
 method = "class",
 data = income_train
)

Evaluating the Model
The rpart.plot() function from the rpart.plot package allows us to create a visual of

the classification tree (see Figure 8.8).

> library(rpart.plot)
> rpart.plot(income_mod)

Looking at the structure of the tree in Figure 8.8, you’ll notice that of the 11 predictor

variables in our original data, our model only uses of 4 of them (educationYears, age,

303Chapter 8: Decision Trees

maritalStatus, and relationship). The algorithm evaluates all available features,

chooses the ones that are predictive of the final outcome to split with, and ignores the

rest. Based on the tree that was created, we can create a set of business rules that govern

how we label a new customer. For example, by following the pathways of the tree, we can

say that a customer who has 10 years or more of education and is over 28 years old is 80

percent likely to have an income greater than $50,000 a year. While, a never-married cus-

tomer with fewer than 10 years of education and who lists a nonfamily member as next of

kin is 91 percent (1 – 0.09) likely to have an income of $50,000 or less.

With our model in place, let’s label the examples in our test data and evaluate how well

our model does. To do so, we create a set of predictions based on our model. Comparing

our predictions against the actual labels of the test data, we create a confusion matrix that

we then use to compute our model’s predictive accuracy.

> income_pred <- predict(income_mod, income_test, type = "class")
> income_pred_table <- table(income_test$income, income_pred)
> income_pred_table

 income_pred
 <=50K >50K
 <=50K 4732 1481
 >50K 553 1374

> sum(diag(income_pred_table)) / nrow(income_test)

[1] 0.7501229

educationYears < 10

maritalStatus = Divorced,Married-spouse-absent,Never-married,Separated,Widowed

relationship = Not-in-family,Own-child,Unmarried,Other-relative educationYears < 9

>50K
0.74
46%

<=50K
0.50

100%

<=50K
0.30
54%

<=50K
0.12
29%

<=50K
0.09
28%

<=50K
0.39
16%

>50K
1.00
1%

>50K
0.66
10%

>50K
0.80
41%

<=50K
0.49
25%

age < 28

<=50K
0.19
5%

yes no

Figure 8.8 Classification tree to predict customer income level

Practical Machine Learning in R304

The predictive accuracy of our model is 75 percent. This is slightly better than the

accuracy of 73.85 percent, which we got for the same problem using logistic regres-

sion. It is important to note that the logistic regression model considered only the

categorical features, while our classification tree model considers all the features

in the data.

EXERCISES
1. Use the decision tree that we built in the case study (shown in Figure 8.8) to predict

the income level for each of the following people:

a. A married 30-year-old woman with 16 years of education

b. A divorced 45-year-old man with 12 years of education

c. A married 40-year-old woman with 8 years of education

2. Attempt to improve the accuracy of the building permit model by including addi-

tional features in the decision tree. What improvement in predictive accuracy were

you able to achieve?

3. The C5.0 algorithm discussed in this chapter takes a different approach to building

decision trees. Use the C50 package in R to build a decision tree model of the

building permit dataset using the same features that we used in this chapter. What

results did you achieve? How do they differ from the results in the chapter and the

results in Exercise 2?

P A R T I V

Evaluating
and Improving

Performance
Chapter 9: Evaluating Performance

Chapter 10: Improving Performance

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Chapter 9

Evaluating
Performance

In Chapters 4 through 8, we introduced some of the most

common supervised machine learning approaches. For each

of the techniques, we started by explaining the basic principles

behind them, and then we illustrated how to build a model with

them in R. For the regression examples, we used several measures

to evaluate how well our model fit the observed data. This is

known as goodness-of-fit. For the classification examples, we used

a simple metric, predictive accuracy, to evaluate the performance

of our models. Predictive accuracy is easy to calculate—you simply

divide the number of correct predictions by the number of total

predictions. However, it does not always provide a complete

picture of the estimated future performance of a model.

In this chapter, we discuss some of the limitations of predictive

accuracy and introduce some other metrics that provide additional

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R308

perspectives on model performance. Before we do so, we explore

some of the different ways in which we can partition our data in

order to get the best estimate of future performance from a given

model or set of models.

By the end of this chapter, you will have learned the following:

 ◆ The different approaches to resampling as a means to

estimate the future performance of a model

 ◆ The pros and cons of the different resampling techniques

 ◆ How to evaluate model performance with metrics other

than accuracy

 ◆ How to visualize model performance

ESTIMATING FUTURE PERFORMANCE
During the model building process, the goal is to use the observed data to develop

a model that best estimates the relationship between a set of predictor variables X and

corresponding response values Y . The degree to which the model explains the relation-

ship between X and Y is known as goodness-of-fit. To evaluate how well the model fits

against the data, we quantify the difference between the model’s predicted response

values Y and the observed response values Y (see Figure 9.1). The difference between the

model’s predicted response and the observed response values for the data from which a

model is built is known as the resubstitution error.

While the resubstitution error provides an assessment of how well a model estimates

the relationship between the predictors and response variables within a dataset, it does

not provide useful insight into how well the model will perform in the future against

new data. The problem is that we’re testing the model on data that it has already seen.

It’s the equivalent of a professor showing students the answers to a test they’ll be tak-

ing the next day and then using that test to evaluate their performance in class. If the

professor wants to truly evaluate the knowledge of her students, she would need to ask

them new questions that they haven’t previously seen.

309Chapter 9: Evaluating Performance

To accomplish this in the world of machine learning, we need to evaluate our model

against data that has played no part in the training of the model. Therefore, instead of

using our entire dataset to train and evaluate our model, we split the original data into

two partitions so that we use one partition (training data) to build our model and we use

the other partition (test data) to evaluate how well our model will perform against previ-

ously unseen data (Figure 9.2). This approach is known as the holdout method, and it’s the

approach we used in the previous chapters.

Typically, with the holdout method, one-quarter to one-third of the original data is

held out for testing, while the remainder is used to train the model. However, depend-

ing on how much data is available, these proportions may vary. There are two important

principles to keep in mind with the holdout method. The first is that when creating the

training and test partitions, it is important that both datasets be independent of each

Train

Original Data

Step 1
Train a model using all of
the available data.

Evaluate
Step 2
Evaluate the model using
the same data.

Figure 9.1 Model build and evaluation process using all of the observed data

Train

Training Test

Step 2
Train a model using the
training data.

Evaluate
Step 3
Evaluate the model using
the test data.

Step 1
Split the data into
training and test
partitions.

Figure 9.2 Model build and evaluation process using subsets of the observed data
for training and for test (the holdout method)

Practical Machine Learning in R310

other and that they be representative samples of the original data (or problem that we

are trying to solve). Independence here implies that if an instance is selected from the

original dataset as part of the training data, it cannot also be selected as part of the test

data, and vice versa. The second principle is that at no time during the model build pro-

cess should a model’s performance on the test data be allowed to influence the choice of

a model or be used to optimize a model’s parameters.

For example, one can be tempted to build several models using the training data and

then choose the one that performs the best against the test data as the final model.

While this sounds like a logical approach, the problem with it is that it does not provide

us with an unbiased estimation of how our model will perform against previously unseen

data. To avoid this limitation, we need a separate dataset other than test to help us

refine our model. This dataset is commonly known as the validation data. The validation

data is used iteratively to refine or choose a model so that the test data is held out and

used only at the end to estimate the future performance of the final model. Figure 9.3

illustrates the inclusion of the validation data in the model build and evaluation process.

In practice, it is common for the split between the training, validation, and test sets

to be 50:25:25, respectively, and that each partition be independent of each other. In

situations where we have a lot of available data, this approach works well. We use half

of the original data (50 percent) to train a model. We then use a separate 25 percent of

the original data to evaluate the performance of the model. We repeat the process of

training and validation several times with the same training and validation datasets to

create several models based on different parameters. Once we decide on a final model,

we then use the remaining 25 percent of the original data (the test data) that our model

has not yet seen to estimate the future performance of the model.

Train

Training TestValidation

Step 2
Train and tune a model
using the training and
validation data.

Evaluate
Step 3
Evaluate the final model
using the test data.

Step 1
Split the data into
training, validation, and
test partitions.

Figure 9.3 Model build and evaluation process using the training and validation
data to optimize and choose a model. The test data is used to estimate the future
performance of the final model.

311Chapter 9: Evaluating Performance

The problem with this approach is that when we don’t have a large amount of data to

work with, all or some of our data partitions may not be adequately representative of

the original dataset. For example, let’s assume that our objective is to develop a model

that predicts whether a bank customer will or will not default on their loan. The class

distribution of the observed data is 95 percent Not Default and 5 percent Default. With a

small enough dataset, it is possible that the random sampling approach used to generate

the training, validation, and test partitions result in samples that do not evenly represent

the class distribution of the original dataset. Even if a stratified sampling approach were

used, some of the partitions may also have too many or too few examples of the easy or

difficult-to-predict patterns that exist in the original dataset.

Cross-Validation
To mitigate some of the problems with the holdout method, a technique known as

repeated holdout or resampling is often used. This technique involves repeatedly using

different samples of the original data to train and validate a model. At the end of the

process, the performance of the model across the different iterations is averaged to

yield an overall performance estimate for the model. In the following sections, we dis-

cuss some of the most common approaches to this resampling technique known as cross-

validation.

k-Fold Cross-Validation
Of all the approaches to cross-validation, the most commonly used is k-fold cross-valida-

tion. In this approach, after the test data has been sequestered, the remaining data is

divided into k completely separate random partitions of approximately equal size. These

partitions are known as folds. The folds represent the data that will be used to validate

the model during each of the k iterations of the repeated holdout. Although k can be

set to any value, in practice, k is often set to either 5 or 10. To illustrate how k-fold cross-

validation works, let’s take a look at an example with k=5, as illustrated in Figure 9.4.

With k set to 5, the data is partitioned into five separate folds (fold1, fold2, fold3,

fold4, and fold5) of approximately equal size. Think of this as assigning one of five labels

to each of the instances in the dataset. For the first iteration, all instances labeled as

fold1 are held out, while the remainder of the data is used to train the model. The per-

formance of the model is then evaluated against the unseen data (fold1). For the second

iteration, the instances labeled as fold2 are held out as the validation data, while the

remaining instances are used to train the model. This process is then repeated three

more times using each of the remaining folds. During each of the k iterations, a differ-

ent validation set is used, and by the end of the fifth iteration, all of the instances in the

Practical Machine Learning in R312

dataset will have been used for both training and validation. This process results in k

estimates of the model’s performance. The k-fold cross-validation estimate is computed

as the average of the k estimates.

A slight variant of the k-fold cross-validation approach is known as stratified cross-vali-

dation. As the name implies, the idea behind this approach is to ensure that the class dis-

tribution with each fold is representative of the class distribution of the overall dataset.

To illustrate how to implement k-fold cross validation in R, let’s take another look at

the income prediction problem, which was introduced in Chapter 5 and then revisited

in Chapter 8. The objective is to use information about existing customers of a financial

services company to develop a model that predicts whether a customer has an income of

$50,000 or more. The first thing we do is import and preview the data.

> library(tidyverse)
> income <- read_csv("income.csv", col_types = "nffnfffffnff")
> glimpse(income)

Observations: 32,560
Variables: 12
$ age <dbl> 50, 38, 53, 28, 37, 49, 52, 31, 42, 37, 30, 23, 32,...
$ workClassification <fct> Self-emp-not-inc, Private, Private, Private, Privat...
$ educationLevel <fct> Bachelors, HS-grad, 11th, Bachelors, Masters, 9th, ...
$ educationYears <dbl> 13, 9, 7, 13, 14, 5, 9, 14, 13, 10, 13, 13, 12, 11,...
$ maritalStatus <fct> Married-civ-spouse, Divorced, Married-civ-spouse, M...
$ occupation <fct> Exec-managerial, Handlers-cleaners, Handlers-cleane...
$ relationship <fct> Husband, Not-in-family, Husband, Wife, Wife, Not-in...
$ race <fct> White, White, Black, Black, White, Black, White, Wh...

Validation Training Test

Iteration 1

Iteration 2

Iteration 3

Iteration 5

Iteration 4

Figure 9.4 The k-fold cross-validation approach with k=5 (5-fold cross validation). A
set of n examples is split into five independent folds.

313Chapter 9: Evaluating Performance

$ gender <fct> Male, Male, Male, Female, Female, Female, Male, Fem...
$ workHours <dbl> 13, 40, 40, 40, 40, 16, 45, 50, 40, 80, 40, 30, 50,...
$ nativeCountry <fct> United-States, United-States, United-States, Cuba, ...
$ income <fct> <=50K, <=50K, <=50K, <=50K, <=50K, <=50K, >50K, >50...

Now that we have our data, we need to partition it into training and test sets. This

is similar to what we did in previous chapters. The only difference this time is that we

will use a new function called createDataPartition() from the caret package. The

caret package is one that will become increasingly more important to our efforts in this

chapter and the next. More on that later. The createDataPartition()function creates

stratified random samples from the original data and takes three main arguments. The

first argument (y) specifies the class or dependent variable, the second argument (p)

specifies the proportion of examples that should be assigned to the training set, and

the third argument (list) specifies the format of the results that are returned. This

argument can be either TRUE or FALSE. If it is TRUE, then the results of the function are

returned as a list (single row), but if it is FALSE, then the results are returned as a matrix

(several rows). Note that we use the set.seed() function here again, like we did in previ-

ous chapters. By setting the seed value, we ensure that we get the same data partitions

every time we run the code.

> library(caret)
> set.seed(1234)
> sample_set <- createDataPartition(y = income$income, p = .75, list = FALSE)
> income_train <- income[sample_set,]
> income_test <- income[-sample_set,]

We know that this dataset is imbalanced, so just like we did in Chapter 5, we use the

SMOTE() function from the DMwR package to balance the training data.

> library(DMwR)
> set.seed(1234)
> income_train <-
 SMOTE(income ~ .,
 data.frame(income_train),
 perc.over = 100,
 perc.under = 200)

With our balanced training data, we are now ready to train and validate our model

using the k-fold cross-validation approach. To do so, we will use the train() function

from the caret package. This function takes a number of arguments that inform the

training process. The first two arguments are the training formula and the training

data. These two arguments are similar to what we’ve seen before. The third argument

Practical Machine Learning in R314

(metric) specifies the type of performance measure we want to use to evaluate our

model. We set this to accuracy (later in the chapter, we will explore other measures of

performance). The next argument (method) specifies the training method or algorithm

to use. We set this to rpart, which tells the train() function that we want to use the

CART classification tree algorithm (see Chapter 8). Notice that we also loaded the rpart

package. The fifth argument (trControl) is where we specify the resampling tech-

nique we want to use. The values for this argument are specified based on the returned

values of the trainControl() function, which allows a user to control several compo-

nents of the training process. Here we specify that the resampling method is cv, which

means cross-validation and that the number of iterations is 5. This effectively tells the

training function to use a five-fold cross-validation resampling technique to estimate

performance.

> library(rpart)
> set.seed(1234)
> income_mod <- train(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 method = "rpart",
 trControl = trainControl(method = "cv", number = 5)
)

To see the performance results for each iteration, refer to the resample object of the

model we created (income_mod) and sort the results by the Resample column.

> income_mod$resample %>%
 arrange(Resample)

 Accuracy Kappa Resample
1 0.7963868 0.5927808 Fold1
2 0.7861395 0.5722789 Fold2
3 0.7333192 0.4666383 Fold3
4 0.7309245 0.4618247 Fold4
5 0.7774235 0.5548469 Fold5

As you can see, the output shows the accuracy values for each of the five folds.

The estimated accuracy of the model is the average of these five iterations, which is

0.7648387 (or 76.5 percent), as the following code shows:

> income_mod$resample %>%
 arrange(Resample) %>%
 summarise(AvgAccuracy = mean(Accuracy))

315Chapter 9: Evaluating Performance

 AvgAccuracy
1 0.7648387

Leave-One-Out Cross-Validation
Another common approach to cross-validation is the leave-one-out cross-validation

method (LOOCV). The approach is essentially k-fold cross-validation with k set to n (the

number of instances in the dataset).

As Figure 9.5 illustrates, in the LOOCV approach, during the first iteration, the first

instance is held out for validation while the rest of the data is used to train the model.

Then the performance of the model is evaluated against the single instance that was

held out. This process is repeated n-1 additional times until all the instances in the

dataset have been used once for validation. After the last iteration, we end up with n

estimates of the model’s performance from each of the iterations. The average of these

estimates is used as the LOOCV estimate of model performance.

There are several benefits to this approach. The first is that it ensures that the

greatest amount of data is used each time we train the model. This helps with the accu-

racy of the model. The second benefit is that the approach is deterministic. This means

that the performance of the model will be the same every time the process is executed.

Unlike the k-fold cross-validation approach, which uses random sampling to create the k

folds, there is no randomness in the splits used by LOOCV. We are training the model on

every possible combination of observations.

Validation

...
...

...
...

...

Training Test

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration N

Figure 9.5 The leave-one-out cross-validation approach (LOOCV). A set of n exam-
ples with only one instance is used for validation in each iteration.

Practical Machine Learning in R316

There are some notable drawbacks to this approach as well. The most obvious one is

the high computational cost. Since the approach requires that a model be trained and

validated n times, this can become rather expensive or infeasible with complex models

and large datasets. Another disadvantage to LOOCV is that by its nature, it guarantees

that the validation dataset is not stratified. By using a single instance for validation, it

is impossible for the class distribution of the validation set to mimic that of the over-

all dataset.

To implement LOOCV in R, we make two slight modifications to what we did for k-fold

cross-validation. We set the method in the trainControl() function to LOOCV, and we

do not specify the number argument.

> library(rpart)
> set.seed(1234)
> income_mod <- train(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 method = "rpart",
 trControl = trainControl(method = "LOOCV")
)

TIP It’s important to note that leave-one-out cross-validation is
computationally expensive. As a result, it can take an inordinate amount of
time to run against a large dataset. We chose not to run it against our training
set because with 23,524 examples in our dataset, we would need to build and
evaluate 23,524 different models. That’s a bit much. In practice, this approach
should really be used only against small datasets.

Random Cross-Validation
The random or Monte Carlo cross-validation method is another common approach to

cross-validation. This approach is similar to k-fold cross-validation but with one notable

difference. In this approach, instead of creating a set number of folds (validation sets) at

the beginning of the process, as we do in k-fold cross-validation, the random sample that

makes up the validation set is created during each iteration (see Figure 9.6).

During the first iteration, a random sampling without replacement approach is used

to create the validation set. This dataset is held out for validation, and the remainder of

the data is used to train the model. In the second iteration, a new independent valida-

tion set is randomly selected. Because of the random nature of the sampling approach,

it is possible and likely that some of the instances selected as part of this new validation

317Chapter 9: Evaluating Performance

set were also selected as part of the validation set in the previous iteration. Therefore,

one of the drawbacks of this approach is that some instances may be used more than

once for validation, and some instances may never be used. On the other hand, the major

advantages of this approach over k-fold cross-validation is that the size of the training

and validation sets is independent of the number of cross-validation iterations. Similar

to both k-fold and leave-one-out cross-validation, the random cross-validation estimate

of model performance is the average performance of the model across all iterations.

Similar to LOOCV, to implement random cross-validation in R, we also need to make a

slight change to the arguments of the trainControl() function. In the caret package,

random cross-validation is referred to as leave-group-out cross-validation (LGOCV).

So, this time, we set the method to LGOCV, the holdout percentage (p) to 0.1, and the

number argument to 10. This tells our model to randomly select 90 percent of the exam-

ples as the training data and use the remaining 10 percent as validation data over 10 dif-

ferent iterations.

> library(rpart)
> set.seed(1234)
> income_mod <- train(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 method = "rpart",

Training

...
...

...
...

...

Training Training Test

Validation

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration N

Figure 9.6 The random cross-validation approach. The training and validation sets
are created independently in each iteration.

Practical Machine Learning in R318

 trControl = trainControl(method = "LGOCV", p = .1, number = 10)
)

> income_mod$resample %>%
 arrange(Resample)

 Accuracy Kappa Resample
1 0.7652811 0.5305621 Resample01
2 0.7821445 0.5642891 Resample02
3 0.7811053 0.5622107 Resample03
4 0.7825224 0.5650449 Resample04
5 0.7597544 0.5195087 Resample05
6 0.7666982 0.5333963 Resample06
7 0.7361833 0.4723666 Resample07
8 0.7780350 0.5560699 Resample08
9 0.7384979 0.4769957 Resample09
10 0.7639112 0.5278224 Resample10

Bootstrap Sampling
The second resampling technique we introduce is known as bootstrap sampling or boot-

strapping. The basic idea behind bootstrap sampling is to create a training dataset from

the original data using a random sampling with replacement approach (see Chapter 3).

A version of this technique, known as the 0.632 bootstrap, involves random sampling a

dataset with n instances, n different times with replacement, to create another dataset

also with n instances. This new dataset is used for training, while the instances from

the original data, which were not selected as part of the training data, are used for

validation.

Figure 9.7 provides an example of the bootstrap sampling technique. Starting with

an original dataset with 10 instances, we first have to sequester the test data. This is

represented by instances 8, 9, and 10. Now we are left with a dataset of 7 instances

(n=7). To use bootstrap sampling to estimate the performance of a model, we sample the

data seven times with replacement. This creates our new training set, which consists of

instances 5, 2, 7, 4, 2, 2, and 7. As expected, we have repetitions in our training data. Of

the seven instances sampled from, three instances were never selected (instances 1, 3,

and 6). These instances now become our validation data. With our training and validation

data in hand, we train and evaluate our model’s performance.

The 0.632 bootstrap technique described here results in rather pessimistic per-

formance estimates against the validation data. This is because, by using sampling by

replacement to create the training data, the probability that an instance will be selected

is statistically shown to be 63.2 percent. Therefore, with training data that is only

319Chapter 9: Evaluating Performance

63.2 percent of the available data, the model is likely to perform worse than a model

trained on 100 percent or even 90 percent of the available data. To account for this, the

0.632 bootstrap technique calculates the final performance of a model as a function of

the performance on both the training (resubstitution error) and validation (misclassifica-

tion error) datasets. The bootstrap performance estimate is calculated as follows:

 error error error
bootstrap validation training

0 632 0 368. . 9.1

To help illustrate this process, let’s assume that we train and evaluate a model against

data generated using the 0.632 bootstrap technique. During the training phase, the

resubstitution or training error rate of the model was 5 percent (which is overly opti-

mistic). However, when we evaluate the model’s performance against the validation set,

we end up with a misclassification rate of 50 percent (which is overly pessimistic). The

model’s 0.632 bootstrap error rate will be calculated as follows:

 error
bootstrap

0 632 0 5 0 368 0 05 0 3344. 9.2

So instead of an accuracy of 50 percent, the model’s predictive accuracy is estimated

at 66.56 percent (1 0 3344.). Similar to the cross-validation resampling technique, the

bootstrap procedure is repeated several times with different samples for the training

and validation sets, and the model’s performance across all iterations is averaged to get

an overall estimate of the model’s performance.

Validation

Test

Original Data

Training

1 2 3 4 5 6 7 8 9 10

5 2 7 4 2 2 7 1 3 6

Figure 9.7 The bootstrap sampling
approach. The training set is created by
random sampling with replacement. Exam-
ples not selected as part of the training set
are used for validation.

Practical Machine Learning in R320

To implement the 0.632 bootstrap resampling technique in R, we build off of what we

did for the various cross-validation approaches in the previous sections. This time, we

simply pass the method = “boot632” argument to the trainControl() function. This

time, we set the number of iterations to 3.

> library(rpart)
> set.seed(1234)
> income_mod <- train(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 method = "rpart",
 trControl = trainControl(method = "boot632", number = 3)

> income_mod$resample %>%
 arrange(Resample)

 Accuracy Kappa Resample
1 0.7828512 0.5655476 Resample1
2 0.7367153 0.4720543 Resample2
3 0.7353111 0.4701254 Resample3

When compared to cross-validation, bootstrapping as a resampling technique pro-

vides several advantages. It is faster and simpler, and by using sampling with replace-

ment to generate the training data, bootstrapping tends to be a better way to estimate

model performance for small datasets. However, a drawback of the technique is that

similar to the random cross-validation approach, some instances in the original dataset

The 0.632 Bootstrap
The 0.632 bootstrap gets its name from the fact that when sampling with
replacement, the probability that a particular example will be selected as part of
the training set is 63.2 percent. How do we get this number? From a dataset of n
examples, the probability that a particular example will be picked is 1

n. Therefore,

the probability that it will not be picked is 1 1
n. Because the probability of picking

an example stays the same when sampling with replacement, for a sufficiently large

dataset, the probability over n trials of not picking a particular example is 1 1
n

n
.

This is approximately equal to e 1 or 0 368. , where e is the base of natural logarithms.
Therefore, for a reasonably large dataset, if we sample with replacement, 36.8 percent
of the examples will not be selected for the training partition and will thus be selected
for test. This means that 63.2 percent (0.632) of the examples in the dataset would
have been selected as part of the training partition.

321Chapter 9: Evaluating Performance

may be used more than once for validation or training, and some instances may never be

used at all. This means that a model may never learn or be evaluated against some of the

patterns in the data.

BEYOND PREDICTIVE ACCURACY
Until now, we have used predictive accuracy as a measure of the future performance of

a model. With predictive accuracy, we simply count the number of correct predictions

by the classifier and divide that by the number of examples in the dataset. For example,

for our spam filter in Chapter 7, of the 420 examples we had to classify, we correctly

predicted 338 of them as either ham or spam. Therefore, the predictive accuracy of our

model was 80.5 percent (338
420

). While this may seem like reasonably good perfor-

mance, simply looking at predictive accuracy alone can be deceptive. To understand how,

we need to take a closer look at the confusion matrix for that model. Before we do so,

let’s go through a quick refresher on the confusion (or classification) matrix.

As Figure 9.8 illustrates, a two-class confusion matrix (with classes Yes and No) con-

sists of four cells. The true positive (TP) and true negative (TN) cells represent the

number of examples that were correctly predicted as either Yes or No, respectively. The

false positive (FP) and false negative (FN) cells represent the number of examples that

were incorrectly predicted as either Yes or No, respectively. If we designate the predic-

tion of a spam message as a positive prediction and the prediction of a ham message as a

negative prediction, then we get the confusion matrix in Figure 9.9.

Yes No

True Positive False Negative

False Positive True Negative

Predicted

TP FN

FP TN

Ac
tu

al
Ye

s
No

Figure 9.8 A sample confusion
matrix showing actual versus
 predicted values

Practical Machine Learning in R322

Based on the confusion matrix, we see that of the 205 emails in the dataset that

were actually ham, our model predicted 203 of them correctly but misclassified 2 as

spam. That’s 99 percent accuracy on predicting ham messages. This means that our

spam filter will wrongfully flag 1 out of every 100 ham messages as spam. This means

that one would need to periodically check the spam folder to make sure that nothing

important was mistakenly flagged as spam. While not ideal, this is not a major problem.

The confusion matrix also shows that of the 215 spam messages in our dataset, our

spam filter correctly flagged 135 of them but mislabeled 80 of them. This is a 37 percent

misclassification rate. This means that our spam filter will allow over a third of the spam

messages that are sent to us to get through into our inbox. It goes without saying that

most users would not be impressed with a spam filter that allowed that much spam into

their inbox.

We see here that even though the spam filter has a predictive accuracy of 80.5 per-

cent, when we take a closer look at its performance against the positive examples alone

or against the negative examples alone, we get a slightly different perspective. It’s

important to note that there are several ways to evaluate the performance of a model.

The key is to evaluate performance based on utility. This means that the performance

measure used to evaluate a model should be based on the model’s intended purpose.

In the following sections, we introduce other measures of model performance that go

beyond the basic metric of predictive accuracy.

Spam Ham
Predicted

135 80

2 203

Ac
tu

al
Sp

am
Ha

m

Figure 9.9 Spam filter confu-
sion matrix

323Chapter 9: Evaluating Performance

Kappa
Suppose that in Chapter 7, instead of using the naïve Bayes algorithm to build a spam

filter, we simply used an approach that labeled messages as either spam or ham using

stratified random sampling. With this approach, the class distribution of the predic-

tions would be similar to the class distribution of the training data. Therefore, the more

imbalanced the data is, the more likely that such a classifier would have high accuracy by

simply guessing the label of the majority class most of the time. To account for the pos-

sibility of a correct prediction by chance alone, the Cohen’s Kappa coefficient (or Kappa

statistic) is often used as a measure of performance.

Kappa can be thought of as an adjustment to predictive accuracy by accounting for

the possibility of a correct prediction by chance alone. To do so, we first compute the

probability of expected or chance agreement (p
e
) between the predicted values and the

actual values under the assumption that the predictions were made at random. We then

use this measure to adjust the predictive accuracy (p
a
) of the model. Kappa is computed

as follows:

p p

p
a e

e
1 9.3

To illustrate how kappa is calculated, let’s refer to the results in Figure 9.9. According

to the confusion matrix, the predictive accuracy, which is also known as the proportion

of actual agreement, is as follows:

p

TP TN

TP TN FP FN
a

135 203

135 203 2 80
0 805.

 9.4

In the context of the kappa statistic, a p
a
 value of 0.805 tells us that for the model,

the predicted values and actual values agree 80.5 percent of the time. Note that this is

the same value as the accuracy. The next thing we need to calculate is the probability of

expected agreement (p
e
). This is the probability that the predicted and expected values

match. To compute this, refer to the principles of joint probability, which we introduced

in Chapter 7.

Let’s begin with the joint probability that the predicted and actual values are both

ham. Based on Figure 9.9, the probability that ham was predicted is
203 80

420
0 674. ,

and the probability that a message is actually ham is
203 2

420
0 488. . Therefore, the joint

probability that the predicted and actual values are both ham is 0 674 0 488 0 329. . . .

Practical Machine Learning in R324

Now, let’s do the same for the joint probability that the predicted and actual values are

both spam. The probability that spam was predicted is
2 135

420
0 326. , while the prob-

ability that a message is actually spam is
80 135

420
0 512. . Therefore, the joint probability

that the predicted and actual values are both spam is 0 326 0 512 0 167. . . . Since the pre-

dicted and actual probability of ham is mutually exclusive from the predicted and actual

probability of spam, the probability of chance agreement for either ham or spam is the

sum of both probabilities. This means that p
e

0 329 0 167 0 496. . . . Applying the values

for p
a
 and p

e
 to Equation 9.3, the kappa statistic for our model is as follows:

0 805 0 496

1 0 496
0 613

. .

.
.

 9.5

This means that predictive accuracy of the model, adjusted for correct predictions by

chance alone, is 61.3 percent. Kappa values range from 0 to 1. Values above 0.5 indicate

moderate to very good performance, while values below 0.5 indicate fair to very poor

performance.

There are several packages in R that provide functions to compute kappa. For our pur-

poses, we will stick with the caret package, which we introduced earlier in the chapter.

The caret package provides a suite of functions that we will find very useful as we look

at different ways to evaluate model performance. To help with our illustration, we start

by loading the environment variables, which include the data and values, from the spam

filter example from Chapter 7.

> load("spam.RData")

You will notice that we now have the original (email), training (email_train), and

test (email_test) datasets from that example in our global environment. We also now

have the spam filter model we trained (email_mod) as well as the model’s predictions

against the test data (email_pred). Now that we have our data, model, and predictions,

we can create a confusion matrix to assess the performance of our model.

So far, we have used the table() function to create the confusion matrix for each of the

models that we’ve trained. However, going forward, we will use the confusionMatrix()

function from the caret package. Similar to the table() function, the confusionMatrix()

function takes arguments that represent the predicted values and the actual values.

However, it also takes an additional argument, which specifies which of the class values

is considered the positive class. Here we specify spam as the positive class for the model.

325Chapter 9: Evaluating Performance

> spam_matrix <-
 confusionMatrix(email_pred, email_test$message_label, positive = "spam")
> spam_matrix

Confusion Matrix and Statistics

 Reference
Prediction ham spam
 ham 203 80
 spam 2 135

 Accuracy : 0.8048
 95% CI : (0.7636, 0.8416)
 No Information Rate : 0.5119
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6127

 Mcnemar's Test P-Value : < 2.2e-16

 Sensitivity : 0.6279
 Specificity : 0.9902
 Pos Pred Value : 0.9854
 Neg Pred Value : 0.7173
 Prevalence : 0.5119
 Detection Rate : 0.3214
 Detection Prevalence : 0.3262
 Balanced Accuracy : 0.8091

 'Positive' Class : spam

The output is a lot more involved than what we got from the table() function. How-

ever, at the top we can see the confusion matrix, which is similar to what we have seen

before. We also see additional metrics that provide us with insight into the model’s per-

formance. The accuracy of 0.8048 is the same as what we calculated manually and also

what we got in Chapter 7. A few lines below the accuracy, we see that we get a kappa

value of 0.6127, which is the same as what we got in Equation 9.5.

Sometimes, we simply just want the accuracy and kappa values individually, instead

of the verbose output we have here. To get that, we need to extract those values from

the overall attribute of the confusion matrix. The overall attribute stores both the

accuracy and kappa values of the model as individual columns in a single-row table.

Practical Machine Learning in R326

> spam_accuracy <- as.numeric(spam_matrix$overall["Accuracy"])
> spam_accuracy

[1] 0.8047619

> spam_kappa <- as.numeric(spam_matrix$overall["Kappa"])
> spam_kappa

[1] 0.6127291

Precision and Recall
Sometimes we want to know not only how well a model performs in terms of correctly pre-

dicting the right class but also want to know how trustworthy the model is or how relevant

the model’s predictions are. To do so, we use two different measures known as precision

and recall. Precision, which is also known as the positive predictive value, is the proportion

of positive predictions made by a model that are indeed truly positive. A model with high

precision is one that is trustworthy. With regard to our spam filter, this means that the vast

majority of messages it identified as spam are truly spam. Precision is calculated as follows:

precision

TP

TP FP 9.6

Applied to spam filter confusion matrix (see Figure 9.10), the precision of our model is

calculated in the equation on the next page.

Spam Ham
Predicted

135 80

2 203

Ac
tu

al
Sp

am
Ha

m

Yes No

(a) (b)

Predicted
Precision

TP FN

FP TN

Ac
tu

al
Ye

s
No

Figure 9.10 (a) Precision as a measure of model performance based on (b) the
spam filter confusion matrix

327Chapter 9: Evaluating Performance

precision

135

135 2
0 985.

 9.7

The second measure, recall, is the proportion of positive examples in a dataset that

were correctly predicted by a model. A model with high recall is one that has wide

breadth. It is a model that correctly identifies a large number of the positive examples

in the data. In the case of our spam filter, this means that the vast majority of spam mes-

sages were correctly identified as spam. Recall is calculated as follows:

recall

TP

TP FN 9.8

Applied to our spam filter example (see Figure 9.11), the recall of the model is

as follows:

recall

135

135 80
0 628.

 9.9

Spam Ham
Predicted

135 80

2 203

Ac
tu

al
Sp

am
Ha

m

Yes No

(a) (b)

Predicted

TP FN

FP TN

Ac
tu

al
Ye

s
No

Recall

Figure 9.11 (a) Recall as a measure of model performance based on (b) the spam
filter confusion matrix

Practical Machine Learning in R328

There often is a trade-off inherent in a model’s precision and recall values. Typically, if

a model has high recall, it will not have such high precision and vice versa. Recall (no pun

intended) that, previously, we mentioned that the performance of a model should be

evaluated based on utility. This means that depending on the intended objective, a mod-

el’s trustworthiness may be more relevant than its breadth, or a model that covers more

examples may be more relevant than one with high precision.

Sometimes, instead of choosing one measure over the other, precision and recall are

combined into a single metric so that the performance of several models can be com-

pared side by side. One such metric is the F-score (or F-measure). The F-score represents

the harmonic mean of precision and recall and is calculated as follows:

F s ore

precision recall

precision recall
- c

2

 9.10

Using our results from Equations 9.7 and 9.9, the F-score for our spam filter is

as follows:

F score- 7

2 0 985 0 628

0 985 0 628
0 67

. .

. .
.

 9.11

This metric can be rather deceptive if not properly understood. By using the harmonic

mean of precision and recall, we are assuming that both precision and recall are equally

important for our problem. This is not always the case. Therefore, it is important that

when comparing several models based on the F-score, we should also consider additional

measures of model performance.

Sensitivity and Specificity
Both precision and recall evaluate model performance in terms of the positive class.

Sometimes it is also important to evaluate a model’s performance not only in terms

of how well it does with one class but in terms of how well it does in discriminating

between classes. For instance, with respect to our spam filter example, a model that

is overly permissive could do very well at identifying most or all of the spam messages

(high recall), but in doing so, it could end up blocking an inordinate number of ham

messages. Evaluating the performance of the model in terms of how well it does at

identifying the positive class and also how well it does at identifying the negative class

329Chapter 9: Evaluating Performance

provides us with a more balanced view of model performance. Sensitivity and specificity

are two performance measures that provide us with this information.

The sensitivity of a model is the proportion of actual positive examples that it cor-

rectly identifies (see Figure 9.12). It is also known as the true positive rate, and it has the

same formula as recall. Applied to our spam filter, a model with high sensitivity is one

that does a great job identifying most of the spam messages. Sensitivity is calculated

as follows:

sensitivity

TP

TP FN 9.12

Using the numbers from Figure 9.12, we calculate the sensitivity of our spam filter

as follows:

sensitivity

135

135 80
0 628.

 9.13

Specificity, which is also known as the true negative rate, is the proportion of actual

negative examples that a model correctly identifies (see Figure 9.13). In terms of our

Spam Ham
Predicted

135 80

2 203

Ac
tu

al
Sp

am
Ha

m

Yes No

(a) (b)

Predicted

Sensitivity
TP FN

FP TN

Ac
tu

al
Ye

s
No

Figure 9.12 (a) Sensitivity as a measure of model performance based on (b) the
spam filter confusion matrix

Practical Machine Learning in R330

spam filter, a model with high specificity is one that correctly identifies most of the ham

messages. The specificity of a model is calculated as follows:

specificity

TN

TN FP 9.14

Applying this formula to the results of our spam filter, we get the following:

specificity

203

203 2
0 99.

 9.15

The values for both sensitivity and specificity range from 0 to 1, with higher values

representing better performance. Similar to precision and recall, there often is a

trade-off between a model’s value for these two measures. Therefore, if we adjusted our

model to increase one of the measures, the improvement would come at the expense of

the other. The Equation 9.13 and 9.15 results tell us that 99 percent of the ham messages

were correctly identified by the model, while only 62.8 percent of the spam messages

Spam Ham
Predicted

135 80

2 203

Ac
tu

al
Sp

am
Ha

m

Yes No

(a) (b)

Predicted

TP FN

FP TN

Ac
tu

al
Ye

s
No Specificity

Figure 9.13 (a) Specificity as a measure of model performance based on (b) the
spam filter confusion matrix

331Chapter 9: Evaluating Performance

were correctly flagged. If the objective is simply to avoid inadvertently filtering ham

messages, then we have pretty decent model.

However, if our objective is to avoid allowing in too many spam messages, then we

have some work to do. Our model, as it stands, will allow 37.2 percent of spam mes-

sages through. If we adjusted the model to increase sensitivity, we would most likely see

a drop in the specificity of the model. Our objective will be to try different models until

we find a balance that satisfies the problem we’re trying to solve.

We can compute the sensitivity, specificity, precision, recall, and f-measure of a model

in R using functions provided by the caret package. Unlike the accuracy and kappa

values, which we had to extract from the confusion matrix, caret provides specific

functions for these additional metrics.

To illustrate how this works, we will continue to use the data we loaded earlier from the

spam filter we built in Chapter 7. To get the sensitivity and specificity of our model, we use

the sensitivity() and specificity() functions. Both functions require that we specify

the predicted class values as well as the actual class values, just like we did with the confu-

sion matrix. Similarly, the sensitivity() function requires that we specify the positive class

value, while the specificity() function requires that we specify the negative class value.

> spam_sensitivity <-
 sensitivity(email_pred, email_test$message_label, positive = "spam")
> spam_sensitivity

[1] 0.627907

> spam_specificity <-
 specificity(email_pred, email_test$message_label, negative = "ham")
> spam_specificity

[1] 0.9902439

Our results match the sensitivity and specificity values we manually computed

in Equations 9.13 and 9.15. We can also get the precision of our model from the

 posPredValue() function. The caret package does not provide an explicit function to

get recall, but we do know that recall is the same measure as sensitivity, so we use the

sensitivity() function for recall as well.

> spam_precision <-
 posPredValue(email_pred, email_test$message_label, positive = "spam")
> spam_precision

[1] 0.9854015

Practical Machine Learning in R332

> spam_recall <- spam_sensitivity
> spam_recall

[1] 0.627907

These results also match the precision and recall values we manually calculated in

Equations 9.7 and 9.9. From these values, we can then compute the f-score to get the

same result as we did in Equation 9.11.

> spam_fmeasure <-
 (2 * spam_precision * spam_recall) / (spam_precision + spam_recall)
> spam_fmeasure

[1] 0.7670455

In this section, we introduced kappa, precision, recall, f-score, sensitivity, and speci-

ficity. Each of these metrics evaluates the performance of a model from a different

perspective. Therefore, the choice of which performance metric to use for a particular

problem is highly dependent on the needs of the user. Sometimes, getting the positive

class right is of utmost importance; other times the negative class is more important.

Sometimes, we are more concerned with making sure that our model properly differ-

entiates between classes. The most important thing to note is that predictive accuracy

is not always sufficient and we must often consider other measures of performance

based on need.

VISUALIZING MODEL PERFORMANCE
So far, we have evaluated model performance simply based on how accurately a mod-

el’s predictions match the observed labels in the evaluation dataset. This approach

assumes that predictions made by the underlying machine learning algorithms are binary

decisions. This is not entirely the case. During the classification process, algorithms

actually estimate the probability that an individual instance belongs to a particular

class. These probabilities are also known as propensities. The propensity of an instance

belonging to a particular class is compared against a threshold or cutoff value, which

was set either by the algorithm or by a user. If the probability of belonging to the class in

question is higher than the cutoff value, then the instance is assigned to that class. For

most classification algorithms, the default two-class cutoff is 0.5. However, it is possible

333Chapter 9: Evaluating Performance

to use a cutoff value that is either greater than or less than 0.5. As one can imagine,

adjusting the cutoff value for a classifier will have an impact on its true positive (sensitiv-

ity) rate as well as its true negative (specificity) rate. Understanding how the sensitivity

and specificity of a classifier changes as a function of the cutoff value provides us with a

better picture of model performance.

Visualizations help us paint this picture. Rather than simply looking at a single perfor-

mance measure, we can explore the performance of a model under varying conditions.

In the following section, we discuss one of the most popular visualizations of model

performance.

Receiver Operating Characteristic Curve
The receiver operating characteristic (ROC) curve is commonly used to visually represent the

relationship between a model’s true positive rate (TPR) and false positive rate (FPR) for all

possible cutoff values. ROC curves have been in use for some time and were introduced dur-

ing World War II where radar and radio operators used them to evaluate a receiver’s ability

to discriminate between true and false signals. This is similar to how they are used today in

machine learning. The ROC curve of a model (as illustrated by the green line in Figure 9.14) is

used to evaluate how well the model does in correctly discriminating between the positive

and negative classes in the evaluation dataset. The ROC curve shows the true positive rate

of a classifier on the y-axis against the false positive rate on the x-axis. Note that the false

positive rate is the same as 1 minus the true negative rate (or 1 – specificity).

The ROC curve shown in Figure 9.14 provides us with insight into the classifier’s per-

formance at various cutoff thresholds. For example, at threshold (a), we see that the

40% 60%

False Positive Rate (1-Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

80% 100%20%0%

20%

40%

60%

80%

100%

0%

(a)

(b)

(c)

Figure 9.14 The ROC curve for
a sample classifier

Practical Machine Learning in R334

classifier’s TPR is at 60 percent, while its FPR is at 15 percent. If we applied this to our

spam filter example, this means that at this threshold, the model is able to correctly clas-

sify 60 percent of the spam messages (the positive class) while misclassifying 15 percent

of the ham messages (the negative class). As we progress up the curve to thresholds

(b) and (c), we see that as the classifier’s ability to correctly identify the positive class

improves, so does its misclassification rate for the negative class. At threshold (c), the

TPR for the classifier is now at 90 percent, and the FPR has also increased to 60 percent.

This illustrates the inherent trade-off that exists between a classifier’s ability to correctly

identify the positive classes (sensitivity) while also correctly identifying the negative

classes (specificity).

The shape of an ROC curve provides insight into a classifier’s ability to discriminate

between the positive and negative classes. Figure 9.15 shows the ROC curves for three

different classifiers. The classifier represented by the black dotted line is a classifier with

no predictive value. This classifier identifies positive and negative examples within the

evaluation dataset at the same rate regardless of the cutoff threshold. It performs no

better than chance. The classifier represented by the red dotted line is an ideal classi-

fier. It is able to identify all of the positive examples while not misclassifying any of the

negative examples. In practice, most classifiers fall somewhere between both extremes,

as represented by the green ROC curve. The closer a classifier’s ROC curve is to the red

40% 60%

Perfect Classifier

Classifier Being Evaluated

Classifier with No Predictive Value

False Positive Rate (1-Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

80% 100%20%0%

20%

40%

60%

80%

100%

0%

Figure 9.15 The ROC curve for a sample classifier, a perfect classifier, and a classi-
fier with no predictive value

335Chapter 9: Evaluating Performance

line, the better it is. Conversely, the closer a classifier’s ROC curve is to the black line, the

worse it is.

There are several packages in R to provide tools that enable users to plot the ROC

curve for a classifier. For our example, we will use the functions provided by the aptly

named ROCR package. We will also use the data and values from the spam filter example

we introduced in Chapter 7. We begin by loading the environment variables.

> load("spam.RData")

You will notice that one of the objects that we loaded is email_pred, which con-

tains the predicted classes against the test data. To create an ROC curve, instead of the

predicted class values, we need the predicted probabilities that an example belongs to

a particular class. The method to get these predicted probabilities varies across classi-

fier. For most classifiers, this is specified as an argument within the predict() function.

Always refer to the R documentation for the classifier you’re working with to get the

specifics. In Chapter 7, we built our naïve Bayes model using the e1071 package. For that

particular classifier, we specify type = “raw” within the predict() function in order

to get the predicted probabilities.

> library(e1071)
> email_pred_prob <- predict(email_mod, email_test, type = "raw")
> head(email_pred_prob)

 ham spam
[1,] 1.000000e+00 0.00000e+00
[2,] 1.000000e+00 4.26186e-55
[3,] 0.000000e+00 1.00000e+00
[4,] 1.000000e+00 0.00000e+00
[5,] 3.050914e-202 1.00000e+00
[6,] 1.000000e+00 0.00000e+00

With this data, we can now generate what’s called a prediction object in the ROCR

package. The prediction object transforms the input data into a standardized format

that is used by the ROCR package. To create a prediction object, we use the prediction()

function and pass to it the predicted probabilities of our model (only for the positive

class, which is spam) and the actual class values from the evaluation dataset.

> library(ROCR)
> roc_pred <-
 prediction(
 predictions = email_pred_prob[, "spam"],
 labels = email_test$message_label
)

Practical Machine Learning in R336

Now that we have our prediction object, we create a performance object from it. The

performance object provides a way to perform different kinds of evaluations against

the prediction object within the ROCR package. To create an ROC curve, the two evalua-

tions we need are the true positive rates and false positive rates across different cutoff

thresholds. We get these by passing three arguments to the performance() function.

The first argument is the prediction object we just created. The second argument (mea-

sure) is set as tpr. This means that we want the TPR represented in the y-axis of our

visualization. The third argument (x.measure) specifies the metric we want on the

x-axis. We set this to fpr.

> roc_perf <- performance(roc_pred, measure = "tpr", x.measure = "fpr")

With the performance object, we are now able to plot our ROC curve using the plot()

function. We pass four arguments to this function. The first is the performance object.

The second is a title for the plot (main). The third (col) and fourth (lwd) arguments are

aesthetic parameters that specify the color and width of the ROC curve, respectively.

Using the abline() function, we also plot a diagonal reference line representing a clas-

sifier with no predictive value. We pass five arguments to this function that specify the

intercept (a), slope (b), width (lwd), type (lty), and color (col) of the line.

> plot(roc_perf, main = "ROC Curve", col = "green", lwd = 3)
> abline(a = 0, b = 1, lwd = 3, lty = 2, col = 1)

Figure 9.16 shows the ROC curve we created in R. We can see that it tends more

toward a perfect classifier than toward the diagonal reference line. The closer the curve

is toward a perfect classifier, the better it is at identifying the positive values in the

evaluation data.

Area Under the Curve
The ROC curve is sometimes summarized into a single quantity known as the area under

the curve (AUC). As the name implies, the AUC is a measure of the total surface area

under the ROC curve. AUC values range from 0.5 (for a classifier with no predictive value)

to 1.0 (for a perfect classifier). The AUC of a classifier can be interpreted as the probabil-

ity that a classifier ranks a randomly chosen positive instance above a randomly chosen

negative instance.

In R, we can also use the ROCR package to calculate the AUC of a classifier. In fact, we

use the same performance() function we used for the ROC curve but with slightly dif-

ferent parameters. The first argument we pass to it is the prediction object like we did

337Chapter 9: Evaluating Performance

previously. However, this time we set the measure parameter to auc, and we do not set

a value for x.measure.

> auc_perf <- performance(roc_pred, measure = "auc")

The auc performance object is what is known in R as an S4 object. These types of

objects store their attributes in slots. Data stored in slots cannot be accessed using the

standard $ operator used for other objects, such as data frames. To access values stored

in slots, we use the base R slot() function coupled with the unlist() function, which

simplifies lists to a vector of values.

> spam_auc <- unlist(slot(auc_perf,"y.values"))
> spam_auc

[1] 0.9800567

The AUC for our spam filter is 0.98. This indicates that our classifier does a pretty

good job of discriminating between the positive and negative classes.

It is important to note that it is possible for two different classifiers to have similar

AUC values but have ROC curves that are shaped differently (as illustrated in Figure 9.17).

So, it is important to not only use the AUC metric when evaluating model performance,

but also combine it with an examination of the ROC curve to determine which classifier

better meets the business objective. For example, for the two classifiers represented in

False Positive Rate

ROC Curve

0.0

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Figure 9.16 ROC curve for the spam filter example generated with R

Practical Machine Learning in R338

Evaluating Numeric Prediction
The performance measures we have discussed so far have all pertained to the
prediction of discrete values (classification). When it comes to the prediction of
continuous values (regression), predictions are not either right or wrong. Instead,
predictions vary in terms of how close or how far they are from the actual values.
As a result, the measures used to evaluate the performance of a regression
model are focused on quantifying the difference between the predicted and
actual values.

A commonly used measure to quantify the prediction error for regression
models is the root mean squared error (RMSE). Let’s assume that the actual and
predicted values for the i-th example in our test dataset are represented by yi

and yi, respectively. The prediction error ei is therefore calculated as yi iy . The

RMSE for the i-th example is calculated as 1

1

2

n
e

i

n

i . RMSE tends to exaggerate

the effect of outliers, so sometimes a modification of the metric known as mean

absolute error (MAE) is used. MAE is computed as 1

1n
e

i

n

i . Sometimes, it is more

important to look at the relative error rather than the absolute difference between

predicted and actual values. In such a scenario, instead of ei, we use e y
i

i

 for both
RMSE and MAE.

40% 60%

Classifier A

Classifier B

False Positive Rate (1-Specificity)
Tr

ue
 P

os
iti

ve
 R

at
e

(S
en

si
tiv

ity
)

80% 100%20%0%

20%

40%

60%

80%

100%

0%

Figure 9.17 ROC curve for two
classifiers with similar AUC values

339Chapter 9: Evaluating Performance

Figure 9.17, assuming that they have similar AUC values, how do we decide which classifier

is better? The answer depends on the business objective. If the objective is to keep the

false positive rate below 20 percent, while correctly classifying up to 60 percent of the

true positives, then classifier B is the better option. At a true positive rate of 60 percent,

classifier B has a false positive rate of less than 20 percent, compared to classifier A, which

has a false positive rate of about 30 percent. However, if the objective is to correctly clas-

sify at least 90 percent of the true positives, then classifier A provides better false positive

rates within that range. At a true positive rate of 90 percent, classifier A has a false posi-

tive rate of 50 percent, while classifier B has a false positive rate of about 70 percent.

EXERCISES
1. You are building a machine learning model using an original dataset of 10,000 obser-

vations. The dataset includes 10 independent variables and 1 dependent variable.

The independent variables are a mixture of categorical and numeric data, while the

dependent variable is a binary value.

If you used each of the following validation techniques, how many iterations would

occur in the model building? Assume that k = 5 and number = 3 for cases where those

values are relevant.

a. Holdout method

b. k-fold cross-validation

c. LOOCV

d. LGOCV

e. Bootstrap method

2. Consider the following confusion matrix:

Spam Ham
Predicted

197 53

16 234

Ac
tu

al
Sp

am
Ha

m

Practical Machine Learning in R340

Compute the following values:

a. Predictive accuracy (p
a
)

b. Probability of expected agreement (p
e
)

c. Kappa ()

d. Precision

e. Recall

f. F-score

g. Sensitivity

h. Specificity

i. False positive rate

j. True positive rate

k. False negative rate

l. True negative rate

3. You recently built three machine learning models to perform a classification task and

found that the models have the ROC curves shown in Figure 9.18.

a. Which model performs the best against your data?

b. How would you choose between models A and C?

0.0 0.2 0.4 0.6

Classifier A

0.8 1.0

False Positive Rate

ROC Curves for Three Different Classifiers

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

0.2

0.4

0.6

0.8

1.0

Classifier B
Classifier C

Figure 9.18 ROC curve for three different classifiers

Chapter 10

Improving
Performance

In Chapter 9, we introduced several of the commonly used

approaches to evaluating and estimating the future performance

of a machine learning. As part of that discussion, we explained the

idea behind cross-validation and bootstrapping, which are two of

the most popular resampling techniques. We also discussed the

limitations of predictive accuracy as the sole measure of model

performance and introduced other measures of performance such

as kappa, precision, recall, F-measure, sensitivity, specificity, the

receiver operating characteristic (ROC) curve, and area under the

curve (AUC).

In the previous chapter, to illustrate how model performance

evaluation works in R, we used a powerful package called caret.

In this chapter, we will continue to rely on some of the functions

provided by this package as we look into different techniques for

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R342

improving the performance of a machine learning model. The

techniques we discuss will be based on two main approaches. The

first approach is focused on improving performance by optimizing

a single model, while the second approach is focused on leveraging

the power of several suboptimal models to improve performance.

By the end of this chapter, you will have learned the following:

 ◆ How to improve performance by tuning the parameters of a

single machine learning model to make it better

 ◆ How to improve performance by bringing several weak

machine learning models together to create a more

powerful unit

PARAMETER TUNING
Most machine learning techniques have one or more parameters that need to be set

before the learning process begins. These parameters are commonly known as hyperpa-

rameters. We encountered hyperparameters in previous chapters but did not call them

that at the time. For example, in Chapter 6, when using the k -nearest neighbor approach,

we had to set the value of the hyperparameter k, prior to the model build process. In

Chapter 8, while we did not explicitly set the complexity parameter for the decision

tree model, the rpart() function chose a value for us. The complexity parameter is a

hyperparameter. The choice of values for each hyperparameter has significant impact on

the performance of any particular model. Therefore, it is critically important to identify

the appropriate values for a model’s hyperparameters and set them prior to the build

process. In machine learning, the process of identifying and setting the optimal hyperpa-

rameter for a model is known as parameter tuning or hyperparameter tuning.

Automated Parameter Tuning
Setting the appropriate values for a model’s hyperparameters can be a rather arduous

task. A systematic approach involves first creating a grid of possible hyperparameters

to evaluate and then conducting a search within the grid to identify the combination of

343Chapter 10: Improving Performance

hyperparameters that result in the best performance for a particular model. The search

process involves building a model based on each hyperparameter combination in the grid,

evaluating the performance of each model, and choosing the one with the desired perfor-

mance based on a chosen evaluation method and metric. This iterative search process is

commonly referred to as grid search. We illustrate the grid search process in Figure 10.1.

The caret package in R provides us with a powerful set of tools to perform grid

search and serves as a wrapper that provides a uniform interface to several of the

machine learning models and functions available in R. The package has a well-docu-

mented site at http://topepo.github.io/caret/index.html. To use caret for automated

parameter tuning, the first thing we do is decide on the machine learning algorithm that

we intend to use. The caret package calls it the method. For example, in Chapter 9, when

we used caret to train a decision tree model based on the CART algorithm, we set the

method argument of the train() function to rpart. This told caret to use the machine

learning algorithm provided by the rpart package to train our model. Note that we first

had to load the rpart package for this to work. This is because the caret package did

not actually train the model; instead, it called the rpart package behind the scenes to

train the model. So, it is important that when we choose a method for caret to use, we

also install and load the package that actually implements the method prior to calling

the train() function in caret.

After we identify the machine learning method (and underlying package) that we

intend to use, the next thing we do is identify the tunable parameters provided by the

method. This varies from method to method. A complete list of the available methods

1. Create grid of parameter
combinations to be considered.

2. Use k-fold cross-validation to evaluate the
performance of each model.

3. Select the model with the best-performing
parameter combination.

Model 1
average
accuracy

0.90

0.95

0.80

Model 2
average
accuracy

Model 8
average
accuracy

Model Alpha Beta Gamma Model Alpha Beta Gamma Accuracy

1 1 A TRUE

3 1 B TRUE

5 2 A TRUE

7 2 B TRUE

2 1 A FALSE

4 1 B FALSE

6 2 A FALSE

8 2 B FALSE

1 1 A TRUE

3 1 B TRUE

5 2 A TRUE

7 2 B TRUE

2 1 A FALSE

4 1 B FALSE

6 2 A FALSE

8 2 B FALSE

0.90

0.92

0.91

0.89

0.95

0.91

0.90

0.80

Figure 10.1 The grid search process showing eight models with different parameter
combinations, which are each evaluated using k-fold cross-validation. The model
with the best-performing parameter combination is chosen (model 2).

Practical Machine Learning in R344

and tunable parameters supported by caret can be found on the documentation site

(http://topepo.github.io/caret/available-models.html). By using the search box provided

on this page, we can find the tunable parameters provided by any of the supported

methods. Figure 10.2 shows the caret documentation for the rpart method. It shows

that the method implements the CART algorithm (Model), can be used for both classifi-

cation and regression (Type), depends on the rpart package (Libraries), and provides a

single tunable parameter, cp (Tuning Parameters).

Besides using the caret documentation site, we can figure out what parameters are

supported by a particular method in R if we know the name of the method. We do this

by passing the method name to the modelLookup() function provided by caret. As we

mentioned earlier, cp is the complexity parameter for the CART decision tree algorithm

that is implemented by the rpart package in R. So, to find out which parameters are

supported by the rpart method, we call modelLookup(“rpart”).

> library(caret)
> library(rpart)
> modelLookup("rpart")

 model parameter label forReg forClass probModel
1 rpart cp Complexity Parameter TRUE TRUE TRUE

After we decide on a method and identify the tunable parameters for it, we can then

proceed with the parameter tuning process. To illustrate how this is done, we revisit the

income prediction problem from Chapter 9. Similar to what we did in that chapter, we

begin by importing and partitioning 75 percent of the data as the training set and the

remaining 25 percent as the test set.

Figure 10.2 Tunable parameters supported by the caret package for the
rpart method

345Chapter 10: Improving Performance

> library(tidyverse)
> income <- read_csv("income.csv", col_types = "nffnfffffnff")

> set.seed(1234)
> sample_set <- createDataPartition(y = income$income, p = .75, list =
FALSE)
> income_train <- income[sample_set,]
> income_test <- income[-sample_set,]

We know from our prior exploration of the income dataset that it suffers from a class

imbalance problem. So, we use the SMOTE() function from the DMwR package to balance

the training dataset prior to the model build process.

> set.seed(1234)
> library(DMwR)
> income_train <-
 SMOTE(income ~ .,
 data.frame(income_train),
 perc.over = 100,
 perc.under = 200)

Note the repeated use of the set.seed() function. As a reminder, we do this to

ensure that the sequence of random numbers generated by our code remains the same.

This keeps the results of the sampling process consistent, so you can replicate the

results in this book.

TIP Depending on the version of R and related packages used by a reader,
some of the results in the remainder of the chapter may be slightly different,
and an error may occur during the model training phase. If so, use the
information provided by the error as a guide to resolve it. For example, if the
error reads Error: package e1071 is required, then install and load the
e1071 package.

The next step is to build and tune a model using the train() function provided by

the caret package. The arguments we pass to the function specify the training formula,

training data, performance evaluation metric (accuracy), training algorithm (rpart), resa-

mpling technique (0.632 bootstrap), and number of resampling iterations (3).

> set.seed(1234)
> income_mod <- train(
 income ~ .,
 data = income_train,

Practical Machine Learning in R346

 metric = "Accuracy",
 method = "rpart",
 trControl = trainControl(method = "boot632", number = 3)
)

> income_mod

CART

23524 samples
 11 predictor
 2 classes: '<=50K', '>50K'

No pre-processing
Resampling: Bootstrapped (3 reps)
Summary of sample sizes: 23524, 23524, 23524
Resampling results across tuning parameters:

 cp Accuracy Kappa
 0.02469818 0.7503711 0.50066598
 0.05347730 0.7109033 0.42185549
 0.41379017 0.5408935 0.08509881

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.02469818.

The output of the model (income_mod) provides us with some insight into what the

train() function did. The first line shows the learning algorithm used, which in this case

is the CART decision tree algorithm. The next three lines describe the training data used

to build the model. The training data consists of 23,524 examples and 11 predictor var-

iables. The class has two levels: <=50K and >50K. The next section of the result shows

the preprocessing and resampling technique used in the process. As we expect from the

arguments we passed, three bootstrap samples were generated, and each of the sam-

ples had 23,524 examples in them. Following the resampling results is a section that lists

the results for each of the models that were evaluated. Each model is represented by the

parameter and parameter value that was used to build the model, the model's accuracy,

and the kappa value for the model. We see that three different candidate models were

considered, each with a different value for cp. The final section of the result tells us that

of the three models considered, the one with a cp value of 0.02469818 was selected,

because it had the highest accuracy.

347Chapter 10: Improving Performance

NOTE Notice that the train() function selected three different values for
the hyperparameter cp. We did not specify these values. This is the default
behavior of the function. If no parameter values are specified by the user, the
function randomly selects at most three values for each of the parameters
supported by the method. This means that for a method with p different
parameters, the train() function will create at most 3p candidate models to
be evaluated.

With our model training complete, we can now evaluate how well the model per-

forms against the test data. To do so, we pass both the model and the test data to the

predict() function and then use the confusionMatrix() function from the caret

package to generate the performance metrics.

> income_pred <- predict(income_mod, income_test)
> confusionMatrix(income_pred, income_test$income, positive = "<=50K")

Confusion Matrix and Statistics

 Reference
Prediction <=50K >50K
 <=50K 5077 880
 >50K 1102 1080

 Accuracy : 0.7565
 95% CI : (0.747, 0.7658)
 No Information Rate : 0.7592
 P-Value [Acc > NIR] : 0.7206

 Kappa : 0.3588

 Mcnemar's Test P-Value : 6.902e-07

 Sensitivity : 0.8217
 Specificity : 0.5510
 Pos Pred Value : 0.8523
 Neg Pred Value : 0.4950
 Prevalence : 0.7592
 Detection Rate : 0.6238
 Detection Prevalence : 0.7319
 Balanced Accuracy : 0.6863

 'Positive' Class : <=50K

Practical Machine Learning in R348

As we can see from the results, the predictive accuracy of our model based on

automated parameter tuning is 75.65 percent. This is only marginally better than the

75 percent accuracy we achieved in Chapter 8 by using the rpart() function without

hyperparameter tuning. Our kappa value of 0.3588 tells us that if we account for correct

predictions by chance alone, our model actually does not perform that well and there is

room for improvement. We attempt to do so in the following section.

Customized Parameter Tuning
In the previous example, we noted that the train() function independently chose which

hyperparameter values to use for the tuning process without user intervention. We also

learned that the default process limits the choice of values to three per hyperparameter.

Fortunately, the train() function does provide users with a lot more fine-grained con-

trol over the parameter tuning process than what we’ve used so far. For example, we

can instruct the function to use more than three values per hyperparameter by simply

setting the tuneLength argument to the number of values we want the function to

evaluate per hyperparameter. For example, to increase the number of cp values evalu-

ated during the tuning process from 3 to 20, we set the tuneLength argument to 20.

> set.seed(1234)
> income_mod <- train(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 method = "rpart",
 trControl = trainControl(method = "boot632", number = 3),
 tuneLength = 20
)

> income_mod

CART

23524 samples
 11 predictor
 2 classes: '<=50K', '>50K'

No pre-processing
Resampling: Bootstrapped (3 reps)
Summary of sample sizes: 23524, 23524, 23524
Resampling results across tuning parameters:

349Chapter 10: Improving Performance

 cp Accuracy Kappa
 0.001190274 0.8249197 0.64984074
 0.001360313 0.8222101 0.64441434
 0.001530352 0.8212731 0.64253394
 0.001615372 0.8206107 0.64119274
 0.001870430 0.8188800 0.63775032
 0.002040469 0.8182132 0.63641601
 0.002125489 0.8178223 0.63563409
 0.002508077 0.8154395 0.63083335
 0.002805645 0.8116371 0.62323467
 0.002826900 0.8085719 0.61710439
 0.002975684 0.8025796 0.60507465
 0.003060704 0.8002352 0.60038852
 0.004591056 0.7890364 0.57813718
 0.004761095 0.7881606 0.57638567
 0.005356232 0.7866170 0.57330219
 0.005441251 0.7836144 0.56729702
 0.005738820 0.7809698 0.56201224
 0.024698181 0.7503711 0.50066598
 0.053477300 0.7109033 0.42185549
 0.413790172 0.5408935 0.08509881

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.001190274.

As expected, our results show that 20 different models were created and evaluated.

Of those models, the one with a cp parameter of 0.001190274 was chosen. We also

notice that, similar to the previous example, the results show that the best-performing

model is the one with the smallest value for cp. This is to be expected, because as we

discussed in Chapter 8, the smaller the complexity parameter (cp) for a decision tree,

the larger the tree is and the more the tree can model the patterns in the data. However,

we do know that decision trees also have a tendency to overfit. This means that, below a

certain limit for cp, our accuracy will start to go down. To find this limit, we could expand

the value for tuneLength to 50, 100, or even more, and let the train() function inde-

pendently consider additional cp values. This could end up being very computationally

expensive depending on how far the optimal cp value is from where we start. A different

and preferred approach is to explicitly specify the cp values we want to consider.

To specify the cp values considered during the parameter tuning process, we first

need to create a parameter grid. According to the specifications for the caret package,

the grid columns must represent each of the tunable parameters of the method being

used, the grid column names must correspond to the names of the tunable parameters

prefixed by a period, and each row of the grid must specify the combination of parame-

ters to be evaluated.

Practical Machine Learning in R350

To illustrate how this works, let’s consider a fictional method called zeta with three tun-

able parameters—alpha, beta, and gamma. Based on our understanding of zeta and the

documentation for zeta, we know that alpha can take on any integer value between 1 and 3,

beta is either TRUE or FALSE, and gamma can be any continuous value. To create a parameter

grid for all possible values of both alpha and beta, and the values 4, 4.5, and 5 for gamma,

we use the expand.grid() R function. The function allows us to create a parameter grid

quickly, without having to explicitly list each parameter combination. The first argument we

pass to the function is a list of values, c(1, 2, 3), for the argument.alpha. This represents

the possible values for the alpha parameter. We do the same thing for the beta parameter.

For the gamma parameter, we use the seq() function to create a list of values between 4

and 5, incremented by 0.5. This list of values is assigned to the argument called .gamma.

> expand.grid(
 .alpha = c(1, 2, 3),
 .beta = c(TRUE, FALSE),
 .gamma = seq(from = 4, to = 5, by = 0.5)
)

 .alpha .beta .gamma
1 1 TRUE 4.0
2 2 TRUE 4.0
3 3 TRUE 4.0
4 1 FALSE 4.0
5 2 FALSE 4.0
6 3 FALSE 4.0
7 1 TRUE 4.5
8 2 TRUE 4.5
9 3 TRUE 4.5
10 1 FALSE 4.5
11 2 FALSE 4.5
12 3 FALSE 4.5
13 1 TRUE 5.0
14 2 TRUE 5.0
15 3 TRUE 5.0
16 1 FALSE 5.0
17 2 FALSE 5.0
18 3 FALSE 5.0

The results show the 18 different parameter combinations that would be consid-

ered during the tuning process. Going back to our income prediction example using the

rpart method, let’s assume that we decide to evaluate 20 complexity parameter values

between the values of 0.0001 and 0.002. We would use the expand.grid() function to

create a parameter grid for these cp values just like we did in our fictional example.

351Chapter 10: Improving Performance

> expand.grid(.cp = seq(from = 0.0001, to = 0.002, by = 0.0001))

 .cp
1 0.0001
2 0.0002
3 0.0003
4 0.0004
5 0.0005
6 0.0006
7 0.0007
8 0.0008
9 0.0009
10 0.0010
11 0.0011
12 0.0012
13 0.0013
14 0.0014
15 0.0015
16 0.0016
17 0.0017
18 0.0018
19 0.0019
20 0.0020

Why did we choose to only look at values between 0.0001 and 0.002? Great question.

From our previous results, we know that the optimal cp value is somewhere below 0.002.

Therefore, we simply decided to try 20 different cp values below this threshold. We

chose 20 for illustrative purposes. The number/range of values to evaluate is at the dis-

cretion of the user. With our parameter grid in place, we can now instruct the train()

function to only consider these parameters in the tuning process. To do so, we pass our

parameter grid to the tuneGrid argument of the train() function.

> set.seed(1234)
> income_mod <- train(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 method = "rpart",
 trControl = trainControl(method = "boot632", number = 3),
 tuneGrid = expand.grid(.cp = seq(from = 0.0001, to = 0.002, by =
0.0001))
)

> income_mod

Practical Machine Learning in R352

CART

23524 samples
 11 predictor
 2 classes: '<=50K', '>50K'

No pre-processing
Resampling: Bootstrapped (3 reps)
Summary of sample sizes: 23524, 23524, 23524
Resampling results across tuning parameters:

 cp Accuracy Kappa
 0.0001 0.8458971 0.6918087
 0.0002 0.8474552 0.6949238
 0.0003 0.8452231 0.6904421
 0.0004 0.8427255 0.6854406
 0.0005 0.8403488 0.6806960
 0.0006 0.8373673 0.6747242
 0.0007 0.8355844 0.6711520
 0.0008 0.8347887 0.6695676
 0.0009 0.8326862 0.6653719
 0.0010 0.8280034 0.6560078
 0.0011 0.8267913 0.6535846
 0.0012 0.8244087 0.6488197
 0.0013 0.8233899 0.6467654
 0.0014 0.8217246 0.6434373
 0.0015 0.8215546 0.6430969
 0.0016 0.8209079 0.6417870
 0.0017 0.8199552 0.6398810
 0.0018 0.8191755 0.6383398
 0.0019 0.8188072 0.6376045
 0.0020 0.8185886 0.6371667

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 2e-04.

The output shows that the cp value chosen by our model is 0.0002. We also notice

that this is not the smallest cp value evaluated. This means that our optimal cp value is

somewhere close to this value. To make sure that we’re not simply overfitting against

the training data, let’s use our model to predict the labels of the test data and evalu-

ate how well our model performs against unseen examples that were not used in the

training process.

> income_pred <- predict(income_mod, income_test)
> confusionMatrix(income_pred, income_test$income, positive = "<=50K")

353Chapter 10: Improving Performance

Confusion Matrix and Statistics

 Reference
Prediction <=50K >50K
 <=50K 5188 537
 >50K 991 1423

 Accuracy : 0.8123
 95% CI : (0.8036, 0.8207)
 No Information Rate : 0.7592
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5242

 Mcnemar's Test P-Value : < 2.2e-16

 Sensitivity : 0.8396
 Specificity : 0.7260
 Pos Pred Value : 0.9062
 Neg Pred Value : 0.5895
 Prevalence : 0.7592
 Detection Rate : 0.6374
 Detection Prevalence : 0.7034
 Balanced Accuracy : 0.7828

 'Positive' Class : <=50K

The predictive accuracy of our model is now at 81.23 percent. That is better than

the 75.65 percent accuracy we achieved for our initial automated parameter tuning

attempt. Our kappa value has also improved from 0.3588 for the first attempt to 0.5242.

That is a significant improvement. We also see improvement in our other measures of

performance: sensitivity (or recall), specificity, and precision (which is labeled as Pos

Pred Value).

NOTE So far, we have set the metric argument of the train() function
as Accuracy. This tells the function that during the automated parameter
tuning process, the model with the highest accuracy should be selected. It’s
important to note that we could also use the kappa metric as the measure of
performance. To do so, we would simply set the metric argument to Kappa.
If our problem were a regression problem, then the possible values for the
metric argument would be RMSE or Rsquared instead.

Practical Machine Learning in R354

ENSEMBLE METHODS
In the previous section, we used hyperparameter tuning as a means to improve the per-

formance of a model. The idea behind this is that if one can find the optimal combination

of hyperparameters for a model, then the model’s ability to effectively predict future

outcomes will improve. This is one approach to model performance improvement. In this

section, we introduce a different approach known as ensemble learning.

Ensemble learning assumes that we may not always be able to find the optimal set of

hyperparameters for a single model and that, even if we did, the model may not always

be able to capture all the underlying patterns in the data. Therefore, instead of simply

focusing on optimizing the performance of a single model, we should use several com-

plementary weak models to build a much more effective and powerful model.

There are several approaches to ensemble learning. All of them are premised on the

basic idea that by bringing together a varied team of experts (or models, in this case)

to solve a problem, we will learn more effectively. There are three major characteristics

that differentiate ensemble methods.

 • How the experts are chosen: Most ensemble techniques are made up of weak

learners that are based on a single learning algorithm. For example, we can have

an ensemble of several decision tree learners or an ensemble of several k-nearest

neighbor (k-NN) learners. These types of ensembles are called homogenous ensem-

ble models. However, some ensemble techniques are based on different learning

algorithms. In such an ensemble, we could have a naïve Bayes learner coupled with

a logistic regression learner and a decision tree learner. These are described as het-

erogeneous ensemble models.

 • How tasks are assigned to each expert: The decision of how much of the training

data is assigned to each model in the ensemble is dictated by a set of rules known

as the allocation function. The allocation function can assign all or a subset of the

examples and/or features in the data to any particular model in the ensemble. This

also means that each instance can be assigned to one, more than one, or no models.

By varying the input passed on to a model, the allocation function can distribute

the learning task and/or bias certain models toward focusing on specific patterns

within the data.

 • How the results from each expert are combined: By using a varied team of

experts on a learning task, it is expected that sometimes these experts will pro-

vide different answers for the same problem. Ensemble methods use a set of rules

known as a combination function to reconcile these differences. In the following

sections, we discuss some of the common combination function techniques used

in ensemble learning.

355Chapter 10: Improving Performance

In the remainder of this chapter, we will explore three different approaches to ensem-

ble learning: bagging, boosting, and stacking.

Bagging
One of the most common ensemble learning approaches is known as bagging, which

stands for bootstrap aggregating. The name comes from the fact that bagging ensembles

use a bootstrap sampling approach for the allocation function, which is used to generate

the data assigned to each model in the ensemble. Bagging ensembles are typically made

up of homogenous learners, which are trained independently and in parallel (as illus-

trated in Figure 10.3).

The combination function for bagging ensembles is implemented in several ways. For

classification problems, the prediction differences are sometimes reconciled by tallying

the vote of each expert. The class value that receives the majority vote is then returned

by the ensemble. This is known as hard voting. For example, let’s assume that for the

bagged ensemble illustrated in Figure 10.3, model 1 predicts “Yes” for a particular in-

stance. However, for the same instance, models 2 and 3 both predict “No.” Then, the

combination function will return the majority vote, which is “No” for the instance.

Sometimes, instead of counting votes, the combination function for a bagged

ensemble looks at the probability for each class value returned by the learners and

averages the probabilities. The class value with the highest probability is then returned

Model
1

Subset 1

Subset 3

Training
Data EnsembleSubset 2

Model
2

Model
3

Figure 10.3 The bagging ensemble features independently trained homogenous
models in parallel.

Practical Machine Learning in R356

by the ensemble. This is known as soft voting. For example, let’s assume that for the

same bagged ensemble illustrated in model 1 of Figure 10.3 returns 0.87 as the prob-

ability that the label for a particular instance is “Yes.” For the same instance, model 2

returns the probability of “Yes” as 0.46, and model 3 returns 0.48. The average of the

three probabilities is
0 87 0 46 0 48

3
0 60

. . .
. . With soft voting, since the average prob-

ability is above the default cutoff of 0 5. , the combination function will return “Yes” for

the instance.

TIP When dealing with a regression problem, bagging ensembles reconcile
the differences by simply taking the average of the predictions.

One of the most popular bagging ensemble methods is the random forests or decision

tree forests ensemble technique. It gets its name from the fact that the ensemble con-

sists of a large number of decision tree learners (which are collectively called a forest)

and that its allocation function combines both bootstrap sampling and random feature

selection to generate the data assigned to each learner in the ensemble. By using only a

random subset of the full feature set, random forests are able to handle very wide data-

sets (datasets with a large number of features).

To illustrate the random forests ensemble technique in R, we use the rf method

in caret, which depends on the aptly named randomForest package. Using the

 modelLookup() command for the rf method reveals that it has only one tunable

 parameter: mtry. This is the number of randomly selected features to consider at each

split (more on this shortly).

> library(randomForest)
> modelLookup("rf")

 model parameter label forReg forClass probModel
1 rf mtry #Randomly Selected Predictors TRUE TRUE TRUE

Based on the documentation provided by the randomForest package, the default

value for mtry is the square root of the number of features in the dataset when working

on a classification problem. For regression problems, the default value for mtry is a third

of the number of features in the dataset. Since our income prediction example is a classi-

fication problem, we will set the value for mtry to the square root of 11 (number of pre-

dictors in our dataset). This is approximately 3. By setting mtry to 3, we are specifying

that during the recursive partitioning process for each of the bagged decision trees,

each tree will consider only 3 randomly selected features to split on (see Chapter 8 for a

357Chapter 10: Improving Performance

refresher on decision trees and the recursive partitioning process). By keeping the value

of mtry small, the objective is to have a large enough number of trees with significant

random variation between them. This ensures that, as all the features in the original data

are considered by the ensemble of trees, there will also be substantial diversity in the

data used to train each tree.

To illustrate the power of a basic ensemble method, we chose not to do hyperparam-

eter tuning for our random forest model, which also means that we do not really need

to do resampling. To specify this, we set the method argument in the trainControl()

function to none and train our model.

> set.seed(1234)
> rf_mod <- train(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 method = "rf",
 trControl = trainControl(method = "none"),
 tuneGrid = expand.grid(.mtry = 3)
)

Let’s take a look at how well our random forest ensemble model does against the

unseen test data.

> rf_pred <- predict(rf_mod, income_test)
> confusionMatrix(rf_pred, income_test$income, positive = "<=50K")

Confusion Matrix and Statistics

 Reference
Prediction <=50K >50K
 <=50K 4981 495
 >50K 1198 1465

 Accuracy : 0.792
 95% CI : (0.783, 0.8008)
 No Information Rate : 0.7592
 P-Value [Acc > NIR] : 1.099e-12

 Kappa : 0.4932

 Mcnemar's Test P-Value : < 2.2e-16

 Sensitivity : 0.8061
 Specificity : 0.7474

Practical Machine Learning in R358

 Pos Pred Value : 0.9096
 Neg Pred Value : 0.5501
 Prevalence : 0.7592
 Detection Rate : 0.6120
 Detection Prevalence : 0.6728
 Balanced Accuracy : 0.7768

 'Positive' Class : <=50K

The results show that our random forests ensemble performs relatively well for very

little effort. Without doing parameter tuning, our ensemble’s accuracy of 79.2 percent is

slightly lower than the 81.23 percent achieved by the tuned decision tree from the previ-

ous example. Also, the kappa value of 0.4932 is not too far off from the 0.5242 value of

the tuned decision tree. The results of the other measures of performance (sensitivity,

specificity, precision, and recall) tell a similar story.

Boosting
The second commonly used ensemble method we introduce is called boosting. Similar to

bagging, boosting ensembles are built based on a homogenous set of base models. How-

ever, boosting differs from bagging in that, instead of independently training the base

models in parallel, the base models in the boosting ensemble are trained in sequence.

Within the sequence, each successive model attempts to improve upon the performance

of the preceding model by learning from the mistakes of its predecessor. This is why it’s

called boosting. Each successive model boosts the performance of the ensemble.

Figure 10.4 provides an illustration of the basic architecture of the boosting ensemble

technique. The process involves training an initial model on the data. The model is then

evaluated and assigned a score based on how well it does against the training data.

The training data is then resampled in such a way as to give greater weight to the

examples that the first model predicted incorrectly. By applying weights in this way,

the misclassified examples appear more often in the new training data, while the cor-

rectly classified ones appear less frequently. The next model in the ensemble sequence

Training
Data Ensemble

Model
1

Model
2

Model
3

Figure 10.4 The boosting ensemble features a linear sequence of homoge-
nous models.

359Chapter 10: Improving Performance

is trained based on this newly weighted training data. This model is then evaluated and

scored, similar to the first model. The training data is then resampled with new weights

applied to the examples based on how well the second model performed. This process

of resampling, training, evaluating, and scoring is repeated for each of the models in the

sequence until all the models have been trained.

The combination function for boosting ensembles works in a similar way as that of

bagging ensembles. For classification problems, the boosting ensemble reconciles the

predictions of the models by tallying the vote. However, unlike bagging ensembles, the

boosting ensemble also factors in the performance score assigned to each base model

during the training process. The prediction returned by the ensemble is therefore a lin-

ear combination of these weighted votes. Models that perform better will have a larger

influence on the final prediction than those that perform poorly. For regression prob-

lems, the differences in prediction are reconciled by using a weighted average of the

predictions.

To illustrate how boosting works in R, we use a popular boosting ensemble algorithm

known as extreme gradient boosting (XGBoost). The xgbTree method in caret imple-

ments this ensemble and is dependent on the xgboost package. The modelLookup()

function reveals that there are seven tunable parameters for the xgbTree method.

Adaptive Boosting vs. Gradient Boosting
The boosting method we described is known as adaptive boosting. Another
common boosting approach is known as gradient boosting. With gradient boosting,
instead of trying to correctly predict the previously misclassified examples at each
boosting iteration, the focus is on predicting the residuals (the difference between
the predicted and actual values).

One can think of boosting in terms of a golfer trying to hit a ball into a hole. With
adaptive boosting, imagine that the golfer makes an initial attempt to get the ball
into the hole but misses. The golfer then continues to make successive attempts
at getting the ball into the hole, all from the same starting position. The goal is to
learn from previous attempts to get the ball into the hole with only one stroke.

With gradient boosting, the golfer’s strategy is a bit different. Instead of making
all the attempts from the same starting location, the golfer makes each successive
attempt from wherever the ball landed the previous time. Sometimes the golfer
may fall short of the hole, and sometimes the golfer may overshoot the hole. Each
time, the focus is on the distance between where the ball landed in the previous
attempt and the hole.

Practical Machine Learning in R360

> library(xgboost)
> modelLookup("xgbTree")

 model parameter label forReg forClass probModel
1 xgbTree nrounds # Boosting Iterations TRUE TRUE TRUE
2 xgbTree max_depth Max Tree Depth TRUE TRUE TRUE
3 xgbTree eta Shrinkage TRUE TRUE TRUE
4 xgbTree gamma Minimum Loss Reduction TRUE TRUE TRUE
5 xgbTree colsample_bytree Subsample Ratio of Columns TRUE TRUE TRUE
6 xgbTree min_child_weight Minimum Sum of Instance Weight TRUE TRUE TRUE
7 xgbTree subsample Subsample Percentage TRUE TRUE TRUE

The R documentation provided by the xgboost package provides useful informa-

tion on what each of these hyperparameters means. For our example, we use this doc-

umentation to figure out what values to assign to each of the parameters. For each of

them, except for nrounds, we used the default value provided by the package. There

is no default value for nrounds, so we set it at 100, with the awareness that the higher

this number is, the better the performance of the model, but also the more likely it is to

overfit against the training data. With our parameter combination, we build our model,

making sure to specify that we do not want to resample, just like we did in the previ-

ous example.

> set.seed(1234)
> xgb_mod <- train(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 method = "xgbTree",
 trControl = trainControl(method = "none"),
 tuneGrid = expand.grid(
 nrounds = 100,
 max_depth = 6,
 eta = 0.3,
 gamma = 0.01,
 colsample_bytree = 1,
 min_child_weight = 1,
 subsample = 1
)
)

Let’s evaluate how well our model does against the test data.

> xgb_pred <- predict(xgb_mod, income_test)
> confusionMatrix(xgb_pred, income_test$income, positive = "<=50K")

361Chapter 10: Improving Performance

Confusion Matrix and Statistics

 Reference
Prediction <=50K >50K
 <=50K 5168 477
 >50K 1011 1483

 Accuracy : 0.8172
 95% CI : (0.8086, 0.8255)
 No Information Rate : 0.7592
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5425

 Mcnemar's Test P-Value : < 2.2e-16

 Sensitivity : 0.8364
 Specificity : 0.7566
 Pos Pred Value : 0.9155
 Neg Pred Value : 0.5946
 Prevalence : 0.7592
 Detection Rate : 0.6350
 Detection Prevalence : 0.6936
 Balanced Accuracy : 0.7965

 'Positive' Class : <=50K

With an accuracy of 81.72 percent and a kappa value of 0.5425, our boosted ensemble

performs better than all of our previous examples. And this is without any hyperparam-

eter tuning. This illustrates the power of ensemble methods such as extreme gradient

boosting to improve the performance of a model by bringing several learners together

to solve a problem.

Stacking
The next ensemble technique we introduce is called stacking. Stacking is different

from both bagging and boosting in that, while those approaches are usually built using

homogenous base models, the base models in a stacking ensemble are usually heteroge-

neous. For example, a stacked ensemble can consist of a k-NN model, a logistic regres-

sion model, and a naïve Bayes model.

Stacking does have some similarity to bagging, in that it relies on several inde-

pendently built learners whose predictions are eventually reconciled by a combina-

tion function. However, unlike bagging, the combination function used in stacking

Practical Machine Learning in R362

is nondeterministic. This means that it does not follow a predefined set of rules or

pattern. This is because the combination function for a stacked ensemble is another

machine learning algorithm that learns from the outputs of the other learners within the

ensemble to decide on a final prediction. This is illustrated in Figure 10.5. In that illustra-

tion, model 4 is a machine learning model that takes the outputs of models 1, 2, and 3

as inputs in order to make a final prediction. This type of machine learning model that

learns from other models is called a meta-model.

To illustrate how to implement a stacking ensemble in R, we use the caretEnsemble

package, which allows us to build custom ensembles from caret models. Before we

do so, we need to modify the labels for our class levels. The functions provided by the

caretEnsemble package are particular about how class values are labeled and do not

respond well to class values that start with a number or special character. As a result, we

will recode the values for the income feature such that <=50K will now become Below

and >50K becomes Above. We do this by using the recode() function within the dplyr

mutate verb.

> library(tidyverse)
> library(DMwR)
> income <- income %>%
 mutate(income = as.factor(recode(income, "<=50K" = "Below", ">50K" =
"Above")))

Model
1

Subset 1

Subset 3

Training
Data EnsembleSubset 2

Model
2

Model
4

Model
3

Figure 10.5 The stacking ensemble features independently trained heterogeneous
models with a meta-model as the combination function.

363Chapter 10: Improving Performance

After recoding our class values, we re-create our training and test partitions using the

createDataPartition() function from caret, making sure to balance the training

data as well.

> library(caret)
> set.seed(1234)
> sample_set <-
 createDataPartition(y = income$income, p = .75, list = FALSE)
> income_train <- income[sample_set,]
> income_test <- income[-sample_set,]

> set.seed(1234)
> income_train <-
 SMOTE(income ~ .,
 data.frame(income_train),
 perc.over = 100,
 perc.under = 200)

Next, we load the caretEnsemble package and create a list, called ensembleLearn-

ers, of the learners that we intend to use to build our ensemble – rpart (decision

tree), glm (logistic regression), and knn (k-nearest neighbor). Note that we also load the

dependent packages for those learners.

> library(caretEnsemble)
> ensembleLearners <- c("rpart","glm","knn")
> library(rpart)
> library(stats)
> library(class)

Using the caretList() function from the caretEnsemble package, we train a model

based on each of the learners in our list. We do this by passing the list of learners to the

methodList argument. For each model that we train, we repeat the 10-fold cross-valida-

tion resampling approach 5 times to estimate future performance. We also save the class

probabilities and predictions of the final tuned model of each learner for further evalua-

tion. This is a rather compute-intensive process and takes a while to complete.

> models <- caretList(
 income ~ .,
 data = income_train,
 metric = "Accuracy",
 methodList = ensembleLearners,
 trControl = trainControl(
 method = "repeatedcv",
 number = 10,
 repeats = 5,

Practical Machine Learning in R364

 savePredictions = "final",
 classProbs = TRUE
)
)

With our base models trained, the next step is to train the meta-model that serves

as the combination function. Before we do so, we need to first analyze the results of

our base models to see how well they did against the training data. We accomplish this

by using the resamples() function to collect results from each model and by using the

summary() function to provide the summary statistics of the results.

> results <- resamples(models)
> summary(results)

Call:
summary.resamples(object = results)

Models: rpart, glm, knn
Number of resamples: 50

Accuracy
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
rpart 0.7151361 0.7312514 0.7630184 0.7543618 0.7755102 0.7937925 0
glm 0.7857143 0.8042092 0.8097364 0.8084176 0.8143268 0.8222789 0
knn 0.7733844 0.7850158 0.7901786 0.7904017 0.7963435 0.8099490 0

Kappa
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
rpart 0.4302721 0.4625029 0.5260449 0.5087228 0.5510204 0.5875850 0
glm 0.5714286 0.6084184 0.6194728 0.6168353 0.6286527 0.6445578 0
knn 0.5467687 0.5700317 0.5803571 0.5808035 0.5926871 0.6198980 0

The results show similar average performance between the three models, with the

logistic regression model (glm) performing the best of the three. The next thing we do is

evaluate the correlation of the results between the three models. When combining the pre-

dictions of different models using stacking, we want to ensure that the base models of the

ensemble have very low correlation. Low correlation in this case tells us that we have a pool

of experts that are good in different ways and that do not approach problems the same

way. This provides an opportunity for the meta-model to evaluate the output from each

model and choose the best in order to improve the performance of the entire ensemble.

> modelCor(results)

 rpart glm knn
rpart 1.00000000 -0.04723051 -0.1593756

365Chapter 10: Improving Performance

glm -0.04723051 1.00000000 0.3920402
knn -0.15937561 0.39204015 1.0000000

The correlation results show little correlation between the model results. The highest

correlation is 0.39, which is between the knn and glm models. This number is low and not

a concern. A correlation of 0.75 or more would be considered high for our purposes.

Now, we are ready to build the final piece of our stacking ensemble, which is the

meta-model. We use the random forest ensemble method as the machine learning

 algorithm for this. The caretEnsemble package provides us with a function called

 caretStack() that allows us to combine several predictive models by using stacking.

Using this function, we now train the meta-model, which will serve as the combination

function for our ensemble. Note that instead of passing a prediction formula and data

like we’ve done previously, we simply pass our trained models (called models) to the

caretStack() function. This time, we specify rf for random forests as the method and

keep all the other arguments the same as before. This is also a rather compute-intensive

process and takes a while to complete.

> library(randomForest)
> stack_mod <- caretStack(
 models,
 method = "rf",
 metric = "Accuracy",
 trControl = trainControl(
 method = "repeatedcv",
 number = 10,
 repeats = 5,
 savePredictions = "final",
 classProbs = TRUE
)
)

We now have a trained stacking ensemble. Let’s evaluate how well it performs against

the test data.

> stack_pred <- predict(stack_mod, income_test)
> confusionMatrix(stack_pred, income_test$income, positive = "Below")

Confusion Matrix and Statistics

 Reference
Prediction Below Above
 Below 4747 451
 Above 1432 1509

Practical Machine Learning in R366

 Accuracy : 0.7686
 95% CI : (0.7593, 0.7778)
 No Information Rate : 0.7592
 P-Value [Acc > NIR] : 0.0233

 Kappa : 0.4596

 Mcnemar's Test P-Value : <2e-16

 Sensitivity : 0.7682
 Specificity : 0.7699
 Pos Pred Value : 0.9132
 Neg Pred Value : 0.5131
 Prevalence : 0.7592
 Detection Rate : 0.5832
 Detection Prevalence : 0.6387
 Balanced Accuracy : 0.7691

 'Positive' Class : Below

The accuracy (76.86 percent) and kappa value (0.4596) of our stacking ensemble are

not as good as those of our custom tuned model, nor those of our bagging or boosting

ensembles. While we do not achieve better performance with the stacking ensemble, it

does provide us with more fine-grained control over the process and much more flexi-

bility in deciding what models we want to bring together to solve a problem.

EXERCISES
1. Research the tuning parameters available for other learning methods with the caret

package. What parameters may be tuned for each one of the following techniques?

a. k-nearest-neighbor (with the knn package)

b. Generalized linear models (with the glm package)

c. Naïve Bayes (with the naive_bayes package)

d. Random forest (with the rf package)

2. Attempt to improve the accuracy of the income prediction random forest model by

doing some additional parameter tuning. What improvement in predictive accuracy

were you able to achieve?

3. Now, attempt to improve the predictive accuracy of the income prediction model by

using the extreme gradient boosting approach. This time, instead of explicitly setting

the tuning parameters, have caret evaluate two values per hyperparameter in order

to select the combination that provides the best predictive accuracy. What improve-

ment in predictive accuracy were you able to achieve?

P A R T V

Unsupervised
Learning

Chapter 11: Discovering Patterns with Association Rules

Chapter 12: Grouping Data with Clustering

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Chapter 11

Discovering
Patterns with
Association Rules

In Chapters 4 through 8, we introduced several supervised

machine learning approaches. With those approaches, we

used previously labeled data to train a model that we then used

to assign labels to unlabeled data. In Chapters 9 and 10, we

discussed several of the common approaches used in evaluating

and improving the performance of a supervised learning. In the

next two chapters, we will introduce two unsupervised learning

techniques. Unsupervised learning differs from supervised learning

in that with unsupervised learning, there are no previously labeled

examples to learn from. With unsupervised learning, we are not

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R370

attempting to make a prediction; instead, we are looking for new

and interesting patterns and insights in the data.

In this chapter, we introduce the first of the two unsupervised

machine learning techniques we cover in this book—association

rules. Association rules are often used to discover patterns that

exist within a set of transactions. These transactions can be retail

transactions that occur at a point of sale, they can be symptoms

that are observed when certain medications are administered

to patients during a drug trial, or they can be any set of items or

events that occur together at distinct points in time.

By the end of this chapter, you will have learned the following:

 ◆ The basic ideas behind the association rules approach

 ◆ The different ways to evaluate and quantify the strength of

association rules

 ◆ How to generate and evaluate association rules in R

 ◆ The strengths and weaknesses of association rules

MARKET BASKET ANALYSIS
As customers purchase goods and services, large amounts of data about those transac-

tions are generated and often stored for further analysis. This data provides a wealth of

information about customer behavior and actionable insight to businesses that are able

to understand it. This data is commonly referred to as market basket data. The study of

this data to identify patterns and extract meaningful insight is known as market basket

analysis or affinity analysis. It is important to note that while market basket analysis is

often used in the analysis of retail transactions, it can be applied to any process where a

unique set of events occur together at distinct points in time.

When applied in the retail space, market basket data consists of individual customer

transactions. Each transaction consists of a unique set or collection of items that were

371Chapter 11: Discovering Patterns with Association Rules

purchased by a customer. Any combination of items that could be purchased together

within a transaction is known as an itemset. For example, according to the transactions

dataset in Figure 11.1, transaction T1 is made up of the itemset bread milk beer, , , and

transaction T3 is made up of the itemset milk diaper beer coke, , , . Note that an item-

set is a unique list of items and does not consider the quantity of each item that was pur-

chased. It is also important to note that an itemset does not always refer to all the items

that were purchased by a customer. It refers to any combination of items that could have

been purchased together by a customer. For example, eggs coke, is an itemset within

the dataset, even though none of the transactions lists these two items together.

ASSOCIATION RULES
In market basket analysis, the description of the relationship between items and item-

sets is specified by a set of association rules. Association rules describe which groups of

items or itemsets tend to occur together within the data. They are represented using

an IF-THEN format, where the left side (IF) lists a set of items (or events) that occurred

together, while the right side (THEN) lists a corresponding item (or event) that also

occurred at the same time as the previous set of items (or events). The left side of the

rule is also referred to as the antecedent, while the right side is referred to as the con-

sequent. A sample association rule is illustrated by Figure 11.2. This rule states that for

a set of transactions within the market basket data, when both beer and milk were pur-

chased, diapers were also purchased.

TIP There are three items in the itemset for the rule illustrated in Figure 11.2, so
we say that the rule has a length of 3. A rule with a length of 2 would look like
this: beer milk . Here beer is the antecedent, while milk is the consequent.
It’s important to note that association rules allow for one or more items in
the antecedent, but only one item in the consequent. Association rules can
also have a length of 1. Such a rule has a consequent but no antecedent. For
example, beer , milk , and diaper are also valid rules, albeit with a length of 1.

Transaction Items Bought

T1

T2

T3

T4

T5

bread, milk, beer

bread, diaper, beer, eggs

milk, diaper, beer, coke

bread, milk, diaper, beer

bread, milk, diaper, coke

Figure 11.1 Sample market basket dataset
showing five different transactions

Practical Machine Learning in R372

As we mentioned earlier, effective market basket analysis can provide retailers with

valuable insight into the purchase patterns of customers. With this understanding, a

retailer is able to answer critical questions such as the following:

 • What products should be displayed together in the store?

 • What products could be discounted together to increase sales?

 • What products should be recommended to customers as part of a cross-

selling strategy?

While association rules are useful in describing the relationship between itemsets,

they do not provide an objective measure of usefulness. Each rule that is generated has

to be evaluated by a user for qualitative usefulness. In this regard, association rules can

be classified into one of three major categories.

 • Actionable: These are rules that provide clear and useful insights that can be

acted upon. For example, a rule that shows that customers who buy bread often

buy avocados could provide some interesting insight into the food trend of avo-

cado toast. As a result, a store could decide to place these two items in close prox-

imity of each other within the store.

 • Trivial: These are rules that provide insight that is already well-known by those

familiar with the domain. For example, a rule that shows that customers who buy

pens often also buy notebooks does not really provide meaningful new insight.

 • Inexplicable: These are rules that defy rational explanation, need more research

to understand, and do not suggest a clear course of action. For example, discov-

ering that customers who buy shoes are more likely to also buy pens defies ratio-

nal explanation and requires more research to understand.

The determination of whether a rule is actionable, trivial, or inexplicable is solely

based on the judgment of the user. A single rule can be considered actionable by one

user and yet be considered trivial by another. It is important to note that most rules are

usually trivial or inexplicable. Identifying and acting upon the truly actionable rules is

what provides value for a business.

Antecedent Consequent

Figure 11.2 An association rule
describing that whenever both beer
and milk were purchased, diapers were
also purchased

373Chapter 11: Discovering Patterns with Association Rules

Identifying Strong Rules
To determine which association rules are potentially useful, it is important to evaluate

all possible combinations of items within a dataset. For a dataset with p distinct items,

there exist 3 2 1
1P p possible rules with both an antecedent and a consequent. For

our example dataset (see Figure 11.1), we have six distinct items; therefore, we can cre-

ate 3 2 1 602
6 7 different association rules. Evaluating 602 different rules to identify

which of them are potentially useful is a painstaking process. Instead of doing this, an

alternate approach is to only look at rules that meet certain criteria. One such criterion

is to only look at rules that are based on itemsets that occur regularly within the dataset.

These are known as frequent itemsets.

Support
To identify the frequent itemsets within a dataset, we need to decide how often a particu-

lar itemset needs to occur for it to be considered frequent. The frequency of an itemset

is measured using a metric known as support or coverage. The support of an itemset is

defined as the fraction of transactions within the dataset that contain the itemset. In our

example dataset (see Figure 11.1), the itemset beer milk, occurs in three transactions

out of five; therefore, the support of beer milk,
3

5
0 6. . Similarly, the support of

the itemset beer milk diaper, ,
2

5
0 4. .

By computing the support of every itemset, we can set a minimum support threshold

that a particular rule has to meet to be evaluated for usefulness. This allows us to reduce

the number of rules that we eventually take a look at. Note that with support, we treat

an itemset and a rule as the same thing. This is because the rules beer milk diaper, ,

beer diaper milk, , and diaper milk beer, all have the same support. That’s

because they are derived from the same itemset: beer milk diaper, , .

Confidence
In addition to limiting our focus to the frequent itemsets, we need to consider only

those rules that suggest a strong dependence between the antecedent and the conse-

quent. These are considered strong rules. One way of identifying the strong rules within

a dataset is to consider the degree of certainty of each rule. This means, to what degree

does the consequent occur given that the antecedent occurred? Another way of looking

at this is in terms of probability—what is the conditional probability that a transaction

Practical Machine Learning in R374

selected at random contains the itemset in the consequent given that the transaction

contains the itemset in the antecedent? The measure we use to quantify this is known

as the confidence or accuracy of the rule. The confidence of a rule is defined as the ratio

of the number of transactions that include both the antecedent and consequent to the

number of transactions that include only the antecedent. For example, with our sample

dataset, the confidence of the rule beer milk diaper,
2

3
0 67. . This is the support of

the rule beer milk diaper, divided by the support of the rule beer milk, . The result

means that of all the transactions where both beer and milk were purchased, 67 percent

of them also included a purchase of diapers.

The higher the confidence value for a rule, the stronger the relationship between

the antecedent and the consequent. For example, if the confidence of the rule

beer milk diaper, were 100 percent, then we can safely say that customers always

buy beer, milk, and diapers together. Note that unlike with support, even though the

itemset is the same, the confidence of bread eggs
1

4
0 25. is not the same as the

confidence of eggs bread
1
1

1.

Lift
Another measure of the strength of a rule considers the increased or decreased likeli-

hood of both the antecedent and the consequent occurring together compared to the

typical rate of occurrence of the consequent alone. This measure is known as the lift,

and it is defined as the confidence of the itemset containing both antecedent and

the consequent divided by the support of the itemset containing only the antecedent.

Items with high support can have high confidence values simply by chance alone.

Lift helps account for this chance co-occurrence by evaluating the strength of the

relationship between the items in the itemset. Applied to our sample dataset,

the lift of the rule beer milk diaper,
0 67

0 80
0 84

.

.
. . This is the confidence of the

rule beer milk diaper, divided by the support of the rule diaper . A lift value of

0.84 tells us that customers who bought beer and milk are 0.84 times likely to also

buy diapers. Since this value is less than 1, it means that the likelihood of purchasing

diapers is lower for customers who buy beer and milk. If the lift value were above

1, then the inverse would be true. It’s important to note that similar to support, the

lift of rules based on the same itemset are always the same. For example, the lift of

bread eggs
0 25

0 20
1 25

.

.
. is the same as the lift of eggs bread

1

0 80
1 25

.
. .

The Apriori Algorithm
The frequent itemset process described in the previous section requires the generation

of all itemsets to evaluate and determine which are frequent and which derived rules are

strong. This can be a computationally expensive process, especially for datasets with a

375Chapter 11: Discovering Patterns with Association Rules

large number of distinct items (p). For a dataset with p distinct items, there exist 2 1
P

possible itemsets. Therefore, for our sample dataset, there exist 2 1 63
6 possible item-

sets. Now imagine a tiny corner grocery store that sells only 50 unique items. The market

basket data would consist of a little over 1 quadrillion (15 zeroes) possible itemsets to

evaluate. To minimize the computational cost of this process, a commonly used approach

known as the apriori algorithm is used to limit the number of itemsets generated. The

apriori algorithm was first introduced by Rakesh Agrawal and Ramakrishnan Srikant in

1993 and gets its name from the fact that it uses prior knowledge about the properties

of frequent itemsets in the generation process.

The apriori algorithm is based on the principle that the support of an itemset

never exceeds that of its subsets. In other words, if an itemset is infrequent, then its

supersets are infrequent as well. For example, if either itemset beer or itemset milk

is infrequent, then itemset beer milk, will also be infrequent. This is known as the

 anti-monotone property of support.

To help illustrate the apriori algorithm, consider the itemset lattice illustrated in

Figure 11.3.

A

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

B C D E

ABCD ABCE ABDE

ABCDE

ACDE BCDE

Figure 11.3 All possible itemsets (itemset lattice) derived from items A, B,
C, D, and E

Practical Machine Learning in R376

The algorithm begins by generating itemsets with just one item. Each of these item-

sets are evaluated to see whether they meet the minimum support threshold set by

the user. Let’s assume that itemset E is determined to be infrequent. Based on the

anti-monotone property of support, if itemset E is infrequent, then all of its supersets

(red) will also be infrequent. As a result, the apriori algorithm will not generate those

itemsets. This is what is meant by apriori pruning—the algorithm knows beforehand that

these itemsets will not be frequent, so it does not generate them.

The next step in the apriori process is to generate itemsets with two items based only

on the frequent itemsets from the previous stage. These itemsets are evaluated to see

whether they meet the support threshold. If we assume that itemset A D, is determined

to be infrequent, then its supersets (orange) will also be infrequent and are pruned.

Finally, itemsets with three items based on the frequent items from the previous

stage are generated. In our case, those are itemsets A B C, , and B C D, , . There are no

additional itemsets to generate or evaluate, so our process terminates at this point. The

11 itemsets (white) that are determined to be frequent are then used to generate associ-

ation rules. These rules are evaluated against minimum confidence and/or lift thresholds

to assess the strength of the relationship between the antecedent and consequent.

TIP While the apriori algorithm is one of the most popular approaches to
reducing the number of itemsets evaluated, it is not the only one. Another
popular approach is the frequent pattern growth (FP-growth) approach. This
approach uses a tree-like structure to store information that makes it easier to
identify the itemsets that are frequent.

DISCOVERING ASSOCIATION RULES
As we explore association rules in this chapter, we will use a dataset containing informa-

tion about purchases at an anonymous Belgian supermarket. This dataset was initially

gathered for use by Tom Brijs and made available as a public dataset.1

The dataset is available to you as part of the electronic resources accompanying this

book. (See the introduction for more information on accessing the electronic resources.)

The structure of the dataset is quite straightforward. Each line in the dataset represents

a single transaction at the store’s checkout counter. The lines consist of a list of integers

corresponding to the items purchased in that transaction. For example, here are the first

10 lines of the dataset (with line numbers added for clarity):

1: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29
2: 30 31 32

377Chapter 11: Discovering Patterns with Association Rules

3: 33 34 35
4: 36 37 38 39 40 41 42 43 44 45 46
5: 38 39 47 48
6: 38 39 48 49 50 51 52 53 54 55 56 57 58
7: 32 41 59 60 61 62
8: 3 39 48
9: 63 64 65 66 67 68
10: 32 69

The first transaction involved 30 distinct items, which are assigned the numbers 0

through 29. In the second transaction, the customer purchased three distinct items,

none of which was included in the first transaction, so they get three new numbers: 30

through 32. If we skip ahead to transaction 5, that customer purchased four items. Two

of those items, items 38 and 39, had been previously purchased in the fourth transaction,

so those item numbers are reused. The remaining two items are appearing for the first

time in the dataset, so those items are assigned numbers 47 and 48.

In this dataset, we don’t know what specific items were involved. Item 30 might be an

apple, a toy car, or a box of cereal. But that actually doesn’t matter for the task we have

at hand: identifying items that are commonly purchased together.

Generating the Rules
Using the Belgian supermarket data, we illustrate how to build association rules based

on market basket data in R. The first thing we do is import our data. To do so, we use

the read.transactions() function from the arules package in R. This function reads

the dataset in as a sparse matrix. That means it is a matrix of 1s and 0s where the vast

majority of the values are 0. In this case, each row in the matrix represents a single trans-

action, while each column represents a unique item that is sold by the supermarket. The

value of each cell is 1 if the item corresponding to the column was purchased as part of

the transaction corresponding to the row. We use a sparse matrix, instead of a standard

data frame or tibble, for the market basket data because it helps speed up processing

and uses a lot less memory space. We pass two arguments to the read.transactions()

function—the first argument specifies the name of the file we want to read, and the

second argument (sep) specifies how fields are separated in the data file. Since we know,

from the previous section, that the fields in our data are separated by whitespace, we

use sep = "".

> library(arules)
> supermart <- read.transactions("retail.txt", sep = "")

Practical Machine Learning in R378

Now let’s get some summary statistics on the dataset.

> summary(supermart)

transactions as itemMatrix in sparse format with
 88162 rows (elements/itemsets/transactions) and
 16470 columns (items) and a density of 0.0006257289

most frequent items:
 39 48 38 32 41 (Other)
 50675 42135 15596 15167 14945 770058

element (itemset/transaction) length distribution:
sizes
 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620
 15 16 17 18 19 20 21 22 23 24 25 26 27 28
2310 2115 1874 1645 1469 1290 1205 981 887 819 684 586 582 472
 29 30 31 32 33 34 35 36 37 38 39 40 41 42
 480 355 310 303 272 234 194 136 153 123 115 112 76 66
 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 71 60 50 44 37 37 33 22 24 21 21 10 11 10
 57 58 59 60 61 62 63 64 65 66 67 68 71 73
 9 11 4 9 7 4 5 2 2 5 3 3 1 1
 74 76
 1 1

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 4.00 8.00 10.31 14.00 76.00

includes extended item information - examples:
 labels
1 0
2 1
3 10

Notice that the output of the summary() function is very different from what we’ve

seen previously. This is because, unlike the datasets we used in previous chapters, which

were either a data frame or a tibble, this dataset is a sparse matrix. The output provides

us with some high-level insight about our data. The first three rows tell us that we have

88,162 transactions (rows) and 16,470 unique items (columns) in the dataset. We also see

that the density of the dataset is 0.0006257289. Recall that in Chapter 3 we described

the density of a dataset as the ratio of items in the dataset that are not missing. Density

379Chapter 11: Discovering Patterns with Association Rules

is the inverse of sparsity, which represents the ratio of items that are missing. The super-

market dataset is very sparse. This is expected for market basket data. Most transactions

do not include the majority of the items sold at the store.

The next three lines of the output list the most frequently purchased items at the

store, along with a count of the number of transactions in which they occur. Here we

see that item 39 is the most frequently bought item, and it was bought in 50,675 of the

88,162 transactions in the dataset.

The next 14 lines of the output provide a summary of the length of transactions in the

dataset along with the corresponding number of transactions of that length. For exam-

ple, the first two rows of the first column tell us that there are 3,016 transactions with a

length of 1. In other words, there are 3,016 transactions in which only one item was pur-

chased. Going all the way to the last pair of values, we see that there is one transaction

in which 76 unique items were purchased. The remaining lines of the output simply show

the range of values for the transaction lengths and a sampling of three of the items in

our dataset.

To get a better understanding of our data, we need to take a closer look at some of

the transactions in the dataset. The arules package provides us with the inspect()

function to do this. We use this function to list the first five transactions in the dataset.

> inspect(supermart[1:5])

 items
[1] {0,1,10,11,12,13,14,15,16,17,18,19,2,20,21,22,23,24,25,26,27,28,29,
3,4,5,6,7,8,9}
[2] {30,31,32}
[3] {33,34,35}
[4] {36,37,38,39,40,41,42,43,44,45,46}
[5] {38,39,47,48}

The output tells us that the first transaction had 30 unique items, the second had 3,

and so on. As we mentioned in the previous section, we do not know what specific items

these numbers represent, but we do know that they represent unique items within the

market basket data. With that in mind, we can look at how often each item occurs in the

dataset by using the itemFrequency() function. Note that the frequency of an item is

the same as the support of the item. Earlier we saw that item 39 is the most frequently

bought item in the dataset. Let’s take a look at the frequency for this item.

> itemFrequency(supermart[,"39"])

 39
0.5747941

Practical Machine Learning in R380

The item frequency (or support) for item 39 is 0.5747941, which tells us that it

occurred in almost 60 percent of the transactions in the dataset. The arules package is

rather limited in terms of the functionality it provides for data exploration. For example,

it does not provide a function to list the top five items in terms of frequency or, con-

versely, the bottom five. To get that information, we need to transform the output of

the itemFrequency() function into a format that is easier to work with. The output

of the itemFrequency() function is a numeric vector with a label for each value. For

example, in our previous output, the numeric vector 0.5747941 has an attached label of

39. Using this data, we can create a table with two columns, where one column repre-

sents the item and the other represents the frequency of the item. We do this by using

the tibble() function from the tibble package (which is included in the tidyverse

package). This function creates what in R is known as a tibble, which is simply the tidy-

verse’s version of a standard data frame.

> library(tidyverse)
> supermart_frequency <-
 tibble(
 Items = names(itemFrequency(supermart)),
 Frequency = itemFrequency(supermart)
)

Let’s take a look at the first six rows of our item frequency dataset by using the

head() function.

> head(supermart_frequency)

A tibble: 6 x 2
 Items Frequency
 <chr> <dbl>
1 0 0.00201
2 1 0.00302
3 10 0.00808
4 100 0.000613
5 1000 0.00480
6 10000 0.0000227

With the data in this format, we can now easily answer a question such as this: what

are the 10 most frequently bought items at the store? To get the answer, we simply

sort the items in descending order of frequency and limit our results to only the top 10

by using the slice() function from the dplyr package (which is also included in the

tidyverse package).

> supermart_frequency %>%
 arrange(desc(Frequency)) %>%

381Chapter 11: Discovering Patterns with Association Rules

 slice(1:10)

A tibble: 10 x 2
 Items Frequency
 <chr> <dbl>
 1 39 0.575
 2 48 0.478
 3 38 0.177
 4 32 0.172
 5 41 0.170
 6 65 0.0507
 7 89 0.0435
 8 225 0.0369
 9 170 0.0352
10 237 0.0344

We see from the results that items 39 and 48 occur in 50 percent or more of the

transactions. However, as we go down the list, the frequency of occurrence drops dra-

matically. Keeping in mind the anti-monotone principle of support, which we discussed

earlier, these results tell us that the support threshold for our association rules will need

to be at or lower than 0.0344 for us to capture rules that contain these items.

With the additional insight that we now have on our data, we can proceed with

building association rules. The arules R package provides the apriori() function

for association rules generation. This function takes a couple of arguments. The first

argument is the data. The second is a parameter list that allows us to specify minimum

support, confidence, and rule length thresholds for our rules. Quite often, there is a

fair amount of trial and error required to set the appropriate thresholds for associa-

tion rules. If we set the thresholds too high, we may not get back any rules. If we set

the thresholds too low, we may be overwhelmed by the number of rules to make any

sense of them.

A useful approach to take when setting the minimum support threshold is to decide

how often a pattern should occur for it to be useful to you. Let’s assume that we are

interested only in patterns that occur at least five times a day. Since we know that our

data was collected over a five-month period of time and assuming that each of those

months were 30 days long, then a pattern that occurs at least five times a day will need

to occur in at least 5 150 transactions in our dataset. We know that there are 88,162

transactions in our dataset; therefore, the minimum support for our pattern will need to

be
5 150

88162
0 0085. . For our confidence threshold, let’s start with the expectation that in

order for a rule to be included, the antecedent and the consequent must occur together

at least 50 percent of the time. This means that we set our confidence threshold to 0.5.

Practical Machine Learning in R382

To exclude rules that have fewer than two items, we set our minimum rule length to 2.

With these thresholds decided, we can now generate our rules.

> supermartrules <-
 apriori(supermart,
 parameter = list(
 support = 0.0085,
 confidence = 0.5,
 minlen = 2
))

Evaluating the Rules
With our rules in place, we can now start to evaluate how useful they are. To get a

high-level overview of our rules, we pass the ruleset (supermartrules) to the

summary() function.

> summary(supermartrules)

set of 145 rules

rule length distribution (lhs + rhs):sizes
 2 3 4
76 54 15

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.000 2.000 2.000 2.579 3.000 4.000

summary of quality measures:
 support confidence lift count
 Min. :0.008507 Min. :0.5024 Min. :0.9698 Min. : 750
 1st Qu.:0.010458 1st Qu.:0.6037 1st Qu.:1.1618 1st Qu.: 922
 Median :0.013543 Median :0.6724 Median :1.2476 Median : 1194
 Mean :0.025466 Mean :0.6976 Mean :1.7245 Mean : 2245
 3rd Qu.:0.021880 3rd Qu.:0.7610 3rd Qu.:1.3816 3rd Qu.: 1929
 Max. :0.330551 Max. :0.9942 Max. :5.6202 Max. :29142

mining info:
 data ntransactions support confidence
 supermart 88162 0.0085 0.5

Similar to what we saw when we used the summary() function to get the descrip-

tive statistics of the market basket data after import, this output is also different from

anything we have previously seen. This is because what we now have is a ruleset and

383Chapter 11: Discovering Patterns with Association Rules

not a sparse matrix, a tibble, or a data frame. The first two sections of the output tell us

that 145 rules were generated according to the thresholds that we set. Of the rules gen-

erated, 76 have a length of 2, 54 have a length of 3, and 15 have a length of 4. The next

section of the output provides a statistical summary of the support, confidence, lift, and

count for the rules generated. The last section of the output lists the parameters that

were used to generate the rules.

We can also take a look at each individual rule that was generated. We do so by using

the inspect() function like we did with the market basket data. Let’s start by taking a

look at the first 10 rules.

> inspect(supermartrules[1:10])

 lhs rhs support confidence lift count
[1] {371} => {38} 0.008699893 0.9808184 5.544429 767
[2] {37} => {38} 0.011864522 0.9739292 5.505485 1046
[3] {286} => {38} 0.012658515 0.9433643 5.332706 1116
[4] {286} => {39} 0.008507067 0.6339814 1.102971 750
[5] {2958} => {48} 0.008836006 0.8617257 1.803049 779
[6] {740} => {39} 0.008609151 0.6426757 1.118097 759
[7] {78} => {48} 0.009346430 0.7773585 1.626521 824
[8] {78} => {39} 0.008779293 0.7301887 1.270348 774
[9] {49} => {48} 0.009561943 0.7526786 1.574882 843
[10] {49} => {39} 0.008711236 0.6857143 1.192974 768

The first rule tells us that 98 percent (confidence) of the time, customers who bought

item 371 also bought item 38. This pattern is found in 0.86 percent or 767 (support and

count) of the transactions in the dataset. The rule also tells us that customers who

bought item 371 are 5.54 (lift) times more likely to also purchase item 38. This is a very

strong rule. While we do not know what items 371 and 38 are, exactly, we do know that

there is a strong association between the two items.

To help us identify other strong rules in the dataset, it is useful to be able to sort

and filter the rules based on certain criteria. For example, if we want to sort and filter

for the top 10 rules based on lift, we do so using the sort() function provided by the

arules package.

> supermartrules %>%
 sort(by = "lift") %>%
 head(n = 10) %>%
 inspect()

 lhs rhs support confidence lift count
[1] {110,39,48} => {38} 0.011694381 0.9942141 5.620153 1031
[2] {170,39,48} => {38} 0.013531907 0.9892206 5.591925 1193

Practical Machine Learning in R384

[3] {110,39} => {38} 0.019736394 0.9891984 5.591800 1740
[4] {170,48} => {38} 0.017445158 0.9877970 5.583878 1538
[5] {170,41} => {38} 0.009006148 0.9863354 5.575616 794
[6] {110,48} => {38} 0.015437490 0.9862319 5.575030 1361
[7] {371} => {38} 0.008699893 0.9808184 5.544429 767
[8] {170,39} => {38} 0.022901023 0.9805731 5.543042 2019
[9] {170} => {38} 0.034379892 0.9780574 5.528821 3031
[10] {110} => {38} 0.030909008 0.9753042 5.513258 2725

In this example, we specified by = "lift" to indicate that we want our rules sorted

by lift. Note that we could have also sorted by support, confidence, or count. Suppose

that we identified item 41 as an item of interest to us and we decide to take a look at all

the rules that have that particular item. To do this, we can use the subset() function.

> supermartrules %>%
 subset(items %in% "41") %>%
 inspect()

 lhs rhs support confidence lift count
[1] {41} => {48} 0.102288968 0.6034125 1.262562 9018
[2] {41} => {39} 0.129466210 0.7637337 1.328708 11414
[3] {170,41} => {38} 0.009006148 0.9863354 5.575616 794
[4] {41,65} => {39} 0.008983462 0.7959799 1.384809 792
[5] {38,41} => {48} 0.026927701 0.6091866 1.274644 2374
[6] {38,41} => {39} 0.034606747 0.7829099 1.362070 3051
[7] {32,41} => {48} 0.023400104 0.6454944 1.350613 2063
[8] {32,41} => {39} 0.026757560 0.7381101 1.284130 2359
[9] {41,48} => {39} 0.083550736 0.8168108 1.421049 7366
[10] {39,41} => {48} 0.083550736 0.6453478 1.350306 7366
[11] {38,41,48} => {39} 0.022583426 0.8386689 1.459077 1991
[12] {38,39,41} => {48} 0.022583426 0.6525729 1.365424 1991
[13] {32,41,48} => {39} 0.018670175 0.7978672 1.388092 1646
[14] {32,39,41} => {48} 0.018670175 0.6977533 1.459958 1646

We can also combine the sort() and subset() functions to help us organize the rules

that we intend to look at. For example, suppose we want to take a look at the top 10

rules in terms of lift that contain item 41.

> supermartrules %>%
 subset(items %in% "41") %>%
 sort(by = "lift") %>%
 head(n = 10) %>%
 inspect()

385Chapter 11: Discovering Patterns with Association Rules

 lhs rhs support confidence lift count
[1] {170,41} => {38} 0.009006148 0.9863354 5.575616 794
[2] {32,39,41} => {48} 0.018670175 0.6977533 1.459958 1646
[3] {38,41,48} => {39} 0.022583426 0.8386689 1.459077 1991
[4] {41,48} => {39} 0.083550736 0.8168108 1.421049 7366
[5] {32,41,48} => {39} 0.018670175 0.7978672 1.388092 1646
[6] {41,65} => {39} 0.008983462 0.7959799 1.384809 792
[7] {38,39,41} => {48} 0.022583426 0.6525729 1.365424 1991
[8] {38,41} => {39} 0.034606747 0.7829099 1.362070 3051
[9] {32,41} => {48} 0.023400104 0.6454944 1.350613 2063
[10] {39,41} => {48} 0.083550736 0.6453478 1.350306 7366

This output now gives us a more focused list of rules to look at. Based on what we

know about the items included in the rules, we can decide whether each of the rules are

actionable, trivial, or simply inexplicable.

The subset() Function
Note that the subset() function can be used with several keywords and operators,
as follows:

 • The keyword items matches an item appearing anywhere in the rule.

 • We can also limit our rules based on items on the left side or right side of the
rules by using the lhs and rhs keywords, respectively. For example, to list the
rules that have item 41 on the left side only, we use subset(lhs %in% "41").

 • The operator %in% means that at least one of the items must be found in the
list you defined.

 • We can also do partial matching by using the %pin% operator. For example,
using subset(items %pin% "41"), we can find all rules that have items with 41
in the name. This includes both items 41 and 413.

 • The operator %ain% allows us to do complete matching. This is useful when
we want to find all rules that have all listed items. For example, to find all the
rules that have both items 38 and 41 in them, we use subset(items %ain%
c("38","41")).

 • We can also use the subset() function to filter by support, confidence, or lift.
For example, to only list rules that have a confidence of 0.8 or more, we use
subset(confidence >= 0.8).

 • The subset() function also supports the use of R logical operators such as and
(&), or (|), and not (!). For example, to list rules that have a confidence of 0.8 or
more and lift of less than 2, we use subset(confidence >= 0.8 & lift < 2).

Practical Machine Learning in R386

Strengths and Weaknesses
As with any other machine learning approach, association rules have a number of

strengths and weaknesses. Understanding these strengths and weaknesses help inform

the choice of when to use them and when they may not be the best approach.

These are some strengths:

 • Association rules are useful when working with a lot of transactional data.

 • The basic IF-THEN representation of the relationship between the antecedent and

the consequent is easy to understand.

 • Association rules are great at identifying previously unseen or even unexpected

patterns in data.

These are some weaknesses:

 • While great for large transactional data, association rules are not reliable when

working with small datasets.

 • It is often difficult to derive actionable insight from the large number of rules

generated.

 • It is easy to draw wrong and misleading conclusions from the patterns identified

by association rules, since rules simply highlight that items occur together but

can’t be used to infer causation.

CASE STUDY: IDENTIFYING GROCERY
PURCHASE PATTERNS
For our chapter case study, we are going to use market basket data adapted from the

Groceries2 dataset provided by the arules package. The dataset consists of 9,835

transactions collected over a one-month period of time from a small grocery store. The

dataset has a similar structure to the Belgian supermarket data we introduced earlier

in the chapter but with two key differences. The first is that, unlike the Belgian super-

market data where each item is separated by a whitespace, items in this dataset are

separated by a comma. The second difference is that the items in this dataset are not

anonymized like they were in the Belgian supermarket dataset. This time, we actually

know what each item is. Our goal is to generate association rules that describe the inter-

esting purchase patterns within the data.

387Chapter 11: Discovering Patterns with Association Rules

Importing the Data
Let’s begin by importing our data. As we did previously, we use the read.transactions()

function from the arules package. Note that this time, we set the sep parameter to "," in

accordance with how our data is formatted.

> library(arules)
> groceries <- read.transactions("groceries.csv", sep = ",")

Exploring and Preparing the Data
After importing the data, we begin the data exploration process to understand it

better. The first thing we do is use the summary() function to get a high-level overview

of the data.

> summary(groceries)

transactions as itemMatrix in sparse format with
 9835 rows (elements/itemsets/transactions) and
 169 columns (items) and a density of 0.02609146

most frequent items:
 whole milk other vegetables rolls/buns soda
 2513 1903 1809 1715
 yogurt (Other)
 1372 34055

element (itemset/transaction) length distribution:
sizes
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55
 16 17 18 19 20 21 22 23 24 26 27 28 29 32
 46 29 14 14 9 11 4 6 1 1 1 1 3 1

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:
 labels
1 abrasive cleaner
2 artif. sweetener
3 baby cosmetics

Practical Machine Learning in R388

From the output, we learn that there are 9,835 transactions and 169 distinct items

in the dataset. Of the transactions in the dataset, 2,159 of them involved the purchase

of a single item, while one of them involved the purchase of 32 distinct items. The most

frequently purchased items were whole milk, other vegetables, rolls/buns, soda, and

yogurt. To get to the specifics of the frequency (or support) of these items, we first need

to get the frequency for each item using the itemFrequency() function, and then we

will transform the data to a tibble.

> library(tidyverse)
> groceries_frequency <-
 tibble(
 Items = names(itemFrequency(groceries)),
 Frequency = itemFrequency(groceries)
)

With the data in this format, we can now easily list the 10 most frequently bought

items at the store.

> groceries_frequency %>%
 arrange(desc(Frequency)) %>%
 slice(1:10)

A tibble: 10 x 2
 Items Frequency
 <chr> <dbl>
 1 whole milk 0.256
 2 other vegetables 0.193
 3 rolls/buns 0.184
 4 soda 0.174
 5 yogurt 0.140
 6 bottled water 0.111
 7 root vegetables 0.109
 8 tropical fruit 0.105
 9 shopping bags 0.0985
10 sausage 0.0940

The results confirm the list of top five most frequently bought items that we saw

from the results of the summary() function. However, this time, we see the actual fre-

quency (or support) for each of these items. The support values tell us that whole milk is

bought in one out of every four transactions; other vegetables, rolls/buns, and soda are

bought in about one out of every five transactions.

Using the summary() function, we can also get summary statistics for the item

frequencies. The median item frequency (0.0104728) provides us with a low water mark

389Chapter 11: Discovering Patterns with Association Rules

for the minimum support threshold we should use when generating our association

rules. A threshold below the median suggests rules with a rate of occurrence below what

would be considered typical within the dataset.

> groceries_frequency %>%
 select(Frequency) %>%
 summary()

 Frequency
 Min. :0.0001017
 1st Qu.:0.0038637
 Median :0.0104728
 Mean :0.0260915
 3rd Qu.:0.0310117
 Max. :0.2555160

Generating the Rules
To generate our rules, we pass our minimum support, confidence, and rule length

thresholds to the apriori() function. Similar to what we did in the previous example,

we will consider any patterns that occur at least five times a day as important. Consid-

ering that our dataset was collected over a 30-day period, this means that our minimum

support threshold will be
5 30

9835
0 015. . This time, we will keep the minimum confidence

threshold at 0.25, and the minimum rule length will remain as 2.

> groceryrules <-
 apriori(groceries,
 parameter = list(
 support = 0.015,
 confidence = 0.25,
 minlen = 2
))

Evaluating the Rules
A high-level summary of our rules shows that based on the thresholds that we set, we

were able to generate 78 association rules (62 of which have a length of 2, and 16 have a

length of 3).

> summary(groceryrules)

set of 78 rules

Practical Machine Learning in R390

rule length distribution (lhs + rhs):sizes
 2 3
62 16

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.000 2.000 2.000 2.205 2.000 3.000

summary of quality measures:
 support confidence lift count
 Min. :0.01505 Min. :0.2537 Min. :0.9932 Min. :148.0
 1st Qu.:0.01790 1st Qu.:0.3084 1st Qu.:1.5047 1st Qu.:176.0
 Median :0.02191 Median :0.3546 Median :1.7400 Median :215.5
 Mean :0.02558 Mean :0.3608 Mean :1.7632 Mean :251.6
 3rd Qu.:0.02888 3rd Qu.:0.4056 3rd Qu.:1.9427 3rd Qu.:284.0
 Max. :0.07483 Max. :0.5174 Max. :3.0404 Max. :736.0

mining info:
 data ntransactions support confidence
 groceries 9835 0.015 0.25

With our rules in place, we can start looking at potentially interesting purchase

patterns in the dataset. Let’s begin by taking a look at the top 10 rules in terms of

confidence.

> groceryrules %>%
 sort(by = "confidence") %>%
 head(n = 10) %>%
 inspect()

 lhs rhs support confidence lift count
[1] {tropical fruit,yogurt} => {whole milk} 0.01514997 0.5173611 2.024770 149
[2] {other vegetables,yogurt} => {whole milk} 0.02226741 0.5128806 2.007235 219
[3] {butter} => {whole milk} 0.02755465 0.4972477 1.946053 271
[4] {curd} => {whole milk} 0.02613116 0.4904580 1.919481 257
[5] {other vegetables,root vegetables} => {whole milk} 0.02318251 0.4892704 1.914833 228
[6] {other vegetables,tropical fruit} => {whole milk} 0.01708185 0.4759207 1.862587 168
[7] {root vegetables,whole milk} => {other vegetables} 0.02318251 0.4740125 2.449770 228
[8] {domestic eggs} => {whole milk} 0.02999492 0.4727564 1.850203 295
[9] {rolls/buns,yogurt} => {whole milk} 0.01555669 0.4526627 1.771563 153
[10] {whipped/sour cream} => {whole milk} 0.03223183 0.4496454 1.759754 317

These rules do provide us with some insight into purchase patterns. For example, the

first rule tells us that those who buy both tropical fruit and yogurt are twice as likely to

also buy whole milk. This is likely for a smoothie or a fruit drink of some sort. Notice that

391Chapter 11: Discovering Patterns with Association Rules

most of these rules have whole milk as the consequent. This is expected, considering

that whole milk is the most frequently bought item in the dataset. To get a different per-

spective on the rules, let’s take a look at the top 10 rules in terms of lift to see if we get

some new insights.

> groceryrules %>%
 sort(by = "lift") %>%
 head(n = 10) %>%
 inspect()

 lhs rhs support confidence lift count
[1] {beef} => {root vegetables} 0.01738688 0.3313953 3.040367 171
[2] {other vegetables,whole milk} => {root vegetables} 0.02318251 0.3097826 2.842082 228
[3] {whole milk,yogurt} => {tropical fruit} 0.01514997 0.2704174 2.577089 149
[4] {pip fruit} => {tropical fruit} 0.02043721 0.2701613 2.574648 201
[5] {tropical fruit,whole milk} => {yogurt} 0.01514997 0.3581731 2.567516 149
[6] {root vegetables,whole milk} => {other vegetables} 0.02318251 0.4740125 2.449770 228
[7] {curd} => {yogurt} 0.01728521 0.3244275 2.325615 170
[8] {root vegetables} => {other vegetables} 0.04738180 0.4347015 2.246605 466
[9] {chicken} => {other vegetables} 0.01789527 0.4170616 2.155439 176
[10] {other vegetables,whole milk} => {yogurt} 0.02226741 0.2975543 2.132979 219

These rules provide us with some additional information on purchase patterns. The

first rule tells us that root vegetables are three times more likely to be bought if a

customer buys beef. The second rule shows a high likelihood that those who buy both

whole milk and other vegetables will also buy root vegetables. With the awareness that

whole milk and other vegetables are the two most frequently bought items, we can

exclude them from the rules that we consider to see what other itemsets provide inter-

esting rules.

> groceryrules %>%
 subset(!items %in% c("whole milk","other vegetables")) %>%
 sort(by = "lift") %>%
 inspect()

 lhs rhs support confidence lift count
[1] {beef} => {root vegetables} 0.01738688 0.3313953 3.040367 171
[2] {pip fruit} => {tropical fruit} 0.02043721 0.2701613 2.574648 201
[3] {curd} => {yogurt} 0.01728521 0.3244275 2.325615 170
[4] {whipped/sour cream} => {yogurt} 0.02074225 0.2893617 2.074251 204
[5] {tropical fruit} => {yogurt} 0.02928317 0.2790698 2.000475 288
[6] {citrus fruit} => {yogurt} 0.02165735 0.2616708 1.875752 213
[7] {fruit/vegetable juice} => {yogurt} 0.01870869 0.2587904 1.855105 184

Practical Machine Learning in R392

[8] {frankfurter} => {rolls/buns} 0.01921708 0.3258621 1.771616 189
[9] {sausage} => {rolls/buns} 0.03060498 0.3257576 1.771048 301
[10] {bottled water} => {soda} 0.02897814 0.2621895 1.503577 285
[11] {sausage} => {soda} 0.02430097 0.2586580 1.483324 239
[12] {fruit/vegetable juice} => {soda} 0.01840366 0.2545710 1.459887 181

We now have 12 different rules sorted by lift. We already discussed the first one. The

second rule seems rather trivial. It’s no surprise that a person who buys pip fruit will also

buy tropical fruit. This simply suggests that a variety of fruits are often bought together.

Rules 3 and 4 suggest purchases of a variety of dairy products. Rules 5, 6, and 7 suggest

that customers are likely to pair the purchase of different kinds of fruits with yogurt. The

remaining rules provide additional insights into food pairings that support actionable

measures in terms of store layout that could strengthen or take advantage of the strong

relationships between items.

EXERCISES
1. You work in a hospital and have access to patient medical records. You decide to use

association rules on a variety of datasets available to you. In this context, what are

examples of association rules that you might discover that fit into each of the follow-

ing categories?

a. Actionable

b. Trivial

c. Inexplicable

2. Think of an organization where you currently work or have worked in the past. If you

have never had employment, think of an organization with which you are familiar,

such as a school or community group. What is an application of association rules that

might be useful in that environment?

3. Continue to explore the Groceries dataset presented in the case study of this chap-

ter. Answer the following questions:

a. What are the 10 least frequently purchased items?

b. If you change the minimum rule length to 3, how many rules do you generate?

What if you change it to 4?

c. Change the minimum rule length back to 2 and produce a list of rules involving

either soda or whipped/sour cream.

393Chapter 11: Discovering Patterns with Association Rules

NOTES
1. Brijs T., Swinnen G., Vanhoof K., and Wets G. (1999), “The Use of Association Rules

for Product Assortment Decisions: A Case Study,” in: Proceedings of the Fifth Interna-

tional Conference on Knowledge Discovery and Data Mining, San Diego (USA), August

15–18, pp. 254–260. ISBN: 1-58113-143-7.

2. Hahsler M, Hornik K, Reutterer T. “Implications of Probabilistic Data Modeling for

Mining Association Rules.” In: Gaul W, Vichi M, Weihs C, ed. Studies in Classification,

Data Analysis, and Knowledge Organization: from Data and Information Analysis to

Knowledge Engineering. New York: Springer; 2006:598–605.

Chapter 12

Grouping Data
with Clustering

In Chapter 11, we introduced association rules, the first of the

two unsupervised machine learning approaches that we cover

in this book. In that approach, the objective was to develop a set

of rules that describe the patterns that exist between events or

items in a transaction set. In this chapter, we introduce the second

unsupervised machine learning approach—clustering. With

clustering, the objective is to find interesting ways to group items

based on some measure of similarity. There are several real-world

applications of clustering. Most often we see clustering applied to

problems such as customer segmentation based on demographics

or purchase behavior and anomalous network activity detection.

As part of our discussion on clustering, we will introduce the basic

idea behind clustering, discuss the different ways to describe

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Practical Machine Learning in R396

approaches to clustering, explore the mechanics of a common

clustering algorithm (k-means clustering), and illustrate how to

cluster data in R using the k-means clustering algorithm.

By the end of this chapter, you will have learned the following:

 ◆ The basic idea behind clustering as an unsupervised machine

learning approach

 ◆ How the k-means clustering algorithm works

 ◆ How to segment data using the k-means algorithm in R

 ◆ The strengths and weaknesses of k-means clustering

CLUSTERING
Clustering as a machine learning task refers to several approaches used in partition-

ing unlabeled data into subgroups based on similarity. These subgroups are known as

clusters. There are two objectives to clustering. The first is to ensure that the items

within a particular cluster are as similar as possible. This is referred to as high intraclass

similarity. The second objective to clustering is to make sure that items within one

cluster are as dissimilar as possible with items in other clusters. This is referred to as

low interclass similarity. The degree of similarity between two items is often quantified

based on a distance measure. One such distance measure is Euclidean distance. As you

recall, we first introduced Euclidean distance in Chapter 6 while discussing the k -nearest

neighbor approach.

As previously mentioned, clustering is an unsupervised machine learning approach.

Unlike in supervised learning where we use previously labeled data to build a model,

with clustering, we attempt to identify interesting patterns in unlabeled data by group-

ing it. To illustrate how clustering works, let’s assume that we have 12 items that are

described by two features—Feature A and Feature B (see Figure 12.1a). If we represent

the original data as a scatterplot (see Figure 12.1b), we can start to see some patterns

emerge simply based on visual inspection. By evaluating how close each of the items are

to each other, we are able to group them into three distinct clusters (see Figure 12.1c).

397Chapter 12: Grouping Data with Clustering

These clusters have no intrinsic meaning other than that they represent closely

related items. It is up to the user to assign contextual labels to each of the clusters. In

our example, we could assign the labels Alpha, Beta, and Theta to the three clusters.

By doing this, we are implicitly assigning labels to each of the items within each cluster.

Because of our ability to apply labels to previously unlabeled data in this way, clustering

is also sometimes referred to as unsupervised classification. The clustering approach

that we describe here is one of many. There are several ways to describe the different

approaches to clustering. We discuss a few of them next.

Clustering can be described as either hierarchical or partitional. With hierarchical clus-

tering, clusters are nested within other clusters. This means that the boundaries of a par-

ticular cluster can fall within the boundaries of another cluster, creating a parent-child

relationship. This nested structure between clusters creates a hierarchy that is often rep-

resented in the form of a cluster tree known as a dendrogram. With partitional clustering,

each cluster boundary is independent of the others. There is no hierarchical relationship

between clusters. Figure 12.2 illustrates the difference between the hierarchical and

partitional clustering approaches.

Clustering can also be described as either overlapping or exclusive. As the name

implies, an overlapping cluster is one where the boundaries of one cluster can overlap

with those of other clusters. This means that each item in the dataset can belong to one

or more clusters. This differs from the hierarchical clustering approach in that, with hier-

archical clustering, the boundaries of a child cluster must always be within the bound-

aries of the parent cluster. In our example (see Figure 12.2), we see that the red cluster

is completely inside of the blue cluster, which in turn is completely inside of the yellow

cluster. This is not always the case with overlapping clusters, as illustrated in Figure 12.3.

Item Feature A Feature B

Fe
at

ur
e

A

Feature B

Fe
at

ur
e

A

Feature B

1
2
3
4
5
6
7
8
9
10
11
12

5
7
7
9
10
9
7
8
8
5
6
4

5
4
19
7
10
17
14
15
13
17
8
20

Alpha

(a) (b) (c)

ThetaBeta

Figure 12.1 Simulated dataset showing previously unlabeled items (a). The same
items are then represented in a scatterplot (b), clustered and labeled (c).

Practical Machine Learning in R398

Unlike overlapping clustering, an exclusive clustering approach results in clusters where

each item can belong to only one cluster. The cluster membership of each item is “exclu-

sive.” The differences in the results of these two approaches is illustrated in Figure 12.3.

Between the overlapping and exclusive approaches is another approach known as

fuzzy or soft clustering. With soft clustering, the membership of an item to a particular

cluster is specified based on a membership weight that goes between 0 and 1. The larger

the weight, the greater the likelihood that the item belongs to a particular cluster. If the

weight is 0, then the item absolutely does not belong to the cluster. If the weight is 1,

then the item absolutely does belong to the cluster in question.

TIP It’s important to note that while the results of both exclusive and
partitional clustering are similar (as illustrated in Figures 12.2 and 12.3), the
approaches are different in terms of focus. Partitional clustering is focused
on ensuring that each cluster is independent and not nested within another

Feature B

Overlapping

Fe
at

ur
e

A

Feature B

Exclusive

Fe
at

ur
e

A

Figure 12.3 Overlapping versus exclusive clustering

Feature B

Hierarchical

Fe
at

ur
e

A

Feature B

Partitional

Fe
at

ur
e

A

Figure 12.2 Hierarchical versus partitional clustering

399Chapter 12: Grouping Data with Clustering

cluster, while exclusive clustering is focused on ensuring that each item
belongs to one and only one cluster.

Clustering can be described as either complete or partial. With complete clustering,

every item in the dataset must be assigned to at least one cluster. However, with partial

clustering, this is not the case. With this approach, the number of clusters is not known

beforehand. Instead, the goal is to estimate the number of clusters and cluster bound-

aries based on the similarity of the items in the dataset. As a result, items that do not

share enough similarity with other items (typically outliers) are not assigned to a cluster.

The differences in the results of complete clustering versus partial clustering are illus-

trated in Figure 12.4.

k -MEANS CLUSTERING
As we discussed in the previous section, there are several approaches to clustering.

One of the most commonly used is known as k-means clustering. In terms of the clus-

tering techniques described in the previous section, k -means clustering is a partitional,

exclusive, and complete clustering approach. This means that the cluster boundaries are

independent of each other; each item can belong to only one cluster, and every item is

assigned to a cluster. In k -means clustering, a user decides how many clusters (k) a given

dataset should be partitioned into. The algorithm then attempts to assign every item

within the dataset to one (and only one) of k nonoverlapping clusters based on similarity.

The k -means clustering algorithm is a simple and efficient approach because it takes

a heuristic approach to clustering. This means that it begins by making a decision about

what clusters items should belong to. It then evaluates the impact of the decision based

on how similar the items within a cluster are and how different they are with items in

Feature B

Complete

Fe
at

ur
e

A

Feature B

Partial

Fe
at

ur
e

A

Figure 12.4 Complete versus partial clustering

Practical Machine Learning in R400

other clusters. Depending on the results of this evaluation, it makes adjustments to its

item cluster assignment. It repeats the process of assignment and evaluation until it can

no longer improve upon the cluster assignments or the changes become insignificant.

For a detailed illustration of how the k -means clustering algorithm works, we are

going to use the same simulated dataset from Figure 12.1. Let’s assume that our expec-

tation is that the items in the dataset are to be grouped into three different clusters.

This means we begin by setting the value of k to 3. The first thing that the algorithm

does is choose k random points in the feature space that serve as the initial centers for

the clusters. Since we set k 3, three different points are chosen as the cluster centers.

These initial centers are represented by points C1, C 2, and C 3 in Figure 12.5a.

Feature B

(a)

Fe
at

ur
e

A

Feature B

(b)

Fe
at

ur
e

A

C1

C2

C3

C1

C2

C3

Figure 12.5 The initial centroids are randomly chosen (a), and every item is assigned
to the cluster of the centroid closest to it (b).

The Random Initialization Trap
It’s important to note that these initial cluster centers don’t have to represent actual
points in the original dataset. Also, in our example, the initial centers are spread apart.
This is not always the case. Since they are randomly selected, nothing stops them
from being clustered next to each other. This highlights an important weakness
with the k-means clustering approach. The final set of clusters is sensitive to the
location of the initial set of cluster centers. This means that we could run the k-means
clustering process several times and end up with different looking clusters each
time, depending on the choice of initial cluster centers. This is known as the random
initialization trap. There are several approaches that try to overcome or mitigate
this weakness. One such approach is known as k-means++.1 The idea behind the
approach is to always choose an initial set of cluster centers that are as far away as
possible from each other. By doing this, we minimize the impact of randomness on
the final clusters.

401Chapter 12: Grouping Data with Clustering

After choosing the initial cluster centers, each item is assigned to the cluster that is

represented by the center closest to it (illustrated by Figure 12.5b). The measure of dis-

tance most commonly used by k-means clustering is the Euclidean distance. As we first

mentioned in Chapter 6, Euclidean distance is the straight-line distance between the coor-

dinates of two points in multidimensional space. Assuming that we have two points p and

q in two-dimensional space, the Euclidean distance between them is calculated as follows:

 dist p q p q p q,
1 1

2

2 2

2

 12.1

 where p1 and q1 represent the values of the first feature of p and q , respectively, while p2

and q2 represent the values of the second feature of p and q .

With each item now assigned to a cluster, the algorithm proceeds to calculate the true

center for each cluster. This is known as the cluster centroid. The cluster centroid is the

average position of the items currently assigned to a cluster. Assuming that we have a

cluster made up of three items x , y , and z in two-dimensional space that are represented

by points x x
1 2
, , y y

1 2
, , and z z

1 2
, , respectively, the cluster centroid is calculated

as follows:

centroid x y z

x y z x y z
, , ,1 1 1 2 2 2

3 3 12.2

After new cluster centers are calculated, the k-means clustering algorithm re-assigns

each item to the cluster that is represented by the center closest to it. This has the

effect of shifting some points from one cluster to another, as illustrated in Figure 12.6. In

Figure 12.6a, we see a shift in all three cluster centers, from the initial randomly selected

centers (gray diamond) to the newly computed centers (colored diamonds). As a result of

the shift, we see that one of the items that originally belonged to the red cluster is now

assigned to the blue cluster (see Figure 12.6b). This is because the item is now closer to

the blue cluster center (C 2) than it is to the red cluster center (C1).

The process of assignment and evaluation repeats, with new centroids computed for

each cluster (see Figure 12.7a), and each item assigned to the cluster closest to it based

on its distance to the centroid (see Figure 12.7b).

Eventually, the shift in centroids (see Figure 12.8a) will be immaterial and not result

in any subsequent changes to cluster assignments. At this point, our algorithm is said to

have achieved convergence. In Figure 12.8a, we see that the shift in the centroid for the

red cluster had no impact on cluster assignments because every item is already assigned

to the cluster of its closest centroid. At this point, we can now stop the process and

report the cluster assignments for each item in the dataset (see Figure 12.8b).

Practical Machine Learning in R402

Feature B

C1

C2
C3

C1

C2
C3

(a)

Fe
at

ur
e

A

Feature B

(b)

Fe
at

ur
e

A

Figure 12.7 During the next iteration, new cluster centers are chosen again (a), and
each item is re-assigned to the cluster of the centroid closest to it (b).

Feature B

(a)

Fe
at

ur
e

A

Feature B

(b)

Fe
at

ur
e

AC1

C2
C3

C1

C2
C3

Figure 12.6 New cluster centers are chosen (a); then each item is re-assigned to the
cluster of the centroid closest to it (b).

Other Measures of Distance
It’s important to note that while Euclidean distance is the default distance measure
used for k-means clustering, it is not the only distance measure used in clustering.
The choice of distance measure has a strong influence on the clustering results and
should be chosen based on factors such as the type of data to be clustered and the
type of clustering that is to be done. Other common distance measures include
Manhattan distance, Pearson correlation distance, Spearman correlation distance,
and Kendall correlation distance.

403Chapter 12: Grouping Data with Clustering

SEGMENTING COLLEGES WITH k -MEANS
CLUSTERING
As we explore k -means clustering in this chapter, we will use a dataset containing infor-

mation about a large number of colleges and universities in the United States. This data

comes from the U.S. Department of Education and has been filtered and modified for

our purposes. It is available to you as part of the electronic resources accompanying this

book. (See the introduction for more information on accessing the electronic resources.)

The dataset includes a variety of information about 1,270 colleges and universities.

 • id is a unique integer identifier for each institution.

 • name is the name of the institution.

 • city is the name of the city where the institution is located.

 • state is the two-character abbreviation of the state where the institution

is located.

 • region is one of four U.S. regions where the institution is located (Northeast,

Midwest, West, or South).

 • highest_degree is the highest level of degree offered by the institution (Associ-

ate, Bachelor, Graduate, or Nondegree).

 • control is the nature of the institution’s governance (Public or Private).

 • gender is the gender of students at the institution (CoEd, Male, or Female).

Feature B

(a)

Fe
at

ur
e

A

Feature B

(b)

Fe
at

ur
e

A

C1

C2
C3

Figure 12.8 The change in cluster center (a) did not result in change in cluster
membership, so the algorithm has reached convergence and stops (b).

Practical Machine Learning in R404

 • admission_rate is the percentage of students who apply and are admitted to

the institution.

 • sat_avg is the average SAT test score of applicants (scores range from

400 to 1600).

 • undergrads is the number of undergraduate students at the institution.

 • tuition is the annual tuition charged by the institution, in dollars.

 • faculty_salary_avg is the average monthly salary of faculty members,

in dollars.

 • loan_default_rate is the percentage of students who later fail to make their

student loan payments.

 • median_debt is the median amount of debt for graduating students, in dollars.

 • lon is the longitude of the school’s main campus.

 • lat is the latitude of the school’s main campus.

Our goal with this dataset is to segment colleges using the k -means clustering

approach. For illustrative purposes, we will limit our analysis only to colleges in the state

of Maryland. However, the concepts and approaches introduced here can be applied to

any other subset of the data. As part of the chapter exercises, we provide the reader

with the opportunity to do so.

Creating the Clusters
To begin our analysis, we need to first import the colleges and universities dataset

using the read_csv() function from the readr package (which is included as part of

the tidyverse package). Note that we use the col_types argument of the function to

specify the target data types for the imported features. After the data import, we pre-

view the data using the glimpse() function.

> library(tidyverse)
> college <- read_csv("college.csv", col_types = "nccfffffnnnnnnnnn")
> glimpse(college)

Observations: 1,270
Variables: 17
$ id <dbl> 102669, 101648, 100830, 101879, 100858, 100...
$ name <chr> "Alaska Pacific University", "Marion Milita...
$ city <chr> "Anchorage", "Marion", "Montgomery", "Flore...
$ state <fct> AK, AL, AL, AL, AL, AL, AL, AL, AL, AL, AL,...

405Chapter 12: Grouping Data with Clustering

$ region <fct> West, South, South, South, South, South, So...
$ highest_degree <fct> Graduate, Associate, Graduate, Graduate, Gr...
$ control <fct> Private, Public, Public, Public, Public, Pu...
$ gender <fct> CoEd, CoEd, CoEd, CoEd, CoEd, CoEd, CoEd, C...
$ admission_rate <dbl> 0.4207, 0.6139, 0.8017, 0.6788, 0.8347, 0.8...
$ sat_avg <dbl> 1054, 1055, 1009, 1029, 1215, 1107, 1041, 1...
$ undergrads <dbl> 275, 433, 4304, 5485, 20514, 11383, 7060, 3...
$ tuition <dbl> 19610, 8778, 9080, 7412, 10200, 7510, 7092,...
$ faculty_salary_avg <dbl> 5804, 5916, 7255, 7424, 9487, 9957, 6801, 8...
$ loan_default_rate <dbl> 0.077, 0.136, 0.106, 0.111, 0.045, 0.062, 0...
$ median_debt <dbl> 23250.0, 11500.0, 21335.0, 21500.0, 21831.0...
$ lon <dbl> -149.90028, -87.31917, -86.29997, -87.67725...
$ lat <dbl> 61.21806, 32.63235, 32.36681, 34.79981, 32....

During the import process, two warnings were generated as a result of failures in

converting the data type of the loan_default_rate for two examples. This is not of

consequence to our analysis, so we choose to ignore the warnings and move on. As men-

tioned previously, we will limit our analysis to only the colleges and universities in Mary-

land. We create a new dataset of these schools called maryland_college.

> maryland_college <- college %>%
 filter(state == "MD") %>%
 column_to_rownames(var = "name")

Note that for our new dataset we also assigned a label to each row of the data using

the column_to_rownames() function from the tibble package (which is also included

in the tidyverse package). This function converts the column specified by the var argu-

ment (name) to row labels. This effectively assigns the name of each school as the row

label for each observation in the dataset. Row labels will come in handy a little bit later,

when we visualize our clusters.

The next step in our process is to decide which of the 17 features in our dataset to

use for segmentation. Similar to our choice to limit ourselves to colleges in Maryland, we

also decide to limit our segmentation to two features: admission_rate and sat_avg.

Let’s take a look at the summary statistics for these two features:

> maryland_college %>%
 select(admission_rate, sat_avg) %>%
 summary()

 admission_rate sat_avg
 Min. :0.1608 Min. : 842
 1st Qu.:0.5181 1st Qu.: 900
 Median :0.5961 Median :1048

Practical Machine Learning in R406

 Mean :0.5886 Mean :1062
 3rd Qu.:0.6606 3rd Qu.:1176
 Max. :0.8696 Max. :1439

We can see from the results that the range of values for both features are different.

In Chapter 6, we explained that with regard to distance measures, features with larger

values or features with a wider range of values tend to have a disproportionate impact

on the calculation. As a result, we have to normalize the values prior to building a model.

Using the base R scale() function, we create a new z-score normalized dataset called

maryland_college_scaled.

> maryland_college_scaled <- maryland_college %>%
 select(admission_rate, sat_avg) %>%
 scale()

The summary statistics for the new dataset show the normalized values for the two

features we intend to use for segmentation.

> maryland_college_scaled %>%
 summary()

 admission_rate sat_avg
 Min. :-2.77601 Min. :-1.2512
 1st Qu.:-0.45725 1st Qu.:-0.9218
 Median : 0.04895 Median :-0.0813
 Mean : 0.00000 Mean : 0.0000
 3rd Qu.: 0.46753 3rd Qu.: 0.6485
 Max. : 1.82387 Max. : 2.1393

We are now ready to cluster our data. To do so, we use the kmeans() function from

the stats package. The kmeans() function takes several arguments, which control the

clustering process. The first argument is the data that needs to be clustered. The second

(centers) is the number of clusters that we want to end up with. This represents the

value for k. We set this value to 3. The last argument (nstart) specifies the number of

initial configurations to attempt. The configuration that provides the best results will be

chosen. We set this argument to 25.

> library(stats)
> set.seed(1234)
> k_3 <- kmeans(maryland_college_scaled, centers=3, nstart = 25)

407Chapter 12: Grouping Data with Clustering

Analyzing the Clusters
The kmeans() function returns an object with several attributes that describe the clus-

ters created. One of those attributes is the size attribute. This represents the number

of observations in each cluster.

> k_3$size

[1] 2 9 8

The output tells us that for the three clusters, we have 2, 9, and 8 observations,

respectively. Another one of the attributes returned by the kmeans() function is the

centers attribute. As the name implies, this represents the center for each of the clus-

ters. These are the coordinates of the cluster centroids.

> k_3$centers

 admission_rate sat_avg
1 -1.7425275 1.7871932
2 -0.2001854 -0.8322366
3 0.6608405 0.4894679

Based on the output of the kmeans() function, we can also visualize our clusters. The

factoextra package provides us with a useful function called fviz_cluster() to do

this. We pass three arguments to this function. The first argument (k_3) is the clustering

result. The second argument is the data that was used to create the clusters (data). The

third argument (repel = TRUE) helps organize the layout of the item labels within the

visualization.

> library(factoextra)
> fviz_cluster(k_3, data = maryland_college_scaled, repel = TRUE)

The visualization (see Figure 12.9) shows the colleges in each of the three clusters.

The colleges in cluster 1 (Johns Hopkins and University of Maryland–College Park) have

higher than average (0) SAT scores and lower than average (0) admission rates com-

pared to the other colleges in the state. These are highly selective schools with a high-

performing student population. The average SAT score for colleges in cluster 2 is below

the state average, and so is the admission rate for those colleges. The colleges in cluster

3 generally have admission rates and SAT scores at or above the state average.

Practical Machine Learning in R408

We can also evaluate how other attributes such as tuition, loan default rate, faculty

salaries, and so forth, vary across clusters. To do so, we first need to assign cluster labels

to the observations in the maryland_college dataset. Then we select the attributes we

want to compare, group by cluster, and generate the mean values for each of the attrib-

utes we selected.

> maryland_college %>%
 mutate(cluster = k_3$cluster) %>%
 select(cluster,
 undergrads,
 tuition,
 faculty_salary_avg,
 loan_default_rate,
 median_debt) %>%
 group_by(cluster) %>%
 summarise_all("mean")

A tibble: 3 x 6
 cluster undergrads tuition faculty_salary_avg loan_default_rate median_debt
 <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 16286. 28244. 11258 0.0175 17875
2 2 3407 14219. 7781. 0.108 24776.
3 3 4711. 27523. 7593. 0.045 23925.

The results provide some further insight into the different clusters. We see that when

compared to other colleges in the state, colleges in cluster 1 (on average) tend to have a

larger undergraduate student population (16,286), higher tuition ($28,244), and better

St John’s College

2

1

0

–1

–3 –2 –1 0 1 2

Cluster plot

sa
t_

av
g

Towson University

University of Maryland-Baltimore County

Maryland Institute College of Art St Mary’s College of Maryland

McDaniel College

University of Maryland-College Park

Notre Dame of Maryland University

Johns Hopkins University

Washington Adventist University University of Maryland Eastern Shore

University of Baltimore

Coppin State University Bowie State University

Frostburg State University

Morgan State University

Mount St Mary’s University
Stevenson University

admission_rate

cluster

Capitol Technology University

1

2

3

Figure 12.9 Visualization of the three clusters created for Colleges in Maryland seg-
mented by average SAT score and admission rate

409Chapter 12: Grouping Data with Clustering

paid faculty ($11,258). The results also tell us that students who graduate from those

schools tend to default on their college loans at a lower rate (1.75 percent). This corre-

lates with the fact that those students also tend to have a lower loan burden upon grad-

uation ($17,875).

Choosing the Right Number of Clusters
So far, our cluster analysis has been based on the assumption that the colleges in the

state of Maryland should belong to one of three clusters (k 3) based on average SAT

scores and admissions rate. Because clustering is an unsupervised learning approach,

there are no previous labels upon which we can evaluate our work. Therefore, the choice

of whether three is the right number of clusters is left to the discretion of the user.

Sometimes, prior knowledge of the expected number of clusters is used to inform the

value for k . This could be based on existing business requirements or constraints. Some-

times in the absence of prior knowledge, a simple rule of thumb is used. One such rule

is setting k to the square root of the number of observations in the dataset. As one can

imagine, this rule of thumb is limited in use to small datasets. However, there are sev-

eral statistical methods that provide us with “some guidance” as to how many clusters

are reasonable when segmenting items within a dataset. Next, we introduce three of

them—the elbow method, the average silhouette method, and the gap statistic.

The Elbow Method
The idea behind k -means clustering is that we decide on a value for k and the algorithm

attempts to assign every item in the dataset into one of k clusters based on similarity.

The degree to which items within a cluster are similar (or dissimilar) can be quantified

using a measure called the within-cluster sum of squares (WCSS). The WCSS of a cluster is

the sum of the distances between the items in the cluster and the cluster centroid. For

k 3, the WCSS is calculated as follows:

 distance P C distance P C distance P C
i i i1 1

2

2 2

2

3 3

2

, , , 12.3

where C1, C2, and C3 represent the centers for clusters 1, 2, and 3; while P
i1 , P

i2 , and P
i3 rep-

resent the items within clusters 1, 2, and 3. The closer the items within a cluster are to

the centroid, the smaller the value for WCSS. The smaller the WCSS, the more similar

items within a cluster are. As the value of k increases, the closer the items within each

cluster become and the smaller the total WCSS becomes. If we were to compute the

total WCSS for clusters created based on different values of k , we would get a convex

curve with a negative slope, as shown in Figure 12.10.

Practical Machine Learning in R410

As Figure 12.10 shows, as we increase k , not only does the value for WCSS go down,

but the reduction in WCSS for each unit increase in k goes down. At some point in the

curve, a visible bend occurs that represents the point at which increasing the value for

k no longer yields a significant reduction in WCSS. This point is known as the elbow, and

the k value at this point is usually expected to be the appropriate number of clusters for

the dataset. This technique of using the elbow of the WCSS curve to determine the right

number of clusters is known as the elbow method.

The factoextra package, which we previously used to visualize our clusters,

also provides an easy-to-use function called fviz_nbclust() for determining the

optimal number of clusters. The function takes three arguments. The first is the dataset

(maryland_college_scaled), the second is the clustering approach (kmeans), and the

last is the method of evaluation (wss). Note that for this function, the method of evalua-

tion wss means WCSS.

> fviz_nbclust(maryland_college_scaled, kmeans, method = "wss")

The result in Figure 12.11, as denoted by the two red circles, shows that we have two

possible values for k (4 or 7). This means that the optimal number of clusters for our data

can be either 4 or 7. However, before we decide on a final value for k , let’s take a look at

two additional statistical methods for determining the right number of clusters to see

what they tell us.

Elbow

1

2000

4000

6000

8000

10000

2 3 4 5

Number of Clusters (k)

W
CS

S

6 7 8

Figure 12.10 The elbow method

411Chapter 12: Grouping Data with Clustering

The Average Silhouette Method
The next statistical approach we consider is known as the average silhouette method. The

silhouette of an item is a measure of how closely the item is matched with other items

within the same cluster and how loosely it is with items in neighboring clusters. A sil-

houette value close to 1 implies that an item is the right cluster, while a silhouette value

close to –1 implies that it is in the wrong cluster. The average silhouette method com-

putes the average silhouette of all items in the dataset based on different values for k . If

most items have a high value, then the average will be high, and the clustering configura-

tion is considered appropriate. However, if many points have a low silhouette value, then

the average will also be low, and the clustering configuration is not optimal.

Similar to the elbow method, to use the average silhouette method, we plot the

average silhouette against different values of k . The k value corresponding to the high-

est average silhouette represents the optimal number of clusters. In R, we also use the

fviz_nbclust() for this method. However, instead of specifying wss for the method,

we specify silhouette.

> fviz_nbclust(maryland_college_scaled, kmeans, method = "silhouette")

Similar to what we got with the elbow method, the results of the average silhouette

method (see Figure 12.12) also suggest that both k 4 and k 7 provide the optimal

number of clusters.

1
0

10

To
ta

l W
ith

in
 S

um
 o

f S
qu

ar
e

20

30

Optimal number of clusters

2 3 4 5 6

Number of clusters k

7 8 9 10

Figure 12.11 Determining the appropriate number of clusters using the
elbow method

Practical Machine Learning in R412

The Gap Statistic
The third statistical approach we consider compares the difference between clusters

created from the observed data and clusters created from a randomly generated data-

set, known as the reference dataset. For a given k , the gap statistic is the difference in

the total WCSS for the observed data and that of the reference dataset. The optimal

number of clusters is denoted by the k value that yields the largest gap statistic. The

fviz_nbclust()function allows us to visualize the gap statistic for different values of k .

This time, we set the method to gap_stat.

> fviz_nbclust(maryland_college_scaled, kmeans, method = "gap_stat")

Clustering k = 1,2,..., K.max (= 10): .. done
Bootstrapping, b = 1,2,..., B (= 100) [one "." per sample]:
.. 50
.. 100

The result (see Figure 12.13) suggests the optimal number of clusters should be

either 1 or 7. These are the k values with the largest gap statistic. Based on the three

approaches that we considered, two suggest that the optimal number of clusters should

1

0.0

0.1Av
er

ag
e

si
lh

ou
et

te
 w

id
th

0.2

0.3

0.4

Optimal number of clusters

2 3 4 5 6

Number of clusters k

7 8 9 10

Figure 12.12 Determining the appropriate number of clusters using the average
silhouette method

413Chapter 12: Grouping Data with Clustering

be 4 or 7, and one suggests that the optimal number of clusters should be 1 or 7. This

means it is reasonable to choose either 4 or 7 as the final number of clusters.

It’s important to note that the statistical approaches we introduced here simply pro-

vide us with suggested values for k . We can view the approaches as a panel of experts

who look at a single problem from different perspectives. The most important thing to

consider when choosing a value for k is how reasonable the final clusters are to you. Con-

sidering that we have only 19 colleges in our dataset for the state of Maryland, setting

k 7 means that each cluster will have only two or three colleges on average. That

doesn’t provide us with a lot of room to compare colleges within a cluster, so we will use

k 4 instead. This provides us with about four to five colleges (on average) within each

cluster. Using this value for k , we re-create and visualize our clusters. See Figure 12.14.

> k_4 <- kmeans(maryland_college_scaled, centers = 4, nstart = 25)
> fviz_cluster(
 k_4,
 data = maryland_college_scaled,
 main = "Maryland Colleges Segmented by SAT Scores and Admission
Rates",
 repel = TRUE)

1

0.0

0.1

Ga
p

st
at

is
tic

 (k
) 0.2

0.3

Optimal number of clusters

2 3 4 5 6

Number of clusters k

7 8 9 10

Figure 12.13 Determining the appropriate number of clusters using the
gap statistic

Practical Machine Learning in R414

Strengths and Weaknesses of k-Means Clustering
Similar to other machine learning approaches, the k -means clustering approach has cer-

tain pros and cons associated with it. Understanding the strengths and weaknesses of

the approach is useful in deciding when it is or is not a good fit for the problem at hand.

Here are the strengths:

 • One of the reasons why the k -means clustering approach is so commonly used

in segmenting data into subgroups is because it has a wide set of real-world

applications.

 • The approach is also flexible and malleable in that all one needs to vary is

the value of k in order to change the number of subgroups that items are

grouped into.

 • The underlying mathematical principles behind k -means clustering (such as

Euclidean distance) are not difficult to understand.

Here are the weaknesses:

 • k -means clustering requires that the value for k be set by the user. Sometimes

choosing the right number of clusters requires additional knowledge about the

problem domain.

 • Because distance can be calculated only between numeric values, k - means clus-

tering works only with numeric data.

St John’s College

2

1

0

–1

–3 –2 –1 0 1 2

Maryland Colleges Segmented by SAT Scores and Admission Rates

sa
t_

av
g

Towson University

University of Maryland-Baltimore County

Maryland Institute College of Art
St Mary’s College of Maryland

McDaniel College

University of Maryland-College Park

Notre Dame of Maryland University

Johns Hopkins University

Washington Adventist University University of Maryland Eastern Shore

University of Baltimore

Coppin State University
Bowie State University

Frostburg State University

Morgan State University

Mount St Mary’s University
Stevenson University

admission_rate

cluster

Capitol Technology University

1

2

4

3

Figure 12.14 Visualization of the colleges in Maryland segmented into four clusters
based on average SAT score and admission rate

415Chapter 12: Grouping Data with Clustering

 • The algorithm is sensitive to outliers.

 • The k -means algorithm is not good at modeling clusters that have a complex geo-

metric shape (nonspherical clusters).

 • The simplicity of k -means clustering makes it less than ideal for modeling complex

relationships between items beyond the use of a distance measure.

 • The use of random or pseudorandom initial centroids means that the approach, to

some extent, relies on chance.

CASE STUDY: SEGMENTING SHOPPING
MALL CUSTOMERS
For the chapter case study, we will use a simulated dataset of 200 shopping mall cus-

tomers. Each customer record consists of a unique identifier (CustomerID), gender

(Gender), age (Age), annual salary (Income), and an assigned score, between 1 and 100,

based on the customer’s purchase habits and several other factors (SpendingScore).

Our goal is to segment customers based on Income and SpendingScore.

Let’s begin by importing our data using the read_csv() function from the

tidyverse package.

> library(tidyverse)
> mallcustomers <- read_csv("mallcustomers.csv")
> glimpse(mallcustomers)

Observations: 200
Variables: 5
$ CustomerID <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...
$ Gender <chr> "Male", "Male", "Female", "Female", "Female...
$ Age <dbl> 19, 21, 20, 23, 31, 22, 35, 23, 64, 30, 67,...
$ Income <chr> "15,000 USD", "15,000 USD", "16,000 USD", "...
$ SpendingScore <dbl> 39, 81, 6, 77, 40, 76, 6, 94, 3, 72, 14, 99...

Exploring and Preparing the Data
Based on the preview of our data, we see that the Income feature is stored as a string.

k -means clustering uses Euclidean distance to evaluate the distance between the features

of items. We can only calculate distance between numeric values. Therefore, we need

to convert the Income feature to a numeric value. To do so, we first need to remove the

substrings “,” and “USD” from the data. Then we can convert it to numeric. We use the

Practical Machine Learning in R416

str_replace_all() function from the stringr package to replace the substrings with

a null string (“”). We use the as.numeric() base R function to change the data type from

string to numeric.

> library(stringr)
> mallcustomers <- mallcustomers %>%
 mutate(Income = str_replace_all(Income," USD","")) %>%
 mutate(Income = str_replace_all(Income,",","")) %>%
 mutate(Income = as.numeric(Income))
> summary(mallcustomers)

 CustomerID Gender Age Income SpendingScore
 Min. : 1.00 Length:200 Min. :18.00 Min. : 15000 Min. : 1.00
 1st Qu.: 50.75 Class :character 1st Qu.:28.75 1st Qu.: 41500 1st Qu.:34.75
 Median :100.50 Mode :character Median :36.00 Median : 61500 Median :50.00
 Mean :100.50 Mean :38.85 Mean : 60560 Mean :50.20
 3rd Qu.:150.25 3rd Qu.:49.00 3rd Qu.: 78000 3rd Qu.:73.00
 Max. :200.00 Max. :70.00 Max. :137000 Max. :99.00

The summary statistics show that there is a significant difference in the scale of the

Income and SpendingScore features. Therefore, we need to normalize them. Before

we do so, we exclude the other features that are not useful for segmentation, and then

we use the scale() function to normalize our two features using the z-score normaliza-

tion approach.

> mallcustomers_scaled <- mallcustomers %>%
 select(-CustomerID, -Gender, -Age) %>%
 scale()
> summary(mallcustomers_scaled)

 Income SpendingScore
 Min. :-1.73465 Min. :-1.905240
 1st Qu.:-0.72569 1st Qu.:-0.598292
 Median : 0.03579 Median :-0.007745
 Mean : 0.00000 Mean : 0.000000
 3rd Qu.: 0.66401 3rd Qu.: 0.882916
 Max. : 2.91037 Max. : 1.889750

Clustering the Data
With our normalized features, we are now ready to cluster the data. As we discussed pre-

viously, the k -means clustering approach requires that a user specify how many clusters

(k) the data should be grouped into. There are several approaches to determining the

417Chapter 12: Grouping Data with Clustering

optimal value for k . We discussed three of the most commonly used ones—the elbow

method, the silhouette method, and the gap statistic. Using fviz_nbclust(), we obtain

a recommended value for k based on all three methods. See Figure 12.15.

> fviz_nbclust(mallcustomers_scaled, kmeans, method = "wss")
> fviz_nbclust(mallcustomers_scaled, kmeans, method = "silhouette")
> fviz_nbclust(mallcustomers_scaled, kmeans, method = "gap_stat")

1

0.40

0.45

Ga
p

st
at

is
tic

 (k
)

0.50

0.55

0.60
Gap Statistic

2 3 4 5 6

Number of clusters k

7 8 9 10

1

100

200

To
ta

l W
ith

in
 S

um
 o

f S
qu

ar
e

300

400
Elbow Method

2 3 4 5 6

Number of clusters k

7 8 9 10

1

0.0Av
er

ag
e

si
lh

ou
et

te
 w

id
th

0.2

0.4

Silhouette Method

2 3 4 5 6

Number of clusters k

7 8 9 10

Figure 12.15 All three statistical methods for determining the optimal number of
clusters recommend k = 6

Practical Machine Learning in R418

The results suggest that k 6 is the optimal number of clusters for the dataset. With

k set to 6, we create our final set of clusters and visualize the results to see which cluster

each of our mall customers belongs to.

> set.seed(1234)
> k_clust <- kmeans(mallcustomers_scaled, centers = 6, nstart = 25)
> fviz_cluster(
 k_clust,
 data = mallcustomers_scaled,
 main = "Mall Customers Segmented by Income and Spending Score",
 repel = TRUE)

Evaluating the Clusters
We see from the cluster visualization (see Figure 12.16) that customers in clusters 1 and 2

have above average spending scores and above average income. These are high-earning

big spenders. The customers in cluster 3 are also high earners, but they have below aver-

age spending scores. These are high-earning low spenders. These customers provide rev-

enue opportunity for a business. Cluster 4 represents lower-earning and lower-spending

customers, while cluster 5 represents the average customer with average income and

average spending score. The customers in cluster 6 are customers with above average

spending but below average income. If these segments were to be used for evaluating

credit risk, these customers would be the riskiest segment.

We can also get additional insight into the demographics of the customers in each

segment by assigning cluster labels to the original data and evaluating the gender distri-

bution and mean age for each cluster. To help with the evaluation of gender distribution,

we create two dummy variables—Male and Female—to represent the Gender feature.

> mallcustomers %>%
 mutate(cluster = k_clust$cluster) %>%
 mutate(Male = ifelse(Gender == "Male", 1, 0)) %>%
 mutate(Female = ifelse(Gender == "Female", 1, 0)) %>%
 select(cluster, Male, Female, Age) %>%
 group_by(cluster) %>%
 summarise_all("mean")

A tibble: 6 x 4
 cluster Male Female Age
 <int> <dbl> <dbl> <dbl>
1 1 0.483 0.517 32.9
2 2 0.4 0.6 32.2
3 3 0.543 0.457 41.1

2

1

0

–1

–2
–1 0 1 2 3

Mall Customers Segmented by Income and Spending Score

Sp
en

di
ng

 S
co

re

Income

cluster
1
2
3
4
5
6

Figure 12.16 Shopping mall customers segmented into six clusters based on their spending score
and income

Practical Machine Learning in R420

4 4 0.391 0.609 45.2
5 5 0.407 0.593 42.7
6 6 0.409 0.591 25.3

The results show similar gender distribution (60 percent female, 40 percent male)

across all clusters except for clusters 1 and 3. In those clusters, we see a slightly more

balanced gender distribution, with cluster 1 showing a slight skew toward females and

cluster 3 showing a skew toward males.

The average age for each cluster also provides some additional information. The aver-

age age of customers in clusters 3, 4, and 5 is between 41 and 45. These customers tend

to be more conservative in their spending (see Figure 12.16). Customers in both clusters

1 and 2 have an average age of 32. These are the high-earning high spenders. With an

average age of 25, customers in cluster 6 tend to be younger. Overall, the demographic

information seems to suggest that the older customers are, the less they tend to spend

on average.

EXERCISES
1. Using the college dataset from this chapter, perform clustering that looks at the

average faculty salary and annual tuition rates for schools located in Indiana. Choose

k=3 and produce a visualization of your clusters.

2. Use the techniques described in this chapter to select two possible optimal values for

k for the clustering problem you coded in Exercise 1. Justify your answer.

3. Generate cluster diagrams for the two values of k that you selected in Exercise 2.

Which one of these do you believe is the best result? Why?

NOTE
1. For more information on the k-means++ approach, refer to the following: Arthur, D.,

Vassilvitskii, S. “k-means++: The advantages of careful seeding.”In: Proceedings of the

eighteenth annual ACM-SIAM symposium on discrete algorithms. 2007:1027–1035.

421

Index

Symbols
= (equal sign), 78
*** (asterisks), 126
$ operator, 46–47

A
abline() function, 336
accuracy

of algorithms, 16
association rules and, 373–374

accuracy paradox, 83
actionable association rules, 372
actual values, 205
adaptive boosting, 359
additive smoothing, 261–262
adjusted R-squared, 122–123
aes() function, 70
affinity analysis, 370–371
Agrawal, Rakesh, 375
AI (artificial intelligence), relationship

between deep learning, machine
learning and, 7

Akaike Information Criterion (AIC),
195

algorithms
about, 5–6
supervised, 14
unsupervised, 14

allocation function, 354
analyzing

association rules, 382–385

association rules in Identifying
Grocery Purchase Patterns case
study, 389–393

clusters, 407–409
data in Identifying Grocery Purchase

Patterns case study, 418–420
decision tree models, 295–298
model in Income Prediction case

study, 215–216
models, 16–24, 120–123, 125–134,

190–198, 238–239
models in Naïve Bayes, 267–269
models in Revisiting the Donor

Dataset case study, 248
models in Revisiting the Heart

Disease Detection Problem case
study, 273–274

models in Revisiting the Income Pre-
diction Problem case stud, 302–304

numeric prediction, 338
Anderson-Darling test, 127
antecedent, 371
anti-monotone property of support, 375
apriori algorithm, 374–376
apriori() function, 381, 389
A-priori probabilities, 272–273
area under the curve (AUC), 336–339
arrange() function, 130–131
artificial intelligence (AI), relationship

between deep learning, machine
learning and, 7

arules package, 377, 378, 383–384, 386
as.character() function, 50–51

Practical Machine Learning in R, First Edition. Fred Nwanganga and Mike Chapple.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Index422

as.factor() function, 50–51, 148, 237
as.integer() function, 50–51
as.logical() function, 50–51
as.numeric() function, 50–51, 416
association rules

about, 14, 16, 369–370
apriori algorithm, 374–376
case study for, 386–393
discovering, 376–386
evaluating, 382–385
generating, 377–382
identifying strong, 373–374
market basket analysis, 370–371
overview of, 371–376
strengths and weaknesses, 386

asterisks (***), 126
AUC (area under the curve), 336–339
autocorrelation, residual, 129–130
automated parameter tuning, 342–348
average silhouette method, 411–412

B
backward selection, 142
bagging (bootstrap aggregating),

355–358
balancing data, 246–247
Bayes theorem, 256–257
Bayesian methods, 253
bias errors, 20–22
bin boundaries, smoothing with, 80
bin means, smoothing with, 79–80
binary classification problem, 82–83
binomial logistic regression

model, 176–190
boosting, 358–361
bootstrap aggregating, 355–358
bootstrap sampling, 318–321
bootstrapping, 93, 318–321
branches, in decision trees, 280
Breusch-Pagan statistical test, 128
building

association rules, 377–382

association rules in Identifying
Grocery Purchase Patterns case
study, 389

classification tree models, 291–295
clusters, 404–406
model in Revisiting the Income

Prediction Problem case study, 302
models in Revisiting the Donor

Dataset case study, 248
models in Revisiting the Heart

Disease Detection Problem case
study, 272–273

C
c() function, 45
call, 193
Capital Bike Share example, 104–106
car package, 129–130
caret package, 313, 324, 331, 343–344,

345, 347, 356, 359, 362, 363
caretEnsemble package, 362, 363, 365
caretList() function, 363
caretStack() function, 365
CART (classification and regression

trees), 281, 291
case studies

for association rules, 386–393
clustering, 415–420
decision trees, 299–304
Identifying Grocery Purchase Patterns

about, 386
evaluating association

rules, 389–393
exploring data, 387–389
generating association rules, 389
importing data, 387
preparing data, 387–389

Income Prediction
about, 207
evaluating models, 215–216
exploring data, 208–212
importing data, 208

423Index

preparing data, 208–212
training models, 212–215

k-nearest neighbors, 241–248
linear regression, 147–161
logistic regression, 207–216
Naïve Bayes, 269–274
Predicting Blood Pressure

about, 147
exploring data, 149–151
fitting multiple linear regression

model, 152–161
fitting simple linear regression

model, 151–152
importing data, 148

Revisiting the Donor Dataset
about, 241
building models, 248
evaluating models, 248
exploring data, 242–247
importing data, 241–242
preparing data, 242–247

Revisiting the Heart Disease
Detection Problem

about, 269–270
building models, 272–273
evaluating models, 273–274
exploring data, 270–272
importing data, 270
preparing data, 270–272

Revisiting the Income Predic-
tion Problem

about, 299–300
building model, 302
evaluating model, 302–304
exploring data, 300–302
importing data, 300
preparing data, 300–302

Segmenting Shopping Mall Customers
about, 415
clustering data, 417–418
evaluating clusters, 418–420
exploring data, 415–416
preparing data, 415–416

categorical features, handling, 235–237
categorical variables, 137–139
categories, of association rules, 372
character data type, 44
choosing

appropriate value for k, 231–232
cutoff values, 205
models, 14–16
numbers of clusters, 409–414
split values, 284
variables, 141–145

class conditional independence, 258
class distribution, 83
class() function, 47
class imbalance

about, 82–84
handling, 188–189

class package, 237–238, 248
classification

about, 169–170
with Naïve Bayes, 257–260
problems with, 165 (See also logistic

regression)
for responses, 206
unsupervised, 397

classification and regression trees
(CART), 281, 291

classification techniques
about, 14–15
errors in, 17–19

classification tree, 279
classification tree models,

building, 291–295
classifying

spam email, 252–253
unlabeled data, 237–238

cleaning data, 75–84
cluster centroid, 401
clustering

about, 395–399
analyzing clusters, 407–409
case study for, 415–420
choosing number of clusters, 409–414

Index424

creating clusters, 404–406
data in Identifying Grocery Purchase

Patterns case study, 417–418
k-means, 399–415
real-world example for, 403–415
strengths and weaknesses of, 414–415

clustering algorithms
about, 13, 16
smoothing by, 80–81

code names, for R language, 27
coef() function, 193–194
coefficients, 114, 121–122, 193–195
coercion, 46
Cohen’s Kappa coefficient, 323–326
cold-deck imputation, 76
collecting data, 55–60
col_names argument, 57
col_types argument, 57–58
columns

about, 61–62
categorical, 137–139
extracting, 99–100
interactions between, 139–141
projecting, 99–100
relationships between, 106–115
selecting, 99, 141–145
in supervised learning, 9

column_to_rownames() function, 405
combination function, 354
comma-delimited files, reading, 56–59
commands, history of, 32
comma-separated value (CSV) files,

reading, 56–59
comparison visualization, 69–70
compiler, 27
components, of vectors, 45
composition visualizations, 73–74
Comprehensive R Archive Network

(CRAN), 26, 38
conditional probability, 254, 256–257, 260
confidence, association rules

and, 373–374

confusion matrix, 197, 321–322
confusionMatrix() function, 347
consequent, 371
console pane (RStudio), 30–32
continuous decision tree, 279
continuous features, 61, 62, 262
continuous response, 15
controlling

categorical features, 235–237
class imbalance, 188–189
missing data, 178–182, 234, 243–245
missing values, 75
multicollinearity, 198–204
noise, 79
outliers, 81–82, 182–186

convergence, 401–402
converting data types, 50–51
Cook’s distance threshold, 130–131
coord_flip() command, 73–74
cor() function, 110, 151, 198
correlation

about, 106–114
residual autocorrelation, 129–130
visualizing with corrplot

function, 111–114
correlation coefficient, 106–111
corrplot() function, 111–114, 198
corrplot package, 198
corrplot.mixed() function, 113–114
cov() function, 118
covariance, 107
coverage, association rules and, 373
Cramer-vin Mises test, 127
CRAN (Comprehensive R Archive

Network), 26, 38
createDataPartition() function, 313, 363
creating

association rules, 377–382
association rules in Identifying

Grocery Purchase Patterns case
study, 389

classification tree models, 291–295
clusters, 404–406

clustering (continued)

425Index

model in Revisiting the Income Predic-
tion Problem case study, 302

models in Revisiting the Donor
Dataset case study, 248

models in Revisiting the Heart
Disease Detection Problem case
study, 272–273

cross-validation method
about, 311–317
for test and validation datasets, 23–24

CSV. See comma-separated value
(CSV) files

curse of dimensionality, 99
customized parameter tuning, 348–353
cutoff values, choosing, 205

D
data

balancing, 246–247
classifying unlabeled, 237–238
cleaning, 75–84
clustering in Identifying Grocery Pur-

chase Patterns case study, 417–418
collecting, 55–60
describing, 61–69
discovering knowledge in, 5–7
evaluating in Identifying Grocery Pur-

chase Patterns case study, 418–420
exploration of

about, 60
describing data, 61–69
in Identifying Grocery Purchase

Patterns case study, 387–389
in Income Prediction case

study, 208–212
in Predicting Blood Pressure case

study, 149–151
in Revisiting the Donor Dataset

case study, 242–247
in Revisiting the Heart Disease

Detection Problem case
study, 270–272

in Revisiting the Income
Prediction Problem case
study, 300–302

in Segmenting Shopping Mall
Customers case study, 415–416

visualizing data, 69–74
grouping (See clustering)
importing, 56–60
importing in Identifying Grocery

Purchase Patterns case study, 387
importing in Income Prediction case

study, 208
importing in Predicting Blood

Pressure case study, 148
importing in Revisiting the Donor

Dataset case study, 241–242
importing in Revisiting the Heart

Disease Detection Problem case
study, 270

importing in Revisiting the Income
Prediction Problem case study,
300

labeling unlabeled,
230–231

management of
about, 53–54
data collection, 55–60
tidyverse, 54–55

normalizing, 234–235, 245–246
preparation of

about, 74
cleaning data, 75–84
in Identifying Grocery Purchase

Patterns case study, 387–389,
415–416

in Income Prediction case
study, 208–212

reducing data, 92–100
in Revisiting the Donor Dataset

case study, 242–247
in Revisiting the Heart Disease

Detection Problem case
study, 270–272

Index426

in Revisiting the Income
Prediction Problem case
study, 300–302

transforming data, 84–92
quantity of, 56
reducing, 92–100
relevance of, 55–56
splitting, 187, 237, 246–247,

266–267, 294–295
transforming, 84–92
visualizing, 69–74

data frame, 46
data types

converting, 50–51
R language, 44–52
testing, 47–50

data.frame() function, 91
datasets, partitioning, 22–24
decimal scaling, 84–86
decision nodes, 280
decision tree forests, 356
decision trees

about, 277–278
building classification tree

models, 291–296
case study for, 299–304
choosing split values, 284
entropy, 285–289
evaluating models, 296–298
Gini impurity, 290
information gain, 286–289
overview of, 279–299
pruning, 290–291
real-world example for, 278–279
recursive partitioning, 281–285
regression trees, 298
strengths and weaknesses of

models, 298–299
deep learning, relationship between

artificial intelligence, machine
learning and, 7

delimited files, reading, 60
dendogram, 397

density, of data, 62
Department of Building and Safety, 278
dependencies, 39
dependent variables, 62
descriptive statistics, 63–69
deviance, 195
diagnostics, 122, 195
dichotomization, 89
dimensionality, of data, 62
dimensionality reduction, 99–100
discovering

association rules, 376–386
knowledge in data, 5–7

discrete decision tree, 279
discrete feature, 61–62
discretization, 89
distribution visualizations, 72–73
distributions

skewed, 183–184
symmetric, 183–184

distributiuon-based imputation, 76
DMwR package, 313, 345
documentation, for packages, 40–41
dplyr package, 54, 59, 65, 78, 91, 130–131,

138, 234, 380
dummies package, 236
dummy coding, 89–92
dummy.data.frame() function, 90, 92,

236
durbinWatsonTest() function, 129–130

E
editing scripts in RStudio, 34
Elbow method, 409–411
The Elements of Statistical Learning

(Hastie), 100
Enron Corporation, 252–253
ensemble methods

about, 354–355
bagging (bootstrap aggregating),

355–358
boosting, 358–361
stacking, 361–366

data (continued)

427Index

entropy, 285–289
environment, RStudio Desktop, 29–37
environment pane (RStudio), 34–35
equal sign (=), 78
errors

in classification techniques, 17–19
in regression techniques, 19–20
types of, 20–22

estimating future performance, 308–321
ethics, data collection and, 56
Euclidean distance, 228–229, 396, 402
evaluating

association rules, 382–385
association rules in Identifying

Grocery Purchase Patterns case
study, 389–393

clusters, 407–409
data in Identifying Grocery Purchase

Patterns case study, 418–420
decision tree models, 295–298
model in Income Prediction case

study, 215–216
models, 16–24, 120–123, 125–134,

190–198, 238–239
models in Naïve Bayes, 267–269
models in Revisiting the Donor

Dataset case study, 248
models in Revisiting the Heart

Disease Detection Problem case
study, 273–274

models in Revisiting the Income
Prediction Problem case
stud, 302–304

numeric prediction, 338
events, 253–254
examples, 61
exp() function, 193–194
expand.grid() function, 350
exploring

data in Identifying Grocery Purchase
Patterns case study, 387–389

data in Income Prediction case
study, 208–212

data in Predicting Blood Pressure case
study, 149–151

data in Revisiting the Donor Dataset
case study, 242–247

data in Revisiting the Heart Disease
Detection Problem case
study, 270–272

data in Revisiting the Income Predic-
tion Problem case study, 300–302

data in Segmenting Shopping Mall
Customers case study, 415–416

extreme gradient boosting (XGBoost), 359

F
facet_wrap() function, 150
factoextra package, 410
factor data type, 44
factor() function, 47
false negative errors, 17–19
false positive errors, 17–19
false positive rate (FPR), 18, 333–334
features

about, 61–62
categorical, 137–139
extracting, 99–100
interactions between, 139–141
projecting, 99–100
relationships between, 106–115
selecting, 99, 141–145
in supervised learning, 9

Federal Energy Regulatory
Commission, 252–253

file argument, 57
Files tab (RStudio), 36
filter() function, 68, 234
finding nearest neighbors, 228–230
fitting

multiple linear regression
model, 152–161

simple linear regression
model, 151–152

flags, 44

Index428

folds, 311
forest, 356
forward selection, 142
FPR (false positive rate), 18, 333–334
frequency, of feature values, 63
frequent itemsets, 373
F-score/-measure, 328
F-statistic, 123
functions

abline(), 336
aes(), 70
allocation, 354
apriori(), 381, 389
arrange(), 130–131
as.character(), 50–51
as.factor(), 50–51, 148, 237
as.integer(), 50–51
as.logical(), 50–51
as.numeric(), 50–51, 416
c(), 45
caretList(), 363
caretStack(), 365
class(), 47
coef(), 193–194
column_to_rownames(), 405
combination, 354
confusionMatrix(), 347
cor(), 110, 151, 198
corrplot(), 111–114, 198
corrplot.mixed(), 113–114
cov(), 118
createDataPartition(), 313, 363
data.frame(), 91
dummy.data.frame(), 90, 92, 236
durbinWatsonTest(), 129–130
exp(), 193–194
expand.grid(), 350
facet_wrap(), 150
factor(), 47
filter(), 68, 234
fviz_cluster(), 407

fviz_nbclust(), 410, 411, 412, 417
gather(), 150, 263–264
geom_bar(), 73–74
geom_boxplot(), 70
geom_histogram(), 72–73
geom_point(), 71
glimpse(), 59, 148, 176, 292, 404
glm(), 190, 193
head(), 263, 380
ifelse(), 78
inspect(), 383
is.integer(), 49
is.logical(), 49
is.na(), 51
is.numeric(), 49
itemFrequency(), 379–380, 388
keep(), 150, 178
kmeans(), 406, 407
knn(), 237–238, 247, 248
length(), 48
link, 190
lm(), 119, 122, 125, 139
logistic, 172
max(), 45, 46
mean(), 45, 78, 86–87, 118, 127
median(), 45, 78
min(), 45
modelLookup(), 344, 356, 359
naiveBayes(), 267, 272
normalize, 245–246
ols_plot_cooksd_chart(), 130
ols_plot_resid_fit(), 128
ols_plot_resid_hist(), 127
ols_step_both_p(), 142–143, 159
ols_vif_tol(), 134
optimalCutoff(), 205
performance(), 336
plot(), 336
posPredValue(), 331
predict(), 267–268, 335, 347
prediction(), 335

429Index

prop.table(), 67, 68, 178
read_csv(), 57, 58, 59, 148, 176, 208,

300, 404, 415
read_delim(), 60
read.transactions(), 377
read_tsv(), 60
recode(), 91, 210–211, 362
resamples(), 364
revalue(), 138
rpart(), 295, 302, 342, 348, 350
rpart.plot(), 295–298, 302–303
sample(), 93–95, 187, 237, 271–272,

294–295
sample.split(), 97–98
scale(), 87, 406, 416
select(), 66–67, 68, 294
sensitivity(), 331
seq(), 350
set.seed(), 94, 313, 345
slice(), 264–265, 380
SMOTE(), 188–189, 212, 247,

302, 313, 345
sort(), 383–384
specificity(), 331
str_replace_all(), 415–416
subset(), 98, 384–385
sum(), 45, 46
summary(), 63–66, 120, 125, 137,

145, 149, 156, 177, 190–193, 233,
234–235, 270–271, 292–293, 300–
301, 364, 378, 382, 387, 388–389

table(), 66–67, 68, 178, 197–198,
209–210, 238, 325

tibble(), 380
train(), 313–314, 343, 345, 346, 347,

348–349, 351, 353
trainControl(), 314, 316, 317, 320, 357
transformation, 190
unlist(), 337
var(), 118
vif(), 200

fuzzy clustering, 398
fviz_cluster() function, 407
fviz_nbclust() function, 410,

411, 412, 417

G
gain ratio, 289
gap statistic, 412–414
gather() function, 150, 263–264
generalized linear model (GLM), 190
generating

association rules, 377–382
association rules in Identifying

Grocery Purchase Patterns case
study, 389

classification tree models, 291–295
clusters, 404–406
model in Revisiting the Income

Prediction Problem case study, 302
models in Revisiting the Donor

Dataset case study, 248
models in Revisiting the Heart

Disease Detection Problem case
study, 272–273

geom_bar() function, 73–74
geom_boxplot() function, 70
geom_histogram() function, 72–73
geom_point() function, 71
ggplot package, 71, 73–74
ggplot2 (Wickham), 70
ggplot2 package, 54, 70
Gini impurity, 290
glimpse() function, 59, 148, 176, 292,

404
GLM (generalized linear model), 190
glm() function, 190, 193
goodness-of-fit, 307, 308
gradient boosting, 359
grammar of graphics, 69–70
The Grammar of Graphics (Wilkinson), 70

Index430

grid search, 343
Grolemund, Garrett (author)

R for Data Science, 55
ground truth, 55
grouping data. See clustering

H
handling

categorical features, 235–237
class imbalance, 188–189
missing data, 178–182, 234, 243–245
missing values, 75
multicollinearity, 198–204
noise, 79
outliers, 81–82, 182–186

hard voting, 355–356
Hastie, Trevor (author)

The Elements of Statistical
Learning, 100

head() function, 263, 380
Help tab (RStudio), 36, 37
heterogeneous ensemble methods, 354
high intraclass similarity, 396
holdout method

about, 309–310
for test and validation datasets, 23

homogeneous ensemble methods, 354
homoscedasticity of residuals, 128–129
hot-deck imputation, 76
hyperparameter tuning. See param-

eter tuning
hyperparameters, 342

I
Identifying Grocery Purchase Patterns

case study
about, 386
evaluating association rules, 389–393
exploring data, 387–389
generating association rules, 389

importing data, 387
preparing data, 387–389

identifying strong association
rules, 373–374

ifelse() function, 78
IF-THEN format, 371
importing

data, 56–60
data in Identifying Grocery Purchase

Patterns case study, 387
data in Income Prediction case

study, 208
data in Predicting Blood Pressure case

study, 148
data in Revisiting the Donor Dataset

case study, 241–242
data in Revisiting the Heart Disease

Detection Problem case study, 270
data in Revisiting the Income

Prediction Problem case study, 300
improving

model performance, 341–366
models, 135–145, 198–207, 239–240

imputation
cold-deck, 76
distributiuon-based, 76
hot-deck, 76
match-based, 76
mean, 77–79
median, 77–79
predictive, 77
random, 76

Income Prediction case study
about, 207
evaluating models, 215–216
exploring data, 208–212
importing data, 208
preparing data, 208–212
training models, 212–215

independent variables, 62
inexplicable association rules, 372
influential point analysis, 130

431Index

information gain, 286–289
inspect() function, 383
installing packages, 38–39
install.packages() command, 38–39, 40
instances, 61
integer data type, 44
interaction effect, 140
interactions, between variables, 139–141
Internet resources

R Project, 27
RStudio Desktop, 29

interpreted language, 27
interquartile ranges, 184
intrinsic information, 289
irreducible rrors, 20–22
is.integer() function, 49
is.logical() function, 49
is.na() function, 51
is.numeric() function, 49
itemFrequency() function, 379–380, 388
itemset, 371

J
joint probability, 255–256

K
Kappa statistic, 323–326
keep() function, 150, 178
Kendall correlation distance, 403
k-fold cross validation, 311–315
k-means clustering, 399–415
kmeans() function, 406, 407
k-nearest neighbors

about, 223–224
case study for, 241–248
choosing appropriate value for

k, 231–232
evaluating models, 238–239
finding nearest neighbors, 228–230
improving models, 239–241

labeling unlabeled data, 230–231
model for, 232–238
overview of, 226–249
predicting numerical responses, 239
real-world example for, 224–226
strengths and weaknesses, 241

k-NN. See k-nearest neighbors
knn() function, 237–238, 247, 248
knowledge, discovering in data, 5–7
Kolmogorov-Smirnov test, 127

L
labeling unlabeled data, 230–231
labels, in supervised learning, 9
lazy learners, 223–224
leaf nodes, 280
leave-group-out cross-validation

(LGOCV), 317
leave-one-out cross-validation

(LOOCV), 315–316
length() function, 48
level, 44
LGOCV (leave-group-out cross-

validation), 317
library() command, 39–40, 58
lift, asociation rules and, 374
likelihood, 257, 258
likelihood P, 258
linear regression

about, 81, 103–104
case study in, 147–161
multiple, 124–147
real-world example of, 104–106
relationships between variables,

106–115
simple, 115–123

link function, 190
lm() function, 119, 122, 125, 139
loading packages, 39–40
loans, 8–9
log transformation, 88

Index432

logical data type, 44
logistic function, 172
logistic regression

about, 165–166, 170–172
binomial logistic regression

model, 176–190
case study for, 207–216
classification, 169–170
odds ratio, 172–175
process of, 170–207
real-world example for, 166–169

log-odds, 174–175
LOOCV (leave-one-out cross-

validation), 315–316
low interclass similarity, 396
lubridate package, 54

M
machine learning (ML)

about, 3–4
relationship between deep learning,

artificial intelligence and, 7
techniques of, 7–14

Machine Learning Repository, 224
MAE (mean absolute error), 338
majority class, 83
managing

categorical features, 235–237
class imbalance, 188–189
data

about, 53–54
data collection, 55–60
tidyverse, 54–55

missing data, 178–182, 234, 243–245
missing values, 75
multicollinearity, 198–204
noise, 79
outliers, 81–82, 182–186

Manhattan distance, 403
marginal likelihood, 257
market basket analysis, 370–371
market basket problem, 14

market segmentation problem, 13
match-based imputation, 76
max() function, 45, 46
maximum likelihood estimation

(MLE), 172
Maximum Likelihood Estimation and

Inference (Millar), 172
mean, 63
mean absolute error (MAE), 338
mean() function, 45, 78, 86–87, 118, 127
mean imputation, 77–79
median, 63
median() function, 45, 78
median imputation, 77–79
meta-model, 362
Millar, Russel B. (author)

Maximum Likelihood Estimation and
Inference, 172

min() function, 45
min-max-normalization, 87–88,

229, 245–246
minority class, 83
misclassification rate, 16
missing data/values

about, 51–52
handling, 75, 178–182, 234, 243–245

mixed selection, 142
ML. See machine learning (ML)
MLE (maximum likelihood estimation),

172
modelLookup() function, 344, 356, 359
models

binomial logistic regression, 176–190
building in Revisiting the Donor

Dataset case study, 248
building in Revisiting the Heart

Disease Detection Problem case
study, 272–273

building in Revisiting the Income
Prediction Problem case study, 302

decision tree, evaluating, 295–298
evaluating, 16–24, 120–123, 125–134,

190–198, 238–239

433Index

evaluating in Income Prediction case
study, 215–216

evaluating in Naïve Bayes, 267–269
evaluating in Revisiting the Donor

Dataset case study, 248
evaluating in Revisiting the Heart

Disease Detection Problem case
study, 273–274

evaluating in Revisiting the Income
Prediction Problem case
stud, 302–304

improving, 135–145, 198–207, 239–240
k-nearest neighbors, 232–238
multiple linear regression, 124–145
Naïve Bayes, 263–267
selecting, 14–16
training, 190, 267, 295
training in Income Prediction case

study, 212–215
Monte Carlo cross-validation, 316–318
multicollinearity

about, 133–134
handling, 198–204

multinomial logistic regression, 206
multiple linear regression

about, 124
fitting model, 152–161
model evaluation, 125–134
model for, 124–125
model improvement, 135–145
strengths and weaknesses, 146–147

multiple R-squared, 122–123

N
naïve Bayes

about, 251–252
additive smoothing, 261–262
building models, 272–273
case study for, 269–274
classification with, 257–260
conditional probability, 256–257
continuous features in, 262

evaluating models, 267–269, 273–274
exploring data, 270–272
importing data, 270
joint probability, 255–256
model for, 263–267
overview of, 253–269
preparing data, 270–272
probablity, 254–255
real-world example for, 252–253
slice() command, 265
strengths and weaknesses of

classifier, 269
naiveBayes() function, 267, 272
National Health and Nutrition

Examination Survey (NHANES), 147
neural networks, 7
NMF (non-negative matrix factorization),

99–100
noise, handling, 79
nonlinear relationships, 135–137
non-negative matrix factorization

(NMF), 99–100
normality of residuals, 127–128
normalization

of data, 84, 234–235, 245–246
min-max, 87–88
min-max-, 229
min-max, 245–246
zero mean, 86–87
z-score, 86–87

normalize function, 245–246
null deviance, 195
numeric data type, 44
numeric prediction, evaluating, 338
numerical responses, predicting, 239

O
observations, 61
odds ratio, 172–175
OLS (ordinary least squares)

method, 116–119
ols_plot_cooksd_chart() function, 130

Index434

ols_plot_resid_fit() function, 128
ols_plot_resid_hist() function, 127
olsrr package, 127–128, 128–129,

130, 134, 142
ols_step_both_p() function, 142–143, 159
ols_vif_tol() function, 134
one-hot encoding, 89–92
optimalCutoff() function, 205
ordered factor data type, 44
ordinary least squares (OLS)

method, 116–119
outliers, handling, 81–82, 182–186
overfitting, 21, 284
over-sampling, 84

P
packages

arules, 377, 378, 383–384, 386
car, 129–130
caret, 313, 324, 331, 343–344, 345,

347, 356, 359, 362, 363
caretEnsemble, 362, 363, 365
class, 237–238, 248
corrplot, 198
DMwR, 313, 345
documentation for, 40–41
dplyr, 54, 59, 65, 78, 91, 130–131,

138, 234, 380
dummies, 236
factoextra, 410
ggplot, 71, 73–74
ggplot2, 54, 70
installing, 38–39
loading, 39–40
lubridate, 54
olsrr, 127–128, 128–129, 130, 134, 142
purrr, 54
R language, 38–41
randomForest, 356
readr, 54, 56, 57, 59, 60, 300, 404
RMwR, 212

ROCR, 335–336
rpart, 295, 302, 343–344
rpart.plot, 302–303
stats, 184, 190, 198, 267–268, 406
stringr, 54, 415–416
tibble, 54, 380, 405
tidyr, 54, 263
tidyverse, 54–55, 178, 208, 300, 380,

404, 405, 415
xgboost, 360

Packages tab (RStudio), 36, 37
parameter tuning

about, 342
automated, 342–348
customized, 348–353

partitioning
datasets, 22–24
recursive, 281–285

patterns. See association rules
PCA (principal component analysis),

99–100
Pearson’s correlation coefficient,

106–111, 403
performance (model)

about, 307–308
area under the curve (AUC), 336–339
automated parameter tuning, 342–348
bagging, 355–358
boosting, 358–361
bootstrap sampling, 318–321
confusion matrix, 321–322
cross-validation method, 311–317
customized parameter

tuning, 348–353
ensemble methods, 354–366
evaluating numeric prediction, 338
improving, 341–366
Kappa statistic, 323–326
parameter tuning, 342–353
precision, 326–328
real-world example for, 308–321
recall, 326–328

435Index

receiver operating characteristic
(ROC) curve, 333–336

sensitivity, 328–332
specificity, 328–332
stacking, 361–366
visualizing, 332–339

performance() function, 336
pipe, 67–68
plot() function, 336
plots pane (RStudio), 36–37
polynomial regression, 135
population, 92
posPredValue() function, 331
posterior probability, 256
post-pruning, 290–291
precision, in model performance, 326–328
predict() function, 267–268, 335, 347
predicted values, 205
Predicting Blood Pressure case study

about, 147
exploring data, 149–151
fitting multiple linear regression

model, 152–161
fitting simple linear regression

model, 151–152
importing data, 148

predicting numerical responses, 239
prediction() function, 335
predictive accuracy, 195–198, 307–308.

See also performance (model)
predictive imputation, 77
predictors, 114
preparing

data in Identifying Grocery
Purchase Patterns case study,
387–389, 415–416

data in Income Prediction case
study, 208–212

data in Revisiting the Donor Dataset
case study, 242–247

data in Revisiting the Heart Dis-
ease Detection Problem case
study, 270–272

data in Revisiting the Income Predic-
tion Problem case study, 300–302

principal component analysis
(PCA), 99–100

prior probability, 256
probability

about, 174–175, 254–255
A-priori, 272–273
conditional, 256–257
joint, 255–256

propensities, 332
prop.table() function, 67, 68, 178
pruning decision trees, 290–291
purrr package, 54

Q
quantity, of data, 56
Quinlan, J. Ross (computer scientist), 281

R
R for Data Science (Wockham and

Grolemund), 55
R language

about, 25–27
code names for, 27
components of, 27–28
data types in, 44–52
packages, 38–41

R Project (website), 27
R scripts

running, 41–43
writing, 41–43

random component, 190
random cross-validation, 316–318
random forests, 356
random imputation, 76
random initialization trap, 400
randomForest package, 356
read_csv() function, 57, 58, 59, 148, 176,

208, 300, 404, 415

Index436

read_delim() function, 60
reading

comma-delimited files, 56–59
delimited files, 60

readr package, 54, 56, 57, 59, 60, 300, 404
read.transactions() function, 377
read_tsv() function, 60
recall, in model performance, 326–328
receiver operating characteristic (ROC)

curve, 333–336
recode() function, 91, 210–211, 362
records, 61
recursive partitioning, 281–285
reducing data, 92–100
reference dataset, 412
regression. See also linear regression

about, 103
multinomial logistic, 206
polynomial, 135
smoothing by, 81

regression analysis, 114–115
regression techniques

about, 14, 15
errors in, 19–20

regression trees, 279, 298
reinforcement learning, 14
relationship visualizations, 70–72
relevance, of data, 55–56
repeated holdout, 311
resamples() function, 364
resampling, 311
residual autocorrelation, 129–130
residual deviance, 195
residual diagnostics, 127
residual standard error (RSE), 122
residual sum of squares, 20, 116, 117
residual value, 20
residuals

about, 121
homoscedasticity of, 128–129
normality of, 127–128
zero mean of, 127

resolution, of data, 62
resources, Internet

R Project, 27
RStudio Desktop, 29

response variable, 114
resubstitution error, 308
revalue() function, 138
Revisiting the Donor Dataset case study

about, 241
building models, 248
evaluating models, 248
exploring data, 242–247
importing data, 241–242
preparing data, 242–247

Revisiting the Heart Disease Detection
Problem case study
about, 269–270
building models, 272–273
evaluating models, 273–274
exploring data, 270–272
importing data, 270
preparing data, 270–272

Revisiting the Income Prediction Problem
case study
about, 299–300
building model, 302
evaluating model, 302–304
exploring data, 300–302
importing data, 300
preparing data, 300–302

RMSE (root mean squared error), 239, 338
RMwR package, 212
ROC (receiver operating characteristic)

curve, 333–336
ROCR package, 335–336
root mean squared error (RMSE), 239, 338
root node, 279–280
rpart() function, 295, 302, 342, 348, 350
rpart package, 295, 302, 343–344
rpart.plot() function, 295–298, 302–303
rpart.plot package, 302–303
RSE (residual standard error), 122

437Index

RStudio
about, 25–26, 27
components of, 28–37
running scripts, 41–43
writing scripts, 41–43

RStudio Desktop
about, 28–29
environment, 29–37

RStudio Server, 29
Run button, 42, 43
running R scripts, 41–43

S
sample, 92
sample() function, 93–95, 187, 237,

271–272, 294–295
sample set vector, 94
sample.split() function, 97–98
sampling

about, 92
simple random, 93–96
stratified random, 96–98

scale() function, 87, 406, 416
scatterplots, 70–71
script pane (RStudio), 33–34
scripts

defined, 27
editing in RStudio, 34

Second International Knowledge
Discovery and Data Mining Tools
Competition, 166

Segmenting Shopping Mall Customers
case study
about, 415
clustering data, 417–418
evaluating clusters, 418–420
exploring data, 415–416
preparing data, 415–416

select() function, 66–67, 68, 294
selecting

appropriate value for k, 231–232

cutoff values, 205
models, 14–16
numbers of clusters, 409–414
split values, 284
variables, 141–145

sensitivity, in model performance,
328–331

sensitivity() function, 331
seq() function, 350
set.seed() function, 94, 313, 345
Shapiro-Wilk test, 127
sigmoid curve, 172
similarity learning techniques, 14, 16
simple linear regression

about, 115–116
fitting model, 151–152

simple random sampling, 93–96
skewed distributions, 183–184
skip argument, 58
slice() function, 264–265, 380
smoothing

additive, 261–262
with bin boundaries, 80
with bin means, 79–80
by clustering, 80–81
by regression, 81

SMOTE (Synthetic Minority Oversampling
Technique), 84, 188

SMOTE() function, 188–189, 212, 247,
302, 313, 345

soft clustering, 398
soft voting, 356
sort() function, 383–384
Source button, 42, 43
spam email, classifying, 252–253
sparse matrix, 252, 257
sparsity, of data, 62
Spearman correlation distance, 403
specificity, in model performance,

328–331
specificity() function, 331
split values, choosing, 284

Index438

splitting data, 187, 237, 246–247,
266–267, 294–295

SQL (Structured Query Language), 52
Srikant, Ramakrishnan, 375
stacking, 361–366
standard deviation, 107
standard loans, 8
standardization. See normalization
statistics

descriptive, 63–69
terminology for, 107–108

stats package, 184, 190, 198,
267–268, 406

strata, 96
stratified cross-validation, 312
stratified random sampling, 96–98
stringr package, 54, 415–416
str_replace_all() function, 415–416
Structured Query Language (SQL), 52
subprime loans, 8
subset() function, 98, 384–385
sum() function, 45, 46
sum of squared errors, 117
summary() function, 63–66, 120, 125, 137,

145, 149, 156, 177, 190–193, 233, 234–
235, 270–271, 292–293, 300–301, 364,
378, 382, 387, 388–389

summary statistics. See descriptive
statistics

supervised algorithms, 14
supervised learning

algorithms for, 7, 8–12
techniques for, 8–12

support, association rules and, 373
symmetric distributions, 183–184
Synthetic Minority Oversampling

Technique (SMOTE), 84, 188
systematic component, 190

T
table() function, 66–67, 68, 178, 197–198,

209–210, 238, 325
test dataset, 22

testing data types, 47–50
tibble() function, 380
tibble package, 54, 380,

405
tibbles, 35, 47, 59, 380
tidyr package, 54, 263
tidyverse package, 54–55, 178, 208, 300,

380, 404, 405, 415
top-shelf loans, 8
TPR (true positive rate),

333–334
train() function, 313–314, 343, 345, 346,

347, 348–349, 351, 353
trainControl() function, 314, 316,

317, 320, 357
training

model in Income Prediction case
study, 212–215

models, 190, 267, 295
training data, 82
transformation, log, 88
transformation function,

190
transforming data, 84–92
trial, 254
trivial association rules, 372
true negative rate, 329–330
true positive rate (TPR),

333–334
Type I errors, 17–19
Type II errors, 17–19

U
under-sampling, 84
University of California at Irvine, 224
unlist() function, 337
unsupervised algorithms, 14
unsupervised classification, 397
unsupervised learning

algorithms for, 7, 12–14
techniques for, 12–14

U.S. Centers for Disease Control and
Prevention, 147

439Index

V
validation dataset, 22
valudation data, 310
values, missing, 51–52
var() function, 118
variable subset selection, 99
variables

about, 61–62
categorical, 137–139
extracting, 99–100
interactions between, 139–141
projecting, 99–100
relationships between, 106–115
selecting, 99, 141–145
in supervised learning, 9

variance errors, 20–22
variance inflation factor (VIF), 134, 200
vectors, 45–47
Viewer tab (RStudio), 36
VIF (variance inflation factor), 134, 200
vif() function, 200
vignette() command, 40–41
visualizing

correlations with corrplot
function, 111–114

data, 69–74
model performance, 332–339

W
WCSS (within-cluster sum of squares),

409–410
websites

R Project, 27
RStudio Desktop, 29

Wickham, Hadley (author)
ggplot2, 70

Wilkinson, Leland (author)
The Grammar of Graphics, 70

within-cluster sum of squares
(WCSS), 409–410

Wockham, Hadley (author)
R for Data Science, 55

writing R scripts, 41–43

X
XGBoost (extreme gradient boosting), 359
xgboost package, 360

Z
zero mean normalization, 86–87
zero mean of residuals, 127
0.632 bootstrap, 318, 320
z-score normalization, 86–87

