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Preface
There are textbooks in probability and statistics available in the market—some old 

and new prints or new editions—that contain basic ideas and are more suitable as 

undergraduate textbooks. There are also textbooks written particularly for graduate 

programs and study. Featuring recent advances in probability, statistics, and sto-

chastic processes, Probability, Statistics, and Stochastic Processes for Engineers 
and Scientists presents a volume that includes up-to-date topics for engineers and 

scientists, like fuzzy probability as presented in Probability and Statistics or An 
Introduction to the Stochastic Processes with applications from various areas of 

stochastic processes and queueing models.

Often, for science, technology, engineering, and mathematics (STEM) majors, the 

concepts behind probability, statistics, and stochastic processes courses are taught 

in two or three separate courses with just as many textbooks. However, this book 

may be used for all three subject areas, with all necessary topics contained in one 

volume. If adapted for just probability and statistics, the Chapter 7 on stochastic 

processes offers students an opportunity to see real-life applications of the topics 

they are studying.

Although this book offers rigor to some engineering concepts, most engineers, 

after taking at least two semesters of calculus and a semester of ordinary differential 

equations, will be able to grasp the necessary mathematical concepts from prob-

ability, statistics, and stochastic processes as presented, and will inevitably engage a 

deeper understanding of the entire book. However, only the first two calculus courses 

are sufficient for the subject matter relating to probability and statistics.

Notably, this book presents key information for understanding the essential 

aspects of basic probability theory and its applications. Beginning with the rich his-

tory of probability and statistics, this book presents a selection of both subject’s 

standard terms and properties. From there, we move on to the three well-known 

types of statistics, namely, descriptive, inferential, and nonparametric. This book 

then offers Chapter 7 with a detailed coverage of stochastic processes and its applica-

tions in queueing models, random walk, and birth-and-death models with a variety 

of examples. Additionally, this book will illustrate how to engage different software 

options for calculation and data analysis, such as the Scientific Calculator, Minitab, 

MS Excel, MATLAB®, and the R software environment.

We hope this book can also be used by researchers and working professionals in 

the fields of probability, statistics, and stochastic processes. We anticipate the infor-

mation as an excellent resource for public and academic libraries.

As written, this book balances both theory and practical applications of 
 probability, statistics, and stochastic processes, keeping practitioners in e ngineering 
and the s ciences in mind. Figure slides are also available for downloading at www.
crcpress.com/9780815375906. Additionally, this book offers descriptive statistics 
and basic p robability materials for those needing descriptive and calculus-based 
 probability and statistics courses at universities and colleges.

http://www.crcpress.com
http://www.crcpress.com
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1

1 Preliminaries

1.1  INTRODUCTION

Games of chance or concepts of probability are known to have been in existence 

for over a thousand years. For instance, the game of “knucklebones”, ankle bone of 

animals or heel bone that can land in any of four different ways, has been played 

for time immemorial. Because of the irregular shape of the bone, called the talus, 

causing it to land in any of four possible ways, the landing considered random (in 

general, a talus is a randomizer similar to the die). This early brush with probability, 

however, was not systematically handled even though the solutions of the games 

assumed equally likely outcomes. As mentioned in David (1962), mathematicians in 

Europe were hardly familiar with the calculations of probabilities. Indeed, the first 

printed work on the subject seems to have been made in 1494 by Fra Luca Pacioli, 

while the basic game theory was written in 1550 by Geronimo Cardano. It was titled 

Liber de Ludo Aleae (The Book on Games of Chance).

The theory of probability once appeared in a correspondence between Pascal 

and Fermat in 1654, regarding a problem posed by a French gambler Chevalier 

de Méré. As stated in the literature, the seventeenth-century gambler was losing 

more than he expected. He then turned to his friend Blaise Pascal for an explana-

tion. Fermat and Pascal are the founders of the theory of probabilities. Fermat’s 

views on the fundamental principles of probability became the foundation of the 

probability theory. His theory of probability grew out of his early research into 

the theory of numbers. Most of his work, however, was published after his death. 

The theory of probability became a branch of mathematics in the mid-seventeenth 

century, much, much later than the calculations that first surfaced in the fifteenth 

century (Figure 1.1).

Fermat, on the one hand, tried to solve the problem of outcomes of a game by 

listing all possible cases such as tossing two distinct fair coins four times and list-

ing the possible outcomes as HH, HT, TH, and TT. The list was referred to as two 
players play four games. The winner is the one with the first three win games. The 

outcomes will be win–win, win–loss, loss–win, and loss–loss. The score was some-

times measured in the “bit”. At the end of the play, each player gains a proportional 

amount of the total bit (equally set from each player) of the number of wins. Hence, 

the first player, in this case, wins three-quarters of the total bit, while the other wins 

one-quarter.

Pascal, on the other hand, offered a different method called the method of expec-
tations. This method enables the play for an extended number of games. He used 

mathematical induction and the recursive property of the Pascal–Khayyam triangle 

in the form, as shown in Figure 1.2.
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Game Played by Chevalier de Méré
Two dice are rolled. Each die having six sides with numbers 1 through 6 on each 

side, the possible sums are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. In other words, the 

maximum sum is a double 6. Chevalier de Méré first used to bet that on a roll of a 

die, he would get at least a 6 in 4 rolls of the die. However, he changed his strategy 

and played by betting to have a double 6 (a total of 12) in 24 rolls of the two dice. 

But he soon noticed that his previous strategy resulted in more gains. The cause of 

FIGURE 1.1 (a) Blaise Pascal 1623–1662. (b) Pierre de Fermat 1601–1665.

1 1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15
1 4 10 20
1 5 15
1 6
1

FIGURE 1.2 Pascal–Khayyam triangle.



3Preliminaries

the difference was the problem posed to Pascal. Based on Pascal’s calculation, the 

chance of winning with one die was 51.8%, while it with a double dice was 49.1% 

(see Smith (1966) for detailed calculations).

Problem posed by Chevalier de Méré
The idea is to compare the following two cases (assuming the dice are fair so that 

each side has the same chance to land):

Case 1. What is the chance of having at least one 6 in four rolls of a die?

Case 2. What is the chance of having at least one double 6 in 24 rolls of two dice?

Answer to Case 1
The chance of a 6 in four rolls of a die would be one from 64 possible combina-

tions of numbers to occur, leaving 54 unfavorable combinations without a 6. Thus, 

there are 64 − 54 favorable combinations to bet. Based on the equal chance assump-

tion, the chance of obtaining a 6 is:

 
6 54 4− 671

50%.
64

= >  
1,296

Answer to Case 2
The chance of a double 6 in 24 rolls of 2 dice would be one from 3624 possible 

combinations of numbers to occur, leaving 3524 unfavorable combinations without 

a double 6. Thus, there are 3624 − 3524 favorable combinations to bet. Based on the 

equal chance assumption, the chance of obtaining a double 6 is:

 
3624 − 3524

0.4914 50%.
3624

= <  

As noted in the entire discussion above, in each game played, concerns are focused 

on the outcomes of a game. Hence, we are led to consider the properties of a collec-

tion of object that is referred to as a set. Thus, to better understand the probability, it 

is necessary to briefly remind the readers of the basics of set theory.

1.2  SET AND ITS BASIC PROPERTIES

Sets are recognized as the most basic of structures in mathematics. They are of sub-

stantial mathematical significance, in various mathematical directions. By a set, we 

mean a well-defined (in mathematical sense) collection of objects. The objects may 

be referred to as the members or elements. In other words, a set is a notion of group 

objects. To denote a set by its elements, we simply list the elements within a pair of 

curly brackets, { }, separated by commas. For instance, A a= { },b . Symbolically, if a 

is an element of a set A, as in this example, we write:

 a ∈A, (1.1)

where the symbol “∈” is read as “belongs to”.
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Note 1.1

Elements of a set do not have to be numbers, they may be set by themselves, and 

they do not have to be related, other than all belonging to the same set.

Note 1.2

The term “well defined”, in mathematical sense, means that an element is deci-

sively a member or not a member of the set, but not both that are for a given set A, 

“for all x, either x is a member of A or it is not a member of A”.

Definition 1.1

Two sets are equal if both have exactly the same elements, and vice versa.

Note 1.3

Based on Definition 1.1, arrangement of elements of a set is unimportant. 

For example, A = { }1,2,3  is the same as A = { }2,1,3 .

Note 1.4

When elements of a set are real numbers, the set is denoted by (or expressed by) 

an interval. For instance, [ ]7;9  is the set of all real numbers between 7 and 9, 

inclusive.

Definition 1.2

In the set of real numbers,  , a neighborhood of an element (a real number), say c, is 

a set containing an open interval (a, b) such that a < <c b. By an open set, it is meant 

a set, which is a neighborhood of each of its points. A complement of an open set is 

referred to as a closed set. Equivalently, a closed set is a set, say A, containing all its 

limit (or boundary) points (such points are those that, within all of their neighbor-

hoods, are elements both from A and outside of A, too).

Note 1.5

In  , an open interval (a, b) is an open set.

Elements of a set may also be descriptively defined. In other words, a set may 

be defined by some “property” or “formula”, say p(x), where “x” could be any 

variable. In such a case, a set A can be symbolically written as:

 A x= { }p(x) is true , (1.2)
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where “|” stands for “such that”. Note that “such that” may also be symbolized 

as “:” or “∋”.

Example 1.1

To describe a set of numbers, say the natural numbers between 1 and 9, we could 
write:

 }A n= ∈{ n  ,1 ≤ n ≤ 9 , 

where   refers to the set of natural numbers 1,2,....

Example 1.2

The set of all indigents in the United States in census 2010 can be written as 

 A = {x x is an indigent in the United States in the census of 2010 . }
By definition, the size of a set A, the “number” of elements of A, is referred to as 
the cardinal or cardinality of A, and sometimes it is denoted by A . If the set has 
only one element, say a, it is called a singleton and it is denoted by {a}.

A set may be finite or infinite, depending upon its number of elements being 
finite or infinite, respectively. More precisely, we have the following definition:

Definition 1.3

A set A is finite (or, of cardinality, say n, where n is any natural number) if there 

is a bijection (i.e., a one-to-one correspondence) between its elements and those of 

a finite set of natural numbers {1,2,...,n}; otherwise, A is infinite (or, of infinite 
cardinality).

Example 1.3

The set A = { }1,2,3  is a finite set with three elements (i.e., of finite cardinality 3), 
while the set B = { }1,2,3,4,...  is an infinite set (i.e., of infinite cardinality) with 
 infinitely many elements (i.e., as many as the natural numbers).

Note 1.6

The concept of infinity (symbolically, ∞) that may make a set “infinite” was a 

concern of Indian mathematicians in the East earlier than the fifth century BC 

and during the fifth century BC initiated by the Greek mathematician Zeno of 

Elea (490 BC–430 BC) in the West. But the infinity, in the modern era, was 

formally defined by Cantor during 1867–1871.
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In general, one may ask how many natural numbers are there? In other words, 
how far can one count? The answer, intuitively, is “the natural numbers are end-
less”. More formally, the “number” of natural numbers is infinite (cardinality), and 
this cardinality, denoted by ω , has the set of natural numbers,  . If a set has the 
same number of elements as (i.e., if it is bijective with) the set of natural numbers, 
we say the set is denumerable or countably infinite, being also assigned cardinal-
ity ω . Also, a set is called countable if it is either finite or denumerable. If a set is 
not countable, it is uncountable with assigned cardinality one larger than ω .

The classic set theory (study of sets) was initiated by George Cantor and 
Richard Dedekind during 1870s, starting with their meeting in 1872 that leads 
to the paper by Cantor in 1874. Its complete development took almost a century 
(Figure 1.3).

The sum of two sets is referred to as the union of the two sets, denoted by 
∪, and it is a set whose elements are in either of the two sets with no duplicate 
counting of elements. Symbolically, if A and B are two sets, their union is denoted 
by A B∪ .

FIGURE 1.3 (a) Richard Dedekind, 1831–1916. (b) Georg Ferdinand Ludwig Philipp 

Cantor, 1845–1918.
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Example 1.4

If A = { }1,2,3  and B = { }3,4,5 , then A B∪ = { }1,2,3,4,5 .

The intersection of two sets A and B, denoted by A B∩ , is a set containing ele-
ments that are in both sets. In case there is no common element, the intersection 
would be an empty or null set, denoted by { } or ∅.

Example 1.5

For A = { }1,2,3  and B = { }3,4,5 , we have A B∩ = { }3 , since 3 is the only common 
element in A and B.

Example 1.6

If C = { }1,2,3,4  and D = { }2,3,4,5 , then C D∩ = { }2,3,4 .

Example 1.7

For A = { }1,2,3  and B = { }4,5 , we have A B∩ = ∅ since there is no common 
 element in A and B.

Example 1.8

If A = {1,2,3,4,5} and B = {3,4}, then A B∩ = {3,4} and A B∪ = {1,2,3,4,5}.
In terms of elements, the union and intersection of two sets are defined 

as A B∪ = {x : ox ∈A r x ∈B} and C D∩ = { }x : ax ∈C nd x ∈D ,  respectively. 
Both definitions of union and intersection of two sets may be extended 
for any finite or infinite number of sets in the same fashion. For instance, for 
three sets A, B, and C, we have: A B∪ ∪C = A∪ ( )B ∪C = ( )A B∪ ∪C  and 
A B∩ ∩C = A∩ ( )B ∩C = ( )A B∩ ∩C.

For the union and intersection of infinite number of sets A A1 2, ,..., we use the 
notations:

 
∞ ∞
 ...A Ai = ∪1 2A ∪ A3 and  A Ai = ∩1 2A ∩ A3 ∩..., (1.3)
i=1 i=1

respectively.
The universal set, denoted by U, is a set assumed to be containing all sets 

under consideration. The universal set is used to define some definitions that are 
stated below.

For a set, say A, its complement is the set of elements in U not in A, and it is 
denoted by Ac, A′, or A−. However, the relative complement of a set, say A, with 
respect to another set, say B (subset of A), is the set of elements in B that are not 
in A. It is called the difference of A and B. More generally, for any two sets A and 
B, the difference of the two sets, denoted by B A/ , is the set of elements in B but 
not in A. In other words,

 B A\ .= ∈{ }x B x ∉A  (1.4)
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Example 1.9

If A = { }1,2,3  and B = { }3,4,5 , then B A\ 4= { },5 .

If U denotes a universal set, then we list the following properties of compliment:

 ( )A B∪ =c cA ∩ Bc and ( )A B∩ =c cA  Bc : DeMorgan’s laws  (1.5)

 A A∪ =c cU and A A∩ = ∅. (1.6)

 ∅c c= =U U, ∅ and ( )c
Ac = A. (1.7)

Note 1.7

As a result of De Morgan’s laws (1.5), we have:

 ( )A B∪ = (Ac c∩ B )c and (A B∩ ) = (Ac c∪ B )c. (1.8)

Roughly speaking, a Borel set (named after the French mathematician Émile Borel, 
1871–1956) is a set that can be constructed from open or closed sets through 
repeatedly taking countable union and intersections. It is denoted by ℬ.

Here are some examples:

 1. Any subset of the interval [0,1] is a Borel set.
2. The set of all rational numbers (also irrational numbers) in the interval 

[0,1] is a Borel subset of [0,1].
3. Any countable subset of the interval [0,1] is a Borel subset of [0,1].
4. The complement in [0,1] of any Borel subset of the interval [0,1] is a 

Borel subset of [0,1].

 

 
 

Presenting sets through diagrams, there is a well-known graphic presentation 
of sets called Venn diagram. For instance, the intersection of two sets A and 
B and that of three sets A, B, and C are represented by Figures 1.2 and 1.4, 
respectively. The rectangle is referred to as the universal set U, that is, the set 
of all possible elements, under consideration, in some specific circumstances 
(Figure 1.5).

FIGURE 1.4 Intersection of two sets, Venn diagram.
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Having defined a universal set, we can define a set in the following three ways:

 1. As we have seen, when only a finite number of elements are available, a 
set may be defined by listing all its elements. For instance, if there are n 
elements in a set A, we might define A as:

 A a= { }1 2, ,a ...,an . (1.9)

 2. A set may be defined by its elements’ property. In this case, a set A is 
denoted as

 A a= { }P( )a , (1.10)

where P a( ) denotes “the property of a”. In other words, for each element 
a of A, the property P is either true or false.

 3. Let I be a set and A a subset of I. Then, a function I A defined on I is called 
a characteristic function or indicator function of A, which identifies an 
element of I, say i, as either in A or not in A. Such a set is called a crisp 
set. Symbolically, I A is defined as:

 
⎧⎪ 1, for ,i A∈

I A( )i = ⎨  (1.11)
0, for ∉ .⎩⎪ i A

In other words, I A states which elements of I are in A and which are not. 
Thus, (1.11) states that for each i I∈ , i is in A if I A( )i = 1, and for each i I∈ , 
i is not in A if I A( )i = 0. That is, in particular, the characteristic function IA 
maps elements of I to elements of the set {0,1}, or

 I A : 0I → { },1 . (1.12)

Thus, the characteristic function of a crisp set A is a function that assigns 
a value 1 or 0 to each element of the universal set: 1 if the element is 
in A and 0, otherwise. A universal set is always a crisp set. The name 
“crisp set” is usually used when one is in a fuzzy environment, as we 
will see later.

FIGURE 1.5 Intersection of three sets, Venn diagram.
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If A is a part of the set B, A is said to be a subset (denoted by ⊆) of B; that is, 
A B⊆  if all elements of A are in B, too. In case the subset does not contain all ele-
ments of the original set, then it is referred to as the proper subset and is denoted 
by ⊂.

Example 1.10

The set A = 1,2,3  is a proper subset of B = { }1,2,3,4,5 , because elements of A, 
that is, 1, 2, and 3, are in B and B has further more elements, too. Thus, we can 
write A B⊂ .

{ }

Example 1.11

If C = { }2,3,4  and D = { }2,3,4 , then C D⊂  or D C⊂ . In this case, we could write 
C D=  since both sets have the same elements.

Note 1.8

The empty set is a subset of any set by assumption.

Note 1.9

With listing elements of sets, we can use Venn diagram to represent the union and 

intersection of sets.

Example 1.12

Let A a= {1,2,3, , ,b c} and B = {2,4, , ,a b d}. Then, Figure 1.6a and b represent Venn 
diagrams for the union and intersection of A and B, respectively.

FIGURE 1.6 (a) A B∪ = {1,2,3,4,a,b,c,d}. (b) A B∩ = {2,a,b}.
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Remark 1.1

Knowing the notion of “subset”, we can redefine the characteristic function as 

 follows: Let A be a subset of Y. Then, the characteristic of A is a function, say YA, 

such that Y →{0,1} that satisfies (1.11).

  

By the Cartesian product of two sets A and B, denoted by A × B, it is meant the 

set of ordered pairs ( ,a b) such that a belongs to A and b belongs to B. In symbols,

 A B× = { }(a;b) a ∈A and b ∈B . (1.13)

Note 1.10

 A B× ≠ ×B A. (1.14)

Example 1.13

If A = {1,2,3} and B a= { ,b}, then

A B× = {(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)},  

while

 B A× = {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}, 

which are evidently not the same.
Cartesian product of two sets could be extended for n sets. Thus, if A A1 2, ,..., An 

are n sets, the Cartesian product is the set of all ordered n-tuples (a a1 2, ,...,an ), 
where ai i∈A , for i n= 1,2,..., . In symbols,

 A A1 2× ×... ..., ,× Ai i= {( )a1 a2 , ,a ai ∈Ai , for i = 1,2,...,n . (1.15)}
Later, we would need the term set function, which we will define it here.

Definition 1.4

By a set function, it is meant a function whose domain is a set of sets and its range 

is usually a set of real numbers.

Example 1.14

A function that maps each set of the set of sets to its cardinality is a set function.
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Definition 1.5

Let Ω be an arbitrary nonempty space (or set) of points. A class of subsets of Ω, 

denoted by  , is called a field or an algebra if it contains Ω itself and it is closed 

under the formation of finite union and complements, that is,

 Ω ∈  (1.16)

 E ∈ ⇒  Ec ∈ . (1.17)

 E1 2and E E∈ ⇒  1 ∪ E2 ∈ . (1.18)

Note 1.11

 i. Since Ω and ∅ are complement of each other, (1) and (2) imply that ∅ ∈ .

 ii. From De Morgan’s law, we will have:

 E1 2and E E∈ ⇒  1 ∩ E2 ∈ . (1.19)

We leave the details of proofs of the notes (i) and (ii) as exercises.

Definition 1.6

A class of subsets of an arbitrary space Ω, say  , is a σ-field (read as “sigma field”) 

or a σ-algebra if   is a field that is closed under countable unions. In other words,

 E1 2,E E,...∈ ⇒  1 ∪ E2 ∪ ... ∈ . (1.20)

Note 1.12

Once again, from De Morgan’s law, we will have:

 E1 2,E E,...∈ ⇒  1 ∩ E2 ∩ ... ∈ . (1.21)

We can combine Definition 1.2, 1.3, and some Notes in between in the following 

definition.

Definition 1.6a

Let Ω be an arbitrary nonempty space (or set) of points. Also, let   be a class of 

subsets of the space Ω. Then,   is a σ-algebra if

 Ω ∈  (1.22)
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 E ∈ ⇒  Ec ∈ . (1.23)

If E1 2, ,E ... is a countable sequence of sets in  , then 

 E1 2∪ ∪E ...∈ . (1.24)

Example 1.15

 = ∅{ ,Ω} is a σ-algebra.

Example 1.16

The power set of Ω is a σ-algebra.
From intervals (by means of the operations allowed in a σ-algebra), we can 

define a very important set, namely, the Borel set that we will discuss in Chapter 2. 
We will now try to define this set.

Definition 1.7a

Let X be a set. Consider a collection of open subsets of X, say  , that satisfies the 

following conditions with open sets:

 1. ∅ ∈ .

 2. X ∈ .

 3. Let A A1 2, ,..., An be a finite number of sets in  . Then, A A1 2∩ ∩... An ∈ .

 4. Let A A1 2, ,..., An be an arbitrary number of sets in  . Then, A A1 2∪ ∈...  .

Then, X together with   is called a topological or abstract space.

Instead of open sets as above, the definition also holds for closed sets. That is, the 

following definition:

Definition 1.7b

Let X be a set. Consider a collection of open subsets of X, say  , that satisfies the 

following conditions with open sets:

 1. ∅ ∈ .

 2. X ∈ .

 3. Let A A1 2, ,..., An be an arbitrary number of sets in  . Then, A A1 2∩ ...  .∈
 4. Let A A1 2, ,..., An be a finite number of sets in  . Then, A A1 2∪ ∈...An  .

Then, X together with   is called a topological or abstract space.
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Definition 1.8

Let ( ,X  ) be a topological space. Then, the smallest σ -algebra containing the open 

sets in   is called the collection of Borel sets in X.

Example 1.17

To make sure the collection specified in the definition 1.8 exists, empty intersec-
tions should not be chosen.

Note 1.13

Closed sets are the example of Borel sets.

1.3  ZERMELO AND FRAENKEL (ZFC) AXIOMATIC SET THEORY

The Zermelo–Fraenkel set theory was based on symbolic mathematics, as we do 

nowadays. However, Bertrand Russel raised a question through an example in 1901 

that later became known as Russell’s paradox. He tried to show that some attempted 

formalizations of the set theory created by Cantor lead to a contradiction. Russell’s 
paradox (which apparently had been discovered a year before by Ernst Zermelo, 

but never published) appeared in his celebrated paper Principles of Mathematics in 

1903. The classic Russel’s paradox is given through the following example.

Suppose there is a group of barbers who shave only those men who do not shave 

themselves. Now suppose there is a male barber in the group who does not shave 

himself. Then, according to the assumption, he must shave himself. But again no 

barber in the group can shave himself. So, we are arriving at a paradox, which is an 

intuitive contradiction.

In set notation, Russell’s paradox may be stated as follows: Let S be the set of all 

sets, say A, that do not belong to themselves. If S does not belong to itself, then by its 

own definition, it must contain itself. However, if it does contain itself, then it will 

contradict its own definition. Symbolically, the description of Russell’s paradox is 

as follows (Figure 1.7):

 If S = ∉{ }A A A , then S S∈ ⇔ S S∉ . (1.25)

Note 1.14

It seems that Russell’s paradox, which is indeed the property of the set that was 

defined, could have been avoided should the formulation excluded  “self- reference”. 

This, in fact, is a set-theoretic singularity at the property of the set. In other 

words, Russel’s paradox demonstrates that an entity defined through particular 

inconsistent conditions doesn’t exist. The bottom line is to avoid “the set of all 

sets” that does not exist. Indeed, if such a “set” would exist, say V, then, applying 

Axiom A.3 (relative comprehension), within V, for the formula A A∈ , we would 

obtain that S would exist as a set, a contradiction, as above.
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Note 1.15

An address of Russell’s paradox was given by Russell, Zermelo, and others in 1908. 

Zermelo’s axiomatic set theory (an axiom or postulate is a statement that is assumed 

to be true) tried to avoid the paradox, and Fraenkel modified it later in 1920.

Various forms of axioms have been developed for set theory. However, according 

to a previous “Note”, the general axiom of comprehension does not specify which 

mathematical processes are free of set theoretic singularities.

These days, the set of axioms used are of Zermelo and Fraenkel combination 

referred to as ZF axioms, and if the axiom of choice (AC) is included, they are 

referred to as ZFC. Indeed, the most widely accepted form and strength of axiom-
atic set theory is ZFC (Zermelo–Fraenkel choice). In addition to many text refer-

ences in English and other languages, Montazer-Haghighi (1973, in Farsi Language) 

   

FIGURE 1.7 (a) Ernst Zermelo, 1871–1953. (b) Abraham Halevi (Adolf) Fraenkel, 

 1891–1965. (c) Bertrand Russell, 1872–1970.
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has a complete discussion of the ZFC. We will state the axioms of sets, including 

the AC, later.

The following is a list of some notations from symbolic logic and set theory that 

will be used later.

We note that in listing ZFC axioms below, we are using sets whose elements are 

also sets, often referred to as the pure or hereditary sets.

Logic Symbol Meaning Description/Example

∨ “or” A ∨ B, A or B

∧ “and” A ∧ B, A and B

⇒ or ⊨ “implies” x3 = ⇒27 x = 3

α ⊨ β means that β follows from α

→ “approaches”, “tends to” t → +∞

← “gets” R S← + T

⇔ “if and only if”, “iff” (P Q⇒ ⇒and Q P) ⇒ (P ⇔ Q)

∀ “for all” ∀ ∈n n, ,  for all natural numbers n

∃ “there exists” ∃ a Set with cardinality infinity

∃! “there exists exactly one” ∃ ∋! (x f x) means that there is exactly one x such that 

f ( )x  is true.

∃ “there is no” There is no element in the empty set.

| or ∋ or : “such that” A x= ∈{ }  x ≥ 1 , A = {x ∈ ∋ x ≥ 1}

A is a set of real numbers greater than or equal to 1.

≡ “equivalent” A B≡ , sets A and B are the same sets

 “union” A set whose elements are in either of the two sets

 “intersection” A set containing elements that are in both sets

{ } or ∅ “the empty set” A set with no element

⊂ “proper subset” A part of a set

⊆ “subset” A part of or the whole set

⊃ “supset” “contained”, “B is contained in A”,

{1,2,3} ⊃ {1,2}

〈 “left angle bracket”

〉 “right angle bracket”

¬ “not”

• “bullet”

∝ “proportional to” The rate of growth of the population, r, is proportional 

to the size of the population, N. dN d/ t ∝ N  
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A.1  AXIOM OF EXTENSIONALITY

If sets A and B have the same elements, then A and B are equal or identical; that is, 

A = B, and vice versa. Symbolically,

 ∀ =A B, (A B) ⇔ (∀c, c ∈A ⇔ c ∈B). (1.26)

The axiom of extensionality speaks about the type of things sets are. The elements of 

each set distinguish one set from another if they are to be different; otherwise, they 

are the same. So, when there is an element in one that is not in the other, the two sets 

are not equal.

A.2  AXIOM OF PAIRING (UNORDERED PAIR)

For sets A and B, there is a set {A B, } that contains exactly A and B. In other words, 

for any sets A and B, there exists a set C such that an element D is in C if and only if 

D is either equal to A or equal to B. Symbolically,

 (∀ ∃A B, ) C ∋ (∀D[D ∈C ⇔ (D = A ∨ D = B)]. (1.27)

We leave it as an exercise to prove that C is unique. Thus, (1.27) can be rewritten as:

 {A B, } = ∋the unique C (∀D[D ∈C ⇔ (D = A ∨ D = B)]. (1.28)

We also leave it as an exercise to show that from (1.2.1) and (1.2.3), we have:

 {A A, } = {A}. (1.29)

A.3  AXIOM OF (SCHEMA OF) SEPARATION (OR RELATIVE COMPREHENSION, 
AUSSONDERUNG OR SPECIFICATION OR SUBSETS)

This axiom essentially states that a subcollection of a set is a set. Here is its sym-

bolic representation: Let φ  be a property with parameter p. Then, for a set A and the 

parameter p, there is a set B, B C= ∈{ (A ∋ φ C, p)}, that contains all elements in A 

that have the property φ .

 ∀ ∀A p∃B ∋ ∀C{ }C ∈B ≡ [ (C ∈A ∧φ C, p)] . (1.30)

Note 1.16

It is the relative comprehension axiom that addresses “set-theoretic singularity”, 

as mentioned earlier, and thus solves the paradox Russell raised.
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A.4  AXIOM OF UNION (OR SUM SET)

This axiom essentially states that for any set A, there is a set B A= ∪ , the union of A, 

such that B is the set of all elements of A, or equivalently, B is the union of all sets 

in A. Symbolically,

 ∀ ∃A B ∋ ∀C[ (C ∈B ⇔ ∃D C ∈D ∧ D ∈A)]. (1.31)

A.5  AXIOM OF POWER SET

This axiom states that for any set A, there is a set B P= ( )A , the power set of A, such 

that B is a set that contains exactly all subsets of A. Symbolically,

 ∀ ∃A B ∋ ∀C( )C ∈B ⇔ C ⊆ A . (1.32)

A.6  AXIOM OF INFINITY (OR CLOSURE)

 There exists an infinite set  (1.33)

We leave it as an exercise to use the axiom of infinity and axiom of separation to 

prove the existence of the empty set. Thus, we really do not need the axiom of empty 
set. In other words, there exists a set that has no element. Symbolically,

 ∃ ∋A B∀ B ∉A, A is denoted by{ } or ∅. (1.34)

We note that some of the axioms may vacuously be acceptable without the assump-

tion of the existence of the empty set; however, some cannot be acceptable.

We also leave it as an exercise to prove that the empty set is unique.

A.7  AXIOM OF REPLACEMENT

This axiom states that if φ  represents a function, then the image of a set in φ  is a set. 

In other words, for any set A, there is a set B such that φ( )A B= ∋{φ( ) B ∈A}. Here is 

its symbolic representation:

 ∀ ∀A B, ,∀C[φ φ(A, B, p) ∧ (A,C, p) ⇒ B = C] 

 ⇒ ∀D E∃ ∋ ∀B[ (B ∈E ≡ ∃A ∈D)φ(A, B, p)] (1.35)

or if

 B A B⇒ ∀A, there exists at most one ∋ [φ( , )], 

then

 ∀ ∃D E ∋ ∀C[C ∈E ⇔ [(∃G ∈D)φ(G,C)]]. (1.36)
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A.8  AXIOM OF FOUNDATION (OR REGULARITY)

The axiom of foundation states that every nonempty set belongs to the cumulative 

hierarchy. In other words, it turns out that this is equivalent to the statement: For 

every nonempty set, there is an ∈-minimal member. Symbolically,

 ∀ ≠A A[ 0 ⇒ [∃B ∈A ∋ ∩B = ∅] (1.37)

or

 }∀ ∃A B{ ∋ B ∈A ⇒ ∃B[ (B ∈A ∧ ∀C C ∈B ⇒ C ∉A)] . (1.38)

A.9  ZERMELO’S AXIOM OF CHOICE

The axiom of choice, formulated by Ernst Zermelo in 1904, abbreviated as AC, 

is sometimes known as the choice principle of set theory. It is, perhaps, the most 

discussed axiom of mathematics, second only to Euclid’s axiom of parallels, which 

was introduced more than two thousand years ago, by Fraenkel, Bar-Hillel, and Levy 

(1973). On the other hand, AC perhaps is the most problematic axiom of set theory. 

Quite a lot have been written about AC as it is so controversial, a subject in pure 

mathematics.

To state the AC, we choose the relatively simple version used by Russell who 

referred to it as the multiplicative axiom. The AC states that, given any collection 

of mutually disjoint nonempty sets, it is possible to assemble a new set, referred to 

as a transversal or choice set. This set is to contain exactly one element from each 

member of the given collection. Symbolically, let C be a nonempty set. Then, there 

is a function, say f, defined as

 f : C C⇒ ∋ (∀A ∈C)[ f (A) ∈A]. (1.39)

Such an f is then called a choice function for C, and its range is the corresponding 

choice set, defined as above. Traditionally, there are three major schools of thought 

regarding the use of AC:

 1. Accept it as an axiom and use it without question.

2. Accept it as an axiom, but use it only when you have no other way in  proving 

your theorem and, perhaps, also making a note of its usage.

3. AC is unacceptable.

 

 

Note 1.17

In recent times, there has been an increasing confidence in accepting AC as a 

valid principle, in general, within the ordinary practice of mathematics.
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Example 1.18

As an example for AC, we choose the following from Bell, John L. (2008, revised 
2015).

Let C be the collection of nonempty subsets of the set {0,1}. That is, C is:

 C = {{0,1},{0},{1}}. 

Hence, there are two distinct choice functions for C, say f1 and f2, defined as:

 f1 1({0}) = =0, f f({1}) 1, 1({0,1}) = 0, 

 f2 2({0}) = =0, f f({1}) 1, 2({0,1}) = 1. 

Example 1.19

Let C be the collection of all intervals S aa = +[ ,a 1), partitioning the set of real 
numbers  , where a is an integer (an element of  ). Then, a choice function f on 
C can be defined by f ( )S aa = .

1.4  BASIC CONCEPTS OF MEASURE THEORY

Later in Chapter 2, dealing with “probability”, we will need the idea of “measure”, 

like measuring the size of an interval on the real axis. Conceptually, the length or 

a measure, of an interval, denoted by μ, is a function that assigns a nonnegative 

 number to the interval.

Henri-Léon Lebesgue, a French Mathematician, rigorously considered the idea 

which we will discuss briefly below (Figure 1.8).

There are three types of intervals on the real axis:

 1. Open, that is, an interval not including its boundaries;

FIGURE 1.8 Henri-Léon Lebesgue, 1875–1941.
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 2. Half-open (left-open, right-open), that is, an interval that includes only 

one side;

 3. Closed (or bounded), that is, an interval that includes both boundaries.

Note 1.18

In real analysis (a part of pure mathematics), “∞” (read “infinity”) is referred to as 

a symbol unequal to any real number.

Note 1.19

In addition to the three types of intervals mentioned above, there is another inter-

val denoted by [0,∞], which consists of all nonnegative real numbers and ∞.

Note 1.20

For our purposes in this book, we use the following properties as conventional 

properties. Hence, we state them without proof.

 c ⋅∞ = ∞ ⋅c c= 0, = 0, (1.40)

 c ⋅∞ = ∞ ⋅c c= ∞, 0 < ≤ ∞, (1.41)

and

 c + ∞ = ∞ + c c= ∞, 0 ≤ ≤ ∞. (1.42)

Example 1.20

The interval ( 1− ,5) is an open bounded interval, [ 1− ,5) is a half-open (right-open) 
bounded interval, ( 1− ,5] is a half-open (left-open) bounded interval, and [ 1− ,5] is a 
closed bounded interval. However, ( ,−∞ 4), [4,∞), and ( ,−∞ +∞) are the examples 
of unbounded (or non-bounded) intervals.

Definition 1.9

The size of an interval is its length. The length of a bounded interval of any kind 

with endpoints i and j is defined as the absolute value of the difference between the 

endpoints, that is, i j− . In case i j≤ , the absolute value may be dropped and it would 

simply be j i− . For an unbounded interval, the length is defined as ∞.

The idea of the length may be generalized to measure the size of a set, for 

instance, measuring the size of all irrational numbers within the interval ⎡ ⎤⎣1, 5 ⎦. 
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Many, including Lebesgue, have made this generalization that is referred to as the 

measure. Essentially, “measure” is a generalization of the notions of length, area, 

and volume. The measure theory in mathematics studies the measures. Some par-

ticular measures are of special importance, such as Lebesgue measure, Jordan mea-

sure, Borel measure, Haar measure, complex measure, and probability measure. At 

this point, our interest is the Lebesgue measure. To define it, we will discuss some 

necessary ideas.

Definition 1.10

Measure of a set (or an interval), E, say μ, is a nonnegative real number such that 

μ( )E ∈ . In other words, the measure of a set (or an interval) is a function that 

assigns to the set (or an interval) a nonnegative real number.

Note 1.21

It is provable that every countable set is of measure 0. The proof is left as an exercise.

Note 1.22

The measure of a set may be generalized to cover a collection of subsets of an 

interval [ ,a b], denoted by  , that is, μ: →  . Thus, μ is a set function because 

its domain,  , consists of subsets of [ ,a b]. If we impose conditions mentioned for 

a σ -algebra on μ, that is, if

 i.   is not empty; of course, this will be a fact when we include the empty set 

∅ and the whole set [ ,a b];

 ii.   is closed under complementation, that is,

 A A∈ ⇔ C ∈ ;  

 iii.   is closed under countable unions, that is,

 i  {A ii , 1= ∞,2, , } ∈ → A ∈ , 

i=1

∞

then μ becomes a σ -algebra.

Definition 1.11

Let the length of the interval [ ,a b] be denoted by l a[ ],b . The set function μ, 

μ : [ → ∞0, ] (i.e., the range of μ is the set of nonnegative real numbers), is a mea-
sure if and only if it has the following properties:
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 i. The extended length property

 μ( )[ ,a b] = =l a b[ , ] b − a; (1.43)

 ii. The monotonicity property

 A B⊆ → μ μ( )A ≤ (B); (1.44)

 iii. The countable additivity property
If A A1 2, ,... is a disjoint sequence of sets of  , then the set function of 

union of A’s is the sum of the set functions. In symbols:

 {A i, 1= ∞,2,  , }
∞

⎛ ∞ ⎞
i i∈ , A ∩ Aj = ∅, i ≠ j,→ μ μ⎜ Ai i⎟ = ;

1
∑ ( )A  (1.45)⎝ i= ⎠
i=1

 iv. The nonnegativity property

 μ( )A A≥ ∀0, ∈ ; (1.46)

 v. 

 μ(A A) ∈ ∞[0, ], for any set ∈ ; (1.47)

 vi. 

 μ( )θ = 0; (1.48)

In this case, μ( )A  is the measure of A, or A is μ-measurable.

Note 1.23

Using AC, it can be proved that if   is the set of all subsets of [ ]a b, , then there is 

no measure for  . Hence, for each use, one needs to construct μ and  .

Note 1.24

Based on the definition stated above, a measure ' is finite or infinite, that is, μ( )A < ∞ 

or μ( )A = ∞, respectively. μ( )A = 1 is the case where it is called the probability 
measure. We will discuss other properties of probability measures in Chapter 2.

Definition 1.12

Consider a set A with finite measure. By a partition of A, it is meant a finite sequence 

of disjoint measurable sets A A1 2, ,..., An such that

 

n

A A= i . (1.49)

i=1
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Example 1.21

Consider the set of intervals

 
⎧⎡ 6 ⎞ ⎡6 7 ⎞ ⎡ 7 8 ⎞ ⎡8 9 ⎞ ⎡9 ⎤⎫
⎨⎢1, ⎟ , , , ,⎢ ⎟ ⎢ ⎟ , , , ,2 .

5⎠ ⎣ ⎠ ⎣ ⎠ ⎢ ⎟ ⎥⎬  
⎩⎪⎣ 5 5 5 5 ⎣5 5 ⎠ ⎢⎣ 5 ⎦⎭⎪

Clearly, the sequence of the five intervals in the set are disjoint and their union is 
the interval [1,2]. Thus, the sequence of subintervals

 
⎡ 6 ⎞ ⎡6 7 ⎞ ⎡ 7 8 ⎞ ⎡8 9 ⎞ ⎡9 ⎤
⎢1, ⎟ , , ⎟ , , ⎟ , , ⎟ , ,2  

5⎠ ⎢ 5 5 ⎠ ⎢⎣ 5 5⎠ ⎢5 5⎠ ⎢ ⎥⎣ ⎣ ⎣ ⎣ 5 ⎦

with endpoints

 { }6 7 8 9
1, , , , ,2  

5 5 5 5

is a partition of the interval [1,2].
As a generalization of length to open set, let us consider an interval [ ,a b]. Every 

open set, say O, in [ ,a b] is the disjoint union of intervals, that is, O = ∪i i( )b a− i .

Definition 1.13

Let A a⊆ [ ,b] for some finite a ≠ ∈b  . The outer measure of A, denoted by μ*( )A , 

is defined as

 μ* *( )A O= ⊂inf { }μ ( ) : A O . (1.50)

Definition 1.14

The Lebesgue measure of a set A of real numbers, denoted by μ( )A , if it is defined, 

where μ is a set function such that the properties (i), (ii), (iii), and (vii) “translation 

invariant” hold, is defined as follows.

 vii. The translation invariant property

 for x A0 0∈ + , x = { }a + x0 , a ∈A → μ μ(A + x0) = (A), (1.51)

holds.

Definition 1.15

The Lebesgue outer measure of a set A of real numbers, denoted by μ*( )A , is 

defined as follows:
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⎧

* ⎪μ ( )A l= ⊂inf ⎨ ( )Oi : A
⎩⎪
∑

∞

i=1

 
∞ ⎫⎪

Oi ⎬ , (1.52)

i=1 ⎭⎪

where {O ii , 1= ∞,2,..., } is a sequence of open intervals.

Note 1.25

It is provable that if A is countable, then μ*( )A = 0. Also, μ*( )A  satisfies the prop-

erties (140), (141), (142), and (148). It further satisfies the following property:

 viii. The countably sub-additive property

 μ* ⎜ A Ai ⎟ ≤ ∀∑μ* ( )i , .{Ai} ⊂   (1.53)
⎝ i=1 ⎠ i=1

⎛ ⎞∞ ∞

In other words, every subset of the set of real numbers has Lebesgue 

outer measure satisfying properties (i)–(iii), but does not fully satisfy 

property (iv).

Definition 1.16

A subset of the real numbers, say B, is referred to as Lebesgue measurable or simply 

measurable, if for every subset A of the set of real numbers we have the following:

 μ* *( )A A= ∪μ μ( )B + *( )A∩ B . (1.54)

Note 1.26

If A is a Lebesgue measurable set, then its Lebesgue measure is defined as the 

outer measure of A, μ*( )A , and therefore written as μ( )A .

Note 1.27

Let A and B be two measurable sets. Then, the set A − B consisting of all elements 

of A not in B is measurable. The proof is left as an exercise.

Note 1.28

The set of all measurable sets of the n-dimensional real number set  n is denoted 

by   n.
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Note 1.29

Since every open set is Lebesgue measurable, the Borel sets are measurable.

Definition 1.17

For a set A with a σ -algebra on A, the pair ( ,X A) is referred to as the measurable space.

Example 1.22

Let A = {1,3,5} and S A= ∅{ , } representing a σ -algebra on A. Then, the pair ( ,A S) 
is a measurable space.

Example 1.23

Let A be a singleton. Then, A is the Lebesgue measurable with measure 0.

Example 1.24

⎛ 1 ⎞ 1
The set A = ⎜ ,1⎟  is the Lebesgue measurable with measure .⎝ 2 ⎠ 2

Example 1.25

The set

 ⎛ 2 3 ⎞ ⎛ 5 6 ⎞A = ⎜ , ⎟ ∪ ⎜ , ⎟  ⎝ 7 7 ⎠ ⎝ 7 7 ⎠

2
is the Lebesgue measurable with measure .

7

Example 1.26

The set

 ⎛ 1 4 ⎞ ⎛ 6 9 ⎞ ⎛ 11 14 ⎞A = ⎜ , ⎟ ∪ ⎜ ; ⎟ ∪ ⎜ ; ⎟  ⎝ 15 15⎠ ⎝ 15 15⎠ ⎝ 15 15 ⎠

3
is the Lebesgue measurable with measure .

5

Example 1.27

A countable set like the set of rational numbers is measurable with measure 0.



27Preliminaries

Example 1.28

The n-dimensional Euclidean space is measurable with infinite measure.
The Lebesgue measure is often used in probability theory, physics, and 

other disciplines. Here, in this chapter, we confine it to probability. As we 
discussed earlier, the Lebesgue measure, say μ of the set of real numbers   
(an unbounded open set), is infinity. However, in probability theory, where 
the Lebesgue measure is a probability measure, it is required that μ( ) = 1. 
The Lebesgue measure of most interest is that of assigning a measure to sub-
sets of the n-dimensional Euclidean space. This general statement includes the 
cases of n = 1, 2, and 3, that is, length, area, and volume, respectively. In a 
one-dimensional case, the Lebesgue measure can be thought of as the usual 
concept of length, when we are dealing only with intervals. We will have a 
rigorous definition below.

Remark 1.2

The Lebesgue measure of a set A satisfies the properties (i), (ii), (iii), and (vii) on a 

collection   of measurable subsets of the set of real numbers. But not all subsets of 

the real number system are measurable.

Remark 1.3

Since all open and closed sets are measurable, and the collection   of measurable 

sets is closed under countable unions and intersections, properties (i), (ii), (iii), and 

(vii) imply that measurable sets do exist. The proof is left as an exercise.

Definition 1.18

Let X be a nonempty set,   a σ -algebra, and μ a measure on (X,  ). Then, the triple 

(X,  , μ) is called a measure space.

Note 1.30

The probability space that we will discuss in Chapter 2 is an important example 

of a measure space.

Definition 1.19

Let  (X , ) be a topological space. Then, a Borel measure is a measure that is defined 

on all open sets. It is denoted by  ( )X . Equivalently, a Borel measure is a measure 

defined on the Borel set ℬ.
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1.5  LEBESGUE INTEGRAL

In this section, we briefly discuss the Lebesgue integral for the real line, as we will 

need it later in other chapters. The area under nonnegative function with a continu-

ously defined on a closed interval or a “smooth enough” graph above the x-axis is 

known as the integral of the function. Such an area can be approximated using 

various approximation techniques. The Riemann integral is one of the most pop-

ular methods that was proposed by German mathematician Bernhard Riemann 

 (1826–1866) at the University of Göttingen in 1854 and published later in 1868.

The method includes partitioning the x-axis and finding the limit of sum of verti-

cal rectangles rising above the x-axis. The integral of a given function f ( )x  is then 

defined in terms of the limit of the Riemann sum, which is defined as follows.

Definition 1.20

Consider a given function f ( )x  on an interval [ ]a b, . Partition the closed inter-

val [ ]a b,  into n subintervals with boundary points {a x, ,1 2x ,..., xn−1,b} such 

that a < <x x1 2 <...xn−1 < b. Let the length of these subintervals be denoted by 

Δ Δx x1 2, ,...Δxn. That is, Δ =j jx x+1 − j , 1j = ,2,...,n −1. Let x*
j also be an arbitrary 

point in the jth subinterval. Then,

 ∑
n

f x( )*
j jΔx  (1.55)

j=1

is referred to as a Riemann sum for f ( )x  with the given partition. The quantity 

max Δx j is called the mesh size of the partition. If the limit of the sum in (1.55) 

exists as max Δ →x j 0, then the limit is referred to as the Riemann integral of f ( )x  

over the interval  [ ]a b, . In other words, the Riemann integral is defined as a set of 

bounded functions, say g a: ,[ ]b → , called the Riemann integral functions, that 

include all continuous functions. It may be extended to improper functions, as well.

Thus, we may define the Riemann integral as follows.

Definition 1.21

Let

 }Ω = ≤{( ,x y) : a x ≤ b, 0 < y < f ( ) ,x  

where f ( )x  is a nonnegative real-valued function on a closed interval  [ ]a b, . Then, 

the Riemann integral is defined as:

 ∫
nb

f (x)dx = Δlim f x*
j jx .

max x 0a Δ →j
∑ ( )  (1.56)

j=1
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To overcome some shortcomings of the Riemann integral, Fourier series and 

Fourier transform were developed. However, integration of irregular functions, 

such as those particularly arose in probability theory, and of those on spaces more 

general than the real axis became needed. That is, how the Lebesgue integral was 

developed and presented in Lebesgue (1904) and was vastly used (in  addition 

to the areas of real analysis and mathematical sciences) in probability  theory. 

Essentially, in the Lebesgue integration, sums are over horizontal rectangles 

rather than vertical as in the Riemann case. In other words, in the Lebesgue case, 

the y-axis is partitioned versus the Riemann case where the x-axis is partitioned. 

Hence, there might be more than one interval on the x-axis for a y-value to be 

cons idered in this case. Then, a question may be asked: Would the value of the 

integral be the same in both cases? The answer is yes, most of the times. See the 

example below. However, Lebesgue will become useful when the Riemann does 

not exist.

Generally speaking, our purpose of discussion is to integrate unbounded  functions 

and can take limits under the integral sign of an almost general nature. The Lebesgue 

integral is a Riemann integral of a function that exists over a set.

We formally define the Lebesgue integral, as follows.

Definition 1.22

Let   be a set of measurable sets on [ ]0,1 . The function f : 0[ ],1 →   is called 

a simple function if and only if there are real numbers a1 2, ,a a..., j, not necessar-

ily distinct, and measurable sets A A1 2, ,..., Aj ∈  such that  = { }A A1 2, ,..., Aj  is a 

partition of [0,1] and

 f x( ) =∑aj AI j ( )x , (1.57)

j

where IA is an indicator function defined earlier by (1.11).

Example 1.29

Consider a function whose value is 1 at rational numbers and 0 elsewhere. Such 
a function is called the Dirichlet function, and it is a simple function. In other 
words, the function g x( ) defined on the interval [0,1] by

 
⎧⎪ 0 x is rational

g x( ) = ⎨  (1.58)
1 is irrational

⎩⎪
x

is called the Dirichlet function. Thus, the area should be 1. However, it can be 
shown (left as an exercise) that since the upper and lower Riemann integrals are 
not the same, the Riemann integral for g x( ) does not exist.
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Note 1.31

Lebesgue showed that every Riemann integral is, indeed, a Lebesgue integral. 

But a Lebesgue integral is more general.

Definition 1.23

A simple function is called a step function if sets Aj are the intervals.

Example 1.30

⎡1 2 ⎤ ⎡ 1 ⎤ 4 28 1 3
Let A1 = , , = ,1⎢ A

⎣5 5
2 , ⎢⎣ 4 ⎦⎥

a1 = , and ⎥ a
⎦ 5

2 = . Then, μ( )A1 = , μ( )A2 = , and 
25 5 4

the associated f is a step function.

Definition 1.24

Let f : [0,1]→   be a simple function, as defined above, that is, f x( ) =∑aj AI j ( )x . 

j

Then, the Lebesgue integral of f, denoted by ∫ f , is given by

 ∫ f a= j jA ,

A

∑ μ( )  (1.59)

j

where μ( )A  is the measure (size, a nonnegative number) of the set A.

Definition 1.25

Let f ( )x  be a nonnegative measurable function. Then, f ( )x  is called the Lebesgue 
integrable if and only if there is a sequence of nonnegative simple functions { f j} 

such that:

 ∑
∞

∫ f j < ∞ (1.60)

j=1

and

 

∞

f x( ) =∑ f j (x), almost everywhere.

j=1
∫  (1.61)
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Example 1.31

Consider Example 1.26. Then,

 ∫ ⎛ 4 ⎞ ⎛ 1⎞ ⎛ 28 ⎞ ⎛ 3 ⎞ ⎛ 4 ⎞ ⎛ 21⎞f = ⎜ ⎟ ⎜ ⎟ + ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ + ⎜ ⎟ = 1. ⎝ 5 ⎠ ⎝ 5⎠ ⎝ 25 ⎠ ⎝ 4 ⎠ ⎝ 25⎠ ⎝ 25⎠

Note 1.32

Sets of measure 0 really won’t contribute to an integral. Thus, when we integrate 

two functions that are different only on a set of measure 0, we will find that their 

integrals will be the same.

As a generalization of the Lebesgue and Riemann integrals, we consider the 
Lebesgue–Stieltjes measure, which is a regular Borel measure. The Lebesgue–
Stieltjes integral is the ordinary Lebesgue integral with respect to the Lebesgue–
Stieltjes measure. To define the Lebesgue–Stieltjes integral, let μ : [a b, ]→   be 
a Borel measure and bounded. Also, let f : [a b, ]→   be a bounded variation in 
[a, b]. By a function of bounded variation, it is meant a real-valued function whose 
total variation is bounded (finite), for instance, functions of bounded variation of 
a single variable differentiable at almost every point of their domain of definition. 
Then, the Lebesgue–Stieltjes integral is defined as

 ∫
b

μ( )x df ( )x . (1.62)
a

We now define the Lebesgue–Stieltjes integral in terms of step function that 
appears often in probability and stochastic processes.

Definition 1.26

Let g( )⋅  be a right-continuous and nondecreasing step function with jumps at x1 2, ,x ... 

on the real line. Suppose f ( )⋅  is any function. Then, the Lebesgue–Stieltjes integral, 

denoted by

 ∫
b

f ( )x dg( )x , (1.63)
a

is defined as

 ∫
b

 f ( )x dg( )x = ⋅f x j j⎡g
a

∑ ∑( ) ⎣ ( )x − g(x j −1)⎤ = ⋅⎦ f ( )x j jΔg( )x , (1.64)

j j
a x≤ ≤j b a≤ ≤x j b

where Δ =g x( )j jg x( ) − g x( j 1).−
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Note 1.33

In case g( )⋅  is a continuous differentiable function with its derivative denoted as 

g′( )⋅ , then the Lebesgue–Stieltjes integral is denoted by

 ∫ ∫
b b

f ( )x dg( )x = f ( )x g′( )x dx. (1.65)
a a

Hence, as it can be seen, the Lebesgue–Stieltjes integral has been defined for both 

step function and an absolutely continuous function.

Note 1.34

The existence of the Lebesgue–Stieltjes integral in (1.63) is guaranteed by the 

assumption that μA is Borel measurable.

1.6  COUNTING

Throughout probability and statistics, we need to know how to count. For 

example, in assigning probabilities to outcomes, we sometime need to count the 

number of outcomes of a chance experiment and/or the number of ways an out-

come may occur. The main computational tool for the equiprobable measure is 

counting.

There are two basic rules and one principle for counting of tasks that we are to 

list here, namely, the sum rule, the product rule (principle of multiplication), and the 

inclusion–exclusion principle. These concepts are very closely related.

The Sum Rule

Suppose we have two tasks to conduct. The first task can be done in n1 ways 

and  the second in n2 ways. The two tasks cannot be conducted at the same time. 

Then, either task can be conducted in n1 2+ n  ways. This rule is referred to as the 

sum rule.

The sum rule can be extended as follows: Suppose there are n tasks A A1 2, ,..., An, 

each can be conducted in m1 2, ,m m..., n, ways, respectively. It is assumed that no two 

tasks can be done at the same time. Then, the number of ways any one of the tasks can 

be done is m1 2+ +m m...+ n.

Example 1.32

Let us assume that a department of mathematics currently has 25 faculty mem-
bers and 50 majors. One of the members of the Mathematics Grade Challenge 
Committee has resigned and needs to be replaced by either a faculty or a major. 
Thus, there are 25 + 50 = 75 choices for the mathematics department chairman to 
choose replacing the vacant position.
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Example 1.33

In a statistics course, students are to conduct a project and submit it at end of semes-
ter that they are enrolled in. The professor of the class has a list of 5 sets of possible 
projects, each containing 5, 10, 15, 20, and 15 topics different from each other, 
respectively. How many choices are there for each student to conduct a project?

The answer is 5 + 10 + 15 + 20 + 25 = 75.

The Product Rule or Multiplication Principle or The Fundamental Principal 
of Counting:

Suppose a task contains two subtasks. Processing of the task requires conducting 

the first subtask in n1 ways and then the second one in n2 ways. Then, complet-

ing processing of the task will have n1 2⋅n  choices, independent of each other. This 

principle can be extended for a multiple tasks, that is, n1 2⋅n ..., as long as each task 

is performed independent of all preceding tasks. We can show this principle graphi-

cally as follows.

Example 1.34

Consider choosing a license plate in Texas, where it requires a sequence of three let-
ters followed by three digits between 1 and 9. Let us ignore all possible restrictions 
of the state for plate number choice. Then, there are 26 ⋅26 ⋅26 9 9 9⋅ ⋅ ⋅ = 12,812,904 
ways to choose a license plate in Texas, under the assumption made.

Example 1.35

Let us now consider a finite set with n arbitrary elements. We can prove that this 
set has 2n subsets.

Here is the proof by mathematical induction. Let the set be a singleton, say 
S =  {a}. Then, the subsets of S are {a} and ∅. That is, there are 21 subsets for a 
singleton. The set of all subsets of a set, including the empty set, is referred to as 
the power set. Thus, the power set of the singleton {a} is {{a}, ∅}. Also, if S = {a, b}, 
then its power set is the set {{a}, {b}, {a, b}, ∅}, which has 4 = 22 elements. We can 
easily prove, by mathematical induction, that for a finite set S of n elements, the 
power set of S has 2n elements.

To show this fact, we have already seen that for a set with one element, the 
number of subsets was 2. Now, let us assume that the set S with n − 1 elements 
has 2n−1 subsets. Then, if S has n elements, the number of subsets will be 2n−1 for 
the first n − 1 elements and the same number in conjunction with the last one, 
making the total number double, that is, 2 2⋅ =n n−1 2 .

1 2

1 2 1 2 1 2

1 2

1 2



34 Probability, Statistics, Stochastic Processes

The Inclusion–Exclusion Principle

In counting, there is a principle that is extremely important, called the inclusion–
exclusion principle. This principle indicates the cardinality of a set. To explain this 

principle, remember that the sum rule is for doing one task or the other, not just for 

only one task and not either for both tasks at the same time. However, if both tasks 

were allowed to be done at the same time, then due to the double dipping of conduct, 

subtraction of the number of ways both tasks can be done at the same time is necessary.

With this new condition, we have the inclusion–exclusion principle. In set notation, 

the method for two finite sets A and B states the following:

 A B∪ = A + B − A B∩ . (1.66)

In case of three sets A, B, and C, we will have the following:

   A B∪ ∪C = A + B + C − A B∩ − A∩ −C B ∩ +C A B∩ ∩C . (1.67)

This principle is generalized as follows:

Let A A1 2, ,..., An be n finite sets. Then,

 

 
n n

A Ai = −i Ai j− A + + Ai j∩ A Ak −
i=1

∑ ∑ ∩
i= <1 1 i j< <n 1≤i j

∑
≤ ≤k≤n

+ −( 1)n−1 A A1 2∩ ∩...An . (1.68)

...

 

Example 1.36

Suppose we are to find the cardinality of sum of three subsets of the set S = 
{1,2,...,10}. Let the three subsets be A = {1,3,5,8}, B = {3,5,7,8,10}, and C = {4,5,8,10}. 
Then, A B∩ = {3,5,8}, A∩ =C {5,8}, B ∩ =C {5,8,10} and A B∩ ∩C = {5,8}. Thus,

 .A B∪ ∪C = 4 + 5 4+ − 3 2 3 2− − + = 7  

That is,

 A B∪ ∪C = {1,3,4,5,7,8,10}. 

Example 1.37

Suppose there are 20 students in a probability and statistics class. Of them, 
10   students study mathematics, 12 students study engineering, and 4 students 
study both. How many of the class study neither mathematics nor engineering?

For this problem, let us denote C as the set of all students in the class. There 
are three subsets of C, say M, E, and N, where they stand for the sets of students 
majoring mathematics, engineering, and neither, respectively. The cardinality of 
C, M, E, and M E∩  is 20, 10, 12, and 4, respectively. Therefore, according to 



35Preliminaries

(1.68), we have 20 = +10 12 + N − 4 from which the number of students who are 
neither majoring mathematics nor engineering is 2. We leave it as an exercise to 
show this result via a Venn diagram.

In counting, there are yet two other topics that we will be using later quite often 
in all three main subjects of this book, namely, probability, statistics, and stochas-
tic processes. These are permutation and combination that are closely related. 
These two topics are normally studied in the field of combinatorics and in sorting 
algorithm area of computer science.

First, we define the “n factorial”, denoted by n!, where n is a nonnegative 
integer, as

 n! 1= ⋅2 ⋅3...(n n−1) ⋅ . (1.69)

That is,

 n! (= −n n 1)! (1.70)

Relation (1.70) may be expanded term by term rather than all at once, as in (1.69).

Note 1.35

By convention, it is agreed that 0! = 1! = 1.

It should be noted that for large n, n! can be approximated by Stirling’s formula 
or Stirling’s approximation as

 
1+

n! 2≈ π
n

n e2 −n . (1.71)

The symbol " ≈ " means approximately equal to. In other words,

 
π

1

2 n en+
2 −n

lim = 1. (1.72)
n→∞ n!

Historically, Stirling’s formula originally came up from correspondences between 
James Stirling and Abraham de Moivre in the 1720s in regard to de Moivre’s work 
on approximating a binomial distribution by a normal distribution. We will discuss 
these concepts later in subsequent chapters.

Using a calculator or a computer program, the actual value of 10! is 3,628,800. 
Using Stirling’s formula, however, it is 3,598,695.61... with the difference of around 
30,104, which is less than 1% (actually, 0.83%). For 100!, using the Stirling for-
mula, we have 100! ≈ ×9 10157 with an error of the same as for 10!, that is, 0.083%.

It was also shown that

 
1

n! 2≈ +n nπ n ne−  (1.73)
3

is a better approximation than the standard Stirling formula. An example to illus-
trate this preference is given as follows: Let n = 0, then from the standard Stirling 
formula (1.72), n! = 0. However, assuming that lim nn = 1 from the modified version 

n→0
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π
of the Stirling formula, Equation (1.73), we will have n! = = 1.023333, which is 

3
very close to the value of 0! = 1. There is a problem though with this justification 
as the assumption for the Stirling formula is for large n and 0 is not a large number!!

For large n, n! may also be approximated by

 
∞

n! .= ∫ x en x− dx  (1.74)
0

The right-hand side of (1.74) is the gamma function, denoted by Γ( )n , and defined 
as follows.

Definition 1.27

Gamma function (one-parameter), Γ( )α , is defined by

 
∞

Γ =( )α ∫ x eα− −1 x dx. (1.75)
0

Note 1.36

From (1.75), using a change of variable, say x = λt , for any positive integer n and 

α , 0λ > , we have:

 
∞

Γ =( )α λα α∫ t e− −1 λt dt, (1.76)
0

from which integration by parts, yields

 ( 1) ( ), 0. (1.77)α α α αΓ + = Γ >

Thus, if α = ∈n n,  , then from (1.77), we will have:

 Γ +( 1n n) = ! (1.78)

where n! was defined in (1.69). As a reminder, by convention, 0! = 1 and 1! = 1. 

However, from (1.75), we see that

 
∞

Γ =(1) ∫ e d− −x xx =
∞

e 1.
0

=  (1.79)
0

Also, from (1.78), we have Γ =( )n n( −1)!, from which using 0! = 1, we will have

 Γ =(1) 0! = 1. 
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As a property of the gamma function, we leave it as an exercise to show that:

 
⎛ 1 ⎞Γ ⎜ ⎟ = π  (1.80)⎝ 2 ⎠

and generally,

 

⎛ 1 ⎞
⎛ 1 ⎞ n ⎟ 1 ⎞Γ + ⎜ − ⎛ π
⎜ n⎟ = 2 n n! ,π Γand ⎜ − ⎟ = . (1.81)⎝ 2 ⎠ ⎜ ⎟ ⎝ 2 ⎠ ⎛ 1 ⎞

⎝ n ⎠ ⎜ − ⎟2 n!⎜ ⎟
⎝ n ⎠

Example 1.38

⎛ 5 ⎞Find Γ⎜ ⎟ .⎝ 2 ⎠

Answer

3
From (1.77) for α = , we have:

2

⎛ 5 ⎞ ⎛ 3 ⎞ 3 ⎡ ⎛ 3 ⎞ ⎤Γ ⎜ ⎟ = Γ ⎜ +1⎟ = Γ ⎜ ⎟⎝ 2 ⎠ ⎝ ⎢2 ⎠ 2 ⎣ ⎝ 2 ⎠ ⎥⎦

3 ⎡ ⎛ 1 ⎞ ⎤ ⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 3 ⎞= Γ + = Γ = π⎢ ⎜ 1⎟ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ .
2 ⎣ ⎝ 2 ⎠ ⎦ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 4 ⎠

  

Example 1.39

Find the value of the following integral:

 ∫
∞

x e5 4− x dx. 
0

Answer

Using (1.76), we let α = 6 and λ = 4. Then, using (1.78), we have:

∫
∞

5 4− 1 5! 120
x e x dx = Γ(6) = 0.1172.

0 46 6
= ≈  

4 1,024
 

Arrangements of outcomes of an experiment may be desired to be in a certain 
order. The choice of arrangements may be done with or without replacement. 
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That is, an object may be selected and “put back” in place, and then another 
selection will be made. This selection is with replacement. However, choosing 
objects may be so as each is selected it will be remain out of the place until the 
next object is chosen, and so on. This type of process is referred to as the selec-
tions without replacement.

Definition 1.28

For a set of n distinct objects, a possible ordered arrangement of the objects is 

called a permutation and is denoted by n!.
An ordered arrangement of only some of the elements, say k, of a finite set, with 

say n elements, is called the partial permutation or k-permutation. It is denoted 

by P( ,n k), Pn
k , n Pk , ( )n k, etc.

Note 1.37

The k-permutation is a weaker version of permutation in the sense that it chooses 

only those nonrepeated ordered elements of a set and not necessarily all elements 

of the set.

Theorem 1.1

The k-permutation:

 

⎧ n n( − −1)(n 2)...(n − k k+1), 0 ≤ ≤ n,
⎪            

P n k( , ) = ⎨ k factors  (1.82)
⎪ 0, k n> .⎩

Proof:
The first object out of n elements of the set can be chosen in n ways since there are 

n objects available. Putting the first object aside, there will be n − 1 objects left to 

select the second objects. Continuing this method, the kth object will be chosen 

( 2n k− + ) ways. Thus, by the product rule, (1.82) and (1.43) and with 0 ≤ ≤k n,

 
n!

P n( ,k n) = −(n 1)(n − 2)...(n − k +1) = . (1.83)
( )n k− !

From (1.83), when k n= , that is, permutation of the n objects, meaning the entire set, 

we see that:

 P( ,n n) = n!. (1.84)

We note that, historically, the idea of permutation came from India around 1,150 in 

the twelfth century.
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Example 1.40

Suppose there are four “best students” nominees (Andy, Barbara, Carolyn, and 
David) for the Best Students of the Year Award, and only three can be selected 
as winners. Thus, we can think of having three slots to fill from the available four 
students. For the first slot, we have all four students to choose from. As soon as the 
first winner is selected, only three remain for the second winner and finally only 
two to choose from for the third winner. Then, by the multiplication principle, the 
winners can be chosen in 4 ⋅ ⋅3 2 = 24 ways.

Symbolically, let S A= { , B,C, D}. The 3-permutation of the set S is:

 
4! 24

P(4,3) = ⋅4 3 ⋅2 = = = 24. 
1! 1

These elements are as follows:
ABC, ABD, ACB, ADB, ACD, ADC,
BAC, BAD, BCA, BDA, BCD, BDC,
CAB, CAD, CBA, CDA, CBD, CDB,
DAB, DAC, DBA, DCA, DBC, DCB.

Example 1.41

Suppose we want to choose two numbers randomly out of the natural numbers 
from 1 to 5 without replacement. Then, the different ways each of the two  numbers 
can be chosen are 5 and 4, respectively. Thus, the total ways the two numbers can 
be chosen are 5 × 4 = 20. The possible arrangements are as follows:

12, 13, 14, 15,
21, 23, 24, 25,
31, 32, 34, 35,
41, 42, 43, 45,
51, 52, 53, 54.

Example 1.42

Permutations of the letters a, b, and c (written as abc) are the possible ordered 
arrangements of a, b, and c. There will be 3! = 3∙2∙1 = 6. They are as follows:

abc, acb, bac, bca, cab, cba.

Definition 1.29

For a set of n distinct objects, an unordered selection of k objects from the set is 

called a combination of k object selected from n objects or simply “n choose k”, 
⎛ n ⎞

denoted by C n( ;k) or ⎜⎝ k ⎟  or C
⎠

k  and others.

Also, an unordered selection of k objects from the set is called a k-combination o

elements of the set. In other words, a k-combination of a set S is a subset of k distinc

f 

t 
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elements of the set. When S contains n elements, the number of  k-combinations is 

as follows:

 

⎧ ⎛ n ⎞ n n⋅ −( 1) ⋅ −(n 2)...(n − k +1) n!
⎪⎪ = = ≤⎜⎝ k ⎟ k n,
⎨ ⎠ k k⋅ −( 1) ⋅ −(k 2)...2 ⋅1 k n!( − K)!  (1.85)
⎪

0, k n> .⎩⎪

Note 1.38

Order is, indeed, what distinguishes between permutations and combinations. In 

other words, in permutation, we select r objects from a set of n objects with order, 

while for combination, we do the same except no ordering is required. This would 

mean that in counting the combination of n letters taking k letter at a time, we 

could look at the k-permutation and exclude those objects having the same letters. 

In fact, this idea is the basis of the proof of (1.83). Here is the proof: We take a 

k-combination of a set of n elements. This number includes all objects with no 

ordering. We, then, order the objects in each of the k-combination. This task can 

be done in P( ,k k) ways. Thus, k n< :

 P( ,n k) = ⋅C( ,n k) P(k,k) 

or

 

n!

P n k( , ) ( )n k− !C n( ,k) = = , 
P k( ,k) k!

( )k k− !

which leads to (1.85).

Note that it is not too difficult to show that for k n≤ , the following is true:

C n( ,k) = −C( ,n n k). (1.86) 

⎛ n ⎞
We also note that ⎜ ⎟  appears as the coefficient in the binomial formula. 

⎝ k ⎠
The binomial theorem states:

 
⎛( ) ∑

n
n n ⎞

x y+ = x yk n⋅ −k
⎜ .

k ⎟  (1.87)

k=0
⎝ ⎠

We further note that

 
⎛ n ⎞ ⎛ n ⎞

= =⎜ 1.
⎝ 0 ⎟ ⎜⎠ ⎝ n ⎟  (1.88)

⎠
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Example 1.43

Suppose we want to create a stock shares portfolio with four electronic items and 
three real estate pieces, when there are eight electronic items and five real estate 
buildings available. Here is how we calculate the answer:

 1. Number of ways of choosing 4 electronic items from 8 is C(8,4).
2. Number of ways of choosing 3 real estate buildings from 5 is C(5,3).

3. Number of ways of choosing 4 electronic items from 8 and 3 real estate 
buildings from 5 is

 
 

 
⎛ 8! ⎞ ⎛ 5! ⎞

C C(8,4) ⋅ =(5,3) ⎜ ⎟ ⎜ ⎟ = 700. 
⎝ 4!(8 − 4)!⎠ ⎝ 3!(5− 3)!⎠

Example 1.44

Suppose a company is to establish an Executive Committee consisting of two men 
and three women. There is a pool of ten candidates of whom there are six men 
and four women. In how many ways this committee can be established?

To answer the question, we argue as follows:
We need to choose three women out of four and two men out of six. Hence, 

we have:

 

4! 6!
C C(4,3) ⋅ =(6,2) .

3!(4 − −3)! 2!(6 2)!

4 3⋅ ! 6 5 4⋅ ⋅ ⋅ ⋅3 2 ⋅1 4(6 ⋅5)= ⋅ = × = 60.
3! ⋅1 2 4 3⋅ ⋅ ⋅2 ⋅1 2

 

Thus, there are 60 ways of establishing the committee needed.
Now, we exemplify an application that involves both permutation and 

combination.

Definition 1.30

Suppose r r1 2, ...rk are k nonnegative integers such their sum is another nonnegative 

integer, say n. Then,

 
... ..., , ,

!

! ! !1 2 1 2

n
r r r

n
r r rk k

⎛
⎝⎜

⎞
⎠⎟

=  (1.89)

defines the multinomial coefficient. As a special case, if all r’s are zero, except one, 

say r, then (1.89) reduces to (1.52), that is, the binomial coefficients.

The following theorem proves what is known as the permutation or distin-
guishable permutations of n objects or permutation with repetition or sam-
pling repetition.
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Theorem 1.2

The number of permutations of n objects with r1 alike, r2 alike, …, rk alike, is given 

by the multinomial coefficient (1.86).

Proof:
Let S be a set of n objects such that r1 of one kind and indistinguishable, r2 of 

another kind and indistinguishable, …, and yet rk of another kind and alike with 

r r1 2+ +...rk = n. We need to find the number of distinct permutations of all n objects.

⎛ n ⎞
There are ⎜ ⎟  ways to choose the first r

⎝ r1 ⎠
1 objects. Having r1 objects chosen, 

⎛ n r−
there remains n − r1 objects to choose the second set of r

1
⎞

2 objects with ⎜ ⎟  
⎝ r2 ⎠

ways to choose from. Following the same pattern, for the next selection, there will 

⎛ n r− − r ⎞
be n − −r r1 2 objects left to choose r3 objects in 

1 2

⎜ ⎟  ways. Continuing the 
⎝ r3 ⎠

process up to the case when there are n − −r r1 2 −...− rk−2 objects left to choose rk−1 

⎛ n r− −1 2r −...−r
objects in 

k−2
⎞

⎜ ⎟ ways. Thus, by the product rule, we have the num-
⎝ rk−1 ⎠

ber of distinct permutations of all n objects to be the:

 
⎛ n ⎞ ⎛ n r− 1 ⎞ ⎛ n r− − − − −...

⎟
1 2r ⎞ ⎛ n r r − r ⎞

⎜ ⎟ ⎜ ⎜ ⎟...
−

⎜
1 2 k 2

⎟ , (1.90)
⎝ r1 ⎠ ⎝ r2 ⎠ ⎝ r3 ⎠ ⎝ rk−1 ⎠

or

 

n! ( )n r− 1 ! ( )n r− −...− r !
. ... 1 2k−

r n1 1! !( )− r r n2 1! !( )− −r r2 r nn n− −1 1! !( )− −r ...− r 1

 (1.91)
n!= ,

r r1 2! !...rn !

which is the same as (1.56), completing the proof.

1.7  FUZZY SET THEORY, FUZZY LOGIC, AND FUZZY MEASURE

The classical set theory, as defined by Cantor and later axiomatized by Zermelo and 

Fraenkel, assumed that an element is either a member of a set or not. This standard 

assumption was severely rattled when Lotfi A. Zadeh (1965), in his paper entitled 

Fuzzy Sets, developed the fuzzy set theory by relaxing some of the assumptions in 

the standard set theory. That is, fuzzy set theory allows the “gradual assessment of 

the membership of elements in a set”. For instance, the value of the membership in a 
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set is a real number in the interval [0, 1]. Also, the weight of a person does not have 

to be in the light or heavy weight categorical set, but it could be a fraction of the 

highest possible weight set. The fuzzy set is defined as a pair with a set and grade of 

membership of its element (Figure 1.9).

In essence, what Zadeh expressed was the need for conceptual adjustments to the 

foundational mathematical entities, like sets, in order for them to acquire a closer 

approximation to the various actual circumstances in applications of mathematics, 

where factors such as lack of determinacy, uncertainty, and randomness come into 

consideration.

Definition 1.31 Zadeh (1965)

Zadeh (1965) in the abstract of his paper defined a fuzzy set as “a class of objects 

with a continuum of grades of membership. Such a set is characterized by a mem-

bership (characteristic) function which assigns to each object a grade of membership 

ranging between zero and one”.

To explain “membership”, he started the introduction as “More often than not, 

the classes of objects encountered in the real physical world do not have precisely 

defined criteria of membership. For example, the class of animals clearly includes 

dogs, horses, birds, etc. as its members, and clearly excludes such objects as rocks, 

fluids, plants, etc. However, such objects as starfish, bacteria, etc. have an ambigu-

ous status with respect to the class of animals. The same kind of ambiguity arises 

in the case of a number like 10 in relation to the ‘class’ of all real numbers which 

are much greater than 1”.

FIGURE 1.9 Lotfi Aliasghar Zadeh (1921–2017). Iranian engineer, computer scientist, and 

mathematician, professor at University of Berkeley, California, the United States. Born on 

February 4, 1921, and died on September 6, 2017, at age of 96, Photo taken in 2005. https://

en.wikipedia.org/wiki/Lotfi_A._Zadeh.

https://en.wikipedia.org
https://en.wikipedia.org
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Note 1.39

In  n, a fuzzy set is defined by a characteristic function μA such that 

μA : [ n → 0,1], which associates with each x in  n its “grade of membership”, 

μA( )x  in A.

Note 1.40

To distinguish between crisp and fussy sets, the word “membership function” is 

used for fuzzy set, while “characteristic function” is used for a crisp set.

Here is an example he presented for membership function.

Example 1.45 Zadeh (1968)

Consider the set of real numbers,  1. Then, A x= { 0x  } is a fuzzy set with its 
membership function, say

 
⎧⎪ += ( )−1

1 ,x x−2  0,μa ( )x ⎨  (1.92)
⎪ 0, x < 0.⎩

Zadeh redefined his definition of the fuzzy set symbolically as he stated.

Definition 1.32 Zadeh (1965)

“Let X be a space of points (objects), with a generic element of X denoted by x. Thus, 

X = {x}.

A fuzzy set (class) A in X is characterized by a membership (characteristic) func-
tion fA( )x  which associates with each point (more generally, the domain of definition 

of fA( )x  may be restricted to a subset of X) in X a real number in the interval [0, 1] (in 

a more general setting, the range of the membership function can be taken to be a suit-

able partially ordered set P. For our purposes, it is convenient and sufficient to restrict 

the range of f to the unit interval. If the values of fA( )x  are interpreted as truth values, 

the latter case corresponds to a multivalued logic with a continuum of truth values in the 

interval [0, 1]), with the value of fA( )x  at x representing the ‘grade of membership’ of x 

in A. Thus, the nearer the value of fA( )x  to unity, the higher the grade of membership of 

x in A. When A is a set in the ordinary sense of the term, its membership function can 

take only two values 0 and 1, with fA( )x  = 1 or 0 whether x does or does not belong to 

A. Thus, in this case, fA( )x  reduces to the familiar characteristic function of a set A”.

Note 1.41

The contents in parentheses are from the footnotes of the paper.
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Example 1.46 Zadeh (1965)

Let X be the real line  . Let A also be a fuzzy set of numbers greater than 1. Then, 
fA( )x  may be given as a function on   with representative values as fA(0) = 0, 
fA(1) = 0 , fA(5) = 0.01, fA(10) = 0.2, fA(100) = 0.95, and fA(500) = 1.

Note 1.42

As Zadeh stated, “When there is a need to differentiate between such sets and 

fuzzy sets, the sets with two-valued characteristic functions will be referred to as 

ordinary sets or simply sets”.

Note 1.43

Also, as Zadeh stated, “The notions of inclusion, union, intersection, comple-

ment, etc., are extended to such sets”.

Note 1.44

The distinction between a crisp set and a fuzzy set is that the characteristic 

function of a crisp set, as we mentioned before, assigns only 1 or 0 to each element 

of the universal set, while for a fuzzy set, it assigns a range of numbers (partial 

membership) within the unit interval [0,1]. We may say that fuzzy sets allow 

vague concepts.

For example, for a crisp set, in the real-life situation, a grape is either sweet 

or not sweet; however, in a fuzzy set, a grape may be very sweet, approximately 

sweet, or not sweet at all.

As another example, we can consider the set of criminals versus innocents. 

It is the degree of evidence of guilt or innocence that puts the membership of the 

defendant in the crisp or fuzzy set.

Definition 1.33 Zadeh (1965)

 1. A fuzzy set is empty if and only if its membership function is identically 

zero on X.

2. Two fuzzy sets A and B are equal, denoted by A = B, if and only if 

fA B( )x f= ( )x , for all x in X.

 3. The complement of a fuzzy set A, denoted by A′, is defined by 

fA A′( )x f= −1 ( )x .

 4. A B⊂ , or A, is smaller than or equal to B if and only if fA B( )x f≤ ( )x .

 5. The union of two fuzzy sets A and B with respective membership functions 

fA( )x  and fB( )x  is a fuzzy set C, denoted by C A= ∪ B, whose membership 

function is related to those of A and B by fC A( )x f= Max[ ]( )x , fB( )x , x X  

or, symbolically, fC A( )x f= ∨( )x fB( )x .

 

∈
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 6. The intersection of two fuzzy sets A and B with respective mem-

bership functions fA( )x  and fB( )x  is a fuzzy set C, denoted by 

C A= ∩ B, whose membership function is related to those of A and B by 

fC A( )x f= ∈Min[ ]( )x , fB( )x , x X  or, symbolically, fC A( )x f= ∧( )x fB( )x .

 7. The algebraic sum of fuzzy sets A and B, denoted by A + B, is defined in 

terms of the membership functions of A and B, as fA B+ = +f fA B provided 

fA B( )x f+ ≤( )x 1, ∀x.

 8. The algebraic product of fuzzy sets A and B, denoted by AB, is defined in 

terms of the membership functions of A and B, as fAB = f fA B. Note that the 

condition of the algebraic sum is not required in this case.

 9. The absolute difference of fuzzy sets A and B, denoted by A B− , is defined 

by f A B− = −f fA B .

 10. A relation, as was originally defined by Halmos (1960), is defined as a set of 

ordered pairs. However, for fuzzy sets, a fuzzy relation in X is a fuzzy set 

in the product space X × X .

For instance, in ordinary set theory, the set of all ordered pairs of real 

numbers x and y such that x ≥ y is a relation (a generalization of a function), 

while in fuzzy set theory, the relation, denoted by x   y x, , y ∈ 1, may be 

regarded as a fuzzy set A ⊂  2 with the membership function of A, fA( ,x y), 

having the following representative values as fA(10,5) = 0; fA(100,10) = 0.7; 

fA(100,1) = 1; etc.

Note 1.45

As a description of the new direction, Zadeh pointed to the allowance of a “con-

tinuity” of the membership (characteristic) function of a set, beyond the standard 

binary form, as the principal, starting line of thought along these lines, which, 

indeed, seems to be a very reasonable and sound position. In fact, this is the line 

of thought through which fuzzy set theory can be described properly and accu-

rately in a way that makes its nature and position in mathematics more immedi-

ately transparent.

Note 1.46

In earlier times, when Zadeh introduced the fuzziness idea in mathematics, 

some members of the mathematical community expressed statements, based on 

incomplete understanding of the theory and/or misconceptions. However, with 

appearances of applications of the theory, it found its place, and as we see these 

days, hundreds of papers are published as application of fuzzy set theory in math-

ematics. Having said that, perhaps a mathematically more transparent and pre-

cise definition of the theory may further help in avoiding such circumstances 

or misunderstandings in the future. Some even believe that the name should be 

reconsidered, for instance, “continuous set theory”, as originally was considered 

by Zadeh. The word “continuous” here is used in its widest sense, namely, the 
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existence of at least some intermediate values, beyond the standard binary ones. 

The main point in such a name suggestion for the theory, looking ahead, is for its 

name to already project, transparently, more exactly its exact mathematical nature 

and position in the mathematical spectrum, something that may be substantially 

beneficial.

Continuing his line of fuzzy development, in 1975, Zadeh introduced “fuzzy logic 

and approximate reasoning”. The classic definition of logic is the study of prin-

ciples of reasoning in any form. It deals with propositions that are required to be 

either true or false. For each proposition, there is its negation. Zadeh used the term 

“fuzzy logic” to describe an imprecise logical system, in which the true values are 

fuzzy subsets of the unit interval. In that context, terms such as “true”, “false”, 

“not true”, “very true”, “quite true”, “not very true”, and “not very false” have 

been used. Thus, the so-called truth tables in traditional logic with “and”, “or”, 

“implies”, and “if and only if” in fuzzy logic become dependent upon the meaning 

of these terms.

What distinguishes fuzziness from traditional sets and logic is the “approxi-

mate” rather than “preciseness”. Hence, we might say that fuzzy logic is “logic of 

approximate reasoning”. Thus, the validity of rules of inference in fuzzy logic is 

approximate rather than exact. In other words, fuzzy set theory is based on intuitive 

reasoning. This reasoning involves the human subjectivity and imprecision, although 

the theory itself is a rigorous mathematical theory.

Example 1.47

As an example of a fuzzy set in conjunction with fuzzy logic, we could have the 
following implication:

a is a small positive number; a and b are almost equal; therefore, b is almost 
small.

In this statement, both a and b are the fuzzy sets by virtue of the word “almost”.
In the previous subsection, we discussed how the Lebesgue measure was 

defined. However, definition of the Lebesgue measure is based on the standard 
crisp sets. We now present two types of the fuzzy measure that are essentially 
the same.

Definition 1.34

Let U be a universal set and Ω a nonempty set of subsets of U. Then, a fuzzy 
 measure on the space U ,Ω  is a function, say μ, that satisfies the following 

properties:

 1. μ( )∅ = 0 and μ( )U = 1 boundary condition.

 2. ∀ ∈A B, Ω, if A ⊆ B, then μ μ(A) ≤ (B) monotonicity condition.
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 3. For an increasing sequence A A1 2⊂ ⊂...∈Ω,

If  
∞ ⎛ ∞ ⎞

A Ai ∈Ω, then lim μ μ( )i i= ⎜ A ⎟ , continuity from below 
i→∞

i=1 1⎝ i= ⎠
condition. 

 4. For a decreasing sequence A A1 2⊃ ⊃...∈Ω,

If  
∞ ⎛ ∞ ⎞

A Ai ∈Ω, then lim μ μ( )i i= ⎜ A ⎟ , continuity from above 
i→∞

i=1 1⎝ i= ⎠
condition.

Definition 1.35 (Sugeno Fuzzy Measure)

Recall the definition of a σ-algebra or a σ-field on a set A that is a collection ℘ of sub-

sets of A that includes the empty set, which is closed undercomplement,  countable 

unions, and countable intersections. Now from Murofushi and Sugeno (1989), let 

℘ be a σ -algebra on a universal set U. A Sugeno fuzzy measure, denoted by g, is 

defined by g : [℘→ 0,1] such that:

 1. g( )∅ = 0 and g U( ) = 1 boundary condition.

2. If A B, ∈℘, and A ⊆ B, then g(A) ≤ g(B), monotonicity condition.

( )3. If A Ai ∈℘, and 1 2⊆ A ⊆..., then lim g Ai lim Ai , 
i

( ) = g Sugeno’s 
→∞ i→∞

convergence.

 

 

Note 1.47

We note that in fuzzy measure, some of the mentioned properties may not hold.

EXERCISES

 1.1. Are {1,3,4} and {4,3,1,1} equal sets?

1.2. How many elements are in the set {1,a, 2,1,a}?

1.3. A mathematics department has 40 full-time faculty members. For profes-

sional development and service to the profession, each may belong to one 

or more mathematics professional organizations such as

1. AMS (American Mathematical Society),

2. SIAM (Society for Industrial and Applied Mathematics),

3. MAA (Mathematics Association of America),

4. ASA (American Statistical Association),

5. NTCM (National Council of Teachers of Mathematics).

For this department, it is known that the membership of each of these 

 associations is as follows:
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Draw a Venn diagram and find the number of those who do not belong 

to any one of these five organizations.

 1.4. Let us denote a rainy day by R, a windy day by W, and a sunny day by 

S.  Let E be the set of days in September. Draw a Venn diagram, if in 

Houston Texas in a September month, there are, on the average, 15 sunny 

days, 5 windy days, and 18 rainy days.

i. The set of whole numbers between 1 and 10.

ii. The set of positive real numbers less than 9.

iii. The set of natural numbers greater than 9.

 iv. The set A = {3,6,9,12,...}.

 1.7. For A = {2,4,5} and B = {3,4,5}, answer the following questions:

 i. Is A a subset of B?

 ii. Is B a proper subset of A?

iii. Find the intersection of A and B.

1.9. In a group of musicians, including singers, if S is the set of singers and I is 

the set of instrumentalists, in a set notation,

i. Write the set of singers who play an instrument.

ii. Write the set of musical performers.

1.10. Let A = {0,3,6,9} and B = {1,2,4,7,8}. Draw the Venn diagram illustrating 

these sets with the union as the universal set.

1.11. Find the number of ways of choosing 2 consonants from 7 and 2 vowels 

from 4.

1.12. A game team consists of ten players, six male and four female players. 

In how many different ways can four players be selected such that at least 

one male player is included in the selected group?

1.13. In an election of the Student Government Association Executive Committee 

at a university, there are 13 student candidates, with 7 females and 6 males. 

Five persons are to be selected that include at least 3 females. In how many 

different ways can this committee be selected?

1.14. In how many different ways can the letters of the word “MATHEMATICS” 

be arranged so that the vowels always come together?

1.15. In how many ways can a group of five girls and two boys be made out of a 

total of seven boys and three girls?

 1.5. List the elements of a set A containing natural numbers between 20 and 

200, divisible by 4.

 1.6. Determine if the set is finite or infinite, and justify your answer:

 

 

 

 

 1.8. Considering the set E of English alphabets, if V is the set of vowels, what is 

the complement of V called?

 

 

 

AMS SIAM MAA ASA NCTM (1) & (1) & (2) & (3) & (1), (2), & All

(1) (2) (3) (4) (5) (2) (3) (4) (5) (4)

21 26 13 9 3 20 15 15 8 7 2
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1.16. Fifteen planes are commuting between two cities A and B. In how many 

ways can a person go from A to B and return by a different plane?

1.17. Three cars enter a parking lot with 11 empty parking spaces. Each car has 

an option of backing into its parking space or driving in forward. How 

many ways can the three drivers select

 i. Parking spaces?

 ii. Parking spaces and parking positions?

1.18. An executive lady has four clean skirts and five clean blouses to wear to 

work in a certain week. How many ways can she choose outfits for Monday, 

Wednesday, and Friday if

 i. She does not wish to wear the same skirt or blouse twice?

 

 

ii. She is willing to repeat her attire?

iii. She is willing to repeat her skirts but not her blouses?

1.19. Suppose stocks of eight electronic items and five real estate buildings are 

available in the stock market. We want to create a stock shares portfolio 

with four electronic items and three real estate pieces. How many different 

ways can we form this portfolio?

1.20. Suppose a company is to establish an Executive Committee consisting of 

two men and three women. There is a pool of ten candidates consisting 

of six men and four women. In how many ways can this committee be 

established?

1.21. Suppose we are to create 6-character codes (xxxxxx) for products of a 

manufacturer. The characters in each code are to be:

A letter,

Another letter different from the first choice,

Another letter different from the first two choices,

A nonzero digit

Two digits.

How many different codes could we have?

1.22. Using the Stirling formula, approximate the error of calculating 2! 
(2 factorial).

1.23. Consider the set {1,2,3}.

 i. Write the elements of the permutations by taking two digits from above 

three

 ii. Write the elements of the permutation without repetition of the 

3  numbers taken all 3 at a time.

 iii. Do both cases (i) and (ii) have the same number of elements?

1.24. Suppose it is known that a box of 24 light bulbs contains five defective 

bulbs. A customer randomly chooses two bulbs from the box without 

replacement.

 

 

i. What is the total number of ways the customer can choose the bulbs?

ii. What is the number of ways to choose no defective bulb?
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2 Basics of Probability

2.1  BASICS OF PROBABILITY

In this book, unless otherwise stated, we will assume that occurrences of events are 

not deterministic. In other words, the events cannot be entirely determined by the 

initial states and inputs. Instead, they are perceived to be random, probabilistic, or 

stochastic. Nature of these occurrences of events is random, probabilistic, or stochas-

tic. We will start with basic definitions and develop, in the process, the vocabulary 

needed to discuss the subject matter with the clarity sufficient even to address the 

more advanced materials to be encountered later in this book.

Definition 2.1

When an experiment is performed, its results are referred to as the outcomes. If 

such results are not deterministic, the experiment is called a chance experiment, a 

random experiment, or a trial.
Thus, from now to the end of this book, we will be considering random experi-

ments with uncertain outcomes.

Definition 2.2

A set of outcomes is called an event. An event with only one outcome, that is, a sin-

gleton, is referred to as an elementary or simple event. Hence, in general, an event 

is a collection of simple events. An event may be defined as an element of a σ-field, 
denoted by 𝕊 (defined in Chapter 1) of subsets of the sample space Ω. Occurrence 

of an event depends on its member outcomes that take place. The collection of all 

possible events is called the sample space, usually denoted by Ω. Thus, an event is a 

subset of the sample space, whose elements are called the sample points.

Definition 2.3

A sample space that contains a finite or a countable collection of sample points is 

referred to as a discrete sample space. However, a sample space that contains an 

uncountable collection of sample points is referred to as a continuous sample space.
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Example 2.1

The following are examples of finite and infinite discrete sample spaces:

 i. Let Ω be the set of all natural numbers between 1 and 15. Then, the 
sample space has 15 sample points that are numbered from 1 through 
15. And the set of all odd numbers between 1 and 15 is an event.

 ii. As another example, consider an automatic switch for a traffic light with 
only four states “green”, “yellow”, “red”, and “off”. Let us, for instance, 
quantify the sample space Ω as {1,2,3,4}. There are 4! = 24 possible out-
comes for this random experiment: {1} , {2} , {3}, {4} , {1,2} , {1,3}, {1,4}, 
… {4,3}, … {1,2,3}, {1,2,4}, … ,{1,2,3,4}, and ∅.

 iii. As another example, consider the off and on cases of the traffic light 
mentioned above. In particular, consider the number of working days of 
the light. In this case, the sample space will be Ω = { }0,1,2,3,... .

Example 2.2

In contrast to the discrete sample space discussed in Example 2.1, we may have 
continuous sample space. For example, consider a machine that may break while 
working. The length of breakdown of the machine is an interval of time on the real 
line, as the length of the working time of the machine. Suppose we are interested 
in the first time that the machine breaks down. Thus, the sample space for working 
time of the machine in this case is indicated by [0,∞), where the symbol ∞ denotes 
that the machine will never break.

Definition 2.4

Two events E1 and E2 from a sample space Ω are called mutually exclusive events 

if their intersection is the empty set; otherwise, they are referred to as non-mutually 
exclusive events. In the latter case, there is a chance that both events can occur 

simultaneously.

Definition 2.5

The set of n events { }E E1 2, ,...,En  is called a partition of a sample space Ω if the 

events are mutually exclusive, that is, E1 2∪ ∪E E, ,... ∪ n = Ω.

Example 2.3

A random generator is referred to a process that can uniformly (with the same 
chance) generate numbers on a set. Using a random generator processor, we 
generate real numbers from an interval of [ ]1,2 . We choose the point 2  from 
this interval. Then, the real numbers randomly selected from [ ]1,2  will be either 
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in ⎡ ⎤⎣1, 2 ⎦ or in ( 2,2]. Thus, the sample space in this case is the continuous 

infinite interval Ω = [ ]1,2 . The two events ⎡ ⎤⎣1, 2 ⎦ and ( 2,2], in this case, are 

mutually exclusive, that is, ⎡1, 2 ⎤ ∩ ( 2,2⎤ = ∅ and ⎡1, 2 ⎤ ∪⎣ ⎦ , ⎤⎣ ⎦ ⎦ ( 2 2 = Ω⎦ . Thus,

{⎡⎣1, 2 ⎤⎦ ,( 2,2⎤⎦} is a partition of the sample space Ω.

Example 2.4 Non-Mutually Exclusive Events

Suppose we roll a fair die. If the event shows an odd number and another event 
shows a number <5, then they are called as non-mutually exclusive events. 
Indeed, the numbers 1 and 3 are the common elements in these types of events.

Definition 2.6

Let E be an event. Let us also denote the probability of an event E by P(E). We offer 

four definitions for P(E) in the following.

Definition 2.6a First Definition

The probability of E, P(E), is a number between 0 and 1, inclusive, that indicates 

the chance of occurrence of E. In other words, the probability of an event measures 

how likely it is for the event to occur.

There are two special types of events: one with probability 1 and another with 

probability 0. The former is called the sure event, and the latter is the null or impos-
sible event. All other events are called the proper events.

Note 2.1

As mentioned, “null event” is typically called the impossible event. However, it 

may be argued that the impossible event is the empty set that it can never occur. 

On the other hand, a null event is an event with probability 0 by the probability 

measure; it is not necessarily the empty set (event). For instance, as we will see 

in Chapter 3, for a continuous random variable X, the event {X x= } is a null 

event because the probability of a point is 0. But the set representing an event is 

not empty.

Note 2.2

If a sample space is finite with n elements and all its outcomes have the same 

chance to occur, then the probability of any of the sample points occurring is 

assumed to be 1/n, and the sample space is referred to as equiprobable. The 

concept of equiprobability in case of an infinite sample space is referred to as 



54 Probability, Statistics, Stochastic Processes

the uniform measure. Naturally, in this case, the aforementioned assumption of 

probability is not possible. We will later address this idea. The notion of equiprob-

able measure is an example of a discrete probability measure. In such a case, the 

choice of an event is referred to as the selection at random. 

Example 2.5

We may want to choose a digit at random from 3 to 9. Thus, the outcomes may be 
the digits 3, 4, 5, 6, 7, 8, or 9 that have the same chance of 1/7 to be selected. In 
other words, all elementary events in {3 ,} {4},..., 9{ } are equiprobable.

Definition 2.6b Second Definition

When an experiment is performed repeatedly, intuitively, the likelihood of occur-

rence of an outcome may be approximated by the proportion of the number of times 

that the outcome occurs. This proportion is called the relative frequency. Suppose 

a finite sample space has n equiprobable points with same k points. Then, the prob-
ability of an event E, P(E), from such sample space is defined as the relative fre-
quency of the repetition, that is, k/n.

Example 2.6

Suppose for the purpose of quality control of a product in a manufactory a sample 
size of 50 is chosen. Items in the sample are checked one at a time for matching 
the set criteria. Four items failed the match. Thus, the relative frequency of non-
matched items is 4/50, or 8%.  

We should note the word “approximated” used in the definition above. That is, 
the probability in this case is “estimated by the portion or proportion”. Thus, no 
matter how many repetitions of a trial are performed, the exact value of P(E) is not 
known. Since the repetition of trials and stop at a point are equivalent to sampling 
in statistics (and simulation, in general), we will discuss finding this error when this 
subject comes up later.

Definition 2.6c Third Definition

Consider an equiprobable sample space. We now define the probability of E, P(E), 
as follows:

 
Number of ways the event canoccur

P E( ) = . (2.1)
Total number of waysoutcomescanoccur

Note 2.3

We note that Definition (2.1) is from the combinatorics viewpoint.

http://.PE
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Definition 2.6d Fourth Definition (Geometric)

The number of elements of a finite set E is referred to as the size of E. Suppose we 

have an equiprobable set (space) Ω such that E ⊂ Ω. Then, the probability of E, 
P(E), is defined as follows:

 
Sizeof E

P E( ) = . (2.2)
Sizeof Ω

We note that Definition (2.2) can be used for infinite and continuous sample spaces.

Example 2.7

Let us consider I as an interval on the real line, A as an area of section in a two-
dimensional space, and V as a volume in a three-dimensional space. We may want 
to select a few points from parts of each one of these entities; say J from I, α  from 
A, and ν  from V. Then, based on Definition 2.6d, the probabilities of the subin-
terval J, subarea α , and subvolume ν , assuming that probabilities are distributed 
uniformly over the entire interval, area, and volume, respectively, are as follows:

 
Lengthof J Area ofα Volumeofν

P J( ) = =,P ( )α , and P (ν ) = . (2.3)
Lengthof I Area of A Volumeof V

Example 2.8

Suppose we are to play an electronic game using a rectangular tablet of size 10 
inches by 15 inches. A rectangular target of size 1 inch by 5 inches is marked on 
the screen. The idea is to land a random moving mouse in the marked area. What 
is the probability of this event?

Here is the solution to the problem: The areas of the screen and the marked 
area are 10 ⋅ =15 150 inches2 and 1 ⋅ =5 5inches2, respectively. Thus, the probability 
of hitting the target, that is, be within the marked area, is 5/150 = 0.033, or a very 
small chance of 3.3%.  

As we discussed earlier, the probability was mainly used for gaming purposes. 

But that was the case until Laplace’s book Théorie Analytique des Probabilités 
appeared in 1812. He applied probability to various scientific and practical 

issues such as actuarial mathematics, statistical mechanics, and theory of 

errors. Then, the probability theory started to develop more mathematically 

as its applications grew in various areas such as mathematical statistics and 

queueing theory, and later in engineering, economics, psychology, and the bio-

logical sciences. 

The expansions and finally axiomatization of probability theory were devel-

oped by a number of famous mathematicians Chebyshev, Markov, von Mises, 

and Kolmogorov (Figure 2.1).

http://.PE
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The birth of modern probability theory occurred in the era of Andrey 
Nikolaevich Kolmogorov, a Russian mathematician. Kolmogorov finally 

ended all controversies in the various definitions of probability after nearly 

three centuries by presenting his axioms of probability in 1933. The mono-

graph (available in  English  as  Foundations of Probability Theory, Chelsea, 

New York, 1950) that we will highlight in Definition 2.7 is given below.

Again, we note that an axiom is a statement that cannot be proved or dis-

proved; that is, it is an assumption that a person may or may not accept to use, 

such as the axiom of choice in axiomatic set theory. However, no probabilist has 

so far shown any objection to any and all the axioms of probability (Figure 2.2).

FIGURE 2.1 Pierre de Laplace 1749–1827.

FIGURE 2.2 Andrey Kolmogorov 1903–1987.
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Definition 2.7 Kolmogorov’s Axioms of Probability

Let P be a function on a field ℱ. Then, P is called the probability measure (as 

defined in Chapter 1) if it satisfies the following properties:

 (1) For any event, E ∈ , 0 1≤ ≤P E( ) , that is, the range of P is the interval [ ]0,1 ;

 (2) P ( )∅ = 0, that is, the empty set is an impossible event;

 (3) P( )Ω = 1, that is, the sample space is a sure event;

 (4) If { }E nn , 1= ,2,...  is a countable collection of pairwise disjoint sets of the 

set function ℱ and  ∞
n n=1E ∈ , then P is countably additive, that is,

⎛
 

∞ ⎞ ∞

P E⎜ n ⎟ = )
⎝ 1

∑P( )En . (2.4

n= ⎠ n=1

 

We note that (1.61) holds for finitely countable additive, which is defined as follows:

 
⎛ n

P E 
⎞ n

⎜ i ⎟ = P Ei .

i 1

∑ ( )  (2.5)
⎝ = ⎠ i=1

Properties (1) through (3) and (2.5) are referred to as the Kolmogorov axioms of 
probability.

Example 2.9

Let Ω × ×{ }2,4,6  be a set with probability measures of its elements as P( ){ }2 1= /5

,P( ){ }4 2= /5, and P( ){ }6 2= /5. Then, P( ){ }2,4 = +1/5 2/5 = 3/5.

Definition 2.8

Assuming ℱ is a σ -field and let us denote it by, say, 𝕊, in Ω and P is a probability 

measure on 𝕊, the triple (Ω, 𝕊, P) is referred to as a probability measure space or 

just probability space.

Let E1 and E2 be two events in 𝕊. The following are some properties of the prob-

ability measure P. We leave the proofs of these properties as exercises.

If E1 and E2 are two events in 𝕊 and P is a probability measure, then P is a mono-

tonic function, that is,

 P( )E P1 2≤ ⊂(E ), if E1 E2. (2.6)

 P E( )c
1 1= −1 .P( )E  (2.7)

 P E( 1)+ =P E( 2 ) P E( )1 2∪ E + P( )E1 2∩ E . (2.8)

 P E( )1 2∪ =E P E( 1)+ P E( 2 )− P( )E1 2∩ E . (2.9)
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General case of (2.9) is known as the inclusion–exclusion formula for a finite num-

ber n, which is as follows:

 

⎛ n ⎞
P E⎜ i ⎟ = −

i=1 ⎠
∑ ∑P( )Ei P ( )Ei j∩ E

⎝ i i j<
 

+ ∩∑ P E( ) n
i jE ∩ E +...  + ( )−1 ,

+1
k P( )E1∩ ,En . (2.10)

i j< <k

We note that (2.10) can be rewritten as follows:

 
⎛ n

P E 
⎞ n i 1

⎜ i ⎟ = −( 1) Si ,
⎝ i=1 ⎠

∑
+

 (2.11)

i=1

where

 

⎧
⎪S P1 =∑n

( )Ei

⎪ i=1

⎪
⎨S P2 = ∩∑ ( )Ej jE , ,...  (2.12)
⎪ i j<

⎪
⎪S Pk i= ∩∑ ( )E

1 2
Ei , ,... Ei .

⎩ k
1≤i1< <i i2 ....< k ≤n

Also, for non-necessarily disjoint sets Ei , 1i n= ,2,..., ,

 
⎛ n

P E 
⎞ n

⎜ i ⎟ ≤ P Ei .

i 1

∑ ( )  (2.13)
⎝ = ⎠ i=1

Note 2.4

We note that for the sake of simplicity, from now on, we refer to “p” as “probabil-

ity”, unless there is a need for clarification. 

Example 2.10 Matching Problem

Another historic example in the foundation of probability is the matching prob-
lem, which is an application of the inclusion–exclusion principle. There are vari-
ous versions of the classic matching problem, all of which involve the pairing of 
two orderings on a set of objects. There are many colorful descriptions of the 
matching problem.

An example is a well-known problem of n married couples going to a ball 
room dancing class. The instructor randomly assigns the women to the men as 
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dancing partners. A match occurs if a wife is assigned as the dancing partner of 
her husband.

Another well-known example is that of a party whose guests arrive via their 
personal vehicles. At the arrival, each guest puts his or her car key in a uniform 
cover and drops it in a basket. As the party ends, each person blindly picks up 
a covered key from the basket. A picked key that belongs to the right person is a 
match. 

We consider the following match problem. Suppose we have a set of ten cards 
with numbers one through ten written on them. There are also ten positions on a 
table showing one through ten. We randomly choose a card without replacement 
and place it on the table until all cards are chosen. What is the probability that 
each card is placed on its own numbered position on the table?

The problem may be generalized by replacing ten with a finite number n where 
n ≥ 2. That is, there are n cards, numbered 1 through n, in a bucket. A game player 
is sitting at a table. The table has n positions numbered from 1 to n in an increas-
ing order from left to right. Cards are drawn from the bucket randomly one at a 
time without replacement and are blindly placed on the positions. That is, the first 
card drawn will be placed at position 1, the next at position 2 and so on to the last 
one that will be placed at position n. Among various questions that may be asked, 
we choose the following 4, the first of which answers the question raised above. 
Hence, questions are as follows: What is the probability that

1. At least one of the n cards is a match?
 2. Exactly k of the n cards are matches?

3. None of the n cards is a match? 

We will answer the first question and will leave the other three as exercises. The 
answer is based on the inclusion–exclusion principle. Let Ci  denote the event that 
the ith  card drawn matches the space with the number written on the card. Then, 
the probability that there is at least one match is P C( )1 2∪ ∪C ...∪ Cn . We note 
that when ith  card is withdrawn, there are n-1 cards left. Then, using permutation 

( 1n − )! 1of (n − 1), we can see that P C( )i = = . With a similar argument, we will 
n n!

( )n − 2 ! 1
have P C( )i j∩ =C = . Thus, for k cards withdrawn, we will have: 

n n! ( )n −1

P( ) ( )n k− !
Ci i1 2∩ ∩C C, ...∩ ik = . (2.14)

n!

⎛ nNow, for 1 ≤ ≤k n ⎞, there are ⎜ ⎟  ways to draw k matches out of n cards. Thus, 
⎝ k ⎠from (2.12),

S P∑ ( ) ⎛ n ⎞ ( )n k− ! 1
k i= ∩C

1 2
Ci ,∩...∩ Cik = ⎜ ⎟ = . (2.15)

⎝ k ⎠ n k! !

Therefore, from (2.11) and (2.15), we have:

P C( ) 1 1 1
1 2∪ ∪C  ...∪ Cn = 1− + − + ( )−1

n+1
, (2.16)

2! 3! n!

 

 
 4. Each of the n cards is a match?
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from which

 1
1 1− ∪P C( ) 1

C ∪ ...∪ C = −1+ − + + ( )−1
n 1

1 2 n .   (2.17)
2! 3! n!

Note that Maclaurin expansion of ex  is:

 
=

∞

ex = =∑ xn x x2 3

1+ x + + +..., .∀x  (2.18)
n! 2! 3!

n 0

Thus, the right-hand side of (2.17) is the first ( )n +1  terms of the series expansion 
of e−1. Therefore,

 
1 1

lim ( ) ⎛P C ∪ ∪C  ...∪ C = lim ⎜1− + − + ( )−1
n+1 1 ⎞

1 2 n
n→∞ n→∞

⎟⎝ 2! 3! n!⎠  (2.19)

= −1 e−1 = 0.6321205 

Note that the limit in (2.19) converges rapidly. For instance, for n = 6, 7, and 8, the 
values of the limit in (2.19) are 0.63194, 0.63214, and 0.63212, respectively. 

It should also be noted that although the probability of having at least one 
match is a function of n  (the number of cards), since the probability rapidly con-
verges to 1− e−1 for all practical purposes, we can say that for a very large n, the 
probability of having at least one match is 63% (about two-thirds).

For later use, we state the following theorem and leave the proof as an exercise.

Theorem 2.1 Distributive Laws of Probability

Let E1 2, ,E ... be any events. Then, we have the following two properties:

 
⎛ ⎞
⎜  E A⎟ ∩ = ( )E A∩
⎜ j ⎟ j  (2.20)
⎝ j ⎠ j

and

 
⎛
⎜  

⎞
E A⎟ ∪ = ( )E A∪

⎜ j ⎟ j . (2.21)
⎝ j ⎠ j

For a finite number of events Ej , 1j n= ,2,..., , (1.77) and (2.21) will be rewritten as 

follows:

 
⎛ ⎞
⎜  

n n

E A⎟ ∩ = ( )E ∩ A
⎜ j ⎟ j  (2.22)
⎝ j= =1 1⎠ j

and
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⎛
⎜  

n ⎞ n

E A⎟ ∪ = ( )E ∪ A
⎜ j ⎟ j . (2.23)
⎝ j= =1 1⎠ j

For an infinite number of events Ej , 1j = ,2,..., (2.22) and (2.23) will be rewritten as 

follows:

 
⎛ ⎞
⎜  

∞ ∞

E A⎟ ∩ = ( )E ∩ A
⎜ j ⎟ j  (2.24)
⎝ j=1 1⎠ j=

and

 
⎛
⎜  

∞ ⎞ ∞

E A⎟ ∪ = ( )E ∪ A
⎜ j ⎟ j . (2.25)
⎝ j=1 1⎠ j=

2.2  FUZZY PROBABILITY

To formally define fuzzy events, Zadeh (1968) assumed that the sample space is an 

n-dimensional Euclidean space,  n. Thus, the probability space becomes (R Sn , ,P) , 

where, as we have defined before, 𝕊 is the σ-field of Borel sets in  n and P is the 

probability measure over  n. 

Now let A ∈ 𝕊 and μA be the characteristic function of A, as defined earlier. That 

is, for x ∈ n,

 
⎧⎪ 1 for x A∈ ,

μA( )x = ⎨  (2.26)
0 for x A∉ .

⎩⎪

Then, P A( ) may be defined as

 P A( ) = ∫ dP  (2.27)

A

or equivalently as

 P A( ) = ∈A(x)dP, x  n.

 
∫ μ  (2.28)

n

Note 2.5

As we will see later, relation (2.28) is defined as the expected value of μA. In other 

words, (2.28) equates the probability of A with the expected value of its charac-

teristic function. And as Zadeh notes, it is this equation that can be generalized to 

fuzzy events through the concept of a fuzzy set.
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Definition 2.9 (Zadeh (1968))

Let (ℝn, 𝕊, P) be a probability space, where 𝕊 is the σ-field of Borel sets in  n and P 

is the probability measure over  n. Then, a fuzzy event in  n is a fuzzy set in  n with 

membership function μA : [ n → 0,1] that is a Borel measurable. The probability of a 

fuzzy event is given by (2.28).

Zadeh (1965) noted that although the membership function of a fuzzy set has some 

similarities with a probability function when X is a countable set (or a probability 

density function when X is a continuous), there are essential differences between the 

two concepts. For instance, “the notion of a fuzzy set is completely nonstatistical 

in nature”. It is perhaps because of this fact, in spite of its potential in dealing with 

uncertainties, very few works applying fuzzy logic concepts in biological system have 

been seen in the literature. For the first time, Zadeh in 1968 proposed the application 

of fuzzy set theory in life sciences, in a book titled Biological Applications of the 
Theory of Fuzzy Sets and Systems, which was edited by L. D. Proctor in 1969. It took 

almost two decades for the applications of fuzzy logic in biomedicine to develop. 

However, Zadeh in his 1968 paper tried to show how fuzziness differs from prob-

ability. To do so, he showed the distinction between the events in traditional prob-

ability and the events in fuzzy probability. In the traditional probability, we deal with 

the chance of occurrence of a specific event, while in the fuzzy probability, we are 

talking about an almost event. For instance, rather than asking about the chance of 

rain, we ask the chance of “almost rain”!! 
In other words, in the traditional probability, we define an event precisely as a 

class of points of a σ -field 𝕊 in the sample space Ω. But in fuzzy probability, we 

define an event not precisely as a collection of points in the sample space, rather 

fuzzy. For instance, (1) it is mostly cloudy; (2) it is about to rain; (3) the student’s test 

paper’s score is almost 70 out of 100; (4) in repeating flipping a fair coin, the number 

of heads was a few more than the number of tails.

Note 2.6

According to (2.28), the probability of a fuzzy set A defined by (2.22) is a 

Lebesgue–Stieltjes integral.

We will return to fuzzy probability in Chapter 7.

2.3  CONDITIONAL PROBABILITY

We have already discussed various definitions of probability, from basic to measure 

theory with some basic properties, and finally mentioned Kolmogorov axioms of 

probability. In these discussions, we even mentioned the recent definition of fuzzy 

probability for later use. In Section 2.1, an event was defined and some properties 

were given. We went through all discussions of sets, logics, measures, axioms of sets, 

events, and probability on a probability space (Ω, 𝕊, P), to build a strong background 

for the concept of probability. We now want to continue with events and probability 

without much sophistication and away from fuzziness to state some other properties 

of probability. 



63Basics of Probability

Let us start by asking the question if the probability of occurrence of an event 

may be affected by knowing occurrence of another event. In other words, so far we 

have been speaking about an unconditional probability P(A) for an event A. We now 

want to impose a condition, say B on occurrence of A; denote the new probability by 

P(A|B); and want an answer to the question posed. Here is an example.

Example 2.11

Let us consider a machine with three components C1, C2, and C3 such that mal-
functioning of any one component causes the machine to stop working. Here are 
two scenarios and questions to answer.

Case 1. Suppose C2 and C3 have the same chance of malfunction. Suppose also 
that the probability of malfunctioning of C1 is 2/5 of the chance of malfunctioning 
of C2 or C3. A question is to find the probability of each part to be responsible for 
malfunctioning of the machine.

Answer

Let E1, E2, and E3 denote the events that C1, C2, and C3 malfunction and cause the 
machine to stop working, respectively. The problem assumes that P(E2) = P(E3) and 
P E( )1 2= (2/5)P E( ).  Since the sum of probabilities is 1, we have:

 P( 1 2) + +( ) P( ) 2 12
E P E E3 = P( )E + 2P( )E = P( )E = 1.

5
2 2

5
2  

Thus, 

 5
P E( )2 = . 

12

As a result,

 5
P E( ) = =and P( ) 1

3 1E . 
12 6

Case 2. Suppose that the component C3 is in a perfect condition and has no 
chance to break down. On the other hand, the chance of malfunctioning of C1 is 
1/5 of the chance of C2 to malfunction. Again, the question is to find the probabil-
ity of each part to be responsible for malfunctioning of the machine.

Answer

As we did with Case 1, in this case, 

 1
P( )E = +0 and P E( ) P E( ) 6

3 2 = P E( ) = 1.
5

2
5

2  

Thus, 

 5
P E( ) = =and P E( ) 1

1 2 . 
6 6
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Note 2.7

It should be noted that as the conditions changed, the probabilities of the machine 
to stop working due to malfunctioning of components C1 and C2 changed. In other 
words, for the events under consideration, the occurrence of one event may have 
influence on the occurrence of the other events (the idea of dependence that we 
will discuss below), and consequently, a change in probabilities of those events is 
expected. This leads us to the following definition.

Definition 2.10

Consider a probability space (Ω, , P) and E1 2,E ∈. Then, the conditional prob-
ability of E1 given E2, denoted by P E( )2 1| E , called a probability measure on Ω, is 
defined as follows:

 

 P E( )∩


1 2E
, , ∈ >, 0( )

( )
E E P E ,

P E2 1E =  P E( ) 1 2 1
1  (2.29)

 Not defined, ,E E1 2 ∈ =, 0P E( )1 .


Note 2.8

It should be noted that the given condition reduces the size of the sample space 
Ω, since, in general, P(E|E) = 1. Hence, the sample space Ω will be replaced by E 
and the new probability space will be (Ω, 𝕊, P(·|E)). It is referred to as the condi-
tional probability space induced on (Ω, 𝕊, P) given E. Consequently, the condi-
tional probability has the same properties as ordinary probability, except that it is 
restricted to a smaller space, called the conditional sample space.

Example 2.12

Suppose we roll a fair die. Let E be the event of occurrence of even numbers. 
Note that this condition, immediately, reduces the original sample space, Ω = 
{1, 2, 3, 4, 5, 6}, with six elements, to a new and smaller sample space, say Ωc, 

2which is Ωc = {2,4,6} with three elements. Hence, for instance, P E( ){2,4} | = , 
3

P E( ) 3
{2,4,6} | = = 1, and P E( ){5} | = 0.

3

Example 2.13

Suppose we roll a fair die. By fairness, we mean all sides have the same chance 
to face up and, hence, the probability of each side to occur is 1/6. Now let us 
consider two events A and B such that A consists of occurrences of 1 or 6, that 
is, A = {1,6}, and B consists of occurrences of 3, 4, or 6, that is, B = {3,4,6}. Let us 
calculate the conditional probabilities P(A|B) and P A( )c | B .
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To calculate these conditional probabilities, note that A B∩ = {6}, Ac = {2,3,4,5}, 
and  A Bc ∩ = {3,4}. Thus,

 

1
P A( )∩

P A( ) B
| B = = =6 1

, 
P B( ) 1 3

2

and

 

4
P A ∩

P =
( )( )

c B
A Bc | = =6 2

. 
P B( ) 1 3

2

2Observe that since A = {1, 6} and Ac 1= {2,3,4,5}, we have P( )A = =  and 
6 3

( ) 4 2
P Ac = = . Thus, the condition B has no effect on the conditional probabili-

6 3

ties of A and Ac given B.

Note 2.9

We leave it as an exercise to prove that the conditional probability satisfies all 

three axioms of Kolmogorov stated earlier. In other words, let us consider an 

event E with probability P E( ) > 0. Then,

 i. For any event A, 0 ≤ P (A|E) ≤ 1.

 ii. For a sample space Ω, P E( )Ω =| 1.

 iii. For any disjoint events A A ∞
1 2, ,..., P ( )U Ai i=1 | |E =∑P( )Ai E .

i=1

∞

Note 2.10

Definition of conditional probability given by (2.29) can equally be defined for 

P E( )1 > 0 as 

 P E( )1 2∩ =E P E( 1)P E( 2 | ,E1) E2 ∈ . (2.30)

The relation (2.30) states that the probability that two events E1 and E2 occur at the 

same time needs the event E1 to occur. When that happens, the chance of occurrence 

of E2 is P E( )2 1| E .

Note 2.11

For two events E1 and E2, the conditional probabilities P E( )2 1| E  and P E( 1 2| E  

are not the same.
)

http://)0.PE
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2.4  INDEPENDENCE

The idea we presented in Example 2.15 is one of many cases where the occurrence 

of one event does not influence the occurrence of another event. This is what is 

referred to as the independence of two events. 

Definition 2.11

Events A and B are called independent if and only if

 P( )∩ =B P(A)P(B). (2.31)

If (2.31) is not true, that is, if

 P( )A B∩ ≠ P(A)P(B), (2.32)

then A and B are referred to as not independent or dependent.

Example 2.14

Let us go back to Example 2.13. Recall that A {1,6}, B {3,4,6}, and A B {6}. 
Now, based on fairness assumption of the die, we can see that 

= = ∩ =

 2 1 3 1 1
P A( ) = = , (P B) = = , and A ∩ B = . 

6 3 6 2 6

Thus, 

 1 1 1
P( )A∩ =B P= (A) ( )P B = ⋅ . 

6 3 2

Therefore, A and B are independent.

Note 2.12

Definition 2.11 may be extended to more than two events, finitely many or infi-

nitely many events. In that case, we will be talking about mutual independence 

or pairwise independence. For instance, independence of three events A, B, and 

C is defined as

 P( )A B∩ ∩C = P( )A P(B)P( )C . (2.33)

More generally, 

 i. A finite collection of events A A1 2, ,..., An is called mutually independent 
if for each subcollection of A A1 2, ,..., An, the following is true:
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 P A( )1 2∩ ∩A ... ...An n= P A( )1 P A( 2 ) P A( ); (2.34)

 ii. An infinite collection of events A A1 2, ,... is called mutually independent if 
every finite collection A A1 2, ,..., An, of A A1 2, ,... is independent.

Example 2.15

Let us return to Case 2 in Example 2.11. Recall that we created three events E1, E2, 
and E3 and assumed P E( )3 = 0. There, we found the probability of the other two 

5 1events as P( )E1 =  and P( )E2 = . A consequence of P E( )3 = 0 is that malfunc-
6 6

tioning of only one of the components C1 or C2 will cause the machine to stop 
functioning. Hence, let us denote this last event by E4. In other words, E4 1= ∪E E2. 
Based on the assumption stated in Example 2.11, P E( )∩ =E 0. Hence, from the 
inclusion–exclusion formula, P E( )3 4| 0E =  and P E( )

1 2

4 1= +P E( ) P E( 2 ). So, let us 
calculate the probability of stopping the machine by component C1 or C

( )
2 in Case 

2, that is, when P E3 = 0.

Answer

To calculate the probabilities in question, we need to find P E( 1 4| E ) and P E( )2 4| .E  
Note that P E( )1 2∩ =E 0 implies that E1 and E2 are independent. Note also that 
E1 4∩ = 5E E1  and E2 4∩ =E E2. That is, E4 1⊂ E  and E4 2⊂ E . Since P E( )1 =  and 

( ) 1 6
P E2 = , P E( )4 = >1 0. Thus, from (2.29), we have:

6

P E( )( ) 1 4∩ E P E( )
P E | E = = =1 5

1 4  
P E( )4 P E( )4 6

and

P E( )∩ ( )( ) E P E 1
P E2 4| E = 2 4 = =2

. 
P E( )4 P E( )4 6

Example 2.16

Let us consider the set of all families of two children in a particular location. Let us 
also consider the order of the two children in each family as the first born and the 
second born. Finally, we assume that chosen boys and girls have the same chance 
to be born. Thus, denoting a girl by G and a boy by B, the sample space for the 
choice of children of a family will be Ω = { ,GG GB,BG,BB}.

We now randomly select a family. We define three events E1, E2, and E3 as 
follows:

E1 ≡  The first child is a boy.
E2 ≡  The first child is a girl.
E3 ≡  A child is a girl and the other is a boy. 
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Hence, from these definitions, we can see that 

 }(E E1 2∩ =) ∅, {E E1 ∩ 3 = BG} and E2 ∩ E3 = {GB  

and from Ω, we have:

 1
P E( ) = =,P E( ) 1

1 2 , (P E( ∩ E ) = P ∅) =
2 2

1 2  0

 P E( ) 1 1
1 3∩ =E P({BG}) = and P( )E { } .

4
1 ∩ E2 E2 ∩ E3 = GB =  

4

1Thus, P( )E E1 3∩ = P( )E1 P(E3 ) =   implies that  E1 and E3 are independent. Similarly, 
4

1E2 and E3 are independent. However, since P E( )1 2∩ =E 0 ≠ P E( 1)P E( 2 ) = , E1 
4and E2 are not independent.

Example 2.17

Suppose a computer program selects digits randomly from 1 through 7, that is, 
from the set {1,2,3,4,5,6,7}. That is, each digit will be selected with equal chance 
and independently. We consider two events: (1) selection of two digits 3 and 5, 
denoted by E1, and (2) selection of three digits 3, 4, and 9, denoted by E2. Since dig-
its are selected randomly, E1 can occur in two different ways: (a) 3 is selected first 

and 5 after and (b) 5 is selected first and 3 after. Thus, E1 = {(3,5)} or E1 = {(5,3)}, 

1 1 ⎛ 1 ⎞ ⎛ 1 ⎞each with the same probability ⋅ , that is, P E( )1 = 2⎜ ⎟ ⎜ ⎟ . For the second 
7 7 ⎝ 7 ⎠ ⎝ 7 ⎠

case, E2  can occur in six different ways: {3,4,7}, {3,7,4}, {4,3,7}, {4,7,3},{7,3,4}, 

1 1 1 ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞and {7,4,3}, each with the same probability ⋅ ⋅ , that is, P E( )2 = 6⎜ ⎟ ⎜ ⎟ ⎜ ⎟ .
7 7 7 ⎝ 7 ⎠ ⎝ 7 ⎠ ⎝ 7 ⎠

Remark 2.1

Two events each with positive probability cannot be both disjoint and independent. 

Proof:
Recall that events A and B are disjoint if A B∩ = ∅. Thus, P A( )∩ =B P(∅) = 0. 

If A and B were independent, then P( )A B∩ = P(A)P(B) = 0, which means either 

P A( ) = 0 or P B( ) = 0. Therefore, the two events can be considered as disjoint and 

independent if the probability of one of the events will be zero. 

Example 2.18

Consider rolling a fair die and two events A and B consist of odd and even out-
1 1comes, respectively. That is, A = {1,3,5} with P A( ) =  and B = {2,4,6} with P B( ) = . 
2 2
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But, obviously, A and B are disjoint, that is, A B∩ = ∅ with P A( )∩ =B P(∅) = 0 
1 1 1while P(A P) ( )B = ⋅ = . Thus, P A( ∩ ≠B) P A( ) ( )P B , and therefore, while A 
2 2 4

and B are disjoint, they are dependent.

Remark 2.2

If an event has a probability of zero, then it is independent of any other events because 

in that case the product of probabilities, that is, the probability of intersection of the 

two sets, will be zero. 

Remark 2.3

If the probability of an event is restrictively between 0 and 1, then the event and its 

complement are dependent.

Proof:

Since P A( ) ≠ 0,1, P A( )c ≠ 0 and P A( )P ( )Ac ≠ 0. However, P A( )∩ =Ac P( )∅ = 0. 

Thus, P ( )A A∩ ≠c cP( )A P (A ).

Example 2.19

Let A and B represent the falling of rain on a certain day in a certain location and not 
falling of rain on the same day in the same location, respectively. That is, B A= c. 
Let us also suppose that on the same day in the same location, the chance of fall-
ing of rain is 60% and that of falling of no rain is 40%. Then, 0 < =P A( ) 0.60 < 1 
and P(B P) = =( )Ac 0.40 ≠ 0 . Therefore, the falling of rain and the not falling of rain 

are the dependent events.
As a consequence of the definition of independence, we have the following.

Theorem 2.2

Events E1 and E2 with P E( )1 > 0 are independent if and only if

 P E( )2 2= P E( | .E1)  (2.35) 

Proof:

If E1 and E2 are independent, then according to (2.31), P( )E1 2∩ =E P E( 1)P E( 2 ). 
Hence,

 
( )( ) P E

P E 1 2∩ E
2 = . (2.36)

P E( )1
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But the right-hand side of (2.36) is based on (2.31), which is the conditional prob-

ability of E2, given E1, that is, P E( )2 1| E . Hence, (2.35). On the other hand, if (2.35) 

is the case, from the right-hand side of it, we will have: 

 .
( )( ) P E

P E 1 2∩ E
2 2= =P E( | E1)  

P E( )1

Thus, P( )E P1 2(E ) = ∩P(E1 E2 ). This completes the proof of the theorem.

Example 2.20

Suppose the data show that the first call arrives at an office within 60 minutes 
(12.5-minute unit times) from the start of the office hours. Let A denote the waiting 
time of the first call within 30 minutes (six unit times) and B the waiting time within 
10 minutes (two unit times). Finally, suppose we were told that the first call arrived 
within 30 minutes (six unit times) from the start of office hours. 

Find the following probabilities: 

 (1) The call had arrived within 10 minutes (two unit times), the grace period 
for staff to arrive and, thus, missing the call;

 (2) The call had arrived between 10 minutes (two unit times) and 30 minutes 
(six unit times) from the start of the office hours.

Answer

To answer the questions, note that the questions should be subjected to 
the  conditional probabilities (1) P B( | A) and (2) P B( )c | A , where Bc is the 
complement of B with respect to A that had occurred. In terms of time units, 
A = {5,10,15,20,25,30} and B = {5,10}. Once we know that A had occurred, we can 
ignore the waiting times larger than 30 minutes. Hence, to answer question (1), we 

have P( )B P= =( ) 2 1
B | A = .

6 3
4 2Therefore, to answer question (2), we have P B( )c c= =P B( | A) =  or simply, 
6 3

( ) 1
P Bc = −1 |P( ) 2

B A = −1 = .
3 3

2.5  THE LAW OF TOTAL PROBABILITY AND BAYES’ THEOREM

Recall that a stipulation on conditional probability defined by (2.29) was that 

P E( )1 > 0. With this condition holding, we obtain further properties for conditional 

probability that are discussed below.

Remark 2.4 The Multiplicative Law

Let E1 and E2 be two events with conditional probabilities P E( )2 1| E  and P E( )1 2| .E  

Then,
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 P E( 1 2∩ =E ) P E( )2 | |E1 ⋅P E( 1) = P E( )1 E2 ⋅P(E2 ). (2.37)

Proof:
The proof follows from the definition of conditional probability given earlier.

Note 2.13

It is interesting to note that for this theorem, satisfying the stipulation of conditional 

probability is not necessary. Since if P E( )1  or  P E( )2  or both are zero, (2.37) still 

holds and it simply says that E1 and E2 are disjoint, that is, P( )E E1 2∩ = 0 (= P ∅), 

implying that (E E1 2∩ =) ∅.

Example 2.21

Suppose a package containing 35 tablets from a distribution center is delivered to 
a computer store. It has been reported to the store manager that four of the tablets 
may be virus-infected. To test the validity of the rumor, the manager of the store 
randomly picks two tablets from the package (one after the other without putting it 
back, once picked). The first pick results in an infected one. The question is, what 
is the probability that the second one is also infected?

To answer the question, let E1 and E2 represent the two picks, the first and the 
second, respectively. Now the probability of the first pick to be infected, indi-
vidually, is 4

35 , and for the second, since one item has already been taken out (for 
the condition), three possible infected is left in the remaining 34 tablets. Hence, 
the probability of the second pick to be infected, that is, P E( )2 1E , is 3

34 . Thus, the 
probability that the first is an infected pick and the second pick is also infected is 
as follows:

 ( ) 4 3
P E1 2∩ =E ⋅ = (0.114)(0.0088) = 0.010 = 1%. 

35 34

A generalization of Remark 2.4 for a finite number of events is the following 
theorem.

Remark 2.5 A Generalization of the Multiplicative Law

For n events E1 2, ,E E..., n with nonempty intersections, we have the following:

 P E( )1 2∩ ∩E ... En = P E( )1 P E( 2 | |E1)P E( 3 E1 2∩ E ) P E( | E1 2∩ ∩E E − )
(2.38)

... ... .1n n

 

This relation is a multiplication with conditional probability.

Proof:
The proof follows the mathematical induction using the definition of conditional 

probability given earlier. For instance, for n = 2, we have Remark 2.4. For n = 3, let 
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Example 2.22

Let us return to Example 2.22. Consider the same package with the same number 
of tablets and the same number of virus infections reported. However, this time 
the manager decides to test three tablets from the package (one after the other 
without replacement, once picked). The question is, what is the probability that all 
three draws in a row are infected?

To answer the question, let E1, E2, and E3 represent the three draws, in a row. 
Now we have the following probabilities:

4a. Probability of the first draw P E( )1 = . 
35

b. Probability of the second draw after the first draw without replacement 

P E( ) 3
2 1| E = .

34
c. Probability of the third draw after the first and second draws happened 

2without replacements = P E( )3 1| E ∩ =E2 .
33

Thus, from (2.38), the probability that all three tablets are infected is as follows:

( ) 4 3 2
P E1 2∩ ∩E E3 = ⋅ ⋅ = (0.114)(0.088)(0.061) = 0.0006 = 0.06%. 

35 34 33

We now state and prove an important theorem with one of the most important 
applications of the conditional probability. This theorem is particularly useful when 
direct computation of probability of an event is challenging. It will help us use 
conditional probability to break down the probability into simpler components. 

 

the events be E1, E2, and E3. Hence, for all three events to occur, if E1 has occurred, 

then E2 must occur, as well. If both E1 and E2 have occurred, then E3 must occur, too. 

We leave it as an exercise to complete the mathematical induction and consequently 

the proof.

 

 

 

Theorem 2.3 The Law of Total Probability

Let {A jj , 1= ,2,...} be a finite or countably infinite partition of a sample space Ω of 

the probability space ( ,Ω  , )P  with P A( )j > =0, j 1,2,... That is, as defined in an ear-

lier section, {A jj , 1= ,2,...} is a set of pairwise disjoint events (in other words, Aj and 

Ak  are disjoint) whenever ( )j k≠  such that their union is the sample space Ω, that is, 

U∞
j j=1A = Ω. It is also assumed that each A jj , 1= ,2,..., is a measurable event. Then, 

for any set B from the same probability space ( ,Ω  , )P , for a finite number of events, 

say n (similar result for a countably infinite number of events), we have:

 =∑
n

For finite case, P B( ) P ( )B Aj jP ( )A  (2.39)

j=1
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and

 

∞

For infinite case, P B( ) =∑P ( )B Aj jP ( )A . (2.40)

j=1

Proof:
Consider the infinite case. From a distributive law mentioned in an earlier section, 

we will have:

 

∞

B B= ∩Ω = ( )B ∩ Aj . (2.41)

j=1

Thus, the events B A∩ ∩1 2, ,B A ... being disjoint imply that 

 

∞

P B( ) = ∩∑P ( )B Aj j=
j=1

∑
∞

P (B | A )P (Aj ) (2.42)

j=1

completing the proof for this case. The proof for the finite case is similar.

Remark 2.6

Consider a particular case when n = 2. Let the two events be E and its complement 

Ec. Clearly, these events are a partition of the sample space Ω. Thus, for an event B 

in the probability space (Ω, , P), we have the following special case of the law of 

total probability:

 P( )B P= +( )B | E P(E) P ( )B | Ec cP (E ). (2.43)

Note 2.14

Using the definition of conditional probability, (2.43) can be rewritten as follows:

 P B( ) = ∩P ( )B E + P B ∩ Ec . (2.44)( )

Example 2.23

Let us consider a course of probability in a department at a university in the United 
States. The course has three sections S1, S2, and S3 with the number of enrollments 
in each section as 25, 30, and 35, respectively. From students’ transcripts, we 
know that among students enrolled in each section, the number of students with 
GPA (grade point average) of 3.5 or higher out of 4.0 is 3, 5, and 8, respectively. A 
section is randomly selected, and a student is randomly chosen from that section. 
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We want to compute the probability that the chosen student has a GPA between 
3.5 and 4.0, inclusive.

The summary of the given information is as follows:

Section S1 has 25 students, of which 3 are with a GPA of 3.5 or higher.
Section S2 has 30 students, of which 5 are with a GPA of 3.5 or higher.
Section S3 has 35 students, of which 8 are with a GPA of 3.5 or higher.

To compute the probability in question, let E represent the event that the chosen 
student has a GPA between 3.5 and 4.0, inclusive. Thus, we have the following 
conditional probabilities:

 =3
P E( )S = =,P E( S ) 5

,and P E( ) 8
1 2 S . 

25 30 35
3  

Assuming that the likelihood of each section to be selected is the same, we have:

 1
P S( )1 2= =P S( ) P( )S3 = . 

3

Hence, from the law of total probability (2.39), we have:

 

P( )E = +P E( )S1 1P( )S P E( S2 )P(S2 ) + P E( )S3 P S( )3

3 1 5 1 8 1 1 1 8= ⋅ + ⋅ + ⋅ = + + = 0.040 + 0.056 + 0.076 
25 3 30 3 35 3 25 18 105

= ≈0.172 1.7%.

The law of total probability leads to a result that allows us to flip conditional prob-
abilities. This result is known as Bayes’ theorem (named after Reverend Thomas 
Bayes, 1701 – 1761) that is stated and proved below. His work was published 
as a book in (1763) titled An Essay towards Solving a Problem in the Doctrine 
of Chances. The theorem allows us to compute the probability of the “cause” 
A, when we are aware of the observed “effect” B. In other words, Bayes’ rule 
describes the probability of an event when there is prior information or conditions 
that could be related to the event. It is also useful to revise probabilities as new 
information reveals. For instance, as it is known, cancer is related to smoking. 
Hence, applying Bayes’ rule, a smoker may be used for more accurate assessment 
of a smoker to have cancer compared to not having such information. It is interest-
ing that Pierre Simon Laplace extended Bayes’ theorem in his paper published in 
1812 entitled Thérie ananlytique des probabilités. 

Theorem 2.4 Bayes’ Theorem or Formula or Law

As in the law of total probability, let {A jj , 1= ,2,...} be a finite (when j stops at a 

point, say n) or a countably infinite partition of a sample space Ω of the probability 

space (Ω, 𝕊, P). Let B be an event from the probability space with P B( ) > 0. Then, 

for any Aj, we have the following:
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( ) ( )( ) P B Aj jP A

For finite case, P Aj B = =
∑n , j n1,2,...,   (2.45)

P B A A
k 1

( )k kP( )
=

and

 
P B j j

For infinite case, P A
( )( ) A P ( )A

j B = =
∑∞ , j 1,2,... (2.46)

P B P Ak
k 1

( )Ak ( )
=

Proof:
From the definition of conditional probability for two events B and any of the n 

events A jj , 1= ,...,n, we have:

 
( )( ) P B Aj jP A

P A Bj = =
( )

, 1j n,2,..., . 
P B( )

The proof will not be completed using the law of total probability. Similar proof can 

be performed for the infinite case j = 1,2,...

Note 2.15

The P A( )j  is referred to as the a priori or prior probability of the cause, and 

P A( )j B  is called the a posteriori or posterior probability of the cause. 

Note 2.16

Bayes’ theorem may be interpreted as the relationship between the probability 

of the hypothesis, say an event A, before obtaining an evidence, E, that is, P A( ), 

the prior probability, and the probability of the hypothesis after obtaining the 

evidence, that is, the conditional probability of A, given E, P A( )E , the posterior 
probability, which is as follows:

 ( ) P E( )A
P A E = ⋅P A( ). (2.47)

P E( )

P E( )A
The fraction  is called the likelihood ratio and is the factor that relates the 

P E( )

two events A and E. Relation (2.47) is Bayes’ theorem for n = 2.
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Example 2.24

Let us return to Example 2.23. Recall that there are three sections of the class 
denoted by S1, S2, and S3. Let A represents the events that the student chosen had 
3.5 or higher GPA. We want to answer the following questions:

 Q1. What is the probability that the student chosen had 3.5 or higher GPA?
 Q2. Suppose that the student chosen had 3.5 or higher GPA. What is the 

probability that she/he was selected from the
       Q2a. First section, S1?

  Q2b. Second section, S2?     
       Q2c. Third section, S3?

Answer to Question 1

The question is to find P(B). To answer this question, we use the law of total 
probability, relation (2.39), as follows:

 
P( )B = +P B( )S1 1P( )S P B( S2 )P(S2 )+ P B( )S3 P ( )S3

 
3 1 5 1 8 1= ⋅ + ⋅ + ⋅ = 0.172 = 17.2%.
25 3 30 3 35 3

Answer to Question 2

Note that this is an example for finite case of Bayes’ theorem when n = 2. Also, 
note that assuming that all three sections have the same chance to be selected (i.e., 
1/3) is what we referred to as a priori probability, and probabilities in questions are 
the examples of “a posteriori” probabilities. 

Thus, applying Bayes’ theorem, relation (2.46), with each A and B, n = 3, and 
j = 1, 2, 3, we have the following conditional probabilities questioned in Q2a, 
Q2b, and Q2c, as follows:

  

P A
Q2a

( )P( )( ) S S
= 1 1

P S1 A
P A( )S1 1P( )S + +P(A S2 )P(S2 ) P A( )S3 3P( )S

3 1⋅
126= 25 3 = = 23%.

3 1 5 1 8 1⋅ + ⋅ + ⋅ 541
25 3 30 3 35 3

 

( ) P A( )S P( )S
 Q2bP S2 A = 2 2

P A( )S1 1P( )S + +P(A S2 )P(S2 ) P A( )S3 3P( )S

5 1⋅
30 3 175= = = 32%.

3 1 5 1 8 1⋅ + ⋅ + ⋅ 541
25 3 30 3 35 3
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P A
P S

( )( ) S P ( )
Q2c 3 = 3 3S

A
P A( )S1 1P( )S + +P (A S2 )P(S2 ) P A( )S3 3P ( )S

8 1⋅
336= 35 3 = = 45%.

3 1 5 1 8 1⋅ + ⋅ + ⋅ 541
25 3 30 3 35 3

Example 2.25

Let us return to Example 2.16. Consider a couple who has two children. Let us also 
consider order of the two children in each family as the first born and the second 
born. Finally, we assume that chosen boys and girls have the same chance to be 
born. Thus, denoting a girl by G and a boy by B, the sample space for the choice 
of a children of a family will be Ω = { ,GG GB,BG,BB}. Now, let us consider three 
events E1, E2, and E3, which are defined as follows:

E1 = one of the children is a girl,
E2 = both children are girls,
E3 = the younger child is a girl.

We want to calculate the following probabilities:

 1. Given that one of the children is a girl, what is the probability that both 
children are girls? That is, to find P E( )2 1E .

2. Given that the younger child is a girl, what is the probability that both 
children are girls? That is, to find P E( )2 3E .

 

Answer to 1

To calculate P E( )2 1E , note that P E( 1) is the prior probability that the couple has at 
least one girl. Hence, E1 is the complement of the event “both children are boys”. 
Hence,

 1
P E( ) 3

1 = −1 P(both children are boys) = −1 = . 
4 4

Thus, 

 

1
1P E

P E
( ) ( ) ⋅

( ) E ⋅ P E
E = 1 2 2 = 4 1

2 1 = . 
P E( ) 3

1 3
4

Answer to 2

To calculate P E( )2 1E , we use Bayes’ theorem. Hence,



78 Probability, Statistics, Stochastic Processes

 

1
1P E

P E
( ) ( ) ⋅

( ) E P⋅ E
E = 3 2 2 = 4 1

2 3 = . 
P E( ) 1

3 2
2

Example 2.26

It is common practice in medicine to be concerned about the percent of accuracy 
of a medical diagnostic test, that is, the probability that the test result is correct. 
For instance, the process of using low-energy X-rays is to test human’s breast 
for early detection of breast cancer, and it is referred to as mammography or 
 mastography. In recent studies, for women in Canada, the United States, and 
Europe, this test is recommended every 2–3 years for ages between 40 and 74. 
Sometimes the person taking the test whose test results shows a positive, though 
the person  actually does not have the disease. This is called false positive. Percent 
of this error in the United States is about 7%. The opposite is also possible; that 
is, the test may show that a woman does not have the disease while she have the 
disease. This error of the test is referred to as false negatives. Percent of this type 
of error is not easily found and is not available.

So, suppose an advertisement states that the result of mammogram test is 99% 
accurate. In other words, the test will result in 99% positive for those who have the 
disease and 99% negative who do not have the disease.

Now suppose that based on a research organization’s survey, it is known that 
7% of the population under consideration have the disease. Suppose a woman ran-
domly selected (according to the rule of statistics that we will study in Chapter 4) 
from the population under consideration undergone the test with a positive result. 
What is the probability that she actually has the disease?

Let us denote the woman having the disease by D and the woman not having 
the disease by D. We also denote the positive test result by T + and the negative test 
result by T −. Then, using Bayes’ theorem, we will have the following:

P D
( )( )+ P T + D P⋅ ( )D P T( )+ D P⋅ ( )D

T = ( )+ =
P T P T( )+ +D P⋅ +( )D P( )T D ⋅ P D( )  

0.99 ⋅ 0.07= = =0.882 88.2%.
0.99 ⋅ +0.07 0.01 ⋅ 0.93

The result states that if the test result is positive, there is an 88.2% chance that she 
has the disease. Thus, for example, if 1,000 women take the mammogram test, 
based on the research, it is expected to see 930 healthy women and 70 women 
having the disease. But out of 930 healthy women, there is a chance that (930).
(0.01) = about 9 women’s test results positive. On the other hand, from 70 women 
with the disease, there is a chance that (70).(0.99) = about 69 women’s test results 
positive. Thus, from 9 + 69 = 78 test positives, only (78).(0.882) = about 69 women 
actually have the disease.
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Example 2.27

Consider a mathematics department at a university that three sections of prob-
ability and statistics course, say A, B, and C, are taught by the same professor. By 
the end of a semester, 160 students complete this professor’s sections, and it is 
known how they can be accessed after leaving this course. Of the 160 students 
that completed each section by the final examination, there were 45, 55, and 60 
from sections A, B, and C, respectively.

After the final grades are posted, it is noted that the percent of the number of fail-
ures from each section is 10, 12, and 15, respectively. For the purpose of assessing the 
cause of failures, from 160 students that completed the course, a student is selected 
randomly. We want to calculate the following two probabilities: (1) the probability 
that the selected student is one of the failures and (2) the probability that the selected 
student is from section A, B, or C, knowing that he/she was one of the failures.

To calculate the inquired probabilities, let us denote the event of failing the 
course by F. Then, for the first question, we have to calculate P(F). To do this, we 
apply the law of total probability, P(F), as follows:

P(F) = ⋅P F( )A P( )A + P F( )B ⋅ P(B) + P F( )C ⋅ P( )C

⎛ 45 ⎞ ⎛ 55 ⎞ ⎛ 60 ⎞= (0.10)⎜ ⎟ + (0.12)⎜ ⎟ + (0.15)⎜ ⎟⎝ 160 ⎠ ⎝ 160 ⎠ ⎝ 160 ⎠

= +0.028125 0.04125 + 0.05625 = 0.126 = 12.6%.

For the second question, we have to calculate the conditional probabilities P A( )F , 
P B( )F , and P C( )F . To calculate P A( )F , we apply Bayes’ theorem and use the 
probability found for the first question. Hence, we have:

P F( )( ) A ⋅ P( )A
P A F =

P F( )

⎛ 45 ⎞
(0.10)⎜ ⎟⎝ 160 ⎠ 0.02825= = = 0.223 = 22.3%

0.126 0.126

P B
( )( ) P F B ⋅ P( )B

F =
P F( )

⎛ 55 ⎞
(0.12)⎜ ⎟⎝ 160 ⎠ 0.04125= = = 0.327 = 32.7%

0.126 0.126

( ) P F
P C

( )C ⋅ P( )C
F =

P F( )

⎛ 60 ⎞
(0.15)⎜ ⎟⎝ 160 ⎠ 0.05625= = = 0.45 = 45%.

0.126 0.126

Of course, as expected, the sum of probabilities is 1.
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EXERCISES

 2.1. Consider an experiment of tossing two fair coins. Suppose you observe two 

outcomes of both coins. State the sample space.

i. State the sample space.

ii. Define an event as a family with only one boy. State the sample points 

for this event.

i. State the sample space for the experiment.

ii. Define an event that represents the sum of two numbers is 5. Find the 

probability of this event.

iii. Define an event that represents the absolute value of the difference 

is 1. Find the probability of this event.

i. Above the average,

 ii. Average,

iii. Below the average.

Answer the following questions:

a. State the sample space of the rating.

b. Define an event that he rates only one item above the average. Calculate 

the probability of this event.

c. Define an event that he rates at least two items above the average. 

Calculate the probability of this event.

d. Define an event that he rates at most one item above the average. 

Calculate the probability of this event.

 2.6. What is the sample space when measuring the lifetime of a light bulb?

2.7. Consider a standard deck of 52 playing cards. Randomly select a card. 

What is the probability that the

i. Card is a queen?

ii. Card is a queen and a spade? 

iii. Card is a queen or a spade?

iv. Card is a queen but not a spade?

 2.8. Suppose there is an urn with 20 equal-sized balls. Of them, 12 are red, 5 

are blue, and the rest are of different colors. If you randomly select a ball, 

what is the probability that the ball picked

 i. Is red?

ii. Is neither red nor blue?

i. What is the probability that the student is not an engineering major?

ii. What is the probability that the student is a mathematics major?

 2.2. Consider an experiment of observing the gender of a child of a family of 

three children.

 

 

 2.3. State the sample space when a coin and a die are tossed together.

 2.4. A pair of two fair dice is rolled and the outcomes are observed.

 

 

 

 2.5. To assess the quality of a certain product of a company, the controller of the 

company uses a sample of size 3. His choices for rating are as follows:

 

 

 

 

 

 

 

 

 

 

 

 

 2.9. There are 100 mathematics majors and 200 engineering majors in a group 

of 500 students. If a student is randomly selected, answer the following 

questions:
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 iii. What is the probability that the student is neither a mathematics major 

nor an engineering major?

2.10. A professor in a college posted the following grade distribution for one of 

his courses he teaches,

with “D” to be considered as failure grade. If a student is selected ran-

domly, find the probability of the following events: 

 i. The student received a grade higher than a “C”.

 ii. The student does not fail the course.

 iii. The student received a “C” or a “B”.

 iv. The student received at most a “B”.

2.11. A bookstore carries some academic books, including mathematics and 

biology. The kind of books purchased are noted. Let us focus on the next 

customer who is at the register and is buying books. A denotes the event 

that the customer purchases a mathematics book, and B denotes the event 

that the person purchases a biology book. Based on the bookstore’s history 

of selling subjects books, we have the following probabilities:

 P A( ) = =0.20,P(B) 0.40, and P( )A∩ B = 0.05. 

 i. Explain why P( )A P+ (B) is not equal to 1.

 ii. What is the probability that the person will not buy a mathematics 

book?

 iii. What is the probability that the person will buy at least a mathematics 

or a biology book?

 iv. What is the probability that the person will buy a different type of 

book?

2.12. Consider a shipment of computers to an electronic store. Historical data 

indicates that a shipment of this type contains defects of different types. 

Here are the numbers: CPU only: 5%, RAM: 7%, and both CPU and RAM: 

3%. To assess the defectiveness, a computer is selected randomly. Find the 

following probabilities regarding the selected computer:

 i. Only one type of defect,

 ii. Both types of defects,

 iii. Either CPU defect or RAM defect,

 iv. Neither type of defects.

Grade Probability

A 0.15

B 0.25

C 0.50

D 0.10



82 Probability, Statistics, Stochastic Processes

2.13. Consider the results of a survey conducted by a researcher regarding the 
owning of the latest smart phones. This study was conducted using a group 
of high school students.

If a student is randomly selected, calculate the probabilities of the fol-
lowing events:

i. The student is a male.
ii. The student does not own the latest smart phone.

iii. The student is a female and owns the latest smart phone.
iv. The student is a female or owns the latest smart phone.

2.14. A mechanic shop has three mechanics, identified as #1, #2, and #3. The per-
centage of all jobs assigned are 40, 35, and 25, to mechanics #1, #2, and #3, 
respectively. From the history of experience, the owner of the shop knows 
the probability of errors for each of the mechanics as 0.05, 0.03, and 0.03, for 
mechanics #1, #2, and #3, respectively. Answer the following questions:

i. What is the probability that the service stations make a mistake with 
a given job?

ii. If a customer complains about a mistake in a prior completed job, who 
might have done the above mistake?

2.15. A quality controller finds three types of defects with a particular product 
in a company. Based on her experiences, she expects percentages of these 
defects as 7, 8, and 9, for type 1, 2, and 3 defects, respectively. Also, the 
probability of defects for both types 1 and 2 is 0.03, for types 2 and 3 is 
0.04, and for types 1 and 3 is 0.02. In addition, the quality controller finds 
that all the three types of defects occur 1% of the time. Using this informa-
tion, answer the following questions:

i. What is the probability that the quality controller experiences any 
type of defects?

ii. What is the probability that the quality controller experiences only 
one type of defect?

iii. What is the probability that the quality controller experiences only 
two types of defects?

iv. What is the probability that the quality controller does not experience 
any type of defects?

v. What is the probability that the quality controller observes type 1 and 
2 defects but not type 3 defect?

 
 
 
 

 

 

 

 

 

 

 

Gender

Owning the Latest Smart Phone Male Female Total

Yes 52 30 82

No 28 48 76

Total 80 78 158
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2.16. In an experiment of rolling two fair dice simultaneously, what is the prob-

ability that both show 5?

2.17. At a small college, 10% of the students are mathematics majors. Answer 

the following questions:

i. If a student is selected at random from this college, what is the prob-

ability that the student is not a mathematics major?

ii. If three students are randomly selected, what is the probability that all 

three are not mathematics majors?

2.18. According to the estimation of a particular insurance company, in a par-

ticular year, 1 out of each 300 houses can experience fire at some point of 

time. If there are eight houses with insurance protection for fire, what is the 

probability that the insurance company needs to pay for all the eight houses 

for claims regarding the fire?

2.19. Suppose Steve and his sister have motorcycles. The probability that Steve’s 

cycle has a mechanical problem is found to be 0.3, whereas the probability 

that his sister’s cycle has a mechanical problem is 0.4. Answer the follow-

ing questions:

i. What is the probability that both of motorcycles have mechanical 

problems?

ii. What is the probability that either Steve’s or his sister’s motorcycle has 

a mechanical problem?

iii. What is the probability that only one of the motorcycles has a mechan-

ical problem?

iv. What is the probability that both of their motorcycles do not have 

mechanical problems?

2.20. Consider two events A and B with P A( )B = 0.6 and P B( ) = 0.5. Calculate 

P A( )∩ B . 

2.21. It is known that 10% of new computers arriving at a computer store are 

defective of some type. Answer the following questions:

i. Two computers of some new arrivals have been selected consecutively 

to check for defectiveness without replacement. What is the probabil-

ity that the first computer is non-defective and the second is defective? 

ii. If three computers are selected in the same way as in (i), what is 

the probability that the first and second are defective and third is 

non-defective?

2.22. A survey was conducted about the three hobbies, namely, reading books, 

watching movies, and listening to music. The following statistics were cal-

culated using a collection of 1,000 college students. Of them, 13%, 22%, 

and 36% read books, watch movies, and listen to music, respectively. Also, 

7% of the students read books and watch movies; 8% read books and listen 

to music, and 12% watch movies and listen to music. Finally, 4% of the 

students do all the three hobbies. Using these pieces of information, answer 

the following questions:

i. If a student is selected and he watches movies, what is the probability 

that he reads books, also?
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 ii. If a student is selected and she watches movies and listens to music, 

what is the probability that she also reads books?

2.23. Let A be the event that a person drives an automatic-geered car, and B be 

the event that the person drives a manual-geered car. Suppose P A( ) = 0.5, 

P B( ) = 0.4, and P A( )∩ =B 0.25.

 i. Interpret the event B A and calculate its probability.

 ii. Interpret the event A B and calculate its probability.

2.24. A group of students comprise 30% biology majors, 25% math majors, and 

45% engineering majors. Suppose that GPA of 30% of mathematics and 

biology majors is above 3.0 out of 4.0 points. For mathematics and engi-

neering students, the numbers are 40% and 30%, respectively. Answer the 

following questions:

 i. If a student is randomly selected, what is the probability that the GPA 

is over 3.0?

 ii. Given that the student has a GPA over 3.0, what is the probability that 

the student is a mathematics major?

2.25. There are three brands of soda, say A, B, and C, available in a store. Assume 

that 40%, 35%, and 25% of the soda drinkers prefer brands A, B, and C, 

respectively. When a brand A soda drinker is considered, only 30% of them 

use ice cubes to drink the soda. For brands B and C, these percentages are 

60% and 50%, respectively. Using this information, answer the following 

questions:

 i. What is the probability that a randomly selected soda drinker is a 

brand A drinker who uses ice cubes to drink soda?

 ii. What is the probability that a soda drinker drinks soda with ice cubes?

 iii. If a soda drinker drinks with ice, what is the probability that the 

drinker is of brand A?

 iv. If a soda drinker drinks with ice, what is the probability that the 

drinker is of brand C?

2.26. Let E1 and E2 be two events in the space 𝕊. The following are some proper-

ties of the probability measure P. Prove the following:

If E1 and E2 are two events in 𝕊 and P is a probability measure, then P is 

a monotonic function, that is,

 i. P E( )1 2≤ P E( ), if E1 E2⊂
 ii. 11 1P E P Ec( ) ( )= −
 iii. P E( 1)+ =P E( 2 ) P E( )1 2∪ E + P( )E1 2∩ E
 iv. 1 2 1 2 1 2P E E P E P E P E E( ) ( ) ( ) ( )∪ = + − ∩

2.27. Prove the distributive laws of probability. 

 i. Let E1 2, ,E ... be any events. Then, we have the following two 

properties:

 
⎛ ⎞

a. ⎜  E Aj Ej A
⎝ j

⎟ ∩ =
⎠ j

( )∩

 
⎛ ⎞

b. ⎜  E Aj Ej A
⎝ j

⎟ ∪ =
⎠ j

( )∪
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 ii. For a finite number of events Ej , 1j n= ,2,..., , prove the following:

 )⎛ n ⎞ n

a. ⎜   E Aj Ej A
⎝ j 1 1

⎟ ∩ =
⎠ j

( ∩ .
= =

 
⎛ n ⎞ n

b. ⎜   E Aj Ej A .
⎝ j 1 1

⎟ ∪ =
⎠ j

( )∪
= =

 iii. For an infinite number of events Ej , 1j n= ,2,..., , prove the following:

 )⎛ ∞ ⎞ ∞
a. ⎜   E Aj Ej A

⎝ j 1 1
⎟ ∩ =
⎠ j

( ∩  
= =

  
1

A)⎛ ∞ ⎞ ∞
b. ⎜  E Aj E

⎝ j
j 1

⎟ ∪ =
⎠ j

( ∪  
= =

2.28. Prove the generalization of the multiplicative law: For n events E1 2, ,E E..., n 

with nonempty intersections, prove the multiplication law with conditional 

probability:

 P E( )1 2∩ ∩E ... En = P E( )1 P ( )E2 E1 P (E3 E1 2∩ E )...P (En E1 2∩ ∩E E −1). ... n
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3 Random Variables 
and Probability 
Distribution Functions

3.1  INTRODUCTION

Since the sample space is a part of the probability space, we now seek to quantify 

the sample space whose elements may be qualitative or quantitative or mixed. To 

do must define a function, called a random variable, that maps a sample space to 

a set of numbers or sets. However, we should be reminded that there are two types 

of variables: 

 i. Quantitative or numerical such as height, weight, student population at a 

university, or number of children in a family,

 ii. Qualitative or categorical such as colors, names, and human character-

istics and behaviors. A categorical data is a grouping of data into discrete 

groups, such as age group and dress sizes. 

A quantitative data set often appears in the theory of probability, while a qualitative 

data set appears more in statistics when data gathering and data analysis are under 

consideration. Thus, a sample space may contain a purely qualitative or quantitative 

outcome or of course a mixture of both. For instance, the outcomes of an experi-

ment of tossing a coin are head and tail that are qualitative, while the height that the 

coin reaches in air when it is flipped is a quantitative measure. Thus, a sample space 

containing outcomes of either of the two will require a different type of a random 

variable.

Definition 3.1

A random variable is a measurable function from a set of possible outcomes 

( quantitative or qualitative), that is, the sample space, to a measurable space like the 

sets of real numbers.

In other words, a random variable is the value of a measurement associated with 

a random experiment, such as the time a customer has to wait to check out in a busy 

grocery store or the number of cars stopped at a traffic red light. That is, random 

variables may be used to define events.

Symbolically, let X and Ω denote a random variable and the sample space, respec-

tively. If ω ∈Ω, then X ( )ω = x, where x is a real number (finite or countably infinite). 

The domain of X is the sample space, and its range is the set of its possible values.
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The values of a random variable could be discrete such as integers (finite or 

countably infinite), continuous such as intervals on the real line, or mixed (discrete 

and continuous). For instance, values of the random variable could be an interval as 

images of some events and natural numbers for others. The sets could be crisp or 

fuzzy. We will discuss these cases in separate subsections. There are properties of 

random variables that are common to all kinds. In such cases, we avoid the adjective 

and just say “random variable”.

Note 3.1

The range of a random variable is determined before the random experiment is 

performed. But the value of the random variable is known after performance of 

the experiment.

Definition 3.2

By a discrete random variable, it is meant a function (or a mapping), say X, from a 

sample space Ω, into the set of real numbers. Symbolically, if ω ∈Ω, then X ( )ω = x, 

where x is a real number.

Note 3.2

If a random variable can take only a finite number of discrete values, then it is 

discrete.

Example 3.1

In tossing a coin, the sample space is Ω = { }H T, , where H and T, the outcomes 
of the random experiment of tossing, stand for “heads” and “tails”, respectively. 
Then, a discrete random variable X may be defined as 1 and 0 (or other digits) for 
H and T, respectively. Symbolically, we have:

 
⎧⎪ H → 1,

X : ⎨  
T →⎩⎪ 0.

Example 3.2

Similar to Example 3.1, let us consider tossing two coins. Then, the set of possible 
outcomes, that is, the sample space Ω = {(H H, ,) ( )H ,T ,( )T , ,H (T ,T ) . Hence, the 
elements of the sample space this time is a set of ordered pairs. Thus, we define 
a discrete random variable X such that it assigns a number to each of the ordered 
pair in Ω as follows:

}



89Random Variables

 

⎧ ( )H H, 1→ ,
⎪
⎪⎪ ( )H T, 2→ ,  X : ⎨
⎪ ( )T H, 3→ ,

⎪ ( )T T, 0→ .⎩⎪

Example 3.3

A fair die is a small cube with a natural number from 1 to 6 engraved on each side 
equally spaced without repetition. The fairness means that a die is made so that 
its weight is equally spread and, thus, all six faces are equally likely to face when 
rolled. So, if rolled, the set of numbers {1,2,3,4,5,6} is the sample space of this 
experiment.

Now let’s consider the experiment of rolling a pair of fair dice. Then, the set of 
possible outcomes, that is, the sample space Ω, contains 36 pairs,

⎧ (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), ⎫
 ⎪ ⎪

Ω = ⎨ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),  ⎬.
⎪ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6) ⎪
⎩ ⎭

In each pair, the first element represents the number appearing on one die and the 
second appearing on the other. We can define a discrete random variable X such 
that it assigns numbers 1 through 36 to the ordered pairs in Ω from the beginning 
to the end, respectively, as follows:

(1,1) → 1, (1,2) → 2, (1,3) → 3, (1,4) → 4, (1,5) → 5, (1,6) → 6,

(2,1) → 7, (2,2) → 8, (2,3) → 9, (2,4) → 10, (2,5) → 11, (2,6) → 12,

(3,1) → 13, (3,2) → 14, (3,3) → 15, (3,4) → 16, (3,5) → 17, (3,6) → 18,

(4,1) → 19, (4,2) → 20, (4,3) → 21, (4,4) → 22, (4,5) → 23, (4,6) → 24,

(5,1) → 25, (5,2) → 26, (5,3) → 27, (5,4) → 28, (5,5) → 29, (5,6) → 30,

(6,1) → 31, (6,2) → 32, (6,3) → 33, (6,4) → 34, (6,5) → 35, (6,6) → 36,
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Example 3.4

Consider hair colors of people living in Houston, Texas, the United States, as 
black, blond, brown, and red. Thus, the sample space, Ω, consists of four ele-
ments that are the aforementioned four colors. Let us denote these elements by 
ω1, ω 2, ω3, and ω 4, for black, blonde, brown, and red, respectively. We now define 
the function X to map ω1, ω 2, ω3, and ω 4 to x1 3, ,x x2, and x4, respectively. That 
is, ω1 → →x x1, , ,ω ω2 3 3 2→ x and ω 4 → x4. Hence, x1 3, ,x x2, and x4 constitute the 
range of X. X is a finite discrete random variable. Figure 3.1 shows what X does.

Example 3.5

Consider the following sample space of pairs:

 }Ω = −{( 1,4),(0,4),(1,2),(1,9),(5,−1),(6,3),(7,−2) . 

We may now define a random variable X as the absolute value of the difference of 
two numbers, that is, X i= −{ }j ;(i, j) ∈Ω . Under this definition of X, the mapping 
will be as follows:

 

⎧ ( 1− →,4) 5,
⎪
⎪ (0,4) 4→ ,

⎪ (1,2) 1→ ,
⎪

X : ⎨ (1,9) 8→ ,
⎪ (5,− →1) 6,
⎪
⎪ (6,3) 3→ ,
⎪ (7,− →2) 9.⎩

 

Figure 3.2 shows the values of the random variable X. The numbers 1 through 7 
on the horizontal axis show the corresponding elements (the ordered pairs) of the 
sample space Ω. The numbers 1 through 9 on the vertical axis constitute a set 
containing the images of the ordered pairs, which are the values of X. The values 
of X are connected by lines to better illustrate the plot. The vertical axes could be 
extended, but it is not necessary since the maximum number needed is 9.

It should be recalled that in Chapter 1, we defined a characteristic or indica-
tor function of a set A, denoted by I A as a function that identifies an element 

X

FIGURE 3.1 Discrete random variable.
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of I, say i, as either in A or not in A. In other words, an indicator random variable 
is one associated with the occurrence of an event. Symbolically, we present it in 
the  following definition.

Definition 3.3

Let the set A be an event from a sample space Ω. Then, for each element ω  of Ω, the 

random variable I A is called an indicator function or indicator random variable 

of A if for ω ∈Ω, we have:

 
⎧⎪ 1, for ,ω ∈A

I A( )ω = ⎨  (3.1)
ω ∉A

⎩⎪
0, for .

That is, the values of the random variable I A are 1 or 0, depending upon whether the 

event A occurred or not occurred, respectively.

Note 3.3

 
⎧⎪ I ω =

∀ ∈ω Ω Ω ( ) 1,
,⎨  (3.2)

I ω =⎩⎪ ∅ ( ) 0.

FIGURE 3.2 Discrete random variable, Example 3.5.
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Example 3.6

A student is taking a test with “true” or “false” questions. Suppose she answered 
a question as “true”. The event that her answer is, in fact, true can be represented 
by an indicator function.

Example 3.7

Let the set A represent the population of a particular state in the United States, say 
A a= { }1 2, ,a ...,an , where ai , 1i n= ,2,...,  are the people living in the state and n is 
the total population of the state. We define I A as the indicator random variable 
representing the event that all persons in A have the same birthday. Then, I A, in 
this case, is defined as:

 
⎧⎪ 1, if all a a1 2, ,...,an have the same birthday,

I A = ⎨  
⎪ 0, otherwise.⎩

Definition 3.4

A random variable X is called continuous if it takes all possible values in its range.

Note 3.4

A continuous random variable is, as we will see later, usually, defined over an 

interval on the number line or a union of disjoint intervals. The probability of 

a continuous random variable will be defined by the area under the curve. The 

probability distribution of a continuous random variable can be represented by a 

smooth curve over an interval.

Note 3.5

When the outcomes of a chance experiment can assume real values (not necessar-

ily integers or rational), the sample space, Ω, is a continuous sample space; that 

is, Ω is the entire real number set,  , or a subset of it (an interval).

Note 3.6

Since the set consisting of all subsets of   is extremely large, it will be impossible 

to assign probabilities to all. It has been shown in the theory of probability that a 

smaller set, say B, may be chosen that contains all events of our interest. In this 

case, B is referred to as the Borel field, similar to what was defined for discrete 

random variables. The triplet (Ω, B, P) is called the probability space, where P is 

the probability (measure) of events. 
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Example 3.8

Suppose the temperatures in Houston in the month of July in the past many years 
have always been between 95°F and 105°F. This means that the temperature can 
take any value between the ranges 94.5°F and 105.5°F. When we say that the tem-
perature is 100°F, it means that the temperature lies somewhere between 99.5°F 
and 100.5°F. This is an example of a continuous random variable.

3.2  DISCRETE PROBABILITY DISTRIBUTION 
(MASS) FUNCTIONS (PMF)

A discrete random variable assigns discrete values to the sample points. As a ran-

dom variable represents an event, we can assign probabilities to its values. A function 

describing how probabilities are distributed across the possible values of the random 

variable is referred to as the probability distribution of the random variable. In other 

words, in a random experiment, we might want to look at situations from which we 

can observe the predictable patterns and can use them as models. The patterns of such 

models are called the probability distributions. As a random variable may be discrete 

or continuous, so is its distribution. In this section, we discuss the discrete case.

Note 3.7

A pmf of a random variable can be represented as a mathematical formula, table, 

or a graph.

Definition 3.5

Let X be a discrete random variable (finite or countably infinite) defined on the sam-

ple space Ω with range R x= { }1 2, x ,..., xn , where n is a nonnegative integer. Then, pX 

defined by

 p PX k= ={ }X x , 1k = ,2,...,n, (3.3)

is called the probability mass function (pmf) or discrete probability distribution 

of X if 

 i. For each value of X, say x, 

 0 1≤ ≤px  (3.4)

and

 ii. 

 ∑ px = 1. (3.5)

x R∈
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Note 3.8

Although the values of a discrete random variable are integers, the values of pmf 

are real numbers.

Note 3.9

In general, to specify the probability distribution (mass) function of a random 

variable X, discrete or continuous, denoted by ρX ( )x  and fX ( )x , respectively, X 

could be denoted by 

 X ~ ρX X( )x Xand ∼ f ( )x , (3.6)

respectively.

Example 3.9

Let us consider a manufacturer whose products are classified as excellent, accept-
able, and defective. We define the random variable X representing these three 
cases and map them to 5, 3, and 1, respectively. Data for the past three years of 
the production shows the chance for each one of the three cases as 60%, 30%, 
and 10%, respectively. Thus, 

 }Ω = {defective, acceptable, excellent
x⎯ { }1,3,5 , ⎯ →

that is,

 

⎧ defective → 1,
⎪

X : ⎨ acceptable 3→ ,  
⎪ excellent → 5.⎩

In other words, the image, R, of X is {1, 3, 5}. The pmf, in this case, in a table 
 format, is as follows:

Of course, the sum of the probabilities on the second row is 0.1 + 0.3 + 0.6 = 1.

Example 3.10

Consider an experiment consisting of rolling two fair dice. Let the random variable 
X represent the sum of the number of points that appear on both dice after each 
roll. What is the pmf for X?

x 1 3 5

px 0.1 0.3 0.6
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Answer

In Table 3.1, we list the possible outcomes of the experiment as ordered 
pair (x x1 2, ), where x1 is the number of points on one die and x2 on the other die.

Entries of Table 3.2 show the sum of components of elements of Table 3.1.
Probability of each entry of Table 3.1 and, hence, of Table 3.2 is 1/36. 

In Table 3.3, we list the sums, their frequencies, and the pmf.

TABLE 3.1
Possible Outcomes of Rolling Two Dice

x1

x2 1 2 3 4 5

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

6

TABLE 3.2
Sum of Numbers Appear on Rolling Two Dice

x1

x2 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

TABLE 3.3
Summary of Information from Table 3.2
Sum 2 3 4 5 6 7 8 9 10 11 12

Frequency 1 2 3 4 5 6 5 4 3 2 1

Probability 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
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Definition 3.6 (Cumulative Probability Mass Function, cmf)

Let X be a discrete random variable, x a real number from the infinite interval (−∞, x], 
and pX the pmf of X. The cumulative mass (or distribution) function, cmf (or cdf) 
of X, denoted by F xX ( ), is defined by

 = ≤ ∑
x

F xX k( ) P(X x) = p . (3.7)

k=−∞

Note 3.10

Based on the axioms of probability, for all x, pX > 0 and ∑ px = 1.

x

Note 3.11

Representing the pmf and cdf combined using a table with values of the random 

variable X, as x1 2, ,x x... ..., n , , and corresponding pmf values as p p1 2, ,..., pn ,..., 

we will have the following.

3.3  MOMENTS OF A DISCRETE RANDOM VARIABLE

3.3.1  ARITHMETIC AVERAGE

Let us start this section with a very basic relation that we all use it in our daily lives 

regardless of our education levels, like arithmetic mean. 

Definition 3.7

The arithmetic mean of n numbers x1 2, ,x x..., n denoted by x  is defined as:

 
x x

x 1 2+ +...x= n  (3.8)
n

Relation (3.8) can also be written as:

 
1 1 1

x = +x
n

1 2x +...+ x
n n

n (3.9)

TABLE 3.4
Tabular Representation of pmf and cdf
x x1 x2 ⋅ ⋅ ⋅ xn ...

px p1 p2 ... pn ...

X ( )F x p1 1 +p 2p ... 1p + 2p +...+ pn ⋅ ⋅ ⋅ 
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or

 = ∑
n

1
x x .

n
k  (3.10)

k=1

1
The coefficient  in (3.8)–(3.10), for each xk , 1k n= ,2,..., , is referred to as the 

n
weight, which in this case is the same for each xk , 1k n= ,2,..., . If the weight varies 

for each xk , 1k n= ,2,..., , then (3.8) is called the weighted average of n numbers 

x1 2, ,x x..., n. In this case, (3.8) and (3.9), respectively, become

 
1 1 1

x = +x
k

1 x2 +...+ x
1 k2 k

n (3.11)
n

and

 =∑
n

1
x x .

k
i  (3.12)

ii=1

Example 3.11

The syllabus for a probability class indicates the following:

 1. There will be five sets of homework (HW) assignments with equal weight 
of 15 percent. 

 2. Four tests with weights as follows: 

 3. Attendance has a weight of 10%. 

The final score is calculated based on the weighted average of HW, test scores, 
and attendance. The final grade, denoted by G, is given letter grade according to 
the following:

 

⎧ A G, 9≥ 0,
⎪
⎪ B G, 80 9≥ < 0,
⎪
⎨ C G, 70 8≥ < 0,
⎪ D G, 60 7≥ < 0,
⎪

, <60.⎩⎪ F G  

Test No. Weight (%)

1 (before Midterm Exam) 15

2 (Midterm Exam) 20

3 (after Midterm Exam) 15

4 (Final Exam) 25
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A student receives her scores on the three categories as follows:

Calculate the student’s

 i. Arithmetic HW average,
 ii. Weighted test scores average, 
 iii. Final letter grade.

Answers

 i. There are four HW assignments with equal weight. Thus, the arithmetic 
average, denoted by HW , from (3.8) is:

 
91+ +85 46 +100

HW = = 80.5. 
4

 ii. From the student’s test scores, the weight for each test, and (3.12), we have:

 iii. From the information above, we have the following:
HW having a weight of 15%, the weighted HW average, denoted by 

W HW , is: 

 W HW = =(80.5)(0.15) 12.075. 

Also, for attendance, we have 10% of the student’s score, that is, 
(95) (0.10) = 9.5. Thus, we can now calculate the final letter grade as the 
sum of the three weighted scores as follows:

1. HW No. Score (%) 2. Test No. Score (%) 3. Attendance (%)

1 91 1 (before Midterm Exam) 80 95

2 85 2 (Midterm Exam) 86

3 46 3 (after Midterm Exam) 58

4 100 4 (Final Exam) 89

Test No. Test Score Weight (%) Weighted Test Score (%)

1 (before Midterm Exam) 80 15 12.00

2 (Midterm Exam) 86 20 17.20

3 (after Midterm Exam) 58 15 08.70

4 (Final Exam) 89 25 22.25

Weighted average of test score (%) 60.15

1. (%)
HW Score 

2. (%)
Test Score 

3. (%)
Attendance 

(%)
Total Final Final 

Weighted 
Average

Weighted 
Average

Weighted 
Score

Weighted 
Score

Letter 
Grade

12.075 60.15 9.5 81.725 B
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3.3.2  MOMENTS OF A DISCRETE RANDOM VARIABLE

We now extend the idea of weighted average of numbers to random variables. Recall 

that a random variable, essentially, is the numerical measure of the outcomes of a 

chance experiment. Thus, it should be expected to have the weighted average for its 

values. However, the weight for each value is the probability of that value. Here is 

the formal definition.

Definition 3.8

Let X be a discrete random variable defined on a sample space Ω with its pmf, 

denoted by p xX ( ). The expected value or mean or expectation of X, denoted by 

E ( )X , is defined as:

 E( )X p= ⋅∑ X (x) x, (3.13)

x∈Ω

provided the sum converges absolutely; otherwise, X does not have an expected 

value. In other words, the mean of a random variable X is a weighted average and 

its weight of the possible values of X, say x, is its probability p xX ( ).
In case Ω is finite, say n elements, or infinite, (3.13) can be represented as:

 

∞

= =∑ ∑
n

E( )X xi Xρ ( )xi and E( )X xi Xp (x), (3.14)

i= =1 1i

respectively.

Example 3.12

Consider an experiment consisting of rolling two fair dice. Let the random variable 
X represent the sum of the number of points that appear on both dice after each 
rolling. What is the expected value of X?

Answer

Recall Example 3.9 and Tables 3.1–3.4, where we listed the possible outcomes of 
the experiment. In Table 3.4, we listed the values of the random variable and its 
pmf. Thus, the expected value of X, E(X), is:

 

( ) ⎛ 1 ⎞ ( ) ⎛ 2 ⎞ ( ) ⎛ 3 ⎞ ( ) ⎛ 4 ⎞ ⎛ 5 ⎞ ⎛ 6 ⎞E X = ⎜ ⎟ 2 + ⎜ ⎟ 3 + ⎜ ⎟ 4 + ⎜ ⎟ ( )5 + ⎜ ⎟ (6)+ ⎜ ⎟ (7)⎝ 36 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠

⎛ 5 ⎞ ( ) ⎛ 4 ⎞ ( ) ⎛ 3 ⎞ ( ) ⎛ 2 ⎞ ⎛ 1+ ⎜ ⎟ 8 + ⎜ ⎟ 9 + ⎜ ⎟ 10 + ⎜ ⎟ (11) ⎞+ ⎜ ⎟ (12)⎝ 36 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠

2 6 12 20 30 42 40 36 30 22 12 252= + + + + + + + + + + = = 7.
36 36 36 36 36 36 36 36 36 36 36 36

 

So, we can summarize these values in a new row of Table 3.5 as follows.
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Example 3.13

An investor in the stock market is trying to choose a company between two 
 available ones. His anticipations are as follows:

Company No. 1:
 i. 25% chance of profit of $80,000.
 ii. 40% chance of breakeven.
 iii. 35% chance of loss of $25,000.

Company No. 2:
 i. 20% chance of profit of $90,000.
 ii. 65% chance of breakeven.
 iii. 15% chance of loss of $65,000.

Question: Which company, 1 or 2, is better to invest? 

Answer

Let us define X as a random variable representing its values for the amount of 
money earned as x1 for profit (positive earning), x2 for breakeven (0 earning), and 
x3 for loss (negative earning). Thus, using these notations, we summarize for the 
cases in Table 3.6.

TABLE 3.5
Expected Value of X in Example 3.12
Sum 2 3 4 5 6 7 8 9 10 11 12

Frequency 1 2 3 4 5 6 5 4 3 2 1

pmf 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

E(X) = 7 = 252/36 = 2/36 + 6/36 + 12/36 + 20/36 + 30/36 + 42/36+ 40/36+36/36 + 30/36 + 

22/36 + 12/36

TABLE 3.6
Example 3.13

Company

No. 1 No. 2

X Amount, $ Probability, p xX ( ), % Amount, $ Probability, p xX ( ), %

x1 +80,000.00 25 +90,000.00 20

x2 0 40 0 65

x3 −25,000.00 35 −65,000.00 15
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Thus, calculating the expected values for each company, we will have:

Company No. 1

 
E ( )X = +( )0.25 (80,000) (0.40)(0)+ ( )0.35 (−25,000)

= +20,000 0 − 8,750 = 11,250.

Company No. 2

 
E ( )X = +(0.20)(90,000) ( )0.65 (0)+ ( )0.15 (−65,000)

= +18,000 0 − 9,750 = 8,250.

Since the expected value for the first company is $11,250 and for the second 
 company is $8,250, that is, $3,000 differences, it is more beneficial for the  investor 
to choose Company No. 1.

Example 3.14

A school district superintendent is investigating the teacher attrition and retention 
rate in her district for new hires. She gathers data from the past 5 years and finds 
the following:

What is the

 i. Probability that a new hire stays at work for at least 2 years with the first 
5 years of hire, 

 ii. Mean number of years a new hire will stay within the first 5 years of hire?

Answer

 i. From the given data, table above, we have:

 p xX ( )2 ≤ ≤ 5 = 0.30 + 0.18 + 0.10 + 0.07 = 0.65 ≈ 65% 

We could also answer this question using the complement rule as follows:

    P X( = =at least 2) P X( )≥ 2 = 1− P X( )< 2 = 1− P X( = 1) = 1− 0.35 = 0.65. 

 ii. Applying (3.14), we use the table above to answer as follows:
In other words, new teachers hired on the average, within the first 

5-year period, will stay 28 months (Table 3.7). 
If X is a random variable, whose values are nonnegative integers, then

 
P X( )> =x P X( )= x +1 2+ P X( = x + )+...= 1− P X( )≤ x

 
= −1 P X( )= 0 1 2− P X( = )− P X( = )−...− P X( )= x . (3.15)

X: No. of years stayed 1 2 3 4 5

pX: % Rate of stay in years 35 30 18 10 7
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Theorem 3.1

If X is a random variable, whose values are nonnegative integers, then

 

∞

E ( )X P= >∑ (X x). (3.16)

x=0

Proof:
Applying (3.16), we will have:

 

∑
∞

P X( )> =x P( )X > 0 1 2+ P(X > )+ P(X > )+...
x=0

= P X( )= 1 2+ =P X( ) + =P X( 3) +...
 

+ =P X( )2 3 4+ =P X( ) + =P X( ) +...

+ =P X( )3 4+ =P X( ) + =P X( )5 +...   + ...

= ⋅1 P X( )= 1 + 2.P X( = 2) + 3P X( = 3) +...

∑
∞

x P⋅ =( )X x = E X .

x=0

( )

Note 3.12

We leave it as an exercise to show that expected value of an indicator random 

variable of an event (defined in (3.1)) from a sample space is the probability of the 

event. In other words, for

 
⎧1, for ω ∈A,⎪

I A ( )ω = ⎨  
⎪0, for ω ∉⎩ A,

E ( )I PA = (A). (3.17) 

TABLE 3.7
Example 3.14
X: No. of x1 x2 x3 x4 x5 Expected number of 

years stayed

PX : % Rate of 

1

X ( )p x1

2

X ( )p x2

3

X ( )p x3

4

X ( )p x4

5

X ( )p x5

4

years = ∑ xpX ( )x
x=1

stay in years 35 30 18 10 7

X ( )xp x 0.35 0.60 0.54 0.40 0.35 2.24
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Definition 3.9

Let X be a discrete random variable defined on a sample space Ω with pmf denoted by 

P xX ( ). Let Z also be a new random variable as a function of the random  variable X, 

denoted by Z z= ( )X . Then, the expected value of Z is defined by

 E (Z ) = =E [ ]Z X( ) ∑Z x( ) pX ( )x . (3.18)

x∈Ω

This definition can be extended for n random variables X1 2, ,X X..., n. The random 

variable Z could be the sum or product of two or more random variables, for instance. 

In this case, (3.18) for a sum is referred to as the linearity property of the expected 
value, which is as follows: For constants a and b, we have:

 E ( )aX + =b aE ( )X + b. (3.19)

Generally, for constant numbers, a and b, we have:

 E [ ]aZ ( )X + =b aE [z ( )X ]+ b. (3.20)

Also, for a sequence of random variables, X1 2, ,X ..., we have:

 
⎛

E X⎜∑ ∑
∞ ⎞ ∞

i ⎟ = E ( )Xi , (3.21)
⎝ i=1 1⎠ i=

∞

provided that ∑E X( i ) converges. In a finite case, for constants a1 2, ,a a..., n, and b, 

i=1

we have:

 E ( )a1 1X + +a2X2 ...+ an nX + b = a1E X( )1 + a2E X( 2 )+ + anE X( n )+ b. (3.22)...

In case X1 2, ,X X..., n are n independent random variables, then 

 E ( )X X1 2... ...Xn n= E ( )X1 E (X2 ) E (X ). (3.23)

Example 3.15

Let us toss a fair coin twice. Let X be a random variable representing the number 
of heads that appear in this experiment (Table 3.8). Find 

 i. E ( )X  
 ii. E ( )X 2 , expected value of a function of the random variable X.
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Answer

The sample space in this case is: 

Ω = {HH , ,HT TH ,TT ,  }

where H and T stand for head and tail, respectively. Thus, X = 0,1,2. Since the coin 
is fair, we will have:

We leave the derivation of these properties as exercises.

Note 3.13

 
⎛ 1 1⎞E ⎜ ⎟ ≠ . (3.24)⎝ X E⎠ ( )X

Example 3.16

Consider the random variable X with values 1, 2, and 3 and probability 1/3 for 
each. We list the values of 1/X, pmfs, and expected values in Table 3.9. The last 
row confirms (3.19).

In this subsection so far, we have computed the expected value of a random 
variable X and a function of a random variable, specifically X 2. We have also seen 
some examples. For instance, in Example 3.21, we found E ( )X 2 . We now want to 
generalize this concept.

TABLE 3.8
Example 3.15
X 0 1 2 E( )X 2x 0 1 4 2( )E X

X ( )p x 1/4 1/2 1/4 X ( )p x 1/4 1/2 1/4

X ( )xp x 0 1/2 1/2 1 2x X ( )p x 0 1/2 1 3/2

TABLE 3.9
Example 3.16
X 1 2 3 1/X 1 1/2 1/3

X ( )p x 1/3 1/3 1/3 X ( )p x 1/3 1/3 1/3

X ( )xp x 1/3 2/3 1 X ( )xp x 1/3 1/6 1/9

1 =
E X( )

1 = 1/2 ≠ ⎛ 1 ⎞E ⎝⎜ ⎠⎟ =
X

5/91

3

2+ +1
3
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Definition 3.10

Consider a discrete random variable X with its pmf p xX = =P X x) defined on a 

sample space Ω and a positive integer r; then, E ( )X '  is called the rth moment of X 

or moment of order r of X. Symbolically:

( ) (

 E ( )X xr r=∑ pX ( )x . (3.25)

x∈Ω

Specifically,

 ( )
n ∞

E X xr = =∑ ∑r p ( )xi , .E ( )X xr r
i X i pX ( )xi  (3.26)

i= =1 1i

In (3.26), if r = 1, the expected value of X is called the first moment of X, and if r = 2, 

E ( )X 2  is referred to as the second moment of X.

Note 3.14

When X is a random variable and μ (pronounces as mu) is a constant, the first 

moment of X (E(X)) is denoted by μ, based on properties of the expected values, 

and X − μ is also a random variable and E ( )X E− =μ μ( )X − = 0. This shows 

that we can center X by shifting X and choosing X − μ.

Definition 3.11

Consider the random variable X − μ. Then, E ⎡( )X − μ r ⎤ is the rth moment of ⎣ ⎦ X − μ 

and is called the central rth moment of X. The random variable X − μ measures the 

deviation of X from its expected value or the mean of X. Since this deviation may be 

positive or negative depending upon the values of X − μ, the absolute value of X − μ, 

X − μ , is the absolute measure of deviation of X from its mean, μ. For the sake of 

convenience in calculations, the mean square deviation, E ⎡( )X − μ 2 ⎤, which is the ⎣ ⎦
second central moment of X, is used rather than absolute value, X − μ .

The second moment leads to another very important concept as defined in the 

following definition.

Definition 3.12

Consider a random variable X with a finite mean E ( )X . The variance of X, denoted 

by Var(X) or σ 2 ( )X  or if there is no danger of confusion, just σ 2, is defined as follows:

σ μ2 ( )X E= −⎡( )X
2 ⎤ . (3.27)⎣ ⎦ 
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Relation (3.27) states that the variance measures the average deviation or dispersion 
of the random variable X from its mean.

Note 3.15

For a random variable X with mean μ, the variance of X can be calculated as 

follows:

 

σ μ2 = −E X⎡( )2 ⎤ = −E ⎡X 2 2
X ⎣ 2μX + μ ⎤⎣ ⎦ ⎦

= −E X( )2 22μ μE X( ) +

= −E X( )2 22μ μ+ 2

= −E X( )2 2μ . (3.28)

 

Note 3.16

In case the value of variance is small, it would mean that the values of the random 

variable are clustered about its mean. This could also happen when the sample 

size is too large.

We list other properties of variance of a random variable X and leave the 

proofs as exercises. For a constant a,

 1. Var ( )X + =a Var (X ). (3.29)

 2. Var ( )aX = a2Var (X ). (3.30)

Note 3.17

It is interesting to note that mean and variance of two random variables may be 

equal while their pmfs are different. Here is an example.

Example 3.17

Let X and Y be two discrete random variables representing two biased dice with 
the following different pmfs (Tables 3.10 and 3.11).

This raises a question that we will later answer: For a random variable X, if the 
mean and variance are known, can we find the pmf?

From (3.36), it can be seen that the variance of a random variable X measures 
the deviation from the mean by squares. Thus, correcting the squaring process, it 
is needed to take square root. This leads us to the following definition.
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Definition 3.13

For a random variable X, the positive square root of its variance is referred to as the 

standard deviation of X and is denoted by σ ( )X .

Example 3.18

As in Example 3.17, suppose an investor is trying to earn with the following 
 percents of profit, breakeven, and loss:

 i. 25% chance of profit of $80,000.

TABLE 3.10
Example 3.17

X 1 2 3 4 5 6 Sum

1
pX 0

2

1

6
0 0

1

3
pX

1
xpX 0

2

1

2
0 0 2 xpX

X 2 1 4 9 16 25 36 X 2

1
2x pX 0

2

3

2
0 0 12 2x pX

μX = ( ) =E X 3
2(E X ) = 14

2 2 2σ ( )X = (E X ) − [ ( )]E X = 14 − 9 = 5

TABLE 3.11
Example 3.17

Y 1 2 3 4 5 6 Sum

8pY
15

0 0
1

6
0

3

10
1

8ypy
15

0 0
2

3
0

9

5
μY = 3

Y 2 1 4 9 16 25 36

2 8y py
15

0 0 8

3
0 54

3

2( ) = 14E Y

μy = ( ) =E Y 3
2( ) = 14E Y

2 2σ ( )Y = ( )E Y − 2[ ( )]E Y = 14 − 9 = 5
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 ii. 40% chance of breakeven.
 iii. 35% chance of loss of $25,000.

Find the mean, variance, and standard deviation of his gain.

Answer

As before, let us define X as a random variable representing its values for money 
earned as x1 for profit (positive earning), x2  for breakeven (0 earning), and x3 
for loss (negative earning). In Table 3.12, we insert the values of X and its pmf. 
We also include the values to calculate the second moment and, hence, the 
variance.

Thus, from (3.34), we have: 

 
σ μ2 2(X E) = −(X ) 2 = 234.75×106 − (11,250)2

= −1,818,750,000 126,562,500 = 1,692,177,500
 

and

 σ (X) = 41,136.09. 

The variance and, hence, the standard deviation are largely due to a small range 
of possible values of X. This type of problem may appear with very small variance. 
Here is an example.

Example 3.19

Let us consider a game with four possible outcomes as −2, −1, 3, and 5 with 
respective probabilities of 0.1, 0.3, 0.4, and 0.2. We want to calculate the mean 
and standard deviation for this distribution.

Answer

As in Example 3.18, we let X be a random variable taking the values of outcomes 
and p xX ( ) as its pmf. This time we use (3.46), σ μ2 2( )X E= −⎡ ⎤⎣(X ) ⎦. Thus, we will 
have Table 3.13.

Thus, mean = 1.7, variance = 6.41, and σ ≡ standard deviation = σ 2 = 2.53.

TABLE 3.12
Example 3.18

x1 x2 x3

x +80,000 0 −25,000
2x ×64 108 0 6.25 ×108 Sum

X ( )p x 0.25 0.40 0.35 $

X ( )xp x +20,000 0 −8,750 μ ≡ (E X) = 11,250
2x X ( )p x 16 ×108 0 2.1875 ×108 2(E X ) = 18.1875 ×108
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Despite the expected value that had linearity property E( )aX + =b aE(X) + b, 
variance does not have such property. That is,

 σ σ2 2( )aX + =b a 2(X).  (3.31)

We leave the proof of (3.31) as an exercise.

Example 3.20

Consider Example 3.19. Suppose the reward of the game is changed to increase 
the payout in half, then add a dollar. The pmf remains as before. Again, we want 
to calculate the mean and standard deviation for this distribution.

Answer

Once again, let Y be a random variable taking the values of the new outcomes and 
p yY ( ) as its pmf. Thus, we have Table 3.14.

TABLE 3.13
Example 3.19

x1 x2 x3 x4

x −2 −1 3 5

X ( )p x 0.1 0.3 0.4 0.2 Sum

$

X ( )xp x

X − μ
−0.2

−3.7

−0.3

−2.7

1.2

1.3

1

3.3

μ ≡ (E X) = 1.7

(X − μ)2 13.69 7.29 1.69 10.89

2(X − μ) pX ( )x 1.369 2.187 0.676 2.178 2 2σ ≡ [E X − μ) = 6.41

TABLE 3.14
Example 3.20

x1 x2 x3 x4

X −2 −1 3 5

X/2 −1 −0.5 1.5 2.5

y1 y2 y3 y4

Y = X/2 + 1 0 0.5 2.5 3.5

Y ( ) =p y pX ( )x  0.1 0.3 0.4 0.2

yp ( )Y y 0 0.15 1 0.7 μY = ( )E Y = 1.85

Y − μY −1.85 −1.35 0.65 1.65

2(Y − μY ) 3.4225 1.8225 0.4225 2.7225

2(Y − μY ) pY ( )y 0.34225 0.54675 0.169 0.5445
2σ ≡ 2⎡E Y − μ ⎤( Y ) ⎦ = 1.6025 ⎣
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Thus, mean = 1.35, variance = 3.6025, and σ ≡ standard deviation = 
σ 2 = 1.2659. As it can be seen, in this case, the variance is one-fourth of the 

original value of the variance, in Example 3.19. This is because from (3.49), 
σ 2 2( /X X2 + =1) σ ( ) 4.

Even the following definitions (up to Definition 3.15.) should be under discrete 
random variables. In addition to (3.37), it can be proved (left as an exercise) that 
variance has the following properties: If X and Y are two independent random 
variables, then

 σ σ2 2( )X Y± = (X) +σ 2(Y ). (3.32)

In other words, the variance of sum and difference of two independent random 
variables X and Y is the sum of the variances of X and Y.

We may wonder if two random variables are not independent of how we 
 measure the dependencies. The answer is in the definition below.

Definition 3.14

For two random variables X and Y, let μX = E X( ) and μY = E Y( ) denote the means 

of  X and Y, respectively. Then, covariance of X and Y, denoted by Cov( ,X Y ), is 

defined as 

 Cov( ,X Y ) = −E ⎡⎣( )X μ μX Y(Y − )⎤⎦. (3.33)

In other words, covariance measures the linear agreement between two random 

variables. This value can be any real value. Positive values indicate the positive 

ag reement between two random variables (i.e., when one value increases, the other 

value also increases), negative values indicate a negative agreement between two 

random variables (i.e., when one value increases, the other value decreases), and zero 

indicates the nonexistence of a linear relationship.

Example 3.21

Suppose an electronic repair store has 20 computers for sale, 8 of which are 
repaired, 5 are new, and 7 are non-repairable (sold as parts). Three comput-
ers are randomly chosen to be tested, one at a time without replacement. 
We cons ider two random variables X and Y with joint pmf and marginal pmfs as 
in Table 3.15.

We want to calculate the covariance of X and Y.

Solution:

We now calculate X − μX  and Y − μY  (Table 3.16).
Thus, 

 Cov(X ,Y ) = −∑∑( )X μ μX Y(Y − ) pXY (x, y) = −0.0585. 
x y
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Let X, Y, U, and V be random variables and a, b, c, and d constants. Then, the fol-
lowing are some properties of covariance, which we leave the proof as exercises:

 Cov( ,X a) − 0. (3.34)

 Cov( ,X X)=Var(X). (3.35)

 Cov( ,X Y ) = Cov(Y , X). (3.36)

 Cov( ,X Y ) = −E(XY ) μ μX Y . (3.37)

 Cov( ,X + +a Y b) =Cov (X ,Y ). (3.38)

 Cov( ,aX bY ) = ab Cov(Y , X). (3.39)

 Cov( ,aX Y ) = a Cov(X ,Y ). (3.40)

 

Cov( ,aX + +bY cU dV ) = ac Cov(X ,U) + ad Cov(X ,V )

+ +bc Cov( ,Y U) bd Cov( ,Y V ). (3.41)

 Var( )X + =Y Var(X) +Var(Y ) + 2Cov(X ,Y ). (3.42)

TABLE 3.15
Example 3.21

X

Y 0 1 2 3 p yY ( )

0 0.03 0.09 0.06 0.01 0.19

1 0.15 0.25 0.07 0 0.47

2 0.17 0.12 0 0 0.29

3 0.05 0 0 0 0.05

px x( ) 0.40 0.46 0.13 0.01 1 (total)

TABLE 3.16
Example 3.21
X 0 1 2 3

p xX ( ) 0.40 0.46 0.13 0.01

X ( )xp x 0 0.46 0.26 0.03 μX = 0.75 

X − μX −0.75 0.25 1.25 2.25

Y 0 1 2 3

Y ( )p y 0.19 0.47 0.29 0.05

yp ( )Y y 0 0.47 0.58 0.15 μY = 1.2

Y − μY −1.2 −0.2 0.8 1.8
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One of the main issues with the covariance between two random variables is the 
difficulty of interpreting the value of covariance. The magnitude of the value of 
covariance does not represent the strength of the association between the two ran-
dom variables, as the value of the covariance depends on the units of both random 
variables. Therefore, we need a better measurement to represent the linear relation-
ship between two random variables. This is the subject of the following definition. 

Definition 3.15

Consider two random variables X and Y with their respective standard deviations as 

σ X and σY . The coefficient of correlation of X and Y, denoted by ρX,Y, is given by:

 
Cov( ,X Y )ρX Y, = , (3.43)

σ σX Y

provided that σ X Yσ ≠ 0.

It is left as an exercise to prove that 

 −1 1≤ ≤ρX Y, . (3.44)

Note 3.18

ρ >0 represents a positive linear correlation, means that both random variables 

increase or decrease together.

ρ <0 represents a negative linear correlation, means that the random variables 

are dependent in opposite direction, so that if the value of one variable 

increases, the value of the other one will decrease. 

ρ = 0 means that the random variables are linearly uncorrelated (or there may 

be a nonlinear correlation).

Unlike the value of covariance, correlation coefficient represents the strength of 

the relationship between two random variables. As a convention, we adhere to the 

f ollowing classification (see Table 3.17); though, the values may change slightly 

depending on the discipline and the application (Table 3.18).

Here are some other properties of the coefficient of correlation ρ:

 ρ ρX Y, ,= Y X . (3.45)

 ρX X, = 1. (3.46)

 ρX X,− = −1. (3.47)

For real numbers a, b, and c, and a c, 0≠ ,

 ρ ρa YX b+ +, .cY d = ,X  (3.48)
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Example 3.22

In a quality control process at a factory, a trouble-shooting instrument is used to 
test two similar products. Let the random variables X and Y represent the status 
of the products 1 and 2, respectively. For both products, being good in quality is 
described by above average or 4, and being poor in quality is described by below 
average, or 2. Based on the factory’s data collected in past years, the joint pmf of 
X and Y is given as follows (Table 3.19).

TABLE 3.17
Example 3.21

Y 0 1 2 3 Sum

Y − μY −1.2 −0.2 0.8 1.8

X X − μX (X − μX )(Y − μY ) pXY ( , )x y

0 −0.75 0.027 0.15675 0,036 0.0135 0.23325

1 0.25 −0.045 −0.0125 0.014 0 −0.0435

2 1.25 −0.11475 −0.03 0 0 −0.14475

3 2.25 −0.135 0 0 0 −0.0135

Sum −0.26775 0.11425 0.05 0.0135 0.0315

( ,Cov X Y ) −0.0585

TABLE 3.18
Correlation Coefficient Convention

Value of ρ Interpretation

ρ−1≤ < 0.7 Strong-negative relationship

−0.7 ρ≤ <− 0.5 Moderate-negative relationship

−0.5 ρ≤ <− 0.3 Weak-negative relationship

− ρ0.3≤ ≤ 0 None or very weak-negative relationship

ρ0 < ≤ 0.3 None or very weak-positive relationship

ρ0.3< ≤ 0.5 Weak-positive relationship

ρ0.5< ≤ 0.7 Moderate-positive relationship

ρ0.7< ≤ 1 Strong-positive relationship

TABLE 3.19
Example 3.22

Y

X p ,X Y ( , )x y 2 4 pX (Marginal of X)

2 0.01 0.10 0.11

4 0.09 0.80 0.89

pY  (Marginal of Y) 0.1 0.9 1 (Sum)
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Hence, we calculate the mean, variance, covariance, and the correlation 
 coefficient of X and Y, as follows (Table 3.20–3.22).

Now,

 −Cov( ,X Y ) = −∑ ∑ ρ μX Y, (x, y)( )x X (y μY ): 
x=2,4 y=2,4

Cov(X ,Y ) −0.017ρX Y, = = = −0.046. 
σ σX Y (0.62)(0.60)

 

Here, we state two inequalities for the application of both mean and variance that 
we will use in the later chapters.

TABLE 3.20
Example 3.22
X 2 4 Y 2 4

X 2 4 16 Y 2 4 16

ρ ( )X x 0.11 0.89 ρ ( )Y y 0.10 0.90

ρ ( )x X x 0.22 3.56 μX = 3.78 ρ ( )y Y y 0.20 3.60 μY = 3.80
2x ρ ( )X x 0.44 14.24 μX 2 = 14.68 2y ρ ( )Y y 0.40 14.40 μY 2 = 14.80

σ 2
X ( )Var X = (E X 2 ) − 2[ ( )]E X 2σY ( )Var Y = 2( )E Y − 2[ ( )]E Y

= 14.68 −14.29 = 0.39 = 14.80 −14.44 = 0.36

σ X = 0.39 = 0.62 σY = 0.36 = 0.60

TABLE 3.21
Example 3.22
X 2 4 Y 2 4

X − μX 2 − 3.78 = − 1.78 4 − 3.78 = 1.22 Y − μY 2 − 3.80 = − 1.80 4 − 3.80 = 1.20

TABLE 3.22
Example 3.22

(X, Y) (2, 2) (2, 4) (4, 2) (4, 4) Sum = Cov(X,Y)

ρ ,X Y ( , )x y (0.01)(3.20) (0.1)( −2.16) (0.09)( −2.20) (0.8)(1.46) − 0.017

(X − μX )(Y − μY ) = 0.032 = − 0.216 = − 0.198 = 0.117

(X, Y) (2, 2) (2, 4) (4, 2) (4, 4)

(X − μX )(Y − μY ) (−1.78)( −1.80) (−1.78)(1.20) (1.22)( −1.80) (1.22)(1.20)

= 3.20 = − 2.16 = − 2.20 = 1.46
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Theorem 3.2 Markov’s Inequality

If the expected value of a nonnegative random variable is small, then the random 

variable must itself be small with high probability. The following is the formulation 

of this statement that is referred to as Markov’s inequality:

Let X be a nonnegative continuous random variable with finite mean, E( )X . Then,

 ( ) E X( )
P X ≥ ∈ ≤ , 0∈> . (3.49)

∈

Proof:
Using the fact that the integer and defining a continuous expected value is nonnega-

tive, and the values of X are bounded from below by ∈, since X is non-negative by 

assumption and P(x) is also non-negative by definition, xP(x) is nonnegative. Thus, X 

being a continuous random variable, by assumption, we have:

 ≥ ∈
∞ ∞ ∞

E( )x = ≥∫ ∫ ∫x dP( )x x dP( )x ≥ ∈dP( )x = ∈P(X ). 
0 ε ε

Note 3.19

Markov’s inequality(3.49) can be defined and proved for discrete and mixed 

random variables, as well.

The Markov inequality can be stated for a nonnegative increasing function 

of X, say g X( ). In that case, (3.49) becomes what is referred to as a derivative 
inequality, defined by:

 
E g[ (X)]

P X( )≥ ∈ ≤ , 0∈> . (3.50)
g( )∈

Example 3.23

Let X be a binomial random variable with parameters n and p. Using Markov’s 
inequality, we want to 

 i. Find An upper bound on P X( )≥ ∈n , where p < ∈< 1, 

 
1 3

ii. Evaluate the bounds for the values of p =  and ∈= .
4 10

Answer

 i. Since X is a binomial random variable, it is nonnegative and its mean is 
np. Hence,

 
E X( ) ρ ρn

P X( )≥ ∈n ≤ = = . 
∈n ∈n ∈

ρ
Thus, an upper bound in question is . 

∈
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⎛ 3 ⎞ 5
 ii. P X⎜ ≥ n⎟ ≤ .⎝ 10 ⎠ 6

As a special case of (3.50), we prove the following theorem.

Theorem 3.3 Chebyshev’s Inequality

Let X be a random variable with finite mean, μ, and finite and nonzero variance, σ2. 

Let ∈ also be a positive real number. Then,

 ( ) σ 2

P X − ≥μ ∈ ≤ , ∀ ∈ +

∈2 ∈  (3.51)

or

 
1

P X( )− ≥μ σ∈ ≤ , ∀ ∈ +

∈2 ∈ . (3.52)

In other words, the probability that the value X lies at least ∈ from its mean is at least 
σ 2

2
, or the probability that the value X lies at least ∈ standard deviation from its mean 

∈
1

is at least 
∈2

.

Proof:
Let g X( ) [= −x E(X)]2, which is a nonnegative function regardless of values of X 

being nonnegative or not, be a random variable with mean μ and variance σ 2. Then, 

 
E X( )μ σΡ ⎡ X − ≥μ 2 2

⎡ − 2 ⎤⎣ ⎦ 2

( ) ∈ ⎤ ≤
2

=
2

∈>⎣ ⎦ , for any real 0.
∈ ∈

Thus,

 ( ) σ 2

P X − ≥μ ∈ ≤ , for any real ∈> 0.
∈2

 

Example 3.24

Let X be a binomial random variable with parameters n and p. Using Chebyshev’s 
inequality, we want to

 i. Find an upper bound on P X( )≥ ∈n , where p < ∈< 1, 
1 3

 ii. Evaluate the bounds for values of n = 20, p = , and ∈= .
4 10
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Answer

 i. Since X is a binomial random variable, it is nonnegative and its mean is 
np. Hence,

 

( ) ( σ 2

P X ≥ ∈n = P X − np ≥ ∈n − np) ≤ P ( )X − np ≥ ∈n − np ≤
( )∈ −n np 2

 
p p(1− )=

2
.

n p( )∈−

p p(1− )
Thus, an upper bound in question is 

n p( )∈− 2
. 

⎛ 1 ⎞ ⎛ 3 ⎞
⎜ ⎟ ⎜ ⎟⎛ 3 ⎞ ⎝ 4 ⎠ ⎝ 4 ⎠ 13

 ii. P X⎜ ≥ 20⎟ ≤⎝ 10 ⎠ 2 = = 3.75.
⎛ 3 1 ⎞ 4

20 ⎜ − ⎟⎝ 10 4 ⎠

Note 3.20

The name “Chebyshev” has been written in a variety of ways in the literature. These 

include Tchebicheff, Čebyšev, Tschebyscheff, and Chebishev (Clenshaw 1962), also 

Cheney and Kincaid (1994, Ex. 14, p. 16). We use Chebyshev in this book.

Note 3.21

In (3.52), only the value of ∈=1 can be useful since for their values the inequality 

will be trivial. For instance, if ∈= 2, then the inequality says that the probability 
1

that the value of X falls outside the interval ( 2μ σ− +, μ σ2 ) does not exceed .
4

Example 3.25

Consider the population of a city whose household income is $50,000.00 with 
the standard deviation of $25,000.00. An individual is selected from this city ran-
domly. What is the probability that the average income for this individual is either 
less than $15,000.00 or greater than $75,000.00?

Answer

Since the distribution of income for households in this city is not known, we can-
not compute the exact value of the probability in question. But using Chebyshev’s 
inequality, we can compute an upper bound to it. 

Thus, let X be the random variable representing the average household income 
of this city. Let μ = 45,000 and ∈= 30,000. Hence, X − ≥μ ∈. Therefore, we have:

 ( ) σ 2 ( )25000
2

625 25
P X − ≥μ ∈ ≤

2
= = .

∈ ( )30000
2  

900 36
=
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In other words, the probability of the selected individual’s household income to be 
25

either less than $15,000 or greater than $75,000 is .
36

Example 3.26

Suppose the distribution of the grades of an examination is skewed with mean 
and standard deviations of 75 and 5, respectively. What percent of students have 
received grade between 50 and 100?

Answer

Using Chebyshev’s theorem, we know 1−
2
 proportion of data is in the interval of 

k
(μ μ− +ks, ks). Therefore, μ + =ks 100 or 75 + k(5) = 100. Hence, k = 5. Therefore, 

1 1
the proportion of grades between 50 and 100 is 1− =

2
1− = 0.96.

k 25
The following term is a special case of moment of a random variable X. 

1

Definition 3.16

Let X be a discrete random variable with pmf pX. Let t also be a real number or a 

complex number with nonnegative real part. Suppose that E(etX) exists. Then, the 

moment generating function of X, denoted by M(t), is defined as follows:

 M t( ) = =E ( )etX ∑etx px. (3.53)

x

Note 3.22

From Definition 3.16, we see that

 M p(0)= =∑ x 1 (3.54)

x

and for a finite natural number n,

 
d Mn ( )t

lim e ptx E X n

t 0 dtn = =∑ x
→ − ( ). (3.55)

x

From (3.55), we see that the moment generating function generates all the 

moments of X by differentiating M(t) defined in (3.54) and devaluing at t = 0. The 

first derivative will give the expected value, that is, E(X) = M′(0). Relation (3.55) 

leads us to the following generalization of this special case: 

 

∞

M E( )n n(0) = =( )X ∑ xn px . (3.56)

n=0
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Example 3.27

Let X be a random variable with n values 1,2,...,n and pX defined as:

 

⎧ 1
⎪ , 1x n= ,2,3,..., ,

p PX = =( )X x = ⎨ n  (3.57)
⎪ 0, otherwise.⎩

Later, we will see that (3.57) is referred to as the discrete uniform pmf. Then, the 
moment generating function of X is:

 

n

tk 1
M t( ) =∑e

n
k =1  
e et t+ +2 ...+ ent

= (3.58)
n

 
et

= ( )1 .+ +e et n...+ ( 1− )t  (3.59)
n

Note 3.23

The random variable defined in Example 3.25 is called the discrete uniform 
random variable defined between 1 and n.

Now, we want to rewrite (3.58) for easier use. Hence, we define the geometric 

progression. 

The sequence ar, ,ar 2 2... ...,arn na,ar, ,ar ,ar  is called a finite geometric 
progression with ratio r. Its first term is a and its nth term, denoted by an, is 

a = arn−1
n  as n approaches infinity, and the geometric progression takes the form 

a, ,ar ar 2 ,... ...,arn , . We leave it as exercises to show that the sums of geometric 

progressions, finite and infinite, denoted by Sn and S∞, respectively, are as follows:

 
n a r1− −

S a= =∑ r k 1
n

( )n

, 1r ≠ , (3.60)
1− r

k =1

and

 
∞

S a −
∞ = =∑ rn 1 a

, 1− < r <1. (3.61)
1− r

n=1

Thus, the sum 1+ +e et n...+ ( 1− )t in (3.57) is a finite geometric progression with ratio 
r e= t. Hence, from (3.59), we have:

 
⎛ ⎞ ⎛ − ⎞( ) et n1 e t

M t =⎜ ⎟ ⎜ ⎟ .
⎝ n ⎠ ⎝ 1− et  (3.62)

⎠
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We can now calculate the mean and variance of X. To do that, we need to use the 
sum and the sum of squares of the first n natural numbers. They are as follows:

 
n n( 1+ ) n n( 1+ +)(2 1n )

1 2+ +... ...+ n = and 1+ +22 2+ n = . (3.63)
2 6

Now from (3.58), using (3.63), we have:

 

e et t+ +2 2 ...+ nent

E X( ) = M ′(0) =
n

t=0  
1 2+ +...+ n n n( +1) ( 1n + )= = = . (3.64)

n 2n 2

 

t
2 e

E ( ) e et t+ +2 22 2 ...+ n n

X M= ′′(0) =
n

t=0

1+ +22 2...+ n n n( 1+ +)(2 1n )= =  
n 6n

( 1n n+ +)(2 1)= .
6

 

( 1n n+ +)(2 1) ⎛ n +1⎞
2

Var(X) = M ′′(0) − M ′[(0)]2 = − ⎜ ⎟
6 ⎝ 2 ⎠

 
−1

=
( )n2

. (3.65)
12

To encapsulate all the information about a random variable, (3.65) is expressed 
differently as follows.

Definition 3.17

Let X be a discrete random variable with pmf p Pn = =( )X n , where n is a non-

negative integer. Consider the random variable zX, which is a function of random 

variable X and z is a complex variable. Then, the probability generating function 

(or if there is no confusion, generating function) (pgf) of X, denoted by G z( ), is 

defined as:

 

∞

G z( ) = =E ( )zX n∑ z pn , z <1. (3.66)

n=0

From (3.66), it can be seen that for z = 1 and pn being a pmf, we have:

 

∞

G p(1) = =∑ n 1 (3.67)

n=0
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In case pn is not a pmf, (3.67) will not necessarily hold; it will be of the form referred 

to as the generating function, but not a probability generating function. Here is 

an example.

Example 3.28

Consider the sequence of 1s, {an n} = =1,1,... ...{ }1 , ∀ = 1,2, . The generating 
 function of this sequence is the infinite power series,

 
∞

G z( ) = =∑1.zn 1+ z + z2 +..., 
n=0

1
whose sum is . But this series is not a pgf since G(1) ≠ 1.

1− z
We now discuss some properties of pgf:

 1. The pmf of the random variable can be obtained from the nth derivative 
of its pgf with respect to z, evaluated at z = 0. That is,

 
G ( )n (0)

p Pn = =( )X n = . (3.68)
n!

 2. Obtaining the nth factorial moment of X, that is, E[ (X X − −1)...(X n +1)], 
is another property of pgf. This can be easily obtained by the nth  deriva-
tive of the pgf, evaluated at 1. Here is an illustration: Using the fact that 
X ! (= −X X 1)...2 ⋅1, we can complete the expression X( 1X X− −)...( n +1) 
and divide by terms introduced as follows:

 

⎡ X ! ⎤
E X[ (X − −1)...(X n +1)] = E ⎢ ⎥⎣ ( )X n− ! ⎦

 
dz ∑

∞
d Gn ( )z zn k−

= =n n p! n ( )n k !
z=1 n k

−
= z=1

∞
n p!=∑ n

. (3.69)
( )n k !

n k
−

=

As a consequence of (3.69), when n = 1, we obtain the expected value of 
X as the first factorial moment. That is, 

 E(X G) = ′(1). (3.70)

Also, 

 

Var( )x = −E ( )X 2 2(E(X))

= −E X[ (X 1)]+ E( )X −[E( )X ]2  

= G G′′(1) + ′(1) − [G′(1)]2. (3.71)
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 3. Yet, another property of the pgf is the generating function of sum of n 
independent random variables, as well as the product. We prove the 
 following two theorems.

Theorem 3.2

The pgf of the sum of n independent random variables is the product of the pgf 

of each. 

Proof:
Let X1 2, ,X X…, n be n independent random variables with corresponding pgfs, 

respectively, as 

 G 1 2
1 2( )z = =E z( )X X, G ( )z E z( ),...,Gn(z) E z( Xn ). =

Also, let X = +X X1 2 +....+ Xn. Then, 

 

E ( )z EX X= =(z 1 2+ +X ...+Xn ) E (zX1zX2 z

= E z( )X X1 1E z( ) E z( Xn )  

= G z1 2( )G ( )z  Gn(Z).

Xn )

Theorem 3.3

The product of two pgfs is another generating function.

Proof:
Let G(z) and H(z) be two generating functions, respectively, defined as 

 G z ∑ ∑
∞ ∞

( ) = =a i
iZ and H( )z bjz

j with z 1. 

i=0 0j=

<

Then, their product is 

 
⎛ ∞ ⎞ ⎛ ∞ ⎞ ∞ ∞

G z( ) ⋅ =H( )z ⎜∑ ∑a i
iz ⎟ ⎜ b z j ⎟ ∑ a i j

j = ∑ i jb z + . (3.72)
⎝ i 0 0

⎜ ⎟
= ⎠ ⎝ j= ⎠ i=0 j=0

Now, let k i j= + . Then, the right-hand side of (3.72) can be rewritten as a single 

power series as follows:

 

∞

G z( ) ⋅ =H( )z ∑ckzk , (3.73)

k=0
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where

 = =∑
k

ck ia bk−i , 1k ,2,..., (3.74)

i=0

Definition 3.18

From (3.74), the sequence { }ck  is called the convolution of the two sequences

{ }ai  and {bj}. In other words, let X1 and X2 be two nonnegative integer-valued 

independent random variables with pmfs p PX1
= =( )X1 i , 0i = ,1,2,... and 

q PX2
= =( )X2 j , 0j = ,1,2,.... Then, X = +X X1 2 is another nonnegative integer-

valued random variable with pmf defined by:

 

k

r Pk i= +( )X1 2X = k = ∑ ∑p qj = pi kq −i , 0k = ,1,2,... (3.75)

i j+ =k i=0

Hence, we write {r pk i}={ }*{ }qj  and say { }rk  is the convolution of {pi} and {qj}.

Note 3.24

Essentially, the convolution of two functions, say f and g, is a mathematical 

 operation to produce a new function.

3.4  BASIC STANDARD DISCRETE 
PROBABILITY MASS FUNCTIONS

We now present several basic standard pmfs that are widely used. They are as follows: 

 1. Discrete uniform, 

 2. Bernoulli, 

 3. Binomial, 

 4. Geometric, 

 5. Negative binomial, 

 6. Hypergeometric, 

 7. Poisson.

3.4.1  DISCRETE UNIFORM PMF

The simplest random variable that has both discrete and continuous distribution 

functions is uniform. We saw an example of the discrete case earlier, (3.54). We now 

discuss this pmf in detail.
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Definition 3.19 Discrete Uniform pmf

Let X be a random variable. We divide the [ ,a b] into k subintervals, each of size 
b a−

, where k is a natural number such that a ≤ ≤k b. That is, the endpoints of the 
k

subintervals are a, ,a k+ +a 2k,...,b. Then, the probability, pX, of X, is defined as: 

 

⎧ k
⎪ , ,a k≤ ≤ b x = a,a + k,a + 2k b,..., ,

p PX = =( )X x = ⎨ b a− + k  (3.76)
⎪ 0, otherwise.⎩

It is called the discrete uniform pmf. X is referred to as the uniformly distributed 
random variable.

Note 3.25

We can clearly see that (3.76) is positive. It can easily be shown (left as an  exercise) 

∑
b

k
that = 1. Thus, (3.76) is a pmf.

b a k
k a

− +
=

Let us consider a special case of (3.76) when a = 1, k =1, and b = n. Then, (3.76) 

becomes:

 

⎧ 1
⎪ , 1x n= ,2,3,..., ,

p PX = =( )X x = ⎨ n  (3.77)
⎪ 0, otherwise.⎩

n
1 1

It is clear that since > 0, for each x = 1,2,3,...,n, and ∑ = 1, (3.77) is a pmf. 
n n

k=1

For this special case, we leave it as an exercise to show that the mean, variance, 

and moment generating function of X, respectively, are as follows:

 
( )n +1

E ( )X = , (3.78)
2

 
−

=
( )n2 1

Var ( )X , (3.79)
12

 
⎛( ) et n⎞ ⎛ 1− e t ⎞

M t = ⎜ ⎟ ⎜ .
⎝ n ⎠ ⎝ 1− et ⎟  (3.80)

⎠

Example 3.29

Let the random variable X represent the outcome of the experiment of rolling a fair 
die. Then, X is a discrete uniform random variable. Figure 3.3 shows the pmf of X.
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Example 3.30

Let X be a finite random variable representing the outcomes of rolling a fair die. 
1

That is, the values of X are 1,2,3,4,5,6. Hence, p PX = =( )x i = , 1i = ,2,...,6. Thus, 
6from (3.77) through (3.78), we have:

 
( )6 1+ 7 (36 −1) 35 ⎛ e et t⎞ ⎛ − ⎞( ) = = =, ( ) = =, and ( ) 1 6

E X Var X M t ⎜ ⎟ ⎜ t ⎟ . 
2 2 12 12 ⎝ 6 ⎠ ⎝ 1− e ⎠

The cmf of discrete uniform random variable X, denoted by F xX ( ), is

 

⎧ x a− + k
⎪ , ,a k< < b x = x , x ,..., x

F xX ( ) = ≤P(X x) = ⎨
1 2

b a− + k
n  (3.81)

⎪ 0, otherwise.⎩

3.4.2  BERNOULLI PMF

Definition 3.20 Bernoulli pmf

If a trial has exactly two possible outcomes, it is called a Bernoulli trial. The pos-

sible outcomes of a Bernoulli trial are referred to as success and failure. The random 

variable representing such a trial is called a Bernoulli random variable. Because 

the random variable is discrete, its pmf is referred to as the Bernoulli pmf.

FIGURE 3.3 pmf of uniform random variable
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According to Definition 3.9, the sample space Ω for a Bernoulli trial has two 

sample points as Ω = { }s f, . If we denote the random variable on this sample space 

with 1 and 0, corresponding to “s” and “f”, respectively, then Ω = { }0,1  and 

 
⎧⎪ S → 1,

X : ⎨  (3.82)
f →⎩⎪ 0.

For a Bernoulli random variable X, defining the probability of “1” by p, 0 ≤ ≤p , 

then the Bernoulli pmf will be:

1

 
⎧⎪ p x, 1= ,

px = ⎨  (3.83)
1 ,− =p x 0.⎩⎪

Letting q p= −1 , formula (3.83) can be rewritten as:

 
⎧⎪ == =( ) p qx x1− , 0x ,1,

p Px X x = ⎨  (3.84)
0, otherwise.⎩⎪

To see that (3.82) and (3.83) are the same, we can simply substitute 0 and 1 for x in 

(3.83), and we obtain (3.83). Formula (3.83) is referred to as the Bernoulli pmf since

 a. p qx x1− > 0, for both x = 0 and x = 1, 

∑
1

 b. p qx x1− = +p q = 1.

x=0

From (3.84), the cmf for Bernoulli random variable is as follows:

 

⎧ 0, x < 0,
⎪

cmf ( )X = ⎨ q x, 0 ≤ <1,  (3.85)
⎪ 1, x ≥1.⎩

From (3.83) and (3.84), to find the mean, variance, and moment generating function 

of X, we go through Table (3.23) as follows.

Thus, 

 E ( )X p= . (3.86)

 Var ( )X = pq. (3.87)

 M t( ) = +q pet . (3.88)

 G z( ) = +q pz. (3.89)
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Example 3.31

Suppose we toss a biased coin such that the probability of a head shows up is 
p = 2/3 and a tail shows up is q = 1/3, p q+ = 2/3+1/3 = 1. Let X be a random vari-
able representing such a random experiment. Letting 0 and 1 representing tail and 
head for showing up a tail and a head, respectively, X has values as 0 and 1. Thus, 

( ) 1 2
P X = =0  and P X( )= =1 . In other words, 

3 3

 

⎧ 1
⎪ , 0x = ,
⎪= =( ) 3

p Px X x = ⎨  
⎪ 2

, 1x = ,
⎪⎩ 3

or

 
x x1−

p Px = =( ) ⎛ 2 ⎞ ⎛ 1⎞X x = ⎜ ⎟ ⎜ ⎟ , 0x = ,1. ⎝ 3 ⎠ ⎝ 3⎠

We now calculate the mean, variance, moment generating function, and generat-
ing function using (3.85)–(3.88) as follows (Table 3.24).

TABLE 3.24
Example 3.31

X 0 1 Sum

X ( )p x 1/3 2/3 1

X ( )xp x 0 2/3 2/3 E X( ) = 2/3 = p

X 2 0 1

2x X ( )p x
txe X ( )p x

0
te 3

2/3
t2 3e

2/3
te

2
Var X( ) = 2/3 − (2/3) = 2/9 = pq

t tM t( ) = 1/3 + e2 3 = q + pe

xz X ( )p x z /3 z2 /3 z G z( ) = 1/3 + z2 /3 = q + pz

TABLE 3.23
Moments of Bernoulli pmf

X 1 0 Sum

X ( )P x p q 1

X ( )xP x p 0 p

X 2 1 0

2
X ( )x P x p 0 p

txe X ( )p x tpe q t+q pe
xz X ( )p x zp q +q pz
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If a Bernoulli trial is repeated, independently, n times with the same prob-
abilities of success and failure in each trial, then the sample space will contain 2n 
sample points. 

Example 3.32

If we toss a coin, the outcomes of each trial will be heads (H) or tails (T). Hence, 
for one toss, we will have Ω = { }H T,  that contains 21 elements. For 2 coin tosses, 
we will have Ω = { }(H H, ,) ( )H ,T ,( )T , ,H (T ,T )  that contains 4 = 22 elements. That 
is, the first and the second tosses turn out heads, the first a head and second tail, 
the first tail and second head, and both tails, respectively; that is, each appears as 
an ordered pair elements of Ω.

If we let the head and tail appear on the coin after each toss with probabilities 
p and q, respectively, then the probabilities of elements of the sample space Ω are 
listed in Table (3.25).

Similarly, for three tosses of the coin, the sample space will have 8 2= 3  elements as:

})Ω = {(H , H , H ),( )H , H ,T ,( )H , ,T H ,( )T H, , H ,(H , ,T T ),(T H, ,T ),(T , ,T H ),(T , ,T T

Then, probabilities of elements of Ω are triplets as listed in Table 3.26 (the paren-
theses are dropped for the sake of ease).

We leave it as an exercise to show that the sum of the probabilities in Table 3.26 
is 1; that is, p p3 2+ +3 3q pq2 + q3 = 1.

Now let us suppose that the coin is biased with the probability of a head to occur 
as 5/8, and it is flipped three times independently; then, the probability of a head 

⎛ 5⎞ ⎛ 3⎞
2

45
appearing only on the second trial would be P T( )HT = =pq2 ⎜ ⎟ ⎜ ⎟ = ≈ 36%. ⎝ 8 ⎠ ⎝ 8 ⎠ 125

⎛ 5⎞
3

Similarly, the probability of three heads in a row is ⎜ ⎟ ≈ 24%, while that of hav-⎝ 8 ⎠

⎛ 3⎞
3

ing three tails in a row is ⎜ ⎟ ≈ 5%.⎝ 8 ⎠

TABLE 3.26
Example 3.32

1 2 3 4 5 6 7 8 Sum

HHH HHT HTH THH HTT THT TTH TTT 1
3p 2p q 2p q 2p q 2pq 2pq 2pq 3q

TABLE 3.25
Example 3.32

1 2 3 4 Sum

(H, H)

p2

(H, T)

pq

(T, H)

pq

(T, T)

q2

2( +p q) = 1
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Example 3.33

In this example, we will simulate a Bernoulli counting process to count the number 
of success in N trials, say n, n = 0,1,2,...N . For this purpose, we choose N = 50 
and the probability of success in each trial as 0.6. Figure 3.4 shows the number of 
success for select numbers of trials. 

To obtain Figure 3.4, we have used MATLAB® version 2017b. Table 3.27 
describes the graph.

FIGURE 3.4 Bernoulli counting process simulation.

TABLE 3.27
Example 3.33

Trial No. No. of Successes

1 1

5 4

10 8

15 11

20 14

25 17

30 18

35 21

40 24

45 37

50 31
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3.4.3  BINOMIAL PMF

Instead of looking at the order of occurrences of outcomes in repeated independent 

trials, we might ask about the number of successes or failures in n independent trials. 

The variable representing this concept is referred to as the counting variable. For 

starters, we define the following random variable.

Definition 3.21 (Binomial Random Variable)

Let random variable X represent the number of successes in n repeated independent 

Bernoulli trials with the probability of success p and of failure q p= −1 . This is 

termed a binomial random variable.

The pmf of a binomial random variable X for j successes is denoted by  j ( )j n; , p .

Theorem 3.4 Binomial pmf

Let X be a binomial random variable. Then, binomial pmf is given by:

 
⎛ ⎞

P X( )= ≡j  j ( j; ,n p) n
= ⎜ ⎟ p qj n− j , j = =0,1,2,...,n, q 1− p. (3.90)

⎝ j ⎠

Proof:
It was noted that if a Bernoulli trial is repeated independently n times, then the 

sample space will contain 2n sample points. Repeating the independent trials yields 

a row of success and failures, as we saw in the two tables above for tossing a coin 

repeatedly. We also illustrated that the probability of a sequence in a row is the prod-

uct of outcomes in that row. Since we are counting only successes in the n number of 

repeated trials, the order of occurrence of outcomes does not matter. Thus, we have 

⎛ n ⎞
to choose j successes out of the n trials, that is, ⎜ ⎟ , 0j n= ,1,2,..., . Hence, for 

⎝ j ⎠
j successes, it remains n − j failures, and using the product of probabilities, p j and 

qn j− , respectively, we have (3.90). It remain to show that (3.90) constitutes a discrete 

⎛ n ⎞
distribution function. For each term of ⎜ ⎟ , p j and qn j−  are nonnegative and, 

⎝ j ⎠
thus, the right-hand side of (3.90) is nonnegative.

Finally, we have to show that the sum is 1 for (3.90) to be a pmf.

A well-known algebraic expression with two terms, say x and y, can be raised to 

power k, k n= 0,1,2,..., , where n is a positive integer, inductively, and we obtain:

 
⎛( ) ∑

n
n n ⎞

x y+ = x yk n−k
⎜ ⎟ , n is a positive integer (3.91)

k
⎝ k

=0
⎠
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 3n n− −1 2n n( )−1 − −= n n n
x n 2 ( )1 2(n )+ +x y x y + x yn−3 + +... y . 

2! 3!
n

The latter is termed the binomial theorem or binomial expansion.

Note 3.26

Formula (3.90) was somewhat generalized for y = 1 and n as a nonnegative real 

number by Arflken (1985). Later, Graham et al. (1994) generalized it further for n 

as a nonnegative real number, say ν , as follows:

 

∞
ν ⎛( ) ν

x y+ =∑ ⎞
x yk kν−

⎜ ,
k ⎟  (3.92)

k=0
⎝ ⎠

assuming the series converges for nonnegative integer ν  or x y/ <
By (3.91), 

1.

 ∑
n ⎛ n ⎞

p qj n− j p q
n

⎜ 1.
j ⎟ = +( ) =  (3.93)

j=0
⎝ ⎠

In summary, the binomial pmf  j ( )j n; , p  describes the behavior of a random 

variable (or count variable) X assuming the following:

 i. The number of trials or observations, n, is fixed.

 ii. Each trial is independent of others.

 iii. Each trial has two outcomes.

 iv. The probability of success in each trial is p.

From (3.90), the cmf for binomial random variable X is defined as:

 
⎛( ) ∑

[ ]j
n ⎞

P X ≤ =j p qk n−k
⎜ ,

k ⎟  (3.94)

k=0
⎝ ⎠

where q p= −1  and [ ]j  is the greatest integer less than or equal to j.

Note 3.27

Historically, a special case of the binomial theorem was known by the Greek 

mathematician Euclid, about fourth century B.C. The coefficients of the bino-

mial  theorem form a combination of “n choose k” that is known as Pascal’s 
triangle. It is related to Hindu lyricis Pingala, Ramakrishna Rao (2007), about 

200 B.C.
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It has also been evidenced that the theorem for n = 3 was known by Indians 

in the sixth century. The binomial theorem as we know it today is in the work of 

Persian mathematician Al-Kharaji. The coefficients of the binomial theorem is a 

⎛ n ⎞
combination of “n choose k”, that is, ⎜ ⎟ , and in the recent texts is known as 

⎝ k ⎠
Pascal’s triangle. It was included in Al-Kharaji’s work describing the binomial 

theorem. In fact, Al-Kharaji proved both the binomial theorem and the so-called 

Pascal triangle. Additionally, the well-known Persian mathematician, astronomer, 

and poet Omar Khayyam was familiar with the binomial theorem and its expan-

sion with some higher order of n (see Figure 3.5).

Example 3.34

Suppose the grade point average (GPA) of 20% of students in a certain college is 
more than 3.5 on 4-point scale. Ten students are randomly chosen from all the 
students at this college. 

Let the random variable X represent the total number of students out of 10, 
whose GPA is more than 3.5. Then, X is a binomial random variable, and graph of 
its pmf is shown in Figure 3.6.

Example 3.35

Let us consider a probability and statistics class with 30 students enrolled. A  student 
registered for such a course has a 70% chance of passing the final examination. 
The professor is interested to know the chance of 20 students passing his final 
examination. In this case, using a binomial distribution, the random variable rep-
resents the number of students (out of 30) who pass the examination. To find the 
desired probability, we use (3.90) with n = 30, j = 20, and p = 0.7. Thus, we have:

 
⎛ ⎞( ) 30

 20 20;30,0.7 = ⎜ ⎟ (0.7)20 (0.3)10 = ≈0.1416 14%. 
⎝ 20 ⎠

Example 3.36

Let us consider a large family of five children, which includes girls and boys. We 
want to find the pmf of boys and girls in the family, assuming equal probabilities 
for both.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

FIGURE 3.5 Pascal–Khayyam triangle.
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Answer

Let X represent the number of girls in the family. We consider each of the children 
a trial with a probability of success (a girl) p and failure (a boy) 1− p. Assume that 
successive births are independent with equal probability for girls and boys as 1/2. 
Thus, from (3.90), we have:

 

( ) ⎛ 5 ⎞ ⎛ 1 ⎞
x x
⎛ ⎞

−

exactly girls = =( ) 1
5

P x P X x = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ x ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠

 
⎛ 5 ⎞ ⎛ 1 ⎞

5

= ⎜ ⎟ ⎜ ⎟ .
⎝ x ⎠ ⎝ 2 ⎠

Choosing different value for x, we will have Table 3.28.

FIGURE 3.6 pmf of binomial random variable.

TABLE 3.28
Example 3.36

X 0 1 2 3 4 5

pmf, X ( )p x 1/32 5/32 10/32 10/32 5/32 1/32
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Example 3.37

We roll two fair dice simultaneously and independently six times. Our interest is 
calculating the number of times “the sum of point that appears on both dice is 7 
or 12 occurs j times, j = 0,1,2,3,4,5,6”.

To calculate the inquired probability, we note that the sample space for each 
trial contains 36 ordered pairs as listed in the following set, the first component of 
the ordered pair from the first die and the second component of the ordered pair 
from the second die:

 

⎧ (1,1) (1,2) ( )1,3 (1,4) ( )1,5 (1,6) ⎫
⎪ ⎪
⎪ (2,1) (2,2) ( )2,3 (2,4) ( )2,5 (2,6) ⎪
⎪ ⎪
⎪ (3,1) (3,2) ( )3,3 (3,4) ( )3,5 (3,6) ⎪Ω = ⎨ ⎬. 
⎪ (4,1) (4,2) ( )4,3 (4,4) ( )4,5 (4,6) ⎪
⎪ (5,1) (5,2) ( )5,3 (5,4) ( )5,5 (5,6) ⎪
⎪ ⎪
⎪ (6,1) (6,2) ( )6,3 (6,4) ( )6,5 (6,6) ⎪
⎩ ⎭

The subsample space, say Ω1, of elements from the sample space Ω that have sum 
equal to 7 or 12 has 7 elements as follows:

 

⎧ (1,6) ⎫
⎪ ⎪
⎪ (2,5) ⎪
⎪⎪ (3,4) ⎪⎪Ω = ⎨ ⎬. 
⎪ (4,3) ⎪
⎪ (5,2) ⎪
⎪ ⎪
⎩⎪ (6,1) (6,6) ⎪⎭

Thus, the probability of getting a sum of 7 or 12 (i.e., a success) in each trial is 
7

p = . Now, let us denote the random variable X representing the number of 
36

times “the sum of point that appears on both dice is 7 or 12 occurs j times”. Thus, 
X is a binomial random variable taking its values as j. In this case, j = 6.

 
7 ⎛ ⎞⎛ ⎞ 6 ⎛ 7 ⎞

j ⎛ 29 ⎞
6− j

 j ⎜ j;6, ⎟ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ , j = 0,1,2,3,4,5,6. ⎝ 36 ⎠ j ⎝ 36 ⎠ ⎝ 36 ⎠⎝ ⎠

For instance, for j = 2, that is, appearance of 7 or 12 in 2 rolls of the dice, we will 
have:

 ⎛ 7 ⎞ ⎛ 6 ⎞ ⎛ 7 ⎞
2 ⎛ 29 ⎞ 4

 2 ⎜ 2;6, ⎟ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ≈ 24%. ⎝ 36 ⎠ ⎝ 2 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠

Now, what is the mean of the number of successes in n independent repetitions of 
a Bernoulli trial with the probability of a success as p? 

The following theorem will aid in calculations involving moments and moment 
generating functions.
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Theorem 3.5

For a binomial random variable X with  j ( )j n; , p , n = 0,1,..., letting q p= −1 , we 

have the following properties:

 E ( )X n= p. (3.95)

 Var ( )X = −np( )1 .p = npq  (3.96)

 ( ) ( ) n n
M t = +⎡ pet 1 .−⎣ p ⎤ = +⎦ ( )pet q  (3.97)

Proof:
We first prove the moment generating function, from which we derive the first and 

second moments and, consequently, the variance.

 

1 .

( ) ( ) ∑ ∑
n n

M t E etX etj
⎛ n ⎞

= = pj = etj
⎜ p qj n− j

j ⎟
j=0 0j= ⎝ ⎠

 

∑
n ⎛ n ⎞

=
j n j− n

⎜ j ⎟ ( )pet ( )1− =p ⎡ pe pt + ( )− ⎤⎣ ⎦
j=0

⎝ ⎠

 

∑
n ⎛ n ⎞

E X( ) = j ⎜ ⎟ p qj n− j = M ′( )0 1= +n ( )p − p p = np.
⎝ j

j=0
⎠

⎛ n
E X( )

n

2 2∑ ⎞
= j ⎜ ⎟ p qj n− j = M ′′( )0

j
j=0

⎝ ⎠

= −
n−

n( )n 1 1⎡ + −⎣ pe ( )p ⎤
2 2t

⎦ ( ) + +
n 1

pet tn ⎡ 1 ⎤⎣ pe ( )− p ⎦ ( )pet  
t=0

= −n n( )1 .p2 + np

Var ( )X = −n( )n 1 p2 + np − ( )np
2 = np(1− p).

−

Note 3.28

The proof of the expected value of the binomial random variable is as follows:

From (3.90), for n = 0,1,..., we have:

 

∑
n

E X( ) = −j ( )n j −
j p ( )1 p

n j

j=0

 

( ) ( )= ∑
n ( )n −1 !

np j p pj−1 ( )1− n j− −1 1−

j 0
( )n j− j!

=
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1

( )−
= ∑

n
n 1 !

np p pj−1 ( )1− ( )n j− −1 1( )−

n j1 1 ! j 1 !
j=1 ⎣⎡( )− − ( )− ⎤⎦ ( )−

⎛ −
= ∑

n
n 1 ⎞

np p pj 1 1
n j1 1

⎜ j 1 ⎟
− ( ) ( )− ( )− − −

−
j=1 ⎝ ⎠

⎛
= ∑

l
l ⎞

np p pk ( )1 ,− =1−k

⎜ l n
k ⎟

k=0
⎝ ⎠

−

= ( ) l
np ⎡⎣ p + −1 p ⎤⎦

= np.

− ⎛ −= ∑
n 1

n 1 ⎞
np p pk ( )1 ,− =( )n k− −1

⎜ k j −1
k ⎟

k=0
⎝ ⎠

Example 3.38

We return to Example 3.28 and consider tossing a fair coin three times. That is, the 
probability of each outcome in each independent trial is 1/2. The sample space 
has 2 83 =  elements. Suppose we are interested to know the probabilities of the 
number of heads to appear in the end of tossing process, that is, the pmf of number 
of heads.

Answer

We revise Table 3.29 for this example and probabilities inquired.
Let X denote a random variable representing the number of heads in the three 

tosses of a fair coin. Hence, we summarize parts of the information in Tables 3.29a 
and 3.29b.

We now want to use binomial pmf, relation (3.90), to answer the question.

 
⎛ ⎞

P X( 3= ≡0) ( ;3,0.5) = ⎜ ⎟ ( )0.5
0 3( )0.5

−0 1
 0 0 = = 0.125.

⎝ 0 ⎠ 8

TABLE 3.29A
Example 3.38

No. of Elements of ΩΩ 1 2 3 4 5 6 7 8

Outcomes HHH HHT HTH HTT THH THT TTH TTT

pmf with ( ) =P H P

1
pmf with ( ) =P H

2

3p

1

8

2p q

1

8

2p q

1

8

2pq

1

8

2p q

1

8

2pq

1

8

2pq

1

8

3q

1

8

Number of heads 3 2 2 1 2 1 1 0
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⎛ ⎞

P X( 3= ≡1) ( ;3,0.5) = ⎜ ⎟ ( )0.5
1 3( )0.5

−1 3
 1 1 = = 0.375.

⎝ 1 ⎠ 8

 
⎛ ⎞

P X( 3= ≡2) ( ;3,0.5) = ⎜ ⎟ ( )0.5
2 3( )0.5

−2 3
 2 2 = = 0.375.

⎝ 2 ⎠ 8

 
⎛ ⎞

P X( 3= ≡3) ( ;3,0.5) = ⎜ ⎟ ( )0.5
3 3( )0.5

−3 1
 3 3 = = 0.125.

⎝ 3 ⎠ 8

These are the same as the last row in Table 3.29b. 
As before, the mean and variance are given in Table 3.29c. 

 
E ( )X n= =1.5 p = ( )3 (0.5).

E X( )2 = 3.
 

 
Var ( )X = −3 ( )1.5

2 = 0.75
 

= −np( )1 p = 3 ⋅0.5 ⋅0.5 = 0.75.

TABLE 3.29B
Example 3.38

X 0 1 2 3 Sum

No. of heads outcomes 1 3 3 1 8

pmf of No. of heads
1

8

3

8

3

8

1

8
1

TABLE 3.29C
Example 3.38

X 0 1 2 3

pX
1

8

3

8

3

8

1

8
1

xpx 0
3

8

6

8

3

8
1.5

X2 0 1 4 9

2x px 0
3

8

12

8

9

8
3

Sum
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Example 3.39

Suppose it is known that 19% of individuals with Crohn’s disease (a chronic inflam-
matory disease of the large intestine) who are using a certain medicine experience 
side effects. To analyze this case, a sample of 100 Crohn’s disease patients using 
this drug are studied. Let X be a random variable representing the number of 
patients who will experience some known side effects. If we are interested in a 
specific number j of X, then the pmf of X will be  j ( )j;100,0.19 . For instance, for 
j = 10, we will have:

 
⎛ ⎞( ) 100

10;100,0.19 = ⎜ ⎟ (0.19)10 (0.81)100− 10
10 = ≈0.0062 0.62%.

⎝ 10 ⎠

Of course, the mean, variance, moment generating function, and generating 
 function of X, from (3.102) to (3.105), are, respectively, as:

 E ( )X n= =p 100( )0.19 = 19. 

 Var ( )X = −np( )1 p = 100( )0.19 (0.81) = 15.39. 

 ( ) = +⎡ ( )− ⎤
n
= +⎡ ⎤

100
M t ⎣ pet 1 p ⎦ ⎣0.19et 0.81⎦ . 

G z( ) = +0.81 0.19z.  

Example 3.40

Suppose we toss a biased coin as in the previous example. However, in this exam-
ple, we let the probability of a head to show up as p = 0.4 and of a tail to show up 
as 1− =p 0.6. We repeat tossing, where j is the number of successes in 10 trials. 
In this case, pmf will be

 ;
−B j j j

j j( )10,0.4 = =( )10 ( )0.40 (0.6)10
, j 0,1,2,...10.

Table 3.30 and Figure 3.7 illustrate this example.
For this example, the mean, variance, moment generating function, generating 

function, and cmf are, respectively, as follows:

 E ( )X n= =p 10( )0.4 = 4, 

 Var ( )X = −np( )1 p = 10( )0.4 (0.6) = 2.4, 

 
n

M t( ) = +⎡ ( )− ⎤ = +⎡ ⎤
10

⎣ pet 1 p ⎦ ⎣0.4et 0.6⎦ , 

 G z( ) = +0.6 0.4z, 
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10 ⎛

=∑ 10 ⎞
⎜ ⎟ ( )0.40 (0.6)10−cmf j j

. 
=0 ⎝ j

j ⎠

In other words, the probability of having no girl among 5 children is 1/32, the same 
as having all 5 to be girls, etc. 

TABLE 3.30
Binomial pmf of Example 3.40

j

n 0 1 2 3 4 5 6 7 8 9 10

1 0.6000 0.4000 0 0 0 0 0 0 0 0 0

2 0.3600 0.4800 0.1600 0 0 0 0 0 0 0 0

3 0.2160 0.4320 0.2880 0.0640 0 0 0 0 0 0 0

4 0.1296 0.3456 0.3456 0.1536 0.0256 0 0 0 0 0

5 0.0778 0.2592 0.3456 0.2304 0.0768 0.0102 0 0 0 0 0

6 0.0467 0.1866 0.3110 0.2765 0.1382 0.0369 0.0041 0 0 0 0

7 0.0280 0.1306 0.2613 0.2903 0.1935 0.0774 0.0172 0.0016 0 0 0

8 0.0168 0.0896 0.2090 0.2787 0.2322 0.1239 0.0413 0.0079 0.0007 0 0

9 0.0101 0.0605 0.1612 0.2508 0.2508 0.1672 0.0743 0.0212 0.0035 0.0003 0

10 0.0060 0.0403 0.1209 0.2150 0.2508 0.2007 0.1115 0.0425 0.0106 0.0016 0.0001

FIGURE 3.7 Graph of a binomial pmf, Example 3.40.
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3.4.4  GEOMETRIC PMF

Definition 3.22 Geometric Random Variable

Consider independently repeating a Bernoulli trial with probability p of success in 

each trial. Let X be a discrete random variable that represents the first success after a 

number of failures or the number of failures before occurrence of the first success. In 

this case, X is called a geometric random variable with either one of the two cases:

Case 1. The first success is included in the number of trials; that is, the x 

number of trials consists of x −1 failure followed by a success and pmf 

p xx , 1= ,2,..., given by:

 
⎧⎪ ( ) −

p p1 ,− =x 1
x 1,2,...,

p Px = =( )X x = ⎨  (3.98)
0 otherwise.⎩⎪ ,

Case 2. The number of trials is up to and not including the first success and pmf 

px, given by here X means the number of failures before the fist success:

 
⎧⎪ p p( )1 ,− =x

( ) x 0,1,2,...,
p Px = =X x = ⎨  (3.99)

0, otherwise.⎩⎪

Each of the relations (3.98) and (3.99) is referred to as the geometric pmf of X. 

The pmf defined in (3.98) describes the number of trials up to and not including 

the first success.

Relation (3.98) is a pmf. For starters, it’s obviously nonnegative. Applying 

 geometric series sum, we have:

 ∑
∞ ∞ ∞

1 1
x−

p p= −∑ ∑( )p
1 = −p( )p

x 1 p
x = p = =

1 1 p
x x x

− −( ) 1. 
p

=1 =1 0=

Similarly, from (3.99), we have:

 ∑
∞

x 1 p
p px = −1 p p 1.

1 1 p p
x 0 0

∑
∞

( ) = = =
x

− −
= =

( )  

Example 3.41 Geometric Distribution

Suppose 20% of the students in a certain college have a GPA more than 3.5. You 
select students randomly until you meet the first student with at least a GPA of 
3.5. Let the random variable X represent the total number of students you select 
until you find the first student with GPA 3.5 or higher. Then, the random variable 
X follows a geometric distribution with pmf as in Figure 3.8.
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The cmfs for the geometric random variable are:

 ∑
n

px = −∑
n

( ) −
p 1 1p

x 1 = − ( )1− p
n

, n = 1,2,... (3.100)
x=1 x=1

and

 ∑
n

= −∑
n

( ) = − ( )− +
p p 1 1p

x
1 p

n 1

x , n = 0,1,2,... (3.101)
x= =0 0x

Relation (3.100) is because:

 

∑
n

= −∑
n

( ) −
px p 1 p

x 1

x=1 x=1

 

= −∑
n−1

p p( )1
x

x=0

Now, using the sum of a finite geometric progression with ratio r ≠ 1, we have: 

 

n−1

p p∑ ( )( ) 1 1− − p
n

1− =x
p

1 1− −
=0

( )p
x  (3.102)

= −1 1( )− =p n
n

, 1,2,...

We leave the proof of (3.102) as an exercise.

FIGURE 3.8 The geometric pmf, Example 3.41.
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Example 3.42

How many times should a fair die be rolled for until the number 3 appears for the 
first time?

Answer

We denote the event of “the number of other numbers until the number 3 to 
appear for the first time by a random variable X”. The question is finding the 
 number of failures before the first success occurs.

Note 3.29

The number on the die is not of any importance.

Now, the die being fair, the appearance of any of the six numbers has the same 
probability, 1/6. Thus, X has a geometric pmf, and from (3.100), we have the 
following:

 ⎛= =( ) 1 ⎞ ⎛ 5⎞
n

p Pn X n = ⎜ ⎟ ⎜ ⎟ , 0n = ,1,2,...  ⎝ 6 ⎠ ⎝ 6 ⎠ .

For each of the numbers 1 through 6, the probability of obtaining that number for 
the first time after n rolls is:

 ⎛= =( ) 1 ⎞ ⎛ 5⎞
0

⎛ 1 ⎞p P0 X 0 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ≈17%. ⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 6 ⎠

 ⎛= =( ) 1 ⎞ ⎛ 5⎞
1

⎛ 5 ⎞p P1 X 1 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ≈14%. ⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 36 ⎠

 ⎛= =( ) 1 ⎞ ⎛ 5⎞
2

⎛ 25 ⎞p P2 X 2 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ≈12%. ⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 216 ⎠

 ⎛= =( ) 1⎞ ⎛ 5⎞ 3 ⎛ 125 ⎞
p P3 X 3 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ≈10%. ⎝ 6⎠ ⎝ 6⎠ ⎝ 1,296⎠

 
4 ⎛ ⎞

p P4 = =( ) ⎛ 1 ⎞ ⎛ 5⎞ 625
X 4 = ⎜ ⎟ ⎜ ⎟ =⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ≈ 8%. 

6 6 ⎝ 7,776 ⎠

 
5 ⎛ ⎞

p P5 = =( ) ⎛ 1 ⎞ ⎛ 5⎞ 3125
X 5 = ⎜ ⎟ ⎜ ⎟ =⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ≈ 7%. 

6 6 ⎝ 46,656 ⎠

 
6 ⎛ ⎞

p P6 = =( ) ⎛ 1 ⎞ ⎛ 5⎞ 15625
X 6 = ⎜ ⎟ ⎜ ⎟ =⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ≈ 6%. 

6 6 ⎝ 279,936 ⎠

 ⎛= =( ) 1 ⎞ ⎛ 5⎞
7 ⎛ 78125 ⎞

p P7 X 7 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ≈ 5%. ⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 1,679,616 ⎠
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⎛ 5⎞
n

As n approaches infinity, ⎜ ⎟  approaches 0, and hence, p =⎝ 6 ⎠ ∞ 0. Of course,

 
∞ ∞ ⎛

∑⎛ ∑
n ⎞

1 ⎞ ⎛ 5⎞
n

⎛ 1 ⎞ ⎛ 5⎞ ⎛ 1 ⎞ ⎜ 1 ⎟
⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ =⎜  

6 ⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 6 ⎠ 5 ⎟ 1.⎝ ⎠
n n=0 0= ⎜ 1− ⎟⎝ 6 ⎠

Example 3.43

Consider a biased coin with probabilities of a head and a tail as 3/4 and 1/4, 
respectively. What is the probability of a head to appear after five tosses of this 
coin for the first time?

Answer

Let the random variable X denote the event “the number of tails until a ‘head’ 
appears for the first time”. Then,

 ⎛= =( ) 3 ⎞ ⎛ 1 ⎞
n

p Pn X n = ⎜ ⎟ ⎜ ⎟ , 0n = ,1,2,...  ⎝ 4 ⎠ ⎝ 4 ⎠ .

The probability of obtaining a head for the first time after n tosses is:

 ⎛
0

= =( ) 3 ⎞ ⎛ 1 ⎞ ⎛ 3 ⎞p P0 X 0 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ = 75%. ⎝ 4 ⎠ ⎝ 4 ⎠ ⎝ 4 ⎠

 ⎛= =( ) 3 ⎞ ⎛ 1 ⎞
1

⎛ 3 ⎞p P1 X 1 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ≈19%. ⎝ 4 ⎠ ⎝ 4 ⎠ ⎝ 16 ⎠

 ⎛= =( ) 3 ⎞ ⎛ 1 ⎞
2

⎛ 3 ⎞p P2 X 2 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ≈ 5%. ⎝ 4 ⎠ ⎝ 4 ⎠ ⎝ 64 ⎠

 ⎛= =( ) 3 ⎞ ⎛ 1 ⎞
3

⎛ 3 ⎞p P3 X 3 = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ≈1%. ⎝ 4 ⎠ ⎝ 4 ⎠ ⎝ 256 ⎠

 
4 ⎛ ⎞

p P4 = =( ) ⎛ 3 ⎞ ⎛ 1 ⎞ 3
X 4 = ⎜ ⎟ ⎜ ⎟ =⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ≈ 0%. 

4 4 ⎝ 1,024 ⎠

Of course,

 0.75+ +0.19 0.05+ 0.01+ 0 +...+ 0 = 1 

or

 
∞ ∞ ⎛

∑⎛ ∑
n ⎞

3 ⎞ ⎛ 1 ⎞
n

⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 3 ⎞ ⎜ 1 ⎟
⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ =⎜  

4 ⎝ 4 ⎠ ⎝ 4 ⎠ ⎝ 4 ⎠ ⎝ 4 ⎠ 1 ⎟ 1.⎝ ⎠
n n=0 0= ⎜ 1− ⎟⎝ 4 ⎠
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For the geometric random variable X, expected value means the expected number 
of trials before the first success.

Theorem 3.6

The expected value of a geometric random variable X, in cases of (3.98) and (3.99), 

is, respectively, as follows: 

 ( ) 1
E X = , (3.103)

p

and

 
−( ) 1 p

E X = , 0x = ,1,2,..., (3.104)
p

Proof:
Case 1

For the case of (3.103), we have the following:

 

1= .
p

⎡
p ∑

∞ ∞ ∞
− − ⎤

= ⎢ ( ) −
1 1 1− p p p

x x1 1+ −( ) + −( ) 1 +
⎣⎢ 1

∑ ∑ x ...⎥
x= x=2 x=3 ⎦⎥

⎡ −
2

1 1 p ⎛ 1− p⎞ ⎤
= +p ⎢ + +⎜ ⎟ ...⎥

p p ⎝ p ⎠⎣⎢ ⎦⎥

= +1 1( )− p p+ ( )1− 2 +...

∞

E X( ) = =∑ ∑
∞

xp xp 1 p
x 1

x ( )− −

x=1 x=1

 

Case 2
For the case of (3.104), we have the following:

 

.

∞

E ( )X x= =∑ ∑
∞

px xp( )1− p
x

x=0 0x=

∞

= −p x∑ ( )1 p
x

 

x=0

∞

= −p p( )1 1∑ x p( )− x−1

x=0
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But 

 1

0

∑
∞

x d
x p( )1− =−1

⎛
⎜ p

x

dp
x 0

∑
∞ ⎞

( )− ⎟ . 

= ⎝ x= ⎠

The series on the right is a geometric series that converges for 1 1− <p . Assuming the 

convergence of the series, the summation and differentiation can be interchanged. 

Now using the infinite geometric progression, we have:

 

1=
2

.
p

∑
∞

x d
x p( ) 1 ⎛ 1 ⎞

1− =− − ⎜dp 1 1 p
x 0

⎝ − −( ) ⎟
= ⎠

 

Thus,

 

∞
− ( )( )∑ x p p

p p
1 1

1 1− −x ( ) −
p =

p2

x=0  

1− p= .
p

Example 3.44

Let us consider tossing a biased coin, with probability of a head as 2/3 and a tail as 1/3. 

 1. What is the probability of occurring the first head at the fifth trial?
 2. What is the expected number of tosses?

Answer

Let X be a random variable representing the number of tosses until a head appears. 
Thus, we define the pmf of X by

 
1

−

( ) ⎛ ⎞ ⎛ 2 ⎞
x 1

p xX = ⎜ ⎟ ⎜ ⎟ , 1x = ,2,... ⎝ 3⎠ ⎝ 3 ⎠

 1. Hence, probability that we obtain a head, with the probability of 2/3 in 
each trial, after four failure trials, that is, on the fifth trail, is

 
4

p PX ( ) ⎛= =( ) 2 ⎞ ⎛ 1⎞ ⎛ 16 ⎞ ⎛ 1⎞ 16
5 5X = ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ = = 7%. ⎝ 3 ⎠ ⎝ 3⎠ ⎝ 81⎠ ⎝ 3⎠ 243

 2. Now, expected value of the number of trials from (3.103) is:

 E ( ) 1 3
X = = . 

p 2
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Example 3.45

A relatively inexperienced basketball player is to enter a game. His past exercises 
show that his chance of success at a throw through the basket is one out of 4. How 
many times would the player fail on average before his first success occurs?

Answer

Let the random variable X describe the number of times player fails before a 
 success. Hence, under the assumptions of the problem, X is a geometric pmf. 
The question is finding the mean of X.

Assuming having the ball in hand as the first failure, we should consider Case 2. 
Thus, we have:

 
1−( ) 0.25

E X = = 3. 
0.25

Example 3.46

Suppose we roll a fair die until a 2 appears for the first time. What is the mean 
number of number of trials?

Answer

From (3.104), we have:

 ( ) ⎛ 1 ⎞ ⎛ 5⎞
x−1

p xX = ⎜ ⎟ ⎜ ⎟ , 1x = ,2,3,... ⎝ 6 ⎠ ⎝ 6 ⎠

 

5
1−( ) p= = =6E X 5. 

p 1

6

Theorem 3.7

Let X be a geometric random variable. Then,

For Case 1:

 ( ) pet

M t = , 0 p 1.
1 1− −( )p et < <  (3.105) 

 
−( ) 1 p

Var X =
2

. (3.106)
p

 ( ) pz
G z , 0 < <p 1.

1 1− −( )  (3.107)
p z
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For Case 2:

 ( ) p
M t = , 0 p 1.

1 1− −( )p et < ≤  (3.108)

 
−( ) 1 p

Var X =
2

. (3.109)
p

 ( ) p
G z = , 0 < ≤p 1.

1 1− −( )  (3.110)
p z

Proof:
We prove (3.108) and leave the proof of others as exercises. 

Based on definition of pgf, we have:

 

pz= , 0 < <p 1.
1 1− −( )p z

−

∞

G z( ) = ∑ zx pX (x)
x=1

∞

= −∑ z px ( )1 p
x−1

x=1

∞

= pz∑ zx−1 ( )1 p
x−1  

x=1

∞

= −∑ x 1
pz ⎡⎣z ( )1 p ⎤

−
⎦

x=1

Example 3.47

Referring to Example 3.41, we have:

 

1
1−

( ) = 6Var X = 30.
⎛ 1 ⎞

2  

⎜ ⎟⎝ 6 ⎠

Another very important property of the geometric pmf is its memoryless. 

Theorem 3.8

Let X be a geometric random variable and r and s two integers. Then, 

 P ( )X r≥ + x X r≥ = P ( )X ≥ x . (3.111)
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(We will see later, in Chapter 7, that (3.111) is referred to as the memoryless 
 property for X; i.e., the system does not remember its history.)

Proof:
From the general properties of a pmf, and for x >1 and Case 1 of geometric pmf (and 

similarly for Case 2), we have:

 

1 .P X( )≥ =x 1− P ( )X < =x P(X ≤ x −

( )  
= −1 1− ( )1− ( )

p
x− +1 1 = ( )1− .p

x

)

Thus, we need to prove the following:

 P X( )≥ +r x X ≥ r = P X( )≥ x = (1− p)x . 

Now,

 

( ) P X{ }r x {X r
P X ≥ +r x X ≥ r

( ≥ + ∩ ≥
=

P X( )≥ r

P X( )≥ +r x=
P X( )≥ r

 

( )1− p
( )r x+

= ( )1− p
r

= −( )1 p
x
.

)}

3.4.5  NEGATIVE BINOMIAL PMF

The following definition is a generalization of geometric pmf. Previously, we were 

interested in the probability of the first success in a sequence of repeated indepen-

dent Bernoulli trials. Here, however, we are interested in the number of successes 

before a specific number (nonrandom) of failures to occur, for instance, tossing a 

coin repeatedly before the fifth tail occurs.

Definition 3.23 (Negative Binomial pmf)

A discrete random variable X representing the number of failures x before a  specific, 

nonrandom, number of successes r in a sequence of independent Bernoulli trials 

with the probability of success p is called a negative binomial with pmf, denoted by 

NB ( )x r; , p , as:

 
⎛ x r

NB ( ) + −1 ⎞
x r; , p = r

⎜ ⎟ p p(1− >)x
, r 0, x = 0,1,.... (3.112)

⎝ x ⎠
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Note 3.30

Relation (3.112) is referred to as the Pascal negative binomial pmf with real r 

referred to as the Pólya negative binomial pmf.

Note 3.31

We leave it as an exercise to show that (3.112) can be rewritten as:

NB ( ) x ⎛ −r ⎞
x r; , p = −( )1 r − >x =⎜ x ⎟ p p(1 ) , r 0 x 0,1,.... (3.113)

⎝ ⎠
 

To show that NB ( )x r, , p  defined by (3.112), indeed, is a pmf, we note that the 

right-hand side of (3.113) is positive and 

 

∑
∞ ∞ ⎛( ) x r+ −1 ⎞
NB x r; , p = p p

x ⎟ 1 ,− )x

0 0

∑ r
⎜ (

x= x= ⎝ ⎠

= −∑
∞

( ) r
1

x ⎛ − ⎞
⎜ ⎟ p pr ( )1− x

 

x 0
⎝ x

=
⎠

= −( )−
1 1p p

r r( )− = 1.

Example 3.48

A company conducts a geological study in an agriculture search for underground 
water. It is known that exploring the water well has 25% chance of striking water. 

Question 1. What is the probability that the first strike occurs on the fourth 
well drilled?

Question 2. What is the probability that the fourth strike occurs on the tenth 
well drilled?

Answers

Answer to Question 1
We could use a geometric pmf here since we are looking for the first success after 
three failures. Hence, having p = 0.25, 1− =p 0.75, n = 4, and x = 1, as r = n-x = 
4-1 = 3 we have:

 
⎛( = =) 3 1+ −1 ⎞

3 ( ) ⎛ ⎞
P X p1 1− =− 3

p
4 1 ( )0.25 ( )0.75

3 = ≈⎜⎝ 3 ⎟ ⎜ 3 ⎟ 0.1055 11%. 
⎠ ⎝ ⎠

Using geometric pmf and letting X representing the number of trials before the first 
success (strikes), we will have:

 P X( = =4) ( )0.25 ( )0.75
3 = 0.1055 ≈11% 
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Answer to Question 2
For this case, from (3.112), we have:

⎛( −
 = =) 6 4+ −1 ⎞ 10 4 ⎛ 9 ⎞

P X 4 − = 4 6 = ≈⎜
4 1

6 ⎟ p ( )p ⎜ ⎟ ( )0.25 ( )0.75 0.0584 6%. 
⎝ ⎠ ⎝ 6 ⎠

Let X be a discrete random variable with negative binomial pmf, representing the 
number of success x before a specific, nonrandom, number of failures r, r > 0, 
in a sequence of independent Bernoulli trials with the probability of success p, 
0 1< <p . We leave proofs of the following as exercises: 

 
pr

E X( ) = ( ) , (3.114)
1− p

 
pr

V ( )X =
( )

,
1− p

2  (3.115)

 
⎛ − ⎞

r

( ) 1 p
M t = <⎜ ⎟ , lt pn , and

⎝ 1− pet  (3.116)
⎠

 

 
⎛ − ⎞

r

( ) 1 p 1
G z = <⎜ ⎟ , z . (3.117)

⎝ 1− pz ⎠ p

Example 3.49 Negative Binomial Distribution

Suppose 20% of the students in a certain college have a GPA more than 3.5. Let 
the random variable X represent the total number of students you select until you 
find 5 with GPA 3.5 or higher. Then, the random variable X follows a negative 
binomial distribution with pmf of X as in Figure 3.9.

3.4.6  HYPERGEOMETRIC PMF

The random variable we are to describe is very much similar to the binomial random 

variable we discussed earlier. As we will see in Chapter 5, a statistical population is 

a collection or a set of all individuals, objects, or measurements of interest. A sample 

is a portion, subset, or a part of the population of interest (finite or infinite number 

of them). A sample selected such that each element or unit in the population has the 

same chance to be selected is called a random sample. Sampling from a population 

is sometimes referred to as random draw.

Now, suppose we have a finite population of size N, N = 0,1,2,.... We draw a 

sample of size n from this population without replacement. There are two types of 

outcomes from each draw in this experiment that we call them success and failure, 

in their general sense. Thus, each sample consists of two subsamples, one the success 

observations and the other failure observations, with total number of outcomes as n, 

which is the total number of draws, where n = 0,1,2,..., N.
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Note 3.32

Based on the description of the scenario, the probability of success and failure 

changes on each draw due to the change in the remaining population as a draw 

is made. This feature is the difference between the binomial pmf and hypergeo-

metric pmf.

Now, we let S denote the total number of successes in the population, that is, 

S N= 0,1,2,..., .

Of interest is calculating the probability of having x, max(0,n S+ − N ≤ x ≤ 

min( )n S, , successes in the sample.
)

To respond, we first argue as follows: Let us denote the random variable X to 

 represent the number of successes. Looking for x successes would mean n − x 

f ailures. The number of ways x successes can occur from the total successes in the 

⎛ S ⎞ ⎛ N S− ⎞
population, S, is ⎜ ⎟ and of failures is ⎜ ⎟ . Occurrence of the successes 

⎝ x ⎠ ⎝ n x− ⎠
⎛ S ⎞ ⎛ N S− ⎞

and failures is the product of the two, that is, ⎜ x ⎟ ⎜ at 
⎠ ⎝ n x ⎟ . It is assumed th

⎝ − ⎠
choosing n object from a total of N objects is equiprobable. Thus, we can now state 

the following definition.

FIGURE 3.9 Negative binomial pmf, Example 3.49.
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Definition 3.24 Hypergeometric pmf

Let X represent the number x of type 1 outcomes with pmf defined by:

⎛ S ⎞ ⎛ N S− ⎞
⎜⎝ x ⎟ ⎜⎠ ⎝ n x ⎟− ⎠

p Px = =( )X x = , x n= +max
⎛ [0, S − N ,...,min( )n,S . (3.118)

N ⎞
⎜ ⎟⎝ n ⎠

Then, X is called the hypergeometric random variable and (3.118) is referred to as 

the hypergeometric pmf.

]

Let us list the symbols involved in Definition 3.24.

N: Population,

n: Total number of draws,

S: The number of successes included in the population,

x: Number of observed successes.

p xX ( ) defined in (3.118) is a pmf because it is obviously positive when 

max( )0,n S+ − N ≤ x ≤ min(n,S ), and applying geometric series sum, we have:

 

⎛ S ⎞ ⎛ N S− ⎞

∑
⎜ x ⎟ ⎜⎝ ⎠ ⎝ n x ⎟− ⎠ = 1. 

⎛
x n N ⎞

0≤ ≤ ⎜⎝ n ⎟⎠

Example 3.50

Consider a junior statistics class with 30 students enrolled that consists of 
20   mathematics majors and 10 other science majors. To assess some measures 
regarding students’ learning, we draw 10 students without replacement. What is 
the probability that there are exactly six mathematics majors in the drawing?

Answer

In this drawing, we consider the inclusion of a mathematics major as a success. 
We now summarize the problem’s information in the following table:

N = 30, x = 6, S = 20, n = 10

Drawn Not Drawn Total

Mathematics majors

None mathematics majors

Total

x = 6

n − =x 4

n = 10

− =S x 20 − 6 = 14

N + −x n − S = 6

N − =n 30

S = 20

N − =S 10

N = 30
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Thus, from (3.118), we have:

 

⎛ 20 ⎞ ⎛ 30 − 20 ⎞
⎜ ⎟ ⎜ ⎟⎝ 6 ⎠ ⎝ 10 − 6 ⎠

p PX ( )6 6= =(X ) =
⎛ 30 ⎞
⎜ 10 ⎟⎝ ⎠

⎛ 20 ⎞ ⎛ 10 ⎞
20! 10!⎜ ⎟⎝ 6 ⎜⎠ ⎝ 4 ⎟⎠  

= = 6!14! 4!6!
⎛ ⎞ 30!30
⎜⎝ 10 ⎟ 10!20!⎠

8,139,600= = 0.2709134943018001
30,045,015

≈ 27%.

Example 3.51

Playing cards were found in thirteenth century AD, according to Wikipedia, 
(https://en.wikipedia.org/wiki/Playing_card). Their foundation goes back to the 
ninth century AD with 30 cards in Asia. About the eleventh century, it spreads 
from Asia, through Egypt and Europe, to the United States by the eighteenth 
century.

The currently used deck of playing card was found in the fifteenth  century 
AD in Rouen, France, and comprises 52 cards with four suits: hearts, dia-
monds, cubs, and spades. English version of this deck appeared in the sixteenth 
century AD.

Now, suppose we draw five cards without replacement. What is the probability 
of getting three hearts?

Answer

To answer the question, we note that N = 52, the number of failures = s2 = 39, the 
number of successes = s1 = 13, n = 5, and x = 3. Hence,

 

⎛ 13 ⎞ ⎛ 52 −13 ⎞
⎜ ⎟ ⎜ ⎟

= =( ) ⎝ 3 ⎠ ⎝ 5 3− ⎠
p P3 3 hearts = ≈0.0815 8%. 

⎛ 52 ⎞
⎜⎝ 5 ⎟⎠

Example 3.52

Consider a College of Arts and Sciences at a small university with 300 faculty 
members, 30 of whom are international. A random sample of size 25 is taken from 
the faculty of this college. What is the probability of observing four international 
faculty members in the sample?

https://en.wikipedia.org
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Answer

Once again, to answer the question in this example, we note that N = 300. The 
number of failures (non-international faculty) = s2 = 270, the number of successes 
(international faculty) = s1 = 30, n = 25, random variable X takes values between 
0 and 25, and x = 4. Hence,

 

⎛ 30 ⎞ ⎛ 300 − 30 ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ −

= =( ) 4 ⎝ 25 4 ⎠
p P3 4 international = ≈0.1415 14%. 

⎛ 300 ⎞
⎜ 25 ⎟⎝ ⎠

Example 3.53 Hypergeometric Distribution

Consider a box with 30 light bulbs and assume that there are 20 non-defective 
and 10 defective bulbs. Suppose a quality controller randomly selects five bulbs 
without replacements. Let X be the random variable that represents the number 
of defective bulbs he finds in the selected five. Then, the random variable X 
follows a hypergeometric distribution, and the pmf of X can be graphed as in 
Figure 3.10.

FIGURE 3.10 pmf of hypergeometric, Example 3.53
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3.4.7  POISSON PMF

The final standard discrete random variable we will discuss is the Poisson. This is a 

very important discrete random variable in the theory of probability and stochastic 

processes, as an application of the theory of probability like arrival process of tasks.

A Poisson pmf assists in describing the chances of occurrences of a number of 

events in some given time interval or in a given space when the value of average 

number of occurrences of the events is known. Consider, for instance, a random 

experiment where we observe the number of occurrences of independent events dur-

ing a given time interval such that two or more events do not occur at the same time, 

and the events are occurring at the same rate.

In many standard queues (waiting lines), the arrival to a waiting room (buffer) 

is assumed to follow Poisson pmf. Here are other examples of number of events 

occurring in an interval that Poisson pmf can be applied: telephone calls ringing in 

an office per hour, the number of cars arriving at a traffic light every 3 minutes, the 

number of patients arriving to an emergency room every hour, the number of muta-

tions on a given strand of DNA over a unit time, the number of particles emitted by 

a radioactive source in a given time, and the number of network breakdowns over a 

24-hour period. 

The Poisson random variable and pmf is named after the French mathematician 

Siméon Denis Poisson (1781–1840) (Figure 3.11).

We now define the Poisson pmf.

Definition 3.25 Poisson pmf

A nonnegative random variable X, with a one parameter λ and pmf

 
−λ

= =( ) e λ j

p Pj X j = , 0j = ,1,..., (3.119)
j!

FIGURE 3.11 Siméon Denis Poisson (1781–1840).
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is called the Poisson random variable. The parameter λ is the shape parameter, 

which indicates the average number of events in the given time interval. The base e 

is Euler’s constant, which is approximately 2.71828.

Note 3.33

It is left as an exercise to prove that for a Poisson random variable X, E ( )X = λ  

and Var ( )X = λ .

It can easily be seen from (3.119) that pj ≥ 0. We also see that 

 ∑
∞

e
p ∑ ∑

∞ −λλ λj ∞ j

e λ λe eλ
j = = − = − = 1. 

j! !j
j=0 0j= j=0

Thus, (3.119), indeed, is a pmf. The cdf for Poisson pmf is

 ( ) ∑
j

e−λλ j

P X ≤ =j , 0j = ,1,.... (3.120)
j!

j=0

Example 3.54

Suppose that computers in a computer laboratory at a university break on an 
 average of 1.5 computers per day. What is the probability of breakdown of 

 a. Three computers in a particular day? 
b. No more than four breakdowns in a day? 
c. At least five breakdowns on a particular day?

 
 

Answer

Let X be a random variable representing the number of breakdown of computers 
in the laboratory per day. We assume that breakdown of computers follows a 
Poisson pmf with the average rate of λ = 1.5.

Now for part (a), from (3.119), we have:

 
e−1.5 ( )= =( ) 1.5

3

p P3 X 3 = = 0.1255 ≈13%. 
3!

For part (b), we are to find 

 4P(0 ≤ X ≤ 4) = P X( )= 0 1 2+ =P X( )+ =P X( )+ =P X( 3) = P X( )=

 
e−1.5 ( )= =( ) 1.5

0

p P0 X 0 = = 0.2231 ≈ 22%. 
0!

 
e−1.5 ( )= =( ) 1.5

1

p P1 X 1 = = 0.3347 ≈ 33%. 
1!
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e−1.5 ( )= =( ) 1.5

2

p P2 X 2 = = 0.2510 ≈ 25%. 
2!

 
e−1.5 ( )= =( ) 1.5

3

p P3 X 3 = = 0.1255 ≈13%. 
3!

 
e−1.5 ( )= =( ) 1.5

4

p P4 X 4 = = 0.0471 ≈ 5%. 
4!

Thus,

 P X( )0 ≤ ≤ 4 = +0.2231 0.3347 + 0.2510 + 0.1255+ =0.0471 0.9814 ≈ 98%.

For part (c), we are to find 

 P( )X P≥ =5 (X = 5)+ P(X = +6) ...

 
e−1.5 ( )= =( ) 1.5

5

p P5 X 5 = = 0.0141 ≈1%. 
5!

 

   

e−1.5 ( )= =( ) 1.5
6

p P6 X 6 = = 0.0035 ≈ 0%.
6!  

Therefore,

 ...P( )X ≥ =5 0.0141+ 0.0035+...= 0.0176 + .

However, to obtain a precise value, we can use: 

 4

P( )X P≥ =5 1− ( )X P< =5 1− (X ≤ 4)

)= −1 (P X( )= 0 + P X( = 1)+ P X( = 2 3)+ P X( = )+ P X( =

= −1 0.9814 = 0.0186 ≈ 2%.

Of course, as expected, from parts (b) and (c), the sum of probabilities is 1.

Note 3.34

The idea in Example 3.53 is that the Poisson pmf determines the number (events 

occurring in a certain time), for instance, the number of telephone calls to a 

 business office per hour or per day. Other examples are the number of cars arriv-

ing at a red traffic light and the number of computers break down in a computer 

laboratory per day.



158 Probability, Statistics, Stochastic Processes

Example 3.55

Suppose that production of an item from a manufacturer follows a Poisson pmf 
with average number of items produced each day as 100. The history of the pro-
duction in this factory shows that 5% of items produced are defective. Suppose 
the number of production in a particular day is n items. What is the distribution of 
the total number of defective items for that day?

Answer

To answer the question, note that there are two random variables: (1) the daily 
production and (2) the total number of defective items per day. Thus, let X and Y 
be random variables representing (1) and (2), respectively. Hence, the question is 
to find P(Y k= ), k = 0,1,2,.... These items imply that:

 

)

⎛ n⎞  
= ⎜ ⎟ ( )0.05

k n( )0.95
− k

, k n= 0,1, ,... .
⎝ k⎠

P Y( )= =k X n =  k (k;n,0.05

Now applying the law of total probability, we will have:

 

∑
∞ ⎛ n⎞ ⎛ e−100100n

k n ⎞
= ⎜ ⎟ ( )0.05 ( )0.95

− k

⎜ ⎟
⎝ k⎠ ⎝ n!

n k
⎠

=

= ( )0.05
k e−100∑

∞ ⎛ n⎞ ⎛
⎜ ⎟ ( )0.95

n k− 100n ⎞
⎜ ⎟

⎝ ⎠ ⎝ ! ⎠
= k n

n k

∞

P Y( )= =k ∑P ( )Y = k X = n ⋅P( )X − n
n k=

∞
− ⎛

= ∑ ! ⎞
0.05k 100 n ( )0.95

− 100n

e n k

( ) ⎜ ⎟ .
k n! !− k n⎝ !

n k
⎠

=  
k e 100 ∞

0.05 −

= ∑( )0.95
n k−

100n k− 100k

k n! ( )− k !
n k=

k k e 100 ∞
0.05 100 − −

= ∑ 0.95n k

100n k−

k n! ( )− k !
n k=

k e 100 ∞
5 −

= ∑ ( )95
n k−

k n! ( )− k !
n k− =0

k e 100 ∞
5 −

=
! ∑ 95

.
k m!

m=0

m
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Using the McLaurin expansion of exponential function, we will have:

 
5 5−5 k

P Y( )= =k . 
k!

As it can be seen, pmf of Y is a Poisson with parameter λ = 5. For instance, prob-
ability that there will be 10 defective items found among the production of a 
particular day is:

 
5 5−5 10

= =( ) 55

p P 10 = = = 8.6117 −04
10 Y e ≈ 0.007. 

10! 10!

Example 3.56

Consider a bank at a location that closes at 6:00 pm on weekdays. Teller windows 
are set in parallel, and each has its own queue and its own overhead survival 
camera with a counter. An arriving client may join a line at his/her choice. It is 
the bank’s policy for a teller to leave at the closing; he/she should close the line at 
5:45 so that no new arrival joins the queue. However, the teller has to complete 
his/her services of all clients in the line before leaving. It is 5:30 and a teller who 
wants to leave closing is to know if he/she can complete services to all clients in 
line by 6:00. Data from the survival cameras show that on average eight clients 
enter each individual line between 5:30 and 5:45 pm on weekdays. Assuming 
that the arrival of clients follows a Poisson pmf, we want to answer the following 
questions:

 1. What is the probability that exactly five clients arrive the line of a teller 
who wants to leave on time between 5:30 and 5:45 pm?

 2. What is the probability that the teller will not be able to leave on time?

Answer

Based on the assumption that arrival distribution is Poisson, the parameter λ = 8. 
Let X be a random variable representing the number of arrivals between 5:30 and 
5:45. Then, we have:

e−8 5

 1. = =( ) 8
p P5 X 5 = = 0.0916 ≈ 9%.

5!
 2. The question essentially means that the probability of more than 8 clients 

arrives. Hence,

 

= =P X( )0 1+ P X( = )+...+ P X( = 8)

= −1 0.5925 = 0.4075 ≈ 41%.

8 −

=∑ e 88k

k!
k =0

P X( )> =8 1− P X( )≤ 8
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FIGURE 3.12 pmf of Poisson pmf, Example 3.57.

Example 3.57 Poisson Probability Mass Function

Let us consider an office, which experiences approximately 5 telephone calls in an 
hour on a working day. We assume that the office does not receive more than one 
telephone call at a time and the rate of receiving calls is a constant. In this case, the 
random variable X represents the number of telephone calls received by the office 
and X is a Poisson random variable. Hence, based on the assumptions, the proba-
bility mass function (pmf) of X (see Figure 3.12) with arrival rate (parameter) λ = 5 is

∑ e5 5 j

( )
x

P X = =x , 0j = ,1,2,L.
 j=0 j!

Note 3.35

An important relationship between binomial and Poisson distributions is that 
when the product np is kept fixed, the binomial pmf approaches the Poisson pmf.

Theorem 3.9

If X is a binomial random variable with pmf j ( )j n; , p , n → ∞, p → 0 (i.e., n 
becomes large and p becomes small) and λ = np is fixed, then the binomial pmf with 
parameters n and p approaches Poisson pmf with parameter λ = np. In other words,

( ) e−λ λ j

 lim ;j j n, p = =, 0j ,1,2, .  (3.121)
n→∞ j!
p→0



161Random Variables

Proof:
λ

From the definition of binomial pmf and the fact that from λ = np, that is, p = , 
n

we have:

 

, .

, .

n

n

 j ( )j n; , p = =P (Y j X = n)
⎛ n⎞

= ⎜ ⎟ p pj ( )1− =n j− n! j ( )1 ,
n j

j 0,1...
! !( ) p p− = ,

⎝ j ⎠ j n − j

⎛ λ ⎞ n

n n( )− −1 1...( )n j + λ j ⎜1− ⎟⎝ n ⎠= , 0,1,..., .
! λ j j n=

nj j ⎛ ⎞
⎜1− ⎟⎝ n ⎠

−

−
n! ⎛ λ λ⎞ j n⎛ ⎞ j

= ⎜ ⎟ ⎜1 ,− ⎟ j = 0,1,...
j n! !( )− j ⎝ n ⎠ ⎝ n ⎠

 

Now as n and p approach infinity and 0, respectively, the last relation will be 

 undefined. Using L’Hôspital’s rule, we have:

 
⎛ λ ⎞ n

n n( )− −1 1...
lim 1

( )n j +
⎜ − −

→∞ ⎟ ≈ e λ , lim 1.⎝ n j ≈  (3.122)
n ⎠ n→∞ n

Inserting these values in the last statement will complete the proof.

Note 3.36

x⎛ 1 ⎞
The relation lim ⎜1+ ⎟ , where x is a real number, is sometimes taken as the 

x→∞⎝ x ⎠
definition of the exponential number e. That is,

 
⎛ 1 ⎞ x

lim 1+ e 2.7183.
x

⎜ ⎟ = ≈  (3.123)
→∞⎝ x ⎠

Note 3.37

Let us define Y such that:

 
1 1x − 1

Y = −1 = = . (3.124)
x x x

x −1
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Letting u x= −1, (3.124) becomes:

 
1

Y = . (3.125)
⎛ 1 ⎞
⎜1+ ⎟⎝ u ⎠

Thus, from (3.124) and (3.125), we will have:

 

u u

− +( )⎛ 1 ⎞ x ⎛ 1 ⎞ 1 u

lim 1− lim 1 .
x

⎜ ⎟ = +⎝ x u⎠ u
⎜ ⎟

→∞ →∞⎝ ⎠
 (3.126)

⎛ 1 ⎞ − −1 ⎛ 1 ⎞ u

= +lim + 1 .e e
u

⎜1 ⎟ ⎜1 ⎟ = ⋅ − −1 1=
→∞⎝ ⎠ ⎝ ⎠

Hence, from (3.122), we have: 

 
λ

λλ ⎛= = −( )
x

e− −1 1 ⎞e lim 1 .
x

⎜ ⎟  (3.127)
→∞⎝ x ⎠

Letting n = λx , from (3.127), we will have:

 
λλ ⎛= =( ) λ ⎞ n

e− −e 1 lim −
n→∞⎜1 ⎟ . (3.128)

⎝ x ⎠

Example 3.58

Suppose that in a factory of producing light bulbs, it is known that 1 in 1,000 light 
bulbs is defective. A group of 8,000 light bulbs from the storage room is taken 
randomly for sale delivery. What is the probability of the group containing at least 
five defectives?

Answer

To answer the question, we assume that all light bulbs have the same chance to be 
selected. Hence, the probability of a light bulb to be defective is p = 0.001, and the 
sample size n = 8,000, that is, np = =λ 8. Letting the random variable X represent-
ing the number of defective light bulbs in the sample, we will have:

 
e−8 5

= =( )5 = (5;8,000,0.001) 8
p P5 5X B = = 0.0916 ≈ 9%. 

5!

Theorem 3.10

 E ( )X = =Var ( )X λ. (3.129)

 
( )( ) et 1

M t = λ −
e . (3.130)
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 ( )G z( ) = eλ z−1 . (3.131)

Proof:
We prove that the mean and variance of a Poisson random variable are λ and leave 

the proof of the other two as exercises.

e
p P= =( )

−λλ j

Now, from Poisson pmf, j X j = , 0j = ,1,..., the rth moment of 
j!

the Poisson random variable X is 

 ( ) ∑
∞ j

r r e−λλ
E X x= . (3.132)

x!
x=0

Hence, for r = 1, we have:

 
1 !

e e

∑ ∑
∞

λ x ∞−λ

= =( ) e λ x−1

μ E X x = λe x−λ

x! x x
x 0 x 0

( )−
= =

λλ λ−λ ⎡ λ λ2 3 ⎤= +λ λe ⎢1 + + ⎥ = =λ .
⎢ 2! 3! ⎥

−

 

Now to find the second moment, we let r = 2 and obtain:

 

!

0

2

x

∑ ∑
∞

λ x ∞−λ ⎛( ) e
E X x2 2 e= = x x 1 x

x
[ ] ⎞( )− +

! ⎜ x! ⎟
x=0 0x=

⎝ ⎠

∑
∞ ⎛ λ λx ∞ −

= −x x( ) e−λ ⎞ xe
⎜ 1 +⎟⎠ x

x
⎝ x x( )− −1 2x )! 1

x
( )− !

=0
(

=
∑

λ

λ

⎛
= −∑ ∑

∞
λ λx ∞

e−λ ⎞ ⎛ xe− ⎞
⎜ x x( )1 +⎟ ⎜ x

x!
x

⎠ ⎝ x ⎟
=0 0

⎝
x=

⎠

= +λ λ2e e−λ λ = λ + .

λ

λ

λ

λ

−

∞ −λ

=∑ ∑λ λx ∞
e xe−

+
x 2 ! x 1 !

x 0 0
( )−

x
( −

= =
)

∞ −
−λ λλ ∑

x 2

= 2e + E X( )
x 2 !

x 0
( )−

=

−λ ⎡ λ λ2 3

= +λ λ2 ⎤
e ⎢1 + + +...⎥ + λ

⎢ 2! 3! ⎥
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Hence,

Var ( )X = −E ( )X 2 2⎡E ( )X ⎤ = +λ λ2 2− =λ λ⎢ ⎥ .

Example 3.59

Let us suppose that sale of particular brand of television by a salesperson at an 
electronic store follows a Poisson pmf with an average of 6 per week. For the 
salesperson, 

 i. What is the probability that in a given week she will sell at least one 
television?

 ii. What is the probability that in a given week she will sell between 1 and 
5 televisions?

 iii. Assuming that the salesperson works 5 days per week, what is the prob-
ability that in a given day of a given week, she will sell one television?

Answer

Using MATLAB, we can use the code “poisspdf(x,λ)” to find various values we 
need to answer the three questions. Of course, in this problem, λ = 6.

 i. Let X be the random variable representing the sales of the televisions. 
Then, from the properties of pmf of a random variable, the probability of 
at least one means that:

 P( )X P> =0 1− (X = 0). 

Now from Poisson pmf with λ = 6, we have:

 
e−6 0

( ) 6
P X = =0 = 0.0025. 

0!

Hence,

 P( )X > =0 1− 0.0025 = 0.9975. 

 ii. The probability of selling between 1 and 5 televisions is:

 

)

= +0.0446 0.0892 + =0.1339 0.2677.

4P( )1 < X < 5 = P X( = 2 3)+ =P X( )+ =P X(

e e− −6 26 663 e−6 46= + +
2! 3! 4!

 

 
6

iii. The average number of televisions sold per day will be = 1.2. Hence, 
5

the average number of televisions sold per day is:

 
e−1.2 ( )( ) 1.2

1

P X = =1 = 0.3614. 
1!
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Note 3.38

One should not expect that the probability of selling one television per day would 

be the same as five per week. In fact, the probability of selling one television per 

day would be 0.3614, as found for case (iii). However, the probability of selling 

five televisions in a week for 5 days per week will be 0.1606.

3.5  PROBABILITY DISTRIBUTION FUNCTION (CDF) 
FOR A CONTINUOUS RANDOM VARIABLE

In the previous sections, we discussed discrete random variables and their distribu-

tions. Numerous examples were presented to illustrate these random variables, among 

which coin tossing was frequently used. The reason for this choice was that there are 

only two outcomes for this experiment, simply heads and simply tails. However, what 

if we were to consider the height the coin reaches in air when it is tossed? Since the 

measure of the height is a real number, not necessarily a nonnegative integer, it is not 

discrete, and indeed, it is continuous. In other words, continuous random variables are 

random quantities that are measured on a continuous scale. They usually can take on 

any value over some interval, which distinguishes them from discrete random vari-

ables, which can take on only a sequence of values, usually integers. Examples of con-

tinuous random variables other than the height are waiting times to receive service in 

a waiting line, length of a telephone call, time between two calls arriving at an office, 

length of time it will take for a signal to go to a satellite and return to a receiver, height, 

weight, the amount of sugar in an orange, the time required to run a mile, and so on.

Earlier in this chapter, we discussed the pmf for a discrete random variable. In 

this section, we will discuss the probability distribution function for a continuous 

random variable. Hence, we let X be a random variable defined on a continuous 

sample space Ω. Then, we define the probabilities associated with the points of Ω for 

which the values of X fall on the interval [ ]a b,  by P a( )≤ ≤X b .

Definition 3.26

Let S be the set of possible outcomes of a random experiment whose measures are 

real numbers. That is, S is a single interval or a union of intervals on the number line. 

Let X be a random variable defined on S with its values as x. Such an X is referred to 

as a continuous random variable. The probability density function, pdf, of X is 

an integrable function fX x  satisfying the following:( )

 i. fX ( )x  has no negative values on S, that is, 

fX ( )x x≥ ∀0, ∈S. (3.133) 

 ii. The total area under the curve fX ( )x  equals 1, that is,

∫ f xX ( )dx = 1. (3.134)
s
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 iii. If fX ( )x  is a pdf of X and A is an interval, then the probability that x belongs 

to A is the integral of fX ( )x  over A, that is,

P X( )∈ =A ∫ fX ( )x dx. (3.135)
A

 

In other words, the probability of X being in A is the area under pdf fX ( )x  

over A.

Note 3.39

If A is the interval [ ]a b, , then from the last property of pdf, we have:

b

P a( )≤ ≤X b = ∫ fX ( )x dx. (3.136)
a

 

That is, the probability of X between a and b is the area under fX ( )x  over the 

interval [ ]a b, . If the interval A is unbounded, that is, (−∞,∞), then from (3.134) 

and (3.136), we will have: 

P X( )−∞ < < ∞ = ∫
∞

fX (x)dx = 1. (3.137)
−∞

 

Although (3.137) suggests that the area under the pdf on the entire real axis is 2, it 

also suggests that a continuous random variable may be unbounded, even though 

rarely.

Note 3.40

The probability of observing any single value of the continuous random variable 

is 0 since the number of possible outcomes of a continuous random variable is 

uncountable and infinite. That is, for a continuous random variable, we must cal-

culate a probability over an interval rather than at a particular point. This is why 

the probability for a continuous random variable can be interpreted as an area 

under the curve on an interval. In other words, we cannot describe the probability 

distribution of a continuous random variable by giving probability of single val-

ues of the random variable as we did for a discrete random variable. This property 

can also be seen from the fact that 

 ( ) ∫
c

P X = =c P (c ≤ X ≤ c) = fX (x)dx = 0, (3.138)
c

for any real number c.
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Definition 3.27 Cumulative Probability Distribution Function, cdf

Let X be a continuous random variable, t a real number from the infinite interval 

(−∞, x], and fX ( )x  the pdf of X. The cumulative distribution
 function (cdf) of X, denoted by F xX ( ), is defined by

x

F xX X( ) = ≤P (X x) = ∫ f (t)dt. (3.139)
−∞

 

As seen from the definition of the pdf, fX ( )x , we can obtain it from the cumulative 

probability distribution function (cdf) simply by taking the derivative of F xX ( ) with 

respect to x. Conversely, we can obtain F xX ( ) by integrating fX ( )x  with respect to x. 

That is, 

fX X( )x F= ′ ( )x . (3.140) 

Other properties of a continuous random variable X, based on properties of definite 

integrals, are:

 P a( )≤ ≤X b = P a( )≤ <X b = P a( )< ≤X b = P a( )< <X b . (3.141)

 P( )a ≤ ≤X b = P(X b≤ )− P ( )X a≤ = FX X(b)− F (a). (3.142)

 P X( )> =b 1 1− P X( )≤ b = − FX (b). (3.143)

Also, if F xX ( ) is the differential at every point of an interval, then it is continuous 

and at a point, say x0, we have:

 
dFX ( )x = F X0 0f x .

dx
X X′ ( ) = ( )  (3.144)

x x= 0

Note 3.41

An obvious difference between pdf and pmf should be noted. That is, for a dis-

crete random variable, P X( )= x  is indeed pmf, say F xX ( ). However, for a contin-

uous random variable X, P ( )X x=  is not the pdf, say fX ( )x . Here is an example.

Example 3.60

Let X be a continuous random variable whose pdf is given by

 f xX ( ) = ≤2 ,x 0 x 1. ≤
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Hence, if we were to find the probability of X = 0.7 by simply substituting 0.7 in  
fX ( )x , as we would do in the discrete case, we would have gotten 
fX ( )0.7 = ×2 0.7 = 1.4, which is not a probability value since the value is 
more than 1.

Of course, as we mentioned above, for a continuous random variable prob-
ability at a point, say x = 0.70, the sample space is 0. Thus, in an example like this, 
we should ask for the probability of one interval, say 0.65–0.75. In such a case, 
we would have:

 ( ) ∫
0.75

P x0.65 < < 0.75 = (2x −1)dx
0.65  

= − =0.752 20.65 0.14.

Note 3.42

Generally, if F xX ( ) and fX ( )x  are stepwise continuous functions, which are not 

differentiable at some points, then F xX′ ( )0  does not necessarily equal fX ( )x0 . This 

is a property known for distribution functions that are not necessarily pdfs. The 

idea comes from a well-known fact in continued fractions theory. For reference, 

for instance, see Prats’ovytyi (1996), Singularity of Distributions of Random 
Variables Given by Distributions of Elements of the Corresponding Continued 
Fraction 

More specifically, by a singular continuous probability distribution func-
tion is meant a cdf on a set of Lebesgue measure zero, in which the probability 

of each point is zero. Obviously, such a distribution is not absolute continuous 

with respect to the Lebesgue measure. The Cantor distribution function is the 

famous well-known example that has neither a pdf nor a pmf.

Example 3.61

Let X be a continuous random variable defined on [ ]0,10 . Define fX ( )x  as below:

 
⎧⎪ c x( )+ ≤2 , 0 1x ≤ 0,

f xX ( ) = ⎨  (3.145)
⎩⎪ 0, otherwise.

Find:

 i. A constant c such that fX ( )x  defined in (3.143) is a pdf,
 ii. P X( ≥ 7 , )
 iii. P X( )2 7< ≤ .
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Answers

 i. For fX ( )x  to be a pdf, one condition is that the integral of fX ( )x  defined 
by (3.145) over [ ]0,10  be 1. Thus, 

 
∫ ∫

∞ 10

fX ( )x dx = =1 2c( )x + dx,
−∞ 0

⎛ x ⎞
10

 
2

= +c⎜ 2 7x c= =0
2 ⎟ 1. (3.146)

⎝ ⎠
0

From (3.139), it can be seen that 

 
1

c = . (3.147)
70

Now, from (3.147), substituting c in (3.145), we obtain: 

 

⎧ 1
⎪ ( )x x+ ≤2 , 0 1≤ 0,

f xX ( ) = ⎨ 70  (3.148)
⎪ 0, otherwise,⎩

which is surely nonnegative. Hence, fX ( )x  defined in (3.145) defines 
a pdf.

 ii. From (3.148), we have:

 
10

( ) ∫
10 1 ( ) 1 ⎛ x2 ⎞ 63

P X ≥ =7 x + 2 dx = + = =⎜ 2x⎟ 0.45. 
7 70 70 ⎝ 2 ⎠ 140

7

 iii. Also, from (3.148), we have:

 
7 ⎛( ) ∫

7
1 ( 1 x2 ⎞ 65

P X2 7≤ ≤ = x + 2)dx = + 2 = = 0.46.
2 70 ⎜ x⎟  

70 ⎝ 2 ⎠ 140
2

Example 3.62

We consider the total assets dollar amount (in hundreds of thousands of dollars) 
of residents of a nursing home community in a city. We assume that the dollar 
amount in this case can be approximated by a continuous random variable with 
pdf defined by 

 

⎧ 2
⎪ 3

, 1x ≥
f xX ( ) = ⎨ x  

⎪ 0, x <1.⎩
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 i. Show that fX ( )x  is a pdf.
ii. Find the probability that a randomly selected resident has a total asset 

between $300,000 and $500, 000.
iii. Find the probability that a randomly selected resident has a total asset of 

at least $200,000.
iv. Find the probability that a randomly selected resident has a total asset of 

at most $400,000.

 

 

 

Answers

 i. From the definition of fX ( )x , it is positive. Also,

∫ ∫
∞ ∞ ∞

f xX ( ) 2 1 ⎤dx = =dx − = 1.
−∞ x3

1 x2
 ⎥⎦1

 

Hence, fX ( )x  is a pdf.
5

( ) ∫
5 2 1 1⎤ ⎛ 1 ⎞ ii. P X3 5≤ ≤ =

3
dx = −

2
= −

x ⎥ ⎜ − ⎟ = =0.07 7%.
3 x ⎦3

⎝ 25 9 ⎠
∞

( ) ∫ 2 1 ⎤
∞

⎛ 1 ⎞ iii. P X ≥ =2
3

dx = −
2

= −
x ⎥ ⎜ 0 − ⎟ = =0.25 25%.

2 x ⎦2
⎝ 4 ⎠

 ( ) ∫ ∫
4 2 4 2 1 ⎤

4
⎛ 1 1⎞ 15

iv. P X ≤ =4 dx 0 + dx = − = − − = = 93.75%.
−∞ x3

=
x3

1 x2 ⎥ ⎜ ⎟⎦1
⎝ 16 1⎠ 16

Example 3.63

Suppose the random variable X represent the lifetime, in hours, of a light bulb. 
Let the cdf of X be given as:

 

⎧ 0, x <100,
⎪
⎪ 2 +

F x( ) x x
X = ⎨ , 100 ≤ ≤x 1,000,  

⎪ 990,900

⎪ 1, x >1000.⎩

 i. Find the pdf.
 ii. Find P(X ≥ 800 .)
Answers

 i. Taking the derivative of (3.147) with respect to x, we will have:

 

⎧ 2 1x +
⎪ , 100 ≤ ≤x 1,000,

f xX ( ) = ⎨ 990,900  
⎪ 0, otherwise.⎩

 ii. P X( )≥ =800 1− P X( )< =800 1− P X( )≤ =800 1− FX (800)

( )800
2 + 800 640800= −1 = −1

990900 990900

≈ =0.3533 35.33%.
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3.6  MOMENTS OF A CONTINUOUS RANDOM VARIABLE

The expected value of a continuous random variable is very much similar to that one 

of a discrete random variable except that the integral sign is used in place of sigma 

(the summation). The properties are also very similar. As we had to discuss the con-

vergence of series in the case of discrete random variables, we should do something 

similar for the continuous case. We now start, by formally, defining the terms.

Definition 3.28

Let X be a continuous random variable with pdf as fX x . The expected value 

(expectation or mean) of X is defined as the following Lebesgue integral:
( )

 E ( )X x= ∫ fX (x)dx. (3.149)
 

As it can be seen from (3.149), the procedure for finding expected values of 

 continuous random variables is similar to the one for finding expected values of 

d iscrete random variables. The difference is that (1) the sum in the formula for 

a  discrete  random variable is replaced by integral and (2) the pmf in the formula for 

discrete random variable is replaced by the pdf. Similar differences are there for the 

variance and standard deviation of the two kinds of random variables.

More specifically, if X is a random variable with pdf as fX ( )x , then the expected 

value of X, denoted by μ, is given by

 
∞

μ = E X( ) ∫ x fX (x)dx, (3.150)
−∞

only if the integral in (3.150) exists.

Generalization of Definition 3.28 for a function of a continuous random variable 

is as follows.

Definition 3.29

Let X be a continuous random variable with pdf as fX ( )x . Similar to the discrete 

case, the expected value (expectation or mean) of the random variable g X( ), which 

is a function of random variable X, is defined by the following Lebesgue integral:

 E g( )(X ) = ∫ g( )x fX ( )x dx, (3.151)
 

only if the integral in (3.151) exists.

An important property of the moment of a continuous random variable is that of 

linearity. Applying this property on the expected value, we have:

 E ( )c1 1g ( )x + +c2g2 ( )x c3 = c1E g( 1 ( )x ) + c2E g( 2 ( )x ) + c3. (3.152)
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Note 3.43

Not all continuous random variables have moments. Here is an example.

Example 3.64

This example shows a random variable with a pdf and a nonexistent expected 
value. Let X be a random variable with pdf defined as

 f x( ) 1 1
X = , .− ∞ < < ∞

π +1 x2
x  (3.153)

The function given in (3.153) is clearly positive, and it can easily be seen that its 
integral over the range of X is 1. We leave the proof as an exercise. Hence, it is 
a pdf. The random variable with pdf given in (3.153) is referred to as the Cauchy 
random variable. What is E ( )X ?

Answer

 

∞

( )X x= =∫ ∫
∞

E f (x) 1 x
X dx

−∞ −∞ π +1 x2
dx

 
1= ln 1+ ∞

x ,
2π −∞

which is undefined.

Definition 3.30

The variance of a continuous random variable X, denoted by σ 2
X, is given by

 
∞

σ μ2 E X
2 2

X X= −⎡( ) ⎤ = −∫ (x μ) f ( )x dx. (3.154)⎣ ⎦ −∞

From Chapter 2, σ μ2 2E X 2
X = −( ) . Hence, for a continuous random variable, in its 

general form:

 
∞

σ μ2 2x f x dx 2
X X= −∫ ( ) . (3.155)

−∞

Example 3.65

A school bus arrives shortly (about 5 minutes) after 7:00 am each non-holiday 
weekdays during an academic year. The number of minutes after 7:00 that the bus 
arrives can be modeled as a continuous random variable X with pdf as
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⎧ 2
⎪ ( )5 ,− ≤x x0 5≤ ,

f x( ) = ⎨ 25  
⎪ 0, otherwise.⎩

Answer the following:

 i. Graph the pdf,
 ii. Find the cdf,
 iii. Graph the cdf,
 iv. Find the mean, 
 v. Find the standard deviation of the number of minutes after 7:00 that the 

bus arrives. 

Answers

 i. See Figure 3.13

X( ) ∫
x

 ii. F xX = ≤P(X x) = f (t)dt
0

≤

2= −∫ ∫
x x

( ) 2
5 t dt t= −( )5 dt

0 025 25

2 ⎡
x

t2 ⎤ 2 ⎡ x2 ⎤
= −⎢5t ⎥ = −⎢5x ⎥25 ⎣ 2 ⎦ 25 ⎣ 2

0 ⎦

1= −( )10x x2 ,0 ≤ x 5.
25

FIGURE 3.13 Graph of pdf, Example 3.65
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 iii. See Figure 3.14
 iv. From (3.148), we have:

 

2= −∫
5

x x( )5 dx
25 0

5= ≈ 1.7min. (3.156)
3

5

μ = =E X( ) ∫ xfX (x)dx
0

5
2 ⎡5x x2 3 ⎤

= −⎢ ⎥25 ⎣ 2 3 ⎦0

 

 v. From (3.154) and (3.156), we have:

 

μ−

2 ⎛= −∫
5

x x5 ( ) 5⎞
2

5 dx − ⎜ ⎟
25 0 ⎝ 3⎠

2 ⎛= −∫
5

x x2 ( ) 5⎞
2

5 dx − ⎜ ⎟
25 0 ⎝ 3⎠

5

σ 2 2
x X= ∫ x f ( )x dx 2

0

5
2 ⎡5x x3 4 ⎤ ⎛ 5⎞

2
25= −⎢ ⎥ − ⎜ ⎟ = min2.

25 ⎝ ⎠⎣ 3 4 ⎦ 3 18
0

 

FIGURE 3.14 Graph of cdf, Example 3.65
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Hence, the standard deviation of X is:

 
25 5 2σ X = = ≈1.18 min. 
18 6

3.7  CONTINUOUS MOMENT GENERATING FUNCTION

We have seen the moment generating function for a discrete random variable. 

We will now discuss this function for a continuous random variable.

Definition 3.31

Let X be a continuous random variable. Then, the moment generating function 
(mgf) of X denoted by M tX ( ) (as for a discrete random variable) is defined as 

M tX ( ) = E etX ). That is, if the pdf of X is denoted by f ( )x , then(

 
∞

M tX ( ) = ∫ etx f (x)dx. (3.157)
−∞

Some properties of mgf

 1. Differentiating the mgf r times, we have:

 

r ∞ ∞ r

M t( )r d d
X ( ) = =e f x dx e ftx x dx

dt ∫ ∫tx ⎛ ⎞
r ( ) ⎜ ( )⎟

−∞ −∞ ⎝ dtr ⎠

∞

= ∫ x er tx f ( )x dx. (3.158)
−∞

 

Letting t = 0 in (3.158) yields:

 
∞

M x( )r r( )0 .= =∫ etx f ( )x dx E ( )X r  (3.159)
−∞

 2. Let X and Y be two independent random variables with M tX ( ) and M tY ( ) 
as their respective mgfs. Let, also, Z X= +Y . Then, the moment generating 

function of the product of the sum is the product of mgfs. That is,

 
MZ ( )t = =E e( )tZ E e( tX+tY )

= =E e( )tXetY E (etX )E e( tY ) = MX Y( )t M ( )t . (3.160)
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This property can be extended for n independent random variables. For 

example, let X1 2, ,X X..., n be n independent random variables. Let also 

X = +X X1 2 +...+ Xn. Then, 

 ( ) ∏
n

M tX X= M k ( )t . (3.161)

k=1

The proof of this property incorporates the previous one as a special case. 

Here, it is:

 

M tX ( ) = E ( ) ⎡ ( )etX E t X + +X ...+X ⎤⎣e 1 2 n

⎦

= E e⎡ tX1 2+ +tX ...+tXn ⎤⎣ ⎦
 

= E e( )tX1 2E e( tX )...E e( tXn )
= +M tX X1 1

( ) M t( )...M tXn ( ).

 3. Let X be a random variable with MX(t). Also, let Y be a random variable such 

that Y = a + bX, where a and b are the constants. Then,

 M tY ( ) = eatMX (bt). (3.162)

This is because 

 
M t( ) = =E ( )etY E ⎡e ( )aX+

⎣
t b

Y ⎤⎦
 

= =e Etb ( )etaX etbM ta
X ( )e .

 4. Let Fn be a sequence of cdfs with corresponding mgfs Mn(t). Let F also be 

a cdf with mgf M. Further, Mn(t)→M(t), for all t within an open interval 

containing 0. Then, Fn(x)→F(x), for all x at which F is continuous.

3.8  FUNCTIONS OF RANDOM VARIABLES

In this section, we will discuss the joint distribution for both discrete and continuous 

random variables due to their similarities. Hence, we consider a sample space Ω with 

a general element ω. Also, let X be a random variable. Recall that X is a function that 

associates the real number X(ω) with an outcome ω with pdf or pmf fX(x) and cdf or 

cmf FX(x).

Now suppose y = g(x) is a real-valued function of the real variable x. Then, 

Y = g(X) is a transformation of the random variable X into the random variable Y. 

Hence, as X(ω) is a random variable, so is g(X(ω)) called the function of the random 
variable X. Then, the question is how to find pdf or pmf fY(y) and cdf or cmf FY(y) 

of g(X(ω)). Of course, the domain of function g should contain the range of X.
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Definition 3.32

If X = ( )X X1 2, ,...Xn  is a random vector of n continuous random variables that asso-

ciate the sample space Ω with the space  n of real n-tuples, then the joint distribution 

function of X is defined as:

 F xX X1 2, ,...,Xn ( )1, ,x2 ... ...xn = ≤P{X1 x1, X2 ≤ x2, , Xn ≤ xn}. (3.163)

The pdf of X is defined as:

 
∂n

FX X1 2, ,...,Xn ( )X F
∂ ∂x x,... X X1 1, ,... ...n n( )x , x . (3.164)

1 n

In the case of one variable, the marginal pdf for each random variable is obtained 

as follows:

 F xX X1 1( )1 ,= ...  f  Xn ( )x1, , xn dx2 dxn. (3.165)∫∫
In particular, we consider only two continuous variables X and Y with fX(x) and fY(y). 
Then, the joint bivariate pdf of X and Y is denoted by fXY(x,y). From pmf, we will have:

 P(X ≤ ≤x and Y y) ≈ fX Y, (x, y)dxdy. (3.166)

Definition 3.33

Similar to (3.163), the joint pmf for two discrete random variables X and Y is defined by 

 ),P PXY = =( aX x nd Y = y  

or

 P PXY = =( ,X x Y = y). (3.167)

Definition 3.34

Let X and Y be two continuous random variables. Then, the joint pdf of X and Y is 

an integrable function, say fXY(x,y) or just f(x,y), such that:

 i. fX Y, ( ,x y) ≥ 0, (3.168)
∞ ∞

 ii. ∫ ∫ f xX Y, ( , y)dx dy = 1, (3.169)

−∞ −∞

and for an event {( ,X Y ) ∈S} defined in the xy-plane, 

 iii. P{ }( ,X Y ) ∈ =S ∫ ∫ fX Y, (x, y)dx dy. (3.170)

S
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The conditional pdf of X given Y can be used to find the joint pdf. Here is how it 

is defined.

Definition 3.35

The conditional pmf or pdf of a random variable X given a random variable Y is 

defined as:

 
f x

f x , ( , y)
X Y ( , y) = >X Y if f y( ) 0.

f yY ( )
Y  (3.171)

Thus, from (3.171), the joint pdf or pmf of X and Y is:

 fXY ( ,x y) = ⋅fX Y ( ,x y) fY (y). (3.172)

The marginal pdf of X (or Y) can be obtained from the joint pdf fXY ( ,x y), (3.172), 

denoted by:

 

⎧ ∞

⎪ f x( ) = f , ( ,x y)dy,
⎪ X X∫ Y

−∞
⎨  (3.173)
⎪ ∫

∞

f y( ) = f , (x, ) .⎪ Y X Y y dx
⎩ −∞

Similarly, the marginal pmf of X (or Y) can be obtained from the joint pdf fXY ( ,x y), 

(3.171), denoted by:

 

⎧
X X∑

∞

⎪ f x( ) = f , ( ,x y),
⎪ Y

⎪ −∞
⎨  (3.174)
⎪

∞

f yY X=⎪ ( ) ∑ f ,Y (x, y).

⎩⎪ −∞

Example 3.66

Let X and Y have a joint pdf defined by

 < ∞f ( ,x y) = <e− −x y
XY , 0 x y,  

with

 
x

S x= ∋{ }( , y) 0 < y < . 
7

Find the probability that (X, Y) falls in S.
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Answer

 

∫
x

P X{ }
∞

( )Y ∈ =S
7
e− −x ydxdy

0 ∫0

∫ ∫
∞ ⎡ ⎛ −x ⎞ ⎤ ∞ ⎛ −x

= −e e−x ⎢ 7 −⎜ 1 1dx e e−
⎟ ⎥ = −x ⎞

⎜ 7 ⎟ dx 
0 ⎢⎣ ⎝ ⎠ ⎥⎦ 0 ⎝ ⎠

⎛
∞

∞ −8x −8

= −∫
x

−
⎜e ex 7

⎞ ⎡ 7
e−x ⎤ 1

⎟ dx = −⎢ + e 7 ⎥ = .
0 ⎝ ⎠ ⎣ 8 ⎦ 8

0

Example 3.67

Let X and Y have a joint pdf defined as

3
f x( , y) = ≤, 1x2
XY y ≤ , 0 < x <1. (3.175)

2
 

We want to 

 i. Find the conditional pdf of Y given X, 

 
1 1

ii. Find the conditional pdf of Y, ≤ ≤y 1, given x = , 
9 3

 iii. Check to make sure the answer in (ii) is a pdf.

Answer

 i. From (3.173), we have:

 

∞

fX X( )x = ∫ f ,Y ( ,x y d) y
−∞

1.
1 3= =∫ 3

1
3

dy y = x x
x x

( )1 ,− 2 0 < <
2 2 2 2 2

 

Thus, from (3.171) and (3.175), we also have:

 

>

3  
1= 2 =

( ) ( ) , 0 < <x x1, 2 ≤ y ≤1.
3 − 2

(3.176)
− x2 1 x1

2

f x
f x , ( , y)
Y X ( , y) = X Y

, if f x( ) 0
f xX ( )

X

 
1

ii. For x = , (3.176) yields
3

 ⎛ 1 ⎞ 1 9
f yY X ⎜ , ⎟ = = ≤, 1x2 y ≤ . (3.177)⎝ 3 ⎠ ⎛ 1 ⎞ 8

⎜1− ⎟⎝ 9 ⎠
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9

iii. To see that the function found in (3.177) is a pdf, we note that > 0. 
8

Then, integrating with respect to y and evaluating for x2 ≤ ≤y 1, we have:

∫
1 9 9 ⎛ 1 ⎞dy = −⎜1 ⎟ = 1.
1

 
8 8 ⎝ 9 ⎠

9

 

Definition 3.36

Let X and Y be two discrete random variables. Let the sample space of X, Y and the 

joint X and Y be denoted by SX, SY, and SX,Y, respectively. Then, the joint pmf of X 

and Y is given by the conditional probability as follows:

 

)P PXY = =( ,X x Y y=

= =P Y( )y X = x ⋅P( )X = x  (3.178)

= =P X( )x Y = y ⋅P( )Y = y

 0 ≤ ≤P xXY ( , )y 1, and ∑∑PXY (x, )y = 1. (3.179)

x S∈ X y S∈ Y

From the law of total probability, the pmf of either X or Y, that is, marginal pmf, can 

be found as follows:

 P xX ( ) = =P( )X x =∑ ∑P( ,X = x Y = y) = PXY (x, y). (3.180)

y S∈ ∈Y Yy S

Similarly,

 PY ( )y P= =(Y y) = ∑ ∑P(X = x, Y = y) = PXY (x, y). (3.181)

x S∈ ∈X Xx S

Example 3.68

Suppose the joint pmf of two discrete random variables X and Y is given in 
Table 3.31.

Find:

 i. The marginal pmf of X and Y,
 ii. P( 0X Y= >, 1),

 iv. P Y( = =1 1X ).
 iii. P X( = ≤1,Y 2),
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Answer

From Table 3.31, we have: SX = {0,1} and SY = { }1,2,3 .

 i. P PX X(0) = +Y (0,1) PXY (0, 2) + PXY (0,3)

1 1 31 143= + + = .
10 5 126 315

  

P PX X(1) = +Y (1,1) PXY (1,2) + PXY (1,3)

 1 1 1 172= + + = .
5 7 9 315

Hence,

 

⎧ 143
⎪ x = 0
⎪ 315

⎪ 172
P xX ( ) = ⎨ x = 1  

⎪ 315

⎪ 0 otherwise.
⎪
⎩

 

1 1 3
P PY X(1) = +Y (0,1) PXY (1,1) = + = .

10 5 10

1 1 12
P PY X(2) = +Y (0, 2) PXY (1, 2) = + = .  

5 7 35

31 1 5
P PY X(3) = +Y (0,3) PXY (1,3) = + = .

126 9 14

Hence,

 

⎧ 3
⎪ , 1y = ,
⎪ 10

⎪ 12
⎪ , 2y = ,

P yY ( ) = ⎨ 35  
⎪ 5
⎪ , 3y = ,
⎪ 14

⎪ 0, otherwise.⎩

TABLE 3.31
Joint pmf of Two Random Variables X and Y

Y = 1 Y = 2 Y = 3

X = 1
1

5

1

7

1

9

X = 0
1

10

1

5

31

126
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1 31 157

ii. P X( = >0,Y P1) = XY (0,2) + PXY (0,3) = + = .
5 126 630
1 1 3

 iii. P(X = ≤0,Y P2) = XY (0,1) + PXY (0,2) = + = .
10 5 10

1
( 1= =

 iv. ( ) P X ,Y 1)= =1 1 = = =5 63
P Y X .

P X( 1= ) 172 172
315

Example 3.69

Consider tossing two fair coins separately. Let the random variable X represent the 
occurrence of tails (failure) of the first coin and the random variable Y represent 
the occurrence of heads of the second coin. Find the joint pmf of X and Y.

Answer

The sample space in this case is {(H H, ),(H ,T ),(T , H),(T ,T )}. Let us denote the 
values of X and Y as follows:

 
⎧⎪ 1, if T occurs, ⎧⎪ 1, if H occurs,

X = ⎨ and Y = ⎨  
⎩⎪

0, if H occurs, ⎪ 0, if T occurs.
⎩

Since X and Y are independent, as the problem states, we have:

 

⎧ 1
⎪ , 0x y= =, 0,
⎪ 4

⎪ 1 = =
⎪⎪

, 0x y, 1,
4

P X( ,= =x Y y) = ⎨  
⎪ 1

, 1x y= =, 0,
⎪ 4
⎪ 1
⎪ , 1x y= =, 1.
⎪⎩ 4

We can extend (3.167) to a finite discrete random vector, say with n elements, as 
follows.

Definition 3.37

For a discrete random vector { }X X1 2, ,..., Xn  with n elements, the joint probability 
mass function P xXI ,X2 ,X3 ( )1 2, x ,..., xn   is a function that completely characterizes the 

distribution of a discrete random vector and is defined as:

 P PX X1 2, ,...,Xn = =( )X1 x1, ,X2 = x2 ..., Xn = xn . (3.182)



183Random Variables

As in bivariate cases, discrete or continuous, it is important to note the relationship 

among components of the vector. One particular important case is the one with no 

relationship at all.

Definition 3.38

Let X1 2, ,X X... , n be n independent random variables with pdfs or pmfs as 

fX X1 2( )x f1 2, ,(x ) ..., fXn ( )xn , respectively. Then,

 

n

f xX X1 2, , Xn ( )1, ,x2  ...xn = ⋅fX1 ( )x1 fX2 (x2 ) fX (xn ) =∏ fX (xi ). (3.183)

i=1

n i

Note 3.44

In case the pdf or pmf is parametric, say with one parameter μ, denoted by f ( )x 0 , 

then with the same parameter value μ in each marginal pdf or pmf, the joint pdf 

or pmf will be

  f x( )1 2, ,x  ...xn Xθ θ= ⋅f
1 2( )x1 fX (x2 θ ) fXn i(xn θ ) =∏ fX (xi θ ). (3.184)

i=1

n

Note 3.45

We leave it as an exercise to prove, by a counterexample, that pairwise indepen-

dence does not imply mutual independence.

Note 3.46

If each one of the random variables Xi , 1i n= ,2,..., , is a random vector, then we 

obtain a mutual random vector.

Example 3.70

Let the random variables X and Y have a joint pdf defined as

fX Y, ( ,x y) = ≤2, 0 x ≤ y <1.  

Find fX(x), fY(y), E(X), E(Y), Var(X), and Var(Y)
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Answer

From the given joint pdf, the marginal pdfs are:

 
1

f ( )x = =∫ 2dy 2y]1X = 2(1− x), 0 ≤ x ≤1,
x

 
x

and

 
y

f yY ( ) = =∫ 2dx 2x]y

0
= 2 ,y 0 ≤ y ≤1. 

0

For the moments, we can use either the joint pdf or the marginal. Hence, for the 
first moments, we have:

 

1 ⎡
X x= −∫ ⎤

1
x x2 3

E( ) 2 (1 x)dx = 2 ⎢ − ⎥
0 ⎣ 2 3 ⎦0  

⎛ 1 1⎞ 1= −2⎜ ⎟ =⎝ 2 3⎠ 3

and

 
1

1 ⎡
= ⋅∫ y3 ⎤ 2

E( )Y y2 y dy = 2 ⎢ ⎥ = . 
0 ⎣ 3 ⎦ 3

0

Now, for the second moments, we have:

 

1

E X( ) = −∫
1

2 2 ⎡ x x3 4 ⎤
2 (x 1 x)dx = 2 ⎢ − ⎥

0 ⎣ 3 4 ⎦0  
⎛ 1 1 ⎞ 1= −2⎜ ⎟ =⎝ 3 4 ⎠ 6

and

 
y

E ( )2 2= ⋅∫
1 ⎡ 4 ⎤

1
1

Y y2 2y dy = ⎢ ⎥ = . 
0 ⎣ 4 ⎦ 2

0

Thus, for the variances, we have:

 
2

2 1 ⎛= −( ) [ ] 1⎞ 1
Var( )X E X E( )X

2 = − ⎜ ⎟ =  
6 ⎝ 3⎠ 18

and

 
2

2 1 ⎛= −( ) [ ] 2 ⎞ 1
Var( )Y E Y E( )Y

2 = − ⎜ ⎟ = .
2 ⎝ 3 ⎠ 18

 

Below, we now present some properties of functions of random variables in both 
the discrete and continuous cases.
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Definition 3.39

Let X and Y be two independent discrete random variables. Denote the sum by 

Z = X + Y. Then, the probability of the sum, Z, is given as follows:

 

∞

P Z( )= =z ∑P X( = j)P(Y = z − j). (3.185)

j=−∞

Definition 3.40

Let X and Y be two discrete random variables defined on a sample space Ω with 

joint pmf denoted by pXY(x,y). Let Z also be a new bivariate as a function of X and Y, 

denoted by Z = z(X,Y). Then, the expected value of sum, Z, is defined by

 E( )Z E= =[ ]z(X ,Y ) ∑ z(x, y)pXY (x, y). (3.186)

( ,x y)∈Ω

Properties of expected value of sum:

Definition 3.41

The convolution of two independent continuous random variables with pdfs fX(x) 

and fY(y), denoted by h(z) = ( f * g)(z), is defined as:

 
∞

h z( ) = =( f * g)( )z ∫ f (z − u g) (u)du. (3.187)
−∞

We leave it as an exercise to prove that 

 h z ∫
∞

( ) = =(g* f )( )z f (u g z) ( − u)du. (3.188)
−∞

The idea of the convolution being connected to the probability of the sum of two 

independent random variables came about as follows. Let Z be the random variable 

representing the sum of two random variables X and Y, that is, Z = X + Y. Then, pdf 

of Z, denoted by hZ(z), is:

 
∞

h zZ X( ) = −∫ f (z y)gY (y)dy, (3.189)
−∞
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or

 
∞

h z( ) = −∫ gY X(z x) f (x)dx. (3.190)
−∞

In case the joint pdf of X and Y, denoted by HZ(z), is given, then

 P Z{ }≤ =z P X{ +Y ≤ z}, (3.191)

and

 
∞ −

= ∫ ∫
z y

H zZ X( ) h ,Y (x, y)dx dy. (3.192)
−∞ −∞

Therefore,

 
dH ( )z

h zZ ( ) = =Z h x, ( ,z x)dx.
dz ∫

∞

X Y −  (3.193)
−∞

Example 3.71

Let X and Y be two uniformly distributed random variables distributed with cdf 
as U(0,5) and U(0,10), respectively. We want to find the distribution of Z = X + Y.

Answer

For the pdf of Z = X + Y, applying the convolution, we have the following three 
cases:

 

x

x

( ) = −∫
z

hZ Yz g (z x) fX (x)dx
0

∫
z 1 1 z= =dx .

0 10 5 50

5

hZ Y( )z g= −∫ (z x) fX (x)d
0

=∫
5 1 1 1= dx .

0 5 10 10

5

hZ Y( )z g= −∫ (z x) fX (x)d
z−10

∫
5 1 1 15 − z= =dx .

z−10 5 10 50

 



187Random Variables

Hence,

 

⎧ z
⎪ , 0 ≤ <z 5,
⎪ 50

⎪ 1
hZ ( )z = ⎨ , 5 ≤ <z 10,

⎪ 10

⎪ 15 − z
, 10 ≤ <⎪ z 15.

⎩ 50

 

Example 3.72

Let X and Y be two independent exponential random variables with common pdf 
as f ( )x e= λ −λx

X  with λ > 0. Let Z also be the random variable representing the 
sum of X and Y; that is, Z = X + Y. Then, the pdf of Z, denoted by hZ(z), that is, the 
pdf of the sum of two iid (independent, identically distributed random variables) 
exponentially distributed random variables, is a gamma pdf with parameters 2 and 
λ, as follows:

 

= λ 2ze−λz .

z

h( )z f= −∫ Y X(z x) f (x)dx
0

z

= ∫ λ λe e− −λ λ( )z x − x dx  
0

3.9  SOME POPULAR CONTINUOUS PROBABILITY 
DISTRIBUTION FUNCTIONS

As was the case with discrete random variables, when we considered some special 

cases, specifically, the geometric, binomial, and Poisson distributions, we do the 

same for continuous distributions, too. Probably the three most important continuous 

distributions are uniform, exponential, and normal distribution. However, we will 

discuss more types of continuous pdf, some of which are vastly used in the industry 

and applications, and some that will be used in Chapter 5 of this book.

 1. Uniform, 

2. Gamma, 

3. Exponential,

4. Beta,

5. Erlang,

6. Normal, 

7. Chi-squared,

8. F,

9. Student’s t,

 

  

 

 

 

 

 

 

 10. Lognormal,
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 11. Logit, 

 12. Extreme value,

13. Weibull,

14. Phase type.

 

 

3.9.1  CONTINUOUS UNIFORM DISTRIBUTION

Definition 3.42

A random variable X has a uniform or rectangular distribution on [a, b] if X has the 

following density function (Figures 3.15 and 3.16):

 

⎧ 1
⎪ , ,a x b≤ ≤

f xX ( ) = ⎨ b a−  (3.194)
⎪ 0, otherwise.⎩

From (3.194), we see that fX(x) > 0 and

 ∫
b 1 b a−

dx = = 1. 
a b a− b a−

From the pdf, the cumulative probability distribution function for uniform 
 random variable, cdf, denoted by FX(x), is 

 

⎧ x a−
⎪ , a x b≤ ≤ ,

F xX ( ) = ⎨ b a−  (3.195)
⎪ 0, otherwise.⎩

FIGURE 3.15 Uniform pdf.
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Note 3.47

The uniform distribution may be interpreted as representing a number chosen 

uniformly at random from the interval [a, b].

Theorem 3.11

The expected value and variance of a uniform random variable X are given as follows:

 
b a+ 2

2 ( )b a−μX X= =E X( ) and σ = =Var(X) . (3.196)
2 12

Proof:
From (3.196) and Definition 3.36, the mean and variance of the uniform random 

variance X can be found as follows:

 

b a2 2− b a+= = .
2(b a− ) 2

⎛= ∫
bb 1 ⎞ x2

E( )X x ⎜ ⎟ dx =
a ⎝ b a− ⎠ 2(b a− )

a
 

FIGURE 3.16 Uniform cumulative probability distribution function.
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Now,

 
b a3 3− ( )b a− +b2 2ab a+

= =  
3(b a− ) 3(b a− )

b a2 2+ +b a
= .

3

( ) ∫
bb x3

2 2 ⎛ 1 ⎞E X = x ⎜ ⎟ dx =
a ⎝ b a− ⎠ 3(b a− )

a

( )

Hence,

 

( )b a− 2

= .
12

b2 2+ +ab a ⎛ b a+ ⎞ 2

= − ⎜ ⎟
3 2⎝ ⎠  

σ 2 2
X = E X μ− 2( )

Example 3.73

Let X be a uniform random variable on [1, 6]. Find P(X > 3), μX, σ 2
X, and standard 

deviation of X.

Answer

Given the range of X as [1, 6], a = 1 and b = 6. The pdf of this uniform random 
variable is given by

 

⎧ 1
⎪ , 1 ≤ ≤x 6,

f x( ) = ⎨ 5  
⎪ 0, otherwise.⎩

Hence, 

 
∞

( 3> =) ∫ ∫1 6 1 3
P X dx = dx = = 60%. 

3 35 5 5

The expected value of this random variable is

 
6 1+ 7μX = = = 3.5. 

2 2

The second moment of X is 

 
b a2 2+ +b a 36 + +6 1 43μ 2X = = = .  

3 3 3
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Hence,

 
2

2 43 ⎛ 7 ⎞ 25σ X = − ⎜ ⎟ = ≈ 2.08  
3 ⎝ 2 ⎠ 12

and

 σ X = =2.09 1.44.  

3.9.2  GAMMA DISTRIBUTION

There are distributions with one-, two-, three-, and even four-parameter family 

with each having its own applications. We now consider a gamma distribution with 

three parameters α (the shape parameter), λ (the rate parameter), and l (the location 

parameter), followed by its special cases of two and one parameters and then three 

special cases reduced from the one-parameter case, namely, exponential, Erlang, and 

chi-squared.

Note 3.48

We note that the parameter λ in some publications is used as 1/λ so that it would 

show the mean rather than the rate, as we will see later.

Definition 3.43

Let α and λ be the positive real numbers. A random variable X with pdf defined by

 

⎧ λα

⎪ ( )x l− ≥α λ− −1 (e x−1) , x l,α λ, 0> ,
f xX ( ;λ α; ,l) = ⎨ Γ( )α  (3.197)

⎪ 0, x < 0,⎩

is referred to as a three-parameter gamma random variable, where Γα  is the 

gamma function given in Chapter 1 as

 
∞

Γ =( )α ∫ x eα− −1 x dx. (3.198)
0

The distribution function of X is referred to as a three-parameter gamma pdf with 

parameters α, λ, and l.
If l = 0, then (3.189) reduces to a two-parameter gamma pdf given as below:

 

⎧ λα

⎪ x eα λ− −1 x , α λ, > >0, x 0,
f xX ( ;λ α; ) = ⎨ Γ( )α  (3.199)

⎪ 0, x < 0,⎩
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( ) t
where Γ α  is given by (3.198). Now, if we let t = λx  in (3.192) and write x = , we 

λ
will have: 

 ∫
∞ λ

t eα− −1 tdt = 1 (3.200)
0 Γ( )α

and the integrand is nonnegative. Thus, (3.198) is a pdf.

If we let α 1 in (3.198), then we will have the one-parameter gamma pdf, given 

by

=

 
⎧ λ λe xx > ≥

f xX ( ) ⎪ −λ , 0, 0,
;λ = ⎨  (3.201)

⎪ 0, x < 0.
⎩

Theorem 3.12

For a two-parameter gamma random variable X, the expected value and variance are 

given, respectively, as follows:

 
αμX XE X and σ 2 α= =( ) = Var ( )X =

2
. (3.202)

λ λ

Proof:
From (3.201), we have:

 x
∞ λ

E = 1 λ( )X ∫ ∫
α ∞ α

x xα λ− −e xdx = x xα λ− −1e dx. 
−∞ Γ( )α 0 Γ( )α

t dt
Using a substitution t = λx  and write x = , hence, dx = , we will have:

λ λ

 ∫
−

( ) ∫
∞ t tλα ⎛ ⎞α 1 dt 1 ∞

E X = e−t t= t eα − dt. (3.203)
0 λ Γ( )α λ⎝ ⎠ λ λΓ( )α 0

From (3.202) and the property of the gamma function mentioned in Chapter 2, the 

integral in the right-hand side of (3.195) is Γ +( )α α1 = Γ( )α . Hence, we will have:

 ( ) 1 α
E X = α αΓ =( ) . 

λ αΓ( ) λ

Now, using again the definition of the second moment, substituting t = λx , and 
t dt

 writing x = , so that dx = , we have:
λ λ
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t( ) = ∫ ∫
∞ λ α λ t

E X x ( )
∞ 2

2 2 λ −
x

1
e− x λ

dx = t e− −1 dt

0 Γ( )α λ 2
0 Γ( )α λ

α

1 1 α α 1
2 ∫

∞

t eα+ −1 t ( )+= dt =
2

Γ +( )α 2 = .
λ αΓ( ) 0 λ αΓ( ) λ 2

 

Hence,

 
+= =( ) ( ) α α 2

2 2 2 1 α ασ X Var X E X [ ] ( )− E X( ) ⎛ ⎞=
2

− =
2

.  
λ ⎝ λ ⎠ λ

This proves the theorem.

Note 3.49

The gamma pdf is, sometimes, written differently. This can be done by chang-
t

ing the variable, t = λx , and writing x = . Here is what the gamma pdf with 2 
λ

parameters k and θ , where α  is replaced by k and β is replaced by θ , looks like:

 

⎧ 1
x

⎪
−−1 θ , ,θ( ) x ek k x> >0, 0,

f xX ; ;θ k = ⎨ θ kΓ( )k  (3.204)
⎪ 0, x ≤ 0,⎩

where Γ( )α  is the gamma function, defined earlier. From (3.204), we will have 

E ( )X k= θ  and Var ( )X = kθ 2. We leave the derivations as exercises.

3.9.3  EXPONENTIAL DISTRIBUTION

Definition 3.44

A random variable X with a one-parameter gamma pdf as given in (3.201) is referred 

to as the exponential (and sometimes negative exponential) random variable. 

From (3.201), its cpdf, denoted by F xX ( );λ  (or if there is no confusion just simply 

F xX ( )), is given by

 
⎪ −

F x( )
x ⎧ 1 ,− ≥e xλx 0,

X ;λ λ= =∫ e−λu du ⎨  (3.205)
0 0, x < 0.⎩⎪

It is referred to as the exponential probability distribution function with 
 parameter (or rate) λ.



194 Probability, Statistics, Stochastic Processes

Note 3.50

Recall from the Chapter 2 about Poisson pmf that it is an integer-valued (discrete) 

pmf. It was noted there that such a pmf arises from counting the number of 
occurrences of events in a period of time.

Recall also that the geometric random variable measures the waiting time for 
the first success after a sequence of failures in a Bernoulli trial.

The exponential random variable with a continuous distribution, however, rep-

resents the waiting time between occurrence of a sequence of events that hap-
pen at the rate λ per unit time, such as the time between arriving customers in a 

store, between the calls received to an office, and between the scoring of a “goal” 

in a soccer game.

Example 3.74

Answer

 ( )( )

 

Let us denote the cdf of X by F tX ( ). Then,

 = −1 1( )− eλt

= eλt .

 

Thus,

 
= =( )n

e e− −λ λt n t . (3.208)
 

Recall from the Chapter 2 that the most important property of the geometric 
pmf was memoryless. For continuous distribution, the exponential distribution 
is known as the only probability distribution function that has the memoryless 
property. This property says that if the time to wait for an event to occur has the 
exponential distribution, then the probability that we have to wait an additional 

Let us consider a set of iid random variables X1 2, ,X X, n, each distributed expo-
nentially with the same parameter λ . The question is finding the distribution of the 
smallest random variable among the set, that is, X = min( )X X1 2, , , Xn .

Let t be a real number. Since X = min( )X X1 2, , , Xn , for X to be greater than t, all 
elements of the set must also be greater than t, that is,

P X( )> =t P X1 2> t and X > t and and Xn > t . (3.206)(( )
But X1 2, ,X X, n are assumed to be independent. Thus,

P X( )> =t P X( )1 2> t P X( > t) P ( )Xn > t . (3.207)

P ( )X tk > = 1 ,− F ( )t k = 1,2, ,n

P X( )> =t P X( )1 2> t P X( > t) P (Xn > t)
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s unit of time is the same no matter how long we have already waited. In other 
words, the history of the process is of no importance for this distribution. Formally, 
as for geometric pmf, we have:

Note 3.51

As mentioned earlier, geometric pmf has memoryless property, and it is the only 

discrete pmf having such property. That is, it does not remember the history. 

For the continuous case, on the other hand, the exponential distribution function 

has the same property. It is the only continuous distribution having such property. 

The proof of this property is given in the following theorem.

Theorem 3.13

Let X be an exponential random variable and t and s two nonnegative real numbers. 

Then, the memoryless property for X holds. That is,

 P X( )> +t s X > t = P X( )> s , (3.209)

where 

 

Proof:
As we noted in the Chapter 2, from conditional property, for P ( )X t> > 0, we have: 

In other words, the conditional probability in (3.177) does not depend on t.

F XX ( )> =s 1 1− ( )− e− −λ λs s= e . 

 
P X( ){ } {( ) > +t s ∩ X > t}

P X > +t s X > t = . (3.210)
P X( )> t

It is clear that (X s> + t) (→ X > t). Hence, from (3.209), we have:

 
P X

P X( ) ( )> +t s> +t s X > t = . (3.211)
P X( )> t

From (3.207), we have F XX ( )> =t 1 1− ( )− e−λt . Hence, from (3.211), we will have:

 
e− +λ( )s t

= = e−λs .
e−λt

P X
P ( ) ( > +t s

X > +t s X > t =
P X( )> t

 

)
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In a real-life setting, suppose you are in a waiting line at a checkout register at 
a grocery store. A customer is checking out and 5 minutes has past. What is the 
probability of her checking out taking another 3 minutes? 

The answer is that the 5 minutes passed does not count. The probability of the 
question is the probability that it would take 3 minutes, that is, e−3λ .

Answer

Example 3.75

In real-life situations, (3.211) says that the probability of waiting for an additional s 

unit of time, given that we have already waited for t units of time, is the same as the 

probability at the start that we would have had to wait for t units of time. In other 

words, every epoch is like the beginning of a new random period, which has the 

same distribution regardless of how much time has already past.

Note 3.52

If there is no confusion in denoting the exponential pdf, we may drop the index X 

and the parameter λ and write f ( )x .

Theorem 3.14

The nth moment, expected value, variance, and moment generating function of an 

exponential random variable X are given, respectively, as follows:

 ( )n n!
E X = n . (3.212)

λ

 = =( ) 1μX E X .  (3.213)
λ

 σ 2 1
X =

2
. (3.214)

λ

 
λ

M tX ( ) = , .t < λ  (3.215)
λ − t

Proof:
We first prove the nth moment

 
∞

E X( )n n= ∫ x λe−λxdx. 
0
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In order to use the gamma function, as the left-hand side looks like, we let t = λx . 
t

That is, x =  and dt d= λ x. Then,
λ

 
1 n!= Γn ( )n +1 = ,
λ nλ

 

where Г stands for the gamma function defined in Chapter 1. This proves (3.212).

From (3.214), when n = 1, we obtain (3.215). Also, from (3.213), we have:

( )n n 1
E X x= =∫ ∫

∞ ∞

λe−λxdx n tn te− dt
0 0λ

 

E ( )2 2
X =

2
. (3.216)

λ

From (3.215) and (3.216), we have:

as stated in (3.207).

M tX ( ) = =E ( )etX ∫
∞

etx fX (x)dx
−∞

λ λ= ⎡ ( )e t x−λ ⎤
∞

= , .t < λ
t − λ ⎣ ⎦0 λ − t

This completes the proof of the theorem.

As we have seen, the mean value of the exponential random variable is the inverse 

of its parameter λ. Hence, in observing a stream of arrival of events, the expected 

time until the next event is always 1/λ . In other words, the mean time to wait for 

an event to occur is inversely proportional to the rate at which the event occurs.

Suppose the customers at the grocery store in the previous example arrive at the 
register at the rate of 3 per every 10 minutes. What is the probability that the 
cashier will have to wait between 3 and 5 minutes for the next customer to arrive? 

Example 3.76

Note 3.53

= =∫ ∫
∞ ∞

e etxλ λ−λx ( )dx e dt x−λ x  
0 0

Now, the moment generating function, M tX ( ).

σ 2 2 1⎛ ⎞ 2
1= − ⎜λ λ2 ⎟ =⎝ λ 2

, ⎠ 
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Answer

Let X be the random variable representing the time the cashier has to wait for the 
next customer to arrive. Then, X is exponentially distributed with parameter λ = 3 
per 10 minutes, equivalent to 18 per hour. Hence, the pdf of X, denoted by fX ( )x , is 

 
⎧

( ) ⎪ 18e x−18λ , 0≥ ,
f xX ;λ = ⎨  

⎪ 0, x < 0.
⎩

Note 3.54

λ = 3 per 10 minutes implies that the average number of customers to arrive at 

the register is 18 per hour. Also that 3–5 minutes of waiting time for a customer 

to arrive at the register is equivalent to 1/20 to 1/12 of an hour. 

Hence, we will have:

 

≈ −0.4066 0.2231 ≈ 0.1835 ≈18.35%.

1

⎛ 1 1 ⎞P X⎜ ≤ ≤ ⎟ =⎝ ⎠ ∫ 12
18e−18x dx

20 12 1

20

1
−− ⎡ 3 9− ⎤

= −e e18x 12
1 = − ⎢ 2 − 10 ⎥
20 ⎣ ⎦

e  

That is, assuming that on the average, three customers arrive at the register 
every 10 minutes, the probability of the cashier waiting 3–5 minutes for the next 
 customer is about 0.18, or 18%.

Example 3.77

Similar to the previous example, suppose telephone calls in a business office arrive 
at the rate of 6 per hour. Taking waiting time for the call as the random variable, find 

 i. The probability of waiting between 5 and 15 minutes for the next call,
 ii. The mean,
 iii. The variance,
 iv. The standard deviation,
 v. The moment generating function.

Answer

Let X be a random variable representing the time it takes for the next call to arrive. 
Hence, X has the exponential pdf with parameter λ = 6, that is,

 
⎧

( ) ⎪ 6 ,e x−6λ ≥ 0,
f xX ;λ = ⎨

⎪ 0, x < 0.
⎩
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 i. The probability to wait between 5 and 15 minutes for the next call is:

 

≈ −0.6065 0.2231 ≈ 0.3834 ≈ 38.34%.

1
− −− ⎡ 3 1 ⎤

= −e e6x 4
1 = − ⎢ 2 − 2 ⎥

12 ⎣ ⎦

x
12 ∫

1

⎛ 1 1 ⎞P X⎜ ≤ ≤ ⎟ = 4
6e−6x d⎝ 4 ⎠ 1

12

e  

 ( ) 1 1
ii. μX = =E X = ≈ 0.17 calls per hour.

λ 6

 2 1 1
iii. σ X = =Var ( )X

λ 2
= ≈ 0.0278.

36

( ) 1 1
 iv. σ X = =STD X = ≈ 0.17.

λ 6

 ( ) 6
v. M tX = , t < 6.

6 − t

Theorem 3.15

 

⎛ ⎞
f xn ( ) ≡ ∗⎜ f f ∗ ∗ f ⎟ ( )x = ∗( )f f

⎜      ⎟ n−1 ( )x
⎝ n times ⎠

⎧ λ n nx −1

⎪ e x−λx , 0λ > ≥, 0,
= ⎨ ( )n −1 ! (3.217)

⎪ 0, x < 0.⎩

 

 
⎧⎪ λ λe x−λx , 0> ≥, 0,

f x1 ( ) ≡ ⎨  (3.218)
0, x < 0.⎩⎪

Then, the pdf of the sum X1 2+ X  would be the convolutions of f ( )x  with itself, 

denoted by f2 ( )x , that is,

Consider a set of n iid random variables X1 2, ,X X, n, each distributed exponentially 

with the same parameter λ, denoted by f ( )x , given as in (3.195). Then, the pdf of the 

sum of these iid random variables, denoted by fn ( )x , is the convolution of f ( )x  by 

itself n times, that is, the n-fold convolution, given as:

Proof:
We prove the theorem by mathematical induction. So, we denote the pdf for each 

of X1 2, ,X X, n, from (3.1775), by f1 ( )x , as:
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( ) ( ) ∫
x

f x2 ≡ ∗f f ( )x = f (x − t) f (t)dt
0

 
⎧⎪ λ λ2e x−λx , 0> ≥, 0,= ⎨ (3.219)

0, x < 0.⎩⎪

To see the pattern, let us find the pdf of the sum X1 2+ +X X3, which would be the 

convolutions of f ( )x  with itself three times, denoted by f3 ( )x , that is,

 

1 2f3 ( )x ≡ ∗( )f f f∗ ( )x = ( f ∗ f )( )x

⎧ λ3 2x⎪ e x−λx  
, 0λ > ≥, 0,= ⎨ 2 (3.220)

⎪ 0, x < 0.⎩

Now using (3.210)–(3.212) and applying mathematical induction on n, we will have 

(3.189) completing the proof of the theorem. We leave the details of the proof as an 

exercise.

3.9.4  BETA DISTRIBUTION

Very interestingly, when there is a variety of guessing about the occurrence of an 

event, the beta distribution walks in and presents them as a probability distribu-

tion. In other words, the beta distribution is a presentation of probabilities! For 

instance, in the 2016 presidential election in the United States, almost every single 

media was guessing about the so-called nontraditional candidate that eventually 

surprised them all by being elected as the president. There were chances given 

by pollster as 51%, 52%, 53%, etc. for the more traditional politician who eventu-

ally lost the election. Additionally, there were quite a bit of guessing among the 

voters in the country that varied a lot about the winner, from almost zero chance 

to 40% chance. Yet as another example, to market a product, a representative of 

a food company asks people in a shopping mall passing her desk to try a sample 

and then asks the tester what the chance of purchasing the product would be. In 

response, the representative receives answers such as 10%, 5%, 35%, 20%, 0%, 

50%, 10%, 15%, 0%, and 5%. These probabilities would lead to a beta distribution 

and the company can make a decision on that basis. Beta distribution is one that 

represents such a diversified guesswork or subjective beliefs (in a Bayesian sense). 

In other words, the beta distribution function is a way to represent outcomes like 

proportions or probabilities. It is clear as the responses that beta distribution is 

defined on the unit interval [ ]0,1 . In summary, the beta distribution is most com-

monly used to model one’s uncertainty about the probability of success of a ran-

dom experiment. We now define this distribution.
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Definition 3.45

A continuous random variable X, defined on [ ]0,1 , has beta pdf with two param-
eters p and q given by:

 

⎧ x xp−1 ( )1− q−1

⎪ , 0 ≤ ≤x 1,
f xX ( ); ,p q = ⎨ B p( ),q  (3.221)

⎪
⎪ 0, otherwise,⎩

where B p( ),q  is called the beta function, which is defined as

 B p( ), 1q = −∫
1

u p−1 ( )u q−1 Γ Γ( )p q( )
du = ,

0 Γ +( )  (3.222)
p q

where Γ( )t  is the gamma function defined earlier and the positive parameters p 

and q are referred to as the shape parameters and p q−  is referred to as the scale 
parameter.

Note 3.55

In case of 0 ,< <p q 1, the unit interval should be an open one, that is, ( )0,1 , for 

the beta pdf to be defined.

Note 3.56

The beta function appearing in the definition of the beta pdf is, indeed, a normal-

ization constant to make (3.220) a pdf.

Note 3.57

We caution the reader to distinguish between the beta function and the beta dis-

tribution function.

Note 3.58

The number of parameters of the beta distribution may be more than 2 that 

we used in the definition above. For instance, see McDonald and Xub (1995), 

wherein the authors introduce a five-parameter beta distribution (GB) (referred 

to as the generalized beta distribution) related to the gamma distributions. The 

GB includes more than 30 distributions as limiting or special cases. They con-

sider applications of the models to investigating the distribution of income, stock 

returns, and regression analysis.
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Note 3.59

The uniform distribution on ( )0,1  is a degenerate case of the beta pdf, where p = 1 

and q = 1.

Note 3.60

The parameters of a beta random variable could be vectors, matrices, or multidi-

mensional arrays.

Example 3.78

⎛ 1 2 ⎞ ⎛ 0.4 0.8 ⎞
Let the parameters p and q be matrices, p = ⎜ 3 4 ⎟  and q = ⎜ ⎟. 

⎝ ⎠ ⎝ 2 3 ⎠
Then, for x = 0.75, B x( ); ,p q , using MATLAB code beta pdf (0.75, p, q) would be: 

( ) ⎛ 0.9190 1.4251 ⎞
B p0.75; ,q = ⎜ ⎟ .

⎝ 1.6875 1.5820 ⎠

Example 3.79

Let us consider a beta random variable with four pairs of parameter values as 
follows:

 p q1 1 1 1= = = =0.3, 1.5, p q0.5, 2.0, 

 p q1 1= =0.7, 1.0, p1 = 1.0, q1 = 3.0. 

We also choose the values for X as X = 0: 0.01: 1.5. Then, we use the follow-
ing MATLAB (version 2018b) codes to graph the pdf for beta with four different 
choices of parameters. See Figure 3.17.

p_1 = 0.3; q_1 = 1.5;
p_2  0.5; q_2  2.0;= =
p_3 = 0.7; q_3 = 1.0;
p_4 = 1.0; q_4 = 3.0;
 
X = 0:.01:1.5;
y_1 = betapdf(X,p_1,q_1);
y_2 = betapdf(X,p_2,q_2);
y_3  betapdf(X,p_3,q_3);=
y_4 = betapdf(X,p_4,q_4);
 
plot(X,y_1,'Color','r')
hold on
plot(X,y_2,'Color','b')
hold on
plot(X,y_3,'Color','k')
hold on
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plot(X,y_4,'Color','m')
 
legend({'p_1 = 0.3, q_1 = 1.5', 'p_2 = 0.5, q_2 = 2.0', 'p_3 = 
0.7, q_3 = 1.0', 'p_4 = 1.0, q_4 = 3.0'},'Location','NorthEast');
hold off

Theorem 3.16

The cdf of the beta random variable, denoted by F xX ( ); ,p q , is given by:

 

⎧ 0, x < 0,
⎪
⎪ B x; ,p q

F x; ,p q
( )

X ( ) = ⎨ ( ) , 0 ≤ ≤x 1,  (3.223)
⎪ B p,q
⎪ 0, x >1,⎩

where

 ( ) ∫
x

B x; ,p q = −u p−1 ( )1 u q−1 du (3.224)
0

is the so-called incomplete beta function.

FIGURE 3.17 Beta pdf, Example 3.79.
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Proof:
From (3.221) and (3.224), we have:

 
1 x

= u up 1 1
q 1 du

B p( ),q ∫ − ( ) −
 

0

B x( ); ,p q
= .

B p( ),q

( ) ∫
x

FX xx; ,p q = f (u, p q, )du
−∞

−

Example 3.80

Refer to Example 3.79, and now graph cdf.

Answer

The MATLAB (version 2018b) program for this example would be as the previous 
one except that the pdf will change to cdf. Thus, we will have Figure 3.18.

Theorem 3.17

First, the nth moment, moment generating function, expected value, and variance of 

a beta random variable X are, respectively, follows:

FIGURE 3.18 Beta cdf, Example 3.80
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 ( ) ∏
n−1

p k
E X n += . (3.225)

p q k
k 0

+ +
=

 

1n

∑
n

( ) t p k+
M t = =E ( )etX 1+ ∏ . (3.226)

n! p q
n 1

+ + k
= k=0

∞ −

 = =( ) pμX E X . (3.227)
p q+

 σ 2 pq
X = =Var ( )X ( ) .

p q+ +1 ( p q+ )2  (3.228)

Proof:
First the nth moment.

 

1= x xp n 1 1
q 1 d

B p( ),q ∫ + − ( ) −

0

1

1

x

B p( )+ n,q Γ +( )p q Γ +( )p n Γ(q)= =
B p( ),q Γ Γ( )p q( )Γ ( p + q + n)

∫ ∫
1 1 x xp−1 ( )1− q−

= =( )
1

x fn n
X x; ,p q dx x dx

0 0 B p( ),q

( )
( ) ( )

−

∞

E X( )n n= ∫ x fX ( )x; ,p q dx
−∞

−
+=∏

n 1
p k

.
p q k

k 0
+ +

=

 

Now the moment generating function.

 

∫ ∫
1 p q1 1(1− ) 1 1

= etX x x− −

dx = −e xtX p q− −1 1(1 x) dx.
0 B p( , )q B p( , )q 0

∞

M t( ) = =E ( )etX ∫ etx fX ( )x, ,p q dx
−∞

 

Γ +( )p q Γ ⋅p p p⋅ +1 1p + n q
= .

( ) ( ) ( − ) ⋅Γ ( )
Γ Γ( )p q( ) Γ ( )p q+ ⋅ +( )p q ⋅ +( p q +1 1) ( )p q+ + n q− ⋅Γ ( )

p p⋅ +( )1 1( p + n − )= ( )p q+ ⋅( p q+ +1 1) ( p q+ + −n )
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Using the Taylor expansion of the exponential function, we continue as follows:

 

∑ ∑
∞ ∞

B p( )+ n,q tn B p( )+ n,q tn

= = +
B p, !q n B p, !q n

n=0 1
( ) 1

n=
( )

∞
1 1⎛ ( )tx n ⎞

= ∫ ⎜∑ ⎟ x xp−1 ( )1− q−1

( ) dx
B p, !q 0 ⎝ n

n=0 ⎠

∞
1 1 tx n

x xp 1 1
q 1 dx

B p( ), !q ∑
0 n

n 0
∫ ( )= − ( )− −

=

∞
1 tn 1

= x xp n 1 1
q 1 dx

B p( ), !q ∑ n 0
n 0

∫ + − ( )− −

=

∞
1 tn

= B p n,q
B p( ), !q ∑ ( )+

n
n=0

∞

= ∑
n

n t
1+ E x( )

n!
n=1

∞
+= ∑

n 1
tn p k

1+ .
n! p q k

n 1

∏
−

k 0
+ +

= =

 

To prove the mean, we can substitute n = 1 in (3.183). However, it can be found 

directly from the definition of expected value. We leave this proof as an exercise.

Finally, the variance which can also be proven by finding the second moment 

using = 2 in (3.184) and then using (3.186) and the fact that σ 2 2
X E X 2n = −( ) ( )E X( ) .

Note 3.61

Relation (3.219) shows that the variance of the beta random variable X depends on 

the mean of X. Using (3.218) and rewriting (3.219), we have:

 ( ) q
Var X = μ( ) ,

p q+ +1 ( p q+ ) X  (3.229)

which shows that for a fixed pair of parameters p q, , the variance is proportional 

to the mean.
( )
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We now illustrate the relationship between the beta distribution and three other 

distributions, discrete and continuous.

Theorem 3.18

The beta distribution function approaches the Bernoulli pmf as both shape param-

eters p and q approach zero.

Proof:
See Johnson and Kotz (1995).

Theorem 3.19

The beta distribution function reduces to the continuous uniform distribution 

 function on the unit interval [ ]0,1  when p q= = 1.

Proof:
From (3.183), (3.184) and properties of the gamma function described in Chapter 1, 

we have:

 

x xp−1 ( )1− q−1 Γ +( )p q
= 1− ( )1− 1−q

B p( ) x xp

,q Γ Γ( )p q( )
Γ +( )1 1= x x0 Γ− =0 ( ) Γ( )( ) 2 2

1 = = 1.
Γ Γ( )1 1( ) Γ Γ( )1 1( ) 0!0!

 

Hence,

 
⎧⎪ 1, x ∈[ ]0,1 ,

f xX ( );1,1 = ⎨  
0, otherwise,⎩⎪

which is the uniform pdf on [ ]0,1 .

Theorem 3.20

Let X be a beta random variable whose distribution is with two parameters p and 

q. We also suppose that Y is a random variable such that its conditional distribution 

given X is a binomial distribution with parameters n and s. Then, the conditional 

distribution of X given Y y=  is a beta distribution with parameters 1+ y and 1+ −n y.

Proof:
Left as an exercise.
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Example 3.81

Suppose it is found that the defectiveness of items shipped by a carrier is distrib-
uted according to a beta distribution with two parameters p = 2 and q = 6. Answer 
the following questions:

 i. What is the probability that a particular shipment contains 10%–20% 
defective items?

ii. What is the probability that a particular shipment contains 20%–30% 
defective items?

iii. Find the mean and variance of the distribution.

 

 

Answer

Let the random variable X represent the percent defective items in the shipment. 
Then, using the given information, from (3.222) and (3.196), we will have:

x x2 1− ( )( ) ∑
0.2

1− 6 1−

 i. P X0.1 ≤ ≤ 0.2 = = ≈0.248 25%.
B

=
( )2,6

x 0.1

 
0.2 2 1− ( )

ii. ( )≤ ≤ = ∑ 1− 6 1−x x
P X0.2 0.3 = ≈0.5505 55%.

B
=

( )2,6
x 0.2

 iii. From (3.227) and (3.228), we have:

 
2μX = =E X( ) = =0.25 25%.  

2 6+

 
2 6⋅σ 2 = =Var ( ) 12 1

X X 2 = = = 0.02083 ≈ 0.21%.  
( )2 6+ +1 (2 6+ ) ( )9 6( 4) 48

Note 3.62

Using (3.195) and a calculator, we can answer both questions. However, using 

MATLAB, it can be easily done in a matter of a second. Below is the MATLAB 

(version 2018b) quote for case (ii), similarly for case (i):

B = beta(2,6);
X  0.2:.01:0.3; $ Beta function=
for x = 1:size(X)
 N(x)=(X(x))^2 ((1-X(x))^5); $ Numerator*
 f(x)=N(x)/B; $ The fraction inside the sigma.
end
P=sum(f) $ The sum

B in this case (using calculator) is as follows 

 
Γ Γ( )p q( ) Γ Γ( )2 6( ) ( )1 5( !) 1= = = ≈( ) 0.02380952381, 
Γ +p q Γ( )8 7! 42

which is about the same using MATLAB, that is, 0.0238.
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3.9.5  ERLANG DISTRIBUTION

During the early part of the twentieth century, A. K. Erlang was to examine the num-

ber of telephone calls arriving to the telephone switchboard station (possibly at the 

same time). This consideration was the beginning of development of the queueing 

processes, which is almost well developed by now. We refer the reader to some of the 

publications, including books, of the first author on this subject such as:

Queuing Models in Industry and Business, Second Edition 2014. Nova Science 

Publishers, Inc., a New York. https://www.novapublishers.com/catalog/

product_info.php?products_id=42055&osCsid=7ed271dac267e38ea22b939

87f939075

and

Delayed and Network Queues, John Wiley & Sons Inc., New Jersey, 2016. http://

www.wiley.com/WileyCDA/WileyTitle/productCd-1119022134,subjectCd-

BA11.html

Definition 3.46

Let X be a random variable with a two-parameter pdf, shape parameter k (k is a posi-

tive integer) and scale parameter λ, defined as

 

⎧ λ k kx e− −1 λx

⎪ , 0x k≥ >,λ 0, ,∈ +

f xX ( ); ,k λ = ⎨ ( )k −1 !  (3.230)
⎪
⎩ 0 otherwise.

Note 3.63

We leave it as an exercise to prove that the function defined by (3.230) is a pdf.

Note 3.64

The pdf defined in (3.230) reduces to the exponential pdf when k = 1. In that case, 

1/λ  is the mean, as expected. When k = X 22, (3.230) reduces to the  pdf, which 

we will study later in this chapter. Also, it can be seen that Erlang distribution is 

a special case of the gamma distribution function.

Example 3.82

Figure 3.19 shows the Erlang pdf for various k and λ. The x- and y-axes can only 
show finitely many values, but rest assured that the area under all curves is 1.

Then, X is called the Erlang random variable, and its distribution is referred to as 

Erlang probability distribution function, denoted by X Erlang( )k,λ .

https://www.novapublishers.com
https://www.novapublishers.com
http://www.wiley.com
http://www.wiley.com
http://www.wiley.com
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Remark 3.1

It can be shown that the solution of an initial-valued differential equation

 
−λ

+ +( ) e λ k

xy x′ λ 1 0− k y = , y( )1 = , 0x ≥ >, λ 0 (3.231)( )k −1 !

is the Erlang pdf.

Proof:
We can rewrite the first part of (3.231) as: 

 
⎛ 1− k ⎞y′ + +⎜ λ ⎟ y = 0, (3.232)⎝ x ⎠

which is a homogeneous linear first-order ordinary differential equation with the 

initial value given in (3.231). Equation (3.232) can be solved by separable variable 

method or using integrating factor. We use the integrating factor as follows:

 

x
∫ ⎛ 1−k ⎞
⎜ λ+ ⎟ dx

μ = e e⎝ x ⎠ = λx k( )e 1− ln

λx
x x e= =e eλ ln 1−k

1
.

x −k

 

FIGURE 3.19 Presentation of the Erlang pdf with two parameters k and λ.
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Thus, the general solution is:

 
x1−k

y c= ,
eλx  

where c is a general integral constant. Now, to find the constant c, we will substitute 

the initial value and obtain:

 
eλλ k 1= ⋅c.( )k e−1 ! λ  

Thus, 

 
λ k

c = .  ( )k −1 !

Hence, the particular solution is

 
λ k kx −1

y = ⋅( )k −1 ! eλk  

 
λ k kx e− −1 λx

= , ( )k −1 !

which is the same as in (3.230), that is, Erlang pdf.

Theorem 3.21

For an Erlang random variable, the cdf, mean, variance, and moment generating 

function are, respectively, as follows:

 

k−1

F x( ) λx
j

X ; ,k λ 1 ∑( )= − e x−λx , 0≥ , λ > 0. (3.233)
j!

j=0

 ( ) k
E X = . (3.234)

λ

 ( ) k
Var X =

2
. (3.235)

λ

 
−

( ) ⎛ t ⎞ k

M t = −1 , t < λ. (3.236)⎝ λ ⎠

Proof:
We prove the formula for cdf and leave the proof of the rest as an exercise.
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We start the proof by definition of probability of X. Hence,

 

x λ λk kt e− −1 λt k x

F x( ) ∫ 1
X = ≤P (X x) = dt = t ek t− −λ dt

0. ( )k −1 ! ( )k −1 ! 0

3

∫
λ k ⎡ −1 1k x

= e x− −λ λx k 1 2−+ e t− t k− ⎤
dt( ) ⎢ ⎥k −1 ! ⎣ λ λ ∫0 ⎦

( )λx
k−1

k λ k 1 ⎞ k −= − e x ( )−1 − ⎛ 1 2 x
−λ λ⎡ ⎤+ − − +⎢⎜ − e xx k 2 ⎟ ∫ e t− t k− dt( )k − ( )k ⎣⎝ λ λ⎠ 0

⎥ 1 ! −1 ! ⎦
λ

−

= −∑
k 1 ( )λx

j

1 e−λx .
j!

j=0

Example 3.83

Figure 3.20 shows the Erlang cdf for various k and λ.

FIGURE 3.20 Presentation of the Erlang cdf with two parameters k and λ.

( )λ λ−
x

k 1 2

λ λx ( )x
k−

− − −x x( ) λ λ⎡ 1 ⎤
x

= − e − e x− − λ λe e+ − − t

( )k −1 ! (k − 2)! ⎢⎣ λ ⎥⎦0

( )λ λx
k−1 2

e x ( )x
k−

= − −λ λ− e x− −x x− − ( )λ e λ − e−λx +1( )k −1 ! (k − 2)!
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Example 3.84

Suppose you walk in a bank with one teller station open and a customer being 
severed. There are three people in line waiting for service. It is known that service 
times of customers in this branch are independent of each other and they are iden-
tically exponentially distributed with the mean time of 3 minutes. The question is: 
What is the probability that your waiting time in line before your service starts be 
more than 6 minutes? How about less than 4 minutes?

Answer

Let us represent the service times of the three customers present at the time of 
your arrival by T T1, ,2 3 4T ,T  with T T= +1 T2 3 4+ T + T . Thus, based on Note 3.55, T 
is an Erlang random variable with parameters k = 4 and λ = 1/3. So, let us use the 
convolution property for the sum of independent exponential random variables 
with parameter λ given in Theorem 3.15. Hence, for n = 4, the pdf for T is 

 

⎧ 34 3x > ≥( ) ( ) ⎪ −λ λ≡ ∗ ∗ ∗ ( ) e x , 0, 0,
f4 x f f f f x = ⎨ 3!  

⎪ 0, x < 0.⎩

x

Thus, 

−34 ∞

 1. P( )T > =6 ∫ x3e−3xdx = 1.7560e .
6 6

5

34

 2. ( )≤ =4 ∫
4

P T x3e−3xdx = 0.9977.
6 0

To evaluate these integrals, we use a very simple four-line MATLAB program that 
gives answers for both.

syms x
f4 = (3^4/6)*(x^3)*exp(-3*x);
P6 = eval(int(f4,6,inf))
P4 = eval(int(f4,0,4))

Note 3.65

In a sequence of operations, when the completion of each operation has exponen-

tial pdf, the time of completion of n task will have the Erlang distribution. Proof 

is left as an exercise.

Note 3.66

If tasks arrive to a service location according to Poisson pmf, the inter-arrival 

times will have exponential pdf with the parameter as the arrival rate. The sum of 

inter-arrival times has an Erlang distribution. In other words, the Erlang distribu-

tion is the distribution of a sum of k iid random variables with the mean of 1/λ  

each. Proof is left as an exercise.
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3.9.6  NORMAL DISTRIBUTION

One of the very well-known and widely used continuous random variables is 

 normal. Its distribution is very important in statistics, and its applications are in 

medicine, psychology, and social sciences. It was discovered by a French mathemati-

cian Abraham De Moivre in 1733 and later by another French mathematician Carl 

Friedrich Gauss in the nineteenth century. Because of this, normal distribution is 

referred to as the Gaussian distribution. All normal distribution curves are sym-

metric and have bell-shaped pdfs with a single peak. Hence, it is also referred to as 

the bell-shaped curve (Figures 3.21 and 3.22).

It is interesting that Google celebrated the 241st birthday of Gauss by showing 

logo on its site.

FIGURE 3.21 Abraham de Moivre (1667–1754).

FIGURE 3.22 Carl Friedrich Gauss 1840 by Jens.
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Definition 3.47

Let X be a continuous random variable with its pdf, denoted by φ ( )x  with two param-

eters μ, a real number, and σ , a positive real number, defined as:

 
( )x−μ 2

1 −
φ ( )x e= 2σ 2

, ,x μ σ∈ −( )∞,+∞ , > 0,  (3.237)
σ 2π

which is called a normal, Gaussian, or bell-shaped curve, random variable, and 

(3.237) is referred to as the normal or Gaussian pdf.

Theorem 3.22

φ ( )x  defined by (3.237) is a pdf.

Proof:
Since σ > 0, the right hand of (3.237) is positive. Hence, we just have to show that 

integral of φ ( )x  over the entire real line is 1. So, first let 

 
∞ ( )μ

≡ =∫ ∫
2

1 ∞ x−

I φ ( )
−

x dx e 2σ 2
dx. 

−∞ σ 2π −∞

x − μ dx
Now, let z = . Then, dz =  and

σ σ

 
∞ −

= ∫
2

1
z

I e d2 z. 
2π −∞

Hence, 

 2

2

e dy

⎡
= ∫

2 2

2 1 ∞ z− ⎤
I ⎢ e d2 z⎥

2π⎣⎢ −∞ ⎦⎥

⎡
= ∫ ∫

2

1 ∞ z
dz ⎤ ⎡ 1 ∞ y− − ⎤

⎢ e 2 ⎥ ⎢ ⎥ 
⎢ 2π −∞ ⎥ ⎣⎢ 2π⎣ ⎦ −∞ ⎦⎥

1 ∫
∞ ( )2z y+

−
= e d2 z dy. (3.238)

2π −∞
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y
Applying the polar coordinates: z = r cosθ , y r= sinθ , r z2 2= + y2, θ = arctan , and 

z
dzdy = rdrdθ , 0 < <r ∞ and 0 2≤ ≤θ π, from (3.238), we will have:

 

1 2 2= d 1.
2 ∫

π πθ = =
π 0 2π

2 ∞
1 2π ∞ r r

2 1 2π ⎛ e− 2
− ⎞

I = e dr d =
π ∫ ∫∫ 2 r θ ⎜ − ⎟ d .

2 0 0 2 2π 0 ⎝ ⎠
0  

θ

Therefore, I = 1 and φ ( )x  is a pdf.

In order to give the cdf for normal random variable, we need the following 

definition.

Definition 3.48

An error function, denoted by erf, is defined as:

 
2 ∫

x

= e d− 2t t. (3.239)
π 0

( ) 1 x

erf x = ∫ e− 2t dt
π −x

 

Figure 3.23 shows the graph of erf for values of x between −5 and 5.

FIGURE 3.23 Graph of erf.
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Theorem 3.23

For a normal or Gaussian random variable with pdf as defined in (3.237), the 

cdf, denoted by Φ( )x; ,μ σ 2  or Φ( )μ σ, 2  or Φ( )x  or any other notation such as 

N ( )x; ,μ σ 2  or F xX ( ) or simply F x( ); mean, denoted by μ; variance, denoted by σ 2; 

and moment generating function, M t( ), are, respectively, as follows:

 ( ) ( )μ σ ∫
x

P X ≤ ≡x Φ x; , 2 = φ (t)dt, 
−∞

 
( )μ

= ∫
2

1
tx −

−
e d2σ 2

t (3.240)
−∞ σ 2π

 
1 ⎡ ⎛ x − μ ⎞ ⎤= ⎢1+ erf ⎜ ⎟ ⎥ , (3.241)
2 ⎣ ⎝ σ 2 ⎠ ⎦

where erf is given in (3.239).

 
σ 2 2t

( )
μ +

E X = =μ σ
t

, ,Var ( )X 2 and M (t) = e 2 . (3.242)

Proof:
Proof is left as an exercise.

Note 3.67

( ) ( )

Note 3.68

The smaller the value of σ , the higher the peak of the “bell curve”, as is shown 

in Figures 3.18–3.20. The peak of normal pdf defined in (3.237) occurs at x = μ  
1 0.399

with its value equal to , which is approximately equal to .
σ 2π σ

Note 3.69

It is interesting to note that a normal pdf is, indeed, an exponential pdf of a 

 quadratic function, say f ( )x , defined as

 f x( ) = e
2ax + +bx c , 

As mentioned, the normal cdf is denoted by N ( )μ σ, 2  or Φ( )μ σ, 2 ; in other 

words, the random variable X having normal cdf is denoted by X N ( )μ σ, 2  or 

X Φ( )μ σ, 2 .
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where

 
b2 1 ⎛ −a ⎞a c< =0, + ln .  
4a 2 ⎝ π ⎠

In this case, the mean and standard deviations are 

 
a

−b −1μ σ= and = .  
2a 2

Definition 3.49

A normal random variable Z with mean μ = 0 and variance standard deviation σ = 1 

is called the standard normal random variable. The value z is a transformation of 

a regular normal random variable defined as:

 
x − μ

z = . (3.243)
σ

The transformation (3.243) changes (3.238) to

 

2

1
z

φ ( )
−

z e= 2 , ,− ∞ < z < ∞  (3.244)
2π

which is referred to as the standard normal or z-pdf. Accordingly, this normal pdf 

has mean 0 and standard deviation 1. In this case, the cdf of the standard normal 

variable, P ( )Z z≤ , would be:

 

2

1 −
Φ =( ) ∫

z t

z e 2 dt (3.245)
−∞ 2π

 
1 ⎡ ⎛ z ⎞ ⎤= ⎢1+ erf ⎜ ⎟ ⎥ . (3.246)
2 ⎣ ⎝ 2 ⎠ ⎦

The number of standard deviations from the mean is sometimes referred to as stan-
dard score and sometimes z-score. The z-score is the transform defined in (3.242).

Note 3.70

The graph of normal pdf is also asymptotic, or the tails of the graph from both 

sides get very close to the horizontal axis without touching it. Hence, for standard 

normal cdf, we have:

   Φ −( z P) = (Z ≤ −z P) = ( )Z > z = 1 1− P ( )Z ≤ z = − Φ(z), z > 0. (3.247)
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Note 3.71

The approximate values of Φ( )z  have been calculated and tabulated. However, 

the available technologies these days make the large tables of normal cdf use-

less. For instance, using some available tables, one can find Φ =( )0.9 0.8159, 

Φ =( )0.09 0.5359, and Φ =( )3.35 0.9996. These values can easily be obtained using 

MATLAB. With tables, to find negative of each value, one needs Φ −( )z = 1− Φ( ). 
With MATLAB, for instance, one can obtain the negative values the same way 

as positive ones.

z

Note 3.72

We leave it as an exercise to verify that

 Φ −( ) ( ) 1∞ = lim = 0 and Φ 0 = . (3.248)
z→−∞ 2

Note 3.73

We show that 

Φ +( )∞ = lim = 1. (3.249)
z→+∞

 

Proof:
Using polar coordinates, we will have:

 

− −2 2x y

[ ]( )
2 2

2 ∫
∞ e eΦ ∞ = dx ⋅ dy

2 2π ∫
∞

−∞ −∞ π

− +( )2 2x y

∫
∞ e 2

= dx dy
−∞ 2π

− 2r

∫
2π e 2

= r dr d .
0 ∫

∞

θ
0 2π

 

r2

Now, letting u = , we have:
2

 

− 2r

∫
∞ e 2 e u 1

r dr = du .
0 2 2π ∫

∞ −

=  
0 π 2π
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Thus,

 

− 2r

∫ ∫
2π e 2 2 1

r dr d d 1.
0 ∫

∞

θ θ= =  
0 2π 0 2π

π

1
We could see this also since the Φ( )z  is symmetric and Φ =( )0 , then

2

 
⎛Φ ∞( ) ( ) 1 ⎞= 2 0Φ = 2⎜ ⎟ = 1. ⎝ 2 ⎠

Some properties of normal distribution

 1. An interesting property of the normal distribution arises from the following 

convolution property: Let X1 and X2 be two normal random variables with 

mean and variance for each as μ1 and σ 2
1, and μ2 and σ 2

2, respectively. That is,

( ) ( ) ( )If X N1 1( )μ σ, 2
1 and X2 2N (μ ,σ 2

2 ), then X1 2+ +X N (μ1 μ2,σ 2 σ 2
1 + 2 ). (3.250)

 2. Let X be a normal random variable with mean and variance 2μ and σ , 

respectively. Then, for a constant c, we have:

 

 3. Sum of a standard normal by itself is a scaled standard. Precisely, 

 N ( )0,1 + =N N( )0,1 (2) ( )0,1 . (3.252)

 4. The mgf of the standard normal random variable is 

 

2t

M t e 2
X ( ) = . (3.253)

 

2 2t x

2 2
1

t

= e e∫
∞ ( )−−

d ,
−∞ 2π

x

∞

( ) ( ) ∫
2

1
x−

M t E etX etx e 2
X = = dx

−∞ 2π

⎛ 2

∫
− 22 ⎞ ⎡( )− − 2x tx x t t ⎤

∞ 1 −⎜ ⎟
= e d⎝ 2 ⎠ 1=

2π ∫
∞ −⎢ ⎥

x e ⎣⎢ 2 ⎥⎦dx
−∞ −∞ 2π

where the integrant is the pdf of normal with parameters t and 1. Thus, the proof is 

complete.

X N c( )μ σ, ,2 2→ X N (cμ c σ 2 ). (3.251)

This is because, for X N ( )0,1 , we have:
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Note 3.74

The empirical rule of statistics, sometimes denoted by (68, 85, 99), for normal 

pdf states that nearly all of the data will fall within three standard deviations of 

the mean, although some statisticians go to 4 standard deviations to cover the 

area completely. This general rule is broken down into three parts: (1) It is well 

known that about 68% (68.26%) of area under a normal pdf curve falls within 

1 standard deviation around the mean, that is, μ σ±1 ; (2) about 95% (95.44%) 

falls within plus and minus 2 standard deviations of the mean, that is, μ σ± 2 ; and 

(3) about 99.7% (99.74%) of data falls within 3 standard deviations of the mean, 

that is, μ σ± 3 .

Note 3.75

A practical way of finding normal probabilities is first to find the value of z 

from (3.250). Before progress in technology, tables were primarily used to find 

 probabilities. However, with much development of technology and availability 

of several computer software packages for mathematics and statistics, there is 

no need for such long and tedious tables. We constantly use MATLAB, R, and 

 others, as we see fit, for our calculations.

Example 3.85

Let us suppose that in a small company, the average height of staff is 5 feet and 
7 inches with a standard deviation of 2 inches. Assume that the heights are nor-
mally distributed. What is the z-value for a staff member who is 5 feet and 5 inches?

Answer

It is easy to calculate the z-value of an x = 5.42 from (3.241) with μ = 5.583 and 
σ = 2. That is,

 
x − μ 5.42 − 5.583

z = = = −0.0815. 
σ 2

Thus, this person is almost 2 inches below the average.

Example 3.86

Here is an example of standard normal random variable. Suppose final scores (out 
of 100 points) of a probability and statistics class with 15 students look like the 
following:

57, 84, 69, 74, 38, 55, 26, 44, 49, 70, 92, 18, 89, 24, 18.

Suppose that minimum passing score is 70. Looking at the scores, only 5 students, 
that is, 1/3 of the class, will pass this examination. The professor is unhappy with 
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the failure of 2/3 of the class. He is not sure of the reason or reasons. He guesses 
the reason or reasons as follows: (1) Students did not study enough, (2) students 
did not understand the concepts, (3) questions on the test were too difficult, 
(4) the professor did not do a good job of teaching, or (5) a combination of these. 
The professor is looking to find a way to curve the scores to have a better passing 
rate. How could z-score be used?

Answer

To apply the z-score (3.241), we consider the students’ scores a sample of inde-
pendent observations. Although the sample size is supposed to be large (about at 
least 30–40 in practice) to apply normal distribution, we accept the number 15 for 
our approximation. 

In MATLAB,

n = 15;
X = [57,84,69,74,38,55,26,44,49,70,92,18,89,24,18];
X1 = sort(X);
X3 = [18,18,24,26,38,44,49,55,57,69,70,74,84,89,92];
Sum_X3 = sum(X3);
mu = Sum_X3/n;
Diff = X3-mu;
Diff_2 = Diff.^2;
SS = sum(Diff_2);
s = sqrt(sum(Diff_2)/(n-1));
z = Diff/s;

Hence, we want students with z-scores of at least −1 to pass. That is, we want 
x − 53.8

z = ≥ −1, or x ≥ 28.9899. In other words, all original scores of 28.9899 or 
25.5181

higher should pass. The minimum score satisfying this criterion is 38. Now, if passing 

score is 70/100, then we need to multiply all scores by 70/38 = 1.84211 and pass all those 

with a score of 70 and higher. This is summarized in the right column of Table 3.32.

Example 3.87

Discuss Figures 3.18–3.20 of normal pdf with regard to the means.

Answer

Figures 3.24 and 3.25 show the normal pdf graphs for various μ  and σ . In 
Figure 3.24, μ = 0, while in Figure 3.24 μ = 2, and in Figure 3.25, μ = −4. Comparing 

The professor calculates the mean and standard deviation as μ = 53.8 and 

∑
15

( )x − μ 2

i

σ = i=1 , respectively. These values could be obtained by MATLAB 
14

or Microsoft Excel. Procedurally, and for the sake of ease of discussion, we 
sort the scores that are the values of our random variable and denote them by 
xi , 1i = ,2, ,15. We now calculate xi − =μ, 1i ,2, ,15, and sum them. Then, 

x − μ
 calculate the standard deviation. Finally, calculate z = . Summary of these 

σ
steps is in Table 3.32.
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FIGURE 3.24 The normal pdf with various values of σ ; each curve is shown by a different 

color. Curves in this figure are centered at μ = 0. This figure is similar to the Google figure 

shown above.

FIGURE 3.25 The normal pdf with various values of σ ; each curve is shown by a different 

color. Curves in this figure are centered at μ = 2. A shift of 2 units compared to Figure 3.18 

can be seen.
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these graphs, it can be seen that the change of value of μ only causes a shift. 
However, the shape of curves do not change. We have chosen the values of x 
within the interval −10,10  so that the curves are better seen (Figure 3.26).[ ]

Example 3.88

Discuss Figures 3.27–3.29 of normal cdf with regard to the means.
Figures 3.27–3.29 show the normal cdf for various means, μ , and standard 

deviations, σ . We have chosen the values of x within the interval [ ]−10,10  so that 
the curves are better seen. 

Example 3.89

A statistician is to find the price of an electronic item. She checks the price at 
several electronic stores locally and online. She finds the average price as $100 
with the variance of $25. She decides to walk to a store and buy the item. Find the 
following probabilities: 

 i. The price tag be between $95 and $105?
ii. The price tag be greater than $105?
iii. The price tag be less than $90?

 
 

FIGURE 3.26 The normal pdf with various values of σ ; each curve is shown by a different 

color. Curves in this figure are centered at μ = −4. A shift of −4 units compared to Figure 3.18 

can be seen.
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FIGURE 3.27 The normal cdf with various values of σ ; each curve is shown by a different 

color. Curves in this figure are centered at μ = 0.

FIGURE 3.28 The normal cdf with various values of σ ; each curve is shown by a different 

color. Curves in this figure are centered at μ = 2.
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Answer

 i. Using the cdf (230), we have:

 
2

105 ( )
( )≤ ≤ = ∫ 1

t−100−
P X95 105 e 2.25 dt, 

95 5 2π

To evaluate this integral, use the following MATLAB program:

x = [95 105];
mu = 100;
sigma = 5;
p1 = normcdf(x,mu,sigma)
pr1 = p1(2)- p1(1)

The answer is 0.6827, or 68.27%.
 ii. Again, using the cdf (3.245), we have:

 

2
∞ ( )

( )> = ∫ 1
t−100−

P x 105 e 2.25 dt
105 5 2π

2
105 ( )

= − ∫ 1
t−100−

1 e d2.25 t.
0 5 2π

 

FIGURE 3.29 The normal cdf with various values of σ ; each curve is shown by a different 

color. Curves in this figure are centered at μ = −4.
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The reason we start from 0 is that we assume the price of the item can-
not be below $0. To evaluate the integral, use the following MATLAB 
program:

x = [0 105];
mu = 100;
sigma = 5;
p2 = normcdf(x,mu,sigma)
pr2 = 1-(p2(2)- p2(1))

The answer is 0.1587, or 15.87%.
 iii. Once more, using the cdf (3.245), we have:

 
2

90 ( )
( ) ∫ 1

t−100
−

P X0 9≤ ≤ 0 = e 2.25 dt, 
0 5 2π

To evaluate the integral, use the following MATLAB program:

x = [95 105];
mu = 100;
sigma = 5;
p3 = normcdf(x,mu,sigma)
pr3 = p3(2)- p3(1)

The answer is 0.0228, or 2.28%.
To obtain the results of (i)–(iii), use the normalcdf command in the 

calculator. To activate this command, select 2nd and VARS and then 
select the normalcdf. The syntax of this command is as follows:

 

P( _Lower Bound ≤ ≤X Upper _ Bound)

= normalcdf ( _Lower Bound,Upper _ Bound, μ σ, ) 

 i. P 95 ≤ ≤X 105 = normalcdf 95,105, 5 = 0.6827.( )( )
 ii. In this example, the upper bound is not given. As we know, the normal 

distribution can go toward the infinity. Hence, we assume the upper 
bound be very large. Thus,

 ( )( )P X > =105 normalcdf 105, 999999999,100, 5 = 0.1587. 

 iii. In this part, we do not know about the lower bound. Similar to the 
part (ii), normal distribution can, theoretically, reach up to the negative 
infinity. Therefore, we consider the negative infinity as the lower bound. 
Hence, we have:

 ( )P( )X < =90 normalcdf −999999999, 90,100, 5 = 0.0228. 

Example 3.90

In this example, for normal pdf, in Figure 3.30, we will show the probabilities 
P x(− <8 4< − ), P x( )− <2 2< , and P x( )3 5< <  as the areas under the curve of pdf. 
The areas colored in blue, purple, and green, respectively, represent each probability.
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Example 3.91

Assume that the height of students in a class is normally distributed. Also, assume 
that 95% of students in the class are between 5 feet and 5 inches and 6 feet tall. Let 
us calculate the mean and standard deviation for the assumed normal distribution. 

Answer

The bounds of the students’ height in the class is 65 inches and 72 inches. Hence, 
the mean, μ , in this case, which is halfway between the given values, is: 

 
65+ 72μ = = 68.5 inches, or 5 feet and 8.5 inches.  

2

The assumption of 95% implies that there is a deviation of 2 units = each side of 
the mean, a total of 4 standard deviation that covers the 95% of the area under the 
normal pdf. See Figure 3.31. Hence,

 
72 − 65σ = = ≈1.75  inches, or 0.14583 feet.  

4

Example 3.92

Suppose that a periodical maintenance cost of a computer is known to have a 
normal distribution with parameters μ = $60 and σ = $3. What is the probability 
that the actual cost exceeds $65?

FIGURE 3.30 Presentation of normal probabilities as areas under the normal pdf 

curve with parameters μ = 0 and σ = 2.
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Answer

Let X represent the cost of the computer in a period. Using (317) and (318), and the 
MATLAB code “1-normcdf(65,60, 5)”, we have:

 

⎛ −( ) 65 60 ⎞ ⎛ 5⎞P X > =65 P X⎜ > ⎟ = >P X⎜ ⎟⎝ 3 ⎠ ⎝ 3⎠

= 0.1587.

1 ⎡ ⎛ 5 ⎞ ⎤
= −1 ⎢1+ erf ⎜ ⎟ ⎥

2 ⎢ ⎝ 3 2 ⎠ ⎥
 

Example 3.93

For a standard normal random variable Z, let us find the following probabilities:

 i. P z(− <0.25 ≤ 0.46 .
 ii. P z(0.87 ≤ ≤ 7.3).
 iii. P( )z < 6 .
 iv. P z > −0.40 .( )

)

Answer

Formulate each question in terms of (3.232), and then use MATLAB. Hence,

FIGURE 3.31 Presentation of 95% area under normal pdf as areas within 2 standard 

deviation around the mean. μ = 68.5 inches and σ = 1.75 inches.
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 i. P z( )− <0.25 ≤ 0.46 = Φ(0.46)− Φ(−0.25) = 0.6772 − 0.4013 = 0.2759.
 ii. P z( )0.87 ≤ ≤ 7.3 = Φ(7.3)− Φ(0.87) = 1.0000 − 0.8078 = 0.1922.
 iii. P( )z < =6 Φ(6) = 1.0000.
 iv. P( )z > −0.40 = 1− Φ(−0.40) = 0.6554.

 

⎛ −( ) 0.4 ⎞P X > =65 P X⎜ > ⎟ = >P(X −0.4)⎝ 1 ⎠

= 0.6554.

1 ⎡ ⎛ −0.4 ⎞ ⎤= +⎢1 erf ⎜ ⎟
⎢ ⎝ ⎠ ⎥2 2 ⎥

 

Using calculator, we obtain the same results as follows:

 i. P(− <0.25 z ≤ 0.46) = normalcdf (−0.25,0.46,0,1) = 0.2759.
 ii. P(0.87 ≤ ≤z 7.3) = normalcdf (0.87,7.3,0,1) = 0.1921.
 iii. P(z < =6) normalcdf (−99999,6,0,1) = 1.
 iv. P(z > −0.4) = normalcdf (−0.4,99999,0,1) = 0.6554.

The Normal Approximation to the Binomial Distribution
Previously, we saw an approximation of Poisson pmf to the binomial pmf when 

the product np remained fixed. 

Note 3.76

We should point out that in this case, a pmf of a discrete random variable was 

approximated by the pmf of another discrete random variable. 

Note 3.77

Consider tossing a coin with the probability of occurrence of a head as p. Then, as 

the number of tosses increases, the probability of occurrence of a head decreases 

so that product does not change; then, the distribution of the number of heads dur-

ing the number of trials will be Poisson.

A more interesting idea is approximating the distribution of a discrete random 

variable by the distribution of a continuous random variable, namely, the normal 

distribution.

Example 3.94

Justifying the need of the normal approximation to the binomial for large sample 
size, by some, is because “solving problems using the binomial distribution might 
seem daunting”. This is mainly due to the probabilities that have to be calculated 
by the binomial coefficient through the use of “factorial”. For instance, suppose a 
fair coin is tossed 100 times. Let X be the number of heads. What is the probability 
that X is greater than 60? 
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Answer

The binomial table runs out of numbers for large enough trial counts. As another 
example, to find the probability that a binomial variable X is between 4 and 12 
exclusive, we have to find the probability that X equals 5, 6, 7, 8, 9, 10, and 11, 
then add all of these probabilities together. But factorials may be large and some 
do not like to deal with them. However, the normal approximation allows one 
to bypass such a problem. Using the z-scores corresponding to 5 and 11 with a 
z-score table, one would find the probabilities. But with today’s technology, those 
arguments may be obsolete. Mathematics software like MATLAB can calculate the 
values in a matter of seconds.

Note 3.78

In statistical practices, in order to use the normal approximation to a binomial, 

as one needs a large sample size, but what is “large”? Consider n as the number 

of observations and p as the probability of success in each trial. Here are some 

“rules of thumb”:

 i. Both np n pand ( )1− ≥10.

( ) .

 ii. Both np n pand ( )1− ≥ 5.

 iii. np p1 3− ≥

Example 3.95

In a binomial experiment, let n = 100  and p = 0.5. That is, we toss a unbiased coin 
with the probability of success p = 0.5. What is the probability of the number of 
heads to be at least 70?

Answer

This example could be a translation of a multiple-choice test with 100 two-choice 
questions, and a student needs at least 70% on the test to pass.

Let X be a random variable representing the number of heads occurring for 
the 100 trials. Then, X is a binomial random variable. In fact, the normal cdf 
could be used because np = 50, n( )1 5− =p 0, and np p( )1 2− = 5; that is, all cases 
(i), (ii), and (iii) are satisfied. Hence, we may find P X( )≥ 70  using the normal 
distribution. 

Using (3.237) with

 μ = =np (100)( )0.5 = 50 and σ = np( )1− p = (100)( )0.5 ( )0.5 = 5, 

and

 
x − μ 70 − 50

z70 = = = 4, 
σ 5
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since the maximum value of X is 100, 

 
x − μ 100 − 50

z100 = = = 10. 
σ 5

Thus, the answer is 

 P( )X ≥ =70 Φ(10)− Φ(4) = 0.000031671. 

Using MATLAB code 

normcdf(10) - normcdf(4)

or

normcdf(100,50,5) - normcdf(70,50,5)

we will have the same answer. 
Using the calculator

 P(z ≥ =70) normalcdf (70,99999,50,5) = 0.00003167. 

For the test question mentioned above, there is a near zero chance for passing a 
student desire to pass, if by completely guessing.

We now summarize the approximation of normal to the binomial through the 
following theorem attributed to two French mathematicians Abraham de Moivre 
(1667–1754) and Pierre-Simon Laplace (1749–1827). De Moivre wrote a book on 
probability theory, The Doctrine of Chances, first published in 1718.

ABRAHAM DE MOIVRE (1667–1754)
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Theorem 3.24 (de Moivre–Laplace)

Let X be a binomial random variable with pmf  j ( ;j n, p), where j, n, and p are the 

number of desired successes, the number of trials, and the probability of success in 

each trial, respectively. If n → ∞ (i.e., n becomes large), while p remains unchanged, 

then cdf of

 
X n− p

 
np(1− p)

is the standard normal cdf, that is,

 
⎛ X n− p ⎞

lim
n

 j ( j n; , p) = l
n
im cdf = Φ⎜ ⎟ (0,1). (3.254)

→∞ →∞
p→0 0p→ ⎝ np(1− p) ⎠

Proof:
Left as an exercise.

We have  presented a photo of Laplace in Chapter 2.

Theorem 3.25 (de Moivre–Laplace Central Limit Theorem)

Let X be a binomial random variable, with pmf  j ( ;j n, p), where j, n, and p, 0 1< <p , 

and fixed, are the number of desired successes, the number of trials, and the prob-

ability of success in each trial, respectively. If n → ∞ (i.e., n becomes large), while p 

remains unchanged, then for two values of X as a and b, we have:

 
⎛ b n− p ⎞ ⎛ a n− p ⎞

P a( )< <X b ≈ Φ − Φ⎜ ⎟ ⎜ ⎟ , (3.255)
⎝ np(1− p) (⎠ ⎝ np 1− p) ⎠

where Φ is the standard normal cdf.

Proof:
Left as an exercise.

Note 3.79

The de Moivre–Laplace central limit theorem is a special case of the general cen-

tral limit theorem that we will study in a later chapter, and it is only for binomial 

pmf (last phrase unclear). It states that if n is large, then the probability of having 

between a and b successes is approximately equal to the area between a and b 

under the normal curve with parameters μ σ= =np and 2 np(1− p).
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Example 3.96

Let us now consider a multiple-choice test that consists of 100 equal-weighted 
questions, where each question has one correct answer out of four choices. 
(1) A student wants to know his chance of getting at least 80% on the test and 
(2) another needs a chance of receiving at least 30%.

Answer

Let X be a random variable representing the student’s number of correct answers. 
Hence, X has a binomial pmf with total observation n = =100, p 0.25, mean 
μ = =(100)(0.25) 25, and standard deviation σ = =(100)(0.25)(0.75) 4.3301.

Now, as we did in Example 3.95, the normal distribution approximation to 
binomial, using (3.237), (3.240), and MATLAB, we have two cases:

 
x − μ 80 − 25

z80 = = = 12.7018. 
σ 4.3301

x − μ 30 − 25
z30 = = = 1.1547. 

σ 4.3301

x − μ 100 − 25
z100 = = = 17.3206. 

σ 4.3301

 

 

Thus, the answer is 

 i. P X( ≥ =80) Φ(17.3206) − Φ(12.7018) ≈ 0

and
 ii. P X( ≥ =30) Φ(17.3206) − Φ(1.1547) = 0.1241.

In MATLAB codes: 

P_80_1 = normcdf(17.3206) - normcdf(12.7018);

or

P_80_2 = normcdf(100,25,4.3301) - normcdf(80,25,4.3301);

and

P_30_3 = normcdf(17.3206) - normcdf(1.1547)

or

P_30_4 = normcdf(100,25,4.3301) - normcdf(30,25,4.3301)

Example 3.97

We toss a fair coin 30 times. What is the probability of having up to 18 heads?
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Answer

We will present the answer with two different methods:

 

 

= 0.8998.

j ⎛
≤ ≤ =∑ ∑

18
30 ⎞

P X(0 18)  j ( j;30,0.5) = 0.5) (0.5)30−
⎜ i ⎟ ( i i

i=0 i=0
⎝ ⎠  

 ii. Alternatively, we use normal cdf. That is, 

 μ = =np (30)(0.5) = 15, 

 σ = −np(1 p) = (30)(0.5)(0.5) = 2.7386,  

and

 
=0

18

P X(0 ≤ ≤18) =∑ j ( j;30,0.5) = Φ(15,2.7386). 
i

Example 3.98

Suppose we are interested in testing approval rating of a high-ranking political 
figure in a country, like the president of the United States. For this purpose, a 
random sample of size n = 100 is taken from the population of eligible voters in a 
part of the country. What is the probability that more than 60 of the 100 approve 
the politician?

Answer

 μ = =np (100)(0.5) = 50  

and standard deviation 

 σ = −np(1 p) = (100)(0.50)(0.50) 5.  =

i. As we have seen before, this is a binomial problem with n = =30, j 0,1, 
2, 18, and p = 0.5 with pmf j ( j j;30,0.5), = 0,1,2, ,18. Thus, letting 
X to represent the number of heads, we have:

Let X be a Bernoulli random variable representing a voter. Let the approving of his 
job be denoted by 1 with probability p and disapproving of his job be denoted 
by 0 with probability 1 − p. Taking a sample of n = 100, it means repeating the 
trial 100  times independently. Hence, we are lead to a new random  variable, 
say Y, which is the sum of n = 100 independent random variables, that is,
Y = +X X1 2 + + X100, with parameters mean 
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The question is finding the probability of approval rating of higher than 60%. 
Thus, referring to the de Moivre–Laplace theorem and using MATLAB, we have:

 

⎛ 100 − 50 ⎞ ⎛ 60 − 50 ⎞P X( > =60) P X(60 < <100) ≈ Φ⎜ ⎟ − Φ⎜ ⎟⎝ 5 ⎠ ⎝ 5 ⎠

= Φ(10) − Φ(2) = 1− 0.9772 = 0.0228.

 

Example 3.99

Suppose that a certain population is comprised of half men and half women. 
A random sample of 10,000 from this population is selected. What is the prob-
ability that the percentage of the men in the sample is between 49% and 51%?

Answer

We use binomial pmf of a random variable X, representing the number of men in 
the sample, with n = 10,000 and p = 0.5. Hence, we are to find the probability of 
number of men in the sample to be between 4,900 and 5,100. Thus,

 ∑
5,100 ⎛ 10,000 ⎞

P X(4,900 ≤ ≤ 5,100) = ⎜ ⎟ (0.5)i (0.5)10,000−

=4,900
⎝ i

i ⎠
i 

Now, since np = 5,000 and σ = −np(1 p) = 50, the normal approximation of the 
probability in question will be

 

⎛ 5,100 − 5,000 ⎞ ⎛ 4,900 − 5,000 ⎞P X(4,900 ≤ ≤ 5,100) ≈ Φ⎜ ⎟ − Φ⎜ ⎟⎝ 50 ⎠ ⎝ 50 ⎠

= Φ(2) − Φ(−2) = 0.9544

 

With the probability of approximately 95.44%, the percent of number of men in 
the sample is between 49% and 51%.

Note 3.80

The result obtained in the example above is a confirmation of what we have seen 

in the law of large numbers. The error of approximation, in this case, is a bit less 

than 5%.

3.9.7  2χχ , CHI-SQUARED, DISTRIBUTION

As an application of the normal distribution, we now discuss a very useful and widely 

used distribution, namely, χ 2 (read as chi-squared) distribution. It is an interesting 

distribution in testing statistical hypotheses that we will see in Chapter 4. Particular 
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applications of χ 2 include the theoretical and observed values of a quantity, as well 

as about population variances and standard deviations.

Definition 3.50

Let X1 2, X X,... r be r independent standard normal random variables. Then, the cdf of 

the sum of square of these random variables is called χ 2, chi-squared, distribution 
with r degrees of freedom, denoted by

 

Theorem 3.26

The pdf, cdf, mean, and variance for a χ 2 random variable denoted by fX ( ,x r), 

F xX ( ,r), μ, and σ 2 are, respectively, as follows:

⎧ r x
− − ⎛ x r

⎪
1

⎧ ⎞
x e2 2 ⎪ γ ⎜ , ⎟

, 0x , ⎝⎪ r > 2 ⎠⎪ 2⎪ ⎪ , 0x > ,
f xX ( ,r) = ⎨ 2 ⎛ r ⎞ F x( ,r) = r

2 ⎨ ⎛ ⎞  (3.257)Γ⎜ ⎟ X Γ⎝ ⎠ ⎜ ⎟⎪ 2 ⎪ ⎝ 2⎠
⎪ ⎪
⎪ 0, otherwise,⎩ 0 wise,⎩⎪ , other

where γ ( ,x r) is called the lower incomplete gamma function, defined as:

 γ ∫
x

( ,x tα ) = α− −1e t dt, (3.258)
0

where α  is a complex parameter, and

 μ σ= =r r, and 2 2 .  (3.259)

Proof:
We leave the proof as an exercise.

Note 3.81

We leave it as an exercise to show that a particular case of the χ 2 cdf defined in 

(3.257) when r = 2 is an exponential of the form:

∑
r

X 2 2
i rχ( ) . (3.256)

i=1
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⎧ x
⎪ −

F x( ,2) 1 ,e x2 0,
X = − >⎨  (3.260)

⎪ 0, otherwise.⎩

Example 3.100

Below is the graph of a χ 2 cdf with 6 degrees of freedom. MATLAB code for this 
graph is as follows (Figure 3.32):

x = 0:0.2:20;
y = chi2pdf(x,1);
plot(x,y, 'k')
hold on
y = chi2pdf(x,3);
plot(x,y, 'b')
hold on
y = chi2pdf(x,5);
plot(x,y, 'r')
hold on
y = chi2pdf(x,6);
plot(x,y, 'b')
hold on
y = chi2pdf(x,8);
plot(x,y, 'k')
hold off
ylabel('\chi^2 cdf');
xlabel('x');
title('\chi^2 cdf');
axis ([0 20 0 .4])
text(.9, 0.35, 'r  1');=
text(2.5, 0.2, 'r  3');=
text(3.8, 0.16, 'r = 5');
text(4.95, 0.14, 'r = 6');
text(9.5, 0.09, 'r = 8');

We utilize a similar program for calculating the cdf. See Figure 3.33.
There are many applications of X 2, such as goodness-of-fit and test of inde-

pendence that we will discuss later.

3.9.8  THE F-DISTRIBUTION

A distribution that has a natural relationship with the χ  distribution is the 

F-distribution. 

2

Definition 3.51

Let χ1 and χ2 each be a χ 2 random variable with r1 and r2 degrees of freedom, 

respectively. Then, the random variable χ  denoted by
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FIGURE 3.32 χ 2 pdf with r = 1, 2, 3, 5, 6, and 8 degrees of freedom.

FIGURE 3.33 χ 2 cdf with r = 1, 2, 3, 5, 6, and 8 degrees of freedom.
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χ1

rχ = 1  (3.261)χ2

r2

has a pdf, denoted by f rχ 1 2,r  and defined as:( )

 

⎡ r r+Γ 1 2 ⎤ r r 2

2 ⎛ ⎞ 2

χ ( ) ⎦⎥
1 1−

⎣⎢ r x 2

f r1 2,r = 1 , (3.262)
⎛ r r1 2

⎜ ⎟⎞ ⎛ ⎞ ⎝ r +
Γ Γ 2 ⎠ r r1 2

⎡ ⎛ ⎞ ⎤⎝ r 2

2 2⎠ ⎝ ⎠ ⎢1+ ⎜
1

⎟ x⎥
⎢ ⎝ r2 ⎠ ⎥

where Γ (·) has been defined before. χ is called F random variable of F statistics.

Note 3.82

The parameters r1 and r2 represent the number of independent pieces of informa-

tion used to calculate χ1 and χ2, respectively.

Example 3.101

Calculate the pdf of an F-distribution with r1 = 7 and r2 = 5.

Answer

We use the MATLAB to calculate and plot the pdf value in question. The codes 
we use are as follows.

It can be seen from Figure 3.34 that the F-distribution exists on positive real 
axis and is skewed to the right. In other words, the F-distribution is an asymmetric 
distribution with a minimum value of 0. The peaks are close to the zero x-value. 
After the peak, a curve quickly approaches the x-axis. Also, from Figure 3.34, we 
see that the smaller the degrees of freedoms, the closer the peak to zero. 

The MATLAB program for Figure 3.31 is as follows:

x = 0:0.1:10;
y = fpdf(x,5,3);
plot(x,y, 'r')
annotation('textarrow', [0.2,0.3], [0.5,0.6]);
text(2, .5,'(r_1=5,r_2=3)')
hold on
y = fpdf(x,7,5);
plot(x,y, 'k')
annotation('textarrow', [0.2,0.3], [0.6,0.7]);
text(2.2, .6,'(r_1=7,r_2=5)')
hold on
y = fpdf(x,7,9);
plot(x,y, 'b')

Figure 3.35 shows graphs of F cdf for a variety of degrees of freedoms for the 
numerator and the denominator.
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Note 3.83

To find numerical probabilities, we can remove the “:” and obtain a list of values.

Definition 3.52

A sample point that falls far away from the sample points is referred to as an outlier. 

The median is less sensitive to outliers than the mean. Hence, when a sample con-

tains outliers, the median is used. Such samples are sometimes referred to as skewed 
samples. An outlier on the far left will cause a negative or left skew, while an outlier 

on the far right will cause a positive or right skew. See Wilks (1962), p.265, for the 

calculation of skewness.

Not all data sets are distributions the same way not all pdfs or pmfs are of the 

same shape. As we have seen in Chapter 2, some are symmetric, while others 

are  asymmetric. Some are even skewed. We have even seen distributions that are 

multimodal.

FIGURE 3.34 F pdf with (r1, r2) = (7, 9), (7,5), (5, 3), two degrees of freedoms, one 

for the numerator and one for the denominator.
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Definition 3.53

Kurtosis (“kurtos” means “arched” or “bulging”) measures the sharpness of 
peak of a distribution. It also measures the thickness or heaviness of the tails of a 
distribution. 

Subjectively, kurtosis measures are obtained by comparing with normal distri-
µ

bution. However, to be precise, the ratio 4
4  is used, where μ

σ 4 is Pearson’s fourth 

moment about the mean and σ  is the standard deviation. The kth moment about 
the mean, µk, is defined as follows: Let X be a random variable with n values 
x1 2, ,x x, n. Let us also denote the mean of X by µ. Then, 

 
∑

n

( )x
k

i − µ
µ i 1

k = = .  (3.263)
n

FIGURE 3.35 F cdf with (r1, r2) = (7, 9), (7, 5), (5, 3), two degrees of freedoms, one for the 
numerator, and one for the denominator.
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Note 3.84

We leave it as an exercise to show that the kurtosis of the normal distribution is 3.

Definition 3.54

Similar to skewness, positive or negative values of kurtosis will cause flatter than or 

sharper than the peak of the normal curve. For the calculation of kurtosis, the reader 

may see Wilks (1962, p. 265). A distribution that has tails similar to a normal distri-

bution is referred to as mesokurtic.

Definition 3.55

If a distribution has kurtosis greater than a mesokurtic distribution, it is referred 

to as a leptokurtic (“lepto” means “skinny”) distribution. Such distributions are 

sometimes identified by peaks that are thin and tall. The tails of such distribu-

tions are thick and heavy. “Student’s t-distribution” is an example of a leptokurtic 

distribution. 

Definition 3.56

Distributions with slender tails are referred to as platykurtic (“platy” means 

“broad”) distributions. Often their peaks are lower than those of mesokurtic distribu-

tions. Uniform distributions are the examples of platykurtic distributions. Bernoulli 

pmf is another example of a platykurtic distribution.

Essentially, a kurtosis distribution is used to be a baseline for mesokurtic, lep-

tokurtic, and platykurtic distributions. Thus, we can subtract 3 (the kurtosis for 
μ

normal distribution) from the standard calculation formula, 4 μ
, that is, 4 3

σ 4 σ 4
− , to 

measure excess kurtosis. Hence, the excess kurtosis for mesokurtic, leptokurtic, and 

platykurtic distributions are 0, negative excess kurtosis, and positive excess kurtosis, 

respectively.

3.9.9  STUDENT’S t-DISTRIBUTION

Historically, the Irish chemist William Gosset used the opportunity of “staff leave for 

study” at the place he was working to continue his study enrolling in “Karl Pearson’s 

Biometric Laboratory” at University College London. He developed and published a 

paper in 1908 regarding a continuous random variable with a distribution he called, 

under the pen name, Student, referring to the opportunity’s name he used. Later, the 

distribution was also referred to as Student’s t, or simply t-distribution. Here is how 

it is defined (Figure 3.36).
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Definition 3.57

 ∑= =∑
n n

1 1 2
X X Sand 2 X X .

n
i

n 1
( )i −  

i 1
−

= i 1=

FIGURE 3.36 William Sealy Gosset 1876–1937.

FIGURE 3.37 Karl Pearson 1857–1936.

Let X represent a random sample X1 2, ,X X, n of size n (i.e., X1 2, ,X X, n are iid 

random variables) from a normal population with mean and standard deviation μ 

and σ , respectively, that is, X ~ ,N ( )μ σ 2 . Let X and S2 denote the sample mean and 

the corrected variance of the sample, respectively, that is (Figure 3.37),
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X − μ
Then, as we have seen earlier, Z = ~ (N 0,1).σ

n
Now, if we define the random variable t by

 
X − μ

t = , (3.264)S
n

then t has t-distribution with n −1 degrees of freedom, denoted by “df”.

Definition 3.58

Let f ( ,t ν) be a function defined as

 

⎛ v +1⎞Γ ⎜ ⎟⎝ 2 ⎠ 1
f t( ,ν) =  (3 )

⎛ ν 1 ,
⎞ ν+ .265

νπΓ ⎛ t2 ⎞ −

⎝
2

2 ⎠ 1+⎜ ⎟⎝ ν ⎠

where ν  is the fixed number of df and Γ ⋅( ) is the gamma function defined earlier. 

Then, f ( ,t ν) is a pdf (proof left as an exercise), given the value of ν , and is referred 

to as Student t’s pdf.

Note 3.85

Using beta function, (3.265) can be written as

 

ν+1

1 ⎛ t2 ⎞ −
2

f t( ,ν) = )
1 ⎜1 ,+  (3

⎛ ν ⎟ .266
⎞ ⎝ ν ⎠νB⎜ , ,⎟⎝ 2 2 ⎠

where B is the beta function defined earlier.

Note 3.86

In case ν  is an integer, then there are two cases for (3.265) as follows:

Case 1, for ν >1 and even, the first term on the right-hand side of (3.265) becomes

 

⎛ ν +1⎞Γ ⎜ ⎟⎝ 2 ⎠ ( 1ν ν− −)( 3) 5 ⋅3= . (3.267)
⎛ ν ⎞ 2 (ν ν − −2)(ν 4) 4 ⋅2νπΓ⎝ 2 ⎠



247Random Variables

Case 2, for v >1 and odd, the first term on the right-hand side of (3.266) 

becomes

 

Note 3.87

Noting that ν = −n 1, it can be seen from (3.268) that a t-distribution depends upon 

the sample size n. That is, there is a different t-distribution for each sample size n 

with different degrees of freedom. Hence, (3.268) defines a class of distributions.

Student’s t-distribution is a symmetric bell-shaped distribution with peak at 0. 

It looks like a standard normal curve, but with lower height and wider spread. The 

reason of more spread than the standard normal curve is because the  standard 

ν
deviation for a t-curve with, say ν , 2ν > , df is >1, which is the standard 

ν − 2
deviation of the standard normal distribution curve; the spread is thus larger 

for a t-curve. However, as the number of df increases, the t-distribution curve 

approaches the standard normal curve.

Note 3.88

We should note that as the degrees of freedom ν  becomes large and approaches 

infinity, the t-distribution would approach the standard normal distribution.

Theorem 3.27

The cdf of Student’s t-random variable, F x( ,ν), can be obtained by integrating 

(3.265) from −∞ to x. That is, F x( ,ν) is as follows:

 

⎛ 1 ν +1 3 x2 ⎞
2 1F , , −⎜ ; ⎟1 ⎛ ν +1⎞ ⎝ 2 2 2 ν ⎠

F x( ,v) = + xΓ⎜ ⎟ ⋅ , (3.269)
2 ⎝ 2 ⎠ νπ Γν

2

where 2 1F ( )⋅  is the hypergeometric function defined as

 

⎧
( ) j

⎪ a b z
⎪ ∑

∞
j j( )

, 0c z> <, 1,
2 1F a( ,b,c; z) = ⎨ ( )c j j!

0
 (3

⎪
j

.270)=

⎪ undefined or ∞ ≤, C 0,
⎩

⎛ ν +1⎞Γ ⎜ ⎟⎝ 2 ⎠ ( 1ν ν− −)( 3) 4 ⋅2= . (3.268)
⎛ ν ⎞ π −ν ν( 2)( 4ν − ⋅) 5 3νπΓ⎝ 2 ⎠
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where ( )r i  is defined as 

 

Proof:
Left as an exercise.

Note 3.89

If either a or b is a nonpositive integer, the series in (3.270) will become finite. 

In this case, for c > 0 and z <1, (3.269) becomes a polynomial as follows:

 

k
k

F k ∑ ⎛ ⎞ ( )b j
2 1( ,− =b,c; z) (−1) j

⎜ ⎟ z cj , 0> <, z 1. (3.272)
j c jj 0

⎝ ⎠ ( )
=

We leave it as an exercise to show that the mean and variance of t-random variable 

are, respectively,

⎧ ν
⎪ , 2ν > ,

ν −⎧ 2
⎪ 0, ν > 1, ⎪⎪

mean(t) = ⎨ and Var(t) = ⎨ ∞ <, 1 ν ≤ 2,  (3.273)
⎪ undefined, ν ≤ 0,⎩ ⎪ undefined, otherwise.

⎪
⎩⎪

Code for finding the mean and variance of a t-distribution, given df and say ν , is 

“[m,v] = tstat(nu)”.

Example 3.102

Suppose a t-random variable with ν = 24. Then, using MATLAB code “[m,v] = 
tstat(nu)”, the mean and variance of this t are 0 and 1.0909, respectively.

Example 3.103

Let X represent a random variable with Student’s t-pdf with ν  df. We let X take 
 values between 0 and 7 and ν = 4,99,999,4999. Using MATLAB, we want to see 
how the shape of the pdf and cdf curves will change as the value of ν  changes. 
Do the same for X taking values between –7 and 7.

Answer

Using MATLAB, the following programs (the first 5 lines of pdf should be repeated 
for cdf) records all four plots for pdfs, Figure 3.38, and cdfs, Figure 3.39, for values 
of x between 0 and 7 and a visual comparison.

⎪⎧ 1, i = 0,
( )r i = ⎨  (3.271)

r r( 1+ +) (r i −1), i > 0.⎩⎪
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FIGURE 3.38 Graph of Student’s t-pdf with different ν  values, x between 0 and 7.

FIGURE 3.39 Graph of Student’s t-cdf with different ν  values, x between 0 and 7.
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t-pdf

x  [0:.1:7];
y1 = tpdf(x,4); % For nu = 4
y2 = tpdf(x,99); % For nu = 99
y3 = tpdf(x,999); % For nu = 999
y4 = tpdf(x,4999); % For nu = 4999
figure;
plot(x,y1,'Color','black','LineStyle','-')
hold on
plot(x,y2,'Color','red','LineStyle','-')
plot(x,y3,'Color','blue','LineStyle','-')
plot(x,y4,'Color','green','LineStyle','-')
legend({'\nu = 4','\nu = 99','\nu = 999', '\nu = 4999'})
hold off
xlabel('x')
ylabel('Student t pdf')
title('Student t pdf with \nu df','fontsize',12) 

t-cdf

figure;
plot(x,y1,'Color','black','LineStyle','-')
hold on
plot(x,y2,'Color','red','LineStyle','-')
plot(x,y3,'Color','blue','LineStyle','-')
plot(x,y4,'Color','green','LineStyle','-')
legend({'\nu = 4','\nu = 99','\nu = 999', '\nu = 4999'}, 
'Location', 
'southeast') 
hold off
xlabel('x')
ylabel('Student t cdf')

title('Student t cdf with \nu df','fontsize',12) 

Figures 3.40 and 3.41 show the closeness of t-pdf and t-cdf to the standard normal 
pdf and cdf, respectively, for values of x between −7 and 7 and a visual com-
parison. MATLAB codes are similar to the other figures with the exception of the 
 addition of the normal plot. Here is the t-cdf with the standard normal cdf:

x = [-7:.1:7];
y1 = tcdf(x,4); % For nu = 4
y2 = tcdf(x,99); % For nu = 99
y3 = tcdf(x,999); % For nu = 999
y4 = tcdf(x,4999); % For nu = 4999
figure;
plot(x,y1,’Color’,’black’,’LineStyle’,’-’)
hold on
plot(x,y2,’Color’,’red’,’LineStyle’,’-’)
plot(x,y3,’Color’,’blue’,’LineStyle’,’-’)
plot(x,y4,’Color’,’green’,’LineStyle’,’--’)
z = normcdf(x,0,1);
plot(x,z,’-.m*’)
legend({‘\nu=4’,’\nu=99’,’\nu=999’,’\nu=4999’,’N(0,1)’},’Location
’,’southeas’)
hold off

=
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FIGURE 3.40 Graph of Student’s t-pdf with different ν  values, x between −7 and 7.

FIGURE 3.41 Graph of Student’s t-cdf with different ν  values, x between −7 and 7.
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xlabel(‘x’)
ylabel(‘Student t and standard normal cdf’)
title(‘Student t and normal cdf with \nu df’,’fontsize’,12) 

3.9.10  WEIBULL DISTRIBUTION

We give the definition for Weibull (named after Waloddi Weibull (1887–1979), a 

Swedish engineer for his work on strength of materials and fatigue analysis, in 1939) 

pdf in three cases of 1, 2, and 3 parameters. We start with 3 parameters.

Definition 3.59

Let X be a continuous random variable. 

 1. The function f ( ,x α β, ,γ ), defined by

,

⎧
⎛ −1 γ β

⎪ β x − γ ⎞ β ⎛ x− ⎞

⎪ ⎜− ⎟
⎜ ⎟ e x⎝ α ⎠ , 0> ≥, x γ β; ,α γ> 0; − ∞ < < ∞ f x( ,α β, ,γ ) = ⎨ α ⎝ α ⎠

⎪
⎪ 0, x < 0,⎩

(3.274) 

is called the three-parameter Weibull pdf, that is, a X ~ Weibull(α β, ,γ ). 

α , ,β  and γ  are the parameters. We leave it as an exercise to prove that 

f ( ,x α β, ,γ ) is, indeed, a pdf. The parameter α  is referred to as the shape 
parameter, β  is called the scale parameter, and γ  is referred to as the 

location parameter.

Note 3.90

Changing the value of α  will cause the Weibull pdf to change its shape and can 

model a wide variety of data. This is why it is referred to as the shape parameter. 

 2. In (3.274), if γ = 0, the function f ( ;x α β, ), defined by

 

⎧ β

β ⎛ x β−1 ⎛ x ⎞
⎪⎪ ⎞ −⎜ ⎟

e x⎝ α ⎠ , 0> >,α β, 0,f x( ;α β, ) = ⎨ α α⎝ ⎠  (3.275)
⎪ ≤⎩⎪ 0, x 0,

is called the two-parameter Weibull pdf, that is, a X ~ Wibull(α β, ). 

α  and β are the parameters. 
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We leave it as an exercise to prove that f ( ;x α β, ) is, indeed, a pdf. The 

parameter α  is referred to as the shape parameter and β is called the scale 
parameter.

We leave it as an exercise to prove that the cdf in this case, denoted by 

F x( ;α β, ), is:

 

⎧ β

α β ∫
⎛ x ⎞∞ ⎪ −⎜ ⎟ ,

F x( ; , ) = =f ( ;x α β 1 0⎝
, ) x − ≥ ,α β, >⎨ e xα ⎠

d 0  (3.276)
0 ⎪ 0, X < 0.⎩

Note 3.91

Changing α  and β will change the shape of a variety of distribution. If β is 

between 3 and 4, the Weibull distribution approximates the normal distribution.

Note 3.92

Changing the values of β stretches or compresses the curves in the x-direction 

and so it is called a scale parameter.

Example 3.104

Letting X vary from 1 to 10 with 0.1 incriminate, α =1,2,3, β =1,2,3, and MATLAB 
codes,

x = 1:.1:10;
alpha = 1:3;
beta = 1:3;
p1 = wblpdf(x,1,1);
plot(x,p1,'r')
text(1.5, 0.1, '\alpha=1, \beta = 1')
hold on
p2 = wblpdf(x,2,3);
plot(x,p2,'b')
text(4.2, 0.15, '\alpha=3, \beta = 2')
hold on
p3 = wblpdf(x,3,2);
plot(x,p3,'k')
text(2.5, 0.4, '\alpha=2, \beta = 3')
hold off
xlabel('x', 'fontsize', 12)
ylabel('2-Parameters Weibull pdf', 'fontsize', 10)
title('2-parameters Weibull pdf','fontsize', 12)

we will have Figure 3.42. Coding for cdf is the same except instead of pdf, we 
should use cdf. See Figure 3.43.
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FIGURE 3.42 Graph of a two-parameter Weibull pdf with a variety of values for α  

and β , Formula (3.276).

FIGURE 3.43 Graph of a two-parameter Weibull cdf with a variety of values for α  

and β , Formula (3.277).
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 3. In (3.274), if γ = 0 and β = 1, the function f ( ;x α ), defined by

 

⎧ 1
x

⎪
−

e xa , 0≥ >, 0α ,
f x( ,α ) = ⎨ α  (3.277)

⎪ 0, x < 0,⎩

is called the one-parameter Weibull pdf, or exponential pdf. α  is the 

parameter. We leave it as an exercise to prove that f ( ;x α ), indeed, is a pdf. 

The parameter β  is called the scale parameter.

We leave it as an exercise to prove that the cdf in this case, denoted byF x( ;β), is:

 

x∞ ⎧
β β= =∫ ⎪ −

F x( ; ) f (x; )dx 1− ≥e xa , 0,α >⎨ 0,  (3.278)
0 ⎪ 0, x < 0.⎩

We also leave it as an exercise to show that the mean, μ, and standard deviation, σ, of 

the Weibull random variable are:

 1. For three-parameter Weibull:

 
⎛ 1 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞

2

μ γ= +α ⋅Γ +1 and σ α= ⋅ Γ +1 − Γ +1 , (3.279)⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ β ⎠ ⎝ β β⎠ ⎝ ⎠

where Γ ⋅( ) is the gamma function.

 2. For two-parameter Weibull:

 
⎛ 1 ⎞ ⎡⎛ 2 ⎞ ⎛ 1 ⎞ ⎤

μ α= ⋅Γ + σ α= ⋅ Γ⎜ 1 a⎟ nd ⎢ + − Γ +⎜ 1⎟ ⎜ 1 . (3⎟ ⎥ .280)
⎝ β ⎠ ⎝ β β⎣ ⎠ ⎝ ⎠ ⎦

 3. For one-parameter Weibull:

 μ α= =and σ α 2. (3.281)

Example 3.105

Let X be a two-parameter random variable with Weibull distribution function, that 
is, X ~ Wibull(α ,β). Let α = 0.4 and β = 0.8. We want to answer the following items:

 i. Probability of X 0.6,<
 ii. Probability of 0.8 X 2,< <
 iii. Probability of 2 6< <X ,

iv. The mean for this distribution,
v. The variance for this distribution,

vi. Graph of this distribution for 0≤ ≤X .10
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Answer

Using the following MATLAB codes, we answer the questions:

x = [0.6, 0.8, 2, 6];
alpha = 0.4;
beta = 0.8;
p1 = wblcdf(0.6,0.4,0.8) % P(X < 0.6)
p2 = wblcdf(0.8,0.4,0.8) % P(X < 0.8)
p3 = wblcdf(2,0.4,0.8) % P(0.8 < X < 2)
p4 = p3 - p2 % P(0.8 X < 2)
p5 = wblcdf(6,0.4,0.8) % P(X < 6)
p6 = p5 - p3 % P(2 X < 26)
x = 0:0.1:10;
p7 = wblcdf(x,0.4,0.8);
plot(x,p7,’k’)
xlabel(‘x’, ‘fontsize’, 12)
ylabel(‘2-Parameters Weibull cdf’, ‘fontsize’, 10)
title(‘2-parameters Weibull cdf, \alpha=0.4, \
beta=0.8’,’fontsize’, 12)
[M,V]=wblstat(0.4,0.8)

 i. P(X < =0.6) 0.7492.
 ii. P(X < =0.8) 0.8247, P X( < =2) 0.9733, P X(0.8 < < 2) = 0.1486.
 iii. P X( < =6) 0.9998, P X(2 < < 6) = 0.0265.
 iv. μ = 0.4532.
 v. σ 2 = 0.3263

 vi. For 0 1≤ ≤X 0, see Figure 3.44.

FIGURE 3.44 Graph of a two-parameter Weibull cdf, Example 3.105, (vi).
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3.9.11  LOGNORMAL DISTRIBUTION

Definition 3.60

A random variable X (with positive real values) is called lognormally distributed 

if its logarithm, say Y = ln X , is normally distributed. Conversely, if Y is normally 

distributed, then X = eY  is lognormally distributed.

Lognormal distribution sometimes is referred to as the Galton distribution, ref-

erencing to Francis Galton (1822–1911), a British statistician. There are other names 

in the literature that this distribution is associated with, such as Galton–McAlister, 

Gibrat, and Cobb–Douglas (Figure 3.45).

Note 3.93

To see the meaning of the definition, let Y = eX . Hence, X = lnY . Thus, if X is a 

normally distributed random variable, then Y is a lognormally distributed random 

variable.

Theorem 3.28

Let X ~ ;N x( )μ σ, 2 . Let Y be lognormally distributed random variable with pdf 

denoted by fY ( )x . Then,

 
( )−μ 2

1
ln x

−
f y( ) = e x2σ 2

Y , 0 < < ∞, − ∞ < μ σ< ∞, > 0. (3.282)
xσ 2π

FIGURE 3.45 Francis Galton 1822–1911.
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Proof:

 

d
f yY ( )= ≤P Y( y)

dy

d d d= ≤P Y( Inx) = F x( ) F xln ( )
dx dx

Y X=
dx

d ⎛ ln x − μ ⎞ ⎛ ln x d− μ ⎞ ⎛ ln x − μ ⎞= FX X⎜ ⎟ = f ⎜ ⎟ ⎜ ⎟
dx ⎝ σ ⎠ ⎝ σ ⎠ dx ⎝ σ ⎠

( )−μ 2

⎛ ln x − μ ⎞ 1 1 1
ln x

−
= f ⎜ ⎟ = e 2σ 2

X .⎝ σ σ⎠ x x σ 2π

 

Theorem 3.29

Let Y be a lognormally distributed random variable. Denote the cdf of Y by F xY ( ), 

where X is normally distributed with mean and variance as μ  and σ 2, respectively. 

Then, 

 

1 ⎡ ⎛ ln x − μ ⎞ ⎤ 1 ⎛ ln x − μ ⎞= +⎢1 erf ⎜ ⎟ ⎥ = −erfc⎜ ⎟ , (3.283)
2 ⎣ ⎝ σ 2 ⎠ ⎦ 2 ⎝ σ 2 ⎠

2
∞ ( )

≤ ≡ ∫
t u−

1
ln−

P Y( )x FY (x) = e d2σ 2
t

0 tσ 2π
 

where erf is the error function given in (3.262) and erfc is the complimentary 
error function. The mean and variance of Y are given by:

 
σ 2

u+
E( )Y e= =2 and Var( )Y ⎡eσ μ2 2

−1⎤e2 +σ . (3.284)⎣ ⎦

Also, the median and mode of Y denoted by Md( )Y  and Mo( )Y  are, respectively, as:

 Md( )Y = =eμ μand Mo( )Y e −σ 2

. (3.285)

Proof:
Left as an exercise.

Example 3.106

Let X be a normally distributed random variable with μ = 0.6, σ = 1. Let Y be log-
normally distributed random variable defined by Y = ln X. Answer the following 
items:
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 i. Probability of 1 < <Y 3,
 ii. Probability of Y > 4,

iii. The mean of Y,
iv. The variance of Y,
v. For values of 0 2< ≤X 5, and two sets of means and variances as: 

μ σ= =0.6, 1 and μ σ= =0.5, 2 0.9, display the graphs of pdf of Y.
vi. For values of 0 < ≤X 2, and two sets of means and variances as: 

μ σ= =0.6, 1 and μ σ= =0.5, 2 0.9, display the graphs of cdf of Y.

Answer

 i. P(1 < <Y 3)= 0.4167.
 ii. P(Y P> =4) 1− (Y ≤ =4) 0.2158.
 iii. μY =3.0042.
 iv. σ 2

Y = 15.5075.
v. For graph of lognormal pdf, see Figure 3.46.

vi. For graph of lognormal cdf, see Figure 3.47.

 
 
 

 

 
 

Note 3.94

It should be observed that the lognormal distribution is positively skewed with 

many small values and just a few large values. Consequently, the mean is greater 

than the mode in most cases.

FIGURE 3.46 Graph of a lognormal pdf, Example 3.106, (v).
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Note 3.95

In applications, the normal distribution cannot be used due to the possible negative 

values of the random variable. Thus, lognormal distribution is an excellent alterna-

tive. For example, for modeling asset prices in stock prices, lognormal  distribution 

can be used since it is bound by zero on the lower side. Thus, while the returns on 

a stock (continuously compounded) follow a normal distribution, the stock prices 

follow a lognormal distribution. However, the lognormal  distribution is the most 

appropriate for stock prices, regardless of the distribution for the asset prices.

3.9.12  LOGISTIC DISTRIBUTION

One of the widely used distributions in engineering and clinical trials is logistic.

Definition 3.61

Let X be a continuous random variable. The function f xX ( ;μ γ, ) with two parameters 

α  and β defined by

 

x−μ−
e γ

f xX ( ;μ γ, ) = 2 , ,− ∞ < x μ γ< ∞, > 0, (3.286)
⎛ x−μ− ⎞

γ ⎜1+ e λ
⎟⎝ ⎠

FIGURE 3.47 Graph of a lognormal cdf, Example 3.106, (vi).
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where the parameters μ and γ  are referred to as the location and scale parameter, 

respectively, is a pdf called the logistic pdf for X.

Theorem 3.30

 1. The function fX ( ;x μ γ, )defined in (3.286) is, indeed, a pdf. 

 2. The function F xX ( ,μ γ, ) defined as:

1
F xX ( ;μ γ, ) = x−μ , ,− ∞ < x μ < ∞, γ > 0, (3.287)

−
1+ e γ

 

is the cdf of the logistic pdf. 

 3. The mean, median, and mode for the logistic random variable, denoted by 

E( )X , Md( )X , and Mo( )X , respectively, are equal, and they are equal to μ. 

That is,

 E( )X M= =d( )X Mo( )X = μ. (3.288)

 4. Also, the variance of the logistic random variable is:

γ 2 2π
Var( )X = . (3.289)

3
 

Proof:
Left as an exercise.

Note 3.96

It can be seen that:

 
1 1

f x( ; , ) sech2 ⎛ x − μ ⎞
X μ γ = = , (3.290)

⎛ x x−μ −μ 2 ⎜ ⎟
− 4γ ⎝ 2γ ⎠

γ ⎜e e2 2
⎞

γ + γ
⎟

⎝ ⎠

and

 
1 ⎡ ⎛ π −( )x μ ⎞ ⎤

F xX ( ,μ γ, ) = +⎢1 tanh
2 ⎜⎝ 2 3 ⎟ ⎥ . (3.291)

γ⎣ ⎠ ⎦

Example 3.107

Let μ = 0,2. We graph the pdf and cdf of logistic for values of γ =1,2,3 in Figures 3.48 
and 3.49, respectively.
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FIGURE 3.48 Graph of logistic pdf for μ = 0 and 2 and γ =1,2,3.

FIGURE 3.49 Graph of logistic cdf for μ = 0 and 2 and γ =1,2,3.
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We show how MATLAB programs can be written for the logistic pdf and cdf to 
obtain Figures 3.40 and 3.41.

MATLAB Logistic pdf

x = -20:0.1:25;
mu_1 = 0;
gamma_1=2;
p_1 = (exp((x-mu_1)/gamma_1))/gamma_1./(1+exp((x-mu_1)/
gamma_1).^2);
plot(x,p_1,’b’)
hold on
mu_2 = 2;
gamma_2=2;
p_2 = (exp((x-mu_2)/gamma_2))/gamma_2./(1+exp((x-mu_2)/
gamma_2).^2);
plot(x,p_2,’r’)
hold on
mu_3 = 2;
gamma_3=4;
p_3 = (exp((x-mu_3)/gamma_3))/gamma_3./(1+exp((x-mu_3)/
gamma_3).^2);
plot(x,p_3,’k’)
hold off
ylabel(‘Logistic pdf’)
xlabel(‘x’)
text(-9,0.2,’\mu = 0, \gamma = 2’)
text(5,0.15,’\mu = 2, \gamma = 2’)
text(-3.5,0.03,’\mu = 2, \gamma = 4’)
title(‘Logistic pdf’)

MATLAB Logistic cdf

x = -20:0.1:25;
mu_1 = 0;
gamma_1=2;
c_1 = (1/2)*(1+tanh((pi*(x-mu_1))/(2*(sqrt(3))*gamma_1)));
plot(x,c_1,’b’)
hold on
mu_2 = 2;
gamma_2=2;
c_2 = (1/2)*(1+tanh((pi*(x-mu_2))/(2*(sqrt(3))*gamma_2)));
plot(x,c_2,’r’)
hold on
mu_3 = 2;
gamma_3=4;
c_3 = (1/2)*(1+tanh((pi*(x-mu_3))/(2*(sqrt(3))*gamma_3)));
plot(x,c_3,’k’)
hold off
ylabel(‘Logistic cdf’)
xlabel(‘x’)
text(-6,0.8,’\mu = 0, \gamma = 2’)
text(0.2,0.15,’\mu = 2, \gamma = 2’)
text(7,0.9,’\mu = 2, \gamma = 4’)
title(‘Logistic cdf’)
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3.9.13  EXTREME VALUE DISTRIBUTION

Another distribution that is widely used these days in engineering and clinical tri-

als is extreme value. The distribution was called the extreme value because it was 

used for probabilistic modeling of extreme or rare events arising in areas, where 

such events could have very negative consequences. The examples of rare events 

included events such as storms with high wind speeds, extreme high or low tempera-

tures, extreme floods and snowfalls, large fluctuations in exchange rates, and market 

crashes. The area of study is referred to as the extreme value theory, pioneered 

by the British researcher, in cotton industry, Leonard Tippett (1902–1985). He was 

trying to make cotton thread stronger. R. A. Fisher helped him finding the neces-

sary theory; see Fisher and Tippett (1928). The German mathematician Emil Julius 

Gumbel (1891–1966) focused on the applications of extreme value to engineering 

problems, in particular, modeling of meteorological phenomena like annual flood 

flows. He was the first to bring engineers and statisticians’ attentions to possible 

application of extreme value theory to some empirical distributions they were using 

such as radioactive emission, strength of materials, flood analysis, and rainfall. He 

presented the theory in his book titled Statistics of Extremes published in 1958, see 

Gumbel (2004, reprint of 1958). One of the three types of extreme value distribution 

is included in his book and bears his name.

Definition 3.62

Let X be a continuous random variable. There are three types of pdf (and cdf) for X 

called the extreme value. 

These types are one-parameter, two-parameter, and three-parameter. Here 

are there definitions: 

1. The random variable X has extreme value type 1 (or Gumbel-type extreme 
value or double exponential) pdf with local parameter μ and scale param-

eter θ, denoted by fX ( ;x μ θ, ) defined as

x−μ

1
x−μ −

− − θ

μ θ
e

f X( ; , ) = −e θ , ,∞ < x < ∞ θ > 0. (3.292)
θ

2. The random variable X has extreme value type 2 (or Fréchet, named after 

a French mathematician Maurice Fréchet (1878–1973)) pdf with shape 

parameter α  and scale parameter β, denoted by fX ( ;x α β, ), defined as

α

α ⎛ β ⎞α +1 ⎛ β ⎞−⎜ ⎟
f X( ;α β, ) = ⎜ ⎟ e x⎝ x ⎠ , 0 < < ∞,α β, > 0. (3.293)

β ⎝ x ⎠

 3. The extreme value type 3 pdf is the Weibull pdf with two and three param-

eters defined in (3.274) and (3.275).

 

 

 

 



265Random Variables

A combination of the three types of extreme value distributions, that is, Gumbel, 

Fréchet, and Weibull, is referred to as the generalized extreme value distribution 
(GEV) (or von Mises-type or von Mises–Jenkinson-type distribution), with its 

pdf denoted by f ( ,x α β, ,γ ), defined as:

 

f ( ,x α β, ,γ )

⎧
⎪ ⎡ 1 ⎤

1
−

1 ⎛ x − γ − −1 ⎡ ⎛ x−γ ⎞ ⎤
⎞

ββ β γ⎢
− +1 ⎡⎥ ⎢ ⎜ ⎟ x

1 ,e ⎝ ⎠ ⎥ ( )⎣ α ⎦ −
+ β

β ⎤
⎪ ⎜ ⎟ when 1+ >⎥ 0, o β

α ⎝ α ⎠ ⎢ f r
⎪ ⎢ ⎥ ⎣ α ⎦

= ⎨ ⎣ ⎦
⎪ x−γ

1
x−γ −

⎪ − −e α

e α , when − ∞ < < ∞, r 0β = ,⎪ α
(3.294)

x

0,

fo

≠

⎩
 

which is left to be proved. In other words, each one of the three types can be obtained 

from (3.294).

Note 3.97

Extreme value type 1 distribution is an appropriate distribution to use when the 

variable of interest is the minimum of many real-valued random factors. However, 

Weibull, the extreme value type 3 distribution, would be a candidate distribution 

when lifetime random phenomena are being considered.

Note 3.98

We leave it as an exercise to show the following:

 i. If X is a Weibull random variable, then X = ln X  is a type 1 extreme value 

random variable.

ii. Type 2 and type 3 extreme value distributions can be obtained from each 

other by changing the sign of the random variable.

iii. A type 2 extreme value random variable X can be transformed to a type 1 

extreme value Y by the following transformation: Y = −ln(X μ).

iv. A type 3 extreme value random variable X can be transformed to a type 1 

extreme value Z by the following transformation: Z X= − ln(μ − ).

 

 

 

Theorem 3.31

 1. Prove the following:

 i. fX ( ;x μ θ, ) for type 1 extreme value random variable, defined by (3.299), 

is, indeed, a pdf.
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 ii. fX ( ;x α β, ) for type 2 extreme value random variable, defined by (3.293), 

is, indeed, a pdf.

iii. cdf for type 1 extreme value random variable, denoted by F xX ( ;μ θ, ), is 

given as

x−μ−

F x( ;μ θ, ) ≡ ≤P(X x) = e−e θ
X , − ∞ < X <,θ > 0. (3.295)

iv. cdf for type 2 extreme value random variable, denoted by F xX ( ;μ θ, ), is 

given as

α⎛ β ⎞−⎜ ⎟
F xX ( ;α β, ) ≡ ≤P(X x) = e ⎝ x ⎠ , x > 0,α β, > 0. (3.296)

2. For a type 1 extreme value random variable X, show that the moment 

 generating function M(t), mean, and variance are as follows:

M t( ) = =E ( )etX etμΓ(1−θ θt), t <1. (3.297)

E X( ) = −μ θφ(1) = +μ ηθ = +μ 0.57722θ , (3.298)

where φ( )⋅  is the digamma function defined as φ( )t t= −μ θln[Γ(1− )] and 

η is Euler’s constant equal to 0.57722.

π2 2θ
Var( )X = = 1.64493θ 2. (3.299)

6

3. Find the mean and variance of type 2 extreme value distributions.

 

 

 

 

 

  

 

 

 

 

Example 3.108

Let μ = 2 . We graph the pdf and cdf of extreme value type 1 for values of θ = 1,3,5, 
with x running from −15 to 25, in Figures 3.50 and 3.51, respectively.

MATLAB Extreme Value Type 1, pdf

mu = 2;
theta = [1,3,5]; 
for i = 1:length(theta)
 x = -15:0.1:25;
 f = (1/theta(i))*exp(-(x-mu)/theta(i)).*exp(-exp(-(x-mu)/
theta(i)));
 plot(x,f)
 hold on
end
ylabel(‘Extreme-value type 1, pdf’)
xlabel(‘x’)
text(-5,0.30,’\mu  2, \theta  1’)= =
text(-7,0.08,’\mu = 2, \theta = 3’)
text(-12,0.02,’\mu = 2, \theta = 5’)
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FIGURE 3.50 Graph of extreme value type 1 pdf for α 2 and β 1,3,5.= =

FIGURE 3.51 Graph of extreme value type 1 cdf for α = 2 and β =1,3,5.
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title(‘f(x;\mu,\theta) = (1/\theta) exp[-(x-\mu)/\theta)] 
exp[-exp(-(x-\mu)/\theta]’)
hold off

MATLAB Extreme Value Type 1, cdf

mu = 2;
theta = [1,3,5];
for i = 1:length(theta)
 x = -15:0.1:25;
 evcdf_1=evcdf(x,mu, theta(i));
 plot(x,evcdf_1)
 hold on
end
ylabel(‘Extreme-value type 1, cdf’)
xlabel(‘x’)
text(-3.5,0.9,’\mu = 2, \theta = 1’)
text(-7.1,0.1,’\mu = 2, \theta = 3’)
text(3.5,0.75,’\mu = 2, \theta = 5’)
title(‘Extreme Value Type 1 cdf’)
hold off

Example 3.109

Let α = 2. We graph the pdf and cdf of extreme value type 2 for values of β = 1,3,5, 
with x running from 0.1 to 25, in Figures 3.52 and 3.53, respectively.

MATLAB Extreme Value Type 2, pdf

alpha = 2;
beta = [1,3,5];
for i = 1:length(beta)
 x = 0.1:.1:25;
 f = (alpha/beta(i))*((beta(i)./x).^(alpha+1)).*exp(-beta(i)./x). 
^alpha;
 plot(x,f)
 hold on
end
ylabel(‘Extreme Value Type 2, pdf’)
xlabel(‘x’)
text(1.1,0.25,’\alpha = 2, \beta = 1’)
text(3,0.1,’\alpha = 2, \beta = 3’)
text(8.4,0.03,’\alpha = 2, \beta = 5’)
title(‘f(x;\alpha,\beta) = (\alpha/\beta)(\beta/x)^\alpha 
exp(-\beta/x)^\alpha)’)
hold off

MATLAB Extreme Value Type 2, cdf

alpha = 2;
beta = [1,3,5];
for i = 1:length(beta)
 x = .1:.1:25;
 EVcdf_2 = exp(-(beta(i)./x).^alpha);
 plot(x,EVcdf_2)
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FIGURE 3.52 Graph of extreme value type 2 pdf for α = 2 and β =1,3,5.

FIGURE 3.53 Graph of extreme value type 2 cdf for α = 2 and β =1,3,5.
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 hold on
end
ylabel(‘Extreme Value Type 2, cdf’)
xlabel(‘x’)
text(3.3,0.9,’\alpha = 2, \beta = 1’)
text(5.5,0.8,’\alpha = 2, \beta = 3’)
text(4.8,0.3,’\alpha = 2, \beta = 5’)
title(‘F(x;\alpha,\beta) = exp(-(\beta/x)^\alpha)’)
hold off

For a sequence of random variables and for samples when the sizes become large, 

there are properties, some of which we will discuss in this section. These properties 

are applicable in both probability theory and inferential statistics.

lim S Sn = , 
n→∞

 

if for every positive number ∈>0, there exists a number N such that 

 S Sn − < ∈, ∀n >  N.

If the sequence does not converge, it is said to diverge.

We now discuss the asymptotic probabilistic convergence.

Definition 3.63 Convergence in Probability

We offer two versions of this definition.

Version a: The sequence of random variables {X nn , ∈ }, not necessarily all 

defined on the same sample space Ω, converges in probability to a real 

number c, denoted by 

 X prob
n ⎯ →⎯⎯ c, (3.300)

if

 lim P Xn c
n

( )− ≥ ∈ = 0, (3.301)
→∞

for any arbitrary positive number ∈. Or equivalently,

 P X( )n − >c ∈ → 0, as n → ∞, for a fixed ∈> 0. (3.302)

Before we start discussing the main purpose of the section, we remind the readers 

that by a sequence, it is meant a function whose domain is the set of positive integers. 

Also, in a classical sense, by convergence of a sequence { }Xn  to X as n approaches 

infinity is meant that the difference of Xn and X, in absolute value, gets closer to 0 as 

n becomes larger and larger. Formally, a sequence, S an n= ={ } , 1n ,2, , converges 

to a number (limit) S, denoted by

3.10  ASYMPTOTIC PROBABILISTIC CONVERGENCE
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Or equivalently,

 P X( )n − ≤c ∈ → 1, as n → ∞, for a fixed ∈> 0. (3.303)

Version b: The sequence of random variables {X nn , ∈  defined on a sample 

space Ω converges in probability to a random variable X, defined on a 

sample space Ω, denoted by

}

 X prob
n ⎯ →⎯⎯ X , (3.304)

if and only if 

 lim P Xn X
n

( )− ≥ ∈ = 0, (3.305)
→∞

for any arbitrary positive number ∈. In other words, as n increases, 

P X( )n − >X ∈  decreases, where X is called the probability limit of the 
sequence.

Note 3.99

In Definition 3.64, if X is a constant, say c, rather than a random variable, then 

both versions are the same. 

Note 3.100

Suppose each of the two sequences {X nn , ∈ } and {Y nn , ∈ } converges in 

probability to X and Y, respectively, with all random variables defined on the same 

sample space Ω. Then, we have the following implication:

 If X X⎯ →prob
, and Y prob Y , then X prob

n n⎯⎯ ⎯⎯⎯→ ( )n +Yn ⎯⎯⎯→( )X +Y . (3.306)

Proof:
Left as an exercise.

Note 3.101

The concept of convergence in probability can be extended to a sequence of 

 random vectors. 

Definition 3.64 Convergence in Distribution

The sequence of random variables {X nn , 1≥ } is said to converge in distribution to 

a random variable X, denoted by 

 X dist
n ⎯ →⎯ X , (3.307)
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 lim F xX Xn ( )= F (x), (3.308)
n→∞

if

for every x ∈  at which F xX ( ) is continuous.

Definition 3.65 Almost Surely Convergence

The sequence of random variables {X nn, ∈ , defined on the sample space Ω, 

 converges almost surely (or with probability one) to a random variable X, denoted by 

}

 X a s. .
n ⎯ →⎯ →X Xor  n X with probability one , (3.309)( )

if there is a set A ⊂ Ω such that

 lim X Xn(ω ω) = ∈( ), for all ω A, (3.310)
n→∞

and P( )A =1 or

 ⎛P X{ }⎞lim n( )ω ω= ∀X( ), ω ∈Ω = 1. (3.311)⎝ n→+∞ ⎠

Note 3.102

The almost sure convergence implies convergence in probability, but the converse 

is not true.

Proof:
Proof is left as an exercise.

Note 3.103

The convergence in probability implies that there exists a subsequence that 

 converges almost surely to the same limit.

Proof:
We leave the proof as an exercise.

Note 3.104

We leave it as an exercise to prove that the almost sure convergence reduces the 

idea to convergence of deterministic sequences. 
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We leave it as an exercise to prove that convergence almost surely is the probabi-

listic version of pointwise convergence in real analysis. 

Note 3.106

The random variables Xn , 1n ≥  mentioned in Theorem 3.32 are generally highly 

dependent.

Note 3.105

When a chance experiment is repeated a large number of times, the average 

of occurrences of an event will approach the expected value of that event. For 

instance, if we rolling a fair die once, the average points obtained would be 3.5, 

which is the sum of numbers from 1 to 6 divided by 6. Now if we repeat the  rolling 

of the same die many times, we expect the average value of numbers obtained will 

be the same as 3.5; that is, the sample mean will approach the population mean.

Definition 3.66

The mean of a random sample is referred to as the sample mean.

Now, let us consider a random sample from a population. Then, the idea of a 

sample mean approaching the population mean is the essence of what is referred 

to as the law of large numbers (LLN). There are two versions of the LLN, simply, 

weak and strong. The first is referred to as Khinchin’s law.

Theorem 3.32 The Weak Law of Large Numbers, Khinchin’s Law

The mean of a random sample referred to as the sample mean approaches the popula-

tion mean (or the expected value) as the sample size approaches infinity. Symbolically, 

consider a random sample of size n and denote the sample mean by Xn, that is,

Then,

X P
n ⎯ →⎯ →μ, as n ∞. (3.313)

That is, Xn approaches μ in probability. In other words, given a small positive  number 

∈, we have:

lim P X
n→∞

( )n − >μ ∈ = 0. (3.314)

Proof:
Left as an exercise.

 

 

 

X X
X 1 + + n

n ≡ . (3.312)
n
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Theorem 3.33 The Strong Law of Large Numbers, Kolmogorov’s Strong Law

The sample mean defined in (3.43) converges almost surely (a.s.) to the population 

mean as the sample size, n, approaches infinity. Symbolically, 

X a s.
n ⎯ →⎯ →μ, as n ∞. (3.315)

In other words, 

P ( )lim Xn = =μ 1. (3.316)
n→∞

X ⎯ →a s
n ⎯. . μ. (3.317)

Proof:
Left as an exercise.

Note 3.107

Example 3.110

Consider tossing a fair coin n times, independently. Observing each occurrence of 
heads in a row. Let Hn be the row with longest number of heads. That is, Hn repre-
sents the longest sequence of consecutive tosses that produce heads. Show that as 
n becomes too large, the value of Hn approaches log2 n. In other words, show that 

Hn → →1, in probability, as n ∞. (3.319)
log2 n

Answer

To see the problem better, let, for example, n = 25 and the outcome of tosses of 
a fair coin is:

TTHTHTHHHHHTHHHTHTHTHHTTH                    .
25 in total

 

 

 

 

 

 

Yet, another way of stating this theorem is the following: Suppose {X nn , 1≥ } is a 

sequence of iid random variables, sometimes referred to as a random sample, such 

that μ = E X⎡⎣ ( )1 2⎤ =⎦ E X⎡⎣ ( ) ⎤ = =⎦ E X⎡⎣ ( )n ⎤⎦ is finite. Then,

Relation (3.313) can be generalized replacing random variables by functions of 

random variables. Thus, let g be a function from reals to reals, that is, g : →  

such that μ ≡ =E g[ ]( )X1 2E g[ (X )] = = E ⎡⎣ ( )Xn ⎤⎦  exits and

g X( )+ + ∞
1 g X( )n → =μ g( )x f

n ∫ X1
( )x dx, as n → ∞. (3.318)

−∞
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This shows Hn = 5. From (3.319), it can be seen that to have the limit to be 1, the 
length of the highest row should be about 20 (in fact, it is 1.0034) and that hap-
pens in after a million tosses. 

We now prove (3.319) that we used in this example. For the number of heads in 
a sequence of tosses, we will calculate the upper and lower bounds on probabili-
ties that Hn  is large; that is, for an arbitrary number j, we will calculate P ( )H j

P ( )
n ≥  

and H jn ≤  as follows.
For the upper bound, the number of heads in a row starts at some point, say i, 

where 0 1≤ ≤i n− j + ; that is, i is the size of the first row of heads. Hence,

P Hn ≥ =j P(number of heads in a row start at some point i, 0 ≤ i ≤ n − j + 1)( )
⎛

= P iU
n j− +1 ⎞ 1

⎜ is the first heads in a row of at least j heads⎟ ≤ ⋅n j . (3.320)
⎝ j=1 ⎠ 2

 

For the lower bound, after the n tosses of the coin, there is a string of size n of 
heads and tails. We divide this string into disjoint blocks of the same size j. Thus, 

⎡ n ⎤
there will be ⎢ ⎥  (where [ ]x  or “bracket x” is the greatest integer less than or 

⎣ j ⎦
equal x) blocks, such that if n is not divisible by j, the leftover smaller block at the 
end will be ignored. Hence, as soon as one of the blocks consists of heads only, 
H jn ≥  and different blocks are independent. Thus, 

 

⎡ n ⎤ 1 ⎡ n ⎤

P H( ) ⎛ 1 ⎞ ⎢ ⎥ − ⎢ ⎥
n < =

j
j 1

⎣
⎜ − ⎦

⎟ ≤ e 2 j ⎣ j ⎦ .⎝ 2i  (3.321)⎠

The Maclaurin expansion of a function f x( )= e−x  is:

 
x

Hence, we have: 

 1− ≤x e−x ∀x  , .

Also, if x ≥ 2, the following inequalities are known:

 1,
x

x + ≤1 2x x, − ≥1 , [x x] 1≤ + and [x x] ≥ −  
2

where [ ]x  or “bracket x” is the greatest integer less than or equal x (we leave the 
proofs as exercises).

Now, to show (3.321), we have to show that for any fixed ∈>0, the following 
are true:

 P H( )n ≥ +(1 ∈) log2 n → 0 (3.322)

and

 P H( )n ≤ −(1 ∈) log2 n → 0, (3.323)

n n
x x x2

− ( 1− )
e = −1 x + + + . 

2 n!
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because

 

n

n

)

⎛ H ⎛ H H
P ⎜

n n⎞
− ≥ ∈⎟ = ≥P + ∈ n ⎞

1 1 or ≤ 1− ∈
⎝ log2 2n ⎜ n ⎟⎠ ⎝ log n log2 ⎠

⎛ H H= ≥P n ⎞ ⎛ ⎞
+ ∈ + ≤⎜ 1 P −

⎝ log n ⎟ ⎜ 1 )
⎠ ⎝ log n ⎟  

2 2 ⎠
∈

= P H( )n n≥ (1+ ∈) log2 n + P (H ≤ (1− ∈) log . (3.324)2

Of course, neither (1+ ∈) log2 n nor (1− ∈) log2 n is an integer, and these may cause 
some concerns regarding the proof. However, this type of concern is common in 
problems such as the one under consideration.

Now to prove (3.323), in (3.324), we let j n= +(1 ∈) log2  and obtain:[ ]

 
2 2= ⋅n
1+∈ = ∈ → 0, n → ∞. (3.325)

n n

P H( ) 1
n ≥ +(1 ∈) log2 n = n ⋅

2(1+∈)log2 n−1

 

To prove (3.318), in (3.319), we let j n= −[ ](1 ∈) log2 +1 that yields:

 

)

∈1 n− ⋅
≤ e 32 (1−∈) log2 n ,

1 ⎡ n ⎤
− ⎢ ⎥

≤ e 2 j ⎣ j ⎦

1 ⎛ n ⎞
− −⎜ 1⎟

≤ e 2 j ⎝ j ⎠

1 1 n− ⋅ ⋅
≤ e

−∈32 1n (1−∈) log2 n

P H( )n ≤ −(1 ∈) log2 n ≤ P H( < jn

 

which approaches 0, as n →∞, because n∈ is much larger than log2 n. This 
 completes the proof of (3.325) and the answer to Example 3.102.

Example 3.111

 
υ

We further suppose that 

 Xn n= +X Y . (3.327)

Let X be a random variable. Let also Yn , 1n = ,2, , be a sequence of iid random 
variables such that 

1 υ
E ( )Yn n= =and Var ( )Y ,υ > 0, n = 1,2, . (3.326)

n n
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We want to show that 

 X ⎯ →pr⎯⎯ob
n X. (3.328)

Answer

In order to apply the fact that x y+ ≤ x + y , we write Yn as Yn n= −Y E ( )Yn + E ( )Yn . 
Hence,

 
1

Y Yn n≤ − E ( )Yn + .  
n

Thus, for ∈>0, we have:

 

⎛ 1 ⎞P Y( )n n− ≥E ( )Y ∈ = P Y( )n ≥ ∈ ≤ P ⎜ Yn n− E ( )Y + ≥ ∈⎟⎝ n ⎠

⎛= −P Y⎜ n nE ( ) 1 ⎞Y − ≥ ∈⎟ .⎝ n ⎠

 

Using Chebyshev’s inequality, we will have:

 ⎛ ( )( ) 1 ⎞ Var Y n
P Yn nE Y ⎟ ≤ n υ

= ⎜ − − ≥ ∈ 2 2= → →0, n ∞. (3.329)⎝ n ⎠ ⎛ 1 1⎞ ⎛ ⎞
⎜∈− ⎟ ⎜∈− ⎟⎝ n ⎠ ⎝ n ⎠

Relation (3.329) implies (3.328).

Example 3.112

 X ⎯ →pr⎯⎯ob
n 0. (3.330)

Answer

Since Xn ≥ 0 and Xn is exponentially distributed, we have:

 lim P Xn en

n
( )− ≥0 ∈ = lim ∈ = 0. ∀ ∈> 0. (3.331)

→∞ n→∞

Relation (3.331) implies (3.330).

Example 3.113

Suppose the distribution of the grades of an examination is skewed with mean 
and standard deviation of 75 and 5, respectively. What percent of students have 
received grade between 50 and 100?

Let Xn , 1n = ,2, , be a sequence of iid exponential random variables. Let also the 
random variable X = 0 show that 
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Answer
1

Using Chebyshev’s theorem, we know that 1−
2
 proportion of data is in the 

k
interval of ( ,μ μ− +ks ks). Therefore, μ + =ks 100, or 75+ =k(5) 100. Hence, k = 5. 

1 1
Therefore, the proportion of grades between 50 and 100 is 1− =

2
1− = 0.96 .

k 25

Theorem 3.34 Central Limit Theorem

 =∑
n

S xn k . (3.332)

k=1

Then, Sn  is the total of n observations of the sample. Hence, the sample mean X will 

be defined as in (3.238), that is,

 
S

X = n . (3.333)
n

For large n, S Nn ~ ,( )nμ σn , that is,

 
⎛ S n ⎞

lim P n − μ
⎜ ≤ x x⎟ = Φ( ), − ∞ < x < ∞. (3.334)

n→∞ ⎝ σ n ⎠

⎛ σ ⎞
Thus, using (3.333), for large n, X ~ ,N ⎜ μ ⎟ , that is, for −∞ < < <a b ∞, 

⎝ n ⎠

 

⎛ ⎞
⎜ X − μ ⎟

lim P a ≤ ≤ b b= Φ( ) − Φ(a).
n→∞ ⎜ σ ⎟  (3.335)

⎜ ⎟⎝ n ⎠

If X is transferred to the standard normal random variable, that is, with μ= 0 and 

σ 2 =1, then

 
⎛ S ⎞

lim P a
n→∞ ⎜ ≤ ≤n b b⎟ = Φ( ) − Φ(a a), − ∞ < < b < ∞. (3.336)

⎝ n ⎠

Proof:

Let X1 2, ,X , be a sequence of iid random variables with mean μ and variance σ 2. 

Let { }X X1 2, , , Xn  be a sample of size n. Define

There are different versions of the proof for this theorem. We offer that from Rice 

(2007). It suffices to prove the theorem for μ = 0. This is because, if μ≠ 0, then for 

each k, we let Yk k= −X μ. We also let T Yn n= +1 2Y + +Y . Then, for −∞ < x < ∞, we 

have:
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⎛ S n− μ ⎞ ⎛ T ⎞

lim P
n→∞ ⎜

n n≤ x P⎟ = ≤⎜ x⎟ . (3.337)
⎝ σ σn ⎠ ⎝ n ⎠

Thus, we start the proof with μ = 0, using the moment generating function, mgf, 

denoted by M tx ( ). We show that the mgf of

 
S

Z n
n =  (3.338)

σ n

approaches the mgf of the standard normal pdf. 

Since Sn  is the sum of n independent random variables, from a property of the 

mgf, we have (3.338) and

 
⎡ ⎛ t ⎞ ⎤

n

M tSn n( ) = =[ ]M( )t n MZ ( )t = ⎢M ⎜ ⎟ ⎥ . (3.339)
⎣ ⎝ σ n ⎠ ⎦

To complete the proof, we need to show that 

 
⎡ t ⎤ t2

L n≡ lim ln = ,
n→∞ ⎢⎣σ n ⎥  (3.340)

⎦ 2

 P a( )≤ ≤Fn b ⎯d⎯ ≤→ P( )a F ≤ b . (3.341)

Now, changing 1 2 to x, the unknown L will become:

 

⎛ tx ⎞
ln M ⎝ σ ⎠

L = lim
2

. (3.342)
x→∞ x

0
However, at x = 0, M(0) = 1. Hence, (3.342) becomes , which is indeterminate. 

0Using L’Hôpital’s rule, we will have:

 

⎛ tx ⎞M ′ t⎝ σ ⎠
⎛ tx ⎞ ⎛ tx ⎞M σ M ′⎝ σ ⎠ t ⎝ σ ⎠

L = lim = lim . (3.343)
x x→∞ 2 2x σ →∞ ⎛ tx ⎞xM ⎝ σ ⎠

by taking the exponential of this and using one of the properties of the mgf men-

tioned in an Chapter 2. The essence of that property is that if M tn( ) → ∀M( )t , t in an 

open interval containing zero, then F xn( ) → F( )x , for all x at which F is continuous, 

where Fn  is a sequence of cdfs with corresponding mgfs M tn( ). A similar property 

would let X1 2, ,X , be a sequence of random variables with cdf F F1 2, , , respec-

tively, and also, X be a random variable with cdf F xX ( ). Then, Xn will converge in 
distribution to X, denoted by X d

n ⎯ →⎯ X , if lim F xn( ) = F(x) at each point of conti-
n→∞

nuity of F x( ). For an interval [ ,a b], this property states that 
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Once again, at x = 0, (3.343) is indeterminate. Using L’Hôpital’s rule again, we will 

have:

 

.

t M2 ′′(0)= .
2σ 2 t

M(0) + 0M ′(0)
σ

⎛ tx ⎞ t
M ′′

t ⎝ σ σ⎠
L = lim

2σ x→0 ⎛ tx ⎞ ⎛ tx ⎞ t
M + xM ′⎝ σ σ⎠ ⎝ ⎠ σ

⎛ tx ⎞M
t2 lim ′′

= x→0 ⎝ σ ⎠
2σ 2 ⎛ tx ⎞ t ⎛ tx ⎞

lim M + lim xM ′
x x→ →0 0⎝ σ σ⎠ ⎝ σ ⎠

 

Further, using the properties of the mgf, from M Er r(0) = ( )X , we will have: 

 M(0) = =E M(1) 1, ′(0) = E( ) 0X =

 M ′′(0) = =E ( )X 2 [ ]E(X)
2 +Var(x) = 0 +σ σ . =

Thus,

 
t t2 σ 2 2

L = ,
2 1σ 2

=  
+ 0 2

as desired.

Note 3.108

Essentially, the central limit theorem says that the average of the sample means 
will be the population mean.

Note 3.109

The central limit theorem is sometimes stated differently. For instance, Hogg 

and Tanis (1993) state and prove the result as follows: As n becomes very large 

( )n → ∞ , the cdf of

 

− μ
μ ∑

n

X ni
X − = i=1  
σ n σ n
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is the standard normal cdf, that is,

 

−
X ⎞ ∑

n

X nμ
⎛

i
− μ

lim cdf = lim cdf i 1 = Φ(0,1).
n→∞ ⎜ ⎟

=  
⎝ σ n ⎠ n→∞ σ n

Note 3.110

The central limit theorem, is stated for a “large sample size”, as it was mentioned 

earlier. The question is how large is “large”? The answer may be “the larger the 

better”. But this is not specific enough. For practical purposes, some statisticians 

accept standard large samples as n ≥30 or n ≥40, when the population distribu-

tion is roughly normal and much larger if the population distribution is not normal 

or extremely skewed.

Note 3.111

As an extension of a property of normal distribution mentioned in Chapter 2, 

we now state a property that is referred to as weak form of the central limit 
theorem.

Theorem 3.35 The Weak Central Limit Theorem

 

Of course, in case the variables are with mean different from 0, subtraction of the 

mean can normalize them.

Proof:
Left as an exercise.

Note 3.112

The central limit theorem applies to almost all types of probability distributions. 

For instance, it can be proved for independent variables with bounded moments, 

and even more general versions; even limited dependency can be tolerated. 

Moreover, random variables not having finite moments, that is, E ( )Xn  doesn’t 

converge for all n, like a Cauchy distribution, are sometimes sufficiently well 

behaved to induce convergence.

Let { }X X1 2, , , Xn  be a sample of size n; that is, let X1 2, X X,..., n be n iid random 

variables with mean 0 and variance σ 2. Then,

X X1 2+ + + Xn approaches N n0,σ 2 as becomes large.
n

( )  
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Theorem 3.36

Let X1 2, X X,..., n be a random sample of size n, that is, n iid random variables with 

mean and finite variance μ and σ 2 <∞, respectively. Define the sample mean as

 

 =∑
n

S Xn i . (3.345)

i=1

Then,

 i. E ( )X = μ, (3.346)

( ) σ 2

 ii. Var X = , (3.347)
n

 iii. E ( )S2 2= σ , (3.348)

 iv. E ( )S nn = μ, (3.349)

 v. Var ( )S n 2
n = σ . (3.350)

Proof:
We prove part (i) and leave the rest for the readers to refer to Casella and Berger 

(1990, p. 208).

From the definition of X, (3.344), for a sample of size n, we have:

n

E ( )
⎛ 1 1⎞ ⎛ n

1 1
X En i= ⎜ ∑ ∑

⎞
X ⎟ = ⎜ Xi ⎟ = ⎣⎡nE ( )X = =( )n . 

⎝ n
i ⎤⎦ μ μ

i= =1 1⎠ n ⎝ i ⎠ n n

What (3.345) says is that the mean of the distribution of the sample mean is the same 

as the mean of the population. In other words,

As the sample size increases and approaches infinity, we will have:

( )
⎛

∑
n

1 ⎞
E X = lim ⎜ Xk

n
⎟ = μ. (3.351)

→∞⎝ n
k=1 ⎠

In Chapter 2, we discussed the de Moivre–Laplace central limit theorem. There it 

was mentioned as a special case of the general central limit theorem. Here, we pres-

ent the general central limit theorem.

 

 

X X
X 1 2+ + + X= n . (3.344)

n

Also, define Sn as a random variable representing the sum X1 2+ +X X+ n, that is, 
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Theorem 3.37 Central Limit Theorem (For Sample Mean)

 

⎛ ⎞
⎜ X − μ ⎟

lim = N(0,1).
n→∞⎜ σ ⎟  (3.352)

⎜ ⎟⎝ n ⎠

In other words,

 
⎛ σ ⎞

X → N ⎜ μ, .⎟  (3.353)
⎝ n ⎠

That means the sample mean can be approximated with a normal variable with mean 

μ and standard deviation σ n .

Example 3.114

Let X be a random variable with μ = 6 and σ = 5. Suppose a sample of size 100 
is taken from this population. We are looking for the probability that the sample 
mean is less than 5.

Answer

Applying the central limit theorem, we will have:

 

⎛ ⎞
⎜ 5 6− ⎟

P( 5X P< =) ⎜ z < ⎟ = <P(z −2) = Φ(−2) = 0.0228. 
5

⎜ ⎟
⎝ 100 ⎠

Example 3.115

Suppose the population of female secretaries with college degrees has normal 
pdf with a mean salary of $39,523 and a standard deviation of $3,125. A sample 
of 200 female secretaries is taken. What is the probability that their mean salaries 
will be less than $38,500?

Answer

Since n = 200, it is accepted as large enough. Hence,

 
x u− 38,500 − 39,523

z = = = −0.3274. 
σ 3,125

 P(X < =38,500) Φ(−0.3274) = 0.3717 ≈ 37.17%. 

Let X1 2, ,X X, n be a random sample of size n (a natural number, i.e., n ∈ ) from 

a population, that is, n iid random variables, with mean and finite variance, μ and 

σ 2 <∞, respectively. Then,
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Yet another way of stating the central limit theorem is the following. This is 
 similar to the de Moivre–Laplace central limit theorem. We leave the proof as an 
exercise.

Theorem 3.38

 

−
− μ ∑

n
1

X U
X n

k

Z k 1
n = = = , (3.354)σ σ

n n

that is, the standard normal random variable with μ = 0 and σ 2 = 1. Then, for large n, 

Zn  can be approximated by the standard normal distribution N(0,1) or Φ( )x , thatis, 

 

⎛ ⎞
⎜ X − μ ⎟

lim P a ≤ ≤⎜ b b= Φ⎟ ( ) − Φ(a). (3.355)
n→∞ σ

⎜ ⎟⎝ n ⎠

Proof:
Left as an exercise.

Example 3.116

Answer

From what is given, and from Chapter 2, we know that a = 0, b = 16, and

 
b a+ 16 + 0μX = =E X( ) = =8

2 2

Let X1 2, ,X X, n be a random sample of size n (a natural number, i.e., n ∈ ) from 

a population, that is, n iid random variables, with mean and finite variance, μ and 

σ 2 <∞, respectively. Also, let a and b be two fixed numbers. Define Zn  as the random 

variable

Let us consider X1 2, ,X X, 10 be 10 uniformly iid random variables distributed on 
the half-open interval [0,16). What is the probability that the sample mean falls in 
this interval?
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and

 
b a 2 2

2 ( )− (16 − 0)σ X = = = 21.33.  
12 12

Hence, from (3.314), we have:

 

⎛ ⎞

( ) ⎜ 0 8− X − 8 16 − 8 ⎟
P X0 1≤ < 6 = P ⎜ ≤ ≤ ⎟

⎜ 21.33 21.33 21.33 ⎟
⎜ ⎟⎝ 10 10 10 ⎠

= −P Z( 5.48 ≤ ≤ 5.48) = Φ(5.48) − Φ(−5.48) 

= −1 ( )2.1266e−08 = −1 0 = 1.

One additional central limit theorem for the sum of random variables is as follows.

Theorem 3.39 Central Limit Theorem (For Sum of n iid Random Variables)

 
⎛ S n

lim n − μ ⎞
N(0,1).

n
⎜ ⎟ =  (3.356)

→∞⎝ σ n ⎠

Proof:
Left as an exercise.

Example 3.117

Let X be a random variable with μ = 10 and σ = 4. A sample of size 100 is selected 
from this population. We want to find the probability that the sum of these 100 
observations is less than 950.

Answer

Let the sum be denoted by Sn. Then, we will have (See Table 3.33)

Let X1 2, ,X X, n be a random sample of size n (a natural number, i.e., n ∈ ) from 

a population, that is, n iid random variables, with mean and finite variance, μ 

and σ 2 <∞, respectively. Consider Sn  as a random variable representing the sum 

X1 2+ +X X+ n. Then,
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EXERCISES

 3.1. Consider the experiment of rolling two dice and the following random 

variables.

Let W = The sum of the two numbers that appear on two dice.

X = The absolute value of the difference of two numbers that appear on 

two dice.

Y  Both numbers that appear are the same.=
 i. State the possible values of each of the above random variable.

ii. Construct the probability mass of X.

iii. Represent the cumulative distribution of X in a graphical form.

iv. Calculate the expected value of X.

 

 

 

 3.2. Assume you examine three bicycles reaching to a junction. You are going to 

observe whether the bicycles are going straight (0), turn to left (−1), or turn 

to right (1) from the junction. Let X be the random variable that represents 

the sum of the values assigned to each direction of the above three bicycles. 

List the values of X.

i. Construct the probability mass values of X in a graphical form.

ii. Calculate the expected value of X.
 

 

 3.3. Consider the probability distribution of the random variable X.

 i. Complete the above table.

ii. What is the most likely occurring value of the random variable X?

iii. Compute P X( 3< ).

iv. Compute P X( 2≤ ).

v. Compute P X( 3> ).

vii. Compute P X(1 < ≤ 3).

 

 

 

 

 vi. Compute P X(1 < < 3).

 

 3.4. A computer vender knows the following information by his experience. 

20% of the time he does not sell any computer, 35% of the time he sells one 

computer, 25% of the time he sells two computers, and 20% of the time he 

sells three computers. Taking the number of computers the vender sells as 

the random variable X, answer the following questions:

 i. Construct the probability distribution of X in the tabular form.

ii. Construct the cumulative distribution function (cdf) of X.

iii. Calculate the expected number of computers the vender sells.

iv. Calculate the variance of the number of computers the vender sells.

 

 

 

 3.5. Consider the probability distribution of the random variable X.

X 0 1 2 3

p x( ) 0.2 0.3 0.1 0.2

4
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 i. Construct the probability distribution X in the tabular form.

ii. Calculate the expected value of X.

3.6. A particular gas station has five gas pumps. Let Y  denote the number of gas 

pumps that are in use at a specified time. Consider the following pmf of Y . 

 

 

Calculate the probability of each of the following events.

i. {at most 3 pumps are in use},

ii. {fewer than 3 pumps are in use},

iii. {at least 3 pumps are in use},

iv. {between 2 and 5 pumps, inclusive, are in use},

v. {between 2 and 4 pumps, inclusive, are not in use},

vi. {at least 4 pumps are not in use}.

 

 

 

 

 

 

 3.7. A sample of 100 married women was taken. Each was asked how many 

children she had. Responses were tallied as follows:

 i. Find the average number of children in the sample.

ii. Find the sample standard deviation of the number of children.

iii. Find the sample median.

iv. What is the first quartile of the number of children?

v. What proportion of the women had more than the average number of 

children?

vi. For what proportion of women was the number of children more than 

one standard deviation greater than the mean?

vii. For what proportion of the women was the number of children within 

one standard deviation of the mean?

 

 

 

 

 

 

y 0 1 2 3 4 5

P y( 0.10 0.15 0.20 0.25 0.22 0.08)

Number of c 0 1 2 3 4 5 or more

Number of women 25 22 29 13 7 4

hildren
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 3.8. Let X represent the number of months between two power outages that 

occur. The cumulative probability distribution of X is as follows: 

 

⎧ 0 1x <
⎪

0.20 1 ≤ <x 4⎪
F x( ) = ⎨ 0.45 4 ≤ <x 6  

⎪ 0.60 6 ≤ <x 10
⎪ ≤⎪ 1 10 x⎩

 i. Construct the pmf of X.

ii. What is the expected number of months between two successive 

power outages?

iii. What is the probability of the number of months between two succes-

sive powered outages at least 5 months?

 3.9. Suppose the number of years of experience (X) an employee possesses 

when joining to a particular type of job is given by the following pmf: 

 

 

 

⎧ x
⎪ ; x = 1,2,3,4

P X( )= =x p(x) = ⎨ 10
⎪ 0; else⎩

 

 i. Calculate the expected number of years of experience a new employee 

possesses when joining to the above job.

 ii. What is the probability that a new employee has at least 2 years of 

experience when joining to the above job?

 3.10. Consider a random variable with the following probability mass function 

⎧ k
⎪ ; 1x = ,2,3

(pmf):  P x( ) = ⎨ x2 , where k is a positive constant.
⎪ 0; else⎩

 i. Calculate the constant k.

 ii. Construct the cumulative distribution function (cdf) of the random 

variable.

 3.11. Suppose an individual plays a gambling game where it is possible to lose 

$1.00, break even, win $3.00, or win $10.00 each time she plays. The prob-

ability distribution for each outcome is provided by the following table:

Calculate the expected value and the variance of the amount an indi-

vidual going to receive at the end.

Outcome −$1.00 $0.00 $3.00 $5.00

Probability 0.30 0.40 0.20 0.10
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 3.12. Consider a bicycle seller, who purchases a batch of five bicycles from a 

company and sells to customers. He buys these bicycles from the com-

pany for $100 per bicycle and sells one for $150. According to his experi-

ence, he knows that he has 1% chance not to sell any bicycle, 5% chance 

to sell one bicycle, 10% chance to sell two bicycles, 14% to sell three 

bicycles, 40% to sell four bicycles, and 30% chance to sell all the five 

bicycles. 

 i. What is the expected number of bicycles he expects to sell?

 ii. What is the expected profit he gets at the end of this business from one 

batch of bicycles?

 3.13. An examination consists of 20 multiple-choice questions. Suppose each 

question has four possible choices, but only one of them is the correct solu-

tion. If a student who did not study for the examination is going to guess at 

the examination, what is the probability that he guesses

 i. Exactly five questions correctly?

ii. At most five questions correctly?

iii. At least five questions correctly?

iv. Between five and ten questions (inclusively) correctly?

v. How many questions do you expect him to guess correctly?

 

 

 

 

 3.14. A laboratory network consisting of 25 computers was attacked by a 

c omputer virus. This virus enters each computer with a probability of 0.4, 

independently of other computers. What is the probability that

 i. At least ten computers are affected by the virus?

 ii. More than ten computers are affected by the virus?

 3.15. A clothing store has determined that 30% of the customers who enter the 

store will use a Visa credit card. Consider a collection of 15 customers who 

have entered to the store. 

 i. How many of them you expect to use Visa card?

 ii. What is the probability that more than five customers use Visa card?

 3.16. A quality controller knows by his experience that 10% of the items he 

inspects are defective. He randomly selects 30 items from the production 

and wants to inspect them.

i. Calculate the expected number of defective items he is going to find.

ii. What are the variance and the standard deviation of the number of 

defective items that the quality controller is going to find?

iii. What is the probability that the number of defective items he is going 

to find is more than one standard deviation of the mean value?

 

 

 

 3.17. Suppose 10% of the drivers in a particular city do not possess a valid 

driver’s license. A traffic inspector is inspecting all the drivers coming to 

a particular junction in this city. What is the probability that the inspector 

needs to inspect five drivers until he finds the first driver without a valid 

license?

 3.18. Usually a particular type of candy bags contains ten candies in each bag. 

Only 20% of the candy bags contains 15 candies in the candy bag. Suppose 

a kid is trying to find a bag with 15 candies. How many candy bags does he 

needs to open until he finds the first bag with 15 candies?
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 3.19. Consider a particular type of lottery with 2% chance of winning any kind 

of prize. Suppose a person wants to buy this lottery until he wins a prize. 

What is the probability that he gets his first win from the fifth lottery he 

purchases?

 3.20. Assume that there is a 10% chance a certain baseball player hits a home 

run in a game. What is the probability that the player completes his second 

home run in his fifth game?

 3.21. The number of telephone calls receiving per 5 minutes to a hotel’s 

reservation center follows a Poisson random variable with a mean of 

3. Find the probability that no call is received by the hotel in a given 

5-minute period.

 3.22. Let us suppose that sale of a flood insurance by a salesperson is according 

to a Poisson pmf, with an average of 3 per week. Use Poisson pmf to calcu-

late the probability that in a given week the salesperson will sell

 i. Some policies.

ii. Two or more policies but less than five policies.

iii. Assuming that there are five working days per week, what is the prob-

ability that in a given day he will sell one policy?

 3.23. A service station experiences ten vehicles arriving in an hour. Assume that 

the arrival of vehicles is independent and no more than one vehicle arrives 

at the same time. Considering a particular hour at the service station,

i. What is the probability that there are at most five vehicles arriving to 

the service station?

ii. If the number of vehicles arrived exceeds ten vehicles, the service sta-

tion needs to arrange additional parking space. What is the probability 

that the service station needs to arrange?

 3.24. Assume that the number of bacterial colonies of a certain type is grown at 

a rate of 2 colonies per minute. Assume that two or more colonies do not 

grow at the same time, and they are independent. Considering a 5-minute 

period, 

i. What is the probability that no more than 15 colonies are grown dur-

ing this 5-minute period?

 

 

 

 

 

 ii. How many colonies do you expect to grow during this 5-minute 

period?

 3.25. Consider the following joint pmf of X and Y.

 i. Construct the marginal pmf of X and Y.

 ii. Calculate the expected values and the variances of X and Y.

Y 0 Y 1 Y 2

X = 0 0.3 0.2 0.1

X = 1 0.2 0.1 0.1

= = =
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 iii. Calculate the covariance of X and Y.

 iv. Calculate the coefficient of correlation.

 3.26. Note that the pH value of a soil in a certain area has the following distrib-

uted function:

 f x( ) = −k x2 20x +100 ; 3 ≤ X ≤ 10 and k > 0 ( )
 i. Calculate the constant k.

ii. What is the mean pH value of this soil?

iii. If a soil sample from this area is selected, what is the probability that 

the pH value of the soil is more than 5?

 

 

 3.27. The error in the reaction time X (in minutes) of a certain machine has the 

following distribution: 

 
2

f x( ) = −x2; 1 ≤ x ≤ 1 
3

 i. Construct the cdf of X.

 ii. What is the probability that the error in the reaction time is over 0.5?

 3.28. Consider a layer of a particular paint applied on metal surfaces to protect 

from corrosion. Assume that the thickness of the above paint has a uniform 

distribution, which is distributed between 10 and 20 μm. If a metal surface 

with this paint is randomly selected,

 i. What is the expected value of the thickness of it?

 ii. What is the probability that the thickness of the paint is less than 18 m?μ
 3.29. Suppose a random variable X has a uniform distribution over [1,β] for some 

β > 1. Calculate the value of β if P X(2 < < 5) = 0.5.

 3.30. Suppose a random variable X has a uniform distribution over [ ,a b], where 

0 ≤ <a b. If the mean value of X is 5 and variance is 3/4, what are the val-

ues of a and b?

 3.31. Let X be a continuous random variable with pdf f ( )x x= −1 −1 , 0 2≤ ≤x .

 i. Find cdf of X and graph it.

ii. Find the first decile.

iii. Find 20th and 95th percentiles, and show them on the graph of cdf of X.

iv. Find the IQR.

 

 

 

 3.32. Suppose a particular examination that is needed to enter to a graduate 

school has a normal distribution with a mean of 150 and a standard devia-

tion of 10. Considering a student is going to take this examination,

i. What is the probability that his score is between 145 and 160?

ii. What is the probability that he scores at least 165?

iii. What is the probability that he scores at most 145?

iv. A reputed graduate school admits students whose score is in top 10%. 

In order to get the admissions to this school, what is the minimum 

score a student needs to have?
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 3.33. Assume the monthly income of a family in an identified city is approxi-

mately normally distributed with a mean of $2,000 and a standard devia-

tion of $100.

i. If a family from this city is randomly selected, what is the probability 

that the income of the family is over $2250 per month?

ii. The mayor of this city decided to give financial assistance for the fam-

ilies whose income is in the bottom 1%. What is the highest monthly 

income of a family who qualifies for this financial assistance?

 3.34. The weight of a bag of chips of a certain brand sold in vending machines is 

normally distributed with a mean of 16 ounce and a standard deviation of 

0.3 ounce. If a customer buys two bags of chips, what is the probability that 

weights of both of them exceed 16.5 ounce?

 3.35. A fisherman knows by experience the average weight and the standard devi-

ation of a catfish are 3.1 pounds and 0.8 pounds, respectively. Assuming the 

distribution of catfish is normally distributed, what is the probability that the 

weight of a randomly caught catfish is not more than 4 pounds?

 3.36. The lifetime of a certain type of light bulbs is approximately exponentially 

distributed with an expected lifetime of 250 hours. If a light bulb of the 

above type is randomly selected, what is the probability that the lifetime of 

the light bulb is

i. Less than 300 hours?

ii. Between 200 and 300 hours?

iii. Suppose a light bulb has lasted more than 300 hours, what is the prob-

ability that it will last more than 400 hours?

 3.37. A bicycle tire manufacturer states that the average lifetime of his tire 

is 3 years. If a customer purchases two bicycle tires, then calculate the 

probabilities.

i. Both will survive more than 4 years?

ii. At least one will survive more than 4 years?

iii. None of them will survive more than 4 years?

iv. At least one of them will survive more than 4 years?

 3.38. Let X be the time (in minutes) a doctor spends to talk to a patient. Assume 

that this time is exponentially distributed with an average of 5 minutes. 

i. Construct the cumulative distribution function (cdf) of X.

ii. Using the above cdf, calculate the following probabilities.

a. What is the probability that the doctor spends less than 4 minutes 

with a patient?

b. What is the probability that the doctor spends less between 3 and 

7 minutes with a patient?

c. What is the probability that the doctor spends more than 8 min-

utes with a patient?

 3.39. Assume that the height (n inches) of a certain plant can be approximated 

with a gamma distribution with shape parameter 2 and the scale parameter 

1. If a plant of this type is selected randomly, what is the probability the 

height of the plant is
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 i. More than 3 inches?

ii. Not more than 4 inches?

 3.40. Consider a random variable that follows a gamma distribution. If its 

expected value is 4 and variance is 2, calculate the two parameters of the 

random variable.

 3.41. Using the moment generating function of the chi-square distribution, calcu-

late the expected value and the variance.

 3.42. The gamma pdf with two parameters k and θ for a random variable X is 

defined as:

 

 

⎧ 1
x

⎪
−

x ek−1 θ , k x,θ > >0, 0,
f xX ( ;θ;k) = ⎨ θ kΓ( )k  

⎪ 0 x ≤ 0,⎩

where Γ( )α  is the gamma function. Prove that E(X) = kθ and Var(X) = kθ2 
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4 Descriptive Statistics

4.1  INTRODUCTION AND HISTORY OF STATISTICS

It seems the word “statistics” is based on “data” and “analysis of data”. In 1749, 

Statistik, a book in German, was published describing the analysis of demographic 

and economic data about the state (political arithmetic in English). However, the 

word “statistics” originates from the Latin word “statisticum collegium”, which 

means “council of state”. “Statista” is the Italian word for statistics that means 

“statesman” or “politician”. In 1800s, the word “statistics” expanded its meaning to 

cover summarizing and analyzing data. It has further widened its scope to include 

the concept of probability for the purpose of statistical inference.

4.2  BASIC STATISTICAL CONCEPTS

Statistics is essentially linked to the theory of probability, and probability theory 

is a branch of mathematics. Hence, it could be said that statistics is a branch of 

mathematics. On the other hand, since statistics deals with gathering, analyzing, and 

interpreting data, there are lots of human judgments involved in statistical analy-

sis. This idea seems to separate statistics from mathematics, to the extent that it is 

becoming difficult for pure mathematicians to accept statistics as part of mathemat-

ics. However, the second part of statistics, inferential statistics, is mainly mathemat-

ics with less human judgment.

Thus, statistics is sometimes considered as a branch of mathematics, and at other 

times, a discipline in its own right. Regardless of how it is looked at, it is a very 

important concept now that its applications are so vast and diverse that no area of 

science can do without it. In fact, it has been so spread out that humanity, psychology, 

social sciences, and even communication cannot do without gathering and analysis 

of data.

We start this chapter by defining some important terms that are widely used 

throughout this chapter. Of course, concepts of probability theory discussed in 

Chapter 2 will help us provide necessary basis.

Definition 4.1

A data point can be quantitative that is, numerical that can be measured by counting 

and qualitative, that is, a trait, characteristic, or category.
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Definition 4.2

A data set can be classified according to the level of measurement as follows:

 i. Nominal data points are qualitative data that are categorized by names, 
labels, color, favorite political party, gender, and brand or features. No 
mathematical operations can be applied on these data points.

 ii. Ordinal data points are both qualitative and quantitative. Most importantly, 
these data can be arranged according to an order or a rank. Examples of 
this category are classification of students as freshman, sophomore, junior, 
and seniors; also, level of pain (say 1 through 10, 10 being highest) and level 
of satisfaction (such as very bad, bad, okay, good, very good); and rank 
of a movie (such as one star, two stars, three stars, four stars, five stars). 
Mathematical operations on these points do not make sense as well.

 iii. Interval data are continuous sample data, which are quantified. Some 
mathematical operations on these intervals are quite possible, for instance, 
the differences between these data intervals. However, multiplication of 
these intervals does not make sense. If the value of an interval is zero, it 
does not mean that the interval is “empty” or “nonexistent”.

 iv. Ratio as data points represent quantitative data such as weight and height. 
Most importantly, mathematical operations may be applied on such data 
points. Value zero of a data represents the “empty” or “nonexistent”.

Example 4.1

Let us consider the following variables: favorite food, goodness of the instructor 
(very poor, poor, okay, good, very good), and standardized examination score (like 
z-score). We summarize these variables as follows:

4.2.1  dAtA collEction

In practice, there are three ways to collect data, which are as follows:

 i. Observational studies,
ii. Designed experiments,

iii. Published sources.
 
 

Quantitative/ Level of 
Variable Qualitative Measurement

Favorite food Qualitative Nominal

Goodness of the instructor (very poor, Qualitative Ordinal
poor, okay, good, very good)

Standardized examination score (z-score) Quantitative Interval

Time you spend on exercise Quantitative Ratio
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We will now discuss these methods and offer some examples.

 i. Observational Method
In this case, the values of the variables (measurements) are observed and 

recorded without manipulating them. Surveys and interviews are examples 

of this method.

Example 4.2

To study the relationship between smoking and lung cancer, from a population, 
we collect a sample of those who state they have been smoking for years and 
another sample of those who state they do not smoke. Then, we use the observed 
values as they are, conduct a statistical analysis, and make an appropriate com-
parison between the two groups for the purpose of investigating the correlation 
between the smoking and lung cancer.

In this example, we just use the observations as they are. A problem with this 
method is that we are ignoring other possibilities of the causes of lung cancer such 
as family history, type of occupation, diet, age, and the living places of the ele-
ments in the samples.

 ii. Designed Experiments (Experimental Design) Method
Unlike the observational method, in the designed experiments, we 

control the observed values of the variables in order to find the rela-
tionship among them. This is the method mostly used in the laboratory 
experiments.

Example 4.3

In order to find out which level of fertilizer (0 oz, 5 oz, or 10 oz) of a certain brand 
is the best, we can run a designed experiment as follows:

 1. Select 60 plants of a certain type and of the same size.
 2. Place plants individually, each in a similar pot with same type of soil.
 3. Measure the length of each plant.
 4. Place all plants in a location so that they all receive the same amount of 

sunlight.
 5. Water all plant the same amount and at the same time.
 6. Now select 20 of these plants randomly and apply 10 oz of the fertilizer 

and label them as such.
 7. Randomly select another set of 20 plants from the remaining 40 and 

apply 5 oz of the fertilizer and label them accordingly.
 8. Do not fertilize the remaining 20 plants.
 9. Let a certain time period elapse and measure the lengths of all these 

60 plants.
 10. Compare the growth of plants in each of the three categories (i.e., items 

6, 7, and 8), that is, plants fertilized with 10 oz, 5 oz, and none.
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Note 4.1

It can be seen that the observed measures from the experimental design method 

are much more accurate for comparison than those from the observational 

method. However, the experimental design method is more time-consuming and 

more costly than the observational method. On the other hand, researchers who 

are concerned about the ethics of research would rather go with the observational 

method rather than the experimental design method.

 iii. Published Sources
Standard published sources for the sake of conducting research and 

references are reliable research journals, reliable newspapers with reliable 

sources, and reliable and public databases.

4.3  SAMPLING TECHNIQUES

Now we know how to collect data, a sample from the population. The process of 

selecting a sample from the population is called the sampling. The essence of sam-

pling is to generalize one or more properties of a small sample to a large population, 

that is, obtaining information of a large population from a sample. We should caution 

that it is not always easy to select a random sample, particularly, when the population 

size is very large and the sample size is small. For instance, to inspect thousands of 

cartons of canned food in the storage for safety concerns, selecting a sample of size 

ten cartons will be very difficult. This is because it is almost impossible to number 

all these cartons in the storage and then choose ten at random. Hence, in cases like 

this, we do not have many choices; we have to do the best we can and hope that we 

are not seriously violating the randomness property of the sample. 

Sampling needs to be under certain conditions to take the place of the entire 

population. One very important condition is that a sample must be representative 
of the entire population. One way to guarantee this property is that the sample be 
random. There are some popular methods of selecting a sample: simple random 
sample, cluster sample, stratified sample, and systematic sample. Here are brief 

definitions of each.

Definition 4.3

 i. A simple random sample is a set of n objects in a population of size N 

where all possible samples are equally likely to happen. Most importantly, 

in a simple random sample, each object has the same probability to repre-

sent the sample.

 ii. Cluster sampling means dividing the population into separate groups, 

referred to as the clusters. Then, a simple random sample of clusters is 

selected from the population.

 iii. Stratified sampling is a sampling technique wherein the entire population 

is divided into different subgroups or strata and then the final subjects are 

randomly selected from the different strata.
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4.4  TABULAR AND GRAPHICAL TECHNIQUES 
IN DESCRIPTIVE STATISTICS

To extract more information from a sample, we first organize the data points some-

how such as grouping, table, or graphical display. However, as it was noted for the 

measures of central tendencies, individual characteristics of data points may be lost 

when they are grouped. That is, the data is no longer “raw data”. This is because the 

information obtained is for a group rather than individuals in the group. We explain 

these methods below.

A data set is grouped for reasons. Hence, data points in a grouped data are related 

in some sense. For instance, a collected set of data from people may be grouped by 

age, race, color of skin, nationality, income, and education. Even a group may be 

further grouped into other subgroups. For instance, the age group may be further 

grouped by teens, twenties, thirties, forties, middle age, and aged. In education, for 

instance, the subgrouping may be by high-school dropouts, high-school diploma, 

undergraduate degree, graduate degree, doctorate degree (such as Ph. D., Ed. D., J. 

D., D. of Music, MD), etc. In such cases, each subgroup is referred to as the class 
interval or class size. 

Below, we will discuss the following grouping and displaying of data points: 

 i. Frequency distribution for qualitative data 

ii. Bar chart (graph),

 iii. Pie chart.

iv. Frequency distribution for quantitative data

 v. Histogram, 

 vi. Stem-and-leaf plot,

 vii. Dot plot.

 

 

4.4.1  frEqUEncy distribUtion for qUAlitAtivE dAtA

Definition 4.4

Grouping a data set of observations according to the number of repeated data points 
is referred to as a frequency distribution.

Note 4.2

The terms “relative frequency” and “percent relative frequency” defined in Definition 
2.6b  are consequences of frequency distribution defined in Definition 4.4.

Let us first consider a set of qualitative data and organize the data points using 
a frequency distribution as in the example below.

Example 4.4

Final grades of students in a class of 30 are as follows:
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Using frequency distribution, we summarize the grades in Table 4.1.
From Table 4.1, 5 out of 30 students have made A. According to the third col-

umn, relative frequencies, the probability of making A is approximately 0.17; that 
is, approximately 17% of the grades are A. Similarly, percentage of other grades 
may be interpreted.

4.4.2  BAR GRAPH

Definition 4.5

A bar chart or a bar graph is a chart or graph that presents a categorical data set or 

a discrete random variable. The height or a length of a bar is proportional to the 

frequency. The bars can be plotted vertically or horizontally. A bar graph shows 

comparisons among  discrete  categories. One axis of the chart shows the specific 

categories being compared, and the other represents the frequency of it.

Note 4.3

William Playfair (1759–1824) is given credit for the first to develop and use the 

bar chart for commercial and political uses in Scotland during Christmas in 1780 

and 1781.

Comparing the definition of a bar graph with that of a histogram, we can see 

that the main difference between them is that a histogram displays quantitative 

B C A D C B C A F C

C B F C B A A C B F

D C D A D C F C B D

TABLE 4.1
Frequency and Relative Frequencies

Value of the 
Qualitative Variable Frequency

Relative Frequency 
(Frequency/Total)

Percent Relative 
Frequency (Relative 
Frequency * 100)

 A

 

 

 

5 5 ≈ 0.17
17

B 6 6 = 0.20
20

C 10 10 ≈ 0.33
33

30

D 5 5 ≈ 0.17
17

30

F 4 4 ≈ 0.13
30

13

Total 30 1.00

30

30
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(or nominal) data, while a bar graph displays qualitative (or ordinal) data. However, 

another distinction between the bar graph and the histogram is their arrange-

ments. Bar graph has gaps between bars, while histogram, usually, has connected 

bins. When bars in a bar graph are arranged in decreasing order of their heights, 

it is referred to as Pareto charts. On the other hand, rectangles in a histogram are 

arranged in the order of their classes (bins) occurrences.

Example 4.5 (Data Using Excel)

Given the following frequency table for bird and rat counts in a particular neigh-
borhood, we wish to draw a bar chart displaying this information (Figure 4.1).

We use the Microsoft Excel 2010 (although 365 is available these days) and 
take the following steps that are for Excel 2016 and 365 with some less steps for 
2010:

Step 1. Open an Excel file.
Step 2. Enter the categories in a column.
Step 3. Insert the counts (frequencies) in another column.
Step 4. Highlight both columns.
Step 5. From the Header, press Insert.
Step 6. Select “Bar” or “Column”, as you wish.
Step 7. Choose “Chart Tools”, then “Layout”.
Step 8. Select “Chart Title”.
Step 9. Choose other options from the Header.

You may see: https://projects.ncsu.edu/labwrite/res/gt/gt-bar-home.html.

Category Count

Chicken 350

Duck 210

Cat 84

Dog 283

Rat 56

0 50 100 150 200 250 300 350 400

Chicken

Duck

Cat

Dog

Rat Birds and Pets in a Neighbor

FIGURE 4.1 Bar graph using Excel for Example 4.5.

https://projects.ncsu.edu
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Note 4.4

When constructing bar graphs, we usually leave a gap between each bar. 

The reason is here x-axis represents a qualitative variable and usually we can-

not compare the values of it. This is different when constructing histograms for 

quantitative data.

4.4.3  PIE CHART

Another common display of data points is the pie chart. Its basic use is the imme-

diate visibility of comparison of slices. The slices are similar to the rectangles in a 

histogram. Each slice of the pie represents a value of a group of the data set. Similar 

to bar graphs, pie charts are also used to represent categorical (qualitative) data.

Example 4.6

Let us create a pie chart from the scratch. We first complete Table 4.2.
Now construct the pie chart with angles of the corresponding sectors, which 

are also given in Figure 4.2.

Animal count 

Chicken Duck Cat Dog Rat

FIGURE 4.2 Pie chart for Example 4.6.

TABLE 4.2
Frequency, Relative Frequency, and Angle

Category Count (Frequency) Relative Frequency
Angle = Relative 
Frequency * 360

Chicken 350 0.36 128°
Duck 210 0.21  77°
Cat  84 0.09  31°
Dog 283 0.29 104°
Rat  56 0.06  21°
Total 983 1.00 360°
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Example 4.7

Consider household income consisting of the income from the wife, husband, 
daughter, and the son. Then, each of the four slices of the pie represents a portion 
of the total household income. Considering each portion as a percent of the total 
area of the pie, the sum of all portions should be 100%.

Example 4.8

Consider the primary in an election with eight candidates. A pie chart can rep-
resent the percent votes for each candidate as a slice of a pie. By just looking at 
the size of each slice, one may predict electability of each candidate in the actual 
election time (Figure 4.3).

A pie chart has its own message, and it simply displays parts of a set of observa-
tions. In industry, for example, it is often a standard method to display the relation-
ship of parts to the whole. However, because it is not as narrow as other displays 
of observations, for instance, when slices are almost of the same size or there are 
too many slices of narrow areas, it is not quite popular among statisticians. Pie 
charts are not good to show changes of observations over time, for example.

If, nonetheless, one wants to display the data set with the pie chart, here are the 
steps to create it in Excel. We may need some adjustment going from one version 
to another on different versions of Windows. In our case, we use Office 2010 on 
Windows 10. We use Example 4.6 for our illustration.

In our example, we want to show the relationship between the different levels 
of donors that give to our charity as compared to total giving. A pie chart is perfect 
for this illustration. We will start with a summary of the total giving by level.

Step 1. Insert the names of categories, for instance, incomes of husband, 
wife, daughter, and son.

Step 2. Insert the amount of income for each member of the family, say, 
$70,000, $50,000, $25,000, and $10,000 for husband, wife, son, and 
daughter, respectively.

Step 3. From the menu, select “Insert”, “Charts”, and then “Pie”.

For more details, see: https://www.pryor.com/blog/create-outstanding-pie- 
charts-in-excel/.

Annual Gross Income

1
2
3
4

1-Husband

2-Wife

3-Son

4-Daughter

FIGURE 4.3 Pie chart using Excel for Example 4.8.

https://www.pryor.com
https://www.pryor.com
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Note 4.5

In addition to the bar graph and the pie charts, there is another name called 

“Pareto Graph”, which is basically the bar graph ordering from highest frequency 

to the lowest frequency. As this is a different arrangement of the bar graph, we do 

not discuss it as a separate graph.

4.4.4  FREQUENCY DISTRIBUTION FOR QUANTITATIVE  DATA

As discussed in Section 4.3.1, we can use the frequency distributions for quantitative 

data, as well. Quantitative data can be in both the discrete and continuous forms. In 

the discrete case, we have a finite or a countable collection of values, whereas in the 

continuous case, we have an infinite collection of values. In the latter case, we can 

organize the data in intervals or groups.

Example 4.9

Suppose 25 rational numbers have been randomly chosen and listed as below:

We want to do the following:

 a. Group the given data points,
b. Find the frequencies,
c.  Find the relative frequencies,

 
 
 d. Find the percent relative frequencies.

Answer

Table 4.3 contains answers to all the questions.

Definition 4.6

Grouping a data set of observations that are real numbers is called a frequency 
distribution with intervals. Otherwise, it is referred to as frequency distribution 
with classes although “class” can cover both. The length (or size) of an interval or 
a class is defined as the difference between the upper bounds and the lower bounds 

of the interval. To group a real-valued data by intervals, one may (1) calculate the 

range by subtracting the minimum from the maximum and (2) decide the number 

of intervals (not too many and not too few). Classes may be with the same length, 

A Set of 25 Observations (Raw Data)

12.4 14.8 13.6 15.9 12.4

13.6 13.6 15.9 11.3 11.3 

11.3 14.8 15.9 11.3 12.4

12.4 15.9 14.8 15.9 14.8

14.8 11.3 14.8 15.9 15.9 
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different lengths, or mixture of both kinds. In this case, we may divide the range by 

the number of desired intervals and round up the number obtained to have a natural 

number (or a whole number) as the size of classes. The endpoints of the intervals are 

referred to as the class limits. The left and right limits of an interval are referred to 

as the lower class limit and the upper class limit, respectively. Exact class limits 

are referred to as the class boundaries, and the left boundary and the right bound-

ary are referred to as the class lower boundary and the class upper boundary, 

respectively.

It is customary to avoid overlaps in obtaining class boundaries, by adding 0.5 to 

the upper limit and subtracting 0.5 from the lower limit, respectively. The addition 

of ±0.5 to the limits is when the limits are integers; otherwise, ±0.05 if it is with no 

digits and starts with the tenth decimal place, ±0.005 if it starts with the hundredth 

decimal place, and so on, down and up from each end of the interval’s limits. In such 

cases, the interval will be chosen half-open on the right end.

In case of grouping by classes and frequency distribution, the set of sample points 

is redefined. We may choose the midpoint of each class (sometimes referred to as 

the class mark) as an individual revised data point for the sake of finding the mean, 

variance, and standard deviation using frequencies.

Example 4.10

Let us suppose that we are given a set of data points with minimum and maximum 
67 and 100, respectively. Hence, the range of the set is 33. Now let us assume that 
we want to group the data point into six equal-sized classes. Based on what we 

33have already discussed, the class sizes will be ≈ 6. Therefore, the nonoverlap-
6

ping intervals are [66.5,72.5), [72.5,78.5), [78.5,84.5), [84.5,90.5), [90.5,96.5), and 
[96.5,102.5).

Note 4.6

In constructing a histogram, it is important to decide on the number of inter-

vals to select. As a convention, we select the number of interval close to 

the number observations .

TABLE 4.3
Grouping Data from Example 4.9

Percent Relative 
i Data Point xi Frequency f1 Relative Frequency Frequency

1 11.3 5 1/5  20

2 12.4 4 4/25  16

3 13.6 3 3/25  12

4 14.8 6 6/25  24

5 15.9 7 7/25  28

Total 25 1 100
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Example 4.11

As an example for equal-sized interval classes, suppose that the passing score of 
a test is from 70 to 100 with three grades C, B, and A with scores 70 to 79, 80 to 
89, and 90 to 100, respectively, for the particular test that perfect is almost impos-
sible. To find the boundaries, the range is 99 − 70 = 29. Hence with three classes, 

29the class size is ≈ 10 Frequency distribution for this test is given in Table 4.4.
3

Example 4.12

For a given sample size of 250, Table 4.5 is an example of a group organization 
of data points with six unequal-sized intervals (0-age indicates a not-born child).

Example 4.13

This is an example of a mixed equal-sized and an unequal-sized interval classes. 
We refer to the Example 4.12 and include other sections’ grades to have a larger 
sample. So, suppose that scores of a test range from 0 to 100 with five grades F, D, 
C, B, and A with corresponding scores 0 to 59, 60 to 69, 70 to 79, 80 to 89, and 
90 to 100. Frequency distribution for this test is given in Table 4.6.

TABLE 4.4
Grouping Data from Example 4.11

Frequency (No. of 

Interval No. Test Score
Classes with 
Boundaries Grade xi

Students Earning 
the Score) fi Interval Size

1 70–79 (69.5–79.5) C 74.5 35 10

2 80–89 (79.5–89.5) B 84.5 18 10

3 90–99 (89.5–99.5) A 94.5 12 10

Total 60

TABLE 4.5
Grouping Data from Example 4.12

Interval No. Age Interval (Year) xi Frequency fi Interval Size

1 0–11 5.5  35 11

2 12–17 14.5  28 16

3 18–25 21.5  47  8

4 26–40 33  46 15

5 41–64 52.5  69 24

6 65–99 82  25 35

Total 250
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To graphically summarize qualitative data, the bar graph, Pareto chart, 
and pie charts may be used. For a quantitative data, however, the rest of the 
graphical options such as histogram, dot plot, stem-and-leaf plot, and box 
plot may be used.

4.4.5  HISTOGRAM

We are distinguishing two cases, namely, values of discrete and continuous random 

variables.

Definition 4.7

A very common graphical display or presentations of 

distribution of a numeric data set (observations, as val-

ues of a continuous random variable) is referred to as 

a histogram. A histogram displays a grouped data set 

into connected, nonoverlapping intervals (or bins). It 
also shows the shape of the data set (observations) as a 

group. It can assess the symmetry or skewness of the 

data set.

The histogram was first introduced by Carl Pearson 

in 1895. It was constructed from a simple frequency 

distribution as adjacent rectangles (bars).
The bars may be vertical or horizontal. 

Representations of sides remain the same as mentioned. 

One side of a bar represents the distance between the 

endpoints of the bin, referred to as the width of a bin. 

Widths may be uniform (equal size) or of different sizes. Let n be the number of 

data points (observations) and k the number of desired bins. Let us, also, denote the 

boundaries of a bin (an interval) by bi and bi + 1, i = 1, 2, …, k, for the lower and higher 

TABLE 4.6
Grouping Data from Example 4.13

Interval No. Test Score Grade xi

Frequency (No. of 
Students Earning 

the Score) fi Interval Size

1 0–59 F 29.5  8 60

2 60–69 D 64.5 13 10

3 70–79 C 74.5 35 10

4 80–89 B 84.5 18 10

5 90–100 A 95 12 11

Total 81
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limits, respectively. Then, the width of a bin is b bi i+1 − =, 1i k,2, , . In case the 
uniformity of widths is desirable, suppose that the range of data set is r. Then, if k 
uniform bins are desired, the width of each bin will be r/k.

The other side of a bar, that is, the height of a bar, represents the frequency of a 
data point that fall within the bin, say fi , 1i k= ,2, , , of the ith bin, i k= …1,2, , , in 
the general case, and relative frequency (frequency divided by the total number of 
the data points in the set of data points), fi n i, 1= ,2,k , of the ith bin, i k= 1,2,...,  
in a particular case. Of course,

 ∑
k k

f
f ni = =and 1i .

n
k= =1 1

∑  (4.1)
k

Definition 4.8

In a sense, a histogram is an approximation of the probability density function (pdf) 
of the underlying distribution of the data set, when the height of each bin is the 
relative frequency of the data points in the bin. A histogram created with relative 
frequencies is referred to as a relative frequency histogram.

Steps to  a histogram (vertical or horizontal) or relative frequency his-
togram are as follows:

construct

Step 1. Determine the number of data points in the data set, say n.
Step 2. Mark the x-axis to some values above the maximum value of the data 

points.
Step 3. Decide the number of bins you desire, say k (usually, taken as  

k n≈ ).
Step 4. Determine the minimum and maximum values of the set data points. 
Step 5. Calculate the range r.
Step 6. Decide what type of bins you desire: with different widths or uniform 

widths.
Step 7. Calculate the width of bins.

i. With desired different widths, take the difference between the upper 
and lower boundaries: b bi i+1 − , i k= 1,2, , , or

ii. With uniform widths, divide the range into equal intervals, that is, r/k.
Step 8. Mark the vertical axis from 0, 1, or the minimum data point value, all 

the way to the maximum data point value or higher.
Step 9. Determine the frequency for each bin, that is, data points belonging 

to each bin, fi , 1i k= ,2, , , of the ith bin, i k= 1,2,, , or the relative fre-
quency for each bin, fi n i, 1= ,2,k , of the ith bin, i k= 1,2,,  

Step 10. Draw a bar (a vertical or horizontal rectangle or a strip) over each bin. 
The height of a bin is either frequency fi , 1i k= ,2, ,  or relative frequency 
fi n i, 1= ,2, , k.
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Note 4.7

The area of a bin is calculated as follows:

 

 

and

 

 

Example 4.14 (Histogram Descriptively)

Let the range of a data set be r = 80. We divide the set into k = 5 uniform 
80bins. That is, the width of each bin will be = 16. Finally, suppose the num-
5

ber of data point in each of the interval is 3, 18, 5, 35, and 39, respectively, 
with a total of n = 100 data points. Then, the areas of the rectangles are 
3 ⋅ =16 48,18 ⋅ =16 288, 5 ⋅ =16 80, 35 ⋅ =16 560, and 39 ⋅ =16 624, respectively. In 

this case, the relative frequencies are 0.03, 0.18, 0.05, 0.35, and 0.39, respectively. 
These relative frequencies represent the probabilities of each bin, sum of which 
is 1, of course. 

Example 4.15 (MATLAB® Simulated)

Using MATLAB codes:

x = randn(1000,1);(choosing 1000 natural numbers, randomly, the 
observations)

h = histogram(x)

We simulate a set of data points with the following information to create a 
histogram:

n = 1,000
Minimum value = −3.0
Maximum value = 3.25
Range = 6.25
Bin width: 0.30 (arbitrarily chosen)

3 : 25 − −( 0 : 3)Number of bins = ≈ 21, arranged in ascending order, 1–21
0.3

Frequency is the number of times each data point has reoccurred.
Relative frequencies:

 Number of times a data point occurs in a bin
Relative frequency of a bin =

Total number of data points in the set of data
 

i. For a relative frequency histogram with different bar widths:

= −( ) f
Area of a bin b b i

i i+1 , i k= 1,2, , , (4.2)
n

ii. For a relative frequency histogram with uniform widths, 

rf
Area of a bin = =i , i k1,2, , . (4.3)

k
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⎧(i) Frequency relative frequency of data points in that bar or
⎪
⎪ the of a bin depending upon how the illustration is to
⎪

Height of a bar ⎨ be shown, for discrete random variable
⎪
⎪ relative frequency of a bin⎪(ii) , for discrete random variable.
⎩ width of the bin

Summary and calculations are illustrated in Table 4.7, and the graph is shown in 
Figure 4.4.

Note 4.8

A sample point will fall within one of the intervals [bi−1, bi) or (bi−1, bi], whether 

we want to take the half-open interval to be open from the left or from the right; 

we take it open from the left.

TABLE 4.7
Simulating Numerical Random Data Points and Grouping Them Using 
Histogram, Example 4.15

Bin (Interval) Relative Frequency Bar’s Area = 
Bin No. Boundaries Frequency = Height Height * Width 

1 [−3.00, −2.70) 1 0.001 (0.001)(0.3) = 0.0003

2 [−2.70, −2.40) 7 0.007 (0.007)(0.3) = 0.0021

3 [−2.40, −2.10) 8 0.008 (0.008)(0.3) = 0.0024

4 [−2.10, −1.80) 10 0.010 (0.010)(0.3) = 0.0010

5 [−1.80, −1.50) 31 0.031 (0.031)(0.3) = 0.0093

6 [−1.50, −1.20) 52 0.052 (0.052)(0.3) = 0.0156

7 [−1.20, −0.90) 87 0.087 (0.087)(0.3) = 0.0261

8 [−0.90, −0.60) 103 0.103 (0.103(0.3) = 0.0309

9 [−0.60, −0.30) 109 0.109 (0.109)(0.3) = 0.0327

10 [−0.30, 0.00) 122 0.122 (0.122)(0.3) = 0.0366

11 [0.00, 0.30) 104 0.104 (0.104)(0.3) = 0.0312

12 [0.30, 0.60) 109 0.109 (0.109)(0.3) = 0.0327

13 [0.60, 0.90) 79 0.079 (0.079)(0.3) = 0.0237

14 [0.90, 1.20) 71 0.071 (0.071)(0.3) = 0.0213

15 [1.20, 1.50) 51 0.051 (0.051)(0.3) = 0.0153

16 [1.50, 1.80) 23 0.023 (0.023)(0.3) = 0.0069

17 [1.80, 2.10) 25 0.025 (0.025)(0.3) = 0.0075

18 [2.10, 2.40) 3 0.003 (0.003)(0.3) = 0.0009

19 [2.40, 2.70) 3 0.003 (0.003)(0.3) = 0.0009

20 [2.70, 3.00) 1 0.001 (0.001)(0.3) = 0.0003

21 [3.00, 3.30] 1 0.001 (0.001)(0.3) = 0.0003

Sum 1,000 1 0.3
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Example 4.16 (Data Using MS Excel 2010)

Suppose we are given the following set of data points (Figure 4.5). It could be the 
daily observation of emission (in tons) of sulfur from an industrial plant about a 
decade ago in part of the United States, in an ordered data form as:

We want to group this data as a histogram.

Answer

We are to use the Microsoft Excel 2010 to create the requested histogram. Here 
are the steps:

Step 1. Open an Excel file.
Step 2. Go to the “File” tab, and open the “Option” tab.
Step 3. Then, click on “Add-ins” tab.

FIGURE 4.4 Creation of a histogram using MATLAB®, for Example 4.15.

07.0 07.9 07.9 10.2 11.0

11.0 11.0 11.0 12.7 12.7

12.7 12.7 12.7 17.1 17.1

17.1 16.0 18.3 18.3 18.3

18.3 20.2 20.2 20.2 20.2

21.5 21.5 23.0 23.0 23.0
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Step 4. Choose “Analysis Tool Pak”, and click “OK”.
Step 5. Now, go to the menu of the Excel sheet, and choose “Insert”.
Step 6. Choose “Data”.
Step 7. Click on “Data Analysis”. A new window appears.
Step 8. Choose “Histogram”, and click “OK”.
Step 9. In the “Input Range”, type in $ (insert the column of the first data 

point, say A) $ (insert the row number of the first data point, say 5): $ 
(insert the column of the last data point, should be A) $ (insert the row 
number of the last data point, say 34).

Step 10. In the “Bin Range”, type in $ (insert the column of the first data bin, 
say C) $ (insert the row number of the first data bin, say 5): $ (insert the 
column of the last data bin, should be C) $ (insert the row number of the 
last data bin, say 11).

Step 11. Check mark “Pareto (sorted histogram)”, “Cumulative Percentages” 
(optional), and “Chart output”, and then hit “OK”.

Step 12. To delete the legend, right-click on a bar and press “Delete”.
Step 13. To remove the space between the bars, right-click a bar, click 

“Format Data Series”, and change the “Gap Width” to “0%”.

For more details, see, for instance, https://www.excel-easy.com/examples/histo-
gram.html.

Bin Frequency

7 1

10 2

13 10

16 1

19 9

22 6

25 3

More 0

FIGURE 4.5 Construction of a histogram using Excel 2010, for Example 4.16.

https://www.excel-easy.com
https://www.excel-easy.com
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Example 4.17 (Data Using R)

Let us consider the following data set.

We want to group this data as a histogram (Figure 4.6)

Answer

We follow the same steps as mentioned in Example 4.16.

Example 4.18 (Data Using Minitab)

Again let us consider the following data set:

We want to group this data as a histogram using Minitab.

Answer

We use the following steps on the Minitab statistical software. We note, however, 
that for our example, we will be using Minitab 14, although its current version 
is 18.

Bin Frequency Cumulative % Bin Frequency Cumulative %

54–56 8 26.67% 55 8 26.67%

56–58 3 36.67% 63 7 50.00%

58–60 6 56.67% 59 6 70.00%

60–62 4 70.00% 61 4 83.33%

62–64 7 93.33% 57 3 93.33%

64–66 2 100.00% 65 2 100.00%

55 57 61 59 55

59 63 63 63 63

61 55 57 55 59

65 59 61 63 61

55 63 63 57 55

59 55 55 65 59

6 6 4 3 6

6 5 5 6 7

7 7 7 4 2

4 4 6 3 1

4 2 5 4 1

3 3 6 5 1
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Steps to create a histogram using Minitab are as follows:

Step 1. Insert the data points in a Minitab worksheet’s column, and name 
this column in the gray box just above the data points, say “Data Points”. 

Step 2. On the menu bar, click on “Graph”, click on “Histogram”, “Simple”, 
and then, “OK”. 

Step 3. Choose the type of graph you wish, “Simple” or any other, and then, 
click on “OK”. We for our example have chosen with normal curve. The 
normal pdf is an approximating curve to fit the histogram.

Step 4. Choose the variable you want to graph, that is, “Grouped Data”, and 
click “Select”. 

Step 5. Click on the “Labels…” box, and type in a description of the data in 
the box next to “Title”. For example, you may want to insert a title, like 
“Histogram”.

Step 6. If you have a Microsoft Word document open, you can right-click 
on the graph and choose “Send Graph to Microsoft Word”, and the his-
togram will appear in your Word document.

For more details, the reader may Google for steps. For instance, https://www2.
southeastern.edu/Academics/Faculty/dgurney/Math241/StatTopics/Minitab%20
Stats/MntbHistogram.pdf.

FIGURE 4.6 Histogram using R for Example 4.17.

https://www2.southeastern.edu
https://www2.southeastern.edu
https://www2.southeastern.edu
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4.4.6  STEM-AND-LEAF PLOT

As mentioned before, grouping data points like the histogram will cause losing the 

individual characteristics of data points. To avoid this problem, in 1977, John W. 

Tukey in his book Exploratory Data Analysis introduced stem plots, or stem-and-
leaf plot, as it is known, nowadays, as an alternative method of graphically organiz-

ing numerical data that will not lose the individual characteristics of data points. 

This method is based on Arthur Bowl’s method developed in 1900s. It is mainly used 

for large data sets such as tracking series of scores on sports teams, temperatures 

over a period of time, and series of test scores.

Interest in using stem-and-leaf plot in 1980s, in addition to its capability of hold-

ing on to the individual data point’s characteristics, was its capability using the type-

writer those days that leads to using computer later. However, these days, there are 

computer software packages that can produce graphical presentation of data that the 

popularity of stem-and-leaf plot has almost vanished. 

In a sense, a stem-and-leaf plot can be thought of as a special case of a histogram 

in such a way that the frequency tallies in each bin as in a histogram and each indi-

vidual value in the bin. This is how the information is preserved. Hence, in creating 

the plot stems take the place of bins and leaves take the place of the bars.

Note 4.9

We have to caution the reader that the term “stem plots” is used only by some 

computer software packages like MATLAB. Hence, the use of the stem-and-leaf 

plot is recommended, if at all necessary.

To display a stem-and-leaf plot, each data point is considered as a combination 

of a “stem” and a “leaf”.

Step 1. Sort the data points according to their first digits in ascending (or 

descending) order.

Step 2. Create two vertical column tables: the left column for the stems and the 

right column for the leaves. 

Step 3. Split each number into two parts. The first part is the first digit on 

the left, which will be the stem, and the second part contains all other 

digits of the number, which will be the leaves. The leaves do not have to 

be sorted.

Step 4. Put the stem in the first column and the leaves with space in between in 

the second column. In other words, the “stem” values are listed down, and 

the “leaf” values go right from the stem values.

Example 4.19

Consider the following test scores of 30 participants of a test (the scores are 1, 2, 
3, 4, and 5, with 1 as the lowest and 5 as the highest):
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We want to create a stem-and-leaf plot.

Answer

Hence, the value of “stem 3 and leaf 7” is 3.7. In this case, the leaves are 
decimal numbers. At a glance, the plot shows that 11 participants received scores 
below 3 that may not be a passing score, if the scores are related to letter grades, 
denoted by g, as A, B, C, D, and F as follows:

4.4.7  DOT PLOT

Another simple way to display a grouped data is called the dot plot (or in R program-

ming language terminology, strip plot or strip chat). This plot can be displayed 

similar to the bar graph with dots replacing the bars and is usually good for categori-

cal data set. However, dot plots can include outliers. It can be displayed without bars. 

The method is a “had-drawn” before technology appeared in practice. It is used for 

small sample sizes. For large sample sizes, like 20 or more, perhaps other methods 

like the histogram are preferred. However, we should be cautious that dot plots may 

not be spaced uniformly along the horizontal axis. 

Steps to create dot plots with Excel (we are using Excel 2010 for our illustration), 

that is, making dot plots using Minitab, are as follows: 

Step 1. Put your data in one of the columns of the Minitab worksheet. 

Step 2. Add a variable name in the gray box just above the data values. 

2.2 1.7 3.3 2.4 4.1

5.0 3.7 2.2 3.8 3.2

4.7 3.7 1.9 3.5 3.0

1.5 4.6 4.7 3.3 3.8

2.9 2.9 3.9 2.3 2.0

4.3 4.6 2.8 3.8 3.2

Stem Leaf

1 7 9 5

2 2 4 2 9 9 3 0 8

3 3 7 8 2 7 5 0 3 8 9 8 2

4 1 7 6 7 3 6

5 0

A 5

B 4 ≤ <g 5

C 3 ≤ g < 4

D 2 ≤ <g 3

F g < 2
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Step 3. Click on “Graph”, and then click on “Dotplot…”.

Step 4. Make sure “Simple” is highlighted under “One Y”, and click on “OK”. 

Step 5. Choose the variable you want to graph, and click on “Select”. 

Step 6. Click on the “Labels” box.

Step 7. Under “Title:”, type in a description for your dot plot.

Step 8. Under “Subtitle 1:”, state that you created the graph. 

Step 9. Click on “OK” in that window, and click on “OK” in the next window. 

Step 10. Double-click on the axis title. A window will appear. The axis title 

will be in a box near the bottom of the window under the word “Text”. 

You may edit the axis title in this box, and then if you click on “OK”, the axis 

title on the graph will show your changes. 

Step 11. If you have a Microsoft Word document open, you can right-click on 

the graph and choose “Send Graph to Microsoft Word” and the histogram 

will appear in your Word document. Otherwise, click in the gray area out-

side the graph. 

Choose the “Edit” tab at the very top of the window, and then choose “Copy 

Graph”. 

Example 4.20

We consider the weather temperature, in Fahrenheit (maximum and minimum), 
of the city of Houston in Texas, the United States, for a 30-day period from 
November 20, 2018, through December 28, 2018, chosen from https://www.
accuweather.com/en/us/houston-tx/77002/december-weather/351197 (Table 4.8; 
Figure 4.7).

It can be seen that graphical techniques are helpful to have an overview of data 
and the shape of its distribution. Graphs sometimes do not display the exact data 
points. They will rather show only intervals, and if exact information is needed, 
the theory can assist. 

4.5  MEASURES OF CENTRAL TENDENCY

Definition 4.9

When a set of observations is in hand, the most trivial question that comes to mind 
is finding the midpoint or the center of the values. But how do we find the center? 
The center is found in different ways, each with a separate property. These centers 
are called the measures of central tendency. The ones we will discuss are the most 
popular ones, and they are

 i. The arithmetic mean or the balance point or center of sample points, or 
sample mean,

 ii. The proportion,
 iii. The median,
 iv. The mode.

https://www.accuweather.com
https://www.accuweather.com
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Note 4.10

Although different types of measures of central tendencies inform us about a 

data set by a number or two, individual information is lost, which is the price 

to pay.

We define each of these statistics for a sample as below.

 i. Sample Arithmetic Mean

TABLE 4.8
Data Regarding Weather Temperature of Houston, 
Texas, during the Period of 11/29/2018, Example 4.20

Date High Low

1 Nov. 29, 2018 76 66

2 Nov. 30, 2018 81 68

3 Dec. 01, 2018 81 66

4 Dec. 02, 2018 79 59

5 Dec. 03, 2018 68 52

6 Dec. 04, 2018 61 45

7 Dec. 05, 2018 63 43

8 Dec. 06, 2018 64 52

9 Dec. 07, 2018 75 55

10 Dec. 08, 2018 55 45

11 Dec. 09, 2018 48 43

12 Dec. 10, 2018 61 41

13 Dec. 11, 2018 64 45

14 Dec. 12, 2018 68 54

15 Dec. 13, 2018 75 50

16 Dec. 14, 2018 50 45

17 Dec. 15, 2018 64 48

18 Dec. 16, 2018 68 50

19 Dec. 17, 2018 72 55

20 Dec. 18, 2018 63 50

21 Dec. 19, 2018 61 55

22 Dec. 20, 2018 63 54

23 Dec. 21, 2018 64 45

24 Dec. 22, 2018 77 54

25 Dec. 23, 2018 70 55

26 Dec. 24, 2018 66 48

27 Dec. 25, 2018 73 61

28 Dec. 26, 2018 70 63

29 Dec. 27, 2018 73 54

30 Dec. 28, 2018 60 47
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Definition 4.10

Consider a random sample X1 2, X X,..., n. Then, the statistic sample mean or arith-
metic mean or arithmetic average, denoted by x  (read as: x-bar), is defined as

 = ∑
n

1
x x .

n
k  (4.4)

k=1

The essence of Definition 4.6 is based on sampling from a discrete uniform probabil-

ity mass function (pmf) and finding its expected value. It states that the arithmetic 

average of n items is obtained by adding the n sample values and dividing the total 

by n.

Note 4.11

The sample mean may be extended to population mean, which is the expected 

value of the underlying distribution describing the population. The population 

mean is usually denoted by μ. For a discrete pmf, p xX ( ), the population mean is 

6864605652484440
Low Temperature

Houston Temperature During 11/29/2018 and 12/29/2018
Temperature in Farenheit Degrees

8 07 57 06 56 05 55 0
H ig h T e m p

H o u s t o n T e m p e r a t u r e
T e m p e r a t u r e

d u r ing 1 1 / 2 9 / 2 0 1 8 through 12/28/2018
in F a r e n h e it D e g r e e s

FIGURE 4.7 Bar pie chart using Excel for Example 4.20.
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defined by μ =∑ xpX ( )x , which was discussed in Chapter 3. For the continuous 

case, we have to use the pdf, also discussed earlier.

Example 4.21

In rolling a fair die once, the arithmetic average of number of dots will be

1 2+ + 3+ 4 + 5+ 6 = 3.5. 
6

 

Example 4.22

Let us calculate the arithmetic average of the weights of a random sample of 100 
students, in pound, on the campus of a university on a weekday.

Answer

Definition 4.11

163 161 183 102 118 147 136 111 183 186

114 119 200 159 195 159 198 125 131 191

157 114 138 173 140 108 114 115 160 184

140 177 119 165 114 150 178 182 147 175

105 165 200 106 154 178 136 163 166 126

113 134 168 115 103 113 128 166 126 195

139 105 194 176 155 170 154 167 128 185

146 142 164 150 140 183 141 155 169 185

133 146 165 138 176 151 192 128 198 178

186 154 138 129 116 100 136 109 128 147

Let the random vector x in this case be the 10₤ 10 matrix with 100 values, that 
is, a vector of 100 independent and identically distributed random variable (iid) 
uniformly distributed random variables denoted by X = ( )x x1, ,2 , x100 . Suppose 
the result of a random sampling of 100 students (assuming they weigh between 
100 and 200 pound) shows the following:

Each xi , i = 1,2, ,100, is one of the numbers in the set above. For the sake of 
example, we created the matrix by the MATLAB program using the code: “x = 
randi([90 200],10,10)”. To find the arithmetic average, x , we use MATLAB 
code “x _ bar = mean(x,'all')”. Hence, the arithmetic average (4.4), for this 
example, is x = 149.87 pounds.

The sample mean may be obtained by grouping the data. That is, for a sample of 

size n, the sample points xi , 1i n= ,2, , may be repeated values. In such a case, the 

data may be grouped according to the values. The number of times a data point is 
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repeated is referred to as the frequency. The ratio of a frequency to the total sam-

ple points is called the relative frequency. Multiplying a relative frequency by 100 

yields what is called a percent relative frequency. For a simple frequency table, the 

sample mean (4.4) becomes:

 = ∑
k

1
x f x ,

n
i i  (4.5)

i=1

Example 4.23

 i. The frequencies,
 ii. The relative frequencies,
 iii. The percent relative frequency,
 iv. The mean using the frequencies.

Answer

We try to answer all four questions, using the following MATLAB code:

x = randi(10,5,5)
N = unique(x);
Freq_Table = [N,histc(x(:),N)]
Freq_Table_C1=Freq_Table(:,1);
Freq_Table_C1'
Freq_Table_C2=Freq_Table(:,2);
Freq_Table_C2'

Thus, we obtain the following:

As we see from the data above, only numbers from 1 to 9 were called. We now 
tabulate the results in Table 4.9.

Hence, from (4.5), we have x = = 5.84.
25

146

In case grouped data is available, the mean value may be calculated.

X  A Set of Observations (Raw Data)=
7 8 5 4 1

7 3 7 5 7

2 9 9 8 7

5 9 7 9 5

where xi i n= 1,2, , , represent the data points and fi , 1i k= ,2, , , k n≤ , are their 

corresponding frequencies.

Let us use MATLAB to generate 25 numbers between 1 and 10, randomly (data 
points), that is, n = 25, with repetition and call the matrix obtained as X, whose 
elements are xi , 1i = ,2, ,25. Then, we want to find
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Example 4.24

We return to an example we earlier considered. For a randomly chosen 25 rational 
numbers, we obtain Table 4.10, from which we can calculate the sample mean.

346Thus, x = = 13.86.
25

Existence of outliers in real data is a fact. The sample mean value is changed 
with the existence of outliers. If there is an outlier, which is extremely larger than 
the rest of data points, then the sample mean will be large, too. Similarly, if the 
outlier is an extremely smaller value, this will make the sample mean very small. 
To obtain a more consistent analysis of data, it is customary to trim or truncate 
the data. If there are a larger number of data points, the trimmed mean will be a 
better measurement of the center of the data than the sample mean. Data trim-
ming means sorting the data in ascending order and cutting or discarding it by 
5%–25% from both ends. This process will affect some measures of the data set. 
For instance, the mean of the trimmed mean is referred to as the trimmed mean 
or truncated mean. The statistical software Minitab uses the code TrMean to cal-
culate the trimmed mean. 

Usually, the trimmed mean is used if there are enough data points. Otherwise, 
it is not used for a small sample of data points. For instance, suppose we have 100 
observations. Then, 5% trimmed mean means that we sort the data and remove 
the lowest 5 data points and the highest 5 data points, and then average the 
remaining of 90 data points. 

TABLE 4.9
Data from Example 4.23

Sum

xi = randomly chosen 1 2 3 4 5 6 7 8 9 10

numbers

fi = frequencies of numbers 1 1 3 2 5 1 5 3 40 25

Relative frequencies 0.04 0.04 0.12 0.08 0.2 0.04 0.2 0.12 0.16 0 1

% Relative frequencies 4 4 12 8 20 4 20 12 16 0 100

f ⋅i xi 1 2 9 8 25 6 35 24 36 0 146

TABLE 4.10
Grouping Data from Example 4.24

Percent Relative 
i Data Point xi Frequency fi Relative Frequency Frequency f ⋅i xi

1 11.3 5 1/5 20 56.5

2 12.4 4 4/25 16 49.6

3 13.6 3 3/25 12 40.3

4 14.8 6 6/25 24 88.8

5 15.9 7 7/25 28 111.3

Total 25 1 100 346.5
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Example 4.25

Consider an ambulance dispatching service. It is possible that mistakes are made 
and response times may be with long delays; the dispatcher forgets to record some 
calls, that is, response times 0, or the dispatcher forgets to stop the response times, 
that is, extremely delayed response times. In such cases for a measure of tendency, 
the trimmed mean is obtained from the sorted data by discarding possible 10% 
from each end, which is called the 10% trimmed mean.

 ii. Sample Proportion
In statistics, proportion is a percentage of a total in which a certain characteristic 

is observed. Essentially, a proportion of a characteristic that is observed j times in a 

jsample of size n is defined as . Similarly, for a finite population of size N, the popu-
n

klation proportion is defined as , where k is the number of characteristics observed 
n

in the population. We will discuss the sample proportion in detail in Chapter 5.

 iii. Sample Median
In order to define the median, we need to define some terms.

Occasionally, it is helpful to order the data points (in this case, the leaves in 

each row) from small to large. Generally, we order the data points as in the following 

definition:

Definition 4.12

Example 4.26

Suppose we have a sample that has 5 points 23, 18, 12, 44, and 15. We 
can order them as 12, 15, 18, 23, and 44. Then, we can rank them as 
y y1 2 3= =12, 15, y = 18, y4 = 23, y5 = 44. Hence, we will have y y1< <2 3 4y < y < y5.

Definition 4.13

Suppose we have a sample with a set of n data points (observations) x1 2, ,x x, n. We 

order these data points from small to large. The resulting set of ordered data points is 

referred to as the ordered statistics of the sample. We may rank these ordered data 

points and denote them by a symbol.

The median of a sample is the point of the random variable, which splits the dis-

tribution into two parts. Let us consider a random sample of size n, numbered and 

arranged (sorted) in ascending or descending order, say X1 2, ,X X, n, whose values, 

that is, observations, are, respectively, as x1 2, ,x x, n. If n is odd, the median of the 

sample points, denoted by m, is the sample data right in the middle of the observa-

tions, that is,



326 Probability, Statistics, Stochastic Processes

 
n +1

m = . (4.6)
2

However, if n is an even natural number, the median is the average of the middle two 

data points, that is, 

 
1 ⎛ n n + 2 ⎞m = +⎜ ⎟ . (4.7)
2 2⎝ 2 ⎠

iv. Sample Mode

Definition 4.14

The most frequent data point is referred to as the mode. However, there might be 

more than one mode within the set of observations. In such a case, for two modes, 

the set is referred to as the bimodal, and for more than two modes, the set is referred 

to as the multimodal.

Example 4.27

Consider the data set 3, 7, 6, 8, 6, 3, 3, 4, 2. Let us find its mode.

Answer

Looking at the data, we see that the value 3 has been repeated three times. Hence, 
it is the mode of the data.

As mentioned before, grouping will cause losing the individual characteristics, 
and hence, finding mode is not possible any longer. For this reason, the class with 
the highest frequency is taken, and it is referred to as the modal class. Of course, 
it is possible that more than one class is with the same highest frequency. In that 
case, the sample will have a multiple modal class.

Example 4.28

For a given sample of size 250, Table 4.11 is an example of a group organization 
of data points with 6 unequal-sized intervals (0-age indicates a not-born child).

Modal class in this example is the interval [41, 69). From Table 4.11, 

10849.5
x = = 43.40.

250

Example 4.29

This is an example of a mixed equal-sized and unequal-sized interval classes. 
We refer to the Example 4.13 and include other sections’ grades to have a larger 
sample. So, suppose that scores of a test range from 0 to 100 with five grades F, D, 
C, B, and A with corresponding scores 0 to 59, 60 to 69, 70 to 79, 80 to 89, and 
90 to 100. Frequency distribution for this test is given in Table 4.12.
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6337
Modal class in this example is [70, 79). From Table 4.12, x = = 78.23 

81

4.6  MEASURE OF RELATIVE STANDING

So far we discussed the measures of central tendency that help us understand the 

location of the center of a set of data. In practice, when we have a large collection of 

data sets, we may need to compare two data points that may be in the same data set 

or in two different data sets. In that case, we may use measurements such as percen-
tile, quartile, or z-scores. Such measures are referred to as the measure of relative 
standing. We will define these terms below.

4.6.1  PERCENTILE

Definition 4.15

A percentile is a good application of ordering. Let us consider a sample of size n 

ordered in ascending order, denoted by S. Let also p be a number between 0 and 1, 

exclusive, that is, 0 1< <p . Then, 

TABLE 4.11
Grouping Data from Example 4.28

Interval No.
Age Interval 

(Year) xi Frequency fi Interval Size f ⋅i xi

1  0–11 5.5 35 11   192.5

2 12–17 14.5 28 16   406.0

3 18–25 21.5 47 8  1,010.5

4 26–40 33 46 15  1,518.0

5 41–64 52.5 69 24  3,622.5

6 65–99 82 25 35  2,050.0

Total 250 10,849.5

TABLE 4.12
Grouping Data from Example 4.29

Frequency (No. of 

Interval No. Test Score Grade xi

Students earning 
the score) fi Interval Size f ⋅i xi

1 0–59 F 29.5  8 60  236.0

2 60–69 D 64.5 13 10  838.5

3 70–79 C 74.5 35 10 2,607.5

4 80–89 B 84.5 18 10 1,521.0

5 90–100 A 95 12 11 1,134.0

Total 81 6,337.0
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 a. If ( 1n p+ )  is an integer, then the (100p)th sample percentile is a sample 

point at which there are approximately np sample points that fall below (left 

of) it and n(1− p) sample points that fall above (right of) it. In other words, 

the area of the left side of the distribution is p and the area of the right side 

is (1− p), as shown in Figure 4.8. 

 b. If ( 1n p+ )  is not an integer, but can be written as a whole number plus 

a proper fraction, of the form r a+ , where r is the whole part and a is 

the proper fraction part, then the (100p)th sample percentile takes the 

weighted average of the rth and ( 1r + )st ordered data points.

(1− ⋅a)Dr a+ +D( 1r ) 

The percentiles are usually used for a very large number of data points. In other 

⎛ n ⎞ ⎡ ⎛ n ⎞ ⎤
words, C1 = the value of th data point, C  ⎝ ⎠ 2 = the value of ⎢2 th data 

100 ⎣ ⎝ 100 ⎠ ⎥⎦
⎡ ⎛ n ⎞ ⎤ ⎡ ⎛ n ⎞ ⎤

point, C3 = the value of ⎢3 ⎥ th data point, …, C99 = the value of ⎢99 ⎥ th 
⎣ ⎝ 100 ⎠ ⎦ ⎣ ⎝ 100 ⎠ ⎦

data point.

FIGURE 4.8 (100p)th sample percentile, when ( 1n + ) is an integer.

Decile D1 D2 D3 D4 D5 D6 D7 D8 D9

1          2          3          4          5          6          7          8          9         10 

 c. If ( 1n p+ <) 1, the sample percentile is not defined.

In other words, the points that divide the set of data points (observations), 

S, into one hundred equal parts, say C ii = 1,2, ,99, are called the per-
centiles. C C1 2, , ,C99 are called the first, second, …, ninety-ninth per-
centile, respectively.

As a special case of percentile, we define the decile. If the sorted sample data, 

S, is divided into 10 equal-sized parts, each of the 9 parts, say D ii , 1= ,2, ,9, is 

called a decile. Thus, each decile contains 10% of the data points (observations) 

contained in S.
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⎛ n +1⎞
In other words, D1 = the value of 1⎜ ⎟ th data point, D2 = the value of ⎝ 10 ⎠
⎡ ⎛ n +1⎞ ⎤ ⎡ ⎛ n +1⎞ ⎤
⎢2⎜ ⎟ ⎥ th data point, D3 = the value of ⎢3⎜ ⎟ ⎥ th data point, …, D  
⎣ ⎝ 10 ⎠ ⎦ ⎣ ⎝ 10 ⎠ ⎦

9 = the 

⎡ ⎛ n +1⎞ ⎤
value of ⎢9⎜ ⎟ ⎥ th data point.

⎣ ⎝ 10 ⎠ ⎦

4.6.2  QUARTILE

Yet another special case of a percentile is the quartile. If the sorted sample data, S, 

is divided into 4 equal-sized parts, each of the 3 parts is called a quartile. Thus, the 

first quartile, denoted by Q1 or the lower quartile, is the number that 25% of the 

lowest data points fall below. The second quartile (also the 50th percentile) of the 

sample, denoted by Q2, is also called the median. This is the number that 50% of 

the lowest data points fall below. Similarly, the third quartile, denoted by Q3, also 

referred to as the higher quartile, is the number that 75% of the lowest data points 

fall below and 25% fall above.

In a set of data points, S, the interquartile range, denoted by IQR, is a mea-
sure of where the “middle fifty” is. In other words, IQR is the range of the middle 

50% of the data points. It is calculated as the difference between Q3 and Q1, that is, 

Q3 − Q1.

As seen above, quartiles are a special case of percentiles. We will illustrate how 

to calculate the percentiles and quartiles in the following examples.

Example 4.30

Let us return to the Example 4.23 with data set, S, as:

We sort S as follows:
1, 2, 3, 4, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9

Q1 Q2 Q3
Quartile 25% of sample 25% of sample 25% of sample 25% of sample 

points points points points
0                          1 2 3 4

Lowest Quartile                     Median                                                  Highest Quartile
25th percentile                 50th percentile                 75th percentile

S  A Set of Data Points=
7 8 5 4 1

7 3 7 5 7

2 9 9 8 7

5 9 7 9 5
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As we can see: 

 a. The minimum = 1,
 b. The maximum = 9,
 c. The range = 9 − 1 = 8,
 d. Q1 = 5,
 e. Q2 = 7, 
 f. Q3 = 8,
 g. Q3 − Q1 = 8 − 5 = 3.

Example 4.31

Let us consider another data set: 

Suppose we wish to:

 1.  Create the stem-and-leaf plot display. 
2. Find the first, second, and third quartiles, Q1, Q2, and Q3, respectively.
3. Find the 60th and 90th percentiles.

 
 
 4. Find the IQR.

Answer

For (1), the ordered stems and leaves (which are referred to as the ranked stem-
and-leaf display) are shown in Table 4.13.

77 72 83 66 59

97 73 43 61 91

54 47 70 65 90

69 76 60 38 74

76 58 73 75 93

TABLE 4.13
Stem-and-Leaf Plot, Example 4.31

Stem

3 8

Leaf Frequency

1

Cumulative 
Frequency

 1

4 3 7 2  3

5 4 8 9 3  6

6 0 1 5 6 9 5 11

7

8

0

3

2 3 3 4 5 6 6 7 9

1

20

21

9 0 1 3 7 4 25
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For (2a), we find the first quartile, Q1, and the percentiles as follows:
Q1 is the 25th percentile. Thus, p = 0.25 and (n + 1)p = (26)(0.25) = 6.50 = 6 + 

0.50. Hence, r = 6 and a = 0.50. Therefore,

 π 0.25 = −(1 0.5)D D6 7+ =0.5 (0.5)(59) (+ =0.5)(60) 59.5. 

For (2b), Q2 is the 50th percentile. Thus, p = 0.50 and (n + 1)p = (26)(0.50) = 13. 
Hence, 

 the 13th ordered data point is 72 and Q2 5= π 0 = 72. 

For (2c), Q3 is the 75th percentile. Thus, p = 0.75 and (n + 1)p = (26)(0.75) = 19.5 = 
19 + 0.50. Thus, r = 19 and a = 0.50. Hence, 

 π 0.75 = −(1 0.5)D D19 + 0.5 20 = + =(0.5)(76) (0.5)(77) 76.5.  

For (3a), the 60th percentile, p = 0.60 and (n + 1)p = (26)(0.60) = 15.60 = 15 + 0.60. 
Thus, r = 15 and a = 0.60. Hence,

 π 0.60 = −(1 0.6)D D15 + =0.6 16 (0.4)(73) (+ 0.6)(74) 73.6.=  

For (3b), the 90th percentile p = 0.90 and (n + 1)p = (26)(0.90) = 23.40 = 23 + 0.40. 
Thus, r = 23 and a = 0.40. Hence,

 π 0.90 = −(1 0.6)D D23 + =0.6 24 (0.4)(91) (+ =0.6)(93) 92.2. 

For (4), the IQR = 76 − 59.5 = 16.5.
We may interpret (a) through (e) as “approximately 25%, 50%, 75%, 60%, and 

90% of the sample points are less than 59.5, 72, 76.5, 73.6, and 92.2, respec-
tively”. The IQR in (f) tells us that about 16.5% of data points fall between the first 
and the third quartiles. 

Note 4.12 Calculating Percentile

To calculate a sample percentile, whether the population from which the sample 
is taken is known or not known. If it is known and easy to work with, the calcula-
tion is easy. However, if it is known, but difficult to work with, the sample points 
may be used. “Numerical approach” is another method to use. In this case, there 
are a variety of software methods such as Tables, MATLAB, Minitab, R, and the 
Calculator. 

Example 4.32

Let X be a continuous random variable with pdf as follows:

 fX ( )x x= <2 , 0 1x < . 
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To calculate the 90th percentile of this pdf, we denote the 90th percentile by x0. 
Then, we have to find P X( < =x0 ) 0.90. Using the given pdf, we will have:

 

x x

P( )X < =x ∫ ∫
0 0

f x dx = x dx =
x

0 ( ) 2 x2 0 = 0.9. 
0

0 0

Hence,

 x2
0 = →0.90 x0 = 0.95. 

Therefore, the 90th percentile is 0.95. That is, 90% of the data points are less than 
or equal to 0.95.

Example 4.33

For a community at random, it is determined that the family income can be 
approximated by a normal distribution with mean and variance as $2,000 and 
$10,000, respectively. Calculate the 95th percentile of the income of a family in 
that community and interpret it.

Calculation
Let X represent the income of a family in the community. Hence, X is normally 
distributed with v = 2000 and σ = 100. Let us also denote the 95th percentile by x0.

 a. Using the Calculator
Since X is normally distributed, we use the inverse normal command 

“invNorm” on a “graphing calculator” with statistics feature, to calculate 
the wanted percentile. Here is how the command is used:

 x0 = invNorm( ,ρ μ,σ ), 

where p represents the decimal value of the percentile. This will lead to

 ≈x0 = invNorm(0.95,2000,100) $2,164.50. 

 b. Using the Z-Table
Based on the desired 95% percentile, we have P X( < =x0 ) 0.5. We 

may convert the normal distribution into standard normal distribution 
as follows:

 P X( )< =x0 0.95, 

 ⎛ X x− μ − μ ⎞P ⎜ < 0
⎟ = 0.95, ⎝ σ σ ⎠

 ⎛ x − 2,000 ⎞P Z⎜ < 0
⎟ = 0.95, ⎝ 100 ⎠

 P( )Z z< =0 0.95, 
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where

 x − 2,000
z0 = 0

. 
100

According to the Z-table, z0  value occurs exactly between z = 1.64 and z = 1.65. 
Hence, the middle value will be taken as the z0  value. Having the z0  value as 
1.645,

from

 =x −
Z = 0 2,000

0 = =1.645,we have x 2,000 + (1.645)(100) 2,164.5.
100

0  

That is, the 95th percentile is $2,164.5. This means that 95% of the incomes of 
families in this community are less than or equal to $2,164.5.

Example 4.34 Calculating Quartile

Suppose the lifetime (in years) of a car tire can be approximated as an exponential 
1distribution with parameter . Calculate the third quartile and interpret the result.
3

Calculation
Let X be the lifetime of the tire. Then, the pdf of X is:

 ≥1
1−

f xX =
x

( ) e 3 , 0x . 
3

Also, let x0 be the third quartile. 
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x

−
x 1

1
⎡ 1 ⎤ 0

1

( )< = ∫ ∫
− 1 ⎢

x
x0 0 x e 3 ⎥ − x

P X x0 fX ( )x dx = e ⎥ = =e
0

3 dx = ⎢ 3 0.75.
0 0 3 3 1

⎢ ⎥
⎣ 3 ⎦0

Thus,

 1− x xln(0.75), giving ln(0.75) 0.8630.
3

0 0= = −  =

So, under the assumptions of the problem, the lifetime of 75% of the car tires 
will be less than or equal to 0.8630 years, that is, about 10 months and 10 days.

Example 4.35 Calculating Quartile

Suppose the thickness or depth of a protective paint applied on a metal surface 
is uniformly distributed on [20, 30] microns. Calculate the lower quartile for the 
thickness of the paint. What does this value mean?

Calculation
Let X be the random variable representing the thickness of the paint. Since X is 
uniformly distributed on the interval [20, 30], the pdf of X is:

 1 1
f xX ( ) = = <, 20 X < 30. 

30 − 20 10

Let x0 be the first quartile, Q1 . Then, 

 
x x

P X( )< =x ∫ ∫
0 0

fX (x)dx = 0.1 dx = 0.1x x0
0 20

= 0.25. 
20 20

That is, 

 10(x0 − =20) 25, giving = 22.5. 0x

Therefore, the 25th percentile is 22.5. That is, 25% of the data points are less than 
or equal to 22.5 μm.

The fifth decile of the sample is also called the median (this is because there 
are five parts on each side of the fifth mark).

The second quartile, also the 50th percentile, of the sample is also called the 
median (this is the number that 50% of the lowest data points fall below it). 

Decile
0          1          2          3          4          5          6          7          8          9  

m

Quartile
0                     1                     2                      3                       4           

m
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Example 4.36

Suppose we are given two sets of the data as:

 1. 3, 7, 6, 8, 6, 3, 3, 4, 2, 
and

 2. 4, 1, 4, 6, 9, 7, 1, 9, 2, 7.

For each data set, calculate the median, the fifth decile, and the second quartile.

Answer

We first sort each of the data set in ascending order. The sorted samples are as 
follows:

2, 3, 3, 3, 4, 6, 6, 7, 8, 
and

1, 1, 2, 4, 4, 6, 7, 7, 9, 9.

For set (1):
Having 9 data points, the middle point, that is, the median, is 4. Deciles start 

from 0.9 and increasingly move by 0.9, as follows.

For deciles, dividing 9 by 4 gives the first decile as 2.25. Then, adding 2.25, we 
obtain the median and the higher decile.

For set (2):
Having 10 data points, the middle 2 points are 4 and 6, and the average of 

those points, that is, the median, is 5. Deciles start from 1 and increasingly move 
by 1, as follows.

0.9      1.8       2.7             3.6          4.5         5.4         6.3          7.2          8.1 
Decile 1 2 3 4 5 6 7 8 9 10
Data 2 3,  3,  3 4 6,  6 7 8

Median m (fifth decile)   

2.25                                 4.5                             6.75 8
Quartile 1 2 3 4
Data 2 3, 3, 3, 4 6, 6 7,   8

Median m (second quartile) 

                           1         2          3               4              5           6             7             8             9        10 
Decile 1 2 3 4 5 6 7 8 9 10
Data 1,  1 2 4,  4 6 7,  7 9,   9

Median m (fifth decile) 
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For deciles, dividing 10 by 4 gives the first decile as 2.5. Then, adding 2.5, we 
obtain the median and the higher decile.

4.6.3  Z-SCORE

Let us start with an example.

Example 4.37

Suppose a test in two versions, 1 and 2, is given in a statistics class. Two classmates 
S1 and S2 are given two different versions of the examinations. S1 received a score 
of 65 and S2 received 80. If we are to select the better performer out of S1 and S2, 
just by looking at the scores, we would select S2 since S2 received a better score. 
Now the question is, did we make a correct decision? 

Answer

To give the correct answer, we should have asked the following questions of our-
selves before making a decision. Questions such as: 

What is the average for each version of the examination?
Is the S1 ’s score better or worse than the class’ average for version S1 ?
Is S2 ’s score better or worse than the class’ average for version S2? 

In a case similar to the above example, the best way to select the best performer 
is to calculate the z-score, which is the difference between an observation and the 
average value in terms of the standard deviation, that is,

 Observation − Mean x − μ
z = = . (4.8)

Stdev σ

So, let us assume the following statistics for the examination in the example above:

We now calculate the z-scores of S1 and S2, using (4.8), denoted by z1 and z2, 
respectively.

2.5                                   5                                7.5                           10
Quartile 1 2 3 4
Data 1, 1, 2 4, 4 6, 7,  7 9,   9

Median m (second quartile) 

Student Score Version Average Version Standard Deviation

S1 65 50  5

S2 80 85 10
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 x − μ 65 − 50 x − μ 80 − 85
z1 == 1 1 = = =3 and z 2 2 = = −0.5.

σ 5
2  

σ 10

Thus, based on the z-scores, S1 has a z-score of 3, which means that S1 ’s grade 
is higher than 3 standard deviations of the average value for those taking the first 
version of the examination. S2 ’s z-score, on the other hand, is −0.5, which means 
that S2 ’s grade is lower than the average value of the second version of the test by 
0.5 standard deviation. Thus, comparing the z-scores, it is clear that S1 performed 
better than S2.

4.7  MORE PLOTS

4.7.1  BOX-AND-WHISKER PLOT

Yet another graphical display of a data set is the box-and-whisker plot or box plot. 
This is also called the five number summary. It shows the minimum, Q1, Q2, Q3, 

and the maximum value of a given data set. It involves a center box containing 50% 

of the data and two whiskers, each of which represents 25% of the data. In other 

words, the plot divides the distribution of a data set into four parts: 

 i. The lower “whisker” that contains the minimum value;

ii. The lower portion of the box that contains the first quartile, Q1, and the 

middle line of the box that contains the second quartile, Q2;

iii. The top part of the box, above the median line, which is the third quartile, 

Q3;

 

 

 iv. The upper “whisker” that represents the maximum value.

In summary, the box plot is based on five numbers: 

 1. The minimum, 

2.  The first quartile, Q1,

3.  The median, the second quartile, Q2, 

4.  The third quartile, Q3, 

5.  The maximum of the data set.

 

 

 

 

The rectangular shape of the box plot graph is the basis for its name since its shape 

looks like a box. 

Steps to create the box-and-whisker plot are as follows:

Step 1. Use the equal interval scale.

Step 2. Draw a rectangular box such that:

i. One end at Q1 and the other end at Q3,

ii. Draw a vertical segment at the median value,

iii. Draw two horizontal segments on each side of the box, one down to the 

minimum value and the other one up to the maximum value; these seg-

ments are the whiskers.
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Example 4.38

We want to draw a box-and-whisker plot for the following data set S:

S = {5,7,9,10,14,15,16,20,23}  

Answer

From the given data points, we had the following necessary five numbers:
Minimum: 5, Q1: 8, median: 14, Q3: 18, and maximum: 23.
Using MATLAB 2018b, we can write the following simple codes to obtain 

Figure 4.9.

S=[5 7 9 10 14 15 16 20 23];
boxplot(S)
ylabel('Observations')
title('Box Plot, MATLAB')

As it can be seen from Figure 4.8, the following information describes the figure 
(plot):

 i. The vertical spacing between the labels indicates the values of the vari-
able in proportion;

 ii. A vertical line extending from the top of the rectangle indicates the 
maximum; 

 iii. The top part of the rectangle indicates the third quartile, Q3;

FIGURE 4.9 Box plot using MATLAB for Example 4.38.
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 iv. A horizontal line near the middle of the rectangle indicates the median, 
“Md”, Q2;

v. The bottom of the rectangle indicates the first quartile, Q ;1

vi. The vertical line extending from the bottom of the rectangle indicates the 
minimum;

vii. The vertical dotted lines above and below the box are the whiskers.

 
 

 

Now, using Minitab 18-1 for the same example, we will have Figure 4.10. 
Descriptions are the same as for MATLAB figure.

The box plot can be used to illustrate multivariables.

Example 4.39

Referring to Example 4.20, use MINTAB to do a box plot to show both high and 
low temperatures during the period of November 29, 2018, and December 28, 
2018, in Houston, Texas, the United States (Figure 4.11).

Answer

Note 4.13

This is how we can find outliers, using the box plot. Box plot can be used to iden-

tify the outliers. We consider any data point as an outlier if its value is less than 

the lower fence, denoted by LF, defined by

 LF = −Q1 (1.5)(IQR) (4.9)

or higher than the upper fence, denoted as UF, defined by

 UF Q= +3 (1.5)(IQR). (4.10)

25

20

15

10

5

O
bs

er
va

tio
ns

Box Plot, MINITAB

FIGURE 4.10 Box plot using Minitab for Example 4.38.
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Example 4.40

Let us consider the following data points:
8, 7, 10, 8, 6, 9, 5, 5, 7, 8, 14

Check for outliers.

Answer

Here, Q1 3= =6, Q 9, and IQR = − =9 6 3. Then,

 LF = −Q1 (15)(IQR) = 1.5 and UF = Q + (15)(IQR) = 13.5. 3

Clearly, only the data point 14 is beyond the LF and UF. Therefore, 14 is the outlier.

4.7.2  SCATTER PLOT

Finally, the scatter plot or an XY plot illustrates the relationship between two vari-

ables (if any).

A scatter plot is also known as an XY plot since the variables are plotted on the 

x- and y-axis. The strength of the linear correlation on a scatter plot can be measured 

using a linear correlation coefficient.

Example 4.41

Referring to Example 4.20, use MINTAB to do a scatter plot to show both high and 
low temperatures during the period of November 29, 2018, through December 
28, 2018, in Houston, Texas, the United States (Figure 4.12).
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Temperature in Houston, Texas, During  11/29/2018-12/28/2018

High and Low Temperatures

FIGURE 4.11 Box plot using Minitab for Example 4.39.
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Answer

Note 4.1

Scatter plots help to identify the linear relationship between two quantitative vari-

ables (X and Y). 

4.8  MEASURES OF VARIABILITY

So far, we have discussed the measures of central tendency. When studying a data 

set, it is not enough to know only the measures of the central tendency.

Example 4.42

Suppose after an examination is over, the instructor goes to the class and mentions 
the class average of the examination. By knowing only the average, can you guess 
your grade? 

Answer

The answer is not easy. It is because you are not sure about the distribution of the 
grades. Are all grades very close to the average, or are grades far away from the 
average value? 

In a situation like this, you need not only the measures of the central tendency, 
but also measurements that represent how far the rest of the data is away from the 
mean value. These are called the measures of variability. Measures of variability 
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FIGURE 4.12 Scatter plot using Minitab for Example 4.41.
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are also called the measures of dispersions, that is, the distance of a data point 
from the sample mean. Under the measures of variability, we will talk about the 
range, the variance, and the standard deviation.

4.8.1  RANGE

The range is the difference between the maximum and the minimum of data values.

Example 4.43

Consider the following sample of data that shows the average gas price of cities.

Calculate the range of the above data.

Calculation

 Range = Maximum Value − Minimum Value = − =$3.50 $2.00 $1.50. 

As we saw, it is very easy to calculate the range. In practice, we would like to look 
for a better measurement to represent the variability of the data than the range, 
due to the following reasons:

 i. Range is based only on the two values in the data set. Therefore, it does 
not represent the entire data set;

 ii. Also, the maximum value and the minimum value may be outliers in a 
data set.

Hence, it is an important and better measure to represent the variability of the 
data. 

Definition 4.16

Measures of variability means measures of dispersions, that is, the distance of a 

data point from the sample mean.

4.8.2  VARIANCE

Definition 4.17

$3.00 $3.25 $2.75 $3.20 $2.95

$2.00 $3.50 $3.10 $2.50 $2.90

Let X = ( )x x1 2, , , xn  be a random vector with n data points and sample mean x . 

Deviation from the mean means the difference between a data point and the sample 

mean, that is, xk − =x k, 1,2, ,n.
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Since the sample mean is fixed, a deviation from the mean can be positive, nega-

tive, or 0, depending upon the value of xi whether it is greater than, less than, or equal 

to the value of the sample mean; however, the sum of the deviations from the sample 

mean is zero, that is,

 ∑
n

( )x xk − = 0. (4.11)

k=1

This is because substituting (4.4) in (4.11), we will have:

 

∑( )x xk − = ∑ ∑xk −∑ x = xk − nx
k= =1 1k= =1 k k

∑
= =

n nn n

n ⎛
= −∑ ∑⎜

⎝
∑

n ⎞ n n
1

x nk kx x⎟ = − =x
n

k k 0.

k=1 k=1 ⎠ k k

1

1 1

 

 

As we saw, the sum of the deviations from the sample mean is 0. However, this is 

not a desirable information since we are interested in the average deviation from the 

sample mean. Hence, one option is the average absolute value, that is,

 

But absolute value is not an interesting concept in mathematical analysis since oper-

ation with it is difficult. The next option is the average of squares of deviations. 

Therefore, we define the deviation from the mean as follows.

Definition 4.18

 σ ∑
N

2 1= −( )x
2
.

N
i μ  (4.12)

i=1

Since the calculation of the population variance using (4.12) is a difficult task, we 

approximate it by the sample variance.

∑
n

x xk −
, 1n = ,2, . 

n
k=1

∑
n

x xk −
, 1n = ,2, .. 

n
k=1

Consider a finite population of size N with elements as x1 2, ,x x, N . Let us also 

denote the population mean and variance by μ and σ 2, respectively. Then, given the 

population mean, the population variance is defined as
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Definition 4.19

The sample variance or mean square, denoted by s2, is a statistic defined by

 = ∑
n

s2 1 ( )x x 2
.

n −1
k −  (4.13)

k=1

The denominator of the fraction on the right-hand side of (4.12) should logically be n, 

as was used up to a couple of decades ago. However, it was found that how 1/n causes 

under estimating the population variance, σ 2, as the role of s2 is. Thus, replacing n 

by n − 1 enlarges s2, which is a better estimate for σ 2.

Theorem 4.1

Another form of the sample variance is:

 
⎡ n

1 ∑ ∑1 ⎛ n ⎞ 2 ⎤
s2 2= ⎢ x xk − k

⎥⎜ ⎟ . (4.14)
n −1 ⎢ 2 ⎥

⎣ k= =1 1⎝ k ⎠ ⎦

Proof:
Using the definition of x  (4.4), and the definition of s2 (4.14), we will have the fol-

lowing argument that leads to (4.13):

 
=

n
1 ⎡ n n n

1 ⎤
s2 = ( )x x− =2 ⎢ x x2 − +2 x x 2 ⎥

n −1∑ ∑k
n

k= =1
−1

k
⎢⎣ k 1

∑ k

k=1

∑
k 1 ⎥⎦

 
n

1 ⎡
= ⎢

− ∑ ⎤
x2 − ⋅2x nx + nx 2 ⎥

n 1
k

⎣⎢ k=1 ⎦⎥

n
1 ⎡

= ⎢
− ∑ ⎤

x n2 2− x ⎥ .
n 1

k

⎣⎢ k=1 ⎦⎥

 
⎡ 2n ⎤

2 1 2 1 ⎛ n ⎞
s = ⎢ f x⋅ − ⎜ f x⋅ ⎥⎟ . (4.15)

n −1 ⎢∑ ∑k k k
n

k ⎥
k ⎠⎣ = =1 ⎝ k 1 ⎦

Relation (4.13) can be used in case the data is grouped in a simple frequency form 

fk , 1k n= ,2, , . The sample variance will also be of the following form:
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Example 4.44

Let us go back to Example 4.20, and consider the data sets of low and high city 
temperatures during the given period. We want to calculate the sample variances 
and sample standard deviations for both.

Calculation
To compute this, we use the Minitab 18 with the following steps:

Step 1: Type the data into a column in a Minitab worksheet.
Step 2: Click “Stat”, then click “Basic Statistics”, then click “Display 

Descriptive Statistics”.
Step 3: Click the variables you want to find the variance for (“High”, in our 

case), and then click “Select” to move the variable names to the right 
window.

Step 4: Click “Statistics”.
Step 5: Check the “Variance” box, and then click “OK” twice.

Here are the results:

Using Excel program, following (4.4) and (4.3), we calculate each statistic in 
Table 4.14. 

4.8.3  STANDARD DEVIATION

Standard deviation is considered as the square root of the variance. So, we can state 

that σ  is the population standard deviation, and S is the sample standard deviation.

Statistics: Low Statistics: High

Variable Mean StDev Variance Variable Mean StDev Variance

Low 52.27 7.30 53.31 High 67.10 8.30 68.92

High Temperature Low Temperature

x = 67.1 x = 52.27

30 30
2∑(xk − 67.1) = 2,016.7

2∑(xk − 52.27) = 1,545.87

k=1 k=1

30

2 1 2
s = ∑(xk − 67.1) = 69.54

29
k=1

2s
30

1 2= ∑(xk − 52.27) 53.31
29

k=1

s = 69.54 = 8.34 s = 53.31 = 8.34

=
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∑
N

( )x
2

i − μ
The population standard deviation,σ = i=1 . 

N

 

∑
n

( )x x 2
i −

The sample standard deviation, S = i=1 . 
n −1

TABLE 4.14
Data Regarding Weather Temperature of Houston, Texas, during the 
Period of 11/29/2018, Example 4.44

Day No. Date High xk − x
2(xk − x Low xk − x 2(xk − x)

1 Nov. 29, 2018 76 8.9 79.21 66 13.73 188.60

2 Nov. 30, 2018 81 13.9 193.21 68 15.73 247.54

3 Dec. 01, 2018 81 13.9 193.21 66 13.73 188.60

4 Dec. 02, 2018 79 11.9 141.61 59 6.73 45.34

5 Dec. 03, 2018 68 0.9 0.81 52 −0.27 0.07

6 Dec. 04, 2018 61 −6.1 37.21 45 −7.27 52.80

7 Dec. 05, 2018 63 −4.1 16.81 43 −9.27 85.87

8 Dec. 06, 2018 64 −3.1 9.61 52 −0.27 0.07

9 Dec. 07, 2018 75 7.9 62.41 55 2.73 7.47

10 Dec. 08, 2018 55 −12.1 146.41 45 −7.27 52.80

11 Dec. 09, 2018 48 −19.1 364.81 43 −9.27 85.87

12 Dec. 10, 2018 61 −6.1 37.21 41 −11.27 126.94

13 Dec. 11, 2018 64 −3.1 9.61 45 −7.27 52.80

14 Dec. 12, 2018 68 0.9 0.81 54 1.73 3.00

15 Dec. 13, 2018 75 7.9 62.41 50 −2.27 5.14

16 Dec. 14, 2018 50 −17.1 292.41 45 −7.27 52.80

17 Dec. 15, 2018 64 −3.1 9.61 48 −4.27 18.20

18 Dec. 16, 2018 68 0.9 0.81 50 −2.27 5.14

19 Dec. 17, 2018 72 4.9 24.01 55 2.73 7.47

20 Dec. 18, 2018 63 −4.1 16.81 50 −2.27 5.14

21 Dec. 19, 2018 61 −6.1 37.21 55 2.73 7.47

22 Dec. 20, 2018 63 −4.1 16.81 54 1.73 3.00

23 Dec. 21, 2018 64 −3.1 9.61 45 −7.27 52.80

24 Dec. 22, 2018 77 9.9 98.01 54 1.73 3.00

25 Dec. 23, 2018 70 2.9 8.41 55 2.73 7.47

26 Dec. 24, 2018 66 −6.1 37.21 48 −4.27 18.20

27 Dec. 25, 2018 73 −4.1 16.81 61 8.73 76.27

28 Dec. 26, 2018 70 2.9 8.41 63 10.73 115.20

29 Dec. 27, 2018 73 5.9 34.81 54 1.73 3.00

30 Dec. 28, 2018 60 −7.1 50.41 47 −5.27 27.74

)
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Note 4.15

The unit of the sample standard deviation is the same as the unit of each data 

point unlike the variance. The unit of the variance is always squared units.

4.9  UNDERSTANDING THE STANDARD DEVIATION

We have discussed both the variance and the standard deviation before. Both rep-

resent how far a data point is away from the mean value on average. The standard 

deviation can be used to understand the data with the help of following rules.

4.9.1  THE EMPIRICAL RULE

The empirical rule applies to a distribution, which is symmetric and mound-shaped. 

According to this rule, approximately 68% of the data lies between one standard 

deviation of the mean value. Approximately 95% of the data lies between two stan-

dard deviations of the mean value. Furthermore, approximately 99.7% of the data 

lies between three standard deviations of the mean value.

This is illustrated in Figure 4.13.

Example 4.45

Suppose the monthly income of a family in a certain city is approximately nor-
mally distributed with a mean of $2,000 and a standard deviation of $100. Using 
the empirical rule, we obtain the results which are given in Table 4.15.

FIGURE 4.13 Empirical rule illustration.
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4.9.2  CHEBYSHEV’S RULE

This rule can be applied to any distribution, unlike the empirical rule. According 

to Chebyshev’s rule, the proportion of data between k standard deviations of the 

⎛ 1 ⎞
mean is approximately ⎜1−

2 ⎟ ×100%, where k >1. This is illustrated accordingly ⎝ k ⎠
in Figure 4.14.

For various k >1 values, we can construct the following table.

FIGURE 4.14 Chebyshev’s rule illustration.

TABLE 4.15
Intervals and Proportions

k (μμ −− σk ,σ μμ ++ σkσ ) Proportion of Data Interpretation

1 (2,000 − 100, 2,000 + 100) 68% 68% of the families have an 

income between $1,900 

and $2,100

2 (2,000 − 2 * 100, 2,000 + 2 * 100) 95% 95% of the families have an 

income between $1,800 

and $2,200.

3 (2,000 − 3 * 100, 2,000 + 3 * 100) 99.7% 99.7% of the families have 

an income between 

$1,700 and $2,300.

k ⎛ 1 ⎞
⎜1− ⎟ ×100%⎝ k 2 ⎠

2
⎛ 1 ⎞
⎜1− ⎟ × =100% 75%⎝ 22 ⎠

3 ⎛ 1 ⎞
⎜1− ⎟ × =100% 88.89%⎝ 42 ⎠

4 ⎛ 1 ⎞
⎜1−⎝ 2 ⎟ × =100% 93.75%

4 ⎠
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Example 4.46

Let’s consider Example 4.44, and assume that the shape of the distribution is 
skewed. Therefore, so we can’t apply the empirical rule. According to Chebyshev’s 
rule, we can conclude as follows.

Approximately 75% of the families have an income between $1,800 and 
$2,200. Similarly, 88.89% of the families have an income between $1,700 and 
$2,300. Furthermore, approximately 93.75% of the families have an income 
between $1,600 and $2,400.

EXERCISES

 4.1. Consider the following variables related to a student. Identify them as 

quantitative or qualitative.

 a. Major.

b. Number of credits the student takes.

c. Student’s classification (freshman/sophomore/junior/senior).

d. Student’s GPA.

e. Student number.

 

 

 

 

 4.2. Classify the following variables as quantitative or qualitative.

 a. Brand of a car.

b. Car mileage.

c. Price of a car.

d. Year of manufacture of a car.

e. Car’s VIN number.

 

 

 

 

 4.3. Identify the following variables of a car engine, according to the level of 

the measurements.

 a. Country of manufacture.

b. Year of manufacture.

c. Type of the engine (two cylinders, three cylinders, four cylinders, five 

cylinders, six cylinders, and eight-plus cylinders).

d. Gas mileage.

e. Average temperature.

 

 

 

 

 4.4. Consider the following grades of a course in elementary statistics.

 a. Construct an appropriate graph to summarize the above data.

 b. What percentage of students have received a grade “B”?

 4.5. A survey was conducted to find out the means of transportation to a school. 

A A C B F

B C C B C

F C B C A

C C B F F

A B B C C
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 a. Represent the above information using an appropriate graph.

b. What percentage of students use buses to come to school?

c. What percentage of students use either a bicycle or a car to reach the school? 

 

 

 4.6. Consider the set of numbers 2, 5, 6, 4, 3. Calculate the following:

 a. ∑ xi

i

 b. x 2
i

i

∑
 c. xi − 4

i

∑
 d. (xi − 4

i

∑ )

 4.7. Using the data sets 4, 1, 2, and 3, compute the following:

 a. x2
i − 5∑

∑
i

(
2

b. xi − 5)
i

c. ∑ 2

 (2xi − 5)
i

(
2

d. ∑2 xi − 5)
i

 

 

 

 4.8. The average grade of 10 students for an examination is 70. If the grades of 

nine students are 75, 80, 65, 90, 68, 40, 75, 60, and 70.

Calculate the other students’ examination grade.

 4.9. Consider the following car mileages of randomly selected 10 cars:

33.5  33.0  35.630.7  36.3  31.5  25.0  33.2  35.0  40.5

 a. Calculate the average car mileage using the above data.

 b. Calculate the 10% trimmed mean car mileage for the above data.

4.10. Consider the following grades of an examination:

92 95 72 85 50 60

88 73 70 87 75 83

40 71 70 75 97 40

70 77 88 45 56 90

91 83 87 71 74 86

Means of Transportation Number of Students

Walking

Bicycle

Bus

150

145

300

Car 405
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 a. Construct a stem-and-leaf plot for the above data.

b. Comment on the shape of the above plot.

c. Calculate the mean, median, and the mode of the above grades.

 

 

4.11. An instructor constructed a histogram for the grades students got for one of 

his classes. The shape of the grades distribution is as follows. 

Out of mean, median, and mode, what are suitable for A, B, and C?

4.12. Consider the following amount of money spent by several companies for 

advertising during a month:

 a. Calculate the range of above expenditures

b. Calculate the average value of the above expenditures.

c. Calculate the variance of the expenditures.

 

 

4.13. John and Sam sat for two different examinations. Suppose John’s grade 

was 75 and the average and the standard deviation of his examination were 

60 and 10, respectively. Similarly, assume that Sam’s grade was 85 and the 

average and the standard deviation of his examination were 90 and 0.5, 

respectively. 

 a. Whose grade is better?

b. Calculate z-scores for both John’s and Sam’s grades?

c. Interpret both z-scores.

d. What do you think about their grades now?

 

 

 

4.14. Consider gas price in several gas stations of a big city.

Name Amount ($)

A 20,000

B 60,000

C 55,000

D 70,000

E 25,000
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 a. Calculate the median of the above data.

b. Calculate the first, the second, and the third quartiles of the above data 

and interpret them.

c. What is the IQR and interpret the value of it?

d. Construct a box plot.

 

 

 

4.15. The following sample of data represents the scores of 20 students on an 

engineering examination. The mean is 70.2, and the standard deviation is 

18.5.

70, 39, 51, 63, 59, 68, 69, 75, 73, 78, 77, 80, 82, 88, 89, 85, 90, 15, 67, 86.

 a. Calculate the z-scores of the lowest and highest grades.

 b. Based on the above values, are there any outliers in the data set?

4.16. Consider the following car mileages of randomly selected 9 cars.

33.5  33.0  35.6  30.7  36.3  31.5  25.0  33.2  35.0  40.5

Using the z-scores of the above values, check for the availability of 

outliers.

4.17. Consider the following sample of data, which represents the pitching speed 

(miles per hour) of pitchers in 20 games of a major baseball league.

85, 90, 95, 88, 92, 91, 87, 89, 86, 92, 80, 70, 75, 68, 69, 74, 77, 80, 75, 73.

 a. Construct a stem-and-leaf plot for the above data.

b. Calculate the 70th and 80th percentiles for the above data.

c. Interpret the above percentiles.

 

 

4.18. Consider a particular type of car engine, which has an average gas mile-

age of 35 miles per gallon and a standard deviation of 5 miles per gallon. 

Calculate the 95th percentile of the gas mileage and interpret the result.

4.19. Suppose the waiting time for a bus in a particular bus routine follows a 

uniform random variable between 0 and 10 minutes. Calculate the 80th 

percentile for the waiting time.

4.20. Assume that the lifetime of a car engine follows an exponential distribution 

with an average of 10 years.

 a. Calculate the median lifetime of the car engine.

b. What is the 90th percentile of the car engine and interpret the result? 

4.21. Suppose a set of observations of daily emission (in tons) of sulfur from an 

industrial plant is given below.

A Set of Observations (Raw Data)

20.2 12.7 18.3 18.3 23.0

21.5 10.2 17.1 07.3 11.0

18.3 20.2 20.2 20.2 18.3

17.1 11.0 12.7 11.0 23.0

23.0 18.3 12.7 07.9 12.7

17.1 21.5 07.9 11.0 12.7

$2.54 $2.60 $2.35 $2.45 $2.65

$2.30 $2.40 $2.55 $2.56 $2.62
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 a. Calculate the mean and median for the above data.

b. Calculate the first, the second, and the third percentiles.

c. Construct the box plot for the above data.

d. Calculate the lower fence and the upper fence for the above data and 

identify any outlier(s) if there are any.

 

 

 

4.22. Suppose an engineering firm has five engineers who are paid annual sala-

ries as $70,000, $80,000, $85,000, $85,000, and $90,000, respectively. 

 a. Calculate the average annual salary based on the above data.

b. What is the median salary above?

c. Suppose the chief executive officer (CEO), who is also an engineer, 

earns $180,000. How does the inclusion of the CEO’s salary in to the 

above data change both calculations in parts (a) and (b)?

 

 

4.23. Suppose an electronic company sells three types of top of the line high-

tech TVs at prices $4,000, $2,000, and $1,500 each, respectively. The com-

pany’s data shows that the percentages of sales of these items are 10, 60, 

and 30, respectively. We want to find the distribution of the sample mean 

and also the average revenue of selling a unit of TV across the nation.

4.24. Suppose a set of observations of daily emission (in tons) of sulfur from an 

industrial plant is given below.

 a. Construct a relative frequency distribution for the above data.

b. Construct a histogram using the intervals [4,8), [8,12), …, [20,24).

c. Discuss the shape of the above distribution.

 

 

4.25. The lifetime of a certain type of light bulb has an exponential distribution 

with an average value of 200 hours. 

 a. Calculate the first median value of the lifetime of this type of bulb and 

interpret this value.

 b. What is the 90th percentile of a bulb of the above type?

4.26. A certain brand of car has an average gas mileage of 35 miles per hour and 

a standard deviation of 5 miles per hour. If you select a car of the above 

brand, what is the third quartile of the gas mileage? What does this third 

quartile represent?

4.27. The error in the reaction time (in minutes) of a certain machine has the 

following distribution:

 
3

f x( ) = −x2; 1 ≤ x ≤1. 
2

Compute the 95th percentile of the error in reaction.

20.2 12.7 18.3 18.3 23.0

21.5 10.2 17.1 07.3 11.0

18.3 20.2 20.2 20.2 18.3

17.1 11.0 12.7 11.0 23.0

23.0 18.3 12.7 07.9 12.7

17.1 21.5 07.9 11.0 12.7
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4.28. Suppose a random variable X has a uniform distribution over [ ,a b], where 

0 ≤ <a b. Compute the first, the second, and the third quartiles in terms of 

values a and b.

4.29. Suppose the GPA of 20 randomly selected students is as follows:

2.50, 3.00, 2.75, 3.80, 3.60, 2.95, 3.00, 1.70, 2.80, 2.00

3.99, 2.10, 2.65, 2.85, 2.30, 3.45, 2.00, 2.70, 1.85, 3.00

 a. Calculate the mean and the standard deviation of the above data.

b. Calculate the number of GPA values contained in the intervals of 

( ,x s− +x s), (x − 2s, x + 2s), and ( 3x s− +, x s3 ).

c. Calculate the proportion of data points in the above intervals, and com-

pare them with the empirical rule.

 

 

4.30. The grades of one of the national examinations follow a skewed distribu-

tion with a mean value of 70 and a standard deviation of 5.

a. What proportion of students have scored one standard deviation of the 

mean value?

b. What proportion of students have scored within three standard devia-

tions of the mean value?

c. Interpret the above values.
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5 Inferential Statistics

5.1  INTRODUCTION

Already familiar with basics of statistics, the vocabularies, and properties of the 

measures of central tendency and dispersion, we are now ready for data analysis. 

The essence of data analysis is to choose a sample, collect data, and address ques-

tions regarding the data. The idea is to reach conclusions about the population from 

the sample and predict the possible future. In other words, the purpose of the most 

statistical investigations is to generalize information contained in samples of the 

populations and can tell what the future data may look like. This is referred to as 

estimating parameters by the statistics, which is the basis for statistical inference 

or inferential statistics. The term “inference” means a conclusion or a deduction, 

that is, essentially, a statistical decision-making process. In other words, infer-

ential statistics are derived via complex mathematical theory allowing scientists to 

infer trends about a larger population based on results from the sample. Often scien-

tists use inferential statistics to examine the relationships between variables within 

a sample and then generalize or predict how the variables may relate  to  a larger 

population. It seems that inferential statistics started in the fifth century BC about 

the time Athenians needed to estimate the height of ladders necessary to scale walls.

Note 5.1

There are ways that decision-making could be deterministic such as in lin-

ear optimization. However, here in this book, we mainly consider stochastic 

decision-making.

Now, before we go into details of this chapter, we are to refresh the readers’ memo-

ries. Hence, we re-state some definitions from Chapter 4 and give some examples.

In a study, the population represents all the observations under the investigation. 

Usually, the population is very large and consists of an enormous number of observa-

tions, which make it practically impossible to use it all as a collected data set. Thus, 

a subset of the population, called the sample, is used instead. Practically, this subset 

consists of a finite collection of observations that is easy to gather. Consequently, 

unlike the population, the sample is an easier collection to work with. 

A numerical value that summarizes the population is referred to as a population 
parameter. The mean, median, mode, variance, and standard deviation are some 

examples of population parameters. Usually, these values are unknown or difficult 

to calculate. Often, population parameters are denoted, symbolically, by Greek let-

ters such as μ (mu), mostly used for mean, and σ (sigma), mostly used for standard 

deviation. In the case of samples, they are referred to as the sample statistics and 

are denoted by English letters such as X (X-bar) for sample mean and S for sample 
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standard deviation. Using the terms “population parameter” and “sample statistic”, 

we can state that the inferential statistics is studying about unknown population 

parameters using sample statistics. 

Example 5.1

In studying the monthly income of a family in the United States, the population 
mean, that is, the average income of a family, is very difficult to compute. The 
reason is that the number of families in the country is huge and it is not easy to 
reach each and every one of them to obtain their monthly income as needed to 
average. However, selecting a random sample is a very easy and practical way 
of doing it. So, this sample statistics summarizes the entire sample into a single 
numerical value.

Example 5.2

For the purpose of statistical study of the average family income in the United 
States, suppose a sample of 1,000 families is selected. It can be seen that the 
calculation of the sample mean in this case is easily obtained since the number of 
families is finite and possibly very small.

Note 5.2

In inferential statistics, selecting a good sample is very crucial. Since the cal-

culation of the population parameters is based on the sample, it should be truly 

representative of the population. 

Example 5.3

A large technology company, like Apple, is deciding to develop a new version of 
its smart phone. Before start developing the product, it tried to collect opinions 
of potential users in some large cities’ malls in the United States to see how the 
public will react to such a development before the product is developed and 
marketed. Hence, a questionnaire (a survey) is developed and the data collected 
will help the company decide. In this example, the population will be all people 
who may use this new smart phone. As the company cannot reach everyone in 
the population, they can get an idea about people’s opinions in the population, by 
using the collected sample.

There are two ways of making inference about population parameters. One 
way is to make a good guess about the unknown population parameters. This 
is referred to as the estimation. The unknown parameter may be estimated by a 
single value, in which case the estimation is referred to as the point estimation. 
Instead of considering point estimation, it is more practical to consider finding 
an interval for estimating the parameter, in which case the estimation is referred 
to as an interval estimation. The second way to make an inference about the 
population parameters is by testing the parameter. This method is referred to as 
the hypothesis testing.
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Essentially, inferential statistics is classified into four major areas:

 i. Point estimation,
 ii. Interval estimation,
 iii. Hypotheses testing,

iv. Nonparametric estimation (which will be discussed in Chapter 6).
There are other methods and areas of inferential statistics that are used 

in special cases. For instance,
 v. Sparse adaptive channel estimation (under assumption of normal 

distribution),
 vi. The statistical model of source localization based on range difference 

measurements (under assumption of normal distribution),
 vii. Localization. 

 

However, they will not be discussed in this book.

5.2  ESTIMATION AND HYPOTHESIS TESTING

One may ask, what is estimation? The answer is: Estimation is predicting or stating 

some information about the population parameters from the sample statistics, for 

instance, generalizing the obtained value of the sample mean to the mean of the 

population. We usually ask the question, how far or how close is the population mean 

from the sample mean? To answer this question, we need the following definition.

Definition 5.1

A statistic is said to be an unbiased estimate of a given parameter if the mean of 

the sampling distribution of that statistic can be shown to be equal to the parameter 

which is being estimated; that is, it is neither underestimated nor overestimated; 
otherwise, it is biased. An unbiased estimator is an accurate statistic that is used to 

approximate a population parameter. 

Note 5.3

Definition 5.1 states that since estimation is an educated guess, it is expected to 

have the estimated value not exact. Hence, the word “bias” is to state that there is 

some distance from actuality. 

Remark 5.1

The word “bias” and its opposite “unbias” are used to confirm that an estimate is 

not as the real value or an estimate and the actual value are the same, respectively. 
Thus, the sample mean, Xn (or if there is no ambiguity, simply, X), is an unbiased 
estimate of the population mean, E( )X = μ, if the estimator (the sample mean) 

equals the parameter (the population mean). In other words, if the statistic equals 
the parameter, then the estimation is unbiased.
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5.2.1  POINT ESTIMATION

Definition 5.2

A point estimation is an estimation of a population parameter such as the mean, 

variance, or standard deviation, by a single value of a statistic. 

Since the most popular parameters of a population are the mean, variance, and 

standard deviation, which often need to be estimated by random samples, we start 

this section with some properties of sample parameters, that is, statistics.

Theorem 5.1

 i. E ( )Xn = μ.  (5.1)

Thus, the sample mean is an unbiased estimate of the population mean. 

Hence, if the statistic equals the parameter, then the estimation is unbiased.

( ) σ 2

 ii. Var Xn = , (5.2)
n

So the variance of the sample mean is a biased estimate of the population 

variance. But the variance of the sample mean is an unbiased estimate of 

the population variance divided by n.

 iii. E ( )S2 2= σ , (5.3)

 iv. E( )S ≤σ , (5.4)

 v. S n2 2→ →σ , as ∞, withprobability 1. (5.5)

Proof:

 i. Since the random variables are independent and identically distributed ran-

dom variables (iid), we have:

 

Let X be a random variable representing a random sample of size n denoted by 

X1 2, ,X X, n, from a population; that is, X1 2, ,X X, n are n identically independent 

random variables. Also, let Xn represent the mean of the random sample X1 2, ,X X, n.  

We further let S2 denote the variance of this random sample. Thus, we are consider-

ing a sample mean as a random variable with its own distribution. Hence, it has its 

own properties such as the mean and variance. We summarize some of these proper-

ties in the following theorem.

Let X1 2, ,X X, n be a random sample of size n from a population with mean Xn and 

variance S2. We also suppose the population has a mean and finite variance denoted 

by μ and σ 2, respectively. Then,

⎞
E ( )

⎛ 1 1
n k⎜ ∑ ∑

n n

⎟ = =E x( ) 1
X E= x k ⎣⎡E x( )1 2+ E x( )+ + E x(

n
n )⎦⎤ 

⎝ n
k 1 1⎠ n
= =k

1 1= +( ) 1μ μ + + μ = ⋅nμ = μ.
n nn
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We might look at the sample mean approaching the population mean from 

a different viewpoint. 

 ii. To prove (5.2), again, since the random variables are iid, we have:

 

 iii. To prove (5.3), we note that not only are the random variables iid, but also 

if X is a random variable from a general population with mean X, from a 

property of variance in Chapter 4, we have:

 σ ∑
n

2 2 1
( )X E= −( )X μ2 and S2 = (X x 2

.
n −1

k −  

k=1

)

Hence,

 

.2 2
k∑

n

( )2 ( )
n

x 2 2
k kx ∑

n n n

− = x − 2 2xk x + x = x2 2nx x nx x
k 1 k 1

∑ k k− + = − nx
= = k=1

∑
k=1

∑
k=1

 

Thus,

 

1 ⎡ ( ) ⎛ 2 ⎞ 1= 2 2 σ ⎤
⎢n nσ μ+ − + μ2

⎜ ⎟ ⎥ = ⎡( 1n −⎣ ) ⎤ =⎦n −1 ⎣ ⎝ n n⎠ ⎦ −1
.2 2σ σ

 
n n

2 1 ∑ ∑⎤ ⎛ σ 2

E ( ) ⎡ ⎡ ⎞ ⎤
S = E x⎢ ( )k 2 1− x ⎥ = ⎢ 2 2 2

n −1 1
(σ μ+ −) n + μ ⎥⎜ ⎟

⎣⎢ n
k 1

−
= =⎥⎦ ⎢ n ⎠⎣ k 1

⎝ ⎦⎥

 iv. Proof of (5.4) is left as an exercise. 

 v. To prove (5.5), we use the strong law of large numbers stated above. From 

the definition of the sample variance, we have:

 

n
n

S2 21= ∑ x − x 2 2n
k = ⎡ − [ (⎣E X( ) E X)]2 ⎤ . 

n −1 1n n
k 1

− −1 ⎦
=

V ( )
⎛ n n

1 1⎞
ar Xn k= Var ⎜ x ⎟ = Var ( )x

⎝ n∑ ∑
⎠ n2 k

k= =1 k 1

1= +
2 ⎡⎣Var ( )x x1 2Var ( )+ + Var ( )x

n
n ⎤⎦  

1 1( )
2

= +σ σ2 2 + 2 σ
n 2

n n2
+σ =

2
⋅ σ = .

n
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Now, with probability 1, E ( )X 2 2→ +(σ μ2 ) as n → ∞ and [ (E X)]2 2→ μ  as n → ∞.

Note 5.4

Based on (5.2), the variance of the sample mean, S2, decreases as the sample size, 

n, increases.

Going back to (5.1), one might ask the following question: With a random sam-

ple of size n, how close the population mean, without knowing the distribution of 

the random variable X representing it, could be to the sample mean? We answer 

this question using Chebyshev’s inequality, which we have seen before defined as 

σ 2

P X( )− ≥μ ∈ ≤ , .∀ ∈ +
2 ∈∈

Definition 5.3

The standard deviation of the sample mean, denoted by SE(X), is called the stan-
dard error of the mean, that is,

 ( ) σ
SE Xn = . (5.6)

n

It is a commonly used index of the error involved in estimating a population mean 

based on the information from a random sample of size n. 

Note 5.5

Usually, it is unlikely for a value of a random variable to be more than two stan-

dard deviations away from the mean. This is particularly true when the random 

variable is almost normal. This is the case of the sample mean when the sample 

size is large. That gives us assurance that the sample mean is about ±2 standard 

error (SE) away from the population mean.

Note 5.6

Due to the square root of the sample size in the denominator of the SE, when the 

sample size increases, the SE will decrease. For instance, if the sample size qua-

druples, the SE will be cut in half.

Example 5.4

A very destructive Hurricane Katrina originated over the Bahamas on August 23, 
2005, as Category 5 hurricane over the warm waters of the Gulf of Mexico and 
made its first landfall in the United States of America on Florida and Louisiana. 
However, it weakened to Category 5 hurricane and made a second landfall on 
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August 29, 2005, over Southeastern Louisiana and Mississippi causing catastrophic 
and devastating fatal and financial damages, partially as a result of fatal engineer-
ing flaws in the flood protection system known as levees around the city of New 
Orleans. The total property damage was estimated as $125 billion. The damages 
included oil spills estimated over 10,000 gallons (38,000 L). The oil spills, in gal-
lons, reported by nine company’s locations are as follows:

991,000; 3,780,000; 13,440; 819,000; 53,000; 1,050,000; 25,000; 461,000; 13,000.

We want to find the estimate of the mean and SE of all oil spills as a result of 
Hurricane Katrina in August 2005.

Answer

From Equation (5.1), the mean of oil spill is X , that is,

991,000 + +3,780,000 13,440 + 819,000 + 53,000 +1,050,000 + 25,000 + 461,000 +13,000
X =

9

 7,205,440= ≈ 800,604.
9

σ 2

From Theorems 5.1 and (5.2), the variance of mean of oil spills is , and hence, 
n

σthe standard deviation of the sample mean is . Using Minitab 18, we have the 
nfollowing information:

σTherefore, the standard deviation of the sample mean is = 399,502. That is, 
nthe SE of X  is 399,502 gallons.

Example 5.5

It is well known that blood sugar (glucose) monitoring is the main tool to check 
one’s diabetes control. If the sugar level goes too low, one can lose the ability to 
think and function normally. On the other hand, if the level goes too high and stay 
high, it can cause damage or complications to the body. A1C is a tool for blood 
test that tells us what the blood sugar levels have been over the last two to three 
months. However, a blood sugar meter tells us what the blood sugar level is at the 
moment of reading. It is important for the blood sugar levels to stay in a healthy 
range. There are other devices like GluCall to measure the blood sugar level in 
a body. Although the National Institute for Clinical Excellence (NICE) has deter-
mined the standard glucose ranges, each individual’s target range is supposed to 
be agreed by their doctor or diabetic consultant. The NICE recommended that the 
target blood glucose level ranges are as follows:

Descriptive Statistics

N Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

9 800,604 399,502 1,198,506 13,000 19,220 461,000 1,020,500 3,780,000
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Now, we consider 30 adult persons with type 1 diabetes. Each individual gets 
the reading of his/her blood sugar level on a morning day in a certain week after 
waking up. The following are the readings:

We want to find the estimate of the mean and SE of all of these readings so that 
a decision can be made nationwide.

Answer

Here again, we use Minitab18 to get general information on the given data set.

Thus, from the Minitab results and (5.1), we have: 

 μ = =X30 6.533 

and from the Minitab results and (5.6), we have:

 ( ) 1.592 1.592
STD X X30 = =SE( )30 = ≈ 0.291. 

30 5.477

Example 5.6

Consider a random variable X representing a population with a mean of 20 and 
a variance of 144. We choose a sample of size 225 from this population. What is 
the probability that the

 i. Sample mean is <18?
 ii. Total result of all 225 observations is not <5,000?

At Least 90 
Target Levels Before Minutes after Meals 
by Type Upon Waking Meals (Preprandial) (Postprandial)

Nondiabetic   4.0–5.9 mmol/L under 7.8 mmol/L

Type 2 diabetes   4–7 mmol/L under 8.5 mmol/L

Type 1 diabetes 5–7 mmol/L 4–7 mmol/L 5–9 mmol/L

Children w/ type 4–7 mmol/L 4–7 mmol/L 5–9 mmol/L

1 diabetes

6 6 5 8 6 4 9 6 5 7

5 5 5 7 8 9 5 4 6 8

7 7 5 9 9 8 5 6 7 9

Descriptive Statistics

N Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

30 6.533 0.291 1.592 4.000 5.000 6.000 8.000 9.000
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Answer

From the problem, it is given that n = =225, μ σ20, 2 = 144, σ = 12, and T = 5,000.

 i. The first question is to find P X( )< 18 .

 

⎛ ⎞

( ) ⎜ 18 − 20 ⎟
P X < =18 P ⎜ z < P(z 2.5) 0.0062.

12 ⎟ = < − =  
⎜ ⎟⎝ 225 ⎠

 ii. The second question is to find 1− <P T( 4,950).

 
⎛ ⎞

P X( ) 5,000 − (225)(20)< =5,000 P ⎜ z < ( ) ⎟ = <P(z 2.78) = 0.9973. 
⎜⎝ 225 (12) ⎟⎠

Thus,

 P X( )≥ =5,000 1− 0.9973 = 0.0027. 

Example 5.7

Suppose we want to estimate the usage of Internet activities. The following infor-
mation is in a recent report at https://www.att.com/esupport/data-calculator/
index.jsp regarding the amount of data used in an Internet activity (estimates 
based on typical file sizes; approximately 1 MB = 1,000 KB; 1 GB = 1,000 MB; 1 
TB = 1,000 GB):

From (5.5), we see that S2, calculated on a sample, is an unbiased estimate of 
the variance of the population from which the sample was drawn. In other words, 
the calculation from a statistical sample of an estimated value of the variance (and, 
hence, standard deviation, a measure of statistical dispersion) of a population of 
data points is such that the expected value of the calculation equals the true value. 
We will discuss this concept in more detail later.

1 email (no attachments) 20 KB
1 email (with standard attachments) 300 KB
1 min. of surfing the web 250 KB (15 MB/h)

1 song downloaded 4 MB
1 photo upload to social media 5 MB
1 minute of streaming standard-definition video 11.7 MB (700 MB/h)

1 minute of streaming high-definition video 41.7 MB (2,500 MB/h)

1 minute of streaming 4K video 97.5 MB (5,850 MB/h)

1 min. of online games 200 KB (12 MB/h)

https://www.att.com
https://www.att.com
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Ignoring the unit of each activity and considering MB as the units used, answer 
the following questions:

 1. Using a mathematical software such as Excel, Minitab, or MATLAB, 
find the

 i. Mean,
ii. Standard deviation,
iii. Mean standard error (SE), 
iv. Minimum, 
v. Maximum, 

vi. Range, 
vii. First quartile, 
viii. Third quartile,
ix. Median.

 
 
 
 
 
 
 
 

 2. Display the data by histogram.
 3. Find the probability that the sample mean of the usage of the Internet is >20.

Answer

Using Minitab 18, to answer questions 1(i) through 1(viii) as (Figure 5.1)

 i. Mean = 17.9,
ii. Standard deviation = 32.7,
iii. Mean standard error (SE) = 10.9, 
iv. Minimum = 0 (i.e., rounding 0.02), 
v. Maximum = 97.5, 

vi. Range = 97.5 (rounded),
vii. First quartile = 0.2,

 
 
 
 
 
 

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

MB Usage 9 0 17.9 10.9 32.7 0.0 0.2 4.0 26.7 97.5

80400-40

6

5

4

3

2

1

0

Mean 17.85
StDev 32.70
N 9

MB Usage

Fr
eq

ue
nc

y

Histogram (with Normal Curve) of MB Usage

FIGURE 5.1 Display of Internet use, Example 5.13.



365Inferential Statistics

 viii. Third quartile = 26.7,
 ix. Median = 4.0.

 4. Histogram display is shown in Figure 5.1.
 5. The third question is to find P X > 20 .( )

 ⎛ ⎞
⎜ 20 17.9

P( ) − ⎟
X P> =20 1− ⎜ z < 1 P 0.1927 1 0.5764

32.7 ⎟ = − ( )z < = − = 0.4236.

⎜ ⎟⎝ 9 ⎠

 

In Chapter 4, we briefly mentioned “proportion”. We now discuss this term in 
more detail. Although often a mathematical proportion is taken as an equality of 
two ratios, in statistics the proportion is a percentage of a total in which a certain 
characteristic is observed. Thus, we start with the definition of this term.

Definition 5.4

 
x

p = . (5.7)
N

That is, a total of Np  elements have the characteristic x and N p( )1−   do not.

Example 5.8 

Suppose an electronic manufacturer has developed a chip to improve the qual-
ity of the current television products. The new chip has shown to be effective. 
To see the proportion of the improved televisions out of new 1,000 televisions, a 
random sample has been chosen and each element has been tested. The tested 
items show that seven out of each ten items in the sample are improved televi-

700
sions. Thus, the proportion of the improved televisions is p = = 0.7. Clearly, 

1,000

there are Np = =(1,000)(0.7) 700 improved items and N P(1− =) (1,000)(0.3) = 300 
unimproved items.

 
⎧⎪ 1, if kth element of the sample has the feature,

Xk = ⎨  (5.8)
0, otherwise.⎩⎪

Now, let X represent the total number of elements with the feature, that is,

Let us now consider choosing a random sample of size n from a finite popula-
tion of size N. Let us also define a random variable Xk , 1k n= ,2, , , representing 
the elements xk , 1k n= ,2, , , of the sample with a specific feature. In other words, 
X is a binary random variable described as follows: For k n= 1,2, , .

Let us now consider a finite population of size N. There are elements in this popula-

tion with a certain characteristic of our interest, say x. We denote the proportion 

of the population with this characteristic by p. Then, of the total population, the 

proportion will be 
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by (5.8). Thus,

 = =
∑ n

Xk

p k =1 X. (5.10)
n

Note 5.7

From (5.10), we see that the proportion of a sample having a certain feature is 

the sample mean. In other words,

 

and

 

 
⎧⎪ 1, if the kth trial is a success,

Xk = ⎨  (5.13)
k

⎩⎪
0, if the th trial is a failure.

 E ( )Xk k= np and Var( )X np(1 p). = −

Thus, X being the number of success in a sample of size n from a population with 
Xmean p and variance p p(1− ),  can be thought of as the mean of the sample. 
n

Therefore, from the central limit theorem, when n is large (n ≥ 30, for instance, or 
X − p X n− pboth np n> −5 and p(1 P) > 5), the expression n  or  will approxi-
p p(1− ) np(1− p)

n
mately possess a standard normal probability density function (pdf).

n

X = +X X1 2 + + Xk k=∑X , (5.9)
k =1

P X( ) N
k = =1 ,

p = p k = 1,2, ,n, (5.11)
N

P X( )k k= =0 1− P X( = 1) = 1− p, k = 1,2, ,n. (5.12)

From (5.11) and (5.12), it is found that each Xk , 1k n= ,2, , , has either 1 or 0 

with a probability of p or 1− p, respectively.

Let us consider (5.8) through (5.11) from a different viewpoint. So, we consider a ran-
dom sample of size n in which member points have or don’t have a certain feature. 
This is like considering the members as male or female and our interest is the female 
members. Thus, X  is the proportion of elements having the feature. Hence, we can 
write the random variable X in terms of X  as X = nX . Thus, from (5.8) through (5.11), 
we can see that X is a binomial random variable with parameters n and p. In this 
case, X will be the random variable representing the number of success in n inde-
pendent Bernoulli trials (i.e., (5.9)) with the probability of success in each trial as p. 
Thus, (5.8) for k n= 1,2, ,  can be rewritten as follows: For k n= 1,2, ,

Hence, as we have seen in Chapter 4 for a binomial random variable, for 
k n= 1,2, , ,
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Example 5.9

Suppose a manufacture producing cellphone covers produces 55% of its products 
for a particular location in pink, aiming at female customers in that location. To 
test the market, the marketing department selects a random sample of size 300 
ladies from that location. We want to find the probability that more than 60% of 
the sample elements favor the color pink for their cellphone covers.

Answer

Let X represent the number of those females in the sample who favor the pink 
color for their cellphone covers. As discussed above, X will be a binomial random 
variable with parameters n = 300 and p = 0.55. We are looking for P( )X > 180 . 
Thus, the standard normal random variable in this case will be:

 X n− p X − (300)(0.55) −165= = . 
np(1− p) (300)(0.55)(0.44) 8.521

X

Note 5.8

To approximate a binomial random variable X by a standard normal distribu-

tion, since binomial is discrete and normal is continuous, it is customary to 

create an interval such as

 P X( = ≈k) P(k − 0.5 ≤ X ≤ k + 0.5) (5.14)

to approximate a discrete probability with a continuous one. This relationship 

(i.e., (5.14)) is referred to as a continuity correction.

Hence, using MATLAB 2019a, we will have the following:

 

⎛ X −165 179.5−165⎞P(X > =180) P X( >179.5) = P ⎜ > ⎟⎝ 8.521 8.521 ⎠  

= >P Z( 1.702) = 0.0444.

That is, the chance that more than 180 females purchase the pink color is more 
than 40%. In fact, had we not approximated the probability with normal and gone 
with actual binomial, we would gotten 

 P( )X B> =180 (180,300,0.55) = 0.0356. 

That is, the exact probability of the event under question is about 3.56%.

Definition 5.5

As we have already seen, an unbiased point estimate of a parameter μ is the most 

plausible value of μ. The statistic mean, x , that estimates this parameter is called the 

point estimator of μ and is denoted by μ̂ (reads as “mu hat”).
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Definition 5.6

The absolute value of the difference between the population mean and the sample 

mean, that is, μ − x , is referred to as the sampling error. A probability statement 

about the magnitude of the sampling error is incorporated in the interval estimation.

 i. How close should an estimate be to the parameter in question? In other 

words, what should the properties of an estimator be?

 ii. How one would know that there is not a better estimator than the one 

chosen? 

The following definition answers question (i).

Definition 5.7

A good estimator (a statistic) is the one that is unbiased (i.e., neither  underes-
timated nor overestimated), that is, the one that on the average is equal to the 
parameter to be estimated, and its variance is as small as possible, that is, with min-
imum variance. The bias of an estimator is the difference between the expected 

value of the estimator and the parameter.

In other words, if we are to select an estimator for the population parameter, we 

select an unbiased estimator. When there is more than one unbiased estimator, we 

select the one with the minimum variance. This estimator is referred to as the mini-
mum variance unbiased estimator (MVUE).

As mentioned earlier, the main idea of sampling, in addition to finding informa-

tion about the population from which the sample is taken from, which is the most 

fundamental idea, is estimating  the population mean. We saw in Chapter 4 that 

E ( )X = μ. This suggests that X is an estimator of μ, that is, μ̂. In other words, we can 

point-estimate the population mean by the sample mean. However, we have to accept 

that in the estimation process, some errors may occur. This is due to the fact that it 

is the entire population that is used for the calculation of the desired statistics, rather 

a subset of it; that is, a sample has been used to point-estimate the desired param-

eters. The error is referred to as the bias of the estimator, μ̂, denoted by B( )μ̂ ,  

and is defined as

 B( )μ μˆ ˆ= − μ. (5.15)

From Definition 5.5, if the pdf is known but the parameter, μ, is unknown, first 

take a random sample n times independently. Then, using the information obtained 

from the samples taken, try to estimate (guess) the value of the parameter μ. This 

means that we want to find a number μ̂ as a function of observations ( )x x1 2, , , xn  for 

instance, μ̂ = G x( )1 2, ,x , xn . The function G is a statistic estimating μ (and, hence, 

a random variable with a pdf or probability mass function (pmf) of its own), and it is 

referred to as a point estimator for μ. The idea is to calculate μ̂ = G x( )1 2, ,x , xn  as 

close to the actual value of the parameter μ as possible. But how close is a question 

to be answered. Here are questions:
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We also saw in Chapter 4 that S n2 /  is an unbiased estimate of the variance of the 

sampling distribution of mean for a random sample of size n, and the square root of 

this quantity is called the standard error of the mean. It is a commonly used index 

of the error involved in estimating a population mean based on the information in a 

random sample of size n.

Let E( )X = μ be the expected value of X. We want to investigate the biasedness 

or unbiasedness of the sample mean, Xn, and sample variance, S2. It is easy to see 

that

 
⎛ 1 1n n

E ⎜ X E X .⎝ n∑ ∑⎞ ⎛ ⎞
i ⎟ =

i 1 1⎠ n ⎝ i  (5.16)
= =i ⎠  

Hence, from (5.15) and (5.16), we have:

 ( ) 1
E Xn = =( )nμ μ. (5.17)

n
 

Equation (5.17) shows that the sample mean is unbiased. In other words, the sample 

mean is centered about the actual mean.

Now let us denote the sample variance S2 by Var Xn  and the population variance 

by σ 2
X. Then,

( )

 ( ) ⎛ 1 1⎞ σ 2

Var Xn i= Var ⎜ ∑ ∑n ⎛ n ⎞X ⎟ =
2

Var X = X

⎝ i .⎝ n i ⎠ n i n2
  (5.18)

= =1 1 ⎠

Equation (5.18) shows that the sample variance is not unbiased.

Note 5.9

For the sake of comparative studies, the estimation procedures may be extended 

to more than one population (often, 2). For instance, a study may be to compare 

GPA (grade point average) of a group of students during their sophomore and 

junior years to see if there are any changes and if so what the factors may be. This 

is to look into the general student populations of sophomore and junior. Hence, 

two independent random samples will be selected, one from the population of 

sophomore and the other from the population of juniors, with means x1 and x2,  

respectively. Hence, the difference between the two means may be used as a 

point estimator for the two means. It may be a biased or unbiased estimator, as it 

should be investigated. However, since, E ( )X1 2− =X E X( 1) − E X( 2 ) = μ μ1 − 2,  

X1 2− X  is an unbiased estimator of μ1 2− μ .

Definition 5.8

For a population, let μ and μ̂ be a parameter and an estimator of it, respectively. 

Then, the mean square error of μ̂, denoted by MSE(μ̂), is defined as
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We remind the reader that the last term of (5.19) is the square of the bias. Thus, if 

the bias is zero, such as the sample mean that is unbiased estimator of the population 

mean, that is, μ̂ = E X( ), then we can have the following definition.

MSE ( )μ μ
2

ˆ = +Var ( )ˆ ˆ⎡E ( )μ − μ⎤⎣ ⎦ . (5.19)

Definition 5.9

The variance of the sample mean, Var ( )X , is the mean square error of the sample 
mean, which is a measure of the quality of the estimator.

Note 5.10

From Definitions (5.4) and (5.2), for a sample of size n, we have:

 ( ) σ 2

MSE X = , (5.20)
n

where σ 2 is the population variance.

Note 5.11

The case MSE( )X = 0 means that X is a perfect estimator of μ.

Example 5.10

Answer

From what is given, and from Chapter 4, we know that a = 0, b = 16, and

 b a+ 16 + 0μx E= =( )X = = 8 
2 2

and

 
2b a 2

2 ( )− (16 − 0)σ X = = = 21.33. 
12 12

Example 5.11

Consider a binomial random variable X with parameters n and p, that is, sample 
Xof size n and unknown probability of success in each trial p. Choose p̂ =  as an 
nestimator of p.

Consider 16 uniformly iid random variables X1 2, ,X X, 16 distributed on the open 
interval [0,16). Let X represent this sample. What is the mean and variance of X?
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 i. Show that p̂ is unbiased, 

Answer

 ii. Find its MSE.

 i. As we have already shown before, E(X) = =np and Var(X) np(1 p). 
Thus, we have:

−

 .
⎛ X ⎞ E X np

E(p Eˆ) =
( )

⎜ ⎟ = = = p  
⎝ n ⎠ n n

 Thus, 

 E ( )p pˆ − = − =p p 0. 

Hence, p̂ is unbiased.

( ) ⎛ X ⎞ Var(X) np(1− P) p P(1− ) ii. Var p̂ = Var ⎜ ⎟ = =
n n2 2

= .⎝ ⎠ n n

Thus,

 ( ) p p(1− ) p p(1− )
MSE p̂ = +0 = . 

n n

This result could have been anticipated from (5.19). 

Definition 5.10

If an estimate of a parameter approaches the parameter with an arbitrary accu-

racy when the sample size increases without bound, the estimate is referred to as 

consistent. 

Example 5.12

Consider a sample of size n and an unknown parameter α  with an estimator α . 
Then, for an arbitrary ∈> 0, α  is consistent if:

 P{ }α αˆ − <∈ →1, as → ∞.  n

Example 5.13

Show that the sample mean is a consistent estimator of the population mean.

Answer

 ∞Var(X nn ) → →0, as . 

Let Xk , 1k = ,2, ,n represent the sample points of a sample of size n with Xn as its 
sample mean. To answer the question, it suffices to show that the variance of Xn 
is 0. But this is easy since Var( )X n2

n = σ , where σ 2 is the population variance. 
Hence, 
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Definition 5.11

If an estimate of a parameter approaches the parameter without much wide fluctua-

tions, the estimate is referred to as efficient. In other words, an estimator is efficient 

if its variance is minimal. Let α  be an unknown parameter of a population. Let also 

α̂ j be different estimators of α , j  being finite. Then, an estimator α̂  is efficient if 

among all α̂ j, we have:

 Var(α̂ ) = min Var ˆ k
j

( ). α

Let us now discuss the median of a sample. However, before doing that, we pause 

and go back to order statistics that we discussed in Chapter 4 to study it a bit more 

in detail so that we can analyze the sample median. The use of order statistics 

has increased in recent years, particularly, in nonparametric that we will study in 

Chapter 6. The difference between the largest data points and the smallest data 

points is referred to as the sample range.

Now, consider the event of the rth order statistic Yr be less than or equal to y, that 

is, Yr ≤ y. This event can occur if and only if at least r observations out of n are less 

than or equal to y. The order statistic of the sample is, in fact, a set of n Bernoulli 

trials with probability of success in each trial as F yX ( ). Thus, for the event Yr, there 

should be at least r successes. Hence, we are dealing with a binomial pmf. Thus, 

denoting the pmf of Yr as G yr r( ) = ≤P ( )Y y , we will have the following:

 

n

G y( ) = ≤P ( )Y y =∑( )n [ ]F ( )y
j [1− F ( )y ]n j−

r r j X X . (5.21)

j r=

Or

 ∑
n−1

( ) ( ) n −
G yr r= ≤P Y y = ( )j [FX ( )y ] j [ ]1− FX ( )y

n j + [FX ( )y ]n. (5.22)

j r=

Taking the derivative of (5.22) with respect to y, we will have the pdf of Y, denoted 

by gr(y), as follows:

 

+ −∑
n−1

( )n F y
j

n j) 1 F y
1 1 (5

j [ ]X ( ) ( [ − n j− − n− .23)
X ( )] [− fX ( )y ] + n[ ]FX (y f) (X y).

j r=

−

= ≤( ) ∑
n 1

g yr rP Y y = ( )n
j j fX Xy [ ]− F y

n j−
( ) ( ) 1 ( )

j r=   

To develop the distribution of order statistic, consider a sample of size n with 

elements as n independent random variables X1 2, ,X X, n from a continuous distri-

bution with cumulative distribution function (cdf) and pdf, F xX ( ) and fX ( )x , respec-

tively, such that, for constants a and b, a < <x b with the possibility of a = −∞ and 

b = +∞, 0 (< <F xX ) 1, F xX ( ) = 0, and F bX ( ) = 1. Let Y1 2< <Y Yn be the order statis-

tics for this sample. Each Yi of Y1 2< <Y Yn is interpreted as follows: Y1 is the small-

est of X1 2, ,X X, n; Y2 is the second smallest of X1 2, ,X X, n; … and Yn is the largest 

of X1 2, ,X X, n.
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Expanding the combinations, we have the following:

 ( n n n!
j ) (!

j = and n
j )(n j− =) . (5.24)

( 1j n− −)!( j)! ( )j n!( − −j 1)!

Thus, from (5.23) and (5.24), for a < <y b, only the first term of the first sum in (5.23) 

has a nonzero value as follows:

 
n!

g y( )
r− −

r X= [ ]F y( )
1 [1− F y( )]n r

X f y
( 1r n)!( r)

X ( ). (5.25)
− − !

Note 5.12

It is left as an exercise to show that the rest of the terms of (5.23) add up to zero.

Note 5.13

It is left as an exercise to show that

 1. The pdf of the smallest order statistic is

 
−

g y
1

1( ) = −n[ ]1 FX ( )y
n

fX (y), a < y < b. (5.26)

 2. The pdf of the largest order statistic is

 g y( ) n[F ( )y ]n 1
n X= <− fX ( )y , a y < b. (5.27)

Note 5.14

Using the definition of sample median, in terms of ordered statistics, which is 

denoted by X , we can redefine it as follows:

 

⎧Yn+1, n is odd,⎪
2X

⎪= ⎨ + . (5.28)Yn Yn⎪ +1
2 2

⎪ , n is even
⎩ 2

Example 5.14

Let us consider a random sample of size 6 with elements as X1, ,X X2 3 4, X , X5, X6 
with pdf as:

 f ( )x x3 2
X = <, 0 x < 1. (5.29)
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Also, let Y1 < <Y Y2 3 4< Y < Y5 < Y6 be the order statistics associated with this ran-
dom sample. Find

 i. The pdf of Y4 ,
 1 3ii. The probability that the value of Y4 will be between  and .

4 4

Answer

First, we see from (5.29) that the cdf is:

 = =∫
x

F x( ) 3t2 3
X dt x , 0 < x < 1. (5.30)

0

 i. Now, we see from the order statistics that Y4 is the fourth smallest among 
the six observations. From (5.25), (5.29), and (5.30), we have:

 6! 4 1 6 4
g y4 3= ( ) −

y ⎡ − y3 ⎤
− ( y2 9) 3 6⋅ !

( ) 1 3 = y ⎡
2

y  ⎣ 1− 3 ⎤ ⋅⎦ ⎣ ⎦ y2

(4 − −1)!(6 4)! 3!2!
,

or

 = −
2

g y 11
4 ( ) 180y ⎡1 y3 ⎤⎣ ⎦ , 0 < <y 1. 

3

⎛ 1 3 ⎞
3 ⎛ 12 2 15 18 ⎞ ⎤ 4

2

 ii.  p Y⎜ < <
4

11 3 y y y
⎝ 4

4 ⎟ = −⎠ ∫ 180y ⎡ y ⎤ = − +
4 1 ⎣1 ⎦ 180 ⎜ ⎥

4
12 15 18 ⎟⎝ ⎠ ⎦ 1

4

⎡ 1 ⎛ 3 ⎞
12

2 ⎛ 3 ⎞
15

1 ⎛ 3 ⎞
18

= 180 ⎢ ⎜ ⎟ − ⎜ ⎟ + ⎜ ⎟
12 ⎝ 4 ⎠ 15 ⎝ 4 ⎠ 18 ⎝ 4 ⎠⎣

⎛ 1 1
12

2 1 ⎞
15

1 ⎛ 1 ⎤⎛ ⎞ ⎛ ⎞
18 ⎞

− ⎜ ⎜ ⎟ − ⎜ ⎟ + ⎜ ⎟
⎝ 12 ⎝ 4 ⎠ 15 ⎝ 4 ⎠ ⎝ 4 ⎠ ⎟ ⎥

18 ⎠ ⎦⎥

= 0.2108.

Example 5.15

Let us consider a random sample of size 5 with elements as X1, ,X X2 3 4,X ,X5 with 
pdf and cdf as in Example 5.14 as (5.30):

 f ( )x x3 2 3
X X= =and F ( )x x , 0 < x < 1. (5.31)

Also, let Y1 < <Y Y2 3 4< Y < Y5 be the order statistics associated with this random 
sample. Find

 i. The variance of mean,
ii. The pdf of median,
iii. The variance of median.
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Answer

 i. From (5.31), the mean and variance of the population, denoted by μ  and 
σ 2, are calculated as follows:

 μ ∫
1

2 3= =E X( ) x ⋅3x dx = . 
0 4

 ( ) ∫
1

2 2 3
E X = ⋅x 3x2 dx = . 

0 5

 σ μ2 2 3 9 3= =Var(X E) ( )x − 2 = − = . 
5 16 80

Hence, 

 ( ) σ 2 3
Var X = = = 0.0075. 

n 400

 ii. Now, from (5.28), since n = 5, which is odd, the median is:

 X = =Y Y5 1+ 3.  
2

Hence, the pdf of the median is:

 5! 3 1

3( ) = 3 ⎡1 3− 3 ⎤
5 3

g y ⎣ y
(3 − −1)!(5 3)!

( ) − −
y ⎦ ( 3 5 2

y2 6) ⋅= y ⎡1− y3 ⎤ ⋅ y2  ⎣ ⎦2!2!
,

or

 = −
2

g y 8 3
3( ) 90y ⎡⎣1 y ⎤⎦ , 0 < <y 1. 

 iii. The variance of the median is calculated as follows:

 

 

 

Note 5.15

As we see in the example above, Var X X< Var  . We leave it as an exercise to 

show that this property may be generalized through examples and estimation, 

for both cases of median (odd and even n). Hence, the mean is a better efficient 

estimator for population mean than the median.

( )( )

( ) ∫
1

2 81
E X y= ⋅90y8 3⎡1− y ⎤ dy = . 

0
⎣ ⎦ 104

E X( )
1 8102 2= ⋅∫ y 90y8 ⎡⎣1− y3 ⎤

2

⎦ dy = . 
0 1,309

Var ( ) 810 81
2

X ⎛ ⎞= − ⎜ ⎟ = 0.25. 
1,309 ⎝ 104 ⎠
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Example 5.16

 
x1 2= 35, x x= 67, 3 = = =89, x4 94, x5 38,

x6 7= =49, x x76, 8 = 46, x9 = 58, x10 90.=
 

We order these values from small to large and rewrite them as Y1, Y2, …, Y10 such 
that:

 
y y1 2= 35 < = <38 y3 = 46 < y4 < <49 y5 = 58

 
y y6 7= <67 = 76 < y8 = 89 < y y9 < <90 10 = 94.

Hence, the sample median in this case, denoted by X , is:

 

The sample range, in this case, denoted by Ds, is: 

 D DS = −10 D1 = 94 − 35 = 59. 

There are various methods of point estimation. We discuss two of them here, 
namely, (i) maximum-likelihood estimator (MLE) and (ii) method of moments.

 (i) Maximum-likelihood estimator (MLE)
One of the most used methods of point estimation is the maximum-likelihood 

estimator, abbreviated as MLE. Among statisticians, the most popular method of 
finding out how unbiased an estimator may be is the MLE. This is particularly the 
case when the sample size is large. The MLE is a technique used for estimating the 
parameters of a given distribution, using some observed data. The MLE method 
lets us choose a value for the unknown parameter that most likely is the closest 
value to the observed data. 

Example 5.17

If a population is known to follow a normal distribution but the mean and vari-
ance are unknown, the MLE can be used to estimate them using a limited sample 
of the population, by finding particular values of the mean and variance so that the 
observation is the most likely result to have occurred.

Example 5.18

Let us consider students’ scores on a test in a statistics course as 35, 67, 89, 94, 38, 
49, 76, 46, 58, and 90. Now we write these ten observed values of ten indepen-
dent random values X1 2, ,X X, 10, as:

As another example, suppose we are to take a random sample X1 2, ,X X, n , where 
the Xj, j n= 1,2, , , are assumed to be normally distributed with mean μ  and 

Y Y
X 5 6+ 58 + 67 125= = = = 62.5. 

2 2 2
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 )=

 

 

standard deviation σ ; then among others, the aim may be to find a good estimate 
of μ , using the data points x1 2, , ,x xn  obtained from the random sample.

Thus, the MLE method obtains the parameter estimates by finding the param-
eter values that maximize the likelihood function that we will define below. The 
estimates obtained are called the maximum-likelihood estimates, which are also 
abbreviated as MLE.

So, suppose we have a set of data points and want to estimate an unknown 
parameter or a set of parameters from a population. Then, what the MLE does 
is choosing the estimate that explains the data best, with maximum probabil-
ity (likelihood). That is, when the sample size increases, the estimate converges 
faster toward the population parameter(s).  Generally speaking, the likelihood of 
a sample is the probability of getting that sample, given a specified probability dis-
tribution model. The likelihood function is a way to express that probability: The 
parameters that maximize the probability of getting that sample are the maximum-
likelihood estimators.

We now formally define MLE.  

Definition 5.12

Let us suppose that { }X X1 2, , , Xn  is a set of iid random variables with observed 

values { }x x1 2, , , xn  taken from an unknown population distribution pmf or cdf with 

a pdf, say fX (Xj; α) depending upon a parameter α , where f is the model, X j is the set 

of random variables, and α  is the unknown parameter. For the maximum-likelihood 

function, we want to know what the most likely value for α  is, given the set of ran-

dom variables X j. The goal of the MLE is to maximize the likelihood function:

Often, the log-likelihood function

∑
n

In L f(α α) = In ( )x j  (5.33)

j=1

is easier to work with.

Definition 5.13

We generalize Definition 5.12 for n parameters as follows. Consider a random sample 

(random vector) X1 2, ,X X, n with x1 2, ,x x, n as the observed values of the random 

sample, with a joint pmf or pdf

f xX X1 2, , ,Xn 1, ,x2 , xn;α α1, 2 , ,αn , (5.34)( )

L f( )α α= =X X1 2, , ,Xn ( )x1, x2, , xn P(X1 = x1, X2 = x2, , Xn xn  

n

= ⋅f xX X( )1 2α αf x( ) f xX ( n α ) = ∏ f xX ( )j α . (5.32)

j−1
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Note 5.16

Here is a reason why the expression maximum likelihood is used rather than 

maximum probability: Although most people often use probability and likeli-

hood interchangeably, statisticians and probabilists distinguish between the two. 

The reason for the confusion is if two expressions of “likelihood L (parameter 1, 

parameter 2; data)” are the same as those of “probability P (parameter 1, param-

eter 2; data)”. The answer may be no because one is asking about the data and the 

other is asking about the parameter values. This is why the method is called the 

maximum likelihood and not the maximum probability.

Note 5.17

The question may arise if a maximum-likelihood estimation can always be solved 

in an exact manner. The answer is no. It’s more likely that in a real-world scenario, 

the derivative of the log-likelihood function is still analytically intractable (i.e., it 

is way too hard or impossible to differentiate the function manually). Therefore, 

iterative methods like  expectation–maximization (EM) algorithms  are used to 

find numerical solutions for the parameter estimates. 

An EM algorithm is an iterative method to find the MLE or maximum a pos-

teriori (MAP) estimates of parameters in statistical models, where the model 

depends on unobserved latent variables. The EM iteration alternates between per-

forming an expectation E-step, which creates a function for the expectation of 

the log-likelihood evaluated using the current estimate for the parameters, and a 

maximization M-step, which computes the parameters maximizing the expected 

log-likelihood found on the E-step.

Example 5.19

We present this example to show the algorithmic method of finding the MLE. Let 
us consider a Bernoulli random variable X with p as the probability of success and 
1 − p as the probability of failure. The probability p, as a population parameter, can 
be thought of as a proportion of an element in a population with a special feature, 
say with higher education, for example. What is the MLE for p?

depending on n unknown parameters. Then, the function f, defined in (5.33), is referred 

to as the likelihood function. The value of each one of the parameters α1 2, ,α α,αn 

that maximizes the likelihood function f, defined in (5.33), denoted by α̂1 2,α αˆ , ,α̂n, 

respectively, is referred to as the maximum-likelihood estimate of each parameter 

α1 2, ,α α, n, respectively, that each is abbreviated as MLE. If each random vari-

able X1 2, ,X X, n is taken instead of x1 2, ,x x, n, then each value α̂1 2,α αˆ , ,α̂n is 

referred to as the maximum-likelihood estimator of each α1 2, ,α α,
(

n, respec-

tively. In summary, the goal of MLE is to find a point estimator f X X1 2, , , Xn ) 
such that  f ( )x x1 2, , , xn  is a “good” point estimate of α , where x1 2, ,x x, n aarree  
the observed values of the random sample.

)



379Inferential Statistics

Step 1. Identify pmf or cdf describing the population characteristics
Let us denote the success and failure by 1 and 0, respectively. The pmf of X, 

being a Bernoulli random variable with parameter p, will be:

 

Answer

f (x p) x x(1 p)1
X = − − , x = 0,1. (5.35)

Step 2. Choose a random sample and find the joint pmf or pdf

 

Relation (5.36) is the likelihood function we need. Let us denote this function by 
L( )p

Step 3. Write the likelihood function
. 

We now have to find the value of p that maximizes L( )p . Since the Bernoulli 
trials are independent, we will have:

 

)=

Step 4. Find the value of p that maximizes L( )p

To maximize L(p), as is the standard practice, we take the derivative of L(p) with 
respect to p and set it equal to zero. Hence,

 

⎛
∑

n ⎞dL( )p ⎡ ∑n
x j −1

j=1
⎤ ⎡ ⎛ ∑n ⎞⎜ n x− ⎟ ⎤

= ⎜ x p ⎝ j ⎠
j ⎟ ⎢ ⎥ ⎢(1− p) j=1 ⎥

dp ⎜⎝ j 1
⎟

= ⎠ ⎣ ⎦ ⎣⎢ ⎦⎥

⎛⎛ ∑n n ⎛ n ⎞⎜ − −1⎟
−

x
p n

j
⎞ n x

⎜
j=1

⎞ ⎡
−∑ ∑ ⎤

⎜ x j ⎟⎟ ⎢(1− p) 0⎝ jj=1 ⎠ ⎥ = ≤, 0 p ≤1.  (5.38)
⎝ ⎠ ⎜ ⎟⎝ j=1 ⎠ ⎣⎢ ⎥⎦

From (5.38), we will have:

 
n

⎡ n n

n
⎤

⎛ (1-p) p(n- )∑ x j 1 ⎛ ⎞ x x
− ⎜ n x− −

p pj ∑ j j1

(1− )⎝ j=1 ⎜
j=1

⎟⎠ ⎞ ⎢ ∑ ∑
⎟ ⎢

j= =1 1 ⎥
− j

⎥ = <0, 0 p <1.
⎝ ⎠ p 1−⎢ p ⎥

⎣ ⎦

Or

Now, choose a sample of size n and denote the random vector by X1 2, ,X X, n  
with observed values denoted by x1 2, , ,x xn , respectively. Hence, the joint pmf of 
X1 2, ,X X, n  with values x1 2, , ,x xn  will be as follows:

n ⎡ ∑n ⎤ ⎡ ⎛ n x∑n ⎞⎟ ⎤
P X( ) ⎜ −

1 1= = n n=
x

x , ,X j j
2 x2 ,X x =∏ px x(1− =p)1− j

1 ⎢(1 )
j

⎢ p j=
⎥ − p ⎝ j=1 ⎠ ⎥.

⎣ ⎦ ⎣⎢ ⎥⎦
  (5.36)

L p( ) = =fX X1 2, , ,Xn ( )X1,X2 ,...,Xn; p P(X1 = x1,X2 == x2 ,...,Xn xn

= f xX X1 2( )1 3; ;p f (x p) fXn (xn; p)  (5.37)

⎡ ∑n ⎛ n ⎞
x

p p
j ⎜ n x−

=
j ⎟

⎢
j=1

⎤ ⎡ ⎝ ∑ =
⎤

⎥ ⎢(1− ) j 1 ⎠ ⎥ , 0 ≤ ≤p 1.
⎣ ⎦ ⎣⎢ ⎦⎥
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Or

 ∑
n

x nj − =p 0, 
j=1

from which we find:

 = =
∑ n

x j

p j=1 x , (5.39)
n

where x  is the value of the sample mean.
Step 5. Calculate the MLE of parameter p

Relation (5.39) shows that the statistic sample mean is the MLE of p. Hence, 
denoting the MLE of p by p̂, we see that, for this case, 

 p Xˆ = . (5.40)

Note 5.18

At this point, we should verify that (5.29) indeed results in a maximum. This can 

be done by verifying that the second derivative of the log-likelihood with respect 

to p is negative. We leave it as an exercise to complete this verification.

Note 5.19

It is customary for the sake of ease of calculation to use the natural logarithm of 

the likelihood function for taking derivative. Hence, for Example 5.19, we would 

have to add ln L p( ) in Step 3 to obtain the following:

 
⎛ n ⎞ ⎛ ⎞

ln L p( ) = ⎜∑ ∑x j ⎟ ( )
n

ln p + −⎜ n x j ⎟ [ ]ln(1− <p) , 0 p <1. (5.41)
⎜⎝ j 1 1

⎟ ⎜⎠ ⎝ j
⎟

= = ⎠

Then,

 
⎛ ⎞ ⎛ ⎞n

d ln ( )
n

L p
= ⎜∑ ∑⎛ 1 1⎞ ⎛ − ⎞

x j ⎟ + −n x = <⎜ ⎟ ⎜ j ⎟ ⎜ ⎟ 0, 0 p < 1. (5.42)
dp ⎜ p 1

1 1
⎟ ⎝ − p

j
⎟ ⎝ ⎠ ⎜ ⎠⎝ = =⎠ ⎝ j ⎠

The other steps follow similarly. We leave it as an exercise to verify that the 

same end result will be obtained.
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Example 5.20

For the sake of quality control, a small company selects a random sample of ten 
staff members from total workers to test the effectiveness of the jobs they are per-
forming. The question is for what value of p (as the probability of success) a sample 
may most likely look like the one observed?

Answer

Now, let p denote the probability that the performance of the staff chosen is 
at the accepted effective ness level and 1 – p denote the probability if the perfor-
mance of the staff is not at the level of expectation. Symbolically, we have:

 p P= =(X j j1) and 1− p P= =(X 0), j = 1,2,...,10.  

Thus, the joint pmf of {X X1 2, ,...,X10} will be as follows:

 

fX X1 2, , . ,X10 ( )x1, x2 ,...,x10; p = −p p1 p p1− p p p1− p p p          
1 2 3 4 5 6 7 8 9 10

= −p p7 3(1 ) .  (5.43)

We now need to maximize the likelihood function found in (5.43) or, as we 
showed above, equivalently, its logarithm, that is,

 ln f xX X1 2, ,...,X10 ( )1,x2 ,..., x10; p = +7ln p 3ln(1− ). p

Hence,

 

Solving p from (5.44), we have:

 7 3− 7 1− 0 p 7+ = = →0 p = . (5.45)
p p1− p p(1− ) 10

The number p in (5.44) may be looked at as the ratio of number of success over 
the sample size in a binomial pmf created by repeated independent Bernoulli trial 

7with probability of success as p. Thus, p =  is the probability of observing the 
10

particular data in hand (10 data points) as large as possible.

The sample staff members are numbered, and it shows the job performances of 
staff members 3, 5, and 8 are below expectation. Let us denote the performance 
effectiveness and below effectiveness expected by 1 and 0, respectively. Then, the 
sample elements will transfer to the set {1,1,0,1,0,1,1,0,1,1}. If X is a random vari-
able representing the sample, then the elements of the sample may be denoted by 
{X X1 2, , ,X10}. Based on the effectiveness and noneffectiveness of performances, 
X will have two values 0 and 1.

d ln f xX X1 2, , ,X10 ( )1,x2 ,...,x10; p 7 3−= + = 0. (5.44)
dp p p1−
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Note 5.20

It should be noted that to begin solving the problem, we specified the location of 

noneffective performances as 2, 5, and 8. However, this is not necessary. This is 

because just knowing the number of nonefficient staff is sufficient; since if we 

were told that the number of nonefficient staff was 3, using the binomial pmf, 

we could find the probability of having exactly three nonefficient staff members 

among ten staff members, in total, as:

 p P 10 7= =( 3X ) = ( ) 7 3
3 p (1− p) = , 

10

which, indeed, is the relative frequency of the efficient staff members in 

the sample.

Example 5.21

Answer

 

Hence, the log-likelihood function will be:

n

l ( ) ( )
n

n ( ∑ ∑
n

L Pλ λ) = =ln X jx x j jlnλ − λ − ln( )x ! = lnλ (x j i) − nλ −∑ x ln( )x j ! .

j= =1 1j

∑
j=1

(5.47) 

Now, we go through the rest of the steps. We take the derivative of (5.47) and set 
it equal to 0 to find λ . Hence,

 d Lln (λ)
n

1= −x n x
dλ λ ∑ j = 0 → λ =  

j=1

.

That is, the MLE for λ is x , the sample mean.

Example 5.22

Using computer software like MATLAB, we simulate (generate) a set of normally 
distributed data points. How could we calculate the MLE of the parameters mean 

In this example, we try to estimate the Poisson parameter. Let {X X1 2, , ,Xn} repre-
sent a random sample (iid random variables) with size n, containing n independent 
observed values x1 2, , ,x xn  from a Poisson random variable X with parameter μ . 
We want to find the MLE for λ .

Using the Poisson pmf, the probability of observing the data point x j , 1j n= ,2, , , 
at the jth trial is:

( ) e
f xX j = =( )( ) λ xj −λ

λ λP X j x j = , 0x jj = ,1,2, ; = 1,2, ,n. (5.46)
x j !
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μ  and standard deviation σ , for the normal distribution used, if we randomly 
select three points from this set, say 5, 7.3, and 12.8?

Answer

To answer the question, we need to calculate the total probability of observing all 
of the data points under assumption of independence, that is, the joint probability 
distribution of all observed data points, assuming iid random variables. To do this, 
we would need to calculate some conditional probabilities. So it is here that we’ll 
make our first assumption. Thus, the joint pdf for the three selected points 5, 7.3, 
and 12.8 is as follows:

 
(5−μ)2 (7.3−μ)2 (12.8−μ

1 − 1 1
)2

− −
P e(5,7.3,12.8;μ σ, ) = 2σ 2 ⋅ e 2σ 2 ⋅ 2σ 2

. (5.48)
σ σ2π 2π σ 2π

e

We now have to find the values of μ  and σ  that maximize (5.48). Hence, we have 
to differentiate (5.38) once with respect to μ  and set it equal to 0 and once with 
respect to σ  and set it equal to 0. To simplify the differentiation, we use the loga-
rithm, that is, the log-likelihood function, and do the same. Hence, applying the 
natural log to both sides of (5.48), we obtain the following:

 

3ln 2 3lnπ
ln[ ]P(5,7.3,12.8;μ σ, ) = −3lnσ − −

2 2

1− −⎡ μ μ+ − + − μ ⎤⎣(5 )2 2

⎦2σ 2
(7.3 ) (12.8 )2 .  (5.49)

We first take the derivative of (5.49) with respect to μ , as follows: 

 1
2 [(5 − +μ μ) (7.3 − +) (12.8 − μ) = 0,

σ

(5 − +μ μ) (7.3 − +) (12.8 − μ) = 25.1− 3μ = 0,

]

]

∂ ln[ ]P(5,7.3,12.8;μ σ, ) 1= −
2 [(5 μ μ) + (7.3 − ) + (12.8 − μ) ,

∂μ σ

 

and hence,

 μ = 8.357. (5.50)

Now, we take the derivative of (5.49) with respect to σ, as follows: 

 

3σ μ2 2= −(5 ) + (7.3 − μ)2 + (12.8 − μ)2 ,

∂ ln[ ]P(5,7.3,12.8;μ σ, ) −3 1= + −(5 μ μ)2 2

3
⎡ + (7.3 −⎣ ) + (12.8 − μ) ,2 ⎤⎦∂μ σ σ

−3 1+ −
3
⎡(5 μ μ)2 2+ (7.3 − ) + (12.8 − μ)2 ⎤ =⎣ ⎦ 0,

σ σ

− +3σ μ2 2⎡(5 − +) (7.3 − +μ)2 (12.8 − μ)2 ⎤ =⎣ ⎦ 0,
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and hence,

 1σ = −(5 μ μ)2 2+ (7.3 − ) + (12.8 − μ)2 .  (5.51)
3

Now from (5.50), using the value μ = 8.357 in (5.51), we will have:

1σ = −(5 8.357)2 2+ (7.3 − 8.357) + (12.8 − 8.357) ,
3

1= −( 3.357)2 2+ (−1.057) + (4.443)2 ,
3

1 1 5.668= +11.269 1.117 +19.740 = 32.126 = ,
3 3 3

 

2

 

and hence

 σ = 1.889. (5.52)

Finally, the MLEs for μ  and σ  are μ̂ = 8.357 and σ̂ = 1.889, respectively.

 (ii) Method of Moments (MoM)
The second common method of point estimation is the method of moments 

(MoM). It seems this is the oldest method of point estimation that goes back at 
least to Carl Pearson, an English mathematician and biostatistician (1857–1936), in 
the mid-nineteenth century. One of the strengths of MoM is its simplicity in use, 
and that it almost always yields some sort of estimate. However, in many cases, 
this method is not the best and often needs improvement.

Steps for this method are as follows.
Step 1. Choose a random sample

Step 2. Obtain the MoM estimators

 

Suppose X = X X1 2, , ,Xn  is the set of elements of a set of a random sample 
with size n, containing n independent o

( )
bserved values in the set x = { }x x1 2, , , xn} 

from a population with pdf or pmf f x μ μ1 2, , ,μ j , where μ1 2, ,μ μ, j are the 
parameters of the distribution.

{ }

To obtain the MoM estimators, equate the first j sample moments to the cor-
responding j population moments. Now solve the system of j equations and j 
unknowns. To do that, define the sample and population moments, respectively, 
denoted by M kSk , 1= ,2, , j, and M kPk , 1= ,2, , j. Then, M kSk , 1= ,2, , j, are as 
follows:

⎧
= =

∑ n

X⎪ k

X =⎪M E( )X k =1
S1

,

⎪
2 ∑

n
n

⎪ X 2

⎪
k

M E= =( )X k =1
S  (5.53

⎨ 2
, )

n
⎪
⎪
⎪ n

j

⎪
S

∑( )
Xk

M E= =X j k =
⎪

1 .
⎩ j n
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Example 5.23

 f ( ;x xα α) = <α −1, 0 x < 1, 0 < α < ∞. (5.55) 

Using MoM, we want to find a point estimate for α .

Answer
1

Here M XS1 =  and M EP1 = =( )X ∫ xf (x)dx. According to MoM, M MS P1 1= , then
0

α x
( ) ∫ ∫

1
1 1 α +1 ⎤ α

X = =E X xα αxα α−1dx = x dx = ⎥ = . (5.56)
0 0 α +1 1α +

 
0⎦

Since x  is an unbiased estimator of the population mean, solving for α  from (5.42) 
will give us the estimator we are looking for. Hence,

 α
X = → =α αX X+ → α 1 .X X

α +1
( )− =   (5.57)

Therefore, from (5.57):

 Xα̂ =  
1− X

is a MoM point estimator for α. 

5.2.2  INTERVAL ESTIMATION

A point estimate, even the best one, of an unknown parameter, such as the mean, 

variance, or standard deviation, is not an accurate estimate since it is an estimate 

only based on a single random sample. It by itself provides no information about the 

precision and reliability of the estimation. For instance, we have no idea how close the 

Now let each of M kPk , 1= ,2, , j, be a function of μ1 2, ,μ μ, j, say η( )μ μ1 2, , ,μ j ). 
Then, M kPk , 1= ,2, , j, are as follows:

⎧ M P = η μ1 1( ),μ2,...,μ⎪ j ,1
⎪
⎪ MP j= η μ2 1( ),μ2,...,μ ,2⎨  (5.54)
⎪
⎪
⎪ M = η μj j( )1,μ2,..., .Pj μ
⎩

From (5.54), we solve for μ1 2,μ μ,..., j. The solutions, denoted by μ̂1 2,μ μˆ , , ˆ j, are 
the MoM estimators of μ1 2, ,μ μ, j, respectively.

Suppose X = { }X X1 2, , ,Xn  is the set of elements of a set of a random sample with 
size n containing n independent observed values in the set x = {x x1 2, , ,xn  from 
a population with a parameter α  and pdf

}
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value of the sample mean, X, that we found as an estimate for the population mean, 

μ, is to μ, that is, a bit higher or little lower. To remedy this concern, an alternative 

way of estimating a parameter is interval estimation, recognized by Neyman (1937).

Definition 5.14

An interval estimation is a range of values obtained by repeated sampling and find-

ing two values, say a and b, within which the true value of the unknown parameter 

is expected to fall. That is, the value of the parameter falls in the interval a < <x b 

with some probability, say 90%, 95%, or 99%. Such number, that is, the probability, 

is referred to as the confidence coefficient, which is also called the confidence level, 
and the interval is called the confidence interval (sometimes abbreviated as CI). he 

endpoints of a CI are called the upper and lower confidence limits.

The confidence limits incorporate certain degrees of true values of parameters. 

Thus, if we determine a 90%  CI estimate, we understand that the probability that 

the interval contains the true parameter is 0.90. That is, out of 100 possible inter-

vals, 90 of the intervals are certain to contain the true parameter. Yet, in other words, 

with a probability of 0.90, the actual value of the parameter will fall in the 
interval a x b.< <

Hence, for interval estimation, we sample repeatedly. Then, the confidence level 
is an indication of the success of the process of construction of a CI. Thus, for the 

confidence level of 0.95, it means that if the same population is sampled numerous 

times and the interval estimates are calculated each time, the resulting intervals 

would lead to containing the true population parameter in approximately 95% of 

the cases. The inverse significance can be thought as 1 − 0.95 = 0.05, or 5%. Also, a 

confidence level of 90% implies that 90% of all samples would give an interval that 

includes the unknown parameter, and 1 − 0.9 = 0.10, or 10%, of all samples would 

yield an erroneous interval. Further, CIs with a confidence level of 80% will, in the 

long run, miss the true population parameter 20% of the times, that is, one out of 

every five times.

Note 5.21

Often there is a misunderstanding regarding CIs. A CI does not predict with a given 

probability that a parameter lies within the interval. The problem arises because 

the word “confidence” is misinterpreted as implying probability. Parameters are 

fixed, not random variables, and so a probability statement cannot be made about 

them. The fact is that when a CI has been constructed, it either contains the 
parameter or it does not.

Note 5.22

The higher confidence level implies that one can more strongly believe that the 

value of the parameter lies within the interval.
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Note 5.23

If X is not actually continuous, it is sometimes argued that a correction for con-
tinuity should be applied by adding and subtracting 0.5 to x value. In case of 

normal pdf, the correction for continuity reduces the magnitude of z. That is, 

failing to correct for continuity will result in a z-score that is too high. In practice, 

especially when the sample size n is large, the correction for continuity tends 

to get ignored, but for small n or borderline cases, the correction can be impor-

tant. However, the correction for continuity can sometimes make things worse, 

particularly, if it is a close decision. In that case, it is better to use a computer 

program that can make a more exact calculation, like Stata (with its bitest and 

bitesti routines).

Example 5.24 (Known σσ )

Let us use the interval estimation to estimate a normal population’s parameter 
mean, μ , assuming that the value of the standard deviation, σ , is known.

Answer

Let X represent the sample points of a sample chosen from a normal population 
with unknown mean and known standard deviation μ and σ , respectively. Then, 

XX − μ has a normal distribution, that is, X ~ ,N n( )μ σ 2 , or Z = ~ N(0,1). It is σ
n

known that probabilities of standard normal random variable within some inter-
vals are shown in Table 5.1.

Hence,

 

⎛ ⎞
⎜ X − μ ⎟

P Z(− <1.96 <1.96) = P ⎜ − <1.96 <1.96σ ⎟
⎜ ⎟⎝ n ⎠

⎛ σ σ ⎞= −P X⎜ 1.96 < μ < X +1.96 ⎟ = 0.95.
⎝ n n ⎠

 

Thus, we found an interval estimate for μ with a probability of 0.95. In other 
⎛ σ σ ⎞words, with the probability of 0.95, the interval ⎜ X − +1.96 ,X 1.96 ⎟  will 
⎝ n n ⎠

contain μ. Hence, for a given value of the sample mean, we can estimate the 
interval that the population mean will fall in with the probability of 0.95.

Example 5.25 (Known σ)

Suppose a statistics course with 10 sections, and 40 students enrolled in each sec-
tion, is offered in a semester at a university. The same test is given simultaneously 
to all five sections. Results of this test are selected for a randomly chosen section 
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and its mean is found to be 78%. Assume that the population standard deviation 
is 3. What is the estimate of the mean of the test for the entire 400 students in this 
course with 95% CI?

Answer

We assume that the random variable X representing the test results of students 
enrolled in this statistics course is normally distributed with a standard deviation 
of 3. Then, the CI for the mean of the first test in this class is calculated as follows:

 

⎛ σ σ ⎞ ⎛ 3 3 ⎞
P X⎜ − <1.96 μ < X +1.96 ⎟ = −P ⎜ 78 1.96 < μ < 78 +1.96 ⎟⎝ n n ⎠ ⎝ 40 40 ⎠  

= <P ( )77.0703 μ < 78.9297 = 0.95.

In other words, with a 95% CI, the average test grade for the entire 400 students 
enrolled in this course will be b

)
etween 77.0703% and 78.9292%. The CI in this 

case is (77.0703%, 78.9293% .

Note 5.24

For the example above, the stated result is somewhat misleading. The correct way 

of stating it is that if the sample had been taken repeatedly infinitely many times, 

then the mean would fall within the founded interval.

Note 5.25

We note that intervals for Z may be created with different probabilities. From 

the interval, its length or the range of Z may be calculated, as well. For instance, 

see Table 5.2.

From Table 5.2, it is clear that the length of the interval becomes shortest when 

the interval is symmetric around the mean value of Z (i.e., 0). Therefore, when we 

TABLE 5.1
Probabilities of Standard Normal Random 
Variable within Some Intervals

Interval for Z Probability 
−a Z− << << a P a(−− < Z< << a)
( 1.282,1.282)− 0.800

( 1.440,1.440)− 0.850

( 1.645,1.645)− 0.900

( 1.960,1.960)− 0.950

( 2.576, 2.576)− 0.990

( 2.807, 2.807)− 0.995

( 3.291, 3.291)− 0.999
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⎛ ⎞
calculate the CIs, we consider a symmetric interval −⎜ Z Z, ⎟⎝

α α , which is around 
⎠the zero as discussed in the following terms: 2 2

 i. z-interval is used for large sample size (greater than or equal to 30) and 

population standard deviation, σ , is unknown. Furthermore, if the popu-

lation is normally distributed and the population standard deviation, σ  is 

known, z-interval can be used

 ii. t-interval is used when the population standard deviation, σ , is unknown 

and the population is normally distributed. Furthermore, if the sample size 

is greater than or equal to 30 and the population standard deviation, σ , is 

unknown, t-interval can be used

Definition 5.15

For a given value α , a 100(1−α )% CI for the population mean μ of a normal popula-

tion with known standard deviation σ  is given as

 
⎛ ⎛ σ σ⎞ ⎛ ⎞ ⎞
⎜ X Z− α σ⎜ ⎟ , .X Z+ ⎜ ⎟ ⎟  (5.58)
⎝ 2 2⎝ n ⎠ ⎝ n ⎠ ⎠

The interval in (5.58) is often written compactly as

 
⎛ σ ⎞

X Z± α ⎜ ⎟ . (5.59)
2 ⎝ n ⎠

The value α  is referred to as the confidence level, Zσ  is called the confidence 
2

⎛ σ ⎞
coefficient or critical value, the term “Zα ⎜ ⎟” is referred to as the margin of 

2 ⎝ n ⎠

σerror of a confidence level, and the term “ ” is called the standard error.
n

TABLE 5.2
The Same Probability of Standard Normal Random 
Variable within Some Intervals

Interval for Z Probability Length of the Interval of 
−a Z− << << a P a(−− < Z< << a the Range of Z

( 1.96,1.96)− 0.95 1.96 ( 1.96)− − = 3.92

( 1.80, 2.19)− 0.95 2.19 ( 1.80)− − = 3.99

( 2.36,1.74)− 0.95 1.74 ( 2.36)− − = 4.10

( 2.69,1.68)− 0.95 1.68 ( 2.69)− − = 4.37

)
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Note 5.26

The center of the above interval is

 

⎛ σ σ ⎞
X Z− +⎜ , X Z

⎝
α σ
2 2n n ⎟⎠ = X  

2

and the width of the interval is 

 .
2

σ⎛ σ σ⎞ ⎛ ⎞
X Z+ − −⎜ X Z = ⋅2 Z

⎝
α σ
2 2n ⎟ ⎜⎠ ⎝ n ⎟  

⎠ n
α

According to the above width, it is clear that when the confidence level (α ) 

increases, the width of the CI also increases. Practically, we like to have a higher 

CI and lower width, as such a CI has higher confidence that the unknown param-

eter will be in the smaller interval. Unfortunately, it is impossible to achieve both 

of these at the same time. In practice, we fix the confidence level and the width of 

the interval we require, before conducting the study. Then, we collect the required 

sample size in order to achieve the above fixed values. As far as the confidence 

levels are concerned, 90%, 95%, and 99% are frequently used and 95% is the 

default in most of the situations. For these levels of significance, using the normal 

Z-table, available online, we can construct the following table:

In practice, 95% confidence is preferred over 99% because, for normal distribu-

tion the interval for which data points fall in is wider, that is, (−2.58, 2.58), and 

hence, less precise. If high CI is desired, the confidence limits may be fixed and 

the sample size be calculated accordingly, as discussed above (Figure 5.2).

Using TI83 calculator, the Zα  value for any given α  value can be calculated. 

For instance, here is for 80% CI:2

 100(1− =α α)% 80 →1− = 0.8 → = 0.2. α

α
Hence, = 0.10. Now we need to look at the standard normal table to match the 

2
right tail area of 0.1. Then, we can find the Zα = 1.28. This can be calculated using 

2

the TI-83/84 calculator with the following command: 

100(1−α )% α α Zα
2 2

90 0.10 0.05 1.645

95 0.05 0.025 1.96

99 0.01 0.005 2.575
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 ⎛ α ⎞Zα = −invNorm 1 ,mean,stdev = invNorm(0.9,0,1). 
2

⎝ 2 ⎠

See Figure 5.3 for illustration.

Note 5.27

FIGURE 5.2 Display of normal distribution.

FIGURE 5.3 Display of CIs.

Since the central limit theorem assures us that the sample mean X is approxi-
⎛ σ ⎞

mately normally distributed, that is, X ~ ,N n( )μ σ 2 , X ± Zα ⎜ ⎟  is a CI 
⎝ n ⎠

for μ with a confidence level of 100(1−α )%. 2



392 Probability, Statistics, Stochastic Processes

In the above examples and discussions, we assumed that the standard deviation 

is known. However, this is not a realistic assumption. Thus, when the standard 
deviation is also unknown, we will try to estimate the standard deviation of the 

population by the sample standard deviation, s. In this case, the CI for μ becomes 

 
⎛ s ⎞

X ± Zα ⎜ ⎟  (5.60)
2 ⎝ n ⎠

with yet the same confidence level of approximately 100( )1−α %.

 

In Definition 5.7, if σ  is not known, we replace it by its sample estimates. 

Thus, to maintain the coverage probability of 100(1−α )%, we need to adjust the 
X − μ

factor Zα . Thus, Z =  becomes
2

σ
n

 
X − μ

T = , (5.61)s
n

 

which has the Student t-distribution with v n= −1 degrees of freedom. Thus, (5.17) 

becomes:

 
⎛ s ⎞

X ± tα ,
,v ⎜ ⎟  (5.62)

2 ⎝ n ⎠

which is a 100(1−α )% CI for μ, where tα  is the (1−α ) quantile of the distribution.
,v

2

Example 5.26 (Unknown σσ )

Consider a study that aims to estimate the age of junior students of a very large uni-
versity in the United States. For this, a sample of 2,000 junior students is selected, 
and the sample average is 22 years and the standard deviation is 8 years. Using 
this information, estimate the average age of all junior students of the university, 
the accuracy of this estimate within a given CI with confidence level of 95%, and 
the margin of error.

Answer

The information given by the problem is as follows:

 n = =2,000, X s22, = 8, and α = 0.95. 

We are to use formula (5.17). Thus, we will calculate each part of (5.17) to reach 
the conclusion. Referring to the previous table instead of the following explanation 
to calculate Zσ .

2

 i. To find the critical value, or Zσ , we have alternative ways: (a) Use 
2

Table 5.1 and (b) use tables of standard normal values for z, if available. 
αHence, the confidence level α  is 0.05, = 0.025, and using the Z-table. 
2
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(c) Use MATLAB to find this value. Thus, from any of the suggested ways, 
we will find the level as 1.96.

 
s 8 8

ii. To calculate the SE, we have = = = 0.179. 
n 2,000 44.72

 iii. Multiply 1.96 by 0.179 (your critical value by your SE), that is, 
⎛ s ⎞

Zα ⎜ ⎟ = =(1.96)(0.179) 0.351, which is the margin of error.
2 ⎝ n ⎠

 
⎛ s ⎞

iv.  Thus, to find the CI, we have to use X ± Zα ⎜ ⎟ , that is, the mean plus 
2 ⎝ n ⎠

or minus the margin of error. Thus, we have:

 ⎛ s ⎞
Confidence interval = ±X Zα ⎜ ⎟ = ±22 0.351 = (21.649,22.351). 

2 ⎝ n ⎠

Therefore, given the aforementioned information, the average age of male junior 
students in the college will be approximately between 21.649 years (or 21 years, 
7 months, and 24 days) to 22.351 years (or 22 years, 4 months, and 6 days) with 
95% confidence level. In other words, we are 95% confident that the average age 
of junior students of the college is between 21.649 years and 22.351years.

To calculate a CI for a small sample size, n, that is, the size of <30, n < 30, 
choose what is called the degrees of freedom, denoted by df, which is defined 
as n −1. 

For instance, let us assume that the sample size is 11 and we want to calculate 
the 95% CI. Then, here df = −11 1 = 10 and

 
α

100(1− =α α)% 95 → 1− = 0.05 → = 0.025.
2

 

σTherefore, we have one-tailed level of significance value = 0.025 and two-
2

tailed level of significance value α = 0.05. Now you can use the following t-table 
σusing both df = 10 and either one-tailed level of significance value = 0.025 or 
2

two-tailed level of significance value α = 0.05 to find the critical value, t = 2:228 
(Figure 5.4). 

Note 5.28

Unlike the Z-table, using the t-table, one cannot find the critical values for any 

given α value. We can use only the given α  values in the table. Therefore, a sta-

tistical software is used to calculate the t-value for any given level of significance.

5.2.3  HYPOTHESIS TESTING

CIs and hypothesis testing are closely related. Some textbooks discuss how these 

two are equivalent. A reason for this idea is that since the true values of the most 

population parameters are unknown, finding them would be possible by estimation, 

that is, hypothesize them.
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In hypothesis testing, the main aim is to make inference about the unknown pop-

ulation parameters instead of estimating them. In fact, the major purpose of hypoth-

esis testing is to choose between two competing hypotheses about the value of a 

population parameter. In other words, it is to determine whether there is enough 

statistical evidence in favor of the hypothesized value of the parameter. Hypothesis 

testing is like raising a question of truth of a statement and a possible error answer-

ing such question.

Statistically speaking, hypothesis testing is the process of using statistics in deter-

mining the probability that a given hypothesis is true. In other words, hypothesis 

testing is a method of statistical inference, that is, finding out if an assumption is true 

or false based on some evidence or the lack of it.

Example 5.27

Hypothesis testing is for the acquisition of information about the population 
parameters based on the sample statistic; that is, no generalization is involved. For 
instance, in assigning dose level to a cancer treatment, a doctor needs to know 
if the average dose level assigned was effective or noneffective in order to make 
a decision about the next dose level. So, if the doctor wants to change the dose 
level, he needs to make some assumption, test, and then decide.

Example 5.28

Suppose a pharmaceutical company has developed a new drug that will treat at 
least 75% of the patients to recover from the disease. As a standard practice, the 

FIGURE 5.4 Part of the  t-table.
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company needs to choose a random sample of identically conditioned patients, 
splits them into two subgroups, tests the drug on one subgroup, applies placebo 
to the other, and compares the results. The company is to see if there is enough 
statistical evidence in favor of the minimum 75% capability of treatment of the first 
subgroup as hypothesized.

In hypothesis testing, there are four essential terms. We briefly state them and 
then subsequently discuss them in some detail.

 i.  Null hypothesis, H0 (reads “H subzero”). The symbol H0  is used for a 
hypothesis to be tested and is commonly referred to as the null hypoth-
esis. H0 is assumed to be true unless there is strong evidence to the 
contrary. 

 ii. Alternative hypothesis, H1 or HA (reads “H sub-one or H sub-A”). The 
other hypothesis, which is assumed to be true when the null hypothesis 
is false, is referred to as the alternative hypothesis and is often symbol-
ized by H1 or HA. In fact, the alternative hypothesis is the complement 
of the null hypothesis.

 iii. Test statistic. In statistics, the evidence we mentioned in (i) is to provide 
proof or disproof from a data set that the null hypothesis is true or false. 
This means, in order to process a hypothesis testing, we would need a 
test statistic, which is a random variable that determines how close a 
specific sample result falls to one of the hypotheses being tested. Hence, 
a test statistics is a numerical quantity calculated using the attributes of a 
sample.

 iv. p-value. The strength of evidence supporting the truth of H0 is measured 
by what is referred to as the p-value.

In hypothesis testing, before testing starts, both the null and alternative hypotheses 
should be stated. Although it is commonly practiced to state the null hypothesis 
first with an “ = ” sign, or “true”, it could contain statements such as “=”, ≤, or ≥. 
The alternative hypothesis is stated second with the symbol “<”, or “>”, or “not 
true” or ≠, that is, “different”. Thus, if the parameter to be tested is “x” and it is to 
be tested for the value “m”, possible choices are as follows:

For instance, if the parameter tested is the population mean, we may choose 

the sample mean as our random variable. Hence, the question we might ask 

is, how do we assess our evidence to be manifested in the value of the sample 

mean? To answer this question, a standard practice is to choose the z-score. 

Hence, as a general practice, one should quantify the evidences and use the 

central limit theorem. As mentioned, the strength of evidence supporting the 

truth of H0 is measured by what is referred to as the p-value. It originated in 

1700s by a physician from Scotland John Arbuthnot. The p-value evaluates 

how well the sample data support the devil’s advocate argument that the null 

hypothesis is true (Figure 5.5). 
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=

.

H x0 0 0: : :≥ >m H x m H x m

H x1 1 1: : :< ≤ ≠m H x m H x m

 (5.63)

H x0 0 0: : :≤ < ≠m H x m H x m

H x1 1 1: : :> ≥ =m H x m H x m

Three of choices are seen often for means, say μ1 and μ2: 

 
≤H H0 1: :μ = ≥μ2 0 1μ μ2 and H0 1: μ μ2

  (5.64)
H H1 1: :μ ≠ <μ2 1 1μ μ2 H1 1: μ μ> 2.

Other choices are possible. However, since the idea behind H0 is assumption of 
truth and hope for its opposite, the last choice is not appropriate; it is similar for 
some other choices. Perhaps, this is why it is standard practice to use “=” for H0 and 
other choices will be stated for the case H1. Choices with “unequal” sign are the 
“two-tailed” cases, and others are “one-sided” or one-tailed cases. In other words, 
the first case of (5.64) is a two-sided case and the other two cases are one-sided.

Note 5.29

The terms “two-tailed” and “two-sided” are often used interchangeably. The term 

“side” refers to the hypothesis on which the side of 0 the difference μ1 2= μ  lies 

(negative or positive). Since this is a statement about the hypothesis, it is indepen-

dent of the choice of test statistic. 

We use H0: μ μ1 2=  hypothesis testing when we compare two population means. 
These two means are not from the same population. For instance, suppose we want 

FIGURE 5.5 John Arbuthnot 1667–1735.
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to know whether the average GPA of a college is higher than that of another college. 
In this case, μ1 is the average GPA of one college and μ2 of the other.

One might ask why do we have to test the equality of two means or propor-
tions? The answer is because two means are always unequal if we keep all deci-
mal places. Then, one may ask if we know that two means or two proportions 
are unequal, then why we hypothesize that they are equal and essentially testing 
them? As we normally write equality for H0 and unequality for H1, that is,

 
,

H0 1: μ μ= 2

H1 1: μ μ≠ 2

 

the unequality in H1 says that we are unsure of the direction of the difference. That 
is, the difference between μ1 and μ2 may be positive or negative since 

 μ μ1 2≠ → μ1 − ≠μ2 0. 

This is the idea behind the two-tailed or two-sided test. For the one-tailed or one-
sided test, we might have a situation like:

 
=

.

H H0 1: oμ μ= 2 r 0 : μ μ1 2

H H1 1: :μ μ> <2 1 1μ μ2

  

Example 5.29

Let us go back to Example 5.28 of testing a drug for 75% effectiveness hypothesis. 
In this case, our hypothesis will be H0 for at least 75% and H1 for <75%. If we 
denote the “effectiveness” by “e”, then we will have:

 
H e0 : ≥ 75%

 (5.65)
H e1 : < 75%

This is the case of the one-tailed test.
The company could have hypothesized the effectiveness of the drug as 75%. 

In that case, we would have had:

 
H e0 : 7= 5

 (5.66)
H e1 : ≠ 75.

In the latter case, an alternative hypothesis specifies that the parameter is not 
true on either side of the value specified by H0, which is called two-sided (or 
two-tailed). 

Generally, a one-sided test makes it easier to reject the H0 when H1 is true. For 
a large sample, two-sided, 0.05 level t-test puts a probability of 0.025 on each 
side. It needs a t statistic of less than −1.96 or >1.96 to reject the null hypothesis of 
no difference in means. A one-sided test puts all of the probabilities into a single 
tail. It rejects the hypothesis for values of t less than −1.645. Therefore, a one-sided 
test is more likely to reject H0 when the difference is in the expected direction. 
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This makes one-sided tests very attractive to those whose definition of success is 
having a statistically significant result.

Decision of acceptance or rejection of a null hypothesis is based on probability 
rather than certainty. Thus, performing error is possible. When the null hypothesis 
is rejected while it is really true, a type I error has occurred. The probability of 
type I error is α . That is,

 α ≡ =P P(Type I error) (Rejecting H0 0H is true). (5.67)

The α is referred to as the significant level. Thus, for instance, if α = 0.05, it would 
mean that there is a 5% chance that when the null hypothesis is true, it is rejected.

When the null hypothesis is accepted, while it is not true, again an error has 
occurred. The error occurred in this case is referred to as type II error. In other 
words, a type II error occurs when a false null hypothesis is not rejected.

The probability of type II error is denoted by β . That is,

 β ≡ =P P(Type II error) (Accepting H0 0H is false). (5.68)

Example 5.30

Consider a person who is accused of a crime and has to show up on a criminal 
jury in the United States, where a person is assumed to be innocent unless proven 
guilty. So the jury considers the assumption of innocence that indicates the null 
hypothesis H0. Evidence is presented to the jury and the jury decides. Its verdict 
is whether the evidence shows that the person is innocent, that is, H0 is true, or 
the person is guilty of the crime accused of, that is, H0 is false. Thus, there could 
be possibility of some type of error or no error, depending upon which of the four 
possible cases we are dealing with. 

 i. The accused is innocent and the jury decided he/she is guilty. Hence, no 
error has occurred. 

ii. The accused is innocent and the jury decided he/she is guilty. Here, the 
jury has made a mistake and the error is of type I. 

iii. The accused is guilty and the jury decided he/she is innocent. Hence, no 
error has occurred.

iv. The accused is guilty, but the jury decided he/she is innocent. Hence, an 
error has occurred and it is of type II (Table 5.3).

 

 

 

Hence, considering the probabilities α  and β  for this example, conditional prob-
abilities could be interpreted as follows:

 
α = P Verdict is "guilty" person is"innocent"

β = P (Verdict is "innocent" person is" guilty" .

( )
)

 

In case the assumption would have been “guilty”, as in some countries, then the 
types of errors will reverse, as well as α  and β .

Hypothesis testing for this example can be set up as follows:
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H0 :The person is innocent

H1 : The person is guilty.
 

 

Note 5.30

If H0 is rejected, the conclusion is that H1 is true. If H0 is not rejected, the conclu-

sion is that H0 may be true. Hence, in our example, if the verdict is “not guilty”, it 

would mean that the evidence was not strong enough to reject the null hypothesis, 

which creates doubt of whether the assumption of innocent is really true. This 

doubt may be quantified.

Thus, to test a hypothesis, 

 i. It is assumed that H0 is true until it is proven not so

iii. If H0 is rejected, while it is really true, type I error will occur, with prob-

ability α  (standard practice is to choose value α = 0.05 or α = 0.01); 

v. α and β are not independent; in fact, if the sample size increases, both α and 

ß will decrease since the sampling error decreases;

 ii.  H0 is rejected only if the probability that it is true is very small;

 

 iv. If H0 is accepted, while it is really incorrect, type II error will occur, with 

probability β;

 

 vi. A small sample size may lead to type II error; that is, H1 might be true, but 

because the sample is small, H0 may be failed to be rejected, although it 

should have.

Definition 5.16

The probability of finding the observed results when the null hypothesis, H0, is true 

is referred to as the p-value, or calculated probability.

The p-value can also be described in terms of rejecting H0 when it is actually true. 

The p-value is used to determine the statistical significance in a hypothesis test.

Here is how we should interpret the p-value:

TABLE 5.3
Example of Types of Hypothesis Testing Error, I and II

Person Really Is (Condition of H0)

Possibilities Innocent (H0 is True) Guilty (H0 is False)

Jury’s Verdict Innocent (correct action) No error (correct action) Type II error
(Possible Action) (Fail to reject H0)

Guilty (reject H0) Type I error No error (correct action)
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→ Low p-value (typically, ≤ α): Data is unlikely with a true null; that is, 

sample provides enough evidence that the null hypothesis can be rejected. 

However, it cannot evaluate which of two competing cases is more likely: 

(1) The null is true but the sample was unusual or (2) the null is false.

→  High p-value (typically, >α): Data is likely with a true null. That is, it indi-

cates weak evidence against the null hypothesis: one fails to reject it.

Note 5.31

The p-values very close to the cutoff point, 0.05, are considered to be marginal; 
that is, it could go either way. 

Note 5.32

The p-values are not the probability of making a mistake by rejecting a true null 

hypothesis, a type I error.

Note 5.33

The hypothesis test and CI give the same result.

Example 5.31

Suppose we are interested in the population mean, μ. Let:

 
H0 : μ = 100

H1 : μ > 100
 

 

Also, suppose that the p-value is 0.001, which is significant, and we reject the null 
hypothesis. This means that μ should be more than 100. If we construct a CI for μ, 
this interval should not contain 100. It may be something like (105, 110). Hence, 
both hypothesis test and CI give us the same result in different forms.

Note 5.34

Graphically, the p-value is the area in the tail of a probability distribution. It is 

the area to the right of the test statistic if the alternative hypothesis is greater 

(upper-tailed test), and it is the area to the left of the test statistic if the alternative 

hypothesis is lesser (lower-tailed test). If the alternative hypothesis is not equal 

(the two-tailed test), then the p-value, if the area is less than the negative value 

of the test statistic, and the area is more than the test statistic. For a two-sided 

alternative, the p-value is the probability of deviating only in the direction of the 

alternative away from the null hypothesis value (Figure 5.6).
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Let Z0 be the test statistic. Following shows the calculation of p-value for a given 

hypothesis.

Example 5.32 (Two-Sided Test)

Suppose an institution of higher learning, say a university A, claims that its gradu-
ates are as high quality as (=) of a well-known university B, for having high-quality 
student products. In order to determine the claim is true, the university A conducts 
a two-tailed test. The null hypothesis states that the university A’s graduates are 
equivalent to the university B’s graduates over a period of 10 years, while the alter-
native hypothesis states that this is not the case ( )≠ .

The university A uses the p-value as 0.05. If the test concludes that the p-value 
is 0.03, which is <0.05, then university A needs to accept the fact that there is 
strong evidence against its claim and, hence, its claim is rejected. That is, the 
graduates of university A are not as high quality as of the university B.

Example 5.33 (One-Sided Test)

Consider a delivery career that claims its delivery times are 3 days or less on aver-
age. However, we might think it’s more than that. So, we conduct a hypothesis 
test. The null hypothesis, H0, in this test would mean that the delivery time of at 
most 3 days (≤3) is incorrect. The alternative hypothesis, H1, in this case, is that the 
mean time is >3 days (> 3). We randomly sample some delivery times and run the 
data through the hypothesis test. The p-value turns out to be 0.005, which is much 
<0.05. In real terms, there is a probability of 0.005 that we will mistakenly reject 
the career’s claim that its delivery time is ≤3 days. Since typically we are willing to 
reject the null hypothesis when this probability is <0.05, we conclude that the mail 
career’s claim is wrong; their delivery times are in fact more than 3 days on aver-
age. Of course, we could be wrong by having sampled an unusually high number 
of late deliveries just by chance.

H0 H1 Name of the Test p-value

μ = μ0 μ > μ0 Upper-tailed (P Z > z0 )
μ = μ0 μ < μ0 Lower-tailed (P Z > z0 )
μ = μ0 μ ≠ μ0 Two-tailed P Z( > z0 ) + P Z( < −z0 )

or 2P Z( > z0 )

FIGURE 5.6 p-values with Z-test statistic. (a) Upper-tailed test, (b) lower-tailed test, and 

(c) two-tailed test.
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Example 5.34 (One-Sided Test)

A university is experiencing problems with its first mathematics course that all 
entering students must enroll in. The mathematics department decides to imple-
ment a plan consisting of mandatory attending a tutorial laboratory by students 
in a special tutorial program on a course section with 25 students who have ran-
domly registered in. The department chair hypothesizes that with all tutorial activ-
ities, the class average on the final examination score will increase to be >70 out 
of 100. We want to test the chair’s claim with a significant level of 0.05.

Answer

Suppose the final examination for the section was recorded as in the following 
table:

Let X be a random variable representing the random sample of scores of the 
final examination and μ its mean. Then, we set the hypothesis as:

H0 : μ = 70%
 

H1 : μ > 70%

Using the statistical software Minitab, the data is entered and running descriptive 
statistics is as follows (Figure 5.7):

 

67 86 70 79 56

83 63 69 77 84

55 48 68 78 93

89 52 88 99 61

64 72 83 40 39

Test
Null hypothesis H0: μ = 70

Alternative hypothesis H1: μ > 70

One-Sample T: Final Examination Descriptive Statistics

N Mean StDev SE Mean 95% Lower Bound for μ
25 16.2170.52 3.24 64.97

μ: mean of final examination

Descriptive Statistics: Final Examination Statistics

Variable N Mean SE Mean StDev

Final examination 25 70.52 3.24 16.21
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Thus, for the sample size of n = 25, a t-test was performed. As mentioned before, 
when n is <30, the t-test is used. The t-value, mean, and standard deviation of the 
sample are found to be 0.16, 70.52, and 16.21, respectively. Also, the SE has been 
shown as 3.24. This number is the standard deviation divided by the square root 
of the sample size. The high value of p, 0.437, shows that the hypothesis mean = 
70 is rejected and >70 is accepted.

Note 5.35

There are times that unfair or biased coins are needed to be used. The biased-

ness is due to the fact that the chance of occurrence of one side is not the same 

as the chance of occurrence of the other side. So suppose we flip a coin that we 

have been told is a fair coin. We flip this coin 20 times and tail appears 15 times. 

Hence, we might think we got a biased coin. To test the biasedness, we hypoth-

esize that the coin is unbiased, that is, fair. This is our null hypothesis, H0.

Example 5.35 (One-Sided Test)

As a project in a statistics course at a university, a coin is randomly chosen. Two 
students are to test the fairness of the coin. One student believes the coin is “fair” 

t-Value p-Value

0.16 0.437

9688807264564840
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FIGURE 5.7 Histogram for Example 5.34.
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and the other believes it is “biased toward heads”. To test this difference, use α = 
0.05 and conduct a hypothesis test about the fairness of the coin.

Answer

Let the proportion of number of heads appearing in a set of tosses be denoted by 
p. So, the coin is tossed 100 times. Suppose 55 heads were observed. To conduct 
a hypothesis testing about the fairness of the coin, we choose our H0 and H1 as 
follows:

H p0 : = 0.5
  

H p1 : > 0.5.

The set hypothesis in this case is that a one-tailed test is appropriate since the alter-
native hypothesis is a greater than case. To be able to use normal approximation, 
the following conditions must be satisfied for large sample:

 np n≥ −10 and p(1 p) = (100)(0.5)(0.5) ≥ 10. 

In this case, the test statistic is:

 

55 − 0.5p pˆ −= = 100Z = 1. 
p p(1− ) 0.5(1− 0.5)

n 100

Thus,

 the p P-value = >( )Z 1 = 0.1587. 

For the p-value greater than α , the null hypothesis will not be rejected at α = 0.05. 
That is, there is no evidence to support the claim of p > 0.5. Figure 5.8 shows the 
p-value (shaded area) for a right-tailed test (H1: p > 0.5).

Note 5.36

In testing a hypothesis to use the p-value and α , the following criteria will be 

used:

 i. The null hypothesis will be rejected if p-value ≤α .

 ii. The null hypothesis will not be rejected (or fail to be rejected) if p-value > α .

Example 5.36 (One-Sided Test)

A civil rights group claims that the percentage of minority teachers in a particular 
school district is about 20%. The superintendent of the school district selects a 
random sample of 145 school teachers from this school district in order to test 
whether the mentioned percentage is <20%. Assume there are 20 minority teach-
ers in the selected sample. Conduct a hypothesis test using the level of signifi-
cance, α = 0.05, to test the claim.
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Answer

For testing hypothesis in this case, we have:

H p0 : = 0.2
  

H p1 : < 0.2.

The large sample conditions to satisfy for this example are as follows:

 np n= >(145)( )0.2 10 and p( )1− p = (145)( )0.2 ( )0.8 >10. 

In this case, the test statistic is:

20 − 0.2p pˆ − = = 145Z = −1.87. 
p p(1− ) 0.2(1− 0.2)

n 145

Thus,

 the p P= =value ( )Z < −1.87 = 0.0307. 

For the p-value less than α , the null hypothesis will be rejected at α = 0.05. That 
is, the superintendent of the school district has evidence to support the claim that 
the percentage of minority teachers in the school district is <20%. Table 5.2 shows 
the p-value (shaded area) for a left-tailed test (H1: p < 0.2) (Figure 5.9).

FIGURE 5.8 The p-value (shaded area) for a right-tailed test (H1: p > 0.5), Example 5.34.
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Example 5.37 (One-Sided Test)

Suppose two students are to test the fairness of a coin in hand. One student 
believes the coin is “fair” and the other believes it is “biased toward heads”. Use 
α = 0.05, choose a random sample by tossing the coin 30 times, and test a hypoth-
esis to indicate whether or not the first student’s claim is supported by the results. 

Answer

 
 

The set hypothesis in this case is that a one-tailed test is appropriate since the 
second student believes the coin is biased toward heads.

Of course, the sample distribution in this case is binomial with parameters 
n = 30 and p = 0.5. With the sample size being large, we can approximate this 
pmf by normal pdf with sample mean X = 15 and sample standard deviation of 
binomial 

 S n= −p(1 p) = (30)(0.5)(0.5) = 2.7386. 

To use the standard normal pdf, let 

FIGURE 5.9 The p-value (shaded area) for a left-tailed test (H1: p < 0.2), Example 5.36.

H p0 : 1= 5
 

H p1 : > 15.

Let X be a random variable representing the random sample of size 30 that is 
taken. Hence, n = 30. If the coin were fair, the probability of getting a head would 
be p = 0.5. Thus, p = 15 heads. Thus, based on the information available, our 
hypothesis will be:
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X X− X −15 Z = = .
S 2.7386

Hence, Z N~ (0,1). To apply the correction for continuity, we subtract 0.5 from X if 
the observed number of heads is >15, and we add 0.5 to X if the observed number 
of heads is <15. 

⎛ 0.5⎞Alternatively, since (0.5)⎜ ⎟ = 0.1118,⎝ 20 ⎠

0.5 − 0.5
 = 20z . 

0.1118

Hence, since P Z( > =1.65) 0.95 = 1−α , Ha should be rejected if Z > 1.65. 
Equivalently, since X = +Z.0.05 0.5 +10 , Ha should be rejected if X > 14.18. Yet, 

0.5
equivalently, since X = ⋅Z 0.1118 + + 0.5, Ha  should be rejected if p > 0.709. 

20
0.5

0.75 − − 0.5
15 − −0.5 10

Thus, z = = 2.01 or = 20z = 2.01. Not applying the cor-
0.05 0.1118

15 −10
rection for continuity, we would have z = = 2.24. This does not change our 

0.05

previous conclusion. In practice, correction for continuity tends not to be made, 
especially when N is large, but it is still a good idea to do it. Since the computed 
z-value is >1.65, we reject Ha.

Example 5.38 (One-Sided Test)

Consider the treatment of a type of cancer which is done through taking a medi-
cine with ten levels of doses. History has proved that if patient starts with dose 
level 2, treatment has no effect. Hence, the treatment starts with level 3. A phar-
macology company claims that its researchers have developed a new drug that 
can start the same treatment with level 2 to reduce the toxicity in the patient. 

To test this claim, a statistician is hired to conduct a hypothesis test. With 
a one-tailed test, the hypothesis of no difference is rejected if and only if the 
patients taking the drug have toxicity levels significantly lower than those of con-
trols. Outcomes in which patients taking the drug have toxicity levels higher than 
those of controls are treated as failing to show a difference no matter how much 
higher they may be.

5.3  COMPARISON OF MEANS AND ANALYSIS 
OF VARIANCE (ANOVA)

So far, we have discussed how to make inference on a single population. In prac-

tice, sometimes one may need to compare two or more populations. Here are some 

examples: (1) An economist may be interested in comparing the average income of 

three states to find out which state has significantly higher average income than the 

other two. (2) An engineer may be interested in comparing the average strength of 
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concrete prepared using different brands of cements. (3) A dean of a college within 

a university may be interested in comparing the average academic performances of 

several departments. Such inferences can be made using the mean comparison tech-

niques that will be discussed below.

5.3.1  INFERENCE ABOUT TWO INDEPENDENT POPULATION MEANS

Suppose two independent populations, P1 and P2, are under study. We summarize the 

features for these populations in Table 5.4.

5.3.1.1   Confidence Intervals for the Difference in Population Means
As discussed before (Definition 5.2.3), inferential statistics has both CIs and hypoth-

esis testing. We first consider the CIs for the difference in populations.

Definition 5.17

The expected value and the variance of the difference in their sample means are 

defined, respectively, as:

 E X( )− =Y μ μ1 2− , (5.69)

and

 ( ) σ σ2 2

σ X Y− = σ 1 2
X Y− = + . (5.70)

m n

Note 5.37

From this definition, we see that the difference between the sample means is an 

unbiased estimator of the difference in the corresponding population means.

We now consider two sizes for sample sizes, namely, <30 and ≥30.

Case 1. Two large sample sizes, m n
In this case, the 100(1−α )% CI for the difference between the means of the two 

populations is given by

≥ ≥30, 30

TABLE 5.4 
Features for Populations

Population 
Means

Population 
Variances

Sample 
Sizes

Sample 
Means

Sample 
VariancesPopulations Random Sample

P1 μ1 σ 2

1

m X S1

P2 μ2 σ 2

2

n Y S2

x1 2, ,x , xm

y y1 2, , , yn
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( S2 2

 X Y− ±) Z 1 S+ 2
α . (5.71)
2 m n

Example 5.39

An economist was interested in the average family incomes of residents in two 
cities A and B, with populations P1 and P2, respectively. He randomly selected 
100 families from city A and 125 families from city B and found the following data 
(using some notations from Table 5.5).

We want to calculate the 95% CI for the difference in the average incomes of 
the two cities.

Answer

Here α = 0.05, or 5%. Since sample sizes are large and population variances are 
unknown, using standard normal distribution, we will have Zα = 1.96. Also, we 

2

can use the sample variances instead of the population variances. Thus, the 95% 
CI for the difference in the means can be calculated as follows:

( ) S2
1 S2 2

2 10 122

X Y− ± Zα + = 2,000 − 2,050 ±1.96 +
2 m n 100 125  

= −50 ± (1.96)(2.875) = ($ − 55.636,$ − 44.365).

 

Hence, we are 95% confident that the difference in the average incomes between 
the two cities A and B is ($ − −55.636,$ 44.365).

5.3.1.2   Hypothesis Test for the Difference in Population Means
Let us consider the following hypotheses:

H0 1: 0μ μ− =2

H : − > 0 upper-tailed test
 

1 1μ μ2
 

μ μ1 2− < 0 upper-tailed test

μ μ1 2− ≠ 0 two-tailed test.

TABLE 5.5
 Features for Populations, Example 5.39

Populations Sample Sizes Sample Means Sample Standard Deviations

P1 m = 100 X = $2,000 S1 = $10

P2 n  = 125 Y = $2,050 S2 = $12
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Test statistic

Z =
( )X Y− − μ μ

 
( )1 2−

. 
S2 2

1 S+ 2

m n

Rejection criteria:

Rejection of the hypothesis is determined by the following criteria, based on the 

alternative hypothesis.

• If the alternative is μ μ1 2− > 0, we reject H0 if Z Z≥ α .

• If the alternative is μ μ1 2− < 0, we reject H0 if Z Z≤ − α .

• If the alternative is μ μ1 2− ≠ 0, we reject H0 if Z Z≥ α .
2

Example 5.40

Let us return to Example 5.39 and test whether the average income of city B is 
higher than the average income of city A, using the level of significance 0.05.

Answer

Here, in this example, the null and alternative hypotheses are as follows:

H0 1: 0μ μ− =2

  
H1 1: 0μ μ− <2 .

Test statistic

( )X Y− − ( )μ μ1 2− (2,000 − −2,050) (0) Z = = = −34.08. 
S2

1 S2 210 122

+ 2 +
m n 100 125

Note 5.38

The critical value in this case is: −Z0.05 = −1.645. 

Therefore, Z Z< − α. This means that we reject the null hypothesis at the level 

of significance of 0.05. That is, we have evidence to support that the average 

income of city B is higher than the average income of city A.

Case 2. Both populations are normally distributed (Two-sample t)
In this case, the 100(1−α )% CI for the difference in the means of the two popula-

tions is given by

 ( ) S2
1 S2

X Y− ± t + 2
α , (5.72)

,v
2 m 2

where tα  represents the critical value of the t-distribution with the level of signifi-
,v

2

cance 
α

 and the degrees of freedom v. Furthermore, v is given by the following:
2
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⎛ S ⎞ 22 2
1 S+ 2

⎜ ⎟⎝ m n ⎠
 v = . (5.73)

⎛ S2
1 ⎞ 2 ⎛ 2

S2
2 ⎞

⎜ ⎟ ⎜ ⎟⎝ m ⎠ ⎝ n ⎠+
m −1 1n −

Example 5.41

An automobile engineer is interested in comparing the average amount of car-
bon dioxide emits per each mile driven of two brands of cars. Therefore, he 
randomly selects ten cars from each brand and measures the amount of carbon 
dioxide (CO2) emitted by each car and finds the following statistics (Table 5.6).

Assuming that the amount of CO2 emitted is normally distributed for both 
brands of cars, we want to calculate the 95% CI for the difference in true means.

Answer

First, the degree of freedom is calculated as follows:

⎛
2 2

S2 2 2 2
1 S ⎞ 0.3 ⎞

+ 2 ⎛ 0.1+⎜ ⎟⎝ m n ⎜ 10 ⎟
 ⎠ ⎝ 10 ⎠

v = v  
⎛ 2

1 ⎞
2 ⎛ ⎞ 2 = = = 10.97.

S S2 ⎛ p S⋅32
2 ⎞ 2 ⎛ 22

2 ⎞
⎜ m ⎟ ⎜ n ⎟ ⎜ 10 ⎟ ⎜ n ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ +
m −1 1n − 10 −1 10 −1

⎛
2

s2 2
1 s2 ⎞ ⎛

2
0.32 20.1 ⎞

+ +⎜⎝ m n ⎟ ⎜ ⎟⎠ ⎝ 10 10 ⎠ ν = = = 10.97. 
( )2 ( )2 ( )2 ( 2
s m2 2 0.32 10 2

1 s n2 0.1 10
+ +

)
m −1 1n − 10 −1 10 −1

So, we take the integer value of the d.f., v = 10
Using the t-table, the critical value tα = =t0.025,10 2.228, the 95% CI is

,v
2

( ) S2 S2
1 2 0.3 0.1

X Y− ± tα + = − ±(0.75 0.76) 2.228 +
 ,v

2 m n 10 10  

= −( 0.2328,0.2128).

2 2

TABLE 5.6
Features for Populations, Example 5.41

Car Brand Sample Size
Sample Average Amount of 
Emitted CO2 (in Pounds)

Sample Standard Deviation 
of Emitted CO2 (in Pounds)

1 10 0.75 0.3

2 10 0.76 0.1
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Hence, we are 95% confident that the difference in the average amount of CO2 
emitted by both car brands is between −0.2328 and 0.2128 g.

Hypothesis test 

H0 1: 0μ μ− =2

H : μ μ− > 0 upper-tailed test
 

1 1 2
 

μ μ1 2− < 0 upper-tailed test

μ μ1 2− ≠ 0 two-tailed test.

Test statistic

 ( )X Y− − ( )μ μ−
=

1 2
T . 

S2 2
1 S+ 2

m n

Critical value, tα ,v, where

⎛ s2 2
1 s ⎞

+ 2

⎜ m ⎟⎝ n ⎠ν =  
⎛

2 2
S2 ⎞ 2

1 ⎛ S2 ⎞
⎜ ⎟ ⎜ ⎟⎝ m ⎠ ⎝ n ⎠

+ .
m −1 1n −

 

Rejection criteria:
Rejection of the hypothesis is determined by the following criteria, based on 

the alternative hypothesis.

• If the alternative is μ μ1 2− > 0, we reject H0 if T t≥ α ν, .
• If the alternative is μ μ1 2− < 0, we reject H0 if T T≤ − α ν, .

α• If the alternative is μ μ1 2− ≠ 0, we reject H0 if T t≤ ,2 ν.

Example 5.42

Consider Example 5.41 about the average amount of carbon dioxide. Test whether 
the average amount of carbon dioxide emitted by the first brand is higher than that 
of the second brand using the level of significance 0.05.

Answer

Here, in this example, the null and alternative hypotheses are as follows:

H0 1: 0μ μ− =2

  
H1 1: 0μ μ− >2 .

Test statistic

X Y− − μ μ− (0.75 − −0.76) (0) T =
( ) ( )1 2

= 0.1. 
2 2 2
1 0.3 0.12

= −
S S+ 2 +
m n 10 10
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The critical value, in this case, is tα , 0v = =t .05,10 1.812.
Hypothesis test 

H0 1: 0μ μ− =2

H : μ μ− > 0 upper-tailed test
 

1 1 2
 

μ μ1 2− < 0 upper-tailed test

μ μ1 2− ≠ 0 two-tailed test.

Test statistic

 ( )X Y− − ( )μ μ1 2−
T = . 

S2 2
1 S+ 2

m n

Critical value, tα,ν, where

⎛ 2 2
1 ⎞

2
S S+ 2

⎜ ⎟
 ⎝ m n ⎠

v = . 
⎛

2 2
S2

1 ⎞ ⎛ S2
2 ⎞

⎜ m ⎟ ⎜⎠ n ⎟⎝ ⎝ ⎠
+

m −1 1n −

Note 5.39

T t< α ν, . This means we fail to reject the null hypothesis at the level of significance 

0.05; that is, we do not have evidence to support that the average amount of carbon 

dioxide emitted by the first brand is higher than that emitted by the second one.

Example 5.43

Refer to the Example 5.40 again. Test whether the average income of a city B is 
higher than the average income of city A using the level of significance of 0.05.

Case 3 Both populations are normally distributed and population variances are 
equal (pooled t)

Usually population parameters are unknown. However, there might be an evi-

3
2 2

3dence that both populations have the same variance, that is, ( ) =4 ( 2) .

100(1−α )% CI for the difference in means of two populations is given by

 ( − ±) 1 1
X Y tα Sp + ,  (5.74)

, 2m n+ −
2 m n

where

( 1m S− +)2 2
1 (n −1)S2

 S = 2
p . (5.75)

m n+ − 2
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Hypothesis test
Test statistic

( )X Y− − ( )μ μ−
=

1 2
T , (5.76)

1 1
Sp +

m n

where Sp  is given in (5.75).
Rejection criteria:
Rejection of the hypothesis is determined by the following criteria, based on 

the alternative hypothesis.

• If the alternative is μ μ1 2− > 0, we reject H0 if T t≥ α , 2m n+ − .
• If the alternative is μ μ1 2− < 0, we reject H0 if T T≤ − α ,m n+ −2.

• If the alternative is μ μ1 2− ≠ 0, we reject H0 if T t≥ α .
, 2m n+ −

2

5.3.2  C ONFIDENCE INTERVAL FOR THE DIFFERENCE IN MEANS 
OF TWO POPULATIONS WITH PAIRED DATA

In this section, we consider the inference between the two dependent samples, which 

come as a pair of data. To construct the difference between two means, we use the 

paired t-confidence intervals.

The 100(1−α )% CI for the difference in the means of two populations is given by

S
d ± t D

α , (5.77)
, 1n−

2 n

where SD is the standard deviation of the difference between the samples.

Example 5.44

The latest of a particular brand of a car model is said to emit more carbon dioxide 
than usual. Engineers of this company designed a system and installed it on ten 
cars. They measured the amount of carbon dioxide emitted in each mile before 
and after the installation of the unit. A data set measured in grams is shown in 
Table 5.7.

TABLE 5.7 
Collected Measured Data Set, Example 5.44

Before, xi 0.76 0.74 0.70 0.76 0.73 0.72 0.74 0.77 0.79 0.73

After, yi 0.70 0.75 0.69 0.76 0.70 0.71 0.78 0.75 0.77 0.74

    

Let x1 2, ,x x, m  and y y1 2, , , yn  denote the first and second sample data from 

populations P1 and P2, respectively. Let di i= −y xi , 1i = ,2, ,n be the difference 

between ith observations between the second samples and the first samples. 
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Using this data set, we want to construct a 99% CI for the difference in the 
mean carbon dioxide amounts emitted before and after the installation of the unit.

Answer

We first calculate the difference in the given sample points and list them below:

The average value of the differences is d = −0.009. From (5.77), the 99% CI for 
the average difference is obtained as:

S ⎛ 0.026854 ⎞
 d ± =t D

α −0.009 ± 2.262⎜ ⎟ = −( 0.02821,0.010209). 
, 1n−

2 n ⎝ 10 ⎠

Using R program, we obtain the following:

Before<-c(0.76,0.74,0.70,0.76,0.73,0.72,0.74,0.77,0.79,0.73)
After<-c(0.70,0.75,0.69,0.76,0.70,0.71,0.78,0.75,0.77,0.74)
t.test(After, Before, paired=TRUE, conf.level=0.95)

Output
data:  After and Before
t = -1.0598, df = 9, p-value = 0.3168
alternative hypothesis: true difference in means is not equal 
to 0
95 percent confidence interval:
 -0.02820985  0.01020985
sample estimates:
mean of the differences 
                 -0.009 

According to the above output, the CI for the difference in the means is (−0.02820985, 

0.01020985), which is very close to the prior interval.

5.3.3  ANALYSIS OF VARIANCE (ANOVA)

In everyday life, at times we may need to compare more than one population to make 

decisions, for instance, comparing several brands of smart phones for the average 

price or the average capacity. Companies offering these products need to have good 

advertising tool to persuade customers to buy one product versus another. Thus, 

marketing strategists may want to find ways to present their products showing better 

features than their competitors. This example may be extended to other cases. For 

instance, suppose three medical treatment options are available to use on patients 

with similar disease. Reviewing the test results, the treatment that takes the least 

amount of time, on the average, to cure the disease may be the best option among 

all three. Thus, in order to make a confident and reliable decision, documents are 

needed to support the choice of treatment. In such cases, one needs to compare 

yi − xi −0.06 0.01 −0.01 0 −0.03 −0.01 0.04 −0.02 −0.02 0.01
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population averages in order to make a decision. The statistical approach for such 

procedures is referred to as the analysis of variance or ANOVA. In other words, 

ANOVA is a statistical technique that compares the means of different populations.

In comparing two population means that was discussed before, when the number 

of populations is large, the two-population-mean comparison can be extended to 

several populations by taking two populations at a time. ANOVA is a method to 

reduce the error accompanied by comparisons of population means. This is because 

ANOVA compares the means of populations by identifying the sources of varia-

tion of a dependent or response variable, which is in numerical form. Depending on 

the number of factors associated, there are several types of ANOVA, such as one-

way ANOVA and multifactor ANOVA. Here, our attention is only on the one-way 

ANOVA.

Note 5.40

ANOVA is available for both parametric (score data) and nonparametric (ranking/

ordering) data. In this section, we discuss the parametric ANOVA, and in Chapter 

6, the nonparametric version will be discussed.

5.3.3.1  ANOVA Implementation Steps
All types of ANOVA follow the basic principles outlined below. However, as the 

number of groups and the interaction effects increase, the sources of variation will 

become more complex.

Step 1.

The mean is calculated for each group. Using the example of education 

and sports teams from above, the mean education level is calculated for 

each sport team.

Step 2.

The overall mean is then calculated for all groups combined.

Step 3.

Within each group, the total deviation of each individual’s score from 

the group mean is calculated. This tells us whether the individuals in the 

group tend to have similar scores or whether there are many variations 

between the different people in the same group. This concept is referred to 

as the within-group variation (sum of squares).

Step 4.

Next, each group’s mean deviation from the overall mean is calculated. 

This is called the between-group variation (sum of squares).

Step 5.

The ANOVA table is prepared by considering all the sources of variations 

(sum of squares), degrees of freedom, and the mean square values to calcu-

late the test statistic, F, that is, the ratio of the between-group variation to 

the within-group variation. If there is significantly greater  between-
group variation than the within-group variation (i.e., when the F statistic 
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is larger), then it is likely that the difference between the groups is statisti-

cally significant. Statistical software calculates the p-value to determine 

whether it is significant or not.

5.3.3.2  One-Way ANOVA
When comparing means across different groups that involve only one categori-

cal variable (independent) and one numerical variable (response), we use one-way 

ANOVA. For instance, suppose a farmer is interested in studying the type of fertil-

izer that makes the plant to grow more. In this case, he is interested only in the type 

of fertilizer. Hence, this involves only one factor. Similarly, an educator may be 

interested in how the teaching method (face-to-face, online, and hybrid) impacts the 

students’ understanding. In this case, it also involves only one factor, which is the 

teaching method.

The following definitions are now necessary.

Definition 5.18

An independent categorical variable that impacts the dependent numerical variable 

is referred to as a factor or treatment. The different values that a factor can assume 

are referred to as the levels of a factor.

Definition 5.19 ANOVA Model

 Yi j, ,= +μ α i + ei j . (5.78)

We now summarize our notations for a single-factor case with c number of levels in 

Table 5.8.

The overall mean of the observations is calculated as follows:

where n is the total number of observations.

The total sum of squares (SST) is the total sum of the squares of the difference 

between each observation and the grand (overall) mean. It is calculated as follows:

For i c= 1,2, ,  and j n= 1,2, , i, where n is the sum of observations n1 2, ,n n, c, 

where c is the number of levels, that is, n = +n n1 2 + + nc. Let us denote the jth 

observation of the ith treatment by Yi j, . Let us also denote the common effect of the 

experiment by αj. We further denote the effect of the ith treatment by α i. Finally, we 

denote the error of the  jth observation of the ith treatment by ei j, . Then, the one-way 

ANOVA model, which describes the relationship between the response and the treat-

ment, is expressed as follows:

c

y y+ + y
y = 1,1 1,2 + c n, c = =

∑ i=1
∑ni ic n

yi j, yi j,

∑
j=1 i=1 j=1

n n+ + + n c

∑ ∑
, (5.79)

1 2 c nnk
k=1
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= −∑
c ni

2
SST y yi j, .

i 1

∑( ) (5.80)

= j=1

The treatment sum of squares (SSTr) is the total sum of the squares of the differ-

ence between the group mean and the grand mean. It is calculated as follows:

∑
c

∑ ∑
ni

= −( )
ni

2
SSTr y y

2
i j, = nj i( )y − y . (5.81)

i=1 j= =1 j 1

The error sum of squares (SSE) is the total sum of the squares of the difference 

between each observation and the group means. It is calculated as follows:

SSE = −∑
c ni

( )2
y yi j, i .

i=1

∑ (5.82)

j=1

The degrees of freedom (d.f.) of the analysis in a one-way ANOVA is distributed 

as follows:

⎧{Total d.f. = +Treatment d.f. Error d.f.
⎪
⎨( )n n1 2+ + ... + nc −1 = (c −1) + (n − c) (5.83)
⎪( 1n c− =) ( 1)⎩ − + (n − c).

The mean squares are calculated as the ratio of sum of squares to the corresponding 

degrees of freedom. Hence, the treatment mean squares (MSTr) is

∑c ∑ni ( )y y− 2

SSTr i

MSTr = = i=1 j=1
, (5.84)

d.f. c −1

and the error mean squares (MSE) is:

TABLE 5.8 
Collected Measured Data Set

Levels of a Factor

1 2 i c

y1,1 y2,1 yi,1 yc,1

y1,2 y2,2 yi,2 yc,2

… … … …

y1,n1 y2,n2 yi n, i yc n, c

Means

Sum of Squares ∑ ni

j=1
(y1 j −

2
y1 )

y1

∑ ni

j=1
( 2
y2 j − y1 )
y2 yi

∑ ni (y2 j −
2

yi
j=1

) ∑ ni

j=1
(yc i, − 2

yc )
yc
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n 2
y y

SSE
 = =

∑ c i

i j, − i

MSE
i=1
∑ j=1

( )
. (5.85)

d.f. n c−

The F-ratio is the ratio between MSTr and MSE that follows an F-distribution with 

(c − 1) and (n − 1) degrees of freedom. It is calculated as follows (Figure 5.10):

∑ c n

y y
2

i
i=1
∑ i

−
j=1

( )
MSTr = c −1

∑ c ∑ ni
≈ −F cα ( 1, )n − c . (5.86)

MSE y y−
j

( )2

ij ii
i=1 =1

n c−

We will now discuss the complete ANOVA process. We start with:

Research Question

Assumptions
In ANOVA, the following assumptions are made about the data:

 i. Observations are independent.

 ii. Response variable is the interval or ratio level (i.e., continuous).

 iii. Independent variable has two or more categories (levels).

 iv. Population of the response variable is normally distributed.

 v. Populations have equal variances (homogeneous).

ANOVA Table
Table 5.9 for ANOVA shows the test statistics and decision criteria in order to 

make the decision with the hypotheses.

FIGURE 5.10 Rejection region of F distribution with d.f.1 and d.f.2.

The aim of this analysis is to compare the population means μ1 2, ,μ μ, c for each 

c population. Hence, the hypotheses are as follows:

H0 1: μ μ= =2 μc

 
H1 : At least one of the means different.
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Conclusion
If the test statistic F-ratio is higher than the critical value, Fα (d.f.1,d.f.2), then the 

null hypothesis is rejected. Otherwise, the null hypothesis has failed to be rejected.

Example 5.45

A farmer was interested in identifying the best amount of fertilizer of a certain 
brand that he needs to use for the vegetable plants. He randomly selected 15 
plants of a certain vegetable of same size and planted in 30 pots, which have simi-
lar environmental parameters such as soil, amount of water, and sunlight. He ran-
domly selected five plants and assigned one pound of fertilizer, and he randomly 
selected another five plants and assigned two pounds of fertilizer. No fertilizer was 
applied to the remaining five plants. After a month, he measured the growth of 
each plant (in inches) and the measurements are summarized in Table 5.10.

Using this data, conduct a one-way ANOVA to check whether the average 
growth of the plant due to different amounts of fertilizer is the same, using the 
level of significance as 0.05.

Answer

In this case, the factor is the fertilizer and the levels are amounts of fertilizer 0, 1, 
and 2 pounds. Thus, c = =3, n n1 2 = n3 = 5, and n1 2+ +n n3 = 15. Now, from Table 
5.9, We have the following Table 5.11:

The sum of the squares is calculated as follows:

1+ 0 + 2 2 0 3+ + + + 0 1 0 1+ + + + 3 + 4 + 6 + 3 + 4 30
y = = = 2 

15 15
 

TABLE 5.9
ANOVA Table

Degrees of 
FreedomSource of Variation Sum of Squares Mean Squares F-Ratio

Treatment SSTr ( −c 1) SSTr
MSTr =

(c −1)

MSTr

MSE

Error SSE ( −n c) SSE
MSE =

( −n c)

Total SST (n −1)

TABLE 5.10 
Summary of Measurements, Example 5.45

Fertilizer Growth

pound
0 ⎯ →⎯⎯ 1 0 2 2 0

pounds
1⎯⎯⎯→ 3 0 1 0 1

pounds
2 ⎯⎯⎯→ 3 4 6 3 4
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3 n

=∑∑
i

( )−
2

SST y yi j, = (1− 2)2 + (0 − 2)2 2 2+ −(2 2) + −(2 2) + (0 − 2)2

i=1 j=1

  + (3− 2)2 2+ −(0 2) + (1− 2)2 2+ −(0 2) + (1− 2)2

+ (3− 2)2 2+ −(4 2) + (6 − 2)2 + (3− 2)2 2+ −(4 2)

= 1 4+ + + + +0 0 4 1 4 1 4 1+ + + + +1 4 1+ + 6 +1+ 3 = 46.

= −∑
c

SSTr ∑ ∑
ni in

( )y y
2

i = n
2

j ( )y yi − = 5(1− 2)2 2+ 5(1− 2) + 5(4 − 2)2 = 30. 
i=1 j= =1 1j

=∑
3

SSE ∑
ni

( )y y−
2 2

i = − + 2 2 2
i j, (1 1) (0 −1) + −(2 1) + −(2 1) + (0 −1)2

i=1 j=1

 2 2  + (3−1) + −(0 1) + (1−1)2 2+ −(0 1) + (1−1)2

+ (3 − 4)2 2+ −(4 4) + (6 − 4)2 + (3− 4)2 + −(4 4)2

= 0 1+ + + + +1 1 1 4 1 0 1 0 1 0+ + + + + + + 4 1 0+ + = 16.

Let μ μ1 2, , and μ3 be the average growth of three fertilizer levels in inches. Then, 
our hypotheses are as follows:

H0 1: μ μ= =2 μ3

  
H1 : At least one of the means is different

From Table 5.9, ANOVA table, we have (Table 5.12):
Rejection criteria:

Test statistic = 11.25
Critical value = F Fα α(d.f.1, d.f.2) = =( )v1,v2 F0.05(2,12) = 3.89, where d.f. is 

denoted by v.

TABLE 5.11 
Summary of Measurements, Example 5.45

Fertilizer                   
            Growth of Plants (in inch) Due to Fertilizer

Plants No. 1 2 3 4 5 Means

pound
0 ⎯ →⎯⎯ 1 0 2 2 0

y1

5= = 1
5

pounds
1⎯⎯⎯→ 3 0 1 0 1

y2

5= = 1
5

pounds
2 ⎯⎯⎯→ 3 4 6 3 4

y3

20= = 1
5
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Thus, the test statistic is in the rejection region, as 11.25 > 3.89. 

Conclusion 
Since F-ratio is higher than the critical value, Fα (d.f.1,d.f.2) = 3.89, the null hypoth-
esis is rejected as the level of significance of 0.05. This means that we have 
evidence to support that at least one of the means is different from the others. 
Therefore, the average growth of the plant due to different amounts of fertilizer is 
not the same.

Using R-Program

Amount<-c("0lb","0lb","0lb","0lb","0lb","1lb","1lb","1lb","1lb",
"1lb","2lb", "2lb", "2lb","2lb","2lb")
Growth<-c(1,0,2,2,0,3,0,1,0,1,3,4,6,3,4)
fit<-aov(Growth~Amount)
summary(fit)

Output
            Df Sum Sq Mean Sq F value  Pr(>F)   
Amount       2     30  15.000   11.25 0.00177 **
Residuals   12     16   1.333                   

According to the above output, the p-value is 0.00177, which compares with the 
level of significance of 0.05. As the p-value is smaller than the α  level, we do 
reject the null hypothesis at the level of significance of 0.05.

Example 5.46

A researcher was interested in studying about the summer gas price in a particular 
state. She selected three main cities. In each city, she randomly selected several 
gas stations to record the gas prices per gallon. The following is the data she 
gathered:

TABLE 5.12
 ANOVA Table, Example 5.45

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom Mean Squares F-Ratio

Treatment SSTr = 30 ( −c 1) = 3 − 1 = 2 SSTr 30
MSTr = = = 15

(c −1) 2

MSTR = 11.25
MSE

Error SSE = 16 (n c− ) = 15 − 3 = 12 SSE 16
MSE = = = 1.33

(n −1) 12

Total SST = 46 (n −1) = 15 − 1 = 14

City A $2.50 $2.60 $2.65 $2.70 $2.60

City B  $2.70 $2.55 $2.60 $2.55

City C  $2.70 $2.46 $2.50 $2.70
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1+ 0 + 2 2 0 3+ + + + 0 1 0 1+ + + + 3 + 4 + 6 + 3 + 4 30 y = = = 2. 
15 15

Using this information and α = 0.05, conduct an ANOVA test to check whether the 
average gas prices per gallon of three cities in the summer are the same. 

Answer

Let μ μ1 2, , and μ3 be the average growth of three fertilizer levels in inches. Then, 
our hypotheses are as follows:

H0 1: μ μ= =2 μ3

  
H1 : At least one of the means is different.

Let μ μ1 2, , and μ3 be the average prices per gallon of gas in summer in three cities. 
Then, our hypotheses are as follows:

H0 1: μ μ= =2 μ3

  
H1 : At least one of the means is different.

The sum of squares are calculated as:

2.50 + +2.60 2.65 + +2.70 2.60
y1 = = $2.61,

5

 2.70 + +2.55 2.60 + 2.55  y2 = = $2.60, and
5

2.70 + +2.46 2.50 + 2.70
y3 = = $2.59.

5

 
2.50 + +2.60 2.65+ + + +2.70 2.60 2.70 2.55+ +2.60 2.55+ +2.70 2.46 + +2.50 2.70

y = = 2.60.
13 

3

SST = −∑
i=1

∑
ni

( )2
y yi j,

j=1

= (2.50 − 2.60)2 2+ −(2.60 2.60) + (2.65− 2.60)2 2 2+ −(2.70 2.60) + −(2.60 2.60)

  + −(2.70 2.60)2 2+ (2.55− 2.60) + −(2.60 2.60)2 2+ (2.55− 2.60)

+ −(2.70 2.60)2 + (2.46 − 2.60)2 2 2+ −(2.50 2.60) + −(2.70 2.60)

= 0.0871.

 

= −∑
c

∑
ni n

SSTr ( )
i

y y
2 2

i j= ∑n ( )y yi − = 5(2.61− 2.60)2 2+ 4(2.60 − 2.60) + 4(2.59 − 2.60)

 
i=1 j=1 j=1

= 0.0009.

2
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3
2

SSE = −∑∑
ni

( )y yi j, i

i=1 j=1

= (2.50 − 2.61)2 2+ −(2.60 2.61) + (2.65− 2.61)2 2+ −(2.70 2.61)

 
2 2 2

 
+ −(2.60 2.61) + −(2.70 2.60) + (2.55− 2.60)

+ −(2.60 2.60)2 2+ (2.55− 2.60) + −(2.70 2.59)2

+ (2.46 − 2.59)2 2 2+ −(2.50 2.59) + −(2.70 2.59)

= 0.0862.

From Table 5.9, ANOVA table, we have (Table 5.13):
Rejection criteria:

Test statistic = 0.052
Critical value = 4.10

Thus, the test statistic is not in the rejection region, as 0.052 < 4.10. 

Conclusion 
We do not reject the null hypothesis at the level of significance 0.05. This con-
cludes that there is no evidence to believe that there is significant difference 
among the gas prices in the three cities during the summer.

Using R-Program
City<-c("A","A","A","A","A","B","B","B","B","C","C","C","C")
Price<-c(2.50,2.60,2.65,2.70,2.60, 2.70, 2.55, 2.60, 
2.55,2.70,2.46, 2.50, 2.70)
fit<-aov(Price~City)
summary(fit)

Output
            Df  Sum Sq  Mean Sq F value Pr(>F)
City         2 0.00089 0.000446   0.052   0.95
Residuals   10 0.08620 0.008620 

TABLE 5.13 
ANOVA Table, Example 5.45

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom Mean Squares F-Ratio

Treatment SSTr = 0.0009 ( −c 1) = 3 − 1 = 2
0.0009

MSTr = = 0.00045
2

MSTr = 0.052
MSE

Error SSE = 0.0862 (n c− ) = 13 − 3 = 10
0.0862

MSE = = 0.00862
10

Total SST = 0.0871 (n −1) = 13 − 1 = 12
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According to the above output, the p-value is 0.95, which compares with the level 
of significance of 0.05. As the p-value is higher than the α  level, we do not reject 
the null hypothesis.

EXERCISES

 5.1. An engineer is going to compare the average densities of two types of 

wood. In order to test this, he randomly selected six samples of the first 

wood, and the average density and the standard deviation are 22.5 and 0.16, 

respectively. He randomly selected five samples of the second type of wood 

and found the average density and the standard deviation as 21.9 and 0.24, 

respectively. Assuming the populations are normally distributed, answer 

the following questions:

 (i) Construct a 95% CI for the difference in population means and inter-

pret the interval.

 (ii) Use hypothesis test to confirm the above findings in part (i).

 5.2. Amount of a certain acid in women’s blood was measured using nine 

women after taking a special drug. The following data shows that the aver-

age amount of acid in the blood differs before and after taking the drug, 

using the level of significance of 0.05.

 5.3. A marketing company compares the average amount of satisfaction view-

ers of the two channels get by watching these TC channels. Using two ran-

dom samples of people who watch these two channels, a survey was made 

to rate the two channels based on a five-point scale, with five being the 

highest satisfaction and one being the lowest. Calculate a 95% CI for the 

difference in the average satisfaction of watching these two TV channels. 

Interpret your result.

 5.4. The department of transportation of a major city examines the average 

time to commute from three neighboring suburbs to the city. The commute 

times in minutes were collected using three random samples, which are 

given in the following table:

Before 14 17 15 17 13 18 15 12 14

After 12 16 13 15 14 10 12 12 11

Channel 1 Channel 2

Sample size = 120 Sample size = 159

Average = 3.51 Average = 3.24

StDev = 0.51 StDev = 0.52
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Test whether the average commute time from each suburb to the main 

city is the same or different using the level of significance of 0.05.

 5.5. A novel airline is going to compare the average air fare between two desti-

nations by considering three popular airlines. A random sample of air fares 

was collected during a particular month, which is given in the following 

table.

Based on the collected data, compare the average air fare among the 

three airlines and state whether they are the same or different. Use α = 0.05.

Airline A Airline B Airline C

$101 $151 $101

$108 $149 $109

$98 $160 $198

$107 $112 $186

$111 $126 $160

Suburb A Suburb B Suburb C

10.5 12.4 9.8

11.0 11.5 10.1

12.6 13.5 10.5

10.7 12.4 9.7

11.2 13.8 10.0

11.5 11.0

11.9
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6 Nonparametric Statistics

6.1  WHY NONPARAMETRIC STATISTICS?

It is believed that the idea about nonparametric is as nearly old as statistics, as early 

works in this theory go back to fifteenth and sixteenth centuries. Arbuthnot, a math-

ematician, investigated whether the number of male births is higher than the number 

of female births, during the period of 1629–1710. This is considered as the first sign 

test. Among statisticians, it is believed that the first work in nonparametric statistics 

belongs to the paper written by Hotelling (1895–1973) and Pabst (1936), who dis-

cussed about the rank correlation. The origin of the term “nonparametric” goes back 

to 1942 in a paper by Wolfowitz (1910–1981). Introduction of nonparametric in the 

literature moved the theory of statistics beyond the parametric setting.

In inferential statistics, we considered some types of distribution regarding the 

underlining data. Statistical procedures based on distribution regarding the popula-

tion are referred to as the parametric methods. For example, when calculating the 

confidence intervals or when conducting hypothesis test, we assume that the data 

comes from a normal distribution (or from t-distribution) and we use parameters 

such as the mean and the standard deviation. However, not all distributions contain 

parameters as normal distribution does. Hence, in those cases, we cannot use para-

metric methods; instead, we turn to use statistical procedures that are not based on 

distributional assumptions. Such methods are referred to as the distribution free-
techniques or nonparametric techniques.

In parametric methods, we usually make assumptions that the population is nor-

mally distributed and is symmetric about the mean. In such cases, all calculations 

are made based on these critical assumptions. But what if the normality feature is 

not present? Naturally, the use of mean as a measure of central tendency will not be 

available any longer. Thus, the nonparametric statistics steps in and help us in such 

cases letting us use the median instead and do all necessary calculations based on the 

median. Thus, if we desire to analyze data using parametric tests and the assump-

tions are not satisfied, nonparametric statistical procedures can be used instead.

Here are some advantages and disadvantages of nonparametric methods:

 1. Clearly due to the fewer number of assumptions about the data, nonpara-

metric methods can be applied to a larger variety of data compared to 

the parametric methods. When considering nominal and ranked data, for 

instance, it is very difficult to use parametric methods to analyze such data. 

This is also the case when there are outliers in the data.

2. Calculations in the nonparametric procedures are easy to perform com-

pared to those in the parametric methods.
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 3. It is well known that the parametric techniques are more efficient than 

the nonparametric techniques. Hence, nonparametric methods are applied 

when assumptions of parametric procedures fail. 

 4. Unfortunately, most calculators do not support nonparametric procedures. 

Hence, calculations for nonparametric procedures need to be done manu-

ally or by computer programming.

 5. In nonparametric statistics, the actual values of the data are not necessar-

ily of interest. It is only the rank that matters, as the result. Thus, the exact 

values of the data are not calculated, which are opposite to the parametric 

approach.

6.2  CHI-SQUARE TESTS

Chi-square tests are considered as appropriate for nominal-level and categorical-

level measurements such as major of students, brand of a soda, students’ classifica-

tion (freshman, sophomore, junior, and senior), and gender of students. Sometimes 

it is necessary to investigate the proportions or relative frequencies, for example, the 

brand of soda that is preferred by young men or preference of engineering or biol-

ogy by students as major. Thus, unlike in the parametric case, here in nonparametric 

case, there is no variable to be measured; rather, the number of objects (frequency) 

or proportion of objects is determined. Furthermore, we do not make assumptions 

about the population that follows a certain parametric distribution.

The chi-square test is applied for nonparametric tests mainly with the following 

three cases: 

 1. Goodness-of-fit,

2. Testing of independence,

3. Testing for homogeneity.

 

 

We now explain each of these three items.

6.2.1  GOODNESS-OF-FIT

The Chi-Square goodness-of-fit is used to compare the frequency (with m number of 

categories) of a single variable with its theoretical distribution. As the name “good-

ness-of-fit” implies, this test validates how well the observed frequencies follow the 

theoretical (expected) frequencies of m number of categories of the variable of inter-

est. This is tested using the Chi-square goodness-of-fit as follows:

Hypotheses : Ho : Population distribution and the theoretical distribution are the same.
 

Ha : Population distribution and the theoretical distribution are not the same.

 (6.1)

2 ∑
m ( )O E− 2

 Test statistic : ,χ = i i
 (6.2)

Eii=1
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where Oi represents the observed value of ith category of the variable, and Ei 

represents the expected value of ith category of the variable.

 

Rejection criteria : Reject the null hypothesis if χ χ2 > 2
α , 1m− at α level of significance,

 (6.3)

where χ 2
α , 1m−  represents the critical value, which is given in hi-Square table 

with level of significance α  and degrees of freedom m − 1.

Note 6.1

The Chi-Square goodness-of-fit is appropriate if the expected frequency of each 

category of the variable is higher than 5.

As an illustration, Figure 6.1 shows the critical value χ 2
α , 1m−  and the shaded 

region, the area of the right side of the critical value. This is also called the rejec-
tion region. If the calculated test statistics χ 2 falls on the rejection region, that is, 

if χ 2 > χ 2
α , 1m− , the null hypothesis is rejected.

Example 6.1

An administrator of a college assumes that each of their five majors has about equal 
number of students. The majors are Biology, Chemistry, Mathematics, History, and 
Social Sciences. Using a random sample of 2,500 students, the administrator finds 
the following information (Table 6.1).

We want to test whether there is enough evidence to support administrator’s 
claim, using the level of significance α = 0.05.

FIGURE 6.1 Critical value of chi-square distribution.

TABLE 6.1
Observed Distribution for Example 6.1

Major Biology Chemistry Mathematics History Social Sciences

Number of 
students

550 420 500 525 505
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Answer

We consider “major” as a category. Hence, there are five categories in this case, 
that is, m = 5. The hypotheses can, now, be considered as follows:

Ho: Each major has about the same number of students.
Ha: Each major does not have about the same number of students.

Using, the test statistic (6.2), we will have:

5 ( )2

2 −χ ∑ O E= i i

Eii=1

 ( )550 − 500
2 (420 − 500)2 ( )500 − 500

2 2(525 − 500) (505 − 500)  
= + + + +

500 500 500 500 500

= +5 12.8 + 0 +1.25 + 0.05

= 19.1.

The critical value can be found from the Chi-Ssquare table, which is 
χ 2

0.05,5−1 = =χ 2
0.05,4 9.488. This value is smaller than the test statistic of 19.1. 

Therefore, we reject the null hypothesis at the level of significance of 0.05. In 
other words, the administrator’s claim is not accepted.

Using TI83/84 calculator:
We can calculate the test statistics using TI83 or TI84 calculator, as follows:

 1. Select STAT button and select EDIT.
 2. Enter Observed values into L1 and Expected values into L2.
 3. Click STAT and then select TESTS.
 4. Choose X2GOF Test; select L1 as the Observed and L2 as the Expected. 

Enter 4 as the df and then select CALCULATE.
 5. At this point, you should see the test statistic value 19.1 and the p-value, 

df, and contribution from each category, etc.
 6. Then, compare the p-value with α  level of 0.05, as explained below to 

conclude:

If the p-value is less than or equal to α  level, then the null hypothesis is rejected 
at the significance level, α .

Using R:
We can calculate the test statistics using R as follows:

Chisq.test(c(550,420,500,525,505))

The following output should appear:

Chi-squared test for given probabilities
data: c(550, 420, 500, 525, 505)
X-squared = 19.1, df = 4, p-value = 0.0007512

2
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As it can be seen from the output, the p-value is 0.0007512, which is less 
than the α  level of 0.05. Therefore, the null hypothesis is rejected at the level of 
significance of 0.05.

6.2.2  TEST OF INDEPENDENCE

Chi-square test can be used to test whether there is a relationship between two cat-

egorical variables in the population. Here, each individual sample point is classified 

into one of the above two random variables, which makes a frequency distribution of 

dimension two. These are called the contingency tables. 

The following is the procedure to use chi-square test of independence:

Hypotheses : Ho : Two variables ( )or levels of variables are independent.
   (6.4)

Ha : Two variables ( )or levels of variables are dependent.
 

Test statistic: The same as (6.2).

Assuming the null hypothesis, Ho, the expected frequencies, Eij, of the cell number 

(i, j) can be calculated by

(Total of row number i j)(Total of row number )
Eij = . (6.5)

Total number of observations
 

Rejection criteria: The same as (6.3).

The degrees of freedom, denoted by df, is:

 df = −(number of rows 1)(number of columns −1) = ( −1)( −1). (6.6)

Example 6.2 Calculation of Expected Value

r c

Variable B

1 2 … j … m Total

1 a b1 1 R1

2 R2

⋮ … … ⋮

ri
ab

le
 A

i Ri

a
V ⋮ … … ⋮

n … … Rn

Total C1 C2 … Cj … Cm N

Let us consider a two-way contingency table with two variables A (with n levels) 
and B (with m levels) as follows: The column and row totals in each correspond-
ing cell are represented by C C1 2, , Cm  and R R1 2, , Rn, respectively. Consider a 
general cell ( ,i j).
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Let Eij be the expected value of the row number i  and the column number j. If 
the two variables A and B are independent, then

R P a( )b = =P P a( )P b( ) C
= i j

i j ij i j . 
N N

Hence, the expected value of the cell ( ,i j) can be found as

Ri ×C j (Total of row number i)(Total of row number ) E = =NP = . ij ij N N

Example 6.3

Let us refer to Example 6.1. Suppose the administrator of the college wants to test 
whether the levels of college education and the major are independent of each 
other or not. To test the independence or dependence of the college education 
and the major, the college completes the contingency table, which is given in 
Table 6.2. 

Answer

We test the above hypothesis using a Chi-Square test of independence at the level 
of significance of 0.05. Hence, the hypotheses are as follows:

Ho: Levels of college education and major are independent.
Ha: Levels of college education and major are dependent.

Assuming the null hypothesis, Ho , the expected frequencies, Eij , of the cell num-
ber (i, j) can be calculated using (6.5). Thus, the expected frequencies can be 
calculated using (6.3) as follows:

 
(800)(550) (800)(420) (800)(500) (800)(525) (800)(505)

E11 = =,E E, = = E
, 2

14 ,
2,500

12
2 500

13 ,E
,500 2,500

15 = ,
2,500

(725)(550) (725)(420) (725)(500) (725)(525) (725)(505)
E21 = =,E E, = ,E = ,E = ,

2,500
22

2,500
23

2,500
24

2,500
25

2,500

 (540)(550) (540)(420) (540)(500) (540)(525) (540)(505)
E31 = =,E E32 , = ,E = ,E =

2,500 2,500 ,500
35 ,

2,500
33 34

2 2,500

(435)(550) (435)(420) (435)(500) (435)(525) (435)(505)
E41 = =,E E,

2,500
42

2,500
43 = ,E44 = ,E = .

2,500 2,500
45

2,500

Instead of calculating E41  using the previous equation, one can use the following 
method as well.

 
E41 = −550 ( )E E11 + 21 + E31 ,E42 = 420 − (E12 + E22 + E32 ),E43 = −500 (E13 + E23 + E33 ,

E 44 = −525 ( )E E14 + 24 + E34 ,E45 = −505 (E15 + E25 + E35 ).

j

)
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The expected frequencies are shown in Table 6.3.
Now, we have both observed values, Oij, and expected values, Eij, to complete 

the problem. Here, the test statistic (6.2) can be revised for two variables as:

 
m n ( )χ =∑∑ O Eij −

2

ij2 . (6.7)
Eiji=1 j=1

Thus, 

 
m

2 ( )χ =∑∑
n −

2
O Eij ij

Eiji=1 j=1

(175 −176)2 2(125 −134.4) (200 −160)2 (150 −168)2 (150 −161.6)2

= + + + + + 176 134.4 160 168 161.6

= 43.21.

In addition, the critical value χ 2 2
α , .d f = =χ0.05,12 21.03 at α level of significance. 

Therefore, the test statistic is greater than the critical value. This suggests that the 
null hypothesis should be rejected at the significance level of α = 0.05. This means 
that there is no evidence to support the claim that levels of college education and 
major are dependent.

TABLE 6.2
Level of Education and Major (Example 6.3)

Social 
SciencesLevel\Major Biology Chemistry Mathematics History Total

Freshman 175 125 200 150 150 800
Sophomore 175 125 150 150 125 725
Junior 125  90  75 125 125 540
Senior  75  80  75 100 105 435
Total 550 420 500 525 505 2,500

TABLE 6.3
Expected (Theoretical) Values (Example 6.3)

Social 
SciencesLevel\Major Biology Chemistry Mathematics History Total

Freshman 176.0 134.4 160.0 168.0 161.6 800
Sophomore 159.5 121.8 145.0 152.3 146.5 725
Junior 118.8  90.7 108.0 113.4 109.1 540
Senior  95.7  73.1  87.0  91.4  87.9 435
Total 550 420 500 525 505 2,500
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Using TI 83/84 calculator:

 1. Enter the contingency table of data as a matrix. To do this, select 2nd and 
“X−1”.

 2. Now select “[A]”, change the dimension of the matrix from 1 1×  to 
“4 × 5 ”, and hit enter.

 3. Now enter all the data in Table 6.3 to the matrix A.
 4. Select “STAT” and then “χ 2 -test” to perform the chi-square test.
 5. Select matrix “A” as Observed and leave the Expected as “B”, then hit 

“Calculate”.
 6. Now you will have the output with test statistics, df, and the p-value.
 7. Consider the p-value and level of significance to conclude.

Using R:
First of all, the frequency table should be created with two rows.

Fresh<-c(175,125,200,150,150)
sophomore<-c(175,125,150,150,125)
junior<-c(125,90,75,125,125)
senior<-c(75,80,75, 100,105)
LevelMajor<-data.frame(rbind(fresh, sophomore, junior, senior))
chisq.test(LevelMajor)

Output:

Pearson’s Chi-squared test
data:  LevelMajor
X-squared = 43.231, df = 12, p-value = 2.063e-05

As it can be seen in the output, the p-value is 2.063e-05, which is very close to 
zero and less than α  level of 0.05. Therefore, the null hypothesis is rejected at the 
level of significance α = 0.05. This means that there is no evidence to believe that 
both the levels of college education and the major are independent.

6.2.3  TEST OF HOMOGENEITY

This particular test is mainly applicable to a single variable, which is of categorical 

nature. This variable represents two or more populations. Our interest is to deter-

mine whether each population has the same frequency distribution of the variable or 

a different one. 

Suppose k populations p p1 2, ,…, pk  are under consideration. Our interest is to test 

whether these proportions are the same across all the k populations. To perform this 

test, we can construct the hypotheses of the test of homogeneity as follows: 

Hypotheses : :H0 1p = =p2 pk

  (6.8)
H pa i: ≠ pj , for some i, j.

Test statistic: The same as (6.2), where the null hypothesis, Ho, and the expected 

frequencies, Eij, of the cell number (i, j) can be calculated using (6.3).

Rejection criteria: The null hypothesis is rejected if (6.3) is true.
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In order to understand how to use chi-square test, consider the following example.

Example 6.4

Consider a manufacturer that produces electric bulbs. Assume that the factory has 
five production lines. The quality controller of the manufacturer randomly collects 
samples of the produced bulbs from each line as detailed in Table 6.4. We are to 
conduct a chi-square test of hypothesis using the level of α = 0.05 to test whether 
the proportion of defective bulbs produced by each production line is different.

Answer

In this example, the hypotheses can be written as follows:

Ho: Proportions of defective bulbs for all production lines are the same, that 
is, p p1 = =2 3 4p = p = p5 (here pi is the proportion of defective bulbs in 
line number i).

Ha: Proportions of defective bulbs for all production lines are not the same, 
that is, i j, = ≠1,2,3,4,5, pi jp .

As explained before, the expected frequencies, Eij, of the cell number (i, j) can be 
calculated using (6.5) as given in Table 6.5.

From Table 6.5, the test statistic can be calculated as follows:

TABLE 6.4
Observed Values for Example 6.4

Production Line

  

1 2 3 4 5

Number of non-defectives 44 58 64 43 52

Number of defectives  6  7 6 8  8

TABLE 6.5
Expected Values for Example 6.4

Production Line 1 2 3 4 5 Total

# Non-defectives 44.09 57.31 61.72 44.97 52.91 261

# Defectives 5.91 7.69 8.28 6.03 7.09  35

Total 49 65 70 45 60 296

      

     

  

∑
m

∑
n ( )2

O E 2 2 2

χ = ij2
− ij (44 − 44.09) (58 5− −7 31) (8 − 7.09)+ + + + = 1.64.
Eij 44.09 57.31 7.09

i=1 j−1
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In addition, the

 df = −(number of rows 1)(number of columns −1) = (2 −1)(5 −1) = 4 

and using α  level of significance of 0.05, then the critical value, χ 2
α ,d f⋅ = =χ 2

0.05,4 9.49. 
Therefore, the test statistic is less than the critical value. This suggests that we do 
not reject the null hypothesis at the level of significance α = 0.05. That is, we have 
evidence to support the claim that the proportions of defective bulbs across all the 
production lines are not the same.

Using R:

defective<-c(44, 58, 64, 43, 52)
nondefctive<-c(6, 7, 6, 8, 8)
items<-data.frame(rbind(defective,nondefctive))
chisq.test(items)

Output:

Pearson’s Chi-squared test
data:  items
X-squared = 1.6419, df = 4, p-value = 0.8012

Note 6.2

The above p-value is 0.8012, which is higher than α = 0.05. Therefore, we fail to 

reject the null hypothesis at the level of significance α = 0.05.

6.3  SINGLE-SAMPLE NONPARAMETRIC STATISTIC

In statistics, sometimes we need to make inference based on a single sample. In other 

words, there may be situation where we have a single sample to analyze in order to 

make inference about the population parameters. In nonparametric statistics, we use the 

single-sample sign test procedure to make inference about the population parameters.

6.3.1  SINGLE-SAMPLE SIGN TEST

In inferential statistics, inferences about population parameters are based on the col-

lected sample statistics. Usually in parametric approach, when conducting a hypoth-

esis test about the population mean, μ, two cases are considered. If it is possible to 

collect a sample over 25 observations, it is considered as a large sample. Therefore, 

large sample inference can be applied for those cases. Similarly, if the sample size is 

less than 25 observations, small sample inference can be applied. For this case, it is 

required to have a sample from a normally distributed population.

If the above two criteria are not met, we have to conduct a hypothesis test using 

the nonparametric approach. As explained before, in nonparametric approach, we 

consider the population median, denoted by μ, instead of population mean, μ. Hence, 

let μ0 be the hypothesized value of the population median. Here, we consider the fol-

lowing two cases based on the sample sizes (Table 6.6):
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Case I: Small sample (n < 25)

Case II: Large sample (n ≥ 25)

Test statistics:

( )2 1K n+ −
Z0 = , (6.9)

n
 

where K  is calculated as explained in Case I.

Conclusion: Reject the null hypothesis if the test statistic K  critical value. 

Here, the critical value is calculated using the standard normal distribution. Another 

approach is to compute the p-value. With the p-value, we can reject the null hypoth-

esis if the p-value < level of significance α .

≤

Steps in Single-Sample Sign Test

 1. Arrange the observations from the lowest to the highest.

2. Assign the minus sign (−) to the observations whose values are less than μ0 

and the plus sign (+) to the observations whose values are greater than μ0. If 

there are any observations, whose values are equal to μ0, just discard it.

3. Calculate the test statistic (K  or Z0 as explained in Case I and Case II).

5. Reject the null hypothesis if test statistic K ≤ critical value, which is given 

by the sign test table.

 

 

 4. Compare the critical value using the appropriate table for the given α  level 

and the sample sizes.

 

Example 6.5

A sociologist collected a data set that contains monthly salary of 15 families in a 
particular city as follows:

TABLE 6.6
Single-Sample Hypothesis Test Using Sign Test

Two-Tailed Test Lower-Tailed Test Upper-Tailed Test

Hypotheses

Test statistic K is the minimum value of 

the number of minus or 

plus signs

K is the number of 

positive signs

K is the number of 

minus signs

Rejection criteria Reject the null hypothesis if p − value ≤ α level. Here, p-value is calculated 

using binomial distribution with n = sample size and p = 0.5.

Ho : μ μ= 0

Ha : μ μ≠ 0

Ho : μ μ= 0

Ha : μ μ< 0

Ho : μ μ= 0

Ha : μ μ> 0
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He claims that the median monthly salary of a family in that city is not less than 
$2,000. Using the level of significance, α = 0.05, determine if his collected data 
supports his claim.

Answer

Let μ denote the median income of a family of the city and μ0 = $2,000. Then, our 
aim is to conduct the following hypothesis test:

 

Let us consider Table 6.7:
There are seven minus signs and seven plus signs in the table. Hence, K = 7. 

According to the sign test table, the critical value is 3. According to the rejection 
criteria, the null hypothesis is rejected if test statistic K ≤ critical value. Here, 
test statistic K = 7, which is less than the critical value of 3. Therefore, the null 
hypothesis is not rejected or failed to reject the null hypothesis α = 0.05. In other 
words, this means that there is no statistical evidence to support that the popula-
tion median is less than $2,000.

TABLE 6.7
Monthly Family Incomes

Income Sign

$1,250 −
$1,750 −
$1,750 −
$1,800 −
$1,800 −
$1,900 −
$1,950 −
$2,000

$2,050 +
$2,100 +
$2,100 +
$2,200 +
$2,300 +
$2,500 +
$2,800 +

$1,900 $2,100 $1,750 $1,800 $2,050

$2,300 $2,500 $1,250 $2,800 $2,200

$1,950 $2,100 $2,000 $1,800 $1,750

Ho : μ = $2,000.
 

Ha : μ < $2,000.
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Using R:

library(BSDA)
income<-c(1250, 1750, 1750, 1800, 1800, 1900, 1950, 2000, 2000, 
2100, 2100, 2200, 2300, 2500, 2800)
SIGN.test(income, md = 2000, alternative= “less”,conf.level= 
0.95)

Output:

One-sample Sign-Test
data: income
s = 6, p-value = 0.5
alternative hypothesis: true median is less than 2000

According to the output, the p-value is 0.5, which is higher than the α  level of 
0.05. Therefore, the null hypothesis cannot be rejected at the level of significance 
of 0.05. That is, the sociologist’s claim is valid.

Example 6.6

An owner of a store believes that the median number of water bottle packs he sells 
each day is more than 10 packs. Using his previous records, he randomly selects 
30-day sells as one is displayed below:

Using the level of significance, α = 0.05, determine if his collected data sup-
ports the storeowner’s claim.

Answer

Let μ denote the median number of water bottle packs the storeowner sells per 
day. Hence, we need to conduct the following hypothesis test about μ.

The given data is organized in Table 6.8.
Thus, K, in this case, is the number of negative signs, which is 15. Sample size 

being 30 is considered to be large. Hence, we use the test statistics as (6.9). Thus,

( )2 1K n+ − (2 × +15 1− 30) Z0 = = = 0.1826. 
n 30

Also,

 p P− =value (Z > 0.1826) = 0.4276, 

11  8 20 15 6  8 16 15 10 9

 7 14 17  7 1 16 10  9 18 7

12  6 18  9 5 11  7  4 17 5

Ho : 1μ = 0
 

Ha : μ > 10.
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which is greater than the significance level of α = 0.05. Therefore, at α = 0.05, the 
storeowner’s claim cannot be rejected.

Using R:

library(BSDA)
bottles<-c( 11, 8, 20, 15, 6, 8, 16, 15, 10, 9,
7, 14, 17, 7, 1, 16, 10, 9, 18, 7,
12, 6 ,18, 9, 5, 11, 7, 4, 17,5)
SIGN.test(bottles, md = 10, alternative= “greater”,conf.level= 
0.95)

Output:

One-sample Sign-Test
data:  bottles
s = 13, p-value = 0.7142
alternative hypothesis: true median is greater than 10
95 percent confidence interval:

According to the output, the p-value is greater than 0.05. Therefore, at the level of 
significance of 0.05, the null hypothesis cannot be rejected.

6.3  TWO-SAMPLE INFERENCE

When conducting two-sample inference under parametric approach, we consider 

two-sample t-test and paired t-test depending on the dependence or independence of 

the two samples. When the parametric assumptions are not met, we have to look for 

TABLE 6.8
Monthly Sells of Water Bottle Packs

Number of Packs Sign Number of Packs Sign

1 − 10

4 − 10

5 − 11 +
5 − 11 +
6 − 12 +
6 − 14 +
7 − 15 +
7 − 15 +
7 − 16 +
7 − 16 +
8 − 17 +
8 − 17 +
9 − 18 +
9 − 18 +
9 − 20 +
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nonparametric methods. Therefore, similar to the parametric approach, we consider 

the two cases of independent and dependent sample inferences separately.

6.3.1  INDEPENDENT TWO-SAMPLE INFERENCE USING MANN–WHITNEY TEST

When inferring about two independent samples, Mann–Whitney test is used and 

this is considered as the nonparametric version of the two-sample t-test. We use 

this nonparametric test when testing a hypothesis of equality of medians in two 

independent samples. In other words, we can test whether the two populations have 

the same distributions (same mediansor different distributions. There are some dif-

ferent names that are frequently referred to this test such as Mann–Whitney U-test, 
Mann–Whitney–Wilcoxon test, Wilcoxon rank-sum test, and Wilcoxon–Mann–
Whitney test.

Test of hypotheses regarding this tes

Ho : The two populations are equal.
  (6.10)

Ha : The two populations are not equal.

Mann–Whitney test is usually performed as a two-sided test as shown in (6.10). 

One-sided hypothesis is conducted if we are interested in identifying a positive or 

negative shift in one population with respect to another population. For small sample 

sizes, the following steps are used to conduct the Mann–Whitney test. 

Steps in Mann–Whitney Test
Let n1 and n2 be the sizes of the two samples. The following steps should be taken 

into account:

 1. Combine both samples and arrange the data from the smallest to the largest.

 2. Rank each data point as 1,2, ,n n1 2+ . If there are ties (identical observa-

tions), then replace the rank of each observation by the average of ranks 

of the identical observations. For instance, if the sixth observation and the 

seventh observation are identical (same value), then assign the rank of 6.5 

(average of 6 and 7) instead of their previous ranks of 6 and 7.

 3. Let R1 and R2 be the ranks of the observations from the first and the second 

samples. Calculate the following two statistics, U1 and U2. Let’s label the 

smaller value of them as U , that is, 

U U= min( )1 2,U ,

1
U n1 1= +n n2 1 ( )n1 1+1 ,−  R

2

1
U2 1= +n n2 n ( )

2
2 n2 +1 .− R2

 

 4. Now, compare the critical value that can be found from the table for Mann–

Whitneytest, based on the significance level and the sample sizes with the 

value of U. Reject the null hypothesis if U ≤ critical value.
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Example 6.7

A study was conducted to examine whether the accuracy of throwing the basket-
ball to the basket depends on the handedness of the player. To test this, a group 
of 17 players were randomly selected and each player was given 20 chances to 
shoot the ball from the free throw line. Table 6.9 shows the number of successful 
shots they made.

Using α = 0.05, test whether the given data supports the claim that handedness 
of the player affects the accuracy when shooting the ball.

Answer

If the handedness does not impact the accuracy, the accuracy of the left handers 
and the right handers should be the same. Therefore, the distribution of scores for 
both left and right handers should be the same. Hence, the related hypotheses can 
be defined as follows:

Ho: Distributions of the scores for both right and left handers are the same.
Ha: Distributions of the scores for right handers are higher than those for 

left handers.

Now, in Table 6.10, we arrange the data set to find the rank for each data point.
Since,

1
U1 1= +n n2 n ( )n +1 ,− R

2
1 1 1

1
U2 1= +n n2 n ( )n +1 ,− R

2
2 2 2

we have: 

1
U1 = ×10 7 + ×10 × ( )10 +1 − =83 42,

2

1
U2 = ×10 7 + × 7 × ( )7 +1 − 70 = 28.

2

Hence, U = 28. Thus, according to the table for Mann–Whitney test, the critical 
value is 17. Since U ≤ critical value is not satisfied, at the level of significance, 
α = 0.05, the null hypothesis will not be rejected. That is, there is no evidence to 
support the claim that the handedness of the basketball player affects the accuracy 
of shooting the ball at the level of significance of 0.05.

TABLE 6.9
Left Handers’ vs Right Handers’ Accuracy When Shooting the Ball

Right handers 15 16 18 14 15 11 15 17 10 12

Left handers 17 12 13 16 18 14 16

    



443Nonparametric Statistics

Using R:

Rhand<-c(15,16,18,14,15,11,15,17,10,12)
Lhand<-c(17,12,13,16,18, 14,16)
wilcox.test( Rhand,Lhand, alternative = “greater”,conf. level = 
0.95)

Output:

Wilcoxon rank sum test with continuity correction
data:  Rhand and Lhand
W = 28, p-value = 0.7696
alternative hypothesis: true location shift is greater than 0

As it can be seen in the output, the p-value is 0.7696, which is greater than the 
α  level of 0.05. Therefore, the null hypothesis at the level of significance of 0.05 
cannot be rejected.

Example 6.8

An administrator of a particular university wants to test whether the median GPAs 
(grade point averages) for two different majors, A and B, in the college are the 
same. To conduct this test, he randomly selects two samples of students and 
records GPAs of each major as shown in Table 6.11.

Using the level of significance of 0.05, test whether the population median 
GPAs for two majors differ.

TABLE 6.10
Organized Ranks of Left Handers vs Right Handers

Right-Handed Right-Handed Left-Handed Left-Handed 
Data Data Ranks Data Data Ranks

10 1

11 2

12 3.5 12 3.5

13 5

14 6.5 14 6.5

15 9

15 9

15 9

16 12 16 12

16 12

17 14.5 17 14.5

18 16.5 18 16.5

R1 = 83 R2 = 70
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Answer

Let us define the related hypotheses as follows:

Ho : Distributions of the PGAs for both majors are same.

Ha : Distributions of the PGAs for both majors are different.

Now, we arrange the data set to find the ranks for each data point as displayed in 
Table 6.12.

Since

1
U1 1= +n n2 n ( )n +1 ,− R

2
1 1 1

1
U2 1= +n n2 n ( )n + − R

2
2 2 1 ,2

the

TABLE 6.12
Ranks of GPA of Major A and Major B

Major A Data Major A Data Rank Major B Data Major B Data Rank

1.65  9 1.20  1

1.77 11 1.23  2

1.80 12 1.29  3

2.25 16 1.38  4

2.45 17 1.43  5

2.68 18 1.47  6

2.70 19 1.54  7

2.70 20 1.64  8

2.85 21 1.76 10

2.89 22 2.01 13

2.91 23 2.06 14

2.92 24 2.07 15

2.98 25

3.15 26

4.00 27

R1 = 290 R2 = 88

TABLE 6.11
GPAs of Majors A and B
A 2.70 3.15 1.77 2.45 1.80 2.92 2.91 2.98 2.70 1.65 4.00 2.68 2.89 2.85 2.25

B 2.06 1.29 1.76 1.20 1.54 1.23 1.64 1.47 2.07 1.38 1.43 2.01
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we have:

1
U1 = ×15 12 + 15(15 +1) − 290 = 10,

2  
1

U2 = ×15 12 + 12(12 +1) − 88 = 170.
2

Also, U U= =min( 1 2,U ) min(10,170) = 10. Thus, U = 10. Thus, according to 
the table for Mann–Whitney test, the critical value is 49. Therefore, it satisfies 
U ≤ Critical Value. Hence, at the level of α = 0.05, the null hypothesis is rejected.

Using R:

Major_A<-c(2.70,3.15,1.77,2.45,1.80,2.92,2.91,2.98,2.70,1.65,
  4.00,2.68,2.89,2.85,2.25)
Major_B<-c(2.06,1.29,1.76,1.20,1.54,1.23,1.64,1.47,2.07,1.38,
  1.43,2.01)
wilcox.test(Major_B, Major_A, alternative=”two.sided”,
conf.level = 0.95)

Output:

Wilcoxon rank sum test with continuity correction
data: Major_A and Major_B
W = 10, p-value = 0.0001045
alternative hypothesis: true location shift is not equal to 0

In the output, the p-value is smaller than the level of significance of 0.05. 
Hence, the null hypothesis is rejected. This means that we favor the alternative 
hypothesis of two different distributions of GPAs in two majors. This favors the 
claim that the GPAs of both majors are different.

At times, we come across two data sets in which one set depends on the other. 
For instance, consider a study to examine the impact of a particular medical treat-
ment. In this case, we can assign the treatment to a certain number of randomly 
selected subjects and take measurements before and after the application of the 
treatment. Then, the second set of measurements will depend on the first set of 
measurements. This kind of dependence has also considered as a paired sample 
case. In a situation like this, the Wilcoxon signed-rank test is used to make an infer-
ence regarding the two samples.

Steps in Single-Sample Sign Test

2. Find the absolute values of the difference, | |di , and discard the zeros.

Let x1 2, , ,x xn  be the first data set and y y1 2, , , yn be the second data set, 
which depends on the first. Let di i= −y xi; 1i = ,2, ,n and μD be the difference 
in the two population medians (i.e., μ μD Y= − μX ). To make inference between μX  
and μY , the following hypotheses should be tested. So, we will arrange the values 
of di . Let R− denote the sum of the ranks of the negative values of di  and R+  denote 
the sum of the ranks of the positive values of di . We now take the following steps:

 1. For each pair, subtract the second value from the first (i.e., 
di i= −y xi; 1i = ,2, ,n).

 2. Find the absolute values of the difference, | |di , and discard the zeros.
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 3. Rank absolute values of the differences from the smallest to the largest. 
If two values have the same absolute values, assign the average value of 
their ranks to each (as explained before).

 4. Assign the minus sign (−) to the observations whose di  values are nega-
tive, and assign the plus sign (+) to the observations whose di  values are 
positive.

 5. Take the sum of the ranks of both positives and negatives. Let R+  and R−  
represent the two values, respectively (Table 6.13).

Case I: Small sample hypothesis test
Case II: Large sample hypothesis test

Test statistic,

 

n n( 1+ )
R −

Z = 4
0 , (6.11)

n n( 1+ +)(2 1n )

24

where R is the value calculated in Case I.
Conclusion: Reject the null hypothesis by comparing Z0 with the critical 

value calculated using the standard normal distribution. In another way, 
we reject Ho if p-value < level of significance α  or test statistic K ≤ 
 critical value.

Example 6.9

A pharmaceutical company believes that its new drug lowers the blood pressure. 
The company wants to examine this claim and asks a researcher to conduct a 
research. The researcher randomly selects 10 people for this study, and he mea-
sures the participants’ blood pressures before and after taking the drug. The col-
lected data is given in Table 6.14. Let X and Y be the variables representing the 
blood pressures before and after taking the drug, respectively.

At α = 0.05, does the data support the belief of the company?

TABLE 6.13
Paired Sample Hypothesis Test (Rα Values Are from the Wilcoxon 
Signed-Rank Table)

Two-Tailed Test Lower-Tailed Test Upper-Tailed Test

Hypotheses

Test statistic R = min{ +R ,| −R }| =R R+ R = −| R |

Rejection criteria Reject Ho if <R Rα
2

Reject Ho if <R Rα Reject Ho if <R Rα

Ho D: 0μ =

Ha D: 0μ ≠

Ho D: μ = 0

Ha D: μ < 0

Ho D: μ = 0

Ha D: μ > 0
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Answer

Let μD denote the median of the difference in blood pressures after and before tak-
ing the drug. We choose the hypotheses as follows:

Here, R+ = +7.5 2 = 9.5 and R− = −5 − −3 9 − −5 2 −10 − 7.5 − 5 = −45.5. Hence, the 
test statistics is R R= =+ 9.5. From the Wilcoxon signed-rank table, Rα value for 
n = 10 and α = 0.05 is 10. Therefore, at α = 0.05, the null hypothesis is rejected 
since R R< α . This means that we have no evidence to support the company’s 
claim that at the level of confidence, the new drugs lower the blood pressure.

Using R

before<-c(150,145,160,155,149,150,151,145,163,157)
after<-c(148,148,159,145,150,148,150,135,160,155)
wilcox.test(after, before, paired=TRUE, alternative = “less”, 
conf.level=0.95)

Output:

Wilcoxon signed rank test with continuity correction
data: after and before
V = 9.5, p-value = 0.03629
alternative hypothesis: true location shift is less than 0

As it can be seen in the output, the p-value is 0.03629, which is less than the α  
level of 0.05. Therefore, the null hypothesis is rejected at the level of significance 
of 0.05.

TABLE 6.14
Blood Pressure before and after Taking the Drug

X (Blood Pressure 
before Taking 
the Drug)

Y (Blood Pressure 
after Taking 
the Drug) d == −−Y X Rank of d| | Signed Ranks

150 148 −2 5  −5

145 148  3 7.5 +7.5

160 159 −1  2  −2

155 145 −5 5  −9

149 150  1 2  +2

150 148 −2 5  −5

151 150 −1 2  −2

145 135 −10 10 −10

163 160 −3 7.5 −7.5

157 155 −2 5  −5

Ho D: 0μ =
 

Ha D: 0μ <
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Example 6.10

A researcher wants to compare the gas prices in two consecutive months in a 
particular city. He randomly selects 10 gas stations in that city and records the 
average gas prices in two consecutive months as given in Table 6.15.

Does the data in Table 6.15 show that at α = 0.05, the gas prices in two months 
are different?

Answer

Let μD denote the median of the difference in gas prices as calculated in Table 
6.13. Here, the hypotheses can be written as follows:

Thus, R+ = 39 and R− = −16. Then, the test statistics R R= =min{ }+ −, R 16. From 
the Wilcoxon signed-rank table, Rα value for n = 10 and α = 0.05 is 10. Therefore, 
the null hypothesis at α = 0.05 is not rejected since R R< α .

Using R:

Month_1<-c(2.75,2.70,3.00,2.85,2.90,2.70,2.85,3.05,2.98,2.90)
Month_2<-c(2.86,2.73,2.90,2.84,3.05,2.65,2.87,3.17,2.90,3.10)
wilcox.test(before, after, paired=TRUE, alternative = “two.
sided”)

Output:

Wilcoxon signed rank test with continuity correction
data: before and after
V = 45.5, p-value = 0.07258
alternative hypothesis: true location shift is not equal to 0

TABLE 6.15
Gas Prices

Month # 1 (X) Month # 2 (Y) d == −−Y X Rank of | d | Signed Ranks

2.75 2.86 0.11 0.11 7

2.70 2.73 0.03 0.03 3

3.00 2.90 −0.10 0.10 −6

2.85 2.84 −0.01 0.01 −1

2.90 3.05 0.15 0.15 9

2.70 2.65 −0.05 0.05 −4

2.85 2.87 0.02 0.02 2

3.05 3.17 0.12 0.12 8

2.98 2.90 −0.08 0.08 −5

2.90 3.10 0.20 0.20 10

Ho D: 0μ =
 

Ha D: 0μ ≠
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Since the p-value is greater than the level of significance of 0.05, the null 
hypothesis is not rejected. 

6.3.2  DEPENDENT TWO-SAMPLE INFERENCE USING WILCOXON SIGNED-RANK TEST

Case I
Small sample hypothesis test

• For right-tailed test, the test statistic is R R= − , where R− is the sum of the 

negative signed ranks.

• For left-tailed test, the test statistic is R R= + , where R+ is the sum of the 

positive signed ranks.

• For the two-tailed test, the test statistic is R R= min( )− +, R .

The R−, R+ and the rejection criteria are as discussed in Section 6.3.1. 

Case II
Large sample hypothesis test: The test statistic is calculated as follows: 

Here, T is the test statistic defined in (6.11).

Example 6.11

Consider the mathematics majors graduated from mathematics department in six 
colleges C1, C2, C3, C4, C5, and C6 in a state for the fall of 2017 and 2018 as 
listed below:

College # Fall 2017 Fall 2018

C1 20 16

C2  8  6

C3  6  7

C4 12 20

C5 10  4

C6 25 15

In this section, we consider the inference between two dependent samples. To con-

duct inference regarding the two population medians, we use the Wilcoxon signed-

ranked test. This test is the counterpart of the parametric approach of the paired 

t-test. As discussed in Section 6.3.1, let x1 2, ,x xn and y y1 2, , , yn  denote the first 

and second data sets, respectively. Let di i= −y xi; 1i = ,2, ,n and μD denote the 

difference between the two population medians, that is, μD Y= −μ μX .

From Table 6.14, the hypotheses are as follows:

H Ho D: μ μ= >0, a : D 0 (Right-tailed test)

H Ho D: μ μ= <  0, a : D 0 (Left-tailed test)

H Ho D: μ μ= ≠0, a : D 0 (Two-tailed test).
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Using the level of significance, α = 0.05, does this data provide evidence to 
support that the median of number of mathematics graduates has decreased in fall 
2017 compared with that in fall 2018?

Solution

In this case, the hypothesis is as follows (Table 6.16):

 H Ho D: 0µ µ = <, :a D 0 

This is a left-tailed test case. Hence, the test statistic is R R= =+ 1 5+ = 6. Hence, 
from the table of Wilcoxon signed-rank test (Table 6.D in Appendix), the critical 
value is Rα = 2. This means that R R> α . Thus, at the level of significance α = 0.05, 
the null hypothesis will not be rejected. Therefore, there is no support for the alter-
native hypothesis of the median number of mathematics graduates in fall 2018 to 
be lower than that in fall 2017.

Using R:

library(MASS)
Fall_2017<-c(20,8,6,12,10,25)
Fall_2018<-c(16,6,7,20,4,15)
wilcox.test( Fall_2018, Fall_2017,paired=TRUE, alternative = 
“less”, conf.level = 0.95)

Output:

data: Fall_2018 and Fall_2017
V = 6, p-value = 0.2188
alternative hypothesis: true location shift is less than 0

According to the output given by R, the p-value is 0.2188, which is greater than 
0.05. Therefore, there is insufficient evidence to support the alternative hypothesis.

TABLE 6.16
Mathematics Majors Graduated in Fall 2017 and Fall 2018

Difference, Fall 
2018–Fall 2017College # Fall 2017 Fall 2018 d| | Ranks d| | Signed Rank

C1 20 16 −4 4 3 −3

C2 8 6 −2 2 2 −2

C3 6 7 1 1 1   1

C4 12 20 8 8 5   5

C5 10 4 −6 6 4 −4

C6 25 15 −10 10 6 −6
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Example 6.12

A researcher conducts a titration using two different indicators. Her aim is to 
understand whether the median time to complete the titration, using two indi-
cators A and B, is different with α = 0.05. In order to find out, she conducts an 
experiment seven times and records the data as listed below:

Is the median time to complete the titration, using two indicators A and B, dif-
ferent with α = 0.05?

Answer

We calculate the numbers listed in Table 6.17.
We conduct the following hypothesis:

 

According to the above data, R+ = +4 2 1 6+ + + 7 = 20 and R− = −5 3− = −8. 
Therefore, for two-tailed test, the test statistic is R R= =min(| − +|,R ) min(| −8 |,20) = 
20. Hence, the table value for this test using n = 7 and α = 0.05 is Rα / 2 = 2. Using 
this information, we have R R> α / 2.

Time

Experiment Using Indicator A Using Indicator B

1 2.25 2.30

2 2.15 2.17

3 2.05 2.06

4 2.35 2.43

5 2.40 2.34

6 2.29 2.26

7 2.22 2.29

TABLE 6.17
Time to Complete the Titrations

Time

Using Indicator 

Time

Using Indicator 
Time 

Difference Signed 
Experiment A B (B − A) d| | Ranks d| | Rank

1 2.25 2.30  0.05 0.05 4  4

2 2.15 2.17  0.02 0.02 2  2

3 2.05 2.06  0.01 0.01 1  1

4 2.35 2.43  0.08 0.08 6  6

5 2.40 2.34 −0.06 0.06 5 −5

6 2.29 2.26 −0.03 0.03 3 −3

7 2.22 2.29  0.07 0.07 7  7

H Ho D: 0μ = , a : D 0 μ ≠
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Therefore, using α = 0.05, the null hypothesis will not be rejected. In other 
words, there is enough evidence to support the claim that the median time to 
complete the titration using indicators A and B is different.

Using R:

library(MASS)
Indicator_A<-c(2.25,2.15,2.05,2.35,2.40,2.29,2.22)
Indicator_B<-c(2.30,2.17,2.06,2.43,2.34,2.26,2.29)
wilcox.test(Indicator_B, Indicator_A, paired=TRUE, alternative = 
“two.sided”,conf.level = 0.99)

Output:

data: Indicator_B and Indicator_A
V = 20, p-value = 0.375
alternative hypothesis: true location shift is not equal to 0

According to the output given by R, the p-value is 0.375, which is greater than 0.05. 
Therefore, we have insufficient evidence to support the alternative hypothesis.

6.4  INFERENCE USING MORE THAN TWO SAMPLES

So far, we have discussed both single-sample and two-sample inferences using non-

parametric approach. In practice, there are situations where there are more than two 

populations involved in inference problems. Therefore, we should consider the case 

of nonparametric inference based on more than one sample. For instance, suppose 

an instructor wants to compare the performances of students in three sections of 

elementary statistics classes. If this situation violates the parametric assumptions, 

the prior nonparametric procedures cannot be applied. When considering more than 

two samples, they may be independent or dependent. We will discuss both of these 

cases in the subsections that follow.

6.4.1  INDEPENDENT SAMPLE INFERENCE USING THE KRUSKAL–WALLIS TEST

When analyzing more than two samples in nonparametric statistics, we adhere to 

Kruskal–Wallis test. This is an extension of the Mann–Whitney test that was dis-

cussed earlier. In other words, Kruskal–Wallis test is considered as the nonparamet-

ric version of parametric procedure of one-way ANOVA.

With this nonparametric procedure, we will test the following hypothesis:

H0 : All groups have the same median.
 

Ha : At least one group has a different median.
 

Test statistic is:

⎡ 12
H = ∑

C
T 2

⎢ i
⎤
⎥ − +3(N 1), (6.12)

⎢ N N( 1+ ) n⎣ ii=1 ⎦⎥
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Steps in Kruskal–Wallis Test

 1. Rank all of the scores in all the groups without considering which group 

they belong to. If there are ties, take the average of them as the rank.

 2. Calculate Ti values for each group, and compute the test statistic H.

 3. Find the critical value from the chi-square table, with df = C − 1 degrees of 

freedom.

 4. Reject the null hypothesis if the test statistic K ≤ critical value.

Example 6.13

Does the mode of teaching influence the student’s academic success? 
An instructor wants to check whether his mode of teaching has an impact on 

student’s success in introductory statistics course. He randomly selects 35 stu-
dents from his three sections of the introductory statistics classes that are taught 
face-to-face, hybrid, and online. He records the final grades for each student in 
each section as the measurement of student’s academic success. Does this data 
show that the mode of teaching impact the student’s performance, using the level 
of confidence of 0.01?

Solution

Hypothesis: Ho : Grades of all teaching methods have the same median value.
 
Ha : At least one median is different.

⎡ C
12 T 2 ⎤

Test statistic: H = ⎢ i ⎥ − +3(N 1)
⎢ N N( 1+ ) n⎣

∑
ii=1 ⎦⎥

⎡ 12 ⎛ 3132 2183 1342 ⎞ ⎤
H = ⎢ + + ⎥ − +3(35 1)

+⎣35(35 1) ⎜ 10 10 ⎟⎝ 15 ⎠ ⎦

= 3.20

   Critical value = χ χ2
0.01,C−1 = 2

0.01,2 = 9.21 d f. = C − =1 3 − =1 2. 

Conclusion: Based on the critical value and the test statistics, test statistic 
K ≤ critical value. Therefore, we do not reject the null hypothesis at the 
level of significance of 0.01; that is, we do not have evidence to claim 
that at least one of the teaching methods has a different median than the 
others (Tables 6.18 and 6.19). This suggests that the mode of teaching 
does not have a significant impact on student’s performance.

where N is the total in all the groups, T ii; 1= ,2, ,C  represents the total rank 

of each group i, and ni represents the total observations in each group i.
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TABLE 6.19
Ranked Data for Teaching Methods vs Students’ Performances

No Face-to-Face Rank Hybrid Rank Online Rank

1 65 7 50 1 55 2

2 68 8 60 3.5 60 3.5

3 69 9 72 13 61 5

4 70 10.5 73 15 62 6

5 72 12 73 15 70 10.5

6 75 17 78 19.5 73 15

7 77 18 79 22 78 19.5

8 79 22 85 28.5 79 22

9 80 24.5 91 31.5 80 24.5

10 84 27 95 34 81 26

11 85 28.5

12 88 30

13 91 31.5

14 95 34

15 95 34

Ti 313   183   134

TABLE 6.18
Teaching methods vs students’ performances

No Face-to-Face Hybrid Online

1 85 73 73

2 79 72 62

3 80 50 60

4 95 91 61

5 65 78 78

6 70 79 79

7 75 85 55

8 91 60 80

9 88 73 81

10 69 95 70

11 72

12 95

13 68

14 84

15 77
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Using R:

F2F<-c(85,79,80,95,65,70,75,91,88,69,72,95,68,84,77)
Hybrid<-c(37,72,50,91,78,79,85,60,73,95)
Online<-c(73,62,60,61,78,79,55,80,81,70)
dataTeaching<-list(g1=F2F,g2=Hybrid,g3=Online)
kruskal.test(dataTeaching, conf.level=0.99)

Output:

Kruskal-Wallis rank sum test
data: dataTeaching
Kruskal-Wallis chi-squared = 3.1236, df = 2, p-value = 0.2098

According to the above output, the p-value is 0.2098, which is higher than the α  
level of 0.01. Therefore, we fail to reject the null hypothesis at the level of signifi-
cance of 0.01.

Example 6.14

The research and development unit of a company, who manufactures electric light 
bulbs, wants to compare the median lifetime of its light bulbs with the median 
lifetimes of light bulbs at similar two other competitors’ companies. The following 
data is available for three selected types of light bulbs (Table 6.20).

Consider the following collected data set. Let brand 1, brand 2, and brand 3 be 
the three types of selected types of light bulbs. Use the level of confidence of 0.01.

Solution

Before the analysis, let’s arrange the above data based on their ranks (Table 6.21).

Hypothesis: Ho : Median Lifetime of each brand is the same.
  

Ha : At least one brand has a different median lifetime than other brands.

⎡ C
12 T 2 ⎤

Test statistic: H = ⎢ ∑ i ⎥ − +3(N 1)
⎢ N N( 1+ ) n⎣ ii=1 ⎥⎦

⎡ 12 ⎛ 181.52 230 64.542 ⎞ ⎤ H = ⎢ + + ⎥ − +3(23 1)
⎣ 23(23 ) ⎜ ⎟+1 ⎝ 10 7 6 ⎠ ⎦

= 17.50

Critical value = χ χ2
− = 2

0.01,C 1 0.01,2 = 9.21d. f = C − =1 3 − =1 2. 

Conclusion: Here, the test statistic K (17.50) ≤ critical value (9.21). Therefore, we 
reject the null hypothesis at the level of significance of 0.01; that is, we have 
enough evidence to support the alternative hypothesis. This suggests that at least 
one of the brands has median lifetimes. 



456 Probability, Statistics, Stochastic Processes

Using R:

Brand1<-c(9.5,9.7,9.9,10.1,10.2,10.3,10.5,11.2,11.5,11.5)
Brand2<-c(8.3,8.4,8.5,8.6,8.7,8.9,9)
Brand3<-c(8.9,9,9.1,9.4,9.5,10)
dataBulbs<-list(g1= Brand1, g2=Brand2,g3= Brand3)
kruskal.test(dataBulbs, conf.level=0.99)

Output:

Kruskal-Wallis rank sum test
data: dataBulbs
Kruskal-Wallis chi-squared = 17.517, df = 2, p-value = 0.0001572

TABLE 6.20
Lifetimes (in 1,000 hours) of Three Types of Light 
Bulbs

No Brand 1 Brand 2 Brand 3

1 10.1 8.7 9.0

2 11.5 8.5 9.1

3 10.5 9.0 9.4

4 9.5 8.3 8.9

5 10.2 8.6 9.5

6 11.5 8.4 10.0

7 10.3 8.9

8 9.7

9 9.9

10 11.2

Totals Ti 104.4 60.4 55.9

TABLE 6.21
Ranked Data of the Lifetimes

No Brand 1 Rank Brand 2 Rank Brand 3 Rank

1 9.5 12.5 8.3 1 8.9 6.5

2 9.7 14 8.4 2 9 8.5

3 9.9 15 8.5 3 9.1 10

4 10.1 17 8.6 4 9.4 11

5 10.2 18 8.7 5 9.5 12.5

6 10.3 19 8.9 6.5 10 16

7 10.5 20 9 8.5

8 11.2 21

9 11.5 22

10 11.5 23

Ti 181.5   30   64.54
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According to the above output, the p-value is 0.0001572, which is less than the 
α  level of 0.01. Therefore, we reject the null hypothesis at the level of significance 
of 0.01.

EXERCISES

 6.1. Consider a car seller who sells four brands (A, B, C, and D) of cars. He says 

that he does not give any priority to any brand of cars and considers all 

brands equally important. In a given day, the number of cars available with 

brands A, B, C, and D is 50, 40, 45, and 60, respectively. Using significance 

α = 0.05, test to find out if there is sufficient evidence to conclude that the 

car seller is right with his claim.

 6.2. A survey was conducted to find out the number of TV-watching time (per 

week) by people of different age groups. The following table summarizes 

the finding:

Using the available data and α = 0.05, find out if the TV-watching time 

is evenly distributed across all age groups.

 6.3. A school administrator wants to find out school kid’s means of transporta-

tion to school. She wants to know whether all transportation means are 

equally distributed or not. She has the following data available:

Test whether the transportation means are evenly distributed at the level 

of significance of 0.1.

 6.4. A mayor of a particular city says that he is happy with the city because his 

city has an equal proportion of higher-income, middle-income, and lower-

income families. A survey provided the following details about this city 

using a random sample of 500 families. Does this collected data support 

the claim of the mayor? Use the α level of 0.1.

Age Group # Hours (Per Week)

< 5 years 15

5 years −15 years 17

15 years − 35 years 20

35 years − 55 years 25

55 years − 75 years 30

> 75 years 33

Means of Transportation Walking Bicycle Car

Number of students 200 175 215

Income level Lower Middle Higher

# families 160 165 175
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 6.5. A manufacture of a certain candy brand says that in each of the bag of 

candies, there is an equal number of candies of red, green, yellow, and 

white colors. A randomly selected bag consists of 15, 25, 13, and 16 red, 

green, yellow, and white color candies, respectively. Is there a truth of what 

candy manufacture says as far as the distribution of colors of candies is 

concerned?  Use the α = 0.05 to test the above.

 6.6. There is a claim that the gender and the smoking are independent. A soci-

ologist attempts to test the above claim using the following collected data.

 6.7. A car manufacture says his buyers that when manufacturing cars, the type 

of the car (Sport Utility Vehicle, SUV or non-SUV) and the color of the car 

(white, black, blue, and red) are independent. Randomly collected sample 

from the latest records indicates the following information. Use the level of 

significance of 0.05 to test the car manufacture’s claim.

 6.8. An instructor is teaching three different classes. After the final examina-

tions are over, he is curious about the students’ grades distributions. Based 

on the following summary of grades, the inductor can claim that grades 

and the classes are independent, at the level of significance of 0.05.

 6.9. Gas price depends on the location of the gas station in a big city. Following 

data shows the gas price recorded from 15 locations of the above city. 

Gender

Smoking Male Female

Yes 150 100

No 75 60

Color

Car Type White Black Blue

SUV 100 110 105

Non-SUV 95 115 105

Grades

A B C F

 #
C

la
ss

1 10 15 20 5

2 8 20 18 4

3 15 15 17 3

$2.75 $3.00 $2.80 $2.90 $2.85

$3.05 $2.95 $2.98 $3.05 $2.88

$2.78 $3.04 $2.92 $2.96 $2.89
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Does the above data show that the average gas price of this city is over 

$2.95? Conduct a hypothesis test to check this using the level of significance 

of 0.01.

6.10. The compressive strength of a particular concrete should be at least 30,000 

pound-force psi. An engineer randomly collected 12 samples of this con-

crete in order to find their compressive strengths. Following are his mea-

surements of compressive strengths in psi units.

Based on the collected sample of data, the engineer has evidence to sup-

port that the average compressive strength of concrete is at least 30,000 psi. 

Use the level of significance of 0.05.

6.11. New car manufacturer claims that the average gas mileage for their lat-

est model is more than 35mpg. A research team collected 15 observations 

randomly to test the above manufacture’s claim. They selected the level of 

significance as 0.05. Does the following data support the manufacture’s 

claim?

6.12. An administrator of a particular school district wanted to study about stu-

dent’s performance for mathematics SAT examination. He found that the dis-

tribution of this score is very skewed and conducted a nonparametric study 

with the collected random sample of data. His hypotheses were as follows. 

 
Ho : Median SAT score is 600.

 
Ha : Median SAT score is above 600.

After running the test, the p-value for the test was 0.03. Interpret this value, 

and state your conclusion using α = 0.05.

6.13. A tire manufacturing company rejects tires if the median diameter of a tire 

is not equal to 10 inches. Suppose a quality controller randomly selects a 

sample of 30 tires to test whether the median diameter is different from 10 

inches. Does the following data help the quality controller to confirm his 

prior assumption using the level of significance α = 0.01?

28,900 31,100 29,500 30,090 30,195 29,875

29,995 28,710 31,560 29,180 32,295 31,965

34.7 36.5 34.9 36.4 35.8 35.1

35.7 34.5 36.9 35.4 35.0 35.5

36.0 35.3 33.9

10.01 10.02 9.09 10.03 10.05 10.01 10.05 10.03 10.06 9.08

9.95 10.04 9.89 10.13 10.25 10.41 9.45 9.93 10.16 9.98

10.02 10.03 9.39 9.93 10.05 9.89 9.05 10.13 9.76 9.38
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6.14. Community of Summer Gate is complaining about purity of the water 

in its neighborhood lake. The officers in homeowners’ association ask a 

researcher to investigate the purity of the water of the lake. The researcher 

randomly selects 12 samples of water from random location of the lake and 

measures their pH values. The measurements are given below.

9.1 8.8 6.7 7.6 8.7 6.9 7.9 8.2 8.5 8.6 8.6 8.9

Do the above pH values indicate that the pH value of the water is above 

8.5? Use α = 0.05 to test this.

6.15. A farmer wants to compare the effect of two fertilizers on the growth of a 

particular crop. He randomly selects two samples of plants of the same size 

and plants them in an area where both samples have homogeneous environ-

ments other than the different fertilizers. After two months, he measured 

the lengths (in cm) of all the plants in both samples as shown in the follow-

ing table.

Using the above data, the farmer finds out that the average growth of the 

crop using the fertilizer B is higher than that of the crop using the fertilizer 

A using α = 0.05.

6.16. A car seller sells two brands (A & B) of cars that were manufactured in last 

year. With his experience, he thinks that the median gas mileage of brand 

A is higher than that of brand B. He randomly selects two samples of cars 

from both brands and measures the distance the car can run using one unit 

of gas. The measurements are given below.

Does the above data provide evidence to support the seller’s prior 

assumption using α = 0.05?

6.17. A manufacturer introduces a formula to enhance the performance of the 

car engine. Before he advertises this new product, the manufacturer assigns 

his research and development (R&D) team to investigate this product. He 

assumes that this novel formula increases the gas mileage of cars. The R&D 

team selects a random sample of 10 cars (different brands) and records the 

gas mileage due to one unit of gas before and after using the novel formula. 

Does the following measurement suggest that the new formula improves 

the gas mileage using α = 0.05?

Fertilizer A 5.5 5.4 5.3 5.0 5.2 5.3 5.1 5.5 5.4 5.3

Fertilizer B 5.6 5.8 5.5 5.8 5.6 5.8 5.0 5.9 5.4 5.7

Before 34.7 38.5 30.9 39.4 37.8 15.1 26.7 24.5 26.9 25.4

After 35.0 39.2 31.5 39.4 38.7 15.0 25.7 24.6 26.9 26.7

A 34.7 36.5 34.9 36.4 35.8 35.1 35.7 34.5 36.9 35.4

B 32.5 33.5 32.5 33.4 32.8 34.1 33.7 34.6
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6.18. Domestic violence has become a major issue in a particular city. One of 

the NGOs introduces an educational program to educate people about the 

domestic violence. They randomly select 8 men who involved in domestic 

violence during the last year. These men are educated for a certain number 

of days and  their behaviors are observed for another year. Following table 

shows the collected information about their involved domestic violence 

before and after the participation into the program.

The NGO wants to understand the effectiveness of their educational pro-

gram on domestic violence.  Does the above information indicate that the 

program has been able to reduce the domestic violence at α level of 0.1?

6.19. After taking the orange harvest, a farmer wants to know whether all of 

his orange fields produce oranges with same average weights or not. As a 

means of testing this, he collects random samples from each orange field 

and measures their weights (in grams) as displayed below. Do the following 

weights indicate that all of the fields produce oranges with same average 

weights or not? Use the level of significance of 0.01 to test this.

Domestic violence (before) 3 4 2 3 4 5 1 3

Domestic violence (after) 2 2 2 1 0 3 0 2

Field A 139.5 141.1 135.6 137.9 139.5

138.7 137.6 138.9 136.9 139.0

Field B 140.5 142.1 144.5 145.3 144.4

145.3 147.8 143.7

Field C 130.5 132.1 134.4 135.1 134.0

135.5 137.8 133.3 136.2 129.6

136.9 137.9
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7 Stochastic Processes

7.1  INTRODUCTION

One of the applications of probability, and, in fact, a generalization of random 

 vector, which is vastly used in biology, cell biology, and birth-and-death (B-D) pro-

cesses, is the concept of stochastic processes. Historically, after Kolmogorov started 

the  modern probability theory, as we know it today, in 1933, it was interrupted by 

World War II, after a decade. However, in 1940s, stochastic or random processes, as 

 applications of probability in potential theory, gained attention.

However, stochastic processes were known decades before through the 

 theory  of queues originated by the Danish engineer, Agner Krarup Erlang 

(1878–1929) (Figure 7.1), beginning of the twentieth century (1917); see 

Haghighi and Mischev (2014).

Even Albert Einstein in his paper published in 1905 on physical observation 

of Brownian motion (random motion of particles suspended in a fluid or a gas 

resulting from their collision with the fast-moving molecules in the fluid) using 

ideas from the kinetic theory of gases.

FIGURE 7.1 Agner K. Erlang 1878–1929.
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But now martingale (a sequence of random variables with certain conditions) was 

developed by an American mathematician Joseph Doob (1910–2004), who detailed 

in his book Stochastic Processes published in 1953. The idea of martingale was 

derived from random walk, Brownian motion, branching, and Poisson processes.

After the brief historic comments regarding how the stochastic process started, 

we move to formal definition of stochastic process. However, before that, we remind 

the readers from Chapter 2 that (Ω, 𝕊, P) is a probability space, where P is a prob-

ability measure on a σ -field 𝕊.

Definition 7.1

Definition 7.2

For a stochastic process {X tt , }∈T  or {X t( ),t ∈T}, the set of all possible values of ran-

dom variable Xt or X( )t , that is, the value of a stochastic process at any epoch of time, 

denoted by S, is referred to as the state space of the process in discrete case and the 

phase space in continuous case, state space in both cases, if there is no confusion, 

which is a mathematical space like a subset of Euclidean n-dimensional space. This 

space reflects the different values the stochastic process can take. The state at which 

the process starts at, denoted by X0 or X(0), is referred to as the initial state.

Note 7.1

Note 7.2

Let T be a subset of non-negative real numbers, [0,∞). A stochastic (or random) 
process is a sequence (or a family) of random variables, say Xt , ,t T∈  indexed by T, 

defined on a probability space (Ω, 𝕊, P). The set T is referred to as the index set or 

the parameter space. If T is the set of non-negative integers, 0, the stochastic pro-

cess is referred to as the discrete-time, denoted by {X t( ), t ∈T} and if it is an interval 

[0,∞), it is referred to as the continuous-time, denoted by {X t( ), t ∈T}, stochastic 

process. If the probabilistic rules do not change with time, the process is called the 

stationary process.

It should be noted that if T is finite such as T n= {1,2, , }, we can find probability 

density function (pdf) or probability mass function (pmf) of the process through 

the joint distribution of random vector { }X Xt t1 2
, , , Xtn . However, for an infinite 

case of T, finding pdf or pmf is somewhat problematic.

When the index set, say T, consists of only one element, that is, it is a singleton, 

T = {1}, the process {X tt , }∈T  becomes a single random variable X1. On the other 

hand, when T is a finite set such as T n= {1,2, , }, the process will become a ran-

dom vector, that is, { }X Xt t1 2
, , , Xtn .
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Example 7.1

Number of sample points
n

X x 1
F xn( ) = j ≤

= −∑ I Xx j( ), ,∞ < x < ∞  (7.1)
n n

j=1

where Ix is F x( )

{
 the indicator function

}
. Since n  is a random variable for each x, the 

sequence F xn( ), − ∞ < x < ∞  is a stochastic process.

Example 7.2

Example 7.3

As an example of a continuous index set, let us consider arrival of customers at a 
bank, which is assumed to be random in nature. The number of customers arrived 
during the interval [0,t] is a stochastic process in which the index set is T = ∞[0, ) 
and the state space S = {0,1,2,...}. This is also an example of a pure birth process 
that we will consider later.

Example 7.4

Consider the mathematics department at a university with 30 faculty and staff that 
has 5 computers for the staff. The IT unit of the university has assigned a techni-
cian for computers in this department, who is capable of repairing one failed com-
puter on the day of failure. Due to the age of these computers, there is a backlog 
of requests for service and, hence, a failed computer must get in a waiting line 
(queue). The average rate of failure for these computers during the past year has 
been 20% at any working day, and failure of a computer is independent of failure 
of other computers in the office. In such a situation, the process of quantity of 
the backlogs at time t will have the set of states as S = {0,1,2,3,4}. This is because 
there is a chance for each computer to fail on a day. Hence, while the technician 
is preparing one, a maximum of four computers are waiting to be repaired.

7.2  RANDOM WALK

Suppose you are standing at 0. Flip a coin. If the coin comes up heads, move 

to the right by one step. If it comes up tails, move to the left by one step. Flip 

the coin again. If it comes up heads, move a step to the right, and if it comes up 

Consider a random sample {X X1 2, , ,Xn} of size n from a population with an 
unknown distribution function. The function Fn (x) referred to as the empiri-
cal distribution function is defined as

As an example of a discrete index set, consider the net number count of delivery 
and returns of a particular item in an online store at time t within 24 hours of oper-
ation. Hence, the process of delivery and returning is a stochastic process with 
the index set T as the set {0,1,2, ,24} and with the state space as S = ±{0, 1, 2± , }.
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tails, move a step to the left. Repeat and continue this process. Must you come 
back to zero? This is the question Pólya (1887–1985) laid on the table and then 

answered.  He essentially expressed the idea of random walk in a very simple way. 

Perhaps it is because George Pólya is considered as the Father of Problem Solving 

in Mathematics Education, although he is a mathematician who made important 

contributions to probability theory, number theory, the theory of functions, and the 

calculus of variations.

Another way random walk can be illustrated is as follows: A drunken man is 

to walk on a road that runs east and west, that is, a fifty percent probability in 

either of the two directions. Being intoxicated, he is likely to. Take a step forward 

(east) as backward (west). He decides to start walking. From each new position, 

he is again as likely to go forward as backward. Each of his steps is of the same 

length, but of random direction—forward or backward. We will ask the students to 

investigate and show the position of the walker or the state of the random walk 
after n steps.

This example shows that a random walk is a process consisting of a sequence 

of discrete steps of fixed length. For example, the random thermal perturbations 

in a liquid form a random walk process, known as Brownian motion. The col-

lisions of molecules in a gas also form a random walk that is responsible for 

diffusion.

Yet, another example of a random walk is transport molecules that play a 

crucial role in cell viability. Among others, linear motors transport cargos along 

rope-like structures from one location of the cell to another in a probabilistic 

fashion. So, each step of the motor, either forward or backward, bridges a fixed 

distance and requires several biochemical transformations, which are modeled 

as internal states of the motor. While moving along the rope, the motor can also 

detach, and the walk is interrupted. Many complex processes take place in living 

cells. Transport of cargos across the cytoskeleton is fundamental to cell viabil-

ity and activity. To move cargos between the different cell parts, cells employ 

molecular motors. The motors are responsible for a huge variety of tasks, rang-

ing from cell division to DNA replication and chemical transport. A special 

class of such motors operate by transporting cargos along the so-called cellular 

microtubules, namely, rope-like structures that connect, for instance, the cell 

nucleus and outer membrane. One particular example for such motors is kinesin 

V, common in eukaryotic cells. Due to the periodic molecular structure of the 

microtubules, the steps of kinesin have all the same length equal to 8 nm. Under 

normal conditions present in living cells, this motor performs a random walk in 

one dimension with a drift on the microtubule possibly stopped by detachment 

from the tubule.

Now, we formulize a random walk mathematically. As a simple application of a 

stochastic process, we consider a sequence of independent and identically distributed 

(iid) random variables. Each random variable may have possible values 1 with prob-

ability 1
2  and −1 with the same probability. These probabilities may be more general 

as p and 1 − p, respectively. In some cases, 0 could be a possible value. Let Sn  be a 

partial sum of X1 2, ,X , that is, with n = 1,2, .
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Definition 7.3

n

The term was introduced by Carl Pearson in 1905, although its discrete version 

was originated by Albert Einstein and Marian Smoluchowski (a Polish phys-

ics, 1872–1917) in the same time (Figure 7.2).

As it can be seen, Sn  is the difference between the positive and negative 

occurrences of events in the first n trials. That is, the sum of the increments 
is given below:

 

FIGURE 7.2 (a) Marian Ritter von Smolan, Smoluchowski (1872–1917). (b) Albert 

Einstein (1879–1955).

Let X1 2, ,X , be a sequence of iid random variables. Also, let S Xn = +1 2X + + X . 

Then, the sequence of sums, {S nn , 1≥ }, which is the integer-time stochastic process, 

is referred to as a simple random walk or one-dimensional random walk, based on 

{X jj , 1≥ }. The word “simple” will be dropped when higher dimensions are considered.

Xk k− =X k−1, 1,2, , n,n = 1,2, , (7.2)
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Note 7.3

Definition 7.4

Refer to the Definition 7.3. Let τ > 0 be a positive real number. A term in { }S nn , 1≥  

for which Sn ≥ τ  is referred to as the threshold at τ.

Note 7.4

Two questions may arise. We leave the answers as exercises. (1) What is the 

 probability that the sequence { }S nn , 1≥  contains a term for which a threshold at T 

is crossed? (2) What is the distribution of the smallest n for which Sn ≥ τ?

Example 7.5

We leave it as an exercise to prove that the answer to this question is as follows:

Relation (7.4) is referred to as the probability that the random walk crosses a 
threshold at j.

Example 7.6

Imagine a walker who starts at point 0, walking randomly one step (with the same 
length throughout the process) forward ( )+1  and one step backward ( )−1 . That is, 
staying put is not allowed. Suppose he stops after ten steps. During the process of 
walking, if he walked four steps forward, he will be at position S10 = −2.

The increments Xk k− =X k−1, 1,2, ,n, are independent of {X nn}, = 1,2, . Also, 

each increment Xk k− =X k−1, 1,2, ,n, has a Bernoulli pmf with the probability 

of success as p. That is,

P X( )k k− =X − −1 11 = p and P X( k k− =X −1) = 1− p,
 (7.3)

k n= =1,2, , , n 1,2, , X0 = 0.

⎧⎪
P S⎨

⎪⎩

∞ ⎫
( )⎪ ⎛ ⎞

j
p

n ≥ j ⎬ = ⎜ ⎟ . (7.4)
n=1 ⎪ ⎝ 1− p ⎠⎭

1
For p ≤  and j > 0, find the probability that the sequence S S, ,

2
1 2  reaches or 

exceeds j.

Answer
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Note 7.5

If we allow him to stay put during the walking process, we can assign 0 to values 

of the random variables.

Example 7.7

( ) n!
P Sn = −2 j n = p pj n(1− ) − j . (7.5)

j n!( − j)!
 

So, the probability of position of the walker having four forward steps, with the 
2

probability of each such a step as , in a total of ten steps, is:
3

 
10

4 6

P S( ) ! ⎛ 2 ⎞ ⎛ 1⎞
10 = −2 = ⎜ ⎟ ⎜ ⎟ = 0.0569. 

(4!)(6!) ⎝ 3 ⎠ ⎝ 3⎠

Note 7.6

S
lim n = =E X( ) X. (7.6)
n→∞ n

 

Hence, the position of the walker depends upon the value of X as it is negative, 0, 

or positive. If X < 0, then Sn will tend to drift downward, and if X > 0, then Sn will 

tend to drift upward. Of course, position for X > 0 can be obtained from the X < 0 

by the use of { }− ≥S nn , 1 .

We now offer some examples of random walk involving mathematical 

formulizations.

Example 7.8 Gambler’s Ruin Problem

Two gamblers, designated by G1 and G2 (Gambler 1 and Gambler 2, respectively), 
play a simple gambling game. On each round (trial or betting) of the game, a coin 
is tossed, and if H = “Heads” results, then G1 wins $1 from G2. On the other hand, 
if T = “Tails” results from the coin tossing, then G2 wins $1 from G1. The probabili-
ties associated with “Heads” and “Tails” on the coin are unknown to the players 

In this example, we will show how we may construct a simple random walk 
process. We start with the probability space (Ω, 𝕊, P) and the stochastic pro-
cess {X kk , 1= ,2, }. So, we suppose that X1 2, ,X  are iid random variables, 
each with two values +1 and −1, with probabilities p and 1− p, respectively. Let 
S Xn n= +1 2X + + X . Now if there are j positive steps out of the n total steps, then 
S jn = −2 n (why?). Hence,

If X = { }X X1 2, , , Xn , then
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so that both players feel free to continue the rounds. Game continues until one of 
the players loses all his/her money and is thereby “ruined”.

Note 7.7

1
For the game to be “fair”, the coin used in the model should have P( )H = =P T( ) . 

2
On the other hand, if we wished to model a more general series of success/failure 

trials, where levels of skill or other features are considered, we could use a biased 

coin. For example, a game where G2 is three times as skilled as G1 might use a 
1 3

model with P( )H =  and P T( ) = .
4 4

For this example, suppose G1 has $3 and G2 has $1 before the game begins 

and the coin is biased. We also suppose that, unknown to the players, the coin is 
1 2

biased with P( )H =  and P( )T = . We can study the game by keeping track of 
3 3

the money that G1 has at the end of each round of the game. Over the course of the 

game, G1 will have a fortune ranging from $0 to $4.

Figure 7.3 illustrates the possible dollar amounts of G1’s fortune as well as the 

probabilities for his moving from one fortune value to the next during the process.

In Figure 7.3, the values 0, 1, 2, 3, and 4 are the so-called states of the process, 

and these represent possible dollar amounts (fortunes) that G1 might have dur-

ing the course of the trials. Arrows between states of the form x → →( )p yx y,  

indicate that px y,  is the probability that G1 moves from $x to $y (given that he/she 

⎛ 2⎞
has $x) on the next round of the game. For example, 2 ← =⎜ p3,2 ⎟ ← 3 means ⎝ 3⎠
that if G1 has $3 (state 3), then the probability that he/she loses a round and moves 

to $2 (state 2) is 2/3. The arrowhead beneath state 3 contains the initial probability 

of beginning at state 3 and this probability is 1 since G1 begins with $3.

Let us consider state 0. Here, G1 has $0 and the game has stopped. Thus, we 

write p0,0 = 1 since there are no subsequent rounds. Similarly, we indicate game’s 

end at state 4 (G1 has all $4) by p4,4 = 1. If the game ends at state 0 (G1 loses all his 

money), we say that the process has been absorbed into state 0 since state 0 can-

not be exited once entered. Similarly, state 4 is an absorbing state. A state that is 

not absorbing is called a transient state.

p0,1=0 p1,2=1/3 p2,3=1/3 p3,4=1/3

p0,0=1              0 1 2 3 4   p4,4=1

p1,0=2/3 p2,1=2/3 p3,2=2/3  1 p4,3=0

FIGURE 7.3 Transition probability diagram for Example 7.8.
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Note 7.8

For each state, the sum of the probabilities leaving that state is 1.

The transition probability diagram (Figure 7.3) illustrates an example of a 

 random walk. In this process, we “walk” back and forth (or right and left) from 

state to state and the direction of a step (transition) is determined in a random 

fashion by the coin toss.

Note 7.9

Transition of a state to itself is not allowed, that is, pk k, = 0 for all k except k = 0 

and k N= .

The transition matrix for this random walk is as follows:

 0

⎡ 1 q 0 0 0 0 ... 0 0 ⎤
⎢ ⎥
⎢ 0 0 q 0 0 0 ... 0 0 ⎥
⎢ 0 p 0 0 0 0 ... 0 0 ⎥
⎢ ⎥
⎢ 0 0 p 0 0 0 ... 0 0 ⎥
⎢ 0 0 ⎥P =      ...  ⎢ ⎥
⎢       ...   ⎥
⎢ 0 0 0 0 0 0 ... q 0 ⎥
⎢ ⎥
⎢ 0 0 0 0 0 0 ... 0 0 ⎥
⎢ 0 0 0 0 0 0 ... p 1 ⎥
⎣⎢ ⎥⎦

The states 0 and N are absorbing states, and all other states are transient. Hence, 

this is an example of a random walk with absorbing boundaries.

For example, if walker steps forward with a probability of 0.75, then the 

 probability that he/she is at location 4 in five trials is:

 p4 4(5) = =( )5 4(0.75) (0.25)5−4 0.3955. 

In Example 7.7, we had five states 0, 1, 2, 3, and 4. Let us now generalize 

the number of states and assume that the state space (the set of all states) has 

N + 1 elements, that is, S N= {0,1,2,..., }. Recall also that states in the Gambler’s 

Problem represent the amount of money (fortune) of one gambler. The gambler 

bets $1 per round and wins or loses. He is ruined if he reaches state 0. The prob-

ability is assumed to be p > 0 and that of losing is q > 0 with p q+ = 1. In terms 

of transition probabilities, this assumption means that p pk k, 1+ =  and p qk k, 1− = , for 

k N= −1,2, , 1. We further assume that p p0,0 = =N N, 1; that is, p0,0 and pN N,  are 

the so-called absorbing boundaries. All other transition probabilities are assumed 

to be zero.
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7.3  POINT PROCESS

As another case of a stochastic process, we briefly discuss the point process.

Definition 7.5

Note 7.10

According to the definition above, a point process is a strictly increasing sequence 

of real numbers, which does not have a finite limit point.

Note 7.11

As examples of point process, we can mention the arrival time epochs of 

 customers at a service station and in biology by the moments of impulses in nerve 

fibers.

Note 7.12

Definition 7.6

A set of random points {T T1 2, ,...,Tr} such that T T1 2< < < Tr , limr r→∞ T = ∞, 

in some space, often a subset of multidimensional Euclidean space, say r, for 

some r, is a stochastic process referred to as a point process. In 1, each Tj  is a 

random  variable. The numbers T rr , 1= ,2, , are referred to as the event times or 

epochs.

We note that T rr , 1= ,2, , do not necessarily have to be points of time. They 

could be points other than times like location of potholes in a road. However, 

since the number of potholes is finite, in the real world, to satisfy the conditions 

stated in Definition 7.4, we need to consider finite sample from a point process. 

The arrival times are of less interest than the number arrived in an interval 

of time.

Let N( )t t, > 0 represent the number of events occurred in an interval of 

time (0,t t], > 0, at epochs T kk , 1= ,2, , that is, N( )t k= ≤max{ },T
{

k t . The 

sequence N t( ),t ≥ 0}, which is a nondecreasing function of t and is a random 

process, is referred to as the counting process belonging to the point process 

{T T1 2, , ,Tr ,T1 ≥ 0}. It is referred to as the simple counting process if one event 

can occur at a time. It is also referred to as the random point process if the time 

epochs T kk , 1= ,2,  are random variables, with P ( )lim k T→ ∞ k = 1. It is further 

referred to as the marked point process.
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Note 7.13

The increment N( )t s+ − N(t) will contain the number of events that occur in the 

interval ( ,t t + s]. That is why {N t( ),t ≥ 0} is called the counting process, that is, 

counting the number of events that occurred by time t.

Note 7.14

We can summarize a counting process {N t( ),t ≥ 0} as follows:

 1. For each t, the values of N( )t  are nonnegative integers.

 2. The function N( )t  is a nondecreasing function with respect to t.
 3. The function N( )t  is a right continuous function.

The third property is merely a convention, and it interprets as follows: Let two 

events occur at times 5 and 8, that is, N(5) = =1, N(8) 1 and

⎪⎧ 1, t∈(5,8)
 N( )t = ⎨  

0, t<5.⎩⎪

Definition 7.7

Note 7.15

Because the process probabilistically starts over at each arrival epoch, the process 

is referred to as the renewal process. In this case, the process { }S nn , 1≥  should 

cross the threshold T > 0.

Note 7.16

We leave it as an exercise to show that the arrival epochs and the counting random 

variables are related as follows:

 {S tn n≤ =} {{ }N( )t ≥ n and S > t} = { }N( )t < n . (7.7)

n

Let us consider arrival epochs of tasks to a system. We denote the first n inter-arrival 

times by Xi ,i n= 1,2,..., , that is, Xi i− =X i−1, 1,2, ,n, is the time elapsed between 

the ( 1i − )th arrival and the i ith , 1= ,2, ,n, arrival. We denote the nth arrival by 

Sn . Hence, for positive iid random variables, X1 2, ,X S… �, n = +X1 X2 + + X . That 

is, each arrival epoch is the sum of X , ,X X,

{ }
1 2 n. Then, not only is the sequence 

S nn , 1≥  a special case of a random walk, but also it is a sequence of epochs of 

reoccurrences, or recurrent or more commonly referred to as the renewal count-
ing process, denoted by {N t( ),n > 0}.
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Definition 7.8

A counting process N( )t  is a Poisson process with parameter (or rate) λ if the 

 following conditions are true:

 1. N(0) = 0.

 3. The number of events in any interval of length t is the Poisson pmf with 

parameter λt, that is,

 

 E N[ ]( )t + −s N(s) = λt, (7.9)

and

 lim{ }P N( )(Δ =) 1 = λΔe− Δλ ≈ ΛΔ, (7.10)
Δ→0

Note 7.17

Last properties state that in an interval with a very small length, events occur 

singly with probability proportional to the length of the interval. This is why λ is 

referred to as the rate.

Note 7.18

It is interesting to investigate the existence of the Poisson process. Proof is beyond 

the level of this book. It is a very sophisticated proof.

Example 7.9

Consider a biased coin with high probability for a tail and low probability for a 
head to occur. We toss this coin n times with n to probability of success (head) as 

λ 1
p = < , where λ  in a real number <n. Denote the number of heads in a period 

n 2

of time [0,t] by N tn ( ). We leave it as an exercise to show that as n approaches infin-
ity, the number of heads occurred in (s, t} is a binomial with number of trials  equal 

λ
to n( )t s− ± 2 with p = , which converges to a Poisson pmf with parameter t − s.

n

2. It has independent increments, that is, if ( )s t1 1, ,(s2 t2 ) = ∅, then the incre-

ment N ( )t N1 1− (s ) and N ( )t N2 2− (s ) are independent.

( ) j

( ) λt
P N t( )+ −s N(s) = j = e j−λt , 0= ,1,2, , (7.8)

j!

lim P N( ( ) 2 ο 2 .
0
{ }Δ ≥ = ( )Δ ΛΔ  (7.11)

Δ→
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Answer

From the assumption for the arrivals to be Poisson, we conclude that pmf of arriv-
ing tasks follows a Poisson pmf with parameter λ . Hence, if the first arrival time 
is >t, there will not be any arrival task. In other words,

 P T( )1 > =t P[ (N t) = 0] = e−λt . (7.12)

Thus, T1 is an exponential random variable with parameter λ. On the other hand,

P T( )2 1> =t T s = P(No arrival in (s,s + t] T1 = s

= =P N( (t) 0) = e−λt , s,t > 0.  (7.13)
 

This is because the tasks in ( ,s s + t] are not affected by what happens in [0,s]. 
Hence, T2 is independent of T1 and also is exponential with parameter λ . We leave 
it as an exercise by using mathematical induction, to show that T3 is independent 
of T1 and T2, and so on.

Theorem 7.1

( ) n
 1. E Sn = . (7.14)

λ
 2. The pdf of Sn  is Γ( ,n λ), the two-parameter gamma pdf, that is,

λ n nt −1

 f S = e−λt
n . (7.15)

( 1n − )!

Proof:
 1. Since T T1 2, , ,Tn are independent and the expected value of each Tj , 

1 n
j n= 1,2, , , is , E ( )S

λ n = .
λ

In this example, we show a property of a simple queue, which we will discuss 
later, as an application of a Poisson process. We consider arrival of tasks to a sys-
tem to be a Poisson process with parameter λ . We denote the inter-arrival times 
by T T1 2, , , that is, Tn is the time elapsed between the (n −1)st and nth arrivals, or 
the time between consecutive arrivals of tasks. We want to find the cumulative 
density function (cdf) of the inter-arrival times.

Example 7.10

Let T T1 2, ,  be iid exponential random variables with parameter λ. We also 

let Sn  denote the sum of the first n of these random variables, T T1 2, , , that is, 

S Tn n= +1 2T + + T , which presents the waiting time for the nth arrival. We further 

assume that N( )t  denotes the arrival making the n largest such that S tn ≤ . Then, the 

following statements are true:
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 2. From (7.6), we have:

n−1
( )λt j

 P S( )n > =t P( (N t) < n) =∑ e−λt . (7.16)
j!

j=0

Differentiating (7.16) with respect to t, we obtain:

n−1
1− fs = −∑ ⎡ ( )λ λt ej t− −λ λj t

n + j( )λt 1λe− ⎤
j! ⎣ ⎦

j=0

n−1 ⎡ ( )λ λt j j
−λt∑ j t( ) −1 ⎤

 = −λe ⎢ + ⎥  
j! ( 1j )!

j
−

=0 ⎣ ⎦

( )λt n−1

= −λ e−λt .
( 1n − )!

Hence, the (7.15) is true.

Example 7.11

Suppose occurrences of events in a process are distributed according to a Poisson 
pmf with parameter.

 i. Find the probability that the eighth event occurs 2 or more time units 
after the seventh event.

 ii. Find the expected time of occurrence of the eighth event.
 iii. Find the probability that the eighth event occurs after the time epoch 10.
 iv. Find the probability that two events occur in the time interval [1,3] and 

three events in [2,4].

Answer

 i. The question we have to answer in this item is finding

 P (The eighth event occurs later than time 10 . 

The answer is yet e−λt. This is because one can restart the Poisson 
 process at any event.

8
 ii. From (7.12), the answer is .

λ
 iii. We need to find P (The eighth event occurs later than time 10 . This is 

equivalent to finding:

 P ( )S P8 > =10 {N(10)} = P{N(10) < 8}. 

We have two choices as how to find this probability. That is,

)

)



477Stochastic Processes

7∞ ( )λt
 a. P S( ) ∫ λ

8 > =10 λe d− t t, (7.17)
10 7!

or
7 ( )10λ j

 b. P N( )(10) < =8 ∑ λe−10λ . (7.18)
7!

i=0

Using (a) with the aid of two-line codes of MATLAB:

L=5; %L=lambda
fun=@(t) (L/(factorial(7))).*((L.*t).^7).*(exp(-L.*t))
p=integral(fun,10,inf)

we obtain the values for different values of λ  as in Table 7.1.
 iv. To find the probability that two events occur in the time interval [1,3] 

and three events in [2,4], symbolically, is P(Two events in [1,3] and three 
events in [2,4]). To find this probability, we use the conditional probabil-
ity as follows:

P(2 events in [1,3] and 3 events in [2,4])

⎫⎪= ∑
2

P j(2events in [1,3] and 3 events in [2,4] events in [ ]2,3 ⎬
i=0 ⎭⎪

.P j( )events in [2,3]

= −∑
2 ⎫⎪

P j(2 events in [1,2] and 3− j events in [3,4]⎬  (7.19)
i=0 ⎪⎭

.P j( )events in [2,3]

λ λ2 3− j j−

=∑
2 j

e−λ λe− −λ
e λ .

(2 − −j)! (3 j)! j!
i=0

λ λ3 2( )+ +6 6λ
= e−3λ

12

Again, for different values of λ , we can find the values of this probability as in 
Table 7.2.

)

TABLE 7.1
Finding the Values of a Stochastic Process, Example 7.11(iii)
λ 0.5 1 3 5

( 8P S > 10) 0.8666 0.2202 5.2337e-07 3.4640e-14
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Definition 7.9

 

Denoted by Pj i, , (7.20) would mean the conditional probability of being in state j 
given that the transition took place from state i, that is,

 P Pji = ={ }Xn+1 j Xn = i , (7.21)

with

 ∑ p iji = ∈1, S. (7.22)

j s∈

In other words, given the current state of the process being i, transition to the 
next state, j, is independent of the history of the process prior to the current 
state.

This idea was originated by the Russian Mathematician Andrey (Andrei), 

Andreyevich Markov (Markoff): June 14, 1856, to July 20, 1922 (Figure 7.4). See: 

https://en.wikipedia.org/wiki/Andrey_Markov#/media/File:AAMarkov.jpg.

It can be seen from (7.21) that the conditional probability Pj i,  is the 

 probability of transition from state i to state j in one step. 

TABLE 7.2
Finding the Values of a Stochastic Process, Example 7.11(iv)
λ 0.5 1 3 5

P(2 events in [1,3] and 3 events in [2,4]) 0.0215 0.0539 0.0092 1.9438e-04

A discrete stochastic process {X nn , 0= ,1, } on a countable state space S X= { 0 1, ,X } 

is called the discrete Markov process or a Markov chain; if for i j, ∈S and n ≥ 0, 

the following conditional probability, called the Markov property, or forgetfulness 

property, holds:

P X{ }n n+ +1 0= =j X , ,X1 , X P X{ n 1 = j Xn}. (7.20)

The Markov property (7.20) states that at any epoch n, with state Xn, the next state 

Xn+1 is conditionally independent of the past states X0, X X1, , n. That is, the next 

state depends upon the present state only, regardless of the history.

https://en.wikipedia.org
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Definition 7.10

For a homogenous Markov chain, the matrix P, whose elements are Pj i, , is called the 

transition matrix. In general, P looks like the following matrix:

 

pij

⎛ 0 1 2 3 ... ⎞
i j/ ⎜ p p1 p2,0 p3,0 ...
0 ⎜

0,0 ,0 ⎟
p p ⎟

,1 3,1 ...
1 ⎜ 0,1 1,1 p2 p ⎟

P = ⎜ p p0,2 1,2 p2,2 p3,2 ... ⎟  (7.23)
2 ⎜ p p p p ... ⎟
3 ⎜

0,3 1,3 2,3 3,3
⎟

 ...  ⎜ ⎟
⎝   ⎠

Note 7.19

We leave it as exercises to show that:

 i. The exponential distribution function is the only continuous probability distri-

bution having the forgetfulness property, and conversely, a continuous prob-

ability distribution function having such a property is the exponential cdf.

ii. The geometric mass function is the only discrete pmf having the forgetful 

property.

 

We now generalize (7.21) as follows.

FIGURE 7.4 Andrei Markov.

That is, transition probabilities do not depend upon the time parameter n. Hence, 

the Markov chain is referred to as time homogenous. It is nonhomogeneous if the 

process { }X nn , 0= ,1,  is time dependent.
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Definition 7.11

The n-steps transition probability from state i to state j, denoted by p( )n
ji , that is, 

transition from state i to state j in n steps, is defined as follows:

 

where p(0)
ji  is defined as follows:

 (0) 1, j 1,
pji = { =

 (7.25)0, j i≠ .

In other words, Xk represents the state of the process after k steps at i; if it moves n 

more steps, its state after k + n steps is j.

Example 7.12

i. pii: The machine stopped working and the next move will be stay put 
because it is not repaired yet.

 ii. pnn: The machine stopped working and it is not replaceable.
 iii. p p0n n= −1 n : The machine stopped working and it reached its limit. 

Hence, it is being replaced by a new machine.

Thus, we have constructed a Markov chain with transition matrix, denoted by P, 
as follows:

pi j,

⎛ ⎞
i j/ 0 1 2 3 ... n

⎜ ⎟
⎜ p p0,0 1,0 p0 2,0 p3,0 ... pn,0 ⎟

1 ⎜ 0 p p p ... p
⎜

1,1 2,1 3,1 n,1 ⎟
⎟  

P = 2 ⎜ 0 0 p p2,2 3,2 ... pn,2 ⎟
3 ⎜ 0 0 0 p p... ⎟

⎜ 3,3 ,n 3 ⎟ ⎜     ...  ⎟
n ⎜⎝ p p0,n n0 0 ... −1,n pn,

⎟⎠

 

n

p P( )n
ji = ={ }Xk n+ j Xk = i , ,i j ∈S, n = 0,1, , (7.24)

Consider a machine that is constantly working unless it stops due to failure. 
Instances 1,2,...,n are the epochs of failures that will be recorded. We denote 
the failure states of the machine at time instance k by Xk with state space 
S n= { }0,1,2, , . Hence, if the machine fails at epoch i, its next failure will be at 
epoch j j, > i. If it fails at epoch n, it is indicated that it should either be discarded 
or be replaced by a new machine and so the next state will be the state 0. Hence, 
transition probabilities are as follows:
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Example 7.13

Let us go back to Example 7.10. Suppose we choose the usual working period of 
the machine as number of years. So, Xk, in this case, denotes the number of years 
that the machine is continuously working. This is an example of what is referred 
to as the success runs. Thus, we consider a sequence of independent events with 
success or failure at each of its occurrences. The events in this case are working of 
the machine in different periods of times with “success” as “working” and “failure” 
as the “breakdown” of the machine. Thus, consider the working of the machine in 
years. Then, Xk denotes the number of years the machine is working after its last 
failure and before its kth failure again. Hence, if the number of years the machine 
continued working is i, it means that the next event occurs with the probability of 
success as p pi i, 0 < < 1, and stopping to work with probability 1− p. If there is no 
time limit, the transition matrix for this Markov chain will be as follows:

 

Example 7.14

In a special case of Example 7.11, let us consider tossing an unbiased coin repeat-
edly with the same probability of occurrence of a head (success) for each toss as p 
and for tail as q p= −1 . That is, we have a sequence of independent Bernoulli trials 
with the probability of success p and of failure q p= −1 . This is referred to as the 
Bernoulli process. Let Xn denote the number of successes in n trials, n ≥ 1. Thus, 
Xn has a binomial distribution with parameters n and p. Suppose i heads appeared 
in n trials, that is, Xn = i. Then, the result of the next trial is the state Xn+1, which is:

⎧ j i= +1, A head will appear with probability p,⎪
X = n+1 ⎨  (7.27)

⎩⎪ j = i, A tail will appear with probability 1 p,

⎧p p+ =
⎪

i i1, ,

⎪
 ⎨p pi i, = −1 ,  (7.28)

⎪
⎪⎩pji = 0, otherwise.

In such a case, Xn is a binomial Markov chain, which is a special case of a random 
walk.

−

⎛ 1 0− p p ⎞
⎜

0 0

⎟
⎜ 1 0− p p1 1 0 ⎟
⎜ 1 0− p p0 ⎟

PP = ⎜
2 2

⎟ . (7.26)
⎜ ⎟
⎜ p p0 0 ⎟
⎜

n
⎟⎝ ⎠

k

regardless of values of X1 2, ,X X, n−1. Hence, Xn is a Markov chain with transition 
probabilities
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Example 7.15

The failure–repair (FR) model  is one of the standard examples of a Markov chain. 
It is as follows. Suppose an office has a computer for its daily routine work. The 
administrator staff turns on the computer as she comes to work each day. Turning 
on the computer is referred to as a trial. The computer fails to turn on (work) with 
probability q. The probability that it turns on and functions normally is p, p q+ = 1. 
Each time the computer fails to work, a repairperson (an IT personnel) is called. 
The computer cannot be used until it is completely repaired. We want to find the 
probability that the computer is in working condition at a specific number of trials.

Answer

1, The machine is up after trial n,
Xn = {  

0, The machine is down after trial .n

p p(0)
1 = =1 and (0)

0 0, byassumption. 

For k = 1,

 p p (0) (0)
1 1= +0 p0 p11 p1 = (1)(0) + (p)(1) = p, 

and

 p p (0)
0 1= =0 p1 (q)(1) = q. 

For k = 2,

( ) ( ) ( )p p2
1 = +10 p 1

0 p11 p 1
1 = (1)(q) + (p)(p) = q + p2 2= 1− q + q ,  

and

( )2 = =(1)p p10 1 ( )( ) 2
0 p p q = q − q .  

Following the same pattern, we can find the other probabilities as follows:
For k n= ,

 

It is clear that the process is a random walk. Let {0, 1} denote the state space of this 
Markov chain, that is, 0 for failure and 1 for working condition. Thus, if we define 
the random variable Xn ,n = 0,1,2,..., as the state of the computer after n trials, then 
for n = 0,1,2, , we have:

We assume that the process with working condition is state 1. Since there are only 
two states 0 and 1 for this process, we define the probability of being in any of 
the state after n step by p k( )n

k , = 0,1, and pk, if n = 1. We also denote the transition 
probability of transiting from state i to state j in n step by p( )n

ji  and pji if n = 1. Hence, 
for k = 0,1,2, , inductively, we will have:

For k = 0,

n
( ) 1 (− −q)n+1

p qn
1 = +1 (− ) + (−q)2 + + (−q)n k=∑(−q) = , 

1+ q
k=0
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and

( ) 1 (− −q)n n+ +1 1q q+ −( )
P n

0 = −1 = . 
1+ q 1+ q

 

The transition matrix P(n) with elements p( )n
ji , i j= =0,1; 0,1;n = 0,1,2,..., is as follows:

 

For instance, if the machine breaks down and 5% of the times is used, then the 
probability that the machine is “in working condition” after five times turned on 
is 95.2%, because

 
1 6

( )p 5 − −( 0.5)
1 = = 0.952. 

1+ 0.5

Example 7.16

Traditionally, Rat in a Maze is a standard example used for a Markov chain. It can 
also be used as a puzzle or a game that a player may use for fun. However, we 
use a robot as a generic name. So, here is the problem: Suppose we have a maze 
and we assume the following:

 i. The maze has five cells, say Cell 1, Cell 2, …, Cell 5.
 ii. The maze has no entrance.
 iii. To start, the rat is put in a cell at random, unless otherwise stated.
 iv. Each cell has one or more exit ways to the neighboring cells.
 v. There is a way to exit out the maze referred to as the Out Window, 

denoted by O.
 vi. The connections of cells are as follows:

Cell 1 to Cell 2 or Cell 4
Cell 2 to Cell 1, Cell 3 or Cell 4
Cell 3 to Cell 2 or Cell 5
Cell 4 to Cell 1 or Cell 2 or Cell 5
Cell 5 Cell 3 or Cell 4 to Cell O,
which are illustrated in Figure 7.5.

 vii. After a move (transition) has occurred, the robot cannot remember in 
what cell it was before (the Markov property).

 viii. Transitions from one cell to another are independent of each other.
 ix. Choices to move out of a cell from each pathway out to neighboring cells 

have the same probabilities.

⎛ ⎞
0 1n k/ ⎜ ⎟

⎜ 0 10 ⎟
⎜ q q1− ⎟

1 ⎜ ⎟
P ( )n = 2 ⎜ q q− −2 21 q q+ ⎟  

3 ⎜ ⎟
⎜ q q− +2 3q 1− q q+ −2 3q ⎟

4 ⎜ ⎟q q− +2 3 4q − q 1− q q+ −2 3 4q + q⎜ ⎟
⎜⎝ ⎟⎠
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 x. No transition is possible from the exit window O, other than exiting the 
maze.

 xi. Staying put or moving from a cell to itself in the next move is not allowed.

We want to find the average number (mean) of moves for the robot to exit the 
maze starting from any cell.

Answer

To begin with, let us denote the transition probabilities from Cell i to Cell j, 
 including the “exit out window”, by p , such that, for the exit out window, O, ji
we have:

⎧1, i O= =, j O,
⎪ 1
⎪ , 5i j= =, O,

pji = ⎨ 3  
⎪0, otherwise,⎪⎩

 

that is, pOO, symbolically, means the probability of permanent exit. Since no transi-
tion is possible from state O, this state is referred to as the absorbing state. In other 
words, as soon as the chain enters this state, it will remain there forever.

Also, staying put not being allowed, that is,

p iii = =0, , j 1,2,3,4,5.  

Let us denote by Xn, the cell that robot will visit immediately after the nth move. 
Thus, the process {Xn} is a Markov chain with state space S O= { },1,2,3,4,5 . 
According to the structure of the maze and the assumptions associated with it, 
we will develop Table 7.3, the transition probability matrix P, and Table 7.4, as 
follows.

Note 7.20

In Table 7.3, the sum of each row is 1, as expected.

1 Door

2 Door 3

Door
Door Door

4
Door 5

Out

FIGURE 7.5 Graph of a two-dimensional maze with five cells, Example 7.17.
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pij

i j/ ⎛ O 1 2 3 4 5 ⎞
1 ⎜ 0 0 1/2 0 1/2 0 ⎟  ⎜ 0 1/3 0 1/3 1/3 0 ⎟P = 2
3 ⎜ 1/2 ⎟ .

0 0 1/2 0 0
4 ⎜ 0 1/3 1/3 0 0 1/3 ⎟

⎜ ⎟5 ⎝ 1/3 0 0 1/3 1/3 0 ⎠

TABLE 7.3
Transition Probabilities, pj,i, Example 7.16

Cell i
j/pj,i 0 1 2 3 4

1 01p = 0 11p = 0
21p = 1

2

31p = 0
41p = 1

2

51p = 0

2 02p = 0
12p = 1

3

22p = 0
32p = 1

3
42p = 1

3

52p = 0

3 03p = 0 13p = 0
23p = 1

2

33p = 0 43p = 0
53p = 1

 
2

4 04p = 0
14p = 1

3
24p = 1

3

34p = 0 44p = 0
54p = 1

3

5
05p = 1

3

15p = 0 25p = 0
35p = 1

3
45p = 1

2

55p = 0

5

TABLE 7.4
The Cell Number That the Robot Will Visit Immediately after the nth Move, 
Example 7.16

Cell Numbers          i
j                           States 0 1 2 3 4 5

1 X1 2 with 
1

p31 =
2

4 with 
1

p41 =
2

2 X2 1 with 
1

p12 =
3

3 with 
1

p53 =
3

4 with 
1

p42 =
3

3 X3 2 with 
1

p23 =
2

5 with 
1

p53 =
2

4 X4 1 with 
1

p14 =
3

2 with 
1

p24 =
3

5 with 
1

p54 =
2

5 X5 0 with 
1

p05 =
3

3 with 
1

p35 =
3

4 with 
1

p45 =
3
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So far, we have set up the problem and now are ready to answer the question. So, let 

us denote the starting location of the robot in Cell s by Xs ,s = 1,2,3,4,5. For instance, 

if at the start it is standing in Cell 1, then Xs = 1, and if it starts from Cell 3, Xs = 3. 

Now, let us start by denoting the minimum number of moves for the robot to exit, if 

it begins from cell number s,s = 1,2,3,4,5, by αOs , s = 1,2,3,4,5, defined by

 αOs = ≥min{m X0 such that m = O X s = s, s = 1,2,3,4,5 . (7.29)

We now have to calculate the values of E ( )αOs , s = 1,2,3,4,5. So, let us start with 

s = 1. It, then, moves to the possible neighboring cell. In this case, we have to find 

E ( )αO1 . From Table 7.4, we see that the robot cannot directly exit from Cell 1; it 

rather has only two choices, Cell 2 and Cell 4, and then other neighboring cells 

before it can exit. However, we know that from Cell 1, it can move to Cell 2 with 

one move and probability 1/2. Thus, E ( )α αO s1 2X E= =2 1+ ( )O . Since from Cell 

1 it could also go to Cell 4 with 1 move and with probability 1/2, we will have 

E ( )α αO s1 4X E= =4 1+ ( O ). Here is the role of the Markov property. That is, once 

the robot is in Cell 2, for example, it will not remember how he got there, that is, in 

which cell it was before or even before that. Thus, the chance of remaining number 

of moves to exit from the cell it is in now would be the same as if it were in Cell 1. 

Based on this argument, we will have the following:

E ( )αO s1 X P= =2 2{Xs = O Xs = }
= +E X( )αO s1 = 4 4= P{Xs s= O X = }

⎛ 1 ⎞ ⎛ 1 ⎞  = ⎜ ⎟ ( )1+ +E E( )α αO O2 4⎜ ⎟ (1+ ( )⎝ 2⎠ ⎝ 2⎠ )

⎛ 1 ⎞ ( ) ⎛ 1 ⎞= +1 ⎜ ⎟ E Eα αO O3 4+ ⎜ ⎟ ( )⎝ 2⎠ ⎝ 2⎠

 

In a similar fashion, we can find the rest of the expected values, except the last one, 

E ( )μo5  Thus, we will have:

E ( )μ μO O2 2= =E X( )2 1 1P{ }X2 = XO = 0 + E X(μO2 2 = 3)P{X2 = 3 XO = 0}
+ =E X( )μO O2 2 4 4P{ }X2 = X = 0

 ⎛ 1⎞ ( )( ) ⎛ 1⎞ ⎛ 1⎞  = ⎜ ⎟ 1+ +E Eα αO O1 3⎜ ⎟⎝ 3⎠ ⎝ 3⎠ (1+ +( )) ⎜ ⎟ (1+ E (α⎝ 3
O )⎠ 4 )

⎛ 1⎞ ⎛ 1⎞ ⎛ 1⎞= +1 ⎜ ⎟⎝ ( )E E( )α α+ ⎜ ⎟ ( ) +
3⎠ O O1 3 ⎜ ⎟ E (α ) .⎝ 3⎠ ( ) ⎝ 3⎠ ( O4 )

}

http://5.Es
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E ( )α αO O3 3= =E X( )3 2 2P{X3 = XO = 0}+ E (αo3 )

= =E X( )αO O3 3 5 5P{X3 = X = 0}
 ⎛ 1 ⎞= ⎜ ⎟⎝ 2 ⎠ ( ) 1

E E( ) ⎛ ⎞  
1+ +α αO O2 5⎜ ⎟ 1+ ( )⎝ 2 ⎠ ( )

⎛ 1 ⎞
⎜ ( )( ) ⎛ 1 ⎞= +1 ⎟ E Eα α⎝ 2 ⎠ O O2 5+ ⎜ ⎟ (

2
( )⎝ ⎠ ).

E ( )α αO O4 4= =E X( )4 1 1P{ }X4 = XO = 0

= =E X( )α αO O4 4 2 2P{ }X4 = X = 0 + E X( O O4 4 = 5)P{X4 = 5 X = 0}
 ⎛ 1⎞ ( )( ) ⎛ 1⎞ ⎛ 1⎞  = ⎜ ⎟ 1+ +E Eα αO O1 2⎜ ⎟⎝ 3

(1+ +( ) ⎜ ⎟⎠ ⎝ 3⎠ ) ⎝ 3⎠ (1+ E (αO5 ))

⎛ 1⎞ ( ) ⎛ 1⎞= +1 ⎜ ⎟ ( )E Eα αO O1 2+ ⎜ ⎟ ( ( ) ⎛ 1⎞+ ⎜ ⎟ E (α )⎝ 3⎠ ⎝ 3⎠ ) ⎝ 3⎠ ( O5 ).

E ( )α αO O5 5= =E X( )5 O P{X5 = O XO = 0}
= +E X( )α αO O5 5 = 3 3P{X5 = X = 0}+ E X( O O5 5 = 4)P{X5 = 4 X = 0}

 ⎛ 1⎞= ⎜ ⎟ ( ) ⎛ 1⎞ ⎛ 1
1 ⎟ ( ) ⎞  + ⎜ 1+ +E E( )α α⎜⎝ 3⎠ 3 4⎟⎝ (1+ ( )⎝ 3⎠ O O

3⎠ )

⎛ 1⎞ ⎛= + ( ) 1
1 ⎟ E E( ) ⎞

⎜ α α .
3

O O3 4+ ⎜ ⎟
3

( ( )⎝ ⎠ ⎝ ⎠ )

Therefore, we have five equations with five unknowns E ( )μ α αo E1 2, ,( )o E( o3),

( )
 

E α αo E4 5, and ( )o  as follows:

⎧ ( ) ⎛ 1 ⎞ 1
E EO O1 2− ⎜ ⎟ ( ) ⎛ ⎞α α − ⎜ ⎟ E (α⎪ O ) = 1,⎝ 2 ⎠ ⎝ 2 ⎠ 4

⎪
⎪

( ) ⎛ 1⎞ ( ) ⎛ 1⎞ ( ) ⎛ 1⎞⎪E Eα α2 1 3− ⎜ ⎟ − ⎜ E Eα α⎜ ⎟ ( ) = 1,⎝⎪
O O ⎟ −

3⎠ ⎝ 3⎠ O O⎝ 3⎠ 4

⎪
⎪ ( ) ⎛ 1 ⎞ ⎛ ⎞E EO O3 2 5⎜ ( 1

 ⎨ α α− ⎟ )− ⎜ ⎟ E ( )α = 1,  ⎝ 2 ⎠ ⎝ 2 ⎠ O

⎪
⎪
⎪ ( ) ⎛ 1⎞ ⎛ 1⎞ ⎛ 1⎞E Eα αO O4 1 2− ⎜ ⎟ ( )− ⎜ ⎟ E E(α α)− ⎜ ⎟ ( ) = 1,
⎪ ⎝ 3⎠ ⎝ 3⎠ O O⎝ 3⎠ 5

⎪
⎪ ( ) ⎛ 1⎞ ( ) ⎛ 1⎞ =⎪E E Eα α αO O O5 3− ⎜ ⎟ − ⎜ ⎟ (⎝ ⎠ 4 ) 1.
⎩ 3⎠ ⎝ 3
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Thus, using MATLAB, we can solve this system of five linear equations with five 

unknowns and obtain:

⎧E ( )αO1 = 20.1818
⎪
⎪E ( )αO2 = 19.7273
⎪
⎪

 ⎨E ( )αO3 = 17.3636  
⎪
⎪E ( )α 4 = 18.6364
⎪

O

⎪E ( )α⎩ O5 = 13.0000.

What these values say are that if the robot starts in Cell 1, it will exit after about 20 

moves, on the average. It is the same for others; that is, if the robot starts in Cell 2, 

it will exit after about 20 moves, on the average, after about 17 moves if it starts in 

Cell 3, after about 19 moves if it starts in Cell 4, and after about 13 moves if it starts 

in Cell 5, which is the least number of moves.

We can now extend Definition 7.7 for continuous random variables. In fact, we 

will have similar results as in the discrete case with different terminologies.

Definition 7.12

A stochastic process with continuous time is denoted by {T t( ), t ≥ 0} and is referred 

to as a Markov process. The transition probability from state i to state j in a time 

interval of length j, will be denoted by p tji ( ), is defined as

 p tji ( ) = +P T (t s) = j T ( )t = i . { }
Similar definitions and formulae for Markov chain follow accordingly by replacing 

n by t. For instance, the continuous case of (7.18) is:

 P P= >{ }T t + s T > t = P{T > s}, ∀s,t ≥ 0. (7.30)

Transition probabilities may be represented by matrix, referred to as the transition 
matrix, denoted by P( )t p= ( )yx( )t , where p tyx ( ) is the general element.

Note 7.21

The transition probabilities are nonnegative and sum to 1.

It is assumed that at least one transition from state x to another state in [0, t], for 

all t ≥ 0, occurs. For this reason, the transition matrix P( )t  is called a stochastic 
matrix. The transition probabilities satisfy what is referred to the Chapman–
Kolmogorov equations.
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∞

 p tyx ( )+ =s ∑ pkx (t)pyk (s) (7.31)

k=0

or in matrix form

 P P( )t s+ = (t)P(s), ∀s, t ∈[0,∞). (7.32)

Note 7.22

Similar equations can be derived for discrete-time Markov chains.

Definition 7.13

A Markov process that is independent of time is referred to as the stationary or 

time-homogeneous or simply homogeneous Markov process.

7.4  CLASSIFICATION OF STATES OF A 
MARKOV CHAIN/PROCESS

States of a Markov chain (similarly of a Markov process) are given names for reasons 

so that the terms explain the case of those states.

Definition 7.14

For a Markov chain, a state j is called accessible from state i, denoted by i j→ , if 

there is a positive probability, say p( )n
ji > 0, for some n ≥ 0. That is, there is a possibil-

ity of reaching the state j from state i in some number, n, of steps. On the other hand, 

if a state j is not accessible from state i, then p( )n
ji = 0, for all n ≥ 0. In this case, if the 

chain started from the state i, it will never visit the state j.

Definition 7.15

If a state j is accessible from a state i ( )i j→  and the state i is accessible from the 

state j ( )j i→ , then we say the states i and j communicate, denoted by i j↔ . In this 

case, p( )n
ji > 0 and p( )n

ji > 0.

We leave as an exercise to prove that i j↔  is an equivalence relation, that is,

 i. i j→ ,

 ii. i j→  implies j i→ ,

 iii. i k→  and k j→  together imply that i j→ .
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Definition 7.16

The accessibility relation, defined above, divides states into classes. All states within 

each class communicate to each other. However, no pair of states in different classes 

will communicate with each other.

Definition 7.17

A Markov chain is called irreducible if it contains only one class. Otherwise, the 

chain is reducible.

Example 7.17

Suppose we have a chain with three states 1, 2, and 3, with its transition matrix 
as follows:

1 2 3
i j/ ⎛ 1 / 2 1 / 2 0 ⎞
1P ⎜= 1 / 2 1 / 4 1 / 4 ⎟  
2 ⎜ ⎟⎜⎝ 0 1 / 3 2 / 2 ⎟⎠
3

 

Is this chain irreducible?

Answer

Consider, for instance, 3 2↔  and 2 1↔ . Thus, the chain has only one class, and 
hence, it is irreducible.

Example 7.18

Suppose we have a chain with four states 1, 2, 3, and 4, with its transition matrix 
as follows:

1 2 3 4
i j/

⎛ 1 / 2 1 / 2 0 0 ⎞
1 ⎜ 1 / 2 1 / 2 0 0 ⎟

P = 2 ⎜ ⎟  
⎜ 0 0 1 / 4 3 / 4

3 ⎟
⎜ ⎟⎝ 0 0 0 1 ⎠4

 

Is this chain irreducible?

Answer

Looking at state transitions, we see that only states 1 and 2 commute. That is, there 
are three classes as {1,2},{3}, and {4}. Thus, the chain is reducible.
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Definition 7.18

In a Markov chain, a state i from the state space S is referred to as recurrent if it will 

be revisited. That is, if

 P i( )be revisited X0 = =i 1. 

The state i is called transient if

 P i( )be revisited X0 = <i 1. 

Note 7.23

From this definition, it can be seen that in a Markov chain starting from any 

recurrent state, it can be revisited infinitely many times or will not be revisited 

at all.

Example 7.19

Let us return to the Example 7.18. It is clear that state 4 is recurrent: Since 
if the process starts with state 4, it can be revisited infinitely many times with 
probability 1, that is, P ( )4 be revisited X0 = =4 1. State 3 is transient since 
P X( )3 be revisited 0 = =3 1 / 4 < 1. State 1 is recurrent. This is because in order to 
move out of 2 to go to state 1, we have to stay in state 2. But the probability of stay-
ing at state 2 is (1 / 2)n ,n → ∞, that is, 0. Thus, we will exit state 2 and revisit state 1. 
With a similar argument, we can see that state 2 is also recurrent.

Note 7.24

We leave the proof of the following properties as exercises.

∞
 i. A state is recurrent if and only if ∑ Pn

ii = ∞.
n=1

 ii. If a state is recurrent and i j→ , then also j i→ .

 iii. If a closed subset S only has finitely many states, then there must be at least 

one recurrent state among them. In particular, any finite Markov chain must 

contain at least one recurrent state.

 iv. In any class, either all states are recurrent or all states are transient. In par-

ticular, if the Markov chain is irreducible, then either all states are recurrent 

or all states are transient.

 v. Any recurrent class is a closed subset of states.



492 Probability, Statistics, Stochastic Processes

Example 7.20

Suppose we have a Markov chain with four states 1, 2, 3, and 4, all transient, with 
its transition matrix as follows:

1 2 3 4
i k/ ⎛ 0 0 1 / 2 1 / 2 ⎞

1 ⎜ 1 0 0 0 ⎟
 P = 2 ⎜ ⎟ 

⎜ 0 1 0 0
3 ⎟

⎜ ⎟⎝ 0 1 0 0 ⎠4

Is every state recurrent?

Answer

We leave it as an exercise to show by inspection that it is indeed accessible, and 
hence, every state is recurrent.

Definition 7.19

A state i, for which pii = 1, that is, p jji = ≠0, i, is referred to as an absorbing state 

(or an absorbing barrier). A nonabsorbing state is referred to as a transient state.

7.5  MARTINGALES

In 1934, the French mathematician Paul Pierre Lévy (1886–1971) initiated the dis-

crete stochastic process describing waging. The idea was extended by Joseph Leo 

Doob to other areas of stochastic processes, including the decomposition theory and 

martingale. Later, in 1939, Jean Ville defined the concept of martingale for continu-

ous stochastic process.

Definition 7.20

Such a process is referred to as the discrete-time martingale.

Example 7.21

In a gambling game, if the games are fair, a gambler’s capital is a martingale. 
Here is why. Let the game consist of tossing a fair coin repeatedly. The game 
rule is that a gambler wins $1 if the coin comes up heads and loses $1 if it 

E ( )X Xn n+1 1, ,X2 , X = Xn. (7.33)

Let X1 2, ,X X, n be a sequence of random variables with finite expected values, that 

is, E ( )Yn < ∞. Let also { }Xn  be a discrete-time stochastic process such that:
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comes up tails. Suppose that the leftover capital of a gambler after n losses is 
Xn. Also, suppose that the gambler’s conditional expected capital after the next 
trial, given the history, equals the gambler’s current capital. Thus, the sequence 
is a martingale.

Definition of martingale stated in the Example 7.21 may be generalized as 
follows.

Definition 7.21

Note 7.25

If Xn n= Y , then this definition reduces to the definition of basic martingale.

Note 7.26

A similar definition may be stated for continuous-time martingale.

Definition 7.22

Note 7.27

What the definition states is that at any particular time k, one can look at the 

sequence so far and tell if it is time to stop. For instance, referring to the gambler’s 

example, the time at which a gambler leaves the gambling table, which might be a 

function of his previous winnings, is the stopping time since he might leave only 

when he goes broke, but he cannot choose to go or stay based on the outcome of 

games that have not been played yet.

  Let us consider two sequences of random variables X0 1 2, ,X X ,  and Y0 1 2, ,Y Y , ,

Choose a random sample from each of the sequences, say X0 1 2, ,X X , , Xn and 

Y0 1 2, ,Y Y , ,Yn, respectively. The sequence Y0 1 2, ,Y Y , , with finite expected value, that 

is, if for all n ≥ 0, E ( )Yn < ∞. is called a martingale with respect to X0 1 2, ,X X , , if 

for all n ≥ 0, the following holds:

E ( )Y Xn n+1 0 1 2, ,X X , , X = Yn. (7.34)

Let {X nn}, = 1,2, , be a sequence of random variables. The random variable ξ is 

referred to as a stopping time with respect to {X nn}, = 1,2, , if for each k, the 

occurrence or nonoccurrence of the event ξ = k  depends only on the values of 

X1 2, ,X X, k .
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Note 7.28

The martingale may be defined differently. We define it through an example. 

Suppose a company just established a business. Traditionally, for such busi-

nesses, it is expected not to gain much for a while before business is picking 

up. Clearly, the asset invested is subject to move probabilistically based on the 

changes in the market and fix costs. Now let us suppose the asset of the company 

at epoch k is denoted by a stochastic process {Xk}, which is subject to the market 

knowledge at epoch k. This factor is referred to as a filtration and is denoted by 

{ℱk}. In other words, we are defining a stochastic process {Xk}, meaning “what 

we have at instant k”, and {ℱk}, meaning “what we know at instant k”. Thus, 

for a while, expected gain after each transaction would be 0. Hence, estimated 

“what the company will have at instant k + 1”, based on what it knows at time 

k, will be Xk. In other words, the stochastic process defined is a martingale if 

E ( )X Xk k+1 f = k .

We now state these definitions below.

Definition 7.23

Let ℱ be a σ -field. A sequence {ℱk, k ≥ 0} of subfields of ℱ is called a filtration 

in the σ -field if

 f fk k⊂ ∀+1, 0k ≥ . (7.35)

Definition 7.24

Let {X kk}, = 1,2,..., be a sequence of random variables. Then, {X kk}, = 1,2,..., is 

referred to as adapted to the filtration if Xn is fn-measurable for all k ≥ 0. In other 

words, the events {X kk}, = 1,2,... are in fk , that is, {Xk k}∈f .

We can now state the general definition of martingale.

Definition 7.25

Let {fk , k ≥ 0} be a filtration in ℱ. Also, let {Y kk}, = 0,1,2,..., be a sequence of 

random variables adapted to that filtration. Then, {Y kk}, = 0,1,2,..., is a martingale, 
with respect to {fk , k ≥ 0}, if:

 E Y( )k < ∞ (7.36)

Some authors define the stopping time by requiring only that the occurrence or 

nonoccurrence of the event ξ = k  is probabilistically independent of Xk k+ +1 2, ,X , 

but not that it is completely determined by the history of the process up to instant k. 

This is a weaker condition than we stated in the above, but it is strong enough to 

serve in some of the proofs in which stopping times are used.
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and

 E ( )Y Yk k+1 f = k . (7.37)

Example 7.22

Let us refer to the Gambler’s Ruin example we saw earlier. So, a gambler wins 
or loses $1 in each round of betting, with equal chances and independently of 
the past events. He starts betting with the determination that he will stop playing 
games when either he won x dollars or he lost y dollars. We want to answer the 
following questions:

 i. What is the probability that he will be winning when he stops playing 
further?

 ii. What is the expected number of his betting rounds before he will stop 
playing further?

Answer

To answer the questions, we model the gambling with simple symmetric random 
walk. So, let ξ j, j = 1,2,..., be iid random variables with common distribution as 
follows:

 

Let, also, fn j= ≤( )ξ , 0 j n≤ , n ≥ 0 be their filtration. We define

 ∑
n

S S0 = =0, n jξ , n ≥ 1. (7.39)
j=1

We also define the following stopping times

 T nL n= >inf { }0 : S = −y , TR = inf { }n > 0 : Sn = x ,T = min{ }TL ,TR . (7.40)

Note 7.29

⎧{The gamber wins x Tdollars} = ={ T },⎪ R

⎨  
⎪⎩{The gamber loses y Tdollars} = ={ TL}.

 

 i. Using stopping time property, we have:

 E ( )S ET = =( )S0 0. (7.41)

Hence,

 −yP( )T = +TL RxP(T = T ) = 0. 

1
P P( ) 1ξ ξj j= +1 = , 1 , 1,2,

2
( )= − = j =  (7.38)

2



496 Probability, Statistics, Stochastic Processes

Since

 P( )T T= +L RP(T T= ) = 1, 

we have:

( ) x y
 P T = =TL R, .P T( = =T )  

x y+ x y+

 ii. We first prove that M S2
n n= − n is a martingale:

 

 

Now applying the stopping time property, we will have:

 0 = =E M( ) E S2 2
T T( )− T = P(T = T 2

L ) y + P(T + TR )x − E T  

Thus, from part (i), we have:

 E( )T x= y. 

Example 7.23

Suppose we have U number of urns and B number of balls. We randomly place 
the balls in urns, one at a time. All balls have the same chance to be selected from 
urns. That is, the probability of a ball to be selected from any urn is 1/B. Also, if a 
ball is selected randomly from an urn, placing it in another urn has the same prob-
ability as any other. In other words, selection of an urn has a probability of 1/U. 
Now, we select a ball at random. Let the number of balls in the first urn at time k 
be denoted by Xk. For k ≥ 0, let  fk i= ≤σ ( )X i, 1 ≤ k  be the filtration generated by 

the process k X→ k. We want to calculate E ( )Xk k+1 f .

Answer

E ( ) − −
X Xk k+1 f = +( ) B X 1 1

1
k X U

k + −( )X 1
k

B U
k

B U

⎛ B X− X ⎞ + X ⎜
k k 1

k U K− +1 ⎟  ⎝ B B U ⎠

B −1 1= Xk + .
B U

For an example, if there are B U= =10, 3, and X3 = 4, then

E X( ) 10 −1 59
 4 3f = ( )4 + =13 ≈ 4. 

10 15

( ).

E ( )M En n+ +1 1= −( )S2
n n ( 1n + ) 

E (S S2
n n+ +2 1ξn+1 n − ( )n +1 = = Mn. )
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7.6  QUEUEING PROCESSES

The word “queue” was first appeared in the work of Danish Mathematician Agner 

Krarup Erlang (1878–1929) to mean “waiting line”, introduced by Erlamg, see 

Erlang (1917). The theory of queues generates a process, which is another example of 

a stochastic process, and it is referred to as the queueing process. It presents features 

of processes related to mass servicing when random fluctuation is developed, such 

as telephone traffic that Erlang started with, stock processes in economics, machine 

repair, car traffic, patient treatment in hospitals, and computer job processing.

A queueing process consists of several key processes. They are arrival, service, 

and departure processes. Each of these processes has its own features. Below, we 

list some of the features for (i) arrival, (ii) service, and (iii) the system as a whole.

 i. Arrivals may arrive singly or by bulk (group, or batch), with reneging 

(abandonment), depending on time or independent of time. There might 

be a limitation on the batch size; it may have a minimum and a maximum 

number of arrivals. The arrival source may be finite or infinite.

 ii. Service may be conducted singly or by batch, service with vacation. 

Service process may have an order referred to as the queue discipline. 

This feature could be first-come–first-served (FCFS) or first-in–first-
out (FIFO), random service, priority service, last-come–first-served 
(LCFS), batch (bulk) service, etc. There might be more than one server; 

that is, the queue is with a single server or multiple servers. In case of 

multiple servers, the server may be set in parallel, series, or mixed.

 iii. The queueing system may consist of a buffer or a waiting room with finite 

or infinite capacity to hold the arrivals to wait for their services to begin. 

The system may allow feedback to the original or intermediator queues for 

further service. The system may also allow splitting leaving the service 

station. Within the system, each process may have a distribution associated 

with it. For instance, arrivals may arrive according to a Poisson distribu-

tion. On the other hand, a service may be given according to an exponential 

distribution. Feedback process may be based on a Bernoulli or geometric 

distributions, and splitting may be based on the Bernoulli distribution.

In relation to the purpose of this chapter and the goal of this book, from here to 

the end of this chapter, we will offer some models of queueing theory that describe 

applications of probability, statistics, and stochastic processes. Some of these models 

will be presented for the purpose of basic theories and some as applications in the 

engineering, economics, and sciences.

7.6.1  THE SIMPLEST QUEUEING MODEL, M/M/1

The queueing model with Poisson arrival, exponential service time, and a single 

server is now known as the simplest type of a queueing model. Almost all types of 

features and properties one can think of have been found about this model, although 

some of the time-dependent cases have not been tackled due to their complexities. 
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Since this model is simple, it is a good example for more complicated ones in the 

theory.

So, here is the model. The model consists of arrival process, service process, 

and one server. Tasks (or customers) arrive according to a Poisson distribution 

with parameter λ, where λ is a constant. If the service station is empty, the task’s 

service starts immediately by the single server being available in the station. If 

there are already tasks in the system, they form a single queue and enter the 

service station one at a time, in order of arrivals. In other words, service will be 

FCFS or FIFO.

The service time of tasks is assumed to have an exponential distribution with 

parameter μ, where μ is a constant. Thus, the system that consists of Markovian 

arrival process (MAP), Markovian service time process and there is a single server 

is denoted by M/M/1.

Note 7.30

A historical note regarding the M/M/1 and M/M/1/N notations is described as 

follows. Standard queueing systems are symbolized, generically, by the nota-

tion A/B/C/D (introduced by Kendall in 1953). The letters represent the arrival 

type (for instance, deterministic, stochastic; Markovian, non-Markovian, or gen-

eral) and the service type (such as deterministic or probabilistic; Markovian, 

Erlangian, or even general). The symbols also indicate the number of servers in 

parallel and the capacity of the system (i.e., the capacity of the buffers plus the 

service stations). Hence, M/M/1/K means that the inter-arrival times are expo-

nential (Markovian); that is, the arrival process is a Poisson process, and service 

times distribution is also exponential (Markovian) with a single server and a finite 

buffer with capacity N − 1, with total capacity N. When the capacity of the buffer 

is infinite, the letter N is dropped.

Now that the M/M/1 queueing model has been defined, we may ask what are the 

minimum measures we can find about it?

The answer is that, minimally, we can find out about

 i. Distribution of the number of tasks in the system, referred to as the queue 
length.

 ii. The average time the server is busy.

 iii. The average service times. To find these measures, we need to formulate 

the model mathematically and then try to answer the questions.

To mathematically formulate the model, we start by supposing that at a particular 

time instance, we wish to have j tasks in the system, which is referred to as the state 
of the system. How this would be possible? There are three possibilities, as follows:

 i. There are already j tasks in the system. Hence, no transition should occur; 

that is, no arrival and no departure should occur.
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 ii. There are j − 1 tasks in the system at the instance; that is, the system is short 

of one task and one task should arrive.

 iii. There are j + 1 tasks in the system at the instance; that is, the system has one 

task over and one task should complete its service and exit the system.

Note 7.31

Later, we will see that M/M/1 queueing model is an example of a stochastic pro-

cess referred to as the birth-and-death process that only allows transitions at 

any time as stated in (i) through (iii) above and travels forward and backward 

among the integers in one-step transitions, if not staying in the same place.

We pause here to elaborate transition probabilities from the Chapman–Kolmogorov 

term mentioned earlier in (7.34). From the system (7.34), we have:

p tyx ( )+ −s p tyx ( ) ∑ p skx ( ) 1 (− p s)
 = −p tyk ( ) xx p tyx ( ). (7.42)

s s s
k x≠

Passing (7.41) to the limit as s → 0, we obtain:

 p t′yx ( ) = −∑rkx pyk ( )t rx p tyx ( ), t ≥ 0, (7.43)

k x≠

which is referred to as Kolmogorov’s forward equations for the transition prob-
abilities, where

1 (− p s)
 rx = lim xx  (7.44)

s→0 s

and

p t( )
 ryx = ≠lim

yx
, .y x  (7.45)

s→0 s

The quantities rx and ryx, used in (7.40) and after, are referred to as the transition 
rates of the Markov chain. The term “rx” is the unconditional rate of leaving the 

state x to make a transition to any other state, and the term “ryx” is the conditional 
rate of making a transition from state x to state y.

Note 7.32

It is to note that, in addition to the property r tyx ( ) ≥ 0, it is generally assumed that

 ∑ p tyx ( ) = ≥1, t 0, x = 0,±1,±2,  

y x≠
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Thus,

Limits of (7.44) and (7.45) exist if pxx (0) = 1, and consequently, pyx (0) = 0 if y x≠ . 

Thus,

dp ( )t
p′xx (0) = =lim xx −rx (7.46)

t→0 dt
 

and

dp ( )t
p′yx (0) = =lim

yx − ≠r y, .x  (7.47)
t→0 dt

yx 

If we were to allow s to approach 0, before reaching the limit, from (7.44) and (7.45), 

we, respectively, obtain the following:

 p sxx ( ) = −1 srx + o( )s  (7.48)

and

 p syx ( ) = −1 sryx + o( )s , y ≠ x, (7.49)

where o z( ) (read as little-o) is the little-o of z, which is generally defined as follows.

Definition 7.26

We say f ( )k o= ( f ( )k ), read as little-o of f ( )k , if for every C > 0, there is a K such 

that f ( )k C≤ g( )k , for all k K≥ . Symbolically, it is almost the same as stating

f k( )
lim = 0, (7.50)
k→∞ g k( )

 

except when g k( ) is let to be zero infinitely often.

From (7.41), we will have:

 ∑
∞

p tyx ( )+ =s pkx (t)pky(s). (7.51)

k=0

Thus,

 p t′yx ( ) = −∑rky p txk ( ) ry p tyx ( ), t ≥ 0.  (7.52)

k y≠

 

 

x

∑ r tyx ( ) = =rx , x 0, 1± , 2± ,  

,x y≠
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Relation (7.52) is referred to as Kolmogorov’s forward equations for the transition 
probabilities, with the assumption that

 p tk ( ) = 1. (7.53)

k Z∈
∑

Note 7.33

From (7.49), we can easily see that

We now develop the system of differential–difference equations for M/M/1 system based 

on Chapman–Kolmogorov’s backward and forward equations, equation (7.43). Such a 

system, when developed, can be solved using different methods, such as generating func-

tion and matrix methods. We will see that once the system is developed, it will be similar 

for both discrete and continuous time cases. We refer the detail of this development to 

Montazer-Haghighi (1976), Haghighi and Mishev (2013a, b, 2014, 2016a), and Haghighi 

et al. (2011a,b).

Note 7.34

We should remind the reader of three properties of the exponential pdf that we 

have showed in earlier chapter.

 i. For a Poisson arrival process, the inter-arrival times follow an exponential 

distribution with the same parameter.

 ii. Using the exponential distribution, we can describe the state of the system 

at time t as the number of tasks in the system.

 iii. The exponential distribution is memoryless.

We now start by assuming that the capacity of the system is infinite. We also let the 

probability that at time t there are n tasks in the system be denoted by pn(t), n = 0, 1, 

2, …. The memoryless property of the exponential pdf implies that the system for-

gets the history. That is, at each epoch of time, only three states are to be concerned, 

namely, the current state, one state backward, and one state forward. For a queueing 

system, the three cases were mentioned above under the transitions. Thus, within a 

small period of time Δt, we have:

 

If , the set of integers, in (7.53) is replaced by a finite subset of it, it is referred to as 

the normalizing condition.

p t′x y( ) = −∑r k pk ( )t ry py( )t , t ≥ ∈0, y . (7.54)

k y≠

⎧p t0 0( )+ Δt = λ μ(1− Δt)p t( )+ Δtp1(t)+ o(Δt),⎪
⎨  (7.55)
⎪pn ( )t + Δt = λ λΔ⎩ tp tn n−1( )+[ ]1− ( )+ μ Δ (t)p (t)+ μΔtp tn ( )+ o(Δt),n =1,2, ,+1
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where o t( )Δ  is the “little-o” defined earlier. That is, limΔt→0
= = 0. In (7.55), we 

Δt
pass to the limit as ∆t → 0 and obtain the following transient (or time-dependent) 
system of differential–difference equations for the M/M/1 queueing system:

 

For the stationary case, that is, time-independent case, the derivatives on the left 

hand of (7.56) should be 0. Thus, moving the negative terms to the other side, the 

stationary or time-independent system of difference equations are:

⎧⎪ λ μp p0 1= ,
⎨  (7.57)

(λ μ+ =)p pn nλ − +1 1+ =μp
⎩⎪ n , n 1,2,...,

 

with the sum of probabilities to be one,

 ∑
∞

pn = 1, (7.58)

n=0

which is called the normalizing equation.

The system (7.57) along with (7.58) can be solved recursively. To do this, we 

define

λρ = , (7.59)
μ

 

which needs to be <1, for the system (7.57) to have a solution. (Why?) Thus, from the 

first equation of (7.57), we will have:

 p p1 0= ρ . (7.60)

Substituting (7.60) in the second equation of (7.57), we find. Continuing this way, we 

will have:

 p pn = =ρn
0 , n 0,1,2,... (7.61)

Using (7.58), from (7.61), we will have:

or

 p0 = −1 .ρ  (7.63)

( )o tΔ

 

 

⎧p t0 0′ ( ) = −λ μp t( ) + p1( )t ,⎪
⎨  (7.56)
⎪p tn n′ ( ) = −λ λ⎩ p − +1 1( )t ( + μ)p tn ( ) + μpn ( )t , n = 1,2,

p p 2
0 0+ +ρ ρ p0 + = 1 (7.62)
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Thus,

 p nn = −(1 ρ ρ) n , = 0,1,2,... (7.64)

There is another method of solving the system (7.57), that is, the generating function 

method. We will use this method here, as well.

We discussed the probability generating function in Chapter 6. Hence, we define 

the generating function for pn by G z( ), z < 1 as:

 G z ∑
∞

( ) pnZ n , z < 1. (7.65)

n=0

We leave it as an exercise that after applying the probability generating function 

(7.63) on the system (7.57) and performing some algebra, the following yields:

ρ
 ( ) ∑

∞
1−

G z = −(1 ρ ρ) n nz = .
1

n 0
− ρ z  (7.66)

=

Now, writing the power series (7.64) by its McLaurin expansion, we obtain the same 

values for p0 and pn as in (5.63) and (5.64), respectively.

From the generating function (7.66), we can obtain all moments, by taking deriva-

tives repeatedly. Thus, the first derivative, for instance, yields the average number of 

tasks in the system, that is, in the waiting line and in the service. Thus, denoting the 

number of tasks in the system by N, the mean by Ls , and variance by Vars(N), we 

will have:

ρ λ ρ
 L Es s= =( )N = and V = =Var (N) . (7.67)

1− ρ μ λ− s
(1− ρ)2

We could also find the average and the variance of the number of the tasks waiting 

in line, denoted by Lq and Vq, respectively, as:

 L Ls q= + ρ. (7.68)

Hence,

λ 2 p2 21+ −ρ ρ
 L Lq s= − ρ = ( ) and Vq =

( )
( )2 . (7.69)

μ μ − λ 1− ρ

Let us now try to find the mean time spent in the system, denoted by Ws. To do that, 

we use a very well-known relation for this purpose, called Little’s formula. It gives 

the relation between the mean number of tasks in the system and the mean time spent 

in the system. The Little’s formula states:

 L Ws s= λ , (7.70) 
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from which the mean number of tasks in the system is:

L 1
 W s

s = = . (7.71)
λ μ − λ

The service distribution is exponential with parameter μ, and the mean service time 

is 1/μ. Thus, denoting by Wq and Vq, the mean and the variance of waiting time in the 

waiting line, we, respectively, have:

1 1 λ
 W Ws q= + and Wq = Ws − = ( ) . (7.72)

μ μ μ μ − λ

Denoted by VW Ws s= Var( ) and VW Wq q= Var ( ), the variance of length of the time a 

task spends in the system and the number of tasks waiting in line, respectively, are:

( ) 1 ρ ρ(2 − )
 VW Ws s= =Var (N)

2 2
and VWq =

2 2
.  (7.73)

(1− ρ μ) (1− ρ μ)

So far, we have performed our entire analysis assuming infinite size buffer. Now, 

suppose we look at the case with finite buffer. So, we assume the buffer capacity to 

be N. In this case, the notation M/M/1 will change to M/M/1/N. The system and the 

solution will also be affected. Hence, the distribution of the number of tasks in the 

system, the mean number of tasks in the system, and the mean number of tasks lost 

due to the finiteness of the buffer, are, respectively, as follows:

⎧ 1− p
⎪ N+1

ρ ρn if ≠ =1, n N0,1,2, ,
⎪ 1− ρ

 pNn = ⎨  (7.74)
⎪ 1

if ρ = =1, n N0,1,2, .⎪ +⎩ N 1

⎧ ρ ( 1N + )ρN+1

⎪ − , 1ρ ≠ ,
⎪ 1− ρ 1− ρN+1

 LNs = ⎨  (7.75)
⎪ N

, 1ρ = .⎪⎩ 2

⎧ λ ρ(1− )ρN

⎪ if ρ ≠ 1,
⎪ 1− ρN+1

 LNloss
= ⎨  (7.76)

⎪ λ
if ρ = 1.⎪⎩ N +1
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Note 7.35

We moved from infinite buffer to finite buffer. So, if we go back from finite to 

infinite, we should be able to get the same results back. Thus, letting N → ∞, we 

leave it as an exercise to show that relations (7.74) and (7.75) should yield the same 

results for the infinite-capacity case.

Example 7.24

Suppose we have a single-server queue with Poisson arrivals, exponential service 
times, and infinite buffer capacity. Let us suppose that the mean of the inter-arrival 
times is 15 minutes and the mean of the service times is 10 minutes. We want to 
find the following:

 i. The mean waiting time in the waiting line,
 ii. The mean number of tasks in the waiting line,
 iii. The mean waiting time in the system,
 iv. The mean number of tasks in the system, 
 v. The proportion of times the server is not serving (i.e., it is idle).

Answer
1 1

The system described in this example is an M/M/1 queue with λ =  and μ = . 
15 10

λ 10
Hence, ρ = = . Thus, we have the following answers to the questions:

μ 15

 i. The mean waiting time in the waiting line is:

⎛ 10 ⎞
2

2 ⎜ ⎟ρ ⎝ 15 ⎠ 0.44
 Lq = = = = 1.33 tasks. 

1− ρ 10 0.331−
15

 ii. The mean number of tasks in the waiting line is:

L 1.33 1.33
 Wq = =q = = 19 minutes. 

λ 1 0.07

15

 iii. The mean waiting time in the system is:

1
 W Ws q= + = 19 +10 = 29 minutes. 

μ

 iv. The mean number of tasks in the system is:

1
 L W= =λ s (29) = 1.93 tasks. 

15
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 v. The proportion of times the server is not serving (i.e., the idle time) is:

10
 The idle time is = −1 ρ = −1 = 0.33. 

15

Example 7.25

Suppose we have a computer in an office that works on one job at a time. Let the 
arrival distribution of jobs to this computer be Poisson and the execution time 
distribution be exponential. Let us also suppose that arrival of jobs has a rate of 
20 per hour, that is, λ = 20, and execution of jobs has a rate of 40 jobs per hour, 
that is, μ = 40. We want to find

 i. The mean number of jobs in the computer,
 ii. The variance of the number of jobs in the system,
 iii. The mean number of jobs in the waiting line,
 iv. The variance of the number of jobs in the waiting line,
 v. The mean waiting time in the system,
 vi. The mean waiting time in the waiting line,
 vii. The variance of the waiting time in the system,
 viii. The variance of the waiting time in the waiting line.

In case the computer capacity is limited to four jobs at a time, we 
want to find

 ix. The mean number of jobs in the system,
 x. The mean number of jobs lost due to the finiteness of the capacity.

Answer

In this case, we have queueing systems M/M/1 and M/M/1/4. Also, from the given 
λ 1

information, we have ρ = = , which, of course, is <1, as required. Thus, for the 
μ 2

case of M/M/1, we have:

1
ρ 2 i. Ls = = = 1.

1− ρ 1

2

1
ρ 2 ii. Vs =

(1 2
= 2.

− ρ) 1 ⎞
2

=
⎛
⎜1− ⎟⎝ 2 ⎠

1 1
 iii. L Lq s= − ρ = 1− = .

2 2

⎛ 1 ⎞
2 2⎛ 1 ⎛ 1 ⎞ ⎞

⎟ 1 ⎟1 2 ⎠ ⎜ ⎜ ⎟ρ ρ2 2 ⎜ + −
+ − ρ ⎝ ⎝ 2 ⎝ 2 ⎠ ⎠

 iv. V
( )

q =
2

=
(1− ρ) 1

2
= 1.25.

⎛ ⎞
⎜1− ⎟⎝ 2 ⎠
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L
W = =s 1

 v. s .
λ 20

1 1 1 1
 vi. W Wq s= − = − = .

μ 20 40 40

1 1 1
 vii. VWs = =

(1− ρ μ)2 2 ⎛ 1 ⎞
2

= .

⎜1− ⎟ (40)2 400

⎝ 2 ⎠

1 ⎛ 1 ⎞
⎜ 2 − ⎟ρ ρ(2 − ) 2 ⎝ 2 ⎠ 3

 viii. VWq =
2 2

=
2

= .
(1− ρ μ) ⎛ 1 ⎞ 2 1,600

⎜1− ⎟ (40)⎝ 2 ⎠
1

For the finite case with N = 4, since ρ = < 1, we have:
2

4 1+
1 ⎛ 1 ⎞ 5

( 1N ) N+1 (4 +1)⎜ ⎟ρ + ρ= − 2 ⎝ 2 ⎠ 32 26
 ix. LNs 1 .

1− ρ 1− ρN+1
= −

1 1
4 1+ = − =

1 311− ⎛ ⎞
1− 1−

2 ⎜ ⎟⎝ 2 ⎠ 32

⎛ 1 ⎞ ⎛ 1 ⎞
4

10
N 20⎜1− ⎟ ⎜ ⎟λ ρ(1− )ρ ⎝ 2 ⎠ ⎝ 2 ⎠ 16 20

x. LNloss = = = = .
1− ρN+1 ⎛ 1 ⎞

4 1+ 31 31
1− ⎜ ⎟⎝ 2 ⎠ 32

 

7.6.2  AN M/M/1 QUEUEING SYSTEM WITH DELAYED FEEDBACK

A simple queueing system may include some features that would make it more chal-

lenging, yet interesting. Different models may be analyzed by different methods; 

each may be quite challenging and thus involves quite mathematical theories. The 

model we are to discuss is a part of two connected models. We first tackle the busy 

period, and then with some additional features, we will discuss the queue length. 

Hence, we start this model with the following additional features to the standard 

M/M/1 (Haghighi and Mishev, 2016a):

 i. Feedback,

 ii. Delay (delays occur in many different instances such as computer breakage, 

heavy traffic, telephone signal outage, and power outage during a surgery. 

For instance in a case like machine breakdown, a task needing service has 

to wait until the machine is repaired before the task resumes its service. The 

same time of delay may occur on the way to return for receiving further 

service),

 iii. Splitting.

Thus, the model we are to start an M/M/1 queuing system with the aforementioned 

three features is illustrated in Figure 7.6. The model can be viewed as a tandem 
(series) queueing system. These two research papers are authored by Haghighi 
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and Mishev. This was published in the International Journal of Mathematics in 
Operational Research that appeared in Vol. 8, No. 2, 2016, titled Busy Period of a 
Single-Server Poisson Queueing System with Splitting and Batch Delayed-Feedback.

Note 7.36

Historically, Takács (1963a,b) introduced the study of queueing systems with 

instantaneous Bernoulli feedback. Montazer-Haghighi (1976), one of his doc-

toral students, extended the systems in his dissertation, to include a multi-station 

services in which he also briefly discussed the delayed-feedback single-server 

queueing system as a particular case of tandem queueing models without offer-

ing a solution. The idea started to develop. Nakamura (1971) seems the first who 

conducted a detailed discussion of the delayed-feedback queueing system fol-

lowed by Hannibalsson and Disney (1977) who considered queue length with 

exponential service times. Later, Disney and Kiessler (1987) considered queues 

with delayed feedback as a traffic process. Kleinrock and Gail (1996) discussed 

an M/M/1 with random delayed feedback. Haghighi et al. (2011a,b) considered a 

similar queue, but with an additional feature, a splitting device set that a serviced 

task might choose to go through after the service station. A detailed discussion of 

this concept appeared in Haghighi and Mishev (2013a,b). Haghighi et al. (2008) 

discussed a delayed-service model that was expanded in Haghighi and Mishev 

(2014) as an M/G/1 queueing system with processing time consisting of two inde-

pendent parts, the delay time and the service time (Figure 7.7).

Here is the model Haghighi and Mishev (2016b) considered as an expansion of their 

earlier work, Haghighi et al. (2011a,b). This model consists of two types of arrivals: 

external (coming from outside) and internal (the feedback and splitting tasks). 

Ext. Arrival, Infin. Server Buffer Server, Splitter

Int. Arrival,

Infin. Delay Buffer 

Delay, 1            

FIGURE 7.6 Single processor with infinite server buffer, splitting and delay-general batch 

feedback.
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FIGURE 7.7 (a) Lajos Takács (August 21, 1924, to December 4, 2015) https://www.pvamu.

edu/sites/mathematics/journal/aam/2015/vol-10-issue 2. (b) Aliakbar Montazer Haghighi 

(September 29, 1940) https://www.pvamu.edu/bcas/departments/mathematics/faculty-and-

staff/amhaghighi/. (c) Dimitar P. Mishev (Michev) https://www.pvamu.edu/bcas/departments/

mathematics/faculty-and-staff/dimichev/.

https://www.pvamu.edu
https://www.pvamu.edu
https://www.pvamu.edu
https://www.pvamu.edu
https://www.pvamu.edu
https://www.pvamu.edu
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The processing time for this system consisted of two independent parts, the service 
time and the delay time. So, we describe the model as follows:

 i. External tasks arrive singly from an infinite source according to a Poisson 
process with parameter λ.

 ii. There is an infinite-capacity buffer set before the service station.

 iii. A single server is placed in the service station.

 iv. When a task arrives and finds the server busy, it will join the waiting line.

 v. The service time is an exponentially distributed random variable with 

parameter μ.

 vi. Service is on the basis of FCFS.

 vii. After a task leaves the service station, one of the following three events may 

occur:

 a. It may leave the system forever with probability q q0 0, 0 ≤ ≤ 1.

 b. It may feedback the service station for further service with probability 

qf , 0 1≤ ≤qf . 

 c. It may go to a unit called the splitter with probability q qs s, 0 ≤ ≤ 1. 

The splitting is immediate; that is, the time required to split is negli-

gible, with q qo f+ + qs = 1.

 viii. The splitter unit receives a task and splits it into two subtasks:

 a. One returns to the service station with probability 1

 b. The other

 1. Either leaves the system forever with probability q qso , 0 ≤ ≤so 1, or

 2. Feedbacks to the service station with probability p psf , 0 ≤ ≤sf 1; 

q ps s0 + =f 1.

 ix. The feedback to the service station is not immediate. There is another infi-

nite buffer, referred to as the delay station, between the server and the first 

buffer such that a returnee task must go through it to get back to the service 

station again.

 x. A mover moves the tasks entered the delay station to the waiting line buffer.

 xi. There is a processing procedure in the delay station. Tasks in the delay-

station group have varying random sizes between two natural numbers 

minimum k and maximum K k,1 ≤ ≤ K .

 xii. The group (batch) sizes may be represented by random variables, denoted 

by X, with probability distribution function and values between b and B, 

inclusive, as:

 P X{ }= =x α x , k ≤ x ≤ K , (7.77)

with mean random size of a group denoted by α .

 xiii. Both the mean and the variance of X are positive and finite.

 xiv. The delay times have exponential distribution with parameter v.

 xv. Based on the property of the exponential distribution mentioned earlier, 

internal arriving tasks arrive from the delay station by groups that follow a 

Poisson distribution with parameter δ  batches per unit time.

 xvi. The average internal arriving task rate is αv  tasks per unit time.
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 xvii. The total rate into the buffer is the sum of the two rates of external and 

internal arrivals, that is, λ α+ v.

 xviii. The returnee groups open up at the service buffer and will be served one at 

a time according to their order of arrivals into the delayed station.

 xix. The return of a task is an event independent of any other event and, in 

 particular, independent of the number of its returns.

Since we have already discussed the queue length and losses to a system, for a queue-

ing model, we will now analyze the busy period of the server in its service station.

Analysis
Let us denote the expected attendance rates to the service station, the traffic intensity 

(or the load) for the service station, and the same for the delay station by λ λ1 1, ,p 2, 

and ρ2, respectively. Then,

⎧ λ λ⎪ 1 = +αv,
 ⎨  (7.78)

⎪ λ λ2 1= +⎡ + ⎤⎣ p p p
⎩

f s ( )1 ,sf ⎦

or

⎧ λ λ1 = +αv,⎪
 ⎨  (7.79)

⎪ λ λ2 = +( )αv p⎡ ⎤⎣⎩
f s+ p ( )1 .+ psf ⎦

From (7.78), we have:

λ
 p ii

i ≡ =, 1,2, (7.80)
μi

where μ1 = μ  and μ α2 = v with each load restricted to be less than one. Also, the 

intensity of the system, or total load, denoted by ρsys, is:

λ λ+ ( )λ α+ +v p⎡⎣1 1f s+ p ( )+ psf ⎤⎦ ρ 1 2
sys ≡ = . (7.81)

μ α+ v μ α+ v

Of course, (7.81) is restricted to be less than one.

Since there are two types of arrival, singly with Poisson and in bulk, also with 

Poisson, but with a different parameter, the distribution of the combined arrival is 

not immediately known. Because of the case, the service station may be looked at as 

a G/M/1 with two arrival types: external (tasks arrive singly) of rates λ and internal 

(tasks arrive in bulks) of rates v and service (in batches) of rate μ. It is well known 

that G/M/1 and M/G/1 are dual queueing systems. However, the G/M/1 queue may be 

analyzed in a variety of ways like using the method of supplementary variables. Our 

approach is based on an appropriately imbedded Markov chain at the arrival epoch 
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of a task. Hence, based on the assumptions of the model, the mean arrival rate is 

1 (λ α+ v), the service times are iid random variables exponentially distributed with 

mean service times 1/μ regardless of the source of arrivals, and the traffic load ρ1 is 

given in (7.80).

Moving toward the goal, we briefly pass through the number of tasks in the ser-

vice station and leave the detail as an exercise.

Considering just the service station, it is an M/M/1 queueing system. We list some 

of the well-known properties that we need. Suppose that the service station starts 

with i, i ≥ 0, tasks. Let the number of tasks, at time t, t ≥ 0, at the service station, 

including the one being served be a random variable, denoted by ξ( )t . We also denote 

the probability of having m tasks in the service station at time t by φm( )t , that is,

 φ ξm ( )t P= ={ ( )t m}.  (7.82)

Going to the steady-state case, we let

 φ φm = =lim m(t P) lim {ξ(t) = m ξ(0) = i}.  (7.83)
t→∞ t→∞

The transient probability distribution of the number of tasks in the service station at 

time t for the M/M/1 queue is:

⎡ m i− m i− −1

φ ρ− +( )λ μ1 t 2 2
m ( )t e= +⎢ 1 I Im i− ( )2μ ρ1t ρ1 m i+ +1 1( )2μ ρ t

⎣
  

∞

( )
i− ⎤

+ −1 2ρ ρm 2
1 1 ρ1 I tj ( )μ ρ1 ⎥ , (7.84)

j m= +
∑

i+2
⎥⎦

where Ir  is the modified Bessel function of the first kind given by:

∞ 2m r+
1 ⎛ x ⎞ Ir ( )x =∑  (7.85)

m m! 1
m

Γ +( )r + ⎝ 2 ⎠
=0

and Γ( )u  is the gamma function given by:

∞

 Γ =( )u t∫ u t− −1e dt, (7.86)
0

with Γ =( )n n( −1)!, when n is a positive integer and i is the initial number of tasks 

in the station. Thus, the steady-state queue length distribution at the service station, 

including the one in service, will be geometric as follows:

Therefore, the transient and steady-state distributions of the number of tasks in the 

service station are obtained through (7.84) and (7.87), respectively. Thus, denoting 

φ m
m = −ρ ρ1 1( )1 , m = 0,1,2,  (7.87)
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by ξ, the steady-state queue length of the service station, the mean and the variance 

of the queue length are known, respectively, as

ρ ρ
 E( )ξ = 1 , and Var(ξ) = 1 . (7.88)

1− ρ1 1− ρ1

We are now ready to address the busy period of server. We first define the following 

three terms.

Definition 7.27

 i. The server’s busy period is the period starting from one state of the system to 

the immediate next state. That is, let us set the time t = 0 when there are i tasks 

in the service station, and service starts when a new task arrives. The  time 

period until the service of the ( 1i s+ ) t ends and the number in the station 

returns to i is a busy period. We denote the length of a busy period by B.

 ii. By an idle period, it is meant the period during which there is no task to be 

served; that is, the station is empty.

 iii. Combination of the two periods, (i) server’s busy period and (ii) idle period, 

is referred to as a busy cycle.

Note 7.37

Note 7.38

During a server’s busy period, when an individual task’s service is completed, 

another task will take its place. That is, tasks are born and die during this period. 

Hence, a busy period contains a renewal process.

We now assume that the service station is empty at time t = 0, that is, i = 0 in (7.84), 

and service starts when the first task arrives. It is well known that the distribution of 

B can be determined through the adjusted transition system of differential–d ifference 

equations. Thus, the pdf of a busy period, B, denoted by f ( )t , will be:

 f ( )t t≡ φ0′ ( ), (7.89)

where ϕ0(t) is the probability of the service station being empty at time t. The func-

tion ϕ0(t) can be interpreted as the probability of Y < t. Hence,

1
 f t( ) = >e I− +( 1λ μ)t

1 12 ,t λ μ 0,
t ρ1

( ) t  (7.90)

If, during a busy period, a total of l tasks join the service station (internally and 

externally), where l is a nonnegative integer, then the server’s busy period will go 

through the state transitions: i + →1 1i + + l l i→ → , l = 0,1,2, .
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where I1 is the modified Bessel function of the first kind given by (7.85). Thus, the 

distribution of the length of a busy period may be obtained by integrating (7.90) over 

the interval (0, t]. The mean and variance of a busy period, respectively, will be:

1
 E{ }B =  (7.91)

μ λ− 1

and

1+ ρ
 Var{B} = 1 .

μ ρ2 − −( )1
3  (7.92)

1

It is clear, from (7.91), that if μ λ≤ 1, B can be infinity with some positive probability.

Denoting the length of an idle period by Δ , since the inter-arrival times to the 

service station are exponentially distributed with parameter λ1, the pdf of Δ , denoted 

by ψ Δ ( )t , is

 ψ ( )t e= >λ −λ1
Δ 1 t, t 0. (7.93)

Therefore, (7.90) and (7.93) provide the distribution of the busy and idle periods, 

respectively.

Example 7.26

Suppose that the distribution of the random variable representing the batch sizes, 
α x, is a uniform distribution:

⎧ x k−
⎪ , ,k x≤ ≤ K

 P X{ }= =x α x = ⎨ K k−  (7.94)
⎪ 0, otherwise.⎩

From (7.94), we have:

k K+
 α = .  (7.95)

2

The model under consideration may be thought of as a discrete-time single-server 
tandem queueing system with two queues each having an infinite-space buffer. 
Two types of tasks are arriving in the system: single-task external arrivals and 
batches from the second queue. The first queue feeds the service station, some 
of the departures from the service station feed the second queue, and there is no 
external arrival to the second queue. This tandem queueing system has multiple 
exit windows.

To calculate the density and the distribution of a busy period, we partition the 
time interval into subintervals. As an illustration, we choose a finite time interval 
of length 2 units, that is, [0,T ] = [0,2]. The left endpoint of this interval is a singu-
larity of the pdf defined in (7.90). Problems that will occur due to this singularity 
like biasness may be addressed using the method offered by Kim and Witt (2013) 
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in the estimation of Little’s law parameters when the interval under consideration 
is finite and the initial busy period is not zero. However, we choose a more basic 
method as follows.

We choose subintervals with equal lengths, denoted by h, and in this case, 
h = 0.0001. Thus, for the interval [0,T ] = [0,2], the number of subintervals will be 

T 2
n = = , with the beginning and end partition points as t0 = =0 and t 2

h 0.0001
n . 

We also choose the following arbitrary data satisfying conditions imposed previ-
ously: p qf = =0.1, 0 0.3, ps = 0.6, qso = 0.1, psf = 0.9, k = 2, and K = 5.

Note 7.39

The exact values of the mean and variance of a busy period are given by (7.91) 

and (7.92), respectively. However, we can find their approximated values using 

discretized values of f ( )t . This way, we verify our approximation of f ( )t  using a 

partitioning of the time interval. Table 7.5 shows these values.

7.6.2.1  Number of Busy Periods
In general, the elapsed time from time t = 0 to the epoch of observing i +1 tasks in 

the service station is, sometimes, referred to as the age of the busy period at t = 0 

(this is actually the initial idle period). Using this terminology,

 a. We denote by ψ 0 the age of the busy period at t = 0, which from (7.93) is 

ψ 0 1(0) = λ , and by X1 the remaining time of the first period, that is, the dura-

tion of time from arrival of the ( 1i + )st task until the epoch of the station 

returns to containing j tasks for the first time thereafter.

We assume that the random variables X2 3, X ,..., are independent and identically dis-

tributed with cdf as F(t) and are independent of X1, where

 F t1 1( ) = ≤P{ }X t  (7.96)

TABLE 7.5
Expected Value and Variance of Length of a Busy Period for Three Sets of 
Data Points
Data 
Set λ μ υ

E(B) Using 
Formula

E(B) Using 
Approximation

Var(B) Using 
Formula

Var(B) Using 
Approximation

1 15 180 30 0.0167 0.0167 0.0001 0.0014

2 10 60 10 0.0667 0.0637 0.0005 0.0233

3 3 30 3 0.6667 0.1818 0.0084 0.1059

 b. Keeping the age in mind, we denote by X1 2, ,X , the random variables 

 representing the length of successive busy periods, after the age before 

beginning of the first one.
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and

Note 7.40

F t
{ }= −{ } P Xψ ψ< < t +

1 0( ) P X ψ ψ≤ t X > 0 0
0 =

P X{ }>ψ 0

 (7.98)
F t( )+ −ψ ψ0 0F( )

, 0t ≥ .
1 (− F ψ 0)

 

Suppose we initially choose a busy period with age distribution as α ψ( )0  with its pdf 

as dα ψ( )0 . Then, (7.98) can be rewritten as:

F
F t ∫

∞ F t( )+ −ψ ψ0 0( )
1( ) = dα ψ( ). (7.99)

0 1 (− F ψ 0

0)
 

Concentrating on just the busy periods of the service station and ignoring possible 

idle periods, it is clear that successive busy periods of the server constitute renewal 

cycles. Hence, we can easily answer the following two questions:

(Q1) How old is the current busy period?

(Q2) On average, how many busy periods will be observed?

To answer these questions, first note that when we ignore the idle periods, the epoch 

of ending each busy period can be considered as an arrival epoch. Then, we will have 

a sequence of arrivals, as each busy period ends, that is, { }Xn . In other words, ending 

busy periods form a renewal or recurrent process.

Now, let the partial sums of sequence { }Xn  of the busy periods be denoted by

That is, Sn  counts the number of busy periods. Let us denote the distribution of Sn  

by F tn( ), that is,

 F tn n( ) = ≤P{ }S t , t ≥ 0, n ≥ 0. (7.101)

⎧ 0, n = 0,
⎪

S nn = ⎨ ∑  (7.100)
X ni , 1=⎪ ,2,

⎩ i=1

F t( ) = ≤P{ }Xn t n, = 2,3, . (7.97)

Derivative of F t( ), given in (7.97), is the same as f t( ) ≡ φ1
0( )t , given in (7.90), for 

t = 2,3, . Generally, F t1( ) ≠ F( )t  except when ψ 0 = 0. Thus, clearly, we have:
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Note 7.41

F tn( ) denotes the n-fold convolution of F with itself.

Note 7.42

F t0( ) = 0 for t ≥ 0 and F t1( ) has already been defined above through (7.98) and 

(7.99). Thus, we have:

∫
t

 F tn n+1( ) = −F (t s)dF(s), n = 1,2,..., (7.102)
0

There is an extensive study on the behavior of the ratio N( )t t/ , which is a random 

variable for each value of t and is the time-averaged renewal rate over the inter-

val (0,t], that is, the number of busy periods per unit time. It is well known that 

(e.g., Täcklind (1944))

N t( ) 1
 lim = , (7.103)

t→∞ t E( )X

where E( )X  is given in (7.98). Hence, in our case, we will have:

N t( )
 lim = −μ λ1. (7.104)

t→∞ t

Note 7.43

The process {S nn , = =0,1,2,...,S0 0} can be considered as a random walk in the 

sense that when the system has completed its n −1 busy periods, that is, the sys-

tem is in state Sn−1, then Xn units of time later, it would be in state Sn . Thus, the 

 following equivalence holds:

 {N t( ) ≥ ≡n} { }Sn ≤ t . (7.105)

Relation (7.105) implies that

 P N{ }( )t ≥ =n P{ }Sn ≤ t . (7.106)

Now, let us define the random variable N( )t  to count the number of busy periods 

within the interval (0, t]. Then, the values of N( )t  in the sequence {N t( ),t > 0} are 

positive integers. The sequence {N t( )} is increasing; that is, N( )s N− (t) if s < t. 
Note that if s < t, then the difference N( )t N− (s) is the number of busy periods that 

occurred during the interval [ ,s t]. Accordingly, S Tn =  will be the time the nth busy 

period has concluded. Counting from this point, the ith subsequent busy period will 

occur at S Sn i+ +− =n Xn 1 + + Xn i+ . Thus, given S Tn = , {N T( )+ −t N T( ),0 ≤ t < ∞} 

is a renewal counting or recurrent process.
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Therefore, from (7.101) and (7.106), we have:

P{ }N( )t = =n P S{ n n( )t ≤ t}− P S{ +1( )t ≤ t}
  (7.107)

= −F tn n( ) F +1( )t , n = 0,1,2,...

If we denote the expected number of busy periods in the time interval (0,t) by H t( ), 

then from (7.107), we will have:

∑
∞

 H t( ) ≡ =E{ }N( )t n[ ]Fn n( )t − F +1( )t . (7.108)

n=1

Since

from (7.108), we will have:

∑
∞

 H t( ) ≡ =E{N( )t } Fn( )t . (7.109)

n=1

Thus, if we assume that X1 = ≤η η, 0 ≤ t, then we will have Takács’s renewal equa-
tion (Takács 1958)

∫
t

 H t( ) = +F( )t H t( −η η)dF( ). (7.110)
0

It can also be shown that (Prabhu 2007, p. 111)

{ }
t

 E N t( )2 = +E{N( )t } 2∫ H(t −η η)dH( ). (7.111)
0

From (7.98) and (7.110), we can find the average duration time that the server will be 

busy within any time interval (0, t]. If the duration of a busy period instead of (7.98) 

had an exponential distribution with parameter β, that is, F t( ) = −1 eβt , t ≥ 0, then 

from (7.97), we would have had:

( )( )1 1− −e e− +β ψt 0 ( )− βψ 0

 F t1( ) =
1− eβψ 0

= F t( ), (7.112)

and from (7.101), we would have:

−
n ∑

n−1 βt
i

 F t( ) = −1 e βt ( )
, 1n = ,2,  (7.113)

i!
i=0

n[ ]Fn n( )t − =F +1 1( )t F ( )t − F t2( ) + 2[F t2( ) − F3( )t ]+ 2[F3( )t − F4( )t ]+ ,
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Hence, in this hypothetical case,

which is a Poisson distribution with parameter β. Therefore, the average number of 

busy periods in this case would have been

 E{ (N t)} = β. (7.115)

Thus, (7.108) and (7.110), in general case, and (7.114) and (7.115), for the special case, 

answer the questions (Q1) and (Q2), respectively.

7.6.3  A MAP SINGLE-SERVER SERVICE QUEUEING SYSTEM

This research paper is also authored by Haghighi and Mishev (2016b). It was pub-

lished in the International Journal of Mathematics in Operational Research that 

appeared in Vol. 9, No. 1, 2016, under the title Stepwise Explicit Solution for the Joint 
Distribution of Queue Length of a MAP Single-server Service Queueing System with 
Splitting and Varying Batch Size Delayed-Feedback. It is an extension of the previ-

ous model and also an extension of the one discussed in Haghighi et al. (2011b).

In this model, we will discuss some additional features involved in the real-life 

situation development of a queue. Here the features, including the new ones, that 

describe the model are as follows:

 i. Two Poisson arrivals as a MAP queueing network.

 ii. Arrivals from two sources: singly from outside with Poisson process with λ, 

and from inside, the delay station to the service station, by batch (size  varies 

between two natural numbers, minimum k and maximum, K, 1 ≤ ≤k K).

 iii. An infinite-capacity buffer is set before the service station.

 iv. There is a single-server service station.

 v. The service time distribution is exponential with parameter μ.

 vi. Based on the property of the exponential distribution mentioned earlier, 

internal arriving tasks arrive from the delay station by groups that follow a 

Poisson distribution with parameter δ  batches per unit time.

 vii. The returnee groups open up at the service buffer and will be served one at 

a time according to their order of arrivals into the delay station.

 viii. When an arrival task finds the server busy, it will join the waiting line.

 ix. Service is on basis of FCFS.

 x. The feedback to the service station is not immediate, and it will be through 

the delay station.

 xi. The return of a task is an event independent of any other event and, in 

 particular, independent of the number of its returns.

 xii. There is another infinite buffer, referred to as the delay station, set between 

the server and the first buffer such that a returnee task must go through it to 

get back to the service station again.

( )β n

P N{ } t
( )t = =n Fn n( )t − F +1( )t = e−βt , 0n = ,1,2, , (7.114)

n!
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 xiii. The delay times have exponential distribution with parameter ν.
 xiv. After a task leaves the service station, one of the following three events may 

occur:

 a. It may leave the system forever with probability q q0 0, 0 ≤ ≤1.

 b. It may feedback the service station for further service with probability 

q qf f, 0 ≤ ≤1.

 c. It may go to a unit called the splitter with probability qs, 0 ≤ qs ≤ 1; the 

splitting is immediate; that is, the time required to split is negligible, 

with q q0 + +f sq = 1.

 xv. Splitter unit has an infinite buffer.

 xvi. The splitter unit receives a task and splits it into two subtasks, and then 

either of the following two events may occur:

 a. One returns to the service station, through the delay station, with 

 probability 1.

 b. The other either leaves the system forever with probability 

q qso , 0 ≤ ≤so 1, or feedbacks to the service station with probability 
p psf ,0 ≤ ≤sf 1, qso + psf = 1.

 xvii. Tasks in the delay-station group with varying random sizes.

x viii. The group (batch) sizes are represented by random variables, denoted 

by X, with probability distribution function and values between b and B, 

 inclusive, as:

P X{ }= =x α x , k ≤ x ≤ K , (7.116)

with mean random size of a group denoted by α .

 

 

 xix. Both the mean and the variance of X are positive and finite.

 xx. The average internal arriving task rate is αv  tasks per unit time.

 xxi. The total rate into the service station buffer is the sum of the two rates of 

external and internal arrivals, that is, λ α+ v.

 xxii. A mover moves the tasks entered the delay station to the service station 

buffer.

x xiii. For the analysis purpose, truncation, augmentation, tridiagonalization, 
and supplementary variables methods on infinite block matrices with 

infinite block matrix elements will be applied.

 xxiv. Duality properties of G/M/1 and M/G/1 is another method used for analysis.

 xxv. Algorithm as how the parameters must be chosen will be given.

 xxvi. Stepwise algorithm to compute the joint pdf of queue length will be given.

 xxvii. Due to approximation, error analysis will be performed.

We are looking for some characteristics of the model like average queue length in 

both stations.

7.6.3.1  Analysis of the Model
To understand the process of splitting, we offer an example. In the United States, 

the creation of the Health Protection Agency (HPA), the Department of Health 

(DH), and the Home Office (HO) agreed that there should be a review of port health. 
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A joint DH, HO, and HPA Steering Group is established to oversee the work, and a 

joint HPA and HO Project Group was asked to undertake the review.

Let us consider the service station as the port of inspection of regulations of both 

DH and HO. Suppose a person subject to immigration control (an arrival) attends the 

service station. The inspection of all documents may lead to release the person with 

no problem. However, it may be necessary to reinspect the documents and so the 

person is sent back to the service station. On the other hand, it might be necessary 

for the documents to be reviewed by the HPA and HO Joint Project. At this review 

point, the individual with all documents is sent back to the service station for further 

inspection where the documents will be reviewed. This may lead to releasing the 

documents with no problem or sending them (as a new individual) to the service sta-

tion for yet another inspection. The rest of the model follows as stated above.

We will develop an algorithm to find not only the mentioned characteristics, but 

also the joint distribution of the number of tasks in the system, that is, in both stations.

Let the random variables ξ1( )t  and ξ2( )t  denote the number of tasks, at time t, 
t ≥ 0, at the service station, including the one being served, and at the delay station, 

including those being processed (i.e., the batch ready to be moved to the service sta-

tion), respectively. Let us also denote the joint probability of these random variables 

by ψ m n, ( )t , that is,

 ψ m n, 1( )t = =P{ }ξ ξ( )t m, 2( )t n= .  (7.117)

Thus, {ξ ξ1 2( )t m= =, ( )t n} is an irreducible continuous-time Markov chain.

We consider the stationary process. Hence, we define the state of the system as 

(m, n), where m and n denote the number of tasks in the service station and the delay 

station, respectively. Thus,

 ψ ψm n, ,( )t t= lim m n( ).  (7.118)
t→∞

Of course, tasks in service and being processed are included in m and n, respectively, 

and since splitting is immediate, only those on their way to the delay station are to 

be considered as part of the delay station. That is, the state of the system is the event 

{ξ ξ1 2= =m n, }. Thus,

 ψ m n, ,= =limψ ξm n (t P) lim { 1(t) = m, ξ2 (t ) = n ξ1(0) = m0 , ξ2 (0) = n0 ; (7.119)
t→∞ t→∞

that is, the steady-state probability of having m tasks in the service station and n 

tasks in the delay station, given the initial states in each station, exists and is inde-

pendent of the initial state.

Let the expected attendance rates to the service station and the delay station, 

respectively, be denoted by λ1 and λ2. Then, from the description of the model, a 

graphical presentation in Figure 7.6, it can be seen that

⎧ λ λ= +α⎪ 1 v,
 ⎨ ( ) .  (7.120)

⎡⎪ λ λ2 = + + +⎣ p p p ⎤
⎩

f s 1 sf ⎦

}
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Then, we may write the traffic intensities in the system, for the service station, ρ1, the 

delay station, ρ2, and the system, ρsys. We note that in our case, the traffic intensity 

of the system is the ratio of the total arrivals into the system that is, the external plus 

internal, denoted by λ1) to the total processing rate that is, the service and the moving 

rates, denoted by μ α+ v). Thus, we have:

λ
 1 λ λρ1 = =, ,ρ 2 and 1

2 ρsys = , (7.121)
μ αv vμ α+

each restricted to be less than one.

Among our goals is finding the steady-state joint probabilities of the number of 

tasks in both stations, denoted by ψ m n,  for m, 0n ≥ . We first analyze the service 

station.

7.6.3.2  Service Station
Realistically, in many manufacturing processes, tasks (jobs or orders) arrive from 

various sources, such as vendors, shifts, and assembly lines, to a common process-

ing area. In such cases, the arrival process can no longer be assumed to form a 

renewal process. Hence, MAP seems to be a natural choice. MAP was originally 

introduced by Neuts (1989), and queueing systems with it have been extensively ana-

lyzed through the matrix analytic method in the literature. Thus, it is a fairly general 

arrival process. By appropriately choosing the parameters, the underlying assump-

tion of MAP can be made as a renewal process.

Since all feedback items have to go through the delay station with some prob-

ability and a feedback event is assumed to be independent of any other event in the 

system, we can consider the service station as an MAP/M/1 with two arrival sources 

with rates λ and αv , from the external and internal sources, respectively, and the 

service rate μ.

It is well known that G/M/1 may be considered to be the dual of the M/G/1 queue. 

The G/M/1 queue may also be analyzed in a variety of ways like an alternative 

approach using the method of supplementary variables.

The service discipline is assumed to be FCFS. Hence, based on the assumptions 

mentioned above, the mean arrival rate is 1 (λ α+ v), and the service times are inde-

pendent and identically exponentially distributed with the mean service times as 1/μ 

regardless of the source of arrivals and traffic load ρ1 given in (7.121).

Note 7.44

Although the arrivals at the delay station are dependent upon departures from the 

service station, as long as the service station is not empty, non-existing depar-

tures from the service station arrive to the delay station with assigned probability, 

and thus, the dependence between the service station and the delay station virtu-

ally discontinues. Therefore, at the arrival to the service station, the two Poisson 

streams are independent, and hence, the mean arrival would be as mentioned. 

In the case either the service station or the delay station is empty, then we will 
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have the state (0, 0), or the delay station will continue its processing without new 

arrival, which does not constitute any dependence.

7.6.3.3  Number of Tasks in the Service Station
Based on the discussion above, recognizing the service station as an MAP/M/1 

queueing system with the mean inter-arrival and service times as 1/ (λ α+ v) and 

1/μ, respectively, many measures will be known and are available. We will list some 

of those below. Let us assume that the service station starts with i, i ≥ 0, tasks in its 

buffer and being served. Denoted by φm ( )t , the probability of having m tasks in the 

service station at time t is,

 φ ξm ( )t P= ={ }1( )t m .  (7.122)

For the steady-state case, we let

 φm ≡ =limφ ξm(t P) lim { }1 1(t) = m ξ (0) = i . (7.123)
t→∞ t→∞

As one of the known properties of the MAP/M/1 queue, the transient probability 

distribution of the number of tasks in the service station at time t is:

⎡ m i− m i− −1

φ ρ( )t e= +− +( )λ μ1 t
⎢ 2

m 1 I I2
m i− ( )2μ ρ1t ρ1 m i+ +1 1( )2μ ρ t

⎣
  (7.124) 

∞ ⎤
+ −( )

1−
1 2ρ ρm

1 1 ∑ ρ 2
1 I pj ( )μ 1t ⎥ ,

j m= +i+2
⎥⎦

where ρ1 is given in (7.121), and Ir  is the modified Bessel function of the first kind 

given by

∑
∞

1 ⎛ x ⎞ 2m r+

 Ir ( )x = , (7.125)
m m! ( r 1) ⎝ 2 ⎠

m 0
Γ + +

=

where Γ( )u  is the gamma function given by

∞

 Γ =( )u t∫ u t− −1e dt, (7.126)
0

with Γ =( )n n( −1)!, when n is a positive integer and i is the initial number of tasks 

in the station.

The steady-state queue length distribution at the service station, including the one 

being serviced, is geometric as follows:

φ ρ m
m = −1 1( )1 ,ρ m = 0,1,2,  (7.127)



524 Probability, Statistics, Stochastic Processes

Thus, the transient and steady-state distributions of number of tasks in the service 
station are given by (7.124) and (7.127), respectively. Hence, denoting by ξ1 the 
steady-state queue length of the service station, the mean and variance of the queue 
length are known, respectively, as

ρ
 E ( )ξ 1

1 = , and Var ( ) ρξ = 1
1 , (7.128)

1− ρ1 1− ρ1

where ρ1 is given in (7.121).

7.6.3.4  Stepwise Explicit Joint Distribution of the Number of 
Tasks in the System: General Case When Batch Sizes 
Vary between a Minimum k and a Maximum K

For the case of k = K = 1, the joint distribution function of the system’s queue length, 
using generation function equation, is given in Haghighi et al. (2011a,b) by the 
 following theorem (note that since the batch sizes are the same and equal to 1, from 
(7.116), we have α  = 1).

Theorem 7.2

Let a = =q b0µ µ, ,( )p pf s+ =q cso p ps sf µ  with a + +b c = µ, and d = −q po s psf . If 
λ

d > <0, 1 λ
1, and 2 < 1, then for k = K = 1, the joint distribution function of the num-

µ v
ber of tasks in each station exists and can be obtained by the coefficient of Maclaurin 

expansion of solution of the functional equation for the generating function of the 
distribution function

 A w( ,z G) (1 1w z, ) = +B w( ,z G) (1 20,z B) (w z, )G w1( ,0), (7.129)

where A, B1, B2, and G w1( ,z) are defined below:

 A w( ,z c) (= +z b3 2z a+ + 2 2 λ λw v− + µ + ) ,w z + vw  (7.130)

 B w1( ,z c) (= +z b3 2z a+ − µw z) , (7.131)

 B w2( ,z v) ,= −w v2 wz  (7.132)

and

∞ ∞

 G w ) ,∑ m n
1 ,( ,z w= <∑ ψ m n z z 1, w < 1 (7.133)

m=0 n=0
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is the generating function of the joint distribution function of the number of tasks in 

each station. The index of G indicates the value of k, which in this case is 1.

Now, for the general case, when 1 k K and K 2, the matrix for the system of 

balance equations for the queue length is as follows (see Figure 7.6):

≤ ≤ ≥

⎡ ˆ ˆ ⎤B A1 0 0 0 0  0 0 0 0 0 0⎢ ⎥
⎢ ˆ ˆ ˆB A A 0 0  0 0 0 0 0 0 ⎥
⎢ 2 1 0 ⎥
⎢ ˆ ˆ ˆ ˆB B
⎢ 3 2 A1 A0 0  0 0 0 0 0 0 ⎥

⎥
⎢ ˆ ˆ ˆ ˆ ˆB B
⎢

4 2 B2 A1 A0  0 0 0 0 0 0 ⎥
⎥

⎢ 0           ⎥
ˆ Q = ⎢           0 0  ⎥

⎢ ⎥ˆ ˆ ˆ ˆ ˆ ˆ⎢ B BK K− −1 BK 2  0 B2 2 0A A 0 0 0 ⎥
⎢ ˆ ˆ ˆ ˆ ˆ ˆ ⎥
⎢ B BK K+ −1 1BK  0 0 B2 A1 A0 0 0 0 ⎥
⎢ ˆ ˆB Bˆ ˆ

K K+1 2 B̂ ⎥0 0 0 0 A A 0 0⎢ ⎥
⎢ ˆ ˆB Bˆ ˆ0 0 K+  0 0 0 0 0 ⎥
⎢ 1 2 ⎥
⎢              ⎥⎣ ⎦

 (7.134)

A Aˆ ˆ B̂ B̂ B̂  B̂ B̂where block matrices 0 1, , 1, 2, 3, , K K, and +1 are square infinite-size 

matrices with the elements of each described, respectively, through (7.135)– (7.142), 

below (note that rather than using α , we write all possible discrete values of k):

 

 

 

 

  

 

 

 

0 0

1 0

1 0A A

⎧
⎪
⎪ q i = =j j 1,2,3, ,
⎪ oμ
⎪

a
0
( ,i j) = ⎨ ( )p pf s+ =qso μ i j +1, j = 1,2,3, ,  (7.135)

⎪ p ps s fμ i = +j 2, j = 1,2,3, ,⎪
⎪
⎪ 0 otherwise
⎩

⎧ − +( )λ μ , 1i j= =⎪ ,

⎪ − +( )λ μ + =v i, j = 2,
⎪
⎪ − +( 2λ μ + v i), = j = 3,
⎪

a1( ,i j) = ⎨ ,  (7.136)
⎪ − +λ μ⎪ [ ]+ ( 1K v− ) , i = j = K
⎪ − +( )λ μ + Kv , i = j = K +1,K + 2,K + 3, ,⎪
⎪ 0, otherwise.⎩
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⎧ 2 ,v i = =1, j 3,ˆ ⎪
 b i3( , j) = ⎨  (7.139)

0, otherwise.⎩⎪

⎧ ( 1− =ν 1 =ˆ ⎪ K i) , , j K ,
 b iK ( , j) = ⎨  (7.141)

⎩⎪ 0, otherwise.

7.6.3.5  An Illustrative Example
The system matrix (7.134) for the special case K = 3, k = 1,2,3, is as follows (note 

that if k = 2 or 3, or both, then the system needs to be adjusted accordingly):

 i. λ μΨ =0,0 q mo Ψ1,0 , 0= ;n = 0; k = 1,2,3, 

 ii. ( )λ μ+ Ψv q0,1 = o fΨ1,1 + ( )p + psqso μΨ1,0 , m = 0;n = 1; k = 1,2,3,

 iii. ( )λ μ+ Ψv q0,n o= Ψ1,n + pf + psqso μΨ1,n− −1 = ps Psf μΨ1,n 2 , m = 0;n ≥ 2; 

k = 1,2,3,
( )

 iv. ( )λ μ+ Ψ1,0 = λΨ0,0 + q voμΨ1,0 + Ψ0,1 , m = 0;n = 0; k = 1,2,3, 

 v. ( )λ μ+ + v qΨ1,1 = λΨ0,1 + o fμΨ1,1 + ( )p + psqso μΨ2,0 , m = 1;n = 1; 

k = 1,2,3,

⎧ − =λ, 1i j = ,⎪
⎪ − +( )λ v i, = j = 2,
⎪ − +( 2λ v i), = j = 3,⎪

ˆ ⎪
b i1( , j) = ⎨ ,  (7.137)

⎪ − +λ ( 1K v , i⎪ [ ]− =) j = K

⎪ − +( )λ Kv , i = j = K +1,K + 2,K + 3, ,
⎪
⎪ 0, otherwise.⎩

⎧ λ, ,i j= =i 1,2,3, ,

ˆ ⎪⎪
b i2( , j) = ⎨ v i, 1= =, j 2,  (7.138)

⎪
⎪ 0, otherwise.⎩

⎧ 3 ,v i = =1, j 3,ˆ ⎪
b i4( , j) = ⎨  (7.140)

0, otherwise.⎩⎪

          

⎧⎪ K iν , ,= −j K j = K +1, K + 2, ,
b̂ iK +1( , j) = ⎨  (7.142)

⎩⎪ 0, otherwise.
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 vi. ( )λ μ+ +υ Ψ1,n = λΨ0,n + q poμΨ2,n + ( f + psqso )μΨ2,n− −1 + ps psf μΨ2,n 2 , 

m = ≥1;n k2; = 1,2,3,

 vii. ( )λ μ+ Ψ2,0 = Ψλ 1,0 + q moμΨ3,0 + Ψυ 1,1 + Ψυ 0,2 , = 2;n = 0; = 1,2,3, k

 viii. ( )λ μ+ +υ Ψ2,1 = λΨ1,1 + q po fμΨ3,1 + ( + psqso )μΨ3,0 , m = 2;n = 1; 

k = 1,2,3,

 ix. ( )λ μ+ +υ Ψ2,n = λΨ1,n + q poμΨ3,n + ( f + psqso )μΨ3,n− −1 + ps psf μΨ3,n 2 , 

m = ≥ =2;n k2; 1,2,3,

 x. ( )λ μ+ Ψm m,0 =λΨ − +1,0 + qoμΨm 1,0 +υ ( )Ψm−1,1 + Ψm−2,2 + Ψm−3,3 , ≥ 3; 

n = =0; k 1,2,3,

 xi. ( )λ μ+ + v qΨm m,1 = λΨ ++ +1,1 oμΨ +m 1,1 (pf + psqso )μΨm+1,0 + vΨm−3,4m , 

m ≥ =3;n k1; = 1,2,3,

 xii. ( )λ μ+ + v qψ m m,2 = λψ − +1,2 + oμψ m 1,2 + (pf + psqso )μψ m+1,1 + 

p ps sf μψ m+ −1,0 + ≥vψ m 3,5m , 3m ;n = 2; k = 1,2,3,

 xiii. ( )λ μ+ + v qΨm n, 1= λΨ +m− +,n oμΨ +m 1,n (pf + psqso )μΨm+1,n−1 + 

p ps sf μΨ +m+ −1,n 2 vΨm−3,n+3 m ≥ 3;n = 3; k = 1,2,3,

∑∞ ∑∞
 xiv. Ψ =m n, 1. (7.143)

m=0 n=0

m

The system (7.143) may be summarized in matrix form as follows:

...

...

...

...

...

...

⎡ B Aˆ ˆ ⎤
1 0 0 0 0 ... 0 0 0 0⎢ ⎥

⎢ ˆ ˆ ˆB A A ... 0 0⎢ 0 0 0 ⎥
2 1 0 0 ⎥

⎢ ˆ ˆ ˆ ˆB B3 2 A A 0 0
⎢ 1 0 0 0... 0 ⎥

⎥
⎢ ˆ ˆ B̂ ˆ ˆB B4 3 2 A1 A0 ... 0 0 0 0 ⎥
⎢ ⎥
⎢ ˆ ˆ ˆ ˆ ˆ0 B B4 3 B A2 1 A0  ... ... ... ... ⎥
⎢ ⎥Q̂ = 0 0      ... ... ... ...   (7.144)⎢ ⎥
⎢   0     ... ... ... ... ⎥
⎢ B Bˆ ˆ B̂ ˆ ˆ ⎥
⎢ 0 0 ... ... 4 3 2 A1 A0  ... ⎥
⎢ ˆ ˆ ˆ ˆ ˆ0 0 ⎥... 0 0 B B B A⎢ 4 3 2 1 A0 ⎥
⎢ ˆ ˆ ˆ ˆ0 0 ... 0 0 0 B B ⎥
⎢ 4 3 B2 A1 ⎥
⎢           ... ⎥
⎣⎢ ⎥⎦

 

ˆ ˆwhere block matrices A A, , B̂ ˆ ˆ ˆ
0 1 1,B2,B3, ,and B4 are the square infinite-size 

 matrices and elements of each described, respectively, below:

⎧ q ioμ, ,= =j j 1,2,3, ,
⎪
⎪ ( )p pf s+ =qso μ, i j +1, j = 1,2,3, ,

â
0
( ,i j) = ⎨  (7.145)

p ps sf μ, 2i = + =⎪ j , j 1,2,3, ,

⎪ 0, otherwise.⎩
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⎧ 2 ,v i = =1, j 3ˆ ⎪

b i3( , j) = ⎨  (7.149)
0, otherwise.⎩⎪

 

The normalizing equation for this system is: 

 ∑
∞

∑
∞

Ψ =m n, 1. (7.151)

m=0 n=0

The literature shows that an exact solution for the system represented by (7.131) 

and in the special case given by (7.143) is forbidden. Thus, an algorithmic solution 

would be the second best. The method we will use can be found in Haghighi et al. 

(2011a,b). What is extra in this case is that since the system is an infinite one and the 

matrix and its blocks are all of infinite sizes, we will have to truncate the process for 

computation purpose and manually create infinity. To guarantee the theoretical con-

vergence, we will use the augmentation method that already exists in the literature; 

see Gibson and Seneta (1987), for instance. To be able to use some of the existing 

properties of Markov processes, another new idea has been introduced in this paper, 

that is, tridiagonalization of our matrix Q by combining blocks within the matrix.

⎧ − +( )λ μ , 1i j= = ,
⎪
⎪ − +( )λ μ + =v i, j = 2,
⎪

ˆ = − +( 2λ μ + v i), = j = 3,a1( ,i j) ⎨  (7.146)
⎪ − +( 3λ μ + v), i j= = 4,5, ,
⎪
⎪ 0, otherwise.
⎩

⎧ − =λ, 1i j = ,
⎪
⎪ − +( )λ v i, = j = 2,

ˆ ⎪
= − +( 2λ v i), = j = 3,b i1( , j) ⎨  (7.147)

⎪ − +( 3λ v), i j= = 4,5, ,
⎪
⎪ 0, otherwise.
⎩

⎧ λ, ,i j= =i 1,2,3, ,

ˆ ⎪⎪
b i2( , j) = ⎨ v i, 1= =, j 2,  (7.148)

⎪
⎪ 0, otherwise.⎩

⎪⎧ 3v i, = −j 3, j = 4,5, ,
b̂ i4( , j) = ⎨  (7.150)

0, otherwise.⎩⎪
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X0 = x x0,0 , ,0,1 x0,2 ,...
T

,

X1 = x x1,0 , ,1,1 x1,2 ,...
T

,
 (7.152)

X1 = x x1,0 , ,1,1 x
T

1,2 ,... .

  

Further, let matrix QT be a K + 2 diagonal block matrix as follows:

 

0

⎡ B B BT T T   BT BT

⎢ 1 2 3 K K+1 0 0 0 ⎤
⎥

⎢ A AT T
0 1 BT TB3   T T

2 B  
⎢

K BK+1 0 0 ⎥

⎢ A AT T T T T T ⎥
0 0 1 B2 B3   BK BK+1  ⎥

 QT ⎢= 0 0 A AT T BT
0 1 2 BT T T

⎢ 3   BK BK 1 0 ⎥
+ ⎥

⎢ 0 0 0 A AT T T T   T

⎢
0 1 B2 B3 BK BT

K+1 ⎥
⎥

⎢            ⎥
⎢            ⎥
⎣⎢ ⎦⎥

 (7.153)

... ...
... ...
... ...
... ...

...
...
...

0

1 0

⎡ B A 0 0 0 ... 0 ⎤
⎢ 1 0 0 0 0

⎥
⎢ B A2 1 0A 0 0 ... 0 0 0 0 ⎥
⎢ B B3 2 A1 A0 0 0... 0 0 0 ⎥
⎢ ⎥
⎢ B B4 3 B2 A1 A0 ... 0 0 0 0 ⎥
⎢ 0       ... ... ... ... ... ⎥

 Q = ⎢ ⎥ ,
⎢           ... ... ⎥
⎢ B BK K− −1 2BK  0 0B3 B2 A1 A0 ⎥
⎢ ⎥B BK K+ −1 1BK  0 0 B3 B2 A1 A0 0⎢ ⎥
⎢ 0 0B BK K+1 3 0 0 B B2 A A ⎥
⎢ ⎥
⎣             ⎦

 (7.154)

We now start the algorithm. Let X X= 0 1 2, ,X X , ,X ,
T

n  be an infinite-size 

column vector, where each of X X0 1 2, ,X , , is a column vector, in its own right, as 

follows:

where block matrices A A0 1, ,B1,B2, ,BK K, and B +1 are the square infinite-size 

matrices, whose elements are described by (7.154)–(7.161), respectively, with its 

transpose as
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⎧ 1 (+ +λ μ), i j= = 1,
⎪
⎪ 1 (+ +λ μ + v i), = j = 2,
⎪ 1 (+ +λ μ + 2v i), = j = 3,⎪⎪

 a1( ,i j) = ⎨   (7.156)
⎪ 1 [+ +λ μ + (K v−1) ], ,i = j = K
⎪
⎪ 1 [+ +λ μ + Kv], i = j = K +1,K + 2,K + 3,...,
⎪ 0, otherwise.
⎩⎪

⎧ 1 ,+ =λ i j = 1,
⎪
⎪ 1 ,+ +λ v i = j = 2,
⎪ 1 (+ +λ 2v i), = j = 3,⎪⎪

 b i1( , j) = ⎨   (7.157)
⎪ 1 [+ +λ (K v− =1) ], ,i j = K
⎪
⎪ 1 ,+ +λ Kv i = j = K +1,K + 2,K + 3,...,
⎪ 0, otherwise.
⎪⎩

⎧ − =λ, i j, i = 1,2,...,
⎪⎪

 b i2( , j) = ⎨ − =v i, 1, j = 2,  (7.158)
⎪ 0, otherwise.⎩⎪

⎧⎪ − =2 ,v i 1, j = 3,
 b i3( , j) = ⎨  (7.159)

0, otherwise.⎩⎪

⎧⎪ − −( 1K v) , i = 1, j = K ,
 b iK ( , j) = ⎨  (7.160)

0, otherwise.⎩⎪

⎧ q ioμ, ,= =j j 1,2,3, ,
⎪
⎪ p p+ =q μ, 1i j + , j = 1,2,3, ,

a
0
( ,i j) = ( )

⎨
f s so

 (7.155)
⎪ p ps sf μ, 2i = +j , j = 1,2,3, ,
⎪ 0, otherwise.⎩

where the block matrices A A0 1, ,B1,B2, ,BK K, and B +1 are the square infinite-size 

matrices, where the elements of each are described, respectively, below:

⎧⎪ − =Kv, ,i j − K j = K + 1, K K+ 2, + 3, ,
b iK +1( , j) = ⎨  (7.161)

⎪ 0, otherwise.⎩
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Thus, we may summarize the system (7.134) in a matrix equation form below:

 

∞

( )I Q− =X 0, ∑Xi = 1, (7.162)

i=0

where Q is given in (7.156) and the vector X is defined by (7.151).

At this point, we want to use the truncation method along with combining block 

matrices and transposes to obtain the truncated block matrix (7.162) below. We start 

with matrix Q defined by Q (7.154) that is an infinite block matrix with each block 

as an infinite matrix. We choose τ  rows and τ  columns from each block starting 

from the northwest corner of matrix Q. Hence, each block matrix is now finite of 

size τ ×τ . This ends the truncation part, and we have created a new block matrix 

(7.162) as below:

  

  

  

 

 

0

⎡ B B BT T T T
1 2 BT B⎢ τ τ τ 3 ... τ K τ K+1 0 0 0 ⎤

⎥
⎢ A AT T BT T T T

τ τ0 1 τ τ2 B3 ... τ BK τ B
⎢

K+1 0 0 ⎥
⎥

⎢ 0 τ τA AT T
0 1 τ τBT T

2 B T T
3 ... τ BK τ BK+1 ⎥

 T ⎢ 0 0 A AT T
0 1 BT

2 BT ... BT
τQ = τ τ τ τ 3 τ K τ BT 0 ⎥ ,⎢ K+1 ⎥

⎢ 0 0 0 A AT T T T T T
τ τ0 1 τ B2 τ B ... BK BK+

⎢
3 τ τ 1 ⎥

⎥
⎢            ⎥
⎢            ⎥
⎣⎢ ⎦⎥

 (7.163)

Truncation alone does not do complete what the trick. So, we combine blocks as 

appropriate to make the matrix Q a tridiagonal block matrix. This is a novel way 

of creating a tridiagonal matrix (7.164), with elements as in (7.165) through (7.168) 

below, after truncation:

 

⎡ B A1 0 0 0 0 0  
⎢ c c ⎤

⎥
⎢ B A2 1c c A0c 0 0 0  ⎥
⎢ 0 0B A2 1c c A0c 0  ⎥
⎢ ⎥

τ Q = ⎢ 0 0 B A2 1c c A0c 0  ⎥ , (7.164)
⎢ 0 0 0 B A2 1c c A0c  ⎥
⎢ ⎥
⎢ 0 0      ⎥
⎢        ⎥
⎣ ⎦

where τ A A0 1, ,τ τ B1,τ B2,τ B3, ,τ BK K, and τ B +1 are τ ×τ  matrices located at north-

west corners of A A0 1, ,B1,B2,B3, ,BK K, and B +1, respectively.
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where B1 2c c, ,B A0c , and A1c are K KT T×  matrices as follows:

⎡
⎢ τ τB A1 0 0 0 0 0 ⎤

⎥
⎢ τ τB A2 1 τ A0 0 0 0 ⎥
⎢

 B = ⎢ τ τB B3 2 τ A1 τ A0 0 0 ⎥
1c ⎥ ,   (7.165)

⎢       ⎥
⎢ B B
⎢

τ τK K− −1 2 τ B AK−3  τ 1 τ A0 ⎥
⎥

⎢  ⎣ τ τB BK K− −1 2τ τB AK 2 1τ A ⎦⎥

⎡ B B
⎢

τ τK K+ −1 1τBK  τB3 2τB ⎤
⎥

⎢ 0 τ τB BK K+1 4 τB Bτ 3 ⎥
⎢ 0 0 τ τB B B

B = K+
 

1 5 τ 4 ⎥
2c ⎢ ⎥ ,   (7.166)

⎢       ⎥
⎢     B B
⎢

τ τK K+1 ⎥
⎥

⎣⎢ 0 0 0 0 0 τBK+1 ⎥⎦

⎡ 0 0 0  0 0 ⎤
⎢ ⎥

0 0 0  0 0⎢ ⎥
⎢ 0 0 0  0 0 ⎥

 A0c = ⎢ ,   (7.167)
    0  ⎥

⎢ ⎥
⎢ 0 0   0 0 ⎥
⎢ τA0 0 0  0 0 ⎥⎣ ⎦

⎡
⎢ τ τA A1 0 0 0 0 0 ⎤

⎥
⎢ τ τ τB A2 1 0A 0 0 0 ⎥
⎢ B B

 A = 3 2 A
⎢ τ τ τ 1 τA0 0 0 ⎥

1c ⎥ .   (7.168)
⎢       ⎥
⎢ τ τB BK K− −1 2 τ τB AK−  τA ⎥
⎢

3 1 0

⎥
⎢ B B B B A⎣ τ τK K− −1 2τ τK  2 1τ ⎥⎦

The transpose of (7.164) is:

⎡ B BT T

⎢ 1 2c c 0 0 0 0 ⎤ ⎥
⎢ A AT T

0 1c c BT
2c 0 0 0  ⎥

⎢
⎢ 0 0A AT T T ⎥

0 1c c B2c 0  ⎥
 QT ⎢= 0 0   A BT T

τ ⎢ 1 2c c 0 ⎥ .   (7.169)⎥
⎢ 0 0      ⎥
⎢ 0 0 ⎥     ⎢ ⎥
⎢        ⎥
⎣⎢ ⎥⎦
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where e1 is a column vector with the first element 1 and all others as 0, and 1 is a 

column vector with all elements 1 each. Therefore,

⎡   
1 2 0 0 0 0 0 ⎤B B⎢ ⎥

⎢ B A  
0 1 B 2 0 0 0 0 ⎥

⎢ ⎥
⎢ D A   

0 1A B 2 0 0 0 ⎥
⎢ ⎥

  Q =  0 0  
τ ⎢ D A0 1A B 2 0 ⎥ .  (7.171)

⎢  ⎥D A0 0   
0 1A B ⎢ 2  ⎥

⎢ D 0      ⎥
⎢ ⎥
⎢        ⎥⎣ ⎦

At this point, we are to find a matrix G from the minimal nonnegative solution 
∞

of the nonlinear matrix equation G G=∑ iAi  (see Neuts (1989) and Ramaswami 
i=0

(1988b)). Then, using the matrix G along with Ramaswami formula (see Ramaswami 

(1988a)), recursively compute the components of the vector X X= 0 1 2,X ,X ,...
T
. To 

do that, let R j be an approximation for G and apply the following algorithm:

Then, find Rm+1 for each m = 0,1,2,...,, under the condition of Step 4 below, 

as follows:

 R Bm m+1 2= +( ) R2 ⋅A 0 ⋅C m = 0,1,2,..., (7.172)

Step 4.

Step 4.1. Choose a desired given ∈.

Step 4.2. For successive values of m, as 0, 1, 2, …, find the absolute value of 

difference between the two matrices found for m and m +1.

As it can be seen, the sum of rows of QT
τ  is not 1. To make it so, we use the first 

column augmentation (see Bean and Latouche (2010)). Thus, we would modify the 

individual blocks of QT
τ , denoting it by τQ, as follows: Let

A AT
0 = =1 10e A AT T

c , 1B1 BT
1 = T T

1c + ( )I −B1c −B2c ⋅ ⋅e1 ,
  (7.170)

B = =B DT
c , 1( )I − AT T T T T

2 2 0c − A1c −B2c ⋅ ⋅e1 ,B0 = A0c +D,

As τ approaches infinity, the stationary distribution τX of τQ converges to that 

of Q. Having constructed the truncated stochastic matrix τQ (in the sense that 

the sum of the rows equals 1), the next move is to determine the steps to solve the 

system (7.134).

Step 1. Write matrices A A0 1, ,B1, and B2, as defined above in (7.169).

Step 2. Let C = −( )I A −1
1 , where I is an K KT T×  identity matrix.

Step 3. Choose R0 = 0, where 0 is a K KT T×  zero matrix. Assume that R0
0 = 1. 

Then, find 1mR +  for each 0,1,2,...,
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Step 4.3. Find the largest element of this difference matrix (with i rows and 

j columns). Check to see if this element is less than ∈, that is,

 

If (7.173) is true, choose the last Rm+1 and write G = Rm+1. Move on to 

the next step if all eigenvalues of G are within the unit circle.

Step 5. Compute the following sum of the matrices, denoted by B1 :

 

 

Step 8. Compute the sum, denoted by S, as S e= ⋅X I0 ( )−G −1 ⋅ , where e is a 
∞

KT ×1 column vector with all elements as 1, or S =∑ XT
i .

i=0

Step 9. From Step 7 and Step 8, write

 

which is the vector of the unknown joint probabilities as follows:

 =

where T denotes the transpose of the vector, and

 

 

 

 

 

max m m1 , m 0,1,2, ,
i j,

( )R R+ − <∈ =  (7.173)

B = + 2 1
1 1B G ⋅B0 + G ⋅( )I − G − ⋅D 

Step 6. Solve equation MX0 = 0, where M = −B I1  and X X0 01, , with 

X X�
0 1= , ,X2 … …,Xn ,  as follows:

Step 6.1. Delete the first row of M and call the remaining matrix as M1.

Step 6.2. Delete the first column of M1 and call the remaining matrix as M2.

Step 6.3. Choose the first column of M2, multiply it by (−1), and call this 

matrix as M3.

Step 6.4. Write X M 1
0 2= ⋅− M3.

Step 7. Write X M0 2= ⋅−1 M3. Find Xn , 1n = ,2,3, , as a matrix product as follows:

X X1 0= ⋅G, ,Xn n= X −1 ⋅G, , 

XΨΨ = i
i , 0i = ,1,2, , 

S

ΨΨ Ψ Ψ Ψ
T

, * * *
i i= Ψ Ψ*

K Ψ ΨiK+ +1, iK+2
, ,ΨiK K−1 , i 0,1,2 , , 

ΨΨ =*
,0 , , , iK ,

T
iK ψ ψiK iK 1 ψ ,2 ...,ψ iK ,τ , 

ΨΨ =
T*

iK+1
ψ ψiK+ +1,0 , iK 1,1,ψ iK+1,2 1,...,ψ iK+ ,τ , 

ΨΨ =
T*

iK+2
ψ ψiK+ +2,0 , iK 2,1,ψ iK+2,2 2,...,ψ iK+ ,τ , 

 

ΨΨ =
T*

iK+ −K i−1
ψ ψiK+ −K 1,0 , ,iK+ −K 1,1 ψ iK+ −K 1,2 1, ,ψ iK+ −K ,τ . 
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We have now algorithmically obtained the joint distribution of the queue length of 

the system as in Step 9.

Example 7.27

This is a numerical example for the model we just discussed. To show how the 
steps work, we offer a numerical example with the following data: λ = 5, μ = 25 
and ν = 7, K = 3, that is, k = 1,2, or 3. For distribution of the batch size, represented 
by a random variable X, we choose a discrete uniform distribution, that is,

 
1

P X( 1= =) P X( = 2) = P X( = 3) = . 
3

Hence, α = +(1 2 + 3)/3 = 2. In the computation, we denote the maximum value of 
x by X, and let it equal to 3. We also choose the following probabilities:

 p pf = 0.4, s = 0.2, q0 = −1 ( )pf + ps , psf = 0.3, and qso = −1 psf . 

With the chosen data, we will have ρ ρ1 2= =0.7600, 0.8957, and ρsys = 0.4872. 
Hence, the stability conditions are met.

For Step 3 and Step 4, since m has to go to infinity, we choose 50 for the infin-
ity as computation shows it is sufficient. For the infinite sum in Step 8, we take 
the infinity as 10τ. It should be noted that, in the programming of the numerical 
example, a computation of the infinite matrices is done through approximating 
finite square τ × τ  matrices. However, we will use the first-column augmenta-
tion method so that the convergence of the method for the infinite case will 
be checked through Step 4. We recall that to obtain the distribution of the 
queue length of the system to be very close to the real values, we have to choose 
τ large enough so that the error  is less than a preassigned value, say ∈= 10−15. 
Hence, we have taken τ = 700, and the error analysis shows that we have met this 
condition (see Tables 7.6 and 7.7).

For tabulation presentation of probabilities, we choose only 18 rows and 
12 columns of the distribution matrix to fit in a page. Results are recorded in 
Table 7.8. However, for a three-dimensional graphic presentation of the prob-
abilities, as in Figure 7.8, we have chosen 60 rows of the probability distribution 
matrix.

TABLE 7.6
Maximum Differences between Two Consecutive Probabilities 
in the Distribution of the Queue Size
τ = 60, 100, 300, 500, 600, 700 Max Difference = Error 

pdf with τ = 100 - pdf with τ = 60 2.775557561562891e-17

pdf with τ = 300 - pdf with τ = 100 1.249000902703301e-15

pdf with τ = 500 - pdf with τ = 300 1.110223024625157e-16

pdf with τ = 600 - pdf with τ = 500 3.330669073875470e-16

pdf with τ = 700 - pdf with τ = 600 1.665334536937735e-16
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With τ = 700, for the queue length of the system, mean, second moment, 
 variance, and standard deviation are, respectively, 4.5691, 27.0521, 6.1752, 
and 2.485.

To validate that the probabilities found form a pdf, we compute and graph the 
cumulative probabilities as in Figure 7.9. To present this two-dimensional graph of 
cdf, in order to make sure we are adding all elements of the matrix in some fash-
ion, we choose the following method: Take the first element of the matrix, that is, 
ψ 0,0, then add all the rest of elements of the first square box, then add the elements 
to make the next square box, and so on to the end of the matrix. For instance, take 
ψ 0,0 and call it S1, then add ψ 0,0 , , ,ψ ψ0,1 1,0  and ψ 1,1 to S1 and call it S2. Then, add 
ψ 0,2 ,ψ 2,0, and ψ 2,2 to S2 and call it S3. Continue this method to cover all elements 
of the matrix and graph the S S1 2, ,..., to obtain the graph in Figure 7.9.

However, for the three-dimensional cumulative probabilities, we take each row 
and add its elements one by one. The result is shown in Figure 7.10.

We take the matrix of block matrices of size ten times as much as the size of 
a block matrix. The difference between elements of two consecutive matrices of 
probabilities (that we call it error) starts as a large number. However, as the trun-
cation line increases, the number reduces to and soon reaches zero. Figure 7.11 
shows a three-dimensional graph of the differences for a set of τ’s at 60, 100, 
300, 500, 600, and 700. Absolute values of differences of probability matrices 
for τ = 700 and τ = 600 are listed in Table 7.7. Absolute values of maximum dif-
ferences of all elements between each two of these values, in the order written, 
are listed in Table 7.8. Fluctuation of errors for large values of τ such as 600 and 
700 is negligible since it occurs at the 16th decimal places. Perhaps, running the 

FIGURE 7.8 Graph of the joint probability distribution of the number of tasks in the 

system.
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FIGURE 7.9 Graph of the cumulative joint probability distribution of the number of 

tasks in the system.

FIGURE 7.10 Three-dimensional graph of the cumulative joint probability distribu-

tion of the number of tasks in the system.
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program with much larger τ, that is, several folds large, we will see a complete 
stability of the values.

The model we have described is a delayed queueing system with two types of 
arrival: external single tasks and internal batch tasks, which may be interpreted as 
a two-station tandem queue with the possibility of immediate splitting after exiting 
the service station, single-server exponential service, and an exponential batch 
moving distribution at the delay station.

To minimize the length of the paper, a discussion of the busy period of the 
service station is referred. It will soon appear in the International Journal of 
Mathematics in Operations Research. Thus, in this paper, we have considered 
only the queue length and its associated joint distribution. A study of the busy 
period distribution of the system remains an open problem. With this in mind, 
here we will complete, as before, the consideration of the model illustrated in 
Figure 7.6 in the first paper on this topic by Haghighi et al. (2011b).

In offering the stepwise joint distribution, we have also used here two ideas:

 1. Duality of two systems G/M/1 and M/G/1.
 2. The independence of two sources of arrivals: external and internal.  The 

external arrivals are generated by the departures from the service station.

With these two ideas, we are able to reduce our model to a MAP/M/1 and use 
some of the existing properties of MAP/M/1.
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FIGURE 7.11 Three-dimensional graph of differences between two consecutive 

probabilities of the queue length with τ = 700 and τ = 600.



541Stochastic Processes

Note 7.45

In the splitting mode, we assumed that the original task returns to the service 

station with probability 1. However, considering it with probability less than 1 

remains to be addressed.

In summary, in this model, we were able to present an algorithmic way of finding 

the joint distribution of the number of tasks in the system. This includes dealing with 

infinite block matrices using truncation and augmentation methods and approximat-

ing the solution within an arbitrarily small interval of error. Due to the approxima-

tions involved, we are restricted to choosing the values of some of the parameters. 

The numerical example demonstrates how all this works through approximation of 

solution of the model illustrated in Figure 7.6. We have performed an error analysis 

to show how the error approaches zero as the matrix sizes approach infinity. We have 

also offered, to our knowledge, for the first time, an explicit joint distribution of a 

tandem queue.

7.6.4  MULTI-SERVER QUEUEING MODEL, M/M/C

Now, let us consider the same stationary infinite-capacity M/M/1 queue we discussed 

in the previous section with the difference that now a number of servers are c > 1 

identical servers in parallel. Thus, in formulation, the only difference would be in the 

value of ρ, which in this case would be

λ
 ρ = . (7.174)

cμ

The following relation is well known. For instance, see Haghighi and Mishev (2014). 

We leave it as exercise to prove it for the system M/M/c:

⎛ λ ⎞ c

P0 ρ⎜ ⎟⎝ μ ⎠
 Lq −

2
,  (7.175)

c!(1− ρ)

where P0 denotes the probability that there are no tasks in the system. Accordingly, 

we will have the mean waiting time in the waiting line as:

L
 W q

q = . (7.176)
λ

7.6.4.1  A Stationary Multi-Server Queueing System 
with Balking and Reneging

We now extend the multi-server queueing system, as discussed above, with two other 

features regarding arrivals. For a queueing system, it is possible that due to the long 

lengthy waiting line, a task looks at it and decides not to join. This feature is referred 

to as the balking. On the other hand, it may join the queue anyway, but after staying 
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for a while, it decides to leave the system. This feature is referred to as the reneging 

or abandonment. These features appeared in the literature about seven decades ago 

and have evolved quite a bit. Among contributors are Montazer-Haghighi (1976), 

Montazer-Haghighi et al. (1986), and Haghighi and Mishev (2006).

Including these two features, here is how the system looks like and how it is 

 analyzed. The system is described as follows:

 i. Tasks arrive from an infinite source to a system with infinite-capacity  buffer 

according to a Poisson distribution of parameter λ.

 ii. There are c servers set in parallel.

 iii. An arriving task may look at the waiting line when all servers are busy and 

balk with a constant probability β or may decide to join the queue anyway 

with probability α , α + =β 1. In other words, the attending rate of tasks is 

αλ  and the instantaneous balking rate is βλ .

 iv. If a task balks or reneges and later returns, it will be considered as a new 

arrival.

 v. After joining the system, when all servers are busy, a task will wait in the 

buffer for a while and will leave the system before receiving service.

 vi. It is assumed that the length of stay before leaving the system (reneging) is 

a random variable with an exponential distribution with parameter s.
 vii. It is also assumed that service provided by each server is based on an 

 exponential distribution with parameter μ.

 viii. Finally, services are provided to tasks based on the FCFS.

This system is denoted by an M/M/c with balking and reneging. Analysis of this 

system for c = 1,2 is left as an exercise.

Hence, we consider the system with c ≥ 3. The state when there are k tasks in the 

system, that is, in the buffer and in the service stations, is referred to as Sk . Based on 

the assumptions for arrival rate, service rate, balking, and reneging, we have:

⎧⎪ λ 0 1≤ ≤k c − ,
 Average arrival rate = ⎨  (7.177)

⎪ αλ, ,k c≥⎩

and

⎧⎪ c kμ, 0 ≤ ≤ c −1,
 Average service rate = ⎨  (7.178)

μ + − ≥⎩⎪ c k( )c s, k c.

The intensity factor in this case is defined as:

⎧ λ
⎪ , 0 ≤ ≤k c −1,
⎪ cμ

 ρ = ⎨  (7.179)
αλ⎪ , .k c≥

⎪ c kμ + −( )c s⎩
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Let the transient-state probability that there are k tasks in the system at time t 
be denoted by P tk ( ). Then, the stationary probability of having k in the system is 

denoted by Pk, defined by

 Pk = lim P tk ( ). (7.180)
t→∞

Considering different cases to be in state Sk , the system of differential–difference 

equations can be written as:

⎧ P t( ) = −λ μP t( ) + P ( )t ,
⎪ 0 0′ 1

⎪ P tk k′( ) = −(λ μ+ k )P ( )t + λPk− +1 1( )t + (k +1)μP ( )t , 1 ≤ k ≤ c −1,
 

k
⎨
⎪ P tc c′( ) = −(αλ + cμ)P t( ) + λPc− +1 1( )t + (cμ + s)Pc ( )t ,

⎪ P tk k′( ) = −(αλ + cμ) + (k − c)s)P t( ) +αλPk−1( )t + [cμ + (k +1− c)s]P ( )t , .k c>
⎩ k+1

 (7.181)

The time-independent case of the system (7.123), that is, the stationary case, becomes:

⎧ 0 ,= −λ μP P+
⎪ 0 1

⎪ 0 = −(λ μ+ k P) k k+ λP − +1 1(t) + (k +1)μPk (t), 1 ≤ k ≤ c −1,
⎨  (7.182)
⎪ 0 (= − αλ + c Pμ) c c+ λP − +1 1+ (cμ + s)Pc

⎪ 0 (= − αλ + c kμ + ( − c)s)Pk k+αλP − +1 1+ [c kμ + ( +1− c)s]Pk , .k > c⎪⎩

The system (7.182), indeed, is an extended version of M/M/1 case as follows:

⎧ λ μP P0 1+ ,
⎪
⎪⎪ ( )λ μ+ =k Pk kλP − +1 1+ (k +1)μPk (t), 1 ≤ k ≤ c,

 ⎨  (7.183)
( )αλ + =c pμ⎪ c cλP − +1 1+ (cμ + s)Pc ,

⎪ [ ]αλ + +c kμ ( )− c s Pk k+αλP − +1 1+ [c kμ + ( +1− c)s]Pk , k > c,
⎩⎪

with the normalizing equation,

∞

 ∑Pk = 1. (7.184)

k=0

Now, for the solution of the system (7.184), the first two equations yield:

k
1 ⎛ λ ⎞

 Pk = ≤⎜ ⎟ P k, ,
! ⎝ μ 0 c  (7.185)

k ⎠
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from which we can compute Pc−1 and Pc. Then, substituting these values in the third 

equation of the system (7.183) yields:

⎛ c
1 λ ⎞ ⎛ αλ ⎞

 Pc+1 0= ⎜ ⎟ ⎜ ⎟ P . (7.186)
c c! ⎝ μ ⎠ ⎝ μ + s ⎠

Using (7.184) and putting k = c + 1 in the last equation of (7.183), we obtain:

⎞ c
( )αλ 2 21 ⎛ λ ( )αλ

 Pc c+2 = P = ⎜ ⎟ P0. (7.187) 
( )c sμ μ+ +(c 2s) c c! ⎝ μ ⎠ ( 2μ + s)

Finally, we will have a general case for k > c as

c
1 ⎛ λ ⎞ ( )αλ k c−

 Pk = ⎜ ⎟ ∏ k−1 P0 , (7.188)
c! ⎝ μ ⎠ ( )c jμ + s

j=1

with P0 calculated from (7.186) as:

⎡
−1

∑
c ⎛ λ ⎞

j
⎛ λ ⎞ c

∑
∞ ⎤

⎢ 1 1 ( )αλ j ⎥
 P0 = +⎜ ⎟ ⎜ ⎟ ∏ j . (7.189)⎢ j c! !

j 0
⎝ μ ⎠ ⎝ μ ⎠ ⎥

⎢⎣ = j=1 ( )c rμ + s
r=1

⎥⎦

As a validity check if c = 1, α = 1 (no balking) and s = 0 (no reneging), from (7.188) 

and (7.189), we obtain the distribution for the M/M/1. Also, if α = 1 (no balking) and 

s = 0 (no reneging), we will have M/M/c system.

7.6.4.2  Case s == 0 (No Reneging)
1

For the case when there is balking only, that is, → ∞ or s → 0, we will have:
s

αλ
 ρ = , (7.190)

cμ

and

⎧ ( )cρ k

⎪ P k, 0 ≤ ≤ c,
⎪ k!

0

 Pk = ⎨  (7.191)
⎪ 1 ⎛ c ⎞ c

( )αρ k P k0 , >⎪ c,⎝ ⎠⎩c! α

and

⎡
−1

c
( )cρ αj cc ρc+1 ⎤

 P0 = +⎢∑ ⎥ . (7.192)
⎢ j! !c (1

0
−αρ ⎦⎣ j=
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We leave it as an exercise to show that the average number of arrivals attended, 

denoted by A, is given by:

⎡⎛ λ ⎞ c
αλ c + −μ αλ ∑

c
( 1) 1 ⎛ λ ⎞ ⎤

 A = ⎢ +⎜ ⎟ 2 ⎜ ⎟ ⎥ P .  (7.193)
⎢⎝ μ ⎠ ( 1c − )! ( )c kμ α− λ ( 1− )! μ ⎠ 0

⎣ k=1
⎝ ⎥⎦

Back to the case of balking and reneging. An advantage of considering potential 

arrivals is to have a measure of the virtual load that the system should be prepared 

for. The balking and reneging features of the system may cause the system to lose 

some of the potential arrivals.

k

Definition 7.28

For a multi-server queueing system with balking and reneging, the balking and 

reneging tasks, coupled with those who attend and finally receive service, constitute 

the potential arrivals. Also, depending upon the situation of a queueing system, the 

period during which all servers remain busy is referred to a busy period.

Now, let L  and B represent, respectively, the average number loss and the average 

number of potential arrivals during a unit service time within a busy period. When 

the number of tasks in the system is more than the number of servers in the system,

∞

 The probability that all serversare busy =∑Pk .  (7.194)

k c=

We earlier assumed that when all servers are busy, the probability of losing a task 

due to balking is a constant, β. Hence,

∞

 The probabilityof losinga task due to balking = β∑Pk .  (7.195)

k c=

Also, we earlier assumed that during a busy period, the average rate of arrivals due 

to balking is αλ . Hence,

∞

 Theaverage lossdue to balkingduringa busy period = βαλ∑Pk .  (7.196)

k c=

1
Thus, since the average length of a unit service during a busy period is , the 

cμ
 average number of potential arrivals during a unit service, L , is

1 ⎛
 L = +⎜ s Pβαλ

cμ ⎝
∑

∞ ⎞
k ⎟ . (7.197)

k c= ⎠
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Similar to what we found earlier, the average number of tasks attended during a unit 

service within a busy period, B, is

1 ⎛
 B ∑

c

= +⎜ λ αP Pk k∑
∞ ⎞

λ ⎟ .  (7.198)
cμ ⎝ k=0 k c= +1 ⎠

If we denote the proportion of loss by l, since B A= + L , we have:

L
 l = . (7.199)

B

7.6.4.3  Case s == 0 (No Reneging)
In case of balking alone, (7.198) and (7.199), respectively, become:

αβλ 1 ⎛ λ ⎞ c

 L = ⎜ ⎟ P . (7.200)
c aμ λ− c! ⎝ μ ⎠ 0

λP ⎡∑
∞ λ ⎞ α λ

c+1
1 ⎛ k 2

0 ⎛ ⎞ μ ⎤
 B = ⎢ +⎜ ⎟ ⎜ ⎟ ⎥ .  (7.201)

c kμ ⎢ ! !⎝ μ μ ⎠ c
k

⎝ − λ⎣ =0
⎠ c μ α ⎥⎦

 

 

Example 7.28

In this example, we analyze a stationary queueing model, which is an urgent care 
clinic with several beds and the same number of physicians to serve the arriving 
patients. The following are the assumptions for this model:

 i. The clinic is open to serve patients with no capacity limit; that is, patients 
arrive from a single infinite source.

 ii. If all beds are occupied at the arrival of a patient, the patient may wait in 
a waiting room with unlimited capacity.

 iii. Arriving of patients is a Poisson process. That is, arrivals of patients are 
iid random variables with Poisson distribution with parameter λ = 6 per 
hour.

 v.  There are five beds available setting in parallel, each with one physician 
in charge.

 iv.  An arriving patient, who finds all five beds occupied, may balk with 
probability β = 0.3 or may stay and join the other patients in the waiting 
room with probability α = 0.7. Hence, the instantaneous balking rate is 
βλ = 1.8, or the arrival rate when all beds are occupied is αλ = 4.2.

 vi. After entering the clinic, since the patient feels immediate need for care 
and she/he needs to be visited by a doctor, she/he will renege, that is, 
s = 0.

 vii.  Patients are visited by doctors on a FIFO basis.
 viii. The visiting length of times by physicians are iid random variables having 

an exponential distribution with parameter μ = 3.
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 ix. If a patient balks and decides to return later, she/he will be considered as 
a new patient, independent of his/her previous number of balking.
We are looking for:

 a. The distribution of the number of patients in the clinic at any time.
 b. The probability of the clinic without patients.
 c. The average number of arrivals attended, that is, after the balking has 

been considered.

Answer

 a. Let us suppose that the clinic starts operating at time t = 0 with no patient 
waiting. Let also assume that at t = 0, one or more of the beds are occu-
pied. Denoted by Pk , the time-independent (stationary) probability is that 
there are k patients in the clinic. Thus, from (7.190), we have:

 
(0.7)(6) 7ρ = = . 
(5)(3) 25

Now, from (7.192), we have:

⎡ ⎛ 7 ⎞ 7
⎢ ⎜( )⎛ ⎞

j ⎤
−

⎛ ⎛ ⎞
5 1+ ⎞

1

5 5

∑
⎜ ⎟ ⎜( )0.7 55 ⎟ ⎥

⎝ ⎝ 25⎠ ⎟ ( )⎜
⎠ ⎝ ⎝⎢ 25⎠ ⎟⎠ ⎥ P0 = + =⎢ ⎥ 0.2467.  (7.202)

j! 7
j=0

⎛ ⎛ ⎞ ⎞⎢ 5!⎜1− ( )0.7 ⎜ ⎟ ⎥⎟⎢ ⎝ ⎝ 25⎠ ⎠ ⎥⎣ ⎦

Thus,

⎧⎛ ⎛ 7 ⎞ ⎞ k

⎪⎜( )5
⎝ ⎝ 25⎠ ⎟⎠⎪ P k, 0 5,

= !
0 ≤ ≤⎪

 Pn ⎨ k  (7.203)
⎪
⎪ 1 ⎛ 5 ⎞ 5 ⎛ ⎛ ⎞ ⎞

⎜ ⎟ ⎜( ) 7
k

0.7 ⎟ P k, 5> .⎪5! ⎝⎩ 0.7 ⎠ ⎝ ⎝ 25⎠ ⎠ 0

To calculate these and other values, we use MATLAB programing. Hence, from 
(7.202), (7.203), and (7.195), we have:

P P1 2 3 4= =0.3454, 0.2418, P = 0.2418, P = 0.0395, Pk = 0.0111,
  

P P6 7= =0.0022, 0.0004, P P8 = 0.0001, 9 = 0.0000, P10 = 0.0000,

∑10

with Pk = 1, and
0

 A = 3.6176, 

That is, considering the possibility of balking only, on an average, 3.6 patients 
enter the clinic per hour to receive doctors’ visits. 
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7.7  BIRTH-AND-DEATH PROCESSES

Continuous-time B-D processes have shown to be important tools for queueing 

model, reliability, and inventory systems. B-D processes are good models to  represent 

flows of radioactive, cosmic, and other particles. In the economical  sciences, B-D 

processes are used for describing the development of number of enterprises in a 

particular area and manpower fluctuations.

Note 7.46

As a historical note, the name “B-D” comes from applications of biology, where 

the development in time of the number of individuals in populations of organ-

isms is stochastically modeled. The mathematical discussion of stochastic popula-

tion growth was pointed out by William Feller (1939). In that paper, among other 

things, Feller discussed the examples of B-D with constant rates of birth and death. 

Later, David Kendal (1948) gave the complete solution of the system of equations 

governing the generalized B-D in which the rates were functions of the time.

Note 7.47

Poisson process (sometimes referred to as a point process) is a classic example 

of a pure birth, that is, a B-D process in which death is not to be considered. 

This is where we start this section with.

Definition 7.29 Pure Birth Process

Assume that over time, a process counts particles in the fashion of moving upward 

from a state k to the immediate next higher state, k +1, or stay put, but never down-

ward to a lower-valued state. That is, the process allows only arrivals or births or 

walking forward if there is to be a transition, but no departures, deaths, or moving 

backward. Such a process is referred to as a pure birth process.

What the definition states is that a pure birth process at any time t either remains 

in its current state or transits to the next higher state. Transitions other than K k→ +1 

or k k→  at time t (where k k→  indicates that the process remains in state k at time t) 
are not allowed.

Example 7.29 Pure Birth Processes

The following are two examples of pure birth processes:

 i. The number of visitors (by time t) to the Houston Museum of Art since 
the museum opened.

 ii. The number of telephone calls to the department of mathematics 
at Prairie View A&M University on workdays, between 8:00 am and 
5:00 pm daily during the fall registration period in 2019.
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Definition 7.30 Pure Death Process

Suppose that over time, a process counts particles in the fashion of moving backward 

from a state k to the immediate next lower state, k −1, or stay put, that is, k k→ , 

but never forward to an upper-valued state. In other words, the process allows only 

departures (deaths) if there is to be a transition, but no arrivals (births). Such a pro-

cess is referred to as a pure death process.

What this definition states is that in a pure death process, at any time t, transitions 

other than k k→  or k k→ −1 at time t are not allowed.

Definition 7.31 Birth-and-Death Process (B-D)

The most general type of B-D process is a process that allows transitions of a state 

to another state of the form k k→ +1, k k→ , or k k→ −1 at any time t. It is assumed 

that the birth-and-death events in a B-D process are independent of each other.

Example 7.30 Birth-and-Death Processes

Here are three examples of B-D processes:

 i. Process of programs awaiting execution on a given computer system (at 
time t).

 ii. The number of customers in a certain grocery store (at time t).
 iii. The population of a particular insect in an area (at time t).

All B-D processes we will consider herein are assumed to have the following 
properties:

 i. The Markov property
 ii. Stationary transition probabilities.

Hence, because of these properties, a B-D process becomes a Markov process. 
The state space for a B-D process is the set of nonnegative integers.

Similar to the random walk and simple queueing processes, let us denote by 
λx x⋅ >λ 0 the forward transition rate from state x to its neighboring upper state 
x +1 and in general:

 x → +x x1 2→ + → +x 3 →   

This definition states that in a B-D process, a task travels forward, stay put, 

or backward among the integers in one-step transitions. In other words, no B-D 

process allows transitions of more than one step. That is, transitions such as 

k k→ ± i, 2i = ,3,  are not allowed.

The concept of random walk that we discussed earlier is the most general con-

cept of the B-D process. Random walk, however, is a semi-Markov process since 

the holding time in each state has an arbitrary probability distribution function that 

does not have the forgetfulness property. However, a B-D process may be called a 

continuous-time random walk. So, if the walker takes only forward steps such as 

0 1 2→ → → 3, , the chain would be a pure birth process.
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Note 7.48

From a B-D process, λx = 0 results in a pure death process. In this case, μx > 0 

rx > 0. If μx = 0, it results in a pure birth process. In that case, λx > 0 and rx > 0. 

Finally, if rx = 0, then it results in a pure B-D process. In that case, λx > 0 and 

μx = 0.

7.7.1  FINITE PURE BIRTH

Let us assume that the birth process is a Poisson process. Hence, based on the prop-

erties of this process, the times between births will be exponentially distributed.

Clearly, no population can exist with zero original size because in that case, no 

birth or death can occur. Thus, for an existing population of finite size N, we assume 

the initial population size to be a number between 1 and N, say n0. Symbolically,

Let us choose Δt sufficiently small so that no more than one birth may occur in 

it. That is, the probability of more than one birth in Δt is negligible. Now for the 

pu rpose of finding the population size n at any time, let us start at time t and look at 

the population Δt time unit later, that is, at time t + Δt . Then, for a pure birth case, we 

have the following two possibilities:

 i. The size at time t is already n. Thus, no birth should occur in the time 

 interval ( ,t t + Δt).

 ii. The size at time t is n −1. Thus, exactly one birth should occur during the 

time interval ( ,t t + Δt) to make up the size to be n.

 

FIGURE 7.12 Transition diagram of a B-D process. Arrows represent the possible 

 transitions between states, and the labels on the arrows are the state transition rates between 

states.

Staying put in the same position, that is, no move, no arrival, and no departure or 
no birth or death, the rate is denoted by r rx x, > 0. On the other hand, backward 
transitions such as 0 1 2← ← ← 3 ←  are denoted by μ μx x, 0> .

Figure 7.12 is a graphical presentation illustrating the idea of a pure B-D 

 process with birth rate λx , 0x = ,1,2, , and death rate μx, x = 1,2, , which is a 

standard transition diagram of a pure B-D with infinite population.

P nn(0) = ≥0 0. and P{n 1} = 1, n0 = 1,2, , N , n = n0 ,n0 +1, , N. (7.204)
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Thus, the following probability statements for an occurrence of events during the 

time interval [ ]t t, + Δt , that is, during the period Δt, while the system is not empty, 

are true:

 P(no birth) = −1 λxΔt t+ 0(Δ ), (7.205)

P t(one birth) = Δλx + 0(Δt),   (7.206)

P(more than one birth) = Δ0( t),  (7.207)

 

 

where 0(Δt) is the little 0 of Δt.
Assuming 0(Δt) will approach 0 as Δt becomes too small and goes to zero, the 

0(Δt) may be discarded. Hence, from (7.206), the probability of a birth within a 

time  interval ( ,t t + Δt) is λΔt . Thus, the rate of birth from the entire population 

will be nλΔt . Therefore, the probability of no birth within the same interval, that 

is, the size remaining the same, from (7.205), is 1− Δn tλ . Similarly, we may argue 

about the transition from size n −1 to n that will be ( 1n t− Δ)λ . Thus, if we denote 

by P tn( ) the probability that the population size is n at time t, then we can write the 

following:

P tn n( + Δt) = P (t) ⋅P{no birth occurring in(t,t + Δt)}.

 = ⋅P tn−1( ) P{exactly one birth occurring in(t,t + Δt)}. (7.208)

= ⋅P tn n( ) (1− nλ λΔt) + P −1( )t ⋅(n −1) Δt.

Passing to the limit, (7.208) yields the following:

dP ( )t
 n = −( 1n P)λ λn n−1(t) − n P (t ), 1 ≤ n ≤ N , (7.209)

dt

with Pn(0) defined in (7.204).

To solve (7.209), we use the probability generating function method. Thus, after 

some manipulations, the solution of (7.209) will be:

⎛ n −1⎞ n n−
 P t( ) = ⎜ ⎟ e en tλ λ( )1 ,− − t 0

0
n  (7.210)

⎝ n0 ⎠

where Pn(0) is defined in (7.204).

Note 7.49

If n0 = 1, then (7.210) is the geometric pmf.
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Relation (7.210) can be rewritten and be used easier by choosing the following 

notations:

 ξ ≡ =e vλt , ,n0 0p = n = n .  (7.211)

Thus, (7.210) can be rewritten as:

⎛ v p+ −1⎞
 Pn = ⎜ ⎟ (1−ξ ξ)p v, (7.212)

⎝ v ⎠

which is a pmf of negative binomial distribution. Thus, the mean and variance of the 

population size, from (7.212), denoted by L t( ) and σ 2( )t  are, respectively, as follows:

( )n n− t

 L t( ) 0 eλ

= λt  (7.213)
1− e

and

We leave it as an exercise to drive the same results, as for the finite pure birth 

 process, the finite pure death process, and the B-D process.

7.7.2  B-D PROCESS

For an infinite B-D process illustrated in Figure 7.12, let us denote by pyx the prob-

ability of transition between neighboring states x and y, defined as:

⎧λx , if only one birth occurs, that is, y x= +1,
⎪⎪

 pyx = ⎨μx, if only one death occurs, that is, y x= −1, (7.215)
⎪
⎪⎩0, otherwise.

Note 7.50

From (7.215), it is clear that revising each state is only possible from a neighboring 

state and may occur infinitely many times until the process is more than one step 

away from its neighbors.

Note 7.51

Also, from (7.215), transitions from state x to itself would not be possible. This 

is the case when a birth and a death occur at the same time. For this case, let us 

assume a positive probability for a case of no birth and no death for a random 

λt
2 ( )n n− eσ ( )t = 0

λt 2
, n n= +0 0, n 1, , N , n

(1 )
0 = 1,2, , N. (7.214)

− e



553Stochastic Processes

length of time, like in a random walk process. Then, after the process enters state 

x, it may stay (sojourns) there for some random length of time. Let us assume that 

this length of time is exponentially distributed with parameter ( )λ μx x+ . Then, 

when the process leaves the state x, it either enters state x +1 with probability 

λ λx x( )+ μx  or enters state x −1 with probability μ λx x( )+ μx . Suppose the pro-

cess chooses its next state as x +1. Then, again, it is assumed that the length of 

stay of the process in this new state will have an exponential distribution with 

parameter ( )λ μx x+ +1 1+ , where λx+1 and μx+1 are the birth and death rates in state 

x +1, respectively. The process will choose the next state, etc.

Now, let X( )t  describe the states of the B-D process at time t that are nonnegative 

integers. In other words, a state of a B-D process is the population size at time t that 

cannot be negative. Let us also denote by p tx ( ) the probability that the process is in 

state x at time t, that is,

 p tx ( ) = =P{X( )t x}. (7.216)

We further let p tyx ( ) be the transition probability of the process moving from state x 

to state y within the time interval [0,t]. In general, this interval could be chosen as 

[ ,t t + Δt] with the interval length of Δt. Thus, by transition probability p tyx ( )Δ , we 

mean the conditional probability

 p tyx ( )Δ = P{ }X(t + Δ =t) y | X(t) = x  

or

 p tyx ( )Δ = P{ }X(t + Δ =t) y | X(t) = x = qyxΔt + 0( )Δt , (7.217)

where 0(Δt) is the little 0 and qyx is the proportionality constant. In other words, 

when Δt is small, the transition probability from state x to state y in the time interval 

[ ,t t + Δt] is proportional to the length, Δt, of the time interval, relative to absolute 

time t, with proportionality constant qyx. For a small Δt, 0(Δt) is near zero. Hence, 

dropping the 0(Δt) part, (7.217) may be rewritten as:

 pyx ( )Δ =t P{ }X(t + Δ =t) y X| (t) + ( )Δt = y X| (t) = x ≈ qyxΔt. (7.218)

Because of (7.218), pyx is called the probability transition rate.

 P( )t p= ⎡⎣ yx ( )t ⎤⎦ , (7.219)

 P Q′( )t t= ⋅P( ) = P( )t ⋅Q, (7.220)

 

The transition probabilities, p tyx ( ), x, y = 0,1,2, , may be found by solving the 

Kolmogorov forward and backward system of differential–difference equations. 

Letting P( )t  denote the matrix of transitions with elements p tyx ( ), that is,

and Q, representing the transition rate matrix with birth rate λx , 0x = ,1,2, , and 

death rate μx , 1x = ,2, , the uniformly bounded, for the B-D process, we can write:
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where

⎡ p t( ) ( )   n ( )
⎢ 0,0 p1,0 t p t,0

⎤
⎥

⎢ p t0,1( ) p1,1( )t   p tn,1( ) ⎥
 P( )t ⎢ ⎥=      , (7.221)⎢ ⎥

⎢ p t0,n n( ) p1, ( )t   p tn,n( ) ⎥
⎢ ⎥     
⎣⎢ ⎦⎥

and

⎡ −λ λ0 0 0 0 0  ⎤
⎢ ⎥
⎢ μ λ1 1− +( )μ1 λ1 0 0  ⎥
⎢ ⎥

Q = ⎢ 0 0μ λ2 2− +( )μ2 λ2  ⎥ . (7.222)
⎢ ⎥μ λ( ) λ⎢ 0 0 3 3− + μ3 3  ⎥
⎢       ⎥
⎣ ⎦

Then, the solution of the Kolmogorov backward equation is well known as

 P( )t e= Qt . (7.223)

If we let

 M = +sup | λ μi i |< ∞ (7.224)
i

and

1
 S Q≡ + I, (7.225)

M

where S is a stochastic matrix, then,

 Q = −M( )S I . (7.226)

Now from (7.223) and (7.224), we have:

Qt ∑
∞

( )Qt n

P( )t e= =
n!

n=0

 = =e eM t( )S I− −MSte Mt  

= =e−Mt∑ ∑
∞

Mt n ∞
( ) ( )n

Sn Mt Mt
e [ ]s n

! !
yx , (7.227)

n n
n=0 0n=

where S xyx , , y = 0,1,2, , are the elements of matrix S, defined in (7.225).
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Green et al. (2003) dedicated to M. M. Rao, proposed a dual process (some-

times referred to as the inverse process or reverse process) to the B-D, as seen in 

Figure 7.13.

The purpose of the duality is to facilitate finding the transition probability distri-

butions discretely. Hence, the state “−1” in Figure 7.13 has no physical meaning and/

or interpretation. Denoting the transition probability functions of the dual process 

presented in Figure 7.13 by p t*
yx ( ), through Theorem 7.3, they showed that the rela-

tionship (7.228) holds between a general B-D process and its duality. Thus, if the 

transient probability functions in either the original B-D process or dual B-D system 

are known, then the transient probability functions in the other system are known 

as well.

Theorem 7.3

If p tyx ( ) and p t*
yx ( ) are the transient probability functions of the B-D processes cor-

responding to Figures 7.12 and 7.13, respectively, then, assuming

 P tk−1( ) = >0, for k −1, 

we have:

∞

 ∑ ∑
x

P tyx ( ) = −⎡P*

⎣ ky( )t P*
k , 1y− ( )t ⎤⎦ and P tyx ( ) = −⎣⎡Pky( )t Pk , 1y+ ( )t ⎤⎦,  (7.228)

k x= k=0

Proof:
The proof of this theorem appears as Proposition 2.3 on page 269 of Anderson (1991). 

It is essentially based on the forward and backward Kolmogorov equations. See also 

Green et al. (2003). The outline of proof of Theorem 7.3 is as follows:

Consider the finite recurrent B-D chain having transition probabilities 

d iagrammed in Figure 7.14.

FIGURE 7.13 Transition diagram of the dual process of the B-D process of Figure 7.12. 

Arrows represent the possible transitions between states, and the labels on the arrows are the 

state transition rates between states.

for all states x, 0y = ,1,2, .
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For the B-D process represented by its transition diagram in Figure 7.14, assuming 

that all characters are fractions between 0 and 1, inclusively, we should note the 

following:

To make sure that the traffic intensities in the dual processes are <1, it is also assumed 

that:

In case of general B-D process, that is, rx ≥ 0, which we described as the random 

walk in which staying put is allowed, Green et al. (2003) showed that a similar theo-

rem to Theorem 7.3 holds, which is Theorem 7.3 for B-D chains. Although statement 

of the theorem is on a finite state space, it holds as well for infinite B-D chains.

Figures 7.13 and 7.14 are transition probability diagrams similar to Figures 7.9 

and 7.10. Figure 7.11 is the absorbing B-D chain dual to the B-D process represented 

in Figure 7.15.

FIGURE 7.14 Transition diagram of a B-D process with staying put allowed. Arrows 

 represent the possible transitions between states, and the labels on the arrows are the state 

transition rates between states.

r0 0+ =λ 1,

r1 1+ +λ μ1 = 1,

r2 2+ +λ μ2 = 1,

rK K− −1 1+ +λ μK−1 = 1,

rK K+ =μ 1.

λ μ0 1+ ≤1,

λ μ1 2+ ≤1,

λ μ2 3+ ≤1,  

λK K−1 + ≤μ 1.
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FIGURE 7.15 Transition diagram of the dual process of the B-D process of Figure 7.15. It is 

an absorbing B-D at states −1 and K. Arrows represent the possible transitions between states, 

and the labels on the arrows are the state transition rates between states.

In Figure 7.15, it is assumed that all characters are fractions between 0 and 1, 

 inclusively, and that:

Theorem 7.4

If p tn
yx ( ) and p t*(n)

yx ( ) are the n-step transition probabilities of the B-D processes 

 corresponding to Figures 7.14 and 7.15, respectively, then, assuming

 P t*(n)
k , 1− = >0, for k −1, 

we have:

K

 P( ) ( ∑ ∑
i

n t ) = −⎡P*(n)
ji ⎣ kj ( )t P*n *( )n ( )n ( )n

k j, 1− ( )t ⎤⎦ and Pji ( )t = −⎡⎣Pkj ( )t Pk j, 1+ ( )t ⎤⎦,  (7.229)

k j= k=0

Note 7.52

Difficulties facing numerical solution for time-dependent stochastic processes, 

and in particular, such a system, are well known. However, the transient prob-

ability distribution of the population of a finite-state B-D process has been solved 

using a variety of methods over decades. Obtaining analytic explicit solution is 

almost impossible.

λ μ0 0+ +r 1 = 1,

λ μ1 1+ +r 2 = 1,
 

λK K− −1 1+ +r μK = 1.

for n ≥ 0 and all states i j, 0= ,1,2, ,K .

Proof:
See Green et al. (2003).
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7.7.3  FINITE BIRTH-AND-DEATH PROCESS

We denote the probability that the population size is n at time t by P tn( ). We 

 further denote by Ψn( )s  the Laplace transform of P tn( ).

7.7.3.1  Analysis

⎧ ( )λ μ0 0+ Ψs s( ) − 1( )s = δ⎪ i,0 ,
⎪
⎨ ( )− Ψλ λn n− −1 1( )s s+ ( n + μn + )Ψn( )s − μn n+ +1 1Ψ ( )s = δ i,n , 1 ≤ n ≤ N −1,  (7.230)
⎪ − Ψλ μ⎪ N N− −1 1( )s s+ ( )⎩ N + ΨN ( )s = δ i,N ,

where δ i j,  is Kronecker’s delta function.

To solve the system (7.230), we rewrite it in a matrix form. So, let us denote by 

AN s( ) the determinant of the coefficient matrix of the system (7.230). After some 

algebraic manipulations, AN s( ) may be written as follows:

Let T sk ( ) and B sk ( ) be the determinants of the k k×  matrices formed at the top-

left corner and the bottom-right corner of the coefficient matrices, respectively. Set 

T s0 0( ) = =B ( )s 1. Thus, using Cramer’s rule, the solution of (7.230) is as follows:

 

To consider the transient behavior of a finite B-D process with N +1 states, namely, 

0,1,2, , N , with birth and death rates λn and μn, respectively, when the process is 

in state n, and initially start the analysis when the population size is i, we will use 

Mohanty et al. (1993).

Here, we apply the method offered by Mohanty et al. (1993), using differential– 

difference equations in an elementary way. We leave it as an exercise to show that 

Ψn( )s , 0,1,2, , N, satisfies the following set of differential–difference equations:

A sn N( ) = C ( )s

⎡ ⎤λ λ⎢ 0 0+ s μ1 ⎥
 ⎢ ⎥λ μ0 1 λ2 + +μ2 s λ1 2μ⎢ ⎥

⎢ s ⎥λ μ1 2 λ2 + +μ λ2μ⎢ 2 3 ⎥
= ⎢ λ μ2 3 λ

⎢ 3 + +μ3 s ⎥
⎥

⎢ ⎥
⎢ λ μN N− − + s λ μ
⎢

1 1 N N−1 ⎥
⎥

⎢ ⎥
⎢ λ μ⎣ N N−1 μN + s ⎥

⎦

 (7.231)
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⎛ i ⎞ T s( ) ( )
n j( )s ⎟ n NB −i sΨ = ⎜ μ , 0 ≤ ≤n i

⎜ ⎟⎝
∏
= + ⎠ A sN ( )

j n 1

  (7.232)
⎛ n−1 ⎞ T s( )B ( )s= ⎜∏λ i N−n

j ⎟ , 1i n+ ≤ ≤ N ,
⎜ ⎟⎝ ⎠ A sN ( )

j i=

where the first product may be interpreted as

n

 ∏μ j = 1, (7.233)

j k=

whenever n < k.

To be able to invert (7.232), we first express it as a partial fraction. To do so, we 

note that the right-hand side of (7.232) is a ratio of two polynomials with the degree 

of numerator less than those with the degree of the denominator. Note that s is a zero 

of the matrix C sN ( ) defined by (7.231) if and only if −s is an eigenvalue of the matrix 

EN ( )s  defined as:

Note 7.53

s = 0 is an eigenvalue of EN ( )s . But each off-diagonal element of EN ( )s  is nonzero. 

Hence, all the eigenvalues are distinct. Hence, s is the only zero of C sN ( ).

Note 7.54

Since all the minor elements of EN ( )s  are positive, by the S turn sequence prop-

erty, all other eigenvalues are positive. Therefore, all eigenvalues of the positive 

semi-definite matrix EN ( )s  are real, distinct, and nonnegative. Hence, A sN ( ) has 

⎡ ⎤
⎢ ⎥
⎢ λ0

⎥λ μ⎢ 0 1 ⎥
⎢ ⎥
⎢ λ μ0 1 λ μ1 1+ λ μ1 2 ⎥
⎢ ⎥
⎢ )λ μ λ μ+ λ μ ⎥  (7.234

2 2
EN = ⎢

1 2 2 3
⎥.

⎢ λ μ2 3 λ μ3 3+ ⎥
⎢ ⎥
⎢ ⎥
⎢ λ μN N− −1 1 λ μ ⎥
⎢ N N−1 ⎥
⎢ ⎥λ μ⎢ N N−1

μN ⎥
⎣ ⎦
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exactly N +1 distinct zeros, one of which is zero and the rest are the negatives of 

the eigenvalues of EN ( )s .

G s( )
 Ψ =n( )s n , n N= 0,1,2,..., ,  (7.235)

A sN ( )

and, in turn, it can be expressed in partial fraction as follows:

β
 Ψ =(s) n k,

n , n N= 0,1,2,..., ,  (2.236)
s z− k

where

or

where s js are the roots of G sn( ). Thus, inverting (7.238), we will have the distribution 

of the population as:

where βn k,  are given in (7.236).

For the stationary distribution, denoted by Pn, letting t → ∞, we obtain:

G (0)
 P Pn = =lim n n(t) β = n

, 0 N . (7.240)
t→∞ ∏( )−z j

j=1

So, now let us denote the zeros of A sN ( ) by zk , 0k N= ,1,2, ,  with z0 = 0. Letting 

the numerator of Ψn( )s , defined in (7.232), be G sn( ), (3.1.11) may be rewritten as:

G s( )βn k, = n
N , 0n N= ,1,2, , , (7.237)

z zk j

j j
∏ ( )−
= ≠0, k

∏
N n−

( )z sk j−

β = j=0
n k, N , 0n N= ,1,2, , , (2.238)

z z
j j
∏ ( )k j−
= ≠0, k

n n ∑
N

P t( ) = +β β zkt

,0 n,ke , n = 0,1,2, , N , (7.239)

k=1
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We leave it as an exercise to show that:

−
n ∏

n λ
 β k 1

,0 = ≤β0,0 , 1 n N≤ . (7.241)
kk 1

μ
=

Using the normalization equation, we will have:

⎡
 β0,0 1 .∑∏

1N n λ= +⎢ k 1
⎤

−

− ⎥  (7.242)
⎢ 1 k

μ⎣ kn= =1 ⎦⎥

7.7.3.2  Busy Period
To obtain the busy period distribution, we define an m-state busy period to begin 

with a birth to the system at an instant when the process is in state m to the very next 

time when the process returns to state m −1. We assume that m = 1 defines the busy 

period of the process. In this case, the system of differential–difference equations 

becomes:

P tm m′−1( ) = μ Pm( )t ,

P tm m′ ( ) = −( )λ μ+ m P tm ( ) + μm+ +1 1Pm ( )t ,
  

P tn′( ) = −( )λ μn + n P tn( ) + λn n− −1 1P ( )t + +μn n+ +1 1P ( )t , m 1 ≤ n ≤ N −1,

P tN N′ ( ) = −μ λP tN ( ) + ( )N− −1 1PN ( )t ,

 P tm m′ ( ) = −( )λ μ+ m P tm ( ) + μm+ +1 1Pm ( )t  (7.243)

 Pn′( )t = −( )λ μn + n PN ( )t + λn n− −1 1P t( ) + μn n+ +1 1P t( ), m +1 ≤ n ≤ N −1, 

 P t0
N N( ) = −μ λNP ( )t + ( )N− −1 1PN ( )t , 

with Pm (0) = 1.

Note 7.55

The first equation of the system (7.243) gives P tm′−1( ), which is the pdf of the 

 distribution of the length of a busy period.

To solve the system (7.243), we apply the Laplace transform on the last three 

 equations and obtain the following:

(λ μm m+ + s s)Ψm ( ) − μm+ +1 1Ψm ( )s = 1,

−λ λn n− −1 1Ψ +( )s s( )n + μn + Pn ( )s − μn n+ +1 1Ψ ( )s = 0, m +1 ≤ n ≤ N −1,  (7.244)

−λ μN N− −1 1Ψ +( )s s( )N + ΨN ( )s = 0.
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Let D sN r, ( ), r = −m 1,..., N ,, be the determinant of the r r×  matrix formed at the 

right-bottom corner of the coefficient matrix of the system of equations (7.236). 

Then, we have:

D s, (
 Ψ =( )s N m+1 )

m .   (7.245)
D sN m, ( )

N m− +1

 P t u tk
m m′−1( ) = =μ μPm ( )t m ∑ γ ke , (7.246)

k=1

 

where

where v js are the roots of D sN m, 1+ ( ).

Note 7.56

Relations (7.246) and (7.247) are similar to (7.239) and (7.238), respectively.

Theorem 7.5

The distribution of a busy period is hyperexponential.

Proof:
We leave it as an exercise to show that γks given by (7.247) are positive. Hence, 

γμ k
m > 0.

−μk

Now, Ψm( )s  given in (7.245) is the same as in (7.235), and thus, it has a partial 

fraction similar to (7.236). Hence,

N m− +1
D (0) 1

 Ψ ( ) = N m
m s ∑ , 1+

N m− +1 .  (7.248)

k=1 ∏ ( ) s u−
u uk j− k

j r= ≠0, k

As we argued earlier, we can show that the zeros of D sN m, ( ) are distinct and negative. 

Let these be u u1 2, , ,uN m− +1. Then, the density function of the length of a busy period 

at time t is given by:

∏
N m−

( )u vk j−

γ = j=1
k N m− +1 , 1k N= −,2, , m +1,  (7.247)

( )k j

j j
∏ u u−
= ≠1, k
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Using γ k , from (7.247), we will have:

N m

∑
− +1 γ N m

k ∑
− +1

DN m, 1+ (0) 1
 = N m− +1 .  (7.249)

k s ukk=1
−u

k
−

=1 ∏ ( )u uk j−
j j= ≠0, k

Thus, from (7.245), (7.247), and (7.249), we have the following:

N m

 ∑
− +1

γ k DN m, 1+ (0)= Ψm (0) = .  (7.250)

k 1
−uk DN m, (0)

=

We leave it as an exercise to show that

∏
N

 D uN r, (0) = m+k . (7.251)

k=γ

Substituting (7.251) in (7.252) completes the proof.

Hence, from Theorem 7.5, we have the mean and the variance of a busy period, 

respectively, as follows:

N m

∑
− +1

μ γm k
 

u 2  (7.252)

k=1
( )k

and

⎡ ∑ ∑
2N m− +1

μ γ
N m− +

m k ⎤ ⎡ 1
μ γ

 2 ⎢ m k
⎤

− ⎢
3

⎥ −
2
⎥ .  (7.253)

( )u u⎣⎢ kk= ⎦⎥ ( )⎣⎢ k
1 k=1 ⎥⎦

Example 7.31

In this example, we consider a numerical example for the finite B-D model we just 
discussed. So, we are looking for a numerical distribution of the number of tasks 
in the system.

Answer

To obtain a numerical distribution, programming language FORTRAN has been 
used. Here are the items calculated:

 i. The eigenvalues of Ek , (7.239), are computed.
 ii. The zeros of A sK ( ) (7.236), denoted by zk, are the negatives of the eigen-

values of Ek , except that z0 is set to zero.
 iii. From (7.241), having values of zk, we can compute G z( )k , and having 

∏ −j j= ≠0, k ( )z zk j , we can compute βn k, .
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iv. Alternatively, having zk and s j, we can compute ∏ −K
j j= ≠0, k ( )z zk j  and

∏ −K n−
j=0 ( )z zk j , and thus, βn k, . The probabilities are obtained once βn k,  are

in hand.
v. We will follow the same algorithm for the distribution of a busy period.

The computer method has been checked for various values of N. Some of the 
probabilities computed by the program along with the negative of the eigenvalues 
are given in Tables 7.9–7.12. From Tables 7.9, 7.10, and 7.12, we have chosen N = 7. 
Table 7.9 is given as a sample of the numerical values for larger K, that is, K = 39.

TABLE 7.9
Transient Probability Distribution of the Number of Tasks in the System with 
K = 39 and c = 3

k or n

0 1 2 12 25 38 39

λ = 4,μ = 1, p = 1,a = 0

zk 0.00000 −0.09446 −0.16227 −2.95394 −9.40526 −13.83590 −13.90509

pn(0) 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pn(1) 0.07951 0.19954 0.24663 0.00011 0.00000 0.00000 0.00000

pn(2) 0.02901 0.09606 0.15497 0.00534 0.00000 0.00000 0.00000

pn(66) 0.00001 0.00002 0.00004 0.00037 0.00546 0.18341 0.24438

pn(200) 0.00000 0.00000 0.00001 0.00011 0.00445 0.18750 0.25000

TABLE 7.10
Transient Probability Distribution of the Number of Tasks in the System with 
K = 7 and c = 3

k or n

0 1 2 3 4 5 6 7

λ = 1,μ = 4, p = 0.5,a = 5

zk 0.00000 −4.01223 −8.25403 −13.26090 −17.25717 −22.05825 −27.48892 −34.66849

pn(0) 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pn(1) 0.78241 0.19203 0.02357 0.00193 0.00006 0.00000 0.00000 0.00000

pn(2) 0.77892 0.19467 0.02433 0.00203 0.00006 0.00000 0.00000 0.00000

pn(3) 0.77886 0.19471 0.02434 0.00203 0.00006 0.00000 0.00000 0.00000

pn(4) 0.77886 0.19471 0.02434 0.00203 0.00006 0.00000 0.00000 0.00000

λ = 1,μ = 4, p = 9,a = 5

zk 0.00000 −4.00410 −8.10124 −12.59525 −17.13745 −22.19106 −28.16837 −36.40253

pn(0) 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pn(1) 0.78239 0.19202 0.02356 0.00193 0.00010 0.00000 0.00000 0.00000

(Continued)
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TABLE 7.10 (Continued)
Transient Probability Distribution of the Number of Tasks in the System with 
K = 7 and c = 3

k or n

0 1 2 3 4 5 6 7

pn(2) 0.77888 0.19466 0.02432 0.00203 0.00010 0.00000 0.00000 0.00000

pn(3) 0.77882 0.19470 0.02434 0.00203 0.00010 0.00000 0.00000 0.00000

pn(4) 0.77882 0.19470 0.02434 0.00203 0.00010 0.00000 0.00000 0.00000

λ = 10,μ = 9, p = 0.9,a = 8

zk 0.00000 −9.11231 −18.09908 −27.54689 −39.12215 −53.10727 −69.48002 −91.53230

pn(0) 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pn(1) 0.33001 0.36663 0.20366 0.07542 0.01939 0.00406 0.00072 0.00011

pn(2) 0.32997 0.36663 0.20368 0.07544 0.01940 0.00406 0.00072 0.00011

pn(3) 0.32997 0.36663 0.20368 0.07544 0.01940 0.00406 0.00072 0.00011

λ = 10,μ = 9, p = 0.5,a = 8

zk 0.00000 −9.85973 −20.81287 −28.86287 −39.74234 −51.04649 −61.74538 −79.93031

pn(0) 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pn(1) 0.33404 0.37113 0.20617 0.07636 0.01091 0.00127 0.00012 0.00001

pn(2) 0.33401 0.37113 0.20618 0.07636 0.01091 0.00127 0.00012 0.00001

pn(3) 0.33401 0.37113 0.20618 0.07636 0.01091 0.00127 0.00012 0.00001

λ = 2,μ = 2, p = 0.8,a = 7

zk 0.00000 −2.18470 −5.08370 −9.00690 −13.34179 −20.21162 −28.49880 −40.07249

pn(0) 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pn(1) 0.42176 0.36568 0.15945 0.04724 0.00544 0.00041 0.00002 0.00000

pn(2) 0.37739 0.37138 0.18298 0.06027 0.00737 0.00059 0.00003 0.00000

pn(3) 0.37251 0.37184 0.18561 0.06179 0.00760 0.00061 0.00004 0.00000

pn(4) 0.37197 0.37189 0.18591 0.06196 0.00763 0.00061 0.00004 0.00000

pn(5) 0.37190 0.37190 0.18594 0.06198 0.00763 0.00061 0.00004 0.00000

pn(6) 0.37190 0.37190 0.18595 0.06198 0.00763 0.00061 0.00004 0.00000

λ = 3,μ = 1, p = 0.9,a = 1

zk 0.00000 −0.93329 −3.55767 −7.05954 −14.57042 −26.84474 −40.29274 −51.74159

pn(0) 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pn(1) 0.14561 0.25681 0.18890 0.02268 0.02575 0.03599 0.07856 0.24570

pn(2) 0.05129 0.10499 0.08478 0.01097 0.01650 0.04157 0.14770 0.54220

pn(17) 0.00026 0.00079 0.00119 0.00119 0.00801 0.04325 0.19462 0.75069

pn(18) 0.00026 0.00079 0.00119 0.00119 0.00801 0.04325 0.19462 0.75069

pn(19) 0.00026 0.00079 0.00119 0.00119 0.00801 0.04325 0.19462 0.75069

λ = 4, μ = 1, p = 0.9, a = 1

zk 0.00000 −1.48510 −4.55386 −8.53413 −20.56462 −34.76467 −50.43036 −63.66725

pn (0) 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pn (1) 0.07458 0.16791 0.15176 0.01826 0.02106 0.03305 0.09875 0.43463

pn (2) 0.01554 0.03889 0.03751 0.00484 0.00805 0.02823 0.14417 0.72273

pn (11) 0.00004 0.00015 0.00030 0.00041 0.00365 0.02629 0.15777 0.81138

pn (12) 0.00004 0.00015 0.00030 0.00041 0.00365 0.02629 0.15777 0.81138
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For the reason given in remark 7.5, we have chosen p = 1 and α = 0 from Table 7.12. 

We have also checked our method for various values of the parameters involved, but 

we have reported examples with the numerical values of the parameters so that we 
λ λ λ

would have < >1, 1, and = 1 with various probabilities of balking, as well as 
c cμ μ cμ

various reneging rates. The time units in Tables 7.9–7.12 are cut off at an instance 

when the steady-state solutions are reached, that is, when convergences have been 

observed; in these tables, some rows appear to be identical; this is due to round-

off. Table 7.12 gives the execution times to obtain the steady-state solution for our 

method for different values of K.

TABLE 7.11
Transient Probability Distribution of the Number of Tasks in the System by 
Randomization Method with K = 7, c = 3, and m. Being Preasigned according 
to m f== +t + +4 5ft +

k 0 1 2 3 4 5 6 7 pk(t)

λ = 1, μ = 4, p = 1, a = 0

m = 5 pk (0) 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 … 0.00000 1.000000

m = 32 pk (1) 0.782350 0.191995 0.023555 0.001924 0.000156 0.000012 … 0.00000 0.999994

m = 51 pk (2) 0.778820 0.194639 0.024321 0.002026 0.000169 0.000014 … 0.00000 0.999991

m = 68 pk (3) 0.778750 0.194686 0.024336 0.002028 0.000169 0.000014 … 0.00000 0.999984

m = 85 pk (4) 0.778748 0.194687 0.024336 0.002028 0.000169 0.000014 … 0.00000 0.999913

m = 102 pk (5) 0.778750 0.194688 0.024336 0.002028 0.000169 0.000014 … 0.00000 0.999987

Note: For this table, we have fixed p0(0) = 1.

TABLE 7.12
Execution Time to Obtain the Steady-State 
Solution for the Present Method for Various 
Values of N with c = 3, λλ μ== =4, μ α= =1, p = =1, α = 0

N Execution Time

7 099 seconds 

10 2.075 seconds 

20 11.24 seconds 

50 3 minutes and 52 seconds 

75 21 minutes and 53 seconds 

100 53 minutes and 58 seconds 

125 2 hours and 37 minutes 
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Note 7.57

 1. Computing eigenvalues involves errors to some degree.

 2. For analysis of the errors and numerical examples, the reader is referred to 

Parlett (1980), Wilkinson (1965), and Murphy and O’Donohoe (1975).

 3. In our case, to reduce the error, since we know one of the eigenvalues is 

zero, we have set z0 and u0 to zero in the program.

 4. The steady-state probabilities obtained from the transient case, using both 

formulas (7.232) and (7.233) and the direct formula, match exactly.

 5. The IMSL performance index in all cases did not exceed 0.06, which 

according to IMSL (1987) is considered to be “excellent”.

Remarks

 1. The randomization method, together with an algorithm given in Grassmann 

(1977a,b), is available to obtain the transient solution, and it works well for 

non-stiff systems (i.e., systems in which the diagonal elements do not vary 

considerably in size), but it does not provide exact values of the probabilities. 

Given the error tolerance, the randomization algorithm determines where the 

computation should be truncated; that is, the value of m has to be preassigned 

according to the error tolerance. m is the truncation level in the formula

m

( ) ∑ n ( )n e− ft

 p tk k≈ π ft , (7.254)
n!

n=0

where f = max aii  in the coefficient matrix of the system of differential–

difference equations,

i j
k ∑

m

 πn = πn−1 a
p pand

,
i i j, i j, = , i j≠ .  (7.255)

f
i=0

For example, for K = 7, c = 3, λ μ= =1, 4, p = 1, and α = 0 using the random-

ization method, Table 7.12 provides the values of probabilities for different 

truncation levels. In Table 7.12, m is calculated according to Grassmann 

(1977b) as m = +ft 4 5ft + . By pushing K for larger values, an approxima-

tion for the infinite case can be obtained as well.

For specific values of parameters given in Table 7.12, the steady-state 

solution appears to be reached at m = 102. As expected, this shows that to 

obtain the steady-state solution using randomization, one cannot truncate 

arbitrarily and m has to be determined for the specific values of λ μ, , p, and 

α , while for our method, the steady-state distribution is exactly and easily 

obtained.

For K p= =7, λ μ1, = =4, 1, and α = 0, randomization took 39.21 sec-

onds to be executed to reach the steady state, while for our method, it took 

only 0.99 seconds.
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 2. Our approach in this section yields, with ease, the steady-state solution ana-

lytically, while the randomization method does so less easily.

 3. Computationally, the method presented in this section gives a reasonably 

good approximation for the steady state for infinite case; though, it may 

take longer execution time for larger K (see Table 7.5).

 5. For the so-called stiff system, Whitlock mentioned in 1973 that no finite f 
can be found, and thus, the randomization algorithm is not applicable, while 

our method works regardless. It is for this reason that we have chosen p = 1 

and α = 0 from Table 3.2.4. However, for some values of the parameters, 

the diagonal elements became large, making the eigenvalues large and thus 

causing overflow problem while running the program.

7.8  FUZZY QUEUES/QUASI-B-D

7.8.1  QUASI-B-D

Many important stochastic models involve multidimensional random walks. The 

two-dimensional case is of particular theoretical and practical importance, often 

occurring directly or through decomposition of higher-dimensional processes. 

One such particular case is a two-dimensional Markov processes, referred to as 

 quasi-birth-and-death (QBD) processes, whose transitions are skip-free to the left 

and the right (or up and down), with no restrictions upward or downward, in the two-

dimensional lattice. A lattice is a partially ordered set in which any two elements 

have a least upper bound and a greatest lower bound.

Definition 7.32

4. In case p = 1 and α = 0, the method presented in this section works for the 

finite case perfectly, even for a relatively large K (at least K = 125). For 

K =  50, it took only 232 seconds 4 minutes to obtain the steady-state 

solution. This is contrary to the claim by Grassmann (1990) that “Cramer’s 

rule is impractical for all but very small problems”. This, perhaps, is one 

of the small problems since we are dealing with a tridiagonal matrix. 

Grassmann (1990) also stated that for K = 50, the execution time “on a 

modern supercomputer requires 1044 years and this time exceeds the age of 

the universe by many orders of magnitude” – this, however, seems not to be 

our experience.

Consider a continuous-time Markov process {X t( ), t ∈ ++}, where ++ 

denotes the nonnegative real numbers, on the two-dimensional state space 

Ω = ∈{(i j, ) : i + , j ∈{1,2,...,S}}, where +  denotes the set of nonnegative inte-

gers. The first coordinate, i, is referred to as the level and the second coordinate j 
is referred to as the phase of state ( ,i j). The set l i( ) is called the level i. Each level 

may have a finite or infinite number of states, S. Then, the Markov process is called 

a QBD process.
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The one-step transitions from each state of the QBD process are restricted to 

states in the same level or in the two adjacent levels, and a homogeneous QBD pro-

cess if these transition rates are, additionally, level independent. The infinitesimal 

generator Q of the Markov process then takes the block tridiagonal form:

where A A0 2,  are nonnegative and A1, B have nonnegative off-diagonal elements and 

strictly negative diagonals. Each of these matrices has dimension S S× .

7.8.2  A FUZZY QUEUEING MODEL AS A QBD

The model we are to discuss in this subsection is based on the basic queue M/M/1. 

However, there are three new features that have been added to:

 i. Fuzzy arrival environment, denoted by FM,

 ii. Service fuzzy environment, denoted by FM, 

 iii. Server’s working vacation.

Thus, the model is denoted by FM/FM/1, and we refer to it as the Markovian 
single-server queue with working vacation in fuzzy environment. This paper 

is the work of Kannadasan and Sathiyamoorth (2018). When taking vacation, the 

server in this model continues to work if needed. With computer technology, this 

is quite common these days. The term “working vacation” is related to this case, 

and it is denoted by “WV”. There are cases that when a server is on vacation, 

the service rate may be lowered. Also, cases with multiple vacations have been 

studied. However, the model we are considering now is as mentioned. For such 

a model, we will find the busy period, working vacation period, stationary queue 

length, and waiting time. The numerical example that will follow shows some 

performance measures for the fuzzy queues. Applications of such a queue can be 

seen in transportation systems such as bus service, trains, and express elevators, 

where the service provided is a group that can be served simultaneously, that is, 

batch servicing in this process.

7.8.2.1  Crisp Model
We first analyze the model in the standard environment, that is, in the absence of 

the fussiness. We refer to it as the crisp model. Thus, we start considering a classic 

M/M/1 queue with arrival rate λ and service rate μb. As soon as the queue becomes 

empty, the server goes on a working vacation. The length of this vacation, denoted 

⎛ B A0
⎞

⎜ ⎟
⎜ A A2 1 AQ = 0 ⎟ ,  (7.256)
⎜ A A2 1 A0 ⎟
⎜ ⎟
⎝ ⎠
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by V, is a random variable with exponential pdf with parameter μv. When a vacation 

ends, there are two cases:

 i. There are no tasks in the queue, then another working vacation is taken or

 ii. There are tasks awaiting service, then service starts, and its rate switches to 

a new rate μb when the busy period begins.

Such a system is referred to as M/M/1/WV. For this mode, we assume that inter-

arrival times, service times, and working-vacation times are mutually independent. 

We also assume that the service discipline is FIFO.

Now, consider a classic M/M/1 queue with arrival rate λ and service rate μb. 

The server is a working vacation of random length at the instants when the queue 

becomes empty, and the vacation duration V follows an exponential distribution with 

parameter θ. During a working vacation, an arriving customer is served at a rate of 

μv. When a vacation ends, if still there are no customers in the queue, another work-

ing vacation will be taken; otherwise, the service rate switches service from μv  to 

μb, and a regular busy period starts. Similar to Servi and Finn (2002), this queue is 

referred to as an M/M/1/WV queue.

It is assumed that inter-arrival times, service times, and working vacation times 

are mutually independent. In addition, the service discipline is FIFO. Let Q tv ( ) be 

the number of tasks in the system at time t and let

{0, the system is in a working vacation period at time t
 J t( ) =  1, the system is in a start-up period at time t.

Then, {Qv(t), J(t)} is the QBD process with the state space,

7.8.2.2  The Model in Fuzzy Environment
Let us denote by λ β, ,ν , and θ  as the rates of the arrival, service, working vacation 

service, and working vacation time, respectively, as fuzzy numbers, defined by:

 λ μ= ∈{ }w w, (λ ) : w S ( )λ , 

β = ∈{ }w x, (μ ββ ) : x S ( ) , 

v y= ∈{ }, (μv y) : y S ( )v , 

θ μ= ∈{ }z z, (θ ) : z S ( )θ ,  

 

 

 

where S ( )λ , S ( )β , S v( ), and S ( )θ  are the universal sets of the arrival rate, service 

rate, working vacation a task is served at a rate, and working vacation time, respec-

tively. They define the function f ( ,w x, y, z) as the system performance measure 

related to the fuzzy queuing model under consideration, which depends on the fuzzy 

Ω = ≥{0,0} {k j, }: k 1, j = 0,1}. 
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membership function f λ β, ,ν ,θ . Applying extension pr

( )
inciple of Zadeh (1978), 

the membership function of the performance measure f λ β, ,ν ,θ  can be defined as:

μ f λ β, ,ν ,θ = sup λλ β(ω ),μ (x y),μν ( ),μθ (z) H = f (ω , x, y, z)

w S∈ ( )λ

 x S∈ ( )β . (7.257)

y S∈ ( )v

z S∈ ( )θ

( ) {

Note 7.58

If the α-cuts of f ( )λ β, ,ν ,θ  degenerate to some fixed value, then the system 

 performance will be a crisp number; otherwise, it will be a fuzzy number.

Thus, we have the following measures (we leave the details as exercises):

 i. The regular busy period:

μ λ 2 N
 P K0 0(1 ρ)

( )b v− −( )μ
= − = ( )( ) ,  (7.258)

μ λb v− −2μ N N+θ ×

where N = +λ θ + μ 2
v v− ( )λ θ+ + μ − 4λμb .

 ii. The working vacation period:

( )μ λb v− −(2μ N N) +θ(2μv − )
 P1 = .  (7.259)

μ μb v(2 − N)

 iii. The stationary queue length:

⎛ μ λb − ⎞ ⎛ μ λ− θ − ⎞ −1
( ) N ⎛ μ − N ⎞

E( )L = b ( )+ × v
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ μ λb − ⎠ ⎝ ( )μb bμ μ(2 v − N) ⎠ ⎝ 2μv ⎠

  

⎛ N v⎞ ⎛ ( )μ μ− ⎛ z(2μ − ) ⎞+ b ⎞ v N
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ . (7.260)
⎝ 2μv ⎠ ⎝ ( )μb ⎠ ⎝ 2μ − Nz ⎠

 iv. The waiting time:

1 2⎛ μ μ( − N) ⎞ ⎛ N ⎞
 E W( ) = + v b

⎜ ⎟ ⎜ ⎟ .  (7.261)
μ λb − ⎝ λ μ(2 v bμ − N) ⎠ ⎝ 2μv − N ⎠

( )

}
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We now obtain the membership function for the performance measures we found 

above. Hence, for the system, in terms of this membership function, we have:

μ μP0
(A w) = sup{ }λ β( ),μ (x),μν (y),μθ (z) A

w S∈ ( )λ

 x S∈ ( )β . (7.262)

y S∈ ( )v

z S∈ ( )θ

where

( )z w− −(2y M)
 A = , where M w= + z + y − (w + z + y)2 − 4wy . 

( )x w− −(2y M) + z[ ]M

μ μP1
(B w) = sup{ }λ β( ),μ (x),μν (y),μθ (z) B

w S∈ ( )λ

 x S∈ ( )β , (7.263)

y S∈ ( )v

z S∈ ( )θ

where

( )z w− −(2y M) + z(2y − M)
 B = . 

2xyM

μ μEL (C x) = sup{ }λ β(ω ),μ ( ),μν (y),μθ (z) C

w S∈ ( )λ

 x S∈ ( )β , (7.264)

y S∈ ( )v

z S∈ ( )θ
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where

⎛ x w− ⎞ ⎛ y w− ⎞ −1
zM M ⎛ M ⎞ ⎛ x y− ⎞ ⎛ u y(2 − M)⎞

 C = + × +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ .
⎝ − μ ⎠ ⎝ 2 2xy − M ⎠ y ⎝ 2y ⎠ ⎝ x ⎠ ⎜ ⎟  

x w y ⎝ 2y u− M ⎠

μ μE W D x( )( ) = sup{ }λ β(ω ),μ ( ),μν (y),μθ (z) D

w S∈ ( )λ

 x S∈ ( )β , (7.265)

y S∈ ( )v

z S∈ ( )θ

where

1 (⎛ 2y x( − y)) ⎞ ⎛ M ⎞
 D = +

( ) ⎜ ⎟ ⎜ ⎟ . 
x w− ⎝ w x(2 y − M)⎠ ⎝ 2y M− ⎠

Now, using the fuzzy analysis technique, we can find the membership of P P0 1, ,E(L), 

and E( )W  as a function of the parameter α . Hence, the α -cut approach can be used 

to develop the membership function of P P0 1, , E(L), and E( )W .

7.8.2.3  Performance Measures of Interest
The following performance measures are studied for the model under consideration 

in fuzzy environment.

 i.  The regular busy period:

Based on Zadeh’s extension principle, μP A0 ( ) is the supremum of mini-

mum over μ μλ (w x), β ( ),μv (y),μθ (z), A = [A] to satisfying μ αP A0 ( ) = , 

0 < ≥α 1. Thus, we have the following four cases:

 i. μ αλ ( )w x= ≥,μβ ( ) ≥α ,μv (y) ≥α ,μθ (z) ≥α .

 ii. μ αλ ( )w x≥ ≥,μβ ( ) = α ,μv (y) ≥α ,μθ (z) ≥α .

 iii. μλ ( )w x≥ ≥α μ, β ( ) ≥α μ, v (y) ≥α μ, θ (z) ≥α .

 iv. μλ β( )w x≥ ≥α μ ( ) ≥ α μv (y) ≥ α μθ (z) = α .

For Case (i), the lower and upper bounds of α -cuts of P0  can be obtained 

through the corresponding parametric nonlinear programs:

L U
 ⎡⎣P A⎤ 1 1

0 0⎦ = min
α αΩ

{ }[ ] and ⎡⎣P ⎤⎦ = max{ }[ ]A .
Ω
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Similarly, we can calculate the lower and upper bounds of the α -cuts of 

E( )L  for the Cases (ii), (iii), and (iv). By considering the cases, simultane-

ously the lower and upper bounds of the α -cuts of P0  can be written as:

⎡
L U

 ⎣P A0 0⎤⎦ = min{ }[ ] and ⎡⎣P ⎤⎦ = max{ }[ ]A , 
α αΩ Ω

such that

 w wL U≤ ≤ w , ,x L ≤ x ≤ wU yL
α α α α α ≤ y ≤ yU ,zL ≤ U

α α z ≤ zα .

( )L U
If both P0  and ( )P0  are invertible with respect to α , the left and right 

α α

⎡( )L −1 U −1

shape function, L A( ) = P = ⎤
⎣ 0

⎤  and R A( ) ⎡ P⎦ ( )0 , can be derived from 
α ⎣ α ⎦

which the membership function μP0
( )A  can be constructed as

⎧L A( ), (( )P L
0 00

≤ ≤ )U ,
⎪

0 A Pα= α=

⎪
 μ ( )A = ⎨1, ( )P AL ≤ ≤ (P )U

P0 0 0 11
,  α= α=

⎪
⎪R A( ), (( )P L

0 1
≤ ≤⎩ A P )U

α= 0 0α= .

Similarly, we will have the following:

 ii. The working vacation period:

⎧L A( ), (( )P L ≤ ≤ U

⎪
1 α 0

B P= 1 0)α= ,

⎪
 μP1( )B = ⎨1, ( )P BL

1 α=1
≤ ≤ (P U

1 1)α= ,  
⎪
⎪R A( ), (P L

1 ≤ ≤B P )U

⎩ ( )α=1 1 0α= .

 iii. The stationary queue length:

⎧L C( ), ( )E(L)
L

0
≤ ≤C ( (E L))U

⎪
α ,α = =0

⎪
 μE L ( )C = ⎨1, ( )E L( )

L L 11
≤ ≤C (E( ))U

α = , ( ) α =
⎪
⎪R C( ), ( )E(L)

L

1
≤ ≤C ( (E L))U .⎩ α = α =0

 iv. The waiting time:

⎧L D( ), ( )E(W )
L ≤ ≤D ( 00

E(W ))U ,
⎪ α= α=

⎪
 μE W( )( )D = ⎨1, ( )E W( )

L ≤ ≤D (E W( ))U
α=11

,  α=
⎪
⎪R D( ), ( )E(W )

L ≤ ≤D (E(W )) .U

⎩ α= α=01
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Example 7.32 Model’s Numerical Example

 i. The regular busy period:
Suppose the arrival rate λ , the service rate β , working vacation a task 

is served at a rate v, and working vacation time θ  are assumed to be trap-
ezoidal fuzzy numbers described, respectively, per hour, by:

 λ = =[ ]41,42,43,44 , β θ[51,52,53,54], v = [61,62,63,64], and = [71,72,73,74]. 

Then,

 λ(α λ) = ∈min {w S ( ),G(x) ≥ α}, max{w S∈ ( )λ ,G(x) ≥ α}, 
w S∈ ( )λ w S∈ ( )λ

where

⎧W w− ≤41, 41 4≤ 2,
⎪⎪

 G x( ) = ⎨1, 42 ≤ ≤w 43, 
⎪
⎩⎪44 − ≤w w, 43 ≤ 44.

That is,

λ( )α α= +[ ]41 ,44 −α , μ( )α = [51+α ,54 −α ].
  

v( )α α= +[ ]61 ,64 −α ,θ( )α α= [71+ ,74 −α ].

It is clear that when w w= =U U
α α, ,x x y = yU U

α ,z = zα , A attains its maximum 
value, and when w w= =L L

α α, ,x x y = yL
α ,z = zL

α , A attains its minimum 
value (Figure 7.16).

From the generated, for the given input value of λ, ,μ θ , and β ,

 i. For fixed values of w, x, and y, A decreases as z increases.
 ii. For fixed values of x, y, and s, A decreases as w increases.
 iii. For fixed values of y, x, and w, A decreases as x increases.
 iv. For fixed values of z, w, and z, A decreases as y increases.

FIGURE 7.16 Arrival rate, service rate versus the regular busy period.



576 Probability, Statistics, Stochastic Processes

The smallest value of P0 occurs when w takes its lower bound. 
That is, w = +41 α  and x, y, and z take their upper bounds given by 
x = −54 α α, 6y z= −4 , and 7= 4 −α , respectively. The maximum value 
of P0 occurs when w x= 44 −α α, = +51 , y = +61 α , and z = 71+α .

L
If both ⎡ P P⎤ ⎡⎣ ⎤

α
0 0and ⎦U

 are invertible with respect to α , then ⎣ ⎦α
−1L

the left shape function L A( ) = { }P0  and the right shape function 
α

1

( ) = { }−U
R A P0  can be obtained, from which the membership function 

α

μ P0
( )A  can be constructed as:

⎧L A( ), ,A1 2≤ ≤A A
⎪⎪

 μP0
( )A = ⎨1, A A2 3≤ ≤ A , (7.266)

⎪
⎩⎪R A( ), .A3 4≤ ≤A A

In the same way as before, we obtain the following:
 ii. The working vacation period:

⎧L B( ), ,B ≤ ≤B B
⎪

1 2

⎪
 μP1

( )B = ⎨1, B B2 3≤ ≤ B ,  (7.267)
⎪
⎩⎪R B( ), .B3 4≤ ≤B B

The values of B B1 2, , B3 , and B4 are obtained from (7.267) as follows:

⎧L B( ), 1.3203 ≤ ≤B 1.3773,
⎪⎪

 μP1
( )B = ⎨1, 1.3773 ≤ ≤B 1.4133,  

⎪
⎩⎪R B( ), 1.4133 ≤ ≤B 1.4628.

 iii. The stationary queue length:

⎧L C( ), C1 2≤ ≤C C ,
⎪⎪

 μEL ( )C = ⎨1, C C2 3≤ ≤ C ,  (7.268)
⎪
⎩⎪R C( ), .C3 4≤ ≤C C

The values of C C1 2, , C3 , andC4 are obtained from (7.269) as follows:

⎧L C( ), 0.1198 ≤ ≤C 0.1657,
⎪⎪

 μE L ( )C = ⎨1, 0.1657 ≤ ≤C 0.2054,( )  
⎪
⎩⎪R C( ), 0.2054 ≤ ≤C 0.2245.
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 iv. The waiting time:

⎧L D( ), ,D ≤ ≤D D
⎪

1 2

⎪
 μ ( )D = 1, 2 3E W ,( ) ⎨ D D≤ ≤ D  (7.269)

⎪
⎩⎪R D( ), .D3 4≤ ≤D D

The values of D D1 2, , D3 , and D4 are obtained from (7.269) as follows:

⎧L D( ), 0.0751 ≤ ≤D 0.0987,
⎪⎪

 μE W ( )D 1, 0.0987 D 0.1175,( ) = ⎨ ≤ ≤  
⎪
⎩⎪R D( ), 0.1175 ≤ ≤D 0.1412.

Fixing the vacation rate by a crisp value θ = 72.6 and v = 61.3, and taking arrival rate 
λ = [41,42,43,44] and service rate β = [1,52,53,4], both trapezoidal fuzzy numbers, 
the values of the regular busy period are generated and are plotted in Figure 7.17. 
From this figure, it can be observed that as λ  increases, the regular busy period 
increases for the fixed value of the service rate, whereas for fixed value of arrival 
rate, the regular busy period decreases as the service rate increases.

Similar conclusion can be obtained for the case θ = 72.6 and v = 62.3. Again for 
fixed values of taking λ = [41,42,43,44], and service rate β = [1,52,53,4], the graphs 
of the working vacation period are drawn in Figures 7.18 and 7.19, respectively. 
These figures show that as arrival rate increases, the working vacation period 
also increases, while the working vacation period decreases as the service rate 
increases in both cases.

It can also be seen from the data generated that the membership value of the 
regular busy period is 0.41 and the membership value of the working vacation 
period is 0.46 when the ranges of arrival rate, service rate, and the vacation rate 
lie in the intervals (41, 42.4), (52, 54.6), and (72.8, 73.4), respectively.

FIGURE 7.17 Arrival rate, service rate versus the working vacation period.
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EXERCISES

 7.1. Find similar relations to (7.212), (7.213), and (7.214) for a finite pure death 

process and consequently for a B-D process.

 7.3. Show the relation (7.241) is true.

FIGURE 7.19 Arrival rate, service rate versus the waiting time.

FIGURE 7.18 Arrival rate, service rate versus the stationary queue length.

 7.2. Show that Ψn(s N),0,1,2, , , satisfies the set of differential–difference 

equations (7.230).
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 7.4. Consider a B-D process where λi  and μi are given as:

⎧λ = =20, i 0,1,2,... ⎧λ = =10, i 0,1,2,...
b.⎨ i  μ⎩ i = =20, i 1,2,..., a.⎨ i

μi = =25, i 1,2,...,⎩

⎧λ = =6, i 0,1,2,... ⎧λ = =10, i 0,1,2,...
d.⎨ i

μ⎩ i = =40, i 1,2,..., c. ⎨ i

μ = =⎩ i 8, i 1,2,...,

 i. Find the stationary probability vector.

 ii. Find the stationary probability for state 3.

 7.5. Consider a B-D process with Poisson birth and exponential death distribu-

tions, where death occurs singly. Denote the birth and death rates as λ and 

μ, respectively, given as:

 { {λ = 10, λ = 30, {λ = 2,a. b c. .  μ = 11. μ = 50. μ = 8.

Let Ek  denote the state of the system; that is, population at any time is k. 

Find the

 i. Stationary probability vector,

 ii. Stationary probability that population is 2,

 iii. Stationary probability that there are no one in the system.

 7.6. A small town beauty salon has two stylists, Angel and Barbara, and an 

additional chair for one waiting customer. If a customer arrives when there 

are three customers in the salon, she leaves. From the past experience, the 

average time between arrivals of customers is 30 minutes. Angel completes 

serving a customer at a rate of 30 minutes, while Barbara does it in an hour. 

Angel has priority serving the customer since she is faster than Barbara, 

when there is only one customer in the shop. Further assume that inter-

arrival times and service times of customers are independent exponential 

random variables.

 a. Draw a state transition diagram with possible states and corresponding 

birth/death rates.

 b. After a long time pass, what is the probability that the shop is empty?

 c. What is the pmf of the number of customers in the shop?

 d. After a long time pass, what is the probability that an arriving customer 

is turned away?

 e. What is the distribution of the number of customers arriving in the first 

3 hours?

 f. What is the probability that no customer arrives in a 3-hour time 

interval?

 g. What is the mean number of arrivals in 3 hours?

 h. What is the distribution of the time until the fifth customer arrives?

 i. What is the probability that the time until the fifth customer arrives is 

<2.5 hours?
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 7.7. Consider a walker who walks on a real line starting at 0 with moving one 

step forward with probability p and backward with probability q, p q+ = 1. 

Let Xn describe the position of the walker after n steps.

 a. What is the probability that walker is at the point 0 on the line after two 

steps?

 b. What is the probability that walker is at the point −1 on the line after 

three steps?

 c. What is the probability that walker is at the point 3 on the line after 

three steps?

 d. Suppose the walker is at point 4 after 10 steps, does the probability that 

it will be at point 8 after 16 steps (6 more steps) depend on how it moves 

to point 4 within the first 10 steps?

 e. Are X10 − X4 and X16 − X12 independent?

 f. Are X10 − X4 and X12 − X8 independent?

 7.8. Refer to Definition 7.4. Answer the following questions:

 i. What is the probability that the sequence {S nn, ≥ 1} contains a term for 

which a threshold at τ is crossed?

 ii. What is the distribution of the smallest n for which Sn, ≥ τ ?

 7.9. Derive the mean and variance of the population size for the finite pure birth 

process.

 7.10. Show that Ψn( )s  satisfies the system (7.222).

 7.11. Prove (7.233).

 7.12. Show that γ ks given by (7.239) are positive.

 7.13. Prove (7.243).

 7.14. Prove (7.250).

 7.15. Prove (7.251).

 7.16. Prove (7.252).

 7.17. Prove (7.253).
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See Tables A.1–A.6.

TABLE A.1
Binomial Probability Distribution
Following are the probabilities for x successes in n independent trials, with the probability of success p

p

n x .010 .050 .100 .150 .200 .250 .300 .350 .400 .450 .500 .550 .600 .650 .700 .750 .800 .850 .900 .950

5 0 .951 .774 .590 .444 .328 .237 .168 .116 .078 .050 .031 .019 .010 .005 .002 .001 .000 .000 .000 .000

1 .048 .204 .328 .392 .410 .396 .360 .312 .259 .206 .156 .113 .077 .049 .028 .015 .006 .002 .000 .000

2 .001 .021 .073 .138 .205 .264 .309 .336 .346 .337 .312 .276 .230 .181 .132 .088 .051 .024 .008 .001

3 .000 .001 .008 .024 .051 .088 .132 .181 .230 .276 .312 .337 .346 .336 .309 .264 .205 .138 .073 .021

4 .000 .000 .000 .002 .006 .015 .028 .049 .077 .113 .156 .206 .259 .312 .360 .396 .410 .392 .328 .204

5 .000 .000 .000 .000 .000 .001 .002 .005 .010 .019 .031 .050 .078 .116 .168 .237 .328 .444 .590 .774

10 0 .904 .599 .349 .197 .107 .056 .028 .014 .006 .003 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

1 .091 .315 .387 .347 .268 .188 .121 .072 .040 .021 .010 .004 .002 .000 .000 .000 .000 .000 .000 .000

2 .004 .075 .194 .276 .302 .282 .233 .176 .121 .076 .044 .023 .011 .004 .001 .000 .000 .000 .000 .000

3 .000 .010 .057 .130 .201 .250 .267 .252 .215 .166 .117 .075 .042 .021 .009 .003 .001 .000 .000 .000

4 .000 .001 .011 .040 .088 .146 .200 .238 .251 .238 .205 .160 .111 .069 .037 .016 .006 .001 .000 .000

5 .000 .000 .001 .008 .026 .058 .103 .154 .201 .234 .246 .234 .201 .154 .103 .058 .026 .008 .001 .000

6 .000 .000 .000 .001 .006 .016 .037 .069 .111 .160 .205 .238 .251 .238 .200 .146 .088 .040 .011 .001

7 .000 .000 .000 .000 .001 .003 .009 .021 .042 .075 .117 .166 .215 .252 .267 .250 .201 .130 .057 .010

8 .000 .000 .000 .000 .000 .000 .001 .004 .011 .023 .044 .076 .121 .176 .233 .282 .302 .276 .194 .070

9 .000 .000 .000 .000 .000 .000 .000 .000 .002 .004 .010 .021 .040 .072 .121 .188 .268 .347 .387 .315

10 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .003 .006 .014 .028 .056 .107 .197 .349 .599

15 0 .860 .463 .206 .087 .035 .013 .005 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

1 .130 .366 .343 .231 .132 .067 .031 .013 .005 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

2 .009 .135 .267 .286 .231 .156 .092 .048 .022 .009 .003 .001 .000 .000 .000 .000 .000 .000 .000 .000

3 .000 .031 .129 .218 .250 .225 .170 .111 .063 .032 .014 .005 .002 .000 .000 .000 .000 .000 .000 .000

4 .000 .005 .043 .116 .188 .225 .219 .179 .127 .078 .042 .019 .007 .002 .001 .000 .000 .000 .000 .000

5 .000 .001 .010 .045 .103 .165 .206 .212 .186 .140 .092 .051 .024 .010 .003 .001 .000 .000 .000 .000

6 .000 .000 .002 .013 .043 .092 .147 .191 .207 .191 .153 .105 .061 .030 .012 .003 .001 .000 .000 .000

7 .000 .000 .000 .003 .014 .039 .081 .132 .177 .201 .196 .165 .118 .071 .035 .013 .003 .001 .000 .000

8 .000 .000 .000 .001 .003 .013 .035 .071 .118 .165 .196 .201 .177 .132 .081 .039 .014 .003 .000 .000

9 .000 .000 .000 .000 .001 .003 .012 .030 .061 .105 .153 .191 .207 .191 .147 .092 .043 .013 .002 .000

10 .000 .000 .000 .000 .000 .001 .003 .010 .024 .051 .092 .140 .186 .212 .206 .165 .103 .045 .010 .001

11 .000 .000 .000 .000 .000 .000 .001 .002 .007 .019 .042 .078 .127 .179 .219 .225 .188 .116 .043 .005

12 .000 .000 .000 .000 .000 .000 .000 .000 .002 .005 .014 .032 .063 .111 .170 .225 .250 .218 .129 .031

13 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .003 .009 .022 .048 .092 .156 .231 .286 .267 .135

14 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .005 .013 .031 .067 .132 .231 .343 .366

15 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .005 .013 .035 .087 .206 .463

20 0 .818 .358 .122 .039 .012 .003 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

1 .165 .377 .270 .137 .058 .021 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

2 .016 .189 .285 .229 .137 .067 .028 .010 .003 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

3 .001 .060 .190 .243 .205 .134 .072 .032 .012 .004 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

(Continued)
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TABLE A.2
Poisson Probability Distribution
Following are the cumulative probabilities for x events in a unit time with the rate of events μ

μ

x .01 .01 .02 .03 .04 .05 .06 .07 .08 .09

0

1

2

3

.995

1.0000

1.0000

1.0000

.99

1.0000

1.0000

1.0000

.9802

.9998

1.0000

1.0000

.9704

.9996

1.0000

1.0000

.9608

.9992

1.0000

1.0000

.9512

.9988

1.0000

1.0000

.9418

.9983

1.0000

1.0000

.9324

.9977

.9999

1.0000

.9231

.997

.9999

1.0000

.9139

.9962

.9999

1.0000

μ

x .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679

1 .9953 .9825 .9631 .9384 .9098 .8781 .8442 .8088 .7725 .7358

2 .9998 .9989 .9964 .9921 .9856 .9769 .9659 .9526 .9371 .9197

3 1.0000 .9999 .9997 .9992 .9982 .9966 .9942 .9909 .9865 .981

4 1.0000 1.0000 1.0000 .9999 .9998 .9996 .9992 .9986 .9977 .9963

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 .9994

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

TABLE A.1 (Continued)
Binomial Probability Distribution
Following are the probabilities for x successes in n independent trials, with the probability of success p

n x .010 .050 .100 .150 .200 .250 .300 .350 .400 .450 .500 .550 .600 .650 .700 .750 .800 .850 .900 .950

4 .000 .013 .090 .182 .218 .190 .130 .074 .035 .014 .005 .001 .000 .000 .000 .000 .000 .000 .000 .000

5 .000 .002 .032 .103 .175 .202 .179 .127 .075 .036 .015 .005 .001 .000 .000 .000 .000 .000 .000 .000

6 .000 .000 .009 .045 .109 .169 .192 .171 .124 .075 .037 .015 .005 .001 .000 .000 .000 .000 .000 .000

7 .000 .000 .002 .016 .055 .112 .164 .184 .166 .122 .074 .037 .015 .005 .001 .000 .000 .000 .000 .000

8 .000 .000 .000 .005 .022 .061 .114 .161 .180 .162 .120 .073 .035 .014 .004 .001 .000 .000 .000 .000

9 .000 .000 .000 .001 .007 .027 .065 .116 .160 .177 .160 .119 .071 .034 .012 .003 .000 .000 .000 .000

10 .000 .000 .000 .000 .002 .010 .031 .069 .117 .159 .176 .159 .117 .069 .031 .010 .002 .000 .000 .000

11 .000 .000 .000 .000 .000 .003 .012 .034 .071 .119 .160 .177 .160 .116 .065 .027 .007 .001 .000 .000

12 .000 .000 .000 .000 .000 .001 .004 .014 .035 .073 .120 .162 .180 .161 .114 .061 .022 .005 .000 .000

13 .000 .000 .000 .000 .000 .000 .001 .005 .015 .037 .074 .122 .166 .184 .164 .112 .055 .016 .002 .000

14 .000 .000 .000 .000 .000 .000 .000 .001 .005 .015 .037 .075 .124 .171 .192 .169 .109 .045 .009 .000

15 .000 .000 .000 .000 .000 .000 .000 .000 .001 .005 .015 .036 .075 .127 .179 .202 .175 .103 .032 .002

16 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .005 .014 .035 .074 .130 .190 .218 .182 .090 .013

17 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .004 .012 .032 .072 .134 .205 .243 .190 .060

18 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .003 .010 .028 .067 .137 .229 .285 .189

19 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .007 .021 .058 .137 .270 .377

20 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .003 .012 .039 .122 .358

p
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TABLE A.6B
Critical Values for Sign Test

One-Tailed

α = 0.005 α = 0.01 α = 0.025 α = 0.05 α = 0.010

Two-Tailed

n α = 0.005 α = 0.005 α = 0.005 α = 0.005 α = 0.020

1 – – – – –

2 – – – – –

3 – – – – –

4 – – – – 0

5 – – – 0 0

6 – – 0 0 0

7 – 0 0 0 1

8 0 0 0 1 1

9 0 0 1 1 2

10 0 0 1 1 2

11 0 1 1 2 2

12 1 1 2 2 3

13 1 1 2 3 3

14 1 2 2 3 4

15 2 2 3 3 4

16 2 2 3 4 4

17 2 3 4 4 5

18 3 3 4 5 5

19 3 4 4 5 6

20 3 4 5 5 6

21 4 4 5 6 7

22 4 5 5 6 7

23 4 5 6 7 7

24 5 5 6 7 8

25 5 6 7 7 8
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TABLE A.6D
Critical Values for Wilcoxon Signed-Rank Test

Two-Tailed One-Tailed

n α = 0.05 α = 0.01 α = 0.05 α = 0.01

5 – – 0

6 0 – 2

7 2 – 3

8 3 0 5

9 5 1 8

10 8 3 10 5

11 10 5 13 7

12 13 7 17 9

13 17 9 21 12

14 21 12 25 15

15 25 15 30 19

16 29 19 35 23

17 34 23 41 27

18 40 27 47 32

19 46 32 53 37

20 52 37 60 43

21 58 42 67 49

22 65 48 75 55

23 73 54 83 62

24 81 61 91 69

25 89 68 100 76

26 98 75 110 84

27 107 83 119 92

28 116 91 130 101

29 126 100 140 110

30 137 109 151 120

–

–

0

1

3
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