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Preface

This book grows out of a module on the foundations of quantum

mechanics given by the author to the final-year students on

the degree of Master of Physics (Honours) in St Andrews and

taken mainly by students in theoretical physics or in physics, in

combination with or without mathematics. Already having attended

previous modules on quantum mechanics, from introductory to

advanced ones which contain many methods and applications,

they have good knowledge of the subject. However, many of them

still do not feel confident and comfortable with the subject. The

mathematical formalism of quantum theory in terms of vectors

and operators in infinite-dimensional complex vector spaces is very

abstract. The definitions of many mathematical quantities used do

not seem to have an intuitive meaning. This makes it difficult to

appreciate and feel confident about the mathematical formalism,

hampering the understanding of quantummechanics.

My approach is to provide intuition for the mathematics involved

by introducing themathematics in its simplest and familiar form and

then making the generalisation to obtain the abstract mathematics

required for quantum theory. Feeling comfortable with the mathe-

matics used would help the appreciation and understanding of the

formalism and concepts of quantummechanics.

This book is divided into four parts. Part I is a brief review of

the general properties of classical and quantum systems. A general

discussion of probability theory is also included which aims to

help in understanding the probability theories relevant to quantum

mechanics.

Part II is a detailed study of the mathematics for quantum

mechanics. The study starts with a review of the familiar vectors

and their operations in three dimensions. A geometric approach
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is adopted, since three-dimensional vectors and operations on the

vectors can be visualised geometrically and graphically. The aim is

to provide intuition for vectors, operators, and their properties. An

important example is the introduction of projection operators to

describe the operation to project vectors onto any given direction.

The fact that a projection operation in three dimensions can

be visualised geometrically and graphically helps us to develop

an understanding of projection operators in higher dimensions.

Moreover, this will help the appreciation of other operators such as

selfadjoint operators, which can be built up in terms of projection

operators. Matrices are also discussed which can provide an explicit

and numerical representation of abstract quantities.

The relevance of vectors and operators to quantum mechanics

is due to the fact that certain operators together with vectors

can be used to formulate probability theories—that is, vectors

and operators can generate probability distributions. This can be

demonstrated clearly with vectors and operators in three dimen-

sions. In other words, vectors and operators in three dimensions

can provide the framework to formulate a probability theory

in a transparent and simple manner. Once we understand how

probability theories can be formulated in terms of vectors and

operators in three dimensions, we can extend the formalism to

complex vectors in higher or lower dimensions.

Various quantities and their properties introduced in the three-

dimensional vector space are re-introduced in finite-dimensional

complex vectors spaces, and then again in infinite-dimensional

Hilbert spaces. This apparent repetition serves as a learning process

to help the students to gradually gain good understanding and

hence feel confident in their applications. Readers familiar with

some of mathematical preliminaries can skip this discussion. Some

detailed mathematical discussion can also be omitted during a first

reading.

The mathematics is presented with a certain degree of rigour

to demonstrate the beauty quantum formalism. To avoid excessive

technical discussions, many of the theorems and results are

presentedwithout proof. Many of the proofs are incorporatedwithin

questions in the exercises and problems section at the end of each

chapter. Readers can check these questions and their solutions in
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the Solutions Manual. References are provided for those who wish

to pursue the matter further.

Part III presents quantummechanics in a series of postulates. Six

groups of postulates are presented to describe orthodox quantum

systems. Each statement of a postulate is supplemented with

a detailed discussion. To make them easier to understand, the

postulates for discrete observables are presented before those for

continuous observables.

Non-orthodox quantum systems, i.e., systems with superselec-

tion rules, and some conceptual issues such as quantum paradoxes

and measurement are also discussed.

The last part of the book presents several illustrative applica-

tions. These include the harmonic oscillator, charged particles in

external magnetic fields and the Aharonov–Bohm effect.

For easy reference, definitions, theorems, examples, comments,

properties and results are labelled with section numbers. For

example, Definition 6.4.2(2) is the second definition in section 6.4.2,

E7.7.3(1) is the first example in section 7.7.3, and P9.2.2(3) is the

third property in section 9.2.2. Exercises and problems given at the

end of each chapter contain questions designed to help understand

the matter presented in that chapter—for example, questions on

proving some of the theorems and results. These questions are

labelled by chapter number, e.g., Q12(1) is the first question in

Exercises and Problems for Chapter 12.

Various symbols and notations are adopted to distinguish

different quantities explicitly and to avoid misrepresentation. For

example, a state is denoted by φs , a vector is denoted by �φ, while
a function defining the vector �φ is denoted by φ(x), and operators
with the same operator expression, e.g., differential operators

having the expression−i�d/dx, but acting on different domains, are
distinguished by subscripts and other symbols. There are extensive

footnotes which serve to clarify things and show cross-references.

There is a list of symbols under the Notation section preceding the

bibliography and the index at the end of the book. Both Notation

and Index are listed under a system of classification which aims

to make it easier to find the references in the book. For example,

selfadjoint operators and spectral theorem are listed under operators
on different vectors spaces. If the definition of selfadjoint operators
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in a Hilbert space is required, then one should look at selfadjoint
operators under operators in a Hilbert space. The term probability is
listed under different titles such as probability (basics, discrete) and
probability (quantum).

This book is self-contained both mathematically and physically.

Hopefully, this would make it accessible and useful to a wider

readership, including astronomers, mathematicians and philoso-

phers of science who are interested in the foundations of quantum

mechanics.

A Solutions Manual which presents the answers to all the

questions given at the end of each chapter of this book is available

and published separately by Jenny Stanford Publishing.

I am indebted to all the students, both undergraduates and post-

graduates, who attended my Foundations of Quantum Mechanics

module for their feedback on my lectures and lecture notes, which

has led to numerous improvements, much of which are included in

the present books.

K. Kong Wan
St Andrews
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Chapter 1

Structure of Physical Theories

Before going into any specific theory, it would be useful to have

an idea of the general structure of physical theories. This would

tell us how to proceed to formulate a theory generally. A physical

theory aims to give a description of the properties and behaviour of

a physical system, both qualitatively and quantitatively. Qualitatively

a theory should explain the behaviour of a given physical system in

terms of some fundamental properties of the system. Quantitatively

a theory employs mathematical models to explain and quantify

the properties and behaviour of a physical system. To achieve

this, a theory requires abstraction and idealisation in order to

be able to describe physical quantities in precise mathematical

terms. First, we must find a mathematical framework with suitable

mathematical constructs to describe various idealised physical

quantities. We must be able to set up mathematical equations

to describe the relationships between all the physical quantities.

A good knowledge in mathematics is essential to a proper

understanding and formulation of a physical theory. The study of the

mathematical aspects of theoretical physics is often referred to as

mathematical physics. Apart from the requirement of mathematical

consistency, a theory is judged by how well its predictions agree

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com
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4 Structure of Physical Theories

with empirical observations, especially by its ability to make new

and experimentally verifiable predictions.

A physical system possesses many physical quantities which

reflect the properties of the system. A physical quantity is a property

of the system which can be physically observed and measured

to yield numerical values. To emphasise their measurability, these

quantities are called observables. A sufficiently large collection of
these measured values at any given time characterises the system at

that time. Such a characterisation defines a state of the system, i.e.,1

A characterisation of the system which embodies the values
of a sufficiently large set of observables is called a state of the
system.

The relationship between states and observables can be compli-

cated, depending on whether we are dealing with classical systems

or quantum systems. While all observables of a classical system can

be simultaneously measured the same is not true for a quantum
system. It follows that for classical systems a state is associated

with the values of all observables of the system while a state is not
associated with the values of all observables of a quantum system.2

A physical theory should contain the following four basic

components:

1. Basic mathematical framework This comprises:

(1) A set of elements endowed with some specific mathematical

structure and properties. In mathematics such a set is generally

known as a space.3

(2) Rules for manipulating the elements of the space.

2. Description of states

(1) States are described by elements of the space in the chosen

mathematical framework. For this reason, the space is called the

state space of the system.

1Bub p. 13. Isham pp. 56–59.
2Isham p. 58.
3Not to be confused with the physical spacewe live in.
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(2) Every state corresponds to an element of the state space and

different states would correspond to different elements of the

state space. The converse is not necessarily true, i.e., the state

space may have more elements needed to describe all the states

of the system. For example, the states of a quantum system may

not correspond one-to-one to all the elements of its state space.

It is then necessary to explain clearly the relationship between

the states and the elements of the state space.

3. Description of observables

(1) Observables are to be described by quantities defined on the

state space. The description should yield all possible values of

observables.

(2) The relationship between observables and states should be

explicitly stated. The following two cases are of particular

interest:

(a) For a deterministic theory like classical mechanics, a state

should determine the values of all observables.

(b) For a probabilistic theory like quantum mechanics, a state

should determine the probability distribution of the values

of all observables.

4. Description of time evolution (dynamics)

We have adopted the common approach to establish the mathemati-

cal framework to describe the states of the system first. Observables

are then introduced in terms of mathematical quantities defined

on the set of states. It is possible to start with a mathematical

framework to describe observables first with states defined through

their relationship with observables. The quantum logic formulation
of quantummechanics is an example of such an approach.4

4Mackey pp. 56–81, Jauch pp. 67–110. Beltrametti and Gassinelli Chapter 10.
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Chapter 2

Classical Systems

From our daily contact with the physical world, we gradually acquire

a strong intuition as to how objects around us would behave. These

are objects which we can examine directly through our senses and

some simple instruments are known as classical systems. Typically
a classical system consists of a number of particles. A huge number

of these particles can group together to form a large object which

is often idealised as being continuous. In other words, classical

systems are idealised as either discrete or continuous. We shall
discuss a number of guiding principles of the behaviour of classical

systems in this chapter.

2.1 Discrete Systems

A system may consist of a single particle. More complex systems

can be built up from a finite number of particles. The studies of

such systems, known as discrete systems, lead to a large body of
theories known as classical mechanics. Discrete systems possess a
number of characteristic features which are set out in the following

subsections.
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8 Classical Systems

2.1.1 Intuition and Description

The properties of a discrete classical system are intuitivelymeaning-

ful and their existence is taken for granted.1 These properties can be

given a mathematical description. Consider the motion of a particle

in the three-dimensional physical spacewe live in. A particle of mass
m is idealised as a point object. The particle’s position is determined
by its position vector �x which is a three-component quantity with
one component along each of the three coordinate axes in a chosen

Cartesian coordinate system.2 These components are denoted by x , y,
z or more conveniently by x1, x2, x3. Symbolically we can express �x
by a number of different expressions, e.g.,

�x = (x , y, z) = (x1, x2, x3) = {x j , j = 1, 2, 3}. (2.1)

Observables are physical properties which can be quantified by

numerical values obtainable to arbitrary accuracy by physical

measurement. For example, consider the concept of instantaneous

velocity �v . We should be able to give it a precise mathematical

definition, i.e., �v := d �x/dt, and we should be able to measure

its value accurately.3 The same goes with the notion of energy,

e.g., the kinetic energy is defined by K := 1
2
m�v 2. Observables are

simultaneously measurable to arbitrary accuracy and there is no

general restrictions of the values of observables, e.g., there is no

restriction of the energy of a system to a discrete set of values. It

follows that at any instant of time all the observables of a given

system would have a definite value and these values serve to

characterise the system. Such a characterisation of the system by the

values of all its observables constitutes a state of the system. In other
words, a state determines the values of all observables and different

states mean different sets of observable values.

1See Isham pp. 53–56 for a brief conceptual discussion.
2Wan p. 14. The system is also known as a rectangular or rectangular Cartesian

coordinate system. Cartesian is a term to indicate something relating to the French

philosopher and mathematician Descartes (1596–1650). The position vector will

be formally introduced in §6.2.2. The coordinate variables are called Cartesian

coordinates.
3The notation := is generally used to signify a definition, i.e., �v is defined by d �x/dt.
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2.1.2 Determinism

There are several aspects of determinism:

(1) For many systems the values of all observables can be

determined by the values of a small number of observables.

This means that a state can be determined by the values of a

small number of observables. For example, the state of a single

particle can be determined by the values of its position and

velocity. The resulting state then determines the values of all

other observables, e.g., the values of its potential and kinetic

energy.

(2) The dynamics must be such that the future behaviour of the

system is uniquely determined by the initial behaviour of

the system. Since the behaviour of a system is determined by

the values of its observables this means that

(a) The state at a later time is uniquely determined by the state

at the initial time.

(b) The future values of all observables are uniquely deter-

mined by their initial values.

(3) Classical statistical mechanics which is based on probability

theory does not contradict the above determinism. In classical

physics the need for probability arises due to our ignorance

of all the initial conditions. Probabilistic behaviour appears

if we have insufficient initial information to determine the

behaviour of the system. This happens when dealing with a

system composed of a large number of particles; it is practically

impossible to ascertain all initial conditions.

2.1.3 Unambiguous Objective Reality

There is an underling objective reality and our task is to describe

and to reveal such reality. For example, a particle moving along

would have an objective kinetic energy value and this value can

be found by measurement. A measurement only serves to reveal

the value already possessed by the system. In other words, a

measurement produces a value which the system possesses before

themeasurement. The disturbance of anymeasurement on a system
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can be made arbitrarily small so that the measured value would

also be the value after the measurement. We can also perform any

number of simultaneous measurements of different observables

without significantly disturbing the system.

2.1.4 Structure of Classical Mechanics

For simplicity we shall examine a classical particle of mass m in

three-dimensional motion in Newtonian theory.4 The basic theory

consists of the following components:

1. Basic mathematical framework Newtonian mechanics is based

on the mathematics of vectors and vector calculus in three

dimensions.

2. Description of states

(1) A state at any given time can be described by two three-

dimensional vectors, one for the particle’s position �x and one
for the particle’s velocity �v .

(2) Alternatively we can form a six-dimensional space with each

element of the space specified by six components, first three

for position and the remaining three for velocity. A state at any

given time can then be described by a single element in this

six-dimensional space which constitutes the state space of the
system, i.e., a single element of the state space specifies a state

of the system and vice versa.5

3. Description of observables We can divide classical observables

into kinematic ones and dynamical ones.

(1) Kinematic observables Kinematic observables are defined by

real-valued functions of the state and they are not explicitly

dependent on external factors and interaction. The relations

between states and observables are explicitly given by the

4Newton (1642–1727) was a British physicist and mathematician.
5Replacing velocity by momentum leads to the concept of phase space. A phase space
has a complicated mathematical structure, known as a Hamiltonian or symplectic
structure, although it is common for a phase space to be considered as a vector space

(seeWan pp. 63–64. Isham p. 60).
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functions which define the observables. The values of these

observables are the values of the corresponding functions. Once

a state is given, the values of all kinematic observables are fixed.

The position �x and velocity �v are kinematic observables. The
linear momentum �p defined by

�p := m�v (2.2)

is another example. It is also referred to as the kinematic
momentum, when we want to emphasise the kinematic nature
of the quantity.6 The kinetic energy K is a kinematic observable.
Another important example is the angular momentum �Ldefined
by the vector product of �x and �p, i.e.,

�L := �x × �p. (2.3)

To emphasise the kinematic nature of this quantity we also call

it the kinematic angular momentum. The components of �Lalong
the x , y and z directions are

Lx = ypz − zpy , (2.4)

Ly = zpx − xpz, (2.5)

Lz = xpy − ypx . (2.6)

These components can be conveniently worked out in terms of

the following determinant:7

�L=
∣

∣

∣

∣

∣

∣

�i �j �k
x y z
px py pz

∣

∣

∣

∣

∣

∣

. (2.7)

(2) Dynamical observables These are observables involving exter-

nal interactions, e.g., they are dependent on external factors

such as external forces. An obvious example is the total energy

of the particle which contains a potential energy term. External

factors such as potential energy are generally dependent

on the position of the particle. They can also depend on

the particle’s velocity.8 As an example consider a charged

6Feynman, Leighton and Sands p. 21–5.
7See Eq. (7.39) for determinants of matrices.
8An example is the magnetic potential energy of a charged particle in an external

magnetic field as shown in Eq. (37.35) in §37.3.1 in Chapter 37.
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particle in an external magnetic field. In addition to its linear

momentum the particle has another momentum, known as its

canonical momentum, which contains the external magnetic

vector potential. Details are discussed in §27.1.1 and §27.1.2.9
This is a dynamical observable, and hence it is also known as

the dynamical momentum.10 The particle also has a canonical
angular momentum.11 Once the external factors are known the
values of these observables are determined by the state.

Classical observables are easily defined, but it is a real challenge to

relate classical observables to quantum ones. As will be discussed

in detail in Chapters 27 and 37, the distinction between kinematic

momentum and canonical momentum is of crucial importance in

the quantum theory of a charged particle in a magnetic field, since

it is the canonical momentum, not the linear momentum, which is

directly quantised.

4. Dynamics

(1) Evolution of the state This is given by Newton’s laws.

(2) Evolution of observables There is no need to set up a separate

equation of motion for observables since the time dependence

of the state automatically leads to the time dependence of

observables which are just functions of the state.12

2.2 Continuous Systems

Continuous Systems are idealised systems. An example is that of

a continuous string lying along the x-axis and vibrating along

the y-axis. The state of vibration requires a set of values for

its characterisation, i.e., its vibration along the y-axis has to be

described by a function Y (x , t) with a set of values, one for each x
and t. This function is called a wave. A sinusoidal wave propagating

9See Eq. (27.44) for an expression of this canonical momentum.
10Feynman, Leighton and Sands pp. 21–5.
11See Eq. (27.49) for an expression of this canonical angular momentum.
12We can establish an explicit equation of motion of an arbitrary observable if we

want to. This will be discussed in detail in §27.1.
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to the right along the x-axis is given by a function of the form

Y+(x , t) = A sin(kx − ωt), k, ω > 0, (2.8)

where A is the amplitude, k is known as the angular wave number
and ω is the angular frequency. These quantities are related to the

wavelength λ, the frequency f and the period T by

λ = 2π/k, f = ω/2π and T = 2π/ω. (2.9)

The above sinusoidal wave is a solution of the following equation:

∂Y 2

∂x2
= 1

v2
∂Y 2

∂t2
with v = ω

k
. (2.10)

This is known as the classical wave equation in one-dimension.
To be more specific consider a uniform elastic string of length

L and mass per unit length ρ lying along the x-axis with both ends
fixed, one end at x = 0 and the other at x = L. The string is subject to a
tension ofmagnitude τ . When the string is set to vibrate transversely

along the y-axis its configuration has to be given by a function Y =
Y (x , t) in order to describe the displacement of the string along the
y-axis for all x ∈ (0, L).13 The vibration of the string can be shown to
obey the above classical wave equation with the constant v related
to the tension and mass density by v = √

τ/ρ.14 Solutions of the

wave equation which describe a sinusoidal vibration of the string

are

Yn(x , t) =
√

2/L sin knx cosωnt, (2.11)

where15

kn = nπ/L, ωn = kn
√

τ/ρ, n = 1, 2, 3, · · · . (2.12)

These vibrations are known as normal modes. The spatial part of the
function

Yn(x , 0) =
√

2/L sin knx (2.13)

13The symbol ∈means “belonging to” or “is in”, e.g., x ∈ (0, L) means x is in the open
interval (0, L). In contrast /∈means “not belonging to”. Closed intervals are denoted
by [0, L].

14Crawford Chapter 2.
15The amplitude

√
2/L is chosen to satisfy Eq. (2.14) on orthonormality.
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is referred to as an eigenfunction of the system. These eigenfunctions
are orthonormal in the sense that

∫ L

0

yn(x)ym(x) dx = δnm, (2.14)

where δnm is the Kronecker delta which is equal to 1 when n = m
and zero otherwise.16 We also refer to Yn(x , t) as an eigenfunction.
The string can execute more complicated vibrations which can be

described by non-sinusoidal functions Y (x , t). The mathematics

of Fourier series tells us that a general solution Y (x , t) of the
wave equation can be obtained by an appropriate superposition of
sinusoidal functions in Eq. (2.11), i.e., we have17

Y (x , t) =
∞
∑

n=1
An Yn(x , t), (2.15)

where An are constants.
A solution of the wave equation describes a state of the system.

Normal modes are basic states of a vibrating string with fixed

ends. We shall call the states described by the eigenfunctions as

eigenstates. An arbitrary solution corresponds to an arbitrary state.
Many of the guiding principles in the formulation of classical

mechanics still apply to classical continuous systems. However,

continuous systems do have some distinctive properties not

possessed by discrete systems discussed in §2.1:

P2.2(1) Observables are related to the state in a complicated

manner. In an eigenstate Yn(x , t) the vibration has a definite

wavelength λn = 2π/kn, and the wavelengths corresponding to
all the eigenstates form a discrete set of values. In an arbitrary

state Y (x , t) shown in Eq. (2.15), the vibration does not have a

wavelength. In other words, some basic observables of the system

do not have a definite value in an arbitrary state.

P2.2(2) While the system is in an arbitrary state Y (x , t), we
can perform a wavelength measurement by physically forcing the

vibration into a normal mode, e.g., Yn(x , t), from which we can

observe a definite wavelength, e.g., λn. But this is not the wavelength

16Kronecker (1823–1891) was a German mathematician.
17Crawford p. 60. Fourier (1768–1830) was a French mathematician.
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of the vibration before the measurement. Indeed there is no

wavelength in state Y (x , t). Moreover such a measurement changes
the state of the system from an arbitrary state to an eigenstate.

P2.2(3) There may exist a set of basic states from which an

arbitrary state can be obtained by superposition, as shown in Eq.

(2.15). These basic states or eigenstates whose superposition can

give rise to an arbitrary one are said to constitute a complete
set of states. The superposition of eigenstates gives rise to the

phenomenon of interference.
These properties can help us to appreciate the behaviour of

quantum systems later.
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Chapter 3

Probability Theory for Discrete Variables

The behaviour of many classical systems cannot be predicted with

certainty, despite the best efforts of the experimenter, e.g., the

tossing of a coin. In the context of deterministic behaviour of

classical systems, the indeterminate nature arises from insufficient

initial knowledge of the particular system in question, a fact already

pointed out in §2.1.2. Many of these processes can be described by
a probability theory. A summary of probability theory for discrete

variables is set out in this chapter.

3.1 Physical Concept of Probability

Generally an experiment can yield many outcomes. The nature of

an experiment may be such that we cannot predict exactly which

outcome will occur, i.e., under identical conditions a repetition of

the experiment may yield a different outcome. Fortunately many

of these experiments exhibit certain regularity so that the results

of many independent repetitions of the experiment under identical

conditions are describable in terms of a probability theory.1 We

1Penrose Chapter I §4.
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call such experiments statistical experiments. A typical situationmay
involve a physical system with an observable A which possesses a

discrete set of numerical values a�, � = 1, 2, 3, . . . , n such that

(1) each individual experiment to find the value of A yields a value
a� in an unpredictable fashion, and

(2) if the experiment is carried out N times under identical

conditions and if the value a� is obtained N� times, then the ratio

(N�/N) appears to converge as N becomes larger and larger.

The regularity here is the convergence of the ratio (N�/N) as N
becomes larger and larger. This enables us to introduce the quantity

℘ A
N(a�) := N�

N
, (3.1)

for N large enough for the convergence to become apparent. This

quantity is then identifiedwith the probability that ameasured value
of A is a�. It follows that such an assignment of probabilities satisfy

the following properties:

℘ A
N(a�) ∈ [0, 1] and

n
∑

�=1
℘ A
N(a�) = 1. (3.2)

The average value E(℘ A
N) over N experiments is defined by

E(℘ A
N) :=

1

N

n
∑

�=1
a�N� =

n
∑

�=1
a�℘

A
N(a�). (3.3)

This empirical understanding of probability is known as the

frequency interpretation of probability.2 Ideally we would like N to

tend to infinity. Of course in any practical experiment we can only

achieve a large but finite N . A formulation of probability theory

based on this frequency interpretation is considered by many to

be unsatisfactory.3 A mathematical formulation should be axiomatic

2Penrose Chapter I §4. There are many other interpretations of the notion of

probability. An example would be the statement saying there is a 50% probability

of raining tomorrow. Clearly we cannot have a large set of replicas of “tomorrows”

to test the statement in the sense of a frequency interpretation. Such a statement is

really a reflection of a subjective belief based on experience.
3Penrose Chapters I, II. It may be argued that a probability theory based on

a frequency interpretation is not logically satisfactory since the definition of a

probability cannot even be made precise on account of our failure to achieve the

limiting value of ℘ A∞(a�) in any practical experiment. There are other problems also.

We can have N1 > 0 remaining finite as N →∞. This means that ℘ A∞(a1) = 0 yet a

measurement can still yield the value a1 since N1 �= 0.
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and independent of any particular interpretation. This we shall do

in the remainder of this chapter. We shall start by reviewing some

basic mathematics of set theory.

3.2 Sets, Mappings and Functions

3.2.1 Set Operations

A set D is just a collection of objects d, known as elements or
members, which can be abstract or numerical quantities. A set is said
to be discrete or countable if we can assign a positive integer � to

every element of the setwith different elements assigned to different

integers. It follows that an element can be denoted by d� and the set

can be written as

D = {

d�, � = 1, 2, 3, . . . , n
}

. (3.4)

When n is infinitely large the set is said to be countably infinite. A
set with an infinite number of elements may not be countable. For

example, the set of real numbers in the interval [0, 1] has an infinite

number of elements and these elements are not countable. A subset
S of D is a set containing some elements of D, i.e., every element of
S is an element of D while the converse is not necessarily true, e.g.,
S = {d1, d3} is a subset of D. The relationship between S and D is
signified by the notation

S ⊂ D or D ⊃ S . (3.5)

A more explicit notation SD can be used when we wish to indicate
explicitly that S is a subset of D. We may have S equal to D.4 If we
wish to emphasise that S is not equal to D we call S a proper subset
of D. We can also have subsets containing a single element, e.g., S =
{d2}. A set containing only one element is called a singleton set, e.g.,
S = {d2} is a singleton set. If S ⊂ D, the complement of S with respect
to D is the subset Sc containing all the elements of D which are not
in S , i.e.5

Sc := {

d : d ∈ D and d /∈ S}. (3.6)

4For this reason the notation S ⊆ D is often used by some authors.
5The absence of subscript � indicates that Dmay be continuous.
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A useful concept is that of the empty set. This is a set containing no
element at all, and it will be denoted by the symbol ∅. Two sets D1
and D2 are said to be disjoint if they have no element in common.

We have the following familiar operations:6

(1) Let D1 and D2 be two arbitrary sets. Then:

(a) Their difference, denoted by D1− D2, is the set composed of
all the elements of D1 which are not in D2, i.e.,

D1 − D2 :=
{

d : d ∈ D1 and d /∈ D2
}

. (3.7)

It follows that the complement Sc of a subset of a set D is
equal to the difference D − S , i.e.,

Sc = D − S . (3.8)

If D1 and D2 are disjoint then D1 − D2 is equal to D1
(b) Their intersection, denoted by D1 ∩ D2, is the set containing

elements which are in both D1 and D2. It follows that D1 and
D2 are disjoint if

D1 ∩ D2 = ∅. (3.9)

(c) Their union, denoted by D1 ∪ D2, is the set containing both
the elements of D1 and D2.

(2) Let {D�, � = 1, 2, · · · } be a sequence of sets. The sequence may
be finite or infinite. Then:

(a) Their union, denoted by ∪� D� and defined by

∪� D� :=
{

d ∈ D� for at least one �
}

, (3.10)

is called a countable union.
(b) Their intersection, denoted by ∩� D� and defined by

∩� D� :=
{

d ∈ D� for all �
}

, (3.11)

is called a countable intersection.

(3) Often we need to consider ordered pairs of elements from two

sets. This leads to the notion of the Cartesian product of two sets,
i.e., the Cartesian product of two sets D and G, denoted by D×G,
is the set of all ordered pairs (d, g):

D × G := {

(d, g) : d ∈ D, g ∈ G }. (3.12)

6Lipschutz p. 104. Roman Vol. 1 pp. 6–12. Kingman and Taylor pp. 9–11.
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The operations of complement, union and intersection are related

by the following De Morgan’s theorem.7

Theorem 3.2.1(1) Let S�, � = 1, 2, · · · be a sequence of subsets of
a set D. Then the complement of the union ∪� S� of S� is equal to the
intersection ∩� Sc� of their complements S

c
� , and the complement of the

intersection∩� S� of S� is equal to the union∪� Sc� of their complements
i.e.,

( ∪� S�

)c = ∩� Sc� ,
( ∩� S�

)c = ∪� Sc� . (3.13)

3.2.2 Mappings and Functions

Amapping f is a relation which associates each element d of a set D
a unique element g of another set G. This is denoted by

f : D→ G with f (d ) = g. (3.14)

We call f a mapping from D into G with g = f (d ) referred to as
the image of d under f . A mapping is also called a function, i.e., the
above mapping is also referred to as a function from D into G, or
a function on D into G. In particular, we have mappings into a set
of real numbers. The set of all real numbers τ ranges from −∞ to

∞ is denoted by the symbol IR , i.e., IR := {τ : τ ∈ (−∞,∞)}.
We can represent the set IR of real numbers geometrically in terms
of a horizontal line, called the real line, in that each real number
corresponds to a point in the real line. The half real line IR+ consists
of the set of numbers [0,∞), i.e., IR+ := [0,∞), and the other half

real line IR− consists of the set of numbers (−∞, 0].

It is a common practice to denote a function from D into G shown
in Eq. (3.14) by the notation f (d ), although strictly speaking a

function from D into G should be denoted by a single symbol, e.g.,
f , and the notation f (d ) should denote the image of d under the
function. When the notation f (d ) is used to denote a function the
symbol d should be regarded as a variable, not a specific member of
D.8 There are different kinds of functions:

(1) A mapping from D into the set IR of real numbers is called a

real-valued function on D.

7Roman Vol. 1 pp. 9–10. De Morgan (1806–1871) was a British mathematician.
8For example, a function f on IR is often written as f (x) and called a function of x .
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(2) A mapping from D into the set C of complex numbers is called a
complex-valued function on D.

(3) Let {S } denote a family of subsets S of D. Then a mapping

from {S } into G is called a set function. An example would be
a mapping f from {S } into IR , i.e.,

S → f (S ) ∈ IR . (3.15)

This is known as a real-valued set function.

(4) If G consists of operators a mapping from D into G is called an
operator-valued function. In §15.1 we shall present a study of
projector-valued functions. These are mappings into G which is
composed of a special class of operators known as projectors.

There are a few terms frequently used in relation to mappings:

1.Domain, codomain and range For amapping shown in Eq. (3.14),

the set D is called the domain and the set G is called the codomain of
the mapping. The collection R of all the images, i.e.,

R := {

g : g = f (d ), d ∈ D }, (3.16)

is called the range of the mapping. Generally f maps D into a subset
of G, i.e., R ⊂ G.

For a set functionwhichmaps a family {S } of subsets S into G, the
domain of the set function is the family {S } of subsets.
2. Into and onto mappings Generally the range R is a subset of the
codomain G and the mapping is said to be a mapping from D into
G. If the range R coincides with G then the mapping is said to be a
mapping from D onto G. For an ontomapping, we can rewrite G as R ,
i.e., we have a mapping from D onto R .

3.One-to-onemappings If different elements of D are associated by
f with different elements of G, i.e.,

d1 �= d2 ⇒ g1 = f (d1) �= g2 = f (d2), (3.17)

then f is said to be a one-to-onemapping. For a one-to-one mapping
f from D onto R every element r of R has a unique element d of D
associated with it by the one-to-one mapping.

4. One-to-one correspondence A one-to-one mapping f of D onto R
is said to define a one-to-one correspondence between the sets D and
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R . We shall denote a one-to-one correspondence by a “two-sided”
arrow, i.e.,

f : D↔ R . (3.18)

5. Identity mapping The mapping II from D onto D, i.e., onto itself,
defined by II (d) = d ∀d ∈ D is called the identity mapping on D.9

6. Image and inverse image The image of a subset SD of the domain
D under a function f , denoted by f (SD), is the set in the range given
by

f (SD) := {r ∈ R : r = f (d), d ∈ SD}. (3.19)

The inverse image of a subset SR of the range R under f , denoted by
f −1(SR), is the set in the domain D which is mapped onto SR by f ,
i.e.,

f −1(SR) := {d ∈ D : f (d) = r ∈ SR}. (3.20)

For a mapping from D into G, the range is generally a proper subset
of G, i.e., there are subsets of G which are outside the range of the
mapping. Then no elements in D are mapped to any element of such
subsets so that the inverse image of such a subset of G does not
exist. We shall signify this by saying that the inverse image of such a

subset is the empty set ∅. With this understanding we can say that
the inverse image of any subset of G exists.

7. Inverse Let f be a one-to-one mapping from D onto R . Since
every element r of R has a unique element d of D associated with
it by the one-to-one correspondence r = f (d) we can define a one-
to-one mapping f −1 from R onto D by this association, i.e., we have

f −1 : R → D defined by f −1(r) = d. (3.21)

We call this the inverse of f .
A function may not have an inverse. The existence of inverse

images does not imply the existence of an inverse function.

9The symbol ∀means “for every” or “for all”.
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3.3 Discrete Sample Spaces and Events

Consider a statistical experiment which has a discrete set

Sam = {s1, s2, · · · } (3.22)

of possible outcomes. Let us introduce the following terms:

1. Sample space The set Sam of outcomes is called the sample space
of the experiment.

2. Events A subset E of Sam, i.e., a set of outcomes, is called an event.
For the statistical experiment on tossing of a die, the sample space

consists of six outcomes, i.e., six numbers:

Sam = {1, 2, 3, 4, 5, 6}. (3.23)

The event Ee that an even number occurs consists of three outcomes,
i.e., Ee = {2, 4, 6}. The empty set and the sample space are formally
regarded as events. The empty set which contains no outcomes is

known as the impossible event and the sample space Sam is known as
the sure event.10

3. Elementary events A subset of Sam containing a single outcome,
e.g., {s2}, is called an elementary event. If a run of the experiment
yields the outcome s2 we say either the outcome s2 occurs or the
elementary event E2 = {s2} occurs, and any event containing the
outcome s2 is also said to occur.

4. Disjoint events Two events are said to be disjoint or mutually
exclusive if they have no outcome in common so that they cannot
both occur in a single run of the experiment.

5. Intersection of events The set E1 ∩ E2 is the event that occurs
if both E1 and E2 occurs. Two events E1 and E2 are disjoint or
mutually exclusive if E1 ∩ E2 = ∅. As an example we can see that
an event E is disjoint from the event E c = Sam − E .11

6. Union of events The set E1 ∪ E2 is the event that occurs if either
E1 or E2 occurs.

10We assume that every run of the experiment would yield an outcome s� ∈ Sam. It is
then impossible to have ∅ as an outcome.

11The set Ec is the complement of E .
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It is useful to visualise these operations in terms of Venn
diagrams used in set theory, e.g., we can picture the sample space
as a big rectangle and various events as smaller rectangles within

the big rectangle.12

The probabilistic nature of a statistical experiment with a

discrete sample space can be described by assigning a probability to

each outcome. Since every outcome lies in some event an assignment

of probability to all events will also characterise the probabilistic

nature of the experiment.

3.4 Probability Mass Functions and Measures

Consider a statistical experimentwith a discrete sample space Sam =
{s1, s2, · · · , sn}, where n may be finite or infinite. Let {E } denote the
set of all events E , including the sure event Sam and the impossible
event ∅. There are two conventional ways to introduce probabilities
on Sam. Oneway is to assign a probability to each outcome s� in terms
of a function from Sam into the interval [0, 1] of real numbers.

Definition 3.4(1) A probability mass function ℘ is a function
from the sample space Sam = {s1, s2, · · · , sn} of a statistical
experiment into the interval [0, 1] satisfying the conditions on
probabilities in Eq. (3.2), i.e.,

℘(s�) ∈ [0, 1],
n
∑

�=1
℘(s�) = 1. (3.24)

The value ℘(s�) is interpreted as the probability of occurrence of
outcome s�. The sum in Eq. (3.24) is the total probability which is

equal to 1.13

Alternativelywe can assign a probability to each event E in terms
of a set function from the collection {E } of events into the interval
[0, 1]. Such a set function is known as a probability measure.

Definition 3.4(2) A set functionMp on the collection {E } of all the
events E of a statistical experiment is called a probability measure

12Lipschutz p. 5. Venn (1834–1923) was a British logician and philosopher.
13We will take the frequency interpretation of probability with the assumption that

℘(s�) = 0 means that s� never occur and ℘(s�) = 1 mean that s� is certain to occur.
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on the set {E } of events if the following properties hold:14

PM3.4(1) Non-negativity Mp(E ) ∈ [0, 1].
PM3.4(2) Normalisation Mp(Sam) = 1.

PM3.4(3) Additivity Mp(∪� E�) =
∑

� Mp( E�), where

E� ∩ E�′ = ∅, � �= �′.

The above properties can be interpreted and understood as follows:

PM3.4(1) The value Mp(E ) is interpreted as the probability of
occurrence of event E . The probability of E not occurring is given
byMp(E c).

PM3.4(2) Each run of the experiment must produce an outcome

so that the sure event Sam which contains all outcomes occurs with
probability 1.

PM3.4(3) The probabilities of exclusive events add up to produce

the probability for the union of all these exclusive events. This

property, known as countable additivity, requires the probability of
the union of a countable collection of mutually exclusive events to

be equal to the sum of the probabilities of all the individual events.

This property applies both to finite and infinite unions of mutually

exclusive events.15

Some useful properties of probability measures are summarised

in the following theorem.16

Theorem 3.4(1) A probability measure Mp on a discrete sample
space Sam with a corresponding set of events E satisfies:

Mp(∅) = 0. (3.25)

Mp(E c) = 1−Mp(E ). (3.26)

E1 ⊂ E2 ⇒Mp(E1) ≤Mp(E2). (3.27)

Mp(E1 ∩ E2) = Mp(E1)−Mp(E1 − E2). (3.28)

Mp(E1 ∪ E2) = Mp(E1)+Mp(E2)

−Mp(E1 ∩ E2). (3.29)

14Lipschutz pp. 40–41.
15Countably infinite additivity is required only for infinite sample spaces.
16Lipschutz pp. 40–41. Using Venn diagrams for the various operations of events one

can visualise the theorem.
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Probability mass functions and probability measures are related in

a one-to-one manner:

(1) A probability measure Mp generates a probability mass

function ℘ by

℘(s�) =Mp({s�}) ∀s� ∈ Sam. (3.30)

In other words, the probability of occurrence of an outcome s� is
the same as the probability of occurrence of the corresponding

elementary event {s�}.
(2) A probability mass function ℘ gives rise to a probability

measureMp by

Mp(E ) =
∑

�

℘(s�) ∀ s� ∈ E . (3.31)

The set of probabilities for all the outcomes and events in a

sample space is called a probability distribution of the sample

space. A probability distribution can be characterised by either

a probability mass function or a probability measure. Probability

measures become indispensable for the description of probability

distributions of continuous sample spaces.

3.5 Expectation Values, Variances and
Uncertainties

Consider a statistical experiment to measure an observable A which
has a set of values a1, a2, a3, · · · , an. These values define the sample
space. Let the probability distribution of the sample space be given

by a probability mass function ℘ A . To quantify the average (mean)

measured value and the deviation from the mean of individual

values we can introduce the following definitions.

Definition 3.5(1)

(1) The expectation value E(℘ A) of observable A is defined to be

E(℘ A) =
n
∑

�=1
a�℘

A(a�). (3.32)
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(2) The variance Var (℘ A) of observable A is defined to be the mean-
square-deviation from the mean, i.e.,

Var (℘ A) =
n
∑

�=1

(

a� − E(℘ A)
)2

℘ A(a�). (3.33)

(3) The uncertainty 
(℘ A) of observable A is defined to be the root-
mean-square-deviation from the mean, i.e.,


(℘ A) =
√

Var (℘ A), (3.34)

or explicitly,17


(℘ A) =
(

n
∑

�=1

(

a� − E(℘ A)
)2

℘ A(a�)

)1/2

. (3.35)

Equation (3.32) corresponds to Eq. (3.3). In practical applications

we can interpret E(℘ A) as the average value or the mean value of A
in the experiment. The variance serves as an indication of the spread

of the values from the expectation value. The mean of individual

deviations a� − E(℘ A), i.e.,
∑

�

(

a� − E(℘ A)
)

℘ A(a�), may produce

a misleading result of zero if individual values are evenly spread out

on both sides of the expectation value, with some deviation being

negative and some being positive. It is necessary to use the squares

of the deviations in the definition. We can evaluate the variance and

standard deviation in terms of expectation values as seen in the

following theorem which can be easily verified.

Theorem3.5(1) The variance is equal to the difference between the
mean of the square of A and the square of the mean of A, i.e.,

Var (℘ A) = E
(

℘ A2)− E
(

℘ A)2, (3.36)

where

E
(

℘ A2) =
n
∑

�=1
a2� ℘ A(a�), E

(

℘ A)2 =
(

n
∑

�=1
a�℘

A(a�)

)2

. (3.37)

In a general statistical experiment, the outcomesmay not be numeri-

cal, e.g., in a coin tossing experiment. The notion of expectation value

does not apply. However, we can quantify non-numerical outcomes

by introducing a function to assign a value to each non-numerical

17This is also known as the standard deviation.
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outcome. Such functions are known in probability theory as random
variables. Since we shall only consider experiments with numerical
outcomeswe shall avoid introducing this notion of random variables

altogether.

3.6 Probability Distribution Functions

We can introduce a new function on the real line IR , known as a
probability distribution function, to correspond to a given probability
mass function ℘ defined on the (numerical) sample space Sam =
{a1, a2, . . . , an} of a statistical experiment.
Definition 3.6(1) The probability distribution function corre-
sponding to a probability mass function ℘ is a function F on the real
line IR with its value F(τ ) defined to be the probability of an outcome
being less than or equal to τ for every τ in IR.

Explicitly F(τ ) is related to ℘(a�) by

F(τ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, τ < a1
℘(a1), a1 ≤ τ < a2
℘(a1)+ ℘(a2), a2 ≤ τ < a3
· · ·
∑ j

�=1 ℘(a�), aj ≤ τ < aj+1
· · ·
∑n

�=1 ℘(a�) = 1, an ≤ τ

. (3.38)

The functionF(τ ) is piecewise-constant with discontinuous steps at
τ = a�. It is useful to introduce the following limiting processes:

from the right F(τ + 0) := lim
ε→0

F(τ + ε), ε > 0. (3.39)

F(a� + 0) := lim
ε→0

F(a� + ε), ε > 0. (3.40)

from the left F(τ − 0) := lim
ε→0

F(τ − ε), ε > 0. (3.41)

F(a� − 0) := lim
ε→0

F(a� − ε), ε > 0. (3.42)

The function is continuous from the right for all τ , even at a

discontinuity, but discontinuous from the left at a discontinuity, i.e.,

F(τ + 0) = F(τ ) ∀ τ , F(a� − 0) �= F(a�). (3.43)
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a1 a2 a3 a4 an

F(t)

1

t

Figure 3.1 Probability distribution function.

This is shown in the above plot of F(τ ) against τ .
Probability distribution functions possess some characteristic

physical and mathematical properties.18

Physical properties:

PP3.6(1) F A(τ ) = 0 if τ is less than a1 and F(τ ) = 1 if τ is bigger

than or equal an. Generally each value of function is related to the
probability of many outcomes. Probabilities for many outcomes are

known as cumulative probabilities.

PP3.6(2) The probability ℘(τ ) of a single outcome τ is given by

℘(τ ) = F A(τ + 0)− F A(τ − 0). (3.44)

If τ �= a� then ℘(τ ) = 0 as expected and if τ = a� then the

probability for the single outcome τ = a� in Eq. (3.44) is equal to

℘(a�), i.e.,

℘(a�) = F A(a� + 0)− F A(a� − 0). (3.45)

Hence the probability of every outcome is obtainable from F(τ ).

PP3.6(3) The probability that an outcome lies in an interval

(τ1, τ2] is equal to F(τ2)− F(τ1).

Mathematical Properties:

MP3.6(1) Non-decreasing F(τ1) ≤ F(τ2) if τ1 ≤ τ2.

18Kingman and Taylor pp. 95–99.
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MP3.6(2) Values at infinities F(−∞) = 0, F(+∞) = 1.

MP3.6(3) Continuity from the right F(τ + 0) = F(τ ).

The function F(τ ) rises from 0 to 1. It is non-decreasing and

continuous from the right. Functions with these mathematical

properties play a crucial role in probability theory. We shall

therefore give a general definition of these kind of functions.

Definition 3.6(2)

(1) A real-valued function defined on the real line IR is said to be non-
decreasing if it possesses property MP3.6(1).19

(2) A real-valued function defined on the real line IR is called
a distribution function if it possesses properties MP3.6(1),

MP3.6(2) and MP3.6(3).20

A distribution function is non-negative. It can be continuous

throughout or it can be piecewise-constant with discontinuous

jumps. The function in Eq. (3.38) and depicted in Fig. 3.1 is a

distribution function. This kind of functions are also known as jump
functions and the increment of such a function at a discontinuity is
known as the jump of the function at the discontinuity. Distribution
functions have many other applications, e.g., they can be used to

describe continuous or discrete distribution of mass along the real

line.21

We now have three different ways to specify a probability

distribution. The approaches in terms of probability measures

and probability distribution functions are superfluous for discrete

sample spaces. As will be seen in Chapter 4 probability measures

and probability distribution functions are essential when one deals

with continuous sample spaces for which the assignment of a non-

zero probability to each individual outcome is generally not possible.

The present discussion also serves to provide an intuition to the

19See Theorem 4.2.2(1) for further properties of non-decreasing functions.
20Kingman and Taylor p. 96.
21Smirnov pp. 18–23. See Lebesgue–Stieltjes measure introduced in terms of Eqs.
(4.14) to (4.17).
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important mathematical concept of measures to be discussed later
in §4.1.

Exercises and Problems

Q3(1) Prove Theorem 3.4(1).22

Q3(2) Prove Theorem 3.5(1).

Q3(3) What is the value F(a4) − F(a3) of the probability

distribution function in Eq. (3.38)?

Q3(4) In an experiment of tossing a fair die a number from 1 to 6

will be obtained with equal probabilities.

(a) Write down the probability mass function ℘ and

evaluate the expectation value and the uncertainty.

(b) Write down the corresponding probability distribution
function F(τ ) and sketch a plot of F(τ ) versus τ . What

are the values F(τ ) at τ = 0.9, 1, 2.5, 6 and 6.1?

22Lipschutz pp. 40–41. Roman Vol. 1 Problems 7.2a-1 on p. 313.



Chapter 4

Probability Theory for Continuous
Variables

When dealing with statistical experiments whose outcomes form

a continuous set of real numbers τ , e.g., IR , we do not have to
consider every subset of IR as an event, since every run of the

experiment will give a value in a certain interval. It is sufficient to

identify a structured family of subsets of IR large enough to include
individual numbers, intervals and sets obtained by operations of

unions, intersections and complements of intervals. The generally

adopted subsets are Borel sets of the reals, named after the French
mathematician Émile Borel (1871–1956). Borel sets, which include

all open and closed intervals, individual numbers as well the empty

set and IR , are large enough to be able to quantify all experimental
outcomes.
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4.1 Borel Sets, Borel Functions and Measures

4.1.1 Borel Sets of the Reals and Borel Functions

Definition 4.1.1(1)1 Borel sets of the reals, denoted by IB(IR) or
IB, is the smallest family of subsets � of IR which is closed under
complements and countable unions, i.e.,

� ∈ IB ⇒ �c ∈ IB and �� ∈ IB ⇒ ∪��� ∈ IB , (4.1)

and contains all open intervals.

Borel sets are also closed under countable intersection.2 These

properties are needed for many applications, e.g., the closure

of countable union is required in the definition of measures in
Definition 3.4(2). All the subsets of IR we shall encounter in this

book, e.g., open intervals (a, b), half-open intervals (a, b ] and [a, b),
closed intervals [a, b ] and sets containing a single number, are Borel
sets. The reals IR and the empty set ∅ are also Borel sets.

For an experiment with only a countable set of outcomes, we

can assign a probability to each outcome. We can then obtain the

probabilities for all events. This simple approach is not possible

when the outcomes form a continuum, e.g., IR . If we were to

assign a non-zero probability to each outcomes τ ∈ IR we would

have difficulty satisfying the normalisation requirement PM3.4(2)

on probability measures that the total probability must be 1. The

general approach is to assign probabilities directly to events, not

to individual outcomes, i.e., for a continuous sample space IR the

approach would be as follows:

(1) We start by identifying each event with a Borel set of IR and vice
versa.

(2) A probability distribution is then described by a set function

from IB into the interval [0, 1].3

1Reed and Simon Vol. 1 pp. 14–16.
2This follows Theorem3.2.1(1). Some authorswould include closure under countable

intersection explicitly in their definition of Borel sets.
3As for discrete sample spaces, a probability distribution is the set of probabilities for
all the events in a sample space.
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The kind of set functions suitable for describing probability

distributions are special cases of a general class of set func-

tions known as measures which have many applications in

mathematics.

Before looking into set functions let us start by considering

real-valued functions f defined on the real line IR . Generally
the image of a Borel set under an arbitrary function f is not

necessarily a Borel set and similarly the inverse image of a Borel

set under f is not always a Borel set. For our applications we
are interested in functions under which the inverse image of a

Borel set is always a Borel set. The reason for the definition in

terms of a requirement on the inverse images, rather than on the

images, will become clear whenwe consider Lebesgue integration in

§4.2.2.
Let f be a real-valued function with IR as its domain and

codomain. Let � be a Borel set of the codomain. The inverse image

f −1(�) of�may or may not be a Borel set of the domain.

Definition 4.1.1(2) A real-valued function f on IR is said to be
a Borel function if the inverse image f −1(�) of every Borel set �

defined by

f −1(�) := {τ ∈ IR : f (τ ) ∈ �} (4.2)

is a Borel set. A complex-valued function is a Borel function if both its
real and imaginary parts are Borel functions.

Note that the inverse image of an interval may be a set of isolated

points, a union of intervals and so on. The inverse image of a

Borel set lying entirely outside the range of the function would

be the empty set ∅. All the usual algebraic operations on Borel

functions, e.g., sum and product, would result in Borel functions. The

following are two simple but important examples of Borel functions

on IR:

E4.1.1(1) Characteristic functions on IR The characteristic func-

tion of a Borel set� on IR , denoted by χ�, is defined by

χ�(τ ) :=
{

1, τ ∈ �

0, τ /∈ �
. (4.3)
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If� is an interval, e.g.,� = (a, b ], then χ (a,b ](τ ) is equal to 1 inside

the interval, i.e., for all τ ∈ (a, b ], and vanishes outside the interval,
i.e., for all τ /∈ (a, b ]. This is a Borel function since the inverse
image of every Borel set is again a Borel set. For example, the inverse

images of the Borel sets {1}, {0} and {0, 1} are

χ−1
� ({1}) = �, χ−1

� ({0}) = �c , χ−1
� ({0, 1}) = IR . (4.4)

E4.1.1(2) Simple functions 4 Let � be a Borel set and let {��, � =
1, 2, · · · , n} be a finite collection of disjoint Borel sets forming a
partition of�.5 In other words,� is equal to the union of��, i.e.,

� = ∪���, �� ∩��′ = ∅. (4.5)

Let {a1, a2, · · · , an} be a set of arbitrary real numbers, then a

function fs(τ ) of the form6

fs(τ ) :=
n
∑

�=1
a� χ��

(τ ) (4.6)

is called a simple function defined on � which can be extended

to IR . A simple function is just a weighted sum of characteristic

functions, and is hence a Borel function. It has a finite number

of different values if n is finite. A simple function is said to be

piecewise-constant if the Borel sets �� are intervals, the probability

distribution function in Eq. (3.38) being an example. The following

examples, known as step functions, serve to illustrate the simplicity
of simple functions defined on IR:7

E4.1.1(2)(a) The unit step function gus is defined by8

gus(τ ) :=
{

0, if τ < 0

1, if τ ≥ 0
. (4.7)

4Simple functions can be extended to include cases where n is infinite.
5Generally the term partition of a set S means a collection of subsets of S , not
necessarily finite or pairwise disjoint, whose union is equal to S .
6Fano p. 219.
7Despite their simplicity, these functions have many applications.
8This is also known as the Heaviside step function.
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E4.1.1(2)(b) An antisymmetric step function gas satisfies gas(τ ) =
−gas(−τ ), e.g.,

gas(τ ) :=
⎧

⎨

⎩

−1, if τ < 0

0, if τ = 0

+1, if τ > 0

. (4.8)

E4.1.1(2)(c) A step function with step at τ = a1 and increment
g1 − g0, where g1 > g0:

gs(τ ) :=
{

g0, if τ < a1
g1, if τ ≥ a1

. (4.9)

E4.1.1(2)(d) Non-decreasing step functions gnd with discontinu-
ities at τ = a1, a2, a3, · · · where a1 < a2 < a3 < · · · :

gnd(τ ) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g0, if τ < a1
g1, if a1 ≤ τ < a2
g2, if a2 ≤ τ < a3
...

. (4.10)

where g0 < g1 < g2 < · · · . The function undergoes a discontinuous
jump in value by the amount 
g� = g� − g�−1 at the discontinuity
at τ = a�. This is similar to the probability distribution function

depicted in Fig. 3.1.9

An important result is that any Borel function can be expressed as

the pointwise limit of an appropriate sequence of simple functions.10

This property is generally used in the definition of Lebesgue

integrals to be discussed in §4.2.2.
In practice all the functions we shall encounter, including

discontinuous and continuous functions, are Borel functions. Borel

functions are so pervasive that it is difficult to write down a

function which is not Borel. Borel functions play an important role

in the theory of Lebesgue integration since they are related to the

integrability of functions.

9Smirnov pp. 6–7.
10Kingman and Taylor p. 105. Roman Vol. 1 pp. 341–344. Pointwise convergence
means f�(x)→ f (x) for all x as �→∞.
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4.1.2 Lebesgue and Lebesgue–Stieltjes Measures

Definition 4.1.2(1)11

(1) Ameasure M on the Borel sets IB is a set function from the Borel
sets into the extended reals IRex , i.e.,

M : IB �→ IRex by � ∈ IB �→M(�) ∈ IRex , (4.11)

with the following properties:12

(a) Non-negativity M(�) ≥ 0.

(b) Empty set ∅ M(∅) = 0.

(c) Additivity M(∪���) =
∑

� M(��), �� ∩��′ = ∅.
(2) A set � ∈ IB is called a set of measure zero if M(�) = 0.

A measure is basically a real-valued set function which is non-

negative and countably additive. Let us illustrate the concept of

measures with examples:

E4.1.2(1) Lebesgue measure on IB13 Intuitively the positive and

the additive nature of a measure suggests that it is an assignment of

a numerical value to some properties of the Borel sets. An example

is a set function which assigns a length to every Borel set. To define

this set function we start with its values for half-open intervals and

individual numbers:

(1) We define the value ofM
(

(τ1, τ2]
)

byM
(

(τ1, τ2]
)

:= τ2 − τ1.

(2) We define the value ofM
({τ }) byM({τ }) := 0.

Using the additive property we can extend the function consistently

to all intervals with the results

M
(

[τ1, τ2]
) =M

(

[τ1, τ2)
) =M

(

(τ1, τ2)
) = τ2 − τ1. (4.12)

11Kingman and Taylor pp. 54–55. The extended reals IRex consists of the reals IR =
(−∞,∞) together with−∞ and∞, i.e., we have

IRex := −∞∪ IR ∪∞ = [−∞,∞].

We can have M(�) = ∞ for some�. We can also have a more general concept of

measures with mappings into a set of non-numerical quantities such as operators.

We shall discuss such non-numerical measures in §15.1.
12Here�� are mutually disjoint Borel sets. Note that � �= �′ in (c).
13Lebesgue (1875–1941) was a French mathematician famous for his theory of

integration.
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In other words, we define the length of an interval to be τ2 − τ1 and

we define the length of a single point τ ∈ IR to be zero. It can be
shown that there is a unique extension of this set function to all Borel

sets. The resulting measure is known as the Lebesgue measure on IB
and is denoted byMl .

14

A single point in IR does not have any length. This is reflected by
the fact that a singleton set {τ } has a Lebesguemeasure zero, and it is
hence called a set of Lebesguemeasure zero or simply a set ofmeasure
zero. It follows from the additive property that a countable union

of isolated points, e.g., {τ1, τ2, · · · } = {τ1} ∪ {τ2} ∪ · · · is also a set
of Lebesgue measure zero. Real numbers are divided into rational
and irrational numbers. A number is rational if it can be expressed
as a fraction n/m of two integers n and m �= 0, and it is irrational

otherwise. Let [a, b ] be a closed interval. The set of rational numbers
in [a, b ] is known to be countable.15 Hence it is a set of measure
zero.16 The Lebesgue measure of the set of irrational numbers in

[a, b ] is equal to b− a.
A property or an equationwhich holds except on a set ofmeasure

zero is said to hold almost everywhere. The following examples
serve to illustrate the concept:

E4.1.2(1)(a) A real-valued function on IR which is zero every-

where, i.e., f (τ ) = 0 ∀τ ∈ IR , is called the zero function. A function
which vanishes everywhere except at a number of isolated point

is equal to the zero function almost everywhere, e.g., the following

function

f (τ ) :=
{

1 τ = 0

0 τ �= 0
(4.13)

is equal to the zero function almost everywhere. We simply say that

this function is zero almost everywhere.

E4.1.2(1)(b) Two functions f1(τ ) and f2(τ ) on IR which are equal
except at a number of isolated points is said to be equal almost

everywhere.

14Kingman and Taylor p. 69, p. 79. Roman Vol. 1 p. 314. For the empty set, we have

Ml (∅) = 0,
15Kingman and Taylor p. 12.
16Byron-Fuller Vol. 1 p. 215.
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E4.1.2(2) Lebesgue–Stieltjes measures on IB17 The Lebesgue mea-
sure is ameasure of the length of an interval along the real line. There
is a need for a measure of other quantities. Consider a distribution

of a finite amount of mass along the real line IR specified by a

continuous density function ρ(τ ) ≥ 0, τ ∈ IR . The total mass in
the interval (−∞, τ ] is given by

m(τ ) =
∫ τ

−∞
ρ(τ ′)dτ ′, (4.14)

which is a function of τ . This function has some of the properties

of a distribution function introduced in Definition 3.6 (2), i.e., m(τ )
is non-decreasing and continuous from the right. The mass in any

interval (τ1, τ2] is equal to m(τ2) − m(τ1) ≥ 0. We can introduce a

measure, known as a Lebesgue–Stieltjes measure on IB and denoted
byMls,m, by first defining its values on an interval and on a isolated

point τ in terms of the functionm(τ ), i.e.,

Mls,m

(

(τ1, τ2]
)

:= m(τ2)−m(τ1), Mls,m({τ }) := 0. (4.15)

As in the case of the Lebesgue measure, we can extend these values

to generate a measure on IB , which will give us the value of the mass
in any Borel set.

The above example suggests that we can generate a measure

using a function g(τ ) which is non-decreasing and continuous from
the right such as a distribution function in the following manner:

(1) Define a set function Mls,g on all bounded half-open intervals

(τ1, τ2] by

Mls,g

(

(τ1, τ2]
)

:= g(τ2)− g(τ1). (4.16)

(2) The value of the function for a singleton set, i.e., Mls,g({τ }), is
defined by18

Mls,g({τ }) := g(τ + 0)− g(τ − 0). (4.17)

This expression follows Eq. (3.44) and it is a generalisation of

Eq. (4.15) to allow for discontinuities of the function g(τ ).

17Kingman and Taylor p. 95. Stieltjes (1856–1894) was a Dutch mathematician.
18Since g(τ ) is continuous from the right we have g(τ + 0) = g(τ ).



Borel Sets, Borel Functions and Measures 41

(3) Extend this set function to all Borel sets to produce a unique

measure on the Borel sets of IR .19

The resulting measure, denoted by Mls,g, is referred to as the

Lebesgue–Stieltjes measure generated by the function g(τ ). The
function g(τ ) does not need to be continuous.20 An example would
be a probability distribution function F(τ ) shown in Fig. 3.1.

The measureMls,g has the following values:
21

Mls,g

(∅) = 0, (4.18)

Mls,g

({τ }) = g(τ )− g(τ − 0), (4.19)

Mls,g

(

(τ1, τ2]
) = g(τ2)− g(τ1), (4.20)

Mls,g

(

(τ1, τ2)
) = g(τ2 − 0)− g(τ1), (4.21)

Mls,g

(

[τ1, τ2]
) = g(τ2)− g(τ1 − 0), (4.22)

Mls,g

(

[τ1, τ2)
) = g(τ2 − 0)− g(τ1 − 0), (4.23)

Lebesgue–Stieltjes measures are an extension of Lebesgue measure

since by letting g(τ ) = τ we recover the Lebesgue measure.

E4.1.2(3) Probability measures on IB The concept of measures

is not limited to assigning values to some properties of the Borel

sets themselves. A measure can be used to give values to quantities

associated with the Borel sets. For example, we can use a measure to

describe a probability distribution. A measure Mp on IB satisfying
the additional requirement

Mp(IR) = 1 (4.24)

is called a probability measure on IB , because Mp satisfies the

properties of a probability measure in Definition 3.4(2). As an

example let us consider a statistical experiment which has IR as its
sample spacewith Borel sets� of IR corresponding to events. Since a
Borel set� and its complement�c are disjoint and since�∪�c = IR
we have

Mp(IR) =Mp(� ∪�c)

=Mp(�)+Mp(�
c) ≥Mp(�). (4.25)

19Roman Vol. 1 pp. 320–324. Kingman and Taylor pp. 95–96.
20Discontinuities are from the left since the function is assumed to be continuous

from the right.
21Roman Vol. 1 pp. 320–321. The value of Mls,g({τ }) is not necessarily zero, e.g., the
left limit g(τ − 0) is not necessarily equal to g(τ + 0) at a discontinuity.
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The condition Mp(IR) = 1 means that

Mp(�) ∈ [0, 1], Mp(�
c) = 1−Mp(�) ∈ [0, 1]. (4.26)

We can then take Mp(�) as the probability for the event�.

We shall return to study probability measures on a continuous

sample space in detail in §4.3.

E4.1.2(4) Lebesgue–Stieltjes and probability measures The

Lebesgue–Stieltjes measure generated by a probability distribution

function possesses the properties of a probabilitymeasure. The rela-

tionship between probability distribution functions and probability

measures will be discussed in detail in §4.3.

4.2 Riemann and Lebesgue Integrals

4.2.1 Riemann Integrals

The mathematics of integration is complicated because there are

different types of integrals. The integrals presented in elementary

calculus are Riemann integrals.22 To clarify the concept let us

consider a real-valued function f defined on a closed and bounded
interval [a, b ] of IR . The function is assumed to be bounded,

continuous and non-negative. Such a function can be plotted as a

curve of y = f (x) in the x-y plane. The Riemann integral of f over
the interval [a, b ] is conceptually interpretable as the area under the
curve.

Let {x0, x1, x2, · · · , xn} be a set of points in [a, b ] such that
a = x0 < x1 < x2 < · · · < xn = b. (4.27)

We can approximate of the area under the curve by a series of

rectangles. There are two conventional ways to proceed:

(1) Divide the interval [a, b ] into the following n closed intervals:23

�1 = [x0, x1], �2 = [x1, x2], · · · , �n = [xn−1, xn]. (4.28)

22Riemann (1826–1866) was a German mathematician, a pioneer of the theory of

Riemannian geometry.
23All these smaller intervals are closed in order to form the base of a rectangle.
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Choose an arbitrary point x ′j in the j
th interval � j . Associated

with the j th interval we have a rectangle of height f (x ′j ), width

x j = x j − x j−1 and area f (x ′j )
x j . We define the Riemann
integral of the given function f over [a, b ] as the limit of the sum
of the areas of all these rectangles as every rectangle becomes

vanishingly small, i.e.24

∫

[a,b]
f (x)dx := lim


x j→0

n
∑

j=1
f (x ′j )
x j . (4.29)

A function f is said to be Riemann integrable over [a, b ] if the
above limit exists. This concept of integration can be extended to

functions which are positive for some regions and negative for

some other regions of the interval. The integral then represents

the algebraic sum of the areas above and below the x-axis, with
the areas above the x-axis being positive and the areas below
the x-axis being negative.

(2) Another way to look at the problem is to construct two

rectangles with each interval, i.e., we construct a rectangle with

height f jmin which is the minimum value of f (x) in � j and

another rectanglewith height f jmax which is themaximumvalue

of f (x) in � j . We then consider the resulting upper and the

lower Riemann integrals defined by
∫ +

[a,b]
f (x)dx := lim


x j→0

n
∑

j=1
f jmax 
x j , (4.30)

∫ −

[a,b]
f (x)dx := lim


x j→0

n
∑

j=1
f jmin 
x j . (4.31)

When these two integrals exist and agree then we have a

unique value which can be defined as the Riemann integral of

f over [a, b ]. This agrees with the definition in Eq. (4.29) for
continuous functions.

24The limit can be proved to exist for continuous functions. The limit may not exist

for functions which are highly discontinuous and unbounded.
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(3) It is easy to see that a function is Riemann integrable over

[a, b ] if the function is continuous except at a finite number
of discontinuities. We can go further to show that a bounded

function is Riemann integrable over a finite interval [a, b ] if and
only if it has only a countable number of discontinuities.25

Riemann integral can be extended to include integrals of

functions over open intervals and many unbounded functions. For

example, consider an open interval (a, b). Let [a�, b�] be a sequence

of closed intervals inside (a, b) such that a� → a and b� → b as �→
∞. We can define an integral of f over the open interval (a, b) as the
limiting value of the sequence of integrals over the closed intervals

[a�, b� ]. An example is f = 1/
√
x . This function is bounded and

continuous in the interval [a > 0, b ] and hence integrable over [a >

0, b]. The integral over [ 0, b ] is obtained as the limit of the integral
over [a, b ] as a→ 0. A similar extension applies to integration over

infinite intervals, e.g., (a,∞), (−∞,∞), and integration of certain

unbounded functions. The resulting integrals are known as improper
Riemann integrals. Riemann integrals are related to differentiability
of functions. Let f (x) be a real-valued function defined on a closed
interval [a, b]. Then the fundamental theorem of calculus tells us that
if f (x) is continuous on [a, b] and if 26

F (x) = F (a)+
∫ x

a
f (x ′) dx ′, (4.32)

then F (x) is continuous and differentiable in the open interval (a, b)
with its derivative

F ′(x) := d f (x)
dx

= f (x) ∀ x ∈ (a, b). (4.33)

It follows that for all x ∈ (a, b) we have
F (x) = F (a)+

∫ x

a
F ′(x ′) dx ′, (4.34)

and

F (b)− F (a) =
∫ b

a
F ′(x ′) dx ′. (4.35)

25The phrase if and only if is widely used in mathematics. For example, the sentence
“Statement A is true if and only if statement B is true” means that if A is true then B
is true and if B is true then A is true.

26Kingman and Taylor p. 230.
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Riemann integrals turn out to be inadequate in many applica-

tions:27

(1) Many functions are not Riemann integrable.

(2) The integral is defined over an interval, not over a more general

set of real numbers such as a Borel set.

(3) Riemann integrals have difficulty with some convergence

problems, e.g., if a sequence of Riemann integrable functions

f�(x) converges to a limit function f (x) pointwise the limit
function may not be Riemann integrable.

A new theory of integration, the Lebesgue’s theory, is needed.28

4.2.2 Lebesgue Integrals

Consider a real-valued function f (x) on a closed and bounded

interval [a, b ] which is bounded, continuous and non-negative. Let
fmin and fmax be the greatest lower bound and lowest upper bound
of f on the interval [a, b ]. Again wewant to establish the area under
the curve y = f (x) in the x-y plane. The range of the function is
[ fmin, fmax].29 Let {y0, y1, y2, · · · , yn} be a set of points such that

y0 = fmin < y1 < y2 < · · · < yn = fmax. (4.36)

We can divide the range [ fmin, fmax] into n smaller intervals30

�′
1 = [y0, y1], �′

2 = [y1, y2], · · · , �′
n = [yn−1, yn]. (4.37)

These are intervals along the y-axis. The inverse image of �′
j under

the function f , i.e.,� j = f −1(�′
j ), is a subset of the x-axis. Let y

′
j be

an arbitrary value in�′
j . Wemay be tempted to construct a rectangle

of height y′j , width
� j and area y′j
� j . This is problematical since

� j may not in an interval and hence we may not have a natural

value for the width of � j . Being continuous f is a Borel function.
It follows that the inverse image � j under f is a Borel set. We

27Capiński and Kopp pp. 9–10. Kingman and Taylor p. 100.
28Kingman and Taylor pp. 124–126. Capiński and Kopp pp. 54–55. Roman Vol. 1

pp. 367–368.
29A continuous and bounded function defined on a closed and bounded interval

reaches its upper and lower bounds.
30For a diagrammatic illustration, see Roman Vol. 1 p. 368.
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can assign a numerical size to this Borel set using the Lebesgue

measureMl . In other words, we can identify the width of � j with

Ml(� j ), giving an area of y′jMl(� j ). This enables us to obtain an

approximation to the area under the curve y = f (x) to be
n
∑

j=1
y′jMl(� j ) =

n
∑

j=1
y′jMl

(

f −1(�′
j )
)

. (4.38)

The limit of the sum as the width 
�′
j of every intervals �′

j tends

to zero is defined to be the Lebesgue integral of f over the interval
[a, b ], provided the limit exists.31 The function is then said to be
Lebesgue-integrable over [a, b]. This integral is denoted by

∫

[a,b ]
f (x)dMl(x). (4.39)

The above idea of integration is easily extended to the integration

of discontinuous simple functions. Consider a simple function fs in
Eq. (4.6). The range of fs is the finite set {a�, � = 1, 2, · · · , n}. The
inverse image of a singleton set {a�} under fs is ��, i.e., f −1s ({a�}) =
��. In keeping with the spirit of Eq. (4.38) we can define the

Lebesgue integral of fs over the Borel set � to be the following

sum:32

∫

�

fs(x)dMl(x) :=
n
∑

�=1
a�Ml

(

f −1s ({a�})
)

=
n
∑

�=1
a�Ml(�l). (4.40)

For a piecewise-constant function as depicted in Fig. 3.1, this integral

agrees with its Riemann integral. Generally Lebesgue integrals of

continuous functions would agree with their Riemann integrals.

However, the Lebesgue method of integration can be applied to a

larger class of functions some of which are not Riemann integrable.

An example is the following extremely discontinuous function D
defined on the interval [0, 1] by

D(x) :=
{

1 if x is a rational number
0 if x is an irrational number

. (4.41)

31Roman Vol. 1 p. 367. Capiński and Kopp p. 73.
32Kingman and Taylor p. 110. See Eq. (4.43).
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This is known as the Dirichlet function. It is discontinuous at every
point in [0, 1]. Intuitively this is because there is an irrational

number next to every rational number. This function is not Riemann

integrable since its upper Riemann integral is 1 while its lower

Riemann integral is 0.33 To see if this function is Lebesgue integrable

over an interval [a, b ] we first observe that this function has a range
{0, 1}, i.e., the range consists of only two values 0 and 1. The inverse
image D−1({1}) of the singleton set {1} is the set of rational numbers
which is a set of measure zero, i.e., M�(D−1({1})) = 0, and the

inverse image D−1({0}) of the singleton set {0} is the set of irrational
numbers which has a measure b−a, i.e.,M�(D−1({0})) = b−a. The
sum in Eq. (4.40) is zero, i.e.,

1×Ml(D−1({1}))+ 0×Ml(D−1({0})) = 0. (4.42)

It follows that the Dirichlet function is Lebesgue integrable over any

interval with an integral of value 0.

An alternative approach to Lebesgue integration is to establish

such integrals in terms of simple functions, rather than through the

construction in Eq. (4.38):34

(1) Let fs be a simple function defined on the Borel set �, as given

in Eq. (4.6). Define the Lebesgue integral of fs over� to be

∫

�

fs(x)dMl(x) :=
n
∑

�=1
a� Ml(��). (4.43)

This can be extended to be over any Borel set�any ⊂ � by

∫

�any

fs(x)dMl(x) :=
n
∑

�=1
a� Ml(�� ∩�any). (4.44)

(2) Since any Borel function can be expressed as the limit of an

appropriate sequence of simple functions, a result mentioned

earlier in §4.1.1 in relation to simple functions, we can define
the Lebesgue integral of an arbitrary Borel function as the limit

33Byron-Fuller Vol. 1 p. 215.
34Kingman and Taylor pp. 110–114. Capiński and Kopp pp. 71–97. Roman Vol. 1

pp. 339, 359, 367.
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of the integrals of an appropriate sequence of simple functions.

We can also have functions f (x) integrable over the entire real
line, i.e., there are functions such that

∫

IR
f (x)dMl(x) (4.45)

is defined and has a finite value.

(3) If a function f is integrable over the entire real line its integral
over any given Borel set� is defined by

∫

�

f (x)dMl(x) :=
∫

IR
f (x)χ�(x) dMl(x), (4.46)

where χ�(x) is the characteristic function of the Borel set�.

Lebesgue integral is a generalisation of Riemann integral. If

a function f is Riemann integrable on [a, b ], then it can be

shown to be also Lebesgue integrable, and its Lebesgue integral

agrees with its Riemann integral. This happens in many practical

applications where the functions are well behaved, e.g., they may be

continuous or continuous almost everywhere with a finite number

of discontinuities. It is often convenient to write down the Lebesgue

integral in the form of a Riemann integral by replacing dMl(x) by
dx . Lebesgue integrals can be over an open interval or a half-open
interval. Since the Lebesgue measure of a single point is zero the

integral will give the same valuewhether it is over the closed interval

[a, b ] or half-open intervals [a, b ), (a, b ], (a, b ).35 We can write
down a Lebesgue integral over an interval, whether it is open, half-

open or closed as
∫ b

a
f (x)dMl(x). (4.47)

Lebesgue integrals overcome the problem of lack of convergence

of Riemann integrals. In other words, if an appropriate sequence of

functions tends to another function pointwise, then the Lebesgue

integrals of this sequence of functions would converge to the

Lebesgue integral of the limit function.36

35Kingman and Taylor p. 124. Burril p. 113.
36Roman Vol. 1 p. 359. Kingman and Taylor p. 125.
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A non-negative function f on [a, b ], i.e., f (x) ≥ 0 ∀x ∈ [a, b ],
with a zero Lebesgue integral over [a, b ] does not imply that f is the
zero function on [a, b ], i.e.,

∫

[a,b ]
f (x) dMl(x) = 0 �⇒ f (x) = 0 ∀x ∈ [a, b ]. (4.48)

The Dirichlet function is an example. Another example is the

function f in Eq. (4.13). This function would have a zero Lebesgue
integral over any interval [a, b ] containing the point x = 0,

since the values of f on a set of Lebesgue measure zero do

not contribute to the integral. In many applications which involve

Lebesgue integration we can simply identify such functions with the

zero function on [a, b ]. Similarly we can deem two function to be

equal even though they are only equal almost everywhere.

It should be pointed out that the notion of Lebesgue integrals

hinges on the partition of the range of the function f into intervals
�′
j and on the Lebesgue measure Ml(� j ) of the inverse image

� j = f −1(�′
j ) of each interval �

′
j in the range of the function. This

requires all those inverse images to be Borel sets since the Lebesgue

measure is defined only for Borel sets. It follows that Lebesgue

integrals are definable only for Borel functions.

Lebesgue integrals are also related the differentiability of

functions. The relationship is more complicated than those for

Riemann integrals given in Eq. (4.33). Let us first consider the

relationship between continuity and differentiability. As an example

consider the function f (x) = |x|. This function is continuous

everywhere. It is differentiable for x < 0 and x > 0 but it is not

differentiable at x = 0 since its derivatives from the left and from

the right of the point x = 0 are not equal, i.e., f ′(+0) = 1 �=
f ′(−0) = −1. The function f (x) = |x| is continuous but it is
differentiable only almost everywhere. A continuous function may

not be differentiable at all. There are continuous functions which

are nowhere differentiable.37 In order to be differentiable almost

everywhere a function needs to be more than just being continuous.

There is a class of functions defined below, known as absolutely
continuous functions, which are differentiable almost everywhere.

37Spiegel (1) p. 64. Rieze and Nagy pp. 3–4.
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For general applications where a function is not necessarily defined

on the real line we shall denote the independent variable by τ rather

than by x in what follows.

Definition 4.2.2(1)38 A real-valued function F defined on a closed
and bounded interval [a, b ] is said to be absolutely continuous
on [a, b ] if F is expressible in the form of a Lebesgue integral of a
Lebesgue-integrable function f defined on [a, b ], i.e., if

F (τ ) = F (a)+
∫ τ

a
f (τ ) dMl(τ ). (4.49)

A function F on IR is absolutely continuous if it is absolutely
continuous on every finite interval [a, b ] in IR. A complex-valued
function is absolutely continuous if and only if its real and imaginary
parts are both absolutely continuous.

If [a, b ] contains the origin, we can rewrite Eq. (4.49) as 39

F (τ ) = F (0)+
∫ τ

0

f (τ ) dMl(τ ). (4.50)

Absolutely continuous functions on IR+ and on IR− are defined

similarly.

For absolutely continuous functions, the following results can be

established:

R4.2.2(1) An absolutely continuous function is continuous. The

converse is not always true.

R4.2.2(2) An absolutely continuous function F (τ ) is differentiable
almost everywhere and its derivative F ′(τ ) is integrable. For the
function F (τ ) in Eq. (4.49) its derivative F ′(τ ) equal to f (τ ) almost
everywhere, i.e., we have40

F ′(τ ) = f (τ ) for almost every τ in [a, b ]. (4.51)

This is similar to the result given in Eq. (4.35). We can rewrite the

defining Eq. (4.49) as

F (τ ) = F (a)+
∫ τ

a
F ′(τ ) dMl(τ ), (4.52)

38Roman Vol. 2 p. 545. There are other equivalent definitions.
39Weidmann p. 379.
40Kingman and Taylor p. 232. Phillips E.R. pp. 267–269.
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or more conveniently as41

F (τ ) = F (a)+
∫ τ

a
F ′(τ ) dτ . (4.53)

This shows that an absolutely continuous function is the indefinite

integral of its derivative, a highly desirable relationship between

differentiation and integration. Note that f (τ ) in Eq. (4.49) is not
required to be continuous. The derivative F ′(τ ) is undefined at a
discontinuity of f (τ ). Consider the antisymmetric simple function
gas(τ ) in Eq. (4.8). Define a function G on [a, b ] by

G(τ ) := G(0)+
∫ τ

0

gas(τ ) dτ , G(0) ∈ IR (4.54)

⇒ G(τ ) = G(0)+ |τ |. (4.55)

This function is absolutely continuous. Equation (4.51) is satisfied.

The derivative G′(τ ) is undefined at τ = 0.42

R4.2.2(3) An absolutely continuous function on [a, b ] whose
derivative is zero almost everywhere is a constant. This result does

not necessarily apply if a function is continuous but not absolutely

continuous. There are functions, known as singularly continuous
functions, which violate this result. These are real-valued functions
on IR which are continuous and differentiable almost everywhere

with their derivatives being zero almost everywhere and yet they

are not a constant. These functions are difficult to visualise but their

existence can be proved.43 Fortunately one rarely encounters such

singular functions in physical applications.

R4.2.2(4) The sum and difference of two absolutely continuous

functions are absolutely continuous.

41Writing dMl (τ ) as dτ .
42Papoulis p. 94. We can artificially assign a value to G′(τ ) at τ = 0 so that G′(τ ) can
formally have a value for all τ . Such a value does not have the usual significance.

43Riesz and Nagy p. 48. Phillips E.R. p. 267. Kingman and Taylor pp. 49–50, p. 238. An

often quoted example of such singular functions is the Cantor function. The Cantor
function is a function defined on the interval [0, 1] with values rises monotonically

from 0 to 1. It is continuous and differentiable almost everywhere with their

derivatives being zero almost everywhere. Since it is not constant it is not absolutely

continuous.
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R4.2.2(5) Absolutely continuous functions are crucial in defining

differential operators as we shall see in §17.3 and §19.2.

Absolutely continuous functions are not the only functions which

are differentiable almost everywhere. Non-decreasing functions

introduced in Definition 3.6 (2) are also differentiable almost

everywhere. However, a non-decreasing function is not necessarily

continuous, a probability distribution function on a discrete sample

space depicted in Fig. 3.1 being an example. These functions have

properties given by the following theorem.

Theorem 4.2.2(1) on non-decreasing functions Let F be a real-
valued non-decreasing function defined on the interval [a, b ]. Thenwe
have the following:44

(1) The set of discontinuities of the function is countable.

(2) The function F is differentiable almost everywhere on [a, b ], i.e.,
its derivative F ′(τ ) exists almost everywhere.

(3) The derivative F ′(τ ) is Lebesgue integrable on [a, b ], with the
integral related to the function F by

F (b)− F (a) ≥
∫ b

a
F ′(τ ) dMl(τ ). (4.56)

As a result of Eq. (4.56) an arbitrary non-decreasing function is not

necessarily expressible as an integral in the form of Eq. (4.49). This

makes them unsuitable for defining differential operators.45

4.2.3 Riemann–Stieltjes Integrals

Riemann integrals are with respect to an independent variable. We

can also define integrals with respect to a function, such as a non-

decreasing function. The resulting integrals are known as Riemann–
Stieltjes integrals or simply Stieltjes integrals.46

44Phillips E.R. pp. 253–260.
45See §17.3 and §19.2.
46Rieze and Nagy p. 105. Smirnov pp. 4–8. See Smirnov pp. 22–23 for a physical
interpretation.
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Let [a, b ] be a closed and bounded interval. Let τ j be a set of

points within [a, b ] such that

a = τ0 < τ1 < τ2 < · · · < τn = b. (4.57)

We can divide [a, b ] into the following n smaller intervals:

[τ0, τ1], [τ1, τ2], [τ2, τ3], · · · , [τn−1, τn]. (4.58)

Let g(τ ) be a non-decreasing function defined on [a, b ] which is
not necessarily continuous, and let f (τ ) be a continuous function
defined on [a, b ]. Then the Riemann–Stieltjes integral of f (τ ) with
respect to the function g(τ ) over the interval [a, b ] is defined to be
the following limit:

lim

τ j→0

n
∑

j=1
f (τ ′j )
gj , (4.59)

where


gj := g(τ j )− g(τ j−1), τ ′j ∈ [τ j−1, τ j ]. (4.60)

Compared with Eq. (4.16) we may interpret 
gj as the increment
of g(τ ) over the subinterval [τ j−1, τ j ]. The sum involved here is

similar to the sum in Eq. (4.29) for Riemann integrals. The difference

here is the use of the increment 
gj of the function rather than the
increment 
τ j = τ j − τ j−1 of τ over the subinterval. The function

being non-decreasing ensures that the increment 
gj is positive,
just like
τ j . We shall denote the integral by

47

∫

[a,b ]
f (τ )dg(τ ) or

∫ b

a
f (τ )dg(τ ). (4.61)

A wider class of functions defined on an interval, known as

functions of bounded variation, which are functions expressible as
the difference of two non-decreasing functions,48 can also serve

as g(x). Moreover, we can also include integrands which are not
continuous.

47Parzen p. 233 for a definition over a half-open interval.
48Kingman and Taylor p. 226.
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The new integrals introduced here are more flexible and is

applicable to many situations, continuous or otherwise. It is

especially useful in dealing with discontinuities, hence rendering it

possible to have a more uniform treatment of both continuous and

discrete cases with many applications in probability theory.

The following examples illustrate the working of Riemann–

Stieltjes integrals when f (τ ) is continuous while g(τ ) is not

necessarily continuous.

E4.2.3(1) If g(τ ) is absolutely continuous on an interval [a, b ] the
Riemann–Stieltjes integral reduces to a Riemann integral, i.e., we

have
∫

[a,b ]
f (τ )dg(τ ) =

∫

[a,b ]
f (τ )

dg(τ )
dτ

dτ . (4.62)

When f (τ ) = 1 we have
∫

[a,b ]
dg(τ ) = g(b)− g(a). (4.63)

E4.2.3(2) Let gs(τ ) be the step function in Eq. (4.9). This function
has a discontinuous jump by an amount
g1 = g1−g0 at τ = a1. For
any continuous function f (τ ) and any interval [a, b ] containing a1,
we have

∫

[a,b ]
f (τ ) dgs(τ ) = lim


τ j→0

n
∑

j=1
f (τ ′j )

(

gs(τ j )− gs(τ j−1)
)

= f (a1)
g1, (4.64)

since gs(τ j )− gs(τ j−1) = 0 for every subinterval except for the one

containing a1.49

A special case is when gs is replaced by the unit step function gus
in Eq. (4.7). We get

∫

[a,b ]
f (τ ) dgus(τ ) = f (a1). (4.65)

E4.2.3(3) There is a link between the above Riemann–Stieltjes

integrals and Dirac delta functions.50 Equation (4.65) can be

49Smirnov p. 19. The partition points τ j in Eq. (4.57) should not be chosen to coincide

with the point of discontinuity of g(x).
50Dirac (1902–1984) was a British theoretical physicist considered to be one of

the most significant physicists of the 20th century. Dirac made fundamental

contributions to quantum theory, especially to relativistic quantum mechanics. He

shared the 1933 Nobel Prize in Physics with Schrödinger.
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symbolically written in terms of an integral of a Dirac delta function,

i.e.,51

∫

[a,b ]
f (τ ) dgus(τ ) =

∫ b

a
f (τ )δ(τ − a1)dτ . (4.66)

The expression in Eq. (4.64) can be similarly written, i.e.,
∫

[a,b ]
f (τ ) dgs(τ ) =

∫ b

a
f (τ )

(


g1δ(τ − a1)
)

dτ . (4.67)

One can go further with such symbolic manipulations by formally

differentiating the unit step function in Eq. (4.7) and expressing its

derivative as a Dirac delta function, i.e.,52

dgus(τ )
dτ

= δ(τ ). (4.68)

Following Eq. (4.62) we have
∫

[a,b ]
f (τ ) dgus(τ ) =

∫

[a,b ]
f (τ )

dgus(τ )
dτ

dτ

=
∫ b

a
f (τ )δ(τ − a1) dτ . (4.69)

We can similarly differentiate the step function gs(τ ) in Eq. (4.9) to
get

dgs(τ )
dτ

= 
g1 δ(τ − a1). (4.70)

Again following Eq. (4.62) we have

∫

[a,b ]
f (τ ) dgs(τ ) =

∫ b

a
f (τ )

dgs(τ )
dτ

dτ

=
∫ b

a
f (τ )

(


g1δ(τ − a1)
)

dτ . (4.71)

The discontinuity at τ = a1 effectively generates a Dirac delta

function when one differentiates the step function.

E4.2.3(4) The above result can be extended to non-decreasing

step functions gnd(τ ) in Eq. (4.10) with a finite set of discontinuities

51Zettili pp. 629–631 for properties of the Dirac delta function.
52Friedman pp. 141–142. Papoulis p. 97, p. 103.



56 Probability Theory for Continuous Variables

at τ = a1, a2, · · · , an within the interval [a, b ]. The function

undergoes a discontinuous jump in value by the amount 
g� =
g� − g�−1 at τ = a�. This is similar to the probability distribution

function depicted in Fig. 3.1. We have53

∫

[a,b ]
f (τ ) dgnd(τ ) =

n
∑

j=1
f (τ j )

(

gnd(τ j )− gnd(τ j−1)
)

= f (a1)
g1 + f (a2)
g2 + · · · . (4.72)

since gnd(τ j ) − gnd(τ j−1) = 0 for all subintervals except for the

ones containing a value of a�. The integration process is seen to be

equivalent to

(1) picking up the value f (a�) of the integrand and the correspond-

ing increment 
g� at the discontinuity of gnd(τ ) at τ = a�,

(2) multiplying them together to form the product f (a�)
g�, and

(3) adding the products f (a�)
g� at all the discontinuities.

E4.2.3(5) The integral in Eq. (4.72) can be written in terms of

Dirac delta functions, i.e.,

∫

[a,b ]
f (τ ) dgnd(τ ) =

∫ b

a
f (τ )

dgnd(τ )
dτ

dτ

=
∫ b

a
f (τ )

(


g1δ(τ − a1)

+
g2δ(τ − a2)+ · · ·
)

dτ , (4.73)

with the derivative of gnd(τ ) formally written as

dgnd(τ )
dτ

= 
g1 δ(τ − a1)+
g2 δ(τ − a2)+ · · · . (4.74)

Some comments are required to clarify the situation when g(x)
is discontinuous. To avoid ambiguity partition points τ j in Eq. (4.57)

which divide the interval [a, b ] should not be chosen to coincide
with the points of discontinuity of g(x). In example E4.2.3(2) we
choose τ j �= a1. A similar condition applies to example E4.2.3(3).
A complication arises when g(x) is discontinuous the end points a

53Smirnov pp. 6–7. Here τ1 = a1 and τ0 = a.
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and b of the interval, since we have τ0 = a and τn = b. The integral
then has to take the jumps of g(x) at a and b into consideration.54

4.2.4 Lebesgue–Stieltjes Integrals

This is an extension of the idea of Lebesgue integration to

form integrals with respect to a Lebesgue–Stieltjes measure Mls,g

generated by a non-decreasing and right continuous function g(τ )
such as a distribution function, i.e., by replacing the Lebesgue

measureMl in Eq. (4.38) by the Lebesgue–StieltjesmeasureMls,g.
55

We denote such an integral of f over a closed and bounded interval
[a, b ] by

∫

[a,b ]
f (τ )dMls,g(τ ). (4.75)

Similar to Lebesgue integrals a Lebesgue–Stieltjes integral can be

defined over any Borel set � in the same way with the resulting

integral written as
∫

�

f (τ )dMls,g(τ ). (4.76)

In many applications Lebesgue–Stieltjes integrals agree with the

corresponding Riemann–Stieltjes integrable.56 This makes it easier

to evaluation the Lebesgue–Stieltjes integrals. The examples of

Riemann–Stieltjes integrals in the preceding section which remain

valid as Lebesgue–Stieltjes integrals serve to illustrate this. It is often

convenient to rewrite the integral simply as
∫

�

f (τ )dg(τ ). (4.77)

Unlike Lebesgue integrals a Lebesgue–Stieltjes integral over a closed

interval [a, b ] may differ from the integral over (a, b ), or [a, b ), or
(a, b ] due to possible discontinuities of the function g(τ ) at a and b.
It would then be ambiguous to use the notation in Eqs. (4.47) and

(4.61) for the limits of integration.57

54Smirnov pp. 6–7, p. 19.
55Roman Vol. 1 p. 367.
56Roman Vol. 1 p. 370. Care has to be taken when g(τ ) is discontinuous at a and b.
57Kingman and Taylor p. 125. Pitt p. 31. When comparing a Lebesgue–Stieltjes

integral with the corresponding Riemann–Stieltjes the discontinuities of g(τ ) at a
and b should be taken into account.
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4.3 Probability Distributions and Measures

4.3.1 Probability Distribution Functions

We have introduced probability measures in §4.1.2 as a means

of describing probability distributions on a continuous sample

space. The idea is to assign probabilities to events rather than

to individual outcomes.58 Another method would be to make use

of the concept of probability distribution functions introduced in

Definition 3.6(1). We can define probability distribution functions

in terms of distribution functions introduced in Definition 3.6(2).

Definition 4.3.1(1)

(1) A distribution function is referred to as a probability distri-
bution function when it is applied to describe a probability
distribution.

(2) A probability distribution function is said to be

(a) discrete, denoted by Fd(τ ), if it is piecewise-constant as
shown in Fig. 3.1 with possibly countably infinite number of
discontinuities,

(b) absolutely continuous, denoted by Fac(τ ), if it is an absolutely
continuous function of τ , and

(c) singularly continuous, denoted by Fsc(τ ), if it is a singularly
continuous function of τ .

(3) If a probability distribution function F(τ ) is differentiable with
respect to τ , then its derivative w(τ ) = dF(τ )/dτ is called a
probability density function.

For an absolutely continuous probability distribution function

Fac(τ ), a probability density function w exists almost everywhere.

An absolutely continuous probability distribution function and its

58A general event contains many outcomes, e.g., it may contain a continuous set of

outcomes. Such an event would corresponds to a Borel set � of IR . An elementary
event which contains a single outcome τ0 corresponds to the singleton set {τ0}. As
seen in Eq. (4.87) the probability of an elementary event, i.e., an individual outcome,

is zero for continuous sample spaces.
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probability density function are related by Eq. (4.53), i.e.,

Fac(τ ) =
∫ τ

−∞
w(τ ) dτ . (4.78)

It can be shown that any probability distribution function F(τ )
can be decomposed into a combination of a discrete one Fd(τ ), an

absolutely continuous one Fac(τ ) and a singularly continuous one

Fac(τ ), i.e., we have
59

F(τ ) = c1Fd(τ )+ c2Fac(τ )+ c3Fsc(τ ), (4.79)

where c1, c2, c3 ∈ [0, 1] and c1 + c2 + c3 = 1. From now on

we shall ignore singularly continuous probability distributions,

since in the great majority of practical applications we do not

encounter singular probability distribution functions. We shall

call absolutely continuous probability distribution simply as a

continuous probability distribution for short.

Continuous probability distribution functions are often given in

terms of their density functions. For example, we have the Gaussian
distribution density function60

wG(τ ) := 1√
2π a2

e−(τ−b)
2/2a2 , a, b ∈ IR . (4.80)

Another example is the uniform distribution given by the density
function

wU(τ ) :=
{

(b− a)−1 a ≤ τ ≤ b
0 τ /∈ [a, b] . (4.81)

The expectation value and uncertainty defined in §4.3.3 may not
exist, i.e., they may be infinite. An example is the Cauchy distribution
density function61

wC(τ ) := 1

π (1+ τ 2)
. (4.82)

The following integrals
∫ 0

−∞
τwC(τ ) dτ and

∫ ∞

0

τwC(τ ) dτ (4.83)

59Parzen p. 174. Kingman and Taylor p. 294.
60Lipschutz pp. 106–107. Gauss (1777–1855) was a German mathematician.
61Kingman and Taylor p. 310. Cauchy (1789–1857) was a French mathematician and

a pioneer of analysis.
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diverge and it is not possible to give the integral of τwC(τ ) over the
real line an unambiguous finite value.62

4.3.2 Distribution Functions and Measures

Probability distribution functions are related one-to-one to prob-

ability measures:63 A given probability measure Mp generates a

probability distribution function F by

F(τ ) :=Mp

(

(−∞, τ ]
)

. (4.84)

Conversely, a given probability distribution function F(τ ) can
generate a probability measure. This is done by realizing that

F(τ ), being non-decreasing and right continuous, can generate a
Lebesgue–Stieltjes measure Mls,F by Eqs. (4.16) and (4.17). The

resulting measures possess the following properties:

P4.3.2(1) Mls,F is a probability measure since it has the charac-

teristic feature of probability measures in Eq. (4.24), i.e.,

Mls,F (IR) = F(∞)− F(−∞) = 1. (4.85)

P4.3.2(2) For a singleton set {τ0}, we have

Mls,F
({τ0}

) = F(τ0)− F(τ0 − 0). (4.86)

This yields the value of 0 if F is continuous at τ0. It follows that for

a continuous sample space the probability of an elementary event is

zero, i.e.,

Mls,F
({τ0}

) = 0. (4.87)

If the probability of an individual outcome is not zero the total

probability, i.e.,Mls,F
({IR}) would add up to be infinite. The physics

of this mathematical result will be discussed at the end of this

subsection.

62The odd integrand does not guarantee a zero integral here because of divergence of

the integrals in Eq. (4.83) above.
63Kingman and Taylor p. 291. Papoulis pp. 92–98.
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P4.3.2(3) For intervals the values of themeasure are given by Eqs.

(4.18) to (4.23), e.g.,

Mls,F
(

(τ1, τ2]
) = F(τ2)− F(τ1). (4.88)

P4.3.2(4) For a general Borel set �, we have, following Eq.

(4.76),64

Mls,F
(

�
) =

∫

�

dMls,F =
∫

�

dF(τ ). (4.89)

P4.3.2(5) A general probability distribution function is of the form

given in Eq. (4.79). The function can be discrete or continuous, i.e.,

the treatment in terms of probability distribution functions and

measures apply both to discrete and continuous cases.65

Probability distribution functions and their associated measures

can describe the probability distribution of a statistical experiment

with the following interpretation:

(1) The value F(τ ) is the probability of occurrence of the event
corresponding to the interval (−∞, τ ], i.e., the probability of an

outcome lying in the range (−∞, τ ]. In other words, F(τ ) is the
probability of an outcome being less than or equal to τ .

(2) The valueMls,F
(

(τ1, τ2]
)

is the probability of occurrence of the

event corresponding to the interval (τ1, τ2], i.e., the probability

of an outcome lying in the interval (τ1, τ2].

(3) For a continuous distribution function, the probability of an
individual outcome is zero. We can appreciate the physics of
such a result. Any physical measurementwould incur errors.We

may be able to render the measurement errors small enough

to enable us to distinguish a discrete set of values. But we

will not be able to single out a precise value in a continuum.

This corresponds to having a zero probability of identifying an

individual outcome in a continuous sample space.

64Kingman and Taylor p. 291.
65We ignore singularly continuous functions. A continuous function is meant to be

absolutely continuous.
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The mathematics required for a rigorous treatment of observ-

ables of a quantum system having a continuous set of values turns

out to be complicated. In Part II on the mathematical framework for

quantummechanics, we shall present themathematics necessary for

the treatment of such observables in quantummechanics.

4.3.3 Expectation Values and Uncertainties

Associated with a probability distribution function F , we can

define the expectation value, variance and uncertainty in terms of

Lebesgue–Stieltjes integrals, provided the integrals exist.

(1) The expectation value E(F) is defined by

E(F) =
∫

IR
τ dF(τ ). (4.90)

(2) The variance Var (F) is defined by

Var (F) =
∫

IR

(

τ − E(F)
)2

dF(τ ). (4.91)

This can be evaluated in terms of

Var (F) =
∫

IR
τ 2 dF(τ )− E(F)2. (4.92)

(3) The uncertainty 
(F) is defined to be the square root of the
variance, i.e.,


(F) =
√

Var (F). (4.93)

For a continuous probability distribution function Fac, the

integrals for the expectation value and for the variance can be

calculated in terms of its associated probability density function

w(τ ), i.e., we have

E(Fac) =
∫

IR
τ w(τ ) dτ . (4.94)

Var (Fac) =
∫

IR

(

τ − E(Fac)
)2

w(τ ) dτ

=
∫

IR
τ 2w(τ ) dτ − E(Fac)

2, (4.95)


(Fac) =
√

Var (Fac). (4.96)
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For a discrete probability distribution function Fd given by Eq.

(3.38) with a corresponding probability mass function ℘, the

integrals for the expectation value and for the variance become a

sum, i.e., we have66

E(Fd) =
n
∑

�=1
τ� ℘(a�). (4.97)

Var (Fd) =
n
∑

�=1

(

τ� − E(Fd)
)2

℘(a�)

=
n
∑

�=1
τ 2� ℘(a�)− E(Fd)

2, (4.98)


(Fd) =
√

Var (Fd). (4.99)

These results agree with those in §3.5.
For an arbitrary probability distribution function, the expec-

tation value may not exist, i.e., the integral may diverge, and if

it exists the variance may not exist. For physical applications we

would restrict ourselves to probability distribution functions with

finite expectation values and finite variances. We shall return to this

important restriction in our discussion of quantum mechanics in

Part III.

Exercises and Problems

Q4(1) For the characteristic function χ� show that the inverse

image of every Borel set is a Borel set.

Q4(2) Prove Eq. (4.12).

Q4(3) Show that the Lebesgue measure of the set of irrational

numbers in [a, b ] is equal to b− a.
Q4(4) Prove Eqs. (4.18) to (4.23).

66This is due to the results in E4.2.3(4). In our applications, Lebesgue–Stieltjes

integrals agree with Riemann–Stieltjes integrals in calculating expectation values,

variances and uncertainties.
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Q4(5) Explain the main differences between Riemann and

Lebesgue integrals.

Q4(6) Explain why Lebesgue integrals are only defined for Borel
functions.

Q4(7) Explain the main differences between Riemann–Stieltjes

and Lebesgue–Stieltjes integrals.

Q4(8) Explain themeaning of Eq. (4.68)which expresses theDirac
delta function δ(τ ) formally as the derivative of the unit

step function gus(τ )

Q4(9) Show that the coefficients c1, c2, c3 in Eq. (4.79) must

satisfy the condition c1 + c2 + c3 = 1.

Q4(10) Show that expectation value is additive in the sense that for
the distribution function in Eq. (4.79) we have

E(c1Fd + c2Fac + c3Fsc)

= c1E(Fd)+ c2E(Fac)+ c3E(Fsc). (4.100)

Q4(11) Show that the Gaussian probability distribution function

given by the density function in Eq. (4.80) by

FG(τ ) =
∫ τ

−∞
wG(τ ) dτ (4.101)

satisfies the defining properties of probability distribution

functions. Verify that the expectation value and the uncer-

tainty are given respectively by

E(FG) = b and 
(FG) = a. (4.102)

Q4(12) Find the probability distribution function FU(τ ) given by

the density function wU(τ ) in Eq. (4.81).

Q4(13) Discuss themathematical and physical differences between
discrete and continuous probability distributions.



Chapter 5

QuantumMechanical Systems

Quantum systems range from the traditional microscopic ones

like electron and atoms to macroscopic ones like superconductors.

There are also quantum fields. In this book, we shall study

mainly traditional non-relativistic quantum systems. Some general

properties of these systems are set out in this chapter.

5.1 Experimental Measurability

Although not exclusively so quantum systems are typically micro-

scopic and beyond the direct reach of our senses. As a result, we do

not have any intuition as to how they would behave. Sophisticated

experiments have to be performed to study their behaviour. We

learn from these experiments that quantum systems may behave

very differently from classical systems. Our intuition gained from

our knowledge of classical objects may ormay not apply. So, we have

to treat with great caution any argument based on intuition. This is a

characteristic feature of modern physics. Special Relativity is full of

examples of this.

Without intuition we have to rely on experiments. Meaningful

things to talk about are those which can be experimentally
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observed. The phenomenon of electron diffraction shows that

even our classical intuition of particles and waves does not apply.

Many intuitively defined quantities in classical mechanics become

meaningless when applied to electrons. Take the example of the

concept of instantaneous speed v = dx/dt for a particle moving to
the right along the x-axis. To ascertain if this is ameaningful quantity
of an electron we have to see if the defining expression dx/dt is
measurable. For a classical particle, the measurement of dx/dt can
be obtained in the following manner:

(1) Measure position x at time t.
(2) Measure position x +
x1 at time t +
t1.
(3) Take the ratio v1 = 
x1/
t1.
(4) Prepare the particle in the same state in position x again. Repeat

the measurements above with a smaller time interval 
t2 <


t1, and a smaller displacement 
x2 to obtain a ratio v2 =

x2/
t2.

(5) Repeat the above procedure with an even smaller time interval


t3 and an even smaller displacement 
x3 to obtain the ratio
v3 = 
x3/
t3 and so on to obtain a sequence of such ratios vn
with decreasing time interval
tn.

(6) We say that the particle in the given state at time t has an
instantaneous speed v if the sequence vn = 
xn/
tn tends to
a limiting value v as
tn → 0 and we write v = dx/dt.

For a classical particle, such a sequence does converge to give a

value for the instantaneous velocity with arbitrary accuracy.1 For

a quantum particle, the situation is entirely different. If we try to

reduce 
xn by reducing 
tn we are in effect trying to impose a
smaller spatial confinement of the particle. As we know from the

uncertainty relation in quantum mechanics, this would give rise to

an increase in uncertainty in the momentum. In other words, the

motion of the particle becomesmore erratic as one tries to reduce its

spatial uncertainty. The result is that the ratio vn = 
xn/
tn will be
erratic andwill not converge. In otherwords, we cannotmeasure the

1Even though we cannot actually obtain the limiting value in an experiment we can

approach the limiting value with arbitrary accuracy.
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instantaneous velocity. It is therefore not sensible to base a theory

on such quantities.2

5.2 Observable Values

It is accepted that a quantum system, say an electron, has an

objective existence. At the outset we assume that a measurement

operation exists to produce a value of any given observable of the

system. This assumption is built into the concept of observables

which are physical quantities which can be measured to produce

a value. An observable of a classical system in an arbitrary state

possesses a value at any instance of time. If we wish to know

what this value is, we can perform a measurement which will

reveal the value of the observable at that time. A measurement can
be executed within a short period of time without disturbing the

system significantly so that the value revealed by a measurement

is the same as the value the observable has before, during and
after the measurement with arbitrary accuracy. We say that classical
observables have objective values independent of measurement.

The situation for quantum systems is fundamentally different.

There are two cases here:

Special case This is similar to the classical situation. The mea-

sured value of an observable of a quantum system in certain states

is the value the observable possessed before the measurement. The
measurement serves only to reveal the value.

General case A quantum observable may not have a value in

an arbitrary state, i.e., a measured value does not tell us what

value the observable possessed before the measurement. It does not
even tell us whether the observable has a value at all before the
measurement.3 As an example consider an electron. The state of

the election is describable by a wave function. The wave function

can only give us the probability distribution of possible positions

of the electron. It does not determine a definite position. In other

2Landau and Lifshitz Chapter 1 §1.
3Classical continuous systems discussed in §2.2 have a similar property.
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words, the electron described by a wave function does not have a

definite position. A position measurement will yield a position of

the electron, but this position is not what the electron had before

the measurement. A repetition of the measurement for the electron

described by the same wave function may yield a different position.

Since a quantum particle in a general state may not have an

objective value of a given observable independent of measurement
it is useful to distinguish two kinds of values:

Possessed values For a given quantum system, it may well be that

there is a state φs in which a given observable A has a definite value
a.4 We say that observable A possesses the value a in state φs , or

state φs determines the value a of observable A. When an observable
possesses a value in a given state this value can be revealed by

measurement.

Greek letters are widely used in quantum mechanics. They are

often used to mean different things. A Greek letter could mean a

function, a vector or a state. For clarity we shall use a letter on

its own or with an independent variable, e.g., φ or φ(τ ), to mean a

function. We shall attach a superscript s to a letter, e.g., φs , to signify
a state. Finally we shall attach an overhead arrow, i.e., �φ, when it is
used to denote a vector.

Measured values A value of an observable obtained by a

measurement is called ameasured value. If an observable possesses
a value in a given state, then themeasured valuewould coincidewith

the possessed value. When an observable does not possess a value

in a given state ameasurement would still produce a value. However,

a repetition of the measurement in the same state would generally

produce a different value. The measured value is obviously not the

value of the observable before the measurement. Furthermore such

a measurement would significantly disturb the state. The state after

the measurement can be quite different from the initial state. An

example is an electron’s position mentioned earlier. Such a change

of state presents a host of problems loosely known as measurement
problemswhich is a source of great controversy in quantum theory.5

4There may be more than one state in which observable A has the value a.
5See §34.7 for a discussion of the measurement problem.
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5.3 Observables, States and Probabilistic
Behaviour

We shall discuss some general properties of observables and

states of quantum systems in this section. These properties are

summarised into four statements, i.e., QMP5.3(1) to QMP5.3(4)

given below.

QMP5.3(1) Not all observables are simultaneously measurable.

This statement means that we cannot make simultaneous measure-

ments in order to obtain a value for every observable of the system at

the same time. In fact we cannot make simultaneous measurements

of two arbitrary observables to obtain their values at the same

time. For example, we cannot simultaneously measure the x and
z components of the spin angular momentum of a spin- 1

2
particle.

Observables which can be simultaneously measured are said to

be compatible and observables which cannot be simultaneously
measured in any state are said to be incompatible.6

Starting from any chosen observable A, we may be able to find
another observable A′ which is compatible with A but independent
of A. If we continue the process we will come to a maximum set

Acc = {A , A′, A′′, · · · } of mutually compatible observables. Such
a set is called a complete set of compatible observables of the
system, or a complete set of observables for short, and it is

not unique. For the spatial motion of a spinless particle the x , y,
and z components of its linear momentum form a complete set of

observables. An alternative set would be the x , y, and z components
of its position vector. Starting with a different initial observable we

may well end up with a different complete set.

A complete set can contain only one observable. Two familiar

examples are

E5.3(1) For one-dimensional motion along the x-axis, e.g., a
one-dimensional harmonic oscillator, the position x constitutes a
complete set of observables.7

6See Definition 28.4.1(1) for a more detailed definition of these terms.
7The harmonic oscillator is discussed in detail in Chapter 35.
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E5.3(2) For electron spin the z-component spin Sz constitutes
a complete set of spin observables. The x component of spin

Sx is incompatible with Sz, i.e., Sx and Sz cannot be measured

simultaneously in any state. Once we have a measured value of Sz
we cannot demand a simultaneous value of Sx . The y components of
spin Sy is also incompatible with Sz.

Some observables possess only a discrete set of values. We call

them discrete observables. In contrast, observables possessing

a continuous set of values are called continuous observables.
There are also observables having part continuous and part

discrete values. Continuous observables are more complicated, both

physically and mathematically. The discussion on Eq. (4.87) tells

us that there is zero probability of a measurement of a continuous

observable producing an exact value. Generally a measurement

would produce a value in an interval. This would make it difficult

to associate states with individual measured values. For simplicity

and for definiteness we shall confine our discussion to discrete

observables in what follows.

A set of simultaneously measured values a, a′, a′′, · · · of a

complete setAcc of discrete observables at any particular instant of

time t contain a maximum amount of information about the system

at t. We can use this information to characterise the state φsa,a′ , . . . of

the system at that instant of time. In other words, when the system

is in state φsa,a′ , . . . observables A , A
′, A′′, · · · possess simultaneous

values a, a′, a′′ , · · · . A measurement of A in that state would yield
the value a, a measurement of A′ in that state would yield the value
a′ and so on. We can re-phrase QMP5.3(1) into the statement that

there does not exist a state in which all observables can possess a
value.

On the other hand the nature of states as defined above does

mean that there are states in which a given observable possesses

a value. We can illustrate the situation with the case of electron

spin. Suppose the z-component spin Sz is measured resulting in the
value �/2. The z-component spin being a complete set this value
determines a state αsz for the electron spin. A value −�/2 of Sz
would determine a different state βsz . Conversely the electron in state
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αsz possesses the value �/2 of Sz and it would possesses the value
−�/2 of Sz in state βsz . We can summarise the above discussion in a

statement.

QMP5.3(2)8 For a discrete observable, there are states in which
the observable possesses a definite value, which can be revealed by
measurement, and conversely each measured value would correspond
to one or more states.

While the state φsa,a′ , . . . determines the values of observables in

a complete set Acc it cannot determine the value of an observable

which is incompatible with observables in the complete set Acc. To

be specific consider a discrete observable B which is incompatible
with observables in the complete set Acc. Taken on its own B
has a set of values b1, b2, · · · . However, it is impossible to have
a simultaneous assignment of a set of values a, a′, a′′, · · · for the
observables in Acc and a value for B . This means that a state φsa,a′ , . . .
determined by a set of values a, a′, a′′ , · · · of Acc cannot determine

a definite value of B . Such a state is said to be incompatible with
observable B and vice versa. In contrast the state φsa,a′ , ··· is said to be
compatiblewith observables inAcc.

For electron spin the state αsz determined by the value �/2 of Sz
is compatible with Sz. Since Sz is incompatible with Sx the spin state
αsz is incompatible with Sx , i.e., the state αsz does not determine the

value of Sx . This means that a measurement of Sx in state αsz may

yield the value �/2 but a repetition of the measurement in the same

state αsz may result in the value−�/2.
Let us examine generally what can happen if we make a

measurement of an observable B when the system is in state φsa,a′ , . . .
incompatible with B:

(1) In a single measurement we will get a value, say b1, of B . A
repetition of the measurement with the system again in state

φsa,a′ , . . . may well produce a different value, say b2, since the

8Observables satisfying this property are said to be sharp. It is possible to extend
the family of observables to include unsharp observables which do not satisfy

this property (see Busch pp. 9–10, Wan p. 404). In standard quantum theory, all

observables are assumed to be sharp.
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state φsa,a′ , . . . cannot tell us that a measurement would definitely

produce the value b1.

(2) This unpredictability turns out to obey the probabilistic

theory described in Chapters 3 and 4. The reason for this

unpredictability is not due to a lack of knowledge of the system.

It is a fundamental nature of quantum systems that we simply

cannot predict with certainty the outcome of any individual

measurement of an arbitrary observable in a given state. A

state can only predict probabilistically the measured values of

an arbitrary observables. We call such behaviour intrinsically
probabilistic.

The above discussion is summarised in the following statement:

QMP5.3(3) A state cannot determine with certainty the value of
an arbitrary observable. A measurement would generate a value
which may not be the value possessed by the observable before
the measurement. However, a state can predict the probability
distribution of the measured values of an arbitrary observable.

We can use electron spin to illustrate the intrinsic probabilistic

behaviour of quantum systems. The spin state αsz does not determine

the value of Sx but it can determine the probability distribution of
the values of Sx , i.e., there will be a probability of 1/2 of a measured
value of Sx to be �/2 and a probability of 1/2 of a measured value of
Sx to be−�/2.9

It is not all chaotic. As in a statistical experiment we can

determine the expectation value of an arbitrary observable in a

given state. The last statement in QMP5.3(3) is so characteristic

of the properties of states that it can be reversed to produce a

general definition of a quantum states as a probability measure on

an appropriate set of basic observables known as propositions from
which a formulation of quantum theory, known as quantum logic
approach, can be established.10

While on the subject of states we should discuss briefly as to

how one would prepare a state. Suppose we measure observables

9See Chapter 14 for more details.
10Mackey pp. 56–81, Jauch pp. 67–110. Beltrametti and Gassinelli Chapter 10.
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A , A′, A′′, . . . in a complete set Acc and obtain a set of values

a, a′, a′′, · · · . This set of values would characterise a state φsa,a′ , ···.
Intuitively we would hope that the state of the system immediately

after the measurement would be φsa,a′ , ···, independent of the state
before the measurement. As a result, the observables A , A′, A′′, . . .
would possess the values a, a′, a′′ · · · immediately after the mea-
surement. In many cases this turns out to be true. Measurements

satisfying this property are calledmeasurements of the first kind
or an idealmeasurements.11 Formeasurements of this kindwe can
conclude that an immediate repetition of the measurement would

yield the same results. Measurement of the first kind can serve to

prepare a quantum state, e.g., the spin state αsz can be prepared in

this way. However, quantum measurements are not all of this kind,

i.e., the state immediately after the measurement may not be the

state corresponding to themeasured values of the observables being

measured. In the extreme case a quantum system, e.g., a photon,

can even be destroyed after its detection.12 Generally we do have

to distinguish measurement process and state preparation process.

A great deal of research has gone into various theories and models

of measurement and state preparation. Here we shall assume that

physical processes exist in principle to prepare a system in any

desired states.13

Finally we should point out that quantum states obey what is

known as the superposition principle:

QMP5.3(4) It is possible to superpose two or more quantum states
to produce a new state which contains more information than the
individual constituent states taken separately can provide.

For example, the expectation value in this new state of an

arbitrary observable is not equal to the sum of the expectation

values of the observable in each individual constituent state. Instead

it is equal to the sum plus additional terms. These additional terms

would depend on the relationship between different constituent

11Isham p. 134. Jauch p. 165.
12Jauch p. 164. Isham p. 134.
13SeeWan §3.5 and §3.6 for model theories.
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states and the observable. These terms are referred to correlation
or interference terms.

5.4 Structure of QuantumMechanics

The general structure of physical theories set out before should

apply here. This means that there should be similarities to the

structure of classical mechanics as well as differences:

1. Basic mathematical framework14 The starting point is the choice

an appropriate state space for a given quantum system. Following

classical mechanics one expect the state space to be a vector space.

However, wewould expect this vector space to be different from that

for a classical mechanical system.

2. Description of states Quantum states are described by elements

of the state space, i.e., by vectors since the state space is a vector

space. These vectors can be added to produce new vectors. This

may provide the combination of states required by the superposition

principle.

3. Description of observables Unlike classical mechanics observ-

ables of a quantum system cannot all be described by real-valued

functions of the state. If this were the case a state would deter-

mine the values of all the observables, contradicting fundamental

properties QMP5.3(1) and QMP5.3(3) of quantum systems stated

in the preceding section. We have to explore all the mathematical

quantities associatedwith the state space to find something suitable.

The quantities chosen to represent observables must give us

(1) the correct values of the observables, and

(2) together with the state these quantities must be able to

produce the probability distributions of measured values of all

observables in accordance with QMP5.3(3).

14In the quantum logic approach we would start with a mathematical structure

of a suitably chosen set of observables rather than starting with a mathematical

structure for the state space.
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4. Dynamics We expect the time evolution of a quantum system

to involve the time dependence of the state of the system. Since

observables are no longer functions of the state we may well have to

examine possible time dependence of observables separately from

that of the state.

Exercises and Problems

Q5(1) Explain why the values of a classical observable are deemed
to be objective while the values of a quantum observable are

generally regarded as non-objective.

Q5(2) Give a brief account of the relationship between states

and possessed values of discrete observables of a quantum

system.

Q5(3) Explain why quantum observables cannot be related to the

state in the same way kinematic observables of a classical

system are related to the state.

Q5(4) Discuss the effect of QMP5.3(1) on the specification of states.

Q5(5) Explain what is meant by the behaviour of quantum systems

being intrinsically probabilistic.
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Chapter 6

Three-Dimensional Real Vectors

Vectors are employed extensively in physics. Conceptually we all

know what a vector is: a vector is a quantity which has a length
(magnitude or norm) as well as a direction. Vectors are denoted by
letters with an overhead arrow, e.g., �u, �v , �w. We can tell in practice
which quantity is a vector and which is not. In contrast to vectors,

our familiar real or complex numbers are called scalars.
We know the usefulness of vectors. It is hard to imagine how we

would formulate classical mechanics and electromagnetismwithout

vectors. Here we are talking about three-dimensional vectors which

corresponds to the three-dimensional physical space we live in.

These vectors have three real components along the x , y and z
axes of a Cartesian coordinate system and they form the basis of

Euclidean geometry.1 We shall denote the set of all these three-

dimensional vectors by �IE 3. The concept of three-dimensional

vectors can be generalised to produce higher dimensional vectors

to formulate modern quantum physics. We want these higher

dimensional vectors to possess many of the properties of three-

dimensional vectors. So, we shall start with a summary of the prop-

erties of three-dimensional vectors in this chapter. We shall study

1Euclid (300 BC) was a Greek mathematician in ancient times, well known for his

work on geometry.
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operations on these vectors and their mathematical representations

as operators in Chapters 8 and 9. This study is preceded by a chapter

on matrices which provides the intuition for the various concepts

and operations of vectors. In Chapter 10 we shall examine how it

is possible to generate probability distributions in terms of vectors

and operators in order to gain an insight into the mathematical

framework for the formulation of quantummechanics.

We shall summarise the properties of three-dimensional vectors

in §6.1, §6.2, §6.3 and §6.4. The discussion is organised in a way that
can be directly generalised to real and complex vectors in higher as

well as lower dimensions. Chapters 11 to 12 will be devoted to a

study of these generalisations.

6.1 Properties 1: Algebraic Properties

6.1.1 Addition

The sum �u + �v of every pair of vectors �u, �v in �IE 3 is defined by
the parallelogram law to be another vector in �IE 3. This addition
operation possesses the following properties:

A6.1.1(1) Commutative �u + �v = �v + �u.
A6.1.1(2) Associative (�u + �v )+ �w = �u + (�v + �w).
A6.1.1(3) Zero vector There is a unique vector in �IE 3, the zero

vector �0, such that �u + �0 = �u ∀�u ∈ �IE 3.
A6.1.1(4) Inverse Each �u ∈ IE 3 possesses a unique inverse

�u −1 such that �u + �u −1 = �0.

The zero vector �0 is often denoted by 0 without an overhead arrow.

6.1.2 Scalar Multiplication

For all �u, �v ∈ �IE 3 and a, b ∈ IR the products a�v and b�v are defined
as vectors in �IE 3. This scalar multiplication possesses the following
properties:

SM6.1.2(1) Distributive a(�u + �v ) = a�u + a�v ,
(a + b)�u = a�u + b�u.

SM6.1.2(2) Associative (ab)�u = a(b�v ).
SM6.1.2(3) Multiplication by 1 1 �u = �u.
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The following results follow:

�v1 + �u = �v2 + �u ⇒ �v1 = �v2 ; (6.1)

0 �u = �0, a �0 = �0, (6.2)

�u −1 = (−1) �u. (6.3)

We can equate the inverse �u −1 with−�u, i.e., we have
�u − �u = �u + (−1)�u = �u + �u −1 = �0. (6.4)

The set of vectors in �IE 3 is said to constitute a vector space, i.e.,
�IE 3 is a vector space. Generally a set of quantities endowed with the
algebraic properties given in §6.1.1 and §6.1.2 is said to form a vector
space.2 Since only real numbers are involved the vector space is said
to be real, i.e., �IE 3 is a real vector space.

6.2 Properties 2: Dimensions and Bases

Any number of vectors �u�, � = 1, 2, · · · , n, can be added up to
produce new vectors. A sum of the form

n
∑

�=1
c� �u� = c1 �u1 + c2 �u2 + · · · + cn �un, c� ∈ IR (6.5)

is called a linear combination of the set of vectors �u� with coefficients
c�.

6.2.1 Linear Dependence and Independence

Definition 6.2.1(1) A finite set {�u� : � = 1, 2, · · · , n} of n vectors
in �IE 3 is said to be
(1) linearly dependent if there exists a set of scalars c� ∈ IR, not all

zero, such that the linear combination of �u� with coefficients c� is
zero, i.e.,

n
∑

�=1
c� �u� = �0, (6.6)

2As remarked before a “space” generally means a set endowed with certain

properties. It should not be confused with the physical spacewe live in.
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(2) linearly independent if no such set of coefficients exists, i.e., if
n
∑

�=1
c� �u� = �0 ⇒ c� = �0 ∀�. (6.7)

If a set is linear dependent, then a member of the set may be

expressed as a linear combination of the others of the set. To

appreciate this let us suppose c1 �= 0 in Eq. (6.6). Then

c1 �u1 +
n
∑

�=2
c� �u� = �0 ⇒ �u1 =

n
∑

�=2
c′� �u�, c′� = −

c�
c1
. (6.8)

The set is linear independent if no member of the set can be

expressed as a linear combination of the others in the set.

As examples we can see that three vectors all lying in the x-y
plane are linear dependent while a vector along the z-axis is linear
independent to vectors lying in the x-y plane.

A very important property of a linear independent set of vectors

is given by the following theorem.

Theorem 6.2.1(1) If a vector �v is given as a linear combination of
a linearly independent set of vectors �u�, i.e.,

�v =
n
∑

�=1
c� �u�, c� ∈ IR , (6.9)

then the set of coefficients {c�} is uniquely related to �v.

6.2.2 Dimensions, Bases and Complete Sets

Definition 6.2.2(1) The dimension of �IE 3 is the maximum number
of linearly independent vectors which can be found in �IE 3.
The number turns out to be 3 and this is why vectors in �IE 3 are
called three-dimensional. We also call �IE 3 a three-dimensional real
vector space. We can choose three vectors aligned along the positive
directions of the x , y and the z axes of a chosen Cartesian coordinate
system to form a linear independent set. To make things simpler

we can choose these three vectors to have a unit length. A vector

is called a unit vector if it has a unit length. Unit vectors can be
employed to specify a direction. For example, the three unit vectors

along the x , y, z axes, shown in the diagram below and denoted
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x

y

z

i

k

j

Figure 6.1 Unit vectors along x , y and z axes.

by �i , �j , �k, specify the positive directions along the three coordinate
axes.

These three unit vectors �i , �j , �k form a maximum set of linear

independent vectors. Let �v be an arbitrary vector different from the

three unit vectors. Then the set �v , �i , �j , �k of four vectors is a linearly
dependent set, e.g., the vector �v is dependent on the three unit

vectors. It follows that �v can be written as

�v = vx�i + vy �j + vz �k, (6.10)

where the coefficients vx , vy , vz are uniquely related to �v . As an
example the vector �x which specifies the position of a particle,

known as the position vector of the particle, is often written as

�x = x�i + y �j + z�k. (6.11)

For easy visualisation we shall always assume that vectors, e.g., the

position vector, would extend from the coordinate origin outward,

unless otherwise is stated.

The importance of a set of three linearly independent vectors

�e�, � = 1, 2, 3, in �IE 3 is that the set {�e�} spans �IE 3 in the sense
that every vector �v in �IE 3 may be expressed uniquely as a linear
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combination of �e�, i.e.,

�v =
3
∑

�=1
c� �e�. (6.12)

This leads to the notion of basis, basis vectors and complete sets.

Definition 6.2.2(2) A basis for or a complete set in �IE 3 is a set of
linearly independent vectors which spans �IE 3. Vectors in the basis are
called basis vectors.

A basis in �IE 3 must consists of three linearly independent vectors.
An example is the three unit vectors �i , �j , �k. There are many different
bases in �IE 3, e.g., if we rotate a given Cartesian coordinate axes we
obtain three new coordinate axes and the unit vectors along these

new axes will form a linearly independent set of unit vectors.

6.3 Properties 3: Scalar Product

6.3.1 Scalar Product

There are two traditional ways to multiply two vectors in �IE 3:
(1) We can multiply two vectors �u and �v to produce a new vector.

The new vector, denoted by �u× �v , is called the vector product of
�u and �v . An example is given in Eq. (2.3) which is defined by Eq.
(2.7).

(2) We canmultiply �u and �v to produce a scalar. The scalar, denoted
by �u · �v , is called the scalar product of �u and �v .

We are interested in the scalar product here. For later convenience

we shall adopt the Dirac notation for the scalar product, i.e., we shall
denote the scalar product of �u and �v by 〈�u | �v 〉.3 The actual value
of the scalar product is explicitly defined to be uv cos θ , where u and
v are respectively, the lengths of �u and �v and θ is the angle between

the two vectors, i.e.,

〈�u | �v 〉 := uv cos θ , (6.13)

which can be positive or negative depending on the angle θ .

3Here we do not attach any separate meaning to the symbols 〈�u | and |�v 〉.
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The scalar product is an assignment of a real number to every

pair of vectors �u and �v in �IE 3 satisfying the following properties4:
SP6.3.1(1) Commutative 〈�u | �v 〉 = 〈�v | �u 〉.
SP6.3.1(2) Distributive 〈�u |(a1 �v1+ a2 �v2) 〉

= a1〈�u | �v1〉 + a2〈�u | �v2 〉.
SP6.3.1(3) Positive definite 〈�u | �u 〉 ≥ 0, 〈�u | �u 〉 = 0 ⇒ �u = �0.

The following examples are of particular interest:

E6.3.1(1) Perpendicular vectors The scalar product of two per-

pendicular vectors, i.e., when θ = π/2, is zero. For example, we

have

〈 �i | �j 〉 = 〈 �i | �k 〉 = 〈 �j | �k 〉 = 0. (6.14)

E6.3.1(2) Parallel vectors The scalar product of two parallel

vectors, i.e., when θ = 0, is equal to the product of their lengths,

i.e., 〈�u | �v 〉 = uv . An example is the scalar product of a vector with
itself, i.e., 〈�v | �v 〉 = v2. In particular we have

〈 �i | �i 〉 = 〈 �j | �j 〉 = 〈�k | �k 〉 = 1. (6.15)

6.3.2 Orthonormality

Being numerical values scalar product is tangible. It enables us to

introduce a number of very useful quantities:

(1) The norm ‖�v ‖ of a vector �v is defined in terms of scalar product
to be

‖�v ‖ :=
√

〈�v | �v 〉. (6.16)

This agrees with our usual notion of length or magnitude of a

vector in �IE 3, i.e., we have ||�v || = v . This formal definition in
terms of scalar product is important when we discuss higher

dimensional vectors. We shall use the term norm in preference

to the term length from now on.

4Here a, b ∈ IR .
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(2) A vector is said to be normalised if its norm is equal to 1. A

normalised vector is previously referred to as a unit vector.

(3) A vector �v has associated with it a unit vector �v (u), i.e.,
�v (u) := �v/||�v ||, (6.17)

which signifies the direction of the vector. We shall call �v (u) the
unit directional vector of �v .

(4) Two vectors �v1, �v2 are said to be orthogonal (perpendicular) if
their scalar product vanishes. They are orthonormal if they are
also normalised, i.e., �v1, �v2 are orthonormal if 5

〈�v1 | �v2〉 = δ��′ , �, �′ = 1, 2. (6.18)

(5) Two orthogonal vectors �v1, �v2 are linearly independent. A set of
three mutually orthogonal vectors can serve as a basis for the
�IE 3.

6.3.3 Orthonormal Bases and Complete Sets

Definition 6.3.3(1) A basis is an orthonormal basis if the basis
vectors are orthonormal. An orthonormal basis is also referred to as
a complete orthonormal set.

The three unit vectors �i , �j , �k along x , y, z axes constitute an

orthonormal basis for �IE 3. There are many advantages in employing
orthonormal basis, rather than an arbitrary basis with non-

orthonormal basis vectors. One such advantage is in the calculation

of the coefficients for the expression of an arbitrary vector �v in an
orthonormal basis {�e�}, i.e., we can prove the following result:

�v =
3
∑

�=1
v� �e�, v� = 〈�e� | �v 〉. (6.19)

We call the coefficients v� the components of �v on the basis vectors
�e�, e.g., we call v1 the component of �v on �e1. These components
are numerical values which can be positive or negative. Further

advantages can be seen in the Pythagoras theorem discussed in the

next section.

5Here δ��′ is the Kronecker delta.



Properties 3 87

6.3.4 Pythagoras Theorem

We can calculate the norm of a vector and the scalar product of

two vectors in terms of their components on the basis vectors

of an orthonormal basis. Take the orthonormal basis { �i , �j , �k } for
example. When a vector �v is expressed as a linear combination of
{ �i , �j , �k } as in Eq. (6.10) the components are given, in accordance
with Eq. (6.19), by

vx = 〈 �i | �v 〉, vy = 〈 �j | �v 〉, vz = 〈�k | �v 〉. (6.20)

Using the orthonormality properties of the basis vectors �i , �j , �k
shown in Eqs. (6.14) and (6.15) we get

〈�v | �v 〉 = 〈(vx�i + vy �j + vz �k) | (vx�i + vy �j + vz �k)〉
= v2x + v2y + v2z . (6.21)

The norm ||�v || of �v is given in terms of its components by
||�v || =

√

v2x + v2y + v2z . (6.22)

This result is known in geometry as the Pythagoras theorem.
Furthermore, the scalar product of two vectors can also be

calculated in terms of its components, i.e., we have

〈�u | �v 〉 = 〈(ux�i + uy �j + uz �k) | (vx�i + vy �j + vz �k)〉
= uxvx + uyvy + uzvz. (6.23)

Similar results apply in a general orthonormal basis, i.e., when

expressing any two vectors �u and �v in an orthonormal basis {�e�} we
have

�u =
3
∑

�=1
u� �e�, u� = 〈�e� | �u 〉, (6.24)

�v =
3
∑

�=1
v� �e�, v� = 〈�e� | �v 〉, (6.25)

||�v || =
(

3
∑

�=1
v2�

)1/2

=
√

v21 + v22 + v23 , (6.26)

〈�u | �v 〉 =
3
∑

�=1
u�v� = u1v1 + u2v2 + u3v3, (6.27)
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It follows that

�u, �v are orthogonal ⇔ u1v1 + u2v2 + u3v3 = 0. (6.28)

We shall refer to the result in Eq. (6.27) also as Pythagoras theorem
for easy reference later. The equation can be written explicitly in

terms of the basis vectors as

〈�u | �v 〉 =
3
∑

�=1
u�v� =

3
∑

�=1
〈�u | �e� 〉〈�e� | �v 〉. (6.29)

Equations (6.21) and (6.23) become special cases of Eq. (6.27).

The following results are easily verified:

(1) No vector, apart from the zero vector, can be orthogonal to all

basis vectors �e�, i.e.,

〈�e� | �v 〉 = 0 ∀� ⇒ �v = �0. (6.30)

It follows from this that

〈�e� | �u 〉 = 〈�e� | �v 〉 ∀� ⇒ �u = �v . (6.31)

(2) The components of a normalised vector �u in any orthonormal
basis satisfies the following normalisation condition:

u21 + u22 + u23 = 1. (6.32)

(3) Any vector �v can be normalised by a normalisation constant c in
accordance with Eq. (6.17), i.e., �v (u) = c �v is normalisedwith the
normalisation constant c given by

c = 1

||�v || =
1

√

(v21 + v22 + v23)
. (6.33)

6.3.5 Gram-Schmidt Orthogonalisation

Let �v�, � = 1, 2, 3, be a set of linearly independent vectors, not

necessarily orthonormal. We can construct an orthonormal set of

vectors �u� in terms of �v� by the Gram-Schmidt orthogonalisation

process6:

6Gram (1850–1916) was a Danish mathematician and Schmidt (1876–1959) was an

Estonian mathematician.
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(1) Introducing a set of vectors �u�
′ by

�u ′1 := �v1, (6.34)

�u ′2 := �v2 − 〈�u ′1 | �v2〉
〈�u ′1 | �u ′1〉 �u

′
1, (6.35)

�u ′3 := �v3 − 〈�u ′1 | �v3〉
〈�u ′1 | �u ′1〉 �u

′
1 − 〈�u ′2 | �v3〉

〈�u ′2 | �u ′2〉 �u
′
2. (6.36)

These vectors are orthogonal, i.e., 〈�u ′� | �u ′�′ 〉 = 0 if � �= �′.
(2) Normalizing �u�

′ to arrive at �u� = �u ′�/
∥

∥�u ′�′
∥

∥which can be used to

form an orthonormal basis for �IE 3.

6.3.6 Inequalities on Scalar Product and Norm

The following inequalities familiar in geometry can be established:

1. The Schwarz Inequality7 The scalar product is less then or at

most equal to the product of the norms:

|〈�u | �v 〉| = |uv cos θ | ≤ uv = ‖�u ‖ ||�v ||. (6.37)

2. Triangle Inequalities In a triangle the sum of the lengths of

any two sides is greater than the length of the third side and the

difference of the lengths of any two sides is less than the length of

the third side. In terms of vectors we have

||�u + �v || ≤ ‖�u ‖ + ||�v ||. (6.38)
∣

∣ ||�u || − ||�v || ∣∣ ≤ ‖�u − �v ‖ . (6.39)

6.4 Properties 4: Scalar Product and Projections

The scalar product defined by Eq. (6.13) has a clear geometric

interpretation in terms of an intuitive concept of projection of a
vector onto another vector as we shall now discuss.

6.4.1 Projection onto �i
A vector lying in the x-y plane is expressible as

�v = vx�i + vy �j , vx = 〈�i | �v 〉, vy = 〈�j | �v 〉. (6.40)

7Schwarz (1843–1921) was a German mathematician.
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The number vx is the component of �v on the basis vector �i .
Definition 6.4.1(1) The projection of the vector �v onto �i is defined
to be the vector �v�i given by

�v�i := vx�i . (6.41)

Figure 6.2 below serves to illustrate the projection of vectors.

x

y

v

vii

θ

Figure 6.2 A vector and its projection.

It must be emphasised that while the component of �v on �i is a
number, hence the notation vx , the projection of �v onto �i is a vector,
and hence the notation �v�i . The projection of �v onto �i is also known
as the projection of �v onto the x-axis. Since the component vx is equal
to the scalar product of �i and �v the projection can be written down
explicitly as

�v�i = 〈 �i | �v 〉 �i . (6.42)

The projections of two vectors �v1 and �v2 onto �i are shown in Fig. 6.3
below. These projections have the following properties:

P6.4.1(1) For a vector �v1 in the first quadrant of the x-y plane we
have

�v1 = v1x�i + v1y �j , where v1x , v1y > 0. (6.43)

Its projection onto �i is �v1�i = v1x�i = 〈 �i | �v1〉 �i .
P6.4.1(2) For a vector �v2 in the second quadrant we have

�v2 = v2x�i + v2y �j v2x < 0, v2y > 0. (6.44)
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Figure 6.3 Two vectors and their projections onto �i .

Its projection onto �i is �v2�i = v2x �i = 〈�i | �v2〉 �i . The angle between
�v2 and �i is bigger than π/2 so that the scalar product 〈 �i | �v2〉 is
negative. As a result the projection of �v2 onto �i is pointing in the
negative direction, as shown in Fig. 6.3.

6.4.2 Projection onto Arbitrary Unit Vector �e
When written in the form of Eq. (6.10) a vector �v has components
vx , vy and vz given by Eq. (6.20). We can define its projections onto �i ,
�j and �k by

�v�i := 〈 �i | �v 〉 �i , �v �j := 〈 �j | �v 〉 �j , �v �k := 〈�k | �v 〉 �k. (6.45)

All this can be extended to an arbitrary orthonormal basis {�e�}.
Based on Eq. (6.19) we can define the projection of �v onto the unit
basis vector �e� as

�v �e�
:= v� �e�, v� = 〈�e� | �v 〉. (6.46)

An orthonormal basis is not necessary. As the figure below showswe

can project any vector �v onto an arbitrary unit vector �e.
Definition 6.4.2(1) The projection of �v onto a unit vector �e is
defined to be the vector

�v �e := 〈�e | �v 〉 �e. (6.47)

The projection �v �e has a norm equal to |〈 �e | �v 〉| = |v cos θ | and is
directed along �e.
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v

e
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θ

Figure 6.4 Projection onto �e.

6.4.3 Planes and Projection onto Planes

Consider a plane in �IE 3 passing through the origin, and let �e1 and �e2
be two orthonormal vectors lying on the plane.8 Then all the vectors

lying on the plane can be written as a linear combination of �e1 and
�e2, i.e., the plane is spanned by �e1 and �e2. For example, the x-y plane
is spanned by �i and �j , the x-z plane is spanned by �i and �k and the y-z
plane is spanned by �j and �k. Every of these planes are closed under
addition and scalar multiplication. It is intuitively obvious that we

can project a vector �v onto a plane in �IE 3. For example, we can define
the projection of �v in Eq. (6.10) onto the x-y plane to be the vector
�vxy given by

�vxy := vx�i + vy �j . (6.48)

The concepts of planes and projection onto a plane in �IE 3 can be
generalised to subspaces in more general vector spaces, e.g., higher
dimensional ones. To facilitate such generalisation we shall devote

the following section to a formal discussion of subspaces in �IE 3.

6.4.4 Subspaces and Projection onto Subspaces

Definition 6.4.4(1) A subset �S of �IE 3 is a subspace of �IE 3 if it is
closed under addition and scalar multiplication, i.e.,

�v1, �v2 ∈ �S ⇒ a1 �v1 + a2 �v2 ∈ �S ∀ a1, a2 ∈ IR . (6.49)

A subspace possesses the algebraic properties given in §6.1 and
therefore it may be regarded as a vector space in its own right.

8Intuitively vectors can be imagined as arrows originating from the origin.
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Definition 6.4.4(2)

(1) Two subspaces �S1 and �S2 are said to be orthogonal if

〈�v1 | �v2〉 = 0 ∀ �v1 ∈ �S1 and ∀ �v2 ∈ �S2. (6.50)

(2) The orthogonal complement of a subspace �S , denoted by �S⊥, is the
set of all the vectors in �IE 3 which are orthogonal to every vector
in �S , i.e.,

�S⊥ := {�u ∈ �IE 3 : 〈�u | �v 〉 = 0, �v ∈ �S }. (6.51)

The orthogonal complement of a subspace is again a subspace.

We can illustrate the concepts of subspaces and their orthogonal

complements by the following examples:

E6.4.4(1) A subspace �S in �IE 3 is one-dimensional if there is only
one linearly independent vector in �S , i.e., there is a unit vector �e such
that

�S�e := { �v = ve �e : ve ∈ IR }. (6.52)

The subspace is said to be spanned by the unit vectior �e. A subspace
is two-dimensional if it is spanned by two orthonormal vectors.9

A three-dimensional subspace would be identical to �IE 3 itself. The
following are examples:

E6.4.4(1)(a) The x-axis and the z-axis defined by

�S�i := { �v = vx�i : vx ∈ IR }, (6.53)

�S�k := { �v = vz �k : vz ∈ IR }, (6.54)

are one-dimensional subspaces which are conveniently written as
�Sx and �Sz. They are orthogonal to each other. But �Sx is not the
orthogonal complement to �Sz, since �Sx does not contain all the

vectors orthogonal to �Sz.
9A two-dimensional subspace can be spanned by two linearly independent vectors,

not necessarily orthonormal. But we can always employ two orthonormal vectors

obtained by the Gram-Schmidt orthogonalisation process to span the subspace.
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E6.4.4(1)(b) Let {�e1, �e2, �e3} be an orthonormal basis. Using the
basis vectors we can span subspaces of different dimensions, e.g.,

�S12 := {�v12 = v2 �e1 + v3 �e2 : v1, v2 ∈ IR }, (6.55)

�S3 := { �v3 = v3 �e3 : v3 ∈ IR }, (6.56)

where �S12 is two-dimensional and �S3 is one-dimensional.
E6.4.4(2) The orthogonal complement of a one-dimensional

subspace spanned by a unit vector �e is necessarily two-dimensional
which can be spanned by two orthonormal unit vectors orthogonal

to �e. Conversely a two-dimensional subspace has a one-dimensional
orthogonal complement. The following are examples:

E6.4.4(2)(a) The orthogonal complement of �Sz is the x-y plane
�Sxy which contains all the vectors in �IE 3 which are orthogonal to �Sz.
The orthogonal complement of the x-y plane is the z-axis, i.e.,

�S⊥z = �Sxy , �S⊥xy = �Sz. (6.57)

E6.4.4(2)(b) The subspaces in Eqs. (6.55) and (6.56) are the

orthogonal complements to each other, i.e.,

�S⊥12 = �S3, �S⊥3 = �S12. (6.58)

The importance of a subspace �S and its orthogonal complement �S⊥
lies in the fact that an arbitrary vector �v can be expressed as a unique
linear combination of a vector �v �S in �S and a vector �v �S⊥ in �S⊥, i.e., for
every vector �v the following decomposition10:

�v = �v �S + �v �S⊥ , where �v �S ∈ �S , �v �S⊥ ∈ �S⊥, (6.59)

exists and is unique. In the case of �Sz and �S⊥z = �Sxy the

decomposition becomes

�v = �v �Sz
+ �v �S⊥z with �v �Sz

= vz �k, �v �S⊥z = vx�i + vy �j . (6.60)

In the orthonormal basis {�e1, �e2, �e3} we can express an arbitrary
vector �v uniquely in accordance with Eq. (6.19) as

�v = v1 �e1 + v2 �e2 + v3 �e3. (6.61)

Clearly we have

v3 �e3 ∈ �S3, v2 �e2 + v3 �e3 ∈ �S12 = �S⊥3 . (6.62)

10See Eq. (13.15) and its proof in the solution to Q13(5).
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Following the idea of projection onto a plane we can define the

projections of �v onto the subspaces �S and �S⊥ to be �v �S and �v �S⊥ ,
respectively. Projections and the operation of projection will be seen

later to be of crucial importance in the formulation of quantum

mechanics.

Exercises and Problems

Q6(1) Prove Eqs. (6.1) to (6.3).

Q6(2) Prove Theorem 6.2.1(1).

Q6(3) Verify that the expression for 〈�u | �v 〉 in Eq. (6.13) satisfies
properties SP6.3.1(1), SP6.3.1(2) and SP6.3.1(3) of scalar

product.

Q6(4) Show that two orthogonal vectors are linearly independent.

Q6(5) Prove Eq. (6.19).

Q6(6) Prove the Pythagoras theorem in the forms of Eqs. (6.22)

and (6.27).

Q6(7) Prove Eqs. (6.30) and (6.31).

Q6(8) Verify the Gram-Schmidt orthogonalisation procedure

given in §6.3.5.
Q6(9) Prove triangle inequalities (6.38) and (6.39).

Q6(10) Let {�e�} be an orthonormal basis. Show that any vector �v
is expressible as a sum of the projections �v �e�

of �v onto the
basis vectors �e�, i.e., �v = �v �e1 + �v �e2 + �v �e3 .



http://taylorandfrancis.com


Chapter 7

Matrices and their Relations with
Vectors

Matrices can provide a tangible and easily understood description

of many abstract mathematical quantities, including vectors and

operators on vectors. In this chapter we shall present a review of

matrices. The review would include studies of the close relationship

between matrices and vectors. In order to motivate later studies

of operators the discussion in this chapter is presented in a

way which can be readily generalised to similar discussion on

operators.

7.1 Basic Definitions

There are many situations in mathematics and physics in which we

have to manipulate rectangular arrays of real or complex numbers.

We can display the numbers in an array, i.e., in rows and columns.

For example, a 2 by 3 (written as 2× 3) array is of the form

M :=
(

M11 M12 M13
M21 M22 M23

)

. (7.1)

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com
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with 2 rows and 3 columns. We can also have 1 × n arrays which
consist of a row of n numbers, e.g., a 1× 3 array is of the form

R := (

R11 R12 R13
)

, (7.2)

and n × 1 arrays which consist a column of n numbers, e.g., a 3 × 1

array is of the form

C :=
⎛

⎝

C11
C21
C31

⎞

⎠ . (7.3)

For clarity it is sometimes useful to denote an m × n array, i.e., an
array withm rows and n columns, explicitly by the symbol

(Mi j )m×n where i = 1, 2, · · · , m and j = 1, 2, · · · , n, (7.4)

rather than M .
These arrays are calledmatriceswith the numbers Mi j known as

their elements when they obey certain rules of manipulation to be
defined below. First let us introduce a few useful definitions before

setting out the rules of manipulations of matrices:

(1) Order of a matrix A matrix of m rows and n columns is said to
be a matrix of order m× n.

(2) Square matrices An n × nmatrix, i.e., a matrix of n rows and n
columns, is called a square matrix of order n.

(a) Diagonal matrices A square matrix (Mi j )n×n is said to be
diagonal if Mi j = 0 when i �= j . In other words, all the
off-diagonal elements, i.e., Mi j , i �= j , are zero. A diagonal
matrix has only non-zero diagonal elements Mii .

(b) Identity matrices The n × n identity matrix, denoted by
(Ii j )n×n or I n×n, or simply by I , is a diagonal matrix with
all its diagonal elements equal to 1.

(3) Row matrices A matrix consisting only a row of elements, e.g.,

a 1× nmatrix (R1 j )1×n, is a row matrix of order n.
(4) Column matrices A matrix consisting only a column of ele-

ments, e.g., an n× 1 matrix (Ci1)n×1, is a column matrix of order
n.
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(5) Zero matrices A matrix of order m × n with all its elements
equal to zero is called the zero matrix of order m × n, to be
denoted by 0m×n. The zero row and column matrices of order

n are denoted by 01×n and 0n×1, respectively. For brevity a zero
matrix is simply denoted by 0.

For a set of arrays to be matrices they must obey the following rules

of addition, scalar multiplication and matrix multiplication:

1. Addition Matrices having the same numbers of rows and

columns can be added by adding the corresponding elements, i.e.,

(Mi j )m×n + (Ni j )m×n := (Mi j + Ni j )m×n. (7.5)

2. Scalar multiplication When multiplying a matrix by a scalar

a ∈ C we multiply every element of the matrix by the scalar, i.e., the
newmatrix a(Mi j )m×n has elements aMi j , i.e.,

a(Mi j )m×n := (aMi j )m×n. (7.6)

For example, we have

aM :=
(

aM11 aM12 aM13
aM21 aM22 aM23

)

. (7.7)

This is consistent with addition operation defined above, e.g.,

2 (Mi j )m×n = (Mi j )m×n + (Mi j )m×n. (7.8)

To illustrate the addition and scalar multiplication operations

consider the following 2× 2 matrices

σx :=
(

0 1

1 0

)

, σy :=
(

0 − i
i 0

)

, σz :=
(

1 0

0 − 1
)

, (7.9)

known as the Pauli matrices.1 It is a standard convention for Pauli
matrices to be denoted by low case letters σx , σy and σz. The matrix

σy contains the imaginary number i =
√−1. These matrices can be

1Pauli (1900–1958) is an Austrian theoretical physicist, well known for the Pauli

exclusion principle and Pauli matrices and his theory of spin.
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multiplied by scalars and added together, e.g., given ax , ay , az ∈ IR
we have

axσx + ayσy + azσz =
(

az ax − iay
ax + iay −az

)

. (7.10)

The resulting matrix has both real and complex elements.

3. Matrix multiplication The problem is to see how we can

multiply two matrices M and N with elements Mi j and Nkl .

(1) Multiplication of a row matrix by a column matrix Consider a

1 × 3 row matrix (R1 j )1×3 and a 3 × 1 column matrix (Ck1)3×1.
With only three elements thesematrices resemble vectors in �IE 3
which also have three components.2 We canmultiply a vector by

another vector to form their scalar product by multiplying their

corresponding components as given by the Pythagoras theorem

in Eq. (6.27). So, a natural way tomultiply a rowmatrix (R1 j )1×3
to a column matrix (Ck1)3×1 is to multiply their corresponding
elements, i.e.,

R · C = (

R11 R12 R13
) ·
⎛

⎝

C11
C21
C31

⎞

⎠

:= R11C11 + R12C21 + R13C31 =
3
∑

j=1
R1 j C j1. (7.11)

This results in a scalar. For brevity we often denote the elements

of a column matrix C by C1, C2, C3 and the elements of a row
matrix R are often denoted by R1, R2, R3. Then we can rewrite
Eq. (7.11) as

R · C = (

R1 R2 R3
) ·
⎛

⎝

C1
C2
C3

⎞

⎠

:= R1C1 + R2C2 + R3C3 =
3
∑

j=1
R jC j . (7.12)

2Details on column matrices and vectors will be discussed in §7.5.
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(2) Multiplication of square matrices Consider two 3 × 3 square

matrices (Mi j )3×3 and (Nk�)3×3, i.e.,

⎛

⎝

M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠ ,

⎛

⎝

N11 N12 N13
N21 N22 N23
N31 N32 N33

⎞

⎠ . (7.13)

To get an intuition of how one would multiply (Mi j )3×3 and
(Nk�)3×3 we can relate these matrices to row and column

matrices:

(a) The matrix (Mi j )3×3 may be considered to be formed by
three row matrices, i.e.,

R1 := (M1 j )1×3, R2 := (M2 j )1×3, R3 := (M3 j )1×3.

(b) The matrix (Nk�)3×3 may be considered to be formed by
three column matrices, i.e.,

C 1 := (Nk1)3×1, C 2 := (Nk2)3×1, C 3 := (Nk3)3×1.

(c) Using Eq. (7.11) we can multiply these row matrices to the

column matrices to obtain nine scalars Lil =: Ri · C l :

R1 · C 1 =
3
∑

j=1
M1 j Nj1, R1 · C 2 =

3
∑

j=1
M1 j Nj2, (7.14)

R1 · C 3 =
3
∑

j=1
M1 j Nj3, (7.15)

R2 · C 1 =
3
∑

j=1
M2 j Nj1, R2 · C 2 =

3
∑

j=1
M2 j Nj2, (7.16)

R2 · C 3 =
3
∑

j=1
M2 j Nj3, (7.17)

R3 · C 1 =
3
∑

j=1
M3 j Nj1, R3 · C 2 =

3
∑

j=1
M3 j Nj2, (7.18)

R3 · C 3 =
3
∑

j=1
M3 j Nj3. (7.19)
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We can use these nine scalars to construct a new matrix

(Li�)3×3 with elements Li� := Ri · C �. This new matrix is

naturally defined to be the product of (Mi j )3×3 and (Nk�)3×3,
i.e., we have

(Mi j )3×3 · (Nk�)3×3 := (Li�)3×3, (7.20)

where

Li� =
3
∑

j=1
Mi j Nj�. (7.21)

(3) Generalisations The definition in Eqs. (7.20) and (7.21) applies

to the multiplication of any two n × n square matrices. We can
further generalise the above multiplication rules to matrices

with matching rows and columns, i.e., a matrix (Mi j )m×r having
r columns can be multiplied by a matrix (Nk�)r×n having r rows.
The product matrix (Li�)m×n hasm rows and n columns with its
elements defined by

(Mi j )m×r · (Nk�)r×n := (Li�)m×n, (7.22)

where

Li� =
r
∑

j=1
Mi j Nj�. (7.23)

The following examples serve as illustrations:

E7.1(1) Multiplication of an n × n matrix Mn×n and an n × 1

column matrix C n×1 The resulting matrix C ′ is an n × 1 column

matrix. Denoting the elements of C and C ′ by C1, C2, · · · , Cn and
C ′1, C

′
2, · · · , C ′n, respectively, we have

M · C = C ′ ⇔
n
∑

j=1
Mi jC j = C ′i . (7.24)

For example, we have

M · C =
(

M11 M12
M21 M22

)

·
(

C1
C2

)

=
(

C ′1
C ′2

)

, (7.25)

or explicitly
(

M11 M12
M21 M22

)

·
(

C1
C2

)

=
(

M11C1 + M12C2
M21C1 + M22C2

)

. (7.26)
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E7.1(2) Multiplication of a column matrix (Ci1)3×1 by a row matrix
(R1 j )1×3 The product C · R is an n× n square matrix:

C · R =
⎛

⎝

C1
C2
C3

⎞

⎠ · ( R1 R2 R3
)

=
⎛

⎝

C1R1 C1R2 C1R3
C2R1 C2R2 C2R3
C3R1 C3R2 C3R3

⎞

⎠ . (7.27)

E7.1(3) Multiplication of row matrix (R1 j )1×3 by a column matrix
(Ci1)3×1 The product R · C is a square matrix of order 1 which can
be identified with a scalar, i.e.,

R · C = (

R1 R2 R3
) ·
⎛

⎝

C1
C2
C3

⎞

⎠

= (

C1R1 + C1R2 + C1R3
)

. (7.28)

Matrix multiplication possesses the following associative and

distributive properties:

L · (M · N ) = (L · M) · N , (7.29)

L · (M + N ) = L · M + L · N . (7.30)

7.2 Square Matrices

For square matrices we can introduce the following important

quantities:

1. Commutators The products M · N and N · M of two square

matrices M=(Mi j )n×n and N=(Nk�)n×n are well-defined.3 However,
they are generally not equal. We call their difference, denoted in a

bracket, i.e.,

[M , N ] := M · N − N · M , (7.31)

3Formatrices of different order the product (Nk�)r×n ·(Mi j )m×r is not defined ifm �= n.
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the commutator of M and N . Two n×nmatrices are said to commute
if their commutator is equal to the n×n zeromatrix0. In otherwords,
M and N commute if

[M , N ] = 0 or M · N = N · M . (7.32)

2. Anticommutators Two n × n matrices M and N are said to

anticommute if their anticommutator

{M , N } := M · N + N · M (7.33)

vanishes, i.e.,

M · N + N · M = 0. (7.34)

3. Trace The sum of the diagonal elements of a square matrix

M=(Mi j )n×n is called the trace of the matrix which is denoted by
tr (M), i.e.,

tr (M) := M11 + M22 + · · · + Mnn. (7.35)

For two square matrices M=(Mi j )n×n and N=(Nk�)n×n of the same
order we have

tr
(

M + M
) = tr (M)+ tr (N ), (7.36)

tr
(

M · N) = tr
(

N · M). (7.37)

These results are valid whether the two matrices commute or not.

This concept of trace of a square matrix has important physical

applications, as will be seen in Chapter 32.

4. Determinant We can associate a value to an n×n squarematrix
M . This value is calculated from the elements of thematrix according

to certain rules. This value is known as the determinant of thematrix
and is denoted by det (M). The rules for calculating the determinant
of 2× 2 and 3× 3 matrices are

det

(

M11 M12
M21 M22

)

:= M11M22 − M12M21. (7.38)

det

⎛

⎝

M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠ := M11 det
(

M22 M23
M32 M33

)

−M12 det
(

M21 M23
M31 M33

)

+ M13 det
(

M21 M22
M31 M32

)

. (7.39)
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The determinant of an identity matrix is equal to 1 and the

determinant of the product of two n × n matrices M and N is equal

to the product of the determinants of M and N , i.e.,

det(M · N ) = det(M) det (N ). (7.40)

5. Pauli matrices These simple but important matrices can serve

to illustrate some of the properties discussed above.

(1) Pauli matrices do not commute, i.e., multiplication of Pauli

matrices is not commutative. We can verify that

[σx , σy] = σx · σy − σy · σx = 2iσz, (7.41)

[σz, σx ] = σz · σx − σx · σz = 2iσy , (7.42)

[σy , σz] = σy · σz − σz · σy = 2iσx . (7.43)

(2) Pauli matrices do anticommute i.e.,

{σx , σy} = σx · σy + σy · σx = 02×2, (7.44)

{σz, σx} = σz · σx + σx · σz = 02×2, (7.45)

{σy , σz} = σy · σz + σz · σy = 02×2. (7.46)

(3) The square of a Pauli matrix is equal to the 2×2 identity matrix
I 2×2, i.e.,

σx · σx = I 2×2, (7.47)

σy · σy = I 2×2, (7.48)

σz · σz = I 2×2. (7.49)

(4) Pauli matrices have zero trace.

7.3 Transpose and Adjoint of a Matrix

Given a matrix Mm×n, not necessarily square, we can associate

another matrix with it, i.e., its transpose. For a square matrix Mn×n
we can introduce two more matrices to associate with it, i.e., its

adjoint and its inverse.4

4Zettili pp. 104–111 for explicit examples.
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7.3.1 The Transpose of a Matrix

Definition 7.3.1(1) The transpose MT of an m× n matrix M is an
n×mmatrix with elements MT

i j := Mji .

The following examples serve to illustrate the transpose operation:

E7.3.1(1) For a square matrix we have

⎛

⎝

M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠

T

:=
⎛

⎝

M11 M21 M31
M12 M22 M32
M13 M23 M33

⎞

⎠ . (7.50)

This example shows us that in the transpose operation the first row

of M is converted into the first column of MT , the second row of

M is converted into the second column of MT and so on, and the

first column of M is converted into the first row of MT , the second

column of M is converted into the second row of MT and so on.

The transpose operation is also seen to swop the diagonally opposite

elements of the matrix.

E7.3.1(2) Pauli matrices have the following transposes:

σ T
x =

(

0 1

1 0

)

= σx , (7.51)

σ T
y =

(

0 i
−i 0

)

�= σy , (7.52)

σ T
z =

(

1 0

0 − 1
)

= σz. (7.53)

E7.3.1(3) The transpose of a row matrix is a column matrix, e.g.,

RT = (

R1 R2 R3
)T =

⎛

⎝

RT1
RT2
RT3

⎞

⎠ =
⎛

⎝

R1
R2
R3

⎞

⎠ . (7.54)

E7.3.1(4) The transpose of a column matrix is a row matrix, e.g.,

C T =
⎛

⎝

C1
C2
C3

⎞

⎠

T

= (

CT1 CT2 CT3
) = (C1 C2 C3). (7.55)
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E7.3.1(5) Using Eq. (7.11) or Eq. (7.12) we can multiply C T by C
to produce a number, e.g., for a 3× 1 column matrix we have

C T · C = C 21 + C 22 + C 23 . (7.56)

On the other hand multiplying C by C T produces a 3× 3 matrix, i.e.,
C · C T is a square matrix given by Eq. (7.27).

For complex matrices it is more useful to introduce the concept

of their adjoints.

7.3.2 The Adjoint of a Square Matrix

Definition 7.3.2(1)5 The complex conjugate of the transpose of a
square matrix M , denoted by M†, is called the adjoint of M , i.e., the
adjoint has elements M†

i j given by
6

M†
i j := M∗j i (7.57)

The adjoint operation has the following properties:

P7.3.2(1) The adjoint of a real square matrix is equal to the

transpose of the matrix.

P7.3.2(2) The adjoint operation satisfy the following equations:

(M†)† = M , (7.58)

(aM)† = a∗M†, (7.59)

(M + N )† = M† + N †, (7.60)

(M · N )† = N † · M†. (7.61)

Here M and N are n × n matrices, possibly complex, and a is a
complex number. Note that the adjoint of the product of two square

matrices is equal to the product of the adjoints of the two matrices

taken in the reverse order. The transpose operation also possesses

5Some authors use the term conjugate matrix instead, with the term adjoint matrix
used to mean something quite different (see Hohn p. 85). Our definition of the term
(see Finkbeiner II pp. 154, 271, 282) ismotivated by a similar definition for operators
6The complex conjugate of a number a is denoted by a∗ , e.g., M∗j i is the complex
conjugate of Mji , and a is real if a = a∗ .
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these properties, except for Eq. (7.59) which is replaced by (aM)T =
aMT .

P7.3.2(3) Some complex matrices can remain unchanged under

the adjoint operation, the Pauli matrices being examples, i.e.,

σ †
x = σx , σ †

y = σy , σ †
z = σz. (7.62)

P7.3.2(4) The adjoint operation transform row matrices into and

column matrices and vice versa.

(1) The adjoint of row matrices are column matrices, e.g.,

R† = (

R1 R2 R3
)† =

⎛

⎜

⎝

R†
1

R†
2

R†
3

⎞

⎟

⎠ =
⎛

⎝

R∗1
R∗2
R∗3

⎞

⎠ . (7.63)

(2) The adjoint of column matrices are row matrices, e.g.,

C † =
⎛

⎝

C1
C2
C3

⎞

⎠

†

=
(

C †
1 C †

2 C †
3

)

= (C ∗1 C ∗2 C ∗3). (7.64)

(3) Multiplying C by C † produces a n × n matrix, e.g., for a 3 × 1

column matrix we have, in accordance with Eq. (7.27),

C · C † =
⎛

⎝

C1
C2
C3

⎞

⎠ · (C ∗1 C ∗2 C ∗3)

=
⎛

⎝

C1C ∗1 C1C ∗2 C1C ∗3
C2C ∗1 C2C ∗2 C2C ∗3
C3C ∗1 C3C ∗2 C3C ∗3

⎞

⎠ . (7.65)

(4) Multiplying C † by C produces a number, e.g., for a 3× 1 column
matrix we have

C † · C = C ∗1C1 + C ∗2C2 + C ∗3C3. (7.66)
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(5) When C contains complex elements we have

(a) The product C T · C in Eq. (7.56) is generally complex.
(b) The product C † · C in Eq. (7.66) is real and positive. This

product vanishes if and only if C is the zero column matrix.

This is what makes the adjoint operation and the product C † ·
C essential for physical applications.

P7.3.2(5) The adjoint of amatrix can be characterised by its action

on column vectors. This is discussed in relation to Eq. (7.81).

P7.3.2(6) The determinant of the transpose of a matrix is equal to

the determinant of the matrix, i.e.,

det(MT ) = det(M). (7.67)

7.4 The Inverse of a Matrix

Definition 7.4(1) Given an n× n square matrix Mn×n there may be
another n× n matrices M−1

n×n such that

Mn×n · M−1
n×n = M−1

n×n · Mn×n = I n×n. (7.68)

We call M−1
n×n, if it exists, the inverse of Mn×n and the matrix Mn×n is

said to be invertible.7

The following properties are well-known:

P7.4(1) The inverse of a square matrix, if it exists, is unique.8

P7.4(2) A square matrix possesses an inverse if and only if its

determinant is not zero. There is also a standard formula for the

construction of the inverse matrix.9

P7.4(3) A square matrix Mn×n is not invertible if a non-zero
column matrix C n×1 exists such that Mn×nC n×1 = 0n×1, i.e.,

Mn×n · C n×1 = 0n×1 �⇒ C n×1 = 0n×1. (7.69)

7Here I n×n is the n× n identity matrix. Inverses are defined for square matrices.
8Meyer, p. 116.
9Hohn p. 93. Since we do not need to do explicit calculation in terms of inverses we

shall not provide a formula for inverses here.
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The matrix is invertible if no such column matrix exists, i.e., if

Mn×n · C n×1 = 0n×1 ⇒ C n×1 = 0n×1. (7.70)

P7.4(4) The following result holds for n× nmatrices10:

N · M = I ⇒ M · N = I . (7.71)

The condition N · M = I is sufficient for N to be the inverse of M .
This result is valid also if M · N = I .

P7.4(5) The inverse of an invertible matrix M is also invertible

and we have (M−1)−1 = M .

P7.4(6) The inverse of the product of two n × n square matrices
of the same order is equal to the product of the inverses of the two

matrices taken in the reverse order, i.e.,

(

M · N
)−1

= N−1 · M−1. (7.72)

7.5 Matrix Representation of Vectors in �IE 3

7.5.1 Scalar Product of Column Matrices

Column matrices possess many of the properties of vectors, e.g., the

algebraic properties given in and §6.1. We can also define norms and
scalar products of column matrices in a way similar to Eqs. (6.26)

and (6.28) for vectors. To illustrate the similarities we can introduce

the following definitions on 3× 1 column matrices11:

(1) Assign a number, possibly complex and denoted by 〈C | C ′ 〉, to
two column matrices C and C ′ by

〈C | C ′ 〉 := C † · C ′ = C ∗1C
′
1 + C ∗2C ′2 + C ∗3C ′3. (7.73)

10Meyer, p. 117. Halmos p. 62. This does not hold generally for matrices of infinite

order. We shall drop the subscripts n× n in what follows.
11All the column matrices cited, i.e., C , C ′ and C ′′ , are 3× 1 column matrices.
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This assignment possesses the following properties12:

〈C | C ′ 〉 = 〈C ′ | C 〉∗. (7.74)

〈aC | C ′ 〉 = a∗〈C ′ | C 〉∗, a ∈C . (7.75)

〈C | a C ′ + bC ′′ 〉 = a〈C | C ′ 〉 + b〈C | C ′′ 〉, a, b ∈C . (7.76)

〈C | C 〉 ≥ 0, 〈C | C 〉 = 0 ⇒ C = 0. (7.77)

This number is defined to be the scalar product of C and C ′.

(2) The norm ||C || of a column matrix C is defined to be13

||C || :=
√

〈C | C 〉 =√

C ∗1C1 + C ∗2C2 + C ∗3C3. (7.78)

A column matrix C is said to be normalised if ||C || = 1.

(3) Two columnmatrices C and C ′ are said to be orthogonal if their
scalar product vanishes, i.e., if

〈C | C ′ 〉 = C ∗1C
′
1 + C ∗2C ′2 + C ∗3C ′3 = 0. (7.79)

(4) Two columnmatrices C and C ′ are said to be orthonormal if they
are normalised and orthogonal to each other.

The definitions listed above can be extended to n × 1 column

matrices in a straight forward manner.

Let M be a 3 × 3 square matrix and let C 1 and C 2 be two 3 × 1

column matrices. Then we have, by Eqs. (7.73) and (7.61),

〈M† · C 1 | C 2〉 : =
(

M† · C 1

)† · C 2 =
(

C †
1 · M

)

· C 2

= C †
1 · (M · C 2) . (7.80)

This means that the scalar product of M† · C 1 and C 2 is equal to the

scalar product of C 1 and M · C 2. We can express this result as

〈M† · C 1 | C 2〉 = 〈C 1 | M · C 2〉. (7.81)

12For matrices with real elements these correspond to SP6.3.1(1), SP6.3.1(2) and

SP6.3.1(3) in §6.3 for the scalar product of real vectors, hence the Dirac notation.
13This is why the adjoint, not transpose, is chosen in Eq. (7.73), i.e., we want 〈C | C 〉
to be real.
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This equation is so characteristic of adjoint matrices that it can be

used to define the adjoint of any n× nmatrix, i.e.,
the adjoint of an n × n square matrix M is the matrix M† which
satisfies Eq. (7.81) for all n× 1 column matrices C 1 and C 2.

This is an important result since this definition is also used to define

the adjoint of operators.14

7.5.2 Column Matrices and Column Vectors

Any vector in �IE 3 can be expressed uniquely as a unique linear

combination of the basis vectors of any chosen orthonormal basis

{�e�}, i.e., we have

�u =
3
∑

�=1
u� �e�, u� = 〈�e� | �u 〉, (7.82)

�v =
3
∑

�=1
v� �e�, v� = 〈�e� | �v 〉. (7.83)

FromEqs. (6.20) to (6.28)we know thatwe can perform calculations

on vectors in terms of their components. In fact we can represent

vectors themselves together with all the calculations using their

components. All this can be done formally in terms of matrices.

First we choose an orthonormal basis {�e�}. All vectors in �IE 3
can be expressed in the form of Eqs. (7.82) and (7.83). Using the

components in the linear combination we can construct a unique

3× 1 column matrix for each vector, e.g.,

C �u :=
⎛

⎝

u1
u2
u3

⎞

⎠ and C �v :=
⎛

⎝

v1
v2
v3

⎞

⎠ . (7.84)

All the usual operations of vectors can be performed in terms of

these column matrices:

(1) Scalar multiplication

For a�u we have aC �u =
⎛

⎝

au1
au2
au3

⎞

⎠ . (7.85)

14See Eq. (8.33).
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(2) Addition

For �u + �v we have C �u + C �v =
⎛

⎝

u1 + v1
u2 + v2
u3 + v3

⎞

⎠ . (7.86)

(3) Norm and scalar product For the scalar product and norm of

vectors we have, using Eqs. (7.73) and (7.78),

〈�u | �v 〉 = 〈C �u | C �v〉, (7.87)

||�v ||2 = 〈C �v | C �v〉 = ||C �v ||2. (7.88)

The conclusion is that vectors in �IE 3 can be represented by 3 × 1

column matrices in the sense of the following correspondences:

�u ↔ C �u , �v ↔ C �v , (7.89)

a �u ↔ a C �u , �u + �v ↔ C �u + C �v , (7.90)

||�v || ↔ ||C �v ||, 〈�u | �v 〉 ↔ 〈C �u | C �v〉. (7.91)

These correspondences enable us to carry out operations and

calculations in terms of column matrices. In addition to scalar

product and norm the concepts of linear combination, linear

dependence and independence presented in §6.2.1 can be applied
to column matrices. We shall refer to column matrices as column
vectors to emphasise their similarity with vectors.

It should be pointed out that the actual representative column

matrix of a vector depends on the choice of the orthonormal basis.

For example, if we choose the basis �i , �j , �k of a given coordinate
system the column vector for �u in this basis is

C �u :=
⎛

⎝

ux
uy
uz

⎞

⎠ , ux = 〈�i | �u 〉, uy = 〈�j | �u 〉, uz = 〈�k | �u 〉, (7.92)

and the basis vectors �i , �j , �k corresponds to column vectors

C �i :=
⎛

⎝

1

0

0

⎞

⎠ , C �j :=
⎛

⎝

0

1

0

⎞

⎠ , C �k :=
⎛

⎝

0

0

1

⎞

⎠ . (7.93)

We have

C �u = uxC �i + uyC �j + uzC �k. (7.94)
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This result can be generalised to n × 1 column matrices which are

also referred to as n×1 column vectors. A set of n orthonormal n×1
column vectors C �, � = 1, 2, · · · , n, can span the set of all n × 1

column vectors C , i.e., we have,

C =
n
∑

�=1
c�C �, c� = 〈C � | C 〉. (7.95)

Such a set of n×1 column vectors is said to constitute an orthonormal
basis in the set of all n× 1 column vectors C .

7.6 Eigenvalue Problem for Matrices

Mathematicians have investigated what is known as the eigenvalue
problem for a long time. Basically we start with an operation on

a set of quantities, be it column vectors, vectors or functions. The

problem is to find those quantities within the set which are least

affected by the operation. Let C be an n × 1 column vector with

elements c1, c2, · · · , cn. An n × n matrix M can operate on C by

matrix multiplication, i.e., we have

M · C = C ′, (7.96)

or rewriting the multiplication without the dot for brevity

MC = C ′. (7.97)

The column vector C is considered least affected if the action of M
changes C only to the extend of a multiplicative constant, i.e., M acts

like scalar multiplication on C so that the above equation becomes15

MC = λ C , λ ∈ C or (7.98)

n
∑

j=1
Mi jC j = λCi . (7.99)

Then:

(1) Equation (7.98) is known as an eigenvalue equation.

15Both M and C may be complex.We exclude the trivial case of C = 0. Zettili pp. 114–
117 for explicit examples.
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(2) The number λ is called an eigenvalue of the matrix M .

(3) The column vector C is called an eigenvector of M correspond-

ing to the eigenvalue λ.

(4) Eigenvalues and eigenvectors are generally not unique. A

matrix can have many different eigenvalues. There may be

many eigenvectors corresponding to the same eigenvalue. For

example, if we multiply an eigenvector by a scalar the new

column vector will also be an eigenvector corresponding to

the same eigenvalue. However, we do not count this as a new

eigenvector.

Two eigenvectors are deemed different only if they are linearly
independent of each other, i.e., they are not related to each other
by a multiplicative constant.

(5) The eigenvalue problem for a given matrix M is to solve its

eigenvalue equation, i.e., Eq. (7.98), for the eigenvalues λ and

their corresponding eigenvectors C .

For a 2× 2 matrix M its eigenvalue equation is
(

M11 M12
M21 M22

)(

C1
C2

)

= λ
(

C1
C2

)

. (7.100)

We can re-arrange Eq. (7.100) as
(

M11 − λ M12
M21 M22 − λ

)(

C1
C2

)

=
(

0

0

)

. (7.101)

Carrying out the matrix multiplication we obtain two simultaneous

equations involving the unknowns λ, C1 and C2:

(M11 − λ)C1 + M12C2 = 0, (7.102)

M21C1 + (M22 − λ)C2 = 0. (7.103)

Simultaneous equations of this kind are known to admit solutions if

and only if the following determinant is equal to zero, i.e.,
∣

∣

∣

∣

M11 − λ M12
M21 M22 − λ

∣

∣

∣

∣

= 0. (7.104)

Expanding the determinant we obtain a polynomial in λ of degree 2,

i.e.,

λ2 − (M11 + M22)λ + (M11M22 − M12M21) = 0. (7.105)
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We can solve for λ and then substitute the value into the

simultaneous equations to solve for C1 and C2. A quadratic equation
with possibly complex coefficients such as Eq. (7.105) has two

solutions for λ in general. The solutions are not necessarily different.

We can summarise the results as follows:

R7.6(1) A 2 × 2 matrix M has a maximum of two eigenvalues

λ1, λ2 corresponding to two different eigenvectors C 1 and C 2.

The two eigenvalues may be identical but correspond to different

eigenvectors.

R7.6(2) The eigenvalues and eigenvectors may be complex, even

if the original matrix is real, and on the other hand a complex matrix

can have real eigenvalues.16

The following examples illustrate the results listed above:

E7.6(1) Diagonal matrices The eigenvalues of a diagonal matrix

are simply its diagonal elements. The corresponding eigenvectors

have only one non-zero element, e.g.,
(

a 0

0 b

)(

1

0

)

= a
(

1

0

)

, (7.106)

(

a 0

0 b

)(

0

1

)

= b
(

0

1

)

. (7.107)

When a = b the matrix would have a single eigenvalue but with
two different eigenvectors to correspond to it.17 Generally an n ×
n diagonal matrix would have n eigenvalues, not necessarily all

different, corresponding to n orthonormal eigenvectors.

E7.6(2) Degeneracy An eigenvalue is said to be nondegenerate
if it corresponds to only one eigenvector.18 A single eigenvalue can

correspond to different eigenvectors. The eigenvalue in Eqs. (7.106)

and (7.107) when a = b is an example. Such an eigenvalue is

then said to be degenerate. The number of different eigenvectors
corresponding to the same eigenvalue is called the degeneracy

16A real algebraic equation, e.g., x2 = −1, can have complex solutions.
17The zero column vector is not counted as an eigenvector.
18Recall that eigenvectors related by a multiplicative constant are not regarded as

different.
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of that eigenvalue. A linear combination of two eigenvectors

corresponding to the same eigenvalue is again an eigenvector

corresponding to the same eigenvalue.

E7.6(3) Real matrices with only one eigenvalue The following real

matrix
(

1 1

0 1

)

(7.108)

has only one nondegenerate real eigenvalue. One can check that the

determinant in Eq. (7.104) gives rise to a polynomial λ2−2λ+1 = 0

which has only one root, i.e., λ = 1. The eigenvalue equation is
(

1 1

0 1

)(

1

0

)

=
(

1

0

)

. (7.109)

There are no other eigenvectors and eigenvalues.

E7.6(4) Real matrices with complex eigenvalues The following

matrix

R(θ) :=
(

cos θ − sin θ

sin θ cos θ

)

, θ ∈ (0, 2π) (7.110)

admits no real eigenvalues nor real eigenvectors. Equation (7.105)

gives rise to two complex eigenvalues λ± = exp(±iθ) = cos θ ±
i sin θ , together with two complex eigenvectors, i.e.,

(

cos θ − sin θ

sin θ cos θ

)(

1

−i
)

= eiθ
(

1

−i
)

, (7.111)

(

cos θ − sin θ

sin θ cos θ

)(

1

i

)

= e−iθ
(

1

i

)

. (7.112)

E7.6(5) Complex matrices with real eigenvalues Complex matrices

can have real eigenvalues with complex eigenvectors. This is

illustrated by the Pauli matrix σy . For references we shall list the

eigenvalues and eigenvectors of the three Pauli matrices here.

(1) The Pauli matrix σx possesses two real eigenvalues, i.e., ±1,
corresponding to two real eigenvectors:

σx

(

1

1

)

= 1

(

1

1

)

, σx

(

1

−1
)

= −1
(

1

−1
)

. (7.113)
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(2) The Pauli matrix σy possesses two real eigenvalues, i.e., ±1,
corresponding to two complex eigenvectors:

σy

(

1

i

)

= 1

(

1

i

)

, σy

(

1

−i
)

= −1
(

1

−i
)

. (7.114)

(3) The Pauli matrix σz possesses two real eigenvalues, i.e., ±1,
corresponding to two real eigenvectors:

σz

(

1

0

)

= 1

(

1

0

)

, σz

(

0

1

)

= −1
(

0

1

)

(7.115)

We can express the above eigenvectors in terms of our notation for

normalised column vectors, i.e.,19

C �αx :=
1√
2

(

1

1

)

, C �βx :=
1√
2

(

1

−1
)

, (7.116)

C �αy :=
1√
2

(

1

i

)

, C �β y
:= 1√

2

(

1

−i
)

, (7.117)

C �αz :=
(

1

0

)

, C �βz :=
(

0

1

)

. (7.118)

The eigenvalue equations of Pauli matrices can be written as

σxC �αx = C �αx , σxC �βx = −C �βx , (7.119)

σyC �αy = C �αy , σyC �β y
= −C �β y

, (7.120)

σzC �αz = C �αz , σzC �βz = −C �βz , (7.121)

E7.6(6) Matrices of higher order We have similar results for the

eigenvalue problem formatrices of higher order, e.g., a squarematrix

of order n has at least one eigenvalue and at most n different

eigenvalues.

19The notation is related to the various states of electron spin, e.g., αsz introduced

in §5.3. In Chapter 36 we will see that these spin states are described by vectors
known as spin state vectors, e.g., �αz. So, C �αz is the representation of the spin state
vector �αz.
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7.7 Special Matrices

7.7.1 Introduction

In many applications we desire square matrices with some

particular properties.20 For example, we may desire matrices with

the following properties:

1. Idempotence A matrix is said to be idempotent if its square is
equal to itself, i.e., M2 = M .

2. Symmetry A matrix M is called symmetric if its transpose is
equal to itself, i.e., MT = M .

3. Antisymmetry A matrix M is called antisymmetric if its

transpose is equal to the negative of itself, i.e., MT = −M .
There are square matrices which are closely related to their

inverses and adjoints. A study of these relations leads to a number

of special matrices which are important inmany applications. In this

section we shall present a study of several of these matrices

7.7.2 Orthogonal Matrices

Definition 7.7.2(1) A real square matrix is said to be orthogonal if
it is invertible and its inverse is equal to its transpose, i.e., RT = R−1.

Orthogonal matrices are real square matrices satisfying the follow-

ing condition:

RT R = RRT = I . (7.122)

In terms of its elements we have

n
∑

j=1
RTi j R j� = δi�, or

n
∑

j=1
R ji R j� = δi�. (7.123)

20We shall confine ourselves to square matrices through out this section.
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The term orthogonal matrices arises from the fact that the column

vectors

C 1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R11
R21
·
·
·
Rn1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, C 2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R12
R22
·
·
·
Rn2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, · · · C n =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R1n
R2n
·
·
·
Rnn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (7.124)

which form the matrix R are orthogonal to each other, i.e., 〈C i |
C j 〉 = 0. Each of these column vector is also normalised. Orthogonal
matrices have the following properties:

P7.7.2(1) Their determinants have a value 1 or−1, since21
det(RT R ) = det(I ) = 1 ⇒ (

det(R )
)2 = 1. (7.125)

P7.7.2(2) An n×n orthogonal matrix preserves the norms of n×1
real column vectors, i.e., if C ′ = R C then ||C ′||2 = ||C ||2, since

||C ′||2 = (RC )†(RC ) = (C †R†)(RC )

= C †(R†R )C = C †(RT R )C = ||C ||2. (7.126)

This is such a characteristic feature of orthogonal matrices that it

can be used to define orthogonal matrices, i.e.,

an n×n realmatrix is orthogonal if and only if it preserves the norms
of n× 1 real column vectors.

P7.7.2(3) An orthogonal matrix R can be used to change a column
vector C to C ′ by

C ′ := RC . (7.127)

Such a change is called an orthogonal transformation. An
orthogonal transformation preserves the scalar product of column

vectors on account of Eq. (7.126).

P7.7.2(4) Consider the eigenvalue equation of an orthogonal

matrix R:

RC r = rC r , (7.128)

21Using Eqs. (7.40) and (7.67).
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where r is an eigenvalue and C r is a corresponding eigenvector.
Since R preserves the norm of C r we get

〈RC r | RC r〉 = 〈C r | C r〉 ⇒ |r|2 = 1. (7.129)

This does not mean that r = ±1 since r may be complex.22

P7.7.2(5) The product of two orthogonal matrices R1 and R2 is
again orthogonal, since

(R1R2)T = RT2 R
T
1 = R−12 R−11 = (R1R2)−1. (7.130)

The geometric significance of orthogonal matrices of order 2 and

order 3 can be seen in the following discussion.

1. Orthogonal matrices of order 2

(1) Proper rotations Consider a vector �u = ux �i lying on the x-axis
with one end attached to the origin. We can rotate this vector

anticlockwise on the x-y plane about the z-axis by an angle θ to

arrive at a new vector �u ′ without changing its norm, i.e., we have
||�u || = ||�u ′||. The rotated vector can be shown to be related to
�u by23

�u ′ = u′x �i + u′y �j , u′x = ux cos θ , u′y = ux sin θ . (7.131)

Similarly we can rotate a vector �w = wy �j lying along the y-axis
about z-axis by angle θ anticlockwise to obtain

�w ′ = w′x �i + w′y �j , w′x = −wy sin θ , w′y = wy cos θ . (7.132)

These rotations are shown in the Figure 7.1.

Combining Eqs. (7.131) and (7.132) we can see that when

rotated about the z-axis by an angle θ an arbitrary vector �v =
vx �i + vy �j in the x-y plane will become �v ′ = v ′x �i + v ′y �j with
their components related by

v ′x = vx cos θ − vy sin θ , v ′y = vx sin θ + vy cos θ . (7.133)

The norm of the vector is preserved for such a rotation, i.e.,

||�v || =
√

v2x + v2y =
√

v ′2x + v ′2y = ||�v ′||. (7.134)

22As shown in Eq. (7.112), there is no guarantee that the eigenvalues and eigenvectors

of a real matrix R are real.
23Ballentine pp. 132–133 for the concept of active and passive rotations.
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x

y

u

u

w

w

θ
θ

Figure 7.1 Vectors on the x-y plane and their rotations.

These rotations can be described in terms of column vectors and

matrices:

(a) We can represent �v = vx �i + vy �j and �v ′ = v ′x �i + v ′y �j by
column vectors

C �v =
(

vx
vy

)

, C �v ′ =
(

v ′x
v ′y

)

(7.135)

in basis { �i , �j }.
(b) Introduce the following family of 2× 2 matrices24

Rp(θ) :=
(

cos θ − sin θ

sin θ cos θ

)

, θ ∈ [0, 2π ]. (7.136)

These matrices satisfy the condition in Eq. (7.122), and are

hence orthogonal. We can see that the two column vectors

which make up Rp(θ) are orthonormal. These orthogonal

matrices can be used to describe rotations of �v in that the
column vectors representing �v and the rotated vector �v ′ are
related by

C �v ′ = Rp(θ)C �v . (7.137)

Explicitly we have
(

v ′x
v ′y

)

=
(

cos θ − sin θ

sin θ cos θ

)(

vx
vy

)

. (7.138)

24Croft and Davison p. 465. The subscript signifies proper rotation. These are the

matrices in Eq. (7.110). Note that Rp(0) = Rp(2π) = I , i.e., no rotation.
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Rotations as described above are called proper rotations.
The matrix for a proper rotation has determinant 1.

(2) Improper rotations It can be shown that there is just one other

family of 2 × 2 orthogonal matrices. This family consists of the

following matrices

Ri (θ) :=
(

cos θ sin θ

sin θ − cos θ

)

. (7.139)

These matrices do not correspond to rotations as depicted in

Figure 7.7.2. For θ = 0 the above matrix reduces to

Rrx := Ri (0) =
(

1 0

0 − 1
)

. (7.140)

For θ = π the matrix reduces to

Rry := Ri (π) =
(−1 0

0 1

)

. (7.141)

These matrices correspond to reflections of coordinate axes, i.e.,
Rrx represents a reflection about the x axis changing

�v = vx�i + vy �j to �v ′ = vx�i − vy �j , (7.142)

and Rry represents a reflection about the y axis changing

�v = vx�i + vy �j to �v ′ = −vx�i + vy �j . (7.143)

Matrices in Eq. (7.141) are the products of a matrix for proper

rotation Rp(θ) and a matrix for coordinate reflection, i.e.,

Ri (θ) :=
(

cos θ sin θ

sin θ − cos θ

)

=
(

cos θ − sin θ

sin θ cos θ

)

·
(

1 0

0 − 1
)

. (7.144)

This change due to matrix Ri (θ) is called an improper
rotation. Generally an improper rotation consists of a coordinate
refection followed by a proper rotation. The matrix for an

improper rotation has determinant−1.
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(3) The Pauli matrices Being complex the Pauli matrix σy is not

orthogonal. However, the other two Pauli matrices σx and σz are

orthogonal, on account of Eqs. (7.51) to (7.53). They correspond

to improper rotations, i.e., σx = Ri (π/2) which would swop the

x and y axes, and σz = Ri (0) = Rrx .

(4) Eigenvalues and eigenvectors As shown in Eq. (7.112) the

matrix Rp(θ) for proper rotations does not possess any real
eigenvalue or real eigenvectors. Geometrically this is because

that no vector in the x-y plane is left unchanged by a rotation.
On the other hand an improper rotation matrix, e.g., the Pauli

matrices σx and σz, can have real eigenvalues and eigenvectors.

2. Orthogonal matrices of order 3

(1) Proper rotations When rotated by an angle θz about the z-axis
a vector �v changes to �v ′, i.e.,
�v = vx�i + vy �j + vz �k → �v ′ = v ′x�i + v ′y �j + v ′z �k, (7.145)

v ′x = vx cos θz − vy sin θz, (7.146)

v ′y = vx sin θz + vy cos θz, (7.147)

v ′z = vz. (7.148)

Such a rotation can be represented by the 3× 3 matrix

Rz(θz) :=
⎛

⎝

cos θz − sin θz 0

sin θz cos θz 0

0 0 1

⎞

⎠ , (7.149)

in the sense of the following matrix equation

C �v ′ = Rz(θz)C �v . (7.150)

Explicitly we have
⎛

⎝

cos θz − sin θz 0

sin θz cos θz 0

0 0 1

⎞

⎠

⎛

⎝

vx
vy
vz

⎞

⎠ =
⎛

⎝

v ′x
v ′y
v ′z

⎞

⎠ . (7.151)

We can perform rotations about the x axis by an angle θx and the

y axis by an angle θy in a similar manner, i.e., we have

C �v ′′ = Rx(θx)C �v , C �v ′′′ = Ry(θy)C �v . (7.152)
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where the matrices are

Rx(θx) :=
⎛

⎝

1 0 0

0 cos θx − sin θx

0 sin θx cos θx

⎞

⎠ , (7.153)

Ry(θy) :=
⎛

⎝

cos θy 0 − sin θy

0 1 0

sin θy 0 cos θy

⎞

⎠ . (7.154)

These are the proper rotations. Rotations do not have to be about
the three coordinate axes. We can have a rotation about any

chosen axis. The determinants of all these rotation matrices are

equal to 1. It can be shown that every 3 × 3 orthogonal matrix

of determinant 1 generates a proper rotation about an axis.

Coordinate axes can be chosen so that the matrix would appear

in form of, say, Rx(θx).25

(2) Improper rotations We also have improper rotations involving

reflections about coordinate axes, e.g., the following matrix

causes the reflection of all three coordinate axes:

Rrxyz :=
⎛

⎝

−1 0 0

0 − 1 0

0 0 − 1

⎞

⎠ . (7.155)

Generally a 3 × 3 orthogonal matrix for an improper rotation

consists of a proper rotation followed by coordinate reflection.

These orthogonal matrices has determinant−1.
(3) Eigenvalues and eigenvectors Aproper rotationmatrix of order

3 can have a real eigenvalue. Geometrically we can see that a

vector �vz lying in the z-axis is left unchanged by a rotation about
the z-axis, i.e.,

Rz(θz)C �vz = C �vz . (7.156)

This means that Rz(θz) admits C �vz as an eigenvector corre-
sponding to eigenvalue 1. In contrast the improper rotation

matrix Rrxyz has eigenvalue−1.
25Fano p. 103.
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7.7.3 Unitary Matrices

Definition 7.7.3(1) A square matrix U is said to be unitary if it is
invertible and its inverse is equal to its adjoint, i.e., U −1 = U †.

Unitary matrices are square matrices satisfying

U †U = UU † = I . (7.157)

On account of Eq. (7.71) this is reduced further to the statement that

unitary matrices are square matrices satisfying26

U †U = I . (7.158)

Note that if U is unitary then U † is also unitary.

Unitary matrices are a generalisation of the concept of orthog-

onal matrices to complex matrices. Real unitary matrices are the

same as orthogonal matrices since the adjoint of a real matrix is the

same as its transpose. The examples below serve to illustrate our

discussion:

E7.7.3(1) The following complex diagonal matrix is unitary:
(

eiθ 0

0 e−iθ

)

, θ ∈ (0, 2π), (7.159)

E7.7.3(2) Pauli matrices are unitary, on account of Eqs. (7.47) to

(7.49) and Eq. (7.62). Being real σx and σz are also orthogonal while

σy is not.

Unitary matrices preserve the scalar product and norm of

complex column vectors, e.g., if U be an n × n unitary matrix, C , C 1
and C 2 are n× 1 complex column vectors with their scalar products
given by Eq. (7.73) then we have

〈UC | UC 〉 = 〈C | C 〉, 〈UC 1 | UC 2 〉 = 〈C 1 | C 2 〉. (7.160)

We can introduce unitary transformations in analogy to orthogonal

transformations:

(1) The column vector C ′ := UC is called the unitary transform
of C generated by the unitary matrix U . The properties in Eq.
(7.160) are so characteristic of unitary matrices that it can be

used to define unitary matrices, i.e., a complex matrix satisfying

Eq. (7.160) is unitary.

26Hohn p. 251. Halmos p. 142.
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(2) The matrix M ′ := U MU † is called the unitary transform of an

n × n matrix M generated by the unitary matrix U . Multiplying
M ′ on the left by U † and on the right by U we get M = U †MU .

(3) A simultaneous unitary transformation of both C and M
preserves the value of 〈C | MC 〉, i.e.,

C ′ := UC , M ′ := U MU † (7.161)

⇒ 〈C ′ | M ′C ′〉 = 〈C | MC 〉. (7.162)

We conclude our discussion with the remark that the eigenvalues

of a unitary matrix may be real or complex, e.g., the Pauli matrices

have real eigenvalues ±1 and the matrix in Eq. (7.159) has complex
eigenvalues exp(iθ) and exp(−iθ).27 The common feature is that an
eigenvalue of a unitary matrix must have absolute value 1, a result

followed from Eq. (7.160). It can be shown that a unitary matrix

possesses n orthonormal eigenvectors which may be complex.28

7.7.4 Selfadjoint Matrices

Definition 7.7.4(1)29 A square matrix M is said to be selfadjoint if
it is equal to its adjoint, i.e., M = M†.

On account of Eq. (7.81) we see that a selfadjoint n × n matrix M
satisfies the following equation

〈C 1 | MC 2〉 = 〈MC 1 | C 2〉, (7.163)

for all n × 1 column vectors C 1, C 2. We call this a selfadjointness
condition since this condition can be used to define selfadjoint

matrices, i.e., a matrix satisfying this condition is selfadjoint.

An important property of selfadjoint matrices, obvious on

account of Eq. (7.74), is stated in the following theorem.

Theorem 7.7.4(1) Let M be an n × n selfadjoint matrix and let C
be a possibly complex n× 1 column vector. Then the scalar product of
27Recall E7.6(1) which says the eigenvalues of a diagonal matrix are its diagonal

elements.
28Fano pp. 96–97.
29Selfadjoint matrices are often referred to as Hermitian matrices. For real matrices
the selfadjointness requirement reduces to the symmetry condition.
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C and MC is real, i.e.,

〈C | MC 〉 ∈ IR . (7.164)

Selfadjoint matrices do not have the geometric meaning of orthog-

onal and unitary matrices, but they are indispensable in physical

applications on account of the nature of their eigenvalues and

eigenvectors. The eigenvalues of orthogonal and unitary matrices

are not very useful since they may be complex and they all

have absolute value 1. The eigenvalues and the eigenvectors of

a selfadjoint matrix possess some very distinctive and useful

properties. We shall list these properties in the theorems below.

Theorem 7.7.4(2)30

(1) The eigenvalues of a selfadjoint matrix are real.
(2) The eigenvectors of a selfadjointmatrix corresponding to different

eigenvalues are orthogonal to each other.

Proof Let M be an n × n selfadjoint matrix, and let λ� be an

eigenvalue corresponding to normalised eigenvector C �.
31 Then we

have the eigenvalue equation MC � = λ�C �. Forming the scalar

product of this equation and C � from the left we get

〈C � | MC �〉 = 〈C � | λ�C �〉 = λ〈C � | C �〉. (7.165)

Since 〈C � | MC �〉 is real by Theorem 7.7.4 (1) we can conclude that λ

is real. Taking scalar product of the eigenvalue equation and another

eigenvector C �′ corresponding to eigenvalue λ�′ on both sides we get

RHS = 〈C �′ | MC �〉 = λ�〈C �′ | C �〉, (7.166)

LHS = 〈C �′ | MC �〉 = 〈MC �′ | C �〉 = λ�′ 〈C �′ | C �〉, (7.167)

LHS = RHS ⇒ 〈C �′ | C �〉 = 0 if λ� �= λ�′ . (7.168)

QED

Theorem 7.7.4(3)32 Unitary transformations preserve the eigen-
values of selfadjoint matrices.

30This theorem applies to real as well as complex selfadjoint matrices.
31We can always choose these eigenvectors to be normalised.
32Hohn p. 296.
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Proof Let λ be an eigenvalue of an n × n selfadjoint matrix M
corresponding to eigenvector C . Let M ′ and C ′ be the unitary

transforms of M and C generated by an n × n unitary matrix U .
Then:

M ′C ′ = (

U MU † )(UC
) = U MC = λC ′.

It follows that an eigenvalue of M is an eigenvalue of M ′. QED

Theorem 7.7.4(4)33 Given an n × n selfadjoint matrix M there
exists an n × n unitary matrix U such that the unitary transform
M ′=U M U † is a diagonal matrix whose diagonal elements λ� are the
eigenvalues of M .

Such a transformation is known as the diagonalisation of the

selfadjoint matrix.

The theorem implies that an n×n selfadjointmatrixwould have n
eigenvectors. To show thiswe first note that the n×n diagonalmatrix
M ′ in the theorem have n orthonormal eigenvectors C ′� with the
diagonal elements λ� as eigenvalues.

34 These eigenvectors lead to

n new vectors C � = U †C ′�. These new vectors are the eigenvectors

of M . To prove this we first observe that M = U †M ′U . It follows
that

MC � =
(

U †M ′U
)

C � = U †M ′C ′� (7.169)

= U †λ�C ′� = λ�C �. (7.170)

We can conclude that the original matrix M also possesses n
independent eigenvectors. This important result is stated below.

Theorem 7.7.4(5)35 The eigenvectors an n × n selfadjoint matrix
can be chosen to form an orthonormal basis for the set of n×1 column
vectors.

The realness of the eigenvalues and the scalar product 〈C | MC 〉 and
the complete orthonormal nature of the eigenvectors are crucial in

the applications of selfadjoint matrices in quantummechanics.

33Hohn p. 296.
34See the examples in Eqs. (7.106) and (7.107).
35Hohn p. 299. Kreyszig p. 350.
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As examples consider the Pauli matrices. We can verified that:

(1) Pauli matrices are unitary.

(2) Pauli matrices are selfadjoint.

(3) Pauli matrices possess only real eigenvalues, i.e.,±1.
(4) The eigenvectors of each Pauli matrix corresponding to the two

different eigenvalues, given explicitly by Eqs. (7.113), (7.114)

and (7.115), are orthonormal. The two eigenvectors for the

matrix σz span the set of all 2 × 1 column vectors, and hence

they form an orthonormal basis in the set of all 2 × 1 column

vectors. The same applies to the eigenvectors of σx and σy .

(5) Pauli matrices satisfy Theorems 7.7.4(1), 7.7.4(2), 7.7.4(4) and

7.7.4(5).

7.7.5 Projection Matrices

Definition 7.7.5(1)36 A square matrix M is a projection matrix if it
is selfadjoint and idempotent, i.e.,

M = M† and M = M2. (7.171)

Geometrically these matrices correspond to projection operations

of vectors. Consider vectors in �IE 3. In basis { �i , �j , �k } a vector �v has
a matrix representation C �v as shown in Eq. (7.84). The projection
�v�i of �v onto �i is given by Eq. (6.42). Let C �v�i be the matrix

representation of �v�i in basis {�i , �j , �k }. Then the column vectors C �v
and C �v�i are related by a matrix P �i , i.e.,

C �v�i = P �i C �v ⇔
⎛

⎝

vx
0

0

⎞

⎠ =
⎛

⎝

1 0 0

0 0 0

0 0 0

⎞

⎠

⎛

⎝

vx
vy
vz

⎞

⎠ . (7.172)

We call P �i the projection matrix onto �i in basis { �i , �j , �k }. It
possesses the two defining properties of projection matrices, i.e.,

selfadjointness P �i = P†
�i and idempotence P �i = P2�i .

36Projection matrices defined here are also referred to as orthogonal projection
matrices in mathematics literature where non-orthogonal projection matrices are
introduced by their idempotent property without the selfadjointness requirement.
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Next consider the projection �v �e of �v onto an arbitrary unit vector
�e given by Eq. (6.47). Let C �v �e and C �e be the matrix representations
of �v �e and �e in basis { �i , �j , �k }. Then

C �v �e = 〈�e | �v 〉C �e . (7.173)

The matrix representation of this projection operation is

P �e := C �e C
†
�e , (7.174)

since, on account of Eq. (7.73), we have37

P �e C �v =
(

C �e C
†
�e
)

C �v = C �e
(

C †
�e C �v

)

= 〈C �e | C 〉C �e = 〈�e | �v 〉C �e = C �ve . (7.175)

This matrix is selfadjoint and idempotent, i.e., it is a projection

matrix known as the projection matrix generated by the column
vector C �e. We shall employ the Dirac notation for projection

matrices, i.e., we shall express this projection matrix as

P �e = |C �e 〉〈C �e |, (7.176)

with the understanding that its action on any column vector is given

by Eq. (7.175), i.e.,38

P �e C �v =
(

|C �e 〉〈C �e |
)

C �v = 〈C �e | C �v〉C �e. (7.177)

As illustrations we can calculate the projection matrices generated

by the eigenvectors of the Pauli matrices in Eqs. (7.113) to (7.118)39:

(1) From σx with eigenvectors C �αx and C �βx we get

P �αx = C �αx C
†
�αx =

1

2

(

1 1

1 1

)

, (7.178)

P �βx = C �βx C
†
�βx =

1

2

(

1 − 1
−1 1

)

. (7.179)

37Matrix representation preserves scalar product due to Eq. (7.87).
38Here we do not attach any separate meaning to symbols |C �v 〉 and 〈C �v |.
39Isham p. 91.
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(2) From σy with eigenvectors C �αy and C �β y
we get

P �αy = C �αy C
†
�αy =

1

2

(

1 − i
i 1

)

, (7.180)

P �β y
= C �β y

C †
�β y
= 1

2

(

1 i
−i 1

)

. (7.181)

(3) From σz with eigenvectors C �αz and C �βz we get

P �αz = C �αz C
†
�αz =

(

1 0

0 0

)

, (7.182)

P �βz = C �βz C
†
�βz =

(

0 0

0 1

)

. (7.183)

The projection properties can be illustratedwith thesematrices, e.g.,

an arbitrary 2×1 column vector C can be projected onto C �αz and C �αx
by P �αz and P �αx , i.e.,

P �αzC = 〈C �αz | C 〉C �αz , P �αxC = 〈C �αx | C 〉C �αx . (7.184)

Explicitly we have
(

1 0

0 0

)(

C1
C2

)

= C1

(

1

0

)

, (7.185)

1

2

(

1 1

1 1

)(

C1
C2

)

= 1

2

(

C1 + C2
)

(

1

1

)

. (7.186)

Theorem7.7.5(1) A projection matrix possesses only two eigenval-
ues, i.e., 0 and 1.

Proof Let a be an eigenvalue of a projection matrix P correspond-
ing to an eigenvector C a , i.e., we have

PC = aC . (7.187)

Multiplying both sides by P we get

P2C = aPC = a2C . (7.188)

The idempotent property of P implies that a = a2 which implies
a = 0 or 1, bearing in mind that being selfadjoint the eigenvalues of

P are real. QED
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The projection matices in Eqs. (7.178) to (7.183) can be used to

demonstrate the above theorem.

7.7.6 Spectral Decomposition of Selfadjoint Matrices

Given a selfadjoint matrix we can solve for its eigenvalues and

eigenvectors. Conversely a selfadjointmatrix can be characterised by

its eigenvalues and eigenvectors. LetM be an n×n selfadjointmatrix.
The matrix possesses n orthonormal eigenvectors C � together with

their corresponding eigenvalues λ�.
40 Let P� = |C � 〉〈C � | be the

projection matrix generated by the eigenvector C � in accordance

with Eqs. (7.174) and (7.176). Then we have the following

theorem.

Theorem7.7.6(1) A selfadjointmatrixM can be expressed in terms
of its eigenvalues λ� and their associated the projectionmatrices P� as

M =
n
∑

�=1
λ�P�. (7.189)

This is known as the spectral theorem for selfadjoint matrices.

The expression in Eq. (7.189) is referred to as the spectral
decomposition of M and the set of eigenvalues is called the

spectrum of M . As illustrations we can check that the Pauli matrices
have the following spectral decompositions:

σx = P �αx − P �βx , (7.190)

σy = P �αy − P �β y
, (7.191)

σz = P �αz − P �βz . (7.192)

We can see that the spectral theorem tells us that a selfadjoint

matrix is decomposable as a sum of projection matrices with real

coefficients.

This spectral theorem can be extended to apply to operators

acting on finite and infinite dimensional vector spaces, as will be

discussed in §9.4.5, §15.3, and §20.2.

40While the n eigenvectors are distinct the eigenvalues are not necessarily different.
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Exercises and Problems

Q7(1) Verify Eq. (7.37) on the trace of square matrices.

Q7(2) Show that the inverse of a square invertible matrix is

unique.

Q7(3) Prove Eq. (7.71).

Q7(4) What is the inverse of a diagonal matrix with non-zero
diagonal elements Mj j ?

Q7(5) Show that the orthogonal matrix Rz(θz) in Eq. (7.149) is not
selfadjoint.

Q7(6) Prove Eq. (7.160).

Q7(7) Verify Eq. (7.162) on simultaneous unitary transforma-

tions.

Q7(8) Pauli matrices are denoted by σx , σy , σz.

(a) Verify the six properties of Pauli matrices shown in Eqs.
(7.41) to (7.49).

(b) Show that
(

axσx +ayσy+azσz
)2 = (

a2x +a2y +a2z
)

I 2×2,
where I 2×2 is the 2 × 2 identity matrix and ax , ay , az
are real numbers.

(c) What are the determinant and trace of each of the Pauli
matrices?

(d) What is the inverse of each of Pauli matrices?

(e) Verify that Pauli matrix σx satisfies the selfadjointness

condition in Eq. (7.163) for the vectors C �αz and C �βz in
Eq. (7.118).

(f) Show that the eigenvectors of each Pauli matrix

corresponding to the eigenvalues ±1 given by Eqs.

(7.116), (7.117) and (7.118) are orthonormal.

Q7(9) Show that

(a) If P is an n × n projection matrix then I n×n – P is also
a projection matrix.

(b) If P and Q are n × n projection matrices then P · Q is

also a projection matrix if P and Q commute.
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(c) If P and Q are n × n projection matrices then P + Q is

also a projection matrix if P · Q = Q · P = 0, where 0
is the n× n zero matrix.

Q7(10) Show that the 2× 2 matrices in Eqs. (7.178) to (7.183) are
projection matrices.41 Find their eigenvectors.

41Isham p. 91.
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Chapter 8

Operations on Vectors in �IE 3

8.1 Functionals on �IE 3 and the Riesz Theorem

Mappings and functions discussed in §3.2.2 are very general

concepts used to relate two sets of quantities. We shall now

introduce a special class of mappings known as functionals. These
are mappings F of the vector space �IE 3 into the set IR of real

numbers, i.e.,

F : IE 3 → IR by �u→ F (�u ) ∈ IR . (8.1)

A functional associates every vector �u in �IE 3 with a real number
F (�u ) ∈ IR . A functional F is said to be linear if

F (a�u + b�v ) = aF (�u )+ bF (�v ) (8.2)

for all a, b in IR and for all �u, �v in IE 3. An immediate consequence
is that F (�0 ) = 0 if F is linear. We already have a mechanism to

associate vectors with numbers, i.e., the scalar product on �IE 3 which
also possesses linear property. The scalar product enables every

vector �v to generate a linear functional F �v on �IE 3 by
F �v(�u ) := 〈�v | �u 〉 ∀�u ∈ IE 3. (8.3)

The converse is also true as confirmed by the Riesz theorem.

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com

http://www.jennystanford.com
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Theorem8.1(1) Riesz Theorem1 Every linear functional F on the
vector space �IE 3 is generated by a unique vector �v by

F (�u ) = F �v(�u ) := 〈�v | �u 〉. (8.4)

Proof Let {�e�} be an orthonormal basis for �IE 3. We can express �u
in terms of the basis vectors as in Eq. (6.19), i.e.,

�u =
∑

�

u� �e�, u� = 〈�e� | �u 〉. (8.5)

Let F be a linear functional. Then we have, by linearity,

F (�u ) =
∑

�

u�F (�e�). (8.6)

Define a vector �v in terms of F (�e�) by

�v =
∑

�

F (�e�)�e�. (8.7)

We get, on ccount of Eq. (8.6),

〈�v | �u 〉 =
∑

�

F (�e�)u� = F (�u ). (8.8)

QED

8.2 Linear Operators

8.2.1 The Concept

We have already introduced two types of operations in previous

discussions: an operation which changes the length of a given vector

by scalar multiplication and an operation which changes the length

aswell as the direction of a given vector by projecting it onto another

direction. These operations can be considered as mappings of �IE 3
into itself. In many applications we need to consider many different

mappings of �IE 3 into itself. These mappings are describable by an
equation, i.e.,

̂A : �IE 3 → �IE 3 by ̂A �u = �v ∀�u ∈ �IE 3. (8.9)

1Riesz (1880–1956) is a Hungarian mathematician. Scalar product in �IE 3 is real-
valued.
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The mapping is denoted by a letter with a “hat”, i.e., ̂A. We call these
mappings operators since they represent operations on vectors. In
the above equation �u is called an input vector and �v in called an
output vector. As with functionals we are interested in operators
which are linear.

Definition 8.2.1 (1) An operator ̂A is said to be linear if it satisfies
the following property:

̂A(a�u + b�v ) = a ̂A �u + b ̂A �v ∀ �u, �v ∈ �IE 3 and ∀a, b ∈ IR . (8.10)

Linear operator do not act on numbers. A number can be taken out

and moved to the left of the operator. An immediate result is that
̂A �0 = �0. From now on all operators are assumed to be linear.2

8.2.2 General Definitions

8.2.2.1 Domain and range

The vector space �IE 3 on which ̂A acts is the domain of ̂A. The set of
images

{�v : �v = ̂A �u, �u ∈ �IE 3 } (8.11)

is the range of ̂A, which is generally a subset of �IE 3. We shall denote
the domain and the range of ̂A by �D( ̂A ) and �R( ̂A ), respectively. We
then have

�D( ̂A ) = �IE 3 and �R( ̂A ) ⊂ �IE 3. (8.12)

We shall call ̂A an operator on �IE 3.
The operator ̂II which maps �IE 3 onto itself by ̂II �u = �u ∀�u ∈ �IE 3

is called the identity operator on �IE 3. The operator ̂0 which maps
every vector to the zero vector, i.e., ̂0 �u = �0 ∀�u ∈ �IE 3, is called the
zero operator.

Two operators ̂A and ̂B are equal, i.e., ̂A = ̂B , if and only if ̂A �u =
̂B �u ∀�u ∈ �IE 3.
2A list of definitions similar to and motivated by the corresponding definitions on

mappings and on matrices is given in the next subsection.
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8.2.2.2 Norm of operators

Consider the set of values || ̂A �u || for all unit vectors �u ∈ �IE 3, where
|| ̂A �u || is the norm of the vector ̂A �u. The supremum of this set of

values is defined to be the norm of the operator which is denoted

by || ̂A ||, i.e.,3
|| ̂A || := sup

{

|| ̂A �u ||, ||�u || = 1
}

. (8.13)

An alternative expression is4

|| ̂A || = sup

{

|| ̂A �v (u) || = || ̂A �v ||
||�v|| , �v ∈ �IE 3

}

. (8.14)

It follows that5

|| ̂A �v || ≤ || ̂A || ||�v ||. (8.15)

8.2.2.3 Algebraic operations

Scalar multiplication, addition and multiplication of operators are

defined by:

(1) Scalar multiplication ̂A′ = a ̂A, a ∈ IR , is defined to be
̂A′ �u := a( ̂A �u ) ∀�u ∈ �IE 3. (8.16)

(2) Addition ̂C = a ̂A + b̂B , a, b ∈ IR , is defined to be
̂C �u := a( ̂A �u )+ b(̂B �u ) ∀�u ∈ �IE 3. (8.17)

(3) Linear combination A sum of operators of the form a ̂A +
b̂B + · · · is called a linear combination of the operators with
coefficients a, b, · · · .

(4) Product ̂D = ( ̂A ̂B ) is defined to be

̂D�u := ̂A
(

̂B �u ) ∀�u ∈ �IE 3. (8.18)

Note that ̂A does not act on ̂B . It acts on the vector ̂B �u. A simple
example is the product of an operator with itself, i.e., ̂A 2 := ̂A ̂A.

3The supremum of a set of real numbers is the least number that is greater than or

equal to all numbers in the set. It is also called the least upper bound.
4Here �v (u) is the unit directional vector introduced by Eq. (6.17).
5Equation (8.15) applies to bounded operators in a complex scalar product space (see
Eq. (17.7)).
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(5) An operator ̂A is said to be idempotent if it is equal to its square,
i.e., ̂A 2 = ̂A. A trivial example is the identity and the zero

operators. As will be seen later, some very important non-trivial

operators are also idempotent.

8.2.2.4 Commutators and anticommutators

The commutator of ̂A and ̂B is defined to be

[ ̂A, ̂B ] := ̂A ̂B − ̂B ̂A. (8.19)

An equation [ ̂A, ̂B ] = ̂C is called a commutation relation. Two
operators ̂A, ̂B are said to commute if their commutator vanishes,
i.e., if

[ ̂A, ̂B ] = ̂0 or ̂A ̂B = ̂B ̂A. (8.20)

In other words, two operators ̂A, ̂B are said to commute if their

multiplication is commutative, i.e., ̂A ̂B = ̂B ̂A.
Two operators are said to anticommute if their anticommutator

defined to be

{ ̂A, ̂B } := ̂A ̂B + ̂B ̂A (8.21)

vanishes.

8.2.2.5 Inverse operators

An operator ̂A is said to be invertible if it generates a one-to-one
mapping of �IE 3 onto �IE 3, i.e., the range �R( ̂A) of ̂A coincides with �IE 3
and different input vectors are mapped into distinct output vectors.

We can then define the inverse ̂A−1 of ̂A by Eq. (3.21), Explicitly, if
̂A �u = �v , then the inverse ̂A−1 is defined by6

̂A−1 : ̂A−1 �v := �u ∀�v ∈ �R( ̂A). (8.22)

It follows that

̂A−1 ̂A = ̂II and ̂A ̂A−1 = ̂II . (8.23)

6Halmos p. 62.



142 Operations on Vectors in �IE 3

The invertibility of an operator ̂A is closely related to the

requirement that the zero vector �0 is the only vector mapped into

the zero vector by ̂A, i.e.,
̂A �u = �0 ⇒ �u = �0. (8.24)

Firstly this requirement implies that the mapping generated by ̂A is
one-to-one. To prove this we first observe that

�u �= �0 ⇒ ̂A �u �= �0. (8.25)

Then:

�u1 �= �u2 ⇒ �u1 − �u2 �= �0
⇒ ̂A

(

�u1 − �u2
)

�= �0
⇒ ̂A �u1 �= ̂A �u2. (8.26)

Secondly Eq. (8.24) also implies that ̂A generates an onto mapping,
i.e., the range of the operator is the entire �IE 3. To prove this let {�e� }
be an orthonormal basis for �IE 3 and let �e�

′ = ̂A �e�, � = 1, 2, 3.

These new vectors are linearly independent. To show this consider

an arbitrary linear combination of �e�
′, i.e.,

3
∑

�=1
c� �e�

′ =
3
∑

�−1
c� ̂A �e� = ̂A

(

3
∑

�=1
c� �e�

)

. (8.27)

It follows from Eq. (8.24) that

3
∑

�=1
c� �e�

′ = �0 ⇒
3
∑

�=1
c� �e� = �0 ⇒ c� = 0 ∀�. (8.28)

The last result is due to the linear independence of �e�. This result

in turn implies the linear independence of �e�
′. It then follows that

�e�
′ form a complete set of �IE 3. Consequently every vector �v in �IE 3 is

expressible as a linear combination of �e�
′, i.e.,

�v =
3
∑

�=1
a� �e�

′ =
3
∑

�=1
a�
̂A �e� = ̂A

(

3
∑

�=1
a� �e�

)

. (8.29)

In other words, every vector �v in �IE 3 is expressible in the form

�v = ̂A �u, �u =
3
∑

�=1
u� �e�. (8.30)
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This means that every vector �v in �IE 3 is the image of an input vector
�u under the operator ̂A, i.e., the range of the operator is the entire
space �IE 3.
Theorem 8.2.2(1) An operator ̂A is invertible if and only if 7

̂A �u = �0 ⇒ �u = �0. (8.31)

This corresponds to Eq. (7.70) on the condition for inverse for

matrices.8 Definition 7.4(1) for matrices also applies to operators

here as seen in the following theorem.

Theorem 8.2.2(2)9 An operator ̂A is invertible if there is another
operator ̂B such that

̂B ̂A = ̂II = ̂A ̂B . (8.32)

The inverse ̂A−1 is equal to the operator ̂B .

For operators in �IE 3 either of the conditions ̂B ̂A = ̂II and ̂A ̂B = ̂II
in Eq. (8.32) implies the other. In other words, ̂B ̂A = ̂II is sufficient
to imply the invertibility of ̂A with ̂B as its inverse.10

As with matrices an invertible operator has a unique inverse. We

also have
(

̂A−1
)−1 = ̂A and ( ̂A ̂B)−1 = ̂B−1 ̂A−1.11

8.2.2.6 Adjoint operators

The scalar product on �IE 3 enables us to define the notion of the
adjoint of a given operator ̂A in the same way the adjoint of a matrix
is definable by Eq. (7.81). An operator, denoted by ̂A†, is called the

adjoint of ̂A, if the following condition is satisfied:

〈 ̂A† �v | �u 〉 = 〈�v | ̂A �u 〉 ∀ �u, �v ∈ �IE 3. (8.33)

7Halmos pp. 62–63.
8This theorem also applies to operators in a finite-dimensional complex vector

space discussed in Chapter 13. The situation is more complicated in an infinite-

dimensional vector space discussed in §17.5.
9Halmos p. 62.
10Halmos pp. 64, 142. This theorem remains true in finite-dimensional complex

vector spaces (see also Fano p. 74). As will be discussed in §17.5 this theorem is

not true in an infinite-dimensional vector space.
11Halmos p. 63.
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Using the commutative property SP6.3.1(1) of scalar product we can

see that the adjoint operator also satisfies

〈�u | ̂A† �v 〉 = 〈 ̂A �u | �v 〉 ∀ �u, �v ∈ �IE 3. (8.34)

The existence of the adjoint operator follows from Riesz theorem.

Given a vector �w we can define a linear functional F Â
�w on �IE 3 by

F Â
�w (�u ) := 〈 �w | ̂A �u 〉 ∀ �u ∈ �IE 3. (8.35)

Riesz theorem tells us that the functional F Â
�w must be generated by a

vector in the form of Eq. (8.4), i.e., there exists a vector �w′ such that
F Â
�w (�u ) = 〈 �w′ | �u 〉. (8.36)

It follows that

〈 �w′ | �u 〉 = 〈 �w | ̂A �u 〉 ∀�u ∈ �IE 3. (8.37)

The vector �w′ is uniquely related to �w because of Eq. (6.31). We can

then define an operator ̂A† by ̂A† �w = �w′. Then Eq. (8.37) reduces
to Eq. (8.33). A trivial example is that the adjoint of the identity

operator is equal to itself, i.e., ̂II † = ̂II .
The notation and properties of adjoint operators resemble that

of matrices in §7.3. In particular Eqs. (7.58) to (7.61) for the adjoint
operation for matrices apply to operators here, i.e., we have

(1) The adjoint operation is linear, i.e.,

(a ̂A + b̂B )† = a ̂A† + b̂B†, a, b ∈ IR . (8.38)

In particular we have, for any a ∈ IR ,
(a ̂A )† = a ̂A† ⇒ 〈�u | a ̂A �v 〉 = a 〈 ̂A† �u | �v 〉. (8.39)

(2) The adjoint of ̂A†, denoted by ̂A††, is equal to ̂A, i.e.,

̂A†† = ( ̂A†)† = ̂A. (8.40)

(3) The adjoint operation on the product of two operators is given

by the product of the adjoints of the operators in the reverse

order as in Eq. (7.61) for matrices, i.e.,

( ̂A ̂B )† = ̂B†
̂A†. (8.41)

(4) The adjoint of the inverse is the inverse of the adjoint, i.e.,

( ̂A−1 )† = ( ̂A† )−1. (8.42)
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8.2.2.7 Quadratic form

An operator on its own does not generally have a numerical value.

However, an operator can generate numerical values with the help

of vectors. For example, we have a value for every vector �u in �IE 3
defined by

Q( ̂A, �u ) := 〈�u | ̂A �u 〉. (8.43)

We call Q( ̂A, �u ) the quadratic form generated by the operator ̂A on
the vector space �IE 3. In §10 we shall discuss how a link between this

quadratic form and the expectation values in a probability theory

can emerge for certain types of operators.

8.2.3 Matrix Representation of Operators

An operator is defined by its effect on vectors through Eq. (8.9). It

would be useful to have explicit expressions for operators in terms of

familiar quantities. This can be achieved in terms of matrices. Since

we can represent vectors by column vectors we should be able to

represent operators by square matrices to acting on column vectors.

A matrix expression of operators can be established as follows:

(1) Choose an orthonormal basis {�e�} to express the vectors �u and
�v as done in Eqs. (7.82) and (7.83).

(2) Rewrite Eq. (8.9) explicitly as

�v =
3
∑

�=1
v� �e� = ̂A �u = ̂A

3
∑

�=1
u� �e�, =

3
∑

�=1
u�
̂A �e�. (8.44)

(3) Taking the scalar product with �ek we get

vk =
3
∑

�=1
u� 〈�ek | ̂A �e�〉 or

3
∑

�=1
〈�ek | ̂A �e�〉u� = vk. (8.45)

(4) Construct the matrix representation C �u and C �v of �u and �v in
basis {�e�} in accordance with Eq. (7.84), i.e.,

C �u =
⎛

⎝

u1
u2
u3

⎞

⎠ , C �v =
⎛

⎝

v1
v2
v3

⎞

⎠ . (8.46)
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(5) Define a 3× 3 matrix M Â with elements

MÂk� = 〈�ek | ̂A �e�〉. (8.47)

(6) We can now rewrite Eq. (8.45) as a matrix equation

3
∑

�=1
MÂk� u� = vk or MÂC �u = C �v , (8.48)

We can then regard Eq. (8.48) as the matrix representation

of Eq. (8.9) in basis {�e�}, and matrix MÂ as the matrix

representation of ̂A in basis {�e�}.
(7) With a different choice of basis we would obtain a different

matrix to ̂A and different column vectors to represent �u and �v .
(8) One can shown that

(a) The matrix representation of the inverse ̂A−1 of ̂A is the

inverse matrix to the matrix MÂ .

(b) The matrix representation of the adjoint of ̂A is the adjoint
matrix to the matrix MÂ .

Operators have many properties similar to that of matrices, e.g.,

we have operator eigenvalue problem and we also have special

operators to correspond to the special matrices introduced in §7.7.
A whole chapter, Chapter 9, will be devoted to discuss those special

operators. We shall look into the eigenvalue problem of operators

here first.

8.2.4 Eigenvalue Problem for Operators

Operators are abstract quantities which do not manifestly possess

any numerical values. For physical applications we need numerical

values. As with matrices operators can generate numerical values

in the form of eigenvalues. Any operator, apart from the identity

operator, will affect a vector. For an arbitrary input vector �u in Eq.

(8.9) the output vector �v may be very different from �u, e.g., �v is not
linearly dependent on �u. As in the eigenvalue problem for matrices

we look for input vectors which are least affected by the operator.

An input vector �u is deemed to be least affected by ̂A if the operator
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changes �u only to the extend of a multiplicative constant. For such

input vectors we have

̂A �u = a�u, a ∈ IR . (8.49)

The operator only changes the length of �u but not its orientation
in the sense that the output vector has a length |a| ||�u || and it is
either parallel or antiparallel to �u.12 The following are standard
definitions:

(1) Equation (8.49) is known as the eigenvalue equation for the
operator ̂A.

(2) We call �u in Eq. (8.49) an eigenvector of ̂A and a the

eigenvalue corresponding to the eigenvector �u. We also call a
an eigenvalue of ̂A and �u an eigenvector of ̂A corresponding

to the eigenvalue a. An operator may have different eigenvalues
and an eigenvalue may correspond to different eigenvectors.13

(3) As for matrices an eigenvalue may be degenerate or nondegen-
erate.

(a) If �u is an eigenvector corresponding to an eigenvalue a then
b�u, b ∈ IR , is another eigenvector corresponding to the
eigenvalue a. However, we do not regard b�u to be a different
eigenvector. We consider two eigenvectors to be different

only if they are linearly independent.

(b) It is possible for an eigenvalue to correspond to two or

more linearly independent eigenvectors. The eigenvalue

is then said to be degenerate and the number of linearly
independent eigenvectors corresponding to the eigenvalue

is called the degeneracy of the eigenvalue. This is equivalent
to saying that not all the eigenvalues have to be different. An

eigenvalue of degeneracy 1 is said to be nondegenerate.

(c) An operator is said to be nondegenerate if all its eigenvalues
are nondegenerate. For a nondegenerate operator all its

eigenvalues are different.

12We use the term orientation to mean both the parallel and antiparallel directions of
a vector.

13As will be commented later the existence of eigenvectors for operators is related to

the existence of eigenvectors for matrices.
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(4) The set of eigenvalues of ̂A is called the spectrum of ̂A.

Since operators can be represented by matrices we can study

the eigenvalue problem of operators through their corresponding

matrix eigenvalue equations. This includes the existence and

solutions of the eigenvalues. On account of Eq. (8.48) we can

write down the following matrix representation of the opera-

tor eigenvalue equation (8.49) in a chosen orthonormal basis

{�e�}, i.e.,
̂A �u = a�u → MÂC �u = a C �u . (8.50)

A different choice of basis will change the matrix for ̂A and the

column vector for the eigenvector �u, but not the eigenvalue a.
Hence the eigenvalues of an operator can be solved in terms of a

corresponding matrix eigenvalue equation.

Exercises and Problems

Q8(1) Show that an invertible operator has a unique inverse.

Q8(2) Show that in �IE 3 the condition ̂B ̂A = ̂II is sufficient to imply
the invertibility of ̂A with ̂B as its inverse.

Q8(3) Let A be a matrix representation of an invertible operator ̂A.
Show that the matrix representation of the inverse ̂A−1 of ̂A
is the inverse matrix A−1 to the matrix A.

Q8(4) Let {�e�, � = 1, 2, 3} be a basis for �IE 3 and let ̂A be an

invertible operator. Show that {�e ′� = ̂A �e�, � = 1, 2, 3} is also
a basis for �IE 3.14

Q8(5) Show that an operator ̂A is invertible if and only if every

vector �v ∈ �IE 3 can be expressed as �v = ̂A �u for some

�u ∈ �IE 3.15
Q8(6) Show that thematrix representation of the adjoint of ̂A is the

adjoint matrix M†
̂A
to the matrix M Â .

14Halmos p. 63.
15Halmos pp. 62–63.
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Q8(7) Let F be a linear functional on �IE 3. Show that F (�0 ) = 0.

Prove a similar result for linear operators.16

Q8(8) Prove Eqs. (8.38) to (8.42) on adjoint operations.

Q8(9) Associated with the projection operation given by Eq. (6.41)
we can define an operator ̂P �i by

̂P �i �v = vx �i ∀ �v ∈ �IE 3. (8.51)

Show that

(a) The operator ̂P �i is idempotent.

(b) The operator ̂P �i is selfadjoint.

(c) The operator possesses only two eigenvalues 0 and 1.
Find the corresponding eigenvectors.

(d) The matrix representation MP̂ �i
of ̂P �i in basis {�i , �j , �k} is

MP̂ �i
=
⎛

⎝

1 0 0

0 0 0

0 0 0

⎞

⎠ . (8.52)

Show also that MP̂ �i
is a projection matrix. Find the

eigenvalues and their corresponding eigenvectors of

MP̂ �i
.

16Halmos pp. 20, 55.
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Chapter 9

Special Operators on �IE 3

Here we shall examine in detail some special operators defined in

close analogy to the special matrices introduced in §7.7.

9.1 Scalar Multiplication Operators

A simple operation is to lengthen or to shorten a vector by a factor a
without changing its orientation. The simplest operator of this kind

is the identity operator ̂II . It is often convenient to write ̂II = 1. A

more general operation can be carried out by scalar multiplication

representable by an operator ̂Ma , i.e.,

̂Ma �u := a�u or ̂Ma = a ̂II , a ∈ IR . (9.1)

This is called a scalar multiplication operator. Here a can be negative.
If we multiply a vector by a negative number we would reverse the

direction of the vector, as well as changing its norm.

9.2 Rotations and Orthogonal Operators

9.2.1 Rotations of Vectors

Another operation is to change the direction of a vector but not its

norm. This is the operation of rotation of the vector. For a rotation

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com

http://www.jennystanford.com


152 Special Operators on �IE 3

about the z-axis by an angle θz the rotated vector �v ′ and the original
vector �v are related by Eqs. (7.146) to (7.148). Such a rotation can
be represented by an orthogonal matrix in Eq. (7.149). We can also

define an operator ̂Rz(θz) to relate �v ′ and �v by

�v ′ = ̂Rz(θz)�v ∀�v ∈ �IE 3. (9.2)

We can similarly introduce rotation operators ̂Rx(θx) and ̂Ry(θy) for
rotations about the x and the y axes. In addition to proper rotations
we can also define an operator to correspond to every improper

rotation in the same way. As shown in Eq. (7.126) orthogonal

matrices preserve the norm of column vectors. This property can

be used to define orthogonal matrices. We can define orthogonal
operators to correspond to orthogonal matrices in the same way.

9.2.2 Orthogonal Operators

Definition 9.2.2(1) An operator ̂R on �IE 3 which preserves the norm
of all the vectors in �IE 3, i.e.,

〈 ̂R �v | ̂R �v 〉 = 〈�v | �v 〉 or || ̂R �v || = ||�v || ∀ �v ∈ �IE 3 (9.3)

is called an orthogonal operator on �IE 3.
Orthogonal operators possess the following properties:

P9.2.2(1) Orthogonal operators correspond to orthogonal matri-

ces. Every 3 × 3 orthogonal matrix defines an orthogonal operator

on �IE 3. For example, we can define:

(1) The operators for all the proper rotations discussed in §7.7.2, in-
cluding rotations about any chosen axis through the coordinate

origin.

(2) The operators for reflections about coordinate axes. For

example, we have

̂Rrx �v = ̂Rrx
(

vx�i + vy �j + vz �k
)

:=
(

−vx�i + vy �j + vz �k
)

. (9.4)
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which causes a reflection of the x component of the vector, i.e.,
from vx to−vx , and

̂Rrxyz �v = ̂Rrxyz
(

vx�i + vy �j + vz �k
)

:=
(

−vx�i − vy �j − vz �k
)

= −�v . (9.5)

which cause a refection of all components of the vector.

Conversely orthogonal operators are represented by orthogonal

matrices.

P9.2.2(2) Orthogonal operators are invertible.

P9.2.2(3) An operator on �IE 3 is orthogonal if and only if it is

invertible and its inverse is equal to it adjoint, i.e., ̂R† = ̂R−1.1

We can define orthogonal transformations by orthogonal op-

erators in the same way orthogonal matrices defines orthogonal

transforms of column vectors by Eq. (7.127).

Definition 9.2.2(2) Let ̂R be an orthogonal operator on �IE 3.

(1) The vector �u ′ := ̂R �u is called the orthogonal transform of �u
generated by the orthogonal operator ̂R.

(2) The operator ̂A′ := ̂R ̂A ̂R† is called the orthogonal transform
of ̂A generated by the orthogonal operator ̂R.

Orthogonal transformations possess the following properties:

P9.2.2(4) An orthogonal transformation of vectors preserves

scalar products, i.e.,

�u ′ := ̂R �u, �v ′ := ̂R �v , ⇒ 〈�u ′ | �v ′〉 = 〈�u | �v 〉. (9.6)

P9.2.2(5) An orthogonal transformation preserves orthonormal

bases, i.e., given an orthonormal basis {�e�} in �IE 3 their orthogonal
transforms {�e�

′} generated by an orthogonal operator ̂R is again an
orthonormal basis in �IE 3.

1This corresponds to Definition 7.7.2(1) for matrices.
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P9.2.2(6) For a simultaneous orthogonal transformation of vectors
and operators we have:

(1) Preservation of the scalar product 〈�u | ̂A �v 〉, i.e.,
�u ′ := ̂R �u, �v ′ := ̂R �v , ̂A′ := ̂R ̂A ̂R†

⇒ 〈�u ′ | ̂A′ �v ′〉 = 〈�u | ̂A �v 〉. (9.7)

(2) Preservation of the quadratic form Q( ̂A, �u ) generated by ̂A ,
i.e.,

Q( ̂A′, �u ′ ) = 〈�u ′ | ̂A′ �u ′〉 = 〈�u | ̂A �u 〉 = Q( ̂A, �u ). (9.8)

P9.2.2(7) Orthogonal operators on �IE 3 have a maximum of two

eigenvalues, i.e., ±1.2 For example, the operator ̂Rz(θz) defined

by Eq. (9.2) admits only one real eigenvalue, i.e., the value 1

corresponding to eigenvectors of the form �v = vz �k, while the
operator ̂Rrxyx given by Eq. (9.5) admits only the eigenvalue −1.
The operator ̂Rrx given by Eq. (9.4) admits eigenvalues ±1. These
eigenvalues are the same as their representative matrices.

9.3 Projections and Projection Operators

We can change both the norm and the direction of vectors. An

example is a projection operation discussed in §6.4. Here we shall
discuss the mathematical description of projection operation in

terms of projection operators.

9.3.1 Projectors onto Unit Vectors

To be specific, consider the projection of �v onto the x-axis, i.e.,
projection onto the unit vector �i given by Definition 6.4.1(1). We can
describe the projection operation from �v to �v�i mathematically by
an operator ̂P �i , i.e.,

̂P �i �v := �v�i ∀�v ∈ �IE 3, (9.9)

2We confine ourselves to real eigenvalues and real eigenvectors. These quantities

exist for R̂ on �IE 3. The situation is different in a two-dimensional space �IE 2 like the
x-y plane. Orthogonal operators acting on �IE 2 corresponding to rotations given the
matrix in Eq. (7.110) have no real eigenvalues.
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or explicitly3

̂P �i �v := vx �i = 〈 �i | �v 〉 �i ∀�v ∈ �IE 3. (9.10)

We call ̂P �i the projection operator onto �i , or the projector onto�i . The projectors on �j and �k are similarly defined by
̂P �j �v : = �v �j = vy �j = 〈 �j | �v 〉 �j , (9.11)

̂P �k �v : = �v �k = vz �k = 〈 �k | �v 〉 �k. (9.12)

We can similarly introduce projectors onto arbitrary unit vectors

which is depicted by Figure 6.4.2 and given by Definition 6.4.2 (1).

Definition 9.3.1(1)

(1) The projector ̂P �e onto a unit vector �e is defined by
̂P �e �v := �v �e = 〈�e | �v 〉 �e ∀�v ∈ �IE 3. (9.13)

(2) We call ̂P �e the one-dimensional projector onto �e.We also call ̂P �e
the projector generated by �e. The vector �v �e = 〈�e | �v 〉 �e is called
the projection of �v onto �e.

We shall present a list of properties under 8 headings:

P9.3.1(1) Dirac notation As with projection matrices shown in Eq.

(7.176) projectors are often denoted in Dirac notation, e.g., we write

̂P �i = | �i 〉〈 �i |, ̂P �e = | �e 〉〈 �e |. (9.14)

Equations (9.10) to (9.13) become

̂P �i �v = | �i 〉〈 �i | �v = 〈 �i | �v 〉 �i , (9.15)

̂P �j �v = | �j 〉〈 �j | �v = 〈 �j | �v 〉 �j , (9.16)

̂P �k �v = | �k 〉〈 �k | �v = 〈 �k | �v 〉 �k; (9.17)

̂P �e �v = | �e 〉〈 �e | �v = 〈�e | �v 〉 �e. (9.18)

P9.3.1(2) Norms of projections and projectors

(1) The norm of the projection is generally smaller than that of the

original vector, since by Schwarz inequality, we have

||�v �e || = |〈�e | �v 〉| ≤ ||�v ||. (9.19)

It follows that for all unit vectors �u we have
|| ̂P �e �u || ≤ 1 and || ̂P �e �e || = 1. (9.20)

This means that the norm || ̂P �e || of the projector is 1.

3See Q8(9).
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(2) The norm ||�v �e || of the projection �v �e is equal to the square root
of the value of the quadratic form generated by the projector for

the vector �v , i.e.,
||�v �e ||2 = 〈�v | ̂P �e �v 〉, (9.21)

since

〈�v | ̂P �e �v 〉 = 〈�e | �v 〉〈�v | �e 〉 = |〈�e | �v 〉|2. (9.22)

For example, we have

〈�v | ̂P �i �v 〉 = v2x , 〈�v | ̂P �j �v 〉 = v2y , 〈�v | ̂P �k �v 〉 = v2z . (9.23)

These values are obviously less than or at most equal to the

norm of �v .

P9.3.1(3)Mutually orthogonal projectors4 Two orthogonal vectors

�e1 and �e2 have zero projection onto each other. Consequently the
product of their corresponding projectors ̂P �e1 and ̂P �e2 is zero.
Naturally we call these two projectors orthogonal. For example, ̂P �i ,
̂P �j and ̂P �k are mutually orthogonal projectors and we have

̂P �i ̂P �j = ̂P �k ̂P �i = ̂P �j ̂P �k = ̂0. (9.24)

P9.3.1(4) Summing up to identity ̂II By Eq. (9.23) we get

||�v ||2 = v2x + v2y + v2x = 〈�v | ̂P �i �v 〉 + 〈�v | ̂P �j �v 〉 + 〈�v | ̂P �k �v 〉
= 〈�v |

(

̂P �i + ̂P �j + ̂P �k
)

�v 〉 ∀�v ∈ �IE 3. (9.25)

It follows that the sum of projectors ̂P �i , ̂P �j and ̂P �k is equal to the
identity operator, i.e.,

̂P �i + ̂P �j + ̂P �k = ̂II . (9.26)

This can also be proved directly, i.e., we have, ∀ �v ∈ �IE 3,
(

̂P �i + ̂P �j + ̂P �k
)

�v = ̂P �i �v + ̂P �j �v + ̂P �k �v
= vx �i + vy �j + vz �k = �v
⇒ ̂P �i + ̂P �j + ̂P �k = ̂II . (9.27)

4Not to be confused with orthogonal operators.
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This result applies to projectors ̂P �e�
generated by any complete

orthonormal set of vectors �e�, i.e., we have
5

̂P �e1 + ̂P �e2 + ̂P �e3 = ̂II . (9.28)

P9.3.1(5) Quadratic form For a unit vector �u we have
‖�u ‖2 = 〈�u | �u 〉 = u2x + u2y + u2z = 1. (9.29)

It follows from Eq. (9.23) that the quadratic forms generated by the

projectors ̂P �i , ̂P �j and ̂P �k on �IE 3 satisfy
〈�u | ̂P �i �u 〉 + 〈�u | ̂P �j �u 〉 + 〈�u | ̂P �k �u 〉 = 1. (9.30)

Consequently we have

0 ≤ 〈�u | ̂P �i �u 〉 = u2x ≤ 1, (9.31)

0 ≤ 〈�u | ̂P �j �u 〉 = u2y ≤ 1, (9.32)

0 ≤ 〈�u | ̂P �k �u 〉 = u2z ≤ 1. (9.33)

The projectors ̂P �e�
generated by any three orthonormal vectors �e�

also satisfy these inequalities. It should be pointed out that the

quadratic form generated by a projector for any vector has a non-

negative value, i.e., 〈�v | ̂P �e �v 〉 ≥ 0, on account of Eq. (9.22).

P9.3.1(6) Selfadjointness condition and selfadjointness When cal-

culating scalar product a scalar multiplication operator ̂Ma =
a ̂II , a ∈ IR can be placed to act on the vector on the right or on
the left of the scalar product, i.e.,

〈�u | ̂Ma �v 〉 = 〈 ̂Ma �u | �v 〉 ∀ �u, �v ∈ �IE 3. (9.34)

This is similar to the selfadjointness condition for matrices in Eq.

(7.163). Projectors also satisfy this property, i.e., we have

〈�u | ̂P �e �v 〉 = 〈 ̂P �e �u | �v 〉 ∀ �u, �v ∈ �IE 3. (9.35)

We can conclude from Eq. (8.33) that ̂P �e is equal to its adjoint
̂P †
�e . Following Definition 7.7.4(1) for selfadjoint matrices we call

projector ̂P �e selfadjoint and Eq. (9.35) the selfadjointness condition
for projectors.

5Projectors P̂ �e� are defined by P̂ �e� �v := v� �e� , v� = 〈�e� | �v 〉.
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P9.3.1(7) Idempotence Like projection matrices projectors are

idempotent, i.e.,

̂P �e = ̂P 2�e . (9.36)

As with projection matrices the selfadjointness and idempotent

properties are so characteristic of projectors that we can even deter-

mine whether a given operator is a projector by its selfadjointness

and idempotent properties. A formal statement of this will be given

in Theorem 9.4.2(1).

P9.3.1(8) Matrix representations Projectors are represented by

projection matrices. In the basis { �i , �j , �k } the matrix representations
of ̂P �i , ̂P �j and ̂P �k are respectively,

P �i :=
⎛

⎝

1 0 0

0 0 0

0 0 0

⎞

⎠ , P �j :=
⎛

⎝

0 0 0

0 1 0

0 0 0

⎞

⎠ , (9.37)

P �k :=
⎛

⎝

0 0 0

0 0 0

0 0 1

⎞

⎠ . (9.38)

9.3.2 Projectors onto Subspaces

As shown in Eq. (6.59) an arbitrary vector �v can be expressed as a
unique sum of a vector �v �S in a given subspace �S and a vector �v �S⊥ in
the orthogonal complement �S⊥ of �S . This enables us to introduce
projectors onto subspaces, based on the fact that the vectors �v �S
and �v �S⊥ in Eq. (6.59) are the projections of the vector �v onto the
subspaces �S and �S⊥, respectively.
Definition 9.3.2(1) The projector ̂P �S onto the subspace �S is the
operator defined by

̂P �S �v := �v �S ∀ �v ∈ �IE 3. (9.39)

The projector ̂P �S⊥ onto the subspace �S⊥ is the operator defined by
̂P �S⊥ �v := �v �S⊥ ∀ �v ∈ �IE 3. (9.40)

This is a generalisation of Definition 9.3.1(1) which applies to one-

dimensional subspaces. For example, when the subspace is one-

dimensional spanned by the unit vector �e the projector ̂P �S�e defined
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above is the same as the projector ̂P �e in Eq. (9.13),6 e.g., we have
̂P �Sz

= ̂P �k. The properties listed after Definition 9.3.1(1) can be
generalised to apply to ̂P �S .

Theorem 9.3.2(1) The sum of the projectors ̂P �S and ̂P �S⊥ onto a
subspace �S and its orthogonal complement �S⊥ is equal to the identity
operator, i.e.,

̂P �S + ̂P �S⊥ = ̂II . (9.41)

A plane in �IE 3 is a two-dimensional subspace spanned by two

orthonormal vectors �e1 and �e2, e.g., the set �S12 of vectors �v12 in
Eq. (6.55) constitutes a plane. The projector ̂P �S12 onto the plane

�S12
spanned by two orthonormal vectors �e1 and �e2 is defined by

̂P �S12 �v : = 〈�e1 | �v 〉 �e1 + 〈�e2 | �v 〉�e2 ∀�v ∈ �IE 3. (9.42)

This is called a two-dimensional projector. Such a projector is a sum
of two one-dimensional projectors, i.e.,

̂P �S12 = ̂P �e1 + ̂P �e2 = ̂P �S1 + ̂P �S2 . (9.43)

An example is the projector ̂P �Sxy
onto the x-y plane. We have

̂P �Sxy
= ̂P �Sx

+ ̂P �Sy
. If we extend Eq. (9.42) to three orthonormal

vectorswewould obtain a three-dimensional projector. However, this
is trivial as the resulting projector is the identity operator which

projects every vector onto itself. The identity operator is the only

three-dimensional projector on �IE 3.
Definition 9.3.2(2)7 Two projectors are orthogonal if the sub-
spaces onto which they project are orthogonal.

This is a generalisation of the concept first introduced in property

P9.3.1(3). Obvious examples are ̂P �e1 and ̂P �e2 if the unit vectors �e1
and �e2 are orthogonal, e.g., ̂P �i and ̂P �j . The projectors ̂P �S and ̂P �S⊥
are also orthogonal, e.g., ̂P �Sz

and ̂P �Sxy
.

Theorem 9.3.2(2) Two projectors are orthogonal if and only if
their product is zero.8

6The notation �S�e introduced in Eq. (6.52) denotes the subspace spanned by �e.
7A general definition of orthogonal subspaces is given by Definition 6.4.4(3).
8See Theorem 13.2.2(1) and its proof in the solution for Q13(7).
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For two one-dimensional projectors ̂P �e1 and ̂P �e2 we can see that

〈�e1 | �e2〉 = 0 ⇔ ̂P �e1 ̂P �e2 = ̂0. (9.44)

Definition 9.3.2(3) A discrete set of mutually orthogonal projec-
tors ̂P �S�

is said to be a complete orthogonal family of projectors
on �IE 3 if the sum of the projectors is equal to the identity operator, i.e.,
if

∑

�

̂P �S�
= ̂II . (9.45)

The following examples and remarks illustrate the above definition:

(1) There is a maximum of three mutually orthogonal projectors in

a complete orthogonal family of projectors on �IE 3. An example
is the set { ̂P �i , ̂P �j , ̂P �k}. Generally the set of projectors ̂P �e�

generated by a complete orthonormal set of vectors �e� in �IE 3 is
a complete orthogonal family of projectors on �IE 3.

(2) The projectors need not all be one-dimensional, e.g., the two

projectors ̂P �Sz
and ̂P �Sxy

also form a complete orthogonal

family of projectors on �IE 3.
(3) Equations (9.30) to (9.33) apply to any complete orthogonal

family of projectors. This important result is stated in Theorem

9.3.2(1) below.

(4) Projectors ̂P �S are selfadjoint and idempotent. This statement

follows P9.3.1(6) and (7).

Theorem 9.3.2(3) Given a unit vector �u the quadratic forms
generated by a complete orthogonal family of projectors ̂P �S�

on �IE 3
satisfy the following properties9:

0 ≤ 〈�u | ̂P �S�
�u 〉 ≤ 1, and

∑

�

〈�u | ̂P �S�
�u 〉 = 1. (9.46)

In Chapter 10 we shall discuss how these results can lead to the

establishment of a probability theory in terms of unit vectors and

a complete orthogonal family of projectors.

9See Theorem 13.2.2(1) and its proof in the solution for Q13(8).
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9.3.3 Eigenvalue Problem

A projector ̂P admits only two eigenvalues 0 and 1 since it is

selfadjoint and idempotent. To prove these results consider the

eigenvalue equation ̂P �u = λ �u, where �u is normalised. First the
eigenvalue is real since

λ = 〈�u | ̂P �u 〉 = 〈�u | ̂P ̂P �u 〉 = 〈 ̂P �u | ̂P �u 〉 = || ̂P �u ||2. (9.47)

Next we have

̂P �u = ̂P 2 �u = ̂P ( ̂P �u) = λ ̂P �u = λ2 �u (9.48)

⇒ λ �u = λ2 �u⇒ λ = 0, 1. (9.49)

In the case of ̂P �e the eigenvalue 1 is nondegenerate corresponding
to the eigenvector �e, i.e., ̂P �e �e = �e. The eigenvalue 0 is degenerate.
The corresponding eigenvectors are all the vectors �v orthogonal to �e
since ̂P �e �v = 0 if 〈�e | �v 〉 = 0. We can also appreciate this in terms of
matrices. For example, the projector ̂P �i has a matrix representation
P �i given in Eq. (9.38). One can see that the eigenvectors for the
matrix are the column vectors in Eq. (7.93) corresponding to the

basis vectors �i , �j , �k.

9.4 Selfadjoint Operators

9.4.1 Concept and Definition

The operators introduced so far have a clear geometric meaning.

We can use these operators as building blocks to establish other

operators which may not have distinctive geometric properties. The

building blocks we have in mind here are projectors. Let { ̂P �e�
}

be a complete orthogonal family of projectors associated with an

orthonormal basis {�e�} for �IE 3. In the same way we can generate
new vectors in terms of linear combinations of the basis vectors �e�,

we can generate new operators by linear combinations of a complete
orthogonal family of projectors ̂P �e�

, i.e., we can construct

̂A := a1 ̂P �e1 + a2 ̂P �e2 + a3 ̂P �e3 , a1, a2, a3 ∈ IR . (9.50)
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We can also have linear combinations of non-orthogonal projectors.

For these operators we have ̂A = ̂A† on account of Eq. (8.38),

i.e., these operators satisfy the selfadjointness condition discussed

in P9.3.1(6). But these operators are not idempotent. In other

words, they are not projectors. We have therefore generated a new

class of operators characterised by their selfadjointness property.

Following Definition 7.7.4(1) for selfadjoint matrices we can use this

selfadjointness property to define this new class of operators, rather

than employing the construction in Eq. (9.50).10

Definition 9.4.1(1) An operator ̂A on �IE 3 is said to be selfadjoint if
it is equal to its adjoint, i.e., ̂A = ̂A†.

This is equivalent to the requirement that ̂A satisfies the following

selfadjointness condition:

〈�u | ̂A �v 〉 = 〈 ̂A �u | �v 〉 ∀ �u, �v ∈ �IE 3. (9.51)

The following comments serve to clarify the definition:

C9.4.1(1) The identity operator ̂II and scalar multiplication

operators ̂Ma in Eq. (9.1) are selfadjoint.
11

C9.4.1(2) Projectors are selfadjoint.

C9.4.1(3) A linear combination of projectors with real coefficients

is selfadjoint, e.g., ̂A in Eq. (9.50).

C9.4.1(4) While a linear combination of projectors generates a

selfadjoint operator it is not obvious that the converse is true. The

spectral theorem, i.e., Theorem 7.7.6(1), tells us that a selfadjoint

matrix can be decomposed as a linear combination of projection

matrices. We would expect a similar statement is also true for

selfadjoint operators. In §9.4.5 we shall present a theorem to this

effect, i.e.,

all selfadjoint operators on �IE 3 can be constructed as a linear
combination of a complete orthogonal family of projectors.

10The significance of linear combinations of orthogonal projectors will become clear

in §9.4.5 on the spectral theorem.
11For real vector spaces like �IE 3 scalar multiplications are by real numbers. For
complex vector spaces scalar multiplications can be by complex numbers and

complex functions which will not give rise to selfadjoint operators.
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C9.4.1(5) Selfadjoint operators are represented by selfadjoint

matrices.

C9.4.1(6) Selfadjointness is a very distinctive property, not satis-

fied by many other operators. Take the orthogonal operator ̂Rz(θz)
in Eq. (9.2) for example. For vectors �u and �v lying in the x-y plane,
i.e.,

�u = ux�i + uy �j , �v = vx�i + vy �j ,

we have, in accordance with Eqs. (7.146) and (7.148),

̂Rz(θz)�v = (vx cos θz − vy sin θz)�i + (vx sin θz + vy cos θz)�j . (9.52)

It is easily verified that generally

〈�u | ̂Rz(θz)�v 〉 �= 〈 ̂Rz(θz)�u | �v 〉. (9.53)

It follows that ̂Rz(θz) is not selfadjoint. The corresponding matrix
Rz(θz) in Eq. (7.149) is also not selfadjoint. Generally if we want to
have an operator to act on �u on the left in the scalar product 〈�u | ̂A �v 〉
we have to employ the adjoint ̂A† to do it. When acting on �u = ux�i +
uy �j the required adjoint operator ̂R†

z(θz) is given by
12

̂R†
z(θz)�u = u′x�i + u′y �j , (9.54)

where

u′x = ux cos θz + uy sin θz, u′y = −ux sin θz + uy cos θz. (9.55)

We have

〈�u | ̂Rz(θz)�v 〉 = 〈 ̂R†
z(θz)�u | �v 〉. (9.56)

The operator ̂Rz(θz) is not equal to its adjoint ̂R†
z(θz).

The following theorems are intuitive and useful.13

12This corresponds to the adjoint of the rotation matrix in Eq. (7.149). For a real

matrix its adjoint is equal to its transpose.
13These are special cases of Theorem 13.1(1) and Corollary 13.1(1) which apply to

complex vector spaces.
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Theorem 9.4.1(1)14 If ̂A is selfadjoint then

〈�u | ̂A �u 〉 = 0 ∀ �u ⇒ ̂A = ̂0. (9.57)

Theorem 9.4.1(2)15 If ̂A and ̂B are selfadjoint then

〈�u | ̂A �u 〉 = 〈�u | ̂B �u 〉 ∀ �u ⇒ ̂A = ̂B . (9.58)

Corollary 9.4.1(1) For a selfadjoint operator ̂A we have

〈�u | ̂A �u 〉 = 〈�u | �u 〉 ∀ �u ⇒ ̂A = ̂II . (9.59)

Selfadjoint matrices and selfadjoint operators havemany distinc-

tive properties which are crucial to the probabilistic formulation of

quantum mechanics. These properties are studied in detail in the

remaining subsections of this chapter.

9.4.2 Properties and Relations with Projectors

The following properties are easily verified:

P9.4.2(1) Scalar multiplication does not affect the selfadjointness

of an operator, i.e., if ̂A is selfadjoint, then a ̂A is selfadjoint, i.e.,

̂A = ̂A† ⇒ (a ̂A)† = a ̂A, a ∈ IR . (9.60)

P9.4.2(2) Linear combinations of selfadjoint operators are again

selfadjoint because of Eq. (8.38), i.e., ∀ a� ∈ IR we have
̂A� = ̂A†

� ⇒
(
∑

�

a�
̂A�

)

=
(
∑

�

a�
̂A�

)†
. (9.61)

It follows that the sum of two selfadjoint operators is selfadjoint.

P9.4.2(3) The product of two selfadjoint operators is not neces-

sarily selfadjoint because of Eq. (8.41). However, the product of two

commuting selfadjoint operators is selfadjoint, i.e.,

( ̂A ̂B)† = ̂B†
̂A† = ̂B ̂A = ̂A ̂B . (9.62)

14Halmos p. 138. See Theorem 13.1(1) and Corollary 13.1(1) for complex vector

spaces.
15Halmos p. 138.
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In particular the square of a selfadjoint operator is selfadjoint:

̂A = ̂A† ⇒ ( ̂A )2 = ( ̂A 2)† (9.63)

⇒ 〈�u | ̂A 2 �v 〉 = 〈 ̂A 2 �u | �v 〉. (9.64)

P9.4.2(4) The products of an operator with its adjoint are

selfadjoint, i.e., ̂A†
̂A and ̂A ̂A† are selfadjoint.16

P9.4.2(5) A selfadjoint operator is a projector if it is idempotent.

This is a very useful result which we shall highlight in the form of a

theorem for easy reference later.

Theorem 9.4.2(1)17 An operator on �IE 3 is a projector if and only if
it is selfadjoint and idempotent.
Corollary 9.4.2(1)

(1) The sum of two projectors is a projector if and only if the two
projectors are orthogonal.

(2) The product of two projectors is a projector if and only if the two
projectors commute.

9.4.3 Eigenvalue Problem and Quadratic Form

Orthogonal operators and projectors on �IE 3 have only two eigen-
values, i.e., ±1 for orthogonal operators and 0, 1 for projectors.
Selfadjoint operators can have arbitrary eigenvalues. Having a

wide range of eigenvalues enables us to use selfadjoint operators

to describe a wide range of physical quantities. The selfadjoint

operator ̂A in Eq. (9.50) possesses values a1, a2, a3. These are the
eigenvalues of ̂A corresponding to eigenvectors �e1, �e2 and �e3 since
they satisfy the following eigenvalue equations:

̂A �e1 = a1 �e1, ̂A �e2 = a2 �e2, ̂A �e3 = a3 �e3. (9.65)

The operator operates like a multiplication operator when acting

on its eigenvectors. Depending on the choice of a1, a2 and a3 the
operator has at least one eigenvalue and at most three distinct

eigenvalues. When an eigenvalue is degenerate, say a1 = a2, then

16This can be proved using Eqs. (8.40) and (8.41).
17Fano p. 77 for a proof. This theorem can be used to prove an operator to be a

projector, e.g., in establishing Corollary 9.4.2(1).
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any linear combination c1 �e1+ c2 �e2 of the eigenvectors �e1, �e2 is again
an eigenvector corresponding to the eigenvalue a1.

Since selfadjoint operators are represented by selfadjoint ma-

trices we can solve their eigenvalue problem in terms of their

representative selfadjoint matrices to obtain similar results, e.g., the

contents of Theorems 7.7.4(1) and 7.7.4(2) for selfadjoint matrices

also carry over to selfadjoint operators.

There is anotherway to generate values for a selfadjoint operator
̂A. Let �u be a unit vector. Then the quadratic form Q( ̂A, �u ) = 〈�u |
̂A �u 〉 introduced in §8.2.2 produces a value for each �u. Eigenvalues
are special cases of the quadratic form, i.e.,

Q( ̂A, �e1 ) = a1, Q( ̂A, �e2 ) = a2, Q( ̂A, �e3 ) = a3. (9.66)

9.4.4 Eigensubspaces and Eigenprojectors

Definition 9.4.4(1)

(1) A subspace, denoted by �S Â(a), is called the eigensubspace of a
selfadjoint operator ̂A corresponding to the eigenvalue a if it is
spanned by the eigenvectors of ̂A corresponding to the eigenvalue
a.

(2) The projector ̂P Â(a) onto the eigensubspace �S Â(a) is called the
eigenprojector of the operator ̂A corresponding to or associated
with the eigenvalue a.

Let a� be the eigenvalues of a selfadjoint operator ̂A. Then:

(1) The eigensubspace �S Â(a�) and its associated eigenprojector
̂P Â(a�) are one-dimensional if the corresponding eigenvalue a�

is nondegenerate. The eigenprojector is equal to the projector

generated by the corresponding normalised eigenvector �e�, i.e.,

̂P Â(a�) = ̂P �e�
= |�e�〉〈�e�|. (9.67)

(2) If a2 is degenerate with degeneracy 2 corresponding to two
orthonormal eigenvectors �e21, �e22, then corresponding eigen-
subspace is two-dimensional and the eigenprojector ̂P Â(a2) is
equal to the sumof two projectors in accordancewith Eq. (9.43),
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i.e.,18

̂P Â(a2) = ̂P �e21 + ̂P �e22 = |�e21〉〈�e21| + |�e22〉〈�e22|. (9.68)

We also call | �e21〉〈�e21| and | �e22〉〈�e22| eigenprojectors. Let �e21′ and
�e22′ be two orthonormal vectors formed by linear combinations

of �e21 and �e22. Then these new vectors are also eigenvectors of ̂A
corresponding to the eigenvalue a2. They will generate two new
eigenprojectors, i.e.,

̂P �e21′ = |�e21′ 〉〈 �e21′ | and ̂P �e22′ = |�e22′ 〉〈 �e22′ |. (9.69)

Their sum is the same as that of the original projectors, i.e.,

̂P Â(a2) = ̂P �e21 + ̂P �e22 = ̂P �e21′ + ̂P �e22′ . (9.70)

The eigenvalues and eigenvectors of selfadjoint operators possess

the same properties as selfadjoint matrices in Theorem 7.7.4(1).

Theorem 9.4.4(1)

(1) Eigenvalues of a selfadjoint operator are real.

(2) Eigenvectors of a selfadjoint operator corresponding to different
eigenvalues are orthogonal.

(3) The eigenvectors of a selfadjoint operator can be chosen to form
an orthonormal basis in �IE 3.

(4) A selfadjoint operator has associated with it a complete or-
thogonal family of eigenprojectors generated by a complete
orthonormal set of eigenvectors of the operator.

To prove this theorem we first note that a selfadjoint operator is

representable by a selfadjoint matrix. The operator and its matrix

representation possess the same eigenvalues in accordance with

Eq. (8.50). The proof of this theorem then follows from Theorems

7.7.4(2) and 7.7.4(4).

Selfadjoint operators with non-negative eigenvalues can be

singled out to form a distinctive group with many useful properties.

18There is no need to have the superscript Â on the projector P̂ �e21 which is

determined by the vector �e21.
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Definition 9.4.4(2) A selfadjoint operator ̂A is said to be positive
if its eigenvalues are not negative.19

A positive selfadjoint operator can have zero eigenvalue. Projectors

are examples of positive operators.

9.4.5 Spectral Theorem of Selfadjoint Operators on �IE 3
Projectors are closely related to selfadjoint operators as seen in Eq.

(9.50) and Theorem 9.4.2(1). The relation goes deeper. For matrices

we have Theorem7.7.6(1)which tells us that a sefladjointmatrix can

bewritten in terms of its eigenvalues and their associated projection

matrices. Equation (9.50) suggests that this statement should

also apply to selfadjoint operators on �IE 3. We know that every

selfadjoint operator ̂A on �IE 3 possesses a complete orthonormal
set of eigenvectors �e� which would generate a complete orthogonal

family of eigenprojectors ̂P �e�
. We can construct an operator by

forming a linear combination of the eigenprojectors ̂P �e�
with the

eigenvalues a� as coefficients as in Eq. (9.50). Let us summarise this

result into a theorem.

Theorem 9.4.5(1) A selfadjoint operator ̂A on �IE 3 is expressible as
a linear combination of a complete orthogonal family of eigenprojec-
tors ̂P �e�

generated by a complete orthonormal set of eigenvectors �e�

with the corresponding eigenvalues a� as coefficients, i.e.,

̂A =
3
∑

�=1
a�
̂P �e�
=

3
∑

�=1
a� | �e�〉〈�e�|. (9.71)

Theorem 9.4.5(1) is known as the spectral theorem for selfadjoint

operators on �IE 3.20 The above expression for ̂A is referred to as a
spectral decomposition of ̂A.

Proof We know that ̂A possesses a complete orthonormal set of
eigenvectors �e� and a corresponding complete orthogonal family of

19See Definition 13.3.1(1) on positive operators on a complex vector space.
20If any of the eigenvalues is degenerate then the choice of �e� , and hence P̂ �e� , is not
unique. See the discussion after the proof of this theorem for a detailed discussion.

See also Theorem 9.4.5(2).
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eigenprojectors ̂P �e�
corresponding to a set of eigenvalues a�. For any

vector �v ∈ �IE 3 we have �v =∑3
�=1 v� �e�, v� = 〈�e� | �v〉, and

̂A �v =
3
∑

�=1
v�
̂A �e� =

3
∑

�=1
a�v� �e�. (9.72)

Construct the operator

̂A′ :=
3
∑

�=1
a�
̂P �e�
. (9.73)

Then for any vector �v ∈ �IE 3 we have

̂A′ �v =
3
∑

�=1
a�
̂P �e�
�v =

3
∑

�=1
a� 〈�e� | �v 〉�e� =

3
∑

�=1
a�v� �e�. (9.74)

It follows that ̂A′ = ̂A. QED

The following comments serve to clarify the theorem:

C9.4.5(1) The fact that the sum of the projectors in a complete

orthogonal family is the identity operator can be rephrased as

a spectral decomposition of the identity operator as a selfadjoint
operator, i.e., we have

̂II =
3
∑

�=1
̂P �e�
. (9.75)

This expression is called a spectral decomposition of the identity.21

C9.4.5(2) The eigenvalues a� in Eq. (9.71) may not be all different.

If an eigenvalue is degenerate, say a1 �= a2 = a3, then the spectral
decomposition in Eq. (9.71) becomes

̂A = a1 ̂P �e1 + a2 ̂P �e2 + a2 ̂P �e3 = a1 ̂P Â(a1)+ a2 ̂P Â(a2), (9.76)

where

̂P Â(a1) = ̂P �e1 , ̂P Â(a2) = ̂P �e2 + ̂P �e3 . (9.77)

21The decomposition of the identity is not unique. This is because ÎI has only one
eigenvalue, i.e., 1, which is degenerate with degeneracy 3. The sum of any complete

orthogonal family of projectors will add up to the identity.
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Here ̂P Â(a2) is a two-dimensional projector. As discussed in relation
to Eq. (9.70) it is possible to choose two different orthonormal

eigenvectors for the eigenvalue a2, but Eqs. (9.76) and (9.77) remain
the same.22 The spectral decomposition of ̂A can then be rewritten
as

̂A = a1 ̂P Â(a1)+ a2 ̂P Â(a2), (9.78)

where ̂P Â(a1) and ̂P Â(a2) correspond to distinct eigenvalues of ̂A.
For clarity we shall restate the spectral theorem in terms of

eigenprojectors associated with distinct eigenvalues.23

Theorem 9.4.5(2) Spectral theorem A selfadjoint operator ̂A
is expressible as a linear combination of its complete orthogonal
family of eigenprojectors ̂P Â(am) corresponding distinct eigenvalues
am, i.e.,24

̂A =
∑

m

am ̂P Â(am). (9.79)

The above expression for ̂A is referred to as the spectral decomposi-
tion of ̂A. The corresponding spectral decomposition of the identity
takes the form

̂II =
∑

m

̂P Â(am). (9.80)

The spectral theorem tells that while a given selfadjoint operator

determines its eigenvalues and eigenvectors through its eigenvalue

equation the converse is also true, i.e., knowledge of the eigenvalues

and eigenvectors determine a unique selfadjoint operator by

22It is convenient to re-label things, e.g., re-label both a2 and a3 as a2, and �e2, �e3 as
�e21 and �e22, and projectors P̂ �e2 and P̂ �e3 as P̂ �e21 and P̂ �e22 .

23The eigenvalues a� in Eq. (9.71) may not be all different, while the eigenvalues

am in Eq. (9.79) are all different. The analysis of eigenvalues and eigenvectors

of selfadjoint operators is a part of a general study, known as spectral theory,
of eigenvalues, eigenvectors and their generalisations and applications to a wide

range of operators in a variety of spaces.
24The index m goes from 1 to 3 if all the eigenvalues are nondegenerate. Theorem

9.4.5(2) takes the form of Theorem 9.4.5(1). The index m runs from 1 to 2 if only

one of the eigenvalues is degenerate. In the case where all the eigenvalues are the

same, e.g., for M̂a in Eq. (9.1), the summation reduces to a single term. See also
Isham p. 50 for the theorem in Dirac notation.
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Eq. (9.71) or Eq. (9.79). As we shall see in §13.3 and §20.3
this theorem remains valid in higher dimensional complex vector

spaces. The spectral theorem is the foundation for a mathematical

formulation of quantummechanics.

9.4.6 Functions of Selfadjoint Operators

A real-valued function f : IR → IR of a real variable τ ∈ IR
is commonly denoted by f (τ ). Let ̂A be a selfadjoint operator

with nondegenerate eigenvalues a� corresponding to normalised

eigenvectors �e� and eigenprojectors ̂P �e�
. The question posed here

is how one would define a corresponding function of a selfadjoint

operator ̂A. For a polynomial function, e.g.,

f (τ ) = c0 + c1τ + c2τ 2, c0, c1, c2 ∈ IR (9.81)

we can define an operator f ( ̂A ) by

f ( ̂A ) := c0 + c1 ̂A + c2 ̂A 2, (9.82)

and call this operator a function of ̂A corresponding to the

polynomial f (x). The eigenvalues and eigenvectors of f ( ̂A ) are
simply f (a�) and �e�, i.e.,

f ( ̂A )�e� = f (a�)�e�, (9.83)

This is such an intuitive and desirable property that wewant to have

a general definition of an arbitrary function of ̂A to possess this

property.

Definition 9.4.6(1) Let ̂A be a selfadjoint operator with a spectral
decomposition shown in Eq. (9.79). For an arbitrary real-valued
function f (τ ) the operator f ( ̂A ) given by

f ( ̂A ) :=
∑

m

f (am) ̂P Â(am) (9.84)

is defined to be the function f ( ̂A ) of ̂A.

This definition is consistent with Eq. (9.82) and satisfies Eq. (9.83).

For real-valued functions f (τ ) the resulting operators f ( ̂A ) are all
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selfadjoint. Three examples are

E9.4.6(1) Square The square of a selfadjoint operator ̂A is defined
by

̂A 2 :=
∑

m

a2m ̂P Â(am). (9.85)

This agrees with the expression ̂A 2 = ̂A ̂A. The resulting operator is
positive.

E9.4.6(2) The inverse The inverse of an invertible selfadjoint

operator ̂A is defined by

̂A
−1
:=
∑

m

a−1m ̂P Â(am). (9.86)

This agrees with the expression ̂A
−1
̂A = ̂II . The definition is

possible only if am �= 0 for allm, i.e., if ̂A is invertible.

E9.4.6(3) Square root For a positive selfadjoint operator its square

root is defined by
√

̂A :=
∑

m

√
am ̂P Â(am). (9.87)

This agrees with the intuition that the square of
√

̂A is ̂A.

Exercises and Problems

Q9(1) Show that an operator on �IE 3 is orthogonal if and only if it
is invertible and its inverse is equal to its adjoint.

Q9(2) Show that orthogonal operators on �IE 3 have at most two
eigenvalues, i.e.,±1. Find the eigenvalues and eigenvectors
of ̂Rrx in Eq. (9.4) and ̂Rrxyz in Eq. (9.5).

Q9(3) Let {�e�} be an orthonormal basis for �IE 3 show that their

orthogonal transforms {�e ′�} generated by an orthogonal

operator ̂R is also an orthonormal basis for �IE 3.
Q9(4) Prove Eqs. (9.6) to (9.8) on orthogonal transformations.

Q9(5) Prove Theorem 9.3.2(1).
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Q9(6) Find the eigenvectors of the two-dimensional projector in
Eq. (9.43) corresponding to the eigenvalues 1 and 0.

Q9(7) Verify Eq. (9.44).

Q9(8) Prove Theorems 9.4.1(1), 9.4.1(2) and Corollary 9.4.1(1).

Q9(9) Show that all projectors satisfy the sefladjointness condi-

tion in Eq. (9.35) and that they are also idempotent.

Q9(10) Show that selfadjoint operators are represented by selfad-

joint matrices.

Q9(11) Demonstrate the inequality in Eq. (9.53) with �u = uy �j and
�v = vx�i . Verify Eq. (9.56).

Q9(12) Prove Eq. (9.70).

Q9(13) Show that the selfadjoint operator ̂A in Eq. (9.71) admits

a� as its eigenvalues with the unit vectors �e� as the

corresponding eigenvectors.

Q9(14) Show that the products of an operator with its adjoint, i.e.,
̂A†
̂A and ̂A ̂A†, are selfadjoint and positive.

Q9(15) Show that the expression of the inverse in Eq. (9.86) satisfy
the condition ̂A ̂A−1 = ̂II .

Q9(16) The square root
√

̂A of a positive operator ̂A is defined by

Eq. (9.87). Show that
(

√

̂A
)2 = ̂A.

Q9(17) Show that the quadratic form Q( ̂A, �u ) generated by a

positive selfadjoint operator in any �u is non-negative.
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Chapter 10

Probability, Selfadjoint Operators, Unit
Vectors and the Need for Complexness

In our earlier discussion of probability theory there is no mention

of any mechanism to generate probabilities. There are of course

many different ways of generating probabilities. In many classical

statistical experiments we can assume all outcomes are equally

likely to occur. This would enable us to equate the probability ℘(E1)
of an event E1 to the ratio of the number n1 of outcomes in the
event to the total number N of outcomes in the sample space,

i.e., ℘(E1) = n1/N . The counting of various combinations and
permutations of outcomes becomes important. Consider the tossing

of a fair dice mentioned in §3.3. The sample space given by Eq.
(3.23) has six outcomes. The probability of the event Ee consisting
of even numbers has three outcomes. Since all the outcomes have

an equal probability of occurrence the probability of the event Ee
is simply equal to 3/6 = 1/2. However, this method cannot be

universally applied since not all outcomes are equally likely to occur

in a general statistical experiment. Some well-known examples are

cited in §4.3.We then have to introduce differentways to produce the
required probability distribution. In the next section we shall show

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
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how probability distributions can be generated using unit vectors

and selfadjoint operators on �IE 3.

10.1 Generating Probability Distributions on �IE 3

Consider an experiment to measure an observable A of a physical
system which can yield one of three different values a1, a2 and a3
with different probabilities. The measurement of A then amounts to
a statistical experiment with Sam = {a1, a2, a3} as its sample space.
Our aim is to obtain a probability mass function ℘, a function from

the sample space Sam into the interval [0, 1], to give a quantitative
characterisation of the experiment. Generally the probability of each

of measured outcome would depend on the state of the system as

well as that particular observable in question. A simple counting of

number of outcomes without reference to the state cannot possibly

lead to the correct probability distribution.

Suppose the physical system possesses property QMP5.3(3)

given in §5.3, i.e., the state φs of the system can determine the

probability distribution of the values of A in the form of a probability

mass function℘ A(φs , a�) on the sample spaceSam.1 A change of state
will give rise to a different probability mass function. Our task is to

find a mathematical description of the state φs and the observable A
which will lead to a probability mass function on the sample space

Sam. Vectors and operators discussed in the preceding sections can
provide such a description in the following way2:

(1) Starting with the given values a1, a2 and a3 of the observable we
can construct a selfadjoint operator ̂A on �IE 3 using a1, a2 and
a3 as its eigenvalues and an appropriate complete orthonormal
set of vectors �e� as the corresponding eigenvectors. To proceed

we first define the complete orthogonal family of projectors ̂P �e�

1For a given observable the values of the probability density function will depend on

both the state and the values of A, hence the notation ℘ A(φs , a�).
2There are many descriptions which can lead to a probability mass function. Here we

are just trying a description in terms of vectors and operators. There is no guarantee

that the resulting probability mass function will agree with the actual probability

mass function ℘ A(φs , a�) for the statistical experiment.
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generated by �e�. Then the operator can be explicitly defined in

terms of a1, a2, a3 and ̂P �e�
by

̂A :=
3
∑

�=1
a�
̂P �e�
, ̂P �e�

= |�e�〉〈�e�|. (10.1)

This construction amounts to defining the selfadjoint operator

by its spectral decomposition as in Theorem 9.4.5(1).

(2) Next we observe that the complete orthogonal family of

projectors ̂P �e�
can generate a function on the sample space

Sam = {a1, a2, a3} for each given unit vector �u by the quadratic
formQ( ̂P �e�

, �u ), i.e.,3

℘ Â(�u, a�) := Q( ̂P �e�
, �u ) = 〈�u | ̂P �e�

�u 〉. (10.2)

More explicitly we have

℘ Â(�u, a�) = |〈�e� | �u 〉|2. (10.3)

This function satisfies the defining properties of probability

mass functions specified in Eq. (3.24), i.e.,4

0 ≤ ℘ Â(�u, a�) ≤ 1,
∑3

�=1 ℘ Â(�u, a�) = 1, (10.4)

on account of Eq. (9.46).

(3) The above mathematical results strongly suggest the following

description of the system:

(a) Describe observable A by the operator ̂A in Eq. (10.1).

(b) Describe the state φs by a unit vector �u in �IE 3.
(c) We can then identify the function ℘ Â(�u, a�) in Eq. (10.2)

as the probability mass function for the distribution of the

values of A in state described by unit vector �u, i.e., we have
A → ̂A, (10.5)

φs → �u, (10.6)

℘ A(φs , a�) = ℘ Â(�u, a�). (10.7)

3Note that ℘ A and ℘ Â are meant to be different functions with ℘ Â having �u and a� as

its arguments and ℘ A having φs and a� as its arguments.
4See Eq. (13.29) and its proof on the solution to Q13(7).
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(d) The expectation value E(℘ A) defined by Eq. (3.32) can be

calculated directly in terms of the vector �u and the operator
̂A, i.e., using Eq. (10.2) and the spectral theorem 9.4.5 (1) we

get

E(℘ A) :=
3
∑

�=1
a� ℘ A(φs , a�) =

3
∑

�=1
a� 〈�u | ̂P �e�

�u 〉

= 〈�u |
(

3
∑

�=1
a�
̂P �e�

)

�u 〉

= 〈�u | ̂A �u 〉. (10.8)

(e) It is more transparent to denote the expectation value by

E(A , φs) or more directly by E( ̂A, �u ).
(f) Equation (10.8) shows that the expectation value E(A , φs) is

equal to the quadratic form Q( ̂A, �u ) generated by ̂A for the
vector �u, i.e., we have

E(A , φs) = E( ̂A, �u ) = Q( ̂A, �u ). (10.9)

This enables us to express the uncertainty in accordancewith

Theorem 3.5(1) as


( ̂A, �u ) =
√

Q( ̂A 2, �u )−Q( ̂A, �u )2, (10.10)

whereQ( ̂A 2, �u ) := 〈�u | ̂A 2 �u 〉.

(4) The description presented above is applicable to caseswhen not

all the values a1, a2 and a3 are different. Suppose a1 �= a2 =
a3. We re-label the two distinct eigenvalues as am=1 = a1 and
am=2 = a2 = a3. In accordance with the spectral theorem 9.4.5

(2) we have

̂A =
2
∑

m=1
am ̂P Â(am), (10.11)

where ̂P Â(a1) = ̂P �e1 and ̂P
Â(a2) = ̂P �e2 + ̂P �e3 . We get

℘ Â(�u, a1) := 〈�u | ̂P Â(a1)�u 〉 = 〈�u | ̂P �e1 �u 〉, (10.12)

℘ Â(�u, a2) := 〈�u | ̂P Â(a2)�u 〉 = 〈�u | ̂P �e2 �u 〉 + 〈�u | ̂P �e3 �u 〉. (10.13)
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(5) Finally we would compare ℘ Â(�u, a� ) with the experimental

probability mass function ℘ A(φs , a�).

A system described above will also satisfy Properties QMP5.3(1)

and QMP5.3(2) in §5.3.

(1) The probabilistic behaviour of the system produced by the

above description automatically implies that not all observables

are compatible. Let ̂A′ be another selfadjoint operator with
eigenvalues a′� corresponding eigenvectors �e ′�. Generally there
may not exist a unit vector �u such that

℘ Â(�u, a�) = 〈�u | ̂P �e�
�u 〉 = |〈�e� | �u 〉|2 = 1. (10.14)

℘ Â′(�u, a′�) = 〈�u | ̂P �e ′� �u 〉 = |〈�e ′� | �u 〉|2 = 1. (10.15)

If ̂A and ̂A′ have the same eigenvectors, e.g., �e� = �e ′� , then
(a) We have

̂A =
3
∑

�=1
a�
̂P �e�

and ̂A′ =
3
∑

�=1
a′� ̂P �e�

. (10.16)

(b) The two operators ̂A and ̂A′ commute.5

(c) For probability distributions we have, setting �u = �e�,

℘ Â(�e�, a�) = ℘ Â′(�e�, a′�) = 〈�e� | ̂P �e�
�e�〉 = 1. (10.17)

This means that in the state described by vector �e�

observable A possesses the value a� and observable A′

possesses the value a′�. The two observables are compatible.

(2) A state ϕs� exists in which A possesses the value a�. Such a state

can be described by the unit vector �e� since we have

℘ Â(�e�, a�) = 〈�e� | ̂P �e�
�e� 〉 = 1. (10.18)

5The link between compatibility and commutativity has important consequences in

quantummechanics.
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10.2 A Model Probability Theory Based on �IE 3

10.2.1 The Model

Consider a systempossessing quantum characteristics QMP5.3(1) to

QMP5.3(4), i.e., the system possesses the following properties:

P10.2.1(1) Not all observables are simultaneously measurable.

P10.2.1(2) There are states compatible with any given observ-

able, e.g., there is a state ϕsa1 in which a given observable A possesses
the value a1.

P10.2.1(3) In an arbritary state φs a measurement of an observ-

able Awould result in the value a� with probability℘ A(φs , a�) which

is determined by the state φs and observable A.

P10.2.1(4) Superposition principle is satisfied.

Moreover, suppose observables of the system can yield a maximum

of three different values on measurement, i.e., observable A can

yield a maximum of three different values a1, a2, a3. Our task is to
establish a possible description of such a system.

Following the discussion in the preceding section we can

formulate a model theory for the system based on �IE 3 as follows:
(1) Choose the state space to be �IE 3 with states described by

unit vectors in �IE 3. These unit vectors are referred to as state
vectors.

(2) Describe observable A by a selfadjoint operator ̂A in Eq. (10.1)
with a suitable choice of a complete orthonormal set {�e�} and
the values a� of A as the eigenvalues of ̂A.

(3) In an arbitrary state described by a unit vector �u the probability
mass function for the values of A is given by

℘ Â(�u, a�) := Q( ̂P �e�
, �u ) = 〈�u | ̂P �e�

�u 〉 = |〈�e� | �u 〉|2. (10.19)
The expectation value and uncertainty are given by Eqs. (10.9)

and (10.10).
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(4) As discussed in the preceding subsection the probabilistic

behaviour of the system produced by the above description

automatically implies QMP 5.3(1) to QMP 5.3(2), i.e.,

(a) not all observables are compatible, and

(b) in the state described by vector �e� observable A possesses
the value a�.

(5) The superposition principle can be formulated in terms of

normalised linear combinations of state vectors. Let �u1 and
�u2 be two unit vectors we can generate new unit vectors

�u by

�u = c1 �u1 + c2 �u2 where |c1|2 + |c2|2 = 1. (10.20)

This new vector can serve as a new state vector which contains

information not available in �u1 and �u2 taken separately, e.g.,

E( ̂A, �u ) = 〈�u | ̂A �u 〉 = E( ̂A, �u1 )+ E( ̂A, �u2 )
+ c1c2 〈�u1 | ̂A �u2〉 + c2c1 〈�u2 | ̂A �u1〉. (10.21)

The last two terms which depend on how the two states

are combined together, i.e., on c1 and c2, are known as the

correlation or interference terms.6

The theory presented can be extended to lower as well as

higher dimensional real vector spaces. For example, if a system with

observables capable of only having two different values we would

take the state space to be the two-dimensional space �IE 2.

10.2.2 A Need for Generalisation

The fact that vectors and selfadjoint operators on a real vector

space like �IE 3 can provide a mechanism for generating probability

distributions satisfying properties QMP5.3(1) to QMP5.3(4) does

not guarantee that they can give a correct description of quantum

systems. For a model theory to have any chance of success it

6See §31.5 for more discussion.
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is necessary for the model to satisfy the following additional

requirements:

(1) There must be enough unit vectors and selfadjoint operators

to correspond to all the states and all the observables of the

system.

(2) The probability distribution given in Eq. (10.19) for every

observable in every state must agree with experimental

results.

The choice of real vector spaces turns out to be too restrictive for the

description of quantum systems. Let us illustrate the difficulty with

the example of electron spin. An electron spin can align itself along

the x , y and z directions and the spin along any direction is capable
of taking only two values, e.g., Sz possesses only two values± �/2. In

accordance with QMP5.3(2) there is a state αsz in which Sz possesses
the value �/2 and a state βsz in which Sz possesses the value −�/2.
Having only two values an electron spin should be described in a

two-dimensional vector space, not a three-dimensional vector space

like �IE 3. It is tempting to employ a two-dimensional real vector space
�IE 2 like the y-z plane as the state space to describe an electron
spin. For example, we may attempt to describe the spin-up state αsz
by the unit vector �k in the positive z direction and the spin-down
state βsz by the unit vector−�k in the negative z-direction. But this is
incompatible with the model theory in the preceding subsection. In

accordance with the model theory the two states must be described

two eigenvectors of the operator representing Sz corresponding to
eigenvalues �/2 and −�/2. This means that the two vectors must
be orthogonal to each other. But �k and −�k are not orthogonal to
each other. It follows that we cannot described αsz by

�k and βsz by

−�k. Intuitively we can also see that vectors in the y-z plane cannot
describe the spin along the x direction.7

A way out would be to set up a theory on two-dimensional

complex vector spaces.

7A more detailed analysis on why a two-dimensional real vector space cannot

accommodate the three observables of spin is presented in Chapter 14.
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10.3 Need for Complexness

Many quadratic equations permit no solutions in terms of real

numbers, the equation x2 + 1 = 0 being an example. Complex

numberswere introduced in order to provide some formal solutions.

A symbolic quantity
√−1, known as the imaginary unit and denoted

by i , was introduced. It was defined by the property that its square
was equal to 1, i.e., i2 = −1. Then the equation x2 + 1 = 0

admits two formal solutions, i.e., x± = ±i . Complex numbers
were defined to be quantities of the form a + bi , where a, b were
real numbers. These quantities were regarded as fictitious and

unrelated to our physical world. Over the years complex numbers

and complex-valued functions do eventually find many applications

in engineering and classical physics. In classical physics a wave is

a propagation of disturbances in a medium. The simplest kind of

waves are harmonic waves travelling along the x-axis described
by sinusoidal or cosinusoidal functions of x and time t, e.g., a
sinusoidal wave in a vibrating string discussed in §2.2. Harmonic
waves propagating along the positive and negative x directions are
describable by the following functions:

Y+(x , t) = A cos(kx − ωt), Y−(x , t) = A cos(kx + ωt). (10.22)

The functions Y+ and Y− may be visualised as the displacement of
the medium along the y axis. They are solutions of Eq. (2.10), the
classical wave equation in one-dimension. We can represent such

wave motion in terms of complex-valued functions of x and t, i.e.,

F+(x , t) = Aei(kx−ωt), F−(x , t) = Ae−i(kx+ωt). (10.23)

These complex functions are often referred to as plane waves, to
contrast the real harmonic waves. They are used to simplify certain

mathematicalmanipulation. At the end of the calculationswe have to

take the real or imaginary parts of the complex functions to recover

all the physical quantities of interest. For example, if we wish to

superpose the two opposing waves Y+(x , t) and Y−(x , t) we can
proceed in two different ways:

(1) We add the two real functions in Eq. (10.22):

Y (x , t) = Y+(x , t)+ Y−(x , t) = 2A cos kx cosωt. (10.24)
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(2) We add the two complex functions in Eq. (10.23):

F (x , t) = F+(x , t)+ F−(x , t) = 2A cos kx e−iωt . (10.25)

We have to take the real part of F (x , t) in order to recover
Y (x , t) in Eq. (10.24), using Euler’s formula8

eiθ = cos θ + i sin θ , θ ∈ IR . (10.26)

While complex numbers and functions are widely used they are not

necessary for classical physics where all the fundamental equations

such as wave equations in Eq. (2.10) and the equation for Newton’s

second law are real.

The situation is entirely different in quantum physics. The

time-dependent Schrödinger equation which is the quantum wave
equation is complex. It explicitly contains the imaginary unit i .9 For
the free motion of a quantum particle of mass m in one-dimension

along the x axis the time-dependent Schrödinger equation is

i�
∂φ(x , t)

∂t
= ̂H φ(x , t), ̂H = − �

2

2m
∂2

∂x2
. (10.27)

Solutions of the time-dependent Schrödinger equation are generally

known as quantum wave functions or simply wave functions. Intu-
itively we may imagine these quantum wave functions describing a

kind of quantum waves. In contrast to solutions of the classical wave
equation Eq. (2.10) the solutions to the quantum wave equation are

necessarily complex, i.e., a quantum wave has to be described by a

complex wave function.10

An important common property of waves, satisfied by both

classical and quantum waves, is that they can be superposed to

produce a new wave.11 By examining the superposition of waves we

can gain an intuitive understanding as to why quantum waves have

to correspond to complex functions:

8Euler (1707–1783) is a Swiss mathematician and physicist.
9Schrödinger (1887–1961) is an Austrian physicist famous for his equation and a

quantum paradox by his name. He shared the 1933 Nobel Prize in Physics with

Dirac.
10The term wave functions is also used to refer to square-integrable functions as
stated in §18.4.2.1.

11Mathematically this is due to the fact that both the classical and quantum wave

equations are linear. For a linear equation a linear combination of two solutions is

also a solution.
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(1) The superposition of two opposing classicalwaves in Eq. (10.22)

produces what is known as a standing wave described by Y (x , t)
in Eq. (10.24). A standard wave corresponds to the medium

vibrating up and down without propagation. The vibration

ceases periodically over the entire medium, e.g., at t1 = π/2ω,

t2 = 3π/2ω, we have Y (x , t1) = 0 and Y (x , t2) = 0 for all x .

(2) The above result implies that the real function Y (x , t) cannot
describe a quantum wave. A quantum wave is known to

represent the position probability amplitude of the particle, i.e.,

the absolute value square is the position probability density

function of the particle. Such a density function cannot be

zero everywhere at any time since that would mean a zero

probability of finding the particle anywhere. A description

of position probability amplitude by Y (x , t) would mean the
periodic disappearance of the particle. This is not acceptable.

On the other hand the complex function F (x , t) in Eq. (10.25)
can never vanish for all x at any given time, a property necessary
for the description of position probability amplitude. Thiswould

also imply that the corresponding quantum wave equation, i.e.,

the time-dependent Schrödinger equation, must be complex as

well.12

We have now seen two examples, the electron spin in the pre-

ceding section and the interpretation of the wave function discussed

above, to show that complex numbers and complex functions are

intrinsically related to the quantumworld.13 Quantum systems have

to be described by complex-valued functions, complex vectors and
operators on complex vectors. Before looking into complex vectors

we shall familiarise ourselves with complex numbers first.

Complex numbers introduced earlier in an intuitive manner in

terms of the symbolic imaginary unit i = √−1 possesses the usual
algebraic properties of real numbers in the following sense:

P10.3(1) The imaginary unit can bemultiplied by itself, i.e., we can

square the imaginary unit, i.e., i2 = i × i and this square is defined
to be the real number−1.
12O’hanian p. 157.
13Hence complex numbers are not fictitious and devoid of reality.
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P10.3(2) The imaginary unit can be multiplied by a real numbers

b to produce a formal quantity of the form bi . This quantity is known
as an imaginary number. The imaginary unit multiplied by the real
number zero is assumed to be zero.

P10.3(3) An imaginary number bi can be added to a real number a
to produce a formal quantity z of the form z = a+bi which is called a
complex number. Real and imaginary numbers are then special cases
of complex numbers. We also have the following terminology:

(1) The real number a and b are referred to respectively, as the real
and imaginary parts of z.

(2) The complex conjuage of z, denoted by z∗, is defined to be the
complex number z∗ := a − b i . It follows that z∗∗ = z.

(3) The absolute value of z, denoted by |z|, is defined to be the real
number |z| := √a2 + b2.

P10.3(4) Two complex numbers are deemed equal if and only if

their real and imaginary parts are equal.

P10.3(5) Complex numbers can be manipulated according to the

following rules14:

(a1 + b1 i)+ (a2 + b2 i) := (a1 + a2)+ (b1 + b2) i, (10.28)

(a1 + b1 i)(a2 + b2 i) := (a1a2 − b1b2)+ (a1b2 + b1a2) i. (10.29)

P10.3(6) With above rules for addition and multiplication the

absolute value of z can be calculated in terms of the product of z and
its complex conjugate, i.e.,

|z| = √z∗z. (10.30)

We have, for any two complex numbers z and w

|z∗| = |z| and |zw| = |z| |w|. (10.31)

There is a need to put things on a more rigorous mathematical

basis in oder to make the concept of complex vectors easier to

understand. In the next chapter we shall present a definition of

complex numbers which can be generalised to define complex

vectors.

14It is possible to define division of complex numbers as well.
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Exercises and Problems

Q10(1) In the model theory in §10.2.1 the observable A has three
possible values, i.e., a1, a2, and a3. Find the probabilities
for the value a1 when the state vector �u is one of the

following unit vectors:

�u1 = �e1, �u2 = �e2, and �u3 = 1√
3
�e1 +

√

2

3
�e3.
(10.32)

What are the expectation values E( ̂A, �u ) and the uncertain-
ties
( ̂A, �u ) in these cases?

Q10(2) Show that ̂A and ̂A′ in Eq. (10.16) commute.

Q10(3) Prove Eq. (10.31).

Q10(4) Let θ , a and b be real numbers. For the complex numbers
z = eiθ and z = eiθ

(

a + ib) show that

|eiθ | = 1 and |z|2 = a2 + b2. (10.33)
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Chapter 11

Complex Vectors

11.1 Complex Numbers

It is not obvious how one would define complex vectors. It is not

meaningful to introduce imaginary vectors by just taking the “square
root” of a “negative vector”, similar to the way we take the square

root of the negative number −1, to arrive at an “imaginary number”.
Also themultiplication of a real vector �u ∈ �IE 3 by a complex number,
e.g., (a + ib)�u , does not have an intuitive meaning. We need an
approach which is not based on “imaginary vectors”.

Let us illustrate such an approach with complex numbers.

The idea is to define complex numbers as order pairs (a, b) of
real numbers a and b subject to the following rules of algebraic
operations:

Equality (a1, b1) = (a2, b2) if and only if a1 = a2, b1 = b2.

Addition (a1, b1)+ (a2, b2) := (a1 + a2, b1 + b2).
Multiplication (a1, b1)(a2, b2) := (a1a2 − b1b2, a1b2 + b1a2).
This is equivalent to defining complex numbers as members of the

Cartesian product IR× IR formed by the set of all ordered pairs (a, b)
of real numbers a and b subject to above rules of equality, addition
and multiplication.

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
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To compare with the intuitive definition in Eqs. (10.28) and

(10.29) given earlier we can introduce the following terms:1

(1) We call a and b, respectively, the real and the imaginary parts of
the complex number z := (a, b).

(2) We call the pair (0, 1) the imaginary unit. The square of the
imaginary unit can be calculated according the multiplication

rule, i.e., we have

(0, 1)(0, 1) = (−1, 0). (11.1)

If we denote the imaginary unit (0, 1) by i then Eq. (11.1)

becomes the usual expression i2 = −1.
(3) We identify a pair of the form (a, 0) with the real number a

and we call a pair of the form (0, b) an imaginary number. The
following are illustrative examples:

(a) We can identify (−1, 0) with the real number−1 and (0, 1)
with the imaginary number i .

(b) We can denote the multiplication of (a′, 0) and (a, b) simply
by a′(a, b). By the multiplication rule we have

a′(a, b) = (a′, 0)(a, b) = (a′a, a′b). (11.2)

(c) The order in the pair is important since the definition of

equality stated above implies (a, b) �= (b, a) if a �= b.

(4) Real and imaginary numbers are a subset of the complex

numbers.

(5) The complex conjugate z∗ of z is defined to be z∗ := (a, −b).
(6) The absolute value or norm of |z| of z is defined to be |z| :=√

a2 + b2.
We can summarise the results by making the following identifi-

cation with our previous definition of complex numbers:

(0, 1) = i, (a, 0) = a, (a, b) = a + ib. (11.3)

In practical calculations it is easier to employ our previous notation

z = a + ib, rather than (a, b) for complex numbers.
1Here a, b, a′ are real numbers.
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11.2 Complexification of the Vector Space �IE 3

11.2.1 Complex Vectors

Consider the Cartesian product �IE 3 × �IE 3 formed by pairs (�u, �v ) of
real vectors �u, �v in �IE 3, i.e.,

�IE 3 × �IE 3 :=
{

(�u, �v ) : �u, �v ∈ �IE 3
}

. (11.4)

Define algebraic operations of these pairs as follows:

Equality (�u1, �v1) = (�u2, �v2) if and only if �u1 = �u2, �v1 = �v2.
Addition (�u1, �v1)+ (�u2, �v2) := (�u1 + �u2, �v1 + �v2).
Multiplication2 (a, b)(�u, �v ) := (a�u − b�v , a�v + b�u ).
Let �IE 3c denote the Cartesian product �IE 3 × �IE 3 endowed with the
above algebraic operations. We call �IE 3c a complex vector space
with its elements referred to as complex vectors. We also call �IE 3c
the complexification of �IE 3. Generally a complex vector cannot be
visualised as “an arrow” with a direction in the physical space. In

practical calculations it is easier to see what is going on if we express

complex vectors formally in terms of the imaginary number i , i.e., we
can make the following formal identification:

(�u, �v ) = �u + i �v , (11.5)

(�u1, �v1)+ (�u2, �v2) = (�u1 + i �v1)+ (�u2 + i �v2)
= (�u1 + �u2)+ i(�v1 + �v2), (11.6)

(a, b)(�u, �v ) = (a + ib)(�u + i �v )
= (a�u − b�v )+ i(a�v + b�u ). (11.7)

We often denote complex vectors by Greek letters to distinguish

them from real vectors, e.g., we write

�ζ := (�u, �v ) = �u + i �v and �ζ � := (�u�, �v� ) = �u� + i �v�. (11.8)

Each vector �u in �IE 3 has a counterpart �u c in �IE 3c , i.e.,
�u ∈ �IE 3 ↔ �u c := (�u, �0 ) = �u + i �0 ∈ �IE 3c . (11.9)

2Here multiplication is of a vector by scalars, i.e., complex numbers (a, b), not
the multiplication of two vectors. Such multiplication follows from the rule of

multiplication of complex numbers in §11.1.
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We call �u c a real vector in �IE 3c . Real vectors form a subset of �IE 3c .
Equation (11.7) tells us that a real vector becomes a complex vector

when multiplied by a complex number, i.e.,

(a + ib)�u c = (a + ib)(�u, 0) = a�u + ib�u ∈ �IE 3c . (11.10)

The algebraic operations of complex vectors defined earlier

possess the following properties:

Addition3

CA11.2.1(1) Commutative �ζ 1 + �ζ 2 = �ζ 2 + �ζ 1.
CA11.2.1(2) Associative (�ζ 1 + �ζ 2)+ �ζ 3 = �ζ 1 + (�ζ 2 + �ζ 3).
CA11.2.1(3) Zero vector There is a unique vector in �IE 3c ,

the zero vector �0c , such that
�ζ + �0c = �ζ ∀�ζ ∈ �IE 3c .

CA11.2.1(4) Inverse For each �ζ ∈ �IE 3c there exists
a unique inverse denoted by �ζ −1
such that �ζ + �ζ −1 = �0c .

The zero vector is given in terms of the zero real vector �0 by �0c =
(�0, �0 ).4

Scalar multiplication by complex numbers5

CSM11.2.1(1) Distributive c(�ζ 1 + �ζ 2) = c �ζ 1 + c �ζ 2 and
(c1 + c2)�ζ = c1 �ζ + c2 �ζ .

CSM11.2.1(2) Associative (c1c2)�ζ = c1(c2 �ζ ).
CSM11.2.1(3) Multiplication by 1 1 �ζ = �ζ .

With scalar multiplication extended to complex numbers the

definitions of linear dependence and independence, dimensions and

bases discussed in §6.2.1 and §6.2.2 carry over to �IE 3c .
Let {�e1, �e2, �e3} be a basis for �IE 3, then its counterpart in �IE 3c ,

denoted by {�e c1 , �e c2 , �e c3}, will form a basis in �IE 3c , since all vectors
in �IE 3c are expressible as a linear combination of �e c� := (�e�, �0 ). To
3These properties are comparable with the corresponding properties A6.1.1(1) to

A6.1.1(4) for vectors in �IE 3. Equations (6.1) to (6.3) apply equally here.
4In contrast the zero complex number is defined in terms of the number zero by (0, 0).
5These properties are comparable with the corresponding properties SM6.1.2(1) to

SM6.1.2(3) for vectors in �IE 3. From now on a scalar means a complex number in

general, e.g., c, c1 and c2 are complex numbers.
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appreciate this we shall start with a pair of vectors in �u, �v ∈ �IE 3 and
effect their expansion in terms of �e�, i.e.,

�u =
3
∑

�=1
u� �e� and �v =

3
∑

�=1
v� �e�. (11.11)

where u�, v� ∈ IR . Then the complex vector �ζ = �u+ i �v will have the
following expansion6:

�ζ = �u + i �v =
(

3
∑

�=1
u� �e�

)

+ i
(

3
∑

�=1
v� �e�

)

=
3
∑

�=1
(u� + iv�) �e� =

3
∑

�=1
(u� + iv�) (�e�, �0 )

=
3
∑

�=1
(u� + iv�) �e c� . (11.12)

We can conclude that any complex vector �ζ ∈ �IE 3c is expressible as a
linear combination of �e c� . The complex vector space �IE 3c is therefore
three-dimensional. When there is no risk of confusion we can drop

the superscript to denote (�u, �0 ) by �u, e.g., we can rewrite

(a + ib)�u c as (a + ib)�u and �0c = (�0, �0 ) as �0. (11.13)

11.2.2 Scalar Product and Orthonormal Bases

We can define the scalar product 〈�ζ 1 | �ζ 2〉c and norm || �ζ ||c in �IE 3c
in terms of the scalar product and norm in �IE 3 by7

〈�ζ 1 | �ζ 2〉c = 〈(�u1 + i �v1) | (�u2 + i �v2)〉c
:= 〈�u1 | �u2〉 + 〈�v1 | �v2〉 + i〈�u1 | �v2〉 − i〈�v1 | �u2〉, (11.14)

|| �ζ ||c = ||�u + i �v ||c
:=

√

〈�u + i �v | �u + i �v 〉c =
√

〈�u | �u 〉 + 〈�v | �v 〉
=
√

||�u ||2 + ||�v ||. (11.15)

6Making use of Eq. (11.7).
7For real vectors �uc , �vc in �IE 3c we have 〈�uc | �vc〉c = 〈�u | �v 〉 and ||�u c || = ||�u ||.
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The present definition possesses the following properties:

CSP11.2.2(1) Non-commutative 〈�ζ 1 | �ζ 2〉c = 〈�ζ 2 | �ζ 1〉c ∗.
CSP11.2.2(2) Distributive 〈�ζ | (c1 �ζ 1 + c2 �ζ 2)〉c

= c1 〈�ζ 1 | �ζ 2〉c + c2 〈�ζ | �ζ 2〉c ,
where c1, c2 ∈ C .

CSP11.2.2(3) Positive definite 〈�ζ | �ζ 〉c is real, non-negative,
and 〈�ζ | �ζ 〉 = 0 ⇒ �ζ = �0.

Note and that CSP11.2.2(1) and CSP11.2.2(2) imply8

〈�ζ 1 | c �ζ 2〉c = c 〈 �ζ 1 | �ζ 2〉c and 〈c �ζ 1 | �ζ 2〉c = c∗〈 �ζ 1 | �ζ 2〉c . (11.16)

The definitions of orthonormality and orthonormal basis given in

§6.2 carry over to �IE 3c . An orthonormal basis {�e�} for �IE 3 correspond
to an orthonormal basis {�e c� } for �IE 3c , as shown in Eq. (11.12).9 We
can rewrite Eq. (11.12) as

�ζ = �u + i �v =
3
∑

�=1
ζ� �e c� , with ζ� = 〈�e c� | �ζ 〉c = u� + iv�. (11.17)

For example, the basis {�i , �j , �k } in �IE 3 correspond to an orthonormal
basis {�i c , �j c , �k c} for �IE 3c . We can also have complex vectors forming
an orthonormal basis in �IE 3c .

The Schwarz inequality and the triangle inequalities in §6.3.6 re-
main valid.10 Following the expansion in Eq. (11.17) the Pythagoras

theorem now takes the form

|| �ζ ||c =
(

3
∑

�=1
ζ ∗� ζ�

)1/2

. (11.18)

〈�ζ 1 | �ζ 2〉c =
3
∑

�=1
ζ ∗1�ζ2�. (11.19)

The discussion on matrix representation of vectors in §7.5 can be
extended to to complex vectors in �IE 3c . Generally complex vectors
8Apart from CSP11.2.2(1) these are the same as the properties of the scalar product

for vectors in �IE 3 listed in §6.3.1.
9We also have 〈�e c� | �e c�′ 〉c = δ��′ .
10See Q12(1) and Q12(3) in Exercise and Problems for Chapter 12.
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will be represented by complex column vectors. For example, in the

basis {�i c , �j c , �k c} any vector in �IE 3c has the expansion
�ζ = ζx�i c + ζy �j c + ζz �k c (11.20)

with

ζx = 〈 �i c | �ζ 〉c , ζy = 〈 �j c | �ζ 〉c , ζz = 〈 �k c | �ζ 〉c . (11.21)

In basis
{�i c , �j c , �k c } the matrix representation of the basis vectors

�i c , �j c , �k c and of �ζ are given respectively by11

⎛

⎝

1

0

0

⎞

⎠ ,

⎛

⎝

0

1

0

⎞

⎠ ,

⎛

⎝

0

0

1

⎞

⎠ ,

⎛

⎝

ζx

ζy

ζz

⎞

⎠ . (11.22)

While complex vectors in �IE 3c does not have the usual geometric
meaning of real vectors in physical space we can still imagine a

complex vector defining a “direction” in an abstract sense. The

discussion on operators in Chapters 8 and 9 aswell as the discussion

on probability in Chapter 10 can also be extended to �IE 3c . We shall
go into these inmore details in later chapters after we generalise the

concept of complex vectors to arbitrary dimensions.

Exercises and Problems

Q11(1) Prove Eqs. (11.17), (11.18) and (11.19) in �IE 3c .
Q11(2) Let

�ε1 = 1√
2

(

�i c + i �j c
)

, �ε2 = 1√
2

(

�i c − i �j c
)

, �ε3 = �k c .

(a) Write down the matrix representations of the above
vectors in the orthonormal basis {�i c , �j c , �k c}.

(b) Show that �ε�, � = 1, 2, 3 above form an orthonormal

basis for �IE 3c .

11We can have complex basis vectors, e.g., the column vectors in Eq. (14.52).



196 Complex Vectors

(c) Show that an arbitrary vector �ζ can be expressed as

�ζ =
3
∑

�=1
ζ� �ε�, ζ� = 〈�ε� | �ζ 〉c . (11.23)

Q11(3) Show that Eqs. (11.18) and (11.19) hold in a general

complex orthonormal basis.



Chapter 12

N-Dimensional Complex Vector Spaces

12.1 Introductory Remarks

So far we have adopted a constructive method to define complex
vectors. Using the familiar three-dimensional real vectors in �IE 3
we can construct three-dimensional complex vectors explicitly, e.g.,

we define their algebraic operations and scalar product explicitly.

Important properties can then be derived from all these explicit

definitions, e.g., CA11.2.1(1) to CA11.2.1(4) and CSP11.2.2(1) to

CSP11.2.2(3). This constructive method provides an intuitive way to

define things. However, such a method is not useful when we want

to generalise our theory. Many of the explicit constructions cannot

be easily generalised.

When extending to higher dimensions what we want is to

preserve the intrinsic and desirable properties of our three-

dimensional complex vector space �IE 3c , but not necessarily the

constructive expressions. The idea is to define various quantities,

including vector spaces themselves, by their properties from the

start. We shall start by defining an N-dimensional complex vector
space as a set of elements endowed with certain properties. There

is no need to describe these elements explicitly as long they possess

the desired properties.
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ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
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12.2 Definitions

Definition 12.2(1) A set �VV of elements �ζ , �η, . . . , is called a complex
vector space and its elements are called complex vectors if

(1) An operation (addition) is defined which assigns to every pair
of elements �ζ and �η a new element in �VV , denoted by �ζ + �η
and called the sum of �ζ and �η , in such a way that properties
CA11.2.1(1) to CA11.2.1(4) are satisfied.

(2) An operation (scalar multiplication) is defined which assigns to
every element �ζ and a scalar c ∈ C a new element in �VV ,
denoted by c �ζ , in such a way that properties CSM11.2.1(1) to
CSM11.2.1(3) are satisfied.1

The definition of linear dependence and independence, dimensions

and bases (complete sets) are the same as those given in §6.2.1
and §6.2.2. An N-dimensional space, denoted by �VV N , is one which

possesses a maximum of N linearly independent vectors. It is

possible to have an infinite number of linearly independent vectors

in a space. In such a case the space is infinite-dimensional. The
notation �VV N is used when N is finite. When the dimension is infinite
the notation �VV∞ is used.

Definition 12.2(2)

(1) A scalar product on �VV N is an assignment of a scalar to each
pair of vectors �ζ and �η in �VV N, denoted by 〈�ζ | �η 〉, satisfying
properties CSP11.2.2(1) , CSP11.2.2(2) and CSP11.2.2(3).2

(2) A vector space �VV N with a scalar product defined on it is called a
scalar product space.3

1The set becomes a real vector space if the scalar multiplication is restricted to real
numbers.
2The symbol 〈�ζ | �η 〉 instead of 〈�ζ | �η 〉c is used to simplify the notation.
3A scalar product is often referred to as an inner product, with a scalar product space
referred to as an inner product space.
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A scalar product 〈�ζ | �η 〉 is generally complex. It has the following
properties:

〈�ζ | �η 〉 = 〈�η | �ζ 〉∗, (12.1)

〈�ζ | c �η 〉 = c 〈�ζ | �η 〉, 〈c �ζ | �η 〉 = c∗〈�ζ | �η 〉. (12.2)

Once a scalar product is defined on �VV N we can define the

concepts of norm, orthonormality and orthonormal bases (complete

orthonormal sets) as before.4 Orthogonal vectors are linearly

independent. The Gram-Schmidt orthogonalisation procedure in

§6.3.5 applies to ensure the existence of an orthonormal basis

consisting N orthonormal vectors �ε�, � = 1, 2, · · · , N, such that any
vector �ζ ∈ �VV N can be expressed as

�ζ =
N
∑

�=1
ζ��ε�, ζ� = 〈�ε� | �ζ 〉. (12.3)

It immediately follows that Eqs. (6.30) and (6.31) for �IE 3 apply here,
i.e., we have

〈�ε� | �ζ 〉 = 0 ∀ � ⇒ �ζ = �0 (12.4)

and

〈�ε� | �ζ 〉 = 〈�ε� | �η 〉 ∀ � ⇒ �ζ = �η. (12.5)

The discussion on matrix representation of vectors in §7.5 can be
extended to complex vectors in �VV N . Generally complex vectors will

be represented by complex column vectors.

In a complex vector space we can express a scalar product in

terms of norms as follows5:

〈�ζ | �η 〉 = 1

2

{

〈�ζ + �η | �ζ + �η 〉 − i〈�ζ + i �η | �ζ + i �η 〉

+(i − 1)(〈�ζ | �ζ 〉 + 〈�η | �η 〉)
}

. (12.6)

4We define a norm in �VV N by Eq. (11.15). It is possible to define a norm independent

of scalar product (seeWeidmann p. 7).
5SeeQ12(1) for an alternative expression and also see Eq. (13.7) for a similar equality
involving an operator. Note that

〈�ζ + �η | �ζ + �η 〉 = ||�ζ + �η ||2, 〈�ζ + i �η | �ζ + i �η 〉 = ||�ζ + i �η ||2.
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12.3 Examples

12.3.1 Complex Column Matrices as Vectors

Consider the set C N of N× 1 columnmatrices of complex elements:

C N :=
{

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ζ1

ζ2

.

.

.

ζN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: ζ� ∈ C , � = 1, 2, · · · , N
}

. (12.7)

We can define addition and scalar multiplication by
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ζ1

ζ2

.

.

.

ζN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

η1

η2

.

.

.

ηN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ζ1 + η1

ζ2 + η2

.

.

.

ζN + ηN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (12.8)

c

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ζ1

ζ2

.

.

.

ζN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c ζ1

c ζ2

.

.

.

c ζN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12.9)

These operations satisfy properties CA11.2.1(1) to CA11.2.1(4)

and CSM11.2.1(1) to CSM11.2.1(3). By Definition 12.2 (1) the set

becomes an N-dimensional complex scalar product space, to be

denoted by �C N
, with column matrices as vectors. Hence we shall

denote these column matrices in vector notation as �ζ , �η, . . . and call
them column vectors.

We can assign a complex number 〈�ζ | �η 〉 to every pair of vectors
�ζ , �η in �C N

by6

〈�ζ | �η 〉 := ζ ∗1 η1 + ζ ∗2 η2 + · · · + ζ ∗NηN =
N
∑

�=1
ζ ∗� η�. (12.10)

6The notation 〈�ζ | �η 〉 anticipates the assignment to form a scalar product.
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This assignment of a scalar to every pair of vectors in �C N
satisfy

properties CSP11.2.2(1) to CSP11.2.2(3). Hence the assignment

constitutes a scalar product. We shall denote resulting scalar

product space also by �C N
.

The complex conjugates in the expression for the scalar product

ensure that

〈�ζ | �ζ 〉 =
N
∑

�=1
ζ ∗� ζ� (12.11)

is real and non-negative. We can then define norm of a vector to be

|| �ζ || :=
√

〈�ζ | �ζ 〉 =
(

N
∑

�=1
ζ ∗� ζ�

)1/2

. (12.12)

Two vectors �ζ , �η are orthonormal if
〈�ζ | �η 〉 = 0 and ‖�z ‖ = ‖�η ‖ = 1. (12.13)

Equations (12.11) and (12.12) are the Pythagoras theorem in �C N
.

We can see that �C N
is N-dimensional with an obvious orthonor-

mal basis7

�e c1 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

.

.

.

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, �e c2 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

1

0

.

.

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, . . . , �e cN :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

.

.

.

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12.14)

An arbitrary vector has the familiar expansion

�ζ =
N
∑

�=1
z� �e c� , ζ� = 〈�e c� | �ζ 〉 ∈ C . (12.15)

When N = 2 we have a simple but important case of a two-

dimensional space �C 2
consisting of 2× 1 column vectors, i.e.,

�C 2
:=
{

(

ζ1

ζ2

)

: ζ� ∈ C , � = 1, 2
}

, (12.16)

7Using the notation in §11.2.2.
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with scalar product of two such vectors �ζ and �η given by
〈�ζ | �η 〉 := ζ ∗1 η1 + ζ ∗2 η2. (12.17)

If we restrict the coefficients in the linear combinations to real

numbers in Eq. (12.15) we would obtain a set IRN of N × 1 column

matrices of real elements. This set forms an N-dimensional real
vector space denoted by �IRN . Explicitly we have

�IRN :=
{

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1
a2
.

.

.

aN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: a� ∈ IR , � = 1, 2, · · · , N
}

. (12.18)

12.3.2 Complex N × NMatrices as Vectors

Consider the set of N × N complex matrices M , N , · · · . With usual
matrix addition and scalar multiplication the set becomes a vector

space. To be specific let us consider the set of 2×2 complexmatrices.
There is a maximum of 4 linearly independent 2×2matrices, e.g., in
vector notation

�m1 :=
(

1 0

0 0

)

, �m2 :=
(

0 1

0 0

)

, (12.19)

�m3 :=
(

0 0

1 0

)

, �m4 :=
(

0 0

0 1

)

, (12.20)

such that any 2× 2 complex matrix (in vector notation)
�M :=

(

M11 M12
M21 M22

)

(12.21)

can be written as a linear combination
�M = M11 �m1 + M12 �m2 + M21 �m3 + M22 �m4. (12.22)

The set of matrices constitutes a four-dimensional vector space with

{ �m�, � = 1, 2, 3, 4} forming a basis. We can define a scalar product,
known as the Frobenius scalar product,8 by

〈 �M | �N 〉 := M∗11N11 + M∗12N12 + M∗21N21 + M∗22N22. (12.23)

Then the set { �m�, � = 1, 2, 3, 4} forms an orthonormal basis.
8Frobenius (1849–1917) was a German mathematician.
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12.3.3 Complex-Valued Functions as Vectors

Consider the set C (�) of continuous complex-valued functions

φ(x), ψ(x), · · · of a real variable x defined on a closed interval � =
[0, L].9 The set is closed under addition and scalar multiplication,
i.e., φ + ψ and c φ , c ∈ C are again members of C (�). It follows
that the set C (�) forms a complex vector space and we can consider
functions in C (�) as vectors. To emphasise the vector nature of these
functions we shall denote themwith vector notation,10 e.g., �φ and �ψ
for φ(x) and ψ(x). This relationship is denoted by

�φ := φ(x) and �ψ := ψ(x) (12.24)

The symbol := means that the vectors on the left hand side are

defined by the functions on the right hand side. Note that the

variable x does not appear in the notation for the vector. Vectors �φ,
�ψ are also said to correspond to functions φ(x) and ψ(x).
It is easy to check that the assignment of a (complex) number

to each pair of functions φ and ψ in C (�) in terms of the following
Riemann integral11

∫ L

0

φ∗(x)ψ(x)dx (12.25)

satisfies CSP11.2.2(1) to CSP11.2.2(3) of scalar product. We can use

Eq. (12.25) to define a scalar product in C (�) with the notation

〈 �φ | �ψ 〉 :=
∫ L

0

φ∗(x)ψ(x)dx . (12.26)

The norm of vectors is given by

|| �φ ||2 := 〈 �φ | �φ 〉 =
∫ L

0

φ∗(x)φ(x)dx . (12.27)

Two vectors �φ, �ψ are orthonormal if || �φ ||2 = || �ψ ||2 = 1 and

〈 �φ | �ψ 〉 =
∫ L

0

φ∗(x)ψ(x)dx = 0. (12.28)

9Weidmann p. 5. A complex-valued function of a real variable is decomposable into

the form φ(x) = f (x) + i g(x) where f and g are real-valued functions of x .
The function φ(x) is continuous in x if f (x) and g(x) are. The same applies to
differentiability and integrability.

10Following Isham p. 28.
11The integral exists for continuous functions over a finite interval.
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When using the notation �φ we are treating the function φ(x) as a
whole as a vector. These functions define a set of vectors which

would form a vector space which is denoted by �C (�). We can
express this relationship by �C (�) := C (�).12 Actual calculations
are carried out in terms of φ(x), ψ(x) as functions as in Eqs. (12.26)
and (12.27).

It is not obvious how we can obtain a basis to span such a set

of continuous functions and what the dimension of the space is. To

make things easier here we shall do the opposite. Instead of looking

for a basis for �C (�) we shall select a set of n functions ϕ�(x) in C (�)
to define n orthonormal vectors �ϕ�. These vectors can be used to

construct an n-dimensional vector space. As an example consider the
following functions defined on the interval� = [0, L]:

ϕ�(x) = 1√
L
ei(2π�/L) x , � = 0, ±1, ±2, · · · . (12.29)

Being continuous these functions are members of C (�). They define
a corresponding set of vectors �ϕ� in �C (�). As vectors they are also
orthonormal, and hence they are linearly independent of each other.

Let us consider the three vectors defined by ϕ−1(x), ϕ0(x) and ϕ1(x),
i.e.,

�ϕ−1 := 1√
L
e−i(2π/L) x , �ϕ0 := 1√

L
, �ϕ1 := 1√

L
ei(2π/L) x .

Their linear combinations would produce a set of vectors, i.e.,
{

�φ := c−1 �ϕ−1 + c0 �ϕ0 + c1 �ϕ1, c−1, c0, c1 ∈ C
}

.

This set of vectors forms a three-dimensional complex vector space

in its own right with { �ϕ�, � = −1, 0, 1} as an orthonormal basis.
Clearly the discussion can be extended to form vector spaces of

higher dimensions by using a larger set of vectors �ϕ�. For example,

the set of functions ϕ�(x) in Eq. (12.29) for � = 0, ±1, ±2, · · · , ±m
would define a set of n = 2m + 1 orthonormal vectors �ϕ�. These

12It is common to employ the same notation, e.g., φ(x) and C (�) to denote the vector
and the vector space.
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vectors can be used to span an n-dimensional vector space
{

�φ =
m
∑

�=−m
c� �ϕ� :=

m
∑

�=−m
c�

1√
L
ei(2�π/L) x , c� ∈ C

}

. (12.30)

This is a subset of �C (�). We can make the subset bigger and bigger
by increasing n without limit. Intuitively we can see that �C (�) must
be an infinite-dimensional space.

12.4 Isomorphism between Spaces

Let f be a mapping of a given space �VV N
1 onto another space �VV N

2 .

The mapping is said to be linear if it has the property that when
�ζ 1 and �η1 of �VV N

1 are mapped onto
�ζ 2 = f (�ζ 1) and �η2 = f (�η1) of

�VV N
2 then all their linear combinations a �ζ 1+ b �η1 in �VV N

1 are mapped

onto the corresponding linear combinations of �ζ 2 and �η2 in �VV N
2 ,

i.e., we have, ∀a, b ∈ C ,

f
(

a �ζ 1 + b �η1
)

= a f (�ζ 1)+ b f (�η1) = a �ζ 2 + b �η2. (12.31)

Let { �ϕ1�} be an orthonormal basis for �VV N
1 and let { �ϕ2�} be an

orthonormal basis for �VV 2. We can define a linear mapping of �VV N
1

onto �VV N
2 by first mapping the basis vectors �ϕ1� of �VV N

1 to the basis

vectors �ϕ2� of �VV N
2 , and then extend the mapping by linearity to the

entire �VV N
1 . Complex vector spaces of the same dimension can be

mapped onto each other in this way.

A one-to-one linear mapping of �VV N
1 onto �VV N

2 is called an

isomorphism between �VV N
1 and

�VV N
2 . The two spaces are then said to

be isomorphic.13 An isomorphism can be demonstrated by relating

an orthonormal basis in �VV N
1 to that of �VV N

2 . For example, we can

establish an isomorphism between the N-dimensional vector space

in Eq. (12.30) spanned by �ϕ� and �C N spanned by �e c� . We can achieve
this by first mapping �ϕ� onto �e c� , i.e., we start with f ( �ϕ�) = �e c� . Then

13Halmos p. 14, Isham p. 22.
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for any �φ =∑N
�=1 c� �ϕ� we have

f ( �φ ) = f
(

N
∑

�=1
c� �ϕ�

) =
N
∑

�=1
c� f

( �ϕ�

) =
N
∑

�=1
c� �e c� . (12.32)

The mapping establishes an isomorphism between the two spaces.

All N-dimensional vector spaces �VV N are isomorphic to �C N in a

similar way. This isomorphism enables us to establish a matrix

representation of �VV N , i.e., we can represent vectors in �VV N by column

vectors in �C N .
An isomorphism, i.e., a one-to-one linear mapping of a vector

space �VV N
1 onto another vector space

�VV N
2 , is said to be unitary if it

preserves the scalar product, i.e., if

〈�ζ 1 | �η1〉1 = 〈�ζ 2 | �η2〉2, (12.33)

where 〈�ζ 1 | �η1〉1 denotes scalar product of two vectors �ζ 1 and �η1
in �VV N

1 and 〈�ζ 2 | �η2〉2 denotes scalar product of two vectors �ζ 2 and
�η2 in �VV N

2 . An example is the mapping in Eq. (12.32) which is clearly

unitary.

12.5 Concluding Remarks

The examples in §12.3 suggest that one can go one step further to
form infinite-dimensional vector spaces, e.g., �C N becomes an infinite-
dimensional vector space as N becomes arbitrarily large. Functions
in C (�) also form an infinite-dimensional vector space since not

every continuous function on the interval � can be expressed as

a linear combination of a finite set of functions like those in Eq.

(12.29). Then things can become very complicated since many

of the definitions introduced for finite-dimensional spaces cannot

be applied to infinite-dimensional spaces. For example, the scalar

product in Eq. (12.10) may produce an infinite value when summing

over an infinite number of terms. We shall return to discuss infinite-

dimensional spaces after reviewing operators in N-dimensional
spaces in the next chapter.
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Exercises and Problems

Q12(1) Prove Eq. (12.6).

Q12(2) Show that

〈�ζ | �η 〉 = 1

4

{

|| �ζ + �η ||2 − ||�ζ − �η ||2

−i ( || �ζ + i �η ||2 − ||�ζ − i �η ||2)
}

. (12.34)

Q12(3) Prove the Schwarz inequality in �VV N14:

|〈�ζ | �η 〉| ≤ ||�ζ || || �η ||. (12.35)

Q12(4) Prove the following triangle inequalities in �VV N15:

|| �ζ + �η || ≤ ||�ζ || + || �η ||. (12.36)
∣

∣

∣ || �ζ || − || �η ||
∣

∣

∣ ≤ ||�ζ − �η ||. (12.37)

Q12(5) Show that the Frobenius expression in Eq. (12.23)

satisfies the properties CSP11.2.2(1), CSP11.2.2(2) and

CSP11.2.2(3) of a scalar product.

Q12(6) Show that the integral expression in Eq. (12.25) sat-

isfies the properties CSP11.2.2(1), CSP11.2.2(2) and

CSP11.2.2(3) of a scalar product.

Q12(7) Verify that the vectors �ϕ� corresponding to the functions

ϕ�(x) in Eq. (12.29) are orthonormal.

Q12(8) Show that two orthogonal vectors are linearly indepen-

dent.

Q12(9) Show that the three Paulimatrices σx , σy and σz in Eq. (7.9)

together with the 2×2 identity matrix form a basis for the

vector space of 2 × 2 complex matrices with Frobenious

scalar product. Is this an orthonormal basis?

Q12(10) Show that the mapping in Eq. (12.32) is unitary.

14Roman p. 419. Prugovečki pp. 19–20.
15Work out ||�ζ + �η ||2 = 〈�ζ + �η | �ζ + �η 〉 and ||�ζ − �η ||2 = 〈�ζ − �η | �ζ − �η 〉. Note
that 〈�ζ | �η 〉 + 〈�η | �ζ 〉 = 2× the real part of 〈�ζ | �η 〉 which is less than or equal to
2|〈�ζ | �η 〉|.
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Chapter 13

Operators on N-Dimensional Complex
Vector Spaces

13.1 Introduction

The contents of Chapters 8 and 9 can be generalised to N-
dimensional scalar product spaces �VV N . For example, with real

numbers extended to complex numbers we can define a linear

functional on �VV N to be a linear mapping of �VV N into C and Riesz

theorem remains valid.

As in �IE 3 we shall assume from the outset that operators defined

on a finite-dimensional space �VV N act on every vector in the space,

i.e., we shall assume that all operators have �VV N as their domain.

But not all operators would have �VV N as their range. With �IE 3 and IR
replaced respectively by �VV N andC the definition of linear operators
in Eq. (8.10) and the properties these operators given in §8.2.2 apply
here:

P13.1(1) The definition of the norm of an operator in Eq. (8.13)

applies. The definitions of algebraic operations of operators, i.e.,

Eqs. (8.15) to (8.18), the definition of linear combinations and the

condition for the equality of two operators, remain valid here.

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
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P13.1(2) The definitions of the commutator and anticommutator

of two operators given respectively by Eqs. (8.19) and (8.21) apply.

The definitions of commuting and anticommuting operators also

apply here.

P13.1(3) The definition of inverse operators and the property of

inverse operators in Eq. (8.23), Theorems 8.2.2(1) and (2) and the

comments after the theorems on inverse operators remain valid.

P13.1(4) The definition of the adjoint of an operator by Eq. (8.33)

applies here, i.e., the adjoint of an operator ̂A on �VV N is defined to be

the operator ̂A† satisfying

〈 ̂A† �ζ | �η 〉 = 〈�ζ | ̂A �η 〉 ∀ �ζ , �η ∈ �VV N . (13.1)

By taking the complex conjugates of the scalar products we get, as in

Eq. (8.34),

〈 �η | ̂A† �ζ 〉 = 〈 ̂A �η | �ζ 〉 ∀ �ζ , �η ∈ �VV N . (13.2)

The properties of the adjoint operation listed from Eq. (8.38) to

Eq. (8.42) apply. In particular the linear property of the adjoint

operation in Eq. (8.38) can be generalised to1

(

c1 ̂A1 + c2 ̂A2
)†
= c∗1 ̂A

†
1 + c∗2 ̂A†

2, c1, c2 ∈ C , (13.3)

and Eq. (8.41) on the product of two operators remains true, i.e.,
(

̂A ̂B
)† = ̂B†

̂A†, (13.4)

P13.1(5) Definition 9.4.1(1) on selfadjoint operators applies, i.e.,

an operator ̂A on �VV N is said to be selfadjoint if it is equal to its
adjoint. This is equivalent to the requirement that ̂A satisfies the

following selfadjointness condition:

〈�ζ | ̂A �η 〉 = 〈 ̂A �ζ | �η 〉 ∀ �ζ , �η ∈ �VV N
. (13.5)

From Eqs. (13.3) and (13.4) we deduce that the sum of two self-

adjoint operators is selfadjoint, and the product of two selfadjoint

operators is selfadjoint if they commute.2

1Eqs. (13.3) and (13.4) are not generally valid for operators in �VV∞ . See §17.8.
2These results are not generally valid for operators in �VV∞ because Eqs. (13.3) and

(13.4) are not generally valid in �VV∞ .
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P13.1(6) The quadratic form Q( ̂A, �η ) generated by ̂A on �VV N is

again defined to be

Q( ̂A, �η ) := 〈�η | ̂A �η 〉. (13.6)

P13.1(7) The discussion on matrix representation of operators

on �IE 3 in §8.2.3 remains valid in �VV N . In particular expressions for

matrix representatives in Eq. (8.47) and the matrix representation

of operator eigenvalue problem in Eq. (8.50) remain true. In �VV N a

matrix representation of an operator may contain complex elements

and an operator may possess complex eigenvalues.

P13.1(8) Similar to Eq. (12.6) we have

〈�ζ | ̂A �η 〉 = 1

2

{

〈�ζ + �η | ̂A(�ζ + �η ) 〉 − i〈�ζ + i �η | ̂A(�ζ + i �η ) 〉

+(i − 1)(〈�ζ | ̂A �ζ 〉 + 〈�η | ̂A �η 〉)
}

. (13.7)

Finally we have the following rather intuitive results.

Theorem 13.1(1)3

̂A = ̂0 if and only if 〈�ξ | ̂A �ξ 〉 = 0 ∀ �ξ ∈ �VV N . (13.8)

Proof Clearly ̂A = ̂0 ⇒ 〈�ξ | ̂A �ξ 〉 = 0. To prove the converse we

start with 〈�ξ | ̂A �ξ 〉 = 0 ∀ �ξ ∈ �VV N . This enables us to deduce from

Eq. (13.7) that 〈�ζ | ̂A �η 〉 = 0 ∀ �ζ , �η. Equation (12.5) then implies
̂A �η = ̂0 ∀ �η, i.e., ̂A = ̂0. QED

Corollary 13.1(1)4 ̂A = ̂B if and only if

〈�ζ | ̂A �ζ 〉 = 〈�ζ | ̂B �ζ 〉 ∀ �ζ ∈ �VV N . (13.9)

A useful consequence is that5

〈�ζ | ̂A �ζ 〉 = 〈�ζ | �ζ 〉 ∀ �ζ ∈ �VV N ⇒ ̂A = ̂II . (13.10)

The above results tell us that an operator can be characterised by the

quadratic form its generates.

3Roman Vol. 2 p. 536. This result is not valid in a real vector space because it depends

on Eq. (13.7). See Q13(3) for a counter example. A restricted form of this theorem,

i.e., Theorem 9.4.1(1), applies in real vector spaces
4This result which is based on Theorem 13.1(1) is not valid in a real vector space. A

restricted form of this theorem, i.e., Theorem 9.4.1(2), applies in real vector spaces
5See Corollary 9.4.1(1) for real vector spaces.
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13.2 Subspaces, Projections and Projectors

13.2.1 Subspaces

Following §6.4.4 we shall investigate subspaces, projections and

projectors onto subspaces of �VV N .

Definition 13.2.1(1)

(1) A subset �S of �VV N is called a linear subset of �VV N if it is closed
under addition and scalar multiplication, i.e.,

�ζ 1, �ζ 2 ∈ �S ⇒ c1 �ζ 1 + c2 �ζ 2 ∈ �S ∀ c1, c2 ∈ C . (13.11)

(2) A subset �S of �VV N is called a subspace of �VV N if �S is a vector space
in its own right.

(3) Two subspaces �S1 and �S2 of �VV N are said to have an order
relation, to be denoted by �S1 ⊂ �S2, if �S1 is a subset of �S2.

The above definitions are introduced with generalisation to infinite-

dimensional spaces in mind. It is obvious that a linear subset is a

subspace of �VV N . This is not true for infinite-dimensional Hilbert

spaces discussed in §16.2.3. Given a set of n orthonormal vectors
{�ε j , j = 1, 2, · · · , n ≤ N} in �VV N we can generate an n-dimensional
subspace by forming the set of all linear combinations, i.e.,

�S n :=
{

n
∑

j=1
c j �ε j , c j ∈ C

}

. (13.12)

The subspace is also said to be spanned by the set of vectors �ε j . When
n = N we recover the original space �VV N .6 We shall often drop the

superscript n in �S n for brevity of notation. Some examples are given

below.

E13.2.1(1) For the space �C N we can construct n-dimensional
subspaces using the basis vectors �e cj in Eq. (12.14).

6An N-dimensional subspace is simply �VV N itself.
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(1) One-dimensional subspaces An example is the subset consist-

ing vectors of the form

�ζ := ζ1 �e c1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ζ1

0

.

.

.

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ∀ζ1 ∈ C . (13.13)

(2) Two-dimensional subspaces An example is the subset consist-

ing vectors of the form

�η := η1 �e c1 + η2 �e c2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

η1

η2

0

.

.

.

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ∀η1, η2 ∈ C . (13.14)

E13.2.1(2) For the space �C (�) an n-dimensional subspace can be
spanned by n orthonormal vectors, e.g., the set in Eq. (12.30).

The notion of orthogonal subspaces and orthogonal comple-

ments of subspaces given in Definition 6.4.4 (2) for �IE 3 carry over
in �VV N , e.g., the orthogonal complement �S⊥ of �S is again a subspace
and every vector �ζ in �VV N can be decomposed uniquely as a sum of a

vector lying in �S and another one lying in �S⊥, i.e.,
�ζ = �ζ �S + �ζ �S⊥ where �ζ �S ∈ �S , �ζ �S⊥ ∈ �S⊥. (13.15)

Following Eqs. (9.39) and (9.40)we can use Eq. (13.15) to define two

operators ̂P �S and ̂P �S⊥ associated with �S and �S⊥ by
̂P �S �ζ := �ζ �S and ̂P �S⊥ �ζ := �ζ �S⊥ . (13.16)

13.2.2 Projections and Projectors

Let �S be a subspace of �VV N and let {�ε j , j = 1, 2, · · · , n} be an
orthonormal basis for �S .7 Let �ζ be an arbitrary vector in �VV N and let

7Basis vectors in �S may be different from the basis vectors chosen for �VV N .
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�ε be a unit vector in �VV N . Following Definitions 9.3.1(1) and 9.3.2(1)

for �IE 3 we introduce the following definitions.
Definition 13.2.2(1)

(1) The vector �ζ �ε := 〈�ε | �ζ 〉�ε is the projection of �ζ onto �ε, and the
operator ̂P �ε defined by

̂P �ε �ζ := �ζ �ε = 〈�ε | �ζ 〉 �ε ∀ �ζ ∈ �VV N
(13.17)

is called the projector onto �ε.
(2) The vector �ζ �S defined by

�ζ �S =
n
∑

j=1
〈�ε j | �ζ 〉�ε j (13.18)

is the projection of �ζ onto the subspace �S , and the operator ̂P �S
defined by

̂P �S �ζ := �ζ �S =
n
∑

j=1
〈�ε j | �ζ 〉 �ε j ∀ �ζ ∈ �VV N

(13.19)

is called the projector onto the subspace �S .
(3) The dimension of a projector is equal to the dimension of the

subspace onto which it projects.

Definition 13.2.2(2) Let �S1, �S2 be two subspaces of �VV N .8

(1) The two projectors ̂P �S1 and
̂P �S2 onto

�S1 and �S2, respectively are
said to be orthogonal, but not necessarily complementary, if the
subspaces �S1 and �S2 onto which they project are orthogonal.

(2) The two projectors ̂P �S1 and
̂P �S2 are said to have an order

relation, denoted by ̂P �S1 ≤ ̂P �S2 , if their associated subspaces�S1 and �S2 are related by �S1 ⊂ �S2 and vice versa, i.e., we have

�S1 ⊂ �S2 ⇔ ̂P �S1 ≤ ̂P �S2 . (13.20)

8The two subspaces can be of different dimensions. We could have used the notation
�Sn1 and �Sn2 .
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(3) A complete orthogonal family of projector are as defined by
Definition 9.3.2(3).9

(4) The set of subspaces �S� corresponding to complete orthogonal
family of projectors ̂P �S�

is called a complete orthogonal family
of subspaces.

The following comments help to clarify the above definitions:

C13.2.2(1) In Dirac notation the projector ̂P �ε is written as ̂P �ε =
|�ε 〉〈�ε |. The Dirac notation can be extended to represent linear

operators of the form
∣

∣�ζ 〉〈�η ∣∣which is defined by10
(

∣

∣�ζ 〉〈�η ∣∣
)

�ξ = 〈�η | �ξ 〉 �ζ ∀�ξ ∈ �VV N . (13.21)

The adjoint of the operator is
∣

∣�η 〉〈�ζ ∣∣, i.e.,
(

∣

∣�ζ 〉〈�η ∣∣
)†
= ∣

∣�η 〉〈�ζ ∣∣. (13.22)

The product of two operators of the form given by Eq. (13.21) is
(

∣

∣�ζ 1
〉〈�η1

∣

∣

)(

∣

∣�ζ 2
〉〈�η2

∣

∣

)

= 〈�η1 | �ζ 2 〉
∣

∣�ζ 1
〉〈�η2

∣

∣. (13.23)

C13.2.2(2) Projectors are idempotent and they satisfy the selfad-

jointness condition in Eq. (13.5), i.e., for all �ζ , �η ∈ �VV N
we have

̂P 2�S = ̂P �S and 〈 ̂P �S �ζ | �η 〉 = 〈�ζ | ̂P �S �η 〉. (13.24)

It follows that projectors are selfadjoint.

C13.2.2(3) The order relation in Eq. (13.20) is equivalent to any

one of the following two statements11:

̂P �S1
̂P �S2 = ̂P �S1 = ̂P �S2

̂P �S1 . (13.25)

|| ̂P �S1 �ζ || ≤ || ̂P �S2 �ζ || ∀ �ζ ∈ �VV N
. (13.26)

9The set of projectors P̂ �ε�
corresponding to an orthonormal basis {�ε� , � =

1, 2, · · · , N} of �VV N is a complete orthogonal family of projectors.
10Zettili pp. 89–90.
11Prugovečki p. 202. Roman Vol. 2 pp. 538, 569. Since 〈�ζ | P̂ �S1

�ζ 〉 = || P̂ �S1
�ζ || and

〈�ζ | P̂ �S2
�ζ 〉 = || P̂ �S2

�ζ || Eq. (13.26) is the same as

〈�ζ | P̂ �S1
�ζ 〉 ≤ 〈�ζ | P̂ �S2

�ζ 〉 ∀ �ζ ∈ �VV N
.
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Properties P9.3.1(1) to P9.3.1(8) of subspaces and projectors listed

in §9.3 remain true. For easy reference we shall summarise some
important properties in the following theorem.

Theorem 13.2.2(1)

(1) For any projector ̂P �S and any vector �η we have

|| ̂P �S �η || ≤ || �η || and || ̂P �S || = 1.

(2) An operator is a projector if and only if it is selfadjoint and
idempotent.12

(3) Two projectors ̂P �S1 ,
̂P �S2 are orthogonal if and only if their

product vanishes, i.e., if and only if ̂P �S1
̂P �S2 = ̂0.

(4) The sum of two orthogonal projectors is again a projector. In
particular we have

̂P �S + ̂P �S⊥ = ̂II . (13.27)

(5) The sum of a complete orthogonal family of projectors corre-
sponding to an orthonormal basis {�ε�, � = 1, 2, · · · , N} is equal
to the identity operator, i.e.,

N
∑

�=1
̂P �ε�
= ̂II , (13.28)

and for any given unit vector �ζ we have13

0 ≤ 〈�ζ | ̂P �ε�
�ζ 〉 ≤ 1 and

∑N
j=1 〈�ζ | ̂P �ε�

�ζ 〉 = 1. (13.29)

(6) The product of two commuting projectors ̂P �S1 and
̂P �S2 is again

a projector which projects onto the intersection of the two
subspaces �S1 and �S2.14

12See Definition 7.7.5(1) on projection matrices.
13As for Eq. (10.4) these are important for generating probability distributions.
14Jordan p. 27. Prugovečki pp. 203–204.
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13.3 Selfadjoint Operators

13.3.1 Properties

The discussion and results for selfadjoint operators on �IE 3 apply to
selfadjoint operators on �VV N :

(1) A linear combination of projectors with real coefficients is

selfadjoint.

(2) The properties presented in §9.4.2 remain valid, i.e., Eqs. (9.60)
to (9.64) remain true.

(3) The operators ̂A†
̂A and ̂A ̂A† are selfadjoint even if ̂A is not.

(4) Selfadjoint operators correspond to selfadjoint matrices.15

(5) The discussion on eigenvalues and eigenvectors in §9.4.3 and
§9.4.4, including Definition 9.4.4(1) on eigensubspaces and

eigenprojectors and Theorem 9.4.4(1), remain valid. Eigenval-
ues of selfadjoint operators remain real despite the complex
nature of the vector space and their corresponding eigenvectors
can be chosen to form an orthonormal basis.16

(6) The notion of degeneracy introduced in §8.2.4 remain valid. In
particular a selfadjoint operator is said to be nondegenerate if

all its eigenvalues are nondegenerate.

(7) Spectral Theorems 9.4.5(1) and 9.4.5(2) apply here.

Definition 13.3.1(1) An operator ̂A on �VV N is said to be positive
if the quadratic form it generates on �VV N is real-valued and non-
negative, i.e.,17

〈 �η | ̂A �η 〉 ∈ IR and 〈 �η | ̂A �η 〉 ≥ 0 ∀�η ∈ �VV N . (13.30)

A related property is stated in following theorem.

15See §13.5 for matrix representation for operators in �VV N .
16Since this is the case for selfadjoint matrices.
17Fano p. 88. Definition 9.4.4(2) on positive operators applies to a real vector space

like �IE 3.
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Theorem 13.3.1(1)18 An operator ̂A on �VV N is selfadjoint if and
only if the quadratic form generated by the operator on �VV N is real-
valued, i.e.,

〈 �η | ̂A �η 〉 ∈ IR ∀ �η ∈ �VV N
. (13.31)

A positive operator on �VV N is selfadjoint on account of this theorem.

A positive operator has no negative eigenvalues.19

13.3.2 Spectral Theorem

In view of the importance of the Spectral Theorems 9.4.5(1) and

9.4.5(2) we shall restate them for operators on �VV N .

Theorem 13.3.2(1) A selfadjoint operator ̂A on �VV N can be
expressed as a linear combination of a complete orthogonal family
of eigenprojectors ̂P �ε�

generated by a complete orthonormal set
of eigenvectors �ε�, � = 1, 2, · · · , N of ̂A, with the corresponding
eigenvalues a� as coefficients, i.e.,

̂A =
N
∑

�=1
a�
̂P �ε�

(13.32)

The above decomposition shows that ̂A commutes with all its

eigenprojectors. The identity operator can be similarly decomposed,

i.e.,

̂II =
N
∑

�=1
̂P �ε�
, (13.33)

In Dirac notation we have

̂A =
N
∑

�=1
a� |�ε�〉〈�ε�| and ̂II =

N
∑

�=1
|�ε�〉〈�ε�|. (13.34)

18Fano pp. 73, 88. Roman Vol. 2 pp. 532–537. This theorem is not valid in a real

vector space which has a real scalar product. The quadratic form generated by an

orthogonal operator on �IE 3 is real-valued, but the operator is not selfadjoint. This
theorem is not valid in complex infinite-dimensional spaces either (see comments
after Definition 19.1(2).

19Fano pp. 88–89.
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The decomposition of the identity reflects the completeness of the

set of eigenvectors and the set of eigenprojectors. This also leads to

the following expression for the scalar product.

〈�ζ | �η 〉 =
N
∑

�=1
〈�ζ | �ε�〉〈�ε� | �η 〉. (13.35)

As pointed out in the discussion of Theorem 9.4.5(2) some of

the eigenvalues may be degenerate. Let us denote the distinct

eigenvalues by am where the subscript m goes from 1 to the total

number of different eigenvalues M. For a degenerate operator we
have M< N . We can restate the above theorem in terms of projectors
̂P Â(am) corresponding to distinct eigenvalues am as in Theorem

9.4.5(2).

Theorem 13.3.2(2) A selfadjoint operator ̂A is expressible as a lin-
ear combination of its complete orthogonal family of eigenprojectors
̂P Â(am) corresponding distinct eigenvalues am, i.e.,

̂A =
M
∑

m=1
am ̂P Â(am). (13.36)

The above expression is known as the spectral decomposition of
̂A. The corresponding spectral decomposition of the identity in

Eq. (9.80) remains valid.

13.3.3 Functions of a Selfadjoint Operator

Spectral Theorem 13.3.2(2) enables us to retain Definition 9.4.6(1)

on functions of a selfadjoint operator ̂A.

Definition 13.3.3(1) Given a function f (τ ) on IR we define a
corresponding function of a selfadjoint operator ̂A by

f ( ̂A ) :=
N
∑

�=1
f (a�) ̂P �ε�

. (13.37)

if ̂A is expressed in terms of Eq. (13.32), or

f ( ̂A ) :=
M
∑

m=1
f (am) ̂P Â(am), (13.38)

if ̂A is expressed in terms of Eq. (13.36).
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The resulting operators for different functions commute. The

function f (τ ) can be real or complex. The operator f ( ̂A ) is
selfadjoint if f (τ ) is real-valued. Examples in Eq. (9.85) for the

square of ̂A and in Eq. (9.87) for the square root of a positive ̂A
apply here. The function fuc(τ ) = 1 for all τ ∈ IR , to be referred to
as the unit constant function,20 defines an operator function

fuc( ̂A ) :=
M
∑

m=1
̂P Â(am) = ̂II , (13.39)

which is the identity operator.

Another simple but important example of real-valued functions

of ̂A is the characteristic function χ�(τ ) introduced in Eq. (4.3).

Consider the special case in which � is an interval (−∞, a ] where
a ∈ IR . The operatorχ (−∞,a ](

̂A ) possesses the following properties:

P13.3.3(1) It is selfadjoint and idempotent, i.e., it is a projector.

P13.3.3(2) It is a sum of eigenprojectors of ̂A corresponding to
eigenvalues less than or equal to a, i.e.,

χ (−∞,a](
̂A ) :=

M
∑

m=1
χ (−∞,a](am) ̂P

Â(am) (13.40)

=
∑

m′

̂P Â(am′), (13.41)

where the sum in Eq. (13.41) is over all am′ ≤ a, sinceχ (−∞,a](am) =
0 for all am > a. For example, we have

χ (−∞, a=a1](
̂A ) := ̂P Â(a1), (13.42)

χ (−∞, a=a2](
̂A ) := ̂P Â(a1)+ ̂P Â(a2). (13.43)

An individual eigenprojector can be regarded as a function of
̂A, i.e., ̂P Â(am) can be identify with χ�(

̂A ) for an interval � which

contains only a single eigenvalue am. Explicitly we have

χ (am−0, am](
̂A ) := ̂P Â(am), (13.44)

20This can be compared with the unit step function gus in Eq. (4.7).
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since the interval (am− δ, am] for sufficiently small δ contains am but
no other eigenvalues.

P13.3.3(3) The properties discussed above can be generalised to
�VV∞.

P13.3.3(4) Complex-valued functions of a selfadjoint operator are

not selfadjoint. A complex-valued function f (τ ) and its complex

conjugate f ∗(τ ) define two operators which are the adjoint of each
other, i.e.,

f ∗( ̂A ) = (

f ( ̂A )
)†
. (13.45)

An important example is the operator defined by a complex
exponential function fe(τ ) = exp(iτ ). We have

ei Â :=
N
∑

�=1
eia� ̂P �ε�

, (13.46)

or equivalently by

ei Â :=
M
∑

m=1
eiam ̂P Â(am). (13.47)

The complex conjugate f ∗e (τ ) = exp(−iτ ) defines the operator

e−i Â :=
N
∑

�=1
e−ia� ̂P �ε�

, (13.48)

or equivalently

e−i Â :=
M
∑

m=1
e−iam ̂P Â(am). (13.49)

The operators in Eqs. (13.46) and (13.48) are adjoints of each other.

They are also the inverse of each other, i.e., we have21
(

ei Â
)†
= e−i Â and

(

ei Â
)−1

= e−i Â . (13.50)

In other words, we have
(

ei Â
)(

ei Â
)†
= ei Âe−i Â =

M
∑

m=1
̂P Â(am) = ̂II . (13.51)

This is a very important property. We shall return to study these

operators in more detail in Theorem 13.4.3(1).

21Fano pp. 91–92.
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13.3.4 Commuting Selfadjoint Operators

A selfadjoint operator commutes with its eigenprojectors and the

eigenprojectors of a selfadjoint operator commute with each other.

Commutation relations play an important role in the study of

selfadjoint operators. Let ̂A and ̂B be two selfadjoint operators on
�VV N with the following spectral decompositions22:

̂A =
M
∑

m=1
am ̂P Â(am) and ̂B =

M′
∑

m′=1
bm′ ̂P B̂(bm′). (13.52)

The commuting property of ̂A and ̂B are related to the commuting

property of their eigenprojectors as stated below.

Theorem 13.3.4(1)23 Two selfadjoint operators ̂A and ̂B com-
mute if and only if their eigenprojectors ̂P Â(am) and ̂P B̂(bm′) in Eq.
(13.52) commute for all m and m′.

This theorem tells us that if ̂A and ̂B commute then:

(1) The products ̂P Â(am) ̂P B̂(bm′) are projectors by Theorem

13.2.2(1). The order in the product is unimportant since
̂P Â(am) ̂P B̂(bm′) = ̂P B̂(bm′) ̂P Â(am). We have a decomposition of
the identity in terms of these projectors, i.e.,

M,M′
∑

m,m′=1
̂P Â(am) ̂P B̂(bm′) = ̂II . (13.53)

(2) The projection �ηmm′ =
(

̂P Â(am) ̂P B̂(bm′)
) �η of any vector �η is an

eigenvector of both ̂A and ̂B , i.e., we have24

̂A �ηmm′ = am �ηmm′ and ̂B �ηmm′ = bm′ �ηmm′ . (13.54)

Further properties are seen in the theorems below.

Theorem 13.3.4(2) Let ̂A be a nondegenerate selfadjoint opera-
tor. If another selfadjoint operator ̂B commutes with ̂A then:

22The notation implies that am are all different and bm′ are all different.
23Jordan pp. 53–54, Isham p. 189 and p. 199. The theorem also applies if the

eigenprojectors in Eq. (13.32) are used.
24Isham p. 99. Jordan pp. 53, 55.
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(1) Each eigenvector of ̂A is an eigenvector of ̂B.25

(2) ̂B is a function of ̂A, i.e., there is a real-valued function f on IR
such that ̂B = f ( ̂A).26

Proof To prove the first statement let �ϕ� be an eigenvector of ̂A
corresponding to the eigenvalue a�, i.e., ̂A �ϕ� = a� �ϕ�. Then

̂A
(

̂B �ϕ�

) = (

̂A ̂B
) �ϕ� =

(

̂B ̂A
) �ϕ� = a�

(

̂B �ϕ�

)

. (13.55)

This means that ̂B �ϕ� is an eigenvector of ̂A corresponding to the

eigenvalue a�. Since the eigenvalue is nondegenerate we must have
̂B �ϕ� = b� �ϕ� for some constant b�, i.e., �ϕ� is an eigenvector ̂B .
The second statement of the theorem follows from the first

statement. To see this we start with the spectral decomposition of ̂A
given by Eq. (13.32) with a� all being different. Since ̂B commutes

with ̂A each eigenvector �ε� of ̂A is an eigenvector of ̂B by (1) of the
theorem, i.e., we have

̂B �ε� = b��ε�, (13.56)

where b� is the corresponding eigenvalue of ̂B . It follows that �ε�

form a complete orthonormal set of eigenvectors of ̂B . Applying the
spectral theorem to ̂B we get

̂B =
N
∑

�=1
b�
̂P �ε�
. (13.57)

Let f (τ ) be any real-valued function on IR which maps a� to b�, i.e.,

f (a�) = b�.
27 Then we have, by Eq. (13.37),

f ( ̂A ) =
N
∑

�=1
f (a�) ̂P �ε�

=
N
∑

�=1
b�
̂P �ε�
= ̂B . (13.58)

QED

25Dicke and Wittke p. 96.
26Jordan pp. 56–58. This is an example of Theorem 20.6(1) which applies to a

complete commuting set of selfadjoint operators. As commented after Definition

20.6(2) a nondegenerate selfadjoint operator constitutes such a complete set in
�VV N .

27One can choose a polynomial in τ for the function. The values of f (τ ) for τ �= a� do

not matter.
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The theorem does not apply if ̂A is degenerate. As an example

consider Eq. (13.38) where the projector ̂P �ε1 commutes with

projector ̂P �ε2 . But ̂P �ε2 is not a function of ̂P �ε1 , since the eigenvalue
0 of ̂P �ε1 is degenerate.

28

The following theorem applies, irrespective of whether the eigenval-

ues of the operators are degenerate or not.

Theorem 13.3.4(3) Two selfadjoint operators ̂A and ̂B commute
if and only if they share a complete orthonormal set of eigenvectors.29

Theorem 13.3.4(4)30

(1) If two selfadjoint operators ̂A and ̂B commute then they
are functions of a third selfadjoint operator, i.e., there exist a
selfadjoint operator ̂C and two real-valued functions f (τ ), g(τ )
on IR such that

̂A = f (̂C ), ̂B = g(̂C ). (13.59)

(2) Let { ̂A j , j = 1, 2, · · · , n} be a finite set of mutually commuting
selfadjoint operators. Then ̂A j are functions of a selfadjoint
operator, i.e., there exists a selfadjoint operator ̂C such that

̂A j = f j (̂C ) ∀ j = 1, 2, · · · , n. (13.60)

As an example consider two eigenprojectors ̂P �ε1 and ̂P �ε2 of ̂A.
As already pointed out earlier they are not functions of each other.

Instead they both are functions of ̂A, i.e., they are characteristic
functions of ̂A in accordance with Eq. (13.44). This gives us a two-
way relation between a selfadjoint operator and its eigenprojectors:

a selfadjoint operator is a linear combination of its eigenpro-
jectors and conversely these eigenprojectors are functions of
the selfadjont operator.

28The eigenvalue 0 of a one-dimensional projector is degenerate.
29Aulette, Fortunato and Parisi p. 66. Dicke and Wittke pp. 97–98. Fano pp. 84–85,

Merzbacher p. 215. This theorem does not say that every eigevector of Â is an

eigenvector of B̂ since Â may not be nondegenerate.
30Isham p. 98 for a constructive proof. Fano p. 405. Jordan pp. 56–67. Beltrametti and

Gasinelli pp. 19–22. Riesz and Nagy pp. 356–358 for a general proof. See Theorem
20.6(1) which applies to infinite-dimensional Hilbert spaces.
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The discussion in this section can be extended to infinite-

dimensional spaces. This is done in §20.6.
We are now in a position to extend Definition 13.3.3(1) to define

functions of two commuting selfadjont operators.

Definition 13.3.4(1) Given a function f (τ1, τ2) of two indepen-
dent real variables τ1 and τ2 we can define a corresponding function
of two commuting selfadjoint operators ̂A and ̂B in Eq. (13.52) by 31

f ( ̂A, ̂B ) :=
M,M′
∑

m,m′
f (am, bm′) ̂P Â(am) ̂P B̂(bm′). (13.61)

The above expression can be extended to define functions of any

finite set of commuting selfadjoint operators.

13.4 Unitary Operators

13.4.1 Definition and Spectral Decomposition

The definition of orthogonal operators given by Eq. (9.2) does not

apply to �VV N since we do not have an obvious concept of rotations in

a complex space of N dimensions. But we can introduce operators

using Definition 9.2.2(1) in terms of the preservation of the norm of

vectors as a generalisation of the notion of rotations in �VV N . These

new operators which are a generalisation of orthogonal operators

on �IE 3 to �VV N are called unitary operators.

Definition 13.4.1(1)32 An operator ̂U on �VV N is called a unitary
operator on �VV N if it preserves the norm of all vectors in �VV N, i.e., we
have for all �ζ ∈ �VV N

〈̂U �ζ | ̂U �ζ 〉 = 〈�ζ | �ζ 〉 or ||̂U �ζ || = ||�ζ ||. (13.62)

Theorem 13.4.1(1)33 An operator ̂U on �VV N is unitary if and only
if ̂U is invertible with its inverse equal to its adjoint.

31Jordan p. 55.
32Halmos pp. 142–143. Fano pp. 74–75. Note that an operator on �VV N means the

domain of the operator coincides with �VV N .
33Halmos pp. 62, 64, 142–143.
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Proof For a unitary operator ̂U we have

〈̂U �ζ | ̂U �ζ 〉 = 〈�ζ | ̂U †
̂U �ζ 〉 = 〈�ζ | �ζ 〉. (13.63)

It follows from Eq. (13.10) and the comments right after Theorem

8.2.2(1) that

̂U †
̂U = ̂II ⇒ ̂U † = ̂U −1. (13.64)

Next if an operator ̂U is invertible with its inverse ̂U −1 equal to its
adjoint ̂U † then

〈̂U �ζ | ̂U �ζ 〉 = 〈�ζ | ̂U †
̂U �ζ 〉 = 〈�ζ | ̂U −1 ̂U �ζ 〉 = 〈�ζ | �ζ 〉. (13.65)

The operator is therefore unitary. QED

Theorem 13.4.1(1) tells us that an operator ̂U in �VV N is unitary if

̂U †
̂U = ̂U ̂U † = ̂II or ̂U †

̂U = ̂II . (13.66)

The following properties are easily established:

P13.4.1(1) Unitary operators are a generalisation of the notion of

rotations in �VV N and they preserve scalar product of vectors, i.e.,

〈̂U �ζ | ̂U �η 〉 = 〈�ζ | �η 〉. (13.67)

P13.4.1(2) If ̂U is unitary then its adjoint ̂U † is also unitary.

P13.4.1(3) Unitary operators possess complex eigenvalues of

absolute value 1, i.e., their eigenvalues are of the form34

u = eia , a ∈ IR . (13.68)

The eigenvalues can be real, e.g., u = 1, if a = 0 and u = −1 if

a = π .

P13.4.1(4) Unitary operators are represented by unitary

matrices.

Further properties are given in the form of theorems in the

remainder of this section.

34Fano pp. 86–87.
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Aswith selfadjoint operators the eigenvectors of a unitary opera-

tor also form a complete orthonormal set in �VV N . These eigenvectors

generate a complete orthogonal family of eigenprojectors which can

effect a spectral decomposition of the unitary operator in a similar

way a complete orthogonal family of eigenprojectors can effect a

spectral decomposition of a selfadjoint operator. Let us highlight this

property in the following spectral theorem.

Theorem 13.4.1(2) Let ̂U be a unitary operator on �VV N .35

(1) ̂U possesses a complete orthonormal set of eigenvectors �ε�

corresponding to eigenvalues eia� , where a� ∈ IR.
(2) ̂U is expressible as a linear combination of its complete

orthogonal family of eigenprojectors ̂P �ε�
with the corresponding

eigenvalues eia� as coefficients, i.e., 36

̂U =
N
∑

�=1
eia� ̂P �ε�

=
N
∑

�=1
eia� |�ε�〉〈�ε�|. (13.69)

The above expression is known as a spectral decomposition of ̂U .
Unitary operators preserve the complete orthonormal nature of a

set of vectors as shown in the following theorem.

Theorem 13.4.1(3)37

(1) Let ̂U be a unitary operator on �VV N, and let {�ε�} be an orthonor-
mal basis for �VV N. Then {�ε ′� = ̂U �ε�} is also an orthonormal basis
for �VV N.

(2) If {ε�} is an orthonormal basis for �VV N and if {�ε ′�} is an
orthonormal basis for �VV N then there is a unique unitary operator
̂U on �VV N such that {�ε ′� = ̂U �ε�}.

We can express the above unitary operator in Dirac notation as38

̂U =
N
∑

�=1

∣

∣ �ε ′�
〉〈�ε�

∣

∣ (13.70)

35Fano pp. 86, 91. Jordan pp. 39–41. See Theorem 13.4.3(1) and Eq. (13.84).
36See Eq. (13.84).
37Prugovečki p. 215. Roman Vol. 2 p. 559.
38See Eqs. (13.21) and (13.22).
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so that

̂U �εm =
(

N
∑

�=1

∣

∣ �ε ′�
〉〈�ε�

∣

∣

)

�εm = �ε ′m. (13.71)

13.4.2 Unitary Transformations

Definition 13.4.2(1) Let ̂U be a unitary operator on �VV N.

(1) The vector �ζ ′ := ̂U �ζ is called the unitary transform of �ζ
generated by the unitary operator ̂U .

(2) The operator ̂A′ := ̂U ̂A ̂U † is called the unitary transform of ̂A
generated by the unitary operator ̂U .

As mentioned in relation to Eq. (12.33) the concept of unitary

transformations also applies to any one-to-one and onto mapping

between two spaces which preserves the scalar product. We also call

such a mapping a unitary operator.

Unitary transformations possess the following properties39:

P13.4.2(1) A unitary transformation of vectors preserves the

scalar product, i.e.,

�ζ ′
:= ̂U �ζ , �η ′

:= ̂U �η ⇒ 〈�ζ ′ | �η ′ 〉 = 〈�ζ | �η 〉. (13.72)

P13.4.2(2) A unitary transformation preserves orthonormal

bases, i.e., given an orthonormal basis {�ε�} in �VV N their unitary

transforms {�ε ′�} generated by a unitary operator ̂U is again an

orthonormal basis for �VV N . Conversely if {�ε�} and {�ε ′�} are two
orthonormal bases for �VV N then there is a unique unitary operator
̂U such that �ε ′� = ̂U �ε�.

40

P13.4.2(3) The unitary transform of the product ̂A ̂B of two

operators is equal to the product of the unitary transforms of the

two operators, i.e., ̂A ̂B = ̂A′ ̂B ′ since

̂U ( ̂A ̂B)̂U † = ̂U ̂A(̂U †
̂U )̂B ̂U † = (̂U ̂A ̂U †)(̂U ̂B ̂U †). (13.73)

39These properties remain valid for unitary operators in an infinite-dimensional

space. See §18.3.
40Prugovečki p. 215.
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P13.4.2(4) A unitary transformation of operators preserves com-

mutation relations, i.e.,41

[ ̂A, ̂B ] = ̂C ⇔ [ ̂A′, ̂B ′] = ̂C ′. (13.74)

This has many applications as seen in Eqs. (18.69) and (29.25).

P13.4.2(5) A simultaneous unitary transformation of vectors and
operators preserves scalar product, i.e.,

�ζ ′
:= ̂U �ζ , �η ′

:= ̂U �η, ̂A′ := ̂U ̂A ̂U † (13.75)

⇒ 〈�ζ ′ | ̂A′ �η ′ 〉 = 〈�ζ | ̂A �η 〉. (13.76)

In particular we have the preservation of the quadratic form, i.e.,

〈�ζ ′ | ̂A′ �ζ ′ 〉 = 〈�ζ | ̂A �ζ 〉. (13.77)

P13.4.2(6) Let ̂A be a selfadjoint operator on �VV N . Let a� be the

eigenvalues of ̂A corresponding to eigenvectors �ε�. Then

The unitary transform Â′ of Â generated by a unitary operator Û
possesses the same eigenvalues as Â and the eigenvectors �ε ′� of Â′
are the unitary transforms of the eigenvectors �ε� of Â.

These results mean that in addition to the preservation of the

quadratic form in Eq. (13.77) a simultaneous unitary transformation

preserves the eigenvalue equation, i.e.,

̂A�ε� = a��ε�, ̂A′ = ̂U ̂A ̂U †, �ε ′� = ̂U �ε� (13.78)

⇒ ̂A′ �ε ′� = a��ε ′�. (13.79)

13.4.3 Stone’s Theorem

Unitary operators are closely related to selfadjoint operators as seen

in the following theorem.

41The commutator [ Â, B̂ ] is again defined by Eq. (8.19).
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Theorem 13.4.3(1)42 An operator ̂U on �VV N is unitary if and only
if it can be expressed in term of a selfadjoint operator ̂A on �VV N in the
form

̂U = ei Â . (13.80)

This theorem tells us that a unitary operator is a complex

exponential function of a selfadjoint operator. This result can be

established as follows:

(1) We can start with the spectral decomposition of ̂U in Eq.

(13.69). Using the eigenprojectors ̂P �ε�
and the constants a�

in the spectral decomposition we can construct the following

selfadjoint operator:

̂A =
N
∑

�=1
a�
̂P �ε�
. (13.81)

On account of Eq. (13.46) we can regard ̂U as an exponential

function of ̂A. In other words, a unitary operator ̂U generates a

selfadjoint operator ̂A with ̂P �ε�
identified with the correspond-

ing eigenprojectors of ̂A. The two operators are related by Eq.
(13.80). The choice of ̂A is not unique, e.g., an addition of a term
2π ̂II to the above expression for ̂A will lead to the same unitary
operator.43

(2) Given a selfadjoint operator ̂A in Eq. (13.46) we can construct

a complex exponential function by Eq. (13.46), i.e.,

̂U = ei Â =
N
∑

�=1
eia� ̂P �ε�

. (13.82)

This operator is invertible and its inverse is equal to its adjoint,

i.e., the resulting operator is unitary.

Suppose not all the values u� = eia� are different, i.e., there are only

M ≤ N different eigenvalues and there are nmmutually orthonormal
eigenvectors �ϕmj , j = 1, 2, · · · , nm corresponding to each distinct
42Fano pp. 91–92.
43Roman Vol. 2 pp. 660–661.
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value um. Introduce the following projector associated with the

eigenvalue um = eiam :

̂P Û (um) =
nm
∑

j=1
̂P �ϕmj . (13.83)

Then the spectral decomposition in Eq. (13.69) can be rewritten as44

̂U =
M
∑

m=1
um ̂P Û(um). (13.84)

The following properties can be established:

P13.4.3(1) Let ̂A be a selfadjoint operator and let
̂U (a) := ei Âa and ̂U (b) := ei Âb, a, b ∈ IR . (13.85)

Then we have

̂U (a)̂U (b) = ̂U (a + b). (13.86)

In other words, we have45

ei Âaei Âb = ei Â(a+b). (13.88)

P13.4.3(2) The usual expansion of an exponential function

applies, i.e., we have46

ei Â =
∞
∑

n=0

1

n!

(

i ̂A
)n
. (13.89)

This expansion needs to be treated with care in an infinite-

dimensional space, e.g., we have to consider the domain of ̂An as
n→∞. We shall return to this in §19.5.

P13.4.3(3) Equations (13.69) and (13.81) shows that ̂U and ̂A
share the same eigenvectors �ε� and that the eigenvalues of ̂U are

exponential function eia� of the eigenvalues a� of ̂A, i.e.,47

̂A�ε� = a��ε� and ̂U �ε� = eia� �ε�. (13.90)

44This is analogous to Theorem 9.4.5(2). See also Isham p. 111.
45Note that

ei Âei B̂ �= ei( Â+B̂), (13.87)

unless Â and B̂ commute. We shall return to discuss this in §21.1.
46The symbol n! = n× (n− 1)× (n− 2)× · · · 3× 2× 1 stands for “n factorial”.
47See Eq. (13.68).
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P13.4.3(4) A selfadjoint operator ̂A can generate a one-parameter
family of unitary operators by

̂U (t) = ei Ât , t ∈ IR . (13.91)

This family of unitary operators has the following properties:

̂U (0) = ̂II , the identity operator, (13.92)

̂U (t1)̂U (t2) = ̂U (t1 + t2) ∀ t1, t2 ∈ IR , (13.93)

and

〈�ζ | ̂U (t)�η 〉 (13.94)

is a continuous function of t for any pair of vectors �ζ and �η in �VV N .

Definition 13.4.3(1)48 A family of unitary operators ̂U (t), t ∈ IR,
possessing the properties given in Eqs. (13.92), (13.93) and (13.94) is
called a continuous one-parameter group of unitary operators.

Theorem 13.4.3(2) Stone’s Theorem49 Let ̂U (t) be a continu-
ous one-parameter group of unitary operators. Then there is a unique
selfadjoint operator ̂A, known as the generator of the group, such that

̂U (t) = e− ¯i Ât , i– = i
�

(13.95)

and

̂A �ζ = i� lim
t→0

̂U (t)− ̂II
t

�ζ , �ζ ∈ �VV N . (13.96)

The notation i– = i/� will be used through out the book.50 We can
rewrite Eq. (13.96) in the notation of a formal differentiation, i.e.,

̂A = i�

(

d ̂U (t)
dt

)

t=0
. (13.97)

48Isham p. 113. Roman Vol. 2 p. 661. Such a set of operators possesses the properties

of a group, e.g., each element of the family has an inverse Û −1(t) = Û (−t).
49Isham p. 113. Roman Vol. 2 pp. 662–665. Prugovečki pp. 288, 335. Stone (1903–

1989) is an American mathematician.
50The theorem is often stated in terms of Û = exp(i Â). We have replaced i by − i– =
(−i/�) for applications to quantum evolution in §29.1.2 and §29.2.
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We can also formally differentiate ̂U in Eq. (13.95) as

i�
d ̂U (t)
dt

= ̂A ̂U (t). (13.98)

Let �ζ (0) be an arbitrary vector and let �ζ (t) = ̂U (t)�ζ (0). We have

i�
d �ζ (t)
dt

= i�

(

d ̂U (t)�ζ (0)
dt

)

= i�
d ̂U (t)
dt

�ζ (0) (13.99)

= ̂A ̂U (t)�ζ (0)

⇒ i�
d �ζ (t)
dt

= ̂A �ζ (t). (13.100)

This equation bears a striking resemblance to the time-dependent

Schrödinger equation shown in Eq. (10.27) for the evolution of

quantum waves, with the generator ̂A playing the role of ̂H . In
§29.1.2 we will discuss how the Stone’s theorem is used to establish

the time-dependent Schrödinger equation for quantum evolution.

13.5 Matrix Representation of Operators

The notion of matrix representation of operators discussed in §8.2.3
can be extended to �VV N . Let {�ε�} be an orthonormal basis in �VV N . For

an arbitrary operator ̂A we have ̂A �ε� = �ε ′�. The output vector �ε ′� can
be expressed in basis {�ε�} as

�ε ′� =
N
∑

k=1
MÂk� �εk, MÂk� = 〈�εk | �ε ′�〉 = 〈�εk | ̂A �ε�〉. (13.101)

For any arbitrary input vector �ζ we have ̂A �ζ = �ζ ′. Expressing the
input vector �ζ in basis {�ε�} as

�ζ =
∑

�

ζ��ε�, ζ� = 〈�ε� | �ζ 〉 (13.102)

we get

̂A �ζ =
N
∑

�=1
ζ�
̂A �ε� =

N
∑

�=1
ζ� �ε ′� =

N
∑

�=1
ζ�

(

N
∑

k=1
MÂk��εk

)

=
N
∑

k=1

(

N
∑

�=1
ζ� MÂk�

)

�εk. (13.103)
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Next, expressing the output vector �ζ ′ in basis {�ε�} as

�ζ ′ =
∑

k

ζ ′k�εk, ζ ′k = 〈�εk | �ζ ′〉 (13.104)

we get

̂A �ζ = �ζ ′ =
N
∑

k=1
ζ ′k�εk. (13.105)

Comparing Eqs. (13.103) and (13.105) we get

N
∑

�=1
ζ� MÂk� = ζ ′k or

N
∑

�=1
MÂk� ζ� = ζ ′k. (13.106)

Finally let C �ζ be the column vector with elements ζ� and C �ζ ′ be
the column vector with elements ζ ′m, and let MÂ be the matrix with

matrix elements

MÂk� := 〈�εk | ̂A �ε�〉. (13.107)

Then Eqs. (13.105) and (13.106) correspond to the matrix equation

⎛

⎜

⎜

⎝

MÂ11 MÂ12 · · ·
MÂ21 MÂ22 · · ·
· · · · ·
· · · · ·

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ζ1

ζ2

·
·

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

ζ ′1
ζ ′2
·
·

⎞

⎟

⎟

⎠

, (13.108)

or

MÂC �ζ = C �ζ ′ , (13.109)

with thematrix MÂ corresponding to the operator
̂A, and the column

vectors C �ζ and C �ζ ′ corresponding to the vectors �ζ and �ζ ′. It can
be easily shown that this correspondence possesses the following

properties:

P13.5(1) Preservation of vector equations involving operators:

̂A �ζ = �ζ ′ ⇔ MÂC �ζ = C �ζ ′ . (13.110)

P13.5(2) Preservation of eigenvalues:

̂A �η = a �η ⇔ MÂC �η = a C �η . (13.111)
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P13.5(3) Preservation of selfadjointness:

̂A = ̂A† ⇔ MÂ = M†
Â
. (13.112)

P13.5(4) Preservation of addition and multiplication:

̂A1 + ̂A2 ⇔ MÂ1 + MÂ2 , (13.113)

̂A1 ̂A2 ⇔ MÂ1 MÂ2 . (13.114)

P13.5(5) Preservation of commutation relations:

[ ̂A1, ̂A2] = ̂A3 ⇔ [MÂ1 , MÂ2 ] = MÂ3 . (13.115)

An important application is the matrix representation of spin

operators, as seen in Chapter 14. This is further discussed in

§36.3.6.2. It is often convenient to drop the subscript Â if doing so
does not cause any confusion.

Exercises and Problems

Q13(1) Prove Eqs. (13.3) and (13.4).

Q13(2) Verify Eq. (13.7).

Q13(3) Consider the xy-plane as a two-dimensional real vector
space in its own right. In basis {�i , �j } an arbitrary vector
�v on the xy-plane has the matrix representation

C �v =
(

vx
vy

)

. (13.116)

In basis {�i , �j } the operator ̂R p(π/2) which rotates

any vector �u on the xy-plane about the origin by an

angle of π/2 has the following matrix representation in

accordance with Eq. (7.136):

Rp(π/2) =
(

0 − 1
1 0

)

. (13.117)

Show that 〈�v | ̂R p(π/2)�v 〉 = 0 and explain why this result

does not satisfy Theorem 13.1(1).
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Q13(4) Prove that every vector �ζ in �VV N can be decomposed

uniquely as a sum of a vector lying in a given subspace �S
and another one lying in its orthogonal complement �S⊥ as
shown in Eq. (13.15).

Q13(5) Show that Eq. (13.20) is equivalent to Eq. (13.25) or Eq.

(13.26) in defining the order relation of projectors.

Q13(6) Prove Eqs. (13.22) and (13.23).

Q13(7) Prove statement (3) of Theorem 13.2.2(1).

Q13(8) Prove the two expressions in Eq. (13.29).

Q13(9) Prove Theorem 13.3.1(1) on selfadjoint operators.

Q13(10) Prove Spectral Theorems 13.3.2(1) and 13.3.2(2).

Q13(11) Show that the eigenprojectors of a selfadjoint operator

commutes with each other and that a selfadjoint operator

commutes with its eigenprojectors.

Q13(12) For a selfadjoint operator ̂A with its spectral decomposi-
tion given by Eq. (13.36) show that

̂A ̂P Â(am) = am ̂P Â(am). (13.118)

Q13(13) Prove Eq. (13.50).

Q13(14) Prove Theorem 13.3.4(1).

Q13(15) Prove Eqs. (13.53) and (13.54).

Q13(16) Prove properties P13.4.1(1) to P13.4.1(4) of a unitary

operator listed right after Theorem 13.4.1(1).

Q13(17) Show that the operator in Eq. (13.69) is unitary.

Q13(18) Show that the operator ̂U in Eq. (13.70) is unitary.

Q13(19) Prove Eq. (13.74) on the preservation of commutation

relations.
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Q13(20) Prove Eq. (13.77) on the preservation of the quadratic
form.

Q13(21) 51Let ̂B a selfadjoint operator and let ̂B ′ be the unitary
transform of ̂B generated by a unitary operator ̂U . Show
that ̂B and ̂B ′ possess the same set of eigenvalues and that
their corresponding eigenvectors are unitary transforms

of each other.52

Q13(22) Let ̂U (t) be a continuous one-parameter group of unitary
operators. Let ̂A be the generator of ̂U (t) in accordance
with Theorem 13.4.3(2) of Stone. Let �ξ(0) be an eigenvec-
tor of ̂A corresponding to a non-denegerate eigenvalue a.
Show that

̂U (t)�ξ(0) = e− ¯iat �ξ(0), (13.119)

and that

�ξ(t) = ̂U (t)�ξ(0), (13.120)

is a solution of Eq. (13.100).

51This question is on the important property stated in P13.4.2(6).
52First show that B̂ ′ possesses the same eigenvalues as B̂ and that the eigenvectors
B̂ ′ are the corresponding unitary transforms of the eigenvectors of B̂ . Then show
that B̂ possesses the same eigenvalues as B̂ ′ and that the eigenvectors B̂ are the

corresponding unitary transforms of the eigenvectors of B̂ ′ .
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Chapter 14

Model Theories Based on Complex
Vector Spaces �VV N

The discussion in Chapter 10 on the generation of probability

distributions and the formulation of probabilistic theories can be

applied to a complex vector space �VV N . We shall follow Chapter 10

to establish model theories of spin 1/2 in �VV 2 and of spin 1 in �VV 3.

14.1 Model Theories of Spin

14.1.1 Electron Spin

For the familiar electron spin there are three basic observables, i.e.,

Sx , Sy and Sz, the spin components along the positive directions of
x , y and z axes. These observables can take only two values, ±�/2.
In §5.3 we introduce the state αsz to correspond to Sz possessing
the value �/2. This is traditionally called the spin-up state which

correspond to Sz aligned along the positive z-direction. The state βsz
corresponds to Sz possessing the value −�/2. This is the spin-down
state which corresponds to Sz aligned along the negative z-direction.
Following §10.2.2 a probability theory of electron spin should be set
up in a two-dimensional complex vector space �VV 2.

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com

http://www.jennystanford.com
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14.1.1.1 On states

Take �VV 2 as the state space.1 An arbitrary state ηs is described by a

unit vector �η ∈ �VV 2. We then

(1) choose an orthonormal basis {�αz, �βz} for �VV 2, and

(2) describe the spin-up and spin-down states αsz and βsz by the two

orthonormal basis vectors �αz and �βz.
The matrix representations of �αz, �βz in basis {�αz, �βz} are, in
accordance with Eqs. (13.102), (13.107) and (13.108) and the

related discussion,

C �αz =
(

1

0

)

, C �βz =
(

0

1

)

. (14.1)

An arbitrary unit vector �η is expressible in terms of these basis

vectors, i.e., we have

�η = c+�αz + c− �βz, c+, c− ∈ C , |c+|2 + |c−|2 = 1. (14.2)

This provides the mathematical description of the superposition

principle stated in QMP5.3(4) in §5.3. The vector �η has the following
matrix representation in basis {�αz, �βz}:

C �η =
(

c+
c−

)

. (14.3)

14.1.1.2 On observable Sz

An observable is represented by a selfadjoint operator on the state

space �VV 2. The basic observables Sx , Sy and Sz are then described
by three selfadjoint operators ̂Sx , ̂Sy and ̂Sz on �VV 2. The selfadjoint

operator ̂Sz must admit �αz and �βz as its eigenvectors corresponding
to eigenvalues �/2 and−�/2. It follows that ̂Sz has following spectral
decomposition:

̂Sz = 1

2
� ̂P �αz −

1

2
� ̂P �βz (14.4)

= 1

2
� |�αz〉〈�αz| − 1

2
� | �βz〉〈 �βz|. (14.5)

1Here we just consider a model theory. A systematic theory of spin is disccused in

§36.3.
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The matrix representation of the selfadjoint operator ̂Sz in basis
{�αz, �βz} is, in accordance with Eq. (13.107),

MŜz =
1

2
�

(

1 0

0 − 1
)

. (14.6)

The matrix MŜz admits the column vectors C �αz and C �βz as

eigenvectors with eigenvalues �/2 and−�/2, respectively.
The matrix representations of projectors ̂P �αz and ̂P �βz in basis

{�αz, �βz
}

are2

MP̂ �αz
=
(

1 0

0 0

)

, MP̂ �βz
=
(

0 0

0 1

)

. (14.7)

The spectral decomposition of MŜz takes the form:

MŜz =
�

2
MP̂ �αz

− �

2
MP̂ �βz

. (14.8)

14.1.1.3 On probability distributions

Following Eqs. (10.2), (10.3) and (10.7) we can obtain the

probability mass function for the probabilities of the measured

values of Sz in state ηs by

℘Sz(ηs , �/2) = Q( ̂P �αz , �η ) = 〈�η | ̂P �αz �η 〉 (14.9)

= |〈�αz | �η 〉|2 = |c+|2, (14.10)

℘Sz(ηs , −�/2) = Q( ̂P �βz , �η ) = 〈�η | ̂P �βz �η 〉 (14.11)

= |〈 �βz | �η 〉|2 = |c−|2. (14.12)

All the scalar product expressions can also be calculated by their

matrix representations, i.e.,

〈 �η | ̂P �αz �η 〉 = C †
�η · (M �αzC �η ), (14.13)

〈 �η | ̂P �βz �η 〉 = C †
�η · (M �βzC �η ), (14.14)

〈�αz | �η 〉 = C †
�αz · C �η , (14.15)

〈 �βz | �η 〉 = C †
�βz · C �η . (14.16)

2These are the projection matrices in Eqs. (7.182) and (7.183).
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It must be pointed out that the two unit vectors �αz and �βz are
abstract mathematical description of the z-component spin-up state
and spin-down states and they cannot not be identified with the

geometric directions of the spin, i.e., �αz and �βz cannot be identified
with the unit vectors �k and −�k along the positive and the negative
directions of the z-axis.

14.1.1.4 On observable Sx

There must be a state αsx for the spin aligned along the positive

x-direction, and a state βsx for the spin aligned along the negative

x-direction. These states would correspond to two orthonormal

vectors �αx and �βx in �VV 2. These new vectors can be expressed in

terms of the basis vectors �αz and �βz, i.e.,

�αx = cx+�αz + cx− �βz, �βx = c′x+�αz + c′x− �βz. (14.17)

where the coefficients cx+, cx−, c′x+ and c
′
x− may be complex. They

satisfy

|cx+|2 + |cx−|2 = 1 and |c′x+|2 + |c′x−|2 = 1. (14.18)

When the system is in state αsx the probability of a measured result

of Sz being �/2 or−�/2 are given respectively by

℘Sz(αsx , �/2) = |cx+|2 and ℘Sz(αsx , −�/2) = |cx−|2. (14.19)

in accordance to Eqs. (14.10) and (14.12).

Because of the geometric symmetry one would expect the two

probabilities to be the same, i.e., the coefficients cx+, c− should

satisfy

|cx+|2 = |cx−|2. (14.20)

For a measurement of Sz in state βsx we have similar results, i.e.,

℘Sz(βsx , �/2) = |c′x+|2 and ℘Sz(βsx , −�/2) = |c′x−|2, (14.21)

where

|c′x+|2 = |c′x−|2. (14.22)
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A natural choice of coefficients satisfying Eqs. (14.18), (14.20) and

(14.22) is

cx+ = 1/
√
2, cx− = 1/

√
2, (14.23)

c′x+ = 1/
√
2, c′x− = −1/

√
2. (14.24)

As a result we obtain the following expressions for �αx and �βx

�αx = 1√
2
(�αz + �βz), �βx = 1√

2
(�αz − �βz). (14.25)

Their matrix representations in basis {�αz, �βz} are
C �αx =

1√
2

(

1

1

)

, C �βx =
1√
2

(

1

−1
)

. (14.26)

The operator ̂Sx for Sx must admit �αx and �βx as eigenvectors
corresponding to eigenvalues �/2 and −�/2, respectively. It follows
that the operator has the following spectral decomposition:

̂Sx = 1

2
� ̂P �αx −

1

2
� ̂P �βx (14.27)

= 1

2
� |�αx〉〈�αx | − 1

2
� | �βx〉〈 �βx |. (14.28)

The corresponding matrix representation of ̂P �αx , ̂P �βx and
̂Sx are3

MP̂ �αx
= 1

2

(

1 1

1 1

)

, MP̂ �βx
= 1

2

(

1 − 1
−1 1

)

. (14.29)

MŜx =
�

2

(

0 1

1 0

)

, (14.30)

The spectral decomposition of MÂ takes the form:

MŜx =
�

2
MP̂ �αx

− �

2
MP̂ �βx

. (14.31)

So far we have managed without complex numbers or complex

vectors, giving an impression that we may be able describe electron

spin in a two-dimensional real vector space such as �IE 2. This
impression turns out to be wrong when we come to consider Sy .

3 P̂ �αx , P̂ �βx are the projection matrices in Eqs. (7.178) and (7.179). All the

representations are in basis {�αz, �βz}.
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14.1.1.5 On observable Sy

Let us follow the arguments for Sx here. First theremust be a state αsy
for the spin aligned along the positive y-direction, and a state βsy for

the spin aligned along the negative y-direction. These states would
correspond to two orthonormal vectors �αy and �β y in �VV 2. Again these

vectors are expressible as linear combinations of basis vectors �αz
and �βz, i.e., we have

�αy = cy+�αz + cy− �βz, �β y = c′y+�αz + c′y− �βz. (14.32)

The symmetry argument on the measurement of Sz in states αx and

βx in the discussion of Sx applies equally well to states αsy and βsy .

This means that Eqs. (14.18), (14.20) and (14.22) apply, i.e., we have

|cy+|2 + |cy−|2 = 1, |c′y+|2 + |c′y−|2 = 1. (14.33)

|cy+|2 = |cy−|2, |c′y+|2 = |c′y−|2. (14.34)

We need to choose the coefficients in Eq. (14.32) to be different

from those in Eqs. (14.23) and (14.24) in order to produce two new

vectors �αx and �βx . A natural choice of a such a set of coefficients is
cy+ = 1/

√
2, cy− = i/

√
2, (14.35)

c′y+ = 1/
√
2, c′y− = −i/

√
2, (14.36)

which would result in the following two new complex vectors to

describe the states αsy and βsy:

�αy = 1√
2
(�αz + i �βz), �β y = 1√

2
(�αz − i �βz). (14.37)

The operator ̂Sy for Sy must admit �αy and �β y as eigenvectors

corresponding to eigenvalues �/2 and −�/2, respectively. It follows
that the operator has the following spectral decomposition

̂Sy = �

2
̂P �αy −

�

2
̂P �β y

(14.38)

= �

2
|�αy〉〈�αy| − �

2
| �β y〉〈 �β y|. (14.39)
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The matrix representations �αy , �β y and ̂Sy in basis {�αz, �βz} are

C �αy =
1√
2

(

1

i

)

, C �β y
= 1√

2

(

1

−i
)

, (14.40)

MŜ y =
1

2
�

(

0 − i
i 0

)

. (14.41)

The matrix representations MP̂ �αy
and MP̂ �βy

of the projectors ̂P �αy
and ̂P �αy in basis {�αz, �βz} agree with the projection matrices in Eqs.
(7.180) and (7.181),4

We conclude our discussion with the following comments:

C14.1.1(1) The description of electron spin requires a two-

dimensional complex-vector space as state space. Such a state space

can be represented by �C 2
.

C14.1.1(2) The matrix representations of spin operators, known

as spin matrices, are related to the Pauli matrices in Eq. (7.9) by

MŜx =
�

2
σx , MŜ y =

�

2
σy , MŜz =

�

2
σz. (14.42)

C14.1.1(3) The spin matrices MŜx , MŜ y , MŜz obey the following

commutation relations:

[MŜx , MŜ y ] = i�MŜz , (14.43)

[MŜz , MŜx ] = i�MŜ y , (14.44)

[MŜ y , MŜz] = i�MŜx . (14.45)

C14.1.1(4) The spin operators ̂Sx , ̂Sy and ̂Sz must also satisfy the
same commutation relations, i.e.,5

[ ̂Sx , ̂Sy] = i�̂Sz, [̂Sz, ̂Sx ] = i�̂Sy , [̂Sy , ̂Sz] = i�̂Sx . (14.46)

These commutation relations are characteristic of angular momen-

tum operators, e.g., orbital angular momentum operators also obey

these commutation relations as will be shown in §27.4.

4See Q14(2).
5See Eq. (13.115) which shows that operators and their matrix representations have
the same commutation relations.



246 Model Theories Based on Complex Vector Spaces �VV N

14.1.2 Spin-1 Particles

For the description of the spin of a spin-1 particle we would need

a three-dimensional complex vector space, i.e., �VV 3.6 Let the spin

operators along the x , y and z directions be denoted by ̂S(1)x , ̂S(1)y
and ̂S(1)z, respectively. These operators act on a three-dimensional
vector space �VV 3. We would expect these operators to obey the

commutation relations in Eq. (14.46), i.e.,

[ ̂S(1)x , ̂S(1)y] = i�̂S(1)z, [ ̂S(1)z, ̂S(1)x ] = i�̂S(1)y ,

[ ̂S(1)y , ̂S(1)z] = i�̂S(1)x . (14.47)

The commutation relations which contain the imaginary number i
imply that in anymatrix representation of the three spin-1 operators

the matrices cannot be all real, as seen in the following well-known

matrix representation of the above operators7:

MŜ(1)x =
�√
2

⎛

⎝

0 1 0

1 0 1

0 1 0

⎞

⎠ , (14.48)

MŜ(1)y =
�√
2

⎛

⎝

0 − i 0

i 0 − i
0 i 0

⎞

⎠ , (14.49)

MŜ(1)z = �

⎛

⎝

1 0 0

0 0 0

0 0 − 1

⎞

⎠ . (14.50)

These matrices possess real eigenvalues �, 0, −�. The correspond-
ing normalised eigenvectors are

(1) For the matrix MŜ(1)x :

1

2

⎛

⎝

1√
2

1

⎞

⎠ ,
1

2

⎛

⎝

−1
0

1

⎞

⎠ ,
1

2

⎛

⎝

−1√
2

−1

⎞

⎠ . (14.51)

6Zettili pp. 188–204 contains many examples of finite-dimensional complex vector

spaces.
7Zettili pp. 277–278. Gasiorowicz pp. 150–151. Schiff pp. 145–146.
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(2) For the matrix MŜ(1)y :

1

2

⎛

⎝

−i√
2

i

⎞

⎠ ,
1

2

⎛

⎝

i
0

i

⎞

⎠ ,
1

2

⎛

⎝

i√
2

−i

⎞

⎠ . (14.52)

(3) For the matrix MŜ(1)z :

⎛

⎝

1

0

0

⎞

⎠ ,

⎛

⎝

0

1

0

⎞

⎠ ,

⎛

⎝

0

0

1

⎞

⎠ . (14.53)

Clearly the three-dimensional real vector space �IE 3 is not able to
form the state space for the description of spin-1 particles.

14.2 Generating Probability Distribution
Functions on �VV N

Clearly we can go on to establish a probability theory in �VV N

for model systems with properties as described in §10.2.1 for

observables A which can assumes N values a1, a2, · · · , aN . Such a
theory can be established as follows:

(1) Take the state space to be �VV N . A state ηs is described by a unit

vector �η in �VV N .

(2) Choose an appropriate complete orthonormal set {�ε�, � =
1, 2, · · · , N} of vectors in �VV N together with the set of values

a1, a2, · · · , aN of A to construct a selfadjoint operator ̂A by

̂A :=
N
∑

�=1
a�
̂P �ε�
. (14.54)

(3) Describe observable A by the selfadjoint operator ̂A.

(4) The complete orthogonal family of projectors ̂P �ε�
= |�ε�〉〈�ε�|

generates a probability mass function on the sample space

Sam := {a1, a2, · · · , aN} (14.55)
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for each unit vector �η by
a� → ℘ Â(�η, a�) := 〈�η | ̂P �ε�

�η 〉. (14.56)

We can then employ probability mass function ℘ Â(�η, a�) to

describe the probability distribution of the set of values {a�} of
A in state ηs .

(5) The expectation value is then given by

E( ̂A, �η ) :=
N
∑

�=1
a� ℘ Â(�η, a�) = 〈�η | ̂A �η 〉. (14.57)

We can go further to introduce a probability distribution function

in accordance with Eq. (3.38), i.e., we have

F Â(�η, τ ) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if τ < a1
℘ Â(�η, a1) if a1 ≤ τ < a2
℘ Â(�η, a1)+ ℘ Â(�η, a2) if a2 ≤ τ < a3
· · · · · ·
∑n

�=1 ℘ Â(�η, a�) if an ≤ τ < an+1
· · · · · ·
∑N

�=1 ℘ Â(�η, a�) = 1 if aN ≤ τ

. (14.58)

This is a piecewise-constant function with discontinuous jumps

occurring at τ� = a� with the jump at each τ� equal to

F Â(�η, τ�)− F Â(�η, τ� − 0) = ℘ Â(�η, a�). (14.59)

This is equal to the probability of a measured value of A in state ηs

to be a�. The expectation value can be written in terms of a Stieltjes

integral in accordance with Eq. (4.90):

E( ̂A, �η ) =
∫ ∞

−∞
τ dF Â(�η, τ ). (14.60)

The probability distribution function being discrete there is no

probability density function, except in the sense of Dirac delta

functions in Eq. (4.73).

We can define a corresponding probabilitymeasure by Eq. (4.89),

i.e.,

M Â(�η, �) :=
∫

�

dF Â(�η, τ ). (14.61)
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Later on we shall extend our studies to physical systems

with observables which take on a continuous set of values. It is

then necessary to employ probability distribution functions and

probability measures to describe the distribution of their values.

Probability distribution functions and probability measures provide

a uniform treatment of both discrete and continuous cases.

Exercises and Problems

Q14(1) Verify the matrix representation of MŜx in Eq. (14.30) and

of MŜ y in Eq. (14.41).

Q14(2) Find the matrix representation of projectors ̂P �αy and ̂P �β y

in Eq. (14.38) in basis
{�αz, �βz

}

.

Q14(3) Find the probability distribution function for the x-
component spin values in the state given by the vector �αz.
What is the corresponding expectation value?

Q14(4) In the two-dimensional vector space �VV 2 we have the

following matrix representations in basis
{�αz, �βz

}

:

(1) The matrix representations of the projectors ̂P �αx and
̂P �βx are given by MP̂ �αx

and MP̂ �βx
in Eq. (14.29).

(2) The matrix representations of projectors ̂P �αy and ̂P �β y

are given by the matrices P �αy and P �β y
in Eqs. (7.180)

and (7.181). In the notation of this chapter these

matrices are relabelled as MP̂ �αy
and MP̂ �βy

.

(3) The vector �η is represented by the column vector C �η in
Eq. (14.3).

Using the expression for MP̂ �αx
= C �αxC

†
�αx in Eq. (7.178)

evaluate MP̂ �αx
C �η . Show that the same result is obtained

using explicit matrix representations of C �αx and MP̂ �αx
in

Eqs. (14.3), (14.26) and (14.29). Explain how the result

confirms the projection nature of the matrix MP̂ �αx
.

Carry out a similar evaluation of MP̂ �βx
C �η , MP̂ �αy

C �η and

MP̂ �βy
C �η .
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Q14(5) Write down a formal expression of the probability density
function wÂ(�η, τ ) for the piecewise-constant probability
distribution function F Â(�η, τ ) in Eq. (14.58) in terms of
Dirac delta functions.8 Write down the Stieltjes integral

in Eq. (14.60) for the expectation value in terms of the

probability density function wÂ(�η, τ ) obtained above and
evaluate the integral.

8See Eq. (4.74).



Chapter 15

Spectral Theory in �VV N in Terms of
Stieltjes Integrals

In �VV N the spectral theorem for selfadjoint operators is sum-

marised in Theorem 13.3.2(2). A selfadjoint operator in an infinite-

dimensional vector space �VV∞ may be expected to have a countably

infinite number of eigenvalues with a corresponding countably

infinite set of eigenvectors and eigenprojectors. One may also

expect a similar spectral theorem to apply. Unfortunately this is

not generally true. The eigenvalue equation for some selfadjoint

operators ̂A in �VV∞ do not admit any solutions, i.e., there may not

exist any vector �η ∈ �VV∞ satisfying the eigenvalue equation

̂A �η = a �η for some constant a. (15.1)

Examples in Eqs. (18.9) to (18.12) in §18.1 serve to demonstrate
this fact. A new approach is required to recover a notion of

eigenvalues and eigenvectors and a form of spectral theorem for

such operators. As discussed in the relation to the examples cited

above a generalised concept of eigenvalues can be established with

the result that these generalised eigenvalues can form a continuous,

rather than a discrete, set of values. Classical probability theory for

discrete sample spaces discussed in Chapter 3 fails when the sample

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
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space is continuous. A probability distribution function rather than

by a probability mass function has to be introduced. We can also

introduce a probability distribution function in the discrete case

to obtain a uniform treatment of both discrete and continuous

sample spaces, as done in Chapter 4. A similar situation exists

with operators. A selfadjoint operator on �VV N possesses a complete

orthogonal family of projectors. But a selfadjoint operator in �VV∞
may not possess a complete orthogonal family of projectors in the

same way. Instead it has a spectral function associated with it.

Spectral functions are a generalisation of a complete orthogonal

family of projectors.

In this chapter we shall introduce spectral functions for

selfadjoint operators in �VV N in a way which can be generalised

to �VV∞.

15.1 Spectral Functions and Spectral Measures

Equation (13.36) for the spectral decomposition of a selfadjoint

operator ̂A can be rewritten in terms of Stieltjes integrals in the

same way a discrete sum is expressible as a Stieltjes integral in Eq.

(4.72). To do soweneed to introduce the concept of projector-valued

functions ̂F (τ )1:

Definition 15.1(1)

(1) A projector-valued function of a real variable τ is a mapping from
the reals IR into the set of projectors on a given vector space, i.e.,
the function assigns a projector to each value of the variable τ .

(2) A projector-valued set function on the Borel sets of IR assigns a
projector on a given vector space to each Borel set.

As an example consider a nondegenerate selfadjoint operator ̂A on a
given vector space with a complete orthonormal set of eigenvectors

�ε� corresponding to eigenvalues a�. Define the following projector-

valued function in terms of the complete orthogonal family of

1Prugovečki pp. 231–237.
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a1 a2 a3 a4 aN
τ

F Â (τ )

II

Figure 15.1 Projector-valued function.

eigenprojectors ̂P �ε�
:

̂F Â(τ ) :=

⎧
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⎪
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⎪
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⎪
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⎪

⎪

⎩

̂0, τ < a1
̂P �ε1 , a1 ≤ τ < a2
̂P �ε1 + ̂P �ε2 , a2 ≤ τ < a3
· · · · · ·
∑n

�=1 ̂P �ε�
, an ≤ τ < an+1

· · · · · ·
∑N

�=1 ̂P �ε�
= ̂II , aN ≤ τ

. (15.2)

This function is closely related to the probability distribution

function F Â(�η, τ ) in Eq. (14.58). On account of Eq. (14.56) we can
see that F Â(�η, τ ) is equal to the quadratic form generated by the

above projector-valued function, i.e.,

F Â(�η, τ ) = 〈�η | ̂F Â(τ ) �η 〉. (15.3)

In other words, the cumulative probability is given by the quadratic
form generated by the projector-valued function defined by Eq.

(15.2).2

Figure 15.1 shows the similarity of ̂F Â(τ ) to the function in

Eq. (3.38) depicted in Figure 3.6, e.g., the present projector-valued

function is also piecewise-constant.3

2As mentioned in PP3.6(1) cumulative probabilities are probabilities of events which

contain many outcomes
3The eigenvalues are arranged in an ascending order, i.e., a1 < a2 < · · · < aN .
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The projector-valued function ̂F Â(τ ) possesses the following

properties:

P15.1(1) ̂F Â(τ ) increases from the zero operator ̂0 to the identity

operator ̂II as τ increases from−∞ to∞, i.e.,4

̂F Â(−∞) = ̂0, ̂F Â(∞) = ̂II . (15.4)

̂F Â(τ1) ≤ ̂F Â(τ2) if τ1 ≤ τ2. (15.5)

P15.1(2) ̂F Â(τ ) is continuous from the right, i.e., in terms of the

notation used in Eqs.(3.39) to (3.43) we have

̂F Â(τ + 0) = ̂F Â(τ ) ∀τ ∈ IR . (15.6)

In particular we have

̂F Â(a� + 0) = ̂F Â(a�) ∀a�. (15.7)

The limits of a projector-valued function means5

̂F (τ )→ ̂F (τ0) ⇔ ||( ̂F (τ )− ̂F (τ0)
)�η || → 0 (15.8)

for every �η ∈ �VV N
as τ → τ0 from the right.

P15.1(3) The function ̂F Â(τ ) remains unchanged for all τ except

when τ is equal to an eigenvalues where it undergoes a discontinu-

ous jump.

P15.1(4) Each discontinuous jump of ̂F Â(τ ) is associated with an

eigenvalue. It follows that we can regard eigenvalues as the values of
τ at which ̂F Â(τ ) is discontinuous. The jump at an eigenvalue a� is

equal to the corresponding eigenprojector ̂P �ε�
, i.e.,

̂F Â(a�)− ̂F Â(a� − 0) = ̂P �ε�
. (15.9)

These properties are similar to that of distribution functions

introduced in Definition 3.6(2).

P15.1(5) For a degenerate selfadjoint operator ̂A with degenerate
eigenvalues am, m = 1, 2, · · · , M < N the eigenprojectors in

4The F̂ Â(τ ) increases in the sense of the order relation of projectors defined by Eq.
(13.20) in Definition 13.2.2(2).
5Wan p. 93 for a general discussion on the convergence of a family of operators.
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Eq. (15.2) should be replaced by ̂P Â(am) with N replaced by M.6

The projector ̂P Â(am) which projects onto the eigensubspace of the
eigenvalue am may not be one-dimensional.

P15.1(6) The jump at an eigenvalue a� is equal to the correspond-

ing eigenprojector ̂P Â(a�), i.e.,

̂F Â(a�)− ̂F Â(a� − 0) = ̂P Â(a�). (15.10)

For a nondegenerate eigenvalue a� the eigenprojector is equal to

the projector generated by the corresponding eigenvector �ε�, i.e.,
̂P Â(a�) = ̂P �ε�

= |�ε�〉〈�ε�|.
Let us formalise this type of projector-valued functions in the

following definition.

Definition 15.1(2)7 A projector-valued function on the real line IR
which assigns a projector ̂F (τ ) on �VV N to each τ ∈ IR is called a
spectral function if it satisfies the following properties:

SF15.1(1) Non-decreasing ̂F (τ1) ≤ ̂F (τ2) if τ1 ≤ τ2.

SF15.1(2) Values at infinities ̂F (−∞) = ̂0, ̂F (∞) = ̂II .
SF15.1(3) Continuity from the right ̂F (τ + 0) = ̂F (τ ).

The projector-valued function ̂F Â(τ ) defined by Eq. (15.2) is a

spectral function. For a spectral function Eq. (13.25) implies that8

̂F (τ1)̂F (τ2) = ̂F (τ2)̂F (τ1) = ̂F (τ1) if τ1 ≤ τ2. (15.11)

It follows from Theorem 13.2.2(1) that the difference ̂F (τ2)− ̂F (τ1),
where τ2 > τ1, is also a projector.

Nextwe shall introduce spectralmeasureswith properties similar
to that of probability measures given in Definition 3.4(2). Let ̂II be
the identity operator on �VV N and let �1, �2, · · · be any sequence
6Here all am are different and M is the total number of different eigenvalues which is

less than N since some of the eigenvalues are degenerate.
7Prugovečki §5.4 on p. 231, §5.5 on p. 235, Akhiezer and Glazman Vol. 2 §61. Roman
Vol. 2 §13.4b on p. 633. Wan pp. 142–148. The order relation in SF15.1(1) is defined
by Eq. (13.20).
8Roman Vol. 2 p. 569. The result means F̂ (τ1) and F̂ (τ2) commute.
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of mutually disjoint Borel sets of IR . Then we have the following
definition.

Definition 15.1(3) A spectral measure ̂M is a projector-valued
set function on the Borel sets IB of IR which assigns a projector ̂M(�)
on �VV N to each Borel set� of IR with the following properties9:

SM15.1(1) Normalisation ̂M(IR) = ̂II .
SM15.1(2) Countable Additivity ̂M(�1 ∪�2 ∪ · · · )

= ̂M(�1)+ ̂M(�2)+ · · · where
�1, �2, · · · are mutually disjoint.

Spectral measures possess the following properties10:

̂M({∅}) = ̂0, (15.12)

̂M(�1) ̂M(�2) = ̂M(�2) ̂M(�1), (15.13)

̂M(�1) ̂M(�2) = ̂0, if �1 ∩�2 = ∅, (15.14)

̂M(�1 ∪�2) = ̂M(�1)+ ̂M(�2) if �1 ∩�2 = ∅, (15.15)

̂M(�1 ∪�2) = ̂M(�1)+ ̂M(�2)− ̂M(�1 ∩�2), (15.16)

̂M(�1 ∩�2) = ̂M(�1) ̂M(�2). (15.17)

Probability distribution functions and probability measures are

related by Eqs. (4.84), (4.87) and (4.88). Similarly there is a one-

to-one correspondence between spectral functions and spectral

measures as seen in the following theorem.

Theorem 15.1(1)11

(1) A spectral measure ̂M generates a unique spectral function ̂F by
̂F (τ ) := ̂M

(

(−∞, τ ]
)

. (15.18)

(2) A spectral function ̂F generates a unique spectral measure ̂M by
̂M
(

(τ1, τ2]
)

:= ̂F (τ2)− ̂F (τ1), (15.19)

with the value ̂M
({τ0}

)

for a singleton set {τ0} given by12
̂M
({τ0}

)

:= ̂F (τ0)− ̂F (τ0 − 0). (15.20)

9Prugovečki p. 231. SM15.1(1) and SM15.1(2) can be compared with those of

probability measures in Definition 4.1.2(1).
10Prugovečki pp. 232, 236. Blank, Exner and Havliček p. 151.
11Prugovečki p. 236.
12Blank, Exner and Havliček p. 172.
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While a spectral measure clearly determines a spectral function by

Eq. (15.18) the converse is less obvious. Using the properties of

spectral measures and Eqs. (15.19) and (15.20) we can extend the

set function from half-open intervals (τ1, τ2] to all Borel sets.
13 It

is not difficult to show that Eq. (15.19) can be extended to more

general intervals. First Eq. (15.19) agreeswith Eq. (15.18) for a semi-

infinite interval (−∞, τ ]. For other finite intervals we have14

̂M
(

[τ1, τ2]
) = ̂F (τ2)− ̂F (τ1 − 0), (15.21)

̂M
(

[τ1, τ2)
) = ̂F (τ2 − 0)− ̂F (τ1 − 0), (15.22)

̂M
(

(τ1, τ2)
) = ̂F (τ2 − 0)− ̂F (τ1). (15.23)

15.2 Spectral Measures in Terms of
Riemann-Stieltjes Integrals

To keep up with a close analogy with the relationship between

probability distribution functions and probability measures in Eq.

(4.89) we can rewrite Eq. (15.19) in the form of an integral15:

̂M
(

(τ1, τ2]
) =

∫ τ2

τ1

dτ
̂F (τ ). (15.24)

Such an integral expression can be extended to an arbitrary Borel set

�with

̂M
(

�
) =

∫

�

dτ
̂F (τ ). (15.25)

The above integral expressions should be understood in terms of

their action on vectors.16 In other words, Eq. (15.25) means

̂M(�)�η =
∫

�

dτ

(

̂F (τ )�η
)

∀ �η ∈ �VV N
, (15.26)

or equivalently and in accordance with Eq. (13.9),

〈 �η | ̂M(�)�η 〉 =
∫

�

dτ 〈 �η | ̂F (τ )�η 〉 ∀ �η ∈ �VV N
. (15.27)

13Prugovečki p. 236.
14These results are similar to those for the Lebesgue-Stieltjes measure in Eqs. (4.18)

to (4.23).
15The notation dτ serves as a reminder that the differentiation is with respect to τ ,

not to other variables.
16Roman Vol. 2 p. 636, Fano p. 346, Naimark Part 2 p. 15.
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Later on we shall encounter integrals of the form

̂f =
∫ ∞

−∞
f (τ )dτ

̂F (τ ), (15.28)

where f (τ ) is a real-valued function on IR . Following Eq. (15.27) we
consider Eq. (15.28) to mean

〈 �η | ̂f �η 〉 =
∫ ∞

−∞
f (τ ) dτ 〈 �η | ̂F (τ )�η 〉 ∀ �η ∈ �VV N

. (15.29)

The integral on the right-hand-side is a Riemann-Stieljes integral. In

view of its importance we shall examine the meaning of integrals of

this kind more carefully.

Following Eq. (15.26) we can write down the action of the

integral expression in Eq. (15.28) on vectors, i.e., ∀ �η ∈ �VV N
we have

(∫ ∞

−∞
f (τ )dτ

̂F (τ )
)

�η =
∫ ∞

−∞
f (τ ) dτ

(

̂F (τ )�η
)

. (15.30)

The right hand side contains an integral which can be defined to

be the limit of a sum as for Riemann-Stieltjes integrals introduced

in §4.2.3. To understand the limiting process let the real line IR be
divided into a large number of intervals by a set of values τ j ∈ IR ,
i.e.,

· · · < τ−2 < τ−1 < τ0 < τ1 < τ2 < · · · . (15.31)

Let m be a large positive integer. Introduce the following finite

sums:

̂f m :=
m
∑

j=−m
f (τ ′j )

(

̂F Â(τ j )− ̂F (τ j−1)
)

, τ ′j ∈ (τ j−1, τ j ]. (15.32)

Given any �η ∈ �VV N
let

�ηm = ̂f m �η (15.33)

=
m
∑

j=−m
f (τ ′j )

(

̂F Â(τ j )− ̂F Â(τ j−1)
)

�η. (15.34)
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It can be shown that, as m → ∞ and all the intervals (τ j−1, τ j ]
vanishing, ̂f m tends to a selfadjoint operator ̂f and �ηm tends to
the vector ̂f �η, in the sense that for all �η ∈ �VV N

we have17

lim
m→∞ || ̂f �η − ̂f m �η || → 0 , or (15.35)

lim
m→∞ ||( ̂f − ̂f m)�η || → 0. (15.36)

These results are the basis for interpretation that the integrals in

Eqs. (15.28) and (15.30). We can symbolise all these results by

equating the expression in Eq. (15.28) to the selfadjoint operator ̂f ,
i.e., we write

̂f =
∫ ∞

−∞
f (τ )dτ

̂F (τ ). (15.37)

Let us demonstrate this type of integrals with two important

examples:

E15.2(1) Setting f (τ ) = 1 we get the integral

∫ ∞

−∞
dτ
̂F (τ ). (15.38)

From the limiting values of ̂F (τ ) we can see that this integral is equal
to the identity operator, i.e.,

∫ ∞

−∞
dτ
̂F (τ ) = ̂II . (15.39)

This integral expression is known as a spectral decomposition of
the identity.

E15.2(2) Setting f (τ ) = τ we get the integral

∫ ∞

−∞
τ dτ

̂F (τ ). (15.40)

The significance of this example will become obvious in the

discussion of the spectral theorem in the next section.

17Roman Vol. 2 p. 640.
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15.3 Spectral Theorem and Spectrum

A selfadjoint operator has associated with it a complete orthogo-

nal family of eigenprojectors. These eigenprojectors determine a

spectral function by Eq. (15.2). Conversely every spectral function

defines a selfadjoint operator by Eq. (15.40). The one-to-one relation

between spectral functions and selfadjoint operators is summarised

in the theorem below.

Theorem 15.3(1) The Spectral Theorem

(1) To every selfadjoint operator ̂A on �VV N there corresponds a unique
spectral function, known as the spectral function of ̂A and denoted
by ̂F Â(τ ), such that

̂A =
∫ ∞

−∞
τ dτ

̂F Â(τ ). (15.41)

(2) Every spectral function on �VV N defines a selfadjoint operator by
Eq. (15.41).

The above theorem tells us that every spectral function on �VV N

is the spectral function of a selfadjoint operator.18 Hence every

spectral function on �VV N is piecewise-constant of the form of Eq.

(15.2). The integral expression for ̂A in Eq. (15.41), known as the
spectral decomposition of ̂A, reduces to a linear combination of
eigenprojectors of ̂A shown in Eq. (13.36). In analogy to a similar
situation of a numerical Riemann-Stieltjes integral in Eq. (4.72)

this reduction is due to the fact that the spectral function ̂F Â(τ ) is

piecewise-constant. It follows that the present theorem agrees with

Theorem 13.3.2(2).

Definition 15.3(1) The spectral measure ̂MÂ determined by the
spectral function ̂F Â(τ ) of ̂A by Theorem 15.1(1) is called the
spectral measure of ̂A. The projector ̂MÂ(�) for any Borel set � is
called a spectral projector of ̂A and the subspace �S Â(�) onto which
̂MÂ(�) projects is called a spectral subspace of ̂A.

18Roman Vol. 2 p. 638.
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Spectral measures of selfadjoint operators on �VV N possess the

following properties:

P15.3(1) From Figure 15.1 we can see that

(1) The spectral projector ̂MÂ({τ }) of a singleton set {τ }, which is
equal to ̂F Â({τ })− ̂F Â({τ − 0}) by Eq. (15.20), is zero except at
a discontinuity of the spectral function ̂F Â(τ ).

(2) Discontinuities of ̂F Â(τ ) occur at the eigenvalues a� of ̂A. The
spectral projector at a discontinuity ̂MÂ({τ = a�}) is equal to
the eigenprojector ̂P Â(a�) corresponding to the eigenvalue a� in

accordance with Eq. (15.10), i.e.,19

̂MÂ({τ = a�}) = ̂F Â(a�)− ̂F Â(a� − 0) = ̂P Â(a�). (15.42)

P15.3(2) Following Theorem 13.3.4(1) we can deduce that two

selfadjoint operators ̂A and ̂B commute if their respective spectral

projectors ̂MÂ(�1) and ̂MB̂(�2) commute for all Borel sets �1 and

�2 of IR , and the converse is also true, i.e., ∀ �1, �2 we have

[ ̂A, ̂B ] = ̂0 ⇔ [ ̂MÂ(�1), ̂MB̂(�2)] = ̂0. (15.43)

P15.3(3) Spectral projectors and spectral subspaces are general-

isation of the notion of eigenprojectors and eigensubspaces intro-

duced in Definition 9.4.4(1). While an eigensubspace is associated

with a single eigenvalue a spectral subspace is generally related
to a set of eigenvalues. As will be discussed in §18.1 selfadjoint

operators in infinite-dimensional vector spaces may not possess

eigenprojectors and eigensubspaces. However, they always possess

spectral projectors and spectral subspaces.

There is an important theorem which relate the spectral

measures of two unitarily related selfajoint operators.

Theorem 15.3(2)20 Let ̂U be a unitary operator and let ̂A be a
selfadjoint operator. Then the spectral measure ̂MÂ′ of the unitary
transform ̂A′ = ̂U ̂A ̂U † of ̂A is equal to the unitary transform of the

19Roman Vol. 2 pp. 650–651.
20Prugovečki pp. 269, 331.
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spectral measure ̂MÂ of ̂A, i.e.,

̂MÂ′ = ̂U ̂MÂ
̂U †. (15.44)

The spectral functions of two unitarily related operators are related

in the sameway. This theorem remains valid an infinite-dimensional

space.

Finally let us re-introduce the spectrum of ̂A in a way which can
be generalised to infinite-dimensional spaces.

Definition 15.3(2)21 The set of values τ is called the spectrum of a
selfadjoint operator ̂A on �VV N, to be denoted by sp( ̂A ), if for every τ ∈
sp( ̂A ) the spectral projector ̂MÂ(�τ ) for every open interval �τ =
(τ − δ, τ + δ) containing τ does not vanish.

The following comments serve to clarify the concept:

C15.3(1) The interval�τ = (τ − δ, τ + δ) can be arbitrarily small.

This means that an element of the spectrum is a point of change of

the spectral function. Not every point is a point of change. Figure

15.1 shows that for any τ0 lying between a1 and a2, i.e., a1 < τ0 < a2,
the spectral function remains constant in �τ0 so that according to

Eq. (15.23) we have, for sufficiently small δ,

̂MÂ(�τ0 ) = ̂F Â(τ0 + δ)− ̂F Â(τ0 − δ) = ̂0. (15.45)

It follows that not every value of τ ∈ IR is an element of the spectrum
of ̂A.

C15.3(2) Intuitively we can see that there are two ways of change:

(1) Continuous change A point τ0 ∈ sp( ̂A) is a point of continuous
growth if

̂MÂ(�τ0

) �= ̂0 but ̂MÂ(�τ0

)→ ̂0 as δ → 0. (15.46)

Figure 15.1 tells us that a point of continuous growth does not

exist.

21Prugovečki p. 253. Weidmann p. 200. Wan p. 157. The spectrum can also be defined

in terms of the resolvent set. Our present definition is for selfadjoint operators

which have a real spectrum.
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(2) Discontinuous change We call a point τ0 ∈ sp( ̂A) a point of
discontinuous growth or a jump point of ̂F Â(τ ), if the spectral

projector at τ0 is not zero, i.e.,

̂MÂ({τ0}) = ̂F Â(τ0 + 0)− ̂F Â(τ0 − 0) �= ̂0. (15.47)

This implies that at a jump point the spectral projector ̂MÂ(�τ0 )

for every open interval�τ0 containing τ0 does not vanish. Figure

15.1 shows that τ0 must be an eigenvalue of ̂A and the spectral
projector ̂MÂ({τ0}) is equal to the eigenprojector corresponding
to the eigenvalue.22

For a selfadjoint operator ̂A on �VV N we can conclude that

(1) The spectrum does not contain any point of continuous growth.

(2) The spectrum consists of the set of jump points. It follows that

sp( ̂A) coincides with the set of eigenvalues of ̂A, showing that
the present definition agrees with previous definition.

(3) The spectral projector at each jump point coincides with the

eigenprojector for the corresponding eigenvalue.

The spectrum of a selfadjoint operator on �VV N is called purely
discrete for obvious reason. The corresponding spectral function is
also said to be purely discrete. Later on we shall study selfadjoint
operators in an infinite-dimensional vector space. The spectrum of

a selfadjoint operator may well contain only points of continuous

growth without any jump points. Such spectrum is referred to as a

purely continuous spectrum to contrast the present discrete ones. A

discussion is given in §15.3 with examples given in §20.4.

15.4 Functions of Commuting Selfadjoint
Operators

The expression for functions of a selfadjoint operators in Definition

13.3.3(1) can be rewritten in terms of the spectral function ̂F Â(τ )

of ̂A in the form of an integral shown in Eq. (15.28).

22Prugovečki p. 253. Roman Vol. 2 pp. 650–651.
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Definition 15.4(1) Given a real-valued function f (τ ) on IR we
define a corresponding function of a sefadjoint operator ̂A in terms
of its spectral function ̂F Â(τ ) by23

f ( ̂A ) :=
∫ ∞

−∞
f (τ ) dτ

̂F Â(τ ). (15.48)

By extending the above integral into a multiple integral the

expression for functions of commuting selfadjoint operators given

in Definition 13.3.4(1) can be rewritten in the form of a multiple

integral in the same way.

Definition15.4(2)24 Let ̂A1 and ̂A2 be two commuting selfadjoint
operators with respective spectral functions ̂F Â1 (τ1) and ̂F Â2 (τ2).
Given a real-valued function f (τ1, τ2) of two independent real
varaibles τ1 and τ2 we define a corresponding function of ̂A1 and ̂A2
by

f ( ̂A1, ̂A2 ) :=
∫ ∞

−∞

∫ ∞

−∞
f (τ1, τ2) dτ1dτ2

(

̂F Â1 (τ1)̂F Â2 (τ2)
)

.

(15.49)

This can be extended in a straightforward manner to define

functions of three or more commuting selfadjoint operators. The

definitions on functions of commuting selfadjoint operators in terms

of spectral functions presented here apply to infinite-dimensional

spaces.

15.5 Probability Distribution and Expectation
Values

The importance of selfadjoint operators together with their spectral

functions and spectral measures lie in their relation with probability

distribution functions and probability measures. As shown in Eq.

(15.3) a spectral function ̂F (τ ) together with a unit vector �η gen-
erates a probability distribution function F(�η, τ ). Its corresponding
spectral measure ̂Mwould generate a probability measureM(�η, �),
23Complex-valued functions of Â can be defined in the same way.
24Jordan p. 54. See Definition 13.3.4(1) for operators with a discrete spectrum.
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i.e., we have

F(�η, τ ) := 〈�η | ̂F (τ )�η 〉 and M(�η, �) := 〈�η | ̂M(�)�η 〉. (15.50)

Since a selfadjoint operator ̂A possesses a unique spectral function
̂F Â and spectral measure ̂MÂ we arrive at the following theorem.

Theorem 15.5(1)25 A selfadjoint operator ̂A together with a unit
vector �η in �VV N generates a unique probability distribution function
F Â(�η, τ ) and a unique probability measure M Â(�η, �) defined in
terms of its spectral function ̂F Â(τ ) and spectral measure ̂MÂ by

F Â(�η, τ ) := 〈�η | ̂F Â(τ )�η 〉, (15.51)

M Â(�η, �) := 〈�η | ̂MÂ(�)�η 〉. (15.52)

These are known respectively as the probability distribution

function and the probability measure generated by the spectral

function ̂F Â(τ ) and the spectral measure ̂MÂ(�) of ̂A in �η. The
resulting expectation value is given by Eq. (4.90).

Corollary 15.5(1) The expectation value of the probability distri-
bution function F Â(�η, τ ), written as E( ̂A, �η ), can be given directly in
terms of ̂A, i.e., we have

E( ̂A, �η ) = 〈�η | ̂A �η 〉. (15.53)

To establish this corollary we observe that, according to Eq. (4.90),

E( ̂A, �η ) =
∫ ∞

−∞
τ dτF A(�η, τ ) =

∫ ∞

−∞
τ dτ 〈 �η | ̂F Â(�η, τ )�η 〉

= 〈�η |
(∫ ∞

−∞
τdτ

̂F Â(�η, τ )
)

�η 〉 = 〈�η | ̂A �η 〉. (15.54)

The last step is based on the spectral decomposition of ̂A given by
the spectral theorem.

Following Eq. (10.10) the uncertainty arising from the probabil-

ity distribution function can be similarly expressed.

25Wan §2.7 to §2.11.
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Exercises and Problems

Q15(1) Given a spectral function ̂F (τ ) show that ̂F (τ2)− ̂F (τ1) for
t2 > t1 is a projector. Is ̂F (τ1)− ̂F (τ2) also a projector?

Q15(2) Using Eqs. (15.15), (15.19) and (15.20) prove Eqs. (15.21),
(15.22) and (15.23).

Q15(3) Show that F(�η, τ ) and M(�η, �) in Eq. (15.50) define a

probability distribution function and a probability mea-

sure, respectively.



Chapter 16

Infinite-Dimensional Complex Vectors
and Hilbert Spaces

16.1 Infinite-Dimensional Vector Spaces

For a quantum system with observables capable of assuming an

infinite number of different values we would need an infinite-

dimensional complex vector space to serve as its state space.

16.1.1 The Space �� 2

Consider an extension of the space �C N
to infinite dimensions, i.e.,

to �C ∞
. The extended space is formed by column vectors having an

infinite number of elements, i.e., column vectors of the form

�ζ :=

⎛

⎜

⎜

⎜

⎜

⎝

ζ1

ζ2

.

.

.

⎞

⎟

⎟

⎟

⎟

⎠

, �η :=

⎛

⎜

⎜

⎜

⎜

⎝

η1

η2

.

.

.

⎞

⎟

⎟

⎟

⎟

⎠

, · · · , ζ�, η�, · · · ∈ C . (16.1)

The resulting space is infinite-dimensional, i.e., there are infinite

number of linearly independent vectors such as
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�e c1 :=

⎛

⎜

⎜

⎜

⎜

⎝

1

0

.

.

.

⎞

⎟

⎟

⎟

⎟

⎠

, �e c2 :=

⎛

⎜

⎜

⎜

⎜

⎝

0

1

.

.

.

⎞

⎟

⎟

⎟

⎟

⎠

, �e c3 :=

⎛

⎜

⎜

⎜

⎜

⎝

0

0

1

.

.

⎞

⎟

⎟

⎟

⎟

⎠

· · · . (16.2)

These vectors form a basis in the above set of infinite-dimensional

vectors, i.e., every vector �ζ can be written as a linear combination of
the above basis vectors with ζ� as components. We cannot define a

scalar product using Eq. (12.11) since a sum over an infinite number

of terms may not converge.1

Let ��2 = {�ζ , �η, · · · } be a subset of �C ∞ satisfying the condition2

∞
∑

�=1
|ζ�|2 < ∞,

∞
∑

�=1
|η�|2 < ∞, · · · . (16.3)

It is necessary that the components of each vector must tend to zero

as � tends to infinity for the infinite sum to converge. The above

convergence condition implies that ��2 is an infinite-dimensional

vector space which can also be endowed with a scalar product. This

can be proved as follows:

(1) There are two inequalities associated with any two complex

numbers z = a + ib and w = c + id, where a, b, c, d are
real:

|z+w |2 ≤ 2
(

|z|2+|w|2
)

and |z∗w| ≤ 1

2

(

|z|2+|w|2
)

. (16.4)

(2) Applying the above inequalities to ζ� and η� are get

|ζ� + η�|2 ≤ 2
(

|ζ�|2 + |η�|2
)

, (16.5)

|ζ ∗� η�| ≤ 1

2

(

|ζ�|2 + |η�|2
)

. (16.6)

1An infinite sum of positive terms may diverge, i.e., producing an infinite value.
2The notation means that the infinite sums all converge to a finite number.
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(3) The convergence of the sums in Eq. (16.3) and the first

inequality above implies the following convergence3:
∞
∑

�=1
|ζ� + η� |2 ≤

∞
∑

�=1
2
(

|ζ� |2 + |η� |2
)

= 2

∞
∑

�=1
|ζ� |2 + 2

∞
∑

�=1
|η� |2 < ∞. (16.7)

It follows that given any pair �ζ and �η in �� 2 their linear

combinations, e.g., �ζ + �η, are also in ��2, i.e., the set �� 2 is closed
under scalar multiplication and addition, and is therefore a

vector space in its own right.4

(4) The convergence of the sums in Eq. (16.3) and the second

inequality in item (2) above implies
∞
∑

�=1
ζ ∗� η� < ∞. (16.10)

This enables us to define a scalar product for any �ζ , �η in �� 2 by
〈�ζ | �η 〉 =

∞
∑

�=1
ζ ∗� η�. (16.11)

16.1.2 Spaces of Complex-Valued Functions

Let � be an interval of the real line IR . The interval � may be

bounded, e.g., � = [0, L], semi-infinite, e.g., � = [0,∞), or infinite,

i.e.,� = (−∞,∞). Let us consider functions f (x), both real-valued
and complex-valued, defined on �. A function f (x) on � is said to

be differentiable if its derivative is defined at every point in�. For a

finite interval the function must have right hand derivative at τ = 0

and the left hand derivative at τ = L .5 As pointed out in §4.2.2

3See Spiegel (2) p. 141 on relevant theorems on convergence of complex series.
4This result can also be directly proved from the following Cauchy and Minkowski

inequalities (see Kreyszig p. 14):
∞∑

�=1
|ζ ∗� η� | ≤

( ∞∑
m=1

|ζm|2
)1/2 ( ∞∑

n=1
|ηn|2

)1/2
. (16.8)

( ∞∑
�=1

|ζ ∗� + η� |2
)1/2 ≤ ( ∞∑

m=1
|ζm|2

)1/2 + ( ∞∑
n=1

|ηn|2
)1/2

. (16.9)

5Spiegel (1) p. 57.
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a continuous function is not necessarily differentiable. A function

may be once differentiable everywhere but not twice differentiable
everywhere, i.e., a function may have a first order derivative d f/dx
everywhere but its second order derivative d2 f/dx2 may not exist
everywhere. A function on � is said to be infinitely differentiable
if it can be differentiated everywhere for as many times as we wish.

Such functions are also said to be smooth. Being smooth is quite a
stringent requirement.

16.1.2.1 Continuous functions

The following is a list of examples.

E16.1.2.1(1) C (�) This is the set of continuous complex-valued

functions φ(x) defined on a closed and bounded � = [0, L]
introduced in §12.3.3. This set defines a vector space �C (�) with each
function φ(x) defining a vector �φ. This relationship is denoted by
�φ := φ(x) and �C (�) := C (�), a notation introduced in Eq. (12.24).
The vector space �C (�) is infinite-dimensional. This space becomes
a scalar product space with scalar product defined by Eq. (12.26).

Many of the infinite-dimensional vector spaces used in quantum

mechanics are spaces of functions. We shall often employ the

symbols �φ, �ψ , · · · to denote infinite-dimensional vectors, whether
they are defined by functions or not.

E16.1.2.1(2) C (IR+) This is the set of continuous complex-

valued functions defined on the half-real line IR+ = [0,∞).

The corresponding vector space �C (IR+) is infinite-dimensional.
However, we cannot define a scalar product for an arbitrary pairs of

functions in C (IR+) since we would have to extend the range of the
integral in Eq. (12.26) from [0, L] to [0,∞). The resulting Riemann

integrals

∫ ∞

0

φ∗(x)ψ(x)dx (16.12)

over an infinite interval may not converge to a finite number.

E16.1.2.1(3) C (IR) This is the set of continuous complex-valued

functions defined on the entire real line IR = (−∞,∞) with the

corresponding vector space denoted by �C (IR). Again we cannot have
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a scalar product in terms of integrals of the form of Eq. (12.26) for

an arbitrary pair of functions in C (IR).

E16.1.2.1(4) C (IR2) This is the set of continuous complex-valued

functions defined on IR2 with the corresponding vector space

denoted by �C (IR2). Againwe cannot have a scalar product in terms of
integrals of the form of Eq. (12.26) for an arbitrary pair of functions

in C (IR2). Continuous functions can be defined on IR3 leading to the
sets C (IR3) with the corresponding vector space denoted by �C (IR3).

16.1.2.2 Absolutely continuous functions

Absolutely continuous functions are introduced in Eq. (4.49). These

functions are once-differentiable almost everywhere.

E16.1.2.2(1) AC (�) The set of absolutely continuous functions

defined on a closed and bounded interval� = [0, L].

E16.1.2.2(2) AC (IR+) The set of absolutely continuous functions

defined on IR+.

E16.1.2.2(3) AC (IR) The set of absolutely continuous functions

defined on IR .

E16.1.2.2(4) AC (IR2) This is the set of absolutely continuous

functions defined on IR2, i.e., AC (IR2) consists of functions of the
Cartesian coordinates x and y which are absolutely continuous in x
and y. We can also have functions on IR2 absolutely continuous in x
only, in y only. We can similarly define the set AC (IR3) of absolutely
continuous functions on IR3.

These are subsets of C (�), C (IR+), C (IR), C (IR2) and C (IR3), re-
spectively. Their corresponding infinite-dimensional vector spaces

are denoted by �AC (�), �AC (IR+), �AC (IR), �AC (IR2) and �AC (IR3),
respectively. The same problem arises whenwe try to define a scalar

product for these spaces, except for �AC (�).

16.1.2.3 Smooth functions

E16.1.2.3(1) C∞(�) This is the set of smooth, i.e., infinitely

differentiable and hence the superscript∞, functions defined on a

closed and bounded interval� = [0, L].
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E16.1.2.3(2) C∞(IR+) This is the set of smooth functions defined
on IR+.

E16.1.2.3(3) C∞(IR) This is the set of smooth functions defined
on IR .

E16.1.2.3(4) C∞(IR2) This is the set of smooth functions defined
on IR2, i.e., functions of Cartesian coordinates x , y which are smooth
in both x and y. We can similarly define the set C∞(IR3) of smooth
functions on IR3.

These are subsets of AC (�), AC (IR+), AC (IR), AC (IR2) and

AC (IR3), respectively. Their corresponding infinite-dimensional

vector spaces are denoted by �C∞(�), �C∞(IR+), �C∞(IR), �C∞(IR2) and
�C∞(IR3). There is also a problem defining scalar product.

16.1.2.4 Schwartz functions

Often we are interested in smooth functions f (x) on IR which,

together with their derivatives dn f/dxn, tend to zero faster than
any power of x at infinity, i.e., f (x) ∈ C∞(IR) such that for any
n, m = 1, 2, 3, . . .

f (x) and xn
dm f (x)
dxm

→ 0 as |x| → ∞. (16.13)

These are called Schwartz functions on IR or functions of
rapid decrease. These functions define a vector space called a

Schwartz space and is denoted by �Ss(IR), with the set of Schwarts
functions denoted by Ss(IR).6 A polynomial in x is clearly not a
Schwartz function while an exponentially decreasing function in

x such as exp(−x2) is. The product of a polynomial in x and an
exponentially decaying function in x would also be a Schwartz

function. Let us consider the following well-known examples of such

products:

6Amrein, Jauch and Sinha p. 32. Gallone p. 55. Conway pp. 336, 342. Gallone p. 55.

Moretti pp. 72–73. Schwartz (1915–2002) was a French mathematician. A f (x) ∈
C∞(IR) may not tend to zero at infinity. The symbol �Ss stands for Schwartz space
(see Definition 16.2.3(1) and the comments after).
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1. Hermite polynomials7 These are polynomials Hn(y) of a real
variable y defined by

H0(y) = 1. (16.14)

Hn(y) := (−1)ne y2 dn

dyn
e−y

2

, n = 1, 2, 3, . . . . (16.15)

These polynomials possess the following properties:8

dHn(y)
dy

= 2nHn−1. (16.16)

Hn+1(y) = 2y Hn(y)− 2n Hn−1(y). (16.17)

2. Hermite functions These are functions in x defined in terms of
an exponentially decreasing function and Hermite polynomials by9

ϕHn(x) :=
( √

λ√
π 2nn!

)1/2

e−λx
2/2 Hn(

√
λ x), (16.18)

where λ is a real and positive constant. For application to the

quantised harmonic oscillator of mass m and angular frequency ω

this constant is assigned the value λ = mω/�.10

Hermite functions are orthonormal in the sense that
∫ ∞

−∞
ϕHn(x)ϕHn(x) dx = δnm. (16.19)

The index n can be raised or lowered by the following operators

̂A := 1√
2

(

y + d
dy

)

, ̂A � := 1√
2

(

y − d
dy

)

, (16.20)

where y = √λ x . Using Eq. (16.16) we can verify that
̂AϕH0 (x) = 0, (16.21)

̂AϕHn(x) =
√
n ϕH (n−1) (x), n = 1, 2, 3 . . . , (16.22)

̂A �ϕHn(x) =
√
n+ 1ϕH (n+1) (x), n = 0, 1, 2, 3 . . . . (16.23)

7Greiner pp. 116–117. Marzbacher p. 86. Zettili p. 233. Jauch p. 45. See also
§35.2 of this book. Hermite (1822–1901) was a French mathematician. Hermite
polynomials were introduced before quantummechanics was formulated.
8Jauch p. 213.
9Greiner p. 119 and Zettili pp. 232–234 for example, see §35.2 for applications.
10See §35.2.1.
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These results are directly relevant to the study of the quantum

harmonic oscillator in §35.2.
We can similarly define Schwartz functions f (x , y) on IR2 and
Schwartz space �Ss(IR2), Schwartz functions f (x , y, z) on IR3 and
Schwartz space �Ss(IR3).11 For applications see §27.4 and §35.2.

16.1.2.5 Smooth functions of compact support

A function on IR is said to be a function of compact support if there is
a closed and bounded interval outside which the function takes only

the value zero.12 A similar terminology applies to functions on IR+,
IR2 and IR3.

E16.1.2.5(1) C∞D (�) This is the set of smooth functions f on �

which take the value zero at the boundary, i.e., f (0) = f (L) = 0.13

E16.1.2.5(2) C∞c (IR
+) This is the set of smooth functions on IR+

of compact support, i.e., everyone of these functions vanishes outside
a closed and bounded interval in IR+. Different functionsmay vanish
outside different intervals.

E16.1.2.5(3) C∞c (IR) This is the set of smooth functions on IR of
compact support, i.e., each function in C∞c (IR) vanishes outside a
closed and bounded interval in IR .14 As an example let � = (a, b)
be a open and bounded interval and let �0 = [a0, b0] be a closed
interval inside �. Let ξ(x) be a smooth real-valued function such
that

ξ(x) :=
⎧

⎨

⎩

ξ(x) = 1, x ∈ �0

ξ(x) ∈ (0, 1), x ∈ �−�0

ξ(x) = 0, x /∈ �

. (16.24)

This function, shown in the figure below, is known as a localising
function.15 It is clearly a member of C∞c (IR).

11Amrein, Jauch and Sinha pp. 32–33. Weidmann p. 289.
12Williamson p. 14. The support of a function is basically the set of points on which
the function is not zero. A closed and bounded interval is known to be a compact
set. We shall not delve into the general definition of compact sets.

13Subscript D indicates the imposition of the Dirichlet boundary condition given in
Eq. (17.24).

14Weidmann p. 25. Wan p. 9. Symbols C∞0 (IR) and C
∞
0 (IR

+) are also used.
15Wan p. 192.
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Λ0

Λ

Figure 16.1 Localising function.

E16.1.2.5(4) C∞c (IR
2) This is the set of smooth functions defined

on IR2 vanishing outside a closed and bounded square in IR2. We
can similarly define the set C∞c (IR

3) of smooth functions on IR3

vanishing outside a closed and bounded cube in IR3.

The corresponding infinite-dimensional vector spaces are denoted
�C∞D (�), �C∞c (IR+), �C∞c (IR), �C∞c (IR2) and �C∞c (IR3). Since each function
vanishes outside a bounded interval the following integral

∫

φ∗(x)ψ(x)dx (16.25)

over the supports of the functions would converge and can be used

to defined a scalar product.

16.1.2.6 Riemann square-integrable functions

E16.1.2.6(1) L 2(IR) This is the set of functions φ(x) on IR , not
necessarily continuous, which are Riemann square-integrable in the
sense that the following Riemann integral

∫ ∞

−∞
|φ(x)|2 dx (16.26)

converges to a finite value.16 We shall indicate this by
∫ ∞

−∞
|φ(x)|2 dx <∞. (16.27)

This is not a subset of C (IR) since there is no requirement

for functions in L2(IR) to be continuous. These functions form

a vector space since any linear combination of two square-

integrable functions on IR is also square integrable over IR .17

16Integrals over an infinite interval, known as improper integrals, are defined as the
limiting value of the integral over finite intervals. Spiegel (1) p. 260.

17This is similar to Eq. (16.7) for �� 2.
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The corresponding infinite-dimensional vector space is denoted by
�L 2(IR). Given any φ(x) and ψ(x) in L2(IR) we can show that18

∫ ∞

−∞
φ∗(x)ψ(x)dx <∞. (16.28)

A subtle complication arises when we try to use this integral to

define a scalar product on �L 2(IR). Property CSP11.2.2(3) of scalar
product is not satisfied, since there are functions φ(x) such that19

∫ ∞

−∞
|φ(x)|2 dx = 0 �⇒ φ(x) = 0 ∀ x ∈ IR . (16.29)

An example would be the function f (x) given in Eq. (4.13) which
is equal to zero for all x ∈ IR except at a single point at x = 0 where

it is equal to the value 1. Such a situation is discussed earlier in §4.2.2
in the context of Eq. (4.48). A function like f (x) in Eq. (4.13) is said
to be zero almost everywhere. We can circumvent this difficulty in the
following manner:

(1) First we identify all these functions which are zero almost
everywherewith the zero functionwhich is zero everywhere. All
these functions are then taken to correspond to the zero vector

in �L2(IR).
(2) Any given function φ(x) ∈ L2(IR) is taken to correspond a

vector �φ in �L 2(IR). We further identity with φ(x) any function
which differs only on a set of measure zero from φ(x). All
these functions which are equal almost everywhere to φ(x) are
then taken to correspond to the same vector �φ in �L 2(IR). This
relationship is denoted by

�φ := φ(x). (16.30)

This enables us to define a scalar product with the notation20

〈�φ | �ψ 〉 :=
∫ ∞

−∞
φ∗(x)ψ(x)dx . (16.31)

18This is similar to Eq. (16.10) for �� 2.
19Isham p. 30, Fano p. 248.

20This is similar to Eq. (16.11) for �� 2.
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E16.1.2.6(2) L2(IR+) This is the set of functions φ(x) on IR+,
not necessarily continuous, which are Riemann square-integrable
over the range [0,∞).21 We can define a scalar product on the

corresponding vector space �L2(IR+) by

〈 �φ | �ψ 〉 :=
∫ ∞

0

φ∗(x)ψ(x)dx ∀φ , ψ ∈ L2(IR+). (16.32)

E16.1.2.6(3) L2(�) This is formed by functions φ(x) defined on
a closed and bounded interval, e.g., � = [0, L], not necessarily
continuous, which are Riemann square-integrable over the range

[0, L], i.e.,
∫ L

0

|φ(x)|2 dx <∞. (16.33)

We can define a scalar product on the corresponding vector space
�L 2(�) by

〈 �φ | �ψ 〉 :=
∫ L

0

φ∗(x)ψ(x)dx for φ , ψ ∈ L2(�) (16.34)

16.1.2.7 Lebesgue square-integrable functions

With Riemann integrals for square integrability and the scalar

product replaced by Lebesque integrals wewould obtain a larger set

of functions which are Lebesque square-integrable. The expressions

for scalar product in Eqs. (16.31), (16.32) and (16.34) can apply.

The corresponding vector spaces are larger than previous ones. The

followings are a list of examples.

E16.1.2.7(1) �L2(IR) is the vector space corresponding to the space
of Lebesgue square-integrable functions on the real line IR . It should
be pointed out that

(1) Since almost all the functions used in practical applications are

Riemann integrable we shall adopt the notation used in Eqs.

(16.26) to (16.31) for all integrals. For brevity we shall drop the

prefix Lebesgue from now on, e.g., we will call �L2(IR) the space
of square-integrable functions on IR .

21What has been said earlier about functions which differ only on a set of measure

zero also apply here.
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(2) Functions which are equal almost everywhere are deemed to be

equal. It is in this sense we say that functions in these spaces are

defined almost everywhere.

These comments apply to all the other spaces listed below.

E16.1.2.7(2) �L2(IR+) is the vector space corresponding to the space
of square-integrable functions on the half real line IR+.

E16.1.2.7(3) �L2(�) is the vector space corresponding the space of
square-integrable functions on the interval� = [0, L].

E16.1.2.7(4) �L2(IR2) is the vector space corresponding to the space
of square-integrable functions on IR2. This space corresponds to
functions φ(x , y) on the x-y plane which are square-integrable with
respect to x and y, i.e.,

∫ ∞

−∞

∫ ∞

−∞
|φ(x , y)|2 dxdy <∞. (16.35)

E16.1.2.7(5) �L2(IR3) is the vector space corresponding to the

space of square-integrable functions on IR3. This space corresponds
to functions φ(x , y, z) on the physical space which are square-

integrable with respect to x , y and z, i.e.,

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|φ(x , y, z)|2 dxdydz <∞. (16.36)

16.1.2.8 Functions on a circle and �L2(Ca)
Consider a circle Ca of radius a on the x-y plane centred at the origin.
In the usual polar coordinates (r, θ) on the x-y plane the circle is
specified by

Ca :=
{

(r, θ) : r = a, θ = [ 0, 2π ]
}

, (16.37)

where θ = 0 and θ = 2π refer to the same point, taken to be

the point of intersection of the circle and the x-axis in the positive
direction. The position of a particle on the circle can be specified in

two ways:
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(1) Angular position This is specified by the corresponding polar

angle θ , referred to as an angular position variable.

(2) Linear position This is specified by a variable s , which is the
arc length along the circumference from the intersection of the

circlewith the x-axis to the position the particle. This is referred
to as a linear position variable.

(3) The two position variables are related by

s = aθ . (16.38)

When we wish to emphasise these variables are for the circle Ca
we can use the notation s(Ca) and θ(Ca).22

A function, real or complex, defined on the circle can be specified

as a function of θ , i.e., we have φ = φ(θ) for θ = [ 0, 2π ]. Functions

defined on Ca are similar to functions defined on an interval � =
[0, L]. A fundamental difference is that θ = 0, 2π refer to the same

point on the circle. It follows that single-valued functions on Ca ,
as our functions are, must satisfy the following periodic boundary
condition23:

φ(0) = φ(2π). (16.39)

These functions can form a vector space in the same way functions

on � do. As vectors, to be denoted by �φ and �ψ and so on, we can

define a scalar product by integration with respect to the angular

position variable θ , i.e.,24

〈 �φ | �ψ 〉 :=
∫ 2π

0

φ∗(θ)ψ(θ) dθ . (16.40)

The set L2(Ca) of square-integrable functions φ(θ) on the circle Ca
defines a vector space �L2(Ca) with the vectors corresponding to the
function φ(θ) denoted by �φ(θ).25

A circle is topologically different from an interval. A single

coordinate variable θ is not able to cover the circle properly since

22See §27.8.
23See Eq. (17.26).
24We may define the scalar product integrating with respect to the linear position

variable aθ with the limits of integration from 0 to 2πa.
25As before the integrals are meant to be Lebesque integrals.
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θ = 0, 2π refer to the same point on the circle.26 A proper coordinate
covering of the circle can be achieved as follows:

(1) Cover the circle Ca with overlapping open arcs S1, S2, . . . . Each
point in the circle is contained in an arc, e.g., there is an arc

containing the point θ = 0.27

(2) Since each arc S j is topologically equivalent to an open interval
we can have a linear position coordinate s j or the corresponding
angular position variable θ j = s j/a in each arc.

(3) In the overlapping region of two arcs S1 and S2 the two

coordinates s1 and s2 should be smoothly related, i.e., they

should be smooth functions of each other.28 This condition

applies to all overlapping regions.

We can then describe things locally in each arc S j in terms of

coordinate θ j . For example, the differentiability of function at the

point θ = 0 is defined in terms of the differentiability of the function

with respect to the position variable in the arc containing the point

θ = 0. In particular:

(1) A function on the circle is smooth if it is smooth on each arc.

(2) A function on the circle is absolutely continuous if it is absolutely

continuous on each arc. The set of absolutely continuous

functions on the circle Ca is denoted by AC (Ca).

As will be seen in §17.3 and §19.3 we often employ the variable θ to

cover the circle in many practical applications.

16.1.2.9 Functions on a unit sphere

LetSu be the sphere of unit radius centred at the origin of a Cartesian
coordinate system (x , y, z). A sphere can be specified in terms of
spherical coordinates (r, θ , ϕ) which are related to the Cartesian

26A coordinate system should assign a unique set of coordinates to each point in the

geometric space.
27An open arc is one which corresponds to an open interval of a linear position

variable.
28Wan pp. 57–60 for more details.
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coordinates (x , y, z) by

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ , (16.41)

where

r ∈ [ 0,∞), θ ∈ [ 0, π], ϕ ∈ [ 0, 2π]. (16.42)

The unit sphere Su is specified by (r = 1, θ , ϕ). Functions, real or

complex, on the sphere are functions of the two angle variables θ

and ϕ. A function φ(θ , ϕ) is square-integrable on Su if 29

∫ π

θ=0

∫ 2π

ϕ=0
|φ(θ , ϕ)|2 sin θdθdϕ <∞. (16.43)

The set L2(Su) of square-integrable functions φ(θ , ϕ), ψ(θ , ϕ), . . .

on the sphere defines to a vector space �L2(Su), with each function
φ(θ , ϕ) corresponding to a vector �φ. The scalar product of two
vectors �φ and �ψ is defined by

〈 �φ | �ψ 〉 :=
∫ π

θ=0

∫ 2π

ϕ=0
φ∗(θ , ϕ)ψ(θ , φ) sin θdθdϕ. (16.44)

16.2 Hilbert Spaces

16.2.1 Cauchy Sequences and Separability

By definition an infinite-dimensional scalar product space �VV∞
admits an infinite number of linearly independent vectors �ϕ�, � =
1, 2, 3, . . . . The question is whether such a set can form a basis for

the space. Before we can consider the notion of basis in �VV∞ wemust
know how to treat a linear combination of an infinite number of

linearly independent vectors, i.e., we must know the meaning of the

following infinite sum

∞
∑

�=1
c� �ϕ�, c� ∈ C . (16.45)

29Integrations on the unit sphere is with respect to the volume element sin θdθdϕ.
Similar comments on coordinate covering of a circle due to its topology apply to the

sphere.
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To understand the above infinite sum we first construct the

following well-defined finite sums

�φn =
n
∑

�=1
c� �ϕ�, where n is a positive integer. (16.46)

These finite sums generate an infinite sequence of vectors �φn with
�φ1 = c1 �ϕ1, �φ2 = c1 �ϕ1 + c2 �ϕ2, · · · . (16.47)

The question is whether such a sequence would converge in some

well-defined sense to another vector in �VV∞ as n tends to infinity.
To gain an intuition let us consider the following three examples of

infinite sequences of real numbers:

1, −1, 1, −1, . . . , −(−1)n, . . . , (16.48)

1, 2, 3, 4, . . . , n, . . . , (16.49)

1, 1/2, 1/3, 1/4, . . . , 1/n, . . . . (16.50)

The first sequence does not converge to any value. It oscillates all

the way, even though the numbers of the sequence do not become

larger and larger. The second sequence diverges to infinity, while

the third sequence converges to 0. It is more complicated if complex

numbers are involved. It is necessary to make clear the meaning of

convergence. This is done as follows:

A sequence of possibly complex numbers cn is said to converge to a
complex number c, known as the limit of the sequence, as n→∞ if
the absolute values | cn − c | of the complex numbers cn − c become
vanishingly small as n→∞, i.e.,30

| cn − c | → 0 as n → ∞. (16.51)

There are many tests and criteria for convergence. The most basic

one is the following

Cauchy Convergence Criterion31 A sequence of numbers cn
converges to a limit c if and only if for each small positive real number

30The number c is meant to be finite, i.e., |c | < ∞. Otherwise the sequence is said to

diverge.
31Spiegel (1) p. 43. Spiegel (2) p. 141. The numbers may be real or complex.
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ε there exists an integer M such that

| cm − cn | < ε for all m, n > M. (16.52)

Intuitivelywe can appreciate that if the sequence converges to a limit

c, then both cm and cn for largem and nmust be very close to c. Hence
their difference | cm−cn | must be vanishingly small. A sequence {cn}
of numbers satisfying the Cauchy convergence criterion is called a

Cauchy sequence, and the above criterion tells us that every Cauchy
sequence of numbers cn converges. This criterion enables us to test
whether a sequence converges or not.

We can generalise the above discussion to vectors. This is done

by defining convergence in terms of the length of vectors. The length

of a vector �φ is measured in terms of its norm, i.e., the length is given
by its norm || �φ ||. Intuitively we can appreciate that a vector �φ is said
to be close to another vector �ψ if their difference �φ − �ψ has a small

length, i.e., if || �φ − �ψ || is very small.

Definition 16.2.1(1)32 A sequence of vectors �φn in a scalar product
space �VV∞ is said to converge to a vector �φ if

|| �φn − �φ || → 0 as n → ∞. (16.53)

The vector �φ is called the limit of the sequence.
The relationship in Eq. (16.53) is often denoted by

�φn → �φ or lim
n→∞

�φn = �φ. (16.54)

We can now interpret the infinite linear combination in Eq. (16.45)

as the limit of the sequence in Eq. (16.46), when the limit exists. The

sum is undefined if the limit does not exist.

An obvious question presents itself: what is the criterion

for the convergence of a sequence of vectors? Intuitively we

wish the Cauchy criterion would apply. So, let us define Cauchy

sequences.

32Roman Vol. 2 pp. 459–461. There are other concepts of convergence, e.g., we can

have a concept of weak convergence. To emphasise the difference the convergence
in Definition 16.2.1(1) is also called strong convergence.
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Definition 16.2.1(2) A sequence of vectors �φ1, �φ2, �φ3, . . . in a
scalar product space �VV is called a Cauchy sequence if for each small
positive real number ε there exists an integer M such that

|| �φm − �φn|| < ε for all m, n > M. (16.55)

While every Cauchy sequence of vectors in a finite-dimensional

complex vector space converges to a limit vector in the space the

same is not true in an arbitrary infinite-dimensional complex scalar

product space.33 Fortunately infinite-dimensional scalar product

spaces of physical importance are such that all Cauchy sequences

do converge. Such spaces are called Hilbert spaces.34

16.2.2 Hilbert spaces

Definition 16.2.2(1) A scalar product space is said to be a Hilbert
space if every Cauchy sequence of vectors in the space converges to a
limit vector in the space.

Definition 16.2.2(2)

(1) A set linearly independent of vectors �ϕ� in a Hilbert space �H is
said to be a countable basis for �H if every vector �φ in �H can be
expressed as a linear combination of vectors in the set, i.e., if 35

�φ =
∞
∑

�=1
c� �ϕ�, c� ∈ C . (16.56)

The vectors �ϕ� are called basis vectors and the basis is said to be
orthonormal if �ϕ� are normalised and mutually orthogonal.

(2) A Hilbert space is said to be separable if it admits a countable
basis.

The space ��2 is an infinite-dimensional Hilbert space.36 It is also
separable as it admits a countable basis {�e c� } given by Eq. (16.2). We
33Fano p. 271 and Roman Vol. 2 p. 439 for counter examples. The adjective “complex”

would be omitted from now on.
34Hilbert (1862–1943) was a German mathematician, considered to be one of the

most influential mathematician of early 20th century.
35The set { �ϕ�} , called a complete orthonormal set, may be finite or infinite.
36Jordan pp. 9–10.
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have the following expression for an arbitrary vector �ζ in �� 2:

�ζ =
∞
∑

�=1
ζ� �e c� , ζ� = 〈�e c� | �ζ 〉. (16.57)

When an orthonormal basis { �ϕ�} exists we have, for any �φ ∈ �H,

�φ =
∞
∑

�=1
c� �ϕ�, c� = 〈 �ϕ� | �φ 〉, (16.58)

in the sense of Eq. (16.53) with

�φn =
n
∑

�=1
c� �ϕ�, c� = 〈 �ϕ� | �φ 〉. (16.59)

An infinite-dimensional Hilbert space may not be separable.37

Hilbert spaces relevant to quantum mechanics are all separable.

From now on all Hilbert spaces are assumed to be separable.

Since every Cauchy sequence in a finite-dimensional scalar

product space converges they are automatically Hilbert spaces.

The situation in infinite-dimensional spaces is different. Take the

example of the set C (�) of continuous functions on the interval
� = [0, 2 ]. Cauchy sequences in this space may not converge to

members of C (�). A sequence of continuous functions can easily

converge to a discontinuous function which lies outside C (�). We
can illustrate this by an example. Let n0 be a large positive integer
and let n = n0, n0 + 1, n0 + 2, . . . be a sequence of integers. Let

fn(x) be a sequence of continuous real-valued functions defined on
� which are zero for x ∈ [0, 1 − 1/n] and rise linearly to reach the
value 1 at x = 1 and then maintains the value 1 for x ∈ (1, 2]. We

can write down an expression of fn(x) as follows38:

fn(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

fn(x) = 0, x ∈ [0, 1− 1/n]
fn(x), rises linearly from 0 to 1

for x ∈ (1− 1/n, 1)
fn(x) = 1, x ∈ [1, 2 ]

. (16.60)

37Fano p. 271 for a counter example.
38Fano p. 251.
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The function is shown in the following diagram:

1

11 − 1/n 20

Figure 16.2 A function in C (�).

The sequence { fn(x) } is a Cauchy sequence. Intuitively we can see
that this sequence of functions would converge to the step function

fs(x) =
{

0, x ∈ [0, 1)
1, x ∈ [1, 2] , (16.61)

which is discontinuous and lies outside C (�). It follows that the
corresponding vector space �C (�) is not a Hilbert space.

To obtain a Hilbert space we must go to a large set of functions.

The following examples of Hilbert spaces serve to illustrate the

situation39:

E16.2.2(1) The space �L2(�) To enlarge C (�) in order to arrive
at a Hilbert space we need to include discontinuous functions

so that all Cauchy sequences of functions within the larger set

do converge within the set. The set L2(�) in E16.1.2.6(3) also

proves to be insufficiently large.40 As pointed out in §4.2.1 and

§4.2.2 Riemann integrable functions lack the desired convergence
property. Lebesgue-integrable functions do possess the convergence

property required for the formation of a Hilbert space. Hence, it

is �L2(�) which constitutes a Hilbert space. The space also admits
countable bases, e.g., we have the set of vectors �ϕ� in Eq. (12.29)

forming an orthonormal basis in �L2(�). It follows �L2(�) is a

separable Hilbert space.

E16.2.2(2) The space �L2(Ca) This is the Hilbert space defined by

the square-integrable functions defined on a circle Ca of radius r = a.
The circle is coordinated by polar coordinates θ . The space �L2(Ca)
39These examples are described in §16.1.2.7, §16.1.2.8 and §16.1.2.9.
40L2(�) and L2(�) are introduced in §16.1.2.
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corresponds to functions of θ which are square-integrable with

respect to the angular position variable θ . This space is separable,

e.g., the following functions

ϕ�(θ) := 1√
2π

ei�θ , � = 0, ±1, ±2, . . . (16.62)

define an orthonormal basis { �ϕ�} for �L2(Ca).
E16.2.2(3) The space �L2(Su) This is the Hilbert space defined

by the set L2(Su) of square-integrable functions defined on a unit
sphere Su . This space is separable, e.g., there is an orthonormal basis
defined by a well-known set of orthonormal functions known as the

spherical harmonics which are functions of the angle variables θ

and φ. Spherical harmonics are specified by two related indices �

andm�, i.e.,
41

Y�,m�
(θ , ϕ), � = 0, 1, 2 · · · ; m� = 0, ±1, ±2, · · · . (16.63)

The two indices �, m� are related by −� ≤ m� ≤ �. These functions

are a product of an exponential function of ϕ and a trigonometric

function of θ , i.e., they are of the form exp(im�ϕ)× F�,m�
(sin θ , cos θ)

as shown by the following examples42:

Y0,0(θ , ϕ) := 1√
4π

, (16.64)

Y1,−1(θ , ϕ) :=
√

3

8π
e−iϕ sin θ , (16.65)

Y1,0(θ , ϕ) :=
√

3

4π
cos θ , (16.66)

Y1,1(θ , ϕ) := −
√

3

8π
eiϕ sin θ . (16.67)

Using the integral for the scalar product in Eq. (16.44) one can verify

that these functions are orthonormal. The vectors in �L2(Su) defined
by these functions are denoted by �Y�,m�

. We shall also refer to these

vectors as spherical harmonics.

41Merzbacher p. 248. See §36.1.2.
42See Q36(1) and Zettili p. 293 more examples and for the expressions in Cartesian
coordinates.
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E16.2.2(4) The spaces �L2(IR) and �L2(IR+) The set L2(IR) in
E16.1.2.6(1) is not big enough to lead to a Hilbert space. It is �L2(IR)
which constitutes a Hilbert space. This space is also separable. A

well-known example of the set of vectors �ϕHn defined by the Hermite
functions ϕHn(x) in Eq. (16.18). This set of vectors is known to form
a complete orthonormal set, i.e., an orthonormal basis, for �L2(IR).43
The space �L2(IR+), rather than L2(IR+) in E16.1.2.6(2), can also be
shown to form a separable Hilbert space.

Infinite-dimensional Hilbert spaces possess many of the prop-

erties of finite-dimensional scalar product spaces. For example, the

Gram-Schmit orthogonalisation procedure can be applied to obtain

an orthonormal basis.44 and Pythagoras theorem also applies.

For easy reference we shall summarise many of the previous

results here. Let { �ϕ�, � = 1, 2, 3, . . .} be an orthonormal basis in �H,
and let �φ and �ψ be two arbitrary vectors for �H. We have the following
easily verified properties:

P16.2.2(1) Expansion in an orthonormal basis:

�φ =
∞
∑

�=1
c� �ϕ�, c� = 〈 �ϕ� | �φ 〉, (16.68)

�ψ =
∞
∑

�=1
d� �ϕ�, d� = 〈 �ϕ� | �ψ 〉. (16.69)

P16.2.2(2) No non-zero vector can be orthogonal to all �ϕ�:

〈 �φ | �ϕ�〉 = 0 ∀ � ⇒ �φ = �0. (16.70)

〈 �φ | �ϕ�〉 = 〈 �ψ | �ϕ�〉 ∀ � ⇒ �φ = �ψ . (16.71)

P16.2.2(3) Pythagoras theorem:

|| �φ ||2 = 〈 �φ | �φ 〉 =
∞
∑

�=1
c∗�c� =

∞
∑

�=1
〈 �φ | �ϕ�〉〈 �ϕ� | �φ 〉. (16.72)

|| �φ ||2 = 1 ⇒
∞
∑

�=1
c∗�c� =

∞
∑

�=1
|c�|2 = 1. (16.73)

43Takhtajan pp. 107–108. Merzbacher p. 88 for an intuitive proof.
44Prugovečki p. 22.
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〈 �φ | �ψ 〉 =
∑

�

c∗�d� =
∞
∑

�=1
〈 �φ | �ϕ�〉〈 �ϕ� | �ψ 〉. (16.74)

P16.2.2(4) Inequalities in Eqs. (6.38), (6.39) apply:

(1) The Schwarz Inequality

|〈 �φ | �ψ 〉| ≤ || �φ || || �ψ ||. (16.75)

(2) Triangle Inequalities

|| �φ + �ψ || ≤ || �φ || + || �ψ ||. (16.76)
∣

∣ || �φ || − || �ψ || ∣∣ ≤ || �φ − �ψ ||. (16.77)

P16.2.2(5) The results on representing vectors by column vectors

presented in §7.5 apply here. The column vectors would generally
have an infinite number of elements.

P16.2.2(6) Theorem 8.1(1) of Riesz can be generalised to an

infinite-dimensional Hilbert space �H by introducing the notion of

continuity of linear functionals on �H:
(1) A linear functional F on �H is a mapping of �H intoC

F : �H → C (16.78)

with the property

F (c1 �φ1 + c2 �φ2) := c1F ( �φ1)+ c2F ( �φ2), c1, c2 ∈ C . (16.79)

(2) A linear functional on �H is continuous if 45

�φn → �φ ⇒ F ( �φn)→ F ( �φ ). (16.80)

(3) A vector �ϕ ∈ �H generates a continuous linear functional on �H
by

F �ϕ( �φ ) := 〈 �ϕ | �φ 〉. (16.81)

We have the following theorem.46

45The convergence, written as �φn → �φ here and in Eq. (16.54), is defined by

Definition 16.2.1(1).
46Jordan p. 13. Prugovečki p. 184.
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Theorem 16.2.2 (1) Riesz Theorem Every continuous linear
functional on a Hilbert space is generated by a unique vector �ϕ by

F �ϕ( �φ ) := 〈 �ϕ | �φ 〉. (16.82)

This theorem establishes a one-to-one correspondence between

continuous linear functionals and vectors in a Hilbert space.

16.2.3 Subspaces, Projections and Projectors

The concepts of subspaces, projections and projectors presented in

§6.4.4, §13.2.1 and §13.2.2 can be generalised here.

Definition 16.2.3(1)

(1) A linear subset �S of �H is said to be a subspace of �H if every
Cauchy sequence within �S converges to a vector in �S .

(2) The orthogonal complement of a subspace �S , denoted by �S⊥, is the
set of all the vectors in �H which are orthogonal to every vector in
�S , i.e.,

�S⊥ = { �ψ ∈ �H : 〈 �ψ | �φ 〉 = 0, ∀ �φ ∈ �S }. (16.83)

To be a subspace the subset �S must be a Hilbert space in its own

right. Not all linear subsets are subspaces. In �L2(IR) the subset
�Ss(IR) corresponding to the set Ss(IR) of Schwartz functions on IR
introduced in §16.1.2.4 is not a subspace. Despite this we still call
�Ss(IR) a Schwartz space.47 The orthogonal complement �S⊥ can be
shown to be a Hilbert space in its own right also, i.e., �S⊥ also forms
a subspace. The results in Eq. (6.59) for �IE 3 and Eq. (13.15) for �VV N

remain true in �H. Every vector �φ in �H can be decomposed uniquely

as a sum of a vector �φ �S in the subspace �S and another vector �φ �S⊥ in
its orthogonal complement �S⊥, i.e.,

�φ = �φ �S + �φ �S⊥ , where �φ �S ∈ �S , �φ �S⊥ ∈ �S⊥. (16.84)

47As in Eq. (16.30) this relationship is conveniently denoted by �Ss(IR) := Ss(IR).
The set of vectors corresponding to the set Ss(IR3) of Schwartz functions on IR3

is denoted by �Ss(IR3)
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The vectors �φ �S and �φ �S⊥ are defined to be the projections of �φ
onto �S and �S⊥, respectively. The projection of any vector onto any
subspace can be described in terms of projectors as in §13.2.2, i.e.,
the decomposition of a vector �φ into projections onto a subspace
�S and its orthogonal complement �S⊥ in Eq. (16.84) may be

regarded as effected by two operators ̂P �S and ̂P �S⊥ defined on every�φ ∈ �H by

̂P �S �φ = �φ �S and ̂P �S⊥ �φ = �φ �S⊥ . (16.85)

Definition 16.2.3(2) The operators ̂P �S and ̂P �S⊥ in Eq. (16.85) are
called the projectors onto �S and �S⊥, respectively.
If { �ϕ j } is an orthonormal basis for �S , then, following Eq. (13.19), we
have

̂P �S �φ =
∑

j

〈 �ϕ j | �φ 〉 �ϕ j . (16.86)

This serves as a defining expression for ̂P �S . A projector is n-
dimensional if the subspace onto which it projects is n-dimensional.
Here n can be infinite.48

If �S is spanned by a single unit vector �ϕ, then �S is one-

dimensional. The associated projector is also called one-dimensional.
In keeping with earlier notation we often express the projector as
̂P �ϕ , or | �ϕ 〉〈 �ϕ |, and call ̂P �ϕ the projector generated by the unit vector
�ϕ. Equation (16.86) can be written as

̂P �S =
∑

j

̂P �ϕ j =
∑

j

| �ϕ j 〉〈 �ϕ j |. (16.87)

Definition 13.2.2(1) on projections, projectors and their order
relation and complete orthogonal families of projectors and subspaces
applies. For example, for a given complete orthonormal set of vectors
�ϕ� in �H we have a corresponding complete orthogonal family
of projectors ̂P �ϕ�

= | �ϕ�〉〈 �ϕ�|. Projectors on a Hilbert space are
idempotent and selfadjoint in the sense of Eq. (13.24), i.e.,

̂P 2�S = ̂P �S and 〈 �φ | ̂P �S �ψ 〉 = 〈 ̂P �S �φ | �ψ 〉 ∀ �φ, �ψ ∈ �H. (16.88)

48See Definition 13.2.2(1).
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Theorem 13.2.2(1) also remains valid, e.g., an operator is a projector

if and only if it is selfadjoint and idempotent, and we also have

̂P �S + ̂P �S⊥ = ̂II . (16.89)

Exercises and Problems

Q16(1) Prove the inequalities in Eq. (16.4).

Q16(2) Verify Eqs. (16.21), (16.22) and (16.23).

Q16(3) Prove the equality

|| �ϕ + �φ ||2 + || �ϕ − �φ ||2 = 2|| �ϕ ||2 + 2|| �φ ||2. (16.90)

Q16(4) Prove the Schwarz inequality in Eq. (16.75).

Q16(5) Prove the triangle inequalities in Eqs. (16.76) and (16.77).

Q16(6) Show that φ(x), ψ(x) ∈ L2(IR) ⇒ φ(x) + ψ(x) ∈
L2(IR) and that the integral on the right hand side of Eq.
(16.28) is finite for functions in L2(IR).

Q16(7) Show that the sequence of vectors �f n defined by functions
fn(x) in Eq. (16.60) is a Cauchy sequence in the space
�C(�).49

Q16(8) Express the spherical harmonics in Eqs. (16.64) to (16.67)
in the Cartesian coordinates x , y, z which are related to
the spherical coordinates r, θ , ϕ by Eq. (16.41).

Q16(9) Show that Eq. (16.81) defines a continuous linear func-

tional on �H.
Q16(10) In the Dirac notation a scalar product is denoted by 〈 �ϕ |

�φ 〉. Dirac formally consider the notation as the product of
two quantities: (1) 〈 �ϕ | called a bra and (2) | �φ 〉 called a
ket. Their product forms a bracket 〈 �ϕ | �φ 〉 which is the
scalar product. Explain howwe can interpret bras and kets
in terms of vectors and linear functionals.50

Q16(11) Explain the concept of separability in a Hilbert space.

49Fano p. 251.
50Jauch p. 32.



Chapter 17

Operators in a Hilbert space �H

17.1 Boundedness, Continuity and Closedness

Operators have already been introduced in finite-dimensional

spaces. Many of the definitions and properties of operators

introduced in Chapters 8, 9 and 13 remain applicable in a Hilbert

space. However, the infinite-dimensional nature of a general Hilbert

space gives rise to some serious complications. An example is the

non-existence of eigenvalues and eigenvectors for some operators.

Another is the emergence of unbounded operators. The idea of

unbounded operators are similar to unbounded functions. As

examples let us consider three different types of functions:

E17.1(1) The function f : IR → IR defined by f (x) = sin x on
the real line IR is bounded in that the values of the function are less
than or equal to a certain fixed number, i.e., sin x ≤ 1 for all x ∈ IR .
E17.1(2) The function f (x) = exp x2 defined on IR has a well-
defined value for all x ∈ IR but these values are not bounded by a
fixed number. The function is then said to be unbounded.

E17.1(3) The function f (x) = 1/x is also unbounded. The

function becomes arbitrarily large as x → 0. An additional problem

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com

http://www.jennystanford.com
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is that the function is not defined on the entire real line, i.e., it is

undefined for x = 0 since it gives a formal value of infinity for

x = 0.1

Similar cases arise for operators in a Hilbert space. There are

operators which are not definable on the entire Hilbert space, like

the function f (x) = 1/x is not defined on the entire real line IR . We
have to consider operators ̂A defined on a domain �D( ̂A ) which is
smaller than �H. Its range �R( ̂A ) can also be smaller than �H, i.e.,

̂A : �D( ̂A ) → �R( ̂A ) (17.1)

where

�D( ̂A ) ⊂ �H, �R( ̂A ) ⊂ �H. (17.2)

From now on we shall confine ourselves to operators defined on a

domain which is a linear subset ofHwith the property

̂A
(

c1 �φ1 + c2 �φ2
)

= c1 ̂A �φ1 + c2 ̂A �φ2 (17.3)

for all �φ1, �φ2 ∈ �D( ̂A ) and c1, c2 ∈ C . These operators are said
to be linear. The quadratic form Q( ̂A, �φ ) generated by ̂A on �H is

defined to be

Q( ̂A, �φ ) := 〈 �φ | ̂A �φ 〉, �φ ∈ �D( ̂A ). (17.4)

An operator cannot act on vectors lying outside its domain. For

example, Eq. (17.3) is undefined if �φ1, �φ2 /∈ �D( ̂A ) and Eq. (17.4)
is also undefined if �φ /∈ �D( ̂A ).

For physical applications we require the domain �D( ̂A ) to be
sufficiently large, i.e., �D( ̂A ) should be almost as large as �H itself in

that there are sequences of vectors inD( ̂A ) converging to every �φ ∈
�H. This requirement is satisfied if D( ̂A ) contains an orthonormal
basis { �ϕ�} of the Hilbert space �H so that for each �φ ∈ �H we can,

following Eqs. (16.46) and (16.56), construct a sequence �φn which
would approach �φ as a limit. Then finite linear combinations of �ϕ�

can approximate any vector with arbitrary accuracy. Such a domain

is said to be dense.

1Infinity is not a number in IR = (−∞,∞). An infinite value is not a well-defined

value.
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Definition 17.1(1) A subset D of �H is said to be dense if there is a
sequence of vectors �φn in �D converging to every vector �φ in �H.
A Hilbert space admits many different dense subsets, and a dense

subset itself may also contain many subsets which are also dense.

Formally �H is a dense subset of �H. For the spaces introduced in
§16.1.2we can show that �C∞c (�) and �AC (�) are both dense in �L2(�),
and �C∞c (IR) and �AC (IR) are both dense in �L2(IR).

From now on all operators are meant to be linear and defined on

a dense domain.

Definition 17.1(2) An operator ̂A is said to be bounded if the set
of values

{

|| ̂A �φ || ∀ �φ ∈ �D( ̂A ), || �φ || = 1
}

(17.5)

is bounded from above. The supremum of the set of values is defined to
be the norm of the operator which is denoted by || ̂A ||, i.e.,2

|| ̂A || := sup
{

|| ̂A �φ || ∀ �φ ∈ �D( ̂A ), || �φ || = 1
}

. (17.6)

The operator is said to be unbounded if it is not bounded.

For bounded operators Eq. (8.15) applies, i.e., we have

|| ̂A �φ || ≤ || ̂A || || �φ ||. (17.7)

The norm || ̂A || of an operator ̂A can be considered to be a measure
of the “size” of the operator. It is the biggest norm of the output

vectors �φ′ = ̂A �φ can reach for all unit input vectors �φ in the

domain of the operator. The identity operator is a trivial example of

bounded operatorwith unit norm. Projectors in §16.2.3 are bounded
operators also of unit norm. The set of bounded operators in a

Hilbert space �Hwill be denoted by ̂B( �H).
The domain of a bounded operator can be uniquely extended

to the entire Hilbert space.3 So, we shall assume from now on

that bounded operators are defined on the entire Hilbert space. All

2See Eq. (8.13) for the norm of operators on �IE 3.
3Roman Vol. 2 p. 507.
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operators defined on a finite-dimensional scalar product space such

as �IE 3 and �VV N are bounded.4

Unbounded operators are generally defined on a domain smaller

than the entire Hilbert space.5 This is because for an arbitrary input

vector the operator may produce an output vector with an infinite

norm. Such an output vector is not amember of the Hilbert space. An

operator can only act on input vectors such that the output vectors

have a finite norm, i.e., we require

�D( ̂A ) :=
{

�φ ∈ H : ̂A �φ ∈ �H
}

. (17.8)

Definition 17.1(3) Let ̂A be an operator in a Hilbert space H and
let { �ϕ�} be an arbitrary sequence of vectors in the domain �D( ̂A ) of ̂A.
Then6

(1) The operator ̂A is said to be continuous if whenever { �ϕ�}
converges to the vector �ϕ in �D( ̂A ) the sequence { ̂A �ϕ�} converges
to the vector ̂A �ϕ in �H, i.e.,

�ϕ� ∈ �D( ̂A ) → �ϕ ∈ �D( ̂A ) ⇒ ̂A �ϕ� → ̂A �ϕ ∈ �H. (17.9)

(2) ̂A is said to be closed if when the sequence { �ϕ�} converges to a
vector �ϕ ∈ �H and the sequence { ̂A �ϕ�} converges to a vector �φ in
�H then the vector �ϕ is in the domain of ̂A and ̂A �ϕ = �φ, i.e.,
�ϕ� → �ϕ ∈ �H, ̂A �ϕ� → �φ ⇒ �ϕ ∈ �D( ̂A ), ̂A �ϕ = �φ.

We know that a real-valued function f (τ ) on IR is said to be

continuous if whenever a sequence of numbers τ� ∈ IR converges
to a number τ ∈ IR the values f (τ�) of the function converges to the

value f (τ ). The concept of continuity of operators is really the same.
Continuous operators are related to boundedness of the operators

as seen in the following theorem:

4Halmos p. 177.
5There are exceptions. An unbounded function, e.g., an unbounded exponential

function ex is defined on the entire real line IR . See Roman Vol. 2 p. 526.
6Generally an unbounded operator is said to be defined in �H while a bounded

operator is defined on �H.
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Theorem 17.1(1) An operator is continuous if and only if it is
bounded.7

The notion of closedness is different. It deduces that the vector �ϕ
should lie in the domain �D( ̂A ) from the convergence of the se-

quences { �ϕ�} and { ̂A �ϕ�}. The above theorem tells us that unbounded

operators are not continuous. However, many unbounded operators

are closed. Closedness is required to establish many useful results,

e.g., Theorem 19.1 (1).

In the next two sections we shall examine some explicit examples

of multiplication and differential operators in Hilbert spaces of

square-integrable functions before proceeding with further general

definitions.

17.2 Multiplication Operators

Consider following examples of multiplication operators in �L2(IR):
E17.2(1) Bounded multiplication operators Let V (x) be a real-
valued bounded function of x ∈ IR , not necessarily continuous. Then
V (x) defines an operator ̂V on �L2(IR) by

̂V �φ := V (x)φ(x) ∀φ(x) ∈ L2(IR). (17.10)

The function V (x)φ(x) is square-integrable whenever φ(x) is

square-integrable and is hence in L2(IR). It follows that the operator
̂V is bounded.8 Two important examples are

E17.2(1)(a) The characteristic functionχ�(x) in Eq. (4.3) has the
value 1 for x in the interval � and the value 0 for x outside �. As a

multiplication operator, denoted by ̂χ�, it can act on every vector
�φ

in �L2(IR) by

̂χ�
�φ := χ�(x)φ(x). (17.11)

The function χ�(x)φ(x) is square-integrable with a norm less than

that of �φ. Hence the operator is bounded.
7Jordan p. 17.
8Roman Vol. 2 p. 533
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E17.2(1)(b) The step function introduced in Eq. (4.9) also defines

a bounded operator on �L2(IR).
E17.2(2) Unbounded multiplication operators If the function

V (x) is unbounded the resulting operator ̂V (x) is unbounded. The
most familiar example is V (x) = x on IR . The corresponding
operator x̂(IR) acts on �φ in �L2(IR) by

x̂(IR) �φ := xφ(x). (17.12)

The square-integrability of φ(x) does not imply that xφ(x) is square-
integrable. It follows that x̂(IR) cannot act on every vector in �L2(IR).
To define the operator x̂(IR) properly we must specify its domain.
In accordance with Eq. (17.8) the multiplication operator x̂(IR) is
defined on the domain9

�D(x̂(IR)) :=
{

�φ ∈ �L2(IR) : x̂(IR) �φ ∈ �L2(IR)
}

. (17.13)

The operator is unbounded. It is the position operator in quantum
mechanics for a particle in one-dimensional motion along the x-axis.
The domain can be more explicitly written in terms of functions in

L2(IR) as

�D(x̂(IR)) := {

φ(x) ∈ L2(IR) : xφ(x) ∈ L2(IR)} . (17.14)

We shall adopt such an explicit expression from now on.

The square of x̂(IR) is defined on a smaller domain, i.e.,

x̂ 2(IR) �φ := x2φ(x). (17.15)

acting on

�D(x̂ 2(IR)) := {

φ(x) ∈ L2(IR) : x2φ(x) ∈ L2(IR)} . (17.16)

These domains, i.e., D(x̂(IR)) and D(x̂ 2(IR)), can be shown to be
dense in in L2(IR).

9The condition x̂(IR) �φ ∈ �L2(IR) requires the functions φ(x) to be such that xφ(x) is
square-integrable over IR .
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We can extend our discussion to the Hilbert space �L2(IR2) where
we have two obvious position operators, i.e.,

x̂(IR2) �φ := xφ(x , y), ŷ(IR2) �φ := yφ(x , y) (17.17)

acting, respectively on

�D(x̂(IR2)) := {

φ(x , y) ∈ L2(IR2) : xφ(x , y) ∈ L2(IR2)} , (17.18)

�D(ŷ(IR2)) := {

φ(x , y) ∈ L2(IR2) : yφ(x , y) ∈ L2(IR2)} . (17.19)

In �L2(IR3) we have three obvious position operators, e.g.,

x̂(IR3) �φ := xφ(x , y, z), (17.20)

acting on

�D(x̂(IR3)) := {

φ(x , y, z) ∈ L2(IR3) : xφ(x , y, z) ∈ L2(IR3)} ,
(17.21)

The other two position operators ŷ(IR3) and ẑ(IR3) are similarly
defined.

It must be emphasised that an operator expression alone does

not define an operator. The operator expression does not even

determine the boundedness or otherwise of an operator. One must

specify the Hilbert space and the domain the operator expression

acts on. For example, the operator expression x acting on the Hilbert
space �L2(�) produces a bounded operator with the entire �L2(�) as
its domain, i.e., we have

x̂(�) �φ := xφ(x), �D(x̂(�)) = �L2(�) (17.22)

since xφ(x) is square integrable over the finite interval�. Similarly
in �L2(Ca) the multiplication operator ̂θ(Ca) is defined on the entire
Hilbert space, i.e., we have

̂θ(Ca) �φ := θφ(θ), D
(

̂θ(Ca)
) = �L2(Ca). (17.23)
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17.3 Differential Operators and Boundary
Conditions

17.3.1 Introduction

A differential operator is defined by a differential expression

together with a domain of differentiable functions in a given Hilbert

space. As an example let us try to define an operator with the

differential expression d/dx in the Hilbert space �L2(�), � = [0, L].
Clearly a differential expression cannot operate on every vector in
�L2(�). When acting on an input vector �φ defined by a function

φ(x) ∈ L2(�) we get an out vector defined by the derivative

dφ(x)/dx . If φ(x) is discontinuous its derivative has an infinite value,
i.e., it is undefined, at the discontinuities, and hence the derivative

is not square-integrable on IR . In other words, the derivative

dφ(x)/dx cannot define a vector in �L2(�), violating the condition
in Eq. (17.8). Hence the differential expression d/dx cannot act
on discontinuous functions. Generally an operator resulting from

a differential expression would also be unbounded. To define an

operator with a differential expression in �L2(�) we must specify
its domain explicitly. There may be other conditions imposed in

addition to differentiability of the functions in the domain. In the

case of operators in �L2(�) a domain is often specified by additional
conditions, known as boundary conditions, imposed on the functions
at the boundaries of the interval�.

A function φ(x) in L2(�) is said to satisfy10:

(1) The Dirichlet boundary condition11 if

φ(0) = φ(L) = 0. (17.24)

(2) The quasi-periodic boundary condition if 12

φ(0) = eiλφ(L), λ ∈ (−π, π]. (17.25)

10Wan p. 284. There are other possible boundary conditions.
11Dirichlet (1805–1859) was a German mathematician.
12Any extension of the values of λ outside the interval (−π, π] would lead to a

repetition of the boundary condition.
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(3) The periodic boundary condition if

φ(0) = φ(L). (17.26)

Boundary conditions are motivated by the desire to obtain some

specific type of operators.We shall list some of these operators in the

next subsection. In §19.3 we shall discuss how boundary conditions

help to obtain selfadjoint differential operators.

17.3.2 Specific operators

We shall introduce a number of operators here. Their properties will

be studied later in §19.2 and §19.3. Many of these operators will be
directly relevant to the formulation of quantummechanics.

17.3.2.1 Differential operators in �L2(�), � = [0, L]

We wish to define an operator in �L2(�) with the differential

expression−i�d/dx .13 We need to specify a domain for −i�d/dx to
act on. Different domains will result in different operators. Generally

we would start with a small but dense subset to serve as a domain.

Different operators are produced by enlarging or modifying the

domain in different ways as seen in the following examples:

E17.3.2.1(1) Smooth functions Consider the set C∞D (�) of

smooth functions on � introduced in E16.1.2.5(1) which vanish at

the boundaries. We can define an operator p̂ �C∞D (�) on the domain

�D( p̂ �C∞D (�)
)

:= �C∞D (�) (17.27)

by

p̂ �C∞D (�)
�φ := −i�dφ(x)

dx
∀φ(x) ∈ C∞D (�). (17.28)

The output vector p̂ �C∞D (�)
�φ is also differentiable and is hence

square-integrable over the interval�, i.e., p̂ �C∞D (�)
�φ ∈ �L2(�).

13The numerical factor −i� does not affect the domain. The imaginary unit i
is included in order to produce selfadjoint operators with real eigenvalues, as

illustrated by E19.3.1(1) and E19.3.1(2) .
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E17.3.2.1(2) Absolutely continuous function Since the operator

involves only a first order differentiation we can enlarge the domain

to once-differentiable functions. The biggest set of such functions is

the set AC (�) of absolutely continuous functions on� introduced in

E16.1.2.2(1). These functions are differentiable almost everywhere

in�. However, the derivative of an arbitrary function in AC (�) may
not be continuous and bounded, and hence it may not be square-

integrable over the interval �. It follows that we have to settle for

a subset of AC (�) consisting of functions such that their derivatives
are square integrable, i.e., we have an operator p̂ �AC (�) acting on the
domain14

�D( p̂ �AC (�)
)

:=
{

φ(x) ∈ AC (�) : dφ/dx ∈ L2(�)
}

(17.29)

by

p̂ �AC (�) �φ := −i�
dφ(x)
dx

. (17.30)

This domain turns out to be too big for many applications. Further

conditions need to be imposed in order to produce useful operators.

For example, we can impose various boundary conditions. Each

boundary condition would lead to a distinct operator as shown in

the following examples:

E17.3.2.1(2)(a) The Dirichlet boundary condition15 We can

define an operator p̂D(�) acting on the domain �D( p̂D(�)
)

consisting of vectors corresponding to functions in φ(x) ∈ AC (�)
which also satisfy

φ(0) = φ(L) = 0 and
dφ(x)
dx

∈ L2(�) (17.31)

by

p̂D(�) �φ := −i�dφ(x)dx
. (17.32)

14Fano pp. 279–280. Akhiezer and Glazmann Vol. 1 p. 106. Wan p. 115.
15Akhiezer and Glazmann Vol. 1 p. 106. Reed and Simon Vol. 1 p. 254, pp. 257–259.

The subscript D indicates the imposition of the Dirichlet boundary condition in Eq.
(17.24).
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E17.3.2.1(2)(b) Quasi-periodic boundary condition16 We can

define a family of differential operators p̂λ(�), one for each value
of λ ∈ (−π, π], with an operator expression −i�d/dx acting on the
domain �D( p̂λ(�)

)

consisting of vectors corresponding to functions

in AC (�) which also satisfy

φ(0) = eiλφ(L) and
dφ(x)
dx

∈ L2(�) (17.33)

by

p̂λ(�) �φ := −i�dφ(x)dx
. (17.34)

E17.3.2.1(2)(c) Periodic boundary condition17 This is a special

case of the quasi-periodic boundary condition when we have λ =
0 in Eq. (17.33). Explicitly we have an operator p̂λ=0(�) acting
on the domain �D( p̂λ=0(�)

)

consisting of vectors corresponding to

functions in AC (�) which also satisfy

φ(0) = φ(L) and
dφ(x)
dx

∈ L2(�) (17.35)

by

p̂λ=0(�) �φ := −i�dφ(x)dx
. (17.36)

The operators p̂λ(�) and p̂λ=0(�) are different from p̂D(�). Note
that the notation for the operators, e.g., p̂λ=0(�), incorporates
the domain automatically. The notation also shows that different

operators are generated by the same differential expression acting

on different domains. The fact that these operators possess different

properties will be demonstrated in §19.2 and §19.3.

17.3.2.2 Differential operators in �L2(Ca)
E17.3.2.2(1) Functions on Ca such as the set of absolutely

continuous functions AC (Ca) are functions of the angular position
variable θ introduced in §16.1.2.8. We can define a differential

16Akhiezer and Glazmann Vol. 1 p. 109. The subscript λ indicates the imposition of

the quasi-periodic boundary condition in Eq. (17.25).
17Fano p. 282.
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operator with an operator expression −i�d/ds = −i�d/adθ acting
on functions on the circle satisfying the periodic boundary condition

shown in Eq. (16.39), i.e., we have an operator p̂(Ca) defined on the
domain �D( p̂(Ca)

)

consisting of vectors corresponding to functions

φ(θ) in AC (Ca) which also satisfy18

φ(0) = φ(2π) and
dφ(θ)
dθ

∈ L2(Ca) (17.37)

by

p̂(Ca) �φ := − i�a
dφ(θ)
dθ

. (17.38)

Since θ = 0, 2π refer to the same point in the circle the

requirement for all the functions to be single-valued on the circle

leads to the periodic boundary conditions.

E17.3.2.2(2) If we ignore the single-valuedness requirement we

can adopt the quasi-periodic boundary conditions to introduce

a family of differential operators p̂λ(Ca), one for each value of

λ ∈ (−π, π], acting on the domain �D( p̂λ(Ca)
)

consisting vectors

corresponding to functions satisfying19

φ(0) = eiλφ(2π) and
dφ(θ)
dθ

∈ L2(Ca) (17.39)

by

p̂λ(Ca) �φ := −i� 1a
dφ(θ)
dθ

. (17.40)

Functions in Eq. (17.39) are not single-valued on the circle, i.e., φ(θ)

has two different values at the point on Ca specified by θ = 0 since

this coincides with the point on Ca specified by θ = 2π .

18Martin pp. 46–47. Wan p. 481.
19These operators are useful for certain physical systems. See Wan p. 490. Without
the single-valuedness requirement functions on Ca are like functions on an interval
of θ ∈ [0, 2π] rather than on a circle, i.e., these functions are similar to the functions
in Eq. (17.33). Multi-valued functions are related to a path space formulation of
quantummechanics (seeWan pp. 637–657).
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17.3.2.3 Differential operators in �L2(Su)
The situation is similar to �L2(Ca). Here we have differential

expressions like ∂/∂θ and ∂/∂ϕ. Let AC (∂/∂ϕ, Su) denotes the set
of functions φ(θ , ϕ) on the unit sphere Su which are absolutely

continuous in ϕ. We can define an operator ̂Lz(Su) with the operator
expression −i�∂/∂ϕ acting on the domain �D(̂Lz(Su)

)

consisting

of vectors corresponding to functions in AC (∂/∂ϕ, Su) which also
satisfy

φ(θ , 0) = φ(θ , 2π) and
∂φ(θ , ϕ)

∂ϕ
∈ L2(Su) (17.41)

by

̂Lz(Su) �φ := −i� ∂φ(θ , ϕ)

∂ϕ
. (17.42)

This operator can be identifiedwith the z-component orbital angular
momentum operator, hence the subscript z.20

17.3.2.4 Differential operators in �L2(IR+)
E17.3.2.4(1) We can define an operator p̂ �C∞c (IR

+) on the domain
�C∞c (IR+) of vectors corresponding to the set C∞c (IR+) of smooth
functions ψ(x) of compact support on IR+ by21

p̂ �C∞c (IR
+) �ψ := −i�dψ(x)

dx
. (17.43)

E17.3.2.4(2)We can define a new operator p̂D(IR+) on a bigger do-
main, i.e., a domainD

(

p̂D(IR+)
)

consisting of vectors corresponding

to absolutely continuous functionsψ(x) in L2(IR+)which also satisfy
the Dirichlet boundary condition at x = 0 and

dψ(x)
dx

∈ L2(IR+) (17.44)

20See §27.4.
21Smooth functions of compact support on IR+ are introduced in E16.1.2.5(2).

The subscript �C∞c of the operator tells us that the domain consists of vectors

corresponding to functions of compact support in C∞c (IR+).
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by

p̂D(IR+) �ψ := −i�dψ(x)
dx

. (17.45)

TheDirichlet boundary condition at x = ∞ is automatically satisfied

since all functions in L2(IR+) vanish at infinity.

E17.3.2.4(3) We can also go one step further to drop the Dirichlet

condition at x = 0 to obtain a still bigger domain to define a

new operator p̂(IR+) on the domain �D( p̂(IR+)) consisting vectors
corresponding to absolutely functionsψ(x) in L2(IR+), i.e., functions
in L2(IR+) ∩ AC (IR+),22 which also satisfy the condition in Eq.

(17.44) by

p̂(IR+) �ψ := −i�dψ(x)
dx

. (17.46)

17.3.2.5 Differential operators in �L2(IR)
E17.3.2.5(1) We can define an operator p̂ �C∞c (IR) acting on the
domain �C∞c (IR) corresponding to the set C∞c (IR) of smooth functions
φ(x) of compact support on IR by23

p̂ �C∞c (IR)
�φ := −i�dφ(x)

dx
. (17.47)

E17.3.2.5(2) It is desirable to go beyond �C∞c (IR) since most

functions we will encounter in physical applications are not of

compact support. A natural extension is to include the set Ss(IR) of
Schwartz functions on IR .24 The Schwartz space �Ss(IR) is a subset of
�L2(IR) corresponding to all the functions in Ss(IR). We can define an
operator p̂ �Ss (IR) on the domain �Ss(IR)25

p̂ �Ss (IR) �φ := −i�
dφ(x)
dx

∀φ(x) ∈ Ss(IR) (17.48)

22AC (IR+) is the set of absolutely continuous functions on IR+ introduced in

E16.1.2.2(2).
23Smooth functions of compact support on IR are introduced in E16.1.2.5(3).
24See E16.1.2.3(5).
25The subscripts �Ss indicate the restriction to the Schwartz space �Ss(IR).
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E17.3.2.5(3) We can have a new operator p̂(IR) acting on a still
bigger domain �D( p̂(IR)) defined by functions in the set26

D( p̂(IR)) =
{

ψ(x) ∈ L2(IR) ∩ AC (IR) : dψ(x)
dx

∈ L2(IR)
}

(17.49)

by

p̂(IR) �ψ := −i�dψ(x)
dx

. (17.50)

The Dirichlet boundary condition at infinities are automatically

satisfied.

17.3.2.6 Differential operators in �L2(IR2) and �L2(IR3)
E17.3.2.6(1)27 We can define an operator p̂x �C∞c on

�C∞c (IR2) by

p̂x �C∞c (IR
2) �φ := −i�∂φ(x , y)

∂x
. (17.51)

We can similarly define another operator p̂y �C∞c (IR
2) on �C∞c (IR2).

E17.3.2.6(2) We can have a new operator p̂x(IR2) acting on a
bigger domain �D( p̂x(IR2)

)

defined by functions ψ(x , y) in �L2(IR2)
which are absolutely continuous in x which also satisfy the condition
∂ψ(x , y)/∂x ∈ L2(IR2) by28

p̂x(IR2) �ψ := −i�∂ψ(x , y)
∂x

. (17.52)

Similarly we can define another operator p̂y(IR2).

E17.3.2.6(3) We can define an operator p̂x �C∞c (IR
3) on the domain

�C∞c (IR3) by

p̂x �C∞c (IR
3) �φ := −i�∂φ(x , y, z)

∂x
, (17.53)

Similarly we have operators p̂y �C∞c (IR
3) and p̂z �C∞c (IR

3) on �C∞c (IR3).

26AC (IR) is the set of absolutely continuous functions on IR in E16.1.2.2(3).
27See Eqs. (24.65).
28Wan p. 117.
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E17.3.2.6(4) We can have a new operator p̂x(IR3) acting on a

bigger domain �D( p̂x(IR3)
)

defined by functionsψ(x , y, z) in �L2(IR3)
which are absolutely continuous in x which also satisfy the condition
∂ψ(x , y, z)/∂x ∈ L2(IR3) by

p̂x(IR3) �ψ := −i�∂ψ(x , y, z)
∂x

. (17.54)

Similarly we can define p̂y(IR3) and p̂z(IR3).

17.4 Algebraic Operations of Operators

The algebraic operations introduced for operators on �IE 3 in §8.2.2
apply equally to bounded operators on �H. For unbounded operators
the situation becomes complicated because different operators act

on different domains.

Let ̂A and ̂B be two operators with domains �D( ̂A ) and �D(̂B ),
respectively. Then we have the following algebraic operations:

1. Scalar Multiplication

̂A′ = c ̂A, c ∈ C ⇔ ̂A′ �φ := c( ̂A �φ ) ∀ �φ ∈ �D( ̂A ). (17.55)

2. Addition ̂A + ̂B is defined on the domain

�D( ̂A + ̂B ) := �D( ̂A ) ∩ �D(̂B ) (17.56)

by

( ̂A + ̂B ) �φ := ̂A�φ + ̂B �φ ∀ �φ ∈ �D( ̂A ) ∩ �D(̂B ). (17.57)

3. Multiplication ̂A ̂B is defined on the domain

�D( ̂A ̂B ) :=
{

�φ : �φ ∈ �D(̂B ), ̂A �φ ∈ �D( ̂A )
}

(17.58)

by

( ̂A ̂B) �φ := ̂A(̂B �φ ). (17.59)

An example is the operator ̂A 2 which would act on a smaller domain

than that of ̂A, as demonstrated in Eq. (17.16).
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4. Equality ̂A = ̂B if

�D( ̂A ) = �D(̂B ) = �D and ̂A �φ = ̂B �φ ∀ �φ ∈ �D. (17.60)

The following comments help to clarify the above definitions:

C17.4(1) The operator ̂A + ̂B can only act on vectors belonging

to both �D( ̂A ) and �D(̂B ), i.e., it cannot act on vectors lying outside
the intersection of �D( ̂A ) and �D(̂B ).
C17.4(2) In the product ̂A ̂B the operator ̂A does not act directly
on ̂B; ̂A acts on the vector ̂B �φ. This is why �φ must first be in the

domain of ̂B and then ̂B �φ must be in the domain of ̂A. As an example
consider the operators x̂(IR) in Eq. (17.12) and p̂(IR) in Eq. (17.50)
in the Hilbert space �L2(IR). The product operator ̂C = p̂(IR)x̂(IR)
has an operator expression (d/dx) (x). However, p̂(IR) does not
operate directly on x̂(IR) since x̂(IR) is an operator in its own right,
i.e., (d/dx) does not act on x in the above operator expression.

We must let ̂C act in accordance with the multiplication rule in

Eq. (17.59):

(1) Let x̂(IR) operate on �φ to arrive at a vector �ψ defined by the

new function ψ(x) = xφ(x). In the expression ψ(x) = xφ(x)
the variable x is longer an operator.

(2) Next let p̂(IR) act on �ψ by p̂(IR) �ψ := −i�d/dx(xφ(x)).
In other words, we have

̂C �φ = p̂(IR)
(

x̂(IR) �φ
)

:= −i� d
dx

(

xφ(x)
)

= −i�
((

d
dx
x
)

φ(x)+ x
(

d
dx

)

φ(x)
)

= −i�
(

φ(x)+ x
dφ(x)
dx

)

= −i�
(

1+ x
d
dx

)

φ(x). (17.61)

When restricted to an appropriate domain, e.g., the Schwartz

space �Ss(IR), the result can be conveniently written as29

29See Eqs. (17.80) to (17.82).
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p̂(IR)x̂(IR) = −i�+ x̂(IR) p̂(IR), (17.62)

or
(

d
dx

)

(

x
)

= 1+ x
d
dx
. (17.63)

C17.4(3) While the domain becomes smaller after a number of

algebraic operations it can remain dense. We shall assume this to

be true in all our discussions.

17.5 Invertible Operators

This is an extension to our previous study into inverses and

invertible operators on �IE 3 in §8.2.2. We shall give a definition
of inverse operators applicable to both bounded and unbounded

operators in a Hilbert space.

Definition 17.5(1) An operator ̂A is said to be invertible if it maps
its domain �D( ̂A ) onto its range �R( ̂A ) in a one-to-one manner, i.e.,30

�φ1 �= �φ2 ⇒ ̂A �φ1 �= ̂A �φ2 ∀ �φ1, �φ2 ∈ D( ̂A ). (17.64)

We can then define the inverse ̂A−1 of ̂A to be the operator acting on
the domain �D( ̂A−1) = �R( ̂A ) by

̂A−1 �ψ := �φ ∀ �ψ ∈ �R( ̂A ) such that �ψ = ̂A �φ, (17.65)

or more directly by 31

̂A−1 ̂A �φ := �φ ∀ �φ ∈ �D( ̂A ). (17.66)

The following theorem is similar to Theorem 8.2.2(1) for finite-

dimensional spaces.

Theorem 17.5(1) An operator ̂A with domain �D( ̂A ) and range
�R( ̂A ) is invertible if and only if the zero vector �0 is the only vector

30Note that very vector �ψ ∈ �R( Â ) has a vector �φ ∈ �D( Â ) such that Â �φ = �ψ .
31Naimark Part 1 pp. 27–28.
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mapped onto the zero vector by ̂A, i.e.,

�φ ∈ �D( ̂A ), ̂A �φ = �0 ⇒ �φ = �0. (17.67)

This theorem can be established in the same way as the correspond-

ing discussion in §8.2.2. The followings are some useful comments.

C17.5(1) If ̂A is invertible then the inverse operator is unique and
that ̂A itself is the inverse of ̂A−1, i.e., we have

(

̂A−1
)−1 = ̂A. (17.68)

C17.5(2) The inverse of a bounded operator is not necessarily

bounded.32 As an example consider themultiplication operator x̂(�)
acting on �L2(�) defined by Eq. (17.22) for an � = [0, L]. This
operator is invertible since

x̂(�) �φ := xφ(x) = 0 ⇒ �φ = �0. (17.69)

The inverse is given by

x̂(�)−1 �φ := 1

x
φ(x), (17.70)

which is unbounded. An example of a bounded multiplication

operator and its unbounded inverse in �L2(IR) is the pair
e−x̂

2/2 and ex̂
2/2. (17.71)

C17.5(3) An operator expression alone cannot determine

whether an operator is invertible or not as illustrated by examples

below.

(1) Consider the operator p̂ �C∞D (�) in
�L2(�) defined by Eq. (17.28).

We have

p̂ �C∞D (�)
�φ := −i�dφ(x)

dx
= 0 ⇒ φ(x) = a, (17.72)

which is a constant not necessarily zero. Since a constant

function φ(x) = a �= 0 ∀x ∈ � corresponds to a non-zero

vector in �L2(�) the operator p̂ �C∞D (�) in �L2(�) is not invertible.

32Roman Vol. 2 p. 500.
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Intuitively we can see that since different constant functions

are mapped to the zero vector by p̂ �C∞D (�) the inverse mapping
would not be single-valued, i.e., the inverse mapping wouldmap

the zero vector to all these different constant functions making

it impossible to define an inverse operator.

(2) The operator p̂ �C∞c (IR) in
�L2(IR) defined by Eq. (17.47) also

satisfies Eq. (17.72). However, a constant function φ(x) = a �=
0 ∀x ∈ IR is not square-integrable over the range (−∞,∞).

So it does not correspond to a vector in �L2(IR). It follows that
p̂ �C∞c (IR) in

�L2(IR) is invertible by Theorem 17.5(1).

C17.5(4) The equality shown in Eq. (8.23) holds only in special

cases or in a restricted domain. Generally we may even have ̂A−1 ̂A
and ̂A ̂A−1 operating on different domains.33 It follows that we may
have

̂A−1 ̂A �= ̂A ̂A−1. (17.73)

17.6 Extensions and Restrictions of Operators

Definition 17.6(1) Let ̂A be an operator defined on a dense
domain �D( ̂A ) in a Hilbert space �H. Let �Dext( ̂A ) and �Dres( ̂A ) be two
dense subsets of �H such that �Dres( ̂A) ⊂ �D( ̂A ) ⊂ Dext( ̂A ).34

(1) The operator ̂Aext defined on the domain �Dext( ̂A ) satisfying the
condition

̂Aext �φ = ̂A �φ ∀φ ∈ �D( ̂A ) (17.74)

is called an extension of ̂A to �Dext( ̂A ), a relation is denoted by

̂A ⊂ ̂Aext or ̂Aext ⊃ ̂A. (17.75)

33Roman Vol. 2 p. 493. Jauch p. 34.
34 �Dres( Â ) is a subset of �D( Â ) which is a subset of �Dext( Â ). All these are assumed to
be linear subsets.
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(2) An operator ̂Ares defined on the domain �Dres( ̂A )

̂Ares �φ = ̂A �φ ∀ �φ ∈ �Dres( ̂A ) (17.76)

is called the restriction of ̂A to �Dres( ̂A ). This relation is denoted
by by ̂Ares ⊂ ̂A.35

(3) A subset �D of �D( ̂A ) is said to be invariant under the operator
̂A if

̂A �φ ∈ �D ∀ �φ ∈ �D. (17.77)

While an extension ̂Aext acts in the same way as the operator ̂A
on the domain �D( ̂A ) of ̂A a restrction ̂Ares acts in the same way
as the operator ̂A only on the restricted domain �Dres( ̂A ). Many
examples of restrictions and extensions of operators have already

been presented in §17.3.2. For example, p̂ �C∞c (IR) and p̂ �Ss(IR)
acting, respectively on �C∞c (IR) and �Ss(IR) in Eqs. (17.47) and (17.48)
are restrictions of the operator p̂(IR) in Eq. (17.50). Conversely
p̂(IR) is an extension of p̂ �C∞c (IR) and p̂ �Ss (IR).
It is often easier to choose a smaller domain to carry out some

operations. For example, ̂A may have a restriction ̂Ares to a domain
Dres( ̂A ) which is invariant under its operations. Then we can carry
out any algebraic operations of ̂Ares on �Dres( ̂A ), e.g., ̂A 2

res can

meaningfully operate on �Dres( ̂A ).36 The following examples serve to
illustrate this situation.

E17.6(1) �C∞c (IR) and �Ss(IR) are invariant under p̂(IR) since
the derivative of a smooth function of compact support or rapid

decrease on IR is again a smooth function of compact support or

rapid decrease on IR . In contrast the domain �D( p̂(IR)) in Eq. (17.49)
is not invariant under the operator p̂(IR).

E17.6(2) �C∞c (IR) and �Ss(IR) are invariant under the position

operator x̂(IR) in Eq. (17.12).We can define two restrictions, x̂ �C∞c (IR)

35The relationship between an operator and its restriction or extension should not

be confused with the order relationship between projectors given by Definition

13.2.2(2).
36This may not be true on the original domain D( Â ), e.g., the domain of Â 2 is
generally not equal to �D( Â ), as seen in Eq. (17.16).
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and x̂ �Ss (IR), of x̂(IR) acting on the domains �C∞c (IR) and �Ss(IR),
respectively.

Technically and intuitively it is easier to introduce an operator

on a smaller domain, and then extend it to act on a bigger domain.

This is why quantisation schemes in quantummechanics often start

by defining an operator, e.g., p̂ �C∞c (IR), on a small domain, and then
extend the domain to obtain the desired operator, e.g., p̂(IR).37

17.7 Commutation Relations

Let us follow the construction of the commutator of two bounded

operators in Eq. (8.19) to define the commutator of two possibly

unbounded operators ̂A and ̂B in a Hilbert space to be ̂A ̂B − ̂B ̂A
with the notation [ ̂A, ̂B ], i.e., we have

[ ̂A, ̂B] := ̂A ̂B − ̂B ̂A. (17.78)

The domain of ̂A ̂B may well differ from that of ̂B ̂A.38 This causes
complications in manipulating commutators. Generally it would not

be correct to write down equalities like

̂A ̂B = ̂B ̂A or [ ̂A, ̂B ] = ̂0, (17.79)

since the domain of both sides of the equations may not agree.

There are many cases where two operators ̂A and ̂B may possess
a common dense domain �D which is invariant under the operation

of both ̂A and ̂B . We can then perform any algebraic operations of ̂A
and ̂B on �D. For example, the operators p̂ �Ss (IR) and x̂ �Ss (IR) in �L2(IR)
have �Ss(IR) as a common dense domain which is invariant under
both p̂ �Ss (IR) and x̂ �Ss (IR). The commutator [ x̂ �Ss (IR), p̂ �Ss (IR) ] is well-
defined on �Ss(IR), and we have, following Eq. (17.63),

[ x̂ �Ss (IR), p̂ �Ss (IR) ] �φ =: −i�
(

x
d
dx
− d
dx

x
)

φ(x)

= −i�φ(x) ∀φ(x) ∈ Ss(IR). (17.80)

37Wan pp. 252–255.
38Jauch pp. 42–43. Akhiezer and Glasmann Vol. 1 pp. 31–32. Wan p. 102.
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In terms of operators we have39

[ x̂ �Ss (IR), p̂ �Ss (IR) ] ⊂ i� ̂II (IR), (17.81)

namely [ x̂ �Ss (IR), p̂ �Ss (IR) ] is a restriction of the identity operator
which is defined on the entire �L2(IR). This relation is can be

rewritten as40

[ x̂ �Ss (IR), p̂ �Ss (IR) ] = i� ̂II �Ss (IR). (17.82)

It is common to write41

[ x̂(IR), p̂(IR) ] = i� ̂II (IR). (17.83)

Since this is so widely used we shall also adopt this usage in

this book when dealing with commutation relations such as those

of the orbital angular momentum operators in §27.4, with the

understanding that the equality holds in an appropriate dense

subset of the Hilbert space such as �C∞c (IR3) or �Ss(IR3). In
some specific cases we have to specify the domain of operation of

the commutator explicitly. Formal calculations can lead to erroneous

results. An example relating to the uncertainty relation in §28.3.3
will illustrate this point.

The problems with domains make it difficult to give a general

definition of the commutativity of two arbitrary unbounded oper-

ators in a Hilbert space �H. Fortunately such a general definition is
not necessary for our purposes. All we need is to have a definition of

the commutativity in three cases:

Case (1) commutativity of two bounded operators ̂B1, ̂B2 Our

previous definition given by Eq. (8.20) applies. There is no problem

defining their products ̂B1 ̂B2 and ̂B2 ̂B1 since all operators are

defined on the entire Hilbert space. We have

̂B1 ̂B2 − ̂B2 ̂B1 = ̂0 or ̂B1 ̂B2 = ̂B2 ̂B1. (17.84)

In other words, if ̂B1 and ̂B2 commute then ̂B1 ̂B2 = ̂B2 ̂B1.

39Here ÎI (IR) is the identity operator on �L2(IR).
40Here ÎI �Ss (IR) is the restriction of ÎI (IR) to the Schwartz space �Ss(IR).
41This is incorrect, as pointed out by Jauch p. 43. See also Eq. (27.154).
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Case (2) commutativity of a bounded operator ̂B and an unbounded
oeprators ̂A This is defined below.

Definition 17.7(1)42 A bounded operator ̂B is said to commute
with a possibly unbounded operator ̂A if ̂A ̂B is an extension of ̂B ̂A,
i.e.,

̂B ̂A ⊂ ̂A ̂B . (17.85)

To appreciate this definition we observe that

(1) The domain �D(̂B ̂A ) of the product operator ̂B ̂A is the same as
�D( ̂A ) of ̂A.

(2) The domain �D( ̂A ̂B ) of the product operator ̂A ̂B is generally not

the same as �D( ̂A ), i.e.,

�D( ̂A ̂B ) :=
{

�φ ∈ �H : ̂B �φ ∈ �D( ̂A )
}

, (17.86)

where �φ is not neccessarily in �D( ̂A ).
(3) Equation (17.85) means that ̂B ̂A is a restriction of ̂A ̂B:

(a) The domain �D(̂B ̂A ) is smaller than or equal to �D( ̂A ̂B ). This
requires

�φ ∈ �D( ̂A ) ⇒ ̂B �φ ∈ �D( ̂A ). (17.87)

(b) On �D(̂B ̂A ) = �D( ̂A ) the two operators, i.e., ̂A ̂B and ̂B ̂A, are
the same, i.e.,

(

̂B ̂A − ̂A ̂B
) �φ = �0 or ̂B ̂A �φ = ̂A ̂B �φ (17.88)

for all �φ ∈ �D( ̂A) for which ̂B �φ ∈ �D( ̂A).
(c) Applications of this type of commutativity can be found in

Theorems 17.9(1) and 20.7(1), and in §27.9.

Case (3) commutativity of unbounded selfadjoint operators This

will be discussed in §20.6, after a detailed study of unbounded

selfadjoint operators.

42Akhiezer and Galzman Vol. 1 p. 31. Jauch p. 42.
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17.8 Adjoints of Operators

For bounded operators in a Hilbert space the simple condition for

the definition of their adjoints in Eq. (8.33) applies. The properties

listed in Eqs. (8.38) to (8.41) also remain true. For unbounded

operators the condition in Eq. (8.33) cannot be applied. To establish

a general definition of selfadjoint operators we have to define the

adjoint of an operator first.

Let ̂A be a possibly unbounded operator defined on a dense

domain �D( ̂A ) in a Hilbert space �H. Let �ψ ∈ �H such that

(1) There exists another vector �ψ ′ ∈ �H satisfying the following

condition:

〈 �ψ | ̂A �φ 〉 = 〈 �ψ ′ | �φ 〉 ∀ �φ ∈ �D( ̂A ). (17.89)

Note that the above equality has to hold for all the vectors �φ in

the domain of ̂A.

(2) The vector �ψ ′ is unique to �ψ , i.e., there are no other vectors
which can satisfy the above condition for the given �ψ .

It can be shown that for an operator ̂A defined on a dense domain

there are vectors �ψ having the two properties listed above. Let { �ψ }
be the set of all vectors in �H satisfying the above two conditions. The

unigue relation between �ψ and �ψ ′ enables us to define an operator
to act on the set { �ψ }, i.e., we can define a new operator, denoted by
̂A†, acting on the domain �D( ̂A†) := { �ψ } by43

̂A† �ψ := �ψ ′ ∀ �ψ ∈ �D( ̂A†). (17.90)

We can rewrite Eq. (17.89) in terms of this new operator as

〈 �ψ | ̂A �φ 〉 = 〈 ̂A† �ψ | �φ 〉 ∀ �φ ∈ �D( ̂A ) and ∀ �ψ ∈ �D( ̂A†). (17.91)

In �L2(IR) an explicit expression for Eq. (17.91) is
∫ ∞

−∞
ψ∗(x)φ′(x) dx =

∫ ∞

−∞
ψ ′∗(x)φ(x) dx , (17.92)

where ̂A �φ := φ′(x) and ̂A† �ψ := ψ ′(x).

43Prugovečki p. 187.
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Definition 17.8(1)

(1) The adjoint of an operator ̂A defined on a dense domain is the
operator ̂A† defined by Eq. (17.90).

(2) An operator is selfadjoint if it is equal to its adjoint.44

Generally the domain of the adjoint operator is not necessarily

dense. If ̂A is bounded then the condition in Eq. (8.33) applies, i.e.,

Eq. (17.91) becomes45

〈 �ψ | ̂A �φ 〉 = 〈 ̂A† �ψ | �φ 〉 ∀ �φ, �ψ ∈ �H. (17.93)

The adjoint operation possesses the following properties:

P17.8(1) The adjoint ̂A† exists if �D( ̂A ) is dense.46 From now

on we will confine ourselves to operators whose adjoints are also

defined on a dense domain.

P17.8(2) Equations (8.39) and (8.33) apply, i.e., we have47

(c ̂A)† = c∗ ̂A†, ( ̂A−1)† = ( ̂A†)−1. (17.94)

P17.8(3) If ̂A is bounded then:

(1) The adjoint ̂A† is bounded and ̂A†† = ̂A.48

(2) Equations (13.3) and (13.4) remain valid, i.e.,49

(a ̂A + b̂B)† = a∗ ̂A† + b∗ ̂B†. (17.95)

( ̂A ̂B)† = ̂B†
̂A†. (17.96)

These equations are not satisfied for unbounded operators as seen

in some of the properties listed below.

44This agrees with Definition 9.4.1(1).
45Roman Vol. 2 pp. 518–519. The adjoint of a bounded operator is bounded.
46All the operators in this book are assumed to be defined on a dense domain. We do

sometimes state this assumption explicitly to highlight its importance.
47Akhiezer and Glasman Vol. 1 p. 80. Here c ∈ C .
48Weidman p. 68. Roman Vol. 2 p. 519.
49Weidman p. 73. Riesz and Nagy p. 301. Here a, b ∈ C . For unbounded operators
these results may not hold.
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P17.8(4) If ̂A is a restriction of ̂B then ̂A† is an extension of ̂B†,

i.e.,

̂A ⊂ ̂B ⇒ ̂A† ⊃ ̂B† (17.97)

P17.8(5) The adjoint of ̂A†, i.e., ̂A†† = ( ̂A†)†, is an extension of ̂A,
i.e.,50

̂A ⊂ ̂A††. (17.98)

P17.8(6) The adjoint ̂A † of an operator ̂A is closed and51

̂A†† = ̂A ⇔ ̂A is closed. (17.99)

P17.8(7) When ̂A and ̂B are unbounded we have52

(a ̂A + b̂B)† ⊃ a∗ ̂A† + b∗ ̂B†. (17.100)

( ̂A ̂B)† ⊃ ̂B†
̂A†. (17.101)

Generally the sum of two densely defined operators may not even

be densely defined. In other words, the adjoint of the sum of two

unbounded operatorsmay not exist. In physical applicationswemay

encounter operators with more favourable properties such that Eq.

(17.101) becomes an equality.53

P17.8(8) A selfadjoint operator ̂A must satisfy

〈 �ψ | ̂A �φ 〉 = 〈 ̂A �ψ | �φ 〉 ∀ �φ, �ψ ∈ �D( ̂A). (17.102)

on account of Eq. (17.91). This is a necessary but not sufficient

condition for selfadjointness for unbounded operators.54 As before

selfadjoint operators possess many desirable properties. The situa-

tion can be complicated when dealing with unbounded selfadjoint

operators.55 For example, the sum of two unbounded selfadjoint

50Akhiezer and Glasman Vol. 1 pp. 80, 96.
51Fano p. 278.
52See Eqs. (35.23) and (35.24) for an example.
53See examples in Eqs. (27.82) and (35.9).
54See also Eq. (19.1). This condition is related to symmetric operators in Definition
19.1(1), and is hence known as is known as the symmetry condition.

55We shall return to examine unbounded selfadjoint operators in more details in

Chapters 18 and 20.
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operators is not necessarily selfadjoint because of Eq. (17.101). For

unbounded operators this poses severe challenges when it comes

to the problem of quantisation in quantum mechanics.56 There

are cases where we can still establish a selfadjoint sum of two

unbounded selfadjoint operators. The sum ̂A + ̂B is defined on the
domain D( ̂A) ∩ D(̂B) by definition.57 It may be possible to find
a selfadjoint extension to ̂A + ̂B .58 In physical applications an
appropriate selfadjoint extension can be taken to be the selfadjoint

sum of ̂A and ̂B . An example is given in §36.1.1 on the quantisation
of orbital angular momentum operators.

17.9 Reduction of Operators

In addition to extending and restricting an operator we may also

be able to reduce an operator. We start by extending the concept of

invariant subsets of an operator in Definition 17.6(1) to subspaces.

Definition 17.9(1) A subspace �S of �H is said to be invariant under
an operator ̂A if

�φ ∈ �S ∩ �D( ̂A ) ⇒ ̂A �φ ∈ �S . (17.103)

The subspace is referred to as an invariant subspace of ̂A.

Every vector �φ in �S which is also in �D( ̂A ) can be acted on by ̂A. If
the output vector ̂A �φ for every input vector �φ ∈ �S ∩ �D( ̂A ) is again
in �S then the subspace is said to be invariant under ̂A. Note that �S
being an invariant subspace of ̂A does not imply that its orthogonal

complement �S⊥ is also an invariant subspace of ̂A.

Definition 17.9(2)59 A subspace �S of �H is said to be a reducing
subspace of ̂A if

(1) the subspace �S and its orthogonal complement �S⊥ are both
invariant under ̂A, and

56See Chapter 27 on quantisation and Wan §3.3.
57See Eq. (17.56).
58A selfadjoint extension is an extension which is selfadjoint (see §19.3).
59Akhiezer and Glasman Vol. 1 p. 82. Roman Vol. 2 p. 572. Weidman pp. 127–128.

Smirnov p. 559–562.
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(2) the domain of ̂A is invariant under the projector ̂P �S , onto the
subspace �S , i.e.,60

̂P �S �φ ∈ �D( ̂A ) ∀ �φ ∈ �D( ̂A ). (17.104)

The operator ̂A is then said to possesses a reducing subspace.

The following comments aim to clarify the above definition:

C17.9(1) For a bounded operator ̂A the condition in Eq. (17.104)
is redundant since �D( ̂A ) = �H. An obvious example is that a

subspace �S is a reducing subspace of its associated projector ̂P �S .

C17.9(2) For an unbounded operator ̂A the condition in Eq.

(17.104) ensures that the projection of every vector in �D( ̂A ) onto
�S can be acted on by ̂A.
C17.9(3) If �S is a reducing subspace of ̂A then its orthogonal

complement �S⊥ is also a reducing subspace of ̂A, i.e.,61

�φ ∈ �D( ̂A ), ̂P �S �φ ∈ �D( ̂A ) (17.105)

⇒ �φ − ̂P �S �φ ∈ �D( ̂A ) (17.106)

⇒ ̂P �S⊥ �φ =
(

̂II − ̂P �S
) �φ ∈ �D( ̂A ). (17.107)

C17.9(4) The properties stated in C17.9(2) and C17.9(3) enable

us to reduce ̂A into the sum of two operators which also act on the

domain �D( ̂A), i.e., we have62

̂A = ̂A �S + ̂A �S⊥ , where ̂A �S := ̂A ̂P �S , ̂A �S⊥ := ̂A ̂P �S⊥ , (17.108)

because

̂A = ̂A
(

̂P �S + ̂A �S⊥
)

= ̂A ̂P �S + ̂A ̂P �S⊥ , (17.109)

Here ̂A �S and ̂A �S⊥ can act on �D( ̂A ) on account of Eqs. (17.105) and
(17.107).

60Projectors in a Hilbert space are defined by Definition 16.2.3(2).
61Note thatD( Â ) is a linear subset.
62The concept of reduction can be appreciated when we discuss a direct sum

decomposition of Hilbert spaces and operators in §24.1.2.
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Definition 17.9(3)

(1) An operator ̂A is said to be reducible if it possesses a reducing
subspace �S . The two operators defined by

̂A �S := ̂A ̂P �S and ̂A �S⊥ := ̂A ̂P �S⊥ (17.110)

are called the parts of ̂A in �S and in �S⊥, respectively. The
subspace is also said to reduce the operator.

(2) An operator ̂A is said to be irreducible if it does not possess a
reducing subspace.63

The following theorem help to determine if an operator is reducible

or not.64

Theorem 17.9(1)

(1) A subspace �S reduces an operator ̂A if and only if ̂A commutes
with the projector ̂P �S onto �S .

(2) A subspace �S which reduces an operator ̂A also reduces its
adjoint ̂A† if ̂A and ̂A† have the same domain, i.e., if �D( ̂A ) =
�D( ̂A†).

(3) A subspace �S reduces a bounded selfadjoint operator ̂A if and
only if �S is invariant under ̂A.

(4) If subspace �S reduces a bounded selfadjoint operator ̂A then its
parts ̂A �S in �S and ̂A �S⊥ in �S⊥ are also selfadjoint.

If �S reduces ̂A its orthogonal complement �S⊥ also reduces ̂A. It
follows that ̂A would also commute with ̂P �S⊥ . Since ̂A commutes
with ̂P �S and ̂P �S⊥ we can rewrite ̂A �S and ̂A �S⊥ as

̂A �S := ̂P �S ̂A ̂P �S and ̂A �S⊥ := ̂P �S⊥ ̂A ̂P �S⊥ . (17.111)

It is useful to extend the concept of reducibility or otherwise to a

set of two or more operators.65

63We exclude trivial cases, i.e., the subspace containing only the zero vector and the

whole Hilbert space.
64Roman Vol. 2 pp. 572–577. Weidman pp. 127–128.
65Jordan pp. 67–69.
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Definition 17.9(4) A subspace is said to reduce a set of operators
if it reduces every operator in the set. A set of operators is said to
be irreducible if there does not exist a subspace which reduces every
operator of the set.

Applications of the notion of reducibility and irreducibily of

operators can be found in §17.10, §27.9 and §35.2.

17.10 Annihilation and Creation Operators

Generally the adjoint ̂A † of an operator ̂A may be very different

from ̂A . They may have different domains, i.e., �D( ̂A ) �= �D( ̂A †),

and they may act differently even on the intersection �D( ̂A ) ∩
�D( ̂A †) of their domains. The following two cases are of particular

interest:

(1) The domain �D( ̂A ) is a subset of �D( ̂A †), and on the intersection

of their domains, i.e., on �D( ̂A ) ∩ �D( ̂A †) which is equal to �D( ̂A),
they act in the same way. In other words, the adjoint ̂A † is an

extension of ̂A, i.e., ̂A ⊂ ̂A†. Operators with these properties

are called symmetric. We shall return to study these operators
in Chapter 19.

(2) They have the same domain, i.e., �D( ̂A ) = �D( ̂A †) but they

act differently in their common domain, i.e., ̂A † �= ̂A on
�D( ̂A ). The best known examples in quantummechanics are the

annihilation and creation operators.

Definition 17.10(1) Let { �ϕn, n = 0, 1, 2, . . .} be an orthonormal
basis in an infinite-dimensional Hilbert space �H.66 The annihilation
operator associated with the basis, denoted by â, is the operator
defined on the domain67

66Roman Vol. 2 p. 528. We number the basis vectors from n = 0 rather than the usual

numbering 1, 2, 3 . . . . Such a numbering is more intuitive for many applications.
67It is a standard convention that annihilation creation operators are denoted by the

lower case letter a. Note that the index n in �ϕn starts with 0.



324 Operators in a Hilbert space �H

�D( â ) =
{

�φ ∈ �H :

∞
∑

n=1
|〈 �ϕn | �φ 〉|2 n <∞

}

(17.112)

by â �φ =
∞
∑

n=1

√
n 〈 �ϕn | �φ 〉 �ϕn−1. (17.113)

We can appreciate the definition with a more intuitive approach68:

(1) Define the action of the operator on the basis vectors by

â �ϕ0 = �0, (17.114)

â �ϕn =
√
n �ϕn−1, ∀n ≥ 1. (17.115)

The operator is said to annihilate �ϕ0.
(2) Define the action of the operator on a general vector �φ by

(a) expressing �φ in terms of the basis vectors as

�φ =
∞
∑

n=0
cn �ϕn, cn = 〈 �ϕn | �φ 〉, (17.116)

(b) and then extending the action of â linearly to �φ, i.e.,

â �φ =
∞
∑

n=0
cn â �ϕn =

∞
∑

n=1

√
n cn �ϕn−1. (17.117)

This agrees with the action given in Eq. (17.113).

(3) For the extension in Eq. (17.117) to be meaningful the output

vector â �φ must have a finite norm, i.e., we must have

|| â �φ ||2 = 〈 â �φ | â �φ 〉

= 〈
∞
∑

n=1

√
n cn �ϕn−1 |

∞
∑

m=1

√
mcm �ϕm−1〉

=
∞
∑

n=1
|cn|2 n <∞, (17.118)

which is the condition imposed on vectors in the domain �D(â) in
Eq. (17.112). This shows that â is an unbounded operator not

capable of acting on every vector in the Hilbert space.

68Jauch p. 44.
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Definition 17.10(2) Let { �ϕn, n = 0, 1, 2, . . .} be an orthonormal
basis in an infinite-dimensional Hilbert space �H. The creation
operator associated with the basis, denoted by â†, is the operator
defined on the domain

�D( â† ) =
{

�φ ∈ �H :

∞
∑

n=1
|〈 �ϕn | �φ 〉|2 n <∞

}

. (17.119)

by â† �φ =
∞
∑

n=0

√
n+ 1 〈 �ϕn | �φ 〉 �ϕn+1. (17.120)

The definition can again be introduced by first letting the operator

acts on the basis vectors �ϕn, i.e.,

â† �ϕn =
√
n+ 1 �ϕn+1, n = 0, 1, 2, . . . , (17.121)

and then extending the action linearly to a general vector �φ. The
same condition has to be imposed on �φ resulting in the operator

â† having the same domain as â.

We shall show that â† is the adjoint of â.69 To verify this we have,
for all �φ, �φ′ ∈ �D(â),

〈 �φ | â �φ′ 〉 = 〈
∞
∑

n=0
cn �ϕn |

∞
∑

n′=0
c′n′ â �ϕn′ 〉 =

∞
∑

n=0,n′=0
c∗n c

′
n′ 〈 �ϕn | â �ϕn′ 〉

=
∞
∑

n=0
c∗n c

′
n+1
√
n+ 1. (17.122)

〈 â† �φ | �φ′ 〉 = 〈
∞
∑

n=0
cn
√
n+ 1 �ϕn+1 |

∞
∑

n′=0
c′n′ �ϕn′ 〉

=
∞
∑

n=0
c∗n c

′
n+1
√
n+ 1. (17.123)

It follows that

〈 â† �φ | �φ′ 〉 = 〈 �φ | â �φ′ 〉, (17.124)

69The notation â† in Definition 17.10(2) anticipates this result.
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showing that â† is the adjoint of â. The operators â† and â share
the same domain but they are not equal.70 It can be shown that:

(1) Both â and â† are closed and irreducible.71

(2) The adjoint â†† of â† is equal to â, i.e., â†† = â on account of
Eq. (17.99). In other words â and â† are the adjoint of each
other.

The following properties can be readily verified:

P17.10(1) The operators â and â† are not selfadjoint.

P17.10(2) The operator ̂N := â†â admits �ϕn as its eigenvectors
corresponding to eigenvalues n.72

P17.10(3) The operators â, â† and ̂N satisfy the following

commutation relations:73

[ â, â† ] = ̂II , [ â†, â ] = −̂II . (17.125)

[ â, ̂N ] = â, [ â†, ̂N ] = −â†. (17.126)

The physical reasoning for the terminology will become clear later

when the operators are applied to physical problems. Annihilation

and creation operators play an important role in quantum theory.74

A number of applications of annihilation and creation operators will

be presented in this book.75

70The annihilation operator is not equal to its adjoint. It is easily verified that 〈 â† �φ |
�φ 〉 �= 〈 �φ | â �φ 〉.

71See §20.7 for a proof of irreducibility.
72This is called a number operator. It is formally defined in Definition 19.1(4). It is
also selfadjoint by Theorem 19.1(1). For the domain of N̂ see solution to Q17(5) in
Exercises and Problem for Chapter 17.

73It is sufficient to verify these commutation relations on the basis vectors �ϕn
using Eqs. (17.114), (17.115) and (17.121). Strictly speaking these commutation

relations should be written as [ â, â† ] ⊂ ÎI , [ â† , â ] ⊂ − ÎI . Here and elsewhere ÎI
will denote the identity operator in the Hilbert space involved.

74The operator â is also known as a lowering operator since it lowers the numbering
of the basis vectors. Its adjoint is also known as a raising operator since it does the
opposite.

75The importance of creation and annihilation operators is such that there is book

with the title Creation and Annihilation Operators (by Avery).
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Exercises and Problems

Q17(1) Show that every linear operator on a finite-dimensional

Hilbert space is bounded.76

Q17(2) Show that projectors in a Hilbert space are bounded with

norm 1.

Q17(3) Are projectors invertible? Are they reducible?

Q17(4) Verify that the spherical harmonics given by Eqs. (16.64)
to (16.67) are eigenfunctions of the operator ̂Lz(Su) in Eq.
(17.42), i.e.,

−i� ∂Y�,m�
(θ , ϕ)

∂ϕ
= m�� Y�,m�

(θ , ϕ), (17.127)

or

̂Lz(Su)�Y�,m�
= m��

�Y�,m�
. (17.128)

Q17(5) Prove properties P17.10(1), P17.10(2) and P17.10(3) for
a pair of operators â and â† in Definitions 17.10(1) and
17.10(2).

Q17(6) Find the domain of the operator ̂N := â†â.

Q17(7) Let { �ϕn, n = 0, 1, 2, . . .} is an orthonormal basis for a given
Hilbert space. Show that the vector

��z = exp
(− 1

2
|z|2 )

∞
∑

n=0

zn√
n!
�ϕn, z ∈ C , (17.129)

is the eigenvector of the annihilation operator â associated
with the orthonormal basis defined by Eqs. (17.114) and

(17.115) corresponding to the eigenvalue z. Show also that

the vector ��z is normalised.

Finally show that

〈 ��z | ̂N ��z〉 = | z |2, (17.130)

where ̂N = â†â.

76Halmos p. 177.
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Chapter 18

Bounded Operators on �H

Bounded operators on aHilbert space �H havemany of the properties

of operators defined on �VV N . For example, Theorem 13.1(1) and

Corollary 13.1(1) apply, e.g., for bounded operators we have

〈 �φ | ̂A �φ 〉 = 〈 �φ | ̂B �φ 〉 ∀ �φ ∈ �H ⇒ ̂A = ̂B . (18.1)

An immediate application is that

〈 �φ | ̂A �φ 〉 = 〈 �φ | �φ 〉 ∀ �φ ∈ �H ⇒ ̂A = ̂II . (18.2)

These results tell us that bounded operators on �H can also be

characterised by the quadratic forms they generate on �H. There are
important bounded operators on H which we shall consider in this

chapter.

18.1 Selfadjoint Operators and Projectors

Bounded selfadjoint operators are defined by the following selfad-

jointness condition:

〈 �ψ | ̂A �φ 〉 = 〈 ̂A �ψ | �φ 〉 ∀ �ψ , �φ ∈ �H. (18.3)

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com
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Many properties of selfadjoint operators on �VV N remain true here:

P18.1(1) Definition 13.3.1(1) on positive operators and the result

that bounded positive operators are selfadjoint apply here.1

P18.1(2) For bounded operators adjoint operation satisfies Eqs.

(13.3) and (13.4), i.e., Eqs. (17.100) and (17.101) become equalities.

It follows that the sum of two bounded selfadjoint operators is

selfadjoint, and the product of two bounded commuting operators

is selfadjoint.

Projectors ̂P presented in §16.2.3 are bounded with a norm of

1. They are also selfadjoint since they satisfy the selfadjointness

condition in Eq. (18.3), i.e., projectors are bounded selfadjoint op-

erators. Definitions 13.2.2(1) and 13.2.2(2) and Theorem 13.2.2(1)

on projectors remain valid.

Let { ̂P �ϕ�
} be a complete orthogonal family of projectors on �H.2

Following Eq. (9.50) we can construct many new operators by finite

linear combinations of these projectors, i.e.,

̂A :=
n
∑

�=1
a�
̂P �ϕ�

, a� ∈ IR . (18.4)

These are bounded operators defined on the entire �H. On account
of Eq. (17.95) these operators are also selfadjoint.3 Intuitively one

would expect to be able to extend the above construction to infinite

linear combinations, i.e.,

̂B :=
∞
∑

�=1
b�
̂P �ϕ�

, b� ∈ IR . (18.5)

Such an infinite sum of operators can be understood in a similar way

an infinite sum of vectors in Eq. (16.45) is defined.

Definition 18.1(1) A sequence of bounded operators ̂Bn is said to
converge to an operator ̂B if the sequence of vectors ̂Bn �φ converges to
1Gallone pp. 571–572. Not generally true for unbounded positive operators as

remarked after Definition 19.1(3).
2See Definition 9.3.2(3).
3We can also check that they satisfy the selfadjointness condition in Eq. (18.3).
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the vector ̂B �φ for every vector �φ in the Hilbert space, i.e.,4

lim
n→∞

̂Bn �φ = ̂B �φ ∀ �φ ∈ �H. (18.6)

The operator ̂B is said to be the limit of the sequence.5

The relationship above is often denoted by

̂Bn → ̂B or ̂B = lim
n→∞

̂Bn. (18.7)

To understand Eq. (18.5) we can first introduce a sequence of

operators ̂Bn by

̂Bn :=
n
∑

�=1
b�
̂P �ϕ�

. (18.8)

The operator ̂B is the limit of this sequence.
The discussion on the eigenvalue problem in §8.2.4 and Def-

inition 9.4.4(1) on eigensubspaces and eigenprojectors in remain
valid provided they exist. Spectral theorems 13.3.2(1) and 13.3.2(2)
remain valid for bounded selfadjoint operators possessing a complete
orthonormal set of eigenvectors.6 In a finite dimensional vector

space selfadjoint operators possess eigenvalues corresponding to

a complete orthonormal set of eigenvectors. This is not true in an

infinite-dimensional Hilbert space, not even for bounded selfadjoint

operators. It follows that eigensubspaces and eigenprojectors based

on the concept of eigenvalues and eigenvectors may not exist. Let us

illustrate this with two familiar examples below.

E18.1(1) Themultiplication operator x̂(�) on �L2(�) in Eq. (17.22)
is clearly bounded and is also selfadjoint since it satisfies Eq. (18.3).

Its eigenvalue equation

x̂(�) �ϕ = x0 �ϕ or xϕ(x) = x0ϕ(x), x ∈ � (18.9)

4See Eq. (16.54) for the convergence of a sequence of vectors.
5Roman Vol. 2 p. 512. Wan p. 93. There are different kinds of convergence of an

operator sequence. The definition here is commonly known as strong convergence.
An analogy of Cauchy convergence criterion also applies (seeWeidmann p. 75).
6Roman Vol. 2 p. 536.
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has a formal solution in terms of a Dirac delta function for any

constant x0 ∈ �, i.e., we have7

x δ(x − x0) = x0δ(x − x0). (18.10)

But the delta function is not square-integrable and it does not define

a vector in the Hilbert space �L2(�). In other words x̂(�) does not
possess any eigenvalues and eigenvectors. However, it is useful to

refer to x0 and ϕ(x) in Eq. (18.9) as generalised eigenvalues and
generalised eigenfunctions of x̂(�).8

E18.1(2) A similar situation also exists for unbounded operators.

The operator p̂(IR) in �L2(IR) defined by Eqs. (17.49) and (17.50) is
unbounded. The eigenvalue equation

−i� d
dx

fp(x) = p fp(x), p ∈ IR (18.11)

admits the following plane wave solutions:9

f p(x) = 1√
2π�

e ¯i px , i– = i
�
. (18.12)

Plane waves are not square-integrable and hence are not members

of L2(IR), i.e., they do not define any vectors in �L2(IR). We call them
generalised eigenfunctions of p̂(IR) corresponding to generalised
eigenvalues p.

In a finite-dimensional vector space the spectral theorem

tells us that every selfadjoint operator can be expressed as a

linear combination of its eigenprojectors with the corresponding

eigenvalues as coefficients. This is no longer true in an infinite-

dimensional space. Not having any eigenvalues and eigenvectors

the operator x̂(�) cannot be written as a linear combination of

projectors in the form of Eq. (18.5), i.e., Theorems 13.3.2(1) and

(2) do not apply.10 We shall return to consider these problems in

Chapter 20.

7Wan p. 126.
8Wan p. 126.
9These agree with the plane waves in Eq. (10.23) at t = 0.
10Even if we were to take x0 as an eigenvalue we still have to deal with the fact that x0
has a continuous range of values. This would cause problems in defining the sum in

Eq. (18.5).
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18.2 Density Operators

Let ̂B be a bounded positive operator.11 Let
{ �ϕ�

}

be an orthonormal

basis in �H and let M
̂B be the matrix representation of

̂B in basis
{ �ϕ�

}

. It can be proved that the trace of M
̂B is independent of the

choice of a basis. A different choice of basis, e.g.,
{ �ϕ ′

�

}

, would result

in a different matrix M ′
̂B
for the representation of ̂B with same the

trace, i.e.,

tr
(

M
̂B

)

:=
∑

�

〈 �ϕ� | ̂B �ϕ�〉 =
∑

�

〈 �ϕ ′
� | ̂B �ϕ ′

�〉 = tr
(

M ′
̂B

)

. (18.13)

This summay diverge.12 When it has a finite value the sum turns out

to be an important property of the operator. It is called the trace of
the operator and is denoted by tr (̂B ), i.e.,

tr
(

̂B
)

:=
∑

�

〈 �ϕ� | ̂B �ϕ�〉. (18.14)

Bounded positive operators whose trace is equal to 1 are directly

relevant to quantummechanics, as will be seen in Chapter 31.

Definition 18.2(1) A bounded positive operator ̂D of unit trace,
i.e., tr ( ̂D) = 1, is called a density operator.

Density operators possess the following properties13:

P18.2(1) Density operators are selfadjoint.

P18.2(2) For a bounded operator ̂B the trace of ̂B ̂D is well-

defined and it is also equal to that of ̂D ̂B , i.e.,

tr (̂B ̂D) = tr ( ̂D ̂B). (18.15)

P18.2(3) A one-dimensional projector is a density operator.14

Since one-dimensional projectors are generated by unit vectors we

11See P18.1(1).
12For the identity operator the sum is infinite.
13Reed and Simon Vol. 1 pp. 206–207. Prugovečki pp. 374–392. Jordan pp. 73–78.

Beltrametti and Cassinelli pp. 291–292. See also Blum’s book Density Matrix Theory
and Applications. Density operators are also referred to as density matrices. For
claritywe shall call thematrix representation of a density operator a densitymatrix.

Many of the properties listed are obvious and easily proved.
14It is easy to check that the trace of a one-dimensional projector is 1 and the trace of

a two-dimensional projector is 2 and so on.
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have ̂D = ̂P �ϕ = | �ϕ 〉〈 �ϕ | for some unit vector �ϕ. Let { �ϕ�

}

be an

orthonormal basis with �ϕ1 = �ϕ. Then
(1) The matrix representation D of ̂D = ̂P �ϕ in basis

{ �ϕ�

}

is

diagonal with its first element D11 equal to 1 and all other

elements equal to zero.15 A matrix representation of a density

operator is known as a density matrix, e.g., D is a density

matrix.

(2) Let ̂B be a bounded operator. We can write down the trace of
̂B ̂D directly in terms of �ϕ. Using the basis { �ϕ�

}

introduced in

the item above we can see that

tr (̂B ̂D ) = tr (̂B ̂P �ϕ ) = 〈 �ϕ | ̂B �ϕ 〉. (18.16)

P18.2(4) If a density operator ̂D is a projector then it is a one-

dimensional projector, i.e., ̂D := ̂P �ϕ for some unit vector �ϕ.
P18.2(5) For the sum and the product of two density operators
̂D1 and ̂D2 we have

tr ( ̂D1 + ̂D2) = tr ( ̂D1)+ tr ( ̂D2), (18.17)

tr ( ̂D1 ̂D2) = tr ( ̂D2 ̂D1). (18.18)

P18.2(6) For any given positive real number a and two bounded
operators ̂B1 and ̂B2 we have

tr (a ̂D) = a tr ( ̂D), (18.19)

tr
(

̂D(̂B1 + ̂B2)
) = tr

(

̂D ̂B1
)+ tr ( ̂D ̂B2

)

. (18.20)

P18.2(7) A density operator ̂D can be shown to have a purely

discrete set of eigenvalues ω�. When all the eigenvalues are

nondegenerate they satisfy the following properties:16

0 ≤ ω� ≤ 1 and
∑

�

ω� = 1. (18.21)

15The matrix is of the same form as the matrix representation of the projector P �αz
in Eq. (14.7). For notational simplicity for application in Chapter 31 we denote the

density matrix by D rather than by M
̂D .

16Jordan p. 73. All the eigenvalues being nondegeneratemeans that their correspond-

ing normalised eigenvectors form a complete orthonormal set.
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Theorem 13.3.2(1) applies, i.e., we can express ̂D as a linear

combination of its orthogonal family of eigenprojectors ̂P �ϕ�

generated by the normalised eigenvector �ϕ� corresponding to the

eigenvalue ω�, i.e.,
17

̂D =
∑

�

ω�
̂P �ϕ�

=
∑

�

ω� | �ϕ�〉〈 �ϕ�|, (18.22)

Thematrix representation D of ̂D in basis
{ �ϕ�

}

is diagonal with

ω� as its diagonal elements, i.e.,

D =

⎛

⎜

⎜

⎜

⎜

⎝

ω1 0 0 · · ·
0 ω2 0 · · ·
0 0 ω3 · · ·
· · · · · ·
· · · · · ·

⎞

⎟

⎟

⎟

⎟

⎠

. (18.23)

P18.2(8) Given an orthonormal basis { �ϕ� } in a Hilbert space

together with a set of real numbers w� satisfying Eq. (18.21) we

can construct a density operator using Eq. (18.22).18

P18.2(9) Let ̂D�, � = 1, 2 . . . , n, be a finite set of density
operators, and let w�, � = 1, 2 . . . , n be a set of real numbers

satisfying Eq.(18.21). We call the following sum

̂D :=
n
∑

�=1
w�

̂D� (18.24)

a convex combination of density operators ̂D� with weights w�.

Clearly ̂D is positive, bounded and has a unit trace. In other words, a

convex combination of density operators is again a density operator.

This remains true when n goes to infinity.19 Every density operator
is a convex combination of its eigenprojectors with its eigenvalues

as weights.

17We can still express D̂ in the form of Eq.(18.22) even if there are degeneracies. All

we need to do is to allow some ω� to be the same. The operator can also be written

explicitly in the form given in Theorem 13.3.2(2).
18There is no need for all ω� to be different.
19Beltrametti and Cassinelli p. 6.
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P18.2(10) Given a density operator of the form of Eq. (18.24) we

have

tr (̂B ̂D) =
∑

�

w� tr (̂B ̂D�) ∀̂B ∈ ̂B( �H). (18.25)

In particular, if ̂D� are one-dimensional projectors, i.e., ̂D� =
| �φ�〉〈 �φ�|we have20

tr (̂B ̂D) =
∑

�

w� 〈 �φ� | ̂B �φ�〉, (18.26)

showing that tr(̂B ̂D) is equal to a weighted sum of the quadratic

form 〈 �φ� | ̂B �φ�〉 for vectors �φ�.

P18.2(11) A density operator ̂D assigns a unique set of real

numbers to the set ̂B( �H) of bounded operators ̂B on �H, i.e.,
̂B( �H) �→ IR by ̂B �→ tr (̂B ̂D). (18.27)

Conversely such a set of real numbers determines a unique density

operator in the sense that21

tr (̂B ̂D) = tr (̂B ̂D′) ∀̂B ∈ ̂B( �H) ⇔ ̂D = ̂D′. (18.28)

P18.2(12) Definition 18.2(1) can be applied to define density

operators on a finite-dimensional space �VV N . Density operators

in a two-dimensional space �VV 2 are of particular interest. The

eigenprojectors ̂P �αz and ̂P �βz of the operator
̂Sz in Eq. (14.4) can be

used to construct a density operator in accordance with Eq. (18.24),

e.g., we can have

̂Dz = 1

2
̂P �αz +

1

2
̂P �βz . (18.29)

Using the eigenprojectors of the operator ̂Sx given by Eq. (14.27) we
can similarly construct a density operator, e.g.,

̂Dx = 1

2
̂P �αx +

1

2
̂P �βx . (18.30)

20The projectors are not necessarily orthogonal.
21Jordan pp. 75–76. These numbers have to satisfy certain properties to define a

density operators.
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The two projectors ̂P �αz and ̂P �βz form a complete orthogonal family

of projectors on �VV 2. Similarly the projectors ̂P �αx and ̂P �βx also form
such a family. It follows that we have

̂P �αz + ̂P �βz = ̂II = ̂P �αx + ̂P �βx . (18.31)

where ̂II is the identity operator on �VV 2. It follows that

̂Dz = 1

2
̂II = ̂Dx . (18.32)

Here we have two distinct convex combinations, as expressed in Eqs.

(18.29) and (18.30), giving the same density operator. Using the

matrix representations of the projectors in Eqs. (14.7) and (14.29)

we can see that the matrix representation of both ̂Dz and ̂Dx are
the 2 × 2 identity matrix, apart from the multiplicative constant 1

2
.

This non-unigueness is related to the non-uniqueness of spectral

decomposition of the identity.

P18.2(13) The above example demonstrates an important result:

a density operator may be written as a convex combination of
different sets of orthogonal projectors.

The non-uniqueness of the decomposition of a density operator

is even more general than this. In fact a density operator can

be decomposed into a convex combination of non-orthogonal

projectors.22 The importance of these results in quantum physics

will be discussed in Chapter 31.

18.3 Unitary Operators

Definition 18.3(1)23 A bounded operator ̂U on a Hilbert space �H
with its range �R(̂U ) coinciding with �H is called a unitary operator on
�H if it preserves the norm of all vectors in �H, i.e.,
〈̂U �φ | ̂U �φ 〉 = 〈 �φ | �φ 〉 or ||̂U �φ || = || �φ || ∀ �φ ∈ �H. (18.33)

22Beltrametti and Cassinelli p. 9.
23Akhiezer and Glazman Vol. 1 pp. 72–73. Note that an operator on �H means the

domain of the operator coincides with �H.
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This differs from the Definition 13.4.1(1) in a finite-dimensional

space �VV N by the additional requirement on the range of the

operator. This is because Eq. (13.62), which remains valid here, does

not imply the range of the operatorwould coincidewith �Hwhen �H is

infinite-dimensional. Theorems 13.4.1(1) to 13.4.1(3) apply here,24

e.g., we have

Theorem 18.3(1)25 A bounded operator ̂U on a Hilbert space �H is
unitary if it is invertible with its inverse ̂U −1 equal to its adjoint ̂U †,
i.e., if

̂U † = ̂U −1 or equivalently ̂U †
̂U = ̂U ̂U † = ̂II . (18.34)

Properties P13.4.1(1) to P13.4.1(4) also apply here. In particular the

adjoint of a unitary operator is unitary.26 Definition 13.4.2(1) can

be applied to define unitary transforms of vectors and operators
in a Hilbert space �H. These transformations also possess properties
P13.4.2(1) to P13.4.2(6).

Let �φ ′ be the unitary transform of a unit vector �φ generated by a
unitary operator ̂U , i.e., �φ ′ = ̂U �φ. Then the two projectors

̂P = | �φ 〉〈 �φ | and ̂P ′ = | �φ ′〉〈 �φ ′| = |̂U �φ 〉〈̂U �φ | (18.35)

generated by these two vectors are related by

̂P ′ = ̂U ̂P ̂U † or |̂U �φ 〉〈̂U �φ | = ̂U ̂P ̂U †, (18.36)

since

̂P ′ �φ = 〈 �φ ′ | �φ 〉 �φ ′ = 〈̂U �φ | �φ 〉 ̂U �φ, (18.37)

̂U ̂P ̂U † �φ = ̂U 〈 �φ | ̂U † �φ 〉 �φ = 〈̂U �φ | �φ 〉 ̂U �φ. (18.38)

24The orthonormal bases in Theorem 13.4.1(3) mean countable orthonormal bases

for an infinite-dimensional Hilbert space.
25Weidman p. 86. Roman Vol. 2, p. 554. Fano pp. 287–288. The adjoint Û † is a

bounded operator by P17.8(3). The fact that Û † = Û −1 implies that the inverse
Û −1 is bounded and defined on the entire �H. It follows that the range of Û , which
coincides with the domain of Û −1 , is the entire �H.

26Weidmann pp. 85–86. The inverse of a bounded operator is not necessarily

bounded (see C17.5(2)).
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These results are often symbolically stated in Dirac notation as27

|̂U �φ 〉 = ̂U | �φ 〉, 〈 ̂U �φ | = 〈 �φ | ̂U †, (18.39)

which then lead naturally to

|̂U �φ 〉〈̂U �φ | = ̂U | �φ 〉〈 �φ | ̂U † = ̂U ̂P ̂U †. (18.40)

The expression in Eq. (18.40) can be extended so that for a given

operator ̂A, not necessarily unitary, and a complex numbers c we
have28

〈 c ̂A �φ | = c∗〈 �φ | ̂A†, (18.41)

|c ̂A �φ 〉〈c ̂A �φ | = c∗c ̂A | �φ 〉〈 �φ | ̂A† = c∗c ̂A ̂P ̂A†. (18.42)

Theorem 13.4.3(1) of Stone still applies, subject to certain

restrictions to be discussed in §21.1. We shall study a well-

known example of unitary transformation in �L2(IR), i.e., the Fourier
transformation, in the following section.

18.4 Fourier Transformations in �L2(IR)
18.4.1 Notation and Preliminaries

Let us examine the properties of the generalised eigenfunctions of

the momentum operator p̂(IR),29 i.e., f p(x) in Eq. (18.12). Despite
not being members of L2(IR) we can still meaningfully carry out
a number of formal manipulations on these functions based on

the following well-known relations between plane waves and delta

functions:

(1) Plane waves are orthonormal in the sense that

∫ ∞

−∞
dx f ∗p′′(x) f p′(x) =

1

2π�

∫ ∞

−∞
dx e ¯i(p

′−p′′)x

= δ(p′ − p′′) = δ(p′′ − p′). (18.43)

27See Eqs. (13.21) to (13.23).
28Zettili pp. 85–91.
29See §19.3.4. p̂(IR) is selfadjoint and is a momentum operator in quantum

mechanics.
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(2) The dependence of f p(x) on x and p are the same so that we
also have

∫ ∞

−∞
dp f ∗p (x

′′) f p(x ′) = 1

2π�

∫ ∞

−∞
dp e ¯i(x

′−x ′′)p

= δ(x ′ − x ′′) = δ(x ′′ − x ′). (18.44)

Given a function ϕ(x) on IR we define its Fourier transform by an

integral, known as its Fourier integral, i.e.,

ϕ
∼
(p) :=

∫ ∞

−∞
dx f ∗p (x)ϕ(x)

= 1√
2π�

∫ ∞

−∞
dx e− ¯i px ϕ(x). (18.45)

The above definition makes sense only for functions for which the

above integral exist. There are dense subsets of L2(IR), e.g., C∞c (IR),
for which the Fourier integrals clearly exist since every function

in C∞c (IR) vanishes outside a bounded interval. It is possible to

define the Fourier transform of an arbitrary function in L2(IR) in
two steps: (1) construct integrals of the form given in Eq. (18.45)

over a sequence of finite intervals which diverges to the infinity

interval (−∞,∞), and then (2) take an appropriate limit of the these

integrals. However, we shall not delve into themathematical subtlety

in the definition of the Fourier transforms of an arbitrary function in

L2(IR).30 We shall be content with formal manipulations using delta
functions to demonstrate various properties of Fourier transform

operation using Eq. (18.45), with the knowledge that rigorous proofs

do exist.

The Fourier transform of ϕ(x) is a function of p. We can introduce
the concept of the inverse Fourier transform operation by introducing
the inverse Fourier transform of ϕ

∼
(p) as a function of x defined by

the integral

∫ ∞

−∞
dp fp(x)ϕ∼ (p). (18.46)

30Roman Vol. 2 pp. 557–559.
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Performing the integration we get
∫ ∞

−∞
dp fp(x)ϕ∼ (p)

=
∫ ∞

−∞
dp fp(x)

(∫ ∞

−∞
f ∗p (x

′)ϕ(x ′) dx ′
)

=
∫ ∞

−∞

(∫ ∞

−∞
dp fp(x) f ∗p (x

′)
)

ϕ(x ′) dx ′

=
∫ ∞

−∞
dx ′ δ(x − x ′)ϕ(x ′) = ϕ(x). (18.47)

So, the Fourier transform of ϕ(x) is

ϕ
∼
(p) :=

∫ ∞

−∞
dx f ∗p (x)ϕ(x), (18.48)

and the inverse Fourier transform of ϕ
∼
(p) is

ϕ(x) :=
∫ ∞

−∞
dp fp(x)ϕ∼ (p). (18.49)

By considering the integrals in Eqs. (18.43) and (18.45) as formal

scalar products with the notation 〈 f p′′ | f p′ 〉 and 〈 f p | ϕ〉we get

〈 f p′′ | f p′ 〉 = δ(p′′ − p′). (18.50)

ϕ
∼
(p) = 〈 f p | ϕ〉 (18.51)

and

ϕ(x) =
∫ ∞

−∞
dp ϕ

∼
(p) f p(x), ϕ

∼
(p) = 〈 f p | ϕ〉. (18.52)

We can gain an intuitive understanding of the Fourier transform and

the inverse Fourier transform operation as follows:

(1) When the eigenvectors of an operator form an orthonormal

basis we can express an arbitrary vector in terms of such a set

of eigenvectors using Eq. (16.68).
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(2) Not being a discrete set the generalised eigenfunctions f p(x)
of the momentum operator do not form an orthonormal basis.

It follows that Eq. (16.68) cannot be applied to obtain an

expansion of an arbitrary vector in terms of f p(x).

(3) The inverse Fourier transform defined by Eq. (18.52) does

resemble Eq. (16.68), if we formally consider

(a) the plane waves f p(x) as forming a “continuous orthonor-
mal basis” and,

(b) Eq. (18.52) as an expansion of φ(x) in the “continuous

orthonormal basis” { f p(x), p ∈ IR} in the form of an

integral.

It follows that conceptually the Fourier transform ϕ
∼
(p) is just

the coefficient of expansion of ϕ(x) in terms of the generalised

eigenfunctions f p(x) of the momentum operator and the inverse

Fourier transform is just the expansion of φ(x) in terms of f p(x).31

18.4.2 Fourier transform as unitary transform

18.4.2.1 Coordinate space and momentum space

The Fourier transform ϕ
∼
(p) of a square-integrable function ϕ(x) is

square-integrable with respect to p over the range (−∞,∞) since

∫ ∞

−∞
dp ϕ

∼
∗(p)ϕ

∼
(p) =

∫ ∞

−∞
dx ϕ∗(x)ϕ(x). (18.53)

This result can be formally verified using the properties of delta

functions. Mathematically we can regard ϕ(x) and ϕ
∼
(p) to be

members of the same space L2(IR) since x in ϕ(x) and p in ϕ
∼
(p)

are dummy variables so that both ϕ(x) and ϕ
∼
(p) are just square-

integrable functions on the real line. In terms of our notation which

formally distinguish a function from a vector we shall denote the

vectors in �L2(IR) corresponding to ϕ(x) and ϕ
∼
(p) by �ϕ and �ϕ

∼
,

respectively. The Fourier transform operation can then be regarded

as effected by an operator on �L2(IR), i.e., we can introduce an

31Some authors even refer to the coefficients c� in Eq. (16.68) as Fourier coefficients
(see Prugovečki p. 38).
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operator ̂UF by
32

�ϕ
∼
= ̂UF �ϕ ∀ �ϕ ∈ �L2(IR). (18.54)

Every vector �ϕ
∼
∈ �L2(IR) also has a vector �ϕ associatedwith it through

the inverse Fourier transform, i.e., the range of the transformation

coincides with �L2(IR). In addition we have the preservation of the
norm shown in Eq. (18.53). All thismeans that ̂UF is unitary. In other

words, the Fourier transform operation is a unitary transformation

of �L2(IR). Being unitary the operator is invertible. The inverse

operator ̂U −1F then defines the inverse transform, i.e.,

�ϕ = ̂U −1F �ϕ
∼
. (18.55)

In physical applications it ismore intuitive to consider ϕ(x) and ϕ
∼
(p)

as members of two separate spaces in the following sense:

(1) Consider the set {x ∈ (−∞,∞)} of coordinate values as forming
a space referred to as a coordinate space and denoted simply
by IR .33 Then ϕ(x) is a function on the coordinate space, and
L2(IR) is the set of square-integrable functions on the coordinate
space IR . The vector space corresponding to L2(IR) is denoted by
�L2(IR).

(2) Consider the set {p ∈ (−∞,∞)} of values as forming a space
referred to as a momentum space and denoted by IR∼ , since
p represents the generalised eigenvalues of the momentum

operator p̂(IR).34 Then ϕ
∼
(p) is a function on the momentum

space and L2(IR∼ ) is the set of square-integrable functions on the
momentum space IR∼ , i.e.,

L2(IR∼ ) =
{

ϕ
∼
(p) :

∫ ∞

−∞
|ϕ
∼
(p)|2 dp <∞

}

. (18.56)

The vector space corresponding to L2(IR∼ ) is denoted by �L2(IR∼ ).
(3) The two spaces �L2(IR) and �L2(IR∼ ) are isomorphic. They are

unitarily related by Eqs. (18.54) and (18.55).

32Prugovečki Theorem 4.5 on p. 219.
33Here the term “space” means a set.
34Again the term “space” means a set.
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As an application consider a quantum particle in one-dimensional

motion. In the usual description a quantum state ϕs is described by a

vector �ϕ defined by a square-integrable function ϕ(x) of the position
variable x . These functions are also known as wave functions.
Such a description is known as a coordinate representation. The
position operator takes the form amultiplication operator, i.e., x̂(IR)
defined by Eqs. (17.12) and (17.13), while the momentum operator

acting on the wave function ϕ(x) takes the form of a differential

operator, i.e., p̂(IR) defined by Eqs. (17.49) and (17.50). In view of

the one-to-one correspondence between functions ϕ(x) and their
Fourier transforms ϕ

∼
(p) we can also describe a quantum state in

terms of a function of p, i.e., using the Fourier transform ϕ
∼
(p)

instead of ϕ(x). Such a description of quantum states is known as a

momentumrepresentation. In such amomentum representation a

state corresponds to a function of themomentum variable p, namely
�ϕ
∼
:= ϕ

∼
(p). We shall call �L2(IR) a coordinate representation space

and �L2(IR∼ ) a momentum representation space. Operators in the
momentum representation space are discussed in the next section.

18.4.2.2 Fourier transforms of operators

Fourier transform of operators are performed in the same way as

unitary transform of operators as seen in the following examples:

E18.4.2.2(1) Position operator The Fourier transform of the

position operator x̂(IR) in the coordinate representation space
�L2(IR) is the operator in the momentum representation space �L2(IR∼ )
defined by

x̂∼ (IR∼ ) := ̂UF x̂(IR) ̂U −1F , (18.57)

acting on the domain �D(x̂∼ (IR∼ )) given by the Fourier transform of the

domain �D(x̂(IR)) of x̂(IR). Acting on �ϕ
∼
∈ �D(x̂∼ (IR∼ )) the operator

x̂∼ (IR∼ ) takes the form of a differential operator, i.e.,35

x̂∼ (IR∼ ) �ϕ∼ = ̂UF x̂(IR) ̂U −1F �ϕ
∼
:= i�

d
dp

ϕ
∼
(p). (18.58)

35There is no minus sign in front of i�.
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This can be shown as follows:

x̂∼ (IR∼ ) �ϕ∼ =
(

̂UF x̂(IR) ̂U −1F
)

̂UF �ϕ

= ̂UF x̂(IR)
(

̂U −1F ̂UF

)

�ϕ = ̂UF

(

x̂(IR) �ϕ
)

:= 1√
2π�

∫ ∞

−∞
e− ¯i xp

(

xϕ(x)
)

dx

= 1√
2π�

∫ ∞

−∞

�

−i
d
dp

(

e− ¯i xp
)

ϕ(x)dx

= i�
d
dp

{

1√
2π�

∫ ∞

−∞
e− ¯i xp ϕ(x)dx

}

= i�
d
dp

ϕ
∼
(p). (18.59)

E18.4.2.2(2) Momentum operator The Fourier transform of the

momentum operator p̂(IR) in the coordinate representation space
�L2(IR) is the operator p̂

∼
(IR∼ ) in the momentum representation space

�L2(IR∼ ) given by

p̂
∼
(IR∼ ) := ̂UF p̂(IR) ̂U −1F (18.60)

acting on the domain �D( p̂(IR∼ )) given by the Fourier transform of the

domain �D( p̂(IR)) of p̂(IR). On �ϕ
∼
∈ �D( p̂(IR∼ )) the operator p̂∼ takes the

form of a multiplication operator, i.e.,

p̂
∼
(IR∼ ) �ϕ∼ = ̂UF p̂(IR) ̂U −1F �ϕ

∼
:= p ϕ

∼
(p). (18.61)

We can verify this result by first noting that

p̂
∼
(IR∼ )ϕ̃ =

(

̂UF p̂(IR) ̂U −1F
)

̂UF �ϕ = ̂UF p̂(IR) �ϕ. (18.62)

The expression on the right hand side is defined by the function

1√
2π�

∫ ∞

−∞
dx e− ¯i xp

(

− i� dϕ(x)
dx

)

. (18.63)
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We can evaluate the integral as follows36:

−i� 1√
2π�

{

[

e− ¯i xp ϕ(x)
]∞

−∞
−
∫ ∞

−∞

de− ¯i xp

dx
ϕ(x)dx

}

= −i� 1√
2π�

{

−
∫ ∞

−∞

−i p
�
e− ¯i xp ϕ(x)dx

}

= p
1√
2π�

∫ ∞

−∞
e− ¯i xp ϕ(x)dx = p ϕ

∼
(p). (18.64)

Being unitary a simultaneous Fourier transformation of operators

and vectors preserves quadratic forms and commutation relations:

(1) The quadratic forms generated by x̂(IR) and p̂(IR) are pre-
served, i.e.,

〈 �ϕ | x̂(IR) �ϕ 〉 = 〈 �ϕ
∼
| x̂∼ (IR∼ ) �ϕ∼ 〉, (18.65)

〈 �ϕ | p̂(IR) �ϕ 〉 = 〈 �ϕ
∼
| p̂
∼
(IR∼ ) �ϕ∼ 〉. (18.66)

Explicitly we have

∫ ∞

−∞
ϕ∗(x)xϕ(x) dx =

∫ ∞

−∞
ϕ
∼
∗(p)

(

i�
d
dp

)

ϕ
∼
(p) dp, (18.67)

∫ ∞

−∞
ϕ∗(x)

(

−i� d
dx

)

ϕ(x) dx =
∫ ∞

−∞
ϕ
∼
∗(p) p ϕ

∼
(p) dp.

(18.68)

(2) Commutation relations are preserved, i.e., as in Eq. (13.74) we

have

[ x̂(IR), p̂(IR)] = [ x̂∼ (IR∼ ), p̂∼ (IR∼ )] = i�. (18.69)

Exercises and Problems

Q18(1) The characteristic function χ�(x) of the interval � in

IR defines a multiplication operator ̂χ� on �L2(IR) by Eq.
(17.11). Show that ̂χ� is a projector. Find the eigenvalues

and their corresponding eigenvectors of ̂χ�.

36Note that ϕ(∞) = ϕ(−∞) = 0.
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Q18(2) Show that the multiplication operator x̂(�) on �L2(�) in
Eq. (17.22) is bounded and selfadjoint.

Q18(3) Show that plane waves f p(x) in Eq. (18.12) is not square-
integrable over IR .

Q18(4) Show that

(1) The trace of a projector is equal to the dimension of

the subspace onto which the projector projects.

(2) If a density operator is a projector then it is a one-

dimensional projector.

Q18(5) Show that a convex combination of density operators as

shown in Eq. (18.24) defines a density operator.

Q18(6) Show that the density operator ̂Dz in Eq. (18.29) can be
decomposed in terms of the eigenprojectors ̂P �αy and ̂P �β y

of ̂Sy shown in Eq. (14.38) as

̂Dz = 1

2
̂P �αy +

1

2
̂P �β y

. (18.70)

Q18(7) Find the matrix representations (density matrices) in

basis
{�αz, �βz

}

of the density operators ̂Dz and ̂Dx in Eqs
(18.29) and (18.30).

Q18(8) Show that unitary operators on a Hilbert space are

invertible.

Q18(9) Show that a unitary transformation preserves the trace of

the product operator in Eq. (18.15), i.e.,

tr
(

̂B ̂D
) = tr

(

̂B ′ ̂D′
)

, (18.71)

where ̂B ′ and ̂D′ are the unitary transforms of ̂B and
̂D, respectively generated by a unitary operator ̂U in

accordance with Definition 13.4.2(1).

Q18(10) Show that the unitary transform of a one-dimensional

projector is again a one-dimensional projector.

Q18(11) Verify Eq. (18.53).

Q18(12) Using the expression p and i�d/dp for x̂∼ (IR∼ ) and p̂
∼
(IR∼ )

verify the commutation relation in Eq. (18.69).
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Q18(13) The Fourier transform �ϕ
∼
of �ϕ ∈ �L2(IR) is given by the

following characteristic function on themomentum space:

ϕ
∼
(p) =

⎧

⎨

⎩

0, p ≤ −p0,
1/
√
2p0, p ∈ (−p0, p0],

0, p ≥ p0,
(18.72)

where p0 is a real and positive constant. By performing the
inverse Fourier transform show that the function ϕ(x) ∈
L2(IR) corresponding to the vector �ϕ is given by

ϕ(x) =
√

�

πp0

sin(p0x/�)
x

. (18.73)



Chapter 19

Symmetric and Selfadjoint Operators
in �H

19.1 Definitions and Examples

Definition 19.1(1)1 An operator ̂A defined on a dense domain
�D( ̂A) of a Hilbert space �H is said to be symmetric if it satisfy the
following symmetry condition

〈 �ϕ | ̂A �φ 〉 = 〈 ̂A �ϕ | �φ 〉 ∀ �ϕ, �φ ∈ D( ̂A). (19.1)

By comparing Eqs. (17.91) and (19.1) we can conclude that for ̂A to
be symmetric we must have

(1) the domain of its adjoint ̂A† bigger than or at least equal to that

of ̂A, i.e., �D( ̂A†) ⊃ �D( ̂A), and
(2) its adjoint ̂A† agreeing with ̂A on �D( ̂A).
In other words, we can say that

an operator ̂A is symmetric if it is a restriction of its adjoint
̂A†, i.e., if ̂A ⊂ ̂A†, or we can say that an operator is
symmetric if its adjoint is an extension of itself.

1Akhiezer and Glazman p. 85.
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Many differential operators are symmetric. Some explicit examples

will be presented in §19.2. In �VV N all the operators and their adjoints

are bounded and defined on the entire space. There is not need

to bring in a separate concept of symmetric operators since the

definition would render the operators selfadjoint.2

Symmetric operators have the following properties3:

P19.1(1) If ̂A is symmetric then the quadratic form it generates

on its domain �D( ̂A) is real-valued, i.e.,

〈 �φ | ̂A �φ 〉 ∈ IR ∀ �φ ∈ �D( ̂A). (19.2)

P19.1(2) The converse is also true. i.e., an operator ̂A defined on

a dense domain �D( ̂A) is symmetric if the quadratic form it generates

on its domain �D( ̂A) is real-valued.
P19.1(3) The eigenvalues of a symmetric operators may not exist.

If they do then they are real and eigenvectors corresponding to

different eigenvalues are orthogonal to each other.

The concept of positive operators introduced by Definition

13.3.1(1) on �VV N can be generalised to an infinite-dimensional

Hilbert space �H.
Definition 19.1(2) An operator ̂A in �H is said to be positive if the
quadratic form it generates on �D( ̂A) is real-valued and non-negative,
i.e.,

〈 �φ | ̂A �φ 〉 ∈ IR and 〈 �φ | ̂A �φ 〉 ≥ 0 ∀ �φ ∈ �D( ̂A). (19.3)

Using property CSP11.2.2(1) of scalar product we can show that

positive operators are symmetric, e.g., we have

〈 �φ | ̂A �φ 〉 = 〈 �φ | ̂A �φ 〉∗ = 〈 ̂A �φ | �φ 〉 ∀ �φ ∈ �D( ̂A). (19.4)

But positive operators in �H are not necessarily selfadjoint.4 More

examples of symmetric operators are given in §19.2.

2By comparing Eqs. (19.1) and (13.1).
3Riesz and Nagy pp. 229–230. Weidman p. 72. Wan p. 99.
4In �VV N a positive operator is selfadjoint, as stated in Theorem 13.3.1(1).
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Definition 19.1(3)5 An operator ̂A defined on a dense domain
�D( ̂A) of a Hilbert space �H is said to be selfadjoint if it is equal to
its adjoint.6

For an operator to be selfadjoint we must have �D( ̂A†) = �D( ̂A)
and on this common domain ̂A must agree with its adjoint ̂A†. The

position operators x̂(IR3), ŷ(IR3) and ẑ(IR3) are familiar examples
of unbounded selfadjoint operators in �L2(IR3). Multiplications
operators given by real-valued functions of the position variables

are selfadjoint in �L2(IR3). Some differential operators in �L2(IR3) are
selfadjoint, e.g., the momentum operator p̂(IR) in Eq. (17.50) is

selfadjoint. More examples will be presented in §19.3.
The following properties are obvious:

P19.1(4) Unbounded selfadjoint operators are also symmetric

since they satisfy the symmetric condition in Eq. (19.1).

P19.1(5) Bounded symmetric operators are selfadjoint. It follows

that bounded positive operators are selfadjoint.7

P19.1(6) Because of Eqs. (17.100) and (17.101) the sum of

unbounded selfadjoint operators and the product of two commuting

unbounded selfadjoint operators are not necessarily selfadjoint.8

Selfadjointness is related to closedness as stated below.9

Theorem 19.1(1)10

(1) A selfadjoint operator is closed.
(2) If ̂A is a closed operator then the product ̂A†

̂A is selfadjoint.

This theorem tells us that the square of a selfadjoint operator is

selfadjoint since a selfadjoint operator is closed. Another important

application relates to annihilation and creation operators. From

§17.10 we know that a pair of annihilation and creation operators

5See Definition 9.4.1(1).
6Unbounded selfadjoint operators do not satisfy the selfadjointness condition of

bounded selfadjoint operators given by Eq. (18.3).
7Gallone pp. 571–572.
8See §19.5 for some relevant results.
9See Definition 17.1(3) and P17.8(8) on closed operators.
10Akhiezer and Glazman p. 97.
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â and â† can be defined in terms of an orthonormal basis { �ϕn, n =
0, 1, 2 . . .} in a Hilbert space �H. Both these operators are closed but
not selfadjoint. Their product defined below has many applications.

Definition 19.1(4) Let â and â† be the annihilation and creation
operators associated with a given orthonormal basis { �ϕn, n =
0, 1, 2 . . .}. The operator

̂N = â†â (19.5)

is called the number operator associated with the annihilation and
creation operators â and â†.

This number operator is selfadjoint by Theorem 19.1 (1). A striking

feature of this operator, as suggested by its name, is that it admits

0 and positive integers as its eigenvalues with the basis vectors as

eigenvectors, i.e., we have

̂N �ϕn = n �ϕn, n = 0, 1, 2, . . . . (19.6)

There are no other eigenvalues or eigenvectors, since { �ϕn} is
a complete orthonormal set.11 There are many useful operators

whose eigenvalues are lowered-bounded. We shall give a definition

of such operators.

Definition 19.1(5)12 A selfadjoint operator ̂A is said to be
bounded below if there exists a finite real number M such that the
quadratic formQ( ̂A, �φ ) := 〈 �φ | ̂A �φ 〉 ≥ M || �φ ||2 for all �φ ∈ �D( ̂A).
Many physically important selfadjoint operators are bounded

below.13

Symmetric operators are not necessarily closed. But they are

closable in the sense defined below.

Definition 19.1(6)14 An operator ̂A is said to be closable if it
has extensions which are closed. The smallest extension is called the
closure of the operator which is denoted by Ā.

11See P20.3(5). A new eigenvalue would correspond to a new eigenvector orthogonal
to all �ϕn but no non-zero vector can be orthogonal to all �ϕn .

12Amrein, Jauch and Sinha p. 319.
13These operators have some special properties as illustrated in Theorem 24.2.1(2).
14Akhiezer and Glazman p. 78. Wan p. 89.
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Theorem 19.1(2)15 If ̂A is symmetric then its closure exists and
the closure is equal to the adjoint of the adjoint of ̂A, i.e.,

Ā = ̂A††, (19.7)

and we also have
̂A† = ̂A†††. (19.8)

19.2 Symmetric Differential Operators

Differential operators have been introduced in §17.3. As seen in Eq.
(17.28) the usual procedure is to specify an operator expression,

i.e., a differential expression, and an appropriate set of differentiable

functions as the domain for the operator expression to act on.

Quite often the specification of an intuitively obvious domain would

lead to a symmetric operator which is not selfadjoint. The adjoint

operator would often have the same differential expression but

acting on a bigger domain. We shall illustrate this with several

examples in the following subsections.16

19.2.1 In �L2(�), � = [0, L]

The operator p̂D(�) defined by Eq. (17.32) is symmetric, since for
all �ϕ, �φ ∈ �D( p̂D(�)) we have

〈 �ϕ | p̂D(�) �φ 〉 := −i�
∫ L

0

ϕ(x)∗
dφ(x)
dx

dx . (19.9)

Using integration by parts the integral becomes

−i�
{

ϕ∗(x)φ(x)
∣

∣

L
0
−
∫ L

0

dϕ∗(x)
dx

φ(x) dx
}

= i�
∫ L

0

dϕ∗(x)
dx

φ(x) dx =
∫ L

0

(

− i�dϕ(x)
dx

)∗
φ(x) dx

= 〈 p̂D(�) �ϕ | �φ 〉. (19.10)

It follows that its adjoint p̂ †
D(�) would have a domain

�D( p̂ †
D(�)

)

bigger than or at least equal to �D( p̂D(�)
)

. First we must find

15Prugovečki pp. 355–357. Simon and Reed Vol. 1 p. 253. See Eqs. (17.98) and (17.99).
16Akhiezer and Glazman Vol. 1 pp. 106–111. Roman Vol. 2 pp. 544–549.
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out whether �D( p̂ †
D(�)

)

is actually bigger than �D( p̂D(�)
)

. If so we

must then find the operator expression of p̂ †
D(�) for acting on�D( p̂ †

D(�)
) − �D( p̂D(�)

)

. We cannot simply assume a differential

expression since the part of �D( p̂ †
D(�)

)

lying outside �D( p̂D(�)
)

may

contain non-differentiable functions.

Let �φ ∈ �D( p̂D(�)
)

and �ψ ∈ �D( p̂ †
D(�)

)

. We have

〈 �ψ | p̂D
(

�) �φ 〉 = 〈 p̂ †
D(�)

�ψ | �φ 〉 (19.11)

〈 �ψ | p̂D
(

�) �φ 〉 := −i�
∫ L

0

ψ(x)∗
dφ(x)
dx

dx (19.12)

〈 p̂ †
D(�)

�ψ | �φ 〉 := 〈 �ψ ′ | �φ 〉 =
∫ L

0

ψ ′(x)∗φ(x) dx . (19.13)

Writing ψ ′(x) as an integral, i.e.,17

ψ ′(x) = d
dx

(∫ x

0

ψ ′(y) dy + c
)

, c ∈ C , (19.14)

and using integration by parts and the Dirichlet boundary condition

on φ(x) the integral in Eq. (19.13) can be written as
∫ L

0

ψ ′(x)∗φ(x) dx

=
∫ L

0

{

d
dx

(∫ x

0

ψ ′(y) dy + c
)}∗

φ(x) dx

= −
∫ L

0

(∫ x

0

ψ ′(y) dy + c
)∗ dφ(x)

dx
dx . (19.15)

Compared with Eq. (19.12) we get, for all �φ ∈ D
(

p̂D(�)
)

,

∫ L

0

(

i�ψ(x)+
∫ x

0

ψ ′(y) dy + c
)∗ dφ(x)

dx
dx = 0. (19.16)

This result does not imply that the bracketed term must be zero.

The bracketed term being a constant c′ would satisfy the above

17Prugovečki p. 101. A function which is square-integrable is not necessarily

integrable unless the integration is over a finite range.
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equation,18 i.e., we get

i�ψ(x)+
∫ x

0

ψ ′(y) dy + c = c′, (19.17)

or

−i�ψ(x) =
∫ x

0

ψ ′(y) dy + (c − c′). (19.18)

It follows that ψ(x) is absolutely continuous. Differentiating ψ(x)
with respective to x we get

−i�dψ
dx

= ψ ′(x) ⇒ �ψ(x) = p̂ †
D(�)

�ψ := −i�dψ
dx

. (19.19)

There is no requirement for ψ(x) to vanish at x = 0 and L.
The conclusion is that the adjoint p̂ †

D(�) is defined on a domain

composed of absolutely continuous functions in L2(�) not subject
to the Dirichlet boundary condition, i.e., the adjoint is defined on

�D( p̂ †
D(�)

)

:= {ψ ∈ AC (�) : dψ/dx ∈ L2(�)} (19.20)

by p̂ †
D(�)

�ψ := −i�dψ(x)
dx

. (19.21)

This domain is clearly bigger than �D( p̂D(�)
)

. It follows that

p̂D(�) is symmetric and is not selfadjoint. Its adjoint p̂
†
D(�) is the

operator p̂ �AC (�) given by Eqs. (17.29) and (17.30). The operator
p̂ �C∞0 (�) defined by Eq. (17.28) are similarly symmetric and it is not
selfadjoint. This example highlights a general result that

the adjoint of a differential operator has the same differential ex-
pression acting on a possibly larger set of differentiable functions.19

A similar analysis shows that the adjoint p̂ ††
D (�) of p̂ †

D(�)

coincides with p̂D(�). It follows that p̂D(�) is closed.20

18Fano p. 281. The bracketed term being a constant enables us to perform the

integration resulting in the vanishing of the expression on account of the Dirichlet

boundary condition. Technically we say that the set {dφ(x)/dx : φ(x) ∈ �D( p̂†D(�))}
of functions is not dense in �L2(�).

19Weidman p. 180 Theorem 29. Wan p. 188.
20Fano p. 282.
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19.2.2 In �L2(IR+) and �L2(IR)
The operator p̂ �C∞c (IR

+) defined by Eq. (17.43) is symmetric. The
operator p̂D(IR+) defined on a bigger domain by Eqs. (17.44) and
(17.45) is also symmetric. The Dirichlet boundary condition ψ(0) =
0 at the origin is necessary to make this operator is symmetric. The

operator is not selfadjoint since its adjoint p̂ †
D(IR

+) acts on a still
bigger domain defined by21

{

ψ ∈ L2(IR+) ∩ AC (IR+) : dψ/dx ∈ L2(IR)} (19.22)

by p̂ †
D(IR

+) �ψ := −i�dψ(x)
dx

. (19.23)

The operator is closed since one can show that p̂ ††
D (IR

+) = p̂D(IR+).

Arguments similar to that employed for the operator p̂D(�)
show that the operator p̂ �C∞c (IR) in

�L2(IR) defined by Eq. (17.47) is
symmetric and not selfadjoint. Its adjoint p̂ †

�C∞c
(IR) is the momentum

operator defined by Eqs. (17.49) and (17.50).

19.3 First Order Selfadjoint Differential
Operators

In many cases it is possible to choose a suitable enlargement of

the domain of a symmetric operator to obtain a new operator

with a bigger domain which is selfadjoint operator. The resulting

selfadjoint operator is called a selfadjoint extension of the

symmetric operator. This procedure may produce many different

selfadjoint extensions. There is a standard procedure to obtain

selfadjoint extensions of symmetric operators.22 Here we shall

examine possible selfadjoint extensions of symmetric differential

operators presented in the preceding section.23

21Wan p. 119, p. 126. Akihezer and Glazman Vol. 1 pp. 106–111. Fano pp. 279–284.
22Wan pp. 113–130 for more details and examples. This is directly relevant to the

process of quantisation in quantummechanics for many complex systems.
23Wan p. 119. Akhiezer and Glazman Vol. 1 pp. 106–111. Fano pp. 279–284. Roman

Vol. 2 p. 548
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19.3.1 In �L2(�)
The family of operators p̂λ(�) in Eq. (17.34) are selfadjoint. The
operator p̂λ=0(�) in Eq. (17.36) is also selfadjoint. These operators
form a one-parameter family of selfadjoint extensions of p̂D(�).
To see how the quasi-periodic boundary condition would lead to

selfadjointness let us start by examining the following calculations

for all �ϕ, �φ ∈ �D( p̂λ(�)
)

:

〈 �ϕ | p̂λ(�) �φ 〉
:= −i�

∫ L

0

ϕ(x)∗
dφ(x)
dx

dx

= −i�
{

ϕ(x)∗φ(x)|L0 −
∫ L

0

dϕ(x)∗

dx
φ(x) dx

}

= −i�
{(

ϕ(L)∗φ(L)− ϕ(0)∗φ(0)
)

−
∫ L

0

dϕ(x)∗

dx
φ(x)dx

}

= −i�
(

ϕ(L)∗φ(L)− ϕ(0)∗φ(0)
)

+
∫ L

0

(

− i�dϕ(x)
dx

)∗
φ(x) dx

= −i�
(

ϕ(L)∗φ(L)− ϕ(0)∗φ(0)
)

+ 〈 p̂λ(�) �ϕ | �φ 〉. (19.24)

Since both ϕ(x) and φ(x) satisfy the quasi-periodic boundary

condition in Eq. (17.25) the bracketed term vanishes, i.e.,

ϕ(L)∗φ(L)− ϕ(0)∗φ(0) = 0. (19.25)

The symmetry condition in Eq. (19.1) is satisfied. The operator

p̂λ(�) is therefore symmetric. Since the quasi-periodic boundary
condition is an extension of the Dirichlet boundary condition the

operator p̂λ(�) is an extension of p̂D(�), i.e., p̂D(�) ⊂ p̂λ(�).
Following Eq. (17.97) we have

p̂ †
D(�) ⊃ p̂ †

λ (�) ⇒ �D( p̂†D(�)
) ⊃ �D( p̂†λ(�)

)

. (19.26)

This means that

(1) functions ψ(x) corresponding to vectors �ψ in �D( p̂ †
λ (�)

)

are

absolutely continuous so that Eq. (19.24) remains valid for

every �ψ ∈ �D( p̂ †
λ (�)

)

,24 and

24Eq. (19.24) with ϕ(x) replaced by ψ(x) remains valid since ψ(x) is differentiable.
The domain �D(

p̂†D(�)
)
is given by Eq. (19.20).
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(2) p̂ †
λ (�

)

acting on �ψ agrees with p̂†D(�) acting on �ψ , i.e., we have

p̂ †
λ (�) �ψ = p̂ †

D(�)
�ψ := −i�dψ(x)

dx
. (19.27)

⇒ 〈 p̂ †
λ (�) �ψ | �φ 〉 =

∫ L

0

(

− i�dψ(x)
dx

)∗
φ(x) dx (19.28)

= i�
∫ L

0

dψ(x)∗

dx
φ(x) dx . (19.29)

Performing integration by parts the above integral becomes

i�
(

ψ(L)∗φ(L)− ψ(0)∗φ(0)
)

+
∫ L

0

ψ(x)∗
(

− i�dφ(x)
dx

)

dx .

= i�
(

ψ(L)∗φ(L)− ψ(0)∗φ(0)
)

+ 〈 �ψ | p̂λ(�) �φ 〉. (19.30)

By definition the adjoint p̂ †
λ (�) satisfies the condition

〈 p̂ †
λ (�) �ψ | �φ 〉 = 〈 �ψ | p̂λ(�) �φ 〉 (19.31)

By comparing the above condition with Eq. (19.29) we can conclude

that every �ψ in �D( p̂†λ(�)
)

satisfies that quasi-periodic boundary

condition so that �D( p̂ †
λ (�)

)

and �D( p̂λ(�)
)

coincide, i.e., the

operator p̂λ(�) is selfadjoint.
In a finite-dimensional Hilbert space we know that a selfadjoint

operator possesses a complete orthonormal set of eigenvectors with

a corresponding set of eigenvalues. This property remains true for

some selfadjoint operators in an infinite-dimensional Hilbert space

as seen in the following examples:

E19.3.1(1) The operator p̂λ(�) possesses the following nor-

malised eigenvectors for n = 0, ±1, ±2, . . . , i.e.,

�ϕλ,n(�) := 1√
L
exp

[

i
(

2nπ − λ
L

)

x
]

, x ∈ �, (19.32)

corresponding to the eigenvalues

pλ,n(�) =
(

2nπ − λ
L

)

�. (19.33)
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The fact that the eigenvalues are unbounded shows that these

operators are unbounded.

E19.3.1(2) The operator p̂λ=0(�) possesses the following eigen-
vectors

�ϕλ=0,n(�) := 1√
L
exp

[

i
(

2nπ
L

)

x
]

, n = 0, ±1, ±2, . . . ,
(19.34)

corresponding to eigenvalues

pλ=0,n(�) = 2nπ
L

�. (19.35)

From our knowledge of Fourier series we can deduce that the set of

vectors �ϕλ,n, whether λ is zero or not, form a complete orthonormal

set of �L2(�). These selfadjoint operators can serve as momentum
operators for a particle confined in a box.25

It should be emphasised that:

(1) A different λ implies a different domain and a different operator

with a different set of eigenvalues and eigenvectors.

(2) Neither �ϕλ,n(�) nor �ϕλ=0,n(�) are the eigenvectors of p̂D(�)
since they do not satisfy the Dirichlet boundary condition and

they are hence not in the domain �D( p̂D(�)
)

.26 This illustrates

a fundamental difference between selfadjoint and symmetric

operators, i.e., a symmetric operator which is not selfadjoint

does not possess a complete orthonormal set of eigenvectors.

We cannot go on to define a spectral function and establish

a spectral theorem for such a symmetric operator. This is

why symmetric operators are not used to represent physical

observables in quantummechanics.27

25Schiff pp. 43–50.
26Do not confuse p̂λ=0(�) with p̂ �C∞D (�) defined by Eq. (17.28). The function

ϕλ=0,n(x) does not vanish at the boundary, and hence it is not in C∞D (�).
27It is possible to generalise the orthodox formulation of quantum mechanics to

incorporate some symmetric operators for the description of physical observables.

Wan pp. 395–426.
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19.3.2 In �L2(Ca) and �L2(Su)
The operator p̂(Ca) in �L2(Ca) defined by Eqs. (17.37) and (17.38) is
selfadjoint. It possesses the following eigenvectors28

�ϕn(Ca) := 1√
2π

einθ , n = 0, ±1, ±2, . . . (19.36)

corresponding to the eigenvalues

pn(Ca) = 1

a
n�. (19.37)

In §27.8 we shall see that p̂(Ca) can serve as the momentum

operator for a particle confined to move in the circle Ca .29 These
eigenvectors form a complete orthonormal set in �L2(Ca).

The operators p̂λ(Ca) defined by Eqs. (17.39) and (17.40) are
also selfadjoint with eigenvectors

�ϕλ,n(Ca) := 1√
2π

ei(n−
λ
2π
)θ , n = 0, ±1, ±2, ±3 . . . (19.38)

with corresponding eigenvalues

pλ,n(Ca) = 1

a

(

n− λ

2π

)

�. (19.39)

In �L2(Su) an example is ̂Lz(Su) in Eq. (17.42). This operator

acts on vectors �φ corresponding to functions φ(θ , ϕ) of the angle

variables θ and ϕ. With the periodic boundary condition shown in

Eq. (17.41) this is operator is selfadjoint.30

19.3.3 In �L2(IR+)
The symmetric operator p̂D(IR+) in �L2(IR+) defined be Eq. (19.23)
is closed but it admits no selfadjoint extension.31 This would cause

28The normalisation factor will be 1/
√
2πa if the scalar product in �L2(Ca) is defined

by an integration over the linear position variable aθ instead of the angular position
variable θ in Eq. (16.40).

29Wan pp. 481, 490. Martin pp. 46–47.
30See §36.1.2 for detailed calculation.
31Akhiezer and Glazman Vol. 1 pp. 110–111. Wan pp. 125–127, 172.
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problems if we try to define a momentum operator for motion on

the half line IR+.32 A similar problem arises when we try to define

a radial momentum operator. Explicit expressions are given in Eqs.
(27.146) to (27.148) in §27.10.1.33

19.3.4 In �L2(IR)
In �L2(IR) arguments similar to that employed for the operator p̂λ(�)
in �L2(�) show that the adjoint p̂ †

�C∞c
(IR) of p̂ �C∞c (IR) in Eq. (17.47)

is equal to the operator p̂(IR) defined by Eqs. (17.49) and (17.50),
and the operator p̂(IR) is selfadjoint.34 We call this operator the
momentum operator in �L2(−∞,∞) since this is the momentum
operator in quantum mechanics for a particle in one-dimensional

motion along the x-axis. The selfadjointness of p̂(IR) can be proved
by calculations similar to those in §19.2.1 and §19.3.1.35

19.3.5 In �L2(IR2) and �L2(IR3)
The results for �L2(IR) can be extended to �L2(IR2) and �L2(IR3):

(1) In �L2(IR2) we have a selfadjoint momentum operators p̂x(IR2)
defined Eq. (17.52). Another momentum operator p̂y(IR2) is
similarly defined.

(2) In �L2(IR3) we have a selfadjoint momentum operators p̂x(IR3)
defined by Eq. (17.54). Similarly we can define two more

selfadjoint momentum operators p̂y(IR3) and p̂z(IR3). These
momentum operators satisfy the commutation relation in Eq.

(17.82) with their corresponding position operators x̂(IR3),
ŷ(IR3) and ẑ(IR3).

32This operator is related to themomentumoperator in some superconducting circuit

systems (seeWan and Menzies).
33Richtmyer Vol. 1 pp. 139–140. Wan p. 174. The similarity is due to the fact that in

spherical coordinates (r, θ , ϕ) the radial momentum operator p̂r is a differential
operator of first order in terms of ∂/∂r with radial variable r having a range [0,∞).

As a result p̂r is only symmetric and not selfadjoint.
34Akhiezer and Glazman Vol. 1 p. 111. Fano p. 283.
35The equivalence of Eq. (19.25) can be achieved by choosing φ(x) ∈ C∞c (IR). The
operator p̂ �C∞c (IR) can be shown to be essentially selfadjoint (seeDefinition 19.5(1))
with p̂(IR) as its unique selfadjoint extension (see Hall p. 184).



362 Symmetric and Selfadjoint Operators in �H

19.4 Second Order Selfadjoint Differential
Operators

Second order differential operators can be conveniently generated

from the first order ones, as seen by the following examples:

E19.4(1) In �L2(�) There are two obvious examples. The first

example is the operator p̂ †
D(�) p̂D(�) which is selfadjoint by

Theorem 19.1(1). In accordance with Eq. (17.59) the operator acts

on the domain

{

�φ ∈ �D( p̂D(�)
)

, p̂D(�) �φ ∈ �D
(

p̂ †
D(�)

)

}

. (19.40)

The second example is the operator p̂ 2λ (�), one for each value of λ
including λ = 0. The resulting operators are selfadjoint acting on the

domain

�D( p̂ 2λ (�)
)

:=
{

�φ ∈ �D( p̂λ(�)
)

, p̂λ(�) �φ ∈ �D
(

p̂λ(�)
)

}

. (19.41)

These results have direct physical applications:

(1) The Hamiltonian operator for a particle of mass m confined to

the interval� by an infinite square potential well is given by the

selfadjoint operator36

̂H∞D (�) =
1

2m
p̂ †
D(�) p̂D(�) = −

�
2

2m
d2

dx2
, (19.42)

acting on the domain �D( ̂H∞D (�)
) = D

(

p̂ †
D(�) p̂D(�)

)

. While

p̂D(�) does not admit any eigenvectors because of the Dirichlet
boundary condition the operator ̂H∞D (�) possesses a complete
orthonormal set of eigenvectors

�ϕ∞D,�(�) :=
√

2

L
sin

(

�π

L
x
)

, � = 1, 2, . . . , (19.43)

corresponding to eigenvalues

E ∞D,�(�) =
π 2

�
2

2mL2
�2, � = 1, 2, . . . . (19.44)

36Phillips A.C. p. 66. See also §27.5.
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These eigenvalues are nondegenerate. Note that37

̂H∞D (�) �=
1

2m
p̂ 2D(�). (19.45)

(2) For a particle in a box we can also use the quasi-periodic

boundary condition which will lead to a Hamiltonian38

̂H∞λ (�) =
1

2m
p̂ 2λ (�) = −

�
2

2m
d2

dx2
, (19.46)

acting on the domain D
(

̂H∞λ (�)
) = �D( p̂ 2λ (�)

)

. This Hamilto-

nian shares the same eigenvectors with p̂λ(�), i.e., those given
by Eq. (19.32), with eigenvalues

E∞λ,n(�) =
p2λ,n(�)

2m
= �

2

2m

(

2nπ − λ
L

)2

. (19.47)

For selfadjoint operators possessing a complete orthonormal

set of eigenvetors, e.g., p̂λ(�), ̂H∞D (�) and ̂H∞λ (�), we can define
eigenprojectors in the same way as before, e.g., ̂H∞D (�) has a
complete orthogonal family of eigenprojectors

̂P �ϕ∞D,� = | �ϕ∞D,�(�)〉〈 �ϕ∞D,�(�)|, (19.48)

and a spectral theorem in the form of Theorem 13.3(2) can be

established. We can then proceed to use these operators to set up

probabilistic theories as done in §14 for spin. A general discussion
will be presented in §22.2.

E19.4(2) In �L2(Ca) Here we have the selfadjoint operator p̂(Ca) in
Eq. (17.38). The physical relevance here is that a particle of mass m
confined to move in a circle and is otherwise free may be described

by the Hamiltonian

̂H (Ca) = 1

2m
p̂ 2(Ca), (19.49)

which shares the same eigenvectors with p̂(Ca) with eigenvalues
En(Ca) = p2n(Ca)/2m, where pn(Ca) are given by Eq. (19.37).

37The square p̂ 2D(�) of p̂D(�) is not selfadjoint.
38Schiff pp. 43–50. We can have λ = 0, i.e., Ĥ∞λ=0(�), and Ĥ

∞
λ=0(�) �= Ĥ∞D (�).
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E19.4(3) In �L2(Su) The operator expression

−�2
(

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

)

(19.50)

in spherical coordinates can be shown to define a selfadjoint

operator ̂L2(Su) in �L2(Su). This operator which is known to admit
the spherical harmonics as its eigenfunctions, i.e.,

̂L2(Su) �Y�,m = �(�+ 1)�2 �Y�,m, � = 0, 1, 2, 3, . . . . (19.51)

is directly related to the operator for the total orbital angular
momentum square in Eq. (27.88). The z-component orbital angular
momentum operator ̂Lz(Su) in Eq. (17.42) also admits these

spherical harmonics as its eigenfunctions.39

E19.4(4) In �L2(IR+) The operator p̂ †
D(IR

+) p̂D(IR+) is selfadjoint
by Theorem 19.1(1). It acts on the domain

{

�φ ∈ �D( p̂D(IR+)
)

: p̂D(IR+) �φ ∈ �D
(

p̂ †
D(IR

+)
)

}

. (19.52)

A direct application of this result is to formulate a selfadjoint energy

operator of a particle confined to move on the half-real line IR+.40

A similar product appears in the radial part of the kinetic energy

operator of a particle in three-dimensional motion expressed in

spherical coordinates as shown in Eqs. (27.149) and (27.150).41

E19.4(5) In �L2(IR) The operator p̂ 2(IR) is selfadjoint acting on

�D( p̂ 2(IR)) =
{

�φ ∈ �D( p̂(IR) ) : p̂(IR) �φ ∈ �D( p̂(IR))
}

. (19.53)

This is directly related to the kinetic energy operator of a particle in

motion along the x-axis shown in Eq. (27.91).

E19.4(6) Operators can have differential and multiplicative parts.

An example is

̂H ho = 1

2m
p̂ 2(IR)+ 1

2
mω2 x̂ 2(IR), m, ω ∈ IR (19.54)

39See §36.1.1 and §36.1.2 and Eq.(17.128). Do not confuse �L2(Su) with L̂2(Su).
40Wan p. 285.
41Wan pp. 279–281. The radial part of the kinetic energy contains the term p̂†r p̂r
which is selfadjoint.
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acting on the domain42

D
(

̂H ho
) = �D( p̂ 2(IR)) ∩ �D(x̂ 2(IR)). (19.55)

This operator is selfadjoint and it is related to the Hamiltonian

operator of a quantised harmonic oscillator corresponding to the
classical Hamiltonian given in Eq. (27.11). In Chapter 35 we shall

examine this operator again in details.

19.5 Essentially Selfadjoint Operators

Definition 19.5(1) An operator ̂A defined on the domain �D( ̂A )
in a Hilbert space �H is said to be essentially selfadjoint if it is
symmetric and it possesses a unique selfadjoint extension.43

It is often difficult and cumbersome to specify the domain of a

selfadjoint operator explicitly. In practical applications a selfadjoint

operator ̂A is applied to act only on a dense subset of vectors in its

domain chosen for physical reasons. Let us denote a dense subset

of �D( ̂A ) by �Dd( ̂A ). We have in effect introduce a new operator ̂Ad
defined on the domain �Dd( ̂A ) by

̂Ad �φ = ̂A �φ ∀ �φ ∈ �Dd( ̂A ) ⊂ �D( ̂A ). (19.56)

Moreover �Dd( ̂A ) is often chosen so that ̂Ad is symmetric on the

domain �Dd( ̂A ). Clearly ̂Ad is a restriction of the original operator
̂A. Conversely ̂A is a selfadjoint extension of ̂Ad . Let us examine the
following examples.

E19.5(1) In �L2(IR) the operators p̂ �C∞D (IR) in Eq. (17.47) and

p̂ �Ss (IR) in Eq. (17.48) are restrictions of p̂(IR) defined by Eq.

(17.50). They are both symmetric and they have the same unique

selfadjoint extension p̂(IR). It follows that both p̂ �C∞c (IR) and

p̂ �Ss (IR) are essentially selfadjoint.
44

42See Eq. (17.16) for �D(
x̂ 2(IR)

)
.

43Weidmann p. 234.
44Hall p. 184 where p̂ �C∞D (IR) is proved to be essentially selfadjoint. It follows that
p̂ �Ss (IR) is also essentially selfadjoint.
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E19.5(2) In �L2(�) the operator p̂ �C∞D (�) in Eq. (17.28) is a

restriction of p̂λ(�) in Eq. (17.34). It is symmetric and it has a
one-perameter family of selfadjoint extensions p̂λ(�). It follows that
p̂ �C∞D (�) in

�L2(�) is not essentially selfadjoint.
A selfadjoint operator can be defined by one of its essential

selfadjoint restrictions. In other words, we can determine a

selfadjoint operator in terms of a well-chosen essential selfadjoint

restriction. In many applications we would make use of such an

essential selfadjoint restriction since the domain of an essentially

selfadjoint operator is easier to specified. Examples can be given

in Chapter 27 on quantisation and Chapter 35 on harmonic

oscillator.45

Theorem 19.5(1)46 A symmetric operator ̂A is essentially selfad-
joint if its closure Ā is selfadjoint.

It follows that the closure which is equal to ̂A†† by Eq. (19.7) is the

unique selfadjoint extension.

Another application of the concept of essential selfadjointness is

to the sum and product of two operators. It can be shown that if

two selfadjoint operators commute then their sum and product are

essentially selfadjoint.47

We need to know how to determine whether a symmetric

operator is essentially selfadjoint. An idea based on the concept of

analytic vectors can lead to a theorem on the criterion for essential

selfadjointness. The idea originates in the exponential function

of a selfadjoint operator ̂A in Eq. (13.89). When we consider an

expansion of an exponential function as shown in Eq. (13.89) we

need to consider the domain of ̂An for all n. Let the domain of
̂An be denoted by D( ̂An). A vector �φ must be the intersection

of all D( ̂An), i.e., �φ ∈ ∩∞n=1D( ̂An), for ̂An �φ to be defined for

all n.

45Wan pp. 252–28.
46Reed and Simon Vol. 1 p. 256. Weidmann p. 108.
47Weidmann p. 268. Their sum and product are selfadjoint if the operators are

bounded.
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Definition 19.5(2)48 A vector �φ ∈ ∩∞n=1D( ̂An) is called an analytic
vector of ̂A if for some positive real number t > 0 we have

∞
∑

n=0

|| ̂An �φ ||
n!

t n < ∞, (19.57)

where ̂A0 is taken as the identity operator, i.e., ̂A0 = ̂II .

When acting on an analytic vector �φwehave the desired expansion49

eit Â �φ =
∞
∑

n=0

(i t)n

n!
̂An �φ. (19.58)

Theorem 19.5(2)50 Let ̂A be a symmetric operator in a Hilbert
spaceH and letD( ̂A) be its domain. Then ̂A is essentially selfadjoint if
the analytic vectors of ̂A inD( ̂A) form a complete set of vectors forH.

As an example consider a symmetric operator ̂A with a known set
of eigenvectors. We first note that a normalised eigenvector �ϕ of ̂A
corresponding to the eigenvalue a is automatically an analytic vector
of ̂A since the left-hand side of Eq. (19.57) becomes51

∞
∑

n=0

||an �ϕ ||
n!

t n =
∞
∑

n=0

|a |n
n!

t n = e|a| t (19.59)

which is finite. Theorem 19.5(2) then tells us that ̂A is essentially
selfadjoint if the set of eigenvectors of ̂A is complete.52 Examples are
available in §35.2.2.

Exercises and Problems

Q19(1) Show that symmetric operators generate real quadratic

forms, as shown in Eq. (19.2).

48Reed and Simon Vol. I p. 276. Reed and Simon Vol. II p. 201. Moretti p. 230.
49Reed and Simon Vol. I p. 276. Blank, Exner and Havliček p. 183.
50Reed and Simon Vol. II p. 202. Moretti p. 231. This theorem is known as Nelson’s

analytic vector theorem.
51Blank, Exner and Havliček pp. 183, 198.
52See Read and Simon Vol. II pp. 204–205 for application to operators with a

continuous spectrum.
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Q19(2) By evaluating 〈 �φ | ̂N �ψ 〉 and 〈 ̂N �φ | �ψ 〉 separately verify that
the number operator ̂N in Eq. (19.5) satisfies

〈 �φ | ̂N �ψ 〉 = 〈 ̂N �φ | �ψ 〉 ∀ �φ, �ψ ∈ �D( ̂N). (19.60)

Q19(3) Show that the number operator ̂N in Eq. (19.5) is bounded

below. Show also that the square of a selfadjoint operator is

also bounded below.

Q19(4) Explainwhy ̂H∞D (�) cannot act on �ϕλ=0,n(�) in Eq. (19.34)
and that 〈 �ϕλ=0,n(�) | ̂H∞D (�) �ϕλ=0,n(�)〉 is undefined.53

Q19(5) The eigenvectors �ϕ∞D,�(�) of ̂H∞D (�) in Eq. (19.43)

form an orthonormal basis for �L2(�). We can expression
�ϕλ=0,n(�) in Eq. (19.34) as a linear combination of �ϕ∞D,�(�).
Consider the vector �ϕλ=0,n=0(�) which corresponds to a
constant function. We have

�ϕλ=0,n=0(�) =
∞
∑

�=1
c� �ϕ∞D,�(�). (19.61)

Evaluate the coefficients c�.

Investigate whether any one of the following two proce-

dures would yield a meaningful value for the quadratic

formQ
(

̂H∞D (�), �ϕλ=0,n=0(�)
)

given formally by

〈 �ϕλ=0,n=0(�) | ̂H∞D (�) �ϕλ=0,n=0(�) 〉. (19.62)

(1) Assume that ̂H∞D (�) �ϕλ=0,n=0(�) can be calculated by

̂H∞D (�) �ϕλ=0,n=0(�) = ̂H∞D (�)

( ∞
∑

�=1
c� �ϕ∞D,�(�)

)

(19.63)

=
∞
∑

�=1
c� ̂H∞D (�) �ϕ∞D,�(�) (19.64)

=
∞
∑

�=1
c�E∞D,�(�) �ϕ∞D,�(�), (19.65)

where E∞D,�(�) are the corresponding eigenvalues

of ̂H∞D (�) in Eq. (19.44). Then assume that the

53 �ϕλ=0,n(�) are the eigenvectors of operator p̂λ=0(�) in E19.3(2).
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expression in Eq. (19.62) can be calculated by

〈 �ϕλ=0,n=0(�) |
∞
∑

�=1
c�E∞D,�(�) �ϕ∞D,�(�)〉 (19.66)

=
∞
∑

�=1
c�E∞D,�(�)〈 �ϕλ=0,n=0(�) | �ϕ∞D,�(�)〉 (19.67)

=
∞
∑

�=1
| c�|2E∞D,�(�). (19.68)

Determine whether the above sum converges.

(2) Assume that ̂H∞D (�) �ϕλ=0,n=0(�) can be calculated by
formal differentiation using Eq. (19.42). What vector

would be obtained? Is the resulting value of the

expression

〈 �ϕλ=0,n=0(�) | ̂H∞D (�) �ϕλ=0,n=0(�)〉
meaningful?

What conclusion can be drawn from the investigation?
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Chapter 20

Spectral Theory of Selfadjoint Operators
in �H

We shall follow Chapter 15 to develop a spectral theory for

selfadjoint operators in a Hilbert Space, starting with spectral

functions and spectral measures.

20.1 Spectral Functions and Spectral Measures

Definition 20.1(1) Spectral functions ̂F (τ ) and spectral measures
̂M(�) on a Hilbert space �H are defined by Definitions 15.1(1) and
15.1(2), with the understanding that ̂F (τ ) and ̂M(�) are projectors
on �H rather than on �VV N.

Spectral functions and spectral measures on �H are also related

in a one-to-one manner by Theorem 15.1(1). However, spectral

functions on an infinite-dimensional Hilbert space may not be

piecewise-constant.

As an example consider the space �L2(IR) where we have a

multiplication operator ̂χ� defined by Eq. (17.11) for each interval

�. Letting � = (−∞, τ ] we obtain a one-parameter family of

multiplication operators ̂χ (−∞,τ ], for each value of τ . This family

satisfies Definitions 15.1(1) and 15.1(2):

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com

http://www.jennystanford.com
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(1) Definition 15.1(1) Clearly ̂χ (−∞,τ ] is a projector each τ . For

each input vector �φ the output vector ̂χ (−∞,τ ]
�φ is defined by the

truncated function χ (−∞,τ ](x)φ(x), i.e.,

̂χ (−∞,τ ]
�φ := χ (−∞,τ ](x)φ(x) =

{

φ(x), x ≤ τ ,

0, x > τ .
(20.1)

Functions φ(x) in L2(IR) truncated for all x > τ define a

subspace �Sτ of �L2(IR). The operator ̂χ (−∞,τ ] projects every

vector �φ onto �Sτ .

(2) Definition 15.1(2) The following discussion shows that prop-

erties SF15.1(1), SF15.1(1) and SF15.1(1) are satisfied:

(a) We have τ1 ≤ τ2 ⇒ ̂χ (−∞,τ1]
≤ ̂χ (−∞,τ2]

, since1

||̂χ (−∞,τ1]
�φ || ≤ ||̂χ (−∞,τ2]

�φ ||. (20.2)

(b) Clearly ̂χ (−∞,−∞)
�φ = �0 and ̂χ (−∞,∞)

�φ = �φ, since
χ (−∞,−∞)(x) would obliterate any φ(x) and χ (−∞,∞)(x)
would leave φ(x) unchanged.

(c) We also have ̂χ (−∞,τ+δ] → ̂χ (−∞,τ ] as δ →+0 since

||(̂χ (−∞,τ+δ] − ̂χ (−∞,τ ]

) �φ || → 0. (20.3)

It follows that the family { ̂χ (−∞,τ ], τ ∈ IR } of projectors ̂χ (−∞,τ ]

defines a spectral function in �L2(IR).
The corresponding spectral measure ̂M is given Eqs. (15.19) and

(15.20), e.g., we have

̂M
(

(τ1, τ2]
) = ̂χ (−∞,τ2]

− ̂χ (−∞,τ1]
= ̂χ (τ1,τ2]

. (20.4)

or more directly on any interval� by

̂M
(

�
) = ̂χ�. (20.5)

This spectral function is not piecewise-constant. Every point is a

point of change, i.e., we have ̂χ (−∞,τ+δ]−̂χ (−∞,τ−δ] �= ̂0 for any small

1The order relation is defined by Eq. (13.20). All the calculations are done in terms of

the corresponding wave functions φ(x).



Spectral Theorem and Spectrum 373

positive number δ and every τ in IR . In other words, the spectral
function satisfies Eq. (15.47) so that every point τ is a point of

continuous growth of ̂F (τ ).
The expression for the decomposition of the identity in Eq.

(15.39) applies here, i.e., we have

∫ ∞

−∞
dτ ̂χ (−∞,τ ] = ̂II . (20.6)

To verify this we have, for every �φ ∈ �L2(IR),2

〈 �φ |
(∫ ∞

−∞
dτ ̂χ (−∞,τ ]

)

�φ 〉

= 〈 �φ |
∫ ∞

−∞
dτ

(

̂χ (−∞,τ ]
�φ
)

〉 =
∫ ∞

−∞
dτ

(

〈 �φ | ̂χ (−∞,τ ]
�φ 〉
)

:=
∫ ∞

−∞
dτ

(∫ ∞

−∞
φ∗(x)χ (−∞,τ ](x)φ(x) dx

)

=
∫ ∞

−∞
dτ

∫ τ

−∞
φ∗(x)φ(x) dx

=
∫ ∞

−∞
φ∗(τ )φ(τ ) dτ = 〈 �φ | �φ 〉 ⇒ Eq. (20.6). (20.9)

20.2 Spectral Theorem and Spectrum

Theorem 20.2(1) The Spectral Theorem3

(1) To every selfadjoint operator ̂A in a Hilbert space �H there
corresponds a unique spectral function, known as the spectral

2For the corresponding φ(x) ∈ L2(IR) we have

dτ

∫ τ

−∞
φ∗(x)φ(x) dx = φ∗(τ )φ(τ ) dτ . (20.7)

This is based on the following standard results in calculus:

d
dx

∫ x

−∞
f (y)dy = f (x) and dx

∫ x

−∞
f (y)dy = f (x)dx . (20.8)

3This is a generalisation of Theorem 13.3.2(1). We shall omit the rather complicated

proof. Here Â �= ÎI .
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function of ̂A and denoted by ̂F Â(τ ), such that the following
properties are satisfied4:

(a) For every �ϕ in the domain �D( ̂A) of ̂A we have

|| ̂A �ϕ ||2 =
∫ ∞

−∞
τ 2 dτ 〈 �ϕ | ̂F Â(τ ) �ϕ 〉. (20.10)

(b) For every �ψ in �H and for every �ϕ in �D( ̂A) we have5

〈 �ψ | ̂A �ϕ 〉 =
∫ ∞

−∞
τ dτ 〈 �ψ | ̂F Â(τ ) �ϕ 〉. (20.11)

(2) Every spectral function ̂F (τ ) defines a selfadjoint operator ̂A
acting on a domain �D( ̂A) consisting of vectors �ϕ for which

∫ ∞

−∞
τ 2 dτ 〈 �ϕ | ̂F (τ ) �ϕ 〉 <∞, (20.12)

and on D( ̂A) the operator possesses properties (a) and (b)

above.

This theorem establishes a one-to-one correspondence between

spectral functions and selfadjoint operators. It is convenient to adopt

the expression for the spectral decomposition operator ̂A used in
Theorem 15.3(1), i.e., we express the operator as

̂A =
∫ ∞

−∞
τ dτ

̂F Â(τ ), (20.13)

with the understanding that this expression is just symbolic

statement for Eqs. (20.10), (20.11) and (20.12).

Definition 15.3(1) applies here, i.e., the spectral function ̂F Â(τ )

defines a spectral measure ̂MÂ associated with ̂A. We call the
projector ̂MÂ(�) associated with any Borel set � a spectral
projector of ̂A and the subspace onto which ̂MÂ(�) projects a

spectral subspace. Examples of spectral functions of some familiar
operators will be given in §20.3 and §20.4.

In relation to the theorem we also have the following results:

(1) A selfadjoint operator commutes with its spectral projectors.6

4Prugovečki p. 250. Gallone pp. 475–476.
5Romain Vol. 2. pp. 636, 641.
6Roman Vol. 2 pp. 642–643.
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(2) The decomposition of the identity in Eq. (15.39) remains valid.

(3) Theorem 15.3(2) on the relation between the spectral measures

and spectral functions of two unitarily related operators

remains valid here. We shall present an example of this relation

in §20.4.2.

(4) Theorem 15.5(1) on the generation of probability distribution

function by a selfadjoint operator ̂A together with a unit vector

�ϕ applies here, i.e.,

F Â( �ϕ, τ ) = 〈 �ϕ | ̂F Â(τ ) �ϕ 〉 (20.14)

is a probability distribution. More detailed discussion together

with illustrative examples will be presented in Chapter 21.

Definition 15.3(2) on the spectrum of a selfadjoint operator

applies here, i.e., the spectrum sp( ̂A ) of a selfadjoint operator ̂A
consists of all the values of τ atwhich its spectral function undergoes

a change. Generally the spectrum of ̂A can be divided into two parts:
the discrete partwhich consists of all points of discontinuous growth
and the continuous partwhich consists of the rest. A spectrum can be

purely discrete, purely continuous or a combination of the two:

(1) Purely discrete spectrum A spectrum is said to be a purely
discrete and is denoted by spd( ̂A ) if it consists of only of points
of discontinuous growth. The corresponding spectral function
̂F Â(τ ) is also said to be purely discrete.

(2) Purely continuous spectrum A spectrum is said to be purely
continuous and is denoted by spc( ̂A ) if the spectrum has no

discrete part. The corresponding spectral function ̂F Â(τ ) is also

said to be purely continuous.

(3) Mixed spectrum A spectrum could also be partly continuous

and partly discrete. Such a spectrum is known as a mixed
spectrum and is denoted by spm( ̂A ), with the discrete and

continuous parts denoted, respectively by spd( ̂A ) and spc( ̂A ).
We have spm( ̂A ) = spd( ̂A ) ∪ spc( ̂A ).7

7Roman Vol. 2 p. 652 for a diagrammatic illustration.
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For brevity we shall often omit the adjective pure and purely and call
a spectrum and spectral function discrete or continuous.

The nature of the spectrum of ̂A can be appreciated in terms of
the probability distribution functions it generates8:

(1) If the spectrum of ̂A is (purely) discrete then its associated

probability distribution functionF Â( �ϕ, τ ) is piecewise-constant
with countable discontinuities.

(2) If the spectrum of ̂A is (purely) continuous then its associated
probability distribution function F Â( �ϕ, τ ) is continuous.

Similar to continuous probability distribution functions given in

Definition 4.3.2(1) a continuous spectrum can be further divided

into an absolutely continuous part, i.e., when F Â( �ϕ, τ ) is ab-
solutely continuous in τ , and an singularly continuous part,
i.e., when F Â( �ϕ, τ ) is singularly continuous in τ .9 Fortunately we

rarely encounter operators with a spectrum containing a singular

continuous part in practical applications. Since all the continuous

spectra we shall encounter will be absolutely continuous in the

variable τ we shall assume that a continuous spectrum meant an

absolutely continuous spectrum from now on. and This enables

us to associate a probability density function to each continuous

spectrum by

wÂ( �ϕ, τ ) = F Â( �ϕ, τ )/dτ . (20.15)

In the next sectionwe shall consider operatorswith a purely discrete

spectrum. This is followed by a section on operators with a purely

continuous spectrum.

20.3 Operators with a Discrete Spectrum

In a finite-dimensional space �VV N the spectrum of a selfadjoint

operator is always discrete and it coincides with the set of

eigenvalues. This remains true in a Hilbert space �H for a selfadjoint

8Weidmann p. 206 Theorem 7.27.
9Weidmann pp. 206–209. Amrein, Jauch and Sinha pp. 204–209.
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operator ̂A with a pure discrete spectrum.10 We have the following

properties:

P20.3(1) The spectrum spd( ̂A) coincides with the set of distinct
eigenvalues am of ̂A. The discussion in §9.4.4 and Definition 9.4.4(1)
remain valid. In accordance with Eq. (15.42) the eigenprojector
̂P Â(am) associated with the eigenvalue am is given by the spectral
projector ̂MÂ

({am}
)

. There are two cases:

(1) If an eigenvalue a� is nondegenerate then it would correspond

to only one normalised eigenvector �ϕ� with a corresponding

projectors ̂P �ϕ�
= | �ϕ�〉〈 �ϕ�|. We have

̂P Â(a�) = ̂MÂ({a�}
) = ̂P �ϕ�

. (20.16)

(2) If an eigenvalue am is degenerate then the spectral projector
̂MÂ
({am}

)

is not one-dimensional. Let d be the degeneracy of am.
Then associated with this eigenvalue there are d orthonormal
eigenvectors �ϕmj , j = 1, 2, . . . , d, together with their corre-
sponding projectors ̂P �ϕmj = | �ϕmj 〉〈 �ϕmj |. The corresponding
spectral projector is given by

̂MÂ({am}
) =

d
∑

j=1
̂P �ϕmj . (20.17)

The eigenprojector ̂P Â(am) is the same as the spectral projector
̂MÂ
({am}

)

, i.e.,

̂P Â(am) = ̂MÂ({am}
) =

d
∑

j=1
̂P �ϕmj . (20.18)

(3) These operators are reducible by their eigensubspaces.

P20.3(2) The spectral function ̂F Â(τ ) is piecewise-constant. If the

spectrum is of the form {a1, a2, . . .}, i.e., it has a lower bound by a1,
then ̂F Â(τ ) is of the form shown in Figure 15.1, with N possibly

10Roman Vol. 2 pp. 651–652. Naimark Part 2 pp. 17–18.
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going to infinity. Equation (15.2) becomes

̂F Â(τ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

̂0, τ < a1
̂P Â(a1), a1 ≤ τ < a2
̂P Â(a1)+ ̂P Â(a2), a2 ≤ τ < a3
· · · · · ·
∑n

�=1 ̂P Â(a�), an ≤ τ < an+1
· · · · · ·

. (20.19)

P20.3(3) The integral expressions for the spectral decomposition

of ̂A in Eq. (20.13) and for spectral decomposition of the identity ̂II
in Eq. (15.39) reduce to the form of a sum11:

̂A =
∑

m

am ̂P Â(am), ̂II =
∑

m

̂P Â(am). (20.20)

As for finite-dimensional spaces the operator ̂A commutes with all
its eigenprojectors. When the eigenvalues a� diverge to infinity as

� tends to infinity the infinite sum for ̂A in Eq. (20.20) should be
handled with care. We need to specify the domain of operation in

order to render the infinite sum meaningful as an operator. This

would be the case if ̂A is unbounded.

P20.3(4) When all the eigenvalues are nondegenerate we get,

from the spectral decomposition of the identity,

�φ = (
∑

�

̂P �ϕ�

) �φ =
∑

�

̂P �ϕ�
�φ =

∑

�

c� �ϕ�, c� = 〈 �ϕ� | �φ 〉, (20.21)

for every �φ ∈ �H. This demonstrates the completeness of the

orthonormal set of eigenvectors of a selfadjoint operator with a pure

discrete spectrum. A similar decomposition is also obtained when

the eigenvalues are degenerate.

Many selfadjoint operators presented earlier possess a purely

discrete spectrum:

(1) In �L2(�) the selfadjoint operator p̂λ(�) in Eq. (17.38) admits a
purely discrete set of nondegenerate eigenvalues pλ,�(�) given
by Eq. (19.33).

11Using the same notation as in Theorem 13.3.2(2).
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(2) In �L2(Ca) the selfadjoint operator p̂(Ca) admits a purely discrete
set of nondegenerate eigenvalues pn(Ca) given by Eq. (19.37).
The operator ̂H (Ca) in Eq. (19.49) has both nondegenerate and
degenerate eigenvalues, i.e., the lowest eigenvalue E0(Ca) =
0 is nondegenerate and all the other eigenvalues En(Ca) are
degenerate with degeneracy 2.

(3) In �L2(IR) the Hamiltonian operator ̂H ho in Eq. (19.54) is

well-known to possess a purely discrete set of nondegenerate

eigenvalues12

En =
(

n+ 1/2)�ω, n = 0, 1, 2, . . . . (20.22)

P20.3(5) Theorem9.4.4(1) applies, i.e., for a selfadjoint operator
in an infinite-dimensional Hilbert space �H with a purely discrete

spectrum its eigenvalues are real, its eigenvectors corresponding to

different eigenvalues are orthogonal and eigenvectors can be chosen

to form an orthonormal basis for �H.

20.4 Operators with a Continuous Spectrum

In �L2(IR) the operators x̂(IR) and p̂(IR) given respectively by Eqs.
(17.12) and (17.49) are examples of selfadjoint operators with a

purely continuous spectrum. In view of their importance in quantum

theorywe shall study them in details. For brevity of notationwe shall

simplify the notation by denoting x̂(IR) and p̂(IR) in �L2(IR) by x̂ and
p̂ and their Fourier transforms by x̂∼ and p̂

∼
.

A characteristic feature of a selfadjoint operator ̂A with a purely
continuous spectrum is that its spectral measure for a singleton set

{τ0} is zero, i.e., for any τ0 in the spectrum of the operator we have13

̂MÂ({τ0}
)

:= ̂F Â(τ0)− ̂F Â(τ0 − 0) = ̂0. (20.23)

This property can be seen clearly in x̂(IR) and p̂(IR).

12See §35.2 for a derivation of these eigenvalues.
13See Eq. (15.20) for the expression for M̂ Â

({τ0}).
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20.4.1 The Position Operator x̂ in �L2(IR)
Theorem 20.4.1(1)14 The spectral function ̂F x̂(τ ) of x̂ is defined
by the one-parameter family of projectors ̂χ (−∞,τ ] in Eq. (20.1), i.e.,

̂F x̂(τ ) := ̂χ (−∞,τ ], τ ∈ IR . (20.24)

Proof Wehave already shown that the family of projectors ̂χ (−∞,τ ]

is a spectral function. To relate to the position operator we have to

show that Eqs. (20.10) and (20.11) of Theorem 20.1(1) are satisfied.

To verify Eq. (20.10) we have, for �φ ∈ D(x̂),
∫ ∞

−∞
τ 2 dτ

(

〈 �φ | ̂F x̂(τ ) �φ 〉
)

:=
∫ ∞

−∞
τ 2 dτ

∫ τ

−∞
φ∗(x)φ(x) dx =

∫ ∞

−∞
τ 2 φ∗(τ )φ(τ ) dτ

= || x̂ �φ ||2. (20.25)

Equation (20.11) can be similarly verified. QED

The spectral decomposition in Eq. (20.13) of x̂ becomes

x̂ =
∫ ∞

−∞
τ d ̂F x̂(τ ). (20.26)

To appreciate this expression we can carry out the following

calculation for any given �ψ ∈ �H and �φ ∈ D(x̂):

〈 �ψ |
(∫ ∞

−∞
τ d ̂F x̂(τ )

)

�φ 〉 =
∫ ∞

−∞
τ dτ 〈 �ψ | ̂F x̂(τ ) �φ〉

:=
∫ ∞

−∞
τ dτ

(∫ ∞

−∞
ψ∗(x)χ (−∞,τ ](x)φ(x) dx

)

=
∫ ∞

−∞
τ dτ

∫ τ

−∞
ψ∗(x)φ(x) dx =

∫ ∞

−∞
τψ∗(τ )φ(τ ) dτ

= 〈 �ψ | x̂ �φ 〉. (20.27)

Spectral projectors correspond to characteristic functions on IR , i.e.,
̂Mx̂(�) := ̂χ� for all Borel set� of IR . (20.28)

For� = {τ0}we have ̂Mx̂({τ0}) = ̂χ (−∞,τ0]
− ̂χ (−∞,τ0−0] = ̂0.

14Jordan pp. 42–43. Roman Vol. 2 pp. 467–468.
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20.4.2 The Momentum Operator p̂ in �L2(IR)
The operator p̂ in �L2(IR) is a differential operator. The momentum
operator becomes a multiplication operator p̂

∼
in the momentum

representation space �L2(IR∼ ), in the same way that the position

operator is a multiplication operator in �L2(IR). It follows that we
can immediately write down the spectral function ̂F∼

p̂∼(τ ) of p̂
∼
in the

momentum representation space �L2(IR∼ ).
Theorem 20.4.2(1) The spectral function ̂F∼

p̂∼(τ ) of p̂
∼
in the mo-

mentum representation space �L2(IR∼ ) is defined by the characteristic
function χ

∼ (−∞,τ ](p) of the interval (−∞, τ ] on the momentum space
IR∼ acting as a multiplication operator, i.e.,

̂F∼
p̂∼(τ ) �ϕ

∼
:= χ

∼ (−∞,τ ](p)ϕ∼ (p). (20.29)

The operator ̂F∼
p̂∼(τ ) has the effect of truncating the function φ̃(p)

on momentum space beyond the point p = τ , in the same way

the operator ̂F x̂(τ ) truncates the function φ(x) on coordinate

space beyond the point x = τ . Spectral projectors corresponds to

characteristic functions on the momentum space IR∼ , i.e.,

̂Mp̂∼
∼ (�) := ̂χ

∼ �∼
. (20.30)

for all Borel set�∼ of IR∼ .
Since p̂ in �L2(IR) is unitarily related by a Fourier transformation

to p̂
∼
in �L2(IR∼ ) we can obtain the spectral function ̂F p̂(τ ) of p̂ in

the coordinate representation space �L2(IR) as the inverse Fourier
transform ̂U −1F ̂F∼

p̂∼(τ )̂UF of ̂F∼
p̂∼(τ ) in accordance with Theorem

15.3(2), i.e., we have

̂F p̂(τ ) �ϕ =
(

̂U −1F ̂F∼
p̂∼(τ )̂UF

)

�ϕ = ̂U −1F ̂F∼
p̂∼(τ )

(

̂UF �ϕ
)

= ̂U −1F
(

̂F∼
p̂∼(τ ) �ϕ

∼

)

= ̂U −1F
(

̂χ
∼ (−∞,τ ](p) �ϕ∼

)

:=
∫ ∞

−∞
f p(x)χ∼ (−∞,τ ](p)ϕ∼ (p) dp

=
∫ τ

−∞
f p(x)ϕ∼ (p) dp. (20.31)
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The result is

̂F p̂(τ ) �ϕ :=
∫ τ

−∞
f p(x)ϕ∼ (p) dp. (20.32)

This expression shows that ̂F p̂(τ ) has the effect of

taking the Fourier transform ϕ
∼
(p) of ϕ(x) and then

taking a “semi-inverse transform” up to the value τ .

We can also verify directly that the above expression for ̂F p̂(τ )
satisfies the properties required by the spectral theorem. Again the

spectral projector for a singleton set is equal to the zero operator.

20.5 Functions of Selfadjoint Operators

20.5.1 Characteristic Functions

Definitions 15.4(1) and 15.4(2) on functions of selfadjoint operators

apply. For operators with a discrete spectrum Definition 15.4(1)

reduces to Definition 13.3.3(1).15 Let us illustrate this with the

example of the number operator ̂N defined by Eq. (19.5) in a Hilbert

space �Hwhich is relevant to the discussion in §27.9. This operator is
defined in terms of a pair of annihilation and creation operators â
and â† which are defined on a given complete orthonormal basis

{ �ϕn, n = 0, 1, 2, . . .} on a common domain �D( â ) given by Eq.

(17.112). The number operator, being the product of â† and â is

defined on a smaller domain, i.e.,

�D( ̂N ) :=
{

�φ ∈ �H :

∞
∑

n=0
| 〈 �ϕn | �φ 〉 |2 n2 <∞

}

, (20.33)

with a spectral decomposition

̂N =
∞
∑

n=0
n ̂P N̂(n) =

∞
∑

n=0
n | �ϕn〉〈 �ϕn|. (20.34)

15Generally the sum will be over an infinite number of terms since there may well be

an infinite number of eigenvalues.
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This operator is positive in the sense of Definition 19.1(2).16 We can

define its square root by

̂N
1
2 :=

∞
∑

n=0

√
n ̂P N̂(n). (20.35)

This operator is defined on a domain which is different from �D( ̂N ).
One can verify that the domain �D( ̂N 1

2 ) of ̂N
1
2 is the same as that of

the annihilation operator.17

For operators with a continuous spectrum, e.g., the position

and momentum operators, the situation is different. The integral

expression in Definition 15.4(1) does not reduce to a sum.

Consider an example in �L2(IR). The characteristic function

is a real-valued function χ (−∞,τ ](x) on IR . We can define the

characteristic function χ (−∞,τ ](
̂A ) of a selfadjoint operator ̂A in

accordance with Definition 15.4(1). This function is of particular

significance when ̂A = x̂ . We have the operator χ (−∞,τ ](x̂ ) acting
on every �φ ∈ �L(IR) with a formal expression given by Eq. (15.48) as

χ (−∞,τ ]( x̂ ) �φ :=
∫ ∞

−∞
χ (−∞,τ ](x) dτ

̂F x̂(τ ) �φ. (20.36)

We can evaluate the quadratic form generated by this operator to see

more explicitly what the operator is, i.e., we have

〈 �φ | χ (−∞,τ ]( x̂ ) �φ 〉 = 〈 �φ |
(∫ ∞

−∞
χ (−∞,τ ](x) dτ

̂F x̂(τ )
)

�φ 〉

=
∫ ∞

−∞
χ (−∞,τ ](x) dτ

(

〈 �φ | ̂F x̂(τ ) �φ 〉
)

:=
∫ ∞

−∞
χ (−∞,τ ](x) dτ

∫ τ

−∞
φ∗(x)φ(x) dx

=
∫ ∞

−∞
χ (−∞,τ ](x)φ

∗(τ )φ(τ ) dτ

= 〈 �φ | ̂χ (−∞,τ ]
�φ 〉. (20.37)

16See also Definition 13.3.1(1). A selfadjoint operator is positive if its spectrum in

non-negative.
17The domain of the annihilation operator �D( â ) is given by Eq. (17.112).
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We can conclude by Eq. (18.1) that

χ (−∞,τ ]( x̂ ) = ̂χ (−∞,τ ] = ̂F x̂(τ ). (20.38)

In other words, the spectral function ̂F x̂(τ ) of the position operator
x̂ equal to the characteristic function χ (−∞,τ ](x̂) of the operator.

It turns out that the spectral function of a selfadjoint operator
is generally expressible in terms of a characteristic function of that
operator, i.e., the spectral function of a selfadjoint operator ̂A is the

characteristic function χ (−∞,τ ](
̂A ) of ̂A with the spectral projector

associated with a Borel set� is given by χ�(
̂A ), i.e., we have18

̂F Â (τ ) = χ (−∞,τ ](
̂A ) and ̂MÂ(�) = χ�(

̂A ), (20.39)

since

χ�(
̂A ) =

∫ ∞

−∞
χ�(τ )d ̂F

Â(τ )

=
∫

�

d ̂F ̂A(τ ) = ̂MÂ(�). (20.40)

20.5.2 Complex-Valued Functions

When the function is complex the resulting operator is not

selfadjoint. Of particular interest are bounded functions. Let f (τ )
and g(τ ) be two bounded functions and let f ∗(τ ) and g∗(τ ) be their
complex conjugate functions. We have the following results.19

Theorem 20.5(1)

[ f ( ̂A ), g( ̂A )] = ̂0. (20.41)

( f + g)( ̂A ) = f ( ̂A )+ g( ̂A ). (20.42)

( f g)( ̂A ) = f ( ̂A )g( ̂A ). (20.43)

f †( ̂A) = f ∗( ̂A). (20.44)

The following comments clarify the theorem:

C20.5(1) f ( ̂A ) and g( ̂A ) commute.

18Prugovečki Eq. (2.16) on p. 277. Akhiezer and Glazman Vol. 2 (1963) p. 72.
19Roman Vol. 2 p. 647. Prugovečki p. 275.
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C20.5(2) The sum f (τ ) + g(τ ) defines an operator ( f + g)( ̂A )
which is equal to the sum of operators f ( ̂A ) and g( ̂A ).

C20.5(3) The product f (τ )g(τ ) defines an operator ( f g)( ̂A )
which is equal to the product of operators f ( ̂A ) and g( ̂A ).

C20.5(4) The adjoint of the operator f ( ̂A) is equal to the operator
f ∗( ̂A) defined by the function f ∗(τ ).20

An important example is the complex exponential function and

its conjugate

u(τ ) = eiaτ and u∗(τ ) = e−iaτ , (20.45)

where a is a real number. We have

u(τ )u∗(τ ) = u∗(τ )u(τ ) = fuc(τ ) = 1, (20.46)

where fuc(τ ) is the unit constant function introduced in relation to
Eq. (13.39). The discussion in §13.3.3 shows that these exponential
functions define a unitary operator and its adjoint. In an infinite-

dimensional Hilbert space �H we have similar results. First we can

define two operators u( ̂A) and u∗( ̂A) by

u( ̂A ) : =
∫ ∞

−∞
eiaτ d ̂F Â(τ ). (20.47)

u∗( ̂A ) : =
∫ ∞

−∞
e−iaτ d ̂F Â(τ ). (20.48)

These operators have the following properties:

(1) The adjoint of u( ̂A ) is u∗( ̂A ), i.e., u†( ̂A ) = u∗( ̂A ) by Eq.
(20.44).21

(2) As seen in Eq. (13.39) the unit constant function fuc(τ ) =
1 defines an operator function fuc( ̂A ) which is equal to the

20Roman Vol. 2 p. 647.
21Note that u∗( Â ) is the operator defined by the function u∗(τ ), i.e., by Eq. (20.48),
while u†( Â ) is the adjoint of u( Â ).
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identity operator ̂II on �H. It follows from Eqs. (20.43) and

(20.46) that

u
(

̂A
)

u∗
(

̂A
) = (

u∗u)
(

̂A
) = fuc( ̂A

) = ̂II . (20.49)

u∗
(

̂A
)

u
(

̂A
) = (

uu∗)
(

̂A
) = fuc( ̂A

) = ̂II . (20.50)

It follows from Eq. (20.44) that the adjoint u†( ̂A ) = u∗( ̂A ) is the
inverse of u( ̂A ). Hence u( ̂A ) is unitary.22

(3) We can rewrite as u( ̂A) and u∗( ̂A) explicitly as

eia Â : =
∫ ∞

−∞
eiaτ d ̂F Â(τ ), (20.51)

e−ia Â : =
∫ ∞

−∞
e−iaτ d ̂F Â(τ ). (20.52)

The unit constant function fuc(τ ) can be regarded as an

exponential function with a zero exponential.

Explicit examples such exponential functions are further discussed

in §21.1.

20.5.3 Spectral Functions and Spectral Measures

The spectral function and spectral measure of a real-valued function

f ( ̂A ) of a selfadjoint operator ̂A can be expressed in terms of the

corresponding quantities of ̂A, i.e., we have23

̂M f ( Â)(�) = ̂MÂ
(

f −1(�)
)

, (20.53)

̂F f ( Â)(τ ) = ̂M f ( Â)
(

(−∞, τ ]
)

= ̂MÂ
(

f −1
(

(−∞, τ ]
))

, (20.54)

where

f −1(�) :=
{

τ ∈ IR : f (τ ) ∈ �
}

(20.55)

is the inverse image of � under f (x). An example is when f = x2.
We have

f −1
(

(τ1, τ2]
)

:=
{

τ ∈ IR : τ 2 ∈ (τ1, τ2]
}

. (20.56)

22Roman Vol. 2 p. 656.
23Weidmann (1980) p. 197. Wan p. 156.
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When τ1 = −∞ we have

f −1
(

(−∞, τ2]
)

=
{∅ if τ2 < 0

[−√τ2,
√

τ2 ] if τ2 ≥ 0
. (20.57)

These enable us to work out ̂MÂ2 and ̂F Â2 in terms of ̂MÂ and ̂F Â2

from Eqs. (20.53) and (20.54).

20.6 Complete Set of Commuting Selfadjoint
Operators

The discussions on commuting selfadjoint operators in §13.3.3 need
to be generalised in order to apply to infinite-dimensional Hilbert

spaces due to the unbounded nature of some operators. As the

discussion in §17.7 shows there are complications arising from

the operators involved having different domains. In the case of

selfadjoint operators we can avoid domain problems by defining

commutativity in terms of Eq. (15.43).

Definition 20.6(1)24 Two selfadjoint operators ̂A and ̂B are
said to commute if their respective spectral projectors ̂MÂ(�1) and
̂MB̂(�2) commute, i.e.,

[ ̂MÂ(�1), ̂MB̂(�2)] = ̂0 (20.58)

for all Borel sets �1 and �2 of IR.

The following comments help to clarify the definition:

C20.6(1) This definition applies irrespective of whether the

spectra of the operators are discrete or continuous.

C20.6(2) If ̂A and ̂B commute then their respective spectral

functions ̂F Â(τ1) and ̂F B̂(τ2) also commute.

C20.6(3) If ̂A and ̂B are both bounded then the definition is

equivalent to Eq. (17.84).

C20.6(4) If both ̂A and ̂B have a discrete spectrum then

Theorems 13.3.4(1) to 13.3.4(3) also apply.

24Fano p. 405. Prugovečki p. 261.
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C20.6(5) Theorem 13.3.4(4) applies generally whether the spec-

tra of the operators are discrete or continuous.

C20.6(6) Definition 15.4(2) applies to define functions of com-

muting selfadjoint operators.

We shall now introduce the important concept of a complete set
of commuting selfadjoint operators in a Hilbert space step by step:

(1) Let ̂A and ̂B be two selfadjoint operators with a discrete

spectrum in a Hilbert space �H with their respective spectral

decompositions25

̂A =
∑

�

a�
̂P Â(a�) and ̂B =

∑

m

bm ̂P B̂(bm). (20.59)

(2) Suppose that ̂A and ̂B commute. Then, as pointed out in the

comments after Theorem 13.3.4(1), the product ̂P Â(a�) ̂P B̂(bm)
is a projector, and that given any vector �φ the projection

�φ�m =
(

̂P Â(a�) ̂P B̂(bm)
) �φ (20.60)

is an eigenvector of both ̂A and ̂B , i.e., we have26

̂A �φ�m = a� �ϕ�m and ̂B �φ = bm �φ�m. (20.61)

Generally a pair of eigenvalues a� and bm is unable to determine
a single eigenvector. Given a different vector �φ′ Eq. (20.60)
may lead to a different eigenvector �φ′�m, since the projector
̂P Â(a�) ̂P B̂(bm) may not be one-dimensional.

(3) It may be possible to find an additional selfadjoint operator ̂C
to form a set of three commuting selfadjoint operators so that

any set of their eigenvalues a�, bm, cn would determine a single
common eigenvector. Such as set is called a complete set.27

25As in Eq. (20.20) the eigenvalues for each operator are meant to be different.
26Jordan p. 53.
27If the set of eigenvalues ai , bj , ck is unable to determine a single eigenvector, we can
go on to add another selfadjoint operator to repeat the process.
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Definition 20.6(2)28 A set ̂A, ̂B , ̂C , . . . of selfadjoint operators
with a discrete spectrum in a Hilbert space �H is called a complete
set of commuting selfadjoint operators in �H if:

(1) The operators mutually commute.

(2) Every set of eigenvalues a�, bm, cn, . . . of the operators has only a
single common eigenvector �ϕ�mn. . . associated with it, i.e., there is
only one unit vector �ϕ�mn. . . such that 29

̂A �ϕ�mn··· = a� �ϕ�mn···, ̂B �ϕ�mn··· = bm �ϕ�mn···, · · · . (20.62)

(3) The eigenvectors �ϕ�mn. . . form an orthonormal basis in �H.

The purpose of such a set of operators, often referred to as a

complete set for short, is to determine a single eigenvector by

a set of eigenvalues. A selfadjoint operator with a discrete and

nondegenerate spectrum serves this purpose and it constitutes a

complete set on its own. A complete set is not unique. The followings

are examples:

E20.6(1) The number operator ̂N in a Hilbert space �H given by

Definition 19.1(5) constitutes a complete set in �H.
E20.6(2) In �L2(�) the operator ̂P λ=0(�) constitutes a complete
set and so does ̂H∞D (�).

E20.6(3) In �L2(IR) the operator ̂H ho forms a complete set.

E20.6(4) The operator ̂P 2λ=0(�) has a degenerate spectrum and

hence it does not form a complete set on its own.

E20.6(5) In �L2(Su) the operator ̂Lz(Su) defined by Eq. (17.42) has
a degenerate spectrum and hence it does not form a complete set

on its own. The same applies to the operator ̂L2(Su) defined by Eq.
(19.51). Together the set { ̂Lz(Su), ̂L2(Su) } does form a complete set

in �L2(Su).

28Jordan pp. 55–61. Prugovečki pp. 312–317. Beltrametti and Cassinelli pp. 19–22.

Isham p. 99.
29A vector which differs from �ϕ�mn. . . by a multiplicative constant is not considered to

be a different eigenvector.
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Theorem 13.3.4(4) which remains valid in a Hilbert space. The

theorem can be extended to a complete set of selfadjoint operators

by the following theorem.

Theorem 20.6(1)30 A set of mutually commuting selfadjoint
operators with a discrete spectrum in a Hilbert space �H is a complete
commuting set of selfadjoint operators in �H if and only if every
bounded operator on H which commutes with every operator in the
set is a function of the operators of the set.

This theorem enable us to have a general definition of a complete set

of operators, including operators with a continuous spectrum.31

Definition 20.6(3)32 A set ̂A, ̂B , ̂C , . . . of mutually commuting
selfadjoint operators in a Hilbert space �H is called a complete
commuting set of selfadjoint operators in H if every bounded
operator commuting with every member of the set is a function of the
operators of the set.

It can be shown that the position operator x̂ in �L2(IR) satisfies
the condition of the above theorem, i.e., it forms a complete set

on its own in �L2(IR).33 Similarly the momentum operator p̂ also

constitutes a complete in in �L2(IR) on its own. These examples show
a link with the definition in terms of eigenfunctions and eigenvalues.

For example, the spectrum of the momentum operator may be

considered nondegenerate in that for each generalised eigenvalue

p there corresponds to a single generalised eigenfunction f p(x)
given by Eq. (18.12). In �L2(IR3) the position operators x̂ , ŷ, ẑ form
complete set and so does the momentum operators p̂x , p̂y , p̂z.

For the Hilbert spaces used for the description of quantum

mechanical systems we shall assume that a finite complete set of

commuting selfadjoint operators exists.34

30Jordan pp. 55–61. Prugovečki pp. 312–317. Riesz and Nagy pp. 356–358.
31Definition 20.6(2) does not apply to operators with a continuous spectrum.
32Jordan pp. 55–61. Prugovečki pp. 312–317. Beltrametti and Cassinelli pp. 19–22.

Isham p. 99.
33Jordan p. 58. See solution to Q20(7).
34Prugovečki p. 315.
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20.7 Irreducible Sets of Selfadjoint Operators

A complete set of commuting selfadjoint operators is quite different

from a set of irreducible selfadjoint operators introduced in

Definition 17.9(4). In �L2(IR) the position operator x̂ constitutes a

complete set. But this operator is not irreducible. Theorem 17.9(1)

tells us that the position operator x̂ is reducible, since it commutes
with its spectral projectors. Generally a spectral subspace of a

selfadjoint operator reduces the operator. For the position operator

x̂ in �L2(IR) the set �S x̂(�) defined by all the functions in L2(IR)
vanishing outside an interval � = [0, L] is a spectral subspace.
This subspace �S x̂(�) reduces x̂ . A similar result applies to the

momentum operator p̂ in �L2(IR).
Another example is the number operator ̂N in Eq. (19.5). This

operator is reduced by any of its spectral subspaces, and so is its

square root ̂N
1
2 .

There is a useful theorem on the reducibility or otherwise of a set

of operators.

Theorem 20.7(1)35 A set of selfadjoint operators is irreducible
if and only the only bounded operators which commute with every
operator of the set are multiples of the identity operator.

The following are useful examples:

E20.7(1) The position and the momentum operators form an

irreducible set in �L2(IR). There is no operator, apart from multiples

of the identity, which commutes with both x̂ and p̂. To appreciate
this result we first observe that bounded operators commuting with

x̂ must be functions of x̂ , since the position operator constitutes a
complete set. Functions of x̂ cannot commute with p̂ unless it is

a constant function, e.g., the unit constant function which maps x̂
to the identity operator. It follows from Theorem 20.7(1) that the

set { x̂ , p̂ } in �L2(IR) is irreducible. There are no subspace of �L2(IR)
which is invariant under both x̂ and p̂.

35Jordan p. 68. Multiples of the identity operator mean aÎI , a ∈ C .
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E20.7(2) The annihilation and creation operators â and â† in a
Hilbert space �H defined by Definitions 17.10(1) and 17.10(2) also

form an irreducible set of operators. Let us prove this step by step.

(1) Suppose there is a subspace �S of �H which reduces both â and
â†. Theorem 17.9(1) tells us that the projector ̂P �S onto this

subspace would commute with â and â†. It follows that ̂P �S
commutes with the number operator ̂N = â†â.

(2) The number operator has a nondegenerate spectrum and hence

it forms a complete set on its own. Its spectral decomposition

is given by Eq. (20.34) where the eigenprojectors ̂P N̂(n) are
all one-dimensional. Theorem 20.6(1) then tells us that the

projector ̂P �S must be a function of ̂N , i.e.,

̂P �S = f ( ̂N ) =
∞
∑

n=0
f (n) ̂P N̂(n), (20.63)

where f is a real-valued function on IR .

(3) Since ̂P �S is idempotent we must have

f 2( ̂N ) = f ( ̂N ) ⇒
∞
∑

n=0
f 2(n) ̂P N̂(n) =

∞
∑

n=0
f (n) ̂P N̂(n)

⇒ f 2(n) = f (n) ⇒ f (n) = 1 or f (n) = 0. (20.64)

(4) We can conclude that the projector is of the form

̂P �S =
∑

n∈ J
̂P N̂(n), (20.65)

for some set J of non-negative integers. In other words, ̂P �S is a

spectral projector of ̂N and �S is a spectral subspace of ̂N .
(5) A spectral subspace of ̂N cannot be invariant under both â and

â†. For example, the spectral subspace spanned by �ϕ1 cannot
be invariant under â since â �ϕ1 = �ϕ0 would lie outside the
subspace.

(6) We have arrived at a contradiction which would imply the non-

existence of a subspace which can reduce â and â†. In other
words, â and â† form an irreducible set in �H.
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Exercises and Problems

Q20(1) Show that the spectral functions of a projector ̂P , of the
zero operator ̂0 and of the identity operator ̂II are given,
respectively by36

̂F 0̂(τ ) =
{

̂0 τ < 0
̂II τ ≥ 0

. (20.66)

̂F ÎI (τ ) =
{

̂0 τ < 1
̂II τ ≥ 1

. (20.67)

̂F P̂ (τ ) =

⎧

⎪

⎨

⎪

⎩

0 τ < 0
̂II − ̂P 0 ≤ τ < 1
̂II τ ≥ 1

. (20.68)

Q20(2) Show that on an interval � of IR the spectral measure
̂MP̂ (�) of a projector ̂P is related to ̂P by37

̂MP̂ (�) =

⎧

⎪

⎨

⎪

⎩

̂II − ̂P if � = {0}
̂P if � = {1}
̂0 if � does not contain 0 or 1

.(20.69)

Q20(3) Prove that Theorem 9.4.4(1) remains valid for a selfad-

joint operator with a discrete spectrum in an infinite-

dimensional Hilbert space.

Q20(4) In �L2(IR) show that for every φ(x) ∈ C∞c (IR) we have

[ f (x̂), p̂(IR) ] �φ := i�
d f (x)
dx

φ(x). (20.70)

Q20(5) Show that selfadjoint operators having a discrete spectrum
are reducible by their eigensubspaces.

Q20(6) Show that in �L2(IR) the position operator x̂(IR) is reducible
and the momentum operator p̂(IR) is also reducible.38

Q20(7) Show that the position operator x̂ in �L2(IR) constitutes a
complete set of selfadjoint operators.

36Weidmann p. 195. Wan p. 152.
37Wan p. 152. See Q28(2) for an application.
38This is in contrast to the fact discussed in E20.7(1) that together the position and

momentum operators form an irreducible set.
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Chapter 21

Spectral Theory of Unitary Operators
on �H

21.1 Spectral Decomposition of Unitary
Operators

Theorem 13.4.1(2) on the eigenvectors and the spectral decompo-

sition of unitary operators on �VV N needs to be modified to apply

to an infinite-dimensional Hilbert space �H. This is because unitary
operators on �H may have a continuous spectrum. This is similar

to the corresponding situation for selfadjoint operators. As with

selfadjoint operators the problem is solved by the introduction of

spectral functions for unitary operators.

Theorem 21.1(1) Spectral Theorem To every unitary operator
̂U on a Hilbert space �H there corresponds a unique spectral function,
known as the spectral function of ̂U and denoted by ̂F Û(τ ), such that

〈 �ψ | ̂U �φ 〉 =
∫ ∞

−∞
eiτ dτ 〈 �ψ | ̂F Û(τ ) �φ 〉 ∀ �ψ , �φ ∈ �H. (21.1)

Following Eq. (20.13) we write

̂U =
∫ ∞

−∞
eiτ dτ

̂F Û(τ ). (21.2)
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The integral expression is known as the spectral decomposition of
the unitary operator ̂U .1

The relation between a selfadjoint operator ̂A and a unitary

operator ̂U in Eq. (13.80) of Theorem 13.4.3(1) remains valid here.

To see how this can arise let ̂F Â(τ ) be the spectral function of a

selfadjoint operator ̂A. Following Eq. (20.51) we can construct a
complex exponential function of ̂A by2

ei ̂A =
∫ ∞

−∞
eiτ dτ

̂F Â(τ ). (21.3)

This defines a unitary operator ̂U with the above integral as its

spectral decomposition. The operators ̂A and ̂U share the same

spectral function, i.e., ̂F Û(τ ) = ̂F Â(τ ).

In the special case when ̂A possesses a discrete set of

eigenvalues {a�} with corresponding complete orthonormal set of
eigenvectors �ϕ� the integral in Eq. (21.3) reduces to a sum. In

other words, the spectral decomposition of the unitary operator ̂U
defined by the integral reduces to

̂U = ei ̂A =
∞
∑

�=1
eia� ̂P �ϕ�

=
∞
∑

�=1
eia� | �ϕ�〉〈 �ϕ�|. (21.4)

This is a generalisation of the corresponding decomposition

expressed in Eq. (13.69). An eigenvector �ϕ� of ̂A is also an

eigenvector of the unitary operator ̂U corresponding to eigenvalue

exp (ia�), i.e., we have

̂U �ϕ� =
( ∞
∑

�′=1
eia�′ ̂P �ϕ�′

)

�ϕ� = eia� �ϕ�. (21.5)

Due to Eq. (21.13) in Stone’s theorem and subsequent applica-

tions Eq. (21.4) can be more usefully written in the form

̂U = e− ¯i
̂H t =

∞
∑

�=1
e− ¯i E�t

̂P �ϕ�
=

∞
∑

�=1
e− ¯i E�t | �ϕ�〉〈 �ϕ�|. (21.6)

1Roman Vol. 2 p. 657. Prugovečki pp. 241–242. Gallone pp. 469–470.
2Jordan pp. 51–52. Roman Vol. 2 pp. 660–661.
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Here i– = i/� and ̂H is a selfadjoint operator and t ∈ IR .
Some of the properties of unitary operators discussed in §13.4.3
remain valid, albeit with some restrictions:

P21.1(1) The expansion of an exponential function in Eq. (13.89)

remains true if ̂A is bounded. If ̂A is unbounded the expansion

becomes problematic since we would encounter problems of the

domain of ̂An as n goes to infinity.3

P21.1(2) Let ̂A and ̂B be two bounded commuting selfadjoint

operators in �H. Then we have4

ei Âei B̂ = ei( Â+B̂) = ei B̂ei Â . (21.7)

It follows that5

ei Âe−i Â = e−i Âei Â = ê0 = ̂II . (21.8)

This is a confirmation of Eqs. (20.49) and (20.49), and the unitary

nature of ei Â .

P21.1(3) The above result does not apply to two non-commuting

operators. Take the examples of the position and momentum

operators x̂ and p̂ in �L2(IR).6 They generate following unitary

operators:7

e− ¯iax̂ and e− ¯ib p̂, a, b ∈ IR . (21.9)

These two unitary operators do not satisfy Eq. (21.7). Instead they

satisfy the following Weyl relation8

e ¯iax̂ e− ¯ib p̂ = e− ¯iabe−i p̂ei x̂ . (21.10)

3Kato pp. 478–484. Prugovečki pp. 300–301. Reed and Simon pp. 264–265.
4Prugovečki pp. 339–340. This may not be true for unbounded operators (see Blank,
Exner and Havliček pp. 194, 202. Riesz and Nagy p. 397).
5The operator ê0 can be understood as the exponential function of Â with zero

exponent. Then Eq. (21.3) will lead to the identity operator. It can also be regarded

as the operator function of Â defined by the constant function e0 = 1 = fc(τ ). This
again results in the identity operator.
6Their commutation relation is given by Eq. (13.74).
7Recall the notation i– = i/�.
8Prugovečki p. 288, pp. 333–342. The operator e īax̂ can be compared with a similar
operator in Eq. (27.79) in Chapter 28. Roman p. 642. Weyl (1885–1955) was a

German mathematician.
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P21.1(4) It is interesting to note that when acting on a vector �φ ∈
�L2(IR) we have9

e− ¯ib p̂ �φ := φ(x − b). (21.11)

The result shows that the operator has the effect of translating the

function φ(x) to the right along the x-axis by b, and it is hence known
as a translation operator. The inverse of the unitary operator will
translate the function to the left, i.e.,

e ¯ib p̂ �φ := φ(x + b). (21.12)

21.2 Stone’s Theorem

Theorem 13.4.3(2) of Stone on one-parameter groups of unitary

operators applies in Hilbert spaces, subject to addition conditions

due to possible unboundedness of the generator of the group.10

Theorem 21.2(1) Stone’s Theorem Let ̂U (t) be a continuous
one-parameter group of unitary operators.11 Then there is a unique
selfadjoint operator ̂H , known as the generator of the group, such that

̂U (t) = e− ¯i t Ĥ , (21.13)

and

̂H �φ = i� lim
t→0

̂U (t)− ̂II
t

�φ, ∀ �φ ∈ D( ̂H ). (21.14)

We can express the above limit formally as

̂H = i�

(

d ̂U (t)
dt

)

t=0
or i�

d ̂U (t)
dt

= ̂H ̂U (t). (21.15)

9Baym pp. 152–153. Fano pp. 286–287. Prugovečki p. 347. Roman Vol. 2 p. 556 for a

diagram of translating a function.
10For direct physical applications in Chapter 29 the generator is denoted by Ĥ instead

of Â in Theorem 13.4.3(2).
11Prugovečki pp. 288, 335. Roman Vol. 2 pp. 662–665. Blank, Exner and Havliček pp.

317–320. Gallone p. 504. The definition of a continuous one-parameter group of

unitary operators given by Definition 13.4.3(1) remains valid in a Hilbert space (see
Jordan p. 52). The constant � is inserted for physical applications.
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The unitary operator ̂U (t) leavesD( ̂H ) invariant,12 i.e.,

�φ(0) ∈ D( ̂H ) ⇒ ̂U (t) �φ(0) ∈ D( ̂H ). (21.16)

Thus, for �φ(0) ∈ D( ̂H ) and �φ(t) = ̂U (t) �φ(0) we have,

d �φ(t)
dt

=
(

d ̂U (t) �φ(0)
dt

)

= d ̂U (t)
dt

�φ(0) = 1

i�
̂H �φ(t). (21.17)

In a more familiar form we have

i�
d �φ(t)
dt

= ̂H �φ(t). (21.18)

Stone’s theorem and the above equation are employed in Chapter 29

to formulate the time evolution of quantum systems.

Exercises and Problems

Q21(1) Let ̂U be a unitary operator in the Hilbert space �H with

a spectral decomposition given by Eq. (21.4). Let �φ be an

arbitrary vector inH. Show that

̂U �φ =
∑

�

c� eia� �ϕ�, c� = 〈 �ϕ� | �φ〉. (21.19)

Q21(2) Equation (10.27), which is a time dependent Schrödinger
equation, can be written in the form of Eq. (21.18) which

follows from Stone’s theorem as a vector equation in the

Hilbert space �L2(IR), i.e.,

i�
d �φ(t)
dt

= ̂H �φ(t), (21.20)

where �φ(t) is in the domain of ̂H . Explain why the norm of

vector �φ(t) is preserved in time, i.e., || �φ(t1)|| = || �φ(t2)|| for
any t1 and t2.

12Prugovečki p. 291.Weidmann p. 225. Since Û (t) and Â commute Eq. (17.87) implies
the result.
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Q21(3) Consider the following unitary transformations of an

operator ̂A:

̂A(t) = ̂U †(t) ̂A ̂U (t), (21.21)

where ̂U (t) = e− ¯i t
̂H
is a one-parameter family of unitary

operators in Eq. (21.13).13 Show that14

i�
d ̂A(t)
dt

= [ ̂A(t), ̂H ]. (21.22)

13The operators Â and Ĥ are independent of t and Â(t = 0) = Â.
14See Eq. (29.19) for the physical relevance of this result.



Chapter 22

Probability, Selfadjoint Operators and
Unit Vectors

22.1 Generating Probability Distributions on �H
Theorem 15.5(1) applies to infinite-dimensional Hilbert spaces. In

view of the crucial importance of this we shall iterate it below.

Theorem 22.1(1) A selfadjoint operator ̂A together with a unit
vector �φ in a Hilbert space generates a unique probability distribution
function F Â( �φ, τ ) and a probability measureM Â( �φ, �) given by the
quadratic forms Q

(

̂F Â(τ ), �φ ) and Q
(

̂MÂ(�), �φ ) generated by its
spectral function ̂F Â(τ ) and spectral measure ̂MÂ(�), i.e.,

F Â( �φ, τ ) := Q
(

̂F Â(τ ), �φ ) = 〈 �φ | ̂F Â(τ ) �φ 〉, (22.1)

and

M Â( �φ, �) := Q
(

̂MÂ(�), �φ ) = 〈 �φ | ̂MÂ(�) �φ 〉. (22.2)

Two unit vectors which differ only by a phase factorwould generate
the same probability distribution function.1

1A phase factor is a multiplicative constant of magnitude 1, i.e., eiθ , θ ∈ IR .
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Corollary 15.5(1) also applies, albeit subject to a domain

restriction. In other words, a probability distribution function

F Â( �φ, τ ) leads to a finite expectation value E( ̂A, �φ ) only if �φ is in

the domain of ̂A. We have, for �φ ∈ �D( ̂A),

E( ̂A, �φ ) :=
∫ ∞

−∞
τ dτF Â( �φ, τ ) = 〈 �φ | ̂A �φ 〉. (22.3)

As in Eqs. (10.8) and (10.9) this expectation value is seen to be

equal to the quadratic form Q( ̂A, �φ ).2 Following Eq. (10.10) the
uncertainty arising from the probability distribution function can be

similarly expressed, i.e., we have


( ̂A, �φ ) =
√

〈 �φ | ̂A2 �φ 〉 − 〈 �φ | ̂A �φ 〉2. (22.4)

If the probability distribution function is absolutely continuous

we can introduce a probability density function by

wÂ( �φ, τ ) = d
dτ

F Â( �φ, τ ). (22.5)

The expectation value can be written directly in terms of the

probability density function as

E( ̂A, �φ ) =
∫ ∞

−∞
τ dτF Â( �φ, τ ) =

∫ ∞

−∞
τ wÂ( �φ, τ ) dτ , (22.6)

for all �φ ∈ �D( ̂A). An arbitrary symmetric operator does not possess
a spectral function and the spectral theorem does not apply to

such an operator. Hence the relation between selfadjoint operators

and probability distributions presented above does not apply to

symmetric operators. This is the reason that the probabilistic

nature of quantum mechanics is formulated in terms of selfadjoint

operators, not symmetric operators.3

Note that the expression for the uncertainty in Eq. (22.4) requires

the �φ to be in the domain of ̂A2. This means that for �φ ∈ �D( ̂A)
2Recall thatQ( Â, �φ ) = 〈 �φ | Â �φ 〉.
3It is possible to generalise orthodox quantum theory to include certain symmetric

operators. Wan pp. 395–428.
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we have a finite expectation value but we may not have a finite

uncertainty since �φ may not be in the domain of ̂A2. For a selfadjoint
operator ̂A and �φ ∈ �D( ̂A2) we have

〈 �φ | ̂A 2 �φ 〉 = 〈 ̂A �φ | ̂A �φ 〉 = || ̂A �φ ||2, (22.7)

and


( ̂A, �φ ) =
√

|| ̂A �φ ||2 − 〈 �φ | ̂A �φ 〉2. (22.8)

This expression for 
( ̂A, �φ ) can be extended to �φ ∈ �D( ̂A) so that a
finite uncertainty would exist for all �φ ∈ �D( ̂A) if we choose to define
uncertainty by Eq. (22.8).4

Applications of Theorem 22.1(1) to operators with discrete and

continuous spectra are given in the following sections.

22.2 Operators with a Discrete Spectrum

Many selfadjoint operators important to physical applications,

e.g., number operators and some first order and second order

differential operators, possess a discrete spectrum. For a selfadjoint

operator with a discrete spectrum the spectral function reduces to a

sum in the form of Eq. (20.20). The probability distribution arising

from Theorem 22.1(1) can be given by a probability mass function

as seen in the following theorem.

Theorem 22.2(1) A selfadjoint operator ̂A with a discrete spec-
trum spd( ̂A) = {am} together with a unit vector �φ in a Hilbert space
generates a unique probability mass function ℘ Â( �φ, am) on spd( ̂A) by
the quadratic formQ

(

̂P Â(am), �φ
)

, i.e.,

℘ Â( �φ, am) := Q
(

̂P Â(am), �φ
) = 〈 �φ | ̂P Â(am) �φ 〉. (22.9)

For a nondegenerate eigenvalue a� corresponding to the eigen-

vector �ϕ� we have

℘ Â( �φ, a�) := 〈 �φ | ̂P �ϕ�
�φ 〉. (22.10)

4Wan. p. 183.
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The corresponding probability distribution function F Â( �φ, τ ) de-
fined by Eq. (22.1) is piecewise-constant since the spectral function

is piecewise-constant. Explicitly F Â( �φ, τ ) is given by
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, τ < a1
〈 �φ | ̂P Â(a1) �φ 〉, a1 ≤ τ < a2
〈 �φ | ̂P Â(a1) �φ 〉 + 〈 �φ | ̂P Â(a2) �φ 〉, a2 ≤ τ < a3
· · · · · ·
∑m

�=1 〈 �φ | ̂P Â(a�) �φ 〉, am ≤ τ < am+1
· · · · · ·

. (22.11)

This is clearly an extension of Eq. (14.58) in �VV N . For the expectation

value we have, for �φ ∈ D( ̂A),

E( ̂A, �φ ) :=
∑

�

℘ Â( �φ, a�) a� = 〈 �φ | ̂A �φ 〉. (22.12)

Equation (22.8) for the uncertainty can be applied here.

22.3 Operators with a Continuous Spectrum

22.3.1 Position Operator in �L2(IR)
We can generate a probability distribution function F x̂( �φ, τ ) in
terms of the spectral function ̂F x̂(τ ) of the position operator x̂ for
every vector �φ ∈ �L2(IR) in accordance with Eq. (22.1) by

F x̂( �φ, τ ) := 〈 �φ | ̂F x̂(τ ) �φ 〉 = 〈 �φ | ̂χ (−∞,τ ]
�φ 〉. (22.13)

Explicitly we have

F x̂( �φ, τ ) : =
∫ ∞

−∞
φ∗(x) χ (−∞,τ ](x)φ(x) dx

=
∫ τ

−∞
|φ(x)|2 dx . (22.14)

This probability distribution function is absolutely continuous. The

corresponding probability density function given by

wx̂( �φ, τ ) := d
dτ

∫ τ

−∞
|φ(x)|2 dx = |φ(τ )|2. (22.15)
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These results make it possible for us to pursue our previous model

theories in Chapter 14 for observables with a continuous spectrum.

We know that the position of a quantum particle does not have

a definite value in any state and that a state can only determine

the probability distribution of the particle’s position values. Then

following the discussion in §14.2 we may represent the position of
a particle by the operator x̂ and a state of the particle by a unit
vector �φ ∈ �L2(IR). The probability distribution of position values
will then be determined by the probability distribution function

F x̂( �φ, τ ) with the position expectation value for any �φ ∈ D(x̂) given
by

E(x̂ , �φ ) : =
∫ ∞

−∞
τdτF x̂( �φ, τ ) =

∫ ∞

−∞
τwx̂( �φ, τ )dτ

=
∫ ∞

−∞
τ |φ(τ )|2 dτ = 〈 �φ | x̂ �φ 〉 (22.16)

with uncertainty


(x̂ , �φ ) :=
√

||x̂ �φ ||2 − 〈 �φ | x̂ �φ 〉2. (22.17)

22.3.2 Momentum Operator in �L2(IR)
In the momentum representation the momentum appears as a

multiplication operator in the same way that the position acts as a

multiplication operator in the coordinate representation. It follows

that we can treat the momentum in the momentum representation

in the same way as position in the coordinate representation. Using

the expression in Eq. (20.29) for the momentum spectral function
̂F p̂∼
∼ (τ ) we obtain the momentum probability distribution function

F p̂∼( �φ
∼
, τ ) in the momentum representation

F p̂∼( �φ
∼
, τ ) :=

∫ ∞

−∞
φ
∼
∗(p) χ

∼ (−∞,τ ](p)φ∼ (p) dp

=
∫ τ

−∞
|φ
∼
(p)|2 dp. (22.18)
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This probability distribution is absolutely continuous. The momen-

tum probability density function is

wp̂∼( �φ
∼
, τ ) := d

dτ
F p̂∼( �φ

∼
, τ )

= d
dτ

∫ τ

−∞
|φ
∼
(p)|2 dp = |φ

∼
(τ )|2. (22.19)

The resulting expectation value for any �φ
∼
∈ D( p̂

∼
) is given by

E( p̂
∼
, �φ
∼
) :=

∫ ∞

−∞
τdτ

˜F p̂∼( �φ
∼
, τ ) =

∫ ∞

−∞
τwp̂∼( �φ

∼
, τ )dτ

=
∫ ∞

−∞
τ |φ

∼
(τ )|2 dτ = 〈 �φ

∼
| p̂
∼
�φ
∼
〉, (22.20)

with uncertainty


( p̂
∼
, �φ
∼
) =

√

|| p̂
∼
�φ
∼
||2 − 〈 �φ

∼
| p̂
∼
�φ
∼
〉2 . (22.21)

Alternatively we can also work in the coordinate representation.

Using the spectral function ̂F p̂(τ ) in Eq. (20.32) we can evaluate the

probability distribution function in the coordinate representation.

Denoting he probability distribution function in the coordinate

representation by F p̂( �φ, τ ) we have

F p̂( �φ, τ ) =
∫ ∞

−∞
φ∗(x)

(∫ τ

−∞
f p(x)φ∼ (p) dp

)

dx

=
∫ τ

−∞

(∫ ∞

−∞
φ∗(x) f p(x) dx

)

φ
∼
(p) dp

=
∫ τ

−∞

(∫ ∞

−∞
φ(x) f ∗p (x) dx

)∗
φ
∼
(p) dp

=
∫ τ

−∞
φ
∼
∗(p)φ

∼
(p) dp =

∫ τ

−∞
|φ
∼
(p)|2 dp. (22.22)

This agrees with previous result, i.e.,

F p̂( �φ, τ ) = F p̂∼( �φ
∼
, τ ). (22.23)

The probability density function is the same as before, i.e.,

w p̂( �φ, τ ) := d
dτ

F p̂( �φ, τ ) = |φ
∼
(τ )|2 = wp̂∼( �φ

∼
, τ ). (22.24)



Exercises and Problems 407

The corresponding expectation value is given by

E( p̂, �φ ) = 〈 �φ | p̂ �φ 〉 (22.25)

with the uncertainty


( p̂, �φ ) =
√

|| p̂ �φ ||2 − 〈 �φ | p̂ �φ 〉2. (22.26)

These values are the same as before, i.e.,5

E( p̂
∼
, �φ
∼
) = E( p̂, �φ ), 
( p̂

∼
, �φ
∼
) = 
( p̂, �φ ). (22.27)

All these results are as expected since probability distributions and

expectation values are physically measurable quantities which are

not dependent on any particular mathematical description.

Finally we should mention that the uncertainties of the position

and momentum associated with an appropriate unit vector �φ in
�L2(IR) are related by the following uncertainty relation6


(x̂ , �φ )
( p̂, �φ ) ≥ 1

2
�, (22.28)

Exercises and Problems

Q22(1) The commutation relation between the selfadjoint position
and momentum operators x̂ = x and p̂ = −i� d/dx in the
Hilbert space �L2(IR) is often written as

[x̂ , p̂ ] = i�. (22.29)

As pointed out in the discussion in §17.7 this relation

should be expressed as an inequality, i.e.,

[ x̂ , p̂ ] ⊂ i� ̂II , (22.30)

5These results confirm that fact that Fourier transform as a unitary transform

preserves quadratic forms.
6Similar to the commutation relation in Eq. (22.31) this uncertainty relation does not

apply to every unit vector in �L2(IR). Various proofs of the uncertainty relations using
the Schwarz inequality are available in many textbooks on quantummechanics.
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or

[x̂ , p̂ ] �φ = i� �φ (22.31)

for an appropriate set of vectors �φ in �L2(IR). What are the
conditions �φ must satisfy in order for the equality to hold?

Q22(2) Consider a particle confined in an infinite potential well of
width [0, L]. All its wave functions φ(x)must vanish outside
the well, i.e., φ(x) = 0 ∀x /∈ [0, L]. Hence the state space of
the trapped particle is taken to be �L2(�), � = [0, L] rather
than �L2(IR).
(a) Taking the operator x̂(�) in Eq. (17.22) as the position

operator show that the uncertainty in position cannot

be bigger than the width of the well.

(b) Taking the operator p̂λ=0(�) in Eq. (17.36) as the

momentum operator show that the momentum uncer-

tainty



(

p̂λ=0(�), �ϕλ=0,n(�)
)

is zero. Here �ϕλ=0,n(�) are eigenvectors of p̂λ=0(�) in
Eq. (19.34).

(c) Bearing in mind the above results investigate whether
or not an uncertainty relation similar to that shown in

Eq. (22.28) remains valid for eigenvectors of p̂λ=0(�).7

7Fano pp. 407–408 for a similar problem with the uncertainty relation in the Hilbert

space �L2(Ca). See also §28.3.3 on a particle in circular motion.



Chapter 23

Physics of Unitary Transformations

A physical theory often admits different mathematical descriptions.

Classical mechanics has three familiar formulations: the traditional

Newton’s formulation, the Lagrange’s and the Hamilton’s formula-

tions.1 It is easy to see that these are physically equivalent. Quantum

mechanics also admits many different formulations. The physical

equivalence of different formulations in quantum mechanics are

often not obvious, since the mathematics involved is rather abstract.

This chapter discusses how different mathematical descriptions of

a probability theory based on a Hilbert space can be physically

equivalent.

Following the model theory for spin in Chapter 14 we can

establish a probabilistic theory for quantum systems satisfying

properties QMP5.3(1) to QMP5.3(4) stated in §5.3 as follows:

(1) Choose an appropriate Hilbert space �H as the state space of the

system in that a quantum state φs is described by a unit vector
�φ in �H.

1See §27.1 for a summary of the Lagrangian and the Hamilton’s formulations.

Hamilton (1805–1865) was an Irish physicist. Lagrange (1736–1813) was a French

mathematician born in Italy.
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(2) Choose appropriate selfadjoint operators to associate with the

observables of the system in that the measurable values of an

observable A are identified with elements of the spectrum of its

associated selfadjoint operator ̂A.

(3) The probability distribution of measurable values of observable

A in state φs is given by the probability distribution function

F Â( �φ, τ ) in Theorem 22.1(1).

The above prescription does not single out a unique Hilbert space

nor a unique set of unit vectors and operators for the description of

a given quantum system. This non-uniqueness does not matter since

operators and unit vectors themselves are not physicallymeasurable

quantities.What is required is for physicallymeasurable values to be

independent of any particular choice of those abstract mathematical

quantities. Let us make this clear by setting out the requirements for

two different mathematical descriptions of a quantum system to be

physically equivalent.

Physical equivalence

Two differentmathematical descriptions of a quantum system
are physically equivalent if and only if they lead to the same
measurable properties for the system. In other words the
predicted measurable values together with their probability
distribution for every observable in every state must be the
same in the two descriptions.

Now consider a description of the system in terms of a set of

selfadjoint operators ̂A and unit vectors �φ and another description
in terms of a set of selfadjoint operators ̂A′ and unit vectors
�φ′. The physics is contained in the various numerical values, e.g.,
eigenvalues, probabilities, expectation values. Everyone of these

values is expressible in terms of the quadratic form generated by a

selfadjoint operator in conjunction with a unit vector �φ, i.e.,Q( ̂A, �φ )
for the first description and Q( ̂A′, �φ′ ) for the second description. If
the operators and unit vectors of two descriptions are related by a

simultaneous unitary transformation, i.e., there is a unitary operator
̂U such that

�φ′ = ̂U �φ and ̂A′ = ̂U ̂A ̂U †, (23.1)
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for every unit vector �φ and every selfadjoint operator ̂A,2 then the
values of the quadratic forms Q( ̂A, �φ ) and Q( ̂A′, �φ′ ) would be the
same, i.e.,

Q( ̂A, �φ ) = Q( ̂A′, �φ′ ) ⇔ 〈�φ | ̂A �φ 〉 = 〈 �φ′ | ̂A′ �φ′ 〉. (23.2)

This leads us to the following requirement.

Mathematical requirement for physical equivalence:

Two differentmathematical descriptions of a quantum system
are physically equivalent if the unit vectors and selfadjoint
operators for the representation of states and observables in
the two descriptions are related by a simultaneous unitary
transformation.

The descriptions of position and momentum in the coordinate

momentum representations in §22.3.1 and §22.3.2 are examples.
Manymore examples will be presented in Chapters 29 and 35 which

will illustrate the physical equivalence of different mathematical

descriptions and formulations of quantum theory.

Exercises and Problems

Q23(1) Explain why a coordinate representation space and its

corresponding momentum representation space intro-

duced in §18.4.2 give rise to two mathematically different
descriptions of the position and momentum which are

physically equivalent.

2Theorem 15.3(2) also tells us that the spectral functions and the spectral measures

of Â and Â′ are also related by a unitary transformation generated by Û .
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Chapter 24

Direct Sums and Tensor Products of
Hilbert Spaces and Operators

Given two Hilbert spaces we can construct further Hilbert spaces.

There are two physically important constructions leading to a direct

sum space and a tensor product space.

24.1 Direct Sums of Hilbert Spaces and Operators

24.1.1 Direct Sums of Hilbert Spaces

Let �H (1) and �H (2) be two Hilbert spaces. The set of ordered pairs

{

{ �φ (1), �φ (2)} : �φ (1) ∈ �H (1), �φ (2) ∈ �H (2)
}

(24.1)

can be given a natural Hilbert space structure with algebraic

operations and scalar product of any two elements { �φ (1), �φ (2)} and
{ �ψ (1), �ψ (2)} of the set defined by

c { �φ(1), �φ(2)} := {c �φ(1), c �φ (2)}, c ∈ C , (24.2)

{ �φ(1), �φ(2)} + { �ψ (1), �ψ (2)} := { �φ(1) + �ψ (1), �φ(2) + �ψ (2)}, (24.3)

〈{ �φ(1), �φ(2)} | { �ψ (1), �ψ (2)}〉⊕ := 〈 �φ(1) | �ψ (1)〉(1) + 〈 �φ(2) | �ψ (2)〉(2). (24.4)
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The set of ordered pair then forms a Hilbert space.1

Definition 24.1.1(1) The direct sum of �H (1) and �H (2), denoted
by �H⊕, is the Hilbert space formed by the set of ordered pairs in Eq.
(24.1) with the Hilbert space structure defined by Eqs. (24.2), (24.3)
and (24.4).

The notation for direct sums are set out below:

(1) The direct sum is also denoted explicitly by �H (1) ⊕ �H (2) with

elements { �φ (1), �φ (2)} of the direct sum �H (1) ⊕ �H (2) denoted by
�φ (1) ⊕ �φ (2) which is also called the direct sum of �φ (1) and �φ (2).

In keeping with the notation of �H⊕ an element of the direct sum
space is also denoted by �φ⊕, i.e., we have

�H⊕ = �H (1) ⊕ �H (2), (24.5)

�φ⊕ = �φ (1) ⊕ �φ (2), (24.6)

�ψ ⊕ = �ψ (1) ⊕ �ψ (2), (24.7)

〈 �φ⊕ | �ψ ⊕〉⊕ := 〈 �φ (1) | �ψ (1)〉(1) + 〈 �φ (2) | �ψ (2)〉(2). (24.8)

(2) Vectors �φ (1) in �H (1) and �φ (2) in �H (2) correspond to vectors �φ (1)⊕

and �φ (2)⊕ in �H⊕, i.e.,

�φ (1) ↔ �φ (1)⊕ := �φ (1) ⊕ �0(2), (24.9)

�φ (2) ↔ �φ (2)⊕ := �0(1) ⊕ �φ (2), (24.10)

where �0(1) and �0(2) are the zero vectors in �H (1) and �H(2),

respectively. We have

〈 �φ (1)⊕ | �φ (2)⊕〉⊕ = 0. (24.11)

(3) The constituent spaces �H (1) and �H (2) correspond to two

subspaces of the direct sum space, e.g., �H (1) corresponds to the

subspace2

�H (1)⊕ := { �φ (1)⊕ = �φ (1) ⊕ �0(2) : �φ (1) ∈ H (1)
}

. (24.12)

1The superscript ⊕ in Eq. (24.4) indicates the scalar product in �H⊕ while the

superscripts (1) and (2) signify scalar products in �H (1) and �H (2).
2Kadison and Ringrose Vol. 1 p. 111, pp. 121–122. The correspondence in Eqs. (24.9)

and (24.12) can be made precise in terms of a unitary mapping.
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We can extend the definition to construct the direct sum of three

or more Hilbert spaces in a straightforward manner.3 We can also

form the direct sum of a Hilbert space with itself, e.g.,

�C ⊕ := �C ⊕ �C . (24.13)

The dimension of the direct sum space is equal to the sum of the

dimensions of the constituent spaces, e.g., �C ⊕ is two-dimensional

and is identifiable with �C 2
.4

The concept of direct sum can be used to decompose a given

Hilbert space in the following manner:

(1) Let �S be a subspace of a Hilbert space �H and let �S⊥ be its

orthogonal complement. Vectors in �S and �S⊥ as subspaces of
H are denoted by �φ �S and �φ �S⊥ as in Eq. (16.84). These subspaces
are Hilbert spaces in their own right so that we can form their

direct sums

�H⊕ = �S ⊕ �S⊥, �φ⊕ = �φ �S ⊕ �φ �S⊥ . (24.14)

The following correspondence are obvious:

�S and �S⊥ ↔ �H (1) and �H (2), (24.15)

�φ �S ∈ �S ⊂ �H ↔ �φ ⊕�S = �φ �S ⊕ �0(2) ∈ �H⊕ (24.16)

�φ �S⊥ ∈ �S⊥ ⊂ �H ↔ �φ⊕�S⊥ = �0(1) ⊕ �φ �S⊥ ∈ H⊕, (24.17)

�φ = �φ �S + �φ �S⊥ ∈ �H ↔ �φ⊕ = �φ �S ⊕ �φ �S⊥ ∈ �H⊕. (24.18)

The direct sum �H⊕ in Eq. (24.14) is identifiable with �H. We can
write �H = �H⊕, i.e., �H = �S ⊕ �S⊥.

(2) Since the pair of subspaces �S and �S⊥ constitutes a complete

orthogonal family of subspaces of �H,5 we say that �H is
decomposable as a direct sum of the complete orthogonal family
of subspaces �S and �S⊥ of �H.

3Roman Vol. 2 pp. 450–455.

4The two spaces �C ⊕ and �C 2
are unitarily related.

5Definition 13.2.2(2).
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(3) The decomposition can be extended to a general complete

orthogonal family of subspaces of �H. Treating these subspaces
as Hilbert spaces with the notation �S(n) we can form their direct

sum, i.e.,6

�H⊕ := ⊕n �S(n) = �S(1) ⊕ �S(2) ⊕ · · · . (24.19)

Elements of the direct sum space are of the form

�φ⊕ := ⊕n �φ (n), �φ (n) ∈ �S (n). (24.20)

Subspaces of �H⊕ corresponding to �S (n) are denoted by �S(n)⊕,
e.g.,

�S (1)⊕ := �S (1) ⊕ �0(2) ⊕ �0(3) ⊕ · · · . (24.21)

The above direct sum decomposition has the following properties:

P24.1.1(1) The direct sum space �H⊕ is identifiable with H. We
say that

a Hilbert space �H is decomposable as a direct sum of a
complete orthogonal family of subspaces �S (n) of �H.

P24.1.1(2) The scalar product of �φ⊕ in Eq. (24.20) and another
vector �ψ ⊕ inH⊕ is given by7

〈 �φ ⊕ | �ψ ⊕〉⊕ =
∑

n

〈 �φ (n) | �ψ (n)〉(n). (24.22)

P24.1.1(3) Generalising the notation in Eqs. (24.9) and (24.10),

e.g.,

�φ (1)⊕ := �φ (1) ⊕ �0(2) ⊕ �0(3) ⊕ · · · , (24.23)

�φ(2)⊕ := �0(1) ⊕ �φ (2) ⊕ �0(3) ⊕ · · · . (24.24)

For n �= mwe get

〈 �φ (m)⊕ | �φ (n)⊕〉⊕ = 0. (24.25)

6Kadison and Ringrose Vol. 1 p. 111, pp. 121–122. The decompositions in Eqs. (24.5)

and (24.19) are often referred to as an external direct sum and an internal direct sum,
respectively.
7The scalar product 〈 �φ (n) | �ψ (n)〉(n) is evaluated in �S (n).
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P24.1.1(4) Equations (24.20) and (24.22) can rewritten as

�φ⊕ =
∑

n

�φ (n)⊕ and �ψ ⊕ =
∑

n

�ψ (n)⊕ (24.26)

and

〈 �φ⊕ | �ψ ⊕〉⊕ =
∑

n

〈 �φ (n)⊕ | �ψ (n)⊕〉⊕. (24.27)

24.1.2 Direct Sums of Operators

Let �H (1) and �H (2) be two Hilbert spaces, and let ̂A (1) and ̂A (2) be

two operators with domains �D( ̂A(1)) ⊂ H(1) and �D( ̂A(2)) ⊂ H(2) ,

respectively. We can define the direct sum operator as an operator

acting in the direct sum space �H⊕ = �H(1) ⊕ �H(2).

Definition 24.1.2(1) The direct sum of ̂A (1) and ̂A (2), denoted by
̂A⊕ or explicitly by ̂A (1)⊕ ̂A (2), is the operator acting in the direct sum
space �H⊕ = �H (1) ⊕ �H (2) by

(

̂A (1) ⊕ ̂A (2)
)(

�φ (1) ⊕ �φ (2)
)

:= ̂A (1) �φ (1) ⊕ ̂A (2) �φ (2), (24.28)

where �φ (1) ∈ D( ̂A (1)) and �φ (2) ∈ D( ̂A (2)).

If ̂A(1) and ̂A(2) are selfadjoint then their direct sum ̂A⊕ is also

selfadjoint.8 Moreover, the spectrum sp( ̂A⊕) of ̂A⊕ is related to the
spectra sp( ̂A (1)) and sp( ̂A (2)) by9

sp( ̂A⊕) = sp( ̂A (1)) ∪ sp( ̂A (2)). (24.29)

When a Hilbert space is decomposed as a direct sum of a

complete orthogonal family of subspaces there are operators which

can be similarly decomposed. An example is a reducible operator. Let
̂A be a bounded operator on �Hwhich admits a reducing subspace �S .
Then ̂A leaves the subspaces �S and �S⊥ invariant, i.e.,

̂A �φ �S = �ψ �S ∈ �S ∀ �φ �S ∈ �S , (24.30)

̂A �φ �S⊥ = �ψ �S⊥ ∈ �S⊥ ∀ �φ �S⊥ ∈ �S⊥. (24.31)

8Blank, Exner and Havliček p. 145.
9Roman Vol. 2 (1975) p. 592.
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The part of ̂A in �S is given by ̂A �S = ̂P �S ̂A ̂P �S in accordance with

Eq. (17.111). The part of ̂A in �S⊥ is given by ̂A �S⊥ = ̂P �S⊥ ̂A ̂P �S⊥ . The
operator ̂A and its parts are related by

̂A = ̂A �S + ̂A �S⊥ and ̂A �φ = ̂A �S �φ �S + ̂A �S⊥ �φ �S⊥ . (24.32)

The above results can be recast in terms of direct sums as follows:

(1) Applying Eq. (24.14) we get the decomposition �H⊕ = �S ⊕ �S⊥.
A vector �φ = �φ �S + �φ �S⊥ in �H corresponds to

�φ⊕ = �φ �S ⊕ �φ �S⊥ ∈ �H⊕. (24.33)

(2) Because of Eqs. (24.30) and (24.31) we can regard ̂A �S and ̂A �S⊥
as operators acting on �S and �S⊥, respectively. We can then

define an operator ̂A⊕ := ̂A �S ⊕ ̂A �S⊥ on �H⊕ by

̂A⊕ �φ⊕ := ̂A �S �φ �S ⊕ ̂A �S⊥ �φ �S⊥ . (24.34)

The operator ̂A⊕ is identifiable with ̂A due to Eq. (24.32).

Let �H be a Hilbert space which is decomposable into a direct sum

of a complete orthogonal family of subspaces �S(n), i.e., �H = �H⊕ as
shown in Eq. (24.19). Let ̂A(n) be a bounded operator acting on �S(n)
which is treated as a Hilbert space in its own right.10 Then we have

the following definition.

Definition 24.1.2(2) An operator ̂A⊕ on �H⊕ is said to be11

(1) decomposable if it is a direct sum of operators on �S (n), i.e., if

̂A⊕ = ⊕n ̂A (n), (24.35)

(2) diagonalisable if it is of the form

̂A⊕ = ⊕n cn ̂II (n), (24.36)

where cn ∈ C and ̂II (n) is the identity operator on �S(n).
10An bounded operator on �H which leaves �S(n) invariant would correspond to a
bounded operator Â(n) on �S(n).

11It is often more transparent to write down a decomposable Hilbert space as �H⊕ ,
i.e., by rewriting �H as �H⊕ .
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Decomposable operators possess the following properties12:

P24.1.2(1) If ̂A⊕ is selfadjoint then ̂A(n) is selfadjoint on �S(n).
Conversely, if every ̂A(n) is selfadjoint on �S(n) then ̂A⊕ is also

selfajoint.13

P24.1.2(2) The direct sum operator ̂A⊕ leaves every subspace
�S(n)⊕ invariant, i.e., we have, for all �φ (n)⊕ ∈ �S(n)⊕,

̂A⊕ �φ(n)⊕ = �ψ (n)⊕ ∈ �S(n)⊕. (24.37)

In other words every subspace �S (n)⊕ reduces the operator ̂A⊕. For
any �φ⊕ = ⊕n �φ (n) =∑

n
�φ(n)⊕ we have

̂A⊕ �φ⊕ =
∑

n

̂A⊕ �φ(n)⊕ =
∑

n

�ψ (n)⊕. (24.38)

P24.1.2(3) We can define the quadratic formQ
(

̂A⊕, �φ⊕) by
Q
(

̂A⊕, �φ⊕ ) := 〈 �φ⊕ | ̂A⊕ �φ⊕〉⊕. (24.39)

Given �φ⊕ = ⊕n cn �φ (n) we have, by Eqs. (24.22),

Q
(

̂A⊕, �φ⊕ ) := 〈 �φ⊕ | ̂A⊕ �φ⊕〉⊕

=
∑

n

c∗ncn 〈 �φ (n) | ̂A �φ (n)〉(n). (24.40)

P24.1.2(4) A decomposable operator ̂A⊕ is unable to relate

vectors in different subspaces, i.e., by Eq. (24.37) we have

〈 �φ (m)⊕ | ̂A⊕ �φ (n)⊕〉⊕ = 0, m �= n. (24.41)

P24.1.2(5) A Hilbert space can always be decomposed as a

direct sum of any chosen complete orthogonal family of subspaces.

However, not all operators are decomposable in such a chosen

decomposition of the Hilbert space.

The mathematics of direct sums of Hilbert spaces and operators

are necessary in the formulation of superselection rules in quantum

mechanics to be presented in Chapter 32.

12Wan pp. 213–218. Note that not all operators in �H⊕ are decomposable.
13Weidmann p. 128. Blank, Exner and Havliček p. 145. Naimark Part 2 p. 209. If Eq.

(24.35) consists of an infinite sum Â⊕ can become unbounded.



420 Direct Sums and Tensor Products of Hilbert Spaces and Operators

24.2 Tensor Products of Hilbert Spaces and
Operators

24.2.1 Definitions

We shall introduce the tensor product space construction in an

intuitive manner.14 Let �H (1) be a Hilbert space and let the vectors

and scalar product in �H (1) be denoted by

�φ (1), �ψ (1) and 〈 �φ (1) | �ψ (1)〉(1). (24.42)

Let �H (2) be another Hilbert space, and let the vectors and scalar

product in �H (2) be similarly denoted.

Definition 24.2.1(1) A Hilbert space �H⊗ is called the tensor
product of twoHilbert spaces H(1) and H(2), with its relation to �H(1)

and �H(2) denoted by

�H⊗ = �H(1) ⊗ �H(2), (24.43)

if the following requirements are satisfied:

(1) Every pair of vectors �φ (1) ∈ �H (1) and �φ (2) ∈ �H (2) corresponds a
unique vector in �H⊗, denoted by �φ (1)⊗ �φ (2), such that the scalar
product of �φ (1) ⊗ �φ (2) with itself is given by15

〈 �φ (1) ⊗ �φ (2) | �φ (1) ⊗ �φ (2)〉⊗
= 〈 �φ (1) | �φ (1)〉(1)〈 �φ (2) | �φ (2)〉(2). (24.44)

(2) The set of all of vectors of the form �φ (1) ⊗ �φ (2) spans �H⊗.
In particular, if { �φ (1)

j } and { �φ (2)
k } are orthonormal bases for

�H(1) and �H(2), respectively then the set of tensor product vectors
�φ (1)
j ⊗ �φ (2)

k form an orthonormal basis in the tensor product space
�H⊗.

14Sewell pp. 41–42. Isham pp. 144–147. Wan pp. 95–97. See Reed and Simon Vol. 1
pp. 49–54, Blank, Exner and Havliček pp. 54–57 for a more general and abstract

definition
15〈 �φ (1)⊗ �φ (2) | �φ (1)⊗ �φ (2)〉⊗ denotes scalar product of �φ (1)⊗ �φ (2) with itself in the

Hilbert spaces �H⊗ .
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(3) The tensor product operation is linear, i.e.,

(
∑

j

c(1)j �φ (1)
j

)

⊗
(
∑

k

c(2)k �φ (2)
k

)

=
∑

j,k

c(1)j c
(2)
k

(

�φ (1)
j ⊗ �φ (2)

k

)

, c(1)j , c
(2)
k ∈ C . (24.45)

The following comments aim to clarify the definition:

C24.2.1(1) The notation �φ (1) ⊗ �φ (2) is a symbolic one. The

concept of a product lies in the scalar product operation which

involves a multiplication of 〈 �φ (1) | �φ (1)〉(1) and 〈 �φ (2) | �φ (2)〉(2) in
Eq. (24.44).

C24.2.1(2) The vectors �φ (1)
j ⊗ �φ (2)

k are orthonormal since

〈 �φ (1)
j ⊗ �φ (2)

k | �φ (1)
m ⊗ �φ (2)

n 〉⊗

= 〈 �φ (1)
j | �φ (1)

m 〉(1)〈 �φ (2)
k | �φ (2)

n 〉(2) = δ jm δkn. (24.46)

C24.2.1(3) A general element �⊗ in �H⊗ can be written as

��⊗ =
∑

j,k

c jk �φ (1)
j ⊗ �φ (2)

k , c jk = 〈 �φ (1)
j ⊗ �φ (2)

k | �⊗〉⊗, (24.47)

since �φ (1)
j ⊗ �φ (2)

k form an orthonormal basis for �H⊗.

C24.2.1(4) If �H(1) and �H(2) are of finite dimensions N1 and N2,
respectively then their tensor product is of dimension N1N2.16

Definition 24.2.1(2)17 Let ̂A (1) and ̂A (2) be two bounded
operators acting on �H (1) and �H (2), respectively. The operator,
denoted by ̂A (1)⊗ ̂A(2), defined on �H⊗ = �H (1) ⊗ �H (2) by18

(

̂A (1)⊗ ̂A (2)
)

��⊗ =
∑

j,k

c jk
(

̂A (1) �φ (1)
j

)

⊗
(

̂A (2) �φ (2)
k

)

(24.48)

is called the tensor product of ̂A (1) and ̂A (2).

16In contrast the dimension of the direct sum �H(1) ⊕ �H(2) is N1 + N2.
17Prugovečki pp. 303–304, 311. Amrein, Jauch and Sinha p. 85.
18Here ��⊗ is given by Eq. (24.47).
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The resulting operator ̂A (1)⊗ ̂A (2) is bounded on �H⊗. The simplest
operation of ̂A (1) ⊗ ̂A (2) is on a single product vector �φ (1) ⊗ �φ (2).

We have
(

̂A (1)⊗ ̂A (2)
)(

�φ (1)⊗ �φ (2)
)

=
(

̂A (1) �φ (1)
)

⊗
(

̂A (2) �φ (2)
)

. (24.49)

Tensor products of bounded operators possess the following

properties:

c
(

̂A (1)⊗ ̂A (2)
)

= (

c ̂A (1)
) ⊗ ̂A (2) = ̂A (1)⊗ (c ̂A (2)

)

, (24.50)
(

̂A (1) + ̂B (1)
)

⊗ ̂A (2) = ̂A (1)⊗ ̂A (2) + ̂B (1)⊗ ̂A (2), (24.51)
(

̂A (1)⊗ ̂A (2)
)(

̂B (1)⊗ ̂B (2)
)

= ̂A (1)
̂B (1) ⊗ ̂A (2)

̂B (2), (24.52)

(

̂A (1)⊗ ̂A (2)
)†
= (

̂A (1)
)†⊗ ( ̂A (2)

)†
. (24.53)

It follows from Eq. (24.53) that if ̂A (1) and ̂A (2) are selfadjoint then
̂A (1)⊗ ̂A (2) is selfadjoint. Tensor product operators of the forms

̂A (1) ⊗ ̂II (2), ̂II (1) ⊗ ̂A (2) (24.54)

and

̂A (1) ⊗ ̂II (2) + ̂II (1) ⊗ ̂A (2), (24.55)

where ̂II (1) and ̂II (2) are, respectively, the identity operators on �H(1)

and �H(2) have many physical applications.19

Definition 24.2.1(2) cannot be applied in a straightforward

manner if ̂A (1) and ̂A (2) are unbounded since we have to take the

domains of the operators into consideration.20 Before we can define

the tensor product ̂A (1)⊗ ̂A (2) we need to introduce an operator
̂A (1)⊗̂ ̂A (2):

(1) Let ̂A (1) and ̂A (2) be two possibly unbounded operators defined

on the domains �D( ̂A (1))⊂H(1) and �D( ̂A(2))⊂H(2), respectively,

and let �D( ̂A (1)) ⊗̂ �D( ̂A (2)) denote the set of vectors ��⊗ in
�H⊗ = �H (1) ⊗ �H (2) of the form

��⊗ =
n1
∑

j

n2
∑

k

c jk �φ (1)
j ⊗ �φ (2)

k , (24.56)

19See Eqs. (24.71), (33.4), (33.9), (33.11).
20Wan pp. 96, 105.
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where �φ (1)
j ∈ �D( ̂A(1)), �φ (2)

k ∈ �D( ̂A(2)) and n1 and n2 are finite.
In other words, ��⊗ is a finite linear combination of �φ (1)

j ⊗ �φ (2)
k .

The resulting set �D( ̂A (1)) ⊗̂ �D( ̂A (2)) is dense in �H⊕.21

(2) Define an operator, denoted by ̂A (1)⊗̂ ̂A (2), on the domain
�D( ̂A (1)) ⊗̂ �D( ̂A (2)) in �H⊗ by

(

̂A (1)⊗̂ ̂A (2)
)

��⊗ =
n1
∑

j

n2
∑

k

c jk
(

̂A (1) �φ (1)
j

)

⊗
(

̂A (2) �φ (2)
k

)

.

(24.57)

Theorem 24.2.1(1)22 If ̂A(1) and ̂A(2) are closable then ̂A (1)⊗̂ ̂A (2)

is also closable.

Definition 24.2.1(3)23 The tensor product of two closable opera-
tors ̂A (1) and ̂A (2), to be denoted by ̂A (1) ⊗ ̂A (2), is defined to be the

closure ̂A (1)⊗̂ ̂A (2) of ̂A (1)⊗̂ ̂A (2) in H⊗, i.e.,

̂A(1) ⊗ ̂A (2) = ̂A (1)⊗̂ ̂A (2) (24.58)

Theorem 24.2.1(2)24 If ̂A (1) and ̂A (2) are selfadjoint then:

(1) ̂A (1)⊗ ̂A (2) is also selfadjoint.

(2) ̂A (1) ⊗ ̂II (2) + ̂II (1) ⊗ ̂A (2) is essentially selfadjoint.25

(3) ̂A (1) ⊗ ̂II (2) + ̂II (1) ⊗ ̂A (2) is selfadjoint if ̂A (1) and ̂A (2) are
bounded below.26

21Amrein, Jauch and Sinha pp. 84–86. Reed and Simon Vol. 1 p. 298. The domains

of Â (1) and Â (2) are assumed to be dense. Note that the set of vectors ��⊗ are

obtained by all values of n1 and n2.
22Reed and Simon Vol. 1 (1972) pp. 298.
23Amrein, Jauch and Sinha pp. 84–86. Reed and Simon Vol. 1 pp. 298–302. Weidmann

pp. 262–268. Different authors employ the notation Â(1)⊗ Â(2) to mean different
things. We follow the usage of Amrein, Jauch and Sinha.

24Amrein, Jauch and Sinha p. 599. Reed and Simon Vol. 1 pp. 298–302. Here the

operators are possibly unbounded.
25See Definition 19.5(1) for essential selfadjointness.
26See Definition 19.1(6) for operators which are bounded below.
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The tensor products of unbounded selfadjoint operators can also be

defined through their spectral measures and spectral functions.27

As an example consider the operators in Eq. (24.54) where ̂A (1) is

unbounded but selfadjoint. Let ̂F Â(1) be the spectral function of ̂A(1).
We can use Definition 24.2.1(2) to define the tensor product

̂F Â(1)⊗(λ) = ̂F Â(1)(λ)⊗ ̂II (2) ∀λ ∈ IR . (24.59)

This can be shown to be a spectral function on the product space
�H⊗. It follows that we can define a selfadjoint operator in H⊗

with ̂F Â(1)⊗(λ) as its spectral function. The resulting operator can
be identified with ̂A (1) ⊗ ̂II (2).

24.2.2 Examples

The examples listed here have direct physical applications.

E24.2.2(1) The space �L2(IR2) can be identified with the tensor
product of �L2(IR) with itself. For clarity let us denote the Hilbert
space defined by square-integrable functions on the x-axis by
�L2(IR , dx) and Hilbert space defined by square-integrable functions
on the y-axis by �L2(IR , dy) and the Hilbert space defined by

square-integrable functions on the x-y plane by �L2(IR2, dxdy). Then
�L2(IR2, dxdy) is related to �L2(IR , dx) and �L2(IR , dy) by

�L2(IR2, dxdy) = �L2(IR , dx)⊗ �L2(IR , dy). (24.60)

Similarly we have

�L2(IR3, dxdydz) = �L2(IR , dx)⊗ �L2(IR , dy)⊗ �L2(IR , dz). (24.61)

We can have other tensor product expressions for �L2(IR2, dxdy) and
�L2(IR3, dxdydz), e.g.,28

�L2(IR2, dxdy) = �L2(IR+, rdr)⊗ �L2(Cu), (24.62)

�L2(IR3, dxdydz) = �L2(IR+, r2dr)⊗ �L2(Su). (24.63)

27Prugovečki p. 304. Weidman pp. 265–267.
28Amrein, Jauch and Sinha p. 459. Prugovečki p. 151. Wan and Menzies. Here Su
denotes the unit sphere as before, and Cu denotes the unit circle, i.e., Ca=1.
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These expressions are useful when polar coordinates are used in

IR2 and spherical coordinates are used in IR3. Here r ∈ [ 0,∞) is

the radial variable. Integration in r in the plane IR2 is respect to the
volume element rdr , hence the notation �L2(IR+, rdr). Integration in
r in IR3 is respect to the volume element r2dr , hence the notation
�L2(IR+, r2dr).29

Further examples are the tensor product of �L2(IR3, dxdydz) and
a finite-dimensional complex Hilbert space �VV N , e.g.,

�L2(IR3, dxdydz) ⊗ �VV 2. (24.64)

This tensor product is relevant to the study of spin.30

E24.2.2(2) We can relate operators in �L2(IR , dx) and �L2(IR , dy) to
that in �L2(IR2, dxdy) as follows:
E24.2.2(2)(a) The position and momentum operators:

x̂(IR2) = x̂(IR)⊗ ̂II y , p̂x(IR2) = p̂(IR)⊗ ̂II y; (24.65)

ŷ(IR2) = ̂II x ⊗ ŷ(IR), p̂y(IR2) = ̂II x ⊗ p̂(IR). (24.66)

These results can be readily extended to �L2(IR3, dxdydz).31

E24.2.2(2)(b) Annihilation, creation and number operators:

Let âx and â†x be a pair of creation and annihilation operators

defined in �L2(IR , dx), and let ây and â†y be a pair of annihilation
and creation operators defined in �L2(IR , dy). We can define their
corresponding operators in L2(IR2, dxdy) treated as a tensor

product space shown in Eq. (24.60) by

â⊗x := âx ⊗ ̂II y , â⊗†x := â†x ⊗ ̂II y; (24.67)

â⊗y := ̂II x ⊗ ây , â⊗†y := ̂II x ⊗ â†y . (24.68)

Let ̂Nx = â†x âx and ̂Ny = â†yây . Then we have

̂N⊗x := ̂Nx ⊗ ̂II y , ̂N⊗y := ̂II x ⊗ ̂Ny; (24.69)

̂N⊗ := ̂Nx ⊗ ̂II y + ̂II x ⊗ ̂Ny . (24.70)

29Amrein, Jauch and Sinha p. 459. The corresponding set of functions are denoted by

L2(IR+ , rdr) and L2(IR+ , r2dr).
30See Eq. (33.10).
31These are the same as the corresponding operators introduced earlier, e.g., in

Eq. (17.52).
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The operator ̂N⊗ is selfadjoint by Theorem 24.2.1(2) since ̂Nx and
̂Ny are bounded below.

E24.2.2(2)(c) Let ̂H ho, x denote the operator in Eq. (19.54) defined

in �L2(IR , dx), and let ̂H ho, y denote the corresponding operator

defined in �L2(IR , dy). Thenwe can define an operator in �L2(IR , dxdy)
by

̂H 2i so := ̂H ho, x ⊗ ̂II y + ̂II x ⊗ ̂H ho, y . (24.71)

The resulting operator is the Hamiltonian for an isotropic oscillator
described in §35.4.

E24.2.2(3) The operators ̂Lz(Su) and ̂L2(Su) in �L2(Su) defined
by Eq. (17.42) and the operator expression in Eq. (19.50) can be

extended to �L2(IR3, dxdydz), i.e., we have

̂Lz(IR3, dxdydz) := ̂II (IR+)⊗ ̂Lz(Su), (24.72)

̂L2(IR3, dxdydz) := ̂II (IR+)⊗ ̂L2(Su), (24.73)

where ̂II (IR+) is the identity operator on �L2(IR+, r2dr). This
operator can be identified with the operator for the total angular

momentum square discussed in §36.1.1.

E24.2.2(4) If ̂A (1) in �H (1) possesses eigenvectors �ϕ (1)
m correspond-

ing to eigenvalues a(1)m , and ̂A (2) in �H (2) possesses eigenvectors �ϕ (2)
n

corresponding to eigenvalues a(2)n , then ̂A (1)⊗ ̂A (2) admits �ϕ (1)
m ⊗ �ϕ (2)

n

as eigenvectors corresponding to eigenvalues a(1)m a(2)n , i.e.,

̂A(1) ⊗ ̂A(2)
(

�ϕ (1)
m ⊗ �ϕ (2)

n

)

= a(1)m a(2)n

(

�ϕ (1)
m ⊗ �ϕ (2)

n

)

. (24.74)

We can define the tensor products of a finite number of Hilbert

spaces and operators in a similar manner.

The importance of tensor products lies in the study of many-

particle systems. An n-particle systemwould require a Hilbert space

formed by the tensor product of the nHilbert spaces of the individual
particle. Aswill be seen in §33.4 later these tensor product spaces for
various number of particles can be “added up”, using the concept of

direct sum, to form a newHilbert space, known a Fock space, capable
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of describing a systemwith indefinite numbers of particles.32 Such a

construction provides the basis for the formulation of quantum filed

theory.

Exercises and Problems

Q24(1) Consider a three-dimensional Hilbert space �H with a

preferred decomposition as the direct sum of a com-

plete orthogonal family of one-dimensional subspaces
�S (−), �S (0) and �S (+), i.e.,

�H = �H⊕ = �S (−) ⊕ �S (0) ⊕ �S (+). (24.75)

Let �η (−), �η (0) and �η (+) be unit vectors in �S(−), �S(0) and
�S(+), respectively.33 A vector in �H⊕ is of the form

�η⊕ = c− �η (−) ⊕ c0 �η (0) ⊕ c+ �η (+)
= c− �η (−)⊕ + c0 �η (0)⊕ + c+ �η (+)⊕, (24.76)

where c−, c0, c+ ∈ C .
(a) Show that selfadjoint decomposable operators ̂A⊕ on

�H⊕ are diagonalisable and of the form

̂A⊕ = a− ̂II (−) ⊕ a0 ̂II (0) ⊕ a+ ̂II (+), a−, a0, a+ ∈ IR .
(24.77)

What are the eigenvalues and eigenvectors of ̂A⊕?

(b) Define three operators ̂L− , ̂L+ and ̂L on �H⊕ by34

̂L− �η (−)⊕ = �η (0)⊕, ̂L− �η (0)⊕ = �η (−)⊕, ̂L− �η (+)⊕ = �0⊕.
(24.78)

32Fock (1896–1974) was a Soviet physicist.
33The notation such as �η (−)⊕ follows that of Eq. (24.23), i.e., �η (−)⊕ = �η (−) ⊕ �0 (0) ⊕
�0(+) which is a vector in �H⊕ .

34Wan p. 356. These operators are not the direct sums of operators on �S(−), �S(0)
and �S(+). Hence they are not denoted with a superscript ⊕. Here �0⊕ is the zero

operator on �H⊕ .
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̂L+ �η (+)⊕ = �η (0)⊕, ̂L+ �η (0)⊕ = �η (+)⊕, ̂L+ �η (−)⊕ = �0⊕.
(24.79)

̂L= ̂L− + ̂L+, (24.80)

Show that these operators are selfadjoint but not decom-

posable.35

Q24(2) Show that the tensor products of two projectors, ̂P (1) in
Hilbert space �H(1) and ̂P (2) in Hilbert space �H(2), is a

projector in the tensor product space �H⊗ = �H(1) ⊗ �H(2).

Q24(3) Consider the tensor product �H⊗ = �H ⊗ �H. Let { �ϕm} be an
orthonormal basis for �H. Then { �ϕm⊗ �ϕn} is an orthonormal
basis for �H⊗. Define the permutation operator ̂U p on �H⊗

by36

̂U p

(
∑

m,n

cmn �ϕm ⊗ �ϕn
)

:=
∑

m,n

cmn �ϕn ⊗ �ϕm. (24.81)

(a) Show that this is a bounded operator with �H⊗ as its

domain.

(b) Show that the square of ̂U p is equal to the identity, and
̂U p is unitary and selfadjoint, i.e.,

̂U 2
p = ̂II , ̂U †

p = ̂U −1p = ̂U p. (24.82)

(c) For two bounded operators ̂A and ̂B on �H⊗ show that37

̂U p
(

̂A ⊗ ̂B
)

̂U †
p = ̂B ⊗ ̂A. (24.83)

(d) Show that

̂P (s) := 1

2

(

̂II + ̂U p

)

, ̂P (a) := 1

2

(

̂II − ̂U p

)

, (24.84)

are projectors which are orthogonal to each other. Find

examples of vectors in �H⊗ which are unchanged by

each of these two projectors.

(e) Find the eigenvalues and eigenvectors of ̂U p.

35See §32.3 and §34.7 for physical applications and Q32(3) for a similar operator in a
two-dimensional space.

36See §33.3 for physical applications of these operators.
37See Eq. (33.15) in §33.3.
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Chapter 25

Pure States

In Chapter 5, we have outlined the general properties of quantum

systems. Some model systems have been presented in Chapters

10 and 14 to illustrate how we can formulate theories having

probabilistic features in both real and complex vector spaces.

Systems with observables taking on only a finite number of values

are illustrated with model theories of spin in finite-dimensional

complex vector spaces. The formulation follows from the general

structure of physical theories, particularly the structure of quantum

mechanics, given in Chapters 1 and 5. Observables of a general

quantum system are capable of having an infinite number of

different values. It follows that a general quantum theory must

be formulated in an infinite-dimensional complex vector space,

i.e., a Hilbert space. A general scheme for generating probability

distributions in a Hilbert space is given in Chapter 22.

We are now in a position to present a systematic treatment

of quantum theory in terms of six groups of postulates on the

fundamental properties of quantum systems:

(1) Postulate on the description of pure states.

(2) Postulate on the description of observables and their values.

(3) Postulate on the transition from classical to quantum systems.

(4) Postulates on the probabilistic relationship between states and

observables.

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com
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(5) Postulates on the time evolution of the system.

(6) Postulate on states after measurement.

We then extend the basic theory to discuss mixed states, su-

perselection rules and many-particle systems. A brief discussion of

conceptual problems in quantummechanics will also be presented.

25.1 Postulate (PS)

As pointed out in the discussion of quantum property QMP5.3(1)

not all observables of quantum system are compatible, i.e., not

all observables can be measured simultaneously. However, various

complete sets of compatible observables exist. A maximum amount

of information about the system corresponds to a set of simultane-

ously measured values of a complete set of discrete observables of

the system.1 Such an amount of information characterises a state

of the system. States characterised by such a maximum amount

of information about the system are called pure states. If we do
not have a maximum amount of information about the system,

we cannot determine a pure state. Such a situation does occur in

many practical cases. It is still desirable to have a characterisation

of the system based on the information practically available. Such

a characterisation which is based on less than a maximum set of

data about the system is called a mixed state. We shall start with a
postulate on pure states. A more general postulate which includes

mixed states will be given in Chapter 31.

Postulate 25.1(PS) The state space of a quantum system is
a complex Hilbert space. A pure state φs which corresponds to
a maximum possible amount of information about the system is
exhaustively describable by a unit vector �φ in the Hilbert space.

The following comments aim to clarify this postulate:

C25.1(1) In quantum mechanics the description of a quantum

state by a unit vector in the state space is exhaustive in the sense

1Recall that observables with a purely discrete set of values are referred to as discrete
observables and those with a purely continuous set of values are referred to as
continuous observables. These terms are introduced in §5.3.
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that there is no finer or more detailed description possible. We call

such unit vectors state vectors. A state is meant to be a pure state in
what follows unless otherwise is specifically stated. The state φs and

its state vector �φ are shown by the notation φs := �φ.
C25.1(2) There are theories proposing a more detailed descrip-

tion of a state in terms of hidden variable.2

C25.1(3) The description of states by unit vectors are motivated

by the need to describe the probabilistic behaviour of quantum

systems. As seen in themodel theory for electron spin in §14.1.1 unit
vectors can generate probability distributions. However, as pointed

out in relation to Theorem 22.1(1) two unit vectors differing by

a phase factor would generate the same probability distribution.

This means that they are equivalent for the description of a state.3

Non-unit vectors �ψ can also describe a state provided we use

its normalised counterpart �ψ/|| �ψ || . All the vectors in the one-

dimensional subspace spanned by a unit vector �φ would correspond
to the same state. We can re-state the description of pure states in

Postulate 25.1(PS) by saying that

a pure state is describable by a one-dimensional subspace of
the state space.

We can go one step further by saying that4

a pure state is describable by a one-dimensional projector on
the state space.

C25.1(4) While every pure state is described by a unit vector the

converse is not assumed in the postulate. However, there are many

systems for which the converse statement is true, i.e., there are

2Beltrametti and Cassinelli pp. 171–176 for a concise discussion of hidden variables

theories.
3See also §28.1 and §28.2 .
4Beltrametti and Cassinelli p. 45. This is because one-dimensional subspaces

correspond one-to-one to one-dimensional projectors. The probabilistic behaviour

of quantum systems can be described directly in terms of one-dimensional

projectors. A systematic approach to describe states in terms of operators will be

presented in Chapter 32.
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systems for which every unit vector of the Hilbert space describes

a pure state. For such systems we have

pure states correspond one-to-one to one-dimensional sub-
spaces of the state space �H, or equivalently pure states
correspond one-to-one to one-dimensional projectors on the
state space �H.

C25.1(5) It is possible to formulate a theory in which not every

unit vector describes a pure state. The resulting theory can lead

to superselection rules which are applicable to some systems.5 A
formulation of superselection rules is presented in Chapter 32. The

property stated in italic in C25.1(4) above is for systems which do

not admit superselection rules.

C25.1(6) In §30.3 we shall discuss how a set of measured values

of a complete set of compatible discrete observables determines

a unit vector, or more precisely a one-dimensional subspace, for

the description the state and why continuous observables are not

generally suitable for the determination of a pure state.

C25.1(7) For systems without superselection rules a normalised

linear combination of two or more state vectors would describe a

new state. For example, if �φ1 and �φ2 are two orthogonal state vectors,
then

�φ = 1√
3
�φ1 +

√

2

3
�φ2 (25.1)

is normalised and �φ can serve as a state vector describing a new

state, known as a coherent superposition of �φ1 and �φ2. Similarly,
if �φ1, �φ2, �φ3, . . . are an orthogonal set of state vectors then

�φ =
∑

�

c� �φ�,
∑

�

|c�|2 = 1 (25.2)

is normalised and �φ can describe a new state. Such linear

combinations of states are the basis of superposition principle

described in quantum property QMP5.3(4). We shall explain how

5Superselection rules were introduced by Wick, Wightman and Wigner (1952) in

particle physics.
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a superposition would lead to information not contained in the

individual constituent states in §31.5.
When a superselection rule exists, a normalised linear combina-

tionmay not describe a pure state. Such a combination is not referred
to as a coherent superposition.6 The superposition principle does not
apply to these states.

For clarity let us set out the notation and terminology:

(1) States are denoted by Greek letters with a superscript s , e.g.,
φs , ψ s , . . . .

(2) Unit vectors representing states are denoted by the usual

vector notationwithout the superscript, e.g., �φ, �ψ , . . . . These are
referred to as state vectors. The one-dimensional subspaces
spanned by these vectors are denoted by �S �φ , �S �ψ , . . . and
the projectors generated by these vectors are denoted by
̂P �φ , ̂P �ψ , . . . .

7

(3) A set of states is said to be a complete set of states if the
corresponding state vectors form a complete set of vectors. If

the corresponding state vectors do not form a complete set

then the corresponding set of states is said to be incomplete.
A complete orthonormal set of states corresponds to a complete
orthonormal set of state vectors.

(4) It is a common practice to refer to state vectors simply as states

with the symbol �φ denoting both the state and the vector

representing the state.

(5) Complex-valued functions on IR are denoted by showing their
argument explicitly, e.g., φ(x), ψ(x), . . . . As discussed in §16.1.2
these functions can define Hilbert spaces. For example, the

set L2(�) of square-integrable functions φ(x), ψ(x), . . . on �

defines a Hilbert space which is denoted by �L2(�). Vectors
in �L2(�) corresponding to the functions φ(x), ψ(x), . . . are
denoted by �φ, �ψ , . . . . As in Eq. (12.24) we shall denote the

relationship by �φ := φ(x). The scalar product is given by

Eq. (16.34).

6See Chapter 32.
7This is in line with the notation in Eqs. (6.52) and (9.13).
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(6) Square-integrable functions φ(x), ψ(x), . . . of the position

variable used to define a state space of a quantum system are

referred to as wave functions, a term first introduced in §10.3.
A wave function may be real or complex.

Finally we should mention that states can be determined

by measurements. This is discussed in §26.2.3 and C28.2(7) in

Chapter 28.

Exercises and Problems

Q25(1) Explain the concept of pure states.

Q25(2) Explain why only unit vectors are used for state description
in Postulate 25.1(PS).8

Q25(3) Explain why pure states do not correspond one-to-one to
unit vectors in the state space.

8See also the discussion in §14.1.1 and §22.1.



Chapter 26

Observables and Their Values

26.1 Postulate (OV)

Postulate 26.1(OV) An observable A of a quantum system is
describable by a selfadjoint operator ̂A in the state space �H of the
system. The measurable values of the observable are given by the
elements of the spectrum sp( ̂A ) of the operator.

The following comments serve to clarify the postulate:

C26.1(1) An observable A is also said to correspond to or to be
represented by a selfadjoint operator ̂A. When these terms are used
we have inmind that themeasurable values of the observable are the

elements of the spectrum sp( ̂A ) of the operator. It is also common to
use the word observable to mean both the physical quantity A and
the corresponding operator ̂A when the usage does not cause any

confusion.

C26.1(2) In view of the one-to-one correspondence between

selfadjoint operators and spectral functions we can describe

observables directly in terms of spectral functions.1 We can rephrase

the first statement of Postulate 26.1(OV) as

1This is the description adopted by the quantum logic approach.
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an observable of a quantum system is describable by a
spectral function on the state space �H.

C26.1(3) In classical mechanics observables are functions of the

state while in quantum theory there is no directly mathematical

relationship between a quantum state φs and an arbitrary ob-

servable A. Postulates 25.1(PS) and 26.1(OV) make no mention of
how a quantum state φs may provide information on the values

of observable A, e.g., the postulates do not tell us whether or not
observable A has a definite value in a given state φs . The relationship

has to be stated by a separate postulate.2

C26.1(4) There are two categories of quantum observables:

(1) Quantum observables without a classical counterpart. The spin

of an electron is a familiar example. An axiomatic approach is

used in selecting the Hilbert space and the operators for the

description of spin in order to reflect the properties of spin

obtained by experiments. The theory of electron spin presented

in Chapter 14 serves to illustrate this approach.

(2) Quantum observables with a classical counterpart. The ap-

proach here is different. Based on some fundamental properties

of the corresponding classical observables a quantisation
process can often be established to obtain the corresponding
quantum observables. An example is a harmonic oscillator.

A classical harmonic oscillator is characterised by a classical

Hamiltonian Hho given in Eq. (27.11). To establish the quantised
harmonic oscillator, we first associate the Hilbert space �L2(IR)
with it. Observables correspond to selfadjoint operators in
�L2(IR). For example, we have
(a) The position and momentum correspond to operators x̂ in

Eq. (17.12) and p̂ in Eq. (17.50), respectively.

(b) The Hamiltonian corresponds to the operator ̂H ho in

Eq. (19.54).

The quantisation process can be rather complicated and there

is as yet no universal scheme capable of generating quantum

observables to correspond to all classical observables, despite a

2See Chapter 28.
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great deal of research into this area of studies over the years.3 In

the next chapter we shall present a generally accepted scheme

for the quantisation of familiar observables such as position,

momentum, angular momentum and the Hamiltonian.

C26.1(5) The set of all possible values of an observable A will

be referred to as the spectrum of the observable to be denoted
by sp(A). We can classify observables according to the nature of
their spectra into three different types based on the spectra of their

corresponding operators set out in §20.2:

(1) Discrete observables These are observables A described by
selfadjoint operators ̂A with a discrete spectrum spd( ̂A ) =
{a1, a2, · · · }. The eigenvalues a� of ̂A are the measurable values
of A.

(2) Continuous observables4 These are observables described

by selfadjoint operators ̂A with a continuous spectrum

spc( ̂A) = {τ ∈ � ⊂ IR}. A continuous observable has a

continuous set of values λ which coincides with the spectrum

spc( ̂A ).

(3) Others There are observables which can have both a discrete

set and a continuous set of values. An example is the Hamilto-

nian operator of a particle in a finite square well potential.5

We shall concentrate on discrete and continuous observables

in what follows. An observable which is partly discrete and

partly continuous can be studied through discrete and continuous

observables.

C26.1(6) A real-valued function of the observable f (A) is de-
scribed by the corresponding function of the selfadjoint operator ̂A,
i.e., by f ( ̂A).6 For example, the observable A2 is described by ̂A 2.

3SeeWan pp. 252–282, pp. 443–505.
4We have not attached the terms discrete and continuous to operators to avoid

confusion, e.g., continuous operators are defined by Definition 17.1(3) which is not

related to the continuity of their spectrum.
5Zettili p. 224.
6See §20.5 for the definition of functions of selfadjoint operators. This property is
consistent with the function preserving quantisation rule associated with Postulate

27.2(CQ) in §27.2. See Isham pp. 81–84, 161–168.
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C26.1(7) Projectors are selfadjoint. It follows that they can

describe observables. Observables which are associated with pro-

jectors are called propositions. These observables are conceptually
simple but important. Propositions are the basis for a quantum logic
formulation of quantum mechanics.7 We shall examine the physics

of these observables in the next section.

C26.1(8) Postulates 25.1(PS) and 25.1(OV) are not explicitly

related to quantum properties QMP5.3(1) to QMP5.3(2) on states

and observables. These properties would emerge from a separate

postulate on the probability distribution of values of an observable

in a given state presented in Chapter 28.

C26.1(9) In §5.2 the concepts of possessed values and measured
values of an observable are introduced. It is pointed out that

generally a measured value may not be the value the observable has

before the measurement. The question then arises as to whether

the measured value is the value the observable has immediately

after the measurement. For classical systems the answer to the

question is always a yes, but the same cannot be said about quantum

systems. However, for many quantum measurements the answer to

this question is still a yes. This kind of measurements are already

discussed in QMP5.3(3), i.e., these are ideal measurements. From
now on ameasurement is meant to be an ideal measurement, unless

otherwise is specifically stated. Further discussions on this problem

are given in §30.1.2 and §34.7.1.

C26.1(10) The postulate does not assume a one-to-one cor-

respondence between observables of the quantum system and

selfadjoint operators in �H. As mentioned in relation to Postulate
25.1(PS) the absence of such a one-to-one correspondence can lead

to a theory with superselection rules. Traditional quantum systems,

e.g., electrons, spin systems, have the properties that every unit

vector describes a state and every selfadjoint operator describes an

observable. We call such systems orthodox quantum systems.

7Isham pp. 168–178. Mackey pp. 56–81. Jauch pp. 67–110. Beltrametti and Cassinelli

Chapter 10. Cohen.



On Propositions 441

Definition 26.1(1) A quantum system is called an orthodox
quantum system if it satisfies8:

(1) Postulate 25.1(PS). In addition there is a one-to-one correspon-
dence between pure states and one-dimensional subspaces.

(2) Postulate 26.1(OV). In addition there is a one-to-one correspon-
dence between observables and selfadjoint operators.

From now on a quantum system means an orthodox quantum

system, unless otherwise is stated. For an orthodox quantum system,

every normalised linear combination of state vectors is a coherent

superposition., i.e., the superposition principle applies without any

restriction.

26.2 On Propositions

26.2.1 Definition

Definition 26.2.1(1) An observable P is called a proposition of a
quantum system if it is represented by a projector ̂P on the state space
of the system.

A proposition is a discrete observable having only two values, i.e.,

1 and 0, which are the eigenvalues of its associated projector.

Physically9

a proposition is a statement about the system which is either
true or false.

An experiment can be performed to test whether a proposition is

true or false. An experiment to measure a proposition is called a

yes-no experiment, since we can arrange the experiment so that
the measured value 1 would correspond to the answer of yes to
the proposition and the value 0 would correspond to the answer

of no to the proposition. Propositions are closely related to general

8Beltrametti and Cassinelli p. 45. Fano p. 391. These are in contrast tomixed quantum
systems described in Definition 32.1(4).
9Isham pp. 168–178 for a discussion of various interpretations. This kind of

observables also exist in classical mechanics (see Isham pp. 61–65).
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observables and states as seen in the discussion in the following

subsections.

26.2.2 Observables and Their Propositions

Since a selfadjoint operator has a spectral decomposition in terms of

projectors, we can associate a set of propositions to each observable.

26.2.2.1 Discrete observables

As shown in Eq. (20.20), the selfadjoint operator ̂A associated with

a discrete observable A has the following spectral decomposition:

̂A =
∑

m

am ̂P Â(am). (26.1)

The projector ̂P Â(am) describes a proposition, i.e.,10

the proposition that a measurement of the observable A will
result in the value am.

The harmonic oscillator has a Hamiltonian ̂H ho given by Eq.

(19.54). This Hamiltonian represents the energy of the oscillator.

The operator ̂H ho has a nondegenerate spectrum with eigenvalues

En given by Eq. (20.22) corresponding to eigenvectors �ϕn. Its
spectral decomposition is

̂H ho =
∞
∑

n=0
En ̂P Ĥ ho(En). (26.2)

Each projector ̂P Ĥ ho(En) describes a proposition, i.e.,

the proposition that a measurement the energy of the
oscillator will result in the value En.

These propositions are measured by a yes-no experiment, e.g., in a

yes-no experiment of the proposition represented by ̂P Ĥ ho(En) a yes
answer means the energy value En is obtained.

10See Isham p. 85 for an alternative statement of the proposition.
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The above discussion tells us that

(1) A discrete observable has a set of propositions associated with

it. These propositions correspond to the set of eigenprojectors
̂P Â(am) of its associated selfadjoint operator ̂A.

(2) The observable can be physically characterised by its associated

set of propositions in that measurement of the observable is

equivalent to measurements of its propositions.

26.2.2.2 Continuous observables

Propositions of a continuous observable A are described by the

spectral projectors ̂MÂ(�) of its associated selfadjoint operator ̂A
with the interpretation that ̂MÂ(�) corresponds to11

the proposition that a measurement the observable A will
result in a value τ in the Borel set �.

These propositions are measured by yes-no experiment. An

obvious example is the position operator x̂ in �L2(IR). Its spectral
projectors ̂Mx̂(�) are defined by characteristic functions as shown

in Eq. (20.28). We interpret ̂Mx̂(�) as

the proposition that a measurement of the position will result
in a value τ in the Borel set �.

We shall call the observables corresponding to these spectral

projectors position propositions ormore intuitively local position
observables.12 A discussion of yes-no experiments for local position
observables will be presented in §30.2.2.

26.2.3 Propositions and States

From C25.1(4) we know that a pure state φs described by the state

vector �φ is also describable by the projector ̂P �φ generated by �φ, i.e.,
the projector ̂P �φ plays a dual role. In addition to describing a pure

11See Definition 15.3(1) and P15.3(2) for the distinction between spectral projectors
and eigenprojectors.

12One can also call the observables corresponding to x̂ M̂x̂ (�) := x χ�(x) local
position observables. However, these are not propositions and they are not

measured by yes-no experiments.
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state it also represents an observable in its own right, since it is a

selfadjoint operator. The observable corresponds to13

the proposition that the system is in the state φs described by
the state vector �φ.

When the measured value of ̂P �φ is 1 in a yes-no experiment,

the answer to the proposition is a yes, i.e., the system is in state

φs immediately after the measurement.14 A yes-no experiment to

measure ̂P �φ is not a measurement of the state.
15

Exercises and Problems

Q26(1) Discuss the fundamental differences between classical

observables and quantum observables.

Q26(2) What are the measurable values of a function f (A) of a
discrete observable A described by a selfadjoint operator
̂A which has a discrete spectrum spd = {a1, a2, . . .}?

Q26(3) Give a brief account of the concept of propositions in

quantummechanics.

Q26(4) The spectral projector ̂Mx̂(�) of the position operator x̂
for an interval � is defined by a characteristic function

in Eq. (20.28). What is the physical meaning of ̂Mx̂(�)

as a proposition? What physical devices are capable of

measuring ̂Mx̂(�)?

Q26(5) A stateφs corresponds to the one-dimensional projector ̂P �φ
generated by the state vector �φ. What is the meaning of the
proposition corresponding to the projector ̂P �φ ?

13Wan pp. 242–243.
14We assume ideal measurement here. See QMP5.3(3) on ideal measurement and
Chapter 30 for discussion on state after a measurement.

15A state of a classical particle can be numerically identified, i.e., by a set of values of

the particle’s position and momentum which can be directly measured. In contrast

a quantum state φs has no value in its own right. A quantum state is considered

measurable in terms of an appropriate set of yes-no experiments corresponding

to the set of propositions of the system (see C28.2(7) of Chapter 28 and Jauch
pp. 93–94).



Chapter 27

Canonical Quantisation

Many important quantum observables, e.g., angular momentum,

have their origin in corresponding classical observables. Postulate

26.1(OV) does not tell us how to find the operators to describe these

observables. We can tackle this problem by formulating a process

of quantisation to establish the operators for the corresponding

quantum observables. Before we can formulate a quantisation

process we must choose an appropriate description of classical

observables. This is done in the following section.

27.1 Hamiltonian Formulation of Classical
Mechanics

Newton’s theory is not suitable when it comes to relate classical

theory to quantum theory. As discussed in §5.1 Newton’s theory
is based on the notion of instantaneous velocity which is not

appropriate for quantum particles. It is Hamilton’s formulation

which enables us to make a direct transition to quantum theory,

since Hamilton’s formulation is based position and momentum

rather than velocity. Hamilton’s formulation is evolved from an

earlier Lagrangian theory. A general formulation of Hamilton’s
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theory is rather complicated.1 For our purposes we only need to

confine our discussion to some specific systemswhich can be treated

easily.

27.1.1 Conservative Mechanical Systems

Consider the motion of a particle in the physical space under a

conservative force �f . A force �f is conservative if it is derivable from
the gradient of a scalar function V (�x ) on the physical space, i.e., by
�f = −∇V (�x ).2 In Cartesian coordinates (x , y, z) the gradient is
given in the usual notation by

∇V = ∂V
∂x
�i + ∂V

∂y
�j + ∂V

∂z
�k. (27.1)

The scalar function V is defined to be the potential energy of the
system, up to an arbitrary additive constant. Here the potential

energy is assumed to be a function of �x and is not dependent on the
velocity �v := d �x/dt. Lagrange’s idea is that a function L defined

to be the difference between the kinetic energy K and the potential
energy V can determine the motion of the particle.3 Rewriting the

Cartesian coordinates as x j we can express this new quantity as a

function of x j and ẋ j := dx j/dt, i.e.,

L = L(xi , ẋi ) := K − V . (27.2)

One can verify that the following equations4:

d
dt

(

∂L(xi , ẋi )
∂ ẋ j

)

= ∂L(xi , ẋi )
∂x j

, (27.3)

can serve as a set of equations of motion for the particle as they are

equivalent to Newton’s second law. This function is known as the

Lagrangian and Eqs. (27.3) are known as the Lagrange’s equations.
Lagrange’s theory is not suitable for quantisation since it based on

1Wan pp. 63–78.
2Note that a force means a force field defined on the physical space.
3In contrast it is the function H which is the sum of K and V in the Hamiltonian

formulation which determines the particle’s motion.
4Taylor pp. 238–245.
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velocity variables. We need to eliminate these velocity variables.

This is achieved by introducing the concept of canonical momentum.

The canonicalmomentum pcj conjugate to coordinate x j is defined
by

pcj := ∂L(xi , ẋi )
∂ ẋ j

. (27.4)

The subscript c distinguishes a canonicalmomentum from the linear

momentum �pl := md �x/dt.5 The six conjugate variables, e.g., the
position variables x j and their canonical momentum variables pcj
are called canonical variables.

Next we need to replace Lagrange’s equations with equations

of motions involving the canonical variables. This is done by

introducing a new quantity, known as the Hamiltonian, which is
defined in terms of the canonical variables by

H :=
∑

j

pcj ẋ j − L(xi , ẋi ). (27.5)

When the velocity variables ẋi are eliminated in terms xi and pci the
resulting expression is a function of xi and pci . The Hamiltonian will
be regarded as a function of xi and pci from now on, i.e.,

H = H (xi , pci ). (27.6)

Unlike the Lagrangian this new quantity has an obvious physical

meaning as the total energy of the system since we can verify that6

H (xi , pci ) = K + V . (27.7)

The equations of motion of the system can now be written in terms

of the Hamiltonian, i.e., the second order Lagrange’s equations of

motion in Eq. (27.3) are equivalent to the following first-order

equations7:

dx j
dt

= ∂H (xi , pci )
∂pcj

,
dpcj
dt

= −∂H (xi , pci )
∂x j

. (27.8)

5See Eq. (2.2). The subscript l highlights the difference between linear and canonical
momentum variables. As shown in Eq. (27.44), the linear momentum is different

from the canonical momentum, i.e., pl j �= pcj for some systems.
6Dicke and Wittke pp. 83–84.
7Taylor pp. 521–535. The Hamiltonian must be treated as a function of x j and pcj .
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These are known as Hamilton’s equations of motion. In Cartesian
coordinates we have the following results:

(1) The canonical momentum coincides with the linear momen-

tum since the potential energy is assumed to be velocity-

independent, i.e., we have

pcj = mẋ j = pl j or �pc = m�v = �pl . (27.9)

We shall denote both the canonical momentum and the linear

momentum by �p = (px , py , pz) in such cases.8

(2) The Hamiltonian of the system is equal to

H (x , p) = 1

2m
�p 2 + V (�x ) = 1

2m

(

p2x + p2y + p2z
)+ V (�x ).

(27.10)

(3) An example which we shall exploit repeatedly is that of a

harmonic oscillator. This is a particle of mass m in one-

dimensional motion along the x-axis under a harmonic force
with a Hamiltonian given by9

Hho(x , p) = 1

2m
p2 + 1

2
mω2x2, (27.11)

whereω is the angular frequency of the oscillatorymotion of the

particle. The Hamilton’s equations are

dx
dt
= p
m
,

dp
dt
= −mω2 x . (27.12)

The solution which describes a harmonic motion of the

particle released from an initial position x(0) with zero initial
momentum is

x(t) = x(0) cosωt, p(t) = −mωx(0) sinωt, (27.13)

where x(0) is the initial position corresponding to the initial
momentum p(0) = 0.

8This is not the case when the potential energy term is velocity-dependent. We shall

discuss such a situation in §27.1.2 (see Eq. (27.44)).
9As customary p stands for px one-dimensional motion.
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In Lagrange’s approach it is not necessary to specify the position

by Cartesian coordinates xi . Other coordinate systems can also be
used to fix the position of a particle. These are known as generalised
coordinates. Generalised coordinates are variables qi which can
determine the position of the particle, i.e., we have

xi = xi (q1, q2, q3) and qi = qi (x1, x2, x3). (27.14)

The Lagrangian in Eq. (27.2) becomes a function of qj and q̇ j , i.e.,

L = L(qi , q̇i ), q̇i := dqi
dt
. (27.15)

Lagrange’s equation becomes10

d
dt

(

∂L(qi , q̇i )
∂q̇ j

)

= ∂L(qi , q̇i )
∂qj

, (27.16)

which serves as a set of equations of motion for the particle.

We can also define canonical momentum and the Hamiltonian in

generalised coordinates:

(1) The canonical momentum pcj conjugate to each generalised

coordinate qj is defined by

pcj := ∂L(qi , q̇i )
∂q̇ j

. (27.17)

The six conjugate variables, e.g., qj and pcj are also referred as
canonical variables.

(2) The Hamiltonian is defined in terms of these new canonical

variables by

H (qi , pci ) :=
∑

j

pcj q̇ j − L(qi , q̇i ) (27.18)

where the variables q̇ j must be eliminated in terms qi and pci .
The Hamiltonian is regarded as a function of qj and pcj , i.e.,

H = H (qi , pci ). (27.19)

10Taylor pp. 238–245.
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The equations of motion of the system can now be written in terms

of the Hamiltonian, i.e., we have11

dqj
dt

= ∂H (qi , pci )
∂pcj

,
dpcj
dt

= −∂H (qi , pci )
∂qj

. (27.20)

These are Hamilton’s equations in generalised coordinates.

The relations between generalised coordinates and their canon-

ically conjugate momenta can be quite different from that of

Cartesian coordinates. An example is the spherical coordinate

system with spherical coordinates (r, θ , ϕ) which are related to the
Cartesian coordinates (x , y, z) by Eq. (16.41).12

The kinetic energy in spherical coordinates are13

K = m
2

(

ṙ2 + r2θ̇2 + r2 sin2 θ ϕ̇2
)

. (27.21)

The conjugate canonical momenta to r, θ and ϕ are given in

accordance with Eq. (27.17) by14

pcr = mṙ , pcθ = mr2θ̇ , pcϕ = mr2 sin2 θ ϕ̇. (27.22)

In terms of canonical momenta the kinetic energy becomes

K = 1

2m
p2cr +

1

2mr2

(

p2cθ +
1

sin2 θ
p2cϕ

)

. (27.23)

A particle has a canonical angular momentum �Lc defined in
terms of the canonical momentum �pc by15

�Lc := �x × �pc . (27.24)

The components and the square of �Lc can be expressed in terms of
spherical coordinates and their conjugate canonical momenta, e.g.,

11Taylor pp. 521–535.
12Spherical coordinates are not well-defined everywhere, e.g., at r = 0. But they

work well in practical applications. Polar coordinates in the x-y plane have similar
problems some of which are discussed in §16.1.2.

13As before an overhead dot indicate a time derivative, e.g., ṙ := dr/dt.
14Goldstein p. 299. Wan p. 17. p̂cr is known as the radialmomentum.
15The components of �Lc are similarly given by Eq. (2.4) to (2.6) for the kinematic
angular momentum.
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the square of the total canonical angular momentum in spherical

coordinates is16

L2c = p2cθ +
1

sin2 θ
p2cϕ . (27.25)

The expression for the kinetic energy reduces to

K = 1

2m
p2cr +

1

2mr2
L2c . (27.26)

The Hamiltonian defined by Eq. (27.18) is

H = pcr ṙ + pcθ θ̇ + pcϕϕ̇ − L(qi , q̇i ). (27.27)

This is equal to the total energy. In terms of canonical variables, we

have

H = 1

2m
p2cr +

1

2mr2

(

p2cθ +
1

sin2 θ
p2cϕ

)

+ V (r, θ , ϕ ). (27.28)

Similarly in cylindrical coordinates (r, θ , z ) we have

K = m
2

(

ṙ2 + r2θ̇2 + ż2
)

, (27.29)

pcr = mṙ , pcθ = mr2θ̇ , pcz = m ż, (27.30)

H = m
2

(

ṙ2 + r2θ̇2 + ż2
)

+ V (r, θ , ϕ). (27.31)

27.1.2 Charged Particle in Magnetic Field

Hamilton’s formulation can be generalised to certain non-

conservative systems. An important example, which we shall

encounter in Chapter 37, is the motion of a charged particle in a

time-independent magnetic field �B(�x ).17 Such a magnetic field is
derivable as the curl of a vector potential �A(�x ), i.e.,

�B(�x ) = ∇ × �A(�x ), (27.32)

16The square of �Lc , denoted by �L2c or simply by L2c , is defined by �Lc · �Lc .
17Dicke and Wittke pp. 80–81. Greiner pp. 150–151. Goldstein pp. 19–21, pp. 48–49.
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where the curl operation in Cartesian coordinates is given by

∇ × �A =
(

∂ Az
∂y

− ∂ Ay
∂z

)

�i +
(

∂ Ax
∂z

− ∂ Az
∂x

)

�j

+
(

∂ Ay
∂x

− ∂ Ax
∂y

)

�k. (27.33)

The motion of the particle having a charge q is determined by the
Lorentz force �f = q �v× �B . In Newton’s theory its equation of motion
is

m
d2 �x
dt2

= q �v × �B . (27.34)

This equation of motion can be derived from the following

Lagrangian18:

L(xi , ẋi ) = K + q �v · �A. (27.35)

In other words, the resulting Lagrange’s equations would agree with

Newton’s equation of motion in Eq. (27.34). To show this, we first

calculate the various terms in the Lagrange’s equations in Cartesian

coordinates:

∂L(xi , ẋi )
∂xi

= q
3
∑

j=1
ẋ j

∂ A j

∂xi
, (27.36)

∂L(xi , ẋi )
∂ ẋi

= mẋi + qAi , (27.37)

d
dt

(

∂L(xi , ẋi )
∂ ẋi

)

= m
d2xi
dt2

+ q d
dt
Ai (27.38)

= m
d2xi
dt2

+ q
3
∑

j=1

∂ Ai
∂x j

ẋ j . (27.39)

Equation (27.16) of Lagrange becomes

m
d2xi
dt2

+ q
3
∑

j=1

∂ Ai
∂x j

ẋ j = q
3
∑

j=1
ẋ j

∂ A j

∂xi
, (27.40)

18Taylor pp. 273–275. Here K = 1
2

∑
j mẋ

2
j .
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or

m
d2xi
dt2

= q
3
∑

j=1
ẋ j

(

∂ A j

∂xi
− ∂ Ai

∂x j

)

. (27.41)

These equations agree with Newton’s Eq. (27.34). As an illustration

consider the equation for x1. Rewriting x j as x , y, zwe get

m
d2x
dt2

= q ẏ
(

∂ Ay
∂x

− ∂ Ax
∂y

)

− qż
(

∂ Ax
∂z

− ∂ Az
∂x

)

. (27.42)

This equation reduces to

m
d2x
dt2

= q
(

ẏBz − żBy
)

, (27.43)

which is the x-component of Newton’s Eq. (27.34).
While the Lagrangian in Eq. (27.35) appears to be in the standard

form of a difference of two terms the physical interpretation is

different here. The second term q �v · �A is velocity-dependent and

is not the potential energy of the particle. Moreover, the Lorentz

force is not obtainable as the negative of the gradient of this term.19

The reason for introducing this Lagrange’s theory is to establish a

Hamiltonian formulation for the motion of a charge particle in an

external magnetic field which can then be quantised.

To establish Hamilton’s formulation, we first define the canonical

momenta as before, i.e., we have20

pcj := ∂L(xi , ẋi )
∂ ẋ j

= mẋ j + q A j , (27.44)

or in vector notation,

�pc = m�v + q �A = �pl + q �A. (27.45)

The canonical momentum �pc is seen to have amagnetic component.
It is fundamentally different from the linear momentum �pl . While
the linear momentum is a kinematic quantity fixed by the motion,

19Taylor p. 274.
20Explicitly we have pcx = mẋ + q Ax , pcy = mẏ + q Ay , pcz = mż+ q Az.



454 Canonical Quantisation

i.e., velocity, the canonical momentum is a dynamical quantity not

determined by the motion alone.21 It is not even unique, due to the

non-uniqueness of the vector potential.22

The Hamiltonian defined by Eq. (27.18) becomes

H = 1

2m

( �pc − q �A
)2
. (27.47)

This is equal to the kinetic energy of the particle, i.e.,

H = 1

2
m�v 2. (27.48)

In the form of Eq. (27.47), the Hamiltonian can be quantised.23

In the presence of a magnetic field the canonical angular

momentum �Lc of the particle is again defined by Eq. (27.24). This
is different from the kinematic angular momentum in Eq. (2.3). To

emphasise the difference, we shall denote the kinematic angular

momentum by �Lk. Explicitly we have

�Lc = �x × �pc and �Lk = �x ×
( �pc − q �A

)

. (27.49)

27.1.3 Poisson Bracket and Structure of Classical
Observables

In classical mechanics there is no need to set up separate equations

of motion for observables since the time dependence of the state

automatically leads to the time dependence of observables which

are just functions of the state.24 Still we can establish an explicit

equation ofmotion of an arbitrary observable A(x j , pcj ) which is not

21See §2.1.4. Feynman, Leighton and Sands (pp. 21–25) call �pl the kinematic
momentum and pc the dynamical momentum.

22The vector potential �A′ related to �A through a function f (�x ) by
�A′ = �A +∇ f (27.46)

defines the same magnetic field, since the curl of a gradient of a function vanishes.

The above relation is known as a gauge transformation.
23See §27.6.
24Observables in classical mechanics are functions of x j and pcj .
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explicitly time dependent, i.e.,

dA
dt
=

3
∑

j=1

(

∂ A
∂x j

dx j
dt

+ ∂ A
∂pcj

dpcj
dt

)

=
3
∑

j=1

(

∂ A
∂x j

∂H
∂pcj

− ∂ A
∂pcj

∂H
∂x j

)

. (27.50)

We can simplify the above expression by introducing a new

mathematical expression known as the Poisson bracket. Given
two observables A , B their Poisson bracket, denoted by {A , B}, is
defined to be25

{A , B} :=
3
∑

j=1

(

∂ A
∂x j

∂B
∂pcj

− ∂ A
∂pcj

∂B
∂xcj

)

. (27.51)

Equation (27.50) can then be rewritten as26

dA
dt
= {A , H }. (27.53)

In other words, the motion of an observable which is not explicitly

time dependent is determined by the Poisson bracket of the

observable and the Hamiltonian.

The Poisson bracket of two observables defined by Eq. (27.51)

plays an important role in expressing the dynamics of observables.

The characteristic properties of Poisson bracket operation of

observables and canonical variables can be summarised as follows:

P27.1.3(1) For any observables A , B , C , we have

{A , A} = 0, {A , c} = 0 c ∈ IR , (27.54)

{A , B} = −{B , A}, (27.55)

25For observables which are differentiable with respect to x j and pcj .
26An observable can be explicitly time dependent. For such an observable we have

A = A(x j , pcj , t) and the equation of motion becomes

dA
dt
= ∂ A

∂t
+ {A , H }. (27.52)

For simplicity we will assume all observables to be not explicitly time dependent in

this book unless otherwise is explicitly stated.
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{A , B + C } = {A , B} + {A , C }, (27.56)

{A + B , C } = {A , C } + {B , C }, (27.57)

{A , BC } = {A , B}C + B{A , C }. (27.58)

{AB , C } = {A , C }B + A{B , C }. (27.59)

P27.1.3(2) For the canonical variables x j and pcj we have

{xi , x j } = 0, {pci , pcj } = 0, {xi , pcj } = δi j . (27.60)

These are characteristic of canonical variables. For example, the

Poisson bracket of two canonical momenta is zero. The three

components of the canonical angular momentum in Eq. (27.24) do

not satisfy this condition. They satisfy the following relations27:

{Lcx , Lcy} = Lcz, {Lcz, Lcx} = Lcy , {Lcy , Lcz} = Lcx . (27.61)

Hence they are not regarded as canonical momenta.28

27.2 Postulate (CQ)

Our aim here is to establish a quantisation process to obtain

operators to represent quantum observables. The Poisson bracket

of two classical observables defined by Eq. (27.51) is seen to

play an important role in expressing the dynamics of observables.

The characteristic properties of Poisson bracket operation are

summarised in Eqs. (27.54) to (27.59). These are fundamental

structural properties of classical observables.

The commutator operation for operators in a Hilbert space

possess similar properties. Given three operators ̂A, ̂B and ̂C we

have the following formal commutation relations:

[ ̂A, ̂A ] = ̂0, [ ̂A, c ] = ̂0, c ∈ C , (27.62)

[ ̂A, ̂B ] = −[̂B , ̂A ], (27.63)

[ ̂A, ̂B + ̂C ] = [ ̂A, ̂B ]+ [ ̂A, ̂C ], (27.64)

[ ̂A, ̂B ̂C ] = [ ̂A, ̂B]̂C + ̂B[ ̂A, ̂C ]. (27.65)

27See Eqs. (2.3) to (2.7) for the expressions for the components of the angular
momentum.

28Goldstein pp. 265–266.



Postulate (CQ) 457

We also have

[ ̂A, c1 ̂B + c2̂C ] = c1[ ̂A, ̂B]+ c2[ ̂A, ̂C ], c1, c2 ∈C , (27.66)

[c1 ̂A + c2 ̂B , ̂C ] = c1[ ̂A, ̂C ]+ c2[̂B , ̂C ], c1, c2 ∈C , (27.67)

[ ̂A ̂B , ̂C ] = ̂A[̂B , ̂C ]+ [ ̂A, ̂C ]̂B . (27.68)

It is then reasonable to hypothesise that operators representing

quantum observables should have the same structural properties of

classical observables. In other words, the commutator operation of

operators representing quantum observables should correspond to

the classical Poisson bracket operation of their associated classical

observables. In particular

selfadjoint operators representing classical canonical vari-
ables should have commutation relations which would
correspond to the Poisson bracket relations of the classical
canonical variables.

In Cartesian coordinates the canonical variables xi and pci satisfy
the Poisson bracket relations in Eq. (27.60). are characteristic of

canonical variables. The canonical quantisation scheme is based on
the idea that the Poisson bracket relations of the canonical variables

in Eq. (27.60) should be carried over to quantum theory.29 Hence the

transition from a classical particle with canonical variables xi and
pcj to a quantum particle with a Hilbert space as its state space can

be achieved in accordance with the following postulate:

Postulate 27.2(CQ) In quantum theory both xi and pcj are
represented by selfadjoint operators ̂Qi and ̂Pj in the state space of the
quantum particle satisfying the following commutation relations30:

[̂Qi , ̂Q j ] = ̂0, [̂Pi , ̂Pj ] = ̂0, [̂Qi , ̂Pj ] = i�δi j ̂II . (27.69)

This quantisation scheme turns out to be surprisingly powerful

even though it does not tell us explicitly what state space and what

29Dirac pp. 84–89. This idea is generally attributed to Dirac, who presented it as

quantum conditions. Dirac even called a commutator a quantum Poisson bracket.
30The commutation relations are subject to qualifications discussed in §17.7 for
unbounded operators.
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operators to choose for a given physical system. We would have a

choice, subject to the commutation relations. These commutation

relations are known as canonical commutation relations. Note
that the imaginary unit i is necessary in the commutation relation
of ̂Qi and ̂Pj since

[̂Qi , ̂Pj ]† = −[̂Qi , ̂Pj ]. (27.70)

To carry out the quantisation scheme for a particle in three-

dimensionalmotion in the physical spacewe live in, we proceedwith

the following canonical quantisation procedure:

P27.2(1) Choose �L2(IR3) as the state space for the system. This
space corresponds to functions φ(x , y, z) on the physical space

which are square-integrable with respect to x , y and z. The space
�L2(IR3) is referred to as a coordinate representation space.31

P27.2(2) Choose six selfadjoint operators in �L2(IR3) which satisfy
the canonical commutation relations. A familiar choice is

x̂(IR3), ŷ(IR3), ẑ(IR3) for ̂Qi , (27.71)

p̂x(IR3), p̂y(IR3), p̂z(IR3) for ̂Pj . (27.72)

These are the selfadjoint position and momentum operators in Eqs.

(17.20), and (17.54).32 In line with the notation in §20.4 we can
conveniently denote these operators by

̂�x = (

x̂ , ŷ, ẑ
)

and ̂�pc =
(

p̂cx , p̂cy , p̂cy
)

. (27.73)

The subscript c in ̂�pc indicates quantised canonical momentum

variables.33 These operators satisfy the canonical commutation

relations. The subscript c is often omitted when no confusion arises,
e.g., writing p̂cx as p̂x . Since all the operators are unbounded, their
commutation relations cannot produce the equalities shown in Eq.

(27.69). This problem has already been pointed out in relation to

31This term is first introduced in §18.4.2.1.
32See also Eqs. (24.65) and (24.66).
33See Eq. (27.49) and Eqs. (27.84) to (27.99) for the reason of this notation.
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Eq. (17.81). It follows that we must relax the equalities demanded

in the canonical commutation relations shown in Eq. (27.69) and

interpret the commutation relations in the same way we do for Eq.

(17.81), i.e., the equalities hold in a dense subset such as �C∞c (IR3)
or �Ss(IR3) of �L2(IR3). Following convention, we shall continue

to use the equality sign in the canonical commutation relations

and other commutation relations resulting from them. With this

understanding the canonical quantisation scheme can be realised.

We call the position and momentum operators in Eq. (27.72) a

coordinate representation of the canonical commutation relations in
the coordinate representation space �L2(IR3).

P27.2(3) To extend to other observables, three more quantisation

rules are made34:

(1) Linearity rule If A and B are quantised as selfadjoint

operators ̂A and ̂B , then the classical observable aA + bB is

quantised as the operator a ̂A + b̂B .
(2) Functional relationship rule Let f (τ ) be a real-valued

function of a real variable τ ∈ IR . If A is quantised as selfadjoint
operator ̂A then observable f (A) is quantised as the operator
f ( ̂A).35

(3) Symmetrisation rule36 If A and B are quantised, respectively,
as selfadjoint operators ̂A and ̂B then AB is quantised as the

operator
(

̂A ̂B + ̂A ̂B
)

/2. (27.74)

This rule is used to overcome the ambiguity arising from

quantising a product, i.e., classically AB = BA but ̂A ̂B �= ̂A ̂B
unless ̂A, ̂B commute. This is like quantising the symmetrised
classical observable

(

AB + AB
)

/2.

P27.2(4) Care has to be taken when using rules presented above.

For example, a ̂A + b̂B may only be symmetric and not selfadjoint

since generally
(

a ̂A + b̂B)† ⊃ (a∗ ̂A† + b∗ ̂B†) by Eq. (17.101) when

34Isham p. 77. Wan pp. 256–259.
35See E27.10.2(2) for a generalisation of this rule.
36Isham pp. 78–81.
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̂A and ̂B are unbounded. The way to proceed is as follow:

(1) First check whether Eq. (17.101) becomes an equality for the

given ̂A and ̂B . Fortunately this is the case formany applications,
e.g., those in Eqs. (27.82) and (35.9).

(2) Generally it is not obviouswhether Eq. (17.101) in an equality. It

is easier to start by considering the restriction of (a ̂A+b̂B) to an
appropriate dense set in �L2(IR3).37 A first attempt would be to
choose �C∞c (IR3). This set lieswithin the domain of any powers of
the momentum and position operators such as p̂mx and x̂ n and
the set is also invariant under these operators.38 However, the

set �C∞c (IR3) is very restrictive as it excludes functions such as
Hermite functions which are not of compact support. A more

natural choice in many cases is the Schwartz space �Ss(IR3)
which is also invariant under p̂mx and x̂ n. The restriction to the
Schwartz space is denoted by39

(a ̂A + b̂B ) �Ss := a ̂A �Ss + b̂B �Ss . (27.75)

(3) We want an appropriate selfadjoint extension of the above

operator to serve as the quantised operator for the classical

observable aA + bB , a, b ∈ IR . There are three cases to

consider40:

(a) Selfadjoint extension may not exist. Then there is no

quantised operator to correspond to the particular classical

observable.

(b) When the operator in Eq. (27.75) is essentially selfadjoint

it would have a unique selfadjoint extension.41 This unique

selfadjoint extension is taken to be the quantised operator.

(c) The operator in Eq. (27.75) is not essentially selfadjoint,

but it admits many selfadjoint extensions. Then a suitable

selfadjoint extension has to be chosen on physical ground

to represent the quantised observable.

37See Definition 17.6(1).
38See Definition 17.6(1). Here p̂x is the operator p̂cx in Eq. (27.73).
39For operators in �L2(IR) the restriction would be to the Schwartz space �Ss(IR).
40We would examine many examples of these in the following sections. Hall

pp. 190–196 is devoted to the study of sums of selfadjoint operators.
41See Definition 19.5(1).
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27.3 Canonical Quantisation Scheme

Postulate 27.2(CQ) supplemented by the rules in P27.2(3) is known

as a canonical quantisation scheme. Despite the successes the
canonical quantisation scheme encounters many difficulties. We

shall discuss some of the limitations of the scheme in §27.10.
Here we shall examine one obvious problem, i.e., the canonical

quantisation scheme does not produce a unique set of operators

even after the state space has been chosen. Consider the case of a

particle in one-dimensional motion along the x-axis. The position
and momentum operators must obey the canonical commutation

relation [̂Q, ̂P ] = i�. In the coordinate representation in �L2(IR) the
position and its conjugate canonical momentum can be quantised

as the operators x̂ := x̂(IR), and p̂ := p̂(IR) which are defined,
respectively, by Eqs. (17.13) and (17.50). Clearly the operators x̂
and p̂ + f (x) also satisfy the canonical commutation relations

so that the position and momentum can be equally quantised as

the operators x̂ and p̂ + f (x).42 The crucial question is whether
these different representations are physically equivalent in the sense

of Chapter 23. The answer in this particular case is given by a

theorem of von Neumann which says that any two representations

of the above canonical commutation relations in �L2(IR) are unitarily
related.43 In other words, if two pairs of selfadjoint operators in
�L2(IR) satisfy the above commutation relations, i.e., if 44

[̂Q, ̂P ] = i�, and [̂Q
′
, ̂P
′
] = i�, (27.76)

then there exists a unitary operator ̂U on �L2(IR) such that
̂Q
′ = ̂U ̂Q̂U † and ̂P

′ = ̂U ̂P̂U †. (27.77)

An example is the pairs mentioned above, i.e.,

̂Q = x̂ , ̂P = p̂ and ̂Q
′ = x̂ , ̂P

′ = p̂+ f (x̂). (27.78)

42Here f (x) is a real-valued function of x , and p̂ stands for p̂c .
43von Neumann (1903–1957) was an Hungarian American mathematical physicist

well known for his mathematical formulation of quantum mechanics. A postulate

on measurement, the projection postulate, is named after him (see §30.1.1).
44Jauch pp. 200–201. Reed and Simon Vol. 1 pp. 274–275. Prugovečki p. 342. As

shown in §27.10.2, the von Neumann theorem does not apply to other choices of

Hilbert spaces, e.g., �L2(�).



462 Canonical Quantisation

We can verify that they are related with the unitary operator45

̂U := exp

{

− i–
∫ x

f (x)dx
}

, i– = i/�. (27.79)

As an illustration consider the case f (x) = x . Letting f (x) = x in
the above equation we get

̂U := exp

{

− i–
∫ x

0

xdx
}

= e− ¯i x
2/2
. (27.80)

We can verify by explicit calculation that

̂U p̂ ̂U † = p̂+ x̂ . (27.81)

The unitary relationship ensures that p̂+ x̂ are selfadjoint since p̂ is
selfadjoint.46

It is clear now that there are many different representations

of the canonical commutation relations. For example, we have a

representation arises from the Fourier transformation from the

coordinate representation space �L2(IR) to the momentum represen-
tation space �L2(IR∼ ) described in §18.4.2.1 and §18.4.2.2.

In the momentum representation space the position and

momentum are described by the operators x̂∼ and p̂
∼
in �L2(IR∼ )

in Eqs. (18.57) and (18.60). The operators x̂∼ and p̂
∼
satisfy the

canonical commutation relations. All these quantities are related to

the corresponding quantities in the coordinate representation by a

simultaneous Fourier transformation, i.e., we have

�ϕ
∼
= ̂UF �ϕ, x̂∼ = ̂UF x̂ ̂U

†
F , p̂

∼
= ̂UF p̂ ̂U

†
F . (27.83)

We can conclude that the momentum representation in terms of

operators x̂∼ and p̂∼ is a representation of the canonical commutation
relation physically equivalent to the coordinate representation in

45Wan p. 270.
46Since (

p̂+ x̂
)† = p̂+ x̂ = p̂† + x̂† , (27.82)

we have a special case of Eq. (17.101) on the adjoint of the sum of two unbounded

operators.We also have the result that the restriction of p̂+ x̂ to �Ss(IR) is essentially
selfadjoint (see Hall pp. 192–193).
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terms of operators x̂ and p̂. The physical equivalence of different
representations tells us that in many cases

the physical properties of the position and momentum
operators and indeed of many other operators are effectively
determined by their commutation relations.

Once the state space is chosen and position and momentum are

quantised, we can proceed to establish other operators which are

functions of position and momentum by the canonical quantisation

scheme.47

27.4 Quantisation of Orbital Angular Momentum

The components Lcx , Lcy , Lcz of the canonical angular momentum
�Lc in Eq. (27.24) are given by expressions similar to that for

the kinematic angular momentum in Eqs. (2.4) to (2.6). Following

P27.2(3) the components of the canonical angular momentum are

quantised as the following operators in �L2(IR3):

̂Lcx : = ŷ p̂cz − ẑ p̂cy = −i� (y∂/∂z− z∂/∂y) , (27.84)

̂Lcy : = ẑ p̂cx − x̂ p̂cz = −i� (z∂/∂x − x∂/∂z) , (27.85)

̂Lcz : = x̂ p̂cy − ŷ p̂cx = −i� (x∂/∂y − y∂/∂z) . (27.86)

These expressions can be conveniently written as

̂�Lc = ̂�x × ̂�pc . (27.87)

The operator for the square of the total angular momentum is

̂L2c := ̂L2cx + ̂L2cy + ̂L2cz. (27.88)

Here we have the fortunate case that all the above operators are

selfadjoint.48 It is easier to appreciate the selfadjointness of the

47A straightforward application of the rules in P27.2(3) will not necessarily produce

selfadjoint operators, because of Eqs. (17.100) and (17.101). Fortunately in many

applications we do obtain selfadjoint operators by a direct application of these

rules. See Chapter 35 for more examples.
48Takhtajan p. 182.
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operators in spherical coordinates. Take the examples of ̂Lcz and
̂L2c . When expressed in terms of spherical coordinates these two
operators have the following familiar expressions:

−i� ∂

∂ϕ
, −�2

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)

. (27.89)

The radial variable r does not appear. The above operator

expressions show that ̂Lcz and ̂L2c are related to two operators in the
space �L2(Su)49:
(1) ̂Lcz is related to ̂Lz(Su) in Eq. (17.42). More explicitly ̂Lcz in Eq.

(27.86) is the same as ̂Lz(IR3, dxdydz) in Eq. (24.72) which is
selfadjoint since ̂Lz(Su) is selfadjoint.50

(2) Similarly ̂L2c in Eq. (27.88) is identifiable with ̂L
2(IR3, dxdydz)

in Eq. (24.73) and this operator is also selfadjoint.51

It can be shown that the restrictions of ̂Lcx , ̂Lcy , ̂Lcz and ̂L2c to
the domain defined by the Schwartz space �Ss(IR3) are essentially
selfadjoint.52 It follows that ̂Lcx , ̂Lcy , ̂Lcz and ̂L2c are their unique
selfadjoint extensions. These selfadjoint operators can then be taken

to be the quantised angular momentum operators without any

ambiguity.

In the absence of external magnetic field, the classical canonical

momentum �pc and canonical angular momentum �Lc agree with the
classical linear (kinematic) momentum �pl and kinematic angular
momentum �Lk. We simply call both �pl and �pc as the momentum
to be denoted by �p, and call both �Lc and �Lk as the orbital angular
momentum to be denoted by �L. The quantised operators p̂cx , p̂cy ,
p̂cz, ̂Lcx , ̂Lcy , ̂Lcz can then be written as

p̂x , p̂y , p̂z and ̂Lx , ̂Ly , ̂Lz, (27.90)

without the subscript c, as we shall do in the next section.

49Amrein, Jauch and Sinha pp. 458–459. �L2(Su) is the space of square-integrable
functions on the unit sphere introduced in §16.1.2. See also Eq. (19.50).

50See §19.3.2.
51See E19.4(3).
52Amrein, Jauch and Sinha p. 32. Blank, Exner and Havliček p. 365. Moretti p. 458. We

shall not delve into themathematical analysis here. See E16.1.2.3(5) forSs(IR3) and
§16.2.3 for �Ss(IR3).
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These operators are far more complicated than momentum

operators. It is not just that they appear more complicated. The

crucial difference is that these operators do not commute, e.g., one

can easily check that [̂Lx , ̂Ly] �= ̂0.53 Hence ̂Lx , ̂Ly and ̂Lz do not
share a complete orthonormal set of eigenvectors. The square of the

total angular momentum operator commutes with each component,

e.g., ̂L2 commutes with ̂Lz. Similar results apply to ̂L2, ̂Lx and for
̂L2, ̂Ly . However, the eigenvectors of ̂L2, ̂Lz are different from that of
̂L2, ̂Lx and ̂L2, ̂Ly . We shall study these operators in greater details
in §36.1 in Chapter 36.

27.5 Quantisation of Hamiltonians

Consider themotion of a chargeless particle ofmassm in the absence
of magnetic magnetic field. Classically the canonical momentum

coincideswith the linearmomentum.We shall denote both by �p. The
kinetic energy K is given by Eq. (27.10). It follows that the potential
energy is quantised as the multiplication operator ̂V := V (�x ), and
the kinetic energy is quantised as54

̂K := 1

2m

(

p̂ 2x + p̂ 2y + p̂ 2z
) = − �

2

2m
∇2 (27.91)

in �L2(IR3). This operator is selfadjoint since it is a real function of a
three commuting selfadjoint operators.55 It is convenient to express
̂K as

̂K := ̂�p 2/2m where ̂�p 2 := p̂ 2x + p̂ 2y + p̂ 2z . (27.92)

The Hamiltonian (total energy) operator is then given by

̂H := ̂K + ̂V . (27.93)

This operator, often referred to as the Hamiltonian for short,

is an important characterisation of a system. It is a challenging

53Their commutation relations are given by Eqs. (27.111 ) to (27.114).
54∇2 := (

∂ 2/∂x2 + ∂ 2/∂y2 + ∂ 2/∂z2
)
.

55See §15.4.
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mathematical problem to investigate the selfadjointness of the

operator for any given potential.56 The following cases serve to

illustrate the situation:

(1) For many familiar potentials in quantum mechanics the op-

erator ̂H is selfadjoint. Moreover, its restriction to Schwartz

space is essentially selfadjoint. The unique selfadjoint extension

coincides with ̂H . Then we have a unique quantised Hamilto-
nian. The Hamiltonian for the harmonic oscillator discussed in

Chapter 35 serves to illustrate this case.

(2) Infinite square barriers and potential well When the potential

function is discontinuous and rises to infinity abruptly over

extended regions. We will be confronted with many ambiguities

in quantisation. Let us consider two examples:

(a) Infinite square potential barrier This is the case when the

potential function is given by V (x) = ∞ for x ≤ 0 and

V (x) = 0 for x > 0. Such a potential confines the particle

to the region x > 0. It follows that the state space for the

particle is �L2(IR+). As pointed out in §19.3.3 there is no
selfadjoint momentum operator in �L2(IR+) since p̂D(IR+)
admits no selfadjoint extension in �L2(IR+). This shows that
not every classical observable has an obvious quantum

counterpart in the orthodox quantum theory.57

However, as pointed out in E19.4(4), we can have a

selfadjoint Hamiltonian in the form of p̂†D(IR
+) p̂D(IR+)

which is selfadjoint.58

(b) Infinite square potential well This is the case when the

potential function is given by V (x) = 0 for x inside a

finite closed interval � = [0, L] and V (x) = ∞ for x
outside the interval and at the boundary points x = 0

and x = L. Such a potential confines the particle to the
region 0 < x < L. The state space is �L2(�). There are

56Hamiltonian operators are also known as Schrödinger operators in mathematics

literature.
57The converse is also true, e.g., spin has no classical counterpart. In a generalised
quantum theory, we can accept certain symmetric operators such as p̂D(IR+) to
represent observables (seeWan pp. 395–426).

58Note that this operator is not equal to p̂ 2D(IR
+).



Quantisation of Hamiltonians 467

now many possible selfadjoint momentum operators. The

reason is that the operator p̂D(�) in E17.3.2.1(2)(a) is

shown in §19.2 to be only symmetric.59 This operator is
not essentially selfadjoint since it admits a one-parameter

family of selfadjoint extensions p̂λ(�).60 These operators
possess different sets of eigenvalues and they are not

unitarily related to each other.

There are many choices of Hamiltonians also. The standard

choice of a particle trapped in an infinite square potential

well is taken to be the operator ̂H∞D (�) defined by Eq.

(19.42). Other choices are ̂H∞λ (�) given by Eq. (19.46).
61

This operator is the square of p̂λ(�) while ̂H∞D (�) is
not. These operators are distinguishable by their different

eigenvalues.

A choice of momentum and the Hamiltonian has to be made

by physical consideration of a given system.62

(c) Our discussion here shows that the rule on the preservation

of functional relation in §27.2 should be amended when
the quantised operator is not selfadjoint. When A is

quantised as the operator ̂A the rule means that A2 should
be quantised as the operator ̂A 2. This would produce a

selfadjoint operator for A2 if ̂A is selfadjoint. When ̂A is

only symmetric and closed we should quantise ̂A 2 as the

selfadjoint operator ̂A†
̂A.

(3) Point interactions This is when the potential is discontinuous

and rises to infinity abruptly at some isolated point. An example

is a potential given by a Dirac delta function, i.e., V (x) := λ δ(x)
where λ ∈ IR .63 There are a host of other different interactions
which occur at a single point which cannot be expressed

59The same applies to p̂0(�) introduced in E17.3.2.1(1).
60Each p̂λ(�) is clearly an extension of p̂D(�) and each p̂λ(�) is selfadjoint, as shown
in §19.3.1. SeeWan p. 490 for motion along a circle.

61Merzbacher p. 66. Ĥ∞λ=0(�) is chosen for a particle in a box problem for some

applications. Schiff p. 49 has a paragraph on the physics of the periodic boundary

condition.
62Reed and Simon Vol. 1, p. 303.
63Merzbacher pp. 107–108.
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explicitly in terms of a continuous potential function. We call

all these point interactions. The canonical quantisation scheme
cannot be applied to such cases. A scheme of quantisation by
parts can be formulated to deal with such interactions.64

It should be pointed out that the non-uniqueness of in quantising

the classical Hamiltonian exists even without infinite potentials. An

example is a particle in one-dimensional motion along the x-axis
with potential energy −gx4 where g is a positive real constant.
In accordance with P27.2(4) the Hamiltonian operator is first

quantised as65

̂H �Ss =
1

2m
p̂ 2�Ss − g x̂ 4�Ss (27.94)

acting on the Schwartz space �Ss(IR) ⊂ �L2(IR). This operator is not
essentially selfadjoint.66 It follows that we cannot have a unique

selfadjoint Hamiltonian.67

In classical mechanics the Hamiltonian determines the time

evolution of the system in the form of Hamilton’s equations. The

Hamiltonian operator also plays a crucial role in determining the

time evolution of the quantum system, as shown in Chapter 28.

27.6 Charged Particles in Magnetic Field

For a particle of mass m and charged q in a magnetic field

characterised by a vector potential �A, we have to distinguish the
canonical momentum �pc from the linear (kinematic) momentum �pl ,
and the canonical angular momentum from the kinematic angular

momentum. The canonical momentum and the canonical angular

momentum are quantised as before as ̂�pc and
̂�Lc .68 On account

64Wan pp. 431–506 for detailed study of the scheme of quantisation by parts and
classification of point interactions.

65 x̂ �Ss , p̂ �Ss are the restrictions of x̂ and p̂ to the Schwartz space �Ss(IR) previously
denoted by x̂ �Ss (IR), p̂ �Ss (IR) in E17.6(2), Eqs. (17.48) and (17.80).

66Hall p. 194 where the operator defined on C∞c (IR) is shown not to be essentially
selfadjoint. As a consequence Ĥ �Ss is also not essentially selfadjoint.

67Reed and Simon Vol. 1, p. 303. We have to make a choice on physical grounds.
68See Eq. (27.87).
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of Eqs. (27.45), (27.49) and in accordance with P27.2(4) the

linear momentum �pl and the kinematic angular momentum �Lk are
quantised, respectively, as

̂�pl := ̂�pc − q ̂�A and
̂�Lk := ̂�x × ( ̂�pc − q ̂�A

)

. (27.95)

We can write down their components explicitly, e.g.,69

p̂lx = ( p̂cx − q ̂Ax), (27.96)

̂Lkz = x̂ ( p̂cy − q ̂Ay)− ŷ ( p̂cx − q ̂Ax). (27.97)

The kinematic angular momentum is dependent on the vector

potential. The Hamiltonian in Eq. (27.47) is quantised as

̂H := 1

2m

(

̂�pc − q ̂�A
)2

, (27.98)

where
(

̂�pc − q ̂�A )2 is defined by
(

p̂cx − q ̂Ax
)2

+
(

p̂cy − q ̂Ay
)2

+
(

p̂cz − q ̂Az
)2

. (27.99)

27.7 Manipulations of Commutation Relations

It is important to be able to evaluate commutation relations. The

properties listed in Eqs. (27.62) to (27.68) are useful for this

purpose. We can make use of all these properties when calculating

commutation relations as seen in the following examples:

E27.7(1) When there are commuting operators involved, Eqs.

(27.65) and (27.68) can be simplified, i.e., we have

[ ̂A, ̂B ] = ̂0 ⇒ [ ̂A, ̂B ̂C ] = ̂B [ ̂A, ̂C ], (27.100)

[ ̂A, ̂C ] = ̂0 ⇒ [ ̂A, ̂B ̂C ] = [ ̂A, ̂B ] ̂C , (27.101)

[ ̂A, ̂C ] = ̂0 ⇒ [ ̂A ̂B , ̂C ] = ̂A [̂B , ̂C ], (27.102)

[̂B , ̂C ] = ̂0 ⇒ [ ̂A ̂B , ̂C ] = [ ̂A, ̂C ] ̂B . (27.103)

69Here �̂A is defined by its components Âx , Ây and Âz which are multiplication

operators in �L2(IR3).
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E27.7(2) Extension of the relation [ x̂ , p̂ ] = i� in �L2(IR) to70

[ x̂ , p̂ n] = i� n p̂ (n−1), [ p̂, x̂ n] = −i� n x̂ (n−1). (27.104)

These commutation relations are well-defined on the Schwartz

space �S(IR).
E27.7(3) Let ̂A(x̂ , p̂ ) be a polynomial in x̂ and p̂, i.e.,71

̂A(x̂ , p̂ ) =
∑

m,n

cmn x̂ m p̂ n, cmn ∈C . (27.105)

Using Eq. (27.104) we obtain the following formal expressions72:

[ x̂ , ̂A(x̂ , p̂ )] = i�
∑

m,n

cmn n x̂ m p̂ (n−1) = i�
∂ ̂A(x̂ , p̂ )

∂ p̂
, (27.106)

[ p̂, ̂A(x̂ , p̂ )] = −i�
∑

m,n

cmn m x̂ (m−1) p̂ n = −i�∂ ̂A(x̂ , p̂ )
∂ x̂

. (27.107)

These expressions are useful in formal evaluation of commutators

involving theHamiltonian of the form ̂H = ̂K+̂V , where ̂K = p̂2/2m
is the kinetic energy and ̂V is a polynomial function of x̂ . Then we
have

[ x̂ , ̂H ] = i�
∂ ̂H
∂ p̂

= i�
m
p̂, (27.108)

[ p̂, ̂H ] = −i�∂ ̂H
∂ x̂

= −i� ∂ ̂V
∂ x̂

. (27.109)

For the simple harmonic oscillator we immediately get

[ x̂ , ̂H ho] = i�
m
p̂, [ p̂, ̂H ho] = −i�mω2 x̂ . (27.110)

70The method of induction (Spiegel (1) p. 7) can provide the required proof.
71Messiah Vol. 1 p. 208. Roman (1965) p. 11. The order in which x̂ m and p̂ n appear in
the sum is important. A sum of p̂mx̂ n would produce a different operator. de Lange
and Raab pp. 18–21 has more examples.

72The derivatives are formal expressions, e.g., d p̂n/d p̂ := n p̂ (n−1).
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E27.7(4) Using the commutation relations between position and

momentum operators, we can verify the following canonical angular

momentum commutation relations73:

[ ̂Lcx , ̂Lcy] = i�̂Lcz, (27.111)

[ ̂Lcz, ̂Lcx ] = i�̂Lcy , (27.112)

[ ̂Lcy , ̂Lcz] = i�̂Lcx , (27.113)

[ ̂Lcx , ̂L2c ] = [ ̂Lcy , ̂L2c ] = [ ̂Lcz, ̂L2c ] = ̂0. (27.114)

These angular momentum operators are markedly different from

the spin angular momentum operators discussed in §14.1.1.
However, by comparing the above equations with Eqs. (14.46) and

(14.47) we can see that they share the same commutation relations.

27.8 A Particle in Circular Motion

It is possible to quantise the motion of a chargeless particle in the

absence of magnetic field under certain geometric constraint. As

an illustration consider a particle of mass m constrained to move

freely along the circumference of a circle Ca of radius a on the x-
y plane centred at the origin.74 The position of the particle can be
specified by the angular position variable θ(Ca) or by the linear
position variable s(Ca) = aθ(Ca).75 The motion of the particle can
be specified by its momentum or its angular momentum76:

(1) Linear momentum p(Ca) is given by mv , where v = ṡ := ds/dt
is the linear velocity along the circumference. The kinetic energy

is K = mṡ2/2. For free motion this is equal to the Lagrangian L
in accordance with Eq. (27.2). Hence the canonical momentum

conjugate to s given by ∂L/∂ ṡ is equal to the linear momentum

73For brevity the subscript c is usually omitted, e.g., writing L̂cx as L̂x .
74Martin pp. 46–47. Wan pp. 480–485. A constrained system can present many

problems in quantisation. See §27.10.2 and §27.10.3 for more comments.
75See §16.1.2.8 for the notation.
76The terms linear position and velocity are meant to the components of the

quantities. As vectors the linear position and velocity are given, respectively, by

aθ�s (u) and v�s (u), where �s (u) is the unit vector along the anti-clockwise tangential
direction (see Eq. (6.17) for the notation). The same terminology applies to linear
and angular momenta.
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p(Ca). It follows that s and p(Ca) form a pair of canonical

variables.

(2) Angular momentum L(Ca) is given by ap(Ca) = mva.

Quantum mechanically the state space associated with particle

is �L2(Ca) with scalar product given by Eq. (16.40).77 Following the
canonical quantisation scheme, the canonical variables s and p(Ca)
are quantised as selfadjoint operators ŝ(Ca) and p̂(Ca) in �L2(Ca)
obeying the following commutation relation78:

[ ŝ(Ca), p̂(Ca) ] = i� ̂II . (27.115)

The following comments aim to clarify the quantised system:

C27.8(1) The linear position operator is the bounded multiplica-

tion operator ŝ(Ca) acting on �φ ∈ �L2(Ca) by ŝ(Ca) �φ := aθ φ(θ). The

angular position ̂θ(Ca) is defined by ̂θ(Ca) �φ := θ φ(θ).

C27.8(2) The momentum operator is the selfadjoint operator

p̂(Ca) given in Eq. (17.38), i.e.,

p̂(Ca) = − i�a
d
dθ
. (27.116)

The eigenvectors and eigenvalues of p̂(Ca) are �ϕn(Ca) and pn(Ca)
given, respectively, by Eqs. (19.36) and (19.37).

C27.8(3) The angular momentum operator is the selfadjoint

operator a p̂(Ca), i.e.,
̂L(Ca) := a p̂(Ca) = −i� d

dθ
. (27.117)

This angular momentum operator also admits �ϕn(Ca) as its

eigenvectors corresponding to eigenvalues

apn(Ca) = n�, n = 0, ±1, ±2, . . . . (27.118)

These results for n �= 0 agreewith the quantised angularmomentum

values of the Bohr’s atom.79

77For a particle confined to move on the surface of a unit sphere, the state space is
�L2(Su). See Q36(3) on the rigid rotator.

78See §27.10.3 for a discussion on problems which can arise. We have omitted the
subscript c (for canonical) in the quantised momentum operator.

79Bohr (1885–1962) was a Danish physicist famous for his model of the atom.
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C27.8(4) The angular position and angular momentum operators

satisfy the following commutation relation80:

[̂θ(Ca), ̂L(Ca) ] = i� ̂II . (27.119)

C27.8(5) The Hamiltonian is

̂H (Ca) := 1

2m
p̂ 2(Ca), (27.120)

with eigenvectors �ϕn(Ca) corresponding to eigenvalues En(Ca) =
pn(Ca)2/2m.
An application of the system described above to the motion of

a particle in magnetic field which gives rise to the Aharonov–Bohm
effect is discussed in §37.6.

27.9 Characterisation of Annihilation and
Creation Operators

Annihilation and creation operators â and â† and their number

operator ̂N are introduced in Definitions 17.10(1), 17.10(2) and

19.1(4). The characteristic feature of a pair of annihilation and

creation operators is that they are associated with an orthonormal

basis { �ϕn} on which they operate in accordance with Eqs. (17.114),
(17.115) and (17.121). These operators satisfy the following

commutation relations81:

[ â, â† ] = ̂II , [ â†, â ] = −̂II , (27.121)

[ â, ̂N ] = â, [ â†, ̂N ] = −â†. (27.122)

A pair of annihilation and creation operators â and â† possesses
the following properties:

P27.9(1) They are defined on a common dense domain, i.e.,

D( â ) = D( â† ) and they are adjoints of each other and hence they
are closed operators.

80The commutation relation is valid only when applied to a restricted domain. See the
discussion leading to Eq. (27.154) and Q27(15).

81See Eqs. (17.125) and (17.126).
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P27.9(2) They obey the commutation relations in Eq. (27.121).

P27.9(3) There exists a vector �ϕ0 �= �0 which the annihilation

operator will annihilate, i.e., â �ϕ0 = �0.
P27.9(4) They form an irreducible set of operators in accordance

with the conclusion in §20.7.

Equation (27.121) is similar to the commutation relation which

characterises the position andmomentum operators. This raises the

question as to whether the commutation relation in Eq. (27.121)

would help to characterise a pair of annihilation and creation

operators, i.e.,

Is it possible to characterise a pair of operators in a
Hilbert space having the properties of a pair of annihilation
and creation operators without direct reference to an
orthonormal basis?

To answer the above question, we have to tackle the following

mathematical problem:

Given an operator â and its adjoint â† in a Hilbert space �H
satisfying properties P27.9(1) to P27.9(4) above show that
there exists an orthonormal basis { �ϕn} for �H on which â
and â† act in accordance with Eqs. (17.114), (17.115) and
(17.121).

The main problem is to find an orthonormal basis to associate

with the given operators. We know from Eq. (19.6) that the

number operator associated with a pair of creation and annihilation

operators has a discrete and nondegenerate spectrum sp( ̂N ) =
{n = 0, 1, 2, 3, · · · } with the corresponding eigenvectors forming
an orthonormal basis. This suggests that we can solve our problem

in two stages82:

Stage 1 Given a pair of operators â and â† satisfying properties
P27.9(1) to P27.9(4) we form the operator

̂N = â†â. (27.123)

82Jauch pp. 211–214.
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This operator has the following properties of a number operator:

(1) ̂N is selfadjont on account of Theorem 19.1(1).

(2) ̂N satisfies the commutation relations in Eq. (27.122) which is

equivalent to

̂Nâ = â ̂N − â, ̂Nâ† = â† ̂N + â†. (27.124)

(3) ̂N has a set of eigenvalues with a corresponding set of

normalised eigenvectors on account of Eq. (27.124):

(a) ̂N possesses the eigenvalue 0, since according to P27.9(2)

there exists a unit vector �ϕ0 such that â �ϕ0 = 0. In other

words, �ϕ0 is an eigenvector of ̂N corresponding to the

eigenvalue 0.

(b) ̂N possesses a set of positive integer eigenvalues and eigen-

vectors which can be obtained by successive applications of

â† to �ϕ0, e.g.,

̂N
(

â† �ϕ0
) =

(

â† ̂N + â†
)

�ϕ0 = 1
(

â† �ϕ0
)

,

̂N
(

(

â†
)2 �ϕ0

)

=
(

â† ̂N + â†
)

(

â† �ϕ0
) = 2

(

(

â†
)2 �ϕ0

)

,

̂N
(

(

â†
)3 �ϕ0

)

=
(

â† ̂N + â†
)(

(

â†
)2 �ϕ0

)

= 3
(

(

â†
)3 �ϕ0

)

.

We can continue the process to get

̂N
(

(

â†
)n �ϕ0

)

= n
(

(

â†
)n �ϕ0

)

, (27.125)

for any positive integer n. The vectors
(

â†
)n �ϕ0 are not

normalised. Their normalised counterparts are83

�ϕn = 1√
n!
(â†

)n �ϕ0. (27.126)

The conclusion is that starting from �ϕ0 we can generate a
set of integer eigenvalues togetherwith their corresponding

83This can be proved by the method of induction.
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normalised eigenvectors as listed below84:

eigenvalues normalised eigenvectors

0 �ϕ0, (27.127)

1 �ϕ1 = â† �ϕ0, (27.128)

2 �ϕ2 = 1√
2
(â†)2 �ϕ0 (27.129)

3 �ϕ3 = 1√
6
(â†)3 �ϕ0, (27.130)

...
... (27.131)

n �ϕn = 1√
n!
(â†)n �ϕ0. (27.132)

(4) The operators â† and â act like creation and annihilation

operators on �ϕn:

â �ϕn = â
1√
n!
(â†)n �ϕ0 = â

â†√
n

1√
(n− 1)! (â

†)(n−1) �ϕ0

= â â†√
n
�ϕn−1 = â†â + 1√

n
�ϕn−1 =

̂N �ϕn−1 + �ϕn−1√
n

⇒ â �ϕn =
√
n �ϕn−1. (27.133)

�ϕn+1 = 1√
(n+ 1)! (â

†)(n+1) �ϕ0 = â†√
n+ 1

1√
n!
(â†)n �ϕ0

= â†√
n+ 1 �ϕn

⇒ â† �ϕn =
√
n+ 1 �ϕn+1. (27.134)

Stage 2 We need to show that this set of eigenvectors �ϕn forms
an orthonormal basis for �H. Let us first consider the subspace �S
of �H spanned by these eigenvectors. The orthogonal complement of

this subspace will be denoted by �S⊥. Then both these subspaces are
invariant under â and â†. To prove this, let

�φ ∈ D( â ) ∩ �S and �φ⊥ ∈ D( â ) ∩ �S⊥, (27.135)

84These eigenvectors are orthogonal to each other, being the eigenvectors of a

selfadjoint operators corresponding to different eigenvalues.



Characterisation of Annihilation and Creation Operators 477

where D( â ) is the domain of â which coincides with the domain

D( â†) of â† according to P27.9(1). Then:

(1) �S is invariant under â and â† since85:
(a) A vector �φ in Eq. (27.135) must be a linear combination of

�ϕn, i.e., we have �φ =
∑∞

n=0 cn �ϕn. The output vectors â �φ and

â† �φ are also linear combinations of �ϕn �ϕn, i.e.,

â �φ =
∞
∑

n=1
cn â �ϕn =

∞
∑

n=1

√
n cn �ϕn−1 ∈ �S , (27.136)

â† �φ =
∞
∑

n=0
cn â† �ϕn =

∞
∑

n=0

√
n+ 1 cn �ϕn+1 ∈ �S . (27.137)

It follows that �S is invariant under â and â†.
(b) For �φ⊥ in Eq. (27.135) we have, for all n,

〈 â �φ⊥ | �ϕn〉 = 〈 �φ⊥ | â† �ϕn〉
√

(n+ 1) 〈 �φ⊥ | �ϕn+1〉 = 0

⇒ â �φ⊥ ∈ �S⊥, (27.138)

〈 â† �φ⊥ | �ϕn〉 = 〈 �φ⊥ | â �ϕn〉 =
√
n 〈 �φ⊥ | �ϕn−1〉 = 0

⇒ â† �φ⊥ ∈ �S⊥. (27.139)

(2) D( â ) is invariant under the projector ̂P �S .
86 To prove this, let

�ψ ∈ D( â ) and let �ψ �S = ̂P �S �ψ be the projection of �ψ onto �S ,
i.e.,87

�ψ �S =
∞
∑

n=0
〈 �ϕn | �ψ 〉 �ϕn. (27.140)

Then we have88

̂P �S
(

â �ψ ) =
∞
∑

n=0
〈 �ϕn | â �ψ 〉 �ϕn =

∞
∑

n=0
〈â† �ϕn | �ψ 〉 �ϕn.

=
∞
∑

n=0

√
n+ 1 〈 �ϕn+1 | �ψ 〉 �ϕn. (27.141)

85See Definition 17.9(1).
86See Definition 17.9(2). P̂ �S is the projector onto the subspace �S .
87Here �ψ is not necessarily in �S and �ψ �S is not necessarily inD( â ).
88The projection P̂ �S

(
â �ψ )

would have a finite norm, i.e., || P̂ �S
(
â �ψ )|| ≤ ∞.
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|| ̂P �S
(

â �ψ )||2 =
∞
∑

n=0
(n+ 1) |〈 �ϕn+1 | �ψ 〉|2

=
∞
∑

m=1
m |〈 �ϕm | �ψ 〉|2 <∞. (27.142)

This implies that �ψ �S is in D( â ) since when acted on by â the
output vector â �ψ �S is well-defined with a finite norm, i.e.,

â �ψ �S =
∞
∑

n=1
〈 �ϕn | �ψ 〉

√
n �ϕn−1 (27.143)

⇒ ||â �ψ �S ||2 =
∞
∑

n=1
|〈 �ϕn | �ψ 〉|2 n. (27.144)

In accordance with Definitions 17.9(2), 17.9(3) and Theorem

17.9(1), we conclude that �S reduces the operators â, and â†.
(3) Since â and â† are irreducible by P27.9(3), the subspace �S

has to be �H itself to avoid a contradiction. It follows that

the eigenvectors �ϕn spans �H, i.e., the set of eigenvectors is a
complete set in �H. This implies that ̂N possesses a discrete and

nondegenerate spectrum.89

We can conclude that the pair operators â and â† with

properties P27.9(1) to P27.9(4) do have the properties of a pair of

annihilation and creation operators.90

There are many occasions when we introduce a pair of operators

satisfying P27.9(1), P27.9(2 )and P27.9(3) but not P27.9(4).91 Such

a pair of operators would still possess many of the properties of

annihilation and creation operators. Notably its associated number

operator would still have the same set of eigenvalues as before,

i.e., 0, 1, 2, . . . and its eigenvectors can still be generated from

the eigenvector corresponding to the eigenvalue 0. However, the

eigenvalues would be degenerate. We would still call such a pair of

operators a pair of creation and annihilation operators.

89This also implies the absence of any continuous part in the spectrum.
90See Jauch pp. 215–219 on explicit representations of these operators.
91See §35.3.3 and §36.2.1.
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27.10 Limitations of Canonical Quantisation
Scheme

The canonical quantisation scheme based on Postulate 27.2(CQ) and

its extensions has its limitations.

27.10.1 Problems due to Non-Commuting Factors

An example is the classical observable A = xp for a particle in one-
dimensional motion along the x-axis. Clearly A = xp = px , but p̂ x̂
is not equal to x̂ p̂. We have to use the symmetrisation rule to obtain
the following quantised operator:

̂A = 1

2

(

x̂ p̂x + p̂x x̂
)

. (27.145)

This operator is selfadjoint in �L2(IR). Such an ad hoc scheme cannot
be expected to work in every case.92 An important example is that

of the radial momentum pr conjugate to the radial coordinate r
in a spherical coordinate system introduced in Eq. (27.22). When

expressed in terms of quantities in the Cartesian coordinates this

radial momentum has the following expression:

pr = x
r
px + y

r
py + z

r
pz, r =

√

x2 + y2 + z2. (27.146)

Each term can be symmetrised, e.g., we can rewrite the first term as

1

2

( x
r
px + x

r
px
)

. (27.147)

We may then attempt to quantise pr using the symmetrisation
rule.93 The resulting operator has an operator expression

−i�
(

∂

∂r
+ 1

r

)

(27.148)

92The symmetrised product of two selfadjoint operators may not be selfadjoint (see
Wan p. 101).

93Merzbacher p. 255. Zettili p. 324. de Lange and Raab p. 151 for commutation

relations involving p̂r .
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acting in �L2(IR3). Following the standard procedure, we would

specify a domain within �L2(IR3), e.g., �C∞c (IR3), for this operator
expression to act so as to produce a symmetric operator. The domain

can be extended beyond �C∞c (IR3) to produce an extended symmetric
operator, denoted by p̂r and referred to as the radial momentum
operator.94 We would then look for selfadjoint extensions. But such
a standard approach fails to produce any selfadjoint extension. This

is because there does not exist a domain for the above operator

expression to act on to produce a selfadjoint operator.95

The operator p̂r can be shown to be closed. Theorem 19.1(1)

then tells us that the operator p̂ †
r p̂r which has the following

operator expression:

p̂ †
r p̂r = −�2

(

∂2

∂r2
+ 2

r
∂

∂r

)

(27.149)

is selfadjoint. It is this operator which appears in the traditional

expression of the kinetic energy operator ̂K in spherical coordinates,
i.e., we have

̂K = 1

2m
p̂ †
r p̂r +

1

2mr2
̂L2 = − �

2

2m

(

∂2

∂r2
+ 2

r

)

+ 1

2mr2
̂L2. (27.150)

Here ̂L2 is the square of the total angular momentum operator.

The above discussion shows that the canonical quantisation

scheme is generally not applicable to non-Cartesian coordinates, e.g.,

the radial momentum pr conjugate to the radial variable r cannot be
quantised into a selfadjoint operator.96

27.10.2 Problems due to Constraints on Position

Any constraint in position variables can lead to the failure of the

scheme, e.g., failure to establish selfadjointness or uniqueness:

Non-selfadjointness Mathematically the failure to produce a

satisfactory quantisation for pr is due to the limitation on the

94The operator p̂r has the differential expression in Eq. (27.148) but acting on a
bigger domain. See Q27(14) for more details.

95Wan pp. 174–175, p. 274. Richtmyer Vol. 1 pp. 139–140.
96Wan pp. 75–76. SeeWan pp. 279–281 for tensor product expressions.
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radial position variable involved, e.g., r is restricted to the range
[ 0,∞). There are other situations where the position variable

is limited. Physically this limitation may correspond to a particle

with its movement constrained within some region in the physical

space. Consider a particle in one-dimensional motion confined to

the positive x-axis, i.e., the particle’s position is restricted to x ∈
[ 0,∞). Then the state space associated with the system would

be �L2(IR+) rather than �L2(IR). One may quantise the momentum
p as an operator with an operator expression −i�d/dx . This
operator expression leads to the symmetric operator p̂D(IR+)
in �L2(IR+) defined be Eq. (19.23) which admits no selfadjoint

extension.97 It follows that there is no usual selfadjoint momentum

operator.98

Non-uniqueness The non-uniqueness of quantisation of both

momentum and the Hamiltonian have already been discussed in

§27.5.

27.10.3 Problems with Commutation Relations

As discussed in §17.7, care has to be taken when evaluating

commutation relations involving unbounded operators. In the

Hilbert space �L2(�) the position operator x̂(�) is bounded. Let us
investigate the commutator

[ x̂(�), p̂λ=0(�) ] = x̂(�) p̂λ=0(�)− p̂λ=0(�)x̂(�), (27.151)

where p̂λ=0(�) is unbounded. To establish the domain of this

commutator, we need to consider the domains of the products

x̂(�) p̂λ=0(�) and p̂λ=0(�)x̂(�) in accordance with Eq. (17.58):

(1) The product x̂(�) p̂λ=0(�) acts on the domain D
(

p̂λ=0(�)
)

of p̂λ=0(�), since x̂(�) is bounded without any domain

restrictions.

(2) The product operator p̂λ=0(�)x̂(�) needs careful considera-
tion. For �φ ∈ �L2(�) to be in the domain of this product operator

97Akhiezer and Glazman Vol. 1 pp. 106–112. This has already been pointed out in

§27.5.
98See §27.5.
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we require x̂(�) �φ to be in D
(

p̂λ=0(�)
)

. This means that the

function xφ(x) must satisfy the periodic boundary condition,
i.e., we must have99

0φ(0) = Lφ(L) ⇒ φ(L) = 0 ⇒ φ(0) = 0. (27.152)

(3) It follows that the eigenvectors �ϕλ=0,n(�) of p̂λ=0(�) in

Eq. (19.34) are not in the domain of the commutator.

A similar situation occurs when we consider the circular

motion of a particle in the Hilbert space �L2(Ca). The commutation
relation in Eq. (27.119) is deceptively simple. However, we need to

examine carefully the domains of product operators ̂θ(Ca) ̂L(Ca) and
̂L(Ca)̂θ(Ca) in accordance with Eq. (17.58)100:

(1) The product ̂θ(Ca) ̂L(Ca) is an operator acting on the domain of
D
(

̂L(Ca)
)

, since ̂θ(Ca), is bounded.

(2) Let �φ be a vector in the domain of the product operator
̂L(Ca)̂θ(Ca). Then ̂θ(Ca) �φ := θφ(θ) must satisfy the following

periodic boundary condition,101 i.e., we have

0φ(0) = 2πφ(2π) ⇒ φ(2π) = 0 ⇒ φ(0) = 0.

(27.153)

(3) The eigenvectors �ϕn(Ca) of ̂L(Ca) are not in the domain of the
commutator.

(4) As already shown in Eq. (17.81), the commutation relation

should be rewritten as

[̂θ(Ca), ̂L(Ca) ] ⊂ i�̂II . (27.154)

The discussion above is not just a mathematical pedantry. It has

physical implications. We shall return to this problem in §28.3.3.
There are other simple quantisation schemes such as the Weyl

scheme and the Born–Jordan scheme.102 None of these schemes

99Fano p. 408.
100Recall that L̂(Ca) is the angular momentum operator.
101Fano p. 408.
102Wan pp. 256–259.
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works in all cases. Moreover, there are novel quantum systems,

such as quantum circuit systems to which such simple quantisation

scheme cannot be applied directly. More sophistication schemes

have to be adopted.103

Exercises and Problems

Q27(1) Show that Hamilton’s equations of motion in Eq. (27.8)

for a classical harmonic oscillator whose Hamiltonian is

given by Eq. (27.11) are equivalent to Newton’s equation

of motion.

Q27(2) Verify the properties of Poisson brackets shown in Eqs.
(27.54) to (27.59).

Q27(3) Verify the Poisson bracket relations in Eq. (27.61)

between the components of the canonical angular mo-

mentum �Lc .
Q27(4) Show that the equation of motion (27.53) in terms of

Poisson bracket reduces to the Hamilton’s equations

when we replace A by xi and pi .

Q27(5) Show that a classical observable is a constant of motion,
i.e., it is time-independent, if it has a zero Poisson bracket

with the Hamiltonian.104

Q27(6) Verify Eq. (27.70). Show that Postulate 27.2(CQ) as

expressed in Eq. (27.69) cannot be valid without the

imaginary number i .

Q27(7) Show that ̂U in Eq. (27.79) is unitary and that ̂Q
′
, ̂P
′
in Eq.

(27.78) are the unitary transforms of ̂Q, ̂P generated by
this unitary operator.

103There are numerous papers andmany books devoted to the subject of quantisation

over the years. See Wan §3.3, §6.4 for a review and further discussions on this

subject.
104Recall that we confine ourselves to observables which are not explicitly time

dependent unless otherwise is stated.
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Q27(8) Prove Eq. (27.104) by the method of induction.

Q27(9) Verify the commutation relations in Eqs. (27.106) and
(27.107).

Q27(10) Verify the commutation relations in Eqs. (27.108),

(27.109) and (27.110).

Q27(11) Verify the commutation relations in Eqs. (27.111) to

(27.114) for angular momentum operators.

Q27(12) Verify the commutation relations in Eq. (27.122).

Q27(13) Prove, by the method of induction, that the eigenvectors
in Eq. (27.126) are normalised.

Q27(14) Let �� be a vector in �L2(IR3) defined by the product of a
function of the radial variable r and a spherical harmonics
Y�,m�

(θ , ϕ), i.e.,

�� := �(r, θ , ϕ) = φ(r)Y�,m�
(θ , ϕ). (27.155)

Let �� be another vector defined in the same way, i.e.,

�� := �(r, θ , ϕ) = ψ(r)Y�,m�
(θ , ϕ). (27.156)

Furthermore the functions φ(r) and ψ(r) satisfy the

boundary condition

lim
r→0

r|φ(r)| = 0 and lim
r→0

r|ψ(r)| = 0. (27.157)

Working in spherical coordinates show that105

〈 �� | p̂r �� 〉 = 〈 p̂r �� | �� 〉,
where p̂r is the radial momentum operator introduced by

Eq. (27.148).106 Explain why p̂r can be symmetric but not
selfadjoint.

105See Eq. (16.44). In spherical coordinates the scalar product is given by

〈 �� | p̂r �� 〉 = −i�
∫ ∞

0

∫ 2π

0

∫ π

0

�(r, θ , ϕ)∗
(

∂

∂r
+ 1

r

)
�(r, θ , ϕ)r2 sin θdrdθdϕ.

106We assume that φ(r) and ψ(r) are differentiable with respect to r , i.e., they are
absolutely continuous in r . SeeWan pp. 174–175 for more details.
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Q27(15) Explain why the product of operators ̂L(Ca) and ̂θ(Ca)
in �L2(Ca), i.e., the operator ̂L(Ca)̂θ(Ca), cannot operate
on the eigenvectors �ϕn(Ca) of ̂L(Ca) in Eq. (19.36), and
that107

[̂θ(Ca), ̂L(Ca) ] �ϕn(Ca) (27.158)

is not defined.108

107See Eqs. (17.23) and (27.117) for the definitions of θ̂(Ca) and L̂(Ca).
108Fano pp. 407–408. See also Q22(2).
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Chapter 28

States, Observables and Probability
Distributions

Vectors and operators in a Hilbert space are independent quantities

and there is no obvious link between them. The mathematical

description of the states and observables of a quantum system

given by Postulates 25.1(PS) and 26.1(OV) in terms of vectors and

operators does not tell us how a given state would determine

the value of an observable. Physically the relationship between

states and observables is about how the measurable values of an

observable is related to a state. This relationship should lead to the

quantum properties QMP5.3(1) to QMP5.3(3). First we must know

how a state can give rise to a probability distribution of measurable

values of an observable. This would require a prescription to

relate a unit vector to the spectrum of selfadjoint operators. The

discussion in Chapter 22 tells us how to obtain such a prescription.

Because of the intricacy of the relationship both physically and

mathematically we shall set out the relationship for discrete and

continuous observables separately.

Postulate 26.1(OV) tells us that an observable A has a discrete set
of measurable values if the selfadjoint operator ̂A associated with it
has a discrete spectrum and that the set of measurable values of A

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com
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coincides with the set of eigenvalues a� of ̂A. We need to know how a
state can determine the probability density function on this discrete

set of values.

An observable A has a continuous set of measurable values

if the selfadjoint operator ̂A associated with it has a continuous

spectrum and that the set of measurable values of A coincides with
the spectrum spc( ̂A) of ̂A. Here we need to know how a state can

determine the probability distribution function on this continuous

set of values of A.

28.1 Postulate (PDDO) on Discrete Observables

Postulate 28.1(PDDO) When the system is in state φs the
probability distribution of the measurable values am of a discrete
observable A is given by a probability mass function ℘ A(φs , am) on
the spectrum spd(A) of A specified by Theorem 22.2 (1).

This postulate tells us that the probability of an individual measured

value am is given by Eq. (22.9), i.e.,1

℘ A(φs , am) = Q( ̂P Â(am), �φ ) = 〈 �φ | ̂P Â(am) �φ 〉. (28.1)

The corresponding probability distribution function F A(φs , τ ) is

piecewise constant and it is given explicitly by Eq. (22.11).

The expectation value is given by Eq. (22.12), i.e., we have

E(A , φs) = Q( ̂A, �φ ) = 〈 �φ | ̂A �φ 〉. (28.2)

It is often convenient and more transparent to denote the expecta-

tion value by E( ̂A, �φ ). The expectation value is generally different
from any of the eigenvalues. However, if the state vector happens to

be an eigenvector of the operator ̂A, then the expectation value is
equal to the corresponding eigenvalue. The uncertainty is given by

Eq. (22.4).

1Here P̂ Â(am) is the eigenprojector given by Eq. (20.18) and φs := �φ. For a
nondegenerate eigenvalue, the projector is given by Eq. (20.16).



Postulate (PDDO) on Discrete Observables 489

f

c j j

Figure 28.1 Projection of �φ onto �ϕ�.

An intuitive understanding of Eq. (28.1) can be obtained by a

geometric visualisation of Eq. (28.1). For simplicity let us assume

that the eigenvalue a� is nondegenerate corresponding to the unit

eigenvector �ϕ�. Then we have

̂P Â(a�) �φ = c� �ϕ�, c� = 〈 �ϕ� | �φ 〉. (28.3)

℘ A(φs , a�) = 〈 �φ | ̂P Â(a�) �φ 〉 = | c� |2. (28.4)

The output vector c� �ϕ� is the projection of the input vector �φ onto

the eigenvector �ϕ� and the coefficient c� is component of �φ on

�ϕ�. A schematic illustration of the geometric situation is shown in

Fig. 28.1.

The following comments aim to clarify the postulate:

C28.1(1) When the state vector �φ coincides with an eigenvector

�ϕ� the projection of �φ onto �ϕ� coincides with �ϕ�, resulting in

℘ A(φs , a�) = 1. Such states are called eigenstates of A. They are
denoted by ϕs� . In the eigenstate ϕs� := �ϕ� the probability of a

measurement of A resulting in the eigenvalue a� is 1. In accordance

with the discussion in §5.2 we say that the observable possesses the
value a� in state ϕs� .

C28.1(2) When the state vector �φ is orthogonal to the eigenvector
�ϕ� the projection of �φ onto �ϕ� is zero. Hence we have ℘ A(φs , a�) =
0. This means that when the state vector is orthogonal to the

eigenvector �ϕ� the probability of a measurement of A resulting in
the eigenvalue a� is zero.
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C28.1(3) When the state vector �φ is neither orthogonal nor equal

to the eigenvector �ϕ�, the probability ℘ A(φs , a�) is equal to the

square of the norm of the projection of �φ onto �ϕ� since℘ A(φs , a�) =
|| ̂P Â(a�) �φ ||2 = ||c� �ϕ� ||2 = | c�|2 in accordance with Eq. (28.1).

We would expect that as the state vector �φ gets closer to the

eigenvector �ϕ� the probability will becomes higher, i.e., the larger the

projection the higher the probability. This is what Eq. (28.1) tells us.

Since℘ A(φs , a�) = |c�|2 by Eq. (28.4), we can interpret℘ A(φs , a�) as

the absolute value square of the component of the state vector �φ on
the eigenvectors �ϕ�, or as the absolute value square of the coefficient

of expansion of the state vector �φ in terms of eigenvectors �ϕ� since
�φ =∑

� c� �ϕ�.

As an example, consider a particle in circular motion discussed in

§27.8. When the state is given by the state vector �ϕn(Ca) the linear
momentum, the angular momentum and the Hamiltonian all have

a definite value, i.e., pn(Ca), apn(Ca) and En(Ca). When the state is
given by a linear combination of �ϕn(Ca) , e.g.,

�φ(Ca) =
∑

n

cn �ϕn(Ca),
∑

n

|cn|2 = 1, (28.5)

none of the above observables has a definite value. Postulate

28.1(PDDO) applies to give a probability distribution of measured

values for each of the observables.2

C28.1(4) Another interesting interpretation of ℘ A(φs , a�) is to

link the ℘ A(φs , a�) to the proposition defined by the eigenprojector
̂P Â(a�) based on the result:

℘ A(φs , a�) = 〈 �φ | ̂P Â(a�) �φ 〉 = E( ̂P Â(a�), �φ ). (28.6)

Each individual probability ℘ A(φs , a�) can be considered as an

expectation value of the proposition ̂P Â(a�) associated with the

observable A, i.e., probabilities are identifiable with the expectation
values of propositions. On the other hand 〈 �φ | ̂P Â(a�) �φ 〉 can also be
interpreted as the probability of a yes answer to a yes-no experiment

to measure the proposition ̂P Â(a�) in state φs .

2The present postulate does not apply to the linear position variable s which has a
continuous spectrum. A separate postulate is required.
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C28.1(5) Suppose the eigenvalue am is degenerate with degener-
acy d, i.e., there are d orthonormal eigenvectors ϕmj , j = 1, 2, . . . , d
corresponding to the eigenvalue am. Then the eigensubspace is

spanned by these d eigenvectors and is therefore d-dimensional.3

The corresponding eigenprojector is

̂P Â(am) =
d
∑

j=1
| �ϕmj 〉〈 �ϕmj |. (28.7)

The probability of a measurement resulting in the value am is

℘ A(φs , am) = 〈 �φ |
d
∑

j=1
| �ϕmj 〉〈 �ϕmj | �φ 〉 = 〈 �φ |

d
∑

j=1
〈 �ϕmj | φ〉 �ϕmj 〉

=
d
∑

j=1
〈 �ϕmj | �φ 〉 〈 �φ | �ϕ�j 〉 =

d
∑

j=1
|〈 �ϕmj | �φ 〉|2. (28.8)

28.2 Postulate (PDCO) on Continuous
Obsevables and Postulate (PD)

For continuous observables we can establish the probability

distribution of a continuous set of observable values in terms

spectral functions.

Postulate 28.2(PDCO) When the system is in state φs the probabil-
ity distribution of the measurable values τ of a continuous observable
A is given by a probability distribution functionF A(φs , τ ) specified by
Theorem 22.1(1).

Explicitly the postulate tells us that for φs := �φ we have

F A(φs , τ ) = F Â( �φ, τ ) = 〈 �φ | ̂F Â(τ ) �φ 〉, (28.9)

where ̂F Â(τ ) is the spectral function of the selfadjoint operator ̂A
associated with observable A. A list of comments are given below.

C28.2(1) The postulate can be stated in terms of probability

measures, i.e., we can re-state the postulate as follows:

3See Fig. 30.2.
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When the system is in state φs described by state vector �φ the
probability distribution of the measurable values τ of a continuous
observable A is given by the probability measure

MA(φs , �) = 〈 �φ | ̂MÂ(�) �φ 〉. (28.10)

where ̂MÂ is the spectral measure of the selfadjoint operator ̂A
associated with observable A.

This measure is related to the probability distribution function in

accordance with Theorem 22.1(1).

C28.2(2) The probability that a measured value τ of A lies in the
half-open interval (τ1, τ2] is given by

MA(φs , (τ1, τ2]
) = 〈 �φ |

(

̂F Â(τ2)− ̂F Â(τ1)
)

�φ 〉. (28.11)

C28.2(3) As discussed in P4.3.2(2) a characteristic feature of any

probability distribution of a continuous set of values is that the

probability for a single value is zero. This feature is ensured by the

spectral projector of any singleton set being zero.4 This property

corresponds to the fact that we are not able to single out a single

value in a continuum due to experimental error. An example is the

position of a particle which takes on a continuous set of values. It

is physically impossible to determine the position of a particle to a

mathematical point. We shall examine this again later.

C28.2(4) We can introduce a corresponding probability density

function and calculate the expectation value in accordance with Eq.

(22.6). We also have E(A , φs) = 〈 �φ | ̂A �φ 〉.
C28.2(5) Since the probability distribution of the values of a

discrete observable A can also be described by a probability

distribution function generated by the spectral function ̂F Â(τ ) of

the selfadjont operator ̂A representing the observable, we can unify
Postulates 28.1(PDDO) and 28.2(PDCO) into a single postulate in

terms of probability distribution functions. In other words, we can

incorporate Postulate 28.1(PDDO) into Postulate 28.2(PDCO) and

rename Postulate 28.2(PDCO) as Postulate 28.2(PD).5

4See Eq. (20.23).
5Postulate 28.1(PDDO) is a special case of Postulate 28.2(PD). We can also re-state

the postulate in terms the probability measure shown in Eq. (28.10).
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C28.2(6) Postulate 28.2(PD) provides the most important link

between the theory and observational results. It also reflects

the intrinsically probabilistic nature of quantum systems. In

principle it is impossible for a state to determine a definite

value of an arbitrary observable. This corresponds to the fact

that a measurement of arbitrary observable does not generally

yield a definite value with certainty in a given state. This differs

fundamentally from the statistical character of mass phenomena,

e.g., systems dealt with in statistical mechanics, where probability

is introduced into the theory because of practical limitations. It is

hopeless to specify all data that characterise a very large system

and to deal with the host of simultaneous equations of motion.

In orthodox quantum theory this postulate is inescapable. In a

sense, it may be thought of as being the consequence of the

interference of observation with the observed system. Yet, this

by no means implies non-causality or non-objectivity of quantum

physics. The meaningful questions we may ask in quantum physics

are different from those in classical physics. Nevertheless, there

is a clear relationship between theory and objectively ascertained

observational data. The meaningful quantities are the probability

distributions and the resulting expectation values.

C28.2(7) A state determines the probability distribution of the

values of every observable. Conversely the probability distributions

of a suitable set of observables can determine that state. The set of

propositions represented by all the projectors in the state space can

serve as such a set. The corresponding set of yes-no experiments

to measure these propositions can determine the state. It is in this

sense a state can be considered a measurable quantity.6

28.3 Position and Momentum

Consider a particle in one-dimensional motion along the x-axis.
From Postulates 25.1(PS), 26.1(OV) and 27.2(CQ), we obtain a

theory based on the Hilbert space �L2(IR) with states represented by

6Jauch pp. 93–94.
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unit vectors in �L2(IR) and the position and momentum observables

are represented by the selfadjoint operators x̂ and p̂ in �L2(IR).
Given a state ϕs described by a unit vector �ϕ ∈ �L2(IR) , we desire

the following:

(1) Explicit expressions for the position andmomentum probability

distribution and density functions.

(2) Explicit expressions for the probability for a measured value of

the position and of themomentum to be in a given range (τ1, τ2].

(3) Explicit expressions for the position and momentum expecta-

tion values.

(4) An interpretation of the wave function and its Fourier trans-

form.7

(5) Explicit expressions for the wave function after a position or a

momentummeasurement.

The mathematical results in §22.3.1 and §22.3.2 provide most of
the answers which are summarised in the following subsections.

28.3.1 The Position Observable

(1) The probability distribution and density functions are

wx(ϕs , τ ) = |ϕ(τ )|2, (28.12)

F x(ϕs , τ ) =
∫ τ

−∞
wx(ϕs , τ )dτ =

∫ τ

−∞
|ϕ(τ )|2dτ . (28.13)

(2) The probability for a measured value to be in (τ1, τ2] is

℘x(ϕs , (τ1, τ2]
) =

∫ τ

−∞
wx(ϕs , τ )dτ =

∫ τ2

τ1

|ϕ(τ )|2dτ . (28.14)

7In some elementary exposition of quantum theory, one may get the impression that

the interpretation of the wave function and its Fourier transform is an additional

postulate. Actually the interpretation is a consequence of Postulate 28.2(PDCO) as

clearly shown in the next subsection.
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(3) The position expectation value and uncertainty are

E(x , ϕs) = E(x̂ , �ϕ ) = 〈 �ϕ | x̂ �ϕ 〉 =
∫ ∞

−∞
|ϕ(x)|2 x dx , (28.15)


(x , ϕs) = 
(x̂ , �ϕ ) =
√

〈 �ϕ | x̂ 2 �ϕ 〉 − 〈 �ϕ | x̂ �ϕ 〉2. (28.16)

(4) We can interpret the wave function ϕ(x) is the position
probability amplitude in the sense that its absolute value

square is the position probability density function.

(5) For an explicit expression of the wave function after a position

measurement is given later by Eq. (30.6).

28.3.2 The Momentum Observable

(1) The momentum probability distribution and density functions

are given by Eqs. (22.22) and (22.24), i.e.,

F p(ϕs , τ ) = F p̂( �ϕ, τ ) =
∫ τ

−∞
|ϕ
∼
(p)|2 dp, (28.17)

wp(ϕs , τ ) = w p̂( �ϕ, τ ) = |ϕ
∼
(τ )|2. (28.18)

(2) The probability for a measured value to be in (τ1, τ2] is

℘ p(ϕs , (τ1, τ2]
) =

∫ τ2

τ1

wp(ϕs , τ ) dτ =
∫ τ2

τ1

|ϕ
∼
(τ )|2 dτ . (28.19)

(3) The momentum expectation value and uncertainty are

E(p, ϕs) = E( p̂, �ϕ ) = 〈 �ϕ | p̂ �ϕ 〉, (28.20)


(p, ϕs ) = 
( p̂, �ϕ ) =
√

〈 �ϕ | p̂ 2 �ϕ 〉 − 〈 �ϕ | p̂ �ϕ 〉2. (28.21)

(4) The Fourier transform ϕ
∼
(p) of the wave function ϕ(x) is

the momentum probability amplitude in the sense that its
absolute value square is the momentum probability density

function.

(5) For an explicit expression of the wave function after a

momentummeasurement is given later by Eq. (30.7).
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28.3.3 Uncertainty Relations

Consider a particle in one-dimensional motion along the x-axis. The
operators x̂ and p̂ obey the canonical commutation relation

[x̂ , p̂ ] = i�. (28.22)

The uncertainties of the position
(x , ϕs) and momentum
(p, ϕs )
in state ϕs given in terms of the operators x̂ and p̂ and state vector
�ϕ by Eqs. (28.16) and (28.21) satisfy the following inequality known
as the uncertainty relation for position and momentum8:


(x , ϕs)
(p, ϕs) = 
(x̂ , �ϕ )
( p̂, �ϕ ) ≥ 1

2
�. (28.23)

The consequence is that we cannot reduce both 
(x , ϕs) and

(p, ϕs) to arbitrarily small values. If we choose a state to reduce
the value of
(x , ϕs) we would automatically incur a corresponding
increase in
(p, ϕs).

One is tempted to assume a similar result for the position and

momentum for a particle constrained to move in a circle Ca on
account of the similarity between Eqs. (27.119) and (28.22), i.e., one

is tempted to write down


(̂θ(Ca), �φ )

(

a p̂(Ca), �φ
) ≥ 1

2
�. (28.24)

This would be wrongwhen applied to a vector �φ outside the domain

of operation of the commutator.9 We can see this in two different

ways10:

(1) For the eigenvector �ϕλ,n in Eq. (19.38) we have


(

a p̂(Ca), �ϕλ,n
) = 0. (28.25)

The uncertain relation in Eq. (28.24) is violated.

(2) The reason for the violation of Eq. (28.24) is that the eigenvector

�ϕλ,n does not satisfy Eq. (27.153), i.e., �ϕλ,n is not in the domain
of the commutator, and any result arising from the commutation

relation cannot be applied to �ϕλ,n.11

8Zettili pp. 94–95. This uncertainty relation is not an independent “principle.”
9See §27.10.3.
10Fano pp. 407–408.
11A similar violation of the uncertainty relation also occurs for a particle confined by

an infinite potential well. See Q22(2).
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28.4 Compatible and Incompatible Observables

The intrinsic probabilistic behaviour of a quantum system has an

important consequence on the compatibility of its observables,

a concept introduced in §5.3 in relation to quantum properties

QMP5.3(1) and QMP5.3(2). Let us examine how this concept can be

formulated in mathematical terms.

28.4.1 Discrete Observables

Let A and B be two observables represented by operators ̂A and ̂B ,
respectively. Suppose A and B both have a discrete set of values, {a�}
for A and {bm} for B . Then:
(1) Postulate 26.1(OV) tells us that {a�} is equal to the set of

eigenvalues of ̂A with a corresponding set of eigenvectors �ϕ�,

and {bm} is equal to the set of eigenvalues of the operator ̂B with
a corresponding set of eigenvectors �ψm.

(2) Postulate 28.1(PDDO) tells us that

(a) If none of the eigenvectors of the two operators agree, i.e.,

�ϕ� �= �ψm for any � and m, then there is no state in which
both A and B possess a value.

(b) If the two set of eigenvectors coincide, i.e., if ̂A and ̂B share
a complete orthonormal set of eigenvectors, we can label

their common eigenvectors as �ϕ�,m such that
12

̂A �ϕ�,m = a� �ϕ�,m, ̂B �ϕ�,m = bm �ϕ�,m. (28.26)

In the state represented by �ϕ�,m, observable A possesses

the value a� and observable B possesses the value b�. In

E19.4(2) the spherical harmonics �Y �,m�
are the common

eigenvectors of operators ̂L2 and ̂Lz.13 In a state described
by �Y �,m�

both ̂L2 and ̂Lz possess a definite value, i.e.,

�(�+ 1)�2 for ̂L2 andm�� for ̂Lz.

12The subscripts � andmmay be related.
13See Eq. (19.51). Angular momentum observables are studied in details in Chapter

36.
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(c) If only some of the eigenvectors agree, i.e., �ϕ� = �ψ�

for some � then in a state represented by these common

eigenvectors both A and B have a value. In the case of

angular momentum we know that the operators ̂Lx , ̂Ly
and ̂Lz have one common eigenvector, i.e., �Y �=0,m�=0. In the
state represented by this vector the angular momentum

observables Lx , Ly and Lz possess the same value zero.

We can clarify the situation by the following definition:

Definition 28.4.1(1)

(1) Two discrete observables are said to be compatible if a complete
set of states exists in which both observables possess a value.

(2) Two discrete observables are said to be essentially incompat-
ible if only an incomplete set of states exists in which both
observables possess a value.

(3) Two discrete observables are said to be strictly incompatible, or
incompatible for short, if no state exists in which both observables
have a definite value.14

This concept of compatibility is related to simultaneous measurabil-

ity. Let as clarify these notions with the following comments:

C28.4.1(1) If A and B are compatible, then they share a complete
orthonormal set of eigenstates ϕs�,m. In accordance with Postulate

28.1(PDDO) a simultaneous measurement of A and B would

yield the value a� for A and bm for B . We say that A and

B are simultaneously measurable in state ϕs�,m. For an arbitrary

state vector �φ , we have the usual expansion of �φ in terms of

the eigenvectors �ϕ�,m with coefficients c�,m. Then | c�,m|2 is the

probability of a measurement of A resulting in the value a� and

of a measurement of B resulting the value bm. This means that A
and B can also be considered simultaneously measurable in an

14The term strictly incompatible is introduced to contrast the term essentially
incompatible. The term incompatible, rather than strictly incompatible, is used

whenever there is no risk of confusion.
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arbitrary state, although there is no certainty in the measured

results. This enables us to make a general statement that

Two compatible observables A and B are simultaneously
measurable in any state.

Intuitively one would expect a simultaneous measurement of two

compatible observables would involve two separate measurements

performed simultaneously. However, if we can effect a simultaneous

measurement of two compatible observables by the measurement

of a single observable then we would be able to avoid doing

two separate measurements simultaneously. An example would

be a simultaneous measurement of two compatible propositions
̂P Â(am) and ̂P B̂(bn) by a single measurement of their product
̂P Â(am) ̂P B̂(bn) which is again a proposition, i.e., the proposition
that on a measurement A will be found to have the value am and

B will be found to have the value bn.15 An explicit example is the
position measurement of a particle in two-dimensional motion in

the x-y plane. The position observables x and y represented by
operators x̂(IR2) and ŷ(IR2) are compatible, and so are the local
position observables described by their spectral projectors ̂Mx̂(�x)

and ̂Mŷ(�y) along the x- and y-axes. A simultaneous measurement
of the product of two local position observables, one along the x-axis
and one along y-axis corresponding to the projector ̂Mx̂(�x) ̂Mŷ(�y)

can be physically achieved in terms of a photographic plate, i.e., an

image on the plate would yield a value for the position along the x-
axis and the position along the y-axis.16

Generally Theorems 13.3.4(4) and 20.6(1) provide a way

forward. According to the theorems, two commuting selfadjoint

operators ̂A and ̂B are functions of a third selfadjoint operator ̂C ,
i.e.,

̂A = f (̂C ), ̂B = g(̂C ). (28.27)

We can measure observable C corresponding to the operator ̂C , and
then infer the values of A and B . A single measurement of C would
yield a value c. We can obtain the values of A and B from a = f (c)

15Since P̂ Â(am) and P̂ B̂ (bn) commute their product, P̂ Â(a�) P̂ B̂ (bn) is a projector.
16Isham p. 97.
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and b = g(c) , respectively.17 There is no need to perform two

separate measurements of A and B .

C28.4.1(2) Two incompatible observables do not have any eigen-

state in common. Hence there is no state in which both observables

can possess a value. In other words, two incompatible observables
are not simultaneously measurable in any state.

C28.4.1(3) Essentially incompatible observables share some com-

mon eigenstates but not a complete set of common eigenstates. They

are simultaneously measurable in these common eigenstates.

C28.4.1(4) The concept of compatibility of two observables can

be formulated in terms of successive measurements of these two
observables. The concept can also be extended to include more than

two observables. We shall return to discuss this topic in §30.3.

The mathematical requirement for two observables to be com-

patible is contained in Theorem 13.3.4(3) and Definition 20.6(1), as

explicitly stated below.

Theorem28.4.1(1) Two discrete observables A and B are compat-
ible if their corresponding operators ̂A and ̂B commute.

Corollary 28.4.1(1) Two discrete observables A and B are
compatible if all the eigenprojectors ̂P Â(a�) and ̂P B̂(bm) of their
corresponding operators ̂A and ̂B commute.

Not all observables are compatible. The examples below illustrate

various cases:

E28.4.1(1) Compatible observables

(1) An observable is compatible with functions of the observable,

e.g., A is compatible with A2.

(2) For motion along a circle Ca the linear momentum p(Ca)
is compatible with the angular momentum L(Ca) and the

Hamiltonian H (Ca). They share a complete orthonormal set of

17Fano p. 405. Isham p. 97.
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common eigenvectors in which all three observables possess a

value. The operators mutually commute.18

(3) The angular momentum operators ̂L2 and ̂Lz commute. Hence
their corresponding angular momentum observables L2 and
Lz are compatible. In §36.1.1 we will show that they have a

complete orthonormal set of common eigenvectors in which

both observables possess a value.

(4) Consider a discrete observable A represented by operator
̂A which has a nondegenerate spectrum corresponding to a

complete orthonormal set of eigenvectors �ϕ� together with a

set of complete orthogonal set of eigenprojectors ̂P �ϕ�
. These

eigenprojectors mutually commute and they represent com-

patible propositions of A. In an eigenstate ϕs� the proposition

represented by ̂P �ϕ�
possesses the value 1 while the proposition

represented by ̂P �ϕ�′ possesses the value 0 if � �= �′.

(5) Spectral projectors are a generalisation of eigenprojectors. The

fact that all the eigenprojectors of two operators commute is

equivalent to the fact that all the spectral projectors of the two

operators commute. It follows that for discrete observables we

can establish compatibility in terms of either eigenprojectors

or spectral projectors. By replacing eigenprojectors by spectral

projectors Corollary 28.4.1(1) can be generalised to observables

with a continuous spectrum, as seen in Definition 28.4.2(1).

E28.4.1(2) Strictly incompatible observables

(1) Two components of the spin angular momentum operators ̂Sx
and ̂Sy do not commute. Their corresponding observables Sx
and Sy are strictly incompatible (or just incompatible for short).

(2) For a particle in an infinite square potential well of width � =
[ 0, L] in the x-axis, the Hamiltonian represented by ̂K∞(�)
in Eq. (19.42) is strictly incompatible with the momentum

represented by p̂λ(�) in Eq. (17.36) for any λ. This is obvious

18Their corresponding operators are given by Eqs. (27.116), (19.49) and (19.49) and

their common eigenvectors �ϕn(Ca) are given by Eq. (19.38) .



502 States, Observables and Probability Distributions

when we compare the eigenfunctions of ̂K∞(�) in Eq. (19.43)
and the eigenfunctions of p̂λ(�) in Eq. (19.32).

E28.4.1(3) Essentially incompatible observables The angular

momentum operators ̂Lx and ̂Ly do not commute. However, they
do have a common eigenvector, i.e., �Y �=0,m�=0, corresponding to
the eigenvalue 0 for both operators. Hence their corresponding

observables Lx and Ly are simultaneous measurable in that

particular state, but not in an arbitrary state. We say that Lx and
Ly are essentially incompatible. The situation is different for spin
angular momentum, i.e., Sx and Sy are strictly incompatible since
there is no zero spin state.

28.4.2 Continuous Observables

Definition 28.4.1(1) does not apply to continuous observables. We

can establish a definition for continuous observables using Corollary

28.4.1(1).

Definition 28.4.2(1) Two continuous observables A and B are said
to be compatible if the spectral projectors ̂MÂ(�1) and ̂MB̂(�2)

commute for all Borel sets �1 and �2 of IR, and they are said to be
incompatible otherwise.

The commutativity of spectral projectors ̂MÂ(�1) and ̂MB̂(�2)

implies the commutativity of the operators ̂A and ̂B . It follows that
Theorem 28.4.1(1) also applies to observables with a continuous

spectrum.19

The best known incompatible observables with a continuous

spectrum of a particle in one-dimensional motion along the x-
axis is the position x and momentum p since their corresponding
operators x̂ and p̂ do not commute.

The concept of compatibility and incompatibility can be gener-

alised to apply to a continuous observable and a discrete observable,

e.g., a continuous observable can be incompatible with a discrete

observable. The momentum and the Hamiltonian of a harmonic

oscillator are incompatible.

19Jauch p. 101. Spectral projectors correspond to propositions which are discrete

observables. Theorem 28.4.1(1) applies to them.
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Exercises and Problems

Q28(1) An electron spin is in state αsx .
20 Find the probability of

a measurement of the z-component spin resulting in the
value �/2.

Q28(2) Using Eqs.(20.68) and (20.69) , show that the probability

distribution function and the probability measure of a

proposition (as a discrete observable) represented by

projector ̂P in state vector �φ are given by

F P̂ ( �φ, τ ) =
⎧

⎨

⎩

0 τ < 0

1− 〈�φ | ̂P �φ 〉 0 ≤ τ < 1

1 τ ≥ 1

. (28.28)

M P̂ ( �φ, �) =

⎧

⎪

⎨

⎪

⎩

1− 〈 �φ | ̂P �φ 〉 if � = {0}
〈 �φ | ̂P �φ 〉 if � = {1}
0 if � does not contain 0 or 1.

(28.29)

Q28(3) For a particle in circular motion, the Hamiltonian ̂H (Ca)
is given by Eq. (27.120). Show that the eigenvalues of the

Hamiltonian is degenerate with eigenvectors �ϕn given by
Eq. (19.36). Write down the spectral decomposition of the

Hamiltonian in the form of Eq. (20.20).

Q28(4) A pair of annihilation and creation operators â, â† are
defined in terms of an orthonormal basis { �ϕn, n = 0,

1, 2, . . .} in the state space H of a quantum system.21 The

corresponding number operator is ̂N = â†â.22 The energy
of the system is represented by the Hamiltonian operator
̂H = E0 ̂N.

(a) What are the possible energy values of the system?

(b) Let ��z be the unit vector in Eq. (17.129). Find the prob-

ability mass function for the probability distribution of

energy values of the system in state�s
z described by the

state vector ��z.

(c) Find the energy expectation values in state�s
z.

20See §14.1.1 and §36.3 for the theory for electron spin.
21See Definitions 17.10(1) and 17.10(2) in §17.10.
22See Definition 19.1(5).
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Q28(5) The Fourier transform ϕ
∼
(p) of a normalised wave function

ϕ(x) of a particle is

ϕ
∼
(p) =

⎧

⎨

⎩

0 p ≤ −p0,
1/
√
2p0 p ∈ (−p0, p0],

0 p ≥ p0,
(28.30)

where p0 ∈ IR . What is the probability of a momentum
measurement resulting in a value in the range (−p0, p0]?
What is the momentum expectation value and uncertainty?

Write down the position probability density function

in terms of the inverse Fourier transform of ϕ
∼
(p) in

Eq. (18.73).

Q28(6) Working in the momentum representation and using

Eqs. (20.54) and (20.57) find the probability distribution

function for the kinetic energy of a particle of half the unit

mass in one-dimensional motion along the x-axis in a given
state ϕs .



Chapter 29

Time Evolution

Having discussed states, observables and their relationship, wemust

now investigate the time evolution of quantum systems. In classical

mechanics time develution is described by Newton’s second law or

Hamiltonian equations. These are equations of motion of the state.

Since observables are functions of the state, a knowledge of the time

dependence of state will also determine the time dependence of

observables.

In quantum theory the situation is not so clear. We have, in

addition to the state vector, operators which are independent of the

state vector. A knowledge of the time dependence of state vector

does not automatically imply any knowledge of the time dependence

of operators. Suppose at time t = 0 the system is in a state φs(0)

described by the state vector �φ(0) and its physical observables A(0)
are represented by operators ̂A(0) in the chosen state space �H. the
question is

What are the state vector �φ(t) and observables Â(t) at t > 0?

We would expect to have an equation of motion for the state

vector and a separate equation of motion for the operators. Such a

description of the time evolution of a quantum system in terms of

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
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the time dependence of both the state vectors and operators is called

the Interaction picture.1

It turns out that it is not necessary to have two separate and

independent equations of motion for the state and observables. We

can actually manage with either an equation of motion for the state
vector or an equation of motion for the operators. In other words,
there are two further alternative descriptions or pictures of quantum
evolution. The Schrödinger picture is a description of the time
evolution of a quantum system in terms of a differential equation

involving the time derivative of the state alone. The Heisenberg
picture is a description of the time evolution of a quantum system

in terms of a differential equation involving only the time derivative

of observables.

We shall detail these three descriptions of quantum dynamics

and then show how these descriptions are physical equivalence.

29.1 The Schrödinger Picture

29.1.1 Schrödinger Equation

Traditionally the time evolution of a quantum system with a

Hamiltonian ̂H in the Schrödinger picture is determined by a

differential equation known as the Schrödinger equation which

involves the time derivative of the state vector,2 i.e.,

i�
d �φ(t)
dt

= ̂H �φ(t). (29.1)

Observables which are not explicitly time dependent are assumed

to correspond to time-independent operators. We shall confine

ourselves to systems whose Hamiltonians do not depend on time

explicitly. In the coordinate representation the state vector is defined

by a function of position �x and time t. For a Hamiltonian given in Eq.
(27.93), the Schrödinger equation becomes

i�
∂φ(�x , t)

∂t
=
(

− �
2

2m
∇2 + V (�x )

)

φ(�x , t). (29.2)

1Also known as the Dirac picture.
2Also known as the time-dependent Schrödinger equation (see Eq. (10.27)).
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The partial derivativewith respect to t is to signify the independence
of �x and t. Some explicit examples of quantum time evolution can be

found in §35.3.1.3
If the Hamiltonian has a discrete spectrum {E�} together with

a complete orthonormal set of eigenvectors �ϕ� the solutions of the

Schrödinger equation can be obtained explicitly. Let �φ(0) be a given
initial state vector, and let

�φ(0) =
∑

�

c� �ϕ�, c� = 〈 �ϕ� | �φ 〉 (29.3)

be an expansion of �φ(0) in terms of �ϕ�. It is easily verified that

(1) If the initial state vector is an eigenvector of ̂H , i.e., �φ(0) = �ϕ�

then the evolved state vector is4

�φ(t) = e− ¯i E�t �ϕ�. (29.4)

(2) If the initial state vector is not an eigenvector of ̂H , i.e., �φ(0) is
given by Eq. (29.3), then the evolved state vector is

�φ(t) =
∑

�

c� e
− ¯i E�t �ϕ�, (29.5)

since �φ(t) satisfies the Schrödinger equation and the initial

condition, i.e., at t = 0 the vector �φ(t) reduces to �φ(0).
(3) The norm of the state vector is preserved during evolution, i.e.,

|| �φ(t)|| = || �φ(0)||.

This Schrödinger equation approach to time evolution has its

limitations. The Schrödinger equation is only meaningful when the

state vectors �φ(t) are in the domain D( ̂H ) of the Hamiltonian. For
example, if the given initial state vector �φ(0) is not in D( ̂H ) then
̂H �φ(0) is undefined. The Schrödinger equation cannot be applied to
such an initial state vector to determine the evolved state vector at

t > 0. This limitation can be removed if we adopt a more general

approach using the concept of unitary evolution operators. This

3It is common to call Eqs. (29.1) and (29.2) time-dependent Schrödinger equation

while the eigenvalue equation for the Hamiltonian is referred to as the time-

independent Schrödinger equation.
4Such states are called stationary states (see Eq. (35.37)).
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arises from the realisation that

(1) Time evolution preserves of the norm of the state vector.

(2) The Schrödinger equation is related to a one-parameter group

of unitary operators as shown in Theorem 21.2(1) of Stone.

29.1.2 Unitary Evolution

Definition 13.4.3(1) introduces the concept of a continuous one-

parameter group of unitary operators ̂U (t). Theorems 13.4.3(2)
and 21.2(1) of Stone tell us that such a group of unitary operators

is generated by a single selfadjoint operator in the form of an

exponential function, and conversely the derivative of ̂U (t) with
respect to t can generate a selfadjoint operator as shown in Eq.
(21.18).

Consider a system with a time-independent Hamiltonian ̂H . This
Hamiltonian generates a continuous one-parameter group of unitary

operators ̂U ( ̂H , t) in accordance with Eq. (21.13) by

̂U ( ̂H , t) := e− ¯i
̂H t
, t ∈ IR . (29.6)

Let �φ(0) be a given initial state vector in the domainD( ̂H ) of ̂H , and
let

�φ(t) := ̂U ( ̂H , t) �φ(0). (29.7)

Equation (21.18) of Theorem 18.3(2) of Stone becomes5

i�
d �φ(t)
dt

= ̂H �φ(t). (29.8)

This agrees with Eq. (29.1) of Schrödinger. Equation (29.7) which

links �φ(t) directly to �φ(0) is well-defined for arbitrary �φ(0). This
suggests that the time evolution of an arbitrary initial state vector

which is not in the domain D( ̂H ) can be given by Eq. (29.7). This
result leads to a general postulate of quantum evolution in terms of

a continuous one-parameter group of unitary operators.6

5Intuitively we can see that a formal differentiation of Eq. (29.7) would lead to the

desired equation.
6We assume that Ĥ is not explicitly time dependent. Otherwise the situation can

become complicated (seeWan pp. 286–290).
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Postulate 29.1.2(TESP) on quantum evolution

(1) Observables which are not explicitly time dependent are repre-
sented by time-independent selfadjoint operators.

(2) The state is represented by a time-dependent state vector. The
time dependence of the state vector is determined by a continuous
one-parameter group of unitary operators generated by the
Hamiltonian, i.e.,

̂U ( ̂H , t) := e− ¯i
̂H t
, t ∈ IR , (29.9)

in that an arbitrary initial state vector �φ(0) will evolve into the
state vector �φ(t) given by

�φ(t) := ̂U ( ̂H , t) �φ(0). (29.10)

We call ̂U ( ̂H , t) time evolution operators, or simply evolution
operators, generated by the Hamiltonian ̂H . The evolved state

vector is a unitary transform of the initial state vector. The norm

of the state vector �φ(t) remains the same for all times as unitary
transformations preserve the norm of vectors.

Definition 29.1.2(1)7 An observable A is said to be a constant of
motion, or to be conserved, if its corresponding selfadjoint operator
̂A commutes with the Hamiltonian ̂H .

A constant of motion would have time-independent expectation

values. To show this, let the state at time t be φs(t). The expectation
value E(A , φs(t)) is equal to 〈 �φ(t) | ̂A �φ(t)〉 at time t. Since ̂A
commutes with ̂H , and hence it also commutes ̂U ( ̂H , t), we get

E
(

A , φs(t)
) = 〈 �φ(t) | ̂A �φ(t)〉 = 〈̂U ( ̂H , t) �φ(0) | ̂A ̂U ( ̂H , t) �φ(0)〉
= 〈 �φ(0) | ̂A �φ(0)〉. (29.11)

If we differentiate E
(

A , φs(t)
)

with respect to t we get

dE
(

̂A, �φ(t))

dt
= 1

i�
〈 �φ(t) | [ ̂A, ̂H ] �φ(t)〉. (29.12)

7We consider observables which are not explicitly time dependent. The state is time

dependent in the Schrödinger picture. As shown in §29.2 observables are time
dependent in the Heisenberg picture.
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Again we can see that the expectation value E
(

A , φs(t)
)

is time-

independent if ̂A commutes with the Hamiltonian.8

An example is that the momentum of a free particle is conserved.

The momentum of a harmonic oscillator is not conserved. In

classical mechanics an observable is conserved if its value remains

unchanged in time. In quantum mechanics the requirement is

weaker in that it is the expectation value, not an individual value,

of the observable which is time-independent.9

29.2 The Heisenberg Picture

29.2.1 Unitary Evolution

In the Heisenberg picture, it is the observables which are time

dependent. Following Postulate 29.1.2(TESP), it is natural to assume

that time evolution of observables is again realisable as a unitary

transformation of its corresponding operator. Such an assumption is

stated below as a postulate.

Postulate 29.2.1(TEHP) on quantum evolution

(1) The state is represented by a time-independent state vector.

(2) Observables which are not explicitly time dependent are rep-
resented by time-dependent selfadjoint operators, except for
the Hamiltonian ̂H which remains time-independent.10 Time
evolution of these operators is determined by a continuous one-
parameter group of unitary operators ̂U ( ̂H , t) = exp(− i– ̂H t)
generated by the Hamiltonian, i.e., an initial operator ̂A(0)
representing an arbitrary observable A will evolve into the
operator

̂A(t) := ̂U †( ̂H , t) ̂A(0)̂U ( ̂H , t). (29.13)

8See Eq. (29.19) in the Heisenberg picture.
9See Q29(6).
10The Hamiltonian Ĥ is assumed to be not explicitly time dependent and is the same

as the Hamiltonian in the Schrödinger picture in that the operator obtained by

quantising the time-independent classical Hamiltonian.
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Rewriting ̂U ( ̂H , t) as ̂U (t) for brevity Eq. (29.13) becomes

̂A(t) = ̂U †(t) ̂A(0)̂U (t). (29.14)

The evolved operator ̂A(t) is a unitary transform of ̂A(0).11 As an
operator representing an observable the Hamiltonian should also

evolves by Eq. (29.14), i.e.,

̂H (t) := ̂U †(t) ̂H ̂U (t). (29.16)

Since ̂H commutes with ̂U (t), we get ̂H (t) = ̂H (0) = ̂H , i.e.,
the Hamiltonian remains time-independent, a result consistent with

the assumption of the time-independence of the Hamiltonian of the

postulate.

Postulate 29.2.1(TEHP) refers to the time evolution of observ-

ables and their associated selfadjoint operators. Non-selfgadjoint

operators which do not represent any observables can also be time

dependent if they are related to selfadjoint operators which do

describe observables. Examples of this will be seen in Q35(13) in

Problems and Exercises for Chapter 35.

29.2.2 Heisenberg Equation of Motion

In practical applications it is often more useful to describe the

evolution in terms of differential equations involving the time

derivatives of the operators. Differentiating Eq. (29.14) with respect

to t we obtain

d ̂A(t)
dt

= d ̂U †(t)
dt

̂A(0)̂U (t)+ ̂U †(t) ̂A(0)
d ̂U (t)
dt

. (29.17)

From

d ̂U (t)
dt

= − i– ̂H ̂U (t), d ̂U †(t)
dt

= i– ̂H ̂U †(t) (29.18)

we get

i�
d ̂A(t)
dt

= [ ̂A(t), ̂H ]. (29.19)

11To conform to Definition 13.4.1(2), we can let V̂ (Ĥ , t) = Û †(Ĥ , t). Then Eq. (29.14)
becomes

Â(t) = V̂ (Ĥ , t) Â(0)V̂ †(Ĥ , t). (29.15)
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Since ̂H = ̂H (t), we can rewrite the above equation as

i�
d ̂A(t)
dt

= [ ̂A(t), ̂H (t)]. (29.20)

This is called theHeisenberg equation ofmotion.12 The commuta-
tor in the above equation is a unitary transform of the corresponding

commutator at t = 0, i.e.,13

[ ̂A(t), ̂H (t)] = ̂U †(t)[ ̂A(0), ̂H (0)]̂U (t), (29.21)

since

̂U †(t)[ ̂A(0), ̂H (0)]̂U (t)

= ̂U †(t) ̂A(0) ̂H (0)̂U (t)− ̂U †(t) ̂A(0) ̂H (0)̂U (t)

= ̂U †(t) ̂A(0)̂U (t)̂U †(t) ̂H (0)̂U (t)− ̂U †(t) ̂A(0)̂U (t)̂U †(t) ̂H (0)̂U (t)

= ̂A(t) ̂H (t)− ̂H (t) ̂A(t). (29.22)

The same applies to the commutator of two evolved operators, i.e.,

[ ̂A(t), ̂B(t)] = ̂U (t)†[ ̂A(0), ̂B(0)]̂U (t). (29.23)

To see how the Heisenberg equation of motion can be applied

in practice, consider a particle in one-dimensional motion along

the x-axis. In the Heisenberg picture, the quantised position and
momentum operators x̂ and p̂ in �L2(IR) are taken as the position and
momentum operators at t = 0, i.e., we have x̂(0) = x̂ and p̂(0) = p̂.
These operators then evolve into x̂(t) and p̂(t) in accordance with
Eq. (29.14). It follows that x̂(0)2 and will evolve into x̂(t)2 since

̂U (t)† x̂2 ̂U (t) = ̂U (t)† x̂
(

̂U (t)̂U (t)†
)

x̂ ̂U (t)

= (

̂U (t)† x̂ ̂U (t)
)(

̂U (t)† x̂ ̂U (t)
)

. (29.24)

Continue the process we can show that x̂(0)m = x̂ m will evolve into
x̂(t)m. Similarly p̂(0)n = p̂ n will evolve into p̂(t)n.

12See Q35(3) for an application to non-selfadjoint operators.
13See P13.4.2(1) on the preservation of commutation relations under unitary

transformation.



The Heisenberg Picture 513

We can verify that results in §27.7 on various commutation

relations apply to corresponding evolved operators, e.g., we have

[ x̂(t), p̂(t)] = [x̂(0), p̂(0)] = i�, (29.25)

[ x̂(t), p̂(t)m] = i�m p̂(t)(m−1), (29.26)

[ p̂(t), x̂(t)n] = −i� n x̂(t)(n−1). (29.27)

Equations (27.106) to (27.107) become

[ x̂(t), ̂A
(

x̂(t), p̂(t)
)

] = i�
∂ ̂A
(

x̂(t), p̂(t)
)

∂ p̂(t)
, (29.28)

[ p̂(t), ̂A
(

x̂(t), p̂(t)
)

] = −i�∂ ̂A
(

x̂(t), p̂(t)
)

∂ x̂(t)
. (29.29)

Now suppose the Hamiltonian operator obtained by quantising

the classical Hamiltonian is of the form14

̂H
(

x̂ , p̂
)

:=
∑

m,n

cmnx̂ m p̂ n. (29.30)

This is the Hamiltonian in the Schrödinger picture and it is also the

Hamiltonian is the Heisenberg picture. To apply Eq. (29.20), we need

to express the Hamiltonian in terms of x̂(t)m and p̂(t)n. This can be
achieved by a examination of the evolved Hamiltonian in Eq. (29.16),

i.e., we have

̂H (t) = ̂U †(t) ̂H
(

x̂ , p̂
)

̂U (t) = ̂U †(t)
(
∑

m,n

cmnx̂ m p̂ n
)

̂U (t)

=
∑

m,n

cmn
(

̂U †(t)x̂m ̂U (t)
)(

̂U †(t) p̂ n ̂U (t)
)

=
∑

m,n

cmn x̂(t)m p̂(t)n = ̂H
(

x̂(t), p̂(t)
)

. (29.31)

On account of Eqs. (29.28) and (29.29) the Heisenberg equations for

the position and momentum observables become

dx̂(t)
dt

= ∂ ̂H (t)
∂ p̂(t)

,
d p̂(t)
dt

= −∂ ̂H (t)
∂ x̂(t)

. (29.32)

14Assuming that the position and momentum are arranged in an appropriate order,

as commented in relation to Eq. (27.105).
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These Heisenberg equations of motion resemble the classical

Hamilton’s equations of motion for xi (t) and pi (t) in Eq. (27.20).
The quadratic form E

(

̂A(t), �φ ) at time t is equal to 〈 �φ | ̂A(t) �φ 〉.
Differentiating with respect to t , we get15

dE
(

̂A(t), �φ )

dt
= 1

i�
〈 �φ | [ ̂A(t), ̂H (t) ] �φ 〉. (29.33)

Definition 29.1.2(1) on constants of motion applies in the Heisen-

berg picture. The expectation value E
(

A(t), φs
) = E

(

̂A(t), �φ ) is
time-independent when ̂A(t) commutes with ̂H (t).16

In §35.3 we shall examine the motion of an oscillator in

the Heisenberg picture which also serves as an example of how

Heisenberg picture can be applied in practice.

29.3 Equivalence of the Schrödinger and the
Heisenberg Pictures

Postulate 29.2.1(TEHP) does not really constitute a separate and

independent postulate since the Heisenberg picture is unitarily re-

lated to the Schrödinger picture. For clarity let us label quantities in

the Schrödinger and the Heisenberg pictures by the subscripts Sch
and Hei, respectively. The unitary relationship can be established as
follows:

(1) At time t = 0 the system is described by an initial state vector
�φ(0) and operators ̂A(0), i.e., we have the same initial state
vectors and operators in both pictures, i.e.,17

�φSch(0) = �φHei(0) = �φ(0), (29.34)

̂ASch(0) = ̂AHei(0) = ̂A(0). (29.35)

15Using the Heisenberg equation of motion. We assume that the initial and the

evolved state vectors are in the domains of relevant operators.
16Note that [ Â(t), Ĥ (t) ] = 0̂ follows from [ Â(0), Ĥ (0) ] = 0̂.
17The notation ÂSch is used instead ÂS to avoid confusion with the notation for
restrictions of operators to the Schwartz space shown in Eq. (17.48) and especially

in Eq. (35.23) and in Q35(15).
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(2) At a later time t > 0, these quantities will evolve as follows:

In the Schrödinger picture, we have

�φ(0) = �φSch(0)→ �φSch(t) = ̂U (t) �φSch(0) = ̂U (t) �φ(0), (29.36)
̂A(0) = ̂ASch(0)→ ̂ASch(t) = ̂ASch(0) = ̂A(0). (29.37)

In the Heisenberg picture, we have

�φ(0) = �φHei(0)→ �φHei(t) = �φHei(0) = �φ(0); (29.38)

̂A(0) = ̂AHei(0)→ ̂AHei(t) = ̂U (t)† ̂AHei(0)̂U (t)

= ̂U (t)† ̂A(0)̂U (t). (29.39)

(3) Equations (29.36) to (29.39) imply that

�φSch(t) = ̂U (t) �φHei(t), (29.40)

̂AHei(t) = ̂U (t)† ̂ASch(t)̂U (t). (29.41)

These equations can be rewritten as

�φSch(t) = ̂U (t) �φHei(t), (29.42)

̂ASch(t) = ̂U (t) ̂AHei(t)̂U (t)†, (29.43)

or

�φHei(t) = ̂U (t)† �φSch(t), (29.44)

̂AHei(t) = ̂U (t)† ̂ASch(t)̂U (t). (29.45)

(4) The above results show that at every instant of time the two

pictures are related by a simultaneous unitary transformation

of both the state vector and operators. It follows from the

discussion in Chapter 23 that the two pictures are physically

equivalent. The expectation values in both pictures are the same

for all time since

〈 �φSch(t) | ̂ASch(t) �φSch(t)〉 = 〈 �φHei(t) | ̂AHei(t) �φHei(t)〉.
(29.46)

The essence of a quantum theory lies in its experimental mea-

surability. By themselves the operators and the state vector are

mathematical quantities. Two different mathematical descriptions
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are physically indistinguishable if they give rise to the same

measurable values. In §35.3 we shall investigate the time evolution
of a simple harmonic oscillator in both Schrödinger and Heisenberg

pictures. Questions on whether it is the wave packet of the particle

which is oscillating or the position operator of the particle which

is oscillating is not meaningful since there is no physical means to

answer such questions. While it is intuitively pleasing to visualise

the motion of a harmonic oscillator in terms of an oscillator wave

packet we should not take such intuitive visualisation literally as

being physical. What is physical is that the oscillation of the position

and momentum expectation values.

We can go on to generate new descriptions of time evolution by

unitary transformations. One such new description is known as the

Interaction picture which we shall discuss in the next section.

29.4 Interacting Systems and the Interaction
Picture

29.4.1 Derivation

Consider the case of a system interacting with an external potential.

The Hamiltonian at time t = 0 is of the form

̂H := ̂H 0 + ̂H ′, (29.47)

where ̂H 0 is the Hamiltonian of the system without the external

potential. It is called the free Hamiltonian, and ̂H ′, the potential
energy term due to external interaction, is referred to as the

interaction Hamiltonian. The resulting Hamiltonian ̂H is more

complex. It would be desirable to divide ̂H into two parts, one

involving ̂H 0 and the other one involving ̂H ′. This is the reason for
introducing the following Interaction picture:

(1) Let us assume that initially at time t = 0 the system is described

by state vector �φSch(0) and operators ̂ASch(0) in the Schrödinger
picture. At time t > 0 these quantities would evolve into �φSch(t)
and ̂ASch(t).
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(2) Introduce a one-parameter group of unitary operators gener-

ated by the free Hamiltonian ̂H 0, i.e.,

̂U ( ̂H 0, t) := e− ¯i
̂H 0t . (29.48)

(3) Define �φ I (t) and ̂AI (t) as the unitary transforms of �φSch(t) and
̂ASch(t) by the unitary operators ̂U ( ̂H 0, t), i.e.,

�φ I (t) := ̂U ( ̂H 0, t)† �φSch(t), (29.49)

̂AI (t) := ̂U ( ̂H 0, t)† ̂ASch(t)̂U ( ̂H 0, t), (29.50)

or

�φSch(t) := ̂U ( ̂H 0, t) �φ I (t), (29.51)

̂ASch(t) := ̂U ( ̂H 0, t) ̂AI (t)̂U ( ̂H 0, t)†. (29.52)

What we have obtained is a new description of the time evolution of

the system in terms of �φ I (t) and ̂AI (t). This description is called the
Interaction picture. This new picture is mathematically different

from the Heisenberg picture since the unitary operators ̂U ( ̂H 0, t)
are generated by the free Hamiltonian ̂H 0, not the total Hamiltonian
̂H . As a result both the state vector �φ I (t) and the operators ̂AI (t) are
time dependent as shown in the table below:

initial description at t = 0 later description at t > 0

�φ(0) = �φSch(0) −→ �φSch(t) �= �φSch(0) = �φ(0),
̂A(0) = ̂ASch(0) −→ ̂AS(t) = ̂ASch(0) = ̂A(0).

�φ(0) = �φHei(0) −→ �φHei(t) = �φHei(0) = �φ(0),
̂A(0) = ̂AHei(0) −→ ̂AHei(t) �= ̂AHei(0) = ̂A(0).

�φ(0) = �φ I (0) −→ �φ I (t) �= �φ I (0) = �φ(0),
̂A(0) = ̂AI (0) −→ ̂AI (t) �= ̂AI (0) = ̂A(0).

This new picture is physically equivalent to the Schrödinger and

Heisenberg pictures.
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29.4.2 Equations of Motion

Let us derive the equations of motion for the state and observables.

To start with the free Hamiltonian ̂H 0 is assumed to be time-

independent as before. We can also check that ̂H 0I (t) given

in accordance with Eq. (29.52) is time-independent since ̂H 0

commutes with ̂U ( ̂H 0, t). In other words, the free Hamiltonian

remains the same in both the Schrödinger and the Interaction

pictures. Since the unitary transformation is generated by the

free Hamiltonian, the evolution of observables is the same as the

evolution of observables in the Heisenberg picture for the free

system, e.g., their operators ̂AI (t) satisfies the Heisenberg equation
for the free Hamiltonian:

i�
d
dt

̂AI (t) = [ ̂AI (t), ̂H 0I (t)] = [ ̂AI (t), ̂H 0]. (29.53)

The interaction Hamiltonian is generally time dependent since it

may not commute with ̂U ( ̂H 0, t). Its evolution is given by

̂H ′I (t) = ̂U †( ̂H 0, t) ̂H ′(0)̂U ( ̂H 0, t). (29.54)

Here ̂H ′(0) is the interaction Hamiltonian at t = 0 and it is the same

as the interaction Hamiltonian in the Schrödinger picture. The time

dependence of the interaction Hamiltonian can often be obtained by

solving its equation of motion

i�
d
dt

̂H ′I (t) = [ ̂H ′I (t), ̂H 0I (t)] = [ ̂H ′I (t), ̂H 0]. (29.55)

An example will be given in §35.3.3.

For the state we have the state vector satisfy the following

Schrödinger-type equation with the interaction Hamiltonian:

i�
d
dt
�φ I (t) = ̂H ′I (t) �φ I (t). (29.56)

This is arrived at by differentiating �φ I (t) in Eq. (29.49):

i�
d
dt
�φ I (t) = i�

d
dt

(

̂U †( ̂H 0, t) �φSch(t)
)

= i�

(

d ̂U †( ̂H 0, t)
dt

�φSch(t)+ ̂U †( ̂H 0, t)
d �φSch(t)
dt

)

.

(29.57)
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The term d �φSch(t)/dt is given by the Schrödinger equation

i�
d �φSch(t)
dt

= ( ̂H 0 + ̂H ′ ) �φSch(t). (29.58)

It follows that the left-hand-side of Eq. (29.57) is equal to

i�

(

−
̂H 0

i�
̂U †( ̂H 0, t) �φSch(t)+ ̂U †( ̂H 0, t)

1

i�
( ̂H 0 + ̂H ′) �φSch(t)

)

= − ̂H 0
̂U †( ̂H 0, t) �φSch(t)+ ̂U †( ̂H 0, t) ̂H 0

�φSch(t)+ ̂U †( ̂H 0, t) ̂H ′ �φSch(t)

= ̂U †( ̂H 0, t) ̂H ′ ̂U ( ̂H 0, t) �φ I (t)

= ̂H ′I (t) �φ I (t). (29.59)

We have used �φSch(t) = ̂U ( ̂H 0, t) �φ I (t). The evolution of the new
state vector is seen to be governed by the interaction Hamiltonian.

In the Interaction picture we have succeeded in separating the

total Hamiltonian into a free part and an interaction part with

the former governing the evolution of observables and the latter

governing the evolution of state. This new description is particularly

useful when the evolution of the free system in the Heisenberg

picture is already known. An example in §35.3.3 will illustrate how
the calculations are carried out.

Exercises and Problems

Q29(1) Using the expression for the spectral decomposition of

unitary operators in Eq. (21.6) and the result in Eq. (21.19),

show that Eq. (29.5) can be obtained from the unitary

evolution Eq. (29.10).

Q29(2) Verify Eq. (29.12) in the Schrödinger picture and Eq.

(29.33) in the Heisenberg picture.

Q29(3) The Hamiltonian of a system at time t = 0 is given in terms

of a pair of annihilation and creation operators â and â† by

̂H =
(

â†â + 1

2

)

�ω. (29.60)
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(a) Using the method of induction and the commutation
relation of â and â†, prove

̂H n â = â ( ̂H − �ω)n, n = 0, 1, 2, 3, · · · . (29.61)

(b) Assuming that the time dependence of the annihilation
and creation operators in the Heisenberg picture are

given by the Heisenberg equation of motion in Eq.

(29.20), show that

âHei(t) = âHei(0) e
−iωt , â†

Hei
(t) = â†

Hei
(0) eiωt . (29.62)

(c) The annihilation operator in the Schrödinger picture,
denoted by âSch(t), is related to âHei(t) by

âSch t) = êH t/ i� âHei(t) e
−̂H t/ i�. (29.63)

By expanding the exponential in term of a series, i.e.,18

êH t/ i� =
∞
∑

n=0

1

n!

(

t
i�

)n
̂H n, (29.64)

and using Eq. (29.61) show that

êH t/ i� âHei(t) = âHei(t) e
iωt êH t/ i�. (29.65)

Hence verify explicitly that âSch(t) is time-independent.

Q29(4) Let ̂A be the selfadjoint operator representing an observ-
able A in the Schrödinger picture and let ̂F Â(τ ) be its

spectral function. Let the corresponding operator at time

t in the Heisenberg picture be denoted by ̂AHei(t) and
let ̂F ÂHei(t)(τ ) be its spectral function. How are these two

spectral functions related and how are the probability dis-

tribution functions generated by these spectral functions in

a given state related?

Q29(5) The Hamiltonian of a quantum particle of mass m in one-

dimensional motion along the x-axis with potential energy
V (x̂) is given by

̂H = 1

2m
p̂ 2 + V (x̂). (29.66)

18Assuming an appropriate domain on which the expansion is valid.
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Assuming V (x̂) to be a polynomial function of x̂ show that

in the Heisenberg picture, we have19

m
d
dt
〈 �φ | x̂ �φ 〉 = 〈 �φ | p̂ �φ 〉, (29.67)

d
dt
〈 �φ | p̂ �φ 〉 = −〈 �φ | dV (x̂)

dx̂
�φ 〉. (29.68)

Establish the following Ehrenfest’s theorem:

m
d2

dt2
〈 �φ | x̂ �φ 〉 = 〈 �φ | ̂F �φ 〉, where ̂F = −dV (x̂)

dx̂
.

(29.69)

Discuss the physical significance of this result,

Q29(6) Discuss the fundamental differences in the concept of

constants of motion in classical and quantummechanics.

19The subscript Hei for Heisenberg picture quantities is omitted for brevity. We also
assume that �φ is in an appropriate domain of all the operators involved.
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Chapter 30

State after Measurement

30.1 Discrete Observables

30.1.1 Postulate (PPDO)

The disturbance during a measurement on a classical system can be

made arbitrarily small. One may then assume that a measurement

does not change the state, e.g., the radar used by police to measure

the speed of a car has a negligible effect on the speed of the car.

Classical dynamics also applies to themeasuring process as well. For

quantum systems Postulate 26.1(OV) tells us that a measurement of

a discrete observable A will yield an eigenvalue of its corresponding
operator ̂A. Let the initial state vector be �φi at time t = 0 when

the measurement begins and let the final state vector be �φ f at time

t = 
t when the measurement ends. A natural question to ask is

Can disturbance during a measurement on the system be made
arbitrarily small so that the state can remain the same, and if not,
does the initial state evolve into the final state in a unitary manner
describable in terms of Postulate 29.1.2(TESP)?

The answers to these questions are complicated since there are

different types of quantum systems and many different kinds of

measurements. We shall confine ourselves to ideal measurements

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
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introduced in relation to QMP5.3(3). For ideal measurements the

answer to the above question is given by what is generally known

as the von Neumann’s projection postulate or simply the projection
postulate on the state after measurement.1 We shall consider

discrete and continuous observables separately in terms of two

separate postulates.2

Postulate 30.1.1(PPDO) A measurement of a discrete observable
A projects the initial state vector �φi onto the eigensubspace �S Â(am) of
the measured eigenvalue am of ̂A, i.e., the final state vector is given by

�φ f = c ̂P Â(am) �φi , (30.1)

where ̂P Â(am) is the eigenprojector onto the eigensubspace �S Â(am)
and c is a normalisation constant.3

The transition from �φi to �φ f is known as the reduction of the state
vector or collapse of the wave packet.4 There are two cases to
consider: (1) when the measured eigenvalue is nondegenerate and

(2) when the measured eigenvalue is degenerate.

30.1.2 Nondegenerate Eigenvalues

Suppose the measured eigenvalue a� is nondegenerate, and it

corresponds to the unit eigenvector �ϕ�. The initial state vector

is expressible as a linear combination of the eigenvectors, i.e.,
�φ = ∑

� c� �ϕ�. The transition to the final state in a measurement

amounts to the projection of the initial state �φi onto �ϕ� in the linear

combination. This can be visualised in Fig. 30.1.5

Such a reduction of the state vector has a number of physical

implications:

C30.1.2(1) An initial state remains unchanged during the mea-

surement if it is an eigenstate of the observable beingmeasured, e.g.,

1von Neumann Chapters IV, V and VI.
2These postulates can be regarded as a definition of ideal measurements.
3Here P̂ Â(am) is the eigenprojector given by Eq. (20.18). The normalisation constant

is given by c = || P̂ Â(am) �φi ||
−1
. It is assumed that || P̂ Â(am) �φi || �= 0. See C30.2.1(4)

for a discussion of this point.
4This “collapse” is demonstrated by a position measurement shown in Eq. (30.6).
5For nondegenerate eigenvalues the projector in Eq. (30.1) is given by Eq. (20.16).
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f i

P Â (a )f i f f = j

Figure 30.1 Measurement resulting in a change of �φi to �φ f = �ϕ�.

if �φi = �ϕ� then a measurement of A would yield the value a� and

the state immediately after the measurement will be �φ f = �ϕ� = �φi
in accordance with Postulate 30.1.1(PPDO). This is consistent with

the notion that the observable possesses a value in an eigenstate, a
concept first discussed in §5.2.

C30.1.2(2) An arbitrary state changes during ameasurement. The

state of the system will become an eigenstate of A given by the

eigenvector �ϕ� of ̂A belonging to the measured eigenvalue a�

immediately after the measurement. This result is independent of

what the initial state is.6 This also means that a final state does not
determine the initial state.

C30.1.2(3) A measurement can be a method to bring a system

into an eigenstate from an unknown initial state, i.e., the measured

eigenvalue a� tells us that the final state must be �ϕ�. Hence,

an ideal measurement can be regarded as a method of
preparing a system in a specified state.

This is valid only for ameasured eigenvalue which is not degenerate.

When themeasured eigenvalue is degenerate, the final state as given

by Eq. (30.1) would depend on the initial state, as shown graphically

6This is the original von Neumann projection postulate. Equation (30.1) is valid for

degenerate cases. It was Lüders who extends the postulate to include degenerate

cases. Hence Eq. (30.1) is also referred to as Lüder’s rule.
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in Fig. 30.2. Generally we have to separate a measurement process

from a state preparation process.7

C30.1.2(4) Since the probability of ameasurement resulting in the

value a� is equal to |c�|2, we can interpret |c�|2 as

the probability of finding the system initially in state �φi to be
in the eigenstate �ϕ� after a measurement of A resulting in the
value a�.

8

In line with the notion of position and momentum probability

amplitudes introduced in §28.3 we also call c� the corresponding
probability amplitude.

C30.1.2(5) The projection postulate together with Postulate

28.1(PDDO) implies the reproducibility of measurement. Suppose
wemake ameasurement of Awhich results in the value a�. The state

vector immediately after themeasurement is �ϕn. Then an immediate
repetition of the measurement would yield the same value. This is

consistent with ideal measurements.

C30.1.2(6) The projection postulate is consistent with the quantum
propertyQMP5.3(1) that not all physical observables can bemeasured
simultaneously. Suppose a measurement projects the initial state
vector onto an eigenvector of the observed quantity. Then the

simultaneous measurement of another observable is possible only

if this measurement will also project the initial state onto the same

vector as the first measurement does. For two observables to be

generally measurable simultaneously to yield a pair of eigenvalues

they must have a complete set of common eigenvectors. As we

know this is the case if and only if the two operators corresponding

to the two observables commute with each other. Thus the

necessary and sufficient condition for the general simultaneous
measurability of two or more observables of a quantum system

is that the corresponding operators commute. Such observables

7Wan pp. 300–329. Isham p. 134.
8Here cn are the coefficients of expansion of the initial state in terms of the

eigenvectors �ϕ� of Â , i.e., �φi =
∑

� c� �ϕ� .
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are compatible in the sense of Definition 28.4.1(1).9 For example,

the z-components ̂Lz of the orbital angular momentum and the

square of the total orbital angular momentum ̂L2 can be measured
simultaneously while the x and y components of an electron spin
cannot be measured simultaneously. All this is also consistent with

Postulate 28.2(PD) in that not all observables are compatible.

The projection postulate is highly controversial.10 It tells us what

happens to the initial state on ameasurement without any reference

to the interaction between the quantum system and the measuring

device. The postulate has nothing to say about the nature of such

interaction and there is no equation of motion for the evolution of

the state during measurement.11 Since the same initial state can

result in many different final states, depending on the measured

values, the transition from the initial state to all these possible

final states cannot be described as a usual quantum evolution in

terms of the Schrödinger picture.12 The projection postulate is the

source of what is known as the measurement problem and the non-
locality problem in quantummechanics. A great deal of research has

gone into the study of these problems. Some of these problems are

discussed in §34.5, §34.6 and §34.7.

30.1.3 Degenerate Eigenvalues and Propositions

Suppose the measured eigenvalue a1 of ̂A is degenerate correspond-
ing to two orthonormal eigenvectors �ϕ11 and �ϕ12 of ̂A. The final
state c ̂P Â(a1) �φi would depend on the initial state, e.g., �φi = �ϕ11
would lead to �φ f = �ϕ11 and �φi = �ϕ12 would lead to �φ f = �ϕ12. In
other words, the projection postulate cannot be used to produce a

desired final state from an unknown initial state in such cases. An

illustration is shown in Fig. 30.2. The figure shows that an initial

9In the intermediate case, e.g., L̂x and L̂ y , the observables are not regarded as
generally simultaneously measurable, since they possess simultaneous values only

in a limited number of eigenstates.
10See §34.7.1 for more discussion.
11There is no reference to the duration of the interaction so that the reduction of state

is often taken to be instantaneous. This would make it impossible to formulate any

equation of motion for the interaction.
12See §31.1, §31.3 and §34.7 for more discussion on this. In the Schrödinger picture
an initial state will lead to a single final state.
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j12

j11 f f
P Â (a1)f i

f i

Figure 30.2 Measurement resulting in a change of state.

state is projected onto the eigensubspace of the eigenvalue a1 which
is spanned by �ϕ11 and �ϕ12.

An example relevant to the discussion on continuous observables

in the next section is a proposition P and its corresponding projector
̂P . If ̂P is 1-dimensional then the eigenvalue 1 is nondegenerate but
the eigenvalue 0 is degenerate. If ̂P is N-dimensional, where N can

range from2upwards, then both eigenvalues 1 and 0 are degenerate.

A yes answer to the yes-no experiment to measure the proposition

will cause an initial state �φi to change to the final state �φ f = c ̂P �φi
which is an eigenvector of ̂P corresponding to the eigenvalue 1.

30.2 Continuous Observables

30.2.1 Postulate (PPCO) and Postulate (PP)

For a continuous observable A represented by the operator ̂A, a
measurement will generally result in a value τ lying in a Borel set

�. The change of the initial state �φi to the final state �φi is given by
the following postulate:

Postulate 30.2.1(PPCO) A measurement of a continuous observ-
able A which results in a value τ lying in a Borel set � projects the
initial state vector �φi onto the spectral subspace �S Â(�) of ̂A, i.e., the
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final state, is given by

�φ f = c ̂MÂ(�) �φi , (30.2)

where ̂MÂ(�) is the corresponding spectral projector of ̂A and c is the
normalisation constant given by13

c = || ̂MÂ(�) �φi ||
−1
. (30.3)

The following comments aim to clarify the postulate:

C30.2.1(1) As in the case of propositions discussed earlier,

the final state vector is an eigenvector of the spectral projector

corresponding to the eigenvalue 1. In other words, a measurement

of a continuous observable represented by a selfadjoint operator ̂A
which yields a value in a Borel � will carry the initial state into an

eigenvector of the spectral projector ̂MÂ(�) corresponding to the

eigenvalue 1. For practical applications we are more interested in a

measured value lying in an interval � = (τ1, τ2]. Then the spectral

projector is expressible in terms of the spectral function by

̂MÂ(�) = ̂F Â(τ2)− ̂F Â(τ1). (30.4)

C30.2.1(2) Postulate 30.2.1(PPCO) is applicable to discrete ob-

servables. From the discussion in §20.3, we know that for a discrete

observable A we have14

̂MÂ((τ1, τ2]
) = ̂P Â(am), (30.5)

when� contains a single eigenvalue am of ̂A. Then Eq. (30.2) reduces
to Eq. (30.1). It follows thatwemay consider Postulate 30.1.1(PPDO)

as a special case of Postulate 30.2.1(PDCO). In other words, we

can incorporate Postulate 30.1.1(PPDO) into Postulate 30.2.1(PPCO)

and rename Postulate 30.2.1(PDCO) simply as

Postulate 30.2.1(PP).

13As for Postulate 30.1.1(PPDO) it is assumed that ||M̂ Â(�) �φi || �= 0 here. See also
Blank, Exner and Havliček p. 257.

14See Eq. (20.17) in particular.
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C30.2.1(3) When we discuss the reduction of state vectors in a

measurement we assume that the measurement produces a positive
result in the sense that ̂MÂ(�) �φi �= 0. Equations (30.2) and (30.3)

do not apply when ̂MÂ(�) �φi = 0 since the application of Eq.

(30.2) would mean the annihilation of the initial state vector.15 This

corresponds to a zero probability of the measurement getting a

value in the Borel set�. We shall say that themeasurement produces

a negative result. There are two cases:

(1) When �φi lies in the orthogonal complement of the subspace
�S Â(�) a measurement of ̂MÂ

(

�
)

would produce a negative

result. For a positive result, we would measure ̂MÂ
(

�⊥). This
is similar to the situation for a discrete observable represented

by operator ̂A. If the initial state vector is an eigenvector

ϕ� of ̂A a measurement of the proposition represented by

the eigenprojector ̂P (am) would have a negative result if

am �= a�.

(2) When � lies outside the spectrum of the observable a

measurement of A would produce a negative result.

30.2.2 Position Measurement

Let us examine position measurements of a particle in one-

dimensional motion along the x-axis. Physically a position measure-
ment is usually made using a detector, such as a Geiger counter. In
§34.7 we shall discuss how a detector can be modelled and how

a local position measuring process can be accomplished. Here we

will confine ourselves to the discussion on the desired properties of

detectors and the application of Postulate 30.2.1(PP). Using Geiger

counters as a model we would endow a detector with the following

properties:

P30.2.2(1) A detector is designed to ascertain the presence or

otherwise of a particle. When a particle’s presence is detected the

devicewouldfire or click, and otherwise itwould not. In otherwords,

15Blank, Exner and Havliček p. 257. A similar comment applies to Eq. (30.1) for

discrete observables.
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a detector yields only two results, a positive one and a negative

one, during a run of a measurement. When it clicks the particle is

detected. We would quantify this result with the value 1. When it

does not click the particle is not detected. We would quantify this

result with the value 0.

P30.2.2(2) A detector has a size in the form of a finite interval

�. When it clicks the particle is detected within the interval. An

immediate repetition of the detection process would produce the

same result.

P30.2.2(3) The detector is ineffective if the state vector is given by

a wave function lying outside the interval�, i.e., if φ(x) = 0, ∀ ∈ �,

in the sense that it would return a negative result for every run of

the measurement.

P30.2.2(4) A detector of finite size cannot measure the position

observable represented by the position operator x̂ in �L2(IR).
An infinite array of detectors is needed to measure the position

observable. This is practically impossible to achieve.16 The question

then arises as to what observable an individual detector of size �

measures, if not the position observable x̂ . The answer is

A detector of size�measures the position proposition (local position
observable) described by the spectral projector M̂x̂(�) and the
converse is also true.17

In other words, a detector of size� performs a yes-no experiment of
the local position observable represented by the spectral projector
̂Mx̂
(

(τ1, τ2]
)

. The statement that the yes-no experiment yields the

value 1 is equivalent to saying that a position measurement results

in a value in the interval (τ1, τ2]. After such a measurement the

state vector would correspond to a wave function obtained by

truncating the initial wave function outside the interval (τ1, τ2], i.e.,

16It can be argued that the measurement is impossible in principle since the

construction of an infinite array of detectors would require an infinite amount of

resources in terms of materials and man-hours.
17Local position observables are introduced in §26.2.2.
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the measurement causes the transition from an initial wave function

φi (x) to the final wave function φ f (x) given by18

φi (x) → φ f (x) = cχ (τ1,τ2]
(x)φi (x)

= c
{

φi (x), x ∈ (τ1, τ2]
0, x /∈ (τ1, τ2] , (30.6)

where c is a normalisation constant. A further position measure-

ment would have a probability 1 of finding the particle in (τ1, τ2]

again.

P30.2.2(5) A similar analysis applies to the momentum operator.

The parallel is most apparent when working in the momentum

representation. The wave function in themomentum representation

after a momentum measurement resulting in a value in the (τ1, τ2]

in the momentum space is given in accordance with Eq. (20.30) by

c ̂χ
∼ (τ1,τ2]

(p)φ
∼
(p). (30.7)

where φ
∼
(p) is the Fourier transform of φ(x) and c is a normalisation

constant.

30.3 Complete Sets of Compatible Observables

30.3.1 Discrete Observables

The concept of compatibility of two observables in Definition

28.4.1(1) is related to the simultaneous measurability of the two

compatible discrete observables. This concept is also linked to the

successive measurements of the two observables. By definition
two compatible discrete observables A, B would have a complete set
of states in which both observables would have a value. Let us label

these states by ϕs�,m. As shown in Eq. (28.26), observable A has the
value a� and observable B has the value bm in state ϕs�,m. These values

can be obtained by successivemeasurements of A and B irrespective
of the order of the measurements:

(1) When the system is in state ϕs�,m a measurement of A would

yield the value a� while leaving the state ϕs�,m unchanged

18 M̂x̂
(
�
)
is defined by the characteristic function χ�(x) by Eq. (20.28).
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in accordance with the projection postulate. A subsequent

measurement of B would yield the value bm.

(2) When the system is in state ϕs�,m ameasurement of B would yield
the value bn leaving the state ϕs�,m unchanged. A subsequent

measurement of A would yield the value a�.

The conclusion is that for two compatible discrete observables

there exists a complete set of states in which successive mea-

surement of the two observables would yield the same results

irrespective of the order of the measurements are carried out.19

Startingwith a given observable Awemay be able to find another
observable B which is independent and compatible with A. We
can go to try to obtain a third observable C which is compatible

of both A and B . The process can be repeated to obtain a set

of such mutually compatible and independent observables. For a

given system, there may exists a maximal set of such observables.20

By the definition of compatibility these observables correspond to

commuting selfadjoint operators. Following Definition 20.6(2), we

can define a complete set of compatible observables.

Definition 30.3.1(1) A set of discrete observables A , B , C , . . .
associated with a complete set of commuting selfadjoint operators
̂A, ̂B , ̂C . . . of a discrete spectrum is called a complete set of discrete
observables.

The physical significance of such a set of observables is seen in the

following comments:

C30.3.1(1) A simultaneous measurement of this set of observ-

ables can be made. A set of values ai , bj , ck. . . . will be obtained.
These are eigenvalues of ̂A, ̂B , ̂C . . . .

C30.3.1(2) These eigenvalues determine a single unit eigenvector

�ϕi jk··· as shown in Eq. (20.62).
C30.3.1(3) By the projection postulate this eigenvector will be the

state vector after the measurement.

19Zettili p. 168. Blank, Exner and Havlicek p. 274. Isham pp. 139–141.
20This is the same argument as in QMP5.3(1).
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C30.3.1(4) We can conclude that a complete set of compatible

discrete observables can determine a state.21

A complete set can consist of a single observable, i.e., an

observable described by a nondegenerate selfadjoint operator

constitutes a complete set by itself. Following the examples in terms

operators serve illustrate the concept:

E30.3.1(1) In �L2(� ) the operator p̂λ(�) in Eq. (17.34) is

nondegenerate. Hence p̂λ(�) for each value of λ forms a complete
set in �L2(� ). An eigenvalue of p̂λ(�) determines a single unit

eigenvector. The same is true for the Hamiltonian ̂K∞(�) in Eq.
(19.42) is nondegenerate. Complete sets are clearly not unique.

E30.3.1(2) In �L2(� ) the operator ̂Kλ(�) in Eq. (19.46) is

degenerate and does not form a complete set.

E30.3.1(3) In �L2(IR) The harmonic oscillator Hamiltonian ̂H ho in

Eq. (19.54) is nondegenerate. Hence it forms a complete set on its

own.

E30.3.1(4) In �L2(Su) both the operators ̂Lz and ̂L2 are degener-
ate. Hence, neither constitutes a complete set. The two operators

together do form a complete set.

30.3.2 Continuous Observables

As pointed out earlier a complete set of compatible observables in
�L2(IR) can consist of a single observable, e.g., ̂H ho. It is natural to

ask if the momentum also constitutes a complete set on its own in
�L2(IR). Intuitively this should be the case since the spectrum of the

momentum operator may be considered nondegenerate in that for

each eigenvalues p ∈ IR there corresponds to a single generalised
eigenfunction f p(x) given by Eq. (18.12). A similar argument

applies to the position observable. However, these generalised

eigenfunctions do not give rise to well-defined vectors of finite

norm in �L2(IR). It follows that Definition 20.6(2) cannot be applied.
Instead we have to use Definition 20.6(3) to define a complete set

21This concept of a complete set of compatible observables and its role in the

characterisation of states are first discussed in §5.3.
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of commuting selfadjoint operators with a continuous spectrum.

This enables us to state a definition without reference to whether

the observables are discrete or continuous, i.e., it is valid for both

discrete and continuous observables.

Definition 30.3.2(1) A set of observables A , B , C , . . . associated
with a complete set of commuting selfadjoint operators ̂A, ̂B , ̂C . . . is
called a complete set of observables.

In �L2(IR) the position observable forms a complete set on its own
and so does the momentum observable. In �L2(IR2) a complete set
would consist two observables, e.g., the position along the x and y
axes or the momentum px , py along the x and y axes.

Ameasurement of a complete set of continuous observables does

not prepare a state in the same way it does for discrete observables.

In Eq. (30.6) the final state vector �φ f after a measurement of

A resulting in a value in a given interval (τ1, τ2] depends on the

initial state vector �φi , e.g., different initial state vectors may leads
to linearly independent final state vectors.

Exercises and Problems

Q30(1) An electron spin is in state αsx .
22 What is the state and

the state vector immediately after a measurement of the z-
component spin resulting in the value �/2?

Q30(2) Find the subspace associated with the projector ̂F x̂(x2) −
̂F x̂(x1) on �L2(IR).

Q30(3) Consider a particle in one-dimensional motion along the x-
axis. According to Postulate 30.2.1(PPCO), if a momentum

measurement yields a value in the interval (p1, p2] the state
vector �ϕ

∼
in the momentum representation right after the

measurement must satisfy
(

̂F
p̂
∼

∼ (p2)− ̂F
p̂
∼

∼ (p1)
)

�ϕ
∼
= �ϕ

∼
, (30.8)

where ̂F
p̂
∼

∼ (p) is the spectral function of the momentum

operator given in Theorem 20.4.2(1), i.e., ̂F
p̂
∼

∼ (p) is defined

22See §14.1.1 for the theory for electron spin.
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by the characteristic function χ
∼ (−∞,τ ](p) of the interval

(−∞, τ ] on the momentum space IR∼ .

Express Eq. (30.8) in terms of χ
∼ (−∞,τ ](p) and functions

ϕ
∼
(p) in L2(IR∼ ). Give an example of such a function in the
momentum space and its corresponding function in the

coordinate space.



Chapter 31

Pure and Mixed States

31.1 Classical Mixtures of States

So far we have only considered states in Postulate 25.1(PS) which

correspond to amaximal amount of information of the system. These

are pure states ϕs describable by unit vectors �ϕ. Often we may only
have a partial knowledge of a system. As an example, consider a

less than ideal state preparation process which is unable to prepare

the system in a desired pure state ϕs . Instead the state preparation

process can only determine the system to within a set of possible

pure states ϕs� , � = 1, 2, . . . , namely the system may end up to be

in a pure state ϕs1, or ϕs2 and so on. Suppose the state preparation

process can also tell us the probabilities w� of the system ending

up in these pure states. In other words, we do not know for certain

which pure state the system is actually in. We only know that the

system has a probability w� to be in pure state ϕs� . The system is

then said to be in a classical mixture of states. In more abstract
terms, the concept can be stated as

A classical mixture of states is a characterisation of a given
quantum system in terms of a set of possible pure states �ϕ�

together with a corresponding set of probabilities w� of their
occurrence.
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To see how a classical mixture can arise, let us consider the

measurement of a discrete observable A having a nondegenerate

spectrum {a�} corresponding to eigenstates ϕs� of A. In accordance
of Postulates 28.1(PDDO) and 30.1.1(PPDO) a measurement of A
would result in different final eigenstates probabilistically, i.e., we

have the following transition:

φsi →

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ϕs1, with probability w1 = ℘ A(φsi , a1)
ϕs2, with probability w2 = ℘ A(φsi , a2)
ϕs3, with probability w3 = ℘ A(φsi , a3)
...

. (31.1)

To pursue the analysis more explicitly, suppose we are given a

collection of N copies of a given system all in the same pure state φsi ,

N being a large number. If we then perform a measurement of A on

each of the systems in the collection we will end up with a collection

of systems in which a number N� ≤ N of the systems is in state ϕs� .

The fraction N�/N is identifiable with the probability ℘ A(φsi , a�). We

will say that a system in the collection after the measurement is in

a classical mixture of states in the sense that we do not know which

pure state the system is actually in.1

Let us consider what happens if we wish to calculate the

expectation value of a bounded observable B represented by

bounded operator ̂B in such a classical mixture of states.2 The

calculation would consist of two averaging processes:

(1) The expectation value of B in pure state ϕs� is
3

E(B , ϕs�) = E(̂B , �ϕ�) = 〈 �ϕ� | ̂B �ϕ�〉. (31.2)

(2) The average of the expectation values E(B , ϕs�) over the set of
pure states ϕs� with probabilities w� is

∑

�

w� E(B , ϕs�) =
∑

�

w� 〈 �ϕ� | ̂B �ϕ�〉. (31.3)

1See Isham pp. 74, 89, Merzbacher p. 365 for other interpretation of the term.
2Bounded observables are represented by bounded selfadjoint operators. There are

no domain problems from bounded operators to complicate things.
3Here �ϕ� are the state vectors corresponding to states ϕs� . Since the observable is

nondegenerate, the vectors �ϕ� form a complete orthonormal set.
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The above sum can be arrived at in a single step in terms of a density

operator. Let ̂D be the density operator obtained by the convex

combination of the projectors ̂P �ϕ�
= | �ϕ�〉〈 �ϕ�|, with weights w� as

described by Eq.(18.24), i.e.,4

̂D =
∑

�

w�
̂P �ϕ�

. (31.4)

The properties of density operators shown in Eqs. (18.25) and

(18.26) imply that the sum in Eq. (31.3) is equal to the trace of the

operator ̂B ̂D, i.e.,

tr
(

̂B ̂D
) =

∑

�

w� 〈 �ϕ� | ̂B �ϕ�〉. (31.5)

This result shows that density operators can embody the properties

of a pure state as well as a classical mixture of states:

(1) When a density operator is a projector it is a one-dimensional

projector of the form ̂P �φ for some unit vector �φ. Equation (31.5)
reduces to

tr
(

̂B ̂D
) = tr

(

̂B ̂P �φ
) = 〈 �φ | ̂B �φ 〉 = E

(

̂B , �φ ). (31.6)

The probability distribution function in Eq. (28.9) can also be

obtained directly from the density operator, i.e.,

F B(φs , τ ) = tr
(

̂F ̂B(τ ) ̂D
) = tr

(

̂F ̂B(τ ) ̂P �φ
)

. (31.7)

(2) When a density operator is not a projector it can describe a

classical mixture of states. The density operator in Eq. (31.4)

embodies all the information contained in the classical mixture,

leading to the expectation value given by tr
(

̂B ̂D
)

.

All this suggests that we can incorporate mixtures into our

description of states if we represent states generally by density

operators. The transition in Eq. (31.1) can be interpreted as5

4A one-dimensional projector is a density operator.
5Isham pp. 133–138.
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a transition from the pure state ̂Di = ̂P �φi to the classical
mixture described by a density operator ̂D f , i.e.,

̂Di = ̂P �φi → ̂D f :=
∑

�

℘ B̂(φsi , b�) ̂P �ϕ�
(31.8)

Alternatively we can say that

the projection postulate causes the transition of an initial
pure state into a classical mixture of states.

31.2 QuantumMixtures of States

It is tempting to assume that there are only two kinds of states,

pure states described by unit vectors and classical mixtures of

states described by density operators. This would be wrong. While

a given classical mixture of states determines a density operator

the converse is not true. Our previous discussion in §18.2 tells us
that the decomposition of a density operator in terms of a convex

combination of projectors is not unique.

Consider an example on electron spin.6 Our present discussion

tells us that the density operator ̂Dz in Eq. (18.29) can be used to
describe a classical mixture of pure states �αz and �βz with equal
weights, i.e., a spin described by ̂Dz has an equal probability of being
in the pure state αsz or βsz .

7 On the other hand the density operator
̂Dx in Eq. (18.30) will describe a classical mixture of pure states

�αx and �βx with equal weights. While the two classical mixtures

are physically different the two density operators ̂Dz and ̂Dx are
identical.8

If we are to extend Postulate 25.1(PS) to assume generally that

a quantum state is described by a density operator ̂D with the

expectation value of an observable A given by tr
(

̂A ̂D
)

, then we

cannot insist that a state so described must be in any particular

classical mixture. This is illustrated by the following examples:

6Isham pp. 91–94.
7This is the situation after a spin measurement along the z-direction when the initial
spin state is αsx . See Q28(1) and Q29(1).
8The two mixtures are composed of different collections of spins.
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E31.2(1) For electron spin with its state described by the density

operator ̂Dz , we cannot assert that the spin must be in either pure
state αsz or pure state βsz since it may well be in pure state αsx or

pure state βsx .

E31.2(2) For a general system with state described by the density

operator in Eq. (31.4), we cannot assert that the system must be in

one of the pure states �ϕ�.

The above discussion shows that a quantum state described by a

density operator is quite distinct from the corresponding situation

in classical statistical mechanics where, despite our ignorance, the

system is really in a certain definite pure state.9 In other words, the

interpretation of classical statistical states, known as the ignorance
interpretation, does not generally apply to states described by

density operators in quantum theory.10

It follows that if we are to describe quantum states by density

operators we would include three classes of states:

Pure states These are states described by density operatorswhich

are projectors. The resulting projectors are one-dimensional. These

states coincide with the states in Postulate 25.1(PS), i.e., they are

pure states.

Classical mixture of states A density operator can also be used to

describe a classical mixture.11

Quantummixture of states These are states described by density

operators which are not projectors. These states should generally

be regarded as states in their own right and they should not be

considered simply as a classical mixture of a certain set of pure

states. To highlight this we shall generally call a state represented

by a density operator which is not a projector a quantum mixture
of states or a quantum mixture, or simply amixed state for short.

9Pure states are states embodying a maximal possible knowledge of the system. In

the case of a classical particle a pure state corresponds to a unique set of its position

and momentum values.
10Beltrametti and Cassinelli pp. 6–13. D’Espagnat has a more detailed conceptual

discussion.
11See P32.1(4) in Chapter 32 on superselection rules.
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31.3 Changes of States

A state changes due to time evolution or due to measurement. We

wish to know how these changes are described in terms of density

operators.

The time evolution in terms of density operators can be

formulated in the Schrödinger picture as follows.12 Consider a pure

state at time t = 0 described by unit vector �φ(0). The corresponding
density operator is

̂D(0) = | �φ(0)〉〈 �φ(0)|. (31.9)

The initial state vector �φ(0)will evolve into a new state vector �φ(t) =
̂U (t) �φ(0) given by Eq. (29.10). This evolved state vector defines a
new density operator

̂D(t) = | �φ(t)〉〈 �φ(t)| = |̂U (t) �φ(0)〉〈̂U (t) �φ(0)|. (31.10)

This is the evolved density operator. In accordance with Eqs. (18.35)

and (18.36), we can write down an explicit expression linking the

initial to the evolved density operator as

̂D(t) = ̂U (t) ̂D(0)̂U †(t). (31.11)

Differentiating the expression with respect to t we get13

i�
d ̂D(t)
dt

= [ ̂H , ̂D(t)]. (31.12)

It is natural that we extend the above results to the evolution of

arbitrary mixed states. A formal statement to this effect will be given

in the next section.

Apart from time evolution a state is generally changed during

a measurement. The change of an initial state vector �φi to the

final state vector �φ f after a single measurement of a discrete

12See Jauch pp. 155–157 for a formulation in the Heisenberg picture.
13This equation is not the same as Eq. (29.20) in the Heisenberg picture for the

evolution of observables.
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observable is given by Postulate 30.1.1(PPDO), i.e., by Eq. (30.1).

The corresponding the initial operator ̂Di = | �φi 〉〈 �φi | and the final
operator ̂D f = | �φ f 〉〈 �φ f | are related by

̂D f = c2 ̂P Â(a�) ̂Di ̂P Â(a�), c = || ̂P Â(a�) �φi ||
−1
, (31.13)

since, by Eq. (18.42), we have14

| �φ f 〉〈 �φ f | = |c ̂P Â(a�) �φi 〉〈c ̂P Â(a�) �φi |
= c2 ̂P Â(a�) | �φi 〉〈 �φi | ̂P Â(a�). (31.14)

31.4 Postulates Incorporating Mixed States

Previous postulates formulated for pure states need to be modified

to take account of mixed states. Postulates 26.1(OV) and 27.2(CQ)

which involve only observables remains unchanged. A list of

modified postulates, with prefix M for inclusion of mixed states,

is given below where B denotes a bounded observable, ̂B denotes
the bounded selfadjoint operator representing B , ̂F B̂(τ ) and ̂MB̂(�)

denote the spectral function and spectral measure of ̂B .15

Postulate 31.4(MS) The state space of a quantum system is a
complex Hilbert space �H. A state of the system is describable by a
density operator on �H and the set of all states corresponds one-to-one
to the set of density operators on �H.16

The state described by a density operator ̂D is denoted by Ds . The
state is pure if ̂D is a projector,17 otherwise it is called a quantum
mixture of states or amixed state.18

Postulate 31.4(MPD) When the system is in state Ds described by
a density operator ̂D the probability distribution for the measured

14In terms of D̂i we have c2 =
(
tr ( P̂ Â(a�)D̂i

)−1
.

15Isham pp. 89–94.
16For orthodox quantum systems without superselection rules.
17This is true in the absence of superselectioin rule. See P32.1(4) in §32.1 on the effect
superselection rule on the interpretation of a state described by a one-dimensional

projector.
18We should stress again that a quantum mixture of �ϕ� does not imply an ignorance
interpretationwhich is applicable to classical mixtures.
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values of an observable B is determined by the probability distribution
function F B(Ds , τ ) given by

F B(Ds , τ ) := tr
(

̂F B̂(τ ) ̂D
)

. (31.15)

The corresponding probability measure is given by

MB(Ds , �) := tr
(

̂MB̂(�) ̂D
)

. (31.16)

As a selfadjoint operator a density operator ̂D is decomposable as a
linear combination of its eigenprojectors by the spectral theorem.

We have ̂D = ∑

� ω�
̂P �ϕ�

in accordance with Eq. (18.24), when

the eigenvalues are all nondegenerate corresponding to a complete

orthonormal set of eigenvectors �ϕ�. Since the trace operation is

linear as shown in Eqs. (18.25) and (18.26), we can rewrite Eqs.

(31.15) and (31.16) as19

F B(Ds , τ ) =
∑

�

ω� F B̂( �ϕ�, τ ), (31.17)

MB(Ds , �) =
∑

�

ω� MB̂( �ϕ�, �). (31.18)

The expectation value of B in state Ds is then given by

E(̂B , ̂D) :=
∫ ∞

−∞
τ dτ

(

tr
(

̂F B̂(τ ) ̂D)
)

. (31.19)

The above expectation value is equal to the trace of ̂B ̂D, i.e., we have

E(̂B , ̂D) = tr (̂B ̂D) =
∑

�

ω� 〈 �ϕ� | ̂B �ϕ�〉. (31.20)

Noting that 〈 �ϕ� | ̂B �ϕ�〉 is the expectation value of A in the pure state
ϕs� we can rewrite the above equation as

19See Postulate 28.2(PDCO) and Eq. (28.9) for comparison and notation. On account
of Eq. (18.16) we have

tr
(
F̂ B̂ (τ ) P̂ �ϕ�

) = 〈 �ϕ� | F̂ B̂ (τ ) �ϕ�〉 = F B̂ ( �ϕ� , τ ).
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E(̂B , ̂D) =
∑

�

ω� E(̂B , ̂P �ϕ�
). (31.21)

These results are consistent with the concept of mixed states

introduced by Eq. (31.1) and the discussion of their expectation

values in Eqs. (31.2) and (31.3).

The time evolution of mixed state in the Schrödinger picture is

given by the following postulate:

Postulate 31.4(MTESP)20 When the system is in a state described
by a density operator ̂D(0) at time t = 0 its state at time t is given by
the density operator

̂D(t) = ̂U (t) ̂D(0)̂U (t)†, (31.22)

where ̂U (t) are evolution operators given by Eq. (29.9). Observables
which are not explicitly time dependent in their definition remain
unchanged in time.

Finally the projection postulate also needs to be modified.

Postulate 31.4(MPPCO) A measurement of an observable B which
results in a value τ lying in a Borel set � reduces the initial density
operator ̂Di to the final density operator ̂D f given by

̂D f = 1

tr ( ̂MB̂(�) ̂Di )
̂MB̂(�) ̂Di ̂MB̂(�), (31.23)

where ̂MÂ is the spectral measure of ̂B .

31.5 Correlations and the Superposition Principle

The mixed state described by the density operator ̂D in Eq.(31.4)

is fundamentally different from a pure state represented by the unit

vector �φ given by a linear combination of �ϕ�, i.e.,

�φ =
∑

�

c� �ϕ�, c� = √ω�. (31.24)

20This is time evolution in the Schrödinger picture. In the Heisenberg picture, the

density operator is time-independent while the operators are time dependent (see
Jauch pp. 155–157).
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We can distinguish the mixed state from the pure state since they

lead to different expectation values for some observables. For the

pure state we have E(̂B , �φ ) = 〈 �φ | ̂B �φ 〉. More explicitly we have

E(̂B , �φ ) =
∑

�

w� 〈 �ϕ� | ̂B �ϕ�〉 +
∑

� �=�′
c∗� c�′ 〈 �ϕ� | ̂B �ϕ�′ 〉. (31.25)

For the mixed state we have

E(̂B , ̂D) = tr(̂B ̂D) =
∑

�

w� 〈 �ϕ� | ̂B �ϕ�〉. (31.26)

The expectation value of the pure state E(̂B , �φ ) contains additional
terms which sum up to

C =
∑

� �=�′
c∗� c�′ 〈 �ϕ� | ̂B �ϕ�′ 〉. (31.27)

Some comments are warranted to clarify the situation21:

C31.5(1) The quantity C in Eq. (31.27) is called the correlation
term or the interference term generated by operator ̂B . We also
call the individual terms 〈 �ϕ� | ̂B �ϕ�′ 〉 correlation terms or inter-

ference terms generated by operator ̂B .22 These terms represent
the correlations between different constituent states in the linear

combination generated by observable B . It is these correlation terms
which distinguish the pure state φs in Eq. (31.24) from the quantum

mixture Ds in Eq. (31.4).

C31.5(2) The pure state φs in Eq. (31.24) is said to be a

coherent superposition of pure states ϕs� because of the existence

of correlation terms in the expectation value.23 Pure states are also

said to be coherent and satisfy the superposition principle in that
a linear combination of them would form a coherent superposition.

A superposition is preserved in time since a superposed state in

21Some of these results and terminology have to be amended when we consider

systems having a superselection rule. This will be discussed in §32.
22These are first introduced in Eq. (10.21).
23A linear combination is not a coherent superposition in the absence of correlation
terms. This occurs for systems with superselection rules discussed in Chapter 32.
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Eq. (29.3) will evolve into a similarly superposed state in Eq. (29.5).

Generally if at time t = 0 we have

�φ(0) =
∑

�

c� �ϕ�(0), (31.28)

then the evolved state vector in the Schrödinger picture is also a

linear combination with coefficients c�, i.e.,

�φ(t) = ̂U (t) �φ(0) =
∑

�

c� �ϕ�(t), �ϕ�(t) = ̂U (t) �ϕ�(0). (31.29)

C31.5(3) To generalise the concept of correlations further, let �φ
and �ψ be two arbitrary unit vectors and let ̂P �φ = | �φ 〉〈 �φ | and
̂P �ψ = | �ψ 〉〈 �ψ | be the projectors generated by them. Following Eq.
(31.27) we call 〈 �φ | ̂P �ψ �ψ 〉 the correlation term between �φ and

�ψ generated by ̂P �ψ . Since 〈 �φ | ̂P �ψ �ψ 〉 = 〈 �φ | �ψ 〉 we shall also
call 〈 �φ | �ψ 〉 the correlation term or simply the correlation between
�φ and �ψ .24 This terminology reflects the following interpretation. If
the two vectors are not orthogonal, we can express one in terms of

the other plus a remainder, i.e., we have

�φ = c1 �ψ + c2 �ψ⊥, where 〈 �ψ | �ψ⊥〉 = 0. (31.30)

As mentioned in the discussion on Eq. (28.6), the probability of a

measurement of the proposition ̂P �ψ in state φs resulting in a yes

answer is given by 〈 �φ | ̂P �ψ �φ 〉 =
∣

∣ 〈 �φ | �ψ 〉 ∣∣2. Since the projector
̂P �ψ is the proposition that the system is in state ψ s , we can interpret

〈 �φ | ̂P �ψ �φ 〉 as the probability of finding the system initially in state

φs to be in state ψ s on a measurement of the proposition.25

Alternatively, we can interpret | 〈 �φ | �ψ 〉 |2 = | 〈 �ψ | �φ 〉 |2 as the
transition probability between states �φ and ψ ,26 or the probability

that the ψ “occurs” in state �φ.27
In a scattering experiment in which an initial state φs(0) is

scattered into a new state φs(t) at time t which is a superposition of

24The real part Re 〈 �φ | �ψ 〉 of 〈 �φ | �ψ 〉 is also called the correlation term.
25See §26.2.3.
26Beltrammetti and Cassinelli (1981) p. 12. We may call 〈 �φ | �ψ 〉 transition amplitude.
27Roman (1965) p. 26.
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various states ϕs�(t), the probability of finding the scattered system
in state ϕs�(t) at time t is given by | 〈 �ϕ�(t) | �φ(t)〉 |2.28

Exercises and Problems

Q31(1) Explain why the transition shown in Eq. (31.1) due to

measurement cannot be generated by a unitary transfor-

mation.29

Q31(2) Prove Eqs. (31.6) and (31.7).
Q31(3) Prove Eqs. (31.17) and (31.18).

Q31(4) Prove Eq. (31.20) for the expectation value.

28Greiner p. 188 and Eq. (11.54) on p. 210. Zettili pp. 554–559.
29This means that the transition as a time evolution does not satisfy Postulate

29.1.2(TESP) which applies to quantum evolution in the Schrödinger picture.



Chapter 32

Superselection Rules

32.1 Superselection Rules

For orthodox quantum systems, pure states correspond one-to-one

to all one-dimensional subspaces and observables correspond one-

to-one to all selfadjoint operators in the state space. A relaxation

of this one-to-one correspondence will bring about superselection

rules. A general formulation of superselection rules is technically

complicated.1 We shall adopt an intuitive approach here and limit

our discussion to some special cases to see how superselection rules

can be incorporated in a Hilbert space structure of quantum theory.

Definition 32.1(1) A quantum system is said to possess a superse-
lection rule if its state space �H and observables possess the following
properties:

(1) There exists a preferred complete orthogonal family of subspaces
�S (n) of �H such that pure states correspond one-to-one to one-
dimensional subspaces �S �ϕ (n) spanned by unit vectors �ϕ (n) each
lying within a subspace �S (n), i.e.,

pure states ↔ �S �ϕ(n) where �ϕ (n) ∈ �S (n). (32.1)

1Wan pp. 337–391 for a general formulation of superselection rules.

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
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(2) Bounded observables B correspond one-to-one to bounded self-
adjoint operators ̂Bre which are reducible by every subspace �S(n).2

(3) The expectation value of a bounded observable B in a pure state
corresponding to the subspace �S �ϕ(n) is given by Eq. (28.2), i.e.,

E(̂Bre, �ϕ (n)) = 〈 �ϕ (n) | ̂Bre �ϕ (n)〉. (32.2)

The superselection rule is said to be generated by the complete
orthogonal family of subspaces �S (n).

Note that while �S �ϕ(n) is one-dimensional the subspaces �S (n) may

not be one-dimensional. Definition 32.1(1) can be conveniently

stated in terms of one-dimensional projectors ̂P �ϕ(n) instead of one-
dimensional subspaces �S �ϕ(n) .

The following properties would distinguish quantum systems

with a superselection rule from previous orthodox quantum

systems:

P32.1(1) The one-to-one correspondence between pure states

and all one-dimensional subspaces of the state space �H for orthodox

quantum systems is broken. A unit vector �ϕ not lying in one of

the subspaces, e.g., �ϕ = ( �ϕ (1) + �ϕ (2))/
√
2, where �ϕ (1) ∈ �S (1) and

�ϕ (2) ∈ �S (2), does not describe a pure state.

P32.1(2) The one-to-one correspondence between observables

and all selfadjoint operators for orthodox quantum systems is

broken since only reducible selfadjoint operators can represent ob-

servables.3 Being reducible the operator ̂Bre leaves every subspace
�S (n) invariant, i.e.,

̂Bre �ϕ (n) ∈ �S (n) ∀ �ϕ (n) ∈ �S (n). (32.3)

The operator ̂Bre can be written in the form

̂Bre =
∑

n

̂B (n), (32.4)

2The subscript re indicates the reducibility of the operator B̂re by every subspace
�S(n). We confine ourselves to bounded operators for simplicity.

3The properties of orthodox systems hold only within each subspace �S (n).
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where ̂B (n) is the part of ̂Bre in �S (n) given by Eq. (17.111), i.e.,

̂B (n) = ̂P (n) ̂Bre ̂P (n), (32.5)

where ̂P (n) is the projector onto �S (n).

P32.1(3) An operator of the form of ̂Bre is unable to relate vectors
in different subspaces �S (n), i.e., we have

〈 �ϕ (m) | ̂Bre �ϕ (n)〉 = 0 if m �= n, (32.6)

on account of Eq. (32.3).

P32.1(4) Let �φ be a unit vector inH with projections in different

subspaces �S(n), i.e.,
�φ =

∑

n

cn �ϕ (n),
∑

n

c∗ncn = 1. (32.7)

where �ϕ (n) is a unit vector in �S (n). Then we have the following

interpretation:

(1) The vector �φ does not represent a pure state. This is because

that the quadratic form E(̂Bre, �φ ) reduces to a single sum,

similar to Eq. (31.3), on account of Eq. (32.6), i.e.,

E(̂Bre, �φ ) = 〈 �φ | ̂Bre �φ 〉 =
∑

n

wn〈 �ϕ (n) | ̂Bre �ϕ (n)〉, (32.8)

where wn = c∗ncn. Compared with Eq. (31.25) we can see the
absence of correlation terms.

(2) The vector �φ would represent a mixed state since the quadratic
form E(̂Bre, �φ ) in Eq. (32.8) taken as the expectation value is
seen to embody two averaging processes similar to Eq. (31.3).

First we have an average over each pure state ϕ s(n) described

by the state vector �ϕ (n), i.e., 〈 �ϕ (n) | ̂B (n) �ϕ (n)〉. These values are
averaged again over all ϕ s(n) with probabilities wn.

(3) The vector �φ represents a classical mixture of pure states ϕ s(n),

since no other linear combination of vectors, one in each �S (n),

would lead to �φ in Eq. (32.7).4 In other words, a unit vector
with projections in different subspaces �S (n) represents a classical
mixture of pure states.

4There does not exist a different expansion of �φ in terms of a different set of vectors

�ϕ′ (n) ∈ �S (n).
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P32.1(5) The principle of superposition breaks down. Only pure
states within the same subspace �S(n) remains coherent, i.e., a linear
combination of pure states within the same �S (n) remains a coherent

superposition. A linear combination of pure states from different
�S (n) does not constitute a coherent superposition.

For a quantum system possessing a superselection rule gener-

ated by a complete orthogonal family of subspaces �S(n), we have the
following definitions:

Definition 32.1(2)

(1) Each subspace �S (n) is called a coherent subspace, since
the principle of superposition holds within such a subspace.
These subspaces are also known as superselection sectors or
supersectors for short.5

(2) A selfadjoint operator of the form
̂C =

∑

n

cn ̂P (n), cn ∈ IR , (32.9)

where ̂P (n) is the projector onto the subspace �S (n), is called a
superselection operator.

An observable of a classical mechanical system possesses a definite

value in every state. We can use this property to formulate a general

definition of classical observables of any system.

Definition 32.1(3) An observable A is called a classical observ-
able if A possesses a definite value in every pure state. A system having
classical observables is said to possess classical properties.6

An orthodox quantum system does not have any classical ob-

servables.7 A quantum system with a superselection rule possesses

classical observables described by superselection operators since an

observable represented by a superselection operator ̂C in Eq. (32.9)
possesses a definite value in every pure state of the system, e.g., it

possesses the value cn in the pure state corresponding to any unit
vector �ϕn lying in the supersector �S (n). We can formalise this by the

following definition:

5The properties of orthodox quantum systems hold within each supersector.
6Wan p. 346.
7We exclude fixed quantities like the mass of the particle.
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Definition 32.1(4) Quantum systems possessing a superselection
rule are referred to asmixed quantum systems.8

Mixed quantum systems possess both quantum and classical

properties.

32.2 Supersectors and Direct Sum
Decomposition

Superselection rules can be formulated in terms of a direct sum

decomposition of Hilbert spaces and operators by treating each

subspace �S (n) as a Hilbert space in its own right.9 First we can

identify the original state space �H with the direct sum of �S (n),

i.e., we can write H = H⊕ = ⊕n �S (n). Secondly we can identify
̂Bre which are reducible by all those subspaces as a direct sum of

operators ̂B(n) defined on �S (n), i.e., ̂Bre = ⊕n ̂B (n). In other words,
̂Bre is a decomposable operator.10 Definition 32.1(1) can be stated
in terms of direct sum decomposition of the state space as seen in

the following definition:

Definition 32.1(5) A quantum system is said to possess a superse-
lection rule if its state space �H and observables possess the following
properties:

(1) There exists a preferred decomposition of the state space as a
direct sum of a complete orthogonal family of subspaces �S (n) of
�H, i.e.,11

�H = �H⊕ = ⊕ �S(n). (32.10)

Pure states correspond one-to-one to one-dimensional subspaces
each lying within a subspace �S (n).12

8Wan pp. 378–383. These systems possess a mix of quantum and classical

properties. In contrast, orthodox quantum system in Definition 26.1(1) which does

not have classical properties.
9Beltrametti and Gassinelli pp. 45–48. Blank, Exner and Havliček pp. 268–273. Wan

pp. 337–391. Van Fraasen for conceptual discussion. See Chapter 24 for direct sum
decomposition of Hilbert spaces.

10See Definition 24.1.2(2).
11See §24.1.1 for notation, especially Eqs. (24.14) to (24.18).
12See Eq. (24.24).
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(2) Observables B correspond one-to-one to selfadjoint decompos-
able operators, i.e., ̂B⊕ = ⊕n ̂B (n).

(3) The expectation value of a bounded observable B in a pure state
described by a unit vector �ϕ (n) in �S (n) is given by 〈 �ϕn | ̂B (n) �ϕ (n)〉.

The superselection rule is said to be generated by the direct sum
decomposition.

The subspaces �S (n) are referred to as superesectors, and selfadjoint
diagonalisable operators on H⊕ are called superselection opera-
tors.13 These agree with Definition 32.1(2).

There are many reasons why a superselection rule may emerge.

However, we shall not pursue an investigation of this.14

32.3 An Example

Consider the model physical system introduced in Q24(1) in

Exercises and Problems for Chapter 24. The systemhas the following

properties:

P32.3(1) The state space is a three-dimensional Hilbert space
�H(m) with a preferred decomposition as a direct sum of a complete

orthogonal family of one-dimensional subspaces �S (−), �S (0) and
�S (+), i.e., we have15

�H (m) = �S (−) ⊕ �S (0) ⊕ �S (+). (32.11)

Let �η (−), �η (0) and �η (+) be unit vectors in �S (−), �S (0) and �S (+),
respectively. A vector in H(m) is of the form

�η⊕ = c− �η (−) ⊕ c0 �η (0) ⊕ c+ �η (+)
= c− �η (−)⊕ + c0 �η (0)⊕ + c+ �η (+)⊕, (32.12)

13See Definition 24.1.2(2) for decomposable and diagonalisable operators in a direct
sum space.

14Those interested in the origins of superselection rules are referred toWan pp. 345–

346, 558–561.
15This system is used in §34.7 to model a measuring device, hence the superscript
(m).
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where16

c−, c0, c+ ∈ C , (32.13)

�η (−)⊕ = �η (−) ⊕ �0(0) ⊕ �0(+), (32.14)

�η (0)⊕ = �0(−) ⊕ �η (0) ⊕ �0(+), (32.15)

�η (+)⊕ = �0(−) ⊕ �0(0) ⊕ �η (+). (32.16)

Since pure states correspond to unit vectors lying within a

supersector, there are only three distinctive pure states, i.e., η s(−),
η s(0) and η s(+) which are described by �η (−)⊕, �η (0)⊕ and �η (+)⊕,
respectively.

P32.3(2) Observables B (m) correspond one-to-one to selfadjoint

decomposable operators, i.e., they are of the form

̂B (m) = ̂B (−) ⊕ ̂B (0) ⊕ ̂B (+), (32.17)

where ̂B (−), ̂B (0), and ̂B (+) are selfadjoint operators on �S (−), �S (0)

and �S (+) , respectively. Since the subspaces are all one-dimensional,
we have

̂B(−) = b− ̂II (−), ̂B(0) = b0 ̂II (0), ̂B(+) = b+ ̂II (+), (32.18)

where b−, b0, b+ ∈ IR . These operators clearly leave every super-
sector invariant. Selfadjoint decomposable operators in Eq. (32.17)

are also diagonalisable, i.e.,

̂B(m) = b− ̂II (−) ⊕ b0 ̂II (0) ⊕ b+ ̂II (+). (32.19)

This model system clearly possesses a superselection rule

generated by the family of one-dimensional subspaces �S (−), �S (0)

and �S (+). The following comments highlight the consequences of
the superselection rule:

C32.3(1) Observables which are represented by selfadjoint diago-

nalisable operators ̂B (m) in Eq. (32.19). have a definite value in every

16We employ �0(−), �0(0), �0(+) to denote the zero vectors on �S (−), �S (0), �S (+). The
corresponding identity operators are denoted by ÎI (−), ÎI (0), ÎI (+).
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pure state, i.e.,

B (m) possesses the value b− in state η s(−), (32.20)

B (m) possesses the value b0 in state η s(0), (32.21)

B (m) possesses the value b+ in state η s(+). (32.22)

These are superselection operators which can be used to describe

classical properties of the system.17

C32.3(2) A linear combination of vectors from different supersec-

tors, e.g., �η⊕ in Eq. (32.12), does not lead to a coherent superposition
of states, since all the interference terms vanish, e.g.,

〈 �η (0)⊕ | ̂B (m) �η (+)⊕〉 = 0. (32.23)

Following discussion in P32.1(4), we conclude that the vector �η⊕
describes a classical mixture of pure states η s(−), η s(0) and η s(+).

C32.3(3) Generally the Hamiltonian of a system is an observable.

For our present system, this means that the Hamiltonian is a

decomposable operator. Let us assume that the time evolution of our

present system can be described by the Schrödinger picture, e.g., a

pure state will evolve in accordance with Eq. (29.7). Then a pure

state will involvewithin the same supersector, since the Hamiltonian

in the form of a decomposable operator would leave a supersector

invariant. There will be no transition from one supersector to

another. For such a transition to occur the system has to couple itself
to an external system in such a way that its time evolution is no longer
generated by a Hamiltonian which is an observable of the system.18

An illustration of such a situation will be presented in §34.7 where a
discussion will be given on how this system can model a measuring

device.

C32.3(4) Selfadjoint operators which are not decomposable do

not represent observables. As examples the operators ̂L(m)+ , ̂L(m)−
and ̂L(m) defined on �H⊕ by Eqs. (24.78), (24.79) and (24.80)

are selfadjoint but not decomposable as they relate different

supersectors. In §34.7.2 such operators are used tomodelmeasuring
processes.

17See §34.7.2 for application to model measuring devices.
18Such a Hamiltonian would have to incorporate the interaction with an external

system.
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Exercises and Problems

Q32(1) Prove Eq. (32.4).

Q32(2) For the example in §32.3 discuss how the initial state

η (0)⊕ given by Eq. (32.15) would evolve in the Schrödinger
picture under a selfadjoint and decomposable Hamiltonian
̂H⊕ = ̂B(−) ⊕ ̂B(0) ⊕ ̂B(+).

Q32(3) A system has a two-dimensional state space �H. A super-

selection rule operates with the state space �H having the

following preferred direct sum decomposition:

�H = �H⊕ = �H(1) ⊕ �H(2), (32.24)

where �H(1) is spanned by a unit vector �η (1) ∈ �H and �H(2)

is spanned by a unit vector �η (2) ∈ �Hwhich is orthogonal to

�η (1). Let ̂Lbe an operator on �H defined by

̂L �η (1) = �η (2), ̂L �η (2) = �η (1). (32.25)

(a) Show that ̂L is selfadjoint and explain why ̂L cannot
represent an observable.

(b) Suppose the Hamiltonian of the system is λ̂L, where
λ ∈ IR . Show that in the Schrödinger picture the initial

state vector �η(0) = i �η (2) at time t = 0 evolves in time

to the following state vector at time t:

�η(t) = sin(λt/�)�η (1) + i cos(λt/�)�η (2). (32.26)

(c) Discuss how the evolution may cause a transition from
a pure state to a mixture.
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Chapter 33

Many-Particle Systems

33.1 Identity and Distinguishability

A general physical system is a compound system consisting of many

constituents. A constituent may be made up of more than one

particle, e.g., a molecule is made of atoms which themselves are

made up of many particles. In a superconductor at low temperatures

the electrons form pairs.1 Each pair can be treated as a constituent

of a superconducting current. For convenience we also call these

constituents particles. A general physical system is referred to as a

many-particle system. The theory for many-particle systems can be

built up from one-particle theory. The situation can be complicated

since there are different types of many-particle systems:

(1) A compound system may consists of a definite number of

particles, i.e., the number of particles in the system remains the

same for all time. Such a systemmay consist of

(a) distinguishable particles, or

(b) identical, i.e., indistinguishable, particles.

1Feynman, Leighton and Sands §21-7. Wan Chapter 7.
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(2) A compound system may consists of an indefinite number of

particles, i.e., the number of particles in the system may change

in time due to interactions. The particles involved may or may

not be identical.

The mathematics of tensor products presented in §24.2 is required
to build up a theory for the compound system. Since different types

of systems behave very differently, they require different theories for

their description.

Before proceeding let us explain what is meant by identical

and distinguishable particles. A particle has properties which are

independent of its state, e.g., its mass and charge. These are referred

to as intrinsic properties. A particle also has properties which

dependent on the state, e.g., its position and momentum. These are

referred to as extrinsic properties,2 Two particles are considered
identical if they have the same intrinsic properties, e.g., two electrons
are identical while an electron and a positron are not identical.

In classical mechanics two identical particles can be distinguished

by their extrinsic properties. For example, two classical particles

with different initial position and momentum can be identified

and tracked at all times since they move in different trajectories

in the state space. In quantum mechanics identical particles are

not distinguishable in such a way since they do not have well-

defined trajectories which can be tracked. The wave functions of the

particles may in time develop an overlap such that we cannot tell

the particles apart. In other words, identical quantum particles are

indistinguishable.

33.2 Distinguishable Particles

Consider a compound system composed of two distinguishable

particles. Let �H(1) be the state space of particle 1 and �H(2) be the

state space of particle 2. In the absence of superselection rules a

theory for the two-particle system is can be established based on

the following assumptions:

2Following Jauch pp. 275–278.
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(1) The state space of a compound system, denoted by �H(c), is the
tensor product of the state spaces of its constituents, i.e., �H(c) =
�H(1)⊗ �H(2). Pure states correspond one-to-one to one-dimensional
subspaces on �H(c).

(2) Observables of the systems correspond one-to-one to selfadjoint
operators ̂A(c) in the state space �H(c).

(3) The expectation value of an observable in a pure state is given by
Eq. (28.2), i.e.,

E( ̂A(c), ��(c)) = 〈 ��(c) | ̂A(c) ��(c)〉⊗, (33.1)

where ��(c) is a unit vector in �H(c).

Let { �φ (1)
j } be an orthonormal basis for �H(1) and let { �φ (2)

k } be an
orthonormal basis for �H(2). From Eq. (24.47) we know that { �φ (1)

j ⊗
�φ (2)
k } is an orthonormal basis of the tensor product space, i.e., every
vector �� (c) ∈ �H⊗ has the following expansion3:

�� (c) =
∑

j,k

c j,k �φ (1)
j ⊗ �φ (2)

k , c j,k = 〈 �φ (1)
j ⊗ �φ (2)

k | ��(c)〉⊗. (33.2)

We can divide the states of the compound system into two types:

(1) Product states These are described by the tensor products of

two one-particle state vectors, i.e., �φ (1) ⊗ �φ (2).

(2) Entangled states These are described by linear combinations

of product state vectors, i.e., ��(c) in Eq. (33.2), which cannot be

factorised into a single tensor product of two one-particle state

vectors, e.g.,4

�� (c) = 1√
2

(

�φ (1) ⊗ �φ (2) + �ψ (1) ⊗ �ψ (2)
)

, (33.3)

where �φ (1) is said to be entangled with �φ (2) and �ψ (1) entangled
with �ψ (2). The physical meaning of this entanglement will

become apparent in the next section.

3Following the notation in §24.2.
4The one-particle state vectors are assumed to be orthogonal, e.g., 〈 �φ (1) | �ψ (1) 〉 = 0.
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We can also divide observables of the compound system into two

types:

(1) One-particle observables Observables corresponding to

selfadjoint operators in �H(c) of the form

̂A(c1) = ̂A(1) ⊗ ̂II (2), ̂A(c2) = ̂II (1) ⊗ ̂A(2) (33.4)

are called one-particle observables as they relate to only one of
the two particles in the compound system and their expectation

value can be obtained from the relevant one-particle states,5

e.g., for the state vector ��(c) in Eq. (33.2) the quadratic form

E
(

̂A(c1), ��(c)
)

is given by6

∑

j,k,m,n

c∗j,kcm,n〈 �φ (1)
j ⊗ �φ (2)

k |
(

̂A(1) ⊗ ̂II (2)
)

�φ (1)
m ⊗ �φ (2)

n 〉⊗

=
∑

j,k,m

c∗j,kcm,k〈 �φ (1)
j | ̂A(1) �φ (1)

m 〉(1). (33.5)

The calculation is seen to involve quantities of particle 1 only.

(2) Two-particle observables These are observables involving

both particles. An example is an observable corresponding to

selfadjoint operators the form

̂A(c) = ̂A (1) ⊗ ̂A (2), (33.6)

which is equal to the product of ̂A(c1) and ̂A(c2) in Eq. (33.4).
For the state vector ��(c) in Eq. (33.2) the quadratic form

E
(

̂A(c), ��(c)
)

of ̂A(c) is given by

∑

j,k,m,n

c∗j,kcm,n〈 �φ (1)
j ⊗ �φ (2)

k | ̂A(1) ⊗ ̂A(2) �φ (1)
m ⊗ �φ (2)

n 〉⊗, (33.7)

which is equal to

∑

j,k,m,n

c∗j,kcm,n〈 �φ (1)
j | ̂A(1) �φ (1)

m 〉(1)〈 �φ (2)
k | ̂A(2) �φ (2)

n 〉(2). (33.8)

5Jauch pp. 179–182. Peres Chapter 5.
6Using Eq. (24.57) and the orthonormality of the basis vectors �φ (2)

k of �H(2).
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The expression involves quantities of both particles. Since
̂A(c1) and ̂A(c2) commute, the observables they represent are
simultaneously measurable. The measurement of these two

observables would constitute a measurement of ̂A (1) ⊗ ̂A (2).

This is also seen in the above expression which contains terms

〈 �φ (1)
j | ̂A(1) �φ (1)

m 〉(1) and 〈 �φ (2)
k | ̂A(2) �φ (2)

n 〉(2).7
Another example of two-particle observables is one described

by the following operator:

̂A(c1) + ̂A(c2) = ̂A(1) ⊗ ̂II (2) + ̂II (1) ⊗ ̂A(2). (33.9)

If ̂A(1) is the Hamiltonian of particle 1 and ̂A(2) is the Hamilto-
nian of particle 2 then ̂A(c1) + ̂A(c2) is the total Hamiltonian of
the two-particle in the absence of any interaction.8

The above formulation can also be applied to construct a

theory of one-particle systems which have two very distinctive and

independent properties. Let us illustrate this with the example of a

spin- 1
2
particle.

Spin- 1
2
particles A spin- 1

2
particle has two very distinctive and

independent properties due to its motion in physical space and its

spin motion. Properties due to its spatial motion are described by

selfajoint operators ̂A in the Hilbert space �L2(IR3) and properties
due to its spin motion are described by selfajoint operators in the

Hilbert space �VV 2, e.g., ̂Sx , ̂Sy and ̂Sz in §14.1.1. These two properties
can be combined and described in the tensor product space9

�H(s)(IR3) := �L2(IR3)⊗ �VV 2. (33.10)

For states we have

(1) State vectors for spin-up states are of the form �φ ⊗ �αz.10

7Note that 〈 �φ (1)
j | Â(1) �φ (1)

m 〉(1) = 〈 �φ (1)
j ⊗ �φ (2)

k | Â(c1) �φ (1)
m ⊗ �φ (2)

k )〉⊗ .
8Isham pp. 143–147 which contains a discussion on probability distributions of

measured values.
9See Eq. (24.64). The reason that a small symbol ⊗ is used for the tensor product

will becomes apparent in Eq. (34.8).
10Here �φ is in �L2(IR3), and �αz and �βz are defined in §14.1.1 as two orthonormal
members of �VV 2 .
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(2) State vectors for spin-down states are of the form �φ ⊗ �βz.
(3) A general state is of the form �φ ⊗ �αz + �φ ⊗ �βz.

For observables we have11:

(1) Spin operators take the form

̂II (IR3)⊗ ̂Sx , ̂II (IR3)⊗ ̂Sy and ̂II (IR3)⊗ ̂Sz. (33.11)

(2) Spatial operators take the form ̂A ⊗ ̂II ( �VV 2
) .

An evaluation of various expectation values demonstrate that the

above description makes sense. For example, we have12

E
(

̂II (IR2)⊗ ̂Sz, �φ ⊗ �αz
) = 〈�αz | ̂Sz�αz〉 = 1

2
�. (33.12)

E
(

̂A ⊗ ̂II ( �VV 2
), �φ ⊗ �αz

) = 〈 �φ | ̂A �φ 〉. (33.13)

33.3 Identical Particles

The description of a system of distinguishable particles in the

preceding section does not apply to a system of identical particles.

The fact that the particles in a compound system are identical

and hence indistinguishable would impose some restrictions on the

vectors and operators used to describe the states and observables of

the system. A further complication is that there are two main types

of particles in nature, i.e., bosons and fermions13:

(1) Bosons are particles of zero or integer spin (0, �, 2�, . . . ), such
as photons, pions and Cooper pairs.14

11Here ÎI (IR3) is the identity operator on �L2(IR3), and ÎI ( �VV 2) is the identity operator
on �VV 2.

12Here 〈�αz | Ŝz�αz〉 is the scalar product in �VV 2 and 〈 �φ | Â �φ 〉 is the scalar product in
�L2(IR3).

13Bose (1894–1974) was an Indian mathematical physicist whose work laid the

foundation for Bose-Einstein statistics andBose-Einstein condensate. Fermi (1901–

1954) was an Italian physicist whose work led to a statistical theory now known as

Fermi-Dirac statistics.
14Feynman, Leighton and Sands §21-7 andWan Chapter 7 for a discussion on Cooper
pairs and their relation to superconductivity.
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(2) Fermions are particles of half integer spin (�/2, 3�/2, . . . ), such
as electrons, protons, neutrons.

Fermions obey the Pauli exclusion principle which says that
no two identical fermions can be simultaneously in the same state.

Bosons are not restricted by this requirement so that any number

of them can be simultaneously in the same state. It follows that the

description of a system of identical fermions are different from that

of a system of bosons.

Let us consider two identical particles. Separately each particle

has its own state space, i.e., �H(1) for particle 1 and �H(2) for

particle 2. The particles being identical means that the two state

spaces are identical, i.e., �H(1) = �H(2) = �H. Next consider these
two particles forming a compound system. The state space of

the compound system is again assumed to be �H(c) = �H ⊗ �H.
Let { �ϕm} be an orthonormal basis for �H. Then { �ϕm ⊗ �ϕn} is an
orthonormal basis in �H(c).15 The particles being identical means

that when we interchange the particles observables should remain

the same and the state may change at most by a phase factor, e.g.,

by a multiplicative constant –1, so that the interchange causes no

observable effect.

Let us examine how to describe the changes in vectors and

operators when we interchange the particles:

(1) Vectors The product vector �ϕm⊗ �ϕn indicates that particle 1 is
in state �ϕm while particle 2 is in state �ϕn. An interchange of the
particles would change the vector �ϕm ⊗ �ϕn to �ϕn ⊗ �ϕm. Such an
exchange of particles can be described mathematically in terms

of a permutation operator ̂U p defined on �H(c) by16

̂U p

(
∑

m,n

cmn �ϕm ⊗ �ϕn
)

:=
∑

m,n

cmn �ϕn ⊗ �ϕm. (33.14)

This is a bounded operator with �H(c) as its domain. This

permutation operator is selfadjoint, unitary with its square

equal to the identity operator.17

15The superscripts (1) and (2) used for non-identical particles are omitted. We will

also drop these superscripts for operators.
16These operators are introduced first in Eq. (24.81).
17See Eqs. (24.82).
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(2) Operators On an interchange of particles the operator ̂A ⊗ ̂B
will go to ̂B ⊗ ̂A. This change can be obtained by the following
unitary transformation18:

̂U p
(

̂A ⊗ ̂B
)

̂U †
p = ̂B ⊗ ̂A. (33.15)

Definition 33.3.1(1)

(1) A vector in �H(c) is said to be

(a) symmetrical, to be denoted by ��(cs), if it is unchanged by the
permutation operator, i.e.,

̂U p ��(cs) = ��(cs), (33.16)

(b) antisymmetrical, to be denoted by ��(ca), if it is changed by
a phase factor of −1 by the permutation operator, i.e.,

̂U p ��(ca) = − ��(ca). (33.17)

(2) An operator in �H(c) is said to be symmetrical, to be denoted by
̂C (cs), if it is unchanged by the permutation operator, i.e.,19

̂C (cs) = ̂U p̂C (cs) ̂U †
p . (33.18)

The following examples serve to illustrate the definition20:

��(cs) = 1√
2

(

�ϕm ⊗ �ϕn + �ϕn ⊗ �ϕm
)

is symmetrical, (33.19)

��(cs) = 1√
2

(

�ϕm ⊗ �ϕn − �ϕn ⊗ �ϕm
)

is antisymmetrical, (33.20)

̂A ⊗ ̂II + ̂II ⊗ ̂A and ̂A ⊗ ̂B + ̂B ⊗ ̂A are symmetrical. (33.21)

Symmetrical vectors in �H(c) form a subspace �S(cs), to be called the
symmetrical subspace of �H(c). Antisymmetrical vectors in �H(c) also

form a subspace �S(ca), to be called the antisymmetrical subspace
18Jauch pp. 277–278. Blank, Exner and Havliček pp. 389–392. See also Eq. (24.83). To
avoid technical complications, we only consider bounded operators.

19Not to be confused with symmetric operators in Definition 19.1(1).
20Here we havem �= n.
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of �H(c). We can define two projectors ̂P (cs) and ̂P (ca) associated with
these two subspaces by21

̂P (cs) := 1

2

(

̂II + ̂U p

)

, ̂P (ca) := 1

2

(

̂II − ̂U p

)

. (33.22)

These operators will project a vector in �H(c) onto �S(cs) and �S(ca),
respectively, i.e.,

̂P (cs)
(
∑

m,n

cmn �ϕm ⊗ �ϕn
)

=
∑

m,n

cmn
1

2

(

�ϕm ⊗ �ϕn + �ϕn ⊗ �ϕm
)

,

̂P (ca)
(
∑

m,n

cmn �ϕm ⊗ �ϕn
)

=
∑

m,n

cmn
1

2

(

�ϕm ⊗ �ϕn − �ϕn ⊗ �ϕm
)

.

These two projectors are orthogonal to each other. We also have
̂P (cs) + ̂P (ca) = ̂II .
The description of a system of two identical particles can be

formulated as follows.

(1) For the state space we have a choice:

(a) We can choose the state space to be the symmetrical

subspace �S(cs).
(b) Alternatively we can choose the state space to be the

antisymmetrical subspace �S(ca).
(2) Observables should be represented by selfadjoint operators

which are symmetrical, i.e., ̂C (cs), so that the interchange of the
two particles would have no effect on the observables. Since

these operators commutewith ̂U p, they also commutewith ̂P (cs)

and ̂P (ca). It follows from Theorem 17.9(1) that these operators

are reduced by the symmetrical subspace. An operator ̂C (cs)

in �H(c) has a part in the subspace �S(cs). If we treat �S(cs) as a
Hilbert space in its own right the part of ̂C (cs) in �S(cs) can be
regarded as an operator in �S(cs). We can conveniently denote
both ̂C (cs) in �H(c) and its part in �S(cs) by the same notation.
A similar notation will denote the part of the operator in the

antisymmetrical subspace �S(ca) which also reduces the operator.
21These operators are introduced in Eq. (24.84).
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33.3.1 Bosons and Fermions

Consider a two-particle system having the symmetrical subspace
�S(cs) of �H(c) as its state space and observables described by

selfadjoint operators ̂C (cs) in �S(cs). The indistinguishability of the
two particles is accounted for by the fact that an interchange of

the two particles does not change the state vector or the operators

representing observables. It follows that the expectation values are

invariant with respect to the exchange of the two particles. The

system does not obey the Pauli exclusion principle since the two

particles can be in the same state, e.g., the product vector �ϕm⊗ �ϕm is

symmetrical. All these vectors are in �S(cs) and hence it can serve as a
state vector. Particles described above are therefore bosons.

A two-particle system having the antisymmetrical subspace
�S(ca) of �H(c) as its state space would obey the Pauli exclusion

principle. This is because the antisymmetrical nature of the state

vectors precludes the two particles being in the same state. For

example, if we put n = m in ��(ca) in Eq. (33.20) we would obtain

the zero vector. In other words, we cannot create a state for the

compound system with both of its constituent particles in the

same state. Observables are represented by selfadjoint operators
̂C (cs) which are symmetrical. Generally an interchange of the two

particles change the state vector only by a phase factor of −1
while the operators representing observables remain unchanged.

The expectation values are invariant with respect to the exchange of

the two particles. Particles described above are therefore fermions.

33.3.2 The Pauli Exclusion Principle

Consider a system of two identical fermions in a state at time t
described by the state vector22

��(ca)(t) := 1√
2

( �ϕm(t)⊗ �ϕn(t)− �ϕn(t)⊗ �ϕm(t)
)

. (33.23)

The exclusion principle entails a correlation between the particles

in that identical fermions would seem to be “aware of” the existence

of each other so as to “arrange” the state of the system as a whole to

22We use the Schrödinger picture for time evolution here.
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be antisymmetrical with �ϕm �= �ϕn to satisfy the exclusion principle.
Pauli realised this and he qualified the principle with the following

statement23:

From a superficial consideration of the exclusion principle, it
might be thought that a sort of action-at-a-distance is being
postulated, as a result of which even two widely separated
particles are aware of one another (“sign of a contract”).
However, this is not so, because the exclusion principle is only
valid as long as the wave packets of the two particles overlap.

We can understand Pauli’s statement in an asymptotic sense. Let us

examine how the exclusion principle can become invalid. The state

vector ��(ca)(t) in Eq. (33.23) is a linear combination of �ϕm(t) ⊗
�ϕn(t) and �ϕn(t) ⊗ �ϕm(t). The expectation value of an observable
represented by the operator ̂A ⊗ ̂B + ̂B ⊗ ̂A in the state described

by �� (ca)(t) at time t can be calculated, e.g.,

〈 ��(ca)(t) | ̂A ⊗ ̂B ��(ca)(t)〉

= 1

2

(

〈 �ϕm(t) | ̂A �ϕm(t)〉〈 �ϕn(t) | ̂B �ϕn(t)〉

+ 〈 �ϕn(t) | ̂A �ϕn(t)〉〈 �ϕm(t) | ̂B �ϕm(t)〉
)

+ C , (33.24)

where

C = −1
2

(

〈 �ϕm(t) | ̂A �ϕn(t)〉〈 �ϕn(t) | ̂B �ϕm(t)〉

− 〈 �ϕn(t) | ̂A �ϕm(t)〉〈 �ϕm(t) | ̂B �ϕn(t)〉
)

. (33.25)

The term C due to the correlations between �ϕm(t) and �ϕn(t)
generated by ̂A and ̂B will vanish asymptotically as �ϕm(t) and �ϕn(t)
moves spatially apart independently in time so that at large times T
the value given by Eq. (33.24) tends to the sum of24

1

2
〈 �ϕm(T ) | ̂A �ϕm(T )〉〈 �ϕn(T ) | ̂B �ϕn(T )〉 (33.26)

23Pauli §36 p. 168.
24Intuitively we can appreciate that if �ϕm(t) and �ϕn(t) correspond to two different
and disjoint ranges of momentum values then the two corresponding wave

functions will move apart in time so that 〈 �ϕn(t) | Â �ϕm(t)〉 and 〈 �ϕm(t) | B̂ �ϕn(t)〉
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and

1

2
〈 �ϕm(T ) | ̂B �ϕm(t)〉〈 �ϕn(T ) | ̂A �ϕn(T )〉. (33.27)

As a result the antisymmetrical state vector �� (ca)(T ) becomes

effectively the same as the product state vector �ϕm(T )⊗ �ϕn(T ), i.e.,
we have

〈 ��(ca)(T ) | ( ̂A ⊗ ̂B + ̂B ⊗ ̂A
) ��(ca)(T )〉

≈ 〈 �ϕm(T )⊗ �ϕn(T ) |
(

̂A ⊗ ̂B + ̂B ⊗ ̂A
) �ϕm(T )⊗ �ϕn(T )〉. (33.28)

Consequently, Pauli exclusion principle loses its constraining power

on the state. It can be disregarded for all practical purposes, e.g.,

there is no need to formally writing down an antisymmetrical state

vector for an electron here on earth and one on a galaxy on the other

side of the universe when we are dealing with observables localised

here on earth.25

33.4 Indefinite Number of Particles

The theories presented in §33.3.2 and §33.3.2 can be extended

to systems of many particles. For an n-particle system, we would
start with the tensor product of the n constituent state spaces. Let
us denote the tensor product space by �H(c)(n).26 All symmetrical
vectors in �H(c)(n) form a symmetric subspace �S(cs)(n) and all

antisymmetrical vectors in �H(c)(n) also form an antisymmetrical

subspace �S(ca)(n).27 Then
(1) A compound system of two identical bosons would have a state

space �S(cs)(2) which is the symmetrical subspace of the tensor
product of two constituent Hilbert spaces.

would tend to zero. This can be formulated rigorously by introducing the concepts

of asymptotic localisation and separation. Details are available in Wan p. 299,

pp. 317–317. See Wan pp. 620–622 for a formulation of asymptotically separable
quantum theory.

25Gasiorowicz pp. 204–206.
26Jauch pp. 280–281, 285. Zettili pp. 447–449.
27Symmetrical or antisymmetrical with respect to the interchange any two particles.
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(2) A compound system of three identical bosonswould have a state

space �S(cs)(3) which is the symmetrical subspace of the tensor
product of three constituent Hilbert spaces

(3) A compound system of n identical bosons has a state space
�S(cs)(n)which is the symmetrical subspace of the tensor product
of n constituent Hilbert spaces.

There are in nature systems composed an indefinite number of

particles. For example, the number of particles can change. New

particles can be created and existing ones can be annihilated by

interaction. When dealing with such a system having an indefinite

number of particles the state space cannot be a rigid tensor product

of a definite number of constituent state spaces.28 Let us consider

a system of bosons. To include a general situation, we shall start

with what is known as the vacuum, a state with no particle at all.
This will be formally described by a one-dimensional Hilbert space

to be denoted by �S(0). Next we have the one-particle state space
�S(1) = �H(1). The two-particle state spacewould be the symmetrical
subspace �S(cs)(2) and similarly the n-particle state space is �S(cs)(n).
The state spaceH(cs)

F for a system of indefinite number of bosons is

taken to be the direct sum of all these state spaces, i.e.,

H(cs)
F := �S(0)⊕ �S(1)⊕ �S(cs)(2)⊕ �S(cs)(3)⊕ · · · . (33.29)

Such a space is known as a Fock space. The transition from �S(cs)(m)
to �S(cs)(n) can be carried out by operators defined on �H(cs)

F having

the properties of creation and annihilation operators described in

§27.9.29
For a system of indefinite number of fermions, we can construct

a Fock space �H(ca)
F in terms of antisymmertric subspaces �S(ca)(n),

i.e.,

�H(ca)
F := �S(0)⊕ �S(1)⊕ �S(ca)(2)⊕ �S(ca)(3)⊕ · · · . (33.30)

28Jauch pp. 280–287. A system of photons serves to illustrate the situation.
29Jauch pp. 280–287. Reed and Simon Vol. 1 p. 53.
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Exercises and Problems

Q33(1) Calculate the expectation value of the two-particle observ-
able represented by the operator in Eq. (33.9) in the state

described by the vector ��(c) in Eq. (33.2).

Q33(2) Show that symmetrical vectors in Eq. (33.19) form a

subspace of �H(c).



Chapter 34

Conceptual Issues

Many quantum predictions seem to defy “common sense” and

appear beyond the comprehension of some of the greatest human

minds. Richard Feynman states that “I think I can safely say
that nobody understands quantum mechanics” in his book entitled
The Character of Physical Laws.1 Many pioneers of quantum

theories have constructed examples to highlight this situation.

These examples are now known as quantum paradoxes. Moreover,
the common understanding that only microscopic systems behave

quantum mechanically is incorrect. Macroscopic systems, e.g., su-

perconducting systems and Bose-Einstein condensate, also exhibit

quantum behaviour. These systems do not satisfy the properties of

orthodox quantum systems.2

In this chapter we shall discuss a few well-known examples to

illustrate the conceptual issues confronting quantum theory.3

1Feynman (1918–1988) was an American theoretical physicist and a Nobel Prize

winner. The statement is on p. 129 of his book.
2See Definition 26.1(1). Wan §7.
3We shall not consider other less well-known cases such as Zeno paradox and

delayed-choice experiments (see Auletta, Fortunato and Parisi pp. 320–324).
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ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com

http://www.jennystanford.com


574 Conceptual Issues

34.1 Understanding Quantum Behaviour

The probabilistic behaviour of quantum systems arising from

Postulate 28.2(PD) tells us that an observable may not possess

a definite value in a given state. Two examples come to mind

immediately:

E34.1(1) A classical particle has a definite position in any given

state. As the state evolves in time the particle will move along a

definite path in the physical space. In contrast a quantum particle

does not possess a definite position value in any state. It follows

that a quantum particle does not move along a definite path in the

physical space. A similar situation applies to the momentum.

E34.1(2) The lack of a definite value is not just for the position and

momentum. For a particle in circular motion, its Hamiltonian does

not possess a value in the state given by Eq. (28.5).

The fact that a quantum observable may have no definite value in
a given state can be understood in many cases in terms of the wave
nature of quantum systems arising from the description of quantum

states in Postulate 25.1(PS). For example, the state of a quantum

particle in one-dimensional motion along the x-axis is describable
by a wave function φ(x , t). This is a solution of the time-dependent
Schrödinger equation.4 It has already been pointed out in §2.2
that some observables of a classical wave may not have a definite

value. It is then not so surprising that observables of a quantum

system whose state is described in terms of a wave function may

not have a definite value in a general state. An observable has a

definite value only in an eigenstate of the observable. Of course,

quantum systems are not the same as classical wave systems. For

example, we can distinguish a quantum system from a classical

wave system by the way measured values are related to the

state, i.e., for quantum systems the relationship is probabilistic as

stated in Postulate 28.2(PD). A quantum wave function is generally

complex and it has the interpretation of a position probability

amplitude.

4See §10.3.



Particle-Wave Duality 575

While we can understand why an observable of a quantum

system may not possess a definite value in a given state, there are

other quantum behaviours which are more difficult to understand.

Intuitively it seems that all the “troubles” are due to the wave nature

of quantum systems, the superposition principle in particular. In the

following sections, we shall discuss some explicit examples to illus-

trate the conceptual challenges confronting quantummechanics.

34.2 Particle-Wave Duality

In 1801 Thomas Young proved that light was a wave.5 In his famous

double-slit interference experiment he sent a beam of light through

a double-slit to produce an interference pattern on a screen behind

the slits. It is this interference pattern which proved that light was

a wave, not a beam of classical particles as proposed by Newton. A

beam of classical particles will not produce the interference pattern

on the screen.

Similar experiments have been done with a beam of electrons.6

Consider an experiment which sends a beam of electrons through

a double-slit. Having gone through the double-slit the electrons will

strike a screen placed behind the double-slit. This results in a typical

double-slit diffraction pattern on the screen. The conclusion is that

electrons possess wave properties. Experiments have been done by

sending one electron at a time through the double-slit.7 Initially the

experiment produces what seems to be a random distribution of

dots on the screen. However, the double-slit interference pattern is

again obtained after a sufficiently large number of electrons have

gone through the slits. A similar experiment with photons produces

similar results.8 This shows that the interference pattern is not due

to the interaction between electrons in the beam.

As a wave it can split up and go through the two slits

simultaneously and then recombine on the screen to produce a

5Young (1773–1829) was a British physicist.
6Davidson and Germer in New York in 1927 and Thomson and Reed in 1927 in

Aberdeen, Scotland were the first to perform such experiments.
7Halliday, Resnick andWalker §3.8.5, §3.8.6, Feynman, Leighton and Sands §1 and §2.
8Hey and Walters Chapter 1. Halliday, Resnick and Walker §3.8.5.
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double-slit interference pattern. As a particle the electron is a single

indivisible object which cannot be split into two halves.9 If each

individual electron in the beam does not slit up, then half of the

electrons in the beam would have to go through the upper slit and

the other half would go though the lower slit. This would then give

rise to two single-slit patterns on the screen since there would be no

interference of the particles emerging from the upper and low slits.

But the observed double-slit interference pattern is quite distinct

from two single-slit patterns. So, we are confronted by the following

question10:

How does each electron physically go through the double-slit
to produce the interference pattern?

34.3 Classical and Quantum Divide

Classical systems, e.g., everyday objects, are physically made up of

quantum systems, electrons, protons, neutrons, atoms and so on.

One would expect classical mechanics to be derivable from quantum

mechanics. All is needed would be to construct a quantum theory

for many-particle systems and then take the limit as the number of

particles gets larger and larger, in much the same way as Newtonian

mechanics is recovered from Special Relativity for objects whose

the speed is much smaller than the speed of light. Indeed it is

possible to obtain the classical limits from a quantum theory in

some specific cases. However, no general theory has been found to

derive classical mechanics from quantummechanics. This is not just

a matter of technical complexity of the problem. The crux of the

matter is that quantum mechanics cannot be entirely independent

of classical physics, since the mathematical formalism of quantum

mechanics is understandable only in relation to measurements

which use measuring devices with classical properties, e.g., a

measuring device produces definite values in an experiment. The

9Feynman, Leighton and Sands §1-6 has a detailed discussion on the indivisibility of
electrons.

10Gasiorowicz pp. 318–320.
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situation is summarised by Landau and Lifshitz in their book

Quantum Mechanics as follows11:

Thus quantum mechanics occupies a very unusual place
among physical theories: it contains classical mechanics as
a limiting case, yet at the same time it requires this limiting
case for its own formulation.

We can see a “chicken and egg” situation here. A simple-minded

application of quantum formalism to classical objects would lead

to paradoxical conclusions. A well-known example is given by

Schrödinger in the form of a cat, as seen in the next section.

34.4 Schrödinger’s Cat Paradox

As early as 1935 Schrödinger was aware of some of the fundamental

difficulties in interpreting quantum formalism, especially when

macroscopic systems are involved. He illustrates the difficulty

with an example which becomes known as the Schrödinger’s cat

paradox12:

A cat is placed in a steel chamber, together with the following
hellish contraption (which must be protected against direct
interference by the cat): In a Geiger counter there is a tiny
amount of radiative substance, so tiny that maybe within an
hour one of the atoms decays, but equally probably none of
them decays. If one decays then the counter triggers and via
a relay activates a little hammer which breaks a container of
cyanide. If one has left this entire system for an hour, then one
would say that the cat is still living if no atom has decayed.
The first decay would have poisoned it. The wave function of
the entire system would express this by containing equal part
of the living and the dead cat.

11Landau and Lifshitz p. 3. Landau (1908–1968) and Lifshitz (1915–1985) were

Soviet theoretical physicists. Landau won the 1962 Nobel Prize.
12The quotation is taken from Jauch p. 185.
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Quantum mechanically we would describe the atom as being in

a superposition of two states, the undecayed state and the decayed

state. This probabilistic state of affair of the atom is transmitted to

the cat. If we apply orthodox quantum formalism directly to the cat

we would represent the state of a living cat by a state vector ��l and

the state of a dead cat by another state vector ��d in the state space

of the cat. Then the state vector of the cat in the steel chamber would

be a superposition of ��l and ��d , i.e.,

�� = 1√
2

(

��l + ��d

)

. (34.1)

In the absence of a superselection rule separating the live state of

the cat from the dead state of the cat such a superposition would

represent the cat to be in a state of “living dead.” But we do not have

such zombi cats in real life, or do we?13

34.5 De Broglie Paradox and Non-Locality

In 1951 de Broglie proposed a thought experiment which becomes

known as the de Broglie paradox.14 The experimental apparatus

consists of a box with impenetrable walls which can be divided into

two halves, B1 and B2, by a sliding wall in the middle of the box.
Suppose that there is an electron inside the box. The box is then

divided into B1 and B2 by the sliding wall and B2 is moved to Tokyo
and B1 to Paris. Suppose one then opens box B1 in Paris and finds
the electron inside. The question is whether the electron was inside

B1 before one opened the box and found the electron inside. There
are two cases to consider:

Case 1. Suppose that the electronwas initially localised on one half

of the box, i.e., the half denoted by B1, and that the insertion of the
sliding wall does not disturb this localisation. In other words, the

13There has been a great deal of research theoretically and experimentally on this

paradox, e.g., in formulating systems which resemble the Schrödinger’s cat. See
Auletta, G, Fortunato, M and Parisi pp. 533–540. Wan pp. 589–619. Wan and

Menzies.
14de Broglie (1892–1987) was a French physicist.
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electron’s wave function was initially zero on the other half of the

box and remains so after the partition. Then, according to quantum

mechanics the electron is in B1 all the time, i.e., before and after the
box is opened. No paradoxical situation arises.

Case 2. Suppose that at time t = 0 the electron is not initially

localised on any half of box, i.e., the wave function φ(x , 0) at t = 0

was a superposition of two parts with one part φ1(x , 0) localised in
B1 and the other part φ2(x , 0) localised in B2, e.g., we have

φ(x , 0) = 1√
2

(

φ1(x , 0)+ φ2(x , 0)
)

, (34.2)

where

φ1(x , 0) = 0 ∀x ∈ B2, φ2(x , 0) = 0 ∀x ∈ B1 (34.3)

Suppose the partition of the box into B1, B2 does not disturb this
situation. Now move B1 to location �1 and B2 to location �2

where �1 and �2 are far apart so that the wave function after the

separation at time T becomes15

φ(x , T ) = 1√
2

(

φ1(x , T )+ φ2(x , T )
)

, (34.4)

where φ1(x , T ) and φ2(x , T ) are localised in�1 and�2, respectively.

Then a paradoxical situation arises when B1 is opened and the

particle is found inside. Before box B1 was opened there was a

probability of the electron being in B2 since the wave function
was not zero in B2. In other words, the particle was not actually
in B1. As discussed in §30.2.2 the detection of the particle in

B1 is a measurement of the local position observable ̂Mx̂(�1). A

positive result projects the wave function φ(x , T ) onto φ1(x , T ) in
accordance with Eq. (30.6), i.e., the wave function φ(x , T ) would
collapse onto φ1(x , T ) due to the measurement. It follows that after
finding the particle in B1, the wave function in B2 must vanish and
there is then no probability of finding the electron in B2.

It is difficult to see how the opening of box B1 can instantly
affect whatever that is in B2 which is very far away. This apparent

15Wanpp. 586–589. Instead of a thought experimentwith a box and a sliding partition

wall it is possible to formulate mathematical models with two parts of the a wave

function in Eq. (34.4) moving apart in time to achieve a large spatial separation.
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instant influence of what happens in B1 on B2 appears to come into
conflict with the spirit of Special Relativity on the finite speed of

transmission of influences, i.e., the instant influence of a disjoint

and distant part of the wave function by a local measurement

act. Generally the effect of the projection postulate which causes

the collapse of the wave packet appears to be non-local, i.e.,
action-at-a-distance, in nature. Moreover, quantum mechanics does

not provide any mechanism for this transmission of influence.

The situation, commonly referred to as quantum non-locality, is
therefore paradoxical.16

34.6 Entanglement and EPR Paradox

There has been a great deal of interest in many-particle systems

exhibiting what has become known as entanglement ever since
the problem was first raised in 1935 by Einstein, Podolsky and

Rosen (EPR).17 There are experiments showing strong evidence

of entanglement even for macroscopic quantum systems, e.g.,

experiments on the entanglement of two superconducting ringswith

a capacitive junction.18 Here we shall present a brief introduction of

the subject.

Consider a system composed of two distinguishable particles.19

Let us suppose that the two particles interact and as a result of the

interaction the two-particle state cannot be factorised into a single

tensor product of two one-particle states. For example, at time t we
could have an entangled state vector of the form of Eq. (33.3), i.e.,

�� (c)(t) = 1√
2

(

�φ (1)(t)⊗ �φ (2)(t)+ �ψ (1)(t)⊗ �ψ (2)(t)
)

. (34.5)

16One may try to resolve the paradox in terms of superselection rules similar to

the situation when the Pauli exclusion principle becomes ineffective, i.e., at large

separation φ(x , T ) in Eq. (34.4) becomes a classical mixture.
17Einstein, Podolsky and Rosen (1935). See Isham pp. 179–185 for a discussion on

EPR paradox and Bell inequalities. For a book popularising entanglement, see Aczel

(2002).
18Berkley et al. (2003), Johnson et al. (2003).
19This is to avoid the complications which may arise when the particles are

indistinguishable.
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Suppose the two particles move freely apart after the initial

interactionwith the state vectormaintaining the entangled form, i.e.,

at time T the state vector becomes20

�� (c)(T ) = 1√
2

(

�φ (1)(T )⊗ �φ (2)(T )+ �ψ (1)(T )⊗ �ψ (2)(T )
)

, (34.6)

where �φ (1)(T ) and �ψ (1)(T ) are localised in a region far away from
the region of localisation of �φ (2)(T ) and �ψ (2)(T ). Now suppose a

measurement of an appropriate observable of particle 2 is carried

out which projects the state of particle 2 onto the vector �ψ (2)(T ). As
a result, the two-particle state will change

from �� (c)(T ) to �ψ (1)(T )⊗ �ψ (2)(T ). (34.7)

Let us illustrate the situation more vividly with an example of two

distinguishable spin- 1
2
particles with the following entangled state

vector which is a coherent superposition of two state vectors:

�� (c)(T ) = 1√
2

(

( �φ (1)(T )⊗ �α (1)
z

)⊗ ( �φ (2)(T )⊗ �β (2)
z

)

+ ( �ψ (1)(T )⊗ �β (1)
z

)⊗ ( �ψ (2)(T )⊗ �α(2)z
)

)

. (34.8)

A measurement of z-component spin of particle 2 resulting in the
value−�/2 will project the above state from

�� (c)(T ) to
(

�φ (1)(T )⊗ �α (1)
z

)

⊗
(

�φ (2)(T )⊗ �β (2)
z

)

. (34.9)

This means that the state of particle 1 is also forced to change,

e.g., its spin is now in state described by state vector �α (1)
z , instead

of a combination of �α (1)
z and �β (1)

z before the measurement. The

situation is similar to that of the de Broglie paradox in that a non-

local effect takes place with the action on particle 2 affecting particle

1 at a distance away. This distant correlations between two or

more particles are known as the EPR paradox or entanglement.
Opposite to entanglement is a process of decoherence which may
provide an understanding to some of the paradoxes discussed so

far.21

20Wan pp. 620–628.
21Wan pp. 581–633 for attempts to understand distant correlations in terms of

asymptotically separable quantummechanics.
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34.7 QuantumMeasurement

34.7.1 The Measurement Problem

The interpretation of the formalism of quantum theory is based

on the results from measurements. Unfortunately the generally

accepted formalism of quantum mechanics is lacking in details on

the subject of measurement. The projection postulate takes a “black

box” approach and it does not make any reference to any measuring

process nor the duration of the process. It is highly controversial for

the following reasons:

1. Mathematical problem The transition from the initial state to

a final state in a single measurement act is implicitly assumed to

be instantaneous in the projection postulate. It follows that there

can be no dynamical evolution process for the transition from the

initial state to a final state and no dynamical equation for such

measuring processes. As von Neumann pointed out the projection

postulate involved discontinuous and non-causal changes while

quantum evolution given by Postulates 29.1.2(SP) and 29.2.1(HP) is

continuous and causal.22 The transition from the initial to the final

state as shown in Eq. (31.1) is probabilistic and irreversible. This

contrasts sharply with the deterministic and reversible quantum

evolution given by Postulates 29.1.2(SP) and 29.2.1(HP). The

transition from an initial pure state to a classical mixture of state
shown in Eq. (31.1) precludes a unitary evolution process which

would produce a final pure state from any given initial pure state.

2. Conceptual Problems The instantaneous change of the initial

state �φi to a final state �φ f causes the collapse or reduction of the

wave packet and various non-local effects, e.g., the de Broglie and

EPR paradoxes.23

3. Non-universal applicability Not all measurements obey this

postulate. By detecting a photon (a photon position measurement)

we may also destroy the photon, i.e., there is no projection of an

22von Neumann p. 349.
23For more discussion see the book edited by Cini, M and Levy-Labond, J. M which

contains a number of review articles.
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initial state of the photon to a final state of the photon. Instead

we have an annihilation of the photon. The position obtained

by the measurement is not the position of the photon after the

measurement since the photon no longer exists.

4. Measuring devices and measuring processes A measuring device

should have some quantum properties so that it can be coupled to

a quantum system to perform a measurement. It should also have

some classical properties in that it must produce results in the form

of definite values. This means that a measuring device cannot be an

orthodox quantum system.24 We need to establish a theory for the

kind of systems which would embody these properties of measuring

devices.

A great deal of effects have beenmade to tackle themeasurement

problem, with numerous articles and monographs devoted on this

subject.25 Instead of the “black box” approach of the projection

postulate one should examine some simple examples to illustrate the

problems involved. This should include an investigation into some

actual physical measurement processes. We shall demonstrate such

an approach in the following section.

34.7.2 Measuring Devices and Processes

34.7.2.1 Introduction

Consider an orthodox quantum systemwith a two-dimensional state

space �H(q). Let ̂A(q) be an observable of such a system which has

two orthonormal unit eigenvectors �ϕ− and �ϕ+ corresponding to

eigenvalues a− and a+ , respectively. Suppose we want to measure
this observable when the system is state φs given by the following

state vector:

�φ = c− �ϕ− + c+ �ϕ+, | c−|2 + | c+|2 = 1. (34.10)

This is a pure state, being a coherent superposition of states ϕs−
and ϕs+. In this state ̂A(q) does not possess a value. We need to

24An orthodox quantum system is described by Definition 26.1(1). A quantum system

with a superselection rule is not an orthodox quantum system.
25Jauch pp. 160–185. Busch, Lahti and Mittelstaedt. Auletta, Fortunato and Parisi

Chapter 9. Wan §3.5 and §3.6.
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0

a+a−
coupling

system in state

fs := c− φ− + c+ φ+

0

a+a−
system in state

φs+ := φ+

Figure 34.1 Coupling of quantum system and measuring device.

couple the quantum system to a measuring device which will force

the quantum system into a classical mixture of states ϕs− and ϕs+,
i.e., the system is forced into a pure state, either ϕs− or ϕs+ after

each measurement act. It would then possess a value. One way to

achieve such a transition is to require the measuring device and the

measuring process to have the following two properties:

P34.7.2(1) The measuring device should be a mixed quantum

system (see Definition 32.1(4)) capable of coupling to an orthodox
quantum system under measurement to form a compound system.

P34.7.2(2) The coupling interaction should be such that the

compound system inherits the superselection rule of the measuring

device which would lead to the transition from a coherent

superposition to a classical mixture to achieve a measurement.

P34.7.2(3) The first diagram in Fig. 34.1 above shows that at the

start of the measurement the measuring device on the right has its

pointer in the neutral 0 position.

The quantum system on the left is in a coherent superposition

of ϕs− and ϕs+ given by Eq. (34.10). The second diagram in Fig. 34.1

shows that at the completion of the measurement the quantum
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system is in state ϕs+ and the pointer has rotated to the position on
the right, a position showing the value a+.

34.7.2.2 Mathematical formulation

A formulation of the above measuring process is set out below26:

1. We adopt the example in §32.3 as a model for our measuring
device:

(1) The model system possesses a superselection rule with three

one-dimensional supersectors �S (−), �S (0) and �S (+) spanned by
three corresponding unit vectors �η (−), �η (0) and �η (+).27 In other
words, the state space of the system is a direct sum of these

subspaces, i.e., the state space is �H (m) in Eq. (32.11).

(2) Observables are represented by decomposable selfadjoint

operators on �H (m), i.e., ̂B (m) in Eq. (32.19). These operators are

also diagonalisable since all supersectors are one-dimensional.

(3) We can define a pointer observable in terms of a selfadjoint
diagonalisable operator ̂B (m)

po on �H(m) which has �η (−)⊕, �η (0)⊕
and �η (+)⊕ as its eigenvectors corresponding to eigenvalues

a−, a0, a+, respectively, i.e.,28

̂B (m)
po = a− ̂II (−) ⊕ a0 ̂II (0) ⊕ a+ ̂II (+). (34.11)

The vector �η (0)⊕ corresponds to the pointer of the measuring
device in the neutral 0 position while �η (−)⊕ and �η (+)⊕
correspond, respectively, to the pointer pointing to the left at

the value a− and right at the value a+. These vectors represent
pointer states corresponding to the pointer pointing in different

positions.

(4) There is no coherent superposition of different pointer states.

2. At the start of measurement the measuring device is coupled to

the orthodox system to form a compound system. The state space

26Wan pp. 384–391. Beltrametti and Cassinelli (1981), Bub (1988), and van Fraassen

(1991).
27See §32.3 for a discussion of supersectors.
28These vectors are defined by Eqs. (32.14) to (32.16).
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�H(q,m) of the compound system is the following tensor product:

�H(q,m) := �H(q) ⊗ �H(m) = �H(q) ⊗ ( �S (−) ⊕ �S (0) ⊕ �S (+)). (34.12)

This tensor product space has the following direct sum decomposi-

tion:

�H(q,m) = ( �H(q) ⊗ �S (−))⊕ ( �H(q) ⊗ �S (0)
)⊕ ( �H(q) ⊗ �S (+)). (34.13)

3. On account of P34.7.2(2) we assume that the interaction

between the quantum system and the measuring device is such that

the above direct sum decomposition generates a superselection rule

for the compound system with

( �H(q) ⊗ �S (−)),
( �H(q) ⊗ �S (0)

)

,
( �H(q) ⊗ �S (+)) (34.14)

as supersectors. It is in this sense that we say the compound system

inherits the superselection rule of the measuring device. Physically

this means that the interaction between measuring device and the

quantum systemwould destroy the coherence of the two pure states

ϕs− and ϕs+ of the quantum system. In otherwords, the following state

vector

c−
( �ϕ− ⊗ �η (−)

)⊕ c+
( �ϕ+ ⊗ �η (+)

)

(34.15)

describes a classical mixture of states corresponding to state vectors

�ϕ− ⊗ �η (−) and �ϕ+ ⊗ �η (+).
4. Suppose at the start of measurement at t = 0 the compound

system is in a state described by the following vector:

��(q,m)(0) := �φ ⊗ �η (0)⊕ = (

c− �ϕ− + c+ �ϕ+
)⊗ �η (0)⊕. (34.16)

This vector which is in the supersector �H(q)⊗ �S (0) represents a pure

state with ϕs− and ϕs+ in a coherent superposition. The observable
̂A(q) of the quantum system does not possess a value in this pure

state.

5. We need to engineer an interaction to evolve the state vector

in Eq. (34.16) into the state vector in Eq. (34.15) at the end of

a measuring process at time t = T . This can be done with an
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evolution operator generated by an operator onH(q,m) which is not

decomposable. The following operator satisfies our need:

̂H (q,m) := ρ
(

̂P (q)− ⊗ ̂L(m)− + ̂P (q)+ ⊗ ̂L(m)+
)

, ρ ∈ IR , (34.17)

where ̂L(m)− , ̂L(m)+ are defined by Eqs. (24.78) and (24.79), and

̂P (q)− = | �ϕ−〉〈 �ϕ−|, ̂P (q)+ = | �ϕ+〉〈 �ϕ+|. (34.18)

All these operators are selfadjoint. We now consider the evolution of

the compound system in the Schrödinger picture with ̂H (q,m) as the

Hamiltonian. The evolution operators are given by Eq. (29.9), i.e.,

̂U ( ̂H (q,m), t) := exp
(− i– ̂H (q,m) t

)

. (34.19)

The initial state vector in Eq. (34.16) will evolve according to

��(q,m)(t) := ̂U ( ̂H (q,m), t) ��(q,m)(0)

= ̂U ( ̂H (q,m), t)
{(

c− �ϕ− + c+ �ϕ+
)⊗ �η (0)⊕} . (34.20)

We also have, on account of Stone’s theorem, the following

Schrödinger equation:

i�
d ��(q,m)(t)

dt
= ̂H (q,m) ��(q,m)(t). (34.21)

For the initial state vector ��(q,m)(0) the solution of Eq. (34.21) is

��(q,m)(t) = c− �ϕ− ⊗
(

cos(ρt/�) �η (0)⊕ − i sin(ρt/�) �η (−)⊕)

+ c+ �ϕ+ ⊗
(

cos(ρt/�) �η (0)⊕ − i sin(ρt/�)η (+)⊕). (34.22)

At time t = T = π�/2ρ the solution becomes29

��(q,m)(T ) = −i (c− �ϕ− ⊗ �η (−)⊕ + c+ �ϕ+ ⊗ �η (+)⊕
)

. (34.23)

29The phase factor−i has no significance in the interpretation of the state.
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6. The interpretation is as follows:

(1) Physically we can visualise the measuring device having a

pointer which would be at a neutral position at the start of

the measurement. This situation is represented by the vector
��(q,m)(0) in Eq. (34.16).

(2) The Hamiltonian ̂H (q,m) which generates the evolution of the

compound system is not an observable of the compound system.

(3) Under the interaction between the orthodox quantum system

and the measuring device due to the Hamiltonian ̂H (q,m) the

initial state vector ��(q,m)(0) evolves into ��(q,m)(T ) at the end
of the measuring process at t = T . The final vector ��(q,m)(T )
represents a classical mixture of pure states described by the

state vectors �ϕ− ⊗ �η (−)⊕ and �ϕ+ ⊗ �η (+)⊕ on account of the

superselection rule. Physically this corresponds to the pointer

pointing the left or to the right at the end of each measurement

with probabilities |c−|2 and |c+|2, respectively.
(4) Observable ̂A(q) would possess a value after each measurement.

The value would be a− if the pointer swings to the left and a+ if
the pointer swings to the right.

(5) The duration of measurement T can be made very short by

choosing the parameter ρ to be suitably large.

34.7.2.3 Concluding remarks

The above model gives us an understanding of quantum mea-

surement beyond the projection postulate. However, actually mea-

surement processes are more complicated than the simple model

described above. An example is the case of position measurement.

Let us look into how position measurement is achieved physically.

One way to measure position is to use a photographic plate30: The

physical processes involved is well-known31:

(1) The interaction stage A photographic plate is composed of a

large numbers of grains each of which is formed by billions

30Wan pp. 310–330. Geiger counter and cloud chamber work in a similar way.
31Hey and Walters pp. 19–20. Mees.
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of silver bromide molecules. With sufficient energy an ionizing

particle, the quantum system whose position is to be measured,

coming into the photographic plate may interact with a few

silver bromide molecules in a grain of billions of silver bromide

molecules. The interaction may lead to these few silver bromide

molecules to be ionised, i.e., the silver atoms get separated

from the molecules. The ionisation process is describable as a

quantummechanical evolution process.

(2) The magnification stage Having been separated out from the

molecules these few silver atoms will form a small but stable

cluster of neutral silver atoms. Such a cluster is known as

a latent image, an image not yet visible to the naked eye.

The photographic plate can then be developed during which

a silver cluster can cause all the silver atoms in the grain

to separate out to form a visible grain of silver atoms. This

magnification process does not have to follow the interaction

stage immediately, i.e., a photographic plate can be developed

a long time after it was exposed. In other words, the measuring

process is effectively completed when the ionisation process is

achieved.

So, to establish a theory for position measurement, we have to have

a theory for the ionisation of process.32

34.8 Quantum Theory, Relativity and Photons

There are many attempts to render quantum theory compatible

with Special Relativity with only various degree of success. As yet

we do not have a totally satisfactory unification of two of the most

amazing and successful theories in physics. The problem becomes

even more problematical when it comes to combine quantum

theory with General Relativity. We shall not consider the theory

of massless particles like photons here.33 This book deals with

massive particles and non-relativistic theories. Massless particles

32Wan pp. 324–327.
33Most experiments on entanglement are performed on photons.
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are necessarily relativistic in nature. There are fundamentally new

issues to be addressed. Even the definition of the position observable

of a massless particle is very complicated.34 Take the example of

photons. Any questions on the position, distances travelled and

the “size” of photons are difficult to answer. Consider intuitively

the situation in Bohr’s theory of the hydrogen atom which says

that

(1) A photon is emitted by the atom when the orbiting electron

makes a transition from a higher energy orbit to a lower energy

orbit.

(2) The reverse process also takes place, i.e., the atom can absorb

an appropriate amount of energy in the form of a photon. As

a result the orbiting electron makes a transition from a lower

energy orbit to a higher energy orbit.

The atom is of a linear dimension of 0.1 nanometre. Then the

question on the size of the photon emitted presents itself. For the

sake of argument, it seems to be intuitively reasonable to assume

the size of the photon to be of the order of its wavelength which

has a linear dimension of several hundred nanometres. Then one

has a situation of a tiny atom emitting something several thousand

times bigger than itself. This is like an explosion which produces

a shock wave much bigger than the explosive which the source of

the explosion. Even harder to imagine is the absorption process,

i.e., a tiny atom has to “swallow” something several thousand

times bigger than itself! Similar problems emerge when considering

how a photon travels in matter. In condense matter the inter-

atomic distances are of the order of nanometres. It is not easy

to visualise how a photon, which is huge compared with inter-

atomic distances, travels in the free space between atoms and

how one can measure how fast such a huge photon would travel

between two atoms separated by only a fraction of the size of the

photon.35

34Kraus (1977), Schroeck (1996), and Bacry (1988).
35In classical physics this is not a problem since the distances involved are huge

compared with the wavelength of the photon.
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Exercise and Problem

Q34(1) Verify that ��(q,m)(t) in Eq. (34.22) satisfies the initial

condition in Eq. (34.16) and the Schrödinger equation

(34.21).
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Chapter 35

Harmonic and Isotropic Oscillators

35.1 Harmonic Oscillators

Harmonic oscillators are important in physical applications and in

demonstrating the working of the postulates of quantum formalism.

A classical harmonic oscillator has a state space, i.e., its phase

space, coordinated by the oscillator’s position x and momentum
p. Observables correspond to real-valued functions on the state

space. The evolution of the state is determined by Hamilton’s

equations, which reduce to Eq. (27.12). The time dependence

of the state automatically determines the time dependence of

observables.

The description of a quantum harmonic oscillator is fundamen-

tally different from that of a classical oscillator:

1. States Postulate 25.1(PS) applies. The state space of a quantum

harmonic oscillator is an infinite-dimensional Hilbert space. A pure

state φs corresponds to a unit vector �φ of the Hilbert space. A state
cannot be determined by two numbers as in the classical case.

2. Observables Postulate 26.1(OV) applies. Quantum observables

correspond to selfadjoint operators in the state space. Moreover, we

consider a quantised oscillator as an orthodox quantum system.

Quantum Mechanics: A Fundamental Approach
K. Kong Wan
Copyright c© 2019 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-65-9 (Hardcover), 978-0-203-70241-3 (eBook)
www.jennystanford.com

http://www.jennystanford.com
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3. Explicit representation To obtain explicit expressions to

describe the state and observables we have to choose an explicit

Hilbert space to represent the state space. In the coordinate

representation the Hilbert space is chosen to be �L2(IR) defined by
the space L2(IR) of square-integrable complex-valued functions of
the position variable x . A generally accepted choice for the position
and momentum operators are x̂ and p̂, a choice consistent with
Postulate 27.2(CQ) on quantisation.1 The Hamiltonian is initially

quantised in accordance with Eq. (27.93). This results in the

operator

̂H ho = 1

2m
p̂ 2 + 1

2
mωx̂ 2, (35.1)

defined on the domain D( ̂H ho) = D( p̂ 2) ∩ D(x̂ 2). This is the
operator in Eq. (19.54). Its restriction to the Schwartz space �Ss(IR)
is denoted by2

̂H ho �Ss =
1

2m
p̂ 2�Ss +

1

2
mωx̂ 2�Ss , (35.2)

This operator is essentially selfadjoint with its unique selfadjoint

extension equal to ̂H ho.
3 The quantised operator is therefore ̂H ho.

This quantised operator is well-known to have a discrete set

of nondegenerate eigenvalues eigenvalues En corresponding to a
complete orthonormal set of eigenvectors �ϕn, i.e., we have.4

̂H ho �ϕn = En �ϕn, En =
(

n+ 1

2

)

�ω, (35.3)

where n = 0, 1, 2 . . . . These eigenvectors generate a complete

orthogonal family of eigenprojectors ̂P �ϕn = | �ϕn〉〈 �ϕn|.
4. Measurement and probability distribution Postulates

28.1(PDDO) and 30.1.1(PPDO) apply. A measurement will have to

be performed to yield a value of an observable. This will generally

cause a change of the initial state. As an example consider energy

measurement. There are two distinct cases:

1See Eq. (27.78).
2 p̂ �Ss and x̂ �Ss are the restrictions of p̂ and x̂ to the Schwartz space �Ss(IR) previously
denoted by p̂ �Ss (IR) and x̂ �Ss (IR). See Eq. (27.94) and its footnote.
3Boretti p. 401 (the expressions for A∗ and A have a different sign). We shall discuss
this further in §35.2.2. See also comments after Eq. (35.15).
4See §35.2 for a derivation of these values.
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(1) If the initial state ϕs2 is given by the eigenvector �ϕ2 in Eq. (35.3)
then an energy measurement will yield the value E2 = 5

2
�ω

and the state vector �ϕ2 will remain unchanged during the

measurement, i.e., the state vector before themeasurement, will

remain the state vector after the measurement. In this case the

measured result E2 can be predicted with certainty from the

initial state before the measurement, a situation similar to the

case of a classical measurement. The oscillator is said to possess

the value E2 in state ϕs2.

(2) If the initial state φs is given by a state vector �φ which is not an

eigenvector of the Hamiltonian, e.g.,5

�φ = 1√
3
�ϕ1 +

√

2

3
�ϕ2. (35.4)

Then Postulate 28.1(PDDO) tells us that

(a) The oscillator in state φs does not possess an energy

value. We cannot predict with certainty what value a

measurement will give, it could be E1 or E2.

(b) We cannot predict with certainty what the final state will

be after a measurement. It depends on the result of the

measurement. If a measurement results in the value E2,
then according to Postulate 30.1.1(PPDO) the state after

will be ϕs2 corresponding to state vector �ϕ2.
(c) We can predict the probability distribution of measured

results En and the expectation value. The probabilities are
given by 〈 �φ | ̂P �ϕn �φ 〉.6 Explicitly we have

℘Hho(φs , E1) = 1/3, (35.5)

℘Hho(φs , E2) = 2/3, (35.6)

℘Hho(φs , En) = 0 if n �= 1, 2. (35.7)

The expectation value

E(Hho, φs) =
∞
∑

n=0
En ℘Hho(φs , En) = 13

6
�ω. (35.8)

We can verify that E(Hho, φs) = 〈 �φ | ̂H ho �φ 〉.
5This means that Ĥ ho �φ �= c �φ for any c ∈ IR .
6The eigenvalues are nondegenerate so that P̂ Ĥ ho (En) = P̂ �ϕn .
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The position and momentum of the oscillator are continuous

observables. The discussion in §28.3 and §28.3.3 remains valid here
since the discussion does not depend on any particular physical

system.

35.2 Energy Eigenvalues and Eigenvectors

35.2.1 Derivation

The idea is to introduce a pair of annihilation and creation operators

â and â† in the Hilbert space �L2(IR) in terms of linear combinations
the position and momentum operators x̂ and p̂. A selfadjoint

number operator ̂N = â†â can then be constructed to relate to the
Hamiltonian ̂H ho in such away that the eigenvalues and eigenvectors

of ̂H ho can be obtained from that of the number operator.

Let us start with the defining expressions for â and â†, i.e.,

â :=
√

λ

2

(

x̂ + i
mω

p̂
)

, â† :=
√

λ

2

(

x̂ − i
mω

p̂
)

, (35.9)

where λ = mω/�. Both these operators are defined on the domain

D( p̂ ) ∩ D(x̂ ). Moreover these operators are adjoint to each other,
and they are therefore closed operators.7

The operators â and â† satisfy properties P27.9(1) to P27.9(4)
of a pair of creation and annihilation operators presented in §27.9,
i.e., we have the following properties8:

P35.2.1(1) These two operators are defined on the same dense

domain and they are the adjoint of each other.

P35.2.1(2) They obey the following commutation relation9

[ â, â† ] = ̂II . (35.10)

7Takhtajan pp. 103–104. We cannot just use Eq. (17.95) to prove this since the

operators are unbounded. However, we can follow the comments in §19.3.4 on the
proof of selfadjointness of p̂(IR) to verify this.
8See Fano pp. 354–360 for an explicit derivation.
9The equality holds only in the domain D( p̂2) ∩ D(x̂2) since the product â†â is
involved (see the domain for N̂ in Eq. (35.14)).
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P35.2.1(3) There exists a vector �ϕ0 which â would annihilate, i.e.,
â �ϕ0 = �0 or

(

x̂ + i
mω

p̂
)

�ϕ0 = �0. (35.11)

This vector corresponds to the normalised solution ϕ0(x) of the
following equation:

(

x + �

mω

d
dx

)

ϕ0(x) = 0. (35.12)

Expliclty we have

ϕ0(x) =
(

λ

π

) 1
4

e−
1
2
λ x2 , λ = mω

�
. (35.13)

P35.2.1(4) The operators â and â† are irreducible since x̂ and

p̂ are irreducible in �L2(IR).10
It follows that â and â† are a pair of annihilation and creation

operators in �L2(IR). The number operator ̂N := â†â is selfadjoint.
Explicitly we have11

̂N := â†â = mω

2�

(

x̂ 2 + 1

(mω)2
p̂ 2 − �

mω

)

. (35.14)

This operator is defined on the domain D( p̂2) ∩ D(x̂2). The
Hamiltonian ̂H ho in Eq. (35.1) is related to ̂N by12

̂H ho = �ω

(

̂N + 1

2

)

. (35.15)

We can see clearly that this Hamiltonian is selfadjoint and it

possesses a discrete and nondegenerate spectrum

{

En = (n+ 1/2)�ω : n = 0, 1, 2, 3 . . .
}

, (35.16)

with a corresponding complete orthonormal set eigenvectors

�ϕn = 1√
n!

(

â†
)n �ϕ0. (35.17)

10See E20.7(1). Jauch p. 214.
11We have expressed �/mω ÎI as �/mω for brevity.
12Takhtajan p. 104.
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The corresponding functions ϕn(x) are obtained from the function

ϕ0(x) in Eq. (35.13) by successive differentiations which produce
functions of the form

ϕn(x) = ϕ0(x)× (polynomial of order n in x). (35.18)

Detailed calculations show that these eigenfunctions, when nor-

malised, are the same as the Hermite functions ϕHn(x) in Eq.

(16.18).13 Hencewe shall denote �ϕn in Eq. (35.17) by �ϕHn and rewrite

the equation as14

�ϕHn =
1√
n!

(

â†
)n �ϕH0 . (35.19)

Equations (16.22) to (16.23) apply, i.e.,

â �ϕH0 = �0, (35.20)

â �ϕHn =
√
n �ϕH (n−1) , n ≥ 1 (35.21)

â † �ϕHn =
√
n+ 1 �ϕH (n+1) n ≥ 0. (35.22)

We can appreciate the concept of creation and annihilation

clearly here. When acting on the state vector �ϕHn having energy

En the operator â leads to a new state vector �ϕH (n−1) with a lower

energy value En−1. Hence an amount of energy En − En−1 = �ω is

annihilated. In particular, acting on the ground state vector �ϕH0 the

operator destroys the ground state itself together with the ground

state energy E0. The operator â† does the exact opposite. When

acting on the state vector �ϕHn having energy En the operator â
† leads

to a new state vector �ϕH (n+1) with a higher energy value En+1, e.g.,
acting on the ground state vector �ϕH0 the operator will lead to the

first excited state vector �ϕH1 . An amount of energy En+1 − En = �ω

is created.

35.2.2 Mathematical Discussion

It is instructive to follow the procedure set out in P27.2(4) more

closely in quantising the harmonic oscillator Hamiltonian. This

13Greiner p. 118 and Fano pp. 355–360. Jauch pp. 211–214. Moretti pp. 401–402. See
Greiner p. 119 and Zettili pp. 232–234 for explicit examples.

14As pointed out in E16.2.2(4) these vectors form an orthonormal basis for �L2(IR).
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means that we should introduce the annihilation and creation

operators in the Schwartz space �Ss(IR) to start with, i.e., we define
two new operators â �

�Ss and â �Ss on
�Ss(IR) by15

â �Ss :=
√

λ

2

(

x̂ �Ss +
i
mω

p̂ �Ss

)

. (35.23)

â �
�Ss :=

√

λ

2

(

x̂ �Ss −
i
mω

p̂ �Ss

)

, (35.24)

These two operators satisfy the commutation relation16

[ â �Ss , â
�
�Ss ] = ̂II �Ss . (35.25)

We also have
̂N �Ss := â �

�Ss â �Ss , (35.26)

̂H ho �Ss = �ω
(

̂N �Ss +
1

2

)

. (35.27)

Then:

(1) We want to find appropriate extensions of â �Ss and â
�
�Ss to serve

as annihilation and creation operators. What we need is to

find a complete orthonormal set of vectors within �Ss(IR) such
that these extensions would satisfy Definitions 17.10(1) and

17.10(2). As expected from the discussion in the preceding

subsection the desired complete orthonormal set is the set

of vectors �ϕHn corresponding to the Hermite functions in Eq.

(16.18). Since Hermite functions ϕHn(x) belong to Ss(IR) their
correspoding vectors �ϕHn would belong

�Ss(IR).
(2) The operators â �Ss and â

�
�Ss act like â and â

† on �Ss(IR).17 It follows
from Eqs. (35.20) to (35.22) that18

â �Ss �ϕH0 = �0, (35.28)

â �Ss �ϕHn =
√
n �ϕH(n−1) , n = 1, 2, 3 . . . , (35.29)

â �
�Ss �ϕHn =

√
n+ 1 �ϕH(n+1) , n = 0, 1, 2, 3 . . . . (35.30)

15These are restrictions of â and â† in Eq. (35.9). Because of Eqs. (17.97) and (17.101)
the operator â �

�Ss is not the adjoint of â �Ss , hence the notation (see Moretti p. 402).
Here x̂ �Ss and p̂ �Ss are the same as x̂ �Ss (IR) in E17.6(2) and p̂ �Ss (IR) in Eq. (17.48) for
the restrictions of x̂ and of p̂ to �Ss(IR).

16Here ÎI �Ss is the restriction of ÎI to �Ss . The equality holdswithout further restrictions
17The operators â and â † are defined by Eq. (35.9).
18See Eqs. (16.21) to (16.23).
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(3) We can now extend the operation of â �
�Ss and â �Ss to the domain

19

�D = { �φ ∈ �L2(IR) :
∞
∑

n=0

∣

∣〈 �ϕHn | �φ 〉
∣

∣

2 n < ∞}. (35.31)

The above domain is introduced so that the extended operators,

denoted by â �
�D , and â �D , acting on

20

�φ =
∞
∑

n=0
cn �ϕHn ∈ �D, cn = 〈 �ϕHn | �φ 〉 (35.32)

would lead to a new vector with a finite norm, e.g., the square of

the norm of the vector

â �D �φ =
∞
∑

n=0
cn â �D �ϕHn =

∞
∑

n=1
cn
√
n �ϕH(n−1) (35.33)

given by

||â �D �φ ||2 = 〈â �D �φ | â �D �φ 〉 =
∞
∑

n=1
|cn |2 n (35.34)

is finite. Following the discussion on Eqs. (17.122) to (17.124)

we can conclude that â �D and â �
�D are the adjoints of each other,

e.g., â �
�D = â †

�D . It follows that â �D and â †
�D constitute a pair of

annihilation and creation operators.

(4) Their associated number operator ̂N �D := â†�Dâ �D is selfadjoint.

The operator admits �ϕHn as eigenvectors corresponding to

eigenvalue n and it acts on the domain21

�D( ̂N �D) :=
{ �φ ∈ �L2(IR) :

∞
∑

n=0

∣

∣〈 �ϕHn | �φ 〉
∣

∣

2 n2 < ∞}. (35.35)

This operator is a selfadjoint extension of ̂N �Ss . It follows that

�ω
(

̂N �D + 1/2
)

. (35.36)

is a selfadjoint extension of ̂H ho �Ss in Eq. (35.2). This selfadjoint
extension is unique since ̂H ho �Ss is essentially selfadjoint. The
essential selfadjointness of ̂H ho �Ss can be proved as follows:

19Jauch p. 45.
20Bearing in mind that �ϕHn form an orthonormal basis for �L2(IR).
21This domain is established by the same reasoning which establishes the domain �D
in Eq. (35.31).
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(a) First we note that ̂H ho �Ss can act on all the vectors �ϕHn since

they are in �Ss(IR). Moreover these vectors are eigenvectors
of ̂H ho �Ss .

(b) Being eigenvectors they are automatically analytic vectors

of ̂H ho �Ss . Since these vectors form a complete set it follows

from Theorem 19.5(1) that ̂H ho �Ss is essentially selfadjoint.

(5) Following P27.2(4) the quantised Hamiltonian for the oscillator

is taken to be the unique selfadjoint extension of ̂H ho �Ss given
in Eq. (35.36). This selfadjoint extension can be identified with
̂H ho in Eq. (35.15) since they are both selfadjoint and they have

the same eigenvalues and eigenvectors.22

In the remainder of this chapter we shall adopt an intuitive

discussion using the results and notation of §35.2.1 to avoid

excessive mathematical discussion.

35.3 Time Evolution

35.3.1 In the Schrödinger Picture

A classical oscillator would execute periodic motion around the

origin. If the particle is placed at rest at a position xc(0) to the right
of the origin at time t = 0 it would move to position xc(t) with
momentum pc(t) at time t > 0 given in Eq. (27.13). The evolution

of a quantised harmonic oscillator is more complicated. There are

two clear cases:

1. Since Hamiltonian ̂H ho possesses a discrete set of eigenvalues

En0 with corresponding eigenvectors �ϕHn the evolution of an

eigenstate takes a simple form in the Schrödinger picture, i.e., if at

time t = 0 the state vector �φHn(0) is equal to the eigenvector �ϕHn
then, in accordance with Eq. (29.4), the evolved state vector is given

by

�φHn(t) = e− ¯i Ent �ϕHn. (35.37)

22They would have the same spectral decomposition. This shows that the domain in

Eq. (35.35) is the same asD(Ĥ ho) = D( p̂2) ∩D(x̂2).
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These states are known as stationary states since these states

generate position probability distribution functions which are time-

independent. They also lead to time-independent expectation values

for observables which are not explicitly time-dependent

2. If the initial state vector is not an eigenvector of ̂H ho, the

solution is more complicated. One way to find the evolved state

vector is to use Eq. (29.5). Alternativelywe can solve the Schrödinger

equation directly. As an example consider an initial state at t =
0 given in the coordinate representation by the following wave

function centered at x = xc(0):

φ(x , 0) =
(

λ

π

) 1
4

exp

(

−1
2
λ
(

x − xc(0)
)2
)

, λ = mω

�
. (35.38)

The evolved the wave function φ(x , t) is

φ(x , t) = C (t) exp
(

i
�
pc(t)x − 1

2
λ
(

x − xc(t)
)2
)

, (35.39)

where

xc(t) = xc(0) cosωt, (35.40)

pc(t) = −mωxc(0) sinωt, (35.41)

C (t) =
(

λ

π

) 1
4

exp

(

− i
�

(

1

2
xc(t)pc(t)+ 1

2
�ωt

))

. (35.42)

In other words, φ(x , t) is a solution of the Schrödinger equation
satisfying the initial condition in Eq. (35.38). The corresponding

position probability density function is

|φ(x , t)|2 =
(

λ

π

) 1
2

exp

(

−λ
(

x − xc(t)
)2
)

. (35.43)

This position probability density function is time-dependent and at

time t it reaches the maximum at x = xc(t) which can be regarded
as the center of the wave packet. We can visualise the motion of the

wave function φ(x , t) as an oscillating wave packet shown in the plot
of |φ(x , t)|2 versus x below.
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xc(t)

|f(x, t )|2

xc(0)

|f(x, 0)|2

0

Figure 35.1 Oscillating wave packet.

Figure 35.1 has the following interpretation:

(1) The initial wave packet φ(x , 0) is centered at x = xc(0) which is
at a maximum distance on the right of the origin.

(2) As t increases the center of the wave packet at x = xc(t) moves
left.

(3) As t increases further the center of the wave packet wouldmove
through the origin x = 0 to the left until it reaches a maximum

distance away from the origin at x = −xc(0).
(4) As t continues to increase the center of the wave packet would

move back to the right until it reaches x = xc(0).

(5) As t increases still further the center of the wave packet

would oscillate cosinusoidally about the origin like a classical

harmonic oscillator. This is a rare example of a wave packet

oscillating in time without dispersing.

The physical interpretation of themotion of the wave function based

on the time dependence of expectation values is as follows:

(1) The position expectation value is given by23

E
(

x̂ , �φ(t)) =
∫ ∞

−∞
φ(x , t)∗x φ(x , t) dx = xc(t). (35.44)

(2) The momentum expectation value is given by

E
(

p̂, �φ(t)) =
∫ ∞

−∞
φ∗(x , t)

(

−i� d
dx

)

φ(x , t) dx = pc(t).

(35.45)

23Here �φ(t) denotes the vector defined by the wave function φ(x , t) in Eq. (35.39).
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(3) The energy expectation value is given by

E
(

̂H ho, �φ(t)
) =

∫ ∞

−∞
φ∗(x , t)

(

− �
2

2m
d2

dx2
+ 1

2
mω2x2

)

φ(x , t) dx

= 1

2m
p2c (t)+

1

2
mω2 x2c (t)+

1

2
�ω. (35.46)

This energy expectation value which differs from the classical

value by an additional term 1
2
�ω is conservedwhile the position

and momentum are not conserved. This feature can be seen

more clearly in the Heisenberg picture.

35.3.2 In the Heisenberg Picture

The Heisenberg picture describes the evolution of the system in

terms of the evolution of observables, particularly in terms of

the time dependence of position and momentum. This is not a

strange way to describe evolution as this is how evolution is

described in classical mechanics. Let us examine how the position

and momentum operators depend on time:

(1) The Hamiltonian at time t is given in accordance with Eq.

(29.31) by24

̂H hoHei(t) = 1

2m
p̂ 2
Hei
(t)+ 1

2
mω2 x̂ 2

Hei
(t), (35.47)

(2) The Heisenberg equations for position and momentum in Eq.

(29.32) become25

d
dt
x̂Hei(t) =

1

m
p̂Hei(t) or p̂Hei(t) = m

d
dt
x̂Hei(t), (35.48)

d
dt

p̂Hei(t) = −mω2 x̂Hei(t). (35.49)

24The subscript Hei (already used in Eq. (29.35)) signifies quantities in the

Heisenberg picture. This notation aims to avoid confusion with subscript H used

elsewhere, e.g., in the vectors in Eq. (35.19).
25The commutators [ x̂Hei (t), Ĥ hoHei(t) ] and [ p̂Hei (t), Ĥ hoHei(t) ] can be evaluated

using Eq. (29.25).
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(3) Differentiating Eq. (35.48) leads to

d2

dt2
x̂Hei(t) = −ω2 x̂Hei(t). (35.50)

(4) The general solution to the above equation gives us the time

dependence of x̂Hei(t) and p̂Hei(t), i.e., we have

x̂Hei(t) = ̂A cosωt + ̂B sinω, (35.51)

p̂Hei(t) = −mω ̂A sinωt +mω ̂B cosωt, (35.52)

where ̂A, ̂B are time-independent.26 They are determined by

initial conditions which are

x̂Hei(t = 0) = x̂ and p̂Hei(t = 0) = p̂. (35.53)

(a) Initial position at t = 0:

x̂Hei(0) = ̂A ⇒ ̂A = x̂ . (35.54)

(b) Initial momentum at t = 0:

p̂Hei(0) = p̂ = mω ̂B ⇒ ̂B = p̂/mω. (35.55)

(c) Finally we get

x̂Hei(t) = (cosωt) x̂ +
(

sinωt
mω

)

p̂, (35.56)

p̂Hei(t) = (−mω sinωt) x̂ + (cosωt) p̂. (35.57)

(5) We can evaluate the position andmomentum expectation values

at time twith respect to the state vector �φHei(t) = �φHei(0) defined

by the wave function φ(x , 0) in Eq. (35.38) to get

E
(

x̂Hei(t), �φHei(0)
) = 〈 �φHei(0) | x̂Hei(t) �φHei(0)〉 = xc(t), (35.58)

E
(

p̂Hei(t), �φHei(0)
) = 〈 �φHei(0) | p̂Hei(t) �φHei(0)〉 = pc(t). (35.59)

These are the same as those calculated in the Schrödinger

picture in Eqs. (35.44) and (35.45).

26These are time-independent operators, not numerical constants.
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(6) One can explicitly check that the Hamiltonian is time-

independent, despite being a function of the time-dependent

position and momentum operators, i.e.,

̂H hoHei(t) = ̂H ho(0) = 1

2m
p̂ 2 + 1

2
mω2 x̂ 2. (35.60)

It follows that the energy expectation value is conserved.

Equations (35.56) and (35.57) do not appear to have an intuitive

meaning. The difficulty is to visualise the wave packet remaining

stationary while operators are “moving”. To avoid getting into this

kind of difficulties one should not try to look at Eqs. (35.56) and

(35.57) in isolation. By themselves neither the wave function nor

the operators are physical quantities. It is expectation values which

are the directly measurable physical quantities. The meaning of

Eqs. (35.56) and (35.57) should be understood in terms of their

expectation values in Eqs. (35.58) and (35.59). It is notmeaningful to

keep asking whether it should be the wave function or the operators

which are “moving”.

35.3.3 In the Interaction Picture

A harmonic oscillator with charge q is placed in a uniform and static

external electric field of strength E pointing in the +x direction.
With the electrical potential energy taken to be zero at the origin

the classical Hamiltonian of the system is

H = 1

2m
p2 + 1

2
mω2x2 − qE x . (35.61)

This is an interacting system in that the harmonic oscillator is

interacting with an external electric field. The Hamiltonian can be

written as a sum of a free part H0 and an interacting part H ′, where

H0 = 1

2m
p2 + 1

2
mω2 x2, H ′ = −qE x . (35.62)

The quantised Hamiltonian ̂H at time t = 0 can be similarly written

as a sum of a free part ̂H 0 and an interacting part ̂H ′ where

̂H 0 = 1

2m
p̂ 2 + 1

2
mω2 x̂ 2, ̂H ′ = −qE x̂ . (35.63)
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In the Interaction picture we have to consider the evolution of

operators and state separately27:

1. Operators evolve like that of the corresponding operators for

the free system in the Heisenberg picture, i.e., like that of an

unperturbed oscillator in the Heisenberg picture:

(1) For the position and momentum operators we have, from Eqs.

(35.56) and (35.57),

x̂ I (t) = (cosωt) x̂ +
(

sinωt
mω

)

p̂, (35.64)

p̂I (t) = (−mω sinωt) x̂ + (cosωt) p̂. (35.65)

(2) The interaction Hamiltonian is then given by

̂H ′I (t) = −qE
(

(cosωt) x̂ +
(

sinωt
mω

)

p̂
)

. (35.66)

2. The wave function φI (x , t) corresponding to state vector �φ I (t)
satisfies the following equation:

i�
∂

∂t
φI (x , t) = −qE

(

(cosωt)x + sinωt
mω

(

−i� d
dx

))

φI (x , t).

(35.67)

The solution for a given initial wave function φI (x , 0) is easily
verified to be

φI (x , t) = exp

{

qE
i�

(

−sinωt
ω

x+
[

cosωt
mω2

+ A
](

−i� d
dx

))}

φI (x , 0).

where A is a time-independent constantwhich arises from the initial

condition. Letting t = 0 the above equation becomes

φI (x , 0) = exp

{

qE
i�

[

1

mω2
+ A

](

−i� d
dx

)}

φI (x , 0) (35.68)

⇒ A = − 1

mω2
. (35.69)

27We have employed the subscript I to signify quantities in the Interaction picture.
As before we are working in the coordinate representation.
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This results in the following solution:

φI (x , t)

= exp

{

qE
i�

(

−sinωt
ω

x +
[

cosωt
mω2

− 1

mω2

](

−i� d
dx

))}

φI (x , 0).

(35.70)

Looking at the three pictures we can say that

(1) The Schrödinger picture is easier to visualise in terms of a

propagating wave function and convenient for many practical

calculations.

(2) Heisenberg picture with its Heisenberg equation similar to the

Hamilton’s equation is useful in the study of transitions between

classical and quantum mechanics, in many-body systems and

quantum field theory, and in general theoretical analysis.

(3) Interaction picture is useful for interacting systems.

35.4 Isotropic Oscillators

A simple harmonic oscillator is a particle in one-dimensional motion

under a harmonic force. We have similar systems in two and three

dimensions.

Consider a classical particle of mass m in two-dimensional

motion on the x-y plane under a central force. A central force is one
which is derivable from a potential which is a function of the radial

distance r from the origin. The Hamiltonian is of the form

H = 1

2m

(

p2x + p2y
)+ V (r). (35.71)

The particle is a two-dimensional isotropic oscillator if the potential

energy is proportional to r2, i.e., the Hamiltonian is

H2io := 1

2m

(

p2x + p2y
)+ 1

2
mω2r2

= 1

2m

(

p2x + p2y
)+ 1

2
mω2

(

x2 + y2
)

. (35.72)

This Hamiltonian can be rewritten as

H2i so = Hho, x + Hho, y , (35.73)
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where Hho, x is the Hamiltonian of a harmonic oscillator along the
x-axis and Hho, y is one along the y-axis.

This isotropic oscillator can be quantised as follows:

1. Take the state space to be the Hilbert space �L2(IR2, dxdy).28

2. The position x and momentum px can be quantised, respec-
tively, as the operator x̂(IR2) defined in Eq. (17.17) and the operator
p̂x(IR2) defined by Eq. (17.52). We can similarly quantise y and
momentum py as operators ŷ(IR2) and p̂y(IR2).

3. The classical Hho, x and Hho, y are quantised as

̂H sho, x = 1

2m

(

p̂x(IR2)
)2 + 1

2
mω

(

x̂(IR2)
)2
. (35.74)

̂H sho, y = 1

2m

(

p̂y(IR2)
)2 + 1

2
mω

(

ŷ(IR2)
)2
. (35.75)

4. The Hamiltonian of the isotropic oscillator is

̂H 2io = ̂H sho, x + ̂H sho, y . (35.76)

Since �L2(IR2, dxdy) = �L2(IR , dx) ⊗ �L2(IR , dy), as shown in Eq.

(24.60), we can establish the operators in �L2(IR2, dxdy) in terms of
tensor products of operators defined separately on �L2(IR , dx) and
�L2(IR , dy):
(1) The position and momentum operators x̂(IR2) and p̂x(IR2) are

related to x̂ and p̂ in �L2(IR , dx) by Eq. (24.65), i.e.,

x̂(IR2) = x̂(IR)⊗ ̂II y , p̂x(IR2) = p̂(IR)⊗ ̂II y (35.77)

We shall rewrite p̂ in �L2(IR , dx) as p̂x in what follows so as to
distinguish corresponding operator in �L2(IR , dy) which will be
denoted by p̂y .

(2) Following Eq. (35.9) we can introduce a pair of annihilation and

creation operators in �L2(IR , dx)

âx := 1√
2
λ

(

x̂ + i
mω

p̂x

)

, (35.78)

â†x :=
1√
2
λ

(

x̂ − i
mω

p̂x

)

. (35.79)

28See §24.2.2 for notation.
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The associated number operator is ̂Nx = â†x âx . The correspond-
ing operator ̂N⊗x in �L2(IR2, dxdy) is given by Eq. (24.69), i.e.,

̂N⊗x := ̂Nx ⊗ ̂II y . (35.80)

The operator ̂H sho, x in Eq. (35.76) is related to ̂Nx by

̂H sho, x = �ω
(

̂Nx + 1

2

)

⊗ ̂II y . (35.81)

(3) We can repeat the procedure to define a pair of annihilation and

creation operators ây , â†y and the associated number operator
̂Ny = â†yây in �L2(IR , dy). The corresponding number operator
in �L2(IR2, dxdy) is

̂N⊗y := ̂II x ⊗ ̂Ny . (35.82)

(4) The Hamiltonian operator in Eq. (35.76) is the operator defined

in terms of tensor products in Eq. (24.71). This is effectively the

sum of two harmonic oscillator Hamiltonians, one along the x-
axis and the other one along the y-axis.

We can solve the eigenvalue problem of this Hamiltonian with

the help of the annihilation and creation operators âx , â†x , ây , â
†
y

introduced above. Each pair of these operators, e.g., âx and â†x ,
possesses properties P27.9(1), P27.9(2) and P27.9(3). Since the set

of operators x̂ , p̂x , ŷ, p̂y form an irreducible set in �L2(IR2, dxdy)
the two pairs of operators âx , â†x , ây , â

†
y also form an irreducible set

in �L2(IR2, dxdy). Each pair alone does not form an irreducible set in
�L2(IR2, dxdy).
The number operators ̂Nx and ̂Ny would have the same set

of eigenvalues as the number operator ̂N in Eq. (27.123), i.e.,

0, 1, 2, . . . . Let us list some of the properties of these number

operators:

(1) Let �ϕxn and �ϕym be the eigenvectors of ̂Nx and ̂Ny in
�L2(IR , dx) and �L2(IR , dy), respectively. Then

�ϕ⊗n,m := �ϕxn ⊗ �ϕym, n, m = 0, 1, 2, . . . , (35.83)

are the common eigenvectors of ̂N⊗x and ̂N⊗y , i.e., we have

̂N⊗x �ϕ⊗n,m = n �ϕ⊗n,m, ̂N⊗y �ϕ⊗n,m = m �ϕ⊗n,m. (35.84)
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(2) The eigenvalues of the number operators ̂N⊗x and ̂N⊗y are

degenerate, a result predictable by the reducible nature of each

pair of the annihilation and creation operators. Since the two

pairs of annihilation and creation operators together form an

irreducible set the eigenvectors �ϕ⊗n,m constitute a complete

orthonormal set for �L2(IR2, dxdy) so that an arbitrary vector in
�L2(IR2, dxdy) is expressible as a linear combination of �ϕ⊗n,m, i.e.,

�φ⊗ =
∑

n,m

cnm �ϕ⊗n,m. (35.85)

(3) The eigenvalues of the Hamiltonian are

̂H 2i so �ϕ⊗n,m = En,m �ϕ⊗n,m, En,m =
(

n+m+ 1)�ω. (35.86)

The three-dimensional isotropic oscillator can be similarly treated.

In practical applications it is useful to express the eigenvectors

�ϕxn and �ϕym in terms of their corresponding eigenfunctions ϕn(x)
and ϕm(y). The tensor product of �ϕxn and �ϕym becomes the product

ϕn(x)ϕm(y) which are functions of variables x and y.

Exercises and Problems

Q35(1) Verify the results in Eqs. (35.5) to (35.8).

Q35(2) Verify Eq. (35.10).

Q35(3) Verify that ϕ0(x) in Eq. (35.13) satisfies Eq. (35.12).

Q35(4) Obtain the first and the second excited state eigenvectors
from the expression in Eq. (35.19) in terms of ϕH0 (x).

Q35(5) Verify Eq. (35.14) and (35.15).

Q35(6) Verify that φ(x , t) in Eq. (35.39) is normalised and that it
also satisfies the Schrödinger equation for time evolution

of the harmonic oscillator.

Q35(7) Verify Eqs. (35.44), (35.45).

Q35(8) Verify Eq. (35.46).

Q35(9) Using the expressions in Eqs. (35.40) and (35.41) for

xc(t) and pc(t) show that energy expectation value
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in Eq. (35.46) is conserved, i.e., the value is time-

independent. Explain how the expectation value can

approximate the energy of a classical harmonic oscillator.

Q35(10) Verify Eqs. (35.58) and (35.59).

Q35(11) Verify Eq. (35.60) by explicit calculation of ̂H hoHei(t) using
x̂Hei(t) and p̂Hei(t) in Eqs. (35.56) and (35.57).

Q35(12) The Hamiltonian of a forced harmonic oscillator in the
Schrödinger picture is given in the usual notation by29

̂H Sch =
1

2m
p̂ 2
Sch
+1
2
mω2 x̂ 2

Sch
−g

(

x̂Sch+
1

mω
p̂Sch

)

, (35.87)

where g is a real number. Let âSch and â
†
Sch
be a pair of

operators related to x̂Sch and p̂Sch by Eq. (35.9).

(a) Show that

̂H Sch = �ω
(

â†
Sch
âSch +

1

2

)

+ γ âSch + γ ∗ â†
Sch
, (35.88)

where

γ = −
√

�

2mω
(1− i)g.

(b) In the Heisenberg picture the annihilation and creation
operators become âHei(t) and â

†
Hei
(t) and the Hamiltonian

becomes

̂H Hei(t) = �ω
(

â†
Hei
(t)âHei(t)+

1

2

)

+ γ âHei(t)+ γ ∗ â†
Hei
(t).

Show that âHei(t) satisfies the Heisenberg equation of

motion and that the Heisenberg equation can be wrtten

as
d
dt
âHei(t) = −iωâHei(t)−

i
�
γ ∗.

Show further that this equation can be rewritten in the

form
d
dt

(

âHei(t)e
iωt) = − i

�
γ ∗ eiωt .

Integrate this equation to obtain an explicit expression for

the time dependence of âHei(t).

Q35(13) What is the degeneracy of the eigenvalues E1,1, E2,2 of the
two-dimensional isotropic oscillator? Are all eigenvalues

degenerate?

29Merzbacher pp. 335–336.



Chapter 36

Angular Momenta

36.1 Orbital Angular Momentum

36.1.1 Orbital Angular Momentum Operators

The quantised angular momentum operators are obtained in §27.4.
These operators do not commute. They satisfy the commutation

relations in Eqs. (27.111) to (27.113). It follows that

(1) ̂Lcx , ̂Lcy and ̂Lcz are essentially incompatible. They do not

possess a complete orthonormal set of common eigenvectors.

However, there is a state, the state of zero orbital angular

momentum values, inwhich they do possess a definite value, i.e.,

the value 0.1

(2) ̂Lcz, ̂L2c are compatible and they possess common eigenvectors
and are simultaneously measurable. This is also true for ̂Lcx , ̂L2c
and for ̂Lcy , ̂L 2c . However, the eigenvectors of ̂Lcz, ̂L2c are

different from that of ̂Lcx , ̂L2c or that of ̂Lcy , ̂L
2
c .

Orbital angular momentum is relevant to rotational motion

for which spherical coordinates are more convenient to use. The

1See Definition 28.4.1(1). The state corresponds to � = 0 in Eq. (36.30).
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Cartesian coordinates x , y, z are related to spherical coordinates
r, θ , ϕ by Eq. (16.41), or conversely by

r2 = x2 + y2 + z2, cos θ = z/r, tanϕ = y/x . (36.1)

The derivatives with respect to the Cartesian and spherical

coordinates are related by2

∂

∂x
= sin θ cosϕ

∂

∂r
+ 1

r
cos θ cosϕ

∂

∂θ
− 1

r
sinϕ

sin θ

∂

∂ϕ
, (36.2)

∂

∂y
= sin θ sinϕ

∂

∂r
+ 1

r
cos θ sinϕ

∂

∂θ
+ 1

r
cosϕ

sin θ

∂

∂ϕ
, (36.3)

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
. (36.4)

Using these we can arrive at the expressions for all the operators

relevant to orbital angular momentum in spherical coordinates:

̂Lcx = i�
(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

, (36.5)

̂Lcy = −i�
(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

, (36.6)

̂Lcz = −i� ∂

∂ϕ
, (36.7)

̂L2c = −�2
(

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

)

. (36.8)

These differential expressions do not involve the radial variable r .
Hence, they can be used to define four selfadjoint operators

̂Lx(Su), ̂Ly(Su), ̂Lz(Su), ̂L2(Su)

to act in the space �L2(Su).3 The pair ̂Lz(Su), ̂L2(Su) are given

explicitly by Eqs. (17.42) and (19.51). As shown in Eqs. (24.72) and

(24.73), operators ̂Lz(Su) and ̂L2(Su) in �L2(Su) can be extended
to �L2(IR3). These extensions can be identified with the quantised
operators ̂Lcz and ̂L2c . Similar results apply to ̂Lx(Su), ̂Ly(Su).4 It

2Zettili pp. 633–635.
3 L̂2(Su) is an operator acting on the vector space �L2(Su) given in §16.1.2.9.
4Amrein, Jauch and Sinha pp. 458–459. Blank, Exner and Havliček p. 395.
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follows that ̂Lx(Su), ̂Ly(Su), ̂Lz(Su) and ̂L2(Su) satisfy the angular
momentum commutation relations in Eqs. (27.111) to (27.114).

These commutation relations enable us to obtain quite a lot of

information on the eigenvalues and eigenvectors of these operators,

as shown in the next subsection. This information is also applicable

to the quantised angular momentum operators.5

36.1.2 Eigenvalues and Eigenfunctions

As pointed out in Eqs. (17.128) and (19.51), ̂Lz(Su) and ̂L2(Su) admit
�Y �,m�

as their common eigenvectors. As before let the corresponding

eigenvalues be denoted bym�� and �(�+ 1)�2, i.e.,6

̂Lz(Su) �Y �,m�
= m��

�Y �,m�
, (36.9)

̂L2(Su) �Y �,m�
= �(�+ 1)�2 �Y �,m�

, (36.10)

where m and � are dimensionless real numbers on account of the

selfadjointness of the operators.7 Introduce two new operators

̂L+(Su) = ̂Lx(Su)+ îLy(Su) = �eiϕ
(

∂

∂θ
+ i cot θ ∂

∂ϕ

)

, (36.11)

̂L−(Su) = ̂Lx(Su)− îLy(Su) = −�e−iϕ
(

∂

∂θ
− i cot θ ∂

∂ϕ

)

. (36.12)

These new operators satisfy the following properties8:

̂L+(Su)̂L−(Su) = ̂L2(Su)− ̂L2z (Su)+ �̂Lz(Su), (36.13)

̂L−(Su)̂L+(Su) = ̂L2(Su)− ̂L2z (Su)− �̂Lz(Su), (36.14)

[̂L2(Su), ̂L±(Su) ] = ̂0, (36.15)

[ ̂Lz(Su), ̂L±(Su) ] = ± � ̂L±(Su), (36.16)

̂Lz(Su)̂L±(Su) = ̂L±(Su)̂Lz(Su)± �̂L±(Su). (36.17)

5Merzbacher pp. 238–255. Zettili pp. 272–273. Gasiorowicz pp. 121–124.
6 �Y �,m�

are normalised vectors in �L2(Su) defined by the spherical harmonics

Y�,m�
(θ , ϕ) which do not involve radial variable r .

7No assumption on the values of � andm� are made here.
8Eqs. (36.13) to (36.17) are derived using Eqs. (27.111) to (27.113).
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It follows that

̂L2(Su)̂L±(Su) �Y �,m�
= ̂L±(Su)̂L2(Su) �Y �,m�

= �(�+ 1)�2 ̂L±(Su) �Y �,m�
, (36.18)

̂Lz(Su)̂L±(Su) �Y �,m�
= (

̂L±(Su)̂Lz(Su)± �̂L±(Su)
) �Y �,m�

= (m� ± 1) � ̂L±(Su) �Y �,m�
. (36.19)

These results mean that ̂L±(Su) �Y �,m�
are again eigenvectors of

̂L2(Su) and ̂Lz(Su), i.e., ̂L±(Su) acting on �Y �,m�
would raise or lower

the eigenvalues of ̂Lz(Su) by �while leaving the eigenvalue of ̂L(Su)2
unchanged. These eigenvectors are not normalised. They are related

to the normalised eigenvectors �Y �,m�±1 by
9

̂L+(Su) �Y �,m�
= �

√

(�−m�)(�+m� + 1) �Y �,m�+1, (36.20)

̂L−(Su) �Y �,m�
= �

√

(�+m�)(�−m� + 1) �Y �,m�−1. (36.21)

⇒ ̂L+(Su) �Y �,� = �0, ̂L−(Su) �Y �,−� = �0, (36.22)

�Y �,−�+1 = 1

�
√
2�

̂L+(Su) �Y �,−�. (36.23)

Possible values of � andm� and their relationship can be found:

(1) The eigenvalues of ̂L2(Su), being the sum of the squares of

three selfadjoint operators are non-negative. i.e., �(� + 1) ≥ 0.

Moreover we can choose � to be non-negative. If we choose

� to be negative, then � + 1 would have to be negative. Then

�′ = −(�+ 1) would be non-negative with �′(�′ + 1) = �(�+ 1).
(2) Acting on the eigenvectors the operators ̂L±(Su) satisfy10

〈 �Y �,m�
| ̂L+(Su)̂L−(Su) �Y �,m�

〉 = 〈̂L−(Su) �Y �,m�
| ̂L−(Su) �Y �,m�

〉
= || ̂L−(Su) �Y �,m�

|| 2 ≥ 0. (36.24)

By Eq. (36.13) the left-hand side of Eq. (36.24) becomes

〈 �Y �,m�
| ( ̂L2(Su)− ̂L2z (Su)+ �̂Lz(Su)

) �Y �,m�
〉

= �
2
(

�(�+ 1)−m2
� +m�

) ≥ 0

⇒ �2 + � ≥ m2
� −m�. (36.25)

9See Gasiorowicz pp. 122–124 for normalisation.
10Use the fact that

(
L̂±(Su)

)† ⊃ L̂∓(Su) on account of Eq. (17.101) in P17.8(6). The
adjoint of L̂+(Su) acts like L̂−(Su), i.e., L̂†+(Su) �Y �,m�

= L̂−(Su) �Y �,m�
.
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Similarly we have

〈 �Y �,m�
| ̂L−(Su)̂L+(Su) �Y �,m�

〉 = ||̂L+(Su) �Y �,m�
|| 2 ≥ 0, (36.26)

and using Eq. (36.14) we get

�2 + � ≥ m2
� +m�. (36.27)

Since � ≥ 0 we can conclude from Eqs. (36.25) and (36.27) that

�2 ≥ m2
� . The assumption �2 < m2

� would contradict Eqs. (36.25)

and (36.27).11 In other words, � andm� are related by

m2
� ≤ �2 or equivalently − � ≤ m� ≤ �. (36.28)

(3) The above results show that m� is bounded from above and

from below. The minimum value of m� must then be −�

corresponding to eigenvectors �Y �,−� so that we cannot generate

new eigenvector corresponding to a lower eigenvalue ofm�, i.e.,

lower than −� by using Eq. (36.21). Similarly the maximum m�

is equal �.

(4) On account of Eq. (36.20) the eigenvaluem� can increase by 1 in

2� + 1 steps from its minimum value −� to its maximum value

�, i.e.,

m� = −�, −�+ 1, −�+ 2, . . . , �− 1, �. (36.29)

We can conclude that 2� + 1 must an integer, i.e., � can only be

integers or half integers. There are no other values ofm�.
12

(5) Our final conclusion here is that the commutation relations

between the angular momentum operators imply both integer

and half integer values for � andm�, i.e.,

� = {0, + half integers, + integers}, (36.30)

m� = {0, ± half integers, ± integers}, (36.31)

−� ≤ m� ≤ �. (36.32)

11Adding Eqs. (36.25) and (36.27) we get �2 + � ≥ m2, i.e., we cannot have �2 < m2

since � ≥ 0.
12This is to avoid creating a value of m� higher than � by Eq. (36.20). An assumption

that m� has other values, e.g., when � = 2 the value of m� is 1.3, would contradict

Eq. (36.28) since Eq. (36.20) can then be used to produce �Y �=2,m�=2.3 with a value
ofm� = 2.3 which is higher than � = 2.
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Further properties of the orbital angular momentum operators

embodied in the explicit expressions for the operators show that half

integers values should be excluded. We call the resulting � and m�

the orbital angularmomentumquantumnumber and the orbital
magnetic quantum number, respectively.13

Let us now examine why half integer values must be excluded.

In spherical coordinates the differential expression the eigenvalue

equation of ̂Lz(S) can be written as

−i� ∂

∂ϕ
Y�,m�

(θ , ϕ) = m�� Y�,m�
(θ , ϕ). (36.33)

Since ϕ and ϕ + 2π refer to the same spatial position we would

intuitively expect the functions in the domain of the operator of
̂Lz(Su) to satisfy the periodic boundary condition. Mathematically
such condition renders ̂Lz(Su) selfadjoint.14 The eigenfunctions and
eigenvalues of ̂Lz(Su) are similar to those for p̂(Ca) given by Eqs.
(19.36) and (19.37). It is instructive to find these quantities from

Eq. (36.33).

Let us start with lowest magnetic quantum number for a given

angular momentum quantum number. We can verify easily that the

solution Y�,−�(θ , ϕ) of Eq. (36.33) form� = −� is

Y�,−�(θ , ϕ) = c f (θ) e−i�ϕ , (36.34)

where c is a normalisation constant. Applying the periodic

boundary condition Y�,−�(θ , 0) = Y�,−�(θ , 2π) we get

Y�,−�(θ , ϕ) = Y�,−�(θ , ϕ + 2π) ⇒ 1 = e−i2π� (36.35)

⇒ 1 = cos 2π� − i sin 2π� ⇒ cos 2π� = 1, sin 2π� = 0

⇒ � = 0, 1, 2, 3, · · · . (36.36)

It follows that � can be zero or positive integers, not half integers.

Since m� ranges from −� to � the magnetic quantum numbers can

only be zero and integers, both positive and negative, i.e., we have

m� = 0, ±1, ±2, · · · , −� ≤ m� ≤ �. (36.37)

13As will be seen in Eq. (37.42) later, m� is related to the magnetic property of the

particle.
14See Eq. (17.42).
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We can find the θ -dependence of Y�,−�(θ , ϕ) from Eq. (36.22), i.e.,15

(

∂

∂θ
− i cot θ ∂

∂ϕ

)

Y�(−�)(θ , ϕ) = 0 (36.38)

⇒ f (θ) = (sin θ)�. (36.39)

⇒ Y�,−�(θ , ϕ) = c (sin θ)� e−i�ϕ . (36.40)

The constant c is determined by normalisation with respect to the
angle variables, i.e.,

∫ 2π

0

dϕ
∫ π

0

sin θ dθ |Y�,−�(θ , ϕ)|2 = 1. (36.41)

We can obtain other eigenfunctions from Y�,−� by Eq. (36.20). The

general expression is16

Y�,m�
(θ , ϕ) = C�m�

eim�ϕ
1

(sin θ)m�

d�−m�

d(cos θ)�−m�
(sin θ)2�, (36.42)

where

C�m�
= (−1)�

2� �!

√

(

2�+ 1
4π

)

(�+m�)!

(�−m�)!
. (36.43)

These are the spherical harmonics mentioned in §16.2.2. The
corresponding vectors �Y �,m�

form a complete orthonormal set in

the Hilbert space �L2(Su).17 There are no other eigenvalues and

eigenvectors for ̂L2(Su) and ̂Lz(Su). The functions Y�,m�
(θ , ϕ) can be

extended to L2(IR3) by including a factor R(r) ∈ L2(IR+, r2dr).18

36.2 Annihilation and Creation Operators

36.2.1 Introduction

Orbital angular momentum operators satisfy the commutation

relations in Eqs. (27.111) to (27.113). It is possible to construct

15Any multiplicative constant can be absorbed into the normalisation constant c in
Eq. (36.34).

16Zettili pp. 291–295.
17Amrein, Jauch and Sinha pp. 459–460. Zettili p. 292.
18See Eqs. (37.54) and (24.63).
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three operators satisfying these commutation relations in terms

of annihilation and creation operators in an appropriate Hilbert

space. Let us suppose that in a given Hilbert space �H it is possible

to introduce two commuting pairs of annihilation and creation

operators â1, â
†
1 and â2, â

†
2 such that each pair possessing

properties P27.9(1) to P27.9(3) and the two pairs together forming

an irreducible set in �H.19 Since â1, â
†
1 commute with â2, â

†
2 the

following number operators

̂N1 := â†1â1, ̂N2 := â†2â2 (36.44)

also commute with each other. They are selfadjoint and they share

a complete orthonormal set of common eigenvectors which can be

denoted by �ϕn1,n2 where n1, n2 = 0, 1, 2, · · · , i.e., we have20

̂N1 �ϕn1,n2 = n1 �ϕn1,n2 , ̂N2 �ϕn1,n2 = n2 �ϕn1,n2 . (36.45)

These eigenvectors can be generated from �ϕ0,0, i.e.,

�ϕn1,n2 =
(â†1)

n1
√
n1!

(â†2)
n2

√
n2!

�ϕ0,0, (36.46)

The sum ̂N := ̂N1 + ̂N2 admits �ϕn1,n2 as its eigenvectors, i.e.,
̂N �ϕn1,n2 = n �ϕn1,n2 , n = (n1 + n2). (36.47)

We can define three new operators ̂J x , ̂J y and ̂J z in terms of â1, â
†
1,

â2 and â
†
2 by

21

̂J x := �

2

(

â†1â2 + â†2â1
)

, (36.48)

̂J y := �

2i

(

â†1â2 − â†2â1
)

, (36.49)

̂J z := �

2

(

â†1â1 − â†2â2
)

. (36.50)

19See also properties P35.2(1) to P35.2(4). In the state space �L2(IR2, dxdy) of an
isotropic oscillator studied in §35.4, we have two commuting pairs of annihilation
and creation operators, i.e., âx and â

†
x in Eqs. (35.78) and (35.79) and a similar pair

ây and â
†
y defined in terms of ŷ and p̂y .

20An example is the discussion in §35.4 on isotropic oscillators.
21Baym pp. 380–386. The subscripts x , y, z are just labels unrelated to the Cartesian
coordinates. We could have labelled the operators as Ĵ 1, Ĵ 2, Ĵ 3.
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These operators have the following properties:

P36.2.1(1) ̂J x , ̂J y and ̂J z satisfy the following commutation

relations, i.e.,22

[̂J x , ̂J y] = i� ̂J z, (36.51)

[̂J z, ̂J x ] = i� ̂J y , (36.52)

[̂J y , ̂J z] = i� ̂J x . (36.53)

It follows that the sumof their squares ̂J 2 = ̂J 2x +̂J 2y +̂J 2z commutes
with ̂J x , ̂J y and ̂J z.

P36.2.1(2) The operator ̂J z is equal to

̂J z = �

2
( ̂N1 − ̂N2). (36.54)

P36.2.1(3) The operator ̂J 2 is equal to23

̂J 2 =
̂N
2

(

̂N
2
+ 1

)

�
2. (36.55)

P36.2.1(4) Having expressed ̂J z and ̂J 2 in terms of ̂N1, ̂N2 and ̂N
we can see that �ϕn1,n2 in Eq. (36.46) are the eigenvectors of ̂J z and
̂J 2 corresponding to eigenvalues

1

2
(n1 − n2)� and

n
2

(n
2
+ 1

)

�
2, (36.56)

where n = n1 + n2, i.e.,

̂J z �ϕn1,n2 =
1

2
(n1 − n2) � �ϕn1,n2 . (36.57)

̂J 2 �ϕn1,n2 =
n
2

(n
2
+ 1

)

�
2 �ϕn1,n2 . (36.58)

The operators ̂J z and ̂J 2 are both selfadjoint, having a complete
orthonormal set of eigenvectors �ϕn1,n2 with real eigenvalues.
22These are typical angular momentum commutation relations.
23It is straightforward, albeit tedious, to verify the result.
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P36.2.1(5) We can introduce two new operators

̂J+ := ̂J x + îJ y and ̂J− := ̂J x − îJ y . (36.59)

These two operators are not selfadjoint. They are related to the

creation and annihilation operators by

̂J+ = � â†1â2, ̂J− = � â†2â1. (36.60)

Acting on �ϕn1,n2 these two operators would change the eigenvalue of
̂J z. When acting on �ϕ0,0, the operators ̂J+ and ̂J− will result in the

zero vector. Details are given in P36.2.2(3) in the next subsection.

36.2.2 Notation

Let the eigenvalues and normalised eigenvectors of ̂J z and ̂J 2 be
denoted, respectively, by24

mj�, j( j + 1)�2, | j, mj 〉. (36.61)

Then we have where

mj = 1

2
(n1 − n2), j = n

2
= 1

2
(n1 + n2). (36.62)

We can rewrite Eqs. (36.57) and (36.58) as

̂J z| j, mj 〉 = m� | j, mj 〉, (36.63)

̂J 2 | j, mj 〉 = j( j + 1)�2 | j, mj 〉, (36.64)

The following properties are obvious:

P36.2.2(1) Possible values ofm and j are

mj = 0, ±1
2
, ±1, ±3

2
, 2, . . . (36.65)

= {0, ± half integers, ± integers}, (36.66)

j = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . . . . (36.67)

= {0, + half integers, + integers}. (36.68)

24The subscript j in mj indicates that mj is related to j . Their relationship is shown
in Eq. (36.69).
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P36.2.2(2) Relationship betweenm and j is

m2
j ≤ j2 or equivalently − j ≤ mj ≤ j. (36.69)

P36.2.2(3) The operators ̂J+ = ̂J x + îJ y and ̂J− = ̂J x − îJ y
act on | j, m〉 as “raising” and “lowering” operators by increasing and
decreasing the value of m� while keeping the value of j unchanged,
i.e.,

̂J z
(

̂J+| j, mj 〉
)

= (mj + 1)�
(

̂J+| j, mj 〉
)

, (36.70)

̂J z
(

̂J−| j, m〉
)

= (mj − 1)�
(

̂J−| j, mj 〉
)

, (36.71)

̂J 2
(

̂J± | j, mj 〉
)

= j( j + 1)�2
(

̂J± | j, mj 〉
)

. (36.72)

More explicitly we have25

̂J+| j, mj 〉 = �
√

( j −mj )( j +mj + 1) | j, mj + 1〉, (36.73)
̂J−| j, mj 〉 = �

√

( j +mj )( j −mj + 1) | j, mj − 1〉. (36.74)

A similar derivation can be applied to the pair ̂J x and ̂J 2 and the pair
̂J y and ̂J 2 to obtain the same eigenvalues as ̂J z and ̂J 2.26

36.2.3 Summary of Results

Let ̂J x , ̂J y and ̂J z be any three operators defined in terms of two pairs
of commuting annihilation and creation operators by Eqs. (36.51),

(36.52) and (36.53). Then we have the following results:

R36.2.3(1)

[̂J x , ̂J y] = i�̂J z, [̂J z, ̂J x ] = i�̂J y , [̂J y , ̂J z] = i�̂J x . (36.75)

R36.2.3(2) The sum of their squares ̂J 2 = ̂J 2x + ̂J 2y + ̂J 2z would

commute with ̂J x , ̂J y and ̂J z.

25One can verify the results using Eq. (36.60) for Ĵ± and �ϕn1,n2 for | j, mj 〉.
26It follows that the operators Ĵ x and Ĵ y are also selfadjoint.
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R36.2.3(3) The operators ̂J± = ̂J x± îJ y commute with ̂J 2 but not
with ̂J z. We have

[̂J 2, ̂J±] = ̂0, [̂J±, ̂J z] = ±�̂J± (36.76)

R36.2.3(4) For ̂J z and ̂J 2, we have

̂J z| j, mj 〉 = mj� | j, mj 〉, (36.77)

̂J 2| j, mj 〉 = j( j + 1)�2 | j, mj 〉, (36.78)

where

mj = {0, ± half integers, ± integers}, (36.79)

j = {0, + half integers, + integers}, (36.80)

− j ≤ mj ≤ j. (36.81)

Similar results apply to ̂J x and ̂J 2 and to ̂J y and ̂J 2.

R36.2.3(5) The eigenvectors of the z-component angular momen-
tum can be raised or lowered using the operators ̂J± = ̂J x ± îJ y
without changing the total angular momentum, i.e.,

̂J+| j, mj 〉 = �
√

( j −mj )( j +mj + 1) | j, mj + 1〉, (36.82)
̂J−| j, mj 〉 = �

√

( j +mj )( j −mj + 1) | j, mj − 1〉. (36.83)

In particular, we have

̂J+| j, j〉 = �0, ̂J−| j, − j〉 = �0. (36.84)

Equations (36.13) to (36.32) are derived using the commutation

relations of orbital angular momentum operators in Eqs. (27.111)

to (27.114) without reference to any annihilation and creation

operators. In the same way, the results in R36.2.3(2) to R36.2.3(5)

in this subsection can be derived using the commutation relations in

R36.2.3(1). This suggests that:

(1) The restrictions of ̂J z and ̂J 2 to the subspace of �H spanned by the

eigenvectors | j, mj 〉 of integer values of j correspond to the orbital
angular momentum operators ̂Lz(Su) and ̂L2(Su).



Spin Angular Momentum 627

(2) The restriction of ̂J z and ̂J 2 to the two-dimensional subspace
spanned by the eigenvectors | j = 1

2
, mj 〉, where mj = ±1/2,

would corresponding to spin angular momentum operators ̂Sz and
̂S 2 introduced in §14.1.1.27

36.3 Spin Angular Momentum

36.3.1 Introduction

An electron possesses an intrinsic angular momentum similar to

a spinning particle and this is unrelated to its orbital motion or

any other spatial motion.28 We call this the electron’s spin angular

momentum or spin for short. The spin angular momentum has no

classical counterpart. Postulate 27.2(CQ) on quantisation does not

apply to spin. We have to make some ad hoc assumptions in order to

establish appropriate vector space and operators for the description

of spin which would conform to Postulates 25.1(PS) and Postulate

26.1(OV). A model theory of spin is set out in §14.1.1. Here we shall
start with a description of the properties of spin.

Defining properties of spin operators

P36.3(1) Spin angular momentum is a quantity with three compo-
nents Sx , Sy and Sz along the x, y and z directions. These components
can be written formally in vector notation as �S = (Sx , Sy , Sz).

P36.3(2) Each of the spin components can take only two values, i.e.,
± �/2. Hence, the state space for the spin is assumed to be a two-
dimensional Hilbert space �VV 2.

27See Zettili pp. 277–279 for the restriction to the subspace spanned by the

eigenvectors | j = 1, mj 〉, where mj = −1, 0, 1.
28Electron spin was postulated by Goudsmith and Uhlenbeck in 1925 to explain

complex atomic spectra. The basis of their hypothesis can be traced back to the

Stern–Gerlach experiment performed in 1922. The theoretical origin of electron

spin came from Dirac’s relativistic quantum theory. Uhlenbeck (1900–1988) and

Goudsmith (1902–1978)were Dutch-American theoretical physicists. Stern (1888–

1969) and Gerlach (1889–1979) were German physicists.
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P36.3(3) The spin components are represented by three selfadjoint
operators ̂Sx , ̂Sy and ̂Sz on the state space �VV 2 symbolically written in
vector notation as

̂�S = (

̂Sx , ̂Sy , ̂Sz
)

. (36.85)

These operators possess only two eigenvalues, i.e.,± �/2.

P36.3(4) Spin operators obey the same commutation relations as
that of orbital angular momentum operators, i.e.,

[̂Sx , ̂Sy] = i�̂Sz, [̂Sz, ̂Sx ] = i�̂Sy , [̂Sy , ̂Sz] = i�̂Sx . (36.86)

P36.3(5) Spin motion is unrelated to spatial motion. This means
that spin operators ̂Sx , ̂Sy , ̂Sz commute with spatial operators such

as ̂�x, ̂�p and ̂�L.
The square of the total spin angular momentum operator

commutes with each of the component operators, i.e., we have

̂S 2 = ̂S 2x + ̂S 2y + ̂S 2y (36.87)

[ ̂Sx , ̂S 2 ] = [ ̂Sy , ̂S 2 ] = [ ̂Sz, ̂S 2 ] = 0. (36.88)

Spin has been discussed in §10.2.2 and §14.1.1 to illustrate

how a probabilistic theory can be established in a complex vector

space. In the remainder of this chapter, we shall present an intuitive

formulation of the theory electron spin.

36.3.2 Two-Component Wave Functions

At any particular time a spinless particle has associated with it

a wave function φ(�x ) so that the position probability density

function of the particle is given by |φ(�x )|2.29 A spin- 1
2
particle

would have a probability density of being found to be at �x with
spin-up and a separate probability density of being found to be

at �x with spin down. In other words, we require two probability
distribution functions, one for spin-up and one for spin-down. A

29The time variable in all the wave functions has been suppressed for brevity.
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single wave function is unable to meet such a requirement. The

need for two probability density functions suggests we should

employ a pair of wave functions φ+(�x ) and φ−(�x ) with |φ+(�x )|2
as the position probability density function of the particle with

spin-up, and |φ−(�x )|2 as the position probability density of the

particle with spin down. If the particle is known to have its spin-

up everywhere, then φ−(�x ) = 0 and if the particle is known to have

spin down everywhere, then φ+(�x ) = 0. These two wave functions

are separately normalised, i.e., we have

∫ ∞

−∞
|φ+(�x )|2 dxdydz = 1 =

∫ ∞

−∞
|φ−(�x )|2 dxdydz = 1. (36.89)

We can combine these two wave functions into a single two-
component wave function in the following manner:

(1) If the particle is known to have its spin-up everywhere, then it is

described by a two-component wave function of the form
(

φ+(�x )
0

)

. (36.90)

(2) If the particle is known to have its spin down everywhere, the

corresponding two-component wave function is
(

0

φ−(�x )
)

. (36.91)

(3) If the particle does not have its spin-up or spin-down

everywhere, it is a two-component wave function and is a

combination of the two previous ones, i.e.,
(

c+φ+(�x )
c−φ−(�x )

)

, c+, c− ∈ C and |c+|2 + |c−|2 = 1. (36.92)

This intuitive approach can be formalised in terms of spin

functions.

36.3.3 Spin Functions and Spin Vectors

Introduce a discrete variable sc , to be referred to as the spin
coordinate, which takes only two values, i.e., sc = ±1/2.30 Given a
30The subscript c in sc stands for “coordinate.”
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two-component wave function we can define a new one-component

function of �x and sc , written as�(�x , sc), by

�(�x , 1/2) := φ+(�x ), �(�x , −1/2) := φ−(�x ). (36.93)

The interpretation is that the function �(�x , sc) for the value sc =
1/2, i.e., �(�x , 1/2), represents a spin-up state and the function

�(�x , sc) for the value sc = −1/2, i.e.,�(�x , −1/2), represents a spin-
down state.

What we have done here is to embody the two components of

a two-component wave function into the spin coordinate. This is

more than just a matter of notation. The introduction of the spin

coordinate leads to the useful concept of spin functions on which

spin operators can be defined.

Just as we have functions of spatial coordinates �x , we can

introduce functions of the spin coordinate sc . These functions would
have only two values, one for sc = 1/2 and one for sc = −1/2. Such
functions are called spin functions. Two simple examples, denoted
by α(sc) and β(sc), are defined as follows:

α(sc) :=
{

1, sc = 1/2

0, sc = −1/2 , (36.94)

β(sc) :=
{

0, sc = 1/2

1, sc = −1/2 . (36.95)

A general spin function η(sc) is a linear combination of α(sc) and
β(sc), i.e.,

η(sc) := c+ α(sc)+ c− β(sc), c+, c− ∈ C . (36.96)

We have

η(sc) =
{

c+, sc = 1/2

c−, sc = −1/2 . (36.97)

An immediate application of spin functions is the separation of the

wave function�(�x , sc) defined by Eq. (36.93) into a spatial part and
a spin part. The spin-up and spin-down states in Eqs. (36.90) and

(36.91) can be identified, respectively, with

�+(�x , sc) = φ+(�x )α(sc), (36.98)

�−(�x , sc) = φ−(�x )β(sc). (36.99)
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A general spin state can be described by the function

�(�x , sc) = c+�+(�x , sc)+ c−�−(�x , sc) (36.100)

= c+φ+(�x )α(sc)+ c−φ−(�x )β(sc). (36.101)

Under the usual addition andmultiplication by complex numbers

spin functions define a two-dimensional complex vector space with

α(sc) and β(sc) forming a basis for the space. We can also define
a scalar product in accordance with Eq. (12.17). Given two spin

functions η(sc) and η′(sc)

η(sc) = c+ α(sc)+ c− β(sc), (36.102)

η′(sc) = c′+ α(sc)+ c′− β(sc) (36.103)

we define their scalar product as

〈η | η′ 〉 := η(1/2)∗η′(1/2)+ η(−1/2)∗η′(−1/2) (36.104)

= c∗+c
′
+ + c∗−c′− (36.105)

⇒ 〈α | α〉 = 1, 〈β | β 〉 = 1, 〈α | β 〉 = 0. (36.106)

Let the resulting two-dimensional Hilbert space be denoted by
�VV (2) and vectors corresponding to α(sc), β(sc), η(sc) be denoted by
�α, �β , �η without the argument sc .31 We call these spin vectors. The
two spin vectors �α and �β form an orthonormal basis for �VV (2). Any

spin vector is a linear combination of �α and �β , i.e.,

�η = c+ �α + c− �β with c+ = 〈�α | �η 〉, c− = 〈 �β | �η 〉. (36.107)

When we want to treat the spatial and spin functions in Eq. (36.101)

as vectors, the products φ+(�x )α(sc) and c−φ−(�x )β(sc) should be
treated as tensor products. This is already discussed in §33.2, i.e., we
would adopt the tensor product space �H(s)(IR3) := �L2(IR3)⊗ �VV (2)

in Eq. (33.10) as the state space of a spin- 1
2
particle. A vector in

�H(s)(IR3) is of the form32

�� = c+ �φ+ ⊗ �α + c− �φ− ⊗ �β . (36.108)

31This is in keepingwith our notationwhen treating functions such as φ(x) as vectors.
32Note that �φ+ and �φ− are normalised separately in accordance with Eq. (36.89).
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The spin-up and spin-down states correspond to tensor product

vectors

��+ = �φ+ ⊗ �α and ��− = �φ− ⊗ �β . (36.109)

36.3.4 Spin Operator ̂Sz
Spin is unrelated to spatial motion. Spin operators should not

operate on functions of spatial coordinates which describe spatial

motion. They should operate on spin functions. Mathematically spin

operators should act on �VV (2). In order to act on ��, the spin operators
should take the form given by Eq. (33.11), i.e., when acting on
�H(s)(IR3) the spin operators along the x , y and z components become
̂II (IR3)⊗ ̂Sx , ̂II (IR3)⊗ ̂Sy and ̂II (IR3)⊗ ̂Sz. We have

(

̂II (IR3)⊗ ̂Sz
)

�� = c+ �φ+ ⊗
(

̂Sz �α
)+ c− �φ− ⊗

(

̂Sz �β
)

. (36.110)

The effects of ̂Sz on spin vectors can be established by the following
physical arguments:

(1) For the particle to be in a spin-up state everywhere, there must

be no probability of its being found to have its spin down

anywhere. In accordance with Eqs. (36.90) and (36.109), this

means that the state vector must be of the form of ��+

(2) This state vector must also be an eigenvector of ̂Sz corre-
sponding to the eigenvalue 1

2
� in accordance with Postulate

28.1(PDDO),33 i.e., we must have

(

̂II (IR3)⊗ ̂Sz
)

��+ = 1

2
� ��+ (36.111)

⇒ �φ+ ⊗
(

̂Sz �α
) = �φ+ ⊗ 1

2
� �α (36.112)

⇒ ̂Sz �α = 1

2
� �α. (36.113)

33See C28.1(PDDO)(2) in particular.
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(3) Similarly by considering a spin-down state vector of the form
��− we get

(

̂II (IR3)⊗ ̂Sz
)

��− = −1
2
� ��− (36.114)

⇒ ̂Sz �β = −1
2
� �β . (36.115)

(4) For a general spin vector �η, we have

̂Sz �η = c+̂Sz �α + c−̂Sz �β = 1

2
�
(

c+ �α − c− �β
)

. (36.116)

To emphasise the link of these spin functions with the z-
component spin and in keeping with the notation used in §14.1.1,
we shall re-label them with a subscript z, i.e., we rewrite

�α as �αz, and �β as �βz. (36.117)

In this notation, we have

̂Sz �αz = 1

2
� �αz, ̂Sz �βz = −1

2
� �βz, (36.118)

̂Sz �η = c+̂Sz �αz + c−̂Sz �βz = 1

2
�
(

c+ �αz − c− �βz
)

. (36.119)

These results imply that

the spin vector �αz is the eigenvector of ̂Sz corresponding to
the eigenvalue 1

2
� and the spin vector �βz is the eigenvector of

̂Sz corresponding to the eigenvalue− 1
2
�.

Physically the above statementmeans that �αz represents the spin-up
state and �βz represents the spin-down state.

36.3.5 Spin Operators ̂Sx and ̂Sy
As pointed out earlier, Eqs. (36.82) to (36.84) are derived using

only the commutation relations of the operators involved. It follows

that these results can be applied to spin operators provided we re-

strict ourselves to the two-dimensional subspace corresponding to
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j = 1/2.34 This becomes obvious if we change the notation:

1. Replace j by s . This new quantum number s takes only one
value, i.e., s = 1/2.

2. Replace mj by ms . This new quantum number takes only two

values, i.e.,ms = ±1/2.
3. Replace | j = 1/2, mj = 1/2 〉 by �αz and | j = 1/2, mj = −1/2 〉
by �βz.
4. Replace ̂J x , ̂J y , ̂J z and ̂J 2 by ̂Sx , ̂Sy , ̂Sz, and ̂S 2, respectively. Then,
instead of ̂J± = ̂J x ± îJ y , we now have

̂S+ = ̂Sx + i ̂Sy , ̂S− = ̂Sx − i ̂Sy . (36.120)

5. Equations (36.77) and (36.78) become

̂Sz �αz = 1

2
� �αz, ̂Sz �βz = −1

2
� �βz, (36.121)

̂S2 �αz = s(s + 1)�2 �αz = 3

2
�
2 �αz, (36.122)

̂S2 �βz = s(s + 1)�2 �βz = 3

2
�
2 �βz. (36.123)

6. Equations (36.82), (36.83) and (36.84) become35

(̂Sx + i ̂Sy) �βz = � �αz, (̂Sx − i ̂Sy) �αz = � �βz, (36.124)

(̂Sx + i ̂Sy) �αz = �0, (̂Sx − i ̂Sy) �βz = �0. (36.125)

7. It follows that the action of ̂Sx and ̂Sy on �αz and �βz are

̂Sx �αz = 1

2
� �βz, ̂Sx �βz = 1

2
� �αz, (36.126)

̂Sy �αz = 1

2
i� �βz, ̂Sy �βz = −1

2
i� �αz. (36.127)

8. It is instructive to derive explicitly the action of ̂Sx and ̂Sy on �αz
and �βz using the commutation relations of the spin operators and
34Alternatively we can consider Eqs. (36.20) to (36.22) restricted to � = 1/2. See
Zettili pp. 277–278 for restriction to j = 1.

35See Q36(7).
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̂S± instead of using Eqs. (36.82) to (36.84). We can start with the
following commutation relations:

[ ̂Sz, ̂S± ] = ± � ̂S±, [̂S 2, ̂S± ] = ̂0. (36.128)

̂SẑS± = ̂S±̂Sz ± �̂S±, ̂S 2̂S± = ̂S±̂S 2. (36.129)

(1) Letting ̂SẑS+ act on �αz and ̂SẑS− act on �βz we get
̂SẑS+ �αz =

(

̂S+̂Sz + �̂S+
) �αz = 3

2
� ̂S+ �αz, (36.130)

̂SẑS− �βz =
(

̂S−̂Sz − � ̂S+
) �βz = −3

2
� ̂S+ �βz. (36.131)

These results appear to imply that ̂S+ �αz is an eigenvector of ̂Sz
corresponding to eigenvalue 3�/2 and ̂S− �βz is an eigenvector
of ̂Sz corresponding to eigenvalue −3�/2. Such a conclusion
contradicts P36.3(2). To avoid contradiction, we must not allow
̂S+ to create a new eigenvector from �αz and we must also not
allow ̂S− to create a new eigenvector from �βz, i.e., P36.3(2)
imposes the following condition:

(̂Sx + i ̂Sy) �αz = �0, (̂Sx − i ̂Sy) �βz = �0. (36.132)

(2) Next letting ̂SẑS+ act on �βz and ̂SẑS− act on �αz we get
̂SẑS+ �βz = 1

2
� ̂S+ �βz ⇒ ̂S+ �βz = � �αz, (36.133)

̂SẑS− �αz = −1
2
� ̂S− �αz ⇒ ̂S− �αz = � �βz. (36.134)

Explicitly we have

(̂Sx + i ̂Sy) �βz = � �αz, (̂Sx − i ̂Sy) �αz = � �βz. (36.135)

The factor � on the right-hand side can be verified by

〈̂S+ �βz | ̂S+ �βz〉 = 〈 �βz | ̂S−̂S+ �βz〉
= 〈 �βz |

(

̂S 2 − ̂S 2z − �̂Sz
) �βz〉 = �

2. (36.136)

Then Eqs. (36.126) and (36.127) follow as before.

9. The normalised eigenvectors of ̂Sx and ̂Sy are seen to be

�αx := 1√
2
( �αz + �βz), �βx := 1√

2
( �αz − �βz), (36.137)

�αy := 1√
2
( �αz + i �βz), �β y := 1√

2
( �αz − i �βz). (36.138)
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We can summarise our discussion on spin as follows:

(1) The state space of the spin motion is taken to be �VV (2). The spin

operators ̂Sx , ̂Sy , and ̂Sz defined on �VV (2) satisfy P36.3(1) to

P36.3(5) of the defining properties of spin.

(2) When both spin motion and spatial motion are included, the

state space of a spin- 1
2
particle is taken to be the tensor product

of �L2(IR3) and �VV (2), i.e.,H(s)(IR3) = �L2(IR3)⊗ �VV (2)
.

(3) A general state vector is given by Eq. (36.108). The spin-up and

spin-down state vectors are given by Eq. (36.109). These are

consistent with the results in Eqs. (36.113) and (36.115).

(4) The scalar product for vectors like �� in Eq. (36.108) is

calculated using the linearity properties of scalar product and

tensor product and Eq. (24.44).

(5) To act on H(s)(IR3) operators for the spatial motion take the
form ̂A ⊗ ̂II ( �VV (2)), e.g., the kinetic energy operator ̂K in Eq.

(27.91) becomes ̂K⊗ ̂II ( �VV (2)).36

36.3.6 Matrix Representation

Being two-dimensional the state space �VV 2 of spin motion can

be represented by the two-dimensional space �C 2
. We can obtain

explicit representations of spin vectors and spin operators on �C 2
by

two-component column vectors and 2× 2 matrices, respectively.

36.3.6.1 Two-component column vectors

In the orthonormal basis
{ �αz, �βz

}

, the eigenvectors �αz, �βz, �αx , �βx ,
�αy and �β y of the spin operators have the following representation

37:

C �αz =
(

1

0

)

, C �βz =
(

0

1

)

; (36.139)

C �αx =
1√
2

(

1

1

)

, C �βx =
1√
2

(

1

−1
)

; (36.140)

36The identity operator on �VV (s) is ÎI ( �VV (2)).
37In the notation of §7.5. These results can be easily established using Eq. (13.107)
for matrix representation of operators.
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C �αy =
1√
2

(

1

i

)

, C �β y
= 1√

2

(

1

−i
)

. (36.141)

A general spin vector �η = c+ �αz + c− �βz has the following

representation:

C �η =
(

c+
c−

)

. (36.142)

36.3.6.2 Spin operators as 2× 2matrices

To act on two-component column vectors, thematrix representation

of spin operators must be 2 × 2 matrices. Let us denote the matrix

representation of ̂Sz, ̂Sx and ̂Sy in the basis
{�αz, �βz

}

for �C 2
by MŜz ,

MŜx and MŜ y , respectively.
38 Using Eq. (13.107), we get the following

representations:

MŜz =
1

2
�

(

1 0

0 −1
)

, (36.143)

MŜx =
1

2
�

(

0 1

1 0

)

, (36.144)

MŜ y =
1

2
�

(

0 −i
i 0

)

. (36.145)

It is easily verified that

MŜzC �αz =
1

2
�C �αz , MŜzC �βz = −

1

2
�C �βz ; (36.146)

MŜxC �αx =
1

2
�C �αx , MŜxC �βx = −

1

2
�C �βx ; (36.147)

MŜ yC �αy =
1

2
�C �αy , MŜ yC �β y

= −1
2
�C �β y

. (36.148)

The above matrices are related to Pauli matrices in Eq. (7.9) by

MŜx =
1

2
� σx , MŜ y =

1

2
� σy , MŜz =

1

2
� σz. (36.149)

The angular momentum commutation relations are clearly satisfied

by these matrices. All these agree with the theory given in §14.1.1. It

38Following the notation in §8.2.3 and §13.5. These are called spin matrices.
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is a standard practice to use the same notation for the spin operators

and their matrix representations, e.g., to write MŜz in Eq. (36.143)

as ̂Sz.

Exercises and Problems

Q36(1) The spherical harmonics Y1,1(θ , ϕ), Y1,0(θ , ϕ), Y1,−1(θ , ϕ)
are given by Eqs. (16.65) to (16.67). In Cartesian coordi-

nates, these functions are given by39

Y1,−1(x , y, z) =
√

3

8π

x − iy
r

, (36.150)

Y1,0(x , y, z) =
√

3

4π

z
r
, (36.151)

Y1,1(x , y, z) = −
√

3

8π

x + iy
r

. (36.152)

(a) Using the expression in Cartesian coordinates for

the quantised orbital angular momentum operator
̂Lcz in Eq. (27.86), verify by explicit calculations that
Y1,1(x , y, z), Y1,0(x , y, z) and Y1,−1(x , y, z) are the

eigenfunctions of ̂Lcz corresponding to eigenvalues
�, 0 and−�.

(b) Consider the following coordinate transformations:

x → z′, y→ x ′, z→ y′. (36.153)

(i) Show that the component of the orbital angular

momentum operator along the z′-direction is the
same as that along the x-direction, i.e., show that
̂Lcz′ = ̂Lcz.

(ii) Show that the simultaneous eigenfunctions of ̂L2c
and ̂Lcx corresponding to eigenvalues of ̂L2c equal

39Zettili pp. 293–934. For convenience we have used the same symbols, e.g., Y1,0 for
the functions in Cartesian coordinates.
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to 2�2 are given Cartesian coordinates by

X 1,−1(x , y, z) =
√

3

8π

y − i z
r

, (36.154)

X 1,0(x , y, z) =
√

3

4π

x
r
, (36.155)

X 1,1(x , y, z) = −
√

3

8π

y + i z
r

. (36.156)

Q36(2) Suppose ̂L2c and ̂Lcz are measured giving the eigenvalues
2�2 and −�, respectively. A measurement of ̂Lcx is then
made. What are the possible results of the measurement

of ̂Lcx? Find the probability of each of these possible

results.

Q36(3) The Hamiltonian of a classical particle of mass m
constrained to move freely on the surface of a sphere of

radius a is

H = 1

2I
L2, (36.157)

where I = ma2 is the moment of inertia of the particle
and L2 is the total orbital angular momentum square of

the particle, both with respect to the origin. Quantise

the system and find the energy eigenvalues and the

corresponding eigenfunctions of the quantised system.

What are the degeneracy of the energy eigenvalues?40

Q36(4) Verify the commutation relation in Eq. (36.51).

Q36(5) Verify Eqs. (36.54), (36.55) and (36.60).

Q36(6) Verify properties P36.2.2(1), P36.2.2(2) and P36.2.2(3).
including Eqs. (36.73) and (36.74).

Q36(7) How is the vector �� in Eq. (36.108) normalised?

Q36(8) Prove Eqs. (36.124) and (36.125) directly using the

defining properties of spin operators given in P36.3(1) to

P36.3(4) without using Eqs. (36.82), (36.83) and (36.84).

40Zettili pp. 296–297. Such a system is known as a rigid rotatorwhich can be used to
model a diatomic molecule. For the state space of a quantum rigid rotator, see the

comment on a footnote in §27.8.
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Q36(9) Using the matrix representation of ̂S(1)x , ̂S(1)y , ̂S(1)z for a
spin-1 particle in Eqs. (14.48), (14.49) and (14.50) show

that the matrices for

̂S(1)+ = ̂S(1)x + i ̂S(1)y , ̂S(1)− = ̂S(1)x − i ̂S(1)y , ̂S 2(1),
(36.158)

are

MŜ(1)+ =
√
2�

⎛

⎝

0 1 0

0 0 1

0 0 0

⎞

⎠ , (36.159)

MŜ(1)− =
√
2�

⎛

⎝

0 0 0

1 0 0

0 1 0

⎞

⎠ , (36.160)

MŜ2(1)
= 2�2

⎛

⎝

1 0 0

0 1 0

0 0 1

⎞

⎠ . (36.161)

Q36(10) Using Eqs. (36.126) and (36.127) verify that �αx , �βx
defined by Eq. (36.137) are eigenvectors of ̂Sx and �αy and
�β y defined by Eq. (36.138) are eigenvectors of ̂Sy .

Q36(11) The z-component spin is measured giving a value − 1
2
�.

What are the possible outcomes of a measurement of

the x-component spin? Find the probabilities of these

possible measured outcomes.

Q36(12) Verify that Eqs. (36.146), (36.148) and (36.147) are

satisfied by the matrices in Eqs. (36.143), (36.145) and

(36.144).

Q36(13) 41A unit vector �n in the 3-dimensional �IE 3 aligned at an
angle θ to the z-axis on the xz plane is given by �n =
sin θ �i + cos θ �k. The spin operator ̂S �n in the direction of
the unit vector �n is given by ̂S �n = �n · ̂S , where
�n · ̂S = nx ̂Sx+ny ̂Sy+nẑSz = sin θ ̂Sx+cos θ ̂Sz. (36.162)

41See Zettili pp. 298–316 for more examples. �IE 3 corresponds to the physical space
we live in.
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(a) Show that the matrix representation of ̂S �n in basis
{ �αz, �βz } is

MŜ �n =
1

2
�

(

cos θ sin θ

sin θ − cos θ

)

, (36.163)

and that MŜ �n admits

C �η�n+ =
⎛

⎝

cos(θ/2)

sin(θ/2)

⎞

⎠ , C �η�n− =
⎛

⎝

− sin(θ/2)

cos(θ/2)

⎞

⎠

(36.164)

as eigenvectors corresponding eigenvalues±�/2.
(b) Find matrix representation of the state vector of a

spin aligned in the direction �n.42
(c) A spin is aligned in the positive direction �n. Find the

probabilities of a measurement of spin along the z-
axis resulting in the values± 1

2
�.

(d) A beam of spin- 1
2
particles with its spin aligned in

the positive direction �n is fed into a Stern–Gerlach
apparatus oriented to measure the component of

the spin along the z-axis. The incoming beam will

split into two with the upper beam corresponding

to spin-up along the z-axis and the lower beam

corresponding to spin-down along the z-axis. Find the
ratio of the intensities of the emerging beams.

Q36(14) The Pauli matrix σy is given by

σy =
(

0 −i
i 0

)

.

(a) Show that the Pauli matrix σy possesses the following

properties43:

42The notation C �η�n in Eq. (36.164) shows that the spin aligned in the direction �n
should be denoted by �η�n+ .

43For the exponential function, we can use the expansion

ecσy =
∞∑
n=0

1

n!

(
cσy

)n
. (36.165)
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σ 0
y = σ 2

y = σ 4
y = · · · = σ 2k

y = I 2×2, (36.166)

σy = σ 3
y = σ 5

y = · · · = σ 2k+1
y , (36.167)

ecσy =
∞
∑

k=0

1

(2k)!
c2k I 2×2 +

∞
∑

k=0

1

(2k+ 1)! c
2k+1 σy , (36.168)

where I 2×2 is the 2 × 2 identity matrix. Here k =
0, 1, 2, 3, . . . , and c ∈ C .

(b) Show that44

e−i
1
2
θσy =

⎛

⎝

cos 1
2
θ − sin 1

2
θ

sin 1
2
θ cos 1

2
θ

⎞

⎠ . (36.170)

(c) Let

U (θ) = e−
1
2
iθσy . (36.171)

Show that U (θ) is unitary and evaluate the unitary
transform of C �αz in Eq. (36.139) generated by U (θ).
Give an account on the physical meaning of the

transformation.

44Use the following expansions of cos x and sin x :

cos x =
∞∑
k=0

(−1)k
(2k)!

(x)2k , sin x =
∞∑
k=0

(−1)k
(2k+ 1)! (x)

2k+1. (36.169)
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Particles in Static Magnetic Field

37.1 Static Magnetic Fields

37.1.1 Vector Potentials

As discussed in §27.1.2, a static magnetic field �B is describable in

terms of a magnetic vector potential �A(�x ) in that the field can be
derived from �A by �B = ∇ × �A, where the curl operation is given
in Cartesian coordinates by Eq. (27.33). A uniform magnetic field

pointing in the positive z-axis is expressible as �B = Bz �k, Bz > 0.

Its magnitude B = | �B | is equal to Bz. A suitable magnetic vector
potential for such a field is given by its components

Ax = −1
2
yB , Ay = 1

2
x B , Az = 0. (37.1)

Using the expression for the curl in Eq. (27.33) we can verify that

�B = ∇ × �A = B �k. (37.2)

37.1.2 Uniform Field in Cylindrical Coordinates

A uniform magnetic field along the z-axis has cylindrical symmetry.
It is easier to employ cylindrical coordinates (r, θ , z).We shall denote
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the unit vectors in the r , θ and z directions by �er , �eθ , and �ez.1 These
unit vectors are related to �i , �j , �k by

�er = cos θ �i + sin θ �j , �eθ = − sin θ �i + cos θ �j , �ez = �k. (37.3)

Any vector is a linear combination these unit vectors, e.g.,2

�B = Br �er + Bθ �eθ + Bz�ez, (37.4)

�A = Ar �er + Aθ �eθ + Az�ez. (37.5)

We can also conveniently denote the above equations by

�B = (Br , Bθ , Bz), and �A = (Ar , Aθ , Az). (37.6)

For the particular example of a constant magnetic field along the

z-direction, we have

�B = Bz�ez = B �ez with Br = Bθ = 0. (37.7)

The components of �B = ∇ × �A in cylindrical coordinates become3

Br = 1

r

(

∂ Az
∂θ

− ∂(r Aθ )

∂z

)

, (37.8)

Bθ = ∂ Ar
∂z

− ∂ Az
∂r

, (37.9)

Bz = 1

r

(

∂(r Aθ )

∂r
− ∂ Ar

∂θ

)

. (37.10)

We can derive a vector potential for the above magnetic field by

Stokes’ theorem in vector calculus which says that the line integral

of a vector field around a closed curve is equal to the surface integral

of the curl of the vector field over any surface bounded by the curve.4

In our present case, we have a vector field in the form of the vector

1Spiegel (3) p. 142 (see Fig. 4 on p. 138). These unit vectors are position-dependent.
2These are vectors in the three-dimensional physical space.
3Spiegel (3) pp. 153–154. These expressions are different from those in Cartesian

coordinates.
4Spiegel (3) p. 106. Gasiorowicz p. 257. Stokes (1819–1903) was an Irish physicist

and mathematician.
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potential �A. Consider a circle of radius r on the x-y plane centred at
the origin. This circle encloses a disc Sr of radius r the x-y plane
centred at the origin. Stokes’ theorem for our present geometry

means5

∮

�A · d �� =
∫

Sr
∇ × �A · d �S . (37.11)

We can evaluate the integrals since (1) Aθ of the vector potential

should be independent of both θ and z on account of the cylindrical
symmetry of the magnetic field, and (2) the field �B and surface

vector d �S are parallel along the z-direction. In other words, we

have
∮

�A · d �� =
∮

Aθ (r)rdθ = 2πr Aθ (r), (37.12)

∫

S
∇ × �A · d �S =

∫

S

�B · d �S = πr2 B . (37.13)

Stokes’ theorem then implies Aθ = 1
2
Br . Using Eqs. (37.8) to (37.10)

we can verify that a vector potential with zero components along the

r and z directions and with its θ component given above, i.e.,

Ar = 0, Aθ (r) = 1

2
Br, Az = 0 (37.14)

would satisfy Eq. (37.7).

Potentials are generally not unique. Two vector potentials �A and
�A′ related by the gradient of a scalar function f (�x ), i.e.,6

�A′ = �A +∇ f (�x ) (37.15)

define the same magnetic field, since the curl of a gradient is zero.7

5Here d �� is the line element along the circle and d �S is the surface element of the disc
Sr .

6From (37.8) to (37.10)we can see that adding a constant vector �c = cr �er+cθ �eθ+cz �ez
to the vector potential in Eq. (37.14) will lead to the same magnetic field. A similar

statement is true for the vector potential in Eq. (37.1) in Cartesian coordinates.
7Gasiorowicz p. 247. The change from �A to �A′ is known as a gauge transformation.
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37.1.3 Field Confined in a Cylindrical Region

Consider a uniform magnetic field of magnitude B aligned along the
z-direction but confined within a cylindrical region of radius r < b.8

In cylindrical coordinates, such a field is specified by

�B(r) =
{

(0, 0, B) r < b
(0, 0, 0) r > b

. (37.16)

The corresponding vector potential �A in the cylindrical region r < b
is given by Eq. (37.14). We can obtain the vector potential outside

the circle again by Stokes’ theorem:

(1) As before we choose the components Ar and Az of �A along the
r and the z directions to be zero. The line integral in Eq. (37.11)
along any circle of radius r > b centred at the origin on the x-y
plane has the value of 2πr Aθ (r).

(2) The surface integral of ∇ × �A = �B over the area enclosed by
the circle reduces to the surface integral over the disc Sr=b of
radius b since �B is zero outside the disc, i.e., the integral has a
value πb2B .9 This is equal to the magnetic flux �b enclosed by

the circle of radius b in the x-y plane centred at the origin. It
follows that for r > b the θ -component Aθ is a function of r
given by�b/2πr .10

(3) Combining the above results we get

Aθ (r) =
{

Br/2 r < b
�b/2πr r > b

. (37.17)

This vector potential is proportional to r inside the cylindrical
region and is inversely proportional to r outside. It is continuous

8An infinitely long solenoid of radius b lying along the z-direction with its centre
coinciding with the z-axis with a current flowing through it would trap a magnetic
field within the solenoid.
9The magnetic field, being zero for r > b, makes no contribution to the surface
integral in area outside the circle of radius b.

10Gasiorowicz pp. 257–258. See Gasiorowicz p. 258 for a gauge transformation of this
vector potential.We can directly verify that∇× �A(r) = �B for r < b and∇× �A(r) = 0

for r > b. At r = b we have to treat Eq. (37.10) with care. We get ∇ × �A(r) = �B as
the limit from the left, i.e., ∇ × �A(r) as r → bwhere r < b. The limit from the right,

using �A(r) for r > b, will give the value 0.
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B = 0 B = 0, A = 0

Figure 37.1 Magnetic field confined to a cylindrical region.

across the boundary at r = b with a value Aθ (b) = Bb/2. The
above diagram shows themagnetic field and the vector potential

on the x-y plane:

In classical electromagnetism, it is the electric and the magnetic

fields which are physical and directly measurable; potentials which

are generally not even unique are often regarded as mathematical

constructs to facilitate calculations. As already discussed in §27.1.2,
a classical particle with charged q moving with velocity �v in a static
magnetic field �B will experience a Lorentz force. This force is zero
if �B = 0. In our present case, a charged classical particle moving

outside the cylindrical region will not experience any Lorentz force,

despite a non-zero and varying magnetic vector potential. It follows

that its motion is not affected by the vector potential. In other words,

the magnetic field in the region r < b does not affect the motion of
the particle outside the region.

The situation is quite different in quantum mechanics. The

magnetic field confined inside a cylindrical region can affect the

motion of a charged quantumparticlemoving outside the cylindrical

region where the magnetic field is zero. This gives rise to what is

known as the Aharonov–Bohm effectwhich we shall discuss in more
details in §37.6.11

The Aharonov–Bohm effect has its origin in the classical Hamil-

tonian. In the absence of any mechanical or electrical potential, a

classical particle of mass m and charge q in a static magnetic field
specified by a magnetic vector potential �A has a Hamiltonian given
by Eq. (27.47). The quantised Hamiltonian is given by Eqs. (27.98),

i.e., the following operator in the Hilbert space L2(IR3)12:

̂H := 1

2m

(

̂�p − q ̂�A
)2

. (37.18)

11Aharonov (1932–) is an Israeli physicist. Bohm (1917–1992) was an American

physicist. Historically there had been controversy about such an effect.
12For a spinless particle.
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The fact that it is the vector potential, not the magnetic field, which

appears in the Hamiltonian would suggest that the vector potential

would play a significant role in the quantised theory. Details are set

out in the following sections.

37.2 Charged Quantum Particles in Uniform Field

We shall start with a spinless particle of mass m and charge q in a
static electromagnetic field specified by a vector potential �A. The
Hamiltonian of the particle is given in Eq. (37.18). The expression
(

̂�p − q ̂�A )2 is given by Eq. (27.99) in the form of a sum. Each term

in the sum can be expanded, e.g., the first term in the above sum can

be expanded as follows:

(

p̂x − q ̂Ax
)2

= p̂ 2x − p̂x (q ̂Ax)− (q ̂Ax) p̂x + q2 ̂A 2

x

= p̂ 2x + q2 ̂A
2

x − q
(

p̂x ̂Ax +̂Ax p̂x
)

. (37.19)

Using the explicit differential expression of p̂x and replacing the
multiplication operator ̂Ax by the function Ax we can carry out the
following calculation13:

p̂x ̂Ax := −i� ∂

∂x
Ax = −i�

( ∂ Ax
∂x

+ Ax
∂

∂x

)

= −i�∂ Ax
∂x

+ Ax p̂x . (37.20)

Writing the multiplication operator ̂Ax explicitly as a function Ax we
can to express

(

p̂x − q ̂Ax
)2
as

(

p̂x − q Ax
)2

= p̂ 2x + q2A 2
x − 2q Ax p̂x + i�q

∂ Ax
∂x

. (37.21)

Similar expressions for
(

p̂y − q ̂Ay
)2

and
(

p̂z − q ̂Az
)2

can be

obtained. Adding these terms we arrive at

(

̂�p − q �A
)2

= ̂�p 2 + q2 �A 2 − 2q �A · ̂�p+ i�q ∇ · �A, (37.22)

13See Eqs. (17.80), (20.70) and (27.107).
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where

�A · ̂�p := Ax p̂x + Ay p̂y + Az p̂z, (37.23)

∇ · �A := ∂ Ax
∂x

+ ∂ Ay
∂y

+ ∂ Az
∂z

. (37.24)

The Hamiltonian can now be written as

̂H = 1

2m
̂�p 2 + 1

2m
q2 �A 2 − q

m
�A · ̂�p+ i�q

2m
∇ · �A. (37.25)

For the case where the magnetic field is uniform pointing in the z-
direction, i.e., �B = B �k in Cartesian coordinates, the vector potential
is given by Eq. (37.1). This vector potential has the following

properties:

∇ · �A = 0, �A 2 = 1

4
B2
(

x2 + y2
)

, �A · ̂�p = 1

2
B̂Lcz. (37.26)

where ̂Lcz = ŷ p̂x − x̂ p̂y is the z-component orbital angular
momentum operator.14 The Hamiltonian becomes

̂H = 1

2m
̂�p 2 + q2B2

8m

(

x̂2 + ŷ2
)− q

2m
B̂Lcz. (37.27)

In many practical applications, the magnetic field is rather weak

so that we can ignore the term containing B2. This results in a

simplified, albeit approximate, Hamiltonian. In the presence of an

additional electric potential ̂V , we have a weak-field Hamiltonian

̂Hw = 1

2m
̂�p 2 + q ̂V − q

2m
B̂Lcz. (37.28)

This Hamiltonian can be interpreted as consisting of a kinetic energy

term, an electric energy term and a term containing the magnetic

field. This is the magnetic energy term. A study of this term is set out

in the following section.

14Following the notation in §36.1.2 the operator L̂cz act in �L2(IR3) while L̂z(Su) acts
in �L2(Su).
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37.3 Magnetic Moment and Magnetic Energy

37.3.1 For Circular and Orbital Motion

Classically an electric current of magnitude I going anticlockwise
round a circular coil of radius r about the origin in the x-y plane
behaves like a magnet when it interacts with an external magnetic

field. The magnetic property of the current carrying coil manifests

itself in the form of a magnetic moment having a value

Mz := (area enclosed by the coil)× (current) = πr2 I . (37.29)

A magnetic moment is a vector quantity. For the above current

carrying coil, it is defined to be directed along the positive z-axis,
i.e., the magnetic moment vector is

�M := Mz �k, Mz = πr2 I . (37.30)

Next consider a particle with charge q constrained to move in
a circular orbit of radius r about the origin in the x-y plane with
speed v . It would travel a distance equal to v meters per second
along the circumference. This is equivalent to going round the circle

n = v/2πr times. It follows that at any chosen point on the circle
there will be an amount of charge nq passing through per second.
By definition this is equivalent to a current of magnitude I = nq
flowing round the circle, i.e., we have

I = nq = v
2πr

q = q
mvr
2πmr2

= q
Lz

2πmr2
, (37.31)

where Lz := mvr can be identified with the magnitude of the

angular momentum of the particle. The corresponding angular

momentum vector is

�L := Lz �k, Lz = mvr. (37.32)

The current I in Eq. (37.31) gives rise to amagnetic moment

�M(o)
z := M(o)

z
�k where M(o)

z := πr2 I = q
2m

Lz. (37.33)
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The magnetic moment is seen to be related to the angular

momentum by

�M(o) = q
2m

�L . (37.34)

The superscript signifies the origin of the magnetic moment as due

to the orbital motion of the charged particle. If the plane of the

charged particle’s orbit does not lie in the x-y plane, its angular
momentum �Lwould be directed along the normal the plane.

The presence of a uniform magnetic field �B will affect the

particle’s orbital motion in that the magnetic moment arising from

the particle’s orbital motion will tend to align itself along the

direction of the magnetic field. This gives rise to a potential energy.

According to classical electromagnetism this magnetic potential
energy is given by15

− �B · �M(o) = − q
2m

�B · �L . (37.35)

For a uniform field in the z-direction, this expression reduces to

−BM(o)
z = − q

2m
BLz. (37.36)

In accordance with Postulate 27.2(CQ), a quantum particle in

circular motion would possess amagnetic moment operator16

̂�M(o) = q
2m

̂�Lc , (37.37)

and amagnetic energy operator

− �B · ̂�M(o) = − q
2m

�B · ̂�Lc . (37.38)

For a magnetic field aligned along the z-axis, Eq. (37.37) becomes

̂M(o)
z = q

2m
̂Lcz, (37.39)

15Jackson p. 190. The maximum (minimum) potential energy is achieved when the

magnetic moment is anti-parallel (parallel) to the magnetic field. This explains the

negative sign in the expression.
16Treating �L as the classical canonical angular momentum it is quantised as the

operator �̂Lc acting in �L2(IR3).
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and Eq. (37.38) becomes

−B ̂M(o)
z = − q

2m
B̂Lcz. (37.40)

which is the last term in the Hamiltonian ̂Hw in Eq. (37.28).

The above results apply to the electron in circular motion in

a hydrogen atom, i.e., for the electron in a hydrogen atom its z-
component magnetic moment operator is given by17

̂M(o)
z = − e

2m
̂Lcz. (37.41)

The eigenvalues of this operator are

−m�μB , μB = e�
2m

, (37.42)

where m� is the orbital magnetic quantum number. The quantity

μB is known as the Bohr magneton. This is the quantum unit
of magnetic moment in that the values of the quantum magnetic

moment are either zero or multiples, both positive and negative, of

the Bohr magneton. This statement also applies to spin.

37.3.2 For Spin Motion

It can be established, based on experimental confirmation and

theoretical consideration of relativistic quantum mechanics,18 that

an electron also behaves like a magnet when it interacts with an

external magnetic field even when it is not in orbital motion. The

intuition is that its spinningmotion gives rise to amagneticmoment.

Under the assumption that the values of the magnetic moment due

to spin should also be positive or negative multiple of the Bohr

magneton μB the spin magnetic momentum operator along the z-
direction must be19

17Wan pp. 486–488. Greiner pp. 161–162. The result comes from Eq. (37.39) with

q replaced by the charge of the electron which is −e, where e is the (positive)
elementary charge.

18Dirac pp. 263–267. Roman pp. 131–133.
19Goudsmith and Uhlenbeck postulated in 1925 that the magnetic moment arising

from electron spin had a magnitude of one Bohr magneton. When compared with

Eq. (37.41), we note that there is the absence of the fact 1/2 in the expression so

that the eigenvalues of M̂(s)
z are±μB , not±μB/2.
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̂M(s)
z = − e

m
̂Sz, (37.43)

where ̂Sz is the z-component spin operator and the superscript

signifies the origin of the magnetic moment as due to the spin. This

operator has eigenvalues±μB .

In a uniform magnetic field �B = (0, 0, B), this magnetic moment
gives rise to a magnetic potential energy operator

e
m
B ̂Sz. (37.44)

This operator possesses eigenvalues

E± = ± 1

2
�ω, ω = eB

m
, (37.45)

corresponding to eigenvectors �αz and �βz.
For a spin- 1

2
particle of charge q, Eqs. (37.43) and (37.44) become

̂M(s)
z = q

m
̂Sz and − q

m
B ̂Sz. (37.46)

37.4 Pauli–Schrödinger Equation

For a spin- 1
2
particle, the Hamiltonian ̂Hw in Eq. (37.28) must

be amended to take account of the magnetic energy due to spin.

Intuitively we may write down the new Hamiltonian as ̂Hw −
(q/m) B ̂Sz. Mathematically this sum is not well-defined since we are

adding operators of two different Hilbert spaces, i.e., the operator
̂Hw acts in �L2(IR3) while ̂Sz acts on �VV (2).

What we should do is to take the state space to be �H(s)(IR3) in
Eq. (33.10). A state vector �� is of the form given in Eq. (36.108).

Operators act on �H(s)(IR3). In accordance with the discussion in
§36.3.4 and §36.3.5, spatial operator ̂Hw and the spin operator and

(−q/m) B ̂Sz should take the form

̂H (s)
w = ̂Hw⊗ ̂II

( �VV (2))

and ̂II (IR3)⊗
(

−qB
m

)

̂Sz. (37.47)
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We can now combine these two operators to obtain a Hamiltonian

operator ̂H (s)
w acting in �H(s)(IR3) to be

̂H (s)
w = ̂Hw ⊗ ̂II

( �VV (2))− qB
m

̂II (IR3)⊗ ̂Sz. (37.48)

This Hamiltonian is known as the Pauli–Schrödinger Hamiltonian for
a charged spin- 1

2
particle in uniform static electric and magnetic

fields in the weak field approximation. In the Schrödinger picture,

this Hamiltonian will govern the time evolution of the state vector ��
with the following equation of motion:

i�
d ��(t)
dt

= ̂H (s)
w
��(t). (37.49)

This is known as the Pauli–Schrödinger equation for a charged
spin- 1

2
particle in uniform static electric and magnetic fields in

the weak field approximation. This may be regarded as a two-

component equation corresponding to a two-component wave

function introduced in §36.3.2.
In many applications in magnetism and in solid-state physics, we

are interested in the effect arising from the electron’s spin, not in the

electron’s spatial motion. So, the spatial part of the wave function is

often ignored. In other words, we will work in the state space �VV (2)

of the spin with state vector given by a spin vector �η(t). The Pauli–
Schrödinger equation becomes

i�
d
dt
�η(t) = eB

m
̂Sz �η(t). (37.50)

An initial state vector �αz will evolve into exp(−iωt/2) �αz, and an
initial state vector �βzwill evolve into exp(iωt/2) �βz.20 An initial state
vector

�η(0) = 1√
2

(

�αz + �βz
)

(37.51)

will evolve to the state vector

�η(t) = 1√
2

(

e−
1
2
iωt �αz + e 1

2
iωt �βz

)

. (37.52)

20The constant ω is given by Eq. (37.45), i.e., ω = eB/m.
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37.5 The Simple Zeeman Effect

In 1895 Zeeman discovered that in the presence of a uniform static

magnetic field there was a splitting of spectral lines in the radiation

emitted by atoms and molecules.21 This is known as Zeeman effect.

This is attributed to the splitting of the atomic energy levels. We can

now show that this splitting of the atomic energy levels is due to

the additional magnetic energy arising from the orbital and spinning

motion of the electron. The number of splittings as well as the

magnitudes of these splits for the hydrogen atom can be calculated

easily in the weak field approximation.

37.5.1 The Hydrogen Atom

In the absence of any magnetic field, the hydrogen atom has the

following familiar Hamiltonian:

̂H h := − �
2

2m
∇ 2 − e2

4πε0 r
. (37.53)

This Hamiltonian has a well-known set of degenerate eigenvalues

En. The corresponding eigenfunctions are of the form of a product of

a function Rn�(r) of the radial variable r and the spherical harmonics
Y�,m�

(θ , ϕ), i.e.,22

ψn�m�
(r, θ , ϕ) = Rn�(r)Y�,m�

(θ , ϕ), (37.54)

where n is the principal quantum number which fixes the energy
eigenvalue, � is the orbital angular momentum quantum number,

and m� is the orbital magnetic quantum number. We have the

following eigenvalue equations:

̂H h �ψn�m�
= En �ψn�m�

, ̂L2c �ψn�m�
= �(�+ 1)�2 �ψn�m�

, (37.55)

̂Lcz �ψn�m�
= m�� �ψn�m�

, ̂M(o)
z
�ψn�m�

= − e
2m

m�� �ψn�m�
. (37.56)

21Zeeman (1865–1943) was a Dutch physicist.
22Gasiorowicz pp. 132–140.
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The quantum numbers are related by

n = 1, 2, 3, . . . , � ≤ n− 1; (37.57)

m� = 0, ±1, ±2, . . . with − � ≤ m� ≤ �. (37.58)

Sincem� ranges from−� to � there are 2�+ 1 different values ofm�

for any given �. In the derivation of the above results, the electron’s

spin plays no part. As seen in the next section, the spin will play a

part when an external magnetic field is applied since spin with its

magnetic moment will interact with external magnetic field.23

37.5.2 Hydrogen Atom in Magnetic Field

In the presence of a weak and uniform static magnetic field

of magnitude B along the z-direction, the electron will acquire

additional energy terms due to its orbital and spin magnetic

moments. The Pauli–SchrödingerHamiltonian in Eq. (37.48) applies.

The unperturbed Hamiltonian ̂H h should be replaced by

̂H (s)
hw =

(

̂H h + eB
2m

̂Lcz

)

⊗ ̂II ( �VV (2))+ ̂II (IR3)⊗
(

eB
m

̂Sz

)

. (37.59)

The eigenvectors of ̂H (s)
hw are easily verified to be

��n�m�+ = �ψn�m�
⊗ �αz or ��n�m�− = �ψn�m�

⊗ �βz. (37.60)

For the spin-up state ��n�m�+,

̂H (s)
hw
��n�m�+ =

(

̂H h �ψn�m�
+ eB
2m

̂Lz �ψn�m�

)

⊗ �αz

+ �ψn�m�
⊗
(

eB
m

̂Sz �αz
)

=
(

En + eB
2m

m�� + eB�
2m

)

�ψn�m�
⊗ �αz (37.61)

⇒ ̂H (s)
hw
��n�m�+ = Enm�+ ��n�m�+,

Enm�+ = En + e�
2m

B (m� + 1). (37.62)

23We have not taken the spin–orbit coupling into account.
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Similarly we have, for the spin-down state ��n�m�−,

̂H hw ��n�m�− = Enm�− ��n�m�−, (37.63)

and

Enm�− = En + e�
2m

B (m� − 1). (37.64)

Compared the eigenvalues Enm�+ and Enm�− with the unperturbed
eigenvalues En we can see that each energy level En is split into
several sub-levels according to the z-component orbital and spin
angular momenta. The following examples serve to illustrate the

situation:

E37.5.2(1) For the ground state level n = 1, we have � = 0

and hence m� = 0. There is no contribution to the energy due to

orbital magnetic moment. The ground state level is shifted down

for the spin-up state and up by the spin-down state. The energy gap

between in this splitting is


(s)E1 = e�
m
B . (37.65)

the spin gives rise to two sub-levels with energy gap
(s)E1.

E37.5.2(2) For the first excited level n = 2, we can have � = 1

and m� = −1, 0, 1. The first excited energy level is split into three
sub-levels due to orbital motion for the spin-up state as well as for

the spin down state, e.g., for the spin-up state, we have three levels

E2(−1)+ = E2, (37.66)

E20+ = E2 + e�
2m

B , (37.67)

E21+ = E2 + e�
m
B . (37.68)

The energy gap is


(o)E2 = e�
2m

B . (37.69)

Generally for the spin-up (spin-down) state any given � gives rise to

2�+ 1 sub-levels with energy gap
(o)En.
These results agree well with experimental observations.
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37.6 Aharonov–Bohm Effect

37.6.1 Circular Motion

A quantum particle of mass m and charge q constrained to move
freely in a circle Ca of radius a centred at the origin in the x-y plane
is discussed in §27.8.24 The state space of the system is the space
�L2(Ca) of square-integrable functions on the circle introduced in
§16.1.2. These functions satisfy the periodic boundary condition in
Eq. (16.39) with scalar product defined by Eq. (16.40). The particle’s

momentum is represented by the operator p̂(Ca) in Eq. (27.116).
The eigenvectors �ϕn(Ca) and eigenvalues pn(Ca) of this operator
are given by Eqs. (19.36) and (19.37).

For free motion along the circle, the Hamiltonian is

̂H (Ca) := 1

2m
p̂ 2(Ca). (37.70)

The operator has the following operator expression:

̂H (Ca) := − �
2

2ma2
d2

dθ2
. (37.71)

This Hamiltonian shares the same set of eigenvectors with the

momentum operator, i.e.,

̂H (Ca) �ϕn(Ca) = En �ϕn(Ca) (37.72)

with eigenvalues

En = 1

2m
p2n =

1

2ma2
(�n)2. (37.73)

37.6.2 The Aharonov–Bohm Effect

A constant magnetic field of magnitude B directed along the z-axis is
confined to a cylindrical region of radius bwith its centre coinciding
with the z-axis. A quantum particle of mass m and charge q is

24Wan pp. 480–485. Martin pp. 46–47. Physically this is achieved by confinement of

the particle to a thin torus (see Gasiorowicz p. 259 and Supplement 16-B).
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Figure 37.2 Field confined to a cylindrical region of radius b < a.

constrained to move along a circular orbit of radius a > b centred at
the origin in the x-y plane in the presence of the magnetic field. In
Fig. 37.2, the outer circle is the particle’s circular orbit of radius a on
the x-y plane. The dark circular area is of radius b < a. This is the
region where the magnetic field is confined so that outside the dark

area the magnetic field is zero.

The field and itsmagnetic vector potential are given in cylindrical

coordinates by Eqs. (37.16) and (37.17). The Hamiltonian of the

particle is given, in accordance with Eq. (27.98), by

̂H := 1

2m

(

p̂(Ca)− qAθ (a)
)2

, Aθ (a) = �b

2πa
(37.74)

This Hamiltonian admits �ϕn(Ca) in Eqs. (19.37) as eigenvectors

corresponding eigenvalues

En = 1

2ma2

(

�n− q�b

2π

)2

. (37.75)

We can check this by noting that

(

p̂(Ca)− qAθ (a)
)

�ϕn(Ca) = 1

a

(

� n− q�b

2π

)

�ϕn(Ca). (37.76)

The magnetic field is zero along the circular orbit of the particle,

despite the non-zero value of the vector potential. In classical

electromagnetism, a charged particle’s motion is affected by the

field and not by the potential. In other words, the particle’s motion

and its energy outside the cylindrical region are independent of the

existence of themagnetic fluxwithin the cylindrical region. However,

the quantised energy eigenvalues En obtained above show that

the energy of the quantum particle depends on the magnetic
flux �b generated by a magnetic field B which is zero in the
region where the particle moves.
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Experiments measuring electron interference through double slits

confirm the fact that a magnetic field confined to a region in which

electrons are apparently not present can indeed have an effect on the

interference pattern.25 The phenomenon that a charged quantum

particle is affected by a magnetic field even though it moves a region

in which the magnetic field is zero is a quantum effect known as the

Aharonov–Bohm effect.

Exercises and Problems

Q37(1) Verify Eq. (37.2).

Q37(2) Using Eqs. (37.8) to (37.10), show that the magnetic field

in Eq. (37.7) is derivable from the vector potential in

Eq. (37.14) and that the magnetic field in Eq. (37.16) is

derivable from the vector potential in Eq. (37.17).

Q37(3) When spatial motion is neglected, the Hamiltonian of an
electron of charge −e and mass m in a uniform and

static magnetic field of magnitude B pointing along the z-
direction is given by

̂H (s) = e
m
B ̂Sz. (37.77)

Write down the Pauli–Schrödinger equation for the evolu-

tion of a spin state in the Schrödinger picture. Show that the

following initial spin state

�η(0) = 1√
2

{

�αz + �βz
}

(37.78)

will evolve to a new state �η(t) at time t given

�η(t) = 1√
2

{

e−
1
2
iωt �αz + e 1

2
iωt �βz

}

, (37.79)

where ω = eB/m. What are the spin orientations initially
at t = 0 and later at t = π/2ω?

25Gasiorowicz p. 259 and Supplement 16-B.
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Notation

Classical mechanics

{A , B}, 455
H , K , V , 449–451, 454
Hho, 448
L, 446, 449, 452
�L, Lx , Ly , Lz, 11
�Lc , L2c , 454
Lcx , Lcy , Lcz, 456
�Lk, 454
�p, �v , 10, 11
pcj , �pc , 453, 454, 449, 450
pcr , pcθ , pcϕ , 450
�pl , pl j , 453, 448
�x , x j , 8

Functions

AC (�), AC (IR+), AC (IR), 271
AC (IR2), AC (IR3), 272
C (�), C (IR+), C (IR), 270
C (IR2), C (IR3), 271
C∞(�), C∞(IR+), C∞(IR), 271,

272

C∞(IR2), C∞(IR3), 272
C∞D (�), C

∞
c (IR

+), C∞c (IR), 274
C∞c (IR

2), C∞c (IR
3), 275

χ�(τ ),χ (a,b ](τ ), 35, 36

χ (∞,τ ](x), 220, 372
χ
∼ (−∞,τ ](p), 381
δ(τ ), δ(τ − a), 55
D(x), 46
F(τ + 0),F(τ − 0), 29, 30, 31
f p(x), 332, 349–342
fs(τ ), 36

gus(τ ), gas(τ ), gs(τ ) gnd(τ ), 36, 37
Hn(y), 273
L2(�), 277

L2(IR), L2(IR+), 275, 276
ϕ
∼
(p), 340, 342

ϕHn(x), 273
Ss(IR), Ss(IR2), Ss(IR3), 272, 274
Y�,m(θ , ϕ), 287, 617, 620–621

Function spaces
�AC (�), �AC (IR+), �AC (IR), 271
�AC (IR2), �AC (IR3), 271
�C (�), �C (IR+), �C (IR), 204, 270
�C (IR2), �C (IR3), 271
�C∞(�), �C∞(IR+), �C∞(IR), 272
�C∞(IR2), �C∞(IR3), 272
�C∞c (IR2), �C∞c (IR3), 275�C∞D (�), �C∞c (IR+), �C∞c (IR), 275�L2(�), 277
�L2(IR), 275, 276
�L2(IR+), 277
�L2(�), 278, 286
�L2(IR), �L2(IR+), 277, 278
�L2(IR2), �L2(IR3), 278
L2(IR∼ ), �L2(IR∼ ), 344, 345�L2(IR , dx), �L2(IR , dy), 424
�L2(IR2, dxdy), �L2(IR3, dxdydz),

424, 425

L2(IR+, rdr), L2(IR+, r2dr), 424
L2(Ca), �L2(Ca), 278, 286
L2(Su), �L2(Su), 281, 286
�Ss(IR), 272, 468
�Ss(IR2), �Ss(IR3), 274, 459, 460, 464
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Matrices

C , R, 98
C · R, R · C , 100, 103
||C ||, 111
〈C | C 〉, 〈C 1 | M · C 2 〉, 111
det M , 104, 105
I , I n×n , 98
M , 97
M T , M†, 106, 105

M−1, 109, 110
M · C , MC , 102, 114
{M , N }, [M , N ], 104
(Mi j )m×n, 98, 99
P �αx , P �βx , 131, 133
P �αy , P �β y , P �αz , P �βz , 132, 133
P �e = |C �e 〉〈C �e |, 131
P �i , P �e, 130, 131
Ri (θ), Rp(θ), 122, 123

Rrx , Rry , 123
Rrxyz, 125
Rx(θx), Ry(θy), Rz(θz), 124–125
σx , σy , σz, ecσy , 99, 105, 624
tr M , 104
U , 126, 127

Matrix representation

C �αx , C �βx , 243
C �αy , C �β y , 245
C �αz , C �βz , C �η , 240
|C �αx 〉〈C �αx |, |C �βx 〉〈C �βx |, 243
|C �αy 〉〈C �αy |, |C �β y 〉〈C �β y |, 244
|C �αz 〉〈C �αz |, |C �βz 〉〈C �βz |, 240
C �u , M ̂A in

�IE 3, 145–146
C �ζ , MÂ , 234

M
̂P �αx
, M

̂P �βx
, 131, 133, 243

M
̂P �αy
, M

̂P �βy
, 132, 133, 249

M
̂P �αz
, M

̂P �βz
, 132, 133, 241

M
̂Sx , 243, 245

M
̂Sy , 245

M
̂Sz , 241, 245

M
̂S(1)x

, M
̂S(1)y

, M
̂S(1)z

, 246

Measures and integration

M, 38

Ml , 39

Mls,g , 40, 41

Mp, 41, 42∫
[a,b ] f (τ )dg(τ ), 53, 57∫
[a,b ] f (x)dMl(x), 49∫
[a,b ] f (τ )dMls,g(τ ), 57∫
�
f (x)dMl(x), 48∫

[a,b ] f (x)dx , 43

Operators (basics)

|| Â ||, 140, 295
Â†, 144, 317

Â−1, 143, 310
Âex , Â ⊂ Âex , 312
Âres , Âres ⊂ Â, 312
Â �S , ÂS⊥ , 321

[ Â, B̂ ], 141, 314–316
{ Â, B̂ }, 141
B̂( �H ), 295
�D( Â ), 139, 294, 296
ÎI , 0̂, 139
ÎI x , ÎI y , ÎI (IR+), 425, 426
P̂ �S , P̂ �S⊥ , 321, 322
Q( Â, �η ), 211
Q( Â, �u ), 145
Q( Â, �φ ), 294
�R( Â ), �R(Û ), 141, 337

Operators (differential)

Ĥ (Ca), 363, 473, 658
Ĥ∞

D (�), 362, 467

Ĥ∞
λ (�), 363, 467

Ĥ ho, 364

�̂Lc , L̂cx , L̂cy , L̂cz, 463, 471
L̂2c , 463, 471, 616
�̂Lk, �̂Lkz, 469
L̂x(Su), L̂y(Su), L̂z(Su), 616, 617
L̂2(Su), L̂z(Su), 305, 364, 426, 617
L̂2(Su), L̂+(Su), L̂−(Su), 617
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L̂ z(IR3, dxdydz) , 426
L̂2(IR3, dxdydz) , 426

p̂(Ca), p̂λ=0(Ca), 304, 360
p̂ �AC (�), 302
p̂D(�), p̂

†
D(�), 302, 355

p̂λ(�), p̂λ=0(�), 303
p̂†λ(�), 357
p̂ �C∞D (�), 301, 311
p̂(IR+), 306
p̂ �C∞c (IR

+), 305, 306

p̂D(IR+), p̂
†
D(IR

+), 306, 356
p̂(IR), 307, 360
p̂ �C∞c (IR), p̂

†
�C∞c (IR), 306, 313, 361

�̂pl , 469
p̂r , p̂†r p̂r , 480
p̂ �Ss (IR), 306, 313, 314, 468

p̂cx , p̂cy , p̂cz, 458, 464
p̂x , p̂y , p̂z, 464, 465
p̂x(IR2), p̂y(IR2), 307
p̂x(IR3), p̂y(IR3), p̂z(IR3), 308, 458
p̂x �C∞c (IR

3), p̂y �C∞c (IR
3), 307

p̂z �C∞c (IR
3), 307

Operators (functions)

χ̂�, χ̂ (−∞,τ ], 297

χ (−∞,a]( Â ),χ�( Â ), 220, 371–373
χ
∼ (−∞,τ ](p), χ̂∼ �∼

, 381

χ (−∞,τ ]( x̂ ), 383, 384

exp(i Â ), exp(−i Â ), 221, 230, 231,
397

exp(±i t Â ), 232
f ( Â ), 219, 384–386
f ( Â1, Â2 ), 225
M̂ f ( Â)(�), F̂ f ( Â)(τ ), 386

Û (Ĥ , t) = exp(− i–Ĥ t ), 398, 508,
509

Operators (multiplication)

χ̂�, χ̂ (−∞,τ ], 297

χ (−∞,τ ]( x̂ ), 371–373

θ̂(Ca), 299
V̂ , 297
x̂ , ŷ, ẑ, 458
x̂∼ (IR∼ ), p̂∼ (IR∼ ), 344, 345
x̂(IR), x̂(�), 298, 299, 311
x̂ �C∞c (IR), 313
x̂ �Ss (IR), 314, 315, 468
x̂(IR2), ŷ(IR2), 299
x̂(IR3), ŷ(IR3), ẑ(IR3), 299, 458

Operators (others)

â, â†, 323–325, 473–478
Â0, 367
Ĉ (cs), 566
D̂, 333
| �e 〉〈�e |, 155
e0̂, 397∣∣�ζ 〉〈�ξ ∣∣, ∣∣�ζ 〉〈�ξ ∣∣†, 215
F̂ Â(a�), F̂ Â(am), 254, 377
F̂ Â(a� + 0), F̂ Â(a� − 0), 254
F̂ (τ ), 255–259
F̂ Â(τ ), 253, 260, 374

F̂ f ( Â)(τ ), M̂ f ( Â)(�), 386

F̂ p̂(τ ), F̂ p̂∼∼ (τ ), M̂ p̂∼∼ (�), 381

F̂ x̂(τ ), M̂x̂(�), 380

|�i 〉〈�i |, | �j 〉〈 �j |, |�k 〉〈�k |, 155
Ĵ x , Ĵ y , Ĵ z, Ĵ 2, 622–626
M̂, M̂(�), 256, 371
M̂ Â , M̂ Â(�), 260, 374

M̂ Â({τ = a�}), M̂ Â({am}), 261, 377
M̂ Â(�τ0 ), 262

M̂ Â({τ0}), 256, 263
N̂, 326, 352, 473, 475
P̂ Â(am), 377

P̂ (ca), P̂ (cs), 567
P̂ �αx , P̂ �βx , 243

P̂ �αy , P̂ �β y , 244

P̂ �αz , P̂ �αz , 240
P̂ �φ , 435

P̂ �S , P̂ �S⊥ , 159, 214
P̂ �S1 ≤ P̂ �S2 , 214
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P̂ �i , P̂ �j , P̂ �k, P̂ �e, 155
| �φ 〉〈 �φ |, 338
R̂rx , R̂rxyz, R̂ , 152, 153
sp( Â ), 262
spc( Â ), spd( Â ), spm( Â ), 375

Ŝ x , 243, 628
Ŝ y , 244, 628
Ŝz, 244, 628
Ŝ2, 244, 628
Ŝ(1)x , Ŝ(1)y , Ŝ(1)z, 240
Û , 225, 227–228, 230–232, 338
Û F , Û −1

F , 343

Û p, 565

Probability


( Â, �u ), 178

( Â, �φ ), 402

(F), E(F ), Var(F), 62

(Fac), E(Fac ), Var(Fac), 62


(Fd), E(Fd), Var(Fd), 63


(℘ A), E(℘ A), Var(℘ A), 28


( p̂, �φ ), E( p̂, �φ ), 407

( p̂

∼
, �φ
∼
), E( p̂

∼
, �φ
∼
), 406, 407


(x̂ , �φ ), E(x̂ , �φ ), 405
E(A , φs ), E( Â, �u ), 178
E(A , φs ), E( Â, �φ ), 488
E A(℘ A

N), 18

F(τ ), 30–31, 59
F(τ + 0), 29, 30–31
F(τ − 0), 29, 30–31
Fac , Fd , Fsc , 58

F Â(�η, τ ), 248
F Â( �φ, τ ), 401
F p(φs , τ ), wp( �φ, τ ), 495
F p̂( �φ, τ ), wp̂( �φ, τ ), 406
F p̂∼ ( �φ

∼
, τ ), w p̂∼ ( �φ

∼
, τ ), 405, 406

F x(φs , τ ), wx(φs , τ ), 494

F x̂( �φ, τ ), wx̂( �φ, τ ), 404
M Â(�η, �), 265
M Â( �φ, �), 401
Mp(�), 41, 42

Ml , 39

Mls,g , 40, 41

Mls,F , 60

℘, ℘(s�), 25
℘ A , 27

℘ A
N(a�), 18

℘ Â(�η, a�), 248

℘ Â( �φ, am), 403
℘ A(φs , a�), 177, 490, 491

℘ Â(�u, a�), 177

Sam, 24
w(τ ), wG(τ ), wU (τ ), wC (τ ), 58–59

wÂ( �φ, τ ), 402
w p̂∼ ( �φ

∼
, τ ), 406

wp̂( �φ, τ ), 406
wx̂( �φ, τ ), 404

Set theory

→,↔, 21, 23

∩ , ∪ , ∩�, ∪�, 20–21

⊂ ,⊃ , 19
IB(IR), IB ,�, 34
D − S , 20
D × G, 20
f , f −1, 23
II , 23
∅, 20
Sc , 19

Symbols (general)

C , 21
Ca , 278
δnm, 14

∀, 23
∈, /∈, 13
:=, 8
n!, 231
∇V , 446
∇ × �A, 452, 643, 644
∇2, 465

IR , IR+, IR−, 21
IRex , 38
IR × IR , 190
IR∼ , 343
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Su , 280
τ + 0, τ − 0, 29
�x × �p, 11
z, z∗, |z|, 186

Symbols (specific)

Acc , 69

αsx , β
s
x , 71–72, 242

�αx , �βx , 242

αsy , β
s
y , 244

�αy , �β y , 244

αsz , β
s
z , 71, 72, 239

�αz, �βz, 240, 633

ηs , �η, 241, 247
i– = i/�, 232
μB , 653

⊕, 414
⊗, 420
⊗, 631, 632, 656
φs , �φ, φ(τ ), φ(x), φ, 68, 203, 432
φsa,a′ , . . . , 70

(r, θ), 278
(r, θ , ϕ), 280, 281
(r, θ , z), 644
sc , 629
Sx , Sy , Sz, 70, 71, 240, 242, 244
�x × �p, 11

Vectors and vector spaces

�C 2
, 201

C N , �C N
, 200, 201

�C ∞
, 267

�er , �eθ , �ez, 644
�e�, 83, 84

�e c� , 193
�ε�, 199�IE 3, 79, 81
�IE 3 × �IE 3, 193
�IE 3c , 193
�η, �ζ , ζ�, 192, 198, 199

〈�ζ | �η 〉, 198, 199
〈�ζ 1 | �ζ 2〉c , ||�ζ ||c , 193�ζ �S , �ζ �S⊥ , 212, 213�H, 284
�H(c), 561
�H(c)(n), 570
�H(s)(IR3), 563, 636,
�H(cs)
F , �H(ca)

F , 571
�i , �j , �k, 83
�i c , �j c , �k c , 194, 195
�� 2, 267, 268
�0, 81
�0c , 192
〈 �φ | �ψ 〉, 203
��(c), 561
��(cs), ��(ca), 566

IRN , �IRN , 202
�S , �S⊥, 94, 212, 213, 290
�S1 ⊂ �S2, 214�S�e, 93�S �φ , 435
�Sz, �S⊥z , �Sxy , �S⊥xy , 94
�S Â(a), 166
�S(cs), �S(ca), 566, 567
�S(cs)(n), �S(ca)(n), 571
�S n , 212
�S (n), 550
�Ss(IR), �Ss(IR2), �Ss(IR3), 272, 290,

460, 464, 468

�u, �v , 80
〈�u | �v 〉, 84, 87
�u c , 192
||�v ||, 87
�v�i , �v �j , �v �k, 91
�v �e, 91
�vxy , 92
�vS , �vS⊥ , 94
�v (u), 86. 88
�VV , �VV N , �VV∞, 252
�VV 2, 239, 240
�VV 3, 246
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Index

absolutely continuous (see
functions)

action-at-a-distance, 569, 580

Aharonov-Bohm effect, 647,

658–660

almost everywhere, 39 (see
functions)

analytic vector, 367, 603

Nelson’s analytic vector

theorem, 367

angular frequency, 13

angular momentum (classical)

canonical, 12, 450, 463

kinematic, 11, 469

angular momentum (quantum)

(see orbital and spin angular
momentum)

angular position variable, 279

annihilation operator (see
operators in �H (special))

anticommutators, anticommute

(see commutator)
asymptotic localisation, 570

asymptotic separation, 570

asymptotically separable quantum

theory, 570, 581

basis, 84, 199, 284
basis vectors, 84, 284

countable, 284

orthonormal, 86, 284

Bohr magneton, 652

Borel functions, 35, 45

Borel sets, 34

boundary conditions, 300–302

Dirichlet, 300, 302

periodic, 301, 303

physics, 467

quasi-periodic, 300, 303

radial momentum operator, 480,

484

canonical angular momentum
(see angular momentum
(classical))

canonical commutation relations,

458

problems, 481–483

canonical momentum (see
momentum)

canonical quantisation scheme,

461

limitations, 479–483

commutation relations,

479–483

constraints, 481–483

non-selfadjointness, 480

non-uniqueness, 481

non-commuting factors,

479–480

representations

coordinate, 458, 461, 462

momentum, 462

rules

functional, 459

linearity, 459

symmetrisation, 459

canonical variables, 447, 456, 457
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Cartesian coordinate system, 8

Cartesian product, 20, 189, 191

Cauchy

convergence criterion, 282

distribution, 59

inequality, 269

sequence, 284, 286

circular motion, 471–473, 650, 658

classical and quantum divide,

576–577

classical systems, 6–15
conservative, non-conservative,

446, 451

continuous, 12–15

determinism, 9

discrete, 7–12

intuition, 8

objective reality, 9–10

phase space, 10

state space, 10

classical mechanics, 445–456

Hamiltonian, 447, 449, 451, 454

Hamilton’s equations, 447–448,

450

in spherical coordinates,

450–451

Lagrange’s equations, 446, 449

Lagrangian, 446, 449

magnetic field, vector

potential, 451–454

Poisson bracket, 455–456

structure, 10–12

dynamics, 12

observables, 10–12, 456–457

dynamic, 11–12

kinematic, 10–11

states, 10

coherent subspace (see vector
space �H )

collapse of the wave packet, 524,

580, 582

column matrices, 98, 100, 107, 111

column vectors, 113–115

commutator, commutation

relations (seematrices
(square (basics)), operators

on �IE 3 (basic), operators in �H
(basics))

compatible (see observables
(quantum))

complete orthogonal family
of projectors
on �IE 3, 160, 168, 170
linear combination, 162

on �VV N , 215, 216, 218, 219

on �H, 291
complete orthogonal family of

subspaces, 215, 415, 416, 418,

553

complete orthonormal set of

vectors, basis, 86, 168, 218,

247, 284, 291, 335

complete set of commuting

selfadjoint operators, 387–390

(see observables (quantum))
complete set of states

classical, 15

quantum, 435

complex numbers, 186, 190–192

absolute value, norm, 186, 190

complex conjugate, 186, 190

imaginary, real parts, 186, 190

imaginary number, imaginary

unit, 184, 186, 190

complex vectors, 191–195 (see
vector spaces �H, �VV N)

relationship to functions, 203,

204

complexification of �IE 3, 191–195
real vector, 192

matrix representation, 194, 195

properties, 194

scalar product, 193–194

compound systems (see
many-particle systems)

conceptual issues, 573–590
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constants of motion, conserved,

classical, 483, 510

quantum, 509, 510, 514

convergence

Cauchy sequence, 282–286

pointwise, 37, 48

sequence of numbers, 282

sequence of operators, 330–331

sequence of vectors, 283

constructive method, 198

convex combinations, 335, 337

coordinate representation and

representation space, 344,

462

coordinate space, 343

Cooper pair, 564

correlation (see superposition)
countable, 19, 26, 284 (see sets)
countable additivity, 26 (see sets)
creation operators (see operators

in �H (special))

cylindrical coordinates, 644

de Broglie paradox, 578–580
decoherence, 581

delayed choice experiments, 573

delta function (see functions)
delta function potential, 467

de Morgan theorem, 21

dense domains, 317, 318

dense subsets, 295

density matrices, 334

density operators (see operators in
�H (special))

detector, 530, 531

size, 531

determinant, 104

determinism (see classical
systems)

differentiable, 44, 49

almost everywhere, 50, 49

continuous, 49

everywhere, 270

once, twice, infinitely, 270

differential operators (see
operators in �H (differential)

dimensions, 82

Dirac notation

bra, ket, 292

delta function (see functions)
operators, 215, 227

projectors, 155, 218

scalar product, 84, 85, 199, 277

unitary operator, 227

Dirac picture, 506

direct sum, 412–417

external, internal, 416

Hilbert spaces, 412–417

decomposable, 415, 416,

553–556, 586

operators, 417–419

decomposable, 418, 554, 585

diagonalisable, 418, 554, 585

selfadjoint, 417, 419, 555

vectors, 413

distinguishable particles, 560

one-particle observables, 562

two-particle observables, 562

563

states (product, entangled), 561

distribution functions, 31

probability, 58

double-slit experiment, 575

dynamical observables, 11–12

dynamics

classical, 12

quantum, 75

Ehrenfest’s theorem, 521
eigenfunctions (classical waves)

eigenfunctions, 14

eigenstates, 14

orthonormal, 14

eigenfunctions (operators), 327,

364

generalised, 332, 342
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eigenprojectors, 166, 218, 219,

331, 335, 377, 524 (see
complete orthogonal family)

eigenstate (classical), 14

eigenstate (quantum) (see states
(quantum))

eigensubspace, 166, 331, 491,

524

eigenvalue problem for matrices,

114–118

eigenvalues 115

degeneracy, 116

eigenvalue equation, 114

eigenvectors, 115

eigenvalue problem for operators

(see operators in �IE 3, �H, �VV N)

eigenvectors (operators), 147, 218

electron spin (see spin angular
momentum)

model theory in �IE 3, 180–181
model theory in �VV 2, 239–245

elementary charge, 652

entanglement, 580–581

entangled states, 561

(seemany-particle systems)
EPR paradox, 580–581

equivalent, 410–411

mathematical, 411

physical, 410

Schrödinger, Heisenberg, and

Interaction pictures,

514–516, 517

coordinate and momentum

representations, 411

Euler formula, 184

events (see probability (discrete))
evolution operators, 509

expectation value (see probability)
experimental measurability, 65–66

extrinsic properties, 560

factorial, 231
Fock space, 426, 571

Fourier

integral, 340

series, 14, 359

transform, 339, 340

Fourier transformations, 339–346

as unitary transform, 342–344

commutation relations, 346

functions, 340

inverse transform, 340

momentum and position,

340–346, 462

quadratic form, 346

simultaneous, 346, 462

Frobenius scalar product, 202

functional, 137–138, 289–290

linear, 137–138, 289–290

continuous, 289, 290

functions (basics), 19, 21–24
absolutely continuous, 50–52,

271

bounded, unbounded, 295

complex, real, 21, 22

continuous, 270

almost everywhere, 49

from the right, 29, 31

singularly, 51

defining vectors, 203, 276

differentiable (see
differentiable)

equal almost everywhere, 39,

49, 50

image, inverse image, 23

integrable

Lebesgue, 45–50

Riemann, 42–45

inverse, 23

limiting processes, 29, 30

on a circle, 278–280

on a unit sphere, 280–281

piecewise-constant, 36

set function, 22

singularly continuous, 51

smooth, 271–272
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support, compact support, 274,

275

values at infinities, 31

zero, 39, 276

almost everywhere, 39, 270

functions (special)
Borel functions, 35

bounded variation, 53

Cantor, 51

characteristic, 35–36, 371–373,

383–384

defining vectors, 203

delta, 55–56, 311–312, 341, 467

Dirichlet function, 47

distribution function, 31

probability, 29–31, 58

Heaviside step function, 36

Hermite functions, 273

Hermite polynomials, 273

jump function, 31

localising, 275

nondecreasing, 30, 37, 52

of rapid decrease, 272

of selfadjoint operators (see
operators on �IE 3, �H, �VV N)

piecewise-constant, 36

probability distribution, mass

functions (see probability)
projector-valued, 22, 252

projector-valued set function,

252

Schwartz, 272, 464

simple, 36

spherical harmonics, 287, 327,

484, 497, 621

spectral, 255, 260, 264, 373–374

momentum, 381

position, 380

square-integrable

Lebesgue, 277–278

Riemann, 275–277

step, 36–37

antisymmetric, 37

nondecreasing, 37

unit, 36

unit constant, 220

function spaces, 269–281
absolutely continuous

functions, 271

continuous functions, 270

smooth functions, 271

of compact support, 274

zero at boundaries, 274

square-integrable functions

Lebesgue, 277–278

Riemann, 275–277

Schwartz, 272

fundamental theorem of calculus,

44

gauge transformation, 454, 645
Geiger counter, 530, 577, 588

generalised coordinates, 449

generalised eigenfunctions, 332,

339, 342, 534

generalised quantum theory, 466

Gram-Schmidt orthogonalisation,

88–89, 199

Hamiltonian (classical)
conservative systems, 447–451

magnetic fields, 454

Hamiltonian (quantum)

Aharonov-Bohm effect, 659

circular motion, 471–447, 658

delta function potential, 467

hydrogen atom, 655–657

infinite potential barrier, 466

infinite potential well, 466

magnetic fields, 468–469, 647,

659

Pauli-Schrödinger, 654

point interaction, 467

quantisation, 465–468

Hamilton’s equations, 448, 450

harmonic oscillator, 595–608
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annihilation and creation

operators, 598, 601

number operators, 599–602

eigenvalues and functions, 599

Hamiltonian, 364, 596

Heisenberg picture, 606–608

in Schwartz space, 601–603

Interaction picture, 608–610

Schrödinger picture, 603–606

oscillating wave packet, 605

Heisenberg picture (see time
evolution (quantum))

Hermite functions, polynomial (see
functions (special))

hidden variables, 433

Hilbert space (see vector space �H )

hydrogen atom, 655–657

in magnetic field, 656–657

idempotent
matrices, 119, 130

operators, 158, 165, 292

identical particles, 564–570

Bosons and Fermions, 564–565

entangled, product states, 561

indefinite number, 570–571

Pauli exclusion principle, 565,

682–569

if and only if, 44

incompatible (see observables
(quantum), states (quantum))

indivisible (electron), 576

inequalities in �IE 3
Schwarz, triangle, 89

inequalities in �H
Cauchy, 269

Minkowski, 269

Schwarz, triangle, 289

inequalities in �VV N

Schwarz, triangle, 207

infinite potential barrier and well,

466

inner product and space, 198

input vector, 139, 147, 295

instantaneous velocity, 8

speed, 66

integrals, 42–57

improper, 44

Lebesgue, 45–49

Lebesgue-Stieltjes, 57

Riemann, 42–45

Riemann-Stieltjes, 52–57

Stieltjes, 52

Interaction picture (see time
evolution (quantum))

interference (see superposition)
intervals, closed, half-open, open,

34

intrinsic properties, 560

intrinsically probabilistic, 72, 493

invariant subset, 313

invariant subspace, 324

irrational numbers, 39, 46

isomorphism, 205

unitary, 206

isotropic oscillator, 426, 610–613

kinematic observables, 10–11
angular momentum, 11, 450,

454, 471

linear momentum, 11, 465, 469

kinetic energy

classical, 11

in spherical coordinates, 450,

451

quantum, 454, 465, 469

Kronecker delta, 14, 86

latent image, 589
Lagrange’s equations, 446, 449,

452

Lagrangian, 446, 449, 452

limits

from the right, 29

from the left, 29
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pointwise, 37, 45

linear combinations of

projectors, 162, 168, 170, 218,

219

state vectors, 181, 434, 547, 552

vectors, 81, 193, 284

infinite, 283

linear dependence, 81

linear functional (see functional)
linear independence, 82

linear position variable, 279

local position observables, 443

measurement, 531

position proposition, 443, 531

Lüders rule, 525

magnetic field, 451–454, 469,
643–648

confined in cylindrical region,

646–647

uniform, 643–645

magnetic flux, 646, 659

magnetic moment

Bohr magneton, 652

classical, 651

quantum (orbital), 652

quantum (spin), 653

magnetic potential energy

classical, 650

quantum (orbital), 651

quantum (spin), 653

magnetic vector potential, 451

cylindrical coordinates, 646

uniform, 643

uniform in cylindrical region,

643–645

many-particle systems, 560–571

indefinite number, 570–571

mapping, 19–24 (see functions)
codomain, domain, range, 22

identity, 23

image, inverse image, 23–24

into and onto, 22

inverse, 23

isomorphic (see isomorphism)
one-to-one, 22

one-to-one correspondence, 22

matrices (basics)
addition, 99

column, row matrices, 98

norm, 111

normalised, 111

orthonormal, 111

scalar product, 111

column vectors, 112–113

multiplication, 100–103

orderm× n, 98
scalar multiplication, 99

transpose, 106

zero, 99

matrices (square (basics))
adjoint, 107

anticommutator, 105

anticommute, 104

commutator, 103

commute, 104

definition, 98

determinant, 104

eigenvalue problem, 114–118

eigenvalue equation, 114

eigenvalues, 115

degeneracy, 116

eigenvectors, 115

orthonormal basis, 114

real, complex, 117, 118

identity, 99

inverse, 109–110

invertible, 109

order, 98

trace, 104

matrices (square (special))
antisymmetric, 119

density, 333

diagonal, 98

eigenvalues, 116

diagonalisation, 129

Hermitian, 127
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idempotent, 119

orthogonal, 119–125

determinant, 104, 120, 125

eigenvalues and vectors, 115,

120, 124, 125

order 2, 121

order 3, 124

Pauli matrices, 124

rotations

improper, 123, 125

proper, 121, 124

transformation, 120

Pauli matrices, 99
adjoint, 108

anticommute, 105

do not commute, 105

eigenvalues and vectors, 118

exponential function, 641,

642

orthogonal, 124

selfadjoint, 130

spectral decomposition, 133

spin matrices, 245

square, 98

trace, 104

transpose, 106

unitary, 126–127

projection matrices, 130–132

Dirac notation, 131

eigenvalues, 132

generated by column

vectors, 131–132

product, sum, 134, 135

selfadjoint matrices, 127–130

diagonalisation, 129

eigenvalues, 114–118

eigenvectors, 114–118

selfadjointness condition,

127

spectral decomposition, 133

Pauli matrices, 133

spin- 1
2
matrices, 245

Pauli matrices, 245

spin-1 matrices, 246

symmetric, 119

unitary, 126

eigenvalues, 127

Pauli matrices, 126

transformation, 127

matrix representation of
operators on �IE 3

eigenvalue equation, 148

eigenvectors, 148

matrix elements, 146

operators,145–146

operators in �H
density operators, 333

density matrix, 334, 335

operators on �VV N

operators, 233–234

spin- 1
2
operators, 241, 243, 245

spin- 1
2
projectors, 131–132,

241, 243, 245

spin-1 operators, 246–247

measures, 38
Lebesgue, 38–39

measure zero, 38–39

Lebesgue-Stieltjes, 40–41, 42

probability, 25-27, 41–42, 265,

492

spectral, 254, 255, 261, 265, 368

measurement (basics)
first kind, ideal, 73, 440, 524

measurable value, 437, 488, 491

measured value, 68

possessed value, 68

problem, 68, 582

conceptual, 582

mathematical, 582

non-universal, 582

projection postulate, 524, 528,

529

sharp, unsharp, 71

simultaneous, 10, 69, 496–501,

533

state preparation, 525

successive measurements, 500,

532
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measurement (continuous
observables), 528–530

detector, 530–531

momentum, 532

position, 530–532

local position, 531

projection postulate, 528–529

results, positive, negative, 530,

measurement (discrete
observables), 523–528

collapse of the wave packet, 524,

582

Lüder’s rule, 525

projection postulate, 524

controversial, 527, 582

simultaneous, 526

reduction of state, 525

reproducibility, 526

state preparation, 525

measuring devices and
processes, 583–589

detector, 530–531

local position, 531

size, 531

photographic plate, 588

interaction stage, 588

latent image, 589

magnification stage, 589

silver bromide molecules,

589

pointer observable, 585

method of induction, 470, 475,

484, 450

mixed states, mixtures (see states
(quantum))

momentum
representation, 344, 462

representation space, 344

space, 343

momentum (classical)

canonical, 12, 447–449

magnetic field, 453–454

spherical coordinates, 450

dynamical, 12, 454

kinematical, 11, 453

linear, 11, 448

momentum operator

circular motion, 472, 658

coordinate representation, 345,

361, 461

generalised eigenfunctions

and eigenvalues, 332, 339

spectral function, 381–382

momentum representation, 344,

462

spectral function, 381

spectral measure, 381

multiplication operator, 297–299

bounded, 279

characteristic function, 279, 384

position operators, 298–299

momentum representation,

344

spectral function, 380

spectral projector, 380

unbounded, 299

Newton’s laws, 12, 505
equation, 452

nonlocality, 527, 578, 580

norm (see vectors, operators)
normal modes, 13, 14

normalisation condition, 88

normalisation constant, 88

normalised

column matrix, 111

column vector, 118

vector, 86, 88, 284

number operator, 352 368 (see
harmonic oscillator, orbital

angular momentum

(quantum))

objective reality, 9–10
objective, non-objective, 68
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observables, 4

observables (classical)

constant of motion, 483, 510,

521

dynamical 11–12

Hamiltonian, 447, 451, 454

kinematic, 10–11

measurements

disturbance, 9–10

simultaneously, 10

small number, 9

structural properties, 454–456

observables (quantum) (see
measurement)

compatible, incompatible, 69,

497–502

compatible, 498, 499, 500,

615

essentially incompatible, 498,

500, 502, 615

strictly incompatible, 498,

501,

complete set, 69

conserved, constant of motion,

509, 514

continuous, discrete, 70, 439,

442, 443

pointer, 585

possessed, measured values, 68,

440, 489

propositions (see proposition)
sharp, unsharp, 71

spectrum, 439

one-parameter group, 232, 237,

508, 510

operators on �IE 3 (basics)
adjoint, 144

algebraic operations, 140

anticommute, 141

commute, commutator, 141

domain and range, 139

eigenvalue problem, 147–148

equality, 139

idempotent, 141

identity, 139

inverse, invertible, 141–143

linear, 139

linear combination, 140

matrix representation, 145–146

norm, 140

quadratic form, 145

spectrum, 148

operators on �IE 3 (special)
orthogonal, 151–154

positive, 168

projectors, 154–160

complete orthogonal family,

160, 161, 168, 170

dimension, 159, 160

Dirac notation, 155

eigenvalue problem, 161

idempotent, 158, 165

linear combinations, 162,

168, 169

matrix representation, 158

mutually orthogonal, 156,

160

norm, 155

onto subspaces, 158

product, sum, 159, 160

quadratic form, 157, 160, 165

selfadjointness, 157, 162, 165

selfadjoint, 161–164

complete orthogonal family

of projectors, 160, 167, 168,

170

eigenprojectors, 166, 167,

168, 170

eigensubspaces, 166

eigenvalue problem, 165

eigenvalues, 165, 167

eigenvectors, 165, 167

functions of, 171–172

square, 172

square root, 172

inverse, 172

positive, 168
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quadratic form, 166

selfadjointness condition,

162

spectral decomposition, 168,

170

identity, 168, 170

spectral theorem, 168, 170

spectral theory, 170

operators in �H (basics)
adjoint, 317

closed, 319

algebraic operations, 308, 309

bounded, unbounded, 295

closable, closed, closure, 296,

319, 351, 352, 353, 357, 423

Â† Â, 351, 467, 480
commutation relation, 314–316

continuous, 296

direct sum (see direct sum)
domain, range, 294, 396

dense, 295

extension, 312 (see selfadjoint
extension)

inverse, invertible, 310–312

irreducible, 322, 323, 391, 599

irreducible set, 391, 398

norm, 295

quadratic form, 294

reducible, 322, 323,

reducing subspace, 320, 321

restriction, 312, 313

sequence, convergence, limit,

330–331

tensor product (see tensor
product)

operators in �H (differential),
300–308, 353–364

boundary conditions, 300–303

Dirichlet, 300, 302, 304, 354,

355, 359

periodic, 301, 303, 304, 360,

620

quasi-periodic, 300, 303, 304,

357, 358

1st order selfadjoint, 356–361

in �L2(Ca), �L2(Su), 360
in �L2(�), 357–359
in �L2(IR), 361
in �L2(IR+), 360–361
in �L2(IR2), �L2(IR3), 361

2nd order selfadjoint, 362–365

in �L2(Ca), �L2(Su), 363–364
in �L2(�), 362–363
in �L2(IR), 364–365
in �L2(IR+), 364

symmetric, 353–356

not selfadjoint, 355

positive, 350

operators in �H (special)
angular momentum (see
angular momentum

(quantum))

annihilation, creation, 323–326

angular momentum, 621–626

characterisation, 473–478

harmonic oscillator, 598–603

restriction to �Ss(IR), 596,
601, 602

isotropic oscillator, 611–612

tensor product, 425

density, 333–337, 539–546

trace, 333

essentially selfadjoint, 365–367,

423, 460, 468, 602

analytic vector, 367, 603

harmonic oscillator, 364, 596

multiplication, 297–299 (see
position operators)

number, 352, 368, 392, 474,

475, 599, 622

permutation, 428, 565, 566

positive, 350, 383

projectors, 291, 337, 351
complete orthogonal family,

291,

order relation, 291, 372
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spectral function, measure,

371, 393

many-particle system, 567

selfadjoint, 318, 329, 331
bounded, 329, 351

bounded below, 352, 423

closed, Â† Â, 351
commutation relation,

456–458, 461, 481,

482

commuting, 315, 316, 387

complete commuting set,

389, 390

definition, 318, 351

functions of, 382–386

characteristic, 383–384

measure

exponential, 385, 386

irreducible set of, 391–392

probability (see probability
(quantum))

spectral function, 371

spectral theorem (see
spectral theory in �H )

spectrum, 375

discrete, 375

continuous, 375

absolutely, 376

mixed, 375

singularly, 376

sum, product, 318–319

symmetric, 349

different from selfadjoint,

350, 359

differential, 353–356

in quantisation, 459

quadratic form, 294, 350, 352

selfadjoint extension, 356

tensor product, 421–427, 611,

612, 632, 633, 654, 656

many-particle system, 563,

563, 564, 566, 569–570

translation operator, 398

unitary, 337–339
Dirac notation, 339, 396

one-parameter group (see
one-parameter group)

selfadjoint operator, 396

spectral theorem, 395 (see
spectral theory in �H )

Stone’s theorem, 395

unitary transform, 338,

409–411 (see Fourier
transform)

operators on �VV N , 209–235

adjoint, 210

inverse, 210, 226

matrix representation, 233–235

positive, 217, 218

projectors, 213–216

complete orthogonal family,

215, 218, 219, 227

dimension, 214

Dirac notation, 215, 227

idempotent, 216

linear combination, 218, 219,

227

order relation, 214, 215

orthogonal, 214

properties, 216

selfadjoint, 216

sum, product, 216

quadratic form, 211

selfadjoint, 210, 217–225
commuting, 222–225

eigenvalues and vectors, 217

functions of, 219–221, 223,

225, 264

characteristic, 220

exponential, 221

unit constant, 220

probability, 264–265

properties, 217, 218

quadratic form, 218

spectral theorem, 218, 219

(see spectral theory in �VV N)

spectrum, 262
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selfadjointness condition, 210

unitary, 225–229
Dirac notation, 227

eigenvalues, 226

invertible, 225, 226

one-parameter group, 232

selfadjoint operator, 230

spectral decomposition, 231

(see spectral theory in �VV N)

transformations, 228–229

commutation relation, 229

eigenvalues, 229

orthonormal basis, 228

quadratic form, 229

scalar product, 229

simultaneous, 229

orbital angular momentum
(quantum), 463–465,
615–621

annihilation and creation

operators, 621–627

commutation relations, 471

eigenfunctions, 617–621

spherical harmonics, 287,

327, 364, 621

eigenvalues, 617–619

magnetic energy, 651 652

magnetic moment, 650–652

operators, 305, 364, 464,

615–617

in �L2(Su) and �L2(IR3), 464,
616–618

quantum numbers

angular momentum, 620

magnetic, 620

quantisation, 463–465

order relation

projectors, 214, 215, 291, 372

subspaces, 212

orthogonal transform

operators, vectors, 152–154

simultanenous, 154

quadratic form, 154

scalar product, 154

oscillator (see harmonic oscillator
and isotropic oscillator)

outcomes, 24

output vectors, 139, 147, 295

paradoxes, 577–581
de Broglie, 578–580

delayed choice, Zeno, 573

EPR, 580–581

Schrödinger’s cat, 577–578

particle-wave duality, 575–576

partition, 36

path space, 304

Pauli exclusion principle, 568–569

Pauli matrices (seematrices
(square (special))

Pauli-Schrödinger equation,

653–654

permutation operator, 428, 565

phase factor, 401, 433, 587

phase space, 10

photographic plate, 499, 588

photons, 564, 583, 590

size, 590

physical space, 4, 8, 79, 81, 191,

195, 278

physics of unitary transformation,

409, 411

plane waves, 183, 332, 339

orthonormal, 339, 340

Fourier transform, 340

point interactions, 467–468

pointer observable, 585

Poisson bracket (see classical
mechanics)

quantum Poisson bracket, 457

position vector, 8, 83

position operators, 298
bounded in �L2(�), 299
characteristic function, 383

circular motion, 471–472

continuous spectrum, 379

coordinate representation, 344
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generalised eigenfunctions,

331–332

forming complete set, 390

irreducible set, 391, 393, 599

local position, 443

measurement, 499, 530, 531,

588–589

momentum representation, 344

position proposition, 443

yes-no experiment, 531

restriction to �Ss(IR), 313–315,
596

spectral function, 380

spectral projectors, 380

time evolution (oscillator), 606,

607

uncertainty relation, 495

Postulate 25.1(PS), 432
Postulate 26.1(OV), 437

Postulate 27.2(CQ), 457

Postulate 28.1(PDDO), 488

Postulate 28.2(PDCO), 491

Postulate 28.2(PD), 492

Postulate 29.1.2(TESP), 509

Postulate 29.2.1(TEHP), 510

Postulate 30.1.1(PPDO), 524

Postulate 30.2.1(PPCO), 528

Postulate 30.2.1(PP), 529

Postulate 31.4(MS), 543

Postulate 31.4(MPD), 543–544

Postulate 31.4(MPPCO), 545

Postulate 31.4(MTESP), 545

probability (basics, discrete),
average, mean, 18, 27

concept, 17–19

cumulative, 30, 253

density function, 58

discrete, 19

distribution, 27, 34

distribution function, 29–31, 58

expectation value, 27

events, 24–25

disjoint, exclusive, 24

elementary, 24

impossible 24

intersection, union, 24

sure, 24

frequency interpretation, 18, 19,

25

mass function, 25

measures, 25–27, 41–42

random variable, 29

sample spaces, 24

standard deviation, 28

statistical experiment, 18

outcomes, 24, 25

uncertainty, 28

variance, 28

probability (continuous)
density function, 58

Cauchy, 59

Gaussian, 59

uniform, 59

distribution function, 31, 58–60

absolutely continuous, 58, 59

discrete, 58

singularly continuous, 58

expectation value, 62

individual outcome, 60

measure, 60–61

uncertainty, 62–63

variance, 62–63

probability on �IE 3, 176–179
generating probability, 177

model theory, 180–181

correlation terms, 181

interference terms, 181

state vectors, 180

need for complexness, 183–184

need for generalisation,

181–182

probability on �H, 401–407
continuous spectrum, 404

momentum, 405–407

density function, 407

distribution function, 406

expectation value, 407

uncertainty, 407
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position, 404-405

density function, 404

distribution function, 404

expectation value, 405

uncertainty, 405

discrete spectrum, 403–405

mass function, 403

distribution function, 401

expectation value, 402

uncertainty, 403

generating probability, 401

measure, 401

probability on �VV 2

distribution, 239, 241

mass function, 241

probability on �VV N ,

distribution function, 248

expectation value, 248

generating probability, 247–248

mass function, 241, 248

measure, 248

probability (quantum)
continuous observable, 491

distribution function

491–492

measure, 492

momentum, 495
distribution and density

functions, 495

probability amplitude, 495

position, 494
distribution and density

function, 494

probability amplitude, 495

discrete observables, 488

expectation value, 488

mass function, 488

proposition, 490

intrinsic, 72, 493

mixed states

distribution function and

measure, 539, 543–544

expectation value, 538, 544,

546

ignorance interpretation,

541, 543

projection (see vector spaces �IE 3,
�H, �VV N)

projection matrices (seematrices
(special square))

projection postulate, 524–530
continuous observable, 528–532

position measurement,

530–532

discrete observable, 524–528

degenerate eigenvalue, 527

nondegenerate eigenvalue

524–525

controversy, 527, 582

simultaneous measurement,

526–527

transition to mixture, 537–540

projectors (see operators on �IE 3
(special), in �H (special))

on �VV N (special))

projector-valued function, 22, 252

projector-valued set function, 22,

252

propositions, 72, 440, 441

and observables, 442–443

discrete, 442

continuous, 443

and projectors, 440, 441

and states, 443–444

compatible, 501–502

local position, 443

probability, 490

yes-no experiments, 441

Pythagoras theorem

in �C N , 201
in �IE 3, 87
in �H, 288–289

pure states (see states (quantum))
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quadratic form in �IE 3, 145, 154,
157

complete orthogonal family of

projectors, 160, 177

eigenvalue, 166

expectation value, 178

preservation, 154

probability, 177

projector, 157

quadratic form in �H, 294, 329
density operator, 336

direct sum space, 419

positive operator, 350

preservation, 346

probability, 401

expectation value, 402

selfadjoint operator, 350

superselection rule, 551

symmetric operator, 350

quadratic form in �VV N , 210, 211

positive operator, 217

preservation, 229

probability, 253

selfdjoint operator, 218

quantisation (see canonical
quantisation scheme)

quantisation by parts, 468

quantum logic, 5, 72, 440

quantum numbers (see orbital
angular momentum)

principal, 655

quantum systems, 65–75
mixed, 553, 584

classical observable, 552

classical properties, 552, 553

measuring device, 584

superselection rule, 552, 554

quantum and classical

properties, 553

orthodox, 441, 553, 583

589

generalised theory, 466

radial momentum (classical),

450, 451

radial momentum (operator),

360–361, 484, 486

random variable, 29

rational numbers, 39, 46

real line, real numbers IR , 21
extended reals IRex , 38
half real lines IR+, IR−, 21

reality, 9–10

reducing subspace, 320

reduction of operator, 320–323

irreducible, 322

reducible, 322

reduction of the state vector, 524

relativity, 580, 589

Riesz Theorem

in �IE 3, 139
in �H, 289–290
in �VV N , 209

rigid rotator, 639

rotations in �IE 2, 121–124
improper, 123

proper, 121

reflection, 123

rotations in �IE 3, 124–125
improper, 125

proper, 124

reflection, 125

sample space (see probability)
scalar, 79

scalar product: column matrices,

110–112

Dirac notation, 111

scalar product on �IE 3, 84–85
Dirac notation, 84

properties, 85

scalar product on �IE 3c , 193–195
properties, 194

scalar product on �VV N , 198–202

Frobenius, 207
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scalar product on �VV∞ and �H, 269,
276, 277, 278, 279, 281

plane waves, 341

scalar product space, 198

scattering experiment, 547

Schrödinger picture (see time
evolution (quantum))

Schwartz functions and spaces,

272, 274, 468, 596

selfadjointness condition

square matrices, 127

operators on �IE 3, 162
operators in �H,
bounded, 329

unbounded, 351

necessary condition, 319

operators on �VV N , 210

selfadjoint extension, 320, 356
differential operator, 356

no selfadjoint extension, 360

one-parameter family, 357,

467

essentially selfadjoint, 365, 367,

460, 468

quantisation, 460

no selfadjoint extension, 460,

480, 481

many selfadjoint extensions,

460, 468

one-parameter family, 467

unique, 465

non-uniqueness, 481

unique, 365

sets, 19

Borel, 34

Cartesian product, 20

countable, 19

countably infinite, 19

difference, 20

discrete 19

disjoint, 20

empty set, 20

intersection, union, 20

countable, 20

of measure zero, 39

set function, 22

singleton, 19

subset, 19

complement, 19

linear, 212

proper, 19

space as a set, 4

span, 83, 93

column vectors, 114

functions, 204

subspace, 158, 166, 212

tensor product, 420

spectral theorem for selfadjoint
matrices, 133

spectral theorem in �IE 3, 168, 170
spectral decomposition

identity, 169, 170

selfadjoint operator, 168, 170

spectral theory in �H (selfadjoint

operators (basics))

probability, 375

spectral decomposition, 374

spectral function, 371, 373–374

spectral measure, 371, 374

spectral projectors, 374

spectral subspace, 374

spectral theorem, 373–374

spectrum, 375–376

absolutely continuous, 376

mixed, 375

purely continuous, 375

purely discrete, 375

singularly continuous, 376

spectral theory in �H (selfadjoint

operators (continuous)),

379–392

momentum, 381–382

position, 380

spectral theory in �H (selfadjoint

operators (discrete)),

376–379

complete orthonormal set of

eigenvectors, 378
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eigenprojectors, 377

eigensubspaces, 377

reducible, 377

spectral decomposition, 378

identity, 378

spectral function, 377

piecewise-constant, 377–378

spectral projectors, 374

spectral theory in �H (unitary

operators), 395–399

spectral decomposition, 396

exponential function,

396–398

spectral function, 395

spectral theorem, 395

spectral theory in �VV N (selfadjoint

operators), 218–219

spectral decomposition, 218,

219

in Stieltjes integral, 260

spectral function, 252, 255

piecewise-constant, 260

spectral measure, 252, 256, 257,

261

spectral projectors, 260, 261

spectral subspace, 260

spectral theorem, 218, 219

in Stieltjes integral, 260

spectrum, 262–263

continuous, 263

discrete, 263

jump points, 263

points of continuous

growth, 263

points of discontinuous

growth, 263

spectral theorem in �VV N (unitary

operators)

spectral decomposition, 227

spectral theorem, 227

spherical coordinates, 281, 450,

464, 480

orbital angular momentum, 464,

616

spherical harmonics, 287 327, 364,

621

in Cartesian coordinates, 638

639

spin angular momentum,
627–638

defining properties, 627–628

incompatible, 71, 501

matrix representation, 636–637

Pauli matrices, 639 (see
matrices square (special))

spin coordinate, 629

spin down, up, 182, 239, 240

628, 629, 630, 636

spin function, 630

spin matrices, 244, 437

spin operators, 632–636

commutation relations, 628

Ŝz, 632
eigenvectors, 633

Ŝx , Ŝy , 633
eigenvectors, 634

state space, 636

as tensor product space,

563–564, 563–564

spin vector, 631

two-component wave function,

628–629

spin (electron) model in �IE 2, 182
spin (electron) model in �VV 2,

239–245

commutation relations, 245

matrix representation, 241, 243,

245

Pauli matrices, 245

spin matrices, 245

spin-up, spin-down states, 240

spin (spin-1 particles), 246–247

standard deviation, 28

state, state space, 4

state (classical), 10

state space, 10

continuous string, 12–15

complete set, 15



Index 691

eigenfunction, 14

eigenstates, 14

normal mode, 13

orthonormal, 14

superposition, 14

interference, 15

wave equation, 13

state (model probability theory on
�IE 3), 180–181

mass function, 180,

state, 180

state vectors, 180

superposition principle, 181

correlation, interference, 181

state (model probability theory on
�VV N
), 239–249

generating probability, 247

state, 247

state (quantum), 70–74
compatible, incompatible,

with observables, 71–72

complete set, 435

eigenstates, 489

many-particle system, 559–571

entangled states, 561

product states, 561

mixed state, 432, 537, 541, 544

density operator, 543

evolution, 545

ignorant interpretation, 541

mixture (classical), 537–538,

541, 551

expectation value, 538

projection postulate, 538,

540

unit vector, 551

mixture (quantum), 540, 541,

543

probability distributions,

543–544

propositions, 443–444

pure state, 432, 540, 541

complete set, 435

orthonormal, 435

coherent superposition, 434,

546 (see superposition)
one-dimensional subspace,

432

one-dimensional projector,

432

preparing, 73, 525

state vector, 435

stationary, 507, 604

transition to classical

mixture, 540, 584, 588

state space (quantum), 74, 432,
457, 543, 553

compound system, 561, 585

harmonic oscillator, 595, 596

isotropic oscillator, 611
�L2(Ca), 472, 658
�L2(�), 466
�L2(IR+), 466
�L2(IR3), 458
�L2(Su), 472, 616
measuring device, 585

spin- 1
2
particle, 563, 636

statistical experiments, 18, 24, 25,

175

Stone’s theorem

in �H, 298, 508, 587
in �VV N , 232

structures (classical), 10

Poisson bracket, 457

Hamiltonian, 10

symplectic, 10

structure (quantum), 74, 457

subspaces (see vector spaces �IE 3
�H, �VV N)

superposition (classical), 14–15,
184

interference, 15

superposition (quantum), 73,
546

coherent, 546

coherent superposition, 434,

435, 546
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measuring device, 583, 584,

586

correlation, interference, 73–74,

547

between states, 547

transition, 547

pure states, 546

principle, 73, 434, 435, 546

break down, 552

superposition model on �IE 3
principle, 181

correlation, interference, 181

superposition model on �VV 2

principle, 240

superselection rules, 434,
549–550, 553–554

coherent subspace, 552

definition, 549–550, 553–554

example, 554–556

measuring device and

process, 584–588

expectation value, 550, 551, 554

measuring device, 584–588

mixed quantum system, 553

observables, 550, 554

classical, 552

classical properties, 552

states

classical mixture, 537, 538,

541, 551

mixed, 541, 543, 551

pure, 541, 549, 553

quantummixture, 541, 543

density operator, 541

ignorance interpretation,

541

superposition principle break

down, 552

supersectors, 552

superselection operator, 552

supremum, 140, 295

symmetric operators, 349, 350

differential, 353–356

essentially selfadjoint, 367

properties, 350

quadratic form, 350

quantisation, 456, 466, 480

symmetry condition, 349, 351

tensor product, 420–427
examples, 424–427

of Hilbert spaces, 420, 426

of operators, 421–424

essentially selfadjoint, 423

selfadjoint, 423

of vectors, 420

spectral functions, 424

tensor product (isotropic

operators), 611–613

tensor product (many-particle

systems)

Fock space, 571

observables, 562–564

symmetrical, 567

vectors

antisymmetrical, 566

symmetrical, 566

time evolution (quantum)
Dirac picture, 506

equivalence of Heisenberg and

Schrödinger pictures,

514–516

harmonic oscillator, 603–610

Heisenberg picture, 606–608

Interaction picture, 608–610

Schrödinger picture,

603–606

Heisenberg picture, 510–512,

514

Heisenberg equation,

512–513

Interaction picture, 506,

516–519, 608–610

derivation, 516–519

equations of motion, 518

Schrödinger picture, 506–510,
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Pauli-Schrödinger equation,

653–654

Schrödinger equation, 184,

506, 508

unitary evolution, 508–509

evolution operators, 509

trace (seematrices square (basics),
density operators)

transition amplitude, 547

transition probability, 547

translation operator, 398

two-component wave functions,

628–629

uncertainty relation, 407, 496
circular motion, 496

infinite potential well, 408

unitary evolution (see time
evolution (quantum))

unitary transform in �H (see
operator in �H (special))

unitary transform in �VV N (see
operator in �VV N)

unitary transformation and

physical equivalence, 409–411

vacuum, 571
vector potential (seemagnetic

vector potential)

vector Space �IE 3, 79–95
algebraic properties, 80–81

basis, complete set, 84

basis vectors, 84

complete orthonormal set, 86

orthonormal, 86

complexification, 191–195

complex vectors, 191

real vectors, 192

dimension, 82

Gram-Schmidt orthogon-

alisation, 88–89

inequalities

Schwarz, triangle, 89

input and output vectors, 139,

147

length, magnitude, 85

linear combination, 81

linear dependence and

independence, 81, 82

norm, 85

normalised vectors, 86

orthogonal, 86

orthonormal, 86

projection, 89–95

onto a plane, 92

onto a subspace, 92–95

onto �e, 91
onto �i , �j , �k, 89–91

Pythagoras theorem, 87–88

real vector space, 81, 198

scalar product, 84–85

Dirac notation, 84–85

subspace, 92–95

orthogonal, 93

orthogonal complement, 93

unit directional, 86

unit vector, 86

vector product, 11, 84

vector space �H, 281–292
bases, countable, orthonormal,

basis vectors, 284

Cauchy criterion, 282–283

Cauchy sequence, 284

complete orthogonal family of

projectors, 291, 330, 337,

363, 550

subspaces, 291

direct sum, 415, 416, 418,

419

superselection rule,

549–550, 553–554

complete orthonormal set, 281,

621

definition, 284

dense subset, 295
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dense domain, 295, 317

direct sum, 413–417

decomposable, 415, 553

finite-dimensional, 285
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Schwarz, triangle, 289

infinite-dimensional, 284,
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input and output vectors, 296
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tensor product, 420–421
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complex matrices, 202

Gram-Schmidt
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scalar product, 198–199
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order relation, 212, 214
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von Neumann’s projection

postulate, 524, 528–529
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classical wave equation, 13

harmonic waves, 183

interference, 15
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standing, 185

state (see states (classical))
superposition, 14, 185

wave, 12, 183, 574

waves (quantum)

complex, 184

plane waves, 332, 339

quantum wave, 184, 484, 574

quantum wave equation, 184

quantum wave function, 184

complex, 184, 436

Schrödinger equation, 184, 506,
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time-independent, 184, 506

wave function, 184, 344, 436

complex, real, 436

coordinate representation, 344
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