

[image:]

 Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated, or transmitted without direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book, either directly or indirectly.

Legal Notice:

This book is copyright protected. It is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical, or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, that are incurred as a result of the use of the information contained within this document, including, but not limited to, errors, omissions, or inaccuracies.

Table of Contents

[image:]

Introduction

Chapter One

 :

Know How to Setup your Raspberry Pi

Choosing the Accessories for the Raspberry Pi

Setting Up the Operating System for the Raspberry Pi

The Raspi-Config Setup

Troubleshooting

Linux Commands

Chapter Two

 :

Knowing Your Tools and Their Purpose

Picking the Right Multimeter

Picking the Right Soldering Iron and Accessories

Working with Electronics

Chapter Three

 :

Programming with Python on the Raspberry Pi

The Different Text Editors

Experimenting with Texts and Strings in Python

Text Scrambling using Caesar Cypher Technique in

Python Scripts

Passing on the Encryption Key

Manipulating Files and Dealing with Errors

Making a Bootup Menu

Chapter Four

 :

Python and External Hardware

Controlling an RGB LED through Python

Controlling the GPIO Current

Accepting Input from a Button

Pull-Up and Pull-Down Resistor Circuits

Making a Dedicated Shut-Down Button

The GPIO Keypad Input

Creating the Python Script

Understanding the Script

Generating Additional Key Combinations

Simulating Mouse Movements

Multiplexed Color LEDs

Chapter Five

 :

Sensing Real-World Data

Using the I2C Bus

Using the ADC Bus to Read Analog Data

Gathering Analog Data without an Analog to Digital Converter

Data Logging and Plotting

Using an I/O Expander to Extend the Raspberry Pi GPIO

Chapter Six

 :

Creating Graphical User Interfaces and Automating Tasks with Python

Using the Tkinter Module to Create Graphical User Interfaces

Making the GUI Script in Python

Programming a Graphical Application

Displaying Images within a GUI Application

Testing this Newly Created Photo Class

Organizing Photos Automatically

Chapter Seven

 :

Raspberry Pi Projects with the Raspberry Pi Camera Module

Setting Up the Raspberry Pi Camera Module

Controlling the Camera Module with Python

Creating a Time-Lapse Video

Creating a QR Code Reader using the Camera Module

Conclusion

References

Introduction

[image:]

The Raspberry Pi was designed as a low-cost alternative computer, no bigger than a credit card, that connects to your TV or a computer monitor. Using nothing more than a keyboard and mouse, you can explore computing and teach yourself how to program in Python, Scratch, and other languages. This little bundle of electronics is incredibly versatile and can do just about anything you can do with a standard desktop computer – play games, browse the net, play HD videos, and much more.

Even better, Raspberry Pi can interact with the outside world and has long been used to create small digital projects, such as weather detectors, music machines, robots, and more.

A Brief Guide to Models

In 2009, the Raspberry Pi Foundation was created to promote basic computer science studies in school. By March 2017, more than 12.5 million Pi units had been sold, putting it in third place in the best-selling general-purpose computer lists; today, more than 19 million units have been sold.

Given that the Foundation is a charity, these huge sales numbers were not initially planned for but, realizing that interest in computer sciences was waning, a small team from the Computer Laboratory at the University of Cambridge decided that producing a small, affordable computer could be the solution.

April 2012 – Raspberry Pi 1 Model B

This was the first model launched, using a Broadcom BCM2835 SoC, with a 700 MHz ARM1176jXF-S processor, 512 MB memory, and a VideoCore IV GPU. The Model A was then released, with lower memory capacity and fewer USB ports.

Priced at less than $35, this cheap computer could run Linux and other basic OS. It had HDMI and USB ports, and several GP10 pins so users could add peripherals such as sensors.

February 2015 - Raspberry Pi 2 Model B

This was an improvement on the early model, offering more computing power with a Broadcom BCM2836 SoC with a quad-core Cortex A7 900 MHz processor. It also had double the memory, 1 GB, which was shared with the GPU, and the CPU was said to be up to six times faster than the previous one.

November 2015 – Raspberry Pi Zero

The Zero set new benchmarks in cheaper computing, selling for just $5. It was much smaller than the previous models, making it ideal for embedding in applications, such as robotics. Despite its incredibly low price, the CPU was around 40% faster than the original Pi.

February 2016 – Raspberry Pi 3 Model B

The RPi3 contained a 64-bit compatible SoC, with even more processing power. This time, Bluetooth 4.1 and 802.11n wireless were added, boosting popularity, not just for individuals but for businesses too.

March 2018 – Raspberry Pi 1 Model B+

Finally, the Model B was upgraded, providing much faster ethernet speed, Bluetooth 4.2 LS BLE, and 802.11ac dual-band wireless, along with a slight increase in CPU speed.

In this book, we will explore through a series of intimidating and hard-to-grasp concepts divided into a span of seven distinct chapters. Each chapter is linked to the previous chapters in one way or the other. In this way, you'll explore the variety of Raspberry Pi projects and coding techniques with a lifeguard making the journey all the easier and fun.

You will find that after the second chapter, we switch up the gears and go full pace into discussing coding with Python on the Raspberry Pi to quickly switching to practical and useful Raspberry Pi projects and exercises. Setting up the Raspberry Pi and intimately knowing your tools is a crucial step that should always be reiterated.

Once the reader goes past this stage, he will quickly find himself surrounded with chapters that talk about advanced techniques and projects for the Raspberry Pi. You will also find that some of the projects which will be discussed and explained here are common topics. The reason is that in advance and complicated projects, these particular modules and coding will be used continuously. But we have also added some different projects and different advanced techniques which you will find interesting.

Here's what you will learn:

•

 Chapter One – how to set up your Raspberry Pi, including choosing the right accessories

•

 Chapter Two – learn what tools you need and what they are all for

•

 Chapter Three – a look at using Python to program your Raspberry Pi

•

 Chapter Four – how to use Python to control external hardware

•

 Chapter Five – using Raspberry Pi with real-world data

•

 Chapter Six – how to use Python to create GUIs and automate tasks

•

 Chapter Seven – how to build Raspberry Pi projects using a camera module

Be aware that you do need to have a basic understanding of how to program in Python for this book.

Are you ready to dive into this advanced guide? Then what are you waiting for?

Chapter One

Know How to

Setup your Raspberry Pi

[image:]

In this chapter, we will be going over a few basics so that the reader becomes familiar with the hardware and software aspects of the Raspberry Pi. Like any computer, the Raspberry Pi has its own OS ecosystem and special hardware built into its motherboard. By understanding these elements, the reader will essentially become more capable of taking advantage of the extended functions of the Raspberry Pi to make their corresponding projects even more technically and functionally sound.

In this chapter, we will be discussing some of the key elements of the Raspberry Pi Operating System, along with the important accessories and hardware to be used. After that, the reader will see how to set up the Raspberry Pi and initialize the Pi's configuration in order to access the customizing and tweaking features. Lastly, we will discuss some common troubleshooting points, which will most likely address the issues faced by the majority of Raspberry Pi users, allowing readers to set up their Raspberry Pi without any hiccups.

Choosing the Accessories for the Raspberry Pi

One of the good points of the Raspberry Pi is that it is compatible with a wide range of accessories generally used with computers. This means that the user does not have to go out and purchase exclusive basic proprietary accessories for the Raspberry Pi. Instead, the user can attach most of the accessories already lying around, such as ethernet cables, mouse, keyboards, speakers, and even SD cards. This not only economical for the user, but it also allows for an easier and faster setup. Here's a picture of a typical Raspberry Pi setup featuring only the essential accessories needed to get it up and working.

Here's a detailed description of the accessories:

•

 The Display
 : The Raspberry Pi's motherboard features an HDMI output. This allows the user to connect the Pi system to any external display that supports HDMI ports. Moreover, this port is the modern display port used in recent computer systems allowing for high-definition display feeds. The chances of the user having an already HDMI-supportive display lying around are very probable, making the Raspberry Pi more economically friendly. Besides, if you do not have a spare display to use with the Raspberry Pi, then you can also connect the Pi system to a TV that has an HDMI port. In the scenario where you have an old TV set that does not feature HDMI, the Raspberry Pi also features an RCA connection that supports legacy composite video and audio connections. However, an LCD or LED with an HDMI port is more preferred than a TV.

•

 The Ethernet Cable
 : The Raspberry Pi supports both Wi-Fi and Ethernet connections. If you want to connect to a cabled network, then you can do so by taking an Ethernet cable and connecting it to the Pi's Ethernet port. In case of Wi-Fi, then you'll have to set it up through the operating system after setting it up.

•

 The Case
 : The Raspberry Pi can be used with or without a case as soon as you take it out of the box. However, since it is a piece of circuitry, it is prone to dust and water damage. So it's recommended that you install a case on the Raspberry Pi to keep it protected. Besides, there are Raspberry Pi cases that also offer cooling functionalities that will help with the Pi's thermal throttling making it last longer and perform better.

•

 The Mouse
 : You can use either a USB mouse or a wireless mouse as Raspberry Pi features Bluetooth for connecting wireless accessories to the system.

•

 The Keyboard
 : The same approach applies to the keyboard as well. If you don't want to mingle with annoying wires protruding out of the Raspberry Pi or have reachability issues, then you can simply connect a wireless keyboard to the Raspberry Pi as well. In the case where you are using a USB keyboard, be careful of the wire's reach as you don't want the Raspberry Pi to be grabbed and pushed by the USB wire.

•

 The SD Card
 :
 The Raspberry Pi does not feature any storage memory on board, nor can you mount a hard drive on its motherboard. Instead, the Raspberry Pi needs to be connected to an external storage device. For this purpose, the Raspberry Pi features an onboard SD card slot for the user's storage needs. This SD card functions just like a traditional hard drive for the Raspberry Pi, and the prices for SD cards are quite economical as well. Chances are, you might have a spare SD card lying around somewhere to put to good use. However, when using SD cards, it is important to pay attention to the Class-type you're using as this defines the read/write speed. For optimal performance, a Class 6 or better SD card is recommended.

•

 The USB Hub
 : This accessory is optional. Depending on the model of the Raspberry Pi you are using, you might or might not need a USB hub. For instance, if you know that you'll need several USB ports for your Raspberry Pi, you should consider keeping a USB hub as well.

•

 A USB Stick
 : USB's are a good medium for quickly and reliably transferring data to and from your computer and Raspberry Pi. In this way, you can import or export data from your Raspberry Pi when doing projects.

•

 An SD Card Reader
 : The Raspberry Pi uses a specific Linux distribution as its Operating System. There are SD cards available for purchase that come pre-loaded with this Operating System. However, if you're using an SD card that is not flashed with a Linux OS, then you'll probably need an SD card reader to access it through your computer system for flashing the OS.

•

 USB Power Supply
 : The Raspberry Pi connects to a power supply using a USB port. The USB-type required depends on the Raspberry Pi model you are using. Earlier models use Micro-USB power supplies, but newer models support USB Type-C connections to the power supply. When purchasing a Raspberry Pi, it will ship with a compatible power supply; however, if you don't have one or lose it, then a 5v 700mA power supply will work just fine.

Setting Up the Operating System for the Raspberry Pi

If you're familiar with computers, then you know that an Operating System is essential to interact with the hardware. The Operating System of a computer is primarily stored on its permanent storage, which can be a hard disk or a solid-state drive. Since we already know that the Raspberry Pi uses an SD card as a replacement for hard disks, we will need to flash the Raspbian OS on the card through a computer or a laptop before plugging it in the Raspberry Pi. There are several distributions of Linux for the user to choose from, such as OSMC, Lakka, Pidora, etc. but Raspbian OS is the most popular and the official Operating System for this small computer. In this book, we will be using the Raspbian OS.

So to install the Operating System, you will first need an SD card and SD card reader if your computer or laptop doesn't have one built-in already. Now that you've got the external media storage ready, you will need to download the Raspbian Operating System and software to flash that OS image to the SD card and make it bootable. Let's discuss this step in more detail in the following section.

Flashing the Operating System to the SD Card using Windows

Since we are attempting to flash a Linux Operating System, we can use either of the two software tools compatible with Windows to do so;

•

 balenaEtcher

•

 Raspberry Pi Imager

All of the software flash tools are quite adept at doing the job. BalenaEtcher is designed specifically for flashing Linux Operating Systems image files while Raspberry Pi imager is developed specifically for flashing Raspbian OS. Whichever tool you use, you'll most likely be able to flash Raspbian OS without any problems.

If you're going with balenaEtcher, then follow these steps;

•

 Mount the SD card into the computer or laptop by either using the dedicated SD card slot or an SD card reader. Note the drive letter assigned to the SD card by the computer.

•

 Download the balenaEtcher tool from the following website

https://www.balena.io/etcher/

•

 Go to the Raspberry Pi's official website and download the Raspberry Pi Operating System. Choose the Raspberry Pi OS (32-bit) with desktop and recommended software from the three image files.

https://www.raspberrypi.org/downloads/raspberry-pi-os/

•

 After the OS image file has been downloaded, open balenaEtcher, and follow the on-screen instructions. Once you have selected the OS image file, click flash, and the rest of the process will be handled by the tool.

•

 Wait for the tool to finish flashing the OS image file. Once it has completed, close the tool and plug the SD card into the Raspberry Pi, and you're ready to use it.

If you're using the Raspberry Pi imager, the process is relatively simple and easy. Follow these steps;

•

 Download the Raspberry Pi imager (according to the OS you're currently using) from the official Raspberry Pi website.

https://www.raspberrypi.org/downloads/

•

 After the software has been downloaded, open it.

•

 You'll see three main options. Select OS, Choose SD Card, and Write. Go to the 'Select OS' option and choose the Operating System you want to flash on to the SD card. In this case, we will be selecting the 'Raspberry Pi OS (32-bit)'.

•

 After choosing the OS, specify the SD card for the tool to install it on by clicking the 'Choose SD Card' option.

•

 Finally, select the 'Write' option, and the tool will download and install the specified Operating System on to the SD Card. All you have to do now is wait. After the writing process completes, take the SD card out and plug it in the Raspberry Pi, and you're ready to use it.

If you're using a Mac Operating System, then you can download the Raspberry Pi imager for Mac from the official website mentioned above. The procedure is essentially the same. Similarly, you can also use balenaEtcher and Raspberry Pi with Linux as well. There are minor differences in the way you download the software tools in Linux as compared to Windows or Mac, but the rest of the process is still the same. If you are using Linux on your computer, follow the instructions shown in the official Raspberry Pi website for downloading and installing the Raspberry Pi imager. You'll have it up and running in no time.

Now that we have an OS-ready SD card and all the necessary accessories, all that's left to do is connect the hardware components to the Raspberry Pi and start it up. Connecting the accessories is no hard task. It's just like connecting Lego blocks with each other. Just plug in your mouse and keyboard, use the HDMI cable to connect the Pi system to the display output, and mount the SD card into the SD card slot on the Raspberry Pi. Finally, plug in the USB power supply, and you're good to go. There's no physical button to start up the Raspberry Pi, so as soon as you plug in the USB power supply, the Raspberry Pi will automatically startup, so be careful that the Raspberry Pi is fully connected and everything has been checked before plugging in the power supply. If you're using the internet through a wired connection, then use the Ethernet cable; otherwise, wait for the Raspberry Pi to boot up before connecting to the Wi-Fi.

The Raspi-Config Setup

As soon as the Raspberry Pi system boots up the Raspbian OS for the first time after installation, it will greet the user with an initial setup wizard. This is basically the Raspi-Config setup. This small program is designed to guide the user through a series of system operations to customize just like you buy a new phone, and it has you go through the initial setup before letting you use it. Once the user has gone through the Raspi-config, it won't pop up unless manually started. To manually launch the Raspi-config application, you will need to open the terminal window and enter the following command.

sudo raspi-config

Depending on the version of the Raspi-config software, the configuration options displayed might differ. Raspi-config's list of options can be classified into seven major categories based on their nature. These seven categories are;

•

 Menu Options

•

 Network Options

•

 Boot Options

•

 Localization Options

•

 Interfacing Options

•

 Overclock

•

 Advanced Options

Let's discuss each of these option categories in detail and see what kind of functionality and customizability do they have to offer.

Menu Options

Over here, you'll find the ability to configure the username and password displayed on the Raspberry Pi OS main menu. When you first install the OS, the username and password are set to
 pi
 and
 raspberry,
 respectively, by default. This section of the Raspi-config tool will help you change that.

Network Options

In this section, the user is given access to customizing network configurations. In other words, the user can set a custom hostname, connect to a wireless network and customize some other advanced network options such as wireless pre-shared keys and even enabling or disabling the predictable network interface names.

Boot Options

This section provides users with the ability to customize the way Raspberry Pi boots up into the Raspbian OS. For instance, the user can select a boot preference from the command line or the desktop. Similarly, the user can also choose an option that forces the Raspberry Pi's bootup sequence to wait for a pre-configured network to become available. You can also change bootup preferences, such as disabling or enabling the Plymouth splash screen.

Localization Options

The localization options in this section of the raspi-config submenu give you the ability to customize the following features;

•

 Changing the Locale
 : you can specify and set your preferred locale through this setting.

•

 Changing the Time Zone:
 you can specify and set your preferred time zone through this setting. First, you'll have to select the region, for instance, North America. Then you'll have to specify the city of your time zone, for instance, New York.

•

 Changing the Keyboard Layout
 : through this option, you can customize the layout of the keyboard according to your preferences. Once you change the keyboard layout, it will be applied immediately; however, the system might ask for a reboot.

•

 Changing the Wireless Country:
 allows the user to set the country code for the connected wireless network.

Interface Options

In the interface section of the raspi-config submenu, you will have access to the following configurations for customization;

•

 The Camera:
 this option allows the user to enable or disable the CSI camera interface.

•

 SSH:
 'SSH' is a secure shell service that allows the user to securely and remotely access the command line of a computer over the network, in this, accessing the command line of the Raspberry Pi remotely in a secure manner over a network. This setting allows the user to either enable or disable the ability to access the command line of the Raspberry Pi remotely through SSH.

•

 VNC:
 This setting allows the user to enable or disable the RealVNC (virtual network computing) server.

•

 SPI:
 Controls the automated loading of the SPI kernel module, allowing the users to enable or disable the SPI interface. The SPI kernel module is essential for the proper functioning of some applications and hardware, such as PiFace.

•

 I2C:
 This setting allows the user to enable or disable the I2C interface as well as the automatic loading of the I2C kernel module. This is similar to what we discussed in the SPI configuration setting.

•

 Serial:
 This setting gives users the ability to control the enabling or disabling of the shell as well as the kernel messages on the serial connection.

•

 1-Wire:
 Through this setting, users are allowed to either enable or disable the Dallas 1-wire interface. This configuration basically related to the DS18B20 temperature sensors.

Overclocking

Overclock basically means clocking the speed of the CPU higher than its default speed setting. The Raspberry Pi CPU's default clock speed is 700 MHz, and without any extra cooling fans or heat sinks, it can be safely overclocked to 1000 MHz or 1 GHz. Overclocking primarily depends on the silicon lottery (the CPU you get when purchasing the processor) and the countermeasures for dissipating heat from the CPU. The first one depends on luck, while the other depends on the efficiency, quality, and the setup you choose to dissipate the heat (you either use a heat sink setup, a fan setup, or a liquid cooling setup).

Choosing the overclocking option will display the following warning message;

"Be aware that overclocking may reduce the lifetime of your Raspberry Pi. If overclocking at a certain level causes system instability, try a more modest overclock. Hold down the Shift key during boot to temporarily disable overclocking."

Advanced Options

In this section of the raspi-config submenu, we will discuss details of some of the more advanced settings that are not usually supposed to be tinkered with by new users or simply users that don't know what they do.

•

 Expand Filesystem:
 There are cases where the installation of the Pi Operating System is not automatically expanded over the filesystem. In such cases, this option from the raspi-config allows users to expand their installation over the entire SD card giving them more storage space for their files. However, the user should be careful when using this option as clicking the expand filesystem button will immediately being the partitioning process. In other words, there will be no confirmation pop-up. The changes made to the filesystem will be complete after a reboot.

•

 Overscan:
 As we know that the Raspberry Pi supports analog video and audio I/O, this option is made to fix an issue that may arise when using older TV sets or Monitors with the Raspberry Pi. Legacy display systems have something called a 'black border,' which ensures that the picture stays within the borders of the display, also known as 'overscan.' If for some reason, the legacy display device you are using does not display the whole screen within the resolution properly, i.e., the text gets outside of the display's resolution, then this option will fix it. However, for some old monitors, disabling the overscan will fix the resolution issue, and for some old TV's enabling the overscan will fix the resolution issue.

•

 Memory split:
 This option allows users to change the amount of memory that is available for use to the GPU.

•

 Audio:
 This option gives users the choice of forcing the audio through either the HDMI port or the 3.5mm audio jack.

•

 Resolution:
 Through this option, the user can change the resolution settings as well as the default resolution setting to be used by the system when it boots up.

•

 Pixel Doubling:
 This option allows users to either enable or disable 2x2 pixel mapping.

•

 GL Driver:
 This option gives users access to the configuration of the experimental GL desktop graphic drivers.

•

 GL (Full KMS):
 Through this setting, the user can enable or disable the experimental OpenGL Full KMS (also known as kernel mode setting) desktop graphics driver.

•

 GL (Fake KMS):
 Through this setting, the user can enable or disable the experimental OpenGL Fake KMS desktop graphics driver.

•

 Legacy:
 The Raspberry Pi has an older graphics driver used for its desktop, which is known as non-GL VideoCore. This option allows the user to enable or disable this desktop graphics driver.

•

 Update:
 This option updates the tool to the latest version available.

Troubleshooting

It's common for humans to make errors or forget a minor detail when doing something. This is more prominent when handling electronics such as computers. Here's a list showing some of the most common problems that people come across when using a Raspberry Pi. The appropriate solutions for these issues are mentioned as well;

•

 The mini LEDs on the Raspberry Pi's board do not light up:
 The most prevalent and common reason for this issue is that the Raspberry Pi is not receiving any power. It could be because the power supply you are using does not supply the Raspberry Pi with sufficient power or if you have simply forgotten to connect the USB power connector to the Raspberry Pi properly. When using some other power supply for the Raspberry Pi, it is recommended to use one that has a rating of 5V and 700mA (3.5 watts).

•

 Only the red light lights up on the Raspberry Pi's board:
 This means that the Raspberry Pi does power on, but it cannot read and boot the Operating System that is flashed on the SD card. To fix this, first of all, check that the SD card is properly and firmly inserted into the SD card slot. If there's no problem there, then you need to check that the Operating System has been properly written on the SD card (try flashing it again using another tool or another disk image). If that also doesn't work, try using another SD card or check if the SD card isn't corrupted by running storage diagnostics on a computer or a laptop.

•

 The Raspberry Pi does not give any display output:
 Check that the display you're using is properly set up and is not turned off. If that's not the issue, check the HDMI cable and the display device you're using by connecting it to a computer or a laptop. If it works fine over there, try switching the source input that the display is set to when connected to the Raspberry Pi.

•

 Occasional lag and hiccups:
 Check if the socket where the power supply is plugged in is not overloaded or saturated. This lag is usually caused due to low power intake by the Raspberry Pi.

If these workarounds don't offer a solve the problem you're facing, or if the concerning issue is not listed here, then the best place to go looking is the official forums of Raspberry Pi. There are experienced and helpful users on the forum, and chances are, you will either find an already discussed solution to the problem you're facing or get an active response from the community.

Linux Commands

As we have already established that the Raspberry Pi Operating System is basically a distribution of Linux, it is a given that the common commands used to navigate through Linux are the same for Raspberry Pi OS as well.

Here's a list of the common Linux commands;

	

Command

	

Description

	

ls

	

list files in the current directory

	

cd

	

change directory

	

pwd

	

print working directory

	

rm filename

	

remove filename

	

mkdir directoryname

	

make directory with directoryname

	

rmdir directoryname

	

remove empty directory

	

cat textfile

	

display contents of textfile in the terminal

	

mv oldfile newfile

	

move (rename) oldfile to newfile

	

cp oldfile newfile

	

copy oldfile to newfile

	

man command

	

display manual of command

	

date

	

read system date/time

	

echo

	

echo what is typed back in the terminal

	

grep

	

search program that uses regular expressions

	

sudo

	

perform as root user

	

./program

	

run program

	

exit

	

quit terminal session

(Source: Raspberry Pi Programming with Python by Wolfram Donat)

Chapter Two

Knowing Your Tools

and Their Purpose

[image:]

When you start to put your Raspberry Pi together, perhaps to create a project of some description, you will need a certain selection of tools. Knowing what those tools are and what their purpose is will help you to stay safe while you work.

Picking the Right Multimeter

We must understand the key features and purpose of a multimeter in order to pick the right model for the job. As we discussed in the previous section, a multimeter is a tool that allows the user to test, measure, and diagnose any problems in an electronic circuit. The attributes of a circuit measured by the multimeter are listed below;

•

 Continuity:
 measuring continuity between two points in a circuit. In other words, checking to see whether the connection between the two points has gone bad or is functional.

•

 Voltage:
 measures the voltage of the circuit.

•

 Current:
 measures whether there is any current flowing through the circuit or not. This can be used to diagnose a bad connection or a short circuit.

•

 Resistance:
 measured by the multimeter to primarily determine any short circuit in the connections.

A multimeter can be used to measure the voltage of circuits, batteries, and power supplies. Besides, it can also check to see whether electrical components like resistors, capacitors, diodes, or even transistors are functioning properly.

There are several models of multimeters available in retail stores and online shopping websites. While the expensive models have more advanced features, it's improbable that an average user will actually need those features. The two most important features that you must consider when choosing a multimeter are the following;

	
Continuity with Audio Signal:
 The task for which a multimeter will be mostly used for is checking the continuity between two connections. This is to make sure that the two points in a connection are actually connected as you take them to be. So if you're building a Raspberry Pi project and connected an electrical component to the Pi, you generally assume that they are now connected. To make sure, you'll bring in the multimeter and probe the two connections upon which the tool will tell you if there is any continuity between the two points or not. This is the main purpose of the multimeter. There are some models of multimeters that offer an audio cue when the tool detects continuity between two points, while some cheap multimeters need to be held over the points while you look at the screen to confirm the continuity. So choosing a multimeter that gives an audio output upon detecting continuity can offer better work experience and little distraction.

	
Auto-ranging:
 Cheap models of multimeters require the user to estimate the range of the measurement on their own and then set the dial by themselves accordingly. Multimeter models that feature auto-ranging to this task for the user, meaning that you won't have to set the dial nor select the range you're measuring. A multimeter that has this feature is worth the extra bucks as it will make your work easier.

Old multimeter models feature needle and scale display, which is practically outdated now as there are models with digital displays that provide more precise and accurate readings. If you're looking to pitch in some money to get a multimeter, it's recommended that you get a digital multimeter. Here's a figure showing a multimeter with a digital display.

[image:]

Picking the Right Soldering Iron and Accessories

The majority of the Raspberry Pi projects are beginner-friendly projects, which means that there's no need for soldering anything to build the projects. However, there are some complicated Raspberry Pi projects which do require a fair amount of soldering techniques even to attempt to build them. As such, it is important to learn how to solder and have a soldering iron in your toolkit.

Soldering is a process where you take a solder (which is a metal alloy that has a melting point of 371 Celsius) and melt it over the point which you want to connect the wires with. After the solder has cooled down, it forms a strong joint that is conductive. Hence, wires are primarily joined together in electrical circuits through soldering. So, if a person is working on a long-term or a big Raspberry Pi project, chances are he will need to make several strong and long-lasting connections on the electrical circuit, which can only be done by soldering.

The soldering iron is what provides the heat to melt the solder. When soldering wire of an electrical component, you basically heat the wire as well as the solder. This allows the solder to flow into the component that you want to join, and this is the point where you remove the soldering iron, letting the solder now cool. A solder cools pretty fast after melting, so you need to be careful when melting it onto the joint.

Here is a list of tools that you should always have in a soldering toolkit;

•

 Soldering Iron:
 This is a tool that will melt the solder. There are soldering irons that are inexpensive, but the majority of them are of low quality. Professional soldering irons can go over a hundred dollar margin but try to look for one that's the cheapest in the top-range options or the best at the low-range options. Keep in mind that a soldering iron needs to supply a minimum of 30 watts. While some soldering irons come with adjustable temperature features for melting large solder joints, they are usually not necessary for projects.

•

 Solder:
 This is the material that is melted to make solder joints. Solder comes in different varieties with the main ones being leaded or lead-free solders. Some prefer a solder that has a 60/40 mixture of tin and lead, i.e., 60 percent tin and 40 percent lead. However, lead is a toxic metal, so it's better to go for a lead-free solder variety that features a rosin core. This option is comparatively better because as soon as the rosin core in the solder melts, it cleans the surface where the conductive joint is being created. Solders also vary in diameters. The diameter of the solder is measured in SWG, also known as standard wire gauge. A solder of 18 to 20 SWG is recommended.

•

 Extra soldering tips:
 The tips of the soldering iron is what directs the heat to accurately onto the solder. However, it is an expendable part of the soldering toolkit, meaning that it will wear down through continued use. It's a good idea to keep spare soldering tips in your toolkit so you can swap them out if one manages to break down during a project, leaving your work uninterrupted. There are several shapes and sizes of soldering tips to choose from, depending on the way you intend to use them. For instance, a cone-shaped tip is used for the majority of the tasks involving electronics instead of chisel-shaped tips.

•

 Soldering Stand:
 Generally, soldering stands are included when you purchase a soldering toolkit. This component is what allows the user to hold the soldering iron while it is hot. If the soldering toolkit does not come with a soldering stand, then you should purchase one separately.

•

 Sponge:
 A sponge is needed for cleaning the tip of the soldering iron while it is still hot; otherwise, the solder stuck on the tip would solidify, making it hard to clean it off. An ordinary sponge will not suffice for this job. You will need either cellulose or a brass wire sponge (it all comes down to your preference). A cellulose sponge can be easily purchased from a supermarket since it is basically a kitchen sponge. Using a cellulose sponge often requires care. If the sponge is moist, it will lower the temperature of the soldering tip, making it harder for the device to maintain a constant temperature. Besides, the soldering tip has an increased chance of accumulating contaminants as well. A brass wire sponge is only a little bit more expensive, but it won't cool the soldering tip, and you will avoid the complications mentioned above as well. In this way, a brass wire sponge will lengthen the lifespan of the soldering iron as well.

•

 Desoldering tools:
 These tools allow you to desolder the components if you want to disconnect soldered wires or desolder a joint that you made by accident. You can easily find desoldering wicks and soldering suckers from the place where you bought the soldering kit. A desoldering wick is basically a flat braided ribbon that is made out of copper. Using a desoldering wick is pretty simple; you just need to hold it down the area you want to desolder and heat it. A desoldering wick is cheaper and more effective compared to a soldering sucker that works by sucking in the solder (which has been liquefied from the heat).

•

 Tip cleaning paste:
 Even if you use a sponge, regardless if it's a cellulose sponge or a brass wire sponge, it's likely that the tip of the soldering iron will develop an oxidation coating at some point. This will hinder the soldering iron from doing its job properly. A tip cleaning paste is an effective solution of properly removing any oxidation coating on the soldering iron's tip along with any debris as well.

Building and Fabrication Tools

When working with Raspberry Pi projects, there are times when you might need tools for fabrication. These tools are not necessarily required for every project, but often, you might find yourself in need of one such tool. So it's a good idea to stock up on these tools for future use. The tools mentioned in this section are listed according to their importance, with the first being the most important and the last one the least important.

•

 Precision Screwdrivers:
 A range of flathead and Philips-head screwdriver kits should be available for use in the workspace.

•

 Helping hands:
 A helping hand is basically a small clamping device that is used to hold the object you are working on. The device uses two alligator clips to grip the object firmly, and some models also come with magnifying glasses, making it easier to work on circuitry and small objects.

•

 Wire strippers:
 This tool helps the user to cut and strip away the insulation of a wire and exposing it. It's important to note that cheap wire strippers can be frustrating to use, so it's better to pick up a good one even if it means splurging some cash.

•

 Angled side cutters:
 This tool is primarily used for cutting wires or even clipping some component lead.

•

 Needle-nose pliers:
 This tool is used to hold small and thin objects firmly. It's better to get both small and large needle-nose pliers.

•

 Task Light with Magnifier:
 This will help properly light up the desk you are working on, and the magnifier will help you see the finer details even better.

•

 Box cutter:
 A box cutter will help you cut down objects made of sturdy materials.

•

 Cutting mat:
 This will help keep the workspace clean and tidy.

Working with Electronics

In most Raspberry Pi projects, you will find yourself needing to connect a circuit or any other electronic component to the Raspberry Pi. The most efficient and easy way to approach such a project is to use breadboards. A breadboard can be used in almost any kind of project that involves electrical components and circuits. Besides breadboards, there are also stripboards and perfboards available for use with electronic projects. Stripboards and perfboards are primarily used to attach a circuit permanently by soldering. On the other hand, breadboards are more of a temporary solution, and breadboards can be put inside an enclosure alongside the Raspberry Pi as well.

Let's discuss breadboards, stripboards, and perfboards in more detail to understand their intended use.

Breadboards

On the surface, a breadboard is just a piece of plastic that has a lot of holes punched into it, forming rows. It's through these holes that a jumper wire can be inserted to connect an electrical component to the Raspberry Pi. You might want to ask as to how exactly do these electrical components connect to the Pi through a breadboard. Well, as we discussed that on the surface, the breadboard is just an ordinary block of plastic with rows of holes, but the main thing is underneath these holes. There are small metal strips underneath these holes that function as a kind of spring. These metal strips forming springs hold onto the wires and the 'legs' of any inserted electrical component. By joining wires and the electrical components to the same metal spring (and since the spring is made of metal), they become electrically connected.

An important thing to remember when working with breadboards is that since a spring holds the wires, some complications are surrounding this mechanism. If you are using a stranded wire (that is used more commonly), you will notice that it is made up of many tiny wires, and once they are grasped by the metal spring, the wire will get scrunched. This becomes very annoying and difficult to deal with later on. Instead, it is recommended to use a solid core wire with breadboards.

On the surface area of the breadboard, the holes are not randomly arranged. In fact, the holes are organized into specific rows and columns in a way that there are a total of five rows grouped into two columns.

If you look at the figure carefully, you'll find that the two columns have a trough in between them. The purpose of this trough is to allow space for the insertion of an integrated circuit into the breadboard. In this way, the four legs of the IC comes into contact with four adjacent holes.

The majority of the breadboard designs follow a trend of having holes running the full length of the board in a column. These holes are not electrically connected to the main area of the breadboard and are labeled as either positive or negative (sometimes even color-coded as shown above). These holes are often referred to as 'rails' and are majorly used for power or ground connections.

There are varying sizes available in breadboards as well. A small-sized breadboard usually has around 400 contact points while a large or full-sized breadboard 830 or even more contact points. For standard testing during a Raspberry Pi project, you should at least have a small-sized breadboard. Once you are familiar with using a breadboard, you can use a breadboard of any size depending on your needs, or you could even connect two small breadboards if you were unsure of the size and end up needing more contact space.

Stripboards and Perfboards

Stripboards and perfboards are similar to breadboards in the sense that they also have many hole contacts, and they are used for connecting electrical components and circuits through wires. However, unlike breadboards, a stripboard and a perfboard are primarily used for making permanent connections by soldering the contacts.

The holes present on a stripboard have a coating of conductive copper running underneath them. The conductive copper strips are held in place by adhesives. Connections are made on a perfboard by soldering the electrical component onto the copper strip, establishing a strong and permanent electrical connection.

Perfboards are essentially similar to stripboards. The only difference is in the material on which you solder. While stripboards use copper strips underneath the holes for soldering, the surface beneath the holes on a perfboard has metallic pads. This metallic pad essentially surrounds each individual hole on the board. To connect something to the perfboard, you simply solder its part onto each hole and then solder it together to make a connection.

Like breadboards, stripboards and perfboards also come in different shapes and sizes. These boards are recommended if you're looking for a permanent solution for connecting electrical circuits in a project.

Prototyping Boards

Prototyping boards are basically printed circuit boards that are used for experimentation purposes. Such kits allow a person to try out new ideas or approach towards building a project without having to commit to a permanent solution or simply a solution that is hard to replace.

A prototyping board is simply a printed circuit board which has two main features;

•

 A designated area for soldering electrical components. This area is also known as the 'prototyping area.’

•

 A multi-pin jack which is used for connecting the board to the GPIO of the Raspberry Pi (the jack connects to the GPIO socket).

One of the popular prototyping board choices is the 'Humble Pi Prototyping Board.’ This prototyping board is available in the form of a kit and needs to be assembled (which actually turns out to be fun). After assembling the prototyping board, it is then placed on top of the Raspberry Pi. Once the board is in place, all that's left to do is soldering the GPIO socket to the board. However, if you're not particularly confident in your soldering prowess, then this board also makes for a pretty good practicing area. The Humble Pi prototyping board is sturdy and hard to damage from soldering mistakes. So be sure to practice your soldering skills without worrying about damaging the board.

[image:]

(Photo credits: Humble Pi)

Chapter Three

Programming with Python

on the Raspberry Pi

[image:]

The Raspberry Pi is a pretty powerful and useful machine for its small form factor. In this chapter, we will be familiarizing ourselves with some techniques that will help us in doing programming on the Raspberry Pi.

The Raspberry Pi supports a range of programming software natively. While Scratch is included in the Raspbian OS natively, we will discuss the Python programming environment as it offers many more functionalities and a wider array of libraries to import.

The focus of this chapter will be solely on discussing Python programming techniques involving strings, files, and menus.

The Different Text Editors

Programming in Raspberry Pi is usually done with Integrated Development Environments (also commonly referred to as IDEs). We mostly use text editors such as 'Vi' or 'Emacs' that also work as IDEs for programming tasks.

Comparing the two editors, both Vi and Emacs offer user-friendly features such as syntax highlighting and word completion. However, Emac is a more redundant editor and IDE that boasts over two thousand commands built into it while Vi is aimed to be more customizable. In fact, there are several distributions of the Vi editor, and one of the most popular 'Vim' is designed to be more of an IDE for programming rather than a text editor.

To install the Vim editor, you will need to enter the following command into the command terminal window

sudo apt install vim

If you want to use Vim that has a graphical user interface, you can install it using the following command

sudo apt install vim-gnome

Similarly, the Emac editor can also be installed by using the following command

sudo apt install emacs

On the other hand, nano is a more user-friendly and comfortable text editor and IDE that many people prefer over Vim and Emac. In short, nano is more intuitive and easy to work with. Nano is already installed by default on the Raspberry Pi OS, so you don't have to worry about fetching it on your system and start right working right away.

To get a feel of things with nano, let's quickly go over the traditional starting exercise in programming, i.e., printing 'Hello World!". After that, we will discuss a bunch of other text editors as well, so you can use the one you're most comfortable with.

First off, we will need to make a Python file by using the nano text editor. The file we will be creating will be named 'firstexercise.’ Open the terminal window on the Raspberry Pi and enter the following command;

nano -c firstexercise.py

Open the file once it's been generated and add the following lines of code;

#!/usr/bin/Python

#firstexercise.py

print ("Hello World!")

After you're done with this task, save and close the file. The file is now ready to execute the instructions. To run this file, use the following command in the command-line interface.

Python3 firstexercise.py

The command-line interface will execute the instructions in the file. You have now created a program using the nano text editor.

Here's a list of the other different text editors that you can use as well;

	
IDLE3:
 IDLE3 is a Python editor that comes with features such as syntax highlight, context help, and by pressing the F5 function key, it will execute scripts directly from the editor. However, there is a requirement to run the IDLE3 program, i.e., it depends on X-Windows, which is a Debian desktop to work. If you want to run it remotely, then you'll need X11-forwarding. Keep in mind that IDLE3 supports Python3 while IDLE does not.

	
Geany:
 Geany is a text editor that offers an IDE for a variety of programming languages. Like other editors, Geany also supports features such as syntax highlighting, autocompletion, and offering an easy to navigate user interface. Although Geany is an editor that is packed with features, it might need some practice before the user can get the hang of it. Like IDLE3, Geany also depends on X-Windows and X11-forwarding. Geany can be installed by using the following command in the terminal window.

sudo apt-get install geany

There's still one more thing left to do, and that is to make sure that Geany is running Python3. To do this, we will need to make some changes to the 'build' commands. First off, load any Python file on Geany and navigate to the 'Build menu'; after that, choose the 'Set Build Commands' option. A separate window should pop-up as shown below.

[image:]

In the 'Compile' and 'Execute' sections, put in 'Python3' instead of the default 'Python,' and you're basically done.

In this book, we will be using Python3 throughout, so make sure that whichever editor you are using, it is compatible with Python3.

Experimenting with Texts and Strings in Python

Now that we know about the different Python editors, we can begin exploring and experimenting with different techniques involving string and text manipulation. Before we do that, let's create a designated folder to house the Python scripts for our own ease. We will use the '
 mkdir
 ' Linux command to create a folder named 'Python_testscripts' to the home directory of Raspberry Pi. Open the terminal window and enter the following command.

mkdir ~/Python_scripts

Once the folder has been created, we can access it at any point and list all of the files in this folder by using the following command

cd ~/Python_scripts

ls

Let's begin experimenting with text encryption using Python.

Text Scrambling using Caesar Cypher Technique in Python Scripts

In this section, we will discuss a Python script that implements the concept of a simple character substitution technique known as ‘Caesar Cypher’ to scramble text. Let’s see the Python script first and afterward, discuss how it works. We will be creating a Python script file by the name of
 ‘caesarcypher.py’.
 To understand the code better, comments have also been included.

#!/usr/bin/Python3

#caesarcypher.py

#Takes the input_text and encrypts it, returning the result

def encryptText(input_text,key):

 input_text=input_text.upper()

 result = ""

 for letter in input_text:

 #Ascii Uppercase 65-90 Lowercase 97-122 (Full range 32-126)

 ascii_value=ord(letter)

 #Exclude non-characters from encryption

 if (ord("A") > ascii_value) or (ascii_value > ord("Z")):

 result+=letter

else:

 #Apply encryption key

 key_val = ascii_value+key

 #Ensure we just use A-Z regardless of key

 if not((ord("A")) < key_val < ord("Z")):

 key_val=ord("A")+(key_val-ord("A"))%(ord("Z")-ord("A")+1)

 #Add the encoded letter to the result string

 result+=str(chr(key_val))

return result

#Test function

def main():

print ("Please enter text to scramble:")

 #Get user input

 try:

 user_input = input()

 scrambled_result = encryptText(user_input,10)

 print ("Result: " + scrambled_result)

 print ("To un-scramble, press enter again")

 input()

 unscrambled_result = encryptText(scrambled_result,-10)

 print ("Result: " + unscrambled_result)

 except UnicodeDecodeError:

 print ("Sorry: Only ASCII Characters are supported")

main()

#End

In this script, two main functions are being used. The
 encryptText()
 function and the
 input()
 command function.

In this Python script, the
 main()
 function fetches the input of the user by utilizing the
 input()
 command. The input obtained is then stored by the program as a string in a variable, which has been defined as
 user_input,
 as shown below

user_input = input()

On the other hand, the
 encryptText()
 function is called upon by using two arguments, i.e., the text which is supposed to be encrypted or scrambled and the key through which this text is supposed to be deciphered. In the Python script, these arguments have been defined as;

scrambled_result = encryptText(user_input,10)

print ("Result: " + scrambled_result)

The encryption works as follows;

•

 It substitutes the original letter with another letter from the same alphabetical set.

•

 This program is instructed to do this substitution by following the encryption key.

•

 The encryption key defines the number of alphabets to count, starting from the original alphabet's position within the set and substitute it with the alphabet calculated by the key. For instance, if the encryption key is 2, then the letter 'A' will be substituted by the letter 'C.’

•

 The script simplifies this substitution process by changing all of the letters to the upper-case, allowing for the use of the ASCII character set, which translates each letter to its corresponding number. For example, the letter 'A' is represented by the number 65, and the letter 'Z' is represented by 90. The text is converted to uppercase by the following line

Input_text=input_text.upper()

ord(*the letter*)

Then, the letters are translated into numbers according to the ASCII standard.

	
After this, we make sure that the script has an empty string in which the result can be stored by the program. This is the
 result = "”
 argument. Also, the encryption key is set to the value of the key as well.

The rest of the code is pretty much self-explanatory. Let’s move on to the next section.

Passing on the Encryption Key

Let’s say that we have encrypted a message using this simple technique, and we want to securely transmit this message to our acquaintance without sending them the encryption key or the method. The solution to this is actually very simple and easy and is shown in the following figure.

[image:]

To elaborate, first of all, you send the message encrypted with your key to your friend. Once the message reaches your friend, they encrypt it with their own key and send it back to you. Now you decrypt the message and send it to your friend again. This time, it won’t be ciphered from your side, and your friend can use their key to decrypt the message and read it safely and securely. This technique is known as the ‘three-pass protocol.’

Let’s analyze a demonstration of the three-pass protocol in a Python script. We can leverage the script shown previously by using it as a module. To do this, we will have to use the
 import()
 function as shown below.

import caesarcypher as ENC

By using ENC as a reference, we can access any of the functions present in the caesarcypher.py file.

However, before we begin, we must first take care of a complication. When the contents of the file are executed directly, Python will automatically change the global attribute from
 name
 to
 “_main_”.
 To reuse the functions present in this Python script without needing to run any lines of code, we can just do this.

if _name_==“_main_”:

main()

Now that’s done, we are now ready to create the new Python script. Let’s name this file as
 threepass
 .
 py
 and create it in the same directory as the
 caesarcypher.py
 file.

#!/usr/bin/Python3

#threepass.py

import caesarcypher as ENC

KEY1 = 20

KEY2 = 50

print ("Please enter text to scramble:")

#Get user input

user_input = input()

#Send message out

encodedKEY1 = ENC.encryptText(user_input,KEY1)

print ("USER1: Send message encrypted with KEY1 (KEY1): " +

 encodedKEY1)

#Receiver encrypts the message again

encodedKEY1KEY2 = ENC.encryptText(encodedKEY1,KEY2)

print ("USER2: Encrypt with KEY2 & returns it (KEY1+KEY2): " +

 encodedKEY1KEY2)

#Remove the original encoding

encodedKEY2 = ENC.encryptText(encodedKEY1KEY2,-KEY1)

print ("USER1: Removes KEY1 & returns with just KEY2 (KEY2): " +

 encodedKEY2)

#Receiver removes their encryption

message_result = ENC.encryptText(encodedKEY2,-KEY2)

print ("USER2: Removes KEY2 & Message received: " + message_result)

#End

The output of the script is the following.

Please enter text to scramble:

"A message to a friend."

USER1: Send message encrypted with KEY1 (KEY1): U GYMMUAY NI U ZLCYHX.

USER2: Encrypt with KEY2 & returns it (KEY1+KEY2): S EWKKSYW LG S XJAWFV.

USER1: Removes KEY1 & returns with just KEY2 (KEY2): Y KCQQYEC RM Y

DPGCLB.

USER2: Removes KEY2 & Message received: A MESSAGE TO A FRIEND.

Manipulating Files and Dealing with
 Errors

By now, we have demonstrated that Python can handle strings pretty effectively. In addition, Python also features file functionality allowing the user to manipulate files such as reading, editing, or even creating new files. This opens new avenues in exploring the functionality of Python. By leveraging its ability to handle files, we can make use of the scripts demonstrated previously to build upon new scripts involving files. For instance, we could use the
 encryptText()
 function used from the other scripts and encode the entire files.

However, it is important to understand that performing file operations is largely dependent on factors that cannot be controlled by the script itself. For example, if we are trying to open a file in the Python script and that file does not even exist in the filesystem, then we will be given an error. Similarly, if the filesystem does not have enough storage, then a new file cannot be created, giving us an error again. In this section, we will also emphasize ways to prevent these errors and to handle exceptions.

File Encoding

The Python script, which we are about to see, will ask the user to specify a file through the command-line interface, and then it will proceed to encode the specified file and, finally, give a file that has been encoded as an output.

To test this script, we will first have to create an experimental file and save it. For this purpose, we will be creating a text file and name it ‘
 infile.txt
 ,’ add a message into the file, and then save it. The message can be anything. For this demonstration, let’s consider that the infile.txt file has the following message

This is a short message to test our file encryption program.

We are now ready to open the Python IDE and create a Python script file. Let’s name this
 filecypher.py
 . We will now open the script file and use the following lines of code.

#!/usr/bin/Python3

#filecypher.py

import sys #Imported to obtain command-line arguments

import caesarcypher as ENC

#Define expected inputs

ARG_INFILE=1

ARG_OUTFILE=2

ARG_KEY=3

ARG_LENGTH=4

def covertFile(infile,outfile,key):

#Convert the key text to an integer

 try:

 enc_key=int(key)

except ValueError:

 print ("Error: The key %s should be an integer value!"

 % (key))

#Code put on to two lines

else

 try:

 #Open the files

 with open(infile) as f_in:

 infile_content=f_in.readlines()

 except IOError:

 print ("Unable to open %s" % (infile))

 try:

 with open(outfile,'w') as f_out:

 for line in infile_content:

 out_line = ENC.encryptText(line,enc_key)

 f_out.writelines(out_line)

 except IOError:

 print ("Unable to open %s" % (outfile))

 print ("Conversion complete: %s" % (outfile))

finally:

 print ("Finish")

#Check the arguments

if len(sys.argv) == ARG_LENGTH:

print ("Command: %s" %(sys.argv))

covertFile(sys.argv[ARG_INFILE], sys.argv[ARG_OUTFILE],

 sys.argv[ARG_KEY])

else:

print ("Usage: filecypher.py infile outfile key")

#End

Remember that the original text file can be any text file and does need necessarily need to be named
 infile.txt
 . However, the
 infile
 variable will define the text file,
 outfile
 will always be the encrypted version of the original file, and the
 key
 will be the encryption key value that we are using. The script can be run by opening the command line interface and entering the following command.

Python3 filecypher.py infile outfile key

For instance, if we wanted to encrypt the
 infile.txt
 and get an encrypted version of this file as the
 cyphered.txt
 by using an encryption key value of 30, then the command will look like this.

Python3 filecypher.py infile.txt cyphered.txt 30

To check the encrypted file, simply use the command
 less cyphered.txt
 and exit the command-line interface by pressing the Q key button.

Similarly, if we want to decipher or decrypt the file, then we will use the negative value of the encryption key and specify the original file along with the name we want the output file to have, as shown in the command below.

Python3 filecypher.py cyphered.txt decyphered.txt -30

If we look back to the lines of code in the Python script shown above, then you will see that the file has been opened by using a
 with-as
 argument. This method ensures that the file will close if there’s an error if the script has simply completed its job. This portion of the code in the script is shown below

try:

 #Open the files

 with open(infile) as f_in:

infile_content=f_in.readlines()

 except IOError:

print ("Unable to open %s" % (infile))

These specific lines of code do the same job as the following lines of code in the same script.

try:

 f_in = open(infile)

 try:

 infile_content=f_in.readlines()

 finally:

 f_in.close()

 except IOError:

 print ("Unable to open %s" % (infile))

By using this block of code, we ensure that if there is an exception when opening the specified file, for instance, it does not exist, then an
 IOError
 will be thrown. This will notify the user that there’s an issue with the filename or the pathname they provided to the system.

Making a Bootup Menu

In this section, we will make use of the methods that have been demonstrated in the scripts shown previously in order to construct a customizable menu. The main purpose of this menu would be to provide us with instant commands and programs to run.

To start off, we will create a script file and name it
 bootmenu.py
 . Afterward, we will have to add the following lines of code to the Python script file.

#!/usr/bin/Python3

#bootmenu.py

from subprocess import call

filename="bootmenu.ini"

DESC=0

KEY=1

CMD=2

print ("Start Menu:")

try:

 with open(filename) as f:

menufile = f.readlines()

except IOError:

 print ("Unable to open %s" % (filename))

for item in menufile:

 line = item.split(',')

 print ("(%s):%s" % (line[KEY],line[DESC]))

#Get user input

running = True

while(running):

 user_input = input()

 #Check input, and execute command

 for item in menufile:

line = item.split(',')

 if (user_input == line[KEY]):

 print ("Command: " + line[CMD])

 #call the script

 #e.g. call(["ls", "-l"])

 commands = line[CMD].rstrip().split()

 print (commands)

 running = False

 #Only run command if one is available

 if len(commands):

 call(commands)

 if (running==True):

print ("Key not in menu.")

print ("All Done.")

#End

Now, we will simply create a
 .ini
 file by the name of
 bootmenu.ini
 (same as the one specified in the Python script). We will make sure that the bootmenu.ini file consists of the following menu elements and commands.

Start Desktop,d,startx

Show IP Address,i,hostname -I

Show CPU speed,s,cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_

freq

Show Core Temperature,t,sudo /opt/vc/bin/vcgencmd measure_temp

Exit,x,

To customize the menu, all you have to do is add your own commands to the .ini file itself.

Now let’s analyze how this Python script works.

•

 Notice that a
 call
 command has been used at the beginning of the script. The script uses this command to execute programs. Since the requirement of this small exercise is to make a menu, we only need to call a part of the
 subprocess
 module. This is done by using the line

from subprocess import call

By doing this, the script is only importing what it actually needs.

•

 As the file is opened by the script, it lists all of the lines within it into the
 menufile
 . Each line in the file is then processed into lists separated by the
 “,”
 symbol consisting of different menu items by using the
 item.split(‘,’) function
 . It’s proper implementation, as shown in the script, is as follows.

line = ['Start Desktop', 'd', 'startx\n']

•

 Now that each section of the menu is separated, we used the
 print
 statement to display the corresponding key that needs to be pressed in order to invoke a certain command.

•

 The interface of the menu is now ready. What we need to do after this is to instruct the script to wait for the user’s input by using the looping statement
 while
 . This loop will continue to be active unless its condition is set to False. By doing this, even if the user inputs an incorrect key, the menu will remain open until either a designated command key is pressed or if the exit menu key is pressed. The script checks the key that has been inputted by the user against the key that has been designated to a menu item using the following line of code.

user_input == line[KEY]

•

 If the key that has been inputted matches the key of a menu item, then the corresponding command is called upon by the script. However, the
 call command
 requires the corresponding commands, as well as their arguments, to be in the form of a list as well. For this purpose, we use the
 .split()
 command to separate the command part into a list as well. There’s also a ‘/n’ character, which is simply an end-of-the-line character of the
 menu.ini
 file. This is referred to as whitespace. To remove this, we use the
 .rstrip()
 function.

•

 In the end, the Python script outputs a menu featuring a handful set of options as shown below

Start Menu:

(d):Start Desktop

(i):Show IP Address

(s):Show CPU speed

(t):Show Core Temperature

(x):Exit

g

Key not in menu.

i

Command: hostname -I

['hostname', '-I']

All Done.

Chapter Four

Python and External Hardware

[image:]

One of the defining characteristics of a Raspberry Pi is its ability to interface with external hardware directly. Most of the basic electronics such as LEDs, switches, and sensors, etc. can be connected and controlled with the Raspberry Pi system through the GPIO (General Purpose Input/Output) pins.

The Raspberry Pi motherboard features a GPIO interface known as P1 that has a total of 26 pins. If you’re using the Raspberry Pi Model B or Model A versions, then you’ll notice that in addition to these 26 pins, there’s a set of 8 holes right next to P1. Another connector can be soldered onto these holes providing four additional GPIO pins to the user.

Here we will discuss the ways through which we can connect LEDs and buttons to the Raspberry Pi and how we can control these electrical components through the Pi system by using Python. In essence, the major topics of discussion in this chapter include;

•

 Controlling RGB LEDs through Python

•

 Taking input from externally connected buttons

•

 The GPIO keypad input

•

 Multiplexed Color LEDs

Controlling an RGB LED through Python

While many hardware exercises discuss LED implementation and control in Raspberry Pi by using standard mono-colored LEDs. In this book, we will make this exercise a bit challenging and interesting by using an RGB LED.

This exercise will require the following hardware components.

	
Four DuPont F to M (female to male) wires.

	
A breadboard (can be a mini breadboard or a full-sized breadboard. However, if you’re using a mini breadboard, it should have at least 170 points).

	
Common cathode RGB LED.

	
Solid core wire

	
Three 470-ohm resistors

A breadboard is an essential component that is used in a wide variety of Raspberry Pi projects, so chances are, you probably have it with you. The rest of the components only cost a few bucks and can be purchased very easily from local and online retailers. Before we begin with the exercise, the reader needs to understand the structural difference of an RGB LED from a normal LED.

The figure shown below is a diagram of an RGB LED alongside a standard LED. You can also see the circuit implementation of an RGB LED.

[image:]

To get an idea of how the LED will be connected to the breadboard and to the P1 GPIO header, the following diagram will be helpful.

[image:]

Now let’s whip up a Python script to test out the functionality of the Raspberry Pi in controlling the connected RB LED.

We will be naming this Python script as
 rgbled.py
 and the contents of this script are as follows.

#!/usr/bin/Python3

#rgbled.py

import time

import RPi.GPIO as GPIO

RGB LED module

#HARDWARE SETUP

P1

2[======XRG=B==]26

1[=============]25

X=GND R=Red G=Green B=Blue

#Setup Active States

#Common Cathode RGB-LED (Cathode=Active Low)

RGB_ENABLE = 1; RGB_DISABLE = 0

#LED CONFIG - Set GPIO Ports

RGB_RED = 16; RGB_GREEN = 18; RGB_BLUE = 22

RGB = [RGB_RED,RGB_GREEN,RGB_BLUE]

def led_setup():

#Setup the wiring

GPIO.setmode(GPIO.BOARD)

#Setup Ports

for val in RGB:

 GPIO.setup(val,GPIO.OUT)

def main():

led_setup()

for val in RGB:

 GPIO.output(val,RGB_ENABLE)

 print("LED ON")

 time.sleep(5)

 GPIO.output(val,RGB_DISABLE)

 print("LED OFF")

try:

main()

finally:

GPIO.cleanup()

print("Closed Everything. END")

#End

It is important to note that the RPi.GPIO library that is being imported by the Python script requires root permission to communicate with the Raspberry Pi’s GPIO pins. This means that we will have to run this Python script by using the sudo command as shown below.

sudo Python3 rgbled.py

Once the script is executed by the system, the different colors (red, green, and blue) of the LED should light up in order. If this doesn’t happen, then you need to check if the LEDs are properly wired. You can also momentarily connect either the red, green, or blue wire of the LED to the 3v3 pin (pin 1 of the GPIO pin header) to confirm whether the LED is indeed functional.

Let’s dive in a bit and see how does all of this actually work. For Python to access and control the GPIO pins, it needs to import module functions from the RPi.GPIO library. Once the necessary library has been imported, the
 time
 function defines the pause time for each color of the LED to stay on.

However, things are still far off from a working state. Before the script can actually control the GPIO pins, it needs to specify a numbering method and the GPIO direction state. The numbering method is defined by the
 GPIO.BOARD
 and the configuration state of the GPIO can be either set as an input or an output (GPIO.IN and GPIO.OUT). The pin state also makes a difference. If the GPIO pins are configured as outputs, then the user is able to configure the pin state. On the other hand, if the GPIO pins are configured as inputs, then the user will only be able to read the states of the pins. In this demonstration, the GPIO pins were set as outputs.

The GPIO pins are controlled by the
 GPIO.output()
 function. In this function, we specify the GPIO pin number and configure its state, i.e., for ON state, we set the value to 1, and for the OFF state, we set the value to 0. By using the time function to set the pause period for each LED color to stay lit up, we set it to 5 seconds. This means that once an LED lights up, it will stay lit for 5 seconds before turning off.

To wrap things up, the
 GPIO.cleanup()
 function is used to revert the GPIO pins back to their default states.

Controlling the GPIO Current

Each individual pin on the GPIO header has a limit as to how much current it can handle. If too much current is supplied to the GPIO pin, then it will burn out and, in turn, damaging the Raspberry Pi processor as well. The maximum current capacity that can be handled by GPIO pins is 16mA by a single pin and 30mA in total. In this way, the RGB LED being used in this exercise should not be over 100mA. Controlling the current is mainly done by using resistors. So adding a resistor to the LED setup will limit the current being drawn by the LED and also affect its brightness (the more current being drawn, the brighter the LED).

Let’s say that we want to set up more than one LED on the Raspberry Pi’s GPIO header. Keeping in mind the current capacity limit, ideally, we would want to set the current as low as possible where the LED would still light up. To figure this out, we can use Ohm’s law that tells us what is the required resistance to obtain a specific amount of current. Ohm’s law mathematical representation is as follows;

V = I x R

We can then manipulate this equation to get the following forms of Ohm’s law.

I = V/R and R = V/I

Now let’s use Ohm’s law to check the current being drawn even with the resistor. The aim is to get a minimum of 3mA current and a maximum of 16mA current. In this range, the brightness of the LED will still be reasonably better. We will need to do a little testing with several resistors until we get a balanced output for the RGB LEDs. In our case, a 470-ohm resistor for each LED (Red, Green, and Blue) did the job, but it might not be the same for your case, so you’ll need to do a little testing yourself as well.

[image:]

Now let’s calculate the current that is being drawn while the resistor is in place. We can calculate the total voltage across the resistor by subtracting the GPIO voltage (which is 3.3V) with the voltage drop on a specific LED (denoted as Vfwd). The resistance can then be used to calculate the amount of current being used by each LED, as shown below.

VR_Limit = (Vgpio-Vfwd)

I = VR_Limit/R = (3.3-2)/470 = 1.3/470 = 2.8mA for the Red LED

I = VR_Limit/R = (3.3-3)/470 = 0.3/470 = 0.64mA each for the Green and Blue LEDs

Accepting Input from a Button

Buttons can offer a fair amount of productivity when it comes to running applications that need an input source from somewhere other than a keyboard or a mouse. For this purpose, the GPIO pins allow users to control the Raspberry Pi with buttons and switches.

In this exercise, we will demonstrate the use of an application that gives an audio output by receiving an input from the button that has been externally connected to the Raspberry Pi. For this exercise, we will need the following components;

•

 Two DuPont F-to-M wires

•

 A breadboard (can be a mini-breadboard or a full-sized breadboard)

•

 A push-button and a momentary switch

•

 Solid core wire

•

 1000-ohm resistor

There are different types of switches available which have been elaborated in the diagram shown below:

[image:]

Here’s the layout of the button circuit, according to which you will need to install the button on the breadboard and connect it to pins on the GPIO header.

[image:]

Since we are going to work with audio output in this exercise, we will need a sound device connected to the Raspberry Pi. This can be a speaker or a headphone; it doesn’t matter as long as you’re able to hear the sound. The application that will be used to accept this input and give an audio output is “
 flite
 .” To install the program on to the Raspberry Pi, open the command terminal, and use the following command.

sudo apt-get install flite

To check whether the application has been properly installed and it works fine, enter the following command which will test its functionality;

sudo flite -t "hello I can talk"

You can also adjust the volume of the system according to your preference by using the following command:

amixer set PCM 100%

Now it’s time to write a script for the external button. We will name this file
 btnex.py
 . The script will include the following lines of code;

#!/usr/bin/Python3

#btnex.py

import time

import os

import RPi.GPIO as GPIO

#HARDWARE SETUP

P1

2[==X==1=======]26

1[=============]25

#Button Config

BTN = 12

def gpio_setup():

 #Setup the wiring

 GPIO.setmode(GPIO.BOARD)

 #Setup Ports

 GPIO.setup(BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

def main():

 gpio_setup()

 count=0

 btn_closed = True

 while True:

btn_val = GPIO.input(BTN)

if btn_val and btn_closed:

 print("OPEN")

 btn_closed=False

elif btn_val==False and btn_closed==False:

 count+=1

 print("CLOSE %s" % count)

 os.system("flite -t '%s'" % count)

 btn_closed=True

time.sleep(0.1)

try:

 main()

finally:

 GPIO.cleanup()

 print("Closed Everything. END")

#End

Notice that, unlike the last exercise where the GPIO pins were configured as an output, this time, the GPIO pins have been set as input. This means that we can read the GPIO pins. In addition, this exercise also enables the ‘internal pull-up resistor’ by using the following line of code in the Python script.

GPIO.setup(BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

Once the state of the GPIO pin has been set to input, we put a loop after it in the script. The purpose of this loop is to constantly monitor the state of the ‘
 BTN’
 using the
 GPIO.input()
 function. If the value that has been returned turns to be false, then the switch connects the pin to the ground (0V). For each button press, the
 flite
 program will play a sound indicating the button has been pressed.

It is important to remember that you should never connect any electrical component to the GPIO pins that are 5V until and unless you are completely confident that it is safe. It is recommended that you only connect inputs with voltage range from 0V to 3.3V.

Pull-Up and Pull-Down Resistor Circuits

Pull-up and Pull-down resistor circuits do the same job but have the opposite switch logic states. Let’s first understand how these circuits work and then discuss this difference.

The purpose of pull-up and pull-down resistor circuits is to ensure that the voltage is not allowed to float between 0 and 3.3V or anywhere in between these measurements. In this way, the logic state does not fluctuate and remains static until pressed or released. If you do not use the pull-up or pull-down resistor circuits on the GPIO pins, then the voltage would freely float in between the states of 0V and 3.3V, leaving the logic state undetermined as well.

Both of the internal resistor circuits have the same resistance rating, i.e., 50k ohm to 65k ohm.

Let’s discuss how pull-up resistors work. The main job of the pull-up resistor is to allow only a scarce amount of current to be able to flow through the GPIO pin. In this way, a high voltage is obtained when we do not press the switch. However, as soon as the switch is pressed, the large current that was flowing to the ground (0V) replaces the small current, and the GPIO pin develops a low voltage. This means that the switch becomes active at low voltage, and the logic state of the GPIO pin is ‘0’. The working is further explained in the circuit diagram shown below.

[image:]

The working of pull-down resistors is practically the same as pull-up resistors, but instead of the switch being active at low voltage, it is active at a high voltage, meaning that when the button is pressed, the logic state of the GPIO pin is ‘1’. This concept is shown in the following circuit diagram.

[image:]

Making a Dedicated Shut-Down Button

In this section, we will apply what we learned from the two previous exercises and build a dedicated shut-down button for the Raspberry Pi. This is a good way to learn that every project you make has some of its aspects passed on to other related projects.

It is commonly accepted that abruptly shutting down a computer increases the chances of storage corruption. The same is the case for the Raspberry Pi. Not properly shutting down the system involves a risk of SD card corruption, which is usually caused when the system shuts down when something is being written to the SD card. This becomes a point of concern when you are using the Raspberry Pi in an automated project without any display or keyboard/mouse. In such cases, you will not be able to shut the system down manually, and to solve this issue; we would need an external component to do the job for us. For this reason, we will be creating a dedicated shut-down button and also install an LED that will indicate the system’s current state (power on or power off).

For this exercise, you will need the following hardware components:

•

 Three DuPont female to male patch wires

•

 A mini or large-sized breadboard (with a minimum of 170 holes)

•

 A Push-button

•

 A standard LED (it can be of any color)

•

 Two resistors each with a rating of 470-ohm

•

 Solid core wire

Here’s a layout according to which you will build the circuit.

[image:]

Once the circuit connecting the push button and the LED to the GPIO header of the Raspberry Pi has been built, we are now ready to program a Python script that will control the behavior of the button and the LED.

Let’s name this script as
 pwroffbtn.py
 . We will use the following lines of code in this Python script;

#!/usr/bin/Python3

#pwroffbtn.py

import time

import RPi.GPIO as GPIO

import os

Shutdown Script

DEBUG=True #Simulate Only

SNDON=True

#HARDWARE SETUP

P1

2[==X==L=======]26

1[===1=========]25

#BTN CONFIG - Set GPIO Ports

GPIO_MODE=GPIO.BOARD

SHTDWN_BTN = 7 #1

LED = 12 #L

def gpio_setup():

 #Setup the wiring

 GPIO.setmode(GPIO_MODE)

 #Setup Ports

 GPIO.setup(SHTDWN_BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

 GPIO.setup(LED,GPIO.OUT)

def doShutdown():

 if(DEBUG):print("Press detected")

 time.sleep(3)

 if GPIO.input(SHTDWN_BTN):

if(DEBUG):print("Ignore the shutdown (<3sec)")

 else:

if(DEBUG):print ("Would shut down the RPi Now")

GPIO.output(LED,0)

time.sleep(0.5)

GPIO.output(LED,1)

if(SNDON):os.system("flite -t 'Warning commencing power down'")

if(DEBUG==False):os.system("sudo shutdown -h now")

if(DEBUG):GPIO.cleanup()

if(DEBUG):exit()

def main():

 gpio_setup()

 GPIO.output(LED,1)

 while True:

if(DEBUG):print("Waiting for >3sec button press")

if GPIO.input(SHTDWN_BTN)==False:

 doShutdown()

time.sleep(1)

try:

 main()

finally:

 GPIO.cleanup()

 print("Closed Everything. END")

#End

After testing that the script actually works, we need to make it run automatically when the system boots up. To do this, we need to copy or move the script to the
 “~/bin”
 directory and then add it to
 crontab
 by using the following lines of code.

mkdir ~/bin

mv pwroffbtn.py ~/bin/pwroffbtn.py

crontab –e

Once that’s been done, we need to add the following line of code at the ending section of the file.

@reboot sudo Python3 ~/bin/shtdwn.py

Notice that in this exercise, we set the GPIO pin connected to the button as input while the pin that is connecting the LED to the Raspberry Pi is set as output. In this way, the system can read the logic state of the pin when the button is pressed while it can set the logic state for the pin that is connected to the LED, lighting it up (when the system is running) and turn it off (when the system is turned off).

To check if the setup works, we use the
 DEBUG
 flag and set it to a TRUE state. This will tell the system to virtually simulate a shutdown (without actually doing it) to check the working of the button and the LED. The user can read the terminal messages to check the entire process. However, once the setup has been tested, it is important to set the
 DEBUG
 flag back to a FALSE state so that the script can be used to simulate an actual shutdown.

In the following portions of the code, we use the
 while
 loop function to make the system check for the logic state of the GPIO pin. If the state is low (meaning ‘0’), this indicates that the button has been pressed, and the system then proceeds to execute the
 doShutdown()
 function.

However, the shutdown is not instantaneous. The script is programmed to wait for a period of 3 seconds and then check whether the state of the GPIO is low or not. If the state is still low after 3 seconds, this will trigger an LED flash, and the system will proceed with the shutdown sequence. Moreover, by using the
 flite
 program, the system will also give an audio output when the system has entered the shutdown sequence.

The GPIO Keypad Input

Monitoring application launch and Raspberry Pi control through GPIO is required to be clearly understood for moving towards the concept of third-party programs.

Control can be acquired over any program by one’s own custom hardware, utilizing the
 uInput
 library and imitating key-strokes and mouse movement.

Further information regarding
 uInput
 and its uses can be accessed through

http://tjjr.fi/sw/Python-uinput/

 .

Making Preparations

To install
 uInput
 ,
 follow the steps given under:

	
Downloading uInput: uInput Python library is required to be downloaded from Github. The given command can be used for this purpose.

wget

https://github.com/tuomasjjrasanen/Python-uinput/archive/master.zip

unzip master.zip

A directory with the name Python-uinput-master contains the unzipped library. The ZIP file can be removed by the given command after it has been downloaded.

rm master.zip

	
Use the given commands to install the packages required.

sudo apt-get install Python3-setuptools Python3-dev

sudo apt-get install libudev-dev

The apt-get ignores the command if the packages are already installed.

	
Use the following commands to register and install
 uInput
 .

cd Python-uinput-master

sudo Python3 setup.py install

Use the following command to load the new kernel module.

sudo modprobe uinput

	
The following command can be used to add uinput to the modules to check if the uinput module is loaded on start-up.

sudo nano /etc/modules

To make sure that the
 uinput
 is loaded on startup, we add it to
 modules
 using the following command

sudo nano /etc/modules

In the file, put uinput on a new line and save.

	
Using the following equipment, create the following circuit.

•

 Medium-sized or a full-sized breadboard

•

 Solid core wire to use with the breadboard

•

 Six push buttons

•

 Seven Dupont female to male patch wires

•

 Six 470-ohm resistors

[image:]

(GPIO Keypad Circuit Layout)

The components can be soldered into a Vero-prototype board or stripboard, to build a permanent type of the given keyboard circuit.

	
Make the circuit connections to the Raspberry Pi P1 GPIO pins by following the given connections:

	

	

Button

	

P1 GPIO Pin

	

GND

	

	

6

	

v

	

B_DOWN

	

22

	

<

	

B_LEFT

	

18

	

^

	

B_UP

	

15

	

>

	

B_RIGHT

	

13

	

1

	

B_1

	

11

	

2

	

B_2

	

7

Creating the Python Script

We will now proceed to create the
 gpiokeys.py
 script for this exercise.

#!/usr/bin/Python3

#gpiokeys.py

import time

import RPi.GPIO as GPIO

import uinput

#HARDWARE SETUP

P1

2[==G=====<=V==]26

1[===2=1>^=====]25

B_DOWN = 22 #V

B_LEFT = 18 #<

B_UP = 15 #^

B_RIGHT = 13 #>

B_1 = 11 #1

B_2 = 7 #2

DEBUG=True

BTN = [B_UP,B_DOWN,B_LEFT,B_RIGHT,B_1,B_2]

MSG = ["UP","DOWN","LEFT","RIGHT","1","2"]

#Setup the DPad module pins and pull-ups

def dpad_setup():

#Set up the wiring

GPIO.setmode(GPIO.BOARD)

Setup BTN Ports as INPUTS

for val in BTN:

 # set up GPIO input with pull-up control

 #(pull_up_down can be:

 # PUD_OFF, PUD_UP or PUD_DOWN, default PUD_OFF)

 GPIO.setup(val, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def main():

#Setup uinput

events = (uinput.KEY_UP,uinput.KEY_DOWN,uinput.KEY_LEFT,

 uinput.KEY_RIGHT,uinput.KEY_ENTER,uinput.KEY_ENTER)

device = uinput.Device(events)

 time.sleep(2) # seconds

dpad_setup()

print("DPad Ready!")

btn_state=[False,False,False,False,False,False]

key_state=[False,False,False,False,False,False]

while True:

 #Catch all the buttons pressed before pressing the related keys

 for idx, val in enumerate(BTN):

 if GPIO.input(val) == False:

 btn_state[idx]=True

 else:

 btn_state[idx]=False

 #Perform the button presses/releases (but only change state once)

 for idx, val in enumerate(btn_state):

 if val == True and key_state[idx] == False:

 if DEBUG:print (str(val) + ":" + MSG[idx])

 device.emit(events[idx], 1) # Press.

 key_state[idx]=True

 elif val == False and key_state[idx] == True:

 if DEBUG:print (str(val) + ":!" + MSG[idx])

 device.emit(events[idx], 0) # Release.

 key_state[idx]=False

 time.sleep(.1)

try:

 main()

finally:

 GPIO.cleanup()

#End

Understanding the Script

First of all,
 uinput
 is to be imported, and the buttons on the keypad need to be defined according to their wiring scheme. Enable each button BTN as input and initialize the pull-up resistors of the internal circuit.

Then
 uinput
 is set up. This is done by defining keys required to be imitated and adding these to “
 uinput.Device ()
 ” function. Allow the
 uinput
 function to start working, then set the corresponding logical states of the keys, buttons, and the start the
 main_loop
 .

Now let’s talk a bit about the
 main_loop
 . This loop consists of two important features:

	
checks buttons, records states in
 btn_state

	
Cross-checks the logical state of the variable
 btn_state
 against the array variable,
 key_state

In this way, whenever the state of the
 btn_state
 variable is subjected to change, it is automatically detected, and
 device.emit ()
 is asked to change the value of the
 key_state
 variable accordingly.

As seen in the given command, it can be run with & to permit running this script in the background.

sudo Python3 gpiokeys.py &

“&” character makes it so that the command that is using this character is run by the system in the background, which can be reversed, i.e., for the command to be brought to foreground “
 fg
 ” can be used.

If the Raspberry Pi is connected remotely, the key-strokes will be visible only on the screen, which is connected locally.

The
 uinput
 can be utilized for providing a way for other such programs to control the hardware of the system. Basically, this also includes programs that require input through a mouse.

Generating Additional Key Combinations

To support different programs, a variety of key mappings can be created. E.g.

For a spectrum emulator like
 fuze,
 the
 events_z80
 key mapping is useful.

For controlling videos played through the OMX player, the
 events_omx
 key mapping is appropriate. It can be done by the given command:

omxplayer filename.mp4

Using the
 -k
 parameter, a list of keys supported by
 omxplayer
 can be acquired.

Using the given code, add new key mapping in place of the line defining the
 events
 list, choose desired key mappings by assigning them to events.

events_dpad = (uinput.KEY_UP,uinput.KEY_DOWN,uinput.KEY_LEFT, uinput.KEY_RIGHT,uinput.KEY_ENTER,uinput.KEY_ENTER)

events_z80 = (uinput.KEY_Q,uinput.KEY_A,uinput.KEY_O, uinput.KEY_P,uinput.KEY_M,uinput.KEY_ENTER)

events_omx = (uinput.KEY_EQUAL,uinput.KEY_MINUS,uinput.KEY_LEFT, uinput.KEY_RIGHT,uinput.KEY_P,uinput.KEY_Q)

All of the
 KEY
 definitions can be found in the
 input.h
 file and these can be seen by the
 less
 command given as under:

less /usr/include/linux/input.h

Simulating Mouse Movements

As mentioned earlier
 uinput
 library can be used to imitate key-strokes, joystick, and mouse movements. The script can be adjusted for mouse events such that the buttons simulate a mouse by the given code:

MSG = ["M_UP","M_DOWN","M_LEFT","M_RIGHT","1","Enter"]

events_mouse=(uinput.REL_Y,uinput.REL_Y, uinput.REL_X,

 uinput.REL_X,uinput.BTN_LEFT,uinput.BTN_RIGHT)

mousemove=1

Use the given code to provide continuous movement button handling requires modification so that keeping track of the state of the keys for a mouse is not required.

#Perform the button presses/releases

#(but only change state once)

for idx, val in enumerate(btn_state):

 if MSG[idx] == "M_UP" or MSG[idx] == "M_LEFT":

state = -mousemove

 else:

state = mousemove

 if val == True:

device.emit(events[idx], state) # Press.

 elif val == False:

device.emit(events[idx], 0) # Release.

time.sleep(0.01)

Multiplexed Color LEDs

Certain software can help generate remarkable results from apparently simple hardware. A method called hardware multiplexing is used to connect 5 RGB LEDs in a way so that only eight GPIO pins control red, blue, and green elements.

Making the Preparations

The RGB LED module is required for this purpose.

As evident from the picture, the RGB LED module has GPIO pins and Dupont female-female connecting wire. Even though five pins labeled 1 to 5 are on each side of the board, one side is required to be connected.

The following circuit contains a Vero prototype board or large breadboard, three resistors of 470 ohms, and five common cathodes RGB LEDs. This circuit Cn be used to create other alternate types as well.

[image:]

(RGB LED Module Circuit Diagram)

Note: If the circuit on which the LEDs are connected use a single resistor by sharing it among themselves, then this would cause interference from the LEDs. This can be tackled by using separate resistors for each RGB LED that would eliminate any interference previously present while also increasing their lifespan as well.

The Raspberry Pi GPIO P1 header has to be connected with the circuit, and connections are given as follows:

	

RGB LED

	

	

	

	

	

	

1

	

	

2

	

3

	

	

4

	

	

	

Rpi GPIO Pin

	

2

	

4

	

6

	

8

	

10

	

12

	

14

	

16

	

18

	

20

	

22

	

24

	

26

	

Rpi GPIO Pin

	

1

	

3

	

5

	

7

	

9

	

11

	

13

	

15

	

17

	

19

	

21

	

23

	

25

	

RGB LED

	

	

	

	

5

	

R

	

G

	

B

	

	

	

	

	

	

Creating the Python Script

We will now proceed to create the Python script
 rgbled.py
 by the following code procedure.

	
First and foremost, we need to import the modules that are necessary for this exercise. Moreover, we will also need to define the appropriate values to be used as shown below.

#!/usr/bin/Python3

#rgbled.py

import time

import RPi.GPIO as GPIO

#Setup Active states

#Common Cathode RGB-LEDs (Cathode=Active Low)

LED_ENABLE = 0; LED_DISABLE = 1

RGB_ENABLE = 1; RGB_DISABLE = 0

#HARDWARE SETUP

P1

2[=====1=23=4==]26

1[===5=RGB=====]25

#LED CONFIG - Set GPIO Ports

LED1 = 12; LED2 = 16; LED3 = 18; LED4 = 22; LED5 = 7

LED = [LED1,LED2,LED3,LED4,LED5]

RGB_RED = 11; RGB_GREEN = 13; RGB_BLUE = 15

RGB = [RGB_RED,RGB_GREEN,RGB_BLUE]

#Mixed Colors

RGB_CYAN = [RGB_GREEN,RGB_BLUE]

RGB_MAGENTA = [RGB_RED,RGB_BLUE]

RGB_YELLOW = [RGB_RED,RGB_GREEN]

RGB_WHITE = [RGB_RED,RGB_GREEN,RGB_BLUE]

RGB_LIST = [RGB_RED,RGB_GREEN,RGB_BLUE,RGB_CYAN,

 RGB_MAGENTA,RGB_YELLOW,RGB_WHITE]

2.We will now proceed to define the functions that will essentially set up the GPIO pins properly by using the following lines of code.

def led_setup():

 '''Setup the RGB-LED module pins and state.'''

 #Set up the wiring

 GPIO.setmode(GPIO.BOARD)

 # Setup Ports

 for val in LED:

 GPIO.setup(val, GPIO.OUT)

 for val in RGB:

 GPIO.setup(val, GPIO.OUT)

 led_clear()

3.We will now define the utility functions that will control the LEDs

def led_gpiocontrol(pins,state):

 '''This function will control the state of

 a single or multiple pins in a list.'''

 #determine if "pins" is a single integer or not

 if isinstance(pins,int):

 #Single integer - reference directly

 GPIO.output(pins,state)

 else:

 #if not, then cycle through the "pins" list

 for i in pins:

 GPIO.output(i,state)

def led_activate(led,color):

 '''Enable the selected led(s) and set the required color(s)

 Will accept single or multiple values'''

 #Enable led

 led_gpiocontrol(led,LED_ENABLE)

 #Enable color

 led_gpiocontrol(color,RGB_ENABLE)

def led_deactivate(led,color):

 '''Deactivate the selected led(s) and set the required

 color(s) will accept single or multiple values'''

 #Disable led

 led_gpiocontrol(led,LED_DISABLE)

 #Disable color

 led_gpiocontrol(color,RGB_DISABLE)

def led_time(led, color, timeon):

 '''Switch on the led and color for the timeon period'''

 led_activate(led,color)

 time.sleep(timeon)

 led_deactivate(led,color)

def led_clear():

 '''Set the pins to default state.'''

 for val in LED:

 GPIO.output(val, LED_DISABLE)

 for val in RGB:

 GPIO.output(val, RGB_DISABLE)

def led_cleanup():

 '''Reset pins to default state and release GPIO'''

 led_clear()

 GPIO.cleanup()

4.We will now define a test function to test the module

def main():

 '''Directly run test function.

 This function will run if the file is executed directly'''

 led_setup()

 led_time(LED1,RGB_RED,5)

 led_time(LED2,RGB_GREEN,5)

 led_time(LED3,RGB_BLUE,5)

 led_time(LED,RGB_MAGENTA,2)

 led_time(LED,RGB_YELLOW,2)

 led_time(LED,RGB_CYAN,2)

if __name__=='__main__':

 try:

 main()

 finally:

 led_cleanup()

#End

Understanding the Script

First of all, the states for enabling and disabling LEDs are required to be defined according to the RGB LED type that is being used (common cathode). If the RGB LED is an ‘Anode’, the states for enabling / disabling have to be reversed.

Then the mapping of GPIO with the pins according to the wiring done is to be defined.

By combining the basic colors red, blue, and green color combinations are also defined.

[image:]

In this Python script, there are several noteworthy functions. Let us start with the
 led_setup().
 This function forwards the numbering of the GPIO pins that are to be used as outputs to the
 GPIO.BOARD.
 Lastly, we also use the led_clear() function that reset the state of the pins, i.e., reverting the pins to their default setting with them being disabled.

On the Gpio header, the
 led_gpiocontrol()
 function assigns pre-defined states to either a single GPIO pin or, if required, all of the GPIO pins. The
 isinstance()
 function is used to determine whether a value matches a specific type, i.e., am integer. After this, the state of a single pin can be defined, or the user can go through the entire list of pins and define the state for each pin individually.

Subsequently, in order to control the lighting up of the LEDs, the appropriate functions are needed to be defined in the script. These functions are the
 led_activate()
 and
 led_deactivate()
 respectively. Moreover, to control the time span in which an LED stays switched on is defined by the
 led_time()
 . Note that this function is also used for keeping a specific color of the LED lit up in a cycle. When the time allotted by this function expires, the LED turns off and lights up with a new color on the next cycle.

Lastly, the
 led_cleanup()
 function is used to revert the state and value of the pins to default. Moreover, this function calls upon the
 GPIO.cleanup()
 function to release the GPIO pins from use.

Mixing RGB Colors to get Different Colors

Everybody knows that by mixing a certain combination of the primary colors (Red, Blue, and Green), we can get all of the other colors in the spectrum. But the question is, how can we recreate this mixing procedure on an RGB LED? Well, that’s actually pretty simple. We have already learned how to display one color at a time on an RGB LED. To get another color displayed by the same RGB LED, we simply just need to program the LED to change the color from one cycle to the next in a backward or forward direction very quickly. In other words, by displaying a single color and then changing it back and forth very quickly, we can get another color. This can be done by computers very easily, and that stands true for the Raspberry Pi as well. More so, we can blend the Red, Green, and Blue color elements of the LED and program it accordingly to display new color shades on all of the RGB LEDs connected to the Raspberry Pi. In order to blend the RGB colors and get different shades, just follow the steps outlined below. Take note that we will be reusing the
 rgbled.py
 script that has been demonstrated in the ‘Multiplexed color LEDs’ section of this chapter.

	
Go to the top of the
 rgbled.py
 script and define some color combinations, as shown below.

#Combo Colors

RGB_AQUA = [RGB_CYAN,RGB_GREEN]

RGB_LBLUE = [RGB_CYAN,RGB_BLUE]

RGB_PINK = [RGB_MAGENTA,RGB_RED]

RGB_PURPLE = [RGB_MAGENTA,RGB_BLUE]

RGB_ORANGE = [RGB_YELLOW,RGB_RED]

RGB_LIME = [RGB_YELLOW,RGB_GREEN]

RGB_COLORS = [RGB_LIME,RGB_YELLOW,RGB_ORANGE,RGB_RED,

RGB_PINK,RGB_MAGENTA,RGB_PURPLE,RGB_BLUE,

 RGB_LBLUE,RGB_CYAN,RGB_AQUA,RGB_GREEN]

The following lines of code will provide the computer with the required color combinations to create a particular shade. While the first six variables define the color combinations, the
 RGB_COLORS
 variable will enable the LED to transition through the specified color shades smoothly.

	
Now that we have the necessary color combinations, we now need to use the
 ledcombo()
 function which will essentially handle the different colors. The following lines of code tell us how to use the
 ledcombo()
 function.

def led_combo(pins,colors,period):

 #determine if "colors" is a single integer or not

 if isinstance(colors,int):

 #Single integer - reference directly

 led_time(pins,colors,period)

 else:

#if not, then cycle through the "colors" list

for i in colors:

 led_time(pins,i,period)

	
All that’s left to do is create a new Python script that will import the
 rgbled.py
 script as a module in order to make use of the new functions defined in it. We will name this script as
 rgbrainbow.py
 and enter the following lines of code in it.

#!/usr/bin/Python3

#rgbledrainbow.py

import time

import rgbled as RGBLED

def next_value(number,max):

 number = number % max

 return number

def main():

 print ("Setup the RGB module")

 RGBLED.led_setup()

 # Multiple LEDs with different Colors

 print ("Switch on Rainbow")

 led_num = 0

 col_num = 0

 for l in range(5):

 print ("Cycle LEDs")

 for k in range(100):

 #Set the starting point for the next set of colors

 col_num = next_value(col_num+1,len(RGBLED.RGB_COLORS))

 for i in range(20): #cycle time

 for j in range(5): #led cycle

 led_num = next_value(j,len(RGBLED.LED))

 led_color = next_value(col_num+led_num,

 len(RGBLED.RGB_COLORS))

 RGBLED.led_combo(RGBLED.LED[led_num],

 RGBLED.RGB_COLORS[led_color],0.001)

 print ("Cycle Colors")

 for k in range(100):

 #Set the next color

 col_num = next_value(col_num+1,len(RGBLED.RGB_COLORS))

 for i in range(20): #cycle time

 for j in range(5): #led cycle

 led_num = next_value(j,len(RGBLED.LED))

 RGBLED.led_combo(RGBLED.LED[led_num],

 RGBLED.RGB_COLORS[col_num],0.001)

print ("Finished")

if __name__=='__main__':

 try:

 main()

 finally:

 RGBLED.led_cleanup()

#End

In this script, the
 main()
 function is responsible for choosing a color from the RGB_COLOR array and designating this color to all of the LEDs. Then, the function cycles through these colors creating a rainbow spectrum effect.

Chapter Five

Sensing Real-World Data

[image:]

By now, you should have an idea of how much potential the Raspberry Pi holds in this world where technology is evolving ever so fast. The Raspberry Pi is not a one-trick pony. The only limit to its functionality is the user’s inherent ingenuity and imagination. This chapter will focus on discussing ways through which we can leverage the vast information present in the real world and put it to good use in the programs on our Raspberry Pi. In other words, the Raspberry Pi will collect analog data from its surroundings and process that information, enabling it to;

•

 Display

•

 Log

•

 Graph

Or even export this data directly to applications and programs. To do this, we will be using ADCs (also known as Analog to Digital Converters) and other stuff to interface with the Raspberry Pi directly.

In this chapter, we will be learning how to;

•

 Use devices with the I2C Bus

•

 Use the ADC and read analog data from it

•

 Log and plot the received data

•

 Using an I/O expander with the GPIO

Using the I2C Bus

In this section, we will focus on the I2C bus and how can we use it with other devices. The Raspberry Pi is compatible with a bunch of high-level protocols. This increases the scope of connectivity of the Raspberry Pi with a wider range of devices. The I2C bus is a communication channel operating at moderate speeds, which enables the Raspberry Pi to communicate with devices. This communication is done over two wires. To start things off, we will be using the I2C bus with an 8-bit Analog to Digital Converter.

The ADC basically translates an analog signal into a corresponding value between 0 to 255. The ADC then represents this value in 8-bits and sends it as a digital signal to the Raspberry Pi through the I2C bus.

By default, the I2C bus is not enabled in the Raspberry Pi OS. Hence, we will first need to enable this module and install some tools to support it. To enable the I2C bus, we first need to comment on it out of a blacklist config file in the system. The name of this file is
 “raspi-blacklist.conf.”
 We will be using
 nano
 to do this job. Open up the command line interface and enter the following command.

sudo nano /etc/modprobe.d/raspi-blacklist.conf

To add a comment to a file, we need to add the hashtag symbol “#” before it, as shown below.

#blacklist i2c-bcm2708

We have now successfully enabled the I2C bus on the Raspberry Pi. But that’s not enough; we also need to set the I2C module to load automatically on boot-up. To do this, we will use the following command.

sudo nano /etc/modules

Then add the following lines separately and then save and exit the terminal.

i2c-dev

i2c-bcm2708

Now we will need to install a bunch of tools that will give us access to the I2C bus directly from the command line interface. Use the following commands.

sudo apt-get update

sudo apt-get install i2c-tools

To apply the changes made to the system, we need to reboot the Raspberry Pi system before we can use any device with the I2C bus. If you have installed a shutdown button on the Raspberry Pi, use that or just shut the system down through the terminal.

sudo shutdown –h now

We will now proceed to use a
 PCF8591 module
 that includes an ADC and sensors. You can buy it easily from online retailers, Amazon, or eBay.

We now need to connect this I2C device to the Raspberry Pi. Follow the connection diagram shown below and connect the
 GND, VCC, SDA
 and
 SCL
 pins to the P1 header of the Raspberry Pi.

[image:]

Now boot up the Raspberry Pi and open the command-line interface. Use the command
 i2cdetect
 to identify the I2C device. Here’s the complete command list that is used to scan both of the buses.

sudo i2cdetect -y 0

sudo i2cdetect -y 1

Based on the particular Raspberry Pi board revision being used, the connected module’s channel address will be displayed either on bus 0 or bus 1. The output of the
 i2cdetect
 command looks something like this.

[image:]

If you’re using a Raspberry Pi Model B revision 1 board, then the module’s address should be listed on bus 0. Contrary to this, if you’re using a Raspberry Pi Model A or Model B revision 2, then the address of the module will be displayed on bus 1. The default PCF8591 address is
 “0x48.”

If the address is not being listed, then you need to confirm that the module has been connected properly to the Raspberry Pi. If you’re using a module that has a power indicator, then check if it lights up when connected to a powered-on Raspberry Pi.

Once the bus number of the device has been detected, we will use this, along with its address (0x48), to read data from the device by using the following commands.

sudo i2cget -y 1 0x48

sudo i2cget -y 1 0x48

On the module, channel 1 is actually the temperature sensor. If we want to read data from this sensor (channel 1), we just need to simply enter 0x01 into the control register of the PCF8591 module. Remember always to use two reads to ensure that we receive a new sample.

sudo i2cset -y 1 0x48 0x01

sudo i2cget -y 1 0x48

sudo i2cget -y 1 0x48

We can also cycle through the other input channels individually. To do this, we need to use the
 i2cset
 command and set the control register of the module to 0x04, as shown below.

sudo i2cset -y 1 0x48 0x04

There’s a reason as to why we take multiple reads from the I2C device. If we take a read from the device just after it powers on, it will return 0x80 and invoke a new sample from channel 0. So, if we take a read from the device after the first time, then it will send the previous reading back and create a new sample. In essence, by using the I2C bus, we can connect multiple devices to the Raspberry Pi system while using a smaller number of wires.

Any command issued by the I2C bus is addressed to a specific I2C device connected to the bus. This is why each I2C device needs to possess a unique address so that when the I2C bus issues a command, only the intended device responds to it at a given time. For connecting multiple addresses, we assign different addresses to the I2C devices. For example, the PCF8591 module’s default address is 0x48. This address can be changed with the additional address available (such as the 0x4F) through the three address pins. This means we can connect up to eight PCF8591 modules on the same I2C bus.

Using the ADC Bus to Read Analog Data

Although the I2C tool described in the preceding topics is quite useful for debugging I2C devices by using the command terminal, it not as practical when used with Python. I2CTools are slow and need a significant margin of overhead to be useful. Luckily, there is numerous library in Python which support I2C bus and devices while maintaining a standard of efficient I2C use for communicating with connected devices. Moreover, they are also easier to operate this way.

In this section, we will be using Python libraries made for the I2C bus to create a Python module that will extract and read data from the ADC device, allowing us to use it in other programs.

To work with the I2C bus by using Python 3, we will need to install
 wiringPi2
 . Details about this tool and its developer can be read from their official website.

http://wiringpi.com/

To install wiringPi2, we will need to use Python’s package manager, which is known as PIP (for Python 3). PIP works similarly to the apt-get command. So open the command line terminal and install PIP first by using the following command.

sudo apt-get install Python3-dev Python3-pip

Once PIP has been downloaded and installed, we are ready to install wiringPi2. Use the following command to perform this task.

sudo pip-3.2 install wiringpi2

Once wiringPi2 has been successfully installed on the system, we will see the following prompt.

[image:]

We will also need the PCF8591 module wired to the I2C connections in the same way, as shown in the previous section.

[image:]

Now that we have got the hardware ready and connected, it’s time to write a Python script that will enable us to gather and read data from the Analog to Digital Converter so that it can be used in the later sections of this chapter.

The creation of the script involves the following steps.

	
Let’s name the script as ‘
 adc_data.py
 ’. First things first, we will need to import the required modules for the task and define some variables in the script as shown below.

#!/usr/bin/env Python3

#adc_data.py

import wiringpi2

import time

DEBUG=False

LIGHT=0;TEMP=1;EXT=2;POT=3

ADC_CH=[LIGHT,TEMP,EXT,POT]

ADC_ADR=0x48

ADC_CYCLE=0x04

BUS_GAP=0.25

DATANAME=["0:Light","1:Temperature",

 "2:External","3:Potentiometer"]

	
Now, we will be creating a class by the name of
 “device”
 that consists of a constructor and then start it up as shown in the following lines of code.

class device:

 # Constructor:

 def __init__(self,addr=ADC_ADR):

 self.NAME=DATANAME

 self.i2c = wiringpi2.I2C()

 self.devADC=self.i2c.setup(addr)

 pwrup = self.i2c.read(self.devADC) #flush powerup value

 if DEBUG==True and pwrup!=-1:

 print("ADC Ready")

 self.i2c.read(self.devADC) #flush first value

 time.sleep(BUS_GAP)

 self.i2c.write(self.devADC,ADC_CYCLE)

 time.sleep(BUS_GAP)

 self.i2c.read(self.devADC) #flush first value

	
Now in this class, we have just created, we need to use a function and define it so that we can get a list of the channel names as shown below.

def getName(self):

 return self.NAME

	
We will also define another function that is still part of the same class. The purpose of this function will be to output new sets of samples from the ADC channel.

def getNew(self):

 data=[]

 for ch in ADC_CH:

 time.sleep(BUS_GAP)

 data.append(self.i2c.read(self.devADC))

 return data

	
Now that we’re done defining the necessary functions, all that’s left to do is to write a test function for the exercise of this newly created
 device
 class. Remember, we need to make sure that this test function can only be run when the script is executed directly.

def main():

 ADC = device(ADC_ADR)

 print (str(ADC.getName()))

 for i in range(10):

 dataValues = ADC.getNew()

 print (str(dataValues))

 time.sleep(1)

if __name__=='__main__':

 main()

#End

By using the following command in the command terminal, we can execute the test function of the script.

sudo Python3 data_adc.py

Now let’s briefly discuss how this script actually works. We first needed a library that will allow us to communicate with the I2C device through the I2C bus, and for this reason, we imported
 wiringpi2.
 Next, a class has been created which is necessary as it will house the functionality that is needed to control the Analog to Digital Converter. Note that when we created the class, the wiringPi2 module was also initialized so that it stayed ready to interact with the I2C bus.

Similar to what we did before, with the
 i2cget
 and
 i2cset
 commands to read and configure the ADC channels, we use the read and write functions of the wiringPi2 with the I2C object. In this way, we issue a command for the reading and configuration of the ADC device to essentially cycle through the available channels. This will make the device ready to read the analog data from the channels it has cycled through. In this way, once we initialize the device, it will be ready to read analog data.

Let’s talk a bit about the class demonstrated in this script as well. The
 device
 class features several important functions with regards to gathering and reading data from the ADC.

•

 The
 getName()
 function’s main job is to retrieve a list of the channel names. The channel names can then be used to correlate the data gathered to its proper source.

•

 The
 getNew()
 function’s main job is to retrieve a new set of data from every channel.

•

 The data that is gathered by the first two functions are then read by the
 i2c.read()
 function, and since the function is defined in a cycle mode, every time we ask it to read a data, it will read from the next channel instead of reading data from the previous channel.

Gathering Analog Data without an Analog to Digital Converter

There’s no need to worry if you don’t have an ADC module available for use. There’s plenty of data present within the Raspberry Pi that you can use instead. In this section, we will create an alternate version of the
 adc_data.py
 script to make it so analog data can be read without using any external hardware.

Let’s begin creating the script. We will name this as
 local_data.py
 and the lines of code to be put into this script are shown below.

#!/usr/bin/env Python3

#local_data.py

import subprocess

from random import randint

import time

MEM_TOTAL=0

MEM_USED=1

MEM_FREE=2

MEM_OFFSET=7

DRIVE_USED=0

DRIVE_FREE=1

DRIVE_OFFSET=9

DEBUG=False

DATANAME=["CPU_Load","System_Temp","CPU_Frequency",

 "Random","RAM_Total","RAM_Used","RAM_Free",

 "Drive_Used","Drive_Free"]

def read_loadavg():

 # function to read 1-minute load average from system uptime

 value = subprocess.check_output(

 ["awk '{print $1}' /proc/loadavg"], shell=True)

 return float(value)

def read_systemp():

 # function to read current system temperature

 value = subprocess.check_output(

 ["cat /sys/class/thermal/thermal_zone0/temp"],

 shell=True)

 return int(value)

def read_cpu():

 # function to read current clock frequency

 value = subprocess.check_output(

 ["cat /sys/devices/system/cpu/cpu0/cpufreq/"+

 "scaling_cur_freq"], shell=True)

return int(value)

def read_rnd():

 return randint(0,255)

def read_mem():

 # function to read RAM info

 value = subprocess.check_output(["free"], shell=True)

 memory=[]

 for val in value.split()[MEM_TOTAL+

 MEM_OFFSET:MEM_FREE+

 MEM_OFFSET+1]:

 memory.append(int(val))

 return(memory)

def read_drive():

 # function to read drive info

 value = subprocess.check_output(["df"], shell=True)

 memory=[]

 for val in value.split()[DRIVE_USED+

 DRIVE_OFFSET:DRIVE_FREE+

 DRIVE_OFFSET+1]:

 memory.append(int(val))

 return(memory)

class device:

 # Constructor:

 def __init__(self,addr=0):

 self.NAME=DATANAME

 def getName(self):

return self.NAME

 def getNew(self):

 data=[]

 data.append(read_loadavg())

 data.append(read_systemp())

 data.append(read_cpu())

 data.append(read_rnd())

 memory_ram = read_mem()

 data.append(memory_ram[MEM_TOTAL])

 data.append(memory_ram[MEM_USED])

 data.append(memory_ram[MEM_FREE])

 memory_drive = read_drive()

 data.append(memory_drive[DRIVE_USED])

 data.append(memory_drive[DRIVE_FREE])

 return data

def main():

 LOCAL = device()

 print (str(LOCAL.getName()))

 for i in range(10):

 dataValues = LOCAL.getNew()

 print (str(dataValues))

 time.sleep(1)

if __name__=='__main__':

 main()

#End

This script enables the user to retrieve system data from the Raspberry Pi. To extract the data, we need to enter the following commands in the command terminal.

For CPU Processor clock speeds

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

For Current CPU Load

awk ‘{print $1}’ /proc/loadavg

For the System Core Temperature (Scaled by 1000)

cat /sys/class/thermal/thermal_zone0/temp

For Drive Information

df

For RAM Information

free

Data Logging and Plotting

Now that we know how to sample and retrieve the data, we need to make it useful. This involves capturing and analyzing the collected data (in other words, logging and plotting the data). For this task, we will use a Python library known as ‘
 matplotlib
 .’ This library includes a collection of tools that help the user to;

•

 Manipulate

•

 Graph

•

 Analyze

The collected data. In this section, we will be making use of
 pyplot,
 which is basically a part of the
 matplotlib
 library.
 Pyplot
 will essentially create graphs of the data that has been captured. If you are new to
 pyplot
 , then you can find an extensive tutorial on how to use it in Python by visiting the official matplotlib website.

http://matplotlib.org/users/pyplot_tutorial.html

Since
 pyplot
 is a part of the
 matplotlib
 library, we will need to install the library first before we can use it.

Here’s a step-by-step manual installation procedure for the
 matplotlib
 library.

	
Before we can install the library itself, we will also need to install the supporting packages the library depends on. Use the following commands to install the supporting packages.

sudo apt-get install tk-dev Python3-tk Python3-dev libpng-dev

sudo pip-3.2 install numpy

sudo pip-3.2 install matplotlib

	
Now, we need to install the source files of the
 matplotlib
 library from its GitHub repository.

wget https://github.com/matplotlib/matplotlib/archive/master.zip

	
Once the source files have been downloaded, we need to unzip and open the
 matplotlib-master
 folder.

unzip master.zip

rm master.zip

cd matplotlib-master

	
All that’s left to do is to open the setup to build and install the package.

sudo Python3 setup.py build

sudo Python3 setup.py install

And that’s it; we have successfully installed the
 matplotlib
 library on to the Raspberry Pi system. However, it is important to remember that for this to work, we will need the PCF8591 Analog to Digital Converter module connected to the system. If you don’t have the module, then you can simply use the
 local_data.py
 script. To use the aforementioned script, all you need to do is replace the
 adc_data.py
 module with the
 local_data.py
 module in the import section of the script shown below. Moreover, whichever script you are using (
 adc_data.py
 or
 local_data.py
), you need to make sure that this script is in the same directory as the new script we are about to demonstrate.

We will now create new scripts for logging and plotting the data. Let’s create the script for logging the analog data first. The name of this script will be
 adc_log.py,
 and the contents of this script are shown below.

#!/usr/bin/Python3

#adc_log.py

import time

import datetime

import adc_data as dataDevice

DEBUG=True

FILE=True

VAL0=0;VAL1=1;VAL2=2;VAL3=3 #Set data order

FORMATHEADER="\t%s\t%s\t%s\t%s\t%s"

FORMATBODY="%d\t%s\t%f\t%f\t%f\t%f"

if(FILE):f = open("data.log",'w')

def timestamp():

 ts=time.time()

 return datetime.datetime.fromtimestamp(ts).strftime(

 '%Y-%m-%d %H:%M:%S')

def main():

 counter=0

 myData = dataDevice.device()

 myDataNames=myData.getName()

 header=(FORMATHEADER%("Time",

 myDataNames[VAL0],myDataNames[VAL1],

 myDataNames[VAL2],myDataNames[VAL3]))

 if(DEBUG):print (header)

 if(FILE):f.write(header+"\n")

 while(1):

 data=myData.getNew()

 counter+=1

 body=(FORMATBODY%(counter,timestamp(),

 data[0],data[1],data[2],data[3]))

 if(DEBUG):print (body)

if(FILE):f.write(body+"\n")

 time.sleep(0.1)

try:

 main()

finally:

 f.close()

#End

Now on to creating a script for graphing the data that has been logged (captured). Let’s name this script as
 graph_log.py
 . The contents of this script are shown below.

#!/usr/bin/Python3

#graph_log.py

import numpy as np

import matplotlib.pyplot as plt

filename = "data.log"

OFFSET=2

with open(filename) as f:

 header = f.readline().split('\t')

data = np.genfromtxt(filename, delimiter='\t', skip_header=1,

 names=['sample', 'date', 'DATA0',

 'DATA1', 'DATA2', 'DATA3'])

fig = plt.figure(1)

ax1 = fig.add_subplot(211)#numrows, numcols, fignum

ax2 = fig.add_subplot(212)

ax1.plot(data['sample'],data['DATA0'],'r',

 label=header[OFFSET+0])

ax2.plot(data['sample'],data['DATA1'],'b',

 label=header[OFFSET+1])

ax1.set_title("ADC Samples")

ax1.set_xlabel('Samples')

ax1.set_ylabel('Reading')

ax2.set_xlabel('Samples')

ax2.set_ylabel('Reading')

leg1 = ax1.legend()

leg2 = ax2.legend()

plt.show()

#End

Now let’s briefly discuss and understand how these two Python scripts work.

To put it simply, the
 adc_log.py
 script gathers the analog data and then logs it into a log file. In order to collect analog data, we would either need to use an ADC device connected to the system or use local system data of the Raspberry Pi. The ADC device is used with the script by importing the
 adc_data.py
 module (demonstrated at the beginning of this chapter) as
 dataDevice
 . If you’re using the local system information as analog data, then all you need to do is simply import the
 local_data.py
 module as
 dataDevice
 . We can change the order of the channels according to our preference by using the numbers that have been provided to
 VAL0
 through
 VAL3
 .

Moreover, we also defined the ‘format string’ to be used in the log file (for headers and each line) by using
 “%s, %d, %f.”
 This gives us the ability to swap out the corresponding string, integer, and float values in the log file, as shown in the table below. By doing this, we essentially created a properly formatted log file, i.e., the data is separated by tabs.

	

	

Time Stamp

	

0:

Light

	

1:

Temperature

	

2:

External

	

3:

Potentiometer

	

1

	

2020-09-13 18:44:23

	

202.00000

	

219.00000

	

144.00000

	

260.00000

	

2

	

2020-09-13 18:44:24

	

202.00000

	

219.00000

	

156.00000

	

260.00000

	

3

	

2020-09-13 18:44:25

	

202.00000

	

219.00000

	

112.00000

	

260.00000

	

4

	

2020-09-13 18:44:26

	

202.00000

	

219.00000

	

120.00000

	

260.00000

	

5

	

2020-09-13 18:44:27

	

202.00000

	

219.00000

	

126.00000

	

260.00000

(Table of data captured from the ADC sensor module)

Now let’s discuss the second script, which reads the table of data generated in the log file and generates a graph reflecting the values of the captured data. According to the table shown above, the
 graph_log.py
 script will produce the following graph

[image:]

This graph created by the
 graph_log.py
 script reflects the analog data collected from the ADC module’s light and temperature sensors.

Using an I/O Expander to Extend the Raspberry Pi GPIO

By now, we have demonstrated the connection of multiple devices to the I2C bus on the Raspberry Pi. In this section, we will discuss the way through which we can extend the GPIO of the Raspberry Pi by using the I2C bus. By doing this, we will have more I/O space to work with as well as obtaining additional circuit protection.

If you look around the market, you’ll find that several devices allow I/O expansion over the I2C bus. Currently, the most popular device for this task is the
 ‘MCP23017
 ’ chip, which is basically a 28-pin device. When connected, this device offers up to 16 additional I/O pins for use. Since this module is an I2C device, it only needs two signals, i.e., SCL, and SDA along with ground and power connections to work. This device is also compatible with the other devices connected to the I2C bus as well (meaning that it won’t cause any complications with the working of the other I2C devices).

For demonstration purposes, we will be using an “Adafruit I2C 16x2 RGB LCD Pi Plate” that uses the MCP23017 chip. Making use of this chip, the Adafruit device can control the Alphanumeric LCD as well as the keypad through the I2C bus. For comparison, if we do not use an I/O expander, this device would use up 15 GPIO pins.

Now let’s begin with the exercise. First and foremost, we will need the Adafruit I2C 16x2 RGB LCD Pi Plate.

Adafruit directly connects to the GPIO header of the Raspberry Pi. We can also use the ADC module with this device or even the
 local_data.py
 script. But keep in mind that if you’re using the PCF8591 module or the
 local_data.py
 with Adafruit, you need to put their corresponding scripts into the same directory in which we’ll put the script for Adafruit.

Let’s name the script we are going to create as
 lcd_i2c.py
 . The contents of this script are shown below.

#!/usr/bin/Python3

#lcd_i2c.py

import wiringpi2

import time

import datetime

import local_data as dataDevice

AF_BASE=100

AF_E=AF_BASE+13;
 AF_RW=AF_BASE+14;
 AF_RS=AF_BASE+15

AF_DB4=AF_BASE+12;
 AF_DB5=AF_BASE+11;
 AF_DB6=AF_BASE+10

AF_DB7=AF_BASE+9

AF_SELECT=AF_BASE+0; AF_RIGHT=AF_BASE+1;
 AF_DOWN=AF_BASE+2

AF_UP=AF_BASE+3; AF_LEFT=AF_BASE+4; AF_BACK=AF_BASE+5

AF_GREEN=AF_BASE+6; AF_BLUE=AF_BASE+7; AF_RED=AF_BASE+8

BNK=" "*16 #16 spaces

def gpiosetup():

 global lcd

 wiringpi2.wiringPiSetup()

wiringpi2.mcp23017Setup(AF_BASE,0x20)

 wiringpi2.pinMode(AF_RIGHT,0)

 wiringpi2.pinMode(AF_LEFT,0)

wiringpi2.pinMode(AF_SELECT,0)

 wiringpi2.pinMode(AF_RW,1)

 wiringpi2.digitalWrite(AF_RW,0)

 lcd=wiringpi2.lcdInit(2,16,4,AF_RS,AF_E,

 AF_DB4,AF_DB5,AF_DB6,AF_DB7,0,0,0,0)

def printLCD(line0="",line1=""):

 wiringpi2.lcdPosition(lcd,0,0)

 wiringpi2.lcdPrintf(lcd,line0+BNK)

 wiringpi2.lcdPosition(lcd,0,1)

 wiringpi2.lcdPrintf(lcd,line1+BNK)

def checkBtn(idx,size):

 global run

 if wiringpi2.digitalRead(AF_LEFT):

 idx-=1

 printLCD()

 elif wiringpi2.digitalRead(AF_RIGHT):

 idx+=1

 printLCD()

 if wiringpi2.digitalRead(AF_SELECT):

 printLCD("Exit Display")

 run=False

 return idx%size

def main():

 global run

gpiosetup()

 myData = dataDevice.device()

 myDataNames=myData.getName()

 run=True

 Index=0

 while(run):

 data=myData.getNew()

 printLCD(myDataNames[index],str(data[index]))

 time.sleep(0.2)

 index = checkBtn(index,len(myDataNames))

main()

#End

Connect the module and run the script by entering the following command in the command line terminal.

sudo Python3 lcd_i2c.py

Once the command has been executed, use the left and right buttons on the module’s keypad to switch between the data channels you want the module to display, and for exiting, just use the ‘select’ button on the module’s keypad.

Let’s briefly discuss how this script actually interacts with the MCP23017 module. We should appreciate the
 wiringPi2
 library because it offers some much-needed support for chips that expand the I/O, which is exactly what the chip in the Adafruit module is doing. Before we could use the module itself, we first needed to define the pin mapping for the MCP23017’s portA and portB pins, according to the table shown below.

	

Name

	

Select

	

Right

	

Down

	

Up

	

Left

	

Green

	

Blue

	

Red

	

MCP23017 portA

	

A0

	

A1

	

A2

	

A3

	

A4

	

A6

	

A7

	

A8

	

WiringPiPin

	

100

	

101

	

102

	

103

	

104

	

106

	

107

	

108

Similarly, the pin mapping for MCP23017’s portB pins is according to the following table.

	

Name

	

DB7

	

DB6

	

DB5

	

DB4

	

E

	

RW

	

RS

	

MCP23017 portB

	

B1

	

B2

	

B3

	

B4

	

B5

	

B6

	

B7

	

WiringPiPin

	

109

	

110

	

111

	

112

	

113

	

114

	

115

We use the wiringPiSetup() and mcp23017Setup() functions to set up the LCD and the I/O expander, respectively.

Chapter Six

Creating Graphical User Interfaces

and Automating Tasks with Python

[image:]

In this chapter, we will be learning how to create basic graphical user interfaces for different purposes. This can help a lot when building Raspberry Pi projects, and you’ll even see its extensive use in the upcoming chapter as well. Simply working with command-line interfaces for the project is not intuitive at all. If anything, the whole project seems bland and nerdy. Graphical User Interfaces make handling a project easier, intuitive, and fun. Moreover, providing input and obtaining feedback from a script we programmed just feels more natural with a GUI. Hence, there’s no reason as to why we should only limit ourselves to using the command-line interface when we could extend the functionality and interactive capability of our Raspberry Pi projects manifold.

Python offers extensive support for building graphical user interfaces by offering pre-built objects that provide a standard set of controls. One of the notable Python modules for such tasks is
 Tkinter
 . This module offers a good variety of controls and tools that will suffice for the majority of the Raspberry Pi project’s graphical needs.

In this chapter, we will be discussing the following topics.

•

 Using the Tkinter module to create Graphical User Interfaces

•

 Programming a graphical application

•

 Displaying images within an application

•

 Automatically organizing photos

Using the Tkinter Module to Create Graphical User Interfaces

The reason why you see many of the codes reused in this book is that this is a good coding practice. Usually, good code is defined by its versatility, with which it can be reused in many other code modules.

Moving on, we will be reusing the
 caesarcypher.py
 script we created in the second chapter of this book. The goal of this exercise is to create a graphical user interface that will allow the user to enter a text message. By using the interface, the user can then choose to encrypt or decrypt this inputted message.

Before we can proceed with creating the script for the GUI in Python, we must first make sure that the script we want to reuse as a module is present in the same directory as the script we are about to create. In other words, whenever you are reusing code, make sure both the reusable code and the new code scripts are kept in the same folder directory.

Tkinter is installed by default on the Raspberry Pi OS; however, if it is not installed, then you must first install it through the command terminal.

sudo apt-get install Python3-tk

Remember that the command line does not have the capability of displaying the graphical elements we are about to create. So make sure that the Raspberry desktop is up and running (by using the command
 startx
).

Making the GUI Script in Python

We will be creating a GUI for the
 caesarcypher.py
 script and also use the encryption and decryption functions defined in it. Let’s name this GUI script as
 caesarcypherGUI.py
 and proceed with the coding as shown below.

#!/usr/bin/Python3

#caesarcypherGUI.py

import caesarcypher as ENC

import tkinter as TK

def encryptButton():

 encryptvalue.set(ENC.encryptText(encryptvalue.get(),

 keyvalue.get()))

def decryptButton():

 encryptvalue.set(ENC.encryptText(encryptvalue.get(),

 -keyvalue.get()))

#Define Tkinter application

root=TK.Tk()

root.title("Encrypt/Decrypt GUI")

#Set control & test value

encryptvalue = TK.StringVar()

encryptvalue.set("My Message")

keyvalue = TK.IntVar()

keyvalue.set(20)

prompt="Enter message to encrypt:"

key="Key:"

label1=TK.Label(root,text=prompt,width=len(prompt),bg='green')

textEnter=TK.Entry(root,textvariable=encryptvalue,

 width=len(prompt))

encryptButton=TK.Button(root,text="Encrypt",command=encryptButton)

decryptButton=TK.Button(root,text="Decrypt",command=decryptButton)

label2=TK.Label(root,text=key,width=len(key))

keyEnter=TK.Entry(root,textvariable=keyvalue,width=8)

#Set layout

label1.grid(row=0,columnspan=2,sticky=TK.E+TK.W)

textEnter.grid(row=1,columnspan=2,sticky=TK.E+TK.W)

encryptButton.grid(row=2,column=0,sticky=TK.E)

decryptButton.grid(row=2,column=1,sticky=TK.W)

label2.grid(row=3,column=0,sticky=TK.E)

keyEnter.grid(row=3,column=1,sticky=TK.W)

TK.mainloop()

#End

Understanding the Script

We began by important two modules. The first one is the
 caesarcypher
 module, while the second one is the
 Tkinter
 module. In this script, we used tags to highlight the source of the items, i.e., ENC for the
 caesarcypher
 module, and TK for the
 Tkinter
 module.

Here’s the graphical user interface displayed when we execute the
 caesarcypherGUI
 .
 py
 Python script.

[image:]

When we click on the ‘Encrypt’ button, the
 encryptButton()
 function is called upon by the application. Similarly, when we click on the
 ‘
 Decrypt’
 button, the
 decryptButton()
 function is called upon by the application.

The GUI window you see is made by using the
 Tk()
 command. In this GUI, we defined a total of 6 controls in the script which are as follows;

•

 Label:
 This displays the highlighted message as shown in the GUI window above, i.e., “Enter message to encrypt:”

•

 Entry:
 This provides a space for user input. In simpler terms, this defines the textbox in which the user enters his message.

•

 Button:
 We define two buttons in the GUI. The first is the ‘Encrypt’ button, which instructs the GUI to encrypt the input message.

•

 Button:
 This is the second button, which is the ‘Decrypt’ button. This button triggers the decryption process.

•

 Label:
 This is displays the subheading of the last textbox, i.e., “
 Key:
 .” The purpose of this label is to inform the user that he needs to specify the value of the encryption key in this textbox.

•

 Entry:
 This creates another textbox which we used for taking in the input encryption key value and using it.

All of these controls combined define the elements of the GUI shown above. These elements are also known as widgets of the Tkinter window.

After defining the appropriate widgets for the Tkinter window, we need to position them as well. In other words, we need to define a layout for the widgets as well. In Tkinter, layouts can be defined in mainly three ways, i.e.;

	
Place Layout:
 This layout allows the user to define the exact pixel point location to place the widget in. In short, we can precisely define the position and size of the widgets.

	
Pack Layout:
 This layout considers the order in which you have added the items (or widgets) in the
 Tkinter
 command and then places those items in the GUI window in the same order.

	
Grid Layout:
 This layout provides the user with the ability to position the items or widgets in the GUI window according to a particular layout.

When it comes to asking which layout is the best one to use, then it all depends on the size and complexity of the GUI you are creating. Although, many people recommend that the
 place layout
 should always be avoided as adjusting an item on the GUI will also directly affect the placement of the other items as well. In other words, even when you make a small change, it will disrupt the position of all the other items as well. The reason as to why the other layouts do not exhibit this behavior is because they determine the position of each item relative to the other items on the layout.

The GUI window shown above uses the grid layout method for arranging the items. Here’s a depiction of how it was done.

[image:]

The positional placement of the first two widgets on the GUI window has been set by using the following lines of code.

label1.grid(row=0,columnspan=2,sticky= TK.E+TK.W)

textEnter.grid(row=1,columnspan=2,sticky= TK.E+TK.W)

By looking at this way the first line of code specifies the position of the first ‘Entry’ and ‘Label’ elements, we come to know that by using the
 columnspan=2
 argument, both the label and entry boxes will take up space from both the columns. Moreover, the
 sticky
 values (
 sticky= TK.E+TK.W
) basically make sure that the boxes take up all the space right up to the edges. Note that since we are setting the label and entry boxes in a horizontal position, the direction specified in the sticky argument is
 TK.E
 and
 TK.W
 , i.e., east and west. However, if we were to position something vertically on the GUI, then we would use the
 TK.N
 (North) and
 TK.S
 (South) directions. Moreover, if we do not define the column value, then it is defaulted to ‘0’. The same is the case with other values as well.

Lastly, we defined the
 TK.mainloop()
 function, which, when called, enables the Tkinter to run. By doing this, Tkinter stays active and monitors the buttons confirming whether they are clicked or not, and if they are indeed clicked, then Tkinter calls the functions that are linked to the clicked buttons.

Programming a Graphical Application

In this section, we will tinker around with Tkinter objects in order to create custom controls and program a graphical application with these controls. In this exercise, we will be programming a basic start menu with a GUI made up of Tkinter objects and custom controls. So let’s get right into this exercise.

Programming the Script

Remember that we need the Raspberry Pi connected to an external display and running the Raspberry Dekstop in order to see the Graphical User Interface and interact with it.

We will name the script for the graphical start menu application as
 GUImenu.py.
 The script is going to be programmed as shown below.

#!/usr/bin/Python3

GUImenu.py

import tkinter as tk

from subprocess import call

import threading

#Define applications ["Display name","command"]

leafpad = ["Leafpad","leafpad"]

scratch = ["Scratch","scratch"]

pistore = ["Pi Store","pistore"]

app_list = [leafpad,scratch,pistore]

APP_NAME = 0

APP_CMD = 1

class runApplictionThread(threading.Thread):

def __init__(self,app_cmd):

 threading.Thread.__init__(self)

 self.cmd = app_cmd

def run(self):

 #Run the command, if valid

 try:

 call(self.cmd)

 except:

 print ("Unable to run: %s" % self.cmd)

class appButtons:

 def __init__(self,gui,app_index):

 #Add the buttons to window

 btn = tk.Button(gui, text=app_list[app_index][APP_NAME],

 width=30, command=self.startApp)

 btn.pack()

 self.app_cmd=app_list[app_index][APP_CMD]

 def startApp(self):

 print ("APP_CMD: %s" % self.app_cmd)

 runApplictionThread(self.app_cmd).start()

root = tk.Tk()

root.title("App Menu")

prompt = ' Select an application '

label1 = tk.Label(root, text=prompt, width=len(prompt), bg='green')

label1.pack()

#Create menu buttons from app_list

for index, app in enumerate(app_list):

appButtons(root,index)

#Run the tk window

root.mainloop()

#End

By executing the code within this Python script, the following GUI window is generated.

[image:]

Understanding the Script

If you look at this GUI application, you’ll see that there are no text boxes or fields to enter any messages. As such, the main focus of this script is to create a Tkinter window (the same one as before in the previous section) and define an entire class of items in one swoop. There’s no need to define every single widget or item here.

By creating a class, we essentially create a blueprint that includes all of the items we want the
 appButtons
 variable to include. Each
 appButtons
 item displayed in the GUI start menu application has three major components;

•

 String value for
 app_cmd

•

 A
 startApp()
 function (so that when a button is pressed, it triggers the execution of the application linked to the button)

•

 An
 init()
 function (also known as a constructor)

By using the
 init()
 function when making the
 appButtons
 item, we are not limited to a specific setup that we have to follow. Instead, we can create any setup we like. For example, in this GUI window, the
 init()
 function allows us to make a Tkinter button that has its text correspond to an item in the
 app_list
 . This means that we can set the name of an application (present in the app_list) as the text for the button. When the button is clicked, the
 startApp()
 function is triggered, and the corresponding application is run.

Note that if we start an application through this GUI start menu application, then the Tkinter window will freeze up. Unless we close the application opened through the start menu, the menu window will stay frozen. In order to rectify this, we need to use the threading module in Python, which will enable us to work with multiple applications open at the same time. For this purpose, we create a separate class based on the
 threading.Thread
 (using it as a template) in Python. The result is that we get the
 runApplicationThread()
 class. In other words, the
 runApplicationThread()
 class incorporates all of the features of the template and turns it into a new class. Another point to take note of is that this new class has the _init_() function, the same as any other class does.

First, we call upon the
 init()
 function of the template class to make sure that it is properly set up. After that, we proceed to store the value of
 app_cmd
 inside
 self.cmd
 . Once the
 runApplicationThread()
 function has been generated and initialized, then we call upon the
 start()
 function. Again, this function is a feature and part of the class we used as a template (
 threading.Thread)
 .

Once the
 start()
 function has been called by the script, another application thread is created separately for the application we want to run from the GUI menu. In this way, the Tkinter window will be able to continue its job of monitoring the state of the buttons, detecting if they are clicked, and then appropriately responding, while also executing the
 run()
 function within the class as well.

In this way, we can put the code that will run the corresponding application inside the
 run()
 function by using the
 call(self.cmd)
 .

Displaying Images within a GUI Application

In this section, we will discuss the way through which we can display images within an application. To do this, we will need to create a utility class. This class will be responsible for handling photos. Applications will use this utility class as a module in order to access the metadata of the Image. Thus, the specified application using this class will be able to show a preview of the image.

Preparing for the Exercise

Before we can proceed to create and code a Python script for displaying images within an application, we need to make sure that we have the necessary tools and other software components in place. Follow these steps to get ready for the exercise.

	
The script that we are going to use in this section for displaying images within an application requires modules and functions available in the Python Image Library. However, this library is not compatible with Python 3. Instead, we will be using Pillow as a substitute for this library in Python 3. By default, the Raspberry Pi OS does not include Pillow. So we need to make sure that it is installed on the system before we can proceed to create the script. Install Pillow using the Python Package Manager (PIP).

	
In order to install packages for Python 3, we need to install the version of PIP that is compatible with Python 3 as well. Open the command-line interface and use the following commands to install Python 3 PIP.

sudo apt-get update

sudo apt-get install Python3-pip

	
However, PIP is still not ready to use for our task. We need to install
 libjpeg-dev
 as well so that Pillow will be able to handle image files that are in the JPEG format. Use the following command to install
 libjpeg-dev

sudo apt-get install libjpeg-dev

	
Now, we will proceed to install Pillow. To do this, we will use a PIP command that is shown below.

sudo pip-3.2 install pillow

	
We will now confirm whether Pillow has been properly installed or not. To do this, we will run Python 3 and use the following commands.

>>>import PIL

>>>help(PIL)

If no error message prompts and the terminal shows the ‘help’ information of Pillow, then this means that we have successfully installed Pillow. We are now ready to create and code the script in Python.

Coding the Script

We will now create a script named ‘
 imagehandler.py
 ’ that will give the application the ability to display images. The lines of code used in this script are shown below.

##!/usr/bin/Python3

#imagehandler.py

from PIL import Image

from PIL import ExifTags

import datetime

import os

#set module values

previewsize=240,240

defaultimagepreview="./preview.ppm"

filedate_to_use="Exif DateTime"

#Define expected inputs

ARG_IMAGEFILE=1

ARG_LENGTH=2

class Photo:

 def __init__(self,filename):

 """Class constructor"""

 self.filename=filename

 self.filevalid=False

 self.exifvalid=False

 img=self.initImage()

 if self.filevalid==True:

 self.initExif(img)

 self.initDates()

 def initImage(self):

 """opens the image and confirms if valid, returns Image"""

 try:

 img=Image.open(self.filename)

 self.filevalid=True

 except IOError:

 print ("Target image not found/valid %s" %

 (self.filename))

 img=None

 self.filevalid=False

 return img

 def initExif(self,image):

 """gets any Exif data from the photo"""

 try:

 self.exif_info={

 ExifTags.TAGS[x]:y

 for x,y in image._getexif().items()

 if x in ExifTags.TAGS

 }

 self.exifvalid=True

 except AttributeError:

 print ("Image has no Exif Tags")

 self.exifvalid=False

def initDates(self):

 """determines the date the photo was taken"""

 #Gather all the times available into YYYY-MM-DD format

 self.filedates={}

 if self.exifvalid:

 #Get the date info from Exif info

 exif_ids=["DateTime","DateTimeOriginal",

 "DateTimeDigitized"]

 for id in exif_ids:

 dateraw=self.exif_info[id]

 self.filedates["Exif "+id]=

 dateraw[:10].replace(":","-")

 modtimeraw = os.path.getmtime(self.filename)

 self.filedates["File ModTime"]="%s" %

 datetime.datetime.fromtimestamp(modtimeraw).date()

 createtimeraw = os.path.getctime(self.filename)

 self.filedates["File CreateTime"]="%s" %

 datetime.datetime.fromtimestamp(createtimeraw).date()

def getDate(self):

 """returns the date the image was taken"""

 try:

 date = self.filedates[filedate_to_use]

 except KeyError:

 print ("Exif Date not found")

 date = self.filedates["File ModTime"]

 return date

def previewPhoto(self):

 """creates a thumbnail image suitable for tk to display"""

 imageview=self.initImage()

 imageview=imageview.convert('RGB')

 imageview.thumbnail(previewsize,Image.ANTIALIAS)

 imageview.save(defaultimagepreview,format='ppm')

 return defaultimagepreview

Understanding the Script

In this script, you will see the use of the class
 Photo.
 This is a general class that has been defined to generate previews of images. The
 Photo
 class not only includes information about itself but it also features functions through which it can access EXIF (also known as Exchangeable Image File Format) information. The preview of an image is generated by the class using this information.

This class also includes the
 init()
 function. In this function, we define appropriate values for the corresponding class variables. In addition, the application can access and display the image by using the
 Image()
 function from the PIL. This is only possible because after defining the class variables, we call upon the
 selfinitImage()
 function. To validate the image file, we call upon the
 self.initExif()
 and the
 self.initDates()
 functions that will check the validity of the specified image file and set a flag accordingly. If the image file turns out to be invalid, then an
 IOerror
 exception is raised by the
 Image()
 function telling the user about the image’s validity.

From the code snippet shown below, we can see the interaction of the
 initExif()
 function with the
 img
 object. The function reads the EXIF data of the object with the help of PIL.

self.exif_info={

 ExifTags.TAGS[id]:y

 for id,y in image._getexif().items()

 if id in ExifTags.TAGS

 }

In the lines of code shown above, the
 ExifTag.TAGS
 is basically a dictionary. It consists of a list made up of possible tag names. These tag names are also linked with their respective IDs as well. For example, consult the code snippet shown below.

ExifTag.TAGS={

4096: 'RelatedImageFileFormat',

513: 'JpegIFOffset',

514: 'JpegIFByteCount',

40963: 'ExifImageHeight',

…etc…}

The image._getexif() function returns a dictionary that contains all the values set by the camera of the image, each linked to their relevant IDs. This can be easily observed by analyzing the code snippet shown below, taken from the script.

Image._getexif()={

256: 3264,

257: 2448,

37378: (281, 100),

36867: '2013:02:04 09:12:16',

…etc…}

We then cross-check the items by iterating through the dictionary of EXIF values of the image with its occurrence in the dictionary of
 ExifTags.TAGS
 . The result obtained from this cross-checking is then stored into the
 self.exif_info
 variable. This entire process is outlined in the code snippet shown below.

self.exif_info={

'YResolution': (72, 1),

 'ResolutionUnit': 2,

 'ExposureMode': 0,

'Flash': 24,

…etc…}

The result will make it clear if the EXIF data is valid or invalid. If there are no exceptions to be found, then a flag is set to point to the fact that the EXIF data is indeed valid. Similarly, if there is no EXIF data to be found, then it is flagged as invalid, and an
 AttributeError
 exception is returned.

Here is a table that shows functions found within the
 Photo
 class we created in this script, along with the description of each function.

	

Function

	

Description

	

__init__(self,filename)

	

This the function which initializes the object

	

initImage(self)

	

This function returns the
 img
 object which is actually a PIL-type image object

	

initExif(self,image)

	

This function basically searches the EXIF dictionary for corresponding EXIF information, and if it finds one, it extracts it from the dictionary

	

initDates(self)

	

This function generates a dictionary that contains information of the photo, along with all of the dates that are available in the file

	

getDate(self)

	

This function fetches the date on which the photo was generated and then creates a string value corresponding to this date

	

previewPhoto(self)

	

This function fetches the name of the photo file that is being previewed as a thumbnail and creates a string value for corresponding to the filename.

Here’s a table showcasing the properties of the
 Photo
 class along with their respective descriptions.

	

Properties

	

Description

	

self.filename

	

This is the filename of the image

	

self.filevalid

	

If the image file is successfully opened, then this is set to a ‘TRUE’ state

	

self.exifvalid

	

If the image file contains EXIF information, then this is set to a ‘TRUE’ state

	

self.exif_info

	

The EXIF information of the image file is contained here

	

self.filedates

	

This contains a dictionary of the available dates from the file and image information

Testing this Newly Created Photo Class

We will now use the
 Photo
 class with a test code to see if everything is working as it is supposed to. To confirm whether the module is being used executed or not, we can simply use the
 name=“_main_”
 attribute.

To proceed with the testing, we will simply add the test code shown below into the ending section of the
 imagehandler.py
 script that we created a short while ago. After that’s said and done, we will be greeted with a test application that looks something like this.

[image:]

Here’s the code that we are supposed to add at the end of the
 imagehandler.py
 script.

#Module test code

def dispPreview(aPhoto):

 """Create a test GUI"""

 import tkinter as TK

 #Define the app window

 app = TK.Tk()

 app.title("Photo View Demo")

 #Define TK objects

 # create an empty canvas object the same size as the image

 canvas = TK.Canvas(app, width=previewsize[0],

 height=previewsize[1])

 canvas.grid(row=0,rowspan=2)

 # Add list box to display the photo data

#(including xyscroll bars)

 photoInfo=TK.Variable()

 lbPhotoInfo=TK.Listbox(app,listvariable=photoInfo,

 height=18,width=45,

 font=("monospace",10))

 yscroll=TK.Scrollbar(command=lbPhotoInfo.yview,

 orient=TK.VERTICAL)

 xscroll=TK.Scrollbar(command=lbPhotoInfo.xview,

 orient=TK.HORIZONTAL)

 lbPhotoInfo.configure(xscrollcommand=xscroll.set,

 yscrollcommand=yscroll.set)

 lbPhotoInfo.grid(row=0,column=1,sticky=TK.N+TK.S)

yscroll.grid(row=0,column=2,sticky=TK.N+TK.S)

 xscroll.grid(row=1,column=1,sticky=TK.N+TK.E+TK.W)

 # Generate the preview image

 preview_filename = aPhoto.previewPhoto()

 photoImg = TK.PhotoImage(file=preview_filename)

 # anchor image to NW corner

 canvas.create_image(0,0, anchor=TK.NW, image=photoImg)

 # Populate infoList with dates and exif data

 infoList=[]

 for key,value in aPhoto.filedates.items():

 infoList.append(key.ljust(25) + value)

 if aPhoto.exifvalid:

 for key,value in aPhoto.exif_info.items():

 infoList.append(key.ljust(25) + str(value))

 # Set listvariable with the infoList

 photoInfo.set(tuple(infoList))

app.mainloop()

def main():

 """called only when run directly, allowing module testing"""

 import sys

 #Check the arguments

 if len(sys.argv) == ARG_LENGTH:

 print ("Command: %s" %(sys.argv))

 #Create an instance of the Photo class

 viewPhoto = Photo(sys.argv[ARG_IMAGEFILE])

 #Test the module by running a GUI

 if viewPhoto.filevalid==True:

 dispPreview(viewPhoto)

 else:

 print ("Usage: photohandler.py imagefile")

if __name__=='__main__':

main()

#End

The test code shown above is used with the
 Photo
 class we defined in the
 imagehandler.py
 script. The test code executes the
 main()
 function in order to create another
 Photo
 object named as
 viewPhoto
 from the filename of the image. If the code successfully opens the
 viewPhoto
 object, then it calls upon the
 dispPreview()
 that will display the image along with its corresponding details.

Organizing Photos Automatically

The information gathered about photos can be brought to use in performing valuable tasks. The same information can be purposefully used in organizing a complete folder of photos automatically. The folders will contain subfolders organized based on the date the photos were captured. The output script is shown in the following screenshot:

[image:]

Making the Preparations

A folder containing the selected photos that need to be organized requires placement in a Raspberry Pi folder. If the photos are not placed in the Raspberry Pi folder, then another way is to use an external memory device containing photos, i.e., either a card reader or a USB device. The external memory device can be located under the name /mnt/. It is necessary to make the scripts be tested first with a copy of the photos so that any error or problems can be identified beforehand.

Making the Script

We will create the
 filehandler.py
 script to perform the task of organizing photos.

#!/usr/bin/Python3

#filehandler.py

import os

import shutil

import photohandler as PH

from operator import itemgetter

FOLDERSONLY=True

DEBUG=True

defaultpath=""

NAME=0

DATE=1

class FileList:

 def __init__(self,folder):

 """Class constructor"""

 self.folder=folder

 self.listFileDates()

 def getPhotoNamedates(self):

 """returns the list of filenames and dates"""

 return self.photo_namedates

 def listFileDates(self):

 """Generate list of filenames and dates"""

 self.photo_namedates = list()

 if os.path.isdir(self.folder):

 for filename in os.listdir(self.folder):

 if filename.lower().endswith(".jpg"):

 aPhoto = PH.Photo(os.path.join(self.folder,filename))

 if aPhoto.filevalid:

 if (DEBUG):print("NameDate: %s %s"%

 (filename,aPhoto.getDate()))

 self.photo_namedates.append((filename,

 aPhoto.getDate()))

 self.photo_namedates = sorted(self.photo_namedates,

 key=lambda date: date[DATE])

 def genFolders(self):

"""function to generate folders"""

 for i,namedate in enumerate(self.getPhotoNamedates()):

 #Remove the - from the date format

 new_folder=namedate[DATE].replace("-","")

 newpath = os.path.join(self.folder,new_folder)

 #If path does not exist create folder

 if not os.path.exists(newpath):

 if (DEBUG):print ("New Path: %s" % newpath)

 os.makedirs(newpath)

 if (DEBUG):print ("Found file: %s move to %s" %

 (namedate[NAME],newpath))

 src_file = os.path.join(self.folder,namedate[NAME])

 dst_file = os.path.join(newpath,namedate[NAME])

 try:

 if (DEBUG):print ("File moved %s to %s" %

 (src_file, dst_file))

 if (FOLDERSONLY==False):shutil.move(src_file, dst_file)

 except IOError:

 print ("Skipped: File not found")

def main():

"""called only when run directly, allowing module testing"""

import tkinter as TK

 from tkinter import filedialog

 app = TK.Tk()

 app.withdraw()

 dirname = TK.filedialog.askdirectory(parent=app,

 initialdir=defaultpath,

 title='Select your pictures folder')

 if dirname != "":

 ourFileList=FileList(dirname)

 ourFileList.genFolders()

if __name__=="__main__":

main()

#End

Understanding the Script

A class called FileList is required to be made, this brings the Photo class into use, and with the help of it manages pictures inside a specific folder.

This procedure consists of two steps:

The first step is locating all the photos in the folder, making a list having the filename and date of the photo. Based on this info, the user can create new subfolders for the placement of pictures within them.

Upon creation of the FileList object, the list is developed employing the
 listFileDates()
 function. The user then is required to confirm the validity of the provided folder and also that it employs os.listdir for acquiring the complete list of files from the directory. Using the function given in the Photo class, the user then will check each file for its format being .jpg and also get their respective dates.

Moving forward, the user will add date and filename of the photos as a tuple to the
 self.photo_namedates
 list.

Ultimately, the built-in sorted function is used to keep files according to their dates. This function allows the user to easily identify and eliminate duplicate dates for using the module in another place. Even though this task is not required to be performed here, it is an added benefit.

After initiation of the FileList object, it is used through genFolders() functions.

Firstly, the date text is required to be converted into a suitable format for the folders, e.g. (YYYYMMDD). This formatting will enable easy categorization of the folders according to their date. Moving further, if there aren’t any folders within the current directory, they will be created, and lastly, each of the files is moved within the particular subfolders.

Now the FileList class is ready for testing:

	

Operation

	

Description

	

__init__(self,folder)

	

This function is object initialization

	

getPhotoNamedates(self)

	

A list of the filenames of the dates of the photos is returned by it

	

listFileDates(self)

	

A list of the filenames and dates of the photos in the folder are created by it

	

genFolders(self)

	

New folders are created by it, based on a photo's recorded date, and files are moved into them

Some of the properties and their description are given under:

	

Properties

	

Description

	

self.folder

	

The folder being worked with

	

self.photo_namedates

	

A list of the filenames and dates are contained in it

[image:]

For selecting photo directory use Tkinter filediaglog.askdirectory() function

Tkinter
 filedialog.askdirectory()
 widget enables a user to choose a particular directory containing pictures to test this. As the Tkinter window is not required for the time, it is hidden using the
 app.withdrawn()function
 . To move all photos into another location,
 genFolders()
 is called via a new
 FileList
 object created for this purpose.

Once the user has run the script, the correct generation or validity of the folders can be checked. At the end of changing
 FOLDERSONLY
 to True, the program will function automatically, and it will move and organize photos according to date the next time it is required. After completion of these steps, the user is advised to do a pilot with a copy of photos to identify any errors or problems.

Chapter Seven

Raspberry Pi Projects with

the Raspberry Pi Camera Module

[image:]

In this chapter, we will be focusing entirely on building Raspberry Pi projects involving the Raspberry Pi Camera Module. This module is basically an add-on that uses the CSI connector, which also known as the Camera Serial Interface connector. By using the CSI connector with the camera module, the GPU core of the Raspberry Pi becomes directly involved. In this way, the images are directly captured on to the system itself. Moreover, we will also be creating a somewhat simple and basic GUI to use with the camera module. This can be done by using the
 Tkinter
 library in Python.

The Raspberry Pi Camera Module is easily available on online shopping websites or from the retailer where you purchased the Raspberry Pi from.

In this chapter, we will cover the following aspects.

•

 Setting up the Raspberry Pi Camera Module

•

 Controlling the camera module with Python

•

 Creating a time-lapse video

•

 Creating a QR code reader

Setting Up the Raspberry Pi Camera Module

The first step is to install the Raspberry Pi Camera Module and setting it up. A camera Graphical User Interface (GUI) is then created; this allows the user to take photos and have a preview. A basic camera GUI for the Raspberry Pi camera module is shown below:

[image:]

Making the Preparations

Raspberry Pi Camera Module has a camera fitted to a
 Printed Circuit Board
 (PCB), which has a ribbon cable attached to it. The ribbon cable provides direct attachment to the CSI port on the Raspberry Pi Board. The CSI port marked as S5 is positioned in between the HDMI port and the USB port on the Raspberry Pi Board.

Detailed instruction and guidance through a video have been provided by the Raspberry Pi Foundation on installing the camera. This can be accessed through the given link:

http://www.raspberrypi.org/archives/3890

The steps to install the camera are given below:

	
Disconnect the Raspberry Pi from the power source first and then move towards the first step, i.e., fitting the camera.

Carefully lift the tab of the ribbon socket and loosen it to fit the ribbon cable into the CSI socket. Now insert the ribbon cable in the slot, the metal contacts should face towards the HDMI port side. The ribbon cable needs to be handled with care so as not to fold or bend it. Before pushing the tab back in its place, make sure the ribbon is firmly in place in the socket.

	
Connect the power source back with the Raspberry Pi. To enable the software, update the system with the commands given below:

sudo apt-get update

sudo apt-get upgrade

	
The third and last step is enabling the camera via
 raspi-config
 ; this will have been updated during the upgrade process in step 2. Run the camera through
 raspi-config
 ; the
 Enable Camera
 menu entry allows the user to enable the camera. One enabled the system is triggered to reboot.

Testing the Camera

As a part of the upgrade, two programs are installed to test the camera; these are
 raspivid
 and
 raspistill.

“Raspistill”
 allows the user to test the camera by taking pictures. This can be done by the following command:

raspistill -o image.jpg -t 0 (
 immediate pictures are taken by -t 0)

Whereas “r
 aspivid
 ” allows the user to test the camera by taking a short video of 10 seconds. The video format is H.264. The test can be performed by the following command:

raspivid -o video.h264 -t 10000 (
 the value of time -t is in milliseconds hence the figure 10000)

Controlling the Camera Module with Python

In comparison to a standard web camera, the Raspberry Pi camera module is more advanced. Different applications can be used to leverage the functionality of the camera, e.g., it can be used as a QR code reader as well. The full access to controls and settings of the camera allows a user to create personalized applications.

Dve Hughes created
 picamera,
 which is a Python module to control the Raspberry Pi camera module. All the functions performed by the
 picamera
 are supported by
 raspistill
 and
 raspivid.

Making Preparations

This requires the preinstallation of the Raspberry Pi camera module. Additionally, the Python 3 Pillow Library is also required to be installed.

For installing
 picamera
 for Python 3 follow the given command:

sudo apt-get install Python3-picamera

Creating the Script

We will first need to create a script that will house the main class for the GUI. Let’s name this script as
 cameraGUI.py

#!/usr/bin/Python3

#cameraGUI.py

import tkinter as TK

from PIL import Image

import subprocess

import time

import datetime

import picamera as picam

class SET():

 PV_SIZE=(320,240)

 NORM_SIZE=(2592,1944)

 NO_RESIZE=(0,0)

 PREVIEW_FILE="PREVIEW.gif"

 TEMP_FILE="PREVIEW.ppm"

class cameraGUI(TK.Frame):

 def run(cmd):

 print("Run:"+cmd)

 subprocess.call([cmd], shell=True)

 def camCapture(filename,size=SET.NORM_SIZE):

 with picam.PiCamera() as camera:

 camera.resolution = size

 print("Image: %s"%filename)

 camera.capture(filename)

 def getTKImage(filename,previewsize=SET.NO_RESIZE):

 encoding=str.split(filename,".")[1].lower()

 print("Image Encoding: %s"%encoding)

 try:

 if encoding=="gif" and previewsize==SET.NO_RESIZE:

 theTKImage=TK.PhotoImage(file=filename)

 else:

 imageview=Image.open(filename)

 if previewsize!=SET.NO_RESIZE:

 imageview.thumbnail(previewsize,Image.ANTIALIAS)

 imageview.save(SET.TEMP_FILE,format="ppm")

 theTKImage=TK.PhotoImage(file=SET.TEMP_FILE)

 except IOError:

 print("Unable to get: %s"%filename)

 return theTKImage

def timestamp():

 ts=time.time()

 tstring=datetime.datetime.fromtimestamp(ts)

 return tstring.strftime("%Y%m%d_%H%M%S")

def __init__(self,parent):

 self.parent=parent

 TK.Frame.__init__(self,self.parent)

 self.parent.title("Camera GUI")

 self.previewUpdate = TK.IntVar()

 self.filename=TK.StringVar()

 self.canvas = TK.Canvas(self.parent,

 width=SET.PV_SIZE[0],

 height=SET.PV_SIZE[1])

 self.canvas.grid(row=0,columnspan=4)

 self.shutterBtn=TK.Button(self.parent,text="Shutter",

 command=self.shutter)

 self.shutterBtn.grid(row=1,column=0)

 exitBtn=TK.Button(self.parent,text="Exit",

 command=self.exit)

 exitBtn.grid(row=1,column=3)

 previewChk=TK.Checkbutton(self.parent,text="Preview",

 variable=self.previewUpdate)

 previewChk.grid(row=1,column=1)

 labelFilename=TK.Label(self.parent,

 textvariable=self.filename)

 labelFilename.grid(row=2,column=0,columnspan=3)

 self.preview()

def msg(self,text):

 self.filename.set(text)

 self.update()

def btnState(self,state):

 self.shutterBtn["state"] = state

def shutter(self):

 self.btnState("disabled")

 self.msg("Taking photo...")

 self.update()

 if self.previewUpdate.get() == 1:

 self.preview()

 else:

 self.normal()

 self.btnState("active")

def normal(self):

 name=cameraGUI.timestamp()+".jpg"

 cameraGUI.camCapture(name,SET.NORM_SIZE)

 self.updateDisp(name,previewsize=SET.PV_SIZE)

 self.msg(name)

def preview(self):

 cameraGUI.camCapture(SET.PREVIEW_FILE,SET.PV_SIZE)

 self.updateDisp(SET.PREVIEW_FILE)

 self.msg(SET.PREVIEW_FILE)

def updateDisp(self,filename,previewsize=SET.NO_RESIZE):

 self.msg("Loading Preview...")

 self.myImage=cameraGUI.getTKImage(filename,previewsize)

 self.theImage=self.canvas.create_image(0,0,

 anchor=TK.NW,

 image=self.myImage)

 self.update()

def exit(self):

 exit()

#End

Now that we defined the main class for the script, we can proceed to create the script
 cameraGUInormal.py
 to use the GUI.

#!/usr/bin/Python3

#cameraGUI1normal.py

import tkinter as TK

import cameraGUI as GUI

root=TK.Tk()

root.title("Camera GUI")

cam=GUI.cameraGUI(root)

TK.mainloop()

#End

To run and check the final script, use the following command.

Python3 cameraGUI1normal.py

Understanding the Script

A class in the cameraGUI.py file called SET is used to contain all the application settings. This is particularly convenient for users to manage all the setting references by keeping them in one place.

The working and functionality can be better understood by the given example:

To attach
 Tkinter
 objects, the user has to define a base class, which is
 cameraGUI;
 this class inherits a
 TK.Frame
 class. All the processes like defining controls and all other functions required to develop the
 Tkinter
 application are included in the
 cameraGUI
 class.

Three of the efficiency functions for the class are defined below to be operated:

•

 Run()
 : Through the function
 subprocess.call
 , the
 run()
 functions enable the user to run commands by sending them to the command line. The function
 subprocess.call
 is used for various purposes, including encoding videos.

•

 getTKImage():
 The user can form and display a Tkinter canvas compatible
 TK.PhotoImage
 object. JPG images cannot be directly displayed on the Tkinter canvas because the PIL or Pillow library is used. PIL can resize the image and transform the format into a Portable PixMap format file (PPM). PPM can maintain and support a wider variety of colors than a Graphics Interchange Format (GIF). But for images of a quick camera preview, use a GIF as the process of resizing and converting a JPG image completes in a few seconds.

•

 Timestamp():
 To automatically name the captured images with the time at which they were taken, this function enables the user to create a timestamp thread.

A user can perform the following functions with the class
 initializer (__init__()):

•

 Identifying all the control variables

•

 Controls required for use

•

 Generation of GUI objects

•

 Position objects using the
 grid()
 functions

An image is given below to show the GUI layout:

[image:]

(Layout of the camera GUI)

Some of the control variables are identified below:

•

 self.filename:
 the
 labelFilename
 widget displays text in the camera GUI, which is linked to this variable.

•

 self.previewUpdate:
 this variable is linked to the
 Preview
 checkbox
 (previewChk)
 status in the camera GUI.

The
 self.shutter()
 and the
 self.exit ()
 functions are linked to the
 Shutter
 button (
 shutterBtn)
 and the
 Exit
 button (
 exitBtn
), respectively. The shutter function upon pressing the shutter button will be activated. To deactivate this event, the function
 this.btnState
 (“disabled”) has to be called, and it will disable the
 Shutter
 button when the user is capturing new images. When this the shutter button is disabled, the camera will not take any pictures as it being in the process of capturing images by the user. The inactive state of the shutter button can be reverted to the active state upon completion of the remaining procedures, by
 this.btnState
 (“active”), this will enable the shutter button to restore its previous activities.

The function
 self.shutter()
 operates in two ways reliant upon the Preview checkbox status. It will either activate the
 self.preview()
 function or
 self.normal()
 function. The status of the Preview Checkbox is gained through the
 self.previewUpdate
 .

Through the function
 __init__(),
 self.preview() function is called. This allows the user to ensure that the images are captured and displayed for preview by the Camera GUI, soon after the start of the application.

Making use of the
 pycamera
 the
 cameraGUI.camCapture()
 function forms a camera object, sets the camera resolution, and using the required file name to take a picture.

An image called the PREVIEW_FILE is taken by the self.preview() function. The image has a resolution of PV_SIZE, which is already defined in the SET class.

Furthermore, the
 cameraGUI. getTKImage()
 function is used by the
 self.updateDisp(PREVIEW_FILE)
 . This opens the PREVIEW.gif file developed, like a
 TK.PhotoImage
 object and in the camera GUI, it is applied as a Canvas object.

From the TK.Frame class has a function called the self.update(), which, when activated, enables the update of Tkinter display, i.e., update of new images.

Once again, the
 self.update()
 functions are used for updating the display, but this time the
 self.preview()
 function uses it. The
 self.msg()
 function via the self.preview() function updates the self.filename value. The new filename is the one being displayed with the image (PREVIEW.gif)

The
 self.shutter()
 functions chooses
 self.normal()
 functions when the Preview checkbox is unchecked. Yet the images taken in this state are of 5 megapixels (2592 x 1944) JPG images, are much larger, and are given the latest <timestamp> value by the
 self.timestamp()
 function for setting the filename to the image. The image obtained in these settings is resized and converted to a PPM image for loading and displaying in the camera GUI as a TK.PhotoImage object.

Creating a Time-Lapse Video

A computer given access to a camera can do much more as compared to other devices. This is true for the Raspberry Pi as the user can directly control the behavior and actions of the camera by using Python or any other suitable programming language. This opens up new avenues for experimenting with pictures, i.e., creating stop-animation movies, and even time-lapse videos. Moreover, we can process these pictures and videos captured by the camera directly through suitable applications and other software on the Raspberry Pi as well.

In this section, we will use the camera to automatically capture images in a defined time-interval through the Python script and then process these images into a time-lapse video.

Luckily for us, the Python module
 pycamera
 has various features, and among these, the
 capture_continous()
 function can help us with this project. This function essentially uses the Raspberry Pi camera module to capture a continuous sequence of images. To turn these images into a time-lapse video, we will need to define the time interval, indicating how each image is captured in a sequence. It also defines a limit as to how many images are supposed to be captured, ensuring the system does not keep on capturing pictures indefinitely. For some quality of life additions, we will also instruct the system to pre-emptively calculate the total duration of the video so that the user knows how long it will be.

Proceeding with the Project

For this project and for the upcoming projects as well, we will be making use of the Graphical User Interface we made at the beginning of this chapter. We will make some small changes to this GUI so that we can control the time-lapse features and also handle creating a suitable video clip from the results. The GUI of the time-lapse application we are going to create will look something like this.

[image:]

By now, you should be familiar with the process of setting things up for using a previously made script as a module for a new script. Regardless, we will be putting the script we made for the graphical user interface previously (
 cameraGUI.py
) and put it into the same directory as to where we installed the
 pycamera.
 In this project, we will also be making use of a tool known as
 mencoder
 . Through this tool, we can take the pictures that have been captured in a time-lapse sequence and then create them into a video clip.

Let’s first start by installing the
 mencoder
 tool by executing the following command in the command terminal.

sudo apt-get install mencoder

Now, we will get the fun part, and that is programming the Python script for this project. We will name the Python script as
 timelapseGUI.py
 . Remember to put this file into the same directory as the
 cameraGUI.py
 script as we will be importing the functions defined in it as a module for this time-lapse script. Here’s a step-by-step explanation of how to create the script and using the appropriate functions and modules.

	
The first thing to do is to import all of the supporting modules necessary for the project and this includes the
 cameraGUI
 as well as shown in the lines of code below.

#!/usr/bin/Python3

#timelapseGUI.py

import tkinter as TK

from tkinter import messagebox

import cameraGUI as camGUI

import time

	
We need to extend the
 cameraGUI.SET
 class from the
 cameraGUI
 module in order to accommodate for the settings for the time-lapse and encoding functions. This process is demonstrated in the following lines of code.

class SET(camGUI.SET):

 TL_SIZE=(1920,1080)

 ENC_PROG="mencoder -nosound -ovc lavc -lavcopts"

 ENC_PROG+=" vcodec=mpeg4:aspect=16/9:vbitrate=8000000"

 ENC_PROG+=" -vf scale=%d:%d"%(TL_SIZE[0],TL_SIZE[1])

 ENC_PROG+=" -o %s -mf type=jpeg:fps=24 mf://@%s"

 LIST_FILE="image_list.txt"

	
We will now take the primary
 cameraGUI
 class from the module and extend it with more functions. This will give the script the necessary functionality to perform the required task, i.e., time-lapse. This is demonstrated in the following lines of code.

class cameraGUI(camGUI.cameraGUI):

 def camTimelapse(filename,size=SET.TL_SIZE,

 timedelay=10,numImages=10):

 with camGUI.picam.PiCamera() as camera:

 camera.resolution = size

 for count, name in \

enumerate(camera.capture_continuous(filename)):

 print("Timelapse: %s"%name)

 if count == numImages:

 break

 time.sleep(timedelay)

	
To control the time-lapse functions, we will add in some more controls in the time-lapse GUI. This is demonstrated in the following lines of code.

def __init__(self,parent):

 super(cameraGUI,self).__init__(parent)

 self.parent=parent

 TK.Frame.__init__(self,self.parent,background="white")

 self.numImageTL=TK.StringVar()

 self.peroidTL=TK.StringVar()

 self.totalTimeTL=TK.StringVar()

 self.genVideoTL=TK.IntVar()

 labelnumImgTK=TK.Label(self.parent,text="TL:#Images")

 labelperoidTK=TK.Label(self.parent,text="TL:Delay")

 labeltotalTimeTK=TK.Label(self.parent,

 text="TL:TotalTime")

 self.numImgSpn=TK.Spinbox(self.parent,

 textvariable=self.numImageTL,

 from_=1,to=99999,

 width=5,state="readonly",

 command=self.calcTLTotalTime)

 self.peroidSpn=TK.Spinbox(self.parent,

 textvariable=self.peroidTL,

 from_=1,to=99999,width=5,

 command=self.calcTLTotalTime)

 self.totalTime=TK.Label(self.parent,

 textvariable=self.totalTimeTL)

 self.TLBtn=TK.Button(self.parent,text="TL GO!",

 command=self.timelapse)

 genChk=TK.Checkbutton(self.parent,text="GenVideo",

 command=self.genVideoChk,

 variable=self.genVideoTL)

 labelnumImgTK.grid(row=3,column=0)

 self.numImgSpn.grid(row=4,column=0)

 labelperoidTK.grid(row=3,column=1)

 self.peroidSpn.grid(row=4,column=1)

 labeltotalTimeTK.grid(row=3,column=2)

 self.totalTime.grid(row=4,column=2)

 self.TLBtn.grid(row=3,column=3)

 genChk.grid(row=4,column=3)

 self.numImageTL.set(10)

 self.peroidTL.set(5)

 self.genVideoTL.set(1)

 self.calcTLTotalTime()

	
We now need to include some supporting functions in the script that will be responsible for calculating the settings as well as handling the time-lapse. This is demonstrated in the following lines of code.

def btnState(self,state):

 self.TLBtn["state"] = state

 super(cameraGUI,self).btnState(state)

def calcTLTotalTime(self):

 numImg=float(self.numImageTL.get())-1

 peroid=float(self.peroidTL.get())

 if numImg<0:

 numImg=1

 self.totalTimeTL.set(numImg*peroid)

def timelapse(self):

 self.msg("Running Timelapse")

 self.btnState("disabled")

 self.update()

 self.tstamp="TL"+cameraGUI.timestamp()

 cameraGUI.camTimelapse(self.tstamp+'{counter:03d}.jpg',

 SET.TL_SIZE,

 float(self.peroidTL.get()),

 int(self.numImageTL.get()))

 if self.genVideoTL.get() == 1:

 self.genTLVideo()

 self.btnState("active")

 TK.messagebox.showinfo("Timelapse Complete",

 "Processing complete")

 self.update()

	
Finally, we will add some supporting functions to the script. These functions will essentially handle and create the required time-lapse video. This has been demonstrated in the following lines of code.

def genTLVideo(self):

 self.msg("Generate video...")

 cameraGUI.run("ls "+self.tstamp+"*.jpg > "

 +SET.LIST_FILE)

 cameraGUI.run(SET.ENC_PROG%(self.tstamp+".avi",

 SET.LIST_FILE))

 self.msg(self.tstamp+".avi")

#End

	
Finally, we proceed towards making the appropriate graphical user interface for the time-lapse script. We will name this script as
 cameraGUI2timelapse.py
 . Use the following lines of code to create the GUI.

#!/usr/bin/Python3

#cameraGUI2timelapse.py

import tkinter as TK

import timelapseGUI as GUI

root=TK.Tk()

root.title("Camera GUI")

cam=GUI.cameraGUI(root)

TK.mainloop()

#End

You might wonder why are we importing the
 timelapseGUI
 instead of the
 cameraGUI
 as a module. Well by important the
 timelapseGUI
 module, we are basically adding it to the
 cameraGUI
 script. It might sound confusing but it’s an effective way to work when importing different scripts as modules.

To run this project, you will need to execute this script, and this can be done by opening the command line terminal and running the following command.

Python3 cameraGUI2timelapse.py

Understanding How the Project Works

Let’s begin the discussion with the
 timelapseGUI.py
 script. This script imports the
 cameraGUI.py
 as a module and leverages the functionality of the classes already defined in this module for its own use by extending them. Note that before extending the classes within the
 cameraGUI
 module, these classes were originally incorporating the contents of the
 TK.Frame
 class. Hence, we used the same principle in this project to incorporate the
 SET
 and
 cameraGUI
 class into the
 timelapseGUI.py
 script.

Since we are using an additional tool (
 mencoder
) to handle the encoding of the time-lapse videos, we need to add more settings to the SET class appropriately. In this way, we are defining the necessary settings for the
 mencoder
 tool, making it easier to work with.

To accommodate for the project’s interfacing needs, we extend the original
 cameraGUI
 . This is done by extending the simple version of the
 cameraGUI
 class by incorporating the features and functions of the
 camGUI.cameraGUI
 . Moreover, we also needed to define a more appropriate version of the
 init()
 function for the extended class. This is done by using the
 super()
 function. By using this function, the functionality of the original
 init()
 class remained the same. At the same time, we simply defined the additional set of controls that needed to be included in the Graphical User Interface. This extended version of the basic camera GUI is shown below.

[image:]

Here’s a list of the control variables that have been defined for the GUI’s control boxes.

•

 self.numImageTL:
 This variable is associated with the
 numImgSpn
 spinbox control’s value. By using this control variable, we can specify the image limit value in which the camera module is supposed to capture pictures for the time-lapse.

•

 self.periodTL:
 This variable is associated with the
 periodSpn
 spinbox control’s value. By using this control variable, we can specify the time interval that needs to be considered when taking each time-lapse image. In other words, this allows us to control the number of seconds after which each time-lapse image is captured.

•

 self.totalTimeTL:
 This control variable is associated with the
 totalTime
 label object. This control variable is responsible for telling the user how long the duration of the time-lapse video will be. The variable calculates this duration by measuring two elements, the number of images captured and the time interval between each captured image (given by
 timedelay
).

•

 self.genVideoTL:
 This control variable gives us confirmation that a corresponding video clip has been generated from the captured time-lapse images. This control variable performs this task by basically controlling the state of the
 genChk
 checkbox control. By monitoring its state, it can tell the user whether the time-lapse video clip has been created or not.

As you might have gotten an idea of what’s happening in the timelapse GUI, the control variables are basically linked to the defined control checkboxes, in turn, providing accurate calculations and better functionality. In this way, once the values linked to the control variables change, the calculation and result of the specified control variable also change automatically.

We position the control boxes and settings by using the
 grid()
 function. By using this function, we can easily specify any position we want for a particular control.

Moving on, we have the
 self.genVideoChk()
 function, which is called by the
 genChk
 checkbox when the user interacts with it by checking or clearing it on the GUI. Through this setup, this option generates a pop-up window informing the user whether the video clip will be created at the end of the time-lapse or if only time-lapse images will be generated.

Creating a QR Code Reader using the Camera Module

QR codes are quite popular and are often used for advertisements, availing discount offers, or even used as a secure login method for some apps (such as WhatsApp web). In this section, we will work on a project in which we will use the Raspberry Pi camera module to build a QR reader.

Using the Raspberry Pi as a QR reader redefines the extent to which you can personalize this little machine. You can use it in any way you might want, like a jukebox or even a book reader. That’s solely up to you on how you want to use it.

Gearing Up

The requirements of this project are somewhat similar to the ones discussed in the previous sections of this book. To this point, you would already know how to set up the Camera Module with the Raspberry Pi, so the only thing that’s left is to get the necessary software on to the system itself for this project.

To create a Raspberry Pi QR reader that can also give an audio output, we will need the following applications;

•

 ZBar:
 This application is basically a QR and barcode reader with cross-platform support. We will be taking advantage of the camera module’s functionality and use it with this tool to create a QR reader.

•

 Flite:
 this is a text-to-speech utility application which has already been demonstrated in Chapter 4 of this book.

Open the command terminal on the Raspberry Pi OS and enter the following command to install both of these applications on to the system.

sudo apt-get install zbar-tools flite

Now that we have installed the required software, we still need some QR codes and some MP3 audio files to work with. If you have downloaded some sample QR codes, that will also work, but we’ll cover the topic of generating QR codes yourself in the following sections.

Building the Script for the Project

We will now proceed to create a suitable script for the QR code reader project. Note that we will also be creating a basic GUI in this project as well. For this purpose, we will import the
 cameraGUI.py
 as a module in this script. Let’s name the script we are about to create
 ‘qrcode.py’.
 The contents of this script are shown below.

#!/usr/bin/Python3

#qrcode.py

import tkinter as TK

from tkinter import messagebox

import subprocess

import cameraGUI as camGUI

class SET(camGUI.SET):

QR_SIZE=(640,480)

READ_QR="zbarimg "

class cameraGUI(camGUI.cameraGUI):

 def run_p(cmd):

 print("RunP:"+cmd)

 proc=subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE)

 result=""

 for line in proc.stdout:

 result=str(line,"utf-8")

 return result

 def __init__(self,parent):

 super(cameraGUI,self).__init__(parent)

 self.parent=parent

 TK.Frame.__init__(self,self.parent,background="white")

 self.qrScan=TK.IntVar()

 self.qrRead=TK.IntVar()

 self.qrStream=TK.IntVar()

 self.resultQR=TK.StringVar()

 self.btnQrTxt=TK.StringVar()

 self.btnQrTxt.set("QR GO!")

 self.QRBtn=TK.Button(self.parent,textvariable=self.btnQrTxt,

 command=self.qrGet)

readChk=TK.Checkbutton(self.parent,text="Read",

 variable=self.qrRead)

 streamChk=TK.Checkbutton(self.parent,text="Stream",

 variable=self.qrStream)

 labelQR=TK.Label(self.parent,textvariable=self.resultQR)

readChk.grid(row=3,column=0)

 streamChk.grid(row=3,column=1)

 self.QRBtn.grid(row=3,column=3)

 labelQR.grid(row=4,columnspan=4)

self.scan=False

 def qrGet(self):

 if (self.scan==True):

 self.btnQrTxt.set("QR GO!")

 self.btnState("active")

 self.scan=False

 else:

 self.msg("Get QR Code")

 self.btnQrTxt.set("STOP")

 self.btnState("disabled")

 self.scan=True

 self.qrScanner()

 def qrScanner(self):

 found=False

 while self.scan==True:

 self.resultQR.set("Taking image...")

 self.update()

 cameraGUI.camCapture(SET.PREVIEW_FILE,SET.QR_SIZE)

 self.resultQR.set("Scanning for QRCode...")

 self.update()

 #check for QR code in image

 qrcode=cameraGUI.run_p(SET.READ_QR+SET.PREVIEW_FILE)

 if len(qrcode)>0:

 self.msg("Got barcode: %s"%qrcode)

 qrcode=qrcode.strip("QR-Code:").strip('\n')

 self.resultQR.set(qrcode)

 self.scan=False

 found=True

 else:

 self.resultQR.set("No QRCode Found")

 if found:

 self.qrAction(qrcode)

 self.btnState("active")

 self.btnQrTxt.set("QR GO!")

 self.update()

 def qrAction(self,qrcode):

 if self.qrRead.get() == 1:

 self.msg("Read:"+qrcode)

 cameraGUI.run("sudo flite -t '"+qrcode+"'")

 if self.qrStream.get() == 1:

 self.msg("Stream:"+qrcode)

 cameraGUI.run("omxplayer '"+qrcode+"'")

 if self.qrRead.get() == 0 and self.qrStream.get() == 0:

 TK.messagebox.showinfo("QR Code",self.resultQR.get())

#End

Now, we need to duplicate the
 cameraGUItimelapse.py
 script and create a copy. Rename this copy to
 cameraGUIqrcode.py
 . Remember to import this file as the GUI by using the following line of code.

import qrcodeGUI as GUI

Now, this GUI, along with the QR code, will look like this.

[image:]

Understanding the Script

Now let’s see how the script actually works. The
 qrcode.py
 script basically creates a graphical user interface that includes elements such as the ‘read’ and ‘play’ checkboxes along with a dedicated QR scanning button labeled ‘QR GO!’. When we click the ‘QR GO!’ button, it triggers the
 self.qrGet()
 function in the script, initiating a scanning cycle where the camera module takes pictures, and these pictures are then checked by
 zbarimg
 . Once the
 zbarimg
 identifies a QR code from the pictures being taken by the camera, the script will exit out of the scanning cycle and display the result. If not properly set up, the script will continue with the scanning cycle, continuously taking images until we press the exit or stop button. Moreover, once the scanning cycle starts, the text defined for the variable
 QRBtn
 is temporarily substituted with
 ‘STOP’
 until the scanning cycle ends.

To accommodate the use of
 zbarimg
 in order to capture its output, we need to make some adjustments to how we execute the command. For this purpose, the script defines the
 run_p()
 function to use the aforementioned line of code:

proc=subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE)

After we obtain the output from
 zbarimg
 , we can use the read or play checkboxes if the QR code contains a media file or link. If the file is in an audio format, we use the
 read
 option to prompt the
 flite
 tool to read out the contents of the QR code. If the file is in a video format, then we use the
 play
 option in order to prompt the
 omxplayer
 to play the contents of the QR code.

Generating Your Own QR Codes

In this section, we will be demonstrating the way through which we can generate our own personal QR codes with the help of Python.

Generating QR codes by yourself is not as difficult as you might think it to be. To do this, we will be using a Python library ‘PyQRCode,’ but before we can use it, we will need first to download it. You can also visit the website given below to read more about PyQRCode.

https://pypi.Python.org/pypi/PyQRCode

Let’s now proceed to install the PyQRCode library on our system using the PIP Python manager. Open the command terminal and execute the following command.

sudo pip-3.2 install pyqrcode

PyQRCode also needs an add-on in order for it to encode images into a PNG format. This is the PyPNG tool, and we can download and install it directly from its GitHub repository ((https://github.com/ drj11/pypng) by executing the following command in the command terminal.

sudo pip-3.2 install pypng

Now that we have the necessary tools to generate a QR code, let’s proceed to create a script with Python, which will handle the generating of QR codes as well as linking files to it. The files that can be linked to the QR code can be anything; it can be a link to a website, it can be an audio file or a media file as well. For this project, we will make use of the
 page001.mp3
 and
 page002.mp3
 files recorded in the projects demonstrated in the previous sections.

Let’s name the Python script as
 generateQRCodes.py
 . The script includes the following lines of code.

#!/usr/bin/Python3

#generateQRCodes.py

import pyqrcode

valid=False

print("QR-Code generator")

while(valid==False):

 inputpages=input("How many pages?")

 try:

 PAGES=int(inputpages)

 valid=True

 except ValueError:

 print("Enter valid number.")

 pass

print("Creating QR-Codes for "+str(PAGES)+" pages:")

for i in range(PAGES):

 file="page%03d"%(i+1)

 qr_code = pyqrcode.create(file+".mp3")

 qr_code.png(file+".png")

 print("Generated QR-Code for "+file)

print("Completed")

#End

To execute within this Python script, we will need to use the following command in the command line terminal.

Python3 generateQRCodes.py

This script will generate a bunch of QR codes that can be used to activate the audio file linked to it.

Conclusion

[image:]

In this book, we have explored a variety of topics. From learning encryption and decryption coding techniques with Python and deriving useful exercises from it, we have covered all of the important topics that are famous for their difficult learning curve. The book has tried to put more emphasis on practical knowledge rather than discussing the theoretical possibilities that the Raspberry Pi has. This is in hopes to guide the readers to develop a skill-set that will become an invaluable asset for them in their practical life. With comprehensively explained projects, the book tries to engrave a feeling of confidence within the readers, making them want to test out their skills and have fun at the same time. In short, the book has adequately covered all of the important topics and portions in the best way possible while making the content easy to read and digestible for the reader as well.

Python programming on Raspberry Pi gives a more open-end and accessible environment on which programming can be done easily. The reason is that Python has more advanced features and functionalities, which allows it to design even complex projects easily. The use of Python gives more control to the user. That is why we have discussed the projects of Raspberry Pi with the use of Python programming. Thus, we have ensured that not only will you be able to learn the theoretical concepts, but you will also be able to enhance your skills and enjoy making all these unique projects.

The only thing left to do now is practice; that’s the only way to learn. There are plenty of online tutorials on other Raspberry Pi projects, some simple, some more complex. Explore and enjoy the almost unlimited uses and the endless hours of fun your Raspberry Pi will bring you.

References

[image:]

1).
 Raspberry Pi Projects for Dummies by Authors
 Mike Cook, Jonathan Evans, and Brock Craft.

2).
 Learn Raspberry Pi Programming with Python by Author
 Wolfram Donat

3).
 Raspberry Pi Cookbook for Python Programmers by Author
 Tim Cox

OEBPS/Image00022.jpg

OEBPS/Image00023.jpg

OEBPS/Image00020.jpg

OEBPS/Image00021.jpg

OEBPS/Image00018.jpg

OEBPS/Image00019.jpg

OEBPS/Image00026.jpg

OEBPS/Image00027.jpg

OEBPS/Image00024.jpg

OEBPS/Image00025.jpg

OEBPS/Image00003.jpg

OEBPS/Image00002.jpg

OEBPS/Image00005.jpg

OEBPS/Image00004.jpg

OEBPS/Image00007.jpg

OEBPS/Image00006.jpg

OEBPS/Image00011.jpg

OEBPS/Image00012.jpg

OEBPS/Image00035.jpg

OEBPS/Image00009.jpg

OEBPS/Image00031.jpg

OEBPS/Image00010.jpg

OEBPS/Image00032.jpg

OEBPS/Image00034.jpg

OEBPS/Image00029.jpg

OEBPS/Image00008.jpg

OEBPS/Image00030.jpg

OEBPS/Image00028.jpg

OEBPS/Image00017.jpg

OEBPS/Image00015.jpg

OEBPS/Image00016.jpg

OEBPS/Image00001.jpg

OEBPS/Image00013.jpg

OEBPS/Image00000.jpg

OEBPS/Image00014.jpg

