
[1]

Raspberry Pi Robotic Blueprints

Utilize the powerful ingredients of Raspberry Pi to bring
to life amazing robots that can act, draw, and have fun
with laser tag

Richard Grimmett

BIRMINGHAM - MUMBAI

Raspberry Pi Robotic Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1261015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-628-2

www.packtpub.com

www.packtpub.com

Credits

Author
Richard Grimmett

Reviewers
James McNutt

Werner Ziegelwanger, MSc

Commissioning Editor
Sarah Crofton

Acquisition Editor
Tushar Gupta

Content Development Editor
Kirti Patil

Technical Editor
Manthan Raja

Copy Editor
Vibha Shukla

Project Coordinator
Kranti Berde

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Richard Grimmett continues to have more fun than he should be allowed
working on robotics projects while teaching computer science and electrical
engineering at Brigham Young University-Idaho. He has a bachelor's and master's
degree in electrical engineering and a PhD in leadership studies. This is the latest
book, in a long series of books detailing how to use Raspberry Pi, Arduino, and
BeagleBone Black for robotics projects, written by him.

About the Reviewers

James McNutt first got his hands on Raspberry Pi while writing the curriculum
for a library summer program that was designed to teach teens the basics of web
design, robotics, and programming. He has incorporated Raspberry Pis into
several of his projects; however, none have been as meaningful as those focused
on education. There is nothing as effective at breaking down students' trepidation
around computer science as placing Raspberry Pi in their hands and assuring them
that they won't break it and—even if they do break it—that they're going to learn
something in the process. Inspired by the unique way in which libraries touch the
lives of their patrons and communities, James has continued his involvement with
libraries, working and teaching at some of the country's first library makerspaces.
Now, working as a library systems administrator, James still sets aside the time to
teach public classes at his library.

I'd like to acknowledge Meg Backus, Bill Brock, Lindsey Frost,
and Justin Hoenke for their commitment to providing educational
opportunities in libraries and for what they have personally
taught me.

Werner Ziegelwanger, MSc has studied game engineering and simulation and
obtained his master's degree in 2011. His master's thesis, Terrain Rendering with
Geometry Clipmaps for Games, Diplomica Verlag, was published. His hobbies include
programming, gaming, and exploring all kinds of technical gadgets.

Werner worked as a self-employed programmer for many years and mainly did web
projects. During this time, he started his own blog (https://developer-blog.net/),
which is about the Raspberry Pi, Linux, and open source.

Since 2013, Werner has been working as a Magento developer and is the head of
programming at mStage GmbH, an e-commerce company that focuses on Magento.

https://developer-blog.net/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface iii
Chapter 1: Adding Raspberry Pi to an RC Vehicle 1

Configuring Raspberry Pi – The brain of your projects 2
Configuring and controlling an RC car with Raspberry Pi 3
Controlling the RC Car using Raspberry Pi in Python 12
Accessing the RC Car remotely 16
Summary 22

Chapter 2: Adding Raspberry Pi to a Humanoid Robot 23
Giving your robot voice commands 34
Using eSpeak to allow your robot to respond in voice 42
Using pocketsphinx to accept your voice commands 42
Interpreting commands and initiating actions 48
Summary 51

Chapter 3: Building a Tracked Vehicle That Can
Plan Its Own Path 53

Basic motor control and the tracked vehicle 54
Controlling the tracked vehicle using Raspberry Pi in Python 56
Connecting Raspberry Pi to a USB sonar sensor 59
Connecting a digital compass to the Raspberry Pi 66
Accessing the compass programmatically 68
Dynamic path planning for your robot 73

Basic path planning 73
Avoiding obstacles 77
Summary 81

Table of Contents

[ii]

Chapter 4: Building a Robot That Can Play Laser Tag 83
Building and controlling a basic wheeled vehicle 84
Using the robot library to programmatically control your robot 86
Controlling your robot from a remote computer 88
Adding a game controller to your remote system 89
Connecting the laser source and target 95
Summary 101

Chapter 5: A Robot That Can Draw 103
Constructing a drawing platform using servos and brackets 104
Configuring the software 107
Creating a program in Python to control the mobile platform 112
Simple drawing using the robotic arm 114
A simple Python drawing program 126
Summary 130

Chapter 6: A Robot That Can Play Air Hockey 131
Constructing the platform 132
Controlling the paddle using stepper motors 133
Moving the paddle with Arduino code 140
Seeing the puck using OpenCV 145

Installing a USB camera on Raspberry Pi 145
Downloading and installing OpenCV – a fully featured
vision library 148
Colour finding with OpenCV 150
Tracking the puck 154
Moving the paddle to strike the puck 155
Summary 159

Chapter 7: A Robot That Can Fly 161
Constructing the platform 161
Mission Planning software 167
Summary 175

Index 177

[iii]

Preface
Robotics have really come into the public spotlight in the past few years. Ideas that,
just a few years ago, would have lived only in the government research center or
university lab, such as robotic vacuum cleaners, drones that cover the sky, and
self-driving cars, are now making their way into everyday life. This movement is
fueled, at least in part, by scores of enterprising individuals, without significant
technical training, who undertake building their idea with inexpensive hardware
and free, open-source software.

This book celebrates this effort by detailing how to get started on building the project
that you always wanted to build but didn't think you had the expertise for. The heart
of these projects is Raspberry Pi B version 2, a cable microprocessor-based system
that can run Linux and provides a platform for a significant number of open source
modules. Combine Raspberry Pi with these open source modules and low cost
hardware, and you can build robots that can walk, role, draw, and even fly.

What this book covers
Chapter 1, Adding Raspberry Pi to an RC Vehicle, shows you how to add Raspberry Pi
to an existing toy, such as an old RC car or truck, to make it "new" again.

Chapter 2, Adding Raspberry Pi to a Humanoid Robot, covers how to add Raspberry Pi
to robots, such as the Robosapien line from WowWee, to add voice commands and
make them more versatile.

Chapter 3, Building a Tracked Vehicle That Can Plan Its Own Path, explains how to build
a tracked robot containing sensors so that it can map the position of a set of objects.

Chapter 4, Building a Robot That Can Play Laser Tag, covers how to use the capabilities
of Raspberry Pi to build a wheeled robot that can play laser tag.

Preface

[iv]

Chapter 5, A Robot That Can Draw, introduces the capability of external dedicated
servo controllers that can make controlling the arms and legs of the robot much
easier. This is done using servos, whose position can be controlled using our system.

Chapter 6, A Robot That Can Play Air Hockey, explains how to use stepper motors and
an advanced vision system to build a robot that can plan air hockey using more
power and precision.

Chapter 7, A Robot That Can Fly, explains that after building a robot that can walk,
talk, or play air hockey, you can build a robot that can fly.

What you need for this book
Chapter Software Where Located
Chapter 1 Raspberry Pi Debian https://www.raspberrypi.org/

RaspiRobot Board V2
drivers from Simon Monk

http://www.monkmakes.com/?page_
id=698

TightVNC Server sudo apt-get install
tightvncserver

luvcview sudo apt-get install luvcview

Chapter 2 Arduino IDE https://www.arduino.cc/

eSpeak sudo apt-get install espeak

PocketSphinx http://cmusphinx.sourceforge.net/

Chapter 3 RaspiRobot Board V2
drivers from Simon Monk

http://www.monkmakes.com/?page_
id=698

Chapter 4 PodSixNet http://mccormick.cx/projects/
PodSixNet/

Chapter 5 Pololu Maestro Control
Center

http://www.pololu.com/
docs/0J40/3.a

Chapter 6 Arduino IDE https://www.arduino.cc/

OpenCV http://opencv.org/

https://www.raspberrypi.org/
http://www.monkmakes.com/?page_id=698
http://www.monkmakes.com/?page_id=698
https://www.arduino.cc/
http://cmusphinx.sourceforge.net/
http://www.monkmakes.com/?page_id=698
http://www.monkmakes.com/?page_id=698
http://mccormick.cx/projects/PodSixNet/
http://mccormick.cx/projects/PodSixNet/
http://www.pololu.com/docs/0J40/3.a
http://www.pololu.com/docs/0J40/3.a
https://www.arduino.cc/
http://opencv.org/

Preface

[v]

Who this book is for
This all-embracing guide is created for anyone who is interested in expanding
their horizon in applying the peripherals of Raspberry Pi. If you fancy building
complex-looking robots with simple, inexpensive, and readily available hardware,
then this is the ideal book for you. Prior understanding of Raspberry Pi with simple
mechanical systems is recommended.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Type cd rrb2-1.1—this will change the directory to the location of the files."

A block of code is set as follows:

void loop()
{
 int dt;
 uint8_t logOutput=0;
 debug_counter++;
 timer_value = micros();

Any command-line input or output is written as follows:

volatile int viRobsapienCmd = -1; // A robosapien command
 sent over the UART request

// Some but not all RS commands are defined

#define RSTurnRight 0x80

#define RSRightArmUp 0x81

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Now click
on Connect on Remote Desktop Viewer."

Preface

[vi]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/6282OT_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/6282OT_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/6282OT_ColorImages.pdf

Preface

[vii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Adding Raspberry Pi
to an RC Vehicle

The introduction of powerful, inexpensive processors that also provide a wide range
of functionality through free open-source software has caused the do-it-yourself
electronic project work to expand far beyond the simple, less than inspiring projects
of the past. Now the developers can, with very low cost, create amazingly complex
projects that were almost unthinkable a few years ago.

Many in this community are using Raspberry Pi as the basis for this revolution. This
book provides simple, easy-to-follow instructions on how to use the Raspberry Pi in
some very complex and sophisticated projects. Now enough of the introduction, let's
start building something.

In this chapter, you'll learn the following:

• How to modify an Xmods RC car using Raspberry Pi
• How to set break into the control circuitry of the car and use Raspberry Pi to

control it
• How to use wireless communication to add remote control to the car

Adding Raspberry Pi to an RC Vehicle

[2]

Configuring Raspberry Pi – The brain of
your projects
A brief note before you start. In this book, you'll be using Raspberry Pi B2, a
microprocessor that can run on the Linux operating system. The following is an
image of the unit, with the different interconnectors labeled:

As this is an advanced projects book, you have already spent some time with
Raspberry Pi and know how to write Raspbian/Wheezy on an SD card and boot
your Raspberry Pi. If you don't, feel free to go to the Raspberry Pi website at
https://www.raspberrypi.org/. Here you'll find all the instructions that you need
to get your Raspberry Pi B 2 up and running.

Note that you may want to install your system on a microSD card that has at least
8 GB of memory. In some of the projects that you'll be building, you'll be installing
some fairly significant pieces of open source software and you may not want to run
out of memory.

Now you are ready to start with some simple product modification. Let's start
with an RC car; you'll replace the transmitter and control the car with a wireless
connection on Raspberry Pi.

https://www.raspberrypi.org/

Chapter 1

[3]

Configuring and controlling an RC car
with Raspberry Pi
The first project that you'll be working on is a simple RC car, like the one shown
here:

This particular car is an Xmods car, sold by Radio Shack, also available at other retail
and online outlets. You can certainly use other RC cars as well. The advantage of this
particular set is that the inputs to the drivetrain and steering are very easy to access.

Adding Raspberry Pi to an RC Vehicle

[4]

The following is the car, exposing the center control mechanism:

There are two connections that you will want direct access to. The first is the drive
motor, and the second is the steering mechanism. For this particular model of RC car,
the drive mechanism is in the rear. What you are normally looking for is two wires
that will directly drive the DC motor of the car. On this system, there is a connector
in the rear of the car, it looks as shown in the following image:

Chapter 1

[5]

In the main control section of the car, you can see that there is a connector that plugs
in these two wires in order to control the speed of the car, as shown here:

Remove this plug and these wires; you'll use Raspberry Pi and a motor controller to
provide the voltage to the drive system of the car. The motor will run faster or slower
based on the level of voltage that is applied to these wires and the polarity of the
voltage will determine the direction. Raspberry Pi will need to provide a positive or
negative 6 volt signal to control the speed and direction of the car.

You'll also need to replace the control signals that go to the front of the car for the
steering. This is a bit more difficult. The following is the connector that goes to the
front of the car:

Adding Raspberry Pi to an RC Vehicle

[6]

The five-pin connector that comes from the control module is shown in the
following:

The trick is to determine how the wires control the steering. One way to determine
this is by opening up the unit, the following is how it looks from inside:

Chapter 1

[7]

As you can see in the previous image, the blue and yellow wires are attached to a
DC motor and the orange, brown, and red wires are attached to another control
circuit. The motor will drive the wheels left or right, the polarity of the voltage will
determine the direction, and its magnitude will cause the wheels to turn more or
less sharply. The orange, brown, and red wires are interesting as their purpose is a
bit difficult to discover. To do this, you can hook up a voltmeter and an oscilloscope.
The orange and brown wires are straightforward, they are 3.5 volt and GND,
respectively. The red wire is a control wire, the signal is a Pulse Width Modulation
(PWM) signal, a square wave at 330 Hz and 10 percent duty cycle, and it is an enable
control signal. Without the signal, the turning mechanism is not engaged.

Now that you understand the signals that are used in the original system to control
the car, you can replicate those with Raspberry Pi. To control the steering, Raspberry
Pi needs to provide a 3.3 volt DC signal, a GND signal, a 330 Hz, a 3.3 volt PWM
signal, and the +/- 6 volt drive signal to the turning mechanism. To make these
available, you can use the existing cables, solder some additional cable length, and
use some shrink-wrap tubing to create a new connector with the connector that is
available in the car:

Adding Raspberry Pi to an RC Vehicle

[8]

You'll also need the access to the rear wheel compartment of your car to drive the
two rear wheels. The following is how the access will look:

Also, you'll need to connect the battery power to Raspberry Pi, here is the modified
connection to get the battery power from the car:

Chapter 1

[9]

To control the car, you'll need to provide each of the control signals. The +/- 6 volt
signals cannot be sourced directly by Raspberry Pi. You'll need some sort of motor
controller to source the signal to control the rear wheel drive of the car and turning
mechanism of the car. The simplest way to provide these signals is to use a motor
shield, an additional piece of hardware that installs at the top of Raspberry Pi and can
source the voltage and current to power both of these mechanisms. The RaspiRobot
Board V2 is available online and can provide these signals. Here is a picture:

The specifics on the board can be found at http://www.monkmakes.com/?page_
id=698. The board will provide two key signals to your RC car, the drive signal and
the turn signal. You'll need one more additional signal, the PWM signal that enables
the steering control. The following are the steps to connect Raspberry Pi to the board:

http://www.monkmakes.com/?page_id=698
http://www.monkmakes.com/?page_id=698

Adding Raspberry Pi to an RC Vehicle

[10]

1. First, connect the battery power connector to the power connector on the
board, as shown in the following:

2. Next, connect the rear drive signal to the motor 1 connectors on the board,
similar to the following image:

Chapter 1

[11]

3. Connect the front drive connector to the motor 2 connectors on the board, as
given in the following image:

4. Connect the 3.3 volt and GND connectors to the General Purpose Input/
Output (GPIO) pins of Raspberry Pi. Here is the layout of these pins:

Adding Raspberry Pi to an RC Vehicle

[12]

5. You'll use Pin 1 3.3V for the 3.3 volt signal and Pin 9 GND for the ground
signal. You'll connect one of the GPIO pins so that you can create the 320 Hz,
10 percent duty cycle signal to enable the steering. Connect Pin 12 GPIO18,
as shown in the following:

Now the hardware is connected.

Controlling the RC car using Raspberry
Pi in Python
The hardware is ready, now you can access all this functionality from Raspberry Pi.
First, install the library associated with the control board, found at http://www.
monkmakes.com/?page_id=698. Perform the following steps:

1. Run the command wget https://github.com/simonmonk/
raspirobotboard2/raw/master/python/dist/rrb2-1.1.tar.gz—this
will retrieve the library.

2. Then run tar -xzf rrb2-1.1.tar.gz—this will unarchive the files.
3. Type cd rrb2-1.1—this will change the directory to the location of the files.
4. Type sudo python setup.py install—this will install the files.

http://www.monkmakes.com/?page_id=698
http://www.monkmakes.com/?page_id=698

Chapter 1

[13]

Now you'll create some Python code that will allow you to access both the drive
motor and the steering motor. The code will look similar to the following:

The specifics on the code are as follows:

• import RPi.GPIO as GPIO: This will import the RPi.GPIO library, allowing
you to send out a PWM signal to the front steering mechanism.

• import time: This will import the time library, allowing you to use the
time.sleep(number_of_milliseconds), which causes a fixed delay.

• from rrb2 import *: This will import the rrb2 library, allowing you to
control the two DC motors. The rrb2 is the library you just downloaded
from GitHub.

• pwmPin = 18: This will set the PWM pin to GPIO Pin 18, which is physically
Pin 12 on the Raspberry Pi.

• dc = 10: This will set the duty cycle to 10 percent on the PWM signal.
• GPIO.setmode(GPIO.BCM): This will set the definition mode in the RPi.GPIO

library to the BCM mode, allowing you to specify the physical pin of the
PWM signal.

Adding Raspberry Pi to an RC Vehicle

[14]

• GPIO.setup(pwmPin, GPIO.OUT): This will set the PWM pin to an output so
that you can drive the control circuitry on the steering.

• pwm = GPIO.PWM(pwmPin, 320): This will initialize the PWM signal on the
proper pin and set the PWM signal to 320 Hz.

• rr = RRB2(): This will instantiate an instance of the motor controller.
• pwm.start(dc): This will start the PWM signal.
• rr.set_led1(1): This will light LED 1 on the motor controller board.
• rr.set_motors(1, 1, 1, 1): This will set both the motors to move so

that the vehicle goes in the forward direction. This command will allow you
to set the motors to forward or reverse and set it at a specific speed. The
first number is the speed of motor one and it goes from 0 to 1. The second
numbers is the direction of motor one, 1 is forward and 0 is reverse. The
third number is the speed of motor two, which also goes from 0 to 1, and the
fourth number is the reverse and forward setting of the second motor, either
1 or 0.

• print("Loop, press CTRL C to exit"): This will instruct the user how to
stop the program.

• while 1: This will keep looping until Ctrl + C is pressed.
• time.sleep(0.075): Causes the program to wait 0.075 seconds.
• pwm.stop(): This will stop the PWM signal.
• GPIO.cleanup(): This will cleanup the GPIO driver and prepare for

shutdown.

Now you can run the program by typing sudo python xmod.py. LED 1 on the
control board should turn on, the rear wheels should move in the forward direction,
and the steering should turn. This confirms that you have connected everything
correctly. To make this a bit more interesting, you can add more dynamic control of
the motors by adding some control code. The following is the first part of the python
code:

Chapter 1

[15]

Before you start, you may want to copy your python code in a new file, you can
call it xmodControl.py. In this code you'll have some additional import statements,
which will allow you to sense key presses from the keyboard without hitting the
enter key. This will make the real-time interface seem more real time. The getch()
function senses the actual key press.

Adding Raspberry Pi to an RC Vehicle

[16]

The rest of this code will look similar to the previous program. Now the second part
of this code is as follows:

The second part of the code is a while loop that takes the input and translates it into
commands for your RC car, going forward and backward and turning right and left.
This program is quite simple, you'll almost certainly want to add more commands
that provide more ways to control the speed and direction.

Accessing the RC car remotely
You can now control your RC Car, but you certainly want to do this without any
connected cables. This section will show you how to add a wireless LAN device
so that you can control your car remotely. The first step in doing this is to install a
Wireless LAN device. There are several possible ways to do this; however, the one
that works well, with full documentation, is described at https://learn.adafruit.
com/setting-up-a-raspberry-pi-as-a-wifi-access-point/overview.

https://learn.adafruit.com/setting-up-a-raspberry-pi-as-a-wifi-access-point/overview
https://learn.adafruit.com/setting-up-a-raspberry-pi-as-a-wifi-access-point/overview

Chapter 1

[17]

You should now be able to connect to your Raspberry Pi via the Wireless Access
Point. Once you've created the wireless access point, you can login via a VNC
connection, this way you can add a USB webcam to your car to make it even easier to
control. To do this, first download an application that can support a VNC connection.
You can get this on your Raspberry Pi using an application called vncserver. You'll
need to install a version of this on your Raspberry Pi by typing sudo apt-get
install tightvncserver in a terminal window on your Raspberry Pi.

TightVNC Server is an application that will allow you to remotely view your
complete graphical desktop. Once you have it installed, you can do the following:

1. You need to start the server by typing vncserver in a terminal window on
Raspberry Pi.

2. You will be prompted for a password and then asked to verify it, then you
will be asked if you'd like to have a view-only password. Remember the
password that you have entered, you'll need it to remotely login via a
VNC Viewer.

3. You'll need a VNC Viewer application for your remote computer. One choice
for Windows users is RealVNC, available at http://www.realvnc.com/
download/viewer/. When you run it, you will see the following:

http://www.realvnc.com/download/viewer/
http://www.realvnc.com/download/viewer/

Adding Raspberry Pi to an RC Vehicle

[18]

4. Enter the VNC Server address, which is the IP address of your Raspberry
Pi, and click on Connect. You will get a warning about an unencrypted
connection, select Continue and you will get the following pop-up window:

5. Type in the password that you entered while starting the vncserver, and
you will then get a graphical view of your Raspberry Pi, which looks like the
following screenshot:

Chapter 1

[19]

You can now access all the capabilities of your system; however, they may be slower
if you are doing a graphics-intense data transfer. To avoid having to type vncserver
each time you boot your Raspberry Pi, use the instructions given at http://www.
havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html.

Vncserver is also available via Linux. You can use an application called Remote
Desktop Viewer to view the remote Raspberry Pi GUI system. If you have not
installed this application, install it using the update software application based
on the type of Linux system you have. Once you have the software, perform the
following steps:

1. Run the application and you will get the following result:

http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html
http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html

Adding Raspberry Pi to an RC Vehicle

[20]

2. Make sure vncserver is running on Raspberry Pi; the easiest way to do this is
to log in using SSH and run vncserver at the prompt. Now click on Connect
on Remote Desktop Viewer. Fill in the screen as follows, under the Protocol
selection, choose VNC, and you will see the following screenshot:

3. Now enter the host IP address, make sure you include a :1 at the end and
then click on Connect. You'll need to enter the vncserver password that you
created when you first ran vncserver on Raspberry Pi, like this:

Chapter 1

[21]

You can see the graphical screen of Raspberry Pi. Now you are ready to observe the
output of a USB webcam connected to your car. This is quite straightforward, simply
plug in a USB webcam and download a video viewer. One such video viewer that
works well is luvcview. To install this, type sudo apt-get install luvcview.

With all these tools installed, you can now run vncview, bring up a luvcview
window so you can see what your RC Car is seeing and control it remotely by
running the xcmodControl.py program that you wrote earlier. The screen will
look similar to the following:

There are a lot of additions that you can make to your Raspberry Pi controlled car,
such as adding the joystick control or more autonomy. However, let's move on to the
next project.

Adding Raspberry Pi to an RC Vehicle

[22]

Summary
Now you know how to work with Raspberry Pi to add its capability to an existing
piece of hardware, in this case, an RC Car. In the next chapter, you'll learn how to
add Raspberry Pi to a toy robot that can walk, and make it talk and listen to the voice
commands.

[23]

Adding Raspberry Pi to a
Humanoid Robot

Modifying an RC car with Raspberry Pi is a wonderful project, but you can take this
idea even further by modifying different toys with Raspberry Pi. One class of toys
that are excellent candidates for our project are a set of robot toys by WowWee. You
can purchase these toys from the company directly at http://wowwee.com/, but you
can also find used versions of these toys on eBay for a significantly lower price.

In this chapter, you'll learn the following:

• How to send and receive voice commands
• How to interpret commands and initiate actions

There are several toys that have excellent possibilities. One such toy is the WowWee
Roboraptor. The following is an image of this robot:

http://wowwee.com/

Adding Raspberry Pi to a Humanoid Robot

[24]

Another option is the WowWee Robosapien. A picture of this robot is given in the
following image:

You'll use this robot for your project, as it has more functionality and is easier to
modify. Specifically, you're going to connect to the internal serial bus so that you, not
the remote, can send commands. You'll be adding Arduino UNO to handle the real-
time communications between Raspberry Pi and the robot. Here are the steps:

1. First, you'll need to disassemble the robot to get the access to the main
controller board. To do this, lay the robot face down, so that you have access
to the back. Remove the plate at the back by unscrewing the four screws that
hold it in place. Now, at the top of the exposed board, you will see the main
connector. The following is a close-up of the connector:

Chapter 2

[25]

There are only two wires that you are interested in. The first is the black wire,
it is the GND for the Robosapien system. The second is the white wire. This is
the serial connection that controls the command for the Robosapien.

2. So, you're going to want to connect a wire to the black wire, but you'll want
both ends of the black wire to stay connected to the system. To do this, melt a
bit of the insulation with a soldering iron and then solder another wire at this
point. The following is an image:

Adding Raspberry Pi to a Humanoid Robot

[26]

3. Now, snip the white wire and connect a wire to the end that is connected to
the white header connector, similar to this image:

You may want to add some heat-shrink tubing to cover your connections.

4. Finally, drill a hole in the back shell of the robot so that you can run both of
these cables out of the unit, as shown in the following image:

Chapter 2

[27]

5. You should also drill two more holes on either side of the shell; you can use
these to attach Raspberry Pi to the robot with cable ties. Now, you can put
the shell back onto the robot.

6. Now you'll connect these two wires to Arduino UNO. Other versions of
the Arduino board could also be used for this purpose. The reason you'll
need to use Arduino is that the bit patterns that are sent to the robot are at
a fairly high rate and need to be created by a processor dedicated to this
type of communication. This will allow Raspberry Pi to be involved in other
processor-intensive activities, such as speech or object recognition, and yet
keep the communication flowing at the right rate.

7. Connect the GND wire to one of the GND pins on Arduino. Then, connect
the other wire to Pin 9 on Arduino. These connections will look similar to the
following:

Adding Raspberry Pi to a Humanoid Robot

[28]

8. The final step is to create the code that will send the proper commands to the
Arduino board. The code is listed as follows:

volatile int viRobsapienCmd = -1; // A robosapien command
 sent over the UART request

// Some but not all RS commands are defined

#define RSTurnRight 0x80

#define RSRightArmUp 0x81

#define RSRightArmOut 0x82

#define RSTiltBodyRight 0x83

#define RSRightArmDown 0x84

#define RSRightArmIn 0x85

#define RSWalkForward 0x86

#define RSWalkBackward 0x87

#define RSTurnLeft 0x88

#define RSLeftArmUp 0x89

#define RSLeftArmOut 0x8A

#define RSTiltBodyLeft 0x8B

#define RSLeftArmDown 0x8C

#define RSLeftArmIn 0x8D

#define RSStop 0x8E

#define RSWakeUp 0xB1

#define RSBurp 0xC2

#define RSRightHandStrike 0xC0

#define RSNoOp 0xEF

#define RSRightHandSweep 0xC1

#define RSRightHandStrike2 0xC3

#define RSHigh5 0xC4

#define RSFart 0xC7

#define RSLeftHandStrike 0xC8

#define RSLeftHandSweep 0xC9

#define RSWhistle 0xCA

#define RSRoar 0xCE

int LedControl = 13; // Show when control on

int IROut= 9; // Where the echoed command will
 be sent from

Chapter 2

[29]

int bitTime=516; // Bit time (Theoretically 833
 but 516)

///

// Begin Robosapien specific code

///

// send the command 8 bits

void RSSendCommand(int command) {

 Serial.print("Command: ");

 Serial.println(command, HEX);

 digitalWrite(IROut,LOW);

 delayMicroseconds(8*bitTime);

 for (int i=0;i<8;i++) {

 digitalWrite(IROut,HIGH);

 delayMicroseconds(bitTime);

 if ((command & 128) !=0) delayMicroseconds(3*bitTime);

 digitalWrite(IROut,LOW);

 delayMicroseconds(bitTime);

 command <<= 1;

 }

 digitalWrite(IROut,HIGH);

 delay(250); // Give a 1/4 sec before next

}

// Set up RoboSpapien functionality

void RSSetup()

{

 pinMode(IROut, OUTPUT);

 pinMode(LedControl,OUTPUT);

 digitalWrite(IROut,HIGH);

 RSSendCommand(RSBurp);

}

// Loop for RoboSapien functionality

void RSLoop()

{

 digitalWrite(LedControl,HIGH);

 // Has a new command come?

Adding Raspberry Pi to a Humanoid Robot

[30]

 if(viRobsapienCmd != -1)

 {

 RSSendCommand(viRobsapienCmd);

 viRobsapienCmd = -1;

 }

 digitalWrite(LedControl,LOW);

}

void setup()

{

 Serial.begin(9600);

 Serial.println("RobSapien Start");

 RSSetup();

}

void loop()

{

 if (Serial.available() > 0) {

 // read the incoming byte:

 char str = Serial.read();

 switch (str) {

 case 'a':

 viRobsapienCmd = RSTurnRight;

 break;

 case 'b':

 viRobsapienCmd = RSRightArmUp;

 break;

 case 'c':

 viRobsapienCmd = RSRightArmOut;

 break;

 case 'd':

 viRobsapienCmd = RSTiltBodyRight;

 break;

 case 'e':

 viRobsapienCmd = RSRightArmDown;

 break;

 case 'f':

 viRobsapienCmd = RSRightArmIn;

Chapter 2

[31]

 break;

 case 'g':

 viRobsapienCmd = RSWalkForward;

 break;

 case 'h':

 viRobsapienCmd = RSWalkBackward;

 break;

 case 'i':

 viRobsapienCmd = RSTurnLeft;

 break;

 case 'j':

 viRobsapienCmd = RSLeftArmUp;

 break;

 case 'k':

 viRobsapienCmd = RSLeftArmOut;

 break;

 case 'l':

 viRobsapienCmd = RSTiltBodyLeft;

 break;

 case 'm':

 viRobsapienCmd = RSLeftArmDown;

 break;

 case 'n':

 viRobsapienCmd = RSLeftArmIn;

 break;

 case 'o':

 viRobsapienCmd = RSStop;

 break;

 case 'p':

 viRobsapienCmd = RSWakeUp;

 break;

 case 'q':

 viRobsapienCmd = RSBurp;

 break;

 case 'r':

 viRobsapienCmd = RSRightHandStrike;

Adding Raspberry Pi to a Humanoid Robot

[32]

 break;

 case 's':

 viRobsapienCmd = RSRightHandSweep;

 break;

 case 't':

 viRobsapienCmd = RSRightHandStrike2;

 break;

 case 'u':

 viRobsapienCmd = RSHigh5;

 break;

 case 'v':

 viRobsapienCmd = RSFart;

 break;

 case 'w':

 viRobsapienCmd = RSLeftHandStrike;

 break;

 case 'x':

 viRobsapienCmd = RSRightHandSweep;

 break;

 case 'y':

 viRobsapienCmd = RSLeftHandSweep;

 break;

 case 'z':

 viRobsapienCmd = RSWhistle;

 break;

 case 'A':

 viRobsapienCmd = RSRoar;

 break;

 default:

 viRobsapienCmd = RSNoOp;

 }

 }

 //RS routine

 RSLoop();

}

Chapter 2

[33]

This Arduino code will take an input from the Serial Monitor, in this case, a USB
connection from Raspberry Pi, and then turns it into the appropriate command for
the WowWee robot. Once you have uploaded the code to Arduino, either using an
external PC or Raspberry Pi, you can use the Arduino IDE's Serial Monitor capability
to send individual letter commands, and the robot should respond to the commands.

If you are unfamiliar with the Arduino IDE application, Arduino is
well documented at https://www.arduino.cc/, including how
to upload code and how to use the Serial Monitor to communicate
with the Arduino.

Now that the robot works, you can add the following Python program that will send
the commands we just saw:

To run this program, type python argControl.py f, and the robot will respond to
that command. To make this program executable without the python command, type
chmod +x argControl.py, and you will now be able to run the program by typing
./argControl.py f. You'll need this later when you want to run this program from
your voice control program.

https://www.arduino.cc/

Adding Raspberry Pi to a Humanoid Robot

[34]

Giving your robot voice commands
Now that your robot knows how to respond to the commands from the Python
program, you can now add the capability to your robot to respond to voice
commands. You'll also add the capability to allow your robot to speak, this will make
the robot more interactive.

To add these capabilities to your robot, you'll need to add some hardware. This
project requires a USB microphone and speaker adapter. Raspberry Pi itself has an
audio output but does not have an audio input. So, you'll need the following three
pieces of hardware:

• A USB device to plug in a microphone and speaker

• A microphone that can plug into the USB device

Chapter 2

[35]

• A powered speaker that can plug into the USB device

Fortunately, these devices are inexpensive and widely available. Make sure that
the speaker is powered because your board will generally not be able to drive a
passive speaker with enough power for your applications. The speaker can use
either internal battery power or can get its power from a USB connection.

Now, we move on to allowing Raspberry Pi access these devices. You can execute
the following instructions in either of the two following ways:

• If you are still connected to the display, keyboard, and mouse, log in to the
system and use the GUI by opening an LXTerminal window

• If you are only connected through LAN, you can do all this using an SSH
terminal window; and as soon as your board indicates that it has power,
open up an SSH terminal window using PuTTY or any similar terminal
emulator

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Adding Raspberry Pi to a Humanoid Robot

[36]

Plug the devices into a USB port. Once the terminal window comes up, type
cat /proc/asound/cards. You will get the following response:

There are two possible audio devices. The first is the internal Raspberry Pi audio that
is connected to the audio port and the second is your USB audio plugin. You could
use the USB audio plugin to record the sound and Raspberry Pi for the audio output
to play the sound. It is easier to just use the USB audio plugin to create and record
sound.

First, you will play some music to test whether the USB sound device is working.
You'll need to configure your system to search for your USB audio plugin and use
it as the default plugin to play and record sound. To do this, you'll need to add a
couple of libraries to your system. The first libraries are the Advanced Linux Sound
Architecture (ALSA) libraries. These will enable your sound system on Raspberry Pi
by performing the following steps:

1. Install two libraries that are associated with ALSA by typing sudo apt-get
install alsa-base alsa-utils

2. Then, install some files that help in providing the sound library by typing
sudo apt-get install libasound2-dev

Chapter 2

[37]

You'll use an application named alsamixer to control the volume of the input and
output of your USB sound card. To do this, perform the following steps:

1. Type alsamixer in the Command Prompt. You will see a screen that will be
similar to the following screenshot:

2. Press F6 and select your USB sound device using the arrow keys. For
example, refer to the following screenshot:

Adding Raspberry Pi to a Humanoid Robot

[38]

C-Media USB Audio Device is my USB audio device. You should now be
able to see a screen that looks similar to the following screenshot:

3. You can use the arrow keys to set the volume for both, the speakers and the
microphone. Use the M key to unmute the microphone. In the preceding
screenshot, MM is mute and oo is unmute.

4. Let's make sure that our system knows about our USB sound device. At
the Command Prompt, type aplay –l. You should now be able to see the
following screenshot:

Chapter 2

[39]

If this does not work, try sudo aplay –l. You are going to add a file to your home
directory with the name .asoundrc. This will be read by your system and used to set
your default configuration. To do this, perform the following steps:

1. Open the file named .asoundrc using the editor of your choice.
2. Type pcm.!default sysdefault:Set. The Set is the variable that appears

right after card 1: in the output of the aplay –l command.
3. Save the file. The file should appear as follows:

This will tell the system to use your USB device as default. Reboot your system
again.

Adding Raspberry Pi to a Humanoid Robot

[40]

Now you can play some music. To do this, you need a sound file and a device to
play it. You can copy a simple .wav file to your Raspberry Pi. If you are using a
Linux machine as your host, you can also use the scp command from the command
line to transfer the file. You can download some music on Raspberry Pi using a web
browser if you have a keyboard, mouse, and display connected. You are going to
use the application named aplay to play your sound. Type aplay Dance.wav to see
whether you can play music using the aplay music player. You will see the result
(and hopefully, hear it) as shown in the following screenshot:

If you don't hear any music, check the volume you set with alsamixer and the
power cable of your speaker. Also, aplay can be a bit finicky about the type of files
it accepts, so you may be required to try different .wav files until aplay accepts one.
One more thing to try, in case the system doesn't seem to know about the program, is
to type sudo aplay Dance.wav.

Chapter 2

[41]

Now that you can play sound, you can also record some sound. To do this, you'll
have to use the arecord program. At the prompt, type arecord -d 5 -r 48000
test.wav. This will record the sound at a sample rate of 48000 Hz per 5 seconds.
Once you have typed the command, either speak into the microphone or make some
other recognizable sound. You will see the following output on the terminal:

Once you have created the file, play it with aplay. Type aplay test.wav and
you should be able to hear the recording. If you can't hear your recording, check
alsamixer to make sure that your speakers and microphone are both unmuted.

Now you can play music or other sound files using your Raspberry Pi. You can
change the volume of your speaker and record your voice or other sounds on the
system. You're now ready for the next step.

Adding Raspberry Pi to a Humanoid Robot

[42]

Using eSpeak to allow your robot to
respond in voice
Sound is an important tool in our robotic toolkit, but you will want to do more than
just play music. Let's make our robot speak. You're going to start with enabling
eSpeak, an open source application that provides us with a computer voice. It is a
voice generation application. To get this free functionality, download the eSpeak
library by typing sudo apt-get install espeak at the prompt. The download
may take a while but the prompt will reappear when it is complete. Now, let's see if
Raspberry Pi has a voice. Type the espeak "hello" command. The speaker should
emit a hello in a computer generated voice. If it does not, check the speakers and the
volume level.

Now that we have a computer generated voice, you may want to customize it.
eSpeak offers a fairly complete set of customization features, including a large
number of languages, voices, and other options. To access these, you can type in the
options at the command-line prompt. For example, type in espeak -v +f3 "hello"
and you should be able to hear a female voice. You can even add a Scottish accent by
typing espeak –v en-sc +f3 "hello".

There are a lot of choices with respect to the voices that you might use with eSpeak.
Feel free to play around and choose your favorite voice. Then, edit the default file
to set it to this voice. This default file is in the home directory of eSpeak. However,
don't expect to get the kind of voices that you hear from computers in the movies;
those are actors and not computers. Although, one day, we will hopefully reach a
stage where the computers will sound a lot more like real people.

Using pocketsphinx to accept your voice
commands
Now that your robot can talk, you'll also want it to obey voice commands. This
section will show you how to add speech recognition to your robotic projects. This
isn't nearly as simple as the speaking part but, thankfully, you have some significant
help from the open source development community. You are going to download a
set of capabilities named pocketsphinx, which will allow our project to listen to our
commands.

Chapter 2

[43]

The first step is downloading the pocketsphinx capabilities. Unfortunately, this is
not quite as user-friendly as the eSpeak process, so follow along the steps carefully.
There are two possible ways to do this. If you have a keyboard, mouse, and display
connected or want to connect through vncserver, you can do this graphically by
performing the following steps:

1. Go to the Sphinx website hosted by Carnegie Mellon University (CMU)
at http://cmusphinx.sourceforge.net. This is an open source project
that provides you with the speech recognition software. With our smaller
embedded system, we will be using the pocketsphinx version of this code.

2. You will need to download two pieces of software modules—sphinxbase
and pocketsphinx. Select the DOWNLOAD option at the top of the page and
then find the latest version of both of these packages. Download the .tar.
gz version of the packages and move them to the /home/pi directory of your
Raspberry Pi.

Another way to accomplish this is to use Wget directly from the command prompt of
Raspberry Pi. If you want to do it this way, perform the following steps:

1. To use Wget on your host machine, find the link to the file that you wish to
download. In this case, go to the Sphinx website hosted by CMU at http://
cmusphinx.sourceforge.net. This is an open source project that provides
you with the speech recognition software. With your smaller embedded
system, you will be using the pocketsphinx version of this code.

2. You will need to download two pieces of software modules, namely
sphinxbase and pocketsphinx. Select the DOWNLOAD option at the top
of the page and then find the latest version of both these packages. Right-
click on the sphinxbase-0.8.tar.gz file (considering that 0.8 is the latest
version) and select Copy link location. Now, open a PuTTY window in
Raspberry Pi, and after logging in, type wget and paste the link that you just
copied. This will download the .tar.gz version of sphinxbase. Now follow
the same procedure with the latest version of pocketsphinx.

Before you build these, you need two libraries. The first library is libasound2-dev.
Type sudo apt-get install libasound2-dev. The second library is called Bison.
This is a general purpose, open source parser that will be used by pocketsphinx. To
get this package, type sudo apt-get install bison.

http://cmusphinx.sourceforge.net
http://cmusphinx.sourceforge.net
http://cmusphinx.sourceforge.net

Adding Raspberry Pi to a Humanoid Robot

[44]

Once everything is downloaded and installed, you can build pocketsphinx. Firstly,
your home directory, with the .tar.gz files of pocketsphinx and sphinxbase, should
look as shown in the following screenshot:

To unpack and build the sphinxbase module, type
sudo tar –xzvf sphinx-base-0.y.tar.gz, where y is the version
number; in our example, it is 8. This should unpack all the files from the archive
into a directory named sphinxbase-0.8. Now type cd sphinxbase-0.8.
Listing of the files should look something similar to the following screenshot:

Chapter 2

[45]

To build the application, start by issuing the sudo ./configure --enable-fixed
command. This command will check whether everything is okay with the system
and then configure a build.

Now you are ready to actually build the sphinxbase code base. This is a two-step
process, which is as follows:

1. Type sudo make and the system will build all the executable files.
2. Type sudo make install to install all the executables onto the system.

Now, you need to make the second part of the system—the pocketsphinx code. Go
to the home directory, and decompress and unarchive the code by typing tar -xzvf
pocketsphinx-0.8.tar.gz. Now, the files will be unarchived and you can build the
code. Installing these files is a three-step process, as follows:

1. Type cd pocketsphinx-0.8 to go to the pocketsphinx directory, and then
type sudo ./configure to check whether you are ready to build the files.

2. Type sudo make and wait for everything to build.
3. Type sudo make install.

Several possible additions to our library installations will be useful
later if you are going to use your pocketsphinx capability with Python
as the coding language. You can install Python-Dev using sudo apt-
get install python-dev. Similarly, you can get Cython using
sudo apt-get install cython. You can also choose to install
pkg-config, a utility that can sometimes help in dealing with complex
compiles. Install it using sudo apt-get install pkg-config.

Once the installation is complete, you'll need to let the system know where your files
are. To do this, use your favorite editor and change the /etc/ld.so.conf file by
adding a line to the file so it looks as follows:

Adding Raspberry Pi to a Humanoid Robot

[46]

Type sudo /sbin/ldconfig and the system will be aware of your pocketsphinx
libraries. Now that everything is installed, you can try our speech recognition.
Reboot the system and then type cd /home/pi/pocketsphinx-0.8/src/programs
to go to a directory to try a demo program; then type ./pocketsphinx_continuous.
This program takes input from the microphone and turns it into speech. After
running the command, you'll get a lot of irrelevant information, and then you will
see the following screenshot:

The INFO and Warning statements come from the C or C++ code and are there for
debugging purposes. Initially, they will warn you that they cannot find your Mic and
Capture elements, but when Raspberry Pi finds them, it will print out READY.....
If you have set things up as described previously, you are ready to give your
Raspberry Pi a command. Say hello into the microphone. When it senses that you
have stopped speaking, it will process your speech and after giving lots of irrelevant
information, it will eventually show the commands, as shown in the following
screenshot:

Chapter 2

[47]

Notice the 000000000: hello command. It recognized your speech! You can try
other words and phrases too. The system is very sensitive so it may pick up the
background noise. You are also going to find that it is not very accurate. We'll deal
with this in a moment. To stop the program, press Ctrl + C.

There are two ways to make your voice recognition more accurate. One is to train
the system to understand your voice more accurately. This is a bit complex but if you
want to know more, go to the pocketsphinx website of CMU.

The second way to improve accuracy is to limit the number of words that your
system uses to determine what you are saying. The default has literally thousands
of word possibilities, so pocketsphinx may choose the wrong word if the two
words are close. To avoid this, you can make your own dictionary to restrict the
words pocketsphinx has to choose from. To create your own dictionary, follow the
instructions at http://cmusphinx.sourceforge.net/wiki/tutorialdict.

Your system can now understand your voice commands! In the next section of this
chapter, you'll learn how to use this input for the project to respond.

http://cmusphinx.sourceforge.net/wiki/tutorialdict

Adding Raspberry Pi to a Humanoid Robot

[48]

Interpreting commands and initiating
actions
Now that the system can both hear and speak, you'll want to provide the robot with
the capability to respond to your speech and execute some commands based on
the speech input. Next, you're going to configure the system to respond to simple
commands.

In order to respond, we're going to edit the continuous.c code in the /home/pi/
src/programs directory. We could create our own C file, but this file is already set
up in the makefile system and is an excellent starting spot. You can save a copy of
the current file as continuous.c.old so that you can always get back to the starting
program if required. Then, you will need to edit the continuous.c file. It is very
long and a bit complicated. However, you are specifically looking for a section in
the code, which is shown in the following screenshot. Look for the comment line /*
Exit if the first word spoken was GOODBYE */ comment line.

Chapter 2

[49]

In this section of the code, the word has already been decoded and is held in the hyp
variable. You can add the code here in order to make your system do things based
on the value associated with the word that we decoded. First, let's try to add the
capability to respond to hello and goodbye to see whether we can get the program
to respond to these commands. You'll need to make changes to the code in the
following manner:

• Find the /* Exit if the first word spoken was GOODBYE */ comment.
• In the statement if (strcmp(word, "goodbye") == 0), change word to

hyp and goodbye to good bye.
• Insert brackets around the break; statement and add the system("espeak"

\"good bye\""); statement just before the break; statement.
• Add the other else if statement to the clause by typing else if

(strcmp(hyp, "hello") == 0). Add brackets after the else if statement
and inside the brackets, type system("espeak" \"hello\"");.

The file should now look as follows:

Adding Raspberry Pi to a Humanoid Robot

[50]

Now you need to rebuild your code. As the makefile system already knows how to
build the pocketsphinx_continuous program, it will rebuild the application if you
make a change to the continuous.c file at any point of time. Simply type sudo make
and the file will compile and create a new version of pocketsphinx_continuous. To
run your new version, type ./pocketsphinx_continuous. Make sure that you type
the ./ at the start.

If everything is set correctly, saying hello should result in a response of hello from
your Raspberry Pi. Saying goodbye should elicit a response of goodbye and also
shut down the program. Notice that the system command can be used to run any
program that runs with a command line. Now, you can use this program to start and
run other programs based on the commands. In this case, you'll want to change the
code shown to call your python code to issue the commands to the robot, as shown
in the following screenshot:

In this case, you'll hook up just two of the many commands that your robot could
respond to; you can add the rest of the commands to your continuous.c file using
this same technique. Now you can give your robot voice commands and it will
obey them! Using the directions from the earlier section of this chapter, you can also
control you robot remotely using single character commands and add a web cam.
You have your very own robotic servant!

Chapter 2

[51]

Summary
In this chapter, you've learned the basics of how to hack an RC toy car and a toy
robot using Raspberry Pi. Feel free to experiment; you can see how easily you can
play all sorts of games with your new toys. In the next chapter, you'll learn how to
build a robot from the ground up, in this case, a robot that can plan its own path
through a set of barriers.

[53]

Building a Tracked Vehicle
That Can Plan Its Own Path

Now that you are comfortable using Raspberry Pi, the next project you'll tackle is
building a tracked robot that can explore and map a room autonomously.

In this chapter, you'll learn the following:

• How to use the General-purpose input/output (GPIO) pins to control the
speed of a DC motor

• How to control your mobile platform programmatically using Raspberry Pi
• How to connect Raspberry Pi to a USB sonar sensor
• How to connect a digital compass to Raspberry Pi
• How to plan a path for your tracked vehicle

Building a Tracked Vehicle That Can Plan Its Own Path

[54]

Basic motor control and the tracked
vehicle
To build this project, you'll want to start with either a wheeled or a tracked vehicle.
There are many options. The following is an image of a tracked platform:

As with the RC car or toy robot, it is difficult to directly connect Raspberry Pi to the
DC motors that control the speed and direction of the tracked vehicle. Instead, you'll
want to add a DC motor controller for this. You'll use the RaspiRobot Board V2 for
this project, the same board that was introduced in Chapter 1, Adding Raspberry Pi to
an RC Vehicle.

The board will provide the drive signals for the tracked vehicle. By driving each
motor separately, you'll also be able to turn the vehicle. By reversing the signals,
you'll be able to change the vehicle's direction and make very sharp turns. The
following are the steps to connect the motor control board:

1. Place the motor control board onto the Raspberry Pi.
2. Now, connect the battery power connector to the power connector on the

board. Use a battery of 6 to 7 volts, you can either use a 4 AA battery holder
or 2S LiPo RC battery. Connect the ground and power wires to the motor
control board.

Chapter 3

[55]

3. Next, connect one of the drive signals to the motor 1 connectors on the board.
Connect motor 1 to the right motor and motor 2 to the left.

4. Then, connect the second drive connector to the motor 2 connectors on the
board.

The entire set of connections will look like this:

Now you are ready to drive your tracked vehicle using Raspberry Pi.

Building a Tracked Vehicle That Can Plan Its Own Path

[56]

Controlling the tracked vehicle using
Raspberry Pi in Python
The first step to access the functionality is to install the library associated with the
control board, which can be found at http://www.monkmakes.com/?page_id=698.
You'll create a Python code that will allow you to access the two motors, similar to
what you did in the first chapter. The first part of the code, which should look almost
the same as the code that you created in the first chapter, will look as follows:

http://www.monkmakes.com/?page_id=698

Chapter 3

[57]

Now, the second part of the code that will drive the two different motors based on
whether you want to go forward, backward, or turn right or left is as follows:

Building a Tracked Vehicle That Can Plan Its Own Path

[58]

As previously discussed, the rr.set_motors() function allows you to specify the
speed and direction of each motor independently. Now that you have the basic
code to drive your tracked vehicle, you'll need to modify this code so that you can
call these functions from another Python program. You'll also need to add some
calibrated movement so that your tracked vehicle is able to turn at a certain angle
and move forward a set distance. The following is what the code would look like:

The time.sleep(angle/20) command in the turn_right(angle) and turn_
left(angle) functions allows the tracked vehicle to move for the right amount
of time so that the vehicle moves through the desired angle. You many need to
modify this number to get the correct angle of movement. The time.sleep(value)
command moves the robot for a specific time based on the number stored in value.
Now that you can move your tracked vehicle, you'll need to connect the sensors to it
to know what is going on around the tracked vehicle.

Chapter 3

[59]

Connecting Raspberry Pi to a USB sonar
sensor
One of the easiest ways to sense the presence of objects is to use a sonar sensor.
Before adding this capability to your system, here's a little tutorial on sonar sensors.
Sonar sensors use ultrasonic sound to calculate the distance from an object. The
sound wave travels out from the sensor, as illustrated in the following figure:

The device emits a sound wave 10 times a second. If an object obstructs these waves,
the waves will reflect off of the object and then return to the sensor, as shown in the
following figure:

Building a Tracked Vehicle That Can Plan Its Own Path

[60]

The sensor then measures the returning waves. It uses the time difference between
when the sound wave was emitted and when it returned in order to measure its
distance from the object.

Sonar sensors are also quite accurate, normally with a small percentage
error, and are not affected by the lighting or color in the environment.

There are several choices if you want to use a sonar sensor to sense the distance. The
first option is to use a sonar sensor that connects to the USB port. The following is an
image of a USB sonar sensor:

This is the USB-ProxSonar-EZ sensor and can be purchased directly from MaxBotix
or on Amazon. There are several models, each has a different distance specification.
However, they all work in the same way. There is an inexpensive solution that can be
connected to the GPIO of the Raspberry Pi. The following is an image of this sort of
inexpensive sonar sensor:

Chapter 3

[61]

This sensor is less expensive and easy to use. Although it takes a bit of processing
power to coordinate the efforts of timing to send and receive signals, the Raspberry
Pi 2 Model B has the processing power needed.

There are two ways to connect the sensor to Raspberry Pi. You can connect it directly
to the motor controller board, as discussed earlier in this chapter. If you are going to
do that, there is special connector for the sonar sensor. Here is an image:

To use this connector, simply connect the Vcc pin on the sensor to the 5V pin on
the board, the Trig pin on the sensor to the T pin on the board, the Echo pin on the
sensor to the E pin on the board, and the Gnd pin on the sensor to the GND pin on
the board. You can then use the library for the motor controller board and simply call
the rr.get_distance() function.

Building a Tracked Vehicle That Can Plan Its Own Path

[62]

The following are the steps to set up this sonar sensor to sense the distance in case
you want to connect it directly to Raspberry Pi's GPIO:

1. Connect it to the GPIO pins on the Raspberry Pi. The first step is to
understand the GPIO pins for the Raspberry Pi 2 Model B. Here is a diagram
of the layout of the pins:

In this case, you'll need to connect to the 5 volt connection of the Raspberry
Pi pin 2. You also need to connect to the GND, which is pin 6 on Raspberry
Pi. Pin 16 is used as an output trigger pin and Pin 18 (GPIO24) as an input to
time the echo from the sonar sensor.

Chapter 3

[63]

2. Now that you know the pins you have to connect to, you'll connect the sonar
sensor. There is a problem, as you can't connect the 5 volt return from the sonar
sensor directly to the Raspberry Pi GPIO pins, they want 3.3 volts. You need to
build a voltage divider that will reduce the 5 volts to 3.3 volts. This can be done
with two resistors, which are connected as shown in the following diagram:

For more information on how the voltage divider works in this configuration,
refer to http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-
sensor-on-the-raspberry-pi. The combination of these two resistors will
reduce the voltage to the desired levels. You may want to put all of this on a
small breadboard, as shown in the following:

http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi

Building a Tracked Vehicle That Can Plan Its Own Path

[64]

Finally, connect the sensor to the Raspberry Pi, like this:

3. Now that the device is connected, you'll need a bit of code to read in the
value; make sure it is settled (a stable measurement), and then convert it
to distance. Here is the Python code for this program:

Chapter 3

[65]

4. Now you should be able to run the program and get a result, as shown in the
following screenshot:

Using this type of sonar sensor provides an inexpensive way to find objects. The final
step is to turn this code into a library so that you can call it from the main vehicle
program, as shown in the following screenshot:

Building a Tracked Vehicle That Can Plan Its Own Path

[66]

You can now use this functionality to detect objects when you do your path planning
capabilities later in the chapter.

Connecting a digital compass to the
Raspberry Pi
One of the important pieces of information that might be useful for your robot, if it is
going to plan its own path, is its direction of travel. So, let's learn how to hook up a
digital compass to the Raspberry Pi.

There are several chips that provide digital compass capability, one of the most
common is the HMC5883L, a 3-axis digital compass chip. This chip is packaged onto
a module by several companies but almost all of them result in a similar interface.
Here is a picture of one the GY-271 HMC5883L triple axis compass magnetometer
sensor module available at a number of online retailers:

Chapter 3

[67]

This type of digital compass uses magnetic sensors to measure the earth's magnetic
field. The output of these sensors is then made accessible to the outside world
through a set of registers that allow the user to set things like the sample rate and
continuous or single sampling. The X, Y, and Z directions are the output using
registers as well.

The connections to this chip are straightforward: the device communicates with
Raspberry Pi using the I2C bus. If you are using the motor controller, then you can
connect the device to the I2C bus on the controller board, and if you are using the
motor controller to connect to the LIDAR, you'll need to connect the I2C bus to the
GPIO pins on Raspberry Pi. At the back of the module, the connections are labelled
as shown in the following image:

You then connect the module to the GPIO pins on Raspberry Pi. You need to connect
the VCC pin on the module to Pin 1 3.3 V on Raspberry Pi and GND to Pin 9 GND.
Then connect SCL on the module to Pin 5 GPIO3 and SDA to Pin 3 GPIO2 on the
Raspberry Pi. Note that you will not connect the DRDY (Data Ready) pin. Now, you
are ready to communicate with the device.

Building a Tracked Vehicle That Can Plan Its Own Path

[68]

Accessing the compass
programmatically
Now that the device is connected, you'll need to configure access via the software.
Following are the steps:

1. In order to access the compass capability, you'll need to enable the I2C library
on Raspberry. The first step in enabling the analog-to-digital converter
(ADC) is to enable the I2C interface. The I2C interface is a synchronous serial
interface and provides more performance than an asynchronous Rx/Tx serial
interface. The SCL data line provides a clock while the data flows on the SDA
line. The bus also provides addressing so that more than one device can be
connected to the master device at the same time. To enable this bus, run sudo
raspi-config and select the 8 Advanced Options, as follows:

2. Then go to the A7 I2C selection and enable the I2C, as shown in the
following:

Chapter 3

[69]

3. Make all the selections to enable the I2C interface and load the library,
and then reboot Raspberry Pi.

4. You'll also need to edit the /etc/modules file and add the following two lines:

Building a Tracked Vehicle That Can Plan Its Own Path

[70]

5. Reboot Raspberry Pi. Install the I2C toolkit by typing sudo apt-get
install i2c-tools. You can see whether I2C is enabled by typing sudo
i2cdetect -y 1, and then you should see something like this:

You can see the device at 1e. Now you can communicate with your digital compass.
Here are the steps:

1. You'll need to create a Python program. Before you create your Python code,
you need to install the SMBus capability to access I2C. This can be done by
typing sudo apt-get install python-smbus.

Chapter 3

[71]

2. Now reboot Raspberry Pi and create the following Python code:

Building a Tracked Vehicle That Can Plan Its Own Path

[72]

3. Run the code by typing python compass.py, and you should see the
following:

4. The last step is to create a python file and function that can be imported into
your tracked vehicle python program. Here is the python code:

Chapter 3

[73]

Now you can add direction to your project! As you move the device
around, you can query the bearing value to see the direction of your
tracked vehicle. Make sure that you position your compass away
from your electronics, otherwise their magnetic fields may cause
distortion on your compass measurements.

The program we just saw is a basic program. If you go to http://think-bowl.com/
raspberry-pi/i2c-python-library-3-axis-digital-compass-hmc5883l-with-
the-raspberry-pi/, you can find more about the other features that are available
with this library. Now, you can add the compass capability with just a few lines of
code to your tracked robot control program.

Dynamic path planning for your robot
Now that you can see the barriers and also know the direction, you'll want to do
dynamic path planning. Dynamic path planning simply means not having the
knowledge of all the possible barriers before encountering them. Your robot will
have to decide how to proceed while it is in motion. This can be a complex topic
but there are some basic concepts that you can understand and apply as you instruct
your robot to move around in its surrounding. Let's first address the problem in
which you know where you want to go and need to execute a path without barriers
and then add the barriers to the path.

Basic path planning
In order to learn about the dynamic path planning, which is planning a path with
potential unknown barriers, you need a framework to understand where your robot
is and to determine the location of the goal. One of the common framework is an x-y
grid. The following is the diagram of such a grid:

http://think-bowl.com/raspberry-pi/i2c-python-library-3-axis-digital-compass-hmc5883l-with-the-raspberry-pi/
http://think-bowl.com/raspberry-pi/i2c-python-library-3-axis-digital-compass-hmc5883l-with-the-raspberry-pi/
http://think-bowl.com/raspberry-pi/i2c-python-library-3-axis-digital-compass-hmc5883l-with-the-raspberry-pi/

Building a Tracked Vehicle That Can Plan Its Own Path

[74]

There are three key points on this grid that you'll need to understand, here is an
explanation of these:

1. The lower left point is a fixed reference position. The directions x and y
are also fixed and all other positions will be measured with respect to this
position and these directions. Each unit is measured with respect to how far
the unit travels in time in a single unit.

2. Another important point is the starting location of your robot. Your robot
will then keep a track of its location using its x and y coordinates, the
position with respect to some fixed reference position in the x direction, or
the position with respect to some fixed reference position in the y direction to
the goal. It will use the compass to keep track of these directions.

3. The third important point is the position of the goal, also given in x and y
coordinates with respect to the fixed reference position. If you know the
starting location and angle of your robot, you can plan an optimum (shortest
distance) path to this goal. To do this, you can use the goal location, robot
location, and some fairly simple math to calculate the distance and angle
from the robot to the goal.

To calculate the distance, use the given equation:

() ()()2 2d Xgoal Xgoal Ygoal Yrobot= − + −

You'll use this equation to tell your robot how far to travel to reach the goal. A
second equation will tell your robot the angle at which it needs to travel:

arctan Ygoal Yrobot
Xgoal Xrobot

θ
 −

= −

Chapter 3

[75]

Here is the graphical representation of these two pieces of information:

Now that you have a goal angle and distance, you can program your robot to move.
To do this, you will write a program to do the path planning and call the movement
functions you created earlier in this chapter. You will need to know the distance that
your robot travels in a span of time so that you can tell your robot in time units, and
not distance units, how far to travel.

You'll also need to be able to translate the distance that might be covered by your
robot in a turn; however, this distance may be so small as to be of no importance. If
you then know the angle and distance, you can move your robot to the goal.

Here are the steps that you will program:

1. Calculate the distance in units that your robot will travel to reach the goal.
Convert this into a number of steps to achieve this distance.

2. Calculate the angle at which your robot will need to travel to reach the goal.
You'll use the compass and your robot's turn functions to turn and achieve
this angle.

3. Now call the step functions for a required number of times to move your
robot the correct distance.

Building a Tracked Vehicle That Can Plan Its Own Path

[76]

That's it. Now we will use a very simple python code that executes the steps we
just saw, using the functions to move the robot forward and turn it. In this case, it
makes sense to create a file called robotLib.py with all the functions that do the
actual servo settings to move the biped robot forward and turn the robot. You'll
then import these functions using the from robotLib import * statement and
your python program can call these functions. This makes the path planning Python
program much smaller and more manageable. You'll do the same thing with the
compass program, using the from compass import * command.

For more information on how to import the functions from one python
file to another, refer to http://www.tutorialspoint.com/python/
python_modules.htm

Here is a screenshot of the program:

In this program, the user enters the goal location and the robot decides the shortest
direction to the desired location by reading the angle. To make it simple, the robot
is placed in the grid, heading in the direction of angle of 0 degrees. If the goal angle
is less than 180 degrees, the robot will turn right. If it is greater than 180 degrees, the
robot will turn left. The robot turns until the desired angle and its measured angle
are within a few degrees. Then, the robot takes the number of steps to reach the goal.

http://www.tutorialspoint.com/python/python_modules.htm
http://www.tutorialspoint.com/python/python_modules.htm

Chapter 3

[77]

Avoiding obstacles
Planning paths without obstacles, as has been shown, is quite easy. However, it
becomes a bit more challenging when your robot needs to walk around the obstacles.
Let's look at the case where there is an obstacle in the path that you calculated
previously. It might look similar to the following diagram:

You can still use the same path planning algorithm to find the starting angle;
however, you'll now need to use your sonar sensor to detect the obstacle. When
your sonar sensor detects the obstacle, you'll need to stop and recalculate the path
to avoid the barrier, and also recalculate the desired path to the goal. One very
simple way to do this is, when your robot senses a barrier, to turn right at 90 degrees,
move a fixed distance, and then recalculate the optimum path. When you turn
back to move towards the target, if you sense no barrier, you will move along the
optimum path.

Building a Tracked Vehicle That Can Plan Its Own Path

[78]

However, if your robot encounters the obstacle again, it will repeat the process until it
reaches the goal. In this case, using these rules, the robot will travel the following path:

To sense the barrier, you'll use the library calls to the sensor. You can add more
accuracy to this robot using the compass to determine your angle. You can do that
by importing the compass capability using from compass import *. You can also
use the time library and the time.sleep command to add delay among the different
statements in the code. You'll need to change your track.py library so that the
commands don't have a fixed ending time, as follows:

Chapter 3

[79]

The following is the first part of this code, the two functions that provide the
capability to turn to a known angle using the compass, and a function to calculate the
distance and angle and to turn the tracked vehicle at that angle:

Building a Tracked Vehicle That Can Plan Its Own Path

[80]

The second part of this code shows the main loop. The user enters the robot's current
position and desired end position in x and y coordinates. The code calculates the angle
and distance and starts the robot on its way. If a barrier is sensed, the unit turns 90
degrees, goes one units distance, and then recalculates the path to the end goal:

Now, this algorithm is quite simple, but there are others that have much more
complex responses to barriers. You can also see that by adding sonar sensors to the
sides, your robot can actually sense when the barrier has ended. You could also
provide more complex decision processes about which way to turn to avoid an
object. Again, there are many different path finding algorithms. Refer to http://
www.academia.edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_
Autonomous_Mobile_Robots for an example of this. These more complex algorithms
can be explored using the basic functionality that you have built in this chapter.

http://www.academia.edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_Autonomous_Mobile_Robots
http://www.academia.edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_Autonomous_Mobile_Robots
http://www.academia.edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_Autonomous_Mobile_Robots

Chapter 3

[81]

Summary
You've now added path planning to your tracked robot's capability. Your tracked
robot can not only move from point A to point B, but can also avoid barriers that
might be in the way. In the next chapter, you'll learn how to build a wheeled robot
that can play laser tag.

[83]

Building a Robot That Can
Play Laser Tag

In the previous chapters, you've modified an RC car to control it remotely using
Raspberry Pi, you've modified a toy robot to respond to your voice commands and
you've also built a tracked vehicle that uses sensors to avoid the barriers and arrive
at a desired location. In this chapter, you'll leverage some of these capabilities and
then add other capabilities so that you can build a pair of wheeled robots to play
laser tag.

In this chapter you'll learn the following:

• Construct a simple two-wheeled platform
• Leverage the wireless LAN interface and a USB webcam to control your

robot via a remote computer
• Add a joystick to your host computer
• Connect Raspberry Pi to a laser source
• Connect Raspberry Pi to a laser receiver
• Send and receive laser signals programmatically to enable the laser tag

capabilities of your robot

Building a Robot That Can Play Laser Tag

[84]

Building and controlling a basic wheeled
vehicle
To build this project, you'll want to start with a simple wheeled vehicle. There are
many possibilities. The following is a two wheeled vehicle available at many online
retail outlets like https://www.amazon.com or http://www.ebay.com:

First, you'll build the vehicle using the instructions that come with it. The vehicle
uses two DC motors, so you'll control the direction and speed of your robot using a
DC motor controller. Since it is so flexible and you are already familiar with it, you'll
use the RaspiRobot Board V2. The following is an image of the board:

https://www.amazon.com
http://www.ebay.com

Chapter 4

[85]

The specifics on the board can be found at http://www.monkmakes.com/?page_
id=698. Connections to the board are very similar to the tracked vehicle connections
that were described in Chapter 3, Building a Tracked Vehicle That Can Plan Its Own
Path. You'll place the motor controller on top of the vehicle, connect the battery to the
motor controller, and then connect both the motors, as shown in the following:

http://www.monkmakes.com/?page_id=698
http://www.monkmakes.com/?page_id=698

Building a Robot That Can Play Laser Tag

[86]

Two of each pair of the red and black connectors go to each one of the motors.
The other red and black connectors come from the battery. Once the motors are
connected, you are ready to start controlling the speed and direction of your wheeled
robot.

Using the robot library to
programmatically control your robot
First, install the libraries to support the motor control board, described in the second
chapter. Since this robot uses the same control as the wheeled vehicle, you'll use the
same code for the simplified library that you used as a library in the second chapter,
as shown here:

Chapter 4

[87]

The following is the simple code to exercise this program using keystrokes on
Raspberry Pi:

Run this program by typing sudo python input.py. If you get an error message
telling you that the program does not know about rr=RRB2(), you'll need to copy
the rrb2.py file from your installation of the libraries for the motor controller board
in the directory rrb2-1.1.

Now that you can control your wheeled robot from the console, let's connect it
wirelessly to allow remote control.

Building a Robot That Can Play Laser Tag

[88]

Controlling your robot from a remote
computer
The next step in constructing your laser tag playing robot is to add the remote
control. You'll first need to add the ability to control Raspberry Pi via a WLAN
connection. As noted in Chapter 1, Adding Raspberry Pi to an RC Vehicle, the section,
Accessing the RC Car remotely, showed you how to add a WLAN interface as an access
point. To prepare for the next section, you will want to configure two Raspberry Pis
with WLAN, one as an access point and other that you'll connect to the access point.
You'll also connect a USB web camera to Raspberry Pi on the wheeled robot for
control. Finally, when you have logged in to Raspberry Pi, this will function on the
remote computer. Log in to the second Raspberry Pi on the wheeled robot by typing
ssh –X pi@xxx.xxx.xxx.xxx, where the xxx.xxx.xxx.xxx is the IP address of
Raspberry Pi on the wheeled robot.

You can now luvcview to see the output of the webcam and you can run the input.
py program to control the wheeled robot. The output should look as follows:

Chapter 4

[89]

You can now type in l, r, f, b and control your robot. This is all well and good, but
the frame rate is a bit slow. If you make the resolution smaller, the system will run
faster. To do this type luvcview –s 160x120 to adjust to the desired resolution.
Now you can see and control your wheeled robot but you may want to add a game
controller to your host computer to control your robot more intuitively.

Adding a game controller to your remote
system
Typing the simple ascii characters will move your robot around, but what you might
want is a more intuitive and responsive control interface. The most practical way of
doing this is a game controller that has joysticks and several additional buttons. This
will make controlling your wheeled robot from the remote computer much easier.

To add the game controller, you'll need to first find a game controller that can be
connected to your computer. If you are using Microsoft Windows as the OS on the
host computer, then pretty much any USB controller that can be connected to a PC,
will work. The same type of controller also works if you are using Linux for the
remote computer. In fact, in this example, you'll use another Raspberry Pi as the
remote computer.

Since the joystick will be connected to the remote computer, you'll need to run two
programs, one on Raspberry Pi remote computer and other on Raspberry Pi on the
wheeled robot. You'll use the wireless LAN interface and a client-server model of
communication. You'll run the server program on Raspberry Pi that is the remote
computer and the client program on Raspberry Pi on the wheeled robot.

For an excellent tutorial on this type of model and how it is used
in a gaming application, refer to http://www.raywenderlich.
com/38732/multiplayer-game-programming-for-teens-
with-python.

Once you have the controller connected, you'll need to create a python program on
Raspberry Pi that will receive the signals sent from the client and send the correct
signals to the DC motors. This is the client program, but before you do that you'll
need a LAN communication layer library called PodSixNet. This will allow the two
applications to communicate. To install this, follow the instructions at https://
github.com/chr15m/PodSixNet/. You'll need to install some tools that python will
need to set up this capability by typing sudo apt-get install python-setuptools
before installing this library, which is not in the documentation. Now you are ready
to create the client program on Raspberry Pi on the wheeled platform. This will take
the joystick commands that are sent from the server program running on the remote
Raspberry Pi and translate them to commands that will control the wheeled robot.

http://www.raywenderlich.com/38732/multiplayer-game-programming-for-teens-with-python
http://www.raywenderlich.com/38732/multiplayer-game-programming-for-teens-with-python
http://www.raywenderlich.com/38732/multiplayer-game-programming-for-teens-with-python
https://github.com/chr15m/PodSixNet/
https://github.com/chr15m/PodSixNet/

Building a Robot That Can Play Laser Tag

[90]

The first part of the program shows the includes for the program and the main part
of the RobotGame class that sends the commands to the DC motor controller. The
laser fire print statements will be replaced later with a function call to fire the laser.
The following is the first part of the code:

The RobotGame class does the actual command translation and sends the commands
to the motor controller or the laser source (you'll learn how to hook up the laser
source in the final section of this chapter.)

Chapter 4

[91]

The following is a table of these controls:

Joystick control Wheeled robot control
Button 4, 5, 6, or 7 (these are the trigger
buttons on the front of the joystick)

Fire laser

Joystick 1 Up/Down Forward/Backward
Joystick 1 Right/Left Right/Left

Now, here is the second part of this class and the main body of the code:

The second part of the code initializes the connection to the remote server. The last
part of the code initializes the game loop, which loops while taking the input and
sends it to the motor controller and the DC motors.

Building a Robot That Can Play Laser Tag

[92]

You'll also need a server program running on the remote computer that will take
the signals from the game controller and send them to the client. You'll be writing
this code in python using python version 2.7, which can be installed from here.
Additionally, you'll also need to install the pygame library. If you are using Linux on
the remote computer, then type sudo apt-get install python-pygame. If you are
using Microsoft Windows on the remote machine, then follow the instructions given
at http://www.pygame.org/download.shtml.

You'll also need the LAN communication layer described earlier. You can find a
version that will run on Microsoft Windows or Linux at https://github.com/
chr15m/PodSixNet/. The following is a listing of the server code in two parts:

http://www.pygame.org/download.shtml
https://github.com/chr15m/PodSixNet/
https://github.com/chr15m/PodSixNet/

Chapter 4

[93]

This first part creates three classes, given as follows:

• The first class, ClientChannel, establishes a communication channel for
your project

• The second class, BoxesServer, sets up a server so that you can communicate
the joystick action to Raspberry Pi

• Finally, the Game class just initializes a game that contains everything that
you'll need

The following is the second part of the code:

Building a Robot That Can Play Laser Tag

[94]

This part of the code initializes the joystick so that all the controls can be sent to the
wheeled robot's Raspberry Pi.

You'll need to run these programs on both computers by entering the IP address
of the remote computer connected to the joystick. Here is what running the server
program on the remote computer looks like:

And the following is how the program will look when it is run on Raspberry Pi
connected to the wheeled robot:

Chapter 4

[95]

And finally, here is how the program will look on the remote computer when the
robot's Raspberry Pi is up and connected:

Now you can control your robot remotely using the joystick!

Connecting the laser source and target
The last step in creating the laser tag robots is to add the laser source and laser target,
as well as the code that will let you fire the source and detect a hit on the target. First,
you'll need to install the hardware.

Let's start with the laser source. You can just use a raw laser source, similar to the
one shown in the following image:

Building a Robot That Can Play Laser Tag

[96]

They are inexpensive and available on eBay and other online electronics retailers.
However, it is a bit easier if you get a laser source with a bit more supporting
circuitry, as shown in the following:

These are also available from a number of online retailers, you can find similar
modules. All you need is a way to turn on your laser with a control signal from
Raspberry Pi. In this module, you'll connect the device to one of the open collector
outputs on the motor controller board, the GND pin to OC1 pin, and the S pin to
other OC1 pin connection, as shown in the following image:

Chapter 4

[97]

Now, just a bit of code to add a function to turn on the laser, as given in the
following screenshot:

And finally, add the code we just saw to your main python file by importing it at the
top of the file and then calling the function when a button is pressed, as given in the
following screenshot:

Building a Robot That Can Play Laser Tag

[98]

Now when a button is pressed on the joystick, the laser should turn on. The final step
in enabling your laser tag robot is to add the target. In this case, to keep it simple,
you'll add a target device and simple python program, which you can run in another
window, that will signal when the target has been hit.

There are several possible approaches to add a target. You can build your own target
array using photo-sensitive resistors, as shown in the following image:

This is a bit difficult as Raspberry Pi doesn't have an analog-to-digital convertor
(ADC). An easier way to do this is to add a simple laser sensor, similar to the one
shown in the following image:

Chapter 4

[99]

This target will sense when the laser has struck and then output a signal so that you
know that you have been tagged. This particular device also has a laser source that
is always on, but you'll want to put a piece of electrical tape over the source or it will
give you away as you try to outwit your opponent. In this format, the sensor almost
has a 180 degree sensitivity but you may want to put two sensors back to back if you
want to be able to target the front and back of your wheeled robot simultaneously.

This device has three connections, a VCC, a GND, and a DOUT. You'll connect the
VCC connector to the Pin 1 3.3V connector, the GND connector to the Pin 6 GND
connector, and the DOUT connector to the Pin 18 GPIO 24 connector of the general
purpose input/output (GPIO) pins of Raspberry Pi. The following is a layout of
these pins:

Building a Robot That Can Play Laser Tag

[100]

The connections will look as shown in the following image:

Now for the code. It is quite simple, you'll query the input and when it goes from 1
to 0, you have a signal indicating that the laser has connected with your target. You
register it, as shown in the following screenshot:

Chapter 4

[101]

Now you'll mount your laser on the wheeled robot and laser target at the same
height for all the combatants; access your wheeled robot remotely; open the webcam
window, joystick control windows, and target detected window; and you're ready
for a good game of laser tag.

Summary
This chapter's result is a laser tag playing machine that can be guided remotely.
You can even build a simple battlefield with different maze elements and let your
wheeled robots loose to play a game of laser tag. In the next chapter, you'll move
onto something quite different, a machine that can draw.

[103]

A Robot That Can Draw
You've modified several toys, built a wheeled and tracked platform, and made them
all do amazing things. In this chapter, you'll move from a mobile platform to a fixed
one, with a specific goal in mind; to build a robot that can draw.

In this chapter, you'll learn:

• Constructing a drawing platform using servos and brackets
• Using a servo controller to control multiple servos
• Creating a Python program to control servos
• Using servos to create a drawing robot
• Connecting to a graphical Python program to control the movement of the

drawing robot

A Robot That Can Draw

[104]

Constructing a drawing platform using
servos and brackets
To begin the project, you'll first need to build a robot arm to do the drawing. There
are several robotic arms, which are available at many online electronics outlets and
eBay, that would do well for this application. A less expensive approach would be to
use a set of servo brackets and construct your robotic arm. The following is an image
of this arm:

To construct this arm, you can purchase a set of servo brackets on eBay or look for a
kit that uses a six degrees of freedom (DOF) mechanical robotic arm at any one of
the several online electronics retailers. You can either build the kit or an arm of your
own design. Remember to make sure that you get servos with enough torque. For
the upper end of the arm, almost any servo will do. For the servo attached at the base
and up the chain, you'll need servos with fairly significant torque capabilities. I like
to use the HS-645MG servos by Hitec for this application, they have metal internal
gearing and a torque rating of 133 oz/in when used with a 6V source.

Chapter 5

[105]

There are other configurations that are excellent for drawing. Refer
to http://www.instructables.com/id/Drawing-Robot/ or
http://blog.makeblock.cc/makeblock-drawing-robot/ for
examples. However, the robot arm that you are constructing is more of a
general purpose arm and can be repurposed for other tasks as well.

For the robot arm that you are building, you will need to control six different servos.
You could control a single servo using Raspberry Pi directly but since you're going to
control six of them, you'll want to use an external servo controller. Here is an image
of a six servo controller made by Pololu, available at https://www.pololu.com/
and other online electronics retailers:

To make your robotic arm move, you first need to connect the servo motor controller
to the servos. There are two connections that you need to make. The first is to the
servo motors and the second is to the battery. In this section, before connecting your
controller to your Raspberry Pi, you'll need connect your servo controller to your PC
or Linux machine to check whether everything is working or not.

But first, you'll need to connect the servos to the controller.

Connect your six servos to the connections that are marked from 0 to 5 on the
controller using the following configurations:

• 0: The servo to turn the base
• 1: The servo to control the up/down motion of the entire arm
• 2: The servo at the elbow of the arm
• 3: The servo to move the wrist up and down
• 4: The servo to turn the wrist
• 5: The servo to open and close the claw

http://www.instructables.com/id/Drawing-Robot/
http://blog.makeblock.cc/makeblock-drawing-robot/
https://www.pololu.com/

A Robot That Can Draw

[106]

The following is an image of the back of the controller; it will show you where to
connect your servos:

The following image illustrates the servos that are connected to the controller:

Here are the steps to connect the board to the power supply:

1. Now you need to connect the servo motor controller to your power supply.
If you have a USB style power connection, you can use FTDI's USB to UART
cable and then plug the red and black cables into the power connector on the
servo controller, as shown in the following image:

Chapter 5

[107]

2. Now, plug the other end of the USB cable into the USB port of the power
connection, as follows:

The hardware is now ready to control!

Configuring the software
Now, you can connect the motor controller to your PC or Linux machine to see
whether or not you can talk to it. Once the hardware is connected, you will use
some of the software provided by Pololu to control the servos. Download the Pololu
software from http://www.pololu.com/docs/0J40/3.a and install it using the
instructions given on the website. Once it is installed, run the software; you should
be able to see the window that is shown in the following screenshot:

http://www.pololu.com/docs/0J40/3.a

A Robot That Can Draw

[108]

You will first need to change the Serial mode configuration in Serial Settings, so
select the Serial Settings tab; you will see the window that is shown in the following
screenshot:

Make sure that USB Chained is selected; this will allow you to connect to and
control the motor controller over the USB. Now, go back to the main screen by
selecting the Status tab and you can now turn on the four servos. The screen will
look as shown in the following screenshot:

Chapter 5

[109]

Now, you can use the sliders to control the servos. Enable the four servos and make
sure that servo 0 moves the base; 1, the lowest servo; 2, the elbow of the arm; 3, the
up and down motion of the wrist, 4, the roll of the wrist, and 5, open and close the
claw.

You've checked the motor controllers and servos, now you'll connect the motor
controller to Raspberry Pi to control the servos from there. Remove the USB cable
from the PC and connect it to Raspberry Pi. The entire system will look similar to the
following image:

Let's now talk to the motor controller from your Raspberry Pi by downloading the
Linux code from Pololu at http://www.pololu.com/docs/0J40/3.b. To do this,
follow these steps:

1. First log on to Raspberry Pi using PuTTY and download the maestro_
linux_150116.tar.gz file. To do this, type wget http://www.pololu.com/
file/download/maestro-linux-150116.tar.gz?file_id=0J315 into a
terminal window.

http://www.pololu.com/docs/0J40/3.b

A Robot That Can Draw

[110]

2. To move this file into a file that can be used, type mv maestro-
linux-150116.tar.gz\?file_id\=0J315 maestro-linux-150118.tar.
gz. Unpack the file by typing tar –xzfv maestro_linux_150116.tar.gz.
This will create a folder called maestro_linux. Go to this folder by typing cd
maestro_linux and then type ls. You will see the output as shown in the
following screenshot:

3. The README.txt document will give you explicit instructions on how to
install the software. Unfortunately, you can't run Maestro Control Center
on your Raspberry Pi. The version of Maestro Control Center that is
considered doesn't support the Raspberry Pi graphical system, but you
can control your servos using the UscCmd command-line application.
First, type ./UscCmd --list; you will see the following screenshot:

Chapter 5

[111]

The software now recognizes that you have a servo controller. If you just type
./UscCmd, you can see all the commands that you could send to your controller.
When you run this command, you can see the result that is shown in the following
screenshot:

Notice that you can send a specific target angle to a servo, although if the target
angle is not within the range, this makes it a bit difficult to know where you are
sending your servo. Try typing ./UscCmd --servo 0, 10. The servo will most
likely move to its full angle position. Type ./UscCmd --servo 0, 0 and it will stop
the servo from trying to move. In the next section, you'll write software that will
translate your angles into the electronic signals that will move the servos.

If you haven't run the Maestro Controller tool and set the Serial Settings setting to
USB Chained, your motor controller may not respond.

A Robot That Can Draw

[112]

Creating a program in Python to control
the mobile platform
Now that you can control your servos by using a basic command-line program,
let's control them by programming movement in Python. In this section, you'll
create a Python program that will let you talk to your servos a bit more intuitively.
You'll issue commands that will tell a servo to go to a specific angle and it will go to
that angle. You can then add a set of such commands to allow your robot to move
forward, backward, or position the claw to any specific location.

Let's start with a simple program that will make your robot's servos turn 90 degrees;
this will be somewhere close to the middle of the 180 degree range that you can
work within. However, the center, maximum, and minimum values can vary from
one servo to another, so you may need to calibrate them. To keep things simple, we
will not cover this here. The following screenshot shows the code that is required for
turning the servos:

Chapter 5

[113]

The following is an explanation of the code:

• The #!/user/bin/python line allows you to make this Python file available
for execution from the command line. It will also allow you to call this
program from your voice command program. We'll talk about this in the next
section.

• The import serial and import time lines include the serial and time
libraries. You need the serial library to talk to your unit via USB. If you have
not installed this library, type sudo apt-get install python-serial. You
will use the time library later to wait between the servo commands.

• The setAngle() function converts your desired settings for the servo
and angle to the serial command that the servo motor controller requires.
The values— minTarget and maxTarget—and the structure of the
communications—channelByte, commandByte, lowTargetByte, and
highTargetByte—come from the manufacturer.

• The setSpeed() method sets the speed of the movement. This function
converts your desired settings for the specific servo and speed for that servo
to the serial command that the servo motor controller requires. The values,
such as the structure of the communications—channelByte, commandByte,
lowTargetByte, and highTargetByte—come from the manufacturer.

• The setHome function moves all the servos to the 90 degree location.
• The last part of the code sets up the serial ports, sets all the servos to the

home location, allows the user to enter a servo position and speed, and then
sets the servo to that position at that speed.

Now you can set each servo to the desired position at the desired speed. The default
would be to set each servo to a 90 degree angle. However, the servos were exactly
centered, so you may realize that you need to move the servo horn where you want
the servos to be centered.

Once you have the basic home position set, you can now ask your robot arm to do
some things, such as, to begin drawing.

A Robot That Can Draw

[114]

Simple drawing using the robotic arm
You can now ask your arm to hold a drawing pen by simply opening the claw,
inserting a pen, and closing the claw. You'll probably want to use some sort of
marker or other drawing device with a wide tip and lots of color. The following is
the arm holding the pen:

If you adjust the servo that moves the entire arm up and down, you can make the
pen touch the paper, as follows:

Chapter 5

[115]

Finally, if you move the servo that turns the base, you can draw your first curved
line, similar to the following image:

This is wonderful, but drawing only curved lines will not be particularly useful;
besides, an interface where the user enters the servo locations one at a time to
try and draw a more complex drawing will be unacceptable. What you need is a
program that takes an x-y location input and moves the robotic arm to that point
with the proper servo positions.

Since the input coming from the computer will be the x and y location for a point,
you'll need to translate that value into the proper angle positions for your arm. This
can be done in two ways; first, you can build a translation lookup table for the servo
locations for each x and y location on the paper and second, you can model the
positions of the servo using mathematical formulas to determine the servo locations.

A Robot That Can Draw

[116]

If you want to build a translation table, one key question is how many individual
x and y locations you'll want to define for your robotic arm. With more points, the
table will be larger, but you'll also be able to draw a finer resolution. It is best to start
with a table that isn't particularly fine, for example, 60 in the y axis and 40 in the x
axis. This gives you 2,400 individual locations to store the values of the four servos.
You'll not need to store the values for servos 4 and 5, they won't vary much for each
implementation. You can simply walk through each location and note the value of
the servos, store these in a table, and then retrieve the proper servo location for each
position. You'll also want a similar table to hold the values when you want your
robot arm to raise the pen from the paper.

Perhaps a better approach, or at least one that won't take as much time to calibrate,
is to build a mathematical model for the position of each of the servos for the x and
y locations on the paper. The following is a view, looking down on the paper, of the
four corners as marked by the robotic arm:

If you think of the arm being placed in the lower left corner, you can use
mathematics to build a model of how to turn the angle of the position of the servo at
the base of the arm to position it for two different points, as shown in the following
diagram:

Chapter 5

[117]

These equations show the relationship among the point x, point y, angle, and
distance to the point. The angle calculation here can be used to position the servo at
the base of the arm, servo 0. Adjusting the magnitude is a bit more difficult, you'll be
using servo 2 to adjust the distance of the arm to the point. This calculation will look
something similar to the following diagram:

A Robot That Can Draw

[118]

In this case, maxLength is the length of the arm when the angle of servo 2, at the
elbow joint of the arm, is 90 degrees. Now there is actually the opportunity to go
further but making this the max length will keep your calculations simple. The final
calculation will be the calculation of the angle of servo 1, which can then raise the
entire arm up and down. This servo will need to be set such that, based on the length
of the arm, the servo will need to be raised or lowered to set this value. This value
will also be set using a cos/sin equation, but based on the cos/sin of the angle of
servo 2.

To code this, start by putting the setAngle() and setSpeed() functions into a
library program, as shown in the following screenshot:

Chapter 5

[119]

Now, you'll create a simple program that can position the base servo using the x and
y locations, as shown in the following screenshot:

You'll use the robotArmLib library and its setSpeed() and setAngle() functions
to set the position of the arm. Notice that this is all based on the x = 0 and y = 0
locations being at the center of the arm. On entering x = 50 and y = 0, the arm will
position itself as shown in the following image:

A Robot That Can Draw

[120]

If you enter x = 0 and y = 50, you will see the arm in the following position:

Chapter 5

[121]

And finally, setting x = 50 and y = 50 will move the arm to the following position:

A Robot That Can Draw

[122]

Now that you can position the base angle correctly, you'll need to position servo 2,
at the elbow joint, to move in and out based on the distance from the center of the
base. This code adds the control by adjusting servo 2 based on the magnitude of the
distance:

So, for x = 10 and y = 0, the arm would be positioned as shown in the following
image:

Chapter 5

[123]

And, for x = 100 and y = 0, the arm would be positioned as follows:

Now, you will need to change the servo setting for servo 1, at the base of the arm, to
move the position so that the pen is on the paper. This angle will be controlled in a
similar fashion to servo 2. Here is the entire code:

A Robot That Can Draw

[124]

Using this code and asking for x = 10 and y = 0 now gives the total arm position as
follows:

And, for x = 100 and y = 0, the total arm position is shown in the following image:

Chapter 5

[125]

Now you can position the pen for each individual x and y location. You will,
however, notice that the entire space between 100 and 10 is not linear and, as you
get closer to the arm, it is more difficult to keep the pen on the paper. You should
evaluate the available drawing distance, it may be between 100 and 50. The best way
to evaluate this is to place a pen in the robot's hand and simply begin to draw the
points in order to understand the boundaries of the robot's workable range.

This final Python code adds a loading function in order to load the pen and position
it in the robot's claw:

A Robot That Can Draw

[126]

You may want to tape the pen in place, this can solidify its connection to
the arm.

The next step is to add an application that will control the program more elegantly
than simply typing in the x and y locations.

A simple Python drawing program
Now that the robot can draw, you can add a simple graphical program that allows
you to draw on the screen and then output this set of points to the drawing robot.
Let's start with a simple draw program that is based on pygame:

Chapter 5

[127]

When you run this program, either directly with a monitor and keyboard connected
to Raspberry Pi or with the VNC Server viewer, you will see the following:

A Robot That Can Draw

[128]

As you move the mouse in the draw window, you will notice the x and y location
print in the terminal window. What you'll now do is save the robot arm control code
in a library that can be called directly from the draw program. Here is the library
code:

Chapter 5

[129]

The following is the new draw code with the library connected:

Now, you can draw on the canvas and your robot arm will follow that set of motions.
Of course, drawing is just one activity that your robot arm can tackle, there are
myriad other activities that can utilize your robot arm.

A Robot That Can Draw

[130]

Summary
You now know how to control the servos and move a robotic arm! In the next
chapter, you'll take on a different kind of positioning system—the stepper
motor—to build a robot that can play air hockey.

[131]

A Robot That Can
Play Air Hockey

By now, you should have some amazing projects on your shelf, including projects
that can walk, talk, and draw. Now, let's build a robot that can play air hockey.

In this chapter, you'll learn the following:

• How to build an air hockey robot paddle using three-dimensional printing
concepts of gears and pulleys

• How to use Raspberry Pi and Arduino with the stepper motor drivers to
control stepper motors

• How to connect a USB webcam and OpenCV to track the color and
movement

• How to tie all this together for an unbeatable air hockey opponent

A Robot That Can Play Air Hockey

[132]

Constructing the platform
Constructing the hardware and connecting it to the table is a significant challenge.
Fortunately, there is an excellent website that explains how to construct the entire
hardware system using three-dimensional printed parts at http://jjrobots.
com/air-hockey-robot-a-3d-printer-hack/. This website even provides you
with the opportunity to purchase the three-dimensional printed parts. Follow the
detailed instructions to build the hardware. Here is a picture of the hardware that is
connected to a small air hockey table that was purchased at a local toy store:

In the documented example, the controller is a laptop that is connected to a
PlayStation 3 (PS3) Eye camera. For this project, you'll replace the laptop and PS3
camera with Raspberry Pi and a webcam. And instead of having Arduino calculate
the paddle position, you'll be using Raspberry Pi. To understand how to do this,
you'll first need to understand how to control stepper motors with Arduino and
stepper motor drivers.

http://jjrobots.com/air-hockey-robot-a-3d-printer-hack/
http://jjrobots.com/air-hockey-robot-a-3d-printer-hack/

Chapter 6

[133]

Controlling the paddle using stepper
motors
The first step in controlling your air hockey playing robot is to control the position of
the three stepper motors in your paddle system. To understand how to do this, let's
start by exploring how stepper motors work. The following is an image of a stepper
motor:

Stepper motors are a bit different from the servos that you used in Chapter 5, A
Robot That Can Draw. Stepper motors operate in a similar way to DC motors as even
they can rotate continuously. However, the stepper motor has the ability to drive
the motor in small steps. For a tutorial on the specifics on stepper motors, refer to
https://en.wikipedia.org/wiki/Stepper_motor.

Stepper motors can be a bit difficult to work with as the control is more complex
than DC or servo motors. Fortunately, the three-dimensional printer movement has
created an entire community around designing the hardware and software to make
this process easier. One important factor to be considered for the project is the size
of the motor. In the stepper motor world, there is a standard, the National Electrical
Manufacturers Association (NEMA) standard, which dictates the size and torque of
stepper motors. For this project, you'll be using a NEMA 17 size stepper motor as it
will supply the required torque.

https://en.wikipedia.org/wiki/Stepper_motor

A Robot That Can Play Air Hockey

[134]

There are two types of stepper motors, unipolar and bipolar. Unipolar stepper motors
normally have a 4-pin connection to the motor, as shown in the following diagram:

As you can see, unipolar motors don't have a center tap to the coil that is driving
the magnetic fields, so they are a bit more difficult to control as the controller has to
reverse the flow of current to step the motor. However, they are more powerful than
bipolar motors.

Bipolar motors have a center tap to the coil that is driving the magnetic fields, as
shown in the following diagram:

Chapter 6

[135]

They are easier to control but have less torque. Fortunately, you can use bipolar
motors as unipolar motors by simply connecting to the outside connections and
ignoring the center tap. Since the controllers that you are going to use will take care
of the driver's complexity, this is how you will control your stepper motors. Here is
an image of the control pins on the stepper motor:

There are six pins. You will only use four pins to control the motor. If you don't
have a wiring diagram for your motor, you'll need to discover which four wires
you want to use. Use an ohmmeter to look for the two wires that are connected,
that is, the two wires that don't show an infinite impedance. There should be three
pins that are connected; however, one of the pins will show half of the impedance
when connected to the other two wires in the set. This is the center tap wire, which
you won't connect to the controller. In the end, you need two sets of wires that are
connected to the outer wires of each of the coils.

A Robot That Can Play Air Hockey

[136]

In this case, for this particular stepper motor, the following are the proper
connections:

Now let's look at how to connect these to a stepper motor driver and Arduino. You
are going to control the stepper motor by controlling the signals that you will send to
these two wires. However, these signals are going to be quite large, so you'll need a
stepper motor driver. You'll also need an interface board that allows you to connect
the stepper motor driver to Arduino. Since you are using a three-dimensional
printing setup, you'll use a complete system defined by that community. It is called
RepRap Arduino Mega Pololu Shield (RAMPS). For detailed information on this
system, including its many suppliers, refer to http://www.reprap.org/wiki/
RAMPS.

http://www.reprap.org/wiki/RAMPS
http://www.reprap.org/wiki/RAMPS

Chapter 6

[137]

This system uses Arduino Mega, RAMPS, and up to five Pololu stepper motor
drivers. Here is an image of the entire system:

A Robot That Can Play Air Hockey

[138]

The lower board in the system is a standard Arduino Mega, one of the most
powerful of the Arduino family. RAMPS is placed on top of Arduino and fits into
the header connections. On top of RAMPS, there are up to five Pololu stepper motor
drivers. Here is an image of an individual unit:

Each of these drives a separate stepper motor. In this case, you'll be driving three
motors, so you'll need three of these drivers.

You'll also need a power supply that can supply the kind of voltage and current
that you'll need to drive your stepper motors. Refer to http://reprap.org/wiki/
Power_supply for the various options. One common choice is an OEM power supply
that is designed to drive the LED light strips, similar to this one:

http://reprap.org/wiki/Power_supply
http://reprap.org/wiki/Power_supply

Chapter 6

[139]

You have the basic system for driving stepper motors. Now you'll need to connect
the RAMPS system to the motors. The connections for each motor are next to the
stepper motor driver chip, as shown in the following image:

As you can see, there are four wires, two for each motor. You'll connect the first
two wires to one winding and the second two to the other winding, similar to the
following image:

A Robot That Can Play Air Hockey

[140]

The first stepper motor driver is for the x-axis or moving the paddle back and forth
across the table. You'll also need to connect the other two motors to the second
and third set of stepper driver. The second set of wires is attached to the left motor
(looking from behind the robot player) and the third set of wires is attached to the
right motor.

Now that the connections are made, you'll need some software on the Arduino
to send control signals to stepper motors. Fortunately, there is a code to test these
connections and execute some basic movement of the paddle.

Moving the paddle with Arduino code
The first step in making the entire system work is to test the motors. Fortunately, the
GitHub site, https://github.com/JJulio/AHRobot, has the code that can make
this happen. Download and unzip the code. Look in the AHRobot-master/Arduino/
Utils/AHR_Motor_Test directory for the AHR_Motor_Test.ino program file. This
file provides a simple test program to move the three stepper motors, first the x-axis
stepper motor that moves the paddle back and forth across the table and then the
y-axis stepper motors, the two motors which move the paddle forward and backward.

If you are unfamiliar with how to develop and upload code for Arduino
Mega, go to the https://www.arduino.cc/ website. It has a detailed
set of instructions and an open source IDE for Arduino.

Run the program and open the Serial Port. You will see the following as the paddle
moves:

https://github.com/JJulio/AHRobot
https://www.arduino.cc/

Chapter 6

[141]

If everything is connected correctly, the paddle should first move across the table,
then move forward. If it does not work, check the connections carefully.

The Configuration.h file is the only file that you'll need to change initially, it
has some configuration values which you may need to adjust for your specific
configuration. You may need to change the polarity of the motors to make sure
that they run in the correct direction, this code is shown in the following figure:

The other value that you may need to change is related to how far the paddle moves.
In this case, the movement, as noted by the code, is dependent on the size of the
gears. You may need to change this value, smaller values mean that the paddle will
move shorter distances. Adjust this so that the paddle moves approximately two
inches during the test, as shown in the following figure:

A Robot That Can Play Air Hockey

[142]

Finally, you'll want to edit the Configuration.h file to give it your specific table
size. Here are these values:

Now that you can move the paddle, you'll need to edit this code so that you can
direct the paddle to a specific location. Let's start by changing the loop() function to
move a short distance in x and y direction based on an input character. The code will
look as shown:

void loop()
{
 int dt;
 uint8_t logOutput=0;
 debug_counter++;
 timer_value = micros();
 if ((timer_value-timer_old)>=1000) // 1Khz loop
 {
 while (Serial.available()) {
 // get the new byte:
 char inChar = (char)Serial.read();
 switch (inChar){
 case 'a':

Chapter 6

[143]

 Serial.println("Moving the robot 1cm in X");
 print_values();
 // We move the robot +1cm in X
 com_pos_x -= 10;
 setPosition(com_pos_x,com_pos_y);
 print_values();
 break;
 case 'd':
 Serial.println("Moving the robot -1cm in X");
 print_values();
 // We move the robot -1cm in X
 com_pos_x += 10;
 setPosition(com_pos_x,com_pos_y);
 print_values();
 break;
 case 'w':
 Serial.println("Moving the robot -1cm in Y");
 print_values();
 // We move the robot -1cm in Y
 com_pos_y += 10;
 setPosition(com_pos_x,com_pos_y);
 print_values();
 break;
 case 's':
 Serial.println("Moving the robot -1cm in Y");
 print_values();
 // We move the robot -1cm in Y
 com_pos_y -= 10;
 setPosition(com_pos_x,com_pos_y);
 print_values();
 break;
 }
 } // Serial input character loop
 positionControl();
 } // 1Khz loop
}

The operation is quite simple. If you send Arduino an a character through the
Serial Port, it will move to the right; if you send it a d character, it will move to
the left. A w character moves the unit forward, an s character moves it back.

A Robot That Can Play Air Hockey

[144]

What you are really going to want is a program where you will send it the x and y
location and the paddle will move to that location. Here is the code for this action:

void loop()
{
 int dt;
 uint8_t logOutput=0;
 debug_counter++;
 timer_value = micros();
 if ((timer_value-timer_old)>=1000) // 1Khz loop
 {
 char data[7];
 char x[4];
 char y[4];
 while (Serial.available()) {
 while (Serial.available() >= 7)
 {
 for(int i = 0 ; i < 7; i++)
 data[i] = Serial.read();//etc.
 }
 for(int i = 0 ; i < 3; i++)
 x[i] = data[i];
 x[3] = 0;
 for(int i = 4 ; i < 7; i++)
 y[i - 4] = data[i];
 y[3] = 0;
 com_pos_x = atoi(x);
 com_pos_y = atoi(y);
 print_values();
 setPosition(com_pos_x,com_pos_y);
 print_values();
 } // Serial input character loop
 positionControl();
 } // 1Khz loop
}

Now, you'll need to send the x and y values to the serial port to control your paddle
using Raspberry Pi to determine where the puck is traveling. Now you will turn to
Raspberry Pi to track the puck.

Chapter 6

[145]

Seeing the puck using OpenCV
To know where the puck is, you'll need vision. Fortunately, adding hardware and
software for vision for Raspberry Pi is both easy and inexpensive. First, you'll need to
connect to a USB webcam.

Installing a USB camera on Raspberry Pi
Connecting a USB camera is very easy. Just plug it in the USB slot. To make sure
your device is connected, type lsusb. You will see the following:

A Robot That Can Play Air Hockey

[146]

This shows a Logitech webcam located at Bus 001 Device 008: ID 046d:0825. To
make sure that the system sees this as a video device, type ls /dev/v* and you will
see something similar to the following:

The /dev/video0 is the webcam device. Now that your device is connected, let's
see whether you can actually capture images and videos. There are several tools
that can allow you to access the webcam, but a simple program with video controls
is called guvcview. To install this, type sudo apt-get install guvcview. Once
the application is installed, you'll want to run it. To do this, you'll either need to be
directly connected to a display or access Raspberry Pi via a remote VNC connection,
such as VNC Server, as displaying the images will require a graphical interface.

Chapter 6

[147]

Once you are connected in this manner, open a terminal window on Raspberry Pi
and run guvcview –r 2. You should see something similar to this:

Don't worry about the resolution or quality of the image as you'll be capturing and
processing your images inside OpenCV, a vision framework. You may also need to
adjust the distance and the orientation of the webcam from the table.

A Robot That Can Play Air Hockey

[148]

Downloading and installing OpenCV – a
fully featured vision library
Now that you have your camera connected, you can access the amazing capabilities
that have been provided by the open source community. Open a terminal window
and type the following commands:

1. sudo apt-get update: You're going to download a number of new software
packages, so it is better to make sure that everything is up to date.

2. sudo apt-get install build-essential: Although, you may have done
this earlier, the library is essential for building OpenCV.

3. sudo apt-get install libavformat-dev: This library provides a way to
code and decode the audio and video streams.

4. sudo apt-get install ffmpeg: This library provides a way to transcode
the audio and video streams.

5. sudo apt-get install libcv2.4 libcvaux2.4 libhighgui2.4:
This command shows the basic OpenCV libraries. Note the number in
the command. This will almost certainly change as the newer versions of
OpenCV become available. If 2.4 does not work, then either try 3.0 or
google the latest version of OpenCV.

6. sudo apt-get install python-opencv: This is the Python development
kit that is needed for OpenCV, as you are going to use Python.

7. sudo apt-get install opencv-doc: This command will show the
documentation for OpenCV, just in case you need it.

8. sudo apt-get install libcv-dev: This command shows the header file
and static libraries to compile OpenCV.

9. sudo apt-get install libcvaux-dev: This command shows more
development tools for compiling OpenCV.

10. sudo apt-get install libhighgui-dev: This is another package that
provides the header files and static libraries to compile OpenCV.

11. cp -r /usr/share/doc/opencv-doc/examples /home/pi/: This command
will copy all the examples to your home directory.

Now that OpenCV is installed, you can try one of the examples. Go to the
/home/pi/examples/python directory. If you do an ls, you'll see a file named
camera.py. This file has the most basic code to capture and display a stream
of images. Before you run the code, make a copy of it, using cp camera.py
myCamera.py. Then, edit the file to look as shown in the following:

Chapter 6

[149]

The two lines that you'll add are the two with the cv.SetCaptureProperty()
function, they will set the resolution of the image to 360 x 240. To run this program,
you'll need to either have a display and keyboard connected to Raspberry Pi or use
VNC Viewer. When you run the code, you will see the window displayed, as shown
in the following image:

A Robot That Can Play Air Hockey

[150]

This is the resolution that you'll use for this application. Just a note on the resolution.
Bigger images are great—they give you a more detailed view of the world—but they
take up significantly more processing power.

For this application, you'll not want to use vncserver to display the
images, this will also slow the system performance significantly. If you
want to see the images in real time, connect a display, keyboard, and
mouse to Raspberry Pi.

Color finding with OpenCV
Now you'll want to use OpenCV and your webcam to track your puck. OpenCV
makes this amazingly simple by providing some high level libraries that can help
you. To start with, you'll want to create a basic file that allows you to establish
a threshold and then display the pixels as white that exceeds this threshold. To
accomplish this, you'll edit a file to look something similar to what is shown in the
following screenshot:

Chapter 6

[151]

Let's look specifically at the code that makes it possible to isolate the colored puck:

• hue_img = cv.cvtColor(frame, cv.COLOR_BGR2HSV): This line creates
a new image and stores it as per the values of Hue (color), Saturation, and
Value (HSV) instead of the Red, Green, and Blue (RGB) pixel values of the
original image. Converting to this format (HSV) focuses our processing more
on the color as opposed to the amount of light hitting it.

• threshold_img = cv.inRange(hue_img, low_range, high_range):
The low_range and high_range parameters determine the color range. In
this case, it is an orange ball so you want to detect the color orange. For a
good tutorial on using hue to specify color, try http://www.tomjewett.
com/colors/hsb.html. Also, http://www.shervinemami.info/
colorConversion.html includes a program that you can use to determine
your values by selecting a specific color.

Now, run the program. If you see a single black image window, move it and you will
expose the original image window. Now take your target (in this case, the puck) and
move it into the frame. You will see the following screenshot:

http://www.tomjewett.com/colors/hsb.html
http://www.tomjewett.com/colors/hsb.html
http://www.shervinemami.info/colorConversion.html
http://www.shervinemami.info/colorConversion.html

A Robot That Can Play Air Hockey

[152]

Notice the white pixels in our threshold image showing where the puck is located.
You can add more OpenCV code that gives the actual x and y location of the puck. In
the original image file of the puck's location, you can actually draw a circle around
the puck as an indicator. Edit the file to look as shown in the following:

The added lines look as follows:

• hue_image = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV): This line
creates a hue image out of the RGB image that was captured. As noted
earlier, hue is easier to deal with when trying to capture real-world images,
refer to http://www.bogotobogo.com/python/OpenCV_Python/python_
opencv3_Changing_ColorSpaces_RGB_HSV_HLS.php for details.

• threshold_img = cv2.inRange(hue_image, low_range, high_range):
This creates a new image that contains only those pixels that occur between
the low_range and high_range n-tuples.

http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Changing_ColorSpaces_RGB_HSV_HLS.php
http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Changing_ColorSpaces_RGB_HSV_HLS.php

Chapter 6

[153]

• contour, hierarchy = cv2.findContours(threshold_img, cv2.RETR_
TREE, cv2.CHAIN_APPROX_SIMPLE): This finds the contours or groups of
like pixels in the threshold_img image.

• center = contour[0]: This identifies the first contour.
• moment = cv2.moments(center): This finds the moment of this group of

pixels.
• (x,y),radius = cv2.minEnclosingCircle(center): This gives the x and

y locations and radius of the minimum circle that will enclose this group of
pixels.

• center = (int(x),int(y)): This finds the center of the x and y locations.
• radius = int(radius): This converts radius of the circle to the integer type.
• img = cv2.circle(frame,center,radius,(0,255,0),2): This draws a

circle on the image.

Now that the code is ready, you can run it. You will see something similar to the
image shown in the following screenshot:

You can now find out the location of the puck. You also have the location of your
puck, you'll use this to determine the location and direction of the puck.

A Robot That Can Play Air Hockey

[154]

Tracking the puck
Once you know the location, you can now find out the speed and direction of the
puck. In this case, the easiest way is to find the delta movement in the x direction and
the delta movement in the y direction. This is easy to add to your program by simply
tracking your puck from frame to frame, that is, how much the puck has moved in
pixels. Here is the code:

Chapter 6

[155]

And when you run the code, you will see the following:

Here, the line is pointing in the direction of the puck movement. Now that you know
the location and direction of the puck, you can move the paddle to connect with the
puck.

Moving the paddle to strike the puck
You'll need to add some commands to the puck tracking program to talk over the
serial port and move the paddle. But first, let's explore how to send some simple
commands from inside a python program that is running on Raspberry Pi to control
the paddle. Here is a simple program that takes in user input and sends it to the
Arduino control program:

A Robot That Can Play Air Hockey

[156]

When you run this code, you will be able to enter a location and the paddle will go
to that location. Now you'll want to tie this code in to the code for puck tracking;
however, you'll need a function that can calculate where the paddle needs to be,
based on the puck speed and direction. Let's start with a very easy function, one
that assumes no bounce on the side and that the paddle will stay at y = 0. As an
example, let's look at when the puck is at a location with an equal x and y velocity.
The following is a diagram of where you want to move the puck:

Chapter 6

[157]

You'll also need to add the idea of bounce off the edge of the table. Adding the
bounce is actually quite easy, if the value of x is less than zero or greater than the
maximum value of the table, then you'll either add to zero (if less than zero) or
subtract from the maximum value of the table as the bounce will come off at the
same angle as it goes in. The code will look similar to the following:

A Robot That Can Play Air Hockey

[158]

The 180 pixels, in this case, is the maximum x value for this table. You'll want
to change this if you are using a higher resolution and a bigger table. Now you
can import this function as a library into your puck tracking code by removing
everything except the function code and you will get the proper puck movement.
This code will look similar to the following screenshot:

That's it, you will now be able to play with your robot. At this point, it will only
move in the x direction, you can add the capability of moving in the y direction to
add more power to its response by timing the puck and moving the y-axis as the
puck arrives.

Chapter 6

[159]

Summary
You now know how to control stepper motors in order to control an air hockey
paddle. In the final chapter, you'll learn how to integrate Raspberry Pi into a
quadcopter platform, making the sky your last robotic conquest.

[161]

A Robot That Can Fly
You've had the opportunity to build lots of different types of robots, so now let's end
with one that can be truly amazing, a robot that can fly.

In this chapter, you'll learn the following:

• Building the basic quadcopter platform
• Interfacing Raspberry Pi to the flight controller
• Discussing long range communications
• Using GPS for location
• Adding autonomous flight

Constructing the platform
Constructing the quadcopter hardware can be daunting; however, there are several
excellent websites that can lead you through the process from component selection
to build details and programming and controlling your quadcopter with a radio. The
http://www.arducopter.co.uk/ website is a great place to start for those who are
new to quadcopter flight. Go to http://copter.ardupilot.com/, which is another
excellent website with lots of information.

For this project, you'll want to choose a project that uses the Pixhawk flight
controller. There are other flight controllers that are significantly less expensive,
but this particular flight controller provides easy access for Raspberry Pi. Here
are some possible websites that can guide you through the construction process;
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-
the-q-brain-esc.html, http://www.thedroneinfo.com/2015/06/06/
build-a-quadcopter-with-pixhawk-flight-controller/, and http://www.
flying-drone.co.uk/how-to-build-a-quadcopter-with-a-pixhawk-flight-
controller-step-11/.

http://www.arducopter.co.uk/
http://copter.ardupilot.com/
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-the-q-brain-esc.html
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-the-q-brain-esc.html
http://www.thedroneinfo.com/2015/06/06/build-a-quadcopter-with-pixhawk-flight-controller/
http://www.thedroneinfo.com/2015/06/06/build-a-quadcopter-with-pixhawk-flight-controller/
http://www.flying-drone.co.uk/how-to-build-a-quadcopter-with-a-pixhawk-flight-controller-step-11/
http://www.flying-drone.co.uk/how-to-build-a-quadcopter-with-a-pixhawk-flight-controller-step-11/
http://www.flying-drone.co.uk/how-to-build-a-quadcopter-with-a-pixhawk-flight-controller-step-11/

A Robot That Can Fly

[162]

At http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-
wiring-chart/, you'll find an excellent wiring diagram of how to hook everything
up. Let's go through the steps of constructing our own quadcopter.

First, you'll need a frame. You'll be building a quadcopter of size 450 mm, one of the
least expensive frames, which are available at most online retailers, with fiberglass
arms, as shown in the following image:

Now, follow the steps to complete your quadcopter assembly:

1. The first step is to build the quadcopter as the instructions suggest.
2. The second step is to solder the four Electronic Speed Controllers (ESC),

one to each motor, and the battery connection to the bottom plate. Here is an
image of the bottom plate:

http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/
http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/

Chapter 7

[163]

Notice the + and – connections; each connection will be soldered to all the
ESCs. The following is an image of the motor controller:

A Robot That Can Fly

[164]

The red and white wire connectors are the connectors that are soldered to
the bottom plate of the frame. The other three connectors will connect to the
motor.

3. The third step is to install the motors on the frame. You'll want motors in the
1000KV range, here is an image of such a motor:

Again, follow the instructions that came with your frame to attach the motor.
Then attach the three connections that come from the ESC to the motor.

Chapter 7

[165]

4. One optional step is to add a landing gear set to the unit. There are many of
these available. Here is an image of one that is very sturdy:

5. Now you'll install Pixhawk on the frame and connect its associated
electronics. The details are shown and described at http://copter.
ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/.
This will connect the Pixhawk to the ESCs, the battery, an RC transmitter, a
telemetry radio, and a switch that will prevent the quadcopter from flying
until you are ready.

http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/
http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/

A Robot That Can Fly

[166]

6. Eventually, you will install four propellers on the quadcopter; however,
you will have to wait until you have calibrated the ESCs, motors, and RC
transmitter to install them. You'll need four propellers, two that are designed
to spin clockwise and other two that are designed to spin counter-clockwise.
For this quadcopter, you'll want propellers that are 10 x 4.7 pitch. Here is an
image of one such propeller:

The following is an image of the entire quadcopter using the Pixhawk flight
controller:

Chapter 7

[167]

You'll notice the green arrows and cord arranged on the quadcopter.
This is not to make it look menacing but to protect it from running into
something and fracturing the propellers. There are commercial guards
available; however, this system also works and is less expensive.

You'll want to build your quadcopter and fly it a bit with an RC transmitter/receiver
pair. This will allow you to get familiar with your quadcopter and how it flies. It will
also allow you to tweak all the settings to stabilize it. Once your quadcopter is stable,
you can perform some simple autonomous flights. Let's start using the mission
planning software, which runs on a remote computer.

Mission planning software
The mission planning software is available at http://planner.ardupilot.com/.
There are actually two applications available that perform similar actions, but the
Mission Planner is a good place to become familiar with how to talk with your
quadcopter from a computer program.

To do this, you'll need to make sure you have telemetry radios connected to the
Pixhawk and the computer. This will prevent the need of directly connecting to the
Pixhawk with a long USB cable. When you begin the mission planning software,
you will see the following screen:

http://planner.ardupilot.com/

A Robot That Can Fly

[168]

This is the basic screen. You'll then need to configure your radio's COM port and
then press the CONNECT button in the corner on the upper right-hand side. As
you move the quadcopter around, you will see the measurements change. If you
are having problems connecting to the Pixhawk, there is lot of help available at the
website.

Now that you have connected, you can actually see how your quadcopter is flying
from this application. The software communicates with the Pixhawk controller via
the MAVLink, a serial control link that comes from the software application, goes
out over the telemetry radio, is received by the telemetry radio, and then is routed to
the Pixhawk. The Pixhawk knows not only how to send information but also how to
receive information.

Once the software is connected, you'll want to calibrate the RC radio connection.
This can be done through the software. You'll also want to calibrate the ESCs, refer
to http://learnrobotix.com/uavs/quadcopter-build/pixhawk/calibrating-
electronic-speed-controllers-with-pixhawk.html for specific directions.

Now you are ready to connect Raspberry Pi. To do this, connect Raspberry Pi to the
second telemetry input on the Pixhawk, as shown in the following:

http://learnrobotix.com/uavs/quadcopter-build/pixhawk/calibrating-electronic-speed-controllers-with-pixhawk.html
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/calibrating-electronic-speed-controllers-with-pixhawk.html

Chapter 7

[169]

Now that this is connected, you can access the Pixhawk from Raspberry Pi using
the MAVLink. Now, you'll need to add and configure the Raspberry Pi to complete
the connection. To do this, run raspi-config, and choose the 8 Advanced Options,
Configure advanced settings selection, as shown in the following:

Now, you'll turn off sending the serial output on boot up by selecting the A8 Serial,
Enable/Disable shell and kernel m option, as follows:

A Robot That Can Fly

[170]

Then select the answer <No> to the following question:

Now you are ready to install some additional software. To install this software,
perform the following steps:

1. Type sudo apt-get update: This updates the links so that your system can
find the appropriate software.

2. Type sudo apt-get install screen python-wxgtk2.8 python-
matplotlib python-opencv: This installs a graphical package, a plotting
package, and a version of OpenCV.

3. Type sudo apt-get install python-numpy: This will install NumPy, a
numerical library for python, although you may already have it from the
previous projects that you have done.

4. Type sudo apt-get install python-dev: This is a set of files that will
allow you to develop in the Python environment.

Chapter 7

[171]

5. Type sudo apt-get install python-pip: This is a tool that helps you
install python packages.

6. Type sudo pip install pymavlink: This is the set of code that implements
the MAVLink or the communication profile to the Pixhawk, in python.

7. Type sudo pip install mavproxy: This last step installs the Unmanned
Aerial Vehicle (UAV) ground station software package for MAVLink based
systems that are based on the Pixhawk.

Now that you have installed all the software, you can test the link. To do this, type
sudo –s; this establishes you as the superuser. Then type mavproxy.py --master=/
dev/ttyAMA0 --baudrate 57600 --aircraft MyCopter and you will see the
following:

A Robot That Can Fly

[172]

Now that the link is established, you can send commands to either set or show
parameters. For example, type param show ARMING_CHECK, which should show you
the value of the parameter, as shown in the following:

Details for all the commands available can be found at http://dronecode.github.
io/MAVProxy/html/uav_configuration/index.html.

You can issue these commands directly, but you can also connect to the Pixhawk
using an interface that is similar to the Mission Planner interface, which you worked
with earlier. To do this, you'll need to install the DroneKit code. Overall directions
and documentation for DroneKit can be found at http://python.dronekit.io/
guide/getting_started.html#installing-dronekit, but let's show an example
here.

First, type sudo pip install droneapi. You can download some example scripts
by typing git clone http://github.com/dronekit/dronekit-python.git. Now
cd to the dronekit-python/examples/vehicle_state directory. You'll see the
vehicle_state.py file that shows an excellent example of how to use the MAVLink
to talk with the Pixhawk to find out information as well a set values and issue
commands.

http://dronecode.github.io/MAVProxy/html/uav_configuration/index.html
http://dronecode.github.io/MAVProxy/html/uav_configuration/index.html
http://python.dronekit.io/guide/getting_started.html#installing-dronekit
http://python.dronekit.io/guide/getting_started.html#installing-dronekit

Chapter 7

[173]

To run an example program, start the MAVLink by typing two commands: sudo –s,
and then mavproxy.py --master=/dev/ttyAMA0 --baudrate 57600 --aircraft
MyCopter. Once inside, load the API by typing module load droneapi.module.api
at the prompt. The system will then tell you whether the module is loaded. Now, run
the python script by typing api start vehicle_state.py.

The python code will first read in a series of parameters and then, if the quadcopter
is armed, it will also read some details about the state of the quadcopter. Details of
each command can be found at http://python.dronekit.io/guide/vehicle_
state_and_parameters.html#vehicle-information. The output will look
something similar to the following:

Now, you can look at other python examples to see how to control your quadcopter
via python files from Raspberry Pi.

http://python.dronekit.io/guide/vehicle_state_and_parameters.html#vehicle-information
http://python.dronekit.io/guide/vehicle_state_and_parameters.html#vehicle-information

A Robot That Can Fly

[174]

You can also interface the MAVProxy system with the Mission Planner running on
a remote computer. With a radio connected to the TELEM 1 port of the Pixhawk
and your Raspberry Pi connected to the TELEM 2 port of the Pixhawk, change
the MAVProxy startup command by adding --out <ipaddress>:14550 with
ipaddress being the address of the remote computer that is running the Mission
Planner. On a Windows machine, the ipconfig command can be used to determine
this IP address.

For example, your mavproxy command might look similar to this: mavproxy.
py --master=/dev/ttyAMA0 --baudrate 57600 --out ipaddress:14550
--aircraft MyCopter. Once connected to MAVProxy, you can connect to the Mission
Planner software using the UDP connection, as shown in the following screenshot:

Now, you can run your MAVProxy scripts and see the results on the Mission Planner
software.

Chapter 7

[175]

Summary
That's it. You now have a wide array of different robotics platforms that run with
Raspberry Pi as the central controller. These chapters have just introduced you to
some of the most fundamental capabilities of your platforms, you can now explore
each and expand their capabilities. The only limits are your imagination and time.

[177]

Index
A
Arduino code

used, for moving paddle 140-144

B
brackets

used, for constructing drawing
platform 104-107

C
Carnegie Mellon University (CMU)

URL 43

D
digital compass

accessing, programmatically 68-73
connecting, to Raspberry Pi 66, 67

DOUT connector 99
drawing

configurations, URL 105
platform constructing, brackets

used 104-106
platform constructing, servos

used 104-106
simple drawing, robotic arm

used 114-116
DroneKit

URL 172

E
Electronic Speed Controllers (ESC)

about 162
URL 168

eSpeak
used, for allowing robot speak 42

G
game controller

adding, to remote system 89-95
gaming application

URL 89
General Purpose Input/Output (GPIO) 11
GND connector 99

L
laser source

connecting 95-101
laser target

connecting 95-101

M
MAVLink 168
mission planning software

about 167-169
installing 170-174
Pixhawk, accessing from

Raspberry Pi 169, 170
Raspberry Pi, connecting 168
URL 167

[178]

motor control
basic motor control 54, 55
tracked vehicle 54, 55

N
National Electrical Manufacturers

Association (NEMA) 133

O
OpenCV

colour finding with 150-153
downloading 148-150
installing 148-150
used, for seeing puck 145

P
paddle

controlling, stepper motors used 133-140
moving, Arduino code used 140-144
moving, to strike puck 155-158

path planning
basic path planning 73-76
for robot 73
obstacles, avoiding 77-80

Pixhawk
about 168
URL 161

platform
constructing 132

PlayStation 3 (PS3) Eye camera 132
pocketsphinx

about 42
used, for accepting voice commands 42-47

PodSixNet library
URL 89

Pololu software
downloading 107-111
URL 105-109

puck
seeing, OpenCV used 145
tracking 154, 155

pygame library
URL 92

Python
drawing program 126-129
program, creating to control mobile

platform 112, 113

Q
quadcopter

constructing 161-167
URL 161

R
Raspberry Pi

configuring 2
connecting, to USB sonar sensor 59-66
digital compass, connecting 66, 67
USB camera, installing 145-147
used, for configuring RC car 3-12
used, for controlling RC car 3-12
used, for controlling RC car in

Python 12-16
using in Python, to control tracked

vehicle 56-58
RaspiRobot Board V2 54
RC car

accessing, remotely 16-21
controlling/configuring, with

Raspberry Pi 3-12
controlling, Raspberry Pi in Python

used 12-16
remote computer

robot, controlling from 88, 89
remote system

game controller, adding 89-95
RepRap Arduino Mega Pololu Shield

(RAMPS)
URL 136

robot
actions, initiating 48-50
commands, interpreting 48-50
controlling, from remote computer 88, 89
controlling, robot library used 86, 87
drawing platform, constructing 104-107
dynamic path planning 73
giving voice commands 34-41
voice commands, providing 34-41
WowWee Roboraptor toy 23-26, 34

[179]

robotic arm
used, for simple drawing 114-126

robot library
used, for controlling robot 86, 87

S
servos

used, for constructing drawing
platform 104-107

stepper motors
bipolar 134
unipolar 134
URL 133, 138
used, for controlling paddle 133-140

T
three-dimensional printed parts

URL 132
tracked vehicle

about 54, 55
controlling, Raspberry Pi used 56-58

U
Unmanned Aerial Vehicle (UAV) 171
USB camera

installing, on Raspberry Pi 145-147
USB-ProxSonar-EZ sensor 60
USB sonar sensor

Raspberry Pi, connecting to 59-66

V
VCC connector 99

W
wheeled vehicle

board specifics, URL 85
building 84-86
controlling 84-86
URL 84

WowWee Roboraptor toy
about 23, 24
URL 23

Thank you for buying
Raspberry Pi Robotic Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Raspberry Pi Robotic Projects
ISBN: 978-1-84969-432-2 Paperback: 278 pages

Create amazing robotic projects on a shoestring
budget

1. Make your projects talk and understand speech
with Raspberry Pi.

2. Use standard webcam to make your projects
see and enhance vision capabilities.

3. Full of simple, easy-to-understand instructions
to bring your Raspberry Pi online for developing
robotics projects.

Raspberry Pi Robotics Essentials
ISBN: 978-1-78528-484-7 Paperback: 158 pages

Harness the power of Raspberry Pi with Six Degrees
of Freedom (6DoF) to create an amazing walking
robot

1. Construct a two-legged robot that can walk,
turn, and dance.

2. Add vision and sensors to your robot so that it
can "see" the environment and avoid barriers.

3. A fast-paced, practical guide with plenty of
screenshots to develop a fully functional robot.

Please check www.PacktPub.com for information on our titles

Raspberry Pi Blueprints
ISBN: 978-1-78439-290-1 Paperback: 284 pages

Design and build your own hardware projects that
interact with the real world using the Raspberry Pi

1. Interact with a wide range of additional sensors
and devices via Raspberry Pi.

2. Create exciting, low-cost products ranging from
radios to home security and weather systems.

3. Full of simple, easy-to-understand
instructions to create projects that even
have professional-quality enclosures.

Learning Raspberry Pi
ISBN: 978-1-78398-282-0 Paperback: 258 pages

Unlock your creative programming potential
by creating web technologies, image processing,
electronics- and robotics-based projects using
the Raspberry Pi

1. Learn how to create games, web, and desktop
applications using the best features of the
Raspberry Pi.

2. Discover the powerful development tools
that allow you to cross-compile your software
and build your own Linux distribution for
maximum performance.

3. Step-by-step tutorials show you how to quickly
develop real-world applications using the
Raspberry Pi.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Adding Raspberry Pi
to an RC Vehicle
	Configuring Raspberry Pi – The brain of your projects
	Configuring and controlling an RC car with Raspberry Pi
	Controlling the RC Car using Raspberry Pi in Python
	Accessing the RC Car remotely
	Summary

	Chapter 2: Adding Raspberry Pi to a Humanoid Robot
	Giving your robot voice commands
	Using eSpeak to allow your robot to respond in voice
	Using pocketsphinx to accept your voice commands
	Interpreting commands and initiating actions
	Summary

	Chapter 3: Building a Tracked Vehicle That Can Plan Its Own Path
	Basic motor control and the tracked vehicle
	Controlling the tracked vehicle using Raspberry Pi in Python
	Connecting Raspberry Pi to a USB sonar sensor
	Connecting a digital compass to the Raspberry Pi
	Accessing the compass programmatically
	Dynamic path planning for your robot
	Basic path planning

	Avoiding obstacles
	Summary

	Chapter 4: Building a Robot That Can Play Laser Tag
	Building and controlling a basic wheeled vehicle
	Using the robot library to programmatically control your robot
	Controlling your robot from a remote computer
	Adding a game controller to your remote system
	Connecting the laser source and target
	Summary

	Chapter 5: A Robot That Can Draw
	Constructing a drawing platform using servos and brackets
	Configuring the software
	Creating a program in Python to control the mobile platform
	Simple drawing using the robotic arm
	A simple Python drawing program
	Summary

	Chapter 6: A Robot That Can
Play Air Hockey
	Constructing the platform
	Controlling the paddle using stepper motors
	Moving the paddle with Arduino code
	Seeing the puck using OpenCV
	Installing a USB camera on Raspberry Pi

	Downloading and installing OpenCV – a fully featured vision library
	Colour finding with OpenCV
	Tracking the puck
	Moving the paddle to strike the puck
	Summary

	Chapter 7: A Robot That Can Fly
	Constructing the platform
	Mission Planning software
	Summary

	Index

