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The aim of this book is to present recent works covering various aspects of 
reuse in intelligent systems—including Scientific Theory and Technology-
Based Applications. New data analytic algorithms, technologies, and tools 
are sought to be able to manage, integrate, and utilize large amounts of 
data despite hardware, software, and/or bandwidth constraints; to construct 
models yielding important data insights; and, to create visualizations to aid in 
presenting and understanding the data. System development and integration 
needs to also adapt to these new algorithms, technologies, tools, and needs.

The growth of big data, in part due to it’s ubiquity, has increased the 
need for applying machine learning to solve real-world problems. Besides 
the large size inherent in big data, these datasets are adversely affected by 
class imbalance, which contributes to poor machine learning performance. 
Experimental Studies on the Impact of Data Sampling with Severely Imbalanced 
Big Data demonstrates the efficacy of machine learning classification with big 
data when confronted with the class imbalance problem. Two case studies with 
diverse range of class ratios between majority and minority classes, across 
various levels of class imbalance, have been provided. In the first case study, 
we process four big balanced datasets and artificially generate five imbalanced 
big datasets from the original full datasets, with target minority classes of 
10%, 1%, 0.1%, 0.01%, and 0.001%. Random undersampling is then applied 
to balance the binary class in each of the generated imbalanced datasets to 
50:50 class ratios. All machine learning models were built using the Random 
Forest classifier. For the second case study, a real-world Medicare fraud 
detection problem is introduced, which focuses on applying various random 
undersampling class ratios and injecting additional artificial class imbalance. 
Three learners (Logistic Regression, Random Forest, Gradient Boosted Trees) 
were employed. The results show that, in terms of class imbalanced data, ratios 
from 0.1% to 1.0% of the minority class provide adequate performance even 
when compared to 10% or even 100% of the original full balanced dataset. 
Furthermore, a balanced random undersampling ratio, when applied to the 
imbalanced big dataset, led to similarities in the average performance when 
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iv Reuse in Intelligent Systems

compared to using the entire big dataset. Also, when the minority class is 
severely imbalanced, the balanced class ratio is not always the best option 
with slightly more imbalance, such as 10% or even 1%, providing better 
overall model performance. 

The US healthcare industry produces copious amounts of big data, 
which includes information such as patient records and provider claims. 
Leveraging this big data is becoming increasingly important in keeping 
healthcare programs affordable and maintaining high levels of medical care—
especially for the rising elderly population. The elderly are experiencing 
increased life expectancy, with continuing healthcare needs later in life and 
the need for programs, such as US Medicare, to help with associated medical 
expenses. Unfortunately, due to healthcare frauds, these programs are being 
adversely affected, draining resources and reducing quality and accessibility 
of necessary healthcare services. The detection of fraud is critical in being 
able to identify and subsequently stop these perpetrators. The application of 
machine learning methods to big data can be leveraged to improve current 
fraud detection processes and reduce the resources needed to investigate 
possible fraudulent activities. Big Data and Class Imbalance in Medicare 
Fraud Detection  presents two case studies for detecting fraud across several 
big Medicare claims datasets from 2012 to 2015, considering the severe class 
imbalance between fraud and non-fraud claims, with actual fraud labels from 
the List of Excluded Individuals/Entities (LEIE). The first case study employs 
the Random Forest model with random undersampling, to mitigate some of 
the adverse effects of class imbalance and to generate seven different class 
distributions for a comparison of performance results with Medicare Part B 
data. The second case study expands upon the first by taking the best class 
distribution from the first and providing results for two additional Medicare 
datasets and a combined dataset. We demonstrate that 90:10 is the best 
class distribution; whereas, the balanced and two of the highly imbalanced 
distributions produced the worst fraud detection performance. Furthermore, we 
show that the commonly used ratio of 50:50 (balanced) was not significantly 
better than using a 99:1 (imbalanced) class distribution. The study clearly 
demonstrates the need to apply at least some sampling to big data with class 
imbalance and suggests the 50:50 class distribution does not produce the best 
Medicare fraud detection results. 

Researchers and practitioners commonly use feature selection and 
data sampling to counter high dimensionality and class imbalance. How to 
Optimally Combine Univariate and Multivariate Feature Selection with Data 
Sampling for Classifying Noisy, High Dimensional and Class Imbalanced 
DNA Microarray Data was conducted to give practitioners guidance on 
best practices when analyzing bioinformatics data that exhibit both high 



dimensionality and class imbalance in the context of data noise. Three 
approaches for combining feature selection and data sampling are compared: 
(1) data sampling followed by feature selection with the training data being 
built using the selected features and the unsampled data; (2) data sampling 
followed by feature selection with the training data being built using the 
selected features and the sampled data, and (3) feature selection followed by 
data sampling with the training data being built using the selected features and 
the sampled data. Additionally, the importance of alleviating class imbalance 
is investigated (by applying data sampling) for classification problems on 
bioinformatics datasets. We explored three major forms of feature selection 
(feature rankers, filter-based subset selection, and wrapper-based subset 
selection), as well as a commonly used data sampling technique (Random 
Undersampling). All experiments were conducted using ten gene expression 
datasets which were first determined to be relatively free of noise. Then, 
noise is artificially injected, creating three levels of data quality to simulate 
real-world scenarios. Final models are built using six different classification 
algorithms. Empirical results show that the best performing approach is 
feature selection followed by data sampling, across all data quality levels. 
We also show that alleviating class imbalance (e.g., by applying Random 
Undersampling), in conjunction with reducing high dimensionality, will 
achieve improved classification performance for bioinformatics classification 
problems compared to reducing the high dimensionality without alleviating 
the class imbalance. 

Given the number of new movies being released every week, online 
recommenders play a significant role in suggesting movies for individuals 
or groups of people to watch—either at home or at movie theaters. Making 
recommendations relevant to the interests of an individual, however, is not 
a trivial task due to the diversity in individual preferences. To address this 
issue Movie Recommendations Based on the Recurrent Neural Network 
Model introduces a novel movie recommender system that suggests movies 
appealing (to a certain degree) to movie goers. Recommendation systems are 
an important part of suggesting movies—especially in streaming services. For 
streaming movie services like Netflix, recommendation systems are essential 
for helping users find new movies to view. In this paper, we propose a deep 
learning approach based on autoencoders to produce a collaborative filtering 
system, which predicts movie ratings for a user based on a large database of 
ratings from other users. Using the MovieLens dataset, we explore the use 
of deep learning to predict users’ ratings on new movies, thereby enabling 
movie recommendations. To verify the novelty and accuracy of our deep 
learning approach, we compare our approach to standard collaborative 
filtering techniques: k-nearest neighbor and matrix factorization. The 
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experimental results show that our recommendation system outperforms a 
user-based neighborhood baseline in terms of root mean squared error on 
predicted ratings. In addition, we have conducted other user studies, which 
were straightly based on human assessment, on movie recommendations 
made by on our recommender, along with Amazon and Redbox, two well-
known movie recommenders. Performance of recommenders are compared 
and the empirical study further verified the merit and novelty of our movie 
recommender. The design the new recommender, which is simple and domain-
independent, can easily be extended to make recommendations on items other 
than movies.

The popularization of MOOCs in recent years has consolidated this 
learning format in the open education scenario, with the emergence of new 
providers, new available courses, and more universities becoming partners. 
However, this accelerated expansion makes it difficult for students to find 
the most appropriate content; and, some recommendation systems have 
emerged to support such decisions. A Recommendation System Enhanced 
by Topic Modeling for Knowledge Reuse in MOOCs Ecosystems advances 
in the investigation of MOOCs recommendation systems, addressing the use 
of Linked Open Data, enhanced by topics modeling and labeling methods 
to integrate and reuse data. Moreover, this chapter applies the concepts 
of software ecosystem (SECO) in the modeling of MOOCs ecosystems, 
identifying interactions and benefits of this approach. Finally, an example 
of use is conducted to verify usability and how the techniques perform to 
recommend courses (or parts of courses) in multiple MOOCs providers.

Petri nets (PN) are a mathematical tool that allows for complex algorithms 
to be modeled visually and demonstrates the capabilities to quickly observe 
the outcomes of an algorithm. With additional variables, in our case time, the 
standard PN model can be enhanced to give greater modeling capabilities 
to a developer. Towards a Computer Vision Based Approach for Developing 
Algorithms for Soccer Playing Robots focuses on the actions a robotic 
goalkeeper should take in a soccer match, a Timed Petri net (TdPN) was used 
to model and simulate the system. The TdPN was developed to take inputs 
from machine learning models, which includes the detection of the soccer 
ball and other robots as well as the distances to each from pictures taken 
by the robot. Using these predictors, an initial marking for the TdPN can be 
determined, which when simulated will choose the desirable action based on 
the input stimuli of what the robotic goalkeeper sees. Additionally, we analyze 
our TdPN to see where the model can be modified and/or expanded to account 
for changes in the future.

Verification tools for hybrid systems with mixed discrete-continuous 
behavior are becoming more and more powerful, but their applicability to 



high-dimensional models is still restricted. Context-dependent Reachability 
Analysis for Hybrid Systems proposes an improvement for a certain class of 
verification techniques based on flow-pipe construction. In previous work 
we presented a method that allows for decomposition of the state space of 
a hybrid system, such that the analysis can be done in sub-spaces of lower 
dimensions, instead of the global high-dimensional space. In this paper, 
we present an approach to construct such decompositions automatically, 
to analyze the dynamics in each of the sub-spaces, and to select for each 
sub-space an individual well-suited verification method. Our experimental 
evaluation demonstrates the general applicability of our approach and shows a 
remarkable speed-up on decomposable systems with heterogeneous dynamics.

Attackers can leverage several techniques to compromise computer 
networks—ranging from sophisticated malware to Distributed Denial of 
Service (DDoS) attacks that target the application layer. Application layer 
DDoS attacks, such as Slow Read, are implemented with just enough traffic 
to tie up CPU or memory resources causing web and application servers to 
go offline. Such attacks can mimic legitimate network requests making them 
difficult to detect. Netflow Feature Evaluation for the Detection of Slow Read 
HTTP Attacks explores eight machine learners for detecting Slow Read DDoS 
attacks on web servers at the application layer. Our approach uses a generated 
dataset based upon Netflow data collected at the application layer on a live 
network environment. Our generated dataset consists of real-world network 
data collected from a production network. The eight machine learners provide 
us with a more comprehensive analysis of Slow Read detection models. It is 
essential to know which features reflect the most significant value regarding 
the learners’ performance. Selective feature evaluation has several methods 
used to specify the attribute evaluator and search methods. Correlation Feature 
Selection (CFS) evaluates the worth of a subset of attributes by considering 
the individual predictive ability of each feature. In machine learning and 
statistics, feature selection methods such as single-attribute, subset attributes 
selection, and Principal Component Analysis (PCA) are excellent approaches 
for choosing a subset of relevant features for enhancing machine learning 
models. We explore the use of these methods to improve the machine learners 
for detecting Slow Read DDoS attacks on web servers at the application 
layer. Experimental results show that the machine learners were successful in 
identifying the Slow Read attacks with a high detection and low false alarm 
rate. The experiment demonstrates that our chosen Netflow features and 
feature selection methods are discriminative enough to detect such attacks 
with 90 percent accuracy.

Server Logs are an important source of information for diagnosing 
abnormal behavior as well as proactive error handling. Generally, errors are 
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examined manually by human experts, which takes a considerable amount of 
time and effort to prevent the system from failure. The system log files, besides 
other attributes such as time and location, and contains messages in textual 
form, which is essential for analyzing behavior logs and understanding the 
cause of errors. Predictive Analysis of Server Log Data for Forecasting Events 
forecasts future server events, which helps the data analyst to predict future 
system failure. We are reusing the sequence of events and forecasting future 
events for abnormal behavior detection by the system. Accurate forecasting 
of time-series events is optimum for active strategies, excellent performance 
of the system, preventive maintenance, and complete shut-down. We have 
explored the LSTM (Long short-term memory) algorithm, Holt-Winters, and 
ARIMA algorithms and compared the results. We found that LSTM produces 
promising results for forecasting future events.

Stuart H Rubin
Lydia Bouzar-Benlabiod
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Chapter 1
Experimental Studies on the 

Impact of Data Sampling with 
Severely Imbalanced Big Data

Tawfiq Hasanin, Taghi M Khoshgoftaar* and Richard A Bauder

1. Introduction

Recent developments in technology have caused the growth of raw data 
to occur at an explosive rate. This has resulted in immense opportunity for 
knowledge discovery and data engineering research to play an essential role 
in a wide range of applications from enterprise information processing to 
governmental decision-making support systems, and microscale data analysis 
to macroscale knowledge discovery.

In defining the term “big data”, scholars provide many examples 
throughout the literature [1]–[4]. In general, big data refers to large and 
complex data, made up of structured and unstructured data which are too big, 
or too computationally expensive, to be managed by traditional data mining 
and Machine Learning (ML) techniques. Today, a huge amount of information 
and data are stored in digital mediums which make it easier to use more 
advanced methods to extract meaningful information. The general consensus 
is that there are certain attributes that characterize big data. Throughout 
the literature, the task of defining big data has proven rather complicated, 
without a universally accepted definition [5]. Recently, Senthilkumar et al. [5] 
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2 Reuse in Intelligent Systems

provided a definition specifically for healthcare, categorizing big data into six 
V’s: Volume, Variety, Velocity, Veracity, Variability, and Value. Volume refers 
to vast quantities of data, Variety applies to high levels of complexity of data 
(i.e., incorporating data from different sources, mash-ups), Velocity represents 
the high frequency at which new data is generated/collected, Veracity pertains 
to the correctness of the data, Variability refers to sizable fluctuations, or 
variation, in the data, and Value signifies significant data quality in reference 
to the intended results (e.g., fraud detection).

When focusing on learning from the available information, ML is a 
branch of Artificial Intelligence (AI) that studies the ability to learn without 
explicitly being programmed to do so. Compared to more traditional 
solutions, ML algorithms generally provide good results [6]–[8]. Moreover, 
the traditional techniques cannot cope with such large amounts of data, thus 
fueling a growing need to run machine learning and data mining methods on 
increasingly larger datasets [9]. With this kind of growth in dataset size, many 
problems surface. An important problem that affects learning from big data is 
class imbalance. Class imbalance refers to the condition where the classes are 
not represented equally [10]–[12]. Generally speaking, most labeled datasets 
have some inequality in the number of classes, such as having very few fraud 
cases relative to the non-fraud cases. The vast majority of instances belong to 
one or several classes and a very small minority belong to the class, or classes, 
of interest. Some real-world examples of minority class, or classes of interest, 
include positive cancer diagnoses, medical fraud cases, and airport security 
breaches. All of these minority classes are significantly less likely to occur 
in comparison to the normative situation. Thus, the abnormal cases (minority 
or positive classes) are the ones we want to successfully detect and deal with 
accordingly.

The problem of imbalanced learning has attracted a significant amount of 
attention from academia, industry, and government agencies in recent years 
[13]. An issue with using imbalanced training data is how it might impact the 
performance of a ML algorithm, which assumes balanced class distributions 
or equal misclassification costs [13], [14]. For that reason, when presented 
with imbalanced datasets, these algorithms usually fail to properly represent 
the characteristics of the data and perform poorly in correctly classifying the 
data [13], [15]. There are many different techniques when dealing with class 
imbalanced datasets, which include the following:
 • Collect more data for the minority class. However, this can be difficult to 

achieve since the minority class can be hard to collect or unavailable, as 
seen with Medicare fraud.

 • Apply several classification algorithms to assess which one performs 
better on a particular dataset.
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 • Use sampling methods on the data to lessen the impact of class imbalance. 
Sampling generates new datasets from the original. There are many 
sampling methods such as Random Oversampling (ROS) [16], Random 
Undersampling (RUS) [16], the Synthetic Minority Over-sampling 
TEchnique (SMOTE) [17] and cost-sensitive learning [18].

 • Lastly, though not specifically an imbalance solution, the use of different 
performance metrics to give additional insights into model performance 
can help in assessing the true impact of class imbalance. For example, 
accuracy can be very misleading in reporting performance on imbalanced 
datasets. Accuracy, sometimes called error rate, usually applies a 0.50 
threshold to decide between classes, and this is typically incorrect with 
severely class imbalanced datasets. In Section 3.3, we explain the Area 
Under the Receiver Operating Characteristic (ROC) Curve (AUC) which 
can be used in lieu of accuracy. AUC is an average performance of all 
operating points on the ROC curve for a particular learner.

In this study, we focus on sampling to reduce the impact of class 
imbalance on machine learning models. Sampling techniques usually fall 
into two categories: undersampling the majority class or oversampling the 
minority class. The first removes instances from the majority, while the latter 
adds instances to the minority class. RUS is based on randomly removing 
instances from the majority class, but other methods selectively undersample 
the majority class, while keeping the original population of the minority class 
[19]. ROS randomly oversamples the minority class. SMOTE oversamples the 
minority class by creating “synthetic” examples rather than by oversampling 
with replacement. For our paper, we apply a RUS-based class imbalance 
methodology. In general, we did not use ROS to avoid increasing the size of 
the already large datasets, which can lead to an increase in computation time 
and expense. Additionally, we avoided using SMOTE because it can create 
samples that are not real or representative of the actual data, thus misleading 
ML models [20].

We demonstrate that classification performance across several imbalanced 
big datasets across different application domains can be significantly improved 
using RUS without substantially altering the composition of the original data. 
Our results indicate that having some data imbalance, from 0.1% to 1.0% 
of the minority class, provides good performance versus using the original 
imbalanced dataset or a heavily altered balanced dataset. For big data models, 
the use of RUS implies less loss of information in the negative class, and 
thus a better overall representation of the original data (unlike the 50:50 class 
distribution). The following sequence summarizes our approach for the first 
case study:
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 • Collect balanced big datasets.
 • By simulation, randomly discard positive class instances, generating five 

different class ratios.
 • Apply RUS to each dataset to get a 50:50 (balanced) class distribution.
 • Employ Random Forest (RF) on each dataset (to include the original, full 

dataset) to assess classification performance.

In addition to the aforementioned experiments on class imbalance, we 
also introduce a class imbalance problem using real-world Medicare fraud 
datasets, as a second case study. From these datasets, we randomly select 
baskets from the minority (positive) class of 200, 100, and 50 instances. We 
then apply RUS on each basket, as well as the original full datasets, producing 
50:50, 75:25, 65:35, 90:10, and 99:1 class distributions. Model performance 
is assessed using Logistic Regression (LR), RF, and Gradient Boosted Trees 
(GBT) across the different datasets. Our results indicate that applying RUS 
with more imbalanced class ratios, such as 90:10 and 99:1, provide better 
performance than the typical 50:50 class ratio.

Our contribution involves clearly demonstrating the adverse impact of 
class imbalance in big data on machine learning model performance, and 
lessening these effects by applying RUS and state-of-the-art big data tools 
and frameworks. More specifically, we present two experiments. In the 
first, we compare the original datasets, as a baseline, against datasets with 
balanced and imbalanced class distributions. This helps to determine a good 
class distribution when using imbalanced big data. In the second experiment, 
we employ real-world imbalanced Medicare datasets. We create additional 
severely imbalanced datasets and apply RUS to each. To the best of our 
knowledge, our work is unique in generating both imbalanced and balanced 
datasets to determine the effects of class imbalance on big data.

The remainder of this paper is organized as follows. Section 2 provides 
an overview of related works. Section 3 describes the ML classification 
algorithms and libraries used in this paper, to include the evaluation strategy 
with validation techniques and performance metrics. Section 4 introduces 
our first experiment to include the datasets and how they were processed, 
model training, and performance evaluation. Section 5 presents our second 
experiment which involves a real-world Medicare fraud problem, with severe 
class imbalance. Section 6 presents our conclusions and future work.

2. Related Works

There are several studies that offer a good overview for the problem of 
imbalanced data which include works such as [13], [21]–[23]. Overall, 
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approaches for addressing the problem of class imbalance fall largely in two 
groups: data sampling solutions [16], [17], which modify the original training 
set, and algorithmic modifications [24], which modify existing algorithms 
trying to benefit from the classification of the minority class. Cost-sensitive 
solutions [25], [26] combine the two previous options trying to minimize 
misclassification costs, which are higher for the instances of the minority 
class.

The researchers in [27] have proposed an enhanced SMOTE algorithm for 
classification of imbalanced big data using RF. In their work, they introduced 
a method to work on multi-class imbalanced data. The initial step decomposed 
the original dataset into subsets of binary classes. The authors then applied the 
SMOTE algorithm to each subset of imbalanced binary class in order to create 
balanced data. The results showed that their proposed method outperforms 
other methods.

Another work that has come to our attention is [28]. Their method won 
the ECBDL’14 big data challenge for a bioinformatics big data problem. This 
algorithm, named ROSEFW-RF, is based on several approaches to balance 
the class distributions through ROS, detecting the most relevant features via 
an evolutionary feature weighting process and a threshold to choose them, 
building an appropriate RF model from the pre-processed data, and classifying 
the test data. From their analysis, they concluded that their approach is very 
suitable to tackle large-scale bioinformatics classification problems.

A recent study [29] addressed the fact that existing solutions typically 
follow a divide-and-conquer approach in which the data is split into several 
chunks that are addressed individually. Next, the partial knowledge acquired 
from every slice of data is aggregated in multiple ways to solve the entire 
problem. However, these approaches are missing a global view of the data 
as a whole, which may result in less accurate models. In their work, the 
researchers carried out a first attempt on the design of a global evolutionary 
undersampling model for imbalanced classification problems. These are 
characterized by having a highly skewed distribution of classes in which 
evolutionary models are being used to balance the dataset by selecting only 
the most relevant data. Using Apache Spark [30], they introduced a number 
of variations to the well-known CHC [31] algorithm to work with very large 
chromosomes and reduce the costs associated with the fitness evaluation. 
They discussed some preliminary results, showing the potential of this new 
kind of evolutionary big data model.

The work in [32] analyzed the performance of several techniques used to 
deal with imbalanced datasets in big data. The work adopted oversampling, 
undersampling, and cost-sensitive learning to correctly identify the 
underrepresented class. An experimental study was carried out to evaluate 
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the performance of the diverse algorithms considered. The results indicated 
that there is not one approach to imbalanced big data classification that 
outperforms the others for all the data considered, when using RF.

Another study [33] analyzed the performance of oversampling and 
undersampling with the decision tree [34] learner. Their work shows that 
using decision trees with undersampling establishes a reasonable standard for 
algorithmic comparison. But, it is recommended that the least cost classifier 
be part of that standard as it can be better than undersampling for relatively 
modest costs. Oversampling, however, shows little sensitivity. The authors 
note that there is often little difference in performance when misclassification 
costs are changed.

One study by our research group [35] discusses four Medicare datasets, 
and provides an exploratory analysis of fraud detection. They achieved good 
fraud detection performance particularly for LR and RF. Nevertheless, this 
study did not include data sampling methods to address the issue of class 
imbalance. Another recent paper [36] employed undersampling to study the 
impact of class imbalance by creating four class ratios (80:20, 75:25, 65:35, 
and 50:50). Using RF and LR learners, the research concluded that the 80:20 
class distribution performed the best with low false negative rates.

3. Background

In this section, we describe the machine learning models used in our study. 
Additionally, we discuss two machine learning frameworks used in our 
experiments to process and build models with the big datasets. Note that 
during model training, we keep the default model parameters unless otherwise 
stated. For the first case study, we maintain configurations that are as similar 
as possible between the Spark and H2O frameworks. However, for the second 
case study, we use only the Spark framework for building models on the big 
Medicare datasets.

3.1 Machine Learning Algorithms
The decision tree is a greedy algorithm that performs a recursive binary 
partitioning of the features. The tree predicts the label for each bottom-most 
(leaf) partition. Each partition is chosen greedily by selecting the best split 
from a set of possible splits, in order to maximize the information gain (IG) 
at a tree node [30]. The node impurity is a measure of the homogeneity of 
the labels at the node. The current implementation in Spark provides two 
impurity measures for classification. That is, Gini impurity which is defined 
by the formula ∑C

i = 1 fi(1 − fi) and entropy which is defined by ∑C
i = 1 – fi  log fi , 
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where fi  is the frequency of label i at the specific node and C is the number of 
unique labels. The information gain is the difference between the parent node 
impurity and the weighted sum of the two child node impurities. Note that DT 
is not directly used in our study, but is an integral part of both the Random 
Forest and Gradient-Boosted Tree models.

RF [37] is an ensemble approach that can also be thought of as a form 
of nearest neighbor predictor. Ensembles are a divide-and-conquer approach 
used to improve performance. The main principle behind ensemble methods is 
that a group of “weak learners” can come together to form a “strong learner.” 
RF employs the Decision Tree (DT) algorithm as the “weak learner” in the 
ensemble. In a DT, each branch of the tree represents a feature in the data 
which divides the instances into more branches based on the values which that 
feature can take. Information Gain is used to decide the hierarchy of features 
in the final tree structure. The leaves of the tree represent the final class label. 
In our study, we applied RF as a base machine learning algorithm. Ensembles 
have demonstrated good behavior when confronted with imbalanced datasets 
[38], and it is believed that using one of them as a basis for the comparison 
should not bias the results regarding the minority class [32]. It is also believed 
that combining random sub-sampling with RF may overcome the imbalance 
problem [39]. A recent study [40] used 121 datasets from the University 
of California, Irvine (UCI)1 Machine Learning Repository to develop a 
comparison of 179 classifiers arising from 17 families. The study excluded 
large-scale problems. Their conclusion was that the classifier most likely to 
be the best was RF.

GBT iteratively trains a sequence of decision trees. On each iteration, 
the algorithm uses the current ensemble to predict the label of each training 
instance and then compares the prediction with the true label. The dataset is 
re-labeled to put more emphasis on training instances with poor predictions. 
Thus, in the next iteration, the decision tree will help correct previous 
mistakes. The specific mechanism for re-labeling instances is defined by a 
loss function. With each iteration, GBT further reduces this loss function on 
the training data [30].

This model measures the relationship between the categorical dependent 
variable and one or more independent variables by estimating probabilities 
using a logistic function, which is the cumulative logistic distribution. Thus, it 
treats the same set of problems as probit regression using similar techniques, 
with the latter using a cumulative normal distribution curve instead with the 
loss function in the formulation given by the logistic loss:

L (w : x, y) := log(1 + e−ywT x) (1)

1 http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu
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For binary classification problems, the algorithm outputs a binary LR 
model. Given a new data point, denoted by x, the model makes predictions by 
applying the logistic function f (z) =   1

          1+ez
 where z = wT x. If (wT x) > 0.5, the 

outcome is positive class, or negative otherwise.

3.2 Machine Learning Frameworks
To ease the process of using ML, engineers build the algorithms within software 
modules or packages, making sure that they work reliably, quickly, and  
at-scale. Furthermore, these frameworks are specifically designed to leverage 
distributed compute resources for processing extremely large datasets. In the 
context of ML, our work employs two state-of-the-art big data frameworks:
 • Apache Spark [30], also referred to as Spark in this paper, provides 

dramatically increased data processing speed compared to traditional 
methods and is considered one of the largest big data open source projects 
[41].

 • H2O is another open source framework that provides a parallel processing 
engine, analytics, math, and machine learning libraries, along with data 
preprocessing and evaluation tools. Additionally, it offers a web-based 
user interface, making learning tasks more accessible to analysts and 
statisticians who may not have strong programming backgrounds [42].

3.3 Evaluation Strategy
Typically, when training and validating models, datasets are split into two 
thirds for model training and one third for testing. However, this method 
has some disadvantages, mainly because only part of the data is in either the 
training or validating process but not both. To overcome this problem, leave-
one-out validation methods help by using the entire dataset in the evaluation 
process. Two validation methods employing this idea were used in this work, 
to include k-fold cross-validation and Out-of-Bag error.

In ML, one of the commonly used model evaluation methods is cross-
validation (CV), in which a portion of the data is used to train the model 
while the remaining data is used to validate the built model. K-fold CV is 
also known as rotation estimation, which evaluates predictive models by 
partitioning the original sample into several sets of approximately equal size. 
As seen in Figure 1, the model is trained and tested k times, where each time it 
is trained on k – 1 folds and tested on the remaining fold. This is to ensure that 
all data are used in the classification. A slight modification in the k-fold CV 
technique is made for some classification problems. With imbalanced data, one 
typically uses stratified k-fold CV, in which minority and the majority classes 
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have roughly the same proportions of class labels in each fold, to ensure that 
minority classes have approximately balanced distribution between training 
and test sets. When compared to regular CV, the stratification scheme is 
generally better in terms of bias and variance [43].

A RF model, however, has the ability to internally estimate the 
performance during run time. This method is called Out-of-Bag (OOB) error. 
While using the entire original dataset, each tree in the forest is built using 
a different bootstrap sample. Typically, one-third of the dataset is left out 
and not involved in the current tree construction. This set is used to validate 
the tree built on the remaining two-thirds, with every other tree in the forest 
similarly treated. At the end of the run, j is taken as the OOB, the class that 
received most of the votes every time out of n cases. The proportion of times 
that j is not equal to the true class of n, averaged over all cases, is the OOB 
error estimate. The OOB is used, while adding trees to a forest, to achieve a 
running unbiased estimate of the classification error.2

3.4 Area Under ROC Curve
Although the accuracy metric threshold may use values other than the default 
0.5 to distinguish between binary classes, the accuracy metric is based on 
a simple count of the errors which can easily hide information due to class 
confusion. To measure model performance, we use the Area Under the 
Receiver Operating Characteristic Curve (AUC) metric. AUC is preferred 
over accuracy as an alternative method for evaluating a classification 
algorithm [44]. The use of AUC allows us to focus on a classifier’s ability to 
avoid false classification [45]. This is particularly important when working 
with imbalanced datasets when the positive class, the class of interest, is in 
the minority.

Fig. 1.1
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Fig. 1: K-Fold cross validation.

2 https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm.

https://www.stat.berkeley.edu
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3.5 Average and Weighted AUC
In Spark, the average AUC over all of the 5-fold CV folds is used. However, 
this approach produces different results using H2O. Scoring the holdout 
predictions can result in different metrics versus taking the average over all 
of the 5-fold CV folds. For example, if the sizes of the holdout folds differ 
significantly, then the average should be replaced with a weighted average. 
Also, if the CV models map to slightly different probability spaces, which 
can happen for some models that converge to different local minima, then the 
confused rank ordering of the combined predictions can lead to a significantly 
different AUC than the average.3 Besides the average AUC scores, we retain 
all of the individual AUC scores for statistical analysis.

3.6  Significance Testing
In order to provide additional rigor around our AUC performance results, 
we use hypothesis testing to show the statistical significance of the model 
performance results. Both ANalysis Of VAriance (ANOVA) [46] and post 
hoc analysis via Tukey’s Honestly Significant Different (HSD) [47] tests are 
used in our study. ANOVA is a statistical test determining whether the means 
of several groups (or factors) are equal. Tukey’s HSD test determines factor 
means that are significantly different from each other. This test compares all 
possible pairs of means using a method similar to a t-test, where statistically 
significant differences are grouped by assigning different letter combinations 
(e.g., group ‘a’ is significantly different than group ‘b’).

3.7  The Problem of Randomization
Randomization can be problematic when balancing datasets by either 
undersampling or oversampling. Additionally, problems from randomization 
can adversely affect the resampling of the k-folds in CV, where it randomly 
divides the data into these k folds. Statistically, having a sample is only part of 
the population, where the numerical value of a statistic cannot be expected to 
provide the exact value of the population for any given sample. With RUS, the 
split is completely random and retains only a fraction of the data. Thus, due to 
this randomness, RUS performs splits that can be considered lucky or unlucky. 
Random splits may generate very good (clean) sampled instances (that could 
increase model performance) or may retain poor and/or noisy instances which 
may degrade the training process and model performance. Lastly, some 
algorithms, such as RF, have inherent randomness, whereas others output 
results where the order of instances is changed. One way to reduce some of 

3 https://h2o-release.s3.amazonaws.com/.

https://h2o-release.s3.amazonaws.com
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the potential negative effects of randomness is by using repetitive methods 
[48]. We use five repeats in the first case study for each RUS split. This will 
provide five models for each ratio, which means that we created a total of 200 
new datasets from the original four datasets and 4,488 models. Each of these 
five repetition results were averaged to get the overall model performance. In 
the second case study, we decided to repeat it 10 times due to the severe class 
imbalance and relative size of each dataset, which generated 14,400 models.

4. Simulated Imbalanced Data Case Study

For our first case study, we considered four diverse and publicly available 
big datasets, three of which were gathered from UCI Machine Learning 
Repository [49]. Because it is likely the most developed branch of learning 
from imbalanced data [50], binary classification problems are very important 
in our current research. Hence, our primary focus is on using high-dimensional 
datasets with binary labels for classification.

The datasets in this case study are listed in Table 1 which include HIGGS, 
SUSY [51], HEPMASS [52], and sentiment140 [53]. HIGGS, HEPMASS, 
and SUSY are similar to each other in nature while sentiment140 has a 
different representation characteristic. More specifically, sentiment140 has a 
word vector representation [54] with features representing the words and the 
instances representing tweets. Each value in the data holds either 1, indicating 
the word exists in the document or 0, indicating the absence of the specific 
word. Table 1 presents the dimensions, number of class instances, number of 
features, the learning difficulty, and the performance. The datasets are ordered 
by level of difficulty. The importance of understanding the difficulty of a 
dataset is needed because the evaluation result is dependent on the dataset 
itself, e.g., how difficult it is to learn patterns in a particular dataset. The listed 
performance is based on building and evaluating RF models on the original, 
full datasets (with no sampling). There is not a lot of information regarding 
the learning difficulty of the collected datasets, except from comparing 
model performance for each dataset in Section 4.4. As the reader will see in  
Section 6, as well as in Table 3, the performance of each dataset varies and 
little can be done to significantly improve the model performance with data 

Table 1: Datasets.

Dataset Features Instances Difficulty AUC Performance

HEPMASS 28 10,500,000 Easy 0.953

SUSY 18 5,000,000 Medium 0.874

HIGGS 28 11,000,000 Hard 0.822

sentiment140 109,735 1,600,000 Very hard 0.785
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sampling when the dataset is very difficult to learn. In general, the level 
of difficulty of a dataset may depend on one or more factors, such as the 
algorithm used, level of noise, or high dimensionality. Readers may refer to 
[55]–[57] to learn more about level of difficulty.

As stated, the primary purpose for using big balanced datasets is to study 
the effects of learning with imbalanced data. Usually, methods are used to 
provide a balanced distribution by modifying imbalanced datasets; however, 
our method aims to intentionally inject imbalance to provide a general 
insight about imbalanced datasets. Studies have shown that, in comparison to 
imbalanced data, a balanced dataset produces an improvement in the overall 
performance for many classifiers [13].

4.1  The Imbalanced Datasets
Each one of the four datasets is represented with the symbol α next to its 
name to indicate that it is the original balanced dataset. Five new imbalanced 
datasets (referred to as data1, data2, data3, data4, and data5, respectively) are 
created out of the original α balanced datasets with different ratios randomly 
undersampled from only the positive class.

In binary classification, the idea is to define each instance with a label, 
either positive or negative. In real-world problems, the positive class is 
typically more important and is what we want to predict or detect. To mimic 
real-word problems, we are going to decrease the positive class by randomly 
discarding them. Table 2(a) shows twenty new imbalanced datasets plus 
the four original. Typically, RUS removes data from the original dataset. In 
particular, it randomly selects a set of majority class instances and removes 
these samples to adjust the balance of the original dataset. Nevertheless, 
in our experiment, we used undersampling to inject imbalance into the big 
datasets by removing instances from the positive class. Due to the design of 
our experiment, we started by randomly sampling the data keeping 10% of 
the positive class while discarding 90%, thus obtaining a ratio of 10:1 which 
we call number 1. We went further by taking 10% of data1 which makes the 
ratio to the original data 100:1, thus creating data2. We then repeated the same 
process to produce data3, data4, and data5. Table 2(a) shows the statistics for 
the original data along with the new generated datasets.

4.2 The Balanced Datasets
By using RUS on the negative class, Table 2(b) shows the five new balanced 
datasets derived from the Table 2(a) datasets. Note that the size of the data 
decreased rapidly in some cases. For example, when comparing the size of the 
class percentage of 0.001, we can see that the HEPMASS dataset has dropped 
from 5,249,929 to a total number of 105 instances.



The Impact of Data Sampling with Severely Imbalanced Big Data 13

Table 2: Random undersampled (RUS) datasets class distribution.

D
at

a # Negative Class Positive Class Ratios Total

% Instances % Instances Neg:Pos % Instances

H
EP

M
A

SS

α
1
2
3
4
5

100 5,249,876

⋮ ⋮

100 5,250,124
10 525,012
1 52,501
0.1 5250
0.01 525
0.001 53

1:1
10:1

100:1
1000:1

19,999:2
699,976:7

100 10,500,000
54.999 5,774,888
50.499 5,302,377
50.049 5,255,126
50.004 5,250,401
49.999 5,249,929

H
IG

G
S

α
1
2
3
4
5

100 5,170,877

⋮ ⋮

100 5,829,123
10 582,912
1 58,291
0.1 5829
0.01 583
0.001 58

8:9
71:8

621:7
887:1

35,483:4
709,661:8

100 11,000,000
52.307 5,753,789
47.538 5,229,168
47.061 5,176,706
47.013 5,171,460
47.009 5,170,935

SU
SY

α
1
2
3
4
5

100 2,712,173

⋮ ⋮

100 2,287,827
10 228,783
1 22,878
0.1 2288
0.01 229
0.001 23

6:5
83:7

1067:9
2371:2

59,274:5
118,548:1

100 5,000,000
58.819 2,940,956
54.701 2,735,051
54.289 2,714,461
54.248 2,712,402
54.244 2,712,196

se
nt

im
en

t1
40

α
1
2
3
4
5

100 800,000

⋮  ⋮

100 800,000
10 80,000
1 8000
0.1 800
0.01 80
0.001 8

1:1
10:1

100:1
1000:1

10,000:1
100,000:1

100 1,600,000
55 880,000
50.5 808,000
50.05 800,800
50.005 800,080
50.001 800,008

2(a) Imbalanced datasets: 5 new datasets are derived from the original dataset using RUS, 
undersampling the positive class while retaining all of the negative class.

Table 2 contd. ...

4.3  Simulated Experiment Design
Figure 2 outlines the creation of the datasets from Table 2 and the 
implementation of the ML models from Table 3. After collecting datasets 
shown in Table 1, our experiment consists of three distinct stages:
 • Preparing and sampling the data, where both steps in this stage are 

repeated five times. By the end of this stage, 50 versions of the original 
datasets are generated.
1) Imbalance the full original datasets by randomly discarding samples 

of the positive class, generating five different class ratios. At this step, 
we simulated the problem of class imbalance.

2) Balance these imbalanced datasets into 50:50 class ratios using RUS 
on the negative class.
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D

at
a

# % Negative Class Positive Class Ratio Total Instances

H
EP

M
A

SS

1
2
3
4
5

10
1
0.1
0.01
0.001

524,987
52,498

5249
524
52

524,167
52,501

5250
525
53

50:50
⋮

1,049,154
104,915
10,491

1048
105

H
IG

G
S

1
2
3
4
5

10
1
0.1
0.01
0.001

517,087
51,708
5.170

517
51

582,912
58,291

5829
583
58

50:50
⋮

1,099,999
109,999
10,999

1100
109

SU
SY

1
2
3
4
5

10
1
0.1
0.01
0.01

271,217
27,121

2712
271
27

228,783
22,878

2288
229
23

50:50
⋮

49,999
49,999

5000
500
50

se
nt

im
en

t1
40 1

2
3
4
5

10
1
0.10
0.01
0.001

80,000
8000
800
80
8

80,000
8000
800
80
8

50:50
⋮

160,000
16,000

1600
160
16

2(b) Balanced datasets: we balanced each one of the datasets from Table 2(a). This is achieved by 
using RUS on the negative class so the number of samples are balanced with the positive class 

labels.

...Table 2 contd.

4 https://hadoop.apache.org/.
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Fig. 2: Simulated experiment design.

 • Storing and distributing the data using Apache Hadoop.4 Hadoop 
is a popular framework for working with big data that helps to deal 
with scalability problems by offering distributed storage, the Hadoop 
Distributed File System (HDFS), which is designed to reliably store very 
large datasets. For more details, please refer to [42].

https://hadoop.apache.org
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 • Building and evaluating RF models on the newly created datasets from 
the first stage along with original datasets, generating a total of 51 datasets 
that are used to build each model. These models are built using two ML 
implementation frameworks (Spark and H2O) with Random Forest with 
50 and 100 trees, and the three different AUC methods. Below, we list the 
modified model configurations, with other parameters kept as the default.

 – Maximum depth of each tree in the forest is set to 20.
 – The maximum number of bins used for splitting features is set to 32.
 – Number of features to consider for splits at each node is square root.
 – Criterion used for information gain calculation is Gini index.
 – The sub-sampling rate which specifies the size of the dataset used for 

training each tree in the forest, as a fraction of the size of the original 
dataset, is set to two thirds.

Table 3: Simulated case study: Area under the ROC curve (AUC) average results.

Framework H2O Spark

Validation OOB 5-folds CV

Trees 50 100 50 100 50 100

H
EP

M
A

SS

α
1
2
3
4
5

0.948
0.943
0.934
0.897
0.618
0.546

0.948
0.945
0.937
0.920
0.691
0.549

0.966
0.945
0.937
0.920
0.672
0.520

0.948
0.946
0.938
0.928
0.787
0.560

0.945
0.944
0.928
0.809
0.547
0.500

0.947
0.945
0.931
0.864
0.583
0.505

H
IG

G
S

α
1
2
3
4
5

0.819
0.811
0.769
0.696
0.600
0.555

0.823
0.811
0.769
0.714
0.645
0.554

0.821
0.803
0.759
0.713
0.640
0.524

0.824
0.815
0.778
0.724
0.655
0.548

0811
0.808
0.752
0.671
0.523
0.500

0.815
0.813
0.766
0.694
0.556
0.499

SU
SY

α
1
2
3
4
5

0.873
0.868
0.860
0.803
0.576
0.525

0.874
0.870
0.864
0.826
0.614
0.525

0.874
0.870
0.864
0.830
0.598
0.547

0.875
0.871
0.866
0.842
0.654
0.525

0.874
0.868
0.846
0.711
0.570
0.500

0.874
0.870
0.852
0.753
0.588
0.500

se
nt

im
en

t1
40

α
1
2
3
4
5

0.763
0.762
0.707
0.602
0.613
0.605

0.788
0.801
0.744
0.684
0.689
0.761

0.756
0.760
0.705
0.637
0.613
0.476

0.771
0.774
0.717
0.659
0.622
0.449

0.809
0.807
0.736
0.702
0.612
0.624

0.823
0.823
0.764
0.730
0.644
0.772

3(a) Imbalanced datasets results: average AUC results for the generated datasets shown in  
Table 2(a).

Table 3 contd. ...
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A total of 204 datasets are used in this process, from the four big datasets 
listed in Table 1. We believe that there are benefits in having the original 
dataset. Many researchers have an imbalance problem then adjust the datasets 
with sampling, either oversampling or undersampling, to mitigate the effects 
of class imbalance on model performance. This case study, on the other 
hand, has the original full balanced datasets to have as comparison with our 
undersampled dataset results.

4.4  Results of the Simulated Datasets
Table 3 presents average AUC results for the iterations and each combination. 
Figure 3 visualizes the overall AUC slopes for a better understanding of the 
results. With respect to best performances among all five sampled ratios, the 
datasets can be categorized into four levels of difficulty. HEPMASS was the 
easiest to learn among all four, while sentiment140 was the most difficult. 
With regards to the number of trees in the Random Forest models, as expected, 
100 trees performed better than 50.

...Table 3 contd.

Framework H2O Spark

Validation OOB 5-folds CV

Trees 50 100 50 100 50 100

H
EP

M
A

SS

1
2
3
4
5

0.943
0.936
0.926
0.916
0.845

0.945
0.939
0.933
0.924
0.845

0.945
0.940
0.933
0.925
0.830

0.946
0.941
0.935
0.929
0.840

0.945
0.939
0.932
0.920
0.880

0.945
0.940
0.935
0.927
0.873

H
IG

G
S

1
2
3
4
5

0.802
0.778
0.739
0.679
0.598

0.810
0.810
0.756
0.725
0.690

0.811
0.794
0.753
0.720
0.608

0.814
0.814
0.766
0.725
0.643

0.809
0.791
0.755
0.693
0.631

0.813
0.798
0.765
0.702
0.604

SU
SY

1
2
3
4
5

0.866
0.858
0.836
0.829
0.834

0.870
0.863
0.845
0.843
0.875

0.870
0.864
0.846
0.829
0.838

0.872
0.867
0.849
0.830
0.864

0.869
0.863
0.848
0.831
0.916

0.871
0.866
0.853
0.841
0.916

se
nt

im
en

t1
40 1

2
3
4
5

0.773
0.756
0.741
0.599
0.432

0.794
0.792
0.764
0.604
0.386

0.806
0.797
0.745
0.548
0.246

0.817
0.802
0.762
0.615
0.280

0.802
0.784
0.710
0.629
0.442

0.819
0.802
0.748
0.626
0.325

3(b) Balanced datasets results: average AUC results for the Table 2(b).
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From Table 3 and Figure 3(a, b, c, and d), we can see that building the 
models using cross-validation performed better, in general, than using OOB. 
Note that the AUC values in bold are the best with regards to each generated 
data in the rows. Upon inspection, we find that the H2O version of RF, with 
100 trees, performed the best on all datasets except sentiment140 where Spark 
with 100 trees performed better. Regardless, our goal is not an ML library 
and framework comparison. In terms of the imbalanced datasets, the worst 
results were at or below 0.1% of positive class membership. We can see from  
Figure 3(a, b, c, and d) that the sampled positive percentage of 0.1% and 
1.0% gave similar performances to the results from 10% and even close to 
100% which is the original data. In terms of sentiment140, the AUC is poor 
at 0.001% of the positive class. The nature of this data is different from the 
other three datasets and, to be specific, 18 positive class instances is very 
low especially given the high-dimensionality of the data. On the other hand,  
Figure 3(e, f, g, and h) shows the balanced class distribution dataset results 
from Table 3(b) and overall, performance increased. When comparing the 
same dataset, sentiment140, from graph h with the one from d, we can see 
that at the smallest class distribution, the AUC results were below 0.5 which 
means that the built models using 16 samples did not perform well despite the 
fact that all platforms and learners agreed. Note that the results from H2O and 
Spark are not the same due to several factors such as different implementations 
of the RF algorithm, randomness in the bagging and feature selection, as well 
as different ways of handling categorical variables.
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Fig. 3: Simulated case study: AUC results plots.
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Figure 3(i, j, k, and l) depicts the results from Table 3. The dashed lines 
represent the average AUC for the imbalanced datasets for every combination 
of the five generated ratios. The solid lines represent the average after 
balancing the datasets. For the first two combinations, 1 and 2, we can see 
results are fairly similar between the imbalanced and balanced datasets. 
However, we can see a noticeable increase in performance with the remaining 
three combinations. This agrees with the results from [13] which concluded 
that sampling produces an improvement in the overall performance for many 
classifiers. However, a limitation of the sentiment140 dataset is that the 
performance of the models was poor and unstable when the positive minority 
class was at or below 0.01%. Thus, with imbalanced data, it is important to 
analyze some data characteristics that interact with this issue, aggravating the 
problem in order to increase the performance.

We are interested in determining whether balancing several class 
distributions using RUS on big data has an effect on the performance.  
Table 4 part (a) shows a two-factor ANOVA which includes the different class 
distributions and whether they are balanced. In these results, based on the 
p-values and a significance level of 0.05, the p-value for class distribution was 
2e-16 which indicates that the levels are associated with different significant 
strengths. Also, the p-value for the balanced condition was 0.00339, which is 
also lower than 0.05 indicating a significant difference.

A post hoc test is needed in order to determine which groups differ 
from each other. The phrase “post hoc” refers to the fact that these tests  
are conducted without any particular prior comparisons in mind.  
Table 4(b, and c) presents Tukey’s Honestly Significant Different (HSD) 
post hoc tests for balanced and class distributions treatment. In part (b) of  
Table 4, which tests the balanced criteria with 400 runs in each category, 
the two groups hold distinct group letters which means there is a significant 
difference between the balanced and imbalanced class distributions. On the 
other hand, in part (c) of the Table, the test indicates that there is a degree of 
performance similarity with some of the RUS class distributions; however, 
despite the fact that group letters have interactions in most of the cases, mean 
AUC values of imbalanced class distributions are always preceded by balanced 
class distributions that share the same positive class percentage. RUS 10:10 
has the best performance in our experiment, and class distributions below a 
positive class percentage of 0.1% lie at the end of the Table. 100:0.001 class 
distributions have the worst AUC results among all of the ten.

Figure 4 visualizes the AUC ranges and group letters for each class 
distribution. The figure corresponds to Table 4 part (c). The range of each 
class distribution is determined by the minimum and maximum AUC values 
from the Table and the bold dots represent the mean AUC for each class 
distribution.
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Table 4: Simulated case study: Analysis of variance table.

Df  Sum Sq Mean Sq F value Pr (> F)

Balanced 1 0.139 0.1394 8.635 0.00339

Distribution 8 2.998 0.3748 23.213 < 2e-16

Residuals 790 12.755 0.0161

4(a) Two-factor ANOVA results.

AUC std r Min Max Group

Yes 0.7266479 0.16219 400 0.2100 0.9548 a

No 0.7002451 0.11479 400 0.4301 0.8850 b

4(b) Tukey’s HSD balanced results.

AUC std r Min Max Group

10:10 0.81731 0.04666 80 0.62034 0.87906 a

100:10 0.79110 0.06870 80 0.61003 0.87298 ab

1:1 0.77558 0.09861 80 0.43907 0.88790 ab

100:1 0.74909 0.07968 80 0.55250 0.87439 bc

0.1:0.1 0.69186 0.16996 80 0.21000 0.86097 cd

100:0.1 0.69169 0.09005 80 0.43005 0.85668 cd

0.01:0.01 0.68885 0.17528 80 0.21667 0.92712 cd

0.001:0.001 0.65963 0.20828 80 0.21000 0.95478 de

100:0.01 0.64921 0.09135 80 0.51872 0.88495 de

100:0.001 0.62015 0.13799 80 0.43005 0.88495 e

4(c) Tukey’s HSD class distribution results.

Fig. 4: Simulated case study: Class distribution range and groups.
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5. Real-World Implanted Case Study

For the second case study, we use the following three Public Use File (PUF) 
datasets that are related to Medicare Provider Utilization and Payments 
(MPUP) for Medicare fraud detection, with a very limited number of known 
fraud labels (i.e., a severe class imbalance). In this section, we provide 
discussions on each of these Medicare datasets, to include data processing 
and fraud label mapping, as well as our fraud detection results for the original 
and sampled datasets.
 • Medicare Provider Utilization and Payment Data: Physician and Other 

Supplier (Part B).
 • Medicare Provider Utilization and Payment Data: Part D Prescriber  

(Part D).
 • Medicare Provider Utilization and Payment Data: Referring Durable 

Medical Equipment, Prosthetics, Orthotics and Supplies (DMEPOS).

5.1  Medicare Data Description
1) Part B: The Part B dataset provides claims information, within a given 
year, for each procedure a physician performs. Currently, this dataset is 
available on the CMS website for the 2012 through 2016 calendar years, with 
2016 data being released in 2018 [58]. The years 2017 and 2018 are presently 
unavailable (for Part B and other Medicare datasets used herein). A unique 
National Provider Identifier (NPI) standard is used to identify physicians, with 
specific procedures labeled by their Healthcare Common Procedure Coding 
System (HCPCS). The data also includes other claims information which are 
average payments and charges, the number of procedures performed, and 
medical specialty. The Centers for Medicare and Medicaid Services (CMS) 
aggregates the data using NPI of the provider, HCPCS code for the procedure, 
and the place of service. Because physicians may perform the same procedure 
at different service places and practice under several provider types, for each 
physician, there are as many records as unique combinations of NPI, Provider 
Type, HCPCS code, and place of service.

2) Part D: The Part D dataset provides information related to the prescription 
drugs prescribed by physicians and paid for under the Medicare Part D 
Prescription Drug Program within a given year. Currently, this data is 
available on the CMS website for the 2013 through 2016 calendar years, with 
2016 being released in 2018 [59]. Providers/prescribers are identified using 
their unique NPI while each drug is listed by its brand and/or generic name 
along with other information related to the prescription and other general 
features. Similar to the Part B dataset, we found that physicians practice under 
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multiple specialties. There are as many records as unique combinations of 
NPI, Provider Type, and drug name for each physician. To provide privacy 
protection for Medicare beneficiaries, an exclusion of any aggregated rows, 
derived from 10 or fewer claims, has been applied.

3) DMEPOS: The Referring Durable Medical Equipment, Prosthetics, 
Orthotics and Supplies (DMEPOS) data includes submitted claims information 
about medical products for patients based on physicians’ orders within a given 
year. It mainly contains data on utilization, allowed amount and Medicare 
payment, and submitted charges organized by NPI, HCPCS code, and supplier 
rental indicator. Currently this data is available on the CMS website for the 
2013 through 2016 calendar years (with 2016 being released in 2018) [60]. As 
previously mentioned for Part B and D, we have found that some physicians 
place referrals for the same DMEPOS equipment, or HCPCS code, as well as 
a few physicians that practice under multiple specialties. Therefore, for each 
physician, there are as many rows as unique combinations of NPI, Provider 
Type, HCPCS code, and equipment status.

4) Combined dataset: The Combined dataset is created after processing  
Part B, Part D, and the DMEPOS datasets, containing all the attributes from 
each, along with the fraud labels derived from the LEIE. The combining 
process involves a join operation on NPI, Provider Type, and year. Due to 
there not being a gender variable present in the Part D data, we did not include 
this variable in the join operation conditions and used the gender labels from 
Part B while removing the gender labels gathered from the DMEPOS dataset 
after joining. In combining these datasets, we are limited to those physicians 
who have participated in all three parts of Medicare. Even so, this Combined 
dataset has a larger and more encompassing base of attributes for applying 
data mining algorithms to detect fraudulent behavior, as demonstrated in our 
study.

5) LEIE: All three previously listed Medicare datasets (Part B, Part D, and 
DMEPOS) are aggregated based on the procedure-level and are not labeled 
with a specific classification problem. In order to generate necessary fraud 
labels, we integrate information from a list of federally excluded healthcare 

Table 5: Medicare datasets.

Data Name Neg Pos Pos % Year Range Features One-hot

Part B 4,690,862 1508 0.03% 2012–16 35 126

Part D 2,843,498 1153 0.04% 2013–16 34 126

DMEPOS 1,153,265 710 0.06% 2013–16 41 145

Combined 1,015,741 528 0.05% 2013–16 102 137
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providers. The List of Excluded Individuals and Entities (LEIE) [61] provides 
a list of mandatory excluded providers in which the provider is excluded, 
for a given period of time, from practicing medicine in the United States. 
This list is issued by the Office of Inspector General (OIG) [62] and it is 
updated monthly. The LEIE only lists provider exclusions without any 
information regarding which procedures or prescriptions led to being placed 
on the exclusion list, and is considered a provider- or NPI-level data source. 
This dataset roughly contains 70,000 records in which only 4900 have a valid 
NPI, while the remaining are empty. This dataset was mapped with the other 
Medicare datasets to consider the class-label “exclusion” in which 0 refers 
to the negative class (non-fraud) and 1 to the positive class (fraud). Table 6 
gives the corresponding codes for provider exclusions and the length of each 
mandatory exclusion. We have determined and assume that any behavior prior 
to and during a physician’s exclusion end date constitutes fraud.

5.2  Medicare Data Processing
Each of the aforementioned Medicare datasets require some data preparation 
prior to building machine learning models. All four Medicare datasets have 
missing values. The tool we used in the next part does handle missing values; 
however, its ML library does not handle those missing values automatically; 
thus, certain transformation were applied on the datasets regarding the missing 
values. In the datasets, null is used for values that are unknown or missing. 
Additionally, all standard deviations of NA (i.e., no computed value) were 
imputed and replaced with 0. Each dataset has several categorical features 
such as Provider Type, and gender in which those categorical features in the 
datasets were converted into one-hot encoding. The main reason we followed 

Table 6: Mandatory exclusions.

Social Security Act 42 USC Amendment

1128(a)(1) 1320a-7(a)(1) Conviction of program-related crimes. Minimum 
Period: 5 years

1128(a)(2) 1320a-7(a)(2) Conviction relating to patient abuse or neglect. 
Minimum Period: 5 years

1128(a)(3) 1320a-7(a)(3) Felony conviction relating to health care fraud. 
Minimum Period: 5 years

1128(a)(4) 1320a-7(a)(4) Felony conviction relating to controlled substance. 
Minimum Period: 5 years

1128(c)(3)(G)(i) 1320a-7(c)(3)(G)(i) Conviction of second mandatory exclusion offense. 
Minimum Period: 10 years

1128(c)(3)(G)(ii) 1320a-7(c)(3)(G)(ii) Conviction of third or more mandatory exclusion 
offenses. Permanent Exclusion
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this method is that applying some ML algorithms such as LR does not consider 
categorical variables in nature. Thus, indexing these categorical variables may 
imply a numerical order or value.

With these processed datasets, we map fraud labels from the LEIE. Because 
the Medicare datasets are annual, we assume that any excluded provider in 
the LEIE is considered fraudulent for any particular matched year, with a 
6-month rounding approach [63]. This is a limitation in the Medicare datasets 
in both not providing more granular time information and in the LEIE, where 
no information is given regarding procedures/services associated with each 
excluded provider. With this assumption, we join providers in the LEIE with 
each Medicare dataset by NPI and year. Any providers that match between 
datasets are flagged as a 1 (fraud), otherwise they are flagged as 0 (non-fraud). 
These are the binary labels used to build models and evaluate fraud detection 
performance. Note, NPI and year labels are removed after data processing 
prior to applying any ML approaches.

5.3  Medicare Experiment Design
Unlike the first case study, we use three ML learners: LR, RF, and GBT. 
Additionally, for this experiment, only the Apache Spark machine learning 
library is used. We only use Spark in this case study and not H2O, because H2O 
does not currently have an included data sampling implementation. The reason 
for choosing these learners is that they cover several families of algorithms. 
These learners provide additional insight into the effects of class imbalance 
on overall machine learning model performance. Moreover, they are generally 
considered as robust and good learners. In this section, we provide learner 
configurations, as well as data sampling configurations for the fraud detection 
experiment. The overall experimental flow is depicted in Figure 5.

1) Learner Configurations: With RF and GBT, the number of trees was set 
to 100 trees. The maximum memory in megabytes (MB) was set to 1024 to 
speed up model training. CachNodeIds was set to true for speeding up the 
process of building up the tree. The featureSubsetStrategy parameter was set 
to one-third based on an initial investigation. Because the categorical features 
space is converted to one-hot encoding and the feature set is not considered 
high dimensional, we decided to go with a one-third data subset, because 
it was found to be better in an initial investigation regarding this particular 
dataset. Based on initial investigations, we used the Gini index for the 
information gain calculation. Maximum Bins was set to the maximum number 
of categorical features, which is 2 in our case, because there is no method to 
disable it within Apache Spark. All other parameters in RF and GBT were set 
to their respective default values.
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The Spark LR max iteration was set to 100. The ElasticNet mixing 
parameter alpha, in the range [0, 1], was set to 0 indicating an L2 penalty. 
Apache Spark has impeded standardization which we set to true, determining 
whether to standardize the training features before fitting the model. Spark 
LR provides an implementation for tree aggregating which is a specialized 
implementation of aggregate that iteratively applies the combine function to a 
subset of partitions. This is done in order to prevent returning all partial results 
to the driver node where a single pass “reduce” would take place, as with the 
classic aggregate method. Many of the Spark machine learning algorithms 
use this tree Aggregate functionality, and show increased model performance.

2) Data Sampling: We applied RUS to the following class ratios: 50:50, 
65:35, 75:25, 90:10, and 99:1. The ratios are in the form of [negative:positive] 
classes. The reason we have chosen these ratios is that they cover a good 
range from balanced datasets to relatively imbalanced datasets. For instance, 
a 50:50 class ratio for Part B would have 1508 records for the negative class 
and the same for the positive class. However, a ratio of 99:1 would include 
149,293 records of the negative class in the dataset.

Prior to sampling, we generated several extreme positive class counts (or 
baskets) in which we randomly picked a number of records while discarding 
the rest. We selected 50, 100, and 200 positive count baskets for each of 
the Medicare datasets. As an example, a 50:50 class ratio for a basket of  
50 positive records would lead to a dataset of only 100 instances, for each of 
the four datasets. From this process, we studied the rarity of the positive class 
for which we injected a severe imbalance into the datasets [64], [65]. Note 
that the label “ALL” includes all available positive class instances. With four 

Fig. 5: Medicare experiment design.
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datasets, four (baskets) positive counts, three learners, six ratios, 5-fold CV, 
and 10 repetitions, we built and evaluated 14,400 different models.

5.4  Medicare Fraud Detection Results
As with the previous case study, we also provide Figure 6 which shows the 
average AUC results for each dataset and number of positive class instances. 
From these plots, there are noticeable differences in performance across 
the sampling ratios for each dataset. A post hoc test was applied in order to 
determine which groups differ significantly from another. Our main goal in 
investigating this real-world dataset is to determine if these results agree with 
the conclusions found via the simulated experiments in the first case study. 
As seen in Table 7, the most important factors are found to be the different 
baskets of positive classes and the sampling ratios.
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Fig. 6: Medicare average AUC results plots.

Table 7: Medicare 3-factor ANOVA.

Df Sum Sq Mean Sq F Value Pr (> F)

isSampled 1 0.13 0.127 26.30 2.95e-07

Rare Baskets 3 32.29 10.765 2228.36 < 2e-16

Ratio 4 1.74 0.435 90.01 < 2e-16

Residuals 14391 69.52 0.005
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Table 8 represents the Tukey’s HSD post hoc test results, where boldface 
values are the highest average AUC scores per factor. It also shows the average 
AUC, standard deviation, minimum, maximum, and quantiles for each factor. 
The Part B dataset has the highest AUC value among the four datasets, 
while DMEPOS has the lowest. Also, as expected, using all of the positive 
class instances for each dataset yields a higher performance than using any 
of the generated baskets. Among the three learners, LR performs better on 
average while RF and GBT perform similar to each other. Additionally, the 
“isSampled” factor, which refers to the condition that the data was randomly 
undersampled or kept without sampling, shows that RUS performs better than 
datasets without sampling. However, some of these non-sampled datasets 
have very low positive class counts, such as 50, making it extremely difficult 
for a model to discern distinct positive class patterns. Lastly, the factor “ratio” 
shows that using a 50:50 class ratio is not always ideal, as it generally depends 
on other factors such as the data domain, such as Medicare fraud dedication 
in our case. Under the same Tukey’s HSD group, class ratios of RUS 90:10 
and 99:1 performed better on average by 0.02 AUC than the other class ratios.

6. Conclusions

The importance of big data is increasing due to the ease of acquiring such 
data, particularly in fields such as healthcare. Big data is typically defined by a 
very large amount of information with various complex characteristics. Given 
that, traditional data mining approaches might not cope with the requirements 
imposed by big data. In this study, we focus on a major challenge in the Data 
Mining and Machine Learning communities, namely class imbalance in big 
data. This problem leads to additional demands on and complexity in the data 
when training and evaluating machine learning models. We discussed two 
case studies in which we decreased the size of various big datasets to study 
the impact of data sampling in favoring the minority (positive) class, which is 
usually the class of interest.

With the first case study, we deliberately injected and simulated a binary 
imbalanced classification problem, in which we compared several class 
ratios and discussed the impact on a RF model’s predictive performance. We 
collected four public balanced big datasets and randomly discarded instances 
from the positive class, generating five different class ratios. Following this, 
we employed RUS to balance the negative and positive classes to a 50:50 
class ratio on all previous imbalanced datasets. In the second case study, we 
introduced a real-world case study involving Medicare fraud detection. Five 
RUS class ratios were created, which include 50:50, 25:75, 35:65, 90:10, 
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and 99:1. Additionally, we injected more class imbalance into each dataset 
by creating three baskets (50, 100, 200 positive instances), to assess model 
performance on a very rare number of positive classes. Besides RF, we 
included two additional ML models, LR and GBT.

We found, in the first case study, that if the number of minority class 
labels is too low, such as 100,000:1, then increasing the ratio from 10,000:1 
to 1,000:1 can give a good boost in RF performance. Moreover, partially 
undersampling the majority class, without balancing the data to a 50:50 class 
ratio, increases model performance. In the second case study, our results 
agree with the findings from our simulated experiments in case study one. 
Moreover, we clearly show that a 50:50 balanced class ratio is not always the 
ideal dataset. In fact, the 99:10 and 99:1 class ratios seem to indicate better 
performance depending on the total number of available instances.

We suggest that future work should include an investigation on 
oversampling to inject various degrees of class imbalance. However, ROS 
might inject redundant information, and thus other synthetic oversampling 
methods should be explored. Additionally, we will consider additional 
performance metrics to evaluate the impact of class imbalance.
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1. Introduction

The emergence of DNA microarray chips has allowed scientists to measure 
the expression levels of thousands of genes simultaneously. Practitioners 
have used machine learning techniques to analyze the data from microarray 
experiments (gene expression data) and make diagnostic and/or prognostic 
decisions. However, the extremely large number of genes makes traditional 
machine learning techniques inefficient and ineffective. With a large 
number of features, these techniques become computationally expensive 
and time consuming. Additionally, it is expected that many of these features 
are irrelevant (having little or no correlation with the class) or redundant 
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(containing information already represented in other features) in relation to 
the question at hand, subsequently leading to suboptimal results (reduced 
performance and interpretability of predictive models). Feature selection is 
the main technique used to cope with high dimensionality, which consists 
of finding a minimum subset of features that are highly correlated with the 
class attribute. Benefits of feature selection include: enhanced generalization 
capability of models, improved model interpretability, and accelerated 
learning time. For these reasons, feature selection has become the cornerstone 
of data mining in bioinformatics.

Class imbalance is another common challenge in bioinformatics, which 
occurs when one class, usually the class of interest (i.e., positive class), 
has fewer instances than the other class(es). This unequal class distribution 
often results in a large number of false negatives (misclassifications from the 
positive class), because traditional classifiers were designed with the goal of 
maximizing overall classification accuracy without properly balancing the 
weight of each class. Data sampling is the most popular technique to alleviate 
the problem of class imbalance, which attempts to reduce the severity of 
imbalance within the data by adding or removing instances. Despite the 
prevalence of class imbalance among gene expression datasets, most previous 
studies have ignored the subject entirely or provided shallow treatments. This 
study shows the importance of taking into account class imbalance when 
analyzing bioinformatics datasets.

Noise is another challenge exhibited by many real-world datasets, which 
refers to missing or incorrect values for one or more properties that describe 
an instance in a dataset. There are two types of data noise: attribute noise and 
class noise. Attribute noise occurs when values in the independent attributes 
are incorrect (for example, gene expression levels not recorded correctly), 
while class noise refers to incorrect values in the dependent attribute (for 
example, cancerous instances labeled as non-cancerous). Unfortunately, 
noise has a detrimental impact on classification algorithms as well as feature 
selection techniques, confusing data mining techniques and subsequently 
leading to suboptimal results (e.g., worsened classification performance, 
unstable feature selection). Considering the adverse impact of data noise, 
there is clearly a need to study its impact on data mining techniques. Thus, all 
empirical investigations presented in this study were performed on data which 
was first determined to be free of noise and then had artificial class noise 
added in a controlled fashion. This way, the results can be used to simulate 
real-world scenarios.

In this study, we determine whether the order in which feature selection and 
data sampling are applied is important or not by comparing three approaches 
developed for classification problems on datasets that exhibit both high 
dimensionality and class imbalance simultaneously [2]. In the first approach, 
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data sampling takes place before feature selection with the training data being 
built using the selected features and the original data (DS-FS-UnSam). In 
the second approach, data sampling also takes place first, but then feature 
selection is performed; however, the training data is built using the selected 
features and the sampled data (DS-FS-Sam). In the third approach, feature 
selection is performed first followed by data sampling, with the training 
data being built using the selected features and the sampled data (FS-DS). 
Additionally, we investigate the importance of taking into account the problem 
of class imbalance on bioinformatics datasets by comparing the classification 
performance of two approaches. In the first approach feature selection (FS) is 
performed alone (i.e., no data sampling), and then a classifier is built using 
the selected features. Alternatively, in the second approach (FS-DS), we apply 
data sampling after performing feature selection, and then a classifier is built 
using the selected features and the sampled data. All datasets investigated in 
the study exhibit high dimensionality. Thus, all of the investigated approaches 
employ feature selection to cope with the high dimensionality challenge.

To compare the aforementioned approaches, we utilize three feature 
ranking techniques (with three choices of feature subset size for each), one 
form of filter-based subset evaluation, and wrapper subset selection, as well as 
a commonly used data sampling technique (Random Undersampling (RUS)). 
We perform experiments using ten gene expression datasets that were first 
determined to be relatively free of noise. We then artificially injected noise, 
creating three levels of data quality (High-Quality, Average-Quality, and Low-
Quality), and we build our final models using six different classification 
algorithms.

The experimental results demonstrate that FS-DS is the best performing 
approach for all combinations of learners and data quality levels with one 
insignificant exception. Additionally, FS-DS was most frequently the top 
performing approach and was never the worst when considering noisy 
datasets (Average-Quality and Low-Quality datasets). This is a significant 
finding demonstrating that FS-DS is robust and noise tolerant, which is 
a desired quality, especially in bioinformatics. On the other hand, DS-FS-
Sam was the worst performing approach, on average, regardless of the 
data quality level. All of these results were confirmed through ANalysis Of 
VAriance (ANOVA) and Tukey’s Honestly Significant Difference (HSD) tests 
[6]. Finally, our results show that data sampling (in conjunction with feature 
selection) helped improve the classification performance even more compared 
to feature selection alone. Based on these findings, we recommend using 
feature selection followed by data sampling when dealing with datasets that 
exhibit both high dimensionality and class imbalance simultaneously.

The remainder of this paper will be organized as follows: Section 2 
presents related works on the topics of high dimensionality, class imbalance, 



36 Reuse in Intelligent Systems

and data noise. Section 3 outlines the methods used in this work, the three 
approaches, the sampling technique, the feature selection techniques, the 
quality of data, the noise injection mechanism, the datasets, the classifiers, 
and the performance evaluation. In Section 4, we present our results. Finally, 
Section 5 concludes our paper and discusses the potential for future work.

2. Related Work

Having a large number of features in a dataset is commonly known as high 
dimensionality. This overabundance of features makes the process of analyzing 
such datasets more challenging (requiring extensive computation and 
degrading the predictive performance of inductive models). Feature selection 
is the most popular process for handling high-dimensional data, which tries to 
choose the best features for performing classification and eliminate redundant 
and useless features. There are a number of advantages when those redundant 
and irrelevant features are removed, including: enhanced generalization 
capability of models, improved model interpretability, and a faster learning 
process.

Feature selection techniques can generally be grouped into two broad 
categories based on the number of features considered together: univariate 
techniques and multivariate techniques. Univariate techniques evaluate each 
feature individually using different statistical measures (filter-based feature 
ranking), while multivariate techniques evaluate whole subsets at a time either 
using statistical measures (filter-based subset selection) or using a classifier 
(wrapper-based feature selection). A broad survey of feature selection is 
presented by Guyon and Elisseeff [23]. In 2013, our research group conducted 
a comprehensive study [16] to investigate the effectiveness of 25 different 
feature ranking techniques and 6 classification algorithms when predicting 
patient response to a drug treatment. The results showed that the Random 
Forest classifier is the best performing classifier regardless of the feature 
selection being used, and it improved classification performance as feature 
subset size increased.

In the context of subset-based feature selection, Khoshgoftaar et al. 
[30] investigated the problem of subset-based selection stability (robustness 
of outputs in the face of perturbation), including the importance of stability 
as well as various stability measures. The authors investigated the previous 
studies on stability analysis of feature subset selection techniques within the 
domain of bioinformatics and have identified the shortcomings of these works 
to explore possible opportunities for future work. Wald et al. [45] investigated 
the stability of two filter-based subset selection techniques (Consistency 
feature subset evaluator and Correlation-Based Feature Selection). They 
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found that Consistency has the greatest stability overall, while Correlation-
Based Feature Selection shows moderate stability.

Wrappers received little attention because they can be very computationally 
expensive and can result in an overfitted inductive model. Inza et al. [27] 
compared filter-based feature ranking and wrapper-based subset selection. 
The authors used six feature ranking techniques along with four choices of 
learner on two bioinformatics datasets. They showed that wrapper feature 
selection outperforms filter-based ranking; however, it is computationally 
more expensive. A comparative study on all three forms of feature selection 
was conducted by Wang et al. [46]. Experiments were conducted using four 
filter-based rankers, one filter-based subset evaluator, and three classifiers for 
both wrapper selection and final classification. The authors found that both 
subset selection approaches (filter-based and wrapper-based) can give good 
performance while selecting a smaller subset of features.

Class imbalance occurs when positive class instances (that is, those which 
belong to the most important class) are outnumbered by instances of the other 
class(es). Many real-world bioinformatics datasets are characterized by class 
imbalance. Ramaswamy et al. [37] performed feature selection on a dataset 
where only 16% of the instances are in the class of interest. Shipp et al. [39] 
classified diffuse large B-cell lymphoma from follicular lymphoma using a 
dataset with a 25% class imbalance. Iizuka et al. [26] constructed a predictive 
system using a training dataset of 33 patients, 36% of them belonging to the 
positive class.

Traditional classifiers applied to class-imbalanced datasets often result 
in suboptimal classification performance [44]. Data sampling is the most 
popular technique for handling class imbalanced data [32], where the dataset 
is transformed into a more balanced one by adding or removing instances. 
A comprehensive study on different sampling techniques was performed by 
Kotsiantis [32], Guo [22], and Van Hulse [42], including both oversampling 
and undersampling techniques (which add instances to the minority class and 
remove instances from the majority class, respectively), and both random and 
directed forms of sampling. 

Relatively little work focused on both challenges (high dimensionality 
and class imbalance) together, particularly in the bioinformatics domain. 
Blagus and Lusa [8] employed three sampling techniques (oversampling, 
downsizing, and multiple downsizing) as well as variable selection on 
class imbalanced data. Experiments were conducted using a series of k-NN 
classifiers along with two linear discriminant classifiers, Random Forest, 
Support Vector Machine (SVM), CART, a Logistic Regression (LR) based 
classifier, and prediction analysis of microarrays. The results show that only 
the k-NN classifiers benefitted from oversampling. The authors considered 
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only one possible order of feature selection and data sampling (named  
DS-FS-Sam in this work).

In a more recent study, Blagus and Lusa [9] performed a study using data 
sampling on high-dimensional data. They used two data sampling techniques, 
RUS and SMOTE, on high-dimensional class-imbalanced breast cancer gene 
expression datasets and a series of classifiers. They showed that only the k-NN 
classifiers seem to benefit substantially from SMOTE and a number of the other 
classifiers seem to prefer RUS. Some of the datasets used in this study were 
not particularly imbalanced, with the minority class being as high as 45% of 
the instances. In these cases, data sampling will have little effect as the classes 
are fairly balanced to begin with. Al-Shahib et al. [4] used undersampling as 
well as a wrapper-based feature selection to build classifiers to predict protein 
function from amino acid sequence features. Classifiers were built on the “one 
versus all” model, with each classifier deciding if instances are in a given class 
or not. They showed that the classification performance can be improved by 
combining data sampling and feature selection along with the SVM classifier 
and that applying the data sampling to improve the class ratio to 50:50 (with or 
without feature selection) to that same classifier was significantly better than 
any of the other combinations with few exceptions. This study only considers 
one possible order of feature selection and sampling, without examining the 
importance of this order.

Another challenge encountered when analyzing real-world data is noise, 
which refers to incorrect or missing values in datasets. All kinds of noise 
can lead to suboptimal classification performance, and class noise has a 
more harmful effect on classification problems than attribute noise [48]. A 
comprehensive survey on the sources, challenges, and solutions to address 
class noise can be found in the work of Frénay and Verleysen [20]. They 
concluded that many open research questions related to class noise and many 
avenues remain to be explored. Unfortunately, many data mining techniques 
are sensitive to data noise. Thus, low quality data can result in suboptimal 
predictive classification performance and can also impact the effectiveness 
of feature selection. Therefore, it is important to understand how low quality 
data can impact data mining techniques (feature selection techniques and 
classification models). Thus, all empirical investigations presented in this 
study were performed on data which was first determined to be free of noise 
and then had artificial class noise added in a controlled fashion. This way, the 
results can be used to simulate real-world scenarios.

The primary contributions of this paper are as follows: (1) compare three 
approaches to combining feature selection and data sampling to determine 
whether the order in which they are applied is important or not, where no 
previous work systematically investigated the importance of the order for 
combining feature selection and data sampling in the context of data quality; 
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(2) investigate the importance of alleviating class imbalance for classification 
problems on bioinformatics datasets, which have been ignored almost entirely 
in most previous studies; (3) simulate real-world scenarios by injecting 
class noise into ten real-world gene-expression datasets (after having been 
determined to be relatively free of noise) creating three data quality tiers 
(High-Quality, Average-Quality, and Low-Quality), and (4) examine three 
major forms of feature selection techniques (filter-based feature ranking, 
filter-based subset selection, and wrapper subset selection).

3. Methods

This section outlines our experimental methods. Section 3.1 presents the 
evaluation approaches. Section 3.2 discusses the sampling technique.  
Section 3.3 presents the 11 feature selection techniques. Section 3.4 describes 
our measurement for data quality. Section 3.5 describes the datasets used 
in the work. Section 3.6 outlines our noise injection process. Section 3.7 
introduces the learners used to create our classification models. Lastly,  
Section 3.8 presents the cross-validation process and discusses the performance 
metric used in this work.

3.1 Investigated Approaches
1) Approaches for combining feature selection and data sampling: Feature 
selection and data sampling have become necessary steps when analyzing 
high dimensional class imbalanced bioinformatics datasets. Although, these 
two techniques have received tremendous attention, most works have utilized 
them separately. However, applying them in conjunction to improve the 
classification performance has not been thoroughly explored.

We investigated three approaches that are used to deal with both high 
dimensionality and class imbalance. All approaches combine feature selection 
and data sampling; the difference between one approach and another is the 
order (whether sampling takes place before or after feature selection) and the 
dataset (unsampled or sampled) used for classification. We excluded two other 
approaches, where only one technique (feature selection or data sampling) is 
used alone, because all datasets investigated in this paper are imbalanced and 
exhibit high dimensionality. Both feature selection and sampling are necessary 
to help alleviate class imbalance and cope with high dimensionality.

The three approaches are outlined in Figure 1. In the first approach  
(DS-FS-UnSam), data sampling takes place before feature selection is 
performed, and then a classifier is built using the selected features and the 
original (unsampled) data. In the second approach (DS-FS-Sam), data 
sampling also takes place before feature selection is performed; however, a 
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classifier is built using the selected features and the sampled data. On the other 
hand, in the third approach (FS-DS), feature selection takes place before data 
sampling is performed, and then a classifier is built using the selected features 
and the sampled data.

2) Approaches to investigate the importance of alleviating the class 
imbalance: To investigate the importance of alleviating the class imbalance 
when analyzing bioinformatics datasets we compare two approaches. These 
two approaches are outlined in Figure 2. The first approach (FS) consists solely 
of feature selection, and then a classifier is built using the selected features. 
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Fig. 1: Feature selection and data sampling approaches.
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Fig. 2: Approaches to investigate the importance of alleviating the class imbalance.
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In the second approach (FS-DS) [2], feature selection takes place before data 
sampling is performed, and then a classifier is built using the selected features 
and the sampled data. We selected the FS-DS because our experimentation 
showed that it is the best approach for utilizing feature selection and data 
sampling. In summary, the difference between the two approaches is based 
on whether we employ data sampling or not. This way, the results can be used 
to determine if data sampling is beneficial in improving the performance for 
classification models built with bioinformatics datasets.

3.2 Sampling Technique
Data sampling is the process of balancing the class distribution to counter the 
problem of class imbalance, either by adding (i.e., oversampling) or removing 
(i.e., undersampling) instances until the desired class ratio is achieved. In this 
study, we used RUS, which deletes instances randomly from the majority class 
until the class ratio is balanced at a 50:50 (majority:minority) class ratio. RUS 
reduces the dataset size, which makes subsequent analysis computationally 
more efficient compared to oversampling techniques. Additionally, prior 
research showed its effectiveness [42].

3.3 Feature Selection
In this study we investigated both univariate and multivariate feature selection 
techniques. In particular, we examined three filter-based feature ranking 
techniques (with three choices of feature subset size for each), one form of 
filter-based subset evaluation, and wrapper subset selection.

With the two subset evaluation-based groups (filter-based subset evaluation 
and wrapper subset selection) a search technique must be used to explore the 
space of all possible feature subsets in order to reduce the problem from being 
O(2n). Based on preliminary experimentation, we chose the Greedy Stepwise 
approach [12]. This algorithm performs forward selection to build the full 
feature subset starting from the empty set and stops when none of the new sets 
outperform the previous best-known set, or when a user-defined maximum 
number of features (in our study, 100) is reached.

1) Filter-Based Feature Ranking: We selected three filter-based feature 
ranking techniques (i.e., rankers) from three different families: “commonly 
used” rankers (Chi Squared (CS)), “threshold-based” feature rankers (Area 
Under the Receiver Operating Characteristic (ROC) Curve), and First Order 
Statistics-based techniques (Wilcoxon Rank Sum (WRS)). “Threshold-based” 
feature rankers were proposed and implemented recently by our research 
group. Readers are referred to the work of Van Hulse et al. [43] for additional 
information. First Order Statistics-based techniques exhibit the use of first 
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order statistical measurements such as mean and standard deviation. Thus, in 
2012 our research group combined them under this name [29]. Additionally, 
three choices of feature subset size for each ranker were used (25, 50, and 
100). These sizes were proven to be reasonable in a previous study [15]. A 
brief description of each ranker family is provided below.

Chi Squared (CS) [33] is a statistical test that determines whether there 
is a statistical relationship between each feature and the class attribute.  
Chi-squared is found using the following formula:
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classes, N the total number of instances, while Ri is the number of instances in 
the ith interval, Bj the number of instances in the jth class, and Aij the number 
of instances in the ith interval and jth class.

Area Under the ROC [36] is a “threshold-based” feature ranker which 
uses the normalized feature values to classify instances by varying the 
classification threshold (e.g., instances are considered positive when the 
feature value is greater than the threshold, otherwise instances are considered 
negative class examples) to plot the True Positive Rate and the False Positive 
Rate over all threshold values. The area under the plotted curve determines the 
quality of the feature. Note that no actual classifier is being built. 

Wilcoxon Rank Sum [11] (WRS) is a nonparametric alternative to the 
standard t-test, in which no assumptions are made about the distribution of the 
data or population. Instances from both classes are combined and then sorted 
based on the feature value from smallest to largest, and then each instance will be 
assigned a rank. The summation of all ranks of the positive instances is computed  
(i.e., Wilcoxon statistic), then the p-value associated with that Wilcoxon 
statistic is found from the Wilcoxon rank sum distribution to identify 
statistically significant features.

2) Filter-Based Subset Evaluation: Correlation-Based Feature Selection 
(CFS) [24] is a commonly used filter-based subset selection technique that 
is capable of detecting the correlation between features and the class while 
accounting for the correlation among the features. CFS uses the Pearson 
correlation coefficient (a measure of the intensity of the linear association 
between variables). The Pearson correlation coefficient is defined as:
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In this equation, MS is the merit of the current feature subset, k is the 
number of features, rcf is the mean of the correlations between each feature 
and the class, and rff is the mean of the pairwise correlations between every 
two features.

3) Wrapper-Based Subset Selection: Wrapper-based subset selection evaluates 
feature subsets by applying an induction algorithm and measuring the 
performance using a classification performance metric. The best performing 
subset is selected to build the final prediction model, which is usually the same 
induction algorithm. Although wrappers are computationally expensive, they 
have the advantage of detecting redundant features. We used Naı̈ve Bayes 
(NB) (discussed further in Section 3.7) within the wrapper, as it is a simple and 
effective classification algorithm [18]. To evaluate the classification algorithm 
with the wrapper we used the Area Under the ROC Curve (AUC) (discussed 
further in Section 3.8), which previous research showed to be statistically 
consistent [28].

3.4 Quality of Data
Gene expression datasets are noisy in nature, with difficult to distinguish class 
boundaries which makes any model-building more difficult. Therefore, there 
is a clear need to study data mining techniques in the context of data noise. In 
particular, we create three levels of data quality (“High-Quality,” “Average- 
Quality,” and “Low-Quality”) to simulate different scenarios and demonstrate 
the way these approaches would be used in the field. The data quality level 
is obtained by measuring the classification performance of six commonly 
used learners: NB, Multilayer Perceptron (MLP), 5-Nearest Neighbor (5NN), 
SVMs, and two versions of C4.5 decision trees (C4.5 D and C4.5 N) using 
the AUC performance metric. The average AUC across all learners is used 
to categorize the dataset(s) according to the following ranges: High-Quality  
(> 0.8), Average-Quality (≤ 0.8 and > 0.7), and Low-Quality (≤ 0.7). All 
learners and parameters used are explained in Section 3.7 except for the  
C4.5 D and C4.5 N learners. C4.5 D is the C4.5 decision tree where the default 
parameters are used and C4.5 N has pruning turned off and Laplace smoothing 
turned on. Note that this process is only used to determine the quality level of 
the raw or noise-injected datasets and does not affect the experiment beyond 
this measurement.

3.5 Datasets
Ten binary (i.e., each instance is assigned one of two class labels) bioinformatics 
datasets are considered in this work. All of them are imbalanced, ranging from 
10.42% to 35.97% minority instances. Table 1 lists them sorted based on their 
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level of class imbalance, as presented in the “% Minority Instances” column. 
Note that all datasets are high dimensional (number of features ranging 
between 6,001 and 15,155 features). In addition to the basic properties of each 
dataset, the table presents the average AUC across the six learners discussed 
in Section 3.4. All of these datasets have average AUC values greater than  
0.8, thus they qualify as High-Quality data according to our measure in 
Section 3.4.

3.6 Noise Injection
In this work, we created the three levels of data quality (“High-Quality,” 
“Average-Quality,” and “Low-Quality”) by injecting 24 different class noise 
patterns into all training datasets. For the noise injection mechanism, the same 
procedure as reported by Van Hulse et al. [41] is used. Noise is injected in a 
controlled fashion using two parameters, α (i.e., noise level) and β (i.e., noise 
distribution). The first parameter controls the total number of noisy instances: 
2 × α × |P | instances will be randomly selected (without replacement) and 
have their class values switched from positive to negative or from negative to 
positive (where |P | is the number of minority-class or positive, instances). By 
tying the number of corrupted instances to the number of minority instances, 
it can be ensured that they will not overwhelm the minority-class. In this 
study, we used (α = 10%, 20%, 30%, 40%, 50%). The second parameter,  
β determines what fraction of these randomly chosen instances will be selected 
from the positive class (e.g., β = 0% means that only negative instances are 
corrupted and β = 100% means that only positive instances are corrupted). 
This study used (β = 0%, 25%, 50%, 75%, 100%). With five values for  
α and β, there are 24 different noise injection patterns (because the case with  

Table 1: Dataset characteristics.

Name # Minority
Instances

Total #
of Instances

% Minority
Instances

# of
Attributes

Average
AUC

Ovarian Cancer [35] 91 253 35.97% 15155 0.97388

ALL AML Leukemia [40] 25 72 34.72% 7130 0.90908

CNS MAT [13] 30 90 33.33% 7130 0.83551

Prostate MAT [13] 26 89 29.21% 6001 0.90466

MLL Leukemia [40] 20 72 27.78% 12583 0.89615

Lymphoma MAT [17] 19 77 24.68% 7130 0.83659

ALL [40] 79 327 24.16% 12559 0.84748

Lung Clean [3] 23 132 17.42% 12601 0.92351

Lung Cancer [21] 31 181 17.13% 12534 0.93885

Lung Michigan [5] 10 96 10.42% 7130 0.97384
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α = 50% and β = 100% would convert all positive-class instances into negative-
class instances, leaving no counterexamples to learn from).

As mentioned earlier, we injected 24 patterns of class noise into the “raw” 
(i.e., High-Quality) datasets creating three levels of data quality levels: “High-
Quality,” “Average-Quality,” or “Low-Quality” according to the ranges found 
in Section 3.4. These categories had 141, 64, and 35 datasets, respectively. We 
only used the derived datasets in our experiments.

3.7  Classifiers
In this experiment, we used six different classifiers: NB, MLP, 5-NN, SVM, 
Random Forest with 100 trees (RF100), and LR. We selected these classifiers 
because they are commonly used in the literature and to include a diverse 
range of classification algorithms. All classifiers were built using the Weka 
machine learning software [47], using the default parameters unless noted 
otherwise. Previous research has shown that the changes described below are 
appropriate for improving classification models [42].

NB [34] is a simple probabilistic classifier which utilizes Bayes’s 
Theorem of conditional probability and assumes attribute independence. 
Although this basic assumption is violated in real-world datasets, research 
has shown that it can be effective and efficient compared to more advanced 
and sophisticated classifiers. No changes to the default parameters were made 
in our experiments.

The MLP [7] is a type of neural network that uses backpropagation to 
classify instances. It contains three layers: an input layer, a hidden layer, and 
an output layer. In these experiments, the hiddenLayers parameter was set to 
3 to build a network with one hidden layer containing three nodes, and the 
validationSetSize parameter was set to 10 so that the classifier would leave 
10% of the instances out to determine when to stop training.

k-nearest neighbors [19], or k-NN, is an example of a case-based learning 
algorithm, which uses the k closest training samples from a library of all the 
instances of the training dataset and classifies each new instance to the class 
most common amongst its k closest neighbors (a k of five was used in this 
paper, hence the name “5-NN”) and the weightByDistance parameter was set 
to “Weight by       1distance”.

The SVM [14] is a linear classifier which builds a linear discriminant 
function using a small number of critical boundary samples from each class 
while ensuring a maximum possible separation. In Weka, the complexity 
parameter “c” was changed from 1.0 to 5.0, and buildLogisticModels, 
which allows proper probability estimates to be obtained, was set to true. In 
particular, the SVM learner used a linear kernel.
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RF100 [10] constructs a large number of unpruned decision trees on 
randomly bootstrapped data using a randomly-selected subset of features. A 
new instance is classified by all decision trees and the final classification is 
induced based on the majority voting. In this study, we changed the numTrees 
attribute in WEKA to 100 (i.e., 100 trees) and the other parameters were left 
at the default values.

LR [25] is a statistical regression model for categorical prediction. It 
predicts the probability of occurrence of an event by fitting data to a logistic 
curve. The Weka default parameter settings were used for this classifier.

3.8 Performance Evaluation and Cross-Validation
In this study, to avoid the risk of overfitting, we used four runs of five-fold 
cross-validation [31] to build and test our models. In N-fold cross-validation, 
the data is randomly split into N mutually exclusive equal-size subsets (folds), 
and then one of these is held aside as a test (hold-out) fold. The remaining  
N – 1 folds, collectively called the training fold, first had noise injected 
according to one of the 24 noise patterns, and then models were built on this 
noisy training fold and classification models were tested on the remaining 
“clean” fold. A learning algorithm is trained and tested N times. The value  
N = 5 was used in this paper. Once all N folds have been used as the test datasets, 
the results from all test datasets are integrated into a single performance value 
for that dataset. Since we are using four runs of five-fold cross-validation, we 
repeat the feature selection 20 times for each of the derived datasets.

We used the AUC [38] performance metric to evaluate the performance 
of learners. This performance metric was chosen because it is commonly 
used in the literature, and due to its invariance to a priori class probability 
distributions, which makes it suitable when analyzing imbalanced data (note 
that all datasets in this study exhibit class imbalance). The AUC builds a graph 
of the True Positive Rate vs. False Positive Rate as the classifier decision 
threshold is varied, and then uses the area under this graph as the performance 
across all decision thresholds. Note that while area under the ROC curve 
is used as both feature ranker (ROC) and as classifier performance metric 
(AUC), these uses are disconnected from each other.

4. Results

In this work, we compare three approaches for combining feature selection 
and data sampling (DS- FS-UnSam, DS-FS-Sam, and FS-DS) in Section 4.1. 
The three approaches differ in the order (whether feature selection takes place 
before or after data sampling) and the dataset (unsampled or sampled) used 
to build the training dataset. Additionally, we investigate the importance of 
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alleviating class imbalance by comparing the classification performance of 
two approaches in Section 4.2. The first approach (FS) does not employ any 
technique to handle class imbalance and only employs feature selection. On 
the other hand, the second approach (FS-DS) employs data sampling after 
performing feature selection. We employed three major types of feature 
selection (ranker-based techniques, filter-based subset selection, and wrapper-
based feature selection). We apply RUS to obtain a balanced class ratio. 
Additionally, six commonly used classifiers were used to build predictive 
models. All experiments were performed on 10 bioinformatics datasets which 
were first determined to be free of noise. We then created three levels of data 
quality by injecting class noise.

4.1 Importance of the order when feature selection and data 
sampling are applied

The results are presented in Table 4. Each value represents the average AUC 
performance across four runs of five-fold cross-validation when applying 
the given combination of feature selection technique, feature-selection/data-
sampling strategy, and classifier to the datasets which match that data quality 
level. In the “Feature Selection Technique” column, the rankers (CS, ROC, 
and WRS) are followed by a number, which represents the number of features 
chosen from that ranked list, and the wrapper-based selection approach which 
uses the NB learner inside the wrapper is abbreviated as “WrapNB” for space 
considerations. The table includes six sub-tables: one for each classifier (NB, 
MLP, 5-NN, SVM, RF100, and LR, respectively). The sub-tables also present 
the average performance (last row of the sub-tables) of each of the approaches 
over the 11 feature selection strategies and datasets which match that data 
quality level for that specific learner. The last row of the table represents the 
overall average performance of each of the approaches for that specific data 
quality level. The best and worst choices of approach for each combination of 
learner and data quality are printed in bold and italics, respectively.

From the results, we can make the general statement that FS-DS is the 
best approach to utilize feature selection and data sampling when learning 
from class imbalanced, high dimensional bioinformatics datasets. The overall 
average performance shows that FS-DS is the best performing approach across 
the board (regardless of data quality). When we look at the “Average” row in 
each sub-table showing the performance across all feature selection strategies, 
we find that FS-DS is the best performing approach for all combinations of 
data quality tiers and learners (except High-Quality with LR). The other two 
approaches did not perform as well: DS-FS-UnSam was in the middle of 
the performance list on average; for NB, MLP, SVM, and RF100 it was the 
second best, and was the worst when considering the other learners (5-NN 
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and LR), while DS-FS-Sam was the worst performing approach on average. 
Furthermore, FS-DS showed itself to be particularly noise tolerant by not 
being at the bottom of the list for Average-Quality and Low-Quality data 
(higher levels of noise), where it was never the worst performing approach 
and at worst comes in second place. When considering High-Quality data, 
FS-DS was the worst performing approach for only 3 of the 66 combinations 
(SVM learner and the CS ranker with 25 features, and the LR learner with the 
CS ranker utilizing 25 and 50 features).

Looking closely at these results in terms of the different feature selection 
techniques, it can be seen that for all subset selection techniques (CFS and 
Wrapper), the best performing approach was consistently FS-DS regardless 
of the learner and data quality. The only exception to this is when considering 
Low-Quality data with the RF100 learner, where FS-DS was the second 
best. When considering the other category of feature selection (i.e., rankers), 
we can see that for all but 8 out of 108 combinations of learner and ranker 
with both Average-Quality and Low-Quality data (Average-Quality with the 
RF100 learner and CS ranker with 100 features or LR learner and all rankers 
utilizing 25 and 50 features as well as CS with 100 features), the best approach 
was FS-DS. This is especially important as these two tiers of data quality 
represent higher levels of noise. When considering High-Quality data, FS-DS 
was at the top of the pack for 39 out of 66 combinations. On the other hand, 
DS-FS-UnSam was the best choice for 20 of 198 combinations, and was the 
worst for 66 combinations, while DS-FS-Sam was only the best approach for  
16 combinations and was at the bottom for 129 of the 198 combinations.

Looking at these results on a per-data quality level basis, we see that  
FS-DS is particularly robust and is able to improve the classification 
performance for all learners regardless of the feature selection technique when 
Low-Quality datasets (AUC less than 0.7 due to noise injection) are used. In 
particular, FS-DS improved the performance of classifiers enough to result 
in AUC values greater than 0.7 (which is our metric for Average-Quality) for 
all combinations of learner and feature selection with few exceptions (e.g., 
Wrapper regardless of the learner). Additionally, it should be noted that FS-DS 
was the only approach that was able to improve the classification performance 
for LR (when combined with ROC25, ROC50, WRS25, WRS50, and CFS 
feature selection), resulting in AUC values greater than 0.7. FS-DS combined 
with the RF100 learner helped improve the classification performance on Low-
Quality datasets significantly (when combined with ROC100 or WRS100), 
resulting in AUC values greater than 0.8 (i.e., our metric for High-Quality). 
Similarly, FS-DS and RF100 improved the performance on Average-Quality 
datasets, achieving AUC values greater than 0.9.

We performed a set of one-factor ANOVA tests [6] to validate the 
classification results and found statistically significant outcomes. The ANOVA 
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analysis and subsequent statistical tests were performed within MATLAB®. 
Since a significance factor of 5% was chosen, the p-value must be less than 
this value (i.e., 0.05) for the result to be significant.

In this analysis, we considered only one factor: the choice of strategy for 
combining feature selection and data sampling, with three different levels of 
this factor (DS-FS-UnSam, DS-FS-Sam, and FS-DS). The tests performed 
were across all datasets and factors, and for each level of data quality. For 
the ANOVA tests, the AUC results across all six learners were used as the 
response variable. The results are presented in Table 3. These results show 
that the choice of approach for combining feature selection and data sampling 
is significant across all data quality levels as well as each level of data quality; 
that is to say, when the data are grouped by the choice of approach, at least two 
of those groups will have significantly different means.

We wanted to find out which pairs of means are significantly different, and 
which are not. We conducted a multiple pairwise comparison by using HSD 
criterion [6]. The significance level for Tukey’s HSD test is α = 0.05. Figure 3 
shows the comparison results of the three choices of approach for combining 
feature selection and data sampling for all data quality levels, and for each of 
the different levels of data quality. The results for all datasets, High-Quality 
datasets only, Average-Quality datasets only, and Low-Quality datasets only 
are shown in Figures 3a, 3b, 3c, and 3d, respectively. The figures display 
graphs within each group mean represented by a symbol (°) and the 95% 
confidence interval as a line around the symbol. Two means are significantly 
different if their intervals are disjoint, and are not significantly different if 
their intervals overlap.

Figure 3 supports our conclusion that the top performing choice of 
approach for combining feature selection and data sampling is always FS-DS. 

Table 3: ANOVA results: Feature-selection/data-sampling strategies across all learners.

Datasets Source Sum Sq. d.f. Mean Sq. F p-value

All
Data Quality
Levels

FS/DS Strategy
Error
Total

50.4
21727.6
21777.9

2
925677
925679

25.1952
0.0235

1073.41 0

High Quality FS/DS Strategy
Error
Total

9.56
5966.15
5975.71

2
546117
546119

4.78028
0.01092

437.57 1.31E-190

Average Quality FS/DS Strategy
Error
Total

19.58
5633.49
5653.07

2
244077
244079

9.79016
0.02308

424.17 1.27E-184

Low Quality FS/DS Strategy
Error
Total

44.16
4813.84
4858.01

2
135477
135479

22.0823
0.0355

621.47 2.14E-269
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The difference between the top performing approach and the other approaches 
(i.e., DS-FS-UnSam and DS-FS-Sam) is statistically significant across all 
data quality levels. Furthermore, DS-FS-Sam was significantly the worst 
performing approach across all data quality levels, except when considering 
Average-Quality datasets, where the difference is statistically insignificant. 
DS-FS-UnSam, on the other hand, shows average performance on High-
Quality and Low-Quality datasets, while being second worst on Average-
Quality datasets but not statistically distinguishable.

4.2 Importance of Alleviating Class Imbalance
In this section we examine the importance of alleviating class imbalance by 
comparing two approaches (FS and FS-DS). The results of our experiments 
can be found in Table 4. Overall, we can make the general statement that 
in order to improve the performance for classification models built with 
bioinformatics datasets that exhibit both high dimensionality and class 
imbalance simultaneously, alleviating class imbalance in conjunction 
with reducing high dimensionality is the best strategy. The overall average 
performance shows that FS-DS outperforms FS across the board (regardless 
of the data quality level). When we look at the “Average” row in each sub-
table showing the performance across all feature selection strategies, we 
find that FS-DS is the best performing approach for all combinations of data 

Fig. 2.1
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Data
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Fig. 2.2

(a) All data quality levels

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.865  0.87  0.875  0.88 0.885  0.89  0.895  0.9   0.905

(b) High quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.92            0.925           0.93            0.935          0.94

(c) Average quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.825  0.83  0.835  0.84 0.845  0.85  0.855  0.86   0.865

(d) Low quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.7        0.71      0.72      0.73     0.74      0.75      0.76

Fig. 2.3

Fig. 3: Tukey HSD results: Feature-selection/data-sampling strategies across all learners.
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quality tiers and learners (except High-Quality with RF100 and NB). For all 
but 2 of 18 combinations of learner and data quality level (High Quality with 
the NB and RF100 learners) the best approach was FS-DS. It is of note that 
FS-DS consistently outperformed FS (regardless of the data quality level and 
feature selection technique) when the 5-NN learner is used.

We also performed a set of two-tailed z-tests for each paired comparison 
to find statistically significant patterns. The tests performed were across all 
datasets and factors, and for each level of data quality. The z-test method 
tests the null hypothesis that the population means related to two independent 
group samples are equal against the alternative hypothesis that the population 
means are different. p-values are provided for each pair of comparisons in the 
table. The significance level is set to 0.05; when the p-value is less than 0.05, 
the two group means are significantly different from one another.

The results are presented in Table 5. These results support our conclusion 
that the top performing choice of approach is always FS-DS and the difference 
between the top performing approach and the other approach (i.e., FS) is 
statistically significant across all data quality levels and for each level of data 
quality.

5. Conclusion

While many studies investigated feature selection and data sampling in 
bioinformatics separately, utilizing them together has received little attention. 
In this work, we compare three approaches for combining feature selection 
and data sampling (DS-FS-UnSam, DS-FS-Sam, and FS-DS). We also show 
the importance of alleviating class imbalance for classification problems on 
bioinformatics datasets. We employed three major forms of feature selection 
(feature ranking, filter-based subset selection, and wrapper-based feature 
selection) as well as a commonly used data sampling technique. We created 
three categories of datasets (High-Quality, Average-Quality, and Low-
Quality) by injecting artificial class noise in a controlled fashion into ten gene-
expression datasets which were first determined to be relatively free of noise. 
We build our final models using six different classification algorithms.

Table 5: z-test results.

Datasets z-value p-value

All Data Quality Levels –26.2156616 < 0.0001

High Quality –15.29787687 < 0.0001

Average Quality –16.95388351 < 0.0001

Low Quality –21.45216765 < 0.0001
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The experimental results demonstrate that paying attention to the order 
when utilizing both feature selection and data sampling and the dataset 
(whether unsampled or sampled) used for classification is extremely important 
in improving the performance of classification algorithms. We found that the 
best order to apply feature selection and data sampling is to employ feature 
selection followed by data sampling. This approach significantly improved 
the performance of all classifiers compared to the other approaches. All 
of these results are supported by ANOVA and Tukey’s HSD tests. On the 
other hand, the results show that data sampling (in conjunction with feature 
selection) helped improve the classification performance even more compared 
to feature selection alone. Thus, we recommend alleviating class imbalance 
(e.g., by applying RUS) to achieve improved classification performance for 
bioinformatics classification problems. In particular, we recommend using  
FS-DS as the approach when learning from class imbalanced high dimensional 
bioinformatics datasets, regardless of any implication of noise or the 
classification algorithm that is going to be used. Furthermore, we recommend 
using FS-DS with feature rankers (especially ROC and WRS utilized with 
100 features), as they showed superior classification performance compared 
to subset-based feature selection techniques.

Future research may involve conducting more experiments, using other 
classification algorithms as well as other learners within the wrapper, and 
considering other preprocessing techniques.
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Chapter 3
Big Data and Class Imbalance  
in Medicare Fraud Detection

Richard A Bauder* and Taghi M Khoshgoftaar

1. Introduction

The healthcare industry produces a vast array of information ranging from 
patient records to provider payment and claims data [53], [38]. This industry 
has and continues to embrace big data in order to become more efficient and 
productive [48]. Big data is characterized by its vastness with typically very 
granular datasets, that, when used with advanced analysis techniques, can 
lead to potentially meaningful conclusions. The use of big data is often seen 
as the best, and sometimes only, paradigm for future business success [47]. 
The incorporation of big data provides dense layers of interconnections and 
potentially meaningful information but is often modeled directly without much 
consideration for fundamental data processing and engineering. Because big 
data is available and machine learning techniques can readily handle these 
copious amounts of data, building models directly using the entire dataset, 
with minimal prior data analysis or preparation, appears to be increasingly 
common [44]. Even so, directly using all the available data may not always be 
the most prudent course of action. Another important real-world issue often 
found in big data is that of class imbalance, which occurs simply because of 
an uneven balance in the number of positive and negative cases, or binary 
class labels, in a dataset [45]. Areas such as medical insurance fraud, where 
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there are considerably fewer instances of fraud versus normal activities, 
experience class imbalance. The amount of data in the healthcare field is 
rapidly increasing via sources such as electronic health records and insurance 
claims records [53].

Another aspect of this increasing amount of information is the rise of the 
elderly population in the U.S., due to advances in healthcare and an overall 
increase in standard of living [2]. The number of elderly individuals rose 28% 
from 2004 to 2015, versus an increase of just 6.5% for those under 65 years 
of age [3]. Thus, the upkeep and improvement in the health of this population 
becomes more important to the elderly and their family and friends. This 
increased healthcare need comes at a price and is usually managed by a 
healthcare insurance program. In particular, U.S. healthcare spending grew 
by 4.3% in 2016 totaling over $3.3 trillion [4], [32]. Clearly, these programs 
need to be affordable to the general populace, but program costs, along with 
the elderly population, continue to increase, which can financially cripple 
individuals and families [33]. Medicare is a U.S. government program that 
provides healthcare insurance and financial support for the elderly population, 
ages 65 and older, and other select groups of beneficiaries [5]. Note that this 
program contributes to 20% of the overall U.S. healthcare spending. Within 
the Medicare program, each covered medical procedure is codified for 
claims and payment purposes. The basic claims process entails a physician 
performing one or more procedures and then submitting a claim to Medicare 
for payment, rather than directly billing the patient, thus assigning the role of 
“middle man” to Medicare in this process. A claim is defined as a request for 
payment for benefits or services received by a beneficiary.

In order to keep healthcare affordable, programs need to keep medical-
related costs low. One way to do this involves reducing fraud, waste, and abuse 
(FWA) [30]. Malicious or wasteful activities can lead to higher costs and the 
possibility of patients going without necessary medical care. Some examples 
of fraud and abuse involve billing Medicare for appointments the patient 
failed to keep, services rendered that were more complex than those actually 
performed, unnecessary medical services, submitting excessive charges 
for services, drugs, or supplies, and misusing claims codes (e.g., upcoding 
or unbundling). Aside, from these typical fraud and abuse descriptions in 
Medicare, improper payments can also indicate possible fraud or abuse. The 
term improper payments refers to payments made by the government to the 
wrong person, in the wrong amount, or for the wrong reason [1]. Thus, finding 
improper payments could be a way to detect possible fraud and abuse activities. 
Even so, it is important to note that not all improper payments are considered 
fraud and abuse, but rather are related to clerical or bookkeeping errors. The 
interested reader can find additional information on Medicare and healthcare-
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related fraud and abuse in [14], [24], [25], [60]. Unfortunately, fraud is all to 
prevalent within healthcare with about 10% of all U.S. medical claims being 
fraudulent [49], [55]. Medicare alone accounted for up to 20% ($705.9 billion) 
of the total U.S. healthcare spending in 2017 [4]. Therefore, from the FBI 
fraud estimate, the possible fraud losses (and potential loss recovery) could 
be up to $70 billion in the Medicare program alone. The group, Coalition 
Against Insurance Fraud [31], provides statistics on fraud and abuse found 
in the U.S. healthcare system. Some of the more salient statistics include the 
recovery of $29.4 billion to Medicare since 1997 by the Health Care Fraud 
and Abuse Control program, the exclusion of 1,662 individuals and entities 
from Medicare and Medicaid claims and payments, and a nearly five-fold 
increase in the recovery of proceeds (i.e., civil recoveries). Even with these 
successful recoveries, medical fraud continues to be very attractive to would-
be perpetrators, adversely influencing healthcare costs and quality of service. 
Therefore, the detection of fraud with increased cost recovery is critical for 
the continued viability of the Medicare program.

Traditionally, to detect Medicare fraud, a limited number of auditors, or 
investigators, are responsible for manually inspecting thousands of claims, but 
only have enough time to look for very specific patterns indicating suspicious 
behaviors [52]. In this study, we provide two case studies to demonstrate 
the effects of class imbalance with big data on the detection of fraud in  
the Medicare dataset with LEIE fraud labels [37]. We use the following 
three different datasets, with provider payment and utilization information, 
released by the Centers for Medicare and Medicaid Services (CMS) [22]: 
(1) Medicare Provider Utilization and Payment Data: Physician and Other 
Supplier (Part B), (2) Medicare Provider Utilization and Payment Data: Part 
D Prescriber (Part D), and (3) Medicare Provider Utilization and Payment 
Data: Referring Durable Medical Equipment, Prosthetics, Orthotics, and 
Supplies (DMEPOS). We chose these parts of Medicare because they cover a 
wide range of possible provider claims, the information is presented in similar 
formats, and they are publicly available. Our study focuses on claims where 
the providers (e.g., physicians) determine what they will charge and bill for. 
The Part B, Part D, and DMEPOS datasets comprise key components of 
Medicare, which enables us to provide a comprehensive view of fraud in the 
Medicare program. Additionally, we create a combined dataset encompassing 
all provider claims across the three Medicare datasets. Information provided 
in these datasets includes the average amount paid for these services and other 
data points related to procedures performed, drugs administered, or supplies 
issued. The provided Medicare datasets do not have associated fraud labels for 
predicting possible fraud. We use the List of Excluded Individuals and Entities 
(LEIE) [46] dataset to generate fraud class labels (i.e., fraud or no fraud) for 



Big Data and Class Imbalance in Medicare Fraud Detection 65

each provider to assess fraud detection capabilities of our baseline model and 
proposed improvement strategies. The LEIE contains all physicians who are 
excluded from practicing medicine for federally funded programs, such as 
Medicare.

The mapping of these LEIE fraud labels to each dataset indicates 
severe class imbalance. In the first case study, to address the issue of class 
imbalance, we create seven class distributions, or ratios, employing the 
random undersampling (RUS) technique and build Random Forest models 
for each distribution. For each of the models, we use 5-fold cross-validation 
repeated 10 times to reduce bias, assessing fraud detection performance using 
the Area Under the receiver operator characteristic Curve (AUC). The first 
case study indicates that the 90:10 (majority:minority) class distributions 
produces the best overall results. We clearly demonstrate that, in contrast to 
its prosaic use, the 50:50 class distribution does not produce the best results. 
Our research shows statistically significant class distribution differences and 
similarities in generating good fraud detection performance, as well as trends 
in class distribution model results. These results clearly show that the 50:50 
(balanced) or 99:1 (imbalanced) class distributions have statistically similar 
fraud detection performance. Our second case study takes the 90:10 class 
distribution for fraud detection using the Part D, DMEPOS, and combined 
datasets. Overall, we show the value of RUS in improving fraud detection 
performance across the Medicare datasets, indicating good results with the 
Random Forest model. Our main contributions can be summarized as follows:

	 •	 Discuss a novel and robust Medicare data preparation approach.
	 •	 Detail our unique LEIE fraud labeling mapping methodology.
	 •	 Show that the commonly used 50:50 (balanced) class distribution 

does not produce top Medicare fraud detection results.
	 •	 Demonstrate class distribution results and trends that show significant 

differences in model performance for Medicare fraud detection.
	 •	 Show promising fraud detection results across several big data Medicare 

sources, leveraging the 90:10 RUS class distribution.

The rest of the paper is organized as follows. Section 2 discusses works 
related to the current research, focusing on class imbalance and Medicare-
related fraud. We discuss the Medicare dataset and LEIE database, to include 
data preparation and fraud label mapping, in Section 3. In Section 4, we 
discuss the design of our experiment which includes class imbalance, the 
Random Forest learner, and performance metric. In Section 5, the results of 
our case studies are discussed. Finally, Section 6 summarizes our conclusions 
and future work.
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2. Related Works

Our research compares and contrasts Medicare fraud detection performance 
using all the available data versus applying sampling to mitigate the effects 
of class imbalance. Therefore, we intentionally focus on any related works 
on Medicare fraud detection and/or class imbalance. Given this, there are 
relatively few studies on Medicare fraud detection, especially works utilizing 
the known provider exclusion database that take into account class imbalance.

A study by Ko et al. [43] uses only the 2012 Medicare data with a focus 
on the Urology specialty. The authors calculated the variability among 
Urologists, which indicated a possible savings of 9% due to provider 
utilization. Pande et al. [50] use 2012 Medicare data and exclusions from 
the LEIE database to assess who the Medicare fraud perpetrators are and 
what happens to them after they get caught. Interestingly, one of the authors’ 
recommendations is to use predictive models to detect claims fraud. Khurjekar 
et al. [42] propose a two-step unsupervised approach to detecting fraud using 
the 2012 Medicare data. The authors first use the residuals from a multivariate 
regression model, with average payment as the dependent variable, to identify 
suspicious claims based on a residual threshold of $500. The second part of 
their approach incorporates these residuals using clustering to find fraudulent 
observations based on the average cluster distances. Another study by Sadiq 
et al. [54] employs the Patient Rule Induction Method (PRIM) based bump 
hunting method to identify anomalies in the 2014 Medicare data (Florida 
only). Their method is unsupervised and is used to narrow down the list of 
possibly fraudulent providers to be further investigated. In a preliminary 
study, Chandola et al. [19] use Medicare claims data and provider enrollment 
data from private sources to detect healthcare fraud. The authors employ 
several different techniques including social network analysis, text mining, 
and temporal analysis. Using features derived from the temporal analysis, the 
authors build a logistic regression model to detect known fraudulent cases 
using labeled data from the Texas Office of Inspector General’s exclusion 
database, not the complete LEIE database. Moreover, details are limited with 
regards to data processing and mapping fraud labels to the Medicare data.

A two-step approach in detecting Medicare fraud, per provider type, 
is outlined in a paper by our research group [10]. The first step involves a 
multivariate regression model returning model residuals. These residuals are 
passed into a Bayesian probability model that produces the final probabilities 
indicating how likely it is that a particular value is fraudulent. We compared 
their method versus other common outlier detection methods, and found 
our method performed favorably. In [13], we provide an exploratory study 
predicting fraudulent providers using only the number of procedures 
performed by each physician, via a Multinomial Naive Bayes model. If the 
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predicted provider type does not match what is expected, then this provider is 
performing outside of normal practice patterns and should be investigated. In 
[8], we use multivariate regression to establish a baseline for expected Medicare 
payments, per provider type. This baseline is then used as the normative case 
in which to compare the actual payment amounts, with deviations flagged as 
outliers. A two-step approach in detecting Medicare fraud, per provider type, 
is outlined in [10]. Another previous research study [9] involves a preliminary 
study that compares several supervised and unsupervised methods to detect 
2015 Medicare Part B fraud. In this study, we detect fraud with supervised 
(Gradient Boosted Machine, Random Forest, Deep Neural Network, and 
Naive Bayes), unsupervised (autoencoder, Mahalanobis distance, KNN, and 
LOF), and hybrid (multivariate regression and Bayesian probability) machine 
learning approaches. Supervised methods performed better than unsupervised 
or hybrid approaches, with results fluctuating based on the sampling technique 
used and Medicare provider type.

Branting et al. [16] create a graph of providers, prescriptions, and 
procedures using the 2012 to 2014 Medicare data and LEIE exclusion labels. 
The authors use two algorithms where one calculates the similarity to known 
fraud and non-fraud providers, and the other estimates fraud risk via shared 
practice locations. To address class imbalance, the authors kept 12,000 
excluded providers and randomly selected 12,000 non-excluded providers, 
using only a 50:50 class distribution. A decision tree model was built using  
11 graph-based features and 10-fold cross-validation with no repeats.

To the best of our knowledge, our work is one of the only Medicare fraud 
detection studies, to provide such a robust experiment to assess the impacts 
of using big data, with severe class imbalance. To support our assertions, we 
use the Random Forest model to demonstrate the significant improvements by 
employing sampling and suggest the best class distributions while debunking 
the common usage of the 50:50 distribution. Moreover, contrary to the related 
works, we provide a comprehensive and fair experimental design using 
5-fold cross-validation with 10 repeats for each class distribution, as well as 
statistical significance testing.

3. Data

To effectively demonstrate Medicare fraud detection performance, we use 
three publicly available Medicare provider claims data from the Centers 
for Medicare and Medicaid Services (CMS) [22]. Additionally, we create a 
combined dataset incorporating each of these three big Medicare datasets. 
In these datasets, each provider or physician is denoted by his or her unique 
National Provider Identifier (NPI) [23] for each medical claim item. The 
Medicare dataset contains a number of features, such as the average amount 
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submitted, billed, and paid by Medicare, and the number of procedures 
performed. Note that the Medicare claims information is recorded after claims 
payments were made [26] and with that, we do not make any modifications 
and assume that this dataset was appropriately recorded and cleansed 
by CMS. By using these claims datasets, we demonstrate the detection of 
fraudulent behaviors at the provider-level. This implies a single provider with 
a single procedure per Medicare claim. Before implementing the CMS data in 
research, it is important to understand each dataset and how to manipulate and 
leverage it in the most efficient and effective way [11].

The Medicare Provider Utilization and Payment Data: Physician and 
Other Supplier (Part B) dataset, from 2012 to 2015, outlines information about 
physicians and the procedures they perform [28]. Each physician is denoted 
by his or her NPI and each procedure is labeled by its Healthcare Common 
Procedure Coding System (HCPCS) code [21]. The Part B data is aggregated 
(grouped by) the following: (1) NPI of the performing provider, (2) HCPCS 
code for the procedure or service performed, and (3) the place of service 
which is either a facility (F) or non-facility (O), such as a hospital or office, 
respectively. Some physicians can perform the same procedure (i.e., have the 
same HCPCS code) at both a facility and an office. Additionally, there are 
a few cases for which a physician is labeled as multiple physician types (or 
specialties), such as Internal Medicine and Cardiology. The Part B data, per 
year, is organized where each row contains the physician’s NPI and provider 
type (along with all non-changing physician information, such as name and 
gender) corresponding to one HCPCS code and further split by place of service 
(Office or Facility). Given this organization, all the procedure information 
corresponds to these four attributes. Therefore, for each physician, there are as 
many rows as unique combinations of NPI, Provider Type, HCPCS code, and 
place of service. For example, if a physician (NPI = 1003000126) has claimed 
20 different procedures and three of them were conducted at both an office 
and facility (while the other 17 were conducted at one place), there would 
be 23 rows for this physician (assuming this physician is labeled as only one 
provider type).

The Medicare Provider Utilization and Payment Data: Part D Prescriber 
(Part D) dataset, from 2013 to 2015, outlines information about physicians, 
as well as information pertaining to the prescription drugs they administer 
under the Medicare Part D Prescription Drug Program [27]. Each physician 
is denoted by his or her NPI and each drug is labeled by its brand and generic 
name. The Part D data is aggregated (grouped by) the following: (1) the NPI 
of the prescriber, (2) the drug name (brand name in the case of trademarked 
drugs) and generic name (according to CMS documentation). As with the Part 
B data, there are a few cases where a physician can be labeled as multiple 
physician types, such as: internal medicine and cardiology. The Part D data, per 
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year, is organized where each row contains the physician’s NPI and provider 
type (along with all non-changing physician information) corresponding to 
one drug name along with all the drug information corresponding to these 
three attributes. Therefore, for each physician, there are as many rows as 
unique combinations of NPI, Provider type and drug name. For example, 
if a physician (NPI = 1003000126) has prescribed 20 different drugs, there 
would be 20 rows for this physician (assuming this physician is labeled as one 
physician type).

The Medicare Provider Utilization and Payment Data: Referring 
Durable Medical Equipment, Prosthetics, Orthotics and Supplies (DMEPOS) 
dataset, from 2013 to 2015, outlines information about physicians, as well 
as information pertaining to the DMEPOS products and services provided 
[29]. Each physician is denoted by his or her NPI and each product/service 
is labeled by its HCPCS code. The DMEPOS data is aggregated (grouped 
by) the following: (1) NPI of the performing provider, (2) HCPCS code for 
the procedure or service performed by the DMEPOS supplier, and (3) the 
supplier rental indicator (value of either ‘Y’ or ‘N’) derived from DMEPOS 
supplier claims (according to CMS documentation). Some physicians place 
orders for the same DMEPOS equipment (i.e., with the same HCPCS code), 
as both rental and non-rental. Additionally, there are also a few cases where a 
physician can be labeled as multiple physician types. The DMEPOS data, per 
year, is organized where each row contains the physician’s NPI and provider 
type (along with all non-changing physician information) corresponding to 
one HCPCS code and further split by rental status (yes or no) and all the 
procedure information corresponding to these four attributes. Therefore, 
for each physician, there are as many rows as unique combinations of NPI, 
Provider type, HCPCS code, and rental_indicator. As an example, if a physician  
(NPI = 1003000126) has claimed 20 different procedures and three of them 
were issued as both a rental and non-rental (while the other 17 were issued 
as one), there would be 23 rows for this physician (assuming this physician 
is labeled as one physician type). For additional clarity and insight into the 
Medicare data, Tables 1, 2, and 3 depict sample excerpts, from the Internal 
Medicine provider type or specialty, from each of the three Medicare datasets 
used in this paper (with obfuscated NPI values of ‘1111111111’).

In combining each of the individual years for the 2012 (or 2013) to 2015 
Medicare datasets, we matched features and excluded those that did not match 
across all years. For instance, with the 2012 Part B dataset, the standard 
deviations for charges and payments are available but discontinued for the 
later years and were not included in the final dataset. Additionally, we create a 
combined dataset incorporating information from all three Medicare datasets. 
Our assumption is that there is no reliable way to know within which part of 
Medicare a physician/provider has or will commit fraud. Therefore, joining 
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the Part B, Part D, and DMEPOS datasets can potentially better represent a 
provider’s claims, from procedures and drugs to equipment. This is because 
the combined dataset has a larger number of features from which machine 
learning algorithms can detect fraud.

None of the aforementioned CMS-provided Medicare datasets include 
fraud labels, or other indicators for possible fraudulent claims. In order to 
obtain labels indicating fraudulent providers, we incorporate excluded 
providers from the LEIE database [46]. The LEIE database is updated monthly, 
so for our study, we used the LEIE dataset released on January 3, 2018. The 
provider exclusions are categorized by various rule numbers, which indicate 
the severity and minimum exclusion period. As seen in Table 4, we selected 
only mandatory exclusions (not permissive exclusions), indicating more 
severe convictions and/or revocations. Note that, in generating the labels for 
model building, we assume that excluded providers are considered fraudulent 
and those not on the exclusion list are non-fraudulent. Unfortunately, the 
LEIE does not contain an NPI number for most of the available providers. 
Even so, in order to maintain the most accurate fraud label mappings, we 
only use provider NPIs and exclude any providers without a NPI number. 
Additionally, we only included features found in all four years. For instance, 
in 2012 the standard deviations for charges and payments are available but 
discontinued for the later years. More specifically, in combining the 2012 
to 2015 Medicare datasets with exclusion labels, we cross-referenced NPI 
numbers in the Medicare data and LEIE database, to match any providers with 
past or current exclusions.

As mentioned, the Medicare data contains annual claims information by 
provider and specific procedure performed, as well as the place this service 
was performed, whereas the LEIE database only contains information for the 
provider and not any particular procedure or location. Currently, there is no 
known publicly available data source with fraud labels by provider and by each 
procedure performed. In order to account for this discrepancy and correctly 
map LEIE exclusion labels to the Medicare dataset, we decided to aggregate 
the Medicare data at the provider- or NPI-level. After filtering the Medicare 
data based on the drug indicator, removing any prescription information, and 
Medicare participation, we grouped the data by the specialty (also known as 
the provider type), NPI, and gender and aggregated across all procedures and 
places of services. In order to avoid too much information loss due to the 
aggregation, we generated additional numeric features from the original five to 
include the mean, sum, median, standard deviation, minimum, and maximum. 
Additionally, we retained the specialty and gender categorical features. In 
order to build our model with a mixture of numerical and categorical features, 
we employed one-hot encoding. This method uses the categorical values to 
generate dummy features with binary values which indicate the presence of 
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this variable, assigning a value of one if present otherwise zero, versus all 
other dummy features. This translates each of the original categorical values 
into distinct binary features. Table 5 describes each of the Medicare features 
from which the aggregated dataset is generated, as well as the categorical and 
class (exclusion) features, for each dataset.

After the Medicare data NPI-level aggregation, we map the LEIE-
excluded providers as fraud labels. From the described mandatory exclusions, 
only rules with 5-year minimum exclusion periods were found in the LEIE 
data. Thus, each exclusion period has a 5-year length of time. We take the 
provided exclusion date (i.e., the start of the exclusion period) and add 5 years 
to get the end date of the exclusion period. We then compare the start and end 
exclusion dates to any listed waiver or reinstatement dates. The assumption 
is that if there is a waiver or reinstatement date, then any activities on or 
after this date are no longer considered fraudulent. We updated the end date 
of the exclusion period based on the wavier and reinstatement comparisons. 
For example, if the exclusion end date is 2016/03/12 and the waiver date is 
2014/02/01, then the updated exclusion end date is 2014/02/01. Each provider 
in the LEIE database has start and updated end exclusion dates that can be 
used during the integration with the Medicare data. We merge the Medicare 
and LEIE datasets using NPI as the key and create an exclusion feature to store 
fraud labels. Labels are assigned as fraud if a provider’s Medicare year is less 
than the exclusion end date (for which we use the year because the Medicare 
dataset only contains years), otherwise exclusion is kept as non-fraud. In order 
to avoid too few or too many fraud labels, we round the new exclusion end date 
to the nearest year based on the month. So, if the month is greater than 6, then 
the exclusion end year is increased to the following year, otherwise the current 
year is used. In this way, partial years are addressed with the assumption that 
if an exclusion end date occurs during the latter part of a year, the majority of 
that year can be assumed as fraud. Otherwise, if very little of the year is before 
the exclusion end date, then we assume the provider claims in that year are 
not fraudulent. This labeling includes both the exclusion period and the period 
prior to the start of the exclusion. The rationale for keeping the former is that 
claims made during the exclusion period are improper payments and could be 
considered fraudulent per the federal False Claims Act (FCA) [30]. The latter 
is kept as it indicates fraudulent behaviors leading up to that provider being 
put on the LEIE. This process to map the LEIE exclusion labels takes into 
account overlapping exclusion and Medicare claims periods to avoid mapping 
unnecessary fraud labels.

Table 6 summarizes the Medicare, NPI-level aggregated datasets with 
fraud labels. The number of fraud labels across datasets clearly shows the 
severe class imbalance. After the data aggregation and fraud label mapping, 
only the NPI feature is not used to build or test the models, but rather for 
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Table 5: Description of medicare dataset features.

Dataset Feature Description Type

Part B npi Unique provider identification number Categorical

provider_type Medical provider’s specialty (or practice) Categorical

nppes_provider_
gender

Provider’s gender Categorical

line_srvc_cnt Number of procedures/services the provider 
performed

Numerical

bene_unique_cnt Number of distinct Medicare beneficiaries 
receiving a service

Numerical

bene_day_srvc_cnt Number of distinct Medicare beneficiary/per 
day services

Numerical

average_submitted_
chrg_amt

Average of the charges that the provider 
submitted for a service

Numerical

average_medicare_
payment_amt

Average payment made to a provider per 
claim for a service

Numerical

Part D npi Unique provider identification number Categorical

specialty_description Medical provider’s specialty (or practice) Categorical

bene_count Number of distinct Medicare beneficiaries 
receiving the drug

Numerical

total_claim_count Number of drug the provider administered Numerical

total_30_day_fill_
count

Number of standardized 30-day fills Numerical

total_day_supply Number of day’s supply Numerical

total_drug_cost Cost paid for all associated claims Numerical

DMEPOS referring_npi Unique provider identification number Categorical

referring_provider_
type

Medical provider’s specialty (or practice) Categorical

referring_provider_
gender

Provider’s gender Categorical

number_of_suppliers Number of suppliers used by provider Numerical

number_of_supplier_
beneficiaries

Number of beneficiaries associated by the 
supplier

Numerical

number_of_supplier_
claims

Number of claims submitted by a supplier 
from a referring order

Numerical

number_of_supplier_
services

Number of services/products rendered by a 
supplier

Numerical

avg_supplier_
submitted_charge

Average payment submitted by a supplier Numerical

avg_supplier_
medicare_pmt_amt

Average payment awarded to suppliers Numerical

All exclusion Fraud labels mapped from the LEIE dataset Categorical
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identification purposes. The use of any remaining variables or derived features, 
along with applying feature engineering approaches, is left as future work.

4. Experimental Design

In this section, we detail our experiment methodology. We discuss class 
imbalance, the Random Forest model, cross-validation, performance metrics, 
and significance testing.

4.1 Class Imbalance
In our study, we employ RUS to mitigate issues arising from the class 
imbalance problem [18], [56]. Due to the severe class imbalance between 
fraud and non-fraud labels, a model will tend to focus on the majority class 
(i.e., the class with the majority of instances) and misrepresent the minority 
class. In our case, the non-fraud labels are the majority class and the fraud 
labels are the minority class, as well as the class of interest in our study. The 
use of data sampling changes the class distribution of the training instances 
by increasing the representation of the minority class, thus helping to improve 
model performance. There are two basic sampling methods: oversampling 
and undersampling. Oversampling is a method for altering the distribution 
of classes in a dataset by adding instances to the minority class, whereas 
undersampling removes samples from the majority class. Of course, as 
with most methods, there are disadvantages. With undersampling, the main 
disadvantage is discarding potentially useful information. Oversampling, 
because it duplicates existing minority class instances, can increase the 
likelihood of overfitting [20]. Oversampling can also increase processing 
time by increasing the overall size of the data. Our choice to use only RUS is 
further supported in [7], [12], [36], [41], [59].

For our experiments, we generate the following class distributions 
(majority:minority): 99.9:0.1, 99:1, 95:5, 90:10, 75:25, 65:35, and 50:50. 
Most of these class ratios retain a reasonable amount of the majority class and 
reduce loss of information relative to the minority class. In order to mitigate 
some of the potential majority class information loss using RUS, we repeat the 

Table 6: Summary of medicare datasets.

Dataset Non-Fraud Instances (#) Fraud Instances (#) Fraud Instances (%)

Part B 3,691,146 1,409 0.038

Part D 2,098,715 1,018 0.048

DMEPOS 862,792 635 0.074

Combined 759,267 473 0.062
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sampling process 10 times for each class distribution. This effectively helps to 
reduce bias due to poor random draws and better represent the majority class 
through the use of different random samples. Table 7 summarizes the number 
of instances for the full dataset and each of the RUS datasets. This indicates 
that as the minority class (fraud) percentage increases, the representation of 
the majority class (non-fraud) decreases relative to the number of instances in 
the full dataset. Note that the number of fraud instances is always the same, 
regardless of percentage.

4.2 Random Forest
In order to assess the performance using all the data versus the RUS datasets, 
we employ a Random Forest (RF) model. We selected the RF model because 
of its good classification performance, which has been shown to be superior 
to many other classifiers on a wide variety of datasets with or without class 
imbalance [34], [40]. Random Forest is an ensemble method in which 
multiple unpruned decision trees are built and a final classification is made 
by combining the results from the individual trees [17]. The algorithm creates 
random datasets using sampling with replacement to train each of the decision 
trees. At each node within a tree, RF chooses the most discriminating feature 
between the classes using entropy and information gain. Entropy can be seen 
as the measure of impurity or uncertainty of attributes, and information gain 
is a means to find the most informative attribute. Thus, the goal is to minimize 
entropy and maximize information gain with attribute selection. Additionally, 
RF performs random feature subspace selection, at each node of a tree, 
where a subset of m features are considered for the decision at that node. As 
seen in Figure 1, to classify a new instance X, pass X down each one of the  
N trees in the forest. Each tree gives a classification for this new instance. The 
forest then chooses the classification which has the majority out of N votes. 

Table 7: RUS class distribution sample size.

Fraud Non-fraud

% # % # Total

0.1 1,409 99.9 1,407,591 1,409,000

1 1,409 99 139,491 140,900

5 1,409 95 26,771 28,180

10 1,409 90 12,681 14,090

25 1,409 75 4,227 5,636

35 1,409 65 2,617 4,026

50 1,409 50 1,409 2,818
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In our experiment, we use Weka [61] to build each RF model with 100 trees 
(annotated as RF100).

4.3 Cross Validation
We use k-fold cross-validation to evaluate the performance of the models. 
With this method, the model is trained and tested k times, where each time it 
is trained on k	−	1 folds and tested on the remaining fold. This is to ensure 
that all data are used in the classification. More specifically, we use stratified 
cross-validation [61] which tries to ensure that each class (i.e., fraud or non-
fraud) is approximately equally represented across each fold. In our study, 
we employ 5-fold cross-validation. Moreover, to further reduce bias due 
to bad random draws and to better represent the claims data, we repeat the 
5-fold cross-validation process 10 times and average the scores to get the final 
results. Incorporating repeats allows for different randomly selected instances 
of the majority class to be used for each cross-validation step, thus providing 
a more representative sample of the non-fraud instances.

4.4 Performance Metric
Our RF100 model is a two-class classifier predicting fraud or no fraud 
instances. The model’s accuracy can be represented by a confusion matrix 
consisting of information about actual and predicted classifications returned 
by a model. We use the AUC performance metric which is composed of 
values derived from the confusion matrix to assess a model’s fraud detection 
performance [15], [57]. AUC is a popular measure of model performance, 
providing a general idea of predictive potential of a binary classifier. The 
receiver operating characteristic curve is used to characterize the trade-off 
between true positive (TP) rate, also known as recall or sensitivity, (     TP

 TP + FN ) 
and false positive (FP) rate (     FP

 FP + TN ) , where FN is false negative and TN is 
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Fig. 1: Random forest classification process.
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true negative. This curve depicts a learner’s performance across all classifier 
decision thresholds. AUC is a single value that ranges from 0 to 1, where 
a perfect classifier results in an AUC of 1. Additionally, due to the class 
imbalance in the Medicare data, we consider AUC a good means to assess 
fraud detection performance [39]. Note that we do not use other confusion 
matrix metrics directly, such as sensitivity and specificity, because a single 
discriminate classifier threshold of 0.5 is used to discriminate positive and 
negative classes. This single naive threshold is not appropriate for assessing 
model performance using highly imbalanced data.

4.5  Significance Testing
Hypothesis testing is performed to demonstrate the statistical significance of 
the results using ANalysis Of VAriance (ANOVA) [35] and post hoc analysis 
via Tukey’s Honestly Significant Different (HSD) test [58]. ANOVA is a 
statistical test determining whether the means of several groups (factors) are 
equal. The Tukey’s HSD test finds means of a factor that are significantly 
different from each other, comparing all possible pairs of means similar to 
a t-test. Differences are grouped by assigning letters, with pairs that do not 
share a common letter indicating significantly different results.

5. Results and Discussion

In our first case study, we evaluate fraud detection improvement through the 
systematic application of RUS, which reduces the adverse effects caused by 
class imbalance. We show that a 50:50 class distribution, which is typically 
used for many applications and generally has low model performance losses 
[51], is not the best ratio for Medicare fraud detection. The lower 50:50 
distribution performance can be attributed to the small number of majority 
class instances, which may make it more difficult for a model to discriminate 
between fraud and non-fraud instances. This results in the misclassification 
of non-fraud instances as fraud instances, which increases the false positive 
rate and decreases overall model performance [6]. Figure 2 shows the trend of 
AUC scores across each of the minority class distributions. This trend depicts 
a decrease in scores, particularly with below a 1% minority class distribution.

Table 8 shows all of the AUC values for each class distribution, with the 
90:10 class distribution producing the best overall average results with a low 
standard deviation. Even so, the difference in AUC scores between the top 
six class distributions is relatively small, so additional statistical significance 
testing is performed. Table 9a shows the results of a one-factor ANOVA with 
class distribution being significant at a 0.05 significance level. In order to get 
further details on the differences within the class distribution factor, we perform 
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a Tukey’s HSD test. The difference in class distributions is shown in Table 9b. 
The 90:10 distribution has the highest AUC value which is significantly better 
than the remaining distributions. The 95:5 class distribution is the second 
best, in terms of fraud detection performance, and in a lower group than the 
90:10 distribution. The 75:25, and 65:35 class distributions have some group 
overlap indicating little difference in fraud detection performance.

Interestingly, the 50:50 (balanced) and 99:1 (imbalanced) class 
distributions are in the same group, thus differences in performance between 
the two are statistically insignificant. Therefore, selecting the commonly 
used 50:50 distribution is not better than using 99:1 ratio which is highly 
imbalanced. Based on our results, we recommend using the 90:10 class 
distribution which has the best performance and is significantly better than the 
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Fig. 2: RF100 AUC results by class distribution.

Table 8: RF100 AUC performance results by class distribution.

Class Distribution Mean Median Standard Deviation Minimum Maximum

50:50 0.85299 0.85308 0.00350 0.84825 0.86045

65:35 0.86136 0.86109 0.00307 0.85786 0.86816

75:25 0.86688 0.86696 0.00255 0.86264 0.87122

90:10 0.87302 0.87266 0.00284 0.86876 0.87705

95:5 0.87246 0.87351 0.00403 0.86477 0.87809

99:1 0.85069 0.84882 0.00575 0.84422 0.86023

99.9:0.1 0.74375 0.74253 0.00707 0.73184 0.75907
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other class distributions. Furthermore, this distribution retains a reasonable 
number of majority class instances providing a good representation of the 
majority (non-fraud) class, unlike the 50:50 class distribution. In addition to 
demonstrating that the 90:10 distribution has the best performance, our results 
suggest that there is a class distribution threshold where performance begins to 
decrease sharply. From Table 9b and Figure 2, we notice a possible threshold 
below the 99:1 class distribution, where using the 99.9:01 distribution is 
significantly worse.

Given the top performance of the 90:10 class distribution with Medicare 
Part B, in the second case study we demonstrate that the use of RUS produces 
good fraud detection results with other big Medicare datasets. In Figure 3, 
we show several violin plots with associated point scatter. The violin shape 
indicates the distribution shape of the data, where wider sections represent a 
higher probability that members of the population will take on the given value 
and the skinnier sections represent a lower probability. From these plots, we 
note that each of the datasets produces good results when using RF100 and 
the 90:10 class ratio. In particular, the combined dataset, with its larger feature 
space, exhibits the highest average model performance. This indicates that 
the added information, as well as the interactions between Medicare provider 
claims, increases the detection of possible fraudulent activities.

As with the Part B only results, we provide significance testing as seen 
in Table 10. The one-factor ANOVA, with the factor Dataset, indicates 
significant results at a 95% confidence interval. The Tukey’s HSD results 
confirm the superiority of the results using the combined dataset, followed 

Table 9: One-factor ANOVA for class distribution, with Tukey’s HSD results.

Df Sum Sq Mean Sq F value Pr (> F)

Distribution 6 0.12628 0.021047 1088 < 2e-16

Residuals 63 0.00122 0.000019

(a) One-factor ANOVA results.

Group Class Distribution AUC

a 90:10 0.87302

ab 95:5 0.87246

bc 75:25 0.86688

c 65:35 0.86136

d 50:50 0.85299

d 99:1 0.85069

e 99.9:0.1 0.74375

(b) Tukey’s HSD class distribution results.
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by Part D and DMEPOS. From the results in both case studies, we show 
that RUS is effective in increasing model performance for Medicare fraud 
detection, with the use of a slightly imbalanced class distribution exhibiting 
the best performance across all big Medicare datasets.

6. Conclusion

The use of big data from sources such as Medicare is being leveraged to 
improve patient care and to help detect fraud. Medicare fraud continues to be 
problematic for its beneficiaries and the U.S. economy, negatively impacting 
the ability of the Medicare program to provide effective and affordable care. 
Thus, it is critical to have effective fraud detection methods. In response to 
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Fig. 3: RF100 AUC results for 90:10 class distribution.

Table 10: One-factor ANOVA for dataset, with Tukey’s HSD results.

Df Sum Sq Mean Sq F value Pr (> F)

Dataset 2 0.30856 0.15428 417.8 < 2e-16

Residuals 147 0.05428 0.00037

(a) One-factor ANOVA results.

Group Dataset AUC

a Combined 0.85989

b PartD 0.79088

c DMEPOS 0.74998

(b) Tukey’s HSD class distribution results.
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this concern, CMS has made available several large Medicare claims datasets 
for public use. Overall, in our study, we demonstrated the effectiveness of 
RUS in increasing fraud detection performance. We detail a unique method 
for processing the Medicare data and integrating the LEIE fraud labels. We 
then compare Medicare fraud detection performance in two case studies. In 
the first case study, with the Part B data only, we use seven different RUS class 
distributions. We build and test RF100 models using 5-fold cross-validation 
with 10 repeats assessing model performance using AUC. In the second case 
study, we use the best RUS class distribution and apply this to two other 
Medicare big datasets, as well as a combined dataset.

Our results indicate that the best class distribution is 90:10 with the 
worst results coming from the 99.9:0.01 distribution. We also showed that the 
performance of the commonly used ratio of 50:50 (balanced) is indistinguishable 
from the 99:1 class distribution. This indicates that the 50:50 distribution 
should not be used as the de facto standard for class imbalance in Medicare 
fraud detection. Moreover, we show, using the 90:10 class distribution, that we 
can build effective fraud detection models across other Medicare big datasets. 
Overall, we recommend using the 90:10 class distribution which indicates 
the best fraud detection performance. Furthermore, we noticed a possible 
threshold at the 99:1 class distribution, where any positive class representation 
below this performs significantly worse. Future work will include additional 
learners, as well as other performance metrics such as F-score and G-measure.
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Chapter 4
Movie Recommendations  

Based on a Recurrent Neural 
Network Model

Yiu-Kai Ng

1. Introduction

Movie streaming services like Netflix, Hulu, Amazon Prime, and others are 
increasingly used by consumers to discover video content. For example, in 
2017 Netflix subscribers collectively watched more than 140 million hours 
per day1 and Netflix surpassed $11 billion in revenue in 2017.2 In fact, 
roughly 80% of hours streamed at Netflix were influenced by their proprietary 
recommendation system [12]. Undoubtedly, movie streaming services have 
become an integral part of how we consume video content today, and the 
importance of movie recommendation systems cannot be understated—they 
are an integral part of how we consume video content today. With this in 
mind, the problem we propose to work on is movie recommendations through 
collaborative filtering based on the deep learning strategy.

For movie streaming services like Netflix, recommendation systems 
are important for helping users to discover new content to enjoy. While the 
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details of this system are mostly confidential, what we do know is that it is a 
combination of various individual recommendation systems, including some 
systems which leverage collaborative filtering systems [15]. In light of this, 
the problem we examine is movie recommendations through collaborative 
filtering.

Collaborative filtering is an approach for recommendation systems which 
relies on the ratings for a particular user as well as the ratings of similar users. 
The underlying assumption is that if we can accurately predict movie ratings, 
then we can recommend new movies to users that they are likely to enjoy, 
including movies the user may not have considered before. Therefore, in the 
context of movie recommendation, collaborative filtering aims to predict 
unknown movie ratings for a particular user, based on that user’s known 
ratings as well as the movie ratings by other users in the system. As opposed to 
content-based systems, collaborative filtering accounts for users with diverse 
taste, so long as there are other users with similar preferences. By finding 
similar users, new items can be recommended based on the assumption that 
items which are liked by similar users will be liked by the user in question.

There are many ways to perform collaborative filtering such as utilizing 
k-nearest neighbor clustering with user profiles [6]. Various approaches for 
measuring similarity have been proposed, but a simple approach is to represent 
a user profile as a vector, and then use some measure of similarity between 
those vectors (e.g., cosine similarity). An alternative k-nearest-neighbor 
approach instead computes similarity between pairs of items with the idea that 
users who like a particular item will like similar items [28]. Another common 
method for performing collaborative filtering is with matrix factorization [18]. 
With this technique a user-item matrix is factorized into two matrices with the 
inner dimension representing some latent factors. The resulting factorization 
represents both users and items in terms of the latent factors in such a way that 
new items can be recommended to users based on the latent factors.

Lately, deep learning has demonstrated its effectiveness in coping 
with recommendation tasks. Due to its state-of-the-art performances 
and high-quality recommendations, deep learning techniques have been 
gaining momentum in recommender system. Compared with traditional 
recommendation models, deep learning provides a better understanding of 
user’s demands, item’s characteristics, and historical interactions between 
them. We apply the deep learning approach for movie recommendation.

The rest of the paper is organized as follows. The most popular approaches 
for collaborative filtering are discussed in Section 2. These methods work by 
computing neighborhoods of similar users or items. In contrast, in Section 3 
we propose a deep learning approach for collaborative filtering based on an 
autoencoder. We demonstrate in Section 4 that our approach outperforms the 
neighborhood-based baseline. We give a concluding remark in Section 5.
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2. Related Work

The most common method of performing collaborative filtering is to utilize 
a k-nearest-neighbor approach between users [6]. With this technique, it 
first starts with a user-item matrix R, where Ri, j gives the rating of user i for 
item j and the value 0 indicates that a particular rating is missing. From R a  
user-user similarity matrix S is computed, where Si, j is the similarity between 
user i and user j, which can be computed with R · RT. Note that using 
other distance metrics, such as the correlation similarity measure or cosine 
similarity, to populate S are also effective. Once S is computed, we can predict 
the rating of user i for item j by computing RT

j ·Si, which essentially computes 
the average of the other users’ ratings for item j weighted by their similarity 
to user i.

We can also use the k most similar users to user i to predict the rating for 
item j. Empirically, this works better than the weighted average over all users, 
although some extra work is required at test time in order to compute the k 
nearest neighbors. This approach relies on the assumption that if two users 
rated the same item similarly, they are likely to rate other items similarly as 
well. At scale, data structures such as ball trees [21] and k-d trees (a binary 
space partition tree in k-dimensions) can be utilized to more efficiently 
compute local neighbors between user profiles.

An alternative k-nearest-neighbor approach instead computes similarity 
between pairs of items (as opposed to users) with the idea that users who like 
a particular item will like similar items [28]. With this approach we compute 
an item-to-item similarity matrix I as RT · R. As before, we can also use other 
similarly metrics to populate I. In order to predict the rating for user i on item j, 
we can compute Ri · Ij, which gives an average of the ratings provided by user 
i weighted by the similarity of those items to item j. Since there tends to be 
many more users than items in a recommender system, user-user collaborative 
filtering can be more performant, although our preliminary experiments with 
movie ratings indicate that user-user produced more accurate predictions of 
movie ratings.

Another common method for performing collaborative filtering is with 
matrix factorization [18]. With this technique a user-item matrix is factorized 
into two matrices with the inner dimension representing some latent factors 
using techniques such as singular value decomposition (SVD) [19]. The 
resulting factorization represents both users and items in terms of the latent 
factors in such a way that they can be used to recommend new items. As with 
item-item neighborhood approaches, our preliminary experiments on movie 
ratings indicate that user-user neighborhood approaches are superior to matrix 
factorization.
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Deep learning has revolutionized many fields of computer science, 
including natural language processing [22]. Despite this, deep learning is 
relatively new in the area of recommender systems, and has not received much 
attention [40]. Having said that, Wang et al. [35] propose a collaborative deep 
learning (CDL) model which jointly performs deep representation learning for 
the content information and collaborative filtering for the rating matrix. CDL 
is differed from ours, since the former relies on content information, whereas 
we do not. Elkahky et al. [8] introduce a deep learning recommendation 
system according to the web browsing history and search queries provided by 
users. They maximize the similarity between users and their preferred items 
by mapping users and items to a latent space. A constraint imposed on this 
approach is that browsing history and users search queries are required, which 
are not always available. Wei et al. [36] develop a deep neural network model 
which extracts the content features of items into prediction of ratings for cold 
start items, which again is differed from ours, since we do not deal with user 
content.

Deep Learning provides a new toolkit for recommender systems designers 
and developers to extract features and to model user generated data and item 
data that has the potential to provide large improvements in the quality of the 
recommendations provided to users [16]. Part of the power of deep learning 
techniques in recommender systems stems from the fact that deep learning 
methods allow for much better feature extraction from item characteristics 
such as image, video, and audio compared to traditional techniques. Our 
recommender system, which is based on Recurrent Neural Networks, uses the 
autoencoder network directly on the user item interactions in order to build 
collaborative filtering models that can then be used for recommendations. 
This method can be treated as a form of deep factorization methods, which 
often outperform standard model-based collaborative filtering methods [38]. 
The aim of this paper is to experiment with deep learning for collaborative 
filtering on a large set of movie ratings.

3. Our Proposed Recommendation System

Deep learning, which is essentially just deep artificial neural networks, is able 
to learn complex decision boundaries for classification or complex non-linear 
regressions. By stacking large numbers of hidden layers in these networks, 
deep neural networks can learn complex functions by learning to extract many 
low level features from the data and composing them in useful non-linear 
combinations. Figure 1 depicts the system architecture of our deep learning 
model.
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3.1 The Recurrent Neural Network (RNN) Model
We employ a recurrent neural network (RNN) as our classifier for predicting 
movies ratings, with initial ratings on movies provided by users to begin with, 
since RNNs have been proven to produce robust models for rating prediction 
[27]. A RNN is similar to other deep neural networks (DNNs) [20] in that 
they are both trained (optimized) by the backpropagation of errors [26] and 
are comprised of a series of layers. Table 1 summaries different layers, their 
dimensions, and their parameters in our RNN, in which 10 in the output 
dimensions (of the Dense Output layer) denotes the different rating values 
(from 0.5 to 5, with an incremental value of 0.5) predicted by the model.

The output is produced by propagating numeric values forward. The 
network is trained by backpropagating the error3 from the output layer 
backwards. Unlike other network structures, a RNN takes into account the 
ordering of tokens within sequences, rather than simply accounting for the 
existence of certain values or combinations of values in that sequence.

While neural networks are theoretically able to approximate any 
computable function, including the mapping from user profiles to movie 

3 An error is the relative divergence of the produced output from the ground truth.

Fig. 1: The system architecture of our deep learning model.
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ratings, in practice great care must be taken when selecting the architecture of 
the neural network. While the extracted structure of our network is subject to 
change, there are some reasonable starting places.

Inputs. The inputs to our network architecture are two n-dimensional vectors, 
where n is the number of movies in a movie dataset, such as the MovieLens 
database. One vector encodes a particular user profile, with each dimension 
indicating the rating the user gave for a particular film (or a zero to indicate 
that no rating has been given). The other vector is a one-hot encoding of a 
particular movie (i.e., a vector with a single “hot” dimension set to 1, with all 
other values set to zero). These two vectors request that the network predict a 
rating for a particular user for a specific movie.

One advantage of this input format is that we can do without a single 
rating from a known user profile, and use the known rating for withheld item 
as a labeled example. Consequently, even though we only have 270,000 user 
profiles created by using the MovieLens dataset, each one of the 26,000,000 
individual ratings constitutes a train example.

Hidden Layers. There are a variety of ways to structure a simple feed-forward 
neural network. We start with a number of the standard fully-connected layers. 
However, we also experiment with alternative structures, such as ResNets 
[14], which currently obtain state-of-the-art results in other fields such as 
image recognition.

Output. There are two main possibilities for the output of our network. The 
first is to treat this problem as a classification problem, with ten different 
class representing the ten start ratings that are present in the data. Under this 
architecture, we treat the ten outputs of our network as unnormalized log 
probabilities, and use cross entropy as our loss function.

Table 1: Dimensions and number of parameters of layers in the RNN.

Layer Output Dimensions Total Parameters Trainable Parameters

Input 72 0 0

Embedding 72 × 300 1,950,000 0

Bi-directional GRU 72 × 128 140,160 140,160

Global Max Pooling, 1D 128 0 0

Dropout 1 128 0 0

Dense Hidden 64 8,256 8,256

Dropout 2 64 0 0

Dense Output 10 650 650

Total 2,099,066 149,066
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RNNs achieve the recurrent pattern matching through its recurrent 
layer(s). A recurrent layer is one which contains a single recurrent unit 
through which each value of the input vector or matrix passes. The recurrent 
unit maintains a state which can be thought of as a “memory”. As each value 
in the input iteratively passes through the unit at time step t, the unit updates 
its state ht based on a function of that input value xt and its own previous state 
ht −1 as
 ht = f (ht −1, xt) (1)

where f is any non-linear activation.
Throughout training, the unit learns, i.e., optimizes, this state-updating 

function—it learns how much of its current state to keep or discard as it 
processes certain input values. Although the layer contains just a single unit, 
it can be visualized to have a number of units equal to its number of time 
steps, or iterations of processing sequential input values and previous states. 
This architecture is shown in Figure 2 [7].

Recurrent layers are designed to “remember” the most important features 
in sequenced data no matter if the feature appears towards the beginning of the 
sequence or the end. In fact, one widely-used implementation of a recurrent 
unit is thus named “Long-Short Term Memory”, or LSTM [10]. RNNs have 
been shown to be effective tools in fields such as language modeling and 
speech recognition. The designed RNN accurately predicts movie ratings 
solely based on the sequential of given user ratings.

Fig. 2: The actual structure of a recurrent layer (left), and an “unrolled” representation of the recurrent 
layer through t time steps (right).
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3.1.1 Feature Representation
In order to utilize a RNN, we need to provide the network with sequential data 
as input and a corresponding ground-truth value as its target output. Each of 
the data entries has to first been transformed in order to be fed into the RNN. 
Attributes of movie ratings are manipulated as labels, which are the naming 
of the categories of movie ratings, which are the categories pre-defined from  
0.5 to 5, with a half-star interval. Since neural networks cannot accept strings 
as an output target, each unique category string is assigned a unique integer 
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value, which is transformed into a one-hot encoding to be used later as the 
network’s prediction target. A one-hot encoding of an integer value i among n 
unique values is a binarized representation of that integer as an n-dimensional 
vector of all zeros except the ith element, which is a one. For example, if a 
movie rating is assigned the value 4, then with 10 distinct labels, its one-hot 
encoding is [0 0 0 0 0 0 0 1 0 0].

3.1.2 Network Structure
In this section, we explain the technical details of the RNN used for predicting 
movie ratings.

The Embedding Layer. One of the design goals of our neural network is to 
capture relatedness between similar user ratings for different movies. Due 
to the large amount of time it would take to properly train the embedding 
from scratch, we have performed two different tasks: (i) we have loaded into 
the embedding layer as weights an uncased ratings, GloVe [23], which has 
been pre-trained on movie ratings extracted from the MovieLens dataset, and 
(ii) we have decided to freeze, i.e., not train, the embedding layer at all. The 
pretrained vectors from GloVe sufficiently capture different ratings for our 
task and they are not required to be further optimized.

The Bi-directional GRU Layer. Following the embedding layer in our 
network is one type of recurrent layer—a bi-directional GRU, or Gated 
Recurrent Unit [5], layer. Figure 3 shows the architecture of a GRU layer [2].

A GRU is a current state-of-the-art recurrent unit which is able to 
‘remember’ important patterns within sequences and ‘forget’ the unimportant 
ones. The original architecture of a gated recurrent unit proposed by Cho  

Fig. 3: GRU architecture.
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et al. [4]—and the one which we used for our task—computes each subsequent 
hidden state ht as a function of its previous state and current inputs (as defined 
in Equation 1) as follows:

 • Input and previous state values pass through two “gates”, or intermediate 
value stages, before the final hidden state ht is computed. First, the reset 
gate rt is computed as

 rt = σ (Wr · [ht −1, xt ] + br) (2)

  where σ(x) =     11 + e–x , which is the logistic sigmoid function in the range 
between 0 and 1, [.]t denotes the tth element in a vector, xt and ht−1 are the 
current input and the previous hidden state, respectively, Wr is a learned 
weight matrix, and br is a bias vector.

 • The update gate zt is similarly computed as

 zt = σ(Wz · [ht −1, xt] + bz) (3)

where Wz is another learned weight matrix and bz is another bias vector.
A candidate hidden state, h̃t, is then computed as

 h̃t = tanh(Wh · [rt × ht −1, xt] + bh) (4)

  where tanh is the hyperbolic tangent function and Wh and bh are another 
learned weight matrix and bias vector, respectively.

 • The hidden state, ht, is produced as

 ht = zt × h̃t + (1 − zt) × ht −1 (5)

  The value of zt in Equation 5 guides the unit’s decision of whether 
to update the hidden state (when zt is close to 1) or to leave it mostly 
unchanged (when zt is close to 0).

The number of trainable parameters in a single GRU layer is  
3 × (n2 + n(m + 1)), where n is the output dimension, or the number of time 
steps through which the input values pass, and m is the input dimension. In 
our case, n = 64, since we have chosen to pass each input through 64 time 
steps, and m = 300. Since our layer is bi-directional, the number of trainable 
parameters is twice that of a single layer, i.e., 2 × 3 × (642 + 64 × 301) = 140, 
160, the greatest number of trainable parameters in our network as shown in 
Table 1.

The recurrent layer outputs a 72 × 128 matrix, where 72 represents the 
number of tokens in a sequence, and 128 denotes the respective output values 
of the GRU after each of 64 time steps in two directions.
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The Global Max-Pooling Layer (1D). At this point in the network, 
it is necessary to reduce the matrix output from the GRU layer to a more 
manageable vector which we eventually use to classify the token sequence into 
one of the movie rating categories. In order to reduce the dimensionality of 
the output, we pass the matrix through a global max-pooling layer. This layer 
simply returns as output the maximum value of each column in the matrix. 
Max-pooling is one of several pooling functions, besides sum- or average-
pooling, used to reduce the dimensionality of its input. Pooling can be done in 
more than one direction. For example, the image detection systems commonly 
pool a 2-dimensional area of an image into a scalar value. Since pooling is a 
computable function, not a learnable one, this layer cannot be optimized and 
contains no trainable parameters. The output of the max-pooling layer is a 
128-dimensional vector.

The Dropout Layer 1. Our model includes at this point a dropout layer [9]. 
Dropout, a common technique used in deep neural networks which helps to 
prevent a model from overfitting, occurs when the output of a percentage of 
nodes in a layer are suppressed. (See Figure 4 for an example of a dropout 
layer [32].) The nodes which are chosen to be dropped out are probabilistically 
determined at each pass of data through the network. Since dropout does not 
change the dimensions of the input, this layer in our network also outputs a 
128-dimensional vector.

The Dense Hidden Layer. Our RNN model includes a dense, or fully- 
connected, layer as shown in Figure 5 [25]. A dense layer is typical of nearly 
all neural networks and is used for discovering hidden, or latent, features from 
the previous layers. It transforms a vector x with N elements into a vector y 
with M inputs by multiplying x by a M × N weight matrix W. Throughout 
training, weights are optimized via backpropagation.

The Dropout Layer 2. Before classification, our RNN model includes another 
dropout layer to again avoid overfitting to the training sequences.

The Dense Output Layer. At last, our RNN model includes a final dense layer 
which outputs ten distinct values, each value corresponding to the relative 
probability of the input belonging to one of the ten unique categories. Each 
instance is classified according to the category corresponding to the highest 
of the 10 output values.

Our bi-directional GRU layer also features dropout of each time step’s 
output value and of its recurring state. Each dropout layer’s probability of 
“dropping” its output values is set to 10%. Furthermore, the network is trained 
by the Rmsprop optimization algorithm [34], though many other optimizers 
have been shown to perform similarly.
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3.2 Network Architecture
With the neural network architecture introduced above, we describe the deep 
learning architecture proposed as an alternative to the user-based neighborhood 
approach. We first consider the dimensions of the input and output of the 
neural network. In order to maximize the amount of training data we can feed 
to the network, we consider a training example to be a user profile (i.e., a row 
from the user-item matrix R) with one rating withheld. The loss of the network 
on that training example must be computed with respect to the single withheld 
rating. The consequence of this is that each individual rating in the training set 
corresponds to a training example, rather than each user.

As we are interested in what is essentially a regression, we choose to use 
root mean squared error (RMSE) with respect to known ratings as our loss 
function. Compared to the mean absolute error, root mean squared error more 
heavily penalizes predictions which are further off. We reason that this is 
good in the context of recommender system because predicting a high rating 
for an item the user did not enjoy significantly impacts the quality of the 
recommendations. On the other hand, smaller errors in prediction likely result 
in recommendations that are still useful—perhaps the regression is not exactly 
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Fig. 5: Structure of a dense layer.

Fig. 4: Dropout as used in a neural network.
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correct, but at least the highest predicted rating are likely to be relevant to the 
user.

3.2.1 Autoencoder
One of the existing deep learning models is the Deep Neural Network (DNN) 
model. DNN is a Multi-Layer Perceptron (MLP) model with many hidden 
layers. The uniqueness of DNN is due to its larger number of hidden units and 
better parameter initialization techniques. A DNN model with large number of 
hidden units can have better modeling power. Although the learned parameters 
of the DNN model is a local optimal, which requires more training data and 
more computational power, it can perform much better than those with less 
hidden units. Deep Auto Encoder is a special type of DNN. (See Figure 6 for 
a sample autoencoder [3].)

An autoencoder is a neural network that is trained to copy its input to its 
output, with the typical purpose of dimension reduction, i.e., the process of 
reducing the number of random variables under consideration. It features an 
encoder function to create a hidden layer (or multiple hidden layers) which 
contains a code to describe the input. There is a decoder which creates a 
reconstruction of the input from the hidden layer. An autoencoder can then 
become useful by having a hidden layer smaller than the input layer, forcing 
it to create a compressed representation of the data in the hidden layer by 
learning correlations in the data. This autoencoder is a form of unsupervised 
learning, meaning that an autoencoder only needs unlabelled data, which is 
a set of input data rather than input-output pairs. Through an unsupervised 
learning algorithm, for linear reconstructions the autoencoder attempts to 
learn a function to minimize the root mean square difference.
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Fig. 6: An autoencoder with three fully-connected hidden layers.
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To compute the root mean square error (RMSE) of a machine learning 
model, we can measure the performance of the model. RMSE is defined as

 ˆ ˆ( ) , w xT
i

i

RMSE y y y
m

= − =∑ 21
 (6)

where w ∈ ℜn is a vector of parameters, x ∈ ℜn is a vector used for predicting 
a scalar value y  ∈ ℜ, and ŷ is the value that a machine learning model predicts 
what the scalar value y ∈ ℜ should be.

Note that RMSE decreases to 0 when ŷ = y and the error increases when 
the Euclidean distance between the predicted values and the target values 
increases.

3.2.2 Multilayer Perceptron
Initially, the architecture of our recommender system consists of input from 
the row of the user-item matrix R with the rating for some item j withheld, 
along with a one-hot encoded query which indicates the network should 
predict the rating for user i on item j. Unfortunately, this architecture has 
been proved difficult to train, since the network must learn to understand not 
only user profiles, but also the interplay between those profiles and the query 
inputs. With respect to the root mean squared error on the training data, we 
never achieved a loss less than 1.2 with this architecture.

Instead, we take inspiration from the concept of an autoencoder to design 
our neural network architecture. This simple architecture takes an input and 
connects it to some number of fully connected hidden layers which include 
a “bottleneck.” This bottleneck is a hidden layer which has a much smaller 
dimensionality than the input. The output of the network is then re-expanded to 
have the same dimensionality as the input. The network is then trained  to learn 
the identity function, with the idea that in order for the network to compute the 
identity function through the bottleneck, it must learn a dense representation 
of the input. Thus, the autoencoder could be viewed as something akin to 
a dimensionality reduction technique. We can also hope that the bottleneck 
layer learns something useful related to the structure underlying the input. For 
example, a neuron in the bottleneck layer might represent something related 
to the genre of a movie or similar movie groupings.

Note that we are not interested in learning to compute an identity 
function—after all, our goal is to predict missing ratings, not reproduce the 
zeros in the input vectors. Consequently, while our final network architecture 
resembles an autoencoder with the bottleneck hidden layers and the matching 
dimensions on input and output, the network is actually trained using a loss 
function for regression (i.e., RMSE) with the aim of learning to predict 
missing ratings.
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More specifically, the training examples to the network are user profiles  
with one rating withheld, and the output is the predicted ratings for  all movies 
in the dataset. While the network is expected to predict ratings for each movie 
based on a user profile, we only have the answer for the one withheld rating. 
Consequently, we only propagate loss for the missing rating when learning 
from the training example.4

3.2.3 The Deep Learning Recommender System
Withholding ratings does have the unfortunate consequence that our deep 
learning model is only able to learn ratings for movies similar to what the 
user has actually watched, as the loss function is not directly affected by the 
output on unrelated movies. Due to the bottleneck layer, the model is required 
to generalize to some degree, but the model may have difficulty for movies 
which are drastically different than the movies the user actually rated. While 
users do watch movies they rate lowly, most of the time they do not rate 
more than a few hundred items, and avoid watching completely non-relevant 
movies, so it may be difficult for the model to predict ratings for completely 
unrelated movies.

For the purposes of our loss function, which is root mean squared error on 
known ratings, the fact that our network may not learn how to output ratings 
for completely unrelated movies does not seem to affect the test loss, probably 
because the movies in the test data are related enough that the patterns learned 
from the training data generalize to the ratings in the test data. Of course, it 
may affect the rankings, so it could be desirable to add a regularization term 
(discussed in details in Section 3.3) to the loss, which encourages sparsity in 
the output.

With this basic design in place, we have experimented with several 
variations of this architecture using various numbers of layers, and various 
sizes for the bottleneck layer. The most interesting parameter was the size of 
the smallest bottleneck layer, and after experimenting with various values, we 
eventually settled on a bottleneck size of 512. From there we experimented 
with different numbers of fully connected layers, always using powers of  
2 to increase and decrease the dimensionality. The final network topology 
has seven fully connected hidden layers with dimensions [4096, 2048, 1024, 
512, 1024, 2048, 4096]. Each layer used a rectified linear unit5 as the non- 
linear activation function. The connecting weights of the hidden layers were 
initialized using Xavier initialization [11] with the biases set to zeros.

4 In code, this can be accomplished with the tf:gather function.
5 The rectified linear unit, or ReLU, is defined as max(0; x). While simple, it is currently the state-of-

the-art in activation functions for DNN.
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3.2.4 Clustering
We have considered the idea of using the smallest bottleneck layer in the 
network as some form of a natural clustering. By forcing the input into such 
a small dimensional space, the model must necessarily learn something about 
the underlying structure of the input data. The hypothesis was that by fixing 
a single neuron in the bottleneck layer and zeroing out the remaining neurons 
in the bottleneck layer, and then optimizing the input space for this particular 
activation, we can visualize that structure by showing the movies which 
trigger each cluster. For example, we expect that there might be a neuron or 
small set of neurons which trigger for various genres of movie, or various 
styles of filmography.

Table 2 gives an example of such a “cluster” from optimizing the input 
to trigger a single bottleneck neuron. These movies have common theme. 
Obviously, for this network to be able to accurately predict movie ratings it 
must learn some sort of structure. However, this structure is more distributed 
throughout the bottleneck layer than expected. One potential solution to this 
problem is to add a regularization term to the loss which encourages sparsity 
in the bottleneck layer.

Jules and Jim (Jules et Jim) (1961) 
Frankenstein Must Be Destroyed (1969) 
Lolita (1962)
Lawnmower Man, The (1992) 
First Knight (1995)
Urban Legends: Final Cut (2000) 
Fair Game (1995)
Guinevere (1999) 
Paradine Case, The (1947)
400 Blows The (Les quatre cents coups) (1959)

Table 2: A cluster when optimizing the input to trigger a single bottleneck neuron.

3.3 Regularization
Regularization in deep learning, and in machine learning in general, is an 
important concept which solves the overfitting problem. It is very important 
to implement the regularization while training a good model, since it is a 
technique used in an attempt to solve the overfitting problem.

As mentioned earlier, regularization is an attempt to correct for  
model overfitting by introducing additional information to the cost function. 
Within the context of least squares linear regression, the regularization term is 
added to a standard least squares linear regression cost function J as defined 
below.
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where Θ is the parameter values, m is the number of training examples with  
n different features, hΘ(xi) is the estimator hΘ value for the training example i, 
yi  is the actual labeled value of training example i, and λ is the regularization 
constant.

In discussing regularization we have employed L2 regularization, whereas 
L1 regularization is another such strategy for controlling overfitting. The two 
regularizations share the same goal but differ in a few key respects. Note that 
in Equation 7,

 
n

j
j

λ
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Θ∑ 2

1

 (8)

is the L2 regularization term, whereas in L1, the same regularization term is 
written as

 | |
n

j
j

λ
=

Θ∑
1

 (9)

Hence, the difference between L1 and L2 is that L2 uses the sum of the 
square of the parameters, whereas L1 is the sum of the absolute value of  the 
parameters. In essence, L1 regularization reduces some parameters associated 
with a given feature to zero, whereas L2 regularization does not set feature 
parameters to zero, but will only continue to reduce the value of a given Θ.

4. Experimental Results

In order to verify the performance of the proposed deep learning model in 
predicting the movie ratings accurately for movie goers so that they would 
enjoy the movies recommended by us, we have conducted various empirical 
studies, which compare the performance of our model with other state-of- the-
art movie recommender systems. Prior to presenting the experimental results 
of our recommendation system, we discuss the dataset used for the empirical 
study and the experimental setup. We first describe the MovieLens dataset and 
then briefly explain the baseline model used as a point of comparison.

4.1 MovieLens Data
In academia the most well-known movie ratings dataset is undoubtedly the 
MovieLens dataset [13], although a close second is probably the Netflix prize 
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data released via Kaggle.6 For our recommendation system we utilize the 
latest version of the MovieLens dataset, which is the recommended version 
for education and development.7

The MovieLens dataset is provided by GroupLens, which is a social 
computing research lab at the University of Minnesota. The full MovieLens 
dataset contains ratings for 45,115 movies provided by 270,896 different 
users. In total, the dataset contains 26,024,289 individual movie ratings, last 
updated in August 2017. Each rating allows users to assign between half a 
star and five stars to a movie, in half star increments. Figure 7 shows the 
distribution of the ratings in the data. Each rating is also accompanied by a 
time stamp. Since the dataset does not contain a standard train/test split, we 
used these time stamps to split the data into training and test sets, with the 
oldest 90% of the data making the training set and the newest 10% of the data 
composing the test set. We did this with the intent to mimic the problem faced 
by real world movie recommendation systems which have all of the data up 
to a certain point in time, and are faced with predicting movie ratings going 
forward in time.

4.2 Full Dataset Versus BaseLine
As previously mentioned, there are a number of popular methods for 
performing collaborative filtering, including nearest-neighbor based technique 
comparing user-user similarity [6], nearest-neighborhood comparing item- 
item similarity [28], and matrix factorization techniques [18]. We determined 
user-user neighborhood approach with cosine similarity and a neighborhood 
size of five performs the best with respect to root mean squared prediction 
error. In our empirical study, we used them all on the full MovieLens dataset. 
We allocated enough RAM to fully vectorize these algorithms. For example, 

6 https://www.kaggle.com/netfix-inc/netfix-prize-data.
7 https://grouplens.org/datasets/movielens/latest.
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Fig. 7: Distribution of ratings in the full MovieLens dataset.

https://grouplens.org
https://www.kaggle.com
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in order to process the vectorized version of the user-user nearest neighbor 
approach, we computed a user-user similarity matrix which took nearly  
600 GB in RAM. The non-vectorized brute force version of the algorithm 
required more than a week to finish. An alternative is to utilize a small version 
of the MovieLens dataset, called the BaseLine dataset, which contains only 
943 users and 1,682 movies as a development dataset. The BaseLine database 
can be split into a train/test set, and we can measure the root mean squared 
error of the predictions of each of the proposed baseline algorithms.

4.3 Error Rates for Proposed Movie Recommenders
Using 90% of the full MovieLens dataset as training, we trained the architecture 
described in Section 3.2. It took roughly 4 days using a Titan X GPU to make 
30 passes over the entire data before the training loss stabilized. Figure 8 
shows the training loss (i.e., RMSE) decreasing over time.

We discuss the results of our model on the test set and compare its results 
to the user-based neighborhood models.

4.3.1 Root Mean Squared Error
Table 3 summarizes the results comparing our model-based approach with 
the user-based neighborhood baseline. On the training data, our approach is 
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Fig. 8: Graph showing loss (root mean squared error) decreasing over time. Each step represents 
1,000 training examples.

Table 3: Root mean squared error (RMSE) for our user-based neighborhood baseline and autoencoder 
inspired by our model-based approach.

User-User KNN Model-based

Train N/A 0.4209

Test 11.6715 0.3544
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stabilized around 0.42. The neighborhood approach has learned parameters, as 
it simply relies on the training data itself to make predictions. Consequently, 
there is no training loss to report.

On test data, our deep learning model-based algorithm outperforms the 
neighborhood approach by a large margin. However, it should be noted that 
for the purpose of making movie recommendations, we do not actually care 
about the error. Instead what we care about is the ranking of the top few most 
highly rated movies. It is not an unreasonable assumption that the algorithm 
which ranks better will also have lower root mean squared error, but it is 
entirely possible that despite the higher errors, the top ranked movies from the 
model-based approach produce superior recommendations. This is especially 
true when we consider that our algorithm does not directly learn about highly 
unrelated movies.

4.3.2 Comparing our Movie Recommendation Systems with Others
Besides using RMSE as shown in Table 3, we compare between various well-
known movie recommenders and our deep learning movie recommendation 
model. These existing movie recommenders were chosen, since they achieve 
high accuracy in recommendations on movies based on their respective 
model, and more importantly they are simply based on user ratings, but not 
solely on contents.
	 •	 MF. Yu et al. [39] and Singh et al. [30] predict ratings on movies based on 

matrix factorization (MF), which can be adopted for solving large-scale 
collaborative filtering problems. Yu et al. develop a non-parametric matrix 
factorization (NPMF) method, which exploits data sparsity effectively 
and achieves predicted rankings on items comparable to or even superior 
than the performance of the state-of-the-art low-rank matrix factorization 
methods. Singh et al. introduce a collective matrix factorization (CMF) 
approach based on relational learning, which predicts user ratings on 
items based on the items’ genres and role players, which are treated as 
unknown values of a relation between entities of a certain item using a 
given database of entities and observed relations among entities. Singh 
et al. propose different stochastic optimization methods to handle and 
work efficiently on large and sparse data sets with relational schemes. 
They have demonstrated that their model is practical to process relational 
domains with hundreds of thousands of entities.

	 •	 ML. Besides the matrix factorization methods, probabilistic frameworks 
have been introduced for rating predictions. Shi et al. [29] propose 
a joint matrix factorization model for making context-aware item 
recommendations. The matrix factorization model developed by Shi et al. 
relies not only on factorizing the user-item rating matrix but also considers 
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contextual information of items. The model is capable of learning from 
user-item matrix, as in conventional collaborative filtering model, and 
simultaneously uses contextual information during the recommendation 
process. However, a significant difference between Shi et al.’s MF 
model and other MF approaches is that the contextual information of 
the former is based on movie mood, whereas other MF models makes 
recommendations according to the contextual information on movies.

 • MudRecS [24], which makes recommendations on books, movies, 
music, and paintings similar in content to other books, movies, music, 
and/or paintings, respectively that a MudRecS user is interested in. 
MudRecS does not rely on users’ access patterns/histories, connection 
information extracted from social networking sites, collaborated filtering 
methods, or user personal attributes (such as gender/age) to perform the 
recommendation task. It simply considers the users’ ratings, genres, role 
players (authors or artists), and reviews of different multimedia items. 
MudRecS predicts the ratings of multimedia items that match the interests 
of a user to make recommendations.

	 •	 Netflix. We compare our deep learning recommendation system indirectly 
against the 20 systems that participated in the Netflix contest in 2008 
through MudRecS [24]. The open competition was held by Netflix, an 
online DVD-rental service, and the Netflix Prize was awarded to the best 
recommendation algorithm with the lowest RMSE score in predicting 
user ratings on films based on previous ratings. On September 21, 2009, 
the grand prize of one million dollars were given. The RMSE scores 
achieved by each of the twenty systems, as well as detailed discussions on 
their rating prediction algorithms, can be found on the Netflix website.8

Figure 9 shows the Mean Absolute Error (MAE) and RMSE scores of our 
deep learning movie recommender and other recommendation systems on the 
MovieLens dataset. RMSE and MAE are two performance metrics widely-
used for evaluating rating predictions on multimedia data [1]. Both RMSE 
and MAE measure the average magnitude of error, i.e., the average prediction 
error, on incorrectly assigned ratings. The error values computed by RMSE 
are squared before they are summed and averaged, which yield a relatively 
high weight to errors of large magnitude, whereas MAE is a linear score, 
i.e., the absolute values of individual differences in incorrect assignments are 
weighted equally in the average. Our deep learning recommender outperforms 
each of the movie recommenders as shown in Figure 9, and the RMSE and 
MAE values are statistically significant (p < 0.01) [31].

8 https://www.netflixprize.com/leaderboard.html.

https://www.netflixprize.com
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On the Netflix dataset, MudRecS achieves a RMSE score9 of 0.8571. 
MudRecS outperforms 18 recommendation systems and is only outperformed 
by two systems (Bellkor [17] and Ensemble [37]), both of which achieve the 
same score of 0.8567, a small, insignificant fraction (0.8571–0.8567 = 0.0004)  
better than MudRecS. The reason for the slightly better RMSE score achieved 
by the two systems on the Netflix dataset are twofold. Unlike MudRecS, Bellkor 
and Ensemble were specifically designed for movie rating predictions, and 
the construction of their algorithms focus on rating patterns found in movies 
which may not apply to other domains. Moreover, Bellkor and Ensemble 
account for temporal effects, i.e., the fact that a user’s preference changes over 
time, which may lead to different ratings for the same movie over time. The 
temporal effect, however, does not apply to all users and requires a larger subset 
of training data in order to obtain reliable results, which are the constraints. In 
considering a 95% confidence interval, MudRecS significantly outperforms 
17 recommendation systems and is not significantly outperformed by any of 
the twenty systems. CineMatch, Netflix’s recommender, achieves an RMSE 
score of 0.9514 on the Netflix dataset, which is outperformed by MudRecS. 
We ran our deep learning recommender system on the Netflix dataset and 
achieves a 0.782 RMSE score, which is lower than MudRecS, even though the 
results are not statistically significant. However, our recommender performs 
at least as good as MudRecS based on the Netflix dataset.

4.4 Human Assessors
In order to further establish the usefulness of our deep learning approach in 
making movie recommendation, we conducted two user studies in which 

9 MAE scores were not computed on the Netflix dataset due to their unavailability for the other 20 
recommenders.
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users, who play the role of appraisers, had the chance to evaluate movies 
recommended by our system and the user-based neighborhood (KNN) 
approach in one case, and Amazon10 and Redbox (www.redbox.com) in 
another.

4.4.1 College Student Appraisers
Appraisers were shown a user profile, which consisted of every movie the 
corresponding user had rated, as well as the associated ratings. Each appraiser 
was then presented two possible recommendations: one from our system and 
one from the user-based neighborhood approach. The recommendations were 
chosen by picking the movie with the highest predicted rating from either 
system, excluding movies that had already been rated by the user. The order 
in which the two possible recommendations were shown was randomized. 
Appraisers were asked to pick which recommendation they thought was more 
relevant to the given user profile (see Figure 10 for an example of the study).

A total of 100 participants, who were students at the authors’ university, 
were used in the study. Each user, who is an appraiser, was asked to rate 
15 randomly chosen recommendations. In this survey, 71.67% of the time 
appraisers preferred the recommendation made using our deep learning 
approach over the recommendation made by the baseline approach, and this 
result is encouraging. Of course, it is clear that this survey using a small sample 
size. In addition, most of the appraisers indicated that they were unfamiliar 
with most of movies referenced in the survey. Realizing this problem in 
advance, we indicated in the survey that they were allowed to use resources 
like Google11  and IMDBa12  while making their judgements.

10 www.amazon.com.
11 https://www.google.com. 
12 www.imdb.com.

Fig. 10: An example of the type of questions appraisers were asked to answer in the user evaluation 
of our deep learning-based system and the user-based KNN approach.
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4.4.2 Mechanical Turk Performance Evaluation
Besides relying on college students to conduct a user study to evaluate the 
performed of our movie recommender MR, we also turned to Mechanical 
Turk13 to conduct empirical studies that allow us to evaluate the performance 
of MR, which offer a diverse group of appraisers who come from all walks 
of life. We counted on Amazon’s Mechanical Turk, since it is a “market- 
place for work that requires human intelligence”, which allows individuals 
or businesses to programmatically access thousands of diverse, on-demand 
workers and has been used in the past to collect user feedback on various 
information retrieval/recommendation tasks. Altogether, we created a 
total of thirty-five HITs,14 each of which consists of 10 tasks and each task 
includes 10 designated movies and their corresponding set of recommended 
movies. The Mechanical Turk appraisers who participated in the performance 
evaluation were asked to determine which one of the nine recommendations,15 
if there were any, were relevant movies with respective to the corresponding 
designated movie. The three movies marked as relevant most often by the 
appraisers were considered our gold standard for the designated movie (and 
the corresponding profile in the case of our recommender MR). Table 4 shows 
the top-3 recommendations suggested by MR, Amazon, and Redbox and the 
number of times each recommended movie was marked as relevant with 
respect to a designated movie by the corresponding appraisers.

Besides marking which recommendation was relevant, the appraisers 
were also asked (to the best of their knowledge) to order, i.e., rank, the 
recommendations in terms of their degrees of relevance with respect to 
the corresponding designated movie. Based on the gold standard on the 
relevance and rankings set by the appraisers, we determined whether the 
recommendations provided by MR and its competitors were truly relevant 
and the degree of accuracy of their corresponding rankings. Note that during 
the evaluation process, we randomized the order of the nine recommended 
movies and asked the appraisers to mark and rank the recommendations they 
believed to be relevant to the designated movie.

4.4.3 Precision@K and MRR
Users of a recommendation system tend to look at only the top part of the 
ranked result list to find relevant recommendations. Some search tasks have 

13 https://www.mturk.com/mturk/welcome.
14 A Human Intelligence Task, or HIT, is a single, self-contained assignment that a Mechanical Turk 

appraiser works on.
15 Three each from our recommender, Amazon, and Redbox, which were the top-3 recommendations 

made by the three recommendation systems, respectively. The appraisers had no idea which 
recommendation was made by which recommender.

https://www.mturk.com
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only one relevant result (i.e., precision at rank 1, denoted P@1) in mind, i.e., 
the top-ranked recommendation is expected to be relevant and useful, whereas 
others consider the top-n (2 ≤ n ≤ 10) ranked recommendations. Since our 
recommender MR suggests up to three movies for each user’s designated 
movie based on the profile of the user, we have evaluated the performance of 
MR based on P@1 and P@3, which is easy to compute, flexible to be averaged 
over the recommendations made for different designated movies to produce a 
single performance value, and is readily understandable.

After the gold standard for each one of the 350 test cases provided by 
the 20 appraisers were recorded, we calculated the metrics for the average 
precision at rank 1 (i.e., average P@1) and average Precision at rank 3  
(i.e., average P@3). The average P@1 values measure the usefulness of the 
recommendations at rank 1, whereas average P@3 computes the ratio of the 
usefulness of the top-3 ranked recommendations. As shown in Figure 11, our 
recommender MR scored an average P@1 value of 0.71,16 which is compared 
favorably with Amazon’s 0.65 and Redbox’s 0.38. In addition, MR scored an 
average P@3 value of 0.67, which is also more appealing than Amazon’s 0.53 
and Redbox’s 0.37. All of these results are statistically significant based on the 
Wilcoxon Signed-Ranks Test (p < 0.01).

Besides measuring the usefulness of the top-ranked recommendations 
made by our recommender MR, we have also evaluated the performance of 
MR based on the evaluation metric MRR. MRR calculates the average of 
the reciprocal ranks at which the first useful recommendation (among all the 
ranked recommendations) for each designated movie based is made. The 
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Fig. 11: Performance evaluation on average P@1, P@3, and MRR for Redbox, Amazon, and our 
movie recommender.

16 The value 0.71 indicates that in seven out of 10 times the first recommendation made by MR is 
considered useful and relevant.
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reciprocal rank is very sensitive to the rank position. MRR is formally defined 
below.

 
| |

| |

DGs

ii

MRR
DGs Rank=

= ∑
1

1 1  (10)

where DGs  denotes the  set of  designated movies used in  the  evaluation, 
|DGs| represents the number of movies in DGs, and Ranki is the ranking 
position of the first useful/relevant recommendation as determined by the 
appraisers.

As shown in Figure 11, MR outperformed Amazon and Redbox in terms 
of the MRR value, i.e., 0.65 versus 0.53 and 0.42, respectively, which are 
statistically significant based on the Wilcoxon Signed-Ranks Test (p < 0.01). 
These results verify that MR makes more relevant recommendations and 
ranks higher the relevant suggestions than the ones suggested by Amazon and 
Redbox, respectively.

5. Conclusions

Watching movies is one of the popular entertainments in the modern society, 
and these days people can watch movies anytime and everywhere—at work, 
at home, or in their cars. However, following the normal supply and demand 
curve, in the calendar year of 2016 up till mid-July, there were 7,547 most 
popular English-language movies released.17  The increase in production of 
movies has created a problem for movie enthusiasts seeking new movies. In 
the year of 2018 the number of new movies released in the United States 
and Canada alone is close to a thousand [33]. Although websites with 
discussions on the latest and most popular movies are available, the amount 
of time needed to research movies has become insurmountable due to the 
large number of movies available. To decrease the amount of time needed  
to research personally appealing movies and help resolve the problem of 
needing to test movies out, we propose a novel movie recommender which 
suggests movie recommendations to its users based on a simple neural 
network model.

The neural network model is a computing system made up of a number 
of simple, highly interconnected processing elements, which process 
information by their dynamic state response to external inputs. A neural 
network is often referred to as an Artificial Neural Network (ANN), which 
has generated a lot of excitement in Machine Learning research and industry, 

17 www.imdb.com/search/title?count=100&languages=en&release date=2016,2016&title type=feature.

http://www.imdb.com
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thanks to many breakthrough results in speech recognition, computer vision 
and text processing. We adopt the deep learning, which is essentially just deep 
artificial neural networks, to recommend appealing movies for moviegoers.

The proposed movie recommender performs well in terms of root mean 
squared error for collaborative filtering. When talking about collaborative 
filtering, we should clearly distinguish the following two tasks: (i) rating 
prediction and (ii) top-N recommendations. The task of rating prediction   
is much more popularized and, as a consequence, tons of papers and open 
source libraries are there. However, speaking about top-N recommendation 
task, the situation is quite the opposite, since in most business applications, 
it is required to compute top-N recommendations. Our work adds to existing 
literature which suggests that deep learning can be a powerful tool for a 
variety of problems in information retrieval [40]. In the end, this work 
makes improvement in terms of predicting ratings of and recommending 
top-N movies for users. Our recommender system applies regularization to 
further minimize the prediction errors. In addition, our system was able to 
handily outperform the neighborhood-based baseline, and was able to provide 
superior movie recommendations. Additional human assessments, which 
invoke college students and Mechanical Turk appraisers, further verified 
the relevance and usefulness of movies recommended by our deep learning 
model in terms of offering appealing movies for users to watch. As an added 
advantage of our deep learning approach, it is much more scalable at test  
time.
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Chapter 5
A Recommendation System 
Enhanced by Topic Modeling  

for Knowledge Reuse in  
MOOCs Ecosystems
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and Jonice Oliveira1

1. Introduction

The advancement of online education has revolutionized the way students 
learn around the world. The technological resources allow the analysis, 
optimization and availability of new learning options that benefit several 
users of such resources. One of these options is gaining more popularity: The 
Massive Open Online Course (MOOC), which emerged as a new educational 
philosophy. This advance is due to the reason it presents totally new definitions 
about the concepts of enrollment, participation, and even evaluation, but  
also for having values based on openness, ethics for participation, and 
collaboration [3].

With the highlight of MOOCs, the number of users has been growing 
constantly since its emergence in 2008. Several universities and other 
educational institutions have been adapting and reconsidering the classic 
learning structures and taking courses communities beyond the physical 
boundaries of the university with MOOCs [7]. From the interaction of several 
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users around the MOOCs’ platforms, some authors analyze the MOOCs from 
a perspective of software ecosystem (SECO), conceptualizing the MOOC 
learning community ecosystem [26], or simply MOOCs ecosystems. This 
perspective can (i) ensure more sustainable development for MOOCs,  
(ii) contribute with other benefits for the learning community, and (iii) bring 
partnership and alliance between universities, external companies, students 
and other ecosystems’ stakeholders.

However, the growth of these platforms also creates some difficulties. The 
number of courses emerging in the ecosystem is increasing. Once learning 
institutes sometimes contain similar courses, there may be courses that 
address the same topics. This large number of courses can generate doubts 
when students should choose which course they will enroll. Therefore, 
some works consider the construction of courses recommendation systems 
for these students within a provider, as listed in the Section 2. In addition, 
there are some challenges for the recommendation in these scenarios and, if 
contemplated, they could facilitate students in accurately identifying content 
according to their learning needs, such as:
 • A more personalized recommendation where there may be a merger 

of parts of courses. Currently, the recommendations consider the entire 
content of the course. For example, there is no assembly of a study plan, 
or some resource that might make the recommended item more flexible;

 • Considering more than one provider in the recommendation;
 • The recommendations do not usually merge the courses’ data with 

other databases, either on the student or the items (courses) that are 
recommended;

 • MOOCs have still interpreted the platform in a restricted way. Although 
there are several other actors interacting with this platform, these 
interactions are not mapped in the form of an entire ecosystem; or 
when they are, they still reflect the characteristics of a Virtual Learning 
Environment (VLE), which excludes a possibility of expansion and 
cooperation of the platform itself.

This work’s contribution explores some of these major issues. It proposes  
an architecture of a web-based recommendation system that considers 
more than a single MOOC provider, enabling not only the full courses 
recommendation but also parts of courses in MOOCs ecosystems. The 
resulting system from such architecture aims to assist students in the process 
of searching for courses and to achieve demands and improvements, as well 
as sharing of software over the platform (i.e., reuse of knowledge).

In the Section 2, we describe how other researches propose related 
solutions and we indicate the main concepts of our work. In this chapter, some 
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characteristics of SECO are addressed, exploring how these characteristics 
work specifically in MOOCs ecosystems. To do so, in the Section 3, a 
correlation between roles and a mapping of knowledge types shared in 
such MOOCs ecosystems is presented. Thus, it is possible to understand 
the importance of each stakeholder in the process of knowledge reuse. To 
build the recommendation system, two general steps are taken in this chapter: 
(a) identify the most used MOOCs providers, as well as which data is open 
for extraction, in the Section 4; (b) propose the web-based recommendation 
system, planning the different steps of the recommendation process and the 
knowledge reuse objectives for this architecture, in the Section 5. As the 
recommendation system includes topics modeling and labeling methods, 
the Section 6 address the most common concepts and techniques, as well as 
justification on the choice of techniques combination to be adopted in our 
system according to their relevance.

This chapter also includes an example of the recommendation system 
processing real-world data in the Section 7. This example allows to better 
visualize the whole process, from the user search in the recommendation to 
the issuing of courses and parts of courses recommended by the system. Finally, 
the Section 8 addresses the possibilities of the process extension and include 
some conclusions about the work and techniques.

2. Literature Review

Several studies have contributed to recommendation systems for MOOCs. 
They deal with different techniques to build and implement recommendations. 
The objective of the literature review in this chapter is to introduce the 
fundamental concepts of these techniques and approaches used in related 
work. The collection of material for literature review started by searching and 
analyzing recent work published in conferences about the recommendation 
system and/or education. Due to lack of material, we extended our literature 
review to cover Google Scholar indexed publications.

In order to classify the MOOC recommendation systems identified in 
the literature, the characteristics of a recommendation system raised in [22] 
were used as a reference. According to the authors, five aspects characterize the 
recommendation systems.

The first one is the Recommendation Technique, that addresses not only 
which recommendation technique is used but also how this technique is 
applied by the recommendation solution [22]. Recommendation techniques, 
to a greater extent, make use of two main entities for the recommendation 
process: user, which is the entity to which the recommendation is provided; 
and item, which is the product that is effectively recommended [1].
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Among the studies identified in the review, Malakoudis and Symeonidis 
[20] suggest a recommendation system that applies Matrix Factorization (MF) 
as a recommendation technique. This technique has become practical in real-
world scenario modeling because of its flexibility, since it can detect, from user 
ratings, how these users would rate items that have not yet been classified. 
From latent features, it is possible to sort items and make recommendations 
[17].

The Matrix Factorization technique is a class of CF approach of 
recommendation. This approach is applied in [29]—another work identified 
in this review that refers to the need to observe the history of the users to make 
the recommendation process in this approach. It is possible to find similar 
users’ groups, represented by scores, and then predict the most appropriate 
items for a target user.

In contrast to the CF techniques mentioned before, the content-based 
methods consider descriptive attributes of the items, the so-called content 
(hence, the content-based name). These methods are used when there is no 
user’s information, i.e., the ratings of other users are not known, as happens 
when applying CF. Thus, from a descriptor of item i, it is possible to find other 
items already evaluated with similar descriptors, given the level of similarity to 
recommend or not recommend the item i [1]. As such, Case-Based Reasoning 
(CBR) has played an important role in content-based systems. A leading work 
that uses the CBR technique is presented in [8], based on a principle that 
“similar problems have similar solutions”, and treat problems and solutions as 
cases stored in a library called as Case Base.

The second aspect is the type of recommended items. It refers to the 
characteristics that involve the type of content that the recommendation 
system recommends to users [22]. When it comes to recommending courses for 
users, MOOCRec [8] and MOOCRec.com [20] use recommendation approach 
for this purpose.

The latter aims to help students in the acquisition of skills that are expected 
from their ideal job through a successful recommendation.

Differently, OERecommender project [29] recommends Open Educational 
Resources (OER). Similarly to MOOCs, OER is a concept that is part of 
Online Open Education, one of the most important movements for education 
in the 21st century [3]. Even though they are part of the same movement, they 
involve different concepts. OERs consist of ‘any kind of educational material 
in the public domain or associated with an open license’ [3]. Meanwhile, 
MOOCs are defined as ‘online courses accessible to anyone on the web’ 
where ‘institutions have joined in an effort to make education more accessible 
by teaming up with MOOCs providers’ [12].

The third aspect is the Output Form, i.e., information about how the user 
receives the recommended contents, such as system-driven or automatically 
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provided by the system as a facilitator for the user [22]. In OERecommender 
project [29], the recommendation is automatically triggered by the system, by 
a search engine that captures the metadata and generates CAM instances from 
a MOOC course that the student is learning via the browser.

Meanwhile, MOOCRec.com makes recommendations based on user 
search. It makes use of crawlers to capture items that are recommended to 
users according to the information given in the search at runtime. The same 
happens with MOOC-Rec that considers the interests of the user through an 
interface where it can do a search for suggestions. The system translates this 
query into a query and the output is returned in this same interface.

The fourth aspect described is the Cross-Dimensional Features, that 
contain characteristics of the system components—if any component of the 
recommendation system applies any specific technique, such as considering 
user feedback [22]. In OERecommender project [29], a future work proposals 
is to extend the recommended through a prediction based on machine 
learning. The machine learning approach has been used in some works of 
recommendation systems, as in [2], which combines data mining algorithms, 
such as clustering and association rule to recommend courses in Moodle 
e-learning. Although it is not a solution for MOOC, the work emphasizes that 
this combination can be applied in MOOCs. The results show that the Simple 
K-means clustering and Apriori association rule algorithm would be the most 
suitable for this recommendation scenario since it is not necessary to have a 
data preparation stage and the number of association rules is bigger.

Another proposal that may be considered as related to our study is 
MOOCLink [12]. This system is not a recommendation system, but rather an 
aggregator, since it integrates different MOOCs courses’ providers, adding 
courses to facilitate their search and comparison. To make the clustering 
possible, it uses LOD. Although MOOCLink does not apply recommendation, 
LOD has already been used to support the recommendation in other works 
with good results. For example, Di Noia et al. [13] suggest a content-based 
recommendation system with linked dataset exploration of open data in 
the scenario of movies, such as DBpedia. The work also contributes to the 
identification of similarity in these bases and it allows item recommendations 
with the trained system.

In the CF class recommendation system, we have identified the Heitmann 
and Hayes [15] proposal that uses LOD to increase what the system knows 
about new users or new items. It helps to solve the cold-start problem, which 
is very common in open recommendation systems, happening when the system 
has little information about a new user, a new item, or when it did not have 
many interactions.

Some components proposed in MOOCLink [12] and in [15] were adapted 
for application in our proposal, such as the application of an integration 
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service using the Karma Web to integrate data from several sources into the 
RDF (characteristic of LOD), as described in detail in the Section 5.

The last aspect identified is Architecture. It refers to the implementation 
status of the system, which involves details such as whether the proposal 
is already available to be used (or not) until part of the process has been 
developed. It also includes information on allocation and access, i.e., 
how the contribution is materialized (e.g., web-based tool, web-based 
architecture, desktop application) [22]. Among the analyzed works, only the 
OERecommender project [29] differs in this aspect, being a web widget that 
allows the collection on information of the user when added to the browser, 
making searches and showing the recommendations of OER according to 
the algorithm. The other works—MOOCLink [12], MOOC-Rec [8], and 
MOOCRec.com [20]—present solutions based on the web, and a user can 
access them through a URLs.

Based on information from related work and according to the 
characteristics of the recommendation systems. Table 1 summarizes the most 
related systems, namely: MOOCLink [12], MOOCRec.Com [20], MOOC-
Rec [8], and OERecommender [29]. Meanwhile, our proposed Web-Based 
Recommendation System is referenced with the acronym ‘‘WBRS” in the last 
column.

Regarding the status of each project, [29] and [8] have not implemented 
their solution yet. [20] have implemented their solution and it is available for 
use. MOOCLink [12] is finished but it is not deployed on any web server for 
use (i.e., it is not running).

As observed in Table 1, our work differs from others in some features. 
The effective contribution of our work is the creation of a recommendation 
system applied in the context of MOOCs. In this context, it is possible to 
include scientific contributions involving the recommendation process and the 
development of the work, such as part of the courses’ recommendation in 
addition to whole courses, delivering the users’ packages of courses according 
to their knowledge gap.

One of the contributions regarding the recommendation technique is the 
use of an approach called “hybrid recommendation”, which is a combination 
of CF and content-based filtering. This approach makes use of a Machine 
Learning algorithm, more specifically Topic Modeling, which group course 
topics to identify similarities between them and optimize the recommendation 
process, as presented in the Section 6.

In addition, the application of LOD to the collected background data 
in our proposal allows the construction of a recommendation with more 
advantages regarding the use of crawler or CAM (Contextualized Attention 
Metadata). Another important differential of this work is the definition and 
analysis of MOOCs within a larger context, called MOOCs ecosystems 
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conceptualized from the SECO concept that contributes to the information 
reuse and integration based on actors’ interactions in the ecosystems. We also 
consider the fact that all the related projects have a multi-provider approach, 
but only our proposal presents a recommendation for parts of courses (as well 
as complete modules or courses).

3. MOOCs Ecosystems

The SECO perspective for the MOOCs platforms has still been little explored. 
The discussions pointed out in [26] or in [9] highlight the difficulties in 

Table 1: Comparison of related work and the web-based recommendation system (WBRS) architecture 
proposed in our research (RS = the concept of recommendation systems).
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identifying the specific functionalities of MOOCs as a barrier to understanding 
the MOOCs learning community ecosystem. It happens because the research 
on MOOC still deals with the general characteristics of virtual learning 
community ecosystems. Thus, the actors’ roles and their relationships need 
to be defined at different stages of provider utilization. The SECO concept 
also considers that these relationships are supported by the technological 
platform of the MOOCs (or technological market of MOOCs). This business 
model functions as a unit and operates through the exchange of information, 
resources, and artifacts [16]. 

This broader vision of MOOCs providers brings several benefits to those 
involved in addition to sustainable development. We can be mention that 
MOOCs: (a) facilitate innovation, knowledge sharing, and software evolution; 
(b) strengthen cooperation in its multiple and independent entities; (c) increase 
the attractiveness of the platform, bringing new players to the ecosystem;  
and (d) assists in choosing the best platform, through the identification and 
analysis of software architecture, mapping product design, business tasks, and 
risks [4].

To define these actors’ roles and their relationships, it is necessary 
to understand the activities and responsibilities of each role in the SECO 
concept. To do so, different concepts about the actors’ roles in ecosystems 
are investigated in [18]. These categorizations are adapted and presented in 
Table 2.

Table 2: Description of SECO actors’ roles. Source: (Lima et al. 2016).
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Promotes SECO and its products, and can propose improvements; similar to 
Influencer, but external to SECO, having no formal bond with Keystone.

End-user Product’s final user, but differs from Customer for not hiring Keystone 
service.

External
Partner

Contributes to the SECO well-being through attitudes, such as the promotion 
of SECO and its products, also proposing improvements.
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For the categorization of roles in MOOCs ecosystems, it is necessary to 
observe the platforms’ basic structure and their actors. Since MOOC is a novel 
technology, there is still no consensus regarding the groups of actors involved. 
In [5], the most prominent groups of actors are teachers, students, private 
actors (e.g., advertisers or employers), and higher education institutions. In 
[11], the authors describe two more actors (course designers and manager), 
refer to teachers as tutors, and refer to students as learners, i.e., they do not 
consider only the actors with more participation in the platforms. In [26], there 
is also another change from that one addressed in [11]: the course designers 
actor is mentioned of “those who make MOOC”, i.e., in a more generic way.

For the conceptualization of the MOOCs ecosystems, it is possible to 
correlate these groups with the predefined SECO roles, considering that each 
group on the platforms performs some functions and interacting with certain 
groups, where both can exchange information. This correlation is presented in 
Table 3, which also contemplates three different stages [26], where each role 
can be played by different roles in each of the stages:
 • In the first stage, students use an email and some personal information 

to register with the MOOC provider. At that point, they create a new 
account that can be used to log in for the first time and finally sign up for 
new courses. Although they can acquire a new product from the platform 
(courses), they still lack enough knowledge for any kind of interaction 
with other MOOC users. This makes these students play the role of 
consumers [26];

 • In the second stage, student interactions happen in a separate way, i.e., 
part of it within the platform, in the existing forums and discussions; and 
another part outside the platform, seeking knowledge from other sources, 
downloading materials from the internet, editing and producing the own 
material based on internet content, and sharing this kind of knowledge 
with other users in the learning network. This knowledge can be any 
personal resource, process or personal learning notes, and they are shared 
in forums, wikis, email or any other means of interaction. As such channels 
disseminate knowledge of MOOCs ecosystems based on inserting an 
external knowledge based on personal perceptions in the network,  students 
can be considered as decomposers [26], which in a perspective of SECO 
is equivalent to a dominator, since these are responsible for extracting the 
maximum value from the ecosystem, destroying it  [28];

 • In the third and last stage, the knowledge absorbed by the students allows 
them to assist new students in the learning process, collaborating with 
the community as they are already able to deal with doubts and learning 
difficulties, as well as usability issues. With these characteristics, in this 
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stage, students increase the community’s strength and can be considered 
as suppliers [26].

Knowledge exchange based on existing interactions can be mapped from 
the identified roles. In this context, it is possible to emphasize the difference 
among the concepts of data, information, and knowledge. Data are simple 
facts that become information, if organized into an understandable structure. 
Meanwhile, the information can become knowledge when, from a cognitive 
processing/validation, can fit in a context as a result of this process, besides 
being able to make predictions [10].

In MOOCs ecosystems, the knowledge exchange happens based on the 
connections between the mapped roles, where information is exchanged in the 
means provided by the MOOC provider itself, such as forums, chats, wiki, 
and others. Even logs are a form of information exchange in these ecosystems 
[26]. Table 4 consolidates technical information from the providers themselves 
and some works in the literature that explore the main interactions between 
actors in MOOCs ecosystems, allowing to better visualize the importance of 
each connection among providers.

Each interaction presented in the first column of Table 4 can be represented 
in the graph in Figure 1, where a node represents an actor and edges are the 
interactions between them. The only node that is connected to all other actors 
is the “MOOC Provider” identified in the lower right corner of Figure 1. 
Another detail that can be observed in the graph is the direction of the edges 
that is equivalent to the direction of the arrows of the interactions identified 
in Table 4.

As the course is absorbed by providers (who store, process and show this 
information), there is a dependency between the student and the provider, 

Table 3: Relations between SECO’s roles and MOOCs ecosystems’ roles.

1st Stage 2nd Stage 3rd Stage

Keystone Higher Education Institutions

Dominator – Students Students

Customer Students

Competitor Advertisers

Supplier Teachers, Course 
Designers

Teachers, Course 
Designers

Teachers, Course 
Designers, Students

Vendor MOOCs Providers (ISV)

Developer Course Designers

3rd-party Developers – – –

End-user – – –

External Partner Employers
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since whenever he/she interacts with the platform, the MOOC provider will 
make such information available. Moreover, given the large amount of data 
that is exchanged, the Student → MOOCs Providers interaction is the one 
that most generates knowledge for the ecosystem. This extracted knowledge 
comes to the student in text format, video, games, audio, animations, blog, chat, 
forum, e-mail, or even virtual communities.

Table 4: Interaction between different groups of stakeholders.

Interaction This Interaction Exists. . .

Students → MOOCs 
Providers

to help students follow courses taught by teachers.

Students → Higher 
Education Institutions

to help students improve their employability, looking for information 
on the course quality.

Students ↔ Employers because students may exercise their abilities with employers from the 
ecosystem who, in turn, have access, via a MOOC platform, to a large 
pool of students as well as to detailed data about their skills.

Students → Advertisers if the advertiser’s presence and their payments allow platforms to 
offer courses to students for free.

Students → Students because students might be influenced; as a result, student learning 
outcomes depend on interactions with fellow students.

Teachers → MOOCs 
Providers

because teachers seek to disseminate their teaching materials and 
experiment with new pedagogies.

Teachers → Higher 
Education Institutions

because even if teachers can offer a course in their own name, they 
usually still depend on their respective university.

Teachers → Employers because teachers value employers’ presence indirectly if they 
contribute to attracting more students.

Teachers ↔ Students because they can interact with each other via the MOOCs’ platform, 
by social media, or by telephone, meeting and answering activities in 
real life. Currently, students have organized offline meetings.

Higher Education 
Institutions → MOOCs 
Providers

because institutions can decide to invest money and time in a MOOC 
platform.

Higher Education 
Institutions → Teachers

since institutions pay teachers and encourage them via other non-
monetary rewards.

Higher Education 
Institutions → Employers

because institutions only value the participation of private actors to 
the platform indirectly.

Employers → MOOCs 
Providers

because employers see MOOCs as a flexible and cheap tool to train 
their staff.

Advertisers → MOOCs 
Providers

since advertisers are ready to pay before having access to the 
platforms’ visitors, as well as information about them.

Course Designers → 
MOOCs Providers

because courses are designed and published in the MOOCs providers’ 
platforms.
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However, in addition to the extraction of knowledge from a provider, a 
student can also provide knowledge. Some actions, such as assisting other 
users in the forums, submitting a response to a proposed activity, attending 
classes in each course or even signing up to the system can generate knowledge 
for other actors. In this context, providers are responsible for storing such 
information in databases and making it available to other actors, such as higher 
education institutions or teachers in the processes of student assessment and 
querying (explicit knowledge), or for management, statistical data extraction 
and decision making about courses’ pedagogical plans.

4. MOOCs Data Extraction

In order to define a recommendation architecture to support multiple providers, 
it is necessary to map the level of data openness, as well as the possibilities for 
obtaining such data. To do so, this section maps data from the most common 
providers based on the technical literature, as shown in Table 5.

In order to choose which provider could be used in the referral system 
based on the data openness, it was identified that only the edX provider API 
does not have a totally open availability of the data to use, since it requires an 
OAuth authentication, as described in [12]. Meanwhile, the other providers 
(Coursera, Udacity, Khan Academy, and OCW) hold free access and were 
selected to the recommendation system.

Other information that can be considered in Table 5 is the type of 
information that can be extracted from each server and the uniqueness of data 
format. All APIs allow the extraction of data in JSON format, which makes 
it easier to integrate with the recommendation system, whose architecture is 
proposed in the next section.

Fig. 1: Interactions in the network of actors within the ecosystem.
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5. Proposed Architecture

In this section, we address a recommendation system architecture and its 
stages, from the providers presented in the Section 4. To build a collaborative 
and open recommendation system, we opted to make use of Linked Data 
from the data integration approach of several MOOCs providers exposed in 
[12]. The use of this integration technique is optimized in our work. Another 
approach is the modeling and labeling of topics, detailed in the 6, which 
explore techniques that can improve data representation and facilitate the 
identification of courses’ central topics. The architecture model with these 
elements is presented in Figure 2.

The most benefited actor in the recommendation process presented in this 
chapter is the student, since courses and part of courses are recommended 
to them. The impact of a well-made recommendation is directly connected 
to better satisfy these students with the recommended content, which may 
influence them not to leave the courses. Consequently, it has the effect of 

Table 5: Information about provider extractions.

How to Obtain Data? It is Possible to Extract. . . Data Format

C
ou

rs
er

a

Coursera API all of Coursera’s courses, instructors, and 
partnering universities JSON

ed
X

Crawler limited information Several

edX API
Courses API, Data Analytics API, Discussion 
API, Enrollment API, Grades API, User API, 
Discovery API

JSON

RSS Feed a list of edX course list XML

U
da

ci
ty Crawler limited information Several

Udacity API course catalog information and nanodegree 
courses JSON

K
ha

n 
A

ca
de

m
y

Khan API

“topic tree” which gives the entire hierarchy of 
Khan  Academy’s course offerings. It can also 
obtain the list of all badges, badge categories, 
details of a particular course, etc. JSON

O
C

W

OCW API
indexes of all these courses (e.g., links, hash, 
provider, language, tags, author, title, description, 
published, indexed, modified, categories)

JSON

Excel Dump
all the courses (e.g., links, hash, provider, 
language, tags, author, title, description, 
published, indexed, modified, categories)

Excel
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reducing dropout rates in providers and the student’s existing knowledge gap. 
In general, these benefits positively affect other roles.

It should also be observed that the approach of an open recommendation 
system (i.e., open data supporting the recommendation process) was adopted 
precisely to consider the multiple data sources of the MOOCs providers 
chosen. One of the benefits of using a variety of sources is to alleviate common 

Fig. 2: Proposed architecture model.
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problems in recommendation processes, such as cold start (i.e., the problem 
of recommending a course when no data is available about the item or user) 
in approaches that use Collaborative Filtering (CF). The enrichment of 
recommendations and the reduction of low user rating problem [15] can also 
be cited as benefits.

The flow of the recommendation process is determined by the direction 
of the arrows in Figure 2. Dashed lines represent actions that are performed 
outside the main stream. The entire process can be organized into some layers 
and steps:
 • A user submits a refined and textual search through a series of search  

options in the Web-Based Recommender System. To make the 
recommendation, the system searches the Knowledge Base, selecting 
specific data from a student (e.g., curricular history), general data of the 
actors related to that student in the ecosystem (e.g., information from the 
universities where the student took the courses), and other information 
inferred by the recommendation system (e.g., user’s competencies). 
This information is part of the Input Data, i.e., information that helps 
in the process of recommending a given user and which represents the 
knowledge acquired from interactions in the ecosystem. As the student is 
the main beneficiary of the recommendation process, the step illustrated in 
Input Data box in Figure 2, contemplates the actors who have interactions 
with students (i.e., just course designer is not included);

 • Next, the SPARQL Endpoint is initiated. This semantic web technology 
allows the Resource Description Framework (RDF) Data model to be 
searched in different schemas;

 • Heitmann and Hayes [15] introduce some details on how to integrate 
Linked Open Database (LOD) into recommenders. Although they have 
applied in a different scenario, the components used can be pointed to 
integrate the data in our Knowledge Base. Two components are defined: the 
data interface for capturing RDF data, using the HTTP protocol to access 
the URIs; and the integration service to match the representation of data 
from different sources. These procedures are executed in our architecture 
by an integration tool called Karma Web [27], which allows these 
procedures to be organized easily and quickly. The integration process 
works by informing which MOOC API is used to the Karma Web. This 
process is possible since the data from the chosen MOOCs providers are 
in the JSON hierarchical format. Quickly and intuitively, data is converted 
from raw JSON to RDF data. The choice of providers, choice motivation 
and analysis of what can be extracted are presented in the Section  4;

 • With data in RDF, the next step in the architecture process is the topic 
modeling method that integrates that RDF data representing the knowledge 
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base with the background data and transform it into a user-item matrix, 
where the user column contains information from the knowledge base and 
the background data represents the item. These procedures are detailed in 
the Section 6. This step also introduces techniques for labeling topics and 
arranging these topics in the user-item  matrix;

 • Finally, the user-item matrix is read by the recommendation engine 
procedures, which also is supported by the knowledge base data for 
process enrichment. First, Knowledge Gaps Identification collects the 
user’s skills as well as desired qualities by defining what the system calls 
a knowledge gap. The system then uses the matrix and course information 
to identify which courses or parts of courses may be enough to fill the 
student gap. The stage responsible for this is the Study Plan Identification. 
Then, the last step is to use these courses and identified parts, ranking 
them according to a criterion of relevance in Recommendation Algorithm, 
so just send them back to the user.

In addition to the benefits to students in their choice processes, the 
proposed architecture presents features capable of reaching the four stages of 
knowledge reuse defined in [21]: (a) capturing or documenting knowledge;  
(b) packaging knowledge for reuse; (c) distributing or disseminating knowledge 
(providing people with access to it; and (d) reusing knowledge.

As shown in Table 4, MOOCs ecosystems focus on a shared management 
in order to strengthen stakeholder collaborations, considering that software 
asset management is decentralized in a SECO. We can cite as an example 
the fact that in Coursera any user of the community can create a course and 
this course can be made available on the platform at the same time. Higher 
education institutions also register development partnerships with suppliers. 
This means that the ecosystem perspective allows stakeholders to participate 
in the management of this reusable knowledge by consuming, providing or in 
any other activity explained in Table 3.

These tools consolidate inputs that benefit diverse ecosystem actors with 
reusable knowledge, as well as grouped, stored, and user feedback. Moreover, 
an advantage could be automatically identifying new course demands, 
consequently affecting contributions to partnerships and alliances, if a common 
interest demand is identified. Further advantages include enhancements to the 
existing content or even software improvements indicated by providers.

6. Modeling and Labeling Topics

To fill in the user-item matrix, the technique of topic modeling is used  
to identify which are the central themes linked to the user and to the item  
of this matrix, as well as to facilitate the representation of these themes for  
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use in the recommendation engine. The most common topic modeling 
processes currently work as follows: from a collection of documents  
D = {d1,d2, . . . , d|c|} and their respective fixed vocabulary of words  
V = {w1,w2, . . . , w|v|}, they distribute all of these words (represented by terms 
w) into groups (represented by topics θ) with their probability p (w| θ ), which 
gets higher each time that term is more related to a topic. Then, through the 
probability distribution p (θ |d) technique, it is verified the probability of each 
document being linked to each topic. Thus, an association between topics and 
documents is created [25].

However, these topics are not always easy to understand. This can cause 
a loss in the part of the topic modeling goal regarding the identification of 
documents’ central theme. This can be due to a lack of understanding of 
the enumerated terms, either because the lack of domain knowledge or the 
difficulties in choosing a single theme among many words. To address such 
problem, there are topic labeling methods that seek to select a word (called 
label) to express the theme or topic area [19].

Nolasco and Oliveira [24] describe some known techniques for applying 
topic modeling and labeling in practice. In addition, it is analyzed the 
possibilities of its application and where it is most used. Tables 6, 7 and 8 
give a brief summary of the techniques addressed in [24] and their respective 
definitions.

Although LDA is still one of the most used techniques for topic modeling, 
the state-of-the-art presents methods that use LDA as a base but modify basic 
assumptions to better represent data according to the application domain 
and its particularities. In order to insert a practical and better-organized 
representation for the recommendation system proposed in this chapter, we 
seek to select the best techniques of topic modeling from those presented 
in Table 6. Moreover, the most appropriate techniques of topic labeling are 
selected from the presented in Tables 7 and 8.

We must consider techniques that best suit the fact that the recommendation 
system proposed here uses a massive amount of data and that this mass of data 
is constantly modified, since courses are often created and/or excluded in the 
MOOCs providers. The representation of topics and labels across different 
domains of MOOCs courses would become less practical in a manual way. To 
meet these needs, specific techniques have been chosen which are presented in 
Figure 3. The technique chosen in block 2 (Topic Labelling) is justified by the 
fact that text-based approaches present better results with such technique than 
with other existing ones [23].

In addition, the combined use of these techniques addresses the needs 
discussed above, ensuring a better labeling process. Block 1 (Topic Modelling) 
in Figure 3 also presents an optimized technique. The LDA [6], which 
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traditionally requires the number of topics to be extracted as a parameter to be 
inserted, is combined with the stability analysis approach described in [14], 
which makes it possible to automatically infer the topics value for a collection 
of documents.

Once the techniques have been chosen, it is necessary to define how each 
modeling and labeling stage is performed in the process of generating the 
user-item matrix. As the proposal of this system is also to recommend part 
of courses in MOOCs, in addition to whole courses in these providers, the 
matrix item is a vector with those modules and parts of the courses of all the 
collected providers (as presented in the Background Data in Figure 2). This 
vector is organized and divided into topics. Each topic represents a theme or 
learning area. Therefore, for modeling these topics, each course module is a 
document with specific content.

The “Topic Modeling” (box 1.1 in Figure 3) step is responsible for 
applying the LDA algorithm to process the terms of these document and, 
through the distribution of groups, performs the separation of these terms 
according to the themes. The default LDA method requires the desired 
number of topics to be entered as a parameter. Since the number of themes in 
MOOCs environments is large and considering that new themes may emerge 
as new courses emerge, the automatic method to number of topics [14] is 
integrated in conjunction with the LDA to automatically infer the number of 
topics based on the stability of words on top of the multinomial distribution 
of each topic. The outputs of this modeling process are the topics with their 

Table 6: The most well-known techniques for topic modeling.

1. Topic Modeling Description

Latent Semantic 
Analysis (LSA)

It uses linear algebra with SVD (Singular value decomposition) 
to decompose a corpus into its subjects. LSA is used to categorize 
documents, search for documents by keywords, and generalize results 
through similar documents in other languages.

Latent Dirichlet 
Allocation (LDA)

Distribution of groups for each term of a textual document and a 
distribution of groups for each document. Thus, one can group the 
documents according to the probabilities associated with each group.

Extended Topic Models They apply the LDA method in order to expand the basic assumptions 
of the method, increasing the possibilities of application and improving 
results.

1.1 Implementation   
libraries

Description

lda-c C Language

Mallet Java Language

Gensim Python Language
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respective lists of terms with a greater probability related to the topic. As LDA 
uses all the vocabulary for the probability distribution, each list contains all 
the vocabulary with the respective probabilities that vary according to the 
proximity of the relationship between term and topic. The Implementation 
Library chosen in this system was Gensim, from the Python language (box 1.1 
in Figure 3).

By showing the terms best placed in the probability list of each topic, it is 
difficult and time-consuming to define a topic label manually. Therefore, the 
Topic Labeling technique uses the topic list itself as input to the process. At the 
same time, it uses a statistical method that saves time in the labeling process 
and allows data scalability. This method, which corresponds to the “Selection 
of Candidates” (box 2.1 in Figure 3), is characterized by using only a sample 

Table 7: The most well-known techniques for topic  labeling.

2. Topic Labeling Description

Semi-
supervised
Approach

The combined 
use of Ranking

Automatically generated labels based on expert collection 
training.

Active
Learning

The system extracts terms to represent the area in a simple 
way and the experts give feedback until the system sets and 
the term is satisfactory to be labeled.

Automatic 
Approach

Own list Apply a simple criterion in the list of terms (e.g., the 10 most 
relevant).

Statistic over all the 
words

The system applies some statistics from all the words in the 
collection.

Combination of List 
+ Statistical Process

They apply a statistic but considers the list of terms already 
organized in topics.

2.1 Selection of Candidates

A sample of the most relevant 
documents

Through the associated probability, the system discovers 
which are the most relevant documents, not having to use all 
the documents for the process.

All content in the collection The whole set of documents is considered.

Content + external databases In addition to the set of documents, they can use external 
databases, such as Wikipedia and Ontology.

2.1.1 Text Extraction

Textual Terms are extracted from the text body.

Keywords Through classifications, it aims to extract terms defined by the 
author to describe the whole set of documents.

Natural Language Processing 
(NLP) extraction

Extraction of nominal phrases using PLN.

Keyword extractor Build an extractor to select keywords.

Based on fast keyword extraction 
algorithm

Select all the words that are between stop words and phrase 
delimiters (such as a comma).
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of more significant documents in the collection, not considering all the terms 
in the lists. This is possible because there is an associated probability (i.e., the 
probability of the words in the text of a document being associated to each 
topic) in the relationship between Topics and Documents. Thus, the stronger 
the association of a document to a topic, the more relevant that document is to 
that topic. To select the list of candidate labels for a topic, the technique chosen 
in this chapter uses only the relevant TOP D documents of that topic according 
to the associated probability. D indicates the number of documents, which is 
freely estimated in the application.

Table 8: The most well-known techniques for topic labeling (ranking and label selection).

2.2 Ranking

Term Frequency (tf) Assigns points to terms based on relevance, i.e., how often these 
terms appear.

Term Frequency-Inverse 
Document Frequency (tf-idf)

In addition to the frequency of tf, they apply a method that can 
prevent stop words from receiving high scores.

Degree/Term Frequency 
(deg/tf)

Consider how many times the term appears isolated but also 
considers how many times it appears in a term.

Modified Label Degree 
(mdeg)

It considers the number of occurrences of a candidate label in the 
list of labels but also considers how often that label appears in 
other candidates by assigning different weights in the formula.

2.3 Label Selection

Individual Selection Select only the first label in the list.

Inter-topic Selection Applied when the same label appears in two topics.

Intra-topic Selection Applied to select the best sequence of labels within the same topic, 
aiming to facilitate the understanding.

Fig. 3: Techniques of topic modeling and labeling chosen.
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With the documents properly selected, the next step is to perform the 
“Text Extraction” (box 2.1.1 in Figure 3), which consists of implementing 
the Fast Keyword Extraction algorithm. This algorithm has as input a list of 
stop words and phrase delimiters (such as commas). By having the documents 
iterated, the algorithm checks all the words that are between such stop words 
and delimiters, considering this text as primitive labels, i.e., they are not 
candidates yet. This is because there is still a second check that is not in fast 
keyword extraction. To select the most relevant words of TOP D documents, 
the text extraction steps check if these primitive labels are contained in the 
TOP W terms of topic θ. If they are, enter the list; otherwise, check the next 
ones until it finds one that is contained. The variable W corresponds to the 
number of terms and, similarly to D, this value is estimated freely in the 
application.

The next step is the “Ranking” (box 2.2 in Figure 3), where the technique 
TF (Term Frequency) is applied. The objective is to assign points to each 
candidate according to the relevance that this term has. In this case, the 
relevance is defined by that term’s frequency of occurrences. Since the stop 
words have already been deleted in the previous step, there is no need to apply 
IDF, i.e., a technique that is usually worked together with TF to exclude stop 
words.

The last step is the “Selection of Labels” (box 2.3 in Figure 3). As the 
candidates were ranked in the previous step, the options already appear in 
order of relevance, which means that we have a term that represents the topic 
well by selecting the first one from the list; so, it can be considered a label. 
This is also possible because we want to select an individual label. In the 
case of multiple label selection, some adaptations would have to be made and 
another technique should be adopted.

Therefore, the results of this last process are the topics θ (each of them 
with its respective list of terms R) and a label l for each topic. These topics 
represent the item in the user-item matrix, as shown in Table 9. For better 
reading by the recommendation system algorithm, this list is transformed 
into a vector notation. Then, we have a vector of discipline syllabus (θi) 
and their respective areas (li). To identify the user of the matrix, we must 
construct another vector. This vector represents what each user knows about 
each of the identified areas. To do so, we need a new collection of documents  
D’ = {x1, x2, . . . , x|y|}, where each document xi is represented by a “curriculum”, 
i.e., a document from the Lattes1 curriculum, a document from the LinkedIn2 

curriculum, or even the student completed courses information in the selected 

1 An integrated system maintained by the Brazilian government to manage information about 
researchers. Available in: http://lattes.cnpq.br/.

2 Available in: https://www.linkedin.com/.

https://www.linkedin.com
http://lattes.cnpq.br
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providers. This information is contained in the Knowledge Base system (as 
shown in Figure 2). Thus, the LDA method is applied again, but this time only 
with a distribution of groups for each document in that collection.

Considering the existing topics in the matrix, it is not necessary to apply 
the method for inference in the number of the topics again. The distribution 
of groups then generates the relationship between documents (curriculum)  
x and topics (of elements) θ with their respective associated probabilities  
p (θ i|x1 ). The more associated the words of a document with the terms of a topic, 
the greater the associated probability, and consequently the more relevant that 
document is for the topic in question. In this context, the system distributes all 
documents in the user of the topic area with the associated probability. This 
distribution is also be given in vector format. Since the number of curriculums 
is much smaller than the number of discipline syllabus, several areas have an 
associated curriculum in the matrix with the associated probability equal zero. 
The notation for the complete matrix is shown in Table 9.

With the item vectors, user vectors, and label for distribution, the 
recommendation system has more organized data and ranked elements to 
perform the Knowledge Gap Identification, Study Plan Identification, and 
then the recommendation of the best course module options to students. The 
prediction techniques of the recommendation system allowed, for example, 
filling in the user column in Table 9 that has zero or low associated probability, 
i.e., where the student does not have curricular experience with inferences. 
The system understands that the higher the degree of inference, the greater the 
student’s interest in this content, and it is possible to recommend the elements 
of that area in an organized way.

7. Example of Use

This section explores an example of how the system would perform in a 
situation where a user wants to know the best course/module to be done, 
given a preview interest in a knowledge area. This example of use helps to 
understand the idea of our solution and provide a preliminary evaluation of 
how the recommendation system works.

In the present example, the student with a dummy name (Tom) accesses the 
recommendation system after having completed the MOOC course “Intro to 

Table 9: User-item matrix notation.

Item User

Topic–Label Terms (Discipline 
Syllabus Vector)

Vector of Documents (Curriculums)–
Associated Probability

θi – li Ri x1 – p (θi|x1), ..., xn – p (θi|xn)
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HTML/CSS: Making web pages”3 from the Khan Academy provider. During 
the course, Tom realized that the classes contained some Structured Query 
Language (SQL) commands, but that the course did not address any further 
explanation on the subject. When doing some searches with the word “SQL 
web” in this provider, Tom visualized that there are several courses addressing 
the subject, but that in his perception none would be appropriate according 
to his interest. Therefore, Tom’s intention in accessing the recommendation 
system is to receive recommendations on what would be the best course/
module that could fill this knowledge gap.

Upon accessing the system, Tom searched for the words “SQL web”, just 
as he had watched on the Khan Academy platform. The system allows Tom to 
select some search filters, that were: Start Soon (for availability), Introductory 
(in level), English (as the language), and Free (for value). The moment Tom 
submits his search, the first process of the recommendation system is to retrieve 
the input data from the user to the knowledge base. The key information 
retrieved at this stage is the student curriculum information, such as course 
history from other providers, Lattes curriculum, and LinkedIn curriculum. 
Then, SPARQL groups all the course information and its menus contained in 
the Background Data layer. Since this layer contains information from four 
different providers, including the Khan Academy, Tom’s previous search 
results are also grouped together for data integration. Through the Apache Jena 
Fuseki Server, the raw data is transformed into an acceptable RDF, creating 
and maintaining the SPARQL endpoint and then executing SPARQL queries 
according to the search submitted by Tom.

To populate the user-item matrix, the Topic Modeling step organizes the 
search results of SPARQL in the item column, as shown in Table 10. Then 
the Topic Labeling step generates a single label for each topic, filling the first 
column of the matrix, as shown in Table 10. Then, information previously 
retrieved by the Knowledge Base is processed only by the Topic Modeling 
step, which groups Tom’s curriculums according to the course topics grouped 
in the item. This step populates the user column of the matrix, as shown in the 
last column of Table 10. With the matrix filled in, the information can be sent 
to the recommendation engine, which in turn makes predictions based on user 
columns where the user has low or zero associated probabilities, being able 
to predict which course or parts of courses would match the student’s needs.

From this functionality not just recommending complete courses, it 
was possible to recommend the book “SQL for Web Nerds”4 which is part 

3 https://pt.khanacademy.org/computing/computer-programming/html-css.
4 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-171-software-

engineering-for-web-applications-fall-2003/readings/.

https://ocw.mit.edu/courses
https://ocw.mit.edu/courses
https://pt.khanacademy.org
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of the “Software Engineering for Web Applications” course contained in the  
OCW provider. Considering that this book was the best-rated content and that 
Tom has not accessed this material before, the system instantly retrieves the 
result.

The entire recommendation process is saved in the knowledge base in 
order to improve the recommendation process for future recommendations. 
The recommendation is considered successful if Tom uses the recommendation 
system next time and the module that was recommended to him appears as 
a complete module, which indicates that he used the content. If it has not 
been completed, the engine considers this information to prevent Tom from 
receiving the same unwanted recommendation again.

The functioning representation of the recommendation system used in 
the example of use demonstrates the usability, functionality, and relevance 
of the proposed approach. The system also gains scalability by using topic 
modeling and retrieval with open source data. We believe that it can be 
implemented in a real MOOC scenario, where it allows reaching the customized 
recommendations for each student according to his/her motivations and needs. 
In addition, it would reinforce the metric effectiveness as a way of identifying 
a study plan with part of courses from multiple providers.

8. Final Remarks

The use of recommendation systems has been applied with different 
objectives and with algorithms and processes increasingly optimized as 
several challenges arise in different domains. This work addresses the use of 
Linked Open Data and topic modeling and labeling methods to integrate data 
and create an architecture for a web-based recommendation system capable of 
recommending courses, modules or parts of courses, and relevant materials 
of students’ interests in multiple MOOCs providers. From this environment, 

Table 10: Examples for illustrating attacks.

Item User

Topic–Label Terms (Discipline Syllabus Vector) Vector of Documents 
(Curriculums)–Associated 
Probability

θ1–Database {SQL for Web Nerds, Introduction to Databases 
and Basic SQL, Advanced SQL, Accessing 
Databases using Python}

Lattes –0.89, Curricular 
History –0.75, LinkedIn –0.71

θ2–Computer 
Networks

{Introduction to Networking, The Network 
Layer, The Transport and Application Layers, 
Networking Services, connecting to the Internet, 
Troubleshooting and the Future of Networking}

LinkedIn –  0.29, Curricular 
History –0.25, Lattes –0.11
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we conceptualize the MOOCs ecosystems formed from such providers, their 
users, and other actors, describing how this approach can bring benefits to the 
learning processes, to the platform’s sustainability and to the stakeholders. A 
motivation for this conceptualization is to map roles, actions and interactions 
between users, allowing the understanding of these platforms as MOOCs and 
not only as a VLE. Considering the characteristics of the proposed architecture, 
it is possible to support knowledge reuse within the ecosystem.

We are currently implementing the proposed architecture and preparing the 
evaluation of the algorithms chosen to recommend items based on experiments 
in vitro and in vivo. The first aims at verifying the algorithm efficiency and 
effectiveness from a controlled experiment. Then the results will be compared 
with the results from related work. The second is a feasibility study to evaluate 
the solution with two groups of people who receive a series of pre-established 
tasks, where the first group performs them using the proposed solution, while 
the second group does not. For this study, we will invite students from different 
backgrounds (initial phase, final phase or already working in a specific area), 
all from a Brazilian higher education institution. At the end of the study, the 
results will be compared, and the participants will answer a questionnaire, 
providing some feedback. Finally, we will collect data from documents and 
repositories used in the study in order to analyze elements of our proposed 
solution in  details.
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Chapter 6
Towards a Computer Vision 

Based Approach for Developing 
Algorithms for Soccer  

Playing Robots
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1. Introduction

The fields of robotics and machine learning intersect in the pursuit of creating 
artificial intelligence that can dictate the behavior of a robot autonomously. 
Machine learning deals with learning a function that describes a dataset to 
make predictions and this can be utilized in robotics to have a robot be able 
to learn information about its environment and behave accordingly. While 
machine learning algorithms can be utilized by a robot to learn its environment, 
an additional algorithm is necessary to control the robot’s behavior. This 
algorithm would be based on the outputs yielded by the machine learning 
models to account for different states the robot may be faced with.

Within the past decade, there have been numerous publications exploring 
and applying various areas of machine learning. Our area of interest is 
computer vision with a focus on utilizing visual stimuli from a robot as inputs 
to a behavioral model. To address the issue of how to create an artificial 
intelligence which utilizes machine learning algorithms to drive a controller 
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algorithm, we will look at the case of soccer playing robots, more specifically 
RoboCup1 which has two teams of Nao robots playing against each other. 
Image based machine learning models will be trained to have a robot be able 
to recognize other robot players (e.g., both teammates and opponents while 
being able to differentiate between the two) and recognize the soccer ball and 
predicting the distance to the soccer ball. The machine learning models will 
yield probabilities describing what the robots see which will be the inputs 
to a Petri net model that will dictate the robot’s behavior. Both the machine 
learning models and Petri net model will be evaluated to analyze the overall 
system effectiveness. 

1.1 Related Work
Petri net (PN) models are finite state automata that can be used to graphically 
model various antecedent-consequence sequences of actions such as controllers 
or algorithms [1]. The addition of fuzzy logic or time on the transitions of a 
PN (i.e., a change in the state of the model) allows for more robust models 
to be designed. Applying fuzzy set theory to the transitions of a PN leads to 
a Fuzzy Petri net (FPN) while the addition of time to the transitions leads to 
a Timed Petri net (TdPN). The addition of either allows for robust models 
which have been showed can be applied to soccer robot algorithms as well 
as other game strategies [2, 3]. Furthermore, PN models have been used to 
model a self-navigating robot through a maze as well as model the optimal 
path a soccer playing robot should take to score a goal [4, 5].

Using PNs to model soccer playing robots is of interest due to RoboCup 
and the initiative of one day have a team of robots that can compete against 
humans. This initiative has led to many PN based algorithms designed to 
control the behavior of humanoid soccer playing robots. In [3], the different 
robots on a single team were modeled to determine how robots should move 
to be in the optimal positions to score and in [6] the optimal sequence of 
actions to complete a team based task were modeled. Similarly, [7] showed 
that teamwork based actions of soccer playing robots with a focus on passing 
can be modeled and [8] modeled soccer robot behaviors around having 
awareness of scoring opportunities.

While PNs have been used to model the behavior or robots, machine 
learning and computer vision have also been extensively used in modeling 
the actions of a robot. One major challenge of executing computer vision 
algorithms on a robot was addressed in [9] is being able to process video in 
real-time. In [9], the use of deep neural networks was discussed to be applied 

1 RoboCup Standard Platform League, http://spl.robocup.org/.

http://spl.robocup.org
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to real-time object detection by a robot and this concept was applied in [10] 
for soccer playing robots showing that object detection can be used to identify 
object necessary to score a goal in a variety of conditions, such as different 
lighting. 

1.2 Proposed Methodology
Our proposed methodology is shown in Figure 1 where we divide the task 
of creating a model for soccer playing robots into the various sections of this 
paper. The two primary objectives for the robot are to be able to recognize both 
other robots and the soccer ball as well as predict the distance to the soccer ball 
based on the image of the soccer ball. Object detection and distance prediction 
are two separate machine learning problems each requiring their own models 
to be trained. The TensorFlow object detection API will be used to train a 
model to classify objects in images seen by the robot as another robot or the 
soccer ball. Multiple linear regression and multilayer perceptron models will 
be used to predict the distance from the robot to the soccer ball based on a set 
of engineered features obtained from the image containing the soccer ball and 
this will be discussed in Section 3. Section 4 will show the methods used to 
evaluate both machine learning models.

The last element of the system is the Timed Petri net model which will be 
described in Section 5. Petri nets allow for controllers to be designed around 
antecedent-consequence based rules and time can be incorporated to make 
the state transitions more dynamic. The machine learning models trained in 
Sections 2 and 3 will yield an initial state for the PN controller based on 
what the robot sees and the PN will then determine which action the robotic 
goalkeeper should take.

Fig. 1: Block diagram showing overview of proposed methodology. The soccer playing Nao robot 
will capture images with the cameras in its head, both the soccer ball and other robots will be detected 
using object detection, and then a model to predict the distance of the two previously mentioned 
objects will be used. These results will then be used in a Petri net controller to dictate the actions of the 

Nao robot (in our case we will be focusing on the goalkeeper).
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2. Object Detection Methodology

2.1 Nao Robot Detection
The first objective for a soccer playing robot is being able to detect where other 
robots are. This requires some form of object detection where the model being 
used by the robots is trained to recognize other robots. The object detection 
API provided by TensorFlow provides the ability of training a custom model 
from provided images.2 Using a custom model is necessary because the target 
of detecting Nao robots is too niche to find other pre-trained models. One 
other possibility that may yield sufficient results is detecting the Nao robots 
as people because they are humanoid. In this case, an existing model trained 
to detect people could be used instead (e.g., a model trained on the COCO 
dataset). Both approaches require a dataset of images containing Nao robots 
and will be explored further in Section 4. 

Playing soccer is a real time operation so the objection detection system 
used needs to be able to execute quickly. Considerations from both the robot 
and model need to be made to ensure fast enough execution. From the robot, 
the resolution of the image/video will be deterministic of the time required 
to process a single frame and identify an object within it. The Nao robots 
can support a few different resolutions, but the size of 320 × 240 pixels 
was chosen because it provides a good tradeoff between image fidelity and 
processing time. The object detection model to be used is MobileNet due to 
its ability to handle real time video [11]. Additionally, the TensorFlow object 
detection API supports this model and the building of custom classifiers using 
the architecture. 

2 TensorFlow Repository, https://github.com/tensorflow/models.

Fig. 2: Two example images collected for the object detection model to detect soccer playing Nao 
robots (these two images are from the testing set and were not trained on).
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2.2 Image Dataset and Preprocessing
Regardless of the object detection method, a set of images containing Nao 
robots is required. In training a custom model, the images collected will be 
divided into a training and testing subset. The training set is what the model 
will be fit to and the testing set will be used for validation. To compare to a 
pre-trained model looking to detect humans, the same testing set can be used 
for validation to compare the performance of the two models. 

In total, 100 images of Nao robots were collected to make up the dataset 
of which 80% was assigned to the training set and the other 20% to the testing 
set. The TensorFlow object detection API while using the MobileNet model 
outputs boxes around the object detected, so this requires the training data 
to be set up in this manner. This required the images to be hand labeled with 
boxes around the object according to the API’s documentation. 

obtained from the image containing the soccer ball and this will be discussed in Section III. Section IV will show the methods used to 
evaluate both machine learning models. 

The last element of the system is the Timed Petri net model which will be described in Section V. Petri nets allow for controllers to 
be designed around antecedent-consequence based rules and time can be incorporated to make the state transitions more dynamic. The 
machine learning models trained in Sections II and III will yield an initial state the for the PN controller based on what the robot sees 
and the PN will then determine which action the robotic goalkeeper should take. 

II. OBJECT DETECTION METHODOLOGY 
A. Nao Robot Detection 

The first objective for a soccer playing robot is being able to detect where other robots are. This requires some form of object 
detection where the model being used by the robots is trained to recognize other robots. The object detection API provided by 
TensorFlow provides the ability of training a custom model from provided images2. Using a custom model is necessary because the 
target of detecting Nao robots is too niche to find other pre-trained models. One other possibility that may yield sufficient results is 
detecting the Nao robots as people because they are humanoid. In this case, an existing model trained to detect people could be used 
instead (e.g., a model trained on the COCO dataset). Both approaches require a dataset of images containing Nao robots and will be 
explored further in Section IV.  

Playing soccer is a real time operation so the objection detection system used needs to be able to execute quickly. Considerations 
from both the robot and model need to be made to ensure fast enough execution. From the robot, the resolution of the image/video will 
be deterministic of the time required to process a single frame and identify an object within it. The Nao robots can support a few 
different resolutions, but the size of 320×240 pixels was chosen because it provides a good tradeoff between image fidelity and 
processing time. The object detection model to be used is MobileNet due to its ability to handle real time video [11]. Additionally, the 
TensorFlow object detection API supports this model and the building of custom classifiers using the architecture.   
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Fig. 3. Two images of the soccer ball collected at various distances from the Nao robot for the purpose of distance prediction. 
 

  
(a) (b) 

Fig. 4. Two images of a Nao robot collected at various distances for the purpose of distance prediction. 

                                                           
2 TensorFlow Repository, https://github.com/tensorflow/models 

 (a)    (b)

Fig. 3: Two images of the soccer ball collected at various distances from the Nao robot for the purpose 
of distance prediction.

Fig. 4: Two images of a Nao robot collected at various distances for the purpose of distance prediction.

obtained from the image containing the soccer ball and this will be discussed in Section III. Section IV will show the methods used to 
evaluate both machine learning models. 

The last element of the system is the Timed Petri net model which will be described in Section V. Petri nets allow for controllers to 
be designed around antecedent-consequence based rules and time can be incorporated to make the state transitions more dynamic. The 
machine learning models trained in Sections II and III will yield an initial state the for the PN controller based on what the robot sees 
and the PN will then determine which action the robotic goalkeeper should take. 

II. OBJECT DETECTION METHODOLOGY 
A. Nao Robot Detection 

The first objective for a soccer playing robot is being able to detect where other robots are. This requires some form of object 
detection where the model being used by the robots is trained to recognize other robots. The object detection API provided by 
TensorFlow provides the ability of training a custom model from provided images2. Using a custom model is necessary because the 
target of detecting Nao robots is too niche to find other pre-trained models. One other possibility that may yield sufficient results is 
detecting the Nao robots as people because they are humanoid. In this case, an existing model trained to detect people could be used 
instead (e.g., a model trained on the COCO dataset). Both approaches require a dataset of images containing Nao robots and will be 
explored further in Section IV.  

Playing soccer is a real time operation so the objection detection system used needs to be able to execute quickly. Considerations 
from both the robot and model need to be made to ensure fast enough execution. From the robot, the resolution of the image/video will 
be deterministic of the time required to process a single frame and identify an object within it. The Nao robots can support a few 
different resolutions, but the size of 320×240 pixels was chosen because it provides a good tradeoff between image fidelity and 
processing time. The object detection model to be used is MobileNet due to its ability to handle real time video [11]. Additionally, the 
TensorFlow object detection API supports this model and the building of custom classifiers using the architecture.   
 

  
(a) (b) 

Fig. 3. Two images of the soccer ball collected at various distances from the Nao robot for the purpose of distance prediction. 
 

  
(a) (b) 

Fig. 4. Two images of a Nao robot collected at various distances for the purpose of distance prediction. 

                                                           
2 TensorFlow Repository, https://github.com/tensorflow/models 

 (a)    (b)



148 Reuse in Intelligent Systems

2.3 Soccer Ball Detection
In addition to locating other robots, the soccer playing robot must be also be 
able to detect the soccer ball on the field. Soccer balls are a common object and 
the detection of them have been addressed in datasets that contain common 
objects. An example of a model that exists and is able to detect a soccer 
ball is the MobileNet trained on the Common Objects in Context (COCO) 
dataset which is compatible with the TensorFlow object detection API. For 
this reason, a model to detect a soccer ball will not be trained as other models 
already exist to do so effectively. 

3. Distance Prediction Model

The prediction of how far away a soccer ball is from a robot was an issue 
addressed in [2] where multiple regression was used to make a prediction from 
engineered regressors. Having robots be able to determine their distance to the 
soccer ball is paramount to developing a behavioral algorithm. Additionally, a 
robot being able to determine their distance from another robot is also crucial. 
This prediction problem will also be addressed with the incorporation of the 
previously discussed object detection. The machine learning model will also 
be trained to identify a soccer ball, and if a soccer ball is found the image will 
be cropped in accordance to the box drawn around the ball to then be used 
for distance prediction. Features will be engineered to be extracted from the 
cropped image to then be fed into a machine learning model to predict the 
distance. We propose using a fully connected neural network with rectified 
linear unit (ReLU) nonlinearities for this problem and will compare to a 
multiple regression model as proposed in [2] as a baseline predictor. 

3.1 Image Dataset and Distance Labels
For the task of distance prediction, a dataset of images of the soccer ball 
specified by the RoboCup rules were taken. The distances being measured 
was the length from the robot to the soccer ball in centimeters. Distances 
from the robot to the soccer ball ranged from 60 cm to 200 cm based on 
the visibility of the ball from the robot’s cameras and the ball was moved in 
increments of 10 cm because that is the diameter of the soccer ball. Various 
images were taken at distances from the robot ranging from 60 cm to 200 cm 
in 10 cm increments to make up the dataset that would be split into training 
and testing sets. Similarly, an image dataset for pictures of another robot at 
the same specified distance of 60 cm to 200 cm in 10 cm increments was  
also taken. 
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3.2 Feature Engineering
Each image containing the soccer ball and robot was converted to a vector of 
engineered feature that describes the image. The basis of the feature vector 
generation is that object detection will be used to locate the soccer ball within 
the frame and the object detection API will draw a box around where the 
soccer ball is. From the box drawn around the soccer ball, that piece of the 
image was cropped and the features were drawn from the cropped portion of 
the original image only.

Using the cropped portion of the original image containing only the 
soccer ball, eight features were extracted to describe the distance to the ball 
in the image. In extracting the features from the images, each image is filtered 
with a Gaussian blur first and then a Sobel edge detector to find the edges of 
the soccer ball in each frame. The Sobel filter is a high pass edge detecting 
filter and the Gaussian blur is a low pass filter to help remove noise around 
edges before detection [2]. The eight features extracted from each frame are:
 1) Cropped image height: The height of the cropped portion of the image 

containing the soccer ball in pixels.
 2) Cropped image width: The width of the cropped portion of the image 

containing the soccer ball in pixels.
 3) Number of white pixels: The number of pixels that are white after passing 

the image through Sobel filter to find the edges. These white pixels are 
the edges within the frame which in the cropped frame will be the edges 
of the soccer ball. 

 4) Number of black pixels: The number of pixels that are black after passing 
the image through Sobel filter to find the edges.

 5) Number of 0 degree angles: The number of pixels that have an angle close 
to 0 degrees after obtaining the gradient of the image from the Sobel filter. 

 6) Number of 45 degree angles: The number of pixels that have an angle 
close to 45 degrees after obtaining the gradient of the image from the 
Sobel filter. 

 7) Number of 90 degree angles: The number of pixels that have an angle 
close to 90 degrees after obtaining the gradient of the image from the 
Sobel filter. 

 8) Horizontal location within image: The horizontal location of the ball in 
the original frame encoded as a one-hot distribution signifying if the ball 
is in the left portion, center portion, or right portion of the image. 

These eight features were extracted from each image taken with a soccer 
ball a known distance away from the robot. This distance serves as the label 
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for each image in this prediction task for which supervised learning is used to 
fit a model to the obtained data. 

3.3 Machine Learning Algorithm
From the images collected, the distance from the robot to the ball was 
predicted using two different algorithms: multiple linear regression as 
proposed in [2] and a multilayer perceptron. Multiple linear regression was 
proposed in [2] due to the linear nature that features describing a soccer ball in 
an image change with respect to distance. This algorithm will be compared to 
a multilayer perceptron that uses rectified linear units (ReLU) as the nonlinear 
activation function. The reason for using a neural network for this prediction 
problem is to find a better fit for the data because not all the features may be 
as linear relative to distance as assumed based on the human visual system. 

Both these models were trained on the same set of features from  
Section 3.2 describing the images with the multiple regression model being 
the baseline for which to compare the neural network model to. In Section 4.1, 
the training and evaluation methodology for the task of distance prediction is 
explained and the results are analyzed in Section 4.3. 

4. Evaluation of Models 

4.1 Robot Detection Evaluation
The TensorFlow API, and object detection in general, requires images to be 
hand labeled commonly with a box drawn around the object of interest in an 
image. This box is the label from which the model learns where the target 
object is in the sample images. When building a custom model to detect a new 
object using the TensorFlow API (in our case the target object is a Nao robot), 
the obtained images need to be hand labeled with boxes drawn around the 
target object. The labeling of data is a costly process, so as a result the dataset 
of images collected was relatively small. In total, 100 images were collected. 

The chosen metric used to evaluate this model is accuracy. Due to the 
small dataset size for both training and testing images, accuracy was defined 
as whether or not a box was drawn around the object that was most likely the 
Nao robot in the image. Ideally, a larger dataset would have been acquired to 
better account for the numerous cases that a robot could be presented with 
during a soccer match, but the purpose was to see if a model could be trained 
to identify the soccer playing robots which is unique to our problem. 

From our test set, the robot in each image was detected as the most likely 
object in the image to be a robot which validates the idea of using object 
detection to identify other robots on the playing field. The only issue the 
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model encountered was when the robot was very close causing parts of the 
robot to move out of frame. While the robot is still detected, the probability 
that it is a robot is not as high and this is likely due to the majority of the 
training data containing images where the full robot fits into the frame.  
Figure 5 shows the results on two test images passed to the object detection 
model. In the two images, the robot is detected as indicated by the box drawn 
around the robot and the issue of a close robot is also shown. 

4.2 Distance Predictor Evaluation Setup
Due to having a small amount of data due to the need for collecting and hand 
labeling images of a specific scenario for RoboCup, multiple training runs 
were used for evaluation meaning many models were trained on different 
training sets from the image dataset. The training and testing split used was 
80% of the data for training and the remaining 20% for testing. Images of the 
soccer ball were taken at a range of 60 cm to 200 cm in increments of 10 cm, 
so an even distribution of images at each distance was ensured to be present 
in both the training and testing sets. Comparatively, training these distance 
predictors takes less time than the robot detector and this time difference is 
why training multiple models was only done with the distance predictors. 

To evaluate the results of both the multiple linear regression and multilayer 
perceptron, root mean square error (RMSE) was used. RMSE was chosen as 
the evaluation metric because it measures the deviation of the predictor in the 
same unit as the predicted variable. Equation 1 defines RMSE: 
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n n
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=
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8) Horizontal location within image: The horizontal location of the ball in the original frame encoded as a one-hot 
distribution signifying if the ball is in the left portion, center portion, or right portion of the image.  

 
These eight features were extracted from each image taken with a soccer ball a known distance away from the robot. This distance 

serves as the label for each image in this prediction task for which supervised learning is used to fit a model to the obtained data.  

C. Machine Learning Algorithm 
From the images collected, the distance from the robot to the ball was predicted using two different algorithms: multiple linear 

regression as proposed in [2] and a multilayer perceptron. Multiple linear regression was proposed in [2] due to the linear nature that 
features describing a soccer ball in an image change with respect to distance. This algorithm will be compared to a multilayer 
perceptron that uses rectified linear units (ReLU) as the nonlinear activation function. The reason for using a neural network for this 
prediction problem is to find a better fit for the data because not all the features may be as linear relative to distance as assumed based 
on the human visual system.  

Both these models were trained on the same set of features from Section III-B describing the images with the multiple regression 
model being the baseline for which to compare the neural network model to. In Section IV-A, the training and evaluation 
methodology for the task of distance prediction is explained and the results are analyzed in Section IV-C.  

 
Table 1. Results of distance predictions models for both the soccer ball and Nao robot (both measured in RMSE).  
 

 Soccer Ball 
(RMSE in cm.) 

Nao Robot 
(RMSE in cm.) 

Multiple Linear 
Regression 6.128 ± 0.739 5.195 ± 0.573 

Multilayer 
Perceptron 6.761 ± 1.564 6.487 ± 1.622 

 
 

  
(a) (b) 

Fig. 5. Output from object detection model. The model was able to detect the robot in all images as shown in (a) but had issues 
when the robot was not fully in frame as shown in (b).  

IV. EVALUATION OF MODELS  
A. Robot Detection Evaluation 

The TensorFlow API, and object detection in general, requires images to be hand labeled commonly with a box drawn around the 
object of interest in an image. This box is the label from which the model learns where the target object is in the sample images. When 
building a custom model to detect a new object using the TensorFlow API (in our case the target object is a Nao robot), the obtained 
images need to be hand labeled with boxes drawn around the target object. The labeling of data is a costly process, so as a result the 
dataset of images collected was relatively small. In total, 100 images were collected.  

The chosen metric used to evaluate this model is accuracy. Due to the small dataset size for both training and testing images, 
accuracy was defined as whether or not  a box was drawn around the object that was most likely the Nao robot in the image. Ideally, a 
larger dataset would have been acquired to better account for the numerous cases that a robot could be presented with during a soccer 
match, but the purpose was to see if a model could be trained to identify the soccer playing robots which is unique to our problem.  

 (a)    (b)
Fig. 5: Output from object detection model. The model was able to detect the robot in all images as 

shown in (a) but had issues when the robot was not fully in frame as shown in (b). 
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where ŷ is the vector containing the predictions, y is the vector containing the 
ground truth labels for the distances, and N is the total number of samples (and 
the length of both vectors ŷ and y). 

4.3 Evaluation of Distance Prediction Models
Results of the distance predictors are shown in Table 1 where the multiple 
linear regression model proposed in [2] slightly outperformed the multilayer 
perceptron for both cases. In general, the RMSE from both models are 
relatively similar which could be indicative of whether or not the neural 
network converged to an absolute minimum. Furthermore, the multiple linear 
regression will be more efficient if implemented on a robot because each 
prediction only requires one sum of product compared to the many more in 
the neural network due to the neurons in the hidden layer. For implementation 
on a robot, lower complexity predictors are desirable due to the embedded 
processor in the robots which makes multiple linear regression the more 
desirable model to use. It might be possible for the multilayer perceptron to 
outperform the multiple linear regression model by increasing the complexity 
of the neural network but this would also increase the number of arithmetic 
operations and execution time required for a prediction.

The results shows that distance does have a linear relationship with 
distance to objects in images and the objects can be common objects like 
a soccer ball or more complex objects such as the Nao humanoid robot. 
Additionally, the results suggest that a less complex multiple linear regression 
model is a more suitable predictor than a neural network and requires far less 
arithmetic operations making it the more desirable model for implementation 
on a soccer playing robot. 

Table 1: Results of distance predictions models for both the soccer ball and Nao robot (both measured 
in RMSE). 

Soccer Ball (RMSE in cm) Nao Robot (RMSE in cm)

Multiple Linear Regression 6.128 ± 0.739 5.195 ± 0.573

Multilayer Perceptron 6.761 ± 1.564 6.487 ± 1.622

5. Petri Net Controller

5.1 Petri Net Models
Petri nets (PN) are mathematical models used to show the flow of data through 
a system. They are graphical in nature and are able to represent finite state 
automata in more depth than a state machine (state machines are a subset 
of PNs). The graphical PN model is represented with nodes called places, 
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transitions, and tokens which represent data moving through the network from 
place to place through transitions. 
Mathematically, the PN model is defined as a 5-tuple:

 N = (P, T, F, W, M0) (2)

Made up of a finite set of places P, a finite set of transitions T, a finite 
set of arcs F, a weight function W on the arcs, and an initial marking M0. In 
general, a marking M of a PN defines the number of tokens across the places 
in the network and the initial marking M0 is the token distribution at the start. 

 P = {p1, p2,..., pk} (3)

 T = {t1, t2,..., tm} (4)

 F = {f1, f2,..., f n} (5)

 M : P → N (6)

 W : F → N (7)

With the mathematical definition of PNs, the graphical model can be 
defined as places connected by transitions through directed arcs and tokens 
travel across the places in the network. The places, transitions, and arcs define 
the behavior of the PN model while the tokens themselves are the data being 
observed by the network, and the final marking (i.e., where the token or tokens 
end up) is the result yielded by the network. 

Additionally, the arcs connecting the places and transitions are weighted 
and the individual weights on each arc are specified by the function W. The 
weight function defines two different types of behaviors depending on whether 
the arc is directed from a place to a transition or from a transition to a place. 
Weights on arcs directed from a place to a transition specify the number of 
tokens that will be consumed by firing the transition which is the number of 
tokens that need to be present in the place to fire the transition. In contrast, 
weights on arcs directed from transitions to places specify the number of 
tokens produced by the transition firing which is the number of tokens that 
will be present in the place after a transition fires. 

Figures 6 and 7 show small example PNs to demonstrate the defined 
properties. In Figure 6, there are two places p1 and p2 connected by transition 
t1. Both arcs connecting to t1 have a weight of one meaning that one token 
will be consumed from place p1 and one token will be produced in p2 when 
t1 fires. Transition t1 is able to fire once the token requirement in p1 is met. 
Comparatively, the PN in Figure 7 takes the same network but changes the 
weights on the two arcs. Now, the arc connecting p1 to t1 has a weight of 3 and 
the arc connecting t1 to p2 has a weight of 2. Once p1 has three tokens in it,  
t1 will fire consuming all three tokens and produce 2 tokens in p2. 
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Additional rules governing the PN model involve what happens when 
multiple arcs are directed into a transition or out of a transition. If two 
places have arcs directed to the same transition, then the token consumption 
requirement on all connection arcs must be met for the transition to be able to 
fire. If a transition has more than one arc directed out of it, then the number 
of tokens specified by the weight of each arc will be produced when the 
transition fires. Lastly, if a place has multiple arcs connecting to multiple 
transitions and the token consumption requirements are met for more than 
one transition to fire, then only one of the transitions is able to fire which 
can cause ambiguity in the model which will be addressed in Section 5.2 by 
constraining the PN model to additional mathematical properties governing 
the firing of transitions. 

5.2 Timed Petri Net Models
The Petri net model can be further enhanced through the addition of a time 
variable on the transitions with a structure called the Timed Petri net (TdPN). 
Mathematically, TdPN’s are defined as the 6-tuple in Equation 8:

 Nτ = (P, T, F, W, M0, τ) (8)

where P, T, F, W, and M0 are the same as defined in Equations 2–7 for a 
standard PN and the new variable τ which denotes the time it takes for a 
transition to fire [3]. 
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Fig. 6: Example Petri net showing the transition firing characteristic of t1 between places p1 and p2.

Fig. 7: Example Petri net showing the transition firing characteristic with weights to change to the 
number of tokens produced and consumed by firing transitions t1.
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Fig. 8: Example Timed Petri net demonstrating the effect the timing variable τ has on the firing of 
transitions t0 and t1.

The example TdPN shown in Figure 8 demonstrates the addition of the 
timing variable τ differs this model from a regular PN. In this example, notice 
how the transition t0 is red and the transition t1 is not. Transitions that are red are 
enabled and are ready for tokens to be fired through them. The time above the 
transition t0 [0,0] indicates that a token can fire through it without hesitation, 
but transition t1 has a time delay of 1 denoted by [1.0, 1.0]. Transition t1 will 
be fired second, after transition t0 because of this. 

5.3 Enhanced Arcs in Petri Net Models 
Additional types of arcs exist in PN models to offer different types of 
behavior for the firing of a transition. In the model that will be introduced in  
Section 5.4, we employed the use of inhibitor and test arcs. Inhibitor arcs 
disable transitions if there is a token in the place preceding the arc and are 
denoted with an empty circle compared to an arrow on regular arcs. Figure 9 
demonstrates the effect of an inhibitor arc with there being a token in p1 which 
disables the transition t0. As long as there is a token in p1, the token in p0 will 
not be able to fire through transition t0 and the resulting Petri net is said to be 
in a deadlock.
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Fig. 9: Effect of Inhibitor Arc demonstrated by disabling transition t0 as long as there is a token 
present in place p1.
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Test arcs are denoted with a filled circle and allow a transition to be 
enabled if there is a token in the place preceding the arc similarly to how a 
regular arc functions. The main and only difference between regular and test 
arcs is the token in the place connecting to a transition via a test arc will not 
loses its tokens when the transition fires (i.e., test arcs do not consume the 
tokens when the connecting transition is fired). An example of a test arc is 
shown in Figure 10 showing that the token will remain in p1 when the token in 
p0 is fired through transition t0.

5.4 TdPN Controller Design and Implementation
TdPNs are suitable for the modeling of robotic behavior due to their robust 
modeling capabilities. We will be using the model to develop an algorithm for 
soccer playing robots with the focus being on the behavior of the goalkeeper. 
The TdPN will utilize the machine learning models developed in the previous 
sections in generating the initial marking of the network from which a decision 
will made based on what it currently sees. Results from the machine learning 
models that the TdPN will utilize are the locations of the soccer ball and other 
robots from the object detection and the distances to each from each object 
detected using the distance predictors. 

Figure 11 shows the designed TdPN controller which was designed using 
the modeling tool TINA.3 Boxes are drawn on top of the TdPN in Figure 11 
so the different components of the model can be more easily differentiated 
visually. Starting on the left-hand side of the model is the beginning of the 
Petri net which breaks up an image into 9 sections as denoted by the 9 places. 
These places are populated with tokens before the PN starts firing as part of 
the initial marking M0. Each place in this section corresponds to a section 
of the image captured by the Nao robot and the tokens in each place are 
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Fig. 10: Places connecting to a transition via a Test Arc (in this case, p1 connecting to t0) will not lose 
their token when the transition fires.

3 TINA Project Page, http://projects.laas.fr/tina/.

http://projects.laas.fr
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determined by whether or not one of the objects of interest are detected in that 
region of the image via the objection detection models. For the places in this 
section of the model, 1 and 2 tokens denote the ball and a robot, respectively 
(these numbers were arbitrarily defined and additional objects can be added by 
assigning them numbers). Furthermore, the soccer ball takes priority over any 
other object meaning if an additional object is found in the same region of the 
image as the soccer ball, the corresponding place in the PN will be marked as 
only having a soccer ball (i.e., marked with 1 token). In the image shown, this 
then indicates that the soccer ball is located in the bottom right-hand side of 
the image and a robot is located in the center of the image. Using this general 
layout for the TdPN allows for the model to be scaled up through the addition 
of more places (i.e., more defined regions of the image) and additional objects 
of interests, such as the goal post or distinct markings on the field. 

The initial marking of the TdPN is also defined by the distances to the 
objects detected within the image. From the collection of images and training 
of the distance prediction models, the effective range for distance prediction 
is 60 cm to 200 cm from the robot which is then broken into three categories: 
close, near, and far. For our purposes, close is defined from 60 cm to  
100 cm, near is defined from 100 cm to 160 cm, and far is defined from  
160 cm to 200 cm (these ranges can be adjusted as needed based on the time it 
takes for a robot to move, make a block, or the speed of the ball when kicked 
by an opposing robot). Depending on the distances to the soccer ball and 
opposing robot, the goalkeeping robot will either move to the left or right or 
dive to the left or right. Furthermore, the closer the ball is to the goalkeeper, 
the more likely the robot is to dive to make a block on the ball.

 
 
Fig. 11. Timed Petri net (TdPN) controller implemented using the TINA modeling software. The four main components of the 

model have boxes drawn around them. 
 

The initial marking of the TdPN is also defined by the distances to the objects detected within the image. From the collection of 
images and training of the distance prediction models, the effective range for distance prediction is 60cm to 200cm from the robot 
which is then broken into three categories: close, near, and far. For our purposes, close is defined from 60cm to 100cm, near is defined 
from 100cm to 160cm, and far is defined from 160cm to 200cm (these ranges can be adjusted as needed based on the time it takes for 
a robot to move, make a block, or the speed of the ball when kicked by an opposing robot). Depending on the distances to the soccer 
ball and opposing robot, the goalkeeping robot will either move to the left or right or dive to the left or right. Furthermore, the closer 
the ball is to the goalkeeper, the more likely the robot is to dive to make a block on the ball. 

Within the TdPN, the distances to the objects are accounted for with separate inputs located in the uppermost boxed area of TdPN. 
This information will be obtained from the distance prediction models and then be classified as close, near, or far according the 
previously described ranges. In the current TdPN shown in Figure 11, there is a set of two distance inputs; one for the soccer ball and 
one for an opposing robot. The closer the object is to the goalkeeper, the more likely the goalkeeper is to take an action in defending a 
shot on goal. Additionally, this information is used in accordance with the whether the objects are in the left, center, or right portion of 
the image in making a decision. For example, if the ball is close to the goal and on the left side, then the goalie will dive left in 
contrast to only moving left if the ball is labeled as far.   

From the initial marking, which is determined as previously discussed, the resultant decision made by the TdPN is determined by the 
additional blocked sections in Figure 11. The first block converts the positional tokens for the objects into a form from which a 
decision can be made. The tokens from this part of the initial marking get converted into tokens distributed across three places. Of 
these three places, the one with the most tokens will be used in determining the decision of the action the robot will take. The decision 
made from these three places is determined using a form of a PN comparator to compare the tokens in the three places. Two separate 
comparators are used to make the decision of the whether the robot should stay in the middle of the goal, move left, move right, dive 
left, or dive right. Of the six decisions shown on the far right denoted by places, the stay middle refer to the same action. 

E. TdPN Controller Analysis  
In its current state, the TdPN controller is able make one of five decisions based on the locations and distances to the soccer ball and 

opposing robots which determines the initial marking of the network. These five decisions resemble those of an actual goalkeeper and 
the model looks to mimic the decision process that an actual goalkeeper would make when presented with the same information. 
Without expanding this TdPN (i.e., increasing the size by adding more places and transitions), the current architecture of the model 
can be modified to recognize more objects than the two it currently can identify. The two objects that the TdPN identifies are the robot 
and the soccer ball. The position of the soccer ball affects the robots decision twice as much as the position of the opposing robot. 

The current architecture of our model allows the model to be scaled up as necessary. Additions to the model that can be made in the 
future include the ability to segment the image into more pieces rather than the current 9, the ability to add more objects of interests 

Fig. 11: Timed Petri net (TdPN) controller implemented using the TINA modeling software. The four 
main components of the model have boxes drawn around them.
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Within the TdPN, the distances to the objects are accounted for with 
separate inputs located in the uppermost boxed area of TdPN. This information 
will be obtained from the distance prediction models and then be classified as 
close, near, or far according the previously described ranges. In the current 
TdPN shown in Figure 11, there is a set of two distance inputs; one for the 
soccer ball and one for an opposing robot. The closer the object is to the 
goalkeeper, the more likely the goalkeeper is to take an action in defending 
a shot on goal. Additionally, this information is used in accordance with the 
whether the objects are in the left, center, or right portion of the image in 
making a decision. For example, if the ball is close to the goal and on the left 
side, then the goalie will dive left in contrast to only moving left if the ball is 
labeled as far. 

From the initial marking, which is determined as previously discussed, the 
resultant decision made by the TdPN is determined by the additional blocked 
sections in Figure 11. The first block converts the positional tokens for the 
objects into a form from which a decision can be made. The tokens from this 
part of the initial marking get converted into tokens distributed across three 
places. Of these three places, the one with the most tokens will be used in 
determining the decision of the action the robot will take. The decision made 
from these three places is determined using a form of a PN comparator to 
compare the tokens in the three places. Two separate comparators are used to 
make the decision of the whether the robot should stay in the middle of the 
goal, move left, move right, dive left, or dive right. Of the six decisions shown 
on the far right denoted by places, the stay middle refer to the same action.

5.5 TdPN Controller Analysis 
In its current state, the TdPN controller is able make one of five decisions 
based on the locations and distances to the soccer ball and opposing robots 
which determines the initial marking of the network. These five decisions 
resemble those of an actual goalkeeper and the model looks to mimic the 
decision process that an actual goalkeeper would make when presented with 
the same information. Without expanding this TdPN (i.e., increasing the 
size by adding more places and transitions), the current architecture of the 
model can be modified to recognize more objects than the two it currently can 
identify. The two objects that the TdPN identifies are the robot and the soccer 
ball. The position of the soccer ball affects the robots decision twice as much 
as the position of the opposing robot.

The current architecture of our model allows the model to be scaled up as 
necessary. Additions to the model that can be made in the future include the 
ability to segment the image into more pieces rather than the current 9, the 
ability to add more objects of interests which would also require modifications 
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to the machine learning models, and better generalizing this model to create a 
new model that can be applied to the rest of robots on the playing field.

6. Conclusion 

In this paper, we proposed a computer vision based methodology for 
developing an algorithm using a Timed Petri net to dictate the behavior of a 
soccer playing robot, with our focus being on the goalkeeper. We first used 
object detection models to detect a soccer ball as well as robots in an image 
that would be captured by a robot. For the detection of robots, a custom model 
was trained while a pre-trained model for detecting soccer balls was used, but 
in the future these models would be unified. Furthermore, additional objects 
of interest, such as the goal or defining marks on the soccer field, could be 
included in the object detection model. The object detection models draw a 
box around the detected object in the image, and then the image was cropped 
to the box containing the object used for distance prediction. For both the 
soccer ball and other robots, features were first engineered and then a multiple 
linear regression model was trained on the features to predict the distance to 
the object in centimeters. 

The results from the machine learning models, objection detection, and 
distance prediction for both the soccer ball and robots were then used as 
inputs to a Timed Petri net (TdPN) controller used to determine which action 
the robot goalkeeper should take. Results from the machine learning models 
were used to determine the initial marking M0 of the TdPN controller which 
then runs to determine the action of the robotic goalkeeper should take. In 
our model, five actions for the robot to take are defined and include stay in 
the middle of the goal, move left, move right, dive left, or dive right. These 
actions were chosen to resemble those of an actual goalkeeper. Which action 
should be taken is based on the distances from the goalkeeper to the ball and 
opposing robot, and looks to mimic the type of decision an actual goalkeeper 
would make based on the same information. The designed TdPN controller 
is also setup in a way that allows for future modifications, such as further 
segmenting the image or adding more objects of interest which would also 
require additional machine learning models to be trained. 
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Chapter 7
Context-dependent Reachability 

Analysis for Hybrid Systems
Stefan Schupp,* Justin Winkens and Erika Ábrahám

1. Introduction

Hybrid systems, in which digital controllers interact with a physical, continuous 
world show increasing presence in various safety-critical applications, e.g., in 
the automotive sector, in aviation or in automated plants. Along with their 
increasing usage, also more and more attention is paid to formal methods for 
their safety verification. Many tools have been developed and successfully 
applied in practice to analyze the behavior of hybrid system models stemming 
both from academia as well as from industry. Some of these tools are based 
on theorem proving [15, 26], others on rigorous simulation [4, 17, 33] or 
satisfiability checking [18, 19, 25, 27]. In this paper we focus on approaches 
based on iterative forward reachability computations [1, 3, 5, 8–10, 13, 21, 
22]; for models in which the evolution of the quantities over time follows 
non-linear functions, these methods are also known as flowpipe-construction-
based techniques.

Hybrid systems often posses complex behavior involving numerous 
physical quantities with different temporal dynamics. Interesting recent 
developments in hybrid system verification addressed improving scalability 
to be able to handle higher-dimensional systems, i.e., systems which involve 
large numbers of physical quantities, for example using decomposition to 
reduce complex problems to several smaller problems [7, 14, 31]. Approaches 
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and tools have been demonstrated to be able to handle up to hundreds of 
variables simultaneously on some case studies. However, despite impressive 
developments, available tools still struggle with the verification of practically 
relevant complex hybrid systems.

Typically, these tools specialize on a certain verification technique for a 
certain subclass of hybrid systems, e.g., timed systems [5, 9, 10], linear hybrid 
systems [1, 21, 27] or non-linear hybrid systems [13, 25]. our previous work 
[31] we presented an approach based on decomposition, which divides the 
state space of a hybrid system into sub-spaces whose behavior is piecewise 
independent from each other.

In this work we presented an extension to our previous approach which 
(i) automatically finds the finest decomposition of an input system, and  
(ii) analyzes the different components and dynamically selects dedicated 
methods for their analysis based on information about the dynamics in that 
specific sub-space.

This paper extends our work [32] by generalizing some formalisms and 
extending our method by specific approaches to handle model parts within the 
expressivity of rectangular automata:

 • we develop data structures for rectangular automata, a subclass of hybrid 
automata that are more expressive than timed automata but for which 
there are more efficient reachability analysis methods,

 • we implement tailored methods for the one-step reachability analysis of 
rectangular automata, and

 • we extend our dynamic decomposition methods to detect and handle 
subspaces with rectangular dynamics automatically.

All of our extensions are implemented and publicly available in our C++ 
library HyPro [30].

The remaining contents are organized as follows: In Section 2 we 
provide some preliminaries before we explain our approach to reduce the 
computational effort for reachability analysis in Section 3. Section 4 provides 
experimental results and Section 5 concludes the paper.

2.  Hybrid Systems Safety Verification

Let R denote the set of all real numbers and R≥ 0 the non-negative reals. 
For a finite ordered set X = {x1, . . . , xd} of real-valued variables we define  
Ẋ = {ẋ1, . . . , ẋd} and X' = {x'1, . . . , x'd}. Let PredX denote a set of predicates 
over X (in our applications these will be conjunctions of linear real-arithmetic 
constraints over X). For a predicate φ ∈ PredX and a (variable) valuation  
ν = (ν1, . . . , νd) ∈ Rd, by ν |= φ we denote that replacing all free occurrences 



Context-dependent Reachability Analysis for Hybrid Systems 163

of variables xi in φ by νi evaluates φ to true. The meaning of (ν, ν') |= φ for  
φ ∈ PredX∪X ' is defined similarly, replacing each xi by νi and each x'i  by ν'i. The 
definition of (ν, ν̇) |= φ for φ ∈ PredX∪X

. is analogous.

2.1 Hybrid Automata
In order to verify hybrid systems, we need to provide formal models for them. 
Among others, hybrid systems are often modeled by hybrid automata.

Following the definition from [23], a hybrid automaton (HA) is a tuple  
H = (Loc, Var, Flow, Inv, Edge, Init) with the following components:

 • A finite set Loc of locations or control modes.
 • A finite ordered set Var = {x1, . . . , xd} of real-valued variables; we also 

use the notation x = (x1, . . . , xd) and call d the dimension of H.
 • Flow : Loc → PredVar∪V̇ar specifies for each location its flow or dynamics.
 • Inv : Loc → PredVar assigns to each location an invariant.
 • Edge ⊆ Loc × PredVar × PredVar∪Var'× Loc is a finite set of discrete 

transitions or jumps. For a jump (l1, g, r, l2) ∈ Edge, l1 is its source location, 
l2 is its target location, g specifies the jump’s guard and r its reset.

 • Init : Loc → PredVar assigns to each location an initial predicate.

Let H = (Loc, Var, Flow, Inv, Edge, Init) be a hybrid automaton with 
dimension d and variables x = {x1, . . . , xd}. A state of H is a pair σ = (l, ν) ∈ 
Loc × Rd. A symbolic state (l, φ) consists of a location l ∈ Loc and a predicate 
φ ∈ PredVar and represents the state set {(l, ν) ∈ Loc × Rd | ν |= φ}.

A sequence (l0, ν0), . . . , (ln, νn) of states of H is a (finite) run of H if  
ν0 |= Init (l0), νi |= Inv (li) for each i = 0, . . . , n, and for each i = 0, . . . , n − 1 
one of the following two conditions holds:

 • Flow: li = li+1 and there exist δ ∈ R≥0 and a continuous, over (0, δ) 
differentiable f : [0, δ] → Rd such that νi = f (0), νi+1 = f (δ) and for all  
0 < δ' < δ we have (f (δ'), df

dt
 (δ')) |= Inv (li) ˄ Flow (li).

 • Jump: There exists e = (li, g, r, li+1) ∈ Edge with νi |= g and (νi, νi+1) |= r.

A sequence (l0, φ0), . . . , (ln, φn) of symbolic states of H is called a symbolic 
run of H and represents the set of all runs (l0, ν0), . . . , (ln, νn) of H for which 
νi |= φi for each 0 ≤ i ≤ n.

A state is reachable if there exists a run leading to it. The reachability 
problem poses the question whether a given state set contains any states 
reachable in a given hybrid automaton.

Based on the type of predicates in their definitions, we can define different 
subclasses of HA (see Table 1). For instance, timed automata (TA) allow only 
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variables that are clocks with derivative 1, invariants and guards that are 
conjunctions of constraints comparing clock values to constants, and resets 
that either set clock values to 0 or leave them unchanged; the reachability 
problem for TA is decidable (PSPACE-complete). Rectangular automata 
(RA) extend the expressivity of timed automata by allowing constant 
derivatives and non-deterministic resets from rectangular sets, which are 
cross products of intervals with rational or infinite bounds. The reachability 
problem for initialised rectangular automata (IRA) can be reduced to that of 
TA [24], where initialised means intuitively that if the dynamics of a variable 
changes by taking a jump then the jump resets the value of the variable to a 
(non-deterministically choosen) constant. Consequently, decidability results 
for IRA are as for TA while in general the unbounded reachability problem is 
not decidable for RA. If we allow constant derivatives and linear expressions 
in flows, invariants, guards and resets, reachability via runs with a bounded 
number of jumps is still decidable. For dynamics described by (linear or non-
linear) ordinary differential equations (ODEs) even bounded reachability is 
undecidable.

2.2 Forward Reachability Analysis
Timed automata
The reachable states of a timed automaton can be computed as a finite 
union of zones, which are state sets that can be represented by symbolic 
states whose predicates are conjunctions of constraints of the form xi ~ c or  
xi – xj ~ c with ~∈ {<, ≤ , =, ≥, >} and c ∈ Q. Zones are defined by special 
types of convex polytopes in Rd (see Figure 1). Based on the restricted form 
of the defining constraints, difference bound matrices (DBM) [6, 16] offer an 

Table 1: Decidability results for subclasses of hybrid automata, defined by conjunctions of the 
respective types of predicates (TA = timed automata, IRA = initialised rectangular automata, RA = 
rectangular automata, LHA I = hybrid automata with constant derivatives; LHA II = hybrid automata 
with linear ODEs; HA = general hybrid automata; c: rational constant; e, e', ė: arithmetic expressions 
over Var, Var ∪ Var' resp. Var ∪ V̇ar; elin: linear arithmetic expression over Var; ~ ∈ {<, ≤ , =, ≥ , >}).

Subclasses Flows Invariants
Guards

Resets Bnd. 
Reach.

Unbnd.
Reach.

TA ẋi = 1 xi ~ c x'i = 0, x'i = xi ü ü

IRA ẋi ~ c xi ~ c x'i ~ c, x'i = xi ü ü

RA ẋi ~ c xi ~ c x'i ~ c, x'i = xi ü X

LHA I ẋi = c elin ~ 0 x'i ~ elin ü X

LHA II ẋi = elin elin ~ 0 x'i ~ elin X X

HA ė  ~ 0 e ~ 0 e' ~ 0 X X
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efficient representation for zones. For example, the zone in Figure 1 can be 
represented by a DBM
         0 x y

  0  (0, ≤) (−1, ≤)  (−1, ≤)
D = x ( (4, ≤) (0, ≤) (1, ≤) )  y   (4, ≤) (1, ≤) (0, ≤)

Each constraint xi – xj ~ c is represented by an entry Di, j = (c, ~) in the 
DBM where an auxiliary dimension 0 with constant zero value has been 
introduced to allow a normalized representation xi – 0 ~ c of constraints  
xi ~ c. Thus for a set of n clocks a DBM of size (n + 1) × (n + 1) is required to 
represent a zone.

To compute the set of reachable states of a timed automaton, flow and 
jump successors of the initial state set represented by DBMs can be computed 
in an alternating fashion. To compute flow successors of a given zone in a 
given location of a timed automaton, we increase all upper bounds in the 
entries Di,0 for each clock xi to the largest value still allowed by the invariant 
(which might be +∞). Similarly for discrete jumps, intersections with guards 
as well as clock resets can be represented by adjusting the DBM entries. For 
further details about timed automata model checking we refer to [2].

Rectangular automata
Assume a rectangular automaton and an initial state set represented 
symbolically by a location and a conjunction of linear constraints over the 
variables of the automaton. Starting from this initial state set, the reachable 
states of a rectangular automaton can be described by a (possibly infinite) 
union of symbolic states (l, φ) whose predicates are conjunctions of linear 
constraints over the variables of the automaton. Flow successors of states 

Fig. 1: Illustration of a zone.
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represented symbolically by (l, φ) can be computed by expressing them via 
quantified linear-arithmetic formulas with free variables from Var:

∃t. ∃xpre. t ≥ 0 ∧ φ[xpre/x] ∧ Flow (l)[xpre, x/x, x'] ∧ Inv (l)

For example the set of reachable states constructed in Figure 2 with 
initial condition 1 ≤ x ≤ 3 and flow 1 ≤ ẋ ≤ 2 can be described as follows (for 
simplicity we assume a trivially true invariant in this example):

∃t. ∃xpre.t ≥ 0 ∧ 1 ≤ xpre ∧ xpre ≤ 3 ∧ t + xpre ≤ x ∧ x ≤ 2t + xpre.

Using quantifier elimination techniques, e.g., Fourier-Motzkin variable 
elimination, we can eliminate quantifiers in order to simplify the formulas. For 
the above example quantifier elimination shows that by letting time progress, 
x can take all values larger or equal 1:

∃t.∃xpre.t ≥ 0 ∧ 1 ≤ xpre ∧ xpre ≤ 3 ∧ t + xpre ≤ x ∧ x ≤ 2t + xpre.
⇔∃t.t ≥ 0 ∧ 1 ≤ 3 ∧ x − 2t ≤ 3 ∧ 1 ≤ x − t ∧ x − 2t ≤ x − t
⇔1 ≤ x ∧ −1 ≤ x
⇔1 ≤ x

A similar approach can be used to compute successor states of discrete 
jumps. For further details we refer to [11].

Hybrid automata with constant derivatives and linear constraints
For variables with piecewise constant derivatives and linear constraints  
(LHA I), the states reachable by flows and a bounded number of jumps can  
be represented either symbolically similarly as for rectangular automata 
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(a) Computation of the flow cone.        (b) Flow cone added to initial set.

Fig. 2: Illustration of the computation of the time successor states in a location of a rectangular 
automaton for the variable x. Initially x ∈ [1, 3] and ẋ = [1, 2].
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above or by the representations mentioned below for LHA II. In the former 
case, the iterative reachability computations apply quite analogously, but the 
conditions can now be specified by any set of linear constraints, not only by 
constant bounds on variables. In the latter case, the computations are similar 
to the ones for LHA II described below, but we do not need segmentation as 
the behavior is linear thus segmentation does not increase the precision.

Hybrid automata with linear ODEs and linear constraints
For the more general case of hybrid automata with linear ODEs (LHA II), 
methods based on flowpipe construction can be used. Similar to the method 
mentioned above for rectangular automata, flowpipe-construction-based 
methods apply iterative forward reachability computations, starting from 
some initial state set and alternatingly over-approximating flow and jump 
successors. However, as the behaviour (according to the solutions of linear 
ODEs) is now in general non-linear, efficient approaches compute a set of 
convex linear sets, whose union over-approximates the states reachable from 
an initial state set by a bounded number of jumps (jump depth) and a bounded 
time ellapse between two successive jumps (time horizon). In some cases, 
when a fixed-point can be detected during analysis, these approaches are also 
able to make statements about unbounded reachability, but in general this is 
not the case.

The model class LHA II contains those hybrid automata, whose dynamics 
in each location l can be specified by a system of linear ODEs over the model’s 
variables x = (x1, . . . , xd):

ẋ = Ax.
Starting from some initial variable values x0 = (x0,1. . . , x0,d), according 

to the above dynamics, after t time units the variables will reach the values  
x(t) = etA ∙ x0, where etA is the matrix exponential for tA. In order to compute 
bounded reachability, even if we start from a single state, due to non-
determinism and non-linear behaviour in the iterative successor computations 
we need to extend the above solution to the initial value problem to handle 
initial state sets X0, and to over-approximate the set of all states reachable 
within given time intervals.

To over-approximate a flowpipe, formed by the trajectories of time 
evolutions from a set of initial states within a time interval [0, T], i.e.,  
to over-approximate the set of all states reachable within time T from  
a set X0, standard techniques discretize [0, T] into time segments  
[0, δ] ,..., [(N − 1)δ, Nδ] of size δ = T

N
 and compute flowpipe segments Ωi 

that over-approximate all states reachable from X0 within time [iδ, (i+1)δ]. 
The computation of the first segment Ω0 which safely over-approximates 
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reachability within the time interval [0, δ] is more involved, while all following 
segments Ω1, . . . , ΩN −1 can be obtained by linear transformations

Ωi+1 = eδA · Ωi.

To account for discrete jumps, we compute for each flowpipe segment Ωi 
its intersection with all outgoing jumps’ guards and apply the corresponding 
effects to the intersections. The obtained sets are considered as initial sets 
in the target locations in which again flow successors are computed. To 
reduce the growth of the search tree, jump successor sets can be clustered 
or aggregated into a fewer number of successor sets per target location.  
Figure 3 shows the algorithm for the computation of flow and jump successors 
for a given initial valuation set in a certain initial location. Figure 4 illustrates 
the reachability computation graphically on an example.

The datatypes for the representation of the flowpipe segments Ωi play 
an important role in verification, as they strongly affect both precision and 
efficiency. Popular representations use geometric objects (boxes, polytopes, 
zonotopes, etc.) or other symbolic representations (support functions, Taylor 
models, etc.). Each of these representations comes with individual advantages 
and disadvantages regarding memory requirements and the complexity and 
precision of the operations that are needed in the reachability analysis (linear 
transformation, intersection, union, Minkowski sum, etc.). For example, 
boxes are amongst the fastest set representations but they introduce large 
over-approximation errors. In contrast to that, support functions provide 
arbitrary precision but the operations required to obtain this precision are 
more involved. Convex polytopes are amongst the most precise state set 
representations but at the same time the computation with them might become 
expensive with the increasing of the state space dimension.

Fig. 3: Algorithm to over-approximate the flowpipe from a valuation set R0 in location l using time 
step length δ and n segments.

12 �

procedure computeFlowpipe(l, R0, δ, n)
cur ← R0 � state set to compute time successors for
F ← {R0} � set of flowpipe segments
J ← ∅ � set of jump successor sets
while !terminate do � while time horizont nδ is not yet

reached
cur ← flowSucc(cur , δ) � compute next flowpipe

segment
F ← F ∪ cur
J ← J ∪ jumpSucc(cur) � jump successors of current

segment

return (F, J) � return flowpipe segments and their jump
successors

Figure 2.3: Algorithm to over-approximate the flowpipe from a
valuation set R0 in location l using time step length δ and n seg-
ments.

The datatypes for the representation of the flowpipe segments
Ωi play an important role in verification, as they strongly affect
both precision and efficiency. Popular representations use geomet-
ric objects (boxes, polytopes, zonotopes etc.) or other symbolic
representations (support functions, Taylor models etc.). Each of
these representations comes with individual advantages and dis-
advantages regarding memory requirements and the complexity
and precision of the operations that are needed in the reachabil-
ity analysis (linear transformation, intersection, union, Minkowski
sum, etc.). For example, boxes are amongst the fastest set rep-
resentations but they introduce large over-approximation errors.
In contrast to that, support functions provide arbitrary precision
but the operations required to obtain this precision are more in-
volved. Convex polytopes are amongst the most precise state set
representations but at the same time the computation with them
might become expensive with the increasing of the state space
dimension.

Hybrid automata with non-linear ODEs

For this class of models more involved computations are required
to over-approximate flow and jump successors. In this paper we
do not cover this case. For further reading we refer to [12].

while time horizon not reached



Context-dependent Reachability Analysis for Hybrid Systems 169

Hybrid automata with non-linear ODEs
For this class of models more involved computations are required to over-
approximate flow and jump successors. In this paper we do not cover this 
case. For further reading we refer to [12].

2.3 Variable Set Separation
The applicability of the above reachability analysis algorithms strongly 
depends on the concrete models, especially on the number of their variables. 
To reduce the effort for reachability computations, in our previous work [31] 
we investigated separating syntactically independent subsets of variables of 
a given hybrid automaton H: We seek for a partitioning of the variable set  
Var = V0 ∪ . . .∪ Vk of H into disjoint subsets Vi such that all guards  
and invariants φ ∈ PredVar in H are decomposable into predicates  
φ = φ0 ∧ . . .∧ φk where φi ∈ PredVi

; we have similar requirements for flows 
and resets. If all these criteria are met, we call D = V0 ∪ . . .∪ Vk a syntactically 
independent decomposition of the variable set of H.

Syntactically independent decompositions allow for a compositional 
reachability analysis where each variable partition is treated individually 
in a corresponding sub-space. In [31] we used this property to effectively 
reduce the state space dimension for the reachability computations for LHA 
II. To account for implicit time synchronization, we established connections 
between flowpipe segments in different sub-spaces that were computed for the 
same time segments. Based on this implicit time synchronization, predicates  

Fig. 4: Illustration of flowpipe-construction-based reachability analysis.
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φ ∈ PredVar in H such as invariants or guards are only satisfied for a time 
segment if all decomposed predicates φi are satisfied during the same time 
segment in all sub-spaces. On the one hand, this decomposition speeds up 
the search remarkably, but on the other hand it introduces some additional 
over-approximation errors: If a flowpipe segment in a sub-space has a non-
empty intersection, e.g., with a jump guard but it is not fully contained in 
it then we do not exactly know at which time points the guard is true in the 
corresponding time segment, therefore we need to consider the full flowpipe 
segments in the other sub-spaces.

3. Context-based Reachability Analysis

3.1 Variable Set Separation Revisited
In the variable set decomposition approach [31] we aimed at grouping 
variables into three classes: (1) A set of discrete variables that are syntactically 
independent from all other variables not in the set. (2) A set of variables with 
constant derivatives that are syntactically independent from all other variables 
not in the set. (3) All the remaining variables. We required this decomposition 
to be fixed manually by the user for the whole automaton H.

In this work, we aim at providing an automated approach for finding 
maximal syntactically independent variable sets. To achieve this, we compute 
a dependency graph G = (V, E), whose nodes V = VarH represent the variables 
and whose edges (xi, xj) ∈ E represent syntactic dependence between the 
variables xi and xj in any location’s flow or invariant or in a jump’s guard 
or reset. For instance, when the evolution of xi syntactically depends on the 
value of xj or vice versa. The connected components of G provide the finest 
syntactically independent variable set decomposition.

Note that set union preserves syntactical independence, therefore if the 
finest decomposition contains too many partitions, several partitions can be 
united to achieve a coarser decomposition.

3.2 Context-sensitive Reachability Analysis
In many applications, for instance when digital controllers are part of the 
model, the variables of a given hybrid automaton can be classified into 
continuous physical quantities and discrete variables representing the state of 
the control program. Additionally the continuous variables can be classified 
into several subclasses based on the nature of their dynamics and the shape 
of conditions and reset functions. This classification basically reflects the 
different subclasses of hybrid automata, as presented in Table 1, i.e., we can 
separate variables that behave as clocks of a timed automaton, or variables 
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with constant derivatives, variables with dynamics from intervals or general 
linear or non-linear ODEs.

For the reachability analysis, the time evolution for discrete variables does 
not need to be computed, as the values of discrete variables remain unchanged 
during time evolution. Furthermore if we can detect a certain subclass of 
variables, we can make use of specialized approaches.

For instance, if only clocks are involved, we can exploit this by performing 
reachability computations which are based on DBM representations in one 
step instead of the time-discretizing approach which is used for general  
LHA II. Analogously we can make use of specialized approaches if the 
automaton is a rectangular automaton and compute the set of reachable states 
by means of linear predicates.

Thus, in our approach we try to customize reachability computations 
according to the different dynamics in syntactically independent variable 
sets to further increase the efficiency. In [31] we applied special reachability 
computation techniques only to syntactically independent discrete variables 
(in the first set). In this work we generalize our technique to better exploit the 
individual variable dynamics in different variable partitions by using tailored 
approaches which are available for certain subclasses.

We introduce the following classification of the variables according to their 
dynamics and available analysis methods:1 (1) discrete class (zero derivative), 
(2) timed class (derivative 1), (3) constant class (constant derivative),  
(4) rectangular class (derivative from rectangular set) and (5) linear class 
(linear ODE). In this work we do not consider non-linear ODEs, mainly due 
to implementation issues. Note that most classes contain all other classes with 
lower indices (e.g., (3) contains both (1) and (2)), but there are exceptions  
((2) is disjoint from (1) and (4) is disjoint from (5)). For a variable partitioning, 
to each partition we assign a context which is the class with the smallest index  
1 ≤ i ≤ 5 such that the dynamics of each variable from the partition falls 
into that class in each location. For example, if a partition contains discrete 
variables and clocks then its context is the constant class.

We can assign to each context a customized reachability analysis 
technique.
 (5) In our setup the linear class is the most general and therefore default 

context, which requires the usage of classical flowpipe-construction-
based approaches as presented in Section 2.2 for LHA II.

 (4) The rectangular class requires an approach different from all the other 
approaches (see Section 2), i.e., this class is not directly contained in any 
other class and thus there is no more general approach available.

1 Rectangular automata are a subclass of LHA II but the utilized analysis methods do not reflect this 
relation.
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 (3) For the constant class we can apply any method for LHA I to compute 
flow successors without flowpipe segmentation in one step for unbounded 
time duration. Note that the analysis method for the rectangular class is a 
generalization of this approach and thus can also be used.

 (2) If we can syntactically separate a set of variables within the timed class 
then we can use DBM-based analysis methods suitable for timed automata 
which are far more effective and precise.

(1) Finally, for the discrete class the flowpipe computation reduces to 
identifying jump successors.

3.3 Implementation Details
In previous works [28, 29] we have introduced the concept of tasks and 
workers in hybrid systems reachability analysis. A task t = (l, R, T ) stores the 
information that a flowpipe computation needs to be carried out in a location  
l for initial valuation set R and time duration [0, T ]. Tasks are stored in queues 
and executed by workers, where each worker is implemented as a separate 
thread. During these executions, each worker might create follow-up tasks for 
jump successors, which can be distributed over shared global queues to other 
workers.

We have extended this concept by introducing context-sensitive workers 
to exploit dedicated reachability analysis methods in different contexts and 
to further improve the scalability of our method. In the following we extend 
the concept of a symbolic state (l, R) to sub-spaces and use (l, R1, . . . , Rn) 
to denote decomposed sets with Ri being the projection of R to the sub-space 
of Vi. Thus in the context of a decomposition in n syntactically independent 
variable sets our tasks are of the form t = (l, R0, . . . , Rn, T ). Note that the cross 
product of the projections over-approximates the initial state set (assuming 
the same order of the dimensions).

After reading the input automaton H, a syntactically independent 
decomposition DH = V0 ∪ . . .∪ Vn is computed using the graph-based approach 
as presented before. Based on this decomposition, the initial valuation set 
InitH(l) for each location l is projected onto the sub-spaces spanned by the 
variable sets Vi in l, resulting in the valuation sets Initi(l). For each location, its 
initial task (l, Init1(l), . . . , Initn(l), T ) (where T is the time horizon) is pushed 
into the working queue and can be grabbed by a worker, which will execute all 
needed successor computations in the sub-spaces using time synchronization 
between them, and potentially push jump successors back into the working 
queue.

As mentioned in Section 2.3, we require implicit synchronization 
between the different contexts to check conditions such as invariants, guards 
or intersections with bad states. Synchronization via time intervals between 
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different sub-spaces may introduce over-approximation errors. We illustrate 
this using the synchronization on discrete jumps (see Figure 5). In the linear 
context (class (5)) it is impossible to get the exact time interval Tg when a 
guard predicate g for a discrete jump is satisfied. The time intervals associated 
with each segment however allow us to obtain an over-approximation  
T'g  ⊇ Tg (in Figure 5 the union of the time segments of R2 and R3). Using 
T'g for synchronization, we identify the corresponding flowpipe segments in 
all other sub-spaces (R'2 and R'3 in Figure 5, right). This introduces additional 
over-approximation errors, as the exact time interval Tg when the predicate 
g is satisfied cannot be obtained and used for synchronization between the 
sub-spaces.

Even though the decomposition of the state space into sub-spaces 
indicates that the analysis of those can be handled independently, collecting 
and distributing information over the different sub-spaces is beneficial. As 
predicates such as guards and invariants need to be satisfied in all sub-spaces 
at the same time, we can avoid unnecessary checks: For instance knowing that 
a predicate, e.g., a guard is not satisfied in a certain sub-space during a certain 
time interval directly allows to skip the check for this guard for the same time 
interval in all other sub-spaces.

We can further exploit this fact by observing that intersection computation 
in different contexts comes with different efforts and different consequences. 
For instance, if a guard g of a jump is not enabled in a discrete context 
then we know for sure that this transition will not be enabled for the whole 
flowpipe and can skip consecutive checks in all other sub-spaces during 
the whole computation of the flowpipe. As another example, it is precise 
and computationally cheap to gain timing information from a timed or a 
rectangular context, which can be transferred to the according predicates in 
other sub-spaces in order to avoid expensive operations.
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Fig. 5: Synchronization over time intervals for flowpipe segments R2, R3 in sub-space 1 maps to 
segments R'2 , R'3 in sub-space two.
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To this end, verification in the discrete context, followed by the timed 
and rectangular context and finally the linear context allows for a maximal 
information extraction and distribution with minimal cost during running 
time.

Handler-based Contexts
To reduce the implementation overhead and avoid duplicate code, our context-
based workers may be assembled modularly from pre-defined handlers. The 
general approach for reachability analysis as presented in Figure 3 can be 
divided into several subtasks which can be handled individually. Abstracting 
those subtasks, for instance computing the intersection with the invariant 
or computing a jump successor allows to further modularize reachability 
computation. While a general approach towards this was presented in [20], we 
aim at refining this idea. As already stated, the basic flowpipe construction-
based reachability analysis method distinguishes between computation of 
time- and jump-successor states. The computation of time successor states 
can further be partitioned into the computation of the time successor state set 
(l, R), the validation of the invariant (l, R') = (l, R ∩ Inv (l)), the intersection 
with bad states (R' ∩ Rbad = ∅ ?) and testing whether outgoing transitions  
(l, gi, ri, l') ∈ Edge from the current location are enabled (R' ∩ gi = ∅ ?). 
Jump-successor computation involves application of the reset function ri 
and intersection with the target location’s invariant. Note that further post- 
and pre-processing steps for both, the time—as well as the jump-successor 
computation can be applied or even may be neccessary, depending on the 
type of dynamics. For instance fixed-point tests can be included as a post-
processing of the jump-successor computation, while for example aggregation 
and clustering can be seen as potential pre-processing steps and make sense 
when computing LHA II reachability.

While some of those steps vary depending on the context, some are 
similar in multiple subspaces. The intersection with the invariant condition, 
as an example is similar in subspace classes (1)–(3) and (5) and thus can be 
computed by the same code.

To exploit this property and allow for a dynamic creation of contexts, to 
reduce duplicate code as well as to ease the extension of existing approaches 
we introduce handler-based contexts. While a general template of a worker is 
provided, a central decision entity allows to implement creation of handlers 
based on the current context with a fall-back to the most general approach (all 
classes except (4) fall back to (5)). In the current setup we provide handlers 
for each class for

 • the creation of the first flowpipe segment (required for LHA II),
 • the computation for time successors,
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 • the intersection of state sets with invariants,
 • the test for emptiness of a state set with the set of bad states,
 • the test for emptiness of a state set with a guard of an outgoing transition,
 • the application of a reset function to a state set and
 • the creation of follow-up tasks from a discrete jump.

Note that the general context template allows to instantiate pre- and post 
handlers for each of those mentioned handlers to allow for specialized pre- 
and post-processing.

The global decision entity, which is aware of the number and types of 
subspaces may decide during running time, which handlers to instantiate for 
which subspace.

4. Experimental Results

To test our approach, we have conducted several experiments using our tool 
prototype HyDRA, which is based on HyPro [30], a C++ library providing 
modules for the development of flowpipe-construction-based reachability 
analysis methods for linear hybrid systems (LHA II).

We have used a set of commonly known benchmarks, including the 
bouncing ball (bball), an instance of Fisher’s mutual exclusion protocol 
(fisher), the model of a vehicle platoon (platoon), the simplified model of a 
temperature control of a reactor (rods), an artificial 5D linear switching system 
(sw5), and a model of two leaking tanks with a controlled inflow (2tanks). 
All experiments were carried on an Intel Core i7 (4 × 4 GHz) CPU with  
16 GB RAM. The timeout was set to 10 minutes and we used a memory 
limit (MO) of 8 GB. The running times for our experiments can be found in  
Table 2. To test our extension towards rectangular automata and decomposition 
thereof we created a small toy example which contains both, linear dynamics 

Table 2: Running times (in seconds) for a selection of benchmarks with context-sensitive workers 
(sep.) and without using boxes (box) and support functions (sf) with different time step sizes. Timeouts 

(TO), memouts (MO) and unsuccessful verifications (†) are marked.

benchmark

box box sf sf

δ = .1 δ = .01 δ = .01 δ = .001

no sep. sep. no sep. sep. no sep. sep. no sep. sep.

non-
dec.

bball
sw5

†
†

†
†

0.1
†

0.1
†

0.14
†

0.15
†

0.51
0.32

0.54
0.32

dec.

fisher
platoon
rods
2tanks

5.8
†

0.13
1.16

8.25
†

0.13
0.71

5.14
†

0.39
0.75

74.9
†

0.43
0.83

TO
5.17
9.98
TO

285
4.6
4.13
1.22

TO
19.8
TO
TO

TO
15.5
339
8.78
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and rectangular dynamics. Due to the lack of published benchmarks for 
rectangular automata we used an additional artificial model with 5 variables 
(5variable_system) taken from [11]. Furthermore, we created an equivalent 
instance of fisher using a rectangular automaton model to test our approach, as 
the original dynamics are constant. The running times for those experiments 
can be found in Table 3.

In our experiments we varied the state set representation between boxes 
(box) and support functions (sf), and the time step size δ between 0.01 and 0.001 
for the analysis of LHA II and the decomposition thereof. The configurations 
denoted by sep. denote runs of context-sensitive reachability analysis with 
variable separation as presented in Section 3. Some configurations resulted in 
too strong over-approximations and therefore they could not prove safety of 
the given benchmarks (†), some others timed out (TO).

The benchmark instances fisher (4 × 1), platoon (2 × 1, 1 × 10), rods  
(3 × 1) and 2tanks (10 × 1, 6 × 2) can be decomposed into sub-spaces as 
indicated in the brackets (number of sets Vi × |Vi|) while bball and sw5 are not 
decomposable. The mixed-rectangular toy example (toy) can be decomposed 
into 1 × 2, 1 × 1, 1 × 1 subspaces where the first subspace is rectangular, the 
second one is timed and the third one is linear. The rectangular version of fisher 
is decomposable into subspaces of dimension 1 × 3 and 1 × 1 where the first 
subspace is rectangular. Note that benchmarks involving rectangular subspaces 
together with non-rectangular subspaces always require decomposition, as the 
analysis method for rectangular automata fundamentally differs from the one 
for LHA II, which was normally used as a fallback in case no decomposition is 
demanded. Furthermore the state set representation for rectangular subspaces 
is fixed, as we use conjunctions of linear constraints to represent state sets. 
As the reachability analysis method for rectangular automata does not require 
time discretization but computes the set of reachable states in a location in one 
step, we do not consider any time step size for those benchmarks.

We can observe that for support functions the decomposition pays off 
in most cases in terms of running time, and the overhead introduced by 
the decomposition is negligible in comparison to the speed-up resulting 
from lower-dimensional sub-spaces. Even a state space reduction by two 

Table 3: Running times (in seconds) for the rectangular models and adaptions. Note that per default 
decomposition is used.

Benchmark Running Times

toy 0.11

fisher 20

5variable_system 19.4
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dimensions (platoon) is noticeable, the decomposition of fisher into one-
dimensional sub-spaces allows to obtain results while the analysis using the 
original 4-dimensional state space exceeds the time limit. Note that for fisher 
the separated sub-spaces all require the usage of the linear context while the 
separated one-dimensional sub-spaces in platoon can both be computed using 
a timed context. The sub-spaces in 2tanks are mostly of discrete nature, which 
explains the huge speed-up when using support functions.

In our benchmarks, boxes behave differently. In general, boxes are 
amongst the fastest state set representations available such that the overhead 
introduced by decomposition as well as the overhead caused by instantiating 
multiple handlers computing flowpipes instead of one single handler is 
noticeable.

The analysis in the rectangular version of fisher is slower than when using 
boxes, however the state sets can be computed exactly with this method, which 
is not possible when using LHA II analysis methods (see Figure 6). The model 
of 5variable_system could be verified for one jump, when increasing the jump 
limit the memory limit was exceeded. This can be explained by the repeated 
application of Fourier-Motzkin variable elimination, which in the worst case 
introduces quadratically many new constraints when eliminating a variable.

5. Conclusion

We presented an extension to our previous work which is able to dynamically 
establish variable set decompositions based on syntactical independence. 
Furthermore our approach identifies a context for each sub-space which 

Fig. 6: Plots of the computed set of reachable states for the first location in fisher using different 
analysis methods.

Jump guard

Flowpipe

Initial state set

Jump reset

Fig. 7.4 Fig. 7.3 (Missing)

Fig. 7.5
R¢3

R¢2

R0

R1

R2

R3

Sub-space 1

Guard g

d d d d

R¢0

R¢1

Sub-space 2

d d d d

1

0.8

0.6

0.4

0.2

0
0        0.2       0.4       0.6       0.8         1

1

0.8

0.6

0.4

0.2

0
0        0.2       0.4       0.6       0.8         1

Fig. 7.6

(a) First segments for fisher using LHAII 
reachability analysis methods (δ = 0.1).

(b) Excerpt from reachable set for the 
rectangular variant of fisher.



178 Reuse in Intelligent Systems

allows for applying specialized methods for reachability analysis via flowpipe 
construction, i.e., for timed automata or rectangular automata.

Future Work

The currently computed decompositions are computed for the whole 
automaton. As a further task it would be interesting to investigate on local 
decompositions, i.e., decompositions which are based solely on the current 
location, which allows for more dynamic approaches at the cost of additional 
over-approximation when switching between different decomposition 
schemes. In this work we created decompositions for rectangular subspaces 
solely based on syntactic features. For future work it would be interesting 
to provide an approach which allows to convert subspaces with constant 
derivatives to a rectangular subspace, provided guard and invariant conditions 
as well as resets comply with the properties of a rectangular automaton 
(conditions are axis-aligned, variables are only reset to intervals). Additionally 
using classic variable elimination techniques such as Fourier-Motzkin variable 
elimination may introduce quadratically many constraints among some are 
redundant. One direction for the future development would be to further 
develop automated reduction techniques or switch to more sophisticated 
approaches as for instance proposed in [11].

References
 [1] Matthias Althoff and John M. Dolan. 2014. Online verification of automated road vehicles 

using reachability analysis. IEEE Transaction on Robotics 30(4): 903–918.
 [2] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. The MIT 

Press.
 [3] Stanley Bak and Marco Caccamo. 2013. Computing reachability for nonlinear systems 

with hycreate. Poster Session of HSCC’13.
 [4] Stanley Bak and Parasara Sridhar Duggirala. 2017. Hylaa: A tool for computing 

simulation-equivalent reachability for linear systems. pp. 173–178. In: Proc. of HSCC’17, 
ACM.

 [5] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi. 1995. 
Uppaal—a tool suite for automatic verification of real-time systems. pp. 232–243.  
In: Proc. of HS’95, Vol.1066 of LNCS, Springer.

 [6] Johan Bengtsson and Wang Yi. 2004. Timed automata: Semantics, algorithms and tools. 
pp. 87–124. In: Lectures on Concurrency and Petri Nets: Advances in Petri Nets, Springer, 
Berlin, Heidelberg.

 [7] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Frédéric Viry, Andreas Podelski and 
Christian Schilling. 2018. Reach set approximation through decomposition with low-
dimensional sets and high-dimensional matrices. pp. 41–50. In: Proc. of HSCC’18, ACM.

 [8] Olivier Bouissou, Alexandre Chapoutot and Samuel Mimram. 2013. Computing flowpipe 
of nonlinear hybrid systems with numerical methods. CoRR, abs/1306.2305.



Context-dependent Reachability Analysis for Hybrid Systems 179

 [9] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis and 
Sergio Yovine. 1998. Kronos: A model-checking tool for real-time systems. pp. 546–550.  
In: Proc. of CAV’98, Vol. 1427 of LNCS.

 [10] Vı́ctor A. Braberman, Alfredo Olivero and Fernando Schapachnik. 2002. ZEUS: A 
distributed timed model-checker based on KRONOS. pp. 503–522. In: Proc. of PDMC’02, 
Vol. 68:4 of Electronic Notes in Theoretical Computer Science, Elsevier.

 [11] Xin Chen, Erika Ábrahám and Goran Frehse. 2011. Efficient bounded reachability 
computation for rectangular automata. pp. 139–152. In: Proc. of RP’11, Vol. 6945 of 
LNCS, Springer.

 [12] Xin Chen, Erika Ábrahám and Sriram Sankaranarayanan. 2012. Taylor model flowpipe 
construction for non-linear hybrid systems. pp. 183–192. In: Proc. of RTSS’12, IEEE 
Computer Society Press.

 [13] Xin Chen, Erika Ábrahám and Sriram Sankaranarayanan. 2013. Flow*: An analyzer 
for non-linear hybrid systems. pp. 258–263. In: Proc. of CAV’13, Vol. 8044 of LNCS, 
Springer.

 [14] Xin Chen and Sriram Sankaranarayanan. 2016. Decomposed reachability analysis for 
nonlinear systems. pp. 13–24. In: Proc. of RTSS’16, IEEE Computer Society Press.

 [15] Pieter Collins, Davide Bresolin, Luca Geretti and Tiziano Villa. 2012. Computing the 
evolution of hybrid systems using rigorous function calculus. pp. 284–290. In: Proc. of 
ADHS’12, IFAC-PapersOnLine.

 [16] David L. Dill. 1990. Timing assumptions and verification of finite-state concurrent 
systems. pp. 197–212. In: Proc. of CAV’89, Vol. 407 of LNCS, Springer.

 [17] ParasaraSridhar Duggirala, Sayan Mitra, Mahesh Viswanathan and Matthew Potok. 2015. 
C2E2: A verification tool for stateflow models. pp. 68–82. In: Proc. of TACAS’15, Vol. 
9035 of LNCS, Springer.

 [18] Andreas Eggers. 2014. Direct Handling of Ordinary Differential Equations in Constraint-
solving-based Analysis of Hybrid Systems. Ph.D. thesis, Universität Oldenburg, Germany.

 [19] Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert and Tino Teige. 2007.  
Efficient solving of large non-linear arithmetic constraint systems with complex Boolean 
structure. Journal on Satisfiability, Boolean Modeling and Computation 1: 209–236.

 [20] Frehse, G. and R. Ray. 2009. Design principles for an extendable verification tool for 
hybrid systems. pp. 244–249. In: Proc. of ADHS’09, IFAC-PapersOnLine.

 [21] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Rajarshi Ray, Olivier Lebeltel, 
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 [22] Willem Hagemann, Eike Möhlmann and Astrid Rakow. 2014. Verifying a PI controller 
using SoapBox and Stabhyli: Experiences on establishing properties for a steering 
controller. pp. 115–125. In: Proc. of ARCH’14, Vol. 34 of EPiC Series in Computer 
Science, EasyChair.

 [23] Thomas A. Henzinger. 1996. The theory of hybrid automata. pp. 278–292. In: Proc. of 
LICS’96, IEEE Computer Society Press.

 [24] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri and Pravin Varaiya. 1998. What’s 
decidable about hybrid automata? Journal of Computer and System Sciences  
57(1): 94–124.

 [25] Kong, S., S. Gao, W. Chen and E.M. Clarke. 2015. dReach: δ-reachability analysis for 
hybrid systems. pp. 200–205. In: Proc. of TACAS’15, Vol. 9035 of LNCS, Springer.
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Chapter 8
Netflow Feature Evaluation  

for the Detection of Slow  
Read HTTP Attacks

Cliff Kemp, Chad Calvert and Taghi M Khoshgoftaar*

1. Introduction

Network cyber attacks have become commonplace in today’s world. These 
attacks have become very sophisticated and difficult to prevent. Many of the 
stealthy attacks target the application layer where they take advantage of 
vulnerabilities on web servers. Because web servers are open to the public 
they are accessed frequently by many users. The goal of attackers is to simulate 
legitimate, normal traffic as close as possible, which they do quite well. The 
task for those defending the networks is to determine the difference between 
normal and attack traffic. To make it even more of a challenge the attackers are 
always updating their attack methods.

One approach to assist the defenders of networks is machine learning. 
Networks have enormous amounts of data they collect. The data comes from 
various sources such as logs, full packet captures (FPCs), and Netflow traffic. 
Machine learning can use these sources with numerous machine learning 
algorithms. Also, algorithms have many options that can be used to optimize 
that algorithm for a given scenario. Additionally, there are techniques used to 
enhance the data before the machine learning algorithm is applied. Collecting 
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the data is easy, however, the most difficult part of the machine learning 
process is selecting the most relevant attributes, commonly referred to as 
features, that will improve the performance of the machine learner. We must 
also keep in mind that a set of features that performs well with one machine 
learner may not work well with another. Discovering the correct set of features 
for machine learning is referred to as feature selection. The goal of feature 
selection is to determine the set of features that will produce the best accuracy 
and predictability for the machine learner. There are many types of network 
attacks, and in this paper we focus specifically on application layer Denial of 
Service (DoS).

DoS is an attack that aims to prevent normal communication with a 
resource by disabling the resource itself or an infrastructure device providing 
connectivity to it. DoS attacks have evolved and adapted to create a severe 
security threat to networks. Akamai’s in-depth report, with insight into the 
latest Distributed Denial of Service (DDoS) and web application attacks, states 
that after two consecutive quarters of decline in total attacks, the number of 
DDoS attacks increased markedly in the second quarter of 2017 [6].

Recent years have brought a rise in application layer DDoS attacks 
targeting applications. They target not only the well-known Hypertext 
Transfer Protocol (HTTP) but also HTTPS, DNS, SMTP, FTP, VOIP, and other 
application protocols that possess exploitable weaknesses allowing for DDoS 
attacks. Much like attacks targeting network resources, attacks targeting 
application resources come in a variety of types including HTTP GET, Slow 
POST, and Slow Read. Slow Read approaches are particularly prominent, 
mostly targeting weaknesses in the HTTP protocol which, as the most widely 
used application protocol on the Internet, is an attractive target for attackers. 
Network resources are expected to provide seamless availability to employees 
for their day-to-day activities and to customers that purchase items and need 
access to online accounts twenty-four hours a day. Dependency for this 
access in networks today has become commonplace and as such has attracted 
malicious attackers who target these network servers, especially the web 
servers. The primary goal of DDoS attacks is to deny service provided to 
customers and employees.

There are distinct types of DDoS attacks, each performing at the various 
levels of the Open Systems Interconnection (OSI) model [20] as seen in 
Figure 1. The OSI model helps vendors create inter-operable network devices 
and software in the form of protocols so that different vendor networks 
could work with each other. The central concept of the OSI model is that the 
process of communication between two endpoints in a network divides into 
seven separate groups of related functions or layers. The application layer 
supplies network services to user applications. Network services are protocols 
that work with user data. For example, a web browser application uses the 



Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 183

application layer protocol HTTP which packages the data needed to send and 
receive web page content.

The Slow Read HTTP attack, also known as a “low and slow” attack [4], 
sends a legitimate HTTP request and reads the response slowly, aiming to keep 
as many connections active as possible to tie up resources on the server until 
it cannot handle any further requests. The characteristics of the Slow Read 
attacks relate to application resources, whereas the previous DDoS attacks 
targeted server resources such as bandwidth [50]. Slow Read attacks target 
specific application vulnerabilities, allowing an attacker to use a stealthy DoS. 
Not volumetric in nature, such attacks can often launch with only a single 
machine. Additionally, because these attacks occur at the application layer, 
a Transmission Control Protocol (TCP) handshake is already established, 
successfully making the malicious traffic look like normal traffic traveling 
over a legitimate connection.

Various evasion techniques are used to bypass intrusion detection systems, 
leaving the network vulnerable to specific DoS attacks. A stealthy DoS attack 
variant can disrupt routine web services covertly without triggering any alerts. 
One potential solution is the application of flow-based analysis.

Fig. 1: OSI model.
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Netflow, also referred to as session data, represents a high-level summary 
of network conversations. A Network flow record is identified based upon 
the standard 5-tuple attribute set that makes up a conversation: source IP, 
destination IP, source port, destination port, and transport protocol [32]. 
System for Internet-Level Knowledge (SiLK) is a software tool suite used 
to generate and analyze Netflow session data [19]. SiLK is a collection of 
traffic analysis tools developed by the Computer Emergency Response Team 
(CERT) and the Network Situational Awareness Team (NetSA) to facilitate 
security analysis of large networks [5]. SiLk can extract various standards 
of session data such as IP Flow Information Export (IPFIX) [13], Netflow 
v9 [12], or Netflow v5. It has the ability to collect Netflow session data in 
real-time or convert previously captured full pcaps. Netflow is a more space-
efficient format than FPCs not so much because of its size, but because it 
records the packed records into service-specific binary flat files and can parse 
flows in a timely and efficient way without the need for complicated CPU 
intensive scripts [31]. This is a key factor when considering RAM and hard 
drive requirements for servers.

The first of three unique contributions of our experiment is the analysis 
of Slow Read HTTP DDos attacks and the use of machine learning 
predictive models that help detect Slow Read. An important aspect of our 
first contribution is the use of Netflow using the IPFIX standard for session 
data. The combination of Netflow session data (IPFIX) and machine learning 
combats these stealthy attacks by successfully responding to the evasive 
methods used by attackers. We take advantage of user-defined data types in its 
features, because of the IPFIX protocol being freely extensible and adaptable 
to different scenarios. Machine learning is applied to Netflow features with 
the following eight machine learning algorithms: Random Forest (RF), two 
variants of C4.5, a decision tree algorithm, 5-Nearest Neighbors (5NN), 
Multilayer Perceptron (MLP), JRip, which uses Repeated Incremental Pruning 
to Produce Error Reduction (RIPPER), Support Vector Machine (SVM), and 
Naïve Bayes (NB). We have chosen these machine learners based on their 
popularity with network traffic and the variations they represent [48]. These 
eight learners provide us with a comprehensive array of algorithms to use on 
our Netflow features. 

Our second contribution focuses on the integrity of our data. Other studies 
have used computer-generated simulations, isolated test beds, or scripted 
traffic to collect their data [9], [39]. Our case study data is collected from real-
world network data from a production computer network. Normal web server 
traffic was generated through interactions with students, faculty, and the public 
on our web server located on a college campus. This helps to produce results 
more representative of a real-world scenario. All attack data was produced on 
a live and currently active platform. The Slow Read attacks were generated 
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by adjusting variables in the attack using three different levels of concurrent 
connections to give us a broad scope of this type of attack with represented 
models that reflect real-world activity. Therefore, the quality and integrity of 
our data is well represented because of the live setting instead of simulated 
environments or test beds. There are a few challenges when collecting data 
on a live network. These challenges are the generation of enough normal 
data, the concern for privacy, the generation of attacks on a live network for 
fear of disrupting the network, the number of machines needed to attack 
simultaneously, and the maintenance of network administration. Because of 
these challenges, other related works [45], [36] often utilize publicly available 
datasets.

Feature selection is our third contribution. We employ selective feature 
evaluation and investigate several methods used to specify the attribute 
evaluators and search methods. We evaluate the worth of a subset of attributes 
by considering the individual predictive ability of each feature along with 
the degree of redundancy between them. Subsets of features that are highly 
correlated with the class while having low intercorrelation are preferred. 
For this experiment, we choose the Weka [19] functions CfsSubsetEval 
and Consistency-SubsetEval. For single-attribute evaluation, we also 
used Weka functions ChiSquaredAttributeEval, GainRatioAttributeEval, 
and Principal Component Analysis (PCA). ChiSquaredAttributeEval  
and GainRatioAttributeEval are used with the Ranker search method to 
generate a ranked list from which Ranker discards a given number and 
ranks individual attributes according to their evaluation. Unlike other single-
attribute evaluators, PCA transforms the given set of attributes into newly 
created subsets of its own.

The remainder of this paper is organized as follows. In Section 2, we 
detail a common Slow Read attack method and Netflow. In Section 3, we 
discuss related works associated with the collection and detection of a Slow 
Read attack and feature selection. Section 4 outlines our collection procedure, 
classification algorithms, and feature selection. In Section 5, we discuss 
our findings for feature selection and our learners. Lastly, in Section 6, we 
conclude our works and identify future endeavors.

2. Background

There are a variety of methods for enacting an application layer DDoS attack. 
Contingent on the characteristics of the network, various types of attacks are 
chosen based on the targeted traffic. Our experiment deploys a total of three 
different Slow Read application layer attacks with varying configurations to 
represent several levels of an attack. In this section, we detail the Slow Read 
attack, data collection process, and Netflow traffic.
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In HTTP GET flood attacks, attackers can send different HTTP requests 
to the web server. The web server can have multiple connections from 
the same client to the same server. Each client process will be assigned a 
different ephemeral port number, so even if they all try to access the same 
server process, they will all have a different client socket and represent unique 
connections. This is what allows for several simultaneous requests to the same 
website from one computer. Attackers can target their requests toward the 
main web page, a random web page, a resource such as an image file, or even 
a combination of these [32]. Unlike high-bandwidth massive flooding attacks 
[4], low-bandwidth attacks performed by malicious users at the application 
layer rely on Slow Read attacks to evade detection. There is no need for an 
army of bots, as this type of attack can be performed with as little as one 
machine and use minimum bandwidth as compared to traditional flooding 
attacks [52]. Traffic during these attacks seems to be legitimate, where the 
HTTP client is a web browser that establishes a connection to a server for 
sending one or more HTTP request messages. We use an Apache web server as 
our HTTP server that accepts connections to serve HTTP requests by sending 
HTTP response messages. Differentiation of attack traffic and normal traffic 
is challenging and requires expertise in the field.

Application DDoS attacks most commonly target the HTTP protocol in 
an attempt to exhaust web servers through HTTP POST or GET requests. 
Dealing with DDoS flood attacks has simply been a matter of looking 
at overall flow volume for all routers to see if a spike had occurred. Once 
that determination has been made, administrators use methods to find the 
problem router or server and take steps to eliminate the threat. Attackers are 
increasingly targeting HTTP, DNS, and VoIP services to perform their attacks. 
Application DDoS attacks can target many different applications; however, 
the most common target which HTTP attacks aim to exhaust are web servers 
and services. Some of these attacks are characteristically more effective than 
others because they require fewer network connections to achieve their goal. 
For instance, an attacker could launch numerous HTTP GETs or POSTs to 
exhaust a web server or web application.

Slow Read attacks represent a method in which the attacker keeps the 
connection open by receiving the response from the server slowly, using a 
minimal TCP window size. TCP is the primary protocol of most modern 
networks, including the Internet. TCP is a reliable protocol that determines 
whether or not packets have been received and provides an ordered, and error-
checked delivery of a stream of bytes between applications running on hosts. 
Part of the TCP specification RFC 1122 [3] allows a receiver to advertise a 
zero-byte window, instructing the sender to maintain the connection, but not 
send additional TCP payload data. The sender should then probe the receiver 
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to check if the receiver is ready to accept data. By advertising a zero receive 
window and acknowledging probes, a malicious receiver can cause a sender to 
consume resources (TCP state, buffers, and application memory), preventing 
the targeted service or system from handling legitimate connections.

Figure 2 [1] shows the SlowHTTPTest tool performing a Slow Read 
attack which eventually purges a service’s availability. The SlowHTTPTest 
tool efficiently implements various application layer DoS attacks. It executes 
most common low-bandwidth application layer DoS attacks, such as 
Slowloris, Slow HTTP POST, and Slow Read attack (based on TCP persist 
timer exploit) by draining the concurrent connections pool, as well as the 
Apache Range Header attack by causing significant memory and CPU usage 
on the server. If a data flow occurs, a Slow Read attack exploits the fact that 
most of the modern web servers are not limiting the connection duration. With 
the possibility of prolonging a TCP connection virtually forever with zero or 
minimal data flow by manipulating the TCP receive window size value, it is 
possible to acquire concurrent connection pools of the application [1]. It is the 
concurrent connections that will eventually bring the server down.

Unlike Slowloris and Slow HTTP Post in which attacks are performed 
by pushing data slowly to the server, a Slow Read attack forces the server to 

Fig. 2: Slow read attack using SlowHTTPTest tool [1].
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send a significant amount of data which it accepts at a slow rate. The window 
size can be set to beyond 0 by the attacker arbitrarily. The attacker declares 
a very small receive window size which makes the server split the response 
into many small pieces that would fit the buffer size, resulting in prolonged 
ongoing responses [1].

This attack needs to have the target generate at least one piece of content 
on the web page that is larger than the buffer of the server. The attacker may 
load the main page of the website and pick the largest resource. If there are 
no sufficiently large resources on the server, the attacker will multiply the 
size of the response by repeatedly requesting the same resource which will 
fill up the send buffer of the web servers. The server will finish processing the 
request when the content has been stored in the send buffer, so if the content 
is smaller than the send buffer, the attack will fail.

Data collection represents a major contribution of our research, primarily 
due to the fact that the method of collection can have a direct impact on the 
quality of analysis and ability to perform effective attack detection. Network 
data comes in many formats and locations. Knowing what data is available, 
where that data comes from, how and why it is collected, and what can be done 
with it is a major responsibility for those who manage networks. FPCs, web 
server logs, and session data are all excellent sources for analyzing network 
traffic. Each of these data sources performs better than the other depending on 
the type of attacks one is examining. FPC data provides a full account for every 
data packet transmitted between two endpoints, but can be overwhelming due 
to its high degree of detailed data that is processed for diagnostics. Storing 
FPCs can be a challenge to keep for very long, if at all. Ideally, one has  
FPCs available for a shorter duration in case one must investigate any 
previous malicious activity. It comes at a cost, however, as it can be quite 
storage intensive to capture and store FPC data for an extended period.  
The large size prohibits most organizations from retaining any significant 
amount of data. Furthermore, evaluating all available packet features can be 
resource intensive. Some organizations do not have the resources to include 
FPC data into their Network Security Monitoring (NSM) infrastructure 
efficiently [44].

Web server logs are ineffective at early detection of Slow Read attacks 
because of the technique used by the Slow Read attack on a web server. Slow 
Read attacks keep TCP connections open with no data being sent. As long  
as the receiver TCP continues to send acknowledgments in response to the 
probe segments, the sender TCP must allow the connection to stay open. 
Given these conditions, the TCP connection will be open, with no data being 
transmitted. This “stalled” state is generally referred to as the TCP persist 
condition [22]. At this point, there are no web server logs generated during 
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the attack. Web logs are only generated after the attack has completed, and 
the damage done.

As previously mentioned, SiLK can be used to supplement or supply a 
summary of some of the most valuable attributes of the traffic and maintain 
the data in a format that permits longer retention because of the significantly 
lower amount of data. Additionally, the features utilized in IPFIX Netflow are 
well designed to avoid evasion techniques used by attackers [44].

Unlike the challenges that FPC faces with accumulating and analyzing 
enormous amounts of data, Netflow session data simply includes a collection 
of text records and statistics. Session data is significantly smaller in size as 
compared to FPC. Session or flow records will usually include the protocol, 
source IP address and port, the destination IP address and port, a timestamp  
of when the communication began and ended, and the amount of data 
transferred between the two devices. Netflow represents an efficient storage 
solution for network data. This is beneficial for network security analysts as 
they must be able to rapidly query large historical traffic datasets. Additionally, 
Netflow is ideally suited for analyzing traffic on the backbone or border of a 
large, distributed enterprise, or mid-sized ISP.

The basic unit of data transfer in IPFIX is the message. A message 
contains a header and one or more sets, which contain records. A set may 
be either a template set, containing templates or a dataset, containing data 
records. A dataset references the template describing the data records within 
that set [21]. This is the mechanism which lends IPFIX its flexibility. IPFIX 
offers variable length fields for exporting custom information, where Netflow 
V9 does not. It also has a scheme for exporting lists of formatted data. Our 
Netflow data uses the IPFIX standard format on generated network traffic and, 
with the support of Silk NetFlow session data, performs comparably well. 
SiLK is a tool that can fill the gaps of traffic capture tools because it can find 
anomalies associated with traffic patterns and behaviors, and create statistics 
such as aggregate packets, duration, and bytes in a flow.

3. Related Works

Historically, network simulators like nse2 [27] or modelers such as Opnet 
[25] were used to reproduce DDoS attacks and measure their effects with 
attack detection techniques like [10] and [43]. Though these simulation 
methods were practical at that time, they are not a factual depiction of real-
world environments [28]. Combined with slower speeds using traffic replay, 
this further illustrates why simulation is an ineffective scheme for focusing on 
DDoS attack detection techniques. A better solution to simulators is emulation. 
This is where actual machines are used as attackers and targets. One method 
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of emulation is demonstrated with the Emulab DETER [9] and PlanetLab [39] 
testing environments. The DETER and Emulab testbeds permitted users to 
choose machines in a controlled facility that are inaccessible from the Internet. 
PlanetLab is a distributed test environment system that has shared access to 
machines, using Virtual Machine (VM) software, consequently isolating users 
within their own environment. Park et al. [38] analyze the effectiveness of 
Slow Read DoS attack using a virtual environment framework, but again their 
testbed is in an isolated setting.

As mentioned, we propose using the following machine learning 
techniques: RF, 5NN, MLP, C4.5N, C4.5D, JRip, SVMs, and NB. There have 
been other works that have explored some of these and other techniques. Adi 
et al. [7] used Weka to employ four machine learning techniques (NB, decision 
tree, JRip, and SVMs) and ranked features. Farnaaz et al. [16] used RF to 
conduct their experiment on the NSL-KDD dataset. Their results show that 
the proposed model is efficient with a low false alarm rate and high detection 
rate.

NB is one of the most widely used techniques in data mining communities 
and used in many studies on traffic analysis and DoS detection. Mukherjee  
et al. [30] evaluated datasets with NB, applying feature reduction using three 
standard feature selection methods: Correlation-based Feature Selection 
(CFS), Information Gain (IG), and Gain Ratio (GR). Another study [29] 
applied NB to classify traffic without inspecting the payload but rather by 
extracting features from the TCP headers. Najafabadi et al. [32] applied the 
PCA subspace anomaly detection method to analyze whether the proposed 
user behavior NB model can sufficiently distinguish between normal and 
attack instances.

Zhang et al. [53] proposed a technique to pre-process traffic before 
removing features to be classified using NB. The pre-processing technique 
correlated traffic flows that were generated by the same application. The 
study showed that the proposed method outperformed other machine 
learning techniques such as decision tree and K-Nearest Neighbors (KNN). 
Haddadi et al. [18] employed flow-based network traffic utilizing NetFlow 
(via Softflowd). The proposed botnet analysis system is implemented by 
employing two different machine learning algorithms, C4.5 and NB. Their 
study reported the use of decision trees to identify botnet behavior from 
generated traffic patterns. The scheme compared its performance analysis 
with NB and concluded that decision trees could produce better classification 
accuracies.

JRip is considered a faster machine learning technique than decision 
trees. Gaonjur et al. [17] used a JRip classifier in a traffic analysis experiment 
to reduce false alarms. To select the best traffic features Yang et al. [51] 



Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 191

used an algorithm to improve classification accuracy and reduce the cost 
of classification associated with using JRip. Panda et al. [37] developed an 
extended and repeated incremental pruning process method via JRip rule-
based classifiers to construct multiple classifier systems to efficiently detect 
network intrusions.

SVMs have been applied to classify DoS traffic and legitimate traffic in 
a recent study [47]. Their study showed that SVMs classify with higher than 
90% accuracy in all conducted experiments. Najafabadi et al. [33] apply the 
one-class SVM algorithm on the extracted features from normal users’ HTTP 
request sequences and label any newly seen instance that deviates from the 
normal trained model as an application layer DDoS instance.

Feature selection has been proven to be effective and efficient in 
preparing data for various data mining and machine learning problems 
[23]. The objectives of feature selection include building simpler and 
more comprehensible models, improving data mining performance, and 
preparing clean, understandable data. PCA is a popular tool for data analysis 
and dimensionality reduction. A disadvantage is the fact that the principal 
components are usually linear combinations of all variables where all weights 
in the linear combination, are typically non-zero. To solve this disadvantage, 
[15] applies Sparse Principal Component Analysis (SPCA) to select features 
that can retain the total variance maximally by considering interactions among 
features and can select features with less redundancy.

Najafabadi et al. [34] used existing Netflow features with C4.5 decision 
tree algorithms. The decision tree algorithms build the predictive rules by 
using the dataset attributes. This provides a way to interpret how the newly 
defined attributes are contributing in the detection of attacks using their 
four models that include two versions of C4.5 decision tree, NB, and 5NN 
algorithms.

One benefit of feature selection is the decreasing of process time. [35] 
selected four filter-based feature selection methods which are chosen from 
two categories for the application of network intrusion detection. Their 
methods, which consist of three filter-based feature rankers and one filter-
based subset evaluation technique, are compared together along with the null 
case which applies no feature selection. They apply statistical analysis to 
determine whether performance differences between these feature selection 
methods are significant or not. Bauder et al. [8] present two case studies with 
medical claims fraud by employing a RF model with random undersampling, 
to mitigate adverse effects of class imbalance and to generate seven different 
class distributions for several big Medicare claims datasets. [46] provides a 
unique insight into the underlying relationships among classifier performance 
metrics by applying factor analysis to the classifier performance space. This 
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provides an improved understanding about relationships and groupings with 
performance metrics, facilitating the selection of performance with those 
metrics.

4. Experimental Procedure

The outline of our experiment concerning Slow Read attacks in this section 
is divided into three subsections that include the data collection process, 
classification algorithms, and metrics used to evaluate each model.

4.1 Data Collection Process
Our capture framework allows for us to perform our attacks within a real-
world network environment servicing numerous active users. The campus 
network consists of hosts from classrooms, labs (including off-campus, virtual 
systems), and offices. To facilitate our network usages, we employ switches, 
servers, and routers capable of servicing on-and-off-campus users. A Cisco 
firewall is used to provide secure access to data and network resources. For 
a student resource portal, an Apache web server has been set up to serve as 
the target for our attacks. The configuration of the server is composed of a 
Linux CentOS operating system, an Intel 3.30 GHz processor, and 32 GB of 
memory. Figure 3 shows our architecture in more detail.

We installed WordPress on the Apache student web server to serve as 
our content management system. The website consists of lecture material, 
assignments, assessments, and other content required by student users. 
Normal traffic related to coursework may consist of but is not limited to: 
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downloads, uploads, website navigation, and other communications with the 
web server. Within the context of our network usage, students both locally on 
our network and from online may request course material concurrently from 
our server. Our extended network also supports other faculty and students by 
providing services such as virtualization, email, web hosting, and audio/video 
streaming. Additional traffic is generated from the public as this is a live web 
server facing the Internet.

Our attacks are performed using penetration testing on a physical host 
machine using the SlowHTTPTest [2] tool rather than through simulation. 
Variations in settings used by SlowHTTPTest are applied, giving us different 
results and valuable information on thresholds of the attacks in our experiments. 
For our tests, the SlowHTTPTest tool allowed for easy configuration 
adjustments and incorporated numerous attack settings. We administered 
a total of three different attacks with varying configurations to represent 
several levels of an attack. For an attack attempting to avoid detection by 
using minimal connections, representing a stealthy scenario, we configured 
a single attack host using 500 connections with a random connection interval 
between 1 and 5 seconds. Our second attack initiated a more moderate level 
attack executing 1,000 connections with the same random connection interval 
between 1 and 5 seconds. Finally, we implemented the least stealthy attack, 
using 1,500 connections and again the random connection interval was set 
between 1 and 5 seconds. Each attack ran from a single host machine for 
approximately one hour and targeted our resource web server.

As previously mentioned, FPC can be quite storage and resource intensive 
in capturing FPC data for an extended period of time. Calvert et al. [11] collect 
data using web server logs from a student resource web server comprised of 
29 unique fields. Web server logs are ineffective at early detection of Slow 
Read attacks because of the techniques used by the Slow Read attack on our 
web server. Netflow data is just a collection of text records and statistics and is 
incredibly small in size. The smaller size allows faster parsing and analyzing 
of data. The result is that it is easy to create large-scale flow storage solutions. 
FPC data retention is in minutes or hours, but Netflow data can be retained for 
months or years. Analysis tools aid analysts in examining the data for the 
purpose of detecting anomalies or generating statistics.

There are a few Netflow standards used on networks today. We use the 
IPFIX standard for our Netflow data. As mentioned previously, the IPFIX 
standard is chosen because of its flexibility and features. It offers variable 
length fields for exporting custom information, where NetFlow V9 does not 
and can take advantage of user-defined data types in its messages, so the 
protocol is freely extensible and can adapt to different scenarios. The features 
used in our work for machine learning are listed in Table 1.
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4.2  Classification Algorithms
Eight classification algorithms were selected to build predictive models based 
on our collected datasets: RF, two variants of C4.5 decision trees (C4.5N, 
C4.5D), 5NN, MLP, JRip, SVM, and NB. This variety of learners was selected 
to broaden the scope of our analysis. All models were built using the Weka 
machine learning toolkit [19]. Weka contains implementations of machine 
learning algorithms used in this research [49]. The Weka Java API is used to 
write the framework. The software versions used are 3.6:14 for Weka and Java 
JDK version 8u91.

Machine learning algorithms can be grouped into parametric and 
nonparametric models. Using parametric models, we estimate parameters 
from the training dataset to learn a function that can classify new data 
points without requiring the original training dataset. Two examples of 
parametric models used in our experiment are the MLP and SVM. In contrast, 
nonparametric models cannot be characterized by a fixed set of parameters, 
and the number of parameters grows with the training data. Four of our non-
parametric models used in our work are the decision tree classifiers C4.5D, 
C4.5N, 5NN, and RF.

5NN is a specific value for KNN, a typical example of a lazy learner, 
which means it does not learn a discriminative function from the training data, 
but memorizes the training dataset instead. KNN is described as instance-
based learning that performs predictions by finding the prediction value of 

Table 1: Description of netflow features.

Feature Name Description

Protocol IP protocol

Packets Number of packets in flow

Bytes Number of bytes in flow

Flags TCP flags all packets [FSRPAUEC]

InitialFlags TCP flags in initial packet

SessionFlags TCP flags second through final packet

Attributes Flow attributes [SFTC]

Packets/Second Number of packets per second

Bytes/Second Number of bytes per second

Bytes/Packet Number of bytes per packet

Durmsec Duration of the flow (in seconds)

Label Class label (Attack or Normal)
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records (near neighbors). These distance functions utilize K, which represents 
the number of closest instances to the test instance to decide its label. The 
KNN algorithm itself is straightforward and can be summarized by the 
following steps:

 1. Choose the number of K and a distance metric.
 2. Find the K-nearest neighbors of the sample that we want to classify.
 3. Assign the class label by majority vote.

Figure 4 illustrates how a new data point represented by the circled 
question mark is assigned the triangle class label based on majority voting 
among its five nearest neighbors.

The C4.5 decision tree is a tree-based learning algorithm which is used 
for classification problems. The C4.5 algorithm for building decision trees is 
implemented in Weka as a classifier called J48. The classifiers are organized in 
a hierarchy and model training is used to learn parameters from the data. C4.5 
selects the attribute of the data that most efficiently splits its set of samples 
into subsets augmented in one class or the other. The splitting criterion is the 
normalized IG. The attribute with the maximum normalized IG is selected to 
make the decision. We utilized a version of C4.5 using the default parameter 
values from Weka (denoted by C4.5D) as well as a version (denoted by C4.5N) 
with Laplace smoothing activated and tree-pruning deactivated.

RF has gained huge popularity in applications of machine learning during 
the last several years due to its good classification performance, scalability, 
and ease of use. RF is an ensemble classifier used to improve the accuracy 
as compared to a single decision tree. Intuitively, RF can be considered as an 

Fig. 4: 5NN example.
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ensemble of decision trees. The idea behind RF is to average multiple (deep) 
decision trees that individually suffer from high variance. This will help to 
build a more robust model that has a better generalization performance and 
is less susceptible to overfitting. It corrects the tendency of decision trees 
to overfit by randomly sampling features as split candidates during each 
iteration. When constructing individual trees in RF, randomization is applied 
to select the best node to split on. In our experiment, no changes were made 
to the default values for RF. The RF algorithm can be summarized in four 
simple steps:

 1) Draw a random bootstrap sample of size n (randomly choose n samples 
from the training set with replacement).

 2) Grow a decision tree from the bootstrap sample. At each node:
• a. Randomly select d features without replacement.
• b. Split the node using the feature that provides the best split according 

to the objective function.
 3) Repeat steps 1 and 2 K times.
 4) Aggregate the prediction by each tree to assign the class label by 

majority vote.

Algorithm 1 RF Algorithm
1: repeat t > RF
2:    for Draw random bootstrap sample of size n (randomly choose n 

samples from training set with replacement) do
3: Grow a decision tree from the bootstrap sample. At each node:
4: a. Randomly select d features without replacement
5: b. Split the node using the feature that provides the best split  
       according to the objective function
6: Repeat steps 1 and 2 K times
7: Perform majority vote across trees
8: end for
9: Aggregate the prediction by each tree to assign the class label

An MLP is a type of artificial neural network that utilizes neurons 
(perceptron) to compute an individual value from multiple inputs using 
nonlinear transformations. Although a single neuron can be somewhat 
limiting, MLPs use these neurons as building blocks to create much larger 
networks. MLPs can also utilize several hidden layers to help transform inputs 
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into usable values by the outer layers. Two parameters were changed from 
the default values for the MLP learner. The “hiddenLayers” parameter was 
changed to “3” to define a network with one hidden layer containing three 
nodes. The “validationSetSize” parameter was changed to “10” causing the 
classifier to leave 10% of the training data aside. This parameter is used as 
a validation set to determine when to stop the iterative training process. The 
MLP algorithm is demonstrated below:

Algorithm 2 MLP Algorithm
1: repeat t > MLP
2: for each training vector pair (x,t) do
3: evaluate the output y when x is the input
4: if y ≠ t then
5: form a new weight vector w’ according to
6: w’ = w + a (t–y) x
7: else
8: do nothing
9: end if

10: end for
11: until y = t for all training vector pairs = 0

JRip is based on rule-learning techniques that classify data samples into 
a single class and seeks a set of rules to classify data best. JRip has four 
principle stages, namely initialization stage, building stage that involving 
growing and pruning steps, optimization stage and the deletion stage. Classes 
are examined in increasing size and an initial set of rules for the class is 
generated using incremental reduced error. JRip proceeds by treating all the 
examples of a judgment in the training data as a class and finding a set of rules 
that cover all the members of that class. Thereafter it proceeds to the next 
class and does the same, repeating this until all classes have been covered. The 
rule-learning technique is what makes it a faster machine learning technique 
than decision trees. JRip reduces false alarms, selects the best traffic features, 
and efficiently reduces the volume of data processed by intrusion detection 
systems for classification [14]. Note that p and n are the number of true and 
false positives respectively. P and N are the total number of real positives and 
real negatives respectively. T is the number of instances and t is the number 
of examples of a selected attribute. The algorithm is briefly described as 
follows:
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Algorithm 3 JRip Algorithm 
1: Initialize RS = {}
2: for each class from the less prevalent one to the more frequent one do
3: Building stage:
4: repeat
5: a. Grow phase: Grow one rule by greedily adding antecedents  
 (or conditions) to the rule until the rule is 100 percent accurate.  
 The procedure tries every possible value of each attribute and  
 selects the condition with highest IG: p(log(p/t)–log(P/T))
6: b. Prune phase: Incrementally prune each rule and allow  
 the pruning of any final sequences of the antecedents; the  
 pruning metric is (p–n)/(p+n)—but it is actually 2p/(p+n) –1, so  
 in this implementation we simply use p/(p+n) (actually (p+1)/ 
 (p+n+2), thus if p+n is 0, it is 0.5).
7: until the description length (DL) of the ruleset and examples is  
 64 bits greater than the smallest DL met so far, or there are no  
 positive examples, or the error rate is greater than or equal to 50  
 percent.
8: Optimization stage: After generating the initial ruleset Ri, generate  
 and prune two variants of each rule Ri from randomized data  
 using procedure a and b. One variant is generated from an empty  
 rule, while the other is generated by greedily adding antecedents  
 to the original rule. Moreover, the pruning metric used here is  
 (TP+TN)/(P+N). Then the smallest possible DL for each variant  
 and the original rule is computed. The variant with the minimal DL  
 is selected as the final representative of Ri in the ruleset. After all  
 the rules in Ri have been examined and if there are still residual  
 positives, more rules are generated based on the residual positives  
 using Building Stage again.
9: Delete the rules from the ruleset that would increase the DL of the  

 whole ruleset if it were in it and add resultant ruleset to RS.
 10: end for 

SVMs are discriminate classifiers used as supervised learning models 
with associated learning algorithms which can be considered an extension of 
the perceptron. SVMs utilize hyperplanes to separate instances in a dataset 
into two distinct groups and assign new instances to one class or another. The 
aim is for the SVM to identify the most optimal hyperplane with the most 
significant gap between class instances as possible. The margin is defined as 
the distance (WT) between the separating hyperplane (decision boundary) and 
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the training samples (X) that are closest to this hyperplane, which are called 
support vectors. This is illustrated in Figure 5 [41].

Some of the advantages of SVM is that it works well with a clear margin 
of separation and is effective in high dimensional spaces. It is also useful in 
cases where some dimensions are greater than the number of samples. SVM is 
also memory efficient uses a subset of training points in the support vectors. A 
couple of disadvantages is that it does not perform well when there are large 
data sets because of the required training time, and there is more noise when 
target classes are overlapping. SVM is only directly applicable for two-class 
tasks.

NB is based on the Bayesian theorem and is well-suited for datasets with 
high dimensionality. The algorithm works upon the assumption that features 
are independent and utilizes this premise to calculate the posterior probability 
that an instance is a member of a specific class. Being relatively robust, easy 
to implement, fast, and accurate, NB classifiers are used in many different 
fields. The independence assumption is often violated, but NB classifiers still 
tend to perform very well under this unrealistic assumption [40]. For small 
sample sizes, NB classifiers can outperform the more powerful alternatives. 
In some cases, NB with feature reduction is known to outperform other 
sophisticated classification methods [30]. However, strong violations of the 
independence assumptions and non-linear classification problems can lead to 
very poor performances of NB classifiers when random samples have a lack 
of independence and relevance of the variables.

Figure 6 demonstrates why NB performs better with linear problems (A), 
as opposed to non-linear problems (B). Random samples for two different 
classes are shown as colored spheres and the dotted lines indicate the class 
boundaries that classifiers try to approximate by computing the decision 
boundaries. A non-linear problem (B) would be a case where linear classifiers, 
such as NB, would not be suitable since the classes are not linearly separable 
[40]. In such a scenario, non-linear classifiers like KNN would be preferred.

4.3 Feature Evaluation
Selective feature evaluation uses several methods to specify the attribute 
evaluator and search methods. Attribute selection is normally done by searching 
the space of attribute subsets, evaluating each one by combining 1 of the 6 
attribute subset evaluators with 1 of the 10 search methods. Subset evaluators 
take a subset of attributes and return a numerical measure that guides the 
search. In our experiment we choose the Weka functions CfsSubsetEval and 
ConsistencySubsetEval. For single-attribute evaluation we also used Weka 
functions ChiSquaredAttributeEval, Gain-RatioAttributeEval and PCA. 
ChiSquaredAttributeEval and Gain-RatioAttributeEval are used with the 
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Ranker search method to generate a ranked list from which Ranker discards 
a given number. Unlike other single-attribute evaluators, PCA transforms the 
set of attributes.

1) Attribute Subset Evaluation
Correlation Feature Selection (CFS) evaluates the worth of a subset of 
attributes by considering the individual predictive ability of each feature 
along with the degree of redundancy between them. Subsets of features that 
are highly correlated with the class while having low inter-correlation are 
preferred. In Weka, CfsSubsetEval has an option that iteratively adds attributes 
that have the highest correlation with the class, provided that the set does not 
already contain an attribute whose correlation with the attribute in question is  
even higher. BestFirst and Greedy Stepwise are the search methods used in 
our work.

ConsistencySubsetEval evaluates attribute sets by the degree of 
consistency in class values when the training instances are projected onto the 
set [24]. Subsets of features that are highly correlated with the class while 
having low intercorrelation are preferred. Consistency of any subset can never 
be lower than that of the full set of attributes. Hence, the usual practice is to 
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Fig. 6: Linear (A) vs. non-linear problems (B) for NB.

Fig. 5: SVM margins [41].
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use this subset evaluator in conjunction with a Random or Exhaustive search 
which looks for the smallest subset with consistency equal to that of the full 
set of attributes [24]. The correlation of subsets is based on a merit between 
0 and 1. The merit function will have larger values for attribute subsets that 
have attributes with strong class-attribute correlation and weak attribute-
attribute correlation.

In our experiment, this evaluator is used in conjunction with BestFirst-
Forward (BFF), BestFirst-Backward (BFB), Exhaustive Search (ES) and 
Random Search (RS) methods. BestFirst performs greedy hill climbing with 
backtracking; the number of consecutive non-improving nodes that must be 
encountered before the system backtracks can be specified. BFF can search 
forward from the empty set of attributes, backward from the full set, or start 
at an intermediate point (specified by a list of attribute indexes) and search 
in both directions by considering all possible single-attribute additions and 
deletions.

RandomSearch randomly searches the space of attribute subsets. If an 
initial set is supplied, it searches for subsets that improve on (or equal) the 
starting point and have fewer (or the same number of) attributes. Otherwise, 
it starts from a random point and reports the best subset found. The fraction 
of the search space to explore can be determined. ExhaustiveSearch searches 
through the space of attribute subsets, starting from the empty set, and reports 
the best subset found. If an initial set is supplied, it searches backward from 
this starting point and reports the smallest subset with a better (or equal) 
evaluation.

2) Single-Attribute Evaluation
Single-attribute evaluators are used with the Ranker search method to 
generate a ranked list from which Ranker discards a given number. Ranker is 
not a search method for attribute subsets, but a ranking scheme for individual 
attributes. It sorts attributes by their individual evaluations and must be used in 
conjunction with one of the single-attribute evaluators and performs attribute 
selection by removing the lower ranking ones.

In our work, we used Chi-Squared, GR, IG, and Symmetrical Uncertainty. 
Chi-squared value-based feature selection computes the Chi-squared statistical 
value for all features with respect to each class and ranks the features based on 
the value. The algorithm poses an initial hypothesis that a class and a feature 
are unrelated. Then, it works towards disproving the initial hypothesis.

GR is another information theory-based feature ranking technique where 
the IG score for a given feature is normalized by the Information Split value or 
Intrinsic Value of the feature. Information Split value or Intrinsic Value is the 
entropy measure of the attribute using various rank-based algorithms. IG is an 
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information theory-based feature ranking technique that measures the extent 
of information possessed by a feature. The algorithm computes the scope of 
a feature towards the entropy of a class. Good features reduce the entropy of 
a class to the maximum level. Symmetric Uncertainty is another information 
theory-based feature ranking technique where the IG score is normalized by 
the entropy value of the attribute and the class. A good feature should have a 
high score.

3) Principal Component Evaluation
As mentioned previously, PCA transforms the set of attributes. New attributes 
are ranked in order of their eigenvalues. Technically speaking, the amount 
of variance retained by each principal component is measured by the  
so-called eigenvalue. A subset is selected by choosing enough eigenvectors 
to account for a given proportion of the default variance of 95 percent. The 
dimensionality of our dataset needs to be reduced by compressing it onto a 
new feature subspace, by selecting the subset of the eigenvectors, otherwise 
known as principal components, which contain most of the information 
that makes up the variance. The eigenvalues define the magnitude of the 
eigenvectors. We then sort the eigenvalues in decreasing order and focus on 
the top k eigenvectors based on of their corresponding eigenvalues.

PCA is a linear transformation technique that is widely used across 
different fields, most prominently for feature extraction and dimensionality 
reduction. PCA aims to find the directions of maximum variance in high-
dimensional data and projects it onto a new subspace with equal or fewer 
dimensions than the original one. The orthogonal axes (principal components) 
of the new subspace can be interpreted as the directions of maximum variance 
given the constraint that the new feature axes are orthogonal to each other.

PCA also helps us to process our data for a technique called T-distributed 
Stochastic Neighbor Embedding (t-SNE) that visualizes high-dimensional 
data by giving each data point a location in a two or three-dimensional map 
[42]. The technique is a variation of Stochastic Neighbor Embedding that is 
much easier to optimize, and produces significantly better visualizations by 
reducing the tendency to crowd points together in the center of the map. [26] 
suggests that t-SNE is better than existing techniques at creating a single map 
that reveals structure at many different scales.

4.4 Metrics
We evaluate each model using the Area Under the receiver operating 
characteristic Curve (AUC) and Precision-Recall metrics. The AUC graphs 
the True Positive Rate (TPR) and False Positive Rate (FPR) of the model. 
TPR represents the percentage of the Slow Read attack instances correctly 
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predicted as an Attack label. FPR represents the percentage of the normal 
data which was wrongly predicted as an Attack label. The AUC curve is built 
by plotting TPR vs. FPR as the classifier decision threshold is varied. Higher 
AUC values tend to correlate to higher TPR and lower FPR, both of which 
are preferred outcomes. Since this data was generated by network equipment, 
missing values were not present.

Stratified five-fold cross-validation with four iterations is used to evaluate 
our AUC values. Stratified five-fold cross-validation divides the data into five 
non-overlapping parts, with original class ratios being maintained in each fold. 
For each iteration, one part is kept as test data and the remaining four elements 
used as training data. Our final AUC values are calculated by aggregating the 
AUC values of the models tested for each of five elements of the data. Our 
experiment applied four runs of five-fold cross-validation to provide average 
performance values and decrease the bias of randomly selected folds.

There are two kinds of errors we use for metrics. A Type 1 error measures 
the total amount of false positives. A false positive (FP) is when the outcome 
is incorrectly predicted as yes (positive) when it is no (negative). A Type 2 
error measures the total amount of false negatives. A false negative (FN) is 
when the outcome is incorrectly predicted as negative when it is positive. 
They are both important misclassification errors that should be minimized, but 
the emphasis should be more on the Type 2 error. The reason for this is that in 
a network it is more important not to miss an attack as opposed to identifying 
an attack that is not. If a Type 2 error occurs, an attack has not been identified 
and the network has been compromised whereas, mislabeling normal traffic 
as an attack is not as severe as a missed attack.

Precision-Recall is a useful measure of success of prediction when the 
classes are very imbalanced. In information retrieval, precision is a measure of 
result relevancy, while recall is a measure of how many truly relevant results 
are returned. The F-measure (F-score), which is a measure of a test’s accuracy, 
is defined as the weighted harmonic mean of the precision and recall of the 
test and conveys the balance between the precision and the recall. An F-score 
reaches its best value at 1 (perfect precision and recall) and worst at 0. High 
scores show that the classifier is returning accurate results (high precision), as 
well as returning a majority of all positive results (high recall). A system with 
high recall but low precision returns many results, but most of its predicted 
labels are incorrect when compared to the training labels. A system with high 
precision but low recall is just the opposite, returning very few results, but 
most of its predicted labels are correct when compared to the training labels. 
An ideal system with high precision and high recall will return many results, 
with all results labeled correctly.

Analysis of variance (ANOVA) is a collection of statistical models and 
their associated procedures (such as “variation” among and between groups) 
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are used to analyze the differences among group means. A one-factor ANOVA 
is used to compare means from two independent (unrelated) groups using 
the F-distribution. The null hypothesis for the test is that the two means are 
equal. Therefore, a significant result means that the two means are unequal. 
We used ANOVA to compare AUC means of a Slow Read attack detection 
among the eight learners and check if differences are statistically significant. 
Tukey’s Honestly Significant Difference (HSD) post hoc test is used on our 
data in conjunction with ANOVA to find means that are significantly different 
from each other. The Tukey’s HSD post hoc test compares all possible pairs 
of means to find out which specific group means (compared with each other) 
are different.

5. Results

The following sub-sections include our results for feature selection and 
machine learner performance. Our analysis presents a comprehensive 
comparison of the different feature selection methods for detecting Slow Read 
DDoS attacks. We compare four different feature selection methods and four 
different classifiers. Our feature selection methods and classifiers are used 
to build classification models. Results are also given for the original eleven-
feature dataset. Our goal is to achieve the same performance or better than that 
of the eleven-feature set using feature selection methods. This is accomplished 
by focusing on the total number of Type 1 and Type 2 errors, with more weight 
assigned to the Type 2 errors. Precision, recall, and F-measure are utilized to 
compare performance of the models.

5.1 Feature Selection
CFS evaluators in Table 2 display the merit value, number of features selected, 
and the names of these selected features. The CFS evaluators are denoted 
as BestFirst-Forward (BFF), BestFirst-Backward (BFB), GreedyStepwise-
Forward (GSF), GreedyStepwise-Backward (GSB), RankSearch-ChiSquared 
(RSCS), and RankSearch-GainRation (RSGR). The evaluation results on 
each CFS subset evaluator is provided in Table 3. The number on the end of 
each model represents number of features. The results indicate that all four 
classifiers (RF, C4.5N, C4.5D, 5NN) show good performance with the five-
feature subset of Bytes, Flags, Initial Flags, Bytes/Packet, and Durmsec. The 
performance metrics of C4.5N were slightly better than C4.5D. Although 
C4.5N without pruning will construct a tree that is more profound and 
complex, which will produce a longer and more complicated tree structure. 
C4.5N had the same number of Type 2 errors as the eleven-feature set. RF 
and 5NN had slightly less Type 2 errors as compared to their original eleven-
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feature set. The RF five-feature set had the least amount of Type 2 errors 
overall. Precision, recall, and F-measure had similar results for all the models. 
The CFS Feature Selection technique provides effective performance with 
less features, by reducing the feature space to the most relevant features (also 
reducing the chance of overfitting and decreases processing time). The five-
feature subset is effective for the detection of Slow Read attacks with all four 
classifiers.

The results for our second attribute subset evaluator, ConsistencySubset 
Eval, are illustrated in Tables 4 and 5. Table 4 displays the attribute selection 
results for two search methods (Random and Exhaustive Search) and two 
options (forward and backward search). They are denoted as, BestFirst- 
Forward (BFF), BestFirst-Backward (BFB), Exhaustive Search (ES), and 
Random Search (RS). The search algorithm selected particular features denoted 
by “X”, and excluded a particular feature denoted by “0”. Table 5 shows the 
results for our four clasifiers (RF, C4.5N, C4.5D, 5NN). Each classifier has 

Table 2: CFS subset evaluator methods.

Evaluators Merit Features Features

BFF 0.183 3 Flags, Bytes/Packet, Durmsec

BFB 0.183 3 Flags, Bytes/Packet, Durmsec

GSF 0.183 3 Flags, Bytes/Packet, Durmsec

GSB 0.181 5 Bytes, Flags, InitialFlags, Bytes/Packet, Durmsec

RSCS 0.181 2 Bytes, Flags

RSGR 0.181 5 Bytes, Flags, InitialFlags, Bytes/Packet, Durmsec

Table 3: CFS model results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF3 9446 706 0.708 0.970 0.818

RF5 9444 700 0.708 0.970 0.818

RF11 9446 706 0.708 0.970 0.818

C4.5N3 9477 711 0.707 0.970 0.818

C4.5N5 9470 709 0.707 0.970 0.818

C4.5N11 9470 709 0.708 0.970 0.818

5NN3 9538 761 0.705 0.968 0.816

5NN5 9523 742 0.706 0.969 0.816

5NN11 9519 748 0.706 0.968 0.816

C4.5D3 9480 724 0.706 0.969 0.817

C4.5D5 9478 720 0.707 0.969 0.818

C4.5D11 9478 720 0.706 0.968 0.816
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three feature subsets. These are the set of eleven features (denoted by 11), 
the set using ConsistencySubsetEval with RandomSearch (denoted by 7), and 
the set with our top six overall scoring features using BFF and ES (denoted  
by 6). ConsistencySubsetEval with RandomSearch had the best results out of 
the four when we ran our group A classifiers (RF, C4.5N, 5NN, C4.5D). The 
customized seven-feature set in not in Table 5.

The results indicate that all the four classifiers (RF, C4.5N, C4.5D, 5NN) 
show good performance with the seven-feature subset of Protocol, Bytes, 
Flags, Packets/Sec, Bytes/Sec, Bytes/Packet, and Durmsec based upon error 

Table 4: Consistency subset evaluator feature selection–attributes selected and excluded.

Features BFF BFB ES RS Total

Protocol 0 0 0 X 1

Packets X 0 X 0 1

Bytes 0 X 0 X 2

Flags X 0 X X 3

InitFlags 0 X 0 0 1

SessFlags 0 X 0 0 1

Attributes 0 0 0 0 0

Packt/Sec X X X X 4

Bytes/Sec X X X X 4

Bytes/Packt X X X X 4

Durmsec X X X X 4

Total 6 7 6 7 0

Table 5: Consistency subset evaluator model results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF6 9475 734 0.707 0.969 0.817

RF7 9445 716 0.708 0.970 0.818

RF11 9446 706 0.708 0.970 0.818

C4.5N6 9495 746 0.706 0.968 0.817

C4.5N7 9479 716 0.707 0.970 0.818

C4.5N11 9470 709 0.707 0.970 0.818

5NN6 9558 766 0.705 0.968 0.816

5NN7 9558 766 0.705 0.968 0.815

5NN11 9519 748 0.706 0.968 0.816

C4.5D6 9498 753 0.706 0.968 0.817

C4.5D7 9481 724 0.707 0.969 0.817

C4.5D11 9478 720 0.707 0.969 0.818
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rates and Precision-recall. The seven-feature set had slightly less Type 2 errors 
as compared to the six-feature set, except for 5NN which was the same. We 
re-examined the tree structure of the original eleven and noticed that Packets 
and Bytes were discriminate factors. The seven feature set did not include 
Packets, but instead included Protocol. In almost all of our other feature 
selection methods, Protocol was not selected in the feature subsets. We took 
the feature Protocol and replaced it with Packets, causing C4.5D to obtain 
better results in all metrics. RF and C4.5N had the lowest number of Type 2 
errors followed by C4.5D and 5NN which had the most. The revised seven-
feature set maintained satisfactory precision, recall, and F-measure results, 
verifying the predictability of the seven features. The Consistency Feature 
selection is effective in producing less features that discriminate between 
normal and attack data for Slow Read attacks.

For the new seven-feature subset, RF, C4.5N, and C4.5D all performed 
slightly better than the original eleven features. With our feature adjustment 
to the Consistency subset, we produced a slightly better classification 
performance. Decision trees were helpful in identifying the Packets feature to 
replace Protocol feature, that helps to improve performance. This new seven-
feature set produces results that improves the ability to discriminate between 
classes successfully and remove irrelevant and redundant features. These 
improvements help reduce the chance of overfitting and decrease process 
time.

In Table 6 we again took our top four classifiers and compared the five and 
seven-feature sets with the eleven-feature set. The five and seven-feature sets 
were produced from the four single-attribute evaluators; GR, Chi-Squared, 
Symmetric-Uncertainty, and IG.

RF had the lowest Type 1 and Type 2 error results with five features using 
the GR evaluator. The five-feature set consisted of Flags, Bytes, Bytes/Packet, 
Durmsec, and InitialFlags. Both RF and 5NN achieved slightly less Type 2 
error results versus the full eleven-feature set. All subsets had good results 
with precision, recall, and F-measure metrics. All four classifiers provide 
good performance by using five and seven subset features. C4.5D results 
were not as favorable as C4.5N. As mentioned previously in this paper, the 
main difference between the default settings of C4.5D and C4.5N is that the 
latter is used with Laplace smoothing activated, and tree-pruning deactivated. 
The single-attribute method optimizes results using the GR attribute evaluator 
with five features for RF and 5NN and seven features for C4.5N and C4.5D. 
As mentioned previously, the benefits of reducing features from the original 
eleven-feature set include better processing times, less chance of overfitting, 
and a reduction of FNs during the detection of Slow Read DDoS attacks.

The PCA results are shown in Table 7. The number on the end of each 
model represents number of features. The original eleven-feature set created 
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the forty-two feature set when we applied the PCA filter. We then took the 
top performing feature sets from the CFS, Consistency, and single-attribute 
models and applied the PCA filter to them. Two feature selection subsets were 
selected using five and seven features. The five-feature subset is Bytes, Flags, 
InitialFlags, BytesPerPacket, and Durmsec. We then applied the PCA filter, 
generating thirty-one features. The seven-feature set consisting of Packets, 
Bytes, Flags, Packets/Sec, Bytes/Sec, Bytes/Packet, and Durmsec generated 
thirty-two features after the PCA filter was applied.

Table 6: Single-attribute model results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF5 9444 700 0.708 0.970 0.818

RF7 9487 714 0.707 0.970 0.818

RF11 9446 706 0.708 0.970 0.818

C4.5N5 9486 715 0.707 0.970 0.818

C4.5N7 9463 709 0.707 0.970 0.818

C4.5N11 9470 709 0.707 0.970 0.818

5NN5 9523 742 0.706 0.969 0.816

5NN7 9540 749 0.705 0.968 0.816

5NN11 9519 748 0.706 0.968 0.816

C4.5D5 9487 722 0.707 0.969 0.817

C4.5D7 9498 720 0.707 0.969 0.818

C4.5D11 9478 720 0.707 0.969 0.818

Table 7: PCA results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF31 9457 715 0.707 0.970 0.818

RF32 9469 743 0.707 0.968 0.817

RF42 9457 733 0.707 0.969 0.818

C4.5N31 10312 59 0.695 0.997 0.819

C4.5N32 9508 751 0.706 0.968 0.816

C4.5N42 9502 739 0.706 0.969 0.817

5NN31 9523 748 0.706 0.968 0.816

5NN32 9558 766 0.705 0.968 0.815

5NN42 9534 770 0.705 0.967 0.816

C4.5D31 10306 82 0.695 0.997 0.819

C4.5D32 9513 765 0.706 0.968 0.816

C4.5D42 9495 749 0.706 0.968 0.817
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The forty-two feature set had the best results with RF. It had the lowest 
value for Type 1 and Type 2 errors with 9,457 and 733 respectively. It also 
had a positive F-measure of 0.818. RF had the best performance compared to 
C4.5N, C4.5D, and 5NN. The thirty-one feature set produced some interesting 
results. C4.5D and C4.5N had low Type 2 errors of 82 and 59 respectively, but 
very high Type 1 errors of 10,306 and 10,312. F-measure scores for the four 
classifiers had favorable results. Though C4.5N and C4.5D had lower Type 2 
errors, RF had less total overall errors (Type 1 9,457, Type 2 715) because of 
the high number of Type 1 errors with C4.5N and C4.5D (10,312 and 10,306 
respectively).

Finally, results from the thirty-two feature set overall were the least 
favorable in reference to Type 2 errors as compared to feature sets forty-two 
and thirty-one. Type 1 and Type 2 errors were, on average, higher with all four 
of our models obtaining adequate F-measure scores compared to the original 
eleven-feature sets. The exception was the thirty-one feature set, with models 
C4.5N and C4.5D. C4.5N had the lowest Type 2 errors (59) of all the models 
we analyzed, but the most Type 1 errors.

The idea of PCA is to use a special coordinate system that depends on the 
cloud of points as shown in Figure 7. Using Python, we placed the first axis in 
the direction of greatest variance of the points to maximize the variance along 
that axis. The second axis is perpendicular to it. In two dimensions there is no 
choice and its direction is determined by the first axis, but in three dimensions 
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it can lie anywhere in the plane perpendicular to the first axis, and in higher 
dimensions there is even more choice, though it is always constrained to be 
perpendicular to the first axis. The black areas represent the normal class and 
the blue are the attacks.

5.2 Learner Results
For each classifier, four runs of five-fold cross-validation are applied, 
producing 20 AUC values for each classifier. The average AUC values of the 
four resulting runs and their standard deviations are shown in Table 10.

Overall, the resulting values indicate that six out of eight of our predictive 
models perform very well at detecting Slow Read attacks, which demonstrates 
that the features extracted from the network flow can sufficiently distinguish 
between normal and attack traffic. The classifiers provide reliable results 
indicating that Netflow features are discriminative enough for detection of 
Slow read attacks. AUC results for our classifiers show that RF achieved the 
best performance of 0.96755, but had a higher standard deviation than the other 
classifiers. The C4.5N, 5NN, and C4.5D learners performed nearly as well as 
RF, having AUC values of 0.96724, 0.96690 and 0.96620, respectively. These 
values are only marginally less than those of RF. JRip produced the highest 
standard deviation, and NB had the lowest AUC.

When evaluating both C4.5 trees, each tree structure selected the Flags 
feature at the first level of the tree. One of the critical characteristics of a 
successful Slow Read attack is the flags. There are nine TCP flags shown in 
Table 8 that make up the attributes for session and initial flags. Here an initial 
flag value of “S” corresponds to potential attack instances. The value of “S” 
stands for “SYN,” which indicates that a TCP connection was initiated. The 
value of “P” stands for “PSH” and is like the “URG” flag and tells the receiver 

Table 8: TCP flags.

TCP Flag Description

SYN Synchronize sequence numbers on new connections.

ACK Acknowledge the successful receipt of a packet.

FIN Finished send more data from the sender after a connection is closed.

URG Process the urgent packets before processing all other packets.

PSH Process these packets as received instead of buffering them.

RST Gets sent from the receiver to the sender when a packet is sent to a particular host 
that was not expecting it.

ECE Indicates if the TCP peer is ECN (Explicit Congestion Notification) capable.

CWR Congestion Window Reduced, indicates it received a packet with the ECE flag set.

NS Nonce Sum protects against accidental malicious concealment of packets from the 
sender.
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to process these packets as they are received instead of buffering them. The 
value of “A” stands for “ACK” and acknowledges the successful receipt of 
a packet. The value of “F” stands for “FIN” and represents when a sender 
is finished sending more data after a connection is closed. The value of “R” 
stands for “RST” and gets sent from the receiver to the sender when a packet 
is sent to a particular host that was not expecting it.

JRip and C4.5D produced several rules each. The single consistent 
behavior between both is in regards to the “flags” attribute. When this attribute 
has a reset (R) value, there is an attack. Another JRip rule detects an attack 
when flags have an SPA (SYN, PUSH, ACK) combination, bytes are greater 
than 512 and the duration in milliseconds is greater than 373. C4.5D uses the 
FRSPA (FIN, RST, SYN, PSH, ACK) flag along with a combination of more 
than five packets, bytes less than 770 and a packets per second value less 
than or equal to 18,633. Our overall analysis allows us to see which features 
proved most beneficial in the detection of Slow Read attacks.

Figures 8 through 11 illustrate four decision tree examples using the 
C4.5D model. When the C4.5D model is presented with a flag combination 
of SPA in Figure 8, we can clearly distinguish discerning behaviors between 
normal and attack flows. Though the packets per second (pps) may be the 
same, the attack flow is detected if duration is less than or equal to 31.80 
seconds, bytes are less than 32,321, duration greater than 0.374 milliseconds 
and packets greater than 5. Examining the “FRSPA” flag combination in 
Figure 9, this combination shows that it can predict an attack if bytes are less 
than or equal to 770 and the pps is greater than 9,308, but less than or equal to 
18,633. When the combination of “FSPA” flags, seen in Figure 10, is present 
and the duration is greater than 907 seconds, then the instance is labeled as 
an attack. Figure 11 shows that when the flags are equal to “R”, an attack is 
detected.

The algorithm used for C4.5 decision trees divides the samples into two 
or more branches based on the values of one of the features in the data sample. 
The hierarchy of the top-level branches is an excellent source for identifying 
discriminate features for our normal and attack data. Flags are one of those 
discriminate features at the top level of the tree that produced Figures 8 
through 11. There are thirty values for Flags and the decision tree can quickly 
locate the relevant values like SPA, FRSPA, FSPA, and R. From these upper 
tier values, we can identify other relevant features that make up the attribute 
sets for these four trees. Lastly, we can observe that these attributes are very 
similar to most of the feature selection methods we used in this work.

As mentioned previously, we used ANOVA to compare the mean AUC 
values of Slow Read attack detection among the eight learners to check if 
differences are statistically significant. ANOVA Table 9 shows an F value of 
3,388, and a low p-value less than 2e-16. This indicates the variation of means 
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among different learners is much more significant than the variation of mean 
values within each learner at a 95% confidence interval.

Hence, we reject the null hypothesis (i.e., means are not the same). The 
differences are statistically significant with the relationship between learners 
and Slow Read attack detection. To determine the statistically significant 
differences between learners, we conducted a Tukey’s HSD post hoc test. The 
Tukey’s test divided our learners into 4 groups based upon their mean AUC 
values and standard deviations. As shown in Table 10 most groupings resulted 
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 Fig. 11: C4.5D model with the R flag.

Table 9: ANOVA results.

Df Sum Sq Mean Sq F Value Pr > F

Learner 7 0.031320 0.004474 3388 Pr < 2e-16

Residuals 24 0.000032 0.000001

Table 10: Tukey’s HSD group results.

Classifier AUC AUC StD Group

RF 0.967554 0.000056 A

C4.5N 0.967239 0.000078 A

5NN 0.966899 0.000049 A

C4.5D 0.966200 0.000038 A

MLP 0.950600 0.001600 B

JRip 0.947131 0.002600 C

SVM 0.892173 0.000504 D

NB 0.889400 0.000273 E

Fig. 10: C4.5D model with FSPA flag.
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in fairly close pairings, with the top four learners being in group A and MLP, 
JRip, NB, and SVM being in their own unique groups.

Table 11 displays how our four group A classifiers performed using feature 
selection methods against the original eleven features. Acronyms from the 
table are CFSM (Correlation Feature Selection Method), CSSM (Consistency 
Subset Selection Method), SASM (Single-Attribute Selection Method), and 
ORD (Original Dataset). C4.5D performed as well with CFS as it did with its 
eleven original features. CFS used both Rank-Search and Greedy-Stepwise 
to produce Bytes, Flags, Initial Flags, Bytes/Packet, and Durmsec for a 
five-feature set. The data reduction method used by CFS will help C4.5D to 
decrease the processing time and therefore become more efficient. Feature 
reduction was also successful with the C4.5N model. The same five-feature 
set that benefited C4.5D did the same for C4.5N, equaling the same results 
as those of the eleven-feature set. It also had similar results using the single-
attribute method with the seven features; Flags, Bytes, BytesPerPacket, 
Durmsec, BytesPerSec, PacketsPerSec, and InitialFlags. All four attributes 
evaluators; GR, Chi-Squared, Symmetric-Uncertainty, and IG had the same 
false negatives as the original eleven-feature set, but slightly less false 
positives. CFS and single-attribute methods also provided positive results for 
5NN. They both did so, with the five-feature set of Bytes, Flags, InitialFlags, 

Table 11: Top classifier results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF5CFSM 9444 700 0.708 0.970 0.818

RF7CSSM 9445 716 0.708 0.970 0.818

RF5SASM 9444 700 0.708 0.970 0.818

RF11ORD 9446 706 0.708 0.970 0.818

C4.5N5CFSM 9470 709 0.707 0.970 0.818

C4.5N7CSSM 9479 716 0.707 0.970 0.818

C4.5N7SASM 9463 709 0.707 0.970 0.818

C4.5N11ORD 9470 709 0.707 0.970 0.818

5NN5CFSM 9423 742 0.706 0.968 0.815

5NN5CSSM 9558 766 0.705 0.968 0.815

5NN5SASM 9523 742 0.706 0.969 0.816

5NN11ORD 9519 748 0.706 0.968 0.816

C4.5D5CFSM 9478 720 0.707 0.969 0.818

C4.5D7CSSM 9581 724 0.707 0.969 0.817

C4.5D5SASM 9487 722 0.707 0.969 0.817

C4.5D11OR 9478 720 0.707 0.969 0.818
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BytesPerPacket, and Durmsec showing better performance metrics than the 
original eleven-feature set. The single-attribute evaluator was GR.

Once again, the five-feature set with CFS and single-attribute methods 
supplied RF with its best performance. The metrics from this feature set 
produced the best overall performance from RF for all feature selection 
methods and classifiers. RF had consistently better metrics in all our 
experiments. In our opinion, RF is the best classifier to apply to this dataset. 
The five features of Bytes, Flags, Initial Flags, Bytes/Packet, and Durmsec are 
the best subset features for discriminating between normal and attack traffic, 
and providing an efficient processing time.

6. Conclusion

We proposed an approach to successfully detect Slow Read HTTP DoS attacks 
using machine learning. Our experiments were generated on a live web server 
that is utilized by faculty and students as well as the public. To improve our 
machine learning, we implemented various feature selection methods.

By producing our capture, which utilizes real attacks alongside normal 
data, we better reflect a real-life network environment as compared to existing 
test-beds. This approach also reinforces the integrity of our data as we are 
using real-world traffic as opposed to related works which employ simulated 
traffic. We performed three different variations of a Slow Read attack using 
the SlowHTTPTest tool to reflect a range of levels. SiLK was used to generate 
Netflow data using the IPFIX standard. Our experiments show that this 
approach to Slow Read attack detection produces high AUC values and low 
false positive and false negative rates. The AUC performance metrics were 
performed using four runs of stratified five-fold cross-validation.

In addition, we demonstrated that six out of eight learners performed well 
in the detection of Slow Read attack traffic, with four of them performing 
significantly better than the rest. As a result, Netflow features have shown that 
they are able to successfully detect distributed Slow Read HTTP DoS attacks.

The five-feature subset of Bytes, Flags, InitialFlags, BytesPerPacket, 
and Durmsec performed better than the three or eleven-feature sets. RF and 
5NN had lower Type 2 errors using feature selection. C4.5N and C4.5D had 
the same amount of Type 2 errors with the five and eleven-feature sets. CFS 
with GS and single-attribute GR had the best results with overall Type 1 and 
Type 2 errors when we ran our group A classifiers (RF, C4.5N, 5NN, C4.5D). 
Feature selection was very effective with all four learners and demonstrated 
with five features more favorable accuracy, predictability, and less chance of 
overfitting.

Overall, the Consistency Subset Evaluator with RandomSearch performed 
well with seven features. RF was the best overall learner, using the seven-
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feature set of Protocol, Bytes, Flags, Packets/Sec, Bytes/Sec, Bytes/Packet, 
and Durmsec that was generated by the Random Search method. RF again had 
the best overall performance with the single-attribute method. RF shared the 
same results as those with CFS which also had the best overall results of all 
feature selection methods and the original eleven-feature dataset.

PCA results did not fare as well as the other three methods. The thirty-two 
feature set obtained after PCA filtering was applied produced the best results. 
Most of the results from our feature selection methods performed as well as 
the original full feature set of eleven features. CFS accomplished this with 
five features, Consistency with seven, and the single-attribute method with 
five. Producing similar results with less features will improve model accuracy 
and predictability.

Future work will involve collecting traffic for another application layer 
DDoS attack called a POST attack. We plan to evaluate if Netflow features 
also provide discriminating detection for other attack variants.
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Chapter 9
Predictive Analysis of Server Log 

Data for Forecasting Events
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1. Introduction

IT System log server keeps the record of all the activities and relevant 
information about the servers. The data analysts and maintenance team 
manually examine these logs to identify the behavior of the system prior to 
the error logs. The log error messages do not occur in the same pattern and 
sometimes go through different stages and accumulate extra information, 
which makes the time-series prediction task more challenging; therefore, it is 
critical to choose the accurate predictive model to predict the future events for 
proactive actions. The previous paper [17], explains the partial architecture 
of the existing system as follows, the monitoring server called hawk server, 
generates the monitoring logs, the proxy server named Nginx generates the 
proxy server logs, and admin server generates the admin server logs. All the 
logs collectively stored in the log file database, which makes it harder to 
analyze the error logs. whenever the error happens or if the system services 
shut down data analysts explore the log data and gain the insight of system 
and find out the related issues to bring the system back to up and running 
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condition [1], [2]. In general, the analytics team spends a significant amount 
of their time and efforts to analyze the logs and searches the related logs with 
the keyword search. In order to understand the unexpected behavior of the 
system, one must understand the log file characteristics. The log files records 
have the following information related to the state of the system:
 1) The log files have all the information about what had happened just before 

the system went down. 
 2) Error logs are an essential source of diagnostic and for proactive error 

handling purpose [20]. 
 3) Unrelated errors are identified in the server logs due to other application 

or services of another system such as monitor server logs have the error 
from the proxy server. 

 4) Historical errors also help to understand the behavior of the system, how 
to repair the system and how to mitigate the issues. 

 5) The log files also contain information about the causes of specific issues 
of the system.

The log files data contain the time-stamp and long error message which 
include lot of information. We extract all the important information in the 
data processing section. In recent years, several tools have been developed for 
analyzing logs, clustering the logs based on IP-address and creating a sequence 
of logs. For example, [1], [2], [4] propose the methodology of generating a 
sequence of logs. In order to extract the sequence out of the data, we assign 
the Ei’s to the error messages, and Ei’s are the event label which is assigned 
based on error message and origin of the error. We remove duplicates based 
on timestamp, which helps to reduce the number of logs and also reduces the 
human efforts of exploring long list of data. Here choosing the window size 
is a key parameter for extracting the desired results from the log data, and 
the size of window also depends on the data. We experimented with different 
window sizes and found that if we take one hour window then the extracted 
sequence gets larger and frequency of sequence decreases and if we take  
15-minute window the sequence is really short and if we take 30-minute 
window, it, shows the seasonality in the data, and we also used moving window  
of 30 minutes to extract the short sequence of errors and analyze data for  
a day. 

The main focus of this study is to predict the accurate event in time-series 
and our approach can anticipate the upcoming event and time of the event 
based on the historical data and we also want to measure the accuracy of 
model between statistical model and machine learning model for the server 
log analysis. We are exploring the LSTM as machine learning algorithm, 
Holt-Winters, and ARIMA as statistical model and we have implemented 
the LSTM, ARIMA and Holt-Winters models in accordance to server log 
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analysis. Our approach provides the visualization of predicted events to the 
data analysts, so that user can take proactive steps for error handling. We are 
finding the pattern in the sequence of logs, which is helping us to find the 
subsequent events are happening on the server and help us to predict the error 
and error of time in future through LSTM, Holt-winters, and ARIMA. The 
key contributions of this paper are:
 1) Investigating the forecasting techniques for time-series and predicting 

future events for server logs. 
 2) Comparing the performance of LSTM, Holt-Winters and ARIMA 

algorithms, and which one has higher accuracy results for predicting 
sequence of events. 

 3) Provide visualization of predicted events for server log time-series.
 4) Implementation of LSTM machine learning model, Holt-Winters, and 

ARIMA statistical model.

The chapter is organized as follows. We have presented Section 2, as 
related work. Section 3 is a case study and our motivation. In Section 4, 
we have our proposed approach, and in Section 5, we have results of our 
approach. Section 6, Conclusion, Section 7 is limitations, and future work of 
our approach and references are in last section.

2. Related Work

This section is to provide the review of related works. Jiang et al. [1] proposed 
an automated approach which examines the logs, recognize the internal 
structure of log lines and then convert them into related execution events. Once 
the developer recovered the log structure, analyzing log behavior become 
easy. The abstraction of the logs reduces the volume of data to examine, 
and then the log lines get converted to the execution events by anonymized 
step for recognizing dynamic token replace with the generic token. The log 
abstraction technique applied to the source code of the program, and they 
developed the approach to recognizing the structure of log message and this 
approach perform well on large log files. We found that this method is only 
applicable to the applications if the source code of an application is available 
to the analyst, which is not possible in our case. Lin et al. [2] have utilized 
the knowledge base to check the sequence of a log that existed before. They 
used the log sequences for manual examination and then applied mitigation 
actions. They have applied their approach to Microsoft services clustering and 
validated it; however, in our existing systems at City of Calgary log clustering 
is not sufficient for the unstructured data of the log messages because each 
server and service create different types of logs which may lead to false 
positives. This methodology cannot be generalized for generic log analysis. 
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Zhen et al. [4] worked on log Abstraction, log linking, simplifying sequences 
and generating execution reports of the simple apps worked on abstracting 
execution logs from big data Hadoop based cloud environment, and they 
recover the execution sequences and generating execution reports of the 
simple apps by comparing the sequences between pseudo cloud environment 
and Google cloud environment. Their approach uncovers the behavior of big 
data application platform behavior and doesn’t validate for developing and 
testing applications. They also injected the deployment faults to verify their 
results and prove that their approach significantly reduces the verification 
efforts. They reduced the logs to a too small size that the manual inspection 
can be done on the sequence of logs. They have experimented only on the 
local platform logs; whereas we are concentrating on the server logs. 

Xu et al. [5] proposed methodology to detect system issues by mining the 
console logs. Using source code helped to understand the structure of console 
logs. They have designed an online log parsing technique and extracted 
powerful features to reveal the information, and then applied principal 
component analysis for the anomaly detection. The log parsing methodology 
is based on the system source code however this approach cannot be applied 
if we do not have access to source code. Shilin He et al. [6], worked on state 
of the art for anomaly detection, which consists of log collection, log parsing, 
and feature extraction then used anomaly detection. They also explored the 
detailed review of supervised and unsupervised techniques. However, the 
algorithm for anomaly detection cannot be generalized because the experiment 
was done under lab settings.

Bovenzi et al. [8] worked on anomaly detection and explored the 
methodology which can be fitted at an operating system level. The algorithm 
diagnoses the activities of the software system of the operating system, and 
this methodology can only apply to the operating system. Chandola et al. 
[11] explored the anomaly detection methodology in a survey. They stated 
that sometime the events happen at a specific point of time, which is called 
contextual anomaly and some time the events occur in an unordered list which 
is called the collective anomaly.

Data mining of logs can be divided into the following categories as 
descriptive mining, prescriptive mining and predictive mining. Descriptive 
data mining usually based on describing the domain and predictive log 
data mining based on making predictions and prescribe the solutions. Hay  
et al. [28] finding sequential patterns and finding an association between the 
events are part of the descriptive analysis and predicting the events based 
on historical data is partially related to anomaly detection. The objective of 
predictive analysis in this chapter is to estimate the unknown future events 
and time of the event. In order to estimate, we have explored the predictive 
models such as statistical models and machine learning algorithms. Salfner 
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et al. [20] worked on pre-processing of error log data for accurate failure 
prediction. The information in the log files are essential and valuable, and 
they experimented the log clustering and filtering technique in order to get 
the precise information, and they have explored online failure statistical 
technique based on hidden semi-Markov predictor (HSMM) and appropriate 
pre-processing of data. HSMM is efficient learning algorithm for raw 
sequence and discovering the patterns however it is unable to express the 
dependencies and correlation between the patterns. Namin et al. [21] explored 
the forecasting technique of ARIMA and LSTM and compared the accuracy 
of the results. They experimented on financial and economic data and used 
Epoch technique using different size of windows; however, the epoch sizing 
did not help to improve the results. Chatfield and Yar [23] used Holt-Winters 
method to predict the future values based on triple exponential smoothing 
methodology if the data have trend and seasonality. Based on these studies, 
we apply the predictive models to our data set to find out appropriate models. 
In Table 1 we have described the review of statistical and machine learning 
algorithm, which is explained in further sections of the chapter.

3. Case Study and Motivation

In the modern era of technology, part of the success of companies depend on 
the reliability of their servers and IT-services and in case of service shutdown, 
data analysts analyze the log data. In our approach, we are creating the 
sequence of logs and predicting the event which further helps the analytics 
team to examine the logs and they can mitigate the issue before it happens. 
Abnormal behavior can also be detected if expected event does not occur, 
and the data analyst can also identify an unusual pattern that does not fit the 
predictable response [11], [1]. We have analyzed the log data manually and 
observed the patterns of errors as shown in Figure 1. The patterns of events 
show that some of the events occur in some desired fashion and we can predict 
the future event. We are displaying Ei’s events in some pattern over the period 
in Figure 1. The event Ei’s are assigned based on error text and category of the 

 Table 1: Review of three models for predictive analysis.

Model Pros Cons

Holt-Winters Ability to handle trend, and seasonality Narrow confidence interval

ARIMA Unbiased forecast
Easy to derive confidence interval for forecast

Require more data
Hard to automate

LSTM Ability to handle complex nonlinear patterns
Easily automate

Difficult to derive confidence 
intervals for forecast
Require more data
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error. In this chapter of the book, we are exploring the sequence of errors and 
analyzing the patterns of events in order to predict the future event. Abnormal 
behavior of logs can also be detected if the events do not confront the specific 
pattern. We are also considering unusual contextual behavior and collective 
abnormal behavior. In Figure 1 we show the Event E8 and E10 always happen 
together, and the E9 raises the warning for the user. The dataset of logs used 
for the experiments is extracted from the IT department of the City of Calgary 
under the analytics and integration team. The log file contains the essential 
information about the system and server such as timestamp, detail description 
of the error, error number, the application name related to failure, and server 
address. We have access to the error logs of servers and application which we 
are using to validate our approach and analyzing the results.

We gather information about the servers, applications, messaging service, 
and databases, which generates log files. We want to gain the insight of those 
logs by studying them and finding critical patterns of the loglines, which leads 
to complete system or server failure. Our approach reduces the time and efforts 
of data analyst and provides a solution to analyze the logs accurately, which 
make them more productive for analyzing the logs. We are also reducing the 
number of logs to analyze through creating events from the logs, for example 
we took sample data of one day from monitoring server, which contains  
1733 log lines after generating events out of the log, it reduces to 89 events 
and 23 sequence of events, which reduces the efforts by 94%. Once we learn 
the sequence of events and pattern, we explore it to predict the future events 
or sequence of events.

4. Our Proposed Approach

Time-series analysis is the area of information in which we create the model 
based on observation, historical data, and predict future values. Forecasting 
time-series is applied to many areas, therefore, it is critical to improving 
the existing forecasting model with new emerging techniques such as deep 
learning. In this chapter of the book, we have expanded the approach from 
IRI 2018 proceeding [17] to the predictive analysis. Figure 2 is the extended 
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Fig. 1: The manual observation of the events generated by the monitoring server and shows the 
sequence of errors occurs at a particular point in time and in the similar fashion, which can help us to 

predict the specific event for next period.



226 Reuse in Intelligent Systems

version of our approach. We started our approach with data gathering and 
lead to forecasting techniques. The framework of our approach is divided into 
three main phases; The first two phases are the repetition from the previous 
research paper in which we discuss data pre-processing and feature extraction. 
The second phase is converting the error logs into a sequence of log lines or 
events, and the third phase forecasting the events and time of the events from 
the sequence of events. 

Time-series forecasting involves mathematical processes, and pattern 
search, which plays a significant role in the data analysis [24] such as ARIMA 
and Holt-Winters models, which have long been in use for stock market 
time-series forecasting. LSTM is a modern and new emerging technology in 
deep learning to address the prediction issues. The Auto Regressive Integral 
moving average (ARIMA) is a method in which a regressive model confirms 
the dependencies between the observation; integration means measuring 
differences of observation and moving average lag of the existed observations. 
In this chapter, we are focusing on traditional and modern techniques for time-
series forecasting and evaluating accuracy for log data prediction. We have 
applied ARIMA, Holt-Winters and LSTM methodology for the forecasting of 
the events of the server.
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Fig. 2: The approach for forecasting events and time of the events after generating sequence of events.
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4.1 Data Preprocessing and Feature Extraction
Data preprocessing is critical for data mining and includes data cleaning, 
integration, transformation, data selection, and data reduction. Log data files 
are full of text, including important error messages, symbols and blank lines. 
Whenever; the new event happens, or the date gets changed on the server, 
some blank lines and system software information get generated, which is 
not relevant to the log analysis, therefore removing blank lines, and symbols 
is important step for cleaning and preprocessing the data. We have converted 
the textual data to the data-frames or tables and converted timestamp text to 
date time format since it’s a manageable way to store the information about 
the date. The critical information gets extracted from the textual data of logs, 
and we manage the missing values, smooth out noisy data, and we transform 
the time to minutes. We extract the error messages from the text of the error 
and remove the irrelevant information by filtering out exceptional handling 
log data.

We have reduced the features by selecting the important attributes from 
the data as shown in the Table 2 and split the data and kept 70% data for the 
training and 30% data for the testing.

Table 2: After data processing, the server log information is stored into data-frames for the further 
analysis steps and shows the text data has been cleaned and preprocessed.

Date Time Error Type Category TaskID

June 19 3:00:50 PM  Error on transport Error HWKCON 242304

June 19 3:00:50 PM Recovering connection Warn HWKCON 242305 

June 19 3:01:00 PM Recovering connection Warn HWKCON 242305 

June 19 3:01:00 PM Session is closed Error HWKCON 241809

June 19 3:01:02 PM Recovering connection Warn HWKMAG 242305 

June 19 3:01:07 PM Unable to evaluate action Error HWKRBE 41415

4.2 Generating Log Sequences
We have extracted the number of features from the logs, however, and 
considered only relevant information of error messages. The server logs 
include the date and time, error message, type of event, category, and TaskID 
of the log message, and have some constant and dynamic part of the error 
message. We have used the algorithm from IRI 2018 proceeding [17] for 
assigning the event ids to the error messages which further get converted to 
event sequences. We assign the Ei’s to error message based on task id’s and 
link them based on categories. The events E1, E4, E5, E5, E1, E1, E7, E7 are 
under HWKRBE category, and they get generated at the same time and are 



228 Reuse in Intelligent Systems

linked together with the same category type. The events E9, E8, E10, E11, E9, 
are under HWKCON, and they are linked together. Linking step accumulates 
the duplicate for the event ids to the specific category in the fixed windows. 
The sequence of events has been created by grouping the repeated events to 
one event and removing the duplicate events [4]. Table 3 is an example of the 
sequences of logs, with timestamp, error messages, and TaskID; which are 
linked together since they have similar categories or type of event.

4.3 Predicting and Visualizing Log Events
We have explored LSTM, ARIMA, and Holt-winters algorithms for the 
experimentation purpose. LSTM (Neural network) is the artificial machine 
learning model; however, ARIMA (Autoregressive), and holt-winters 
(exponential smoothing) are statistical models for the predictive analysis. The 
algorithm predicts the future event and time of the event, based on historical 
data. One of the challenges for using the machine learning models and 
statistical model that, the data must be numerical; therefore in order to predict 
event and time of the event, we convert time into minutes and categorical data 
such as event Ei’s to numeric values, in order to input the data to statistical 
model and machine learning models. 

4.4 Predicting Future events by LSTM
Long Short-term memory (LSTM) is the extension of recurrent neural 
networks, which has the capability of remembering long sequences and the 
historical values. The model can be trained using backpropagation through 
time which makes them suitable for time-series prediction. LSTM creates the 
knowledge base from the historical data and very powerful in handling the 
dependencies between the inputs and smart enough to determine whether to 
hold the information or forgets the information. In this chapter of the book, 
we have implemented LSTM model in order to forecast the events and time of 
the event. The model uses historical data to identifies the existing data patterns 
and use them to predict the future event and time. 

Table 3: The sequence of events in fixed window technique. The grouping of events has been done to 
create the sequence and removing the duplicate events in the row.

Date Time Error Type Category TaskID EIs

June 18 3:06:50 Recovering connection Warn HWKCON 242305 E9

June 18 3:06:50 Error on transport Error HWKCON 242304 E8

June 18 3:07:00 Exception sending msg Error HWKCON 241809 E10

June 18 3:07:01 Exception sending msg Error HWKCON 241809 E11

June 18 3:08:00 Recovering Connection Warn HWKCON 242305 E9
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Input: Series of events in dataframe 
Output: Predicted Events and Root Mean Square 
# Input libraries
# fix the random seed for reproducing results
1.     Set random. seed (number)
# convert dataset to supervised data to feed in the model 
Procedure: timeseries (data, shift_data  1)
2.       data  dataframe(data)
3.       column  shit(i) for I in range (1, shift_data+1)
4.       column.append(data)
5.       data  pd.concat (column, axis  1)
6.       return data         
# normalize the data
7.     scaler  MinMaxScaler (range  (–1,1)
8.     dataset  scaler.fit (dataset)
# transform data
9.     dataset  dataset.reshape(dataset.shape[0], dataset.shape[1])
10.   dataset  scaler.transform(Dataset)
# Fit an LSTM model to training data
11. Procedure: fit_lstm (dataset, batch, epoch, neurons)
12.     x  dataset
13.     y  dataset – x
14.         model  Sequential ()
15.         model.add(LSTM(neurons, batch))
16.         model.add (Dense (1))
17          model.compile(loss ‘‘Mean_square_Error”,  
   optimizer  adam)
18.     forloop I in range(epoch)
19.              model.fit (x,y, epochs  1, batch)
20.           return model
# prediction of the events
21. Procedure forecast (model, x)
22.        yhat  model.predict(x)
23.        return yhat

Implementation of LSTM model

The Keras library are used for the LSTM model; however, the data preparation 
is needed for the machine learning techniques. In order to measure the 
accuracy of the LSTM prediction model, and we have used RMSE Root Mean 
Square Error. 
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4.5 Predicting Future Events by ARIMA
Autoregressive Integrated Moving Average (ARIMA) combines the regressive 
process and moving average method and construct the composite model  
[21, 22]. An autoregressive model is based on dependencies between 
observations of historical data; integrated means taking the difference between 
observation and the previous observation, to make the time series stationary; 
and moving average take the dependencies between observation and residual 
error. The mathematical formulation of ARIMA (p, d, q) model had three 
parameters number of lags, number of times and size of the windows as  
p, d, and q. In order to use model, we determine the p, d, q which are integers 
greater or equal to zero and we need to make the time-series data stationary 
then construct the ARIMA model to make a prediction and find the correlation 
of the time-series itself. The integer d determines the differencing and if d = 0 
then results depends on p and q. We transform a series to log series to make it 
stationary and then take the difference of log_transform and log_transform_
shift by 1. We create autocorrelation factor and partial autocorrelation factor 
plots to identify the patterns. 

Implementation of ARIMA

# ARIMA Model with rolling window
Input: series in dataframe
Output: forecasted events and root mean square
# load libraries 
# test the stationarity of the dataset
1. Procedure: test_stationarity(dataset)
2.           movingAVG  dataset_log.rolling(window  30).mean()
3.           movingstd  dataset_log.rolling (window  30).std()
4.            data_shift  dataset_log-dataset_log.shift()
5.            lag_acf  acf(data_shift, nlags  30)
6.            lag_pacf  pacf(data_shift, nlags  30, method = ‘ols’)
7. # plotong the acf and pacf
8.     plt.plot(lag_acf)
9.     plt.plot(lag_pacf)
10.           model  ARIMA (dataset_log, order  (p,d,q))
11.           result  model.fit(disp  –1)
12.           model_arima_fit  model_arima.fit()
# Prediction of the events
13.      Prediction  series (model_arima_fit.fittedvalues, copy  true)
14.      rms  sqrt (mean_square_error(dataset_log, prediction)
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4.6 Predicting Future Events by Holt-Winters
Holt-Winters is an exponential smoothing statistical model for the time series 
and is suitable for the data, with seasonality and trend, where the seasonality 
can be defined as the tendency, which shows the behavioral pattern [28]. Holt 
winters forecasting is a mathematical model, which predicts the behavior of 
the time-series and also called triple exponential smoothing. Holt winters also 
contain the main three parameters (α,β,γ) and predict current or future value 
based on the parameters. The Alpha, beta, and gamma optional parameters 
determine the stability of the forecast and values range from 1 and 0. Alpha 
determines the weighted average of the points; beta determines the slope 
between consecutive points and gamma determines the seasonality of the 
series and by default, these values are set to 1 and the seasonality is a repetition 
of data in the fixed length of time. 

Implementation of Holt-Winters

# Holt Winters model for the predications
Input: series in dataframe
Output: forecasted events and root mean square
1. # Load the exponential smoothing libraries
2. dataset_log = np.log(dataset)
# triple exponential smoothing multiplicative/additive
# here x is data, m is period, fc is forecast
# Model  Multiplicative(x,m,fc,alpha,beta,gamma) 
3. y_hat_avg  dataset.copy()
4. fit  ExponentialSmoothing(dataset, seasonal_periods=5,  
trend=mul, seasonal  ‘add’).fit()
5. y_hat_avg[‘Holt_Winter’]  fit.forecast(len(dataset)
6. rms  sqrt(mean_squared_error(dataset), 
y_hat_avg.Holt_Winter))

We experiment with data collected from integration and analytics team 
from the City of Calgary, and all the log files contain error logs, info logs, and 
warning logs. The server error logs include timestamp and error description 
with other information. We have used three types of Log files from the server, 
such as Proxy web server, monitoring server, and admin server. Complete 
logs show the data for three months and sample logs have one-day log data. 
In order to have a proof of concept experiment setting, we have done our 
experiments on available data captured over three months of period. The 
output of the extracted sequence of the events raises a question that, does our 
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approach reduce the efforts, and which method of forecasting is appropriate 
for log analysis?

5. Results

5.1 Results for Generating Sequences
The approach for creating sequences is helping data analyst for analyzing 
log data to make an informed decision. We have set up the experiment 
environment on the local computer. The features are fed into the model 
for generating the sequences. These sequences have been generated after 
removing all the duplicates of entries. In reference to the time of the event 
gives the opportunity to data analyst for the detailed review of the log events 
happening at a particular point of time. The data analyst or user has to look for 
only a few log events instead of looking complete log lines. In the previous 
proceeding paper [17], we mentioned the significant reduction of efforts 
approximately 91.6% and the analyst took less than 5 min to analyze the logs. 
The sequence of events shows the number of sequences found in the sample 
log data and Table 4 we have shown the event sequences found in the sample 
data, and the total number of log lines in the sample file is 1733. Once we 
removed the info lines from the logs, our log events reduced significantly; 
even data analysts are able to evaluate the results manually. Suzgun et al. [16] 
worked on the sequence prediction with short and long sequences. In our case 
the sequence of events is not larger than size 10, therefore the LSTM model 
will not face NP-hard issue. 

Table 4: The sequence of events in the 30-minute fixed window, which contain errors and warnings. 
The grouping of events is based on categories, and we have run the algorithm to count the existed 

sequences from monitoring server logs.

Category Frequent Sequences Counts

HWKCON E9, E8, E10, E10, E9, E10, E11, E17 12

HWKCON E8, E10, E9, E8, E10, E10 4

HWKRBE E1, E3, E1 5

HWKRBE E1, E4, E5, E1, E7 2

5.2 Results for Predictive Analysis 

Root Mean Square Error of our Results
Root-Mean-Square-Error (RMSE) is used to measure the accuracy of the 
model by taking the difference between predicted, and actual values. We have 
used RMSE with predictive models to evaluate the accuracy of the predictions 
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of the events and time of the event. Alexei et al. [15] identify RMSE is scale 
dependent measure and useful for measuring the accuracy of models.
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The formula above has N, which is the total number of observations and 
(ai) represent the actual values and (âi) represent the predictive values. Mugume 
et al. [14] investigated the performance of the numerical model by RMSE-
Root Mean Square Error, MAE-Mean Absolute Error, ME-Mean Error, and 
STM-Sign test to analyze the bias of numerical method and mentioned that 
RMSE is good criteria to classify the accuracy of the model and low index 
value means higher accuracy. 

According to the results from Table 5, the LSTM outperforms the ARIMA 
and Holt-Winters. LSTM and ARIMA has better results than Holt-Winters in 
terms of RMSE for short sequences.

Performance Matrix Measure for the Sever Log Events 
The confusion matrix is used to measure the accuracy and correctness of the 
model, and it is the matrix of actual and prediction. According to our case 
study, we have the following categories. True positive is the outcome when 
the model correctly predicts the observed sequence event, such as the warning 
E9 accurately predict from the observed sequence E8, E10, E9, where E8 and 
E10 error occurs together, and True negative occurs, when the model also 
confronts the observed sequence. False positive is the outcome, when the model 
incorrectly predicts observed sequence of such as model predict the event even 
if the sequence does not exist, and False negative occurs when model does not 
confront the observed sequence of events. In this case study, we want to know 

Table 6: The outcome of the events in the confusion matrix for LSTM model forecasting results with 
82% accuracy.

Predicted Yes Predicted No

Actual Yes 27 3

Actual No 6 14

Table 5: The RMSE of each predictive model for each time-series, we have for log analysis and we 
measure the accuracy of predictions for each model.

LSTM Holt-Winters ARIMA

Monitoring Server Logs 1.442 7.830 2.544

Admin server logs 1.523 8.365 2.666

Proxy server logs 1.287 7.256 3.236
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that the predicted sequence confronts observed sequence. We took sample data 
of 50 observation and forecasting results from LSTM model. 

LSTM Model
We have set up the experiments on a local computer and used the Jupyter 
notebook with Python 3 and Keras libraries for LSTM. We prepare the 
training and testing data for machine learning models and have used only 
single LSTM layer. The LSTM is the topology of Neural network algorithm 
which can hold and learn the observed data and make prediction based on 
the observed data [21] and does not require stationary data which is the basic 
requirement of the statistical models. The algorithm takes the dataset needs to 
be trained, batch size, data fitted size, and neurons. We have fitted the dataset 
to the model and repeated the learning time five times. 

We input the file in one batch because the size of the file is small enough 
to fit in one batch. The predictive analysis of time series in Figure 3 shows 
accurate predictive results according to the observed logs for complete data, 
and in Figure 4 we have shown the predicted events over the 24 hours and 
forecasted event for next unknown 30 minutes which is marked. LSTM learns 
from previous data and keeps the record in short-term memory so that it can 
make the prediction for the future. In this chapter, we consider forecasting 
time and event separately, however, in future, we will explore to combine the 
two inputs to make event prediction and forecasting the future events. 

ARIMA Model
We have got significant results from ARIMA forecasting model, and we have 
also calculated. Root mean square error for checking the goodness of the 
model. We have seasonality in our data, such as more errors and warnings 
happen in regular business hours rather than weekends and off work hours. In 
the IT department, some of the batch files run in the night or weekends which 
often generate the errors. We consider the ARIMA model in order to cross-
check the validity of the results. ARIMA (p, d, q) are the critical parameters 
for predictions and forecasting time series. Figure 6 shows the predictive 
values of time series and original values from the dataset, and we observe that 
the prediction of the ARIMA model does not show significant results for long 
sequences and complete dataset file, however in Figure 7 the forecast is based 
on short sequence of 30 min window data, which shows promising results. 

In ARIMA model, picking up the right parameters for the forecasting is 
critical for the accurate results, if the parameters are not correct, the results 
may vary, and the RMSE will be higher for predicted values. PACF is used 
to determine the value of p and differencing is to determine d and ACF is to 
determine q. 
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Holt-Winters Model 
Holt-Winter is a triple exponential method, which can predict and forecast the 
future values based on observed behavior of the time series. This model also 
accepts three parameters (α,β,γ) such as α determines the weighted average 
of the points, which decay exponentially; β determines the slope between 
consecutive points and γ determines the seasonality of the series of the 

Fig. 3: The predictive results of the LSTM model. The predicted value and original values are 
approximately close with 1.4 average root mean square error for the complete data.
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Fig. 4: The forecasted event in the next 30 minutes for future prediction, here we have 24 hours 
predicted values based on learned data from the history and forecasted the next event.
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Fig. 6: ARIMA predictive model results for long sequences and data for the complete log file with 
RMSE of average 2.7. 

dataset. We use additive and multiplicative seasonality which in turn reduced 
the RMSE. Figure 8 shows the results of holt-winter model, by applying triple 
exponential smoothing. 

Fig. 5: The prediction of short sequences through the LSTM model. We have also experimented 
for the short sequence prediction, and LSTM has given promising results in predicting the short 

sequences. The graph also shows the seasonality in the events every 30 min.
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Fig. 9.8
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Fig. 8: The predictive values by Holt-Winter model by using additive and multiplicative seasonality 
with RMSE of 7.8.

Fig. 7: The ARIMA forecasting results with 95% confidence for the 30 min window and short 
sequences and shows the original data with forecasted values. 
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6. Discussion and Conclusion

In this chapter, we analyzed log files with the goal of predicting the events 
and the time of the event. We present the pre-processing technique for 
feature extraction and also extract the sequence of events by a static window 
and moving window from the logs. We explore the traditional and modern 
techniques of the time-series prediction and compare the results, which shows 
that LSTM outperforms for the prediction of server log data and analyzing 
the error data. We have proposed the approach to generate log events and 
the sequence of events from logs and predict the future events based on 
historical data. To evaluate this approach, we took three different types of log 
files from various servers, and we have also observed that the ARIMA model 
works better on a short sequence of events and LSTM model brings better 
results for shorter and large sequences or large data set. In this chapter, we 
provide the implementation technique for LSTM, ARIMA, and Holt-Winters 
and compared the performance of all three models by calculating Root mean 
square error, which is shown in Table 5. We have visualized the predicted 
events of the LSTM, ARIMA, and Holt-Winters model, which provides the 
insight to the data analysts for decision making. 

7. Limitations and Future Work

We have compared the log data from three different servers to analyze the 
results and validate our approach; however, we are also exploring the diverse 
set of log data from an open source in order to generalize our approach. We use 
a fixed window of 30 min technique for this approach; if we change the size of 
the window, it is entirely possible the size of sequences will change which can 
affect the results. In our future work, we are looking to implement the multi-
task learning in deep learning to combine the categorical and numeric data of 
the lags and make the prediction based on all the selected features. 
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