

Reuse in Intelligent Systems
Editors
Stuart H Rubin
Space and Naval Warfare Systems Center
San Diego, USA

Lydia Bouzar-Benlabiod
Ecole Nationale Supérieure d’Informatique
Algiers, Algeria

A SCIENCE PUBLISHERS BOOK
p,

A SCIENCE PUBLISHERS BOOK
p,

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20200211

International Standard Book Number-13: 978-0-367-47338-9 (Hardback)

Th is book contains information obtained from authentic and highly regarded sources. Reasonable eff orts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. Th e authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfi lming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profi t organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identifi cation and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com
http://www.copyright.com

The aim of this book is to present recent works covering various aspects of
reuse in intelligent systems—including Scientific Theory and Technology-
Based Applications. New data analytic algorithms, technologies, and tools
are sought to be able to manage, integrate, and utilize large amounts of
data despite hardware, software, and/or bandwidth constraints; to construct
models yielding important data insights; and, to create visualizations to aid in
presenting and understanding the data. System development and integration
needs to also adapt to these new algorithms, technologies, tools, and needs.

The growth of big data, in part due to it’s ubiquity, has increased the
need for applying machine learning to solve real-world problems. Besides
the large size inherent in big data, these datasets are adversely affected by
class imbalance, which contributes to poor machine learning performance.
Experimental Studies on the Impact of Data Sampling with Severely Imbalanced
Big Data demonstrates the efficacy of machine learning classification with big
data when confronted with the class imbalance problem. Two case studies with
diverse range of class ratios between majority and minority classes, across
various levels of class imbalance, have been provided. In the first case study,
we process four big balanced datasets and artificially generate five imbalanced
big datasets from the original full datasets, with target minority classes of
10%, 1%, 0.1%, 0.01%, and 0.001%. Random undersampling is then applied
to balance the binary class in each of the generated imbalanced datasets to
50:50 class ratios. All machine learning models were built using the Random
Forest classifier. For the second case study, a real-world Medicare fraud
detection problem is introduced, which focuses on applying various random
undersampling class ratios and injecting additional artificial class imbalance.
Three learners (Logistic Regression, Random Forest, Gradient Boosted Trees)
were employed. The results show that, in terms of class imbalanced data, ratios
from 0.1% to 1.0% of the minority class provide adequate performance even
when compared to 10% or even 100% of the original full balanced dataset.
Furthermore, a balanced random undersampling ratio, when applied to the
imbalanced big dataset, led to similarities in the average performance when

Preface

iv Reuse in Intelligent Systems

compared to using the entire big dataset. Also, when the minority class is
severely imbalanced, the balanced class ratio is not always the best option
with slightly more imbalance, such as 10% or even 1%, providing better
overall model performance.

The US healthcare industry produces copious amounts of big data,
which includes information such as patient records and provider claims.
Leveraging this big data is becoming increasingly important in keeping
healthcare programs affordable and maintaining high levels of medical care—
especially for the rising elderly population. The elderly are experiencing
increased life expectancy, with continuing healthcare needs later in life and
the need for programs, such as US Medicare, to help with associated medical
expenses. Unfortunately, due to healthcare frauds, these programs are being
adversely affected, draining resources and reducing quality and accessibility
of necessary healthcare services. The detection of fraud is critical in being
able to identify and subsequently stop these perpetrators. The application of
machine learning methods to big data can be leveraged to improve current
fraud detection processes and reduce the resources needed to investigate
possible fraudulent activities. Big Data and Class Imbalance in Medicare
Fraud Detection presents two case studies for detecting fraud across several
big Medicare claims datasets from 2012 to 2015, considering the severe class
imbalance between fraud and non-fraud claims, with actual fraud labels from
the List of Excluded Individuals/Entities (LEIE). The first case study employs
the Random Forest model with random undersampling, to mitigate some of
the adverse effects of class imbalance and to generate seven different class
distributions for a comparison of performance results with Medicare Part B
data. The second case study expands upon the first by taking the best class
distribution from the first and providing results for two additional Medicare
datasets and a combined dataset. We demonstrate that 90:10 is the best
class distribution; whereas, the balanced and two of the highly imbalanced
distributions produced the worst fraud detection performance. Furthermore, we
show that the commonly used ratio of 50:50 (balanced) was not significantly
better than using a 99:1 (imbalanced) class distribution. The study clearly
demonstrates the need to apply at least some sampling to big data with class
imbalance and suggests the 50:50 class distribution does not produce the best
Medicare fraud detection results.

Researchers and practitioners commonly use feature selection and
data sampling to counter high dimensionality and class imbalance. How to
Optimally Combine Univariate and Multivariate Feature Selection with Data
Sampling for Classifying Noisy, High Dimensional and Class Imbalanced
DNA Microarray Data was conducted to give practitioners guidance on
best practices when analyzing bioinformatics data that exhibit both high

dimensionality and class imbalance in the context of data noise. Three
approaches for combining feature selection and data sampling are compared:
(1) data sampling followed by feature selection with the training data being
built using the selected features and the unsampled data; (2) data sampling
followed by feature selection with the training data being built using the
selected features and the sampled data, and (3) feature selection followed by
data sampling with the training data being built using the selected features and
the sampled data. Additionally, the importance of alleviating class imbalance
is investigated (by applying data sampling) for classification problems on
bioinformatics datasets. We explored three major forms of feature selection
(feature rankers, filter-based subset selection, and wrapper-based subset
selection), as well as a commonly used data sampling technique (Random
Undersampling). All experiments were conducted using ten gene expression
datasets which were first determined to be relatively free of noise. Then,
noise is artificially injected, creating three levels of data quality to simulate
real-world scenarios. Final models are built using six different classification
algorithms. Empirical results show that the best performing approach is
feature selection followed by data sampling, across all data quality levels.
We also show that alleviating class imbalance (e.g., by applying Random
Undersampling), in conjunction with reducing high dimensionality, will
achieve improved classification performance for bioinformatics classification
problems compared to reducing the high dimensionality without alleviating
the class imbalance.

Given the number of new movies being released every week, online
recommenders play a significant role in suggesting movies for individuals
or groups of people to watch—either at home or at movie theaters. Making
recommendations relevant to the interests of an individual, however, is not
a trivial task due to the diversity in individual preferences. To address this
issue Movie Recommendations Based on the Recurrent Neural Network
Model introduces a novel movie recommender system that suggests movies
appealing (to a certain degree) to movie goers. Recommendation systems are
an important part of suggesting movies—especially in streaming services. For
streaming movie services like Netflix, recommendation systems are essential
for helping users find new movies to view. In this paper, we propose a deep
learning approach based on autoencoders to produce a collaborative filtering
system, which predicts movie ratings for a user based on a large database of
ratings from other users. Using the MovieLens dataset, we explore the use
of deep learning to predict users’ ratings on new movies, thereby enabling
movie recommendations. To verify the novelty and accuracy of our deep
learning approach, we compare our approach to standard collaborative
filtering techniques: k-nearest neighbor and matrix factorization. The

Preface v

vi Reuse in Intelligent Systems

experimental results show that our recommendation system outperforms a
user-based neighborhood baseline in terms of root mean squared error on
predicted ratings. In addition, we have conducted other user studies, which
were straightly based on human assessment, on movie recommendations
made by on our recommender, along with Amazon and Redbox, two well-
known movie recommenders. Performance of recommenders are compared
and the empirical study further verified the merit and novelty of our movie
recommender. The design the new recommender, which is simple and domain-
independent, can easily be extended to make recommendations on items other
than movies.

The popularization of MOOCs in recent years has consolidated this
learning format in the open education scenario, with the emergence of new
providers, new available courses, and more universities becoming partners.
However, this accelerated expansion makes it difficult for students to find
the most appropriate content; and, some recommendation systems have
emerged to support such decisions. A Recommendation System Enhanced
by Topic Modeling for Knowledge Reuse in MOOCs Ecosystems advances
in the investigation of MOOCs recommendation systems, addressing the use
of Linked Open Data, enhanced by topics modeling and labeling methods
to integrate and reuse data. Moreover, this chapter applies the concepts
of software ecosystem (SECO) in the modeling of MOOCs ecosystems,
identifying interactions and benefits of this approach. Finally, an example
of use is conducted to verify usability and how the techniques perform to
recommend courses (or parts of courses) in multiple MOOCs providers.

Petri nets (PN) are a mathematical tool that allows for complex algorithms
to be modeled visually and demonstrates the capabilities to quickly observe
the outcomes of an algorithm. With additional variables, in our case time, the
standard PN model can be enhanced to give greater modeling capabilities
to a developer. Towards a Computer Vision Based Approach for Developing
Algorithms for Soccer Playing Robots focuses on the actions a robotic
goalkeeper should take in a soccer match, a Timed Petri net (TdPN) was used
to model and simulate the system. The TdPN was developed to take inputs
from machine learning models, which includes the detection of the soccer
ball and other robots as well as the distances to each from pictures taken
by the robot. Using these predictors, an initial marking for the TdPN can be
determined, which when simulated will choose the desirable action based on
the input stimuli of what the robotic goalkeeper sees. Additionally, we analyze
our TdPN to see where the model can be modified and/or expanded to account
for changes in the future.

Verification tools for hybrid systems with mixed discrete-continuous
behavior are becoming more and more powerful, but their applicability to

high-dimensional models is still restricted. Context-dependent Reachability
Analysis for Hybrid Systems proposes an improvement for a certain class of
verification techniques based on flow-pipe construction. In previous work
we presented a method that allows for decomposition of the state space of
a hybrid system, such that the analysis can be done in sub-spaces of lower
dimensions, instead of the global high-dimensional space. In this paper,
we present an approach to construct such decompositions automatically,
to analyze the dynamics in each of the sub-spaces, and to select for each
sub-space an individual well-suited verification method. Our experimental
evaluation demonstrates the general applicability of our approach and shows a
remarkable speed-up on decomposable systems with heterogeneous dynamics.

Attackers can leverage several techniques to compromise computer
networks—ranging from sophisticated malware to Distributed Denial of
Service (DDoS) attacks that target the application layer. Application layer
DDoS attacks, such as Slow Read, are implemented with just enough traffic
to tie up CPU or memory resources causing web and application servers to
go offline. Such attacks can mimic legitimate network requests making them
difficult to detect. Netflow Feature Evaluation for the Detection of Slow Read
HTTP Attacks explores eight machine learners for detecting Slow Read DDoS
attacks on web servers at the application layer. Our approach uses a generated
dataset based upon Netflow data collected at the application layer on a live
network environment. Our generated dataset consists of real-world network
data collected from a production network. The eight machine learners provide
us with a more comprehensive analysis of Slow Read detection models. It is
essential to know which features reflect the most significant value regarding
the learners’ performance. Selective feature evaluation has several methods
used to specify the attribute evaluator and search methods. Correlation Feature
Selection (CFS) evaluates the worth of a subset of attributes by considering
the individual predictive ability of each feature. In machine learning and
statistics, feature selection methods such as single-attribute, subset attributes
selection, and Principal Component Analysis (PCA) are excellent approaches
for choosing a subset of relevant features for enhancing machine learning
models. We explore the use of these methods to improve the machine learners
for detecting Slow Read DDoS attacks on web servers at the application
layer. Experimental results show that the machine learners were successful in
identifying the Slow Read attacks with a high detection and low false alarm
rate. The experiment demonstrates that our chosen Netflow features and
feature selection methods are discriminative enough to detect such attacks
with 90 percent accuracy.

Server Logs are an important source of information for diagnosing
abnormal behavior as well as proactive error handling. Generally, errors are

Preface vii

viii Reuse in Intelligent Systems

examined manually by human experts, which takes a considerable amount of
time and effort to prevent the system from failure. The system log files, besides
other attributes such as time and location, and contains messages in textual
form, which is essential for analyzing behavior logs and understanding the
cause of errors. Predictive Analysis of Server Log Data for Forecasting Events
forecasts future server events, which helps the data analyst to predict future
system failure. We are reusing the sequence of events and forecasting future
events for abnormal behavior detection by the system. Accurate forecasting
of time-series events is optimum for active strategies, excellent performance
of the system, preventive maintenance, and complete shut-down. We have
explored the LSTM (Long short-term memory) algorithm, Holt-Winters, and
ARIMA algorithms and compared the results. We found that LSTM produces
promising results for forecasting future events.

Stuart H Rubin
Lydia Bouzar-Benlabiod

Contents

Preface iii

 1. Experimental Studies on the Impact of Data Sampling with 1
Severely Imbalanced Big Data
Tawfiq Hasanin, Taghi M Khoshgoftaar and Richard A Bauder

 2. How to Optimally Combine Univariate and Multivariate 33
Feature Selection with Data Sampling for Classifying Noisy,
High Dimensional and Class Imbalanced DNA
Microarray Data
Ahmad Abu Shanab and Taghi M Khoshgoftaar

 3. Big Data and Class Imbalance in Medicare Fraud Detection 62
Richard A Bauder and Taghi M Khoshgoftaar

 4. Movie Recommendations Based on a Recurrent Neural 87
Network Model
Yiu-Kai Ng

 5. A Recommendation System Enhanced by Topic Modeling 116
for Knowledge Reuse in MOOCs Ecosystems
Rodrigo Campos, Rodrigo Pereira dos Santos and Jonice Oliveira

 6. Towards a Computer Vision Based Approach for Developing 143
 Algorithms for Soccer Playing Robots

Patrick Hansen, Philip Franco and Seung-yun Kim

 7. Context-dependent Reachability Analysis for Hybrid Systems 161
Stefan Schupp, Justin Winkens and Erika Ábrahám

x Reuse in Intelligent Systems

	 8.	 Netflow	Feature	Evaluation	for	the	Detection	of	Slow		 181
Read	HTTP	Attacks	
Cliff Kemp, Chad Calvert and Taghi M Khoshgoftaar

	 9.	 Predictive	Analysis	of	Server	Log	Data	for	Forecasting	Events	 220
Reeta Suman, Behrouz Far, Emad A Mohammed, Ashok Nair
and Sanaz Janbakhsh

Index 241

Chapter 1
Experimental Studies on the

Impact of Data Sampling with
Severely Imbalanced Big Data

Tawfiq Hasanin, Taghi M Khoshgoftaar* and Richard A Bauder

1. Introduction

Recent developments in technology have caused the growth of raw data
to occur at an explosive rate. This has resulted in immense opportunity for
knowledge discovery and data engineering research to play an essential role
in a wide range of applications from enterprise information processing to
governmental decision-making support systems, and microscale data analysis
to macroscale knowledge discovery.

In defining the term “big data”, scholars provide many examples
throughout the literature [1]–[4]. In general, big data refers to large and
complex data, made up of structured and unstructured data which are too big,
or too computationally expensive, to be managed by traditional data mining
and Machine Learning (ML) techniques. Today, a huge amount of information
and data are stored in digital mediums which make it easier to use more
advanced methods to extract meaningful information. The general consensus
is that there are certain attributes that characterize big data. Throughout
the literature, the task of defining big data has proven rather complicated,
without a universally accepted definition [5]. Recently, Senthilkumar et al. [5]

Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University,
 Boca Raton, Florida, USA.
Emails: thasanin2013@fau.edu; rbauder2014@fau.edu
* Corresponding author: khoshgof@fau.edu

mailto:khoshgof@fau.edu
mailto:rbauder2014@fau.edu
mailto:thasanin2013@fau.edu

2 Reuse in Intelligent Systems

provided a definition specifically for healthcare, categorizing big data into six
V’s: Volume, Variety, Velocity, Veracity, Variability, and Value. Volume refers
to vast quantities of data, Variety applies to high levels of complexity of data
(i.e., incorporating data from different sources, mash-ups), Velocity represents
the high frequency at which new data is generated/collected, Veracity pertains
to the correctness of the data, Variability refers to sizable fluctuations, or
variation, in the data, and Value signifies significant data quality in reference
to the intended results (e.g., fraud detection).

When focusing on learning from the available information, ML is a
branch of Artificial Intelligence (AI) that studies the ability to learn without
explicitly being programmed to do so. Compared to more traditional
solutions, ML algorithms generally provide good results [6]–[8]. Moreover,
the traditional techniques cannot cope with such large amounts of data, thus
fueling a growing need to run machine learning and data mining methods on
increasingly larger datasets [9]. With this kind of growth in dataset size, many
problems surface. An important problem that affects learning from big data is
class imbalance. Class imbalance refers to the condition where the classes are
not represented equally [10]–[12]. Generally speaking, most labeled datasets
have some inequality in the number of classes, such as having very few fraud
cases relative to the non-fraud cases. The vast majority of instances belong to
one or several classes and a very small minority belong to the class, or classes,
of interest. Some real-world examples of minority class, or classes of interest,
include positive cancer diagnoses, medical fraud cases, and airport security
breaches. All of these minority classes are significantly less likely to occur
in comparison to the normative situation. Thus, the abnormal cases (minority
or positive classes) are the ones we want to successfully detect and deal with
accordingly.

The problem of imbalanced learning has attracted a significant amount of
attention from academia, industry, and government agencies in recent years
[13]. An issue with using imbalanced training data is how it might impact the
performance of a ML algorithm, which assumes balanced class distributions
or equal misclassification costs [13], [14]. For that reason, when presented
with imbalanced datasets, these algorithms usually fail to properly represent
the characteristics of the data and perform poorly in correctly classifying the
data [13], [15]. There are many different techniques when dealing with class
imbalanced datasets, which include the following:
 • Collect more data for the minority class. However, this can be difficult to

achieve since the minority class can be hard to collect or unavailable, as
seen with Medicare fraud.

 • Apply several classification algorithms to assess which one performs
better on a particular dataset.

The Impact of Data Sampling with Severely Imbalanced Big Data 3

 • Use sampling methods on the data to lessen the impact of class imbalance.
Sampling generates new datasets from the original. There are many
sampling methods such as Random Oversampling (ROS) [16], Random
Undersampling (RUS) [16], the Synthetic Minority Over-sampling
TEchnique (SMOTE) [17] and cost-sensitive learning [18].

 • Lastly, though not specifically an imbalance solution, the use of different
performance metrics to give additional insights into model performance
can help in assessing the true impact of class imbalance. For example,
accuracy can be very misleading in reporting performance on imbalanced
datasets. Accuracy, sometimes called error rate, usually applies a 0.50
threshold to decide between classes, and this is typically incorrect with
severely class imbalanced datasets. In Section 3.3, we explain the Area
Under the Receiver Operating Characteristic (ROC) Curve (AUC) which
can be used in lieu of accuracy. AUC is an average performance of all
operating points on the ROC curve for a particular learner.

In this study, we focus on sampling to reduce the impact of class
imbalance on machine learning models. Sampling techniques usually fall
into two categories: undersampling the majority class or oversampling the
minority class. The first removes instances from the majority, while the latter
adds instances to the minority class. RUS is based on randomly removing
instances from the majority class, but other methods selectively undersample
the majority class, while keeping the original population of the minority class
[19]. ROS randomly oversamples the minority class. SMOTE oversamples the
minority class by creating “synthetic” examples rather than by oversampling
with replacement. For our paper, we apply a RUS-based class imbalance
methodology. In general, we did not use ROS to avoid increasing the size of
the already large datasets, which can lead to an increase in computation time
and expense. Additionally, we avoided using SMOTE because it can create
samples that are not real or representative of the actual data, thus misleading
ML models [20].

We demonstrate that classification performance across several imbalanced
big datasets across different application domains can be significantly improved
using RUS without substantially altering the composition of the original data.
Our results indicate that having some data imbalance, from 0.1% to 1.0%
of the minority class, provides good performance versus using the original
imbalanced dataset or a heavily altered balanced dataset. For big data models,
the use of RUS implies less loss of information in the negative class, and
thus a better overall representation of the original data (unlike the 50:50 class
distribution). The following sequence summarizes our approach for the first
case study:

4 Reuse in Intelligent Systems

 • Collect balanced big datasets.
 • By simulation, randomly discard positive class instances, generating five

different class ratios.
 • Apply RUS to each dataset to get a 50:50 (balanced) class distribution.
 • Employ Random Forest (RF) on each dataset (to include the original, full

dataset) to assess classification performance.

In addition to the aforementioned experiments on class imbalance, we
also introduce a class imbalance problem using real-world Medicare fraud
datasets, as a second case study. From these datasets, we randomly select
baskets from the minority (positive) class of 200, 100, and 50 instances. We
then apply RUS on each basket, as well as the original full datasets, producing
50:50, 75:25, 65:35, 90:10, and 99:1 class distributions. Model performance
is assessed using Logistic Regression (LR), RF, and Gradient Boosted Trees
(GBT) across the different datasets. Our results indicate that applying RUS
with more imbalanced class ratios, such as 90:10 and 99:1, provide better
performance than the typical 50:50 class ratio.

Our contribution involves clearly demonstrating the adverse impact of
class imbalance in big data on machine learning model performance, and
lessening these effects by applying RUS and state-of-the-art big data tools
and frameworks. More specifically, we present two experiments. In the
first, we compare the original datasets, as a baseline, against datasets with
balanced and imbalanced class distributions. This helps to determine a good
class distribution when using imbalanced big data. In the second experiment,
we employ real-world imbalanced Medicare datasets. We create additional
severely imbalanced datasets and apply RUS to each. To the best of our
knowledge, our work is unique in generating both imbalanced and balanced
datasets to determine the effects of class imbalance on big data.

The remainder of this paper is organized as follows. Section 2 provides
an overview of related works. Section 3 describes the ML classification
algorithms and libraries used in this paper, to include the evaluation strategy
with validation techniques and performance metrics. Section 4 introduces
our first experiment to include the datasets and how they were processed,
model training, and performance evaluation. Section 5 presents our second
experiment which involves a real-world Medicare fraud problem, with severe
class imbalance. Section 6 presents our conclusions and future work.

2. Related Works

There are several studies that offer a good overview for the problem of
imbalanced data which include works such as [13], [21]–[23]. Overall,

The Impact of Data Sampling with Severely Imbalanced Big Data 5

approaches for addressing the problem of class imbalance fall largely in two
groups: data sampling solutions [16], [17], which modify the original training
set, and algorithmic modifications [24], which modify existing algorithms
trying to benefit from the classification of the minority class. Cost-sensitive
solutions [25], [26] combine the two previous options trying to minimize
misclassification costs, which are higher for the instances of the minority
class.

The researchers in [27] have proposed an enhanced SMOTE algorithm for
classification of imbalanced big data using RF. In their work, they introduced
a method to work on multi-class imbalanced data. The initial step decomposed
the original dataset into subsets of binary classes. The authors then applied the
SMOTE algorithm to each subset of imbalanced binary class in order to create
balanced data. The results showed that their proposed method outperforms
other methods.

Another work that has come to our attention is [28]. Their method won
the ECBDL’14 big data challenge for a bioinformatics big data problem. This
algorithm, named ROSEFW-RF, is based on several approaches to balance
the class distributions through ROS, detecting the most relevant features via
an evolutionary feature weighting process and a threshold to choose them,
building an appropriate RF model from the pre-processed data, and classifying
the test data. From their analysis, they concluded that their approach is very
suitable to tackle large-scale bioinformatics classification problems.

A recent study [29] addressed the fact that existing solutions typically
follow a divide-and-conquer approach in which the data is split into several
chunks that are addressed individually. Next, the partial knowledge acquired
from every slice of data is aggregated in multiple ways to solve the entire
problem. However, these approaches are missing a global view of the data
as a whole, which may result in less accurate models. In their work, the
researchers carried out a first attempt on the design of a global evolutionary
undersampling model for imbalanced classification problems. These are
characterized by having a highly skewed distribution of classes in which
evolutionary models are being used to balance the dataset by selecting only
the most relevant data. Using Apache Spark [30], they introduced a number
of variations to the well-known CHC [31] algorithm to work with very large
chromosomes and reduce the costs associated with the fitness evaluation.
They discussed some preliminary results, showing the potential of this new
kind of evolutionary big data model.

The work in [32] analyzed the performance of several techniques used to
deal with imbalanced datasets in big data. The work adopted oversampling,
undersampling, and cost-sensitive learning to correctly identify the
underrepresented class. An experimental study was carried out to evaluate

6 Reuse in Intelligent Systems

the performance of the diverse algorithms considered. The results indicated
that there is not one approach to imbalanced big data classification that
outperforms the others for all the data considered, when using RF.

Another study [33] analyzed the performance of oversampling and
undersampling with the decision tree [34] learner. Their work shows that
using decision trees with undersampling establishes a reasonable standard for
algorithmic comparison. But, it is recommended that the least cost classifier
be part of that standard as it can be better than undersampling for relatively
modest costs. Oversampling, however, shows little sensitivity. The authors
note that there is often little difference in performance when misclassification
costs are changed.

One study by our research group [35] discusses four Medicare datasets,
and provides an exploratory analysis of fraud detection. They achieved good
fraud detection performance particularly for LR and RF. Nevertheless, this
study did not include data sampling methods to address the issue of class
imbalance. Another recent paper [36] employed undersampling to study the
impact of class imbalance by creating four class ratios (80:20, 75:25, 65:35,
and 50:50). Using RF and LR learners, the research concluded that the 80:20
class distribution performed the best with low false negative rates.

3. Background

In this section, we describe the machine learning models used in our study.
Additionally, we discuss two machine learning frameworks used in our
experiments to process and build models with the big datasets. Note that
during model training, we keep the default model parameters unless otherwise
stated. For the first case study, we maintain configurations that are as similar
as possible between the Spark and H2O frameworks. However, for the second
case study, we use only the Spark framework for building models on the big
Medicare datasets.

3.1 Machine Learning Algorithms
The decision tree is a greedy algorithm that performs a recursive binary
partitioning of the features. The tree predicts the label for each bottom-most
(leaf) partition. Each partition is chosen greedily by selecting the best split
from a set of possible splits, in order to maximize the information gain (IG)
at a tree node [30]. The node impurity is a measure of the homogeneity of
the labels at the node. The current implementation in Spark provides two
impurity measures for classification. That is, Gini impurity which is defined
by the formula ∑C

i = 1 fi(1 − fi) and entropy which is defined by ∑C
i = 1 – fi log fi ,

The Impact of Data Sampling with Severely Imbalanced Big Data 7

where fi is the frequency of label i at the specific node and C is the number of
unique labels. The information gain is the difference between the parent node
impurity and the weighted sum of the two child node impurities. Note that DT
is not directly used in our study, but is an integral part of both the Random
Forest and Gradient-Boosted Tree models.

RF [37] is an ensemble approach that can also be thought of as a form
of nearest neighbor predictor. Ensembles are a divide-and-conquer approach
used to improve performance. The main principle behind ensemble methods is
that a group of “weak learners” can come together to form a “strong learner.”
RF employs the Decision Tree (DT) algorithm as the “weak learner” in the
ensemble. In a DT, each branch of the tree represents a feature in the data
which divides the instances into more branches based on the values which that
feature can take. Information Gain is used to decide the hierarchy of features
in the final tree structure. The leaves of the tree represent the final class label.
In our study, we applied RF as a base machine learning algorithm. Ensembles
have demonstrated good behavior when confronted with imbalanced datasets
[38], and it is believed that using one of them as a basis for the comparison
should not bias the results regarding the minority class [32]. It is also believed
that combining random sub-sampling with RF may overcome the imbalance
problem [39]. A recent study [40] used 121 datasets from the University
of California, Irvine (UCI)1 Machine Learning Repository to develop a
comparison of 179 classifiers arising from 17 families. The study excluded
large-scale problems. Their conclusion was that the classifier most likely to
be the best was RF.

GBT iteratively trains a sequence of decision trees. On each iteration,
the algorithm uses the current ensemble to predict the label of each training
instance and then compares the prediction with the true label. The dataset is
re-labeled to put more emphasis on training instances with poor predictions.
Thus, in the next iteration, the decision tree will help correct previous
mistakes. The specific mechanism for re-labeling instances is defined by a
loss function. With each iteration, GBT further reduces this loss function on
the training data [30].

This model measures the relationship between the categorical dependent
variable and one or more independent variables by estimating probabilities
using a logistic function, which is the cumulative logistic distribution. Thus, it
treats the same set of problems as probit regression using similar techniques,
with the latter using a cumulative normal distribution curve instead with the
loss function in the formulation given by the logistic loss:

L (w : x, y) := log(1 + e−ywT x) (1)

1 http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu

8 Reuse in Intelligent Systems

For binary classification problems, the algorithm outputs a binary LR
model. Given a new data point, denoted by x, the model makes predictions by
applying the logistic function f (z) = 1

 1+ez
 where z = wT x. If (wT x) > 0.5, the

outcome is positive class, or negative otherwise.

3.2 Machine Learning Frameworks
To ease the process of using ML, engineers build the algorithms within software
modules or packages, making sure that they work reliably, quickly, and
at-scale. Furthermore, these frameworks are specifically designed to leverage
distributed compute resources for processing extremely large datasets. In the
context of ML, our work employs two state-of-the-art big data frameworks:
 • Apache Spark [30], also referred to as Spark in this paper, provides

dramatically increased data processing speed compared to traditional
methods and is considered one of the largest big data open source projects
[41].

 • H2O is another open source framework that provides a parallel processing
engine, analytics, math, and machine learning libraries, along with data
preprocessing and evaluation tools. Additionally, it offers a web-based
user interface, making learning tasks more accessible to analysts and
statisticians who may not have strong programming backgrounds [42].

3.3 Evaluation Strategy
Typically, when training and validating models, datasets are split into two
thirds for model training and one third for testing. However, this method
has some disadvantages, mainly because only part of the data is in either the
training or validating process but not both. To overcome this problem, leave-
one-out validation methods help by using the entire dataset in the evaluation
process. Two validation methods employing this idea were used in this work,
to include k-fold cross-validation and Out-of-Bag error.

In ML, one of the commonly used model evaluation methods is cross-
validation (CV), in which a portion of the data is used to train the model
while the remaining data is used to validate the built model. K-fold CV is
also known as rotation estimation, which evaluates predictive models by
partitioning the original sample into several sets of approximately equal size.
As seen in Figure 1, the model is trained and tested k times, where each time it
is trained on k – 1 folds and tested on the remaining fold. This is to ensure that
all data are used in the classification. A slight modification in the k-fold CV
technique is made for some classification problems. With imbalanced data, one
typically uses stratified k-fold CV, in which minority and the majority classes

The Impact of Data Sampling with Severely Imbalanced Big Data 9

have roughly the same proportions of class labels in each fold, to ensure that
minority classes have approximately balanced distribution between training
and test sets. When compared to regular CV, the stratification scheme is
generally better in terms of bias and variance [43].

A RF model, however, has the ability to internally estimate the
performance during run time. This method is called Out-of-Bag (OOB) error.
While using the entire original dataset, each tree in the forest is built using
a different bootstrap sample. Typically, one-third of the dataset is left out
and not involved in the current tree construction. This set is used to validate
the tree built on the remaining two-thirds, with every other tree in the forest
similarly treated. At the end of the run, j is taken as the OOB, the class that
received most of the votes every time out of n cases. The proportion of times
that j is not equal to the true class of n, averaged over all cases, is the OOB
error estimate. The OOB is used, while adding trees to a forest, to achieve a
running unbiased estimate of the classification error.2

3.4 Area Under ROC Curve
Although the accuracy metric threshold may use values other than the default
0.5 to distinguish between binary classes, the accuracy metric is based on
a simple count of the errors which can easily hide information due to class
confusion. To measure model performance, we use the Area Under the
Receiver Operating Characteristic Curve (AUC) metric. AUC is preferred
over accuracy as an alternative method for evaluating a classification
algorithm [44]. The use of AUC allows us to focus on a classifier’s ability to
avoid false classification [45]. This is particularly important when working
with imbalanced datasets when the positive class, the class of interest, is in
the minority.

Fig. 1.1

Positives

Labeled dataset

Negatives

Training
sets

k1 k2 k3 k4 k5

k1 k2 k3 k4 k5

k1 k2 k3 k4 k5

k1 k2 k3 k4 k5

k1 k2 k3 k4 k5

1st cross

2nd cross

3rd cross

4th cross

5th cross

Stratified
k-fold CV

p n

Hold-out fold Training folds

p p p p n n n n

ML training

ML training

ML training

ML training

ML training

Model #1

Model #2

Model #3

Model #4

Model #5

Original
dataset

Prediction

Prediction

Prediction

Prediction

Prediction

Test
sets

k: 5

Start

Performance

Performance

Performance

Performance

Performance

End

Fig. 1: K-Fold cross validation.

2 https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm.

https://www.stat.berkeley.edu

10 Reuse in Intelligent Systems

3.5 Average and Weighted AUC
In Spark, the average AUC over all of the 5-fold CV folds is used. However,
this approach produces different results using H2O. Scoring the holdout
predictions can result in different metrics versus taking the average over all
of the 5-fold CV folds. For example, if the sizes of the holdout folds differ
significantly, then the average should be replaced with a weighted average.
Also, if the CV models map to slightly different probability spaces, which
can happen for some models that converge to different local minima, then the
confused rank ordering of the combined predictions can lead to a significantly
different AUC than the average.3 Besides the average AUC scores, we retain
all of the individual AUC scores for statistical analysis.

3.6  Significance Testing
In order to provide additional rigor around our AUC performance results,
we use hypothesis testing to show the statistical significance of the model
performance results. Both ANalysis Of VAriance (ANOVA) [46] and post
hoc analysis via Tukey’s Honestly Significant Different (HSD) [47] tests are
used in our study. ANOVA is a statistical test determining whether the means
of several groups (or factors) are equal. Tukey’s HSD test determines factor
means that are significantly different from each other. This test compares all
possible pairs of means using a method similar to a t-test, where statistically
significant differences are grouped by assigning different letter combinations
(e.g., group ‘a’ is significantly different than group ‘b’).

3.7  The Problem of Randomization
Randomization can be problematic when balancing datasets by either
undersampling or oversampling. Additionally, problems from randomization
can adversely affect the resampling of the k-folds in CV, where it randomly
divides the data into these k folds. Statistically, having a sample is only part of
the population, where the numerical value of a statistic cannot be expected to
provide the exact value of the population for any given sample. With RUS, the
split is completely random and retains only a fraction of the data. Thus, due to
this randomness, RUS performs splits that can be considered lucky or unlucky.
Random splits may generate very good (clean) sampled instances (that could
increase model performance) or may retain poor and/or noisy instances which
may degrade the training process and model performance. Lastly, some
algorithms, such as RF, have inherent randomness, whereas others output
results where the order of instances is changed. One way to reduce some of

3 https://h2o-release.s3.amazonaws.com/.

https://h2o-release.s3.amazonaws.com

The Impact of Data Sampling with Severely Imbalanced Big Data 11

the potential negative effects of randomness is by using repetitive methods
[48]. We use five repeats in the first case study for each RUS split. This will
provide five models for each ratio, which means that we created a total of 200
new datasets from the original four datasets and 4,488 models. Each of these
five repetition results were averaged to get the overall model performance. In
the second case study, we decided to repeat it 10 times due to the severe class
imbalance and relative size of each dataset, which generated 14,400 models.

4. Simulated Imbalanced Data Case Study

For our first case study, we considered four diverse and publicly available
big datasets, three of which were gathered from UCI Machine Learning
Repository [49]. Because it is likely the most developed branch of learning
from imbalanced data [50], binary classification problems are very important
in our current research. Hence, our primary focus is on using high-dimensional
datasets with binary labels for classification.

The datasets in this case study are listed in Table 1 which include HIGGS,
SUSY [51], HEPMASS [52], and sentiment140 [53]. HIGGS, HEPMASS,
and SUSY are similar to each other in nature while sentiment140 has a
different representation characteristic. More specifically, sentiment140 has a
word vector representation [54] with features representing the words and the
instances representing tweets. Each value in the data holds either 1, indicating
the word exists in the document or 0, indicating the absence of the specific
word. Table 1 presents the dimensions, number of class instances, number of
features, the learning difficulty, and the performance. The datasets are ordered
by level of difficulty. The importance of understanding the difficulty of a
dataset is needed because the evaluation result is dependent on the dataset
itself, e.g., how difficult it is to learn patterns in a particular dataset. The listed
performance is based on building and evaluating RF models on the original,
full datasets (with no sampling). There is not a lot of information regarding
the learning difficulty of the collected datasets, except from comparing
model performance for each dataset in Section 4.4. As the reader will see in
Section 6, as well as in Table 3, the performance of each dataset varies and
little can be done to significantly improve the model performance with data

Table 1: Datasets.

Dataset Features Instances Difficulty AUC Performance

HEPMASS 28 10,500,000 Easy 0.953

SUSY 18 5,000,000 Medium 0.874

HIGGS 28 11,000,000 Hard 0.822

sentiment140 109,735 1,600,000 Very hard 0.785

12 Reuse in Intelligent Systems

sampling when the dataset is very difficult to learn. In general, the level
of difficulty of a dataset may depend on one or more factors, such as the
algorithm used, level of noise, or high dimensionality. Readers may refer to
[55]–[57] to learn more about level of difficulty.

As stated, the primary purpose for using big balanced datasets is to study
the effects of learning with imbalanced data. Usually, methods are used to
provide a balanced distribution by modifying imbalanced datasets; however,
our method aims to intentionally inject imbalance to provide a general
insight about imbalanced datasets. Studies have shown that, in comparison to
imbalanced data, a balanced dataset produces an improvement in the overall
performance for many classifiers [13].

4.1  The Imbalanced Datasets
Each one of the four datasets is represented with the symbol α next to its
name to indicate that it is the original balanced dataset. Five new imbalanced
datasets (referred to as data1, data2, data3, data4, and data5, respectively) are
created out of the original α balanced datasets with different ratios randomly
undersampled from only the positive class.

In binary classification, the idea is to define each instance with a label,
either positive or negative. In real-world problems, the positive class is
typically more important and is what we want to predict or detect. To mimic
real-word problems, we are going to decrease the positive class by randomly
discarding them. Table 2(a) shows twenty new imbalanced datasets plus
the four original. Typically, RUS removes data from the original dataset. In
particular, it randomly selects a set of majority class instances and removes
these samples to adjust the balance of the original dataset. Nevertheless,
in our experiment, we used undersampling to inject imbalance into the big
datasets by removing instances from the positive class. Due to the design of
our experiment, we started by randomly sampling the data keeping 10% of
the positive class while discarding 90%, thus obtaining a ratio of 10:1 which
we call number 1. We went further by taking 10% of data1 which makes the
ratio to the original data 100:1, thus creating data2. We then repeated the same
process to produce data3, data4, and data5. Table 2(a) shows the statistics for
the original data along with the new generated datasets.

4.2 The Balanced Datasets
By using RUS on the negative class, Table 2(b) shows the five new balanced
datasets derived from the Table 2(a) datasets. Note that the size of the data
decreased rapidly in some cases. For example, when comparing the size of the
class percentage of 0.001, we can see that the HEPMASS dataset has dropped
from 5,249,929 to a total number of 105 instances.

The Impact of Data Sampling with Severely Imbalanced Big Data 13

Table 2: Random undersampled (RUS) datasets class distribution.

D
at

a # Negative Class Positive Class Ratios Total

% Instances % Instances Neg:Pos % Instances

H
EP

M
A

SS

α
1
2
3
4
5

100 5,249,876

⋮ ⋮

100 5,250,124
10 525,012
1 52,501
0.1 5250
0.01 525
0.001 53

1:1
10:1

100:1
1000:1

19,999:2
699,976:7

100 10,500,000
54.999 5,774,888
50.499 5,302,377
50.049 5,255,126
50.004 5,250,401
49.999 5,249,929

H
IG

G
S

α
1
2
3
4
5

100 5,170,877

⋮ ⋮

100 5,829,123
10 582,912
1 58,291
0.1 5829
0.01 583
0.001 58

8:9
71:8

621:7
887:1

35,483:4
709,661:8

100 11,000,000
52.307 5,753,789
47.538 5,229,168
47.061 5,176,706
47.013 5,171,460
47.009 5,170,935

SU
SY

α
1
2
3
4
5

100 2,712,173

⋮ ⋮

100 2,287,827
10 228,783
1 22,878
0.1 2288
0.01 229
0.001 23

6:5
83:7

1067:9
2371:2

59,274:5
118,548:1

100 5,000,000
58.819 2,940,956
54.701 2,735,051
54.289 2,714,461
54.248 2,712,402
54.244 2,712,196

se
nt

im
en

t1
40

α
1
2
3
4
5

100 800,000

⋮ ⋮

100 800,000
10 80,000
1 8000
0.1 800
0.01 80
0.001 8

1:1
10:1

100:1
1000:1

10,000:1
100,000:1

100 1,600,000
55 880,000
50.5 808,000
50.05 800,800
50.005 800,080
50.001 800,008

2(a) Imbalanced datasets: 5 new datasets are derived from the original dataset using RUS,
undersampling the positive class while retaining all of the negative class.

Table 2 contd. ...

4.3  Simulated Experiment Design
Figure 2 outlines the creation of the datasets from Table 2 and the
implementation of the ML models from Table 3. After collecting datasets
shown in Table 1, our experiment consists of three distinct stages:
 • Preparing and sampling the data, where both steps in this stage are

repeated five times. By the end of this stage, 50 versions of the original
datasets are generated.
1) Imbalance the full original datasets by randomly discarding samples

of the positive class, generating five different class ratios. At this step,
we simulated the problem of class imbalance.

2) Balance these imbalanced datasets into 50:50 class ratios using RUS
on the negative class.

14 Reuse in Intelligent Systems
D

at
a

% Negative Class Positive Class Ratio Total Instances

H
EP

M
A

SS

1
2
3
4
5

10
1
0.1
0.01
0.001

524,987
52,498

5249
524
52

524,167
52,501

5250
525
53

50:50
⋮

1,049,154
104,915
10,491

1048
105

H
IG

G
S

1
2
3
4
5

10
1
0.1
0.01
0.001

517,087
51,708
5.170

517
51

582,912
58,291

5829
583
58

50:50
⋮

1,099,999
109,999
10,999

1100
109

SU
SY

1
2
3
4
5

10
1
0.1
0.01
0.01

271,217
27,121

2712
271
27

228,783
22,878

2288
229
23

50:50
⋮

49,999
49,999

5000
500
50

se
nt

im
en

t1
40 1

2
3
4
5

10
1
0.10
0.01
0.001

80,000
8000
800
80
8

80,000
8000
800
80
8

50:50
⋮

160,000
16,000

1600
160
16

2(b) Balanced datasets: we balanced each one of the datasets from Table 2(a). This is achieved by
using RUS on the negative class so the number of samples are balanced with the positive class

labels.

...Table 2 contd.

4 https://hadoop.apache.org/.

a
balanced
dataset
50:50 n times a full dataset

End
Start

(Positive class)
m ratios
10:1
100:1
1000:1
10000:1
100000:1

Repetition: n
ratios: m

Injecting
imbalance

RUS

(Negative class

50:50

m balaced
dataset
50:50

m ratios
imbalaced

dataset

n times?

1 full dataset
+

m × 2 × n
sampled
datasets

No

Distribution

Yes

DRF

k-fold CV

OOB

RF

Training and evaluating

H20

Spark
Performance

Average

HDFS

12345
0:5

0:6

0:7

0:8

0:9

1
(a)

HEPMASS

12345
0:5

0:6

0:7

0:8

0:9

1
(b)

HIGGS

12345
0:5

0:6

0:7

0:8

0:9

1
(c)

SUSY

12345
0:5

0:6

0:7

0:8

0:9

1
(d)

A
U

C

sentiment140

12345
0:5

0:6

0:7

0:8

0:9

1
(e)

12345
0:5

0:6

0:7

0:8

0:9

1
(f)

12345
0:5

0:6

0:7

0:8

0:9

1
(g)

12345
0:5

0:6

0:7

0:8

0:9

1
(h)

A
U

C

12345
0:5

0:6

0:7

0:8

0:9

1
(i)

Distribution
12345

0:5

0:6

0:7

0:8

0:9

1
(j)

Distribution
12345

0:5

0:6

0:7

0:8

0:9

1
(k)

Distribution
12345

0:5

0:6

0:7

0:8

0:9

1
(l)

Distribution

A
U

C

Im
b

a
la

n
c
e

d
B

a
la

n
ce

d
A

ve
ra

g
e

h2o50

h2o100

spark50

spark100

h2oOOB50

h2oOOB100

Balanced

Imbalanced

Fig. 1.2

Fig. 1.3

Fig. 2: Simulated experiment design.

 • Storing and distributing the data using Apache Hadoop.4 Hadoop
is a popular framework for working with big data that helps to deal
with scalability problems by offering distributed storage, the Hadoop
Distributed File System (HDFS), which is designed to reliably store very
large datasets. For more details, please refer to [42].

https://hadoop.apache.org

The Impact of Data Sampling with Severely Imbalanced Big Data 15

 • Building and evaluating RF models on the newly created datasets from
the first stage along with original datasets, generating a total of 51 datasets
that are used to build each model. These models are built using two ML
implementation frameworks (Spark and H2O) with Random Forest with
50 and 100 trees, and the three different AUC methods. Below, we list the
modified model configurations, with other parameters kept as the default.

 – Maximum depth of each tree in the forest is set to 20.
 – The maximum number of bins used for splitting features is set to 32.
 – Number of features to consider for splits at each node is square root.
 – Criterion used for information gain calculation is Gini index.
 – The sub-sampling rate which specifies the size of the dataset used for

training each tree in the forest, as a fraction of the size of the original
dataset, is set to two thirds.

Table 3: Simulated case study: Area under the ROC curve (AUC) average results.

Framework H2O Spark

Validation OOB 5-folds CV

Trees 50 100 50 100 50 100

H
EP

M
A

SS

α
1
2
3
4
5

0.948
0.943
0.934
0.897
0.618
0.546

0.948
0.945
0.937
0.920
0.691
0.549

0.966
0.945
0.937
0.920
0.672
0.520

0.948
0.946
0.938
0.928
0.787
0.560

0.945
0.944
0.928
0.809
0.547
0.500

0.947
0.945
0.931
0.864
0.583
0.505

H
IG

G
S

α
1
2
3
4
5

0.819
0.811
0.769
0.696
0.600
0.555

0.823
0.811
0.769
0.714
0.645
0.554

0.821
0.803
0.759
0.713
0.640
0.524

0.824
0.815
0.778
0.724
0.655
0.548

0811
0.808
0.752
0.671
0.523
0.500

0.815
0.813
0.766
0.694
0.556
0.499

SU
SY

α
1
2
3
4
5

0.873
0.868
0.860
0.803
0.576
0.525

0.874
0.870
0.864
0.826
0.614
0.525

0.874
0.870
0.864
0.830
0.598
0.547

0.875
0.871
0.866
0.842
0.654
0.525

0.874
0.868
0.846
0.711
0.570
0.500

0.874
0.870
0.852
0.753
0.588
0.500

se
nt

im
en

t1
40

α
1
2
3
4
5

0.763
0.762
0.707
0.602
0.613
0.605

0.788
0.801
0.744
0.684
0.689
0.761

0.756
0.760
0.705
0.637
0.613
0.476

0.771
0.774
0.717
0.659
0.622
0.449

0.809
0.807
0.736
0.702
0.612
0.624

0.823
0.823
0.764
0.730
0.644
0.772

3(a) Imbalanced datasets results: average AUC results for the generated datasets shown in
Table 2(a).

Table 3 contd. ...

16 Reuse in Intelligent Systems

A total of 204 datasets are used in this process, from the four big datasets
listed in Table 1. We believe that there are benefits in having the original
dataset. Many researchers have an imbalance problem then adjust the datasets
with sampling, either oversampling or undersampling, to mitigate the effects
of class imbalance on model performance. This case study, on the other
hand, has the original full balanced datasets to have as comparison with our
undersampled dataset results.

4.4  Results of the Simulated Datasets
Table 3 presents average AUC results for the iterations and each combination.
Figure 3 visualizes the overall AUC slopes for a better understanding of the
results. With respect to best performances among all five sampled ratios, the
datasets can be categorized into four levels of difficulty. HEPMASS was the
easiest to learn among all four, while sentiment140 was the most difficult.
With regards to the number of trees in the Random Forest models, as expected,
100 trees performed better than 50.

...Table 3 contd.

Framework H2O Spark

Validation OOB 5-folds CV

Trees 50 100 50 100 50 100

H
EP

M
A

SS

1
2
3
4
5

0.943
0.936
0.926
0.916
0.845

0.945
0.939
0.933
0.924
0.845

0.945
0.940
0.933
0.925
0.830

0.946
0.941
0.935
0.929
0.840

0.945
0.939
0.932
0.920
0.880

0.945
0.940
0.935
0.927
0.873

H
IG

G
S

1
2
3
4
5

0.802
0.778
0.739
0.679
0.598

0.810
0.810
0.756
0.725
0.690

0.811
0.794
0.753
0.720
0.608

0.814
0.814
0.766
0.725
0.643

0.809
0.791
0.755
0.693
0.631

0.813
0.798
0.765
0.702
0.604

SU
SY

1
2
3
4
5

0.866
0.858
0.836
0.829
0.834

0.870
0.863
0.845
0.843
0.875

0.870
0.864
0.846
0.829
0.838

0.872
0.867
0.849
0.830
0.864

0.869
0.863
0.848
0.831
0.916

0.871
0.866
0.853
0.841
0.916

se
nt

im
en

t1
40 1

2
3
4
5

0.773
0.756
0.741
0.599
0.432

0.794
0.792
0.764
0.604
0.386

0.806
0.797
0.745
0.548
0.246

0.817
0.802
0.762
0.615
0.280

0.802
0.784
0.710
0.629
0.442

0.819
0.802
0.748
0.626
0.325

3(b) Balanced datasets results: average AUC results for the Table 2(b).

The Impact of Data Sampling with Severely Imbalanced Big Data 17

From Table 3 and Figure 3(a, b, c, and d), we can see that building the
models using cross-validation performed better, in general, than using OOB.
Note that the AUC values in bold are the best with regards to each generated
data in the rows. Upon inspection, we find that the H2O version of RF, with
100 trees, performed the best on all datasets except sentiment140 where Spark
with 100 trees performed better. Regardless, our goal is not an ML library
and framework comparison. In terms of the imbalanced datasets, the worst
results were at or below 0.1% of positive class membership. We can see from
Figure 3(a, b, c, and d) that the sampled positive percentage of 0.1% and
1.0% gave similar performances to the results from 10% and even close to
100% which is the original data. In terms of sentiment140, the AUC is poor
at 0.001% of the positive class. The nature of this data is different from the
other three datasets and, to be specific, 18 positive class instances is very
low especially given the high-dimensionality of the data. On the other hand,
Figure 3(e, f, g, and h) shows the balanced class distribution dataset results
from Table 3(b) and overall, performance increased. When comparing the
same dataset, sentiment140, from graph h with the one from d, we can see
that at the smallest class distribution, the AUC results were below 0.5 which
means that the built models using 16 samples did not perform well despite the
fact that all platforms and learners agreed. Note that the results from H2O and
Spark are not the same due to several factors such as different implementations
of the RF algorithm, randomness in the bagging and feature selection, as well
as different ways of handling categorical variables.

a
balanced
dataset
50:50 n times a full dataset

End
Start

(Positive class)
m ratios
10:1
100:1
1000:1
10000:1
100000:1

Repetition: n
ratios: m

Injecting
imbalance

RUS

(Negative class

50:50

m balaced
dataset
50:50

m ratios
imbalaced

dataset

n times?

1 full dataset
+

m × 2 × n
sampled
datasets

No

Distribution

Yes

DRF

k-fold CV

OOB

RF

Training and evaluating

H20

Spark
Performance

Average

HDFS

12345
0:5

0:6

0:7

0:8

0:9

1
(a)

HEPMASS

12345
0:5

0:6

0:7

0:8

0:9

1
(b)

HIGGS

12345
0:5

0:6

0:7

0:8

0:9

1
(c)

SUSY

12345
0:5

0:6

0:7

0:8

0:9

1
(d)

A
U

C

sentiment140

12345
0:5

0:6

0:7

0:8

0:9

1
(e)

12345
0:5

0:6

0:7

0:8

0:9

1
(f)

12345
0:5

0:6

0:7

0:8

0:9

1
(g)

12345
0:5

0:6

0:7

0:8

0:9

1
(h)

A
U

C

12345
0:5

0:6

0:7

0:8

0:9

1
(i)

Distribution
12345

0:5

0:6

0:7

0:8

0:9

1
(j)

Distribution
12345

0:5

0:6

0:7

0:8

0:9

1
(k)

Distribution
12345

0:5

0:6

0:7

0:8

0:9

1
(l)

Distribution

A
U

C

Im
b

a
la

n
c
e

d
B

a
la

n
c
e

d
A

ve
ra

g
e

h2o50

h2o100

spark50

spark100

h2oOOB50

h2oOOB100

Balanced

Imbalanced

Fig. 1.2

Fig. 1.3

Fig. 3: Simulated case study: AUC results plots.

18 Reuse in Intelligent Systems

Figure 3(i, j, k, and l) depicts the results from Table 3. The dashed lines
represent the average AUC for the imbalanced datasets for every combination
of the five generated ratios. The solid lines represent the average after
balancing the datasets. For the first two combinations, 1 and 2, we can see
results are fairly similar between the imbalanced and balanced datasets.
However, we can see a noticeable increase in performance with the remaining
three combinations. This agrees with the results from [13] which concluded
that sampling produces an improvement in the overall performance for many
classifiers. However, a limitation of the sentiment140 dataset is that the
performance of the models was poor and unstable when the positive minority
class was at or below 0.01%. Thus, with imbalanced data, it is important to
analyze some data characteristics that interact with this issue, aggravating the
problem in order to increase the performance.

We are interested in determining whether balancing several class
distributions using RUS on big data has an effect on the performance.
Table 4 part (a) shows a two-factor ANOVA which includes the different class
distributions and whether they are balanced. In these results, based on the
p-values and a significance level of 0.05, the p-value for class distribution was
2e-16 which indicates that the levels are associated with different significant
strengths. Also, the p-value for the balanced condition was 0.00339, which is
also lower than 0.05 indicating a significant difference.

A post hoc test is needed in order to determine which groups differ
from each other. The phrase “post hoc” refers to the fact that these tests
are conducted without any particular prior comparisons in mind.
Table 4(b, and c) presents Tukey’s Honestly Significant Different (HSD)
post hoc tests for balanced and class distributions treatment. In part (b) of
Table 4, which tests the balanced criteria with 400 runs in each category,
the two groups hold distinct group letters which means there is a significant
difference between the balanced and imbalanced class distributions. On the
other hand, in part (c) of the Table, the test indicates that there is a degree of
performance similarity with some of the RUS class distributions; however,
despite the fact that group letters have interactions in most of the cases, mean
AUC values of imbalanced class distributions are always preceded by balanced
class distributions that share the same positive class percentage. RUS 10:10
has the best performance in our experiment, and class distributions below a
positive class percentage of 0.1% lie at the end of the Table. 100:0.001 class
distributions have the worst AUC results among all of the ten.

Figure 4 visualizes the AUC ranges and group letters for each class
distribution. The figure corresponds to Table 4 part (c). The range of each
class distribution is determined by the minimum and maximum AUC values
from the Table and the bold dots represent the mean AUC for each class
distribution.

The Impact of Data Sampling with Severely Imbalanced Big Data 19

Table 4: Simulated case study: Analysis of variance table.

Df Sum Sq Mean Sq F value Pr (> F)

Balanced 1 0.139 0.1394 8.635 0.00339

Distribution 8 2.998 0.3748 23.213 < 2e-16

Residuals 790 12.755 0.0161

4(a) Two-factor ANOVA results.

AUC std r Min Max Group

Yes 0.7266479 0.16219 400 0.2100 0.9548 a

No 0.7002451 0.11479 400 0.4301 0.8850 b

4(b) Tukey’s HSD balanced results.

AUC std r Min Max Group

10:10 0.81731 0.04666 80 0.62034 0.87906 a

100:10 0.79110 0.06870 80 0.61003 0.87298 ab

1:1 0.77558 0.09861 80 0.43907 0.88790 ab

100:1 0.74909 0.07968 80 0.55250 0.87439 bc

0.1:0.1 0.69186 0.16996 80 0.21000 0.86097 cd

100:0.1 0.69169 0.09005 80 0.43005 0.85668 cd

0.01:0.01 0.68885 0.17528 80 0.21667 0.92712 cd

0.001:0.001 0.65963 0.20828 80 0.21000 0.95478 de

100:0.01 0.64921 0.09135 80 0.51872 0.88495 de

100:0.001 0.62015 0.13799 80 0.43005 0.88495 e

4(c) Tukey’s HSD class distribution results.

Fig. 4: Simulated case study: Class distribution range and groups.

Fig. 1.4

1.0

0.8

0.6

0.4

0.2

a ab ab bc cd cd
cd de

de e

10:10

100:10 1:1
100:1

1.0:0.1

100:0.1

0.01:0.01

0.001:0.001

100:0.01

100:0.001

Start

n times?

Performance

n times

Repetition: n
CV folds: k

Positives court baskets: p
RUS ratios: m

Original
dataset

k
Training

sets

Positives baskets

(Randomly select from

the positive class

without replacement)

50

100

200

All

k × p positive
counts
baskets
datasets

No sampling

RUS

(Negative class

50:50

65:36

75:35

90:10

99:10

k × p × m
sempled
datasets

Distribution

Apache spark
mlib training and eveluation

ML training

 3 × (k × p ×
m + k × p)

models

RF

GBT

LR

Prediction

HDFS

Stratified
k-folds CV

No Yes

End
k Test
sets

Fig. 1.5

[a
ll:

a
ll]

[9
9
:1

]

[9
0
:1

0
]

[7
5
:2

5
]

[6
5
:3

5
]

[5
0
:5

0
]

0:6

0:7

0:8

0:9
(a)

Part B

[a
ll:

a
ll]

[9
9
:1

]

[9
0
:1

0
]

[7
5
:2

5
]

[6
5
:3

5
]

[5
0
:5

0
]

0:6

0:7

0:8

0:9
(b)

Part D

[a
ll:

a
ll]

[9
9
:1

]

[9
0
:1

0
]

[7
5
:2

5
]

[6
5
:3

5
]

[5
0
:5

0
]

0:6

0:7

0:8

0:9
(c)

DMEPOS

[a
ll:

a
ll]

[9
9
:1

]

[9
0
:1

0
]

[7
5
:2

5
]

[6
5
:3

5
]

[5
0
:5

0
]

0:6

0:7

0:8

0:9
(d)

A
U

C

Combined

A
ve

ra
g
e

50 100 200 ALL

Fig. 1.6

20 Reuse in Intelligent Systems

5. Real-World Implanted Case Study

For the second case study, we use the following three Public Use File (PUF)
datasets that are related to Medicare Provider Utilization and Payments
(MPUP) for Medicare fraud detection, with a very limited number of known
fraud labels (i.e., a severe class imbalance). In this section, we provide
discussions on each of these Medicare datasets, to include data processing
and fraud label mapping, as well as our fraud detection results for the original
and sampled datasets.
 • Medicare Provider Utilization and Payment Data: Physician and Other

Supplier (Part B).
 • Medicare Provider Utilization and Payment Data: Part D Prescriber

(Part D).
 • Medicare Provider Utilization and Payment Data: Referring Durable

Medical Equipment, Prosthetics, Orthotics and Supplies (DMEPOS).

5.1  Medicare Data Description
1) Part B: The Part B dataset provides claims information, within a given
year, for each procedure a physician performs. Currently, this dataset is
available on the CMS website for the 2012 through 2016 calendar years, with
2016 data being released in 2018 [58]. The years 2017 and 2018 are presently
unavailable (for Part B and other Medicare datasets used herein). A unique
National Provider Identifier (NPI) standard is used to identify physicians, with
specific procedures labeled by their Healthcare Common Procedure Coding
System (HCPCS). The data also includes other claims information which are
average payments and charges, the number of procedures performed, and
medical specialty. The Centers for Medicare and Medicaid Services (CMS)
aggregates the data using NPI of the provider, HCPCS code for the procedure,
and the place of service. Because physicians may perform the same procedure
at different service places and practice under several provider types, for each
physician, there are as many records as unique combinations of NPI, Provider
Type, HCPCS code, and place of service.

2) Part D: The Part D dataset provides information related to the prescription
drugs prescribed by physicians and paid for under the Medicare Part D
Prescription Drug Program within a given year. Currently, this data is
available on the CMS website for the 2013 through 2016 calendar years, with
2016 being released in 2018 [59]. Providers/prescribers are identified using
their unique NPI while each drug is listed by its brand and/or generic name
along with other information related to the prescription and other general
features. Similar to the Part B dataset, we found that physicians practice under

The Impact of Data Sampling with Severely Imbalanced Big Data 21

multiple specialties. There are as many records as unique combinations of
NPI, Provider Type, and drug name for each physician. To provide privacy
protection for Medicare beneficiaries, an exclusion of any aggregated rows,
derived from 10 or fewer claims, has been applied.

3) DMEPOS: The Referring Durable Medical Equipment, Prosthetics,
Orthotics and Supplies (DMEPOS) data includes submitted claims information
about medical products for patients based on physicians’ orders within a given
year. It mainly contains data on utilization, allowed amount and Medicare
payment, and submitted charges organized by NPI, HCPCS code, and supplier
rental indicator. Currently this data is available on the CMS website for the
2013 through 2016 calendar years (with 2016 being released in 2018) [60]. As
previously mentioned for Part B and D, we have found that some physicians
place referrals for the same DMEPOS equipment, or HCPCS code, as well as
a few physicians that practice under multiple specialties. Therefore, for each
physician, there are as many rows as unique combinations of NPI, Provider
Type, HCPCS code, and equipment status.

4) Combined dataset: The Combined dataset is created after processing
Part B, Part D, and the DMEPOS datasets, containing all the attributes from
each, along with the fraud labels derived from the LEIE. The combining
process involves a join operation on NPI, Provider Type, and year. Due to
there not being a gender variable present in the Part D data, we did not include
this variable in the join operation conditions and used the gender labels from
Part B while removing the gender labels gathered from the DMEPOS dataset
after joining. In combining these datasets, we are limited to those physicians
who have participated in all three parts of Medicare. Even so, this Combined
dataset has a larger and more encompassing base of attributes for applying
data mining algorithms to detect fraudulent behavior, as demonstrated in our
study.

5) LEIE: All three previously listed Medicare datasets (Part B, Part D, and
DMEPOS) are aggregated based on the procedure-level and are not labeled
with a specific classification problem. In order to generate necessary fraud
labels, we integrate information from a list of federally excluded healthcare

Table 5: Medicare datasets.

Data Name Neg Pos Pos % Year Range Features One-hot

Part B 4,690,862 1508 0.03% 2012–16 35 126

Part D 2,843,498 1153 0.04% 2013–16 34 126

DMEPOS 1,153,265 710 0.06% 2013–16 41 145

Combined 1,015,741 528 0.05% 2013–16 102 137

22 Reuse in Intelligent Systems

providers. The List of Excluded Individuals and Entities (LEIE) [61] provides
a list of mandatory excluded providers in which the provider is excluded,
for a given period of time, from practicing medicine in the United States.
This list is issued by the Office of Inspector General (OIG) [62] and it is
updated monthly. The LEIE only lists provider exclusions without any
information regarding which procedures or prescriptions led to being placed
on the exclusion list, and is considered a provider- or NPI-level data source.
This dataset roughly contains 70,000 records in which only 4900 have a valid
NPI, while the remaining are empty. This dataset was mapped with the other
Medicare datasets to consider the class-label “exclusion” in which 0 refers
to the negative class (non-fraud) and 1 to the positive class (fraud). Table 6
gives the corresponding codes for provider exclusions and the length of each
mandatory exclusion. We have determined and assume that any behavior prior
to and during a physician’s exclusion end date constitutes fraud.

5.2  Medicare Data Processing
Each of the aforementioned Medicare datasets require some data preparation
prior to building machine learning models. All four Medicare datasets have
missing values. The tool we used in the next part does handle missing values;
however, its ML library does not handle those missing values automatically;
thus, certain transformation were applied on the datasets regarding the missing
values. In the datasets, null is used for values that are unknown or missing.
Additionally, all standard deviations of NA (i.e., no computed value) were
imputed and replaced with 0. Each dataset has several categorical features
such as Provider Type, and gender in which those categorical features in the
datasets were converted into one-hot encoding. The main reason we followed

Table 6: Mandatory exclusions.

Social Security Act 42 USC Amendment

1128(a)(1) 1320a-7(a)(1) Conviction of program-related crimes. Minimum
Period: 5 years

1128(a)(2) 1320a-7(a)(2) Conviction relating to patient abuse or neglect.
Minimum Period: 5 years

1128(a)(3) 1320a-7(a)(3) Felony conviction relating to health care fraud.
Minimum Period: 5 years

1128(a)(4) 1320a-7(a)(4) Felony conviction relating to controlled substance.
Minimum Period: 5 years

1128(c)(3)(G)(i) 1320a-7(c)(3)(G)(i) Conviction of second mandatory exclusion offense.
Minimum Period: 10 years

1128(c)(3)(G)(ii) 1320a-7(c)(3)(G)(ii) Conviction of third or more mandatory exclusion
offenses. Permanent Exclusion

The Impact of Data Sampling with Severely Imbalanced Big Data 23

this method is that applying some ML algorithms such as LR does not consider
categorical variables in nature. Thus, indexing these categorical variables may
imply a numerical order or value.

With these processed datasets, we map fraud labels from the LEIE. Because
the Medicare datasets are annual, we assume that any excluded provider in
the LEIE is considered fraudulent for any particular matched year, with a
6-month rounding approach [63]. This is a limitation in the Medicare datasets
in both not providing more granular time information and in the LEIE, where
no information is given regarding procedures/services associated with each
excluded provider. With this assumption, we join providers in the LEIE with
each Medicare dataset by NPI and year. Any providers that match between
datasets are flagged as a 1 (fraud), otherwise they are flagged as 0 (non-fraud).
These are the binary labels used to build models and evaluate fraud detection
performance. Note, NPI and year labels are removed after data processing
prior to applying any ML approaches.

5.3  Medicare Experiment Design
Unlike the first case study, we use three ML learners: LR, RF, and GBT.
Additionally, for this experiment, only the Apache Spark machine learning
library is used. We only use Spark in this case study and not H2O, because H2O
does not currently have an included data sampling implementation. The reason
for choosing these learners is that they cover several families of algorithms.
These learners provide additional insight into the effects of class imbalance
on overall machine learning model performance. Moreover, they are generally
considered as robust and good learners. In this section, we provide learner
configurations, as well as data sampling configurations for the fraud detection
experiment. The overall experimental flow is depicted in Figure 5.

1) Learner Configurations: With RF and GBT, the number of trees was set
to 100 trees. The maximum memory in megabytes (MB) was set to 1024 to
speed up model training. CachNodeIds was set to true for speeding up the
process of building up the tree. The featureSubsetStrategy parameter was set
to one-third based on an initial investigation. Because the categorical features
space is converted to one-hot encoding and the feature set is not considered
high dimensional, we decided to go with a one-third data subset, because
it was found to be better in an initial investigation regarding this particular
dataset. Based on initial investigations, we used the Gini index for the
information gain calculation. Maximum Bins was set to the maximum number
of categorical features, which is 2 in our case, because there is no method to
disable it within Apache Spark. All other parameters in RF and GBT were set
to their respective default values.

24 Reuse in Intelligent Systems

The Spark LR max iteration was set to 100. The ElasticNet mixing
parameter alpha, in the range [0, 1], was set to 0 indicating an L2 penalty.
Apache Spark has impeded standardization which we set to true, determining
whether to standardize the training features before fitting the model. Spark
LR provides an implementation for tree aggregating which is a specialized
implementation of aggregate that iteratively applies the combine function to a
subset of partitions. This is done in order to prevent returning all partial results
to the driver node where a single pass “reduce” would take place, as with the
classic aggregate method. Many of the Spark machine learning algorithms
use this tree Aggregate functionality, and show increased model performance.

2) Data Sampling: We applied RUS to the following class ratios: 50:50,
65:35, 75:25, 90:10, and 99:1. The ratios are in the form of [negative:positive]
classes. The reason we have chosen these ratios is that they cover a good
range from balanced datasets to relatively imbalanced datasets. For instance,
a 50:50 class ratio for Part B would have 1508 records for the negative class
and the same for the positive class. However, a ratio of 99:1 would include
149,293 records of the negative class in the dataset.

Prior to sampling, we generated several extreme positive class counts (or
baskets) in which we randomly picked a number of records while discarding
the rest. We selected 50, 100, and 200 positive count baskets for each of
the Medicare datasets. As an example, a 50:50 class ratio for a basket of
50 positive records would lead to a dataset of only 100 instances, for each of
the four datasets. From this process, we studied the rarity of the positive class
for which we injected a severe imbalance into the datasets [64], [65]. Note
that the label “ALL” includes all available positive class instances. With four

Fig. 5: Medicare experiment design.

Fig. 1.4

1.0

0.8

0.6

0.4

0.2

a ab ab bc cd cd
cd de

de e

10:10

100:10 1:1
100:1

1.0:0.1

100:0.1

0.01:0.01

0.001:0.001

100:0.01

100:0.001

Start

n times?

Performance

n times

Repetition: n
CV folds: k

Positives court baskets: p
RUS ratios: m

Original
dataset

k
Training

sets

Positives baskets

(Randomly select from

the positive class

without replacement)

50

100

200

All

k × p positive
counts
baskets
datasets

No sampling

RUS

(Negative class

50:50

65:36

75:35

90:10

99:10

k × p × m
sempled
datasets

Distribution

Apache spark
mlib training and eveluation

ML training

 3 × (k × p ×
m + k × p)

models

RF

GBT

LR

Prediction

HDFS

Stratified
k-folds CV

No Yes

End
k Test
sets

Fig. 1.5

[a
ll:

a
ll]

[9
9

:1
]

[9
0

:1
0

]

[7
5

:2
5

]

[6
5

:3
5

]

[5
0

:5
0

]

0:6

0:7

0:8

0:9
(a)

Part B

[a
ll:

a
ll]

[9
9

:1
]

[9
0

:1
0

]

[7
5

:2
5

]

[6
5

:3
5

]

[5
0

:5
0

]

0:6

0:7

0:8

0:9
(b)

Part D

[a
ll:

a
ll]

[9
9

:1
]

[9
0

:1
0

]

[7
5

:2
5

]

[6
5

:3
5

]

[5
0

:5
0

]

0:6

0:7

0:8

0:9
(c)

DMEPOS

[a
ll:

a
ll]

[9
9

:1
]

[9
0

:1
0

]

[7
5

:2
5

]

[6
5

:3
5

]

[5
0

:5
0

]

0:6

0:7

0:8

0:9
(d)

A
U

C

Combined

A
ve

ra
g

e

50 100 200 ALL

Fig. 1.6

evaluation

sampled

The Impact of Data Sampling with Severely Imbalanced Big Data 25

datasets, four (baskets) positive counts, three learners, six ratios, 5-fold CV,
and 10 repetitions, we built and evaluated 14,400 different models.

5.4  Medicare Fraud Detection Results
As with the previous case study, we also provide Figure 6 which shows the
average AUC results for each dataset and number of positive class instances.
From these plots, there are noticeable differences in performance across
the sampling ratios for each dataset. A post hoc test was applied in order to
determine which groups differ significantly from another. Our main goal in
investigating this real-world dataset is to determine if these results agree with
the conclusions found via the simulated experiments in the first case study.
As seen in Table 7, the most important factors are found to be the different
baskets of positive classes and the sampling ratios.

Fig. 1.4

1.0

0.8

0.6

0.4

0.2

a ab ab bc cd cd
cd de

de e

10:10

100:10 1:1
100:1

1.0:0.1

100:0.1

0.01:0.01

0.001:0.001

100:0.01

100:0.001

Start

n times?

Performance

n times

Repetition: n
CV folds: k

Positives court baskets: p
RUS ratios: m

Original
dataset

k
Training

sets

Positives baskets

(Randomly select from

the positive class

without replacement)

50

100

200

All

k × p positive
counts
baskets
datasets

No sampling

RUS

(Negative class

50:50

65:36

75:35

90:10

99:10

k × p × m
sempled
datasets

Distribution

Apache spark
mlib training and eveluation

ML training

 3 × (k × p ×
m + k × p)

models

RF

GBT

LR

Prediction

HDFS

Stratified
k-folds CV

No Yes

End
k Test
sets

Fig. 1.5

[a
ll:

a
ll]

[9
9

:1
]

[9
0

:1
0

]

[7
5

:2
5

]

[6
5

:3
5

]

[5
0

:5
0

]

0:6

0:7

0:8

0:9
(a)

Part B

[a
ll:

a
ll]

[9
9

:1
]

[9
0

:1
0

]

[7
5

:2
5

]

[6
5

:3
5

]

[5
0

:5
0

]

0:6

0:7

0:8

0:9
(b)

Part D

[a
ll:

a
ll]

[9
9

:1
]

[9
0

:1
0

]

[7
5

:2
5

]

[6
5

:3
5

]

[5
0

:5
0

]

0:6

0:7

0:8

0:9
(c)

DMEPOS

[a
ll:

a
ll]

[9
9

:1
]

[9
0

:1
0

]

[7
5

:2
5

]

[6
5

:3
5

]

[5
0

:5
0

]

0:6

0:7

0:8

0:9
(d)

A
U

C

Combined

A
ve

ra
g

e

50 100 200 ALL

Fig. 1.6
Fig. 6: Medicare average AUC results plots.

Table 7: Medicare 3-factor ANOVA.

Df Sum Sq Mean Sq F Value Pr (> F)

isSampled 1 0.13 0.127 26.30 2.95e-07

Rare Baskets 3 32.29 10.765 2228.36 < 2e-16

Ratio 4 1.74 0.435 90.01 < 2e-16

Residuals 14391 69.52 0.005

26 Reuse in Intelligent Systems

Table 8 represents the Tukey’s HSD post hoc test results, where boldface
values are the highest average AUC scores per factor. It also shows the average
AUC, standard deviation, minimum, maximum, and quantiles for each factor.
The Part B dataset has the highest AUC value among the four datasets,
while DMEPOS has the lowest. Also, as expected, using all of the positive
class instances for each dataset yields a higher performance than using any
of the generated baskets. Among the three learners, LR performs better on
average while RF and GBT perform similar to each other. Additionally, the
“isSampled” factor, which refers to the condition that the data was randomly
undersampled or kept without sampling, shows that RUS performs better than
datasets without sampling. However, some of these non-sampled datasets
have very low positive class counts, such as 50, making it extremely difficult
for a model to discern distinct positive class patterns. Lastly, the factor “ratio”
shows that using a 50:50 class ratio is not always ideal, as it generally depends
on other factors such as the data domain, such as Medicare fraud dedication
in our case. Under the same Tukey’s HSD group, class ratios of RUS 90:10
and 99:1 performed better on average by 0.02 AUC than the other class ratios.

6. Conclusions

The importance of big data is increasing due to the ease of acquiring such
data, particularly in fields such as healthcare. Big data is typically defined by a
very large amount of information with various complex characteristics. Given
that, traditional data mining approaches might not cope with the requirements
imposed by big data. In this study, we focus on a major challenge in the Data
Mining and Machine Learning communities, namely class imbalance in big
data. This problem leads to additional demands on and complexity in the data
when training and evaluating machine learning models. We discussed two
case studies in which we decreased the size of various big datasets to study
the impact of data sampling in favoring the minority (positive) class, which is
usually the class of interest.

With the first case study, we deliberately injected and simulated a binary
imbalanced classification problem, in which we compared several class
ratios and discussed the impact on a RF model’s predictive performance. We
collected four public balanced big datasets and randomly discarded instances
from the positive class, generating five different class ratios. Following this,
we employed RUS to balance the negative and positive classes to a 50:50
class ratio on all previous imbalanced datasets. In the second case study, we
introduced a real-world case study involving Medicare fraud detection. Five
RUS class ratios were created, which include 50:50, 25:75, 35:65, 90:10,

The Impact of Data Sampling with Severely Imbalanced Big Data 27
Ta

bl
e

8:
 M

ed
ic

ar
e

re
su

lts
.

Fa
ct

or
L

ev
el

A
U

C
st

d
r

M
in

M
ax

Q
25

Q
50

Q
75

G
ro

up
s

D
at

as
et

Pa
rtB

0.
74

46
2

0.
07

86
4

36
00

0.
40

20
8

0.
93

33
2

0.
70

07
1

0.
76

33
4

0.
80

76
1

a

C
om

bi
ne

d
0.

73
52

4
0.

08
13

0
36

00
0.

35
67

8
0.

93
23

4
0.

68
84

6
0.

75
34

0
0.

79
75

7
b

Pa
rtD

0.
69

93
1

0.
08

00
3

36
00

0.
32

20
7

0.
91

41
1

0.
65

39
7

0.
71

55
2

0.
75

87
5

c

D
M

EP
O

S
0.

66
83

8
0.

07
70

8
36

00
0.

32
44

1
0.

87
67

9
0.

62
52

3
0.

68
59

8
0.

72
57

1
d

R
ar

e
B

as
ke

ts

A
LL

0.
77

75
3

0.
04

08
9

36
00

0.
65

53
3

0.
87

01
8

0.
74

41
2

0.
78

30
0

0.
81

23
8

a

20
0

0.
73

12
2

0.
05

39
5

36
00

0.
51

94
2

0.
88

91
2

0.
69

48
3

0.
73

43
7

0.
77

03
3

b

10
0

0.
68

78
1

0.
07

51
8

36
00

0.
42

52
3

0.
93

33
2

0.
63

72
4

0.
69

03
1

0.
74

26
1

c

50
0.

65
09

9
0.

09
79

8
36

00
0.

32
20

7
0.

93
23

4
0.

58
41

5
0.

65
27

4
0.

72
00

6
d

Le
ar

ne
r

LR
0.

72
63

4
0.

08
17

9
48

00
0.

32
20

7
0.

93
23

4
0.

67
88

6
0.

74
15

9
0.

78
87

6
a

G
B

T
0.

70
47

3
0.

08
50

1
48

00
0.

32
44

1
0.

92
22

4
0.

65
47

6
0.

71
90

7
0.

76
49

2
b

R
F

0.
70

45
9

0.
08

58
9

48
00

0.
32

28
7

0.
93

33
2

0.
65

25
0

0.
71

59
5

0.
76

55
0

b

is
Sa

m
pl

ed
R

U
S

0.
71

32
1

0.
08

43
1

12
00

0
0.

32
20

7
0.

93
33

2
0.

66
30

7
0.

72
65

8
0.

77
51

0
a

N
O

0.
70

52
4

0.
08

72
5

24
00

0.
32

28
7

0.
90

95
1

0.
65

16
5

0.
71

72
1

0.
77

31
3

b

R
at

io

[9
0:

10
]

0.
72

61
9

0.
08

17
0

24
00

0.
36

45
5

0.
91

41
1

0.
68

10
8

0.
73

88
9

0.
78

36
7

a

[9
9:

1]
0.

72
33

4
0.

08
04

0
24

00
0.

39
29

3
0.

93
23

4
0.

67
54

4
0.

73
61

6
0.

78
37

5
a

[7
5:

25
]

0.
71

51
1

0.
08

36
2

24
00

0.
32

44
1

0.
92

58
1

0.
66

61
1

0.
72

85
7

0.
77

61
3

b

[6
5:

35
]

0.
70

90
2

0.
08

44
2

24
00

0.
34

36
5

0.
93

33
2

0.
65

82
5

0.
72

19
2

0.
77

16
3

c

[a
ll:

al
l]

0.
70

52
4

0.
08

72
5

24
00

0.
32

28
7

0.
90

95
1

0.
65

16
5

0.
71

72
1

0.
77

31
3

c

[5
0:

50
]

0.
69

24
1

0.
08

70
0

24
00

0.
32

20
7

0.
90

07
8

0.
64

18
7

0.
70

41
5

0.
75

58
5

d

28 Reuse in Intelligent Systems

and 99:1. Additionally, we injected more class imbalance into each dataset
by creating three baskets (50, 100, 200 positive instances), to assess model
performance on a very rare number of positive classes. Besides RF, we
included two additional ML models, LR and GBT.

We found, in the first case study, that if the number of minority class
labels is too low, such as 100,000:1, then increasing the ratio from 10,000:1
to 1,000:1 can give a good boost in RF performance. Moreover, partially
undersampling the majority class, without balancing the data to a 50:50 class
ratio, increases model performance. In the second case study, our results
agree with the findings from our simulated experiments in case study one.
Moreover, we clearly show that a 50:50 balanced class ratio is not always the
ideal dataset. In fact, the 99:10 and 99:1 class ratios seem to indicate better
performance depending on the total number of available instances.

We suggest that future work should include an investigation on
oversampling to inject various degrees of class imbalance. However, ROS
might inject redundant information, and thus other synthetic oversampling
methods should be explored. Additionally, we will consider additional
performance metrics to evaluate the impact of class imbalance.

Acknowledgements

We would like to thank the reviewers in the Data Mining and Machine Learning
Laboratory at Florida Atlantic University. Additionally, we acknowledge
partial support by the NSF (CNS-1427536). Opinions, findings, conclusions,
or recommendations in this paper are the authors’ and do not reflect the views
of the NSF.

References
 [1] Frank J. Ohlhorst. 2012. Big Data Analytics: Turning Big Data into Big Money. John

Wiley & Sons.
 [2] Viktor Mayer-Schönberger and Kenneth Cukier. 2013. Big data: A revolution that will

transform how we live, work, and think. Houghton Mifflin Harcourt.
 [3] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles

Roxburgh and Angela H. Byers. 2011. Big data: The next frontier for innovation,
competition, and productivity.

 [4] Andrew McAfee, Erik Brynjolfsson, Thomas H. Davenport et al. 2012. Big data: The
management revolution. Harvard Business Review 90(10): 60–68.

 [5] Senthilkumar, S.A., Bharatendara K. Rai, Amruta A. Meshram, Angappa Gunasekaran
and S. Chandrakumarmangalam. 2018. Big data in healthcare management: A review of
literature. American Journal of Theoretical and Applied Business 4(2): 57–69.

 [6] Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal. 2016. Data mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

The Impact of Data Sampling with Severely Imbalanced Big Data 29

 [7] Julian D. Olden, Joshua J. Lawler and N. LeRoy Poff. 2008. Machine learning methods
without tears: a primer for ecologists. The Quarterly Review of Biology 83(2): 171–193.

 [8] Jorge Galindo and Pablo Tamayo. 2000. Credit risk assessment using statistical and
machine learning: basic methodology and risk modeling applications. Computational
Economics 15(1): 107–143.

 [9] Victoria López, Sara del Río, José Manuel Benítez and Francisco Herrera. 2015. Cost-
sensitive linguistic fuzzy rule based classification systems under the mapreduce framework
for imbalanced big data. Fuzzy Sets and Systems 258: 5–38.

 [10] Taghi M. Khoshgoftaar, Chris Seiffert, Jason Van Hulse, Amri Napolitano and Andres
Folleco. 2007. Learning with limited minority class data. pp. 348–353. In: Machine
Learning and Applications. ICMLA 2007. Sixth International Conference on, IEEE.

 [11] Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A. Bauder and Naeem Seliya. 2018. A
survey on addressing high-class imbalance in big data. Journal of Big Data 5(1): 42.

 [12] Randall Wald, Taghi M. Khoshgoftaar, Alireza Fazelpour and David J. Dittman. 2013.
Hidden dependencies between class imbalance and difficulty of learning for bioinformatics
datasets. pp. 232–238. In: IEEE 14th International Conference on Information Reuse &
Integration (IRI), IEEE.

 [13] Haibo He and Edwardo A. Garcia. 2009. Learning from imbalanced data. IEEE
Transactions on Knowledge and Data Engineering 21(9): 1263–1284.

 [14] Jason Van Hulse, Taghi M. Khoshgoftaar and Amri Napolitano. 2007. Experimental
perspectives on learning from imbalanced data. pp. 935–942. In: Proceedings of the 24th
International Conference on Machine Learning, ACM.

 [15] Chris Seiffert, Taghi M. Khoshgoftaar and Jason Van Hulse. 2009. Hybrid sampling for
imbalanced data. Integrated Computer-Aided Engineering 16(3): 193–210.

 [16] Gustavo E.A.P.A. Batista, Ronaldo C. Prati and Maria Carolina Monard. 2004. A study
of the behavior of several methods for balancing machine learning training data. ACM
SIGKDD Explorations Newsletter 6(1): 20–29.

 [17] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall and W. Philip Kegelmeyer. 2002.
Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research 16: 321–357.

 [18] Chao Chen, Andy Liaw and Leo Breiman. 2004. Using Random Forest to Learn
Imbalanced Data. University of California, Berkeley 110.

 [19] Miroslav Kubat, Stan Matwin et al. 1997. Addressing the curse of imbalanced training
sets: one-sided selection. pp. 179–186. In: ICML, Vol. 97, Nashville, USA.

 [20] Richard A. Bauder, Taghi M. Khoshgoftaar and Tawfiq Hasanin. 2018. Data sampling
approaches with severely imbalanced big data for medicare fraud detection. pp. 137–142.
In: IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI),
IEEE.

 [21] Nitesh V. Chawla. 2009. Data mining for imbalanced datasets: An overview. pp. 875–886.
In: Data Mining and Knowledge Discovery Handbook, Springer.

 [22] Pablo D. Gutiérrez, Miguel Lastra, José M. Benítez and Francisco Herrera. 2017. Smote-
gpu: Big data preprocessing on commodity hardware for imbalanced classification.
Progress in Artificial Intelligence, 1–8.

 [23] Philip C.L. Chen and Chun-Yang Zhang. 2014. Data-intensive applications, challenges,
techniques and technologies: A survey on big data. Information Sciences 275: 314–347.

 [24] Victoria López, Alberto Fernández, María José del Jesus and Francisco Herrera. 2013.
A hierarchical genetic fuzzy system based on genetic programming for addressing
classification with highly imbalanced and borderline data-sets. Knowledge-Based
Systems 38: 85–104.

30 Reuse in Intelligent Systems

 [25] Charles Elkan. 2001. The foundations of cost-sensitive learning. pp. 973–978.
In: International Joint Conference on Artificial Intelligence, Vol. 17. Lawrence Erlbaum
Associates Ltd.

 [26] Bianca Zadrozny, John Langford and Naoki Abe. 2003. Cost-sensitive learning by cost-
proportionate example weighting. pp. 435–442. In: Data Mining. ICDM 2003. Third
IEEE International Conference on, IEEE.

 [27] Reshma C. Bhagat and Sachin S. Patil. 2015. Enhanced smote algorithm for classification
of imbalanced big-data using random forest. pp. 403–408. In: Advance Computing
Conference (IACC), IEEE International, IEEE.

 [28] Isaac Triguero, Sara del Río, Victoria López, Jaume Bacardit, José M. Benítez and
Francisco Herrera. 2015. Rosefw-rf: the winner algorithm for the ecbdl’14 big data
competition: an extremely imbalanced big data bioinformatics problem. Knowledge-
Based Systems 87: 69–79.

 [29] Isaac Triguero, M. Galar, H. Bustince and Francisco Herrera. 2017. A first attempt
on global evolutionary undersampling for imbalanced big data. pp. 2054–2061.
In: Evolutionary Computation (CEC), IEEE Congress on, IEEE.

 [30] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker and Ion Stoica.
2010. Spark: cluster computing with working sets. Hot Cloud 10: 10–10.

 [31] Larry J. Eshelman. 2014. The CHC adaptive search algorithm: How to have safe search
when engaging. Foundations of Genetic Algorithms 1991 (FOGA 1) 1: 265.

 [32] Sara Del Río, Victoria López, José Manuel Benítez and Francisco Herrera. 2014. On the
use of mapreduce for imbalanced big data using random forest. Information Sciences
285: 112–137.

 [33] Chris Drummond, Robert C. Holte et al. 2003. C4.5, class imbalance, and cost sensitivity:
Why under-sampling beats over-sampling. In: Workshop on Learning from Imbalanced
Datasets II, Vol. 11. Citeseer Washington DC.

 [34] Ross J. Quinlan. 1986. Induction of decision trees. Machine Learning 1(1): 81–106.
 [35] Matthew Herland, Taghi M. Khoshgoftaar and Richard A. Bauder. 2018. Big data fraud

detection using multiple medicare data sources. Journal of Big Data 5(1): 29.
 [36] Richard A. Bauder and Taghi M. Khoshgoftaar. 2018. The detection of medicare fraud

using machine learning methods with excluded provider labels. pp. 404–409. In: FLAIRS
Conference.

 [37] Leo Breiman. 2001. Random forests. Machine Learning 45(1): 5–32.
 [38] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince and Francisco

Herrera. 2012. A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42(4): 463–484.

 [39] Taghi M. Khoshgoftaar, Moiz Golawala and Jason Van Hulse. 2007. An empirical study of
learning from imbalanced data using random forest. pp. 310–317. In: Tools with Artificial
Intelligence. ICTAI 2007. 19th IEEE International Conference on, Vol. 2, IEEE.

 [40] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro and Dinani Amorim. 2014.
Do we need hundreds of classifiers to solve real world classification problems. J. Mach.
Learn. Res. 15(1): 3133–3181.

 [41] Xiangrui Meng, Joseph Bradley, B. Yuvaz, Evan Sparks, Shivaram Venkataraman, Davies
Liu, Jeremy Freeman, D. Tsai, Manish Amde, Sean Owen et al. 2016. Mllib: Machine
learning in apache spark. JMLR 17(34): 1–7.

 [42] Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter and Tawfiq Hasanin. 2015. A
survey of open source tools for machine learning with big data in the hadoop ecosystem.
Journal of Big Data 2(1): 24.

The Impact of Data Sampling with Severely Imbalanced Big Data 31

 [43] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy estimation
and model selection. pp. 1137–1145. In: Ijcai, Vol. 14. Montreal, Canada.

 [44] Jin Huang and Charles X. Ling. 2005. Using AUC and accuracy in evaluating learning
algorithms. Knowledge and Data Engineering, IEEE Transactions on 17(3): 299–310.

 [45] Marina Sokolova and Guy Lapalme. 2009. A systematic analysis of performance measures
for classification tasks. Information Processing & Management 45(4): 427–437.

 [46] Gudmund R. Iversen and Helmut Norpoth. 1987. Analysis of variance. Number 1. Sage.
 [47] John W. Tukey. 1949. Comparing individual means in the analysis of variance. Biometrics,

99–114.
 [48] Jason Van Hulse, Taghi M. Khoshgoftaar and Amri Napolitano. 2009. An empirical

comparison of repetitive undersampling techniques. pp. 29–34. In: Information Reuse &
Integration. IRI’09. IEEE International Conference on, IEEE.

 [49] Lichman, M. 2013. UCI machine learning repository.
 [50] Yanmin Sun, Andrew K.C. Wong and Mohamed S. Kamel. 2009. Classification of

imbalanced data: A review. International Journal of Pattern Recognition and Artificial
Intelligence 23(04): 687–719.

 [51] Pierre Baldi, Peter Sadowski and Daniel Whiteson. 2014. Searching for exotic particles in
high-energy physics with deep learning. arXiv preprint arXiv: 1402.4735.

 [52] Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski and Daniel Whiteson.
2016. Parameterized machine learning for high-energy physics. arXiv preprint arXiv:
1601.07913.

 [53] Alec Go, Richa Bhayani and Lei Huang. 2009. Twitter sentiment classification using
distant supervision. CS224N Project Report, Stanford 1(2009): 12.

 [54] Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. arXiv preprint arXiv: 1301.3781.

 [55] Shengzhe Li, Changlong Jin, Hakil Kim and Stephen Elliott. 2011. Assessing the difficulty
level of fingerprint datasets based on relative quality measures. pp. 1–5. In: Hand-Based
Biometrics (ICHB), International Conference on, IEEE.

 [56] Jerzy Stefanowski. 2016. Dealing with data difficulty factors while learning from
imbalanced data. pp. 333–363. In: Challenges in Computational Statistics and Data
Mining, Springer.

 [57] David J. Dittman, Taghi Khoshgoftaar, Randall Wald and Amri Napolitano. 2013. Gene
selection stability’s dependence on dataset difficulty. pp. 341–348. In: Information Reuse
and Integration (IRI), IEEE 14th International Conference on, IEEE.

 [58] Cms: Medicare provider utilization and payment data. physician and other supplier.
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier. html. Accessed:
2018-11-20.

 [59] Cms: Medicare provider utilization and payment data: Part d prescriber. https://www.
cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-
Provider-Charge-Data/Part-D-Prescriber.html. Accessed: 2018-11-20.

 [60] Cms: Medicare provider utilization and payment data. referring durable medical
equipment, prosthetics, orthotics and supplies. https://www.cms.gov/Research-Statistics-
Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/DME.
html. Accessed: 2018-11-20.

 [61] Oleie: Office of inspector general leie downloadable databases. https://oig.hhs.gov/
exclusions/exclusions_list.asp. Accessed: 2018-11-20.

 [62] Office of inspector general exclusion authorities us department of health and human
services. https://oig.hhs.gov/. Accessed: 2018-11-20.

https://www.cms.gov
https://www.cms.gov
https://oig.hhs.gov
https://www.cms.gov
https://oig.hhs.gov
https://oig.hhs.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.go

32 Reuse in Intelligent Systems

 [63] Richard A. Bauder and Taghi M. Khoshgoftaar. 2018. A survey of medicare data processing
and integration for fraud detection. pp. 9–14. In: Information Reuse and Integration (IRI),
IEEE 19th International Conference on, IEEE.

 [64] Bauder, R.A., T.M. Khoshgoftaar and T. Hasanin. 2018. An empirical study on class rarity
in big data. pp. 785–790. In: 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), Dec 2018.

 [65] Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse and Amri Napolitano. 2007.
Mining data with rare events: a case study. pp. 132–139. In: Tools with Artificial
Intelligence, ICTAI 2007. 19th IEEE International Conference on, Vol. 2, IEEE.

Chapter 2
How to Optimally Combine
Univariate and Multivariate
Feature Selection with Data

Sampling for Classifying Noisy, High
Dimensional and Class Imbalanced

DNA Microarray Data#

Ahmad Abu Shanab and Taghi M Khoshgoftaar*

1. Introduction

The emergence of DNA microarray chips has allowed scientists to measure
the expression levels of thousands of genes simultaneously. Practitioners
have used machine learning techniques to analyze the data from microarray
experiments (gene expression data) and make diagnostic and/or prognostic
decisions. However, the extremely large number of genes makes traditional
machine learning techniques inefficient and ineffective. With a large
number of features, these techniques become computationally expensive
and time consuming. Additionally, it is expected that many of these features
are irrelevant (having little or no correlation with the class) or redundant

This paper is a revised and expanded version of a paper entitled ‘Is Gene Selection Enough for
Imbalanced Bioinformatics Data?’ [1] presented at the ‘19th IEEE International Conference on
Information Reuse and Integration’, Salt Lake City, Utah, USA, 7–9 July 2018.

College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, Florida.
Email: aabusha@fau.edu
* Corresponding author: khoshgof@fau.edu

mailto:khoshgof@fau.edu
mailto:aabusha@fau.edu

34 Reuse in Intelligent Systems

(containing information already represented in other features) in relation to
the question at hand, subsequently leading to suboptimal results (reduced
performance and interpretability of predictive models). Feature selection is
the main technique used to cope with high dimensionality, which consists
of finding a minimum subset of features that are highly correlated with the
class attribute. Benefits of feature selection include: enhanced generalization
capability of models, improved model interpretability, and accelerated
learning time. For these reasons, feature selection has become the cornerstone
of data mining in bioinformatics.

Class imbalance is another common challenge in bioinformatics, which
occurs when one class, usually the class of interest (i.e., positive class),
has fewer instances than the other class(es). This unequal class distribution
often results in a large number of false negatives (misclassifications from the
positive class), because traditional classifiers were designed with the goal of
maximizing overall classification accuracy without properly balancing the
weight of each class. Data sampling is the most popular technique to alleviate
the problem of class imbalance, which attempts to reduce the severity of
imbalance within the data by adding or removing instances. Despite the
prevalence of class imbalance among gene expression datasets, most previous
studies have ignored the subject entirely or provided shallow treatments. This
study shows the importance of taking into account class imbalance when
analyzing bioinformatics datasets.

Noise is another challenge exhibited by many real-world datasets, which
refers to missing or incorrect values for one or more properties that describe
an instance in a dataset. There are two types of data noise: attribute noise and
class noise. Attribute noise occurs when values in the independent attributes
are incorrect (for example, gene expression levels not recorded correctly),
while class noise refers to incorrect values in the dependent attribute (for
example, cancerous instances labeled as non-cancerous). Unfortunately,
noise has a detrimental impact on classification algorithms as well as feature
selection techniques, confusing data mining techniques and subsequently
leading to suboptimal results (e.g., worsened classification performance,
unstable feature selection). Considering the adverse impact of data noise,
there is clearly a need to study its impact on data mining techniques. Thus, all
empirical investigations presented in this study were performed on data which
was first determined to be free of noise and then had artificial class noise
added in a controlled fashion. This way, the results can be used to simulate
real-world scenarios.

In this study, we determine whether the order in which feature selection and
data sampling are applied is important or not by comparing three approaches
developed for classification problems on datasets that exhibit both high
dimensionality and class imbalance simultaneously [2]. In the first approach,

Univariate and Multivariate Feature Selection 35

data sampling takes place before feature selection with the training data being
built using the selected features and the original data (DS-FS-UnSam). In
the second approach, data sampling also takes place first, but then feature
selection is performed; however, the training data is built using the selected
features and the sampled data (DS-FS-Sam). In the third approach, feature
selection is performed first followed by data sampling, with the training
data being built using the selected features and the sampled data (FS-DS).
Additionally, we investigate the importance of taking into account the problem
of class imbalance on bioinformatics datasets by comparing the classification
performance of two approaches. In the first approach feature selection (FS) is
performed alone (i.e., no data sampling), and then a classifier is built using
the selected features. Alternatively, in the second approach (FS-DS), we apply
data sampling after performing feature selection, and then a classifier is built
using the selected features and the sampled data. All datasets investigated in
the study exhibit high dimensionality. Thus, all of the investigated approaches
employ feature selection to cope with the high dimensionality challenge.

To compare the aforementioned approaches, we utilize three feature
ranking techniques (with three choices of feature subset size for each), one
form of filter-based subset evaluation, and wrapper subset selection, as well as
a commonly used data sampling technique (Random Undersampling (RUS)).
We perform experiments using ten gene expression datasets that were first
determined to be relatively free of noise. We then artificially injected noise,
creating three levels of data quality (High-Quality, Average-Quality, and Low-
Quality), and we build our final models using six different classification
algorithms.

The experimental results demonstrate that FS-DS is the best performing
approach for all combinations of learners and data quality levels with one
insignificant exception. Additionally, FS-DS was most frequently the top
performing approach and was never the worst when considering noisy
datasets (Average-Quality and Low-Quality datasets). This is a significant
finding demonstrating that FS-DS is robust and noise tolerant, which is
a desired quality, especially in bioinformatics. On the other hand, DS-FS-
Sam was the worst performing approach, on average, regardless of the
data quality level. All of these results were confirmed through ANalysis Of
VAriance (ANOVA) and Tukey’s Honestly Significant Difference (HSD) tests
[6]. Finally, our results show that data sampling (in conjunction with feature
selection) helped improve the classification performance even more compared
to feature selection alone. Based on these findings, we recommend using
feature selection followed by data sampling when dealing with datasets that
exhibit both high dimensionality and class imbalance simultaneously.

The remainder of this paper will be organized as follows: Section 2
presents related works on the topics of high dimensionality, class imbalance,

36 Reuse in Intelligent Systems

and data noise. Section 3 outlines the methods used in this work, the three
approaches, the sampling technique, the feature selection techniques, the
quality of data, the noise injection mechanism, the datasets, the classifiers,
and the performance evaluation. In Section 4, we present our results. Finally,
Section 5 concludes our paper and discusses the potential for future work.

2. Related Work

Having a large number of features in a dataset is commonly known as high
dimensionality. This overabundance of features makes the process of analyzing
such datasets more challenging (requiring extensive computation and
degrading the predictive performance of inductive models). Feature selection
is the most popular process for handling high-dimensional data, which tries to
choose the best features for performing classification and eliminate redundant
and useless features. There are a number of advantages when those redundant
and irrelevant features are removed, including: enhanced generalization
capability of models, improved model interpretability, and a faster learning
process.

Feature selection techniques can generally be grouped into two broad
categories based on the number of features considered together: univariate
techniques and multivariate techniques. Univariate techniques evaluate each
feature individually using different statistical measures (filter-based feature
ranking), while multivariate techniques evaluate whole subsets at a time either
using statistical measures (filter-based subset selection) or using a classifier
(wrapper-based feature selection). A broad survey of feature selection is
presented by Guyon and Elisseeff [23]. In 2013, our research group conducted
a comprehensive study [16] to investigate the effectiveness of 25 different
feature ranking techniques and 6 classification algorithms when predicting
patient response to a drug treatment. The results showed that the Random
Forest classifier is the best performing classifier regardless of the feature
selection being used, and it improved classification performance as feature
subset size increased.

In the context of subset-based feature selection, Khoshgoftaar et al.
[30] investigated the problem of subset-based selection stability (robustness
of outputs in the face of perturbation), including the importance of stability
as well as various stability measures. The authors investigated the previous
studies on stability analysis of feature subset selection techniques within the
domain of bioinformatics and have identified the shortcomings of these works
to explore possible opportunities for future work. Wald et al. [45] investigated
the stability of two filter-based subset selection techniques (Consistency
feature subset evaluator and Correlation-Based Feature Selection). They

Univariate and Multivariate Feature Selection 37

found that Consistency has the greatest stability overall, while Correlation-
Based Feature Selection shows moderate stability.

Wrappers received little attention because they can be very computationally
expensive and can result in an overfitted inductive model. Inza et al. [27]
compared filter-based feature ranking and wrapper-based subset selection.
The authors used six feature ranking techniques along with four choices of
learner on two bioinformatics datasets. They showed that wrapper feature
selection outperforms filter-based ranking; however, it is computationally
more expensive. A comparative study on all three forms of feature selection
was conducted by Wang et al. [46]. Experiments were conducted using four
filter-based rankers, one filter-based subset evaluator, and three classifiers for
both wrapper selection and final classification. The authors found that both
subset selection approaches (filter-based and wrapper-based) can give good
performance while selecting a smaller subset of features.

Class imbalance occurs when positive class instances (that is, those which
belong to the most important class) are outnumbered by instances of the other
class(es). Many real-world bioinformatics datasets are characterized by class
imbalance. Ramaswamy et al. [37] performed feature selection on a dataset
where only 16% of the instances are in the class of interest. Shipp et al. [39]
classified diffuse large B-cell lymphoma from follicular lymphoma using a
dataset with a 25% class imbalance. Iizuka et al. [26] constructed a predictive
system using a training dataset of 33 patients, 36% of them belonging to the
positive class.

Traditional classifiers applied to class-imbalanced datasets often result
in suboptimal classification performance [44]. Data sampling is the most
popular technique for handling class imbalanced data [32], where the dataset
is transformed into a more balanced one by adding or removing instances.
A comprehensive study on different sampling techniques was performed by
Kotsiantis [32], Guo [22], and Van Hulse [42], including both oversampling
and undersampling techniques (which add instances to the minority class and
remove instances from the majority class, respectively), and both random and
directed forms of sampling.

Relatively little work focused on both challenges (high dimensionality
and class imbalance) together, particularly in the bioinformatics domain.
Blagus and Lusa [8] employed three sampling techniques (oversampling,
downsizing, and multiple downsizing) as well as variable selection on
class imbalanced data. Experiments were conducted using a series of k-NN
classifiers along with two linear discriminant classifiers, Random Forest,
Support Vector Machine (SVM), CART, a Logistic Regression (LR) based
classifier, and prediction analysis of microarrays. The results show that only
the k-NN classifiers benefitted from oversampling. The authors considered

38 Reuse in Intelligent Systems

only one possible order of feature selection and data sampling (named
DS-FS-Sam in this work).

In a more recent study, Blagus and Lusa [9] performed a study using data
sampling on high-dimensional data. They used two data sampling techniques,
RUS and SMOTE, on high-dimensional class-imbalanced breast cancer gene
expression datasets and a series of classifiers. They showed that only the k-NN
classifiers seem to benefit substantially from SMOTE and a number of the other
classifiers seem to prefer RUS. Some of the datasets used in this study were
not particularly imbalanced, with the minority class being as high as 45% of
the instances. In these cases, data sampling will have little effect as the classes
are fairly balanced to begin with. Al-Shahib et al. [4] used undersampling as
well as a wrapper-based feature selection to build classifiers to predict protein
function from amino acid sequence features. Classifiers were built on the “one
versus all” model, with each classifier deciding if instances are in a given class
or not. They showed that the classification performance can be improved by
combining data sampling and feature selection along with the SVM classifier
and that applying the data sampling to improve the class ratio to 50:50 (with or
without feature selection) to that same classifier was significantly better than
any of the other combinations with few exceptions. This study only considers
one possible order of feature selection and sampling, without examining the
importance of this order.

Another challenge encountered when analyzing real-world data is noise,
which refers to incorrect or missing values in datasets. All kinds of noise
can lead to suboptimal classification performance, and class noise has a
more harmful effect on classification problems than attribute noise [48]. A
comprehensive survey on the sources, challenges, and solutions to address
class noise can be found in the work of Frénay and Verleysen [20]. They
concluded that many open research questions related to class noise and many
avenues remain to be explored. Unfortunately, many data mining techniques
are sensitive to data noise. Thus, low quality data can result in suboptimal
predictive classification performance and can also impact the effectiveness
of feature selection. Therefore, it is important to understand how low quality
data can impact data mining techniques (feature selection techniques and
classification models). Thus, all empirical investigations presented in this
study were performed on data which was first determined to be free of noise
and then had artificial class noise added in a controlled fashion. This way, the
results can be used to simulate real-world scenarios.

The primary contributions of this paper are as follows: (1) compare three
approaches to combining feature selection and data sampling to determine
whether the order in which they are applied is important or not, where no
previous work systematically investigated the importance of the order for
combining feature selection and data sampling in the context of data quality;

Univariate and Multivariate Feature Selection 39

(2) investigate the importance of alleviating class imbalance for classification
problems on bioinformatics datasets, which have been ignored almost entirely
in most previous studies; (3) simulate real-world scenarios by injecting
class noise into ten real-world gene-expression datasets (after having been
determined to be relatively free of noise) creating three data quality tiers
(High-Quality, Average-Quality, and Low-Quality), and (4) examine three
major forms of feature selection techniques (filter-based feature ranking,
filter-based subset selection, and wrapper subset selection).

3. Methods

This section outlines our experimental methods. Section 3.1 presents the
evaluation approaches. Section 3.2 discusses the sampling technique.
Section 3.3 presents the 11 feature selection techniques. Section 3.4 describes
our measurement for data quality. Section 3.5 describes the datasets used
in the work. Section 3.6 outlines our noise injection process. Section 3.7
introduces the learners used to create our classification models. Lastly,
Section 3.8 presents the cross-validation process and discusses the performance
metric used in this work.

3.1 Investigated Approaches
1) Approaches for combining feature selection and data sampling: Feature
selection and data sampling have become necessary steps when analyzing
high dimensional class imbalanced bioinformatics datasets. Although, these
two techniques have received tremendous attention, most works have utilized
them separately. However, applying them in conjunction to improve the
classification performance has not been thoroughly explored.

We investigated three approaches that are used to deal with both high
dimensionality and class imbalance. All approaches combine feature selection
and data sampling; the difference between one approach and another is the
order (whether sampling takes place before or after feature selection) and the
dataset (unsampled or sampled) used for classification. We excluded two other
approaches, where only one technique (feature selection or data sampling) is
used alone, because all datasets investigated in this paper are imbalanced and
exhibit high dimensionality. Both feature selection and sampling are necessary
to help alleviate class imbalance and cope with high dimensionality.

The three approaches are outlined in Figure 1. In the first approach
(DS-FS-UnSam), data sampling takes place before feature selection is
performed, and then a classifier is built using the selected features and the
original (unsampled) data. In the second approach (DS-FS-Sam), data
sampling also takes place before feature selection is performed; however, a

40 Reuse in Intelligent Systems

classifier is built using the selected features and the sampled data. On the other
hand, in the third approach (FS-DS), feature selection takes place before data
sampling is performed, and then a classifier is built using the selected features
and the sampled data.

2) Approaches to investigate the importance of alleviating the class
imbalance: To investigate the importance of alleviating the class imbalance
when analyzing bioinformatics datasets we compare two approaches. These
two approaches are outlined in Figure 2. The first approach (FS) consists solely
of feature selection, and then a classifier is built using the selected features.

Fig. 2.1

Feature
selection

(FS)

Original
fit data

Sampled
fit data

Original
fit data

Data

sampling

(DS)

Selected
attributes

Feature
selection

(FS)

Selected
attributes

DS-FS-UnSam

DS-FS-Sam

FS-DS

Feature
selection

(FS)

Selected
attributes

Original
fit

dataset

Fit dataset
with selected

attributes

FS

FS-DS

Data

sampling

(DS)

Fig. 2.2

(a) All data quality levels

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.865 0.87 0.875 0.88 0.885 0.89 0.895 0.9 0.905

(b) High quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.92 0.925 0.93 0.935 0.94

(c) Average quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.825 0.83 0.835 0.84 0.845 0.85 0.855 0.86 0.865

(d) Low quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.7 0.71 0.72 0.73 0.74 0.75 0.76

Fig. 2.3

Fig. 1: Feature selection and data sampling approaches.

Fig. 2.1

Feature
selection

(FS)

Original
fit data

Sampled
fit data

Original
fit data

Data

sampling

(DS)

Selected
attributes

Feature
selection

(FS)

Selected
attributes

DS-FS-UnSam

DS-FS-Sam

FS-DS

Feature
selection

(FS)

Selected
attributes

Original
fit

dataset

Fit dataset
with selected

attributes

FS

FS-DS

Data

sampling

(DS)

Fig. 2.2

(a) All data quality levels

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.865 0.87 0.875 0.88 0.885 0.89 0.895 0.9 0.905

(b) High quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.92 0.925 0.93 0.935 0.94

(c) Average quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.825 0.83 0.835 0.84 0.845 0.85 0.855 0.86 0.865

(d) Low quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.7 0.71 0.72 0.73 0.74 0.75 0.76

Fig. 2.3

Fig. 2: Approaches to investigate the importance of alleviating the class imbalance.

Univariate and Multivariate Feature Selection 41

In the second approach (FS-DS) [2], feature selection takes place before data
sampling is performed, and then a classifier is built using the selected features
and the sampled data. We selected the FS-DS because our experimentation
showed that it is the best approach for utilizing feature selection and data
sampling. In summary, the difference between the two approaches is based
on whether we employ data sampling or not. This way, the results can be used
to determine if data sampling is beneficial in improving the performance for
classification models built with bioinformatics datasets.

3.2 Sampling Technique
Data sampling is the process of balancing the class distribution to counter the
problem of class imbalance, either by adding (i.e., oversampling) or removing
(i.e., undersampling) instances until the desired class ratio is achieved. In this
study, we used RUS, which deletes instances randomly from the majority class
until the class ratio is balanced at a 50:50 (majority:minority) class ratio. RUS
reduces the dataset size, which makes subsequent analysis computationally
more efficient compared to oversampling techniques. Additionally, prior
research showed its effectiveness [42].

3.3 Feature Selection
In this study we investigated both univariate and multivariate feature selection
techniques. In particular, we examined three filter-based feature ranking
techniques (with three choices of feature subset size for each), one form of
filter-based subset evaluation, and wrapper subset selection.

With the two subset evaluation-based groups (filter-based subset evaluation
and wrapper subset selection) a search technique must be used to explore the
space of all possible feature subsets in order to reduce the problem from being
O(2n). Based on preliminary experimentation, we chose the Greedy Stepwise
approach [12]. This algorithm performs forward selection to build the full
feature subset starting from the empty set and stops when none of the new sets
outperform the previous best-known set, or when a user-defined maximum
number of features (in our study, 100) is reached.

1) Filter-Based Feature Ranking: We selected three filter-based feature
ranking techniques (i.e., rankers) from three different families: “commonly
used” rankers (Chi Squared (CS)), “threshold-based” feature rankers (Area
Under the Receiver Operating Characteristic (ROC) Curve), and First Order
Statistics-based techniques (Wilcoxon Rank Sum (WRS)). “Threshold-based”
feature rankers were proposed and implemented recently by our research
group. Readers are referred to the work of Van Hulse et al. [43] for additional
information. First Order Statistics-based techniques exhibit the use of first

42 Reuse in Intelligent Systems

order statistical measurements such as mean and standard deviation. Thus, in
2012 our research group combined them under this name [29]. Additionally,
three choices of feature subset size for each ranker were used (25, 50, and
100). These sizes were proven to be reasonable in a previous study [15]. A
brief description of each ranker family is provided below.

Chi Squared (CS) [33] is a statistical test that determines whether there
is a statistical relationship between each feature and the class attribute.
Chi-squared is found using the following formula:

X

2

2

1 1= =

×
−

 =
×∑∑
i j

ijI B

i ji j

R B
A

N
X R B

N
In this equation, I denotes the number of intervals, B the number of

classes, N the total number of instances, while Ri is the number of instances in
the ith interval, Bj the number of instances in the jth class, and Aij the number
of instances in the ith interval and jth class.

Area Under the ROC [36] is a “threshold-based” feature ranker which
uses the normalized feature values to classify instances by varying the
classification threshold (e.g., instances are considered positive when the
feature value is greater than the threshold, otherwise instances are considered
negative class examples) to plot the True Positive Rate and the False Positive
Rate over all threshold values. The area under the plotted curve determines the
quality of the feature. Note that no actual classifier is being built.

Wilcoxon Rank Sum [11] (WRS) is a nonparametric alternative to the
standard t-test, in which no assumptions are made about the distribution of the
data or population. Instances from both classes are combined and then sorted
based on the feature value from smallest to largest, and then each instance will be
assigned a rank. The summation of all ranks of the positive instances is computed
(i.e., Wilcoxon statistic), then the p-value associated with that Wilcoxon
statistic is found from the Wilcoxon rank sum distribution to identify
statistically significant features.

2) Filter-Based Subset Evaluation: Correlation-Based Feature Selection
(CFS) [24] is a commonly used filter-based subset selection technique that
is capable of detecting the correlation between features and the class while
accounting for the correlation among the features. CFS uses the Pearson
correlation coefficient (a measure of the intensity of the linear association
between variables). The Pearson correlation coefficient is defined as:

()1
=

+ −

cf
S

ff

kr
M

k k k r

Univariate and Multivariate Feature Selection 43

In this equation, MS is the merit of the current feature subset, k is the
number of features, rcf is the mean of the correlations between each feature
and the class, and rff is the mean of the pairwise correlations between every
two features.

3) Wrapper-Based Subset Selection: Wrapper-based subset selection evaluates
feature subsets by applying an induction algorithm and measuring the
performance using a classification performance metric. The best performing
subset is selected to build the final prediction model, which is usually the same
induction algorithm. Although wrappers are computationally expensive, they
have the advantage of detecting redundant features. We used Naı̈ve Bayes
(NB) (discussed further in Section 3.7) within the wrapper, as it is a simple and
effective classification algorithm [18]. To evaluate the classification algorithm
with the wrapper we used the Area Under the ROC Curve (AUC) (discussed
further in Section 3.8), which previous research showed to be statistically
consistent [28].

3.4 Quality of Data
Gene expression datasets are noisy in nature, with difficult to distinguish class
boundaries which makes any model-building more difficult. Therefore, there
is a clear need to study data mining techniques in the context of data noise. In
particular, we create three levels of data quality (“High-Quality,” “Average-
Quality,” and “Low-Quality”) to simulate different scenarios and demonstrate
the way these approaches would be used in the field. The data quality level
is obtained by measuring the classification performance of six commonly
used learners: NB, Multilayer Perceptron (MLP), 5-Nearest Neighbor (5NN),
SVMs, and two versions of C4.5 decision trees (C4.5 D and C4.5 N) using
the AUC performance metric. The average AUC across all learners is used
to categorize the dataset(s) according to the following ranges: High-Quality
(> 0.8), Average-Quality (≤ 0.8 and > 0.7), and Low-Quality (≤ 0.7). All
learners and parameters used are explained in Section 3.7 except for the
C4.5 D and C4.5 N learners. C4.5 D is the C4.5 decision tree where the default
parameters are used and C4.5 N has pruning turned off and Laplace smoothing
turned on. Note that this process is only used to determine the quality level of
the raw or noise-injected datasets and does not affect the experiment beyond
this measurement.

3.5 Datasets
Ten binary (i.e., each instance is assigned one of two class labels) bioinformatics
datasets are considered in this work. All of them are imbalanced, ranging from
10.42% to 35.97% minority instances. Table 1 lists them sorted based on their

44 Reuse in Intelligent Systems

level of class imbalance, as presented in the “% Minority Instances” column.
Note that all datasets are high dimensional (number of features ranging
between 6,001 and 15,155 features). In addition to the basic properties of each
dataset, the table presents the average AUC across the six learners discussed
in Section 3.4. All of these datasets have average AUC values greater than
0.8, thus they qualify as High-Quality data according to our measure in
Section 3.4.

3.6 Noise Injection
In this work, we created the three levels of data quality (“High-Quality,”
“Average-Quality,” and “Low-Quality”) by injecting 24 different class noise
patterns into all training datasets. For the noise injection mechanism, the same
procedure as reported by Van Hulse et al. [41] is used. Noise is injected in a
controlled fashion using two parameters, α (i.e., noise level) and β (i.e., noise
distribution). The first parameter controls the total number of noisy instances:
2 × α × |P | instances will be randomly selected (without replacement) and
have their class values switched from positive to negative or from negative to
positive (where |P | is the number of minority-class or positive, instances). By
tying the number of corrupted instances to the number of minority instances,
it can be ensured that they will not overwhelm the minority-class. In this
study, we used (α = 10%, 20%, 30%, 40%, 50%). The second parameter,
β determines what fraction of these randomly chosen instances will be selected
from the positive class (e.g., β = 0% means that only negative instances are
corrupted and β = 100% means that only positive instances are corrupted).
This study used (β = 0%, 25%, 50%, 75%, 100%). With five values for
α and β, there are 24 different noise injection patterns (because the case with

Table 1: Dataset characteristics.

Name # Minority
Instances

Total #
of Instances

% Minority
Instances

of
Attributes

Average
AUC

Ovarian Cancer [35] 91 253 35.97% 15155 0.97388

ALL AML Leukemia [40] 25 72 34.72% 7130 0.90908

CNS MAT [13] 30 90 33.33% 7130 0.83551

Prostate MAT [13] 26 89 29.21% 6001 0.90466

MLL Leukemia [40] 20 72 27.78% 12583 0.89615

Lymphoma MAT [17] 19 77 24.68% 7130 0.83659

ALL [40] 79 327 24.16% 12559 0.84748

Lung Clean [3] 23 132 17.42% 12601 0.92351

Lung Cancer [21] 31 181 17.13% 12534 0.93885

Lung Michigan [5] 10 96 10.42% 7130 0.97384

Univariate and Multivariate Feature Selection 45

α = 50% and β = 100% would convert all positive-class instances into negative-
class instances, leaving no counterexamples to learn from).

As mentioned earlier, we injected 24 patterns of class noise into the “raw”
(i.e., High-Quality) datasets creating three levels of data quality levels: “High-
Quality,” “Average-Quality,” or “Low-Quality” according to the ranges found
in Section 3.4. These categories had 141, 64, and 35 datasets, respectively. We
only used the derived datasets in our experiments.

3.7  Classifiers
In this experiment, we used six different classifiers: NB, MLP, 5-NN, SVM,
Random Forest with 100 trees (RF100), and LR. We selected these classifiers
because they are commonly used in the literature and to include a diverse
range of classification algorithms. All classifiers were built using the Weka
machine learning software [47], using the default parameters unless noted
otherwise. Previous research has shown that the changes described below are
appropriate for improving classification models [42].

NB [34] is a simple probabilistic classifier which utilizes Bayes’s
Theorem of conditional probability and assumes attribute independence.
Although this basic assumption is violated in real-world datasets, research
has shown that it can be effective and efficient compared to more advanced
and sophisticated classifiers. No changes to the default parameters were made
in our experiments.

The MLP [7] is a type of neural network that uses backpropagation to
classify instances. It contains three layers: an input layer, a hidden layer, and
an output layer. In these experiments, the hiddenLayers parameter was set to
3 to build a network with one hidden layer containing three nodes, and the
validationSetSize parameter was set to 10 so that the classifier would leave
10% of the instances out to determine when to stop training.

k-nearest neighbors [19], or k-NN, is an example of a case-based learning
algorithm, which uses the k closest training samples from a library of all the
instances of the training dataset and classifies each new instance to the class
most common amongst its k closest neighbors (a k of five was used in this
paper, hence the name “5-NN”) and the weightByDistance parameter was set
to “Weight by 1distance”.

The SVM [14] is a linear classifier which builds a linear discriminant
function using a small number of critical boundary samples from each class
while ensuring a maximum possible separation. In Weka, the complexity
parameter “c” was changed from 1.0 to 5.0, and buildLogisticModels,
which allows proper probability estimates to be obtained, was set to true. In
particular, the SVM learner used a linear kernel.

46 Reuse in Intelligent Systems

RF100 [10] constructs a large number of unpruned decision trees on
randomly bootstrapped data using a randomly-selected subset of features. A
new instance is classified by all decision trees and the final classification is
induced based on the majority voting. In this study, we changed the numTrees
attribute in WEKA to 100 (i.e., 100 trees) and the other parameters were left
at the default values.

LR [25] is a statistical regression model for categorical prediction. It
predicts the probability of occurrence of an event by fitting data to a logistic
curve. The Weka default parameter settings were used for this classifier.

3.8 Performance Evaluation and Cross-Validation
In this study, to avoid the risk of overfitting, we used four runs of five-fold
cross-validation [31] to build and test our models. In N-fold cross-validation,
the data is randomly split into N mutually exclusive equal-size subsets (folds),
and then one of these is held aside as a test (hold-out) fold. The remaining
N – 1 folds, collectively called the training fold, first had noise injected
according to one of the 24 noise patterns, and then models were built on this
noisy training fold and classification models were tested on the remaining
“clean” fold. A learning algorithm is trained and tested N times. The value
N = 5 was used in this paper. Once all N folds have been used as the test datasets,
the results from all test datasets are integrated into a single performance value
for that dataset. Since we are using four runs of five-fold cross-validation, we
repeat the feature selection 20 times for each of the derived datasets.

We used the AUC [38] performance metric to evaluate the performance
of learners. This performance metric was chosen because it is commonly
used in the literature, and due to its invariance to a priori class probability
distributions, which makes it suitable when analyzing imbalanced data (note
that all datasets in this study exhibit class imbalance). The AUC builds a graph
of the True Positive Rate vs. False Positive Rate as the classifier decision
threshold is varied, and then uses the area under this graph as the performance
across all decision thresholds. Note that while area under the ROC curve
is used as both feature ranker (ROC) and as classifier performance metric
(AUC), these uses are disconnected from each other.

4. Results

In this work, we compare three approaches for combining feature selection
and data sampling (DS- FS-UnSam, DS-FS-Sam, and FS-DS) in Section 4.1.
The three approaches differ in the order (whether feature selection takes place
before or after data sampling) and the dataset (unsampled or sampled) used
to build the training dataset. Additionally, we investigate the importance of

Univariate and Multivariate Feature Selection 47

alleviating class imbalance by comparing the classification performance of
two approaches in Section 4.2. The first approach (FS) does not employ any
technique to handle class imbalance and only employs feature selection. On
the other hand, the second approach (FS-DS) employs data sampling after
performing feature selection. We employed three major types of feature
selection (ranker-based techniques, filter-based subset selection, and wrapper-
based feature selection). We apply RUS to obtain a balanced class ratio.
Additionally, six commonly used classifiers were used to build predictive
models. All experiments were performed on 10 bioinformatics datasets which
were first determined to be free of noise. We then created three levels of data
quality by injecting class noise.

4.1 Importance of the order when feature selection and data
sampling are applied

The results are presented in Table 4. Each value represents the average AUC
performance across four runs of five-fold cross-validation when applying
the given combination of feature selection technique, feature-selection/data-
sampling strategy, and classifier to the datasets which match that data quality
level. In the “Feature Selection Technique” column, the rankers (CS, ROC,
and WRS) are followed by a number, which represents the number of features
chosen from that ranked list, and the wrapper-based selection approach which
uses the NB learner inside the wrapper is abbreviated as “WrapNB” for space
considerations. The table includes six sub-tables: one for each classifier (NB,
MLP, 5-NN, SVM, RF100, and LR, respectively). The sub-tables also present
the average performance (last row of the sub-tables) of each of the approaches
over the 11 feature selection strategies and datasets which match that data
quality level for that specific learner. The last row of the table represents the
overall average performance of each of the approaches for that specific data
quality level. The best and worst choices of approach for each combination of
learner and data quality are printed in bold and italics, respectively.

From the results, we can make the general statement that FS-DS is the
best approach to utilize feature selection and data sampling when learning
from class imbalanced, high dimensional bioinformatics datasets. The overall
average performance shows that FS-DS is the best performing approach across
the board (regardless of data quality). When we look at the “Average” row in
each sub-table showing the performance across all feature selection strategies,
we find that FS-DS is the best performing approach for all combinations of
data quality tiers and learners (except High-Quality with LR). The other two
approaches did not perform as well: DS-FS-UnSam was in the middle of
the performance list on average; for NB, MLP, SVM, and RF100 it was the
second best, and was the worst when considering the other learners (5-NN

48 Reuse in Intelligent Systems
Ta

bl
e

2:
 A

ve
ra

ge
 A

U
C

 v
al

ue
s.

L
ea

rn
er

Fe
at

ur
e

Se
le

ct
io

n
Te

ch
ni

qu
e

H
ig

h
Q

ua
lit

y
Av

er
ag

e
Q

ua
lit

y
L

ow
 Q

ua
lit

y

D
S-

FS
-U

nS
am

D
S-

FS
-S

am
FS

-D
S

D
S-

FS
-U

nS
am

D
S-

FS
-S

am
FS

-D
S

D
S-

FS
-U

nS
am

D
S-

FS
-S

am
FS

-D
S

N
B

C
S2

5
0.

95
69

22
0.

93
96

67
0.

95
55

31
0.

86
27

94
0.

85
61

55
0.

88
56

98
0.

73
98

56
0.

71
41

12
0.

75
51

10
C

S5
0

0.
95

93
70

0.
93

85
79

0.
95

21
83

0.
87

13
06

0.
86

01
89

0.
88

86
06

0.
74

28
20

0.
71

85
90

0.
74

87
61

C
S1

00
0.

95
51

67
0.

93
40

14
0.

94
70

35
0.

86
67

36
0.

85
54

28
0.

88
18

21
0.

72
53

47
0.

71
28

26
0.

74
25

86
R

O
C

25
0.

95
86

92
0.

94
65

76
0.

96
27

10
0.

87
00

29
0.

86
78

71
0.

89
47

04
0.

74
66

43
0.

72
20

51
0.

78
68

12
R

O
C

50
R

O
C

10
0

0.
95

80
67

0.
95

27
48

0.
94

33
15

0.
93

76
55

0.
95

81
41

0.
95

30
93

0.
87

50
69

0.
86

99
52

0.
87

21
18

0.
86

60
31

0.
89

47
63

0.
88

89
57

0.
75

18
81

0.
74

85
90

0.
73

13
24

0.
73

40
69

0.
79

65
00

0.
79

86
89

W
R

S2
5

0.
95

75
30

0.
94

50
56

0.
96

14
41

0.
86

48
25

0.
86

21
19

0.
89

15
15

0.
73

30
65

0.
71

17
82

0.
78

23
20

W
R

S5
0

0.
95

62
23

0.
94

11
91

0.
95

65
22

0.
86

91
92

0.
86

63
74

0.
89

10
53

0.
73

49
66

0.
72

01
41

0.
78

82
67

W
R

S1
00

0.
95

07
64

0.
93

47
75

0.
95

11
79

0.
86

21
80

0.
85

82
38

0.
88

39
45

0.
73

65
48

0.
72

33
36

0.
78

99
65

C
FS

0.
93

79
45

0.
92

43
92

0.
95

04
97

0.
81

15
99

0.
81

71
22

0.
85

54
33

0.
66

90
44

0.
67

62
02

0.
73

32
83

W
ra

pN
B

0.
83

57
92

0.
83

00
64

0.
86

87
56

0.
71

15
03

0.
70

78
52

0.
73

41
58

0.
59

63
21

0.
59

32
13

0.
62

62
26

Av
er

ag
e

0.
94

48
36

0.
92

98
15

0.
94

78
46

0.
85

19
93

0.
84

76
45

0.
87

48
33

0.
72

26
60

0.
70

70
39

0.
76

06
37

M
LP

C
S2

5
0.

94
98

37
0.

94
06

55
0.

94
87

44
0.

84
80

82
0.

83
42

46
0.

85
02

72
0.

73
42

29
0.

70
78

81
0.

74
34

35
C

S5
0

0.
95

38
61

0.
94

89
02

0.
95

19
14

0.
85

28
38

0.
84

08
10

0.
85

72
34

0.
74

05
38

0.
71

50
05

0.
75

89
41

C
S1

00
0.

96
09

67
0.

95
54

46
0.

95
80

11
0.

85
82

86
0.

85
06

20
0.

86
62

24
0.

74
67

38
0.

72
46

27
0.

75
99

60
R

O
C

25
0.

95
36

74
0.

94
54

32
0.

95
82

99
0.

85
38

56
0.

84
30

59
0.

86
19

77
0.

74
59

79
0.

72
04

73
0.

76
76

79
R

O
C

50
R

O
C

10
0

0.
95

88
71

0.
96

14
91

0.
95

21
82

0.
95

65
87

0.
95

95
60

0.
96

31
66

0.
85

87
92

0.
86

71
04

0.
85

06
17

0.
85

54
39

0.
86

57
10

0.
87

14
31

0.
75

05
13

0.
75

08
99

0.
72

67
02

0.
73

59
05

0.
76

98
58

0.
78

14
52

W
R

S2
5

0.
95

40
65

0.
94

55
99

0.
95

77
61

0.
85

44
62

0.
84

19
16

0.
86

14
83

0.
74

51
95

0.
71

68
35

0.
76

98
48

W
R

S5
0

0.
95

84
47

0.
95

18
93

0.
95

93
71

0.
85

80
27

0.
85

10
84

0.
86

66
70

0.
74

98
86

0.
72

47
41

0.
77

02
97

W
R

S1
00

0.
96

12
24

0.
95

60
02

0.
96

28
19

0.
86

74
09

0.
85

43
01

0.
87

09
17

0.
75

08
87

0.
73

50
94

0.
77

85
05

C
FS

0.
94

91
34

0.
94

60
58

0.
96

16
68

0.
83

78
05

0.
83

38
01

0.
86

40
29

0.
74

02
87

0.
71

20
72

0.
74

90
76

W
ra

pN
B

0.
84

32
05

0.
83

40
45

0.
88

04
63

0.
73

74
96

0.
72

25
65

0.
76

30
17

0.
61

79
48

0.
60

01
28

0.
63

57
55

Av
er

ag
e

0.
94

70
03

0.
94

04
50

0.
95

17
43

0.
84

71
20

0.
83

65
61

0.
85

60
21

0.
73

53
93

0.
71

23
20

0.
75

44
53

Univariate and Multivariate Feature Selection 49

5-
N

N

C
S2

5
0.

95
37

04
0.

95
66

45
0.

96
08

23
0.

84
79

29
0.

85
17

15
0.

86
96

72
0.

71
04

28
0.

73
41

22
0.

75
20

29
C

S5
0

0.
96

52
72

0.
96

41
50

0.
96

61
78

0.
86

14
66

0.
86

51
79

0.
88

02
77

0.
72

04
40

0.
74

43
09

0.
76

86
65

C
S1

00
0.

97
03

02
0.

96
83

20
0.

97
04

97
0.

87
21

75
0.

87
22

11
0.

88
47

49
0.

72
68

69
0.

74
67

08
0.

76
90

50
R

O
C

25
0.

95
32

93
0.

95
52

19
0.

96
41

55
0.

84
80

46
0.

85
65

20
0.

87
76

77
0.

71
21

16
0.

73
69

81
0.

77
40

97
R

O
C

50
R

O
C

10
0

0.
96

24
45

0.
96

89
97

0.
96

22
59

0.
96

64
09

0.
96

82
87

0.
97

21
36

0.
86

35
85

0.
87

44
04

0.
87

20
26

0.
87

64
68

0.
88

87
07

0.
89

35
24

0.
73

32
77

0.
74

16
72

0.
75

05
72

0.
75

57
95

0.
78

71
25

0.
79

25
22

W
R

S2
5

0.
95

39
41

0.
95

48
80

0.
96

35
17

0.
84

77
33

0.
85

57
16

0.
87

77
99

0.
70

56
51

0.
72

79
78

0.
77

49
09

W
R

S5
0

0.
96

15
72

0.
96

20
71

0.
96

82
37

0.
86

42
95

0.
87

15
77

0.
88

96
05

0.
72

66
73

0.
74

71
63

0.
78

53
42

W
R

S1
00

0.
96

89
89

0.
96

60
03

0.
97

16
13

0.
87

61
25

0.
87

68
75

0.
89

39
34

0.
74

14
71

0.
75

47
07

0.
79

43
53

C
FS

0.
95

89
22

0.
95

73
68

0.
97

07
27

0.
84

57
71

0.
84

69
70

0.
87

67
16

0.
71

04
03

0.
73

21
88

0.
75

28
88

W
ra

pN
B

0.
81

87
56

0.
83

23
14

0.
87

67
03

0.
70

59
34

0.
71

76
08

0.
75

99
13

0.
59

12
55

0.
60

00
66

0.
63

96
45

Av
er

ag
e

0.
95

00
87

0.
95

08
31

0.
96

01
51

0.
84

88
28

0.
85

38
11

0.
87

41
13

0.
71

25
29

0.
73

17
59

0.
76

41
96

SV
M

C
S2

5
0.

94
63

00
0.

92
91

97
0.

94
05

73
0.

83
13

90
0.

82
30

77
0.

84
17

03
0.

72
02

38
0.

70
53

82
0.

73
91

34
C

S5
0

0.
93

91
95

0.
92

74
35

0.
93

18
81

0.
82

46
39

0.
81

68
86

0.
83

12
60

0.
71

90
86

0.
70

23
78

0.
73

56
27

C
S1

00
0.

93
76

36
0.

93
44

73
0.

93
39

59
0.

81
86

97
0.

82
38

40
0.

82
92

22
0.

71
52

91
0.

70
54

41
0.

73
58

47
R

O
C

25
R

O
C

50

R
O

C
10

0

0.
95

04
37

0.
94

21
67

0.
93

90
26

0.
93

61
42

0.
93

28
91

0.
93

68
61

0.
95

07
83

0.
94

07
45

0.
94

26
01

0.
84

43
68

0.
82

93
04

0.
82

64
09

0.
83

41
84

0.
82

46
17

0.
82

70
39

0.
85

89
21

0.
84

44
31

0.
84

31
52

0.
73

01
31

0.
72

12
14

0.
71

96
14

0.
71

28
64

0.
71

51
88

0.
71

66
23

0.
76

37
31

0.
75

41
72

0.
75

97
21

W
R

S2
5

0.
95

02
32

0.
93

59
80

0.
95

05
66

0.
84

20
09

0.
83

48
40

0.
85

83
33

0.
72

34
77

0.
70

99
12

0.
76

33
99

W
R

S5
0

0.
94

27
57

0.
93

34
48

0.
94

05
61

0.
83

02
01

0.
82

77
87

0.
84

64
44

0.
72

04
55

0.
71

48
18

0.
75

61
64

W
R

S1
00

0.
93

87
57

0.
93

61
13

0.
94

28
37

0.
82

83
40

0.
82

89
42

0.
84

46
67

0.
71

83
93

0.
71

82
34

0.
75

89
83

C
FS

0.
92

72
53

0.
92

95
51

0.
94

47
06

0.
80

80
67

0.
81

17
75

0.
83

60
28

0.
71

78
58

0.
71

31
23

0.
73

80
35

W
ra

pN
B

0.
81

79
36

0.
83

60
37

0.
88

50
95

0.
71

20
97

0.
72

14
93

0.
76

50
21

0.
58

28
56

0.
60

48
34

0.
64

10
82

Av
er

ag
e

0.
93

14
44

0.
92

53
07

0.
93

72
45

0.
81

99
87

0.
81

77
50

0.
83

76
61

0.
70

96
16

0.
70

28
76

0.
74

16
18

Ta
bl

e
2

co
nt

d.
 ..

.

50 Reuse in Intelligent Systems

L
ea

rn
er

Fe
at

ur
e

Se
le

ct
io

n
Te

ch
ni

qu
e

H
ig

h
Q

ua
lit

y
Av

er
ag

e
Q

ua
lit

y
L

ow
 Q

ua
lit

y

D
S-

FS
-U

nS
am

D
S-

FS
-S

am
FS

-D
S

D
S-

FS
-U

nS
am

D
S-

FS
-S

am
FS

-D
S

D
S-

FS
-U

nS
am

D
S-

FS
-S

am
FS

-D
S

R
F1

00

C
S2

5
0.

96
91

87
0.

95
52

51
0.

96
83

09
0.

87
46

62
0.

85
53

36
0.

88
11

42
0.

74
41

17
0.

71
37

99
0.

76
62

78
C

S5
0

0.
97

69
90

0.
96

59
16

0.
97

40
70

0.
89

42
74

0.
87

20
44

0.
89

68
10

0.
76

81
87

0.
73

44
37

0.
78

52
14

C
S1

00
0.

98
13

94
0.

97
11

71
0.

97
73

98
0.

90
47

10
0.

88
11

68
0.

90
32

92
0.

78
15

99
0.

75
23

52
0.

78
94

84
R

O
C

25
0.

96
94

83
0.

95
85

72
0.

97
15

36
0.

88
04

36
0.

86
44

44
0.

89
20

14
0.

75
67

35
0.

73
31

08
0.

78
49

75
R

O
C

50
R

O
C

10
0

0.
97

64
01

0.
97

97
96

0.
96

63
31

0.
97

10
35

0.
97

61
60

0.
97

88
67

0.
89

78
04

0.
90

81
31

0.
87

93
63

0.
88

66
37

0.
90

18
76

0.
90

88
00

0.
77

20
71

0.
78

80
14

0.
74

94
86

0.
75

93
63

0.
79

71
53

0.
80

93
25

W
R

S2
5

0.
96

94
61

0.
95

77
10

0.
97

07
15

0.
87

91
74

0.
86

24
33

0.
89

09
56

0.
74

89
25

0.
72

66
60

0.
78

39
19

W
R

S5
0

0.
97

66
92

0.
96

65
86

0.
97

57
98

0.
89

68
91

0.
87

81
18

0.
90

25
15

0.
77

11
23

0.
74

52
15

0.
79

93
03

W
R

S1
00

0.
98

03
99

0.
97

14
77

0.
97

87
67

0.
90

69
16

0.
88

71
70

0.
90

84
32

0.
78

64
73

0.
75

76
78

0.
80

98
43

C
FS

0.
97

49
27

0.
96

38
18

0.
97

83
52

0.
88

75
16

0.
86

24
64

0.
89

04
85

0.
76

11
95

0.
73

16
40

0.
75

45
19

W
ra

pN
B

0.
83

25
97

0.
83

86
33

0.
89

49
84

0.
71

80
18

0.
72

43
36

0.
77

40
74

0.
59

42
30

0.
60

06
62

0.
62

87
92

Av
er

ag
e

0.
96

38
00

0.
95

44
86

0.
96

84
19

0.
87

99
91

0.
86

19
42

0.
88

84
75

0.
75

40
62

0.
72

93
19

0.
77

52
65

LR

C
S2

5
0.

86
64

55
0.

86
88

77
0.

84
62

61
0.

74
36

42
0.

75
13

85
0.

74
41

22
0.

65
51

00
0.

66
97

14
0.

68
52

26
C

S5
0

0.
84

03
25

0.
85

33
12

0.
83

40
29

0.
71

94
69

0.
74

52
30

0.
74

10
35

0.
64

36
23

0.
66

43
17

0.
68

95
59

C
S1

00
0.

83
01

51
0.

84
99

53
0.

83
49

58
0.

70
70

30
0.

73
67

69
0.

73
50

40
0.

62
74

45
0.

64
78

98
0.

68
18

42
R

O
C

25
0.

87
28

04
0.

87
84

59
0.

87
48

04
0.

74
80

57
0.

76
90

15
0.

76
67

53
0.

67
05

78
0.

68
77

64
0.

71
45

78
R

O
C

50
R

O
C

10
0

0.
84

80
52

0.
83

19
21

0.
86

80
16

0.
86

06
48

0.
86

24
99

0.
85

64
25

0.
72

23
30

0.
70

04
10

0.
75

89
21

0.
74

47
20

0.
75

52
77

0.
74

57
84

0.
63

69
23

0.
63

18
43

0.
67

43
71

0.
66

26
69

0.
70

43
17

0.
69

79
13

W
R

S2
5

0.
87

12
26

0.
87

88
83

0.
87

62
38

0.
74

51
40

0.
76

79
75

0.
76

61
16

0.
65

97
11

0.
68

56
11

0.
71

71
76

W
R

S5
0

0.
84

81
56

0.
86

92
80

0.
86

27
82

0.
72

15
10

0.
75

90
55

0.
75

74
39

0.
63

59
26

0.
67

47
05

0.
70

57
09

W
R

S1
00

0.
83

37
25

0.
86

00
85

0.
85

83
56

0.
70

54
96

0.
74

60
30

0.
74

76
89

0.
63

04
97

0.
66

60
91

0.
69

93
91

C
FS

0.
84

84
89

0.
90

07
33

0.
90

25
70

0.
71

54
37

0.
79

66
70

0.
80

29
72

0.
66

19
49

0.
69

67
76

0.
72

19
32

W
ra

pN
B

0.
84

01
03

0.
82

46
09

0.
86

37
91

0.
72

80
94

0.
70

78
29

0.
73

78
80

0.
60

89
09

0.
59

75
38

0.
63

02
44

Av
er

ag
e

0.
84

84
00

0.
86

48
53

0.
86

06
62

0.
72

33
89

0.
75

30
85

0.
75

39
47

0.
64

22
75

0.
66

67
18

0.
69

56
69

O
ve

ra
ll

Av
er

ag
e

0.
93

09
28

0.
92

76
24

0.
93

76
78

0.
82

85
51

0.
82

84
66

0.
84

75
08

0.
71

27
55

0.
70

83
39

0.
74

86
40

...
Ta

bl
e

2
co

nt
d.

Univariate and Multivariate Feature Selection 51

and LR), while DS-FS-Sam was the worst performing approach on average.
Furthermore, FS-DS showed itself to be particularly noise tolerant by not
being at the bottom of the list for Average-Quality and Low-Quality data
(higher levels of noise), where it was never the worst performing approach
and at worst comes in second place. When considering High-Quality data,
FS-DS was the worst performing approach for only 3 of the 66 combinations
(SVM learner and the CS ranker with 25 features, and the LR learner with the
CS ranker utilizing 25 and 50 features).

Looking closely at these results in terms of the different feature selection
techniques, it can be seen that for all subset selection techniques (CFS and
Wrapper), the best performing approach was consistently FS-DS regardless
of the learner and data quality. The only exception to this is when considering
Low-Quality data with the RF100 learner, where FS-DS was the second
best. When considering the other category of feature selection (i.e., rankers),
we can see that for all but 8 out of 108 combinations of learner and ranker
with both Average-Quality and Low-Quality data (Average-Quality with the
RF100 learner and CS ranker with 100 features or LR learner and all rankers
utilizing 25 and 50 features as well as CS with 100 features), the best approach
was FS-DS. This is especially important as these two tiers of data quality
represent higher levels of noise. When considering High-Quality data, FS-DS
was at the top of the pack for 39 out of 66 combinations. On the other hand,
DS-FS-UnSam was the best choice for 20 of 198 combinations, and was the
worst for 66 combinations, while DS-FS-Sam was only the best approach for
16 combinations and was at the bottom for 129 of the 198 combinations.

Looking at these results on a per-data quality level basis, we see that
FS-DS is particularly robust and is able to improve the classification
performance for all learners regardless of the feature selection technique when
Low-Quality datasets (AUC less than 0.7 due to noise injection) are used. In
particular, FS-DS improved the performance of classifiers enough to result
in AUC values greater than 0.7 (which is our metric for Average-Quality) for
all combinations of learner and feature selection with few exceptions (e.g.,
Wrapper regardless of the learner). Additionally, it should be noted that FS-DS
was the only approach that was able to improve the classification performance
for LR (when combined with ROC25, ROC50, WRS25, WRS50, and CFS
feature selection), resulting in AUC values greater than 0.7. FS-DS combined
with the RF100 learner helped improve the classification performance on Low-
Quality datasets significantly (when combined with ROC100 or WRS100),
resulting in AUC values greater than 0.8 (i.e., our metric for High-Quality).
Similarly, FS-DS and RF100 improved the performance on Average-Quality
datasets, achieving AUC values greater than 0.9.

We performed a set of one-factor ANOVA tests [6] to validate the
classification results and found statistically significant outcomes. The ANOVA

52 Reuse in Intelligent Systems

analysis and subsequent statistical tests were performed within MATLAB®.
Since a significance factor of 5% was chosen, the p-value must be less than
this value (i.e., 0.05) for the result to be significant.

In this analysis, we considered only one factor: the choice of strategy for
combining feature selection and data sampling, with three different levels of
this factor (DS-FS-UnSam, DS-FS-Sam, and FS-DS). The tests performed
were across all datasets and factors, and for each level of data quality. For
the ANOVA tests, the AUC results across all six learners were used as the
response variable. The results are presented in Table 3. These results show
that the choice of approach for combining feature selection and data sampling
is significant across all data quality levels as well as each level of data quality;
that is to say, when the data are grouped by the choice of approach, at least two
of those groups will have significantly different means.

We wanted to find out which pairs of means are significantly different, and
which are not. We conducted a multiple pairwise comparison by using HSD
criterion [6]. The significance level for Tukey’s HSD test is α = 0.05. Figure 3
shows the comparison results of the three choices of approach for combining
feature selection and data sampling for all data quality levels, and for each of
the different levels of data quality. The results for all datasets, High-Quality
datasets only, Average-Quality datasets only, and Low-Quality datasets only
are shown in Figures 3a, 3b, 3c, and 3d, respectively. The figures display
graphs within each group mean represented by a symbol (°) and the 95%
confidence interval as a line around the symbol. Two means are significantly
different if their intervals are disjoint, and are not significantly different if
their intervals overlap.

Figure 3 supports our conclusion that the top performing choice of
approach for combining feature selection and data sampling is always FS-DS.

Table 3: ANOVA results: Feature-selection/data-sampling strategies across all learners.

Datasets Source Sum Sq. d.f. Mean Sq. F p-value

All
Data Quality
Levels

FS/DS Strategy
Error
Total

50.4
21727.6
21777.9

2
925677
925679

25.1952
0.0235

1073.41 0

High Quality FS/DS Strategy
Error
Total

9.56
5966.15
5975.71

2
546117
546119

4.78028
0.01092

437.57 1.31E-190

Average Quality FS/DS Strategy
Error
Total

19.58
5633.49
5653.07

2
244077
244079

9.79016
0.02308

424.17 1.27E-184

Low Quality FS/DS Strategy
Error
Total

44.16
4813.84
4858.01

2
135477
135479

22.0823
0.0355

621.47 2.14E-269

Univariate and Multivariate Feature Selection 53

The difference between the top performing approach and the other approaches
(i.e., DS-FS-UnSam and DS-FS-Sam) is statistically significant across all
data quality levels. Furthermore, DS-FS-Sam was significantly the worst
performing approach across all data quality levels, except when considering
Average-Quality datasets, where the difference is statistically insignificant.
DS-FS-UnSam, on the other hand, shows average performance on High-
Quality and Low-Quality datasets, while being second worst on Average-
Quality datasets but not statistically distinguishable.

4.2 Importance of Alleviating Class Imbalance
In this section we examine the importance of alleviating class imbalance by
comparing two approaches (FS and FS-DS). The results of our experiments
can be found in Table 4. Overall, we can make the general statement that
in order to improve the performance for classification models built with
bioinformatics datasets that exhibit both high dimensionality and class
imbalance simultaneously, alleviating class imbalance in conjunction
with reducing high dimensionality is the best strategy. The overall average
performance shows that FS-DS outperforms FS across the board (regardless
of the data quality level). When we look at the “Average” row in each sub-
table showing the performance across all feature selection strategies, we
find that FS-DS is the best performing approach for all combinations of data

Fig. 2.1

Feature
selection

(FS)

Original
fit data

Sampled
fit data

Original
fit data

Data

sampling

(DS)

Selected
attributes

Feature
selection

(FS)

Selected
attributes

DS-FS-UnSam

DS-FS-Sam

FS-DS

Feature
selection

(FS)

Selected
attributes

Original
fit

dataset

Fit dataset
with selected

attributes

FS

FS-DS

Data

sampling

(DS)

Fig. 2.2

(a) All data quality levels

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.865 0.87 0.875 0.88 0.885 0.89 0.895 0.9 0.905

(b) High quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.92 0.925 0.93 0.935 0.94

(c) Average quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.825 0.83 0.835 0.84 0.845 0.85 0.855 0.86 0.865

(d) Low quality

DS-FS-UNSam

DS-FS-Sam

DS-FS

0.7 0.71 0.72 0.73 0.74 0.75 0.76

Fig. 2.3

Fig. 3: Tukey HSD results: Feature-selection/data-sampling strategies across all learners.

54 Reuse in Intelligent Systems
Ta

bl
e

4:
 A

ve
ra

ge
 A

U
C

 v
al

ue
s.

L
ea

rn
er

Fe
at

ur
e

Se
le

ct
io

n
Te

ch
ni

qu
e

H
ig

h
Q

ua
lit

y
Av

er
ag

e
Q

ua
lit

y
L

ow
 Q

ua
lit

y
FS

FS
-D

S
FS

FS
-D

S
FS

FS
-D

S

N
B

C
S2

5
0.

96
95

16
0.

95
87

64
0.

89
55

90
0.

89
77

38
0.

71
98

40
0.

73
06

57
C

S5
0

0.
97

05
08

0.
95

64
19

0.
90

29
30

0.
90

16
52

0.
71

99
09

0.
71

78
74

C
S1

00
0.

97
06

97
0.

95
58

36
0.

90
19

85
0.

90
01

66
0.

71
21

86
0.

71
60

05
R

O
C

25
0.

97
98

86
0.

97
08

50
0.

91
29

04
0.

91
76

41
0.

75
10

71
0.

77
25

35
R

O
C

50
R

O
C

10
0

0.
98

02
54

0.
97

79
68

0.
97

08
73

0.
97

11
27

0.
91

19
79

0.
90

23
82

0.
91

79
92

0.
91

53
77

0.
75

41
39

0.
74

22
64

0.
78

68
15

0.
78

81
52

W
R

S2
5

0.
97

93
93

0.
97

07
63

0.
91

03
55

0.
91

57
36

0.
74

30
97

0.
76

60
34

W
R

S5
0

0.
97

95
89

0.
97

00
59

0.
90

83
69

0.
91

47
49

0.
74

43
73

0.
77

71
53

W
R

S1
00

0.
97

74
09

0.
97

04
55

0.
89

53
18

0.
90

95
54

0.
73

12
38

0.
77

94
33

C
FS

0.
96

47
65

0.
96

82
79

0.
85

61
89

0.
87

51
05

0.
71

22
87

0.
72

78
62

W
ra

pN
B

0.
87

37
68

0.
87

52
68

0.
72

36
32

0.
74

09
75

0.
61

52
31

0.
61

48
92

Av
er

ag
e

0.
96

57
96

0.
95

80
63

0.
88

37
85

0.
89

15
17

0.
72

23
31

0.
74

34
01

M
LP

C
S2

5
0.

95
79

09
0.

95
50

20
0.

87
44

40
0.

87
28

96
0.

73
89

98
0.

74
41

82
C

S5
0

0.
96

08
88

0.
95

83
70

0.
87

03
29

0.
88

26
94

0.
76

26
35

0.
76

67
61

C
S1

00
0.

96
52

76
0.

97
00

09
0.

87
64

88
0.

89
17

41
0.

76
60

32
0.

76
77

41
R

O
C

25
0.

97
25

61
0.

97
26

03
0.

88
95

51
0.

89
61

38
0.

77
29

74
0.

78
23

43
R

O
C

50
R

O
C

10
0

0.
97

14
11

0.
97

32
77

0.
97

46
20

0.
97

93
77

0.
88

96
96

0.
89

12
28

0.
90

44
04

0.
90

86
42

0.
77

39
19

0.
77

51
44

0.
79

10
21

0.
79

62
74

W
R

S2
5

0.
97

20
87

0.
97

25
72

0.
89

01
20

0.
89

65
83

0.
77

64
47

0.
78

24
32

W
R

S5
0

0.
97

14
78

0.
97

44
99

0.
89

25
07

0.
90

41
35

0.
77

93
96

0.
79

00
07

W
R

S1
00

0.
97

26
24

0.
97

87
87

0.
89

45
27

0.
90

60
57

0.
77

74
89

0.
79

24
31

C
FS

0.
97

21
28

0.
97

78
27

0.
88

17
03

0.
89

50
72

0.
74

95
56

0.
76

05
44

W
ra

pN
B

0.
89

76
27

0.
88

13
94

0.
79

56
54

0.
77

21
47

0.
65

26
78

0.
62

25
12

Av
er

ag
e

0.
96

24
79

0.
96

31
89

0.
87

69
31

0.
88

45
92

0.
75

68
42

0.
76

32
95

Univariate and Multivariate Feature Selection 55

5-
N

N

C
S2

5
0.

97
02

07
0.

97
67

77
0.

85
64

15
0.

89
09

83
0.

68
19

58
0.

74
49

39
C

S5
0

0.
97

68
21

0.
98

19
59

0.
86

72
09

0.
90

10
58

0.
69

10
52

0.
76

85
82

C
S1

00
0.

98
32

06
0.

98
63

98
0.

88
15

54
0.

90
40

65
0.

69
54

54
0.

77
17

55
R

O
C

25
0.

97
32

06
0.

98
11

93
0.

87
13

61
0.

91
11

86
0.

70
17

23
0.

78
63

33
R

O
C

50
R

O
C

10
0

0.
97

86
48

0.
98

39
68

0.
98

38
67

0.
98

63
43

0.
88

58
72

0.
89

64
50

0.
91

94
67

0.
92

22
32

0.
71

81
92

0.
72

46
74

0.
79

49
23

0.
80

26
21

W
R

S2
5

0.
97

34
61

0.
98

08
29

0.
87

13
35

0.
91

26
27

0.
70

37
28

0.
78

80
87

W
R

S5
0

0.
97

87
43

0.
98

37
64

0.
88

62
52

0.
92

05
98

0.
71

09
94

0.
79

39
19

W
R

S1
00

0.
98

41
48

0.
98

62
41

0.
89

74
83

0.
92

27
61

0.
72

44
32

0.
80

55
58

C
FS

0.
97

49
02

0.
98

49
68

0.
85

63
48

0.
90

69
68

0.
67

49
18

0.
76

25
76

W
ra

pN
B

0.
87

12
13

0.
88

71
78

0.
75

74
80

0.
77

94
78

0.
60

12
33

0.
63

44
57

Av
er

ag
e

0.
96

80
48

0.
97

45
02

0.
86

61
60

0.
89

92
20

0.
69

34
87

0.
76

85
23

SV
M

C
S2

5
0.

94
90

75
0.

94
20

09
0.

85
71

03
0.

85
95

61
0.

72
06

30
0.

73
07

85
C

S5
0

0.
94

12
67

0.
94

14
78

0.
83

81
70

0.
85

61
67

0.
72

64
86

0.
74

22
96

C
S1

00
0.

94
55

76
0.

95
33

16
0.

83
63

20
0.

85
93

83
0.

73
11

50
0.

74
88

44
R

O
C

25
0.

96
57

38
0.

96
34

34
0.

87
62

10
0.

88
65

38
0.

75
26

20
0.

77
34

83
R

O
C

50
R

O
C

10
0

0.
95

78
07

0.
95

37
08

0.
95

99
19

0.
96

55
43

0.
86

03
15

0.
85

84
16

0.
88

14
59

0.
88

31
80

0.
75

12
54

0.
74

91
45

0.
77

17
93

0.
77

88
40

W
R

S2
5

W
R

S5
0

0.
96

53
31

0.
95

74
39

0.
96

35
88

0.
96

03
54

0.
87

36
80

0.
86

05
38

0.
88

65
63

0.
88

35
48

0.
75

48
62

0.
75

44
74

0.
77

15
34

0.
77

33
59

W
R

S1
00

0.
95

36
02

0.
96

54
68

0.
85

84
31

0.
88

31
86

0.
75

32
71

0.
77

80
99

C
FS

0.
95

82
15

0.
96

73
71

0.
84

88
35

0.
86

88
91

0.
73

22
60

0.
75

01
60

W
ra

pN
B

0.
88

75
50

0.
88

67
18

0.
77

25
74

0.
77

40
72

0.
62

13
65

0.
62

78
24

Av
er

ag
e

0.
94

86
64

0.
95

17
45

0.
84

91
45

0.
86

56
86

0.
73

15
93

0.
74

97
29

Ta
bl

e
4

co
nt

d.
 ..

.

56 Reuse in Intelligent Systems

L
ea

rn
er

Fe
at

ur
e

Se
le

ct
io

n
Te

ch
ni

qu
e

H
ig

h
Q

ua
lit

y
Av

er
ag

e
Q

ua
lit

y
L

ow
 Q

ua
lit

y
FS

FS
-D

S
FS

FS
-D

S
FS

FS
-D

S

R
F1

00

C
S2

5
0.

97
95

56
0.

97
68

71
0.

89
31

13
0.

89
64

43
0.

73
91

30
0.

75
90

41
C

S5
0

0.
98

47
23

0.
98

21
20

0.
90

93
27

0.
91

41
23

0.
75

98
05

0.
77

80
19

C
S1

00
0.

98
92

25
0.

98
63

35
0.

92
29

37
0.

92
24

35
0.

77
36

46
0.

78
33

30
R

O
C

25
0.

98
32

57
0.

97
88

55
0.

90
84

10
0.

91
59

90
0.

76
75

08
0.

78
53

81
R

O
C

50
R

O
C

10
0

0.
98

68
03

0.
98

98
52

0.
98

52
08

0.
98

75
53

0.
92

09
43

0.
92

69
62

0.
92

70
72

0.
93

15
85

0.
78

20
87

0.
79

33
39

0.
79

40
35

0.
80

37
00

W
R

S2
5

0.
98

27
29

0.
97

78
89

0.
90

87
89

0.
91

63
62

0.
76

47
86

0.
78

17
45

W
R

S5
0

0.
98

72
69

0.
98

42
65

0.
92

23
20

0.
92

64
14

0.
78

30
83

0.
79

83
03

W
R

S1
00

0.
98

95
69

0.
98

79
96

0.
92

70
36

0.
93

19
10

0.
79

56
67

0.
80

49
54

C
FS

0.
98

92
03

0.
98

53
64

0.
92

09
40

0.
90

56
18

0.
75

04
84

0.
74

78
25

W
ra

pN
B

0.
88

06
31

0.
88

82
29

0.
78

16
57

0.
77

91
35

0.
61

18
71

0.
60

92
67

Av
er

ag
e

0.
97

66
20

0.
97

46
08

0.
90

38
58

0.
90

60
99

0.
75

64
91

0.
76

77
82

LR

C
S2

5
0.

85
30

32
0.

86
56

61
0.

77
46

50
0.

79
52

65
0.

65
71

46
0.

71
52

98
C

S5
0

0.
82

97
88

0.
87

66
75

0.
72

58
89

0.
78

92
30

0.
64

50
76

0.
72

48
21

C
S1

00
0.

83
41

42
0.

88
78

06
0.

71
74

85
0.

80
24

40
0.

63
56

54
0.

72
92

19
R

O
C

25
0.

88
57

25
0.

92
11

65
0.

78
89

96
0.

82
68

19
0.

68
39

13
0.

75
45

59
R

O
C

50
R

O
C

10
0

0.
86

46
56

0.
85

05
00

0.
92

65
23

0.
92

32
79

0.
74

92
17

0.
74

05
76

0.
81

74
84

0.
81

28
82

0.
65

91
20

0.
64

34
36

0.
75

52
78

0.
75

26
56

W
R

S2
5

W
R

S5
0

0.
88

55
44

0.
86

38
00

0.
92

37
09

0.
92

59
90

0.
78

79
11

0.
75

27
06

0.
82

79
83

0.
81

95
83

0.
68

32
55

0.
65

81
26

0.
75

70
58

0.
75

60
25

W
R

S1
00

0.
84

93
28

0.
92

34
62

0.
73

74
18

0.
81

44
44

0.
63

88
76

0.
75

34
14

C
FS

0.
86

74
37

0.
95

26
27

0.
73

01
62

0.
84

21
81

0.
65

48
26

0.
74

72
70

W
ra

pN
B

0.
88

78
79

0.
87

21
41

0.
76

06
02

0.
74

35
22

0.
63

83
27

0.
62

13
63

Av
er

ag
e

0.
86

10
75

0.
90

90
03

0.
75

14
19

0.
80

83
48

0.
65

43
41

0.
73

33
60

O
ve

ra
ll

Av
er

ag
e

0.
94

71
14

0.
95

51
85

0.
85

52
16

0.
87

59
10

0.
71

91
81

0.
75

43
48

...
Ta

bl
e

4
co

nt
d.

Univariate and Multivariate Feature Selection 57

quality tiers and learners (except High-Quality with RF100 and NB). For all
but 2 of 18 combinations of learner and data quality level (High Quality with
the NB and RF100 learners) the best approach was FS-DS. It is of note that
FS-DS consistently outperformed FS (regardless of the data quality level and
feature selection technique) when the 5-NN learner is used.

We also performed a set of two-tailed z-tests for each paired comparison
to find statistically significant patterns. The tests performed were across all
datasets and factors, and for each level of data quality. The z-test method
tests the null hypothesis that the population means related to two independent
group samples are equal against the alternative hypothesis that the population
means are different. p-values are provided for each pair of comparisons in the
table. The significance level is set to 0.05; when the p-value is less than 0.05,
the two group means are significantly different from one another.

The results are presented in Table 5. These results support our conclusion
that the top performing choice of approach is always FS-DS and the difference
between the top performing approach and the other approach (i.e., FS) is
statistically significant across all data quality levels and for each level of data
quality.

5. Conclusion

While many studies investigated feature selection and data sampling in
bioinformatics separately, utilizing them together has received little attention.
In this work, we compare three approaches for combining feature selection
and data sampling (DS-FS-UnSam, DS-FS-Sam, and FS-DS). We also show
the importance of alleviating class imbalance for classification problems on
bioinformatics datasets. We employed three major forms of feature selection
(feature ranking, filter-based subset selection, and wrapper-based feature
selection) as well as a commonly used data sampling technique. We created
three categories of datasets (High-Quality, Average-Quality, and Low-
Quality) by injecting artificial class noise in a controlled fashion into ten gene-
expression datasets which were first determined to be relatively free of noise.
We build our final models using six different classification algorithms.

Table 5: z-test results.

Datasets z-value p-value

All Data Quality Levels –26.2156616 < 0.0001

High Quality –15.29787687 < 0.0001

Average Quality –16.95388351 < 0.0001

Low Quality –21.45216765 < 0.0001

58 Reuse in Intelligent Systems

The experimental results demonstrate that paying attention to the order
when utilizing both feature selection and data sampling and the dataset
(whether unsampled or sampled) used for classification is extremely important
in improving the performance of classification algorithms. We found that the
best order to apply feature selection and data sampling is to employ feature
selection followed by data sampling. This approach significantly improved
the performance of all classifiers compared to the other approaches. All
of these results are supported by ANOVA and Tukey’s HSD tests. On the
other hand, the results show that data sampling (in conjunction with feature
selection) helped improve the classification performance even more compared
to feature selection alone. Thus, we recommend alleviating class imbalance
(e.g., by applying RUS) to achieve improved classification performance for
bioinformatics classification problems. In particular, we recommend using
FS-DS as the approach when learning from class imbalanced high dimensional
bioinformatics datasets, regardless of any implication of noise or the
classification algorithm that is going to be used. Furthermore, we recommend
using FS-DS with feature rankers (especially ROC and WRS utilized with
100 features), as they showed superior classification performance compared
to subset-based feature selection techniques.

Future research may involve conducting more experiments, using other
classification algorithms as well as other learners within the wrapper, and
considering other preprocessing techniques.

Acknowledgements

The authors would like to thank the anonymous reviewer for their constructive
evaluation of this Book Chapter, and the various members of the Data Mining
and Machine Learning Laboratory, Florida Atlantic University, for assistance
with the reviews.

References
 [1] Abu Shanab, A. and T.M. Khoshgoftaar. 2018. Is gene selection enough for imbalanced

bioinformatics data. pp. 346–355. In: IEEE International Conference on Information
Reuse and Integration (IRI), July 2018.

 [2] Abu Shanab, A., T.M. Khoshgoftaar, R. Wald and J. Van Hulse. 2011. Comparison of
approaches to alleviate problems with high-dimensional and class-imbalanced data.
pp. 234–239. In: IEEE International Conference on Information Reuse and Integration
(IRI), August 2011.

 [3] Abu Shanab, A., T.M. Khoshgoftaar and R. Wald. 2012. Robustness of threshold-
based feature rankers with data sampling on noisy and imbalanced data. pp. 92–97.
In: Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research
Society Conference.

Univariate and Multivariate Feature Selection 59

 [4] Al-Shahib, A., R. Breitling and D. Gilbert. 2005. Feature selection and the class
imbalance problem in predicting protein function from sequence. Applied Bioinformatics
4(3): 195–203.

 [5] Beer, D.G., S.L.R. Kardia, C.-C. Huang, T.J. Giordano, A.M. Levin, D.E. Misek, L. Lin,
G. Chen, T.G. Gharib, D.G. Thomas, M.L. Lizyness, R. Kuick, S. Hayasaka, J.M.G.
Taylor, M.D. Iannettoni, M.B. Orringer and S. Hanash. 2002. Gene-expression profiles
predict survival of patients with lung adenocarcinoma. Nat. Med. 8(8): 816–824, Aug
2002 [Online]. Available: http://dx.doi.org/10.1038/nm733.

 [6] Berenson, M.L., D.M. Levine and M. Goldstein. 1983. Intermediate Statistical Methods
and Applications: A Computer Package Approach. Englewood Cliffs, New Jersey:
Prentice-Hall.

 [7] Berthold, M. and D.J. Hand (eds.). 2004. Intelligent Data Analysis, 2nd ed. Secaucus, NJ,
USA: Springer-Verlag New York, Inc.

 [8] Blagus, R. and L. Lusa. 2010. Class prediction for high-dimensional class-imbalanced
data. BMC Bioinformatics 11(1): 523–539 [Online]. Available: http://www.biomedcentral.
com/1471-2105/11/523.

 [9] Blagus, R. and L. Lusa. 2012. Evaluation of smote for high-dimensional class-imbalanced
microarray data. pp. 89–94. In: Machine Learning and Applications (ICMLA), 2012 11th
International Conference on, Vol. 2, Dec 2012.

 [10] Breiman, L. 2001. Random forests. Machine Learning 45(1): 5–32, Oct 2001 [Online].
Available: http://dx.doi.org/10.1023/A: 1010933404324.

 [11] Breitling, R. and P. Herzyk. 2005. Rank-based methods as a non-parametric alternative of
the t-statistic for the analysis of biological microarray data. Journal of Bioinformatics and
Computational Biology 3(5): 1171–1189 [Online]. Available: http://www.worldscientific.
com/doi/abs/10.1142/S0219720005001442.

 [12] Caruana, R. and D. Freitag. 1994. Greedy attribute selection. pp. 28–36. In: Proceedings
of the Eleventh International Conference on Machine Learning. Morgan Kaufmann.

 [13] Chen, X.-w. and M. Wasikowski. 2008. Fast: a roc-based feature selection metric for small
samples and imbalanced data classification problems. pp. 124–132. In: KDD ’08: Proc.
14th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining. New York, NY,
USA: ACM.

 [14] Cristianini, N. and B. Schölkopf. 2002. Support vector machines and kernel methods:
The new generation of learning machines. AI Mag. 23(3): 31–41, Sep. 2002 [Online].
Available: http://dl.acm.org/citation.cfm?id=765580.765585.

 [15] Dittman, D.J., T.M. Khoshgoftaar, R. Wald and A. Napolitano. 2012. Determining
the number of iterations appropriate for ensemble gene selection on microarray data.
pp. 82–89. In: Machine Learning and Applications (ICMLA), 2012 11th International
Conference on, Vol. 1, Dec. 2012.

 [16] Dittman, D.J., T.M. Khoshgoftaar, R. Wald and A. Napolitano. 2013. Maximizing
classification performance for patient response datasets. pp. 454–462. In: Tools with
Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference on.

 [17] Dittman, D.J., T.M. Khoshgoftaar, R. Wald and H. Wang. 2011. Stability analysis of
feature ranking techniques on biological datasets. pp. 252–256. In: IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), November 2011.

 [18] Domingos, P. and M. Pazzani. 1997. On the optimality of the simple bayesian classifier
under zero-one loss. Mach. Learn. 29(2-3): 103–130, Nov. 1997 [Online]. Available:
http://dx.doi.org/10.1023/A:1007413511361.

 [19] Fraiman, R., A. Justel and M. Svarc. 2010. Pattern recognition via projection-based knn
rules. Computational Statistics and Data Analysis 54(5): 1390–1403.

http://www.worldscientific.com
http://www.biomedcentral.com
http://dx.doi.org/10.1023/A:1007413511361
http://dl.acm.org
http://www.worldscientific.com
http://dx.doi.org/10.1023/A:1010933404324
http://www.biomedcentral.com
http://dx.doi.org/10.1038/nm733

60 Reuse in Intelligent Systems

 [20] Frenay, B. and M. Verleysen. 2014. Classification in the presence of label noise: A survey.
Neural Networks and Learning Systems, IEEE Transactions on 25(5): 845–869, May
2014.

 [21] Gordon, G.J., R.V. Jensen, L.-L. Hsiao, S.R. Gullans, J.E. Blumenstock, S. Ramaswamy,
W.G. Richards, D.J. Sugarbaker and R. Bueno. 2002. Translation of microarray data into
clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and
mesothelioma. Cancer Research 62(17): 4963–4967 [Online]. Available: http://cancerres.
aacrjournals.org/content/62/17/4963.abstract.

 [22] Guo, X., Y. Yin, C. Dong, G. Yang and G. Zhou. 2008. On the class imbalance problem.
pp. 192–201. In: Fourth International Conference on Natural Computation, 2008. ICNC
’08, Vol. 4, October 2008.

 [23] Guyon, I. and A. Elisseeff. 2003. An introduction to variable and feature selection.
J. Mach. Learn. Res. 3: 1157–1182.

 [24] Hall, M. 1997. Correlation-based Feature Selection for Machine Learning. Ph.D.
dissertation, The University of Waikato, Hamilton, New Zealand.

 [25] Hosmer, D.W. and S. Lemesbow. 1980. Goodness of fit tests for the multiple logistic
regression model. Communications in Statistics-Theory and Methods 9(10): 1043–1069
[Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/03610928008827941.

 [26] Iizuka, N., M. Oka, H. Yamada-Okabe, M. Nishida, Y. Maeda, N. Mori, T. Takao, T.
Tamesa, A. Tangoku, H. Tabuchi, K. Hamada, H. Nakayama, H. Ishitsuka, T. Miyamoto,
A. Hirabayashi, S. Uchimura and Y. Hamamoto. 2003. Oligonucleotide microarray for
prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative
resection. The Lancet 361(9361): 923–929.

 [27] Inza, I., P. Larrañaga, R. Blanco and A.J. Cerrolaza. 2004. Filter versus wrapper gene
selection approaches in DNA microarray domains. Artificial Intelligence in Medicine
31(2): 91–103 [Online]. Available: http://dx.doi.org/10.1016/j.artmed.2004.01.007.

 [28] Jiang, Y., J. Lin, B. Cukic and T. Menzies. 2009. Variance analysis in software fault
prediction models. pp. 99–108. In: Software Reliability Engineering, 2009. ISSRE ’09.
20th International Symposium on, Nov. 2009.

 [29] Khoshgoftaar, T.M., D. Dittman, R. Wald and A. Fazelpour. 2012. First order statistics
based feature selection: A diverse and powerful family of feature seleciton techniques.
pp. 151–157. In: 11th International Conference on Machine Learning and Applications
(ICMLA), Vol. 2, Dec. 2012.

 [30] Khoshgoftaar, T.M., A. Fazelpour, H. Wang and R. Wald. 2013. A survey of stability
analysis of feature subset selection techniques. pp. 424–431. In: Information Reuse and
Integration (IRI), IEEE 14th International Conference on, Aug 2013.

 [31] Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation
and model selection. pp. 1137–1143. In: Proceedings of the 14th International Joint
Conference on Artificial Intelligence—Volume 2, ser. IJCAI’95. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1643031.1643047.

 [32] Kotsiantis, S., D. Kanellopoulos and P. Pintelas. 2006. Handling imbalanced datasets:
A review. GESTS International Transactions on Computer Science and Engineering
30(1): 25–36.

 [33] Liu, H., J. Li and L. Wong. 2002. A comparative study on feature selection and classification
methods using gene expression profiles and proteomic patterns. Genome Informatics
13: 51–60.

 [34] Mitchell, T.M. 1997. Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill, Inc.
 [35] Petricoin, E.F. III, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg,

G.B. Mills, C. Simone, D.A. Fishman, E.C. Kohn and L.A. Liotta. 2002. Use of proteomic

http://dl.acm.org
http://cancerres.aacrjournals.org
http://dl.acm.org/citation
http://dx.doi.org/10.1016/j.artmed.2004.01.007
http://www.tandfonline.com
http://cancerres.aacrjournals.org

Univariate and Multivariate Feature Selection 61

patterns in serum to identify ovarian cancer. The Lancet 359(9306): 572–577 [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0140673602077462.

 [36] Provost, F. and T. Fawcett. 2001. Robust classification for imprecise environments. Mach.
Learn. 42(3): 203–231 [Online]. Available: http://dx.doi.org/10.1023/A:1007601015854.

 [37] Ramaswamy, S., K.N. Ross, E.S. Lander and T.R. Golub. 2003. A molecular signature of
metastasis in primary solid tumors. Nature Genetics 33: 49–54.

 [38] Seliya, N., T.M. Khoshgoftaar and J. Van Hulse. 2009. A study on the relationships of
classifier performance metrics. pp. 59–66. In: 21st International Conference on Tools with
Artificial Intelligence, November 2009.

 [39] Shipp, M.A., K.N. Ross, P. Tamayo, A.P. Weng, J.L. Kutok, R.C. Aguiar, M. Gaasenbeek,
M. Angelo, M. Reich, G.S. Pinkus, T.S. Ray, M.A. Koval, K.W. Last, A. Norton, T.A.
Lister, J. Mesirov, D.S. Neuberg, E.S. Lander, J.C. Aster and T.R. Golub. 2002. Diffuse
large B-cell lymphoma outcome prediction by gene-expression profiling and supervised
machine learning. Nature Medicine 8(1): 68–74, Jan. 2002 [Online]. Available: http://
dx.doi.org/10.1038/nm0102-68.

 [40] Van Hulse, J., T.M. Khoshgoftaar and A. Napolitano. 2011. A comparative evaluation of
feature ranking methods for high dimensional bioinformatics data. pp. 315–320. In: IEEE
International Conference on Information Reuse and Integration (IRI), August 2011.

 [41] Van Hulse, J. and T.M. Khoshgoftaar. 2009. Knowledge discovery from imbalanced and
noisy data. Data & Knowledge Engineering 68(12): 1513–1542 [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169023X09001141.

 [42] Van Hulse, J., T.M. Khoshgoftaar and A. Napolitano. 2007. Experimental perspectives
on learning from imbalanced data. pp. 935–942. In: Proceedings of the 24th International
Conference on Machine Learning, ser. ICML ’07. New York, NY, USA: ACM [Online].
Available: http://doi.acm.org/10.1145/1273496.1273614.

 [43] Van Hulse, J., T.M. Khoshgoftaar, A. Napolitano and R. Wald. 2012. Threshold-based
feature selection techniques for high-dimensional bioinformatics data. International
Journal of Network Modeling and Analysis in Health Informatics and Bioinformatics
1(1-2): 47–61 [Online]. Available: http://dx.doi.org/10.1007/s13721-012-0006-6.

 [44] Visa, S. and A. Ralescu. 2005. Issues in mining imbalanced data sets—a review paper.
pp. 67–73. In: Proc. 16th Midwest Artificial Intelligence and Cognitive Science Conf.

 [45] Wald, R., T.M. Khoshgoftaar and A. Napolitano. 2013. Stability of filter- and wrapper-
based feature subset selection. pp. 374–380. In: Tools with Artificial Intelligence (ICTAI),
IEEE 25th International Conference on, Nov 2013.

 [46] Wang, Y., I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer and H.W. Mewes.
2005. Gene selection from microarray data for cancer classification—a machine learning
approach. Computational Biology and Chemistry 29(1): 37–46 [Online]. Available: http://
www.sciencedirect.com/science/article/B73G2-4F92463-1/2/55dd1384ae9cb8b7c2909a
bc8afba4f8.

 [47] Witten, I.H., E. Frank and M.A. Hall. 2011. Data Mining: Practical Machine Learning
Tools and Techniques, 3rd ed. Burlington, MA: Morgan Kaufmann, January 2011.

 [48] Zhu, X. and X. Wu. 2004. Class noise vs. attribute noise: A quantitative study. Artificial
Intelligence Review 22(3): 177–210, Nov 2004 [Online]. Available: http://dx.doi.
org/10.1007/s10462-004-0751-8.

http://www.sciencedirect.com
http://dx.doi.org/10.1007/s10462-004-0751-8
http://dx.doi.org/10.1007/s10462-004-0751-8
http://www.sciencedirect.com
http://www.sciencedirect.com
http://dx.doi.org/10.1007/s13721-012-0006-6
http://doi.acm.org/10.1145/1273496.1273614
http://www.sciencedirect.com
http://dx.doi.org/10.1038/nm0102-68
http://dx.doi.org/10.1038/nm0102-68
http://dx.doi.org/10.1023/A:1007601015854
http://www.sciencedirect.com

Chapter 3
Big Data and Class Imbalance
in Medicare Fraud Detection

Richard A Bauder* and Taghi M Khoshgoftaar

1. Introduction

The healthcare industry produces a vast array of information ranging from
patient records to provider payment and claims data [53], [38]. This industry
has and continues to embrace big data in order to become more efficient and
productive [48]. Big data is characterized by its vastness with typically very
granular datasets, that, when used with advanced analysis techniques, can
lead to potentially meaningful conclusions. The use of big data is often seen
as the best, and sometimes only, paradigm for future business success [47].
The incorporation of big data provides dense layers of interconnections and
potentially meaningful information but is often modeled directly without much
consideration for fundamental data processing and engineering. Because big
data is available and machine learning techniques can readily handle these
copious amounts of data, building models directly using the entire dataset,
with minimal prior data analysis or preparation, appears to be increasingly
common [44]. Even so, directly using all the available data may not always be
the most prudent course of action. Another important real-world issue often
found in big data is that of class imbalance, which occurs simply because of
an uneven balance in the number of positive and negative cases, or binary
class labels, in a dataset [45]. Areas such as medical insurance fraud, where

College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, Florida.
Email: khoshgof@fau.edu
* Corresponding author: rbauder2014@fau.edu

mailto:rbauder2014@fau.edu
mailto:khoshgof@fau.edu

Big Data and Class Imbalance in Medicare Fraud Detection 63

there are considerably fewer instances of fraud versus normal activities,
experience class imbalance. The amount of data in the healthcare field is
rapidly increasing via sources such as electronic health records and insurance
claims records [53].

Another aspect of this increasing amount of information is the rise of the
elderly population in the U.S., due to advances in healthcare and an overall
increase in standard of living [2]. The number of elderly individuals rose 28%
from 2004 to 2015, versus an increase of just 6.5% for those under 65 years
of age [3]. Thus, the upkeep and improvement in the health of this population
becomes more important to the elderly and their family and friends. This
increased healthcare need comes at a price and is usually managed by a
healthcare insurance program. In particular, U.S. healthcare spending grew
by 4.3% in 2016 totaling over $3.3 trillion [4], [32]. Clearly, these programs
need to be affordable to the general populace, but program costs, along with
the elderly population, continue to increase, which can financially cripple
individuals and families [33]. Medicare is a U.S. government program that
provides healthcare insurance and financial support for the elderly population,
ages 65 and older, and other select groups of beneficiaries [5]. Note that this
program contributes to 20% of the overall U.S. healthcare spending. Within
the Medicare program, each covered medical procedure is codified for
claims and payment purposes. The basic claims process entails a physician
performing one or more procedures and then submitting a claim to Medicare
for payment, rather than directly billing the patient, thus assigning the role of
“middle man” to Medicare in this process. A claim is defined as a request for
payment for benefits or services received by a beneficiary.

In order to keep healthcare affordable, programs need to keep medical-
related costs low. One way to do this involves reducing fraud, waste, and abuse
(FWA) [30]. Malicious or wasteful activities can lead to higher costs and the
possibility of patients going without necessary medical care. Some examples
of fraud and abuse involve billing Medicare for appointments the patient
failed to keep, services rendered that were more complex than those actually
performed, unnecessary medical services, submitting excessive charges
for services, drugs, or supplies, and misusing claims codes (e.g., upcoding
or unbundling). Aside, from these typical fraud and abuse descriptions in
Medicare, improper payments can also indicate possible fraud or abuse. The
term improper payments refers to payments made by the government to the
wrong person, in the wrong amount, or for the wrong reason [1]. Thus, finding
improper payments could be a way to detect possible fraud and abuse activities.
Even so, it is important to note that not all improper payments are considered
fraud and abuse, but rather are related to clerical or bookkeeping errors. The
interested reader can find additional information on Medicare and healthcare-

64 Reuse in Intelligent Systems

related fraud and abuse in [14], [24], [25], [60]. Unfortunately, fraud is all to
prevalent within healthcare with about 10% of all U.S. medical claims being
fraudulent [49], [55]. Medicare alone accounted for up to 20% ($705.9 billion)
of the total U.S. healthcare spending in 2017 [4]. Therefore, from the FBI
fraud estimate, the possible fraud losses (and potential loss recovery) could
be up to $70 billion in the Medicare program alone. The group, Coalition
Against Insurance Fraud [31], provides statistics on fraud and abuse found
in the U.S. healthcare system. Some of the more salient statistics include the
recovery of $29.4 billion to Medicare since 1997 by the Health Care Fraud
and Abuse Control program, the exclusion of 1,662 individuals and entities
from Medicare and Medicaid claims and payments, and a nearly five-fold
increase in the recovery of proceeds (i.e., civil recoveries). Even with these
successful recoveries, medical fraud continues to be very attractive to would-
be perpetrators, adversely influencing healthcare costs and quality of service.
Therefore, the detection of fraud with increased cost recovery is critical for
the continued viability of the Medicare program.

Traditionally, to detect Medicare fraud, a limited number of auditors, or
investigators, are responsible for manually inspecting thousands of claims, but
only have enough time to look for very specific patterns indicating suspicious
behaviors [52]. In this study, we provide two case studies to demonstrate
the effects of class imbalance with big data on the detection of fraud in
the Medicare dataset with LEIE fraud labels [37]. We use the following
three different datasets, with provider payment and utilization information,
released by the Centers for Medicare and Medicaid Services (CMS) [22]:
(1) Medicare Provider Utilization and Payment Data: Physician and Other
Supplier (Part B), (2) Medicare Provider Utilization and Payment Data: Part
D Prescriber (Part D), and (3) Medicare Provider Utilization and Payment
Data: Referring Durable Medical Equipment, Prosthetics, Orthotics, and
Supplies (DMEPOS). We chose these parts of Medicare because they cover a
wide range of possible provider claims, the information is presented in similar
formats, and they are publicly available. Our study focuses on claims where
the providers (e.g., physicians) determine what they will charge and bill for.
The Part B, Part D, and DMEPOS datasets comprise key components of
Medicare, which enables us to provide a comprehensive view of fraud in the
Medicare program. Additionally, we create a combined dataset encompassing
all provider claims across the three Medicare datasets. Information provided
in these datasets includes the average amount paid for these services and other
data points related to procedures performed, drugs administered, or supplies
issued. The provided Medicare datasets do not have associated fraud labels for
predicting possible fraud. We use the List of Excluded Individuals and Entities
(LEIE) [46] dataset to generate fraud class labels (i.e., fraud or no fraud) for

Big Data and Class Imbalance in Medicare Fraud Detection 65

each provider to assess fraud detection capabilities of our baseline model and
proposed improvement strategies. The LEIE contains all physicians who are
excluded from practicing medicine for federally funded programs, such as
Medicare.

The mapping of these LEIE fraud labels to each dataset indicates
severe class imbalance. In the first case study, to address the issue of class
imbalance, we create seven class distributions, or ratios, employing the
random undersampling (RUS) technique and build Random Forest models
for each distribution. For each of the models, we use 5-fold cross-validation
repeated 10 times to reduce bias, assessing fraud detection performance using
the Area Under the receiver operator characteristic Curve (AUC). The first
case study indicates that the 90:10 (majority:minority) class distributions
produces the best overall results. We clearly demonstrate that, in contrast to
its prosaic use, the 50:50 class distribution does not produce the best results.
Our research shows statistically significant class distribution differences and
similarities in generating good fraud detection performance, as well as trends
in class distribution model results. These results clearly show that the 50:50
(balanced) or 99:1 (imbalanced) class distributions have statistically similar
fraud detection performance. Our second case study takes the 90:10 class
distribution for fraud detection using the Part D, DMEPOS, and combined
datasets. Overall, we show the value of RUS in improving fraud detection
performance across the Medicare datasets, indicating good results with the
Random Forest model. Our main contributions can be summarized as follows:

	 •	 Discuss a novel and robust Medicare data preparation approach.
	 •	 Detail our unique LEIE fraud labeling mapping methodology.
	 •	 Show that the commonly used 50:50 (balanced) class distribution

does not produce top Medicare fraud detection results.
	 •	 Demonstrate class distribution results and trends that show significant

differences in model performance for Medicare fraud detection.
	 •	 Show promising fraud detection results across several big data Medicare

sources, leveraging the 90:10 RUS class distribution.

The rest of the paper is organized as follows. Section 2 discusses works
related to the current research, focusing on class imbalance and Medicare-
related fraud. We discuss the Medicare dataset and LEIE database, to include
data preparation and fraud label mapping, in Section 3. In Section 4, we
discuss the design of our experiment which includes class imbalance, the
Random Forest learner, and performance metric. In Section 5, the results of
our case studies are discussed. Finally, Section 6 summarizes our conclusions
and future work.

66 Reuse in Intelligent Systems

2. Related Works

Our research compares and contrasts Medicare fraud detection performance
using all the available data versus applying sampling to mitigate the effects
of class imbalance. Therefore, we intentionally focus on any related works
on Medicare fraud detection and/or class imbalance. Given this, there are
relatively few studies on Medicare fraud detection, especially works utilizing
the known provider exclusion database that take into account class imbalance.

A study by Ko et al. [43] uses only the 2012 Medicare data with a focus
on the Urology specialty. The authors calculated the variability among
Urologists, which indicated a possible savings of 9% due to provider
utilization. Pande et al. [50] use 2012 Medicare data and exclusions from
the LEIE database to assess who the Medicare fraud perpetrators are and
what happens to them after they get caught. Interestingly, one of the authors’
recommendations is to use predictive models to detect claims fraud. Khurjekar
et al. [42] propose a two-step unsupervised approach to detecting fraud using
the 2012 Medicare data. The authors first use the residuals from a multivariate
regression model, with average payment as the dependent variable, to identify
suspicious claims based on a residual threshold of $500. The second part of
their approach incorporates these residuals using clustering to find fraudulent
observations based on the average cluster distances. Another study by Sadiq
et al. [54] employs the Patient Rule Induction Method (PRIM) based bump
hunting method to identify anomalies in the 2014 Medicare data (Florida
only). Their method is unsupervised and is used to narrow down the list of
possibly fraudulent providers to be further investigated. In a preliminary
study, Chandola et al. [19] use Medicare claims data and provider enrollment
data from private sources to detect healthcare fraud. The authors employ
several different techniques including social network analysis, text mining,
and temporal analysis. Using features derived from the temporal analysis, the
authors build a logistic regression model to detect known fraudulent cases
using labeled data from the Texas Office of Inspector General’s exclusion
database, not the complete LEIE database. Moreover, details are limited with
regards to data processing and mapping fraud labels to the Medicare data.

A two-step approach in detecting Medicare fraud, per provider type,
is outlined in a paper by our research group [10]. The first step involves a
multivariate regression model returning model residuals. These residuals are
passed into a Bayesian probability model that produces the final probabilities
indicating how likely it is that a particular value is fraudulent. We compared
their method versus other common outlier detection methods, and found
our method performed favorably. In [13], we provide an exploratory study
predicting fraudulent providers using only the number of procedures
performed by each physician, via a Multinomial Naive Bayes model. If the

Big Data and Class Imbalance in Medicare Fraud Detection 67

predicted provider type does not match what is expected, then this provider is
performing outside of normal practice patterns and should be investigated. In
[8], we use multivariate regression to establish a baseline for expected Medicare
payments, per provider type. This baseline is then used as the normative case
in which to compare the actual payment amounts, with deviations flagged as
outliers. A two-step approach in detecting Medicare fraud, per provider type,
is outlined in [10]. Another previous research study [9] involves a preliminary
study that compares several supervised and unsupervised methods to detect
2015 Medicare Part B fraud. In this study, we detect fraud with supervised
(Gradient Boosted Machine, Random Forest, Deep Neural Network, and
Naive Bayes), unsupervised (autoencoder, Mahalanobis distance, KNN, and
LOF), and hybrid (multivariate regression and Bayesian probability) machine
learning approaches. Supervised methods performed better than unsupervised
or hybrid approaches, with results fluctuating based on the sampling technique
used and Medicare provider type.

Branting et al. [16] create a graph of providers, prescriptions, and
procedures using the 2012 to 2014 Medicare data and LEIE exclusion labels.
The authors use two algorithms where one calculates the similarity to known
fraud and non-fraud providers, and the other estimates fraud risk via shared
practice locations. To address class imbalance, the authors kept 12,000
excluded providers and randomly selected 12,000 non-excluded providers,
using only a 50:50 class distribution. A decision tree model was built using
11 graph-based features and 10-fold cross-validation with no repeats.

To the best of our knowledge, our work is one of the only Medicare fraud
detection studies, to provide such a robust experiment to assess the impacts
of using big data, with severe class imbalance. To support our assertions, we
use the Random Forest model to demonstrate the significant improvements by
employing sampling and suggest the best class distributions while debunking
the common usage of the 50:50 distribution. Moreover, contrary to the related
works, we provide a comprehensive and fair experimental design using
5-fold cross-validation with 10 repeats for each class distribution, as well as
statistical significance testing.

3. Data

To effectively demonstrate Medicare fraud detection performance, we use
three publicly available Medicare provider claims data from the Centers
for Medicare and Medicaid Services (CMS) [22]. Additionally, we create a
combined dataset incorporating each of these three big Medicare datasets.
In these datasets, each provider or physician is denoted by his or her unique
National Provider Identifier (NPI) [23] for each medical claim item. The
Medicare dataset contains a number of features, such as the average amount

68 Reuse in Intelligent Systems

submitted, billed, and paid by Medicare, and the number of procedures
performed. Note that the Medicare claims information is recorded after claims
payments were made [26] and with that, we do not make any modifications
and assume that this dataset was appropriately recorded and cleansed
by CMS. By using these claims datasets, we demonstrate the detection of
fraudulent behaviors at the provider-level. This implies a single provider with
a single procedure per Medicare claim. Before implementing the CMS data in
research, it is important to understand each dataset and how to manipulate and
leverage it in the most efficient and effective way [11].

The Medicare Provider Utilization and Payment Data: Physician and
Other Supplier (Part B) dataset, from 2012 to 2015, outlines information about
physicians and the procedures they perform [28]. Each physician is denoted
by his or her NPI and each procedure is labeled by its Healthcare Common
Procedure Coding System (HCPCS) code [21]. The Part B data is aggregated
(grouped by) the following: (1) NPI of the performing provider, (2) HCPCS
code for the procedure or service performed, and (3) the place of service
which is either a facility (F) or non-facility (O), such as a hospital or office,
respectively. Some physicians can perform the same procedure (i.e., have the
same HCPCS code) at both a facility and an office. Additionally, there are
a few cases for which a physician is labeled as multiple physician types (or
specialties), such as Internal Medicine and Cardiology. The Part B data, per
year, is organized where each row contains the physician’s NPI and provider
type (along with all non-changing physician information, such as name and
gender) corresponding to one HCPCS code and further split by place of service
(Office or Facility). Given this organization, all the procedure information
corresponds to these four attributes. Therefore, for each physician, there are as
many rows as unique combinations of NPI, Provider Type, HCPCS code, and
place of service. For example, if a physician (NPI = 1003000126) has claimed
20 different procedures and three of them were conducted at both an office
and facility (while the other 17 were conducted at one place), there would
be 23 rows for this physician (assuming this physician is labeled as only one
provider type).

The Medicare Provider Utilization and Payment Data: Part D Prescriber
(Part D) dataset, from 2013 to 2015, outlines information about physicians,
as well as information pertaining to the prescription drugs they administer
under the Medicare Part D Prescription Drug Program [27]. Each physician
is denoted by his or her NPI and each drug is labeled by its brand and generic
name. The Part D data is aggregated (grouped by) the following: (1) the NPI
of the prescriber, (2) the drug name (brand name in the case of trademarked
drugs) and generic name (according to CMS documentation). As with the Part
B data, there are a few cases where a physician can be labeled as multiple
physician types, such as: internal medicine and cardiology. The Part D data, per

Big Data and Class Imbalance in Medicare Fraud Detection 69

year, is organized where each row contains the physician’s NPI and provider
type (along with all non-changing physician information) corresponding to
one drug name along with all the drug information corresponding to these
three attributes. Therefore, for each physician, there are as many rows as
unique combinations of NPI, Provider type and drug name. For example,
if a physician (NPI = 1003000126) has prescribed 20 different drugs, there
would be 20 rows for this physician (assuming this physician is labeled as one
physician type).

The Medicare Provider Utilization and Payment Data: Referring
Durable Medical Equipment, Prosthetics, Orthotics and Supplies (DMEPOS)
dataset, from 2013 to 2015, outlines information about physicians, as well
as information pertaining to the DMEPOS products and services provided
[29]. Each physician is denoted by his or her NPI and each product/service
is labeled by its HCPCS code. The DMEPOS data is aggregated (grouped
by) the following: (1) NPI of the performing provider, (2) HCPCS code for
the procedure or service performed by the DMEPOS supplier, and (3) the
supplier rental indicator (value of either ‘Y’ or ‘N’) derived from DMEPOS
supplier claims (according to CMS documentation). Some physicians place
orders for the same DMEPOS equipment (i.e., with the same HCPCS code),
as both rental and non-rental. Additionally, there are also a few cases where a
physician can be labeled as multiple physician types. The DMEPOS data, per
year, is organized where each row contains the physician’s NPI and provider
type (along with all non-changing physician information) corresponding to
one HCPCS code and further split by rental status (yes or no) and all the
procedure information corresponding to these four attributes. Therefore,
for each physician, there are as many rows as unique combinations of NPI,
Provider type, HCPCS code, and rental_indicator. As an example, if a physician
(NPI = 1003000126) has claimed 20 different procedures and three of them
were issued as both a rental and non-rental (while the other 17 were issued
as one), there would be 23 rows for this physician (assuming this physician
is labeled as one physician type). For additional clarity and insight into the
Medicare data, Tables 1, 2, and 3 depict sample excerpts, from the Internal
Medicine provider type or specialty, from each of the three Medicare datasets
used in this paper (with obfuscated NPI values of ‘1111111111’).

In combining each of the individual years for the 2012 (or 2013) to 2015
Medicare datasets, we matched features and excluded those that did not match
across all years. For instance, with the 2012 Part B dataset, the standard
deviations for charges and payments are available but discontinued for the
later years and were not included in the final dataset. Additionally, we create a
combined dataset incorporating information from all three Medicare datasets.
Our assumption is that there is no reliable way to know within which part of
Medicare a physician/provider has or will commit fraud. Therefore, joining

70 Reuse in Intelligent Systems
Ta

bl
e

1:
 P

ar
t B

 d
at

as
et

 sa
m

pl
e.

np
i

...
np

pe
s_

pr
ov

id
er

_
ge

nd
er

...
pr

ov
id

er
_t

yp
e

...
pl

ac
e_

of
_

se
rv

ic
e

hc
pc

s_
co

de
...

lin
e_

sr

vc
_c

nt
be

ne
_

un
iq

ue
_

co
un

t

...
av

er
ag

e_
su

bm
itt

ed
_

ch
rg

_a
m

t

...

11
11

11
11

11
...

M
...

In
te

rn
al

 M
ed

ic
in

e
...

F
99

21
7

...
23

23
...

32
8.

00
00

0
...

11
11

11
11

11
...

M
...

In
te

rn
al

 M
ed

ic
in

e
...

F
99

21
9

...
18

18
...

61
4.

00
00

0
...

11
11

11
11

11
...

M
...

In
te

rn
al

 M
ed

ic
in

e
...

F
99

22
1

...
59

58
...

33
3.

28
81

4
...

11
11

11
11

11
...

M
...

In
te

rn
al

 M
ed

ic
in

e
...

F
99

23
1

...
38

18
...

10
0.

84
21

1
...

11
11

11
11

11
...

M
...

In
te

rn
al

 M
ed

ic
in

e
...

F
99

23
2

...
11

17
48

1
...

20
0.

93
19

6
...

11
11

11
11

11
...

M
...

In
te

rn
al

 M
ed

ic
in

e
...

F
99

29
1

...
21

13
...

63
3.

80
95

2
...

Ta
bl

e
2:

 P
ar

t D
 d

at
as

et
 sa

m
pl

e.

np
i

...
sp

ec
ia

lty
_

de
sc

ri
pt

io
n

...
dr

ug
_n

am
e

...
to

ta
l_

cl

ai
m

_
co

un
t

...
to

ta
l_

da

y_

su
pp

ly

to
ta

l_

dr
ug

_
co

st

...
to

ta
l_

cl
ai

m
_

co
un

t_
ge

65

ge
65

_
su

pp
re

ss
_

fla
g

...

11
11

11
11

11
...

In
te

rn
al

 M
ed

ic
in

e
...

A
M

LO
D

IP
IN

E
B

ES
Y

LA
TE

...
27

...
99

0
12

0.
01

...
N

A
#

...

11
11

11
11

11
...

In
te

rn
al

 M
ed

ic
in

e
...

AT
O

RV
A

ST
AT

IN
 C

A
LC

IU
M

...
15

...
45

0
18

8.
85

...
N

A
*

...

11
11

11
11

11
...

In
te

rn
al

 M
ed

ic
in

e
...

A
ZI

TH
R

O
M

Y
C

IN
...

16
...

87
13

9.
24

...
N

A
#

...

11
11

11
11

11
...

In
te

rn
al

 M
ed

ic
in

e
...

C
EP

H
A

LE
X

IN
...

12
...

96
76

.0
9

...
N

A
#

...

11
11

11
11

11
...

In
te

rn
al

 M
ed

ic
in

e
...

C
IP

R
O

FL
O

X
A

C
IN

 H
C

L
...

15
...

11
4

11
9.

36
...

N
A

#
...

11
11

11
11

11
...

In
te

rn
al

 M
ed

ic
in

e
...

C
LO

PI
D

O
G

R
EL

...
24

...
78

0
20

5.
46

...
N

A
#

...

11
11

11
11

11
...

In
te

rn
al

 M
ed

ic
in

e
...

FU
R

O
SE

M
ID

E
...

12
...

36
0

34
.8

3
...

N
A

*
...

11
11

11
11

11
...

In
te

rn
al

 M
ed

ic
in

e
...

H
Y

D
R

A
LA

ZI
N

E
H

C
L

...
14

...
37

5
24

9.
54

...
14

...

Big Data and Class Imbalance in Medicare Fraud Detection 71

the Part B, Part D, and DMEPOS datasets can potentially better represent a
provider’s claims, from procedures and drugs to equipment. This is because
the combined dataset has a larger number of features from which machine
learning algorithms can detect fraud.

None of the aforementioned CMS-provided Medicare datasets include
fraud labels, or other indicators for possible fraudulent claims. In order to
obtain labels indicating fraudulent providers, we incorporate excluded
providers from the LEIE database [46]. The LEIE database is updated monthly,
so for our study, we used the LEIE dataset released on January 3, 2018. The
provider exclusions are categorized by various rule numbers, which indicate
the severity and minimum exclusion period. As seen in Table 4, we selected
only mandatory exclusions (not permissive exclusions), indicating more
severe convictions and/or revocations. Note that, in generating the labels for
model building, we assume that excluded providers are considered fraudulent
and those not on the exclusion list are non-fraudulent. Unfortunately, the
LEIE does not contain an NPI number for most of the available providers.
Even so, in order to maintain the most accurate fraud label mappings, we
only use provider NPIs and exclude any providers without a NPI number.
Additionally, we only included features found in all four years. For instance,
in 2012 the standard deviations for charges and payments are available but
discontinued for the later years. More specifically, in combining the 2012
to 2015 Medicare datasets with exclusion labels, we cross-referenced NPI
numbers in the Medicare data and LEIE database, to match any providers with
past or current exclusions.

As mentioned, the Medicare data contains annual claims information by
provider and specific procedure performed, as well as the place this service
was performed, whereas the LEIE database only contains information for the
provider and not any particular procedure or location. Currently, there is no
known publicly available data source with fraud labels by provider and by each
procedure performed. In order to account for this discrepancy and correctly
map LEIE exclusion labels to the Medicare dataset, we decided to aggregate
the Medicare data at the provider- or NPI-level. After filtering the Medicare
data based on the drug indicator, removing any prescription information, and
Medicare participation, we grouped the data by the specialty (also known as
the provider type), NPI, and gender and aggregated across all procedures and
places of services. In order to avoid too much information loss due to the
aggregation, we generated additional numeric features from the original five to
include the mean, sum, median, standard deviation, minimum, and maximum.
Additionally, we retained the specialty and gender categorical features. In
order to build our model with a mixture of numerical and categorical features,
we employed one-hot encoding. This method uses the categorical values to
generate dummy features with binary values which indicate the presence of

72 Reuse in Intelligent Systems
Ta

bl
e

3:
 D

M
EP

O
S

da
ta

se
t s

am
pl

e.

R
E

FE
R

R
IN

G
_

N
PI

...
R

E
FE

R
R

IN
G

_
PR

O
V

ID
E

R
_

T
Y

PE

...
H

C
PC

S_
C

O
D

E
...

SU
PP

L
IE

R
_

R
E

N
TA

L
_

IN
D

IC
AT

O
R

N
U

M
B

E
R

_
O

F_

SU
PP

L
IE

R
S

...
N

U
M

B
E

R
_

O
F_

SU

PP
L

IE
R

_
C

L
A

IM
S

...
AV

G
_

SU
PP

L
IE

R
_

SU
B

M
IT

T
E

D
_

C
H

A
R

G
E

...

11
11

11
11

11
...

In
te

rn
al

M

ed
ic

in
e

...
E0

43
1

...
Y

6
...

51
...

48
.8

54
61

54
...

11
11

11
11

11
...

In
te

rn
al

M

ed
ic

in
e

...
E1

39
0

...
Y

6
...

85
...

25
1.

00
91

86
1

...

Ta
bl

e
4:

 L
EI

E
ex

cl
us

io
n

ru
le

s.

R
ul

e
N

um
be

r
D

es
cr

ip
tio

n

11
28

(a
)(

1)
C

on
vi

ct
io

n
of

 p
ro

gr
am

-r
el

at
ed

 c
rim

es
.

11
28

(a
)(

2)
C

on
vi

ct
io

n
fo

r p
at

ie
nt

 a
bu

se
 o

r n
eg

le
ct

.

11
28

(a
)(

3)
Fe

lo
ny

 c
on

vi
ct

io
n

du
e

to
 h

ea
lth

ca
re

 fr
au

d.

11
28

(b
)(

4)
Li

ce
ns

e
re

vo
ca

tio
n

or
 su

sp
en

si
on

.

11
28

(c
)(

3)
(g

)(
i)

C
on

vi
ct

io
n

of
 2

 m
an

da
to

ry
 o

ffe
ns

es
.

11
28

(c
)(

3)
(g

)(
ii)

C
on

vi
ct

io
n

on
 3

+
m

an
da

to
ry

 o
ffe

ns
es

.

Big Data and Class Imbalance in Medicare Fraud Detection 73

this variable, assigning a value of one if present otherwise zero, versus all
other dummy features. This translates each of the original categorical values
into distinct binary features. Table 5 describes each of the Medicare features
from which the aggregated dataset is generated, as well as the categorical and
class (exclusion) features, for each dataset.

After the Medicare data NPI-level aggregation, we map the LEIE-
excluded providers as fraud labels. From the described mandatory exclusions,
only rules with 5-year minimum exclusion periods were found in the LEIE
data. Thus, each exclusion period has a 5-year length of time. We take the
provided exclusion date (i.e., the start of the exclusion period) and add 5 years
to get the end date of the exclusion period. We then compare the start and end
exclusion dates to any listed waiver or reinstatement dates. The assumption
is that if there is a waiver or reinstatement date, then any activities on or
after this date are no longer considered fraudulent. We updated the end date
of the exclusion period based on the wavier and reinstatement comparisons.
For example, if the exclusion end date is 2016/03/12 and the waiver date is
2014/02/01, then the updated exclusion end date is 2014/02/01. Each provider
in the LEIE database has start and updated end exclusion dates that can be
used during the integration with the Medicare data. We merge the Medicare
and LEIE datasets using NPI as the key and create an exclusion feature to store
fraud labels. Labels are assigned as fraud if a provider’s Medicare year is less
than the exclusion end date (for which we use the year because the Medicare
dataset only contains years), otherwise exclusion is kept as non-fraud. In order
to avoid too few or too many fraud labels, we round the new exclusion end date
to the nearest year based on the month. So, if the month is greater than 6, then
the exclusion end year is increased to the following year, otherwise the current
year is used. In this way, partial years are addressed with the assumption that
if an exclusion end date occurs during the latter part of a year, the majority of
that year can be assumed as fraud. Otherwise, if very little of the year is before
the exclusion end date, then we assume the provider claims in that year are
not fraudulent. This labeling includes both the exclusion period and the period
prior to the start of the exclusion. The rationale for keeping the former is that
claims made during the exclusion period are improper payments and could be
considered fraudulent per the federal False Claims Act (FCA) [30]. The latter
is kept as it indicates fraudulent behaviors leading up to that provider being
put on the LEIE. This process to map the LEIE exclusion labels takes into
account overlapping exclusion and Medicare claims periods to avoid mapping
unnecessary fraud labels.

Table 6 summarizes the Medicare, NPI-level aggregated datasets with
fraud labels. The number of fraud labels across datasets clearly shows the
severe class imbalance. After the data aggregation and fraud label mapping,
only the NPI feature is not used to build or test the models, but rather for

74 Reuse in Intelligent Systems

Table 5: Description of medicare dataset features.

Dataset Feature Description Type

Part B npi Unique provider identification number Categorical

provider_type Medical provider’s specialty (or practice) Categorical

nppes_provider_
gender

Provider’s gender Categorical

line_srvc_cnt Number of procedures/services the provider
performed

Numerical

bene_unique_cnt Number of distinct Medicare beneficiaries
receiving a service

Numerical

bene_day_srvc_cnt Number of distinct Medicare beneficiary/per
day services

Numerical

average_submitted_
chrg_amt

Average of the charges that the provider
submitted for a service

Numerical

average_medicare_
payment_amt

Average payment made to a provider per
claim for a service

Numerical

Part D npi Unique provider identification number Categorical

specialty_description Medical provider’s specialty (or practice) Categorical

bene_count Number of distinct Medicare beneficiaries
receiving the drug

Numerical

total_claim_count Number of drug the provider administered Numerical

total_30_day_fill_
count

Number of standardized 30-day fills Numerical

total_day_supply Number of day’s supply Numerical

total_drug_cost Cost paid for all associated claims Numerical

DMEPOS referring_npi Unique provider identification number Categorical

referring_provider_
type

Medical provider’s specialty (or practice) Categorical

referring_provider_
gender

Provider’s gender Categorical

number_of_suppliers Number of suppliers used by provider Numerical

number_of_supplier_
beneficiaries

Number of beneficiaries associated by the
supplier

Numerical

number_of_supplier_
claims

Number of claims submitted by a supplier
from a referring order

Numerical

number_of_supplier_
services

Number of services/products rendered by a
supplier

Numerical

avg_supplier_
submitted_charge

Average payment submitted by a supplier Numerical

avg_supplier_
medicare_pmt_amt

Average payment awarded to suppliers Numerical

All exclusion Fraud labels mapped from the LEIE dataset Categorical

Big Data and Class Imbalance in Medicare Fraud Detection 75

identification purposes. The use of any remaining variables or derived features,
along with applying feature engineering approaches, is left as future work.

4. Experimental Design

In this section, we detail our experiment methodology. We discuss class
imbalance, the Random Forest model, cross-validation, performance metrics,
and significance testing.

4.1 Class Imbalance
In our study, we employ RUS to mitigate issues arising from the class
imbalance problem [18], [56]. Due to the severe class imbalance between
fraud and non-fraud labels, a model will tend to focus on the majority class
(i.e., the class with the majority of instances) and misrepresent the minority
class. In our case, the non-fraud labels are the majority class and the fraud
labels are the minority class, as well as the class of interest in our study. The
use of data sampling changes the class distribution of the training instances
by increasing the representation of the minority class, thus helping to improve
model performance. There are two basic sampling methods: oversampling
and undersampling. Oversampling is a method for altering the distribution
of classes in a dataset by adding instances to the minority class, whereas
undersampling removes samples from the majority class. Of course, as
with most methods, there are disadvantages. With undersampling, the main
disadvantage is discarding potentially useful information. Oversampling,
because it duplicates existing minority class instances, can increase the
likelihood of overfitting [20]. Oversampling can also increase processing
time by increasing the overall size of the data. Our choice to use only RUS is
further supported in [7], [12], [36], [41], [59].

For our experiments, we generate the following class distributions
(majority:minority): 99.9:0.1, 99:1, 95:5, 90:10, 75:25, 65:35, and 50:50.
Most of these class ratios retain a reasonable amount of the majority class and
reduce loss of information relative to the minority class. In order to mitigate
some of the potential majority class information loss using RUS, we repeat the

Table 6: Summary of medicare datasets.

Dataset Non-Fraud Instances (#) Fraud Instances (#) Fraud Instances (%)

Part B 3,691,146 1,409 0.038

Part D 2,098,715 1,018 0.048

DMEPOS 862,792 635 0.074

Combined 759,267 473 0.062

76 Reuse in Intelligent Systems

sampling process 10 times for each class distribution. This effectively helps to
reduce bias due to poor random draws and better represent the majority class
through the use of different random samples. Table 7 summarizes the number
of instances for the full dataset and each of the RUS datasets. This indicates
that as the minority class (fraud) percentage increases, the representation of
the majority class (non-fraud) decreases relative to the number of instances in
the full dataset. Note that the number of fraud instances is always the same,
regardless of percentage.

4.2 Random Forest
In order to assess the performance using all the data versus the RUS datasets,
we employ a Random Forest (RF) model. We selected the RF model because
of its good classification performance, which has been shown to be superior
to many other classifiers on a wide variety of datasets with or without class
imbalance [34], [40]. Random Forest is an ensemble method in which
multiple unpruned decision trees are built and a final classification is made
by combining the results from the individual trees [17]. The algorithm creates
random datasets using sampling with replacement to train each of the decision
trees. At each node within a tree, RF chooses the most discriminating feature
between the classes using entropy and information gain. Entropy can be seen
as the measure of impurity or uncertainty of attributes, and information gain
is a means to find the most informative attribute. Thus, the goal is to minimize
entropy and maximize information gain with attribute selection. Additionally,
RF performs random feature subspace selection, at each node of a tree,
where a subset of m features are considered for the decision at that node. As
seen in Figure 1, to classify a new instance X, pass X down each one of the
N trees in the forest. Each tree gives a classification for this new instance. The
forest then chooses the classification which has the majority out of N votes.

Table 7: RUS class distribution sample size.

Fraud Non-fraud

% # % # Total

0.1 1,409 99.9 1,407,591 1,409,000

1 1,409 99 139,491 140,900

5 1,409 95 26,771 28,180

10 1,409 90 12,681 14,090

25 1,409 75 4,227 5,636

35 1,409 65 2,617 4,026

50 1,409 50 1,409 2,818

Big Data and Class Imbalance in Medicare Fraud Detection 77

In our experiment, we use Weka [61] to build each RF model with 100 trees
(annotated as RF100).

4.3 Cross Validation
We use k-fold cross-validation to evaluate the performance of the models.
With this method, the model is trained and tested k times, where each time it
is trained on k	−	1 folds and tested on the remaining fold. This is to ensure
that all data are used in the classification. More specifically, we use stratified
cross-validation [61] which tries to ensure that each class (i.e., fraud or non-
fraud) is approximately equally represented across each fold. In our study,
we employ 5-fold cross-validation. Moreover, to further reduce bias due
to bad random draws and to better represent the claims data, we repeat the
5-fold cross-validation process 10 times and average the scores to get the final
results. Incorporating repeats allows for different randomly selected instances
of the majority class to be used for each cross-validation step, thus providing
a more representative sample of the non-fraud instances.

4.4 Performance Metric
Our RF100 model is a two-class classifier predicting fraud or no fraud
instances. The model’s accuracy can be represented by a confusion matrix
consisting of information about actual and predicted classifications returned
by a model. We use the AUC performance metric which is composed of
values derived from the confusion matrix to assess a model’s fraud detection
performance [15], [57]. AUC is a popular measure of model performance,
providing a general idea of predictive potential of a binary classifier. The
receiver operating characteristic curve is used to characterize the trade-off
between true positive (TP) rate, also known as recall or sensitivity, (TP

 TP + FN)
and false positive (FP) rate (FP

 FP + TN) , where FN is false negative and TN is

Fig. 3.1

x

y

0.9

0.8

0.7

0.6

A
ve

ra
g

e
 A

U
C

50:50 65:35 75:25 90:10 95:5 99:1 99.9:1

Class distribution

0
.8

5
2

9
9

0
.8

6
1

3
6

0
.8

6
6

8
8

0
.8

7
3

0
2

0
.8

7
2

4
6

0
.8

5
0

6
9

0
.8

4
3

7
5

Fig. 3.2

Fig. 3.3

Combined

PartD

DMEPOS

M
e

d
ic

a
re

 d
a

ta
se

t

0.70 0.75 0.80 0.85 0.90
AUC

Fig. 1: Random forest classification process.

78 Reuse in Intelligent Systems

true negative. This curve depicts a learner’s performance across all classifier
decision thresholds. AUC is a single value that ranges from 0 to 1, where
a perfect classifier results in an AUC of 1. Additionally, due to the class
imbalance in the Medicare data, we consider AUC a good means to assess
fraud detection performance [39]. Note that we do not use other confusion
matrix metrics directly, such as sensitivity and specificity, because a single
discriminate classifier threshold of 0.5 is used to discriminate positive and
negative classes. This single naive threshold is not appropriate for assessing
model performance using highly imbalanced data.

4.5  Significance Testing
Hypothesis testing is performed to demonstrate the statistical significance of
the results using ANalysis Of VAriance (ANOVA) [35] and post hoc analysis
via Tukey’s Honestly Significant Different (HSD) test [58]. ANOVA is a
statistical test determining whether the means of several groups (factors) are
equal. The Tukey’s HSD test finds means of a factor that are significantly
different from each other, comparing all possible pairs of means similar to
a t-test. Differences are grouped by assigning letters, with pairs that do not
share a common letter indicating significantly different results.

5. Results and Discussion

In our first case study, we evaluate fraud detection improvement through the
systematic application of RUS, which reduces the adverse effects caused by
class imbalance. We show that a 50:50 class distribution, which is typically
used for many applications and generally has low model performance losses
[51], is not the best ratio for Medicare fraud detection. The lower 50:50
distribution performance can be attributed to the small number of majority
class instances, which may make it more difficult for a model to discriminate
between fraud and non-fraud instances. This results in the misclassification
of non-fraud instances as fraud instances, which increases the false positive
rate and decreases overall model performance [6]. Figure 2 shows the trend of
AUC scores across each of the minority class distributions. This trend depicts
a decrease in scores, particularly with below a 1% minority class distribution.

Table 8 shows all of the AUC values for each class distribution, with the
90:10 class distribution producing the best overall average results with a low
standard deviation. Even so, the difference in AUC scores between the top
six class distributions is relatively small, so additional statistical significance
testing is performed. Table 9a shows the results of a one-factor ANOVA with
class distribution being significant at a 0.05 significance level. In order to get
further details on the differences within the class distribution factor, we perform

Big Data and Class Imbalance in Medicare Fraud Detection 79

a Tukey’s HSD test. The difference in class distributions is shown in Table 9b.
The 90:10 distribution has the highest AUC value which is significantly better
than the remaining distributions. The 95:5 class distribution is the second
best, in terms of fraud detection performance, and in a lower group than the
90:10 distribution. The 75:25, and 65:35 class distributions have some group
overlap indicating little difference in fraud detection performance.

Interestingly, the 50:50 (balanced) and 99:1 (imbalanced) class
distributions are in the same group, thus differences in performance between
the two are statistically insignificant. Therefore, selecting the commonly
used 50:50 distribution is not better than using 99:1 ratio which is highly
imbalanced. Based on our results, we recommend using the 90:10 class
distribution which has the best performance and is significantly better than the

Fig. 3.1

x

y

0.9

0.8

0.7

0.6

A
v
e

ra
g

e
 A

U
C

50:50 65:35 75:25 90:10 95:5 99:1 99.9:1

Class distribution

0
.8

5
2

9
9

0
.8

6
1

3
6

0
.8

6
6

8
8

0
.8

7
3

0
2

0
.8

7
2

4
6

0
.8

5
0

6
9

0
.8

4
3
7
5

Fig. 3.2

Fig. 3.3

Combined

PartD

DMEPOS

M
e

d
ic

a
re

 d
a

ta
se

t

0.70 0.75 0.80 0.85 0.90
AUC

Fig. 2: RF100 AUC results by class distribution.

Table 8: RF100 AUC performance results by class distribution.

Class Distribution Mean Median Standard Deviation Minimum Maximum

50:50 0.85299 0.85308 0.00350 0.84825 0.86045

65:35 0.86136 0.86109 0.00307 0.85786 0.86816

75:25 0.86688 0.86696 0.00255 0.86264 0.87122

90:10 0.87302 0.87266 0.00284 0.86876 0.87705

95:5 0.87246 0.87351 0.00403 0.86477 0.87809

99:1 0.85069 0.84882 0.00575 0.84422 0.86023

99.9:0.1 0.74375 0.74253 0.00707 0.73184 0.75907

80 Reuse in Intelligent Systems

other class distributions. Furthermore, this distribution retains a reasonable
number of majority class instances providing a good representation of the
majority (non-fraud) class, unlike the 50:50 class distribution. In addition to
demonstrating that the 90:10 distribution has the best performance, our results
suggest that there is a class distribution threshold where performance begins to
decrease sharply. From Table 9b and Figure 2, we notice a possible threshold
below the 99:1 class distribution, where using the 99.9:01 distribution is
significantly worse.

Given the top performance of the 90:10 class distribution with Medicare
Part B, in the second case study we demonstrate that the use of RUS produces
good fraud detection results with other big Medicare datasets. In Figure 3,
we show several violin plots with associated point scatter. The violin shape
indicates the distribution shape of the data, where wider sections represent a
higher probability that members of the population will take on the given value
and the skinnier sections represent a lower probability. From these plots, we
note that each of the datasets produces good results when using RF100 and
the 90:10 class ratio. In particular, the combined dataset, with its larger feature
space, exhibits the highest average model performance. This indicates that
the added information, as well as the interactions between Medicare provider
claims, increases the detection of possible fraudulent activities.

As with the Part B only results, we provide significance testing as seen
in Table 10. The one-factor ANOVA, with the factor Dataset, indicates
significant results at a 95% confidence interval. The Tukey’s HSD results
confirm the superiority of the results using the combined dataset, followed

Table 9: One-factor ANOVA for class distribution, with Tukey’s HSD results.

Df Sum Sq Mean Sq F value Pr (> F)

Distribution 6 0.12628 0.021047 1088 < 2e-16

Residuals 63 0.00122 0.000019

(a) One-factor ANOVA results.

Group Class Distribution AUC

a 90:10 0.87302

ab 95:5 0.87246

bc 75:25 0.86688

c 65:35 0.86136

d 50:50 0.85299

d 99:1 0.85069

e 99.9:0.1 0.74375

(b) Tukey’s HSD class distribution results.

Big Data and Class Imbalance in Medicare Fraud Detection 81

by Part D and DMEPOS. From the results in both case studies, we show
that RUS is effective in increasing model performance for Medicare fraud
detection, with the use of a slightly imbalanced class distribution exhibiting
the best performance across all big Medicare datasets.

6. Conclusion

The use of big data from sources such as Medicare is being leveraged to
improve patient care and to help detect fraud. Medicare fraud continues to be
problematic for its beneficiaries and the U.S. economy, negatively impacting
the ability of the Medicare program to provide effective and affordable care.
Thus, it is critical to have effective fraud detection methods. In response to

Fig. 3.1

x

y

0.9

0.8

0.7

0.6

A
v
e
ra

g
e
 A

U
C

50:50 65:35 75:25 90:10 95:5 99:1 99.9:1

Class distribution

0
.8

5
2
9
9

0
.8

6
1
3
6

0
.8

6
6
8
8

0
.8

7
3
0
2

0
.8

7
2
4
6

0
.8

5
0
6
9

0
.8

4
3

7
5

Fig. 3.2

Fig. 3.3

Combined

PartD

DMEPOS

M
e
d
ic

a
re

 d
a
ta

s
e
t

0.70 0.75 0.80 0.85 0.90
AUC

Fig. 3: RF100 AUC results for 90:10 class distribution.

Table 10: One-factor ANOVA for dataset, with Tukey’s HSD results.

Df Sum Sq Mean Sq F value Pr (> F)

Dataset 2 0.30856 0.15428 417.8 < 2e-16

Residuals 147 0.05428 0.00037

(a) One-factor ANOVA results.

Group Dataset AUC

a Combined 0.85989

b PartD 0.79088

c DMEPOS 0.74998

(b) Tukey’s HSD class distribution results.

82 Reuse in Intelligent Systems

this concern, CMS has made available several large Medicare claims datasets
for public use. Overall, in our study, we demonstrated the effectiveness of
RUS in increasing fraud detection performance. We detail a unique method
for processing the Medicare data and integrating the LEIE fraud labels. We
then compare Medicare fraud detection performance in two case studies. In
the first case study, with the Part B data only, we use seven different RUS class
distributions. We build and test RF100 models using 5-fold cross-validation
with 10 repeats assessing model performance using AUC. In the second case
study, we use the best RUS class distribution and apply this to two other
Medicare big datasets, as well as a combined dataset.

Our results indicate that the best class distribution is 90:10 with the
worst results coming from the 99.9:0.01 distribution. We also showed that the
performance of the commonly used ratio of 50:50 (balanced) is indistinguishable
from the 99:1 class distribution. This indicates that the 50:50 distribution
should not be used as the de facto standard for class imbalance in Medicare
fraud detection. Moreover, we show, using the 90:10 class distribution, that we
can build effective fraud detection models across other Medicare big datasets.
Overall, we recommend using the 90:10 class distribution which indicates
the best fraud detection performance. Furthermore, we noticed a possible
threshold at the 99:1 class distribution, where any positive class representation
below this performs significantly worse. Future work will include additional
learners, as well as other performance metrics such as F-score and G-measure.

Acknowledgment

We would like to thank the reviewers in the Data Mining and Machine Learning
Laboratory at Florida Atlantic University. Additionally, we acknowledge
partial support by the NSF (CNS-1427536). Opinions, findings, conclusions,
or recommendations in this paper are the authors’ and do not reflect the views
of the NSF.

References
 [1] Improper Payments Elimination and Recovery Act of 2010. [Online]. Available: https://

obamawhitehouse.archives.gov/sites/default/files/omb/financial/_improper/PL_111-204.
pdf.

 [2] How Growth of Elderly Population in US Compares With Other Countries. 2013. [Online].
Available: http://www.pbs.org/newshour/rundown/how-growth-of-elderly-population-in-
us-compares-with-other-countries/.

 [3] Profile of Older Americans: 2015. 2015. [Online]. Available: http://www.aoa.acl.gov/
Aging_Statistics/Profile/2015/.

 [4] National Health Expenditures 2017 Highlights. 2017. [Online]. Available: https://
www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/
nationalhealthexpenddata/downloads/highlights.pdf.

https://www.cms.gov
http://www.aoa.acl.gov
https://obamawhitehouse.archives.gov
https://www.cms.gov
https://www.cms.gov
http://www.aoa.acl.gov
http://www.pbs.org
http://www.pbs.org
https://obamawhitehouse.archives.gov
https://obamawhitehouse.archives.gov

Big Data and Class Imbalance in Medicare Fraud Detection 83

 [5] US Medicare Program. 2017. [Online]. Available: https://www.medicare.gov.
 [6] Batista, G.E., R.C. Prati and M.C. Monard. 2004. A study of the behavior of several

methods for balancing machine learning training data. ACM Sigkdd Explorations
Newsletter 6(1): 20–29.

 [7] Bauder, R.A., T.M. Khoshgoftaar and T. Hasanin. 2018. An empirical study on class
rarity in big data. pp. 785–790. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), Dec 2018.

 [8] Bauder, R.A. and T.M. Khoshgoftaar. 2016. A novel method for fraudulent medicare
claims detection from expected payment deviations (application paper). pp. 11–19.
In: Information Reuse and Integration (IRI), 2016 IEEE 17th International Conference
on, IEEE.

 [9] Bauder, R.A. and T.M. Khoshgoftaar. 2017. Medicare fraud detection using machine
learning methods. pp. 858–865. In: Machine Learning and Applications (ICMLA), 2017
16th IEEE International Conference on, IEEE.

[10] Bauder, R.A. and T.M. Khoshgoftaar. 2017. Multivariate outlier detection in medicare
claims payments applying probabilistic programming methods. Health Services and
Outcomes Research Methodology 17(3-4): 256–289.

[11] Bauder, R.A. and T.M. Khoshgoftaar. 2018. A survey of medicare data processing and
integration for fraud detection. pp. 9–14. In: Information Reuse and Integration (IRI),
2018 IEEE 19th International Conference on, IEEE.

 [12] Bauder, R.A., T.M. Khoshgoftaar and T. Hasanin. 2018. Data sampling approaches
with severely imbalanced big data for medicare fraud detection. In: Tools with Artificial
Intelligence (ICTAI), 2018 IEEE 30th International Conference on, IEEE.

 [13] Bauder, R.A., T.M. Khoshgoftaar, A. Richter and M. Herland. 2016. Predicting medical
provider specialties to detect anomalous insurance claims. pp. 784–790. In: Tools with
Artificial Intelligence (ICTAI), 2016 IEEE 28th International Conference on, IEEE.

 [14] Bauder, R.A., T.M. Khoshgoftaar and N. Seliya. 2017. A survey on the state of
healthcare upcoding fraud analysis and detection. Health Services and Outcomes
Research Methodology 17(1): 31–55.

 [15] Bekkar, M., H.K. Djemaa and T.A. Alitouche. 2013. Evaluation measures for models
assessment over imbalanced data sets. Journal of Information Engineering and
Applications 3(10).

 [16] Branting, L.K., F. Reeder, J. Gold and T. Champney. 2016. Graph analytics for healthcare
fraud risk estimation. pp. 845–851. In: Advances in Social Networks Analysis and Mining
(ASONAM), 2016 IEEE/ACM International Conference on, IEEE.

 [17] Breiman, L. 2001. Random forests. Machine Learning 45(1): 5–32, Oct 2001 [Online].
Available: http://dx.doi.org/10.1023/A:1010933404324.

 [18] Brennan, P. 2012. A comprehensive survey of methods for overcoming the class imbalance
problem in fraud detection. Institute of technology Blanchardstown Dublin, Ireland.

 [19] Chandola, V., S.R. Sukumar and J.C. Schryver. 2013. Knowledge discovery from massive
healthcare claims data. pp. 1312–1320. In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM.

 [20] Chawla, N.V. 2009. Data mining for imbalanced datasets: An overview. pp. 875–886.
In: Data Mining and Knowledge Discovery Handbook. Springer.

 [21] CMS. HCPCS—General Information. [Online]. Available: https://www.cms.gov/
Medicare/Coding/MedHCPCSGenInfo/index.html?redirect=/medhcpcsgeninfo/.

 [22] CMS. Medicare provider utilization and payment data: Physician and other supplier.
[Online]. Available: https://www.cms.gov/Research-Statistics-Data-and-Systems/
Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-
Supplier.html.

https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
http://dx.doi.org/10.1023/A:1010933404324
https://www.medicare.gov

84 Reuse in Intelligent Systems

 [23] CMS. National provider identifier standard (npi). [Online]. Available: https://www.cms.
gov/Regulations-and-Guidance/Administrative-Simplification/NationalProvIdentStand/.

 [24] CMS. 2016. What’s medicare. [Online]. Available: https://www.medicare.gov/sign-up-
change-plans/decide-how-toget-medicare/whats-medicare/what-is-medicare.html.

 [25] CMS. 2017. Medicare fraud & abuse: Prevention, detection, and reporting booklet.
[Online]. Available: https://www.cms.gov/Outreach-and-Education/Medicare-Learning-
Network-MLN/MLNProducts/downloads/fraud_and_abuse.pdf.

 [26] CMS Office of Enterprise Data and Analytics. 2017. Medicare fee-for-service provider
utilization & payment data physician and other supplier. [Online]. Available: https://
www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/
Medicare-Provider-Charge-Data/Downloads/Medicare-Physician-and-Other-Supplier-
PUF-Methodology.pdf.

 [27] CMS Office of Enterprise Data and Analytics. 2018. Medicare fee-for-service provider
utilization & payment data part D prescriber public use file: A methodological overview.
[Online]. Available: https://www.cms.gov/Research-Statistics-Data-and-Systems/
Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Downloads/Prescriber_
Methods.pdf.

 [28] CMS Office of Enterprise Data and Analytics. 2018. Medicare fee-for-service provider
utilization & payment data physician and other supplier. [Online]. Available: https://
www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/
Medicare-Provider-Charge-Data/Downloads/Medicare-Physician-and-Other-Supplier-
PUF-Methodology.pdf.

 [29] CMS Office of Enterprise Data and Analytics. 2018. Medicare fee-for-service provider
utilization & payment data referring durable medical equipment, prosthetics, orthotics and
supplies public use file: A methodological overview. [Online]. Available: https://www.
cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-
Provider-Charge-Data/Downloads/DME_Methodology.pdf.

 [30] CMS Outreach and Education. 2017, Sep. Medicare Fraud & abuse: prevention, detection,
and reporting. [Online]. Available: https://www.cms.gov/Outreach-and-Education/
Medicare-Learning-Network-MLN/MLNProducts/downloads/fraud_and_abuse.pdf.

 [31] Coalition Against Insurance Fraud. 2018. By the numbers: fraud statistics. [Online].
Available: http://www.insurancefraud.org/statistics.htm.

 [32] Cubanski, J. and T. Neuman. 2018. The facts on medicare spending and financing. Henry
J. Kaiser Family Foundation. [Online]. Available: https://www.kff.org/medicare/issue-
brief/the-facts-on-medicare-spending-and-financing/.

 [33] Feldstein, M. 2006. Balancing the goals of health care provision and financing. Health
Affairs 25(6): 1603–1611.

 [34] Fernández-Delgado, M., E. Cernadas, S. Barro and D. Amorim. 2014. Do we need
hundreds of classifiers to solve real world classification problems. J. Mach. Learn. Res.
15(1): 3133–3181.

 [35] Gelman, A. et al. 2005. Analysis of variance: why it is more important than ever. The
Annals of Statistics 33(1): 1–53.

 [36] Hasanin, T. and T.M. Khoshgoftaar. 2018. The effects of random undersampling with
simulated class imbalance for big data. pp. 70–79. In: IEEE International Conference on
Information Reuse and Integration (IRI), IEEE.

 [37] Herland, M., R.A. Bauder and T.M. Khoshgoftaar. 2019. The effects of class rarity on the
evaluation of supervised healthcare fraud detection models. Journal of Big Data 6(1): 21.

 [38] Herland, M., T.M. Khoshgoftaar and R. Wald. 2014. A review of data mining using big
data in health informatics. Journal of Big Data 1(1): 2.

https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.kff.org
https://www.kff.org
http://www.insurancefraud.org
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.cms.gov
https://www.medicare.gov
https://www.medicare.gov
https://www.cms.gov

Big Data and Class Imbalance in Medicare Fraud Detection 85

 [39] Jeni, L.A., J.F. Cohn and F. De La Torre. 2013. Facing imbalanced data–recommendations
for the use of performance metrics. pp. 245–251. In: Affective Computing and Intelligent
Interaction (ACII), 2013 Humaine Association Conference on, IEEE.

 [40] Khoshgoftaar, T.M., M. Golawala and J. Van Hulse. 2007. An empirical study of learning
from imbalanced data using random forest. pp. 310–317. In: Tools with Artificial
Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on, Vol. 2, IEEE.

 [41] Khoshgoftaar, T.M., C. Seiffert, J. Van Hulse, A. Napolitano and A. Folleco. 2007.
Learning with limited minority class data. pp. 348–353. In: Machine Learning and
Applications, 2007. ICMLA 2007. Sixth International Conference on, IEEE.

 [42] Khurjekar, N., C.-A. Chou and M.T. Khasawneh. 2015. Detection of fraudulent claims
using hierarchical cluster analysis. In: IIE Annual Conference. Proceedings. Institute of
Industrial and Systems Engineers (IISE), p. 2388.

 [43] Ko, J.S., H. Chalfin, B.J. Trock, Z. Feng, E. Humphreys, S.-W. Park, H.B. Carter, K.D.
Frick and M. Han. 2015. Variability in medicare utilization and payment among urologists.
Urology 85(5): 1045–1051.

 [44] Lazer, D., R. Kennedy, G. King and A. Vespignani. 2014. The parable of google flu: traps
in big data analysis. Science 343(6176): 1203–1205.

 [45] Leevy, J.L., T.M. Khoshgoftaar, R.A. Bauder and N. Seliya. 2018. A survey on addressing
high-class imbalance in big data. Journal of Big Data 5(1): 42.

 [46] LEIE. 2017. Office of inspector general leie downloadable databases. [Online]. Available:
https://oig.hhs.gov/exclusions/index.asp.

 [47] Marr, Bernard. 2015, Sep. 4 Ways Big Data Will Change Every Business. [Online].
Available: https://www.forbes.com/sites/bernardmarr/2015/09/08/4-ways-big-data-will-
change-every-business/.

 [48] Marr, Bernard. 2015, Apr. How Big Data Is Changing Healthcare. [Online]. Available:
https://www.forbes.com/sites/bernardmarr/2015/04/21/how-big-data-is-changing-
healthcare/#1345d00a2873.

 [49] Morris, L. 2009. Combating fraud in health care: An essential component of any cost
containment strategy. [Online]. Available: https://www.healthaffairs.org/doi/abs/10.1377/
hlthaff.28.5.1351.

 [50] Pande, V. and W. Maas. 2013. Physician medicare fraud: characteristics and consequences.
International Journal of Pharmaceutical and Healthcare Marketing 7(1): 8–33.

 [51] Prati, R.C., G.E. Batista and D.F. Silva. 2015. Class imbalance revisited: a new
experimental setup to assess the performance of treatment methods. Knowledge and
Information Systems 45(1): 247–270.

 [52] Rashidian, A., H. Joudaki and T. Vian. 2012. No evidence of the effect of the interventions
to combat health care fraud and abuse: A systematic review of literature. PloS One
7(8): e41988.

 [53] Roesems-Kerremans, G. 2016. Big data in healthcare. Journal of Healthcare
Communications.

 [54] Sadiq, S., Y. Tao, Y. Yan and M.-L. Shyu. 2017. Mining anomalies in medicare big data
using patient rule induction method. pp. 185–192. In: Multimedia Big Data (BigMM),
2017 IEEE Third International Conference on, IEEE.

 [55] Schulte, F. 2017. Fraud and billing mistakes cost medicare—and taxpayers—tens of
billions last year. Henry J. Kaiser Family Foundation. [Online]. Available: https://khn.org/
news/fraud-and-billing-mistakes-cost-medicare-and-taxpayers-tens-of-billions-last-year/.

 [56] Seiffert, C., T.M. Khoshgoftaar, J. Van Hulse and A. Napolitano. 2007. Mining data with
rare events: a case study. pp. 132–139. In: Tools with Artificial Intelligence, 2007. ICTAI
2007. 19th IEEE International Conference on, Vol. 2, IEEE.

https://khn.org
https://www.healthaffairs.org
https://khn.org
https://www.healthaffairs.org
https://www.forbes.com
https://www.forbes.com
https://www.forbes.com
https://www.forbes.com
https://oig.hhs.gov

86 Reuse in Intelligent Systems

 [57] Seliya, N., T.M. Khoshgoftaar and J. Van Hulse. 2009. A study on the relationships of
classifier performance metrics. pp. 59–66. In: Tools with Artificial Intelligence, 2009.
ICTAI’09. 21st International Conference on, IEEE.

 [58] Tukey, J.W. 1949. Comparing individual means in the analysis of variance. Biometrics
5(2): 99–114. [Online]. Available: http://www.jstor.org/stable/3001913.

 [59] Van Hulse, J., T.M. Khoshgoftaar and A. Napolitano. 2007. Experimental perspectives
on learning from imbalanced data. pp. 935–942. In: Proceedings of the 24th International
Conference on Machine Learning, ACM.

 [60] Wang, S.-L., H.-T. Pai, M.-F. Wu, F. Wu and C.-L. Li. 2017. The evaluation of
trustworthiness to identify health insurance fraud in dentistry. Artificial Intelligence in
Medicine 75: 40–50. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0933365716300513.

 [61] Witten, I.H., E. Frank, M.A. Hall and C.J. Pal. 2016. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 51.

http://www.sciencedirect.com
http://www.sciencedirect.com
http://www.jstor.org

Chapter 4
Movie Recommendations

Based on a Recurrent Neural
Network Model

Yiu-Kai Ng

1. Introduction

Movie streaming services like Netflix, Hulu, Amazon Prime, and others are
increasingly used by consumers to discover video content. For example, in
2017 Netflix subscribers collectively watched more than 140 million hours
per day1 and Netflix surpassed $11 billion in revenue in 2017.2 In fact,
roughly 80% of hours streamed at Netflix were influenced by their proprietary
recommendation system [12]. Undoubtedly, movie streaming services have
become an integral part of how we consume video content today, and the
importance of movie recommendation systems cannot be understated—they
are an integral part of how we consume video content today. With this in
mind, the problem we propose to work on is movie recommendations through
collaborative filtering based on the deep learning strategy.

For movie streaming services like Netflix, recommendation systems
are important for helping users to discover new content to enjoy. While the

Computer Science Department, Brigham Young University, Provo, Utah 84602, USA.
 Email: ng@compsci.byu.edu
1 techcrunch.com/2017/12/11/netflix-users-collectively-watched-1-billion-hours-of-content-per-

week-in-2017/.
2 tvtechnology.com/news/netflix-surpasses-11-billion-in-2017-revenue.

mailto:ng@compsci.byu.edu

88 Reuse in Intelligent Systems

details of this system are mostly confidential, what we do know is that it is a
combination of various individual recommendation systems, including some
systems which leverage collaborative filtering systems [15]. In light of this,
the problem we examine is movie recommendations through collaborative
filtering.

Collaborative filtering is an approach for recommendation systems which
relies on the ratings for a particular user as well as the ratings of similar users.
The underlying assumption is that if we can accurately predict movie ratings,
then we can recommend new movies to users that they are likely to enjoy,
including movies the user may not have considered before. Therefore, in the
context of movie recommendation, collaborative filtering aims to predict
unknown movie ratings for a particular user, based on that user’s known
ratings as well as the movie ratings by other users in the system. As opposed to
content-based systems, collaborative filtering accounts for users with diverse
taste, so long as there are other users with similar preferences. By finding
similar users, new items can be recommended based on the assumption that
items which are liked by similar users will be liked by the user in question.

There are many ways to perform collaborative filtering such as utilizing
k-nearest neighbor clustering with user profiles [6]. Various approaches for
measuring similarity have been proposed, but a simple approach is to represent
a user profile as a vector, and then use some measure of similarity between
those vectors (e.g., cosine similarity). An alternative k-nearest-neighbor
approach instead computes similarity between pairs of items with the idea that
users who like a particular item will like similar items [28]. Another common
method for performing collaborative filtering is with matrix factorization [18].
With this technique a user-item matrix is factorized into two matrices with the
inner dimension representing some latent factors. The resulting factorization
represents both users and items in terms of the latent factors in such a way that
new items can be recommended to users based on the latent factors.

Lately, deep learning has demonstrated its effectiveness in coping
with recommendation tasks. Due to its state-of-the-art performances
and high-quality recommendations, deep learning techniques have been
gaining momentum in recommender system. Compared with traditional
recommendation models, deep learning provides a better understanding of
user’s demands, item’s characteristics, and historical interactions between
them. We apply the deep learning approach for movie recommendation.

The rest of the paper is organized as follows. The most popular approaches
for collaborative filtering are discussed in Section 2. These methods work by
computing neighborhoods of similar users or items. In contrast, in Section 3
we propose a deep learning approach for collaborative filtering based on an
autoencoder. We demonstrate in Section 4 that our approach outperforms the
neighborhood-based baseline. We give a concluding remark in Section 5.

Movie Recommendations Based on a Recurrent Neural Network Model 89

2. Related Work

The most common method of performing collaborative filtering is to utilize
a k-nearest-neighbor approach between users [6]. With this technique, it
first starts with a user-item matrix R, where Ri, j gives the rating of user i for
item j and the value 0 indicates that a particular rating is missing. From R a
user-user similarity matrix S is computed, where Si, j is the similarity between
user i and user j, which can be computed with R · RT. Note that using
other distance metrics, such as the correlation similarity measure or cosine
similarity, to populate S are also effective. Once S is computed, we can predict
the rating of user i for item j by computing RT

j ·Si, which essentially computes
the average of the other users’ ratings for item j weighted by their similarity
to user i.

We can also use the k most similar users to user i to predict the rating for
item j. Empirically, this works better than the weighted average over all users,
although some extra work is required at test time in order to compute the k
nearest neighbors. This approach relies on the assumption that if two users
rated the same item similarly, they are likely to rate other items similarly as
well. At scale, data structures such as ball trees [21] and k-d trees (a binary
space partition tree in k-dimensions) can be utilized to more efficiently
compute local neighbors between user profiles.

An alternative k-nearest-neighbor approach instead computes similarity
between pairs of items (as opposed to users) with the idea that users who like
a particular item will like similar items [28]. With this approach we compute
an item-to-item similarity matrix I as RT · R. As before, we can also use other
similarly metrics to populate I. In order to predict the rating for user i on item j,
we can compute Ri · Ij, which gives an average of the ratings provided by user
i weighted by the similarity of those items to item j. Since there tends to be
many more users than items in a recommender system, user-user collaborative
filtering can be more performant, although our preliminary experiments with
movie ratings indicate that user-user produced more accurate predictions of
movie ratings.

Another common method for performing collaborative filtering is with
matrix factorization [18]. With this technique a user-item matrix is factorized
into two matrices with the inner dimension representing some latent factors
using techniques such as singular value decomposition (SVD) [19]. The
resulting factorization represents both users and items in terms of the latent
factors in such a way that they can be used to recommend new items. As with
item-item neighborhood approaches, our preliminary experiments on movie
ratings indicate that user-user neighborhood approaches are superior to matrix
factorization.

90 Reuse in Intelligent Systems

Deep learning has revolutionized many fields of computer science,
including natural language processing [22]. Despite this, deep learning is
relatively new in the area of recommender systems, and has not received much
attention [40]. Having said that, Wang et al. [35] propose a collaborative deep
learning (CDL) model which jointly performs deep representation learning for
the content information and collaborative filtering for the rating matrix. CDL
is differed from ours, since the former relies on content information, whereas
we do not. Elkahky et al. [8] introduce a deep learning recommendation
system according to the web browsing history and search queries provided by
users. They maximize the similarity between users and their preferred items
by mapping users and items to a latent space. A constraint imposed on this
approach is that browsing history and users search queries are required, which
are not always available. Wei et al. [36] develop a deep neural network model
which extracts the content features of items into prediction of ratings for cold
start items, which again is differed from ours, since we do not deal with user
content.

Deep Learning provides a new toolkit for recommender systems designers
and developers to extract features and to model user generated data and item
data that has the potential to provide large improvements in the quality of the
recommendations provided to users [16]. Part of the power of deep learning
techniques in recommender systems stems from the fact that deep learning
methods allow for much better feature extraction from item characteristics
such as image, video, and audio compared to traditional techniques. Our
recommender system, which is based on Recurrent Neural Networks, uses the
autoencoder network directly on the user item interactions in order to build
collaborative filtering models that can then be used for recommendations.
This method can be treated as a form of deep factorization methods, which
often outperform standard model-based collaborative filtering methods [38].
The aim of this paper is to experiment with deep learning for collaborative
filtering on a large set of movie ratings.

3. Our Proposed Recommendation System

Deep learning, which is essentially just deep artificial neural networks, is able
to learn complex decision boundaries for classification or complex non-linear
regressions. By stacking large numbers of hidden layers in these networks,
deep neural networks can learn complex functions by learning to extract many
low level features from the data and composing them in useful non-linear
combinations. Figure 1 depicts the system architecture of our deep learning
model.

Movie Recommendations Based on a Recurrent Neural Network Model 91

3.1 The Recurrent Neural Network (RNN) Model
We employ a recurrent neural network (RNN) as our classifier for predicting
movies ratings, with initial ratings on movies provided by users to begin with,
since RNNs have been proven to produce robust models for rating prediction
[27]. A RNN is similar to other deep neural networks (DNNs) [20] in that
they are both trained (optimized) by the backpropagation of errors [26] and
are comprised of a series of layers. Table 1 summaries different layers, their
dimensions, and their parameters in our RNN, in which 10 in the output
dimensions (of the Dense Output layer) denotes the different rating values
(from 0.5 to 5, with an incremental value of 0.5) predicted by the model.

The output is produced by propagating numeric values forward. The
network is trained by backpropagating the error3 from the output layer
backwards. Unlike other network structures, a RNN takes into account the
ordering of tokens within sequences, rather than simply accounting for the
existence of certain values or combinations of values in that sequence.

While neural networks are theoretically able to approximate any
computable function, including the mapping from user profiles to movie

3 An error is the relative divergence of the produced output from the ground truth.

Fig. 1: The system architecture of our deep learning model.

Fig. 4.1

Dense (prediction) layer

Dropout layer 2

Dense (hidden) layer

Dropout layer 1

Global max-pooling layer

Bi-diectional GRU layer

Embedding layer

Input layer

ht

A

xt

h0

A

x0

h1

A

x1

h2

A

x2

ht

A

xt

Fig. 4.2

ht – 1

x l

xx

tanhaa

1-

~
ht

rt zt

xt

ht

z = s (W · [h , x])t z t – 1 t

r = s (W · [h , x])t r t – 1 t
~
h = tann (W · [r h , x])*t t t – 1 t

 ~
h = (1 – z) h + z h * *t t t – 1 t t

Fig. 4.3

(a) Standard neural net (b) After applying dropout

Fig. 4.4

Bi-directional

92 Reuse in Intelligent Systems

ratings, in practice great care must be taken when selecting the architecture of
the neural network. While the extracted structure of our network is subject to
change, there are some reasonable starting places.

Inputs. The inputs to our network architecture are two n-dimensional vectors,
where n is the number of movies in a movie dataset, such as the MovieLens
database. One vector encodes a particular user profile, with each dimension
indicating the rating the user gave for a particular film (or a zero to indicate
that no rating has been given). The other vector is a one-hot encoding of a
particular movie (i.e., a vector with a single “hot” dimension set to 1, with all
other values set to zero). These two vectors request that the network predict a
rating for a particular user for a specific movie.

One advantage of this input format is that we can do without a single
rating from a known user profile, and use the known rating for withheld item
as a labeled example. Consequently, even though we only have 270,000 user
profiles created by using the MovieLens dataset, each one of the 26,000,000
individual ratings constitutes a train example.

Hidden Layers. There are a variety of ways to structure a simple feed-forward
neural network. We start with a number of the standard fully-connected layers.
However, we also experiment with alternative structures, such as ResNets
[14], which currently obtain state-of-the-art results in other fields such as
image recognition.

Output. There are two main possibilities for the output of our network. The
first is to treat this problem as a classification problem, with ten different
class representing the ten start ratings that are present in the data. Under this
architecture, we treat the ten outputs of our network as unnormalized log
probabilities, and use cross entropy as our loss function.

Table 1: Dimensions and number of parameters of layers in the RNN.

Layer Output Dimensions Total Parameters Trainable Parameters

Input 72 0 0

Embedding 72 × 300 1,950,000 0

Bi-directional GRU 72 × 128 140,160 140,160

Global Max Pooling, 1D 128 0 0

Dropout 1 128 0 0

Dense Hidden 64 8,256 8,256

Dropout 2 64 0 0

Dense Output 10 650 650

Total 2,099,066 149,066

Movie Recommendations Based on a Recurrent Neural Network Model 93

RNNs achieve the recurrent pattern matching through its recurrent
layer(s). A recurrent layer is one which contains a single recurrent unit
through which each value of the input vector or matrix passes. The recurrent
unit maintains a state which can be thought of as a “memory”. As each value
in the input iteratively passes through the unit at time step t, the unit updates
its state ht based on a function of that input value xt and its own previous state
ht −1 as
 ht = f (ht −1, xt) (1)

where f is any non-linear activation.
Throughout training, the unit learns, i.e., optimizes, this state-updating

function—it learns how much of its current state to keep or discard as it
processes certain input values. Although the layer contains just a single unit,
it can be visualized to have a number of units equal to its number of time
steps, or iterations of processing sequential input values and previous states.
This architecture is shown in Figure 2 [7].

Recurrent layers are designed to “remember” the most important features
in sequenced data no matter if the feature appears towards the beginning of the
sequence or the end. In fact, one widely-used implementation of a recurrent
unit is thus named “Long-Short Term Memory”, or LSTM [10]. RNNs have
been shown to be effective tools in fields such as language modeling and
speech recognition. The designed RNN accurately predicts movie ratings
solely based on the sequential of given user ratings.

Fig. 2: The actual structure of a recurrent layer (left), and an “unrolled” representation of the recurrent
layer through t time steps (right).

Fig. 4.1

Dense (prediction) layer

Dropout layer 2

Dense (hidden) layer

Dropout layer 1

Global max-pooling layer

Bi-diectional GRU layer

Embedding layer

Input layer

ht

A

xt

h0

A

x0

h1

A

x1

h2

A

x2

ht

A

xt

Fig. 4.2

ht – 1

x l

xx

tanhaa

1-

~
ht

rt zt

xt

ht

z = s (W · [h , x])t z t – 1 t

r = s (W · [h , x])t r t – 1 t
~
h = tann (W · [r h , x])*t t t – 1 t

 ~
h = (1 – z) h + z h * *t t t – 1 t t

Fig. 4.3

(a) Standard neural net (b) After applying dropout

Fig. 4.4

3.1.1 Feature Representation
In order to utilize a RNN, we need to provide the network with sequential data
as input and a corresponding ground-truth value as its target output. Each of
the data entries has to first been transformed in order to be fed into the RNN.
Attributes of movie ratings are manipulated as labels, which are the naming
of the categories of movie ratings, which are the categories pre-defined from
0.5 to 5, with a half-star interval. Since neural networks cannot accept strings
as an output target, each unique category string is assigned a unique integer

94 Reuse in Intelligent Systems

value, which is transformed into a one-hot encoding to be used later as the
network’s prediction target. A one-hot encoding of an integer value i among n
unique values is a binarized representation of that integer as an n-dimensional
vector of all zeros except the ith element, which is a one. For example, if a
movie rating is assigned the value 4, then with 10 distinct labels, its one-hot
encoding is [0 0 0 0 0 0 0 1 0 0].

3.1.2 Network Structure
In this section, we explain the technical details of the RNN used for predicting
movie ratings.

The Embedding Layer. One of the design goals of our neural network is to
capture relatedness between similar user ratings for different movies. Due
to the large amount of time it would take to properly train the embedding
from scratch, we have performed two different tasks: (i) we have loaded into
the embedding layer as weights an uncased ratings, GloVe [23], which has
been pre-trained on movie ratings extracted from the MovieLens dataset, and
(ii) we have decided to freeze, i.e., not train, the embedding layer at all. The
pretrained vectors from GloVe sufficiently capture different ratings for our
task and they are not required to be further optimized.

The Bi-directional GRU Layer. Following the embedding layer in our
network is one type of recurrent layer—a bi-directional GRU, or Gated
Recurrent Unit [5], layer. Figure 3 shows the architecture of a GRU layer [2].

A GRU is a current state-of-the-art recurrent unit which is able to
‘remember’ important patterns within sequences and ‘forget’ the unimportant
ones. The original architecture of a gated recurrent unit proposed by Cho

Fig. 3: GRU architecture.

Fig. 4.1

Dense (prediction) layer

Dropout layer 2

Dense (hidden) layer

Dropout layer 1

Global max-pooling layer

Bi-diectional GRU layer

Embedding layer

Input layer

ht

A

xt

h0

A

x0

h1

A

x1

h2

A

x2

ht

A

xt

Fig. 4.2

ht – 1

x l

xx

tanhaa

1-

~
ht

rt zt

xt

ht

z = s (W · [h , x])t z t – 1 t

r = s (W · [h , x])t r t – 1 t
~
h = tann (W · [r h , x])*t t t – 1 t

 ~
h = (1 – z) h + z h * *t t t – 1 t t

Fig. 4.3

(a) Standard neural net (b) After applying dropout

Fig. 4.4

Movie Recommendations Based on a Recurrent Neural Network Model 95

et al. [4]—and the one which we used for our task—computes each subsequent
hidden state ht as a function of its previous state and current inputs (as defined
in Equation 1) as follows:

 • Input and previous state values pass through two “gates”, or intermediate
value stages, before the final hidden state ht is computed. First, the reset
gate rt is computed as

 rt = σ (Wr · [ht −1, xt] + br) (2)

 where σ(x) = 11 + e–x , which is the logistic sigmoid function in the range
between 0 and 1, [.]t denotes the tth element in a vector, xt and ht−1 are the
current input and the previous hidden state, respectively, Wr is a learned
weight matrix, and br is a bias vector.

 • The update gate zt is similarly computed as

 zt = σ(Wz · [ht −1, xt] + bz) (3)

where Wz is another learned weight matrix and bz is another bias vector.
A candidate hidden state, h̃t, is then computed as

 h̃t = tanh(Wh · [rt × ht −1, xt] + bh) (4)

 where tanh is the hyperbolic tangent function and Wh and bh are another
learned weight matrix and bias vector, respectively.

 • The hidden state, ht, is produced as

 ht = zt × h̃t + (1 − zt) × ht −1 (5)

 The value of zt in Equation 5 guides the unit’s decision of whether
to update the hidden state (when zt is close to 1) or to leave it mostly
unchanged (when zt is close to 0).

The number of trainable parameters in a single GRU layer is
3 × (n2 + n(m + 1)), where n is the output dimension, or the number of time
steps through which the input values pass, and m is the input dimension. In
our case, n = 64, since we have chosen to pass each input through 64 time
steps, and m = 300. Since our layer is bi-directional, the number of trainable
parameters is twice that of a single layer, i.e., 2 × 3 × (642 + 64 × 301) = 140,
160, the greatest number of trainable parameters in our network as shown in
Table 1.

The recurrent layer outputs a 72 × 128 matrix, where 72 represents the
number of tokens in a sequence, and 128 denotes the respective output values
of the GRU after each of 64 time steps in two directions.

96 Reuse in Intelligent Systems

The Global Max-Pooling Layer (1D). At this point in the network,
it is necessary to reduce the matrix output from the GRU layer to a more
manageable vector which we eventually use to classify the token sequence into
one of the movie rating categories. In order to reduce the dimensionality of
the output, we pass the matrix through a global max-pooling layer. This layer
simply returns as output the maximum value of each column in the matrix.
Max-pooling is one of several pooling functions, besides sum- or average-
pooling, used to reduce the dimensionality of its input. Pooling can be done in
more than one direction. For example, the image detection systems commonly
pool a 2-dimensional area of an image into a scalar value. Since pooling is a
computable function, not a learnable one, this layer cannot be optimized and
contains no trainable parameters. The output of the max-pooling layer is a
128-dimensional vector.

The Dropout Layer 1. Our model includes at this point a dropout layer [9].
Dropout, a common technique used in deep neural networks which helps to
prevent a model from overfitting, occurs when the output of a percentage of
nodes in a layer are suppressed. (See Figure 4 for an example of a dropout
layer [32].) The nodes which are chosen to be dropped out are probabilistically
determined at each pass of data through the network. Since dropout does not
change the dimensions of the input, this layer in our network also outputs a
128-dimensional vector.

The Dense Hidden Layer. Our RNN model includes a dense, or fully-
connected, layer as shown in Figure 5 [25]. A dense layer is typical of nearly
all neural networks and is used for discovering hidden, or latent, features from
the previous layers. It transforms a vector x with N elements into a vector y
with M inputs by multiplying x by a M × N weight matrix W. Throughout
training, weights are optimized via backpropagation.

The Dropout Layer 2. Before classification, our RNN model includes another
dropout layer to again avoid overfitting to the training sequences.

The Dense Output Layer. At last, our RNN model includes a final dense layer
which outputs ten distinct values, each value corresponding to the relative
probability of the input belonging to one of the ten unique categories. Each
instance is classified according to the category corresponding to the highest
of the 10 output values.

Our bi-directional GRU layer also features dropout of each time step’s
output value and of its recurring state. Each dropout layer’s probability of
“dropping” its output values is set to 10%. Furthermore, the network is trained
by the Rmsprop optimization algorithm [34], though many other optimizers
have been shown to perform similarly.

Movie Recommendations Based on a Recurrent Neural Network Model 97

3.2 Network Architecture
With the neural network architecture introduced above, we describe the deep
learning architecture proposed as an alternative to the user-based neighborhood
approach. We first consider the dimensions of the input and output of the
neural network. In order to maximize the amount of training data we can feed
to the network, we consider a training example to be a user profile (i.e., a row
from the user-item matrix R) with one rating withheld. The loss of the network
on that training example must be computed with respect to the single withheld
rating. The consequence of this is that each individual rating in the training set
corresponds to a training example, rather than each user.

As we are interested in what is essentially a regression, we choose to use
root mean squared error (RMSE) with respect to known ratings as our loss
function. Compared to the mean absolute error, root mean squared error more
heavily penalizes predictions which are further off. We reason that this is
good in the context of recommender system because predicting a high rating
for an item the user did not enjoy significantly impacts the quality of the
recommendations. On the other hand, smaller errors in prediction likely result
in recommendations that are still useful—perhaps the regression is not exactly

Fig. 4.5

Input layer

Output layer

Hidden layer 1 Hidden layer 2

Input Output

x z x’

Encoder

Decoder

Code

Fig. 4.6

8000000

6000000

4000000

2000000

0

N
u
m

b
e
r

o
f
m

o
v
ie

s

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Movie ratings

363636
848484

400000

1696969

1212121

5212121

3090909

7030303

2121212

3818181
Fig. 4.7

1.60

1.40

1.20

1.00

0.800

0.600

0.400

0.200

0.00

0.00 50.00k 100.0k 150.0k 200.0k 250.0k 300.0k 350.0k 400.0k 450.0k 500.0k 550.0k 600.0k

Fig. 4.8

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

P
re

d
ic

ti
o
n
 e

rr
o
r

NPMF CMF Shi MudRecS Deep learning

0.79

0.92

0.54

0.65 0.65

0.73

0.21
0.15

0.35

MAE

RMSE

Fig. 4.9

Fig. 5: Structure of a dense layer.

Fig. 4: Dropout as used in a neural network.

Fig. 4.1

Dense (prediction) layer

Dropout layer 2

Dense (hidden) layer

Dropout layer 1

Global max-pooling layer

Bi-diectional GRU layer

Embedding layer

Input layer

ht

A

xt

h0

A

x0

h1

A

x1

h2

A

x2

ht

A

xt

Fig. 4.2

ht – 1

x l

xx

tanhaa

1-

~
ht

rt zt

xt

ht

z = s (W · [h , x])t z t – 1 t

r = s (W · [h , x])t r t – 1 t
~
h = tann (W · [r h , x])*t t t – 1 t

 ~
h = (1 – z) h + z h * *t t t – 1 t t

Fig. 4.3

(a) Standard neural net (b) After applying dropout

Fig. 4.4

98 Reuse in Intelligent Systems

correct, but at least the highest predicted rating are likely to be relevant to the
user.

3.2.1 Autoencoder
One of the existing deep learning models is the Deep Neural Network (DNN)
model. DNN is a Multi-Layer Perceptron (MLP) model with many hidden
layers. The uniqueness of DNN is due to its larger number of hidden units and
better parameter initialization techniques. A DNN model with large number of
hidden units can have better modeling power. Although the learned parameters
of the DNN model is a local optimal, which requires more training data and
more computational power, it can perform much better than those with less
hidden units. Deep Auto Encoder is a special type of DNN. (See Figure 6 for
a sample autoencoder [3].)

An autoencoder is a neural network that is trained to copy its input to its
output, with the typical purpose of dimension reduction, i.e., the process of
reducing the number of random variables under consideration. It features an
encoder function to create a hidden layer (or multiple hidden layers) which
contains a code to describe the input. There is a decoder which creates a
reconstruction of the input from the hidden layer. An autoencoder can then
become useful by having a hidden layer smaller than the input layer, forcing
it to create a compressed representation of the data in the hidden layer by
learning correlations in the data. This autoencoder is a form of unsupervised
learning, meaning that an autoencoder only needs unlabelled data, which is
a set of input data rather than input-output pairs. Through an unsupervised
learning algorithm, for linear reconstructions the autoencoder attempts to
learn a function to minimize the root mean square difference.

Fig. 4.5

Input layer

Output layer

Hidden layer 1 Hidden layer 2

Input Output

x z x’

Encoder

Decoder

Code

Fig. 4.6

8000000

6000000

4000000

2000000

0

N
u

m
b

e
r

o
f

m
o

vi
e

s

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Movie ratings

363636
848484

400000

1696969

1212121

5212121

3090909

7030303

2121212

3818181
Fig. 4.7

1.60

1.40

1.20

1.00

0.800

0.600

0.400

0.200

0.00

0.00 50.00k 100.0k 150.0k 200.0k 250.0k 300.0k 350.0k 400.0k 450.0k 500.0k 550.0k 600.0k

Fig. 4.8

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

P
re

d
ic

tio
n

 e
rr

o
r

NPMF CMF Shi MudRecS Deep learning

0.79

0.92

0.54

0.65 0.65

0.73

0.21
0.15

0.35

MAE

RMSE

Fig. 4.9

Fig. 6: An autoencoder with three fully-connected hidden layers.

Movie Recommendations Based on a Recurrent Neural Network Model 99

To compute the root mean square error (RMSE) of a machine learning
model, we can measure the performance of the model. RMSE is defined as

 ˆ ˆ() , w xT
i

i

RMSE y y y
m

= − =∑ 21
 (6)

where w ∈ ℜn is a vector of parameters, x ∈ ℜn is a vector used for predicting
a scalar value y ∈ ℜ, and ŷ is the value that a machine learning model predicts
what the scalar value y ∈ ℜ should be.

Note that RMSE decreases to 0 when ŷ = y and the error increases when
the Euclidean distance between the predicted values and the target values
increases.

3.2.2 Multilayer Perceptron
Initially, the architecture of our recommender system consists of input from
the row of the user-item matrix R with the rating for some item j withheld,
along with a one-hot encoded query which indicates the network should
predict the rating for user i on item j. Unfortunately, this architecture has
been proved difficult to train, since the network must learn to understand not
only user profiles, but also the interplay between those profiles and the query
inputs. With respect to the root mean squared error on the training data, we
never achieved a loss less than 1.2 with this architecture.

Instead, we take inspiration from the concept of an autoencoder to design
our neural network architecture. This simple architecture takes an input and
connects it to some number of fully connected hidden layers which include
a “bottleneck.” This bottleneck is a hidden layer which has a much smaller
dimensionality than the input. The output of the network is then re-expanded to
have the same dimensionality as the input. The network is then trained to learn
the identity function, with the idea that in order for the network to compute the
identity function through the bottleneck, it must learn a dense representation
of the input. Thus, the autoencoder could be viewed as something akin to
a dimensionality reduction technique. We can also hope that the bottleneck
layer learns something useful related to the structure underlying the input. For
example, a neuron in the bottleneck layer might represent something related
to the genre of a movie or similar movie groupings.

Note that we are not interested in learning to compute an identity
function—after all, our goal is to predict missing ratings, not reproduce the
zeros in the input vectors. Consequently, while our final network architecture
resembles an autoencoder with the bottleneck hidden layers and the matching
dimensions on input and output, the network is actually trained using a loss
function for regression (i.e., RMSE) with the aim of learning to predict
missing ratings.

100 Reuse in Intelligent Systems

More specifically, the training examples to the network are user profiles
with one rating withheld, and the output is the predicted ratings for all movies
in the dataset. While the network is expected to predict ratings for each movie
based on a user profile, we only have the answer for the one withheld rating.
Consequently, we only propagate loss for the missing rating when learning
from the training example.4

3.2.3 The Deep Learning Recommender System
Withholding ratings does have the unfortunate consequence that our deep
learning model is only able to learn ratings for movies similar to what the
user has actually watched, as the loss function is not directly affected by the
output on unrelated movies. Due to the bottleneck layer, the model is required
to generalize to some degree, but the model may have difficulty for movies
which are drastically different than the movies the user actually rated. While
users do watch movies they rate lowly, most of the time they do not rate
more than a few hundred items, and avoid watching completely non-relevant
movies, so it may be difficult for the model to predict ratings for completely
unrelated movies.

For the purposes of our loss function, which is root mean squared error on
known ratings, the fact that our network may not learn how to output ratings
for completely unrelated movies does not seem to affect the test loss, probably
because the movies in the test data are related enough that the patterns learned
from the training data generalize to the ratings in the test data. Of course, it
may affect the rankings, so it could be desirable to add a regularization term
(discussed in details in Section 3.3) to the loss, which encourages sparsity in
the output.

With this basic design in place, we have experimented with several
variations of this architecture using various numbers of layers, and various
sizes for the bottleneck layer. The most interesting parameter was the size of
the smallest bottleneck layer, and after experimenting with various values, we
eventually settled on a bottleneck size of 512. From there we experimented
with different numbers of fully connected layers, always using powers of
2 to increase and decrease the dimensionality. The final network topology
has seven fully connected hidden layers with dimensions [4096, 2048, 1024,
512, 1024, 2048, 4096]. Each layer used a rectified linear unit5 as the non-
linear activation function. The connecting weights of the hidden layers were
initialized using Xavier initialization [11] with the biases set to zeros.

4 In code, this can be accomplished with the tf:gather function.
5 The rectified linear unit, or ReLU, is defined as max(0; x). While simple, it is currently the state-of-

the-art in activation functions for DNN.

Movie Recommendations Based on a Recurrent Neural Network Model 101

3.2.4 Clustering
We have considered the idea of using the smallest bottleneck layer in the
network as some form of a natural clustering. By forcing the input into such
a small dimensional space, the model must necessarily learn something about
the underlying structure of the input data. The hypothesis was that by fixing
a single neuron in the bottleneck layer and zeroing out the remaining neurons
in the bottleneck layer, and then optimizing the input space for this particular
activation, we can visualize that structure by showing the movies which
trigger each cluster. For example, we expect that there might be a neuron or
small set of neurons which trigger for various genres of movie, or various
styles of filmography.

Table 2 gives an example of such a “cluster” from optimizing the input
to trigger a single bottleneck neuron. These movies have common theme.
Obviously, for this network to be able to accurately predict movie ratings it
must learn some sort of structure. However, this structure is more distributed
throughout the bottleneck layer than expected. One potential solution to this
problem is to add a regularization term to the loss which encourages sparsity
in the bottleneck layer.

Jules and Jim (Jules et Jim) (1961)
Frankenstein Must Be Destroyed (1969)
Lolita (1962)
Lawnmower Man, The (1992)
First Knight (1995)
Urban Legends: Final Cut (2000)
Fair Game (1995)
Guinevere (1999)
Paradine Case, The (1947)
400 Blows The (Les quatre cents coups) (1959)

Table 2: A cluster when optimizing the input to trigger a single bottleneck neuron.

3.3 Regularization
Regularization in deep learning, and in machine learning in general, is an
important concept which solves the overfitting problem. It is very important
to implement the regularization while training a good model, since it is a
technique used in an attempt to solve the overfitting problem.

As mentioned earlier, regularization is an attempt to correct for
model overfitting by introducing additional information to the cost function.
Within the context of least squares linear regression, the regularization term is
added to a standard least squares linear regression cost function J as defined
below.

102 Reuse in Intelligent Systems

 () [(())]
m n

i i
j

i j

J m h x y λΘ
= =

Θ = − + Θ∑ ∑2 2

1 1

1
2

 (7)

where Θ is the parameter values, m is the number of training examples with
n different features, hΘ(xi) is the estimator hΘ value for the training example i,
yi is the actual labeled value of training example i, and λ is the regularization
constant.

In discussing regularization we have employed L2 regularization, whereas
L1 regularization is another such strategy for controlling overfitting. The two
regularizations share the same goal but differ in a few key respects. Note that
in Equation 7,

n

j
j

λ
=

Θ∑ 2

1

 (8)

is the L2 regularization term, whereas in L1, the same regularization term is
written as

 | |
n

j
j

λ
=

Θ∑
1

 (9)

Hence, the difference between L1 and L2 is that L2 uses the sum of the
square of the parameters, whereas L1 is the sum of the absolute value of the
parameters. In essence, L1 regularization reduces some parameters associated
with a given feature to zero, whereas L2 regularization does not set feature
parameters to zero, but will only continue to reduce the value of a given Θ.

4. Experimental Results

In order to verify the performance of the proposed deep learning model in
predicting the movie ratings accurately for movie goers so that they would
enjoy the movies recommended by us, we have conducted various empirical
studies, which compare the performance of our model with other state-of- the-
art movie recommender systems. Prior to presenting the experimental results
of our recommendation system, we discuss the dataset used for the empirical
study and the experimental setup. We first describe the MovieLens dataset and
then briefly explain the baseline model used as a point of comparison.

4.1 MovieLens Data
In academia the most well-known movie ratings dataset is undoubtedly the
MovieLens dataset [13], although a close second is probably the Netflix prize

Movie Recommendations Based on a Recurrent Neural Network Model 103

data released via Kaggle.6 For our recommendation system we utilize the
latest version of the MovieLens dataset, which is the recommended version
for education and development.7

The MovieLens dataset is provided by GroupLens, which is a social
computing research lab at the University of Minnesota. The full MovieLens
dataset contains ratings for 45,115 movies provided by 270,896 different
users. In total, the dataset contains 26,024,289 individual movie ratings, last
updated in August 2017. Each rating allows users to assign between half a
star and five stars to a movie, in half star increments. Figure 7 shows the
distribution of the ratings in the data. Each rating is also accompanied by a
time stamp. Since the dataset does not contain a standard train/test split, we
used these time stamps to split the data into training and test sets, with the
oldest 90% of the data making the training set and the newest 10% of the data
composing the test set. We did this with the intent to mimic the problem faced
by real world movie recommendation systems which have all of the data up
to a certain point in time, and are faced with predicting movie ratings going
forward in time.

4.2 Full Dataset Versus BaseLine
As previously mentioned, there are a number of popular methods for
performing collaborative filtering, including nearest-neighbor based technique
comparing user-user similarity [6], nearest-neighborhood comparing item-
item similarity [28], and matrix factorization techniques [18]. We determined
user-user neighborhood approach with cosine similarity and a neighborhood
size of five performs the best with respect to root mean squared prediction
error. In our empirical study, we used them all on the full MovieLens dataset.
We allocated enough RAM to fully vectorize these algorithms. For example,

6 https://www.kaggle.com/netfix-inc/netfix-prize-data.
7 https://grouplens.org/datasets/movielens/latest.

Fig. 4.5

Input layer

Output layer

Hidden layer 1 Hidden layer 2

Input Output

x z x’

Encoder

Decoder

Code

Fig. 4.6

8000000

6000000

4000000

2000000

0

N
u

m
b

e
r

o
f

m
o

v
ie

s

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Movie ratings

363636
848484

400000

1696969

1212121

5212121

3090909

7030303

2121212

3818181
Fig. 4.7

1.60

1.40

1.20

1.00

0.800

0.600

0.400

0.200

0.00

0.00 50.00k 100.0k 150.0k 200.0k 250.0k 300.0k 350.0k 400.0k 450.0k 500.0k 550.0k 600.0k

Fig. 4.8

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

P
re

d
ic

tio
n

 e
rr

o
r

NPMF CMF Shi MudRecS Deep learning

0.79

0.92

0.54

0.65 0.65

0.73

0.21
0.15

0.35

MAE

RMSE

Fig. 4.9

Fig. 7: Distribution of ratings in the full MovieLens dataset.

https://grouplens.org
https://www.kaggle.com

104 Reuse in Intelligent Systems

in order to process the vectorized version of the user-user nearest neighbor
approach, we computed a user-user similarity matrix which took nearly
600 GB in RAM. The non-vectorized brute force version of the algorithm
required more than a week to finish. An alternative is to utilize a small version
of the MovieLens dataset, called the BaseLine dataset, which contains only
943 users and 1,682 movies as a development dataset. The BaseLine database
can be split into a train/test set, and we can measure the root mean squared
error of the predictions of each of the proposed baseline algorithms.

4.3 Error Rates for Proposed Movie Recommenders
Using 90% of the full MovieLens dataset as training, we trained the architecture
described in Section 3.2. It took roughly 4 days using a Titan X GPU to make
30 passes over the entire data before the training loss stabilized. Figure 8
shows the training loss (i.e., RMSE) decreasing over time.

We discuss the results of our model on the test set and compare its results
to the user-based neighborhood models.

4.3.1 Root Mean Squared Error
Table 3 summarizes the results comparing our model-based approach with
the user-based neighborhood baseline. On the training data, our approach is

Fig. 4.5

Input layer

Output layer

Hidden layer 1 Hidden layer 2

Input Output

x z x’

Encoder

Decoder

Code

Fig. 4.6

8000000

6000000

4000000

2000000

0

N
u

m
b

e
r

o
f

m
o

vi
e

s

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Movie ratings

363636
848484

400000

1696969

1212121

5212121

3090909

7030303

2121212

3818181
Fig. 4.7

1.60

1.40

1.20

1.00

0.800

0.600

0.400

0.200

0.00

0.00 50.00k 100.0k 150.0k 200.0k 250.0k 300.0k 350.0k 400.0k 450.0k 500.0k 550.0k 600.0k

Fig. 4.8

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

P
re

d
ic

tio
n

 e
rr

o
r

NPMF CMF Shi MudRecS Deep learning

0.79

0.92

0.54

0.65 0.65

0.73

0.21
0.15

0.35

MAE

RMSE

Fig. 4.9

Fig. 8: Graph showing loss (root mean squared error) decreasing over time. Each step represents
1,000 training examples.

Table 3: Root mean squared error (RMSE) for our user-based neighborhood baseline and autoencoder
inspired by our model-based approach.

User-User KNN Model-based

Train N/A 0.4209

Test 11.6715 0.3544

Movie Recommendations Based on a Recurrent Neural Network Model 105

stabilized around 0.42. The neighborhood approach has learned parameters, as
it simply relies on the training data itself to make predictions. Consequently,
there is no training loss to report.

On test data, our deep learning model-based algorithm outperforms the
neighborhood approach by a large margin. However, it should be noted that
for the purpose of making movie recommendations, we do not actually care
about the error. Instead what we care about is the ranking of the top few most
highly rated movies. It is not an unreasonable assumption that the algorithm
which ranks better will also have lower root mean squared error, but it is
entirely possible that despite the higher errors, the top ranked movies from the
model-based approach produce superior recommendations. This is especially
true when we consider that our algorithm does not directly learn about highly
unrelated movies.

4.3.2 Comparing our Movie Recommendation Systems with Others
Besides using RMSE as shown in Table 3, we compare between various well-
known movie recommenders and our deep learning movie recommendation
model. These existing movie recommenders were chosen, since they achieve
high accuracy in recommendations on movies based on their respective
model, and more importantly they are simply based on user ratings, but not
solely on contents.
	 •	 MF. Yu et al. [39] and Singh et al. [30] predict ratings on movies based on

matrix factorization (MF), which can be adopted for solving large-scale
collaborative filtering problems. Yu et al. develop a non-parametric matrix
factorization (NPMF) method, which exploits data sparsity effectively
and achieves predicted rankings on items comparable to or even superior
than the performance of the state-of-the-art low-rank matrix factorization
methods. Singh et al. introduce a collective matrix factorization (CMF)
approach based on relational learning, which predicts user ratings on
items based on the items’ genres and role players, which are treated as
unknown values of a relation between entities of a certain item using a
given database of entities and observed relations among entities. Singh
et al. propose different stochastic optimization methods to handle and
work efficiently on large and sparse data sets with relational schemes.
They have demonstrated that their model is practical to process relational
domains with hundreds of thousands of entities.

	 •	 ML. Besides the matrix factorization methods, probabilistic frameworks
have been introduced for rating predictions. Shi et al. [29] propose
a joint matrix factorization model for making context-aware item
recommendations. The matrix factorization model developed by Shi et al.
relies not only on factorizing the user-item rating matrix but also considers

106 Reuse in Intelligent Systems

contextual information of items. The model is capable of learning from
user-item matrix, as in conventional collaborative filtering model, and
simultaneously uses contextual information during the recommendation
process. However, a significant difference between Shi et al.’s MF
model and other MF approaches is that the contextual information of
the former is based on movie mood, whereas other MF models makes
recommendations according to the contextual information on movies.

 • MudRecS [24], which makes recommendations on books, movies,
music, and paintings similar in content to other books, movies, music,
and/or paintings, respectively that a MudRecS user is interested in.
MudRecS does not rely on users’ access patterns/histories, connection
information extracted from social networking sites, collaborated filtering
methods, or user personal attributes (such as gender/age) to perform the
recommendation task. It simply considers the users’ ratings, genres, role
players (authors or artists), and reviews of different multimedia items.
MudRecS predicts the ratings of multimedia items that match the interests
of a user to make recommendations.

	 •	 Netflix. We compare our deep learning recommendation system indirectly
against the 20 systems that participated in the Netflix contest in 2008
through MudRecS [24]. The open competition was held by Netflix, an
online DVD-rental service, and the Netflix Prize was awarded to the best
recommendation algorithm with the lowest RMSE score in predicting
user ratings on films based on previous ratings. On September 21, 2009,
the grand prize of one million dollars were given. The RMSE scores
achieved by each of the twenty systems, as well as detailed discussions on
their rating prediction algorithms, can be found on the Netflix website.8

Figure 9 shows the Mean Absolute Error (MAE) and RMSE scores of our
deep learning movie recommender and other recommendation systems on the
MovieLens dataset. RMSE and MAE are two performance metrics widely-
used for evaluating rating predictions on multimedia data [1]. Both RMSE
and MAE measure the average magnitude of error, i.e., the average prediction
error, on incorrectly assigned ratings. The error values computed by RMSE
are squared before they are summed and averaged, which yield a relatively
high weight to errors of large magnitude, whereas MAE is a linear score,
i.e., the absolute values of individual differences in incorrect assignments are
weighted equally in the average. Our deep learning recommender outperforms
each of the movie recommenders as shown in Figure 9, and the RMSE and
MAE values are statistically significant (p < 0.01) [31].

8 https://www.netflixprize.com/leaderboard.html.

https://www.netflixprize.com

Movie Recommendations Based on a Recurrent Neural Network Model 107

On the Netflix dataset, MudRecS achieves a RMSE score9 of 0.8571.
MudRecS outperforms 18 recommendation systems and is only outperformed
by two systems (Bellkor [17] and Ensemble [37]), both of which achieve the
same score of 0.8567, a small, insignificant fraction (0.8571–0.8567 = 0.0004)
better than MudRecS. The reason for the slightly better RMSE score achieved
by the two systems on the Netflix dataset are twofold. Unlike MudRecS, Bellkor
and Ensemble were specifically designed for movie rating predictions, and
the construction of their algorithms focus on rating patterns found in movies
which may not apply to other domains. Moreover, Bellkor and Ensemble
account for temporal effects, i.e., the fact that a user’s preference changes over
time, which may lead to different ratings for the same movie over time. The
temporal effect, however, does not apply to all users and requires a larger subset
of training data in order to obtain reliable results, which are the constraints. In
considering a 95% confidence interval, MudRecS significantly outperforms
17 recommendation systems and is not significantly outperformed by any of
the twenty systems. CineMatch, Netflix’s recommender, achieves an RMSE
score of 0.9514 on the Netflix dataset, which is outperformed by MudRecS.
We ran our deep learning recommender system on the Netflix dataset and
achieves a 0.782 RMSE score, which is lower than MudRecS, even though the
results are not statistically significant. However, our recommender performs
at least as good as MudRecS based on the Netflix dataset.

4.4 Human Assessors
In order to further establish the usefulness of our deep learning approach in
making movie recommendation, we conducted two user studies in which

9 MAE scores were not computed on the Netflix dataset due to their unavailability for the other 20
recommenders.

Fig. 4.5

Input layer

Output layer

Hidden layer 1 Hidden layer 2

Input Output

x z x’

Encoder

Decoder

Code

Fig. 4.6

8000000

6000000

4000000

2000000

0

N
u

m
b

e
r

o
f

m
o

vi
e

s

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Movie ratings

363636
848484

400000

1696969

1212121

5212121

3090909

7030303

2121212

3818181
Fig. 4.7

1.60

1.40

1.20

1.00

0.800

0.600

0.400

0.200

0.00

0.00 50.00k 100.0k 150.0k 200.0k 250.0k 300.0k 350.0k 400.0k 450.0k 500.0k 550.0k 600.0k

Fig. 4.8

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

P
re

d
ic

tio
n

 e
rr

o
r

NPMF CMF Shi MudRecS Deep learning

0.79

0.92

0.54

0.65 0.65

0.73

0.21
0.15

0.35

MAE

RMSE

Fig. 4.9

Fig. 9: The MAE and RMSE scores for various movie recommendation systems based on the
MovieLens dataset.

108 Reuse in Intelligent Systems

users, who play the role of appraisers, had the chance to evaluate movies
recommended by our system and the user-based neighborhood (KNN)
approach in one case, and Amazon10 and Redbox (www.redbox.com) in
another.

4.4.1 College Student Appraisers
Appraisers were shown a user profile, which consisted of every movie the
corresponding user had rated, as well as the associated ratings. Each appraiser
was then presented two possible recommendations: one from our system and
one from the user-based neighborhood approach. The recommendations were
chosen by picking the movie with the highest predicted rating from either
system, excluding movies that had already been rated by the user. The order
in which the two possible recommendations were shown was randomized.
Appraisers were asked to pick which recommendation they thought was more
relevant to the given user profile (see Figure 10 for an example of the study).

A total of 100 participants, who were students at the authors’ university,
were used in the study. Each user, who is an appraiser, was asked to rate
15 randomly chosen recommendations. In this survey, 71.67% of the time
appraisers preferred the recommendation made using our deep learning
approach over the recommendation made by the baseline approach, and this
result is encouraging. Of course, it is clear that this survey using a small sample
size. In addition, most of the appraisers indicated that they were unfamiliar
with most of movies referenced in the survey. Realizing this problem in
advance, we indicated in the survey that they were allowed to use resources
like Google11 and IMDBa12 while making their judgements.

10 www.amazon.com.
11 https://www.google.com.
12 www.imdb.com.

Fig. 10: An example of the type of questions appraisers were asked to answer in the user evaluation
of our deep learning-based system and the user-based KNN approach.

Criminal minds

Scandal

Portlander

Flight

Silver linings playbook

The birdcage

OR
Fig. 4.10

Redbox Amazon Ours
0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

A
ve

ra
g
e
 r

a
n
ki

n
g
 v

a
lu

e
s

0.38

0.65

0.71

0.37

0.53

0.67

0.53

0.65

0.42

Avg P@1 Avg P@3 Avg MRR

Fig. 4.11

Fig. 5.1

5

3

7

2

1

4

6

Employers

Teachers

Higher education institions

Students

Course designers

MOOC providers
Advertisers

http://www.imdb.com
https://www.google.com
http://www.amazon.com
http://www.redbox.com

Movie Recommendations Based on a Recurrent Neural Network Model 109

4.4.2 Mechanical Turk Performance Evaluation
Besides relying on college students to conduct a user study to evaluate the
performed of our movie recommender MR, we also turned to Mechanical
Turk13 to conduct empirical studies that allow us to evaluate the performance
of MR, which offer a diverse group of appraisers who come from all walks
of life. We counted on Amazon’s Mechanical Turk, since it is a “market-
place for work that requires human intelligence”, which allows individuals
or businesses to programmatically access thousands of diverse, on-demand
workers and has been used in the past to collect user feedback on various
information retrieval/recommendation tasks. Altogether, we created a
total of thirty-five HITs,14 each of which consists of 10 tasks and each task
includes 10 designated movies and their corresponding set of recommended
movies. The Mechanical Turk appraisers who participated in the performance
evaluation were asked to determine which one of the nine recommendations,15
if there were any, were relevant movies with respective to the corresponding
designated movie. The three movies marked as relevant most often by the
appraisers were considered our gold standard for the designated movie (and
the corresponding profile in the case of our recommender MR). Table 4 shows
the top-3 recommendations suggested by MR, Amazon, and Redbox and the
number of times each recommended movie was marked as relevant with
respect to a designated movie by the corresponding appraisers.

Besides marking which recommendation was relevant, the appraisers
were also asked (to the best of their knowledge) to order, i.e., rank, the
recommendations in terms of their degrees of relevance with respect to
the corresponding designated movie. Based on the gold standard on the
relevance and rankings set by the appraisers, we determined whether the
recommendations provided by MR and its competitors were truly relevant
and the degree of accuracy of their corresponding rankings. Note that during
the evaluation process, we randomized the order of the nine recommended
movies and asked the appraisers to mark and rank the recommendations they
believed to be relevant to the designated movie.

4.4.3 Precision@K and MRR
Users of a recommendation system tend to look at only the top part of the
ranked result list to find relevant recommendations. Some search tasks have

13 https://www.mturk.com/mturk/welcome.
14 A Human Intelligence Task, or HIT, is a single, self-contained assignment that a Mechanical Turk

appraiser works on.
15 Three each from our recommender, Amazon, and Redbox, which were the top-3 recommendations

made by the three recommendation systems, respectively. The appraisers had no idea which
recommendation was made by which recommender.

https://www.mturk.com

110 Reuse in Intelligent Systems
Ta

bl
e

4:
 T

op
-3

 re
co

m
m

en
da

tio
ns

 fo
r e

ac
h

of
 th

e
fiv

e
sa

m
pl

e
de

si
gn

at
ed

 m
ov

ie
s m

ad
e

by
 o

ur
 D

ee
p

Le
ar

ni
ng

 m
od

el
 (d

en
ot

ed
 D

LM
),

A
m

az
on

, a
nd

 R
ed

bo
x,

 a
nd

 th
ei

r
re

sp
ec

tiv
e

fr
eq

ue
nc

y
of

 re
le

va
nc

e
ba

se
d

on
 th

e
go

ld
 st

an
da

rd
 e

st
ab

lis
he

d
by

 th
e

20
 a

pp
ra

is
er

s.

D
es

ig
na

te
d

M
ov

ie
D

L
M

A
m

az
on

R
ed

bo
x

R
an

k
1

R
an

k
2

R
an

k
3

R
an

k
1

R
an

k
2

R
an

k
3

R
an

k
1

R
an

k
2

R
an

k
3

In
ce

pt
io

n
Th

e
D

ar
k

K
ni

gh
t

Th
e

M
at

rix
In

te
rs

te
lla

r
Sk

ys
cr

ap
er

A
nc

ho
rm

an
Ju

ra
ss

ic
 W

or
ld

:
Fa

lle
n

K
in

gd
om

M
is

si
on

 o
f

H
on

or
N

ev
er

G
ro

w
 O

ld
C

ha
si

ng
 B

ul
lit

t

R
el

ev
an

t
11

16
12

7
15

7
6

9
8

D
an

ce
 w

ith
W

ol
ve

s
U

nf
or

gi
ve

n
R

ai
n

M
an

R
ob

in
 H

oo
d:

Pr
in

ce
 o

f
Th

ie
ve

s

A
nn

ap
ol

is
Th

e
La

st
 o

f
th

e M
oh

ic
an

s
Le

ge
nd

s o
f

th
e

Fa
ll

C
hi

m
er

a
St

ra
in

Fo
r L

ov
e

or
 M

on
ey

M
is

si
on

 o
f H

on
or

R
el

ev
an

t
12

10
9

13
15

7
8

6
7

Lo
rd

 o
f t

he
R

in
gs

: T
he

Tw
o

To
w

er
s

St
ar

 W
ar

s:
th

e
Em

pi
re

St
rik

es
 B

ac
k

G
la

di
at

or
In

ce
pt

io
n

Pr
id

e
&

Pr
ej

ud
ic

e
So

n
of

 G
od

A
 K

ni
gh

t’s
 T

al
e

M
is

si
on

 o
f

H
on

or
N

ev
er

G
ro

w
O

ld

C
ha

si
ng

B
ul

lit
t

R
el

ev
an

t
4

19
12

7
4

12
10

7
14

So
un

d
of

M
us

ic
Th

e
Pr

in
ce

ss
B

rid
e

Th
e

W
iz

ar
d

of
 O

z

Sn
ow

 W
hi

te
an

d
th

e
Se

ve
n

D
w

ar
fs

Th
e

Pa
re

nt
Tr

ap

Po
lly

an
na

Th
e

A
ris

to
ca

ts
Fu

n
w

ith
Sl

im
e:

Pa

rt
2

Fu
nd

 w
ith

Sl
im

e
Pa

rt
1

C
ap

tio
n

M
or

te
n

an
d

th
e

Sp
id

er
 Q

ue
en

R
el

ev
an

t
18

16
11

17
6

18
9

6
6

H
ap

py
Fe

et
Sh

ar
k

Ta
le

H
ap

py
Fe

et
 T

w
o

A
B

ug
’s

 L
ife

M
on

st
er

s,
In

c.
Si

ng
Tr

ol
ls

D
ap

hn
e

an
d

Ve
lm

a
M

on
st

er
Tr

uc
ks

C
op

 a
nd

 a
 H

al
f

N
ew

 R
ec

ru
it

R
el

ev
an

t
18

16
18

15
10

13
9

7
8

Av
g.

 R
el

ev
an

ce
12

.6
15

.4
12

.4
11

.8
9.

6
11

.4
8.

4
7.

0
8.

6

Movie Recommendations Based on a Recurrent Neural Network Model 111

only one relevant result (i.e., precision at rank 1, denoted P@1) in mind, i.e.,
the top-ranked recommendation is expected to be relevant and useful, whereas
others consider the top-n (2 ≤ n ≤ 10) ranked recommendations. Since our
recommender MR suggests up to three movies for each user’s designated
movie based on the profile of the user, we have evaluated the performance of
MR based on P@1 and P@3, which is easy to compute, flexible to be averaged
over the recommendations made for different designated movies to produce a
single performance value, and is readily understandable.

After the gold standard for each one of the 350 test cases provided by
the 20 appraisers were recorded, we calculated the metrics for the average
precision at rank 1 (i.e., average P@1) and average Precision at rank 3
(i.e., average P@3). The average P@1 values measure the usefulness of the
recommendations at rank 1, whereas average P@3 computes the ratio of the
usefulness of the top-3 ranked recommendations. As shown in Figure 11, our
recommender MR scored an average P@1 value of 0.71,16 which is compared
favorably with Amazon’s 0.65 and Redbox’s 0.38. In addition, MR scored an
average P@3 value of 0.67, which is also more appealing than Amazon’s 0.53
and Redbox’s 0.37. All of these results are statistically significant based on the
Wilcoxon Signed-Ranks Test (p < 0.01).

Besides measuring the usefulness of the top-ranked recommendations
made by our recommender MR, we have also evaluated the performance of
MR based on the evaluation metric MRR. MRR calculates the average of
the reciprocal ranks at which the first useful recommendation (among all the
ranked recommendations) for each designated movie based is made. The

Criminal minds

Scandal

Portlander

Flight

Silver linings playbook

The birdcage

OR
Fig. 4.10

Redbox Amazon Ours
0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

A
ve

ra
g
e
 r

a
n
ki

n
g
 v

a
lu

e
s

0.38

0.65

0.71

0.37

0.53

0.67

0.53

0.65

0.42

Avg P@1 Avg P@3 Avg MRR

Fig. 4.11

Fig. 5.1

5

3

7

2

1

4

6

Employers

Teachers

Higher education institions

Students

Course designers

MOOC providers
Advertisers

Fig. 11: Performance evaluation on average P@1, P@3, and MRR for Redbox, Amazon, and our
movie recommender.

16 The value 0.71 indicates that in seven out of 10 times the first recommendation made by MR is
considered useful and relevant.

112 Reuse in Intelligent Systems

reciprocal rank is very sensitive to the rank position. MRR is formally defined
below.

| |

| |

DGs

ii

MRR
DGs Rank=

= ∑
1

1 1 (10)

where DGs denotes the set of designated movies used in the evaluation,
|DGs| represents the number of movies in DGs, and Ranki is the ranking
position of the first useful/relevant recommendation as determined by the
appraisers.

As shown in Figure 11, MR outperformed Amazon and Redbox in terms
of the MRR value, i.e., 0.65 versus 0.53 and 0.42, respectively, which are
statistically significant based on the Wilcoxon Signed-Ranks Test (p < 0.01).
These results verify that MR makes more relevant recommendations and
ranks higher the relevant suggestions than the ones suggested by Amazon and
Redbox, respectively.

5. Conclusions

Watching movies is one of the popular entertainments in the modern society,
and these days people can watch movies anytime and everywhere—at work,
at home, or in their cars. However, following the normal supply and demand
curve, in the calendar year of 2016 up till mid-July, there were 7,547 most
popular English-language movies released.17 The increase in production of
movies has created a problem for movie enthusiasts seeking new movies. In
the year of 2018 the number of new movies released in the United States
and Canada alone is close to a thousand [33]. Although websites with
discussions on the latest and most popular movies are available, the amount
of time needed to research movies has become insurmountable due to the
large number of movies available. To decrease the amount of time needed
to research personally appealing movies and help resolve the problem of
needing to test movies out, we propose a novel movie recommender which
suggests movie recommendations to its users based on a simple neural
network model.

The neural network model is a computing system made up of a number
of simple, highly interconnected processing elements, which process
information by their dynamic state response to external inputs. A neural
network is often referred to as an Artificial Neural Network (ANN), which
has generated a lot of excitement in Machine Learning research and industry,

17 www.imdb.com/search/title?count=100&languages=en&release date=2016,2016&title type=feature.

http://www.imdb.com

Movie Recommendations Based on a Recurrent Neural Network Model 113

thanks to many breakthrough results in speech recognition, computer vision
and text processing. We adopt the deep learning, which is essentially just deep
artificial neural networks, to recommend appealing movies for moviegoers.

The proposed movie recommender performs well in terms of root mean
squared error for collaborative filtering. When talking about collaborative
filtering, we should clearly distinguish the following two tasks: (i) rating
prediction and (ii) top-N recommendations. The task of rating prediction
is much more popularized and, as a consequence, tons of papers and open
source libraries are there. However, speaking about top-N recommendation
task, the situation is quite the opposite, since in most business applications,
it is required to compute top-N recommendations. Our work adds to existing
literature which suggests that deep learning can be a powerful tool for a
variety of problems in information retrieval [40]. In the end, this work
makes improvement in terms of predicting ratings of and recommending
top-N movies for users. Our recommender system applies regularization to
further minimize the prediction errors. In addition, our system was able to
handily outperform the neighborhood-based baseline, and was able to provide
superior movie recommendations. Additional human assessments, which
invoke college students and Mechanical Turk appraisers, further verified
the relevance and usefulness of movies recommended by our deep learning
model in terms of offering appealing movies for users to watch. As an added
advantage of our deep learning approach, it is much more scalable at test
time.

References
 [1] Chai, T. and R. Draxler. 2014. Root Mean Square Error (RMSE) or Mean Absolute Error

(MAE)? Geoscientific Model Development Discussions 7(1): 1525–1534.
 [2] Changhau, I. 2017. LSTM and GRU—Formula Summary. https://isaacchanghau.github.

io/post/lstm-gru-formula/, July 2017.
 [3] Chervinskii. 2015. Autoencoder. https://en.wikipedia.org/wiki/Autoencoder, December

2015.
 [4] Cho, K., B. van Merrienboer and D. Bahdanau. 2014. On the properties of neural machine

translation: Encoder-decoder approaches. pp. 103–114. In: Proceedings of the Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8).

 [5] Chung, J., C. Gulcehre, K. Cho and Y. Bengio. 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. In NIPS Workshop on Deep Learning.

 [6] Croft, W., D. Metzler and T. Strohman. 2010. Search Engines: Information Retrieval in
Practice. Addison Wesley.

 [7] Colah. 2015. Understanding LSTM Networks. http://colah.github.io/posts/2015-08-
Understanding-LSTMs/, August 2015.

 [8] Elkahky, A., Y. Song and X. He. 2015. A multi-view deep learning approach for cross
domain user modeling in recommendation systems. pp. 278–288. In: Proceedings of the
24th International Conference on World Wide Web (WWW).

https://isaacchanghau.github
http://colah.github.io
http://colah.github.io
https://en.wikipedia.org
https://isaacchanghau.github

114 Reuse in Intelligent Systems

 [9] Gal, Y. and Z. Ghahramani. 2016. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. pp. 1050–1059. In: Proceedings of the International
Conference on Machine Learning (ICML).

 [10] Gers, F., J. Schmidhuber and F. Cummins. 1999. Learning to forget: Continual prediction
with LSTM. pp. 850–855. In: Proceedings of the Ninth International Conference on
Artificial Neural Networks (ICANN).

 [11] Glorot, X. and Y. Bengio. 2010. Understanding the difficulty of training deep feed-forward
neural networks. pp. 249–256. In: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (AIS-TATS).

 [12] Gomez-Uribe, C. and N. Hunt. 2016. The netflix recommender system: Algorithms,
business value, and innovation. ACM Transactions on Management Information Systems
(TMIS) 6(4): Article 13 pp. 1–19.

 [13] Harper, F. and J. Konstan. 2016. The Movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TIIS) 5(4): Article 19.

 [14] He, K., X. Zhang, S. Ren and J. Sun. 2016. Deep residual learning for image recognition.
pp. 770–778. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

 [15] Im, I. and A. Har. 2007. Does a one-size recommendation system fit all? The effectiveness
of collaborative filtering based recommendation systems across different domains and
search modes. ACM Transactions on Information Systems (TOIS) 26(1): Article 4,
pp. 1–30.

 [16] Karatzoglou, A. and B. Hidasi. 2017. Deep learning for recommender systems.
pp. 396–397. Proceedings of the Eleventh ACM Conference on Recommender Systems
(RecSys).

 [17] Koren. Y. 2009. The BellKor solution to the Netflix Grand Prize. www.netflix prize.com/
assets/GrandPrize2009 BPC BellKor.pdf.

 [18] Koren, Y., R. Bell and C. Volinsky. 2009. Matrix factorization techniques for recommender
systems. Computer 42(8): 30–37.

 [19] De Lathauwer, L., B. De Moor and J. Vandewalle. 2000. A multilinear singular value
decomposition. SIAM Journal on Matrix Analysis and Applications 21(4): 1253–1278.

 [20] LeCun, Y., Y. Bengio and G. Hinton. 2015. Deep learning. Nature 521: 436–444, May
2015.

 [21] Liu, T., A. Moore and A Gray. 2006. New algorithms for efficient high-dimensional
nonparametric classification. Journal of Machine Learning Research (JMLR)
7(6): 1135–1158.

 [22] Liu, W., Z. Wang, X. Liu, N. Zeng, Y. Liu and F. Alsaadi. 2017. A survey of deep neural
network architectures and their applications. Neurocomputing 234: 11–26.

 [23] Pennington, J., R. Socher and C. Manning. 2014. GloVe: Global vectors for word
representation. pp. 1532–1543. In: Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

 [24] Qumsiyeh, R. and Y.-K. Ng. 2012. Predicting the ratings of multimedia items for making
personalized recommendations. pp. 475–484. In: Proceedings of the 35th International
Conference on Research and Development in Information Retrieval (ACM SIGIR).

 [25] Rosebrock. A. 2016. A simple neural network with Python and Keras. Deep Learning,
Machine Learning, pyimagesearch.com/2016/09/26/a-simple-neural-network-with-
python-and-keras/, September 2016.

 [26] Rumelhart, D., G. Hinton and R. Williams. 1986. Learning representations by
backpropagating errors. Nature 323: 533–536.

 [27] Salehinejad, H., J. Baarbe, S. Sankar, J. Barfett, E. Colak and S. Valaee. 2017. Recent
advances in recurrent neural networks. arXiv preprint arXiv:1801.01078.

http://www.netflixprize.com
http://www.netflixprize.com

Movie Recommendations Based on a Recurrent Neural Network Model 115

 [28] Sarwar, B., G. Karypis, J. Konstan and J. Riedl. 2001. Item-based collaborative filtering
recommendation algorithms. pp. 285–295. In: Proceedings of the 10th International
Conference on World Wide Web (WWW).

 [29] Shi, Y., M. Larson and A. Hanjalic. 2010. Mining mood-specific movie similarity with
matrix factorization for context-aware recommendation. pp. 34–40. In: Proceedings of the
Workshop on Context-Aware Movie Recommendation (CAMRa’10).

 [30] Singh, A. and G. Gordon. 2008. Relational learning via collective matrix factorization.
pp. 650–658. In: Proceedings of the 14th International Conference on Knowledge
Discovery and Data Mining (ACM SIGKDD).

 [31] Smucker, M., J. Allan and B. Carterette. 2009. Agreement among statistical significance
tests for information retrieval evaluation at varying sample sizes. pp. 630–631.
In: Proceedings of the 32nd International Conference on Research and Development in
Information Retrieval (ACM SIGIR).

 [32] Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research 15(1): 1929–1958.

 [33] Statista. Number of Movies Released in the United States and Canada from 2000 to 2018.
https://www.statista.com/statistics/187122/movie- releases-in-north-america-since-2001/.

 [34] Tieleman, T. and G. Hinton. 2012. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. In COURSERA: Neural Networks for Machine Learning
4.2: 26–31.

 [35] Wang, H., N. Wang and D.-Y. Yeung. 2015. Collaborative deep learning for recommender
systems. pp. 1235–1244. In: Proceedings of the 21th International Conference on
Knowledge Discovery and Data Mining (ACM KDD).

 [36] Wei, J., J. He, K. Chen, Y. Zhou and Z. Tang. 2017. Collaborative filtering and deep
learning based recommendation system for cold start items. Expert Systems with
Applications 69: 29–39.

 [37] Wikipedia. Netflix Prize. en.wikipedia.org/wiki/Netflix Prize#cite note-netflixprize.com-
21, May 2018.

 [38] Yang, L., E. Bagdasaryan and H. Wen. 2018. Modularizing deep neural network-inspired
recommendation algorithms. pp. 533–534. Proceedings of the 12th ACM Conference on
Recommender Systems (RecSys).

 [39] Yu, K., S. Zhu, J. Lafferty and Y. Gong. 2009. Fast nonparametric matrix factorization for
large-scale collaborative filtering. pp. 211–218. In: Proceedings of the 32nd International
Conference on Research and Development in Information Retrieval (ACM SIGIR).

 [40] Zhang, S., L. Yao and A. Sun. 2017. Deep learning based recommender system: A survey
and new perspectives. ACM Journal on Computing and Cultural Heritage (JOCCH)
1(1): Article 35, pp. 1–35.

http://en.wikipedia.org
https://www.statista.com

Chapter 5
A Recommendation System
Enhanced by Topic Modeling

for Knowledge Reuse in
MOOCs Ecosystems

Rodrigo Campos,1,* Rodrigo Pereira dos Santos2
and Jonice Oliveira1

1. Introduction

The advancement of online education has revolutionized the way students
learn around the world. The technological resources allow the analysis,
optimization and availability of new learning options that benefit several
users of such resources. One of these options is gaining more popularity: The
Massive Open Online Course (MOOC), which emerged as a new educational
philosophy. This advance is due to the reason it presents totally new definitions
about the concepts of enrollment, participation, and even evaluation, but
also for having values based on openness, ethics for participation, and
collaboration [3].

With the highlight of MOOCs, the number of users has been growing
constantly since its emergence in 2008. Several universities and other
educational institutions have been adapting and reconsidering the classic
learning structures and taking courses communities beyond the physical
boundaries of the university with MOOCs [7]. From the interaction of several

1 Federal University of Rio de Janeiro.
2 Federal University of the State of Rio de Janeiro.
* Corresponding author: rodrigocampos.inf@hotmail.com

mailto:inf@hotmail.com

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 117

users around the MOOCs’ platforms, some authors analyze the MOOCs from
a perspective of software ecosystem (SECO), conceptualizing the MOOC
learning community ecosystem [26], or simply MOOCs ecosystems. This
perspective can (i) ensure more sustainable development for MOOCs,
(ii) contribute with other benefits for the learning community, and (iii) bring
partnership and alliance between universities, external companies, students
and other ecosystems’ stakeholders.

However, the growth of these platforms also creates some difficulties. The
number of courses emerging in the ecosystem is increasing. Once learning
institutes sometimes contain similar courses, there may be courses that
address the same topics. This large number of courses can generate doubts
when students should choose which course they will enroll. Therefore,
some works consider the construction of courses recommendation systems
for these students within a provider, as listed in the Section 2. In addition,
there are some challenges for the recommendation in these scenarios and, if
contemplated, they could facilitate students in accurately identifying content
according to their learning needs, such as:
 • A more personalized recommendation where there may be a merger

of parts of courses. Currently, the recommendations consider the entire
content of the course. For example, there is no assembly of a study plan,
or some resource that might make the recommended item more flexible;

 • Considering more than one provider in the recommendation;
 • The recommendations do not usually merge the courses’ data with

other databases, either on the student or the items (courses) that are
recommended;

 • MOOCs have still interpreted the platform in a restricted way. Although
there are several other actors interacting with this platform, these
interactions are not mapped in the form of an entire ecosystem; or
when they are, they still reflect the characteristics of a Virtual Learning
Environment (VLE), which excludes a possibility of expansion and
cooperation of the platform itself.

This work’s contribution explores some of these major issues. It proposes
an architecture of a web-based recommendation system that considers
more than a single MOOC provider, enabling not only the full courses
recommendation but also parts of courses in MOOCs ecosystems. The
resulting system from such architecture aims to assist students in the process
of searching for courses and to achieve demands and improvements, as well
as sharing of software over the platform (i.e., reuse of knowledge).

In the Section 2, we describe how other researches propose related
solutions and we indicate the main concepts of our work. In this chapter, some

118 Reuse in Intelligent Systems

characteristics of SECO are addressed, exploring how these characteristics
work specifically in MOOCs ecosystems. To do so, in the Section 3, a
correlation between roles and a mapping of knowledge types shared in
such MOOCs ecosystems is presented. Thus, it is possible to understand
the importance of each stakeholder in the process of knowledge reuse. To
build the recommendation system, two general steps are taken in this chapter:
(a) identify the most used MOOCs providers, as well as which data is open
for extraction, in the Section 4; (b) propose the web-based recommendation
system, planning the different steps of the recommendation process and the
knowledge reuse objectives for this architecture, in the Section 5. As the
recommendation system includes topics modeling and labeling methods,
the Section 6 address the most common concepts and techniques, as well as
justification on the choice of techniques combination to be adopted in our
system according to their relevance.

This chapter also includes an example of the recommendation system
processing real-world data in the Section 7. This example allows to better
visualize the whole process, from the user search in the recommendation to
the issuing of courses and parts of courses recommended by the system. Finally,
the Section 8 addresses the possibilities of the process extension and include
some conclusions about the work and techniques.

2. Literature Review

Several studies have contributed to recommendation systems for MOOCs.
They deal with different techniques to build and implement recommendations.
The objective of the literature review in this chapter is to introduce the
fundamental concepts of these techniques and approaches used in related
work. The collection of material for literature review started by searching and
analyzing recent work published in conferences about the recommendation
system and/or education. Due to lack of material, we extended our literature
review to cover Google Scholar indexed publications.

In order to classify the MOOC recommendation systems identified in
the literature, the characteristics of a recommendation system raised in [22]
were used as a reference. According to the authors, five aspects characterize the
recommendation systems.

The first one is the Recommendation Technique, that addresses not only
which recommendation technique is used but also how this technique is
applied by the recommendation solution [22]. Recommendation techniques,
to a greater extent, make use of two main entities for the recommendation
process: user, which is the entity to which the recommendation is provided;
and item, which is the product that is effectively recommended [1].

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 119

Among the studies identified in the review, Malakoudis and Symeonidis
[20] suggest a recommendation system that applies Matrix Factorization (MF)
as a recommendation technique. This technique has become practical in real-
world scenario modeling because of its flexibility, since it can detect, from user
ratings, how these users would rate items that have not yet been classified.
From latent features, it is possible to sort items and make recommendations
[17].

The Matrix Factorization technique is a class of CF approach of
recommendation. This approach is applied in [29]—another work identified
in this review that refers to the need to observe the history of the users to make
the recommendation process in this approach. It is possible to find similar
users’ groups, represented by scores, and then predict the most appropriate
items for a target user.

In contrast to the CF techniques mentioned before, the content-based
methods consider descriptive attributes of the items, the so-called content
(hence, the content-based name). These methods are used when there is no
user’s information, i.e., the ratings of other users are not known, as happens
when applying CF. Thus, from a descriptor of item i, it is possible to find other
items already evaluated with similar descriptors, given the level of similarity to
recommend or not recommend the item i [1]. As such, Case-Based Reasoning
(CBR) has played an important role in content-based systems. A leading work
that uses the CBR technique is presented in [8], based on a principle that
“similar problems have similar solutions”, and treat problems and solutions as
cases stored in a library called as Case Base.

The second aspect is the type of recommended items. It refers to the
characteristics that involve the type of content that the recommendation
system recommends to users [22]. When it comes to recommending courses for
users, MOOCRec [8] and MOOCRec.com [20] use recommendation approach
for this purpose.

The latter aims to help students in the acquisition of skills that are expected
from their ideal job through a successful recommendation.

Differently, OERecommender project [29] recommends Open Educational
Resources (OER). Similarly to MOOCs, OER is a concept that is part of
Online Open Education, one of the most important movements for education
in the 21st century [3]. Even though they are part of the same movement, they
involve different concepts. OERs consist of ‘any kind of educational material
in the public domain or associated with an open license’ [3]. Meanwhile,
MOOCs are defined as ‘online courses accessible to anyone on the web’
where ‘institutions have joined in an effort to make education more accessible
by teaming up with MOOCs providers’ [12].

The third aspect is the Output Form, i.e., information about how the user
receives the recommended contents, such as system-driven or automatically

120 Reuse in Intelligent Systems

provided by the system as a facilitator for the user [22]. In OERecommender
project [29], the recommendation is automatically triggered by the system, by
a search engine that captures the metadata and generates CAM instances from
a MOOC course that the student is learning via the browser.

Meanwhile, MOOCRec.com makes recommendations based on user
search. It makes use of crawlers to capture items that are recommended to
users according to the information given in the search at runtime. The same
happens with MOOC-Rec that considers the interests of the user through an
interface where it can do a search for suggestions. The system translates this
query into a query and the output is returned in this same interface.

The fourth aspect described is the Cross-Dimensional Features, that
contain characteristics of the system components—if any component of the
recommendation system applies any specific technique, such as considering
user feedback [22]. In OERecommender project [29], a future work proposals
is to extend the recommended through a prediction based on machine
learning. The machine learning approach has been used in some works of
recommendation systems, as in [2], which combines data mining algorithms,
such as clustering and association rule to recommend courses in Moodle
e-learning. Although it is not a solution for MOOC, the work emphasizes that
this combination can be applied in MOOCs. The results show that the Simple
K-means clustering and Apriori association rule algorithm would be the most
suitable for this recommendation scenario since it is not necessary to have a
data preparation stage and the number of association rules is bigger.

Another proposal that may be considered as related to our study is
MOOCLink [12]. This system is not a recommendation system, but rather an
aggregator, since it integrates different MOOCs courses’ providers, adding
courses to facilitate their search and comparison. To make the clustering
possible, it uses LOD. Although MOOCLink does not apply recommendation,
LOD has already been used to support the recommendation in other works
with good results. For example, Di Noia et al. [13] suggest a content-based
recommendation system with linked dataset exploration of open data in
the scenario of movies, such as DBpedia. The work also contributes to the
identification of similarity in these bases and it allows item recommendations
with the trained system.

In the CF class recommendation system, we have identified the Heitmann
and Hayes [15] proposal that uses LOD to increase what the system knows
about new users or new items. It helps to solve the cold-start problem, which
is very common in open recommendation systems, happening when the system
has little information about a new user, a new item, or when it did not have
many interactions.

Some components proposed in MOOCLink [12] and in [15] were adapted
for application in our proposal, such as the application of an integration

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 121

service using the Karma Web to integrate data from several sources into the
RDF (characteristic of LOD), as described in detail in the Section 5.

The last aspect identified is Architecture. It refers to the implementation
status of the system, which involves details such as whether the proposal
is already available to be used (or not) until part of the process has been
developed. It also includes information on allocation and access, i.e.,
how the contribution is materialized (e.g., web-based tool, web-based
architecture, desktop application) [22]. Among the analyzed works, only the
OERecommender project [29] differs in this aspect, being a web widget that
allows the collection on information of the user when added to the browser,
making searches and showing the recommendations of OER according to
the algorithm. The other works—MOOCLink [12], MOOC-Rec [8], and
MOOCRec.com [20]—present solutions based on the web, and a user can
access them through a URLs.

Based on information from related work and according to the
characteristics of the recommendation systems. Table 1 summarizes the most
related systems, namely: MOOCLink [12], MOOCRec.Com [20], MOOC-
Rec [8], and OERecommender [29]. Meanwhile, our proposed Web-Based
Recommendation System is referenced with the acronym ‘‘WBRS” in the last
column.

Regarding the status of each project, [29] and [8] have not implemented
their solution yet. [20] have implemented their solution and it is available for
use. MOOCLink [12] is finished but it is not deployed on any web server for
use (i.e., it is not running).

As observed in Table 1, our work differs from others in some features.
The effective contribution of our work is the creation of a recommendation
system applied in the context of MOOCs. In this context, it is possible to
include scientific contributions involving the recommendation process and the
development of the work, such as part of the courses’ recommendation in
addition to whole courses, delivering the users’ packages of courses according
to their knowledge gap.

One of the contributions regarding the recommendation technique is the
use of an approach called “hybrid recommendation”, which is a combination
of CF and content-based filtering. This approach makes use of a Machine
Learning algorithm, more specifically Topic Modeling, which group course
topics to identify similarities between them and optimize the recommendation
process, as presented in the Section 6.

In addition, the application of LOD to the collected background data
in our proposal allows the construction of a recommendation with more
advantages regarding the use of crawler or CAM (Contextualized Attention
Metadata). Another important differential of this work is the definition and
analysis of MOOCs within a larger context, called MOOCs ecosystems

122 Reuse in Intelligent Systems

conceptualized from the SECO concept that contributes to the information
reuse and integration based on actors’ interactions in the ecosystems. We also
consider the fact that all the related projects have a multi-provider approach,
but only our proposal presents a recommendation for parts of courses (as well
as complete modules or courses).

3. MOOCs Ecosystems

The SECO perspective for the MOOCs platforms has still been little explored.
The discussions pointed out in [26] or in [9] highlight the difficulties in

Table 1: Comparison of related work and the web-based recommendation system (WBRS) architecture
proposed in our research (RS = the concept of recommendation systems).

[12] [20] [29] [8] WBRS
R

ec
om

m
en

da
tio

n
Te

ch
ni

qu
e

RS related to
CBR X

RS designed
with CF X

RS uses MF X

Hybrid X

C
ro

ss
-

D
im

en
si

on
al

Fe

at
ur

es

Linked Data X X

Machine
Learning X

Slop One X

Ty
pe

 o
f

R
ec

om
m

en
de

d
It

em
s

Courses X X

OER X

Courses and its
parts X

O
ut

pu
t

Fo
rm

System-driven X X X

Automatically
provided X

A
rc

hi
te

ct
ur

e
St

at
us

Not
Implemented X X X

Finished but not
running X

Running X

A
rc

hi
te

ct
ur

e
In

te
rf

ac
e Web X X X X

Web Widget X

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 123

identifying the specific functionalities of MOOCs as a barrier to understanding
the MOOCs learning community ecosystem. It happens because the research
on MOOC still deals with the general characteristics of virtual learning
community ecosystems. Thus, the actors’ roles and their relationships need
to be defined at different stages of provider utilization. The SECO concept
also considers that these relationships are supported by the technological
platform of the MOOCs (or technological market of MOOCs). This business
model functions as a unit and operates through the exchange of information,
resources, and artifacts [16].

This broader vision of MOOCs providers brings several benefits to those
involved in addition to sustainable development. We can be mention that
MOOCs: (a) facilitate innovation, knowledge sharing, and software evolution;
(b) strengthen cooperation in its multiple and independent entities; (c) increase
the attractiveness of the platform, bringing new players to the ecosystem;
and (d) assists in choosing the best platform, through the identification and
analysis of software architecture, mapping product design, business tasks, and
risks [4].

To define these actors’ roles and their relationships, it is necessary
to understand the activities and responsibilities of each role in the SECO
concept. To do so, different concepts about the actors’ roles in ecosystems
are investigated in [18]. These categorizations are adapted and presented in
Table 2.

Table 2: Description of SECO actors’ roles. Source: (Lima et al. 2016).

H
ub

Keystone Adds value to SECO and is primarily responsible for maintaining health, i.e.,
longevity and growth. It can represent the dominant entity of influence.

Dominator Extracts value from SECO, putting its health and sustainability at risk.

N
ic

he
 P

la
ye

r

Customer Represents the customer, who generated the need for the SECO software
products.

Competitor It tries to extract value from the ecosystem but does not threaten the SECO’s
health.

Supplier Actor providing one or more products or services required by the ecosystem.

Vendor Sells SECO software products. Can be classified as Reseller, Independent
Software Vendor (ISV), or Value-added Reseller (VAR).

Developer Internal developer linked to SECO formative entities, being classified as
Influencer, Hedger or Disciple.

E
xt

er
na

l A
ct

or

3rd-party
developers

Promotes SECO and its products, and can propose improvements; similar to
Influencer, but external to SECO, having no formal bond with Keystone.

End-user Product’s final user, but differs from Customer for not hiring Keystone
service.

External
Partner

Contributes to the SECO well-being through attitudes, such as the promotion
of SECO and its products, also proposing improvements.

124 Reuse in Intelligent Systems

For the categorization of roles in MOOCs ecosystems, it is necessary to
observe the platforms’ basic structure and their actors. Since MOOC is a novel
technology, there is still no consensus regarding the groups of actors involved.
In [5], the most prominent groups of actors are teachers, students, private
actors (e.g., advertisers or employers), and higher education institutions. In
[11], the authors describe two more actors (course designers and manager),
refer to teachers as tutors, and refer to students as learners, i.e., they do not
consider only the actors with more participation in the platforms. In [26], there
is also another change from that one addressed in [11]: the course designers
actor is mentioned of “those who make MOOC”, i.e., in a more generic way.

For the conceptualization of the MOOCs ecosystems, it is possible to
correlate these groups with the predefined SECO roles, considering that each
group on the platforms performs some functions and interacting with certain
groups, where both can exchange information. This correlation is presented in
Table 3, which also contemplates three different stages [26], where each role
can be played by different roles in each of the stages:
 • In the first stage, students use an email and some personal information

to register with the MOOC provider. At that point, they create a new
account that can be used to log in for the first time and finally sign up for
new courses. Although they can acquire a new product from the platform
(courses), they still lack enough knowledge for any kind of interaction
with other MOOC users. This makes these students play the role of
consumers [26];

 • In the second stage, student interactions happen in a separate way, i.e.,
part of it within the platform, in the existing forums and discussions; and
another part outside the platform, seeking knowledge from other sources,
downloading materials from the internet, editing and producing the own
material based on internet content, and sharing this kind of knowledge
with other users in the learning network. This knowledge can be any
personal resource, process or personal learning notes, and they are shared
in forums, wikis, email or any other means of interaction. As such channels
disseminate knowledge of MOOCs ecosystems based on inserting an
external knowledge based on personal perceptions in the network, students
can be considered as decomposers [26], which in a perspective of SECO
is equivalent to a dominator, since these are responsible for extracting the
maximum value from the ecosystem, destroying it [28];

 • In the third and last stage, the knowledge absorbed by the students allows
them to assist new students in the learning process, collaborating with
the community as they are already able to deal with doubts and learning
difficulties, as well as usability issues. With these characteristics, in this

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 125

stage, students increase the community’s strength and can be considered
as suppliers [26].

Knowledge exchange based on existing interactions can be mapped from
the identified roles. In this context, it is possible to emphasize the difference
among the concepts of data, information, and knowledge. Data are simple
facts that become information, if organized into an understandable structure.
Meanwhile, the information can become knowledge when, from a cognitive
processing/validation, can fit in a context as a result of this process, besides
being able to make predictions [10].

In MOOCs ecosystems, the knowledge exchange happens based on the
connections between the mapped roles, where information is exchanged in the
means provided by the MOOC provider itself, such as forums, chats, wiki,
and others. Even logs are a form of information exchange in these ecosystems
[26]. Table 4 consolidates technical information from the providers themselves
and some works in the literature that explore the main interactions between
actors in MOOCs ecosystems, allowing to better visualize the importance of
each connection among providers.

Each interaction presented in the first column of Table 4 can be represented
in the graph in Figure 1, where a node represents an actor and edges are the
interactions between them. The only node that is connected to all other actors
is the “MOOC Provider” identified in the lower right corner of Figure 1.
Another detail that can be observed in the graph is the direction of the edges
that is equivalent to the direction of the arrows of the interactions identified
in Table 4.

As the course is absorbed by providers (who store, process and show this
information), there is a dependency between the student and the provider,

Table 3: Relations between SECO’s roles and MOOCs ecosystems’ roles.

1st Stage 2nd Stage 3rd Stage

Keystone Higher Education Institutions

Dominator – Students Students

Customer Students

Competitor Advertisers

Supplier Teachers, Course
Designers

Teachers, Course
Designers

Teachers, Course
Designers, Students

Vendor MOOCs Providers (ISV)

Developer Course Designers

3rd-party Developers – – –

End-user – – –

External Partner Employers

126 Reuse in Intelligent Systems

since whenever he/she interacts with the platform, the MOOC provider will
make such information available. Moreover, given the large amount of data
that is exchanged, the Student → MOOCs Providers interaction is the one
that most generates knowledge for the ecosystem. This extracted knowledge
comes to the student in text format, video, games, audio, animations, blog, chat,
forum, e-mail, or even virtual communities.

Table 4: Interaction between different groups of stakeholders.

Interaction This Interaction Exists. . .

Students → MOOCs
Providers

to help students follow courses taught by teachers.

Students → Higher
Education Institutions

to help students improve their employability, looking for information
on the course quality.

Students ↔ Employers because students may exercise their abilities with employers from the
ecosystem who, in turn, have access, via a MOOC platform, to a large
pool of students as well as to detailed data about their skills.

Students → Advertisers if the advertiser’s presence and their payments allow platforms to
offer courses to students for free.

Students → Students because students might be influenced; as a result, student learning
outcomes depend on interactions with fellow students.

Teachers → MOOCs
Providers

because teachers seek to disseminate their teaching materials and
experiment with new pedagogies.

Teachers → Higher
Education Institutions

because even if teachers can offer a course in their own name, they
usually still depend on their respective university.

Teachers → Employers because teachers value employers’ presence indirectly if they
contribute to attracting more students.

Teachers ↔ Students because they can interact with each other via the MOOCs’ platform,
by social media, or by telephone, meeting and answering activities in
real life. Currently, students have organized offline meetings.

Higher Education
Institutions → MOOCs
Providers

because institutions can decide to invest money and time in a MOOC
platform.

Higher Education
Institutions → Teachers

since institutions pay teachers and encourage them via other non-
monetary rewards.

Higher Education
Institutions → Employers

because institutions only value the participation of private actors to
the platform indirectly.

Employers → MOOCs
Providers

because employers see MOOCs as a flexible and cheap tool to train
their staff.

Advertisers → MOOCs
Providers

since advertisers are ready to pay before having access to the
platforms’ visitors, as well as information about them.

Course Designers →
MOOCs Providers

because courses are designed and published in the MOOCs providers’
platforms.

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 127

However, in addition to the extraction of knowledge from a provider, a
student can also provide knowledge. Some actions, such as assisting other
users in the forums, submitting a response to a proposed activity, attending
classes in each course or even signing up to the system can generate knowledge
for other actors. In this context, providers are responsible for storing such
information in databases and making it available to other actors, such as higher
education institutions or teachers in the processes of student assessment and
querying (explicit knowledge), or for management, statistical data extraction
and decision making about courses’ pedagogical plans.

4. MOOCs Data Extraction

In order to define a recommendation architecture to support multiple providers,
it is necessary to map the level of data openness, as well as the possibilities for
obtaining such data. To do so, this section maps data from the most common
providers based on the technical literature, as shown in Table 5.

In order to choose which provider could be used in the referral system
based on the data openness, it was identified that only the edX provider API
does not have a totally open availability of the data to use, since it requires an
OAuth authentication, as described in [12]. Meanwhile, the other providers
(Coursera, Udacity, Khan Academy, and OCW) hold free access and were
selected to the recommendation system.

Other information that can be considered in Table 5 is the type of
information that can be extracted from each server and the uniqueness of data
format. All APIs allow the extraction of data in JSON format, which makes
it easier to integrate with the recommendation system, whose architecture is
proposed in the next section.

Fig. 1: Interactions in the network of actors within the ecosystem.

Criminal minds

Scandal

Portlander

Flight

Silver linings playbook

The birdcage

OR
Fig. 4.10

Redbox Amazon Ours
0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
A

v
e

ra
g

e
 r

a
n

k
in

g
 v

a
lu

e
s

0.38

0.65

0.71

0.37

0.53

0.67

0.53

0.65

0.42

Avg P@1 Avg P@3 Avg MRR

Fig. 4.11

Fig. 5.1

5

3

7

2

1

4

6

Employers

Teachers

Higher education institions

Students

Course designers

MOOC providers
Advertisers

institutions

128 Reuse in Intelligent Systems

5. Proposed Architecture

In this section, we address a recommendation system architecture and its
stages, from the providers presented in the Section 4. To build a collaborative
and open recommendation system, we opted to make use of Linked Data
from the data integration approach of several MOOCs providers exposed in
[12]. The use of this integration technique is optimized in our work. Another
approach is the modeling and labeling of topics, detailed in the 6, which
explore techniques that can improve data representation and facilitate the
identification of courses’ central topics. The architecture model with these
elements is presented in Figure 2.

The most benefited actor in the recommendation process presented in this
chapter is the student, since courses and part of courses are recommended
to them. The impact of a well-made recommendation is directly connected
to better satisfy these students with the recommended content, which may
influence them not to leave the courses. Consequently, it has the effect of

Table 5: Information about provider extractions.

How to Obtain Data? It is Possible to Extract. . . Data Format

C
ou

rs
er

a

Coursera API all of Coursera’s courses, instructors, and
partnering universities JSON

ed
X

Crawler limited information Several

edX API
Courses API, Data Analytics API, Discussion
API, Enrollment API, Grades API, User API,
Discovery API

JSON

RSS Feed a list of edX course list XML

U
da

ci
ty Crawler limited information Several

Udacity API course catalog information and nanodegree
courses JSON

K
ha

n
A

ca
de

m
y

Khan API

“topic tree” which gives the entire hierarchy of
Khan Academy’s course offerings. It can also
obtain the list of all badges, badge categories,
details of a particular course, etc. JSON

O
C

W

OCW API
indexes of all these courses (e.g., links, hash,
provider, language, tags, author, title, description,
published, indexed, modified, categories)

JSON

Excel Dump
all the courses (e.g., links, hash, provider,
language, tags, author, title, description,
published, indexed, modified, categories)

Excel

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 129

reducing dropout rates in providers and the student’s existing knowledge gap.
In general, these benefits positively affect other roles.

It should also be observed that the approach of an open recommendation
system (i.e., open data supporting the recommendation process) was adopted
precisely to consider the multiple data sources of the MOOCs providers
chosen. One of the benefits of using a variety of sources is to alleviate common

Fig. 2: Proposed architecture model.

Fig. 5.2

ADS

Higher education
institutions

Empleyers

Teachers
MOOC

providers
Advertisers

User

User’s query

Web-based
recommender

system

Input data

Recommended
resources

Knowledge
base

Recommendation engine

SPARQL
Endpoint

Recommendation
algorithm

Study plan
indetifacation

Knowledge
gaps

identification

B
a

ck
g

ro
u

n
d

 d
a

ta

Courcera Udacity

OCW

Apache Jena Fuseki Server

RDF data

Khan
academy

User-item
matrix

Topic
modeling/
labeling

Employers

identification

Coursera

130 Reuse in Intelligent Systems

problems in recommendation processes, such as cold start (i.e., the problem
of recommending a course when no data is available about the item or user)
in approaches that use Collaborative Filtering (CF). The enrichment of
recommendations and the reduction of low user rating problem [15] can also
be cited as benefits.

The flow of the recommendation process is determined by the direction
of the arrows in Figure 2. Dashed lines represent actions that are performed
outside the main stream. The entire process can be organized into some layers
and steps:
 • A user submits a refined and textual search through a series of search

options in the Web-Based Recommender System. To make the
recommendation, the system searches the Knowledge Base, selecting
specific data from a student (e.g., curricular history), general data of the
actors related to that student in the ecosystem (e.g., information from the
universities where the student took the courses), and other information
inferred by the recommendation system (e.g., user’s competencies).
This information is part of the Input Data, i.e., information that helps
in the process of recommending a given user and which represents the
knowledge acquired from interactions in the ecosystem. As the student is
the main beneficiary of the recommendation process, the step illustrated in
Input Data box in Figure 2, contemplates the actors who have interactions
with students (i.e., just course designer is not included);

 • Next, the SPARQL Endpoint is initiated. This semantic web technology
allows the Resource Description Framework (RDF) Data model to be
searched in different schemas;

 • Heitmann and Hayes [15] introduce some details on how to integrate
Linked Open Database (LOD) into recommenders. Although they have
applied in a different scenario, the components used can be pointed to
integrate the data in our Knowledge Base. Two components are defined: the
data interface for capturing RDF data, using the HTTP protocol to access
the URIs; and the integration service to match the representation of data
from different sources. These procedures are executed in our architecture
by an integration tool called Karma Web [27], which allows these
procedures to be organized easily and quickly. The integration process
works by informing which MOOC API is used to the Karma Web. This
process is possible since the data from the chosen MOOCs providers are
in the JSON hierarchical format. Quickly and intuitively, data is converted
from raw JSON to RDF data. The choice of providers, choice motivation
and analysis of what can be extracted are presented in the Section 4;

 • With data in RDF, the next step in the architecture process is the topic
modeling method that integrates that RDF data representing the knowledge

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 131

base with the background data and transform it into a user-item matrix,
where the user column contains information from the knowledge base and
the background data represents the item. These procedures are detailed in
the Section 6. This step also introduces techniques for labeling topics and
arranging these topics in the user-item matrix;

 • Finally, the user-item matrix is read by the recommendation engine
procedures, which also is supported by the knowledge base data for
process enrichment. First, Knowledge Gaps Identification collects the
user’s skills as well as desired qualities by defining what the system calls
a knowledge gap. The system then uses the matrix and course information
to identify which courses or parts of courses may be enough to fill the
student gap. The stage responsible for this is the Study Plan Identification.
Then, the last step is to use these courses and identified parts, ranking
them according to a criterion of relevance in Recommendation Algorithm,
so just send them back to the user.

In addition to the benefits to students in their choice processes, the
proposed architecture presents features capable of reaching the four stages of
knowledge reuse defined in [21]: (a) capturing or documenting knowledge;
(b) packaging knowledge for reuse; (c) distributing or disseminating knowledge
(providing people with access to it; and (d) reusing knowledge.

As shown in Table 4, MOOCs ecosystems focus on a shared management
in order to strengthen stakeholder collaborations, considering that software
asset management is decentralized in a SECO. We can cite as an example
the fact that in Coursera any user of the community can create a course and
this course can be made available on the platform at the same time. Higher
education institutions also register development partnerships with suppliers.
This means that the ecosystem perspective allows stakeholders to participate
in the management of this reusable knowledge by consuming, providing or in
any other activity explained in Table 3.

These tools consolidate inputs that benefit diverse ecosystem actors with
reusable knowledge, as well as grouped, stored, and user feedback. Moreover,
an advantage could be automatically identifying new course demands,
consequently affecting contributions to partnerships and alliances, if a common
interest demand is identified. Further advantages include enhancements to the
existing content or even software improvements indicated by providers.

6. Modeling and Labeling Topics

To fill in the user-item matrix, the technique of topic modeling is used
to identify which are the central themes linked to the user and to the item
of this matrix, as well as to facilitate the representation of these themes for

132 Reuse in Intelligent Systems

use in the recommendation engine. The most common topic modeling
processes currently work as follows: from a collection of documents
D = {d1,d2, . . . , d|c|} and their respective fixed vocabulary of words
V = {w1,w2, . . . , w|v|}, they distribute all of these words (represented by terms
w) into groups (represented by topics θ) with their probability p (w| θ), which
gets higher each time that term is more related to a topic. Then, through the
probability distribution p (θ |d) technique, it is verified the probability of each
document being linked to each topic. Thus, an association between topics and
documents is created [25].

However, these topics are not always easy to understand. This can cause
a loss in the part of the topic modeling goal regarding the identification of
documents’ central theme. This can be due to a lack of understanding of
the enumerated terms, either because the lack of domain knowledge or the
difficulties in choosing a single theme among many words. To address such
problem, there are topic labeling methods that seek to select a word (called
label) to express the theme or topic area [19].

Nolasco and Oliveira [24] describe some known techniques for applying
topic modeling and labeling in practice. In addition, it is analyzed the
possibilities of its application and where it is most used. Tables 6, 7 and 8
give a brief summary of the techniques addressed in [24] and their respective
definitions.

Although LDA is still one of the most used techniques for topic modeling,
the state-of-the-art presents methods that use LDA as a base but modify basic
assumptions to better represent data according to the application domain
and its particularities. In order to insert a practical and better-organized
representation for the recommendation system proposed in this chapter, we
seek to select the best techniques of topic modeling from those presented
in Table 6. Moreover, the most appropriate techniques of topic labeling are
selected from the presented in Tables 7 and 8.

We must consider techniques that best suit the fact that the recommendation
system proposed here uses a massive amount of data and that this mass of data
is constantly modified, since courses are often created and/or excluded in the
MOOCs providers. The representation of topics and labels across different
domains of MOOCs courses would become less practical in a manual way. To
meet these needs, specific techniques have been chosen which are presented in
Figure 3. The technique chosen in block 2 (Topic Labelling) is justified by the
fact that text-based approaches present better results with such technique than
with other existing ones [23].

In addition, the combined use of these techniques addresses the needs
discussed above, ensuring a better labeling process. Block 1 (Topic Modelling)
in Figure 3 also presents an optimized technique. The LDA [6], which

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 133

traditionally requires the number of topics to be extracted as a parameter to be
inserted, is combined with the stability analysis approach described in [14],
which makes it possible to automatically infer the topics value for a collection
of documents.

Once the techniques have been chosen, it is necessary to define how each
modeling and labeling stage is performed in the process of generating the
user-item matrix. As the proposal of this system is also to recommend part
of courses in MOOCs, in addition to whole courses in these providers, the
matrix item is a vector with those modules and parts of the courses of all the
collected providers (as presented in the Background Data in Figure 2). This
vector is organized and divided into topics. Each topic represents a theme or
learning area. Therefore, for modeling these topics, each course module is a
document with specific content.

The “Topic Modeling” (box 1.1 in Figure 3) step is responsible for
applying the LDA algorithm to process the terms of these document and,
through the distribution of groups, performs the separation of these terms
according to the themes. The default LDA method requires the desired
number of topics to be entered as a parameter. Since the number of themes in
MOOCs environments is large and considering that new themes may emerge
as new courses emerge, the automatic method to number of topics [14] is
integrated in conjunction with the LDA to automatically infer the number of
topics based on the stability of words on top of the multinomial distribution
of each topic. The outputs of this modeling process are the topics with their

Table 6: The most well-known techniques for topic modeling.

1. Topic Modeling Description

Latent Semantic
Analysis (LSA)

It uses linear algebra with SVD (Singular value decomposition)
to decompose a corpus into its subjects. LSA is used to categorize
documents, search for documents by keywords, and generalize results
through similar documents in other languages.

Latent Dirichlet
Allocation (LDA)

Distribution of groups for each term of a textual document and a
distribution of groups for each document. Thus, one can group the
documents according to the probabilities associated with each group.

Extended Topic Models They apply the LDA method in order to expand the basic assumptions
of the method, increasing the possibilities of application and improving
results.

1.1 Implementation
libraries

Description

lda-c C Language

Mallet Java Language

Gensim Python Language

134 Reuse in Intelligent Systems

respective lists of terms with a greater probability related to the topic. As LDA
uses all the vocabulary for the probability distribution, each list contains all
the vocabulary with the respective probabilities that vary according to the
proximity of the relationship between term and topic. The Implementation
Library chosen in this system was Gensim, from the Python language (box 1.1
in Figure 3).

By showing the terms best placed in the probability list of each topic, it is
difficult and time-consuming to define a topic label manually. Therefore, the
Topic Labeling technique uses the topic list itself as input to the process. At the
same time, it uses a statistical method that saves time in the labeling process
and allows data scalability. This method, which corresponds to the “Selection
of Candidates” (box 2.1 in Figure 3), is characterized by using only a sample

Table 7: The most well-known techniques for topic labeling.

2. Topic Labeling Description

Semi-
supervised
Approach

The combined
use of Ranking

Automatically generated labels based on expert collection
training.

Active
Learning

The system extracts terms to represent the area in a simple
way and the experts give feedback until the system sets and
the term is satisfactory to be labeled.

Automatic
Approach

Own list Apply a simple criterion in the list of terms (e.g., the 10 most
relevant).

Statistic over all the
words

The system applies some statistics from all the words in the
collection.

Combination of List
+ Statistical Process

They apply a statistic but considers the list of terms already
organized in topics.

2.1 Selection of Candidates

A sample of the most relevant
documents

Through the associated probability, the system discovers
which are the most relevant documents, not having to use all
the documents for the process.

All content in the collection The whole set of documents is considered.

Content + external databases In addition to the set of documents, they can use external
databases, such as Wikipedia and Ontology.

2.1.1 Text Extraction

Textual Terms are extracted from the text body.

Keywords Through classifications, it aims to extract terms defined by the
author to describe the whole set of documents.

Natural Language Processing
(NLP) extraction

Extraction of nominal phrases using PLN.

Keyword extractor Build an extractor to select keywords.

Based on fast keyword extraction
algorithm

Select all the words that are between stop words and phrase
delimiters (such as a comma).

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 135

of more significant documents in the collection, not considering all the terms
in the lists. This is possible because there is an associated probability (i.e., the
probability of the words in the text of a document being associated to each
topic) in the relationship between Topics and Documents. Thus, the stronger
the association of a document to a topic, the more relevant that document is to
that topic. To select the list of candidate labels for a topic, the technique chosen
in this chapter uses only the relevant TOP D documents of that topic according
to the associated probability. D indicates the number of documents, which is
freely estimated in the application.

Table 8: The most well-known techniques for topic labeling (ranking and label selection).

2.2 Ranking

Term Frequency (tf) Assigns points to terms based on relevance, i.e., how often these
terms appear.

Term Frequency-Inverse
Document Frequency (tf-idf)

In addition to the frequency of tf, they apply a method that can
prevent stop words from receiving high scores.

Degree/Term Frequency
(deg/tf)

Consider how many times the term appears isolated but also
considers how many times it appears in a term.

Modified Label Degree
(mdeg)

It considers the number of occurrences of a candidate label in the
list of labels but also considers how often that label appears in
other candidates by assigning different weights in the formula.

2.3 Label Selection

Individual Selection Select only the first label in the list.

Inter-topic Selection Applied when the same label appears in two topics.

Intra-topic Selection Applied to select the best sequence of labels within the same topic,
aiming to facilitate the understanding.

Fig. 3: Techniques of topic modeling and labeling chosen.

Fig. 5.3
1.1.

Implementation
libraries

Gensim

2.1. Selection of
candidates

Sample of most
relevant documents

2.2. Ranking

Term frequency
(tf)

2.3. Labek
selection

Individual selection

2.1.1. Text extraction

Based on fast keyword
extraction algorithm

1. Topic modeling

Extended topics
(LDA with an automatic

method to number
of topics)

2. Topic labeling

Combination of list +
statistical process

Label

136 Reuse in Intelligent Systems

With the documents properly selected, the next step is to perform the
“Text Extraction” (box 2.1.1 in Figure 3), which consists of implementing
the Fast Keyword Extraction algorithm. This algorithm has as input a list of
stop words and phrase delimiters (such as commas). By having the documents
iterated, the algorithm checks all the words that are between such stop words
and delimiters, considering this text as primitive labels, i.e., they are not
candidates yet. This is because there is still a second check that is not in fast
keyword extraction. To select the most relevant words of TOP D documents,
the text extraction steps check if these primitive labels are contained in the
TOP W terms of topic θ. If they are, enter the list; otherwise, check the next
ones until it finds one that is contained. The variable W corresponds to the
number of terms and, similarly to D, this value is estimated freely in the
application.

The next step is the “Ranking” (box 2.2 in Figure 3), where the technique
TF (Term Frequency) is applied. The objective is to assign points to each
candidate according to the relevance that this term has. In this case, the
relevance is defined by that term’s frequency of occurrences. Since the stop
words have already been deleted in the previous step, there is no need to apply
IDF, i.e., a technique that is usually worked together with TF to exclude stop
words.

The last step is the “Selection of Labels” (box 2.3 in Figure 3). As the
candidates were ranked in the previous step, the options already appear in
order of relevance, which means that we have a term that represents the topic
well by selecting the first one from the list; so, it can be considered a label.
This is also possible because we want to select an individual label. In the
case of multiple label selection, some adaptations would have to be made and
another technique should be adopted.

Therefore, the results of this last process are the topics θ (each of them
with its respective list of terms R) and a label l for each topic. These topics
represent the item in the user-item matrix, as shown in Table 9. For better
reading by the recommendation system algorithm, this list is transformed
into a vector notation. Then, we have a vector of discipline syllabus (θi)
and their respective areas (li). To identify the user of the matrix, we must
construct another vector. This vector represents what each user knows about
each of the identified areas. To do so, we need a new collection of documents
D’ = {x1, x2, . . . , x|y|}, where each document xi is represented by a “curriculum”,
i.e., a document from the Lattes1 curriculum, a document from the LinkedIn2

curriculum, or even the student completed courses information in the selected

1 An integrated system maintained by the Brazilian government to manage information about
researchers. Available in: http://lattes.cnpq.br/.

2 Available in: https://www.linkedin.com/.

https://www.linkedin.com
http://lattes.cnpq.br

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 137

providers. This information is contained in the Knowledge Base system (as
shown in Figure 2). Thus, the LDA method is applied again, but this time only
with a distribution of groups for each document in that collection.

Considering the existing topics in the matrix, it is not necessary to apply
the method for inference in the number of the topics again. The distribution
of groups then generates the relationship between documents (curriculum)
x and topics (of elements) θ with their respective associated probabilities
p (θ i|x1). The more associated the words of a document with the terms of a topic,
the greater the associated probability, and consequently the more relevant that
document is for the topic in question. In this context, the system distributes all
documents in the user of the topic area with the associated probability. This
distribution is also be given in vector format. Since the number of curriculums
is much smaller than the number of discipline syllabus, several areas have an
associated curriculum in the matrix with the associated probability equal zero.
The notation for the complete matrix is shown in Table 9.

With the item vectors, user vectors, and label for distribution, the
recommendation system has more organized data and ranked elements to
perform the Knowledge Gap Identification, Study Plan Identification, and
then the recommendation of the best course module options to students. The
prediction techniques of the recommendation system allowed, for example,
filling in the user column in Table 9 that has zero or low associated probability,
i.e., where the student does not have curricular experience with inferences.
The system understands that the higher the degree of inference, the greater the
student’s interest in this content, and it is possible to recommend the elements
of that area in an organized way.

7. Example of Use

This section explores an example of how the system would perform in a
situation where a user wants to know the best course/module to be done,
given a preview interest in a knowledge area. This example of use helps to
understand the idea of our solution and provide a preliminary evaluation of
how the recommendation system works.

In the present example, the student with a dummy name (Tom) accesses the
recommendation system after having completed the MOOC course “Intro to

Table 9: User-item matrix notation.

Item User

Topic–Label Terms (Discipline
Syllabus Vector)

Vector of Documents (Curriculums)–
Associated Probability

θi – li Ri x1 – p (θi|x1), ..., xn – p (θi|xn)

138 Reuse in Intelligent Systems

HTML/CSS: Making web pages”3 from the Khan Academy provider. During
the course, Tom realized that the classes contained some Structured Query
Language (SQL) commands, but that the course did not address any further
explanation on the subject. When doing some searches with the word “SQL
web” in this provider, Tom visualized that there are several courses addressing
the subject, but that in his perception none would be appropriate according
to his interest. Therefore, Tom’s intention in accessing the recommendation
system is to receive recommendations on what would be the best course/
module that could fill this knowledge gap.

Upon accessing the system, Tom searched for the words “SQL web”, just
as he had watched on the Khan Academy platform. The system allows Tom to
select some search filters, that were: Start Soon (for availability), Introductory
(in level), English (as the language), and Free (for value). The moment Tom
submits his search, the first process of the recommendation system is to retrieve
the input data from the user to the knowledge base. The key information
retrieved at this stage is the student curriculum information, such as course
history from other providers, Lattes curriculum, and LinkedIn curriculum.
Then, SPARQL groups all the course information and its menus contained in
the Background Data layer. Since this layer contains information from four
different providers, including the Khan Academy, Tom’s previous search
results are also grouped together for data integration. Through the Apache Jena
Fuseki Server, the raw data is transformed into an acceptable RDF, creating
and maintaining the SPARQL endpoint and then executing SPARQL queries
according to the search submitted by Tom.

To populate the user-item matrix, the Topic Modeling step organizes the
search results of SPARQL in the item column, as shown in Table 10. Then
the Topic Labeling step generates a single label for each topic, filling the first
column of the matrix, as shown in Table 10. Then, information previously
retrieved by the Knowledge Base is processed only by the Topic Modeling
step, which groups Tom’s curriculums according to the course topics grouped
in the item. This step populates the user column of the matrix, as shown in the
last column of Table 10. With the matrix filled in, the information can be sent
to the recommendation engine, which in turn makes predictions based on user
columns where the user has low or zero associated probabilities, being able
to predict which course or parts of courses would match the student’s needs.

From this functionality not just recommending complete courses, it
was possible to recommend the book “SQL for Web Nerds”4 which is part

3 https://pt.khanacademy.org/computing/computer-programming/html-css.
4 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-171-software-

engineering-for-web-applications-fall-2003/readings/.

https://ocw.mit.edu/courses
https://ocw.mit.edu/courses
https://pt.khanacademy.org

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 139

of the “Software Engineering for Web Applications” course contained in the
OCW provider. Considering that this book was the best-rated content and that
Tom has not accessed this material before, the system instantly retrieves the
result.

The entire recommendation process is saved in the knowledge base in
order to improve the recommendation process for future recommendations.
The recommendation is considered successful if Tom uses the recommendation
system next time and the module that was recommended to him appears as
a complete module, which indicates that he used the content. If it has not
been completed, the engine considers this information to prevent Tom from
receiving the same unwanted recommendation again.

The functioning representation of the recommendation system used in
the example of use demonstrates the usability, functionality, and relevance
of the proposed approach. The system also gains scalability by using topic
modeling and retrieval with open source data. We believe that it can be
implemented in a real MOOC scenario, where it allows reaching the customized
recommendations for each student according to his/her motivations and needs.
In addition, it would reinforce the metric effectiveness as a way of identifying
a study plan with part of courses from multiple providers.

8. Final Remarks

The use of recommendation systems has been applied with different
objectives and with algorithms and processes increasingly optimized as
several challenges arise in different domains. This work addresses the use of
Linked Open Data and topic modeling and labeling methods to integrate data
and create an architecture for a web-based recommendation system capable of
recommending courses, modules or parts of courses, and relevant materials
of students’ interests in multiple MOOCs providers. From this environment,

Table 10: Examples for illustrating attacks.

Item User

Topic–Label Terms (Discipline Syllabus Vector) Vector of Documents
(Curriculums)–Associated
Probability

θ1–Database {SQL for Web Nerds, Introduction to Databases
and Basic SQL, Advanced SQL, Accessing
Databases using Python}

Lattes –0.89, Curricular
History –0.75, LinkedIn –0.71

θ2–Computer
Networks

{Introduction to Networking, The Network
Layer, The Transport and Application Layers,
Networking Services, connecting to the Internet,
Troubleshooting and the Future of Networking}

LinkedIn – 0.29, Curricular
History –0.25, Lattes –0.11

140 Reuse in Intelligent Systems

we conceptualize the MOOCs ecosystems formed from such providers, their
users, and other actors, describing how this approach can bring benefits to the
learning processes, to the platform’s sustainability and to the stakeholders. A
motivation for this conceptualization is to map roles, actions and interactions
between users, allowing the understanding of these platforms as MOOCs and
not only as a VLE. Considering the characteristics of the proposed architecture,
it is possible to support knowledge reuse within the ecosystem.

We are currently implementing the proposed architecture and preparing the
evaluation of the algorithms chosen to recommend items based on experiments
in vitro and in vivo. The first aims at verifying the algorithm efficiency and
effectiveness from a controlled experiment. Then the results will be compared
with the results from related work. The second is a feasibility study to evaluate
the solution with two groups of people who receive a series of pre-established
tasks, where the first group performs them using the proposed solution, while
the second group does not. For this study, we will invite students from different
backgrounds (initial phase, final phase or already working in a specific area),
all from a Brazilian higher education institution. At the end of the study, the
results will be compared, and the participants will answer a questionnaire,
providing some feedback. Finally, we will collect data from documents and
repositories used in the study in order to analyze elements of our proposed
solution in details.

References
 [1] Charu, C. Aggarwal. 2016. Recommender Systems. Springer International Publishing,

Cham, Feb. 2016.
 [2] Sunita, B. Aher and L.M.R.J. Lobo. 2013. Combination of machine learning algorithms for

recommendation of courses in E-Learning System based on historical data. Knowledge-
Based Systems 51: 1–14.

 [3] Luisa Aires. 2015. E-Learning, online education and open education: A contribution to a
theoretical approach. RIED. Revista Iberoamericana de Educación a Distancia 19(1): Sep.
2015.

 [4] Olavo Alexandrino Loiola Pinto Barbosa, Rodrigo Pereira dos Santos, Carina Frota Alves,
Claudia Maria Lima Werner and Slinger. Jansen. 2013. A systematic mapping study on
software ecosystems from a three-dimensional perspective. pp. 59–81. In: Software
Ecosystems: Analyzing and Managing Business Networks in the Software Industry.
Northampton/USA: Edward Elgar Publishing, 1 Ed.

 [5] Paul Belleflamme and Julien Jacqmin. 2016. An economic appraisal of MOOC
platforms: Business models and impacts on higher education. CESifo Economic Studies
62(1): 148–169, Mar. 2016.

 [6] David M. Blei, Andrew Y. Ng and Michael I. Jordan. 2003. Latent dirichlet allocation.
Journal of Machine Learning Research 3: 993–1022.

 [7] Paul Bond and Faye Leibowitz. 2013. MOOCs and serials. Serials Review
39(4): 258–260, Dec. 2013.

A Recommendation System for Knowledge Reuse in MOOCs Ecosystems 141

 [8] Fatiha Bousbahi and Henda Chorfi. 2015. MOOC-Rec: A case based recommender system
for MOOCs. Procedia—Social and Behavioral Sciences 195: 1813–1822.

 [9] Rodrigo Campos, Rodrigo Pereira dos Santos and Jonice Oliveira. 2018. Recommendation
systems for knowledge reuse management in MOOCs ecosystems. pp. 46–48. In: Anais
do XIV Simpósio Brasileiro de Sistemas de Informação (SBSI), editor, XI WTDSI–XI
Workshop de Teses e Dissertações em Sistemas de Informação. Caxias do Sul/RS, Brasil.
Porto Alegre: SBC.

 [10] Paul Cooper. 2017. Data, information, knowledge and wisdom. Anaesthesia & Intensive
Care Medicine 18(1): 55–56, Jan. 2017.

 [11] Thanasis Daradoumis, Roxana Bassi, Fatos Xhafa and Santi Caballé. 2013. A review on
massive e-learning (MOOC) design, delivery and assessment. pp. 208–213. Proceedings
8th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
3PGCIC.

 [12] Chinmay Dhekne. 2016. MOOCLink: Linking and Maintaining Quality of Data Provided
by Various MOOC Providers. Ph.D. thesis, M.S. thesis, Arizona State University.

 [13] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Davide Romito and Markus
Zanker. 2012. Linked open data to support content-based recommender systems. Conf. on
Semantic Systems.

 [14] Derek Greene, Derek O’Callaghan and Pádraig Cunningham. 2014. How Many Topics?
Stability analysis for topic models. pp. 498–513. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, Apr. 2014.

 [15] Benjamin Heitmann and Conor Hayes. 2010. Using linked data to build open, collaborative
recommender systems. In 2010 AAAI Spring Symposium Series.

 [16] Slinger Jansen, Anthony Finkelstein and Sjaak Brinkkemper. 2009. A sense of community:
A research agenda for software ecosystems. pp. 187–190. In: 31st International Conference
on Software Engineering-Companion Volume.

 [17] Yehuda Koren, Robert Bell and Chris Volinsky. 2009. Matrix factorization techniques for
recommender systems. Computer 42(8): 30–37.

 [18] Thaiana Lima, Rodrigo Pereira dos Santos, Jonice Oliveira and Cláudia Werner. 2016.
The importance of socio-technical resources for software ecosystems management.
Journal of Innovation in Digital Ecosystems 3(2): 98–113, Dec. 2016.

 [19] Davide Magatti, Silvia Calegari, Davide Ciucci and Fabio Stella. 2009. Automatic
labeling of topics. pp. 1227–1232. In: Ninth International Conference on Intelligent
Systems Design and Applications, IEEE.

 [20] Dimitrios Malakoudis and Panagiotis Symeonidis. 2016. MoocRec.com: Massive open
online courses recommender system. In RecSys Posters, Jul. 2016.

 [21] Lynne M. Markus. 2001. Toward a theory of knowledge reuse types of knowledge reuse
situations and factors in reuse success. Journal of Management Information Systems
18(1): 57–93.

 [22] Jamshaid G. Mohebzada, Guenther Ruhe and Armin Eberlein. 2012. Systematic mapping
of recommendation systems for requirements engineering. International Conference on
Software and System Process (ICSSP), pp. 200–209.

 [23] Diogo Nolasco and Jonice Oliveira. 2016. Detecting knowledge innovation through
automatic topic labeling on scholar data. pp. 358–367. In: 49th Hawaii International
Conference on System Sciences (HICSS), IEEE, Jan. 2016.

 [24] Diogo Nolasco and Jonice Oliveira. 2016. Topic modeling and label creation: Identifying
themes in semi and unstructured data. pp. 87–112. In: Brazilian Symposium on Database-
Topics in Data and Information Management. Eduardo Ogasawara, Vaninha Vieira. (Org.),
Porto Alegre: SBC.

142 Reuse in Intelligent Systems

 [25] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki and Santosh Vempala.
2000. Latent semantic indexing: A probabilistic analysis. Journal of Computer and System
Sciences 61(2): 217–235.

 [26] Kuang Shanyun, Shen Qin and Zhou Guolin. 2015. Research on the construction of
MOOC learning community ecosystem circle. pp. 199–203. In: International Conference
of Educational Innovation through Technology (EITT), Vol. 2, IEEE, Oct. 2015.

 [27] Pedro Szekely, Craig A. Knoblock, Fengyu Yang, Xuming Zhu, Eleanor E. Fink, Rachel
Allen and Georgina Goodlander. 2013. Connecting the smithsonian american art museum
to the linked data cloud. pp. 593–607. In: Extended Semantic Web Conference, Springer.

 [28] Ivo Van Den Berk, Slinger Jansen and Lútzen Luinenburg. 2010. Software ecosystems:
a software ecosystem strategy assessment model. pp. 127–134. In: Proceedings of the
Fourth European Conference on Software Architecture: Companion, ACM.

 [29] Ariel Gustavo Zuquello. 2015. OERecommender: um sistema de recomendação de REA
para MOOC. Ph.D. thesis, M.S. thesis, State University of Maringá.

Chapter 6
Towards a Computer Vision

Based Approach for Developing
Algorithms for Soccer

Playing Robots
Patrick Hansen, Philip Franco and Seung-yun Kim*

1. Introduction

The fields of robotics and machine learning intersect in the pursuit of creating
artificial intelligence that can dictate the behavior of a robot autonomously.
Machine learning deals with learning a function that describes a dataset to
make predictions and this can be utilized in robotics to have a robot be able
to learn information about its environment and behave accordingly. While
machine learning algorithms can be utilized by a robot to learn its environment,
an additional algorithm is necessary to control the robot’s behavior. This
algorithm would be based on the outputs yielded by the machine learning
models to account for different states the robot may be faced with.

Within the past decade, there have been numerous publications exploring
and applying various areas of machine learning. Our area of interest is
computer vision with a focus on utilizing visual stimuli from a robot as inputs
to a behavioral model. To address the issue of how to create an artificial
intelligence which utilizes machine learning algorithms to drive a controller

Department of Electrical and Computer Engineering, The College of New Jersey, Ewing, NJ 08628,
USA.

Emails: hansenp2@tcnj.edu; francop1@tcnj.edu
* Corresponding author: kims@tcnj.edu

mailto:kims@tcnj.edu
mailto:francop1@tcnj.edu
mailto:hansenp2@tcnj.edu

144 Reuse in Intelligent Systems

algorithm, we will look at the case of soccer playing robots, more specifically
RoboCup1 which has two teams of Nao robots playing against each other.
Image based machine learning models will be trained to have a robot be able
to recognize other robot players (e.g., both teammates and opponents while
being able to differentiate between the two) and recognize the soccer ball and
predicting the distance to the soccer ball. The machine learning models will
yield probabilities describing what the robots see which will be the inputs
to a Petri net model that will dictate the robot’s behavior. Both the machine
learning models and Petri net model will be evaluated to analyze the overall
system effectiveness.

1.1 Related Work
Petri net (PN) models are finite state automata that can be used to graphically
model various antecedent-consequence sequences of actions such as controllers
or algorithms [1]. The addition of fuzzy logic or time on the transitions of a
PN (i.e., a change in the state of the model) allows for more robust models
to be designed. Applying fuzzy set theory to the transitions of a PN leads to
a Fuzzy Petri net (FPN) while the addition of time to the transitions leads to
a Timed Petri net (TdPN). The addition of either allows for robust models
which have been showed can be applied to soccer robot algorithms as well
as other game strategies [2, 3]. Furthermore, PN models have been used to
model a self-navigating robot through a maze as well as model the optimal
path a soccer playing robot should take to score a goal [4, 5].

Using PNs to model soccer playing robots is of interest due to RoboCup
and the initiative of one day have a team of robots that can compete against
humans. This initiative has led to many PN based algorithms designed to
control the behavior of humanoid soccer playing robots. In [3], the different
robots on a single team were modeled to determine how robots should move
to be in the optimal positions to score and in [6] the optimal sequence of
actions to complete a team based task were modeled. Similarly, [7] showed
that teamwork based actions of soccer playing robots with a focus on passing
can be modeled and [8] modeled soccer robot behaviors around having
awareness of scoring opportunities.

While PNs have been used to model the behavior or robots, machine
learning and computer vision have also been extensively used in modeling
the actions of a robot. One major challenge of executing computer vision
algorithms on a robot was addressed in [9] is being able to process video in
real-time. In [9], the use of deep neural networks was discussed to be applied

1 RoboCup Standard Platform League, http://spl.robocup.org/.

http://spl.robocup.org

Computer Vision Algorithms for Soccer Playing Robots 145

to real-time object detection by a robot and this concept was applied in [10]
for soccer playing robots showing that object detection can be used to identify
object necessary to score a goal in a variety of conditions, such as different
lighting.

1.2 Proposed Methodology
Our proposed methodology is shown in Figure 1 where we divide the task
of creating a model for soccer playing robots into the various sections of this
paper. The two primary objectives for the robot are to be able to recognize both
other robots and the soccer ball as well as predict the distance to the soccer ball
based on the image of the soccer ball. Object detection and distance prediction
are two separate machine learning problems each requiring their own models
to be trained. The TensorFlow object detection API will be used to train a
model to classify objects in images seen by the robot as another robot or the
soccer ball. Multiple linear regression and multilayer perceptron models will
be used to predict the distance from the robot to the soccer ball based on a set
of engineered features obtained from the image containing the soccer ball and
this will be discussed in Section 3. Section 4 will show the methods used to
evaluate both machine learning models.

The last element of the system is the Timed Petri net model which will be
described in Section 5. Petri nets allow for controllers to be designed around
antecedent-consequence based rules and time can be incorporated to make
the state transitions more dynamic. The machine learning models trained in
Sections 2 and 3 will yield an initial state for the PN controller based on
what the robot sees and the PN will then determine which action the robotic
goalkeeper should take.

Fig. 1: Block diagram showing overview of proposed methodology. The soccer playing Nao robot
will capture images with the cameras in its head, both the soccer ball and other robots will be detected
using object detection, and then a model to predict the distance of the two previously mentioned
objects will be used. These results will then be used in a Petri net controller to dictate the actions of the

Nao robot (in our case we will be focusing on the goalkeeper).

Nao robot
(camera)

Nao robot’s
behavuir

Soccer playing robot

Object detection
model for ball
(pre-rrained

model)

Object detection
model for nao
robot (custom

model)

Object detection

Distance
prediction

model for ball

Distance prediction

Distance
prediction

model for nao
robot

TdPN
controller

model

TdPN controller

Fig. 6.1 H/T Images 6.2-6.5

p1 p2
t1

p1 p2
t1Fig. 6.6

Fig. 6.7

p1 p2
t1

p1 p2
t1

(3) (2)

(3) (2)

p0 p2

t0

[0.0,0.0]

p1 p3

t1

[1.0,1.0]

Fig. 6.8

p0 p2

t0

[2,2]

p1

Fig. 6.9

p0 p2

t0

p1

Fig. 6.10

y

x

y ³ 1

y – x £ 1

y £ 4

y ³ 1

x – y £ 1

x £ 4

Fig. 7.1

.
x £ 2

x

.
x ³ 1

t

.
x Î [1,2]

x

t

Fig. 7.2

trained

behavior

146 Reuse in Intelligent Systems

2. Object Detection Methodology

2.1 Nao Robot Detection
The first objective for a soccer playing robot is being able to detect where other
robots are. This requires some form of object detection where the model being
used by the robots is trained to recognize other robots. The object detection
API provided by TensorFlow provides the ability of training a custom model
from provided images.2 Using a custom model is necessary because the target
of detecting Nao robots is too niche to find other pre-trained models. One
other possibility that may yield sufficient results is detecting the Nao robots
as people because they are humanoid. In this case, an existing model trained
to detect people could be used instead (e.g., a model trained on the COCO
dataset). Both approaches require a dataset of images containing Nao robots
and will be explored further in Section 4.

Playing soccer is a real time operation so the objection detection system
used needs to be able to execute quickly. Considerations from both the robot
and model need to be made to ensure fast enough execution. From the robot,
the resolution of the image/video will be deterministic of the time required
to process a single frame and identify an object within it. The Nao robots
can support a few different resolutions, but the size of 320 × 240 pixels
was chosen because it provides a good tradeoff between image fidelity and
processing time. The object detection model to be used is MobileNet due to
its ability to handle real time video [11]. Additionally, the TensorFlow object
detection API supports this model and the building of custom classifiers using
the architecture.

2 TensorFlow Repository, https://github.com/tensorflow/models.

Fig. 2: Two example images collected for the object detection model to detect soccer playing Nao
robots (these two images are from the testing set and were not trained on).

Using PNs to model soccer playing robots is of interest due to RoboCup and the initiative of one day have a team of robots that can
compete against humans. This initiative has led to many PN based algorithms designed to control the behavior of humanoid soccer
playing robots. In [3], the different robots on a single team were modeled to determine how robots should move to be in the optimal
positions to score and in [6] the optimal sequence of actions to complete a team based task were modeled. Similarly, [7] showed that
teamwork based actions of soccer playing robots with a focus on passing can be modeled and [8] modeled soccer robot behaviors
around having awareness of scoring opportunities.

While PNs have been used to model the behavior or robots, machine learning and computer vision have also been extensively used
in modeling the actions of a robot. One major challenge of executing computer vision algorithms on a robot was addressed in [9] is
being able to process video in real-time. In [9], the use of deep neural networks was discussed to be applied to real-time object
detection by a robot and this concept was applied in [10] for soccer playing robots showing that object detection can be used to
identify object necessary to score a goal in a variety of conditions, such as different lighting.

Fig. 1. Block diagram showing overview of proposed methodology. The soccer playing Nao robot will capture images with the
cameras in its head, both the soccer ball and other robots will be detected using object detection, and then a model to predict
the distance of the two previously mentioned objects will be used. These results will then be used in a Petri net controller to

dictate the actions of the Nao robot (in our case we will be focusing on the goalkeeper).

(a) (b)

Fig. 2. Two example images collected for the object detection model to detect soccer playing Nao robots (these two images are
from the testing set and were not trained on).

B. Proposed Methodology
Our proposed methodology is shown in Figure 1 where we divide the task of creating a model for soccer playing robots into the

various sections of this paper. The two primary objectives for the robot are to be able to recognize both other robots and the soccer
ball as well as predict the distance to the soccer ball based on the image of the soccer ball. Object detection and distance prediction are
two separate machine learning problems each requiring their own models to be trained. The TensorFlow object detection API will be
used to train a model to classify objects in images seen by the robot as another robot or the soccer ball. Multiple linear regression and
multilayer perceptron models will be used to predict the distance from the robot to the soccer ball based on a set of engineered features

 (a) (b)

https://github.com

Computer Vision Algorithms for Soccer Playing Robots 147

2.2 Image Dataset and Preprocessing
Regardless of the object detection method, a set of images containing Nao
robots is required. In training a custom model, the images collected will be
divided into a training and testing subset. The training set is what the model
will be fit to and the testing set will be used for validation. To compare to a
pre-trained model looking to detect humans, the same testing set can be used
for validation to compare the performance of the two models.

In total, 100 images of Nao robots were collected to make up the dataset
of which 80% was assigned to the training set and the other 20% to the testing
set. The TensorFlow object detection API while using the MobileNet model
outputs boxes around the object detected, so this requires the training data
to be set up in this manner. This required the images to be hand labeled with
boxes around the object according to the API’s documentation.

obtained from the image containing the soccer ball and this will be discussed in Section III. Section IV will show the methods used to
evaluate both machine learning models.

The last element of the system is the Timed Petri net model which will be described in Section V. Petri nets allow for controllers to
be designed around antecedent-consequence based rules and time can be incorporated to make the state transitions more dynamic. The
machine learning models trained in Sections II and III will yield an initial state the for the PN controller based on what the robot sees
and the PN will then determine which action the robotic goalkeeper should take.

II. OBJECT DETECTION METHODOLOGY
A. Nao Robot Detection

The first objective for a soccer playing robot is being able to detect where other robots are. This requires some form of object
detection where the model being used by the robots is trained to recognize other robots. The object detection API provided by
TensorFlow provides the ability of training a custom model from provided images2. Using a custom model is necessary because the
target of detecting Nao robots is too niche to find other pre-trained models. One other possibility that may yield sufficient results is
detecting the Nao robots as people because they are humanoid. In this case, an existing model trained to detect people could be used
instead (e.g., a model trained on the COCO dataset). Both approaches require a dataset of images containing Nao robots and will be
explored further in Section IV.

Playing soccer is a real time operation so the objection detection system used needs to be able to execute quickly. Considerations
from both the robot and model need to be made to ensure fast enough execution. From the robot, the resolution of the image/video will
be deterministic of the time required to process a single frame and identify an object within it. The Nao robots can support a few
different resolutions, but the size of 320×240 pixels was chosen because it provides a good tradeoff between image fidelity and
processing time. The object detection model to be used is MobileNet due to its ability to handle real time video [11]. Additionally, the
TensorFlow object detection API supports this model and the building of custom classifiers using the architecture.

(a) (b)

Fig. 3. Two images of the soccer ball collected at various distances from the Nao robot for the purpose of distance prediction.

(a) (b)

Fig. 4. Two images of a Nao robot collected at various distances for the purpose of distance prediction.

2 TensorFlow Repository, https://github.com/tensorflow/models

 (a) (b)

Fig. 3: Two images of the soccer ball collected at various distances from the Nao robot for the purpose
of distance prediction.

Fig. 4: Two images of a Nao robot collected at various distances for the purpose of distance prediction.

obtained from the image containing the soccer ball and this will be discussed in Section III. Section IV will show the methods used to
evaluate both machine learning models.

The last element of the system is the Timed Petri net model which will be described in Section V. Petri nets allow for controllers to
be designed around antecedent-consequence based rules and time can be incorporated to make the state transitions more dynamic. The
machine learning models trained in Sections II and III will yield an initial state the for the PN controller based on what the robot sees
and the PN will then determine which action the robotic goalkeeper should take.

II. OBJECT DETECTION METHODOLOGY
A. Nao Robot Detection

The first objective for a soccer playing robot is being able to detect where other robots are. This requires some form of object
detection where the model being used by the robots is trained to recognize other robots. The object detection API provided by
TensorFlow provides the ability of training a custom model from provided images2. Using a custom model is necessary because the
target of detecting Nao robots is too niche to find other pre-trained models. One other possibility that may yield sufficient results is
detecting the Nao robots as people because they are humanoid. In this case, an existing model trained to detect people could be used
instead (e.g., a model trained on the COCO dataset). Both approaches require a dataset of images containing Nao robots and will be
explored further in Section IV.

Playing soccer is a real time operation so the objection detection system used needs to be able to execute quickly. Considerations
from both the robot and model need to be made to ensure fast enough execution. From the robot, the resolution of the image/video will
be deterministic of the time required to process a single frame and identify an object within it. The Nao robots can support a few
different resolutions, but the size of 320×240 pixels was chosen because it provides a good tradeoff between image fidelity and
processing time. The object detection model to be used is MobileNet due to its ability to handle real time video [11]. Additionally, the
TensorFlow object detection API supports this model and the building of custom classifiers using the architecture.

(a) (b)

Fig. 3. Two images of the soccer ball collected at various distances from the Nao robot for the purpose of distance prediction.

(a) (b)

Fig. 4. Two images of a Nao robot collected at various distances for the purpose of distance prediction.

2 TensorFlow Repository, https://github.com/tensorflow/models

 (a) (b)

148 Reuse in Intelligent Systems

2.3 Soccer Ball Detection
In addition to locating other robots, the soccer playing robot must be also be
able to detect the soccer ball on the field. Soccer balls are a common object and
the detection of them have been addressed in datasets that contain common
objects. An example of a model that exists and is able to detect a soccer
ball is the MobileNet trained on the Common Objects in Context (COCO)
dataset which is compatible with the TensorFlow object detection API. For
this reason, a model to detect a soccer ball will not be trained as other models
already exist to do so effectively.

3. Distance Prediction Model

The prediction of how far away a soccer ball is from a robot was an issue
addressed in [2] where multiple regression was used to make a prediction from
engineered regressors. Having robots be able to determine their distance to the
soccer ball is paramount to developing a behavioral algorithm. Additionally, a
robot being able to determine their distance from another robot is also crucial.
This prediction problem will also be addressed with the incorporation of the
previously discussed object detection. The machine learning model will also
be trained to identify a soccer ball, and if a soccer ball is found the image will
be cropped in accordance to the box drawn around the ball to then be used
for distance prediction. Features will be engineered to be extracted from the
cropped image to then be fed into a machine learning model to predict the
distance. We propose using a fully connected neural network with rectified
linear unit (ReLU) nonlinearities for this problem and will compare to a
multiple regression model as proposed in [2] as a baseline predictor.

3.1 Image Dataset and Distance Labels
For the task of distance prediction, a dataset of images of the soccer ball
specified by the RoboCup rules were taken. The distances being measured
was the length from the robot to the soccer ball in centimeters. Distances
from the robot to the soccer ball ranged from 60 cm to 200 cm based on
the visibility of the ball from the robot’s cameras and the ball was moved in
increments of 10 cm because that is the diameter of the soccer ball. Various
images were taken at distances from the robot ranging from 60 cm to 200 cm
in 10 cm increments to make up the dataset that would be split into training
and testing sets. Similarly, an image dataset for pictures of another robot at
the same specified distance of 60 cm to 200 cm in 10 cm increments was
also taken.

Computer Vision Algorithms for Soccer Playing Robots 149

3.2 Feature Engineering
Each image containing the soccer ball and robot was converted to a vector of
engineered feature that describes the image. The basis of the feature vector
generation is that object detection will be used to locate the soccer ball within
the frame and the object detection API will draw a box around where the
soccer ball is. From the box drawn around the soccer ball, that piece of the
image was cropped and the features were drawn from the cropped portion of
the original image only.

Using the cropped portion of the original image containing only the
soccer ball, eight features were extracted to describe the distance to the ball
in the image. In extracting the features from the images, each image is filtered
with a Gaussian blur first and then a Sobel edge detector to find the edges of
the soccer ball in each frame. The Sobel filter is a high pass edge detecting
filter and the Gaussian blur is a low pass filter to help remove noise around
edges before detection [2]. The eight features extracted from each frame are:
 1) Cropped image height: The height of the cropped portion of the image

containing the soccer ball in pixels.
 2) Cropped image width: The width of the cropped portion of the image

containing the soccer ball in pixels.
 3) Number of white pixels: The number of pixels that are white after passing

the image through Sobel filter to find the edges. These white pixels are
the edges within the frame which in the cropped frame will be the edges
of the soccer ball.

 4) Number of black pixels: The number of pixels that are black after passing
the image through Sobel filter to find the edges.

 5) Number of 0 degree angles: The number of pixels that have an angle close
to 0 degrees after obtaining the gradient of the image from the Sobel filter.

 6) Number of 45 degree angles: The number of pixels that have an angle
close to 45 degrees after obtaining the gradient of the image from the
Sobel filter.

 7) Number of 90 degree angles: The number of pixels that have an angle
close to 90 degrees after obtaining the gradient of the image from the
Sobel filter.

 8) Horizontal location within image: The horizontal location of the ball in
the original frame encoded as a one-hot distribution signifying if the ball
is in the left portion, center portion, or right portion of the image.

These eight features were extracted from each image taken with a soccer
ball a known distance away from the robot. This distance serves as the label

150 Reuse in Intelligent Systems

for each image in this prediction task for which supervised learning is used to
fit a model to the obtained data.

3.3 Machine Learning Algorithm
From the images collected, the distance from the robot to the ball was
predicted using two different algorithms: multiple linear regression as
proposed in [2] and a multilayer perceptron. Multiple linear regression was
proposed in [2] due to the linear nature that features describing a soccer ball in
an image change with respect to distance. This algorithm will be compared to
a multilayer perceptron that uses rectified linear units (ReLU) as the nonlinear
activation function. The reason for using a neural network for this prediction
problem is to find a better fit for the data because not all the features may be
as linear relative to distance as assumed based on the human visual system.

Both these models were trained on the same set of features from
Section 3.2 describing the images with the multiple regression model being
the baseline for which to compare the neural network model to. In Section 4.1,
the training and evaluation methodology for the task of distance prediction is
explained and the results are analyzed in Section 4.3.

4. Evaluation of Models

4.1 Robot Detection Evaluation
The TensorFlow API, and object detection in general, requires images to be
hand labeled commonly with a box drawn around the object of interest in an
image. This box is the label from which the model learns where the target
object is in the sample images. When building a custom model to detect a new
object using the TensorFlow API (in our case the target object is a Nao robot),
the obtained images need to be hand labeled with boxes drawn around the
target object. The labeling of data is a costly process, so as a result the dataset
of images collected was relatively small. In total, 100 images were collected.

The chosen metric used to evaluate this model is accuracy. Due to the
small dataset size for both training and testing images, accuracy was defined
as whether or not a box was drawn around the object that was most likely the
Nao robot in the image. Ideally, a larger dataset would have been acquired to
better account for the numerous cases that a robot could be presented with
during a soccer match, but the purpose was to see if a model could be trained
to identify the soccer playing robots which is unique to our problem.

From our test set, the robot in each image was detected as the most likely
object in the image to be a robot which validates the idea of using object
detection to identify other robots on the playing field. The only issue the

Computer Vision Algorithms for Soccer Playing Robots 151

model encountered was when the robot was very close causing parts of the
robot to move out of frame. While the robot is still detected, the probability
that it is a robot is not as high and this is likely due to the majority of the
training data containing images where the full robot fits into the frame.
Figure 5 shows the results on two test images passed to the object detection
model. In the two images, the robot is detected as indicated by the box drawn
around the robot and the issue of a close robot is also shown.

4.2 Distance Predictor Evaluation Setup
Due to having a small amount of data due to the need for collecting and hand
labeling images of a specific scenario for RoboCup, multiple training runs
were used for evaluation meaning many models were trained on different
training sets from the image dataset. The training and testing split used was
80% of the data for training and the remaining 20% for testing. Images of the
soccer ball were taken at a range of 60 cm to 200 cm in increments of 10 cm,
so an even distribution of images at each distance was ensured to be present
in both the training and testing sets. Comparatively, training these distance
predictors takes less time than the robot detector and this time difference is
why training multiple models was only done with the distance predictors.

To evaluate the results of both the multiple linear regression and multilayer
perceptron, root mean square error (RMSE) was used. RMSE was chosen as
the evaluation metric because it measures the deviation of the predictor in the
same unit as the predicted variable. Equation 1 defines RMSE:

 ˆ(y)
N

n n
n

RMSE y
N

−

=

= −∑
1

2

0

1 (1)

8) Horizontal location within image: The horizontal location of the ball in the original frame encoded as a one-hot
distribution signifying if the ball is in the left portion, center portion, or right portion of the image.

These eight features were extracted from each image taken with a soccer ball a known distance away from the robot. This distance

serves as the label for each image in this prediction task for which supervised learning is used to fit a model to the obtained data.

C. Machine Learning Algorithm
From the images collected, the distance from the robot to the ball was predicted using two different algorithms: multiple linear

regression as proposed in [2] and a multilayer perceptron. Multiple linear regression was proposed in [2] due to the linear nature that
features describing a soccer ball in an image change with respect to distance. This algorithm will be compared to a multilayer
perceptron that uses rectified linear units (ReLU) as the nonlinear activation function. The reason for using a neural network for this
prediction problem is to find a better fit for the data because not all the features may be as linear relative to distance as assumed based
on the human visual system.

Both these models were trained on the same set of features from Section III-B describing the images with the multiple regression
model being the baseline for which to compare the neural network model to. In Section IV-A, the training and evaluation
methodology for the task of distance prediction is explained and the results are analyzed in Section IV-C.

Table 1. Results of distance predictions models for both the soccer ball and Nao robot (both measured in RMSE).

 Soccer Ball
(RMSE in cm.)

Nao Robot
(RMSE in cm.)

Multiple Linear
Regression 6.128 ± 0.739 5.195 ± 0.573

Multilayer
Perceptron 6.761 ± 1.564 6.487 ± 1.622

(a) (b)

Fig. 5. Output from object detection model. The model was able to detect the robot in all images as shown in (a) but had issues
when the robot was not fully in frame as shown in (b).

IV. EVALUATION OF MODELS
A. Robot Detection Evaluation

The TensorFlow API, and object detection in general, requires images to be hand labeled commonly with a box drawn around the
object of interest in an image. This box is the label from which the model learns where the target object is in the sample images. When
building a custom model to detect a new object using the TensorFlow API (in our case the target object is a Nao robot), the obtained
images need to be hand labeled with boxes drawn around the target object. The labeling of data is a costly process, so as a result the
dataset of images collected was relatively small. In total, 100 images were collected.

The chosen metric used to evaluate this model is accuracy. Due to the small dataset size for both training and testing images,
accuracy was defined as whether or not a box was drawn around the object that was most likely the Nao robot in the image. Ideally, a
larger dataset would have been acquired to better account for the numerous cases that a robot could be presented with during a soccer
match, but the purpose was to see if a model could be trained to identify the soccer playing robots which is unique to our problem.

 (a) (b)
Fig. 5: Output from object detection model. The model was able to detect the robot in all images as

shown in (a) but had issues when the robot was not fully in frame as shown in (b).

152 Reuse in Intelligent Systems

where ŷ is the vector containing the predictions, y is the vector containing the
ground truth labels for the distances, and N is the total number of samples (and
the length of both vectors ŷ and y).

4.3 Evaluation of Distance Prediction Models
Results of the distance predictors are shown in Table 1 where the multiple
linear regression model proposed in [2] slightly outperformed the multilayer
perceptron for both cases. In general, the RMSE from both models are
relatively similar which could be indicative of whether or not the neural
network converged to an absolute minimum. Furthermore, the multiple linear
regression will be more efficient if implemented on a robot because each
prediction only requires one sum of product compared to the many more in
the neural network due to the neurons in the hidden layer. For implementation
on a robot, lower complexity predictors are desirable due to the embedded
processor in the robots which makes multiple linear regression the more
desirable model to use. It might be possible for the multilayer perceptron to
outperform the multiple linear regression model by increasing the complexity
of the neural network but this would also increase the number of arithmetic
operations and execution time required for a prediction.

The results shows that distance does have a linear relationship with
distance to objects in images and the objects can be common objects like
a soccer ball or more complex objects such as the Nao humanoid robot.
Additionally, the results suggest that a less complex multiple linear regression
model is a more suitable predictor than a neural network and requires far less
arithmetic operations making it the more desirable model for implementation
on a soccer playing robot.

Table 1: Results of distance predictions models for both the soccer ball and Nao robot (both measured
in RMSE).

Soccer Ball (RMSE in cm) Nao Robot (RMSE in cm)

Multiple Linear Regression 6.128 ± 0.739 5.195 ± 0.573

Multilayer Perceptron 6.761 ± 1.564 6.487 ± 1.622

5. Petri Net Controller

5.1 Petri Net Models
Petri nets (PN) are mathematical models used to show the flow of data through
a system. They are graphical in nature and are able to represent finite state
automata in more depth than a state machine (state machines are a subset
of PNs). The graphical PN model is represented with nodes called places,

Computer Vision Algorithms for Soccer Playing Robots 153

transitions, and tokens which represent data moving through the network from
place to place through transitions.
Mathematically, the PN model is defined as a 5-tuple:

 N = (P, T, F, W, M0) (2)

Made up of a finite set of places P, a finite set of transitions T, a finite
set of arcs F, a weight function W on the arcs, and an initial marking M0. In
general, a marking M of a PN defines the number of tokens across the places
in the network and the initial marking M0 is the token distribution at the start.

 P = {p1, p2,..., pk} (3)

 T = {t1, t2,..., tm} (4)

 F = {f1, f2,..., f n} (5)

 M : P → N (6)

 W : F → N (7)

With the mathematical definition of PNs, the graphical model can be
defined as places connected by transitions through directed arcs and tokens
travel across the places in the network. The places, transitions, and arcs define
the behavior of the PN model while the tokens themselves are the data being
observed by the network, and the final marking (i.e., where the token or tokens
end up) is the result yielded by the network.

Additionally, the arcs connecting the places and transitions are weighted
and the individual weights on each arc are specified by the function W. The
weight function defines two different types of behaviors depending on whether
the arc is directed from a place to a transition or from a transition to a place.
Weights on arcs directed from a place to a transition specify the number of
tokens that will be consumed by firing the transition which is the number of
tokens that need to be present in the place to fire the transition. In contrast,
weights on arcs directed from transitions to places specify the number of
tokens produced by the transition firing which is the number of tokens that
will be present in the place after a transition fires.

Figures 6 and 7 show small example PNs to demonstrate the defined
properties. In Figure 6, there are two places p1 and p2 connected by transition
t1. Both arcs connecting to t1 have a weight of one meaning that one token
will be consumed from place p1 and one token will be produced in p2 when
t1 fires. Transition t1 is able to fire once the token requirement in p1 is met.
Comparatively, the PN in Figure 7 takes the same network but changes the
weights on the two arcs. Now, the arc connecting p1 to t1 has a weight of 3 and
the arc connecting t1 to p2 has a weight of 2. Once p1 has three tokens in it,
t1 will fire consuming all three tokens and produce 2 tokens in p2.

154 Reuse in Intelligent Systems

Additional rules governing the PN model involve what happens when
multiple arcs are directed into a transition or out of a transition. If two
places have arcs directed to the same transition, then the token consumption
requirement on all connection arcs must be met for the transition to be able to
fire. If a transition has more than one arc directed out of it, then the number
of tokens specified by the weight of each arc will be produced when the
transition fires. Lastly, if a place has multiple arcs connecting to multiple
transitions and the token consumption requirements are met for more than
one transition to fire, then only one of the transitions is able to fire which
can cause ambiguity in the model which will be addressed in Section 5.2 by
constraining the PN model to additional mathematical properties governing
the firing of transitions.

5.2 Timed Petri Net Models
The Petri net model can be further enhanced through the addition of a time
variable on the transitions with a structure called the Timed Petri net (TdPN).
Mathematically, TdPN’s are defined as the 6-tuple in Equation 8:

 Nτ = (P, T, F, W, M0, τ) (8)

where P, T, F, W, and M0 are the same as defined in Equations 2–7 for a
standard PN and the new variable τ which denotes the time it takes for a
transition to fire [3].

Nao robot
(camera)

Nao robot’s
behavuir

Soccer playing robot

Object detection
model for ball
(pre-rrained

model)

Object detection
model for nao
robot (custom

model)

Object detection

Distance
prediction

model for ball

Distance prediction

Distance
prediction

model for nao
robot

TdPN
controller

model

TdPN controller

Fig. 6.1 H/T Images 6.2-6.5

p1 p2
t1

p1 p2
t1Fig. 6.6

Fig. 6.7

p1 p2
t1

p1 p2
t1

(3) (2)

(3) (2)

p0 p2

t0

[0.0,0.0]

p1 p3

t1

[1.0,1.0]

Fig. 6.8

p0 p2

t0

[2,2]

p1

Fig. 6.9

p0 p2

t0

p1

Fig. 6.10

y

x

y ³ 1

y – x £ 1

y £ 4

y ³ 1

x – y £ 1

x £ 4

Fig. 7.1

.
x £ 2

x

.
x ³ 1

t

.
x Î [1,2]

x

t

Fig. 7.2

Fig. 6: Example Petri net showing the transition firing characteristic of t1 between places p1 and p2.

Fig. 7: Example Petri net showing the transition firing characteristic with weights to change to the
number of tokens produced and consumed by firing transitions t1.

Nao robot
(camera)

Nao robot’s
behavuir

Soccer playing robot

Object detection
model for ball
(pre-rrained

model)

Object detection
model for nao
robot (custom

model)

Object detection

Distance
prediction

model for ball

Distance prediction

Distance
prediction

model for nao
robot

TdPN
controller

model

TdPN controller

Fig. 6.1 H/T Images 6.2-6.5

p1 p2
t1

p1 p2
t1Fig. 6.6

Fig. 6.7

p1 p2
t1

p1 p2
t1

(3) (2)

(3) (2)

p0 p2

t0

[0.0,0.0]

p1 p3

t1

[1.0,1.0]

Fig. 6.8

p0 p2

t0

[2,2]

p1

Fig. 6.9

p0 p2

t0

p1

Fig. 6.10

y

x

y ³ 1

y – x £ 1

y £ 4

y ³ 1

x – y £ 1

x £ 4

Fig. 7.1

.
x £ 2

x

.
x ³ 1

t

.
x Î [1,2]

x

t

Fig. 7.2

(3) (2)

(3) (2)

Computer Vision Algorithms for Soccer Playing Robots 155

Nao robot
(camera)

Nao robot’s
behavuir

Soccer playing robot

Object detection
model for ball
(pre-rrained

model)

Object detection
model for nao
robot (custom

model)

Object detection

Distance
prediction

model for ball

Distance prediction

Distance
prediction

model for nao
robot

TdPN
controller

model

TdPN controller

Fig. 6.1 H/T Images 6.2-6.5

p1 p2
t1

p1 p2
t1Fig. 6.6

Fig. 6.7

p1 p2
t1

p1 p2
t1

(3) (2)

(3) (2)

p0 p2

t0

[0.0,0.0]

p1 p3

t1

[1.0,1.0]

Fig. 6.8

p0 p2

t0

[2,2]

p1

Fig. 6.9

p0 p2

t0

p1

Fig. 6.10

y

x

y ³ 1

y – x £ 1

y £ 4

y ³ 1

x – y £ 1

x £ 4

Fig. 7.1

.
x £ 2

x

.
x ³ 1

t

.
x Î [1,2]

x

t

Fig. 7.2

Fig. 8: Example Timed Petri net demonstrating the effect the timing variable τ has on the firing of
transitions t0 and t1.

The example TdPN shown in Figure 8 demonstrates the addition of the
timing variable τ differs this model from a regular PN. In this example, notice
how the transition t0 is red and the transition t1 is not. Transitions that are red are
enabled and are ready for tokens to be fired through them. The time above the
transition t0 [0,0] indicates that a token can fire through it without hesitation,
but transition t1 has a time delay of 1 denoted by [1.0, 1.0]. Transition t1 will
be fired second, after transition t0 because of this.

5.3 Enhanced Arcs in Petri Net Models
Additional types of arcs exist in PN models to offer different types of
behavior for the firing of a transition. In the model that will be introduced in
Section 5.4, we employed the use of inhibitor and test arcs. Inhibitor arcs
disable transitions if there is a token in the place preceding the arc and are
denoted with an empty circle compared to an arrow on regular arcs. Figure 9
demonstrates the effect of an inhibitor arc with there being a token in p1 which
disables the transition t0. As long as there is a token in p1, the token in p0 will
not be able to fire through transition t0 and the resulting Petri net is said to be
in a deadlock.

Nao robot
(camera)

Nao robot’s
behavuir

Soccer playing robot

Object detection
model for ball
(pre-rrained

model)

Object detection
model for nao
robot (custom

model)

Object detection

Distance
prediction

model for ball

Distance prediction

Distance
prediction

model for nao
robot

TdPN
controller

model

TdPN controller

Fig. 6.1 H/T Images 6.2-6.5

p1 p2
t1

p1 p2
t1Fig. 6.6

Fig. 6.7

p1 p2
t1

p1 p2
t1

(3) (2)

(3) (2)

p0 p2

t0

[0.0,0.0]

p1 p3

t1

[1.0,1.0]

Fig. 6.8

p0 p2

t0

[2,2]

p1

Fig. 6.9

p0 p2

t0

p1

Fig. 6.10

y

x

y ³ 1

y – x £ 1

y £ 4

y ³ 1

x – y £ 1

x £ 4

Fig. 7.1

.
x £ 2

x

.
x ³ 1

t

.
x Î [1,2]

x

t

Fig. 7.2

Fig. 9: Effect of Inhibitor Arc demonstrated by disabling transition t0 as long as there is a token
present in place p1.

156 Reuse in Intelligent Systems

Test arcs are denoted with a filled circle and allow a transition to be
enabled if there is a token in the place preceding the arc similarly to how a
regular arc functions. The main and only difference between regular and test
arcs is the token in the place connecting to a transition via a test arc will not
loses its tokens when the transition fires (i.e., test arcs do not consume the
tokens when the connecting transition is fired). An example of a test arc is
shown in Figure 10 showing that the token will remain in p1 when the token in
p0 is fired through transition t0.

5.4 TdPN Controller Design and Implementation
TdPNs are suitable for the modeling of robotic behavior due to their robust
modeling capabilities. We will be using the model to develop an algorithm for
soccer playing robots with the focus being on the behavior of the goalkeeper.
The TdPN will utilize the machine learning models developed in the previous
sections in generating the initial marking of the network from which a decision
will made based on what it currently sees. Results from the machine learning
models that the TdPN will utilize are the locations of the soccer ball and other
robots from the object detection and the distances to each from each object
detected using the distance predictors.

Figure 11 shows the designed TdPN controller which was designed using
the modeling tool TINA.3 Boxes are drawn on top of the TdPN in Figure 11
so the different components of the model can be more easily differentiated
visually. Starting on the left-hand side of the model is the beginning of the
Petri net which breaks up an image into 9 sections as denoted by the 9 places.
These places are populated with tokens before the PN starts firing as part of
the initial marking M0. Each place in this section corresponds to a section
of the image captured by the Nao robot and the tokens in each place are

Nao robot
(camera)

Nao robot’s
behavuir

Soccer playing robot

Object detection
model for ball
(pre-rrained

model)

Object detection
model for nao
robot (custom

model)

Object detection

Distance
prediction

model for ball

Distance prediction

Distance
prediction

model for nao
robot

TdPN
controller

model

TdPN controller

Fig. 6.1 H/T Images 6.2-6.5

p1 p2
t1

p1 p2
t1Fig. 6.6

Fig. 6.7

p1 p2
t1

p1 p2
t1

(3) (2)

(3) (2)

p0 p2

t0

[0.0,0.0]

p1 p3

t1

[1.0,1.0]

Fig. 6.8

p0 p2

t0

[2,2]

p1

Fig. 6.9

p0 p2

t0

p1

Fig. 6.10

y

x

y ³ 1

y – x £ 1

y £ 4

y ³ 1

x – y £ 1

x £ 4

Fig. 7.1

.
x £ 2

x

.
x ³ 1

t

.
x Î [1,2]

x

t

Fig. 7.2

Fig. 10: Places connecting to a transition via a Test Arc (in this case, p1 connecting to t0) will not lose
their token when the transition fires.

3 TINA Project Page, http://projects.laas.fr/tina/.

http://projects.laas.fr

Computer Vision Algorithms for Soccer Playing Robots 157

determined by whether or not one of the objects of interest are detected in that
region of the image via the objection detection models. For the places in this
section of the model, 1 and 2 tokens denote the ball and a robot, respectively
(these numbers were arbitrarily defined and additional objects can be added by
assigning them numbers). Furthermore, the soccer ball takes priority over any
other object meaning if an additional object is found in the same region of the
image as the soccer ball, the corresponding place in the PN will be marked as
only having a soccer ball (i.e., marked with 1 token). In the image shown, this
then indicates that the soccer ball is located in the bottom right-hand side of
the image and a robot is located in the center of the image. Using this general
layout for the TdPN allows for the model to be scaled up through the addition
of more places (i.e., more defined regions of the image) and additional objects
of interests, such as the goal post or distinct markings on the field.

The initial marking of the TdPN is also defined by the distances to the
objects detected within the image. From the collection of images and training
of the distance prediction models, the effective range for distance prediction
is 60 cm to 200 cm from the robot which is then broken into three categories:
close, near, and far. For our purposes, close is defined from 60 cm to
100 cm, near is defined from 100 cm to 160 cm, and far is defined from
160 cm to 200 cm (these ranges can be adjusted as needed based on the time it
takes for a robot to move, make a block, or the speed of the ball when kicked
by an opposing robot). Depending on the distances to the soccer ball and
opposing robot, the goalkeeping robot will either move to the left or right or
dive to the left or right. Furthermore, the closer the ball is to the goalkeeper,
the more likely the robot is to dive to make a block on the ball.

Fig. 11. Timed Petri net (TdPN) controller implemented using the TINA modeling software. The four main components of the

model have boxes drawn around them.

The initial marking of the TdPN is also defined by the distances to the objects detected within the image. From the collection of
images and training of the distance prediction models, the effective range for distance prediction is 60cm to 200cm from the robot
which is then broken into three categories: close, near, and far. For our purposes, close is defined from 60cm to 100cm, near is defined
from 100cm to 160cm, and far is defined from 160cm to 200cm (these ranges can be adjusted as needed based on the time it takes for
a robot to move, make a block, or the speed of the ball when kicked by an opposing robot). Depending on the distances to the soccer
ball and opposing robot, the goalkeeping robot will either move to the left or right or dive to the left or right. Furthermore, the closer
the ball is to the goalkeeper, the more likely the robot is to dive to make a block on the ball.

Within the TdPN, the distances to the objects are accounted for with separate inputs located in the uppermost boxed area of TdPN.
This information will be obtained from the distance prediction models and then be classified as close, near, or far according the
previously described ranges. In the current TdPN shown in Figure 11, there is a set of two distance inputs; one for the soccer ball and
one for an opposing robot. The closer the object is to the goalkeeper, the more likely the goalkeeper is to take an action in defending a
shot on goal. Additionally, this information is used in accordance with the whether the objects are in the left, center, or right portion of
the image in making a decision. For example, if the ball is close to the goal and on the left side, then the goalie will dive left in
contrast to only moving left if the ball is labeled as far.

From the initial marking, which is determined as previously discussed, the resultant decision made by the TdPN is determined by the
additional blocked sections in Figure 11. The first block converts the positional tokens for the objects into a form from which a
decision can be made. The tokens from this part of the initial marking get converted into tokens distributed across three places. Of
these three places, the one with the most tokens will be used in determining the decision of the action the robot will take. The decision
made from these three places is determined using a form of a PN comparator to compare the tokens in the three places. Two separate
comparators are used to make the decision of the whether the robot should stay in the middle of the goal, move left, move right, dive
left, or dive right. Of the six decisions shown on the far right denoted by places, the stay middle refer to the same action.

E. TdPN Controller Analysis
In its current state, the TdPN controller is able make one of five decisions based on the locations and distances to the soccer ball and

opposing robots which determines the initial marking of the network. These five decisions resemble those of an actual goalkeeper and
the model looks to mimic the decision process that an actual goalkeeper would make when presented with the same information.
Without expanding this TdPN (i.e., increasing the size by adding more places and transitions), the current architecture of the model
can be modified to recognize more objects than the two it currently can identify. The two objects that the TdPN identifies are the robot
and the soccer ball. The position of the soccer ball affects the robots decision twice as much as the position of the opposing robot.

The current architecture of our model allows the model to be scaled up as necessary. Additions to the model that can be made in the
future include the ability to segment the image into more pieces rather than the current 9, the ability to add more objects of interests

Fig. 11: Timed Petri net (TdPN) controller implemented using the TINA modeling software. The four
main components of the model have boxes drawn around them.

158 Reuse in Intelligent Systems

Within the TdPN, the distances to the objects are accounted for with
separate inputs located in the uppermost boxed area of TdPN. This information
will be obtained from the distance prediction models and then be classified as
close, near, or far according the previously described ranges. In the current
TdPN shown in Figure 11, there is a set of two distance inputs; one for the
soccer ball and one for an opposing robot. The closer the object is to the
goalkeeper, the more likely the goalkeeper is to take an action in defending
a shot on goal. Additionally, this information is used in accordance with the
whether the objects are in the left, center, or right portion of the image in
making a decision. For example, if the ball is close to the goal and on the left
side, then the goalie will dive left in contrast to only moving left if the ball is
labeled as far.

From the initial marking, which is determined as previously discussed, the
resultant decision made by the TdPN is determined by the additional blocked
sections in Figure 11. The first block converts the positional tokens for the
objects into a form from which a decision can be made. The tokens from this
part of the initial marking get converted into tokens distributed across three
places. Of these three places, the one with the most tokens will be used in
determining the decision of the action the robot will take. The decision made
from these three places is determined using a form of a PN comparator to
compare the tokens in the three places. Two separate comparators are used to
make the decision of the whether the robot should stay in the middle of the
goal, move left, move right, dive left, or dive right. Of the six decisions shown
on the far right denoted by places, the stay middle refer to the same action.

5.5 TdPN Controller Analysis
In its current state, the TdPN controller is able make one of five decisions
based on the locations and distances to the soccer ball and opposing robots
which determines the initial marking of the network. These five decisions
resemble those of an actual goalkeeper and the model looks to mimic the
decision process that an actual goalkeeper would make when presented with
the same information. Without expanding this TdPN (i.e., increasing the
size by adding more places and transitions), the current architecture of the
model can be modified to recognize more objects than the two it currently can
identify. The two objects that the TdPN identifies are the robot and the soccer
ball. The position of the soccer ball affects the robots decision twice as much
as the position of the opposing robot.

The current architecture of our model allows the model to be scaled up as
necessary. Additions to the model that can be made in the future include the
ability to segment the image into more pieces rather than the current 9, the
ability to add more objects of interests which would also require modifications

Computer Vision Algorithms for Soccer Playing Robots 159

to the machine learning models, and better generalizing this model to create a
new model that can be applied to the rest of robots on the playing field.

6. Conclusion

In this paper, we proposed a computer vision based methodology for
developing an algorithm using a Timed Petri net to dictate the behavior of a
soccer playing robot, with our focus being on the goalkeeper. We first used
object detection models to detect a soccer ball as well as robots in an image
that would be captured by a robot. For the detection of robots, a custom model
was trained while a pre-trained model for detecting soccer balls was used, but
in the future these models would be unified. Furthermore, additional objects
of interest, such as the goal or defining marks on the soccer field, could be
included in the object detection model. The object detection models draw a
box around the detected object in the image, and then the image was cropped
to the box containing the object used for distance prediction. For both the
soccer ball and other robots, features were first engineered and then a multiple
linear regression model was trained on the features to predict the distance to
the object in centimeters.

The results from the machine learning models, objection detection, and
distance prediction for both the soccer ball and robots were then used as
inputs to a Timed Petri net (TdPN) controller used to determine which action
the robot goalkeeper should take. Results from the machine learning models
were used to determine the initial marking M0 of the TdPN controller which
then runs to determine the action of the robotic goalkeeper should take. In
our model, five actions for the robot to take are defined and include stay in
the middle of the goal, move left, move right, dive left, or dive right. These
actions were chosen to resemble those of an actual goalkeeper. Which action
should be taken is based on the distances from the goalkeeper to the ball and
opposing robot, and looks to mimic the type of decision an actual goalkeeper
would make based on the same information. The designed TdPN controller
is also setup in a way that allows for future modifications, such as further
segmenting the image or adding more objects of interest which would also
require additional machine learning models to be trained.

References
 [1] Murata, T. 2013. Petri nets: Properties, analysis and applications. Proc. of the IEEE

77: 541–574.
 [2] Hansen, P., P. Franco and S. Kim. 2018. Soccer ball recognition and distance prediction

using fuzzy petri nets. IEEE International Conference on Information Reuse and
Integration (IRI), Salt Lake City, UT, pp. 315–322.

160 Reuse in Intelligent Systems

 [3] Franco, P., P. Hansen and S. Kim. 2018. Using timed petri nets to regulate optimal game
strategy. International Conference on Computers and Their Applications (CATA), Las
Vegas, NV, pp. 207–213.

 [4] Kim, S. and Y. Yang. 2018. A self-navigating robot using fuzzy Petri nets. Journal of
Robotics and Autonomous Systems by Elsevier 101: 153–165.

 [5] Ponsini, D., Y. Yang and S. Kim. 2016. Analysis of soccer robot behaviors using time Petri
nets. Proceedings of the IEEE Information Reuse and Integration, pp. 270–274.

 [6] Pham, K.T., C. Cantone and S. Kim. 2017. Colored Petri net representation of logical and
decisive passing algorithm for humanoid soccer robots. IEEE International Conference on
Information Reuse and Integration (IRI), San Diego, CA, pp. 263–269.

 [7] Kim, S., D. Ponsini and Y. Yang. 2017. Towards a versatile opportunity awareness
algorithms for humanoid soccer robots using time Petri nets. International Journal of
Computer Techniques 4(2): 82–94.

 [8] Yang, Y., D. Ponsini and S. Kim. 2016. Ball control and position planning algorithms for
soccer robots using fuzzy Petri nets. Proceedings of the ISCA International Conference on
Computers and Their Applications (CATA), pp. 387–392.

 [9] Tenguria, R., S. Parkhedkar, N. Modak, R. Madan and A. Tondwalkar. 2017. Design
framework for general purpose object recognition on a robotic platform. International
Conference on Communication and Signal Processing (ICCSP), Chennai, pp. 2157–2160.

 [10] Susanto, E. Rudiawan, R. Analia, P. Daniel Sutopo and H. Soebakti. 2017. The deep
learning development for real-time ball and goal detection of barelang-FC. International
Electronics Symposium on Engineering Technology and Applications (IES-ETA),
Surabaya, pp. 146–151.

 [11] Howard, A.G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Adnreetto
and H. Adam. 2017. MobileNets: Efficient convolutional neural networks for mobile
vision applications. Computing Research Repository (CoRR).

Chapter 7
Context-dependent Reachability

Analysis for Hybrid Systems
Stefan Schupp,* Justin Winkens and Erika Ábrahám

1. Introduction

Hybrid systems, in which digital controllers interact with a physical, continuous
world show increasing presence in various safety-critical applications, e.g., in
the automotive sector, in aviation or in automated plants. Along with their
increasing usage, also more and more attention is paid to formal methods for
their safety verification. Many tools have been developed and successfully
applied in practice to analyze the behavior of hybrid system models stemming
both from academia as well as from industry. Some of these tools are based
on theorem proving [15, 26], others on rigorous simulation [4, 17, 33] or
satisfiability checking [18, 19, 25, 27]. In this paper we focus on approaches
based on iterative forward reachability computations [1, 3, 5, 8–10, 13, 21,
22]; for models in which the evolution of the quantities over time follows
non-linear functions, these methods are also known as flowpipe-construction-
based techniques.

Hybrid systems often posses complex behavior involving numerous
physical quantities with different temporal dynamics. Interesting recent
developments in hybrid system verification addressed improving scalability
to be able to handle higher-dimensional systems, i.e., systems which involve
large numbers of physical quantities, for example using decomposition to
reduce complex problems to several smaller problems [7, 14, 31]. Approaches

RWTH Aachen University.
* Corresponding author: stefan.schupp@cs.rwth-aachen.de

mailto:stefan.schupp@cs.rwth-aachen.de

162 Reuse in Intelligent Systems

and tools have been demonstrated to be able to handle up to hundreds of
variables simultaneously on some case studies. However, despite impressive
developments, available tools still struggle with the verification of practically
relevant complex hybrid systems.

Typically, these tools specialize on a certain verification technique for a
certain subclass of hybrid systems, e.g., timed systems [5, 9, 10], linear hybrid
systems [1, 21, 27] or non-linear hybrid systems [13, 25]. our previous work
[31] we presented an approach based on decomposition, which divides the
state space of a hybrid system into sub-spaces whose behavior is piecewise
independent from each other.

In this work we presented an extension to our previous approach which
(i) automatically finds the finest decomposition of an input system, and
(ii) analyzes the different components and dynamically selects dedicated
methods for their analysis based on information about the dynamics in that
specific sub-space.

This paper extends our work [32] by generalizing some formalisms and
extending our method by specific approaches to handle model parts within the
expressivity of rectangular automata:

 • we develop data structures for rectangular automata, a subclass of hybrid
automata that are more expressive than timed automata but for which
there are more efficient reachability analysis methods,

 • we implement tailored methods for the one-step reachability analysis of
rectangular automata, and

 • we extend our dynamic decomposition methods to detect and handle
subspaces with rectangular dynamics automatically.

All of our extensions are implemented and publicly available in our C++
library HyPro [30].

The remaining contents are organized as follows: In Section 2 we
provide some preliminaries before we explain our approach to reduce the
computational effort for reachability analysis in Section 3. Section 4 provides
experimental results and Section 5 concludes the paper.

2.  Hybrid Systems Safety Verification

Let R denote the set of all real numbers and R≥ 0 the non-negative reals.
For a finite ordered set X = {x1, . . . , xd} of real-valued variables we define
Ẋ = {ẋ1, . . . , ẋd} and X' = {x'1, . . . , x'd}. Let PredX denote a set of predicates
over X (in our applications these will be conjunctions of linear real-arithmetic
constraints over X). For a predicate φ ∈ PredX and a (variable) valuation
ν = (ν1, . . . , νd) ∈ Rd, by ν |= φ we denote that replacing all free occurrences

Context-dependent Reachability Analysis for Hybrid Systems 163

of variables xi in φ by νi evaluates φ to true. The meaning of (ν, ν') |= φ for
φ ∈ PredX∪X ' is defined similarly, replacing each xi by νi and each x'i by ν'i. The
definition of (ν, ν̇) |= φ for φ ∈ PredX∪X

. is analogous.

2.1 Hybrid Automata
In order to verify hybrid systems, we need to provide formal models for them.
Among others, hybrid systems are often modeled by hybrid automata.

Following the definition from [23], a hybrid automaton (HA) is a tuple
H = (Loc, Var, Flow, Inv, Edge, Init) with the following components:

 • A finite set Loc of locations or control modes.
 • A finite ordered set Var = {x1, . . . , xd} of real-valued variables; we also

use the notation x = (x1, . . . , xd) and call d the dimension of H.
 • Flow : Loc → PredVar∪V̇ar specifies for each location its flow or dynamics.
 • Inv : Loc → PredVar assigns to each location an invariant.
 • Edge ⊆ Loc × PredVar × PredVar∪Var'× Loc is a finite set of discrete

transitions or jumps. For a jump (l1, g, r, l2) ∈ Edge, l1 is its source location,
l2 is its target location, g specifies the jump’s guard and r its reset.

 • Init : Loc → PredVar assigns to each location an initial predicate.

Let H = (Loc, Var, Flow, Inv, Edge, Init) be a hybrid automaton with
dimension d and variables x = {x1, . . . , xd}. A state of H is a pair σ = (l, ν) ∈
Loc × Rd. A symbolic state (l, φ) consists of a location l ∈ Loc and a predicate
φ ∈ PredVar and represents the state set {(l, ν) ∈ Loc × Rd | ν |= φ}.

A sequence (l0, ν0), . . . , (ln, νn) of states of H is a (finite) run of H if
ν0 |= Init (l0), νi |= Inv (li) for each i = 0, . . . , n, and for each i = 0, . . . , n − 1
one of the following two conditions holds:

 • Flow: li = li+1 and there exist δ ∈ R≥0 and a continuous, over (0, δ)
differentiable f : [0, δ] → Rd such that νi = f (0), νi+1 = f (δ) and for all
0 < δ' < δ we have (f (δ'), df

dt
 (δ')) |= Inv (li) ˄ Flow (li).

 • Jump: There exists e = (li, g, r, li+1) ∈ Edge with νi |= g and (νi, νi+1) |= r.

A sequence (l0, φ0), . . . , (ln, φn) of symbolic states of H is called a symbolic
run of H and represents the set of all runs (l0, ν0), . . . , (ln, νn) of H for which
νi |= φi for each 0 ≤ i ≤ n.

A state is reachable if there exists a run leading to it. The reachability
problem poses the question whether a given state set contains any states
reachable in a given hybrid automaton.

Based on the type of predicates in their definitions, we can define different
subclasses of HA (see Table 1). For instance, timed automata (TA) allow only

164 Reuse in Intelligent Systems

variables that are clocks with derivative 1, invariants and guards that are
conjunctions of constraints comparing clock values to constants, and resets
that either set clock values to 0 or leave them unchanged; the reachability
problem for TA is decidable (PSPACE-complete). Rectangular automata
(RA) extend the expressivity of timed automata by allowing constant
derivatives and non-deterministic resets from rectangular sets, which are
cross products of intervals with rational or infinite bounds. The reachability
problem for initialised rectangular automata (IRA) can be reduced to that of
TA [24], where initialised means intuitively that if the dynamics of a variable
changes by taking a jump then the jump resets the value of the variable to a
(non-deterministically choosen) constant. Consequently, decidability results
for IRA are as for TA while in general the unbounded reachability problem is
not decidable for RA. If we allow constant derivatives and linear expressions
in flows, invariants, guards and resets, reachability via runs with a bounded
number of jumps is still decidable. For dynamics described by (linear or non-
linear) ordinary differential equations (ODEs) even bounded reachability is
undecidable.

2.2 Forward Reachability Analysis
Timed automata
The reachable states of a timed automaton can be computed as a finite
union of zones, which are state sets that can be represented by symbolic
states whose predicates are conjunctions of constraints of the form xi ~ c or
xi – xj ~ c with ~∈ {<, ≤ , =, ≥, >} and c ∈ Q. Zones are defined by special
types of convex polytopes in Rd (see Figure 1). Based on the restricted form
of the defining constraints, difference bound matrices (DBM) [6, 16] offer an

Table 1: Decidability results for subclasses of hybrid automata, defined by conjunctions of the
respective types of predicates (TA = timed automata, IRA = initialised rectangular automata, RA =
rectangular automata, LHA I = hybrid automata with constant derivatives; LHA II = hybrid automata
with linear ODEs; HA = general hybrid automata; c: rational constant; e, e', ė: arithmetic expressions
over Var, Var ∪ Var' resp. Var ∪ V̇ar; elin: linear arithmetic expression over Var; ~ ∈ {<, ≤ , =, ≥ , >}).

Subclasses Flows Invariants
Guards

Resets Bnd.
Reach.

Unbnd.
Reach.

TA ẋi = 1 xi ~ c x'i = 0, x'i = xi ü ü

IRA ẋi ~ c xi ~ c x'i ~ c, x'i = xi ü ü

RA ẋi ~ c xi ~ c x'i ~ c, x'i = xi ü X

LHA I ẋi = c elin ~ 0 x'i ~ elin ü X

LHA II ẋi = elin elin ~ 0 x'i ~ elin X X

HA ė ~ 0 e ~ 0 e' ~ 0 X X

Context-dependent Reachability Analysis for Hybrid Systems 165

efficient representation for zones. For example, the zone in Figure 1 can be
represented by a DBM
 0 x y

 0 (0, ≤) (−1, ≤) (−1, ≤)
D = x ((4, ≤) (0, ≤) (1, ≤)) y (4, ≤) (1, ≤) (0, ≤)

Each constraint xi – xj ~ c is represented by an entry Di, j = (c, ~) in the
DBM where an auxiliary dimension 0 with constant zero value has been
introduced to allow a normalized representation xi – 0 ~ c of constraints
xi ~ c. Thus for a set of n clocks a DBM of size (n + 1) × (n + 1) is required to
represent a zone.

To compute the set of reachable states of a timed automaton, flow and
jump successors of the initial state set represented by DBMs can be computed
in an alternating fashion. To compute flow successors of a given zone in a
given location of a timed automaton, we increase all upper bounds in the
entries Di,0 for each clock xi to the largest value still allowed by the invariant
(which might be +∞). Similarly for discrete jumps, intersections with guards
as well as clock resets can be represented by adjusting the DBM entries. For
further details about timed automata model checking we refer to [2].

Rectangular automata
Assume a rectangular automaton and an initial state set represented
symbolically by a location and a conjunction of linear constraints over the
variables of the automaton. Starting from this initial state set, the reachable
states of a rectangular automaton can be described by a (possibly infinite)
union of symbolic states (l, φ) whose predicates are conjunctions of linear
constraints over the variables of the automaton. Flow successors of states

Fig. 1: Illustration of a zone.

Nao robot
(camera)

Nao robot’s
behavuir

Soccer playing robot

Object detection
model for ball
(pre-rrained

model)

Object detection
model for nao
robot (custom

model)

Object detection

Distance
prediction

model for ball

Distance prediction

Distance
prediction

model for nao
robot

TdPN
controller

model

TdPN controller

Fig. 6.1 H/T Images 6.2-6.5

p1 p2
t1

p1 p2
t1Fig. 6.6

Fig. 6.7

p1 p2
t1

p1 p2
t1

(3) (2)

(3) (2)

p0 p2

t0

[0.0,0.0]

p1 p3

t1

[1.0,1.0]

Fig. 6.8

p0 p2

t0

[2,2]

p1

Fig. 6.9

p0 p2

t0

p1

Fig. 6.10

y

x

y ³ 1

y – x £ 1

y £ 4

y ³ 1

x – y £ 1

x £ 4

Fig. 7.1

.
x £ 2

x

.
x ³ 1

t

.
x Î [1,2]

x

t

Fig. 7.2

x

166 Reuse in Intelligent Systems

represented symbolically by (l, φ) can be computed by expressing them via
quantified linear-arithmetic formulas with free variables from Var:

∃t. ∃xpre. t ≥ 0 ∧ φ[xpre/x] ∧ Flow (l)[xpre, x/x, x'] ∧ Inv (l)

For example the set of reachable states constructed in Figure 2 with
initial condition 1 ≤ x ≤ 3 and flow 1 ≤ ẋ ≤ 2 can be described as follows (for
simplicity we assume a trivially true invariant in this example):

∃t. ∃xpre.t ≥ 0 ∧ 1 ≤ xpre ∧ xpre ≤ 3 ∧ t + xpre ≤ x ∧ x ≤ 2t + xpre.

Using quantifier elimination techniques, e.g., Fourier-Motzkin variable
elimination, we can eliminate quantifiers in order to simplify the formulas. For
the above example quantifier elimination shows that by letting time progress,
x can take all values larger or equal 1:

∃t.∃xpre.t ≥ 0 ∧ 1 ≤ xpre ∧ xpre ≤ 3 ∧ t + xpre ≤ x ∧ x ≤ 2t + xpre.
⇔∃t.t ≥ 0 ∧ 1 ≤ 3 ∧ x − 2t ≤ 3 ∧ 1 ≤ x − t ∧ x − 2t ≤ x − t
⇔1 ≤ x ∧ −1 ≤ x
⇔1 ≤ x

A similar approach can be used to compute successor states of discrete
jumps. For further details we refer to [11].

Hybrid automata with constant derivatives and linear constraints
For variables with piecewise constant derivatives and linear constraints
(LHA I), the states reachable by flows and a bounded number of jumps can
be represented either symbolically similarly as for rectangular automata

Nao robot
(camera)

Nao robot’s
behavuir

Soccer playing robot

Object detection
model for ball
(pre-rrained

model)

Object detection
model for nao
robot (custom

model)

Object detection

Distance
prediction

model for ball

Distance prediction

Distance
prediction

model for nao
robot

TdPN
controller

model

TdPN controller

Fig. 6.1 H/T Images 6.2-6.5

p1 p2
t1

p1 p2
t1Fig. 6.6

Fig. 6.7

p1 p2
t1

p1 p2
t1

(3) (2)

(3) (2)

p0 p2

t0

[0.0,0.0]

p1 p3

t1

[1.0,1.0]

Fig. 6.8

p0 p2

t0

[2,2]

p1

Fig. 6.9

p0 p2

t0

p1

Fig. 6.10

y

x

y ³ 1

y – x £ 1

y £ 4

y ³ 1

x – y £ 1

x £ 4

Fig. 7.1

.
x £ 2

x

.
x ³ 1

t

.
x Î [1,2]

x

t

Fig. 7.2
(a) Computation of the flow cone. (b) Flow cone added to initial set.

Fig. 2: Illustration of the computation of the time successor states in a location of a rectangular
automaton for the variable x. Initially x ∈ [1, 3] and ẋ = [1, 2].

Context-dependent Reachability Analysis for Hybrid Systems 167

above or by the representations mentioned below for LHA II. In the former
case, the iterative reachability computations apply quite analogously, but the
conditions can now be specified by any set of linear constraints, not only by
constant bounds on variables. In the latter case, the computations are similar
to the ones for LHA II described below, but we do not need segmentation as
the behavior is linear thus segmentation does not increase the precision.

Hybrid automata with linear ODEs and linear constraints
For the more general case of hybrid automata with linear ODEs (LHA II),
methods based on flowpipe construction can be used. Similar to the method
mentioned above for rectangular automata, flowpipe-construction-based
methods apply iterative forward reachability computations, starting from
some initial state set and alternatingly over-approximating flow and jump
successors. However, as the behaviour (according to the solutions of linear
ODEs) is now in general non-linear, efficient approaches compute a set of
convex linear sets, whose union over-approximates the states reachable from
an initial state set by a bounded number of jumps (jump depth) and a bounded
time ellapse between two successive jumps (time horizon). In some cases,
when a fixed-point can be detected during analysis, these approaches are also
able to make statements about unbounded reachability, but in general this is
not the case.

The model class LHA II contains those hybrid automata, whose dynamics
in each location l can be specified by a system of linear ODEs over the model’s
variables x = (x1, . . . , xd):

ẋ = Ax.
Starting from some initial variable values x0 = (x0,1. . . , x0,d), according

to the above dynamics, after t time units the variables will reach the values
x(t) = etA ∙ x0, where etA is the matrix exponential for tA. In order to compute
bounded reachability, even if we start from a single state, due to non-
determinism and non-linear behaviour in the iterative successor computations
we need to extend the above solution to the initial value problem to handle
initial state sets X0, and to over-approximate the set of all states reachable
within given time intervals.

To over-approximate a flowpipe, formed by the trajectories of time
evolutions from a set of initial states within a time interval [0, T], i.e.,
to over-approximate the set of all states reachable within time T from
a set X0, standard techniques discretize [0, T] into time segments
[0, δ] ,..., [(N − 1)δ, Nδ] of size δ = T

N
 and compute flowpipe segments Ωi

that over-approximate all states reachable from X0 within time [iδ, (i+1)δ].
The computation of the first segment Ω0 which safely over-approximates

168 Reuse in Intelligent Systems

reachability within the time interval [0, δ] is more involved, while all following
segments Ω1, . . . , ΩN −1 can be obtained by linear transformations

Ωi+1 = eδA · Ωi.

To account for discrete jumps, we compute for each flowpipe segment Ωi
its intersection with all outgoing jumps’ guards and apply the corresponding
effects to the intersections. The obtained sets are considered as initial sets
in the target locations in which again flow successors are computed. To
reduce the growth of the search tree, jump successor sets can be clustered
or aggregated into a fewer number of successor sets per target location.
Figure 3 shows the algorithm for the computation of flow and jump successors
for a given initial valuation set in a certain initial location. Figure 4 illustrates
the reachability computation graphically on an example.

The datatypes for the representation of the flowpipe segments Ωi play
an important role in verification, as they strongly affect both precision and
efficiency. Popular representations use geometric objects (boxes, polytopes,
zonotopes, etc.) or other symbolic representations (support functions, Taylor
models, etc.). Each of these representations comes with individual advantages
and disadvantages regarding memory requirements and the complexity and
precision of the operations that are needed in the reachability analysis (linear
transformation, intersection, union, Minkowski sum, etc.). For example,
boxes are amongst the fastest set representations but they introduce large
over-approximation errors. In contrast to that, support functions provide
arbitrary precision but the operations required to obtain this precision are
more involved. Convex polytopes are amongst the most precise state set
representations but at the same time the computation with them might become
expensive with the increasing of the state space dimension.

Fig. 3: Algorithm to over-approximate the flowpipe from a valuation set R0 in location l using time
step length δ and n segments.

12 �

procedure computeFlowpipe(l, R0, δ, n)
cur ← R0 � state set to compute time successors for
F ← {R0} � set of flowpipe segments
J ← ∅ � set of jump successor sets
while !terminate do � while time horizont nδ is not yet

reached
cur ← flowSucc(cur , δ) � compute next flowpipe

segment
F ← F ∪ cur
J ← J ∪ jumpSucc(cur) � jump successors of current

segment

return (F, J) � return flowpipe segments and their jump
successors

Figure 2.3: Algorithm to over-approximate the flowpipe from a
valuation set R0 in location l using time step length δ and n seg-
ments.

The datatypes for the representation of the flowpipe segments
Ωi play an important role in verification, as they strongly affect
both precision and efficiency. Popular representations use geomet-
ric objects (boxes, polytopes, zonotopes etc.) or other symbolic
representations (support functions, Taylor models etc.). Each of
these representations comes with individual advantages and dis-
advantages regarding memory requirements and the complexity
and precision of the operations that are needed in the reachabil-
ity analysis (linear transformation, intersection, union, Minkowski
sum, etc.). For example, boxes are amongst the fastest set rep-
resentations but they introduce large over-approximation errors.
In contrast to that, support functions provide arbitrary precision
but the operations required to obtain this precision are more in-
volved. Convex polytopes are amongst the most precise state set
representations but at the same time the computation with them
might become expensive with the increasing of the state space
dimension.

Hybrid automata with non-linear ODEs

For this class of models more involved computations are required
to over-approximate flow and jump successors. In this paper we
do not cover this case. For further reading we refer to [12].

while time horizon not reached

Context-dependent Reachability Analysis for Hybrid Systems 169

Hybrid automata with non-linear ODEs
For this class of models more involved computations are required to over-
approximate flow and jump successors. In this paper we do not cover this
case. For further reading we refer to [12].

2.3 Variable Set Separation
The applicability of the above reachability analysis algorithms strongly
depends on the concrete models, especially on the number of their variables.
To reduce the effort for reachability computations, in our previous work [31]
we investigated separating syntactically independent subsets of variables of
a given hybrid automaton H: We seek for a partitioning of the variable set
Var = V0 ∪ . . .∪ Vk of H into disjoint subsets Vi such that all guards
and invariants φ ∈ PredVar in H are decomposable into predicates
φ = φ0 ∧ . . .∧ φk where φi ∈ PredVi

; we have similar requirements for flows
and resets. If all these criteria are met, we call D = V0 ∪ . . .∪ Vk a syntactically
independent decomposition of the variable set of H.

Syntactically independent decompositions allow for a compositional
reachability analysis where each variable partition is treated individually
in a corresponding sub-space. In [31] we used this property to effectively
reduce the state space dimension for the reachability computations for LHA
II. To account for implicit time synchronization, we established connections
between flowpipe segments in different sub-spaces that were computed for the
same time segments. Based on this implicit time synchronization, predicates

Fig. 4: Illustration of flowpipe-construction-based reachability analysis.

Jump guard

Flowpipe

Initial state set

Jump reset

Fig. 7.4 Fig. 7.3 (Missing)

Fig. 7.5
R¢3

R¢2

R0

R1

R2

R3

Sub-space 1

Guard g

d d d d

R¢0

R¢1

Sub-space 2

d d d d

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Fig. 7.6

170 Reuse in Intelligent Systems

φ ∈ PredVar in H such as invariants or guards are only satisfied for a time
segment if all decomposed predicates φi are satisfied during the same time
segment in all sub-spaces. On the one hand, this decomposition speeds up
the search remarkably, but on the other hand it introduces some additional
over-approximation errors: If a flowpipe segment in a sub-space has a non-
empty intersection, e.g., with a jump guard but it is not fully contained in
it then we do not exactly know at which time points the guard is true in the
corresponding time segment, therefore we need to consider the full flowpipe
segments in the other sub-spaces.

3. Context-based Reachability Analysis

3.1 Variable Set Separation Revisited
In the variable set decomposition approach [31] we aimed at grouping
variables into three classes: (1) A set of discrete variables that are syntactically
independent from all other variables not in the set. (2) A set of variables with
constant derivatives that are syntactically independent from all other variables
not in the set. (3) All the remaining variables. We required this decomposition
to be fixed manually by the user for the whole automaton H.

In this work, we aim at providing an automated approach for finding
maximal syntactically independent variable sets. To achieve this, we compute
a dependency graph G = (V, E), whose nodes V = VarH represent the variables
and whose edges (xi, xj) ∈ E represent syntactic dependence between the
variables xi and xj in any location’s flow or invariant or in a jump’s guard
or reset. For instance, when the evolution of xi syntactically depends on the
value of xj or vice versa. The connected components of G provide the finest
syntactically independent variable set decomposition.

Note that set union preserves syntactical independence, therefore if the
finest decomposition contains too many partitions, several partitions can be
united to achieve a coarser decomposition.

3.2 Context-sensitive Reachability Analysis
In many applications, for instance when digital controllers are part of the
model, the variables of a given hybrid automaton can be classified into
continuous physical quantities and discrete variables representing the state of
the control program. Additionally the continuous variables can be classified
into several subclasses based on the nature of their dynamics and the shape
of conditions and reset functions. This classification basically reflects the
different subclasses of hybrid automata, as presented in Table 1, i.e., we can
separate variables that behave as clocks of a timed automaton, or variables

Context-dependent Reachability Analysis for Hybrid Systems 171

with constant derivatives, variables with dynamics from intervals or general
linear or non-linear ODEs.

For the reachability analysis, the time evolution for discrete variables does
not need to be computed, as the values of discrete variables remain unchanged
during time evolution. Furthermore if we can detect a certain subclass of
variables, we can make use of specialized approaches.

For instance, if only clocks are involved, we can exploit this by performing
reachability computations which are based on DBM representations in one
step instead of the time-discretizing approach which is used for general
LHA II. Analogously we can make use of specialized approaches if the
automaton is a rectangular automaton and compute the set of reachable states
by means of linear predicates.

Thus, in our approach we try to customize reachability computations
according to the different dynamics in syntactically independent variable
sets to further increase the efficiency. In [31] we applied special reachability
computation techniques only to syntactically independent discrete variables
(in the first set). In this work we generalize our technique to better exploit the
individual variable dynamics in different variable partitions by using tailored
approaches which are available for certain subclasses.

We introduce the following classification of the variables according to their
dynamics and available analysis methods:1 (1) discrete class (zero derivative),
(2) timed class (derivative 1), (3) constant class (constant derivative),
(4) rectangular class (derivative from rectangular set) and (5) linear class
(linear ODE). In this work we do not consider non-linear ODEs, mainly due
to implementation issues. Note that most classes contain all other classes with
lower indices (e.g., (3) contains both (1) and (2)), but there are exceptions
((2) is disjoint from (1) and (4) is disjoint from (5)). For a variable partitioning,
to each partition we assign a context which is the class with the smallest index
1 ≤ i ≤ 5 such that the dynamics of each variable from the partition falls
into that class in each location. For example, if a partition contains discrete
variables and clocks then its context is the constant class.

We can assign to each context a customized reachability analysis
technique.
 (5) In our setup the linear class is the most general and therefore default

context, which requires the usage of classical flowpipe-construction-
based approaches as presented in Section 2.2 for LHA II.

 (4) The rectangular class requires an approach different from all the other
approaches (see Section 2), i.e., this class is not directly contained in any
other class and thus there is no more general approach available.

1 Rectangular automata are a subclass of LHA II but the utilized analysis methods do not reflect this
relation.

172 Reuse in Intelligent Systems

 (3) For the constant class we can apply any method for LHA I to compute
flow successors without flowpipe segmentation in one step for unbounded
time duration. Note that the analysis method for the rectangular class is a
generalization of this approach and thus can also be used.

 (2) If we can syntactically separate a set of variables within the timed class
then we can use DBM-based analysis methods suitable for timed automata
which are far more effective and precise.

(1) Finally, for the discrete class the flowpipe computation reduces to
identifying jump successors.

3.3 Implementation Details
In previous works [28, 29] we have introduced the concept of tasks and
workers in hybrid systems reachability analysis. A task t = (l, R, T) stores the
information that a flowpipe computation needs to be carried out in a location
l for initial valuation set R and time duration [0, T]. Tasks are stored in queues
and executed by workers, where each worker is implemented as a separate
thread. During these executions, each worker might create follow-up tasks for
jump successors, which can be distributed over shared global queues to other
workers.

We have extended this concept by introducing context-sensitive workers
to exploit dedicated reachability analysis methods in different contexts and
to further improve the scalability of our method. In the following we extend
the concept of a symbolic state (l, R) to sub-spaces and use (l, R1, . . . , Rn)
to denote decomposed sets with Ri being the projection of R to the sub-space
of Vi. Thus in the context of a decomposition in n syntactically independent
variable sets our tasks are of the form t = (l, R0, . . . , Rn, T). Note that the cross
product of the projections over-approximates the initial state set (assuming
the same order of the dimensions).

After reading the input automaton H, a syntactically independent
decomposition DH = V0 ∪ . . .∪ Vn is computed using the graph-based approach
as presented before. Based on this decomposition, the initial valuation set
InitH(l) for each location l is projected onto the sub-spaces spanned by the
variable sets Vi in l, resulting in the valuation sets Initi(l). For each location, its
initial task (l, Init1(l), . . . , Initn(l), T) (where T is the time horizon) is pushed
into the working queue and can be grabbed by a worker, which will execute all
needed successor computations in the sub-spaces using time synchronization
between them, and potentially push jump successors back into the working
queue.

As mentioned in Section 2.3, we require implicit synchronization
between the different contexts to check conditions such as invariants, guards
or intersections with bad states. Synchronization via time intervals between

Context-dependent Reachability Analysis for Hybrid Systems 173

different sub-spaces may introduce over-approximation errors. We illustrate
this using the synchronization on discrete jumps (see Figure 5). In the linear
context (class (5)) it is impossible to get the exact time interval Tg when a
guard predicate g for a discrete jump is satisfied. The time intervals associated
with each segment however allow us to obtain an over-approximation
T'g ⊇ Tg (in Figure 5 the union of the time segments of R2 and R3). Using
T'g for synchronization, we identify the corresponding flowpipe segments in
all other sub-spaces (R'2 and R'3 in Figure 5, right). This introduces additional
over-approximation errors, as the exact time interval Tg when the predicate
g is satisfied cannot be obtained and used for synchronization between the
sub-spaces.

Even though the decomposition of the state space into sub-spaces
indicates that the analysis of those can be handled independently, collecting
and distributing information over the different sub-spaces is beneficial. As
predicates such as guards and invariants need to be satisfied in all sub-spaces
at the same time, we can avoid unnecessary checks: For instance knowing that
a predicate, e.g., a guard is not satisfied in a certain sub-space during a certain
time interval directly allows to skip the check for this guard for the same time
interval in all other sub-spaces.

We can further exploit this fact by observing that intersection computation
in different contexts comes with different efforts and different consequences.
For instance, if a guard g of a jump is not enabled in a discrete context
then we know for sure that this transition will not be enabled for the whole
flowpipe and can skip consecutive checks in all other sub-spaces during
the whole computation of the flowpipe. As another example, it is precise
and computationally cheap to gain timing information from a timed or a
rectangular context, which can be transferred to the according predicates in
other sub-spaces in order to avoid expensive operations.

Jump guard

Flowpipe

Initial state set

Jump reset

Fig. 7.4 Fig. 7.3 (Missing)

Fig. 7.5
R¢3

R¢2

R0

R1

R2

R3

Sub-space 1

Guard g

d d d d

R¢0

R¢1

Sub-space 2

d d d d

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Fig. 7.6

Fig. 5: Synchronization over time intervals for flowpipe segments R2, R3 in sub-space 1 maps to
segments R'2 , R'3 in sub-space two.

174 Reuse in Intelligent Systems

To this end, verification in the discrete context, followed by the timed
and rectangular context and finally the linear context allows for a maximal
information extraction and distribution with minimal cost during running
time.

Handler-based Contexts
To reduce the implementation overhead and avoid duplicate code, our context-
based workers may be assembled modularly from pre-defined handlers. The
general approach for reachability analysis as presented in Figure 3 can be
divided into several subtasks which can be handled individually. Abstracting
those subtasks, for instance computing the intersection with the invariant
or computing a jump successor allows to further modularize reachability
computation. While a general approach towards this was presented in [20], we
aim at refining this idea. As already stated, the basic flowpipe construction-
based reachability analysis method distinguishes between computation of
time- and jump-successor states. The computation of time successor states
can further be partitioned into the computation of the time successor state set
(l, R), the validation of the invariant (l, R') = (l, R ∩ Inv (l)), the intersection
with bad states (R' ∩ Rbad = ∅ ?) and testing whether outgoing transitions
(l, gi, ri, l') ∈ Edge from the current location are enabled (R' ∩ gi = ∅ ?).
Jump-successor computation involves application of the reset function ri
and intersection with the target location’s invariant. Note that further post-
and pre-processing steps for both, the time—as well as the jump-successor
computation can be applied or even may be neccessary, depending on the
type of dynamics. For instance fixed-point tests can be included as a post-
processing of the jump-successor computation, while for example aggregation
and clustering can be seen as potential pre-processing steps and make sense
when computing LHA II reachability.

While some of those steps vary depending on the context, some are
similar in multiple subspaces. The intersection with the invariant condition,
as an example is similar in subspace classes (1)–(3) and (5) and thus can be
computed by the same code.

To exploit this property and allow for a dynamic creation of contexts, to
reduce duplicate code as well as to ease the extension of existing approaches
we introduce handler-based contexts. While a general template of a worker is
provided, a central decision entity allows to implement creation of handlers
based on the current context with a fall-back to the most general approach (all
classes except (4) fall back to (5)). In the current setup we provide handlers
for each class for

 • the creation of the first flowpipe segment (required for LHA II),
 • the computation for time successors,

Context-dependent Reachability Analysis for Hybrid Systems 175

 • the intersection of state sets with invariants,
 • the test for emptiness of a state set with the set of bad states,
 • the test for emptiness of a state set with a guard of an outgoing transition,
 • the application of a reset function to a state set and
 • the creation of follow-up tasks from a discrete jump.

Note that the general context template allows to instantiate pre- and post
handlers for each of those mentioned handlers to allow for specialized pre-
and post-processing.

The global decision entity, which is aware of the number and types of
subspaces may decide during running time, which handlers to instantiate for
which subspace.

4. Experimental Results

To test our approach, we have conducted several experiments using our tool
prototype HyDRA, which is based on HyPro [30], a C++ library providing
modules for the development of flowpipe-construction-based reachability
analysis methods for linear hybrid systems (LHA II).

We have used a set of commonly known benchmarks, including the
bouncing ball (bball), an instance of Fisher’s mutual exclusion protocol
(fisher), the model of a vehicle platoon (platoon), the simplified model of a
temperature control of a reactor (rods), an artificial 5D linear switching system
(sw5), and a model of two leaking tanks with a controlled inflow (2tanks).
All experiments were carried on an Intel Core i7 (4 × 4 GHz) CPU with
16 GB RAM. The timeout was set to 10 minutes and we used a memory
limit (MO) of 8 GB. The running times for our experiments can be found in
Table 2. To test our extension towards rectangular automata and decomposition
thereof we created a small toy example which contains both, linear dynamics

Table 2: Running times (in seconds) for a selection of benchmarks with context-sensitive workers
(sep.) and without using boxes (box) and support functions (sf) with different time step sizes. Timeouts

(TO), memouts (MO) and unsuccessful verifications (†) are marked.

benchmark

box box sf sf

δ = .1 δ = .01 δ = .01 δ = .001

no sep. sep. no sep. sep. no sep. sep. no sep. sep.

non-
dec.

bball
sw5

†
†

†
†

0.1
†

0.1
†

0.14
†

0.15
†

0.51
0.32

0.54
0.32

dec.

fisher
platoon
rods
2tanks

5.8
†

0.13
1.16

8.25
†

0.13
0.71

5.14
†

0.39
0.75

74.9
†

0.43
0.83

TO
5.17
9.98
TO

285
4.6
4.13
1.22

TO
19.8
TO
TO

TO
15.5
339
8.78

176 Reuse in Intelligent Systems

and rectangular dynamics. Due to the lack of published benchmarks for
rectangular automata we used an additional artificial model with 5 variables
(5variable_system) taken from [11]. Furthermore, we created an equivalent
instance of fisher using a rectangular automaton model to test our approach, as
the original dynamics are constant. The running times for those experiments
can be found in Table 3.

In our experiments we varied the state set representation between boxes
(box) and support functions (sf), and the time step size δ between 0.01 and 0.001
for the analysis of LHA II and the decomposition thereof. The configurations
denoted by sep. denote runs of context-sensitive reachability analysis with
variable separation as presented in Section 3. Some configurations resulted in
too strong over-approximations and therefore they could not prove safety of
the given benchmarks (†), some others timed out (TO).

The benchmark instances fisher (4 × 1), platoon (2 × 1, 1 × 10), rods
(3 × 1) and 2tanks (10 × 1, 6 × 2) can be decomposed into sub-spaces as
indicated in the brackets (number of sets Vi × |Vi|) while bball and sw5 are not
decomposable. The mixed-rectangular toy example (toy) can be decomposed
into 1 × 2, 1 × 1, 1 × 1 subspaces where the first subspace is rectangular, the
second one is timed and the third one is linear. The rectangular version of fisher
is decomposable into subspaces of dimension 1 × 3 and 1 × 1 where the first
subspace is rectangular. Note that benchmarks involving rectangular subspaces
together with non-rectangular subspaces always require decomposition, as the
analysis method for rectangular automata fundamentally differs from the one
for LHA II, which was normally used as a fallback in case no decomposition is
demanded. Furthermore the state set representation for rectangular subspaces
is fixed, as we use conjunctions of linear constraints to represent state sets.
As the reachability analysis method for rectangular automata does not require
time discretization but computes the set of reachable states in a location in one
step, we do not consider any time step size for those benchmarks.

We can observe that for support functions the decomposition pays off
in most cases in terms of running time, and the overhead introduced by
the decomposition is negligible in comparison to the speed-up resulting
from lower-dimensional sub-spaces. Even a state space reduction by two

Table 3: Running times (in seconds) for the rectangular models and adaptions. Note that per default
decomposition is used.

Benchmark Running Times

toy 0.11

fisher 20

5variable_system 19.4

Context-dependent Reachability Analysis for Hybrid Systems 177

dimensions (platoon) is noticeable, the decomposition of fisher into one-
dimensional sub-spaces allows to obtain results while the analysis using the
original 4-dimensional state space exceeds the time limit. Note that for fisher
the separated sub-spaces all require the usage of the linear context while the
separated one-dimensional sub-spaces in platoon can both be computed using
a timed context. The sub-spaces in 2tanks are mostly of discrete nature, which
explains the huge speed-up when using support functions.

In our benchmarks, boxes behave differently. In general, boxes are
amongst the fastest state set representations available such that the overhead
introduced by decomposition as well as the overhead caused by instantiating
multiple handlers computing flowpipes instead of one single handler is
noticeable.

The analysis in the rectangular version of fisher is slower than when using
boxes, however the state sets can be computed exactly with this method, which
is not possible when using LHA II analysis methods (see Figure 6). The model
of 5variable_system could be verified for one jump, when increasing the jump
limit the memory limit was exceeded. This can be explained by the repeated
application of Fourier-Motzkin variable elimination, which in the worst case
introduces quadratically many new constraints when eliminating a variable.

5. Conclusion

We presented an extension to our previous work which is able to dynamically
establish variable set decompositions based on syntactical independence.
Furthermore our approach identifies a context for each sub-space which

Fig. 6: Plots of the computed set of reachable states for the first location in fisher using different
analysis methods.

Jump guard

Flowpipe

Initial state set

Jump reset

Fig. 7.4 Fig. 7.3 (Missing)

Fig. 7.5
R¢3

R¢2

R0

R1

R2

R3

Sub-space 1

Guard g

d d d d

R¢0

R¢1

Sub-space 2

d d d d

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Fig. 7.6

(a) First segments for fisher using LHAII
reachability analysis methods (δ = 0.1).

(b) Excerpt from reachable set for the
rectangular variant of fisher.

178 Reuse in Intelligent Systems

allows for applying specialized methods for reachability analysis via flowpipe
construction, i.e., for timed automata or rectangular automata.

Future Work

The currently computed decompositions are computed for the whole
automaton. As a further task it would be interesting to investigate on local
decompositions, i.e., decompositions which are based solely on the current
location, which allows for more dynamic approaches at the cost of additional
over-approximation when switching between different decomposition
schemes. In this work we created decompositions for rectangular subspaces
solely based on syntactic features. For future work it would be interesting
to provide an approach which allows to convert subspaces with constant
derivatives to a rectangular subspace, provided guard and invariant conditions
as well as resets comply with the properties of a rectangular automaton
(conditions are axis-aligned, variables are only reset to intervals). Additionally
using classic variable elimination techniques such as Fourier-Motzkin variable
elimination may introduce quadratically many constraints among some are
redundant. One direction for the future development would be to further
develop automated reduction techniques or switch to more sophisticated
approaches as for instance proposed in [11].

References
 [1] Matthias Althoff and John M. Dolan. 2014. Online verification of automated road vehicles

using reachability analysis. IEEE Transaction on Robotics 30(4): 903–918.
 [2] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. The MIT

Press.
 [3] Stanley Bak and Marco Caccamo. 2013. Computing reachability for nonlinear systems

with hycreate. Poster Session of HSCC’13.
 [4] Stanley Bak and Parasara Sridhar Duggirala. 2017. Hylaa: A tool for computing

simulation-equivalent reachability for linear systems. pp. 173–178. In: Proc. of HSCC’17,
ACM.

 [5] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi. 1995.
Uppaal—a tool suite for automatic verification of real-time systems. pp. 232–243.
In: Proc. of HS’95, Vol.1066 of LNCS, Springer.

 [6] Johan Bengtsson and Wang Yi. 2004. Timed automata: Semantics, algorithms and tools.
pp. 87–124. In: Lectures on Concurrency and Petri Nets: Advances in Petri Nets, Springer,
Berlin, Heidelberg.

 [7] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Frédéric Viry, Andreas Podelski and
Christian Schilling. 2018. Reach set approximation through decomposition with low-
dimensional sets and high-dimensional matrices. pp. 41–50. In: Proc. of HSCC’18, ACM.

 [8] Olivier Bouissou, Alexandre Chapoutot and Samuel Mimram. 2013. Computing flowpipe
of nonlinear hybrid systems with numerical methods. CoRR, abs/1306.2305.

Context-dependent Reachability Analysis for Hybrid Systems 179

 [9] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis and
Sergio Yovine. 1998. Kronos: A model-checking tool for real-time systems. pp. 546–550.
In: Proc. of CAV’98, Vol. 1427 of LNCS.

 [10] Vı́ctor A. Braberman, Alfredo Olivero and Fernando Schapachnik. 2002. ZEUS: A
distributed timed model-checker based on KRONOS. pp. 503–522. In: Proc. of PDMC’02,
Vol. 68:4 of Electronic Notes in Theoretical Computer Science, Elsevier.

 [11] Xin Chen, Erika Ábrahám and Goran Frehse. 2011. Efficient bounded reachability
computation for rectangular automata. pp. 139–152. In: Proc. of RP’11, Vol. 6945 of
LNCS, Springer.

 [12] Xin Chen, Erika Ábrahám and Sriram Sankaranarayanan. 2012. Taylor model flowpipe
construction for non-linear hybrid systems. pp. 183–192. In: Proc. of RTSS’12, IEEE
Computer Society Press.

 [13] Xin Chen, Erika Ábrahám and Sriram Sankaranarayanan. 2013. Flow*: An analyzer
for non-linear hybrid systems. pp. 258–263. In: Proc. of CAV’13, Vol. 8044 of LNCS,
Springer.

 [14] Xin Chen and Sriram Sankaranarayanan. 2016. Decomposed reachability analysis for
nonlinear systems. pp. 13–24. In: Proc. of RTSS’16, IEEE Computer Society Press.

 [15] Pieter Collins, Davide Bresolin, Luca Geretti and Tiziano Villa. 2012. Computing the
evolution of hybrid systems using rigorous function calculus. pp. 284–290. In: Proc. of
ADHS’12, IFAC-PapersOnLine.

 [16] David L. Dill. 1990. Timing assumptions and verification of finite-state concurrent
systems. pp. 197–212. In: Proc. of CAV’89, Vol. 407 of LNCS, Springer.

 [17] ParasaraSridhar Duggirala, Sayan Mitra, Mahesh Viswanathan and Matthew Potok. 2015.
C2E2: A verification tool for stateflow models. pp. 68–82. In: Proc. of TACAS’15, Vol.
9035 of LNCS, Springer.

 [18] Andreas Eggers. 2014. Direct Handling of Ordinary Differential Equations in Constraint-
solving-based Analysis of Hybrid Systems. Ph.D. thesis, Universität Oldenburg, Germany.

 [19] Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert and Tino Teige. 2007.
Efficient solving of large non-linear arithmetic constraint systems with complex Boolean
structure. Journal on Satisfiability, Boolean Modeling and Computation 1: 209–236.

 [20] Frehse, G. and R. Ray. 2009. Design principles for an extendable verification tool for
hybrid systems. pp. 244–249. In: Proc. of ADHS’09, IFAC-PapersOnLine.

 [21] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang and Oded Maler. 2011. SpaceEx: Scalable
verification of hybrid systems. pp. 379–395. In: Proc. of CAV’11, Vol. 6806 of LNCS,
Springer.

 [22] Willem Hagemann, Eike Möhlmann and Astrid Rakow. 2014. Verifying a PI controller
using SoapBox and Stabhyli: Experiences on establishing properties for a steering
controller. pp. 115–125. In: Proc. of ARCH’14, Vol. 34 of EPiC Series in Computer
Science, EasyChair.

 [23] Thomas A. Henzinger. 1996. The theory of hybrid automata. pp. 278–292. In: Proc. of
LICS’96, IEEE Computer Society Press.

 [24] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri and Pravin Varaiya. 1998. What’s
decidable about hybrid automata? Journal of Computer and System Sciences
57(1): 94–124.

 [25] Kong, S., S. Gao, W. Chen and E.M. Clarke. 2015. dReach: δ-reachability analysis for
hybrid systems. pp. 200–205. In: Proc. of TACAS’15, Vol. 9035 of LNCS, Springer.

 [26] André Platzer and Jan-David Quesel. 2008. KeYmaera: A hybrid theorem prover for
hybrid systems (system description). pp. 171–178. In: Proc. of IJCAR’08, Vol. 5195 of
LNCS, Springer.

180 Reuse in Intelligent Systems

 [27] Stefan Ratschan and Zhikun She. 2005. Safety verification of hybrid systems by constraint
propagation based abstraction refinement. pp. 573–589. In: Proc. of HSCC’05, Vol. 3414
of LNCS, Springer.

 [28] Stefan Schupp and Erika Ábrahám. 2018. Efficient dynamic error reduction for hybrid
systems reachability analysis. pp. 287–302. In: Proc. of TACAS’18, Vol. 10806 of LNCS,
Springer.

 [29] Stefan Schupp and Erika Ábrahám. 2018. Spread the work: Multi-threaded safety analysis
for hybrid systems. In: Proc. of SEFM’18, Vol. 10886 of LNCS, Springer. To appear.

 [30] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf and Stefan Kowalewski. 2017.
HyPro: A C++ library for state set representations for hybrid systems reachability analysis.
pp. 288–294. In: Proc. of NFM’17, Vol. 10227 of LNCS, Springer.

 [31] Stefan Schupp, Johanna Nellen and Erika Ábrahám. 2017. Divide and conquer: Variable
set separation in hybrid systems reachability analysis. pp. 1–14. In: Proc. of QAPL’17,
Vol. 250 of EPTCS, Open Publishing Association.

 [32] Stefan Schupp, Justin Winkens and Erika Ábrahám. 2018. Context-dependent reachability
analysis for hybrid systems. pp. 518–525. In: Proc. of FMI’18, IEEE Computer Society
Press.

 [33] Walid Taha, Adam Duracz, Yingfu Zeng, Kevin Atkinson, Ferenc A. Bartha, Paul Brauner,
Jan Duracz, Fei Xu, Robert Cartwright, Michal Konecný, Eugenio Moggi, Jawad
Masood, Pererik Andreasson, Jun Inoue, Anita Sant’Anna, Roland Philippsen, Alexandre
Chapoutot, Marcia O’Malley, Aaron Ames, Verónica Gaspes, Lise Hvatum, Shyam
Mehta, Henrik Eriksson and Christian Grante. 2015. Acumen: An open-source testbed for
cyber-physical systems research. pp. 118–130. In: Proc. of IoT 360º 2015.

Chapter 8
Netflow Feature Evaluation

for the Detection of Slow
Read HTTP Attacks

Cliff Kemp, Chad Calvert and Taghi M Khoshgoftaar*

1. Introduction

Network cyber attacks have become commonplace in today’s world. These
attacks have become very sophisticated and difficult to prevent. Many of the
stealthy attacks target the application layer where they take advantage of
vulnerabilities on web servers. Because web servers are open to the public
they are accessed frequently by many users. The goal of attackers is to simulate
legitimate, normal traffic as close as possible, which they do quite well. The
task for those defending the networks is to determine the difference between
normal and attack traffic. To make it even more of a challenge the attackers are
always updating their attack methods.

One approach to assist the defenders of networks is machine learning.
Networks have enormous amounts of data they collect. The data comes from
various sources such as logs, full packet captures (FPCs), and Netflow traffic.
Machine learning can use these sources with numerous machine learning
algorithms. Also, algorithms have many options that can be used to optimize
that algorithm for a given scenario. Additionally, there are techniques used to
enhance the data before the machine learning algorithm is applied. Collecting

College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, Florida.
Emails: ckemp1@fau.edu; ccalver3@fau.edu
* Corresponding author: khoshgof@fau.edu

mailto:khoshgof@fau.edu
mailto:ccalver3@fau.edu
mailto:ckemp1@fau.edu

182 Reuse in Intelligent Systems

the data is easy, however, the most difficult part of the machine learning
process is selecting the most relevant attributes, commonly referred to as
features, that will improve the performance of the machine learner. We must
also keep in mind that a set of features that performs well with one machine
learner may not work well with another. Discovering the correct set of features
for machine learning is referred to as feature selection. The goal of feature
selection is to determine the set of features that will produce the best accuracy
and predictability for the machine learner. There are many types of network
attacks, and in this paper we focus specifically on application layer Denial of
Service (DoS).

DoS is an attack that aims to prevent normal communication with a
resource by disabling the resource itself or an infrastructure device providing
connectivity to it. DoS attacks have evolved and adapted to create a severe
security threat to networks. Akamai’s in-depth report, with insight into the
latest Distributed Denial of Service (DDoS) and web application attacks, states
that after two consecutive quarters of decline in total attacks, the number of
DDoS attacks increased markedly in the second quarter of 2017 [6].

Recent years have brought a rise in application layer DDoS attacks
targeting applications. They target not only the well-known Hypertext
Transfer Protocol (HTTP) but also HTTPS, DNS, SMTP, FTP, VOIP, and other
application protocols that possess exploitable weaknesses allowing for DDoS
attacks. Much like attacks targeting network resources, attacks targeting
application resources come in a variety of types including HTTP GET, Slow
POST, and Slow Read. Slow Read approaches are particularly prominent,
mostly targeting weaknesses in the HTTP protocol which, as the most widely
used application protocol on the Internet, is an attractive target for attackers.
Network resources are expected to provide seamless availability to employees
for their day-to-day activities and to customers that purchase items and need
access to online accounts twenty-four hours a day. Dependency for this
access in networks today has become commonplace and as such has attracted
malicious attackers who target these network servers, especially the web
servers. The primary goal of DDoS attacks is to deny service provided to
customers and employees.

There are distinct types of DDoS attacks, each performing at the various
levels of the Open Systems Interconnection (OSI) model [20] as seen in
Figure 1. The OSI model helps vendors create inter-operable network devices
and software in the form of protocols so that different vendor networks
could work with each other. The central concept of the OSI model is that the
process of communication between two endpoints in a network divides into
seven separate groups of related functions or layers. The application layer
supplies network services to user applications. Network services are protocols
that work with user data. For example, a web browser application uses the

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 183

application layer protocol HTTP which packages the data needed to send and
receive web page content.

The Slow Read HTTP attack, also known as a “low and slow” attack [4],
sends a legitimate HTTP request and reads the response slowly, aiming to keep
as many connections active as possible to tie up resources on the server until
it cannot handle any further requests. The characteristics of the Slow Read
attacks relate to application resources, whereas the previous DDoS attacks
targeted server resources such as bandwidth [50]. Slow Read attacks target
specific application vulnerabilities, allowing an attacker to use a stealthy DoS.
Not volumetric in nature, such attacks can often launch with only a single
machine. Additionally, because these attacks occur at the application layer,
a Transmission Control Protocol (TCP) handshake is already established,
successfully making the malicious traffic look like normal traffic traveling
over a legitimate connection.

Various evasion techniques are used to bypass intrusion detection systems,
leaving the network vulnerable to specific DoS attacks. A stealthy DoS attack
variant can disrupt routine web services covertly without triggering any alerts.
One potential solution is the application of flow-based analysis.

Fig. 1: OSI model.

Physical
media, signal and

binary
transmission

Presentation
data

representation and
encryption

Data

Data

Data

Segment

Packet

Frame

Application
network process

to application

Data Layer

OSI model

Session
interhost

communication

Transport
end-to-end

connections and
reliability

Network
path determination

and IP

Data link
MAC and LLC

(physical
addressing)

Bits

H
o

s
t

la
y
e

rs
M

e
d

ia
 la

ye
rs

S
lo

w
 r

e
a

d
 a

tt
a

c
h

Fig. 8.1

800

600

400

200

0

0 23 46 69 92
115

138
161

284
207

253
276

299
230

C
o

n
n

e
ct

io
n

Seconds

Closed Pending Connected Service available

Test result against http://192.168.101/

 Test parameters

Test type Slow read

Number of connections 1000

Receive window range 1-100

Pipeline factor 10

Read rate from receive buffer 5 bytes / 1 sec

Connection per seconds 50

Timeout for probe connection 5

Target test duration 300 seconds

Fig. 8.2

at
ta

ck

184 Reuse in Intelligent Systems

Netflow, also referred to as session data, represents a high-level summary
of network conversations. A Network flow record is identified based upon
the standard 5-tuple attribute set that makes up a conversation: source IP,
destination IP, source port, destination port, and transport protocol [32].
System for Internet-Level Knowledge (SiLK) is a software tool suite used
to generate and analyze Netflow session data [19]. SiLK is a collection of
traffic analysis tools developed by the Computer Emergency Response Team
(CERT) and the Network Situational Awareness Team (NetSA) to facilitate
security analysis of large networks [5]. SiLk can extract various standards
of session data such as IP Flow Information Export (IPFIX) [13], Netflow
v9 [12], or Netflow v5. It has the ability to collect Netflow session data in
real-time or convert previously captured full pcaps. Netflow is a more space-
efficient format than FPCs not so much because of its size, but because it
records the packed records into service-specific binary flat files and can parse
flows in a timely and efficient way without the need for complicated CPU
intensive scripts [31]. This is a key factor when considering RAM and hard
drive requirements for servers.

The first of three unique contributions of our experiment is the analysis
of Slow Read HTTP DDos attacks and the use of machine learning
predictive models that help detect Slow Read. An important aspect of our
first contribution is the use of Netflow using the IPFIX standard for session
data. The combination of Netflow session data (IPFIX) and machine learning
combats these stealthy attacks by successfully responding to the evasive
methods used by attackers. We take advantage of user-defined data types in its
features, because of the IPFIX protocol being freely extensible and adaptable
to different scenarios. Machine learning is applied to Netflow features with
the following eight machine learning algorithms: Random Forest (RF), two
variants of C4.5, a decision tree algorithm, 5-Nearest Neighbors (5NN),
Multilayer Perceptron (MLP), JRip, which uses Repeated Incremental Pruning
to Produce Error Reduction (RIPPER), Support Vector Machine (SVM), and
Naïve Bayes (NB). We have chosen these machine learners based on their
popularity with network traffic and the variations they represent [48]. These
eight learners provide us with a comprehensive array of algorithms to use on
our Netflow features.

Our second contribution focuses on the integrity of our data. Other studies
have used computer-generated simulations, isolated test beds, or scripted
traffic to collect their data [9], [39]. Our case study data is collected from real-
world network data from a production computer network. Normal web server
traffic was generated through interactions with students, faculty, and the public
on our web server located on a college campus. This helps to produce results
more representative of a real-world scenario. All attack data was produced on
a live and currently active platform. The Slow Read attacks were generated

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 185

by adjusting variables in the attack using three different levels of concurrent
connections to give us a broad scope of this type of attack with represented
models that reflect real-world activity. Therefore, the quality and integrity of
our data is well represented because of the live setting instead of simulated
environments or test beds. There are a few challenges when collecting data
on a live network. These challenges are the generation of enough normal
data, the concern for privacy, the generation of attacks on a live network for
fear of disrupting the network, the number of machines needed to attack
simultaneously, and the maintenance of network administration. Because of
these challenges, other related works [45], [36] often utilize publicly available
datasets.

Feature selection is our third contribution. We employ selective feature
evaluation and investigate several methods used to specify the attribute
evaluators and search methods. We evaluate the worth of a subset of attributes
by considering the individual predictive ability of each feature along with
the degree of redundancy between them. Subsets of features that are highly
correlated with the class while having low intercorrelation are preferred.
For this experiment, we choose the Weka [19] functions CfsSubsetEval
and Consistency-SubsetEval. For single-attribute evaluation, we also
used Weka functions ChiSquaredAttributeEval, GainRatioAttributeEval,
and Principal Component Analysis (PCA). ChiSquaredAttributeEval
and GainRatioAttributeEval are used with the Ranker search method to
generate a ranked list from which Ranker discards a given number and
ranks individual attributes according to their evaluation. Unlike other single-
attribute evaluators, PCA transforms the given set of attributes into newly
created subsets of its own.

The remainder of this paper is organized as follows. In Section 2, we
detail a common Slow Read attack method and Netflow. In Section 3, we
discuss related works associated with the collection and detection of a Slow
Read attack and feature selection. Section 4 outlines our collection procedure,
classification algorithms, and feature selection. In Section 5, we discuss
our findings for feature selection and our learners. Lastly, in Section 6, we
conclude our works and identify future endeavors.

2. Background

There are a variety of methods for enacting an application layer DDoS attack.
Contingent on the characteristics of the network, various types of attacks are
chosen based on the targeted traffic. Our experiment deploys a total of three
different Slow Read application layer attacks with varying configurations to
represent several levels of an attack. In this section, we detail the Slow Read
attack, data collection process, and Netflow traffic.

186 Reuse in Intelligent Systems

In HTTP GET flood attacks, attackers can send different HTTP requests
to the web server. The web server can have multiple connections from
the same client to the same server. Each client process will be assigned a
different ephemeral port number, so even if they all try to access the same
server process, they will all have a different client socket and represent unique
connections. This is what allows for several simultaneous requests to the same
website from one computer. Attackers can target their requests toward the
main web page, a random web page, a resource such as an image file, or even
a combination of these [32]. Unlike high-bandwidth massive flooding attacks
[4], low-bandwidth attacks performed by malicious users at the application
layer rely on Slow Read attacks to evade detection. There is no need for an
army of bots, as this type of attack can be performed with as little as one
machine and use minimum bandwidth as compared to traditional flooding
attacks [52]. Traffic during these attacks seems to be legitimate, where the
HTTP client is a web browser that establishes a connection to a server for
sending one or more HTTP request messages. We use an Apache web server as
our HTTP server that accepts connections to serve HTTP requests by sending
HTTP response messages. Differentiation of attack traffic and normal traffic
is challenging and requires expertise in the field.

Application DDoS attacks most commonly target the HTTP protocol in
an attempt to exhaust web servers through HTTP POST or GET requests.
Dealing with DDoS flood attacks has simply been a matter of looking
at overall flow volume for all routers to see if a spike had occurred. Once
that determination has been made, administrators use methods to find the
problem router or server and take steps to eliminate the threat. Attackers are
increasingly targeting HTTP, DNS, and VoIP services to perform their attacks.
Application DDoS attacks can target many different applications; however,
the most common target which HTTP attacks aim to exhaust are web servers
and services. Some of these attacks are characteristically more effective than
others because they require fewer network connections to achieve their goal.
For instance, an attacker could launch numerous HTTP GETs or POSTs to
exhaust a web server or web application.

Slow Read attacks represent a method in which the attacker keeps the
connection open by receiving the response from the server slowly, using a
minimal TCP window size. TCP is the primary protocol of most modern
networks, including the Internet. TCP is a reliable protocol that determines
whether or not packets have been received and provides an ordered, and error-
checked delivery of a stream of bytes between applications running on hosts.
Part of the TCP specification RFC 1122 [3] allows a receiver to advertise a
zero-byte window, instructing the sender to maintain the connection, but not
send additional TCP payload data. The sender should then probe the receiver

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 187

to check if the receiver is ready to accept data. By advertising a zero receive
window and acknowledging probes, a malicious receiver can cause a sender to
consume resources (TCP state, buffers, and application memory), preventing
the targeted service or system from handling legitimate connections.

Figure 2 [1] shows the SlowHTTPTest tool performing a Slow Read
attack which eventually purges a service’s availability. The SlowHTTPTest
tool efficiently implements various application layer DoS attacks. It executes
most common low-bandwidth application layer DoS attacks, such as
Slowloris, Slow HTTP POST, and Slow Read attack (based on TCP persist
timer exploit) by draining the concurrent connections pool, as well as the
Apache Range Header attack by causing significant memory and CPU usage
on the server. If a data flow occurs, a Slow Read attack exploits the fact that
most of the modern web servers are not limiting the connection duration. With
the possibility of prolonging a TCP connection virtually forever with zero or
minimal data flow by manipulating the TCP receive window size value, it is
possible to acquire concurrent connection pools of the application [1]. It is the
concurrent connections that will eventually bring the server down.

Unlike Slowloris and Slow HTTP Post in which attacks are performed
by pushing data slowly to the server, a Slow Read attack forces the server to

Fig. 2: Slow read attack using SlowHTTPTest tool [1].

Physical
media, signal and

binary
transmission

Presentation
data

representation and
encryption

Data

Data

Data

Segment

Packet

Frame

Application
network process

to application

Data Layer

OSI model

Session
interhost

communication

Transport
end-to-end

connections and
reliability

Network
path determination

and IP

Data link
MAC and LLC

(physical
addressing)

Bits

H
o
s
t
la

y
e
rs

M
e
d
ia

 la
ye

rs

S
lo

w
 r

e
a
d
 a

tt
a
c
h

Fig. 8.1

800

600

400

200

0

0 23 46 69 92
115

138
161

284
207

253
276

299
230

C
o
n
n
e
c
tio

n

Seconds

Closed Pending Connected Service available

Test result against http://192.168.101/

 Test parameters

Test type Slow read

Number of connections 1000

Receive window range 1-100

Pipeline factor 10

Read rate from receive buffer 5 bytes / 1 sec

Connection per seconds 50

Timeout for probe connection 5

Target test duration 300 seconds

Fig. 8.2

188 Reuse in Intelligent Systems

send a significant amount of data which it accepts at a slow rate. The window
size can be set to beyond 0 by the attacker arbitrarily. The attacker declares
a very small receive window size which makes the server split the response
into many small pieces that would fit the buffer size, resulting in prolonged
ongoing responses [1].

This attack needs to have the target generate at least one piece of content
on the web page that is larger than the buffer of the server. The attacker may
load the main page of the website and pick the largest resource. If there are
no sufficiently large resources on the server, the attacker will multiply the
size of the response by repeatedly requesting the same resource which will
fill up the send buffer of the web servers. The server will finish processing the
request when the content has been stored in the send buffer, so if the content
is smaller than the send buffer, the attack will fail.

Data collection represents a major contribution of our research, primarily
due to the fact that the method of collection can have a direct impact on the
quality of analysis and ability to perform effective attack detection. Network
data comes in many formats and locations. Knowing what data is available,
where that data comes from, how and why it is collected, and what can be done
with it is a major responsibility for those who manage networks. FPCs, web
server logs, and session data are all excellent sources for analyzing network
traffic. Each of these data sources performs better than the other depending on
the type of attacks one is examining. FPC data provides a full account for every
data packet transmitted between two endpoints, but can be overwhelming due
to its high degree of detailed data that is processed for diagnostics. Storing
FPCs can be a challenge to keep for very long, if at all. Ideally, one has
FPCs available for a shorter duration in case one must investigate any
previous malicious activity. It comes at a cost, however, as it can be quite
storage intensive to capture and store FPC data for an extended period.
The large size prohibits most organizations from retaining any significant
amount of data. Furthermore, evaluating all available packet features can be
resource intensive. Some organizations do not have the resources to include
FPC data into their Network Security Monitoring (NSM) infrastructure
efficiently [44].

Web server logs are ineffective at early detection of Slow Read attacks
because of the technique used by the Slow Read attack on a web server. Slow
Read attacks keep TCP connections open with no data being sent. As long
as the receiver TCP continues to send acknowledgments in response to the
probe segments, the sender TCP must allow the connection to stay open.
Given these conditions, the TCP connection will be open, with no data being
transmitted. This “stalled” state is generally referred to as the TCP persist
condition [22]. At this point, there are no web server logs generated during

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 189

the attack. Web logs are only generated after the attack has completed, and
the damage done.

As previously mentioned, SiLK can be used to supplement or supply a
summary of some of the most valuable attributes of the traffic and maintain
the data in a format that permits longer retention because of the significantly
lower amount of data. Additionally, the features utilized in IPFIX Netflow are
well designed to avoid evasion techniques used by attackers [44].

Unlike the challenges that FPC faces with accumulating and analyzing
enormous amounts of data, Netflow session data simply includes a collection
of text records and statistics. Session data is significantly smaller in size as
compared to FPC. Session or flow records will usually include the protocol,
source IP address and port, the destination IP address and port, a timestamp
of when the communication began and ended, and the amount of data
transferred between the two devices. Netflow represents an efficient storage
solution for network data. This is beneficial for network security analysts as
they must be able to rapidly query large historical traffic datasets. Additionally,
Netflow is ideally suited for analyzing traffic on the backbone or border of a
large, distributed enterprise, or mid-sized ISP.

The basic unit of data transfer in IPFIX is the message. A message
contains a header and one or more sets, which contain records. A set may
be either a template set, containing templates or a dataset, containing data
records. A dataset references the template describing the data records within
that set [21]. This is the mechanism which lends IPFIX its flexibility. IPFIX
offers variable length fields for exporting custom information, where Netflow
V9 does not. It also has a scheme for exporting lists of formatted data. Our
Netflow data uses the IPFIX standard format on generated network traffic and,
with the support of Silk NetFlow session data, performs comparably well.
SiLK is a tool that can fill the gaps of traffic capture tools because it can find
anomalies associated with traffic patterns and behaviors, and create statistics
such as aggregate packets, duration, and bytes in a flow.

3. Related Works

Historically, network simulators like nse2 [27] or modelers such as Opnet
[25] were used to reproduce DDoS attacks and measure their effects with
attack detection techniques like [10] and [43]. Though these simulation
methods were practical at that time, they are not a factual depiction of real-
world environments [28]. Combined with slower speeds using traffic replay,
this further illustrates why simulation is an ineffective scheme for focusing on
DDoS attack detection techniques. A better solution to simulators is emulation.
This is where actual machines are used as attackers and targets. One method

190 Reuse in Intelligent Systems

of emulation is demonstrated with the Emulab DETER [9] and PlanetLab [39]
testing environments. The DETER and Emulab testbeds permitted users to
choose machines in a controlled facility that are inaccessible from the Internet.
PlanetLab is a distributed test environment system that has shared access to
machines, using Virtual Machine (VM) software, consequently isolating users
within their own environment. Park et al. [38] analyze the effectiveness of
Slow Read DoS attack using a virtual environment framework, but again their
testbed is in an isolated setting.

As mentioned, we propose using the following machine learning
techniques: RF, 5NN, MLP, C4.5N, C4.5D, JRip, SVMs, and NB. There have
been other works that have explored some of these and other techniques. Adi
et al. [7] used Weka to employ four machine learning techniques (NB, decision
tree, JRip, and SVMs) and ranked features. Farnaaz et al. [16] used RF to
conduct their experiment on the NSL-KDD dataset. Their results show that
the proposed model is efficient with a low false alarm rate and high detection
rate.

NB is one of the most widely used techniques in data mining communities
and used in many studies on traffic analysis and DoS detection. Mukherjee
et al. [30] evaluated datasets with NB, applying feature reduction using three
standard feature selection methods: Correlation-based Feature Selection
(CFS), Information Gain (IG), and Gain Ratio (GR). Another study [29]
applied NB to classify traffic without inspecting the payload but rather by
extracting features from the TCP headers. Najafabadi et al. [32] applied the
PCA subspace anomaly detection method to analyze whether the proposed
user behavior NB model can sufficiently distinguish between normal and
attack instances.

Zhang et al. [53] proposed a technique to pre-process traffic before
removing features to be classified using NB. The pre-processing technique
correlated traffic flows that were generated by the same application. The
study showed that the proposed method outperformed other machine
learning techniques such as decision tree and K-Nearest Neighbors (KNN).
Haddadi et al. [18] employed flow-based network traffic utilizing NetFlow
(via Softflowd). The proposed botnet analysis system is implemented by
employing two different machine learning algorithms, C4.5 and NB. Their
study reported the use of decision trees to identify botnet behavior from
generated traffic patterns. The scheme compared its performance analysis
with NB and concluded that decision trees could produce better classification
accuracies.

JRip is considered a faster machine learning technique than decision
trees. Gaonjur et al. [17] used a JRip classifier in a traffic analysis experiment
to reduce false alarms. To select the best traffic features Yang et al. [51]

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 191

used an algorithm to improve classification accuracy and reduce the cost
of classification associated with using JRip. Panda et al. [37] developed an
extended and repeated incremental pruning process method via JRip rule-
based classifiers to construct multiple classifier systems to efficiently detect
network intrusions.

SVMs have been applied to classify DoS traffic and legitimate traffic in
a recent study [47]. Their study showed that SVMs classify with higher than
90% accuracy in all conducted experiments. Najafabadi et al. [33] apply the
one-class SVM algorithm on the extracted features from normal users’ HTTP
request sequences and label any newly seen instance that deviates from the
normal trained model as an application layer DDoS instance.

Feature selection has been proven to be effective and efficient in
preparing data for various data mining and machine learning problems
[23]. The objectives of feature selection include building simpler and
more comprehensible models, improving data mining performance, and
preparing clean, understandable data. PCA is a popular tool for data analysis
and dimensionality reduction. A disadvantage is the fact that the principal
components are usually linear combinations of all variables where all weights
in the linear combination, are typically non-zero. To solve this disadvantage,
[15] applies Sparse Principal Component Analysis (SPCA) to select features
that can retain the total variance maximally by considering interactions among
features and can select features with less redundancy.

Najafabadi et al. [34] used existing Netflow features with C4.5 decision
tree algorithms. The decision tree algorithms build the predictive rules by
using the dataset attributes. This provides a way to interpret how the newly
defined attributes are contributing in the detection of attacks using their
four models that include two versions of C4.5 decision tree, NB, and 5NN
algorithms.

One benefit of feature selection is the decreasing of process time. [35]
selected four filter-based feature selection methods which are chosen from
two categories for the application of network intrusion detection. Their
methods, which consist of three filter-based feature rankers and one filter-
based subset evaluation technique, are compared together along with the null
case which applies no feature selection. They apply statistical analysis to
determine whether performance differences between these feature selection
methods are significant or not. Bauder et al. [8] present two case studies with
medical claims fraud by employing a RF model with random undersampling,
to mitigate adverse effects of class imbalance and to generate seven different
class distributions for several big Medicare claims datasets. [46] provides a
unique insight into the underlying relationships among classifier performance
metrics by applying factor analysis to the classifier performance space. This

192 Reuse in Intelligent Systems

provides an improved understanding about relationships and groupings with
performance metrics, facilitating the selection of performance with those
metrics.

4. Experimental Procedure

The outline of our experiment concerning Slow Read attacks in this section
is divided into three subsections that include the data collection process,
classification algorithms, and metrics used to evaluate each model.

4.1 Data Collection Process
Our capture framework allows for us to perform our attacks within a real-
world network environment servicing numerous active users. The campus
network consists of hosts from classrooms, labs (including off-campus, virtual
systems), and offices. To facilitate our network usages, we employ switches,
servers, and routers capable of servicing on-and-off-campus users. A Cisco
firewall is used to provide secure access to data and network resources. For
a student resource portal, an Apache web server has been set up to serve as
the target for our attacks. The configuration of the server is composed of a
Linux CentOS operating system, an Intel 3.30 GHz processor, and 32 GB of
memory. Figure 3 shows our architecture in more detail.

We installed WordPress on the Apache student web server to serve as
our content management system. The website consists of lecture material,
assignments, assessments, and other content required by student users.
Normal traffic related to coursework may consist of but is not limited to:

technique, are compared together along with the null case which applies no feature selection. They apply
statistical analysis to determine whether performance differences between these feature selection methods
are significant or not. Bauder et al. [8] present two case studies with medical claims fraud by employing
a RF model with random undersampling, to mitigate adverse effects of class imbalance and to generate
seven different class distributions for several big Medicare claims datasets. [46] provides a unique insight
into the underlying relationships among classifier performance metrics by applying factor analysis to the
classifier performance space. This provides an improved understanding about relationships and groupings
with performance metrics, facilitating the selection of performance with those metrics.

IV. EXPERIMENTAL PROCEDURE

The outline of our experiment concerning Slow Read attacks in this section is divided into three
subsections that include the data collection process, classification algorithms, and metrics used to evaluate
each model.

A. Data Collection Process
Our capture framework allows for us to perform our attacks within a real-world network environment

servicing numerous active users. The campus network consists of hosts from classrooms, labs (including
off-campus, virtual systems), and offices. To facilitate our network usages, we employ switches, servers,
and routers capable of servicing on-and-off-campus users. A Cisco firewall is used to provide secure
access to data and network resources. For a student resource portal, an Apache web server has been set
up to serve as the target for our attacks. The configuration of the server is composed of a Linux CentOS
operating system, an Intel 3.30 GHz processor, and 32 GB of memory. Figure 3 shows our architecture
in more detail.

Fig. 3: Topology of Campus Network

We installed WordPress on the Apache student web server to serve as our content management system.
The website consists of lecture material, assignments, assessments, and other content required by student
users. Normal traffic related to coursework may consist of but is not limited to: downloads, uploads,
website navigation, and other communications with the web server. Within the context of our network
usage, students both locally on our network and from online may request course material concurrently
from our server. Our extended network also supports other faculty and students by providing services such

Fig. 3: Topology of campus network.

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 193

downloads, uploads, website navigation, and other communications with the
web server. Within the context of our network usage, students both locally on
our network and from online may request course material concurrently from
our server. Our extended network also supports other faculty and students by
providing services such as virtualization, email, web hosting, and audio/video
streaming. Additional traffic is generated from the public as this is a live web
server facing the Internet.

Our attacks are performed using penetration testing on a physical host
machine using the SlowHTTPTest [2] tool rather than through simulation.
Variations in settings used by SlowHTTPTest are applied, giving us different
results and valuable information on thresholds of the attacks in our experiments.
For our tests, the SlowHTTPTest tool allowed for easy configuration
adjustments and incorporated numerous attack settings. We administered
a total of three different attacks with varying configurations to represent
several levels of an attack. For an attack attempting to avoid detection by
using minimal connections, representing a stealthy scenario, we configured
a single attack host using 500 connections with a random connection interval
between 1 and 5 seconds. Our second attack initiated a more moderate level
attack executing 1,000 connections with the same random connection interval
between 1 and 5 seconds. Finally, we implemented the least stealthy attack,
using 1,500 connections and again the random connection interval was set
between 1 and 5 seconds. Each attack ran from a single host machine for
approximately one hour and targeted our resource web server.

As previously mentioned, FPC can be quite storage and resource intensive
in capturing FPC data for an extended period of time. Calvert et al. [11] collect
data using web server logs from a student resource web server comprised of
29 unique fields. Web server logs are ineffective at early detection of Slow
Read attacks because of the techniques used by the Slow Read attack on our
web server. Netflow data is just a collection of text records and statistics and is
incredibly small in size. The smaller size allows faster parsing and analyzing
of data. The result is that it is easy to create large-scale flow storage solutions.
FPC data retention is in minutes or hours, but Netflow data can be retained for
months or years. Analysis tools aid analysts in examining the data for the
purpose of detecting anomalies or generating statistics.

There are a few Netflow standards used on networks today. We use the
IPFIX standard for our Netflow data. As mentioned previously, the IPFIX
standard is chosen because of its flexibility and features. It offers variable
length fields for exporting custom information, where NetFlow V9 does not
and can take advantage of user-defined data types in its messages, so the
protocol is freely extensible and can adapt to different scenarios. The features
used in our work for machine learning are listed in Table 1.

194 Reuse in Intelligent Systems

4.2  Classification Algorithms
Eight classification algorithms were selected to build predictive models based
on our collected datasets: RF, two variants of C4.5 decision trees (C4.5N,
C4.5D), 5NN, MLP, JRip, SVM, and NB. This variety of learners was selected
to broaden the scope of our analysis. All models were built using the Weka
machine learning toolkit [19]. Weka contains implementations of machine
learning algorithms used in this research [49]. The Weka Java API is used to
write the framework. The software versions used are 3.6:14 for Weka and Java
JDK version 8u91.

Machine learning algorithms can be grouped into parametric and
nonparametric models. Using parametric models, we estimate parameters
from the training dataset to learn a function that can classify new data
points without requiring the original training dataset. Two examples of
parametric models used in our experiment are the MLP and SVM. In contrast,
nonparametric models cannot be characterized by a fixed set of parameters,
and the number of parameters grows with the training data. Four of our non-
parametric models used in our work are the decision tree classifiers C4.5D,
C4.5N, 5NN, and RF.

5NN is a specific value for KNN, a typical example of a lazy learner,
which means it does not learn a discriminative function from the training data,
but memorizes the training dataset instead. KNN is described as instance-
based learning that performs predictions by finding the prediction value of

Table 1: Description of netflow features.

Feature Name Description

Protocol IP protocol

Packets Number of packets in flow

Bytes Number of bytes in flow

Flags TCP flags all packets [FSRPAUEC]

InitialFlags TCP flags in initial packet

SessionFlags TCP flags second through final packet

Attributes Flow attributes [SFTC]

Packets/Second Number of packets per second

Bytes/Second Number of bytes per second

Bytes/Packet Number of bytes per packet

Durmsec Duration of the flow (in seconds)

Label Class label (Attack or Normal)

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 195

records (near neighbors). These distance functions utilize K, which represents
the number of closest instances to the test instance to decide its label. The
KNN algorithm itself is straightforward and can be summarized by the
following steps:

 1. Choose the number of K and a distance metric.
 2. Find the K-nearest neighbors of the sample that we want to classify.
 3. Assign the class label by majority vote.

Figure 4 illustrates how a new data point represented by the circled
question mark is assigned the triangle class label based on majority voting
among its five nearest neighbors.

The C4.5 decision tree is a tree-based learning algorithm which is used
for classification problems. The C4.5 algorithm for building decision trees is
implemented in Weka as a classifier called J48. The classifiers are organized in
a hierarchy and model training is used to learn parameters from the data. C4.5
selects the attribute of the data that most efficiently splits its set of samples
into subsets augmented in one class or the other. The splitting criterion is the
normalized IG. The attribute with the maximum normalized IG is selected to
make the decision. We utilized a version of C4.5 using the default parameter
values from Weka (denoted by C4.5D) as well as a version (denoted by C4.5N)
with Laplace smoothing activated and tree-pruning deactivated.

RF has gained huge popularity in applications of machine learning during
the last several years due to its good classification performance, scalability,
and ease of use. RF is an ensemble classifier used to improve the accuracy
as compared to a single decision tree. Intuitively, RF can be considered as an

Fig. 4: 5NN example.

H/T Image. 8.3

Fig. 8.4

x1

x2

1 ´

2 ´

3 ´

Predict

? ?

Fig. 8.5

x2

x1

x2
W Support vectors

Positive
hyperplane

Tz x = 1

Decision
boudary

Tz x = 0

Negative
hyperplane

Tz x = – 1

Margin

which hyperplane? SVM:
Maximize the margin

A B

Fig. 8.6

40

30

20

10

0

–10

–20

–30

P
C

A
-t

w
o

First and second principal components colored by class

0 20 40 60 80 100

PCA- one

Class
0.0
1.0

Fig. 8.7

196 Reuse in Intelligent Systems

ensemble of decision trees. The idea behind RF is to average multiple (deep)
decision trees that individually suffer from high variance. This will help to
build a more robust model that has a better generalization performance and
is less susceptible to overfitting. It corrects the tendency of decision trees
to overfit by randomly sampling features as split candidates during each
iteration. When constructing individual trees in RF, randomization is applied
to select the best node to split on. In our experiment, no changes were made
to the default values for RF. The RF algorithm can be summarized in four
simple steps:

 1) Draw a random bootstrap sample of size n (randomly choose n samples
from the training set with replacement).

 2) Grow a decision tree from the bootstrap sample. At each node:
• a. Randomly select d features without replacement.
• b. Split the node using the feature that provides the best split according

to the objective function.
 3) Repeat steps 1 and 2 K times.
 4) Aggregate the prediction by each tree to assign the class label by

majority vote.

Algorithm 1 RF Algorithm
1: repeat t > RF
2: for Draw random bootstrap sample of size n (randomly choose n

samples from training set with replacement) do
3: Grow a decision tree from the bootstrap sample. At each node:
4: a. Randomly select d features without replacement
5: b. Split the node using the feature that provides the best split
 according to the objective function
6: Repeat steps 1 and 2 K times
7: Perform majority vote across trees
8: end for
9: Aggregate the prediction by each tree to assign the class label

An MLP is a type of artificial neural network that utilizes neurons
(perceptron) to compute an individual value from multiple inputs using
nonlinear transformations. Although a single neuron can be somewhat
limiting, MLPs use these neurons as building blocks to create much larger
networks. MLPs can also utilize several hidden layers to help transform inputs

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 197

into usable values by the outer layers. Two parameters were changed from
the default values for the MLP learner. The “hiddenLayers” parameter was
changed to “3” to define a network with one hidden layer containing three
nodes. The “validationSetSize” parameter was changed to “10” causing the
classifier to leave 10% of the training data aside. This parameter is used as
a validation set to determine when to stop the iterative training process. The
MLP algorithm is demonstrated below:

Algorithm 2 MLP Algorithm
1: repeat t > MLP
2: for each training vector pair (x,t) do
3: evaluate the output y when x is the input
4: if y ≠ t then
5: form a new weight vector w’ according to
6: w’ = w + a (t–y) x
7: else
8: do nothing
9: end if

10: end for
11: until y = t for all training vector pairs = 0

JRip is based on rule-learning techniques that classify data samples into
a single class and seeks a set of rules to classify data best. JRip has four
principle stages, namely initialization stage, building stage that involving
growing and pruning steps, optimization stage and the deletion stage. Classes
are examined in increasing size and an initial set of rules for the class is
generated using incremental reduced error. JRip proceeds by treating all the
examples of a judgment in the training data as a class and finding a set of rules
that cover all the members of that class. Thereafter it proceeds to the next
class and does the same, repeating this until all classes have been covered. The
rule-learning technique is what makes it a faster machine learning technique
than decision trees. JRip reduces false alarms, selects the best traffic features,
and efficiently reduces the volume of data processed by intrusion detection
systems for classification [14]. Note that p and n are the number of true and
false positives respectively. P and N are the total number of real positives and
real negatives respectively. T is the number of instances and t is the number
of examples of a selected attribute. The algorithm is briefly described as
follows:

198 Reuse in Intelligent Systems

Algorithm 3 JRip Algorithm
1: Initialize RS = {}
2: for each class from the less prevalent one to the more frequent one do
3: Building stage:
4: repeat
5: a. Grow phase: Grow one rule by greedily adding antecedents
 (or conditions) to the rule until the rule is 100 percent accurate.
 The procedure tries every possible value of each attribute and
 selects the condition with highest IG: p(log(p/t)–log(P/T))
6: b. Prune phase: Incrementally prune each rule and allow
 the pruning of any final sequences of the antecedents; the
 pruning metric is (p–n)/(p+n)—but it is actually 2p/(p+n) –1, so
 in this implementation we simply use p/(p+n) (actually (p+1)/
 (p+n+2), thus if p+n is 0, it is 0.5).
7: until the description length (DL) of the ruleset and examples is
 64 bits greater than the smallest DL met so far, or there are no
 positive examples, or the error rate is greater than or equal to 50
 percent.
8: Optimization stage: After generating the initial ruleset Ri, generate
 and prune two variants of each rule Ri from randomized data
 using procedure a and b. One variant is generated from an empty
 rule, while the other is generated by greedily adding antecedents
 to the original rule. Moreover, the pruning metric used here is
 (TP+TN)/(P+N). Then the smallest possible DL for each variant
 and the original rule is computed. The variant with the minimal DL
 is selected as the final representative of Ri in the ruleset. After all
 the rules in Ri have been examined and if there are still residual
 positives, more rules are generated based on the residual positives
 using Building Stage again.
9: Delete the rules from the ruleset that would increase the DL of the

 whole ruleset if it were in it and add resultant ruleset to RS.
 10: end for

SVMs are discriminate classifiers used as supervised learning models
with associated learning algorithms which can be considered an extension of
the perceptron. SVMs utilize hyperplanes to separate instances in a dataset
into two distinct groups and assign new instances to one class or another. The
aim is for the SVM to identify the most optimal hyperplane with the most
significant gap between class instances as possible. The margin is defined as
the distance (WT) between the separating hyperplane (decision boundary) and

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 199

the training samples (X) that are closest to this hyperplane, which are called
support vectors. This is illustrated in Figure 5 [41].

Some of the advantages of SVM is that it works well with a clear margin
of separation and is effective in high dimensional spaces. It is also useful in
cases where some dimensions are greater than the number of samples. SVM is
also memory efficient uses a subset of training points in the support vectors. A
couple of disadvantages is that it does not perform well when there are large
data sets because of the required training time, and there is more noise when
target classes are overlapping. SVM is only directly applicable for two-class
tasks.

NB is based on the Bayesian theorem and is well-suited for datasets with
high dimensionality. The algorithm works upon the assumption that features
are independent and utilizes this premise to calculate the posterior probability
that an instance is a member of a specific class. Being relatively robust, easy
to implement, fast, and accurate, NB classifiers are used in many different
fields. The independence assumption is often violated, but NB classifiers still
tend to perform very well under this unrealistic assumption [40]. For small
sample sizes, NB classifiers can outperform the more powerful alternatives.
In some cases, NB with feature reduction is known to outperform other
sophisticated classification methods [30]. However, strong violations of the
independence assumptions and non-linear classification problems can lead to
very poor performances of NB classifiers when random samples have a lack
of independence and relevance of the variables.

Figure 6 demonstrates why NB performs better with linear problems (A),
as opposed to non-linear problems (B). Random samples for two different
classes are shown as colored spheres and the dotted lines indicate the class
boundaries that classifiers try to approximate by computing the decision
boundaries. A non-linear problem (B) would be a case where linear classifiers,
such as NB, would not be suitable since the classes are not linearly separable
[40]. In such a scenario, non-linear classifiers like KNN would be preferred.

4.3 Feature Evaluation
Selective feature evaluation uses several methods to specify the attribute
evaluator and search methods. Attribute selection is normally done by searching
the space of attribute subsets, evaluating each one by combining 1 of the 6
attribute subset evaluators with 1 of the 10 search methods. Subset evaluators
take a subset of attributes and return a numerical measure that guides the
search. In our experiment we choose the Weka functions CfsSubsetEval and
ConsistencySubsetEval. For single-attribute evaluation we also used Weka
functions ChiSquaredAttributeEval, Gain-RatioAttributeEval and PCA.
ChiSquaredAttributeEval and Gain-RatioAttributeEval are used with the

200 Reuse in Intelligent Systems

Ranker search method to generate a ranked list from which Ranker discards
a given number. Unlike other single-attribute evaluators, PCA transforms the
set of attributes.

1) Attribute Subset Evaluation
Correlation Feature Selection (CFS) evaluates the worth of a subset of
attributes by considering the individual predictive ability of each feature
along with the degree of redundancy between them. Subsets of features that
are highly correlated with the class while having low inter-correlation are
preferred. In Weka, CfsSubsetEval has an option that iteratively adds attributes
that have the highest correlation with the class, provided that the set does not
already contain an attribute whose correlation with the attribute in question is
even higher. BestFirst and Greedy Stepwise are the search methods used in
our work.

ConsistencySubsetEval evaluates attribute sets by the degree of
consistency in class values when the training instances are projected onto the
set [24]. Subsets of features that are highly correlated with the class while
having low intercorrelation are preferred. Consistency of any subset can never
be lower than that of the full set of attributes. Hence, the usual practice is to

H/T Image. 8.3

Fig. 8.4

x1

x2

1 ´

2 ´

3 ´

Predict

? ?

Fig. 8.5

x2

x1

x2
W Support vectors

Positive
hyperplane

Tz x = 1

Decision
boudary

Tz x = 0

Negative
hyperplane

Tz x = – 1

Margin

which hyperplane? SVM:
Maximize the margin

A B

Fig. 8.6

40

30

20

10

0

–10

–20

–30

P
C

A
-t

w
o

First and second principal components colored by class

0 20 40 60 80 100

PCA- one

Class
0.0
1.0

Fig. 8.7

Fig. 6: Linear (A) vs. non-linear problems (B) for NB.

Fig. 5: SVM margins [41].

H/T Image. 8.3

Fig. 8.4

x1

x2

1 ´

2 ´

3 ´

Predict

? ?

Fig. 8.5

x2

x1

x2
W Support vectors

Positive
hyperplane

Tz x = 1

Decision
boudary

Tz x = 0

Negative
hyperplane

Tz x = – 1

Margin

which hyperplane? SVM:
Maximize the margin

A B

Fig. 8.6

40

30

20

10

0

–10

–20

–30

P
C

A
-t

w
o

First and second principal components colored by class

0 20 40 60 80 100

PCA- one

Class
0.0
1.0

Fig. 8.7

boundary

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 201

use this subset evaluator in conjunction with a Random or Exhaustive search
which looks for the smallest subset with consistency equal to that of the full
set of attributes [24]. The correlation of subsets is based on a merit between
0 and 1. The merit function will have larger values for attribute subsets that
have attributes with strong class-attribute correlation and weak attribute-
attribute correlation.

In our experiment, this evaluator is used in conjunction with BestFirst-
Forward (BFF), BestFirst-Backward (BFB), Exhaustive Search (ES) and
Random Search (RS) methods. BestFirst performs greedy hill climbing with
backtracking; the number of consecutive non-improving nodes that must be
encountered before the system backtracks can be specified. BFF can search
forward from the empty set of attributes, backward from the full set, or start
at an intermediate point (specified by a list of attribute indexes) and search
in both directions by considering all possible single-attribute additions and
deletions.

RandomSearch randomly searches the space of attribute subsets. If an
initial set is supplied, it searches for subsets that improve on (or equal) the
starting point and have fewer (or the same number of) attributes. Otherwise,
it starts from a random point and reports the best subset found. The fraction
of the search space to explore can be determined. ExhaustiveSearch searches
through the space of attribute subsets, starting from the empty set, and reports
the best subset found. If an initial set is supplied, it searches backward from
this starting point and reports the smallest subset with a better (or equal)
evaluation.

2) Single-Attribute Evaluation
Single-attribute evaluators are used with the Ranker search method to
generate a ranked list from which Ranker discards a given number. Ranker is
not a search method for attribute subsets, but a ranking scheme for individual
attributes. It sorts attributes by their individual evaluations and must be used in
conjunction with one of the single-attribute evaluators and performs attribute
selection by removing the lower ranking ones.

In our work, we used Chi-Squared, GR, IG, and Symmetrical Uncertainty.
Chi-squared value-based feature selection computes the Chi-squared statistical
value for all features with respect to each class and ranks the features based on
the value. The algorithm poses an initial hypothesis that a class and a feature
are unrelated. Then, it works towards disproving the initial hypothesis.

GR is another information theory-based feature ranking technique where
the IG score for a given feature is normalized by the Information Split value or
Intrinsic Value of the feature. Information Split value or Intrinsic Value is the
entropy measure of the attribute using various rank-based algorithms. IG is an

202 Reuse in Intelligent Systems

information theory-based feature ranking technique that measures the extent
of information possessed by a feature. The algorithm computes the scope of
a feature towards the entropy of a class. Good features reduce the entropy of
a class to the maximum level. Symmetric Uncertainty is another information
theory-based feature ranking technique where the IG score is normalized by
the entropy value of the attribute and the class. A good feature should have a
high score.

3) Principal Component Evaluation
As mentioned previously, PCA transforms the set of attributes. New attributes
are ranked in order of their eigenvalues. Technically speaking, the amount
of variance retained by each principal component is measured by the
so-called eigenvalue. A subset is selected by choosing enough eigenvectors
to account for a given proportion of the default variance of 95 percent. The
dimensionality of our dataset needs to be reduced by compressing it onto a
new feature subspace, by selecting the subset of the eigenvectors, otherwise
known as principal components, which contain most of the information
that makes up the variance. The eigenvalues define the magnitude of the
eigenvectors. We then sort the eigenvalues in decreasing order and focus on
the top k eigenvectors based on of their corresponding eigenvalues.

PCA is a linear transformation technique that is widely used across
different fields, most prominently for feature extraction and dimensionality
reduction. PCA aims to find the directions of maximum variance in high-
dimensional data and projects it onto a new subspace with equal or fewer
dimensions than the original one. The orthogonal axes (principal components)
of the new subspace can be interpreted as the directions of maximum variance
given the constraint that the new feature axes are orthogonal to each other.

PCA also helps us to process our data for a technique called T-distributed
Stochastic Neighbor Embedding (t-SNE) that visualizes high-dimensional
data by giving each data point a location in a two or three-dimensional map
[42]. The technique is a variation of Stochastic Neighbor Embedding that is
much easier to optimize, and produces significantly better visualizations by
reducing the tendency to crowd points together in the center of the map. [26]
suggests that t-SNE is better than existing techniques at creating a single map
that reveals structure at many different scales.

4.4 Metrics
We evaluate each model using the Area Under the receiver operating
characteristic Curve (AUC) and Precision-Recall metrics. The AUC graphs
the True Positive Rate (TPR) and False Positive Rate (FPR) of the model.
TPR represents the percentage of the Slow Read attack instances correctly

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 203

predicted as an Attack label. FPR represents the percentage of the normal
data which was wrongly predicted as an Attack label. The AUC curve is built
by plotting TPR vs. FPR as the classifier decision threshold is varied. Higher
AUC values tend to correlate to higher TPR and lower FPR, both of which
are preferred outcomes. Since this data was generated by network equipment,
missing values were not present.

Stratified five-fold cross-validation with four iterations is used to evaluate
our AUC values. Stratified five-fold cross-validation divides the data into five
non-overlapping parts, with original class ratios being maintained in each fold.
For each iteration, one part is kept as test data and the remaining four elements
used as training data. Our final AUC values are calculated by aggregating the
AUC values of the models tested for each of five elements of the data. Our
experiment applied four runs of five-fold cross-validation to provide average
performance values and decrease the bias of randomly selected folds.

There are two kinds of errors we use for metrics. A Type 1 error measures
the total amount of false positives. A false positive (FP) is when the outcome
is incorrectly predicted as yes (positive) when it is no (negative). A Type 2
error measures the total amount of false negatives. A false negative (FN) is
when the outcome is incorrectly predicted as negative when it is positive.
They are both important misclassification errors that should be minimized, but
the emphasis should be more on the Type 2 error. The reason for this is that in
a network it is more important not to miss an attack as opposed to identifying
an attack that is not. If a Type 2 error occurs, an attack has not been identified
and the network has been compromised whereas, mislabeling normal traffic
as an attack is not as severe as a missed attack.

Precision-Recall is a useful measure of success of prediction when the
classes are very imbalanced. In information retrieval, precision is a measure of
result relevancy, while recall is a measure of how many truly relevant results
are returned. The F-measure (F-score), which is a measure of a test’s accuracy,
is defined as the weighted harmonic mean of the precision and recall of the
test and conveys the balance between the precision and the recall. An F-score
reaches its best value at 1 (perfect precision and recall) and worst at 0. High
scores show that the classifier is returning accurate results (high precision), as
well as returning a majority of all positive results (high recall). A system with
high recall but low precision returns many results, but most of its predicted
labels are incorrect when compared to the training labels. A system with high
precision but low recall is just the opposite, returning very few results, but
most of its predicted labels are correct when compared to the training labels.
An ideal system with high precision and high recall will return many results,
with all results labeled correctly.

Analysis of variance (ANOVA) is a collection of statistical models and
their associated procedures (such as “variation” among and between groups)

204 Reuse in Intelligent Systems

are used to analyze the differences among group means. A one-factor ANOVA
is used to compare means from two independent (unrelated) groups using
the F-distribution. The null hypothesis for the test is that the two means are
equal. Therefore, a significant result means that the two means are unequal.
We used ANOVA to compare AUC means of a Slow Read attack detection
among the eight learners and check if differences are statistically significant.
Tukey’s Honestly Significant Difference (HSD) post hoc test is used on our
data in conjunction with ANOVA to find means that are significantly different
from each other. The Tukey’s HSD post hoc test compares all possible pairs
of means to find out which specific group means (compared with each other)
are different.

5. Results

The following sub-sections include our results for feature selection and
machine learner performance. Our analysis presents a comprehensive
comparison of the different feature selection methods for detecting Slow Read
DDoS attacks. We compare four different feature selection methods and four
different classifiers. Our feature selection methods and classifiers are used
to build classification models. Results are also given for the original eleven-
feature dataset. Our goal is to achieve the same performance or better than that
of the eleven-feature set using feature selection methods. This is accomplished
by focusing on the total number of Type 1 and Type 2 errors, with more weight
assigned to the Type 2 errors. Precision, recall, and F-measure are utilized to
compare performance of the models.

5.1 Feature Selection
CFS evaluators in Table 2 display the merit value, number of features selected,
and the names of these selected features. The CFS evaluators are denoted
as BestFirst-Forward (BFF), BestFirst-Backward (BFB), GreedyStepwise-
Forward (GSF), GreedyStepwise-Backward (GSB), RankSearch-ChiSquared
(RSCS), and RankSearch-GainRation (RSGR). The evaluation results on
each CFS subset evaluator is provided in Table 3. The number on the end of
each model represents number of features. The results indicate that all four
classifiers (RF, C4.5N, C4.5D, 5NN) show good performance with the five-
feature subset of Bytes, Flags, Initial Flags, Bytes/Packet, and Durmsec. The
performance metrics of C4.5N were slightly better than C4.5D. Although
C4.5N without pruning will construct a tree that is more profound and
complex, which will produce a longer and more complicated tree structure.
C4.5N had the same number of Type 2 errors as the eleven-feature set. RF
and 5NN had slightly less Type 2 errors as compared to their original eleven-

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 205

feature set. The RF five-feature set had the least amount of Type 2 errors
overall. Precision, recall, and F-measure had similar results for all the models.
The CFS Feature Selection technique provides effective performance with
less features, by reducing the feature space to the most relevant features (also
reducing the chance of overfitting and decreases processing time). The five-
feature subset is effective for the detection of Slow Read attacks with all four
classifiers.

The results for our second attribute subset evaluator, ConsistencySubset
Eval, are illustrated in Tables 4 and 5. Table 4 displays the attribute selection
results for two search methods (Random and Exhaustive Search) and two
options (forward and backward search). They are denoted as, BestFirst-
Forward (BFF), BestFirst-Backward (BFB), Exhaustive Search (ES), and
Random Search (RS). The search algorithm selected particular features denoted
by “X”, and excluded a particular feature denoted by “0”. Table 5 shows the
results for our four clasifiers (RF, C4.5N, C4.5D, 5NN). Each classifier has

Table 2: CFS subset evaluator methods.

Evaluators Merit Features Features

BFF 0.183 3 Flags, Bytes/Packet, Durmsec

BFB 0.183 3 Flags, Bytes/Packet, Durmsec

GSF 0.183 3 Flags, Bytes/Packet, Durmsec

GSB 0.181 5 Bytes, Flags, InitialFlags, Bytes/Packet, Durmsec

RSCS 0.181 2 Bytes, Flags

RSGR 0.181 5 Bytes, Flags, InitialFlags, Bytes/Packet, Durmsec

Table 3: CFS model results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF3 9446 706 0.708 0.970 0.818

RF5 9444 700 0.708 0.970 0.818

RF11 9446 706 0.708 0.970 0.818

C4.5N3 9477 711 0.707 0.970 0.818

C4.5N5 9470 709 0.707 0.970 0.818

C4.5N11 9470 709 0.708 0.970 0.818

5NN3 9538 761 0.705 0.968 0.816

5NN5 9523 742 0.706 0.969 0.816

5NN11 9519 748 0.706 0.968 0.816

C4.5D3 9480 724 0.706 0.969 0.817

C4.5D5 9478 720 0.707 0.969 0.818

C4.5D11 9478 720 0.706 0.968 0.816

206 Reuse in Intelligent Systems

three feature subsets. These are the set of eleven features (denoted by 11),
the set using ConsistencySubsetEval with RandomSearch (denoted by 7), and
the set with our top six overall scoring features using BFF and ES (denoted
by 6). ConsistencySubsetEval with RandomSearch had the best results out of
the four when we ran our group A classifiers (RF, C4.5N, 5NN, C4.5D). The
customized seven-feature set in not in Table 5.

The results indicate that all the four classifiers (RF, C4.5N, C4.5D, 5NN)
show good performance with the seven-feature subset of Protocol, Bytes,
Flags, Packets/Sec, Bytes/Sec, Bytes/Packet, and Durmsec based upon error

Table 4: Consistency subset evaluator feature selection–attributes selected and excluded.

Features BFF BFB ES RS Total

Protocol 0 0 0 X 1

Packets X 0 X 0 1

Bytes 0 X 0 X 2

Flags X 0 X X 3

InitFlags 0 X 0 0 1

SessFlags 0 X 0 0 1

Attributes 0 0 0 0 0

Packt/Sec X X X X 4

Bytes/Sec X X X X 4

Bytes/Packt X X X X 4

Durmsec X X X X 4

Total 6 7 6 7 0

Table 5: Consistency subset evaluator model results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF6 9475 734 0.707 0.969 0.817

RF7 9445 716 0.708 0.970 0.818

RF11 9446 706 0.708 0.970 0.818

C4.5N6 9495 746 0.706 0.968 0.817

C4.5N7 9479 716 0.707 0.970 0.818

C4.5N11 9470 709 0.707 0.970 0.818

5NN6 9558 766 0.705 0.968 0.816

5NN7 9558 766 0.705 0.968 0.815

5NN11 9519 748 0.706 0.968 0.816

C4.5D6 9498 753 0.706 0.968 0.817

C4.5D7 9481 724 0.707 0.969 0.817

C4.5D11 9478 720 0.707 0.969 0.818

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 207

rates and Precision-recall. The seven-feature set had slightly less Type 2 errors
as compared to the six-feature set, except for 5NN which was the same. We
re-examined the tree structure of the original eleven and noticed that Packets
and Bytes were discriminate factors. The seven feature set did not include
Packets, but instead included Protocol. In almost all of our other feature
selection methods, Protocol was not selected in the feature subsets. We took
the feature Protocol and replaced it with Packets, causing C4.5D to obtain
better results in all metrics. RF and C4.5N had the lowest number of Type 2
errors followed by C4.5D and 5NN which had the most. The revised seven-
feature set maintained satisfactory precision, recall, and F-measure results,
verifying the predictability of the seven features. The Consistency Feature
selection is effective in producing less features that discriminate between
normal and attack data for Slow Read attacks.

For the new seven-feature subset, RF, C4.5N, and C4.5D all performed
slightly better than the original eleven features. With our feature adjustment
to the Consistency subset, we produced a slightly better classification
performance. Decision trees were helpful in identifying the Packets feature to
replace Protocol feature, that helps to improve performance. This new seven-
feature set produces results that improves the ability to discriminate between
classes successfully and remove irrelevant and redundant features. These
improvements help reduce the chance of overfitting and decrease process
time.

In Table 6 we again took our top four classifiers and compared the five and
seven-feature sets with the eleven-feature set. The five and seven-feature sets
were produced from the four single-attribute evaluators; GR, Chi-Squared,
Symmetric-Uncertainty, and IG.

RF had the lowest Type 1 and Type 2 error results with five features using
the GR evaluator. The five-feature set consisted of Flags, Bytes, Bytes/Packet,
Durmsec, and InitialFlags. Both RF and 5NN achieved slightly less Type 2
error results versus the full eleven-feature set. All subsets had good results
with precision, recall, and F-measure metrics. All four classifiers provide
good performance by using five and seven subset features. C4.5D results
were not as favorable as C4.5N. As mentioned previously in this paper, the
main difference between the default settings of C4.5D and C4.5N is that the
latter is used with Laplace smoothing activated, and tree-pruning deactivated.
The single-attribute method optimizes results using the GR attribute evaluator
with five features for RF and 5NN and seven features for C4.5N and C4.5D.
As mentioned previously, the benefits of reducing features from the original
eleven-feature set include better processing times, less chance of overfitting,
and a reduction of FNs during the detection of Slow Read DDoS attacks.

The PCA results are shown in Table 7. The number on the end of each
model represents number of features. The original eleven-feature set created

208 Reuse in Intelligent Systems

the forty-two feature set when we applied the PCA filter. We then took the
top performing feature sets from the CFS, Consistency, and single-attribute
models and applied the PCA filter to them. Two feature selection subsets were
selected using five and seven features. The five-feature subset is Bytes, Flags,
InitialFlags, BytesPerPacket, and Durmsec. We then applied the PCA filter,
generating thirty-one features. The seven-feature set consisting of Packets,
Bytes, Flags, Packets/Sec, Bytes/Sec, Bytes/Packet, and Durmsec generated
thirty-two features after the PCA filter was applied.

Table 6: Single-attribute model results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF5 9444 700 0.708 0.970 0.818

RF7 9487 714 0.707 0.970 0.818

RF11 9446 706 0.708 0.970 0.818

C4.5N5 9486 715 0.707 0.970 0.818

C4.5N7 9463 709 0.707 0.970 0.818

C4.5N11 9470 709 0.707 0.970 0.818

5NN5 9523 742 0.706 0.969 0.816

5NN7 9540 749 0.705 0.968 0.816

5NN11 9519 748 0.706 0.968 0.816

C4.5D5 9487 722 0.707 0.969 0.817

C4.5D7 9498 720 0.707 0.969 0.818

C4.5D11 9478 720 0.707 0.969 0.818

Table 7: PCA results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF31 9457 715 0.707 0.970 0.818

RF32 9469 743 0.707 0.968 0.817

RF42 9457 733 0.707 0.969 0.818

C4.5N31 10312 59 0.695 0.997 0.819

C4.5N32 9508 751 0.706 0.968 0.816

C4.5N42 9502 739 0.706 0.969 0.817

5NN31 9523 748 0.706 0.968 0.816

5NN32 9558 766 0.705 0.968 0.815

5NN42 9534 770 0.705 0.967 0.816

C4.5D31 10306 82 0.695 0.997 0.819

C4.5D32 9513 765 0.706 0.968 0.816

C4.5D42 9495 749 0.706 0.968 0.817

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 209

The forty-two feature set had the best results with RF. It had the lowest
value for Type 1 and Type 2 errors with 9,457 and 733 respectively. It also
had a positive F-measure of 0.818. RF had the best performance compared to
C4.5N, C4.5D, and 5NN. The thirty-one feature set produced some interesting
results. C4.5D and C4.5N had low Type 2 errors of 82 and 59 respectively, but
very high Type 1 errors of 10,306 and 10,312. F-measure scores for the four
classifiers had favorable results. Though C4.5N and C4.5D had lower Type 2
errors, RF had less total overall errors (Type 1 9,457, Type 2 715) because of
the high number of Type 1 errors with C4.5N and C4.5D (10,312 and 10,306
respectively).

Finally, results from the thirty-two feature set overall were the least
favorable in reference to Type 2 errors as compared to feature sets forty-two
and thirty-one. Type 1 and Type 2 errors were, on average, higher with all four
of our models obtaining adequate F-measure scores compared to the original
eleven-feature sets. The exception was the thirty-one feature set, with models
C4.5N and C4.5D. C4.5N had the lowest Type 2 errors (59) of all the models
we analyzed, but the most Type 1 errors.

The idea of PCA is to use a special coordinate system that depends on the
cloud of points as shown in Figure 7. Using Python, we placed the first axis in
the direction of greatest variance of the points to maximize the variance along
that axis. The second axis is perpendicular to it. In two dimensions there is no
choice and its direction is determined by the first axis, but in three dimensions

H/T Image. 8.3

Fig. 8.4

x1

x2

1 ´

2 ´

3 ´

Predict

? ?

Fig. 8.5

x2

x1

x2
W Support vectors

Positive
hyperplane

Tz x = 1

Decision
boudary

Tz x = 0

Negative
hyperplane

Tz x = – 1

Margin

which hyperplane? SVM:
Maximize the margin

A B

Fig. 8.6

40

30

20

10

0

–10

–20

–30

P
C

A
-t

w
o

First and second principal components colored by class

0 20 40 60 80 100

PCA- one

Class
0.0
1.0

Fig. 8.7

Fig. 7: First and second component colored by class.

210 Reuse in Intelligent Systems

it can lie anywhere in the plane perpendicular to the first axis, and in higher
dimensions there is even more choice, though it is always constrained to be
perpendicular to the first axis. The black areas represent the normal class and
the blue are the attacks.

5.2 Learner Results
For each classifier, four runs of five-fold cross-validation are applied,
producing 20 AUC values for each classifier. The average AUC values of the
four resulting runs and their standard deviations are shown in Table 10.

Overall, the resulting values indicate that six out of eight of our predictive
models perform very well at detecting Slow Read attacks, which demonstrates
that the features extracted from the network flow can sufficiently distinguish
between normal and attack traffic. The classifiers provide reliable results
indicating that Netflow features are discriminative enough for detection of
Slow read attacks. AUC results for our classifiers show that RF achieved the
best performance of 0.96755, but had a higher standard deviation than the other
classifiers. The C4.5N, 5NN, and C4.5D learners performed nearly as well as
RF, having AUC values of 0.96724, 0.96690 and 0.96620, respectively. These
values are only marginally less than those of RF. JRip produced the highest
standard deviation, and NB had the lowest AUC.

When evaluating both C4.5 trees, each tree structure selected the Flags
feature at the first level of the tree. One of the critical characteristics of a
successful Slow Read attack is the flags. There are nine TCP flags shown in
Table 8 that make up the attributes for session and initial flags. Here an initial
flag value of “S” corresponds to potential attack instances. The value of “S”
stands for “SYN,” which indicates that a TCP connection was initiated. The
value of “P” stands for “PSH” and is like the “URG” flag and tells the receiver

Table 8: TCP flags.

TCP Flag Description

SYN Synchronize sequence numbers on new connections.

ACK Acknowledge the successful receipt of a packet.

FIN Finished send more data from the sender after a connection is closed.

URG Process the urgent packets before processing all other packets.

PSH Process these packets as received instead of buffering them.

RST Gets sent from the receiver to the sender when a packet is sent to a particular host
that was not expecting it.

ECE Indicates if the TCP peer is ECN (Explicit Congestion Notification) capable.

CWR Congestion Window Reduced, indicates it received a packet with the ECE flag set.

NS Nonce Sum protects against accidental malicious concealment of packets from the
sender.

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 211

to process these packets as they are received instead of buffering them. The
value of “A” stands for “ACK” and acknowledges the successful receipt of
a packet. The value of “F” stands for “FIN” and represents when a sender
is finished sending more data after a connection is closed. The value of “R”
stands for “RST” and gets sent from the receiver to the sender when a packet
is sent to a particular host that was not expecting it.

JRip and C4.5D produced several rules each. The single consistent
behavior between both is in regards to the “flags” attribute. When this attribute
has a reset (R) value, there is an attack. Another JRip rule detects an attack
when flags have an SPA (SYN, PUSH, ACK) combination, bytes are greater
than 512 and the duration in milliseconds is greater than 373. C4.5D uses the
FRSPA (FIN, RST, SYN, PSH, ACK) flag along with a combination of more
than five packets, bytes less than 770 and a packets per second value less
than or equal to 18,633. Our overall analysis allows us to see which features
proved most beneficial in the detection of Slow Read attacks.

Figures 8 through 11 illustrate four decision tree examples using the
C4.5D model. When the C4.5D model is presented with a flag combination
of SPA in Figure 8, we can clearly distinguish discerning behaviors between
normal and attack flows. Though the packets per second (pps) may be the
same, the attack flow is detected if duration is less than or equal to 31.80
seconds, bytes are less than 32,321, duration greater than 0.374 milliseconds
and packets greater than 5. Examining the “FRSPA” flag combination in
Figure 9, this combination shows that it can predict an attack if bytes are less
than or equal to 770 and the pps is greater than 9,308, but less than or equal to
18,633. When the combination of “FSPA” flags, seen in Figure 10, is present
and the duration is greater than 907 seconds, then the instance is labeled as
an attack. Figure 11 shows that when the flags are equal to “R”, an attack is
detected.

The algorithm used for C4.5 decision trees divides the samples into two
or more branches based on the values of one of the features in the data sample.
The hierarchy of the top-level branches is an excellent source for identifying
discriminate features for our normal and attack data. Flags are one of those
discriminate features at the top level of the tree that produced Figures 8
through 11. There are thirty values for Flags and the decision tree can quickly
locate the relevant values like SPA, FRSPA, FSPA, and R. From these upper
tier values, we can identify other relevant features that make up the attribute
sets for these four trees. Lastly, we can observe that these attributes are very
similar to most of the feature selection methods we used in this work.

As mentioned previously, we used ANOVA to compare the mean AUC
values of Slow Read attack detection among the eight learners to check if
differences are statistically significant. ANOVA Table 9 shows an F value of
3,388, and a low p-value less than 2e-16. This indicates the variation of means

212 Reuse in Intelligent Systems

among different learners is much more significant than the variation of mean
values within each learner at a 95% confidence interval.

Hence, we reject the null hypothesis (i.e., means are not the same). The
differences are statistically significant with the relationship between learners
and Slow Read attack detection. To determine the statistically significant
differences between learners, we conducted a Tukey’s HSD post hoc test. The
Tukey’s test divided our learners into 4 groups based upon their mean AUC
values and standard deviations. As shown in Table 10 most groupings resulted

Fig. 8.8

Fig. 8.9

Durmsec

PacketsPerSec

> 77777.78

Normal (8.0)< = 31.80

> 77777.78

< = 32,321 > = 32,321

Bytes
Durmsec

Bytes

Packets

Bytes
Attack

(4091.06/7.0)

>5< = 5

TCP flag combination SPA with C4.5D

> 0.374

TCP flag combination FRSPA with C4.5D

PacketsPerSec

< = 770

> 9308.510638> 9308.510638

< = 18633.56037 > = 18633.56037

< = 111 > 111
Attack

(2890/3.0)

Attack
(19.0/2.0)

Normal
(8.0)

< = 0.362 > 0.362

Normal (5.0)

Bytes

BytesPerPacket PacketsPerSec

Durmsec

Normal (20.0)

Flags

Packets Attack (500.0)

Durmse

= FSPA

> 907.037< = 907.037

Fig. 8.10

Flags

Attack (21160.0/9402.0)

R

Fig. 8.11

Fig. 8: C4.5D model with SPA flag.

Fig. 8.8

Fig. 8.9

Durmsec

PacketsPerSec

> 77777.78

Normal (8.0)< = 31.80

> 77777.78

< = 32,321 > = 32,321

Bytes
Durmsec

Bytes

Packets

Bytes
Attack

(4091.06/7.0)

>5< = 5

TCP flag combination SPA with C4.5D

> 0.374

TCP flag combination FRSPA with C4.5D

PacketsPerSec

< = 770

> 9308.510638> 9308.510638

< = 18633.56037 > = 18633.56037

< = 111 > 111
Attack

(2890/3.0)

Attack
(19.0/2.0)

Normal
(8.0)

< = 0.362 > 0.362

Normal (5.0)

Bytes

BytesPerPacket PacketsPerSec

Durmsec

Normal (20.0)

Flags

Packets Attack (500.0)

Durmse

= FSPA

> 907.037< = 907.037

Fig. 8.10

Flags

Attack (21160.0/9402.0)

R

Fig. 8.11

Fig. 9: C4.5D model with FRSPA flag.

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 213

Fig. 8.8

Fig. 8.9

Durmsec

PacketsPerSec

> 77777.78

Normal (8.0)< = 31.80

> 77777.78

< = 32,321 > = 32,321

Bytes
Durmsec

Bytes

Packets

Bytes
Attack

(4091.06/7.0)

>5< = 5

TCP flag combination SPA with C4.5D

> 0.374

TCP flag combination FRSPA with C4.5D

PacketsPerSec

< = 770

> 9308.510638> 9308.510638

< = 18633.56037 > = 18633.56037

< = 111 > 111
Attack

(2890/3.0)

Attack
(19.0/2.0)

Normal
(8.0)

< = 0.362 > 0.362

Normal (5.0)

Bytes

BytesPerPacket PacketsPerSec

Durmsec

Normal (20.0)

Flags

Packets Attack (500.0)

Durmse

= FSPA

> 907.037< = 907.037

Fig. 8.10

Flags

Attack (21160.0/9402.0)

R

Fig. 8.11

 Fig. 11: C4.5D model with the R flag.

Table 9: ANOVA results.

Df Sum Sq Mean Sq F Value Pr > F

Learner 7 0.031320 0.004474 3388 Pr < 2e-16

Residuals 24 0.000032 0.000001

Table 10: Tukey’s HSD group results.

Classifier AUC AUC StD Group

RF 0.967554 0.000056 A

C4.5N 0.967239 0.000078 A

5NN 0.966899 0.000049 A

C4.5D 0.966200 0.000038 A

MLP 0.950600 0.001600 B

JRip 0.947131 0.002600 C

SVM 0.892173 0.000504 D

NB 0.889400 0.000273 E

Fig. 10: C4.5D model with FSPA flag.

Fig. 8.8

Fig. 8.9

Durmsec

PacketsPerSec

> 77777.78

Normal (8.0)< = 31.80

> 77777.78

< = 32,321 > = 32,321

Bytes
Durmsec

Bytes

Packets

Bytes
Attack

(4091.06/7.0)

>5< = 5

TCP flag combination SPA with C4.5D

> 0.374

TCP flag combination FRSPA with C4.5D

PacketsPerSec

< = 770

> 9308.510638> 9308.510638

< = 18633.56037 > = 18633.56037

< = 111 > 111
Attack

(2890/3.0)

Attack
(19.0/2.0)

Normal
(8.0)

< = 0.362 > 0.362

Normal (5.0)

Bytes

BytesPerPacket PacketsPerSec

Durmsec

Normal (20.0)

Flags

Packets Attack (500.0)

Durmse

= FSPA

> 907.037< = 907.037

Fig. 8.10

Flags

Attack (21160.0/9402.0)

R

Fig. 8.11

Durmsec

214 Reuse in Intelligent Systems

in fairly close pairings, with the top four learners being in group A and MLP,
JRip, NB, and SVM being in their own unique groups.

Table 11 displays how our four group A classifiers performed using feature
selection methods against the original eleven features. Acronyms from the
table are CFSM (Correlation Feature Selection Method), CSSM (Consistency
Subset Selection Method), SASM (Single-Attribute Selection Method), and
ORD (Original Dataset). C4.5D performed as well with CFS as it did with its
eleven original features. CFS used both Rank-Search and Greedy-Stepwise
to produce Bytes, Flags, Initial Flags, Bytes/Packet, and Durmsec for a
five-feature set. The data reduction method used by CFS will help C4.5D to
decrease the processing time and therefore become more efficient. Feature
reduction was also successful with the C4.5N model. The same five-feature
set that benefited C4.5D did the same for C4.5N, equaling the same results
as those of the eleven-feature set. It also had similar results using the single-
attribute method with the seven features; Flags, Bytes, BytesPerPacket,
Durmsec, BytesPerSec, PacketsPerSec, and InitialFlags. All four attributes
evaluators; GR, Chi-Squared, Symmetric-Uncertainty, and IG had the same
false negatives as the original eleven-feature set, but slightly less false
positives. CFS and single-attribute methods also provided positive results for
5NN. They both did so, with the five-feature set of Bytes, Flags, InitialFlags,

Table 11: Top classifier results.

Models Type 1 Type 2 Prec. Recall F-Meas

RF5CFSM 9444 700 0.708 0.970 0.818

RF7CSSM 9445 716 0.708 0.970 0.818

RF5SASM 9444 700 0.708 0.970 0.818

RF11ORD 9446 706 0.708 0.970 0.818

C4.5N5CFSM 9470 709 0.707 0.970 0.818

C4.5N7CSSM 9479 716 0.707 0.970 0.818

C4.5N7SASM 9463 709 0.707 0.970 0.818

C4.5N11ORD 9470 709 0.707 0.970 0.818

5NN5CFSM 9423 742 0.706 0.968 0.815

5NN5CSSM 9558 766 0.705 0.968 0.815

5NN5SASM 9523 742 0.706 0.969 0.816

5NN11ORD 9519 748 0.706 0.968 0.816

C4.5D5CFSM 9478 720 0.707 0.969 0.818

C4.5D7CSSM 9581 724 0.707 0.969 0.817

C4.5D5SASM 9487 722 0.707 0.969 0.817

C4.5D11OR 9478 720 0.707 0.969 0.818

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 215

BytesPerPacket, and Durmsec showing better performance metrics than the
original eleven-feature set. The single-attribute evaluator was GR.

Once again, the five-feature set with CFS and single-attribute methods
supplied RF with its best performance. The metrics from this feature set
produced the best overall performance from RF for all feature selection
methods and classifiers. RF had consistently better metrics in all our
experiments. In our opinion, RF is the best classifier to apply to this dataset.
The five features of Bytes, Flags, Initial Flags, Bytes/Packet, and Durmsec are
the best subset features for discriminating between normal and attack traffic,
and providing an efficient processing time.

6. Conclusion

We proposed an approach to successfully detect Slow Read HTTP DoS attacks
using machine learning. Our experiments were generated on a live web server
that is utilized by faculty and students as well as the public. To improve our
machine learning, we implemented various feature selection methods.

By producing our capture, which utilizes real attacks alongside normal
data, we better reflect a real-life network environment as compared to existing
test-beds. This approach also reinforces the integrity of our data as we are
using real-world traffic as opposed to related works which employ simulated
traffic. We performed three different variations of a Slow Read attack using
the SlowHTTPTest tool to reflect a range of levels. SiLK was used to generate
Netflow data using the IPFIX standard. Our experiments show that this
approach to Slow Read attack detection produces high AUC values and low
false positive and false negative rates. The AUC performance metrics were
performed using four runs of stratified five-fold cross-validation.

In addition, we demonstrated that six out of eight learners performed well
in the detection of Slow Read attack traffic, with four of them performing
significantly better than the rest. As a result, Netflow features have shown that
they are able to successfully detect distributed Slow Read HTTP DoS attacks.

The five-feature subset of Bytes, Flags, InitialFlags, BytesPerPacket,
and Durmsec performed better than the three or eleven-feature sets. RF and
5NN had lower Type 2 errors using feature selection. C4.5N and C4.5D had
the same amount of Type 2 errors with the five and eleven-feature sets. CFS
with GS and single-attribute GR had the best results with overall Type 1 and
Type 2 errors when we ran our group A classifiers (RF, C4.5N, 5NN, C4.5D).
Feature selection was very effective with all four learners and demonstrated
with five features more favorable accuracy, predictability, and less chance of
overfitting.

Overall, the Consistency Subset Evaluator with RandomSearch performed
well with seven features. RF was the best overall learner, using the seven-

216 Reuse in Intelligent Systems

feature set of Protocol, Bytes, Flags, Packets/Sec, Bytes/Sec, Bytes/Packet,
and Durmsec that was generated by the Random Search method. RF again had
the best overall performance with the single-attribute method. RF shared the
same results as those with CFS which also had the best overall results of all
feature selection methods and the original eleven-feature dataset.

PCA results did not fare as well as the other three methods. The thirty-two
feature set obtained after PCA filtering was applied produced the best results.
Most of the results from our feature selection methods performed as well as
the original full feature set of eleven features. CFS accomplished this with
five features, Consistency with seven, and the single-attribute method with
five. Producing similar results with less features will improve model accuracy
and predictability.

Future work will involve collecting traffic for another application layer
DDoS attack called a POST attack. We plan to evaluate if Netflow features
also provide discriminating detection for other attack variants.

Acknowledgment

We would like to thank the reviewers in the Data Mining and Machine Learning
Laboratory at Florida Atlantic University. Additionally, we acknowledge
partial support by the NSF(CNS-1427536). Opinions, findings, conclusions,
or recommendations in this paper are the authors’ and do not reflect the views
of the NSF.

References
 [1] Are you ready for slow reading. [Online]. Available: http://blog.shekyan.com/2012/01/

are-you-ready-for-slow-reading.html.
 [2] Dos website using slowhttptest in kali linux â“ slowloris, slow http post and slow read

attack in one tool. [Online]. Available: https://www.blackmoreops.com/2015/06/07/
attack-website-using-slowhttptest-in-kali-linux/.

 [3] Probing zero windows. [Online]. Available: https://tools.ietf.org/html/rfc1122#page-92.
 [4] Radware’s ddos handbook: The ultimate guide to everything you need to know about

ddos attacks. [Online]. Available: https://security.radware.com/uploadedfiles/resources_
and_content/ddos_handbook/ddos_handbook.pdf.

 [5] Silk. [Online]. Available: https://tools.netsa.cert.org/silk/index.html.
 [6] Q2 2017 akamai state of the internet/security report. Tech. Rep. [Online]. Available:

https://content.akamai.com/us-en-pg9565-q2-17-state-of-the-internet-security-report.
html.

 [7] Adi, E., Z. Baig and P. Hingston. 2017. Stealthy denial of service (dos) attack
modelling and detection for http/2 services. Journal of Network and Computer
Applications 91: 1–13. [Online]. Available: http://ww.sciencedirect.com/science/article/
pii/S1084804517301637.

http://ww.sciencedirect.com
https://content.akamai.com
https://security.radware.com
https://www.blackmoreops.com
http://blog.shekyan.com
http://ww.sciencedirect.com
https://content.akamai.com
https://tools.netsa.cert.org
https://security.radware.com
https://tools.ietf.org
https://www.blackmoreops.com
http://blog.shekyan.com

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 217

 [8] Bauder, R. and T.M. Khoshgoftaar. 2018. Medicare fraud detection using random
forest with class imbalanced big data. pp. 80–87. In: IEEE International Conference on
Information Reuse and Integration (IRI). IEEE.

 [9] Benzel, T., B. Braden, T. Faber, J. Mirkovic, S. Schwab, K. Sollins and J. Wroclawski.
2009. Current developments in deter cybersecurity testbed technology. pp. 57–70.
In: Conference for Homeland Security, 2009. CATCH’09. Cybersecurity Applications &
Technology. IEEE.

 [10] Blackert, W., D. Gregg, A. Castner, E. Kyle, R. Hom and R. Jokerst. 2003. Analyzing
interaction between distributed denial of service attacks and mitigation technologies.
pp. 26–36. In: DARPA Information Survivability Conference and Exposition. Proceedings,
Vol. 1, IEEE.

 [11] Calvert, C., C. Kemp, T.M. Khoshgoftaar and M. Najafabadi. 2017. A framework
for capturing http get ddos attacks on a live network environment. pp. 136–142.
In: International Society of Science and Applied Technologies, ISSAT.

 [12] Claise, B. 2004. Cisco systems netflow services export version 9 (rfc 3954). [Online].
Available: https://www.ietf.org/rfc/rfc3954.txt.

 [13] Claise, B., B. Trammell, E. Zurich and P. Aitken. 2013. Specification of the ip flow
information export (ipfix) protocol for the exchange of flow information (rfc 7011).
[Online]. Available: https://tools.ietf.org/search/rfc7011.

 [14] Cohen, W.W. 1995. Fast effective rule induction. pp. 115–123. In: Twelfth International
Conference on Machine Learning. Morgan Kaufmann.

 [15] d’Aspremont, A., L.E. Ghaoui, M.I. Jordan and G.R. Lanckriet. 2005. A direct formulation
for sparse pca using semidefinite programming. pp. 41–48. In: Advances in Neural
Information Processing Systems.

 [16] Farnaaz, N. and M. Jabbar. 2016. Random forest modeling for network intrusion detection
system. Procedia Computer Science 89: 213–217. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877050916311127.

 [17] Gaonjur, P., N. Tarapore, S. Pukale and M. Dhore. 2008. Using neuro-fuzzy techniques
to reduce false alerts in ids. pp. 1–6. In: Networks. ICON 2008. 16th IEEE International
Conference on, IEEE.

 [18] Haddadi, F., J. Morgan, E.G. Filho and A.N. Zincir-Heywood. 2014. Botnet behaviour
analysis using ip flows: With http filters using classifiers. pp. 7–12. In: 28th International
Conference on Advanced Information Networking and Applications Workshops, May
2014.

 [19] Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I.H. Witten. 2009. The
weka data mining software: An update. pp. 10–18. In: SIGKDD Explor. Newsl, Vol. 11,
ACM.

 [20] Hares, S. and D. Katz. 1989. Administrative domains and routing domains a model for
routing in the internet (rfc 1122). [Online]. Available: https://www.ietf.org/rfc/rfc1136.txt.

 [21] Inacio, C.M. and B. Trammell. 2010. Yaf: yet another flowmeter. In Proceedings of
LISAâTM10: 24th Large Installation System Administration Conference, p. 107.

 [22] Jethanandani, M. 1013. Tcp may keep its offered receive window closed indefinitely (rfc
1122). [Online]. Available: http://www.kb.cert.org/vuls/id/723308.

 [23] Li, J., K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang and H. Liu. 2017. Feature
selection: A data perspective. ACM Computing Surveys (CSUR) 50(6): 94.

 [24] Liu, H. and R. Setiono. 1996. A probabilistic approach to feature selection—a filter
solution. pp. 319–327. In: 13th International Conference on Machine Learning.

 [25] Lucio, G.F., M. Paredes-Farrera, E. Jammeh, M. Fleury and M.J. Reed. 2003. Opnet
modeler and ns-2: Comparing the accuracy of network simulators for packet-level analysis
using a network testbed. WSEAS Transactions on Computers 2(3): 700–707.

http://www.sciencedirect.com
http://www.kb.cert.org
https://www.ietf.org
http://www.sciencedirect.com
https://tools.ietf.org
https://www.ietf.org

218 Reuse in Intelligent Systems

 [26] Maaten, L.v.d. and G. Hinton. 2008. Visualizing data using t-sne. Journal of Machine
Learning Research 9(Nov.): 2579–2605.

 [27] McCanne, S., S. Floyd, K. Fall and K. Varadhan. 1995. The network simulator ns2 (1995)
the vint project, Available for download at http://www.isi.edu/nsnam/ns.

 [28] Mirkovic, J., S. Fahmy, P. Reiher and R.K. Thomas. 2009. How to test dos defenses.
pp. 103–117. In: Conference for Homeland Security, 2009. CATCH’09. Cybersecurity
Applications & Technology, IEEE.

 [29] Moore, A.W. and D. Zuev. 2005. Internet traffic classification using bayesian analysis
techniques. SIGMETRICS Perform. Eval. Rev. 33(1): 50–60, Jun. 2005. [Online].
Available: http://doi.acm.org/10.1145/1071690.1064220.

 [30] Mukherjee, S. and N. Sharma. 2012. Intrusion detection using naive bayes classifier with
feature reduction. Procedia Technology 4: 119–128.

 [31] Najafabadi, M.M., T.M. Khoshgoftaar, C. Calvert and C. Kemp. 2015. Detection of ssh
brute force attacks using aggregated netflow data. pp. 283–288. In: Machine Learning and
Applications (ICMLA), 2015 IEEE 14th International Conference on, IEEE.

 [32] Najafabadi, M.M., T.M. Khoshgoftaar, C. Calvert and C. Kemp. 2017. User behavior
anomaly detection for application layer ddos attacks. pp. 154–161. In: Information Reuse
and Integration (IRI), 2017 IEEE International Conference on, IEEE.

 [33] Najafabadi, M.M., T.M. Khoshgoftaar, C. Calvert and C. Kemp. 2017. A text mining
approach for anomaly detection in application layer ddos attacks. pp. 312–317.
In: FLAIRS Conference.

 [34] Najafabadi, M.M., T.M. Khoshgoftaar and A. Napolitano. 2016. Detecting network
attacks based on behavioral commonalities. International Journal of Reliability, Quality
and Safety Engineering 23(01): 1650005.

 [35] Najafabadi, M.M., T.M. Khoshgoftaar and N. Seliya. 2016. Evaluating feature selection
methods for network intrusion detection with kyoto data. International Journal of
Reliability, Quality and Safety Engineering 23(01): 1650001.

 [36] Ndibwile, J.D., A. Govardhan, K. Okada and Y. Kadobayashi. 2015. Web server protection
against application layer ddos attacks using machine learning and traffic authentication.
pp. 261–267. In: Computer Software and Applications Conference (COMPSAC), 2015
IEEE 39th Annual, Vol. 3, IEEE.

 [37] Panda, M., A. Abraham and M.R. Patra. 2015. Hybrid intelligent systems for detecting
network intrusions. Security and Communication Networks 8(16): 2741–2749. [Online].
Available: http://dx.doi.org/10.1002/sec.592.

 [38] Park, J., K. Iwai, H. Tanak and T. Kurokawa. 2014. Analysis of slow read dos attack
and countermeasures. pp. 37–49. In: The International Conference on Cyber-Crime
Investigation and Cyber Security (ICCICS2014). The Society of Digital Information and
Wireless Communication.

 [39] Peterson, L., A. Bavier, M.E. Fiuczynski and S. Muir. 2006. Experiences building
planetlab. pp. 351–366. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation. USENIX Association.

 [40] Raschka, S. 2014. Naive bayes and text classification i.
 [41] Raschka, S. and V. Mirjalili. 2017. Python Machine Learning, 2nd Ed. Packt Publishing.
 [42] Roweis, S.T., L.K. Saul and G.E. Hinton. 2002. Global coordination of local linear

models. pp. 889–896. In: Advances in Neural Information Processing Systems.
 [43] Sachdeva, M., G. Singh, K. Kumar and K. Singh. 2010. Measuring impact of ddos attacks

on web services.
 [44] Sanders, C. and J. Smith. 2013. Applied Network Security Monitoring: Collection,

Detection, and Analysis. Elsevier.

http://dx.doi.org/10.1002/sec.592
http://doi.acm.org/10.1145/1071690.1064220
http://www.isi.edu

Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks 219

 [45] Saravanan, R., S. Shanmuganathan and Y. Palanichamy. 2016. Behavior-based detection
of application layer distributed denial of service attacks during flash events. Turkish
Journal of Electrical Engineering & Computer Sciences 24(2): 510–523.

 [46] Seliya, N., T.M. Khoshgoftaar and J. Van Hulse. 2009. A study on the relationships of
classifier performance metrics. pp. 59–66. In: Tools with Artificial Intelligence, 2009.
ICTAI’09. 21st International Conference on, IEEE.

 [47] Sharma, A.K. and P.S. Parihar. 2013. An effective dos prevention system to analysis and
prediction of network traffic using support vector machine learning. International Journal
of Application or Innovation in Engineering & Management 2(7): 249–256.

 [48] Singh, K.J. and T. De. 2015. An approach of ddos attack detection using classifiers.
pp. 429–437. In: Shetty, N.R., N. Prasad and N. Nalini (eds.). Emerging Research in
Computing, Information, Communication and Applications, New Delhi: Springer India.

 [49] Witten, I.H., E. Frank, M.A. Hall and C.J. Pal. 2016. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann.

 [50] Wueest, C. 2014. Security response: The continued rise of ddos attacks. [Online].
Available: http://www.symantec.com/content/en/us/enterprise/media/securityresponse/
whitepapers/the-continued-rise-of-ddos-attacks.pdf.

 [51] Yang, J., A. Tiyyagura, F. Chen and V. Honavar. 1999. Feature subset selection for rule
induction using ripper, 03.

 [52] Zeifman, I. 2017. Global ddos threat landscape q3 2017. [Online]. Available: https://www.
incapsula.com/ddos-report/ddos-report-q3-2017.html.

 [53] Zhang, J., C. Chen, Y. Xiang, W. Zhou and Y. Xiang. 2013. Internet traffic classification
by aggregating correlated naive bayes predictions. IEEE Transactions on Information
Forensics and Security 8(1): 5–15.

https://www.incapsula.com
http://www.symantec.com
https://www.incapsula.com
http://www.symantec.com

Chapter 9
Predictive Analysis of Server Log

Data for Forecasting Events
Reeta Suman,1,* Behrouz Far,1,* Emad A Mohammed,2

Ashok Nair3 and Sanaz Janbakhsh3

1. Introduction

IT System log server keeps the record of all the activities and relevant
information about the servers. The data analysts and maintenance team
manually examine these logs to identify the behavior of the system prior to
the error logs. The log error messages do not occur in the same pattern and
sometimes go through different stages and accumulate extra information,
which makes the time-series prediction task more challenging; therefore, it is
critical to choose the accurate predictive model to predict the future events for
proactive actions. The previous paper [17], explains the partial architecture
of the existing system as follows, the monitoring server called hawk server,
generates the monitoring logs, the proxy server named Nginx generates the
proxy server logs, and admin server generates the admin server logs. All the
logs collectively stored in the log file database, which makes it harder to
analyze the error logs. whenever the error happens or if the system services
shut down data analysts explore the log data and gain the insight of system
and find out the related issues to bring the system back to up and running

1 Dept. of Electrical and, Computer Engineering, University of Calgary.
2 Dept. of Software Engineering, Lakehead University.
3 Analytics and Integration, Team, City of Calgary.
 Emails: emohamme@lakeheadu.ca; Ashok.Nair@calgary.ca; sajan@deloitte.ca
* Corresponding authors: rsuman@ucalgary.ca; far@ucalgary.ca

mailto:far@ucalgary.ca
mailto:rsuman@ucalgary.ca
mailto:sajan@deloitte.ca
mailto:Ashok.Nair@calgary.ca
mailto:emohamme@lakeheadu.ca

Predictive Analysis of Server Log Data for Forecasting Events 221

condition [1], [2]. In general, the analytics team spends a significant amount
of their time and efforts to analyze the logs and searches the related logs with
the keyword search. In order to understand the unexpected behavior of the
system, one must understand the log file characteristics. The log files records
have the following information related to the state of the system:
 1) The log files have all the information about what had happened just before

the system went down.
 2) Error logs are an essential source of diagnostic and for proactive error

handling purpose [20].
 3) Unrelated errors are identified in the server logs due to other application

or services of another system such as monitor server logs have the error
from the proxy server.

 4) Historical errors also help to understand the behavior of the system, how
to repair the system and how to mitigate the issues.

 5) The log files also contain information about the causes of specific issues
of the system.

The log files data contain the time-stamp and long error message which
include lot of information. We extract all the important information in the
data processing section. In recent years, several tools have been developed for
analyzing logs, clustering the logs based on IP-address and creating a sequence
of logs. For example, [1], [2], [4] propose the methodology of generating a
sequence of logs. In order to extract the sequence out of the data, we assign
the Ei’s to the error messages, and Ei’s are the event label which is assigned
based on error message and origin of the error. We remove duplicates based
on timestamp, which helps to reduce the number of logs and also reduces the
human efforts of exploring long list of data. Here choosing the window size
is a key parameter for extracting the desired results from the log data, and
the size of window also depends on the data. We experimented with different
window sizes and found that if we take one hour window then the extracted
sequence gets larger and frequency of sequence decreases and if we take
15-minute window the sequence is really short and if we take 30-minute
window, it, shows the seasonality in the data, and we also used moving window
of 30 minutes to extract the short sequence of errors and analyze data for
a day.

The main focus of this study is to predict the accurate event in time-series
and our approach can anticipate the upcoming event and time of the event
based on the historical data and we also want to measure the accuracy of
model between statistical model and machine learning model for the server
log analysis. We are exploring the LSTM as machine learning algorithm,
Holt-Winters, and ARIMA as statistical model and we have implemented
the LSTM, ARIMA and Holt-Winters models in accordance to server log

222 Reuse in Intelligent Systems

analysis. Our approach provides the visualization of predicted events to the
data analysts, so that user can take proactive steps for error handling. We are
finding the pattern in the sequence of logs, which is helping us to find the
subsequent events are happening on the server and help us to predict the error
and error of time in future through LSTM, Holt-winters, and ARIMA. The
key contributions of this paper are:
 1) Investigating the forecasting techniques for time-series and predicting

future events for server logs.
 2) Comparing the performance of LSTM, Holt-Winters and ARIMA

algorithms, and which one has higher accuracy results for predicting
sequence of events.

 3) Provide visualization of predicted events for server log time-series.
 4) Implementation of LSTM machine learning model, Holt-Winters, and

ARIMA statistical model.

The chapter is organized as follows. We have presented Section 2, as
related work. Section 3 is a case study and our motivation. In Section 4,
we have our proposed approach, and in Section 5, we have results of our
approach. Section 6, Conclusion, Section 7 is limitations, and future work of
our approach and references are in last section.

2. Related Work

This section is to provide the review of related works. Jiang et al. [1] proposed
an automated approach which examines the logs, recognize the internal
structure of log lines and then convert them into related execution events. Once
the developer recovered the log structure, analyzing log behavior become
easy. The abstraction of the logs reduces the volume of data to examine,
and then the log lines get converted to the execution events by anonymized
step for recognizing dynamic token replace with the generic token. The log
abstraction technique applied to the source code of the program, and they
developed the approach to recognizing the structure of log message and this
approach perform well on large log files. We found that this method is only
applicable to the applications if the source code of an application is available
to the analyst, which is not possible in our case. Lin et al. [2] have utilized
the knowledge base to check the sequence of a log that existed before. They
used the log sequences for manual examination and then applied mitigation
actions. They have applied their approach to Microsoft services clustering and
validated it; however, in our existing systems at City of Calgary log clustering
is not sufficient for the unstructured data of the log messages because each
server and service create different types of logs which may lead to false
positives. This methodology cannot be generalized for generic log analysis.

Predictive Analysis of Server Log Data for Forecasting Events 223

Zhen et al. [4] worked on log Abstraction, log linking, simplifying sequences
and generating execution reports of the simple apps worked on abstracting
execution logs from big data Hadoop based cloud environment, and they
recover the execution sequences and generating execution reports of the
simple apps by comparing the sequences between pseudo cloud environment
and Google cloud environment. Their approach uncovers the behavior of big
data application platform behavior and doesn’t validate for developing and
testing applications. They also injected the deployment faults to verify their
results and prove that their approach significantly reduces the verification
efforts. They reduced the logs to a too small size that the manual inspection
can be done on the sequence of logs. They have experimented only on the
local platform logs; whereas we are concentrating on the server logs.

Xu et al. [5] proposed methodology to detect system issues by mining the
console logs. Using source code helped to understand the structure of console
logs. They have designed an online log parsing technique and extracted
powerful features to reveal the information, and then applied principal
component analysis for the anomaly detection. The log parsing methodology
is based on the system source code however this approach cannot be applied
if we do not have access to source code. Shilin He et al. [6], worked on state
of the art for anomaly detection, which consists of log collection, log parsing,
and feature extraction then used anomaly detection. They also explored the
detailed review of supervised and unsupervised techniques. However, the
algorithm for anomaly detection cannot be generalized because the experiment
was done under lab settings.

Bovenzi et al. [8] worked on anomaly detection and explored the
methodology which can be fitted at an operating system level. The algorithm
diagnoses the activities of the software system of the operating system, and
this methodology can only apply to the operating system. Chandola et al.
[11] explored the anomaly detection methodology in a survey. They stated
that sometime the events happen at a specific point of time, which is called
contextual anomaly and some time the events occur in an unordered list which
is called the collective anomaly.

Data mining of logs can be divided into the following categories as
descriptive mining, prescriptive mining and predictive mining. Descriptive
data mining usually based on describing the domain and predictive log
data mining based on making predictions and prescribe the solutions. Hay
et al. [28] finding sequential patterns and finding an association between the
events are part of the descriptive analysis and predicting the events based
on historical data is partially related to anomaly detection. The objective of
predictive analysis in this chapter is to estimate the unknown future events
and time of the event. In order to estimate, we have explored the predictive
models such as statistical models and machine learning algorithms. Salfner

224 Reuse in Intelligent Systems

et al. [20] worked on pre-processing of error log data for accurate failure
prediction. The information in the log files are essential and valuable, and
they experimented the log clustering and filtering technique in order to get
the precise information, and they have explored online failure statistical
technique based on hidden semi-Markov predictor (HSMM) and appropriate
pre-processing of data. HSMM is efficient learning algorithm for raw
sequence and discovering the patterns however it is unable to express the
dependencies and correlation between the patterns. Namin et al. [21] explored
the forecasting technique of ARIMA and LSTM and compared the accuracy
of the results. They experimented on financial and economic data and used
Epoch technique using different size of windows; however, the epoch sizing
did not help to improve the results. Chatfield and Yar [23] used Holt-Winters
method to predict the future values based on triple exponential smoothing
methodology if the data have trend and seasonality. Based on these studies,
we apply the predictive models to our data set to find out appropriate models.
In Table 1 we have described the review of statistical and machine learning
algorithm, which is explained in further sections of the chapter.

3. Case Study and Motivation

In the modern era of technology, part of the success of companies depend on
the reliability of their servers and IT-services and in case of service shutdown,
data analysts analyze the log data. In our approach, we are creating the
sequence of logs and predicting the event which further helps the analytics
team to examine the logs and they can mitigate the issue before it happens.
Abnormal behavior can also be detected if expected event does not occur,
and the data analyst can also identify an unusual pattern that does not fit the
predictable response [11], [1]. We have analyzed the log data manually and
observed the patterns of errors as shown in Figure 1. The patterns of events
show that some of the events occur in some desired fashion and we can predict
the future event. We are displaying Ei’s events in some pattern over the period
in Figure 1. The event Ei’s are assigned based on error text and category of the

 Table 1: Review of three models for predictive analysis.

Model Pros Cons

Holt-Winters Ability to handle trend, and seasonality Narrow confidence interval

ARIMA Unbiased forecast
Easy to derive confidence interval for forecast

Require more data
Hard to automate

LSTM Ability to handle complex nonlinear patterns
Easily automate

Difficult to derive confidence
intervals for forecast
Require more data

Predictive Analysis of Server Log Data for Forecasting Events 225

error. In this chapter of the book, we are exploring the sequence of errors and
analyzing the patterns of events in order to predict the future event. Abnormal
behavior of logs can also be detected if the events do not confront the specific
pattern. We are also considering unusual contextual behavior and collective
abnormal behavior. In Figure 1 we show the Event E8 and E10 always happen
together, and the E9 raises the warning for the user. The dataset of logs used
for the experiments is extracted from the IT department of the City of Calgary
under the analytics and integration team. The log file contains the essential
information about the system and server such as timestamp, detail description
of the error, error number, the application name related to failure, and server
address. We have access to the error logs of servers and application which we
are using to validate our approach and analyzing the results.

We gather information about the servers, applications, messaging service,
and databases, which generates log files. We want to gain the insight of those
logs by studying them and finding critical patterns of the loglines, which leads
to complete system or server failure. Our approach reduces the time and efforts
of data analyst and provides a solution to analyze the logs accurately, which
make them more productive for analyzing the logs. We are also reducing the
number of logs to analyze through creating events from the logs, for example
we took sample data of one day from monitoring server, which contains
1733 log lines after generating events out of the log, it reduces to 89 events
and 23 sequence of events, which reduces the efforts by 94%. Once we learn
the sequence of events and pattern, we explore it to predict the future events
or sequence of events.

4. Our Proposed Approach

Time-series analysis is the area of information in which we create the model
based on observation, historical data, and predict future values. Forecasting
time-series is applied to many areas, therefore, it is critical to improving
the existing forecasting model with new emerging techniques such as deep
learning. In this chapter of the book, we have expanded the approach from
IRI 2018 proceeding [17] to the predictive analysis. Figure 2 is the extended

Error Warning

Event IDs

Error Warning

Time series

E8 E10 E9 E17 E9 E10

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

E8

T12

E10

T13

E11 E9 E8

T14 T15 T16 T17 T18

? ?E8

Fig. 9.1

Fig. 9.2

Time: error, type category, taskID

T1: error on transport, error, CI

T2: recovering connection, warn, C1, 242306

T3: recovering connection, warn, C1, 242305

T4: unable to evaluate action, error C2, 242306

- - - -

Prediction analysis

Feature extraction

Data pre-
processing

LOG

Generating log
sequences

Category: sequences

 C1: [E9,E8,E10,E10,E9,E10,E11,E17]

C1: [E8,E10,E9,E8,E10,E10

C2: [E1,E3,E1]

- - - -

Historical
Knowledge

Evaluate the
sequence

Forecasting event and
time of the event

25

20

15

10

5

0

E
ve

n
t
re

tu
rn

0 50 100 150 200 250 300

Time in minutes

Original value
Protected value

LSTM model for predictive analusis

Fig. 9.3

Forecasting future events

25

20

15

10

5

0

E
ve

n
ts

00.00.00 00.05.00 00.10.00 00.30.00 00.40.00
Time

Forcast

Fig. 9.4 (Time not readable)

Fig. 1: The manual observation of the events generated by the monitoring server and shows the
sequence of errors occurs at a particular point in time and in the similar fashion, which can help us to

predict the specific event for next period.

226 Reuse in Intelligent Systems

version of our approach. We started our approach with data gathering and
lead to forecasting techniques. The framework of our approach is divided into
three main phases; The first two phases are the repetition from the previous
research paper in which we discuss data pre-processing and feature extraction.
The second phase is converting the error logs into a sequence of log lines or
events, and the third phase forecasting the events and time of the events from
the sequence of events.

Time-series forecasting involves mathematical processes, and pattern
search, which plays a significant role in the data analysis [24] such as ARIMA
and Holt-Winters models, which have long been in use for stock market
time-series forecasting. LSTM is a modern and new emerging technology in
deep learning to address the prediction issues. The Auto Regressive Integral
moving average (ARIMA) is a method in which a regressive model confirms
the dependencies between the observation; integration means measuring
differences of observation and moving average lag of the existed observations.
In this chapter, we are focusing on traditional and modern techniques for time-
series forecasting and evaluating accuracy for log data prediction. We have
applied ARIMA, Holt-Winters and LSTM methodology for the forecasting of
the events of the server.

Error Warning

Event IDs

Error Warning

Time series

E8 E10 E9 E17 E9 E10

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

E8

T12

E10

T13

E11 E9 E8

T14 T15 T16 T17 T18

? ?E8

Fig. 9.1

Fig. 9.2

Time: error, type category, taskID

T1: error on transport, error, CI

T2: recovering connection, warn, C1, 242306

T3: recovering connection, warn, C1, 242305

T4: unable to evaluate action, error C2, 242306

- - - -

Prediction analysis

Feature extraction

Data pre-
processing

LOG

Generating log
sequences

Category: sequences

 C1: [E9,E8,E10,E10,E9,E10,E11,E17]

C1: [E8,E10,E9,E8,E10,E10

C2: [E1,E3,E1]

- - - -

Historical
Knowledge

Evaluate the
sequence

Forecasting event and
time of the event

25

20

15

10

5

0

E
ve

n
t

re
tu

rn

0 50 100 150 200 250 300

Time in minutes

Original value
Protected value

LSTM model for predictive analusis

Fig. 9.3

Forecasting future events

25

20

15

10

5

0

E
ve

n
ts

00.00.00 00.05.00 00.10.00 00.30.00 00.40.00
Time

Forcast

Fig. 9.4 (Time not readable)

Fig. 2: The approach for forecasting events and time of the events after generating sequence of events.

Predictive Analysis of Server Log Data for Forecasting Events 227

4.1 Data Preprocessing and Feature Extraction
Data preprocessing is critical for data mining and includes data cleaning,
integration, transformation, data selection, and data reduction. Log data files
are full of text, including important error messages, symbols and blank lines.
Whenever; the new event happens, or the date gets changed on the server,
some blank lines and system software information get generated, which is
not relevant to the log analysis, therefore removing blank lines, and symbols
is important step for cleaning and preprocessing the data. We have converted
the textual data to the data-frames or tables and converted timestamp text to
date time format since it’s a manageable way to store the information about
the date. The critical information gets extracted from the textual data of logs,
and we manage the missing values, smooth out noisy data, and we transform
the time to minutes. We extract the error messages from the text of the error
and remove the irrelevant information by filtering out exceptional handling
log data.

We have reduced the features by selecting the important attributes from
the data as shown in the Table 2 and split the data and kept 70% data for the
training and 30% data for the testing.

Table 2: After data processing, the server log information is stored into data-frames for the further
analysis steps and shows the text data has been cleaned and preprocessed.

Date Time Error Type Category TaskID

June 19 3:00:50 PM Error on transport Error HWKCON 242304

June 19 3:00:50 PM Recovering connection Warn HWKCON 242305

June 19 3:01:00 PM Recovering connection Warn HWKCON 242305

June 19 3:01:00 PM Session is closed Error HWKCON 241809

June 19 3:01:02 PM Recovering connection Warn HWKMAG 242305

June 19 3:01:07 PM Unable to evaluate action Error HWKRBE 41415

4.2 Generating Log Sequences
We have extracted the number of features from the logs, however, and
considered only relevant information of error messages. The server logs
include the date and time, error message, type of event, category, and TaskID
of the log message, and have some constant and dynamic part of the error
message. We have used the algorithm from IRI 2018 proceeding [17] for
assigning the event ids to the error messages which further get converted to
event sequences. We assign the Ei’s to error message based on task id’s and
link them based on categories. The events E1, E4, E5, E5, E1, E1, E7, E7 are
under HWKRBE category, and they get generated at the same time and are

228 Reuse in Intelligent Systems

linked together with the same category type. The events E9, E8, E10, E11, E9,
are under HWKCON, and they are linked together. Linking step accumulates
the duplicate for the event ids to the specific category in the fixed windows.
The sequence of events has been created by grouping the repeated events to
one event and removing the duplicate events [4]. Table 3 is an example of the
sequences of logs, with timestamp, error messages, and TaskID; which are
linked together since they have similar categories or type of event.

4.3 Predicting and Visualizing Log Events
We have explored LSTM, ARIMA, and Holt-winters algorithms for the
experimentation purpose. LSTM (Neural network) is the artificial machine
learning model; however, ARIMA (Autoregressive), and holt-winters
(exponential smoothing) are statistical models for the predictive analysis. The
algorithm predicts the future event and time of the event, based on historical
data. One of the challenges for using the machine learning models and
statistical model that, the data must be numerical; therefore in order to predict
event and time of the event, we convert time into minutes and categorical data
such as event Ei’s to numeric values, in order to input the data to statistical
model and machine learning models.

4.4 Predicting Future events by LSTM
Long Short-term memory (LSTM) is the extension of recurrent neural
networks, which has the capability of remembering long sequences and the
historical values. The model can be trained using backpropagation through
time which makes them suitable for time-series prediction. LSTM creates the
knowledge base from the historical data and very powerful in handling the
dependencies between the inputs and smart enough to determine whether to
hold the information or forgets the information. In this chapter of the book,
we have implemented LSTM model in order to forecast the events and time of
the event. The model uses historical data to identifies the existing data patterns
and use them to predict the future event and time.

Table 3: The sequence of events in fixed window technique. The grouping of events has been done to
create the sequence and removing the duplicate events in the row.

Date Time Error Type Category TaskID EIs

June 18 3:06:50 Recovering connection Warn HWKCON 242305 E9

June 18 3:06:50 Error on transport Error HWKCON 242304 E8

June 18 3:07:00 Exception sending msg Error HWKCON 241809 E10

June 18 3:07:01 Exception sending msg Error HWKCON 241809 E11

June 18 3:08:00 Recovering Connection Warn HWKCON 242305 E9

Predictive Analysis of Server Log Data for Forecasting Events 229

Input: Series of events in dataframe
Output: Predicted Events and Root Mean Square
Input libraries
fix the random seed for reproducing results
1. Set random. seed (number)
convert dataset to supervised data to feed in the model
Procedure: timeseries (data, shift_data 1)
2. data dataframe(data)
3. column shit(i) for I in range (1, shift_data+1)
4. column.append(data)
5. data pd.concat (column, axis 1)
6. return data
normalize the data
7. scaler MinMaxScaler (range (–1,1)
8. dataset scaler.fit (dataset)
transform data
9. dataset dataset.reshape(dataset.shape[0], dataset.shape[1])
10. dataset scaler.transform(Dataset)
Fit an LSTM model to training data
11. Procedure: fit_lstm (dataset, batch, epoch, neurons)
12. x dataset
13. y dataset – x
14. model Sequential ()
15. model.add(LSTM(neurons, batch))
16. model.add (Dense (1))
17 model.compile(loss ‘‘Mean_square_Error”,
 optimizer adam)
18. forloop I in range(epoch)
19. model.fit (x,y, epochs 1, batch)
20. return model
prediction of the events
21. Procedure forecast (model, x)
22. yhat model.predict(x)
23. return yhat

Implementation of LSTM model

The Keras library are used for the LSTM model; however, the data preparation
is needed for the machine learning techniques. In order to measure the
accuracy of the LSTM prediction model, and we have used RMSE Root Mean
Square Error.

230 Reuse in Intelligent Systems

4.5 Predicting Future Events by ARIMA
Autoregressive Integrated Moving Average (ARIMA) combines the regressive
process and moving average method and construct the composite model
[21, 22]. An autoregressive model is based on dependencies between
observations of historical data; integrated means taking the difference between
observation and the previous observation, to make the time series stationary;
and moving average take the dependencies between observation and residual
error. The mathematical formulation of ARIMA (p, d, q) model had three
parameters number of lags, number of times and size of the windows as
p, d, and q. In order to use model, we determine the p, d, q which are integers
greater or equal to zero and we need to make the time-series data stationary
then construct the ARIMA model to make a prediction and find the correlation
of the time-series itself. The integer d determines the differencing and if d = 0
then results depends on p and q. We transform a series to log series to make it
stationary and then take the difference of log_transform and log_transform_
shift by 1. We create autocorrelation factor and partial autocorrelation factor
plots to identify the patterns.

Implementation of ARIMA

ARIMA Model with rolling window
Input: series in dataframe
Output: forecasted events and root mean square
load libraries
test the stationarity of the dataset
1. Procedure: test_stationarity(dataset)
2. movingAVG dataset_log.rolling(window 30).mean()
3. movingstd dataset_log.rolling (window 30).std()
4. data_shift dataset_log-dataset_log.shift()
5. lag_acf acf(data_shift, nlags 30)
6. lag_pacf pacf(data_shift, nlags 30, method = ‘ols’)
7. # plotong the acf and pacf
8. plt.plot(lag_acf)
9. plt.plot(lag_pacf)
10. model ARIMA (dataset_log, order (p,d,q))
11. result model.fit(disp –1)
12. model_arima_fit model_arima.fit()
Prediction of the events
13. Prediction series (model_arima_fit.fittedvalues, copy true)
14. rms sqrt (mean_square_error(dataset_log, prediction)

Predictive Analysis of Server Log Data for Forecasting Events 231

4.6 Predicting Future Events by Holt-Winters
Holt-Winters is an exponential smoothing statistical model for the time series
and is suitable for the data, with seasonality and trend, where the seasonality
can be defined as the tendency, which shows the behavioral pattern [28]. Holt
winters forecasting is a mathematical model, which predicts the behavior of
the time-series and also called triple exponential smoothing. Holt winters also
contain the main three parameters (α,β,γ) and predict current or future value
based on the parameters. The Alpha, beta, and gamma optional parameters
determine the stability of the forecast and values range from 1 and 0. Alpha
determines the weighted average of the points; beta determines the slope
between consecutive points and gamma determines the seasonality of the
series and by default, these values are set to 1 and the seasonality is a repetition
of data in the fixed length of time.

Implementation of Holt-Winters

Holt Winters model for the predications
Input: series in dataframe
Output: forecasted events and root mean square
1. # Load the exponential smoothing libraries
2. dataset_log = np.log(dataset)
triple exponential smoothing multiplicative/additive
here x is data, m is period, fc is forecast
Model Multiplicative(x,m,fc,alpha,beta,gamma)
3. y_hat_avg dataset.copy()
4. fit ExponentialSmoothing(dataset, seasonal_periods=5,
trend=mul, seasonal ‘add’).fit()
5. y_hat_avg[‘Holt_Winter’] fit.forecast(len(dataset)
6. rms sqrt(mean_squared_error(dataset),
y_hat_avg.Holt_Winter))

We experiment with data collected from integration and analytics team
from the City of Calgary, and all the log files contain error logs, info logs, and
warning logs. The server error logs include timestamp and error description
with other information. We have used three types of Log files from the server,
such as Proxy web server, monitoring server, and admin server. Complete
logs show the data for three months and sample logs have one-day log data.
In order to have a proof of concept experiment setting, we have done our
experiments on available data captured over three months of period. The
output of the extracted sequence of the events raises a question that, does our

232 Reuse in Intelligent Systems

approach reduce the efforts, and which method of forecasting is appropriate
for log analysis?

5. Results

5.1 Results for Generating Sequences
The approach for creating sequences is helping data analyst for analyzing
log data to make an informed decision. We have set up the experiment
environment on the local computer. The features are fed into the model
for generating the sequences. These sequences have been generated after
removing all the duplicates of entries. In reference to the time of the event
gives the opportunity to data analyst for the detailed review of the log events
happening at a particular point of time. The data analyst or user has to look for
only a few log events instead of looking complete log lines. In the previous
proceeding paper [17], we mentioned the significant reduction of efforts
approximately 91.6% and the analyst took less than 5 min to analyze the logs.
The sequence of events shows the number of sequences found in the sample
log data and Table 4 we have shown the event sequences found in the sample
data, and the total number of log lines in the sample file is 1733. Once we
removed the info lines from the logs, our log events reduced significantly;
even data analysts are able to evaluate the results manually. Suzgun et al. [16]
worked on the sequence prediction with short and long sequences. In our case
the sequence of events is not larger than size 10, therefore the LSTM model
will not face NP-hard issue.

Table 4: The sequence of events in the 30-minute fixed window, which contain errors and warnings.
The grouping of events is based on categories, and we have run the algorithm to count the existed

sequences from monitoring server logs.

Category Frequent Sequences Counts

HWKCON E9, E8, E10, E10, E9, E10, E11, E17 12

HWKCON E8, E10, E9, E8, E10, E10 4

HWKRBE E1, E3, E1 5

HWKRBE E1, E4, E5, E1, E7 2

5.2 Results for Predictive Analysis

Root Mean Square Error of our Results
Root-Mean-Square-Error (RMSE) is used to measure the accuracy of the
model by taking the difference between predicted, and actual values. We have
used RMSE with predictive models to evaluate the accuracy of the predictions

Predictive Analysis of Server Log Data for Forecasting Events 233

of the events and time of the event. Alexei et al. [15] identify RMSE is scale
dependent measure and useful for measuring the accuracy of models.

N

i i
i

ˆ(a a)
N =

= −∑ 2

1

1RMSE

The formula above has N, which is the total number of observations and
(ai) represent the actual values and (âi) represent the predictive values. Mugume
et al. [14] investigated the performance of the numerical model by RMSE-
Root Mean Square Error, MAE-Mean Absolute Error, ME-Mean Error, and
STM-Sign test to analyze the bias of numerical method and mentioned that
RMSE is good criteria to classify the accuracy of the model and low index
value means higher accuracy.

According to the results from Table 5, the LSTM outperforms the ARIMA
and Holt-Winters. LSTM and ARIMA has better results than Holt-Winters in
terms of RMSE for short sequences.

Performance Matrix Measure for the Sever Log Events
The confusion matrix is used to measure the accuracy and correctness of the
model, and it is the matrix of actual and prediction. According to our case
study, we have the following categories. True positive is the outcome when
the model correctly predicts the observed sequence event, such as the warning
E9 accurately predict from the observed sequence E8, E10, E9, where E8 and
E10 error occurs together, and True negative occurs, when the model also
confronts the observed sequence. False positive is the outcome, when the model
incorrectly predicts observed sequence of such as model predict the event even
if the sequence does not exist, and False negative occurs when model does not
confront the observed sequence of events. In this case study, we want to know

Table 6: The outcome of the events in the confusion matrix for LSTM model forecasting results with
82% accuracy.

Predicted Yes Predicted No

Actual Yes 27 3

Actual No 6 14

Table 5: The RMSE of each predictive model for each time-series, we have for log analysis and we
measure the accuracy of predictions for each model.

LSTM Holt-Winters ARIMA

Monitoring Server Logs 1.442 7.830 2.544

Admin server logs 1.523 8.365 2.666

Proxy server logs 1.287 7.256 3.236

234 Reuse in Intelligent Systems

that the predicted sequence confronts observed sequence. We took sample data
of 50 observation and forecasting results from LSTM model.

LSTM Model
We have set up the experiments on a local computer and used the Jupyter
notebook with Python 3 and Keras libraries for LSTM. We prepare the
training and testing data for machine learning models and have used only
single LSTM layer. The LSTM is the topology of Neural network algorithm
which can hold and learn the observed data and make prediction based on
the observed data [21] and does not require stationary data which is the basic
requirement of the statistical models. The algorithm takes the dataset needs to
be trained, batch size, data fitted size, and neurons. We have fitted the dataset
to the model and repeated the learning time five times.

We input the file in one batch because the size of the file is small enough
to fit in one batch. The predictive analysis of time series in Figure 3 shows
accurate predictive results according to the observed logs for complete data,
and in Figure 4 we have shown the predicted events over the 24 hours and
forecasted event for next unknown 30 minutes which is marked. LSTM learns
from previous data and keeps the record in short-term memory so that it can
make the prediction for the future. In this chapter, we consider forecasting
time and event separately, however, in future, we will explore to combine the
two inputs to make event prediction and forecasting the future events.

ARIMA Model
We have got significant results from ARIMA forecasting model, and we have
also calculated. Root mean square error for checking the goodness of the
model. We have seasonality in our data, such as more errors and warnings
happen in regular business hours rather than weekends and off work hours. In
the IT department, some of the batch files run in the night or weekends which
often generate the errors. We consider the ARIMA model in order to cross-
check the validity of the results. ARIMA (p, d, q) are the critical parameters
for predictions and forecasting time series. Figure 6 shows the predictive
values of time series and original values from the dataset, and we observe that
the prediction of the ARIMA model does not show significant results for long
sequences and complete dataset file, however in Figure 7 the forecast is based
on short sequence of 30 min window data, which shows promising results.

In ARIMA model, picking up the right parameters for the forecasting is
critical for the accurate results, if the parameters are not correct, the results
may vary, and the RMSE will be higher for predicted values. PACF is used
to determine the value of p and differencing is to determine d and ACF is to
determine q.

Predictive Analysis of Server Log Data for Forecasting Events 235

Holt-Winters Model
Holt-Winter is a triple exponential method, which can predict and forecast the
future values based on observed behavior of the time series. This model also
accepts three parameters (α,β,γ) such as α determines the weighted average
of the points, which decay exponentially; β determines the slope between
consecutive points and γ determines the seasonality of the series of the

Fig. 3: The predictive results of the LSTM model. The predicted value and original values are
approximately close with 1.4 average root mean square error for the complete data.

Error Warning

Event IDs

Error Warning

Time series

E8 E10 E9 E17 E9 E10

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

E8

T12

E10

T13

E11 E9 E8

T14 T15 T16 T17 T18

? ?E8

Fig. 9.1

Fig. 9.2

Time: error, type category, taskID

T1: error on transport, error, CI

T2: recovering connection, warn, C1, 242306

T3: recovering connection, warn, C1, 242305

T4: unable to evaluate action, error C2, 242306

- - - -

Prediction analysis

Feature extraction

Data pre-
processing

LOG

Generating log
sequences

Category: sequences

 C1: [E9,E8,E10,E10,E9,E10,E11,E17]

C1: [E8,E10,E9,E8,E10,E10

C2: [E1,E3,E1]

- - - -

Historical
Knowledge

Evaluate the
sequence

Forecasting event and
time of the event

25

20

15

10

5

0

E
ve

n
t

re
tu

rn

0 50 100 150 200 250 300

Time in minutes

Original value
Protected value

LSTM model for predictive analusis

Fig. 9.3

Forecasting future events

25

20

15

10

5

0

E
ve

n
ts

00.00.00 00.05.00 00.10.00 00.30.00 00.40.00
Time

Forcast

Fig. 9.4 (Time not readable)

analysis

Fig. 4: The forecasted event in the next 30 minutes for future prediction, here we have 24 hours
predicted values based on learned data from the history and forecasted the next event.

Error Warning

Event IDs

Error Warning

Time series

E8 E10 E9 E17 E9 E10

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

E8

T12

E10

T13

E11 E9 E8

T14 T15 T16 T17 T18

? ?E8

Fig. 9.1

Fig. 9.2

Time: error, type category, taskID

T1: error on transport, error, CI

T2: recovering connection, warn, C1, 242306

T3: recovering connection, warn, C1, 242305

T4: unable to evaluate action, error C2, 242306

- - - -

Prediction analysis

Feature extraction

Data pre-
processing

LOG

Generating log
sequences

Category: sequences

 C1: [E9,E8,E10,E10,E9,E10,E11,E17]

C1: [E8,E10,E9,E8,E10,E10

C2: [E1,E3,E1]

- - - -

Historical
Knowledge

Evaluate the
sequence

Forecasting event and
time of the event

25

20

15

10

5

0

E
ve

n
t
re

tu
rn

0 50 100 150 200 250 300

Time in minutes

Original value
Protected value

LSTM model for predictive analusis

Fig. 9.3

Forecasting future events

25

20

15

10

5

0

E
ve

n
ts

00.00.00 00.05.00 00.10.00 00.30.00 00.40.00
Time

Forcast

Fig. 9.4 (Time not readable)

Forecast

236 Reuse in Intelligent Systems

Fig. 9.5

LSTM model for short sequence precication

18

16

14

12

10

0

E
ve

n
t

n
u

m
b

e
rs

Time in minutes

0 20 40 60 80 100

Original value
Predicted value

ARIMA predictive model

10

8

6

4

2

0

–2

–4

L
o

g
 o

f
e

ve
n

t
n

u
m

b
e

rs

500 1000 1500 2000 2500 3000 3500

Time in minutes

Original
Prediction

Fig. 9.6

Fig. 9.7

ARIMA predictive model

Time in minutes

L
o

g
 o

f
e

v
e

n
t

n
u

m
b

e
rs

10

8

6

4

2

0

–2

–4

5 10 15 20 25 30

Forecast
Event

95% confidence interval

Time in minutes

Fig. 6: ARIMA predictive model results for long sequences and data for the complete log file with
RMSE of average 2.7.

dataset. We use additive and multiplicative seasonality which in turn reduced
the RMSE. Figure 8 shows the results of holt-winter model, by applying triple
exponential smoothing.

Fig. 5: The prediction of short sequences through the LSTM model. We have also experimented
for the short sequence prediction, and LSTM has given promising results in predicting the short

sequences. The graph also shows the seasonality in the events every 30 min.

Fig. 9.5

LSTM model for short sequence precication

18

16

14

12

10

0

E
ve

n
t
n
u
m

b
e
rs

Time in minutes

0 20 40 60 80 100

Original value
Predicted value

ARIMA predictive model

10

8

6

4

2

0

–2

–4

L
o
g
 o

f
e
ve

n
t
n
u
m

b
e
rs

500 1000 1500 2000 2500 3000 3500

Time in minutes

Original
Prediction

Fig. 9.6

Fig. 9.7

ARIMA predictive model

Time in minutes

L
o
g
 o

f
e
ve

n
t
n
u
m

b
e
rs

10

8

6

4

2

0

–2

–4

5 10 15 20 25 30

Forecast
Event

95% confidence interval

prediction

Predictive Analysis of Server Log Data for Forecasting Events 237

Fig. 9.8

Holt-winters forecasting model

Original values
Predictive values

20

15

10

5

0

E
ve

n
t

n
u

m
b

e
rs

Time in minutes

500 1000 1500 2000 2500 3000

Fig. 8: The predictive values by Holt-Winter model by using additive and multiplicative seasonality
with RMSE of 7.8.

Fig. 7: The ARIMA forecasting results with 95% confidence for the 30 min window and short
sequences and shows the original data with forecasted values.

Fig. 9.5

LSTM model for short sequence precication

18

16

14

12

10

0

E
v
e

n
t

n
u

m
b

e
rs

Time in minutes

0 20 40 60 80 100

Original value
Predicted value

ARIMA predictive model

10

8

6

4

2

0

–2

–4
L

o
g

 o
f

e
v
e

n
t

n
u

m
b

e
rs

500 1000 1500 2000 2500 3000 3500

Time in minutes

Original
Prediction

Fig. 9.6

Fig. 9.7

ARIMA predictive model

Time in minutes

L
o

g
 o

f
e

v
e

n
t

n
u

m
b

e
rs

10

8

6

4

2

0

–2

–4

5 10 15 20 25 30

Forecast
Event

95% confidence interval

ARIMA Forecasting Model

238 Reuse in Intelligent Systems

6. Discussion and Conclusion

In this chapter, we analyzed log files with the goal of predicting the events
and the time of the event. We present the pre-processing technique for
feature extraction and also extract the sequence of events by a static window
and moving window from the logs. We explore the traditional and modern
techniques of the time-series prediction and compare the results, which shows
that LSTM outperforms for the prediction of server log data and analyzing
the error data. We have proposed the approach to generate log events and
the sequence of events from logs and predict the future events based on
historical data. To evaluate this approach, we took three different types of log
files from various servers, and we have also observed that the ARIMA model
works better on a short sequence of events and LSTM model brings better
results for shorter and large sequences or large data set. In this chapter, we
provide the implementation technique for LSTM, ARIMA, and Holt-Winters
and compared the performance of all three models by calculating Root mean
square error, which is shown in Table 5. We have visualized the predicted
events of the LSTM, ARIMA, and Holt-Winters model, which provides the
insight to the data analysts for decision making.

7. Limitations and Future Work

We have compared the log data from three different servers to analyze the
results and validate our approach; however, we are also exploring the diverse
set of log data from an open source in order to generalize our approach. We use
a fixed window of 30 min technique for this approach; if we change the size of
the window, it is entirely possible the size of sequences will change which can
affect the results. In our future work, we are looking to implement the multi-
task learning in deep learning to combine the categorical and numeric data of
the lags and make the prediction based on all the selected features.

References
 [1] Jiang et al. 2008. An automated approach for abstracting execution logs to execution

events. Journal of Software Maintenance and Evolution: Research and Practice 20(4): 19.
 [2] Lin et al. 2016. Log clustering based problem identification for online service systems,

presented at the Software Engineering Companion (ICSE-C). IEEE/ACM International
Conference, Austin, TX, USA.

 [3] Hatonen et al. 2008. Local anomaly detection for network system log monitoring.
Information Sciences 178(20).

 [4] Shang et al. 2013. Assisting developers of big data analytics application when deploying
on hadoop clouds, presented at the Software Engineering (ICSE), 2013. 35th International
Conference, San Francisco, CA, USA.

Predictive Analysis of Server Log Data for Forecasting Events 239

 [5] Wei et al. 2010. Detecting Large-scale System Problems by Mining Console Logs.
Elsevier, 37–44.

 [6] He et al. 2016. Experience report: System log analysis for anomaly detection, presented at
the Software Reliability Engineering (ISSRE), 2016. IEEE 27th International Symposium,
Ottawa, ON, Canada.

 [7] Han et al. 2006. Data Mining: Concepts and Techniques. (The Morgan Kaufmann Series
in Data Management Systems). Elsevier.

 [8] Bovenzi et al. 2014. An os-level framework for anomaly detection in complex software
systems. Presented at the IEEE Transactions on Dependable and Secure Computing.

 [9] Krishna et al. 2015. Topic modeling of SSH logs using Latent Dirichlet allocation for the
application in cyber security. pp. 75–79. In: Systems and Information Engineering Design
Symposium, IEEE.

 [10] Pengtao. 2013. Integrating Document Clustering and Topic Modeling.
 [11] Chandola et al. 2009. Anomaly detection: A survey. ACM Computing Surveys (CSUR)

41(3).
 [12] Adam and Wei. 2012. Advances and challenges in log analysis. Communications of the

ACM, 7.
 [13] Python. (March, 2018). https://pypi.python.org/pypi.
 [14] Mugume et al. 2016. Comparison of parametric and nonparametric methods for analyzing

the bias of a numerical model. April 2016 Modelling and Simulation in Engineering,
Volume 2016, Article ID 7530759, 7 pages.

 [15] Botchkarev. 2019. Performance metrics (error measures) in machine learning regression,
forecasting and prognostics: Properties and typology. Interdisciplinary Journal of
Information, Knowledge, and Management 14: 45–79.

 [16] Suzgun et al. 2019. On Evaluating the generalization of LSTM Model in formal
languages. Proceedings of the Society for Computation in Linguistics (SCiL) 2019, cite
as. arXiv:1811.01001v1 [cs.CL].

 [17] Suman et al. 2018. Visualization of server log data for detecting abnormal behaviour.
IEEE International Conference on Information Reuse and Integration (IRI) pp. 244–247.

 [18] Borges et al. 2017. Predicting target events in industrial domain. SpringerLink Books
Lecture Notes in Computer Science 10358: 17–31.

[19] Shuyang et al. 2017. Modeling approaches for time series forecasting and anomaly
detection. Computer Science Project 2017 Final Report. Available online http://cs229.
stanford.edu/proj2017/final-reports/5244275.pdf.

 [20] Salfner and Tscirpke. 2008. Error log processing for accurate failure prediction. pp.
4–4. Proceeding WASL’08 Proceedings of the First USENIX Conference on Analysis of
System Logs, San Diego, California.

 [21] Namin et al. 2018. Forecasting Economins and Financial Time Series: ARIMA vs LSTM.
CoRR abs/1803.06386.

 [22] Williams and Hoel. 2003. Modeling and forecasting vehicular traffic flow as a seasonal
ARIMA process: Theoretical basis and empirical results. Journal of Transportation
Engineering 129: 664–672.

 [23] Chatfield and Yar. 1988. Holt-Winters forecasting: some practical issues. The Statistician,
pp. 129–140.

 [24] Brownlee. 2017. How to create an arima model for time series forecasting with python.
Available at https://machinelearningmastery.com/arima-for-time-series-forecasting-with-
python/.

http://cs229.stanford.edu
http://cs229.stanford.edu
http://cs229.stanford.edu
http://cs229.stanford.edu
https://pypi.python.org

240 Reuse in Intelligent Systems

 [25] Brownlee. 2016. Time series prediction with LSTM recurrent neural networks in python
with keras. Available at https://machinelearningmastery.com/time-series-prediction-lstm-
recurrent-neural-networks-python-keras/.

 [26] Kalekar, Rekhi. 2008. Time series forecasting using holt-winters exponential smoothing.
School of Information Technology 4329008: 1–13.

 [27] Hay et al. 2008. OSSEC host-based intrusion detection guide. Elsevier Science 3 March
2008.

https://machinelearningmastery.com
https://machinelearningmastery.com

Index

A

Abnormal Behavior Patterns 224, 225
algorithms 143, 144, 148, 150, 156, 159
Application Layer DDoS Attacks 182,

185, 216

B

Big data 1–6, 8, 14, 18, 26, 62, 64, 65,
67, 81

Bioinformatics 33–37, 39–41, 43, 47, 53,
57, 58

C

Class imbalance 2–6, 11, 13, 16, 20, 23,
26, 28, 62–67, 73, 75, 76, 78, 82

collaborative filtering 87–90, 103, 105,
106, 113

D

Data sampling 33–35, 37–41, 46, 47, 52,
53, 57, 58

decomposition 161, 162, 169, 170, 172,
173, 175–178

deep learning 87, 88, 90, 91, 97, 98,
100–102, 105–108, 110, 113

F

Feature selection 182, 185, 190, 191, 200,
201, 204, 205–208, 211, 214–216

flowpipe construction 161, 167, 169, 171,
174, 175, 178

Fraud detection 62, 65–67, 77–82

G

Gene selection 33

H

H2O 6, 8, 10, 15–17, 23
Holt-Winters 221, 222, 224, 226, 228,

231, 233, 235–238
hybrid systems 161–163, 172, 175

L

LEIE 64–67, 71–74, 82
Log behavior 222
Long Short-Term Memory (LSTM) 221,

222, 224, 226, 228, 229, 232–236,
238

M

Machine learning 1–4, 6–8, 11, 22–24, 26,
28, 143–145, 148, 150, 156, 159

Medicare 62–69, 71, 73–75, 78, 80–82
Medicare fraud 2, 4, 20, 25, 26
modeling 144, 156, 157
MOOCs 116–133, 139, 140
movie recommendation 87, 88, 103, 105,

107, 112, 113
multiple linear regression 145, 150–152,

159

N

Netflow 181, 184, 185, 189–191, 193,
194, 210, 215, 216

Noise injection 36, 39, 44, 51

242 Reuse in Intelligent Systems

O

object detection 145–151, 156, 159

P

PCA 185, 190, 191, 199, 200, 202,
207–209, 216

Petri nets 144, 145, 152, 154–157, 159

R

Random forest 65, 67, 75–77
Random undersampling 3, 65
reachability analysis 161, 162, 164,

168–172, 174–178
Recommendation system 116–122,

127–130, 132, 136–139
Robotics 143, 145, 147, 156, 159
Root Mean Square Error (RMSE) 229,

232–238

S

safety verification 161, 162
Sequence of events 222, 225, 226, 228,

232, 233, 238
SiLk 184, 189, 215
Slow read 181–188, 190, 192, 193, 202,

204, 205, 207, 210–212, 215
Software ecosystem 117
Spark 5, 6, 8, 10, 14–17, 23, 24
Subset evaluation 35, 41, 42

T

Timed Petri nets 144, 145, 154, 155, 157,
159

Topic modeling 116, 121, 130–133, 135,
138, 139

W

Wrapper feature selection 37

	Cover
	Title Page
	Copyright Page
	Preface
	Table of Contents
	1: Experimental Studies on the Impact of Data Sampling with Severely Imbalanced Big Data
	2: How to Optimally Combine Univariate and Multivariate Feature Selection with Data Sampling for Classifying Noisy, High Dimensional and Class Imbalanced DNA Microarray Data
	3: Big Data and Class Imbalance in Medicare Fraud Detection
	4: Movie Recommendations Based on a Recurrent Neural Network Model
	5: A Recommendation System Enhanced by Topic Modeling for Knowledge Reuse in MOOCs Ecosystems
	6: Towards a Computer Vision Based Approach for Developing Algorithms for Soccer Playing Robots
	7: Context-dependent Reachability Analysis for Hybrid Systems
	8: Netflow Feature Evaluation for the Detection of Slow Read HTTP Attacks
	9: Predictive Analysis of Server Log Data for Forecasting Events
	Index

