

Early praise for Software Estimation Without Guessing

I hate estimating and I’m all too familiar with the anti-patterns. I was surprised
by how much I liked this book. An easy read on why, when, how, and how not to
estimate, with pragmatic advice both for the art of estimation itself and for handling
the human behaviors that invariably surround it.

➤ Liz Keogh
Director, Lunivore Limited

When I first started reading this book, I knew it was providing a good framework
for software estimation. I have recommended to my boss that we buy copies for
all of our senior developers who are responsible for both creating project estimation
and vetting estimations, since it provides a common language for discussing those
estimations as well as helping improve our estimations.

➤ Josef Finsel
Senior Developer, Mt Mediabox

This book is about different aspects of the estimation process. While it won’t teach
you how to estimate more accurately, it does the more important stuff: explain
how our estimates can be used effectively, and what to do when they aren’t.

➤ Gil Zilberfeld
Agile Consultant

We all estimate at work. George’s book offers helpful advice on when to use which
kind of estimation, regardless of the kind of work and the size of the company.
Read this book to apply these approaches in your context.

➤ Johanna Rothman
Author and Consultant, Rothman Consulting Group, Inc.

This is not so much a how-to-do-estimates book, but a how-to-think-about-
estimation book (though it does have how-to guidance as well).

The book focuses on why people need estimates, and how that affects how one
might approach any particular estimate. Context, as always, matters. If you use
estimates or are asked to give estimates, this book will be valuable to you.

➤ Esther Derby
President, Esther Derby Associates, Inc.

Software Estimation Without Guessing
Effective Planning in an Imperfect World

George Dinwiddie

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Adaobi Obi Tulton
Copy Editor: Sean Dennis
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-698-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2019

Contents

Acknowledgements ix
Introduction xi

1. Starting Something New 1
When You’re Asked to Estimate Something New 3
Case: Developing a Fixed-Price Bid 10
Case: Is This Worth Starting? 13
Case: Can We Make This Work? 18
Case: What Should We Budget? 19
Case: Which of These Should We Choose? 20
Case: A Mixture of Questions 22
Stepping Back for a Broader View 25
Now It’s Your Turn 25

2. Comparison-Based Estimation 27
Comparison to Past Experience 28
Memory vs. Recorded Data 32
Aspects to Compare 34
Gestalt Estimation 41
Decomposition 43
Estimating the Unknown 43
Stepping Back for a Broader View 46
Now It’s Your Turn 47

3. Decomposition for Estimation 49
Which Way to Slice? 49
Decomposing by Phase 50
Decomposing by Implementation 51
Decomposing by Functionality 52
User Stories 53

Decomposition Decisions 56
A Large Number of Small Parts 57
A Small Number of Large Parts 58
Affinity Estimation 58
Ordering the Parts 60
Multi-Level Decomposition 62
Comparing Big Items with Small Ones 63
Decomposition Gotchas 64
Stepping Back for a Broader View 71
Now It’s Your Turn 73

4. Checking Progress 75
Getting Things Done 76
Detecting Progress 77
What to Measure 78
Visualizing Progress 83
Showing Value for the Money 84
Efficiency and Effectiveness 87
Optimization 90
Are We Going Fast Enough? 93
Pushing Our Limits 96
Situational Awareness 97
Stepping Back for a Broader View 100
Now It’s Your Turn 101

5. Model-Based Estimation 103
Modeling the Size 104
Modeling the Rate 106
Unavoidable Subjectivity 107
The Linear Model Approach 109
Advanced Linear Model Techniques 113
The Parametric Model Approach 119
The Stochastic Model Approach 124
Comparison-Model Hybrid 125
Stepping Back for a Broader View 130
Now It’s Your Turn 132

6. Estimating Milestones 133
Deadlines 134
Early Release 136
Coordination with Others 139

Contents • vi

Evaluating and Changing Plans 143
Stepping Back for a Broader View 146
Now It’s Your Turn 147

7. When Estimates and Actuals Differ 149
Driving Up Costs 150
Salvaging the Situation 151
Learning from the Situation 153
Stepping Back for a Broader View 160
Now It’s Your Turn 161

8. Planning for Incorrect Predictions 163
Seeking Out Information 164
Setting Traps for Information 167
Avoid Traps for the Unwary 173
Stepping Back for a Broader View 175
Now It’s Your Turn 175

9. When People Clash 177
It Starts So Innocently 178
How It Goes Wrong 179
Understanding Human Behavior 183
Imagine a Better Situation 189
Retraining Ourselves 192
Tools for Better Understanding 196
Stepping Back for a Broader View 201
Now It’s Your Turn 201
Conclusion 202

Bibliography 205
Index 207

Contents • vii

Acknowledgements
I have been blessed with help and encouragement from so many people that
there’s no way I can mention them all here. If I don’t mention your name, it’s
not an indication that I don’t value your influence. It’s a matter of time and
space and my current attention focus.

First, I want to acknowledge the influence of Jerry (Gerald M.) Weinberg, who
introduced me to the work of Virginia Satir. Foolishly, I did not read Satir in
college, even though a couple of friends were raving about Peoplemaking. Had
I done so, I might have learned earlier what I now know, and gone even further
by now. I also thank Jerry for his book, Weinberg on Writing: The Fieldstone
Method, the method I used to start this book. And for pushing me to go further
whenever I started to settle into a new comfort zone. Jerry, I wish you were
here so that I could show you my book.

I’m also grateful to Esther Derby for her support and encouragement over a
great many years, and especially as I wrote this book. Esther has long been
my greatest mentor, believing in me when I failed to believe in myself.

Thanks also to Dale Emery, the best question-asker I’ve ever met, for
encouraging me to attend Amplifying Your Effectiveness, where I met Jerry
Weinberg and Esther Derby. I also thank Dale for his patient feedback on the
story elements. I used as much of that feedback as my writing skill could
support.

I am grateful for many conversations, both online and in person, that have
helped me formulate and refine my ideas. Some of these conversations were
in particular reference to this book as I was writing it. Thanks to Heather
Oppenheimer for a delightful conversation on various aspects affecting an
estimate. I certainly would have missed some of these on my own. Thanks to
David Schmaltz & John Maxwell for ions on the nature of governance.
Thanks to Sharon Marsh Roberts for sharing a long and inspiring tale of
accommodating a change in the accounting laws. I ultimately didn’t end up
using that story in the book, but it inspired some of the stories I did use.

report erratum • discuss

Thanks to Troy Magennis for a sanity check on model-based estimation. And
also thanks, Troy, for your inspiring keynote at the Agile 2018 Conference.
That keynote reassured me that I was on the right track. Thanks to Chet
Hendrickson, Ron Jeffries, and Kent Beck for telling me their memories of
the C3 project. Of course, if it wasn’t for the mentions of that project getting
in my way when I was researching design patterns at the Portland Pattern
Repository, I might not have taken the path to my immersion in agile software
development at all. But when I looked at Extreme Programming instead of
trying to look around it, mostly it just made sense to me.

Thanks to the technical reviewers who took the time to read a draft of this
book and send comments back to me and my editor. These include: Keith
Braithwaite, Mark Chu-Carroll, John Cutler, Josef Finsel, Liz Keogh, Evan
Leybourn, Dave Nicolette, Tim Ottinger, Johanna Rothman, Joshua Smith,
James Thomas, and Gil Zilberfeld. Even the comments that annoyed me
helped me to improve this book.

Thanks to Jeff Langr for enticing me to work with The Pragmatic Programmers.
He made it deceptively easy to take that fateful step.

A great deal of thanks goes to my editor, Adaobi Obi Tulton. When I sent a
complete manuscript (which is not the way Pragmatic suggests working) to
Adaobi at the beginning of our collaboration, her response was that she liked
my material, but we needed to rewrite the Table of Contents. As much as I
was dismayed by the prospect of yet another restructuring and rewrite, I knew
she was right. She has pushed me gently and firmly, and the book is much
better for it. I hope that she is as proud of it as I am. I’m not ready to write
another book, but if I ever am, I would work with Adaobi again in a heartbeat.

Thanks to Lucy (the cat) for helping me type. She was always willing to walk
on the keyboard when I seemed to be stuck. Thanks to Elliot (the other cat)
for helping me find the mouse pointer on the screen. Even with his poor eye-
sight he could spot it and try to pin it down with his paw.

And most importantly, thanks to my wife, Gail, not only for her support while
writing this book, but for her love and partnership for more than half my life.
She has led me on adventures I never would have considered. She has taught
me to dream big, to focus on value rather than cost, and to try things without
knowing how they’ll work out. And during the writing of this book, she has
endured my preoccupation with the computer and my shouts at Lucy when
she steps on the power button to get my attention. Thank you, Love.

Grow old along with me. The best is yet to be.

Acknowledgements • x

report erratum •

Introduction
If you’ve been working professionally in software development for a year or
more, I’m sure you’ve sometimes thought that estimation is a pain in the
patootie. It’s expensive, contentious, and difficult. Some people consider
estimation to be an essential, if distasteful, aspect of software development.
Others consider it irrelevant. And I’m sure there are some who estimate out
of habit or tradition without giving it much existential consideration. Others
argue against estimation to counter such habits.

On the other hand, estimates are all you can know about the future. Within
limits, estimates can help you make decisions. You need to be cognizant of
the limitations of estimates and the risks of believing they are data. Armed
with those precautions, you can use them more freely and discover actual
data when reality disagrees with them.

Numbers are not the goal. Successful outcomes are. Those footing the bill
would rather have a successful outcome than an excuse to blame the estima-
tor. In exploring better estimation, I’m not looking to protect the estimator or
development organization from censure or litigation after a disappointment.
Instead, we use estimation to help guide the project to success from the point
of view of both those paying for development and those performing it. There’s
a lot of benefit to be gained—much more than people usually realize.

Benefit of Headlights
There is a reason to burn headlights when driving at night and to slow down
when driving in fog. Headlights allow you to anticipate the need for changes
in direction earlier and therefore achieve faster flow with no loss in caution.
In the fog, you need to slow down precisely because you can’t see as far. It’s
helpful to see the shape of the next bend in the road. It’s helpful to know
approximately how far it is to our next planned turn or stop. You can benefit
from knowing where you might stop for a meal or a night’s lodging.

report erratum •

The same is true in software development. You can go faster when you can
see further than the work right in front of you. You can strategize ways to
incorporate the bigger picture. You can avoid painting yourself into a corner,
far from the door you want to go through.

And if you’re meeting a hard deadline, you might have better options than
developing User Stories in prioritized order until you run out of time. In the
case where what you want to build won’t fit into the time available, you might
do better to add some polish on what you deliver, rather than maximizing
functionality. This will give the user an impression of work that’s been finished
rather than merely stopped. It’s the equivalent of turning down a side road
to a comfortable hotel instead of spending the night in the backseat of a car
on the shoulder of the road.

If a development team can benefit from seeing a few weeks ahead, you can
imagine that the larger organization around that team would like to see even
further. Some of this desire may be due to artificial but customary rhythms,
such as annual budget cycles. Such things are likely hard to change in cor-
porations and likely impossible for government organizations. Even if you can
be successful in changing the rhythm, it will take time to do so. And that is
time the organization would like you to use in developing systems for use or
sale. Beyond that, there are rhythms based on a more substantial basis, such
as the amount of time it takes to do related work, the changing of the seasons,
or planetary ephemera. And when the CEO asks what’s coming up, the CIO
would like to have a satisfactory answer.

Beyond Story Points and Planning Poker
If you’re unfamiliar with agile software development, the terms “Story Points”
and “planning poker” may be completely mysterious to you. If you’re new to
agile, these terms may have specific meaning to you that aren’t universally
true. These concepts have a history, and are best understood in the context
of that history.

Story Points
In the beginning, there was the Chrysler Comprehensive Compensation or
C3 project, the birthplace of Extreme Programming. The short version of the
story is that some very smart people tried some things until they got something
that worked, and that included breaking up the work to be done into User
Stories (c.f., User Stories, on page 53) that could be independently developed
and tested. For planning purposes, these were estimated in “ideal days,” and

Introduction • xii

report erratum •

later, unitless Story Points.1 The advantage of Story Points over estimating
in absolute time is that it allowed you to calibrate your estimates with what
actually happens. We’ll take another look at this calibration in Calibrating to
Unknown Context, on page 44.

Planning Poker
James Grenning invented Planning Poker2,3, not to emulate Wide-Band Delphi
estimation, but to get a stalled meeting moving again. While he continued to
use and teach it, it was when Mike Cohn publicized the technique in Agile
Estimating and Planning [Coh05] that the practice was widely adopted. Soon
many people came to believe that Planning Poker was THE agile estimation
technique, though James has gone on to use other methods.

Counting Stories
Back in 2008 or 2009, Bob Payne and I were noticing that teams we were
coaching spent an awfully long time estimating their stories in Story Points.
Even though they spent two or more hours every two weeks doing this, the
estimates didn’t seem to jibe with reality. Figuring that the primary reason
for estimating every two weeks was choosing how much would fit into the two
weeks, we did some analysis of the data and determined that a count of the
stories had as much predictive power (or a little more) than did these laborious
estimates. We presented a session4 at the Agile 2012 Conference showing our
conclusions. We were not, of course, the only ones to discover that counting
stories, especially for the short run, was as good as estimating stories—and
a lot easier.

Of course, nipping off a bite-sized chunk of work is only one aspect of looking
ahead. Another common aspect is figuring out when some major functionality
is going to be done. Chet Hendrickson tells me that they started with stories
to fill 11 three-week iterations, or about 7-1/2 months. That’s a lot of stories
to pin down at the start of the project, yet the C3 project had an onsite cus-
tomer who knew that much about what needed to be done.5 I’ve witnessed a
lot of customers who don’t, whether or not they thought they did. That’s made
me very wary of starting with A Large Number of Small Parts, on page 57, as
that also seems like a waste of effort for the value returned.

1. https://ronjeffries.com/articles/019-01ff/story-points/Index.html
2. https://wingman-sw.com/articles/planning-poker
3. https://wingman-sw.com/slides/Beyond-Planning-Poker-v1r1.key.pdf
4. http://idiacomputing.com/pub/Agile2012-What%27s%20the%20Point%20Of%20Story%20Points.pdf
5. http://www.coldewey.com/publikationen/conferences/oopsla2001/agileWorkshop/hendrickson.html

report erratum •

Beyond Story Points and Planning Poker • xiii

Definitions
In order to communicate more effectively, it will help to build a common
understanding of some terms. I see many arguments that seem to revolve
around what is, and what is not, an estimate. In the noun forms, a dictionary
gives us the following definitions:

Estimate
an approximate judgment or calculation, as of the value, amount, time,
size, or weight of something.

Forecast
a prediction, especially as to the weather; a conjecture as to something
in the future.

Prediction
something declared or told in advance.

Conjecture
an opinion or theory without sufficient evidence for proof.

Projection
calculation of some future thing, usually based on past results.

Guess
an opinion that one reaches or to which one commits oneself on the basis
of probability alone or in the absence of any evidence whatever.

These words are near synonyms, though some people assign specific differ-
ences to them in their own use. Estimate, conjecture, and guess are all very
general, applying to the past, present, or future. Forecast, prediction, and
projection specifically apply to the future. I might estimate how many jelly-
beans are in a jar, but I might forecast how many will be left tomorrow after
a children’s party. Some domains prefer a particular word; both weather and
company profits are generally foretold as forecasts. Future state is often
termed a projection when generated mathematically, and a prediction when
it is not.

I’m fond of saying that the abbreviation of “estimate” is “guess.” That often
gets a chuckle, because the general feeling is that people are pretty bad at
estimating and particularly bad at estimating software projects. It seems that
grabbing a number out of thin air has as much chance of being helpful as
anything.

Introduction • xiv

report erratum •

Beyond that joke, estimates are distinct from guesses. At worst they are
“educated guesses,” based on slim knowledge or experience thought to be
relevant. Sometimes the application of past experience is very “seat-of-the-
pants,’’ with insufficient consideration of the details. With a little more
attention to what’s similar and what’s different between now and past experi-
ence, estimates can become truly useful.

In conversation, it appears that many people have a more restricted concept
of an estimate. They often associate it with whatever type of estimate has
been most prevalent in their experience. For software developers, the most
prevalent form is usually “when will you be done?” Given that this “when
question’’ is often asked before knowing what will be done, it’s understandable
that the word “estimate” has a bad connotation for many software developers.

Nothing about estimate or forecast states how either is formed, but many
people closely associate estimates and forecasts with the technique they most
frequently use, or see being used. A weather forecast may be based on the
amount of pain felt in the knee, knowledge of last week’s weather, or on a
complex model of atmospheric humidity and pressure. A software delivery
estimate may be based on knowledge of a similar project, on a detailed
decomposition into tasks that are independently estimated, or on a model of
project attributes.

Who This Book Is For
You may find this book useful no matter what your role in software develop-
ment. In fact, you might apply these ideas outside of software development,
though I haven’t specifically addressed that. When writing this book, I’ve had
three broad classes of people involved with software development in mind.
They are as follows:

Software Team Members
These are the people who often get asked for estimates they don’t care about.
These are the people who often get blamed when results aren’t the same as
the estimates.

Upper Management
These are the people who have business decisions to make and who need
forward-looking data to make them. These are the people who aren’t close
enough to the development work that’s going on to directly know how well
things are going.

report erratum •

Who This Book Is For • xv

Middle Management
These are the people caught in the middle of the other two groups and catch
it from both sides. These are the people with a responsibility to meet the
expectations of upper management and keep those expectations reasonable.
These are the people with a responsibility to intervene when necessary to help
the development effort go well.

All of these people might gain an understanding of some new ways to estimate.
They can learn to avoid some of the common pitfalls of relying on estimates
with insufficient awareness of their limitations. They can gain some perspective
of what needs require what sort of estimates.

All of them might benefit from stepping back to a larger view of the topic, and
especially by considering the view from a variety of points of view.

Goal of This Book
The goal of this book is not to make you an expert at estimation. Estimation
is a tool rather than a goal in itself. Maintain focus on the real goals: the
outputs, the outcomes, and the impact of the system you’re building. Estima-
tion is a tool for achieving these goals more reliably in an uncertain, error-
prone world. Estimation lets you see into the future and make decisions about
the path you’re on, before you reach the endpoint. We’ll also take note of some
other ways that estimation can help us, as an organization working together,
achieve common goals and fulfill the responsibilities of our various roles.

Steve McConnell in Software Estimation: Demystifying the Black Art [McC06]
and Capers Jones in Estimating Software Costs [Jon07] approach estimating
as getting an answer most close to the eventual actuals. Looking at it another
way, they try to estimate a duration and cost that project managers can meet.
To do that, they recommend such things as collecting data from past projects
and making sure the work being estimated is clearly defined. These prelimi-
naries may be beyond your ability in your current context.

This work is focused on helping you make the most of what you have available.
It’s about being able to make prudent choices for a successful project rather
than winning a prize for coming closest to guessing the number of jellybeans
in the jar. It defines a successful project by the desirable outcomes achieved
rather than by conformance to prior plans. The view of this book is biased
toward iterative projects that are started with the knowledge that information
is incomplete and are steered toward desired outcomes as they are developed.
Estimates are a valuable tool for learning more as you proceed.

Introduction • xvi

report erratum •

To be honest, plan-driven projects, which “plan the work and then work the
plan,” tend to start with known incomplete information and are steered toward
desired outcomes as they are developed. The difference is that on plan-driven
projects, the iterative work is generally hidden from official view. During
implementation, design corrections are made. During testing, implementation
corrections are made. Throughout, new or clarified requirements affect all
stages of work. The plan-driven bookkeeping hides these iterative cycles per-
formed in the “wrong phase” of the life cycle, or it calls them errors. I call
them reality.

Approximations
People often expect estimates to give them precise and accurate values that
match the future, as if they are a process of calculation rather than estima-
tion. This leads to disappointment in the results, and often induces people
to make bad decisions along the way. There is a simpler and healthier path
you can take.

Before I got into software development, I worked in electronic repair, and then
electronic design. The book that taught me how junction transistors worked
was Transistor Circuit Approximations [Mal68]. What made this book work so
well for me is that it starts with the concepts of an “ideal transistor” (or “ideal
diode”) for a first approximation of circuit analysis. Sometimes second-order
effects are included for a “second approximation.” These approximations are
good enough to understand how a circuit works. In reality, there is much
variation from one transistor to another, so transistor circuits are designed
to make the circuit performance almost independent of the transistor charac-
teristics. In Malvino’s words, “exact formulas for transistor circuit analysis
are of limited value to most of us because the exact characteristics of a tran-
sistor are seldom known.”

This is an excellent way to think about estimation, too. Ignore the second-
order effects until you need them. Most of the time, the first approximation
will do most of what you need. This book has no magic for giving you precise
and accurate predictions of the future under unknown conditions. Instead,
it gives you methods to get “close enough” to understand what’s going on.
And it gives you tools to calibrate those methods for your own specific context.
Along the way, I suggest some ways of working to make your outcomes less
sensitive to the vagaries of inaccurate estimates—ways of achieving success
despite the uncertainty of the path to get there.

report erratum •

Goal of This Book • xvii

What’s in This Book
Ordering the content of this book was difficult for me, and I rearranged it
numerous times. Writing it for a broad audience who is facing radically differ-
ent situations prevented me from imagining a simple story that starts at the
beginning and travels an obvious path to its conclusion. In the end, I think
I have found a story that most will be able to follow, though there are many
cross-references to entice you to read things out of order.

We start with why and then proceed with how. We repeat this pattern twice,
once for anticipating work and once for the situations in the middle of the
work. This is followed by how to handle the disappointment of an inaccurate
estimate and how to make that not a disappointment, but an opportunity.
We end with a look at the people issues surrounding estimation. If you’re
looking for something in particular, the following chapter descriptions might
help you jump right to it.

Starting Something New
We start before the beginning, when we’re considering starting something.
What questions do we need to consider before we start? There are many dif-
ferent circumstances, and we explore a number of different needs. Likely your
need is covered in this chapter, or some of your needs are, though you may
have others I’ve not described.

Comparison-Based Estimation
The basic approach to estimation is comparing something unknown to
something known. This is your most likely option when you’re starting
something new. There are lots of ins and out and wrinkles to this topic,
though. This chapter looks at a lot of them.

Decomposition for Estimation
Often it’s easier to estimate something if we break it down into smaller pieces.
How do you break it down? This chapter explores a number of different ways
by several criteria. It offers opinions for the general case, but you must decide
what fits your specific case.

Checking Progress
Once we’ve begun, we start wondering how we’re doing. This might be a concern
about the finishing date. Or it might be a more general concern if we’re on the

Introduction • xviii

report erratum •

right track. Sometimes there are concerns about efficiency or speed. This
chapter explores ways of checking progress and when it makes sense to do so.

Model-Based Estimation
Direct comparison is the root of estimation, but if we’re going to be doing it
repeatedly, it’s easier if we create a mathematical model of our progress. This
lets us recalculate whenever we want, which is important when we’re checking
our progress. This chapter describes a number of different ways to construct
such a model.

Estimating Milestones
The end of the project is not the only date that matters. You’ll have interim
targets you want to meet, also. There are reasons that these dates might be
important for others. This chapter takes a look at these milestones and reasons.

When Estimates and Actuals Differ
Inevitably, what actually happens will differ from your estimate to some
degree—sometimes to a large degree. What should you do when that happens?
This chapter will give you advice and guidance.

Planning for Incorrect Predictions
Since we’re pretty sure that some of our predictions will be incorrect, let’s
plan for that. Let’s figure out how to make use of those incorrect predictions
to help us reach our final success. In fact, as this chapter suggests, you might
want to create extra predictions just to take advantage of the ones that are
inaccurate.

When People Clash
When most people talk about estimation, they talk more about the conflicts
between people than about the estimation process itself. This chapter looks
at how these conflicts get out of hand, and what you can do to make things
better.

Conventions Used
Some of the concepts and lessons around estimation can be noticed in our
everyday lives. Where possible, I’ll use mundane stories that I hope you will
identify with easily. Some of these stories are fictionalized, but they’re all
based on personal experience.

report erratum •

Conventions Used • xix

Other stories are more specific to the business of software development. Since
the needs being met via estimates vary greatly with the context of those needs,
I’ll be using several fictitious companies to represent some of these contexts.
These ersatz companies vary in size, focus, and organizational structure. They
give us some structure for viewing estimation in the light of concrete details.
These examples illustrate the more general principles that govern the needs
and practices of estimation. While there are many more possibilities than
these three organizations, these examples should help you understand how
to apply the principles to your situation.

Empire Enterprises
Empire Enterprises is a large, diversified company with a centralized Informa-
tion Technology department. The software they create is predominately for
internal use. Some of it handles all the corporation’s accounting processes.
Other systems support the work of the varied business lines which are the
focus of other company divisions. It’s a continual juggling act to be responsive
to the different divisions while keeping a focus on what provides the most
benefit to the company as a whole.

Riffle & Sort
Riffle & Sort is a medium-sized business that does data processing for other
companies. They started out in the 1980s providing payroll services for small
businesses. As the business grew to be successful, they found that calculating
payroll for their clients was getting to be more work than they could handle.
Fortunately, the president’s son-in-law had become interested in personal
computers and took on the task to automate some parts of the work. That
grew over time, and now the company offers custom software solutions to
address other clerical paperwork needs.

TinyToyCo
TinyToyCo has translated their online game, in which the player tries to keep
a virtual cat happy with minimal cat treats and scratched hands, into a phone
app where the cat clamors for attention at random times while you’re doing
something else. Now they want to create a physical version: a robotic lap-
seeking Fluphy Kitty™ toy.

Now It’s Your Turn
Each chapter ends with a challenge to put what you’ve learned in that chapter
into practice. Try the questions as a thought experiment. If they don’t quite

Introduction • xx

report erratum •

fit your situation (maybe you’re not currently on a project), then modify them
to work for you.

There is no answer key in the back of the book. These exercises are for you
to stretch yourself. Share them with your colleagues and compare your
answers. Return to them sometime in the future and see if you might answer
them differently. Return to them and try them out in a different context.
Ultimately, the questions are more durable than the answers.

report erratum •

Now It’s Your Turn • xxi

CHAPTER 1

Starting Something New
How do projects get started? Certainly, it varies with the circumstances.
Among the most obvious circumstances are the size and life stage of the
company. In small companies, a fun idea tossed around in the coffee room
can trigger a new project that might triple the size of the company. In large
ones, ideas typically need to be described from a financial point of view and
passed up the hierarchy for approval.

The Birth of TinyToyCo
It all started when Pat asked Chris why cats didn’t have their own computers.

"Why would they need them? My cats play with mine all the time," Chris responded. "Do you
remember that program that made a cat run around your desktop chasing your mouse pointer?
My real cats do that."

"What would it take to implement that on a website?"

"I guess there’s only one way to find out."

The two founders of TinyToyCo worked nights and weekends on their online game as a side
project from their regular jobs. At first, it was just a proof of concept to see if they could do it.
They could, it turns out. Then they told some friends about it. The friends started asking for fea-
tures, and Chris and Pat were happy to oblige. Their focus was all on playability of the game, and
they were pleased by the acceptance of users. Word got around. More and more people started
playing it. Their success made their hosting bills go up. What to do? They added some in-game
advertising as a revenue source to pay the bills. The usage dropped a little, but more and more
users were still coming to the site. They were surprised when the stream of advertising revenue
amounted to a meaningful amount of money.

"What if we created a version for the phone? I bet we’d do even better."

And that’s how it started. First as a challenge and then paying attention to what users liked
and used.

Notice that no estimates were involved in starting TinyToyCo. Chris and Pat
had the time and the skills to do the work, and they had no particular timeline

report erratum •

or need to meet. They just worked until they had something, and then tuned
it based on customer feedback. They didn’t even have a company yet. It was
just two programmers with a money-making hobby. It doesn’t get much
simpler than this.

Now let’s look at another end of the scale. What happens in a large company
to start an internal project?

Empire Enterprises: The Birth of a Project
Ellis was a purchasing agent for the Motors and Headphones Division of Empire Enterprises. This
division designed and manufactured—you guessed it—motors and headphones for private-
label customers. One thing that these products had in common is that they often required rare-
earth magnets. Different designs, however, used different rare-earth alloys. The end result was
that there were hundreds of variations that might be needed and relatively few substitutions
that were allowable. It was a nightmare to research the pricing and availability of these magnets
in time for a production run.

"If only there was a better way," Ellis muttered, imagining a central magnet clearinghouse that
could support trading and procurement of these niche components. "Why can’t a computer
query the current prices and stocks of all these magnet manufacturers?"

Frankie, the Director of Purchasing, walked in. "Why are we paying so much for these magnets
we ordered last month? It’s twice what we paid last year for the same thing, and 50% more than
I see on the suppliers website today."

"The prices fluctuate quite a bit with supply and demand. I have no way of tracking price and
availability over time, so I just look for the best price I can find when the need arises. This partic-
ular magnet was in short supply when the requisition came in." Ellis went on to describe the
dream system they had in mind.

Frankie listened to the idea, and went to talk with the President of Motors and Headphones.
They ed the value of such a system. Starting with the particular magnet that had attracted
attention, they did some back-of-the-envelope estimates of the possible frequency and amount
of savings. Such a system would give them a price advantage over competitors. And, once they
had it in place, they could use the system to identify historically good opportunities and act as
a broker for others. They estimated the potential value of that business.

The President took a proposal to the quarterly planning meeting. There, the CEO agreed it was
worth investigating, and the proposal was forwarded to the IT Division. The PMO directed a Vice
President to research the costs to build such a system. The VP, in turn, delegated to a Project
Manager who delegated to Casey, a Project Technical Lead, for a Rough Order of Magnitude
(ROM) estimate of the costs.

In the Empire Enterprises project proposal, there were two estimates prepared.
One was of value and the other of cost. These two estimates were done by
different people, without direct communication between them. This isolation
between value & cost estimation carries the risk that the two estimates will
depend on different assumptions. What if the details that make the work
particularly valuable are not included in the cost estimate?

Chapter 1. Starting Something New • 2

report erratum • discuss

There are quite a lot of differences between these two stories, and there are
many “getting started” stories we’ve not mentioned. Yours will be different. I
expect they’re all unique in some way.

Projects vs. Products

You may notice that the book frequently uses the word "project" for the work at hand.
Some people chafe at this word and say that the focus should be on products, not
projects.

Let’s deconstruct this a bit. Why are projects sometimes considered obsolete or
harmful?

One reason is that projects have become associated with endpoints defined by a cal-
endar date. The PMI says a project has a defined beginning and end. I think it’s a
mistake to assume that the defined end is specified by a date, however. It could be
specified by meeting the objective of the project. A project can also be terminated
early if it seems doubtful that it can achieve its objectives within an acceptable cost.
While this may be considered a failed project, the outcome could be beneficial for the
business.

Products are often preferred over projects to reinforce long-term thinking and recog-
nition of durable value. A product has no planned endpoint. We’d be happy to enhance
and sell it forever.

In its lifetime, a product is produced and enhanced as a series of projects. Each step
along the way has a cohesive intent that clarifies the focus of the moment. Fielding
a viable product that people will buy is a project. Enhancing that product to generate
greater revenue is a project. If you can state your next product goal in a sentence,
then trying to achieve that goal is a project.

This book is not trying to discourage you from thinking in terms of products. Instead,
it’s trying to help you with each incremental project that contributes to that product.

When You’re Asked to Estimate Something New
At Empire Enterprises, estimates were an integral part of the business process
to approve new projects. At TinyToyCo, no estimates were needed, and they
likely wouldn’t have changed the decision if they’d been made. This shows
that it’s not a given that estimates are always needed. As we saw in Benefit
of Headlights, on page xi, though, some level of estimation is usually helpful
to most organizations.

Imagine you’re the Project Technical Lead at Empire Enterprises who was
asked to estimate the rare-earth magnet procurement project. Would you feel
nervous? If you would, it’s not because of the context at Empire Enterprises,

report erratum •

When You’re Asked to Estimate Something New • 3

which is a fictional company. It’s because you’ve seen bad behavior in real-
life situations during your career.

At first glance, it seems you have two choices. The first is to give a length of
time. The immediate fear is that this estimate, given as a rough indication of
the effort required, will be misused to create a schedule. Somebody is going
to hear this number and take it as your commitment. Or, if they’d like it to
be shorter, they may take it as the beginning of a negotiation, and try to talk
you into something shorter.

The opposite choice, not giving a length of time, might be worse. It will make
you look bad, subject to being labeled as incompetent or “not a team player.”
Either way, the people asking for the estimate already have a tacit estimate
in mind, and they’re just as likely to treat their unstated estimate as a com-
mitment as opposed to whatever you give them.

There are never just two choices, though. (See Rule of Three, on page 181 for
more details on this.) Let’s dig into one possibility.

Uncovering What You Need to Know
You’re likely to need more information about what the proposal has in mind.
Is this a Cadillac project or a Chevy project? The details can come later, but
you’ll need a feel for what’s intended, even for a rough estimate. For that,
you’ll need to talk with the originator of the idea. You’ll probably also want
to talk with everyone between the originator and you, because each of them
formed a mental image of what the project is about. It’s unlikely to be sufficient
if you meet the expectations of Ellis the purchasing agent, but not the tacit
expectations of the President of Motors and Headphones. Expect to backtrack
along the same path as the request.

You will also want to know the why behind the request. Who needs this
estimate and exactly why do they need it? This also requires backtracking
through the chain that resulted in the request. Bear in mind that you may
receive different reasons along that chain. The project manager needs it
to satisfy the VP’s request. The VP needs it to inform the PMO. The PMO
needs it to determine whether or not to the project is a good candidate for
implementation based on Return on Investment. (See Return on Investment,
on page 13.)

Chapter 1. Starting Something New • 4

report erratum •

Watch Out for Asking Why

You need to know the "why," but don’t ask them why.

Can you imagine what response you’ll get if you ask your VP "why
do you want this estimate?"

"Because I’m the VP and I need it!"

Why questions tend to trigger defensiveness, as they’re easily
misunderstood as questioning the actions of another. Your ques-
tion may be taken as aggression or disdain. Instead, rephrase your
why questions as what questions. That will generally get the type
of more specific answer that you want, and is much more likely
to result in the data you need.

• What decision depends on this estimate?
• If you have this information, what will that do for you?
• If we don’t meet this target date, what will happen?
• If necessary to meet this target date, what can we defer to

later?

I think you’ll find questions like these to be safer. With "what,"
you can frame the question to give you the responses that you
seek. "Why" is so open-ended it’s often interpreted differently than
intended.

We’ll look more deeply at the human elements in Chapter 9, When People
Clash, on page 177.

What Question Are We Answering?
We compound the problems of estimation when we don’t explicitly know what
we need. Some jump to estimation because of an implicit understanding that
managing projects requires estimates. Perhaps that’s generally true, but why
does this particular project need this particular estimate? Neither projects
nor estimates are all the same.

The most critical estimates are those on which a decision depends. If you’re
not going to change what you’re doing or how you work based on this estimate,
then why are you creating it? Why does the answer matter? Deciding to start,
continue, or cancel a project are examples of this sort of decision.

report erratum •

When You’re Asked to Estimate Something New • 5

The next level of importance in estimates are those where you won’t make a
decision now, but might in the future. As reality unfolds, if it varies from the
estimate in important ways, you will make a decision then. Do you cancel
this project that’s not living up to your expectations? Do you reestimate with
your newfound knowledge? Do you examine which assumptions behind your
estimate were wrong?

The lowest level of importance in estimates is reassuring yourself that things
are OK. These are the ones that are most suspect, also, as you’d like for things
to be OK. And when estimates show that things are not OK, and you’re not
basing a decision on this assessment, then bad behavior toward other people
is likely to happen. That’s when the blaming usually starts.

A Single Estimate is Not Appropriate for All Needs

The same estimate is not going to be appropriate for all three of
these cases. In fact, the same estimate is not going to be appropri-
ate for all cases of the specific question "Is this project worth
starting?" Please remember that we’re producing estimates, not
facts. If we reduce all our information and assumptions down to
a single number, it’s easy to forget the uncertainty behind that
number. A number looks bold and exact. Trustworthy. Immutable.
In the case of estimates, a number is none of those. It’s still just
an estimate.

We’ll look at the different cases of “Is this project worth starting?” in a moment.
But first, let’s consider the way that estimates differ from each other.

Accuracy and Precision
If you don’t understand what question you’re answering, you won’t understand
how much accuracy or precision you need.

Accuracy is the “correctness” of the estimate, whether it matches the actuals
we achieve. Precision is the extent to which the estimate varies from actuals
and can still be considered accurate.

If I say something will take “about a year” and it’s completed in 390 calendar
days, is that accurate? It depends on the precision that we assume. I would
argue that this is an accurate estimate. It’s within both “1 year +/- 1 month”
and “1 year +/- 10%.” If you interpreted my estimate as a commitment of no
more than a year, then you would argue that it was an inaccurate estimate,
as you assumed a precision of “1 year or less.” I’ve encountered organizations
that expected their project managers to estimate within 3% accuracy. That

Chapter 1. Starting Something New • 6

report erratum •

means that this one-year project would be judged to a precision of “1 year
+/- 11 days.” This seems unreasonably tight to me.

Assumed precision is affected by how the estimate is expressed. The estimate
“365 calendar days” suggests much greater precision than does “1 year.” I’m
generally wary of any estimate with more than two significant digits in the
value.

What constitutes a reasonable amount of precision varies according to the
span being estimated. If I say something will be done today, then specifying
“around lunchtime” or “by close of business” provides useful precision. That
level of precision is just noise when estimating that something will be done
in a year or so. There, a precision to the month might be more appropriate.
By specifying with too much precision, you may make an estimate unneces-
sarily inaccurate.

Assume that a certain amount of inaccuracy is inevitable, and even more so
when trying to also be precise. Remember that you are creating estimates,
not measurements.

Desired Direction of Error
Knowing what question you’re answering also helps you understand in which
direction would you prefer the error. In some cases, you would like the errors
to be random, so they cancel out over time. In other cases, you’d like them
to pile up in one direction, so you have a good feeling for the minimum or
maximum value of what you’re estimating. The way you go about estimating
may vary considerably depending on this preference. And if you estimate
assuming one preference, but the estimate is interpreted with another, then
you’re not going to be happy.

In cases where life is on the line, either human or that of the company, you
generally want to create estimates that keep you outside of the danger
zone—plus a little safety margin for error. You don’t mind too much when
you’re further from danger than need be, as long as you’re not stepping into
another danger on the other side.

When estimating for a contract bid, you’re constrained on both sides. You
need to estimate your expenses such that, if you are awarded the contract,
you can successfully complete the project at a profit. You want to minimize
your error in the other direction, though, to maximize your chances at being
awarded the contract. What happens if you’ve overlooked some aspect and
underestimate? You lose money and perhaps jeopardize the company.

report erratum •

When You’re Asked to Estimate Something New • 7

Or, you find some reason to alter your bid. In the world of large-project con-
tracting, not knowing something is often labeled as lack of due diligence. But
inaccurate or ambiguous requirements specifications are common. These can
be used to negotiate for a higher fee to cover errors in estimation and bidding.
This is common enough that there’s a widely used saying describing this
practice at its shadiest, “Underbid and make it up in change orders.”

Necessary Confidence Level
Estimates with a strong need for the error to be in one direction are often
demanding a very high confidence level in the other direction. In some circum-
stances, the assumptions of the estimate can be documented, and we may
be extremely confident as long as those stated assumptions are valid. Other
times, the assumptions are tacit and unstated. If those assumptions prove
to be false, then the parties may be able to renegotiate the contract. You’re
probably familiar with scenarios like this with your car repair garage. We’ll
take a look at an example of this in Misdiagnosis, on page 12.

Other times, the deadline is nonnegotiable. In such cases, you either meet
the deadline or you pay the penalty.

Meeting SEC Requirements
At a client, years back, I worked on a web application that delivered financial documents to
customers and prospective customers. For some documents, your identity had to be confirmed
as an investor of those securities. For others, you could self-certify that you were a prospective
investor. There were a few other cases in between these two situations, also, as well as require-
ments that people couldn’t even see the existence of some documents if they didn’t have the
right permissions.

Then we got word that, since some of the documents were a matter of public record (e.g., 10-K
filings), if we were going to continue delivering those documents, we had to serve them to
people who were not logged in at all. That is, we had to serve them to anonymous visitors. And
we had to do that by January 1 or face daily fines from the U.S. Securities and Exchange
Commission.

The problem was that the application required a login before doing anything else. It was built
around knowing the identity of the user. And here we had less than two months to make it work,
in some cases, without knowing the identity of the user. The project manager urged me to make
quick patches where needed, because of the short timeframe.

This worried me. At the very least, that would make the code harder to understand and harder
to read. Since the user’s identity was globally accessible in the session, it was already hard to
know every place it was used. Understanding how far the change had progressed, and therefore
how much longer it would take, depended on knowing how much had to change. I didn’t know
how to judge that given this codebase I didn’t know, where such access was written in lots of
different ways. I needed more confidence.

Chapter 1. Starting Something New • 8

report erratum •

Refactoring the code to make the change in a safer manner seemed risky to the project manager.
She needed some reassurance that I could complete it in time. At first, my estimate was quite
vague. The first week of work, however, clarified what needed to be done and gave some early
data on how quickly it was progressing.

In the end, I was able to make the change safely, in plenty of time, by modifying the code so the
queries that needed the ID would stand out. This created some breaking changes as I propagated
the changes through the layers of code, but those breakages were important for telling me how
much had to change. Knowing that, I was able to estimate the work and track the progress of
the needed changes toward the goal.

As a bonus, the structure of the code improved in terms of maintainability. I don’t know if
refactoring the code to make linkages more obvious and reduce duplication was a faster route
or not. What I do know is that it was a route that I more easily estimated and tracked. The confi-
dence level was more important than the speed, as long as the deadline could be met.

Slightly lower in the confidence level spectrum is what is often referred to as
“a 90% level” estimate. I don’t know how we would measure this 90% figure
on something as variable as software development. In our field the confidence
level is, itself, an estimate. If we were talking about something repeatable,
then a 90% confidence level would indicate that 90% of the time the actual
would come in within the estimation. Since we don’t get to repeat the same
software development project in the same circumstances to measure that,
we’ll just treat that as a colloquial expression meaning “pretty sure.” In a
high-trust environment, that works pretty well.

Such high confidence estimates aren’t always called for, however. For example,
when estimating how much work will fit into an iteration, estimating at the
50% confidence level is more appropriate. This means that half the time we
overestimate and half the time we underestimate. We can make that work for
us over the long haul, especially if we limit the amount of our work in progress.
The errors cancel out and don’t bother us. If we were to make a high confi-
dence estimate for this, then we would be underestimating most of the time.
That would result in either having to replan on a regular basis to pull more
work, or allowing the work to expand to fill the time, slowing development.

At the far end of the confidence level scale is the minimum possible estimate.
Here we estimate everything at the smallest, shortest value we can imagine.
This gives us a rock-bottom estimate as a sanity check. There’s no way we
can accomplish what we want any faster, and we should not expect anything
close to that performance. Our confidence in meeting that estimate is virtually
zero, but it’s useful information. If that’s not fast enough, now is a good time
to quit.

report erratum •

When You’re Asked to Estimate Something New • 9

Let’s take a closer look at some of the many needs to estimate at the start of
a project. This review will emphasize that not all estimates are the same. It
may also help you empathize with those who need estimates and understand
those needs a bit better. We’ll look at the following cases:

• Developing a Fixed-Price Bid
• Is This Worth Starting?
• Can We Make This Work?
• What Should We Budget?
• Which of These Should We Choose?

Plus, a situation that’s less distinct.

Case: Developing a Fixed-Price Bid
The poster child for estimation is the development of a bid in response to a
request for proposals (RFP), so let’s look at this situation first. A potential
customer waves a requirements document and says, “I want to buy one of
these; what will you charge me for it?” A bunch of other people go off between
a rock and a hard place to figure out an answer to this question. Each wants
to charge as much as the customer is willing to pay, but just low enough that
the customer chooses their proposal instead of a competitor’s. Most impor-
tantly, they don’t want to bid so low that they can’t make a profit. That’s the
estimation part of this game in a nutshell, though there’s certainly more to
this game than estimation.

Big Contract Bids
We’re most familiar with this game in the government-contracting space. It’s
an attempt to keep costs low while maintaining some impartiality in the pro-
cess. The intentions are good but the results are mixed.

From the point of view of the bidding contractor, it’s a big expensive under-
taking to respond to such an RFP. This fact, of course, tends to limit the
competition to only corporations who have made a business of responding to
such RFPs. It’s a hard business to break into. The resulting estimate is
expected to be both accurate and precise, at a high confidence level. The time
and cost for the proposed work is expected to be of the form “no more than”
the estimated amount, while still maintaining precision.

To create such an estimate, you need a lot of expertise in the type of system
being developed and good data on what it took in the past. If you need this,
you probably have a whole department experienced in developing such esti-
mates. Learn from them. Software Estimation: Demystifying the Black Art

Chapter 1. Starting Something New • 10

report erratum •

[McC06] by Steve McConnell and Estimating Software Costs [Jon07] by Capers
Jones describe such procedures in detail.

The process recommended in these books is to have a large dataset available
for comparison to the requirements specified in the RFP. If you don’t have
that data, start collecting it. And there are programs for modeling the costs
based on recorded data from other companies in other situations. We’ll later
look in more detail at estimating by comparison (see Chapter 2, Comparison-
Based Estimation, on page 27) and using mathematical models (see Chapter
5, Model-Based Estimation, on page 103). I suspect that there are other factors
in addition to excellent estimation that are required to pull off a successful
project under these condition.

Capers Jones, in particular, has a strong preference for automated model-
based estimation performed by estimation tools such as the one he sells. We’ll
take a look at some of the parameters of his model in Chapter 5, Model-Based
Estimation, on page 103. Keep in mind that Jones is very concerned with large-
scale government contracting and the possibilities of lawsuits arising out of
contract disputes. His estimation model is calibrated for such situations. He
intends to use estimates as protection in these situations, and therefore takes
a conservative “kitchen sink” approach. If you can think of a potential cost,
you better put it in the estimate. Capers Jones’ estimates include such things
as administrative and management personnel and travel costs, which are not
specifically called out in this book.

Note that these large-scale contracting situations involve a lot of handoffs
and checkpoints between the two parties. As Troy Magennis points out, delays
during development will quickly swamp the work itself in terms of time con-
sumed. Therefore, experience with the client and understanding the likely
delay durations may be more valuable than understanding the time required
for the development work. This experience comes from working on similar
large-scale contracts. If you’re planning to start your own large contracting
corporation, I advise you to work for a successful one first, and take good
notes on the experience.

Smaller Bids
For smaller bids, the power dynamic is often reversed from that of large bids.
Usually the development company is offering their expertise at building a type
of product for clients who want a customized version of that product. The
development organization knows a lot more about what’s involved than does
the customer.

report erratum •

Case: Developing a Fixed-Price Bid • 11

What the development organization may still lack is knowledge about delays
the customer may cause. The customer might be slow in collaborating,
leaving the development organization waiting for information or decisions.
Or the customer may have unusual circumstances that aren’t obvious. The
customer might also be wanting things that are outside of the ordinary range
of difficulty.

Misdiagnosis
"What’s that ticking sound coming from the engine of the car? Must be a loose valve. I’ll take the
car to the mechanic for a valve adjustment."

At the garage, they look up the flat-rate time estimate for a valve adjustment. It’s easier to estimate
when we’ve measured the actual time from lots of competent people doing very similar work.
They multiply that time estimate by their labor rates, add in some extra for gaskets, shop supplies,
and such, and give me a cost estimate.

"It should be ready by 5:00."

I go on my way, knowing I can pick up my car in the evening and how much it’s going to cost
me. All is right with the world.

But in the late morning, I get a call from the mechanic. "Your car doesn’t need a simple adjustment.
The pushrod is bent. The reason it got bent is that the threads holding the rocker arm assembly
are stripped out of the cylinder head. We’re going to need to keep your car another day, and the
cost will be about triple the original estimate."

Note that the strength of the promise provided by the quote estimate is under
the control of the development company rather than the customer. It’s prudent
to make some provisions explicit.

• State what is considered usual and ordinary.

• State that delays caused by the customer are not in the estimate and will
incur additional time and perhaps additional cost.

• Define allowances for things that may have a wide variability, such as
aesthetic design. Specify the amount of work allotted for these things,
and state that overages will be additional. There’s an example of this in
Estimating an Online Storefront, on page 120.

You may not need to be so explicit with some customers, but you won’t know
which ones until too late if the provisions are not in the contract or quote.
For good customer relations, you should try to pin down the largest or scariest
uncertainties as early as possible. And as soon as you discover something
unforeseen, let the customer know.

Chapter 1. Starting Something New • 12

report erratum •

Case: Is This Worth Starting?
There are many ways that projects get started, and most of them have some
explicit step where a decision is made on some quantifiable criteria. Sure,
there are times where the decision is made implicitly, based on some hunch
or on the relative power of the person who wants the project. Usually organi-
zations at least want to justify such decisions with some more defensible
rationale. And it’s in those explicit decision steps where estimates play a part.

Let’s look at some of the criteria for these decisions.

Return on Investment
A fundamental question for investment is “Will this provide more value than
it costs?” If so, it’s quickly followed by “How much more?” and we weigh the
benefits and costs. Not all benefits are measured in money. We may need to
weigh some intangibles. What is the value of happiness or health? Some
benefits, such as brand goodwill, are hard to quantify in dollars. We often
think in terms of products, where the value is mostly equated to the revenue
it brings in. For IT systems, we might judge the value by the labor saved or
the increased volume of work we can handle. In some cases, the value is in
new capabilities that the organization didn’t have before. These are generally
estimated based on assumptions we make about what will change when we
have this new system. Sometimes market research or tests with prototypes
inform these estimates.

In addition to estimating the return from having the system, we estimate the
cost of acquiring it. How many people will have to work for how long in order
to build it? How much will that cost us? What equipment will we need to
develop it and to run it in production?

Return on Investment at Empire Enterprises
Casey looked at the proposal for a magnet clearinghouse. "How am I to estimate this? It’s way
too vague." Fortunately, the proposal included the source of the idea, so Casey set up a meeting
with Frankie and Ellis to go over the details.

Frankie and Ellis were happy to describe their vision to Casey. They went on and on about all
the features they envisioned while Casey took notes. Then Casey went off and estimated the
work to produce such a system.

Casey gave the estimate to the Project Manager, who forwarded it to the VP, who reported it to
the IT PMO, who gave the report to the CEO. At a regular C-level planning meeting, the senior
leadership compared this cost estimate with the benefit estimates. The CFO noted that, if the
estimates were accurate, it would take at least 8 years to recover the cost with internal savings.
On the other hand, with the projected revenue of offering an external service, it would only take
about a year to reach break-even.

report erratum •

Case: Is This Worth Starting? • 13

"Not so fast," the Product Director interjected. "How can we be sure that this business will be a
success? How do you propose to test the interest of potential customers, many of whom are
competitors?"

The CEO looked thoughtful. "What are the assumptions about how quickly this business will
ramp up when it’s launched? And what’s the synergy with our existing business lines?" Ultimately,
they decided that it wasn’t a good strategic decision for Empire Enterprises to enter the magnetics
brokerage business.

When Frankie brought the news, Ellis was crushed. It seemed like such a good plan. Frankie
thought a minute. "Let’s go back and talk to Casey. We got carried away describing the Cadillac
of systems. Perhaps we can find a cheaper one that will help you do your job."

And so they did. This smaller system didn’t have any of the bells and whistles needed for a
commercial offering, but it would still make Ellis’ job easier. This time, the analysis showed the
internal-only system would pay for its development in one to three years, depending on the
volatility of market conditions. The project was given the green light.

In this instance, we see the flip side of separating the estimation of value and
the estimation of cost from what we worried about in Empire Enterprises:
The Birth of a Project, on page 2. The cost estimate included a lot of extra
work that wasn’t aligned with the value that made strategic sense for the
company. That extra cost torpedoed the project. It was only by reestimating
with reduced scope that the project made sense.

Capacity
Before you start something new, you may need to consider if you have the
capacity to undertake the endeavor and make everyone reasonably happy.
Even when you’re not facing a firm deadline, you can’t take on an unlimited
amount of work. I would expect that your answer might generally be one of
“no problem,” “no way,” or “it’s hard to tell.” The first two answers give clear
signals. The third will require more precise analysis, and takes on more risk
if it’s wrong.

Riffle & Sort Get an Inquiry from a New Customer
"Let me run some numbers and I’ll get right back to you."

Kai hung up the phone and went down the hall to talk with Jesse.

"Jesse, I just got a call from a potential customer. They want what sounds like a fairly simple online
presence, but they want it by the end of March. Given that it’s mid-October and holiday season is
approaching, I thought I’d better check with you about our capacity to take on the job."

"We’ve got one development team that’s currently working on maintenance and improvement
items, but the rest of the teams are dedicated to significant projects. The team that has some
development bandwidth is intentionally being held in reserve for high-priority work that might
come up during tax season, from January 1 to April 15. It’s crucial for us to be able to respond
immediately to any legal discrepancies or operational problems that show up during that time."

Chapter 1. Starting Something New • 14

report erratum •

"I guess that effectively gives us about a month to a month and a half of team time before the
end of the year. That’s not enough to build the site they want."

"Historically, the tax season on-call development team has at least 50% unused capacity during
the season."

"That would be enough capacity, I’m pretty sure."

"The worst case I’ve ever seen was the year they were 80-85% busy with emergency work. I hope
we never have that crisis again!"

"Let me call the client back and see how flexible they are. I suspect we could do this job using a
third of their capacity from January through March, but that’s too close to guarantee. Perhaps
we can identify a subset that’s valuable, but small enough to guarantee before April, with the
rest following on a time-available basis. We should still be able to complete it by the end of May,
even with the worst-case tax season. If they’ve got some flexibility, then I’ll do some more rigorous
estimates."

These are some of the questions you might consider when doing capacity
estimates:

• What are the needed people doing now, and when will they be done with that?
• If you lose some people, how much longer will it take?
• If you do this, what else will you have to give up or defer?
• How long might it delay other desired development?
• When can you move on to the next thing?
• How long will these people, currently allocated elsewhere, be tied up with

this project?

You may have plenty of capacity, but also plenty of potential projects. Where
should you spend your capacity? What projects should you do? This requires
an estimate of the potential projects, of course. A moderate return at low cost
may be just the low-hanging fruit you need right now. Or a more expensive
project may justify the cost by having a huge potential for return. You must
weigh the plusses and minuses and risks and make a decision.

• If you add some people to work on it, will it take less time?
• Either way, will it cost more or less? How much?
• Can you afford the cost of devoting your manpower to this project, or the

cost of increasing staffing for it?

If you don’t want to redirect your current capacity, how many people should
you hire to staff it? Similarly, when you want to provide contracted develop-
ment for someone else, what will be the demand and how many people will
be needed to meet that demand? This requires a much more precise estimate.

It’s not easy to ramp up capacity. Finding people who are available and
competent and interested in doing this work takes time. Forming them into

report erratum •

Case: Is This Worth Starting? • 15

effective teams takes time. And while things are getting organized, we’re
spending for potential capacity that isn’t yet producing. This is one way that
projects start out behind schedule from the very beginning, if the schedule
assumes steady-state productivity right from the start.

Cashflow and Break-Even
Cost precedes value; investment precedes return. How far does it precede and
at what rate? When will the break-even point be? How soon can we start
earning value?

It’s popular these days to think that the earlier we deliver a system, the better.
Is that always true, though? Certainly, there are times when the value of a
new product is greatly enhanced by delaying for a splashy rollout. The iPhone
didn’t debut with a Minimally Viable Product and incremental improvements.
The old advertising saw, “Sell the sizzle, not the steak,” still holds true.

On the other hand, trying to achieve feature parity with an old version or a
competitor’s offering may delay the new system to its detriment. Keep an eye
on the market desires.

There are so many variables to consider even if we knew the cost precisely.
Yet we can hardly begin to analyze the risks and trade-offs without any cost
information. And so we look to estimates. We don’t need precision at this
point, but we need something reasonably accurate for making decisions.

Funding the TinyToyCo Mobile App
Recall that TinyToyCo founders, Chris and Pat, created an online game in their spare time, and
then were able to create a stream of income from advertising in that game. They had a hunch
that if they created a mobile app version, they’d do even better.

They felt they were beyond the point of nights and weekends, though. They had been doing
that too long. As the web game had increased in popularity, the demands on their time had
grown. There were inquiries from users, relationships with advertisers, maintenance of the
application, and scaling to meet demand. These things were taking up the time they would
otherwise spend in development.

Was it time to quit the day jobs and go full time? Was it time to hire someone? If so, should they
hire a developer with more mobile development experience than they had, or hire an adminis-
trator to free up more of their time? The next step felt like a big one.

Both Pat and Chris had been good about saving money, and they each had about six months of
living expenses in the bank. If they hired someone, that buffer would be cut in about half, as
both of them were depending on frugality to stretch their savings to six months. Hiring someone
would require paying industry standard wages, or close to it, plus payroll taxes.

There’s nothing like being broke to focus your attention on income. Pat and
Chris weren’t broke, yet, and they didn’t intend to be. They were willing to

Chapter 1. Starting Something New • 16

report erratum •

come close if it would catapult TinyToyCo to success. They decided to focus
on three specific income milestones and weigh the intangibles and probabilities
from that.

Financial Milestones
Out of all the questions popping up in their brains, three rose to the top.

1. How long would it take to start generating net income with a mobile app?
2. How long would it take until the income matched their living expenses?
3. How long would it take to reach the break-even point, where the income had repaid the

costs?

The first milestone would be the point where the drain on their savings would start to diminish.
That would extend the time they could stay afloat without other jobs. The second milestone
would be the point where they quit draining their savings. Once they reached that, they could
breathe easier. They’d be able to continue indefinitely, as long as no unexpected expense came
up. The third milestone was the turnaround point. At that point, their six months of living
expenses would be back in the bank. After that, their work would start returning a profit. That’s
when they could declare success. But when would that be, and could they make it that far?

It didn’t take a detailed estimate to decide that hiring someone was more than they could afford.
That seemed entirely too risky given they were starting on a shoestring. Shortening the first
milestone seemed like a prudent way to go. As long as they didn’t do something that would
limit them in the future, the earlier they started earning money, the better.

There’s nothing like being broke to focus your attention on expenses, too. Pat
and Chris didn’t want to be broke. They also didn’t want to shift their attention
to the legalities of hiring and payroll. And they didn’t want to commit to “go
for broke” or to have to let someone go in a short time if the finances looked
bad. If it was just them working on the project, they could mothball it at any
time that seemed prudent, without having to officially cancel it.

Industry Data is Better Than None
Pat called up some friends who had successfully developed mobile apps to ask for advice and
information. How long had it taken them to field a working app, and then to monetize it? Chris
started searching for publicly available information from strangers to answer the same questions.
Together, they started envisioning a few minimal starting points they could build to test customer
interest. They estimated how long it would take for each of these. The easiest one seemed as
likely a starting point as the others. If it flopped, they could transform some of the same code
into other attempts. As a rough guess, they could probably try four or five attempts until they
were broke.

As soon as they found a starting point that connected with customers, then they could monetize
it with advertising and a paid version without advertising. That would be the first milestone.

They did some calculations based on their research to estimate the second and third milestones
based on the experience of others. Of course, these were the survivors. There were many other
startups who didn’t get that far, and left no data behind. They recalculated at half the growth

report erratum •

Case: Is This Worth Starting? • 17

rate, and at one quarter. The slowest growth rate gave them some pretty grim predictions, but
if their first, or maybe second, version resonated with people, then it might be enough.

And they really, really wanted to try this. With that burning desire, and estimates that gave them
some hope, they decided to go for it. They would go with their eyes wide open, though, and re-
evaluate frequently.

Case: Can We Make This Work?
There are times where the primary question isn’t financial, but feasibility. We
may not know if what we propose is within our capability to accomplish. In
such cases, identifying the pieces that we cannot estimate is as important as
estimating the pieces we can.

TinyToyCo used lean-start-up techniques to find market fit with an online
game and mobile app. Now they want to venture into physical product
development.

TinyToyCo and the Robotic Cat
"What if we broke free from the boundaries of the phone?"

Pat looked puzzled. "What do you mean, Chris?"

"What if we created a robotic lap-seeking Fluphy Kitty™ toy?"

"Oh! Wow, that would be great. Do you think we could do that?"

"Let’s try to figure it out."

Chris and Pat started listing the behaviors they wanted the robot cat to have. These behaviors
already existed in virtual form in the web and phone-app versions. They had the cat-like logic
pretty well covered. It was the interface with the physical world that was the puzzle.

"We’ll need to detect the presence of humans, so Fluphy Kitty™ can seek them out. Just doing
that and getting underfoot would be a good beginning."

"If we can determine whether the person is sitting down, and make the robot cat jump high
enough, it could jump in their lap."

It’s easy to get carried away planning something. But can you really build it?
That’s when caution is prudent.

Caution Sets In
"Before designing our own robot, let’s buy a robotic cat toy and add some franken-features to
it to explore the possibilities. First up is infrared video to detect the human."

"And then jumping. If we can’t get jumping to work, then the lap-seeking feature isn’t going
to work."

"Before jumping, I bet we could do clawing on the leg."

"I think we’re going to need some specific robotics expertise. This is a lot more than our experience
can handle."

Chapter 1. Starting Something New • 18

report erratum •

"You’re right. But we don’t want to go deeply in the hole on this. Our current products are gen-
erating income, but not so much that we don’t have to watch expenses."

"We’ll set a budget on each physical capability. I think we can estimate the costs of inte-
grating the capability and tuning the realism of the behavior based on our experience
with the virtual cats."

The principles are simple. Estimate what you can based on past experience.
We’ll look at that more in Chapter 2, Comparison-Based Estimation, on page
27. For the unknowns, you have to set a budget on how much you’re willing
to spend to see if it’s possible to do what you want. Validate those budgets
as early as possible.

If you reach a budget limit on an item, you need to stop and replan. It could
be that you feel you’re close enough to budget a little more. It could be that
you’ve come in under budget on prior items, so you’re willing to spend a little
more on this one. Or it could be that you want to rethink your plans altogether.
Maybe you need to drop this particular capability, at least for now. Can you
still move forward toward your vision without it? A lesser version that you
can build is worth more than a grand version that you can’t.

And don’t overlook the possibility it may be time to quit and cut your losses.
(See Sunk Cost Fallacy in Cognitive Biases, on page 72.) Product development
is a gamble. Don’t gamble more than you can afford to lose. Taking risks
can become addictive, and you need to watch out if you want to remain
responsible.

Case: What Should We Budget?
For a lot of IT work, there’s no real need to allocate money on a project-by-
project basis. Did the IT department meet the organization’s needs last year?
If so, it will probably cost about the same this year, perhaps with a slight
increase for inflation. It makes sense to maintain a stable workforce to provide
the IT capabilities that the organization generally needs. If you do that, there’s
no need to worry about every nickel and dime of every project.

Of course, there’s still competition for those IT capabilities. We’ll look at that
shortly, in Case: Which of These Should We Choose?, on page 20. Sometimes,
though, the competition is rigged. We may have a project that has to be done,
or else… and we’ve got no choice about it. What choice we do have is about
what projects it will replace or delay. The people waiting on those projects
have a right to know.

report erratum •

Case: What Should We Budget? • 19

Budgeting for a Required Project at Empire Enterprises
"Legal Department says we’ve got until the end of next June to meet a new federal requirement.
There could be big daily fines if we don’t. We have to report every dollar we spend that might
end up in the hands of one of our clinical investigators of our medical equipment. That includes
indirect payments, such as through a university they work for. I need to know how many people
to put on this to ensure we get it done in time."

"Who should I talk to in Legal?"

"Darby has the information. You’ll need to find someone in Accounts Payable and Clinical Research
to find out whom we pay how much for what reason."

"I’m on it."

This is similar to the capacity question. How many people and for how long?
It has the added wrinkle of a firm deadline and the impetus of an absolute
requirement. You’ll want to be careful not to underestimate in such a case.

There will be quite a bit of work involved in figuring out how to capture the
input data for this report. Even knowing which data is pertinent will be a
research product. If it were me, I’d start with the specific things that the Legal
Department mentions and leave an allowance in the plan for discovering new
things.

Remember that “how many people” is misleading. Productivity does not go
up linearly with the number of programmers. In fact, it can go down in some
situations. If you can depend on an existing team with a track record of
working together, your job will be so much easier.

Case: Which of These Should We Choose?
No matter how much you budget for IT development projects, you’re likely to
have more demand than capacity. You’ll have different stakeholders within
the organization competing for that software development capacity to
accomplish their favorite projects. When you can’t do them all, how do you
know which to choose? Which do you choose to do first? For internal IT
projects, while you can generally figure on spending about the same the next
year as you did the past, there is still competition for the capability that
budget is buying.

Empire Enterprises Chooses between Competing IT Projects
"We’ve allocated project teams for our strategic initiatives, and it looks like we’ve got some
capacity for the more mundane projects in our queue. One team is finishing up a project this
month, and another team will be available in a month or two after that."

"The Sales and Marketing department of the Motors and Headphones Division is complaining
that their consumer sales website is too pedestrian to attract much attention. They feel they

Chapter 1. Starting Something New • 20

report erratum •

could sell more product direct to consumers if the website could accept promotional coupon
codes. The discounts of the coupons would be less than the wholesale discount to retailers."

"The new Accounting Manager has noticed that the Accounts Payable system pays invoices in
the order in which they’re entered into the system, rather than according to the due date of the
invoice. This means that invoices are paid up to a month before they have to be, and we lose
the interest on that money."

"The Contract Management office often feels overwhelmed by the processing and monitoring
of bids let out to contracting companies. While they could hire more clerks, they feel that the
root problem is that the Bid Monitoring system is clunky, outdated, and hard to use. They sug-
gested streamlining that system to make it easier to avoid errors and oversights. If it were easier,
they could avoid increasing the labor costs."

How do you decide which of these projects to take on next? There are lots of
different ways you could make the decision.

Criteria for Choosing Which Project
"The Sales group has been very vocal about their needs. They call me every week. They keep
emailing my manager."

"The Accounting office can calculate how much money we’re losing in interest. Their project has
a guaranteed payoff."

"The Contract Management office has had their request in for almost a year now. We can’t keep
putting them off. They’ve been waiting longer than anybody."

Which of these arguments is most convincing to you?

One common way of looking at this problem is in economic terms, recognizing
the time value of money. If something has high value and can be done
quickly with low effort, we certainly would rather do that before something
else that has low value and high effort. That’s a clear choice. But what about
the choice between low-hanging fruit, the low-value, low-effort projects, and
the bigger initiatives that have higher value, but also take more effort? How
do you choose between those alternatives?

Presuming that cash flow isn’t a critical issue (as in Cashflow and Break-
Even, on page 16), you might want to use the Cost of Delay, a concept popu-
larized and named by Don Reinertsen, to decide. The value of the project may
be in increased revenue or reduced costs. How much is it costing you to delay
this project a month? Or the value may be more foundational, in terms of
protecting revenue, such as maintaining market share, or avoiding future
costs. How much will this cost you over the lifetime of the product if you delay
a month, now? Any of these values can be expressed as money per unit of
time, even though the latter ones may not accrue the cost for some time.

report erratum •

Case: Which of These Should We Choose? • 21

Using the Cost of Delay to determine priority order of projects involves dividing
by the project duration to calculate a weighting factor called CD3, or Cost of
Delay Divided by Duration. The highest CD3 is generally scheduled first, an
approach called Weighted Shortest Job First (WSJF). This prioritization is
often done with relative estimates of cost and duration. Relative estimates
are easier to produce, but should be used with caution. Nonlinearities in the
relative estimates might juggle the outcomes.

Cost of Delay Is Still an Estimate

Some people add in a risk assessment to their Cost of Delay esti-
mate. Others presume a product lifecycle revenue shape that may
have lower peak profits if the launch is delayed. Some try to
quantify the time criticality. Most leave out less-direct costs, such
as reputation, though these can result in tangible costs, also. All
these different ways of determining Cost of Delay should emphasize
the fact that these are estimates, not calculations. Use them with
caution, as with any other estimate.

The bottom line is still: go for the biggest bang at the cheapest cost.

Case: A Mixture of Questions
“If only things were that simple. Around here, there’s a lot going on at once.
Different people have different questions and their questions change constantly
without notice. That’s why I need to come up with an accurate and precise
estimate that will answer all their questions.”

Yes, the context of an organization, especially a large one, can be daunting
and confusing. And if it’s not, you’re probably overlooking something. Seeking
the mythical Precise and Accurate Estimate, however, is an unlikely solution
to deal with it. I’m sure you’ve tried that before and have many times traded
stories with compatriots about how things didn’t go well.

Intuitive, Sensing, and Imposed Projects
One thing that helps clarify confusing situations is a mental model that
focuses you on certain aspects, making them clear in spite of the noise of all
the other aspects. A model can help you sort out what you see and highlight
the relationships between things. While a single model can blind you to
important aspects that are not represented in the model, no one is trying to
limit you to just one. Here are models of different types of projects based on
why they’re being proposed or undertaken.

Chapter 1. Starting Something New • 22

report erratum •

Intuitive projects are based on somebody’s vision. “It would be fun to build a
robotic cat.” “Let’s start our own HMO to contain our payments as an insur-
ance company.” These may be little more than a hunch, otherwise known as
the “highest paid person’s opinion” or HiPPO. Or they might be based on
market research, where a committee has chosen a product definition that
will likely be successful. Intuitive products often focus on the solution, and
the underlying needs may be less distinct.

Estimating the size or cost of intuitive projects can be a trap. It may seem
obvious as to what needs to be done, but the doneness is likely to be deter-
mined by how well what’s produced matches a vision in someone’s head. This
is very hard to see from the outside of that head. There are likely to be sur-
prises that were not assumed when initial estimates were made.

The scope of intuitive projects tends to be flexible, and mostly in the direction
of bigger. It’s easy to expand the expectations with additional thoughts of
“useful features.” Scope can be negotiable downwards if you can talk to the
person whose intuition underlies the project.

Sensing projects are based on a desired outcome. “We need to reduce the
payouts we make on health insurance claims.” The scope is outcome-based,
though it may be bounded by available time and money. “We can afford to
spend $1 million to reduce health insurance claim payouts by 10% in the
next year.” Or they can be more exploratory, done a bit at a time, measuring
the outcome that is desired and steered by the success shown. “We have these
three ideas for reducing health insurance claim payouts. Let’s try some small
experiments and see what effect each of these ideas has.”

Initial estimates of sensing projects can also be deceptive, as the solution to
reach a given goal may not be visible at the start. Such projects are excellent
choices for a lean-start-up approach, and budgeting the work done before
arriving at a solution worth pursuing. Exhausting that budget is a good
indicator that it may be time to switch to a different project.

When you can talk with the source of an intuitive project, you may be able
to identify measurable outcomes to track and turn it toward a sensing project.
Such a hybrid gives you the potentially bigger wins of bigger ideas with the
risk containment of taking smaller steps.

Imposed projects are handed down from someone else. They may also be due
to changing circumstances: a new legal requirement, an obsolete dependency
(language, framework, operating system, hardware), or keeping parity with a
competitor. They may also have started as intuitive projects by someone out
of communications range of the development team, such that negotiating

report erratum •

Case: A Mixture of Questions • 23

scope and clarifying goals is difficult. Sometimes, the barrier of a contracting
relationship turns an intuitive project from the client’s point of view into an
imposed one from the contractor’s point of view. These tend to be the least
flexible, and give people the most problems with regard to estimation. The
conversation shifts from vision or outcomes toward contracts and obligations.

You can likely find aspects of all three in most projects, especially when you
consider multiple points of view.

The Need for a New Call Center
Ryan, the Director of Customer Service at Empire Enterprises, frowned at the numbers. "We’ve
got twice the customer service reps that we had three years ago. We’re only handling 50% more
calls, though. All the reps are busy when I visit any of the call centers. They’re working more
overtime than ever. This doesn’t look sustainable. What’s the root of the problem?"

Tracy, Manager of Analytics, replied, "Unfortunately, we don’t have the data to know for sure.
Our call center software is limited in the metrics it can collect. The average length of call is only
slightly longer than it was three years ago. The average time between the first ring and a rep
answering the call is also only slightly longer than it was. The biggest clue is that once or twice
a week there’s a ten-to-fifteen minute gap with no calls at all."

Sidney, the Director of Internal IT Services, spoke up. "We’ve looked at enhancing the call center
software for better metrics, but that system is fragile. It started as a purchased product, and our
programmers have enhanced it considerably over the years. For a long time, we put in every
feature that was requested. Now, though, it’s hard to find good programmers who want to work
on an old PHP system. And ever since the attempt last year to update the version of PHP on the
system, we’ve had those intermittent problems where it mysteriously locks up and doesn’t
deliver the calls. In some of those cases, we have to reboot the server. We’ve been trying to track
down the problem, but it happens so infrequently that no one is watching when it happens, and
our logs don’t contain enough information to identify why it happens."

"So we can’t fix it?" Ryan asked. "What would it take to replace it?"

Sidney gulped. "Can we list the features that the call center really needs?"

"Just use the old system as the requirements. Do what it does now."

"And add better auditing metrics," added Tracy.

Duplicating the existing call center system is an imposed project. It needs to
be done because the old system is falling apart. Fortunately, the old system
still works, more or less. We’ll see that we can lean on that to turn it into
more of a sensing project, replacing uses of the old system bit by bit.

Adding better auditing metrics is an intuitive project, based on Tracy’s dissat-
isfaction with the current system. Addressing that dissatisfaction is the current
operative definition of “better metrics.” With a good working relationship, that
can also be turned into a sensing project, iteratively trying things and judging
if they’re meeting the need.

Chapter 1. Starting Something New • 24

report erratum •

Stepping Back for a Broader View
As we’ve seen, there are very many reasons a business will want to look for-
ward to the future. There are a variety of decisions to be made, depending on
the situation and the desired outcome. Each of these decisions has its own
different needs in terms of accuracy, precision, and the distribution of error.
Without knowing the business need, it’s not possible to know how to satisfy
that need with an appropriate estimate. It’s important to find out what those
needs are and recognize that they may require different estimates.

It’s important to remember that estimates are different from calculations.
There’s nothing exact about them. Given that error is expected, you’ll want
to do your best to keep that error from causing damage. Often, accuracy and
precision are not very important if you can constrain the error in one direction.
Other times, the distribution of error is not important because the need for
precision is not great. It’s only when the decision is close that you need to
worry much about accuracy and precision. When that’s the case, you should
realize that the risk of noticeable error is greater. That risk may help make
the decision. There’s little cause to incur a large risk for a small return on
investment.

Next, let’s look at how to develop an initial estimate to meet these needs.

Now It’s Your Turn
1. When you were starting your last project, what questions needed to be

answered before the start? Were the produced estimates suitable for
answering those questions? Were the people producing the estimates
informed of how they would be used?

2. List the different types of needs for estimates that you’ve encountered at
the start of your projects. Consider the accuracy, precision, and probabil-
ity distribution of error to suit those needs. How many different sorts of
estimates have you needed (whether or not that’s what you received or
provided)? How many times was the desirable accuracy, precision, and
error distribution estimate unknown?

report erratum •

Stepping Back for a Broader View • 25

CHAPTER 2

Comparison-Based Estimation
It’s always a conundrum when you face a new project and want to know how
long it will take and how many people are needed to accomplish it. There are
so many variables and so little is known with any certainty. It’s tempting to
throw up our hands and declare, “There’s no way of knowing!” As we saw in
Chapter 1, Starting Something New, on page 1, there are often good business
reasons for estimating a new project.

What’s a pragmatic way to meet those business needs? There are two ways
to estimate something. One way is to build a computational model to calculate
the estimate based on things we know or that we can more easily estimate.
We’ll look at that method in Chapter 5, Model-Based Estimation, on page 103.
The simpler way of estimating, especially when starting something new, is by
comparison, i.e., comparing the things we want to know about to the things
we already know.

Comparison-based estimation is such an ordinary part of our lives that we
often don’t notice when we do it.

Everyday Estimation
Let’s see. My train is at 1:13 p.m., and the last time I went to the train station, it took about 30
minutes to get there. I think I’ll allow for double that. I really don’t want to miss that train.

Notice how this estimation process is modeled as a multiplicative factor applied
to a known past experience. In this case, the factor is designed to cover any
natural variability and give a buffer for safety. See Multiplicative and Additive
Adjustments, on page 30) for more ion of simple multipliers and
additions to account for possible variances between the current situation and
past experience.

Everyday Estimation—Another Take
Let’s see. My train is at 1:13 p.m., and the last time I went to the train station, it took about 30
minutes to get there. I was being dropped off that time and I’m driving myself this time. Maybe

report erratum • discuss

I’d better allow 10 or 15 minutes to park the car and walk down from the parking garage. The
last time I took the train, it was midafternoon. Today, it’s lunchtime, so traffic might be heavy.
Let’s make it an hour, in total. I really don’t want to miss that train.

Here we’ve started to build a mental model of what makes up the variances.
We’ve specifically allowed additional time to park the car and walk down to
the station. We’ve cataloged another possible variance, traffic delays, but we
haven’t quantified them. In the end, we fell back to a comparison-based esti-
mate and allowed for a lump variance. Itemizing the elements of that variance
may have helped us choose an appropriate factor, but we didn’t build an
explicit model.

Magne Jørgensen, in Expert Estimation of Software Development Work: Learning
through Feedback [JS06], states, “Several empirical studies report that expert
estimation of software development and maintenance effort is the dominant
estimation approach. We were not able to find a single study that reported a
dominance of model-based effort estimation.” I think most people tend to
minimize the use of math when they can get away with it. This promotes the
use of simple comparisons or comparisons with simple mathematical
adjustments. As we’ll see in Chapter 5, Model-Based Estimation, on page 103,
model-based estimation has a component of comparison, too. It’s just quan-
tified so mathematical manipulations can be performed. Clearly, comparison-
based and model-based estimation are not completely distinct. It’s a matter
of where you put the effort. Building a mathematical model you can trust can
take considerable effort, so let’s start with the easy approach.

Comparison to Past Experience
Let’s apply the comparison approach to software development estimation.

What past work was similar to this work?

Is this yet another custom report for the business? Or a starter website for
yet another small company? Sometimes our projects are amazingly similar
to what we’ve done in the past.

Chapter 2. Comparison-Based Estimation • 28

report erratum •

Other times, they’re startlingly different. That’s not surprising. If we already
had software to do what we wanted, we probably wouldn’t be starting a new
project. It could be something that no one has ever done before, or, at least,
no one that we know.

More often it’s somewhere in the middle, with both similarities and differences
from our past experience. What projects in our experience have the most
similarities? You may want to choose more than one, especially if they’re
similar in different ways or to different parts.

Once we’ve chosen a piece of work that’s comparable to the one we’re estimat-
ing, we can ask ourselves questions about how it compares.

How does that work compare to this work?

Is this work about the same size, bigger, or smaller? Note that we’re saying
“about the same size.” We’re estimating, not calculating. We’re not generally
concerned if this work might be 2% larger or smaller. We’re probably not
concerned if this work might be 10% larger or smaller. We’re unlikely to have
enough accuracy to warrant that precision. If this work is 100% or more
larger, we might want to take notice.

How does this work differ from that work?

Rectangular	vs.	Triangular	
Jagged	vs.	Smoother	Surfaces	

Asking how the work is the same is helpful for sizing, but it may encourage
you to overlook some variations that make a difference. Turning the question
around helps you spot the uncertainties. You may want to temper your

report erratum •

Comparison to Past Experience • 29

estimate with those uncertainties, or investigate to learn more and reduce
the uncertainties.

How many of those bits of work would it take to make up this work?

Don’t jump to big numbers. How would you tell that something anticipated
seemed 100 times as big as something remembered? How would you tell the
difference between that and 1000 times as big? When you feel the need to
use orders of magnitude, that’s a signal that you can’t really judge the size
relationship—judging something as eight or 10 times (some parameter) may
already be too hard. People, in general, aren’t very good at precise comparisons
of things widely differing in size. Doing so for something as intangible as
software development is even harder.

When you’re facing a new software development project, you can use the same
familiar skills you use in your everyday life. But it’s a little different, of course.
Undeveloped software is more abstract, and you likely don’t estimate it as fre-
quently. For those reasons, and because you may have important consequences
riding on the outcome, be a bit more mindful about how you go about it.

We just talked about comparing size in terms of multiples of our reference.
Other times we might find a similarity to our reference, but there’s something
additional. Or we may find both. And, of course, we might substitute division
for multiplication and subtraction for addition, if it seems appropriate to us.
Let’s look at such adjustments in more detail.

Multiplicative and Additive Adjustments
What’s the difference between your previous experience and your current
one? Maybe you had a development project last year, but this one seems more
complicated. Or that first one used a familiar technology stack but this one
is based on new technology that none of us have used before. It’s still relevant
experience. You’ll just have to adjust your expectations to account for the
differences.

Chapter 2. Comparison-Based Estimation • 30

report erratum •

If this project seems more complicated, how much more is it? Twice as com-
plicated, or 10 times? You can make a rough multiplicative adjustment to
your past results to approximate your expected results.

What Can We Tell Them?
Sidney, the Internal IT Director of Empire Enterprises, called his top project manager, Marion, to
his office. "I’ve just come from a meeting with the Customer Service department, and Ryan and
Tracy say it looks like we’re going to have to bite the bullet and replace the call center software.
What do you think that’s going to take in time and labor?"

"What do they want?"

"Basically a rewrite of the current system, plus some additional work to add metrics for auditing."

"That’s not nearly enough information to start work. I’ll need to research the current system,
research the current usage, and get some details on the driving force behind the metrics."

"What can we tell them right now?"

"Given the need to research the requirements, I’d say roughly twice what it took to build the old
system. And another 25% to add the metrics. I’ll have to research what the old system took to
build to convert that to numbers. That’s a rough order of magnitude. Should I start working on
a more refined estimate?"

"I don’t know, yet. Let’s at least look at the costs of the old system so we can give this in numer-
ical terms."

That’s an example of a multiplicative adjustment. Even the additive part for
the metrics was expressed as a multiple of the original project. This lets us
compare to a project without knowing the numbers, yet. Next we’ll need to
calibrate to the actual time and effort of that project.

Foreseeable Delays
If you need to learn a new technology, then how long will it take you to come
up to speed? That’s an additive component to our estimation model. If last
year’s project took you six months and it’ll take you two months to learn the
technology, then eight months might be a reasonable estimate for this work.
Or, since you’ll have much less experience in the new technology, perhaps
there’s a multiplicative adjustment, also, to account for the friction of working
in unfamiliar territory.

Considering the Learning Curve
Marion walked into Sidney’s office. "I’ve got some bad news. I’ve asked around about who knows
anything about the last call center project. No one does. It seems that all those people have left
the company, taking all of our call-processing expertise with them. I guess we’ll have to hire
someone with that experience. That’s going to take three to six months, and then longer for
them to bring the rest of the team up to speed."

report erratum •

Comparison to Past Experience • 31

Do you have a different set of people this time around? Will they work
together as well as the previous group? How long will it take them to bond
well as a group? Will they jell as a team and will their synergy surpass the
historical comparison?

The further our reference experience is from the upcoming work, the more
you’ll have to adjust that model to predict the future. And the more you have
to adjust our model, the more likely it is for error to creep in. How do you
know how much to adjust? That, too, is an estimate.

You make things harder on yourself when you make unnecessary changes
in the way you work. Often people dissolve the team at the end of each project
and build a new one for the next project, thinking they can more efficiently
include just the skills they need. There are big benefits of keeping durable
teams together and bringing the work to the team. One of these is having a
track record for the team and how effectively it works together. Another ben-
efit is that the team doesn’t have to ramp up new working relationships for
each project.

You also benefit from working on one thing at a time. That makes it easier to
track how much effort has actually gone into a project. When you multi-
task—working on a major project but also being pulled off onto unplanned
work that pops up—you have a harder time figuring how much of your effort
went toward that major project. Rarely do people keep accurate notes on how
much they worked on one project versus other tasks. In fact, that’s quite hard
to do in knowledge work like software development. How do you keep track
of what problem you’re mulling over from hour to hour? And when you pay
more attention to timekeeping, it distracts you and compounds the problem
you’re working to solve.

So, while estimating future work based on past experience is simple, it’s still
not always easy. We can make our job easier by changing how we arrange
the work (see Ordering the Parts, on page 60) and how we approach it. There’s
advantage in doing so, not only in easier estimation but in being more produc-
tive at accomplishing our projects, too.

Memory vs. Recorded Data
Steve McConnell, in Software Estimation: Demystifying the Black Art [McC06],
reports that “individual expert judgment is by far the most common approach
used in practice.” When we talk about estimation by expert judgment, we’re
really talking about comparison with past experiences. You can augment
memories of those experiences with recorded data, when that’s available. There

Chapter 2. Comparison-Based Estimation • 32

report erratum •

are often files of information about past projects that can be mined for data.
How similar were the requirements of this old project to the one we’re contem-
plating? How many people worked on it, in what roles, and for how long?

Inaccurate Memories
Most manuals on estimation warn you that estimating based on remembered
data is fraught with inaccuracies. You might remember the estimate for a
past project rather than the actual results. Or, due to proximity, you might
remember the staffing at the end of the project, rather than the actual staffing
throughout it. You might remember the project start from some date other
than the actual starting point, perhaps when you joined it or the date that it
was announced to a wider audience. You might neglect accounting for rework
done after the project was initially delivered.

Recording Data for Future Estimates
Estimation experts will say that you should record significant data for your
projects, and use that data to estimate future ones. As Capers Jones advises
in Estimating Software Costs [Jon07], “The best defense against having a cost
estimate rejected is to have solid historical data from at least a dozen similar
projects.” That’s good advice, but it probably won’t help you immediately.
You’re likely facing the need for an estimate before you can organize your
data collection program.

If you do have detailed data from past projects, you’re probably working for a
company that needs high-precision, high-accuracy data to support pricing fixed-
scope, fixed-price bids for large projects. But if you’re in that situation, then
you probably have a department full of experts at doing that in your business
domain, using a standardized process approved by your company. It’s the same
department collecting and maintaining all that data. They’ll help you

For the rest of us, there’s still hope of finding recorded data from past projects.
There is almost always some data that was recorded contemporaneously, if
you can only find and understand it. Asking around for memories may give
you a starting point. Look for accounting data for costs charged to past
projects. Look for email conversations about those projects.

Inaccurate Recorded Data
Beware, though, of inaccuracies in the data. Even when recorded at the time,
the data that was recorded likely does not tell the whole story. There is much
that happens “off the record” due to inattention or embarrassment.

report erratum •

Memory vs. Recorded Data • 33

It’s Worse Than We Thought
Once again Marion strode into Sidney’s office. "I’ve been digging deeper researching the last
call center project, and I’ve got data, this time. Accounting looked up the numbers for me. There
were five programmers working on the last call center project code. They billed 40-hour weeks
for 15 months. And there were two testers on that charge code for the last five months of the
project."

"Fifteen months?" Sidney looked unhappy. "And you think it’s going to take longer this time?"

"Yes, our rough order of magnitude was two and a quarter times as long, factoring in requirements
gathering and the additional metrics requirements. That would be 34 months. I know that’s not
what you wanted to hear."

"No, Ryan won’t go for that. He’ll insist on an off-the-shelf solution, not realizing that customizing
such a system is a big project in itself. And I don’t like running the risk of not being able to
deliver the functionality that’s requested. If we hit a wall with a purchased solution, we likely
won’t have any options."

"It’s worse than that." Marion shifted uneasily. "I ran into Blaise who’s still friends with the lead
programmer of the old call system. It turns out that the project turned into a death march once
the testers started looking at it. That’s not reflected in the accounting numbers because the
development team were all on salary, so their timesheets reflected 40 hours no matter how
much more they worked in a week. If we planned the new project assuming those were 40-hour
weeks, we’d doom it to failure before we started."

There was a long pause. "Are you sure Ryan needs everything in the current system?"

Collected data often has pernicious errors. Unrecorded overtime is common;
programmers are forced to donate extra time to the project. Even when
timesheets aren’t forced by policy to be inaccurate, the allocation to charge
codes may not be correct. People often think that contemporaneous data
collection will be accurate. When data collection is extra work, in addition to
the work of accomplishing the project itself, it seems like a nuisance to those
doing the work. Therefore, they may not spend a lot of effort keeping it accu-
rate. It’s easier to duplicate a previous time sheet than to consider precisely
how we’ve split our time among multiple accounting buckets. The more
detailed this task is made, the less accurate it’s likely to be.

The data collection may have other types of omissions, too. Timesheet records
may collect only direct value-adding work, not overhead activities such as
meetings. These may be charged to a different category. Your upcoming project,
though, is sure to have its share of meetings, also.

Aspects to Compare
There are many aspects you will want to consider when estimating a software
development project. Too narrow a view is likely to lead you into trouble. A

Chapter 2. Comparison-Based Estimation • 34

report erratum •

narrow view increases the chances that significant contributors to the
schedule lie in the blind spots you’ve failed to consider.

When comparing future work to past experience, if you neglect to think about
some aspect that is roughly the same in both cases, no harm is done. But if
you neglect some aspect that differs in a way that affects the pace of accom-
plishment, it can have a major impact on the accuracy of your estimate. Let’s
look at what aspects might differ. This checklist is, of course, not exhaustive,
but it will help you consider the matter more thoroughly.

Aspects of the System to Consider
The most obvious consideration when estimating system development is
what’s known about the intended system itself. That is, after all, what we’re
building. And it’s the building of it that we’re estimating. Therefore, looking
at those desires, or “requirements” as some call them, is a natural starting
point.

Quantitative Aspects of the System

Of course, the scope of the development is a primary concern. Ask yourself
how big is the code being developed, and how much functionality is being
added. Notice the things that you can count, such as the following examples:

• How many user workflows are needed?
• How many screens will that take?
• How many “logical items” will need to be stored?
• With how many other systems does this one communicate?
• How many interfaces does this system provide to others, and how many

functions per interface?

These, of course, might be approximate counts based on a naive implementa-
tion model. That’s OK. This is an estimate we’re making, not a prediction.
Such quantitative measures can alert you to differences in size compared to
your reference.

Qualitative Aspects of the System

Dig into the qualitative aspects of the system:

• How complex is the functionality being developed?
• Has something like this been implemented before?
• Are there significant interactions between the parts, or are they relatively

independent of each other?

report erratum •

Aspects to Compare • 35

These, also, can alert you to differences in size compared to your reference,
even though they don’t have numbers attached.

Quality Aspects of the System

Consider the quality of implementation:

• How much emphasis should be given to maintainability of the system
and to future extensibility?

• For that matter, if you’re building on an existing codebase, how much
emphasis was given for it?

• And how good is the development team at writing maintainable, extensi-
ble code?

People often take such quality issues for granted, but there can be a wide
range of interpretations. If the attention to quality in the reference system or
of an existing codebase which you’ll modify differs from the current expecta-
tions for the future work, then that’s a significant difference which must be
accommodated in your estimate.

Internal code and architectural quality can be quite cheap if you’ve learned
the knack. As Philip Crosby said, “Quality is free.” Attention to detail quickly
pays for itself, but some people don’t recognize how to work that way. Having
to come back and try to put in the quality after the fact can be very expensive.
And building on a system made without concern for quality will certainly have
a lot of unexpected work.

Aspects of the System Context to Consider
The way the system relates to the systems around it can also have a major
impact on how much time and effort development takes. The relationship of
the system being developed and the people and organization that interact
with or otherwise depend on the system has an effect, too.

Constraints of the System Context

Consider the constraints placed on the development:

• Are there decisions that are assumed and can’t be changed, such as
aspects of the architecture or deployment configuration?

Implicit expectations can easily blow your estimate out of the water. Better
to ask these questions now than be surprised by them later.

Chapter 2. Comparison-Based Estimation • 36

report erratum •

Non-functional Expectations of the System Context

Consider the “-ilities,” the characteristics that cut across the functional
requirements:

• What is the need for scalability, or the immediate and long-term needs
in terms of users and data?

• What are the expected throughput and service-level agreements?

• How much safety factor should be included beyond expected needs?

• What level of system availability is needed?

• How responsive does it need to be?

• How reliable does the system need to be?

• Is there a need to degrade gracefully in the face of problems outside of its
scope, such as other systems being down or communication bottlenecks?

• When something goes wrong, how will people know what went wrong?
Can you give them clear and relevant information? Can you store infor-
mation to be examined later? Can Customer Service deduce what hap-
pened when talking with the user over the phone?

The expectations surrounding implementation quality can be widely varied
and are often implicitly assumed rather than explicitly ed. Mismatches
in expectations can have major impact on the suitability of your estimates.

Security Expectations of the System Context

Consider the expectations of the system security in its intended environment.
Sometimes, these dimensions haven’t been fully explored when you’re asked
for an estimate. That’s OK; they can probably be deferred. If you’re practicing
lean product discovery, you don’t want to expend energy on bulletproofing a
feature until you’ve validated that customers will use it. In other situations,
you may be surprised by people saying, “of course it needs to be bulletproof.”

• How secure does the system need to be, and against what threat models?

• Does the system need to be auditable? To what level of detail?

• Does traceability data need to be stored and, if so, at what detail and for
how long?

• Is there personally identifiable information that needs to be protected
from disclosure to others?

• Are there privacy laws that govern the system?

report erratum • discuss

Aspects to Compare • 37

Such requirements are often overlooked prior to the approval of a project.
There could be a significant amount of functionality that’s invisible to the
nominal user and will take development time.

Usability Expectations of the System Context

Consider the expectations of user factors. This is another category of expec-
tations that are often not mentioned explicitly until later, when someone
outside the project complains.

• How stringent are the usability requirements?

• What are the accessibility requirements?

• Is the system required to conform with Section 508 or other regulations
protecting the disabled?

• Does the system need to be internationalized to support multiple languages
and cultures?

Such concerns can add a lot to the effort, especially if the development team
isn’t experienced at meeting such demands. There can be a broad range of
potential expectations.

Priority of Expectations of the System Context

Consider when these contextual considerations become important. Early
releases may not have the same needs and expectations as others. Perhaps
you can validate the core functionality with a limited audience for earlier
feedback.

• Do you need to include these at the start?
• Will it be sufficient to patch any issues raised?
• Can you iteratively add these after each function is developed?

Consider how much support needs to be implemented for operations and
customer service to detect, identify, and analyze problems during operation.
This is another category of often invisible requirements. Neglecting these
functions can save a lot of development time, but greatly reduce the long-term
satisfaction with the system.

All of these contextual demands are generally under-ed at the beginning
of a project. They are hard to bring up, also, as asking “do we need such-and-
such” will often trigger the “kitchen sink” response. “Well, of course we need
it. If we can think of it, put it in.” Bloating the project with expectations that
have not been thought through thoroughly can blow more than your estimate.

Chapter 2. Comparison-Based Estimation • 38

report erratum • discuss

Aspects of the Development Context to Consider
The details of the development process have a huge impact on development
speed. In my experience, rushing into development without proper preparation
is a major cause of systems development taking much longer than anticipated.
Setting things up for success is, of course, the prudent plan. If that’s not
within your power, then being aware of the potential issues is necessary for
an understanding of what might slow down the development process. Perhaps
that awareness will also aid in improving some of these aspects.

Familiarity of the Development Context

Consider the familiarity of the functionality and proposed implementation:

• How much of the scope is well understood and how much is vague or new?
• Do you have a solid background in the business domain?
• Are you fluent in the implementation technology?
• Do you even know yet who will be doing the implementation?

All forms of novelty impose a learning tax on the development process. Giving
the process of learning short shrift will undoubtedly lengthen the amount of
time required.

Relationships Surrounding the Development Context

Consider the relationship with the customer or manager requesting the system:

• Are they congenial and easy to please, or nit-picky and opinionated?

• Are they willing to engage throughout the project to clarify the require-
ments as they are addressed or as new questions come up?

• Are they likely to want “the kitchen sink” when presented with options?

You can easily spend significant time convincing a stakeholder of some
essential fact. Or, you may be constrained to doing something the hard way
because you can’t convince them. On the other hand, a good working relation-
ship with the customer can save a lot of unnecessary work and avoid needless
rework.

Building the Customer Relationship
Sidney called Ryan to talk about the Empire Enterprises call center situation. Sidney’s first question
was "When can I have the new call center?"

"We’ve got a few people exploring some new-to-us technology to support it. We’ve got some
people examining the current system to figure out what it currently supports. Our rough order
of magnitude estimate for a replacement system based on the time it took to build the old system
seems way out of whack to me."

report erratum •

Aspects to Compare • 39

"When will the whole thing be ready?"

"We calculated it might take about three years. I think that’s too long, but we need a better sense
of what the ’whole thing’ entails. Reverse-engineering the current system is a slow way to
determine the requirements. It’s also likely to pull along current errors in implementation, plus
create some new ones. We can surely do better than that, but we’ll need your help."

Ryan looked at him suspiciously. "What sort of help? Why can’t you just build what we need?"

"Building custom software isn’t like assembling a known product. You’ve seen how sometimes
you don’t get what you expected. Neither one of us likes it when that happens. But if you’ll work
with us, we can order the work to give you some value earlier, make sure we’re on the right track,
and take care of any problems as we go, when they’re still small problems."

"But I’ve got a Customer Service department to run. Developing software isn’t my expertise or
responsibility."

"I know. But handling customer service calls isn’t our expertise, either. We don’t know your
operation like you do. Why don’t we meet next week some time. You can bring one or two of
your most experienced people and I’ll bring a couple of good analysts. Let’s spend an hour or
two and see what we can come up with. It’s a small price to pay that might pay off big."

"Let me check our schedules, and I’ll get back to you."

Rewrites don’t always have to have all the features of the system they’re
replacing. Often there are features that are little used, or will be obsolete
when other new features are added. Resisting the temptation to provide feature
parity offers a potential solution to such rewrites.

As this story shows, business people easily assume that the software develop-
ment organization will do whatever it is that the business people will later
find they want. If you’re working from that assumption, then it makes sense
to concentrate on your own work and wait for the solution to be delivered to
you. As anyone who’s been in software development awhile probably realizes,
this is a recipe for repeated cycles of building something to have it rejected
and rebuilt.

Business: Bring me a rock.

Development: Here is your rock.

Business: No, not that rock. Bring me a different rock.

Even when the relationship isn’t as unhelpful as this, the nature of the rela-
tionship between those asking for the software and those building it can have
a huge impact on the time it takes to successfully complete it. Consider the
following aspects:

• Is there one customer voice to be satisfied, or multiple constituencies?

Chapter 2. Comparison-Based Estimation • 40

report erratum •

• What is the procedure when there’s a difference of opinion on the
requirements?

• How clear and unambiguous is “done” for each requirement?

Any fuzziness in understanding the requirements will surely slow things
down. In the worst case, gaining an understanding with one constituency
may result in work that must be redone when another constituency disagrees.
If you find yourself in the middle of a battle between two powers who want
different systems, you may never complete it.

Also consider issues that might arise as you try to untangle uncertainties
and miscommunication.

• Do you have easy access to determine the answers to questions that will
arise in the future?

• Are you dealing directly with the decision-maker, or with a proxy?

• When you ask a question, how quickly can you expect a response?

Duration depends on effort plus waiting. Proceeding without waiting can
waste even more effort and leave a lot of work in progress. The open questions
will slow you down more than you might imagine.

Effort also depends on duration. It takes effort to get back up to speed after
an interruption or delay.

Consider the organizational components to the rate at which work can be done.

• Will there be interruptions in the work?
• What else will be going on at the same time?
• Will there be task switching between projects vying for attention?

Consider all these aspects, and any others that come to mind when comparing
the future work to past experience. They are all ways in which that experience
could differ and have a significant impact on the time and effort. Are they
multiplicative or additive effects? How big? Handle these the same way we
saw in Multiplicative and Additive Adjustments, on page 30.

As you consider these aspects, particularly Aspects of the System to Consider,
on page 35, you have a choice to think of the system as a single whole thing,
or as composed of smaller parts.

Gestalt Estimation
gestalt (noun)

an organized whole that is perceived as more than the sum of its parts.

report erratum •

Gestalt Estimation • 41

One way of comparison is to take the project as a whole and compare it with
other whole projects. If you’ve built a number of starter “business card”
websites with little or no active code, you can have a pretty good idea about
how much work the next one will be. The more you’ve done some sort of work,
the more you’re likely to be able to estimate a project that’s similar to one
you’ve done before. Or, perhaps, you might estimate relative to a previous
one: “This seems bigger than the Foo Project but smaller than Baz.”

Dan North makes the point that experienced people in the software develop-
ment field internalize this sense of comparison and don’t have to make
explicit comparisons to past projects. He calls this blink estimation. He tells
a couple of wonderful stories1 about estimating project staffing and duration.
When asked how he did it, he replied, “I got a group of really smart people in
a room, with at least 10 years’ experience each, and asked them.” In effect,
he ran one round of Planning Poker (see Planning Poker, on page xiii) on the
project as a whole, based on the gut experience of people who had studied
the problem and knew the development context. Humans can be quite good
at balancing a whole lot of poorly quantified and tentative knowledge in a
useful way.

Dan offers a number of cautions about this technique. He emphasizes the
need for deep experience, and a diversity of backgrounds and disciplines in
the group. He also cautions to be aware of cognitive biases. (See Cognitive
Biases, on page 72.) The diversity helps fight groupthink, and everyone dis-
playing their answer simultaneously guards against Anchoring Bias. It’s
important to keep things loose and in the realm of estimation rather than
calculation.

Could it be wrong? Of course it could—it’s an estimate! It’s a way to get close
to an answer. If you’re nervous, you can cross-check with a second estimation
technique.

One advantage of gestalt estimation is that it saves a lot of time. It also
defuses the fractal nature of decomposition estimation. People pay attention
to the factors that will materially shift the answer and don’t worry about the
small perturbations.

A disadvantage of gestalt estimation is that you might not have a good com-
parison in mind. Or you might not notice some significant differences without
looking in more detail. That’s why you might prefer comparison of smaller
components.

1. http://dannorth.net/2013/08/08/blink-estimation/

Chapter 2. Comparison-Based Estimation • 42

report erratum •

Decomposition
If you don’t have data that’s similar enough to the whole project, then perhaps
you have data that’s similar enough to parts of it. If the project being estimated
is really large, then it becomes difficult to compare, anyway. This is generally
true in estimation of all sorts. You can judge if two cardboard boxes are
approximately the same size, but you might be hard-pressed to tell if two
counties are. We lose our perspective when the thing to be estimated is larger
than we can view or imagine all at once.

If you break it down into pieces, then there’s more likelihood of those pieces
being similar to pieces of other projects: “The reporting for this project is
similar to the reporting we did last year. And the user interface looks about
the same size and complication as the project we just finished.”

When I had little experience in software development, I fell back on decompo-
sition as my primary estimation tool. I would take the large chunk of work
that I was estimating and imagine doing it as a number of small pieces of
work. If these pieces were small enough, I could imagine how long it might
take me to accomplish each of them. Then it was a simple matter of adding
them up to get my large chunk estimate. This always gave me a number to
report, and sometimes that number was useful.

When you consider breaking the work down into smaller pieces to estimate,
you open a whole new can of worms. How you break it down depends on who
breaks it down. It depends on their understanding of the problem being solved
and the possible ways of solving it. Different decompositions can lead us in
entirely different directions. And there are many ways in which you can fool
yourself. We’ll look at the details of this in Chapter 3, Decomposition for
Estimation, on page 49.

What do you do when you have no appropriate analogs for the upcoming
work, whether or not you decompose it into smaller pieces?

Estimating the Unknown
As you’ve already seen, there’s always the possibility of having items that you
don’t know how to estimate. Some of these are difficult because they’re too
large, and you’ve already looked at decomposition as a means to make them
more amenable to estimation.

Sometimes, though, you don’t have reasonable historical data for comparison.
We can still compare the parts with each other, but that gives us an

report erratum •

Decomposition • 43

ungrounded estimate. How do you turn that into something you can share
with others?

Calibrating to Unknown Context
Perhaps the work is relatively well-known, but the conditions for doing it are not.
You might have a new team that’s not used to working with one another. Or a
team that’s not used to this type of work, or for this client. You can end up with
an estimated pile of work, but no way to associate that with calendar time.

That’s one of the advantages of using Story Points (see Story Points, on page
xii), or, as they were alternatively named, Nebulous Units of Time (NUTS) or
Gummi Bears of Complexity. These fanciful titles are a reminder that you can’t
just add up the numbers and expect a precise and accurate prediction. But you
can use them to plan your work and track our progress. If you start working
and see how many of these you accomplish in a week, you can guess, using the
concept of Yesterday’s Weather, that next week you’ll do about the same.

This gives a current rate of progress, and you can use that to calibrate your
estimates. Be wary here. You don’t know the variability in your rate of
progress. You don’t know the variability in the work. You’re putting a lot of
faith into a small amount of data if you use this to look very far into the future.
The use of Story Points works well for selecting how much work would fit into
the next iteration, perhaps looking ahead two weeks, where the consequences
for being wrong is very low. If you take on too little work, you can bring in
the next prioritized story. If you take on too much, then you won’t get it all
done this iteration. The wise advice was, and is, to have as few stories in
progress as practical, so that it’s no big deal if one or two spill over. This
avoids having them all “almost done” with no trustworthy indication of
progress. This approach also supports projecting approximately how many
iterations it will take to implement a particular pile of User Stories. This
longer-term estimate is more reliable if the shorter-term errors tend to be
wrong roughly equally in both directions.

Calibrating with Industry Data
Another way of estimating the unknown is to purchase the information we
need. Sometimes historical information from some other context is available
for purchase from a consulting agency, for example. They may be willing to
share that information with us if we hire them for their advice. Be wary in
such situations. The nature of such a relationship is that they need to make
their information look as valuable as possible in order to induce us to buy.
It may not be as applicable as we hope. Often their historical information is

Chapter 2. Comparison-Based Estimation • 44

report erratum •

packaged in a high-priced estimation tool. These tools are created by analyzing
a large number of projects and trying to isolate significant factors that affect
the time and cost of them. Some mathematical curve-fitting gives an approx-
imation based on that particular sample of projects. Is your project like them?
In what ways might it be similar to the central measures of that population,
and in what ways might it be an outlier?

Performing a Spike
You can also purchase information by running your own experiments. You
may not know how long something might take to do if you don’t know whether
it can be done at all. When you need some information, consider how you
could learn that information. Often there’s some small but critical bit of info
that you need. Articulate what that critical bit is. Devise the most inexpensive
way that might possibly give you that information. How much are you willing
to spend on that?

This is often called a spike solution, or just spike, evoking an image of a very
slender solution driven through the heart of the problem. I recommend the
following procedure for spikes:

1. Articulate the question to be answered. If it’s vague, it’s hard to tell
whether you’ve answered it or not.

2. Decide how long you’re willing to work on it. Setting a budget is important
to prevent a research project that dwarfs the importance of the question.

3. Work on a solution until either the question is answered or the time
budget has been expended. If you still don’t have your answer, start over
and thinking about it again. Is it worth spending a little more? Would it
likely be more fruitful to try a different approach? Is there a way to bypass
the need for this answer, at least, for now?

A spike is a handy tool for answering many questions:

• Can this library do the job we need?

• Can we develop an algorithm to do the job we need?

• Can we calculate this to the needed precision?

• If we have a data stream that looks like this, can we process it to extract
that information?

• If we offer users a way to do something, will they be interested in it?

report erratum •

Estimating the Unknown • 45

You can also admit what you don’t know, and perhaps can’t know, given your
current circumstances. It’s also worth knowing why you can’t know. That
also gives you ideas about how you could go about learning what you would
need to know. It can also give you credibility over people who are claiming to
know the unknowable.2

How soon do you need to turn this into numerical information? If it’s a small
part of the whole, it’s not likely to have a big impact. There’s enough noise in
the process of estimation that this unknown may be unnoticeable. When you
get to the point where it matters, perhaps you’ll have the information you
need to estimate it.

Building a prototype is similar, though typically larger. Sometimes people
estimate a prototype like they do a production project. Given the uncertainty
that’s leading you to explore, I recommend setting a budget and seeing what
value you can produce within that budget. You retain the option to explicitly
add to that budget if it seems worthwhile.

Stepping Back for a Broader View
Software development estimation routinely depends on comparison to past
experience, either your own or someone else’s experience that has been doc-
umented. Either way, the experience won’t be a direct comparison, because
no two software development projects are exactly alike. There’s no need to
produce the exact same system and, if you were to do that, it would be a dif-
ferent experience because it would be informed by having done it before. There
are too many variables to expect an exact match, but there is plenty of
opportunity for success if you have reasonable expectations about accuracy
and precision.

Some questions you might consider as you’re making such a comparison
include:

• What aspects of this system are the same as the reference experience?
What aspects are different?

• How does the context of this system resemble the context of my past
experience? How does it differ?

• What is similar to past experience about how we’re going to develop this
system? What is different?

2. http://dannorth.net/2013/08/08/blink-estimation/

Chapter 2. Comparison-Based Estimation • 46

report erratum •

• How sure am I of the details of the past experience that I’m using for ref-
erence? What might be missing or misremembered?

Don’t forget that these initial estimates are still estimates. They can be used
to make decisions, but don’t trust them too far. For accuracy, you’ll want to
track your progress and compare it to your initial estimate. In order to do
that, you’ll need to decompose the work into smaller chunks, even if you were
able to come up with a total estimate without doing so.

There’s a number of ways to split up the work, and they have different
advantages and disadvantages. In the next chapter, let’s look at the alterna-
tives and the potential gotchas when decomposing the work.

Now It’s Your Turn
1. Think of your current project. What projects in your past, or your organi-

zation’s past, seem similar to it? Is this one larger or smaller? How much
larger or smaller?

2. Where could you find information about the actual time and effort required
for your reference project? In what ways might that information be
incomplete or misleading?

3. Look back at Aspects to Compare, on page 34. What aspects of this project
are significantly different from the reference you have in mind?

report erratum •

Now It’s Your Turn • 47

CHAPTER 3

Decomposition for Estimation
As we’ve seen, most approaches to estimation involve breaking the work down
into smaller chunks and estimating the chunks. Not only does this make it
easier to get a chunk of work for estimating completely in your head at one
time, but it’s more flexible when you change plans and want to replace some
planned work with something else.

Not all approaches to decomposition are the same, however. Which way
should we split it? How small should the pieces be? Should they all be the
same size? What do we do if we don’t know how to make them the same
size? These are some of the issues we’ll explore in this chapter. In addition,
there are some traps for the unwary, which we’ll explore in Decomposition
Gotchas, on page 64.

The way you approach decomposition can affect not only your estimates, but
also your ability to validate your estimates. Decomposition for estimation can
also bleed through to the work itself; it’s likely you’ll use the same decompo-
sition you used for estimating when planning the work. And if you’ve put
more effort into planning than the current needs warrant, you’ll find it more
difficult to change those plans when it becomes apparent they’re obsolete.

Let’s look at some different ways to decompose the anticipated work for esti-
mation. After you’ve decided how to divide the work, then you can consider
how much to do so.

Which Way to Slice?
I’ve often pondered the different ways chicken is prepared in European recipes
versus Chinese ones. European cooks tend to separate the chicken at the
joints. This gives us well-defined, identifiable and named pieces of chicken:
this is the thigh and this is the leg. In Chinese cuisine, the cooks tend to chop

report erratum •

the chicken in the middle of the long bones rather than between them. I used
to think this was “wrong,” but I now see some advantages to doing it that
way. This opens access to the marrow and takes away the temptation to
remove connective tissue in the joints. These are two things that can add
flavor to stewed chicken. And with a sturdy, sharp knife, chopping the
chicken at arbitrary points can be done very rapidly. I’ve come to the conclu-
sion that both approaches have value and both have advantages and disad-
vantages. You can choose which way you want to work based on habit or
based on how those advantages and disadvantages work for your needs.

The same situation applies to software development. There are ways to divide
the work that gives you recognizable pieces that are easy to name. And there
are ways that provide a bit more value.

There’s More Than One Way to Cut a Chicken
Blaise walked into the project manager’s office. "You asked me to look at the code and documen-
tation of the old call center. I’ve gotten through it at a high level."

Marion replied, "Great, what have you found?"

"There are a couple of major components: an automated call distributor or ACD to forward calls
to an appropriate customer service representative, and an Interactive Voice Response system
or IVR to let the computer chat with the caller before transferring them to a human. Then there
are a handful of interface components to connect to the phone company, the company’s PBX
internal phone system, the CRM customer relationship database, and the CSR’s screen. These
can logically be clumped into two efforts, one for the phone systems and one that’s customer
centric. That and the two major components give us four components to specify and estimate."

"Blaise, those components make sense, but I don’t want to implement component by component,"
Marion replied, "nor estimate by component. I’ve found it too risky. Let’s talk with Ryan and the
customer service representatives to find out how they actually use the current system. I’m sure
we’ll need a part of each component for their first Use Case."

Decomposing by Phase
When working in a linear phased, or waterfall, approach, it is common to
decompose into development phases and estimate those.

“We’ll spend a month on the System Requirements and another month on the
Software Requirements. Then, we’ll hand those to the Solution Analysts who’ll
have a month for the Analysis Phase. They’ll give it to the Software Architects
who’ll have a month for Program Design. That’s four months, so we’ll give the
programmers eight months for Coding and the Testers two months Testing. Just
to be on the safe side, we’ll add another two months for remediation of any prob-
lems the Testers might find.”

The advantage of decomposing by phase is that, when you’re working
according to a phased software development lifecycle, you’ve already got the

Chapter 3. Decomposition for Estimation • 50

report erratum •

phases laid out for you. And they’re the same from project to project. You can
take the estimation from your previous project and edit it for this one. Most
likely you’ll keep some phases the same, and multiply others by a factor
representing your hunch of relative complexity. You’ll quickly check off the
box for “Rough Order of Magnitude Estimation Document.”

The disadvantage is that it will be a long time before you can test the accuracy
of that estimate. The early planning and design phases typically just produce
documents, so it can be rather difficult to determine how “done” they are.
That makes it temptingly easy to declare them “done” when the estimated
time allotment has expired. When programming and testing are treated as
separate phases, the same strategy is casually applied, too often, to program-
ming, too. By the end of the coding phase, the program has to look like it
works to the programmer and casual observers. This is admittedly harder
than producing a document, but are we really sure that it’s done in the time
allotted in the plan?

Only testing, coming at the end of the chain, is sure to exceed its estimated
time allotment. That’s where the mistakes and holes in the programming
phase are discovered. That’s where it may be found that the programmers
accurately implemented an unsuccessful design. That’s where omissions and
inaccuracies in the Requirements and Analysis phases are discovered. Testing
has to absorb all the rework in planning, design, and programming that has
gone unnoticed in the interest of “meeting the estimates.”

If a phase has errors and omissions, can it really be said to be done, even if
we stop working on it after the estimated period of time? It can look like our
estimate was accurate, but we can’t verify that until later, when we find out
whether or not it was satisfactorily completed. Estimates that can’t be com-
pared to actuals until the end are a huge risk. If there’s no way to be sure
that an isolated part of the work is truly done, then there’s no way to validate
the estimates along the way. We’ll explore this ongoing validation in more
detail in Chapter 8, Planning for Incorrect Predictions, on page 163.

Decomposing by Implementation
Estimating component by component is another common way of dividing up
the work. The architect draws up a diagram showing named compo-
nents–Billing, Advertising, Catalog, Order Entry, Warehouse Picking, Shipping,
and some possible “framework” elements to connect them, such as an
Enterprise Service Bus. Or it could be as simple as Front End (user interface),
Back End (business logic), and Database (data persistence). Whatever the

report erratum •

Decomposing by Implementation • 51

choices, these are the components that are presumed will result in the desired
functionality.

Then, for each of the components, people think about what functionality
belongs to that component, and estimate based on that analysis. There are
some advantages to this, as the time to build out the database schema is
roughly correlated to the number of tables needed. The problem is that this
presumed need is not tested by actual use by the client code. What if actual
use requires a different schema? That becomes unestimated rework.

Working component by component is also a common way of approaching
implementation, assigning a team or even an individual to be expert on each
component. Since the developers have a pretty good idea of when a component
is done, they have some idea of how accurately the estimates are panning
out. Unfortunately, that idea of “done” often does not include integration with
other components. There are seams between them where undoneness can
lie hidden. This can spring some nasty surprises when integration finally
happens.

Correctness can also be hard to judge. If we say the database schema is fin-
ished, what does that mean? Does it mean it looks complete now? Does it
mean it won’t need any changes in the future? How do we tell a database
schema is correct until we use it for the intended purpose? The value of a
component mostly lies in its use by client components. Until that use happens,
we can’t be sure that the component is meeting the needs of its clients.

Often the development of components is staged so that a component that
depends on another is developed after the dependency. This reduces the
apparent need for collaboration. If the client component is developed by a
different team at a different time, though, then problems discovered in the
earlier developed component require that component’s team to revisit it,
causing delays in this project and likely in whatever else they were working
on. Or, the team developing the client component could possibly create their
own workaround, which would be a delay for them plus a degradation of the
intended architecture.

The risks of major problems with these first two approaches always leads me
to prefer the third.

Decomposing by Functionality
Rather than dividing the work by the development activities being performed,
or the software architectural components used, you can divide it by the
functionality being implemented. This is called a functional slice both because

Chapter 3. Decomposition for Estimation • 52

report erratum •

it’s thin and because it cuts through the different components of the system.
It even tends to cut through the different development activities if you’re
practicing evolutionary design.

What’s a functional slice? It’s a chunk of work defined by what it does rather
than how it’s built. “Getting to the train station” indicates functionality. It
doesn’t mention the “how” of driving a car or any alternate means. It concen-
trates on the “what” of the desired outcome. You could satisfy “getting to the
train station” with a low-budget solution like walking, and then replace that
strategy later when higher performance was required.

Advertising

Billing

Catalog

Warehouse Picking

Order Entry

Shipping

Framework

System
 Requirem

ents
A

nalysis
Program

 D
esign

Program
m

ing
Testing

Estimating by functional slices has a lot of advantages. First, these slices are
things that those asking for the software can understand. They can verify whether
they’re done or not by trying out the system. The functionality cuts through the
component boundaries, ensuring that they’ve been integrated. There’s still
opportunity for unnoticed failures to meet performance or other -ility goals. And
if the limits of the functionality are not well understood, it’s likely that the scope
will grow a bit. Overall, though, working by functional slices has the least risk
of all the ways I know to decompose the scope of work.

User Stories
In agile software development, when people think of functional slices, they
often think of User Stories. This is a term and technique originating with
Extreme Programming. As usage of the term has spread, the understanding
of it has become a bit fuzzy.

report erratum •

User Stories • 53

A User Story is a small slice of functionality that’s describable in terms of the
user’s goals and capabilities. It’s so named because it involves an interaction
with a system user, either accepting input or providing some observable result,
and usually both. In general, a User Story is smaller than a Use Case, which
is a more comprehensive set of related interactions. I often think of it as a
single path through a Use Case. Each alternate flow would likely make a
separate User Story.

Like a Use Case, a User Story describes the system requirements from the
point of view of interactions and responses. When the system does all the
things you want it to do—in other words, all of the User Stories have been
implemented—then the system is ostensibly completely functional. It’s either
that or the list of User Stories was incomplete.

By using User Stories to define the system by the things it needs to do, you
can also estimate the work using them. How much time and effort would it
take to add this User Story’s increment of functionality to the system?

Some people think that a User Story is described by the Connextra format:
“As a <role> I can <capability>, so that <some benefit>.” This, however, is just
the title of a story, and a wordy title at that. It’s worth noting that the origina-
tors of this format went back to using short titles very quickly, once they had
reminded themselves to consider the benefits to the user. The heart of a User
Story is a conversation telling the story about the user’s needs.

“Say that Joe has been handling the Parsnip Industries account, but Joe is going
on a two-month cruise with his wife to celebrate their twenty-fifth wedding
anniversary. While he’s gone, Joe wants to delegate the Parsnip Industries work
to his colleague, Sue. With regard to that account, Sue should be able to do
everything that Joe can do, enter new orders, expedite existing orders, update
orders, and so on. Upon his return, Joe wants to take charge of the Parsnip
Industries account again. Everything that Sue had done in his stead should be
visible to Joe, and he should be able to perform operations on these items just
as if he’d entered them himself.”

Notice that there is quite a bit of functionality here. It’s not a single interaction
with the system. This is not a small story.

Big and Small Stories
Some people call this a feature, as “Delegate an account” might be the name
of something you would put in the advertising brochure. Some people call
such stories “epics” because of their size, but they’re not as grand and poetic
as that might suggest. Instead, the term “epic” suggests that the story is

Chapter 3. Decomposition for Estimation • 54

report erratum •

intended to be further split before implementation. There’s no universal
naming convention for big stories, so I often just call them that, Big Stories.

While this story is large for implementation, it might be just the right size for
estimating in the moderately long term. For implementation, split your stories
into slices that can be implemented in two days or less. This will let you see
the progress. Larger stories seem to disappear into a black hole, and you can’t
tell if they’re stalled or not.

This story might be split into a number of smaller stories like the following:

• An account can be delegated.
• A delegated account can be undelegated.
• A delegatee can enter orders on an account belonging to the delegator.
• A delegatee can update orders entered by the delegator.
• A returned delegator can update orders entered by the delegatee.
• …

For each of these story splits, explicit acceptance criteria should indicate
when that User Story has been satisfactorily completed. This acceptance cri-
teria should be illustrated with example scenarios that can be verified. Ulti-
mately this can get quite detailed. That’s not surprising, given the detailed
nature of telling a computer what we want it to do.

Each of the small story splits can be estimated. In fact, that’s the level that
most people expect to estimate, using Story Points, on page xii and Planning
Poker, on page xiii. It’s my experience that estimating such small stories
generally takes more time and effort than it’s worth. For short-term estimates,
such as how much work a team can accomplish in the next two weeks, just
count the stories. If you’ve kept track of how many stories the team accom-
plished in the last two weeks, that’s probably a close enough estimate, and
requires less work. (See Counting Stories, on page xiii.)

For longer-term estimates, I don’t recommend going down to the small story
level. That is also a lot of work, and things can change between now and when
you go to implement those stories. Plus, it results in A Large Number of Small
Parts, on page 57 which has its own challenges.

Completing User Stories
Implemented User Stories can provide value even when the full list of User
Stories has not been completed. For the most part, User Stories can be added
to the system in any order that makes sense at the time of implementation.
Usually this order is determined by priority of value or minimizing risk.

report erratum •

User Stories • 55

Necessary system support is built as needed by the story. This adds another
ordering priority–simplest first. The ability to create usable functionality in
an arbitrary order makes User Stories a great building block for incremental
and iterative development.

One of the big advantages of tracking progress by User Stories is that, as
functional slices, you can test to verify that they’re completed. User Stories
are determined to be implemented when all of the example scenarios are
verified. Given that they’re small and rather unambiguous, User Stories are
excellent for estimating short-term milestones and tracking progress during
development.

Decomposition Decisions
Deciding which way to slice the work for decomposition is only the first step.
There are a number of other choices you must make when estimating by
decomposition. Again, you can make your choices by habit or by examining
how the choices fit your needs.

One of the most obvious choices is how far you go in decomposing the work
for estimation. You need to decide how far to slice it. Do you make a detailed
list of items or just a few major categories? And how much to slice it now
versus how much later.

Finding the Big Picture Functional Requirements
Sage, a senior customer service representative, groused, "I hope this meeting doesn’t take too
long. I don’t want it to affect my performance numbers."

"Don’t worry, Sage. I’ve got you covered. I’ll put a special note in the monthly report," Tracy, the
Manager of Analytics replied. "Besides, Ryan really wants this done right. If the Director of Cus-
tomer Service thinks it’s important, it won’t be held against you."

Marion, the IT project manager jumped in. "We’ll try to take as little of your time as possible, but
we really need your expertise to do this right. Let’s start with the primary needs. Call centers can
work in lots of ways, but how do we use our call center at Empire Enterprises? What is your typical
day like?"

"Mostly I and the other reps get calls routed through our headsets. We pull up the CRM system
data for that customer, so we know what they’ve got and any history to their issue. We also use
that to record the important details of this call. If we can answer their questions, we do that and
close the issue. Some issues are more complicated, though."

"How does the system know which rep gets which call?" Blaise asked.

"Mostly by the phone number that was called. We have different customer service phone numbers
for different divisions of the company. Most reps are only familiar with one division."

…

Chapter 3. Decomposition for Estimation • 56

report erratum •

After Blaise and Marion got the big-picture view of how the system works from the customer
service representative point of view, Sage went back to work and they talked with Tracy about
the metrics gathering. They didn’t go into great detail, just enough to understand the major
needs and a little bit of background on why they were important. The details could come later.

What would happen if they continued digging into those details right now?

A Large Number of Small Parts
If Blaise and Marion continued digging into the details of the requirements
they’d discovered, they’d probably end up with a large number of small parts.
People have a tendency to want to do the things they’re doing completely.
That’s understandable, but maybe not all at once.

An advantage in estimating small pieces of work is that these pieces are more
easily comprehended. Because they are small and easier to comprehend, they
are easier to estimate. Being small, they are also more likely to be similar to
something we’ve done before, and that makes them easier to estimate as well.

And, when you add all the estimates up, you’ll get a number with higher precision
because of the large number of pieces. That may not make it more accurate,
but it’s generally more impressive. This is often called the Precision Bias or
Numeracy Bias, which inclines people to give more trust than they would to
round numbers. It “seems scientific.” (See Cognitive Biases, on page 72.)

Seriously, round your results when you add up your small estimates. There
is no way you’re going to have three digits of precision given the nature of the
input numbers. That extra numerical precision is just noise. Filter it out.

The approach of breaking everything down to small parts, specifically estimat-
ing long-term work decomposed into User Stories (see User Stories, on page
53), is the most familiar to most Scrum teams because it’s the approach
described in Mike Cohn’s Agile Estimating and Planning [Coh05]. Mike got this
idea from Kent Beck’s approach on the original Extreme Programming project,
the Chrysler Comprehensive Compensation (C3) project. I asked Kent Beck
about this, and he recollected that they started with a backlog of about 18
months’ worth of stories, but I didn’t think to ask him how big these stories
were. He didn’t remember, after 20 years, how much churn there was in that
backlog. Based on my observations of a number of companies, I would recom-
mend not breaking down that much work to the detailed story level all at
once. See Decomposing into an Unmanageable Number of Pieces, on page 66
for more on this.

report erratum •

A Large Number of Small Parts • 57

A Small Number of Large Parts
The other end of the scale is to break the planned work down into a small
number of large parts. This reduces the amount of work at the start of the
project, especially that time-consuming work of chasing down all the details.
It’s good to defer as much of the detail until later, when you know more, as
you can.

It’s quite possible you can get a gut-level feel for how big these large parts
might be, especially if you’re not too concerned about high precision. If you
don’t have a comparison of equal size, you might compare with something
that seems similar, but smaller. Then you can imagine how many of these
smaller items would fit into this one big one.

The Achilles heel of this approach is, of course, that the large parts may be
just as hard to estimate as the whole. Large chunks of work are hard to get
your head around to get a feel for how large or complicated they are. Large
chunks are fuzzier in definition, so it may be difficult to tell with certainty
whether something is part of that chunk or belongs elsewhere. This makes
it difficult to declare any of these chunks completely done.

It’s also harder to find good analogs for the large parts in your past experience.
Unless you’ve been doing very similar projects, as the size of the parts you’re
comparing goes up, the probability of having similar experience goes down.

It may seem like you’re caught between a rock and a hard place with small
parts that are too numerous and large parts that are too hard to estimate. If
you’re stuck on this, be patient. We’ll look at a middle ground shortly, in
Multi-Level Decomposition, on page 62.

Affinity Estimation
Sometimes it’s hard to give an estimate to each of the decomposed parts. Or,
if it’s not hard, it’s tedious. When you’ve got a large number of parts to esti-
mate, comparing each of them to past data can be a lot of work. You can do
this work more efficiently if you first “bucket” them into rough sizes. Often
people use what they call T-shirt sizes—small, medium, large, extra-large.
Then, you can compare the typical item in each bucket with past experience,
and estimate all the items in that bucket to be roughly similar.

Sorting the Big Call Center Stories
Marion and Blaise sat down with their notes from their meeting with Sage and Tracy. Marion put
the list of major functional needs they had identified on the table.

Chapter 3. Decomposition for Estimation • 58

report erratum •

• Call Routing

– Routing based on number the customer dialed

– Routing based on continuity of an ongoing issue

– Routing based on representative availability

– Balancing the workload between reps

• CRM Interface

– Display customer by service rep search

– Display customer based on caller ID

– Display customer based on info collected by IVR

– Enter new data during call

• Analytics

– Monitoring the System

One of the current issues is that "once or twice a week there’s a 10–15 minute gap with
no calls at all." To debug that, we need to longitudinally monitor each call—when it
came in, when it was routed, when an agent picked it up, when they finished with it.

– Monitoring Customer Satisfaction

• How quickly are issues resolved? Calendar time, number of calls, call minutes.

• Time in IVR? Time between IVR and talking with a human.

• How many reopened issues?

– Monitoring Agent Performance

• # of issues resolved

• # of calls per issue

• # of issues remaining open

Blaise looked at the list. "There’s probably a missing story for reporting on analytics, but most of
the analytics items look about the same size. The outlier is ‘Monitoring the System.’ That cuts
across a lot of things. Much of the details will be included in other analytics stories, but the big
unknown is how to trace one customer interaction across different components implemented
with different third-party frameworks."

They studied the list some more. "Interfacing to the CRM system should be about the same for
searching and for updating. Interfacing to the Caller ID and IVR systems add a little, but if we’ve
already built a CRM interface for searching, that should be a wash. I’d call all of these about the
same size."

Blaise went on. "Call routing maintaining continuity with a given rep for an ongoing issue is
going to have lots of little but important details. I’d say that’s bigger than the others in Call
Routing."

report erratum •

Affinity Estimation • 59

"What about across the categories?" Marion asked.

"Without including the reporting, the analytics stories seem the smallest. Except for ’Monitoring
the System,’ of course. I’m not ready to give that a size. The CRM stories and the smaller stories
in Call Routing seem roughly the same size, but bigger than the analytics stories. Let’s call those
’medium’ sized. Then ’routing based on continuity’ can be a ’large.’ That gives us four piles: ’small,’
’medium,’ ’large,’ and ’don’t know.’ That was quick! It was easier than I thought it would be."

How many buckets do you need? And what if you start at the wrong place?
If you say “this” is a medium, then you may find that you need more buckets
on one side or the other.

Sometimes it’s easier to sort things into unnamed buckets and see how many
you need. Is this item bigger than the ones in that bucket but smaller than
the ones in the next? Let’s put a bucket between them. When you’re done,
let’s look at where the gaps in size seem to be. Some gaps between buckets
will seem smaller than others. Do the items in this bucket seem only slightly
larger than the items in that bucket? Consider combining the contents of
both into one bucket.

Grouping in this manner is called affinity estimation and is useful for reducing
the complexity of the job. Most of the time, people find that the items seem
to naturally fall into groups. One of those groups might be labeled “I have no
idea.” That’s OK. There’s advice on dealing with the unknown in Estimating
the Unknown, on page 43.

Ordering the Parts
When you’re estimating how long it takes to drive somewhere, the road con-
stricts what can happen first and what can follow after that. The decomposed
parts are almost certainly various stretches of road. Geography limits the
order in which you can travel those roads.

When you’re estimating software development, you have a wide range of
choices about the order in which you do things. The way you decompose the
whole into parts is almost entirely up to your own ability to conceptualize it.
This freedom comes with a cost. Some orders may be harder and therefore
more expensive than others. Other times, there’s an initial cost to pay for the
first of several similar items, but their order doesn’t otherwise matter.

• You can add the additional effort to one of these arbitrarily. This can be
misleading if someone doesn’t notice the relationship between the items
and reorders them.

Chapter 3. Decomposition for Estimation • 60

report erratum •

• You can average the additional effort across all the items. This is mis-
leading as it doesn’t represent the reality of the cost being paid with
the first item.

• You can split out the scaffolding into a separate item. This is risky, as its
relationship to the items might get overlooked. It’s not generally valuable,
or perhaps testable, on its own. It needs to be paired with one of the User
Stories.

All of these require special attention to avoid fooling people, but the conse-
quences are generally low. Any of them can work, with a little care.

The assumed order of the identified parts can have an effect on the riskiness
of the estimation. Working by functional slices, as ed in Which Way
to Slice?, on page 49, lets us judge how finished a work item is, reducing the
risk of unnoticed incompleteness. There are differences, though, in how people
form functional slices. Some people are satisfied if there is some measurable
output. Using this definition, being able to test a method in a test harness
counts as measurable output. At the other end of the spectrum is output that
is being used. If people are using the functionality for their daily work, they
are likely to notice most forms of incomplete implementation.

Build what Alistair Cockburn calls a “Walking Skeleton.” (Crystal Clear: A
Human-Powered Methodology for Small Teams [Coc04])1 This gives a framework
supporting a subset of usage from inputs to outputs. Elaborations can be
hung on this framework to expand the range of usage. If there is a hard stop
deadline, then prioritization of the most common and most critical use cases
can reduce the risks of missing it. You can stop there and adjust the
requirements to match what has been built.

This may seem like a cheat, but it’s not. It’s sometimes true that delivery is
more important than being full-featured. Some of the requested features may
be speculative to handle situations that have never arisen. Some situations
may be so rare that it’s more cost effective to handle them manually than to
automate them. A design that is grown from a Walking Skeleton should already
have the means to detect and enable manually adjustment of situations that
cannot yet be handled automatically. These are capabilities worth having in
the delivered product.

1. Also see https://web.archive.org/web/20171205050356/http://alistair.cockburn.us/Walking+skeleton

report erratum • discuss

Ordering the Parts • 61

Starting Your Walking Skeleton

As a rule of thumb, it’s best to start with the output of the system.
Even if the system inputs are hardwired and it’s only suitable for
one situation, you can use it in that situation to get feedback, as
well as potential business value, earlier.

If you’re replacing a legacy system, whether automated or paper,
it’s easier to drive the fledgling new system from some point within
the flow of the old system than it is the other way around. Then,
work your way back toward the inputs. You’ll have some flexibility
and can decide whether it’s better to elaborate the later stages, or
continue to replace legacy functionality with the new skeleton.

Multi-Level Decomposition
When the small number of large parts leaves me with parts still too big to
estimate, I often take the first (in development order) of those parts and break
it down again.

Can you estimate the first item? If not, you can decompose that first item in
a similar fashion. Now you’ve got smaller, more easily estimated items. If it’s
still too big, you can repeat this strategy.

In extreme cases you might need to go to a third level of detail, but realize
that each time you’re increasing your uncertainty. That’s to be expected. The
longer the time horizon, the more uncertain you are. You don’t want to forget
about that uncertainty, though, lest you fool yourself.

I don’t think I’ve ever gone beyond three levels of doing this—but I could if it
helps.

Breaking It down Another Level
"I know what we’re missing," Blaise said. "A simple end-to-end Walking Skeleton. Before we route
a call based on the number dialed, let’s support a single customer service rep and route any call
to them. Before we build a CRM customer search screen, let’s support only a single customer
and pull them up automatically. This will connect the major pieces and make sure they’re inte-
grated from the start. Then we can add all the other features to this basic framework."

"What size would that be?" Marion asked.

"I’d say another ’medium.’ It’s got some minor unknowns about the integration points, but that’s
the point of it. If it weren’t for those, it would be tiny."

"Let’s break it down."

"That seems pretty simple. We need to…

• recognize the call,

Chapter 3. Decomposition for Estimation • 62

report erratum •

• forward it to a single CS rep station,

• and display a customer on the CRM system.

I think that’s sufficient for now."

Once you get something small enough to estimate, then you can use relative
comparisons and affinity grouping to estimate the other large parts that are
not broken down in detail. This leaves you with a fairly high level of uncertain-
ty, but does provide ballpark figures. And as you complete the early work,
you can recalibrate your estimate with your actuals so far.

You can then extrapolate from that first item, both from its estimate and,
later, from its actual. You will have built a really long lever when you do this.
A small variation in the initial measurement makes large variations in the
expected total. Hold this expectation loosely and check it along the way.

Rule of Thumb: How Many Parts?

For longer term estimates (e.g., longer than a few months),
decompose into a half-dozen to three dozen parts, not hundreds.
Less than a half-dozen gives too little help. It requires you to do
a major amount of the work before you have any information. Also,
the fewer the parts, the less they naturally fall into similar sizes.
More than three dozen requires too much detail. Unless you’ve
done something quite similar and kept good notes of that experi-
ence, it will be a major effort to develop the list and will become
more likely that you’ve neglected items. It’s best if the decomposed
parts seem roughly similar in size, less than an order of magnitude
difference. If you can’t do this, you can’t—but trust the results
accordingly.

Comparing Big Items with Small Ones
How big is that building? How big is that city? You could estimate both in
terms of the number of people they could hold. If you estimated the capacity
of all the buildings in the city and added them up, you’ll get quite a different
answer than your direct estimate for the city. In part, that’s because the
capacity for cities and buildings have somewhat different meanings, and
partly because we think of cities and buildings differently, which is reflected
in our estimates.

Frequently, I see people trying to estimate large chunks of vaguely defined
functionality, epics or features, using an extension of the same scale they
use to estimate small slices of more explicitly defined User Stories. They may

report erratum •

Comparing Big Items with Small Ones • 63

use the numbers 1, 2, 3, 5, 8, 13, 20 for the small slices and 100, 200, 300,
500, 800, 1300, 2000 for the large chunks to keep them separate. The
temptation is great to perform simple arithmetic to group a number of small
slices into one large chunk, or break a large one into a number of small slices.
There are even agile project management tools that do this automatically,
with no way to override it. This hides the uncertainty in your estimates and
story slicing.

Life is not that simple. If you do this, you will surely fool yourself. Estimate
stories of different granularity separately. Use different scales so others don’t
get confused. For large items, you might use T-shirt sizes—small, medium,
large, extra-large. Or use something unusual to emphasize the imprecision.
I’ve heard of using animals—rat, cat, dog, pig, cow. The astute reader will
notice that, in unusual cases, there are overlaps in the sizes of these animal
categories. You’re likely to find similar overlap in your story sizes. Certainly
no one will assume that two cats equals one dog.

How many explicitly defined slices fit into one dog? That’s an estimate. You
can decompose the dog-sized chunk of work and count the smaller pieces.
Or, if you prefer, you can estimate the smaller pieces and add up those esti-
mates. Either of those is a starting point.

When you implement those smaller pieces, you get a chance to see what you
got wrong. Some people like to compare estimates to actuals. If you do that,
there’s a temptation to relate the small scale to the large scale using these
actuals instead of the estimates. Resist that temptation. At the times you
need the relation between items on the small scale and items on the large
scale, you’ll only have estimates available.

You can, however, check the aggregate time for all the smaller pieces to get
one data point on how long a dog-sized chunk of work takes. And, if you pay
attention as you go, you can count up all the small slices that were discovered
while you implemented the functionality. This gives you a feel for how much
work is still invisible when you’re considering future large chunks of work.

Decomposition Gotchas
The law of large numbers says that random errors tend to cancel each other
out. Beware, however, of errors that are not random. If the errors are an
integral part about how you’re doing the work, they are more likely to reinforce
each other than to cancel out. If you’re adding up a large number of small
estimates and the errors all tend in the same direction, the resulting error

Chapter 3. Decomposition for Estimation • 64

report erratum •

will be large. This can catch you by surprise if you don’t consider the system-
atic errors that may exist in your estimation process.

Here are some common causes of accumulating errors. Watch out for them.
As the proverbial “they” say, “forewarned is forearmed.”

Making Consistent Size Errors
You may consistently imagine the pieces as larger or smaller than they are.
When you estimate a lot of small pieces, you don’t expect to get each estimate
“right.” It’s perfectly fine that you’ve estimated two tasks at 3 hours each, but
one takes 2 hours and the other 4. The errors cancel out and your overall
estimate is useful to you.

If you have a consistent bias in your estimation, though, the errors add up
and your overall estimate is likely further off than if you’d estimated the large
chunk as a whole. In software development, the empirical evidence is that
most developers are optimists. They underestimate much more often than
they overestimate. That’s rather a shame, because underestimations are less
likely to be challenged, and cause us more disappointment down the road,
than overestimations.

As described in Calibrating to Unknown Context, on page 44, once we get
started, we can easily adjust our expectations by calibrating them with
actual results. This might be too late for some people, who might have built
a rigid plan on the early uncalibrated estimates. It’s good enough for those
who are flexible enough to accommodate reality.

Most of the time, you’d like your errors to cancel out, so your result is still
accurate even if individual estimates are wrong. Sometimes, however, you’re
trying to avoid some calamity. If you estimate such that all the errors are
intentionally in the direction of that calamity, you should be safe should the
result still be in the safe zone. This reduces risk at the cost of reduced accu-
racy. (See Danger Bearings, on page 167.)

Overlooking the Space between the Pieces
One of the typical ways to consistently underestimate the time required for
a piece of work is to focus on the core of the work and neglect the periphery.
Software developers think about the programming part. They may not consider
the work to get their local environment ready to do the programming, setting
aside any partial work and updating with the appropriate source code and
libraries. They may neglect the time it takes to read the code to understand
the details of the needed change. They may forget the time it takes to verify

report erratum •

Decomposition Gotchas • 65

that the change is correct, and that it hasn’t broken existing functionality or
introduced any new problems.

Years ago, I had a project lead who asked me to estimate how long it would take
to fix a reported bug in some code written by a colleague who’d since moved to a
different project. I looked at the bug report and made a list of the changes I would
have to make. Then I estimated how long it would take to edit, compile, and verify
each of those changes. I handed this annotated list to the project lead. He took
one look at it and said, “You can’t do any task in 10 minutes. It will take you
longer than that to checkout the code, find the place to change, and check it in
again. Never estimate a programming task at under 30 minutes.” That’s when I
realized that I was only estimating part of the required work, the programming
part on which I was focused, not the necessary parts that enabled the program-
ming. I was also leaving out the context switching from one item to another.

Overlooking Some of the Small Pieces
When you build the list of pieces of work, you try to include every task that’s
required to accomplish our goals. That’s a hard job, of course. When you’re
doing the work, as you go to make one change you realize “Oh, that’s connect-
ed to this; I need to change it, too.” The work itself prompts us to notice
related tasks. When you’re just listing them, those related tasks may be left
off the list. This almost certainly leads to underestimation.

I once worked for a company where those estimating the work for bids
neglected to consider the work to migrate the data from the customer’s old
system to the new. This happened for two or three bids in a row before any
of the projects got far enough along to realize this omission. Since the price
for the work had been heavily dependent on the estimates, this was a major
blow to the profitability of those projects.

Of course, you might also add tasks that aren’t really necessary, and then
overestimate. “We need a method to handle negative input values; oh, I see
it already handles those.” This happens much less frequently, in my expe-
rience.

Decomposing into an Unmanageable Number of Pieces
The whole may be so big that it takes a huge number of small pieces. When
you break your work down into a large number of pieces, the decomposition
itself is a lot of work. It’s also subject to a lot of error, as it’s depending on
pretty detailed understanding of future work.

Chapter 3. Decomposition for Estimation • 66

report erratum •

How Many Stories Can It Be?

I’ve asked around and found it not too uncommon for people to
report starting a project with a backlog containing a thousand or
more stories. That’s a lot of stories! How do you fit the concept of
the project in your head when you’ve broken it down into that
many discrete pieces?

This is an all-too-typical example of trying to get the requirements
complete before starting the project. Sometimes that drive for
completeness comes from a vain attempt to calculate a high-pre-
cision estimate of how much effort it will take. Striving for certain-
ty, people spend an inordinate effort to capture all the details at
the start.

Take, for example, the frequently recommended practice of breaking a planned
release into User Stories for estimation. A User Story is a small slice of func-
tionality that adds “one thing” to the system being developed. It has observable
completion criteria, so you can tell when it’s done. It is a useful tool for getting
things done on a development project. Getting one baby step done before
going on to the next acts like a ratchet, moving us forward and preventing
us from slipping backward. In order to act like a ratchet, the stories need to
be pretty small—something we can accomplish in a short period of time before
we go to accomplish the next small thing. As a rule of thumb, teams should
size User Stories such that they take a day or two of calendar time to
accomplish. It doesn’t matter how many team members might be working on
the story to get it done in that time. And it’s alright if the stories are smaller.
When I’m working by myself, I generally prefer them smaller.

If a three-month (13 weeks of 5 days) release is broken into User Stories that
take two team-days each, then that’s about 32 stories. That’s a lot of stories,
and it’s even more if multiple stories are in progress simultaneously, or if
some of the stories are smaller. If half the team gets involved in each story,
and half of the stories are only one day, then our story count balloons to 96.
Imagine the team churning through a list of 96 stories at the start of the
project so that they can know what fits into three months, or that they can
know how long it will take to do what they want. Sounds like a lot of effort,
doesn’t it? (And this is for a small project.)

As they expend that effort, they learn a lot of details about those stories. We’ll
want to record what they learn so they don’t have to relearn it later. That will take
more effort, especially to record it in a way that won’t be misinterpreted later.

report erratum •

Decomposition Gotchas • 67

How Much Work Could It Be?

How hard is it to create a backlog of a couple thousand "story-
sized" and bigger items? In one case, I’m told it took a few dozen
people three months to list them all. They were deriving them from
a legacy system that was to be retired, as well as asking subject
matter experts in the company. Unfortunately, nobody seemed to
know why some of the legacy functionality was in the system.

As they learn the details, some of these details build on details they’ve learned
or decided before. But since they’ve just learned them in a short time, they
often forget some. It takes time for learning to “soak in.” The prior thoughts
are likely to be stronger, asserting themselves in later decisions. So far, in
the hypothetical scenario, they’ve only talked about the system. They haven’t
actually built anything with which they can interact. That’s a clue that some
of the details they’ve “learned” are certainly wrong, but they don’t know which
ones, yet. As they build the system and interact with it, they’ll learn more,
and they’ll learn more deeply. Do they abandon the early pre-start learning,
or do they try to maintain it, fixing it where it’s incorrect and incorporating
new things they’ve learned? Either represents extra work.

What Happens to These Stories?

While the attempt to be complete may seem heroic, it turns out
to be misplaced effort. In some cases, the stories start to be quietly
deleted as early as two or three months after building the list. Why
quietly? It seems embarrassing to throw away the result of so
much work. In fact, I suspect that some people realize there are
a lot of extraneous entries in the backlog far earlier, but may be
unwilling to speak up. The Sunk Cost Fallacy makes us value
what has been costly, just because we paid that cost.

Adding insult to injury, in all the cases I’ve heard of people devel-
oping a "complete backlog" at the beginning of a project, there was
always new information uncovered later. That complete backlog
continued to grow over time, in spite of having unneeded items
included.

I frequently hear or read about people suggesting the use of User Stories for
relatively long-range planning. Sometimes they mean something as short as
a release in a few months. Sometimes they’re talking about multiple releases
over a year or two. In all of these cases, they’re talking about breaking down
the work to be done into small slices, so that they can better measure it’s

Chapter 3. Decomposition for Estimation • 68

report erratum •

perceived size for predicting the future. This is a great deal of planning up-
front, when people know the least about the work they need to do.

All in all, creating a long product backlog of User Stories is very reminiscent of
creating a detailed Work Breakdown Structure at the start of the project. It
starts to separate the work into distinct phases that are executed in a linear
fashion. The details of User Stories are typically oriented more in functional
terms than construction terms, but it’s still a difficult and error-prone way of
defining the work. It does, of course, let us come up with numerical estimates.

Making the Whole Look Larger
What is the length of the coastline of Great Britain? It depends on the length
of your measuring stick. Large measuring sticks skip over the nuances.
The smaller the unit of measurement—that is, the closer you look—the
larger the length of the coastline. This is known as the Coastline Paradox.
Before you know it, you’re counting the grains of sand on the perimeter.

Estimation is Fractal

"It turns out that estimation is fractal. The more fine-grained you
break down the requirements, the more ’edges’ you will discover.
This means that the more detailed your estimate, the more the
total will tend towards infinity, simply due to rounding errors and
the fear factors that we multiply into fine grained estimates."

– Dan North2

Measuring the size of software development follows a similar pattern. The
deeper you look at it, the more you discover and the larger the work appears
to us. The deeper you look into requirements, the more you discover and the
more details you want to specify, making the work demonstrably larger. More
features always seems better than fewer when looking at things in isolation
where there’s no counterbalancing tendency to keep it in check.

Losing Focus
When you decompose your big picture into lots of tiny details, you lose sight
of the original intent. It becomes hard to remember which aspects are
essential and which are elaboration. It’s even harder to communicate the
focus to someone else. They see an undifferentiated sea of details, not a clear
picture of the important goals.

2. https://dannorth.net/2009/07/01/the-perils-of-estimation/

report erratum •

Decomposition Gotchas • 69

When you change your focus from “delivering what the customer wants” to
“delivering these items on your planned backlog,” you make it easier for the
project to go astray. The end customer doesn’t want a collection of stories.
They want a system that works coherently to accomplish the work they need.

Imagining Pieces Not Appropriate for the Implementation
I remember a manager handing me a work breakdown list to estimate so he
could create a Gantt chart for the executives. As one of the programmers, I
was supposed to estimate how long it would take me to do each of the tasks
on the list. Unfortunately, I couldn’t even recognize what some of the tasks
were. Those that I recognized clearly split the system between a user interface
and a database without considering the complexity of anything in between.
Where was the interaction between different actions and business rules? It
was clear to me that the listed development tasks would not result in the
system we wanted to build.

Requirements-Based Decomposition

Think back to the example User Story in User Stories, on page 53,
where a user can act on behalf of another user. One naive
approach would treat this as a new module of code, mostly dupli-
cating the code for acting on your own behalf. Keeping these
modules in sync will be nearly impossible. If you notice this
duplication, you might instead modify every place where a user
action is implemented, modifying it to accommodate acting on
your own behalf or acting on another’s behalf. This will touch
LOTS of places in the code.

The need for "shotgun surgery" will alert you that there is a concept
that needs encapsulation. In fact, the old concept of "user" needs
splitting into two concepts, "actor" and "beneficiary."

It’s unreasonably optimistic to expect this level of analysis before
starting implementation, so estimates based on premature
decomposition will likely expect such a naive decomposition based
on the stated requirements. If this decomposition becomes the
implementation plan, then the implementation will be naive and
hard to build and maintain.

Even if you’re not starting with a bogus list of programming tasks, the initial
design is likely to be the most prosaic and naive implementation. Insight
comes from working with the system.

Chapter 3. Decomposition for Estimation • 70

report erratum •

When the details are about the way you’re going to build the system, that is,
components of the system, you’re locking in the design of the system from
the very start. If you find that some other arrangement of components works
better, that invalidates the entire estimate and plan.

A similar problem happens even if you’re the one breaking things down into
functional slices. Those slices, when there are a lot of them, become very
detailed. They are no longer describing the outcomes that the user wants,
but the intended way of delivering those outcomes. When you discover that
some of those outcomes are unimportant but others, not previously envisioned,
are important, then it’s very difficult to change the plan. Which of these stories
can you pull out to affect only these outcomes?

You may discover a simpler design that’s less work to implement. You may
notice that things that don’t work as smoothly as you’d like, and redesign to
improve that. Or you may live with the existing design, and suffer delays from
its inadequacies. Sometimes you get in the middle of the implementation and
realize that your design won’t quite accomplish the goals. Do you change the
goals, or redesign?

There are a lot of scenarios where the system you’d like to write doesn’t follow
the design of the system you’ve assumed in your estimate. What happens
when you discover that? If you’ve put a lot of effort into your breakdown, then
you’re likely to suffer from “Sunk Cost Fallacy” and “Anchoring Bias,” (see
Cognitive Biases, on page 72) and try to maintain that original breakdown
even in the face of evidence that another approach will be superior. It’s a
natural human reaction to minimize the issues discovered with your initial
approach, and magnify the risks of a different one. If this happens, it may be
that your estimation technique leads us to build the wrong thing, or build it
in a less effective way than you might. If so, it might be more expensive than
a bad estimate.

On the other hand, if you don’t build the little pieces you used to make the
estimate, then how worthwhile is the estimate? Will it be close enough for
your purposes, or will it lead you astray? Should you reestimate the new
pieces you discover? If so, should you add the cost of reestimating, this time
and probable future times, to your estimate?

Stepping Back for a Broader View
Decomposition of the anticipated work is a common approach to making
estimation achievable. As with many things, there are pitfalls for the unwary.
Being aware of the trade-offs of different variations can help us achieve better

report erratum •

Stepping Back for a Broader View • 71

Cognitive Biases

It’s a very human tendency to fool ourselves. We often do so in very predictable ways.
Some of these ways are so predictable that they’ve been given names.

Sunk Cost Fallacy This is sometimes known as "throwing good money after bad."
The Sunk Cost Fallacy refers to holding onto something, such as a strategy, a
plan, or a body of work, because you’ve already invested in it. Of course, some-
times it’s better to cut your losses and abandon what has proved to be a bad
investment. It takes a clear head to make that decision.

Anchoring Bias The initial information you have sets the stage, and sets your
expectations in the future. The first person who names a price when haggling
sets one end of the range of negotiations. The initial plan of action tends to
encourage later plans to be variants of the first, not radically different. You can
get beyond this influence if you’re diligent, but it’s easy, and human, to be
unduly influenced by early information.

Confirmation Bias When we think we know the answer, it’s easy to see proof in the
data we examine. We expect the data to confirm our belief, and therefore it does.

Precision Bias Information with more precision, especially if it has a decimal point
or a lot of significant digits, may be mistakenly thought to be more accurate or
trustworthy. In actuality, much of that precision may be noise.

Numeracy Bias Numeracy Bias indicates a strong reliance on numbers. People often
assume that something expressed in numbers is more accurate than a qualitative
judgment. The use of numbers gives the illusion of accurate measurement and
calculation.

results in our current context. As with most things, there is no single “best
practice” that is guaranteed to work everywhere. There are some “pretty good
practices” that will often be helpful. A mindful approach is recommended.

As you break the anticipated work down to estimate the pieces, consider the
following:

• Am I creating too much detail?

• Am I creating the illusion of knowledge? Could I be overlooking some of
the pieces, or the work that joins the pieces?

• Am I making the whole look bigger than it actually is?

• Am I breaking things down in a way that will be useful during implemen-
tation? Or will it be a hindrance?

• Am I concentrating too much on the mechanics of estimation and losing
focus on my actual goals?

Chapter 3. Decomposition for Estimation • 72

report erratum •

Also, think about what unknowns you still have. How will you get a handle
on them? Or do you need to do so? Perhaps they’re immaterial at this point
in the grand scheme of things.

Think ahead to actually doing the work, too. Is the decomposition useful for
planning and scheduling the work? If so, then the decomposition of work will
allow us to track progress by which items are done, which are in progress,
and which are not started. That’s good, since as soon as we get started on a
project, people will be wanting to know how things are going.

Now It’s Your Turn
1. Think about your last major project, whether complete or current. If you

were to break it down into a dozen, plus or minus a half-dozen, functional
components, what would those components be? Which one is most central
to the intent of the project? Could that component be used prior to
developing the others?

2. Now think about how you would break down that first component down
into smaller pieces. What’s the simplest starting point that would connect
input to output to give a Walking Skeleton? How long would it take to
implement just that part? If that answer is more than a couple of weeks,
how could you simplify that Walking Skeleton to get it to fit within a
couple of weeks?

3. What would be the natural first enhancement to your Walking Skeleton
to move you toward your goals? How would you decompose that to pieces
where six to 18 of them would fit in a two-week period?

report erratum •

Now It’s Your Turn • 73

CHAPTER 4

Checking Progress
Once a project gets started, people start wondering if things are going well or
not. What does “going well” mean and how can you tell? You could use a gut
feel that things are OK or things are NOT OK. That might work in small
startups or experimental pilot projects. It’s also an easy way to fool yourself.
Startups sometimes find they’ve spent their funding before they’ve reached
a level of self-sustaining business. In general, successful project managers
avoid fooling themselves; that’s what makes them successful. So they want
some way to verify that the rate of progress is sufficient.

First you need to figure out how to detect and measure progress. We’ll look
at several approaches before settling on one that seems to work well enough,
most of the time. We’ll visualize that progress, so you can perhaps spot things
that look “a little funny” and not take all the numbers at face value. Your
measurement of progress is, itself, an estimate and subject to error.

We’ll also consider that you’ll likely need to show this progress to others, in
ways that make sense to them. The people with fiduciary responsibility for a
project have a need to compare the costs with expected value.

It’s hard to talk about the progress of a project without someone getting
anxious about how fast or slow it’s going. Perhaps that person is you. Perhaps
you need to talk with that person. In either case, we’ll look at how too much
focus on speed can sabotage the goals of the project, and even its rate of
progress. I’m not suggesting that you ignore the speed of progress, but we’ll
look at balancing that with other concerns.

Of course, if the project is small enough and you don’t have to communicate
with other people, you might get by with using your gut feel for progress. You
might…if you don’t fool yourself.

report erratum •

Casual Sense of Progress
You may remember I had estimated how long it might take me to get to the train station by
comparison with other trips (in Everyday Estimation—Another Take, on page 27). This trip,
though, is a little more complicated.

I’ve got a lot of little errands I need to run. And I should get some lunch before catching the train.
I wonder how many things I can get done this morning. Let me make a list of what I might
accomplish.

I’d better move these things to the top of the list, as they’re the most important or most urgent.
And I’ll reorder some things because of geography. I want to clump errands in the same part of
town and I want to end the list with the café near the train station. That way I can get lunch
before catching the train.

I’m a quarter of the way through my list in a quarter of the time I have available. Things are
looking pretty good. I’m glad of that, because I don’t want to miss my train.

A gut feel won’t be reassuring enough in most situations encountered in
organizations of size. Executives of larger organizations have a fiduciary
responsibility to spend money wisely. They may not be able to define what
“wisely” means, but they need to show evidence to those with oversight of
getting value for the cost.

When satisfied that things are going well, people turn to improvement.
“Couldn’t thing be going a little better? We want the optimum progress!” This
is understandable, but you can get into some dangerous territory. If you’re
not careful, you can harm your progress in your attempts to optimize.

Getting Things Done
When wondering how things are progressing, one point of reference is the
completion of the project. This doesn’t give a very detailed view of the progress,
though. It’s either completed or not.

How’s the Project Coming?
Ryan ducked into Sidney’s office. "How’s it coming with building the new call center? When can
my customer service reps start using it?"

It’s more useful if you can measure something besides whether the project is
completed or not. Don’t even rely on a percent complete measurement. Those
are notoriously dangerous. When you say it’s 50% complete, people will expect
the next 50% to take the same amount of time. That’s often a bad assumption.

Those most concerned with how things are progressing are the people focused
on smoothing the path of the project and meeting the expectations of others.
In most organizations, this focus falls onto the shoulders of the person with
the role of Project Manager. The project manager is the primary point of contact
for those outside of the project. When executives want to emphasize their

Chapter 4. Checking Progress • 76

report erratum •

needs, such as business goals and expected timelines, they contact the project
manager. The project manager is expected to meet these needs, and an
important part of meeting these needs is keeping the expectations reasonable.
If the expectations are outside of the realm of possibility, then nobody wins
the game.

As part of letting outside stakeholders know what is getting done and what
can possibly get done, the project manager has to first answer these questions
for themselves. But they are not the only member of the project team that
can benefit from understanding these issues, though. Everyone should. Some
people assume that project team members can do what’s assigned to them
without needing to know what’s going on. I find that individuals taking a
narrow view of just what’s on their own plate, without a sense of what’s going
on around them, has a negative effect on the overall project. If we’ve bought
into the common goal, we have an interest in seeing how we, as a whole, are
progressing toward the accomplishment of that goal.

Detecting Progress
The desire for detecting progress clearly needs more than an estimate of the
whole project. In the movie, Captain Ron, there’s a great storm scene where
the passengers are getting antsy about the voyage. Captain Ron reassures
everyone that they’re not lost; in fact, they’re almost at their destination.

"When we left, we had just enough fuel to make it to San Juan. And now...we
are out of fuel!"

Clearly it’s desirable to have some earlier, and more reliable, indication of our
progress or lack of progress. It’s prudent to consider how circumstances might
change. A sailboat in a storm gets pushed around a lot by the wind and the
wind-driven currents. These invisibly push you off your intended course,
requiring more fuel or more sailing time to reach your intended destination.
We’d like to notice such a situation in time to take action, such as choosing
a different destination for this passage. As we’ll see in Danger Bearings, on
page 167, we can set up some prior expectations to warn us when we’re not
making the desired progress.

Software development projects get pushed off their expected track, too.
Unexpected hardships and side investigations come up. New goals get added
and original goals get amended with more detail. Expectations change,
sometimes implicitly rather than explicitly. “How we’re doing” can be as diffi-
cult to ascertain in a software development project as it is in a sailboat making
an offshore ocean passage.

report erratum •

Detecting Progress • 77

So you need a good way to track progress. Progress toward what? Toward our
goal. Which goal is that? Do we all have the same goal in mind? Do we have
the same goal in mind from day to day? Even when we agree on a goal specified
in a short phrase, we may have different pictures in our minds.

Then there are contextual goals surrounding the nominal goal on which we’ve
agreed. The organization’s mission statement likely expresses some high-
minded organizational goals that may or may not give you some distinguish-
able direction. Realizing the capability intended for the system to provide is
another goal. So is the desired impact from automating that capability, such
as any expected profit or savings to the organization, or the effects of exercising
a capability you didn’t have before. Personal goals—for example, displaying
our competence to ourselves and others, avoiding rebuke or blame, and taking
home a paycheck—are mixed in with these.

Measuring progress toward a goal is tricky. You can see what you’ve done,
but you have to estimate what you have yet to do. Sometimes you can’t even
tell what part of what you’ve done will help fulfill the intention of the project.
You may have started some speculative work that didn’t turn out to be as
useful as you’d imagined. You may have made some mistakes that you’ll need
to correct. When you discover such things, you need to subtract from what
you had perceived as progress and add to what you estimate as remaining
work. In some cases, there is possibility that the goal is not possible to reach.

What to Measure
It’s so hard to measure the things you really, really want. In Software
Engineering: An Idea Whose Time Has Come and Gone? [DeM09] Tom DeMarco
said, “Most things that really matter–honor, dignity, discipline, personality,
grace under pressure, values, ethics, resourcefulness, loyalty, humor, kind-
ness–aren’t measurable.” You’ll generally need to track proxy measurements
for your ultimate goals. You’ll want proxies that tend to mirror success well,
have enough variety to avoid blind spots, and give you early indication when
things are going wonky.

Measuring Delight
You’d like to measure the impact that your work has on the lives of people
or the finances of the organization. Michael J. Tardiff tweeted, “Completing
requirements is not progress. Delivering delight to people who care about and
value those outcomes: that’s progress.”1 I love that sentiment, but how do

1. https://twitter.com/mjt/status/939203014333571072

Chapter 4. Checking Progress • 78

report erratum •

you measure the delight of people using the system? By the number of people?
By the sum of their delight? What about the people who are paying for the
development so that they can make a profit off of that delight? Do you measure
their delight in short-term profits? In long-term viability? And when people
pay you to build a system while they continue to do whatever it is they do, is
the delight in how well you anticipate their desires? Or in how little you
interrupt their lives to do so?

You’d also like to measure progress in a way that proceeds somewhat
smoothly, and helps you judge how far you’ve gone and how far you have to
go. The delight may be zero for quite a while before something happens,
something well after software development is finished, that triggers an incident
of delight. Or you could measure the profit or cost savings from use of new
functionality. These are trailing indicators and may take a while to accrue.
They might also be affected by things outside your control. As steering indi-
cators, they do poorly for early, small course corrections.

It’s reasonable to measure impact when modifying a system which has already
achieved basic functionality. In particular, you might release small changes
to a working application and measure the impact it has on usage and profit.
Ask questions like “When we automatically bring up the customer’s call his-
tory in reverse chronological order, what impact does it have on the efficiency
of handling a customer service call?” “When we add hooks to social media
platforms, how often do users mention us to their friends?” “When we highlight
a photo of the product, do people purchase it more often?” These are ways of
checking progress on the impacts you wish to see.

There are caveats to be aware of when measuring impact. A reverse chrono-
logical listing might make some call handling more efficient but make the
handling of other calls less efficient. It might even obscure some information
vital to the correct handling of certain issues. Mentions on social media might
or might not be beneficial to your purposes. What if people are using those
links to make fun of your product? Purchase volume might be related to some
impetus entirely unrelated to the change you made. Or, especially when
people visit a site regularly, a change might draw attention for a little while,
but mean little in the long term. And consider what purchases they might be
foregoing to make the ones you’re measuring.

For such reasons, few organizations rely solely on impact measurements to
judge the progress of work. It’s important to also check progress with mea-
surements that are more directly related to the work, for quicker and more
reliable feedback.

report erratum •

What to Measure • 79

Measuring Effort
At the other end of the scale, measuring how much work we’ve put into
something is almost the opposite of measuring delight. It certainly proceeds
smoothly from the start but it’s disconnected from the results you want to
see. That’s not to say such measurements are totally worthless. Sometimes,
especially at the beginning of an endeavor, that’s all you have to give you
some sense of progress.

The Effort So Far
Sidney looked up at Ryan. "We’ve explored several new-to-us technologies and think we’ve
found some frameworks and libraries that will save us significant time. We’ve examined the
current system to see what it supports. We’ve found some confusing things in there, but it’s not
clear whether or not they’re actually being used. We’ve got a plan of attack and are moving
forward."

Measuring the effort expended gives you little assurance that you’re making
progress at all. This is the equivalent of measuring distance traveled through
the ocean by the amount of fuel you’ve burned. Does the number of hours
worked equate to progress? Perhaps it does for the goal of taking home a
paycheck, but probably not for the project or organizational goals.

That’s a problem with traditional Earned Value calculations. Earned Value
is a traditional project management tool for measuring progress. For simplic-
ity, Earned Value calculations, at least in software development projects with
no tangible deliveries along the way, presume that the plan, expressed as a
series of tasks, will result in value. Therefore, the cost expended indicates
progress along that plan. In effect, it presumes that the value of the work is
equal to its budgeted cost. That’s not been true in my experience. Even mea-
suring progress against plan is suspect if you can’t measure, or at least
observe, the value of what you produce along the way. If the value is “all or
nothing” and realized only on completion, then progress is not assured until
then, no matter what Captain Ron says.

Agile teams often fall into the trap of treating Story Points (see Story Points,
on page xii) as their measure of progress. This suffers from the same problems
as Earned Value calculations. Story points are merely an estimate of the time
and effort it takes to do things. They can be useful for planning how long
something will take, or how much work fits into a timespan, but not so much
for measuring progress toward a goal. Doing something harder is not neces-
sarily more valuable; it’s just more expensive. In any event, our ultimate goal
is not that to have more Story Points.

So what can we measure instead?

Chapter 4. Checking Progress • 80

report erratum •

Measuring Output
Effort produces output. Measuring output can be valuable depending on how
you measure it. Lines of code is a measure of output that was justifiably
rejected by the software development industry at large because it’s so mean-
ingless. It’s easy to add lines of code that contribute nothing to progress.

What We’ve Produced
"We’re almost done with a minimal Automatic Call Distributor implementation," Sidney continued,
"except it has no ’distributor’ logic. It works only for a single agent’s terminal. And only for a
single customer."

"What use is that?" Ryan demanded.

Measuring progress by software component rarely makes sense, either. What
value does a database schema have, by itself? How can you tell that the
database schema is done if nothing is using it? Most useful functionality
requires a number of components to collaborate. Working component by
component often leaves gaps between them that isn’t discovered until you
try to integrate them. And when integration is left until late, you have a
false sense of progress. While you may have completed big pieces of work,
there’s “undoneness” lurking between them that no one had noticed. Fixing
that undoneness may require reworking some of those big pieces. This is
where the saying, “We’re 90 percent done and just have the 10 percent that
takes 90 percent of the time left to do,” comes from. Your progress meter is
fooling you.

Measuring Functionality
When the pieces work together to give the desired functionality, then you’ve
created potentially deliverable output. That’s a better stick in the ground. If
you can say “the system allows you to communicate in English, but not in
other languages,” then you have a measure of progress. We can’t, perhaps,
calculate the percentage complete, since you don’t know how many languages
there are to implement. And you don’t know what overlap exists in the func-
tionality between one language and another. We could try another, say French,
and get an estimate of the incremental cost of adding a language. Is it the
same for all languages? Perhaps Hebrew, Arabic, and Chinese would have
less commonality than other European languages based on the Roman
alphabet.

What It Does
"The system connects to the major interfaces and shows those connections are working. We’re
almost done with a ’Walking Skeleton’ implementation," Sidney replied. "The system recognizes
a call on a single incoming line and forwards it to a single agent’s system. We’ve brought up a

report erratum •

What to Measure • 81

single customer’s CRM screen, but that doesn’t seem to add value to the implementation. We’re
thinking that enabling the agent to search the CRM system for the customer is the next priority.
In the meantime, we’ve got a minimal call routing integration from the phone system to the
agent. Then we can add support for multiple agents and have a rudimentary working system."

"Oh, OK. That sounds like progress." Ryan smiled and left.

I like to measure slices of usable functionality as the unit of progress, con-
firmed by automated tests that check examples of the desired behavior. This
is similar to Ron Jeffries’ Running Tested Features (RTF) metric2, with the
concept of feature being on the smaller side of the continuum.

Some projects are not about adding end-user functionality, though. If your
project is to change an underlying technology, such as a database manager
or a JavaScript framework, then you could use a measure of the slices of
functionality that are currently working with the new technology. This works
pretty well if you created automated tests of the functionality as we built the
original. Then you can reuse the same tests, with modifications to interface
with the new system, as your indicator of progress. If you didn’t, then now is
the time to start.

“The best time to plant a tree was 20 years ago. The second best time is now.” – ascribed
to a Chinese proverb

This is the rationale behind developing, User Story by User Story (see User
Stories, on page 53). Since a User Story is a thin slice of functionality, it can
be tested to see if it works as desired or not. This leaves less room for things
to be neglected and not completed. The functionality crosses components,
and all the necessary components must work to the degree required by this
small slice of functionality.

Reliably Measuring Functionality
Tracking our progress by what functions work is a great tool. Having a suite
of automated tests that verify the functionality makes it easy to check that
progress, and make sure we’re not slipping backward. Beware, though, of
using optimistic measurements that don’t cover all the spaces where problems
might hide.

Where does it work? Is this on a developer’s machine in a local sandbox?
There might be some undoneness lurking that you’ll discover when the code
is integrated with that of other developers. That’s the advantage of continuous
integration–you discover such issues early and often in small bits. Does it
work when installed to a fresh, new environment? This discovers dependencies

2. https://ronjeffries.com/xprog/articles/jatrtsmetric/

Chapter 4. Checking Progress • 82

report erratum •

on elements that are not version-controlled. Does it work in an environment
that mimics production? How well does this environment mimic production?
The idea is to eliminate ways in which things could seem more finished than
they are.

Is the functionality ready to deliver to production? How well can you know if
it’s ready? Unforeseen bugs represent hidden undoneness. What would be
required to give you confidence to deliver the requested functionality to pro-
duction? Actual use shines a light on a lot more places where undoneness
can hide. If people are using it, it must be usable to some degree, and it must
be meeting at least some of their needs. Production use will also generate
more varied conditions of use, and that may uncover hidden bugs that testing
didn’t.

When you deliver the working system, you’ve given the users of that system
capabilities they didn’t have before. The outcomes are those derived from
actual use of the capabilities you delivered. What do the users do that they
couldn’t do before? In what ways have the things they could already do
changed? These are the outcomes that matter from the perspective of the
whole organization, or the organization and its surrounding context. Are
people actually achieving the benefits that were intended when you decided
to create this? Are they delighted by it?

Not all organizations are capable of frequent delivery, yet. For that matter,
not all organizations want frequent delivery of changes into production. There
is also value in stability. But delivering frequently, however, is a powerful way
to track progress.

Visualizing Progress
In order to gain a sense of progress and completion, it’s helpful to do more
than look at the numbers. Visualizing the numbers, and how they change
over time, will give you a quick and clear sense of progress, at least to the
extent that you’re measuring actual progress.

The simplest and clearest way to make progress (or lack thereof) visible and
understandable is to use a BurnUp Chart. We’ll explore them more deeply in
BurnUp Charts, on page 111. For now, let the X axis of a Cartesian chart rep-
resent time. On the Y axis, periodically plot the current value of the measure
of progress you’re using and the current estimate of the goal of that same
measure.

report erratum •

Visualizing Progress • 83

What Progress Looks Like
"Have you got a minute?" Sidney asked.

"Sure, come in." Ryan replied.

"I just wanted to show you what the progress on our Walking Skeleton system looks like. I’ve
sketched it on my whiteboard."

Sidney continued, "It’s early yet, and given the nature of software development there are certainly
time-consuming surprises waiting for us to discover them. I’ve projected out to the minimal
system we talked about based on our current rate of progress."

"Oh, that looks good. I can’t wait to see it."

This BurnUp Chart shows steady progress of the system’s functional capabil-
ity over time. Of course, it doesn’t guarantee that progress is a steady as it
looks. The sizing of the different functional slices is critical to the progress
indication. If a function was shown as larger, it would make the progress look
faster, but that might not be meaningful in the long run. And progress over
time presumes a steady application of effort over that time. If the team were
distracted by some other work, the progress would slow down. If both of these
conditions were true, progress might look smooth and steady when it was
anything but that.

In the short run, this can be deceiving. Over time, though, discrepancies tend
to cancel each other out, and the visualization is reasonably accurate. Don’t
hesitate to dig deeper if something doesn’t “seem right” about what is dis-
played, though. The visualization is a tool to help you spot things that don’t
match your other feelings about progress.

Showing Value for the Money
In most cases, somebody other than the software development team is paying
the bills, and they want to know that their money is well-spent. They want
to know that they’re getting what they want or need, and at a fair price. There

Chapter 4. Checking Progress • 84

report erratum •

is, of course, considerable ambiguity in those wants and needs as well as in
what constitutes a fair price. That does not change the desire for affirmation
and assurance.

In very small organizations, it’s possible for the senior leadership to perform
the examinations ed in Getting Things Done, on page 76 themselves.
As the organization grows, high-level leaders get further removed from the
work, and must depend more on indirect communications to verify things.
At some point along that spectrum, the word “governance” is introduced.

Governance
Governance is a hard thing to define both concisely and in a way that com-
municates to people who don’t know what it means. It’s an expansive concept,
and when we use the word, we’re typically only considering a small portion
of the whole.

At its simplest, governance is the ongoing setting of direction and priorities,
and determining whether results are in alignment. This generally involves
making sure the needs of the organization are being met in a timely and cost-
effective manner. I think that covers it—but it leaves so much unsaid.

Imagine you’re the CEO of a reasonably sized corporation. You confer with
the board of directors regularly about the direction and priorities of the
company, adjusting these as conditions warrant. You talk with your direct
reports about these issues, plus the ongoing efforts to move the company in
the desired direction and any potential new initiatives. They give you informa-
tion about how the current efforts are doing, and the expected costs, risks,
and returns of new ideas. These direct reports have similar conversations
with their direct reports. How many levels does the flow of information pass
through, passing downward and progressing upward? How much is it filtered
and changed along the way? How do you know what’s really going on in your
company, so that you can make informed decisions? How can you tell if the
results are going in the direction you want?

“Go to the gemba,” you think. This Americanized admonition of Taiichi Ohno,
creator of the Toyota Production System, means to observe the work actually
done in the place where it’s usually done. It’s a good way to get insights about
how things are going.

You visit a factory, and you can see the work flowing through it. Does it appear
to be flowing smoothly? What is the rate at which completed units come off
the line? How large are the stocks of parts and partially completed work?

report erratum • discuss

Showing Value for the Money • 85

Look at the history of inventories; how have these stocks changed over time?
You walk away with a more visceral understanding of what’s going on there.

Next you visit the IT department. Where is the work and how can you visualize
it? How can you judge how fast things are going, or where bottlenecks might
be? You walk away thinking there’s little point in visiting here again.

What sort of things might you want to know, and how can you make them
visible? For ongoing projects, you’d like to know if you should continue them.
Are you still getting enough value to justify the cost? Perhaps you should
scale them back now, or mothball new development. Can you justify the
expenses to whatever governance body applies in the situation (e.g., Board
of Directors, Congress, the GAO)? Is the money being spent wisely? Are you
getting the expected value for the expenditure?

For every program that is in progress, you’d like a capsule view that gives
you basic information. And you’d like a way to drill down from that to get
more detailed data.

Earned Value
Earned Value Management (EVM) is a traditional tool, made popular by the
U.S. Department of Defense, for assessing progress against plan. Progress is
measured against a Work Breakdown Structure (WBS) created as an initial
plan for the project. Within a work item, cost expended is often used as a
proxy for progress.

If you consider the initial project plan as approved and funded by the powers
that be, then demonstrably proceeding to accomplish that plan can pass for
governance. The organization may get what they asked for, but they’re
unlikely to get what they want. And if there are any flaws in that plan—per-
haps the WBS omitted some necessary things—then they are likely to not get
what they asked for in the time and cost they expected. This is the source of
so many “project overruns.”

Again, we can turn to BurnUp Charts as a better Earned Value tool. Sure, it
depends on a Work Breakdown Structure, but it can accommodate changes
in that structure. Of course, if the goal line changes significantly, you’ll want
to communicate that with senior management. That’s exactly what competent
senior management would want, anyway. And that’s the way the project
manager will keep the executives’ expectations realistic, which is necessary
for any hope of appearing successful in their eyes.

Chapter 4. Checking Progress • 86

report erratum •

Introducing a simple BurnUp Chart in an organization used to complex EVM
calculations may be difficult. You’ll likely want to produce numbers similar
to their customary EVM numbers. The extra effort to calculate these numbers
will be worth it, at least for a while. Many people tend to be suspicious of a
solution radically simpler than their existing concept.

Efficiency and Effectiveness
It’s hard to talk about measuring progress without raising the topic of efficien-
cy. People being people, it’s hard to be satisfied with the status quo of the
progress you’re making, particularly if you’re waiting on someone else. There’s
always a nagging suspicion that more is possible. There seems to be no limit
for demand. We want more, more, MORE! For customers internal to the
organization, the needs and wants seem always to exceed the ability to build
systems that satisfy.

It’s hard to know, however, if you’re producing these systems as fast as you
could produce them. You can, after the fact, identify ways in which you
“wasted” time without contributing to your desired outcomes. Why can’t you
identify which will be waste before the fact? We want to go as fast as possible!

Pushing for Speed
It’s a short step from trying to optimize for speed to trying to push people to
go faster. Sometimes people push for speed because they’re worried about
Parkinson’s Law and sandbagging.

Parkinson’s Law
Work expands so as to fill the time available for its completion.

sandbag (verb)
to deliberately underperform to gain an unfair advantage.

Sometimes, managers are worried that, without pressure, things won’t get
done in a timely fashion. Sometimes managers worry that they’re not getting
their money’s worth out of their teams and will resort to pressuring them to
do more. This, of course, comes at the expense of all other measures of value.

Even without an explicit push for speed, software development teams often
feel an implicit push. They will often push themselves if no one else does.

report erratum •

Efficiency and Effectiveness • 87

Maneuvering in Heavy Traffic

I was thinking about the balance between speed and effectiveness
recently as I was driving down the road. The four-lane road was
crowded, and traffic was moving slower than the posted speed
limit. The car behind me saw an opening and whipped over to the
right lane, accelerating until it closed the gap with a two-ton truck
ahead. There the driver, again, matched the speed of all the other
vehicles, signaling their frustration by following close behind the
truck. They had escaped one impediment briefly, and significantly
increased their speed until they reached the next one.

The truck slowed for merging traffic ahead of it. As my lane
accelerated slightly, I passed this car thinking about the parallels
between this and many of our software development endeavors.
We often focus on our peak speeds to the detriment of minimizing
the time to reach our goal. The short-term speed increase is
immediate and sure. The longer-term consequences are less
certain.

I realize that I’ve driven similarly, at times. On this day, I was
relaxed because I had started early enough that I was very likely
to get where I was going in plenty of time, even considering the
heavy traffic. I also knew that there was no critical penalty for
being a little late. This lack of pressure contributed to my getting
there faster. I could pay attention to the bigger picture and choose
a strategy that made sense from that point of view.

When conversation revolves around speed and efficiency, then the participants
will feel an implicit pressure to go faster. This happens reliably whether
intended or not.

Side Effects of Speed
The effects of hurrying can often be seen in software development projects.
The more schedule pressure, the less time you can take to look around at
other factors than speed. Waste creeps in as:

• deferring attention to quality, and having to do work over.
• duplicating processes before we get them working well.
• accomplishing less with more work, often the result of team burnout.

Pushing harder often means arriving later at the destination.

Chapter 4. Checking Progress • 88

report erratum •

Loss of Long-Term Focus

Focusing on short-term measurements tends to blind us to the longer-term
progress. Sure, we want to make the team look good this Sprint, but not at
the expense of the project. Sure, we want to make this project happen on
time and under budget, but not at the expense of accomplishing the goals of
the project. Sure, we want to be efficient and reduce waste, but not at the
expense of the survival of the organization.

While we need to pay attention to what we’re doing now, we also need to
reserve some attention for the next larger context around it. And the next
around that, too. And perhaps another, even larger. Consider also if there
are smaller contexts within our current view that bear separate considerations.
Don’t maintain one view too long. Instead, work like a zoom lens, zooming in
for details and zooming out for the big picture. No one picture tells the whole
story.

Hiding Reality

Another issue that often comes up when focused on speed and efficiency is
the tendency to fool yourself. Whether intentional, to look good to someone
else, or unintentional, to reinforce your optimism, it’s easy to pay attention
to the data that supports your attempts to hit your target.

Goodhart’s Law:
When a measure becomes a target, it ceases to be a good measure.

Charles Goodhart was an economist who originally stated his law a bit more
verbosely than that. This common restatement of his law has been applied
to many fields. In terms of estimation, when you use meeting your estimates
to be an indication that you’re going fast enough, then you’ll certainly find
it affects either the estimates, the measurement of whether the estimated
work is truly finished, or both. Either way, the self-deception hinders your
effectiveness.

Cutting Safety Margins

We’ve all seen the guy who takes dangerous risks to pass one car, cutting
into a tight space when the highway ahead is bumper to bumper as far as we
can see. Why risk the entire endeavor for a brief sense of going faster? If you’re
not increasing overall flow, then you’re not affecting the overall result.

In software development, people sometimes take huge risks in order to go
faster, especially if they’re behind the desired schedule. Maybe they don’t
take time to consider all the possible situations the system might face.

report erratum •

Efficiency and Effectiveness • 89

Everything looks great until one of those situations comes up in the production
environment, perhaps crashing the system, losing a large amount of money,
or tarnishing the company’s brand for a long time to come.

More Than Speed
The way to avoid these side effects, of course, is to deemphasize raw speed.
From a manager’s perspective, it’s not enough to reduce asking questions
about how fast you’re going. You need to ask other important questions, also.
Ask questions that highlight other important considerations.

• As we do this work, is there anything we’re neglecting that might come
back to bite us later?

• Are there important measurements that we’re overlooking?

• Are we building safety into the system we’re building?

• Are we working in a safe manner that we can continue indefinitely?

And my favorite question,

• What have we learned recently?

Questions like these will help you maintain Situational Awareness, on page
97 that can keep you out of trouble. And keeping out of trouble might get you
to your goal line earlier.

Optimization
People often talk about optimizing a work process. But optimizing for what
dimension?

optimize (verb)
1844, “to act as an optimist,” back-formation from optimist. Meaning “to
make the most of” is first recorded 1857.

Often, people try to go as fast and/or cheaply as possible. So they ask for
optimistic estimates, build a plan based on them, and then try to stick to that
plan. In the process, they forget about determining how things are progressing
by other measures. We’ve just looked at some of the many ways that optimizing
for speed is suboptimal for some other measures you might care about.

There’s more to speed than trying to do things faster, though. There are other
ways of approaching the issue.

Chapter 4. Checking Progress • 90

report erratum •

Managing Work to Capacity
Achieving a smooth flow optimizes your process better than getting faster on
a few individual activities. And one of the biggest flow disrupters is trying to
do more than you can in a period of time. This results in bottlenecks that
inhibit progress, or starting more tasks than you can finish and wasting time
multitasking between them.

Getting a Handle on Incoming Work
The Ops Team worked hard to keep their systems up-to-date, reliable, and ready to meet the
needs of the organization. They were frustrated, though. As hard as they worked, management
was always disappointed that they didn’t accomplish more. There was too much to do. And on
top of that, the people using the systems created emergency work. "This terabyte dataset won’t
fit in my directory!" Things like that. And management often got new ideas that weren’t in the
two-week plan.

"How much unplanned work gets added to your two-week plan?"

They didn’t know, so for two weeks they kept notes on how much time they spent on different
types of work. Of course, there were also scheduled and ad-hoc meetings that took up time.
They kept track of that as well.

"OK, now we have a better idea how much time you have for planned work. Each planning cycle,
estimate how much work fits that amount of time."

report erratum •

Optimization • 91

That worked much better. Of course, it took some explaining to management to get them to
understand, but these drawings helped. And they didn’t always get it exactly right. Sometimes
their estimates were off. Sometimes the amount of unplanned work varied. And sometimes
someone was out sick. When these things happened, they asked their management to explicitly
choose which items they should postpone.

Overall, they got more done with less drama. And they slowly adjusted their expected capacity
over time, when actual results tended in one direction for a while.

By limiting their work to their actual, rather than desired, capacity, the Ops
Team got a lot more done. There was less delay, also, as they hadn’t stacked
up a lot of commitments ahead of any new work. The expectations of their
throughput became more realistic, and less pressure was added to get more
done. This allowed them to focus on doing their work better.

Balancing Speed and Risk
When you take multiple measures and aspects into account, you’re no longer
optimizing. Instead, you’re making trade-offs.

The Washington, D.C. area has some world-class traffic problems, especially
on a weekday morning or Friday afternoon. The travel demand often exceeds
the capacity of the roads, and flow comes to a halt. When I have a meeting
in the area, I sometimes start the trip extra early, hoping to avoid peak traffic
and spend less time in a traffic jam. I use a GPS app on my phone that has
access to the actual speeds of other users. Knowing both the road segment
lengths and speeds on those segments, the GPS model estimates my travel
duration. As conditions change, it may reroute to avoid known traffic jams
and suggest a route that it estimates will get me to my destination earlier.

Sometimes those alternate routes are a foolish choice. The routing algorithm
can’t know the speed of a road segment in the future, when I will reach that
road segment. Nor does it apparently model the ebb and flow of traffic condi-
tions. The estimation doesn’t seem to take the risk of slowdowns at chronic
bottlenecks into account. I’ve had many experiences where following a route
that was supposed to save me a few minutes ended up costing me 15 to 20

Chapter 4. Checking Progress • 92

report erratum •

minutes, instead. For trips I take repeatedly, I’ve learned to avoid some of the
“shortcuts” and stay on routes where I’ve experienced less variability in the
trip duration, or have more alternatives if the road is clogged.

Likewise, in software development, you should manage risk over maximizing
possible speed. Many practices are tuned to that trade-off. Continuous integra-
tion is less risky than feature branches, even if it requires a bit more work col-
laborating between developers. It avoids the potential of a big merge later.
Developing small functional slices needed now, and then enhancing that func-
tionality later is less risky than designing and developing the more complex
functionality all at once. This is true even though, when viewed mechanically,
going back over the same chunk of code looks like additional work.

Similarly, it may be tempting to graft a large framework of functionality onto
your project. The framework surely promises to do everything that you might
need. This can be a boon for development, or, if something you need hasn’t
been anticipated by the framework, it could be a painful dead end. Watch out
for painting yourself into a corner. If possible, experiment to identify such
technical risks as early as possible.

Taking the more reliable path gives you more predictability, and therefore
better estimates. More reliable estimates let you better track your progress.

Are We Going Fast Enough?
How do we know how fast we should be able to go? After all, given the current
circumstances, we’re going at exactly the right speed. That’s a tautology. But
is there some small thing that’s holding us back, something that’s within our
control?

When tracking progress over a significant period of time, it’s naive to think
that the rate of accomplishment will remain constant. The only way that’s
likely to happen is if someone is managing the data to make it look constant
because they think that it will reflect better on them. (See Hiding Reality, on
page 89.) Things change. People and teams of people cycle through better
times and tougher times. On something as hard to measure as software
development, even the measurement is unlikely to remain consistent over
time. Expect uncertainty and learn to live with it.

In spite of the uncertainty, you can use this information to guide your
exploration of what may be happening. Ask not only how fast have you been
going, but how that rate has been changing. Look for trends and patterns.
Don’t jump to assumptions about the competence, motivation, or individual
performance of people. The more likely causes are systemic effects.

report erratum •

Are We Going Fast Enough? • 93

What are the components that affect changes in velocity? These lists are surely
not complete, but they are some of the common contributors that I’ve seen.

Slowing Down
When the data tells you that work is slowing down, the first thing you should
look for is bottlenecks in the process. Are work items building up at some
stage in the process? A Cumulative Flow Diagram, on page 118 can make such
a buildup obvious. Watching the flow of work items in a visual management
tool can reveal bottlenecks just as well, if you look for them.

Also, check if the pressure to deliver is driving teams to leave technical debt
in the code:

• The code diverges from clearly expressing the problem domain.

• Small messes get left behind for “someday” when there’s time to clean
them up.

• Code gets more and more complex, and therefore harder and harder to
expand and enhance.

• Duplication grows when there are areas that people are afraid to touch,
or can’t easily know about as they’re writing code.

• Code gets harder to read, and therefore it takes longer to find where to
change it and how the change should happen.

One of the key telltales of this situation is a rising bug count. If you have an
honest relationship with the programmers, though, they can likely tell you about
this. Some programmers may not be aware of techniques of keeping code well-
factored with lots of easily rearranged modules instead of a few rigid ones.

As the bug reports come in, at some point effort needs to be spent addressing
them. This points out hidden undoneness of the functionality that’s been
shipped so far. It wasn’t really completed as it didn’t do everything expected
of it. You might not have discovered these deficiencies at the time, so you
congratulated yourself on completing the functionality. Now, going back to
complete it is taking away from your capacity to implement new functionality.
If you’re not careful, this can lead to a runaway spiral of less and less comple-
tion plus more and more bugs.

Maybe the work environment has become less conducive to working together.
There may be increased friction in communicating information and ideas
between people. Or unrelated noise is distracting people. Perhaps an increase
in the number of people working on the project has increased the number of

Chapter 4. Checking Progress • 94

report erratum •

relationships and communication paths beyond what can be handled. Maybe
the communication has become more point-to-point rather than many-to-
many among the group.

Could it be that changes in the oversight or evaluation of the group is causing
them to do more overhead work at the expense of development? Are there
more reports? Is there more fear of blame, resulting in more CYA documenta-
tion that eats away at the team capacity? Is micromanagement interrupting
the flow of work?

Perhaps you’ve been doing the easier work to make a good show of progress
and have deferred the harder or riskier work until now. Or maybe you’re just
counting your progress in larger units of work. Maybe you’re estimating more
optimistically? It could be that your unit of measurement has changed more
than your rate of doing work.

Speeding Up
If things seem to be speeding up, perhaps you’re getting better at what you’re
doing. It’s relatively rare that you get better at programming in a time short
enough to be a noticeable productivity boost, but it’s possible. Maybe you’ve
all learned some clever techniques from each other and that’s boosted your
output. Or you’ve become better at working together as a group, gaining
synergy from the best skills of each person combining into a group effort.

Sometimes teams start off with a lot of speculative framework development.
If they guessed right about their needs, then maybe it’s paying off now. Con-
versely, perhaps they’ve started postponing the hard work until later, creating
a false sense of progress. Could they be taking shortcuts that will later show
up as technical debt, unfinished functionality, and bugs?

Or maybe it’s an illusion of measurement. It could be the team has gotten better
at splitting User Stories, and are counting smaller units of work. Or maybe,
having been burned before, they’re now estimating more pessimistically. This
is especially likely to be true if there is pressure to increase velocity.

Oscillating
If rate of accomplishment seems to be alternately speeding up and slowing
down, then it could be that the development team is correcting based on
feedback that is delayed. Systems engineering shows that delays in a feedback
loop result in a late start to correction and subsequent overcorrection, causing
oscillations. The delay in feedback can be external, or it can be created within
the team’s work system. For example, if the work items take longer than the

report erratum •

Are We Going Fast Enough? • 95

measurement interval, the feedback on accomplishments gets delayed until
the next measurement interval. Reducing the size of the work items will help
the data reflect reality more clearly.

It could also be that the division of work is inconsistent in sizing. Or that
estimation is haphazard. Either would affect your data measurement. It might
also be that there is noise in the collection of the data. Or that frequent per-
turbations in the team makeup or environment make a steady pace impossible.

None of these patterns are necessarily indicators of a problem, but it’s defi-
nitely good to notice the variability of velocity if you’re projecting it into the
future.

Pushing Our Limits
If development speed is the critical bottleneck, how can you determine how
fast you can go unless you push as hard as you can? How can you be sure
the development team is not loafing if you don’t keep pushing for more speed?

I was ing this topic with a colleague, and she described how a runner
learns to go further, faster, by using a technique known as interval running.
As a beginner to long-distance running, she could improve her time and
endurance by running for two minutes and walking for one. As she got in
better shape, she could reduce the length of the walking interval, or replace
it with jogging. She emphasized that even the best conditioned long-distance
runners do not try to maintain the same speed all the time. Pushing the limit
for short periods of time, though, can condition you for faster performance
in the future.

In project work, the same principles hold true. People burn out faster when
they’re pushed to go at top speed all the time. If they’re trying to maintain a
constant speed, they also don’t hit the highest speeds of which they’re capable.

Certainly, people can decide to push themselves harder from time to time,
usually in response to some triggering event. But they will need recovery time
from short pushes.

Short pushes of increased effort can increase your capability. It helps you
stretch your abilities. It can’t do that, though, if you’re in a panic. Learning
happens best when it’s safe to fail, and when you’re thoughtful about what
you’re doing. You can look at the need for a speedup, talk about ways you
can do that, and try it out. If you have some historical data for comparison,
you can check whether your attempts to speed up are working or not. This

Chapter 4. Checking Progress • 96

report erratum • discuss

gives you new tools for times that require more speed, and other tools that
might help you speed up, on average.

When moving at a steady pace, it’s difficult to judge whether or not you are
proceeding at a pace that’s fast enough, but not too fast. Our ability to judge
differences is much better than our ability to judge absolute conditions. We
can compare our progress during a slower interval with our progress with a
faster one. Which gets more done? Which has fewer problems?

You should be vigilant and sensitive to the potential for burnout or other
byproducts of schedule pressure. These can quickly eliminate any advantage
of going faster. By the time you notice them, it’s usually too late to avoid a
significantly long recovery period. Short experiments, starting with very short,
are the best way to avoid overstressing.

These short experiments shouldn’t be restricted to trying to go faster doing
the same things. Try some different techniques, too. We mentioned in Balanc-
ing Speed and Risk, on page 92 that trying shortcuts can increase variability
and decrease predictability. If we’re trying experiments, then we are seeking
decreased predictability intentionally, in the hope that we find other things
of value. Some of that value might be increased speed, but you should also
be on the lookout for other ways to increase effectiveness.

By observing performance under a variety of conditions, you can tune the
pace to maximize overall performance. Maximizing overall performance,
however, will never be reached by trying to maintain peak performance. If
trying to improve on performance, never focus solely on speed.

Situational Awareness
In the end, it’s not about the number, but situational awareness. Discover
what the possibilities are and where the dangers lie. Use your estimates to
sense the world around you and make visible the intangible and ineffable.
Mark the areas you want to avoid. But whatever you do, do not fool yourself
into believing that estimates are truth. Especially do not believe a simple
number.

When the Depth Sounder Broke
Our sailboat, when we bought her, had an electronic depth sounder that measured the water
depth by bouncing sound waves off the bottom. In spite of this tool, we often ran aground. The
tributaries of the Chesapeake Bay have a lot of shallow water, irregularly shaped and often
unmarked. When the depth sounder showed that I was venturing into shallow water, I often
didn’t know which side had the deeper water. I had been watching the number on the dial. I
frequently turned the wrong way and went promptly aground.

report erratum •

Situational Awareness • 97

One day while entering a notoriously difficult passage, both narrow and shallow, the depth
sounder showed no less than 80 feet all the way in. That was particularly noteworthy given that
the water was about six feet deep. It turned out that the wire to the transducer had chafed
through, so no signal was returning.

A remarkable thing happened after that, though. I ran aground much less frequently. Instead of
looking at a number, I was looking around me. I was noticing the shape of the land and inferring
the shape of the bottom from that. I was picking up clues from the color and texture of the surface
of the water, from the activity of birds and fish, and from the locations of crab pots and twigs. I
was paying attention to the world instead of trusting a number. For those times when I really
did need to measure, I bought a leadline. It’s a lot less convenient and has a less precise readout,
but it’s generally enough.

Keep your eye on the prize. What made you, or the organization, want to
undertake this in the first place? How can you reach that goal? How can you
tell that you’re on track? The prudent mariner will not rely solely on any
single aid to navigation. Take what you learn and try to confirm it in a com-
pletely independent way. Even if these assessments agree, trust them tenta-
tively. It’s far too easy to have a single assumption affect them both without
noticing.

Steering and Prioritizing
Once you’ve reached the point where you can confidently track progress
within a project, then you can apply a lot of the trade-offs pertaining to
choosing between projects to choosing between capabilities or implementa-
tions. You can select between options based on estimated benefit, cost, and
time. Should you cancel or postpone the current effort to start on this new
idea now, or would it be better to let it run to a logical conclusion point? You

Chapter 4. Checking Progress • 98

report erratum •

can select urgent things that can be done before items that have a hard
deadline, without running undue risk. For example, can this bug that is
annoying our biggest customer be fixed without endangering a critical inte-
gration date? You can determine if sufficient value can be reached by a
deadline to make the effort worth attempting: for example, can this feature
be added in time to show it at the big industry trade show? You can monitor
the risk of not meeting a hard deadline, such as the Christmas market, or a
regulatory deadline. Are you still on the “safe side” of this hazard? See Danger
Bearings, on page 167 for more on this.

Confidently tracking and predicting progress allow you to make smart business
decisions. You can compare the cash flow of projected expenses and income
to determine your break-even point. Ultimate ROI may not be the best criteria
for your current decision. What about cost of delay? A lower ROI project that
can start generating revenue sooner may be a better choice. What is your
need for cash flow? Do you have the reserves for expenses prior to break-
even? Is this the best use of those reserves? Consider the time value of money.
A dollar today is worth more than a dollar next year. Identify “low-hanging
fruit” that can provide near-term benefit for little cost. Fix “broken windows”
that consistently cost money without benefit. This includes both things that
slow down the user and those that slow down the development team.

You may have several approaches you can take on a single project, and you
want to choose the best one given your constraints. Which of these
approaches is more likely to be shorter or cheaper? Do you have the informa-
tion to estimate that? Can you develop a little each way to confirm or refute
those estimates?

Picture the situation where a version upgrade of a third-party framework had
an unexpected change of some minor functionality, and a feature depending
on that functionality was broken. As of this writing, work was ongoing to
resolve that problem. Consider the uncertainty of the situation and the
questions you might have. Is there similar functionality in the new version
of the framework that the feature can use? Does the feature need to be
rewritten to work around the framework? Can we afford to try both
approaches in parallel?

Managers requested an estimate of when that work might complete relative
the scheduled production release. This estimate might be a date if the fix
looks possible and progress is being made. It might be “unknown” if the
possibility of success can’t be judged. Or it might yield “unlikely” as the pos-
sibilities of a simple resolution are dwindling. Based on this estimate, the

report erratum •

Situational Awareness • 99

managers might decide to authorize reworking the feature to avoid that
functionality. They might also consider rescheduling the production release.

Are we on track, or should we reexamine our assumptions? When we estimate
how much time, effort, and money it will take to do something, we’ve wrapped
up a bunch of assumptions into those estimates—whether we chose those
assumptions explicitly or not. If the actuals differ from the estimate, it calls
those assumptions into question.

We’ll want to identify any problems well before our final deliverable date, when
there’s still time to take action. This implies that we want to estimate inter-
mediate or short-range milestones to give us early warning. Perhaps we dis-
cover that costs are going up or that we won’t make a necessary target date.
The action might be corrective, such as cutting scope, or it might be to cancel
the project because it’s unlikely to meet our goals. The urgent question is,
how soon can we know things are not as we planned?

Stepping Back for a Broader View
A common driver of the need to know “how you’re doing” is based on a vague
fear that you should be doing better. Sometimes it’s your own fear and
sometimes it’s the fear of someone who is responsible for the work, but is not
doing it themselves. Either way, this fear is not helpful for either accomplishing
your goals or for doing the work better. In fact, chasing speed for safety can
have some serious negative effects.

That’s not to say that you can’t work to improve your speed, but you need to
do so while remaining cognizant of all the other aspects that are important
about the way you’re working. Whenever you’re trying to go fast, you’ll do
well to be wary of negative side effects. Our ability to measure “progress” will
always be biased toward one aspect at the expense of another. Watch out for
things, like burnout, team attrition, and hidden problems in the code, that
might cost you more in the long run, even though you’re making your progress
look good at the moment.

You can track your rate of progress as accurately as you can measure what
“progress” is. And you can try experiments to see what effect different
strategies and tactics have on your rate of progress. Visual tracking tools,
such as BurnUp Charts, help you relate your measured progress to time, and
therefore to other aspects you may be noticing, such as latent defect rate or
team mood.

Beware of proxy measures of progress that may mislead you into a false sense
of how you’re doing. It’s easy to spot the fallacy of measuring hours worked

Chapter 4. Checking Progress • 100

report erratum •

or lines of code written as indicators of progress. It’s hard to find tangible
value to track. Tracking story count or Story Points completed is only useful
to the extent that those stories are coming together to produce the results
intended for the system. Tracking features completed is only useful to the
extent those features are furthering the business or mission goals of the
organization, or inducing delight in the people associated with the result.

In most development efforts, we need to demonstrate the value being produced
to those paying the bills, or to those delegated by them for overseeing the
effort. This requires not only measuring the progress so far, but using that
empirical data to create forward-looking estimates of the future, when some
desired capability will be available. We’ll next examine ways to look forward
in time.

Now It’s Your Turn
1. How do you measure progress on your projects? Is it progress along your

plan, or progress toward your goal? Are you measuring progress in terms
of effort, output, functionality, or delight? In what ways might your mea-
surements be giving you a false sense of progress?

2. When people in your organization talk about project progress, is the
emphasis on speed and going faster? What other aspects of progress (e.g.,
needs met, lessons learned, risks mitigated, benefits of system use) do
you hear in conversations about your project?

3. In what ways are your measurements of progress helping you improve
the outcomes from the project? In what ways are they designed to help it
look good in the eyes of others? In what ways are your measurements
helping you keep an eye on things that could affect your project?

report erratum •

Now It’s Your Turn • 101

CHAPTER 5

Model-Based Estimation
It’s pretty simple to model when a software development project will be com-
pleted. All you need is to know the size of the project and the rate at which
progress will be made. If you divide the size by the rate, you get the elapsed
time. If you want to know the cost, just multiply the elapsed time by the per
time-unit cost. It’s simple, right?

Size

Rate
= Time

If your size is “1 Project” and your rate of progress is “1 Project per Year” then
your estimated duration is “1 Year.” Just translate all your measurements to
these units.

Perhaps that’s too simple to be useful for you. The equation is surely true,
but modeling the real world size and rate in terms of what you know and can
observe about your project is more complicated. You generally want a model
that is “as simple as possible, but no simpler.”1

In Chapter 2, Comparison-Based Estimation, on page 27, we looked at ways
to model the duration of software development by comparing it with prior
software development. Here we look to model it by comparing attributes of
this software development with prior. Whereas you might lump size and rate
together when you estimate by comparison, when modeling it’s natural to
start with dividing those two fundamental attributes.

Let’s take a look at how we can model the size and rate variables in terms of
things we know, or think we know. Then we’ll consider the type of construction
of the model as a whole.

1. Generally attributed to Alfred Einstein. See http://quoteinvestigator.com/2011/05/13/einstein-
simple/

report erratum •

Modeling the Size
Modeling the size of the work as “1 Project” is obviously not very useful for
estimating the duration. There are no bounds on the size of a project. What
else do you know about the project that might be useful for modeling the size?

I’ve known some projects that were sized by the number of screens needed
for user interaction. The user’s workflow was envisioned in terms of data
provided to the program, choices made by the user, and results displayed to
the user. The number of screens required to support that workflow was
counted, and then treated as a proxy for the size of the application.

This makes a lot of sense for relatively simple applications, many of which
are mostly a front end for manipulating data in a database. For each input
screen, there is some code needed to insert or update data in the database.
For each user choice, there is some code needed to do calculations based on
the data. For each output screen, there is some code needed to retrieve and
display the data, either from the database or from the results of the calcula-
tion. For such applications, a count of the screens makes an excellent proxy
for size.

Capers Jones, in Estimating Software Costs [Jon07] recommends the use of
Function Points (FP) as the gold standard for sizing software. This is a propri-
etary model of sizing, maintained by the International Function Point Users
Group (IFPUG), that depends on counting

• inputs,
• outputs,
• queries to the system,
• logical files maintained within the system, and
• interfaces to other systems.

These inputs are combined with some weighting factors and then adjusted
according to “general system characteristics,” including the perceived com-
plexity of the processing.

This is similar to sizing by number of screens, but more complicated. There
are many more sizing variables, each with their own definition to count them
correctly. These attributes are combined in accord with their effect on the
system size. The type of system being produced also affects the size, as not
all systems are simply reading and writing a database.

Jones’ book doesn’t give instructions on how to calculate Function Points.
For that, you need expensive training and access to the proprietary weighting

Chapter 5. Model-Based Estimation • 104

report erratum •

coefficients produced by crunching the numbers on hundreds or thousands
of projects. In addition, Jones notes, “It is very difficult to produce a reasonable
software cost estimate prior to the completion of the requirements, which
comprise the first software document with enough information to derive
Function Point totals.” He then goes on to describe some rules of thumb for
estimating Function Point totals prior to complete requirements, while
warning that they have “a high margin of error.”

Most agile software development projects decompose the work into User Stories
and use either the sum of their estimated sizes or a simple count of them to
account for the size of the project. This appears at first glance to be the
opposite end of the complexity spectrum from Function Points, but it’s not
without problems. As noted in Chapter 3, Decomposition for Estimation, on
page 49, this can be an overwhelming number of stories if you decompose to
the level normally used for development.

Using a count of User Stories, or estimated Story Points of them, as a proxy
for size runs into the same problem as Function Points. It requires a complete
list of stories or requirements in order to calculate the size. If you’re doing
agile software development, you don’t have a phase where you list all the User
Stories at the beginning, because you’re expecting to learn and steer the
project along the way. That’s a motivation for using functional chunks larger
than User Stories for your model.

This, too, has disadvantages. User Stories tend to regress to a mean size,
because they are small and there are many of them. When decomposing to
a larger chunks, there’s less confidence that they are of similar size or that
there are enough of them to make their variance negligible for estimation.
Many people resort to sorting these larger stories into small, medium, and
large for their sizing model.

Note that these size measurements only concern themselves with code. There
are often other deliverables in addition to code that will require time and
effort. Capers Jones recommends cataloging all of these non-software deliver-
ables and estimating them also. In Agile projects, it’s common to specify
infrequent deliverables as if they were User Stories. The frequent deliverables,
and the non-software activities associated with development, can be treated
as overhead in the production of functional code. They’ll affect the apparent
rate of progress without having to explicitly account for them.

Another approach to non-software deliverables is to produce them in tandem
with the software. If you’re measuring size in functional User Stories, you
might amortize the work of creating the user manual over all of the stories.

report erratum •

Modeling the Size • 105

Velocity vs. Cycle Time

People use two common ways to measure the speed at which User
Stories are completed. These are velocity and cycle time.

Velocity is the number of stories (or the number of Story Points)
completed within a fixed timebox. It’s easy to compare one timebox
with another, and the timeboxes give a natural point to notice how
you’re doing.

Y = 2X

Cycle time is the average time from starting work on a story to
completing it. If a team if working on multiple stories in parallel, the
cycle time may be shorter than the calendar time to complete a
story.

Y
1
+ Y2 + Y3 + ... + Yn = 2X

While people may prefer one of these measurements over the other,
they are fundamentally measuring the same thing and are compara-
ble. Velocity is work per unit of time. Cycle time is time per unit of
work. This means that they are reciprocals, though you may have
to adjust for different units of measurement.

Yavg =
Y
1
+ Y2 + Y3 + ... + Yn

n

nYavg = 2X

The most honest way to do this, that is, the least likely way to fool yourself,
is to write that part of the manual relating to each story at the time of imple-
menting the story. That keeps the manual and the functionality in sync,
easing the estimation and measurement of progress.

Modeling the Rate
The rate at which software is developed also needs more precision than
“Projects per Year.” Whatever your measurement of “size,” you need some
idea of progress over time. If you’re using a simple one-dimensional sizing
model, such as the count of user screens or User Stories, then you can use
the average time per screen or story as your rate, assuming the effort applied
remains constant.

Chapter 5. Model-Based Estimation • 106

report erratum •

Advantage of Functional Slices

One of the advantages of decomposing the project into functional
slices (see Which Way to Slice?, on page 49) is that you can test
whether that slice works or not. This gives you a measurable
indicator of progress that you can check at intervals to calculate
your rate of progress. Whether you measure your progress by
Story Points per Sprint, as many Scrum teams do, or Count of
Stories per Iteration or per unit of calendar time, as I prefer, you’ve
got a reliable if imprecise indicator of your development rate. This
works well as long as you maintain the same team working in the
same fashion.

Some organizations try to optimize employee utilization by swapping developers
in and out of the team based on perceived need for their particular skills, or
relative priorities of different projects in progress at the same time. This throws
a monkey wrench into the presumption of a constant rate of accomplishing
work. If you do this, you now need a parameter in your model for how many
people are working on the project.

There are many confounding factors in modeling a changing makeup of the
development team. Programmers are not fungible and interchangeable.
Changing the number of programmers, or even replacing one with another,
is not an easily calculated effect. Consider also that a well-functioning team
is more than the sum of its members. Every time you change the membership
of the team, it has to revisit the process of team formation to some degree.
Of course, if you reshuffle the team frequently enough, you’ll inhibit the team
formation and the rate will become more predictable again, although slower
than you might otherwise achieve.

Unavoidable Subjectivity
There is a school of thought that if we make mathematical projections into
the future, that we’re not estimating—that we’re projecting or forecasting,
instead. We may be forecasting the future by projecting the current trend,
that’s true. But as noted in the Definitions, on page xiv, that’s a subset of
estimation, not distinct from it.

Why would people make this distinction? One influence is to characterize this
forecasting as rational and objective, rather than an emotional and subjective
activity. Many people attracted to technical fields have the opinion that
rational actions are inherently superior to emotional ones. Study of psychol-
ogy will show that, at the very least, the rational and emotional aspects of

report erratum •

Unavoidable Subjectivity • 107

humans are tangled together and ultimately inseparable. One of those emo-
tional aspects is believing that decisions based on numerical calculations are
superior to other ways of empowering decisions. This is an example of the
Numeracy Bias. (See Cognitive Biases, on page 72.)

Even if you carefully avoid estimating based on opinion, there are still compo-
nents of subjectivity that, if you’re not careful, can fool you. First is the choice
of model. Even the simplest model is biased by the structure of the model.
You may choose a model that seems to agree with the results you’ve seen in
the past, or that worked in a different context. You might design or pick a
model that gives you the answer you want or that “seems right.” The choice
of data to feed into the model is another subjective choice. The model cannot
correct for data that is missing or incorrect or biased in some manner.

There are cases where subjectivity has advantages over objectivity. Have you
ever had a feeling, without any specific data you could use to prove your
hunch, that something was about to change in a project? Perhaps you sense
a change in mood of the development team or of someone associated with the
project. People can subconsciously observe small nuances that they don’t
explicitly notice. Don’t entirely discount the power of subjectivity.

Whatever model you use, you should check its calibration against your past
experience. If you put the data from a past project into your model, do you
get answers that accurately reflect what happened? Are those answers within
the precision limits that you need?

Given the need to calibrate your model, you’ll notice that it’s still a form of
estimating by comparison. The comparison has been broken down into two
components, measuring the comparison reference and comparing your
upcoming work to the measurements. In between, you can break the measure-
ments down into components that are used to model the factors that affect
the estimate.

While not fundamentally different from comparison estimation, a model can
give you a good starting point with relatively little effort beyond creating the
model. And as long as it’s giving you “good enough” estimates, it’s a cheap
and easy way to go. It allows you to estimate arbitrary points in the future
without a lot of reanalysis. And it should help you with work that doesn’t
seem to resemble your past experience.

You should be safe as long as you don’t fall into the trap of believing that the
answers your model gives are “the truth.” I find the concept of a singular
knowable truth to be a bit slippery in the best of circumstances. It’s a
seductive concept, but I find less risk by holding assertions lightly, keeping

Chapter 5. Model-Based Estimation • 108

report erratum •

an eye open for observations that seem to contradict. It should be obvious
that, particularly for estimating or forecasting the future, we cannot know
“the truth.”

You will be prudent to compare your estimates with your actuals to check
the continued validity of your model. Even if you calibrated the model with
past data, things might have changed since that data was recorded. There
may be factors that the model doesn’t take into account. There may be factors
that the model seems to take into account, but not accurately. When the map
and the territory disagree, believe the territory.

Armed with that disclaimer, let’s examine some of the different modeling
approaches you might use.

The Linear Model Approach
Barring some fundamental change, it’s reasonable to assume that things will
continue the way they are going. What you’ve done is what you’ll do. If we
project that our achievement will continue at the same rate, then we’re using
a linear model. The accomplishment over time is a straight line on a graph.
Ignoring all other influences, a linear model assumes that time is the dominant
variable in calculating progress.

In Extreme Programming, this assumption was given the name Yesterday’s
Weather based on the idea that today’s weather is likely to be substantially
like yesterday’s. If you use that to make your morning prediction, you’ll be
correct about two-thirds of the time. That’s pretty good for such a cheap and
easy prediction model. The weather services spend lots of time and money
trying to improve on that, and sometime fail spectacularly, to the delight of
homespun meteorologists. The caveat in Calibrating to Unknown Context, on
page 44 that there is long-term variability still applies, but sudden changes
in speed should be rare.

We talked in Getting Things Done, on page 76 about how tricky it is to measure
the progress of software development. The same problems apply in developing
a model for estimating future progress. If you measure effort, you’ll extrapolate
the future effort required. But extrapolating effort, say in terms of team-weeks,
is a tautology when you extrapolate over time. “The next 12 weeks will require
12 team-weeks of effort.” How is that helpful? To make sense of the forecast,
you need to relate that effort to some accomplishment.

The most common approach of measuring accomplishment is in terms of
output. Most teams use Story Points or the count of stories completed as

report erratum •

The Linear Model Approach • 109

their output measurement, and these should be relatively linear in terms of
effort. That’s what makes them a reasonable choice.

If you’re using multiple levels of decomposition (Multi-Level Decomposition,
on page 62), you might consider sizing the larger components and counting
the smaller ones. The smaller the component, the less the effect from the
difference of actual and average size.

For the Mathematically Inclined

Remember in Chapter 2, Comparison-Based Estimation, on page
27 when we talked about judging that this work was about twice
the amount of some work we’d previously done? If X is the refer-
ence work and Y is the work we’re estimating, we can express this
judgment as a mathematical model.

Y = 2X

Then we decompose Y for estimation (See Chapter 3, Decomposition
for Estimation, on page 49.) and model the estimate of the smaller
pieces.

Y
1
+ Y2 + Y3 + ... + Yn = 2X

If we have a small number of components (as in A Small Number
of Large Parts, on page 58), then you can do relative sizing of all
the components of Y and add them up like that. You can see how
unwieldy that will get for more than a few components (A Large
Number of Small Parts, on page 57). Another approach is to simply
count the components of Y and treat them all as if they’re the
average size.

Yavg =
Y
1
+ Y2 + Y3 + ... + Yn

n

Therefore
nYavg = 2X

Counting Stories
I have long recommended that teams estimate their User Stories in using the
Abbreviated Fibonacci Series of {1, “too big”}. In other words, just split the
stories until they seem “story sized” and count them. For short-term estimates
of how much work is likely to fit into the next iteration, I find this works just
fine. For the medium term it can work pretty well, too. If you’ve got a stable

Chapter 5. Model-Based Estimation • 110

report erratum •

rate of stories completed over time, then naming which remaining stories go
in the next release may be sufficient for counting a “close enough” precision.

Making Stories Small Enough

Note that the approach of counting stories still requires estimating
whether or not a story is "too big." When I’m doing the work, I find
this pretty easy. When I look at work that others are doing, I
sometimes struggle, as they break the work down differently than
I would. They envision the natural boundaries of the work differ-
ently than I do. I strongly recommend that you split to functional
slices, even if they’re less complete than you want to put in the
hands of an actual user. As a rough rule of thumb, if you’re
working in two-week iterations, I would try to size the stories for
completion within about two days’ time, with as many team
members working together as can productively do so. That will
give you at least five completed stories at the end of the iteration,
and a sense of progress during it.

Counting the stories has the same problems of decomposition that estimating
the stories has. How many stories will it take to build some large feature you
have in mind? If you break it all down into stories at the beginning, you’re
committing to a plan when you know the least. If you estimate how many
stories it will take…well, you’re estimating. Not that estimating how many
stories a feature will take is a bad thing, but it gives the lie to statements that
projections are not estimates. Projecting based on the historic rate of story
completion is great for approximating how many stories you can do in the
future, if that’s what you want to know. It’s less great for knowing the things
you may really want to know, such as when a particular functionality will be
ready for production use.

BurnUp Charts
Whether counting components or using individual component sizes, this linear
approach assumes that the effort or duration is proportional to the size of
the work being done. As suggested in Visualizing Progress, on page 83, one
of the simplest approaches for tracking your progress is the lowly BurnUp
Chart. This is a simple chart with progress on the Y axis and time on the X
axis. The progress can be measured in many ways. I prefer counting User
Stories, if they’re being used at all. (I’ve also considered using the count of
passing automated test scenarios, but I fear that might induce people to write
a lot of useless tests.) At intervals in time, mark how much you’ve done and
how much total there is to do. Then connect this mark with the previous one.

report erratum •

The Linear Model Approach • 111

As a tool for estimating into the future, you can look at the progress made so
far and extend that line into the future. Where that extension meets your
scope milestone indicates the date that scope will be completed.

M
ea

su
re

 o
f P

ro
gr

es
s

Time

Scope-Based Milestone

Pr
oj

ec
te

d
En

d
D

at
e

Alternatively, you can set a target date and see what scope can be completed
by that date. Either way, the future is modeled as a linear extension of the past.

M
ea

su
re

 o
f P

ro
gr

es
s

Time

D
ea

dl
in

e
Projected Scope

Our past progress is not likely to have been straight and smooth, but you
can easily eyeball the extension on your BurnUp Chart.

M
ea

su
re

 o
f P

ro
gr

es
s

Time

Pr
oj

ec
te

d
En

d
D

at
e

Scope-Based Milestone

Chapter 5. Model-Based Estimation • 112

report erratum •

Beware of Calculating the Extension

Instead of eyeballing the extension, you can also fit a line to the
data points and calculate it. Be careful about this. Your input data
may be a little "dirty" and you might choose the wrong line fitting
procedure to represent the data without those discrepancies. At
the very least, double-check your extension visually. If the exten-
sion line doesn’t look reasonable with all of the prior history, don’t
trust it too much.

Advanced Linear Model Techniques
By now, you can probably model your current project on a BurnUp Chart
and have a pretty good idea of what will be done by when, as long as things
progress the way they have been. But what if we run into some bad luck? Or
what if our efforts to improve are paying off? This versatile chart can let you
model other what-ifs, too, and help you keep a reasonable sense of how things
are progressing based on a fuller picture of the situation. Let’s look at some
techniques that can help you model what you know or suspect on a simple
BurnUp Chart.

Optimistic and Pessimistic Projections
We started our estimation asking ourselves What Question Are We Answering?,
on page 5, but we might also look at the impression we’re trying to make.
Are you looking to impress people with your progress and your software
development skills? Are you looking to lower expectations, to avoid future
disappointment? Are you considering the bounds of what is likely to happen,
in both optimistic and pessimistic futures? The BurnUp Chart can represent
all of these and at the same time make clear the future you’ve decided to
believe.

As you look into the future, you might be tempted to extend the latest itera-
tion’s rate of progress, especially if it shows a greater slope. You might convince
yourself that the problems experienced during prior time periods have been
solved. Some people take a slightly more conservative approach and average
the rate of the last three iterations and use that as the assumed future rate
of progress. Others extend the straight line from the beginning of the project
to the latest data point, averaging together all of the ups and downs of past
experience. I prefer to eyeball it and draw both optimistic and pessimistic
projections, taking into account any other things I know about the past and
future rate of work. I know that the worst performance could easily return
and the best performance is unlikely to be maintained. All of these are valid

report erratum •

Advanced Linear Model Techniques • 113

approaches and all have potential to fool us. Question your choices, and get
a second opinion if you’re unsure.

M
ea

su
re

 o
f P

ro
gr

es
s

Time

Pr
oj

ec
te

d
En

d
D

at
e

Ra
ng

e

Scope-Based Milestone

Scope Uncertainty
As much as you’d like to think you know exactly where you’re going, your
goal line is an estimate of how much you need to build in order to accomplish
what you want. You may want to indicate this scope uncertainty in your
BurnUp Chart, as it widens the projected end-date range that you can expect.
You can do so by marking optimistic and pessimistic scope lines.

If you have estimated a single value of scope, take a quick guess at the error
bars around that value. It’s far more likely that you left something out than
you will achieve your goals with less, but both are possible. Because of this,
you should opt to draw the optimistic scope line closer to your single-value
estimate than your pessimistic scope line. I usually expect two or three times
the error in the pessimistic direction as in the optimistic, but that’s just a
rule of thumb.

When you plot optimistic and pessimistic scope lines as well as optimistic
and pessimistic projection lines, these pairs cross each other and bound a
trapezoidal space. I call the area in this space the “zone of probability,” as it’s
your most probable prediction of scope and schedule. This technique tends
to give a reasonably honest amount of precision, as shown in the figure on
page 115.

Don’t forget that there are numerous estimations contributing to this projec-
tion. You’ve estimated the scope you think you need. You’ve estimated the
rate at which you think you can implement that scope. You’ve based that
estimated rate on your historical measurements of accomplishment. These
measurements have their own inaccuracies and uncertainties, and are
therefore also estimates. That zone of probability is not a sharply defined

Chapter 5. Model-Based Estimation • 114

report erratum •

M
ea

su
re

 o
f P

ro
gr

es
s

Time

Estimated Scope

Pr
oj

ec
te

d
En

d
D

at
e

Ra
ng

e

trapezoid, after all. It’s an approximate probability. Keep that in mind, even
if you don’t model it in your BurnUp Chart.

M
ea

su
re

 o
f P

ro
gr

es
s

Time

Estimated Scope

Pr
oj

ec
te

d
En

d
D

at
e

Ra
ng

e

Despite the caveats about imprecision, it’s pretty easy to get a gut feel for the
progress being made toward time and scope goals when looking at such a
chart. You can easily reason about scope versus time trade-offs. You can see
some of the components that go into the projections, and can question them
individually. At the same time, you get a clear overview of the entire situation.

Moving the Goal Line
With agile software development, it’s generally assumed that the scope of
work may be variable in achieving more valuable goals. There may be a hard
deadline to hit, either to take advantage of an opportunity such as a trade
show, or to avoid a penalty, such as a legal requirement. Or the focus might
be on achieving a business goal, such as better market penetration, or a
certain amount of cost savings, and both scope and schedule are secondary
to that.

report erratum •

Advanced Linear Model Techniques • 115

A BurnUp Chart has advantages over the more widely known BurnDown
chart in that it easily displays changes in your goal. If you decide you need,
or can afford, more scope, then move the horizontal line at the top of the chart
up. If you trim scope, perhaps to meet a deadline, then move it down. Do this
at the point the decision was made so the BurnUp Chart gives a record of the
scope changes during the life of the project.

M
ea

su
re

 o
f P

ro
gr

es
s

Time

D
ea

dl
in

e

Desired Scope

Such a chart gives you a clear visual display of how you’re doing, and what
adjustments you’ve made. Few people need much explanation about what
it’s saying. The rub, of course, is how to measure the total scope and the
amount you’ve done so far. These “measurements” amount to estimates of
what you really want. As previously mentioned, you’ll probably end up
quantifying this in terms of outcomes—the capabilities that the system gives
you. You choose outcomes because it’s the closest you can get to the things
you really want, without significant measurement delay from when you do
the work.

When the BurnUp Lines Don’t Cross
I once worked with a project that was going to be done in an agile fashion, with my help, but
the manager decided at the last moment not to risk introducing a new methodology. They still
wanted my help in running the project, however. One of the things I did was create functional
slices from the requirements document, and write them on 3x5 cards. From that, I created a
simple BurnUp Chart showing the total number of cards and how many the development team
reported were done. Each week, I updated this chart with the progress the team had made, as
shown in the figure on page 117.

It wasn’t long, though, before we started to get changes in requirements from the business.
Sometimes these replaced future cards, but most of the time these changes added new cards.
Sometimes the development team was able to make progress against this inflation of expecta-
tions, but it was quite easy to lose ground. After a few months, it was easy to spot that the line
representing the total amount of work was going up at a greater rate than the work completed
line. It was obvious that this was a project that would not accomplish the goals given to it. We
didn’t need an estimated completion date to see that.

Chapter 5. Model-Based Estimation • 116

report erratum •

Multiple Milestones
You can do fancy things on one chart, such as track progress toward multiple
milestones. We’ll take a deeper look at what some of these milestones might
be in Chapter 6, Estimating Milestones, on page 133, but one of the most
obvious uses is estimating successive releases of the same product.

M
ea

su
re

 o
f P

ro
gr

es
s

Time

Re
le

as
e

2
D

at
e

Release 2 Scope

Release 1
Scope

Re
le

as
e

1

D
at

e

In this chart, you can see that the goals for the first release were lowered at
the same time that the second release was planned. Perhaps the addition of
additional goals prompted the decision to have a second release. Adding those
goals to a single release would have delayed the release date. Instead, some

report erratum •

Advanced Linear Model Techniques • 117

of the original goals were postponed for the second release in order to move
the first release earlier. This allows accruing value from the development effort
of Release 1 without waiting for the additional value that’s been postponed
to Release 2.

A multiple-milestone BurnUp Chart provides you more situational awareness
in a complicated context than does an ordinary BurnUp. You can see how
today’s efforts affect the plans for multiple milestones. You can shift scope
from one milestone to another. And you can see how the work contributes to
larger goals which are composed of those milestones.

Cumulative Flow Diagram
You can also enhance your BurnUp Charts to look inside of the work pro-
cesses. The Cumulative Flow Diagram (CFD) is effectively multiple BurnUp
Charts overlaid, showing what work has reached each stage in a multi-stage
process.

Here we see a simple CFD with three stages. The light color at the bottom
indicates work that has been accepted as finished; the middle is work in
progress or waiting for acceptance, and the top is work that has been defined.
The chart of accepted work is the same as the progress marked on a typical
BurnUp Chart, and the chart of defined work is the same as the scope goal
on the same. The area in between gives us a bit more information. It repre-
sents work that has been started but has not been accepted as complete.
Where this region widens (top to bottom), the CFD is telling you that there’s

Chapter 5. Model-Based Estimation • 118

report erratum •

a bottleneck. Work is arriving at this stage faster than it’s leaving. The natural
consequence is that it creates a buffer of unfinished work. Most teams try to
minimize such work in progress (WIP), as it is considered “inventory” in lean
terms. It’s work that has cost, but not yet value.

In this particular chart, you can’t tell whether the development team is dili-
gently working on these User Stories, or if they’re waiting for someone to
accept them. Separating these two stages out into separate areas on the CFD
would let you see which is typically the bottleneck, or when each constrains
the progress. This extra information gives you insight on how to smooth the
flow of work.

Of course, when working with a single team, the team members likely have
a good understanding of where the bottleneck is. You can ask them. If they
have a habit of starting all the work at once, even though they can’t reasonably
get it to done for some time, putting this in a picture might be the illustration
that helps them decide to change their behavior.

On a larger scale, it may be very hard to judge if WIP is growing overall. A
CFD such as this will let you clearly see when it’s happening.

The Parametric Model Approach
Sometimes a linear model seems too simplistic. Progress depends on more than
the passage of time. There are so many variables that a linear model ignores,
and surely these variables have an effect. Of course, if the variables are constant
in the reference system and the system being estimated, they don’t need to be
explicitly modeled. They’re implicitly included in the reference system.

If some of the variables differ between your reference system and the system
being estimated, though, then it may well be worthwhile to account for them.
That’s especially true if these variables change over time during the project.
If you double the number of people working on the project halfway through,
you don’t expect your rate of progress to remain the same. Nor do you likely
expect your rate to double. The overhead of people working together goes up,
too, so you’ll want to figure out what coefficient to multiply “number of people”
by to accurately express the average rate of work. (You might even want to
account for the initial drop in efficiency when suddenly adding people to the
project. Or not—by the time you calculate that, it may be too late to worry
about it.)

A parametric model calculates progress based on other parameters in addition
to time. To make our past and projected progress fit a simple linear model,
we presumed a known set of small functional slices of work that could be

report erratum •

The Parametric Model Approach • 119

completed at a constant rate. Even when you consider “estimated story size”
in your model, you’re starting to tread on the boundary of the basic linear
model. You’re modulating it with a subjective sense of size or difficulty. The
objective components of this subjective composite may be hard to isolate.
What makes this story seem like a “5” rather than a “2” to you? Can you
identify and use some of these components rather than the more subjective
Story Point estimate?

Perhaps this story requires implementing a complicated algorithm that makes
it seem bigger. And that one might have an unusually high number of permuta-
tions that need to be checked. And another has a lot of potential error conditions.
Such things can make a story seem bigger. What parameters would you add to
your model to let it calculate how much bigger the story could be? How can you
quantify how complicated is the algorithm? Do you determine and count the
number of permutations to check, or just use the factorial of the number of
inputs? Can you be sure to count all of the error conditions?

You can build a sophisticated parametric model based on things you can
count. Think back to the aspects of the work mentioned in Aspects of the
System to Consider, on page 35. What can influence the size of a system?
There are things like the number of user input screens, the number of
database tables to hold the domain schema, the number of external interfaces
to other systems (perhaps divided into input, output, and bidirectional
interfaces), and other aspects of the system you’re building. These parameters
may have a nonlinear effect, so the model may get quite complicated. What
effect might each parameter have on the system size?

Estimating an Online Storefront
Jules greeted Kai enthusiastically. “Come into my office. I’m really excited to put our stationery
store online, and I’m told that Riffle & Sort has good experience helping stores of our size.”

“We can certainly build your online presence for you. The critical part is helping you decide what
you want to build. I’ve got a laundry list of common options to help you think it through. Then
we can use your choices to estimate how much work it will be and, therefore, the cost. Bear in
mind that the estimate will cover typical needs within each list item selected, but something
special or high-performance might cost more. We’ll alert you if anything sounds like it might
cross that line.”

Jules looked at the list.

• Home Page:

– □ Aesthetically pleasing design (up to 20 designer hours)

– □ Additional design (time and materials)

– □ Rotating capsule for special offers, highlighted products

Chapter 5. Model-Based Estimation • 120

report erratum •

• Static Pages:

– □ About Us

– □ Shipping

– □ Special Orders

– □ Other ______________________

• Product Catalog:

– □ Up to 5 (five) product page templates

– □ Additional templates (time and materials)

– □ Cross-selling capsule

• Shopping Cart/Checkout:

– □ “Save for Later”

– □ Drop-ship to different address

• Payment Options:

– □ VISA merchant account

– □ Stripe credit card processing

– □ PayPal

– □ Other ______________________

• Warehouse:

– □ Packing List

– □ Interface to warehousing system (Specify: ______________________)

– □ Interface to drop-ship system (Specify: ______________________)

"Walk me through each of these so I’m sure I understand what they mean."

"Our designers have done a lot of storefront sites, and can have a conversation with you, show
you a lot of samples, and come up with a suitable design for you. That’s standard service. Some
clients want to be highly involved in the design, though, making detailed decisions. We can’t
tell how much extra that will cost, so we charge by the hour for the extra work. They also have
some standard extra features they can add that are priced by the feature." Kai continued
describing the listed options, explaining which ones added costs by the number of them, which
added costs by the complexity, and which were just measured by the hour. He concluded, "Of
course, if we’re interfacing to a system that’s totally new to us, it will ultimately be a per-hour
charge, but we can give you some educated guesses once we learn something about the system."

In our linear model, we assumed a constant rate of progress that we’d seen
in the past. It could be that aspects of the system context (see Aspects of the
System Context to Consider, on page 36) affect the rate of progress and could

report erratum •

The Parametric Model Approach • 121

be different from our reference data. Does the number of teams or people
working on the implementation vary? Are parts of the system similar to what
you’ve already built and other parts unfamiliar territory? Does the system
specifier sometimes change their mind, or delay in answering questions that
are blocking the completion of work? There are many parameters that affect
development rate.

Anticipating Delays Outside Your Control
Casey was getting frustrated. "Brook, the content you’ve written for these products doesn’t
match the template. We need to change the content or create a new template."

Brook sighed. "I know. I’ve called the customer, and they don’t want to add templates. Jules is
out of town this week, so is even slower about getting back to me than normal. Can’t you just
go onto other products?"

"That’s what I’ve been doing, but that means that so much has to be revisited in the future, when
it’s not so fresh in my mind. That makes it more work and it takes longer."

Just then Kai happened down the hall.

"Kai," Casey called, "I think we need to change our online store estimation form. We need a count
of products, too. The more products we have to load, the more delays we run into. Our current
pricing model doesn’t account for these delays on the customer side."

Capers Jones’ model uses many inputs related to either size or development
rate, and sometimes to both. The principle size measurement starts with
Function Points, themselves a model counting the system’s inputs, outputs,
inquiries, logical files, and interfaces to other systems. Defect insertion rate
both increases the size of the effort and slows it down, as finding the origin
of defects is time-consuming. On top of that is the defect removal efficiency
and the bad fix rate, or new defects injected in the process of fixing a defect.
The capabilities and experience of the people involved has a great deal of
influence on the rate of accomplishment. Typically, creeping requirements
increase the size of the work over the lifetime of the project.

The development methodology used will also affect the rate of development
and perhaps the size, also, though in ways that are not easily quantified.
Capers Jones’ model is clearly built with a phased serial process in mind,
separately sizing the work products of requirements, analysis, design, coding,
testing and installation phases, plus ancillary efforts such as project manage-
ment, documentation, change management, and clerical support. The model
offers a parameter to adjust for other methodologies in relation to this base
assumption. There are also model dependencies on type of system being
developed, quality level desired, implementation language, and software
complexity. These are most of the items in the big picture, though there is
much detail for each of them.

Chapter 5. Model-Based Estimation • 122

report erratum •

Capers Jones warns that the estimate you produce should be very conserva-
tive, to avoid litigation or protect yourself if you fail to avoid it. This suggests
estimating to extremely high confidence levels, and therefore on the long and
expensive side of every question.

How are these variables used to produce an estimating model? By analyzing
a very large number of projects in a number of industries by a number of
companies. By determining a best fit of all the input data of those projects to
the corresponding actual results, a mathematical model is constructed to
cover any potential project, to the extent that the data is known.

Models Are Only as Good as the Data They Model

Unpleasant details of troubled projects are often omitted from
public descriptions of them to protect the reputations of people
and companies. Perhaps the model is also adjusted for the estimat-
ed amount of inaccuracy in the calibration data; perhaps not. We
noted the problem of Inaccurate Recorded Data, on page 33 when
considering Comparison-Based Estimation. The same issues apply
when the comparison is encoded into a mathematical model.

You can buy this model as part of an automated estimation tool. Do you think
it will match your actual results? Perhaps it will, especially if you’re in the
business of contract software development for government or large corporate
customers. If you think it will help, and you can afford both the tool and the
effort to collect and calculate the input data, then a commercial tool calibrated
by someone else may be a good way to go.

The further your situation from the context in which such a commercial
estimating tool was developed, the more it seems better to roll your own
model. You don’t need to model every possible type of system by every possible
way of building it. Instead, many of these inputs are relatively stable between
the reference systems they use to construct the model and the system devel-
opment they are estimating. These things that don’t change don’t need to be
explicitly modeled. That is, as long as they truly don’t change.

Rolling your own model has some advantages. It lets you take into account the
aspects you think are important. Beware of trusting models built for a different
situation. They would likely be less helpful than a commercial model in terms
of appropriately modeling your situation. Consider the inputs used by the
commercial models and any other aspects that you think may be appropriate.
Build your model slowly, as modifications to a linear model where that seems
insufficient. Calibrate often and check against the results. Make sure your
model is actually better for your needs than a simple linear model.

report erratum •

The Parametric Model Approach • 123

The Stochastic Model Approach
If a parametric model is too static, or you’d rather see the basis for the para-
metric coefficients in use, you can use a stochastic model. A stochastic
model takes into account the random variations and gives you a probability
distribution for an answer.

Perhaps you estimate (or assume a constant) the duration of each story, and
then you model a random delta around that. Or you estimate the minimum
duration of each story and model a random delay added to that. Either gives
you a probability distribution for completion of that story. And if you add up
the probability distributions for all the stories, you get a probability distribu-
tion for the release. In some environments, the contributions of delays swamp
the amount of time actually building the product.

Modeling Delays
Casey stopped by Kai’s office. "I’ve got an idea of how we can better model the delays when we
need information from the client. Most of the requests for more information go through you, so
I was thinking that we could mine your email archives for the data. If you can go through mea-
suring the length of time between when you contact them and when they respond with the
information, I can do some analysis on the distribution of those delays. And if you can separate
those according to client, I can also analyze how the distribution varies from client to client."

Kai looked worried. "That would be really useful information to have, wouldn’t it. But I don’t
know how to collect that information without scanning through all my emails manually. I’m
worried I won’t have time to do that. When do you need it?"

"Oh, there’s no deadline. This can be an ongoing project between us. How about I set up a
spreadsheet on a network drive where you can enter data in three columns: company name,
query date, and response date? I can use this as input to determine the distribution of response
times across all queries, and if there’s enough data, perhaps get a distribution of the median
response time from company to company. You could work on this when you have time to kill.
I’ll crunch the numbers periodically, and we can take a look at them. I think it would help us
characterize the uncertainty we currently have in our quote estimates."

"I’m in! Some companies really keep us waiting, and it’s been a problem several times in the
past year."

Be careful about the model of randomness you choose. Those of us who only
studied a little bit of probability in school probably default to a normal distri-
bution. This is generally fine for phenomena in the natural sciences where
the sum of variances is evenly matched in both directions. The range of time
it takes to accomplish a task is not evenly distributed, however. It’s much
easier to have an unanticipated delay than an early completion. The task can
never be less than zero time, but can be arbitrarily long.

Chapter 5. Model-Based Estimation • 124

report erratum •

If we model our work as a series of tasks of known duration with normally
distributed random delays between them, then we end up with a probability
distribution that has a long tail to the right. Troy Magennis demonstrates
that this behavior in The Economic Impact of Software Development Process
Choice – Cycle-Time Analysis and Monte Carlo Simulation Results [Mag15]
produces a Weibull Distribution.

Troy Magennis describes how he uses Monte-Carlo simulation to estimate
Scrum (timeboxed) and Kanban (non-timeboxed) software development projects
in Forecasting and Simulating Software Development Projects: Effective Modeling
of Kanban Scrum Projects using Monte-carlo Simulation [Mag11]. Note that you
still have to build the mathematical model to be simulated. For example, in
a Kanban simulation, you’ll need to provide upper and lower bounds of cycle-
times for a unit of work for each work stage in your process. If your work
queue has multiple sizes of items or dependency on certain specialties in the
work process, you’ll need to multiply your cycle-time estimates by the number
of categories you use. You can also specify the frequency and range of impact
of events such as added scope, work blockages for external events, and
remediation of defects. When you run the simulation, the simulator goes
through many iterations using random values within the ranges of your
model. The result is a probability density of your completion date. If your
model specification is accurate, this will tell you the probability of hitting a
particular date, or the most probable completion date. It can also tell you
what which events likely have the most impact on that date.

So, if we have to estimate the sizes of our stories, ranges of cycle times, and
frequency of events, what’s the advantage of stochastic forecasting? It com-
bines all of these individual estimates into probabilities. When actual events
are outside the expected ranges, you can adjust your parameters and recal-
culate. You also know in more detail what aspect is outside your expectations.
For example, if the defect rate is higher than what you modeled, you can
measure the impact by adjusting the model, and you can focus on behavioral
changes to bring the defect rate within your expected tolerances. You might,
for example, increase your cycle-time estimates to allow more development
time for preventing defects, and see the probable results of that intervention.

Comparison-Model Hybrid
You can also use a combination of comparison estimation and mathematical
models. Even a linear model of counting User Stories depends on the estimation
of whether a User Story is “story size” by comparing with past experience and
other stories. A linear model using Story Points nudges the comparison-model

report erratum •

Comparison-Model Hybrid • 125

hybrid boundary in that it uses comparison-based sizes as input to a model
calculation. Even the expensive commercial parametric models depending on
Function Points can be adjusted by subjective factors.

Linear Projection of Affinity Estimates
I’ve used this approach when performing long-term estimation of requirements
that are being detailed iteratively. It dovetails with the Multi-Level Decompo-
sition, on page 62 approach of breaking the planned work down to a few large
chunks, and then breaking each of those chunks down into User Stories as
time gets near to implementing them. This is a healthy agile software devel-
opment practice, as it defers work until the “last responsible moment,” when
the most knowledge is available.

The estimating problem is that you don’t know the number of User Stories
ahead of time, so you can’t estimate long-term with fine-grained estimates.
Nor do you want to do so, as ed in Decomposing into an Unmanageable
Number of Pieces, on page 66.

The procedure is fairly simple. Start by Decomposing by Functionality, on
page 52 into A Small Number of Large Parts, on page 58. Use Affinity Estima-
tion, on page 58 to sort these parts by perceived size and then label them
with T-shirt sizes or some other non-numerical scheme. Take a rough guess
as to how much bigger the items are in one grouping than those in the next
smaller.

Order the parts by priority (see Ordering the Parts, on page 60). You don’t
have to get this perfect, but you do need to determine which part you want
to build first. Split that part into smaller functional parts. If these are “story
sized” then you’ve gone far enough, otherwise repeat the process followed so
far, but with a different range of size names.

Once you’ve reached story sized parts, then order them by priority as well.
Consider whether you need them all within the priority of this larger part.
You will likely find that some of them are less urgent than some parts of the
next large chunk of functionality. Split this chunk into the high-priority stories
and the ones to be deferred.

Take a look at the chunk of high-priority stories. Is it still the same size cate-
gory as before? If not, give it (and the deferred chunk) the appropriate size
names.

Develop these high-priority stories. How long did that take? You now have
some data for the time it takes for that size grouping.

Chapter 5. Model-Based Estimation • 126

report erratum • discuss

If this is not the first group of stories to be completed, then compare the sizing
with the others previously completed. For ones in the same grouping, does
this seem close enough to the others to be the same group? Perhaps you need
to split the group, or reconsider which group different chunks belong in. You
have some information now that you didn’t have when you performed the
original affinity grouping.

For stories in other groups, does the factor between group sizes seem right?
If a “medium” chunk was estimated as twice the size of a “small,” but the
time to implement is a factor of three, then consider what that might be telling
you. Is this a problem with the affinity grouping or the assumed factor between
groups? Or, possibly but not probably, has the rate of development changed?
In general, you should assume that the same people working in the same
fashion within the same context will have a pretty constant rate of progress.
It could be, though, that the development team has changed significantly. Or
that they’ve changed the way they’re working. Or that the context around the
team has impacted their progress.

Each time you complete a chunk of work, revisit your sizing estimates. Think
what the new information means and how it affects that sizing.

An Early Forecast
Sidney, Marion, and Blaise were in the Empire Enterprise hallway, decorating a big whiteboard
outside the call center development team room. Marion and Blaise were taping cards labeled
with the feature decomposition they’d made when planning the project. The cards were different
heights, depending on whether the feature was deemed small, medium, or large. They’d made
the "medium" cards twice the height of the "small," and the "large" twice the height of the
"medium." That was, at this point, an arbitrary choice, but it was easy to measure, as shown in
the figure on page 128.

Sidney had taped a horizontal line along the bottom of the whiteboard, and was now marking
it at regular intervals. "Hmmm..." he muttered. "Forty intervals." Louder, he asked, "Hey Blaise,
how long is 80 weeks?"

Blaise pulled out their calculator. "Just over 18 months."

"That’ll be good enough, at least for now."

Blaise drew a box corresponding to the Walking Skeleton they’d just finished developing.

Marion called out to Ryan who was approaching down the hall. "Ryan, would you take a look at
the order of these features? We’ve taken our best guess at doing them from bottom to top, but
it’s easy to rearrange them if you’d like."

Ryan stopped and looked at the whiteboard. "When do you need an answer?"

"No time in particular. We’ll continue next with the capability of bringing up the right customer
in the CRM system by letting the rep search on various attributes. That seemed to be the most

report erratum •

Comparison-Model Hybrid • 127

10 20 30 40 50 60 70 80 weeks

Route on number
called (medium)

Route for
continuity

(large)

Route on rep
availability (med)

Balance workload
(medium)

CRM by rep search
(medium)

CRM by caller ID
(medium)

CRM by IVR data
(medium)

Update CRM info
(medium)

resolution speed

Monitor IVR time

Mon. issue reopens

Monitor system
health

(unknown)

issues by rep

calls per issue

issues still open

Walking skeleton
(medium)

general case covering any circumstance, even if it’s not the most convenient. Beyond that, we’ll
go in whatever order makes sense by that time."

Ryan watched Blaise and Sidney taping a piece of yarn on the whiteboard. "What’s that for?"

"That’s a straight line projection based on the rudimentary functionality completed so far."

"It looks like we won’t have the monitoring system to catch our current problem in over a year
and a half."

"There’s a lot of uncertainty in the data, of course. The features could be bigger or smaller than
shown on here. There might even be other features that take precedence over these. The rate
of development is pretty uncertain, too. A lot of times there are one-time delays when starting
a project. Of course, we might lose someone on the team and slow down, too. It’s all pretty loose,
but it lets us visualize if we’re in the ballpark. And it shows why the order of development is an
important business decision. When we have enough functionality that it’s worth putting into
production, for at least one product line, we can find out how well it works for you. And that’ll
be a lot sooner than 18 months."

Sure enough, when the second feature was finished, it looked a bit more
optimistic. The search of the CRM database from the Customer Service Rep
screen was finished in four weeks, compared to the six it took for the initial

Chapter 5. Model-Based Estimation • 128

report erratum •

Walking Skeleton. Both had been rated as medium-sized features. Were they
really the same size and the rate of development had improved? Or had the
start-up work of the Walking Skeleton invisibly made it larger than the CRM
Search feature? You could go with gut feel, but two data points is hardly
enough to define a trend.

To stay on the conservative side, Marion decided to project using the average
rate of the two features rather than projecting with the faster rate of the second
feature. Of course, projecting using the rate of the first feature would have
been more conservative, but Marion had a couple reasons to not do that:

1. The second feature, being more recent, seemed a better choice for the
team’s current rate of development.

2. The second feature, not having any project start-up activities, seemed
more like the future work.

10 20 30 40 50 60 70 80 weeks

Route on number
called (medium)

Route for
continuity

(large)

Route on rep
availability (med)

Balance workload
(medium)

CRM by rep search
(medium)

CRM by caller ID
(medium)

CRM by IVR data
(medium)

Update CRM info
(medium)

resolution speed

Monitor IVR time

Mon. issue reopens

Monitor system
health

(unknown)

issues by rep

calls per issue

issues still open

Walking skeleton
(medium)

On the other hand, the rate of development indicated by the second feature
seemed too optimistic. What did they have to let them presume it was more
representative of the future than the first one was? Perhaps they just got
lucky. Or perhaps the feature was slightly smaller than it initially appeared.

report erratum •

Comparison-Model Hybrid • 129

Given there was very little data so far and a long way to go in the project,
it seemed premature to Marion to decide which data was biased. It’s a
judgment call, and Marion made a decision. The BurnUp Chart showed
the decision clearly, rather than hiding it in some mathematical formula.
Every time Marion looked at the BurnUp, that decision was visible. They
could accept or reevaluate that decision as appropriate with current
knowledge.

The start of a project has a lot of uncertainty. Unless it’s an extension of a
previous project, the work is different. Unless you maintain durable teams
working together, the rate of the work is almost certainly different. The rate
may be different even if you maintain durable teams, as they may not be as
proficient, or may be more proficient, at the new work.

Functions Applied to Affinity Estimates
Technical people like to build tools, and the temptation is strong to build
your own model using subjective measures and objective measures of the
work, the workers, and the context. These measures are combined using
mathematical coefficients representing their contribution to the develop-
ment times.

Effectively they roll their own parametric model with the “T-shirt sizes” of
work items as one of the inputs. Sometimes they go further and start building
something approaching the complexity of the commercially available estimation
models. The difference, though, is that these models are usually based on
much less historical data, and the model is not usually tested on a wide
variety of situations.

Stepping Back for a Broader View
We’ve looked at three basic approaches to modeling the time it will take to
accomplish some planned work, as well as a hybrid approach that mixes
elements from these three. All conform to some approximation of the amount
of work and the rate of progress.

• Linear:

– amount of expected work

– historical rate of accomplishing work

Chapter 5. Model-Based Estimation • 130

report erratum •

Building the "Super Model"

I’ve seen a quite complex model that used a list of project sub-
features developed early in the project by analysts, rating those
sub-features by

• perceived difficulty
• number of dependencies on other systems
• whether they represented new, similar, or same functionality

compared to prior work

and calculated optimistic and pessimistic durations based on
expected number of teams working and historic average team
throughputs. I could tell that this model was not based on empir-
ical data as the coefficients tended to be nice neat figures such as
0.25, 0.5, and 1.0.

Alas, I cannot tell you how well this worked, as no one ever com-
pared the model’s prediction with actuals. Applying detailed
adjustments based on individual characteristics of work items is
a difficult thing to do well. Each coefficient needs to be evaluated
and calibrated separately for the model to have true validity. This
is perhaps worthwhile when there is a great deal of similar work
being done by a stable workforce, but seems unreliable in the
practice I’ve observed.

Seat-of-the-pants coefficients can work, but I would caution you
to check your model both against historical data that wasn’t used
to derive the model, and against actuals in the future. Remember,
the actuals are the real data. The model is a hypothesis.

• Parametric:

– various parameters expected to correlate with or affect the amount of
expected work

– various parameters expected to correlate with or affect the rate of
accomplishing work

• Stochastic:

– nominal amount of expected work plus range of work growth

– nominal rate of accomplishing work plus range of variation (including
delays)

report erratum •

Stepping Back for a Broader View • 131

Models are a way of simplifying your view of the world around you. They give
you a map for navigating that world. This lets you emphasize the points that
are salient and ignore the noise. What is salient and what is noise, of course,
is a judgment call on your part.

Using models to calculate estimates is a great time and cognitive energy-saver.
They allow you to repeatedly apply the same criteria to different situations.
This is both a blessing and a curse. You need to keep an eye out for situations
where your usual criteria doesn’t apply. If you question your model frequently,
you should be able to stay out of trouble. If you double-check periodically
with a different model, that’s even better. And, as always, when the map and
the territory don’t agree, trust the territory. This tells you that there’s some-
thing your map doesn’t know.

As we’ve seen, no matter how sophisticated the model you’re using, it needs
to be calibrated to your context in order to give answers appropriate to that
context. The advice to have lots of accurate historical data is repeated in every
tome about accurate software development estimation. The assumption is
that things have remained static enough that this historical data will be rep-
resentative of your current context and useful to calibrate your estimation
process.

Now It’s Your Turn
1. If you use a model to predict progress on your software development

project, what sort of model is it? What are the inputs? What are some
significant contributors to development time that are not modeled
explicitly?

2. How well does your model match the actual results you get? Is this close
enough for your needs? If not, which decisions would be better with
higher accuracy or precision?

3. When was the last time you calibrated your model with your actual
results? What sort of changes did you make to the model?

Chapter 5. Model-Based Estimation • 132

report erratum •

CHAPTER 6

Estimating Milestones
Up to this point, we’ve mostly focused on estimating the end of a project.
That’s a natural point of curiosity, but it’s not the only point that matters. In
fact, once a project is started, we can control when it ends with certainty. We
can end it at any time. The question is predicting what gets completed before
we end it. And there are questions about when particular parts might get
completed along the way.

A software development project is a journey. We’ve previously looked at
Chapter 4, Checking Progress, on page 75 along that journey, but you might
also like to anticipate when you’ll reach certain points in that journey. These
points may be arbitrarily assigned, like a milestone, or a natural landmark.
In software development terms, an arbitrary milestone might be a release
date, or the completion of some intermediate work product such as a document
or a task that, by itself, doesn’t create or enhance usable functionality. A
natural landmark might be the release of a new or enhanced feature to pro-
duction. For simplicity, I’ll refer to both of these, and the continuum between
them, as milestones.

report erratum •

Deadlines
Combine a milestone with a point in time, and you create a deadline. “I want
to be at the 20-mile mark before noon.” Or “I want to cross the mountain
ridge before sunset.” These are aspirational deadlines. Sometimes in group
situations, the speaker may be one person and the doer may be another. Then
they become imperative deadlines. “I want you to get us to the 20-mile mark
before noon.” That leads quickly to the interpersonal aspects of estimation
that we’ll explore in Chapter 9, When People Clash, on page 177.

People often talk about imperative deadlines as if someone dies if you cross
them. Indeed, the earliest documented use of the word refers to a line
demarcated about 20 feet within the stockade walls of the Andersonville
Confederate military prison. Prisoners of war who crossed that line, or even
reached across it, were liable to be shot by guards.

Sometimes people act like someone dies when you cross a deadline. Rarely
is that true.

When My Mother Got a Digital Clock
When I was a teenager, my mother got a "digital" clock radio for her bedside table. It wasn’t
really digital. It was an analog clock run by a motor, the same as the one with minute and hour
hands, but the output was digital, with a "split flap" display. Each number was on a divided flap.
As the display rotated, the top half of the flap would fall down and display as the bottom half of
the next number, revealing the top half of the next number that was behind it.

It wasn’t any more accurate than her old clock, but it had a very precise output. And it had a
built-in radio. She was very pleased with it.

Shortly after she got it, on a night when I was told to be home by midnight, it said "12:04" when
I got home. She was furious! I had missed the deadline!

Nobody died because I was four minutes late getting home, though a bystander
might have thought so by the tone of my mother’s voice. It was an arbitrary

Chapter 6. Estimating Milestones • 134

report erratum •

boundary and I had hit it pretty precisely, if on the wrong side from my
mother’s point of view.

You may have seen similar reactions to missed deadlines in your career. We’ll
take a deeper look at these behavioral issues in Chapter 9, When People
Clash, on page 177.

After the 1865 trial of the Andersonville Prison commander, Henry Wirz, the
word “deadline” faded from use for a few decades.

When the word “deadline” reappeared in 1917, it had an entirely different
meaning. This deadline was a mark on the bed of a printing press beyond
which the type would not print. Soon after that it acquired another printing
related meaning—the time after which material would not make it into a
printed newspaper or publication. It is this definition of a time limit that most
represents current usage in software development.

Sometimes deadlines are real, and if you miss them, you’re not going to be
included.

When I Missed the Boat
When I first started sailing keel sailboats, a friend invited me to join him as racing crew on
another friend’s boat. We’d leave slightly early on Wednesday afternoons to drive to the boat.
There we’d join the boat owner and a few others to go out on the river to chase other sailboats
around the racing marks. I started getting more useful than merely moveable ballast, and got
invited for a longer race one weekend. The skipper told the crew, "The boat is leaving the dock
at 0800 Saturday morning."

On Saturday morning I drove to the boat without my friend, who had other things to do. I wasn’t
in a particular hurry, as I had plenty of time. When I pulled up at the marina, though, there was
something wrong. Even though it was only 7:55, I could see the boat turning the corner of the
creek to the river. I had missed the boat, even though I was before the announced deadline. I was
terribly disappointed.

I learned that day, if I wanted to join a racing crew, that I should be there
well before the time the boat left the dock.

Many software development deadlines are like these. Some are target dates,
and if they’re not met then things are merely delayed. Some are fixed, and if
you miss them, you miss the figurative boat. The release date comes, and the
software is released, but your work is not included in the release. You may
be terribly disappointed. Other people may be disappointed, too, but if the
timing of the release matters more than the content, that’s what happens.
And you may be trusting the deadline to be more precise than you should.
“Close of business” may mean “when Operations starts the deployment pro-
cess” rather than “by 5:00 p.m.”

report erratum •

Deadlines • 135

Don’t Bet the Farm on a Precise Estimate

Of course, missing a deadline can derail a whole release if you’ve
mingled nonreleasable, unfinished work with releasable work.
That’s going to disappoint everybody and satisfy neither people
focused on the date nor people focused on the content of the
release. Don’t do that—use safe mainline development practices,
feature toggles, or even feature branches instead. There’s no point
in making your estimate the most critical component of a release.

Let’s consider some of the needs people may have for estimating milestones.

Early Release
There is a time value to money. A dollar today is, theoretically, worth more
than a dollar tomorrow because we can make use of it. If we invest it, then
it becomes more than a dollar. We might not see that value in a single day,
of course. And we might not take advantage of having the dollar in our
pocket. If it just sits there, unused, we’ve squandered that time value.

What happens, though, if you release a little bit of new functionality and it
starts earning a little bit of income while you continue to develop the rest of
the functionality you ultimately want? You’ll still be spending for development
at the same rate, but a tiny bit of that cost will be offset by the value earned
by the early release. If you keep doing that, the functionality grows and so
does the rate of early value. That is, the rate of value grows if you take
advantage of it, and don’t just keep it in your pocket.

Let’s compare the differences between waiting until you’ve built “the entire
thing” before putting it in production and releasing incrementally as you can
gain value. What’s the estimated income from “the entire thing?” If you wait
until a final release, you’ll spend for development until that point and then
start seeing that income.

If you can release something valuable earlier, you can estimate you’ll earn a
small portion of that income sooner. Each time you release, you presumably
increase the amount of current income from the project. By the time you build
“the entire thing,” you are earning the same income as if you’d waited to
release. The current net cost, development costs minus current income from
the project, decreases over the life of the project. The accrued value doesn’t
go as far negative and reaches the break-even point earlier as shown in the
figure on page 137.

Chapter 6. Estimating Milestones • 136

report erratum •

-100000

-50000

0

50000

100000

150000

200000

 		

It’s possible you’ll reach a break-even point before you finish developing. The
income might become more than the cost of development, and the project
becomes self-sustaining. If this is the core of your business, that’s exactly
what you want. This lets you continue to develop revenue-producing function-
ality forever. Even with very conservative returns on a fixed-scope project,
delivering some functionality early and starting to accrue some value from it
makes a considerable difference in the time to a break-even point.

IT projects can also accrue value earlier. Even when there’s no customer
paying money, presumably there is benefit in the new system or the project
wouldn’t have been undertaken. Perhaps there are cost savings from the new
system. It may be easier and quicker to do some type of work, or the operation
and maintenance is cheaper or easier than an older system that is being
replaced. Perhaps the new system provides the capability to do some work
that wasn’t previously feasible. It may be harder to quantify the value accrued
when it’s not income, but it’s still accruing value.

Minimum Releasable Value
Ryan stood in the hallway looking at the whiteboard with the big BurnUp Chart. Sidney walked
up and asked, "What are you thinking?"

"I’m thinking about the order of these features, and what it would take to start seeing the value
before it’s all built."

"Great! Would you like to change the order?"

report erratum •

Early Release • 137

"I’m thinking that we can put a limited version of this new call center into production with just
a single division, and we won’t need all the features. If we direct only the customer service
number of the Applied Magnetics division, we won’t need any of the advanced call-routing
features. Their call volume is low enough that they don’t use the Interactive Voice Response
feature. And the customer search feature on the agent console will be good enough for now."

The two of them started moving cards as Ryan talked. They moved everything that Ryan thought
essential downwards and filled in the space above with the cards they’d taken off to make room.

10 20 30 40 50 60 70 80 weeks

Route on number
called (medium)

Route for
continuity

(large)

Route on rep
availability (med)

Balance workload
(medium)

CRM by rep search
(medium)

CRM by caller ID
(medium)

CRM by IVR data
(medium)

Update CRM info
(medium)

resolution speed

Monitor IVR time

Mon. issue reopens

Monitor system
health

(unknown)

issues by rep
calls per issue

issues still open

Walking skeleton
(medium)

Ryan stepped back with a look of satisfaction. "I think that’s better. I’m looking forward to seeing
it actually used."

Sidney replied, "We can always change it again. But looking at it now, it looks like approximately
three more months to that minimal releasable version. Thanks for your help."

Ryan looked up. "Thank you. It wasn’t like this when we built the last system."

Releasing multiple times throughout the project effectively turns it into a
series of mini-projects. Each of these will have a release date that will interest
someone, and they’ll want to know when that is. We have an advantage,
however, in judging these interim release milestones. As when you are
Chapter 4, Checking Progress, on page 75, you have some recent historical
data with the same context as you’ll have going forward. Earlier milestones
give feedback on the validity and accuracy of assumptions made in estimating,
and that feedback will help you correct estimates of future milestones.

Chapter 6. Estimating Milestones • 138

report erratum •

Deciding to release early is one reason to look at milestones prior to the end
of your project, but it’s not the only one.

Coordination with Others
It’s easy for a close-knit team to see themselves as the center of the universe,
or the most important aspect of a project. They’ve been given, or have taken
on, the responsibility for accomplishing some piece of work. In fact, dividing
work into projects may reflect a concept of dividing some larger purpose into
categories of similar types of work, each to be given to teams and individuals
with the appropriate skill set. There are, of course, pros and cons to such a
division. One of the consequences is that the different parts of the effort need
to be coordinated and aligned to achieve the higher goals, the intended out-
comes. That coordination and alignment requires some visibility into the
progress and expected future progress of the various threads of work.

Parallel Development
Sometimes in the grand scheme of things, it takes more than one team to
deliver all the software functionality you need to have the outcomes you seek.
Small incremental improvements are safe, but often don’t create the big
breakthroughs in impact. Rather than have one team serially do everything
that’s required for a large idea, it’s often preferable to have multiple teams
working in parallel toward a common goal.

There are a number of ways this can play out. Perhaps you need to change
multiple subsystems of a large system in multiple ways. Some of these might
be system enhancements and some brand new. You might have different
teams working on different subsystems or they may be working on different
functional slices. In order to have it all come together, you need to integrate
the various systems. And, as with all integration efforts, you don’t want to
risk leaving integration to the end, but instead integrate over time as the
systems evolve. Not matter how you’ve worked to decouple the various pieces,
you’ll need a lot of collaboration touch points along the way.

It’s best if these touch points are “just-in-time.” If I’ve finished my system
and gone on to something else, it’s inconvenient if I need to come back later
to make an adjustment when another system tries to integrate with the
functionality I created and finds it wanting. It’s both inefficient and ineffective.
A jump back to previous work rarely catches the depth of awareness that
previously existed, and such rework may not be of the same quality as the
original.

report erratum •

Coordination with Others • 139

When will a dependency be ready for collaboration, and what valuable work
can we fit into the time before then? This is one of the questions that estima-
tion may help to answer.

Other Systems
Often a desired change in functionality affects more than one system. A change
in one system may depend on changing a backend service to provide the data
or functionality it needs. From the perspective of that backend service, there’s
no point in making the change if there’s no code that’s using it.

You can, of course, serialize the development of the two systems. You can
develop the backend service first, and then start working on the system that
uses it. This, of course, lengthens the total time of development to the sum
of the time of developing each piece, and the delay between the two. Surely
you’d prefer to develop these in parallel.

You could start developing both systems at the same time, mocking the
behavior of the other system during development. This is a good strategy, but
it has some pitfalls. The mocked behavior may not match exactly, leading to
the need for rework when the systems are integrated. If the development team
of the system that needs rework has “finished” and gone on to other things,
then they’ll either have to drop what they are doing to come back to this, or
the integration will be delayed until the other work is done. This sort of
dynamic happens more frequently than you’d think, even in the completely
serialized case mentioned above.

You’d prefer to have both systems ready for integration at the same time, and
this synchronization requires estimating when each system will hit that point.
And if you’re trying to minimize integration risk, you’ll want to have several
synchronization points. You’ll want some basic synchronization early, to
ensure that the systems are basically compatible, and get progressive detail
in the integration as the work proceeds. You probably won’t be able to perfectly
synchronize all of these integration milestones, but it’s worth the effort to try
to come close. Integration points are a major source of errors in combined
systems. Juggling the needs of two flows of work to do rework on one is a
major effectiveness drain, and also a common source of mistakes.

Deployment and Operations
In most situations, the development team is not handling all aspects of the
developed system. Even in organizations practicing DevOps, there’s a limit
to how much a team can do. In most organizations, there are specialized
groups for many activities, and handoffs to others’ care.

Chapter 6. Estimating Milestones • 140

report erratum •

In organizations that have not embraced a DevOps model, there may be a
separate team that deploys to production. Sometimes this strategy is chosen
for security reasons, to reduce the access to production servers. If the server
hardware is shared among various applications, having a separate team can
make sense for preventing accidental disruptions to applications unfamiliar
to the deploying development team. There are cases where the application is
not hosted on a central server, and perhaps there is no facility for pushing
the application from a central location to many runtime environments. Rarely
are the development programmers charged with traveling to dispersed
machines for deployments. All of this needs to be scheduled and coordinated.

In a self-hosted DevOps model, shared resources such as storage subsystems
might be managed by an infrastructure team rather than have every develop-
ment team stirring the common pot for their own needs. In such a case, this
team will need advance notice of needs so they can ensure sufficient storage
capacity for the new application, without interfering with existing ones.
Increasing the capacity may require the purchase and installation of new
hardware, and that may take a while. This suggests that it’s prudent to esti-
mate and communicate these needs far enough in advance that this won’t
delay the deployment. A separate infrastructure team will also have responsi-
bility for keeping the software running that keeps infrastructure up-to-date
and patched for security issues. These duties need to be coordinated with
new deployments.

System Users
One handoff that’s pretty universal is the one to the system user. It can be
helpful for users to know when a system will be available so they can prepare
to use it in their work. Think how it would feel to have your work suddenly
interrupted with an announcement that you had to immediately switch to an
unfamiliar way of working. They may have logistical issues regarding changes
in their workflow that are enabled or required by the new functionality. Can
you tell them what changes they can expect, and when they can expect them?

Trainers
Consider the need for training the users of your system. Before we put new
IT software on the desktops throughout the organization, we may need to
train people on the new system. There will be differences in the operation of
the new system from whatever they’re doing today. If there’s a wide user base,
this usually means a significant training effort, visiting the locations of the
users and training them on the differences and benefits of the new system.

report erratum •

Coordination with Others • 141

That needs to be completed prior to releasing the system, but not so far in
advance that they forget what they were taught.

Prior to that, someone needs to design that training. This needs to be late
enough to provide the training team with accurate information about the
system behavior. That’s a milestone that should be estimated, so they can
know when they can begin. Is there enough time between then and release
for designing and delivering the training? They’ll need to estimate that
timespan.

It’s likely they’ll need pixel-perfect screenshots prior to delivering the training.
How late in their training design can they wait for those? When can you pro-
vide them? These milestones need to be coordinated so that release and
actual use of the system won’t be delayed.

Help Desk
When new software, or a new version of existing software, is deployed, it is
likely that users will have questions or problems using it. They may call the
help desk for assistance. “How do I do this thing I used to do this way?”
“Where did my shortcut go?” I’ve talked with help desk personnel who found
out about a new deployment when the calls started coming in. It’s so much
easier for them to help the users if they know something about the software
ahead of time. When do they need to be notified so they can prepare?

The Customer Who Requested the System
People who have requested new functionality, who may not be the direct users
of it, did so because of the benefit it provides to their organization’s work.
The purpose of this work is likely not about software at all. They would like
to know when their request will be fulfilled, and what other changes will
happen at the same time.

If the system won’t be available in time for some of their needs, the users or
the people requesting it on the users’ behalf may have to figure out an alter-
native plan. That may require some preparation, so knowing this in advance
is helpful. Can you keep them informed appropriately?

Marketing
If it’s software for sale to outside customers, then we want to start a marketing
campaign early to build up the buzz. We want to pique peak interest at release
date. Customers love to be first in line for a new exciting thing. If interest
peaks late, we miss a market window. If it peaks early, it may cannibalize

Chapter 6. Estimating Milestones • 142

report erratum •

current sales. Customers quit buying the current offering to wait for the
exciting new one. This has become known as the Osborne Effect after the
bankruptcy of Osborne Computer Corporation who announced a new com-
puter model, killing sales of the Osborne 1 and the cash flow needed to con-
tinue development. What’s the earliest point they can start pushing the new
system? How sure are you?

Packaging
Some software-based products still get packaged into physical boxes. If we
start this project today, when will we likely need to start production of the
associated physical components that have their own lead times, such as
boxes, brochures, and servers?

Others
Organizations, especially larger ones, are complex systems. The actions in
one place ripple through and affect the situation in other places. Often those
at the place of action are unaware of the effects on others, and vice versa.
Left unchecked, these unintended effects of local actions can encourage
responsive action that, itself, creates further ripples. Visibility, both across
the organization and into the future, can help. Who needs to know what, and
when? How can you be aware of those needs and how can you provide the
needed infor in a timely fashion?

Each of these coordination points is a milestone that needs to be communi-
cated to others. It’s generally OK if they change, as long as you can give
enough advance notice. The point is that you need to keep people informed,
giving them sufficient notice from the start, and when the picture changes.

Evaluating and Changing Plans
As ed in Chapter 1, Starting Something New, on page 1, a primary
reason to estimate prior to starting a project is to provide those with the
fiduciary responsibilities with enough information to make responsible
choices and plans. This need changes after the project starts, but doesn’t go
away. There are some who would try to freeze the decisions and plans and
expect the project management to conform to those plans no matter what
happens. This seems silly to me.

As time goes on, conditions change. We learn new information that gives us
different insights on the data we had. The world does not stop for us. As you
learn new things, you’ll likely want to reconsider your plans in the light of
what you now know.

report erratum • discuss

Evaluating and Changing Plans • 143

Reporting Progress to Stakeholders
We’ve already looked at Chapter 4, Checking Progress, on page 75 for steering
our project, but you might want a less detailed view when reporting progress
to other stakeholders. They need to know how things are going so they can
make plans and decisions at a macro level, but you don’t want to invite
micromanagement of work within the project. Give them the honest informa-
tion they need.

If they need more detail, or the data worries them, then you can share a more
detailed view with them. Most of the time, that more detailed data requires
some tacit knowledge of the project to understand it. They probably don’t
have the time to stay up-to-date on the tacit knowledge of the project–hence
the recommendation to give them a useful summary. If they need a more
detailed understanding, it will probably be best to go over your signs of
progress with them, helping them to understand the context within the project
as they help you to understand the context surrounding it. Don’t just give
them numbers; tell them the story.

Telling the Story
Rory, the CEO of Empire Enterprises, stopped Marion in the hallway. "Last month I heard you
were releasing the new call center software at the end of this month. Today I heard that it’s not
going to be complete. When will it be done?"

Marion replied, "Both of those things are true. We are releasing this month for use by the Applied
Magnetics division. They have the lightest needs, and we can put the system into production
there while we continue to extend it for other divisions. It will likely be suitable for the Paints
and Pigments division three or four months after that. In fact, there are several divisions that will
come online about the same time, once we demonstrate our confidence."

Rory looked puzzled. "Last time we rolled it out enterprise-wide, all at once."

"Last time we had much lower expectations for the system. It has evolved over time since then,
and it’s been customized for different divisions in different ways. This time we’re planning for
these customizations from the beginning, but not holding up those who need less customization.
We’re also allowing for changing priorities and unanticipated future discoveries. Would you like
to see the current plan?"

Capacity for Other Work
When we finish this project, what will we do next? Do we just wander off into
the sunset, leaving the organization to attend to whatever is their primary focus?
Or does the organization have other development work they want us to do?

Most modern organizations run on software. And most of them have an
inexhaustible appetite for new functionality or improvements to what they

Chapter 6. Estimating Milestones • 144

report erratum •

have. When you finish this current project, they likely have a few items already
in mind for your next one. As you work on the current project, they may be
wondering when would be a good time to start on these new items. Is there
a good pausing point coming up on the current work so that something new
can be done with minimal disruption?

“When will our current development capacity be available for these new ideas?”
What will you tell them? Will you be stuck finishing all the work that was
started, or can you offer reasonable cutoff points where value has been
achieved, and further work can be deferred? No one wants to be stuck in a
long-term plan that no longer fits current priorities.

Whether the stopping point is at the end of the originally planned project, or
somewhere short of that, the business will want to know what options are available.
Setting intermediate waypoints that are releasable offers them more options.

Trimming Expectations
Sometimes the success of a project is judged less by what value it brings,
than by whether it meets expectations. We see this behavior frequently in the
stock market. If a profitable company reports strong earnings, but it’s
slightly below their earnings forecast, then its stock is likely to take a hit in
the market. When eBay Inc. missed the analysts’ consensus earnings forecast
by a penny a share in January 2005, its stock price fell 19%.1 People don’t
like negative surprises. To avoid this reaction, companies often offer guidance
ahead of time to soften the blow.

In similar fashion, it’s prudent to keep stakeholders informed of significant
risk to expectations. That’s not to say you want to relay every tidbit of bad
news to them. You do want to keep them abreast of the trends, however. And
new information may trigger a reevaluation of their plans. They may have
different priorities when facing the fact they might not get all they wanted.

Everyday Milestones
You may remember that I decided to run some errands on the way to the train station. (Casual
Sense of Progress, on page 76) This made the trip to the train station somewhat different from
ones in the past. Let’s check in and see how this is going.

"OK, that took a bit longer than I expected. Let me look ahead. I should be able to get through
the next three items by 10:00, and the last three by 11:00 if I skip the other ones on the list. Then
I can drive to the café by 11:30 for lunch, and have plenty of time to make my train."

Sometimes the last items on the list aren’t the lowest priority, but things you
want to do last because they depend on the others. Or maybe they’re things

1. http://articles.latimes.com/2005/jan/21/business/fi-ebay21

report erratum •

Evaluating and Changing Plans • 145

that are most sensitive to potential changes in the context around the project,
so you want to delay them to the last possible moment to be able to account
for the maximum amount of change. Do you remember avoiding spending
the night on the side of the road in Benefit of Headlights, on page xi? What-
ever the reason, it’s possible that ticking off items in the planned order is not
the preferred approach.

Canceling the Project
One of the biggest and perhaps best outcomes of changed estimation of a
project is that you cancel the project. If it looks like you won’t achieve your
objectives within the time and cost budgets you’ve set out, canceling early is
preferable to continuing to the bitter end. Step back and reconsider your
objectives. Perhaps you can reach the same outcomes with an entirely different
approach. Perhaps you should look to make an impact with different outcomes.
In any event, continuing down a path that leads to a dead end is not what
you want. Better to cut your losses early. (See Sunk Cost Fallacy in Cognitive
Biases, on page 72.)

Even if you are on track for meeting your original objectives, it’s possible that
new options have been discovered that are a better investment today than
continuing this project. It could be worthwhile to switch to that new option
now, rather than delay it.

Stepping Back for a Broader View
We’ve looked at some of the ways that, even in the absence of artificial dead-
lines, real reasons exist for getting things done by a particular time. In those
cases, you are likely better off reducing what you get done than missing the
date. In most cases, however, what’s late just gets left behind. The reduction
in scope is a natural consequence, and it’s up to you to make the best outcome
you can of the situation.

When you’re not bound to a hard date, then you can shift the focus to asking
which scope brings you value. In general, realizing a small amount of value
earlier is better than delaying it until you can realize a large amount of value
all at once. Not only do you start accumulating value earlier, defraying some
of the development cost, but you may learn something important. You might
need to change your plans.

There are many coordination and collaboration reasons to look ahead. If no
man is an island, rarely is a software development team, either. Others may
be dependent on your work and deserve to be kept apprised of when you

Chapter 6. Estimating Milestones • 146

report erratum •

might be ready for them. You may be dependent on others’ work, and want
to keep them aware of when you’ll need it. In both cases, you’re trying to
smooth the flow of work that weaves through multiple hands. These coordi-
nation points may be the most expensive parts of the whole operation, as
they’re where the most delays arise.

There are a lot of aspects to changing plans. Sometimes you’re changing
other plans to accommodate the reality of your current progress. Sometimes
you’re changing the expectations of others for the same reason. Sometimes
you’re altering the plans of your current work to bring it to a meaningful
conclusion at an earlier date. And sometimes you’re deciding to abandon the
work you’re doing, as it’s not looking promising that it will provide the
expected cost-benefit ratio. In all of these scenarios, it makes more sense to
respond to the reality you see than to close your eyes and forge ahead with
plans made on obsolete information.

For all these various reasons, you’ll find yourself estimating different subsets
of the work, for different audiences, and with different needs for accuracy, pre-
cision, and direction of error. That’s hard work, and you’re bound to get some
of them wrong. What do you do when that happens? We’ll explore that in the
next chapter, Chapter 7, When Estimates and Actuals Differ, on page 149.

Now It’s Your Turn
Consider your current or recent project.

1. What “deadlines” did others impose or imagine for that project? What
were the consequences if those “deadlines” were not met? Think of the
consequences to the organization’s goals, to departmental goals, and to
individual people.

2. On that project, what opportunities were there for early release of a subset of
the functionality? Was there any appetite within the organization for doing so?

3. When, on that project, did you know that things were not progressing
according to plan? Did others, either closer or further from the work, learn
this at a different time? What observations led to the conclusion that
things were not proceeding according to plan, and what steps were taken
when it was realized?

4. Who else needed advance knowledge of project milestones to plan their
own work? How far in advance did they receive that information? Did they
receive updates on that information as things changed? What were the
consequences if the dates were missed?

report erratum •

Now It’s Your Turn • 147

CHAPTER 7

When Estimates and Actuals Differ
When you make an estimate, you can be almost assured that it is not a perfect
prediction of how reality will unfold. It’s hardly helpful to you to label inaccu-
rate estimates as “wrong” if that label will apply to 100% of them. You could
consider “wrong estimate” to be a redundant phrase in that case.

Look at what goes on around you, though. I’d bet you’ll notice people talking
about “wrong estimates” all the time. Once you’ve reduced your analysis to
a number, it’s temptingly easy to start to trusting it more than you should.
You might consider your estimates to be data rather than opinions.

Once you consider the estimate as your primary reference point, then all sorts
of things start looking pretty shady. You can blame people for not meeting
the estimate. You can blame the estimate for leading you astray. You can
point a lot of fingers without solving any problems.

Or you can let reality teach you what was wrong with the estimate. Each time
this happens, there is something to be learned. Steve McConnell, in Software
Estimation: Demystifying the Black Art [McC06], suggests comparing estimates
to actuals “so that you can refine your personal estimating abilities.” That
will certainly help you in the future. In the meantime, I suggest making such
a comparison in order to calibrate the estimates you have on your current
project.

If you do that early enough and often enough, the things you learn can help
you steer the project to success. Or, if it can’t be steered to a satisfactory
conclusion, you can quit before spending all your money.

Adapting to Reality
...continued from Everyday Milestones, on page 145

Hmmm, I’ve got the first three errands done, but it’s 10:30 already. Missed that milestone! I think
I’ll cut the last couple of errands from the list. They can wait. I’d really like to get a good lunch,

report erratum •

though. I think by cutting those errands, I’ll have time to stop at my favorite lunch café. I’ll need
to do that by 11:30 to have time to eat and get to the station…

From the café, it’s still about a half hour to the catch the train. I had planned to be there by 11:30
to have an early lunch, but that’s not going to happen. Some errands took longer than expected.
Traffic was slower than expected. There was a wreck and I had to detour. It’s 11:45 now, and I’m
probably 15 to 20 minutes away from the café. I could swing through a fast-food drive-through
and eat while I’m driving. Or, if I can get to the café before noon, I could get some better food
to go and eat on the train. If I’m later than that, I’m not sure I can afford the time to stand in line
and wait for my order to be fixed. In that case, I think I’ll drive past and continue straight to the
train station. I can get a late lunch on the train. I really don’t want to miss that train.

Driving Up Costs
A USA Today article about highway projects in New York had the subhead,
“Design errors, planning lapses drove up costs more than 14%.”1 Among the
things listed that “drove up costs” were:

• more asphalt than projected due to a math error

• more temporary concrete dividers than planned, as plans called for only
half what was needed

• unanticipated excavation costs

It’s true that no one likes for costs to exceed estimates, but exceeding estimates
is a very different thing from driving up costs. Math errors can happen. You
could quit paving when you spent the asphalt budget, but would that give
you what you want? What determined the number of dividers needed? Was
the number of needed dividers inherent in the length of highway being built?
Perhaps it was related to the length of highway under both use and construc-
tion at any given time? There is often a trade-off between the duration of the
project and the cost. It usually costs more to go faster. We might do the work
in bigger batches to try to achieve a higher efficiency of scale, but this might
require more equipment, such as dividers. Perhaps the organization of the
work changed the number of dividers needed, after the estimate was made.
When excavating, you never know what you’ll find below the surface. Did they
find boulders or incompatible soil? I know of a building project where, after
construction began, a construction engineer discovered the soil type was too
unstable to hold the weight of the planned building. It took weeks to truck
out that soil and truck in replacement dirt at great expense.

Despite the unhappiness with the outcomes, those actual costs were accurate.
It was the estimates that did not agree with later reality. Two of these items

1. http://www.usatoday.com/news/nation/story/2011-12-11/construction-287-new-york-over-budget/51763184/1

Chapter 7. When Estimates and Actuals Differ • 150

report erratum •

seemed to be simple mistakes, but the third was apparently a bit of informa-
tion that was not knowable when the estimate was made. Had these mistakes
not been made and the excavation needs been known in advance, the
resulting costs would have been the same. Only the estimates would have
been different.

If the math error had gone the other way and less asphalt was needed, if
plans had called for twice the dividers needed and they got by with fewer, and
if excavation had gone more quickly than anticipated, would the headline say
that design errors and planning lapses had saved money? In reality, contract-
ing for more asphalt or concrete dividers than needed would likely have really
driven up costs, though perhaps still come in under the estimate. Would that
be preferable?

Once started down the path of blaming, it’s easy for people to shift from
blaming the estimate to blaming the estimator. “They should have known
better.” Perhaps they could have made a better estimate and perhaps not.
And perhaps they made a perfectly good estimate for some other need than
the one for which it was found wanting. In any event, there’s little you can
do now to improve a past estimate.

Worse is blaming the people whose work didn’t meet the estimate. It’s not a
sure thing that they could have met the estimate. At worst, they may have
failed to keep people properly informed. We’ll look more deeply into that, later.
(See Why Didn’t We Know Earlier, on page 157.)

I’ve yet to see a situation where blaming made it better. We’ll look more
closely at that in Chapter 9, When People Clash, on page 177, but for now,
let’s examine what to do when we discover our estimate is wrong.

Salvaging the Situation
When you’ve missed some milestone, it’s natural for people to want a new
estimate for that milestone. How much longer will it take? When will it be
done? Or, as a boss of mine once asked me, “How many more unforeseen
problems are we going to have?”

Reestimating when we’re in a hurry to make up for lost time is really frustrat-
ing. It’s tempting to skip it. You’ll meet that milestone when it happens, and
you can’t afford to waste time on estimation. Perhaps, though, you’d do better
to skip the part about hurrying to make up for lost time. Hurrying has been
known to be associated with making more errors, which creates more delays.
Yes, it’s true that you’ll meet that milestone when it happens. That, however,
doesn’t change the needs of people who want to know when it will happen.

report erratum •

Salvaging the Situation • 151

Obsolete Estimates
People talk about estimates being “wrong” when reality fails to match them.
I find it more useful to think of them as obsolete. You now have more infor-
mation and can see the situation more clearly. The estimate you made was
rooted in the past and based on the assumptions and knowledge you had at
that time.

Estimates don’t become obsolete suddenly at the arrival of the estimated date
or the accomplishment of the estimated work, however. They become a bit
more obsolete every time you learn new information, or you correct an
assumption. Long-term estimates age a little bit every day.

Tiny bits of information erode our estimate like dripping water on a soft stone.
It happens so slowly you often miss it, especially if you’re not specifically
looking for it. You would do well to observe this slow degradation, and do
something when you notice it. When the final reality proves our estimate
“wrong,” the most wrong thing is that you never updated it along the way.
(See If Estimating Is Hard, Estimate More Often, on page 165.)

Replanning
When estimates and actuals don’t match, trust the actuals. The actuals are
data. It may be noisy data. It may be data that says things you don’t want.
But it’s data. The estimates are opinion. Therefore it’s prudent to adjust your
plans to take that data into account. Recalibrating is the same process as
Calibrating to Unknown Context, on page 44, but you have more information
about the variability in the rate of progress.

What’s past can’t be changed, so delays you’ve experienced are going to add
to the current plan. Don’t expect that you’ll go faster to make up the lost time.
Denial and optimism do not make a healthy plan. Even if you identify some
time-saving changes to make in your development process, it will take time
to integrate those changes effectively. Don’t count your chickens before they’re
hatched.

Should you adjust the estimates of future work? Yes, it’s likely that there are
lessons from the current delay that apply to this future work. (See What Didn’t
We Know Earlier, on page 154.) If you learn these lessons, and adjust your
plan accordingly, you may avoid some repeated disappointment. Don’t expect
that you’ve solved your problems until you see it in the data, though. If you
have eliminated the conditions that made progress slower than you expected,
then you’ll get a happy surprise in the future.

Chapter 7. When Estimates and Actuals Differ • 152

report erratum •

After replanning based on the reality you observe, you can attend to fitting
that plan into your constraints. If progress is too slow to fit everything you
want into your budgeted time or cost, consider trimming the scope of the
work. This can be done by eliminating features or by slimming features down
into easier-to-develop, though less capable, versions. You may have to make
some difficult decisions about priority.

Observe where your delays and bottlenecks are. What makes the actual speed
as slow as it is? If it seems that things “should be faster,” then it’s possible
they would be, except for an accumulation of difficulties that impede progress.
Perhaps there are some quick wins in outdated procedures that can be elim-
inated and thus speed up progress. Perhaps the internal quality of the code
has been ignored to the point that everything is hard to change. It will take
time to improve that quality, but it will eventually pay off in faster development
speeds.

• Are there handoffs between one person to another or one team to another?
Such handoffs always seem to create delays in matching schedules and
in relearning the same lessons. Is there some way both people and/or
teams can work together collaboratively to avoid a handoff?

• Are there times when some stream of work is waiting with no one actively
working on it? Delays, like handoffs, decrease the efficiency of the work
being done. Often such delays are due to work waiting on a bottleneck
constraint. You may find it more effective on the whole if others help
reduce that constraint, even if they’re not as efficient about it as those
already doing that work.

• Are there internal documents, reports, or work products that no one is
using? Eliminating these may speed up the work. If these are being used
to communicate across handoffs, then collaborating in parallel may
eliminate the need.

• Do people have multiple work items in progress at the same time? Multi-
tasking reduces efficiency and increases mistakes.

• Are people trying to accomplish work faster than their capacity to do the
work? If you stretch people too thin, then the work takes longer to do,
and more mistakes are made.

Learning from the Situation
Estimates can be used for more than simple prediction and tracking of
progress. It’s so discouraging when people treat estimates as a one-time

report erratum •

Learning from the Situation • 153

chance to guess the future. The odds of winning that game are very low,
indeed. Using estimates as your current best idea of that future is more
helpful. And using them as a stake in the ground to detect changes in what
you think you know is even more so.

There’s little to be learned by the fact that estimates are wrong, but they can
help you notice when things are not as they should be or, at least, not as you
thought they should be. “Incorrect estimates” are not very useful when con-
sidered as failures, but are a goldmine of potential information and insight.
It’s instructive to examine in what ways they are wrong and how they came
to be wrong. When actuals differ significantly from the estimate, it indicates
that the assumptions of the estimate have not been borne out in fact. Why
not? What was different from what was expected? What other estimates
deserve another look based on this new knowledge?

As you adjust your view of the future, it should come more and more in line
with reality. You can start with really rough, low-precision estimates. Over
time you’ll gain the information to make them more precise, if that seems
worthwhile. Your estimates should converge with the final reality over time
as you learn and as you address the risks and get closer to your goals.

What Didn’t We Know Earlier
When we estimate, we are always working with incomplete knowledge of the
situation. If we had complete understanding, we would calculate instead of
estimate. We fill in the gaps of our knowledge with assumptions, both
explicit and tacit. As is to be expected, those assumptions sometimes turn
out to be unwarranted.

When events do not match the estimate, it’s tempting to jump to single, proxi-
mate causes. “If it hadn’t taken so long to figure out that legacy code we were
modifying, we wouldn’t be so late.” This assumes that this or other legacy code
won’t be a problem in the future. That’s similar to the assumption we made in
our original estimate, that the existing code wouldn’t slow us down.

What other assumptions are built into the estimate?

Let’s reconsider all that might be suspect, given what we’ve learned from this
failed prediction. It’s easy to find reasons why things didn’t go as planned,
but these are not generally special cases. There are similar things you will
not foresee in the future. Allow for them.

If it seems like you’re slipping the schedule on a recurring basis, then there’s
something you’re not learning. You must be injecting some unwarranted

Chapter 7. When Estimates and Actuals Differ • 154

report erratum •

optimism. Perhaps you think too many things are one-time, special variations
that won’t be repeated, but the stream of one-time variations is endlessly ever
changing. Whatever it is, you need to dig until you root it out. Adjusting
expectations is a good thing, but people would like an increasing sense of
trust in those expectations over time.

Revisiting Assumptions
When we first built our estimate, we did so in comparison to past history.
This is, of course, an imperfect process. We tried to think of all the aspects
where the proposed system might differ from the reference systems. (See
Aspects to Compare, on page 34.) We can revisit those aspects and decide if
we misjudged any of them.

The Code Isn’t What We Imagined

We saw an example of things not being what they seemed in Misdiagnosis,
on page 12. We can misdiagnose the situation in software development, too.
It’s certainly happened to me.

Someone asked me to change the way the system functions, and I thought it
was going to be easy. “Sure, I’ll have that done by close of business tomorrow.”
Then I started looking at the code and thought, “Oops, this code isn’t at all
what I expected.”

The code for this functionality was spread over a number of source files, and
architectural levels. Worse, it was commingled with other functionality and
that interacted with each other. When I change this, I break that. Somebody
must have been in a big hurry when they hacked in the last change. Perhaps
they were trying to get it done within the time they had estimated.

I could try to do the same, that is, hack up the code until it looks like it might
be working. As tangled as I found the code to be, though, it was unlikely that
I’d get everything right for all cases. There were cases that would be affected
that had nothing to do with the change I was making.

Or, rather, they should have had nothing to do with it. With that much cou-
pling in the code, it would take me more than two days to figure out all the
things that might be affected. Testing those things would take even longer.
Ignoring this risk would likely cause some problems in the future. If I broke
something I didn’t know about, it might take a while before it’s noticed.

When errors accidentally affecting other functionality aren’t noticed right
away, it hides the fact that the work I’m doing can’t really be done in the
expected amount of time. Ultimately, it adds to the time it will actually take.

report erratum •

Learning from the Situation • 155

I might make it look like I met the estimate, but I won’t have done all the
work that was expected to be included. It’s expected that I add the new
functionality and that I don’t break anything else. I may meet the deadline,
but invisibly miss the implicit expectation from my estimate.

Or I could do the job “properly.” I clearly won’t meet the expectation of “close
of business tomorrow” that I gave when I was given the task. In other words,
I will visibly miss the explicit expectation from my estimate.

Either way, my estimate was wrong. I wouldn’t have the change done by close
of business tomorrow.

Looking at it another way, my estimate wasn’t really wrong. It was made in
good faith based on the information available at the time. Now I have more
information that makes the estimate obsolete. My updated estimate is that it
would take me several days to two weeks to accomplish this, depending on the
problems I had disentangling the code and how far I went in cleaning it up.

My best course of action was to talk with the person who asked me to make
the change. I didn’t want to leave them with the false impression created by
my original estimate.

The Team Isn’t What We Expected

Does your estimate depend on who is working on the project? A friend told
me about carefully planning a project with someone who had deep experience
in the domain, competence at the work, and also brought out the best in
teammates. Shortly after submitting the plan, this key person was reassigned
to another project. It was a crushing blow to the project and completely
undermined the estimated plan.

The loss of crucial personnel can also happen in the middle of a project. This
not only removes the knowledge and skill on which the estimate was predicat-
ed, but disrupts the rhythm of teamwork that had been developed.

I once consulted with a manager tasked to estimate a project where the per-
sonnel weren’t yet known. He thought that the company would probably
choose one of a few overseas contracting companies they’d used before, but
he didn’t know which one. And once they chose, there was no telling who
they would assign to the project. They might be people recently hired just for
the contract.

Even when working with known players, a team is more than the sum of its
individuals. When a team jells, they cover for each other’s momentary or perma-
nent deficiencies in a way that makes them unnoticeable. They collaborate

Chapter 7. When Estimates and Actuals Differ • 156

report erratum •

seemingly effortlessly in a just-in-time way that keeps the work flowing. There
is a big difference between such a team and a work group that doesn’t jell. Does
your estimate assume that they will jell or not?

Blown Sprint
It happens sometimes that a development team “blows a Sprint” and doesn’t
deliver much in the way of functionality for an entire iteration. How does your
organization respond to that?

If you’re “working to plan,” this throws a monkey wrench into the plan, and
many organizations jump to blaming the development team for not meeting
commitments. This, of course, damages the trust and communication between
the development team and the part of the organization doing the blaming. In
turn, it becomes less likely that the development team will notify the blamers,
much less reach out for help, when similar situations come up in the future.
Underlying problems get swept under the rug and ignored, making future
disappointing situations even more likely. And things spiral downhill.

Rather than push hard to “catch up” with the schedule, recognize that this
was one of the unforeseen situations for which you should have contingency
planning in place. Stop and spend the time to examine the situation more
deeply. My father, when he was an organic chemistry professor, would tell
flunking students to stick it out and “earn their F.” They had nothing to lose
and an opportunity to learn. It would make their next attempt easier and
more likely to succeed.

Perhaps it’s worth taking a whole day for a retrospective. You might even
want to have a multipart retrospective, with the development team examining
their part of the situation, and the managers and other stakeholders examining
theirs. Then, get all the parties together for a combined retrospective with
each affinity group having taken a deep dive into their own experiences and
failures. What can you learn from this?

You might not catch up with your preferred schedule, but that’s water under
the bridge. The goal now is to make the best choices for the future, and a
temporary reset is a great way of doing that. And who knows, this might be
just the impetus for a breakthrough that leads to a better conclusion than
the original plan.

Why Didn’t We Know Earlier
There are two common situations where we wouldn’t know earlier that a
milestone would be missed. One is that someone knew, or had a pretty good

report erratum •

Learning from the Situation • 157

idea, but didn’t tell anyone else. The other is that no one was paying attention
to the things that would have let us know. In between, there are some varia-
tions, such as telling someone who wasn’t paying attention, but rarely is there
no warning at all.

Late Surprises
Picture this: The scene is a conference room at the Empire Enterprises IT department. Various IT
and project managers sit around the conference table. Other project managers and tech leads
sit in a second row of chairs around the walls, and yet more are attending by video conference.
The current topic is reviewing the status of near-term milestones. Reviewing risks is scheduled
next on the agenda.

The CIO is unhappy. "It’s not unreasonable to say ’Hey, these dates don’t make sense anymore.’
It is unreasonable to say at the 11th hour, ’We’re not going to meet that date.’ It should be a
dialog. Is this milestone on the critical path for something, or is it a stake in the sand? If you know
you can’t meet a date, don’t kill yourself trying to do so. Think about the risk. Having a conversa-
tion is a really good thing to do." Everyone in the room takes a deep breath, and then the
meeting continues.

In my experience, executives don’t usually get upset when work is going to
take longer than planned. Very few milestones are deadlines on inflexible
schedules that can’t be missed. What does upset executives is not knowing
that things will take longer than planned. They depend on people to report
reality so they can make the right decisions. You’ll hear them say this at every
status meeting where they get late notification of a problem.

Unfinished Kitty
...continued from TinyToyCo and the Robotic Cat, on page 18

"It looks like we won’t be able to sell Fluphy Kitty™ for Christmas this year. If the retailers can’t
order it next month, it’s missed the train."

"Yeah," Chris replied, "I got too carried away trying to get the prototype to jump, I guess. I wasn’t
watching the lead time for the big retailers. What are we going to do? We can’t afford to keep
developing at this burn rate for next year’s season, and without Christmas, all our revenue pro-
jections are trash."

"Let’s deal with the near-term problems, first," Pat replied. "What do we need to do to get a
desirable, salable toy that can be sold?"

"Obviously we need to drop jumping, for now. I suspect that we could make the meowing more
interesting to make up for that. Perhaps throw some recognizable words into the meows, even."

"Second, how can we sell this at Christmas? We won’t be able to get it into physical stores, but
perhaps we can do well with large online retailers. We’ll need to investigate the timeline for that
—and also think of how to do some viral marketing to create demand. I was counting on people
buying on impulse when they saw Fluphy Kitty™ in action at the stores. I think we can replace
that with online videos that are easy to share."

Chapter 7. When Estimates and Actuals Differ • 158

report erratum •

"That sounds good. Parallel to that, though, we need to take action so that this doesn’t happen
to us again. Let’s estimate backward from hard deadlines. When do we need to deliver to online
retailers to make this happen? How long will it take to manufacture and package prior to that
delivery? How long to design the packaging after we know the final feature set, or close enough
to know what to print on the box?"

"Good point. We’re in this pickle because we didn’t estimate when our last responsible moment
for a working design really was. I’ll spend the rest of today making phone calls for information,
and tomorrow let’s work out the known and unknown aspects of that timeline."

When things don’t go as expected, you not only need to correct the problem,
but correct your process so you don’t repeat the same problem. Setting a
milestone as a guard condition can let you know when to reassess your current
plan while you still have time to do something different. See Danger Bearings,
on page 167 for more on this concept.

Giving the Bad News

Imagine that you’re in that meeting. And imagine, while your project’s next
milestone is further off than is currently being ed, that there are things
that worry you. Have you articulated these worries on the risk register, to be
discussed next? Are you comfortable with bringing up your worries in this
meeting? Unless the risk can be laid to dependencies outside the company,
that’s a very hard thing to do. No one wants to look bad in front of a lot of
important managers and peers.

Yet those same people are depending on you to give them accurate enough
information to make good decisions, and to give it early enough that there is
still time for the best alternative options.

Hiding the schedule problems means that something less visible than time
is sacrificed. Even with the best of intentions, time pressure causes people
to rush and make mistakes. Time pressure affects their judgment of how
much they need to think about the design, about the abnormal conditions
the system might face, or about the understandability of the code. “We don’t
have time to sharpen the saw; we’re in a hurry to cut down this tree.”

You want to do the right thing, but how much courage do you have?

Asking for the Bad News

Now imagine that you’re the CIO. You really do want people to give you the
bad news as well as the good. Do you ask for bad news when none is evident?
Perhaps you’d prefer that there be no bad news to give. How do you react
when people give you bad news? Do you thank them for it? Or do you take
charge of the situation by asking them questions and giving them advice?

report erratum • discuss

Learning from the Situation • 159

Perhaps you have some other default reaction. Do you know what that reaction
is? Are you aware of how your reaction in such difficult times is perceived by
those witnessing it? Will your reaction make it easier or harder for people to
report unhappy news in the future?

If you want people to tell you bad news, you need to do more than accept it
when they do. You need to invite it, repeatedly, and you need to make people
feel good when they provide it. They don’t have to feel good about the news,
itself, but they do need to feel good that they shared it. How can you reward
people for highlighting when things aren’t going to plan? How can you make
it likely that people will investigate the potential consequences of new
knowledge?

Stepping Back for a Broader View
As much as it pains you, working with the reality in front of you is more
productive than working with your hopes and wishes. That means you’ve got
to face the reality of your situation and deal with it. Blaming the estimates,
estimator, or implementor for not meeting your plan is a destructive form of
crying over spilled milk.

When things aren’t coming together as you planned, it’s time to change the
plan. Nothing else is likely to work. Let’s hope that you make the decision to
replan early enough to accomplish the things that matter to you. There are
some ways to detect problem earlier, which gives you more flexibility in your
replanning.

The foremost way to get early warning is to welcome bad news. Celebrate
when you receive it. Almost always there is someone who knows things are
headed for a train wreck long before that wreck happens.

Another way to spot problems early is to integrate systems early. The most
pernicious problems in system development are disagreeing assumptions
between components. Don’t leave that until last. Connect your systems first
and then make them work correctly together.

Work in a fashion where progress is unambiguous. See things working to
indicate progress. Estimating completion percentages is a great way to hide
missed assumptions. Use functional slices, and measure them in a Boolean
fashion; they’re either done or not.

For safety, reestimate portions of the system from time to time. Are the new
estimates in line with the old? Or have you learned something that changes
your assumptions?

Chapter 7. When Estimates and Actuals Differ • 160

report erratum •

When the actuals don’t match your plans, you’ve surely found something
that violates your original assumptions. Dig in and figure out what it is. Don’t
be too easily satisfied, as there are likely multiple assumptions that need
rethinking.

The questions you might ask yourself include:

• When we made this estimate, what did we assume that turned out to not
be true?

• What has changed since we made this estimate?

• Have we seen similar issues with prior missed estimates?

• When could we have noticed this if we’d been checking our estimates
periodically?

• If we account for these changes in estimates of future work, how does
that change our plans?

• Does our new plan have enough safety margin for severe risks?

Do all of these things, and you can improve your future prospects. That’s
something to celebrate, isn’t it? Does that make it easier for you to welcome
bad news? It’s a blessing in disguise.

In the next chapter, we’ll look at ways to test our assumptions even earlier
and more deliberately.

Now It’s Your Turn
1. When the actuals prove your estimates were optimistic, what is your first

reaction? What action do you take? What would you like your reaction
and action to be?

2. When you suspect that your estimates were optimistic, who do you tell
about that? How do you feel about telling them?

3. On your project or in your organization, do schedule slippages seem to
recur on a regular basis? How far in advance of the scheduled date does
the slippage become generally known?

4. How often do you ask your peers or those who report to you about what
they’ve learned? What use do you make of that information?

report erratum •

Now It’s Your Turn • 161

CHAPTER 8

Planning for Incorrect Predictions
Sponsoring executives use estimates made prior to starting a project to
determine if it will fit into their investment criteria. Project managers use
estimates at the beginning of a project to build their plans of how to conduct
the project in a way that meets the budget and time targets that have been
set. These estimates, done when you know the least, are hard to do well and
become less valuable over time. Yet we often try to manage the work using
these stale estimates as a guide.

Since we know that estimates are not perfect predictions of the future, it
seems foolish to do them once and then trust them. In fact, you can use them
to get early warnings of your mistaken assumptions. This makes your “wrong
estimates” valuable—valuable enough that you might want to create additional
estimates specifically as hypotheses to test your assumptions.

When a milestone is missed, it’s an easy reminder to revisit your assumptions.
Wouldn’t it be nice to notice before a public milestone is missed? What do
you do when things seem to be going smoothly?

You can, of course, wait until there’s a problem. If there’s nothing critical relying
on your milestones, that might be the most reasonable approach. Of course,
if that’s the case then you might not have needed the estimate at all. Be careful,
however, that you’re not overlooking someone else’s important needs.

Most of the time there are consequences for missing a milestone. Those con-
sequences might be minor, such as disappointing a stakeholder or delaying
another team, or they might be major, such as missing a market window or
incurring legal penalties. The nature of those consequences affects how much
effort a development team or project manager may want to invest in prudence.

report erratum •

Seeking Out Information
Whenever new information comes to light, you can check your assumptions.
Do they still seem valid? Which estimates depend on an assumption that no
longer seems valid?

What sort of new information might affect the validity of your estimates?
Almost anything, really.

• When someone leaves the team: What effect will that have on productivity?

• When someone joins the team: That’s likely to slow things down for a
while. Will it speed up again later?

• When a library, tool, or operating system releases a new version: What
effects will that have?

• When there’s a physical rearrangement of the workspace: What affordances
are changed? How will it affect communication?

• When you find out that the codebase on which you’re building this project
was never deployed to production: What hidden incomplete work lies
within it?

This is just a small start. It’s really hard, of course, to evaluate all new infor-
mation you receive and correctly determine if it meaningfully changes your
assumptions, which assumptions, and in what ways. We make assumptions
to simplify how we think about things and get some of the details out of our
heads. There are too many details to document them all, so you won’t have
a comprehensive list to check. Trying to evaluate all information as it comes
in sounds helpful, but it’s too large and error-prone a task to rely on solely.

Rather than wait for information to come to you, you might want to seek it
out. Be proactive, and specifically look for ways to avoid fooling yourself with
a complacent trust in your estimates and assumptions. It’s a lot easier to
notice that information has changed when you’re actively looking for it (than
when it happens while you’re doing other things).

If you’re going to continually steer based on priority and projections, then
you’ve got to keep those estimates up-to-date. Keep looking for where your
assumptions may have changed. Have others challenge your estimates and
assumptions. What do they notice that you have not? What do they not see
that you’ve come to think is essential?

Chapter 8. Planning for Incorrect Predictions • 164

report erratum •

If Estimating Is Hard, Estimate More Often
Edgar R. Fiedler, former U.S. Assistant Secretary of the Treasury for Economic
Policy, is quoted as saying, “If you have to forecast, forecast often.” (The Three
Rs of Economic Forecasting-Irrational, Irrelevant and Irreverent [Fie77]) In the
Extreme Programming community circa 2000, there was a saying that “if
something is hard, do it more often.” When you do something more often, it
becomes a smaller and easier job to do. It also becomes more effective. This
is true of testing, code integration, delivering working software, and it’s also
true of estimation.

It would seem too expensive to reestimate everything from scratch on a fre-
quent basis, but not if you use a lower-precision estimation process. You’re
looking for significant differences from your previous estimates, not minor
ones. For long-term projects, you should likely be reestimating annually, if
not quarterly. Things can get really out of hand in a year’s time. Much more
frequently, you should reestimate the near-term milestones. These should be
relatively easy to check. If you find major discrepancies between your new
estimates and your old ones, then you’ll want to consider where those arise
and what else is similarly affected.

Spot Reestimation
You may not wish to reestimate everything, but it would be prudent to reesti-
mate those items where you notice that assumptions have changed. Perhaps
more has changed than you’ve noticed. Look for potential problems, not
confirmation.

Periodically perform spot reestimations in other areas, too. To guard against
unnoticed changes in assumptions, take a small cross section of items and
look at them anew. Try to focus on items that depend on different assump-
tions. Choose different items at different times to reduce your inattentional
blindness. That’s when you’re so focused on one thing, you miss something
else that should be completely obvious. It’s not unreasonable to reestimate
one or two parts of the project each month to give yourself a good shot at
noticing changes. You can never remain aware of all the assumptions you
made, so making them again might turn up something different. If the estimate
has significantly changed, think about why. Are there other estimates you
should revisit based on that reasoning?

How often should you do this? That’s hard for me to say without knowing
your context, but here are some clues to help you decide for yourself.

report erratum •

Seeking Out Information • 165

How much risk are you incurring if the estimate is wrong?
In some situations there may be very little risk. When an estimate turns
out to be wrong, you learn from it at that time, adjust, and move on. In
other cases, there’s a lot riding on getting something particular done by
a certain time, or in meeting your promises to someone else. In these
cases, you’d want to spot-estimate more often.

How confident are you on the accuracy of your estimate?
If you’re pretty confident that your estimate is “in the ballpark,” then
inaccuracies may be small enough that you can easily correct for them.
If you’re less certain of your estimates, then adjusting to new information
may be a major undertaking. You’ll want lots of time for a safety margin
to make that adjustment, especially if the consequences are high. In that
case, spot-check more often, and work to gain more confidence in the
riskiest parts of the project.

Comparison to Plan
There’s an old project management adage, “Plan the work and work the plan.”
This can work, but only if the initial plan is close enough to reality. Often it’s
not (see Driving Up Costs, on page 150), and if this maxim leads you to believe
that the plan was the reality, then what will actually happen is a nightmare.
Instead, you can learn from the variance to plan (see Learning from the Situ-
ation, on page 153).

Eisenhower made famous the old advice that “plans are worthless, but plan-
ning is everything.” (Remarks at the National Defense Executive Reserve
Conference, November 14, 1957 [Eis58])1 When the unexpected happens, it’s
better to change our plans. So instead of conforming to your plan, I invite
you to compare to your plan.

Notice what has changed since the plan was made. What has not gone
according to plan? What things needed doing that weren’t in the plan? Were
there also things in the plan that, with the fuller knowledge that came in
time, maybe didn’t need to be done?

Notice what changes repeatedly, for these are unstable areas of your plan.
Do you really think they won’t change again? Back up from the details of
these changes and think about what’s causing them to change.

1. http://quoteinvestigator.com/2017/11/18/planning/.

Chapter 8. Planning for Incorrect Predictions • 166

report erratum •

Vary your view. Look at things from multiple scales of granularity whenever
possible. After focusing on your natural focus for the circumstances, take a
look at the underlying details. Then back up and look at the big picture.

You can also vary your view by looking from different vantage points. Get
opinions from people with different roles, backgrounds, or ways of thinking.
Or, if you can’t get their viewpoints, imagine you can. If you could ask them,
and they could tell you their honest opinion, what would they say?

Setting Traps for Information
In addition to searching for new information and trying to judge its signifi-
cance, you can also set traps to capture significant information that bears
examination.

Danger Bearings
You can use estimates and measures based on estimates as guidelines to
warn you when you’re tending toward disaster. You want to plot your progress
in a way that assures you’re in a safe zone, or warns you if you’re getting
close to being outside.

When navigating a boat, such a guideline is called a danger bearing. You plot
a line on the chart from some visible point to some hidden danger. As long
as you stay outside of that line, you’re OK. You may think that by knowing
your starting point and knowing the direction you’re traveling, you would
also know you’re on a safe course. It’s not that simple, though. As in software
development projects, unseen currents can carry you off that course, even
though you’re still headed in the direction you planned. To make sure you’re
not drifting into danger, you can check whether you’re outside of that line by

report erratum •

Setting Traps for Information • 167

checking the bearing to that visible point. Some permanent navigational
marks have designs to keep you on the safe side of some hazard. The danger
bearing is built into a lighthouse by a red filter in front of the light. If you see
red light, you’ve crossed the line and are heading into danger.

One way to notice obsolete estimates is to record guard conditions—perhaps
something similar to “if we haven’t achieved this outcome by May, then
this estimate is suspect.” That lets you know that the estimate is obsolete.
You can revisit it, and the larger estimates that include it, and decide
what to do.

More generally, stay out of danger by using a BurnUp Chart. (See BurnUp
Charts, on page 111.) Estimate the minimal amount that will be a valuable
release, for whomever you need to please. Since you’re looking for safety,
make sure your estimate errs on the high side of what that minimum valuable
amount might be. Express that in measurable terms, so you can tell when
you reach it. Split it into smaller, but still measurable, increments of progress.
As things move forward, look to see if the current trend line meets this bare
minimum success criteria before a hard deadline, preferably well before. Of
course, you’d rather deliver more than the bare minimum. But concentrate
on reaching that level of success first, and then add enhancements as long
as there is time to do so.

Hypothesis
It’s helpful to position your estimates as hypotheses rather than predictions.
You can test your prior hypotheses against what you actually achieve. This
allows you to measure how far off your assumptions are, and to notice things
you didn’t know.

Experimentation is a powerful learning tool, and the scientific method rests
on the performance of experiments to confirm or deny a proposed hypothesis.
When I was young, I performed “scientific experiments” by mixing chemicals
together to see what they would do. I learned that most random concoctions
from my chemistry set would make a brown liquid that was often hard to
clean out of a test tube and that sometimes they would create very smelly
brown liquids. These were not really experiments, however. These were
activities, and because I had no hypothesis to prove, I didn’t really learn
anything useful. Unless you can propose a hypothesis in advance, you cannot
design an experiment to test it. Until you test the hypothesis, you haven’t
really learned anything.

Chapter 8. Planning for Incorrect Predictions • 168

report erratum •

“In general, we look for a new law by the following process: First we guess it; then
we compute the consequences of the guess to see what would be implied if this
law that we guessed is right; then we compare the result of the computation to
nature, with experiment or experience, compare it directly with observation, to
see if it works. If it disagrees with experiment, it is wrong. In that simple statement
is the key to science. It does not make any difference how beautiful your guess
is, it does not make any difference how smart you are, who made the guess, or
what his name is – if it disagrees with experiment, it is wrong.” – Richard Feynman,
The Character of Physical Law [Fey67]

When you estimate how long it will take, or how much it will cost, to implement
a desired amount of software functionality, you create a hypothesis that you
can test. Your hypothesis may not be of enduring and universal value as a
hypothesis that predicts physical laws, but it may still be extremely valuable
to you in your situation. You can test your hypothesis, with all of its explicit
and tacit assumptions, against the hard truth of reality. When your hypothesis
is found wanting, you can consider which of its supporting assumptions is
incorrect, or if there are necessary assumptions which are missing.

So, set up a few intermediate points that are on the way to your first milestone.
Estimate these. That’s your first hypotheses.

How early can you test the correlation between the estimates in your plan
and the actual rate of progress? When work is performed in large blocks and
integrated at the end, it’s far too late for effective replanning when the differ-
ence is noticed. How can you validate your plan earlier?

I recommend setting your first hypothesis as within a couple weeks to a
couple months, preferably less than 10% of the way to your first milestone
of importance outside the project. While you need to inform others when the
situation changes (see Evaluating and Changing Plans, on page 143), you first
want to inform yourself. Perhaps you can correct the trajectory of the project
before it becomes imperative to report it up the chain. Failing that, you’ll have
more time to develop a realistic plan to suggest.

Working in small increments and continuously integrating can help, but you
also need to verify those small increments are actually done. Using estimates
of “the database layer is 90% done” won’t help, as you’re back to depending
on unverifiable estimates. Rather than creating small increments based on
the building blocks of your project, try using small increments of functional-
ity. These functional slices will touch numerous building blocks, but can be
tested unambiguously as to whether or not they work as desired. Even better
is if they can be put into production use and tested by real work. This roots

report erratum •

Setting Traps for Information • 169

out the unexpected undoneness that can throw your projections off so much.
See Reliably Measuring Functionality, on page 82 for more ion on
measuring progress by testing the functionality of integrated code.

That’s a lot of prescriptive description about how to start your project using
estimates as hypotheses. Let’s look at how this might play out in concrete
circumstances. As you read this story, imagine yourself in the position of
Jesse, and think about how you would normally handle the situation. Also
think about how it would feel to handle it the way Jesse is handling it.

Planning a New Project at Riffle & Sort
World Of Friends has been a payroll customer of Riffle & Sort since they opened their doors. It is
a small but busy nonprofit that would rather focus on their mission of helping arrange student
and cultural exchange programs to further world understanding and peace, than deal with the
humdrum bookkeeping.

They’re finding that the world is getting more complicated, and there is more and more humdrum
paperwork involved in making a successful exchange program work. Rather than increasing staff
to handle the workload, they’ve come to Riffle & Sort for help.

While the project may be about automating the current paperwork processing,
the goal is a higher-level ambition, “furthering world understanding and
peace.” A computer system cannot do that, but it can help people do that.

Eliciting the Requirements
Jesse, the project manager and onsite proxy for the customer, had interviewed several people
at World Of Friends to get an idea of what they needed. The world had indeed made things more
difficult for cultural exchanges. The process was something like this:

1. Students wanting to participate would fill out an application form, writing several essays
about who they were and why they wanted to participate.

2. This form would be reviewed by World Of Friends to select those most likely to do well in
the cultural exchange program. Since the students would be hosted in private houses, it
was important to choose people who would leave a good impression with the hosts.

3. Those students selected as applicants by World Of Friends would be sent a letter outlining
next steps. Accompanying the letter would be various government documents that would
need to be filed to get permission to come and live for an extended time in another country.
The visas, in particular, would need official government background checks. These would
require fingerprints. Since the rules were complicated and frequently changing, these
documents were to be sent back to World Of Friends for submission to the appropriate
authorities.

4. In parallel to the official background checks and visa processing, World Of Friends would
conduct their own background check in the applicant’s home country. This was intended
to turn up any red flags for behavior that would affect the host family.

5. Only after both of these investigative paths had been completed, a World Of Friends adju-
dicator would then make a final decision on the applicant. Part of this procedure was making

Chapter 8. Planning for Incorrect Predictions • 170

report erratum • discuss

sure that all the proper documentation had been supplied, all questions had been satisfac-
torily answered, and necessary government permissions had been given.

6. Once the final acceptance was made, World Of Friends would match up each applicant with
a prospective host family based on the stated preferences from both. A letter of introduction
would be sent to the prospective host family, describing the applicant and providing the
essays they had written on the original application. The host family might refuse for any
reason. They might have seen something in the description or essays that gave them a bad
feeling. Or they might have had a change of heart about being a host family for completely
unrelated reasons. It really doesn’t matter what the reason; another prospective host would
be chosen and the same letter of introduction sent to them. This could happen multiple
times until either a host family accepted or World Of Friends ran out of prospective hosts
in the designated location.

7. Finally, a letter of acceptance introducing the host family would be sent back to the
applicant. This letter would contain information on dates to arrive and how to make travel
arrangements.

These are Jesse’s notes on World Of Friends current work process. It’s true
that the people Jesse interviewed asked for these activities to be automated
as much as possible. With a project manager less savvy than Jesse, Riffle &
Sort might have been tempted to try to fulfill this request as stated. Jesse
knew, however, that what people ask may not accurately reflect what they
desire. Also, not everything that people mention has equal importance.
Keeping the goal in mind, Jesse started analyzing the request with a view
toward simplicity, feasibility, risk, potential value, and opportunity.

Assessing the Constraints
Jesse thought about the best ways to ensure that World Of Friends was happy with the result
and stay within their budget. While they wanted to automate the process as much as possible,
they realized they wanted to keep some human control at appropriate points. In any event, they
needed to have the system ready to go in early January for the coming year’s cycle of applications.
The deadline for applications was mid-March, so things would be in high-volume mode by then.

It was currently early April, and World Of Friends was recovering from the big bulk of work han-
dling this year’s applications. But there was plenty more work to be done, and it would pick up
again when the background checks started coming in from the government agencies and the
applicants’ home countries. Right now would be a great time to work closely with World Of
Friends, but the development team was putting the finishing touches on another project. They
wouldn’t be able to turn their attention to this one until the beginning of May. That gave them
eight months, more or less, to have a working version. It had to be especially ready for the entry
and initial triage of applications. There would be time to enhance later operations, such as the
matching with host families.

Most projects need to fit into some sized box defined by time and money. All
projects need to fit the constraints of feasibility within the capabilities that
can be brought to bear on them. If you cannot satisfy these requirements,

report erratum •

Setting Traps for Information • 171

then people will be unhappy no matter what you do well. This implies that a
less-capable system that meets these rudimentary constraints will be better
received than something fancier that doesn’t.

Analysis and Planning
What’s the simplest system that could work? Using the computer to be a filing system for scanned
paper forms was definitely the simplest, Jesse thought. They could test this with forms from
previous years, blacking out a bit of personal data to meet privacy standards. This would let the
team concentrate on the workflow and decision points. Online entry of the original application
was an obvious time-saver. This was the highest-volume processing to be done.

Submitting the government forms was the riskiest part of the operation. Jesse felt sure that the
government would be the most stringent on what they would and would not accept. And it was
likely there would be unexpected communication delays and incomplete descriptions of why a
submission was not accepted. This should go early in the plan to mitigate the risk of unknowns
outside Riffle & Sort’s control.

World Of Friends would be matching applicants with host families this summer; it would be
good to work on that aspect while they were doing it, to capture the little details that people
forget about after they get past them.

Jesse considers simplicity, risk, and variability between different deadlines
in developing an initial plan. This plan is, so far, without a schedule.

A Tentative Schedule
Jesse started making lists of the inputs the system would have to accept, the outputs it would
send, and the decision points. For each of these, someone would have to work out the details,
but it was enough to list them for the moment. With that list, they could document the flow and
check its accuracy with World Of Friends. They could also estimate each of these processing
points independently, assuming they would build the basic flow first. That basic flow could fake
the inputs, stub out the output, and turn the decision points into simple buttons. That should
be possible in the first two weeks, Jesse thought. Then everything else can be bolted onto this
rudimentary flow as it’s fleshed out. If that simplistic flow isn’t finished in four weeks, it’s a sign
of major problems.

Not having any better data, Jesse counted the inputs, outputs, and decision points and divided the
eight months by that. "Oh, better figure the government inputs and outputs as double the others,"
Jesse thought, and recalculated. "That’s about two weeks each. Sounds barely doable, but since we
can push out some of the later details after a January initial-release deadline, we should be in good
shape. And some outputs, like sending letters, should be easy after the first one is done. I’ll check if
anyone in the development team can help me sanity check these estimates next week."

Notice how Jesse set an initial danger bearing of four weeks to get a rudimen-
tary flow working. That includes the expected two weeks of development work,
and any other “getting started” delays that might arise. In addition, Jesse
already has in place a series of hypotheses that each input, output, or decision
point can be done with two-weeks work (except for the interfaces with govern-
ment systems). That’s a good setup for alerting if things are going astray.

Chapter 8. Planning for Incorrect Predictions • 172

report erratum •

Some of the alternate flows, such as rematching with host families, are
expected to be included in these estimates. Others that are less likely, such
as an applicant having to drop out, may not be. If there’s time, the system
can be enhanced to include them. If not, they will be low-volume enough to
be handled with manual work-arounds.

Avoid Traps for the Unwary
Remember that the point of a hypothesis is that you’re trying to disprove it,
not confirm it. Be wary about fooling yourself. It’s so easy to do.

Measurement Errors
When events are matching the estimate or perhaps doing a little better, don’t
relax and celebrate. Look for ways that the measurement of actuals could be
fooling you. Do these actual measurements include everything assumed in
the estimate?

• The work is going fine, but it’s all on different code branches? There’s
surely hidden integration work.

• The code is written, but it’s not tested? I’ll bet you dollars to doughnuts
that there’s rework to do.

• You’ve integrated and tested on the development machine, but not on a
system that resembles production? What environmental differences have
you overlooked?

• You’ve got 100% branch coverage with your automated tests? But are
those tests checking all the things that are supposed to work? Exercising
code isn’t the goal.

In order to count something as done, it should really be functionally solid. It’s
OK if the done slice has limited functionality as long as that’s what was estimat-
ed. What’s built, though, shouldn’t have parts that don’t work right. Bugs in
the functionality represent work that was counted as done, but isn’t. Measure-
ment errors like this will blind you to discrepancies in your hypotheses.

Unsustainable Work
Another way in which the work you’ve measured might not be representative
of the longer-term goals is if the development team has been working in an
unsustainable fashion. If they’ve been working overtime or otherwise working
beyond their natural capacity in an attempt to meet the hypothesis milestone,
then they’ve also been wearing down their reserve energy. The pace they

report erratum •

Avoid Traps for the Unwary • 173

demonstrate while burning themselves out is not indicative of the pace they’ll
achieve afterward.

Besides wearing down the people, an unsustainable pace is likely eating away
the integrity of the codebase. When in a hurry, people cut corners. They
postpone “clean up” work until later, when they think they’ll have more time.
The code gets harder to read, harder to understand, and harder to change
without introducing errors; it becomes harder to isolate the errors that are
noticed. This slows the work down more and more until, sometimes, it comes
to a complete halt. Do you remember when Netscape started a complete
rewrite of their browser because they had hacked in so many features, they
couldn’t make progress anymore? It killed the company.

You might start to notice this when more and more estimates turn out to be
optimistic. An obvious thing to look for is people routinely working long hours.
There are indicators you can see in the moment, also. Personal hygiene may
not be maintained. Posture may become worse, triggering back, neck and
shoulder pains. You may notice people making phone calls about personal
business at work because they have little opportunity otherwise. Smiles and
laughter are nearly absent. Enthusiasm lags. Tempers flare. These behaviors
are the canary in the coal mine, giving you early warning that the environment
is not healthy.

It’s clear, when you see these things, that people are trying to maintain a plan
that’s out of step with reality. Step back and take another look. Have you, or
they, been believing past estimates over current reality? Reestimate, replan,
and get back on a feasible track to success. If you can’t redefine success as
something that’s achievable, perhaps it’s a good time to pull the plug on the
project before wasting more effort.

Have Appropriate Safety Margins
When the final outcomes are critical, plan in a safety margin for risk avoidance.
Set up a danger bearing to alert when your critical needs are potentially in
trouble. If your danger bearing alerts you of trouble, you need time to adjust.
You won’t be able to increase speed appreciably, so do this with scope
adjustment. In order to be able to make sufficient adjustment, prioritize the
work carefully. Get the essential things done first, and leave the “nice to
haves” undone if time runs out. This may mean interleaving work on different
features, as you get the essential parts of each essential feature done before
embellishing them with bells and whistles. Some less essential features might,
in severe cases, be completely dropped or deferred to another milestone. If
they can’t be deferred, then they must be more essential than you thought.

Chapter 8. Planning for Incorrect Predictions • 174

report erratum •

Stepping Back for a Broader View
It’s highly unlikely that your primary goal is to meet your estimate. Meeting
the estimate is a tactic toward achieving some higher goal, such as business
prosperity or making the client happy so they bring you in for future project
management jobs. Therefore, it makes sense to look at estimates in terms of
how they can help you meet your goal.

Since we’re talking about estimates rather than measurements or calculations,
we know that they’re not precisely accurate except by chance. If we want
them to be valuable, we should treat them as the assumptions they are. Then,
when they show themselves, we can learn what we mistook that caused us
to make an inaccurate estimate.

If we know how to analyze our missed estimates to discover mistaken
assumptions, then we can intentionally add estimates for milestones that
have no external need, but would be convenient points to notice upcoming
problems in time to take corrective action. This can help us steer our project
to success, or at least notify people so they’re not caught off guard.

Not everyone is content using estimates to guide their plans. Sometimes they
fall into the trap of using estimates as their plans. When they do that, they
may want to alter reality to fit the estimates. This will naturally create friction
between people. The reason that people get so upset about estimation is the
“bad blood” between those asking for estimates, those providing estimates,
and those doing estimated work. In the next chapter we’ll look more deeply
into these human dimensions.

Now It’s Your Turn
1. What information could you seek out to disprove or question your past

estimates? Do you evaluate changes in the situation by examining how
they might affect the current plan?

2. What ways of reestimating your project might be practical in terms of
time and effort, but give you a reasonable chance to notice when your
assumptions have changed?

3. What milestones could you estimate as early indicators when reality was
not following your plan?

4. In what ways might your reevaluation or reestimation be fooling you?
How are you working to avoid Confirmation Bias? (See Cognitive Biases,
on page 72.)

report erratum •

Stepping Back for a Broader View • 175

CHAPTER 9

When People Clash
We’ve looked at reasons for needing estimates, and what kinds of estimates
meet the needs behind those reasons. We’ve explored different approaches
to estimating. We’ve discovered how to wring value out of estimates, especially
when they prove wrong. And thanks to our example stories, using estimates
effectively to help us achieve the goals we want sounds easy, doesn’t it?

I can imagine what you’re thinking. If you could talk to me through this book,
you’d probably say, “But the stories you tell aren’t believable. The people get
along so well, even when they disagree. That’s not how it happens in the real
world! People fight and argue. People don’t believe each other. People take
advantage of each other.”

Yet it is easy to use estimates in effective ways. What’s hard is giving up
counterproductive behavior, especially when that behavior is part of a
mutually reinforcing cycle of behavior in an organization. The relationships
between people in an organization are not always healthy. Sometimes one
part of the organization seems to treat another part as if it’s the enemy rather
than a collaborator for achieving business success. Managers can get isolated
from the organizational purpose and diverted to power plays within the
organization. When they do, they surely isolate the development teams from
the organizational purpose, too. Teams can feel they are the bottom rung and
all the bad stuff rains down on their back.

Most of the estimation problems I hear complaints about are not about the
estimation, but about the behavior surrounding estimation. While I don’t
want to focus the book on bad behavior, I would be remiss if I didn’t
acknowledge it and offer some ideas on making it better.

report erratum •

It Starts So Innocently
People don’t intend to make things difficult. It just seems to happen.

How Much Work Would It Be...?
"How much work would it be to add auto-scheduling to the appointment calendar?"

"You mean to have the calendar automatically select the next open slot big enough for the
appointment?"

"Yeah, that would work."

"Let’s see, I’d have to create a preliminary appointment and then walk through the calendar in
chronological order, looking for conflicts with existing appointments. I could do that in a day
or two."

"Great, I’ll let my boss know."

And just that simply we have an estimate of how much work it will take to
implement this new functionality.

But what is left out of that estimate? There’s nothing in there about controlling
the new feature, either through configuration or by the user. There’s probably
nothing related to integrating with the existing GUI. It certainly doesn’t account
for new discoveries made in the codebase while developing it, or new
enhancements that will be desired with it. Nor is there anything for technical
dead ends reached while implementing. Or delays due to meetings, other
commitments, or lack of availability of the person who can answer questions.
It’s just an estimate of the known development work.

Why Isn’t It Done Yet?
Are you done with the appointment auto-scheduling feature?"

"No, the UX designer had some ideas that I hadn’t considered. And the appointment code wasn’t
designed to be extendable. It should be done in another week."

"Another week? But you said it would take two days!"

And just like that, a simple estimate got turned into an involuntary commitment.

A single sentence of disappointment from a person with higher positional
power in the organization will make that developer think twice before giving
an estimate the next time. What might they do in the future?

One possible response is to pad the estimate as a contingency for the
unknown. Contingency buffers really belong in the plans, not the estimate.
If the estimate is taken as a plan, though, what’s a poor programmer to do?

Chapter 9. When People Clash • 178

report erratum •

Padding the Estimate
"How long would it take to add automatically recurring appointments?"

"Hmmm...I could do that in three weeks?

"Three weeks!? My toddler could do it in less time."

A larger than expected estimate often raises fears of sandbagging—that the
developer is intentionally estimating pessimistically for their own advantage.
And, in this case, it might be quite reasonable for the developer to sandbag
the estimate to be sure to meet the expected commitment. Sandbagging doesn’t
work so well, though, if it’s not convincing.

Sandbagging is often greeted with negotiation. As soon as there is a counterof-
fer, you know you’re negotiating rather than estimating.

Negotiating the Estimate
"How about you do it in one week?"

"I’ll try to get it done in two, but I don’t know what problems will pop up."

Some managers will negotiate estimates as a matter of course, thinking that
by putting pressure on the development team they will produce faster. This
starts down a very deep rabbit hole of reduced quality, increased defects,
burned out development teams, and lack of trust.

How It Goes Wrong
From such an innocent start, we see it takes very little to spiral downward.
The actions we took in the past cause others to alter their behavior to com-
pensate. That change causes us to alter our behavior. Our behavior causes
others to change theirs. When we reach the point that our behavior, through
a loop of such effects, reinforces itself, then the behavior becomes deeply
entrenched. It doesn’t take much of a negative influence to turn into really
pernicious behavior.

Treating
Estimate as

Commitment Distrust of
Requester

Padding
Estimates

Distrust of
Estimator

Negotiating
Estimates

report erratum •

How It Goes Wrong • 179

Treating an estimate as a commitment increases distrust in the requester,
which increases padding, which increases distrust in the estimator, which
increases negotiations, which increases distrust in the requester… Around
and around it goes, forming a feedback loop that maintains the behavior.

Ordering Enough Parts
Years back, I was on a project designing a custom integrated circuit as part of a product. We had
breadboarded a solution that proved the functionality but had uncovered some potential timing
issues in the design. We redesigned some aspects of the circuit, and were ready to breadboard
a second version to verify the redesign before committing to custom-fabricated silicon. This
meant that we needed to order a sizable number of parts to breadboard the new design.

We drew the schematic and tallied up the parts needed. To cover for parts that might not work,
or might be accidentally destroyed while building or testing the circuit, we added another 10%
to the totals. That would surely be enough to build the prototype circuit without delays.

"Wait a minute! Every time we order parts, the boss thinks we’re being profligate and cuts the
order in half. If he does that, it will delay the entire project, and several upcoming products are
dependent on this chip."

"You’re right. I’ll double the numbers for the purchase requisition. He’ll likely cut the numbers
in half even without looking at it."

This true-life story illustrates how poor communication and distrust around
estimates leads to others altering their behavior to compensate. No doubt
this boss had run into people doubling their parts orders before, and that
triggered his habit of halving them. Lack of trust begets secrecy and sub-
terfuge. These, in turn, engender loss of trust. The cycle is self-reinforcing
unless someone takes extraordinary action to break the loop.

Sad Footnote
This story has a sadly amusing footnote. When we gave the boss the purchase requisition, he
had just come from an executive meeting that emphasized how critical the project was. Without
conferring with us, he doubled the quantities to ensure that lack of parts would not delay us.
When we discovered that, we couldn’t say anything. Doing so would reveal that we’d previously
doubled the order.

On top of that, a few weeks later and before the parts started arriving, a new commercially
available chip was announced that could perform the function we were designing a custom
integrated circuit to do. The chip design project was canceled, but too late to cancel the
quadruple order for parts to breadboard it.

This story describes estimating the need for physical things, but similar
behavior happens around estimating work and time.

A manager asking for an estimate doesn’t even need to behave badly to become
involved in the reinforcing loop. Once it gets started, it takes on a life of its
own. The programmer may be so used to managers treating estimates as

Chapter 9. When People Clash • 180

report erratum •

commitments that they expect that from all managers, whether they’ve
behaved that way toward them or not. The manager may be so used to pro-
grammers padding their estimates that they expect that from all programmers.

When someone is responding to “them, there, then” rather than “us, here,
now,” it takes special effort to break out of the situation. Benign behavior is
not enough. The memory of past situations is strong, and people will usually
choose to act the way they have in the past.

In stories like How Much Work Would It Be...?, on page 178 and Padding the
Estimate, on page 179, the developer is facing a dilemma. Should they pad
the estimate or give the optimistic “programming only” estimate that is most
familiar to them? Which they choose has more to do with their past experience
and past choices than it does with current circumstances.

Likewise, the requester of the estimate has a dilemma between accepting the
estimate given or challenging it. Both players are caught between seemingly
opposite choices.

This is a common stopping point. You’ve got two polar opposite responses. If
you reject one, then you have to select the other, right? “I have to pad my
estimate or else I’m going to get blamed for not meeting it.” Or, at least, you
lean toward one end of the spectrum or the other.

Or do you? Human behavior does not fit neatly on a linear scale between
polar opposites. What’s a third way to respond?

Rule of Three
Virginia Satir said that

One option is a trap. Two options is a dilemma. Three options is a choice.

Jerry Weinberg often phrased this as

If you haven’t thought of a third option, you haven’t thought enough, yet.

I use the Rule of Three to get myself out of dilemmas all the time. I find myself
in a position where I’ve got a favored option and another that makes it look
good by comparison. I’ve trained myself, when I notice I’m stuck at this point,
to consciously look for a third option. When I find it, I often notice that by
breaking the binary straitjacket of choosing one option or the other, I suddenly
can think of options four, five, six, and many more.

What might be a third option when asked for an estimate?

If the requester doesn’t frame the request in a way that helps you collaborate
with them, perhaps you can open a dialog to help do that. “I want to provide

report erratum •

How It Goes Wrong • 181

you with an estimate that is most useful for you. Can you help me understand
what decision depends on this estimate?”

Does that seem possible in your situation? It might be hard, especially in
strongly hierarchical organizations, where the assumption is that commands
move down the chain and answers move up. It’s good advice, even if you don’t
know how to put it into action. More importantly, it helps you see that there
are options outside the range from “bare minimum” to “a safe bet.” You might
want to answer, “there are some unknowns that make it too risky to give any
number, yet.”

If you can’t talk with the requester to reframe the situation, perhaps you can
reframe it in your reply. “If a budget is being formulated, then perhaps you
want this conservative estimate with these caveats. On the other hand, if this
is a rough order of magnitude for prioritization, then you might want this
estimate of a likely value, taking into account these other caveats.”

This is a start. With more detailed knowledge of the specific circumstances,
you can probably think of a number of other options. The options are not
necessarily mutually exclusive, either. You might be able to try some of them
in parallel.

And what might be a third option when receiving an estimate you’ve
requested?

Rather than accept or challenge it, you might inquire about the assumptions
being made in it. What things are included? What things are left out? What
things are risky and therefore enlarged to cover that risk?

People are generally antsy around the topic of estimation. They know that
their estimates, whether made or received, are wrong. They just don’t know
by how much. They’d like to take them as truth, because they aren’t very
good at dealing with vague probabilities. But they can’t treat them as fact
without getting into some trouble or another. This uncomfortable uncertainty
puts people on the defensive.

Most books and articles on estimation are focused on estimating more accu-
rately and precisely so that you stay out of trouble when you give an estimate
to someone. When the topic of estimation comes up, though, people don’t
tend to talk about how to estimate better. They talk about the bad behavior
that typically accompanies estimation, both before and after, in most organi-
zational environments. When running workshops, that same bad behavior
comes out in simulations using fictitious situations. Clearly there is a problem.

Chapter 9. When People Clash • 182

report erratum •

Also clearly, the problem is not estimation itself. If people are behaving badly,
better estimates won’t help. How can we alter our behavior so that we can
work effectively in spite of the fact that our estimates will never be as accurate
and precise as some people will sometimes want?

Understanding Human Behavior
Since better estimates won’t fix the relationships between people, let’s look
at some models of these relationships from the fields of psychology and social
work. This will give you some background understanding to help you identify
and address the issues.

Congruence
Congruence is a term that psychologist Carl Rogers borrowed from geometry
to describe the alignment of different aspects of a person, including what they
think and feel, the affect they present, and how they behave with others. This
is often expressed as a person’s image of who they are today being aligned
with their image of their ideal self, even if not fully realized.

Building on this idea, Virginia Satir, a social worker and family therapist who
also worked with Jerry Weinberg to apply her ideas to business situations,
described achieving congruence as balancing the needs of yourself, the other
with whom you’re interacting, and the context of the situation.

This balance of concerns allows us to be genuine, and have our outward affect
match our inner self. When we are concerned about possible risk, our actions
show this concern rather than a false appearance of devil-may-care. When
we are happy at achieving some goal, it shows on our face and in our posture.
You might think that this is a risky thing to do, tipping your hand to others
and making yourself vulnerable in the situation. If you were only reflecting
your own thoughts, emotions, and needs, then you might be right. When
you’re considering theirs and yours, plus the situation at hand, then this
transparency becomes a benefit to the situation and current interaction.

report erratum •

Understanding Human Behavior • 183

Congruence, as described by Virginia Satir, goes further than “the inside
matches the outside.” It also includes attuning the inside with what’s happen-
ing around you—not just the physical happenings, but what’s happening
with the people around you. Understanding that requires some empathy for
those people.

Empathy
Empathy is the ability to see and feel the world as others do, from their point
of view. This is different from sympathy, which allows you to have compassion
for their situation as seen from your own point of view.

There is a cognitive aspect to empathy, which allows you to understand the
other’s worldview and goals. This aspect clues you into what makes sense to
them, and why it does so. There is also an emotional aspect, which allows
you to understand how their situation feels to them. Again, this is from their
point of view, not how it would feel to you if you were in their position.

Together, these aspects help you understand the other person’s rational and
emotional needs, as they understand and feel them. Such understanding is
important if you’re to keep their needs in mind during an interaction. This
does not obligate you to agree with them. Their thoughts, feelings, and view-
point are, however, a fact. They exist. Ignoring them blinds you to a part of
the world that is important to this particular interaction with them.

Some people worry that “too much empathy,” especially the emotional aspect,
will be overwhelming and lead to making poor decisions. Rather than a
problem with the amount of concern, this indicates being out of balance, and
paying insufficient attention to the needs of yourself. Likewise, the congruent
attention to the needs of the context will balance out cognitive aspect of
empathy. This avoids the situation where you give the other whatever they
demand.

Let’s take a look at the various directions that these concerns can get out of
balance. That way you can recognize the lack of balance more readily, and
more easily figure out where to restore the balance.

Coping Stances
When we’re facing a difficult situation, we generally fall back on habitual
patterns of coping. When we are born, we know nothing about how to survive
in the confusing and scary world into which we have suddenly found ourselves.
As we interact with our environment and the people around us, we start
learning that some behaviors “seem to work,” and we therefore tend to repeat

Chapter 9. When People Clash • 184

report erratum •

them in other situations. As we learn and grow, we acquire more and more
sophisticated responses to our world, but retain a base of the patterns we
learned as babies and toddlers. So, when problems arise, such as:

• Needing to ask for an estimate from someone who doesn’t trust you
• Being asked for an estimate by someone you don’t trust
• Receiving an estimate that doesn’t match your desires or expectations
• An estimate given for one set of assumptions that gets used for something else

how do you respond? If you’re like most people, you respond in a fashion
that’s like the way you’ve responded before. You follow familiar patterns of
dealing with an emotionally volatile problem. And the other person does
likewise. This leads to the patterns of bad behavior that are so well-known
in our industry.

As Virginia Satir often said, “The problem is not the problem. The problem is the
coping with the problem.” How we react to problems affects us more than the
problem itself, and that’s especially true in problems of human communication.

When we fail to balance the trio of needs, we fall into less effective coping
stances. We each tend toward a certain off-balance stance. We habitually
respond in particular ways when something goes wrong. Some of these habits
we learned very early in life and have reinforced them ever since.

Let’s take a quick look at the coping stances identified by Virginia Satir. You
can find more detail on these in many of Satir’s books, including Making
Contact [Sat76], Helping Families to Change [SST76], The New Peoplemaking
[Sat88], and The Satir Model [SGGB06], among others.

Blaming Stance

When something you’re involved with goes badly, what is
your reaction? One common reaction is to declare that it’s
not your fault. And if it’s not your fault, the next assumption
is that it’s someone else’s fault. If we point out the person
whose fault it is, that surely clears us.

“The project missed the release deadline because the development
team gave me an optimistic estimate.”

This implies, “there’s nothing I could do about it. They made
the mistake.” Blaming works by neglecting the needs of the

“other” person. Doing so magnifies the attention to our own needs at the expense
of theirs. “I am important and you are not.” This leads to much of the unhap-
piness around estimation. Someone in the scene is blaming someone else.

report erratum •

Understanding Human Behavior • 185

If that person blames back, you may get a shouting match. You may have noticed
this if you’ve seen someone respond to a request for an estimate with a refusal.

“They shouldn’t have believed the estimate. It was made when we knew the least
about the project. In fact, they shouldn’t ask us for estimates at all. You don’t
need an estimate to create software. It will get done when it gets done.”

We all hate to get blamed for something, especially when we feel it’s outside
our control. It’s common to duck blame by shifting it to someone else. You
might be on the blaming side or the receiving side of this situation. The truth
in difficult situations is that the result is due to a combination of influences,
including the behavior of all of the people involved.

If you find yourself blaming others, take some time to explore their needs.
You don’t have to agree that their needs are more important. Just being aware
of them will help you negotiate the conflict.

Placating Stance

When someone is blaming you, an obvious stance to quiet
things down is to give in, no matter what.

“I’d better give them exactly what they ask for, or else they’ll
blame me.”

This is the placating stance—neglecting your own needs in
deference to the other person’s. It may be quieter but it’s no
better at solving your or the organization’s problems. And
it can leave you feeling like you’ve been blamed whether or
not the other person has done so.

Some people are skilled at manipulating the empathetic people around them
to get what they want. They play to the sense of empathy and compassion,
heightening the emotional aspect of empathy to the point it obscures the
sense of self. This, also, is a placating stance. It doesn’t matter whether you’re
denying your own needs out of fear or compassion; if you neglect yourself,
you will lose the balance of congruence.

Chapter 9. When People Clash • 186

report erratum •

The blaming and placating stances reinforce each other well. They’re like
bookends of dysfunction.

If you find yourself “giving in” frequently, and especially if you do so in
anticipation of what hasn’t happened yet, consider what needs of your own
you might be neglecting. And think of how you can assert those needs in a
neutral, nonconfrontational way.

Super-Reasonable Stance

Another coping stance is to focus just on the context, trying
to take a cold, impersonal view. This ignores the people along
with their needs and emotions. There is no a priori need for
estimation, however. We estimate to meet the needs of people
trying to make their business or other organization successful.

“The work is going to take exactly some amount of time. Our job
is to calculate that precisely and accurately.”

You would think that would take care of the organizational
problems, but that’s not the way that organizations com-

posed of people work. This response ignores the human emotions of uncer-
tainty. If you don’t handle the needs of the people, the organization also
doesn’t work well. You cannot deal effectively with risk without acknowledging
that uncertainty.

Also, it’s my experience that the super-reasonable stance often isn’t as neutral
as it’s made out to be.

“It’s going to take however long it takes. Estimates don’t change that.”

This statement is tautologically true, but pointedly ignores the needs of the
person wanting the estimate, while infringing little on the needs of the person
on the hook for providing the estimate and the software. A different expression
of the needs of the context might imply the opposite.

“It’s going to ship on August 15. Difficulties in development don’t change that.”

This expression obviously ignores the needs and worries of the development
team, but it also might bother the product manager who wants to ship on an
announced date but also include promised functionality that works correctly
and doesn’t embarrass the company.

If you find yourself avoiding the personalities involved, then remember that
humans run on emotions as well as thought. Spend some time learning how
to get in touch with your feelings and recognize the feelings of others.

report erratum •

Understanding Human Behavior • 187

Irrelevant Stance

The irrelevant coping stance ignores all the needs. You
may recognize this stance by remembering the class clown
in school. It has made a resurgence in software develop-
ment as a meme that is sometimes phrased as “no cares
given.”

When adopting the irrelevant stance, a person gives up on
the situation altogether. They quit trying to meet the needs
of any person or the organization. They build a shell to pro-
tect themselves, and present that shell to the world instead
of their needs and feelings. This serves as a distraction from the uncomfortable
situation. As you can guess, this doesn’t help solve the problems, either.

If you find yourself playing the role of joker in tense situations, consider how
you can more often address the issues and feelings at hand, rather than
obscuring them.

You’ve probably noticed the three sets of needs, which may be acknowledged
or ignored, results in 2^3 or eight possible combinations. Of these possibilities,
blaming, placating, super-reasonable, and irrelevant are the four most common
coping stances, not just of software development organizations, but of people.
They’re called incongruent because the externally visible affect doesn’t match
the internal feelings, beliefs, expectations, and yearnings. This dissonance
between the internal self and the external self is uncomfortable, though people
may hang tightly to it because they’re familiar with it. The incongruence
between internal and external reliably gets in the way of solving the actual
problems. It leaves us fighting battles that no one wins.

Congruent Stance

To do our best work, we’d like to maintain a congruent
stance: one where our internal feelings match our outward
actions; one where we balance our attention on our needs,
the needs of others, and the needs of the context in which
we’re operating.

This allows us to make the best decisions we are capable
of making, given our skills and knowledge. Balancing
these three viewpoints, we come closest to a rational view
of the situation. We can see the conflicts between needs
and make informed trade-offs based on our core values. Our external
actions truly harmonize with our internal thoughts, feelings, and values.

Chapter 9. When People Clash • 188

report erratum •

This is not an easy balance to maintain. In fact, it’s impossible for mere
mortals to stay in perfect balance, respecting the needs of our self, the other,
and the context, all the time. Events and emotions push us around and knock
us off-balance. It’s a dynamic balance; it’s not something we can do once and
then relax. We may be thrown off our balance, but with practice we can notice
this and return to that balance point.

While we can learn to control our own behavior, we cannot control the
behavior of those around us. If someone is blaming us, we cannot make them
stop. What can we do?

If you can cope congruently, it will immediately help. When you realize that
the blaming behavior of the other person is a result of their incongruent
coping, then it takes some of the sting out of it. Even if you did something
that, in retrospect, you would do differently if you had it to do over, attending
to your own needs includes realizing that you, like all people, make mistakes.
Admitting this without defensiveness, and also attending to the needs of the
blamer and the situation, will go a long way toward a better resolution.

Paying attention to the needs of others, both the ones related to your common
context and those they personally perceive, will give you clues that may help.
With this starting point, look back to the Rule of Three, on page 181 and explore
potential ways to improve the situation.

What would that better situation look like? Let’s explore some possibilities
together.

Imagine a Better Situation
Picture in your mind’s eye the scene where someone asks someone else for
an estimate. What do you see?

You probably envision two people facing each other, looking in opposite
directions. This sets a scene ripe for confrontation. Or perhaps they don’t
make the request in person, so the estimator is receiving a disembodied
request. How impersonal and how easy it is to respond without considering
the person at the other end.

Now let’s zoom out to the larger picture surrounding estimation. There is a
need to make a decision, and an estimate might help inform that decision.
Therefore, someone may ask someone else to perform an estimate. That person
comes up with an estimate and reports it back. The first person responds in
some way to the estimate and presumably makes the decision that required
it. This is the basic workflow of estimating for someone else’s needs.

report erratum •

Imagine a Better Situation • 189

Now let’s imagine this workflow taking place in a way that respects who each
person is, what they know and know how to do, and the needs they have.
Given the Agile Manifesto’s value, “Customer collaboration over contract
negotiation,” it seems natural that organizations adopting agile software
development would collaborate with their development teams as peers having
different skill sets. Certainly, agile teams will respect the needs of the business
paying them to program. Even when those needs are more perceived than
real, collaboration asks us to approach others where they are.

Look Together at the Work
What would it take to structure the scene to one with two people side by side,
looking in the same direction at the work to be done and the goals to be
achieved? When you think of the scene that way, does it change the way you
might phrase the request, or phrase the response?

If they’re communicating virtually rather than in person, how can they make
contact, person to person, before launching into the request or response?
How can they focus the request on a shared goal rather than the estimate
itself?

I’ve often noticed that people working on the same project think that what
they see is obvious to everyone else on the project. When people on a project
start sharing what they’ve seen and heard with each other, they’re usually
surprised to learn that someone didn’t know, or didn’t notice, some of the
things they did. They may be shocked to learn that they’ve overlooked some
things that are obvious to others.

If you don’t have agreement on the basic facts, it’s little wonder that you don’t
agree on how to interpret those facts and what significance they may have.

Understanding Others’ Needs
Imagine the situation of a junior executive in a large organization. You’ve got
business goals to accomplish, and several large programs in flight toward
meeting those goals. You might also be considering a new program, or perhaps
starting a pilot project. The work to accomplish these programs and projects
is delegated to people who report to people who report to you. How do you
know what’s going on? How do you spot potential problems that deserve
closer attention? Does it make you nervous that your success or failure is in
the hands of scores of people?

Now imagine the position of a technical lead of a project just starting up.
You’re considering various technical approaches to the work. You’re wondering

Chapter 9. When People Clash • 190

report erratum •

who will be available to work on the project. Who can you get with enough
experience to fill a couple critical roles? What if the best choice in technology
doesn’t match the skills of the development team? How much will the
requirements change over the project? What if other teams, on whom you’re
dependent, don’t deliver when you need them? And now you’re being asked
to give an end date to the project when all you have are questions!

Wherever you work in whatever organization, can you have empathy for these
two hypothetical people? Can you sense what the situation looks and feels
like to them? Can you do the same for the real people in your organization?

Congruent estimation requires understanding the needs of the other person
in order to balance their needs with yours and those of the context.

Communicating Your Needs
Congruent estimation also requires understanding your own needs, and
making them accessible to others. You’re not helping yourself or your project
if you don’t work to make it clear what you need from the situation.

As people, we have a hard time articulating clearly what we mean. We have
a picture in our minds but have not thought clearly enough to put it into
words. We use words that are not precise and could be taken to mean several
different things. We use relative pronouns with unclear antecedents. We
soften our words to sound more polite than the words that we’re thinking.
We make assumptions that are not apparent to our audience, but we assume
they understand. We use words that are commonly understood by some
people, but perhaps not the same way by our audience.

I know that you believe that you understand what you think I said but I am not
sure you realize that what you heard is not what I meant. –Anonymous

We have just as much trouble as listeners. Sometimes we don’t hear clearly
and hear words other than what was said. Sometimes we assign meaning to
the words that are not what was intended. And those meanings tickle our
emotions and make us feel things, sometimes strongly. They may remind us
of other situations in the past that made us feel that way, and that baggage
gets piled onto what we’re hearing. And then we respond based on those
feelings, perhaps aggressively, perhaps defensively, perhaps deflecting. It’s a
quick and complicated process that has been studied as the Satir Interaction
Model. It’s a wonder we ever succeed on a “hot topic” like estimation.

Often, though, the crux of the problem is that we haven’t made the needs
behind the request for estimates clear. If we need a rough order of magnitude
for planning purposes, but our request is heard as a request for detailed

report erratum •

Imagine a Better Situation • 191

precision predicting the delivery date of a project we barely understand, then
there will be frustration, and we’re unlikely to be satisfied with the estimate
we receive. If we want to publicize our go-live date of a new service, but ask
for a rough guess of when things will be done, there will be public embarrass-
ment when we miss that date. In either case, what we thought we requested
and what the hearer thought we requested could easily be different things.

Retraining Ourselves
With that vision in mind, you can change the way you approach estimation
to make it your reality. Perhaps not perfectly, and certainly not immediately,
but you can train yourself to operate in more effective ways.

When Asking for an Estimate
Let’s start from the point of view of the person requesting an estimate.

When you ask for an estimate, what information do you give? Do you explain
how the estimate will be used and what decisions depend on it? Do you
the accuracy and precision needed, and the desired direction of error? As we
discussed in When You’re Asked to Estimate Something New, on page 3,
these are things that the estimator needs to know to produce an estimate
appropriate for the need.

Or do you assume that the estimator already knows this? Perhaps they’ve
been told once. Or it’s “common knowledge” how we do this, here.

Do you even know how the estimate will be used? Are you, perhaps, stuck in
the middle, relaying someone else’s request for an estimate? This is a tough
position to be in, sharing the difficulties of both sides of a request for an
estimate. Your job becomes one of facilitating the flow of information and
understanding. If you can get the person needing the estimate in direct
communication with those providing the estimate, you’ll save a lot of missed
connections. You’ll still need to facilitate the conversation and help ensure
that both sides get what they need. That’s easier, though, than being the
conduit of information and trying to help each other understand the other’s
needs without direct connection.

Verify a Common Understanding

First, make contact with the other person. What do I mean by that? I mean
connect with them as a person, and invite them to connect with you as a
person. At that level, we are all peers. How you start the conversation has a
great impact on how the conversation goes. Offer them the safety to respond
in a genuine fashion.

Chapter 9. When People Clash • 192

report erratum • discuss

Making a request, and even describing the need behind the request, is
insufficient for effective communication. Has the other person fully understood
the request and the need behind it? How do you know?

When you simply make a request, you can’t be sure it was even received. If
the request is acknowledged, you have an indication that it got there, at least
in part. If the request is repeated back to you, then you can tell whether the
words were heard. At this point you’re still not sure if the meaning has been
conveyed. Human communication can be ambiguous, and the message may
be taken to mean something other than what you intended.

When communications are going well, humans can share an understanding
so intimately that complete sentences are unnecessary to convey the message
with all of its subtle shadings. Until you reach that point, a dialog is a great
tool for completing the communication. Note that in dialog, the emphasis is
on understanding the other, and in ion , ideas are set against each
other to determine which is best. There is room for both, but if you’re trying
to get alignment, then dialog is more suitable. Explore the terrain of the
estimation request, including the background needs and the feasibility of
understanding what is needed to complete the estimate.

Failing that, at least ask the question of what the other person understood
from the request. Close the communication feedback loop.

Communicate the Need

Describe how the estimate will be used. With that use in mind, discuss the
minimum accuracy and precision that will be helpful, and the desired direction
of error.

If there may be multiple uses, talk about all of them. You may need multiple
estimates. In fact, it’s highly likely you will.

Think of the Outcomes

All of this seems like a lot of work. Can’t you make a simple request and get
an estimate? Perhaps you can, but perhaps not. Read on, and we’ll discuss
some of the difficulties that can arise. More than that, think about what
outcomes you’d like. What would you like to have happen?

Getting an estimate is not the outcome on which you should focus. The esti-
mate is only a tool to answer some question or make some decision. That
question or decision is in service to some larger goal. Focus on that larger
goal. Shortcuts may be expedient in the moment, but are foolhardy if they
undermine your larger goal.

report erratum • discuss

Retraining Ourselves • 193

When Asked for an Estimate
When you are asked for an estimate, how well do you understand the intent
of the request? Do you feel you have a common understanding with the
requester? Do you feel in a position to counter with other ideas, or even to
ask for clarification on the needs or the planned use for the estimate? In
other words, do you feel that you and the requestor are side by side, looking
in the same direction at the work to be done and the goals to be achieved?

Often I notice that those who are asked for an estimate would answer “no” to
all of those questions. That’s a strong indication that something has already
gone wrong in the situation.

Make Contact

If the requester hasn’t made a person to person connection, it’s up to you to
try to do so. That can be difficult if the requester is operating under the
assumption of a strong power hierarchy. It’s an essential part of success,
though. Find some commonality between you and them, whether it’s alignment
on the business goals or a bit of humor. It may take multiple different probes
to find that common ground if you don’t know much about the other person,
but keep trying.

Explore the Need

Happiness depends on developing an estimate that meets the need. It’s
important to understand that need. Get some idea of what decisions depend
on the estimate. This will help you judge the accuracy, precision, and direction
of error that will help make that decision possible. Explore the acceptable
level of risk in the decision that depends on the estimate.

Deliver More Than a Number

Describe the unknowns and potential risks in the estimate. Discuss ways
you can notice the level of risk passing the threshold of concern as the estimate
ages. Make plans now to revisit the estimate based either on the simple pas-
sage of time or some indicator that you’re tending toward danger.

When Responding to an Estimate
How you respond when you receive an estimate affects both the current
estimate and all future requests. Immediately, a congruent response helps
you receive the estimate in the way it was intended. If you misunderstand
the estimate, it’s the same thing as if the estimate was wrong. A congruent

Chapter 9. When People Clash • 194

report erratum •

response gives you a better opportunity to discover and correct any misunder-
standing.

Longer term, how you receive and use this estimate will affect your relationship
with the estimator. Will you build trust or tear it down? At the same time, it
will affect your reputation within a larger community. Word gets around, and
you may gain or lose the trust of people you haven’t yet met.

Accept Estimates with Appreciation

Everyone likes to be appreciated for their work. Appreciation goes beyond
saying “thanks” or “good job.” It includes a level of understanding of what
went into the work and what value the work has. Without that, it’s a hollow
statement and comes across as insincere. This can have the opposite of the
intended effect.

When people feel appreciated, it strengthens the bonds between them and
increases trust. It also makes them more likely to help wholeheartedly in the
future. Both of these results indicate an increased reciprocal appreciation.

Explore the Details

Go over the estimate with the person delivering it. How was the estimate
derived? What parts of it are confident and what parts are conjecture? What
expectations have been included in the estimate? What circumstances could
affect the accuracy of the estimate?

Successful use of the estimate depends on understanding it well. An estimate
that proclaims “this project won’t be finished before July” is not saying “this
project will be finished in July.” There are many ways to delay completion,
and no estimate can cover all of those.

Avoid Misuse

Use the estimate to inform your plans, but do not assume that it is one. A
projected finish date is not a guarantee or a commitment. It’s a stake in the
sand, subject to revision as conditions change.

Remember that a good estimate is made with a particular use in mind. It
hasn’t considered the universe of assumptions to support all possible uses.
Don’t reuse an estimate without reexamining it and the assumptions behind
it to see if it’s appropriate for the new use. A rough order of magnitude estimate
for budgeting purposes is not useful for writing a fixed-price contract. An
estimate of feasibility is not useful for judging the productivity of the develop-
ment team.

report erratum •

Retraining Ourselves • 195

If you have multiple needs, all is not lost. The effort done to produce an esti-
mate may likely be useful in producing another, different estimate on the
same work. Keep your notes, but redo the estimate. Let the previous notes
inform the new estimate.

Tools for Better Understanding
There are many books on personal interaction and tough conversations.
There’s no way to fully cover this topic here. There are a few things I’d like to
mention, though, as I’ve found them useful in these sorts of situations. Think
of these topics as starting points.

What about When the Other Person Is Being Unreasonable?
You cannot change another person. You can only choose your own behavior;
that’s hard enough. So what can you do when faced with someone who is
acting badly toward you?

Realize, first of all, that you do not have to stay. I don’t say this lightly. There
may be many advantages to staying in that organization or situation, and
many disadvantages to leaving. It may be very costly to give up that job and
very difficult to find another. These trade-offs vary with the situation and the
person. I’m not recommending that you leave, but I am recommending that
you realize that’s a possibility. You are not a prisoner, even if it might feel
like it. You can find a way to go somewhere better if you put your mind to it.
Knowing that can help you cope with staying.

And while you cannot change another person’s behavior, you can choose how
you cope with it. A congruent coping stance will help minimize the damage
to yourself, and provide the most options for how you choose to behave. When
you’re balanced, you can better recognize the unmet needs that the other
person cannot articulate, especially the personal needs. When you’re balanced,
you’re prepared to respond in many directions, without giving up your self-
esteem.

What about When You React out of Habit?
As I said, incongruent coping stances are often longstanding habits first
formed in early childhood. You will revert to them from time to time. When
you do, try to figure out what triggered you to take that stance. In my experi-
ence, it’s usually a conversation gone wrong.

There’s a lot that goes on in a conversation, and most of it isn’t visible from
the outside. We process what we hear through a lot of filters before we give

Chapter 9. When People Clash • 196

report erratum •

our response. Much of that processing is based on past experience more than
current events. There are many places and ways that it can go astray. And
it all takes place in the blink of an eye, or perhaps faster than that, for every
part of the conversation.

Ingredients of an Interaction
All of this activity is described in another of Virginia Satir’s models of human
behavior. This one is called the Ingredients of an Interaction. Let’s walk
through an example to see how it works.

We start with actual data. Light enters our eyes and is focused on our retinas.
Oscillating air molecules beat on our eardrums and get transmitted to our
inner ear. Chemicals in the air find receptors in our nose. All of these things
generate nerve signals that go to our brain. This sensory input is as close to
raw data as we can get.

Roy and Kelly are having a conversation at the whiteboard. They don’t notice as
Lou walks up to them and holds out some papers to Roy. Roy stops in mid-sen-
tence as Lou says, “Could you estimate this feature for the September release?”
As Roy is reaching for the papers, a whole lot of things are already going on.

Intake

As part of the sensory intake, Roy heard “Would you estimate this feature for
September release?” Note that this isn’t quite what Lou said, but it’s pretty
close. Roy had been preoccupied with his conversation with Kelly, and wasn’t
primed for careful listening. Still, he got the gist of it.

He also saw that the sheaf of papers was fairly thick, and stapled together.
As he took the papers, he looked up and noticed that Lou was looking down
at the papers and wasn’t looking him in the eye.

There are other things that Roy could have noticed, such as the fact that Lou
was wearing a blue-striped, button-down shirt, and there was a slight aroma
of cigarette smoke in the air. These facts were filtered out before Roy was
aware of them, common enough to be unremarkable.

Roy also didn’t notice that Lou had paused for a moment before saying any-
thing. During that time Lou was looking directly at Roy, but that went unob-
served. Roy didn’t notice that Lou was there until he started to speak.

Intake depends not just on what is happening, but how we focus our attention.
There’s a lot of stuff we don’t notice because we’re focused on something else,
or because it seems unremarkable. Even when we’re paying attention to

report erratum •

Tools for Better Understanding • 197

something, we might not be completely focused and might not get it right.
Our eyes and ears can get fooled.

We’ve already lumped some basic meaning into the intake description. We’ve
converted sounds into words, and light waves into recognizable objects. That’s
the level of data that is convenient to describe, but there could be errors in
that interpretation. We saw an example of that when Lou said “could” and
Roy heard “would.”

Data,
Senses,
Focus

Experiences,
Associations,
Assumptions

Feelings,
Feelings about

feelings

Defenses,
Rules for

commenting

Meaning

Making meaning of the data goes much deeper than this, though. Roy looked
at the sheaf of paper and presumed that, since they’d written down the
description of what they wanted in the feature, he was not going to get to
interact with the business people asking for it. Therefore, he was not going
to be able to negotiate the scope.

We make meaning of what we sense based on our past history and experience.
Who does this person remind me of? When has this, some part of this, or
something like some part of this happened in the past? The association may
be a minor part of the sensory intake. What has happened in similar situations
in the past?

That scope wasn’t negotiable was an assumption based on past experience,
but the truth is that he’d never tried to negotiate the scope of written
requirements since coming to work for Riffle & Sort. He’d tried it once when
he worked at Empire Enterprises and it hadn’t worked out well. Not only did
it waste a lot of his time, but the business people weren’t interested in nego-
tiating and told his boss that he wasn’t a team player. He hadn’t tried again
since that happened.

Chapter 9. When People Clash • 198

report erratum •

With that assumption, Roy further assumed that he was being directed to
find a way to fit everything in the requirements document into the software
by September. He didn’t stop to consider other possibilities. It could be that…

• Lou wanted to know if it might be possible to do it all by September,
• Lou wanted to know what might be possible to do by September, or
• Lou wanted confirmation that the request was not feasible.

I’m sure you can think of other possibilities. Roy’s mind, however, raced on.
“Since Lou wouldn’t look at me, it’s surely going to be a death march.” Since
Roy hadn’t noticed Lou earlier, he hadn’t seen Lou looking at him directly.
Without that data, to him, it hadn’t happened. Roy attributed it to Lou’s
feeling about the project and their relationship rather than to the moment in
time when Roy noticed Lou’s presence.

While we, at our leisurely pace, can notice some likely and possible discrep-
ancies in meaning, Roy’s brain is still charging ahead at full speed. It grabs
the first meaning it makes of the data and plows full speed ahead into the
significance of that meaning.

Significance

At first, Roy felt annoyed at being interrupted in his conversation with Kelly.
As he comprehended the meaning of the interruption—as he interpreted it—he
felt a dread of getting into trouble, one way or another. It might be for not
estimating accurately, for not getting the work done, for misinterpreting the
requirements, or for myriad other things that could happen. He felt stuck in
a bad position.

He didn’t like feeling stuck. It made him angry to feel this way, yet again. His
heart beat faster and he felt a bit jittery. His blood vessels dilated and his
face turned red. He could feel the heat radiating from his face.

From our uninvolved viewpoint, we can notice that the significance of an
event, from a personal point of view, is related to how it makes us feel—and
to how that feeling makes us feel. In the software development field, many
people value rationality over emotion, or may even want to deny the existence
of emotion. This doesn’t make emotions go away. In fact, it illustrates the
emotional aspects of the human animal. We operate by both emotions and
rationality, but if one is primary, it’s surely the emotions.

From Roy’s point of view, this is likely the first point in the process where he
becomes aware of his reaction. Everything has happened so fast that it’s
hardly noticeable. The physiological changes from an emotional change got

report erratum •

Tools for Better Understanding • 199

his attention. His response is likely more about his feeling of the significance
than it is about the trigger.

Response

When we respond, we go through a couple more filters. One is the ego defense,
which helps us maintain our sense of self. In this story, Roy thinks “Lou
doesn’t like me.” In reality, this is probably a projection of Roy’s anger and
dislike onto Lou. Rather than being Lou’s actual emotions, Roy assigns them
to Lou.

But Lou is obviously above Roy in the power hierarchy of the organization.
Roy doesn’t feel comfortable speaking freely and openly to him, especially
when he’s upset with Lou. Effectively, Roy has a commenting rule that says
“I can’t express negative feelings to my boss.”

Finally, we reach an observable outcome. Roy says, “Sure thing, boss.” These
words were spoken in a flat tone with tight lips and accompanied by steely
narrowed eyes. And, of course, there is the flushed face. The visible signs are
not congruent with the words, and this mismatch may also be noticed.

These observable responses, if noticed, become part of the intake for Lou.
Lou will also interpret his sensory perceptions through the lens of his past
experience and history, will attach significance based on feelings and the
secondary feelings about the primary feelings, and then respond according
to his defenses and rules for commenting. Back and forth it goes following
the same complicated but very fast processing by each participant.

Most of the time, we are not aware of all the steps we go through. If we remain
unaware, we cannot choose our behavior. Our patterns choose it for us, and
we usually get similar results. Awareness is the key to opening up conscious
choices in how we respond.

Changing for the Better
Changing our behavior is hard and, especially at first, feels uncomfortable
and disorienting. That makes us want to retreat to the familiarity of how we’ve
been. If we stick to it, we reach an “aha” moment where it starts to make
sense. From there, it’s mostly a matter of practice to assimilate the change
in our “new normal.”

Not changing leaves you stuck in the place where you’ve been. Picture that
“better situation” surrounding estimation again. See yourself shoulder to
shoulder with your counterpart, looking out for the needs of the organization.
Imagine them paying attention to your needs and working to understand you.

Chapter 9. When People Clash • 200

report erratum •

That won’t happen without your doing the same with them. Notice them
hearing your concerns and what you have to say. That starts with your listen-
ing to their concerns.

Stepping Back for a Broader View
Sometimes it seems that the hardest thing in the world is for people to
understand and get along with each other. There is no technical solution to
relationship problems. It’s a problem that requires empathy and honesty,
both with others and with yourself.

You can, however, pay attention to your communication problems. By doing
so, you can identify places where the communication became scrambled and
try to unscramble it. With a bit more work, you can understand how it got
scrambled, and try to avoid similar problems in the future.

Change takes time and effort. Old habits don’t just disappear when you
choose. Instead you must work to build new habits that crowd out the old
ones. This is hard when the habits involve only yourself, and even harder
when they involve interpersonal relationships. Take heart! Incremental
progress is possible. Sharing the journey with others will make it easier. And
when you fail, realize that you, too, are human. Apologize to those you may
have hurt or offended and resolve to do better in the future.

The results are worth the effort. The practices that support better relationships
will help in all parts of your life. You don’t have to be perfect at them to notice
the improvement, not only in your own behavior toward others, but their
reciprocal behavior toward you.

Now It’s Your Turn
1. In your experience with estimation, what dilemma do you find yourself

facing repeatedly? Which option do you generally favor and which seems
like an also-ran that can’t compete? What’s a third possibility that you
haven’t considered?

2. Think of the last time you were involved in estimation, either requesting
it or providing it. In that situation, what needs did the person on the
other side of that request boundary have? How could you have probed
for needs you didn’t know about?

3. Reimagine the “better situation” from earlier in this chapter. What is one
small step you could take to help your organization move from the status
quo toward that vision?

report erratum •

Stepping Back for a Broader View • 201

Conclusion
Looking back over these chapters, you’ll notice that there are many suggestions
but no recipes for success. No project is an average project. Each has its own
unique challenges and circumstances. Learning how to recognize the variance
between expectations and reality, and adjust for them, is a key part of success.

There are many suggestions and warnings here based on my experience and
preferences. These are intended as a starting point. There is no destination
called “perfect estimation.” Feel free to go beyond my suggestions. You are
likely to discover things I haven’t yet. (And please let me know what you dis-
cover!) Feel free to do things that seem appropriate for your circumstances,
even if I’ve warned against them. Just do them with eyes wide open, aware
of the potential problems. You’ll likely find other means to keep those problems
in check.

Start with examining what needs you are trying to fill. As in software develop-
ment, if you don’t know what you’re trying to achieve, you’re unlikely to do
so. Also, as in software development, realize that you’re unlikely to know all
the needs at the start. Keep your eyes open for needs that you overlooked or
that have arisen since the start.

Take a deep breath and look around. See the options you have. Note the alter-
natives to “what you’ve always done” and to “the way we do things around here.”

Start with understanding what you want. No, not the first thing that comes
to mind. If you had what you wanted, what would it do for you?

The real need is never the estimate. Usually it’s some decision that needs to
be made. Sometimes it’s reassurance that things are generally OK, or a
warning if they are not.

Sometimes it’s not your need that needs to be addressed. Your need might
be that someone else is satisfied. This complicates things as it requires
understanding their need.

There may be multiple competing needs. These needs might not be satisfied
with the same approach to estimation. They may have different needs for
accuracy, for precision, for distribution of error, or other considerations. You
may need to estimate in more than one way.

If you do need an estimate that is both precise and accurate, realize that
this is a high art that requires skill and practice. And it requires accurate
and appropriate historical data. Even then it’s always possible that something

Chapter 9. When People Clash • 202

report erratum •

you didn’t, and possibly couldn’t, anticipate can make your estimate com-
pletely wrong.

Most of the time you need little precision and not even very much accuracy.
Most of the time you need situational awareness so that you can prepare for
the future and notice when conditions change. This requires attention more
than correctness. It requires some smaller, nearer estimates to sense the
problems in the larger, more distant ones.

The differences between your estimates and reality give you clues as to what
assumptions you’ve made that aren’t holding true. Estimates are not the
same thing as plans. Estimates inform plans, but as the situation changes,
or your understanding of the situation changes, plans generally need to
change as well.

The information power of incorrect estimates is so powerful that it’s beneficial
to quit thinking of estimates as predictions and instead think of them as
hypotheses. An estimate, properly framed, is an experiment. If the results
don’t come out as expected, you’ve learned something. This feature of estimates
may be powerful enough to convince you that you want more estimates, rather
than fewer.

This reframing should also defuse a lot of the angst and blame surrounding
estimation. Where it doesn’t, yet, realize that change is a process, not an
event. As Esther Derby suggests in 7 Rules for Positive, Productive Change
[Der19], ask yourself “why might reasonable intelligent people act this way?”
Others may be viewing the situation differently from you. Where can you find
common ground? Where can you have dialog to understand each other’s point
of view?

Estimates with value still take thought and effort. I hope that this book will
help guide your thought and reduce effort that doesn’t contribute to meeting
your needs. I would like it if you would let me know how it has helped, and
even where it has not helped. In the latter case, perhaps I can offer something
I neglected to include.

For now, go forward and estimate with all the confidence you can. Use those
estimates for your greatest benefit. Prosper to the best of your ability.

report erratum •

Conclusion • 203

Bibliography

[Coc04] Alistair Cockburn. Crystal Clear: A Human-Powered Methodology for Small
Teams. Addison-Wesley, Boston, MA, 1st Edition, 2004.

[Coh05] Mike Cohn. Agile Estimating and Planning. Prentice Hall, Englewood Cliffs,
NJ, 2005.

[DeM09] Tom DeMarco. Software Engineering: An Idea Whose Time Has Come and
Gone?. IEEE Software. 26[4]:96-95, 2009, July.

[Der19] Esther Derby. 7 Rules for Positive, Productive Change. Berrett-Koehler, San
Francisco, CA, 2019.

[Eis58] Dwight D. Eisenhower. Remarks at the National Defense Executive Reserve
Conference, November 14, 1957. Public Papers of the Presidents of the
United States. 1958.

[Fey67] Richard Feynman. The Character of Physical Law. MIT Press, Cambridge,
MA, 1967.

[Fie77] Edgar R. Fiedler. The Three Rs of Economic Forecasting-Irrational, Irrele-
vant and Irreverent. Across The Board. June 1977.

[Jon07] Capers Jones. Estimating Software Costs. McGraw-Hill, Emeryville, CA,
2nd Edition, 2007.

[JS06] Magne Jørgensen and Dag Sjøberg. Expert Estimation of Software Devel-
opment Work: Learning through Feedback. Software Evolution and Feed-
back: Theory and Practice. 2006.

[Mag11] Troy Magennis. Forecasting and Simulating Software Development Projects:
Effective Modeling of Kanban Scrum Projects using Monte-carlo Simulation.
Create Space, Scotts Valley, CA, 2011.

report erratum •

[Mag15] Troy Magennis. The Economic Impact of Software Development Process
Choice – Cycle-Time Analysis and Monte Carlo Simulation Results. 2015
48th Hawaii International Conference on System Sciences. 2015.

[Mal68] Albert Paul Malvino. Transistor Circuit Approximations. McGraw-Hill,
Emeryville, CA, 1968.

[McC06] Steve McConnell. Software Estimation: Demystifying the Black Art. Microsoft
Press, Redmond, WA, 2006.

[Sat76] Virginia Satir. Making Contact. Celestial Arts, Berkeley, CA, 1976.

[Sat88] Virginia Satir. The New Peoplemaking. Science and Behavior Books, Palo
Alto, CA, 1988.

[SGGB06] Virginia Satir, Maria Gomori, Jane Gerber, and John Banmen. The Satir
Model. Science and Behavior Books, Palo Alto, CA, 2006.

[SST76] Virginia Satir, James Stachowiak, and Harvey Taschman. Helping Families
to Change. Jason Aronson, Inc., New York, 1976.

Bibliography • 206

report erratum •

Index

DIGITS
50% level estimates, 9

7 Rules for Positive, Productive
Change, 203

90% level estimates, 9

A
accessibility, 38

accuracy
comparison-based estima-

tion, 29, 47
decomposition, 51–52, 57
defined, 6
judging need for, 202
of memory, 33
of recorded data, 33, 123
in RFPs, 10
spot reestimating and,

166

actuals
comparing estimates to,

109, 131, 149–161
comparing large and

small items, 64
comparing model-based

estimation to, 109, 131
costs of errors in estimat-

ing, 150
exercises, 161
learning from estimation

errors, 149, 153–160,
166

reestimating after estimat-
ing errors, 151–153

trusting, 152

additive adjustments, compar-
ison-based estimation, 30–
32

affinity estimation, 58–60,
63, 126–130

Agile Estimating and Planning,
xiii, 57

Agile Manifesto, 190

anchoring bias, 71–72

Andersonville, 134

appreciation, 195

approximations, xvii

assumed precision, 7

assumptions
in asking for estimates,

192
confidence and, 8
estimates as hypotheses

and, 168
intuitive projects, 23
isolating values from

costs, 2
learning from estimation

errors, 154–157, 203
looking at together, 190
progress priorities, 100
spot reestimating and,

165
testing, 163–164

attention and intake, 197

B
Beck, Kent, 57

behavior
congruence, approach

with, 189–201
congruence, understand-

ing, 183–189
coping stances, 184–189,

196

difficulty of changing,
200

mis-communication,
178–183

relationship clashes and,
177–201

unreasonable, 196

biases
anchoring bias, 71–72
avoiding, 42, 72
confirmation bias, 72
numeracy bias, 57, 72,

108
precision bias, 57, 72
in sizing errors, 65
subjectivity in model-

based estimation, 107–
109

Sunk Cost Fallacy, 68,
71–72, 146

blame
blaming stance, 185, 188
coping with congruent

stance, 189
disadvantages of, 149,

151, 157

blink estimation, 42

bloat, 38

blown Sprints, 157

bottlenecks, 91, 94, 118, 153

break-even, 16–18, 136

broken windows, 99

budgeting
new project considera-

tions, 10, 19, 23
prototypes, 46
spikes, 45

bugs, as sign of undoneness,
83, 94, 173

BurnDown Charts, 116

burnout, 88, 96, 173–174

BurnUp Charts
comparison-model hy-

brid, 127–130
Cumulative Flow Dia-

grams, 118–119
early releases, 137
Earned Value, 86
model-based estimation,

111–119
moving goal line, 115–

117
projections with, 113–

119, 127–130
reading, 83
using multiple milestones

in, 117
warnings from, 168

C
C3 (Chrysler Comprehensive

Compensation), xii–xiii, 57

calibrating
approximations and, xvii
with industry data, 44
model-based estimation,

108, 123
need for, 65
recalibrating, 152
Story Points, xiii, 44
to unknown context, 44

capacity
comparison-based estima-

tion, 41
as criteria for new

projects, 14
increasing, 15
managing, 91
for other work, 144
questions on, 15
storage capacity, 141
unsustainable work pace,

173

Captain Ron, 77

cashflow
as criteria for new

projects, 16–18
Osborne Effect, 142

CD3 (Cost of Delay Divided
by Duration), 22

CFD, see Cumulative Flow
Diagrams

change
difficulty of, 200
as process, 203

charge codes, 34

charts, see BurnUp Charts

checkpoints, large fixed-price
bids, 11

Chrysler Comprehensive
Compensation (C3), xii–xiii,
57

Coastline Paradox, 69

Cockburn, Alistair, 61

code, assumptions about, 155

cognitive bias, see biases

Cohn, Mike, xiii, 57

communication
blame and, 157
delays, 153
dialog, 193
errors in estimating, 159
exercises, 201
gathering information for

new projects, 4
mis-communication,

178–183
needs, 191, 193–194
progress, 75, 84–90, 144
reporting milestones, 144
rule of three, 181, 189
strategies for, 192–196
team changes and, 94
trimming expectations,

145
trust and, 157

comparison-based estimation,
27–47, see also decomposi-
tion

additive adjustments, 30–
32

aspects of, 34–42
combining with model-

based estimation, 125–
130

comparing large and
small items, 63

defined, 27
development context, 39–

41
everyday estimation, 27,

76, 145, 149
exercises, 47
expert judgment, 28, 32
gestalt estimation, 42
memory and, 33
model-based estimation

as form of, 108

with multi-level decompo-
sition, 63

multiplicative adjust-
ments, 30

questions for, 28–30, 35–
41, 46

recording data for future
estimate, 32–34

system aspects, 35–38
of unknowns, 43–46

confidence
in parametric model-

based estimation, 123
requirements for new

projects, 8–9
spot reestimating and,

166

confirmation bias, 72

congruence
congruent coping stance,

188, 196
defined, 183
strategies for, 189–201
understanding, 183–189

conjecture, xiv

Connextra format, 54

constraints, system, 36

context, in congruence, 183–
189

contingency planning, 157

continuous integration, 82

conventions, xix

coping stances, 184–189, 196

Cost of Delay, 21, 80

Cost of Delay Divided by Du-
ration (CD3), 22

costs
capacity and, 15
choosing between

projects, 21
Cost of Delay, 21, 80
Cost of Delay Divided by

Duration (CD3), 22
errors in estimating, 150
isolating from value, 2,

14
Return on Investment, 4,

13
speed and, 150
Sunk Cost Fallacy, 68,

71–72, 146

coupling, unexpected, 155

Crystal Clear, 61

Cumulative Flow Diagrams,
94, 118–119

Index • 208

customers
collaboration with, 190
coordinating milestones,

142
delays and, 41
developing fixed-price

bids, 10–12
relationships and develop-

ment context, 39–41
system context and, 38

cycle time vs. velocity, 106

D
danger bearings, 167, 172,

174

data
accuracy of, 33, 123
actuals as, 152
industry data, 17, 44
for large fixed-price bids,

11
from milestones, 143–146
quality of, 123
recording for future esti-

mates, 32–34
subjectivity of, 108
uncollected, 34

deadlines
aspirational, 134
confidence and, 8
fixed vs. target dates, 135
imperative, 134
in linear model-based es-

timation, 112
as milestones, 134–136
missing and effect on re-

leases, 136
term, 134–135

decisions
choosing between

projects, 10, 20–22
determining if project is

worth starting, 10, 13–
18

in gathering information
for new projects, 5

progress priorities, 98–
100

time pressures and, 159

decomposition, 49–73
about, 43, 49
affinity estimation, 58–

60, 63, 126–130
approaches to, 49–56
by functionality, 52–58,

63, 84, 111, 126
by implementation, 51,

70

by phase, 50
Coastline Paradox, 69
comparing large and

small items, 63
errors, 64–71
exercises, 73
as implementation plan,

70
with Large Number of

Small Parts, xiii, 57
level of detail, 69, 71
losing focus, 69
mismatch with design, 70
in model-based estima-

tion, 104, 107, 110
multi-level, 62–64, 110,

126–130
number of parts, 56–58,

63, 66–69, 71
ordering, 60–62, 126
questions for, 72
reusing estimates, 50
with Small Number of

Large Parts, 58, 62–64,
110, 126

testing, 51
with unmanageable

number of pieces, 66–
69, 71

with User Stories, 53–58,
61, 67–69, 71, 104,
107

visualizing progress and,
84

delays
comparison-based estima-

tion, 31, 41
comparison-model hy-

brid, 126
Cost of Delay, 21, 80
Cost of Delay Divided by

Duration (CD3), 22
customer relations and,

41
in feedback, 95
foreseeable, 31
large fixed-price bids, 11
last responsible moment,

126
model-based estimation,

124
observing, 153
replanning and, 152
smaller fixed-price bids,

12

delight, measuring, 78

delivery, measuring progress
with, 83

DeMarco, Tom, 78

deployment, 140

depth sounders, 97

Derby, Esther, 203

design
mismatch with decompo-

sition, 70
redesign, 71

development context, 39–41

DevOps, coordinating mile-
stones, 140

dialog, 193

disappointment, 178

diversity, 42

documentation, 153

doneness
bugs as sign of undone-

ness, 83, 94, 173
customer relations and,

40
decomposition, 51–52
hypothesis approach,

169, 173
measuring output and,

81

duplication, speed and, 88,
94

E
eBay Inc., 145

Earned Value, 80, 86

Earned Value Management
(EVM), 86

The Economic Impact of Soft-
ware Development Process
Choice, 125

efficiency
multitasking and, 153
progress and, 87

effort, measuring, 80

ego defense, 200

Eisenhower, Dwight D., 166

empathy, 184, 186

Empire Enterprises example
about, xx
budgeting considerations,

20
checking progress, 76,

80, 84
choosing between

projects, 20
comparison-based estima-

tion, 31, 34

Index • 209

comparison-model hy-
brid, 127–130

decomposition, 50, 56,
58, 62

milestones, 137, 144
mismatch between esti-

mate and actuals, 158
negotiation in, 198
origins, 2–4
progress, 81
project models, 24
Return on Investment, 13

encapsulation, 70

endpoints, 3

errors in estimating, 149–161
capturing information,

167–174
communicating, 159
costs, 150
decomposition, 64–71
direction of, 7, 65
hypothesis approach,

168–173, 203
learning from, 149, 153–

160, 166, 203
measurement errors, 173
misdiagnosis, 12, 155
as obsolete estimates,

152, 156
planning for, 163–175
random errors, 64
reestimating after, 151–

153

estimating, see also actuals;
comparison-based estima-
tion; decomposition; errors
in estimating; milestones;
model-based estimation;
new projects; progress

adjusting estimates for
future work, 152

advantages of, xi–xii
affinity estimation, 58–

60, 63, 126–130
as approximations, xvii
blink estimation, 42
challenges of, xi
congruent approach,

189–201
conventions, xix
defined, xiv
disadvantages of using

single estimate, 6
as fractal, 69
frequency of, 165
gestalt estimation, 42
vs. guessing, xiv

hypothesis approach,
168–173, 203

judging when needed, 3
misuses, 4, 195
padding estimates, 178–

181
relative estimates, 22
responding to estimates,

194
reusing estimates, 50,

195
terms for, xiv
as tool to achieve goals,

xvi, 175, 193
treating estimates as

commitments, 178, 180
uses, xv–xvi, 163, 175
using estimates as plan,

175, 195, 203

Estimating Software Costs,
xvi, 33, 104

estimation tools, 44, 123

everyday estimation
checking progress, 76
comparison-based estima-

tion as, 27
trimming expectations,

145, 149

EVM (Earned Value Manage-
ment), 86

exercises
about, xx
actuals, 161
checking progress, 101
communication, 201
comparison-based estima-

tion, 47
decomposition, 73
milestones, 147
model-based estimation,

132
new projects, 25
relationships, 201

experimentation, 168

Expert Estimation of Software
Development Work, 28

expert judgment, 28, 32

extension, in linear model-
based estimation, 112–113

Extreme Programming, xii,
57, 109, 165

F
fear, 100

feature parity, avoiding in
rewrites, 40

feedback
delayed, 95
early releases and, 138

Feynman, Richard, 168

Fiedler, Edgar R., 165

fixed-price bid needs, 10–12

Fluphy Kitty, see TinyToyCo
example

focus
intake and, 197
losing during decomposi-

tion, 69
speed and, 89

forecasting
defined, xiv
vs. estimating, 107
with stochastic model-

based estimation, 124–
125

subjectivity in, 107

Forecasting and Simulating
Software Development
Projects, 125

Function Points, 104, 122,
125

functionality
comparing large and

small items, 63
decomposition by, 52–

58, 63, 84, 111, 126
differences in slicing, 61
hypothesis approach, 169
measuring progress by,

81–83, 107
number of slices in de-

composition, 56–58
testing, 169

G
gestalt estimation, 42

Goodhart, Charles, 89

Goodhart’s Law, 89

governance, 85

Grenning, James, xiii

guard conditions, 159, 168

guessing, xiv

Gummi Bears of Complexity,
see Story Points

H
handoffs

coordinating milestones,
140

delays from, 153
large fixed-price bids, 11

Index • 210

headlights, benefits of, xi

help desk, coordinating mile-
stones, 142

Helping Families to Change,
185

Hendrickson, Chet, xiii

highest paid person’s opinion
(HiPPO), 23

hypotheses, estimates as,
168–173, 203

I
IFPUG (International Func-

tion Point Users Group),
104

impact, measuring, 78

implementation, decomposi-
tion by, 51, 70

implicit expectations, 36–38

imposed projects, 23

income
as criteria for new

projects, 16–18
early releases, 136–139
Osborne Effect, 142

information
adjusting assumptions to

new information, 164
in asking for estimates,

192
budgeting, 20
capturing, 167–174
datasets for large fixed-

price bids, 11
gathering for new

projects, 4–9, 20
industry data, 17, 44
learning from estimation

errors, 154–160, 203
middleman for, 192
from milestones, 143–146
obsolete estimates, 152,

156
surprises, 157
unknown information,

151

Ingredients of an Interaction,
197–200

intake, 197, 200

integration points, 140

Interaction, Ingredients of an,
197–200

International Function Point
Users Group (IFPUG), 104

internationalization, 38

interpersonal aspects, see re-
lationships

intuitive projects, 23–24

irrelevant stance, 188

isolation, between cost and
value, 2, 14

J
Jeffries, Ron, 82

Jones, Capers, xvi, 10, 33,
104–105, 122

Jørgensen, Magne, 28

K
Kanban simulations, 125

L
landmarks, 133, see also mile-

stones

Large Number of Small Parts,
xiii, 57

lawsuits, 11

learning
from estimation errors,

149, 153–160, 166,
203

speed and, 96
tax, 39

legacy systems
number of User Stories,

68
Walking Skeletons, 62

linear model-based estima-
tion, 109–119, 126–130

listening, 191

low-hanging fruit, 99

lump variance, 28

M
Magennis, Troy, 11, 125

Making Contact, 185

Malvino, Albert Paul, xvii

management
about, xv
capacity for other work,

144
capacity, work to, 91
communicating errors in

estimating, 159
communicating progress,

75, 84–90, 144
communication strategies

for, 192–196
intuitive projects and, 23

mis-communication,
178–183

optimization and, 90–93
push for speed, 87
surprises and, 157

marketing, coordinating mile-
stones, 142

math in model-based estima-
tion, 28, 110

McConnell, Steve, xvi, 10,
32, 149

meaning in Ingredients of an
Interaction, 198

measuring
delight, 78
effort, 80
errors in measurement,

173
Goodhart’s Law, 89
impact, 78
output, 81
progress, 75, 78–83, 107

memory, 33

mental models
comparison-based estima-

tion, 28
new projects, 22–24

milestones, 133–147
arbitrary, 133
as warnings, 159, 163
coordinating, 139–143
deadlines as, 134–136
early releases, 136–139
evaluating and changing

plans, 143–146
exercises, 147
financial, 17
frequency of estimating

and, 165
learning from estimation

errors, 158
in linear model-based es-

timation, 112, 114, 117
multiple milestones in

BurnUp Charts, 117
multiple releases, 138
reestimating after estimat-

ing errors, 151–153
reporting progress, 144
trimming expectations,

145

mis-communication, 178–183

misdiagnosis, 12, 155

model-based estimation, 103–
132

advantages, 130
calibrating, 108, 123

Index • 211

combining with compari-
son-based estimation,
125–130

datasets for large fixed-
price bids, 11

exercises, 132
as form of comparison-

based estimation, 108
linear approach, 109–

119, 126–130
math for, 110
modeling randomness,

124
parametric approach,

119–123
prevalence of, 28
rate, modeling, 103, 106
size, modeling, 103–106,

110
stochastic approach,

124–125
subjectivity in, 107–109

Monte-Carlo simulation, 125

multi-level decomposition,
62–64, 110, 126–130

multiplicative factors and ad-
justments, 27, 30

multitasking, 32, 41, 153

N
Nebulous Units of Time

(NUTS), see Story Points

needs
communicating, 191,

193–194
competing, 202
estimates as not the

same as needs, 202
understanding others’,

190

negotiation
after inaccurate or am-

biguous requirements,
7

vs. estimating, 179–181
in Ingredients of an Inter-

action example, 198

The New Peoplemaking, 185

new projects, 1–25
budgeting considerations,

10, 19, 23
choosing between, 10,

20–22
confidence required, 8–9
determining if doable,

10, 18

determining if worth
starting, 10, 13–18

exercises, 25
fixed-price bid needs, 10–

12
information for, 4–9, 20
mental models, 22–24
originator of project, 4,

23
rate uncertainty, 130
starting, 1
understanding reason

for, 4
when to use estimates, 3

North, Dan, 42, 69

numeracy bias, 57, 72, 108

O
Ohno, Taiichi, 85

optimism
learning from estimation

errors, 154
linear model-based esti-

mation, 113–119

optimization, 90–93

order
comparison-model hy-

brid, 126
decomposition, 60–62,

126
trimming expectations

and, 145
User Stories, 55

orders of magnitude, 30

Osborne Computer Corpora-
tion, 142

Osborne Effect, 142

other, in congruence, 183–
189

output
Function Points, 104,

122
linear model-based esti-

mation, 109
measuring, 81

overcorrections, 95

overestimating, decomposi-
tion errors and, 66, see al-
so errors in estimating

overhead
decomposition errors, 65
model-based estimation,

105
slowed progress and, 95
uncollected data, 34

overtime, 34, 173

P
packaging, coordinating mile-

stones, 143

padding estimates, 178–181

parallel development, 139,
153

parametric model-based esti-
mation, 119–123

Parkinson’s Law, 87

Payne, Bob, xiii

peak performance, 96

personnel, see also capacity;
management

appreciation, 195
burnout, 88, 96, 173–174
changes in, 32, 107,

119, 156, 164
clashes, 177–201
communication strategies

for, 192–196
comparing plan from a

variety of viewpoints,
167

coordination of mile-
stones, 139–143

mis-communication,
178–183

originator of project, 4,
23

overtime, 34, 173
parallel development,

139, 153
productivity and num-

bers of people, 20
rate of work, 130
role in checking progress,

76
unreasonable, 196
unsustainable work pace,

173

pessimism, linear model-
based estimation, 113–119

phases, decomposition by, 50

placating stance, 186, 188

planning
capturing information,

167–174
comparison to plan, 166
contingency planning,

157
for estimation errors,

163–175
long-range planning with

User Stories, 68
for reestimating, 194

Index • 212

replanning, 152
using estimates as plans,

175, 195, 203

Planning Poker, xii–xiii, 42,
55

precision
assumed, 7
decomposition, 57–58
defined, 6
frequency of estimating

and, 165
judging need for, 202
linear model-based esti-

mation, 114–115
precision bias, 57, 72
in RFPs, 10

prediction, see also forecast-
ing

defined, xiv
planning for errors, 163–

175

prioritizing
comparison-model hy-

brid, 126
decomposition, 126
expectations of system

context, 38
governance and, 85
progress and, 98–100
updating estimates and,

164
User Stories, 55

privacy requirements, 37

probability
probability distribution,

124
zone of probability, 114

products vs. projects, 3

progress, 75–101
bugs as sign of undone-

ness, 83, 94, 173
calibrating to unknown

context, 44
communicating, 75, 84–

90, 144
defining goals, 78
detecting, 75, 77
efficiency and, 87
everyday estimation, 76
exercises, 101
going fast enough, 93
measuring, 75, 78–83,

107
moving goal line, 115–

117
need to check on, 75–77
optimizing, 90–93

oscillating, 95
overall vs. peak perfor-

mance, 96
priorities in, 98–100
project manager role, 76
questions on, 90
situational awareness,

90, 97–100, 118
slowing down, 94
speed of, 75, 87–97
speeding up, 95
trimming expectations,

145
visualizing, 75, 83, 94,

111–119
warnings, 77, 99

project managers, role, 76

projections
with comparison-model

hybrid, 127–130
defined, xiv
with model-based estima-

tion, 113–119
subjectivity in, 107
updating estimates and,

164

projects, see also new
projects

canceling, 146
evaluating milestones

and changing plans,
143–146

imposed, 23
intuitive, 23–24
vs. products, 3
sensing, 23
terminating, 19, 146

prototypes, 46

Q
qualitative aspects, 35

quality
speed and, 88, 94
system aspects, 36–37
system context, 37
unsustainable work pace,

174

quantitative aspects, 35

questions
capacity, 15
comparison-based estima-

tion, 28–30, 35–41, 46
customer relations, 39–

40
decomposition, 72
determining if project is

doable, 18

development context, 39–
41

financial milestones, 17
hypothesis approach, 173
for mismatch between

estimates and actuals,
161

for new information, 164
progress, 90
reestimating, 175
responding to estimates,

195
security, 37
spikes, 45
system aspects, 35–38
what questions, 5
when asked for esti-

mates, 194
when asking for esti-

mates, 192
why questions, 4–5

R
randomness, modeling, 124

rate
averaging, 129
modeling in comparison-

model hybrid, 129
modeling in model-based

estimation, 103, 106
uncertainty, 130

recalibrating, 152

recording
accurate data, 33, 123
data for future estimates,

32–34
User Stories, 67

redesign, 71

reestimating
after estimating errors,

151–153
capturing information,

167–174
decomposition errors, 71
estimates as hypotheses,

168–173
frequency of, 165
planning for, 194
questions, 175
spot, 165
traps, 173–174

Reinertsen, Don, 21

relationships
clashes, 177–201
congruence, approach

with, 189–201

Index • 213

congruence, understand-
ing, 183–189

coping stances, 184–189,
196

customer relations in
comparison-based esti-
mation, 39–41

deadlines and, 134
difficulty of changing be-

havior, 200
exercises, 201
Ingredients of an Interac-

tion, 197–200
making contact, 194
miscommunication, 178–

183
rule of three, 181, 189
tools for, 196

relative estimates, 22

releases
cashflow and, 16, 142
early releases as mile-

stones, 136–139
missing deadlines and,

136
multiple releases, 138
successive releases in

model-based estima-
tion, 117

reliability, 37

replanning, 152

request for proposal (RFP),
10–12

requirements, see also User
Stories

aspects in comparison-
based estimation, 35–
41

prioritizing, 38
rewrites, 40

response in Ingredients of an
Interaction, 200

retrospectives, 157

Return on Investment (ROI),
4, 13

reusing estimates, 50, 195

rewrites, feature parity and,
40

RFP (request for proposal),
10–12

Riffle & Sort example
about, xx
capacity, 14
hypothesis approach,

170–174

Ingredients of an Interac-
tion, 197–200

parametric model-based
estimation, 120–122

stochastic model-based
estimation, 124

risks
communicating, 194
decomposition, 51–52, 61
safety margins, 174
speed and, 89, 92
spot reestimating and,

166

Rogers, Carl, 183

ROI (Return on Investment),
4, 13

rounding in estimates, 57

rule of three, 181, 189

Running Tested Features
(RTF) metric, 82

S
safety, see also warning signs

comparison-based estima-
tion, 37

danger bearings, 167,
172, 174

margins, 174
speed and, 89

sailing examples, 97, 135,
167

sandbagging, 87, 179

Satir Interaction Model, 191

The Satir Model, 185

Satir, Virginia, 181, 183, 185

scalability, 37

schedules, see also delays;
milestones; progress

Cost of Delay and, 21
decomposition and, 73
handoffs and, 153
increasing capacity and,

15
release, 99
using estimates for, 4
Weighted Shortest Job

First (WSJF), 22

scope
in comparison-based esti-

mation, 35, 39
decomposition, 53
imposed projects, 23
in Ingredients of an Inter-

action example, 198
intuitive projects, 23

in linear model-based es-
timation, 112, 114–118

reducing, 14
sensing projects, 23
trimming after mismatch

with actuals, 153
uncertainty in, 114–115

screens
modeling rate in model-

based estimation, 106
modeling size in model-

based estimation, 104

Scrum simulations, 125

SEC example, 8

Section 508, 38

security
comparison-based estima-

tion, 37
coordinating milestones,

141
deployment, 141

self
congruence, 183–189
ego defense, 200

self-deception, 89

sensing projects, 23

sensory intake, 197, 200

service-level agreements, 37

significance in Ingredients of
an Interaction, 199–200

situational awareness, 90,
97–100, 118

size
comparing large and

small items, 63
in comparison-based esti-

mation, 29
decomposition, 43, 63
difficulty of judging, 30
errors in estimating, 65
factors of, 127
of functional slices, 63,

84
modeling in model-based

estimation, 103–106,
110

orders of magnitude, 30
of User Stories, 67, 111,

125, 127

Small Number of Large Parts,
58, 62–64, 110, 126

Software Estimation, xvi, 32,
149

spaces, overlooking, 65

Index • 214

speed
balancing with risk, 92
costs and, 150
going fast enough, 93
oscillating, 95
overall vs. peak perfor-

mance, 96
progress, 75, 87–97
replanning and, 153
side effects of, 88
slowing down, 94
speeding up, 95
velocity vs. cycle time,

106

spikes, 45

spot reestimating, 165

Sprints, blown, 157, see al-
so Story Points

stochastic model-based esti-
mation, 124–125

storage capacity, 141

Story Points
in comparison-model hy-

brid, 125
decomposition, 55
development of, xii
measuring progress with,

80, 107
in model-based estima-

tion, 105, 109
unknown contexts and,

44
using as few as possible,

44
velocity and, 106

subjectivity, in model-based
estimation, 107–109

Sunk Cost Fallacy, 68, 71–
72, 146

super-reasonable stance, 187

sympathy, 184

synchronization points, 140

system
aspects in comparison-

based estimation, 35–
38

context, 36–38, 44
coordination of mile-

stones, 140–143
implicit expectations, 36–

38
legacy systems, 62, 68

T
Tardiff, Michael J., 78

teams
about, xv
burnout, 88, 96, 173–174
changes in, 32, 94, 107,

119, 156, 164
clashes, 177–201
comparing plan from a

variety of viewpoints,
167

coordination of mile-
stones, 139–143

increasing capacity and,
15

keeping effective teams
together, 32

mis-communication,
178–183

parallel development,
139, 153

rate of work, 130
speeding up progress, 95
unsustainable work pace,

173

technical debt, 94

testing
assumptions, 163–164
decomposition by phase,

51
estimates as hypotheses,

169
functionality, 82, 107,

169
User Stories completion,

56

throughput, 37

time, see also rate
cycle time, 106
in linear model-based es-

timation, 112
pressures and decision-

making, 159

TinyToyCo example
about, xx
cashflow and break-even,

16–18
determining if project is

doable, 18
origins, 1, 3

touch points, 139

trainers, coordinating mile-
stones, 141

Transistor Circuit Approxima-
tions, xvii

trust
in actuals, 152

blame and, 157
coping stances and, 185
responding to estimates,

194
treating estimates as

commitments, 180

U
underbids, 8

underestimating, see also er-
rors in estimating

decomposition errors, 65–
66

overlooking spaces, 65
sizing errors, 65

unknowns, comparison-based
estimation, 43–46

unreasonableness, 196

usability requirements/expec-
tations, 38

Use Cases, 54

User Stories
in comparison-model hy-

brid, 125
counting, xiii, 55, 104,

107, 109–111
decomposition by func-

tionality, 53–58, 61,
67–69, 71, 104, 107

defined, 53
deleting, 68
development of, xii
encapsulation, 70
format, 54
linear model-based esti-

mation, 109
long-range planning with,

68
measuring progress by

functionality, 82
in model-based estima-

tion, 104, 107, 109
modeling rate in model-

based estimation, 106
numbers of, xiii, 55, 57–

58, 67–68
order of, 55
pairing scaffolding with,

61
sizing, 67, 111, 125, 127
splitting large, 54

users, coordinating mile-
stones, 141

Index • 215

V
value

choosing between
projects, 21

communicating progress,
84–90

Cost of Delay and, 21
early releases, 136–139
Earned Value, 80, 86
isolating from costs, 2, 14
Return on Investment, 4,

13

variance, 28, 105, 124

velocity vs. cycle time, 106

visualizations, see also Bur-
nUp Charts

BurnDown Charts, 116
Cumulative Flow Dia-

grams, 94, 118–119
linear model-based esti-

mation, 111–119

progress, 75, 83, 94,
111–119

work flow, 94, 118–119

W
Walking Skeletons, 61–62, 73

warnings
checking progress and,

77, 99
danger bearings, 167,

172, 174
milestones as, 159, 163
safety margins, 174

waterfall development, decom-
position in, 50

WBS (Work Breakdown
Structure), 69, 86

Weibull Distribution, 125

Weighted Shortest Job First
(WSJF), 22

Weinberg, Jerry, 181

what questions, 5

why questions, 4–5

Wirz, Henry, 135

Work Breakdown Structure
(WBS), 69, 86

work flow
Cumulative Flow Dia-

grams, 118–119
strategies for congruence,

189–201
visualizations, 94

work in progress, in Cumula-
tive Flow Diagrams, 118

working to plan, 157

WSJF (Weighted Shortest Job
First), 22

Y
Yesterday’s Weather, 44, 109,

see also linear model-based
estimation

Z
zone of probability, 114

Index • 216

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2020 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2020

Designing Elixir Systems with OTP
You know how to code in Elixir; now learn to think in
it. Learn to design libraries with intelligent layers that
shape the right data structures, flow from one function
into the next, and present the right APIs. Embrace the
same OTP that’s kept our telephone systems reliable
and fast for over 30 years. Move beyond understanding
the OTP functions to knowing what’s happening under
the hood, and why that matters. Using that knowledge,
instinctively know how to design systems that deliver
fast and resilient services to your users, all with an
Elixir focus.

James Edward Gray, II and Bruce A. Tate
(246 pages) ISBN: 9781680506617. $41.95
https://pragprog.com/book/jgotp

Modern Systems Programming with Scala Native
Access the power of bare-metal systems programming
with Scala Native, an ahead-of-time Scala compiler.
Without the baggage of legacy frameworks and virtual
machines, Scala Native lets you re-imagine how your
programs interact with your operating system. Compile
Scala code down to native machine instructions;
seamlessly invoke operating system APIs for low-level
networking and IO; control pointers, arrays, and other
memory management techniques for extreme perfor-
mance; and enjoy instant start-up times. Skip the JVM
and improve your code performance by getting close
to the metal.

Richard Whaling
(230 pages) ISBN: 9781680506228. $45.95
https://pragprog.com/book/rwscala

Programming Phoenix 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert as you build the next generation of web appli-
cations.

Chris McCord, Bruce Tate and José Valim
(356 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

Programming Kotlin
Programmers don’t just use Kotlin, they love it. Even
Google has adopted it as a first-class language for An-
droid development. With Kotlin, you can intermix im-
perative, functional, and object-oriented styles of pro-
gramming and benefit from the approach that’s most
suitable for the problem at hand. Learn to use the
many features of this highly concise, fluent, elegant,
and expressive statically typed language with easy-to-
understand examples. Learn to write maintainable,
high-performing JVM and Android applications, create
DSLs, program asynchronously, and much more.

Venkat Subramaniam
(460 pages) ISBN: 9781680506358. $51.95
https://pragprog.com/book/vskotlin

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that runtime errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(308 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

Technical Blogging, Second Edition
Successful technical blogging is not easy but it’s also
not magic. Use these techniques to attract and keep
an audience of loyal, regular readers. Leverage this
popularity to reach your goals and amplify your influ-
ence in your field. Get more users for your startup or
open source project, or simply find an outlet to share
your expertise. This book is your blueprint, with step-
by-step instructions that leave no stone unturned.
Plan, create, maintain, and promote a successful blog
that will have remarkable effects on your career or
business.

Antonio Cangiano
(336 pages) ISBN: 9781680506471. $47.95
https://pragprog.com/book/actb2

Build Chatbot Interactions
The next step in the evolution of user interfaces is here.
Chatbots let your users interact with your service in
their own natural language. Use free and open source
tools along with Ruby to build creative, useful, and
unexpected interactions for users. Take advantage of
the Lita framework’s step-by-step implementation
strategy to simplify bot development and testing. From
novices to experts, chatbots are an area in which every-
one can participate. Exercise your creativity by creating
chatbot skills for communicating, information, and
fun.

Daniel Pritchett
(206 pages) ISBN: 9781680506327. $35.95
https://pragprog.com/book/dpchat

Test-Driven React
You work in a loop: write code, get feedback, iterate.
The faster you get feedback, the faster you can learn
and become a more effective developer. Test-Driven
React helps you refine your React workflow to give you
the feedback you need as quickly as possible. Write
strong tests and run them continuously as you work,
split complex code up into manageable pieces, and
stay focused on what’s important by automating away
mundane, trivial tasks. Adopt these techniques and
you’ll be able to avoid productivity traps and start
building React components at a stunning pace!

Trevor Burnham
(190 pages) ISBN: 9781680506464. $45.95
https://pragprog.com/book/tbreact

Small, Sharp Software Tools
The command-line interface is making a comeback.
That’s because developers know that all the best fea-
tures of your operating system are hidden behind a
user interface designed to help average people use the
computer. But you’re not the average user, and the
CLI is the most efficient way to get work done fast.
Turn tedious chores into quick tasks: read and write
files, manage complex directory hierarchies, perform
network diagnostics, download files, work with APIs,
and combine individual programs to create your own
workflows. Put down that mouse, open the CLI, and
take control of your software development environment.

Brian P. Hogan
(326 pages) ISBN: 9781680502961. $38.95
https://pragprog.com/book/bhcldev

Programming Ecto
Languages may come and go, but the relational
database endures. Learn how to use Ecto, the premier
database library for Elixir, to connect your Elixir and
Phoenix apps to databases. Get a firm handle on Ecto
fundamentals with a module-by-module tour of the
critical parts of Ecto. Then move on to more advanced
topics and advice on best practices with a series of
recipes that provide clear, step-by-step instructions
on scenarios commonly encountered by app developers.
Co-authored by the creator of Ecto, this title provides
all the essentials you need to use Ecto effectively.

Darin Wilson and Eric Meadows-Jönsson
(242 pages) ISBN: 9781680502824. $45.95
https://pragprog.com/book/wmecto

Web Development with ReasonML
ReasonML is a new, type-safe, functional language that
compiles to efficient, readable JavaScript. ReasonML
interoperates with existing JavaScript libraries and
works especially well with React, one of the most pop-
ular front-end frameworks. Learn how to take advan-
tage of the power of a functional language while keep-
ing the flexibility of the whole JavaScript ecosystem.
Move beyond theory and get things done faster and
more reliably with ReasonML today.

J. David Eisenberg
(208 pages) ISBN: 9781680506334. $45.95
https://pragprog.com/book/reasonml

Programming WebAssembly with Rust
WebAssembly fulfills the long-awaited promise of web
technologies: fast code, type-safe at compile time, exe-
cution in the browser, on embedded devices, or any-
where else. Rust delivers the power of C in a language
that strictly enforces type safety. Combine both lan-
guages and you can write for the web like never before!
Learn how to integrate with JavaScript, run code on
platforms other than the browser, and take a step into
IoT. Discover the easy way to build cross-platform ap-
plications without sacrificing power, and change the
way you write code for the web.

Kevin Hoffman
(238 pages) ISBN: 9781680506365. $45.95
https://pragprog.com/book/khrust

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/gdestimate
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

	Cover
	Table of Contents
	Acknowledgements
	Introduction
	Benefit of Headlights
	Beyond Story Points and Planning Poker
	Definitions
	Who This Book Is For
	Goal of This Book
	What’s in This Book
	Conventions Used
	Now It’s Your Turn

	1. Starting Something New
	When You’re Asked to Estimate Something New
	Case: Developing a Fixed-Price Bid
	Case: Is This Worth Starting?
	Case: Can We Make This Work?
	Case: What Should We Budget?
	Case: Which of These Should We Choose?
	Case: A Mixture of Questions
	Stepping Back for a Broader View
	Now It’s Your Turn

	2. Comparison-Based Estimation
	Comparison to Past Experience
	Memory vs. Recorded Data
	Aspects to Compare
	Gestalt Estimation
	Decomposition
	Estimating the Unknown
	Stepping Back for a Broader View
	Now It’s Your Turn

	3. Decomposition for Estimation
	Which Way to Slice?
	Decomposing by Phase
	Decomposing by Implementation
	Decomposing by Functionality
	User Stories
	Decomposition Decisions
	A Large Number of Small Parts
	A Small Number of Large Parts
	Affinity Estimation
	Ordering the Parts
	Multi-Level Decomposition
	Comparing Big Items with Small Ones
	Decomposition Gotchas
	Stepping Back for a Broader View
	Now It’s Your Turn

	4. Checking Progress
	Getting Things Done
	Detecting Progress
	What to Measure
	Visualizing Progress
	Showing Value for the Money
	Efficiency and Effectiveness
	Optimization
	Are We Going Fast Enough?
	Pushing Our Limits
	Situational Awareness
	Stepping Back for a Broader View
	Now It’s Your Turn

	5. Model-Based Estimation
	Modeling the Size
	Modeling the Rate
	Unavoidable Subjectivity
	The Linear Model Approach
	Advanced Linear Model Techniques
	The Parametric Model Approach
	The Stochastic Model Approach
	Comparison-Model Hybrid
	Stepping Back for a Broader View
	Now It’s Your Turn

	6. Estimating Milestones
	Deadlines
	Early Release
	Coordination with Others
	Evaluating and Changing Plans
	Stepping Back for a Broader View
	Now It’s Your Turn

	7. When Estimates and Actuals Differ
	Driving Up Costs
	Salvaging the Situation
	Learning from the Situation
	Stepping Back for a Broader View
	Now It’s Your Turn

	8. Planning for Incorrect Predictions
	Seeking Out Information
	Setting Traps for Information
	Avoid Traps for the Unwary
	Stepping Back for a Broader View
	Now It’s Your Turn

	9. When People Clash
	It Starts So Innocently
	How It Goes Wrong
	Understanding Human Behavior
	Imagine a Better Situation
	Retraining Ourselves
	Tools for Better Understanding
	Stepping Back for a Broader View
	Now It’s Your Turn
	Conclusion

	Bibliography
	Index
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –
	– Z –

